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Preface to the Third Edition

The third edition of Transforms and Applications Handbook follows a similar approach to that of the second edition. The new edition
builds upon the previous one by presenting additional important transforms valuable to engineers and scientists. Numerous examples
and different types of applications are included in each chapter so that readers from different backgrounds will have the opportunity
to become familiar with a wide spectrum of applications of these transforms. In this edition, we have added the following important
transforms:

1. Finite Hankel transforms, Legendre transforms, Jacobi and Gengenbauer transforms, and Laguerre and Hermite transforms
2. Fraction Fourier transforms
3. Zak transforms
4. Continuous and discrete Chirp–Fourier transforms
5. Multidimensional discrete unitary transforms
6. Hilbert–Huang transforms

I would like to thank Richard Dorf, the series editor, for his help. Special thanks also go to Nora Konopka, the acquisitions editor for
engineering books, for her relentless drive to finish the project.

Alexander D. Poularikas

MATLAB1 is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1.1 Introduction to Signals

A knowledge of a broad range of signals is of practical import-

ance in describing human experience. In engineering systems,

signals may carry information or energy. The signals with which

we are concerned may be the cause of an event or the conse-

quence of an action.

The characteristics of a signal may be of a broad range of shapes,

amplitudes, time duration, and perhaps other physical properties.

In many cases, the signal will be expressed in analytic form; in

other cases, the signal may be given only in graphical form.

It is the purpose of this chapter to introduce the mathematical

representation of signals, their properties, and some of their

applications. These representations are in different formats

depending on whether the signals are periodic or truncated, or

whether they are deduced from graphical representations.

Signals may be classified as follows:

1. Phenomenological classification is based on the evolution

type of signal, that is, a perfectly predictable evolution

defines a deterministic signal and a signal with unpredict-

able behavior is called a random signal.
2. Energy classification separates signals into energy signals,

those having finite energy, and power signals, those with a

finite average power and infinite energy.

3. Morphological classification is based on whether signals

are continuous, quantitized, sampled, or digital signals.

4. Dimensional classification is based on the number of inde-

pendent variables.

5. Spectral classification is based on the shape of the fre-

quency distribution of the signal spectrum.

1.1.1 Functions (Signals), Variables,
and Point Sets

The rule of correspondence from a set Sx of real or complex

number x to a real or complex number

y ¼ f (x) (1:1)

is called a function of the argument x. Equation 1.1 specifies a

value (or values) y of the variable y (set of values in Y) corre-
sponding to each suitable value of x in X. In Equation 1.1 x is the
independent variable and y is the dependent variable.

A function of n variables x1, x2, . . . , xn associates values

y ¼ f (x1, x2, . . . , xn) (1:2)

of a dependent variable y with ordered sets of values of the

independent variables x1, x2, . . . , xn.
The set Sx of the values of x (or sets of values of x1, x2, . . . , xn)

for which the relationships (1.1) and (1.2) are defined constitutes

the domain of the function. The corresponding set of Sy of values
of y is the Sx range of the function.
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A single-valued function produces a single value of the

dependent variable for each value of the argument. A

multiple-valued function attains two or more values for each

value of the argument.

The function y(x) has an inverse function x(y) if y¼ y(x)
implies x¼ x(y).

A function y¼ f (x) is algebraic of x if and only if x and y
satisfy a relation of the form F(x, y)¼ 0, where F(x, y) is a

polynomial in x and y. The function y¼ f (x) is rational if f (x)
is a polynomial or is a quotient of two polynomials.

A real or complex function y¼ f(x) is bounded on a set Sx if and
only if the corresponding set Sy of values y is bounded. Furthermore,

a real function y¼ f(x) has an upper bound, least upper bound
(l.u.b.), lower bound, greatest lower bound (g.l.b.), maximum, or

minimum on Sx if this is also true for the corresponding set Sy.

1.1.1.1 Neighborhood

Given any finite real number a, an open neighborhood of the

point a is the set of all points {x} such that jx� aj< d for any

positive real number d.

An open neighborhood of the point (a1, a2, . . . , an), where all
ai are finite, is the set of all points (x1, x2, . . . , xn) such that

jx1� a1j< d, jx2� a2j< d, . . . , and jxn� anj< d for some positive

real number d.

1.1.1.2 Open and Closed Sets

A point P is a limit point (accumulation point) of the point set S
if and only if every neighborhood of P has a neighborhood

contained entirely in S, other than P itself.

A limit point P is an interior point of S if and only if P has a

neighborhood contained entirely in S. Otherwise P is a boundary
point.

A point P is an isolated point of S if an only if P has a

neighborhood in which P is the only point belonging to S.
A point set is open if and only if it contains only interior points.
A point set is closed if and only if it contains all its limit points;

a finite set is closed.

1.1.2 Limits and Continuous Functions

1. A single-value function f(x) has a limit

lim
x!a

f (x) ¼ L, L ¼ finite

as x! a{ f(x)! L as x! a} if and only if for each positive

real number e there exists a real number d such that 0<

jx� aj< d implies that f (x) is defined and j f (x)� Lj< e.

2. A single-valued function f(x) has a limit

lim
x!1

f (x) ¼ L, L ¼ finite

as x ! 1 if and only if for each positive real number e

there exists a real number N such that x>N implies that

f (x) is defined and j f(x)� Lj< e.

1.1.2.1 Operations with Limits

If limits exist, Table 1.1 gives the limit operations.

1.1.2.2 Asymptotic Relations between Two Functions

Given two real or complex functions f(x), g(x) of a real or

complex variable x, we write

1. f(x)¼O[g(x)]; f(x) is of the order g(x) as x! a if and only

if there is a neighborhood of x¼ a such that j f(x)=g(x)j is
bounded.

2. f(x) � g(x); f(x) is asymptotically proportional to g(x) as

x! a if and only if limx!a[ f(x)=g(x)] exists and it is not zero.
3. f(x) ffi g(x); f(x) is asymptotically equal to g(x) as x ! a

if and only if

lim
x!a

[f (x)=g(x)] ¼ 1:

4. f(x)¼ o[g(x)]; f(x) becomes negligible compared with g(x)
if and only if

lim
x!a

[f (x)=g(x)] ¼ 0:

5. f (x) ¼ w(x)þ O[g(x)] if f (x)� w(x) ¼ O[g(x)]

f (x) ¼ w(x)þ o[g(x)] if f (x)� w(x) ¼ o[g(x)]

1.1.2.3 Uniform Convergence

1. A single-valued function f(x1, x2) converges uniformly
on a set S of values of x2, limx1!a f (x1, x2) ¼ L(x2) if and
only if for each positive real number e there exists a real

number d such that 0< jx1� aj< d implies that f(x1, x2) is
defined and j f(x1, x2)� L(x2)j< e for all x2 in S (d is

independent of x2).
2. A single-valued function f(x1, x2) converges uniformly

on a set S of values of x2 limx1!1 f (x1, x2) ¼ L(x2) if and
only if for each positive real number e there exists a real

number N such that for x1>N implies that f(x1, x2) is

defined and j f(x1, x2)� L(x2)j< e for all x2 in S.
3. A sequence of functions f1(x), f2(x), . . . converges uni-

formly on a set S of values of x to a finite and unique

function

lim
x!1

fn(x) ¼ f (x)

TABLE 1.1 Operations with Limits

limx!a [ f (x)þ g(x)] ¼ limx!a f (x)þ limx!a g(x)

limx!a [bf (x)] ¼ b limx!a f (x)

limx!a [ f (x)g(x)] ¼ limx!a f (x) limx!a g(x)

limx!a
f (x)

g(x)
¼ limx!a f (x)

limx!a g(x)
(limx!a g(x) 6¼ 0)

a may be finite or infinite.
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if and only if for each positive real number e there exists a real

integer N such that for n>N implies that j fn(x)� f (x)j< e for all

n in S.

1.1.2.4 Continuous Functions

1. A single-valued function f (x) defined in the neighborhood

of x¼ a is continuous at x¼ a if and only if for every

positive real number e there exists a real number d such

that jx� aj< d implies j f(x)� f(a)j< e.

2. A function is continuous on a series of points (interval or
region) if and only if it is continuous at each point of the set.

3. A real function continuous on a bounded closed interval

[a, b] is bounded on [a, b] and assumes every value between

and including its g.l.b. and its l.u.b. at least once on [a, b].
4. A function f(x) is uniformly continuous on a set S and only

if for each positive real number e there exists a real number d

such that jx�Xj< d implies j f(x)� f(X)j< e for all X in S.

If a function is continuous in a bounded closed interval [a, b], it
is uniformly continuous on [a, b]. If f(x) and g(x) are continuous
at a point, so are the functions f(x)þ g(x) and f(x) f(x).

1.1.2.5 Limits

1. A function f(x) of a real variable x has the right-hand
limit limx!aþ f(x)¼ f(aþ)¼ Lþ at x¼ a if and only if

for each positive real number e there exists a real number

d such that 0< x� a< d implies that f(x) is defined and

j f(x)� Lþj< e.

2. A function f(x) of a real variable x has the left-hand limit

limx!a� f(x)¼ f(a�)¼ L� at x¼ a if and only if for each

positive real number e there exists a real number d such that

0< a< d implies that f(x) is defined and j f(x)� L�j< e.

3. If limx!a f(x) exists, then limx!aþ f(x)¼ limx!a� f(x)¼
limx!a f(x). Consequently, limx!a� f(x)¼ limx!aþ f(x)
implies the existence of limx!a f(x).

4. The function f(x) is right continuous at x¼ a if f(aþ)¼ f(a).
5. The function f(x) is left continuous at x¼ a if f(a�)¼ f(a).
6. A real function f(x) has a discontinuity of the first kind

at point x¼ a if f(aþ) and f(a�) exist. The greatest differ-
ence between two of these number f(a), f(aþ), f(a�) is the
saltus of f(x) at the discontinuity. The discontinuities of the
first kind of f(x) constitute a discrete and countable set.

7. A real function f(x) is piecewise continuous in an interval I
if and only if f(x) is continuous throughout I except for a
finite number of discontinuities of the first kind.

1.1.2.6 Monotonicity

1. A real function f(x) of a real variable x is a strongly mono-
tonic in the open interval (a, b) if f(x) increases as x increases
in (a, b) or if f(x) decreases as x decreases in (a, b).

2. A function f(x) is weakly monotonic in (a, b) if f(x) does
not decrease, or if f(x) does not increase in (a, b). Analo-
gous definitions apply to monotonic sequences.

3. A real function of a real variable x is of bounded variation
in the interval (a, b) if and only if there exists a real

number of M such that

Xm

i¼1
j f (xi)� f (xi�1)j < M for all partitions

a ¼ x0 < x1 < x2 < � � � < xm ¼ b

of the interval (a, b). If f(x) and g(x) are of bounded

variation in (a, b), then f(x)þ g(x) and f(x)g(x) are of

bounded variation also. The function f(x) is of bounded

variation in every finite open interval where f(x) is

bounded and has a finite number of relative maxima and

minima and discontinuities (Dirichlet conditions).

A function of bounded variation in (a, b) is bounded in (a, b)
and its discontinuities are only of the first kind.

Table 1.2 presents some useful mathematical functions.

TABLE 1.2 Some Useful Mathematical Functions

1. Signum function

sgn(t) ¼
1 t > 0
0 t ¼ 0
�1 t < 1

(

2. Step function

u(t) ¼ 1

2
þ 1

2
sgn(t) ¼ 1 t > 0

0 t < 0

n

3. Ramp function

r(t) ¼
Ð t
�1 u(t)dt ¼ tu(t)

4. Pulse function

pa(t) ¼ u(t þ a)� u(t � a) ¼ 1 jtj < a
0 jtj > a

�

5. Triangular pulse

La(t) ¼ 1� jtj
a
jtj < a

0 jtj > a

(

6. Sine function

sin ca(t) ¼
sin at

t
, �1 < t <1

7. Gaussian function

ga(t) ¼ e�at
2

, �1 < t <1
8. Error function

erf(t) ¼ 2
ffiffiffiffi
p
p

Ð t
0 e
�t2dt ¼ 2

ffiffiffiffi
p
p P1

n¼0

(�1)nt2nþ1
n!(2nþ 1)

Properties:

erf (1) ¼ 1, erf (0) ¼ 0, erf (�t) ¼ �erf (t)
erfc(t) ¼ complementary error function

¼ 1� erf (t) ¼ 2
ffiffiffiffi
p
p

Ð1
t e�t

2

dt

9. Exponential function

f (t) ¼ e�atu(t), t � 0

10. Double exponential

f (t) ¼ e�ajtj, �1 < t <1
11. Lognormal function

f (t) ¼ 1

t
e�‘n

2t=2, 0 < t <1
12. Rayleigh function

f (t) ¼ te�t
2=2, 0 < t <1
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1.1.3 Energy and Power Signals

1.1.3.1 Energy Signals

If we consider any signal f(t) as denoting a voltage that exists

across a 1 V resistor, then

f 2(t)

1
¼ f (t)

f (t)

1
¼ f (t)i(t) ¼ power VA

Therefore, the integral

E ¼
ðb

a

f 2(t)dt joule (1:3)

representing the energy dissipated in the resistor during the time

interval (a, b). A signal is called energy signal if

ð1

�1

f 2(t)dt <1 (1:4)

1.1.3.2 Power Signals

Power signals are defined by the relation

0 � lim
T!1

1

2T

ðT

�T

f 2(t)dt <1 (1:5)

For complex-valued signals, we must introduce j f(t)j2 instead

of f 2(t).
We may represent the energy in a finite interval in terms of the

coefficients of the basis function wi; that is, we write the energy

integral in the form

E ¼
ðb

a

f 2(t)dt ¼
ðb

a

f (t)
X1

n¼0
cnwn(t)dt

¼
X1

n¼0
cn

ðb

a

f (t)wn(t)dt ¼
X1

n¼0
c2n kwn(t)k2 (1:6)

where

ðb

a

f (t)wn(t)dt ¼ cn

ðb

a

w2
n(t)dt ¼ cn kwn(t)k2

Because the square of the norm kwn(t)k2 is the energy associated
with the nth orthogonal function, Equation 1.6 shows that the

energy of the signal is the sum of the energies of its individual

orthogonal components weighted by cn. Note that this is the

Parseval theorem. This equation shows that the set {wn(t)}
forms an orthogonal (complete) set, and the signal energy can

be calculated from this representation.

Example

(a)
Ð1
0

u2(t) dt ¼
Ð1
0

dt ¼ 1; limT!1 1
2T

Ð T

�T u
2(t) dt ¼

limT!1 1
2T

Ð T

0
dt ¼ limT!1 1

2T
tjT0
� �

¼ 1
2
<1.

This implies that u(t) is a power signal.

(b) The signal e�at u(t), a> 0 is an energy signal.

1.2 Distributions, Delta Function

1.2.1 Introduction

The delta function d(t) often called the impulse or Dirac
delta function, occupies a central place in signal analysis.

Many physical phenomena such as point sources, point charges,

concentrated loads on structures, and voltage or current sources,

acting for very short times, can be modeled as delta functions.

Strictly speaking, delta functions are not functions in the

accepted mathematical sense, and they cannot be treated with

rigor within the framework of classical analysis. However, if dis-

tributions are introduced, then the concept of a delta function and

operations on delta functions can be given a precise meaning.

1.2.2 Testing Functions

A distribution is a generalization of a function. Within the

framework of distributions, any function encountered in appli-

cations, such as unit-step functions and pulses, may be differen-

tiated as many times as we desire, and any convergent series of

functions may be differentiated term by term.

A testing function w(t) is a real-valued function of the real

variable that can be differentiated an arbitrary number of times,

and which is identical to zero outside a finite interval.

Example

Testing function

w(t, a) ¼ e�
a2

a2�t2 jtj < a

0 jtj � a

(

(1:7)

1.2.2.1 Properties

1. If f(t) can be differentiated arbitrarily often

c(t) ¼ f (t) w(t) ¼ testing function

2. If f(t) is zero outside a finite interval

c(t) ¼
ð1

�1

f (t)w(t � t)dt, �1 < t <1

¼ testing function
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3. A sequence of testing functions, {wn} 1� n<1, converges

to zero if all wn are identically zero outside some interval

independent of n and each wn, as well as all of its deriva-

tives, tends uniformly to zero.

Example

wn(t) ¼ w t þ 1

n

� �

� w(t)

4. Testing functions belong to a set D, where D is a linear

vector space, and if w1 2 D and w2 2 D, then w1þw2 2 D
and aw1 2 D for any number a.

1.2.3 Definition of Distributions

A distribution (or generalized function) g(t) is a process of

assigning to an arbitrary test function w(t) a number Ng[w(t)].
A distribution is also a functional.

Example

An ordinary function f(t) is a distribution if

ð1

�1

f (t)w(t)dt ¼ Nf [w(t)] (1:8)

exists for every test function w(t) in the set. For example, if

f(t)¼ u(t) then

ð1

�1

u(t)w(t)dt ¼
ð1

0

w(t)dt (1:9)

The function u(t) is s distribution that assigns to w(t) a number

equal to its area from zero to infinity.

1.2.3.1 Properties of Distributions

1. Linearity–homogeneity

ð1

�1

g(t)[a1w1(t)þ a2w2(t)]dt ¼ a1

ð1

�1

g(t)w1(t)dt

þ a2

ð1

�1

g(t)w2(t)dt (1:10)

for all test functions and all numbers ai.
2. Summation

ð1

�1

[ g1(t)þ g2(t)]w(t)dt ¼
ð1

�1

g1(t)w(t)dt þ
ð1

�1

g2(t)w(t)dt

(1:11)

3. Shifting

ð1

�1

g(t � t0)w(t)dt ¼
ð1

�1

g(t)w(t þ t0)dt (1:12)

4. Scaling

ð1

�1

g(at)w(t)dt ¼ 1

jaj

ð1

�1

g(t)w
t

a

� �

dt (1:13)

5. Even distribution

ð1

�1

g(t)w(t)dt ¼ 0, w(t) ¼ odd (1:14)

6. Odd distribution

ð1

�1

g(t)w(t)dt ¼ 0, w(t) ¼ even (1:15)

7. Derivative

ð1

�1

dg(t)

dt
w(t)dt ¼ g(t)w(t)j1�1 �

ð1

�1

g(t)
dw(t)

dt
dt

¼ �
ð1

�1

g(t)
dw(t)

dt
dt (1:16)

where the integrated term is equal to zero in view of the

properties of testing functions.

8. The nth derivative

ð1

�1

dng(t)

dtn
w(t)dt ¼ (�1)n

ð1

�1

g(t)
dnw(t)

dtn
dt (1:17)

9. Product with ordinary function

ð1

�1

[g(t)f (t)]w(t)dt ¼
ð1

�1

g(t)[f (t)w(t)]dt (1:18)

provided that f(t)w(t) belongs to the set of test functions.

10. Convolution

ð1

�1

ð1

�1

g1(t)g2(t � t)dt

2

4

3

5w(t)dt

¼
ð1

�1

g1(t)

ð1

�1

g2(t � t)w(t)dt

2

4

3

5dt (1:19)

by formal change of the order of integration.
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1.2.3.2 Definition

A sequence of distributions {gn(t)}
1
1 is said to converge to the

distribution g(t) if

lim
n!1

ð1

�1

gn(t)w(t)dt ¼
ð1

�1

g(t)w(t)dt (1:20)

for all w belonging to the set of test functions.

11. Every distribution is the limit, in the sense of distributions,

of sequence of infinitely differentiable functions.

12. If gn(t)! g(t) and rn(t)! r(t) (r is a distribution), and the

numbers an! a, then

d

dt
gn(t)!

dg(t)

dt
, gn(t)þ rn(t)! g(t)þ r(t),

angn(t)! ag(t)

(1:21)

13. Any distribution g(t) may be differentiated as many times

as desired. That is, the derivative of any distribution always

exists and it is a distribution.

1.2.4 The Delta Function

1.2.4.1 Properties

Based on the distribution properties, the properties of the delta

function are given below.

1. The delta function is a distribution assigning to the func-

tion w(t) the number w(0); thus

ð1

�1

d(t)w(t)dt ¼ w(0) (1:22)

2. Shifted

ð1

�1

d(t � t0)w(t)dt ¼ w(t0) (1:23)

3. Scaled

ð1

�1

d(at)w(t)dt ¼ 1

jaj

ð1

�1

d(t)w
t

a

� �

dt ¼ 1

jajw(0)

From Equation 1.22 we have the identity

d(at) ¼ 1

jaj d(t)

and hence (a¼�1)

d(�t) ¼ d(t) ¼ even (1:24)

4. Multiplication by continuous function

ð1

�1

[d(t)f (t)]w(t)dt ¼
ð1

�1

d(t)[f (t)w(t)]dt ¼ f (0)w(0)

If f(t) is continuous at 0, then

f (t)d(t) ¼ f (0)d(t) (1:25)

and

td(t) ¼ 0 (1:26)

5. Derivatives

ð1

�1

dd(t)

dt
w(t)dt ¼ � dw(0)

dt

ð1

�1

dd(t � t0)

dt
w(t) ¼ � dw(t0)

dt
(1:27)

ð1

�1

dnd(t)

dtn
w(t) dt ¼ (�1)n d

nw(0)

dtn
(1:28)

ð1

�1

dd(t)

dt
f (t)w(t)dt ¼ �

ð1

�1

d(t)
d[ f (t)w(t)]

dt
dt

¼ �f (0) dw(0)
dt
� df (0)

dt
w(0) (1:29)

f (t)
dd(t)

dt
¼ � df (0)

dt
d(t)þ f (0)

dd(t)

dt
(1:30)

t
dd(t)

dt
¼ �d(t) (1:31)

Set f(t)¼w(t)¼ 1 in Equation 1.29 to find the relation

ð1

�1

dd(t)

dt
dt ¼ 0

dd(t)

dt
is an odd function

� 	

(1:32)

f (t)
dnd(t)

dtn
¼
Xn

k¼0
(�1)k n!

k!(n� k)!

dkf (0)

dtk
dn�kd(t)

dtn�k
(1:33)

From

ð1

�1

du(t)

dt
w(t)dt ¼ u(t)w(t)j1�1�

ð1

�1

u(t)
dw(t)

dt
dt

¼ �
ð1

0

dw(t)

dt
dt ¼ �w(t)j10 ¼ w(0)
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and comparing with Equation 1.22 we find that

d(t) ¼ du(t)

dt
(1:34)

Therefore, the generalized derivatives of discontinuous

function contain impulses. An is the jump at the discon-

tinuity point t¼ tn of the expression An w(t� tn). Also

dd(t)

dt
¼ d2u(t)

dt2
or u(t)þ u(�t) ¼ 1

Hence

du(�t)
dt

¼ �d(t) (1:35)

d(t � t0) ¼
du(t � t0)

dt
(1:36)

If r(t) has a finite or countably infinite number of zeros at

tn on the entire t axis and these points r(t) have a continu-
ous derivative dr(tn)=dt 6¼ 0, then

d[r(t)] ¼
X

n

d(t � tn)
dr(tn)
dt











(1:37)

Hence, we obtain

d(t2 � 1) ¼ 1

2
d(t � 1)þ 1

2
d(t þ 1) (1:38)

d(sin t) ¼
X1

n¼�1
d(t � np) (1:39)

In addition, the following relation in also true:

dd[r(t)]

dt
¼
X

n

dd(t�tn)
dt

dr(t)
dt

dr(tn)
dt











(1:40)

6. Integrals

ð1

�1

Ad(t � t0)dt ¼ A (1:41)

for all t0

d(t � t1) * d(t � t2) ¼ convolution

¼
ð1

�1

d(t� t1)d(t � t� t2)dt ¼ d[t � (t1 þ t2)] (1:42)

f (t) * d(t) ¼
ð1

�1

f (t � t)d(t)dt ¼ f (t � 0) ¼ f (t) (1:43)

1.2.4.2 Distributions as Generalized Limits

We can define a distribution as a generalized limit of a sequence

fn(t) of ordinary function. If there exists a sequence fn(t) such that

the limit

lim
n!1

ð1

�1

fn(t)w(t)dt (1:44)

exists for every test function in the set, then the result is a

number depending on w(t). Hence, we may define a distribution

g(t) as

g(t) ¼ lim fn(t) (1:45)

and, therefore, equivalently

d(t) ¼ lim fn(t) (1:46)

Consider the two sequences shown in Figure 1.1a and b. The

rectangular pulse sequence is given by

pe(t) ¼
u(t)� u(t � e)

e

and has area unity whatever the value of e. Because w(t) is

continuous, it follows that

lim
e!0

ð1

1

pe(t)w(t)dt ¼ lim
e!0

1

e

ðe

0

w(t)dt ¼ lim
e!0

w(0)
1

e

ðe

0

dt ¼ w(0)

and therefore

d(t) ¼ lim
e!0

pe(t) (1:47)

Similarly, from

lim
e!0

1
ffiffiffiffiffiffi
ep
p

ð1

�1

e�t
2=ew(t)dt ffi w(0)

ffiffiffiffiffiffi
ep
p

ð1

�1

e�t
2=e dt ¼ w(0)

it follows that

d(t) ¼ lim
e!0

e�t
2=e

ffiffiffiffiffiffi
ep
p (1:48)

If we use the sequence

d(t) ¼ lim
v!1

sinvt

pt
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we find that

d(t) ¼ lim
a!1

1

2p

ða

�a

eþjvtdv ¼ lim
a!1

sin at

pt
¼ 1

2p

ð1

�1

eþjvtdv

(1:49)

Also

d(t � t0) ¼
1

2p

ð1

�1

e�jv(t�t0)dv (1:50)

Further

ð1

�1

cos vt dv ¼ lim
V!1

ðV

�V

cos vt dv ¼ lim
V!1

2 sin Vt

t

¼ lim
V!1

2p
sin Vt

pt
¼ 2pd(t) (1:51)

Figure 1.1c shows the derivatives of the sequence Equation 1.48.

The following examples will elucidate some of the delta proper-

ties and the use of the delta function in Table 1.3.

Example

Equivalence of expressions involving the delta functions:

(a) (cos tþ sin t)d(t)¼ d(t)

(b) cos 2tþ sin td(t)¼ cos 2t

(c) 1þ 2e�td(t� 1)¼ 1þ 2e�1d(t� 1)

Example

The values of the following integrals are

ð1

�1

(t2þ4tþ5)d(t)dt¼ 02þ4 �0þ5¼ 5,

ð1

�1

(1þcost)d(t)

1þ2et
dt¼ 2

1þ2

ð1

�1

t2
Xn

k¼1
d(t � k)dt ¼

Xn

k¼1
k2 ¼ 1

6
[n(nþ 1)(2nþ 1)]

t

4

2

1

4 2

f (t) = p (t)

(a)

0.8
fε(t) =

exp(–t2/ε)

ε3 = 0.5

ε2 = 2

ε1= 6

0.6

0.4

0.2

–3 –2 –1 1 2 3
t

√πε

(b)

3
t

1

ε2 = 2

ε3 = 0.5

ε1 = 6

–0.5

–1

–3 –2 –1 1 2

dfε(t)

dt

(c)

0.5

FIGURE 1.1
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Example

The first derivative of the functions is

d

dt
(2u(t þ 1)þ u(1� t)) ¼ d

dt
(2u(t þ 1)þ u[� (t � 1)])

¼ 2d(t þ 1)� d(t � 1)

d

dt
([2� u(t)] cos t) ¼ d

dt
(2 cos t � u(t) cos t)

¼ �2 sin t � d(t) cos t þ u(t) sin t

¼ (u(t)� 2) sin t � d(t)

d

dt
u t�p

2

� �

� u(t�p)
h i

sin t
� �

¼ d t�p

2

� �

� d(t�p)
h i

sin tþ u t�p

2

� �

� u(t�p)
h i

cos t

¼ d t�p

2

� �

þ
h

u t�p

2

� �

� u(t�p)
i

cos t

TABLE 1.3 Delta Functional Properties

1. d(at) ¼ 1

jaj d(t)

2. d
t � t0
a

� �

¼ jajd(t � t0)

3. d(at � t0) ¼
1

jaj d t � t0
a

� �

4. d(�t þ t0) ¼ d(t � t0)

5. d(�t) ¼ d(t); d(t) ¼ even function

6.
Ð1
�1 d(t)f (t)dt ¼ f (0)

7.
Ð1
�1 d(t � t0)f (t) ¼ f (t0)

8. f (t)d(t) ¼ f (0)d(t)

9. f (t)d(t � t0) ¼ f (t0)d(t � t0)

10. td(t) ¼ 0

11.
Ð1
�1 Ad(t)dt ¼

Ð1
�1 Ad(t � t0)dt ¼ A

12. f (t)*d(t) ¼ convolution ¼
Ð1
�1 f (t � t)d(t)dt ¼ f (t)

13. d(t � t1)*d(t � t2) ¼
Ð1
�1 d(t� t1)d(t � t� t2)dt ¼ d[t � (t1 þ t2)]

14.
PN

n¼�N d(t� nT)*
PN

n¼�N d(t� nT)¼
P2N

n¼�2N (2N þ 1� jnj)d(t� nT)

15.
Ð1
�1

dd(t)

dt
f (t)dt ¼ � df (0)

dt

16.
Ð1
�1

dd(t � t0)

dt
f (t)dt ¼ � df (t0)

dt

17.
Ð1
�1

dnd(t)

dtn
f (t)dt ¼ (�1)n d

nf (0)

dtn

18. f (t)
dd(t)

dt
¼ � df (0)

dt
d(t)þ f (0)

dd(t)

dt

19. t
dd(t)

dt
¼ �d(t)

20. tn
dmd(t)

dtm
¼

(�1)n n!d(t) m ¼ n

(�1)n m!

m� n!

dm�nd(t)

dtm�n
, m > n

0, m < n

8

><

>:

21.
Ð1
�1

dd(t)

dt
¼ 0,

dd(t)

dt
¼ odd function

22. f (t)*
dd(t)

dt
¼ df (t)

dt

23. f (t)
dnd(t)

dtn
¼
Xn

k¼0
(�1)k n!

k!(n� k)!

dk f (0)

dtk
dn�kd(t)

dtn�k

24.
qd(yt)

qy
¼ � 1

y2
d(t)

25. d(t) ¼ du(t)

dt

26.
dnd(� t)

dtn
¼ (�1)n d

nd(t)

dtn
,

dnd(t)

dtn
is even if n is even,and odd if n is odd:

� �

27. ( sin at)
dd(t)

dt
¼ �ad(t)

28.
dd(t)

dt
¼ d2u(t)

dt2

TABLE 1.3 (continued) Delta Functional Properties

29. �d(t) ¼ du(�t)
dt

30. d(t � t0) ¼
du(t � t0)

dt

31.
dsgn(t)

dt
¼ 2d(t)

32. d[r(t)] ¼Pn

d(t � tn)
dr(tn)
dt











, tn ¼ zeros of r(t),
dr(tn)

dt
6¼ 0

33.
dd[r(t)]

dt
¼
X

n

dd(t�tn)
dt

dr(t)
dt




 dr(tn)

dt

, tn ¼ zeros of r(t),
dr(tn)

dt
6¼ 0,

dr(t)

dt
6¼ 0

34. d( sin t) ¼P1n¼�1 d(t � np)

35. d(t2 � 1) ¼ 1

2
d(t � 1)þ 1

2
d(t þ 1)

36. d(r2 � a2) ¼ 1

2a
[d(t þ a)þ d(t � a)]

37. d(t) ¼ lime!0
e�t

2=e

ffiffiffiffiffiffi
ep
p

38. d(t) ¼ limv!1
sinvt

pt

39. d(t) ¼ lime!0
1
p

e

t2 þ e2

40. d(t) ¼ 1

2p

Ð1
�1 cos vt dv

41.

df (t)

dt
¼ d

dt
[tu(t)� (t � 1)u(t � 1)� u(t � 1)]

¼ td(t)þ u(t)� (t � 1)d(t � 1)� u(t � 1)d(t � 1)

42. combT (t)¼
P1

n¼�1 d(t�nT), f (t) combT (t)¼
P1

n¼�1 f (nT)d(t�nT)

combv0
(v) ¼ ^{combT (t)} ¼ v0

X1
n¼�1 d(v� nv0),v0 ¼

2p

T
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Example

The values of the following integrals are

ð1

�1

e2t sin 4 t
d2d(t)

dt2
dt¼ (�1)2 d

2

dt2
[e2t sin 4 t]jt¼0 ¼ 2� 2� 4¼ 16

ð1

�1

(t3 þ 2tþ 3)
dd(t� 1)

dt
þ 2

d2d(t� 2)

dt2

� �

dt

¼
ð1

�1

(t3 þ 2tþ 3)
dd(t� 1)

dt
dtþ 2

ð1

�1

(t3 þ 2tþ 3)
d2d(t� 2)

dt2
dt

¼ (�1)(3t2 þ 2)jt¼1þ (�1)22(6t)jt¼2
¼�5þ 24¼ 19

Example

The values of the following integrals are

ð4

0

e4td(2t � 3)dt ¼
ð4

0

e4td 2 t � 3

2

� �� 	

dt ¼ 1

2

ð4

0

e4td t � 3

2

� �

dt

¼ 1

2
e4

3
2 ¼ 1

2
e6

ð4

0

e4td(3� 2t)dt ¼
ð4

0

e4td[� (2t � 3)]dt ¼
ð4

0

e4td(2t � 3)dt ¼ 1

2
e6

ð1

�1

eatd(sin t)dt ¼
ð1

�1

eat
X1

n¼�1

d(t � np)

(�1)n dt

¼
X1

n¼�1

1

(�1)n
ð1

�1

eatd(t � np)dt

¼
X1

n¼�1

1

(�1)n e
anp

Example

The values of the following integrals are

ð2p

�2p

eat d(t2 � p2)dt ¼
ð2p

�2p

eat
1

2p
[d(t � p)þ d(t þ p)]dt

¼ 1

2p
[eap þ e�ap]

¼ cosh ap

p

ðp

�p

cosh ud( cos u)du ¼
ðp

�p

cosh u
d uþ p

2

� 

sin � p
2

� 








þ d u� p

2

� 

sin p
2











" #

du

¼ cosh �p

2

� �

þ cosh
p

2

¼ 2cosh
p

2

1.2.5 The Gamma and Beta Functions

The gamma function is defined by the formula

G(z) ¼
ð1

0

e�ttz�1dt, Re{z} > 0 (1:52)

We shall mainly concentrate on the positive values of z and we

shall take the following relationship as the basic definition of the

gamma function:

G(x) ¼
ð1

0

e�ttx�1dt, x > 0 (1:53)

The gamma function converges for all positive values of x are

shown in Figure 1.2.

The incomplete gamma function is given by

g(x, t) ¼
ðt

0

tx�1e�t dt, x > 0, t > 0 (1:54)

The beta function is a function of two arguments and is given by

B(x, y) ¼
ð1

0

tx�1(1� t)y�tdt, x > 0, y > 0 (1:55)

Г(x)
6

4

4
x

2

2

–2

–2

–4

–4

–6

FIGURE 1.2
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The beta function is related to the gamma function as follows:

B(x, y) ¼ G(x)G(y)

G(x þ y)
(1:56)

1.2.5.1 Integral Expressions of G(x)

If we set u¼ e�t in Equation 1.54, then 1=u¼ et, loge(1=u)¼ t,
�(1=u)du¼ dt, and [loge(1=u)]

x�1¼ tx�1, for the limits t¼ 0

u¼ 1, and t¼1 u¼ 0. Hence

G(x) ¼
ð1

0

tx�1e�tdt ¼ �
ð0

1

loge
1

u

� �� 	x�1
u
1

u
du

¼
ð1

0

loge
1

u

� �� 	x�1
du (1:57)

Starting from the definitions and setting t¼m2 (dt¼ 2m dm) we

obtain (limits are the same)

G(x) ¼
ð1

0

tx�1e�t dt ¼
ð1

0

m2(x�1)e�m
2

2m dm

¼ 2

ð1

0

m2x�1e�m
2

dm (1:58)

1.2.5.2 Properties and Specific Evaluations of G(x)

Setting xþ 1 in place of x we obtain

G(x þ 1) ¼
ð1

0

txþ1�1 e�t dt ¼
ð1

0

tx e�t dt

¼ �
ð1

0

tx d(e�t) ¼ �tx e�t j10 þ
ð1

0

xtx�1 e�t dt

¼ xG(x) (1:59)

From the above relation we also obtain

G(x) ¼ G(x þ 1)

x
(1:60)

G(x) ¼ (x � 1)G(x � 1) (1:61)

G(�x) ¼ G(x � 1)

�x , x 6¼ 0, 1, 2, . . . (1:62)

From Equation 1.53 with x¼ 1, we find that G(1)¼ 1. Using

Equation 1.59 we obtain

G(2) ¼ G(1þ 1) ¼ 1G(1) ¼ 1 � 1 ¼ 1,

G(3) ¼ G(2þ 1) ¼ 2G(2) ¼ 2 � 1,
G(4) ¼ G(3þ 1) ¼ 3G(3) ¼ 3 � 2 � 1:

Hence we obtain

G(nþ 1) ¼ nG(n) ¼ n(n� 1)! ¼ n!, n ¼ 0, 1, 2, . . . (1:63)

G(n) ¼ (n� 1)!, n ¼ 1, 2, . . . (1:64)

To find G
1

2

� �

we first set t¼ u2

G
1

2

� �

¼
ð1

0

t�1=2 e�t dt ¼
ð1

0

2e�u
2

du, (t ¼ u2)

Hence its square value is

G2 1

2

� �

¼
ð1

0

2e�x
2

dx

2

4

3

5

ð1

0

2e�y
2

dy

2

4

3

5

¼ 4

ð1

0

ð1

0

e�y
2

dy

2

4

3

5 e�x
2

dx ¼ 4

ðp=2

0

ð1

0

e�r
2

r dr

2

4

3

5du

¼ 4
p

2
� 1
2
¼ p

and thus

G
1

2

� �

¼
ffiffiffiffi
p
p

(1:65)

Next let us find the expression for G nþ 1

2

� �

for integer positive

value of n. From Equation 1.61 we obtain

G nþ 1

2

� �

¼ G
2nþ 1

2

� �

¼ 2nþ 1

2
� 1

� �

G
2nþ 1

2
� 1

� �

¼ 2n� 1

2
G

2n� 1

2

� �

¼ 2n� 1

2

� �
2n� 3

2

� �

G
2n� 3

2

� �

If we proceed to apply Equation 1.61, we finally obtain

G nþ 1

2

� �

¼ (2n� 1)(2n� 3)(2n� 5) . . . (3)(1)
ffiffiffiffi
p
p

2n
(1:66)

Similarly we obtain

G nþ 3

2

� �

¼ (2nþ 1)(2n� 1)(2n� 3) . . . (3)(1)
ffiffiffiffi
p
p

2nþ1
(1:67)

G n
1

2

� �

¼ (2n� 3)(2n� 5) . . . (3)(1)
ffiffiffiffi
p
p

2n�1
(1:68)
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Example

To find the ratio G(xþ n)=G(x� n) where n is a positive integer

and x� n 6¼ 0, �1, �2, . . . , we proceed as follows [see Equa-

tion 1.61]:

G(xþ n)

G(x� n)
¼ (xþ n� 1)G(xþ n� 1)

G(x� n)

¼ (xþ n� 1)(xþ n� 2)G(xþ n� 2)

G(x� n)
¼ �� �

¼ (xþ n� 1)(xþ n� 2)(xþ n� 3) � � � (xþ n� 2n)G(xþ n� 2n)

G(x� n)

¼ (xþ n� 1)(xþ n� 2) � � � (x� n) (1:69)

Example

Applying Equation 1.61 we find

2nG(nþ 1)¼ 2nnG(n)¼ 2nn(n� 1)G(n� 1)

¼ �� � ¼ 2nn(n� 1)(n� 2) � � �2 � 1
¼ 2nn!¼ (2 � 1)(2 � 2)(2 � 3) � � � (2 � n)¼ 2 � 4 � 6 � � �2n

(1:70)

If n� 1 is substituted in place of n, we obtain

2 � 4 � 6 � � � (2n� 2) ¼ 2n�1G(n) (1:71)

Example

Based on the Legendre duplication formula

G(2n)

G(n)
¼ G nþ 1

2

� 

ffiffiffiffi
p
p

21�2n
(1:72)

we can find the ratio G nþ 1
2

� 
=

ffiffiffiffi
p
p

G(nþ 1)ð Þ as follows:

G nþ 1
2

� 

ffiffiffiffi
p
p

G(nþ 1)
¼ G(2n)21�2n

G(n)G(nþ 1)
¼ G(2n)21�2n2n

G(n)2nG(nþ 1)

¼ G(2n)21�n

G(n)2 � 4 � 6 � � � 2n

(see previous example). But

1 � 3 � 5 � � � (2n� 1) ¼ 1 � 2 � 3 � 4 � 5 � � � (2n� 2)(2n� 1)

2 � 4 � � � (2n� 2)

¼ G(2n)

2n�1G(n)
(1:73)

and hence

G nþ 1
2

� 

ffiffiffiffi
p
p

G(nþ 1)
¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � 6 � � � 2n (1:74)

1.2.5.3 Remarks on Gamma Function

1. The gamma function is continuous at every x except 0 and
the negative integers.

2. The second derivative is positive for every x> 0, and this

indicates that the curve y¼G(x) is concave upward for all

x> 0.

3. G(x) !þ1 as x ! 0þ through positive values and as

x !þ1.

4. G(x) becomes, alternatively, negatively infinite and posi-

tively infinite at negative integers.

5. G(x) attains a single minimum for 0< x<1 and is

located between x¼ 1 and x¼ 2.

The beta function is defined by

B(x, y) ¼
ð1

0

tx�1(1� t)y�1dt, x > 0, y > 0 (1:75)

From the above definition we write

B(y, x) ¼
ð1

0

ty�1(1� t)x�1dt ¼ �
ð0

1

(1� s)y�1sx�1ds

¼
ð1

0

sx�1(1� s)y�1 ds ¼ B(x, y) (1:76)

where we set 1� t¼ s.
If we set t¼ sin2u, dt¼ 2sin u cos u du and the limits of u are 0

and p=2, then

B(x, y) ¼
ðp=2

0

2 sin2x�1 u cos2y�1 u du (1:77)

The integral representation of the beta function is given by

B(x, y) ¼
ð1

0

ux�1 du

(uþ 1)xþy
, x > 0, y > 0 (1:78)

Set t¼ pt in Equation 1.52 and find the relation

ð1

0

e�pt tz�1 dt ¼ G(z)

pz
, Re{p} > 0 (1:79)

Next set p¼ 1þ u and z¼ xþ y in the above equation to find

that

1

(1þ u)xþy
¼ 1

G(x þ y)

ð1

0

e�(1þu)t txþy�1 dt (1:80)
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Substituting Equation 1.80 in Equation 1.78, we obtain

B(x, y) ¼ 1

G(x þ y)

ð1

0

e�t txþy�1dt

ð1

0

e�ut ux�1 du

¼ G(x)

G(x þ y)

ð1

0

e�t ty�1 dt ¼ G(x)G(y)

G(x þ y)
(1:81)

It can be shown that

B(p, 1� p) ¼ p

sin pp
, 0 < p < 1 (1:82)

From the identities G(xþ 1)¼ xG(x), G(�x)¼G(1� x)=(�x),
B(x, y)¼G(x)G(y)=G(xþ y) together with Equation 1.82, we

obtain

G(p)G(1� p) ¼ p

sin pp
, p is nonintegral (1:83)

Example

To show that

ð1

0

tn�1 e�(aþ1)tdt ¼ G(n)

(aþ 1)n
, n > 0, a > �1

we set t¼ (aþ 1)�1 y. Hence

ð1

0

tn�1e�(aþ1)tdt ¼
ð1

0

y

aþ 1

� �n�1
e�y

dy

aþ 1

¼ (aþ 1)�n
ð1

0

yn�1x e�y dy ¼ G(n)

(aþ 1)n

Example

To evaluate the integral
Ð1
0

e�x
2

dx, we write it in the form

ð1

0

x0e�x
2

dx

which, if compared with the integral in Table 1.4, we have the

correspondence a¼ 0, b¼ 1, c¼ 2. Hence we obtain

ð1

0

e�x
2

dx ¼ G aþ1
c

� 

cb(aþ1)=c
¼ G 0þ1

2

� 

2 � 11=2 ¼
ffiffiffiffi
p
p

2

1.3 Convolution and Correlation

1.3.1 Convolution

Convolution of functions, although a mathematical relation, is

extremely important to engineers. If the impulse response of a

system is known, that is, the response of the system to a delta

function input, the output of the system is the convolution of the

TABLE 1.4 Gamma and Beta Function Relations

G(x) ¼
Ð1
0 e�t tx�1dt x> 0

G(x) ¼
Ð1
0 2u2x�1e�u

2

du x> 0

G(x) ¼
Ð 1

0 log
1

r

� �� 	x�1
dr x> 0

G(x) ¼ G(x þ 1)

x
x 6¼ 0, �1, �2, . . .

G(x) ¼ (x � 1)G(x � 1) x 6¼ 0, �1, �2, . . .

G(�x) ¼ G(1� x)

�x x 6¼ 0, 1, 2, . . .

G(n) ¼ (n� 1)! n¼ 1, 2, 3, . . . , 0!¼ 1

G
1

2

� �

¼ ffiffiffiffi
p
p

G nþ 1

2

� �

¼ 1 � 3 � 5 � � � (2n� 1)
ffiffiffiffi
p
p

2n
n¼ 1, 2, . . .

G nþ 3

2

� �

¼ (2nþ 1)(2n� 1)(2n� 3) � � � (3)(1) ffiffiffiffi
p
p

2nþ1
n¼ 1, 2, . . .

G n� 1

2

� �

¼ (2n� 3)(2n� 5) � � � (3)(1) ffiffiffiffi
p
p

2n�1
n¼ 1, 2, . . .

G(nþ 1) ¼ 2 � 4 � 6 � � � 2n
2n

n¼ 1, 2, . . .

G(2n) ¼ 1 � 3 � 5 � � � (2n� 1)G(n)21�n n¼ 1, 2, . . .

G(2n)

G(n)
¼ G nþ 1

2

� 

ffiffiffiffi
p
p

21�2n
n¼ 1, 2, . . .

G(x)G(1� x) ¼ p

sin xp
x 6¼ 0, 	1, 	2, . . .

n! ¼ n

e

� �n ffiffiffiffiffiffiffiffiffi

2pn
p

þ h n ¼ 1, 2, . . . , 0

<
h

n!
<

1

12n
Ð1
0 tae�bt

c
dt ¼ G aþ1

c

� 

cb(aþ1)=c
a>�1, b> 0, c> 0

B(x, y) ¼
Ð 1

0 t
x�1(1� t)y�1 dt x> 0, y> 0

B(x, y) ¼
Ð p=2
0 2 sin2x�1 u cos2y�1 u du x> 0, y> 0

B(x, y) ¼
Ð1
0

ux�1

(uþ 1)xþy
du x> 0, y> 0

B(x, y) ¼ G(x)G(y)

G(x þ y)

B(x, y)¼B(y, x)

B(x, 1� x) ¼ p

sin xp
0< x< 1

B(x, y) ¼ B(x þ 1, y)þ B(x, y þ 1) x> 0, y> 0

B(x, nþ 1) ¼ 1 � 2 � � � n
x(x þ 1) � � � (x þ n)

x> 0
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input and its impulse response. The convolution of two functions

is given by

g(t) ¼: f (t)*h(t) ¼
ð1

�1

f (t)h(t � t)dt (1:84)

Proof
Let f (t) be written as a sum of elementary fi(t). The output g(t) is
also given by the sum of the outputs gi(t) due to each elementary

function fi(t). (Table 1.5) Hence

f (t) ¼
X

i

fi(t), g(t) ¼
X

i

gi(t) (1:85)

If Dt is sufficiently small, the area of fi(t) equals f(ti) Dt

(see Figure 1.3). Hence, the output is approximately f(ti) Dt h
(t� ti) because fi(t) is concentrated near the point ti. As Dt! 0,

we thus conclude that

X

i

gi(t) ffi
X

i

f (ti)h(t � ti)Dt!
ð1

�1

f (t)h(t � t)dt

For casual systems, the impulse response is

h(t) ¼ 0, t < 0 (1:86)

and, therefore, the output of the system becomes

g(t) ¼
ðt

�1

f (t)h(t � t)dt ¼
ð1

0

f (t � t)h(t)dt (1:87)

If, also, f (t)¼ 0 for t< 0, then g(t)¼ 0 for t< 0; for t> 0 we

obtain

g(t) ¼
ðt

0

f (t)h(t � t)dt ¼
ðt

0

f (t � t)h(t)dt (1:88)

The convolution does not exist for all functions. The sufficient

conditions are

1. Both f (t) and h(t) must be absolutely integrable in the

interval (�1, 0].

2. Both f (t) and h(t) must be absolutely integrable in the

interval [0, 1).

3. Either f (t) or h(t) (or both) must be absolutely integrable

in the interval (�1,1).

For example, the convolution cos v0t * cos v0t does not exist.

Example

If the functions to be convoluted are

f (t) ¼ 1, 0 < t < 1, h(t) ¼ e�tu(t)

then the output is given by

g(t) ¼
ð1

�1

f (t)h(t � t)dt

The ranges are

1. �1< t< 0. No overlap of f(t) and h(t) takes place.

Hence, g(t)¼ 0.

2. 0< t< 1. Overlap occurs from 0 to t. Hence

g(t) ¼
ðt

0

1 � e�(t�t)dt ¼ e�t
ðt

0

etdt ¼ 1� e�t

TABLE 1.5 G(x), 1� x� 1.99

x 0 1 2 3 4 5 6 7 8 9

1.0 1.0000 .9943 .9888 .9835 .9784 .9735 .9687 .9642 .9597 .9555

.1 .9514 .9474 .9436 .9399 .9364 .9330 .9298 .9267 .9237 .9209

.2 .9182 .9156 .9131 .9108 .9085 .9064 .9044 .9025 .9007 .8990

.3 .8975 .8960 .8946 .8934 .8922 .8912 .8902 .8893 .8885 .8879

.4 .8873 .8868 .8864 .8860 .8858 .8857 .8856 .8856 .8857 .8859

.5 .8862 .8866 .8870 .8876 .8882 .8889 .8896 .8905 .8914 .8924

.6 .8935 .8947 .8959 .8972 .8986 .9001 .9017 .9033 .9050 .9068

.7 .9086 .9106 .9126 .9147 .9168 .9191 .9214 .9238 .9262 .9288

.8 .9314 .9341 .9368 .9397 .9426 .9456 .9487 .9518 .9551 .9584

.9 .9618 .9652 .9688 .9724 .9761 .9799 .9837 .9877 .9917 .9958

t

Δτ

f (t)

τi

Δτ

f (τi) fi (t)

tτi

FIGURE 1.3
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3. 1< t<1, Overlap occurs from 0 to 1. Hence

g(t) ¼
ð1

0

e�(t�t)dt ¼ e�t (e� 1)

1.3.1.1 Definition: Convolution Systems

The convolution of any continuous and discrete system is given

respectively by

y(t) ¼
ð1

�1

h(t, t)x(t)dt (1:89)

y(n) ¼
X1

m¼�1
h(n,m)x(m) (1:90)

If the systems are time invariant, the kernels h(�) are functions of
the difference of their argument. Hence

h(n,m) ¼ h(n�m), h(t, t) ¼ h(t � t)

and therefore

y(t) ¼
ð1

�1

x(t)h(t � t)dt (1:91)

y(n) ¼
X1

m¼�1
x(m)h(n�m) (1:92)

1.3.1.2 Definition: Impulse Response

The impulse response h(t) of a system is the result of a delta

function input to the system. Its value at t is the response to a

delta function at t¼ 0.

Example

The voltage yc(t) across the capacitor of an RC circuit in series

with an input voltage source y(t) is given by

dyc(t)

dt
þ 1

RC
yc(t) ¼

1

RC
y(t)

For a given initial condition yc(t0) at time t¼ t0 the solution is

yc(t) ¼ e�(t�t0 )=RCyc(t0)þ
1

RC

ðt

t0

e�(t�t)=RCy(t)dt, t � t0

For a finite initial condition and t0!�1, the above equation

is written in the form

yc(t) ¼
1

RC

ð1

�1

e�(t�t)=RCu(t � t)y(t)dt ¼ 1

RC
e�t=RC

� �

*y(t)

Therefore, the impulse response of this system is

h(t) ¼ 1

RC
e�t=RCu(t)

Example

A discrete system that smooths the input signal x(n) is

described by the difference equation

y(n) ¼ ay(n� 1)þ (1� a)x(n), n ¼ 0, 1, 2, . . .

By repeated substitution and assuming zero initial condition

y(�1)¼ 0, the output of the system is given by

y(n) ¼ (1� a)
Xn

m¼0
an�mx(m), n ¼ 0, 1, 2, . . . (1:93)

If we define the impulse response of the system by

h(n) ¼ (1� a)an , n ¼ 0, 1, 2, . . .

the system has an input–output relation

y(n) ¼
X1

m¼�1
h(n�m)x(m)

which indicates that the system is a convolution one.

Example

A pure delay system in defined by

y(t) ¼
ð1

�1

d(t � t0 � t)x(t)dt ¼ x(t � t0) (1:94)

which shows that its impulse response is h(t)¼ d(t� t0).

1.3.1.3 Definition: Nonanticipative Convolution System

A system, discrete or continuous, is nonanticipative if and only if

its impulse response is

h(t) ¼ 0, t < 0

with t ranging over the range in which the system is defined.

If the delay t0 of a pure delay system is positive, then the

system in nonanticipative; and if it is negative, the system is

anticipative.
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1.3.2 Convolution Properties

Commutative

y(t) ¼
ð1

�1

f (t)h(t � t)dt ¼
ð1

�1

f (t � t)h(t)dt

Set t� t¼ t0 in the first integral, and then rename the dummy

variable t0 to t.

Distributive

g(t) ¼ f (t)*[h1(t)þ h2(t)] ¼ f (t)*h1(t)þ f (t)*h2(t)

This property follows directly as a result of the linear property of

integration.

Associative

[[f (t)*h1(t)]*h2(t)] ¼ f (t)*[h1(t)*h2(t)]

Shift invariance

If g(t)¼ f(t) * h(t), then

g(t � t0) ¼ f (t � t0)*h(t) ¼
ð1

�1

f (t� t0)h(t � t)dt

Write g(t) in its integral form, substitute t� t0 for t, set

tþ t0¼ t0, and then rename the dummy variable.

Area property

Af ¼
ð1

�1

f (t)dt ¼ area

mf ¼
ð1

�1

tf (t)dt ¼ first moment

Kf ¼
mf

Af
¼ center of gravity

The convolution g(t)¼ f (t) * h(t) leads to

Ag ¼ AfAh

Kg ¼ Kf þ Kh

Proof

mg ¼
ð1

�1

tg(t)dt ¼
ð1

�1

t

ð1

�1

f (t)h(t � t)dt

2

4

3

5dt

¼
ð1

�1

f (t)

ð1

�1

th(t � t)dt

2

4

3

5dt

¼
ð1

�1

f (t)

ð1

�1

(lþ t)h(l)dl

2

4

3

5dt, t � t ¼ l

¼
ð1

�1

f (t)dt

ð1

�1

lh(l)dlþ
ð1

�1

tf (t)dt

ð1

�1

h(l)dl

¼ Afmh þmfAh

mg

AfAh
¼ mg

Ag
¼: Kg ¼

Afmh þmfAh

AfAh
¼ Kh þ Kf

Scaline property

If g(t)¼ f(t) * h(t), then f
t

a

� �

*h
t

a

� �

¼ jajg t

a

� �

.

Proof

ð1

�1

f
t

a

� �

h
t � t

a

� �

dt ¼
ð1

�1

f
t

a

� �

h
t

a
� t

a

� �

dt

¼ jaj
ð1

�1

f (r)h
t

a
� r

� �

dr ¼ jajg t

a

� �

Complex-valued functions

g(t) ¼ f (t)*h(t) ¼ [fr(t)þ jfi(t)]*[hr(t)þ jfhi(t)]

¼ [fr(t)*hr(t)� fi(t)*hi(t)]þ j[fr(t)*hi(t)þ fi(t)*hr(t)]

Derivative of delta function

g(t) ¼ f (t)*
dd(t)

dt
¼
ð1

�1

f (t)
d

dt
d(t � t)dt

¼ d

dt

ð1

�1

f (t)d(t � t)dt ¼ df (t)

dt

Moment expansion

Expand f(t� t) in Taylor series about the point t¼ 0

f (t� t)¼ f (t)� tf (1)(t)þ t2

2!
f (2)(t)þ �� �þ (� t)n�1

(n� 1)!
f (n�1)(t)þ en
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Insert into convolution integral

g(t) ¼ f (t)

ð1

�1

h(t)dt� f (1)
ð1

�1

th(t)dtþ f (2)(t)

2!

ð1

�1

t2h(t)dt

þ � � � þ f (n�1)(t)

(n� 1)!
(�1)n�1

ð1

�1

tn�1h(t)dtþ En

¼ mh0f (t)�mh1f
(1)(t)þmh2

2!
f (2)(t)

þ � � � þ (�1)n�1
(n� 1)!

mh(n�1)f
(n�1)(t)þ En

where bracketed numbers in exponents indicate order of differ-

entiation.

Truncation Error

Because

en ¼
(�t)n
n!

f (n)(t � t1), 0 � t1 � t

En ¼
1

n!

ð1

�1

(�t)nf (n)(t � t1)h(t)dt

Because t1 depends on t, the function f (n)(t� t1) cannot be

taken outside the integral. However, if f (n)(t) is continuous and
tnh(t)� 0, then

En ¼
1

n!
f (n)(t � t0)

ð1

�1

(�t)nh(t)dt ¼ (�1)nmhn

n!
f (n)(t � t0)

where t0 is some constant in the interval of integration.

Fourier transform

^{f (t)*h(t)} ¼ F(v)H(v)

Proof

ð1

�1

ð1

�1

f (t)h(t� t)dt

2

4

3

5e�jvtdt ¼
ð1

�1

f (t)

ð1

�1

h(t� t)e�jvtdt dt

¼
ð1

�1

f (t)e�jvtdt

ð1

�1

h(r)e�jvrdr, t� t¼ r

Inverse Fourier transform

1

2p

ð1

�1

F(v)H(v)e�jvtdv ¼
ð1

�1

f (t)h(t � t)dt

Band-limited function

If f(t) is s-band limited, then the output of a system is

g(t) ¼
ð1

�1

f (t)h(t � t)dt ¼
X1

n¼�1
Tf (nT)hs(t � nT)

where

hs(t) ¼
1

2p

ðs

�s

H(v)ejvt dv

Proof

Hs(v) ¼ ps(v)H(v),

hence

G(v) ¼ F(v)H(v)

¼ �F(v)ps(v)H(v)

¼ �F(v)Hs(v), �F(v) ¼ F(v) for �s < v < s

g(t) ¼ �f (t)*hs(t) ¼
X1

n¼�1
Tf (nT)d(t � nT)

" #

*hs(t)

¼
X1

n¼�1
Tf (nT)hs(t � nT)

The convolution properties are given in Table 1.6.

1.3.2.1 Stability of Convolution Systems

1.3.2.1.1 Definition: Bounded Input Bounded Output (BIBO)

Stability

A discrete or continuous convolution system with impulse

response h is BIBO stable if and only if the impulse satisfies the

inequality, Snjhj <1 or
Ð

R

jh(t)jdt <1. If the system is BIBO

stable, then

supjy(n)j �
X

n

jh(n)jsupjx(n)j, supjy(t)j

�
ð

R

jh(t)jdt supjx(t)j, t 2 R

for every finite amplitude input x(t) (y is the input of the system).

Example

If the impulse response of a discrete system is h(n)¼ abn,

n¼ 0, 1, 2, . . . , then

X1

n¼0
jh(n)j ¼

X1

n¼0
jajjbjn ¼ jaj 1

1�jbj jb j< 1

1 jb j�1

�
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The above indicates that for jbj< 1 the system is BIBO and for

jbj � 1 the system is unstable.

Example

If h(t)¼ u(t) then jh(t)j ¼
Ð1
0
ju(t)jdt ¼ 1, which indicates the

system is not BIBO stable.

1.3.2.1.2 Harmonic Inputs

If the input function is of complex exponential order ejvt, then its

output is

y(t) ¼
ð1

�1

h(t)ejv(t�t)dt ¼ ejvt
ð1

�1

h(t)e�jvt dt ¼ H(v)ejvt

The above equation indicates that the output is the same as the

input ejvt with its amplitude modified by jH(v)j and its phase by

tan�1 (Hi(v)=Hr(v)) where Hr(v)¼Re{H(v)} and Hi(v)¼ Im

{Hi(v)}.

For the discrete case we have the relation

y(n) ¼ ejvnH(ejv)

where

H(ejv) ¼
X1

n¼�1
h(n)e�jvn

TABLE 1.6 Convolution Properties

1. Commutative g(t) ¼
Ð1
�1 f (t)h(t � t)dt ¼

Ð1
�1 f (t � t)h(t)dt

2. Distributive g(t) ¼ f (t)*[h1(t)þ h2(t)] ¼ f (t)*h1(t)þ f (t)*h2(t)

3. Associative [[f (t)*h1(t)]*h2(t)] ¼ f (t)*[h1(t)*h2(t)]

4. Shift invariance g(t) ¼ f (t)*h(t)

g(t � t0) ¼ f (t � t0)*h(t) ¼
Ð1
�1 f (t� t0)h(t � t)dt

5. Area property Af ¼ area of f(t),

mf ¼
Ð1
�1 tf (t)dt ¼ first moment

Kf ¼
mf

Af
¼ center of gravity

Ag¼Af Ah, Kg¼KfþKh

6. Scaling g(t)¼ f(t) * h(t)

f
t

a

� �

*h
t

a

� �

¼ jajg t

a

� �

7. Complex-valued functions g(t) ¼ f (t)*h(t) ¼ [fr(t)*hr(t)� fi(t)*hi(t)]þ j[fr(t)*hi(t)þ fi(t)*hr(t)]

8. Derivative
g(t) ¼ f (t)*

dd(t)

dt
¼ df (t)

dt

9. Moment expansion g(t) ¼ mh0f (t)�mh1f
(1)(t)þmh2

2!
f (1)(t)þ � � � þ (�1)n�1

n� 1!
mh(n�1)f

(n�1)(t)þ En

mhk ¼
Ð1
�1 tk h(t)dt

En ¼
(� 1)nmhn

n!
f (n)(t � t0), t0 ¼ constant in the interval of integration

10. Fourier transform F{f (t)*h(t)} ¼ F(v)H(v)

11. Inverse Fourier transform 1

2p

Ð1
�1 F(v)H(v)ejvt dv ¼

Ð1
�1 f (t)h(t � t)dt

12. Band-limited function g(t) ¼
Ð1
�1 f (t)h(t � t)dt ¼P1n¼�1 Tf (nT)hs(t � nT)

hs(t) ¼
1

2p

Ðs

�s
H(v)ejvtdv, f (t) ¼ s�band limited ¼ 0, jtj > s

13. Cyclical convolution x(n)
 y(n) ¼PN�1
m¼0 x((n�m)mod N)y(m)

14. Discrete-time x(n)*y(n) ¼P1m¼�1 x(n�m)y(m)

15. Sampled x(nT)*y(nT) ¼ T
P1

m¼�1 x(nT �mT)y(mT)
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1.4 Correlation

The cross-correlation of two different functions is defined by the

relation

Rfh(t) ¼: f (t) } h(t) ¼
ð1

�1

f (t)h(t� t)dt ¼
ð1

�1

f (tþ t)h(t)dt

(1:95)

When f (t)¼ h(t) the correlation operation is called autocorrela-
tion.

Rff (t) ¼: f (t) } f (t) ¼
ð1

�1

f (t)f (t� t)dt ¼
ð1

�1

f (tþ t)f (t)dt

(1:96)

For complex functions the correlation operations are given by

Rfh(t) ¼: f (t) } h*(t) ¼
ð1

�1

f (t)h*(t� t)dt (1:97)

Rff (t) ¼: f (t) } f *(t) ¼
ð1

�1

f (t)f *(t� t)dt (1:98)

The two basic properties of correlation are

f (t) } h(t) 6¼ h(t) } f (t) (1:99)

jRff (t)j ¼: jf (t) } f *(t)j ¼
ð1

�1

f (t)f *(t� t)dt



























�
ð1

�1

jf (t)j2dt

2

4

3

5

1=2
ð1

�1

jf (t� t)j2dt

2

4

3

5

1=2

¼
ð1

�1

jf (t)j2dt � Rff (0) (1:100)

Example

The cross-correlation of the following two functions, f(t)¼ p(t)

and h(t)¼ e�(t�3) u(t� 3), is given by

Rfh(t) ¼
ð1

�1

p(t)e�(t�t�3)u(t� t � 3)dt

The ranges of t are

1. t>�2: Rfh(t)¼ 0 (no overlap of function)

2. �4< t<�2: Rfh(t) ¼
Ð 1

3þt e
�(t�t�3)dt ¼ 1� e2et

3. �1< t<�4: Rfh(t) ¼
Ð 1

�1 e
�(t�t�3)dt ¼ ete2(e2 � 1)

The discrete form of correlation is given by

x(n) } y(n) ¼
X1

m¼�1
x(m� n)y*(m) � crosscorrelation

(1:101)

x(n) } x(n) ¼
X1

m¼�1
x(m� n)x*(m) � autocorrelation

(1:102)

x(nT ) } y(nT ) ¼ T
X1

m¼�1
x(mT � nT )y*(mT )

� sampled cross-correlation (1:103)

1.5 Orthogonality of Signals

1.5.1 Introduction

Modern analysis regards some classes of functions as multidimen-

sional vectors introducing the definition of inner products and

expansion in term of orthogonal functions (base functions). In this

section, functionsF(t), f(t), F(x), . . . symbolize either functions of

one independent variable t, or, for brevity, a function of a set n
independent variables t1, t2, . . . , tn. Hence, dt¼ dt1 . . . dtn.

A real or complex function f(t) defined on the measurable set

E of elements {r} is quadratically integrable on E if and only if

ð

E

jf (t)j2dt

exists in the sense of Lebesque. The class L2 of all real or complex

functions is quadratically integrable on a given interval if one

regards the functions f(t), h(t), . . . as vectors and defines

Vector sum of f (t) and h(t) as f (t)þ h(t)

Product of f (t) by a scalar a as af (t)

The inner product of f(t) and h(t) is defined as

hf , hi ¼:
ð

I

g(t)f *(t)h(t)dt (1:104)

where g(t) is a real nonnative function (weighting function)
quadratically integrable on I.
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Norm

The norm is L2 is the quantity

k f k¼ [hf , f i]1=2¼:
ð

I

g(t)jf (t)j2dt

2

4

3

5

1=2

(1:105)

If k f k exists and is different from zero, the function is

normalizable.

Normalization

f (t)

k f k ¼ unit norm

Inequalities

If f(t), h(t), and the nonnegative weighting function g(t) are

quadratically integrable on I, then

Cauchy–Schwarz inequality

jhf (t), h(t)ij ¼:
ð

I

g(t)f *hdt



























2

�
ð

I

gjf j2dt
ð

I

gjhj2dt¼: hf , f ihh, hi

(1:106)

Minkowski inequality

k f þ hk¼:
ð

I

gjf þ hj2dt

0

@

1

A

1=2

�
ð

I

gjf j2dt

0

@

1

A

1=2

þ
ð

I

gjhj2dt

0

@

1

A

1=2

¼k f k þ khk (1:107)

Convergence in mean

The space L2 admits the distance function (matric)

dhf , hi¼: k f � hk ¼:
ð

I

g(t)jf (t)� h(t)j2dt

2

4

3

5

1=2

(1:108)

The root-mean-square difference of the above equation between

the two functions f(t) and h(t) is equal to zero if and only if f(t)¼
h(t) for almost all t in I.

Every sequence in I of functions r0(t), r1(t), r2(t), . . . converges
in the mean to the limit r(t) if and only if

d2hrn, ri¼: krn � rk2 ¼:
ð

I

g(t)jrn(t)� r(t)j2dt! 0 as n!1

(1:109)

Therefore we define limit in the mean

lim:n!1rn(t) ¼ r(t) (1:110)

Convergence in the mean does not necessarily imply convergence

of the sequence at every point, nor does convergence of all points

on I imply convergence in the mean.

Riess–Fischer Theorem

The L2 space with a given interval I is complete; every sequence
of quadratically integrable functions r0(t), r1(t), r2(t), . . . such that

lim.m!1,n!1jrm� rnj ¼ 0 (Cauchy sequence), converges in the

mean to a quadratically integrable function r(t) and defines r(t)
uniquely for almost all t in I.

Orthogonality

Two quadratically integrable functions f (t), h(t) are orthogonal
on I if and only if

hf , hi ¼
ð

I

g(t)f *(t)h(t)dt ¼ 0 (1:111)

Orthonormal

A set of function ri(t), i¼ 1, 2, . . . is an orthonormal set if and
only if

hri, rji¼:
ð

I

g(t)ri*(t)rj(t)dt¼ dij ¼
0 if i 6¼ j
1 if i¼ j

�

(i, j¼ 1, 2, . . . )

(1:112)

Every set of normalizable mutually orthogonal functions is lin-

early independents.

Bessel’s inequalities

Given a finite or infinite orthonormal set w1(t), w2(t), w3(t), . . .
and any function f (t) quadratically integrable over I

X

i

jhwif ij2 � hf , f i (1:113)

The equal sign applies if and only if f(t) belongs to the space

spanned by all wi(t).
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Complete orthonormal set of functions (orthonormal bases)

A set of functions {wi(t)}, i¼ 1, 2, . . . , in L2 is a complete ortho-

normal set if and only if the set satisfies the following conditions:

1. Every quadratically integrable function f(t) can be expanded
in the form

f (t) ¼ hf ,w1iw1 þ hf ,w2iw2 þ � � � þ hf ,wiiwi þ � � � ,
i ¼ 1, 2, . . .

2. If (1) above is true, then

hf , f i ¼ jhf ,w1ij2 þ jhf ,w2ij2 þ � � �

which is the completeness relation (Parseval’s identity).

3. For any pair of functions f(t) and h(t) in L2, the relation

holds

hf , hi ¼ hf ,w1ihh,w1i þ hf ,w2ihh,w2i þ � � �

4. The orthonormal set w1(t), w2(t), w3(t), . . . is not contained
in any other orthonormal set in L2.

The above conditions imply the following: given a complete

orthonormal set {wi(t)}, i¼ 1, 2, . . . in L2 and a set of complex

numbers hf ,w1i, hf ,w2i þ � � � such that
P1

i¼1 jhf ,wiij2 <1,

there exists a quadratically integrable function f(t) such that

hf ,w1iw1 þ hf ,w2iw2 þ � � � converges in the mean of f(t).

Gram–Schmidt orthonormalization process
Given any countable (finite or infinite) set of linear independent

functions r1(t), r2(t), . . . normalizable in I, there exists an orthog-

onal set w1(t), w2(t), . . . spanning the same space of functions.

Hence

w1 ¼ r1,w2 ¼ r2 �
Ð

I w1r2 dt
Ð

I w
2
1 dt

,w3

¼ r3 �
Ð

I w1r3 dt
Ð

I w
2
1 dt

w1 �
Ð

I w2r3 dt
Ð

I w
2
2 dt

w2, etc: (1:114)

For creating an orthonormal set, we proceed as follows:

wi(t) ¼
yi(t)

kyi(t)k
¼ yi(t)

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hyi, yii
p

y1(t) ¼ r1(t), yiþ1(t) ¼ riþ1(t)�
Xi

k¼1
hwk, riþ1iwk(t), i ¼ 1, 2, . . .

(1:115)

Series approximation

If f(t) is a quadratically integrable function, then

ð

I

jfn(t)� f (t)j2 dt

yields the least mean square error. The set {wi(t)}, i¼ 1, 2, . . . is

orthonormal and the approximation to f(t) is

fn(t) ¼ a1w1(t)þ a2w2(t)þ � � � þ anwn(t), n ¼ 1, 2, . . .

(1:116)

1.5.2 Legendre Polynomials

1.5.2.1 Relations of Legendre Polynomials

Legendre polynomials are closely associated with physical phe-

nomena for which spherical geometry is important. The polyno-

mials Pn(t) are called Legendre polynomials in honor of their

discoverer, and they are given by

Pn(t) ¼
X[n=2]

k¼0

(�1)k(2n� 2k)!tn�2k

2nk!(n� k)!(n� 2k)!
(1:117)

[n=2] ¼ n=2 n even
(n� 1)=2 n odd

�

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2st þ s2
p ¼

P1

n¼0
Pn(t)sn jsj < 1

P1

n¼0
Pn(t)s�n�1 jsj > 1 generating function

8

>><

>>:

(1:117a)

Table 1.7 gives the first eight Legendre polynomials. Figure 1.4

shows the first six Legendre polynomials.

TABLE 1.7 Legendre Polynomials

P0¼ 1

P1¼ t

P2 ¼
3

2
t2 � 1

2

P3 ¼
5

2
t3 � 3

2
t

P4 ¼
35

8
t4 � 30

8
t2 þ 3

8

P5 ¼
63

8
t5 � 70

8
t3 þ 15

8
t

P6 ¼
231

16
t6 � 315

16
t4 þ 105

16
t2 � 5

16

P7 ¼
429

16
t7 � 693

16
t5 þ 315

16
t3 � 35

16
t
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Rodrigues formula

Pn(t) ¼
1

2n n!

dn

dtn
(t2 � 1)n, n ¼ 0, 1, 2, . . . (1:118)

Recursive formulas

(nþ 1)Pnþ1(t)� (2nþ 1)tPn(t)þ nPn�1(t) ¼ 0,
n ¼ 1, 2, . . .

(1:119)

P0nþ1(t)� tP0n(t) ¼ (nþ 1)Pn(t), (P
0(t)¼: derivative of P(t))

n ¼ 0, 1, 2, . . . (1:120)

tP0n(t)� P0n�1(t) ¼ nPn(t) n ¼ 1, 2, . . . (1:121)

P0nþ1(t)� P0n�1(t) ¼ (2nþ 1)Pn(t) n ¼ 1, 2, . . . (1:122)

(t2 � 1)P0n(t) ¼ ntPn(t)� nPn�1(t) (1:123)

P0(t) ¼ 1, P1(t) ¼ t (1:124)

Example

From Equation 1.117, when n is even, implies, Pn(�t)¼ Pn(t)

and when n is odd, Pn(�t)¼�Pn(t). Therefore

Pn(�t) ¼ (�1)nPn(t) (1:125)

Example

From Equation 1.123 t¼ 1 implies 0¼ nPn�1(1)� nPn�1(1) or
Pn(1)¼ Pn�1(1). For n¼ 1 it implies P1(1)¼ P0(1)¼ 1. For n¼ 2

P2(1)¼ P1(1)¼ 1, and so forth. Hence, Pn(1)¼ 1. From Equation

1.125 Pn(�1)n. Hence

Pn(1) ¼ 1, Pn(�1) ¼ (�1)n (1:126)

Pn(t) < 1 for�1 < t < 1 (1:127)

Example

From Equation 1.123 we get

d

dt
(1� t2)P0n(t)
� �

¼ nP0n�1(t)� nPn(t)� ntP0n(t)

Use Equation 1.121 to find

d

dt
(1� t2)P0n(t)
� �

þ n(nþ 1)Pn(t) ¼ 0

or

(1� t2)Pn
00(t)� 2tP0n(t)þ n(nþ 1)Pn(t) ¼ 0 (1:128)

We have deduced the Legendre polynomials y¼ Pn(t) (n¼ 0,

1, 2, . . . ) as the solution of the linear second-order ordinary

differential equation

(1� t2)y 00(t)� 2ty0(t)þ n(nþ 1)y(t) ¼ 0 (1:128a)

called the Legendre differential equation.

If we let x¼ cos w then the above equation transforms to

the trigonometric form

y 00 þ (cotw)y0 þ n(nþ 1)y ¼ 0 (1:128b)

It can be shown than Equation 1.128a has solutions of a first kind

y ¼ C0 1� n(nþ 1)

2!
t2 þ n(nþ 1)(n� 2)(nþ 3)

4!
t4 � � � �

� 	

þ C1 1� (n� 1)(nþ 2)

3!
t3 þ (n� 1)(nþ 2)(n� 3)(nþ 4)

5!
t5 � � � �

� 	

(1:128c)

valid for jtj< 1, C0 and C1 being arbitrary constants.

Schläfli’s integral formula

Pn(t) ¼
1

2pj

ð

C

(z2 � 1)n

2n(z � t)nþ1
dz (1:129)

where C is any regular, simple, closed curve surrounding t.

1.5.2.2 Complete Orthonormal System,

1
2 (2nþ 1)
� �1=2

Pn(t)
n o

The Legendre polynomials are orthogonal in [�1, 1]

ð1

�1

Pn(t)Pm(t)dt ¼ 0 (1:130)

ð1

�1

[Pn(t)]
2dt ¼ 2

2nþ 1
n ¼ 0, 1, 2, . . . (1:131)

–1 –0.5

1

0.5

–0.5

–1

P2(t)

P4(t)
P3(t)

P1(t)

P0(t)

0.5 1
t

FIGURE 1.4
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and therefore the set

wn(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

2

r

Pn(t) n ¼ 0, 1, 2, . . . (1:132)

is orthonormal.

1.5.2.2.1 Series Expansion

If f(t) is integrable in [�1, 1], then

f (t) ¼
X1

n¼0
anPn(t) �1 < t < 1 (1:132a)

an ¼
2nþ 1

2

ð1

�1

f (t)Pn(t)dt n ¼ 0, 1, 2, . . . (1:132b)

For even f(t), the series will contain term Pn(t) of even index; if

f(t) is odd, the term of odd index only.

If the real function f(t) is piecewise smooth in (�1, 1) and if it

is square integrable in (�1, 1), then the series Equation 1.132a

converges of f(t) at every continuity point of f(t).

1.5.2.2.2 Change of Range

If a function f(t) is defined in [a, b], it is sometimes necessary in

the application to expand the function in a series of orthogonal

polynomials in this interval. Clearly the substitution

t ¼ 2

b� a
x � bþ a

2

� 	

, a < b, x ¼ b� a

2
t þ bþ a

2

� 	

(1:133)

transform the interval [a, b] of the x-axis into the interval [�1, 1]
of the t-axis. It is, therefore, sufficient to consider the expansion

in series of Legendre polynomials of

f
b� a

2
t þ bþ a

2

� 	

¼
X1

n¼0
anPn(t) (1:134a)

an ¼
2nþ 1

2

ð1

�1

f
b� a

2
t þ bþ a

2

� 	

Pn(t)dt (1:134b)

The above equation can also be accomplished as follows:

f (t) ¼
X1

n¼0
anXn(t) (1:135a)

Xn(t) ¼
1

n!(b� a)n
dn(t � a)n(t � b)n

dtn
(1:135b)

an ¼
2nþ 1

b� a

ðb

a

f (t)Xn(t)dt (1:135c)

Example

Suppose f(t) is given by

f (t) ¼ 0 �1 � t < a

1 a < t � 1

�

Then from Equation 1.132b

an ¼
2nþ 1

2

ð1

a

Pn(t)dt

Using Equation 1.122, and noting that Pn(1)¼ 1, we obtain

an ¼ �
1

2
[Pnþ1(a)� Pn�1(a)], a0 ¼

1

2
(1� a)

which leads to the expansion

f (t) ffi 1

2
(1� a)� 1

2

X1

n¼1
[Pnþ1(a)� Pn�1(a)]Pn(t), �1 < t < 1

Example

Suppose f(t) is given by

f (t) ¼ �1 �1 � t < 0

1 0 < t � 1

�

The function is an odd function and, therefore, f(t)Pn(t) is an

odd function of Pn(t) with even index. Hence, an are zero for

n¼ 0, 2, 4, . . . For odd index n, the product f(t)Pn(t) is even and

hence

an ¼ nþ 1

2

� � ð1

�1

f (t)Pn(t)dt¼ 2 nþ 1

2

� �ð1

0

Pn(t)dt, n¼ 1,3,5, . . .

Using Equation 1.122 and setting n¼ 2kþ 1, k¼ 0, 1, 2, . . . we

obtain

a2kþ1 ¼ (4k þ 3)

ð1

0

P2kþ1(t)dt ¼
ð1

0

P02kþ2(t)� P02k(t)
� �

dt

¼ [P2kþ2(t)� P2k(t)]j10 ¼ P2k(0)� P2kþ2(0)

where we have used the property Pn(1)¼ 1 for all n. But

P2n(0) ¼ � 1
2

n

� �

¼ (�1)n(2n)!
22n(n!)2

(1:136)
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and, thus, we have

a2kþ1 ¼
(�1)k(2k)!
22k (k!)2

� (�1)kþ1(2kþ 2)!

22kþ2[(kþ 1)!]2

¼ (�1)k(2k)!
22k (k!)2

1þ 2kþ 1

2kþ 2

� 	

¼ (�1)k (2k)!(4kþ 3)

22kþ1k!(kþ 1)!

The expansion is

f (t) ¼
X1

k¼0

(�1)k(2k)!(4k þ 3)

22kþ1k!(k þ 1)!
P2kþ1(t), �1 � t � 1 (1:137)

1.5.2.3 Associated Legendre Polynomials

If m is a positive integer and �1� t� 1, then

Pm
n (t) ¼ (1� t2)m=2 d

mPn(t)

dtm
, m ¼ 1, 2, . . . , n (1:138)

where Pm
n (t) is known as the associated Legendre function or

Ferrer’s functions.

Rodrigues formula

Pm
n (t) ¼

(1� t2)m=2

2nn!

dnþm

dtnþm
(t2 � 1)n, m ¼ 1, 2, . . . n; nþm � 0

(1:139)

Properties

P�mn (t) ¼ (�1)m (n�m)!

(nþm)!
Pm
n (t) (1:140)

P0
n(t) ¼ Pn(t) (1:141)

(n�mþ 1)Pm
nþ1(t)� (2nþ 1)tPm

n (t)þ (nþm)Pm
n�1(t) ¼ 0

(1:142)

(1� t2)1=2Pm
n (t) ¼

1

2nþ 1
Pmþ1
nþ1 (t)� Pmþ1

n�1 (t)
� �

(1:143)

(1� t2)1=2Pm
n (t) ¼

1

2nþ 1
(nþm)(nþm� 1)Pm�1

n�1 (t)
�

� (n�mþ 1)(n�mþ 2)Pm�1
nþ1 (t)

�
(1:144)

Pmþ1
n (t)¼ 2mt(1� t2)�1=2Pm

n (t)� [n(nþ 1)�m(m� 1)]Pm�1
n (t)

(1:145)

ð1

�1

Pm
n (t)P

m
k (t)dt ¼ 0, k 6¼ n (1:146)

ð1

�1

Pm
n (t)

� �2
dt ¼ 2

(2nþ 1)

(nþm)!

(n�m)!
(1:147)

Example

To evaluate the integral
Ð 1

�1 t
mPn(t)dt, we use the Rodrigues

formula and proceed as follows:

ð1

�1

tmPn(t)dt¼
1

2n n!

ð1

�1

tmDn[(t2�1)n]dt, Dn¼ dn

dtn

� �

¼ 1

2n n!
[tm Dn�1(t2�1)n]jt¼1t¼�1�m

ð1

�1

tm�1Dn�1[(t2�1)n]dt

2

4

3

5

where integration by parts was used. The left expression is

zero because of the presence of the expression (t2� 1)n.

(a) For m< n and after m integrations by parts we obtain

ð1

�1

tmPn(t)dt ¼
(�1)mm!

2nn!

ð1

�1

Dn�m[(t2 � 1)n]dt

¼ (�1)mm!

2nn!
[Dn�m�1(t2 � 1)n]jt¼1t¼�1¼ 0,

m < n

(b) m� n. Integrate n times by parts to find the following

expression:

ð1

�1

tmPn(t)dt ¼ Cmn

ð1

�1

tm�n(22 � 1)ndt

where

Cmn ¼
(�1)mm(m� 1)(m� 2) � � � (m� [n� 1])

2nn!

Multiplying numerator and denominator by (m� n)! and

incorporating the (�1)n in the integrand, we obtain

ð1

�1

tmPn(t)dt ¼
m!

2nn!(m� n)!

ð1

�1

tm�n(1� t2)ndt, m � n

If m� n is odd the integrand is an odd function and hence is

equal to zero. If m� n is even then the integrand is even and

hence

ð1

�1

tmPn(t)dt ¼
m!2

2nn!(m� n)!

ð1

0

tm�n(1� t2)ndt

¼ m!G m�nþ1
2

� 

2n�1(m� n)!(mþ nþ 1)G mþnþ1
2

�  ,

m � n,m� n is even
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If m¼ n

ð1

�1

tmPn(t)dt¼
n!G 1

2

� 

2n�1(2nþ 1) 2n�1
2

� 
2n�3
2

� 
� � � 3

2

� 
1
2

� 
G 1

2

� 

¼ n!2n

2n�1(2nþ 1)(2n� 1)(2n� 3) � � � (3)(1)

¼ n!2n2nn!

2n�1(2nþ 1)(2n)(2n� 1)(2n� 2)(2n� 3) � � � (3)(2)(1)

¼ 2nþ1(n!)2

(2nþ 1)!

Hence,

ð1

�1

tmPn(t)dt¼

0 m< n

0 m� n,m� n is odd

m!G m�nþ1
2ð Þ

2n�1 (m�n)!(mþnþ1)G mþnþ1
2ð Þ m> n,m� n is even

2nþ1 (n!)2

(2nþ1)! m¼ n

8

>>>>><

>>>>>:

Example

To find P2n(0) we use the summation

P2n(t) ¼
(�1)n
22n�1

Xn

k¼0

(�1)k (2nþ 2k � 1)!

(2k)!(nþ k � 1)!(n� k)!
t2k

with k¼ 0. Hence

P2n(0) ¼
(�1)n(2n� 1)!

22n�1(n� 1)!n!
¼ (�1)n2n[(2n� 1)!]

22nn[(n� 1)!]n!
¼ (�1)n(2n)!

22n(n!)2

Example

To evaluate
Ð 1

0
Pm(t)dt for m 6¼ 0, we must consider the two

cases: m being odd and m being even.

(a) m is even and m 6¼ 0

ð1

0

Pm(t)dt ¼
1

2

ð1

�1

Pm(t)dt ¼
1

2

ð1

�1

Pm(t) � 1 dt

¼ 1

2

ð1

�1

Pm(t)P0(t)dt ¼ 0

The result is due to the orthogonality principle.

(b) m is odd and m 6¼ 0. From the relation (see Table 1.8)

ð1

t

Pm(t)dt ¼
1

2mþ 1
[Pm�1(t)� Pmþ1(t)]

with t¼ 0 we obtain

ð1

0

Pm(t)dt ¼
1

2mþ 1
[Pm�1(0)� Pmþ1(0)]

Using the results of the previous example, we obtain

ð1

0

Pm(t)dt¼
1

2mþ 1

(�1)m�12 (m� 1)!

2m�1 m�1
2

� 
!

� �2
� (�1)mþ12 (mþ 1)!

2mþ1 mþ1
2

� 
!

� �2

" #

¼ (�1)m�12 (m� 1)!(2mþ 1)(mþ 1)

(2mþ 1)2mþ1 mþ1
2

� 
!

mþ1
2

� 
m�1
2

� 
!
¼ (�1)m�12 (m� 1)!

2m mþ1
2

� 
!

m�1
2

� 
!
:

m is odd.

Example

One hemisphere of a homogeneous spherical solid is main-

tained at 3008C while the other half is kept at 758C. To find the

temperature distribution we must use the equation for heat

conduction

qT

qt
¼ k

rc
r2T þ qQ

qt

� �

where

T is the temperature

t is the time

k is the thermal conductivity

r is the density

c is the specific heat

qQ=qt is the rate of heat generation

Because of the steady-state condition of the problem,

qT=qt¼ qQ=qt¼ 0. Hence, the equation becomes

r2T ¼ q2T

qx2
þ q2T

qy2
þ q2T

qz2

¼ q

qr
r2
qT

qr

� �

þ 1

sin w

q

qw
sin w

qT

qw

� �

¼ 0

where T is independent of u.

Assuming a solution of the form

T ¼ FG ¼ f (r)g(w)

we obtain

qT

qr
¼ G

dF

dr
,

q2T

qr2
¼ G

d2F

dr2

Similarly, we obtain

qT

qw
¼ F

dG

dw
,

q2T

qw2
¼ F

d2G

dw2
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TABLE 1.8 Properties of Legendre and Associate Legendre Functions

1.
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2tx þ x2
p ¼

X1
n¼0 Pn(t)x

n, jtj � 1, jxj< 1

2. Pn(t) ¼
P[n=2]

k¼0
(�1)k(2n� 2k)!tn�2k

2nk!(n� k)!(n� 2k)!
, [n=2] ¼ n

2
, n is even;

[n=2] ¼ (n� 1)=2, n is odd
3. P0(t)¼ 1

4. P2n(0) ¼ � 1
2

n

� �

¼ (�1)n(2n)!
22n(n!)2

, n¼ 1, 2, . . .

5. P2nþ 1(0)¼ 0, n¼ 0, 1, 2, . . .

6. P2n(�t)¼P2n(t), P2nþ 1(�t)¼�P2nþ 1(t), n¼ 0, 1, 2, . . .

7. Pn(�t)¼ (�1)nPn(t), n¼ 0, 1, 2, . . .

8. Pn(1)¼ 1, n¼ 0, 1, 2, . . . ;

Pn(�1)¼ (�1)n, n¼ 0, 1, 2, . . .

9. Pn(t) ¼
1

2nn!

dn

dtn
(t2 � 1)n ¼ Rodrigues formula, n¼ 0, 1, 2, . . .

10. (nþ 1)Pnþ 1(t)� (2nþ 1)tPn(t)þ nPn�1(t)¼ 0, n¼ 1, 2, . . .

11. P0nþ1(t)� 2tP0n(t)þ P0n�1(t)� Pn(t) ¼ 0, n¼ 1, 2, . . .

12. P0n�1(t) ¼ Pn(t)þ 2tP0n(t)� P0nþ1(t) n¼ 1, 2, . . .

13. P0nþ1(t) ¼ Pn(t)þ 2tP0n(t)� P0n�1(t) n¼ 1, 2, . . .

14. P0nþ1(t)� tP0n(t) ¼ (nþ 1)Pn(t) n¼ 0, 1, 2, . . .

15. tP0n(t)� P0n�1(t) ¼ nPn(t) n¼ 1, 2, . . .

16. P0nþ1(t)� P0n�1(t) ¼ (2nþ 1)Pn(t) n¼ 1, 2, . . .

17. (1� t2)P0n(t) ¼ nPn�1(t)� ntPn(t) n¼ 1, 2, . . .

18. jPn(t)j< 1, �1< t< 1

19. P2n(t) ¼
(�1)n
22n�1

Xn

k¼0
(�1)k(2nþ 2k� 1)!

(2k)!(nþ k� 1)!(n� k)!
t2k, n¼ 0, 1, 2, . . .

20. (1� t2)P0n(t) ¼ (nþ 1)[tPn(t)� Pnþ1(t)], n¼ 0, 1, 2, . . .

21.
Ð 1

�1 Pn(t)dt ¼ 0,
n¼ 1, 2, . . .

22. jPn(t)j � 1, jtj � 1

23.
Ð 1

�1 Pn(t)Pm(t)dt ¼ 0,
n 6¼ m

24.
Ð 1

�1 [Pn(t)]
2dt ¼ 2

2nþ 1
, n¼ 0, 1, 2, . . .

25.
1

2

Ð 1

�1 t
mPs(t)dt ¼

m(m� 2) � � � (m� sþ 2)

(mþ sþ 1)(mþ s� 1) � � � (mþ 1)
, m, s are even

26.
1

2

Ð 1

�1 t
mPs(t)dt ¼

(m� 1)(m� 3) � � � (m� sþ 2)

(mþ sþ 1)(mþ s� 1) � � � (mþ 2)
, m, s are odd

27.
Ð 1

�1 tPn(t)Pn�1(t)dt ¼
2n

4n2 � 1
, n¼ 1, 2, . . .

28.
Ð 1

�1 Pn(t)P
0
nþ1(t)dt ¼ 2,

n¼ 0, 1, 2, . . .

29.
Ð 1

�1 tP
0
n(t)Pn(t)dt ¼

2n

2nþ 1
, n¼ 0, 1, 2, . . .

30.
Ð 1

�1 (1� t2)P0n(t)P
0
k(t)dt ¼ 0,

k 6¼ n

31.
Ð 1

�1 (1� t)�1=2Pn(t)dt ¼
2
ffiffiffi
2
p

2nþ 1
, n¼ 0, 1, 2, . . .

32.
Ð 1

�1 t
2Pnþ1(t)Pn�1(t)dt ¼

2n(nþ 1)

(4n2 � 1)(2nþ 3)
, n¼ 1, 2, . . .

33.
Ð 1

�1 (t
2 � 1)Pnþ1(t)P0n(t)dt ¼

2n(nþ 1)

(2nþ 1)(2nþ 3)
, n¼ 1, 2, . . .

34.
Ð 1

�1 t
nPn(t)dt ¼

2nþ1(n!)2

(2nþ 1)!
, n¼ 0, 1, 2, . . .

35.
Ð 1

�1 t
2[Pn(t)]

2dt ¼ 2

(2nþ 1)2
(nþ 1)2

2nþ 3
þ n2

2n� 1

� 	

n¼ 0, 1, 2, . . .
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Introducing these relations in the Laplacian, we obtain

2rG
dF

dr
þ r2G

d2F

dr2
þ F

dG

dw
cot wþ F

d2G

dw2
¼ 0

or

2r dF
dr þ r2 d2F

dr2

F
¼ �

dG
dw cot wþ d2G

dr2

G

Setting the above ratios equal to positive constant k2, k 6¼ 0, we

obtain

r2
d2F

dr2
þ 2r

dF

dr
� k2F ¼ 0

d2G

dw2
þ (cot w)

dG

dw
þ k2G ¼ 0

TABLE 1.8 (continued) Properties of Legendre and Associate Legendre Functions

36. Pm
n (t) ¼ (1� t2)m=2 dm

dtm
Pn(t), m> 0

37. Pm
n (t) ¼

1

2nn!
(1� t2)m=2 dnþm

dtnþm
[(t2 � 1)n], mþ n� 0

38. P�mn (t) ¼ (�1)m (n�m)!

(nþm)!
Pm
n (t)

39. P0
n(t) ¼ Pn(t)

40. (n�mþ 1)Pm
nþ1(t)� (2nþ 1)tPm

n (t)þ (nþm)Pm
n�1(t) ¼ 0

41. (1� t2)1=2Pm
n (t) ¼

1

2nþ 1
pmþ1nþ1 (t)� Pmþ1

n�1 (t)
� �

42. (1� t2)1=2Pm
n (t) ¼

1

2nþ 1
[(nþm)(nþm� 1)Pm�1

n�1 (t)

� (n�mþ 1)(n�mþ 2)Pm�1
nþ1 (t)]

43. Pmþ1
n (t) ¼ 2mt(1� t2)�1=2Pm

n (t)� [n(nþ 1)�m(m� 1)]Pm�1
n (t)

44.
Ð 1

�1 P
m
n (t)P

m
k (t)dt ¼ 0,

k 6¼ n

45.
Ð 1

�1 Pm
n (t)

� �2
dt ¼ 2

2nþ 1

(nþm)!

(n�m)!

46. Pm
n (�t) ¼ (�1)nþmPm

n (t)

47. Pm
n (	1) ¼ 0, m> 0

48. P1
2n(0) ¼ 0, P1

2nþ1(0) ¼
(�1)n(2nþ 1)!

22n(n!)2

49. Pm
n (0) ¼ 0, nþm is odd

Pm
n (0) ¼ (�1)(n�m)=2 (nþm)!

2n[(n�m)=2]![(nþm)=2]!
, nþm is even

50.
Ð 1

�1 P
m
n (t)P

k
n(t)(1� t2)�1dt ¼ 0,

k 6¼ m

51.
Ð 1

�1 (1� t2)�1=2P2m(t)dt ¼
G 1

2þmð Þ
m!

� 	2

52.
Ð 1

�1 t(1� t2)�1=2P2mþ1(t)dt ¼
G 1

2
þm

� 
G 3

2
þm

� 

m!(mþ 1)!

53.
Ð 1

t Pn(t)dt ¼
1

2nþ 1
[Pn�1(t)� Pnþ1(t)]

54.
Ð 1

0 t
qPn(t)dt ¼ G(qþ 1)

Pn
k¼0

(�1)kG(nþ kþ 1)

2kk!G(n� kþ 1)G(qþ kþ 2)
, q>�1

55.
Ð 1

0 t
�1=2Pn(t)dt ¼

2(�1)n=2
2nþ 1

n is even

2(�1)(n�1)=2
2nþ 1

n is odd

8

>><

>>:

56.
Ð 1

0 t
1=2Pn(t)dt ¼

2(�1)(nþ2)=2
(2n� 1)(2nþ 3)

n is even

2(�1)(nþ3)=2
(2n� 1)(2nþ 3)

n is odd

8

>><

>>:
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For k2¼ n(nþ 1), we recognize that the above equation is the

Legendre equation with G playing the role of y. Thus, a particular
solution is

G ¼ CnPn(cos w)

where Cn is an arbitrary constant. With k2¼ n(nþ 1) the general

solution for F is given by

F ¼ Snr
n þ Bn

rnþ1

where Sn and Bn are arbitrary constants. Because for r¼ 0 the

second term becomes infinity, we set Bn¼ 0. Hence, the product

solution is

T ¼ FG ¼ SnCnr
nPn(cos w) ¼ Dnr

nPn(cos w)

Because Legendre polynomials are continuous we must create

a procedure to alleviate this problem. We denote the excess of

the temperature T on the upper half of the surface over that of

T on the lower half. On the bounding great circle between

these halves, we arbitrarily set it equal to (300� 75)=2. We

then have

TE(w) ¼
225 0 � w < p=2

0 p=2 < w � p

225=2 w ¼ p=2

8

>><

>>:

If we let x¼ cos w, then TE(w) becomes f(x)

f (x) ¼
225 0 < x � 1

0 �1 � x < 0

225=2 x ¼ 0

8

><

>:

Next we expand f(x) in the form

f (x) ¼
X1

n¼0
anPn(x), an ¼

2nþ 1

2

ð1

0

f (x)Pn(x)dx

¼ 225
1

2
þ 3

4
P1(x)�

7

16
P3(x)þ

11

32
P5(x)� � � �

� 	

Setting Dn¼ an=R
n, where an is the coefficient of Pn(x) and R is

the radius of the solid, the solution is given by

T(r,w) ¼ 75þ
X1

n¼0
an

r

R

� �n
Pn(cos w)

¼ 75þ 225
1

2
þ 3

4

r

R

� �

P1(cos w)� 7

16

r

R

� �2

P3(cos w)

�

þ 11

32

r

R

� �5

P5( cos w)� � � �
	

Table 1.8 gives relationships of Legendre and associated Legendre

functions.

1.5.3 Hermite Polynomials

1.5.3.1 Generating Function

If we define the Hermite polynomial by the Rodrigues formula

Hn(t) ¼ (�1)net2 d
ne�t

2

dtn
, n ¼ 0, 1, 2, . . . , �1 < t <1

(1:148)

The first few Hermite polynomials are

H0(t) ¼ 1,

H1(t) ¼ 2t,

H2(t) ¼ 4t2 � 2,

H3(t) ¼ 8t3 � 12t,

H4(t) ¼ 16r4 � 48t þ 12,

H5(t) ¼ 32t5 � 160t3 þ 120t

and therefore

Hn(t) ¼
X[n=2]

k¼0

(�1)kn!
k!(n� 2k)!

(2t)n�2k (1:149)

[n=2] � largest integer � n=2

The Hermite polynomials are orthogonal with weight g(t) ¼ e�t
2

on the interval (�1, 1).
The relation between Hermite polynomial and the generating

function is

w(t, x) ¼ e2tx�x
2 ¼

X1

n¼0

Hn(t)

n!
xn, jxj <1 (1:150)

Because w(t, x) is the entire function in x it can be expanded in

Taylor’s series at x¼ 0 with jxj<1.

Hence the derivatives of the expansion are

qnw

qxn

� �







x¼0
¼ et

2 qn

qxn
e�(t�x)

2

� 	

x¼0
¼ (�1)net2 dne�u

2

dun

" #

u¼t
¼: Hn(t)

Figure 1.5 shows several Hermite polynomials.
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Example

Let t¼ 0 in Equation 1.150 and expand e�x
2

in power series.

Comparing equal powers of both sides we find that

H2n(0) ¼ (�1)n (2n)!
n!

Hermite polynomials are even for even n and odd for n odd.

Hence,

Hn(�t) ¼ (�1)nHn(t) (1:151)

1.5.3.2 Recurrence Relation

If we substitute w(t, x) of Equation 1.150 into identity

qw

qx
� 2(t � x)w ¼ 0

we obtain

X1

n¼0

Hnþ1(t)

n!
xn � 2t

X1

n¼0

Hn(t)

n!
xn þ 2

X1

n¼0

Hn(t)

n!
xnþ1 ¼ 0

or

X1

n¼1
[Hnþ1(t)� 2tHn(t)þ 2nHn�1(t)]

xn

n!
þ H1(t)� 2tH0(t) ¼ 0

But H1(t)� 2tH0(t)¼ 0 and hence

Hnþ1(t)� 2tHn(t)þ 2nHn�1(t) ¼ 0, n ¼ 1, 2, . . . (1:152)

If we use

qw

qx
� 2xw ¼ 0

we obtain

H0n(t) ¼ 2nHn�1(t), n ¼ 1, 2, . . . (1:153)

Eliminating Hn�1(t) from Equations 1.153 and 1.152, we obtain

Hnþ1(t)� 2tHn(t)þ H0n(t) ¼ 0, n ¼ 0, 1, 2, . . . (1:154)

Differentiate Equation 1.153, combine with Equation 1.152, and

use the relation H0nþ1 ¼ 2(nþ 1)H(nþ1)�1, we obtain

H
00

n � 2tH0n(t)þ 2nHn(t) ¼ 0, n ¼ 0, 1, 2, . . . (1:155)

From the above equation, with y¼Hn(t) (n¼ 0, 1, 2, . . . ), we

observe that the Hermite polynomials are the solution to the

second-order ordinary differential equation known as the Her-
mite equation

y00 � 2ty0 þ 2ny ¼ 0 (1:156)

1.5.3.3 Integral Representation and Integral Equation

The integral representation of Hermite polynomials is given by

Hn(t) ¼
(�j)n2net2

ffiffiffiffi
p
p

ð1

�1

e�x
2þj2txxndx, n ¼ 0, 1, 2, . . . (1:157)

The integral equation satisfied by the Hermite polynomials is

e�t
2=2Hn(t) ¼

1

jn
ffiffiffiffiffiffi
2p
p

ð1

�1

ejtye�y
2=2Hn(y)dy, n ¼ 0, 1, 2, . . .

(1:157a)

Also, because H2m(t) is an even function and H2mþ 1(t) is an odd

function, then the above equation implies the following two

integrals:

e�t
2=2H2m(t) ¼ (�1)m

ffiffiffiffi

2

p

r ð1

0

e�y
2=2H2m(y) cos ty dy

e�t
2=2H2mþ1(t) ¼ (�1)m

ffiffiffiffi

2

p

r ð1

0

e�y
2=2H2mþ1(y) sin ty dy,

m ¼ 0, 1, 2, . . . (1:158)

1.5.3.4 Orthogonality Relation: Hermite Series

The orthogonality property of the Hermite polynomials is

given by

ð1

�1

e�t
2

Hm(t)Hn(t)dt ¼ 0 if m 6¼ n (1:159)

and

ð1

�1

e�t
2

H2
n(t)dt ¼ 2nn!

ffiffiffiffi
p
p

, n ¼ 0, 1, 2, . . . (1:160)
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Therefore, the orthonormal Hermite polynomials are

wn(t) ¼ 2nn!
ffiffiffiffi
p
p� �1=2

e�t
2=2Hn(t), n ¼ 0, 1, 2, . . . ,

�1 < t <1 (1:161)

THEOREM 1.1

If f(t) is piecewise smooth in every finite interval [�a, a] and

ð1

�1

e�t
2

f 2(t)dt <1

then the Hermite series

f (t) ¼
X1

n¼0
CnHn(t), �1 < t <1 (1:162)

Cn ¼
1

2nn!
ffiffiffiffi
p
p

ð1

�1

e�t
2

f (t)Hn(t)dt n ¼ 0, 1, 2, . . . (1:163)

converges pointwise to f(t) at every continuity point and con-

verges at [ f(tþ)� f(t�)]=2 at points of discontinuity.

Example

The function f(t)¼ t2p, p¼ 1, 2, . . . satisfies Theorem 1.1 and it is

even. Hence,

t2p ¼
Xp

n¼0
C2nH2n(t)

where

C2n ¼
1

22n(2n)!
ffiffiffiffi
p
p

ð1

�1

e�t
2

t2pH2n(t)dt

¼ 1

22n(2n)!
ffiffiffiffi
p
p

ð1

�1

t2p
d2n

dt2n
(e�t

2

)dt

¼ 1

22n(2n)!
ffiffiffiffi
p
p (2p)!

(2p� 2n)!

ð1

�1

e�t
2

t2p�2ndt

¼ 1

22n(2n)!
ffiffiffiffi
p
p (2p)!

(2p� 2n)!
G p� nþ 1

2

� �

to find C2n, integration by parts was performed n times.

Example

The function eat, where a is an arbitrary number, satisfies

Theorem 1.1. Hence

eat ¼
X1

n¼0
CnHn(t)

where

Cn ¼
1

2nn!
ffiffiffiffi
p
p

ð1

�1

eate�t
2

Hn(t)dt ¼
(�1)n
2nn!

ffiffiffiffi
p
p

ð1

�1

eat
dn

dtn
(e�t

2

)dt

¼ an

2nn!
ffiffiffiffi
p
p

ð1

�1

eat�t
2

dt ¼ an

2nn!
e�a

2=4

Example

The sgn(t) function is odd and hence its expansion takes

the form

sgn(t) ¼
X1

n¼0
C2nþ1H2nþ1(t)

where

C2nþ1 ¼
1

22nþ1(2nþ 1)!
ffiffiffiffi
p
p

ð1

�1

e�t
2

H2nþ1(t)sgn(t)dt

¼ 1

22n(2nþ 1)!
ffiffiffiffi
p
p

ð1

0

e�t
2

H2nþ1(t)dt

Use the identity

e�t
2

Hn(t) ¼ �
d

dt
[e�t

2

Hn�1(t)]

which results from Equations 1.152 and 1.153, to find that

C2nþ1 ¼
H2n(0)

22n(2nþ 1)!
ffiffiffiffi
p
p ¼ (�1)n

22n(2nþ 1)!n!
ffiffiffiffi
p
p

Table 1.9 gives the Hermite relationships.

1.5.4 Laguerre Polynomials

1.5.4.1 Generating Function and Rodrigues Formula

The generating function for the Laguerre polynomials is given by

w(t, x) ¼ (1� x)�1 exp � tx

1� x

h i

¼
X1

n¼0
Ln(t)x

n,

jxj < 1, � t <1 (1:164)
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By expressing the exponential function in a series, realizing that

�k� 1
m

� �

¼ (�1)m kþm
m

� �

and finally making the change of index m¼ n� k, Equation
1.164 leads to

Ln(t) ¼
Xn

k¼0

(�1)kn!tk
(k!)2(n� k)!

n ¼ 0, 1, 2, . . . , 0 � t <1

(1:165)

The Rodrigues formula for creating Laguerre polynomials is

given by

Ln(t) ¼
et

n!

dn

dtn
(tne�t), n ¼ 0, 1, 2, . . . (1:166)

which can be verified by application of the Leibniz formula

dn

dtn
(fg) ¼

Xn

k¼0

n
k

� �
dn�k

dtn�k
dkg

dtk
, n ¼ 1, 2, . . . (1:167)

For a real a>�1 the general Laguerre polynomials are defined

by the formula

Lan(t) ¼ et
t�a

n!

dn

dtn
(e�ttnþa), n ¼ 0, 1, 2, . . . (1:168a)

Using Leibniz’s formula

Lan(t) ¼
Xn

k¼0

G(nþ aþ 1)

G(kþ aþ 1)

(�t)k
k!(n� k)!

(1:168b)

Table 1.10 gives a few Laguerre polynomials. Figure 1.6 shows

several Laguerre polynomials.

1.5.4.2 Recurrence Relations

The generating function w(t, x), Equation 1.164 satisfies the

identity

(1� x2)
qw

qx
þ (t � 1)w ¼ 0 (1:169)

Substituting Equation 1.164 in Equation 1.169 and equating the

coefficients of xn to zero, we obtain

(nþ 1)Lnþ1(t)þ (t� 1� 2n)Ln(t)þnLn�1(t)¼ 0, n¼ 1,2, . . .

(1:170)

TABLE 1.9 Properties of the Hermite Polynomials

1. Hn(t) ¼ (�1)net2 d
ne�t

2

dtn

2. Hn(t) ¼
P[n=2]

k¼0
(�1)kn!

k!(n� 2k)!
(2t)n�2k

[n=2]¼ largest integer� n=2

3. e2tx�x
2 ¼P1n¼0 Hn(t)

xn

n!

4. H2n(0) ¼ (�1)n (2n)!
n!

5. H2nþ1(0) ¼ 0, H02n(0) ¼ 0, H02nþ1(0)

¼ (�1)n (2nþ 2)!

(nþ 1)!

6. Hn(�t)¼ (�1)n Hn(t)

7. H2n(t) are even functions, H2nþ1 (t)
are odd functions

8. Hnþ1(t)� 2tHn(t)þ 2nHn�1(t)¼ 0, n¼ 1, 2, . . .

9. H0n(t) ¼ 2nHn�1(t), n¼ 1, 2, . . .

10. Hnþ1(t)� 2tHn(t)þ H0n(t) ¼ 0 n¼ 0, 1, 2, . . .

11. H
00
n(t)� 2tH0n(t)þ 2nHn(t) ¼ 0 n¼ 0, 1, 2, . . .

12. Hn(t) ¼
(�j)n2net2

ffiffiffiffi
p
p

Ð1
�1 e�x

2þj2tx
xndx n¼ 0, 1, 2, . . .

13. e�t
2=2Hn(t) ¼

1

jn
ffiffiffiffiffiffi
2p
p

Ð1
�1 ejtye�y

2=2Hn(y)dy

¼ integral equation

14. e�t
2=2H2m(t) ¼ (�1)m

ffiffiffiffi
2

p

r
Ð1
0 e�y

2=2

H2m(y) cos ty dy

15. e�t
2=2H2mþ1(t) ¼ (�1)m

ffiffiffiffi

2

p

r
Ð1
0 e�y

2=2

H2mþ1(y) sin ty dy

16.
Ð1
�1 e�t

2

Hm(t)Hn(t) dt ¼ 0, if m 6¼ n

17.
Ð1
�1 e�t

2

H2
n(t) dt ¼ 2nn!

ffiffiffiffi
p
p

n¼ 0, 1, 2, . . .

18. f (t) ¼ P
1

n¼0
CnHn(t) �1< t<1

Cn ¼
1

2nn!
ffiffiffiffi
p
p

Ð1
�1 e�t

2

f (t)Hn(t)dt

19.
Ð1
�1 tke�t

2

Hn(t)dt ¼ 0, k ¼ 0, 1, 2, . . . , n� 1

20.
Ð1
�1 t2e�t

2

H2
n(t) dt ¼

ffiffiffiffi
p
p

2nn! nþ 1

2

� �

21.
Ð1
�1 xne�x

2

Hn(tx)dx ¼
ffiffiffiffi
p
p

n!

2
Pn(t)

22.
Ð1
�1 e�2t

2

H2
n(t)dt ¼ 2n�

1
2G nþ 1

2

� �

23.
dmHn(t)

dtm
¼ 2mn!

(n�m)!
Hn�m(t), m < n

24.
Ð1
�1 e�a

2 t2H2n(t)dt ¼
(2n)!

n!

ffiffiffiffi
p
p

a

1� a2

a2

� �n

, a > 0

TABLE 1.10 Laguerre Polynomials

L0(t)¼ 1

L1(t)¼�tþ 1

L2(t) ¼
1

2!
(t2 � 4t þ 2)

L3(t) ¼
1

3!
(�t3 þ 9t2 � 18t þ 6)

L4(t) ¼
1

4!
(t4 � 16t3 þ 72t2 � 96t þ 24)
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Similarly substituting Equation 1.164 into

(1� x)
qw

qt
þ xw ¼ 0 (1:171)

we obtain the relation

L0n(t)� L0n�1(t)þ Ln�1(t) ¼ 0, n ¼ 1, 2, . . . (1:172)

From this we obtain

L0nþ1(t) ¼ L0n(t)� Ln(t) (1:173)

L0n�1(t) ¼ L0n(t)þ Ln�1(t) (1:174)

From Equation 1.170 by differentiation we find

(nþ 1)L0nþ1(t)þ (t � 1� 2n)L0n(t)þ Ln(t)þ nL0n�1(t) ¼ 0

(1:175)

Eliminating L0nþ1(t) and L0n�1(t) by using Equations 1.173

through 1.175, we obtain

tL0n(t) ¼ nLn(t)� nLn�1(t) (1:176)

By differentiating Equation 1.176 and using Equation 1.172, we

obtain

tLn
00(t)þ L0n(t) ¼ �nLn�1(t)

Next, eliminating Ln�1(t) using Equation 1.176 we obtain

tLn
00(t)þ (1� t)L0n(t)þ nLn(t) ¼ 0 (1:177)

Setting y¼ Ln(t) (n¼ 0, 1, 2, . . . ), we conclude that all Ln(t) are
the solution to the Laguerre equation

ty00 þ (1� t)y0 þ ny ¼ 0 (1:178)

1.5.4.3 Orthogonality, Laguerre Series

The orthogonality relations for Laguerre polynomials are

ð1

0

e�tLn(t) Lm(t)dt ¼ 0, n 6¼ m (1:179)

ð1

0

e�t[Ln(t)]
2dt ¼ G(nþ 1)

n!
¼ 1, n ¼ 0, 1, 2, . . . (1:180)

For the generalized Laguerre polynomials, the orthogonality rela-

tions

ð1

0

e�ttaLam(t)L
a
n(t)dt ¼ 0, n 6¼ m, a > �1

ð1

0

e�tta Lan(t)
� �2

dt ¼ G(nþ aþ 1)

n!
, a > �1, n ¼ 0, 1, 2, . . .

(1:181)

The orthogonal system for the generalized polynomials on the

interval 0� t<1 is

wa
n(t) ¼

n!

G(nþ aþ 1)

� 	1=2

e�t=2ta=2Lan(t), n ¼ 0, 1, 2, . . .

(1:182)

The Laguerre series is given by

f (t) ¼
X1

n¼0
CnLn(t), 0 � t <1 (1:183)

where

Cn ¼
ð1

0

e�t f (t)Ln(t)dt, n ¼ 0, 1, 2, . . . (1:184)

THEOREM 1.2

If f(t) is piecewise smooth in every finite interval t1� t� t2,
0< t1< t2<1 and

ð1

0

e�t f 2(t)dt <1

then the Laguerre series converges pointwise to f(t) at every

continuity point of f(t), and at the points of discontinuity the

series converges to [ f(tþ)� f(t�)]=2.
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If we set a¼m¼ integer (m¼ 0, 1, 2, . . . ), then Equation

1.168b becomes

Lmn (t) ¼
Xn

k¼0

(�1)k(nþm)!tk

(n� k)!(mþ k)!k!
, m ¼ 0, 1, 2, . . . (1:185)

The Rodrigues formula is

Lmn (t) ¼
1

n!
ett�m

dn

dtn
(e�ttnþm) (1:186)

Example

The function tb can be expanded in series

tb ¼
X1

n¼0
CnL

a
n(t), b > � 1

2
(aþ 1)

Cn ¼
n!

G(nþ aþ 1)

ð1

0

tbþa e�t Ln(t)dt

¼ n!

G(nþ aþ 1)

ð1

0

e�t tbþa
ett�a

n!

dn

dtn
(tnþae�t )dt

¼ 1

G(nþ aþ 1)

ð1

0

tb
dn

dtn
(tnþae�t)dt

¼ (�1)nb(b� 1) � � � (b� nþ 1)

G(nþ aþ 1)

ð1

0

e�ttbþa dt

¼ (�1)n G(bþ 1)

G(nþ bþ 1)G(b� nþ 1)

ð1

0

e�tt(bþaþ1)�1dt

¼ (�1)n G(bþ 1)G(bþ aþ 1)

G(nþ bþ 1)G(b� nþ 1)

The steps to find Cn were: (a) substitution of Equation 1.168a,b,

(b) integration by parts n times, and (c) multiplication of

numerator and denominator by G(b� nþ 1). In particular if

b¼m¼ positive integer

tm ¼ G(mþ aþ 1)m!

Xm

n¼0

(�1)nLan(t)
G(nþ aþ 1)(m� n)!

,

0 < t <1, a > �1, and m ¼ 0, 1, 2, . . .

If a¼ 0, we obtain the expansion

tm ¼ G(mþ 1)m!

Xm

n¼0

(�1)mLn(t)
n!(m� n)!

Example

The function f(t)¼ e�bt, with b>�1=2 and t> 0, is expanded

as follows

Cn ¼
n!

G(nþ aþ 1)

ð1

0

e�(bþ1)tta Lan(t)dt

¼ 1

G(nþ aþ 1)

ð1

0

e�bt
dn

dtn
(e�ttnþa)dt

¼ bb

G(nþ aþ 1)

ð1

0

e�(bþ1)t tnþa dt

¼ bn

(bþ 1)nþaþ1
, n ¼ 0, 1, 2, . . .

and thus

e�bt ¼ (bþ 1)�a�1
X1

n¼0

b

bþ 1

� �n

Lan(t), 0 � t <1

For a¼ 0

e�bt ¼ (bþ 1)�1
X1

n¼0

b

bþ 1

� �n

Ln(t), 0 � t <1

Table 1.11 gives relationships of Laguerre polynomials.

TABLE 1.11 Properties of the Laguerre Polynomials

1. Ln(t) ¼
Pn

k¼0
(�1)kn!tk

(k!)2(n� k)!

¼Pn
k¼0 (�1)k 1

k!

n
k

� �

tk

0� t<1, n¼ 0,1,2, . . .

2. Ln(t) ¼
et

n!

dn

dtn
(tne�t) n¼ 0,1,2, . . .

3. (nþ 1)Lnþ1(t)þ (t � 1� 2n)Ln(t)
þnLn�1(t) ¼ 0

n¼ 1, 2, 3, . . .

4. L0n(t)� L0n�1(t)þ Ln�1(t) ¼ 0, n¼ 1, 2, 3, . . .

5. (nþ 1)L0nþ1(t)þ (t � 1� 2n)L0n(t)

þLn(t)þ nL0n�1(t) ¼ 0,

n¼ 1, 2, 3, . . .

6. L0nþ1(t) ¼ L0n(t)� Ln(t)

7. tL0n(t) ¼ nLn(t)� nLn�1(t), n¼ 1, 2, 3, . . .

8. tL
00
n(t)þ (1� t)L0n(t)þ nLn(t) ¼ 0,

Laguerre differential equation

9. w(t, x) ¼ (1� x)�1 exp � tx

1� x

h i

¼P1n¼0 Ln(t)xn, generating function

10.
Ð1
0 e�tLn(t)Lk(t)dt ¼ 0,

k 6¼ n

11.
Ð1
0 e�t[Ln(t)]

2dt ¼ 1

(continued)
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1.5.5 Chebyshev Polynomials

The Chebyshev polynomials can be derived from the Gegenbauer

polynomials, and are given

Tn(t) ¼
n

2

X[n=2]

k¼0

(�1)k(n� k� 1)!

k!(n� 2k)!
(2t)n�2k, �1 < t < 1

(1:187)

The Chebyshev polynomials of the second kind are simply

Un(t) ¼ C1
n(t), n ¼ 0, 1, 2, . . . (1:188a)

where C1
n(t) is the Gegenbauer polynomial with l¼ 1

Cl
n(t) ¼ (�1)n

X[n=2]

k¼0

�l
n� k

� �
n� k
k

� �

(2t)n�2k (1:188b)

Hence, the second kind Chebyshev polynomials are

Un(t) ¼
X[n=2]

k¼0

n� k
k

� �

(�1)k(2t)n�2k (1:189)

The recurrence are

Tnþ1(t)� 2tTn(t)þ Tn�1(t) ¼ 0 (1:190)

Unþ1(t)� 2tUn(t)þ Un�1(t) ¼ 0 (1:191)

The orthogonality properties are

ð1

�1

(1� t2)�1=2Tn(t)Tk(t)dt ¼ 0, k 6¼ n (1:192)

ð1

�1

(1� t2)1=2Un(t)Uk(t)dt ¼ 0, k 6¼ n (1:193)

The governing differential equations for Tn(t) and Un(t) are,

respectively,

(1� t2)y00 � ty0 þ n2y ¼ 0 (1:194)

(1� t2)y00 � 3ty0 þ n(nþ 2)y ¼ 0 (1:195)

The following are relationships between the two Chebyshev

types:

Tn(t) ¼ Un(t)� tUn�1(t) (1:196)

(1� t2)Un(t) ¼ tTn(t)� Tnþ1(t) (1:197)

TABLE 1.11 (continued) Properties of the Laguerre Polynomials

12. f (t) ¼
X1

n¼0 CnLn(t),

Cn ¼
Ð1
0 e�t f (t)Ln(t)dt

0� t<1

13. Ln(0) ¼ 1, L0n(0) ¼ �n,
L
00
n(0) ¼

1

2
n(n� 1)

14. Lmn (t) ¼ (�1)m dm

dtm
[Lnþm(t)], m¼ 0, 1, 2, . . .

15. Lmn (t) ¼
Pn

k¼0
(�1)k(nþm)!tk

(n� k)!(mþ k)!k!
, m¼ 0, 1, 2, . . .

16. (nþ 1)Lmnþ1(t)þ (t � 1� 2n�m)Lmn (t)

þ (nþm)Lmn�1(t) ¼ 0

17. tLm
0

n (t)� nLmn (t)þ (nþm)Lmn�1(t) ¼ 0

18. Lmn (t) ¼
1

n!
et t�m

dn

dtn
(e�t tnþm)

¼ Rodrigues formula

19. Lmn�1(t)þ Lm�1n (t)� Lmn (t) ¼ 0

20. Lm
0

n (t) ¼ �Lmþ1n�1 (t)

21. Lmn (0) ¼
(nþm)!

n!m!

22.
Ð1
0 e�t tkLn(t)dt ¼ 0 k < n

(�1)nn! k ¼ n

�

23.
Ð t
0 Lk(x)Ln(t � x)dx ¼

Ð t
0 Lnþk(x)dx

¼ Lnþk(t)� Lnþkþ1(t)

24.
Ð1
t e�xLmn (x)dx ¼ e�t Lmn (t)� Lmn�1(t)

� �
,

m¼ 0, 1, 2, . . .

25.
Ð t
0 (t � x)mLn(x)dx ¼

m!n!

(mþ nþ 1)!

tmþ1Lmþ1n (t),

m¼ 0, 1, 2, . . .

26.
Ð 1

0 x
a(1� x)b�1Lan(tx)dx

¼ G(b)G(nþ aþ 1)

G(nþ aþ bþ 1)
Laþbn (t),

a>�1, b> 0

27.
Ð1
0 e�t taLan(t)L

a
k(t)dt ¼ 0,

k 6¼ n, a>�1

28.
Ð1
0 e�t ta Lan(t)

� �2
dt ¼ G(nþ aþ 1)

n!
, a>�1

29.
Ð1
0 e�t taþ1 Lan(t)

� �2
dt ¼ G(nþ aþ 1)

n!
(2nþ aþ 1), a>�1

30. L�1=2n (t) ¼ (�1)n
22nn!

H2n(
ffiffi

t
p

)

31. L1=2n (t) ¼ (�1)n
22nþ1n!

H2nþ1(
ffiffi
t
p

)
ffiffi
t
p

32. f (t) ¼P1n¼0 CnLmn (t)

Cn ¼
n!

G(nþmþ 1)

Ð1
0 e�ttmf (t)Lmn (t)dt

33. tp ¼ p!
Pp

n¼0
p
n

� �

(�1)nLn(t)

34. e�at ¼ (aþ 1)�1
P1

n¼0
a

aþ 1

� �n

Ln(t), a > � 1

2

35.
Ð1
0

e�tx

x þ 1
dx ¼

X1
n¼0

Ln(t)

nþ 1
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Table 1.12 gives relationships for the Chebyshev polynomials.

If we set t¼ cos u in Equation 1.194, we find that it reduce to

d2y

du2
þ n2y ¼ 0

with solution cos nu and sin nu. Therefore, if we set Tn(cos u)¼
Cn cos nu, we find that Cn¼ 1 for all n because Tn(1)¼ 1 for all n.
Hence

Tn(t) ¼ cos nu ¼ cos (n cos�1 t) (1:198)

Similarly

Un(t) ¼
sin [(nþ 1) cos�1 t]

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p (1:199)

The generating function for the Chebyshev polynomial is

1� st

1� 2st þ s2
¼
X1

n¼0
Tn(t)s

n (1:200)

The generalized Rodrigues formula is

Tn(t) ¼
(�2)nn!
(2n)!

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p dn

dtn
(1� t2)n�

1
2 (1:201)

Figure 1.7 shows several Chebyshev polynomials.

1.5.6 Bessel Functions

1.5.6.1 Bessel Functions of the First Kind

General relations: The solution of Bessel’s equation

y00 þ 1

t
y0 þ 1� n2

t2

� �

y ¼ 0, n ¼ 0, 1, 2, . . . (1:202)

is the function y¼ Jn(t), known as the Bessel function of the first
kind and order n. The Bessel function is defined by the series

Jn(t) ¼
X1

k¼0

(�1)k(t=2)nþ2k
k!(nþ k)!

, �1 < t <1 (1:203)

We can find Equation 1.203 by expanding the function w(t, x) in
series of the two exponentials exp(tx=2) and exp(�t=2x) in the form

w(t, x) ¼: e
1
2t x�1

xð Þ ¼
X1

n¼�1
Jn(t)x

n, x 6¼ 0 (1:204)

By setting n¼�n in Equation 1.203 we obtain

J�n(t) ¼
X1

k¼0

(�1)k(t=2)2k�n
k!(k� n)!

¼
X1

k¼n

(�1)k(t=2)2k�n
k!(k� n)!

because 1=[(k� n)!]¼ 0 for k¼ 0, 1, 2, . . . , n� 1 (G(n)¼1 for

negative n). Setting k¼mþ n, we obtain

J�n(t) ¼
X1

m¼0

(�1)mþn(t=2)2mþn
m!(mþ n)!

(1:205)

from which it follows that

J�n(t) ¼ (�1)nJn(t), n ¼ 0, 1, 2, . . . (1:206)

Equating like terms in the expanded form of Equation 1.204, we

obtain

J0(0) ¼ 1, Jn(0) ¼ 0, n 6¼ 0 (1:207)

Figure 1.8 shows several Bessel functions of the first kind and

zero order.

TABLE 1.12 Properties of the Chebyshev Polynomials

1. (1� t2)
d2y

dt2
� t

dy

dt
þ n2y ¼ 0; y(t) ¼ Tn(t)

2. Tn(t) ¼
n

2

X[n=2]

k¼0
(�1)k(n� k� 1)!

k!(n� 2k)!
(2t)n�2k,

n ¼ 1, 2, . . . , [n=2] ¼ largest integer � n=2

3. Tn(t) ¼
(�2)nn!
(2n)!

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p dn

dtn
(1� t2)n�

1
2 ,

Rodrigues formula

4. Tn(t)¼ cos(n cos�1t)

5.
1� st

1� 2st þ s2
¼
X1

n¼0 Tn(t)s
n, generating function

6. Tnþ 1(t)¼ 2tTn(t)�Tn�1(t)

7.
Ð 1

�1
Tn(t)Tm(t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� t2)
p dt ¼

0 n 6¼ m
p=2 n ¼ m 6¼ 0
p n ¼ m ¼ 0

(

8. Tn(1)¼ 1, Tn(�1)¼ (�1)n, T2n(0)¼ (�1)n, T2nþ 1(0)¼ 0

–1 –0.5 0.5 1
t

1

0.75

0.5

0.25

–0.25

–0.5

–0.75

1

T3(t) T4(t) T5(t)

T1(t)

T2(t)
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1.5.6.2 Bessel Functions of Nonintegral Order

The Bessel functions of a noninteger number are give by

(y¼ noninteger number)

Jy(t) ¼
X1

k¼0

(�1)k(t=2)2kþy
k!G(kþ yþ 1)

, y � 0 (1:208a)

J�y(t) ¼
X1

k¼0

(�1)k(t=2)2k�y
k!G(k� yþ 1)

, y � 0 (1:208b)

The two functions J�y(t) and Jy(t) are linear independent for

noninteger values of y and they do not satisfy any generating-

function relation. The functions J�y(0)¼1 and Jy(0) remain

finite. Both share most of the properties of Jn(t) and J�n(t).

1.5.6.3 Recurrence Relation

d

dt
[tyJy(t)]¼

d

dt

X1

k¼0

(�1)k(t)2kþ2y
22kþyk!G(kþ yþ 1)

¼ ty
X1

k¼0

(�1)k(t=2)2kþ(y�1)
k!G(kþ y)

¼ tyJy�1(t) (1:209)

Similarly

d

dt
[t�yJy(t)] ¼ �t�yJyþ1(t) (1:210)

Differentiate Equations 1.209 and 1.210 and dividing by ty and
t�y, respectively, we find

J 0y(t)þ
y

t
Jy(t) ¼ Jy�1(t) (1:211)

J 0y(t)�
y

t
Jy(t) ¼ �Jyþ1(t) (1:212)

Set y¼ 0 in Equation 1.212 to obtain

J 00(t) ¼ �J1(t) (1:213)

Add and subtract Equations 1.211 and 1.212 to find, respectively,

the relations

2J 0y(t) ¼ Jy�1(t)� Jyþ1(t) (1:214)

2y

t
Jy(t) ¼ Jy�1(t)þ Jyþ1(t) (1:215)

The last relation is known as the three-term recurrence formula.
Repeated operations result in

d

t dt

� �m

[tyJy(t)] ¼ ty�mJy�m(t) (1:216)

d

t dt

� �m

[t�yJy(t)] ¼ (�1)mt�y�mJyþm(t) m ¼ 1, 2, . . .

(1:217)

Example

We proceed to find the following derivative

d

dt
[tyJy(at)] ¼

d

dt

u

a

� �y

Jy(u)
h i

¼ d

du

uy

ay
Jy(u)

� 	
du

dt

¼ a�y
d

du
[uyJy(u)]a ¼ a1�y[uyJy�1(u)]

¼ a1�y[(at)yJy�1(at)] ¼ atyJy�1(at)

where Equation 1.209 was used.

Example

Differentiate Equation 1.214 to find

d2Jy(t)

dt2
¼ 1

2

dJy�1(t)

dt
� dJyþ1(t)

dt

� �

Then apply the same equation to each derivative on the right

side to find

d2Jy(t)

dt2
¼ 1

2

1

2
[Jy�2(t)� Jy(t)]�

1

2
[Jy(t)� Jyþ2(t)]

� 	

¼ 1

22
[Jy�2(t)� 2Jy(t)þ Jyþ2(t)]

Similarly we find

d3Jy(t)

dt3
¼ 1

23
[Jy�3(t)� 3Jy�1(t)þ 3Jyþ1(t)� Jyþ3(t)]

1

0.8

0.6

0.4

0.2

2 4 6 8 10
t

–0.2

–0.4
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J2(t)
J4(t)J3(t)
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1.5.6.4 Integral Representation

Set x¼ exp(�jw) in Equation 1.204, multiply both sides by exp

(jnw), and integrate the results from 0 to p. Hence

ðp

0

ej(nw�t sin w)dw ¼
X1

k¼�1
Jk(t)

ðp

0

ej(n�k)wdw (1:218)

Expand on both sides the exponentials in Eauler’s formula;

equate the real and imaginary parts and use the relation

ðp

0

cos (n� k)w dw ¼ 0 k 6¼ 0
p k ¼ n

n

to find that all terms of the infinite sum vanish except for k¼ n.
Hence, we obtain

Jn(t) ¼
1

p

ðp

0

cos (nw� t sinw)dw, n ¼ 0, 1, 2, . . . (1:219)

When n¼ 0, we find

J0(t) ¼
1

p

ðp

0

cos (t sin w)dw (1:220)

For a Bessel function with nonintegral order, the Poisson formula is

Jy(t) ¼
(t=2)y

ffiffiffiffi
p
p

G yþ 1

2

� �

ð1

�1

(1� x2)y�
1
2ejtxdx, y > � 1

2
, t > 0

(1:221)

Set x¼ cos u to obtain

Jy(t) ¼
(t=2)y

ffiffiffiffi
p
p

G yþ 1

2

� �

ðp

0

cos (t cos u) sin2y u du, y > � 1

2
, t > 0

(1:222)

1.5.6.5 Integrals Involving Bessel Functions

Start with the identities

d

dt
[tyJy(t)] ¼ tyJy�1(t) (1:223)

d

dt
[t�yJy(t)] ¼ �t�yJyþ1(t) (1:224)

and directly integrate to find

ð

tyJy�1(t)dt ¼ tyJy(t)þ C (1:225)

ð

t�yJyþ1(t)dt ¼ �t�yJy(t)þ C (1:226)

where C is the constant of integration.

Example

We apply the integration procedure to find

ð

t2J2(t)dt ¼
ð

t3[t�1J2(t)]dt ¼ �
ð

t3
d

dt
[t�1J1(t)]dt

¼ �t2J1(t)þ 3

ð

tJ1(t)dt ¼ �t2J1(t)� 3

ð

t[� J1(t)]dt

¼ �t2J1(t)� 3

ð

t
d

dt
J0(t)

� 	

dt

¼ �t2J1(t)� 3tJ0(t)þ 3

ð

J0(t)dt

The last integral has no closed solution.

Example

If a> and b> 0, then [see Equation 1.220]

ð1

0

e�atJ0(bt)dt ¼
ð1

0

e�atdt
2

p

ðp=2

0

cos (bt sin w)dw

¼ 2

p

ðp=2

0

dw

ð1

0

e�at cos (bt sin w)dt

¼ 2

p

ðp=2

0

adw

a2 þ b2 sin2 w
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

Example

For a> 0, b> 0, and y>�1 (y is real), then

ð1

0

e�a
2t2 Jy(bt)t

yþ1dt ¼
ð1

0

e�a
2t2 tyþ1 dt

X1

k¼0

(�1)k(bt=2)yþ2k
k!G(k þ yþ 1)

¼
X1

k¼0

(�1)k
k!G(k þ yþ 1)

b

2

� �yþ2k

�
ð1

0

e�a
2t2 t2yþ2kþ1 dt

¼
X1

k¼0

(�1)k
k!G(k þ yþ 1)

b

2

� �yþ2k
1

2a2yþ2kþ2

�
ð1

0

e�rryþk dr

¼ by

(2a2)yþ1
X1

k¼0

� b2

4a2

� �k

k!
¼ by

(2a2)yþ1
e�b

2=4a2

(1:227)

where the last integral is the gamma function and the sum-

mation is the exponential expression.
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The usual method of find definite integrals involving Bessel

functions is to replace the Bessel function by its series represen-

tation. To illustrate the technique, let us find the value of the

integral

I ¼
ð1

0

e�attpJp(bt)dt, p > � 1

2
, a > 0, b > 0

¼
X1

k¼0

(�1)k(b=2)2kþp
k!G(kþ pþ 1)

ð1

0

e�att2kþ2p dt

¼ bp
X1

k¼0

(�1)kG(2kþ 2pþ 1)

22kþpk!G(kþ pþ 1)
(a2)� pþ1

2ð Þ�k(b2)k (1:228)

where the last integral is in the form of a gamma function. But we

know that

�r
k

 !

¼ (�1)k
r þ k� 1

k

 !

,
n

k

 !

¼
n

n� k

 !

nþ 1

kþ 1

 !

¼
n

kþ 1

 !

þ
n

k

 !

, 0 � k � n� 1

and thus we obtain

(�1)kG(2kþ 2pþ 1)

22kþpk!G(kþ pþ 1)
¼

(�1)k2pG pþ kþ 1

2

� �

ffiffiffiffi
p
p

k!

¼ (�1)k
ffiffiffiffi
p
p 2pG pþ 1

2

� � pþ k� 1

2

k

0

B
@

1

C
A

¼
2pG pþ 1

2

� �

ffiffiffiffi
p
p

� pþ 1

2

� �

k

0

B
@

1

C
A

(1:229)

Therefore, Equation 1.228 becomes

I ¼
ð1

0

e�attpJp(bt)dt

¼
(2b)pG pþ 1

2

� �

ffiffiffiffi
p
p

X1

k¼0

� pþ 1

2

� �

k

0

@

1

A(a2)�(pþ(1=2))�k(b2)k

¼
(2b)pG pþ 1

2

� �

ffiffiffiffi
p
p

(a2 þ b2)pþ
1
2

, p > � 1

2
, a > 0, b > 0

(1:230)

Setting p¼ 0 in this equation we find

ð1

0

e�atJ0(bt) ¼
1

[a2 þ b2]1=2
, a > 0, b > 0 (1:231)

Set a¼ 0þ in this equation to obtain

ð1

0

J0(bt)dt ¼
1

b
, b > 0 (1:232)

By assuming the real approaches zero and writing a as pure

imaginary, Equation 1.231 becomes

ð1

0

e�jatJ0(bt)dt ¼

1

(b2 � a2)1=2
b > a

�j
(a2 � b2)1=2

b < a

8

>>><

>>>:

(1:233)

The above integral, by equating real and imaginary parts, becomes

ð1

0

cos (at)J0(bt)dt ¼
1

(b2 � a2)1=2
, b > a (1:234)

ð1

0

sin (at)J0(bt)dt ¼
1

(a2 � b2)1=2
, b < a (1:235)

Example

To evaluate the integral
Ð b

0
tJ0(at)dt, we proceed as follows:

ð1

0

tJ0(at)dt ¼
ð1

0

1

a

d

dt
[tJ1(at)]dt

¼ 1

a
[tJ1(at)]jbt¼0¼

b

a
J1(ab), a 6¼ 0 (1:236)

where Equation 1.209 with y¼ 1 was used.

Example

To evaluate the integral I ¼
Ð b

0
t2J0(at)dt, where a is a constant

and nonequal to zero, we proceed as follows (set at¼ r):

I ¼ 1

a3

ðab

0

r2J0(r)dr ¼
1

a3

ðab

0

rrJ0(r)dr

¼ 1

a3

ðab

0

r
d

dr
[rJ1(r)]dr ¼

1

a3
a2b2J1(ab)�

ðab

0

rJ1(r)dr

2

4

3

5
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But [see Equation 1.224]

ðab

0

rJ1(r)dr ¼ �
ðab

0

r
d

dr
[J0(r)]dr ¼ �rJ0(r)










ab

r¼0

þ
ðab

0

J0(r)dr ¼ �abJ0(ab)þ
ðab

0

J0(r)dr

and therefore

I ¼ 1

a3
a2b2J1(ab)þ abJ0(ab)�

ðab

0

J0(r)dr

2

4

3

5 (1:237)

The integral can be approximately evaluated with any desired

accuracy by termwise integration of the series of J0(t). Hence,

we write

ðab

0

J0(t)dt ¼ ab� a3b3

3 � 22 þ
a5b5

5 � 24 � (2!)2
� a7b7

7 � 26 � (3!)2
þ � � �

1.5.6.6 Fourier Bessel Series

A Bessel series is a member of the class of generalized Fourier

series. It is defined by

f (t) ¼
X1

n¼1
cnJy(tnt), 0 < t < a, y > � 1

2
(1:238)

where c’s are the expansion coefficient constants and tn’s (n¼ 1,

2, 3, . . . ) are the zeros (positive roots) of the function

Jy(tnt), n ¼ 1, 2, 3, . . . (1:239)

The orthogonality property is defined as follows (y>�1):

ða

0

tJy(tmt)Jy(tnt)dt ¼ 0, m 6¼ n (1:240)

with weight t. It can also be shown that

ða

0

t[Jy(tnt)]
2dt ¼ a2

2
[Jyþ1(tna)]

2 (1:241)

THEOREM 1.3

If a real function f(t) is piecewise continuous on (0, a) and is of

bounded variation in every subinterval [t1, t2] where 0< t1<
t2< a, then if the integral

ða

0

ffiffi

t
p
jf (t)jdt

is finite, the Fourier–Bessel series converges to f(t) at every

continuity point of f(t) and to [ f(tþ)� f(t�)]=2 at every discon-

tinuity point.

To begin, multiply Equation 1.238 by tJy(tmt) and integrate

from 0 to a. Assuming that termwise integration is permitted, we

obtain

ða

0

tf (t)Jy(tmt)dt ¼
X1

n¼1
cn

ða

0

tJy(tmt)Jy(tnt)dt

¼ cm

ða

0

[Jy(tmt)]
2dt (1:242)

because the integral is zero if n 6¼ m (see Equation 1.240). Hence,

from this equation we obtain

cn ¼
2

a2[Jyþ1(tna)]
2

ða

0

tf (t)Jy(tnt)dt, n ¼ 1, 2, 3, . . . (1:243)

Example

Find the Fourier–Bessel series for the function

f (t) ¼ t 0 < t < 1

0 1 < t < 2

n

corresponding to the set of functions {J1(tnt)} where tn satisfies

J1(2tn)¼ 0 (n¼ 1, 2, 3, . . . ),

Solution: We write the solution

f (t) ¼
X1

n¼1
cnJ1(tnt), 0 < t < 2

where

cn ¼
1

2[J2(2tn)]
2

ð2

0

tf (t)J1(tnt)dt

¼ (�)
ð1

0

t2J1(tnt)dt (let r ¼ tnt)

¼ (�) 1
t3n

ðtn

0

r2J1(r)dr [apply Equation 1:223]

¼ (�) 1
t3n

ðtn

0

d

dt
[r2J2(r)]dr

¼ 1

2[J2(2tn)]
2t3n

t2nJ2(tn) ¼
J2(tn)

2tn[J2(2tn)]
2
, n ¼ 1, 2, 3, . . .
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Example

To express the function f(t)¼ 1 on the open interval 0< t< a

as an infinite series of Bessel functions of zero order, we

proceed as follows [see Equation 1.243]:

cn ¼
2

a2[J1(tna)]
2

ða

0

t � 1 � J0(tnt)dt

¼ 2

a2[J1(tna)]
2

ða

0

1

tn

d

dt
[tJ1(tnt)]dt [see Equation 1:223]

¼ 2

a2tn[J1(tna)]
2
[tJ1(tnt)]jat¼0¼

2

atnJ1(tna)

Hence the expression is

1 ¼ 2
X1

n¼1

Jn(tnt)

tnJ1(tna)
, 0 < t < a

Example

Let us expand the function f(t)¼ t2, 0� t� 1, in a series of the

form

c1J0(t1t)þ c2J0(t2t)þ c3J0(t3t)þ � � �

where tn denotes the nth positive zero of J0(t). From Equation

1.243 we obtain (a¼ 1)

cn ¼
2

[J1(tn)]
2

ð1

0

t3J0(tnt)dt

¼ 2

[J1(tn)]
2

ðtn

0

r3

t3n
J0(r)

dr

tn
¼ 2

t4n[J1(tn)]
2

ðtn

0

r2
d

dr
[rJ1(r)]

¼ 2

t4n[J1(tn)]
2

r3J1(r)jtnr¼0�2
ðtn

0

r2J1(r)dr

2

4

3

5

¼ 2

t4n[J1(tn)]
2

t3nJ1(tn)� 2

ðtn

0

d

dr
[r2J2(r)]dr

2

4

3

5

¼ 2

t4n[J1(tn)]
2
t3nJ1(tn)� 2t2nJ2(tn)
� �

Table 1.13 gives Bessel function relationships. Tables 1.14 and

1.15 give numerical values for Bessel functions and Table 1.16

gives the zeros of several Bessel functions.

1.5.7 Zernike Polynomials

Zernike polynomials are a set of complex exponentials that form

a complete orthogonal set over the interior of the unit circle.

Polynomial representation of optical wave fronts is essential in

the analysis of interferometric test data, for example, to assess

optical system performance. One such set, which is attractive for

its simple rotational properties, is the circle polynomials or
Zernike polynomials. The set of these polynomials is denoted by

Vnl(x, y) ¼ Vnl(r cos u, r sin u) ¼ Vnl(r, u) ¼ Rnl(r)e
jlu

(1:244)

where

n is a nonnegative integer, n� 0

l is an integer subject to constraints: n� jlj is even and jlj � n
r is the length of vector from origin to (x, y) point
u is the angle between r- and x-axis in the counterclockwise

direction

The orthogonality property is expressed by the formula

ð ð

x2þy2�1

V*;nl (r, u)Vmk(r, u)r dr du ¼
p

nþ 1
dmndkl (1:245)

where dij is the Kronecker symbol. The real-valued radial poly-

nomials satisfy the orthogonality relation

ð1

0

Rnl(r)Rml(r)r dr ¼
1

2(nþ 1)
dmn (1:246)

The radial polynomials are given by

Rn	jlj(r) ¼
1

n� jlj
2

� �

!rm

d

d(r2)

� 	n�jlj
2

(r2)
nþjlj
2 (r2 � 1)

nþjlj
2

� 	

¼
X
n�jlj
2

s¼0
(�1)2 (n� s)!

s!
nþ jlj

2
� s

� �

!
n� jlj

2
� s

� �

!

rn�2s

(1:247)

For all permissible values of n and jlj

Rn	jlj(1) ¼ 1, Rnjlj(r) ¼ Rn(�jlj)(r) (1:248)

Table 1.17 gives the explicit form of the function Rnjlj(r).
A relation between radial Zernike polynomials and Bessel

functions of the first kind is given by

ð1

0

Rnjlj(r)Jn(yr)r dr ¼ (�1)
n�jlj
2
Jnþ1(y)

y
(1:249)

From Equation 1.244 we obtain the following real Zernike poly-

nomials:

Unl ¼
1

2
[Vnl þ Vn(�l)] ¼ Rnl(r) cos lu, l 6¼ 0

Un(�l) ¼
1

2j
[Vnl � Vn(�l)] ¼ Rnl(r) sin lu, l 6¼ 0

Vn0 ¼ Rn0(r)

(1:250)

Figure 1.9 shows the function Unl for a few radial modes.
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TABLE 1.13 Properties of Bessel Functions of the First Kind

1. Jn(t) ¼
P1

k¼0
(�1)k(t=2)nþ2k

k!(nþ k)!
, �1< t<1, n¼ 0, 1, 2, 3, . . .

2. J�n(t) ¼
P1

m¼0
(�1)mþn(t=2)2mþn

m!(mþ n)!
, �1< t<1, n¼ 0, 1, 2, 3, . . .

3. J�n(t)¼ (�1)nJn(t), n¼ 0, 1, 2, 3, . . .

4. J0(0)¼ 1, Jn(0)¼ 0, n 6¼ 0

5. Jv(t) ¼
P1

k¼0
(�1)k(t=2)2kþv
k!G(kþ v þ 1)

, n� 0, n is noninteger

6. J�v(t) ¼
P1

k¼0
(�1)k(t=2)2k�v
k!G(k� v þ 1)

, n� 0, n is noninteger

7.
d

dt
[tvJv(t)] ¼ tvJv�1(t)

8.
d

dt
[tvJv(at)] ¼ atvJv�1(at)

9.
d

dt
[t�vJv(t)] ¼ �t�vJvþ1(t)

10.
d2Jv(t)

dt2
¼ 1

22
[Jv�2(t)� 2Jv(t)þ Jvþ2(t)]

11.
d3Jv(t)

dt3
¼ 1

23
[Jv�3(t)� 3Jv�1(t)þ 3Jvþ1(t)� Jvþ3(t)]

12. J 0v(t)þ
v

t
Jv(t) ¼ Jv�1(t)

13. J 0v(t)�
v

t
Jv(t) ¼ �Jvþ1(t)

14. J 00(t) ¼ �J1(t)
15. 2J 0v(t) ¼ Jv�1(t)� Jvþ1(t)

16.
2v

t
Jv(t) ¼ Jv�1(t)þ Jvþ1(t)

17.
d

tdt

� �m

[tvJv(t)] ¼ tv�mJv�m(t) m¼ 1, 2, 3, . . .

18.
d

tdt

� �m

[t�vJv(t)] ¼ (�1)mt�v�mJvþm(t) m¼ 1, 2, 3, . . .

19. J 01(0) ¼
1

2
, J 0n(0) ¼ 0 n> 1

20. Jn(t þ r) ¼P1k¼�1 Jk(t)Jn�k(r)

21. J0(2t) ¼ [J0(t)]
2 þ 2

P1
k¼1 (�1)k[Jk(t)]2

22. jJ0(t)j � 1, jJn(t)j �
1
ffiffiffi
2
p , n¼ 1, 2, 3, . . .

23. ejt sin u ¼P1n¼�1 Jn(t)ejn u

24. cos (t sin u) ¼ J0(t)þ 2
P1

n¼1 J2n(t) cos (2nu)

25. cos (t cos u) ¼ J0(t)þ 2
P1

n¼1 (� 1)nJ2n(t) cos (2nu)

26. sin (t sin u) ¼ 2
P1

n¼1 J2n�1(t) sin [(2n� 1)u]

27. sin (t cos u) ¼ 2
P1

n¼0 (�1)nJ2nþ1(t) cos [(2nþ 1)u]

28. cos t ¼ J0(t)þ 2
P1

n¼1 (�1)nJ2n(t)
29. sin t ¼ 2

P1
n¼1 (�1)nJ2n�1(t)

30. Jv(t)J1�v(t)þ J�v(t)Jv�1(t) ¼
2 sin vp

pt
Lommel’s formula

(continued)
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TABLE 1.13 (continued) Properties of Bessel Functions of the First Kind

31.
d

dt
[tJv(t)Jvþ1(t)] ¼ t[[Jv(t)]

2 � [Jvþ1(t)]
2]

32.
d

dt
[t2Jv�1(t)Jvþ1(t)] ¼ 2t2Jv(t)J

0
v(t)

33. J1=2(t) ¼
ffiffiffiffiffi

2

pt

r

sin t, J�1=2(t) ¼
ffiffiffiffiffi

2

pt

r

cos t

34. J1=2(t)J�1=2(t) ¼
sin 2t

pt
, [J1=2(t)]

2 þ [J�1=2(t)]
2 ¼ 2

pt

35. [J0(t)]
2 ¼P1n¼0

(�1)n(2n)!
(n!)4

t

2

� �2n

36. Jn(t) ¼
1

p

Ð p

0
cos (nw� t sin w)dw

37. J0(t) ¼
1

p

Ð p

0
cos (t sin w)dw

38. Jv(t) ¼
(t=2)v
ffiffiffiffi
p
p

G v þ 1
2

� 
Ð 1

�1 (1� x2)v�
1
2ejtx dx, v > � 1

2
, t > 0

39. Jv(t) ¼
(t=2)v
ffiffiffiffi
p
p

G v þ 1
2

� 
Ð p

0 cos (t cos u) sin2v u du, v > � 1
2
, t > 0

40.
Ð
tvJv�1(t)dt ¼ tvJv(t)þ C, C¼ constant

41.
Ð
t�vJvþ1(t)dt ¼ �t�vJv(t)þ C, C¼ constant

42. [1þ (�1)n]Jn(t) ¼
2

p

Ð p

0 cos nw cos (t sin w)dw, n¼ 0, 1, 2, . . .

43. J2k(t) ¼
1

p

Ð p

0 cos 2kw cos (t sin w)dw, k¼ 0, 1, 2, . . .

44. J2kþ1(t) ¼
1

p

Ð1
0 sin [(2kþ 1)w] sin (t sin w)dw, k¼ 0, 1, 2, . . .

45.
Ðp

0 cos [(2kþ 1)w] cos (t sin w)dw ¼ 0, k¼ 0, 1, 2, . . .

46.
Ðp

0 sin 2kw sin (t sin w)dw ¼ 0, k¼ 0, 1, 2, . . .

47. J0(t) ¼
2

p

Ð 1

0
cos txffiffiffiffiffiffiffiffi
1�x2
p dx

48.
2 sin t

t
¼

ffiffiffiffiffiffi

2p

t

r

J1=2(t)

49.
Ð
tJ0(t)dt ¼ tJ1(t)þ C

50.
Ð
t2J0(t)dt ¼ t2J1(t)þ tJ0(t)�

Ð
J0(t)dt þ C

51.
Ð
t3J0(t)dt ¼ (t3 � 4t)J1(t)þ 2t2J0(t)þ C

52.
Ð
J1(t)dt ¼ �J0(t)þ C

53.
Ð
tJ1(t)dt ¼ �tJ0(t)þ

Ð
J0(t)dt þ C

54.
Ð
t2J1(t)dt ¼ 2tJ1(t)� t2J0(t)þ C

55.
Ð
t3J1(t)dt ¼ 3t2J1(t)� (t3 � 3t)J0(t)� 3

Ð
J0(t)dt þ C

56.
Ð
J3(t)dt ¼ �J2(t)� 2t�1J1(t)þ C

57.
Ð
t�1J1(t)dt ¼ �J1(t)þ

Ð
J0(t)dt þ C

58.
Ð
t�2J2(t)dt ¼ �

2

3t2
J1(t)�

1

3
J1(t)þ

1

3t
J0(t)þ

1

3

Ð
J0(t)dt þ C

59.
Ð
J0(t) cos t dt ¼ tJ0(t) cos t þ t J1(t) sin t þ C

60.
Ð
J0(t) sin t dt ¼ tJ0(t) sin t � tJ1(t) cos t þ C

61.
Ð1
0

e�attpJp(bt)dt ¼
(2b)pG pþ 1

2

� 

ffiffiffiffi
p
p

(a2 þ b2)pþ
1
2

, p > � 1
2
, a > 0, b > 0

62.
Ð1
0 e�atJ0(bt)dt ¼

1

(a2 þ b2)1=2
, a> 0, b> 0

63.
Ð1
0 J0(bt)dt ¼ 1

b , b> 0

64.
Ð1
0

Jnþ1(t)dt ¼
Ð1
0

Jn�1(t)dt, n¼ 1, 2, . . .

65.
Ð1
0 Jn(at)dt ¼

1

a
a> 0

66.
Ð1
0

t�1Jn(t)dt ¼
1

n
, n¼ 1, 2, . . .
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TABLE 1.13 (continued) Properties of Bessel Functions of the First Kind

67.
Ð1
0 e�attpþ1Jp(bt)dt ¼

2pþ1G pþ 3
2

� 

ffiffiffiffi
p
p abp

(a2 þ b2)pþ
3
2

, p>�1, a> 0, b> 0

68.
Ð1
0 t2e�atJ0(bt)dt ¼

2a2 � b2

(a2 þ b2)5=2
, a> 0, b> 0

69.
Ð1
0 e�at

2

tpþ1Jp(bt)dt ¼
bpe�b

2=4a

(2a)pþ1
, p>�1, a> 0, b> 0

70.
Ð1
0 e�at

2

tpþ3Jp(bt)dt ¼
bp

2pþ1apþ2
pþ 1� b2

4a

� �

e�b
2=4a, p>�1, a> 0, b> 0

71.
Ð1
0 t�1 sin t J0(bt)dt ¼ arcsin 1

b

� 
, b> 1

72.
Ð p=2
0 J0(t cosw) cosw dw ¼ sin t

t

73.
Ð p=2
0

J1(t cosw)dw ¼
1� cos t

t

74.
Ð1
0 e�t cos wJ0(t sinw)tn dt ¼ n!Pn( cosw), 0�w<p

Pn(t)¼ nth Legendre polynomial

75.
Ð1
0 t(t2 þ a2)�1=2J0(bt)dt ¼

e�ab

b
, a� 0, b> 0

76.
Ð1
0

Jp(t)

tm
dt ¼ G((pþ 1�m)=2)

2mG((pþ 1þm)=2)
, m > 1

2
, p�m > �1

77. 1
8
(1� t2) ¼P1n¼1

J0(knt)

k3nJ1(kn)
, 0� t� 1, J0(kn)¼ 0,

n¼ 1, 2, . . .

78. tp ¼ 2
P1

n¼1
Jp(knt)

knJpþ1(kn)
, 0< t< 1, J

p
(k

n
)¼ 0,

n¼ 1, 2, . . .

79. tpþ1 ¼ 22(pþ 1)
P1

n¼1
Jpþ1(knt)

k2nJpþ1(kn)
, 0< t< 1, p>�1=2,

TABLE 1.14

J0(x)
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 1.0000 .9975 .9900 .9776 .9604 .9385 .9120 .8812 .8463 .8075

1 .7652 .7196 .6711 .6201 .5669 .5118 .4554 .3980 .3400 .2818

2 .2239 .1666 .1104 .0555 .0025 �.0484 �.0968 �.1424 �.1850 �.2243
3 �.2601 �.2921 �.3202 �.3443 �.3643 �.3801 �.3918 �.3992 �.4026 �.4018
4 �.3971 �.3887 �.3766 �.3610 �.3423 �.3205 �.2961 �.2693 �.2404 �.2097
5 �.1776 �.1443 �.1103 �.0758 �.0412 �.0068 .0270 .0599 .0917 .1220

6 .1506 .1773 .2017 .2238 .2433 .2601 .2740 .2851 .2931 .2981

7 .3001 .2991 .2951 .2882 .2786 .2663 .2516 .2346 .2154 .1944

8 .1717 .1475 .1222 .0960 .0692 .0419 .0146 �.0125 �.0392 �.0653
9 �.0903 �.1142 �.1367 �.1577 �.1768 �.1939 �.2090 �.2218 �.2323 �.2403
10 �.2459 �.2490 �.2496 �.2477 �.2434 �.2366 �.2276 �.2164 �.2032 �.1881
11 �.1712 �.1528 �.1330 �.1121 �.0902 �.0677 �.0446 �.0213 .0020 .0250

12 .0477 .0697 .0908 .1108 .1296 .1469 .1626 .1766 .1887 .1988

13 .2069 .2129 .2167 .2183 .2177 .2150 .2101 .2032 .1943 .1836

14 .1711 .1570 .1414 .1245 .1065 .0875 .0679 .0476 .0271 .0064

15 �.0142 �.0346 �.0544 �.0736 �.0919 �.1092 �.1253 �.1401 �.1533 �.1650
When x> 15.9,

J0(x) ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

px

� �
s

sin x þ 1

4
p

� �

þ 1

8x
sin x � 1

4
p

� �� �

¼: :7979
ffiffiffi
x
p sin (57:296x þ 45�)þ 1

8x
sin (57:296x � 45�)

� �

(continued)
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TABLE 1.14 (continued)

J1(x)

x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 .0000 .0499 .0995 .1483 .1960 .2423 .2867 .3290 .3688 .4059

1 .4401 .4709 .4983 .5220 .5419 .5579 .5699 .5778 .5815 .5812

2 .5767 .5683 .5560 .5399 .5202 .4971 .4708 .4416 .4097 .3754

3 .3391 .3009 .2613 .2207 .1792 .1374 .0955 .0538 .0128 �.0272
4 �.0660 �.1033 �.1386 �.1719 �.2028 �.2311 �.2566 �.2791 �.2985 �.3147
5 �.3276 �.3371 �.3432 �.3460 �.3453 �.3414 �.3343 �.3241 �.3110 �.2951
6 �.2767 �.2559 �.2329 �.2081 �.1816 �.1538 �.1250 �.0953 �.0652 �.0349
7 �.0047 .0252 .0543 .0826 .1096 .1352 .1592 .1813 .2014 .2192

8 .2346 .2476 .2580 .2657 .2708 .2731 .2728 .2697 .2641 .2559

9 .2453 .2324 .2174 .2004 .1816 .1613 .1395 .1166 .0928 .0684

10 .0435 .0184 �.0066 �.0313 �.0555 �.0789 �.1012 �.1224 �.1422 �.1603
11 �.1768 �.1913 �.2039 �.2143 �.2225 �.2284 �.2320 �.2333 �.2323 �.2290
12 �.2234 �.2157 �.2060 �.1943 �.1807 �.1655 �.1487 �.1307 �.1114 �.0912
13 �.0703 �.0489 �.0271 �.0052 .0166 .0380 .0590 .0791 .0984 .1165

14 .1334 .1488 .1626 .1747 .1850 .1934 .1999 .2043 .2066 .2069

15 .2051 .2013 .1955 .1879 .1784 .1672 .1544 .1402 .1247 .1080

When x> 15.9,

J1(x) ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

px

� �
s

sin x � 1

4
p

� �

þ 3

8x
sin x þ 1

4
p

� �� �

¼: :7979
ffiffiffi
x
p sin (57:296x � 45�)þ 3

8x
sin (57:296x þ 45�)

� �

TABLE 1.15

J2(x)

x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 .0000 .0012 .0050 .0112 .0197 .0306 .0437 .0588 .0758 .0946

1 .1149 .1366 .1593 .1830 .2074 .2321 .2570 .2817 .3061 .3299

2 .3528 .3746 .3951 .4139 .4310 .4461 .4590 .4696 .4777 .4832

3 .4861 .4862 .4835 .4780 .4697 .4586 .4448 .4283 .4093 .3879

4 .3641 .3383 .3105 .2811 .2501 .2178 .1846 .1506 .1161 .0813

When 0 � x < 1, J2(x) ¼: x2

8 1� x2

12

� 
.

J3(x)

x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 .0000 .0000 .0002 .0006 .0013 .0026 .0044 .0069 .0102 .0144

1 .0196 .0257 .0329 .0411 .0505 .0610 .0725 .0851 .0988 .1134

2 .1289 .1453 .1623 .1800 .1981 .2166 .2353 .2540 .2727 .2911

3 .3091 .3264 .3431 .3588 .3734 .3868 .3988 .4092 .4180 .4250

4 .4302 .4333 .4344 .4333 .4301 .4247 .4171 .4072 .3952 .3811

When 0 � x < 1, J3(x) ¼: x3

48
1� x2

16

� 
.

J4(x)

x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0006 .0010 .0016

1 .0025 .0036 .0050 .0068 .0091 .0118 .0150 .0188 .0232 .0283

2 .0340 .0405 .0476 .0556 .0643 .0738 .0840 .0950 .1067 .1190

3 .1320 .1456 .1597 .1743 .1891 .2044 .2198 .2353 .2507 .2661

4 .2811 .2958 .3100 .3236 .3365 .3484 .3594 .3693 .3780 .3853

When 0 � x < 1, J4(x) ¼: x4

384
1� x2

20

� 
.
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1.5.7.1 Expansion in Zernike Polynomials

If f(x, y) is a piecewise continuous function, we can expand this

function in Zernike polynomials in the form

f (x, y) ¼
X1

n¼0

X1

l¼�1
AnlVnl(x, y), n� jlj is even, jlj � n (1:251)

Multiplying by V*nl (x, y), integrating over the unit circle, and

taking into consideration the orthogonality property we obtain

Anl ¼
nþ 1

p

ð2p

0

ð1

0

Vnl*(r, u)f (r cos u, r sin u)r drdu

¼ nþ 1

p

ð ð

x2þy2�1

Vnl*(x, y)f (x, y) dxdy ¼ An(�l)* (1:252)

with restrictions of the values of n and l as shown above. Anl’s are

also known as Zernike moments.

Example

Expand the function f(x, y)¼ x in Zernike polynomials.

SOLUTION

We write f(r cos u, r sin u)¼ r cos u and observe that r has

exponent (degree) one. Therefore, the values of n will be 0, 1

and because n� jlj must be even, l will take 0, 1 and �1
values. We then write

f (x, y) ¼
X1

n¼0

X1

l¼�1
AnlRnl(r)e

jlu

¼
X1

n¼0
(An(�1)Rn(�1)(r)e

�ju þ An0Rn0(r)þ An1Rn1(r)e
ju)

¼ A00R00(r)þ A1(�1)R1(�1)(r)e
�ju þ A11R11(r)e

ju

(1:253)

Where three terms were dropped because they did not

obey the condition that n� jlj is even. From Equation 1.248

R1(�1)(r)¼ R11(r) and hence we obtain

A00 ¼
1

p

ð2p

0

ð1

0

R00(r)r cos u r drdu ¼ 0

A1(�1) ¼
2

p

ð2p

0

ð1

0

R11(r)r cos u e�ju r drdu ¼ 1

2

A11 ¼
2

p

ð2p

0

ð1

0

R11(r)r cos u eju r drdu ¼ 1

2

Therefore, the expansion becomes

f (x, y) ¼ 1

2
reju þ 1

2
re�ju ¼ r cos u ¼ R11(r) cos u ¼ x

as was expected.

TABLE 1.16 Zeros of J0(x), J1(x), J2(x), J3(x), J4(x), J5(x)

m j0,m j1,m j2,m j3,m j4,m j5,m

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

6 18.0711 19.6159 21.1170 22.5827 24.0190 25.4303

7 21.2116 22.7601 24.2701 25.7482 27.1991 28.6266

8 24.3525 25.9037 27.4206 28.9084 30.3710 31.8117

9 27.4935 29.0468 30.5692 32.0649 33.5371 34.9888

10 30.6346 32.1897 33.7165 35.2187 36.6990 38.1599

TABLE 1.17 The Radial Polynomials Rnjlj(r) for jlj � 8, n� 8

n
jlj 0 1 2 3 4 5 6 7 8

0 1 2r2� 1 6r4� 6r2þ 1 20r6� 30r4þ 12r2� 1 70r8�140r6þ 90r4� 20r2þ 1

1 r 3r3� 2r 10r5� 12r3þ 3r 35r7� 60r5þ 30r3 �4r
2 r2 4r4� 3r2 15r6� 20r4þ 6r2 56r8� 105r6þ 60r4� 10r2

3 r3 5r5� 4r3 21r7� 30r5þ 10r3

4 r4 6r6� 5r4 28r8� 42r6þ 15r4

5 r5 7r7� 6r5

6 r6 8r8� 7r6

7 r7

8 r8
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The radial polynomials Rnl(r) are real valued and if f(x, y) is
real, that is, image intensity, it is often convenient to expand in

real-values series. The real expansion corresponding to Equa-

tion 1.251

f (x, y) ¼
X1

n¼0

X1

l¼0
(Cnl cos luþ Snl sin lu)Rnl(r) (1:254)

where n� l is even and l< n. Observe that l takes only positive

value. The unknown constants are found from

Cnl

Snl

� 	

¼ 2nþ 2

p

ð1

0

ð2p

0

rdrduf

(r cos u, r sin u)Rnl(r)
cos lu

sin lu

� 	

, l 6¼ 0 (1:255)

Cn0 ¼ An0 ¼
1

p

ð1

0

ð2p

0

rdrduf (r cos u, r sin u)Rnl(r), l 6¼ 0

(1:256a)

Sn0 ¼ 0, l ¼ 0 (1:256b)

n = 3, ℓ = 1(a) n = 3, ℓ = 3
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If the function is axially symmetric only the cosine terms are

needed. The connection between real and complex Zernike coef-

ficients are

Cnl ¼ 2Re{Anl} (1:257a)

Snl ¼ �2Im{Anl} (1:257b)

Anl ¼ (Cnl � jSnl)=2 ¼ (An(�l))* (1:257c)

Figure 1.10 shows the reconstruction of the letter Z using differ-

ent orders of Zernike moments.

1.6 Sampling of Signals

Two critical questions in signal sampling are: First, do the sam-

pled values of a function adequately represent the system?

Second, what must the sampling interval be in order that an
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optimum recovery of the signal can be accomplished from the

sampled values?

The value of the function at the sampling points is the sam-
pled value, the time that separates the sampling points is the

sampling interval, and the reciprocal of the sampling interval is

the sampling frequency or sampling rate.
If the sampling interval Ts is chosen to be constant, and

n¼ 0	1,	2, . . . , the sampled signal is

fs(t) ¼ f (t)
X1

n¼�1
d(t � nTs) ¼

X1

n¼�1
f (nTs) d(t � nTs) (1:258)

Its Fourier transform is

Fs(v) ¼: ^{fs(t)} ¼
X1

n¼�1
f (nTs)^{d(t � nTs)}

¼
X1

n¼�1
f (nTs)e

�jnvTs (1:259)

We can also represent the Fourier transform of a sampled func-

tion as follows:

Original n up to 5

n up to 10 n up to 15

n up to 20

FIGURE 1.10
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Fs(v)¼: ^ f (t)
X1

n¼�1
d(t� nTs)

( )

¼ 1

2p
^{¼: (t)} *^

X1

n¼�1
d(t� nTs)

( )

¼ 1

2p
F(v)*

2p

Ts

X1

n¼�1
d(v�nvs)

" #

¼ 1

Ts

X1

n¼�1

ð1

�1

F(x)d(v�nvs� x)dx¼ 1

Ts

X1

n¼�1
F(v�nvs)

¼ 1

Ts

X1

n¼�1
F(vþnvs), vs ¼

2p

Ts
(1:260)

Fs(v) is periodic with period vs in the frequency domain.

Example

^ e�jtj
X1

n¼�1
d(t�nTs)

( )

¼: ^s(v)¼
1

Ts

X1

n¼�1

2

1þ (v� nvs)
2

1.6.1 The Sampling Theorem

It can be shown that is possible for a band-limited signal f(t) to
be exactly specified by its sampled valued provided that the time

distance between sample values does not exceed a critical sam-

pling interval.

THEOREM 1.4

A finite energy function f(t) having a band-limited Fourier trans-

form, F(v)¼ for jvj �vN, can be completely reconstructed from

its sampled values f(nTs) (see Figure 1.11), with

f (t) ¼
X1

n¼�1
Tsf (nTs)

sin
vs(t � nTs)

2

� 	

p(t � nTs)

8

>><

>>:

9

>>=

>>;

, vs ¼
2p

Ts
(1:261)

provided that

2p

vs
¼ Ts �

p

vN
¼ 1

2fN
¼ TN

2

The function within the braces, which is the sinc function, is

often called the interpolation function to indicate that it allows

an interpolation between the sampled values of find f(t) for all t.

Proof Employ Equation 1.260 and Figure 1.11c to write

F(v) ¼ pvs=2(v)TsFs(v) (1:262)

By Equation 1.262, the above equation becomes

f (t) ¼ ^�1{F(v)} ¼ ^�1 pvs=2(v)Ts

X1

n¼�1
f (nTs)e

�jnvTs

( )

¼ Ts

X1

n¼�1
f (nTs)^

�1{pvs=2(v)e
�jnvTs }

By application of the frequency-shift property of the Fourier

transform, this equation proves the theorem.

The sampling time

Ts ¼
TN

2
¼ 1

2fN
(1:263)

is related to the Nyquist interval. It is the largest time interval that

can be used for sampling of a band-limited signal and still allows

recovering of the signal without distortion. If, however, the

sampling time is larger than the Nyquist interval, overlap of

spectra takes place, known as aliasing, and no perfect reconstruc-

tion of the band-limited signal is possible. Figure 1.12 shows the

f (t)

t

(a) (b)

(c)

–2Ts 2Ts

f (–2Ts)

f (4Ts)

f (3Ts)

fs(t)

Fs(ω)

–ωs
ωs

2
––ωN –ωN ωN–ωs
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Ts

3Ts

F(ω)
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ωN
ω
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–2Ts 2Ts

t
3Ts 4Ts–Ts Ts

f (3Ts)

ωs ωs
ω 
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–ωs+ωN
2

FIGURE 1.11
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f (t)

F (ω)

ωN ωN

–ωN –2ωN –ωsωN
ω

ω

(a)

(b)

×

*

(c) (d)

*
F (0)

fs(t) = f (t) combTs
 (t)

fs(t)

t

×

combTs
 (t)

=

=

–

=

=

= ωs
ωN ωN

t

2π Fs(ω) F(ω) * COMBωs(ω)COMBωs(ω) =

t

1

Ts

Ts

Ts

Ts

1

Fs(ω) =
Ts

1

Ts

F(0)

F(0)

F(ω) * COMBωs(ω) 

Ts

F(0)
Ts

Ts pωs/2(ω)

Ts

–2Ts

1

2Ts

Ts
sin 2

t
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π
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delta sampling representation and recovery of a band-limited

signal. The following definitions have been used in the figure:

combTs (t) ¼
X1

n¼�1
d(t � nTs) (1:264)

COMBvs (v) ¼
X1

n¼�1
d(v� vs) (1:265)

1.6.1.1 Frequency Sampling

Analogous to the time-sampling theorem, a frequency-sampling

equivalent also exits.

THEOREM 1.5

A time function f(t) that is time limited so that

f (t) ¼ 0, jtj > TN (1:266)

possesses a Fourier transform that can be uniquely determined

from its samples at distances np=TN, and is given by

F(v) ¼
X1

n¼�1
F n

p

TN

� �
sin (vTN � np)

vTN � np
(1:267)

where the sampling is at the Nyquist rate.

1.6.1.2 Sampling with a Train of Rectangular Pulses

The Fourier transform of a band-limited function sampled with

periodic pulses is given by (see Figure 1.13)

Fs(v) ¼ ^{f (t)fp(t)} ¼
1

2p
F(v) * Fp(v)

¼ 1

2p
F(v) *

X1

n¼�1
2p

sin
nvst

2

� �

nvst

2

d(v� nvs)

8

<

:

9

=

;

¼
X1

n¼�1

sin
nvst

2

� �

nvst

2

ð1

�1

d(x � nvs)F(v� x)dx

¼
X1

n¼�1

sin
nvst

2

� �

nvst

2

F(v� nvs) (1:268)

where t is the width of the pulse. The above expression indicates

that as long as vs> 2vN, the spectrum of the sampled signal

contains no overlapping spectra of f(t) and can be recovered

using a low-pass filter.

1.6.2 Extensions of the Sampling Theorem

The sampling theorem of a band-limited function of n variables

is given by the following theorem:

f (t) f p(t)

Fp(ω)

f s(t)

t

× =

=

1

Ts

Ts
–Ts –Ts Ts

τ

τ

τ τ

τ

τ

2
–

t t
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THEOREM 1.6

Let f(t1, t2, . . . , tn) be a function of n real variables, whose

n-dimensional Fourier integral exists and is identically zero out-

side an n-dimensional rectangle and is symmetrical about the

origin, that is,

g(y1, y2, . . . , yn)0, jykj > jvkj, k ¼ 1, 2, . . . , n (1:269)

Then

f (t1, t2, . . . , tn) ¼
X1

m1¼�1
� � �

X1

mn¼�1
f

pm1

v1
, . . . ,

pmn

vn

� �

� sin (v1t1 �m1p)

v1t1 �m1p
� � � sin (vntn �mnp)

vntn �mnp

(1:270)

An additional theorem on the sampling of band-limited signals

follows.

THEOREM 1.7

Let f(t) be a continuous function with finite Fourier transform

F(v)[F(v)¼ 0 for jvj> 2pfN]. Then

f (t) ¼
X1

k¼�1
j(kh)þ (t � kh)j(1)(kh)þ � � � þ (t � kh)R

R!
j(R)(kh)

� 	

� sin p
h (t � kh)

p
h (t � kh)

� 	Rþ1
(1:271)

where

R is the highest derivative order

h¼ (Rþ 1)=(2fN)
j(R) (kh) is the Rth derivative of the function j(�)

j(j)(kh) ¼
Xj

i¼0

j

i

� �
p

h

� �j�1
G
(j�1)
Rþ1 f

(i)(kh)

G(b)
a ¼

db

dtb
t

sin t

� �a
� 	

t¼0

G(0)
a ¼ 1,G(2)

a ¼
a

3
,G(4)

a ¼
a(5aþ 2)

15
,

G(6)
a ¼

a(35a2 þ 42aþ 16)

63
, . . . ,G(b)

a ¼ 0 for odd b

1.6.2.1 Papoulis Extensions

The band-limited signal

f (t) ¼ 1

2p

ðw1

�w1

F(v)ejvt dv (1:272)

can be represented by

f (t) ¼
X1

n¼�1
f (nT)

sin w0(t � nT)

w2(t � nT)
(1:273)

where

w2 ¼
p

T
� w1, w1 � w0 � 2w2 � w1

THEOREM 1.8

Given an arbitrary sequence of numbers {an}, if we form the sum

x(t) ¼
X1

n¼�1
an

sinw0(t � nT)

w2(t � nT)
(1:274)

then x(t) is band limited by w0.

The sampling expansion of f 2(t) is given by

f 2(t) ¼
X1

n¼�1
f 2(nT)

sinw0(t � nT)

w2(t � nT)
(1:275)

where

w2 ¼
p

T
,w2 � 2w1, 2w1 � w0 � 2w2 � 2w1,T �

p

2w1

The band-limited signal given in Equation 1.272 can be expressed

in terms of the sample values g(nT) of the output

g(t) ¼ 1

2p

ðw1

�w1

F(v)H(v)ejwt dv (1:276)

of a system with transfer function H(v) driven by f(t). The
sampling expansion of f(t) is

f (t) ¼
X1

n¼�1
g(nT)y(t � nT) (1:277)

where

y(t) ¼ 1

2w1

ðw1

�w1

ejvt

H(v)
dv (1:278)

1.7 Asymptotic Series

Functions such as f(z) and w(z) are defined on a set R in the

complex plane. By a neighborhood of z0 we mean an open disc
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jz� z0j< d if z0 is at a finite distance, and a region jzj> d if z0 is
the point at infinity.

f¼O(w) and f¼ o(w) Notation

We write f¼O(w) if there exists a constant A such that j f j �
Ajwj for all z in R.

We also write f¼O(w) as z ! z0 if there exists a constant A
and a neighborhood U of z0 such that j f j �Ajwj for all points in
the intersection of U and R.

We write f¼ o(w) as z! z0 if, for any positive number e, there

exists a neighborhood U of z0 such that j f j � ejwj for all points z
of the intersection of U and R.

More simply, if w does not vanish on R, f¼O(w) means

that f=w is bounded, f¼ o(w) means that f=w tends to zero as

z ! z0.

1.7.1 Asymptotic Sequence

A sequence of functions {wn(z)} is called an asymptotic
sequence as z ! z0 if there is a neighborhood of z0 in

which none of the functions vanish (except the point z0) and if

for all n

wnþ1 ¼ o(wn) as z ! z0

For example, if z0 is finite {(z� z0)
n} is an asymptotic sequence as

z ! z0, and {z�n} is as z !1.

1.7.2 Poincaré Sense Asymptotic Sequence

The formal series

f (z) ffi
X1

n¼0
anwn(z) (1:279)

which is not necessarily convergent, is an asymptotic expansion

of f(z) in the Poincaré sense with respect to the asymptotic

sequence {wn(z)}, if for every value of m,

f (z)�
X1

n¼0
anwn(z) ¼ o(wm(z)) (1:280)

as z ! z0:

Because

f (z)�
Xm�1

n¼0
anwn(z) ¼ amwm(z)þ o(wm(z)) (1:281)

in partial sum

Xm�1

n¼0
anwn(z) (1:282)

is an approximation to f(z) with an error O(wm) as z ! z0; this
error is of the same order of magnitude as the first term omitted.

If such an asymptotic expansion exists, it is unique, and the

coefficients are given successively by

am ¼
limz!z0 f (z)�Pm�1

n¼0 anwn(z)
� �

wm(z)
(1:283)

Hence, for a function f(z) we write

f (z) ffi
X1

n¼0
anwn(z) (1:284)

1.7.3 Asymptotic Approximation

A partial sum of Equation 1.284 is called an asymptotic approxi-
mation to f(z). The first term is called the dominant term.

The above definition applies equally well for a real variable z.

1.7.4 Asymptotic Power Series

We shall assume that the transformation z0¼ 1=(z� z0) has been
done for limit points z0 located at a finite distance. Hence we can

always consider expansions as z approaches infinity in a sector

a< ph z<b; or, for real value x, as x approaches infinity or as x
approaches negative infinity.

The divergence series

f (z) ¼
X1

n¼0

an
zn
¼ a0 þ

a1
z
þ a2

z2
þ � � � an

zn
þ � � �

in which the sum of the first (nþ 1) terms is Sn(z), is said to be an
asymptotic expansion of a function f (z) for a given range of

values of arg z, if the expansion Rn(z)¼ zn{f(z)� Sn(z)} satisfies
the condition

lim
jzj!1

Rn(z) ¼ 0 (n is fixed) (1:285)

even though

lim
n!1
jRn(z)j ¼ 1 (z is fixed)

When this is true, we can make

jzn{ f (z)� Sn(z)}j < e (1:286)

where e is arbitrarily small, by making jzj sufficiently large. This

definition is due to Poincaré.
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Example

For real x, integration on the real axis and repeated integration

by parts, we obtain

f ( x) ¼
ð1

x

t�1ex�t dt ¼ 1

x
� 1

x2
þ 2!

x3
� � � � þ (�1)n�1(n� 1)!

xn

þ (�1)nn!
ð1

x

ex�t dt

tnþ1

If we consider the expansion

un�1 ¼
(�1)n�1(n� 1)!

xn

we can write

Xn

m¼0
um ¼

1

x
� 1

x2
þ 2!

x3
� � � � þ (�1)n!

xnþ1
¼ Sn(x)

But jum=um�1j ¼mx�1 ! 1 as m ! 1. The series Sum is

divergent for all values of x. However, the series can be used to

calculate f(x).

For a fixed n, we can calculate Sn from the relation

f (x)� Sn(x) ¼ (�1)nþ1(nþ 1)!

ð1

x

ex�t dt

tnþ2

Because exp(x� t)� 1,

jf (x)� Sn(x)j ¼ (nþ 1)!

ð1

x

ex�tdt

tnþ2
< (nþ 1)!

ð1

x

dt

tnþ2
¼ n!

xnþ1

For large values of x the right-hand member of the above

relation is very small. This shows that the value of f(x) can be

calculated with great accuracy for large values of x, by taking

the sum of a suitable number of terms of the series Sum. From
the last relation we obtain

jxn{f (x)� Sn(x)}j < n!x�1 ! 0 as x !1

which satisfies the asymptotic expansion condition.

1.7.5 Operation of Asymptotic Power Series

Let the following two functions possess asymptotic expansions:

f (x) 
X1

n¼0

an
xn

, g(x) 
X1

n¼0

bn
xn

as x!1

on the real axis.

1. If A is constant

Af (x) 
X1

n¼0

Aan
xn

(1:287)

2.

f (x)þ g(x) 
X1

n¼0

an þ bn
xn

(1:288)

3.

f (x)g(x)
X1

n¼0

cn
xn

cn¼ a0bnþa1bn�1þ���þan�1b1þanb0

(1:289)

4. If a0 6¼ 0, then

1

f (x)
 1

a0
þ
X1

n¼1

dn
xn

, x!1 (1:290)

The function 1=f(x) tends to a finite limit 1=a0 as x
approaches infinity. Hence,

1

f (x)
� 1

a0

� ��

(1=x)¼ x
1

a0þ (a1=x)þO(1=x2)
� 1

a0

� �

¼ �a1þO 1
x

� 

a0[a0þ (a1=x)þO(1=x2)]
!�a1

a20
¼ d1

Similarly we obtain

1

f (x)
� 1

a0
þ a1
a20x

� �
1

x2

� �

! a21 � a0a2
a30

¼ d2

�

and so on.

In general, any rational function of f(x) has an asymp-

totic power series expansion provided that the denomin-

ator does not tend to zero as x approaches infinity.

5. If f(x) is continuous for x> a> 0 and if x> a, then

F(x) ¼
ð1

x

f (t)� a0 �
a1
t

� �

dt

 a2
x
þ a3
2x2
þ � � � þ anþ1

nxn
þ � � � (1:291)

6. If f(x) has a continuous derivative f 0(x), and if f 0(x) possess
an analytic power series expansion as x approaches infin-

ity, the expression is

f 0(x)  �
X1

n¼2

(n� 1)an�1
xn

(1:292)
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7. It is permissible to integrate an asymptotic expansion

term-by-term. The resulting series is the expansion of the

integral of the function represented by the original series.

Let

f (x) 
X1

m¼2
amx

�m and Sn ¼
Xn

m¼2
amx

�m

Then, give any positive number e, we can find x0 such that

jf (x)� Sn(x)j < ejxj�n for x > x0

Hence

ð1

x

f (x)dx �
ð1

x

Sn(x)dx



























�
ð1

x

j f (x)� Sn(x)jdx <
e

(n� 1)xn�1

However,

ð1

x

Sn(x)dx ¼
a2
x
þ a3
2x2
þ � � � þ an

(n� 1)xn�1

and therefore

ð1

x

f (x)dx 
X1

m¼2

am
(m� 1)xm�1

Example

The Fresnel integrals

ð1

u

cos (u2)du,

ð1

u

sin (u2)du (1:293)

can be written in the form

ð1

u2

cos t
ffiffi
t
p dt,

ð1

u2

sin t
ffiffi
t
p dt

These are particular cases of the real and imaginary parts of

the integral

f (x, a) ¼
ð1

x

e jt

ta
dt (1:294)

Integrating by parts we obtain

f (x, a) ¼ je jx

xa
� jaf (x, aþ 1) ¼ je jx

xa

Xn

r¼0

G(aþ r)

G(a)( jx)r

þ 1

jnþ1
G(aþ nþ 1)

G(a)
f (x, aþ nþ 1) (1:295)

Hence

f (x, a)  jejx

xa

X1

r¼0

G(aþ r)

G(a)(jx)r
(1:296)

as x approaches infinity. The absolute value of the remainder

after nþ 1 terms is

G(aþ nþ 1)

G(a)

ð1

x

ejt

taþnþ1
dt



























� G(aþ nþ 1)

G(a)

ð1

x

dt

taþnþ1
¼ G(aþ n)

G(a)xaþn

Hence, the remainder after n terms does not exceed in abso-

lute value the absolute value of the (nþ 1)th term, which

proves the result.
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2.1 Introduction and Basic Definitions

The Fourier transform is certainly one of the best known of the

integral transforms and vies with the Laplace transform as being the

most generally useful. Since its introduction by Fourier in the early

1800s, it has found use in innumerable applications and has, itself,

led to the development of other transforms. Today the Fourier

transform is a fundamental tool in engineering science. Its import-

ance has been enhanced by the development in the twentieth

century of generalizations extending the set of functions that can

be Fourier transformed and by the development of efficient algo-

rithms for computing the discrete version of the Fourier transform.
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There are two parts to this article on the Fourier transform.

The first (Sections 2.1 through 2.4) contains the fundamental

theory necessary for the intelligent use of the Fourier transform

in practical problems arising in engineering. The second part

(Sections 2.5 through 2.8) is devoted to applications in which

the Fourier transform plays a significant role. This part contains

both fairly detailed descriptions of specific applications and fairly

broad overviews of classes of applications.

This particular section deals with the basic definition of

the Fourier transform and some of the integrals used to compute

Fourier transforms. Two definitions for the transform are given.

First, the classical definition is given in Section 2.1.1. This is the

integral formula for directly computing transforms generally

found in elementary texts. From this formula many of the basic

formulas and identities involving the Fourier transform can be

derived. Inherent in the classical definition, however, are integra-

bility conditions that cannot be satisfied by many functions

routinely arising in applications. For this reason, more general

definitions of the Fourier transform are briefly discussed in

Sections 2.1.3 and 2.1.4. These general definitions will also help

clarify the role of generalized functions in Fourier analysis.

The computation of Fourier transforms often involves the

evaluation of integrals, many of which cannot be evaluated by

the elementary methods of calculus. For this reason, this section

also contains a brief discussion illustrating the use of the residue

theorem in computing certain integrals as well as a brief discus-

sion of how to deal with certain integrals containing singularities

in the integrand.

2.1.1 Basic Definition, Notation,
and Terminology

If f(s) is an absolutely integrable function on (�1, 1) (i.e.,
Ð1
�1 jf(s)jds <1), then the (direct) Fourier transform of f(s),
^[f], and the Fourier inverse transform of f(s), ^�1[f], are the
functions given by

^[f]jx ¼
ð1

�1

f(s)e�jxsds (2:1)

and

^�1[f]jx ¼
1

2p

ð1

�1

f(s)e jxsds: (2:2)

Example 2.1

If f(s)¼ e�s u(s), then

^[f]jx ¼
ð1

�1

e�su(s)e�jxsds ¼
ð1

0

e�(1þjx)sds ¼ 1

1þ jx

and

^�1[f]jx ¼
1

2p

ð1

�1

e�su(s)e jxsds ¼ 1

2p

ð1

0

e�(1�jx)sds

¼ 1

2p� j2px
:

Example 2.2

For a> 0, the transform of the corresponding pulse function,

pa(s) ¼ 1, if jsj < a
0, if a < jsj

�

,

is

^[ pa]jx ¼
ða

�a

e�jxsds ¼ e jax � e�jax

jx
¼ 2

x
sin (ax):

A function, c, is said to be ‘‘classically transformable’’ if either

1. c is absolutely integrable on the real line

2. c is the Fourier transform (or Fourier inverse transform)

of an absolutely integrable function

3. c is a linear combination of an absolutely integrable func-

tion and a Fourier transform (or Fourier inverse trans-

form) of an absolutely integrable function

If f is classically transformable but not absolutely integrable,

then it can be shown that formulas 2.1 and 2.2 can still be used

to define ^[f] and ^�1[f] provided the limits are taken sym-

metrically; that is:

^[f]jx ¼ lim
a!1

ða

�a

f(s)e�jxsds

and

^�1[f]jx ¼
1

2p
lim
a!1

ða

�a

f(s)e jxsds:

In most applications involving Fourier transforms, the functions

of time, t, or position, x, are denoted using lower case letters—for

example: f and g. The Fourier transforms of these functions are

denoted using the corresponding upper case letters—for

example: F¼^[ f] and G¼^[g]. The transformed functions

can be viewed as functions of angular frequency, v. Along

these same lines it is standard practice to view a signal as a pair

of functions, f(t) and F(v), with f(t) being the ‘‘time domain

representation of the signal’’ and F(v) being the ‘‘frequency

domain representation of the signal.’’
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2.1.2 Alternate Definitions

Pairs of formulas other than formulas 2.1 and 2.2 are often used

to define ^[f] and ^�1[f]. Some of the other formula pairs

commonly used are:

^[f]jx ¼
ð1

�1

f(s)e�j2pxsds,

^�1[f]jx ¼
ð1

�1

f(s)e j2pxsds

(2:3)

and

^[f]jx ¼
1
ffiffiffiffiffiffi
2p
p

ð1

�1

f(s)e�jxsds,

^�1[f]jx ¼
1
ffiffiffiffiffiffi
2p
p

ð1

�1

f(s)e jxsds:

(2:4)

Equivalent analysis can be performed using the theory arising

from any of these pairs; however, the resulting formulas and

equations will depend on which pair is used. For this reason

care must be taken to ensure that, in any particular application,

all the Fourier analysis formulas and equations used are derived

from the same defining pair of formulas.

Example 2.3

Let f(t)¼ e�t u(t) and let c1, c2, and c3 be the Fourier

transforms of f as defined, respectively, by formulas 2.1, 2.3,

and 2.4. Then,

c1(v) ¼
ð1

�1

e�tu(t)e�jtvdt ¼ 1

1þ jv
,

c2(v) ¼
ð1

�1

e�tu(t)e�jt2ptvdt ¼ 1

1þ j2pv
,

and

c3(v) ¼
1
ffiffiffiffiffiffi
2p
p

ð1

�1

e�tu(t)e�jtvdt ¼ 1
ffiffiffiffiffiffi
2p
p � 1

1þ jv
:

2.1.3 The Generalized Transforms

Many functions and generalized functions* arising in applica-

tions are not sufficiently integrable to apply the definitions given

in Section 2.1.1 directly. For such functions it is necessary to

employ a generalized definition of the Fourier transform con-

structed using the set of ‘‘rapidly decreasing test functions’’ and

a version of Parseval’s equation (see Section 2.2.14).

A function, f, is a ‘‘rapidly decreasing test function’’ if

1. Every derivative of f exists and is a continuous function

on (�1, 1) and

2. For every pair of nonnegative integers, n and p,

f(n)(s)
�

�

�

� ¼ O(jsj�p) as jsj ! 1:

The set of all rapidly decreasing test functions is denoted by 6

and includes the Gaussian functions as well as all test functions

that vanish outside of some finite interval (such as those dis-

cussed in Chapter 1. If f is a rapidly decreasing test function then

it is easily verified that f is classically transformable and that

both ^[f] and ^�1[f] are also rapidly decreasing test functions.

It can also be shown that ^�1[^[f]]¼f. Moreover, if f and G
are classically transformable, then

ð

1

�1

^ [f ]jxf(x)dx ¼
ð

1

�1

f (y)^[f]jy dy (2:5)

and

ð

1

�1

^�1[G]jxf(x)dx ¼
ð

1

�1

G(y)^�1(f)jy dy: (2:6)

If f is a function or a generalized function for which the right-

hand side of Equation 2.5 is well defined for every rapidly decreas-

ing test function, f, then the generalized Fourier transform of

f, ^[ f], is that generalized function satisfying Equation 2.5 for

every f in 6. Likewise, if G is a function or generalized function

for which the right-hand side of Equation 2.6 is well defined for

every rapidly decreasing test function, f, then the generalized

inverse Fourier transform of G, ^�1[G], is that generalized func-

tion satisfying Equation 2.6 for every f in 6.

Example 2.4

Let a be any real number. Then, for every rapidly decreasing

test function f,

ð

1

�1

^[e jay ]jx f(x)dx ¼
ð

1

�1

e jay^[f]jy dy

¼ 2p
1

2p

ð

1

�1

^[f]jy e jay dy

2

4

3

5

¼ 2p^�1 ^[f]½ �ja
¼ 2pf(a)

¼
ð

1

�1

2pd(x � a)f(x)dx

* For a detailed discussion of generalized functions, see Chapter 1.
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where d(x) is the delta function. This shows that, for everyf in6,

ð

1

�1

2pd(x � a)f(x)dx ¼
ð

1

�1

e jay^[f]jy dy

and thus,

^[e jay ]jx ¼ 2pd(x � a):

Any (generalized) function whose Fourier transform can be com-

puted via the above generalized definition is called ‘‘transform-

able.’’ The set of all such functions is sometimes called the set of

‘‘tempered generalized functions’’ or the set of ‘‘tempered distri-

butions.’’ This set includes any piecewise continuous function,

f, which is also polynomially bounded, that is, which satisfies

f (s)j j ¼ O(jsjp) as jsj ! 1

for some p<1. Finally, it should also be noted that if f is

classically transformable, then it is transformable, and the gen-

eralized definition of ^[ f] yields exactly the same function as the

classical definition.

2.1.4 Further Generalization of the Generalized
Transforms

Unfortunately, even with the theory discussed in Section 2.1.3, it

is not possible to define or discuss the Fourier transform of the

real exponential, et. It may be of interest to note, however, that a

further generalization that does permit all exponentially bounded

functions to be considered ‘‘Fourier transformable’’ is currently

being developed using a recently discovered alternate set of test

functions. This alternate set, denoted by &, is the subset of a

rapidly decreasing test functions that satisfy the following two

additional properties:

1. Each test function is an analytic test function on the entire

complex plane.

2. Each test function, f(xþ jy), satisfies

f(x þ jy) ¼ O(e�a xj j) as x ! �1

for every real value of y and a.

The second additional property of these test functions ensures

that all exponentially bounded functions are covered by this

theory. The very same computations given in Example 2.4 can

be used to show that, for any complex value, aþ jb,

^[e j(aþjb)t]jv ¼ 2pdaþjb (v),

where daþ jb (t) is ‘‘the delta function at aþ jb.’’ This delta

function, daþ jb(t), is the generalized function satisfying

ð

1

�1

daþjb(t)f(t)dt ¼ f(aþ jb)

for every test functionf(t), in&. In particular, letting aþ jb¼�j,

^[et]jv ¼ 2pd�j(v)

and

^[dj(t)]jv ¼ ev:

In addition to allowing delta functions to be defined at complex

points, the analyticity of the test functions allows a generalization

of translation. Let aþ jb be any complex number and f(t) any
(exponentially bounded) (generalized) function. The ‘‘general-

ized translation of f(t) by aþ jb,’’ denoted by Taþ jb f(t), is that
generalized function satisfying

ð

1

�1

Taþjbf (t)f(t)dt ¼
ð

1

�1

f (t)f(t þ (aþ jb))dt (2:7)

for every test function, f(t), in &. So long as b¼ 0 or f(t) is, itself,
an analytic function on the entire complex plane, then the gen-

eralized translation is exactly the same as the classical translation.

Taþjb f (t) ¼ f (t � (aþ jb)):

It may be observed, however, that Equation 2.7 defines the

generalized function Taþ jb f even when f(z) is not defined for

nonreal values of z.

2.1.5 Use of the Residue Theorem

Often a Fourier transform or inverse transform can be described

as an integral of a function that either is analytic on the entire

complex plane, or else has a few isolated poles in the complex

plane. Such integrals can often be evaluated through intelligent use

of the reside theorem from complex analysis (see Appendix A).

Two examples illustrating such use of the reside theorem will be

given in this section. The first example illustrates its use when

the function is analytic throughout the complex plane, while the

second example illustrates its use when the function has poles

off the real axis. The use of the residue theorem to compute

transforms when the function has poles on the real axis will be

discussed in Section 2.1.6.

Example 2.5 Transform of an Analytic Function

Consider computing the Fourier transform of g(t) ¼ e�t2 ,

G(v) ¼ ^[g(t)]jv ¼
ð

1

�1

e�t2e�jvt dt:

Because

t2 þ jvt ¼ t þ j
v

2

� �2

þv2

4
,
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it follows that

G(v) ¼ e�
1
4
v2

ð

1

�1

exp � t þ j
v

2

� �2
� �

dt

¼ e�
1
4
v2

ð

1þjv
2

�1þjv
2

e�z
2

dz: (2:8)

Consider, now, the integral of e2z
2

over the contour Cg where,

for each g> 0, Cg¼ C1,gþ C2,gþ C3,gþ C4,g is the contour in

Figure 2.1. Because e2z
2

is analytic everywhere on the complex

plane, the residue theorem states that

0 ¼
ð

Cg

e�z
2

dz

¼
ð

C1,g

e�z
2

dz þ
ð

C2, g

e�z
2

dz þ
ð

C3,g

e�z
2

dz þ
ð

C4, g

e�z
2

dz:

Thus,

�
ð

C3,g

e�z
2

dz ¼
ð

C1,g

e�z
2

dz þ
ð

C2,g

e�z
2

dz þ
ð

C4,g

e�z
2

dz: (2:9)

Now,

lim
g!1

ð

C2,g

e�z
2

dz ¼ lim
g!1

ð

v=2

y¼0

e�(gþjy)
2

dy

¼ lim
g!1

e�g
2

ð

v=2

y¼0

e y
2�j2gydy

¼ 0:

Likewise,

lim
g!1

ð

C4,g

e�z
2

dz ¼ 0,

while

lim
g!1

ð

C3, g

e�z
2

dz ¼ lim
g!1

ð

�gþjv
2

gþjv
2

e�z
2

dz ¼ �
ð

1þjv
2

�1þjv
2

e�z
2

dz

and

lim
g!1

ð

C1,g

e�z
2

dz ¼ lim
g!1

ð

g

x¼�g

e�x
2

dz ¼
ð

1

�1

e�x
2

dx:

That last integral is well known and equals
ffiffiffiffi

p
p

. Combining

Equations 2.8 and 2.9 with the above limits yields

G(v) ¼ e�
1
4
v2

ð

1þjv
2

�1þjv
2

e�z
2

dz

¼ e�
1
4
v2

lim
g!1

�
ð

C3,g

e�z
2

dz

2

6

4

3

7

5

¼ e�
1
4
v2

lim
g!1

ð

C1,g

e�z
2

dz þ
ð

C2, g

e�z
2

dz þ
ð

C4,g

e�z
2

dz

2

6

4

3

7

5

¼ e�
1
4
v2 ffiffiffiffi

p
p

:

So,

^[e�t
2

]
�

�

�

v
¼ G(v) ¼

ffiffiffiffi

p
p

e�
1
4v

2

:

Example 2.6 Transform of a Function

with a Pole Off the Real Axis

Consider computing the Fourier inverse transform of F(v)¼
(1þv2)�1,

f (t) ¼ ^�1[F(v)]jt ¼
1

2p

ð

1

�1

e jtv

1þ v2
dv: (2:10)

For t¼ 0,

f (0) ¼ 1

2p

ð

1

�1

1

1þ v2
dv ¼ 1

2p
arctan vj1�1¼

1

2
: (2:11)

To evaluate f(t) when t 6¼ 0, first observe that the integrand in

formula 2.10, viewed as a function of the complex variable,

F(z) ¼ e jtz

1þ z2
,

x = γ

y = ω/2

X

Y

x = –γ C1,γ

C2,γ

C3,γ

C4,γ

FIGURE 2.1 Contour for computing ^[e�t
2

].
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has simple poles at z¼�j. The residue at z¼ j is

Resj[F] ¼ lim
z!j

(z � j)F(z) ¼ lim
z!j

(z � j)
e jtz

(z � j)(z þ j)

� �

¼ 1

2j
e�t ,

while the residue at z¼�j is

Res�j[F] ¼ lim
z!�j

(z þ j)F(z) ¼ � 1

2j
et:

For each g> 1, let Cg, Cþ,g, and C�,g be the curves sketched in

Figure 2.2. By the residue theorem:

ð

Cg

e jtz

1þ z2
dz þ

ð

Cþ,g

e jtz

1þ z2
dz ¼ 2pjResj[F] ¼ pe�t

and

�
ð

Cg

e jtz

1þ z2
dz þ

ð

C�,g

e jtz

1þ z2
dz ¼ 2pjRes�j[F] ¼ pet:

Combining these calculations with Equation 2.10 yields

f (t) ¼ 1

2p

ð

1

�1

e jtv

1þ v2
dv

¼ 1

2p
lim
g!1

ð

Cg

e jtz

1þ z2
dz

¼ 1

2p
pe�t lim

g!1

ð

Cþ,g

e jtz

1þ z2
dz

2

6

4

3

7

5
(2:12)

and

f (t) ¼ 1

2p

ð

1

�1

e jtv

1þ v2
dv

¼ 1

2p
lim
g!1

ð

Cg

e jtz

1þ z2
dz

¼ 1

2p
pet þ lim

g!1

ð

C�, g

e jtz

1þ z2
dz

2

6

4

3

7

5
: (2:13)

Now,

ð

Cþ, y

e jtz

1þ z2
dz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼
ð

p

0

e jtg( cos uþj sin u)

1þ g2e j2u
ge ju du

�

�

�

�

�

�

�

�

�

�

�

�

<

ð

p

0

e jtg( cos uþj sin u)

1þ g2e j2u
ge ju

�

�

�

�

�

�

�

�

du

<

ð

p

0

e�tg sin u

g2 � 1
g du:

So long as t> 0 and 0� u�p,

0 � e�tg sin u � 1:

Thus, for t> 0,

lim
g!1

ð

Cþ,g

e jtz

1þ z2
dz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� lim
g!1

ð

p

0

e�tg sin u

g2 � 1
g du

� lim
g!1

ð

p

0

g

g2 � 1
du

� lim
g!1

pg

g2 � 1

¼ 0:

Combining this last result with Equation 2.12 gives

f (t) ¼ 1

2p
pe�t � lim

g!1

ð

Cþ, g

e jtz

1þ z2
dz

2

6

4

3

7

5
¼ 1

2
e�t (2:14)

whenever t> 0.

X

Y

–j

j

y = γ

x = γ

C–,γ

C+,γ

Cγ

FIGURE 2.2 Contours for computing ^�1[(1þv2)�1].
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In a similar fashion, it is easy to show that if t< 0,

lim
g!1

ð

C�,g

e jtz

1þ z2
dz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� lim
g!1

ð

2p

p

e�tg sin u

g2 � 1
g du

� lim
g!1

ð

2p

p

g

g2 � 1
du

¼ 0,

which, combined with Equation 2.13, yields

f (t) ¼ 1

2p
pet þ lim

g!1

ð

C�, g

e jtz

1þ z2
dz

2

6

4

3

7

5
¼ 1

2
et (2:15)

whenever t< 0.

Finally, it should be noted that formulas 2.11, 2.14, and 2.15

can be written more concisely as

f (t) ¼ 1

2
e�jtj:

2.1.6 Cauchy Principal Values

The Cauchy principal value (CPV) at x¼ x0 of an integral,
Ð1
�1 f(x)dx, is

CPV

ð

1

�1

f(x)dx ¼ lim
e!0þ

ð

x0�e

�1

f(x)dx þ
ð

1

x0þe

f(x)dx

2

4

3

5

provided the limit exists. So long as f is an integrable function,

it should be clear that

CPV

ð

1

�1

f(x)dx ¼
ð

1

�1

f(x)dx:

It is when f is not an integrable function that the CPV is useful.

In particular, the Fourier transform and Fourier inverse trans-

form of any function with a singularity of the form (x� x0)
�1 can

be evaluated as the CPVs at x¼ x0 of the integrals in formulas 2.1

and 2.2.

Example 2.7

Consider evaluating the inverse transform of F(v)¼v�1.

Because of the v�1 singularity, f¼^�1[F] is given by

f (t) ¼ 1

2p
CPV

ð

1

�1

1

v
e jvtdv

or, equivalently, by

f (t) ¼ 1

2p
lim
e!0þ
R!þ1

ð

�e

�R

1

z
e jtzdz þ

ð

R

e

1

z
e jtzdz

2

4

3

5: (2:16)

Because v�1 is an odd function, f(0) is easily evaluated,

f (0) ¼ 1

2p
lim
e!0þ
R!þ1

ð

�e

�R

1

v
dvþ

ð

R

e

1

v
dv

2

4

3

5 ¼ 0: (2:17)

To evaluate f(t) when t> 0, first observe that the only pole of

the integrand in formula 2.16,

F(z) ¼ 1

z
e jtz ,

is at z¼ 0. For each 0< e< R, let Ce and CR be the semicircles

indicated in Figure 2.3. By the residue theorem,

ð

�e

�R

1

z
e jtzdz þ

ð

R

e

1

z
e jtzdz þ

ð

Ce

1

z
e jtzdz þ

ð

CR

1

z
e jtzdz ¼ 0:

This, combined with Equation 2.16, yields

f (t) ¼ � 1

2p
lim
e!0þ

ð

Ce

1

z
e jtzdz þ lim

R!1

ð

CR

1

z
e jtzdz

2

6

4

3

7

5
, (2:18)

provided the limits exist. Now,

lim
e!0þ

ð

Ce

1

z
e jtzdz ¼ lim

e!0þ

ð

0

p

1

ee ju
e jte( cos uþj sin u)jee judu

¼ j lim
e!0þ

ð

0

p

e�et( sin uþj cos u)du

¼ j

ð

0

p

e0du

¼ �jp: (2:19)

Xx = ε x = R

Y

Cε

CR

FIGURE 2.3 Contour for computing ^�1[v�1].
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Similarly,

ð

CR

1

z
e jtzdz ¼ j

ð

p

0

e�Rt( sin uþj cos u)du:

Here, because t> 0, the integrand is uniformly bounded and

vanishes as R! 1. Thus,

lim
R!1

ð

CR

1

z
e jtzdz ¼ 0: (2:20)

With Equations 2.19 and 2.20, Equation 2.18 becomes

f (t) ¼ � 1

2p
lim
e!0þ

ð

Ce

1

z
e jtzdz þ lim

R!1

ð

CR

1

z
e jtzdz

2

6

4

3

7

5
¼ j

2
: (2:21)

By replacing Ce and CR with corresponding semicircles in the

lower half-plane, the approach used to evaluate f(t) when

0< t, can be used to evaluate f(t) when t< 0. The computa-

tions are virtually identical, except for a reversal of the orien-

tation of the contour of integration, and yield

f (t) ¼ � j

2
, (2:22)

when t< 0.

Finally, it should be noted that formulas 2.17, 2.21, and 2.22

can be written more concisely as

^�1
1

v

� ��

�

�

�

t

¼ f (t) ¼ j

2
sgn(t):

2.2 General Identities and Relations

Some of the more general identities commonly used in comput-

ing and manipulating Fourier transforms and inverse transforms

are described here. Brief (nonrigorous) derivations of some are

presented, usually employing the classical transforms (formulas

2.1 and 2.2). Unless otherwise stated, however, each identity may

be assumed to hold for the generalized transforms as well.

2.2.1 Invertibility

The Fourier transform and the Fourier inverse transform, ^ and

^�1, are operational inverses, that is,

c ¼ ^[f], ^�1[c] ¼ f:

Equivalently,

^�1[^[ f ]] ¼ f and ^[^�1[F]] ¼ F:

Example 2.8

Because ^[e�t u(t)]jv¼ (1þ jv)�1 (see Example 2.1),

^�1
1

1þ jv

� ��

�

�

�

t

¼ e�tu(t):

2.2.2 Near-Equivalence (Symmetry
of the Transforms)

Computationally, the classical formulas for ^[f(s)]jx and

^�1[f(s)]jx (formulas 2.1 and 2.2) are virtually the same, differ-

ing only by the sign in the exponential and the factor of (2p)�1

in Equation 2.2. Observing that

ð

1

�1

f(s)e�jxsds ¼ 2p
1

2p

ð

1

�1

f(s)e j(�x)sds

2

4

3

5

¼ 2p
1

2p

ð

1

�1

f(s)e jx(�s)ds

2

4

3

5

leads to the ‘‘near equivalence’’ identity,

^[f(s)]jx ¼ 2p^�1[f(s)]j�x ¼ 2p^�1[f(�s)]jx: (2:23)

Likewise,

^�1[f(s)]jx¼
1

2p
^[f(s)]j�x¼

1

2p
^[f(�s)]jx: (2:24)

Example 2.9

Using near-equivalence and results of Example 2.1,

^[esu(�s)]jx¼ 2p^�1[e�su(s)]jx¼ 2p
1

2p� j 2px

� �

¼ 1

1� jx
:

2.2.3 Conjugation of Transforms

Using z* to denote the complex conjugate of any complex quan-

tity, z, it can be observed that

ð

1

�1

f (t)e�jvtdt

0

@

1

A

*

¼
ð

1

�1

f *(t)e jvtdt:

Thus,

^[ f ]* ¼ 2p^�1[ f *]: (2:25)
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Likewise,

^�1[ f ]* ¼ 1

2p
^[ f *]: (2:26)

2.2.4 Linearity

If a and b are any two scalar constants, then it follows from the

linearity of the integral that

^[af þ bg] ¼ a^[ f ]þ b^[g]

and

^�1[aF þ bG] ¼ a^�1[F]þ b^�1[G]:

Example 2.10

Using linearity and the transforms computed in Examples 2.1

and 2.9,

^
	

e�jtj

�

�

v
¼ ^ e�tu(t)þ etu(�t)½ �

�

�

v
¼ 1

1þ jv
þ 1

1� jv

¼ 2

1þ v2

and

^
	

sgn(t)e�jtj
�
�

v
¼ ^ e�tu(t)� etu(�t)½ �

�

�

v
¼ 1

1þ jv
� 1

1� jv

¼ �2vj

1þ v2
:

2.2.5 Scaling

If a is any nonzero real number, then, using the substitution

t¼at,

ð

1

�1

f (at)e�jtvdt ¼ 1

jaj

ð

1

�1

f (t)e�jtva dt:

Letting F(v)¼^[ f(t)]jv, this can be rewritten as

^[ f (at)]jv ¼ 1

jaj F
v

a

� �

: (2:27)

Likewise,

^�1[F(av)]jt ¼
1

jaj f
t

a

� �

: (2:28)

Example 2.11

Using identity 2.27 and the results from Example 2.10:

^
	

e�jatj
�
�

v
¼ 1

jaj :
2

1þ v
a

� �2
¼ 2jaj

a2 þ v2
:

2.2.6 Translation and Multiplication
by Exponentials

If F(v)¼^[ f(t)]jv and a is any real number, then

^[ f (t � a)]jv ¼ e�javF(v), (2:29)

^[e jat f (t)]jv ¼ F(v� a), (2:30)

^�1[F(v� a)]jt ¼ e jat f (t), (2:31)

and

^�1[e javF(v)]jt ¼ f (t � a): (2:32)

These formulas are easily derived from the classical definitions.

Identity 2.30 for example, comes directly from the observation that

ð

1

�1

e jat f (t)e�jvtdt ¼
ð

1

�1

f (t)e�j(v�a)tdt:

In general, identities 2.29 through 2.32 are not valid when a is

not a real number. An exception to this occurs when f is an

analytic function on the entire complex plane. Then identities

2.29 and 2.32 do hold for all complex values of a. Likewise,

identities 2.30 and 2.31 may be used whenever a is complex

provided F is an analytic function on the entire complex plane.

Example 2.12

Let g(t) ¼ e�t2 . It can be shown that g(t) is analytic on the

entire complex plane and that its Fourier transform is

G(v) ¼
ffiffiffiffi

p
p

exp � 1

4
v2

� �

(see Example 2.5 or Example 2.18). If b is any real value, then

^ e�t2þ2bt
h i�

�

�

v
¼ ^ e j(�j2b)te�t2

h i�

�

�

v

¼
ffiffiffiffi

p
p

exp � 1

4
(v� (�j2b))2

� �

¼
ffiffiffiffi

p
p

eb
2

exp � 1

4
v2 þ jbv

� �

:

2.2.7 Complex Translation and Multiplication
by Real Exponentials

Using the ‘‘generalized’’ notion of translation discussed in Sec-

tion 2.1.4, it can be shown that for any complex value, aþ jb,

^[Taþjbf (t)]jv ¼ e�j(aþjb)vF(v),

^[e j(aþjb)t f (t)]jv ¼ TaþjbF(v),

^�1[TaþjbF(v)]jt ¼ e j(aþjb)t f (t),
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and

^�1[e j(aþjb)vF(v)jt ¼ T�(aþjb)f (t):

Letting a¼ 0 and b¼�g, these identities become

^ T�jg f (t)
	 
�

�

v
¼ e�gvF(v),

^ egt f (t)½ �jv¼ T�jgF(v),

^�1 T�jgF(v)
	 
�

�

t
¼ egt f (t),

and

^�1 egvF(v)½ �jt¼ Tjgf (t):

Caution must be exercised in the use of these formulas. It is true

that Taþ jb f(t)¼ f(t� (aþ jb)) whenever b¼ 0 or f(z) is analytic
on the entire complex plane. However, if f(z) is not analytic and
b 6¼ 0, then it is quite possible that Taþ jb f(t) 6¼ f(t� (aþ jb)),
even if f(t� (aþ jb)) is well defined. In these cases Taþ jbf(t)
should be treated formally.

Example 2.13

By the above

^ etu(t)½ �jv¼ ^ e2te�tu(t)
	 
�

�

v
¼ T�2j

1

1þ jv

� �

:

Note, however, that

^ �etu(� t)½ �jv¼
�1

1� jv
¼ 1

1þ j(v� (�2j))
:

Because et u(t) and �et u(�t) certainly are not equal, it follows

that their transforms are not equal,

T�2j

1

1þ jv

� �

6¼ 1

1þ j(v� (�2j))
:

2.2.8 Modulation

The ‘‘modulation formulas,’’

^ cos (v0t)f (t)½ �jv¼
1

2
[F(v� v0)þ F(vþ v0)] (2:33)

and

^ sin (v0t)f (t)½ �jv¼
1

2j
[F(v� v0)� F(vþ v0)] (2:34)

are easily derived from identity 2.30 using the well-known formulas

cos (v0t) ¼
1

2
[e jv0t þ e�jv0t]

and

sin (v0t) ¼
1

2j
[e jv0t � e�jv0t]:

Example 2.14

For a> 0, the function

f (t) ¼ cos
p

2a
t

� �

, if �a � t � a

0, otherwise

(

can be written as

f (t) ¼ cos
p

2a
t

� �

pa(t):

Thus, using identity 2.33 and the results of Example 2.2,

F(v) ¼ ^ cos
p

2a
t

� �

pa(t)
h i�

�

�

v

¼ 1

2

2

v� p
2a

sin a v� p

2a

h i� �

þ 2

vþ p
2a

sin a vþ p

2a

h i� �

� �

¼ 4ap

p2 � 4a2v2
cos (av):

2.2.9 Products and Convolution

If F¼^[ f] and G¼^[g], then the corresponding transforms of

the products, fg and FG, can be computed using the identities

^[ fg] ¼ 1

2p
F *G (2:35)

and

^�1[FG] ¼ f * g, (2:36)

provided the convolutions, F *G and f * g, exist. Conversely, as
long as the convolutions exist,

^[ f * g] ¼ FG (2:37)

and

^�1[F *G] ¼ 2p fg: (2:38)

Identity 2.35 can be derived as follows:

ð

1

�1

f (t)g(t)e�jvtdt ¼
ð

1

�1

1

2p

ð

1

�1

F(s)e jstds

0

@

1

Ag(t)e�jvtdt

¼ 1

2p

ð

1

�1

F(s)

ð

1

�1

g(t)e�j(v�s)tdt ds

¼ 1

2p

ð

1

�1

F(s)G(v� s)ds:

The other identities can be derived in a similar fashion.
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Example 2.15

From direct computation, if b> 0, then

^�1
	

e�bvu(v)

�

�

t
¼ 1

2p

ð

1

0

e( jt�b)vdv ¼ 1

2p
� 1

b� jt
:

And so,

^
1

b� jt

� ��

�

�

�

v

¼ 2pe�bvu(v):

Applying identity 2.35,

^
1

10� 7 jt � t2

� ��

�

�

�

v

¼ ^
1

2� jt
� 1

5� jt

� ��

�

�

�

v

¼ 1

2p
[2pe�2vu(v)] * [2pe

�5vu(v)]

¼ 2p

ð

1

�1

e�2su(s)e�5(v�s)u(v� s)ds

¼
0, if v < 0

2p

3
[e�2v � e�5v], if 0 < v:

8

<

:

Example 2.16

By straightforward computations it is easily verified that

for a> 0,

^ pa=2(t)
	 
�

�

v
¼ 2

v
sin

a

2
v

� �

and

pa=2(t) * pa=2(t) ¼ aLa(t),

where pa=2(t) is the pulse function,

pa=2(t) ¼
1, if jtj < a

2

0, if
a

2
< jtj

8

>

<

>

:

,

and La(t) is the triangle function,

La(t) ¼ 1� tj j
a
, if jtj < a

0, if a < jtj

8

<

:

Using identity 2.37

^[La(t)]jv ¼ 1

a
^[pa=2(t) � pa=2(t)]

�

�

v

¼ 1

a

2

v
sin

a

2
v

� �

 �

2

v
sin

a

2
v

� �

 �

¼ 4

av2
sin2

a

2
v

� �

:

2.2.10 Correlation

The cross-correlation of two functions, f(t) and g(t), is another
function, denoted by f(t)$ g(t), given by

f (t) $ g(t) ¼
ð

1

�1

f *(s)g(t þ s)ds, (2:39)

where f *(s) denotes the complex conjugate of f(s). The notation
rfg(t) is often used instead of f(t) $ g(t). The Wiener–Khintchine

theorem states that, provided the correlations exist,

^[ f (t) $ g(t)]jv¼ F*(v)G(v) (2:40)

and

^[ f * (t)g(t)]jv¼
1

2p
F(v) $G(v), (2:41)

where F¼^[ f] and G¼^[g]. Derivations of these formulas are

similar to the analogous identities involving convolution.

For a given function, f(t), the corresponding autocorrelation

function is simply the cross-correlation of f(t) with itself,

f (t) $ f (t) ¼
ð

1

�1

f * (s)f (t þ s)ds: (2:42)

Often autocorrelation is denoted by rf(t) instead of f(t) $ f(t).
For autocorrelation, formulas 2.40 and 2.41 simplify to

^[ f (t) $ f (t)]jv¼ F(v)j j2 (2:43)

and

^ f (t)j j2
	 
�

�

v
¼ 1

2p
F(v) $ F(v): (2:44)

2.2.11 Differentiation and Multiplication
by Polynomials

If f(t) is differentiable for all t and vanishes as t ! �1, then the

Fourier transform of the derivative of the function can be related
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to the transform of the undifferentiated function through the use

of integration by parts,

ð

1

�1

f 0(t)e�jvtdt ¼ f (t)e�jvt
�

�

1
�1þjv

ð

1

�1

f (t)e�jvtdt

¼ jv

ð

1

�1

f (t)e�jvtdt:

In more concise form this can be written

^[ f 0(t)]jv¼ jvF(v), (2:45)

where F¼^[ f ]. By near equivalence, if G(v) is differentiable for
all v and vanishes as v ! �1, then

^�1[G0(v)]
�

�

t
¼ �jtg(t), (2:46)

where g¼^�1[G]. Similar derivations yield

^[tf (t)]jv¼ jF0(v) (2:47)

and

^�1[v G(v)]
�

�

t
¼ �jg 0(t), (2:48)

provided t f(t) and v G(v) are suitably integrable.

Example 2.17

Using identity 2.45,

^
j

(1� jt)2

� ��

�

�

�

v

¼ ^
d

dt

1

1� jt

 �� ��

�

�

�

v

¼ jv^
1

1� jt

� ��

�

�

�

v

¼ jv2pe�vu(v):

Example 2.18

Let a> 0 and g(t) ¼ e�at2 . It is easily verified that

dg

dt
¼ �2atg(t): (2:49)

Taking the Fourier transform of each side and using identities

2.45 and 2.47 yields

jvG(v) ¼ �2aj
dG

dv

The solution to this first-order differential equation is easily

computed. It is

G(v) ¼ A exp � 1

4a
v2

� �

:

The value of the constant of integration, A, can be

determined* by noting that

A ¼ G(0) ¼
ð

1

�1

e�at2dt:

The value of this last integral is well known to be
ffiffiffiffiffiffiffiffiffi

p=a
p

. Thus,

G(v) ¼
ffiffiffiffi

p

a

r

exp � 1

4a
v2

� �

:

It should be noted that if f 0 and F0 are assumed to be the

classical derivatives of f and F, that is

f 0(t) ¼ lim
Dt!0

f (t þ Dt)� f (t)

Dt

and

F0(v) ¼ lim
Dv!0

F(vþ Dv)� F(v)

Dv
,

then application of the above identities is limited by require-

ments that the functions involved be suitably smooth and

that they vanish at infinity. These limitations can be elimin-

ated, however, by interpreting f 0 and F 0 in a more generalized

sense. In this more generalized interpretation, f 0 and F 0

are defined to be the (generalized) functions satisfying the

‘‘generalized’’ integration by parts formulas,

ð

1

�1

f 0(t)f(t)dt ¼ �
ð

1

�1

f (t)f0(t)dt

and

ð

1

�1

F0(v)f(v)dv ¼ �
ð

1

�1

F(v)f0(v)dv,

for every test function, f (with f0 denoting the classical deriva-

tive of f). As long as the function being differentiated is piece-

wise smooth and continuous, then there is no difference

between the classical and the generalized derivative. If however,

the function, f(x), has jumpdiscontinuities at x¼ x1, x2, . . . , xN, then

f 0generalized ¼ f 0classical þ
X

k

Jkdxk ,

* A method for determining A using Bessel’s equality is described in Section

2.2.15.
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where Jk denotes the ‘‘jump’’ in f at x¼ xk,

Jk ¼ lim
Dx!0þ

f (xk þ Dx)� f (xk � Dx):

It is not difficult to show that the product rule,

(fg)0 ¼ f 0gþ fg0 , holds for the generalized derivative as well

as the classical derivative.

Example 2.19

Consider the step function, u(t). The classical derivative of u is

clearly 0, because the graph of u consists of two horizontal

half-lines (with slope zero). Using the generalized integration

by parts formula, however,

ð

1

�1

u0(t)f(t)dt ¼ �
ð

1

�1

u(t)f0(t)dt

¼ �
ð

1

0

f0(t)dt

¼ f(0)

¼
ð

1

�1

d(t)f(t)dt,

showing that d(t) is the generalized derivative of u(t).

Example 2.20

Using the generalized derivative and identity 2.47,

^
t

1� jt

� ��

�

�

�

v

¼ j
d

dv
^

1

1� jt

� ��

�

�

�

v

 �

¼ j
d

dv
(2pe�vu(v))

¼ 2pj
de�v

dv
u(v)þ e�vu0(v)

� �

¼ 2pj[�e�vu(v)þ d(v)]:

The extension of formulas 2.45 through 2.48 to the correspond-

ing identities involving higher-order derivatives is straight-

forward. If n is any positive integer, then

^[f (n)(t)]
�

�

v
¼ ( jv)nF(v), (2:50)

^�1[F(n)(v)]
�

�

t
¼ (�jt)nf (t), (2:51)

^[tnf (t)]jv¼ jnF(n)(v), (2:52)

and

^�1[vnF(v)]
�

�

t
¼ (�j)nf (n)(t): (2:53)

Again, these identities hold for all transformable functions as

long as the derivatives are interpreted in the generalized sense.

2.2.12 Moments

For any suitably integrable function, f(t), and nonnegative inte-

ger, n, the ‘‘nth moment of f ’’ is the quantity

mn( f ) ¼
ð

1

�1

tnf (t)dt:

Because

ð

1

�1

tnf (t)dt ¼ ^[tnf (t)]j0,

it is clear from identity 2.52 that

mn( f ) ¼ jnF(n)(0):

2.2.13 Integration

If F(v) and G(v) are the Fourier transforms of f(t) and g(t),
and g(t)¼ t�1 f(t), then tg(t)¼ f(t) and, by identity 2.47, jG0(v)¼
F(v). Integrating this gives

G(v)� G(a) ¼ �j
ð

v

a

F(s)ds,

where a can be any real number. This can be written

^
f (t)

t

� ��

�

�

�

v

¼ �j
ð

v

a

F(s)dsþ ca (2:54)

where ca¼G(a). For certain general types of functions and

choices of a, the value of ca is easily determined. For examine,

if f(t) is also absolutely integrable, then

^
f (t)

t

� ��

�

�

�

v

¼ �j
ð

v

�1

F(s)ds, (2:55)

while if f(t) is an even function

^
f (t)

t

� ��

�

�

�

v

¼ �j
ð

v

0

F(s)ds, (2:56)

provided the integrals are well defined.

It can also be shown that as long as the limit ofv�1 F(v) exists as
v! 0, then for each real value ofa there is a constant, ca, such that

^

ð

t

a

f (s)ds

2

4

3

5

�

�

�

�

�

�

v

¼ �j F(v)
v
þ cad(v): (2:57)

Fourier Transforms 2-13



If f(t) is an even function, then

^

ð

t

0

f (s)ds

2

4

3

5

�

�

�

�

�

�

v

¼ �j F(v)
v

, (2:58)

while if f(t) and
Ð

t

�a
f (s) ds are absolutely integrable, then

^

ð

t

�1

f (s)ds

2

4

3

5

�

�

�

�

�

�

v

¼ �j F(v)
v

: (2:59)

Example 2.21

Let a and b be positive,

f (t) ¼ e�a tj j � e�b tj j ,

and

g(t) ¼ f (t)

t
¼ e�a tj j � e�b tj j

t
:

Both functions are easily verified to be transformable with

F(v) ¼ ^ e�a tj j � e�b tj j	 
�

�

v
¼ 2a

a2 þ v2
� 2b

b2 þ v2
:

Because f(t) is even, formula 2.56 applies, and

G(v) ¼ ^
e�a tj j � e�b tj j

t

� ��

�

�

�

v

¼ �j
ð

v

0

F(s)ds

¼ �j
ð

v

0

2a

a2 þ s2
� 2b

b2 þ s2

 �

ds

¼ �2j arctan
v

a

� �

� arctan
v

b

 � �

: (2:60)

Example 2.22

Applying the same analysis done in the previous example

but using

f (t) ¼ 1� e�b tj j

leads, formally, to

^
1� e�b tj j

t

� ��

�

�

�

v

¼ �j
ð

v

0

2pd(s)� 2b

b2 þ s2

 �

ds

¼ �2pj
ð

v

0

d(s)dsþ 2j arctan
v

b

 �

:

Unfortunately, this is of little value because

ð

v

a

d(s)ds

is not well defined if a¼ 0. However, because

lim
a!0þ

e�a tj j ¼ 1,

and

lim
a!0þ

arctan
v

a

� �

¼

p

2
, if 0 < v

�p

2
, if v < 0

8

>

<

>

:

¼ p

2
sgn(v),

it can be argued, using Equation 2.60, that

^
1� e�b tj j

t

� ��

�

�

�

v

¼ lim
a!0þ

^
e�a tj j � e�b tj j

t

� ��

�

�

�

v

¼ lim
a!0þ

�2j arctan
v

a

� �

� arctan
v

b

 � �

¼ �jp sgn(v)þ 2j arctan
v

b

 �

: (2:61)

2.2.14 Parseval’s Equality

Parseval’s equality is

ð

1

�1

f (t)g* (t)dt ¼ 1

2p

ð

1

�1

F(v)G*(v)dv (2:62)

and is valid whenever the integrals make sense. Closely related to

Parseval’s equality and the two ‘‘fundamental identities,’’

ð

1

�1

f (x)^[h]jxdx ¼
ð

1

�1

^[ f ]jyh(y)dy (2:63)

and

ð

1

�1

f (y)^�1[H]jydy ¼
ð

1

�1

^�1[F]jxH(x)dx: (2:64)

Derivations of these identities are straightforward. Identity 2.63,

for example, follows immediately from
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ð

1

�1

f (x)

ð

1

�1

h(y)e�jxydy

0

@

1

Adx ¼
ð

1

�1

ð

1

�1

f (x)h(y)e�jxydydx

¼
ð

1

�1

ð

1

�1

f (x)e�jxydx

0

@

1

Ah(y)dy:

Parseval’s equality can then, in turn, be derived from identity

2.63 and the observation that

g*(t) ¼ ^�1[G]
�

�

t

� �

* ¼ 1

2p

ð

1

�1

G * (v)e�jvtdv ¼ 1

2p
^[G*]jt :

2.2.15 Bessel’s Equality

Bessel’s equality,

ð

1

�1

f (t)j j2dt ¼ 1

2p

ð

1

�1

F(v)j j2dv, (2:65)

is obtained directly from Parseval’s equality by letting g¼ f.

Example 2.23

Let a> 0 and f(t)¼ pa(t), where pa(t) is the pulse function. It is

easily verified that

F(v) ¼ ^[pa(t)]jv¼
ð

a

�a

e�jvtdt ¼ 2

v
sin (av):

So, using Bessel’s equality,

ð

1

�1

sin(av)

av

�

�

�

�

�

�

�

�

2

dv ¼ 2p

ð

1

�1

1

2a
pa(t)

�

�

�

�

�

�

�

�

2

dt

¼ 2p

4a2

ð

a

�a

dt

¼ p

a
:

Example 2.24

Let a> 0. In Example 2.18 it was shown that the Fourier

transform of g(t) ¼ e�at
2

is G(v) ¼ A exp � 1
4av

2
	 


. The posi-

tive constant A can be determined by noting that, by Bessel’s

equality,

ð

1

�1

e�at
2

�

�

�

�

�

�

2

dt ¼ 1

2p

ð

1

�1

A exp � 1

4a
v2

� ��

�

�

�

�

�

�

�

2

dv:

Letting v¼ 2at this becomes, after a little simplification,

ð

1

�1

e�2at
2

dt ¼ a

p
A2
ð

1

�1

e�2at
2

dt:

Dividing out the integrals and solving for A yields

A ¼
ffiffiffiffi

p

a

r

,

where the positive square root is taken because

A ¼ G(0) ¼
ð

1

�1

e�at
2

dt > 0:

2.2.16 The Bandwidth Theorem

If f(t) is a function whose value may be considered as ‘‘negligible’’

outside of some interval, (t1, t2), then the length of that interval,

Dt¼ t2� t1, is the effective duration of f(t). Likewise, if F(v) is
the Fourier transform of f(t), and F(v) can be considered as

‘‘negligible’’ outside of some interval, (v1, v2), thenDv¼v2�v1

is the effective bandwidth of f(t).
The essence of the bandwidth theorem is that there is a

universal positive constant, g, such that the effective duration,

Dt, and effective bandwidth, Dv, of any function (with finite Dt
or finite Dv) satisfies

DtDv � g:

Thus, it is not possible to find a function whose effective band-

width and effective duration are both arbitrarily small.

There are, in fact, several versions of the bandwidth theorem,

each applicable to a particular class of functions. The two most

important versions involve absolutely integrable functions and

finite energy functions. They are described in greater detail in

Sections 2.3.3 and 2.3.5, respectively. Also in these sections are

appropriate precise definitions of effective duration and effective

bandwidth.

Because it is the basis of the Heisenberg uncertainty principle

of quantum mechanics, the bandwidth theorem is often, itself,

referred to as the uncertainty principle of Fourier analysis.

2.3 Transforms of Specific Classes
of Functions

In many applications one encounters specific classes of functions

in which either the functions or their transforms satisfy certain

particular properties. Several such classes of functions are dis-

cussed below.
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2.3.1 Real=Imaginary Valued Even=Odd
Functions

Let F(v) be the Fourier transform of f(t). Then, assuming f(t) is
integrable,

F(v) ¼
ð

1

�1

f (t)e�jvtdt

¼
ð

1

�1

f (t)[ cos(vt)� j sin(vt)]dt

¼
ð

1

�1

f (t) cos(vt)dt � j

ð

1

�1

f (t) sin(vt)dt: (2:66)

If f(t) is an even function, then

ð

1

�1

f (t) sin(vt)dt ¼ 0

and Equation 2.66 becomes

F(v) ¼
ð

1

�1

f (t) cos(vt)dt ¼ 2

ð

1

0

f (t) cos(vt)dt,

which is clearly an even function of v and is real valued when-

ever f is real valued. Likewise, if f(t) is an odd function, then

ð

1

�1

f (t) cos(vt)dt ¼ 0,

and Equation 2.66 reduces to

F(v) ¼ �j
ð

1

�1

f (t) sin(vt)dt ¼ �2j
ð

1

0

f (t) sin(vt)dt,

which is clearly an odd function of v and is imaginary valued as

long as f is real valued.
These and related relations are summarized in Table 2.1.

On occasion it is convenient to decompose a function, f(t),
into its even and odd components, fe(t) and fo(t),

f (t) ¼ fe(t)þ fo(t),

where

fe(t) ¼
1

2
[ f (t)þ f (�t)] and fo(t) ¼

1

2
[ f (t)� f (�t)]:

It f(t) is a real-valued function with Fourier transform

F(v) ¼ R(v)þ jI(v),

where R(v) and I(v) denote, respectively, the real and imaginary

parts of F(v), then, by the above discussion it follows that

Fe(v) ¼ R(v) ¼ ^[fe(t)]jv, (2:67)

Fo(v) ¼ jI(v) ¼ ^[fo(t)]jv, (2:68)

fe(t) ¼ ^�1[Fe(v)]jt¼
1

p

ð

1

0

R(v) cos (vt)dv, (2:69)

and

fo(t) ¼ ^�1[Fo(v)]jt¼ �
1

p

ð

1

0

I(v) sin (vt)dv: (2:70)

Rewriting F(v) in terms of its amplitude, A(v)¼ jF(v)j, and
phase, f(v),

F(v) ¼ A(v)e jf(v),

it is easily seen that

R(v) cos (vt)� I(v) sin (vt) ¼ A(v)[ cosf(v) cos (vt)

� sinf(v) sin (vt)]

¼ A(v) cos (vt þ f(v)):

Thus, by Equations 2.69 and 2.70, if f(t) is real then,

f (t) ¼ fe(t)þ fo(t) ¼
1

p

ð

1

0

A(v) cos (vt þ f(v))dv: (2:71)

2.3.2 Absolutely Integrable Functions

If f(t) is absolutely integrable (i:e:,
Ð1
�1 f (t)j j dt <1) then the

integral defining F(v),

F(v) ¼ ^ [f (t)]jv¼
ð

1

�1

f (t)e�jvtdt

TABLE 2.1 F¼^[ f]

f(t) is even , F(v) is even

f(t) is real and even , F(v) is real and even

f(t) is imaginary and even , F(v) is imaginary and even

f(t) is odd , F(v) is odd

f(t) is real and odd , F(v) is imaginary and odd

f(t) is imaginary and odd , F(v) is real and odd
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is well defined and well behaved. As a consequence, F(v) is

well defined for every v and is a reasonably well behaved func-

tion on (�1, 1). One immediate observation is that for such

functions,

F(0) ¼
ð

1

�1

f (t)dt:

It is also worth noting that for any v,

F(v)j j ¼
ð

1

�1

f (t)e�jvtdt

�

�

�

�

�

�

�

�

�

�

�

�

�
ð

1

�1

f (t)e�jvt
�

�

�

�dt ¼
ð

1

�1

f (t)j jdt:

The following can also be shown:

1. F(v) is a continuous function of v and for each �1<

v0<1,

lim
v!v0

F(v) ¼
ð

1

�1

f (t)e�jv0t dt

2. (The Riemann–Lebesgue lemma)

lim
v!�1

F(v) ¼ 0:

As shown in the next example, care must be exercised not to

assume these facts when f(t) is not absolutely integrable.

Example 2.25

Consider the transform, F(v) of f(t)¼ sinc(t)¼ t�1 sin(t). The

function f(t) is not absolutely integrable. Because

^�1[pp1(t)]jv¼
1

2p

ð

1

�1

pp1(t)e
jvtdt ¼ sinc(v)

it follows that

F(v) ¼ ^[sinc(t)]jv¼ pp1(v):

Clearly

lim
v!1þ

F(v) ¼ 0 and lim
v!1�

F(v) ¼ p,

while, using the residue theorem, it is easily shown that

F(1) ¼ ^[sinc(t)]jv¼1¼
ð

1

�1

sinc(t)e jtdt ¼ p

2
:

Thus, F(v) is not continuous.

Analogous results hold when taking inverse transforms of

absolutely integrable functions. If F(v) is absolutely integrable

and f¼^�1[F], then

f (0) ¼ 1

2p

ð

1

�1

F(v)dv,

and, for all real t,

f (t)j j � 1

2p

ð

1

�1

F(v)j jdv:

Furthermore,

1. f(t) is a continuous function of t and for each�1< t0<1,

lim
t!t0

f (t) ¼ 1

2p

ð

1

�1

F(v)e jvt0dv:

2. (The Riemann–Lebesgue lemma)

lim
t!�1

f (t) ¼ 0:

2.3.3 The Bandwidth Theorem for Absolutely
Integrable Functions

Assume that both f(t) and its Fourier transform, F(v), are abso-
lutely integrable. Let �t and �v be any two fixed values for t and v

such that f (�t) 6¼ 0 and F(�v) 6¼ 0. The corresponding effective

duration, Dt, and the corresponding effective bandwidth, Dv,

are the satisfying

ð

1

�1

f (t)j jdt ¼ f (�t)j jDt

and

ð

1

�1

F(v)j jdv ¼ F(�v)j jDv:

The bandwidth theorem for absolutely integrable functions

states that

DtDv � 2p:

Moreover, using �t ¼ �v ¼ 0,

DtDv ¼ 2p
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whenever f(t) and F(v) are both real nonnegative functions

(or real nonpositive functions) and neither f(0) nor F(0) vanishes.
The choice of the values for �t and �v depends on the use to be

made of the bandwidth theorem. One standard choice for�t and �v

is as the centroids of jf(t)j and jF(v)j,

�t ¼

Ð

1

�1
t f (t)j jdt

Ð

1

�1
f (t)j jdt

and �v ¼

Ð

1

�1
v F(v)j jdv

Ð

1

�1
F(v)j jdv

:

Alternatively, to minimize the values used for the effective dur-

ation and effective bandwidth, �t and �v can be chosen to maxi-

mize the values of f (�t)j j and F(�v)j j. Clearly, choosing �t ¼ 0 and

�v ¼ 0 is especially appropriate if both f(t) and F(v) are real

valued, even functions with maximums at the origin.

The above version of the bandwidth theorem is very easily

derived. Because f(t) and F(v) are both absolutely integrable,

F(�v)j j �
ð

1

�1

f (t)j jdt ¼ f (�t)j jDt

and

f (�t)j j � 1

2p

ð

1

�1

F(v)j jdv ¼ 1

2p
F(�v)j jDv:

Thus,

DtDv � F(�v)j j
f (�t)j j 	

2p f (�t)j j
F(�v)j j ¼ 2p:

Clearly, if both f(t) and F(v) are real and nonnegative and

neither f(0) or F(0) vanish, then the above inequalities can be

replaced with

F(0) ¼
ð

1

�1

f (t)dt ¼ f (0)Dt,

f (0) ¼ 1

2p

ð

1

�1

F(v)dv ¼ F(0)Dv,

and

DtDv ¼ F(0)

f (0)
	 2pf (0)

F(0)
¼ 2p:

Example 2.26

Let a> 0 and f(t)¼ e�ajtj. The transform of f(t) is

F(v) ¼ 2a

a2 þ v2
:

Observe that both f(t) and F(v) are even functions with max-

imums at the origin. It is therefore appropriate to use �t ¼ 0

and �v ¼ 0 to compute the effective duration and effective

bandwidth,

Dt ¼ 1

f (0)j j

ð

1

�1

f (t)j jdt ¼
ð

1

�1

e�a tj jdt ¼ 2

ð

1

0

e�atdt ¼ 2

a

and

Dv ¼ 1

F(0)j j

ð

1

�1

F(v)j jdv ¼ a

2

ð

1

�1

2a

a2 þ v2
dv ¼ ap:

The products of these measures of effective bandwidth the

duration are

DtDv ¼ 2

a

 �

(ap) ¼ 2p:

as predicted by the bandwidth theorem.

2.3.4 Square Integrable (‘‘Finite Energy’’)
Functions

A function, f(t), is square integrable if

ð

1

�1

f (t)j j2dt < 1:

For many applications, it is natural to define the energy, E, in a

function (or signal), f(t), by

E ¼ E[f ] ¼
ð

1

�1

f (t)j j2dt:

For this reason, square integrable functions are also called finite

energy functions. By Bessel’s equality,

E[f ] ¼
ð

1

�1

f (t)j j2dt ¼ 1

2p

ð

1

�1

F(v)j j2dv, (2:72)

where F(v) is the Fourier transform of f(t). This shows that a

function is square integrable if and only if its transform is also square

integrable. If also indicates why jF(v)j2 is often referred to as either
the ‘‘energy spectrum’’ or the ‘‘energy spectral density’’ of f(t).

2.3.5 The Bandwidth Theorem for Finite
Energy Functions

Assume that f(t) and its Fourier transform, F(v), are finite energy
functions, and let the effective duration, Dt, and the effective

bandwidth, Dv, be given by the ‘‘standard deviations,’’
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(Dt)2 ¼
Ð1
�1 (t ��t)2 f (t)j j2dt
Ð1
�1 f (t)j j2dt

and

(Dv)2 ¼
Ð1
�1 (v� �v)2 F(v)j j2dv
Ð1
�1 F(v)j j2dv

,

where �t and �v are the mean values of t and v,

�t ¼
Ð1
�1 t f (t)j j2dt
Ð1
�1 f (t)j j2dt

and �v ¼
Ð1
�1 v F(v)j j2dv
Ð1
�1 F(v)j j2dv

:

Using the energy of f(t),

E ¼
ð

1

�1

f (t)j j2dt ¼ 1

2p

ð

1

�1

F(v)j j2dv,

the effective duration and effective bandwidth can be written

more concisely as

Dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

E

ð

1

�1

(t ��t)2 f (t)j j2dt

v

u

u

u

t

and

Dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pE

ð

1

�1

(v� �v)2 F(v)j j2dv

v

u

u

u

t :

The bandwidth theorem for finite energy functions states that, if

the above quantities are well defined (and finite) and

lim
t!�1

t f (t)j j2¼ 0,

then

DtDv � 1

2
:

Moreover, when �t ¼ 0 and �v ¼ 0, then

DtDv ¼ 1

2

if and only if f(t) is a Gaussian,

f (t) ¼ Ae�at2 ,

for some a> 0.

The reader should be aware that the effective duration and

effective bandwidth defined in this section are not the same as the

effective duration and effective bandwidth previously defined in

Section 2.3.3. Nor do these definitions necessarily agree with the

definitions given for the analogous quantities defined later in the

sections on reconstructing sampled functions.

Example 2.27

Let a> 0 and f(t)¼ e�ajtj. The transform of f(t) is

F(v) ¼ 2a

a2 þ v2
:

Because tf(t) and vF(v) are both odd functions, it is clear that
�t ¼ 0 and �v ¼ 0. The energy is

E ¼
ð

1

�1

e�a tj j�

�

�

�

2
dt ¼ 2

ð

1

0

e�2atdt ¼ 1

a
:

Using integration by parts, the corresponding effective dur-

ation and effective bandwidth are easily computed,

Dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

E

ð

1

�1

(t ��t)2 f (t)j j2dt

v

u

u

u

t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a

ð

1

0

t2e�2atdt

v

u

u

u

t

¼
ffiffiffi

2
p

2a

and

Dv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pE

ð

1

�1

(v� �v)2 F(v)j j2dv

v

u

u

u

t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

2p

ð

1

�1

v2
2a

a2 þ v2

 �2

dv

v

u

u

u

t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a3

p

ð

1

�1

v
2v

(a2 þ v2)2
dv

v

u

u

u

t

¼ a:

(By comparison, treating f(t) and F(v) as absolutely integrable
functions [Example 2.26] led to an effective duration of 2a�1

and an effective bandwidth of ap.)
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The products of these measures of bandwidth and dur-

ation computed here are

DtDv ¼
ffiffiffi

2
p

2a
a ¼

ffiffiffi

2
p

2
>

1

2
,

as predicted by the bandwidth theorem for finite energy

functions.

2.3.6 Functions with Finite Duration

A function, f(t), has finite duration (with duration 2T) if there is a
0<T<1 such that

f (t) ¼ 0 whenever T < jtj:

The transform, F(v), of such a function is given by a proper

integral over a finite interval,

F(v) ¼
ð

T

�T

f (t)e�jvtdt: (2:73)

Any piecewise continuous function with finite duration is auto-

matically absolutely integrable and automatically has finite

energy, and, so, the discussions in Sections 2.3.2 through 2.3.5

apply to such functions. In addition, if f(t) is a piecewise continu-
ous function of finite duration (with duration 2T), then, for every
nonnegative integer, n, tnf(t) is also a piecewise continuous finite

duration function with duration 2T, and using identity 2.52,

F(n)(v) ¼ ^[(�jt)nf (t)]jv¼
ð

T

�T

(�jt)nf (t)e�jvtdt:

From the discussion in Section 2.3.2, it is apparent that the

transform of a piecewise continuous function with finite duration

must be classically differentiable up to any order, and that every

derivative is continuous.

It should be noted that the integral defining F(v) in formula

2.73 is, in fact, well defined for every complex v¼ xþ jy. It is not
difficult to show that the real and imaginary parts of F(xþ jy)
satisfy the Cauchy–Riemann equations of complex analysis (see

Appendix A). Thus, F(v) is an analytic function on both the real

line and the complex plane. As a consequence, it follows that the

transform of a finite duration function cannot vanish (or be any

constant value) over any nontrivial subinterval of the real line. In

particular, no function of finite duration can also be band limited

(see Section 2.3.7).

Another important feature of finite duration functions is that

their transforms can be reconstructed using a discrete sampling

of the transforms. This is discussed more fully in Section 2.5.

2.3.7 Band-Limited Functions

Let f(t) be a function with Fourier transform F(v). The function,
f(t), is said to be band limited if there is a 0<V<1, such that

F(v) ¼ 0 whenever V < vj j:

The quantity 2 V is called the bandwidth of f(t).
By the near equivalence of the Fourier and inverse Fourier

transforms, it should be clear that f(t) satisfies properties analo-
gous to those satisfied by the transforms of finite duration func-

tions. In particular

f (t) ¼ 1

2p

ð

V

�V

F(v)e jvtdv, (2:74)

and, for any nonnegative integer, n, f (n)(t) is a well-defined

continuous function given by

f (n)(t) ¼ 1

2p

ð

V

�V

(jv)nF(v)e jvtdv:

Letting t¼ xþ jy in Equation 2.74, it is easily verified that f(xþ jy)
is a well-defined analytic function on both the real line and on the

entire complex plane. From this is follows that if f(t) is band

limited, then f(t) cannot vanish (or be any constant value) over

any nontrivial subinterval of the real line. Thus, no band-limited

function can also be of finite duration. This fact must be consid-

ered in many practical applications where it would be desirable

(but, as just noted, impossible) to assume that the functions of

interest are both band-limited and of finite duration.

Another most important feature of band-limited functions is

that they can reconstructed using a discrete sampling of their

values. This is discussed more thoroughly in Section 2.5.

2.3.8 Finite Power Functions

For a given function, f(t), the average autocorrelation function,

�rf (t), is defined by

�rf (t) ¼ lim
T!1

1

2T

ð

T

�T

f * (s)f (t þ s)ds, (2:75)

or, equivalently, by

�rf (t) ¼ lim
T!1

1

2T
fT (t) $ fT (t) (2:76)

where the $ denotes correlation (see Section 2.2.10), and fT(t) is
the truncation of f(t) at t¼�T,

2-20 Transforms and Applications Handbook



fT(t) ¼ f (t)pT(t) ¼
f (t), if �T � t � T

0, otherwise

�

: (2:77)

If �rf (t) is a well-defined function (or generalized function), then

f(t) is called a finite power function.

The power spectrum or power spectral density, P(v), of a

finite power function, f(t) is defined to be the Fourier transform

of its average autocorrelation,

P(v) ¼ ^[�rf (t)]
�

�

�

v
¼
ð

1

�1

�rf (t)e
�jvtdt: (2:78)

Using formula 2.76 for �rf (t) and recalling the Wiener–

Khintchine theorem (Section 2.2.10).

^[�rf (t)]
�

�

�

v
¼ lim

T!1
1

2T
^[fT(t) $ fT(t)]jv¼ lim

T!1
1

2T
FT (v)j j2

where FT(v) is the Fourier transform of fT(t),

FT(v) ¼
ð

1

�1

f (t)pT(t)e
�jvtdt ¼

ð

T

�T

f (t)e�jvtdt:

Thus, an alternate formula for the power spectrum is

P(v) ¼ lim
T!1

1

2T

ð

T

�T

f (t)e�jvtdt

�

�

�

�

�

�

�

�

�

�

�

�

2

: (2:79)

The average power in f(t) is defined to be

�rf (0) ¼ lim
T!1

1

2T

ð

T

�T

f (s)j j2ds: (2:80)

Because P(v) ¼ ^[�rf (t)]
�

�

�

v
, this is equivalent to

�rf (0) ¼ ^�1[P(v)]
�

�

0
¼ 1

2p

ð

1

�1

P(v)dv:

A number of properties of the average autocorrelation should be

noted. They are

1. �rf (t) is invariant under a shift in f(t), that is, if g(t)¼
f(t� t0), then �rg(t) ¼ �rf (t).

2. �rf (t) and j�rf (t)j each has a maximum value at t¼ 0.

3. (�rf (t))* ¼ �rf (�t). Thus, as is often the case, if f(t) is a real-
valued function, then �rf (t) is an even real-valued function.

As a consequence of the second property above, any function,

f(t), satisfying

lim
T!1

1

2T

ð

T

�T

f (s)j j2ds < 1

is a finite power function.

The three properties listed above are easily derived. For the first,

�rg(t) ¼ lim
T!1

1

2T

ð

T

�T

f * (s� t0)f (s� t0 þ t)ds

¼ lim
T!1

1

2T

ð

T�t0

�T�t0

f * (s)f (sþ t)ds

¼ lim
T!1

1

2T

ð

T

�T

f * (s)f (sþ t)ds

þ lim
T!1

1

2T

ð

T�t0

T

f * (s)f (sþ t)ds

þ lim
T!1

1

2T

ð

�T

�T�t0

f * (s)f (sþ t)ds:

The first limit in the last line above equals �rf (t) while the other
limits, involving integrals over intervals of fixed bounded length,

must vanish.

From an application of the Schwarz inequality,

ð

T

�T

f * (s)f (sþ t)ds

�

�

�

�

�

�

�

�

�

�

�

�

2

�
ð

T

�T

f * (s)j j2ds
ð

T

�T

f (sþ t)j j2ds,

it follows, after taking the limit, that

j�rf (t)j2 � j�rf (0)j2:

Hence, at t¼ 0, j�rf (t)j has a maximum (as does �rf (t), because

�rf (0) ¼ j�rf (0)j).
Finally, using the substitution s¼ sþ t,

(�rf (t)) ¼ lim
T!1

1

2T

ð

T

�T

f * (s)f (t þ s)ds

0

@

1

A

¼ lim
T!1

1

2T

ð

T

�T

f (s)f * (t þ s)ds

¼ lim
T!1

1

2T

ð

T

�T

f (s� t)f * (s)ds

¼ �rf (�t):

If f(t) is a finite energy function, then, trivially, it is also a finite

power function (with zero average power). Nontrivial examples of

finite power functions include periodic functions, nearly periodic
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functions, constants, and step functions. Finite energy functions

also play a significant role in signal-processing problems dealing

with noise.

Example 2.28

Consider the step function,

u(t) ¼ 0, if t < 0

1, if 0 < t

�

:

For 0� t,

�ru(t) ¼ lim
T!1

1

2T

ð

T

�T

u(s)u(sþ t)ds

¼ lim
T!1

1

2T

ð

T

0

ds

¼ 1

2
:

Because the step function is a real function, its average auto-

correlation function must be an even function. Thus, for all t,

�ru(t) ¼
1

2
,

showing that the step function is a finite power function. Its

average power, �ru(0), is equal to 1=2, and its power spectrum is

P(v) ¼ ^
1

2

� ��

�

�

�

v

¼ pd(v):

Example 2.29

Consider now the function

f (t) ¼ 0, if t � 0

sin t, if 0 � t

�

:

For 0� t,

�rf (t) ¼ lim
T!1

1

2T

ð

T

�T

f (s)f (sþ t)ds

¼ lim
T!1

1

2T

ð

T

0

sin (s) sin (sþ t)ds

¼ lim
T!1

1

2T

ð

T

0

sin (s)[ sin (s) cos (t)þ cos (s) sin (t)]ds

¼ lim
T!1

1

2T

ð

T

0

cos (t)

ð

T

0

sin2 (s)dsþ sin (t)

ð

T

0

sin (s) cos (s)ds

¼ lim
T!1

1

2T
cos (t)

T

2
� sin (2T )

4

 �

� sin (t)
sin2 (T )

2

� �

¼ 1

4
cos (t):

Because �rf (t) is even,

�rf (t) ¼
1

4
cos (t)

for all t. The average power is

�rf (0) ¼
1

4
,

and the power spectrum is

P(v) ¼ ^
1

4
cos (t)

� ��

�

�

�

v

¼ p

4
[d(v� 1)þ d(vþ 1)]:

2.3.9 Periodic Functions

Let 0< p<1. A function, f(t), is periodic (with period p) if

f (t þ p) ¼ f (t)

for every real value of t. The Fourier series, FS[ f ], for such a

function is given by

FS[ f ]jt¼
X

1

n¼�1
cne

jnDvt , (2:81)

where

Dv ¼ 2p

p

and, for each n,

cn ¼
1

p

ð

period

f (t)e�jnDvtdt: (2:82)

(Because of the periodicity of the integrand, the integral in

formula 2.82 can be evaluated over any interval of length p.)
As long as f(t) is at least piecewise smooth, its Fourier series

will converge, and at every value of t at which f(t) is continuous,

f (t) ¼
X

1

n¼�1
cne

jnDvt :

At points where f(t) has a ‘‘jump’’ discontinuity, the Fourier

series converges to the midpoint of the jump. In any immediate

neighborhood of a jump discontinuity any finite partial sum of

the Fourier series,

X

N

n¼�N

cne
jnDvt ,
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will oscillate wildly and will, at points, significantly over-

and undershoot the actual value of f(t) (‘‘Ringing’’ or Gibbs

phenomena).

Because periodic functions are not at all integrable over the

entire real line, the standard integral formula, formula 2.1, cannot

be used to find the Fourier transform of f(t). Using the generalized
theory, however, it can be shown that as generalized functions.

f (t) ¼
X

1

n¼�1
cne

jnDvt (2:83)

and that the Fourier transform of f(t) is given by

F(v) ¼ ^
X

1

n¼�1
cne

jnDvt

" #�

�

�

�

�

v

¼
X

1

n¼�1
cn^[e jnDvt]

�

�

v

¼
X

1

n¼�1
cn2pd(v� nDv):

It should be noted that F(v) is a regular array of delta functions

with spacing inversely proportional to the period of f(t) (see

Section 2.3.10).

If f(t) is periodic (with period p), then f(t) is a finite power

function (but is not, unless f(t) is the zero function, a finite energy
function). The average autocorrelation, �rf (t), will also be peri-

odic and have period p. Formula 2.75 reduces to

�rf (t) ¼
1

p

ð

period

f * (s)f (sþ t)ds: (2:84)

Because �rf (t) is periodic, it can also be expanded as a Fourier

series,

�rf (t) ¼
X

1

n¼�1
ane

jnDvt , (2:85)

and the power spectrum is the regular array of delta functions,

P(v) ¼
X

1

n¼�1
an2pd(v� nDv):

A useful relation between the Fourier coefficients of �rf (t),

an ¼
1

p

ð

period

�rf (t)e
�jnDvtdt, (2:86)

and the Fourier coefficients of f(t),

cn ¼
1

p

ð

period

f (t)e�jnDvtdt, (2:87)

is easily derived. Inserting formula 2.84 for �rf (t) into formula

2.86, rearranging, and using the substitution t¼ sþ t,

an ¼
1

p

ð

period

1

p

ð

period

f * (s)f (sþ t)ds

2

6

4

3

7

5
e�jnDvtdt

¼ 1

p

ð

period

1

p
f * (s)

ð

period

f (sþ t)e�jnDvtdt

2

6

4

3

7

5
ds

¼ 1

p

ð

period

1

p
f * (s)

ð

period

f (t)e�jnDv(t�s)dt

2

6

4

3

7

5
ds

¼ 1

p

ð

period

f * (s)e jnDvsds

2

6

4

3

7

5

1

p

ð

period

f (t)e�jnDvtdt

2

6

4

3

7

5

¼ cn*cn:

Thus, an¼ jcnj2.
In summary, if f(t) is periodic with period p, then so is its

average autocorrelation function, �rf (t): Moreover (as generalized

functions)

f (t) ¼
X

1

n¼�1
cne

jnDvt, (2:88)

F(v) ¼ 2p
X

1

n¼�1
cnd(v� nDv), (2:89)

�rf (t) ¼
X

1

n¼�1
cnj j2e jnDvt , (2:90)

and

P(v) ¼ 2p
X

1

n¼�1
cnj j2d(v� nDv), (2:91)

where F(v) is the Fourier transform of f(t), P(v) is the power

spectrum of f(t),

Dv ¼ 2p

p
, (2:92)

and, for each n,

cn ¼
1

p

ð

period

f (t)e�jnDvtdt: (2:93)

Analogous formulas are valid if G(v) is a periodic function with

period P. In particular, its inverse transform is

g(t) ¼
X

1

k¼�1
Ckd(t � kDt), (2:94)
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where

Dt ¼ 2p

p

and, for each k,

Ck ¼
1

p

ð

period

G(v)e jkDtvdv:

Again, because of periodicity, the integral can be evaluated over

any interval of length P.

Example 2.30 Fourier Series and Transform

of a Periodic Function

Consider the ‘‘saw’’ function,

saw(t) ¼ t, if �1 � t < 1

saw(tþ 2), for all t

�

The graph of this saw function is sketched in Figure 2.4. Here,

because the period is p¼ 2, formula 2.92 becomes

Dv ¼ 2p

p
¼ p,

and formula 2.93 becomes

cn ¼
1

2

ð

1

�1

te�jnptdt ¼
0, if n ¼ 0

(�1)n
j

np
, if n ¼ �1, �2, �3, . . .

8

<

:

:

Using Equations 2.88 and 2.90,

saw(t) ¼
X

1

n¼�1
n 6¼0

(�1)n
j

np
e jnpt

and

^ saw(t)½ �jv¼ j
X

1

n¼�1
n6¼0

(�1)n
2

n
d(v� np):

The graph of the Nth partial sum approximation to saw(t),

X

1

n¼�1
n6¼0

(�1)n
j

np
e jnpt ,

is sketched in Figure 2.5 (with N¼ 20), and the graph of the

imaginary part of ^[saw(t)]jv is sketched in Figure 2.6.

The Gibbs phenomenon is evident in Figure 2.5. Formulas

2.90 and 2.91 for the autocorrelation function, �rsaw(t), and
the power spectrum, P(v), yield

�rsaw(t) ¼
1

p2

X

1

n¼�1
n6¼0

1

n2
e jnpt

and

P(v) ¼ 2

p

X

1

n¼�1
n 6¼0

1

n2
d(v� np):

2.3.10 Regular Arrays of Delta Functions

Let Dx> 0. A function f(x) is called a regular array of delta

functions (with spacing Dx) if

f(x) ¼
X

1

n¼�1
fnd(x � nDx),

1

2 4–2

–1

t–1 1 3

FIGURE 2.4 The saw function.

1

2 4–2 t–1

–1

1 3

FIGURE 2.5 Partial sum of the saw function’s Fourier series.

1

–1

–2

–2π –π π 2π 3π 4π

2

ω

FIGURE 2.6 Fourier transform of the saw function (imaginary part).
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where the fn’s denote fixed values. Such arrays arise in sampling

and as transforms of periodic functions. They are also useful in

describing discrete probability distributions (see Examples 2.32

and 2.33 below).

Example 2.31

The transform of the saw function from Example 2.30,

^ saw(t)½ �jv¼ j
X

1

n¼�1
n6¼0

(�1)n
2

n
d(v� np),

is a regular array of delta functions with spacing Dv¼p.
Let f(t) be a function with Fourier transform F(v). A straight-

forward extension and restatement of the results in Section 2.3.9

is that f(t) is periodic if and only if F(v) is a regular array of delta
functions. The period, p, of f(t), and the spacing, Dv, of F(v) are

related by

pDv ¼ 2p:

Moreover,

f (t) ¼ 1

2p

X

1

n¼�1
Fne

jnDvt

and

F(v) ¼
X

1

n¼�1
Fnd(v� nDv),

where, for each n,

Fn ¼
2p

p

ð

period

f (t)e�jnDvtdt: (2:95)

Conversely, if g(t) is a function with Fourier transform

G(v) then g(t) is a regular array of delta functions if and only

if G(v) is periodic. The spacing of g(t), Dt, and the period of

G(v), P, are related by

pDt ¼ 2p:

Moreover,

g(t) ¼
X

1

k¼�1
gkd(t � kDt)

and

G(v) ¼
X

1

k¼�1
g�ke

jkDtv ,

where, for each k,

gk ¼
1

P

ð

period

G(v)e jkDtvdv:

Example 2.32

For any l> 0, the corresponding Poisson probability distribu-

tion is given by

fl(t) ¼ e�l
X

1

n¼0

ln

n!
d(t � n):

Its Fourier transform, cl(v), is given by

cl(v) ¼ e�l
X

1

n¼0

ln

n!
e�jnv:

Recalling the Taylor series for the exponential,

cl(v) ¼ e�l
X

1

n¼0

1

n
(le�jv)n

¼ e�lele
�jv

¼ e�l(1�cosvþ j sinv) ,

which is clearly a periodic function with period P¼ 2p. It can

also be seen that the amplitude. A(v), and the phase, Q(v), of
cl(v) are given by

A(v) ¼ e�l(1�cosv) and Q(v) ¼ �l sin v:

Example 2.33

For any nonnegative integer, n, and 0� p� 1, the correspond-

ing binomial probability distribution is given by

bn, p(t) ¼
X

n

k¼0

n

k

 �

pkqn�kd(t � k)

where q¼ 1� p. The Fourier transform of bn, p is given by

Bn, p(v) ¼
X

1

n¼0

n

k

 �

pkqn�ke�jkv ¼
X

1

k¼0

n

k

 �

(pe�jv)kqn�k:

By the binomial theorem, this can be rewritten as

Bn, p(v) ¼ (pe�jv þ q)n ,

which is clearly periodic with period P¼ 2p.
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A regular array of delta functions,

g(t) ¼
X

1

k¼�1
gkd(t � kDt),

cannot be a finite energy function (unless all the gk’s vanish), but,
if the gk’s are bounded, can be treated as a finite power function

with average autocorrelation function, �rg(t), and power spec-

trum, P(v), given by

�rg(t) ¼
X

1

k¼�1
Akd(t � kDt)

and

P(v) ¼
X

1

k¼�1
Ake

�jkDtv,

where

Ak ¼ lim
M!1

1

2MDt

X

M

m¼�M
gm* gmþk:

It should be noted, however, that if

X

1

m¼�1
gmj j2<1,

then the Ak’s will all be zero.

2.3.11 Periodic Arrays of Delta Functions

Regular periodic arrays of delta functions are of considerable

importance because the formulas for the discrete Fourier trans-

forms can be based directly on formulas derived in computing

transforms of regular arrays that are also periodic. For an array

with spacing Dx,

f(x) ¼
X

1

k¼�1
fkd(x � kDx),

to also be periodic with period p,

f(x þ p) ¼ f(x),

it is necessary that there be a positive integer, N, called the index

period, such that

fkþN ¼ fk for all k:

The index period, spacing, and period of f(x) are related by

period of f(x) ¼ (index period of f(x))	 (spacing of f(x)):

Example 2.34

The regular periodic array,

f (t) ¼
X

1

k¼�1
fkd(t � kDt),

with spacing Dt¼ 1=2, index period N¼ 4, and ( f0, f1, f2, f3)¼
(1, 2, 3, 3), is sketched in Figure 2.7. Note that f4¼ f0, f5¼ f1, . . . ,

and that the period of f(t) is 4Dt¼ 2.

Let

f (t) ¼
X

1

k¼�1
fkd(t � kDt)

be a regular periodic array with spacing Dt, index period N,

and period p¼NDt. From the discussion in Section 2.3.10 on

regular arrays, it is evident that the Fourier transform of f(t) is

also a regular periodic array of delta functions.

F(v) ¼
X

1

n¼�1
Fnd(v� nDv): (2:96)

Also, f(t) can be expressed as a corresponding Fourier series,

f (t) ¼ 1

2p

X

1

n¼�1
Fne

jnDvt: (2:97)

The spacing, Dv, and period, P, of F(v) are related to the

spacing, Dt, and period, p, of f(t) by

Dv ¼ 2p

p
and P ¼ 2p

Dt
:

The index period, M, of F(v) is given by

M ¼ P

Dv
¼ (2p=Dt)

(2p=p)
¼ p

Dt
¼ N:

Using Equation 2.95,

Fn ¼
2p

p

ð

p�Dt
2

t¼�Dt
2

X

1

k¼�1
fkd(t� kDt)

 !

e�jnDvt dt: (2:98)

1

–1.5 –1 –0.5 0.5 1 1.5 2 2.5 3.5
t

3

2

3

FIGURE 2.7 A regular periodic array of delta functions.
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But, as is easily verified,

ð

p�Dt
2

t¼�Dt
2

d(t � kDt)e�jnDvtdt ¼ e�jnkDvDt , if 0 � k � N � 1

0, otherwise

�

,

and

DvDt ¼ 2pDt

p
¼ 2p

N
:

Thus, Equation 2.98 reduces to

Fn ¼
2p

NDt

X

N�1

k¼0

fke
�j2p

N
nk: (2:99)

A similar set of calculations yields the inverse relation,

fk ¼
1

NDv

X

N�1

n¼0

Fne
j2pN kn: (2:100)

Formulas for the autocorrelation function, �rf (t), and the

power spectrum, P(v), follow immediately from the above

and the discussion in Sections 2.3.9 and 2.3.10. They are

�rf (t) ¼
X

1

k¼�1
Akd(t � kDt), (2:101)

where

Ak ¼
1

NDt

X

N�1

m¼0

fm*fmþk , (2:102)

and

P(v) ¼ 1

2p

X

1

n¼�1
Fnj j2d(v� nDv): (2:103)

Example 2.35 The Comb Function

For each Dx> 0, the corresponding comb function is

combDx (x) ¼
X

1

k¼�1
d(x � kDx):

With index period N¼ 1 and with the spacing equal to the

period, the comb function is the simplest possible nonzero

regular period array. By the above discussion,

F(v) ¼ ^[combDt(t)]jv

must also be a regular periodic array,

F(v) ¼
X

1

n¼�1
Fnd(v� nDv),

where

Dv ¼ 2p

Dt
:

Because the index period of F(v) must also be N¼ 1,

Fn ¼ F0 ¼
2p

Dt

X

0

k¼0

fke
�j2p

N
0�k ¼ Dv,

for all n. Combining the last few equations gives

^[combDt(t)]jv ¼
X

1

n¼�1
Dvd(v� nDv) ¼ Dv combDv(v),

where

Dv ¼ 2p

Dt
:

From formulas 2.101 through 2.103, the average correlation

function and the power spectrum for combDt(t) are given by

�r(t) ¼ 1

Dt

X

1

k¼�1
d(t � kDt) ¼ 1

Dt
combDt(t)

and

P(v) ¼ Dv

Dt

X

1

n¼�1
d(v� nDv) ¼ Dv

Dt
combDv(v):

In addition, using Equation 2.97, the comb function can be

expressed as a Fourier series,

combDt(t) ¼
Dv

2p

X

1

n¼�1
e jnDvt ¼ 1

Dt

X

1

n¼�1
e jnDvt:

2.3.12 Powers of Variables and Derivatives
of Delta Functions

In Example 2.4 it was shown that, for any real value of a,

^[e jat]jv ¼ 2pd(v� a):

Letting a¼ 0, this gives

^[1]jv ¼ 2pd(v),
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and, by symmetry or near equivalence,

^[d(t)]jv ¼ 1:

Now, let n be any nonnegative integer. Because, trivially, xn¼ xn � 1,
it immediately follows from an application of identities 2.50

through 2.53 that

^[tn]jv ¼ jn2pd(n)(v) (2:104)

^�1[vn]jt ¼ (�j)nd(n)(t), (2:105)

^[d(n)(t)]jv ¼ (jv)n, (2:106)

and

^�1[d(n)(v)]
�

�

t
¼ (�jt)n

2p
, (2:107)

where d(n)(x) is the nth (generalized) derivative of the delta

function.

2.3.13 Negative Powers and Step Functions

The basic relation between step functions and negative powers is

^[sgn(t)]jv¼ �j
2

v
, (2:108)

where sgn(t) is the signum function,

sgn(t) ¼ �1, if t < 0

þ1 if 0 < t

�

:

Because the step function,

u(t) ¼ 0, if t < 0

1, if 0 < t

�

,

can be written in terms of the signum function,

u(t) ¼ 1

2
[sgn(t)þ 1],

formula 2.108 is equivalent to

^[u(t)]jv ¼ pd(v)� j
1

v
: (2:109)

A number of useful formulas can be easily derived from Equa-

tions 2.108 and 2.109 with the aid of various identities from the

identities in Section 2.2. Some of these formulas are

^
1

t

� ��

�

�

�

v

¼ �jp sgn(v), (2:110)

^[t�n]jv ¼ �jp
(�jv)n�1

(n� 1)!
sgn(v), (2:111)

^[jtj]jv ¼ � 2

v2
, (2:112)

^[t�nsgn(t)]jv ¼ (�j)nþ1 2n

vnþ1
, (2:113)

^[ramp(t)]jv ¼ jpd0(v)� 1

v2
, (2:114)

and

^[tnu(t)]jv¼ jnpd(n)(v)þ n!
�j

v

 �nþ1

: (2:115)

In these formulas n denotes an arbitrary positive integer.

Derivations of formulas 2.108 and 2.109 are easily obtained.

One derivation starts with the observation that, for any a< 0,

u(t) ¼
ð

t

a

d(s)ds:

By identity 2.57, with f(t)¼ d(t) and F(v)¼^jd(t)]jv¼ 1,

^[u(t)]jv ¼ ^

ð

t

a

f (s)ds

2

4

3

5

�

�

�

�

�

�

v

¼ �j
F(v)

v
þ cd(v)

¼ �j
1

v
þ cd(v), (2:116)

where c is some constant. From this

^[sgn(t)]jv ¼ ^[2u(t)� 1]jv

¼ 2 �j
1

v
þ cd(v)

� �

� 2pd(v)

¼ �j
2

v
þ 2(c� p)d(v): (2:117)

Because sgn (t) is an odd function, so is ^[sgn(t)]jv and, hence,

so is the right-hand side of Equation 2.117. But, because the delta

function is even, this is possible only if c¼p. Plugging this only

possible choice for c into Equations 2.116 and 2.117 gives for-

mulas 2.108 and 2.109.

Example 2.36 Derivation of Formulas 2.112

and 2.113

Using identity 2.52,

^[tnsgn(t)]jv ¼ jn
dn

dvn
^[sgn(t)]jv

¼ jn
dn

dvn
�j

2

v

 �

¼ (�j)nþ1 2n!

vnþ1
:
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Using this and the observation that

jtj ¼ t sgn(t),

it immediately follows that

^[jtj]jv¼ ^[t sgn(t)]jv¼ (�j)1þ1 2(1!)
v1þ1 ¼ �

2

v2
:

One technical flaw in the above discussion should be noted. If

f(x) is any function continuous at x¼ 0, and n� 1, then, from a

strict mathematical point of view, the function x�nf(x) is not

integrable over any interval containing x¼ 0. Because of this, it is

not possible to define ^[t�n]jv or ^�1[v�n]jt via the classical

integral formulas. Neither is it possible for the function x�n to be

treated as a generalized function. However, the function ln jxj is
integrable over any finite interval and can be treated as a legit-

imate generalized function, as can any of its generalized deriva-

tives (as defined in Section 2.2.11). It is possible to justify

rigorously the formulas given in this section, as well as any

other standard use of x�n, by agreeing that x�1 is actually a

symbol for the generalized derivative of ln jxj, and that, more

generally, for any positive integer n, x�n is a symbol for

(�1)n�1

(n� 1)!

dn

dxn
ln jxj

where the derivatives are taken in the generalized sense as

described in Section 2.2.11.

2.3.14 Rational Functions

Rational functions often turn out to be the transforms of func-

tions of interest. The simplest nontrivial rational function is

given by

F(v) ¼ 1

(v� l)m
,

where

m is a positive integer

l is some complex constant

Using the elementary identities and the material from the previ-

ous section, it can be directly verified that

^�1 1

(v� l)m

� ��

�

�

�

t

¼ j
(jt)m�1

(m� 1)!
e jltGa(t) (2:118)

where a is the imaginary part of l and

Ga(t) ¼
u(t), if 0 < a
1

2
sgn(t), if a ¼ 0

�u(�t), if a < 0

8

>

<

>

:

:

More generally, if F(v) is any rational function, then F(v) can be

written

F(v) ¼ P(v)þ R(v),

Where P(v) is a polynomial,

P(v) ¼
X

N

n¼0

cnv
n,

and R(v) is the quotient of two polynomials.

R(v) ¼ N(v)

D(v)
,

in which the degree of the numerator is strictly less than the

degree of the denominator. According to formula 2.104, the

inverse transform of P(v) is simply a linear combination of

derivatives of delta functions.

^�1[P(v)]jt¼
X

N

n¼0

(�j)ncnd
(n)(t):

Letting l1,l2, . . . ,lK be the distinct roots of D(v) and

M1,M2, . . . ,MK the corresponding multiplicities of the roots,

R(v), can be written in the partial fraction expansion,

R(v) ¼
X

K

k¼1

X

Mk

m¼1

ak,m
(v� lk)

m :

Thus, applying formula 2.118,

^�1[R(v]jt¼ j
X

K

k¼1

e jlktGak (t)
X

Mk

m¼1

ak,m
(jt)m�1

(m� 1)!
, (2:119)

where, for each k, ak is the imaginary part of lk.

Fourier transforms of rational functions can be computed

using the same approach as just described for inverse transforms

of rational functions.

Example 2.37

Let

F(v) ¼ N(v)

D(v)
¼ 5vþ 9� 10j

v2 � 4jv� 13
:

Using the quadratic formula, the roots of D(v) are found to be

l ¼ 4j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(4j)2 þ 4(13)
p

2
¼ �3þ 2j:
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F(v) can then be expanded

F(v) ¼ 5vþ 9� 10j

v2 � 4jv� 13
¼ A

v� (3þ 2j)
þ B

v� (�3þ 2j)
:

Solving for A and B gives

F(v) ¼ 4

v� (3þ 2j)
þ 1

v� (�3þ 2j)
,

whose inverse transform can be computed directly from

formula 2.119,

f (t) ¼ j 4e j(3þ2j)tG2(t)þ e j(�3þ2j)tG2(t)
	 


¼ 4je(�2þ3j)tu(t)þ je(�2�3j)tu(t)

¼ j 4e j3t þ e�j3t
	 


e�2tu(t):

2.3.15 Causal Functions

A function, f(t), is said to be ‘‘causal’’ if

f (t) ¼ 0 whenever t < 0:

Such functions arise in the study of causal systems and are of

obvious importance in describing phenomena that have well-

defined ‘‘starting points.’’

Let f(t) be a real causal function with Fourier transform F(v),
and let R(v) and I(v) be the real and imaginary parts of F(v),

F(v) ¼ R(v)þ jI(v):

Then R(v) is even, I(v) is odd, and, provided the integrals are

suitably well defined,

f (t) ¼ 2

p

ð

1

0

R(v) cos(vt)dv for 0 < t, (2:120)

f (t) ¼ � 2

p

ð

1

0

I(v) sin(vt)dv for 0 < t, (2:121)

ð

1

0

f (t)j j2dt ¼ 1

p

ð

1

�1

R(v)j j2dv, (2:122)

and

ð

1

0

f (t)j j2dt ¼ 1

p

ð

1

�1

I(v)j j2dv, (2:123)

In addition, if f(t) is bounded at the origin, then provided the

integrals exist,

R(v) ¼ 1

p

ð

1

�1

I(s)

v� s
ds (2:124)

and

I(v) ¼ � 1

p

ð

1

�1

R(s)

v� s
ds: (2:125)

The last two integrals are Hilbert transforms and may be defined

using CPVs (see Section 2.1.6).

Conversely, it can be shown that R(v) and I(v) are real-valued
functions (with R(v) even and I(v) odd) satisfying either Equa-

tion 2.120 or Equation 2.125, then

f (t) ¼ ^�1[R(v)þ jI(v)]jt

must be a causal function.

Derivations of Equations 2.120 through 2.125 are quite

straightforward. First, observe that because f(t) vanishes for

negative values of t, then

f (t) ¼ 2fe(t) ¼ 2fo(t) for 0 < t,

where fe(t) and fo(t) are the even and odd components of f(t).
Equations 2.120 and 2.121 then follow immediately from Equa-

tions 2.69 and 2.70, while Equations 2.122 and 2.123 are simply

Bessel’s equality combined with equations from Section 2.3.1 and

the subsequent observation that

ð

1

0

f (t)j j2dt ¼ 4

ð

1

0

fe(t)j j2dt ¼ 2

ð

1

�1

fe(t)j j2dt ¼ 2

ð

1

�1

fo(t)j j2dt:

Finally, for Equation 2.124 observe that

fe(t) ¼ fo(t)sgn(t) and fo ¼ fe(t)sgn(t):

Thus, using results from Sections 2.3.1, 2.2.9, and 2.3.13,

R(v) ¼ ^[ fe(t)]jv
¼ ^[ fo(t)]sgn(t)jv

¼ 1

2p
^[ fo(t)]jv*^[sgn(t)jv

¼ 1

2p
jI(v)* �j 2

v

 �

¼ 1

p

ð

1

�1

I(s)

v� s
ds,

which is Equation 2.124. Similar computations yield Equa-

tion 2.125.
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Example 2.38

Assume f (t) is a causal function whose transform, F(v), has
real part

R(v) ¼ d(v� a)þ d(vþ a),

for some a> 0. Then, according to formula 2.120, for t> 0

f (t) ¼ 2

p

ð

1

0

[d(v� a)þ d(vþ a)] cos(vt)dv ¼ 2

p
cos(at),

and by formula 2.125,

I(v) ¼ � 1

p

ð

1

�1

[d(s� a)þ d(sþ a)]

v� s
ds

¼ � 1

p(v� a)
þ 1

p(vþ a)

� �

¼ 2v

v(a2 � v2)
:

Thus,

f (t) ¼ 2

p
cos (at)u(t)

and

F(v) ¼ d(v� a)þ d(vþ a)þ j
2v

p(a2 � v2)
:

2.3.16 Functions on the Half-Line

Strictly speaking, functions defined only on the half-line, 0< t<1,

do not have Fourier transforms. Fourier analysis in problems

involving such functions can be done by first extending the func-

tions (i.e., systematically defining the values of the functions at

negative values of t), and then taking the Fourier transforms of the

extensions. The choice of extension will depend on the problem at

hand and the preferences of the individual. Three of the most

commonly used extensions are the null extension, the even exten-

sion, and the odd extension. Given a function, f(t), defined only for
0< t, the null extension is

fnull(t) ¼
f (t), if 0 < t

0, if t < 0

�

,

The even extension is

feven(t) ¼
f (t), if 0 < t

f (�t), if t < 0

�

,

and the odd extension is

fodd(t) ¼
f (t), if 0 < t

�f (�t), if t < 0

�

:

If f(t) is reasonably well behaved (say, continuous and differenti-

able) on 0< t, then any of the above extensions will be similarly

well behaved on both 0< t and t< 0. At t¼ 0, however, the

extended functions is likely to have singularities that must

be taken into account, especially if transforms of the derivatives

are to be taken. It is recommended that the generalized derivative

be explicitly used. Assume, for example, that f(t) and its first two

derivatives are continuous on 0< t, and that the limits

f (0) ¼ lim
t!0þ

f (t) and f 0(0) ¼ lim
t!0þ

f 0(t)

exist. Let f̂ (t) be any of the above extensions of f(t), and, for
convenience, let df̂=dt and Df̂ denote, respectively, the classical

and generalized derivatives of f̂ (t). Recalling the relation between

the classical and generalized derivatives (see Section 2.2.11),

Df̂ ¼ df̂

dt
þ J0d(t)

and

D2 f̂ ¼ d2 f̂

dt2
þ J0d

0(t)þ J1d(t),

where J0 and J1 are the ‘‘jumps’’ in f̂ (t) and f̂ 0(t) at t¼ 0,

J0 ¼ lim
t!0þ

[̂ f (t)� f̂ (�t)]

and

J1 ¼ lim
t!0þ

[ f̂ 0(t)� f̂ 0(�t)]:

Computing these jumps for the extensions yield the following:

Dfnull ¼
dfnull
dt
þ f (0)d(t), (2:126)

D2fnull ¼
d2fnull
dt2

þ f (0)d0(t)þ f 0(0)d(t), (2:127)

Dfeven ¼
dfeven
dt

, (2:128)

D2feven ¼
d2feven
dt2

þ 2f 0(0)d(t), (2:129)

Dfodd ¼
dfodd
dt
þ 2f (0)d(t), (2:130)
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and

D2fodd ¼
d2fodd
dt2

þ 2f (0)d0(t): (2:131)

An example of the use of Fourier transforms in problems on the

half-line is given in Section 2.8.4. This example also illustrates

how the data in the problem determine the appropriate extension

for the problem.

2.3.17 Functions on Finite Intervals

If a function, f(t), is defined only on a finite interval, 0< t< L,
then it can be expanded into any of a number of ‘‘Fourier series’’

over the interval. These series equal f(t) over the interval but

are defined on the entire real line. Thus, each series corresponds

to a particular extension of f(t) to a function defined for all real

values of t, and, with care, Fourier analysis can be done using the

series in place of the original functions. Among the best known

‘‘Fourier series’’ for such functions are the sine series and the

cosine series.

The sine series for f(t) over 0< t< L is

S[ f ]jt¼
X

1

k¼1
bk sin

kpt

L

 �

,

where

bk ¼
2

L

ð

L

0

f (t) sin
kpt

L

 �

dt:

This series can be viewed as an odd periodic extension of f(t). The
Fourier transform of the sine series is

^ S [ f ]jt
	 
�

�

v
¼ jp

X

1

k¼1
bk d vþ kp

L

 �

� d w� kp

L

 �� �

¼
X

1

k¼�1
Bkd v� kp

L

 �

,

where

Bk ¼
�jpbk, if 0 < k

0, if k ¼ 0

jpb�k, if k < 0

8

<

:

:

The cosine series for f(t) over 0< t< L is

C [ f ]jt¼ a0 þ
X

1

k¼1
ak cos

kpt

L

 �

,

where

a0 ¼
1

L

ð

L

0

f (t)dt

and, for k 6¼ 0,

ak ¼
2

L

ð

L

0

f (t) cos
kpt

L

 �

dt:

This series can be viewed as an even periodic extension of f(t).
The Fourier transform of the cosine series is

^ C[ f ]½ jt



jv

¼ 2pa0d(v)þ p
X

1

k¼1
ak d v� kp

L

 �

þ d vþ kp

L

 �� �

¼
X

1

k¼�1
Akd v� kp

L

 �

,

where

Ak ¼
pak, if 0 < k

2pa0, if k ¼ 0

pa�k, if k < 0

8

<

:

The choice of which series to use depends strongly on the actual

problem at hand. For example, because the sine functions in the

sine series expansion vanish at t¼ 0 and t¼ L, sine series expan-
sions tend to be most useful when the functions of interest are to

vanish at both of the end points of the interval. For problems in

which the first derivatives are expected to vanish at both end

points, the cosine series tends to be a better choice. Other bound-

ary conditions suggest other choices for the appropriate Fourier

series. In addition, the equations to be satisfiedmust be considered

in choosing the series to be used. Unfortunately, the development

of a reasonably complete criteria for choosing the appropriate

‘‘Fourier series’’ in general goes beyond the scope of this chapter.

It is recommended that texts covering eigenfunction expansions

and Sturm–Liouville problems be consulted.*

2.3.18 Bessel Functions

2.3.18.1 Solutions to Bessel’s Equations

For v� 0, the vth-order Bessel equation can be written as

t2y00 þ ty0 þ (t2 � v2)y ¼ 0: (2:132)

* See, for example, Boyce and DiPrima (1977), Holland (1990), or Pinsky

(1991).
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‘‘Power series’’ solutions to this equation can be found using the

method of Frobenius. From these solutions, it can be shown that

the general real-valued solution to this equation on t> 0 is

y(t) ¼ c1Jv(t)þ c2y2(t)

where c1 and c2 are arbitrary real constants, Jv is the vth-order
Bessel function of the first kind (which is a bounded function),*

and y2 is any particular real-valued solution to the Bessel equa-

tion on t> 0 that is unbounded near t¼ 0.

Typically, one is most interested in the bounded function part

of the solution to Bessel’s equation, c1Jv.

2.3.18.2 Zero-Order Bessel Functions

For now let v¼ 0. Equation 2.132 then simplifies to

ty00 þ y0 þ ty ¼ 0 (2:133)

Its solution on t> 0 is

y(t) ¼ c1J0(t)þ c2y2(t)

It is easily verified that the power series formula for J0(t) actually
defines J0(t) as an even, analytic function on the entire real line,

and that J0(t) satisfies Equation 2.133 everywhere. It is also easily

verified from the series formula for y2(t) on t> 0 that y2(jtj) is an
even function satisfying Equation 2.133 for all nonzero values of t
and which behaves like ln jtj near t¼ 0. Consequently, we can

seek the Fourier transform of

y(t) ¼ c1J0(t)þ c2y2( tj j) (2:134)

for any pair c1 and c2 by treating J0(t) and y2(jtj) as even, real-
valued solutions to the Bessel equation of order zero on the

real line.

Taking the Fourier transform of Equation 2.133 and using the

differential identities of Section 2.2.11 results in the first-order

linear equation

(1� v2)Y 0(v)� vY(v) ¼ 0 (2:135)

where Y¼^[y]. The general classical solution to this equation is

easily obtained via standard methods for linear, first-order dif-

ferential equations. Taking into account the possible discontinu-

ities at v¼�1, this general solution is given by

Y(v) ¼
A(v2 � 1)�

1
2 if v < �1

B(1� v2)�
1
2 if �1 < v < 1

C(v2 � 1)�
1
2 if 1 < v

8

>

>

<

>

>

:

(2:136)

where A, B, and C are ‘‘arbitrary’’ constants. However, here Y(v)
must be even and real valued since it is the Fourier transform of

an even, real-valued function. This forces A, B, and C to be real

constants with A¼C. Thus,

Y(v) ¼
B(1� v2)�

1
2 if vj j < 1

C(v2 � 1)�
1
2 if 1 < vj j

8

<

:

,

or, equivalently,

Y(v) ¼ BY1(v)þ CY2(v)

where

Y1(v) ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

and

Y2(v) ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p [1� p1(v)]:

The function Y1(v) is absolutely integrable in addition to being

real valued and even. Consequently, ^�1[Y1] is a bounded, real-

valued, even function to Bessel’s equation of order zero. Thus.

^�1[Y1(v)]jt¼ c1J0(t)

for some nonzero constant c1. Conversely, then, there must be a

value B0 such that J0¼B0^
�1[Y1]. To find this value, first recall

that J0(0)¼ 1 (see Chapter 1) and that, by elementary calculus,

^�1[Y1(v)]j0¼
1

2p

ð

1

�1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p dv ¼ 1

2
:

Thus,

1 ¼ J0(0) ¼ B0^
�1[Y1(v)]j0¼

B0

2
,

which, in turn, means that B0¼ 2,

J0(t) ¼ ^�1[2Y1(v)]jt¼ ^�1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

� ��

�

�

�

t

, (2:137)

and

^[J0(t)]jv¼ 2Y1(v)
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v): (2:138)

* An overview of Bessel functions of the first kind is given in Chapter 1.
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The function Y2(v) is not absolutely integrable, but it is the sum

of a function that is absolutely integrable,

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p [1� p1(v)]p2(v),

with a function that is square integrable,

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p [1� p1(v)] [1� p2(v)]:

From this it follows that Y2 is Fourier transformable in the more

general sense described in Section 2.1.3 and that its inverse trans-

form is a function in the classical sense. The inverse transform of

this function can be used for y2, the unbounded part of Equation

2.134. A more standard choice, however, is to use y2¼Y0 where

Y0(t) ¼ ^�1[�2Y2(v)]jt¼ ^�1
�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p [1� p1(v)]

� ��

�

�

�

t

for t > 0:

This, Y0, is the zeroth-order Bessel function of the second kind.

2.3.18.3 Integral Order Bessel Functions

As with J0, the series formula for each integral order Bessel func-

tion of the first kind Jn actually defines Jn as a bounded analytic

function on the entire real line whenever n is any positive integer.

Consequently, Fourier transforms for these Bessel functions

exist and are well defined using, at least, the more general defin-

itions of Section 2.1.3. The formulas for these transforms can be

obtained using the above formula for ^[ J0], the differentiation

identities, and well-known recursion formulas for the Bessel func-

tions (again, see Chapter 1).

In particular, since

J1(t) ¼ �J 00(t),

we have

^[ J1(t)]jv¼ �^[ J 00(t)]
�

�

v
¼ �jv^[ J0(t)]jv:

Combined with Equation 2.138, this gives

^[ J1(t)]jv¼
�2jv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v): (2:139)

The Fourier transforms of J2(t), J3(t), . . . can be obtained in a

similar fashion using formulas 2.138 and 2.139, a differentiation

identity, and the recursion formulas

Jnþ1(t) ¼ Jn�1(t)� 2J 0n(t):

The results of these computations can be succinctly described by

the formulas

^[ Jm(t)]jv¼
2 cos [m arcsin(v)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v) for m ¼ 0, 2, 4, . . .

and

^[Jm(t)]jv¼
�2j sin [m arcsin(v)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v) for m ¼ 1, 3, 5, . . .

They can be described even more succinctly by

^[Jn(t)]jv¼
2(�j)nTn(v)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v) for n ¼ 0, 1, 2, 3, . . .

where Tn is the nth Chebyshev polynomial of the first kind.

The derivation of another useful set of identities starts with the

observation that

�2jv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v) ¼ 2j

d

dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v)
h i

:

Combining this with Equation 2.139

J1(t) ¼ ^�1
�2jv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

� ��

�

�

�

t

¼ 2j^�1
d

dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v)
h i

� ��

�

�

�

t

¼ 2j �jt^�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v)
h i�

�

�

t

� �

¼ 2t^�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v)
h i�

�

�

t

:

Dividing by t (which is valid since J1(t) 
 t
2
when t
 0) then

yields

t�1J1(t) ¼ ^�1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v)
h i�

�

�

t
:

Equivalently,

^[t�1J1(t)]
�

�

v
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

p1(v):

Continuing these computations eventually leads to the equivalent

identities

t�nJn(t) ¼ ^�1 2(1� v2)n�
1
2

1 � 3 � 5 � � � (2n� 1)
p1(v)

" #�

�

�

�

�

t

(2:140)

and

^ t�nJn(t)½ �jv¼
2(1� v2)n�

1
2

1 � 3 � 5 � � � (2n� 1)
p1(v): (2:141)

These identities are valid for nonnegative, integral values of n
(and reduce to Equations 2.137 and 2.138 when n¼ 0).
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2.3.18.4 Nonintegral Order Bessel Functions

Solving Equation 2.140 for Jn(t) and using the fact that, in terms

of the gamma function,

1 � 3 � 5 � � � (2n� 1) ¼ 2n
ffiffiffiffi

p
p G nþ 1

2

 �

results in the following formulas:

Jn(t) ¼ Ant
n^�1 (1� v2)n�

1
2p1(v)

h i�

�

�

t
(2:142)

where

An ¼
21�n ffiffiffiffi

p
p

G nþ 1
2

� � �

This formula for Jn was obtained assuming n is any nonnegative

integer. However, for t> 0, the right-hand side of Equation 2.142

remains well defined when n is any real value greater than �1=2.

Moreover, through straightforward but somewhat tedious com-

putations, it can be verified that the formula on the right-hand

side of Equation 2.142 satisfies Bessel’s equation of order jnj on
t> 0, and is asymptotically identical to Jn(t) when t! 0 þ. It thus

follows that, for any m>�1=2,

Jm(t) ¼ Amt
m^�1 (1� v2)m�

1
2p1(v)

h i�

�

�

t

where

Am ¼ 21�m
ffiffiffiffi

p
p

G mþ 1
2

� � �

Consequently, since v2 and p1(v) are even functions,

^�1 (1� v2)m�
1
2p1(v)

h i�

�

�

t
¼ G mþ 1

2

� �

2
ffiffiffiffi

p
p 2

tj j

 �m

Jm( tj j),

and, by near-equivalence,

^ (1� t2)m�
1
2p1(t)

h i�

�

�

v
¼ G mþ 1

2

 �

ffiffiffiffi

p
p 2

vj j

 �m

Jm( vj j),

whenever m>�1=2.

2.4 Extensions of the Fourier Transform
and Other Closely Related
Transforms

A number of applications call for transforms that are closely

related to the Fourier transform. This section presents a brief

survey and development of some of the transforms having a

particularly close relation to the Fourier transform. Many of

them, in fact, can be viewed as natural modifications or direct

extensions of the transforms defined and developed in the pre-

vious sections, or else are special cases of these modifications and

extensions.

2.4.1 Multidimensional Fourier Transforms

The extension of Fourier analysis to handle functions of more

than one variable is quite straightforward. Assuming the func-

tions are suitably integrable, the Fourier transform of f(x, y) is

F(v, n) ¼
ð

1

�1

ð

1

�1

f (x, y)e�j(vxþny)dx dy

and the Fourier transform of f(x, y, z) is

F(v, n,m) ¼
ð

1

�1

ð

1

�1

ð

1

�1

f (x, y, z)e�j(vxþnyþmz)dx dy dz:

More generally, using vector notation with t¼ (t1, t2, . . . , tn) and
v¼ (v1,v2, . . . ,vn), the ‘‘n-dimensional Fourier transform’’ is

defined by

^ [f (t)]jv¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f (t)e�jv�tdt1dt2 . . . dtn, (2:143)

assuming f(t) is sufficiently integrable. The inverse n-dimensional

Fourier inverse transform given by

^[F(v)]jt¼ (2p)�n

ð

1

�1

	
ð

1

�1

� � �
ð

1

�1

F(v)e�jv�tdv1dv2 . . . dvn, (2:144)

provided F(v) is suitably integrable.

For many functions of t and v that are not suitably integrable,

the generalized n-dimensional Fourier and inverse Fourier trans-

forms can be defined using the n-dimensional analogs of the rapidly

decreasing test functions described in Sections 2.1.3 and 2.1.4.

Analogs to the identities discussed in Section 2.2. can be easily

derived for the n-dimensional transforms. In particular, ^ and

^�1 are inverses of each other, that is,

F(v) ¼ ^ [f (t)]jv, ^�1[F(v)]jt¼ f (t):

The near equivalence (or symmetry) relations for the

n-dimensional transforms are

^�1[f(x)]jy¼ (2p)�n^[f(�x)]jy¼ (2p)�n^[f(x)]�y
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and

^[f(�x)]jy¼ (2p)n^�1[f(�x)]jy¼ (2p)n^�1[f(�x)]j�y

An abbreviated listing of identities for the n-dimensional

transforms are given in Table 2.2. In this table, f(x) *c(x) and

f(x)$c(x) denote the n-dimensional convolution and correlation,

f(x) *c(x) ¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f(s)c(x � s)ds1ds2 . . . dsn

and

f(x) $c(x) ¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f * (s)c(x þ s)ds1ds2 . . . dsn:

There is one particularly useful n-dimensional identity that does

not have a direct analog to the identities given in Section 2.2

(though it can be viewed as a generalization of the scaling

formula). If A is a real, invertible, n3 n matrix and F(v)¼
^[ f(t)]jv, then

^ [f (tA)]jv¼
1

Aj j F(vA�T) (2:145)

where jAj is the determinant of A and A�T is the inverse of

the transpose of A (equivalently A�T is the transpose of the

inverse of A),

A�T ¼ (AT)�1 ¼ (A�1)T:

Likewise if f(t)¼^�1[F(v)]jt, then

^�1[F(vA)]jt¼
1

Aj j f (tA
�T): (2:146)

The derivation of either of these identities is relatively simple.

Lettings s¼ tA and recalling the change of variables formula for

multiple integrals,

^ [ f (tA)]jv ¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f (tA)e�jv�tdt1dt2 . . . dtn

¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f (s)e�jv(sA�1)

	 q(t1, t2, . . . , tn)

q(s1, s2, . . . , sn)

�

�

�

�

�

�

�

�

ds1ds2 . . . dsn: (2:147)

Now

qsi
qtj

¼ Aj,i

and, so, the Jacobian in Equation 2.147 is

q(t1, t2, . . . , tn)

q(s1, s2, . . . , sn)

�

�

�

�

�

�

�

�

¼ q(s1, s2, . . . , sn)

q(t1, t2, . . . , tn)

�

�

�

�

�

�

�

�

�1

¼ 1

Aj j :

From linear algebra and the definition of the transpose

v � (sA�1) ¼ (v(A�1)T) � s ¼ (vA�T) � s:

Thus, Equation 2.147 can be written

^ [f (tA)]jv ¼
ð

1

�1

ð

1

�1

� � �
ð

1

�1

f (s)e�j(vA�T)�s 1

Aj j ds1ds2 . . . dsn

¼ 1

Aj j F(vA�T):

An example of how Equation 2.145 can be used to compute

transforms will be given in Section 2.4.2.

2.4.2 Multidimensional Transforms
of Separable Functions

A function of two variables, f (x, y), is separable if it can be written

as the product of two single variable functions.

f (x, y) ¼ f1(x) f2(y): (2:148)

The transform of such a function is easily computed provided

F1(v)¼^[ f1(x)]jv and F2(n)¼^[ f2(y)]jn are known. Then

F(v, n) ¼ ^ [f (x, y)]j(v, n)

¼
ð

1

�1

ð

1

�1

f1(x)f2(y)e
�j(vxþny)dxdy

¼
ð

1

�1

f1(x)e
�jvxdx

ð

1

�1

f2(y)e
�jnydy

¼ F1(v)F2(n):

TABLE 2.2 Identities for Multidimensional

Transforms

h(t) H(v)¼^[h(t)]jv
f(at)

1

aj j F
v

a

� �

f(tA)
1

Aj j F(vA
�T)

f(t� t0) e�jt0 �vF(v)

ejv0 �t f (t) F(v�v0)
qf

qtk
jvkF(v)

tk f(t) j
qF

qvk

f(t)g(t) (2p)�n F(v) *G(v)

f(t) * g(t) F(v)G(v)

f(t) $ g(t) F*(v)G(v)

f *(t)g(t) (2p)�n F(v) $G(v)

Note: a is any nonzero real number, t0 and

v0 are fixed n-dimensional points, and F(v)¼
^[ f(t)]jv and G(v)¼^[ g(t)]jv.
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More generally, f (t) is said to be separable if there are n functions

of a single variable, f1(t1), f2(t2), . . . , fn(tn), such that

f (t1, t2, . . . , tn) ¼ f1(t1)f2(t2) � � � fn(tn): (2:149)

The Fourier transform of such a function is another separable

function

F(v1,v2, . . . ,vn) ¼ F1(v1)F2(v2) � � � Fn(vn)

where, for each k, Fk(vk) is the one-dimensional Fourier trans-

form of fk(tk).
Likewise, if

F(v1,v2, . . . ,vn) ¼ F1(v1)F2(v2) � � � Fn(vn),

then the n-dimensional inverse Fourier transform is

f (t1, t2, . . . , tn) ¼ f1(t1)f2(t2) � � � fn(tn)

where, for each k, fk(tk) is the one-dimensional inverse Fourier

transform of Fk(vk).

Example 2.39

The two-dimensional rectangular aperture function (with half-

widths a and b) is

ha,b(x, y) ¼
1, if xj j < a and yj j < b

0, if a < xj j or b < yj j

�

or, equivalently,

ha,b(x, y) ¼ pa(x)pb(y):

Its Fourier transform is

Na,b(v, n) ¼
ð

1

�1

ð

1

�1

ha,b(x, y)e
�j(vxþny)dxdy

¼
ð

1

�1

pa(x)e
�jvxdx

ð

1

�1

pb(y)e
�jnydy

¼ 2 sin (av)

v

 �

2 sin (bn)

v

 �

¼ 4

vn
sin (av) sin (bn):

Example 2.40

The three-dimensional delta function, d(x, y, z) is defined as the

generalized function such that if f(x, y, z) is any function of

three variables continuous at the origin,

ð

1

�1

ð

1

�1

ð

1

�1

d(x, y, z)f(x, y, z)dx dy dz ¼ f(0, 0, 0):

Because

ð

1

�1

ð

1

�1

ð

1

�1

d(x)d(y)d(z)f(x, y, z)dx dy dz

¼
ð

1

�1

d(z)

ð

1

�1

d(y)

ð

1

�1

d(x)f(x, y, z)dx dy dz

¼
ð

1

�1

d(z)

ð

1

�1

d(y)f(0, y, z)dy dz

¼
ð

1

�1

d(z)f(0, 0, z)dz

¼ f(0, 0, 0),

it is clear that

d(x, y, z) ¼ d(x)d(y)d(z)

and

^[d(x, y, z)]j(v,n,m) ¼ ^[d(x)]jv^[d(y)]jn^[d(z)]jm ¼ 1 � 1 � 1 ¼ 1:

In using formulas 2.148 or 2.149 care must be taken to account

for all the variables especially if the function depends explicitly

on only a small subset of the variables. This can be done by

including on the right-hand side of Equation 2.148 or Equa-

tion 2.149 the unit constant function,

1(s) ¼ 1 for all s,

for each variable, s, not explicitly involved in the computation

of the function.

Example 2.41

The vertical slit aperture of half width a is the function of two

variables given by

vslita(x, y) ¼
1, if xj j < a

0, if a < xj j

�

or, equivalently,

vslita(x, y) ¼ pa(x) ¼ Pa(x)1(y):

Its Fourier transform is given by

^ vslita(x, y)½ �j(v, n)¼ ^ pa(x)½ �jv^[1]jn¼
2

v
sin (av) � 2pd(n)

and not by

^ vslita(x, y)½ �j(v,n)¼ ^ pa(x)½ �jv¼
2

v
sin (av):
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Example 2.42

The three-dimensional vertical line source function is

l(x, y, z) ¼ d(z):

Its Fourier transform is

^[l(x, y, z)]j(v,n,m)¼ ^[1(x)1(y)d(z)]j(v,n,m)¼ 2pd(v)2pd(n) � 1

¼ 4p2d(v)d(n):

Often, functions that are not separable in one set of coordin-

ates are separable in another set of coordinates. In such cases

one of the generalized scaling identities (2.145) and (2.146),

can simplify the computations.

Example 2.43

Let 3 be the parallelogram bounded by the lines y¼�1 and

x¼ y� 1, and consider the two-dimensional aperture function

h3(x, y) ¼
1, if (x, y) is in 3

0, otherwise

�

:

Note that h3 (x, y)¼ 1 if and only if

�1 < y < 1 and �1 < x � y < 1: (2:150)

Let

A ¼ 1 0

�1 1

� �

:

AT and the determinant of A are easily computed,

Aj j ¼ 1 and A�T ¼ 1 �1

0 1

� ��1

¼ 1 1

0 1

� �

:

For each x¼ (x, y) and v¼ (v, n), let

x̂ ¼ (x̂, ŷ) ¼ xA ¼ (x, y)
1 0

�1 1

� �

¼ (x � y, y)

and

v̂ ¼ (v̂, n̂) ¼ vA�T ¼ (v, n)
1 1

0 1

� �

¼ (v, vþ n):

It is easily verified that conditions 2.150 are equivalent to

�1 < ŷ < 1 and �1 < x̂ < 1:

Thus,

h3(x, y) ¼ h1, 1(x̂, ŷ) ¼ h1, 1(xA)

where h1, 1(x̂, ŷ) is the rectangular aperture function of

Example 2.39. Using these results and the generalized scaling

identity 2.145,

^[h3(x, y)] (v, n)j j ¼ ^[h1,1(xA)]v

¼ 1

Aj jN1,1(vA
�T)

¼ N1,1(v, vþ n)

¼ 4

v(vþ n)
sin (v) sin (vþ n):

2.4.3 Transforms of Circularly Symmetric
Functions and the Hankel Transform

Replacing (x, y) and (v, n) with their polar equivalents,

(x, y) ¼ (r cos u, r sin u)

and

(v, n) ¼ (r cos f, r sin f),

and using a well-known trigonometric identity, the formula

for the two-dimensional Fourier transform, F(v, n) ¼
^[ f (x, y)] (v, n)j , becomes

F(r cos f, r sin f)

¼
ð

1

0

ð

p

�p

f (r cos u, r sin u)e�jrr( cos u cos fþsin u sin f)r du dr

¼
ð

1

0

ð

p

�p

f (r cos u, r sin u)e�jrr cos (u�f)r du dr: (2:151)

Likewise, in polar coordinates, the formula for the two-

dimensional inverse Fourier transform, f(x, y)¼^[F(v, n)]j(x,y), is

f (r cos u, r sin u)

¼ 1

4p2

ð

1

0

ð

p

�p

F(r cos u, r sin u)e jrr cos (u�f)r df dr: (2:152)

If f (r cos u, r sin u) is separable with respect to r and u,

f (r cos u, r sin u) ¼ fr(r)fu(u),

then Equation 2.151 becomes

F(r cos u, r sin u) ¼
ð

1

0

fr(r)rK
�(rr, f)dr, (2:153)
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where

K�(z, f) ¼
ð

p

�p

fu(u)e
�jz cos (u�f)du:

Observe that the integrand for K�(r, f) must be periodic with

period 2p. Thus, letting u0¼ u�f,

K�(z, f) ¼
ð

p

�p

fu(u
0 þ f)e�jz cos (u

0)du0: (2:154)

Likewise, if F(r cos f, r sin f) is separable with respect to

r and f,

F(r cos f, r sin f) ¼ Fr(r) Ff(f)

then formula 2.152 becomes

f (r cos u, r sin u) ¼ 1

4p2

ð

1

0

Fr(r)rK
þ(rr, u)dr, (2:155)

where

Kþ(z, u) ¼
ð

p

�p

Ff(u
0 þ u)e jz cos (f

0)df0: (2:156)

The above formulas simplify considerably when circular sym-

metry can be assumed for either f (x, y) or F(v, n). It follows

immediately from Equations 2.153 through 2.156 that if either

f (x, y) of F(v, n) is circularly symmetric, that is,

f (r cos u, r sin u) ¼ fr(r) or F(r cos f, r sin f) ¼ Fr(r),

then, in fact, both f(x, y) and F(v, n) are circularly symmetric and

can be written

f (r cos u, r sin u) ¼ fr(r) and F(r cos f, r sin f) ¼ Fr(r):

In such cases it is convenient to use the Bessel function identity

2pJ0(z) ¼
ð

p

�p

cos (z cos w)dw,

where J0(z) is the zeroth-order Bessel function of the first kind.*

It is easily verified that

ð

p

�p

sin (rr cos w)dw ¼ 0

and so

K�(rr, c) ¼
ð

p

�p

e�jrr cos wdw ¼
ð

p

�p

cos (rr cos w)dw ¼ 2pJ0(rr)

and Equations 2.153 and 2.155 reduce to

Fr(r) ¼ 2p

ð

1

0

fr(r)J0(rr)r dr (2:157)

and

fr(r) ¼
1

2p

ð

1

0

Fr(r)J0(rr)r dr: (2:158)

The zeroth-order Hankel transform of g(r) is defined to be

ĝ(r) ¼
ð

1

0

g(r)J0(rr)r dr:

Such transforms are the topic of Chapter 9. It should be noted

that Equations 2.157 and 2.158 can be expressed in terms of

zeroth-order Hankel transforms,

Fr(r) ¼ 2pf̂r(r) and fr(r) ¼
1

2p
F̂r(r): (2:159)

From this it should be clear that zeroth-order Hankel transforms

can be viewed as two-dimensional Fourier transforms of circu-

larly symmetric functions. This allows fairly straightforward der-

ivation of many of the properties of these Hankel transforms

from corresponding properties of the Fourier transform. For

example, letting g(r)¼ 2pf(r) in Equations 2.157 and 2.158

leads immediately to the inversion formula for the zeroth-order

Hankel transform,

g(r) ¼
ð

1

0

ĝ(r)J0(rr)r dr:

(For further discussion of the Hankel transforms, see Chapter 9.)

Example 2.44

Let a> 0 and let f(x, y) be the corresponding circular aperture

function,

f (x, y) ¼ 1, if x2 þ y2 < a2

0, otherwise

�

:
* See Chapter 1 for additional information on Bessel functions.
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This function is circularly symmetric with

f (x, y) ¼ fr (r) ¼ 1, if 0 � r < a

0, otherwise

�

:

Its Fourier transform must also be circularly symmetric and,

using Equation 2.157, is given by

F(v, n) ¼ Fr(r) ¼ 2p

ð

a

0

J0(rr)r dr: (2:160)

Letting z¼ rr and using the Bessel function identity

d

dz
[zJ1(z)] ¼ zJ0(z),

where J1(z) is the first-order Bessel function of the first kind, the

computation of this transform is easily completed,

Fr(r) ¼ 2pr�2

ð

ar

0

J0(z)zdz

¼ 2pr�2

ð

ar

0

d

dz
[zJ1(z)]dz

¼ 2pr�2[arJ1(ar)]

¼ 2pa

r
J1(ar):

2.4.4 Half-Line Sine and Cosine Transforms

Half-line sine and cosine transforms are usually taken only of

functions defined on just the half-line 0< t<1. For such a

function, f(t), the corresponding (half-line) sine transform is

FS(v) ¼ S[ f (t)] vj ¼
ð

1

0

f (t) sin (vt)dt (2:161)

and the corresponding (half-line) cosine transform is

FC(v) ¼ C[ f (t)] vj ¼
ð

1

0

f (t) cos (vt)dt: (2:162)

These formulas define FS(v) and FC(v) for all real values of v,
with FS(v) being an odd function of v, and FC(v) being an even

function of v.

The half-line sine and cosine transforms are directly related to

the standard Fourier transforms of the odd and even extensions

of f(t),

fodd(t) ¼
f (t), if 0 < t

�f (�t), if t < 0

�

and

feven(t) ¼
f (t), if 0 < t

f (�t), if t < 0

�

,

respectively. From the observations made in Section 2.3.1,

S[ f (t)] vj ¼ j
1

2
^[ fodd] vj (2:163)

and

C[ f (t)] vj ¼ 1

2
^[ feven(t)] v:j (2:164)

This shows that the (half-line) sine and cosine transforms can

be treated as special cases of the standard Fourier transform.

Indeed, by doing so it is possible to extend the class of functions

that can be treated by sine and cosine transforms to include

functions for which the integrals in Equations 2.161 and 2.162

are not defined.

Example 2.45

Let f(t)¼ t2 for 0< t. Formula 2.162 cannot be used to define

C[ f(t)]jv because

lim
b!1

ð

b

0

t2 cos (vt)dt

does not converge. However, feven(t)¼ t2 for all values of t,

and, using formula 2.164,

C[f (t)]jv¼
1

2
^[t2]

�

�

v
¼ 1

2
[�2pd00(v)] ¼ �pd00(v):

All the useful identities for the sine and cosine transforms

can be derived through relations 2.163 and 2.164 from the

corresponding identities for the standard Fourier transform.

Example 2.46 Inversion Formulas for the Sine

and Cosine Transforms

Let f(t), FS(v), and fodd(t) be as shown, and let

Fodd(v) ¼ ^[fodd(t)]jv:

According to Equation 2.163

Fodd(v) ¼ �2jFS(v):
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Thus, for 0< t,

f (t) ¼ ^�1[Fodd(v)]jt¼ �2j^�1[FS(v)]jt:

But, because FS(v) is an odd function of v, the same argu-

ments used in Section 2.3.1 yield

^�1[FS(v)] tj ¼
1

2p

ð

1

�1

FS(v)e
jvtdv ¼ j

p

ð

1

0

FS(v) sin (vt)dv,

which, combined with the previous equation, gives the inver-

sion formula for the sine transform,

f (t) ¼ 2

p

ð

1

0

FS(v) sin (vt)dv:

Precisely the same reasoning shows that the inversion formula

for the cosine transform is

f (t) ¼ 2

p

ð

1

0

FC (v) cos (vt)dv:

In using Equations 2.163 and 2.164 to derive identities for the

sine and cosine function, it is important to keep in mind that if

f (0) ¼ lim
t!0þ

f (t)

exists, then the even extension will be continuous at t¼ 0

with feven(0)¼ f(0), but the odd extension will have a jump

discontinuity at t¼ 0 with a jump of 2f(0). This is why most of

the sine and cosine transform analogs to the differentiation

formulas of Section 2.2.11 include boundary values. Some of

these identities are

S[f 0(t)] vj ¼ �vFC (v),

C[f 0(t)] vj ¼ vFS(v)� f (0),

S[f 00(t)]jv¼ vf (0)� v2FS(v),

and

C[f 00(t)]jv¼ �f 0(0)� v2FC (v),

where f 0(t) and f 0(t) denote the generalized first and second

derivatives of f(t) for 0< t. (See also Section 2.3.16.)

2.4.5 The Discrete Fourier Transform

The discrete Fourier transform is a computational analog to

the Fourier transform and is used when dealing with finite

collections of sampled data rather than functions per se.

Given an ‘‘Nth-order sequence’’ of values, {f0, f1, f2, . . . , fN�1},

the corresponding Nth-order discrete transform is the sequence

{F0, F1, F2, . . . , FN�1} given by the formula

Fn ¼
X

N�1

k¼0
e�j

2p
N nkfk: (2:165)

This can also be written in matrix form, F¼ [^N]f, where

F ¼

F0
F1
F2
.
.
.

FN�1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

, f ¼

f0
f1
f2
.
.
.

fN�1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

,

and

[^N] ¼

1 1 1 � � � 1
1 e�j2pN e�j22pN � � � e�j(N�1)2pN

1 e�j22pN e�j2�22pN � � � e�j2(N�1)2pN

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

1 e�j(N�1)2pN e�j2(N�1)2pN � � � e�j(N�1)22pN

2

6

6

6

6

4

3

7

7

7

7

5

:

On occasion, the matrix [^N] is itself referred to as the Nth-order
discrete transform.

The inverse to formula 2.165 is given by

fk ¼
1

N

X

N�1

n¼0

e j
2p
N knFn: (2:166)

In matrix form this is f¼ [^N]
�1F, where [^N]

�1 is the matrix

1

N

1 1 1 � � � 1
1 e j

2p
N e j2

2p
N � � � e j(N�1)2pN

1 e j2
2p
N e j2�2

2p
N � � � e j2(N�1)2pN

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

1 e j(N�1)2pN e j2(N�1)2pN � � � e j(N�1)22pN

2

6

6

6

6

4

3

7

7

7

7

5

:

The similarity between the definitions for the discrete Fourier

transforms, formulas 2.165 and 2.166, and formulas 2.99 and

2.100 should be noted. The discrete Fourier transforms can be

treated as the regular Fourier transforms of corresponding regu-

lar periodic arrays generated from the sampled data.

Example 2.47

The matrices for the fourth-order discrete Fourier transforms are

[^N] ¼

1 1 1 1

1 e�j2p
4 e�j22p

4 e�j32p
4

1 e�j22p
4 e�j42p

4 e�j62p
4

1 e�j32p
4 e�j62p

4 e�j92p
4

2

6

6

6

4

3

7

7

7

5

¼

1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2

6

6

6

4

3

7

7

7

5
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and

[^N]
�1 ¼ 1

4

1 1 1 1

1 e j
2p
4 e j2

2p
4 e j3

2p
4

1 e j2
2p
4 e j4

2p
4 e j6

2p
4

1 e j3
2p
4 e j6

2p
4 e j9

2p
4

2

6

6

6

6

4

3

7

7

7

7

5

¼ 1

4

1 1 1 1

1 j �1 �j
1 �1 1 �1
1 �j �1 j

2

6

6

4

3

7

7

5

:

The discrete Fourier transform of {f0, f1, f2, f3}¼ {1, 2, 3, 4} is

given by

F0
F1
F2
F3

0

B

B

@

1

C

C

A

¼
1 1 1 1

1 �j �1 j

1 �1 1 �1
1 j �1 �j

2

6

6

4

3

7

7

5

1

2

3

4

0

B

B

@

1

C

C

A

¼
10

�2þ 2j

�2
�2� 2j

0

B

B

@

1

C

C

A

,

and the discrete inverse Fourier transform of {F0, F1, F2, F3}¼
{10, �2þ 2j, �2, �2 �2j } is given by

f0
f1
f2
f3

0

B

B

@

1

C

C

A

¼ 1

4

1 1 1 1

1 j �1 �j
1 �1 1 �1
1 �j �1 j

2

6

6

4

3

7

7

5

10

�2þ 2j

�2
�2� 2j

0

B

B

@

1

C

C

A

¼
1

2

3

4

0

B

B

@

1

C

C

A

:

In practice the sample size, N, is often quite large and the

computations of the discrete transforms directly from formulas

2.165 and 2.166 can be a time-consuming process even on fairly

fast computers. For this reason it is standard practice to make

heavy use of symmetries inherent in the computations of the

discrete transforms for certain values of N (e.g., N¼ 2M) to

reduce the total number of calculations. Such implementations

of the discrete Fourier transform are called ‘‘fast Fourier trans-

forms’’ (FFTs).

2.4.6 Relations between the Laplace Transform
and the Fourier Transform*

Attention in this section will be restricted to functions of t (and
their transforms) that satisfy all of the following three conditions:

1. f(t)¼ 0 if t< 0.

2. f(t) is piecewise continuous on 0� t.
3. For some real value of a, f(t)¼O(eat) as t ! 1.

It follows from the third condition that there is a minimum value

of a0, with �1�a0<1, such that f(t)e�at is an exponentially

decreasing function of t whenever a0<a. This minimal value of

a0 is called the ‘‘exponential order’’ of f(t).

The Laplace transform of f(t) is defined by

L[ f (t)]js ¼
ð

1

�1

f (t)e�stdt: (2:167)

The variable, s, in the transformed function may be any complex

number whose real part is greater than the exponential order

of f(t).
There is a clear similarity between formula 2.167 defining the

Laplace transform and the integral formula for the Fourier trans-

form (formula 2.1). Comparing the two immediately yields the

formal relations

L[ f (t)]js ¼
ð

1

�1

f (t)e�j(�js)tdt ¼ ^[ f (t)]j�js:

Another, somewhat more useful relation is found by taking

the Fourier transform of f(t)e�xt when x is greater than the

order of f(t):

^[ f (t)e�xt]jy ¼
ð

1

�1

f (t)e�(xþjy)tdt ¼ L[ f (t)]jxþjy: (2:168)

In particular,

^[ f (t)e�st]j0 ¼ L[ f (t)]js:

The inversion formula for the Laplace transform can be quickly

derived using relation 2.168. Let b be any real value greater than

the exponential order of f(t) and observe that, letting

FL(s) ¼ L[ f (t)]js,

then, by relation 2.168

FL(bþ jv) ¼ ^[ f (t)e�bt]jv,

and so,

f (t) ¼ ebt f (t)e�bt

¼ ebt^�1[^[f (t)e�bt]jv]jt

¼ ebt
1

2p

ð

1

�1

^[ f (t)e�bt]jve jvtdv

¼ 1

2p

ð

1

�1

FL(bþ jv)e(bþjv)tdv:

* For a more complete discussion of the Laplace transform, see Chapter 5.
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This formula can be expressed in slightly more compact form as

a contour integral in the complex plane,

f (t) ¼ L
�1[FL(s)]jt ¼

1

2jp

ð

bþj1

z¼b�j1

FL(z)e
ztdz:

Alternatively, it can be left in terms of the Fourier inverse

transform,

f (t) ¼ L
�1[FL(s)]jt ¼ ebt^�1[FL(bþ jv)]jt:

2.5 Reconstruction of Sampled Signals

In practice a function is often known only by a sampling of its values

at specific points. The following sections describe when such a

function can be completely reconstructed using its samples and

how, using methods based on the Fourier transform, the values of

the reconstructed function can be computed at arbitrary points.

2.5.1 Sampling Theorem for Band-Limited
Functions

Assume f(t) is a band-limited function with Fourier transform

F(v) (see Section 2.3.7). Let 2V0 be the minimum bandwidth of

f(t), that is, V0 is the smallest nonnegative value such that

F(v) ¼ 0 wheneverV0 < vj j:

The Nyquist interval, DT, and the Nyquist rate, v, for f(t) are

defined by

DT ¼ p

V0
and v ¼ 1

DT
¼ V0

p
:

The sampling theorem for band-limited functions states that f(t)
(and hence, also F(v) as well as the total energy in f(t)) can be

completely reconstructed from a uniform sampling taken at the

Nyquist rate or greater. More precisely, if 0<Dt�DT, then,
letting V¼p=Dt,

f (t) ¼
X

1

n¼�1
f (nDt)

sin(V(t � nDt))

V(t � nDt)
(2:169)

and, taking the transform

F(v) ¼ p

V

X

1

n¼�1
f (nDt)e�jDtvpV(v), (2:170)

where pV(v) is the pulse function,

pV(v) ¼
1, if jvj < V

0, if V < jvj

�

:

The energy in f(t) is easily computed. Using Equations 2.72 and

2.170, and the fact that the exponentials in formula 2.170 are

orthogonal on the interval �V<v<V,

E ¼ 1

2p

ð

1

�1

jF(v)j2dv

¼ 1

2p

X

1

n¼�1

p

V

� �2
ð

V

�V

f (nDt)f * (nDt)e�jnDtve jnDtvdv

¼ 1

2p

X

1

n¼�1

p

V

� �2

f (nDt)j j22V

¼ Dt
X

1

n¼�1
f (nDt)j j2: (2:171)

To see why formulas 2.169 and 2.170 are valid, let F̂(v) be the

periodic extension of F(v),

F̂(v) ¼ F(v) if �V < v < V

F̂(vþ 2V), for all v

�

:

Observe that 2V is a bandwidth for f(t), and so,

F(v) ¼ F̂(v), if vj j < V

0, if V < vj j

(

: (2:172)

This can be written more concisely using the pulse function as

F(v) ¼ F̂(v)pV(v):

From this it follows, using convolution, that

f (t) ¼ ^�1 F̂(v)pV(v)
	 
�

�

t
¼ f̂ (t) *

sin(Vt)

pt

 �

, (2:173)

where f̂ (t) denotes the inverse transform of F̂(v). By formula 2.94,

f̂ (t) ¼
X

1

n¼�1
Cnd(t � nDt), (2:174)

where

Dt ¼ 2p

2V
¼ Dt

and, using the above,

Cn ¼
1

2V

ð

V

�V

F̂(v)e jnDtvdv

¼ p

V

1

2p

ð

1

�1

F(v)e jnDtvdv

0

@

1

A

¼ Dtf (nDt):
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Combining this last with Equations 2.173 and 2.174, and using

the shifting property of the delta function, yields

f (t) ¼ f̂ (t) *
sin(Vt)

pt

 �

¼
X

1

n¼�1
Dt f (nDt)d(t � nDt) *

sin(Vt)

pt

 �

¼
X

1

n¼�1
Dt f (nDt)

sin(V(t � nDt))

p(t � nDt)
,

which is the same as formula 2.169.

2.5.2 Truncated Sampling Reconstruction
of Band-Limited Functions

Formula 2.169 employs an infinite number of samples of f(t).
Often this is impractical, and one must approximate f(t) with the

truncated version of formula 2.169,

f (t) 

X

N

n¼�N

f (nDt)
sin(V(t � nDt))

V(t � nDt)
, (2:175)

where N is some positive integer. The pointwise error is

eN(t) ¼ f (t)�
X

N

n¼�N

f (nDt)
sin(V(t � nDt))

V(t � nDt)
:

If f(t) is a band-limited function, then the sampling theorem

implies that

eN (t) ¼
X

N<jnj
f (nDt)

sin(V(t � nDt))

V(t � nDt)
,

and it can be shown that

eN (t)j j2� EV

p

X

N<jnj

sin2(V(t � nDt))

V2(t � nDt)2
, (2:176)

where E is the energy in f(t). In addition, if the samples are

known to vanish sufficiently rapidly, then one can use

eN (t)j j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N< nj j
f (nDt)j j2

s

: (2:177)

This last bound is a uniform bound directly related to expression

(2.171) for the energy of a band-limited function. It can be derived

after observing that eN(t) can be written as a proper integral,

eN(t) ¼
X

N<jnj
f (nDt)

sin(V(t � nDt))

V(t � nDt)

¼
X

N<jnj
f (nDt)

1

2V

ð

V

�V

e�jnDtve jvtdv

¼ 1

2V

ð

V

�V

X

N< nj j
f (nDt)e�jnDtv

0

@

1

Ae jvtdv:

Using the Cauchy–Schwarz inequality,

eN(t)j j2 ¼ 1

4V2

ð

V

�V

X

N< nj j
f (nDt)e�jnDtv

0

@

1

Ae jtvdv

�

�

�

�

�

�

�

�

�

�

�

�

2

� 1

4V2

ð

V

�V

X

N< nj j
f (nDt)e�jnDtv

�

�

�

�

�

�

�

�

�

�

�

�

2

dv

0

@

1

A

ð

V

�V

e jtv
�

�

�

�

2
dv

0

@

1

A

¼ 1

4V2

X

N< nj j
f (nDt)j j22V

0

@

1

A(2V)

¼
X

N< nj j
f (nDt)j j2,

as claimed by Equation 2.177.

Example 2.48

Suppose f(t) is a band-limited function (with bandwidth 2V)

to be approximated on the interval �L< t< L. Suppose, fur-

ther, that an upper bound, E0, is known for the energy of f(t).

Let N be any integer such that L<N Dt. Then, for �L< t< L,

using inequality (2.176) with well-known bounds,

eN(t)j j2 � EV

p

X

N< nj j

sin2 (V(t � nDt))

V2(t � nDt)2

� 2E0

pV

X

1

n¼Nþ1

1

(L� nDt)2

� 2E0

pV

ð

1

x¼N

1

(L� xDt)2
dx

¼ 2E0

pV

1

Dt(NDt � L)

¼ 2

p2(NDt � L)
E0:

Thus, to ensure an error of less than 0.05
ffiffiffiffi

E0
p

, it suffices to

choose N satisfying

2

p2(NDt � L)

 �
1
2

< 0:05
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or, equivalently,

800

p2
þ L < NDt:

Example 2.49

Suppose that f(t) is a band-limited function (with band-

width 2V) whose transform, F(v), is known to be piecewise

smooth and continuous. Assume further that, for some A<1,

jF 0(v)j< A for all values of v. Then, for each t,

tf (t)j j ¼ ^�1[ jF0(v)]
�

�

�

�

t

�

�

�

¼ 1

2p

ð

V

�V

jF0(v)e jvtdv

�

�

�

�

�

�

�

�

�

�

�

�

� 1

2p

ð

V

�V

F0(v)j jdv

� A
V

p
:

So, for each n,

jf (nDt)j2 � AV

nDtp

 �2

¼ 1

n2
A2

Dt4
,

and inequality (2.177) becomes

eN(t)j j2 �
X

N< nj j

1

n2
A2

Dt4

� 2A2

Dt4

ð

1

x¼N

1

x2
dx

¼ 2A2

NDt4
:

2.5.3 Reconstruction of Sampled Nearly
Band-Limited Functions

Often, one must deal with a function, f(t), which might not

necessarily be band-limited, but is ‘‘nearly’’ band-limited, that

is, letting

FV(v) ¼ F(v)pV and fV(t) ¼ ^�1[FV(v)]
�

�

t
,

one can always choose V<1 so that

ð

1

�1

F(v)� FV(v)j jdv ¼
ð

V< vj j

F(v)j jdv (2:178)

is as small as desired. Because

j f (t)� fV(t)j ¼ j^�1[F(v)� FV(v)]jt

� 1

2p

ð

1

�1

jF(v)� FV(v)jdv,

it is clear that fV(t) can also be made as close to f(t) as desired by

a suitable choice of V. Any value of 2V that makes Equation

2.178 ‘‘sufficiently small’’ is called an effective bandwidth. For

such a function it is reasonable to expect that if V is an effective

bandwidth and Dt¼p=V, then the interpolation formulas,

fs(t) ¼
X

1

n¼�1
f (nDt)

sin (V(t � nDt))

V(t � nDt)
(2:179)

will be a good approximation to f(t). Starting with the trivial

observation that

f (t) ¼ fs(t)þ f (t)� fV(t)þ fV(t)� fs(t),

one can derive

f (t) ¼ fs(t)þ E0(t)� ES(t), (2:180)

where

E0(t) ¼
1

2p

ð

V< vj j

F(v) e jvtdv,

ES(t) ¼
X

1

n¼�1
e(nDt)

sin(V(t � nDt))

V(t � nDt)

and

e(nDt) ¼ ^�1[(1� pV(v))F(v)]jnDt ¼
1

2p

ð

V< vj j

F(v)e jvnDtdv:

Error estimates can be obtained from Equation 2.180 provided it

can be shown that e(n Dt) vanishes sufficiently rapidly as n!1.

As Example 2.50 illustrates, finding such error estimates can be

quite nontrivial.

Example 2.50

Suppose f(t) is an infinitely differentiable, finite duration func-

tion with duration 2T. Since f(t) vanishes whenever jtj � T,

fs(t) ¼
X

N

n¼�N

f (nDt)
sin(V(t � nDt))

V(t � nDt)
, (2:181)

where N is the integer satisfying

NDt < T < (N þ 1)Dt:

To avoid triviality, it may be assumed that Dt< T and N� 1.

Fourier Transforms 2-45



By continuity f(t) and each of its derivatives must vanish

whenever jtj � T. Also, for each positive integer, m, there is a

finite Am such that

j f (m)(t)j � Am

for all t. Thus, for each nonnegative integer, m,

vmF(v)j j ¼ ^ f (m)(t)
	 
�

�

v

�

�

�

�

¼
ð

1

�1

f (m)(t)e�jvtdt

�

�

�

�

�

�

�

�

�

�

�

�

�
ð

T

�T

Amdt

¼ 2AmT : (2:182)

Likewise, if m� 2,

vmF0(v)j j ¼ ^
dm

dtm
(tf (t))

� ��

�

�

�

v

�

�

�

�

�

�

�

�

¼ ^ mf (m�1)(t)þ tf (m)(t)
	 
�

�

v

�

�

�

� � Bm (2:183)

where

Bm ¼ 2mAm�1T þ AmT
2:

It follows from inequality (2.182) that F(v) is absolutely inte-

grable (and hence, nearly band-limited) and that, form� 2 and

any t,

1

2p

ð

V< vj j

F(v)e jvtdv

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 1

2p

ð

V< vj j

F(v)j jdv

� 1

p

ð

1

V

2AmTv
�mdv

¼ 2AmT

(m� 1)p
V1�m

¼ CmDt
m�1 (2:184)

where

Cm ¼ 2AmT

(m� 1)pm
:

Thus, in particular, for any positive integer, k,

E0(t)j j ¼ 1

2p

ð

V< vj j

F(v)e jvtdv

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� Ckþ1Dt
k: (2:185)

Two bounds for e(nDt) can be derived. First, using inequality

(2.184),

e(nDt)j j ¼ 1

2p

ð

V< vj j

F(v)e jvnDtdv

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� CmDt
m�1 (2:186)

provided m� 2. For n 6¼ 0, observe that

e(nDt) ¼ eþ(nDt)þ e�(nDt),

where

e�(nDt) ¼ � 1

2p

ð

�1

�V

F(v)e jvnDtdv:

Using integration by parts and inequalities (2.182) and (2.183),

e�(nDt)j j ¼ 1

2p

ð

�1

�V

F(v)e jvnDtdv

�

�

�

�

�

�

�

�

�

�

�

�

¼ 1

2p

j

nDt
F(�V)e�jnDtV � 1

jnDt

ð

�1

�V

F0(v)e jnDtvdv

�

�

�

�

�

�

�

�

�

�

�

�

� 1

2p

2

nDt
AmTV

�m þ 1

nDt

ð

1

V

Bmv
�mdv

0

@

1

A

¼ 1

2pn

2

Dt
AmTV

�m þ 1

Dt(m� 1)
BmV

1�m

 �

for any integer, m� 2. Because Dt V¼p and Dt� T, this

reduces to

e�(nDt)j j � 1

2n
DmDt

m�2 ,

where

Dm ¼ p�m 2

p
AmT

2 þ 1

m� 1
Bm

 �

:

Thus, for all n 6¼ 0 and m� 2,

e(nDt)j j � 1

n
DmDt

m�2: (2:187)

Next, observe that

ES(t) ¼ S1(t)þ S2(t)

where

S1(t) ¼
X

2Nþ1

n¼�2N�1

e(nDt)
sin(V(t � nDt))

V(t � nDt)
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and

S2(t) ¼
X

2Nþ1< nj j
e(nDt)

sin(V(t � nDt))

V(t � nDt)
:

Using inequality (2.186),

S1(t)j j �
X

2Nþ1

n¼�2N�1

e(nDt)j j sin(V(t � nDt))

V(t � nDt)

�

�

�

�

�

�

�

�

< e(0)j j þ e( (2N þ 1)Dt)j j þ e(�(2N þ 1)Dt)j j

þ
X

2N

n¼1

e(nDt)j j þ e(�nDt)j jð Þ

� 3Ckþ2Dt
kþ1 þ 2

X

2N

n¼1

Ckþ2Dt
kþ1

¼ Ckþ2(3Dt þ 4NDt)Dtk

� 7TCkþ2Dt
k

for any positive integer, k. Next, because of inequality

(2.187) and the fact that T< (Nþ 1)Dt, it follows that, for jtj � T

and k �1,

S2(t)j j �
X

2Nþ1< nj j
e(nDt)j j sin (V(t � nDt))

V(t � nDt)

�

�

�

�

�

�

�

�

� 2
X

1

n¼2Nþ2

1

n
Dkþ1Dt

k�1 1

V(nDt � tj j)

� 2
X

1

n¼2Nþ2

1

n
Dkþ1Dt

k�1 1

VDt(n� (N þ 1))

¼ 2

p
Dkþ1Dt

k�1
X

1

n¼2Nþ2

1

n(n� N � 1)
:

But,

X

1

n¼2Nþ2

1

n(n� N � 1)
<

ð

1

2Nþ1

1

x(x � N � 1)
dx

¼ 1

N þ 1
ln 2þ 1

N

�

�

�

�

�

�

�

�

<
2

N þ 1
:

So,

S2(t)j j < 2

p
Dkþ1Dt

k 1

Dt

2

N þ 1
<

4

pT
Dkþ1Dt

k:

Combining the bounds for jS1(t)j and jS2(t)j gives

ES(t)j j � S1(t)j j þ S2(t)j j < EkDt
k (2:188)

for jtj � T and k� 1, where

Ek ¼ 7TCkþ2 þ
4

pT
Dkþ1:

Combining Equations 2.180, 2.185, and 2.188 gives an error

estimate for using fs(t) as an approximation for f(t) when jtj � T,

f (t)� fs(t)j j � E0(t)j j þ ES(t)j j < [Ckþ1 þ Ek]Dt
k ,

where k is any positive integer. In terms of the effective

bandwidth, V¼p=Dt, this becomes

f (t)� fs(t)j j ¼ O(V�k),

confirming that fs(t) can be made to approximate f(t) on

�T< t< T as accurately as desired by taking the effective

bandwidth, V, sufficiently large.

2.5.4 Sampling Theorem for Finite
Duration Functions

Assume f(t) is of finite duration with Fourier transform F(v) (see
Section 2.3.6). Let 2T0 be the minimum duration of f(t), that is,
T0 is the smallest nonnegative value such that

f (t) ¼ 0 wheneverT0 < tj j:

The sampling theorem for functions of finite duration states that

F(v) and hence, also f(t) can be reconstructed from a suitable

uniform sampling in the frequency domain. More precisely, if 0<

Dv<DV, where DV denotes the ‘‘frequency Nyquist interval,’’

DV ¼ p

T0
,

then, letting T¼p=Dv,

F(v) ¼
X

1

n¼�1
F(nDv)

sin(T(v� nDv))

T(v� nDv)
,

and, taking the inverse transform,

f (t) ¼
X

1

n¼�1
F(nDv)

Dv

2p
e jnDvtpT(t):

The energy in f(t) is

E ¼ Dv

2p

X

1

n¼�1
F(nDv)j j2:

2.5.5 Fundamental Sampling Formulas
and Poisson’s Formula

As long as either f(t) or its Fourier transform, F(v), is absolutely
integrable and has a bounded derivative, then

Dt
X

1

n¼�1
f (t � nDt) ¼

X

1

n¼�1
F(nDv)e jnDvt (2:189)
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and

Dv

2p

X

1

n¼�1
F(v� nDv) ¼

X

1

n¼�1
f (nDt)e�jnDtv (2:190)

where Dt and Dv are positive constants with DtDv¼ 2p. Using

these formulas it is possible to derive the sampling theorems for

band-limited functions and for finite duration functions. While

these formulas are not valid for periodic functions, they can be

used to derive the classical Fourier series expansion for periodic

functions and hence, can also be viewed as generalizations of the

Fourier series expansion for periodic functions. Letting t¼ 0

formula 2.189 yields Poisson’s formula,

Dt
X

1

n¼�1
f (nDt) ¼

X

1

n¼�1
F(nDv): (2:191)

These sampling formulas can be derived by a fairly straightfor-

ward use of properties of the delta and the comb functions along

with the use of the convolution formulas of Section 2.2.9. Let

f(t) ¼ f * combDt(t):

Because of the properties of the delta functions making up the

comb function,

f(t) ¼
X

1

n¼�1
f * d(t � nDt) ¼

X

1

n¼�1
f (t � nDt):

The Fourier transform of f(t) is

c(v) ¼ ^[ f * combDt(t)]jv
¼ F(v)Dv combDv(v)

¼ Dv
X

1

n¼�1
F(v)d(v� nDv)

¼ Dv
X

1

n¼�1
F(nDv)d(v� nDv):

Thus,

Dt
X

1

n¼�1
f (t � nDt) ¼ Dtf(t)

¼ ^�1 Dtc(v)½ �jt

¼ ^�1 DtDv
X

1

n¼�1
F(nDv)d(v� nDv)

" #�

�

�

�

�

t

¼ 2p
X

1

n¼�1
F(nDv)^�1 d(v� nDv)½ �jt

¼
X

1

n¼�1
F(nDv)e jnDvt ,

which is formula 2.189

Similar computations yield formula 2.190.

Example 2.51 Evaluation of an Infinite Series

To evaluate

X

1

n¼�1

1

1þ n2
,

observe that

X

1

n¼�1

1

1þ n2
¼
X

1

n¼�1
F(nDv),

where

F(v) ¼ 1

1þ v2
and Dv ¼ 1:

The Fourier inverse transform of F(v) is f(t)¼ e�jtj=2, and so, by

Poisson’s formula,

X

1

n¼�1

1

1þ n2
¼
X

1

n¼�1
F(nDv)

¼ 2p
X

1

n¼�1
f (n2p)

¼ 2p
X

1

n¼�1

1

2
e� n2pj j

¼ 2p
1

2
þ
X

1

n¼1

(e�2p)n

" #

:

The last summation is simply a geometric series. Using the

well-known formula for summing geometric series,

X

1

n¼�1

1

1þ n2
¼ 2p

1

2
þ e�2p

1� e�2p

� �

¼ p
1þ e�2p

1� e�2p
:

2.6 Linear Systems

Much of signal processing can be described in terms of systems

that can be readily analyzed using the Fourier transform.

This section gives a brief introduction to such systems and how

Fourier analysis is employed to study their behavior.

Mathematically, a system, S, is an operator that takes, as input,

any function, fI(t), from the set of functions pertinent to the

problem at hand (say, finite energy functions) and modifies the

inputted function according to some fixed scheme to produce a

corresponding function, fO(t), as output. This is denoted by

either

S: fI(t) ! fO(t)

or

fO(t) ¼ S[fI(t)]:
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As indicated, the input function and corresponding output func-

tion will, throughout this section, be denoted via the ‘‘I’’ and ‘‘O’’

subscripts. The output, fO(t), is also called the system’s response

to fI(t).

2.6.1 Linear Shift Invariant Systems

A system, S, is said to be linear if every linear combination of

inputs leads to the corresponding linear combination of outputs.

More precisely, S is linear if, given any pair of inputs, fI(t) and
gI(t), and any pair of constants, a and b, then

S[afI(t)þ bgI(t)] ¼ afO(t)þ bgO(t):

A system S, is said to be shift invariant if any shift in an input

function leads to an identical shift in the output, that is, if

S fI(t � t0)½ � ¼ fO(t � t0)

for every real value of t0 and every allowed input, fI(t). Other
terms commonly used instead of ‘‘shift invariant’’ include ‘‘trans-

lation invariant,’’ ‘‘time invariant,’’ ‘‘stationary,’’ and ‘‘fixed.’’

An LSI system is both linear and shift invariant. If S is an LSI

system, then, using both linearity and shift invariance, the fol-

lowing string of equalities can be verified:

S[ fI * gI(t)] ¼ S

ð

1

�1

fI(s)gI(t � s)ds

2

4

3

5

¼
ð

1

�1

fI(s)S[gI(t � s)]ds

¼
ð

1

�1

fI(s)gO(t � s)ds

¼ fI * gO(t): (2:192)

Given an LSI system, S, the system’s impulse response function,

usually denoted by h(t), is the output corresponding to an input-

ted delta function,

h(t) ¼ S[d(t)]:

The transfer function of the system is the Fourier transform of

the impulse response function,

H(v) ¼ ^[h(t)]jv:

Combining Equation 2.192 with the fact that fI * d(t)¼ fI(t) leads
directly to the following important formula for computing the

output of a system from any input:

fO(t) ¼ S fI(t)½ � ¼ fI * h(t): (2:193)

Taking the Fourier transform gives the equally important

formula

FO(v) ¼ FI(v)H(v), (2:194)

where FO(v) and FI(v) are the transforms

FO(v) ¼ ^[ fO(t)]jv and FI(v) ¼ ^[ fI(t)]jv:

Formulas 2.193 and 2.194 show that the effect of an LSI system on a

signal is completely determined by either the system’s impulse

response function or the system’s transfer function. One advantage

of knowing the transfer function is that, in many cases, the transfer

function provides better intuition on the effect the system has on

inputted signals. Also, in many cases, the actual computations are

easier using the transfer function instead of the impulse response

function. Both advantages are illustrated in Example 2.52.

Example 2.52 Ideal Low-Pass Filter

An ideal low-pass filter with cutoff frequency V (and zero

delay) is an LSI system characterized by the transfer function

H(v) ¼ pV(v) ¼
1, if vj j < V

0, if V < vj j

�

:

The impulse response function is

h(t) ¼ ^�1[pV(v)]jt ¼
sin (Vt)

pt
:

Given an input signal, fI(t), with Fourier transform FI(v), the
corresponding output, fO(t), is the inverse transform of

FI(v)H(v) ¼ F(v), if vj j < V
0, if V < vj j

�

:

Clearly, this systempasses, unaltered, the frequency components

of fI(t) corresponding to frequencies below the cutoff while

completely suppressing the frequency components of fI(t) cor-

responding to frequencies above the cutoff. For example, if

fI(t) ¼ sin (v0t),

then

FI(v) ¼ ^[ sin (v0t)]jv¼ �jp[d(v� v0)� d(vþ v0)]:

Thus,

FO(v) ¼ �jp[d(v� v0)� d(vþ v0)]pV(v)

¼ �jp[pV(v0)d(v� v0)� pV(�v0)d(vþ v0)]

¼
�jp[d(v� v0)� d(vþ v0)] if v0j j < V

0, if V < v0j j

(
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and

fO(t) ¼ ^�1 FO(v)½ �jt ¼
sin (v0t), if v0j j < V
0, if V < v0j j

�

:

Alternatively, fO(t) could have been computed using the

impulse response function,

fO(t) ¼ sin (v0t) *
sin (Vt)

pt

¼
ð

1

�1

1

p(t � s)
sin (v0s) sin(V(t � s))ds:

In many applications it is convenient to write the transfer

function in the form

H(v) ¼ A(v)e�ju(v)

where A(v) and u(v) are real-valued functions (called, respect-

ively, the amplitude and phase of H(v)) with A(v) often

assumed to be nonnegative.

Example 2.53

In the simplest case, A(v) is constant and f(v) is linear,

A(v) ¼ A0 and f(v) ¼ t0v:

In this case,

fO(t) ¼ ^�1[ FI(v)A0e
�jt0v]t ¼ A0fI(t � t0)

Thus, a system with transfer function

H(v) ¼ A0e
�jt0v

amplifies each inputted signal by A0 and delays it by t0.

2.6.2 Reality and Stability

An LSI system is a ‘‘real’’ system if the output is a real-valued

function whenever the input is a real-valued function. In practice,

most physically defined systems can be assumed to be real. An

equivalent condition for a system to be real is that the impulse

response function, h(t), of the system be real valued. By the

discussion in Section 2.3.1, if the system is real and the transfer

function is given by

H(v) ¼ A(v)e�ju(v),

where A(v) and u(v) are the amplitude and phase of H(v), then

h(t) ¼ 1

p

ð

1

0

A(v) cos (vt � u(v))dv:

An LSI system is stable if there is a finite constant, B, such that

fO(t)j j � BM for all t

whenever

fI(t)j j � M for all t:

It can be shown that a system is stable if and only if its impulse

response function, h(t), is absolutely integrable and that, in

this case,

B ¼
ð

1

�1

h(t)j jdt:

It follows from the discussion in Section 2.3.2 that if the transfer

function, H(v), is not bounded and continuous, then the system

cannot be stable.

Example 2.54

Let S be the ideal low-pass filter of Example 2.52. Because the

impulse response function,

h(t) ¼ 1

pt
sin(Vt),

is real, so is the system. This is obvious because, if a given

input, fI(t), is real valued, so must be

fO(t) ¼ fI * h(t) ¼
ð

1

�1

fI(s)
1

p(t � s)
sin(V(t � s))ds:

Because the transfer function,

H(v) ¼ pV(v)
1, if vj j < V

0, ifV < vj j

�

,

is not continuous, the system cannot be stable. This is easily

verified using the input function

fI(t) ¼
þ1, if 0 � 1

t
sin (Vt)

�1, if
1

t
sin (Vt) < 0

8

>

<

>

:

:

Clearly,

fI(t)j j � 1 for all t,

but

fI(s)h(�s) ¼ 1

s
sin (Vs)

�

�

�

�

�

�

�

�

for all s:
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Thus,

fO(0) ¼ fI * h(0)

¼
ð

1

�1

fI(s)h(0� s)ds

¼
ð

1

�1

1

s
sin (Vs)

�

�

�

�

�

�

�

�

ds

¼ 1:

2.6.3 System Response to Complex
Exponentials and Periodic Functions

Let S be an LSI system with impulse response function h(t) and
transfer function H(v). Because ^ e jv0t½ �jv¼ 2pd(v� v0),

S e jv0t
	 


¼ ^�1[2pd(v� v0)H(v)]jt
¼ ^�1[2pd(v� v0)H(v0)]jt
¼ H(v0)e

jv0t : (2:195)

By this it is seen that the complex exponentials are eigenfunc-

tions for S and that the transfer function gives the corresponding

eigenvalues.

If fI(t) is a periodic function with period p and with Fourier series

X

1

n¼�1
cne

jnDvt ,

where Dv¼ 2p=p, then, from Equation 2.195 and the linearity of

the system,

S[ fI(t)] ¼
X

1

n¼�1
cnH(nDv)e jnDvt : (2:196)

In particular, for a> 0,

S[cos(at)] ¼ 1

2
[H(a)e jat þ H(�a)e�jat] (2:197)

and

S[sin(at)] ¼ 1

2j
[H(a)e jat �H(�a)e�jat]: (2:198)

If S is a real LSI system, then the imaginary parts of Equations

2.197 and 2.198 must vanish. Using this fact, it can be shown that

S[cos(at)] ¼ A(a) cos(at � u(a))

and

S[sin(at)] ¼ A(a) sin(at � u(a)),

where A(v) and u(v) are the amplitude and phase of the transfer

function,

H(v) ¼ A(v)e�ju(v):

Example 2.55

Let S be the ideal low-pass filter from Example 2.52 with

transfer function

H(v) ¼ pV(v) ¼
1, if vj j < V
0, if V < vj j

�

:

For this example assume V¼ 20.5p and let fI(t) be the saw-

tooth function from Example 2.30. As seen in that example,

Dv¼p and

fI(t) ¼
X

1

n¼�1
n 6¼0

(�1)n
j

np
e jnpt:

From this and Equation 2.196 it follows that

fO(t) ¼
X

20

n¼�20
n6¼0

(�1)n
j

np
e jnpt :

The graphs of fI(t) and fO(t) are sketched in Figures 2.8 and 2.9,

respectively.

1

2 4–2

–1

–1 1 3

FIGURE 2.8 The saw function.

1

2 4–2 –1

–1

1 3

FIGURE 2.9 Low-pass filter output from a saw function input.
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2.6.4 Casual Systems

A function, f(t), is said to be ‘‘casual’’ if

f (t) ¼ 0, whenever t < 0:

An LSI system, S, is said to be ‘‘casual’’ if the response of the

system to every causal input is a causal output. By shift invari-

ance, this is equivalent to defining S to be casual if

f1(t) ¼ 0, whenever t < t0

implies that

fo(t) ¼ S[f1(t)] ¼ 0, whenever t < t0

for any real value of t0.
If S is a causal system, then its impulse response function, h(t),

must also be causal and formula 2.193 for computing the

response of a system to an input fI(t) becomes

fO(t) ¼
ð

t

�1

fI(s)h(t � s)ds

or equivalently,

fO(t) ¼
ð

1

0

fI(t � s)h(s)ds:

If the input is also causal, then these further reduce to

fO(t) ¼
ð

t

0

fI(s)h(t � s)ds

and

fO(t) ¼
ð

t

0

fI(t � s)h(s)ds:

2.6.5 Systems Given by Differential Equations

Often the output, fO(t), of a system, S, is a solution to a non-

homogeneous ordinary differential equation with the input being

the nonhomogeneous part of the equation,

X

N

n¼0
An

dn

dtn
[ fO(t)] ¼ fI(t):

As long as the An’s are constants, it is easily verified that S is an

LSI system. The impulse response function, h(t), must satisfy

X

N

n¼0
An

dnh

dtn
¼ d(t): (2:199)

The general solution to Equation 2.199 can be written

hg(t) ¼ hp(t)þ yc(t),

where yc(t) is the general solution to the corresponding homo-

geneous equation,

X

N

n¼0
An

dny

dtn
¼ 0, (2:200)

and hp(t) is any particular solution to Equation 2.199. After a

particular solution is found the undetermined constants in yc(t)
must be determined so that the resulting

h(t) ¼ hp(t)þ yc(t),

satisfies any additional constraints on the output (causality, finite

energy, etc.).

The particular solution, hp(t), can be found by taking the

Fourier transform of both sides of Equation 2.199. Using identity

2.50 gives an equation for Hp(v)¼^[hp(t)]jv,

X

N

n¼0
An( jv)

nHp(v) ¼ 1: (2:201)

Dividing through by

D(v) ¼
X

N

n¼0
An(jv)

n

gives

Hp(v) ¼
1

D(v)
, (2:202)

which is a rational function of v. Taking the inverse transform of

Hp(v) (using, say, the approach described in Section 2.3.14) then

yields hp(t).
Example 2.56 illustrates a common situation in which the

obtained hp(t) already satisfies the additional conditions and,

thus, can be used directly as the impulse response function. In

Example 2.57, hp(t) is not a valid output and, so, a nontrivial

solution to the corresponding homogeneous equation must be

added to obtain the impulse response function.

Example 2.56

Let the output fO(t), corresponding to an input, fI(t), be given

by the finite energy solution to

d2y

dt2
� y ¼ f (t):
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The solution to the corresponding homogeneous equation,

d2y

dt2
� y ¼ 0,

is

yc(t) ¼ c1e
t þ c2e

�t ,

while the impulse response function must satisfy

d2h

dt2
� h ¼ d(t): (2:203)

Letting hp(t) denote a particular solution and taking the Fourier

transform of both sides yields

�v2Hp(v)� Hp(v) ¼ 1,

which, after some elementary algebra, reduces to

Hp(v) ¼
�1

1þ v2
:

The inverse transform of this can be computed directly from

tables:

hp(t) ¼ �
1

2
^�1

2

1þ v2

� ��

�

�

�

t

¼ � 1

2
e� tj j:

The general solution to Equation 2.203 is the sum of hp(t)

and yc(t),

hg(t) ¼ �
1

2
e� tj j þ c1e

t þ c2e
�t ,

but, clearly, the only way hg(t) can be a finite energy function

is for cl¼ c2¼ 0. Thus, the impulse response function and the

transfer function for this system are

h(t) ¼ � 1

2
e� tj j

and

H(v) ¼ �1
1þ v2

:

Example 2.57

Assume S: fI(t)! fO(t) is a causal system for which the output

satisfies

d2fO

dt2
þ fO ¼ fI(t):

The solution to the corresponding homogeneous equation,

d2y

dt2
þ y ¼ 0,

is

yc(t) ¼ c1 cos(t)þ c2 sin(t),

while the impulse response function must satisfy

d2h

dt2
þ h ¼ d(t): (2:204)

Letting hp(t) denote a particular solution and taking the Fourier

transform of both sides yields

�v2Hp(v)þ Hp(v) ¼ 1

which, after some elementary algebra, reduces to

Hp(v) ¼
1

1� v2
¼ 1

2

1

vþ 1
� 1

v� 1

� �

:

Using either the tables or formula 2.118,

hp(t) ¼
1

2

j

2
e�jtsgn(t)� j

2
e jtsgn(t)

� �

¼ 1

2
sin (t)sgn(t):

The general solution to Equation 2.204 is then

hg(t) ¼ hp(t)þ yc(t) ¼
1

2
sin(t)sgn(t)þ c1 cos(t)þ c2 sin(t):

Because S is a causal system and d(t)¼ 0 for t< 0, the impulse

response function must vanish for negative values of t. Thus,

c1 and c2 must be chosen so that for t< 0,

hg(t) ¼
1

2
sin(t)sgn(t)þ c1 cos(t)þ c2 sin(t)

¼ c2 �
1

2

 �

sin(t)þ c1 cos(t)

¼ 0:

Clearly, c1¼ 0, c2¼ 1=2, and the impulse response function is

h(t) ¼ 1

2
sin(t)sgn(t)þ 1

2
sin(t) ¼ sin(t)u(t):

The transfer function is

H(v) ¼ ^[ sin(t)u(t)]jv

¼ 1

2j
pd(v� 1)� j

1

v� 1

 �

� pd(vþ 1)� j
1

vþ 1

 �� �

¼ 1

1� v2
þ j

p

2
[d(vþ 1)� d(v� 1)]:
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2.6.6 RLC Circuits

Consider the electric circuit sketched in Figure 2.10. This circuit

consists of

A resistor with a fixed resistance of R ohms,

An inductor with a fixed inductance of L henries,

A capacitor with a fixed capacitance of C farads, and

A time varying voltage supply providing a voltage of E(t)
volts.

The charge on the capacitor at time t will be denoted by q(t) and
the corresponding current in the circuit by i(t). The charge and
current are related by

i(t) ¼ dq

dt
:

By Kirchloff ’s laws

L
d2q

dt2
þ R

dq

dt
þ 1

C
q ¼ E(t): (2:205)

For a physical circuit R must be positive and L and C cannot be

negative. Also, it is reasonable to assume that no charge accu-

mulates on the capacitor if no voltage has previously been pro-

vided. Thus, q(t) can be viewed as the output corresponding to an

input of E(t) to a causal LSI system. The impulse response

function, h(t), to this system satisfies

L
d2h

dt2
þ R

dh

dt
þ 1

C
h ¼ d(t): (2:206)

If the inductance and capacitance are nonzero, then straightfor-

ward computations, similar to those done in the examples of

Sections 2.6.5 and 2.3.14 lead to

h(t) ¼ 1

2Lb
[ebt � e�bt]e�atu(t)

and

H(v) ¼ j

2Lb

1

v� j(aþ b)
� 1

v� j(a� b)

� �

¼ �C
LCv2 � jRCv� 1

,

where

a ¼ R

2L
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R

2L

 �2

� 1

LC

s

:

It should be noted that, because the real part of a�b is positive,

h(t) is bounded by a decreasing exponential on 0< t. Hence, h(t)
is absolutely integrable and the system is stable.

In practice, the current, i(t), is often of greater interest than the

charge on the capacitor. Because

i(t) ¼ dq

dt
¼ d

dt
(E * h(t)) ¼ E * h

0(t),

it follows that the current is given by a system with impulse

response function

hi(t) ¼ h0(t) ¼ 1

2Lb
[(b� a)ebt þ (bþ a)e�bt]e�atu(t)

and transfer function

Hi(v) ¼ jvH(v) ¼ �jCv

LCv2 � jRCv� 1
:

In either case the response of the system to the impulse function

will depend on whether b has an imaginary component. If b does

have a nonzero imaginary component, the unit impulse response

will be a sinusoidal function with an exponentially decreasing

envelope. If the imaginary part of b is zero, then the response is

simply a linear combination of decreasing exponentials.

2.6.7 Modulation and Demodulation

Let f(t) be any band-limited function with bandwidth 2V, and let

vc and t0 be real constants with V<vc. The product

g(t) ¼ f (t) cos (vct � t0)

is the ‘‘modulation of the carrier signal, cos(vt� t0), by f(t).’’ The
extraction of the modulating signal, f(t), from the modulated

signal provides an especially nice example of the application of

Fourier analysis in signal processing.

To extract f(t), first multiply g(t) by the carrier signal. This gives

g(t) cos (vct � t0) ¼ f (t) cos2 (vct � t0)

¼ f (t)
1

2
þ 1

2
cos (2vct � 2t0)

� �

¼ 1

2
f (t)þ 1

2
f (t) cos (2vct � 2t0):

C

L

R

E(t)

FIGURE 2.10 A simple RLC circuit.
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Using the basic identities, the Fourier transform of this is found to

1

2
F(v)þ 1

2
F(v) * [pe

�j4t0vcd(v� 2vc)þ pe j4t0vcd(vþ 2vc)]

¼ 1

2
F(v)þ p

2
[e�j4t0vcF(v� 2vc)þ e j4t0vcF(vþ 2vc)]:

Sketches of F(v), F(v� 2vc), and F(vþ 2vc) are given in

Figure 2.11. Observe that because f(t) is a band-limited function

with bandwidth 2V and V<vc, if H(v) is any band-limited

function with bandwidth 2VH satisfying VH< 2vc�V, then

1

2
F(v)þ p

2
[e�j4t0vcF(v� 2vc)þ e j4t0vcF(vþ 2vc)]

 �

H(v)

¼ 1

2
F(v)H(v):

In particular if H(v) is the perfect low-pass filter of Examples

2.52 and 2.55,

H(v) ¼
1, if vj j < VH

0, if vj j > VH ,

�

with

V < VH < 2vc �V,

then

1

2
F(v)þ p

2
[e�j4t0vcF(v� 2vc)þ e j4t0vcF(vþ 2vc)]

 �

H(v)

¼ 1

2
F(v):

Thus, the signal

g(t) ¼ f (t) cos (vct � t0)

can be perfectly demodulated (i.e., f(t) can be completely

extracted) by first multiplying the modulated signal by the carrier

and then passing the result through an appropriate ideal low-

pass filter.

2.7 Random Variables

Because noise is an intrinsic factor in real-world systems, random

variables play an important role in the mathematics of practical

engineering problems. As illustrated in this section, the Fourier

transform is a useful tool in analyzing signals containing a

significant random component and in extracting usable informa-

tion from these signals.

2.7.1 Basic Probability and Statistics

A nonnegative function, p(x), is a probability density function if

it satisfies

ð

1

�1

p(x)dx ¼ 1:

Such a function is absolutely integrable and so its Fourier trans-

form, P(y)¼^[p(x)]jy, must be continuous and must satisfy

P(0)¼ 1 (see Section 2.3.2).

If x denotes the outcome of a random process governed by the

probability density function p(x) and if �1� a� b�1, then

ð

b

a

p(x)dx

is the probability that x is between a and b. The ‘‘mean’’ or

‘‘expected value’’ of x, is denoted by either m or E[x], and is

given by the first moment of p(x),

m ¼ E[x] ¼
ð

1

�1

xp(x)dx:

The variance of x, denoted by either s2 or Var[x], is the second
moment of p(x) about its mean,

s2 ¼ Var[x] ¼
ð

1

�1

(x � m)2p(x)dx,

F(ω)F(ω + 2ωc) F(ω–2ωc)

2ωc

–Ω Ω

ΩH

FIGURE 2.11 Translations of the transform of a band-limited function.
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and the standard deviation, s, is the square root of the variance.

More generally, if f(x) is any function of x then f(x) is a random
variable with expected value

m ¼ E[ f (x)] ¼
ð

1

�1

f (x)p(x)dx

and variance

Var[ f (x)] ¼
ð

1

�1

j f (x)� mj2p(x)dx:

In particular, Var[x]¼ E[jx�mj2]. It is easy to show that the

variance of x, s2, is directly related to the first and second

moments of p(x),

s2 ¼ E[x2]� m2 ¼
ð

1

�1

x2p(x)dx �
ð

1

�1

xp(x)dx

0

@

1

A

2

:

It follows from the discussion in Sections 2.2.11 and 2.2.12 that if

p(x) is a probability density function, then the corresponding

mean, expected value of x2, and variance can be computed from

the density function’s transform, P(y)¼^[p(x)]jy, by

m ¼ jP0(0), (2:207)

E[x2] ¼ �P00(0), (2:208)

and

s2 ¼ [P0(0)]2 � P00(0): (2:209)

Example 2.58 The Normal Distribution

A normal (or Gaussian) probability distribution is given by the

density function

p(x) ¼
ffiffiffiffi

a

p

r

e�a(x�x0 )
2

,

where a> 0. Using the tables it is easily verified that

P(y) ¼ ^[p(x)] y

�

� ¼ exp � 1

4a
y2 � jx0y

� �

:

Furthermore,

P(0) ¼ 1,

P0(y) ¼ � 1

2a
y þ jx0

 �

P(y),

and

P00(y) ¼ 1

4a2
[(y þ j2ax0)

2 � 2a]P(y):

Using formulas 2.207 through 2.209 to compute the mean and

variance,

m ¼ jP0(0) ¼ �j(0þ jx0)P(0) ¼ x0 ,

E[x2] ¼ �P00(0) ¼ � 1

4a2
[(0þ j2ax0)

2 � 2a]P(0) ¼ x20 þ
1

2a
,

and

s2 ¼ [P0(0)]2 � P00(0) ¼ 1

2a
:

Replacing x0 and a in the above formulas for p(x) and P(y) it

follows that the normal probability distribution with mean m
and standard deviation s is given by the density function

p(x) ¼ 1

s
ffiffiffiffiffiffi

2p
p exp � 1

2

x � m

s

� �2
� �

,

and that its Fourier transform is given by

P(y) ¼ exp � 1

2
(sy)2 � jmy

� �

:

Example 2.59 The Binomial Distribution

Consider a process consisting of n repetitions of an experi-

ment with exactly two outcomes, ‘‘success’’ and ‘‘failure.’’ Let

p0 be the probability of ‘‘success’’ and q0 the probability of

‘‘failure’’ in one experiment (hence, p0þ q0¼ 1). Such a pro-

cess is governed by the binomial probability density function

p(x) ¼
X

n

k¼0

n

k

 �

pk0 qn�k0 d(x � k)

with

ð

b

a

p(x) dx ¼
X

a<k<b

n

k

 �

pk0 qn�k0

being the probability that the number of ‘‘successes,’’ x, satis-

fies a< x< b.

In Example 2.33 the Fourier transform of this function was

found to be

P(y) ¼ (p0e
�jy þ q0)

n:

Assuming that n> 1,

P0(y) ¼ �jnp0e�jy (p0e�jy þ q0)
n�1:
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and

P00(y) ¼ �np0e�jy (np0e�jy þ q0)(p0e
�jy þ q0)

n�2:

Thus,

P0(0) ¼ �jnp0 and P00(0) ¼ �np0(np0 þ q0):

So, using formulas 2.207 through 2.209 to compute the mean

and variance,

m ¼ jP0(0) ¼ np0 ,

E[x2] ¼ �P00(0) ¼ np0(np0 þ q0),

and

s2 ¼ [P0(0)]2 � P00(0) ¼ np0q0:

2.7.2 Multiple Random Processes
and Independence

Let x1 and x2 denote the outcomes of two random processes

governed, respectively, by probability density functions p1(x1)
and p2(x2), and with corresponding means m1 and m2, and corre-

sponding standard deviations s1 and s2. Taken as a single pair,

(x1, x2) can be viewed as the outcome of a single two-dimensional

random process. This process will be governed by a probability

density function of two variables, q(x1, x2). Given any �1� a1
� b1�1 and �1� a2� b2�1, the probability that both

a1 < x1 < b1 and a2 < x2 < b2

is

ð

b1

a1

ð

b2

a2

q(x1, x2)dx1dx2:

In general, the relationship between the joint density function

q(x1, x2), and the individual density functions, p1(x1) and p2(x2),
depends strongly on the relationship that exists between the two

random processes. If x1 and x2 are, in fact, the same, then

q(x1, x2) ¼ p1(x1)d(x2 � x1): (2:210)

If the two random processes are completely independent of each

other, then, for all values of x1 and x2,

q(x1, x2) ¼ p1(x1)p2(x2): (2:211)

Example 2.60

Let x denote the number of heads resulting from a single toss

of a fair coin, and let x1 and x2 be the number of heads

reported by two perfectly accurate observers, each observing

the single toss of a fair coin. The probability density function

for x, p(x), is well known to be

p(x) ¼ 1

2
d(x)þ 1

2
d(x � 1):

If both observers are observing the same coin toss, then

x1¼ x2 and, according to formula 2.210, the joint probability

density function is

qsame(x1 , x2) ¼
1

2
d(x1)þ

1

2
d(x1 � 1)

� �

d(x2 � x1): (2:212)

Note that if a is any real number and f(x1, x2) is any two-

dimensional test function, then

ð

1

�1

ð

1

�1

d(x1 � a)d(x1 � x2)f(x1 , x2)dx1dx2 ¼ f(a,a)

¼
ð

1

�1

ð

1

�1

d(x1 � a, x2 � a)f(x1 , x2)dx1dx2:

This shows that, in general,

d(x1 � a)d(x1 � x2) ¼ d(x1 � a, x2 � a),

which, in turn, verifies that formula 2.212 is completely equiva-

lent to the formula

qsame(x1 , x2) ¼
1

2
d(x1 , x2)þ

1

2
d(x1 � 1, x2 � 1),

obtained by elementary probability theory.

On the other hand, if the two observers are observing two

different tosses of the coin, then the value of x1 and x2 are

independent of each other and the joint density function is

qindep(x1 , x2) ¼
1

2
d(x1)þ

1

2
d(x1 � 1)

� �

1

2
d(x2)þ

1

2
d(x2 � 1)

� �

¼ 1

4
d(x1)d(x2)þ

1

4
d(x1)d(x2 � 1)

þ 1

4
d(x1 � 1)d(x2)þ

1

4
d(x1 � 1)d(x2 � 1),

which agrees with the formula

qindep(x1 , x2) ¼
1

4
[d(x1 , x2)þ d(x1 , x2 � 1)þ d(x1 � 1, x2)

þ d(x1 � 1, x2 � 1)]

obtained by elementary probability theory.

Formula 2.211 gives the mathematical definition for x1 and x2
being independent random variables. Assuming x1 and x2 are

independent, the mean of the product is
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E[x1x2] ¼
ð

1

�1

ð

1

�1

x1x2p1(x1)p2(x2)dx1dx2

¼
ð

1

�1

x1p1(x1)dx1

ð

1

�1

x2p2(x2)dx2

¼ m1m2: (2:213)

Similar computations show that

Var[x1x2] ¼ s2
1s

2
1:

It should also be noted that the two-dimensional transform of the

joint probability density is

Q(y1y2) ¼
ð

1

�1

ð

1

�1

p1(x1)p2(x2)e
�j(x1y1þx2y2)dx1dx2

¼
ð

1

�1

p1(x1)e
�jx1y1dx1

ð

1

�1

p2(x2)e
�jx2y2dx2

¼ P1(y1)P2(y2)

where P1(y1) and P2(y2) and the Fourier transforms of p1(x1) and
p2(x2), respectively.

More generally, any number of random variables—x1, x2, . . . ,
xn—are considered to be independent if the probability density

function for the vector (x1, x2, . . . , xn) is the product of the density
functions of the individual variables,

q(x1, x2, . . . , xn) ¼ p1(x1)p2(x2) � � � pn(xn):

If x1, x2, . . . , xn are independent, then the n-dimensional Fourier

transform of the joint density function is simply the product of

the one-dimensional Fourier transforms of the individual density

functions,

Q(x1, x2, . . . , xn) ¼ P1(x1)P2(x2) � � � Pn(xn),

and the mean of the product of the variables and the correspond-

ing variance are merely the products of the means and variances

of the individual variables

E[x1x2 . . . xn] ¼ m1m2 . . .mn

and

Var[x1x2 � � � xn] ¼ s2
1s

2
2 � � �s2

n:

2.7.3 Sums of Random Processes

Let x1 and x2 denote the outcomes of two independent random

processes governed, respectively, by probability density functions

p1(x) and p2(x), and with corresponding means m1 and m2, and

corresponding standard deviations s1 and s2. The sum of these

two outcomes,

xS ¼ x1 þ x2,

can be viewed as the outcomes of another random process, which

is governed by the probability density function

pS(x) ¼
ð

1

�1

p1(x � j)p2(j)dj ¼ p1 * p2(x):

If P1(y), P2(y), and PS(y) are the Fourier transforms of p1(x),
p2(x), and pS(x), then, by identity 2.37,

PS(y) ¼ P1(y)P2(y):

Thus,

PS(0) ¼ P1(0)P2(0) ¼ 1

and

P0
S(0) ¼ P0

1(0)P2(0)þ P1(0)P
0
2(0) ¼ P0

1(0)þ P0
2(0):

From this last equation and Equation 2.207, it immediately

follows that the mean of xS is the sum of the means of x1 and x2,

mS ¼ m1 þ m2:

Likewise, computing P
00
s (0) and using Equations 2.208 and 2.209

leads to

E[x2S] ¼ E[x21]þ E[x22]þ 2m1m2

and

s2
S ¼ s2

1 þ s2
2:

More generally, if

xS ¼ x1 þ x2 þ � � � þ xN ,

where each xn denotes the outcome of an independent random

process governed by a probability density function, pn(x), and
with corresponding mean and standard deviation, mn and sn,

then xS is governed by the probability density function

pS(x) ¼ p1 * p2 * � � � * pN (x)

and has mean and variance

mS ¼ m1 þ m2 þ � � � þ mN ,

and

s2
S ¼ s2

1 þ s2
2 þ � � � þ s2

N :
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If N is fairly large, the central limit theorem of probability theory

states that under very general conditions,

pS(x) 

1

ss

ffiffiffiffiffiffi

2p
p exp � 1

2

x � ms

ss

 �2
" #

or, equivalently, that

PS(y) ¼ ^[pS(x)]jy 
 exp � 1

2
(sSy)

2 � jmSy

� �

:

In practice, the ‘‘noise’’ in a system is often the result of a large

number of random processes each of which contributes a term to

the total noise. According to the above discussion, it is not

necessary to describe each source of noise accurately. Instead,

the aggregate can be treated as a random process governed by a

normal distribution.

2.7.4 Random Signals and Stationary
Random Signals

A signal, x(t), is ‘‘deterministic’’ if it can be treated, mathemat-

ically, as a well-defined function of t, that is, if for each value of t
there is a single fixed value for x(t). The signal is ‘‘random’’ if,

instead, for each value of t, x(t) must be treated as the outcome of

a nontrivial random process.

Assume x(t) is a random signal. For each value of t there is a
corresponding probability density function, p(x, t), with

ð

b

a

p(x, t)dx

being the probability of a< x(t)< b. The corresponding mean

and variance,

E[x(t)] ¼ m(t) ¼
ð

1

�1

xp(x, t)dx

and

Var[x(t)] ¼ s2(t) ¼
ð

1

�1

(x � m(t))2p(x, t)dx,

are deterministic functions of t. The Fourier transform of the

density function is

P(y, t) ¼
ð

1

�1

p(x, t)e�jxydx:

If the statistical properties of the process generating x(t) do not vary
with t, then the process is said to be a ‘‘stationary’’ random process.

The corresponding signal will also be called ‘‘stationary’’ though its

value will certainly depend—in a random manner—on t. For a

stationary random signal, x(t), it is reasonable to expect that the

long-term time average of x(t) will equal its mean, E[x]¼m,

m ¼ lim
T!1

1

2T

ð

T

�T

x(t)dt: (2:214)

Mathematically, it can be shown that, under fairly broad condi-

tions, the probability that Equation 2.214 is not correct for a

given stationary random signal is vanishingly small. Likewise,

E[x2(t)] ¼ lim
T!1

1

2T

ð

T

�T

x(t)j j2dt

and

s2 ¼ lim
T!1

1

2T

ð

T

�T

x(t)� mj j2dt:

Thus, stationary random signals (with finite mean and variances)

can be treated as finite power functions (see Section 2.3.8). Given

a stationary random signal, x(t), the corresponding average auto-
correlation function is

�rx(t) ¼ lim
T!1

1

2T

ð

T

�T

x*(s)x(t þ s)ds:

The average power is

�rx(0) ¼ lim
T!1

1

2T

ð

T

�T

x(s)j j2ds

and the power spectrum is

Px(v) ¼ ^[�rx(t)]jv¼
ð

1

�1

�rx(t)e
�jvtdt

or, equivalently,

Px(v) ¼ lim
T!1

1

2T

ð

T

�T

x(t)e�jvtdt

�

�

�

�

�

�

�

�

�

�

�

�

2

:

It should be recalled that one property of the average autocorre-

lation function is that

(�rx(t))* ¼ �rx(�t): (2:215)

Thus, if x(t) is a real random signal, then the average autocorre-

lation will be an even real-valued function. So, also, will the

power spectrum.
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2.7.5 Correlation of Stationary Random Signals
and Independence

The average cross-correlation of two stationary random signals,

x(t) and y(t), is

�rxy(t) ¼ lim
T!1

1

2T

ð

T

�T

x*(s)y(t þ s)ds,

or, equivalently,

�rxy(t) ¼ E[x*Q�ty]

where, for any a, Qa y denotes the translation of y by a,

Qay(s) ¼ y(s� a):

The corresponding cross-power spectrum is

Pxy(v) ¼ ^[�rxy(t)]
�

�

�

v
¼
ð

1

�1

�rxy(t)e
�jvtdt:

It should be noted that

[�rxy(t)]* ¼ lim
T!1

1

2T

ð

T

�T

x*(s)y(sþ t)ds

2

4

3

5

*

¼ lim
T!1

1

2T

ð

T

�T

x(s)y*(sþ t)ds

¼ lim
T!1

1

2T

ð

T

�T

x(s� t)y*(s)ds

¼ �ryx(�t): (2:216)

From Schwarz’s inequality, it follows that

�rxy(t)
�

�

�

�

�

�

2

� �rx(0)�ry(0):

A somewhat more general statement, namely, that for any �1
� a< b�1,

ð

b

a

Pxy(v)e
jvtdv

�

�

�

�

�

�

�

�

�

�

�

�

2

�
ð

b

a

Px(v)dv

ð

b

a

Py(v)dv

can also be proven. This shows that if the power spectrum of a

signal vanishes on an interval, then so does cross-power spec-

trum of that signal with any other signal.

The average cross-correlation indicates the extent to which the

two processes are independent of each other. If, for example, x(t)

and y(t) are generated by two completely independent stationary

processes, then, following the discussion in Section 2.7.2,

�rxy(t) ¼ mx*my for all t

and

Pxy(v) ¼ 2pmx*myd(v):

In particular, if one of the two independent processes has mean

zero, then

�rxy(t) ¼ 0 for all t

and

Pxy(v) ¼ 0:

On the other hand, if y(t)¼gx(t� t) for some pair, g and t, of

real values, then

�rxy(t) ¼ lim
T!1

1

2T

ð

T

�T

x*(s)gx(s� tþ t)ds:

Thus, even if the expected value of x(t) is zero,

�rxy(t) ¼ g lim
T!1

1

2T

ð

T

�T

x(s)j j2ds ¼ g�rx(0)

and the cross-power spectrum, Pxy(v), will not vanish.
Of particular interest is the average cross-correlation of a

random signal, x(t), with itself. This is the same as the average

autocorrelation of x(t) and indicates the extent to which the value

of x(tþa) can be predicted from the value of x(a). If the

expected value of x(t) is zero and, for every a and nonzero

value of t, x(t) and x(tþa) are outcomes of completely inde-

pendent random processes, then x(t) is called ‘‘white noise.’’ For

such a signal there is a constant, P0, such that

�rx(t) ¼ P0d(t)

and

Px(v) ¼ P0:

2.7.6 Systems and Random Signals

Let S be a linear shift invariant system with impulse response

function h(t) and transfer function H(v). Assume the input, x(t),
is a stationary random signal with mean mx, and let g(t) be the
corresponding output,

y(t) ¼ S[x(t)]:

The output is also a stationary random signal. It is related to the

input by

y(t) ¼ h * x(t)

2-60 Transforms and Applications Handbook



or, equivalently, by

Y(v) ¼ H(v)X(v),

where X(v) and Y(v) are, respectively, the Fourier transforms of

x(t) and y(t). It should be easy to see that the expected value of

the output is directly related to the expected value of the input,

my ¼ S[mx] ¼ h *mx ¼ mx

ð

1

�1

h(s)ds:

The auto- and cross-correlations of the input and output signals

are related by

�ry(t) ¼ h * �ryx(t), (2:217)

�rxy(t) ¼ h * �rx(t), (2:218)

and

�ry(t) ¼ h * (h$ �rx)(t): (2:219)

Taking the Fourier transforms of these relations gives the corre-

sponding relations for the power spectra,

Py(v) ¼ H(v)Pyx(v), (2:220)

Pxy(v) ¼ H(v)Px(v), (2:221)

and

Py(v) ¼ H(v)j j2Px(v): (2:222)

Derivations of identities 2.217 through 2.219 are relatively

straightforward. For identity 2.217,

�ry(t) ¼ lim
T!1

1

2T

ð

T

�T

y*(s)y(sþ t)ds

¼ lim
T!1

1

2T

ð

T

�T

y*(s)[h * x(sþ t)]ds

¼ lim
T!1

1

2T

ð

T

�T

y*(s)

ð

1

�1

h(l)x(sþ t � l)dl ds

¼
ð

1

�1

h(l) lim
T!1

1

2T

ð

T

�T

y*(s)x(sþ t � l)ds

0

@

1

Adl

¼
ð

1

�1

h(l)�ryx(t � l)dl

¼ h * �ryx(t):

Derivations of Equations 2.218 and 2.219 are similar with the

derivation of Equation 2.219 aided by identities 2.215 and 2.216.

Example 2.61

Let S be an LSI system with transfer function

H(v) ¼ 1

j þ v
:

Assume the input, x(t), is white noise, that is, the power

spectrum of x(t) is a constant,

Px (v) ¼ P0:

The corresponding output of the system, y(t), will have power

spectrum

Py (v) ¼ H(v)j j2Px (v) ¼
P0

1þ v2

and autocorrelation

�ry (t) ¼ ^�1[Py (v)]
�

�

t
¼ 1

2
P0e
� tj j:

The mean squared output is then

lim
T!1

1

2T

ð

T

�T

y(t)j j2dt ¼ �ry (0) ¼
1

2
P0:

Example 2.62

Let S be the ideal low-pass filter from Example 2.52 with cutoff

frequency V. The transfer function is

H(v) ¼ pV(v) ¼
1, if vj j < V

0, if V < vj j

�

:

The power spectrum of the output, y(t), resulting from a white

noise input, x(t), with power spectrum Px(v)¼ P0 is

Py (v) ¼ H(v)j j2Px (v) ¼ P0pV(v)

and the autocorrelation of the output is

�ry (t) ¼ ^�1[Py (v)]
�

�

�

t
¼ P0

1

pt
sin (Vt):

The mean squared output of the white noise is then

lim
T!1

1

2T

ð

T

�T

y(t)j j2dt ¼ �ry (0) ¼ P0 lim
t!0

sin (Vt)

pt
¼ V

p
P0:

Consider, now, an input of f(t)þ x(t) where x(t) is the above

white noise and f(t) is a deterministic band-limited signal with

bandwidth less than 2V. The output of this low-pass filter is

then f(t)þ y(t).
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The expected ‘‘intensity’’ of the output is

E f (t)þ y(t)j j2
	 


¼ E f (t)j j2þf*(t)y(t)þ f (t)y*(t)þ y(t)j j2
	 


¼ f (t)j j2þf*(t)E[y(t)]þ f (t)E[y*(t)]þ E y(t)j j2
	 


Because x(t) comes from white noise,

E[y(t)] ¼ E[S[x(t)]] ¼ S[E[x(t)]] ¼ S[0] ¼ 0,

and, by the above,

E y(t)j j2
	 


¼ lim
T!1

1

2T

ð

T

�T

y(t)j j2dt ¼ V

p
P0:

Thus, the expected intensity of the output is

f (t)j j2þV

p
P0 ,

and the ratio of the intensity of the deterministic signal to the

intensity of the outputted noise (signal-to-noise ratio) is

p f (t)j j2
VP0

:

2.8 Partial Differential Equations

The Fourier transform is an especially useful tool for solving

problems involving partial differential equations. To illustrate

how the Fourier transform can be used in a variety of such

problems, three different problems involving the partial differen-

tial equation describing heat flow are examined below.

2.8.1 The One-Dimensional Heat Equation

The next few sections concern a uniform rod of some heat con-

ducting material positioned on the X-axis between x¼a and

x¼b. It is assumed that the sides of the rod are thermally insu-

lated from the surroundings. The relevant material constants are

c¼ specific heat of the material

r¼ linear density of the material

and

k¼ thermal diffusivity

Any heat sources (and sinks) are described by a density func-

tion, f(x, t), where, for any 0� t1< t2 and a� x1< x2�b,

ð

x2

x1

ð

t2

t1

crf (x, t)dtdx

is the total heat (in calories) generated in the rod between x¼ x1
and x¼ x2 during the period of time between t¼ t1 and t¼ t2.

The temperature distribution throughout the rod is described by

y(x, t)¼ the temperature at time t and position x in the rod:

Using basic thermodynamics it can be shown that y(x, t) must

satisfy the ‘‘one-dimensional heat equation,’’

qy

qt
� k

q2y

qx2
¼ f (x, t) (2:223)

for a< x<b.

In Sections 2.8.2 through 2.8.4, the above equation is solved

under various conditions. In each case the Fourier transform is

taken with respect to the spatial variable, x, with (assuming an

infinite rod, a¼�1 and b¼1)

V ¼ V(j, t) ¼ ^x[y(x, t)]jj¼
ð

1

�1

y(x, t)e�jjxdx

and

F ¼ F(j, t) ¼ ^x[f (x, t)]jj¼
ð

1

�1

f (x, t)e�jjxdx:

Observe that

^x
qy

qt

� ��

�

�

�

j

¼
ð

1

�1

qy

qt

�

�

�

�

(x, t)

e�jjxdx ¼ q

qt

ð

1

�1

y(x, t)e�jjxdx ¼ qV

qt
:

On the other hand, it is appropriate to use identity 2.50 to

compute the transform (with respect to x) of any partial deriva-

tives with respect to x. In particular,

^x
q2y

qx2

� ��

�

�

�

j

¼ ( jj)2V(j, t) ¼ �j2V(j, t):

Thus, taking the Fourier transform of Equation 2.223 with

respect to x yields

qV

qt
þ kj2V ¼ F, (2:224)

which can be treated as an ordinary first-order linear differential

equation. From the elementary theory of ordinary differential

equations, the general solution to Equation 2.224 is

V(j, t) ¼ e�kj2t

ð

t

a

ekj
2tF(j, t)dtþ G(j)e�kj2t (2:225)

where

a is any convenient value

G(j) is an ‘‘arbitrary’’ function of j

The temperature distribution y(x, t), is then found by taking the

inverse Fourier transform with respect to the ‘‘spatial frequency’’

variable j.
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2.8.2 The Initial Value Problem for Heat
Flow on an Infinite Rod

If the rod is infinite, there are no heat sources or sinks in the rod,

and the initial temperature distribution is known to be given by

y0(x), then y(x, t) is the solution to the following system of

equations:

qy

qt
� k

q2y

qx2
¼ 0

y(x, 0) ¼ y0(x):

Because y0(x) is the initial temperature distribution, it suffices to

find y (x, t) for 0< t.
Taking the Fourier transform with respect to x of each of the

above equations yields the system of two equations,

qV

qt
þ kj2V ¼ 0

V(j, 0) ¼ V0(j),

where

V0(j) ¼ ^[y0(x)]jj:

From formula 2.225 the general solution to the differential equa-

tion is

V(j, t) ¼ G(j)e�kj
2t :

Plugging in the initial values,

G(j) ¼ V(j, 0) ¼ V0(j),

shows that

V(j, t) ¼ V0(j)e
�kj2t :

The temperature distribution for all time is then found by taking

the inverse transform (with respect to the spatial variable),

y(x, t)j ¼ ^�1j V0(j)e
�ktj2

h i

x

¼ ^�1j V0(j)½ �
�

�

�

x
*^

�1
j e�ktj2
h i�

�

�

x

¼ y0(x) *
1
ffiffiffiffiffiffiffiffiffiffi

4pkt
p exp � 1

4kt
x2

� � �

¼ 1
ffiffiffiffiffiffiffiffiffiffi

4pkt
p

ð

1

�1

y0(s) exp � 1

4kt
(x � s)2

� �

ds:

2.8.3 An Infinite Rod with Heat Sources
and Sinks

For this problem it is assumed that the rod is infinite, and that

the initial temperature distribution is

y (x, 0)¼ 0. The source term, f(x, t), is assumed to be nonzero

for 0< t. Because the initial temperature distribution is a con-

stant zero and it is only necessary to find y(x, t) for t> 0, the

following two assumptions may be made:

1. For t� 0, y (x, t)¼ 0.

2. For t< 0, f(x, t)¼ 0.

The heat flow problem is then one of solving the heat equation,

qy

qt
� k

q2y

qx2
¼ f (x, t) (2:226)

for all real values of x and t, subject to conditions (1) and (2).

This problem is similar to that of finding the output to a casual

LSI system. This suggests that it is convenient to find first the

solution to

qh

qt
� k

q2h

qx2
¼ d(x)d(t) (2:227)

where h(x, t) is assumed to vanish if t< 0. It is then relatively easy

to verify that the solution to Equation 2.227 is given by the two-

dimensional convolution of h(x, t) with f(x, t). Because f(s, t)
vanishes for t< 0, this can be written

y(x, t) ¼ f * h(x, t)

¼
ð

1

s¼�1

ð

1

t¼0

f (s, t)h(x � s, t � t)dt ds: (2:228)

Taking the Fourier transform of Equation 2.227 (with respect to

the spatial variable) yields

qH

qt
þ kj2H ¼ d(t) (2:229)

where, by the assumptions on h(x, t),

H(j, t) ¼ ^j[h(x, t)]
�

�

x

must vanish when t< 0. From Equation 2.225 it follows that the

solution to Equation 2.229 is given by

H(j, t) ¼ e�kj2t

ð

t

a

ekj
2td(t)dtþ G(j)e�kj2t :

It is convenient to take a¼�1. Observe, then, that

ð

t

a

ekj
2td(t)dt ¼ 1, if 0 < t

0, if t < 0

� �

¼ u(t):
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Combining this with the fact that H(j, t) vanishes for negative
values of t gives

0 ¼ H(j, �1) ¼ e�kj
2(�1)u(�1)þ G(j)e�kj

2(�1) ¼ G(j)ekj
2

,

implying that G(j) vanishes and

H(j, t) ¼ e�ktj
2

u(t):

Taking the inverse transform

h(x, t) ¼ ^�1j [e�ktj
2

u(t)]jx ¼
1
ffiffiffiffiffiffiffiffiffiffi

4pkt
p exp

�x2
4kt

� �

u(t):

Formula 2.228 for the solution to the heat equation then becomes

y(x, t)¼
ð

1

s¼�1

ð

1

t¼0

f (s,t)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pk(t� t)
p exp

�(x� s)2

4k(t� t)

� �

u(t� t)dtds

¼
ð

1

s¼�1

ð

t

t¼0

f (s,t)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pk(t� t)
p exp

�(x� s)2

4k(t� t)

� �

dtds:

2.8.4 A Boundary Value Problem for Heat Flow
on a Half-Infinite Rod

For this problem it is assumed that the rod occupies the positive

X-axis, 0< x, that there are no sources or sinks of heat in the rod,

and that the initial temperature throughout the rod is zero.

At x¼ 0 the temperature is known to be given by some function,

Q(t), for 0< t. The temperature distribution function, y (x, t), then
must satisfy the following system of equations:

qy

qt
� k

q2y

qx2
0, 0 < x and 0 < t

y(x, 0) ¼ 0, 0 < x

y(0, t) ¼ Q(t), 0 < t:

To apply the Fourier transform with respect to the spatial vari-

able, y(x, t) must be extended to a function on all of x. A review of

relations 2.126 through 2.131 along with the observation that

y(0, t) is known, suggests that the odd extension,

ŷ(x, t) ¼ y(x, t), if 0 < t

�y(�x, t), if t < 0

�

,

is appropriate. It is easily verified that ŷ(x, t) satisfies

qŷ

qt
� k

q2ŷ

qx2
¼ 0

for all 0< t and x 6¼ 0. Combining this with relation 2.131,

Dxx ŷ ¼
q2ŷ

qx2
þ 2y(0, t)d0(x) ¼ 1

k

qŷ

qt
þ 2Q(t)d0(x),

gives the equation

qŷ

qt
� kDxx ŷ ¼ �2kQ(t)d0(x), (2:230)

where Dxxŷ explicitly denotes the second generalized derivative of

ŷ(x, t) with respect to x. Equation 2.230 is valid for all x and is the
same as Equation 2.226 with

f (x, t) ¼ �2kQ(t)d0(x):

Because ŷ(x, t) also satisfies the same initial condition as assumed

in Section 2.8.3, the solution derived in that section applies here,

ŷ(x, t) ¼
ð

1

s¼�1

ð

t

t¼0

[�2kQ(t)d0(s)]
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pk(t � t)
p

	 exp
�(x � s)2

4k(t � t)

� �

dt ds:

Now,

ð

1

�1

d0(s)e�g(x�s)2ds ¼ �
ð

1

�1

d(s)
d

ds
[e�g(x�s)2]ds

¼ �
ð

1

�1

d(s)2g(x � s)e�g(x�s)2ds

¼ �2gxe�gx2 :

Thus, for 0< x and 0< t,

y(x, t)¼ ŷ(x, t)

¼
ð

t

t¼0

�2kQ(t)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pk(t� t)
p

ð

1

s¼�1

d0(s) exp � (x� s)2

4k(t� t)

� �

ds

0

@

1

Adt

¼
ð

t

t¼0

�2kQ(t)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pk(t� t)
p �2

4k(t� t)
x exp

�x2

4k(t� t)

� � �

dt

¼ x

2
ffiffiffiffiffiffi

pk
p

ð

t

t¼0

Q(t)(t� t)�3=2 exp
�x2

4k(t� t)

� �

dt:

Letting s ¼ x
2
ffiffiffiffi

pk
p (t � t)�1=2, this simplifies somewhat to

y(x, t) ¼ 2

ð

1

s0

Q t � x2

4pks2

 �

e�ps2

ds,

where

s0 ¼
x

2
ffiffiffiffiffiffiffiffi

pkt
p :

In particular, if the boundary temperature is constant, Q(t)¼Q0,

then

y(x, t) ¼ 2Q0

ð

1

s0

e�ps2

ds ¼ Q0erfc
x

2
ffiffiffiffi

kt
p

 �

:
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2.9 Tables

TABLE 2.3 Fundamental Fourier Identities

If f(t) and G(v) are suitably integrable:

Integral definitions:

F(v) ¼ ^[f (t)]jv ¼
ð1

�1
f (t)e�jvtdt

g(t) ¼ ^�1[G(v)]jt ¼
1

2p

ð1

�1
G(v)ejvtdv

Parseval’s equality:

ð1

�1
f (t)g*(t)dt ¼ 1

2p

ð1

�1
F(v)G*(v)dv

Bessel’s equality:
ð1

�1
jf (t)j2dt ¼ 1

2p

ð1

�1
jF(v)j2dv

For all transformable functions:

Linearity:

^[af (t)þ bg(t)]jv¼ a^[ f (t)]jvþb^[g(t)]jv
^�1[aF(v)þ bG(v)]

�

�

t
¼ a^�1[F(v)]

�

�

t
þb^�1[G(v)]

�

�

t

Near equivalence (symmetry of transforms):

^�1[f(x)]jy ¼
1

2p
^[f(�x)]jy ¼

1

2p
^[f(x)]j�y

^[f(x)]jy ¼ 2p^�1[f(�x)]jy ¼ 2p^�1[f(x)]j�y

TABLE 2.4 Commonly Used Fourier Identities

h(t) H(v)¼^[h(t)]jv

f(at)
1

aj j F
v

a

� �

f(t�a) e�jav F(v)

e jat f(t) F(v�a)

cos(at) f(t)
1

2
[F(v� a)þ F(vþ a)]

sin(at) f(t)

1

2j
[F(v� a)� F(vþ a)]

df

dt
jvF(v)

dnf

dtn
(jv)n F(v)

tf(t) j
dF

dv

tn f(t) jn
dnF

dvn

f (t)

t
�j
Ð v

a F(s)dsþ ca

Ð t
a f (s)ds �j F(v)

v
þ cad(v)

f(t)g(t)
1

2p
F(v) *G(v)

f(t) * g(t) F(v)G(v)

f(t) $ g(t) F *(v)G(v)

f �(t) g(t)
1

2p
F(v) $ G(v)

Note: a is any nonzero real numbers,

F(v) ¼ ^[f (t)]jv and G(v) ¼ ^[g(t)]jv.

TABLE 2.5 Fourier Transforms of Some

Common Functions

f(t) F(w) ¼ ^[ f (t)]jv
pa(t)

2

v
sin(av)

(a� tj j)pa(t)
2 sin a

2
v

� �

v

 �2

ffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p

p1(t)
p

v
J1(v)

(1�t2)a�1p1(t) G(a)
ffiffiffiffi

p
p 2

vj j

 �a�1
2

Ja�1
2
( vj j)

sgn(t)pa(t) �2j
1� cos(av)

v

cos
p

2a
t

� �

pa(t)
4pa

p2 � 4a2v2
cos(av)

Rect(b, g)(t)
j

v
[e�jgv � e�jbv]

e�(aþ jb)tu(t)
1

aþ jbþ jv

tn�1e�(aþ jb)tu(t)
G(y)

(aþ jbþ jv)y

e(aþ jb) tu(�t)
1

(aþ jb� jv)

(�t)y �1e(aþ jb)tu(�t)
G(y)

(aþ jb� jv)y

e�ajtj 2a

a2 þ v2

sgn(t) e�ajtj �2jv

a2 þ v2

e�at2
ffiffiffiffi

p

a

r

exp � 1

4a
v2

� �

e�at2þbt

ffiffiffiffi

p

a

r

exp � 1

4a
v2 � j

b

2a
vþ b2

4a

� �

e�lt

aþ jbþ e�t
p(aþ jb)l�1þjvcsc(plþ jpv)

sech (at)
p

a
sech

p

2a
v

� �

e�jat2
ffiffiffiffi

p

a

r

exp �j
1

4a
(v2 � ap)

� �

e�ut2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j þ a
p

� j sgn(b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j � a
p	 


(w=u ¼ aþ jb) 	 1

uj j

ffiffiffiffi

p

2

r

exp � 1

4u
v2

 �

1

t
sin (at) ppa(v)

1

t
sin(at)

 �2
p

2
(2a� vj j)p2a(v)

1

tj j sin(at) �j sgn(v) ln
vj j þ a

vj j � a

�

�

�

�

�

�

�

�

l 2pd(v)

tn jn2pd(n)(v)

e jbt 2pd(v�b)

d (t�b) e�jbv

d(n) (t) ( jv)n

sin (at) �jp [d(v�a)� d(vþa)]

cos (at) p[d(v�a)þ d(vþa)]

(continued)
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TABLE 2.5 (continued) Fourier Transforms of Some

Common Functions

sin (at2)
�

ffiffiffiffi

p

a

r

sin
1

4a
(v2 � ap)

� �

cos (at2)

ffiffiffiffi

p

a

r

cos
1

4a
(v2 � ap)

� �

e�at
2

cos (nt2)
1

uj j

ffiffiffiffi

p

2

r

exp � a

4 uj j2
v2

 �

	

(w=u ¼ aþ jn)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j þ a
p

cos
nv2

4 uj j2
 �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j � a
p

sin
nv2

4 uj j2
 �� �

e�at2 sin (vt2)
1

uj j

ffiffiffiffi

p

2

r

exp � a

4 uj jv
2

 �

	

(w=u ¼ aþ jv)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j þ a
p

cos
vv2

4 uj j2
 ��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uj j � a
p

sin
vv2

4 uj j2
 ��

comba(t)
2p

a
comb2p

a
(v)

j sin(at)j
X

1

k¼�1

4

1� 4k2
d(v� 2ak)

cos(at)j j
X

1

k¼�1
(�1)k

4

1� 4k2
d(v� 2ak)

saw(t) j
X

1

n¼�1
n6¼0

(�1)n
2

n
d(v� np)

X

1

m¼�1
pa(t �mn)

4pa

n
d(v)þ

X

1

k¼�1
k6¼0

2

k
sin

2pka

n

 �

d v� 2pk

n

 �

(w=2a � n)

sgn(t) �j
2

v

u(t) pd(v)� j
1

v
1

t
�jp sgn(v)

t�n �jp
(�jv)n�1

(n� 1)!
sgn(v)

tj j � 2

v2

tnsgn(t) (�j)nþ1 2(n!)

vnþ1

TABLE 2.5 (continued) Fourier Transforms of Some

Common Functions

ramp(t) jpd0(v)� 1

v2

tn u(t) jnpd(n)(v)þ n!
�j

v

 �nþ1

tj j�1=2 ffiffiffiffiffiffi

2p
p

vj j�1=2

tj jl�1 2G(l) cos
lp

2

 �

vj j�l

J0(t)
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

Y0( tj j)
�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p [1� p1(v)]

J2n(t)
2 cos[2n arcsin(v)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

J2nþ 1(t)
�2j sin[(2nþ 1) arcsin(v)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

Jn(t)
2(�j)nTn(v)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p p1(v)

1

tn
Jn(t)

2(1� v2)n�
1
2

1 � 3 � 5 � � � � (2n� 1)
p1(v)

tj j�aþ1
2Ja�1

2
( tj j)

ffiffiffiffiffiffi

2p
p

G(a)

1� v2

2

 �a�1

p1(v)

1

t
Jn(t) (�j)n

2j

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

Un�1(v)p1(v)

t�1=2Jnþ1
2
(t) (�j)n

ffiffiffiffiffiffi

2p
p

Pn(v)p1(v)

sgn(t)J0(t) j
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � 1
p sgn(v)[1� p1(v)]

J0(t)u(t)
p1(v)þ j sgn(v)[1� p1(v)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2j j
p

Notes: a, b, g, l, n, and n denote real numbers with a> 0,

0<l< 1, n> 0, and n¼ 1, 2, 3, . . .G (x), is the Gamma

function; Pn(x), is the nth Legendre polynomial; Jn, is the

Bessel function of the first kind of order n; Yn, is the Bessel

function of the second kind of order n; Tn(x), is the nth
Chebyshev polynomial of the first kind; Un(x) is the nth
Chebyshev polynomial of the second kind; saw(t) is the saw

function of Example 2.30.
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TABLE 2.6 Graphical Representations of Some Fourier Transforms

f(x) F(y)

1/a

1/a

2a

A/a A/2a
1/a

A

A exp(–a2x2)
[Gaussian]

a

A

A

A exp(–a|x|)

A exp(–ax) [x > 0]
[x < 0]0

A√π

a

2A
a2A

a a2+y2

a

a

a

A√π

a
exp(–y2/4a2)

[Gaussian] (2.38)

(2.39)

(2.40)

[Lorentzian]

a2

a2 + y2

a – iyA

f(x) = (1/2π) F(y)e+1xy dy = FT *{F(y)}

+∞

–∞

F(y) = f(x)e–1xy dx = FT –{ f(x)}

+∞

–∞

2A/a

A/a

~A/a

2A
a

a

a

a

y0

y0

   A exp(–ax)       [x > 0]
–A exp(–a|x|)     [x < 0]

A

(2.41)

(2.42)

(2.43)

A A

A

1/a

–2iA
a2 + y2

y

a2 + (y – y0)2

a2

A
a

A
a

a2 + (y – y0)2

a2

(a2 + y0
2 – y2)2 + 4a2y2

2a2 (a2 + y0
2 + y2)

a2 + (y + y0)2

a2

+

=

2π/y0

2π/y0

2π/y0

A exp(iy0x – a|x|)

A cos y0x exp(–a|x|)

(continued)
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

2π/y0
2π/y0

2π/y0

2π/y0

A

A

A

A

A sin y0x exp(–a|x|)

A exp(iy0x – ax) [x > 0]

A cos y0x exp(–ax)                         [x > 0]

 [x < 0]

 [x < 0]

0

0

~A/a

A/a A/2a

A/2a A/4a

y0

y0

y0

y0

y0

a

a

a
a a

a

iA
a

iA
a

a2+ (y + y0)2

a2

a2+ (y – y0)2

a2

(a2 + y0
2– y2)2 + 4a2y2

–4a2yy0

–

(a2 + y0
2 – y2)2 + 4a2y2

a(a2 + y0
2 – y2) – iy(a2 + y2 – y0

2)

=

=
a2 + (y0 – y)2

a + i(y0 – y)

a + i(y – y0)

1
A A

A =

a2 + ( y + y0)2

aA

2 a2+ (y – y0)2

a
+

a2+ (y0 – y)2

y0 –  y y0 + y

a2+ (y0 + y)2–+ i

(2.44)

(2.45)

(2.46)

~A/2a

a

a

2π/y0

A

A

b

a

S
L L

A

L L

A

0 [|x| > L]

[|x| < L]

A sin y0x exp(–ax)     [x > 0]

 [x < 0]0

A

0

[a < x < b]

[x < a; x > b]

~A/4a

2AL

2AL

= 2A (sin Ly cos Sy) – i (sin Ly sin Sy)
y

2AL

2π/L

2π/S 2π/S

2π/L 2π/L

sin Ly
y

2π/L

2A

a

y0

y0

A
2 a2 + (y0 – y)2

y0 – y

a2 + (y0 + y)2a2 + (y0 + y)2

y0 + y
+ –+i

a

a2 + (y0 – y)2

 (2.47)

 (2.48)

 (2.49)

a

= Ay0
(a2 + y0

2 – y2) + i2ay

1

2A exp(–iSy) = A
sin Ly

y
(sin by – sin ay) – i (cos ay – cos by)

y

=
iA
y

[exp(–iby) – exp(–iay)]
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

2AL

AL

2L2L

2π/S

2π/L

2π/L

2π/L

2π/L

S S

A

4AL

A

0 [otherwise]

[(S – L) < |x| < (S + L)]

L

L L

L L L

A

A

A

2π/y0

2π/y0

2π/y0

A exp(iy0x) [|x| < L]

A cos y0x   [|x| < L]

[|x| > L]

0           [|x| > L]

4A (2.50)

(2.51)

(2.52)

cos Sy sin Ly
y

2A
sin{L(y0 – y)}

(y0 – y)

y0

y0 y0

sin L(y – y0)

(y – y0)

sin L(y + y0)

(y + y0)
+A0

L

L L

L

A

A

A

2π/y0

A sin y0x        [|x| < L]

[|x| > L]

[|x| > L]

0

A cos y0x        [|x| < (π/2y0)]

[|x| > (π/2y0)]0

0

π/y0

A [|x| < L]1–
|x|

L

AL

AL
sin (Ly/2)

(Ly/2)

2A/y0

y0

y0

iA

2A

[See (2.52) with L = π/2y0].

sin L(y + y0) sin L(y – y0)

6y0 4y0

2π/L

2π/L4π/L

~AL

(y + y0) (y – y0)
–

y0

y0
2 – y2

cos
πy
2y0

2

(2.53)

(2.54)

(2.55)

(continued)
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

A

A

A

Ax

L
[|x| < L]

[|x| > L]

L

LL

L

0

A|x|

L
[|x| < L]

[|x| > L]0

2π/y0 2π/y0

A exp(iy0x)

2iA

y

sin Ly

Ly
cos Ly –

2π/L

2π/L

AL

2AL
sin Ly

Ly

 (2.58)

 (2.57)

 (2.56)

sin (Ly/2)

Ly
– 2

2

2πA

2πAδ(y – y0).

y0

A cos y0x

A sin y0x

A cos2 y0x

A sin2 y0x

2π/y0

2π/y0

2π/y0

A

A

A

2π/y0

πA

πA

πA

πA

πA/2

πA/2

πA

πA{δ(y – y0) + δ(y + y0)} (2.59)

(2.60)

(2.61)

(2.62)

πiA{δ(y + y0) – δ(y – y0)}

y0

y0

2y0

2y02y0

2y0

y0

y0

πA{    δ(y + 2y0) + δ(y) +     δ(y – 2y0)}1

2

1

2

πA{–     δ(y + 2y0) + δ(y)–      δ(y – 2y0)}1

2

1

2
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

F(y) consists of
delta functions as

shown

2π/y0
2y0

y0
2

y0
2 – y2

2π/y0

2π/y0

cos y0x {A + a cos y1x}  ... (1)

sin y0x {A + a sin y1x}   ... (4)

sin y0x {A + a cos y1x}  ... (3)

cos y0x {A + a sin y1x}  ... (2)

2π/y1 2a

A

(–1)m4A

A

πA

πa/2
A

A|cos y0x|

A|sin y0x|

cos
πy

2y0
δ(y – 2ny0)

2y0

y0
y1

cos
πy

2y0
δ(y – 2ny0)

[n = 0, ±1, ±2, ...]

[n = 0, ±1, ±2, ...]

(2.63)

(2.64)

(2.65)

(1)

(2)

(3)

(4)

y0
2

y0
2 – y2

4A
n

m
+∞

n
m

–∞
Σ

n
m

+∞

n
m

–∞
Σ

exp(iy0x ) (A + a cos y1x)

exp(iy0x ) (A + a sin y1x)

2π {Aδ(y – y0) + δ(y – y0 + y1) – δ(y – y0 – y1)}

A exp(–ix0y)

Aδ(x)

A

Aδ(x – x0)

A

x0

2πA

2πA

2π/x0

πa

πa

y0

y0

y1

y1

A

A

A

ia

2

ia

2

(2.66)

(2.67)

(2.68)

(2.69)

2π    Aδ(y – y0) + δ(y – y0 + y1)
a

2

+     δ(y – y0 – y1)
a

2

(continued)
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

x0

x0

x0

x0

2A

A

A

A

S

A{δ(x – x0) + δ(x + x0)}

exp(–iSy)

 (2.70)

 (2.71)

 (2.72)

Aδ   x – nx0 – S +

Aδ(x – nx0) y – n

(N – .3)
(N – 2)

(N – 1)

(N – 1)x0

2

n = 0  1   2

N – 1

n = 0
Σ

N
m–∞
Σ
+∞

N
m–∞
Σ
+∞

etc.
etc.

2π/x0

2πA/x0

2πA
x0

2π 
x0

2π/x0

2π/x0

4π/Nx0

[N odd]

[N even]

[Drawn for S = 0; N = 7 and N = 8]
Set of N delta functions symmetrically palced about x = S.

2A cos x0y

sin(Nyx0/2)

sin(yx0/2)
A

δ

Aδ  x –    – nx0
N

m–∞
Σ

Σ δ(x – nx0) { A+ a cos y0x}   (1)

Σ δ(x – nx0) { A+ a sin y0x}    (2)

[n = 0, ±1, ±2, ...] [n = 0, ±1, ±2, ...]

+∞

N
m–∞
Σ

Σ

+∞x0
2

2π/y0

2πAδ(y)

4π/x0

2π/x0

2πA/x0

2πA/x0

πa/x0

A

A

A

A

2a

x0

y0

y0

x0

2πA

(–1)n 2πA
x0

2π
x0

2π
x0

a
2

δ   y – n

2π
x0

Aδ   y – n
2π
x0

δ   y – n
n

+ + y0
a
2

2π
x0

δ   y –+ – y0

Σ
2π
x0

ia
2

2π
x0

Aδ   y – n
2π
x0

δ   y – n
n

+ + y0
ia
2

2π
x0

δ   y – n – y0–

(1)

(2)

(1)

(2)

(2.74)

(2.73)

(2.75)
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

(2.76)

(2.77)

(2.78)

A

A

A

A

+ A        [x > 0]

– A        [x < 0]
– 2 iA

A        [x > 0]

0         [x < 0]
[f (x) = AU(x)]

[f (x) = A sgn(x)]

πA

πA
1/a

A{1–exp(–ax)}         [x > 0]

0                    [x < 0]

1
y

i
y

a

a2 + y2

a2

y(a2 + y2)

a

A/a

A   πδ(y) –

πAδ(y)–A + i

A

LL

A        [|x| > L]

0         [|x| < L]

A exp{i(a cos y0x + bx)}

A exp{i(a sin y0x + bx)}

2πAδ(y) –2A

2π/L

2AL

sin Ly
y

2πA

y0

y0

b

b

N
m–∞
Σ
+∞

2πA (i)

N
m–∞
Σ
+∞

2πA

nJn(a)δ(y – b – ny0)

(2.79)

(2.80)

(2.81)
Jn(a)δ(y – b – ny0)}

2π/L

(continued)
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TABLE 2.6 (continued) Graphical Representations of Some Fourier Transforms

f(x) F(y)

2π/y0

~2x/b

A cos (a sin y0x + bx)

A cos (a cos y0x + bx)

A sin (a sin y0x + bx)

b

y0

N
m–∞
Σ
+∞

πA

N
m–∞
Σ
+∞

πA

N
m–∞
Σ
+∞

iπA

{Jn(a)δ(y – b – ny0) + Jn(a)δ(y + b + ny0)}
(2.82)

(2.83)

(2.84)

{(+i)nJn(a)δ(y – b – ny0) + (–i)nJn(a)δ(y + b + ny0)}

{–Jn(a)δ(y – b – ny0) + Jn(a)δ(y + b + ny0)}

A sin (a cos y0x + bx)

2π/y0

2π/y0

A exp(–a cos y0x )

A exp(–a sin y0x )

Ae*

Ae*

y0

b

y0

Σ
+∞

iπA {–(i)nJn(a)δ(y – b – ny0) + (–i)nJn(a)δ(y + b + ny0)}
N

m–∞

Σ
+∞

2πA
N

m–∞

(–1)nJn(a)δ(y – ny0)

Σ
+∞

2πA
N

m–∞

(i)nJn(a)δ(y – ny0)

(2.85)

(2.86)

(2.87)
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Re F(y)
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A exp(±ia2x2)

x0

2π/y0

2π/x0

f(x) = A Σ δ(x – nx0 + a sin y0x) 
n

π

2
2 A (1 ± i)

a
exp ( ± iy2/4a2)

m = 0
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( m = 0, ±1, ±2, ±3, ...)

n = 0

n = 1 n = 3n = –3 n = –1

m = 0
m = –2

m = –2

m = –1
m = –1

m = 1

m = 1

m = 2

m = 2

1

y0

2πA
x0

2πa
x0

2π
x0

Jm  n  δ   y – n my0m,n
Σ

F(y) =

F(y) =

f (x) = h(x) g(x – nx0)

h(nx0) g(x – nx0)

g(x) G(y)/x0h(x) H(y)

x0

N
m–∞
Σ
+∞

N
m–∞
Σ
+∞

N
m–∞
Σ
+∞

N
m–∞
Σ
+∞

f (x) =

2π/x0

1
x0

1
x0

n2π
x0

n2π
x0

G

G(y)

H   y –

n2π
x0

H   y –

(2.90)

(2.91)

Source: Champeney, D.C., Fourier Transforms and Their Physical Applications, Academic Press, New York, 1973. With permission.

Note: Jn(�a)¼ J�n(a)¼ (�1)Jn(a).

Fourier Transforms 2-75



Erdélyi, A. (Ed.) 1954. Tables of Integral Transforms (Bateman
Manuscript Project). New York: McGraw-Hill.

Grafakos, L. 2004. Classical and Modern Fourier Analysis. Upper
Saddle River, NJ: Pearson Education, Inc.

Holland, S. 1990. Applied Analysis by the Hilbert Space Method.
New York: Marcel Dekker.

Howell, K. B. 2001. Principles of Fourier Analysis. Boca Raton, FL:
Chapman & Hall=CRC.

Körner, T. W. 1988. Fourier Analysis. Cambridge, U.K.:

Cambridge University Press.

Papoulis, A. 1962. The Fourier Integrals and its Applications. New
York: McGraw-Hill.

Papoulis, A. 1986. Systems and Transforms with Applications in
Optics. New York: McGraw-Hill. Reprinted, Malabar; FL:

Robert E. Krieger Publishing Company.

Pinsky, M. 1991. Partial Differential Equations and Boundary-
Value Problems with Applications. New York: McGraw-

Hill.

Strichartz, R. 1994. A Guide to Distribution Theory and Fourier
Transforms. Boca Raton, FL: CRC Press-LLC.

Walker, J. S. 1988. Fourier Analysis. New York: Oxford Univer-

sity Press.

Walker, J. S. 1996. Fast Fourier Transforms (2nd edn.). Boca

Raton, FL: CRC Press LLC.

2-76 Transforms and Applications Handbook



3
Sine and Cosine Transforms

Pat Yip
McMaster University

3.1 Introduction................................................................................................................................... 3-1
3.2 The Fourier Cosine Transform (FCT) .................................................................................... 3-1

Definitions and Relations to the Exponential Fourier Transforms . Basic Properties

and Operational Rules . Selected Fourier Cosine Transforms . Examples on the Use of Some

Operational Rules of FCT
3.3 The Fourier Sine Transform (FST) ........................................................................................ 3-11

Definitions and Relations to the Exponential Fourier Transforms . Basic Properties

and Operational Rules . Selected Fourier Sine Transforms
3.4 The Discrete Sine and Cosine Transforms (DST and DCT) ........................................... 3-16

Definitions of DCT and DST and Relations to FST and FCT . Basic Properties

and Operational Rules . Relation to the Karhunen–Loeve Transform (KLT)
3.5 Selected Applications................................................................................................................. 3-21

Solution of Differential Equations . Cepstral Analysis in Speech Processing .

Data Compression . Transform Domain Processing . Image Compression

by the Discrete Local Sine Transform (DLS)
3.6 Computational Algorithms ...................................................................................................... 3-27

FCT and FST Algorithms Based on FFT . Fast Algorithms for DST and DCT

by Direct Matrix Factorization
3.7 Tables of Transforms ................................................................................................................ 3-31

Fourier Cosine Transforms . Fourier Sine Transforms . Notations and Definitions
References ................................................................................................................................................ 3-34

3.1 Introduction

Transforms with cosine and sine functions as the transform kernels

represent an important area of analysis. It is based on the so-called

half-range expansion of a function over a set of cosine or sine basis

functions. Because the cosine and the sine kernels lack the nice

properties of an exponential kernel, many of the transform prop-

erties are less elegant and more involved than the corresponding

ones for the Fourier transformkernel. In particular, the convolution

property, which is so important in many applications, will be much

more complex.

Despite these basic mathematical limitations, sine and cosine

transforms have their own areas of applications. In spectral

analysis of real sequences, in solutions of some boundary value

problems, and in transform domain processing of digital signals,

both cosine and sine transforms have shown their special applic-

ability. In particular, the discrete versions of these transforms

have found favor among the digital signal-processing commu-

nity. Many data compression techniques now employ, in one way

or another, the discrete cosine transform (DCT), which has been

found to be asymptotically equivalent to the optimal Karhunen–

Loeve transform (KLT) for signal decorrelation.

In this chapter, the basic properties of cosine and sine transforms

are presented, together with some selected transforms. To show the

versatility of these transforms, several applications are discussed.

Computational algorithms are also presented. The chapter ends

with a table of sine and cosine transforms, which is not meant to be

exhaustive. The reader is referred to the References for more details

and for more exhaustive listings of the cosine and sine transforms

3.2 The Fourier Cosine Transform (FCT)

3.2.1 Definitions and Relations to the
Exponential Fourier Transforms

Given a real- or complex-valued function f(t), which is defined over
the positive real line t� 0, for v� 0, the FCT of f(t) is defined as

Fc(v) ¼
ð

1

0

f (t) cosvt dt, v � 0, (3:1)

subject to the existence of the integral. The definition is some-

times more compactly represented as an operator ^c applied to

the function f(t), so that

^c[ f (t)] ¼ Fc(v) ¼
ð

1

0

f (t) cos vt dt: (3:2)
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The subscript c is used to denote the fact that the kernel of the

transformation is a cosine function. The unit normalization

constant used here provides for a definition for the inverse

FCT, given by

^�1
c [Fc(v)] ¼

2

p

ð

1

0

Fc(v) cosvt dv, t � 0, (3:3)

again subject to the existence of the integral used in the defin-

ition. The functions f(t) and Fc(v), if they exist, are said to form a

FCT pair.

Because the cosine function is the real part of an exponential

function of purely imaginary argument, that is,

cos (vt) ¼ Re[e jvt] ¼ 1

2
[e jvt þ e�jvt], (3:4)

it is easy to understand that there exists a very close relationship

between the Fourier transform and the cosine transform. To see

this relation, consider an even extension of the function f(t)
defined over the entire real line so that

fe(t) ¼ f (jtj), t 2 R: (3:5)

Its Fourier transform is defined as

^[ fe(t)] ¼
ð

1

�1

fe(t)e
�jvtdt, v 2 R: (3:6)

The integral in Equation 3.6 can be evaluated in two parts over

(�1, 0] and [0, 1). Then using Equation 3.5 and changing the

integrating variable in the (�1, 0] integral from t to �t, we have

^[fe(t)] ¼
ð

1

0

f (t)e�jvtdt þ
ð

1

0

f (t)e jvtdt

2

4

3

5 ¼ 2

ð

1

0

f (t) cosvt dt,

by Equation 3.4, and thus

^[ fe(t)] ¼ 2^c[ f (t)], if fe(t) ¼ f (jtj): (3:7)

Many of the properties of the FCTs can be derived from the

properties of Fourier transforms of symmetric, or even, func-

tions. Some of the basic properties and operational rules are

discussed in Section 3.2.2.

3.2.2 Basic Properties and Operational Rules

1. Inverse transformation: As stated in Equation 3.3, the

inverse transformation is exactly the same as the forward

transformation except for the normalization constant. This

leads to the so-called Fourier cosine integral formula,

which states that

f (t) ¼ 2

p

ð

1

0

Fc(v) cosvt dv

¼ 2

p

ð

1

0

ð

1

0

f (t) cosvt dt

2

4

3

5cosvt dv: (3:8)

The sufficient conditions for the inversion formula (3.3)

are that f(t) be absolutely integrable in [0,1) and that f 0(t)
be piecewise continuous in each bounded subinterval of

[0, 1). In the range where the function f(t) is continuous,
Equation 3.8 represents f. At the point t0 where f(t) has a
jump discontinuity, Equation 3.8 converges to the mean of

f(t0þ 0)þ f(t0� 0), that is,

2

p

ð

1

0

ð

1

0

f (t) cos (vt)dt

2

4

3

5 cos (vt0)dv

¼ 1

2
[ f (t0 þ 0)þ f (t0 � 0)]: (3:80)

2. Transforms of derivatives: It is easy to show, because of the

Fourier cosine kernel, that the transforms of even-order

derivatives are reduced to multiplication by even powers of

the conjugate variable v, much as in the case of the Laplace

transforms. For the second-order derivative, using integra-

tion by parts, we can show that,

^c[ f
00(t)] ¼

ð

1

0

f 00(t) cos (vt)dt

¼ �f 0(0)� v2

ð

1

0

f (t) cosvt dt

¼ �v2Fc(v)� f 0(0) (3:9)

where we have assumed that f(t) and f 0(t) vanish as t! 1.

These form the sufficient conditions for Equation 3.9 to be

valid. As the transform is applied to higher order derivatives,

corresponding conditions for higher derivatives of f are

required for the operational rule to be valid. Here, we also

assume that the function f(t) and its derivative f 0(t) are

continuous everywhere in [0, 1). If f(t) and f 0(t) have a

jump discontinuity at t0 of magnitudes d and d0, respectively,
Equation 3.9 is modified to

^c[ f
00(t)] ¼ �v2Fc(v)� f 0(0)� vd sinvt0

� d0 cosvt0 (3:10)

Higher even-order derivatives of functions with jump con-

tinuities have similar operational rules that can be easily
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generalized from Equation 3.10. For example, the FCT of

the fourth-order derivative is

^c[ f
(i y)(t)] ¼ v4Fc(v)þ v2f 0(0)� f 000(0) (3:11)

if f(t) is continuous to order three everywhere in [0, 1],

and f, f 0, and f 00 vanish as t ! 1, If f(t) has a jump

discontinuity at t0 to order three of magnitudes d, d0, d00,
and d000, then Equation 3.11 is modified to

^c[f
(iy)(t)] ¼ v4Fc(v)þ v2f 0(0)� f 000(0)

þ v3d sinvt0 þ v2d0 cosvt0

� vd00 sinvt0 � d000 cosvt0 (3:12)

Here, and in Equation 3.10, we have defined the magni-

tudes of the jump discontinuity at t0 as

d ¼ f (t0 þ 0)� f (t0 � 0);

d0 ¼ f 0(t0 þ 0)� f 0(t0 � 0);

d00 ¼ f 00(t0 þ 0)� f 00(t0 � 0);

d000 ¼ f 000(t0 þ 0)� f 000(t0 � 0):

(3:13)

For derivatives of odd order, the operational rules require

the definition for the Fourier sine transform (FST), given

in Section 3.3. For example, the FCTs of the first-order

derivative is given by

^c[ f
0(t)] ¼

ð

1

0

f 0(t) cosvt dt

¼ �f (0)þ v

ð

1

0

f (t) sinvt dt

¼ v^s[ f (t)]� f (0) ¼ vFs(v)� f (0), (3:14)

if f vanishes as t ! 1, and where the operator ^s and the

function Fs(v) are defined in Equation 3.78. When f(t) has
a jump discontinuity of magnitude d at t¼ t0, Equation
3.14 is modified to

^c[ f
0(t)] ¼ v Fs(v)� f (0)� d cos (vt0): (3:15)

Generalization to higher odd-order derivatives with jump

discontinuities is similar to that for even-order derivatives

in Equation 3.12.

3. Scaling: Scaling in the t domain translates directly to scal-

ing in the v domain. Expansion by a factor of a in t results
in the contraction by the same factor in v, together with a

scaling down of the magnitude of the transform by the

factor a. Thus, as we can show,

^c[ f (at)] ¼
ð

1

0

f (at) cosvt dt

¼ 1

a

ð

1

0

f (t) cos
vt

a
dt, by letting

t ¼ at ¼ 1

a
Fc

v

a

� �

, a > 0: (3:16)

4. Shifting:
(a) Shifting in the t-domain: The shift-in-t property for the

cosine transform is somewhat less direct compared with

the exponential Fourier transform for two reasons.

First, a shift to the left will require extending the defin-

ition of the function f(t) onto the negative real line.

Secondly, a shift-in-t in the transform kernel does not

result in a constant phase factor as in the case of the

exponential kernel.

If fe(t) is defined as the even extension of the func-

tion f(t) such that fe(t)¼ f(jtj), and if f(t) is piecewise
continuous and absolutely integrable over [0, 1), then

^c[ fe(t þ a)þ fe(t � a)]

¼
ð

1

0

[ fe(t þ a)þ fe(t � a)] cosvt dt

¼
ð

1

a

fe(t) cosv(tþ a) dt

¼
ð

1

�a

fe(t) cosv(t� a) dt:

By expanding the compound cosine functions and

using the fact that the function fe(t) is even, these

combine to give

^c[ fe(t þ a)þ fe(t � a)] ¼ 2Fc(v) cos av, a > 0: (3:17)

This is sometimes called the kernel-product property

of the cosine transform. In terms of the function f(t), it
can be written as

^c[ f (t þ a)þ f (jt � aj)] ¼ 2Fc(v) cos av: (3:18)

Similarly, the kernel-product 2Fc(v) sin (av) is related
to the FST:

^s[ f (jt � aj)� f (t þ a)] ¼ 2Fc(v) sin av, a > 0: (3:19)

(b) Shifting in the v-domain:

To consider the effect of shifting in v by the amount of

b(>0), we examine the following,
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Fc(vþ b) ¼
ð

1

0

f (t) cos (vþ b)t dt

¼
ð

1

0

f (t) cosbt cosvt dt�
ð

1

0

f (t) sinbt sinvt dt

¼ ^c[ f (t) cosbt]�^s[ f (t) sinbt]: (3:20)

Similarly,

Fc(v� b) ¼ ^c[ f (t) cosbt]þ^s[ f (t) sinbt]: (3:200)

Combining Equations 3.20 and 3.200 produces a shift-in-v
operational rule involving only the FCT as

^c[ f (t) cosbt] ¼ 1

2
[Fc(vþ b)þ Fc(v� b)]: (3:21)

More generally, for a, b> 0, we have,

^c[ f (at) cosbt]¼
1

2a
Fc

vþb

a

� �

þ Fc
v�b

a

� �� �

: (3:22)

Similarly, we can easily derive

^c[ f (at) sinbt]¼
1

2a
Fs

vþb

a

� �

� Fs
v�b

a

� �� �

: (2:220)

5. Differentiation in the v domain: Similar to differentiation

in the t domain, the transform operation reduces a differ-

entiation operation into multiplication by an appropriate

power of the conjugate variable. In particular, even-order

derivatives in the v domain are transformed as

F(2n)
c (v) ¼ ^c[(�1)nt2nf (t)]: (3:23)

We show here briefly, the derivation for n¼ 1:

F(2)
c (v) ¼ d2

dv2

ð

1

0

f (t) cosvt dt

¼
ð

1

0

f (t)
d2

dv2
cosvt dt

¼
ð

1

0

f (t)(�1)t2 cosvt dt

¼ ^c[(�1)t2f (t)]:

For odd orders, these are related to FSTs

F(2nþ1)
c (v) ¼ ^s[(�1)nþ1t2nþ1f (t)]: (3:24)

In both Equations 3.23 and 3.24, the existence of the inte-

grals in question is assumed. This means that f(t) should be

piecewise continuous and that t2nf(t) and t2nþ 1f(t) should
be absolutely integrable over [0,1).

6. Asymptotic behavior: When the function f(t) is piecewise
continuous and absolutely integrable over the region

[0, 1), the Reimann–Lebesque theorem for Fourier

series* can be invoked to provide the following asymptotic

behavior of its cosine transform:

lim
v!1

Fc(v) ¼ 0: (3:25)

7. Integration:
(a) Integration in the t domain:

Integration in the t domain is transformed to division

by the conjugate variable, very similar to the cases of

Laplace transforms and Fourier transforms, except the

resulting transform is a FST. Thus,

^c

ð

1

t

f (t)dt

2

4

3

5 ¼
ð

1

0

ð

1

t

f (t)dt cosvt dt

¼
ð

1

0

ð

t

0

cosvt dt

2

4

3

5f (t) dt

by reversing the order of integration. The inner inte-

gral results in a sine function and is the kernel for the

FST. Therefore,

^c

ð

1

t

f (t)dt

2

4

3

5 ¼ 1

v
^s[ f (t)] ¼

1

v
Fs(v): (3:26)

Here, again, f(t) is subject to the usual sufficient con-

ditions of being piecewise continuous and absolutely

integrable in [0, 1).

(b) Integration in the v domain:

A similar and symmetric relation exists for integration

in the v-domain.

^�1
s

ð

1

v

Fc(b)db

2

4

3

5 ¼ � 1

t
f (t): (3:27)

Note that the integration transform inversion is of the

Fourier sine type instead of the cosine type. Also the

asymptotic behavior of Fc(v) has been invoked.

8. The convolution property: Let f(t) and g(t) be defined over

[0, 1) and satisfy the sufficiency condition for the exist-

ence of Fc and Gc. If fe(t)¼ f(jtj) and ge(t)¼ g(jtj) are the

* The Reimann–Lebesque theorem states that if a function f(t) is piece-wise
continuous over an interval a< t< b, then

lim
g!1

Ð

b

a
f (t) cosgt dt ¼ lim

g!1

Ð

b

a
f (t) singt dt ¼ 0:
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even extensions of f and g, respectively, over the entire real
line, then the convolution of fe and ge is given by

fe * ge ¼
ð

1

�1

fe(t)ge(t � t)dt (3:28)

where * has been used to denote the convolution oper-

ation. It is easy to see that in terms of f and g, we have

fe * ge ¼
ð

1

0

f (t)[ g(t þ t)þ g(jt � tj)]dt (3:29)

which is an even function. Applying the exponential

Fourier transform on both sides and using Equation 3.7

and convolution property of the exponential Fourier trans-

form, we obtain the convolution property for the cosine

transform:

2Fc(v)Gc(v)

¼ ^c

ð

1

0

f (t)[g(t þ t)þ g(jt � tj)]dt

8

<

:

9

=

;

: (3:30)

In a similar way, the cosine transform of the convolution

of odd extended functions is related to the sine transforms.

Thus,

2Fs(v)Gs(v)

¼ ^c

ð

1

0

f (t)[g(t þ t)þ go(t � t)]dt

8

<

:

9

=

;

: (3:31)

where

go(t) ¼ g(t) for t > 0,

¼ �g(�t) for t < 0, (3:32)

is defined as the odd extension of the function g(t).

3.2.3 Selected Fourier Cosine Transforms

In this section, the FCTs of some typical functions are given.

Most are selected for their simplicity and application. For a more

complete listing of cosine transforms, see Section 3.7 where a

more extensive table is provided.

3.2.3.1 FCT of Algebraic Functions

1. The unit rectangular function:

f (t) ¼ U(t)� U(t � a),

where U(t) ¼ 0 for t < 0 ¼ 1 for t > 0 (3:33)

is the Heaviside unit step function.

^c[ f (t)] ¼
ð

a

0

cosvt dt ¼ 1

v
sinva: (3:34)

2. The unit height tent function:

f (t) ¼ t=a 0 < t < a,

¼ (2a� t)=a a < t < 2a,

¼ 0 t > 2a:

^c[ f (t)] ¼
ð

a

0

t

a
cosvt dt þ

ð

2a

a

2a� t

a
cosvt dt

¼ 1

av2
[2 cos av� cos 2av� 1]: (3:35)

3. Delayed inverse:

f (t) ¼ U(t � a)=t:

^c[f (t)] ¼
ð

1

a

1

t
cosvt dt

¼
ð

1

av

1

t
cos t dt ¼ �Ci(av), (3:36)

where Ci(g) ¼ �
Ð1
y

1

t
cos t dt is defined as the cosine

integral function.

4. The inverse square root:

f (t) ¼ 1=
p
t,

^c[f (t)] ¼
ð

1

0

1p
t
cosvt dt ¼

ffiffiffiffiffiffi

p

2v

r

: (3:37)

Equation 3.27 is obtained by letting t¼ z2, and considering

the integral,

2

ð

cos z2 dz

in the complex plane (see Appendix A). Using contour

integration around a pie-shape region with angle p=4, the

result is obtained directly from the identity:

ð

1

0

e jt
2

dt ¼ 1

2

ffiffiffiffi

p

2

r

(1þ j):
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5. Inverse linear function:

f (t) ¼ (aþ t)�1j arg (a)j < p:

^c[f (t)] ¼
ð

1

0

(aþ t)�1 cosvt dt

¼ � cosavCi(av)� sinav si(av): (3:38)

Equation 3.38 is obtained by shifting the integrating vari-

able to aþ t, and then expanding the compound cosine

function. Here, si(y) is related to the sine integral function

Si(y), and is defined as

si(y) ¼ �
ð

1

y

sin x

x
dx

¼
ð

y

0

sin x

x
dx �

ð

1

0

sin x

x
dx ¼ Si(y)� (p=2): (3:39)

6. Inverse quadratic functions:
(a) f (t) ¼ (a2 þ t2)�1 Re(a) > 0.

^c[ f (t)] ¼
ð

1

0

(a2 þ t2)�1 cosvt dt

¼ p

2a
e�av, (3:40)

which is obtained also by a properly chosen contour

integration over the upper half-plane.

(b) f (t) ¼ (a2 � t2)�1 a > 0,

^c[ f (t)] ¼ P:V:

ð

1

0

(a2 þ t2)�1 cosvt dt

¼ p

2a
sinav (3:41)

where ‘‘P.V.’’ stands for ‘‘principal value’’ and the

integral can be obtained by a proper contour integra-

tion in the complex plane.

(c) f (t)¼ b

b2þ (a� t)2
þ b

b2þ (aþ t)2
Imjaj<Re(b),

^c[f (t)]¼
ð

1

0

b

b2þ (a� t)2
þ b

b2þ (aþ t)2

� �

cosvt dt

¼p cosave�bv (3:42)

where the integral can be obtained easily by consider-

ing a shift in t, applied to the result in Equation 3.40.

(d) f (t) ¼ a� t

b2 þ (a� t)2
þ aþ t

b2 þ (aþ t)2
Imjaj < Re(b),

^c[f (t)] ¼
ð

1

0

a� t

b2 þ (a� t)2
þ aþ t

b2 þ (aþ t)2

� �

cosvt dt

¼ p sinav e�bv (3:43)

which can be considered as the imaginary part of the

contour integral needed in Equation 3.42 when a and

b are real and positive.

3.2.3.2 FCT of Exponential and Logarithmic Functions

1. f (t) ¼ e�at Re(a) > 0.

^c[ f (t)] ¼
ð

1

0

e�at cosvt dt ¼ a

a2 þ v2
(3:44)

which is identical to the Laplace transform of cos vt.

2. f (t) ¼ 1

t
[e�bt � e�at] Re(a), Re(b) > 0.

^c[ f (t)] ¼
ð

1

0

1

t
[e�bt � e�at] cosvt dt

¼ 1

2
ln

a2 þ v2

b2 þ v2

� �

: (3:45)

The result is easily obtained using the integration property

of the Laplace transform in the phase plane.

3. f (t) ¼ e�at2 Re(a) > 0.

^c[ f (t)] ¼
ð

1

0

1

t
e�at2 cosvt dt

¼ 1

2

ffiffiffiffi

p

a

r

e�v2=4a (3:46)

This is easily seen as the result of the exponential Fourier

transform of a Gaussian distribution.

4. f (t) ¼ ln t[1� U(t � 1)]

^c[ f (t)] ¼
ð

1

0

ln t cosvt dt

¼ � 1

v

ð

v

0

sin t

t
dt ¼ � 1

v
Si(v): (3:47)

The result is obtained by integration by parts and a change

of variables. The function Si(v) is defined as the sine

integral function given by
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Si(y) ¼
ð

y

0

sin x

x
dx: (3:48)

5. f (t) ¼ lnbt

(t2 þ a2)
Re(a) > 0

^c[f (t)] ¼
ð

1

0

lnbt

(t2 þ a2)
cosvt dt

¼ p

4a

	

2e�av ln (ab)þ eavEi(�av):

�e�avEi(av)



(3:49)

where Ei(y) is the exponential integral function defined by,

Ei(y) ¼ �
ð

1

�g

e�t

t
dt, j arg (y)j < p,

and

Ei(y) ¼ (1=2)[Ei(y þ j0)þ Ei(y � j0)]: (3:50)

The integral in Equation 3.49 is evaluated using contour

integration.

6. f (t) ¼ ln
t þ a

t � a

�

�

�

�

�

�, a > 0:

^c[ f (t)] ¼ P:V:

ð

1

0

ln
t þ a

t � a

�

�

�

�

�

� cosvt dt

¼ 2

v
[si(av) cos avþ ci(av) sin av] (3:51)

where si(y) and ci(y)¼�Ci(y) are defined (3.36) and

(3.39), respectively. The result is obtained through integra-

tion by parts, and manifests the shift property of the cosine

transform.

3.2.3.3 FCT of Trigonometric Functions

1. f (t) ¼ sin at

t
a > 0:

^c[ f (t)] ¼
ð

1

0

sin at

t
cosvt dt

¼ p=2 if v < a,

¼ p=4 if v ¼ a,

¼ 0 if v > a: (3:52)

The result is obtained easily after some algebraic manipu-

lations. It is, however, better understood as the result of the

inverse Fourier transform of a sinc function, which is

simply a rectangular window function, as is evident in

Equation 3.52.

2. f (t) ¼ e�bt sin at, a, Re(b) > 0:

^c[ f (t)] ¼
ð

1

0

e�bt sin at cosvt dt

¼ 1

2

aþ v

b2 þ (aþ v)2
þ a� v

b2 þ (a� v)2

� �

(3:53)

The result can be easily understood as Laplace transform of

the function:

1

2
[ sin (aþ v)t þ sin (a� v)t]:

3. f (t) ¼ e�bt cosat, Re(b) > jIm(a)j:

^c[ f (t)] ¼
ð

1

0

e�bt cosat cosvt dt

¼ b

2

1

b2 þ (a� v)2
þ 1

b2 þ (aþ v)2

� �

, (3:54)

which is the Laplace transform of the function
1
2
[ cos (aþ v)t þ cos (a� v)t]:

4. f (t) ¼ t sin at

(t2 þ b2)
a, Re(b) > 0:

^c[ f (t)] ¼
ð

1

0

t sin at

(t2 þ b2)
cosvt dt

¼ p

2
e�ab cosh bv if v < a

¼ �p

2
e�bv sinh ab if v > a: (3:55)

The result is obtained by contour integration, as is the next

cosine transform.

5. f (t) ¼ cos at

(t2 þ b2)
a, Re(b) > 0:

^c[ f (t)] ¼
ð

1

0

cos at

(t2 þ b2)
cosvt dt

¼ p

2b
e�ab cosh bv if v < a,

¼ p

2b
e�bv cosh ab if v > a: (3:56)

6. f (t) ¼ e�bt2 cos at , Re(b) > 0:

^c[ f (t)] ¼
ð

1

0

e�bt2 cos at cosvt dt

¼ 1

2

ffiffiffiffi

p

b

r

e�(a2þv2)=4b cosh
av

2b
: (3:57)
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3.2.3.4 FCT of Orthogonal Polynomials

1. Legendre polynomials:

f (t) ¼ Pn(1� 2t2) 0 < t < 1,

¼ 0 t > 1,

where the Legendre polynomial Pn(x) is defined as

Pn(x) ¼
1

2nn!

dn

dxn
(x2 � 1)n, for jxj < 1

and n ¼ 0, 1, 2, . . .

^c[ f (t)] ¼
ð

1

0

Pn(1� 2t2) cosvt dt

¼ (�1)np

2
Jnþ1

2
(v=2)J�n�1

2
(v=2), (3:58)

where Jy(z) is the Bessel function of the first kind, and

order y, defined by

Jy(z) ¼
X

1

m¼0

(�1)m(z=2)yþ2m

G(mþ 1)G(yþmþ 1)
,

jzj < 1, jarg zj < p: (3:580)

2. Chebyshev polynomials:

f (t) ¼ (a2 � t2)�1=2T2n(t=a) 0 < t < a,

n ¼ 0, 1, 2, . . .

¼ 0, t > a,

where the Chebyshev polynomial is defined by,

Tn(x) ¼ cos (n cos�1 x), n ¼ 0, 1, 2, . . .

^c[f (t)] ¼
ð

a

0

(a2 � t2)�1=2T2n(t=a) cosvt dt

¼ (�1)n(p=2)J2n(av), (3:59)

where J2n(x) is the Bessel function defined in Equation

3.580 with y¼ 2n.
3. Laguerre polynomial:

f (t) ¼ e�t2=2Ln(t
2)

where Ln(x) is the Laguerre polynomial defined by,

Ln(x) ¼
ex

n!

dn

dxn
(xne�x), n ¼ 0, 1, 2, . . .

^c[f (t)] ¼
ð

1

0

e�t2=2Ln(t
2) cosvt dt

¼
ffiffiffiffi

p

2

r

1

n!
e�v2=2{Hen(v)}

2, (3:60)

where Hen(x) is the Hermite polynomial given by,

Hen(x) ¼ (�1)nex
2=2 dn

dxn
(e�x2=2), n ¼ 0, 1, 2, . . .

4. Hermite polynomials:
(a) f (t) ¼ e�t2=2He2n(t) n ¼ 0, 1, 2, . . .

^c[ f (t)] ¼
ð

1

0

e�t2=2He2n(t) cosvt dt

¼ (�1)n
ffiffiffiffi

p

2

r

e�v2=2v2n (3:61)

which is obtained using the Rodriques formula for the

Hermite polynomial given in (3) above.

(b) f (t) ¼ e�t2=2 {Hen(t)}
2,

^c[f (t)] ¼
ð

1

0

e�t2=2{Hen(t)}
2 cosvt dt

¼ n!

ffiffiffiffi

p

2

r

e�v2=2Ln(v
2), (3:62)

which shows a rare symmetry with Equation 3.60.

3.2.3.5 FCT of Some Special Functions

1. The complementary error function:

f (t) ¼ t Erfc(at) a > 0:

Here the complementary error function is defined as

Erfc(x) ¼ 1� Erf(x) ¼ 2p
p

ð

1

x

e�t2 dt:

^c[f (t)] ¼
ð

1

0

t Erfc(at) cosvt dt

¼ 1

2a2
þ 1

v2

� �

e�v2=4a2 � 1

v2
: (3:63)

2. The sine integral function:

f (t) ¼ si(at) a > 0,

where si(x) is defined in Equation 3.39.

^c[f (t)] ¼
ð

1

0

si(at) cosvt dt

¼ �(1=2v) ln
vþ a

v� a

�

�

�

�

�

�, v 6¼ a: (3:64)

Note certain amount of symmetry with Equation 3.51.
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3. The cosine integral function:

f (t) ¼ Ci(at) ¼ �ci(at) a > 0,

where ci(x) is defined in Equation 3.36.

^c[f (t)] ¼
ð

1

0

Ci(at) cosvt dt

¼ 0 for 0 < v < a,

¼ �p=2v for v > a: (3:65)

4. The exponential integral function:

f (t) ¼ Ei(�at) a > 0,

where Ei(�x) is defined by

Ei(�x) ¼ �
ð

1

x

e�t tdt, jarg (x)j < p:=

^c[f (t)] ¼
ð

1

0

Ei(�at) cosvt dt

¼ � 1

v
tan�1 (v=a): (3:66)

5. Bessel functions: We list only a few here since a more

comprehensive table is available in Chapter 9:

(a) f (t) ¼ J0(at) a > 0,

where Jn(x) is the Bessel function of the first kind

defined in Equation 3.580.

^c[ f (t)] ¼
ð

1

0

J0(at) cosvt dt

¼ (a2 � v2)�1=2 for 0 < v < a,

¼ 1, for v ¼ a,

¼ 0, for v > a: (3:67)

(b) f (t) ¼ J2n(at) a > 0.

^c[ f (t)]¼
ð

1

0

J2n(at) cosvt dt

¼ (�1)n(a2 �v2)�1=2T2n(v=a)

for 0< v< a,

¼1, for v¼ a,

¼ 0, for v> a: (3:68)

Here, T2n(x) is the Chebyshev polynomial defined

in Equation 3.59. Note the symmetry between this

and Equation 3.29.

(c) f (t) ¼ t�nJn(at) a > 0, and n ¼ 1, 2, . . .

^c[f (t)] ¼
ð

1

0

t�nJn(at) cosvt dt

¼
p
p

G(nþ 1=2)
(2a)�n(a2 � v2)n�1=2,

0 < v < a,

¼ 0, v > a: (3:69)

Here, G(x) is the gamma function defined by

G(x) ¼
ð

1

0

e�ttx�1dt: (3:690)

(d) f (t) ¼ Y0(at) a > 0,

where Yy(x) is the Bessel function of the second kind

defined by

Yy(x) ¼ cosec(yp)[Jy(x) cos (yp)� J�y(x)] (3:70)

^c[ f (t)] ¼
ð

1

0

Y0(at) cosvt dt

¼ 0, for 0 < v < a,

¼ �(v2 � a2)�1=2 for v > a: (3:700)

(e) f (t) ¼ tyYy(at) jRe(y)j < 1=2, a > 0,

^c[ f (t)] ¼
ð

1

0

tyYy(at) cosvt dt

¼ �p
p(2a)y[G(1=2� y)]�1

(v2 � a2)�y�1=2, v > a,

¼ 0, for 0 < v < a: (3:71)

3.2.4 Examples on the Use of Some Operational
Rules of FCT

In this section, some simple examples on the use of operational

rules of the FCT are presented. The examples are based on very

simple functions and are intended to illustrate the procedure and

the features in the FCT operational rules that have been discussed

in Section 3.2.2.

3.2.4.1 Differentiation-in-t

Let f(t) be defined as f(t)¼ e�at, where Re(a)> 0. Then accord-

ing to Equation 3.44, its FCT is given by

Fc(v) ¼
a

a2 þ v2
:
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To obtain the FCT for f00(t), we have, according to the differen-

tiation-in-t property, Equation 3.9

^c[ f
00(t)] ¼ �v2Fc(v)� f 0(0) ¼ �v2 a

a2 þ v2
þ a

¼ a3

a2 þ v2
(3:72)

This result is verified by noting that f00(t)¼a2e�at, and that its

FCT is given directly also by Equation 3.72.

3.2.4.2 Differentiation-in-t of Functions with Jump
Discontinuities

Consider the function f(t)¼ tU(1� t), which is sometimes called

a ramp function. It has a jump discontinuity of d¼�1 at t¼ 1.

Its derivative is given by f 0(t)¼U(1� t), which also has a jump

discontinuity at t¼ 1. Using the definition for FCT, we obtain

^c[ f
0(t)] ¼ ^c[U(1� t)] ¼ sinv

v
: (3:73)

The FCT rule of differentiation with jump discontinuity (3.14)

can also be applied to get

^c[ f
0(t)] ¼ vFs(v)� f (0)� d cos (vt0)

¼ v � cosv

v
þ sinv

v2

� �

� (�1) cosv,

(because d ¼ �1, and f (0) ¼ 0:)

¼ sinv

v
, as in Equation 3:73:

3.2.4.3 Shift-in-t, Shift-in-v, and the Kernel
Product Property

Let f(t)¼ e�at, where Re(a)> 0. The FCT of a positive shift in

the t-domain is easy to obtain,

^c[ f (t þ a)] ¼ e�aa a

a2 þ v2
a > 0: (3:74)

To obtain the FCT of the function f(jt� aj), one can apply the

kernel product property in Equation 3.18 to get

^c[ f (jt � aj)] ¼ 2Fc(v) cos av�^c[ f (t þ a)]:

Therefore,

^c[e
�ajt�aj] ¼ 2

a

a2 þ v2
cos av� e�aa a

a2 þ v2

¼ a

a2 þ v2
[2 cos av� e�aa] (3:75)

which is much easier than direct evaluation.

Equation 3.21 typifies the shift-in-v property and, when it is

applied to the same function f(t) above, we obtain,

^c(e
�at cosbt) ¼ 1

2

a

a2 þ (vþ b)2
þ a

a2 þ (v� b)2

� �

(3:76)

3.2.4.4 Differentiation-in-v Property

This property, Equation 3.23, can often be used to generate FCTs

for functions that are not listed in the tables. As an example,

consider again the function f(t)¼ e�at, where Re(a)> 0.

To obtain the FCT for the function g(t)¼ t2e�at, we can use

Equation 3.23 on Fc(v) for f(t)¼ e�at. Thus,

F
00

c (v) ¼ �2a
a2 � 3v2

(a2 þ v2)3
, because ^c[e

�at] ¼ a

a2 þ v2
,

and

^c[t
2e�at] ¼ 2a

a2 � 3v2

(a2 þ v2)3
using Equation 3:23 with n ¼ 1:

3.2.4.5 The Convolution Property

The convolution property for FCT is closely related to its kernel

product property as illustrated by the following example.

Let f(t)¼ e�at, Re(a)> 0, and g(t)¼U(t)�U(t� a), a> 0.

The FCTs of these functions are given respectively by,

Fc(v) ¼
a

a2 þ v2
, and Gc(v) ¼

sin av

v
:

Thus, 2Fc(v)Gc(v) ¼ 2
� a

a2 þ v2

� sin av

v



. According to the

convolution property 3.20, this is the FCT of the convolution

defined as

ð

1

0

[U(t)� U(t� a)]
�

e�a(tþt) þ e�ajt�tjdt: (3:77)

Applying the operator ^c to Equation 3.77 and integrating over t
first, the kernel product property in the shift-in-t operation in

Equation 3.18 can be invoked to give,

^c

ð

1

0

[U(t)� U(t� a)]
�

e�a(tþt) þ e�ajt�tjdt

8

<

:

9

=

;

¼ 2

ð

1

0

[U(t)� U(t� a)]
a

a2 þ v2
cosvt dt

¼ 2
a

a2 þ v2

� �

sin av

v

� �

,

as required.
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3.3 The Fourier Sine Transform (FST)

3.3.1 Definitions and Relations to the
Exponential Fourier Transforms

Similar to the FCT, the FST of a function f(t), which is piecewise

continuous and absolutely integrable over [0, 1), is defined by

application of the operator ^s as

Fs(v) ¼ ^s[ f (t)] ¼
ð

1

0

f (t) sinvt dt, v > 0: (3:78)

The inverse operator ^�1
s is similarly defined

f (t) ¼ ^�1
s [Fs(v)] ¼

2

p

ð

1

0

Fs(v) sinvt dv, t � 0, (3:79)

subject to the existence of the integral. Functions f(t) and Fs(v)
defined by Equations 3.79 and 3.78, respectively, are said to form

a FST pair. It is noted in Equations 3.3 and 3.79 for the inverse

FCT and inverse FST that both transform operators have sym-

metric kernels and that they are involuntary or unitary up to a

factor of
p
(2=p).

FSTs are also very closely related to the exponential Fourier

transform defined in Equation 3.6. Using the property that

sinvt ¼ Im[e jvt] ¼ 1

2j
[e jvt � e�jvt], (3:80)

one can consider the odd extension of the function f(t) defined
over [0, 1) as

fo(t) ¼ f (t) t � 0,

¼ �f (�t) t < 0:

Then the Fourier transform of fo(t) is

^[ fo(t)] ¼
ð

1

�1

fo(t)e
�jvt dt ¼ �

ð

1

0

f (t)e jvt dt þ
ð

1

0

f (t)e�jvt dt

¼ �2j

ð

1

0

f (t) sinvt dt ¼ �2j^s[f (t)],

and therefore,

^s[ f (t)] ¼ � 1

2j
^[ fo(t)]: (3:81)

Equation 3.81 provides the relation between the FST and the

exponential Fourier transform. As in the case for cosine transforms,

many properties of the sine transform can be related to those for the

Fourier transform through this equation. We shall present some

properties and operational rules for FST in the next section.

3.3.2 Basic Properties and Operational Rules

1. Inverse transformation: The inverse transformation is

exactly the same as the forward transformation except for

the normalization constant. Combining the forward and

inverse transformations leads to the Fourier sine integral

formula, which states that,

f (t) ¼ 2

p

ð

1

0

Fs(v) sinvt dv

¼ 2

p

ð

1

0

ð

1

0

f (t) sinvt dt

2

4

3

5 sinvt dv: (3:82)

The sufficient conditions for the inversion formula 3.79 are

the same as for the cosine transform. Where f(t) has a

jump discontinuity at t¼ t0, Equation 3.82 converges to

the mean of f(t0þ 0) and f(t0� 0).

2. Transforms of derivatives: Derivatives transform in a fash-

ion similar to FCT, even orders involving sine transforms

only and odd orders involving cosine transforms only.

Thus, for example,

^s[ f
00(t)] ¼ �v2Fs(v)þ vf (0) (3:83)

and

^s[ f
0(t)] ¼ �vFc(v), (3:84)

where f(t) is assumed continuous to the first order.

For the fourth-order derivative, we apply Equation 3.83

twice to obtain,

^s[ f
(iy)(t)] ¼ v4Fs(v)� v3f (0)þ vf 00(0), (3:85)

if f(t) is continuous at least to order three. When the

function f(t) and its derivatives have jump discontinuities

at t¼ t0, Equation 3.85 is modified to become,

^s[ f
(in)(t)] ¼ v4Fs(v)þ v3f (0)þ vf 00(0)� v3d cosvt0

þ v2d0 sinvt0 þ vd00 cosvt0 � d000 sinvt0

(3:86)

where the jump discontinuities d, d0, and d000 are as defined
in Equation 3.13. Similarly, for odd-order derivatives,

when the function f(t) has jump discontinuities, the oper-

ational rule must be modified.

For example, Equation 3.84 will become

^s[ f
0(t)] ¼ �vFc(v)þ d sinvt0: (3:840)

Generalization to other orders and to more than one

location for the jump discontinuities is straightforward.

Sine and Cosine Transforms 3-11



3. Scaling: Scaling in the t-domain for the FST has exactly the

same effect as in the case of FCT, giving,

^s[ f (at)] ¼ 1

a
Fs(v=a) a > 0: (3:87)

4. Shifting:
(a) Shift in the t-domain:

As in the case of the FCT, we first define the even and

odd extensions of the function f(t) as,

fe(t) ¼ f (jtj), and fo(t) ¼ t

jtj f (jtj): (3:88)

Then it can be shown that:

^s[ fo(t þ a)þ fo(t � a)] ¼ 2Fs(v) cos av (3:89)

and

^c[ fo(t þ a)þ fo(t � a)] ¼ 2Fs(v) sin av; a > 0: (3:90)

These, together with Equations 3.18 and 3.19, form a

complete set of kernel-product relations for the cosine

and the sine transforms.

(b) Shift in the v-domain:

For a positive b shift in the v-domain, it is easily shown

that

^s[vþ b] ¼ Fs[ f (t) cosbt]þ Fc[ f (t) sinbt] (3:91)

and combiningwith the result for a negative shift, we get

^s[ f (t) cosbt] ¼ (1=2)[Fs(vþ b)þ Fs(v� b)]: (3:92)

More generally, for a, b> 0, we have,

^s[ f (at) cosbt]

¼ (1=2a) Fs
vþ b

a

� �

þ Fs
v� b

a

� �� �

: (3:93)

Similarly, we can easily show that

^s[ f (at) sinbt]

¼ �(1=2a) Fc
vþ b

a

� �

� Fc
v� b

a

� �� �

: (3:94)

The shift-in-v properties are useful in deriving some

FCTs and FSTs. As well, because the quantities being

transformed are modulated sinusoids, these are useful

in applications to communication problems.

5. Differentiation in the v-domain: The sine transform

behaves in a fashion similar to the cosine transform when

it comes to differentiation in the v-domain. Even-order

derivatives involve only sine transforms and odd-

order derivatives involve only cosine transforms. Thus,

F(2n)
s (v) ¼ ^s[(�1)nt2nf (t)],

and

F(2nþ1)
s (v) ¼ ^c[(�1)nt2nþ1f (t)]: (3:95)

It is again assumed that the integrals in Equation 3.95 exist.

6. Asymptotic behavior: The Reimann–Lebesque theorem

guarantees that any FST converges to zero as v tends to

infinity, that is,

lim
v!1

Fs(v) ¼ 0: (3:96)

7. Integration:
(a) Integration in the t-domain. In analogy to Equation

3.26, we have

^s

ð

t

0

f (t)dt

2

4

3

5 ¼ (1=v)Fc(v) (3:97)

provided f(t) is piecewise smooth and absolutely inte-

grable over [0, 1).

(b) Integration in the v-domain. As in the FCT, integra-

tion in the v-domain results in division by t in the t-
domain, giving,

^�1
c

ð

1

v

Fs(b)db

2

4

3

5 ¼ (1=t)f (t) (3:98)

in parallel with Equation 3.27.

8. The convolution property: If functions f(t) and g(t) are

piecewise continuous and absolutely integrable over

[0,1), a convolution property involving Fs(v) andGc(v) is

2Fs(v)Gc(v)¼^s

ð

1

0

f (t)[g(jt� tj)� g(tþ t)]dt

8

<

:

9

=

;

: (3:99)

Equivalently,

2Fs(v)Gc(v)¼^s

ð

1

0

g(t)[ f (tþ t)þ fo(t� t)]dt

8

<

:

9

=

;

(3:100)

where fo(x) is the odd extension of the function f(x)
defined as in Equation 3.88.

One can establish a convolution theorem involving only sine

transforms. This is obtained by imposing an additional condition

on one of the functions, say, g(t). We define the function h(t) by,
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h(t) ¼
ð

1

t

g(t)dt: (3:101)

The g(t) must satisfy the condition that its integral h(t) is abso-
lutely integrable over [0, 1), so that the FCT of h(t) exists.

We note from Equation 3.26 that

Hc(v) ¼ (1=v)Gs(v) (3:102)

Applying Equation 3.99 to f(t) and h(t) yields immediately,

(2=v)Fs(v)Gs(v) ¼ ^s

ð

1

0

f (t)

ð

tþt

jt�tj

g(h)dhdt

2

6

4

3

7

5
(3:103)

noting that g(t)¼�h0(t).
Because the FSTs have properties and operation rules very

similar to those for the FCTs, we refer the reader to Section

3.2.4 for simple examples on the use of these rules for FCTs.

3.3.3 Selected Fourier Sine Transforms

In this section, selected FSTs are presented. These mostly corres-

pond to those selected for the FCTs. It should be noted that because

the sine and cosine transforms kernels are related through differ-

entiation, many of the FSTs can be derived without direct compu-

tation by using differentiation properties listed in Sections 3.2.2 and

3.3.2. As before, we present first the FST of algebraic functions.

3.3.3.1 FST of Algebraic Functions

1. The unit rectangular function:

f (t) ¼ U(t)� U(t � a),

where U(t) is the Heaviside unit step function:

^s[ f (t)] ¼
ð

a

0

sinvt dt ¼ (1� cosva)=v: (3:104)

2. The unit height tent function:

f (t) ¼ t=a, 0 < t < a,

¼ (2a� t)=a a < t < 2a,

¼ 0 otherwise:

^s[ f (t)] ¼
ð

a

0

(t=a) sinvt þ
ð

2a

a

[(2a� t)=a] sinvt dt

¼ 1

av2
[2 sin av� sin 2av]: (3:105)

3. Delayed inverse:

f (t) ¼ (1=t)U(t � a):

^s[ f (t)] ¼
ð

1

a

(1=t) sinvt dt ¼
ð

1

av

(1=t) sin t dt

¼ �si(av) (3:106)

where si(x) is the sine integral function defined in Equa-

tion 3.39.

4. The inverse square root:

f (t) ¼ 1=
p
t:

^s[ f (t)] ¼
ð

1

0

1p
t
sinvt dt ¼

ffiffiffiffiffiffi

p

2v

r

: (3:107)

5. The inverse linear function:

f (t) ¼ (aþ t)�1, jarg aj < p:

^s[ f (t)] ¼
ð

1

0

1

aþ t
sinvt dt

¼ sinvaCi(va)� cosva si(va): (3:108)

Here Ci(x) is the cosine integral function defined in

Equation 3.36.

6. Inverse quadratic functions:
(a) f (t) ¼ (t2 þ a2)�1 a > 0:

^s[ f (t)] ¼
ð

1

0

1

a2 þ t2
sinvt dt

¼ (1=2a)[e�avEi(av)� eavEi(�av)] (3:109)

where Ei(x) and Ei(x) are the exponential integral func-
tions defined in Equation 3.50.

Here, we note that Equation 3.109 is related to the

FCT of the function,

f (t) ¼ �t(t2 þ a2)�1

by considering the derivative of Equation 3.109 with

respect to v. Thus,

^c[�t(t2 þ a2)�1] ¼ (1=2)[e�avEi(av)þ eavEi(�av)]

(3:110)

(b) f (t) ¼ (a2 � t2)�1 a > 0:

^s[ f (t)] ¼ P:V:

ð

1

0

1

a2 � t2
sinvt dt

¼ [sin avCi(av)� cos av Si(av)]=a, (3:111)

where Ci(x) and Si(x) are the cosine and sine integral

functions defined in Equations 3.36 and 3.39 and ‘‘P.V.’’

denotes the principal value of the integral. Again, we
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note that Equation 3.111 is related to the FCT of the

function,

f (t) ¼ �t(a2 � t2)�1:

Thus,

^c[�t(a2 � t2)�1] ¼ cos avCi(av)þ sin av Si(av):

(3:112)

(c) f (t) ¼ b

b2 þ (a� t)2
� b

b2 þ (aþ t)2
Re(b) > 0:

^s[ f (t)]¼
ð

1

0

b

b2þ (a� t)2
� b

b2þ (aþ t)2

� �

sinvt dt

¼p sinave�bv: (3:113)

(d) f (t) ¼ aþ t

b2 þ (aþ t)2
� a� t

b2 þ (a� t)2
Re(b) > 0

^s[ f (t)] ¼
ð

1

0

aþ t

b2 þ (aþ t)2
� a� t

b2 þ (a� t)2

� �

sinvt dt

¼ p sin ave�bv: (3:114)

We note here the symmetry among the transforms in

Equations 3.113 and 3.114, and those in Equations 3.43

and 3.42.

3.3.3.2 FST of Exponential and Logarithmic Functions

1. f (t) ¼ e�at Re(a) > 0:

^s[ f (t)] ¼
ð

1

0

e�at sinvt dt ¼ v

a2 þ v2
(3:115)

which is also seen to be the Laplace transform of sin vt.

2. f (t) ¼ e�bt � e�at

t2
Re(b), Re(a) > 0:

^s[ f (t)]¼
ð

1

0

e�bt � e�at

t2
sinvt dt

¼v

2
ln

a2þv2

b2þv2

� �

þa tan�1 v

a

� �

�b tan�1 v

b

� �

:

(3:116)

Equation 3.116 is seen to be related to the result (3.45)

through the differentiation-in-v property of the sine trans-

form as defined in Equation 3.95.

3. f (t) ¼ te�at2 jarg (a)j < p=2.

^s[ f (t)] ¼
ð

1

0

te�at2 sinvt dt

¼ 1

4

ffiffiffiffiffi

p

a3

r

ve�v2=4a, (3:117)

which can also be related to the cosine transform in Equa-

tion 3.46 using again the differentiation-in-v property 3.95

of the sine transform.

4. f (t) ¼ ln t[1� U(t � 1)]

^s[ f (t)] ¼
ð

1

0

ln t[1� U(t � 1)] sinvt dt

¼ � 1

v
[C þ ln v� Ci(v)], (3:118)

which is obtained easily through integration in parts. Here

C¼ 0.5772156649 . . . is the Euler constant and Ci(x) is the
cosine integral function.

5. f (t) ¼ t ln bt

(t2 þ a2)
a, b > 0.

^s[ f (t)] ¼
ð

1

0

t ln bt

(t2 þ a2)
sinvt dt

¼ p

4
[2e�av ln ab� eavEi(�av)� e�avEi(av)]

(3:119)

Note that Equation 3.119 is related to Equation 3.49

through the differentiation-in-v property of the FCT as

defined in Equation 3.24.

6. f (t) ¼ ln
t þ a

t � a

�

�

�

�

�

� a > 0,

^s[ f (t)] ¼
ð

1

0

ln
t þ a

t � a

�

�

�

�

�

� sinvt dt

¼ p

v
sin av: (3:120)

The result is obtained using integration by parts and

the shift-in-t properties 3.88 through 3.90 of the sine

transform.

3.3.3.3 FST of Trigonometric Functions

1. f (t) ¼ sin at

t
a > 0,

^s[ f (t)] ¼
ð

1

0

sin at

t
sinvt dt

¼ (1=2) ln
vþ a

v� a

�

�

�

�

�

�: (3:121)

This result is immediately understood when compared to

Equation 3.120, taking into account the normalization

used in Equations 3.78 and 3.79 for the definition of

the FST.
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2. f (t) ¼ e�bt

t
sinat Re(b) > jIm(a)j

^s[ f (t)] ¼
ð

1

0

e�bt

t
sinat sinvt dt

¼ (1=4) ln
b2 þ (vþ a)2

b2 þ (v� a)2

� �

: (3:122)

This result follows easily from the integration-in-v property

3.27 as applied to the cosine transform in Equation 3.53.

3. f (t) ¼ e�bt cosat Re(b) > jIm(a)j

^s[ f (t)]¼
ð

1

0

e�bt cosat sinvt dt

¼ (1=2)
v�a

b2 þ (v�a)2
þ vþa

b2þ (vþa)2

� �

, (3:123)

which is also recognized as the Laplace transform of the

function cos at sin vt.

4. f (t) ¼ t cos at

(t2 þ b2)
a, Re(b) > 0,

^s[ f (t)] ¼
ð

1

0

t cos at

(t2 þ b2)
sinvt dt

¼ �p

2
e�ab sinh bv v < a,

¼ p

2
e�bv cosh ab v > a: (3:124)

Note the symmetry of Equation 3.124 with Equation 3.55.

5. f (t) ¼ sin at

(t2 þ b2)
a, Re(b) > 0,

^s[ f (t)] ¼
ð

1

0

sin at

(t2 þ b2)
sinvt dt

¼ p

2b
e�ab sinh bv v < a:

¼ p

2b
e�bv sinh ab v > a: (3:125)

The symmetry of Equation 3.125 with Equation 3.56 is

apparent.

6. f (t) ¼ e�bt2 sin at Re(b) > 0.

^s[ f (t)] ¼
ð

1

0

e�bt2 sin at sinvt dt

¼ 1

2

ffiffiffiffi

p

b

r

e�(v2þa2)=4b sinh
av

2b
(3:126)

similar to Equation 3.57 for the cosine transform.

3.3.3.4 FST of Orthogonal Polynomials

1. Legendre polynomial (defined in Equation 3.58):

f (t) ¼ Pn(1� 2t2)[1� U(t � 1)] n ¼ 0, 1, 2, . . .

^s[ f (t)] ¼
ð

1

0

Pn(1� 2t2) sinvt dt

¼ p

2
Jnþ1=2

v

2

� �h i2

(3:127)

where Jv(x) is the Bessel function of the first kind defined

in Equation 3.580.
2. Chebyshev polynomial (defined in Equation 3.59):

f (t) ¼ (a2 � t2)�1=2T2nþ1(t=a)[1� U(t � a)],

n ¼ 0, 1, 2, . . .

^s[ f (t)] ¼
ð

a

0

(a2 � t2)�1=2T2nþ1(t=a) sinvt dt

¼ (�1)n
p

2
J2nþ1(av): (3:128)

3. Laguerre polynomials.

f (t) ¼ t2me�t2=2L2mþ1
n (t2), m, n ¼ 0, 1, 2, . . .

^s[ f (t)] ¼
ð

1

0

t2me�t2=2L2mþ1
n (t2) sinvt dt

¼
ffiffiffiffi

p

2

r

(n!)�1(�1)me�v2=2Hen(v)Henþ2mþ1(v)

(3:129)

where Lan(x) ¼
exx�a

n!

dn

dxn
(e�xxnþa), is a Laguerre polyno-

mial L0n(x) ¼ Ln(x) as defined in Equation 3.60. Here,

Hen(x) is the Hermite polynomial defined in Equation 3.61.

4. Hermite polynomials (defined in Equation 3.62):

f (t) ¼ e�t2=2He2nþ1(
p
2t)

^s[ f (t)] ¼
ð

1

0

e�t2=2He2nþ1(
p
2t) sinvt dt

¼ (�1)n
ffiffiffiffi

p

2

r

e�v2=2He2nþ1(
p
2v): (3:130)

3.3.3.5 FST of Some Special Functions

1. The complementary error function (defined in Equa-

tion 3.63):

f (t) ¼ Erfc(at) a > 0,
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^s[ f (t)] ¼
ð

1

0

Erfc(at) sinvt dt

¼ 1

v
[1� e�v2=4a2]: (3:131)

2. The sine integral function (defined in Equation 3.116):

f (t) ¼ si(at) a > 0,

^s[ f (t)] ¼
ð

1

0

si(at) sinvt dt ¼ 0 0 � v < a

¼ � p

2v
v > a: (3:132)

Note the symmetry of Equation 3.132 with Equation 3.65.

3. The cosine integral function (defined in Equation 3.36):

f (t) ¼ Ci(at) ¼ �ci(at) a > 0

^s[ f (t)] ¼
ð

1

0

Ci(at) sinvt dt

¼ 1

2v
ln

v2

a2
� 1

�

�

�

�

�

�

�

�

: (3:133)

4. The exponential integral function (defined in Equation 3.66):

f (t) ¼ Ei(�at) a > 0

^s[ f (t)] ¼
ð

1

0

Ei(�at) sinvt dt

¼ � 1

2v
ln

v2

a2
þ 1

� �

: (3:134)

5. Bessel functions (defined in Equation 3.58):

(a) f (t) ¼ J0(at) a > 0

^s[ f (t)] ¼
ð

1

0

J0(at) sinvt dt ¼ 0, 0 < v < a,

¼ (v2 � a2)�1=2 v > a: (3:135)

(b) f (t) ¼ J2nþ1(at) a > 0

^s[ f (t)] ¼
ð

1

0

J2nþ1(at) sinvt dt

¼ (�1)n(a2 � v2)�1=2T2nþ1(v=a)

0 < v < a,

¼ 0 v > a, (3:136)

where Tn(x) is the Chebyshev polynomial defined in

Equation 3.59.

(c) f (t) ¼ t�nJnþ1(at), a > 0 and n ¼ 0, 1, 2, . . .

^s[ f (t)] ¼
ð

1

0

t�nJnþ1(at) sinvt dt

¼
p
p

G(nþ 1=2)

1

2nanþ1
v(a2 � v2)n�1=2,

0 < v < a

¼ 0 v > a, (3:137)

where G(x) is the gamma function defined in

Equation 3.690.
(d) f (t) ¼ Y0(at) a > 0:

where Yy(x) is the Bessel function of the second kind

(see Equation 3.70).

^s[ f (t)] ¼
ð

1

0

Y0(at) sinvt dt

¼ 2

p
(a2 � v2)�1=2 sin�1 v

a

� �

,

0 < v < a

¼ 2

p
(v2 � a2)�1=2 ln

v

a
� v2

a2
� 1

� �1=2
�

�

�

�

�

�

�

�

�

�

,

v > a: (3:138)

(e) f (t) ¼ tvYy�1(at) a > 0, jRe(y)j < 1=2

^s[ f (t)] ¼
ð

1

0

tyYy�1(at) sinvt dt

¼ 2yay�1
p
p

G(1=2� y)
v(v2 � a2)�y�1=2 v > a,

¼ 0 0 < v < a: (3:139)

As with the cosine transforms, more detailed results are

found in the sections covering Henkel transforms.

3.4 The Discrete Sine and Cosine
Transforms (DST and DCT)

In practical applications, the computations of the Fourier sine and

cosine transforms are done with sampled data of finite duration.

Because of the finite duration and the discrete nature of the data,

much can be gained in theory and in ease of computation by

formulating the corresponding discrete sine and cosine transforms

(DST andDCT) directly. In what follows, we discuss the definitions

and properties of the discrete sine and cosine transforms. It is

possible to define four different types of each of the DCT and the

DST (for details, see Rao and Yip, 1990). We shall concentrate on

Type I, which can be defined by simply discretizing the FST and

FCT, within a finite rectangular window of unit height.
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3.4.1 Definitions of DCT and DST
and Relations to FST and FCT

Consider the transform kernel of the FCT given by

Kc(v, t) ¼ cosvt: (3:140)

Let vm¼ 2pmDf and tn¼ nDt be the sampled angular frequency

and time, respectively. Here, Df and Dt are the sample intervals

for frequency and time, respectively. m and n are positive inte-

gers. The kernel in Equation 3.140 can now be discretized as

Kc(m, n) ¼ Kc(vm, tn) ¼ cos (2pmnDfDt): (3:141)

If we further let Df Dt¼ 1=(2N), where N is a positive integer,

we obtain the DCT kernel:

Kc(m, n) ¼ cos (pmn=N) (3:142)

where m, n¼ 0, 1, . . . , N. The transform kernel in Equation 3.142

is the DCT kernel of Type I. It represents the mnth element in an

(Nþ 1)3 (Nþ 1) transformation matrix, which, with the proper

normalization, provides the definition for the DCT transform-

ation matrix [C]. These elements are

[C]mn ¼
ffiffiffiffi

2

N

r

kmkn cos
mnp

N

� �n o

, m, n ¼ 0, 1, . . . ,N

where

ki ¼ 1 for i 6¼ 0 or N

¼ 1=
p
2 for i 6¼ 0 or N (3:143)

The discretization can be viewed as taking a finite time duration

and dividing it into N intervals of Dt each. Including the bound-
ary points, there are Nþ 1 sample points to be considered. If the

discrete Nþ 1 sample points are represented by a vector x, the

DCT of this vector is a vector Xc given by,

Xc ¼ [C]x (3:144)

which, in an element-by-element form, means

Xc(m) ¼
ffiffiffiffi

2

N

r

X

N

n¼0
kmkn cos

mnp

N

� �

x(n): (3:145)

It can be shown that [C] is a unitary matrix. Thus, the inverse

transformation is given by

x(n) ¼
ffiffiffiffi

2

N

r

X

N

m¼0
kmkn cos

mnp

N

� �

Xc(m): (3:146)

Vectors Xc and x are said to be a DCT pair.

Similar consideration in discretizing the FST kernel

Ks(v, t) ¼ sinvt (3:147)

will lead to the definition of the (N� 1)3 (N� 1) DST transform

matrix, whose elements are given by

[S]mn ¼
ffiffiffiffi

2

N

r

sin
mnp

N

� �

m, n ¼ 1, 2, . . . ,N � 1: (3:148)

This matrix is also unitary and when it is applied to a data vector

x of length N� 1, it produces a vector Xs, whose elements are

given by,

Xs(m) ¼
ffiffiffiffi

2

N

r

X

N�1

n¼1

sin
mnp

N

� �

x(n): (3:149)

The vectors x and Xs are said to form a DST pair. The inverse

DST is given by

x(n) ¼
ffiffiffiffi

2

N

r

X

N�1

m¼1

sin
mnp

N

� �

Xs(m): (3:150)

It is evident in Equations 3.146 and 3.150 that both DCT and

DST are symmetric transforms. Both are obtained by discretizing

a finite time duration into N equal intervals of Dt each, resulting
in an (Nþ 1)3 (Nþ 1) matrix for [C] because the boundary

elements are not zero, and resulting in an (N� 1)3 (N� 1)

matrix for [S] because the boundary elements are zero.

3.4.2 Basic Properties and Operational Rules

3.4.2.1 The Unitarity Property

Let cm denote the mth column vector in the matrix [C]. Consider
the inner product of two such vectors:

hcm, cni ¼
X

N

p¼0

kmkp cos
mpp

N

� �

kpkn cos
pnp

N

� �

: (3:151)

The summation can be carried out by defining the 2Nth primitive

root of unity as

W2N ¼ e�jp=N ¼ cos
p

N

� �

� j sin
p

N

� �

, (3:152)

and applying it to the summation in Equation 3.151. This gives

hcm, cni ¼
kmkn
N

� �

Re
X

N�1

p¼0

(W2N )
�p(n�m) þ

X

N

p¼1

(W2N )
�p(nþm)

" #

(3:153)

where Re[�] denotes the real part of [�].
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Considering the first summation in Equation 3.153, and letting

k¼ (n�m), the power series can be written as,

X

N�1

p¼0

W�k
2N

� �p ¼ 1�W�Nk
2N

� �

1�W�k
2Nð Þ

¼ {2[1� cos (kp=N)]}�1

� 1�WNk
2N �Wk

2N þW�(N�1)k
2N

n o

: (3:154)

Similarly, the second series in Equation 3.153 can be summed by

letting l¼ (nþm),

X

N

p¼1

W�l
2N

� �p ¼ {2[1� cos (lp=N)]}�1

� W�l
2N �W�(Nþ1)l

2N � 1þW�Nl
2n

n o

: (3:155)

Hence, for m 6¼ n, (i.e., k 6¼ 0), the real part of Equation 3.154 is

Re
X

N�1

p¼0

W�k
2N

� �p

" #

¼ [1� (�1)k] [1� cos (kp=N)]

{2[1� cos (kp=N)]}

¼ [1� (�1)k]=2,

and the real part of Equation 3.155 is

Re
X

N

p¼1

W�l
2N

� �p

" #

¼ � [1� (�1)l] [1� cos (lp=N)]

{2[1� cos (lp=N)]}

¼ �[1� (�1)l]=2:

Combining these, and noting that k and l differ by 2m, we

obtain the orthogonality property for the inner product,

hcm, cni ¼ 0 for m 6¼ n: (3:156)

For m¼ n 6¼ 0 or N, the inner product is,

hcm, cni ¼ (1=N)Re
X

N�1

p¼0

1þ
X

N

p¼1

W�2m
2N

� �p

" #

¼ 1,

and for m¼ n¼ 0 or N, the inner product is,

hcm, cni ¼ (1=2N)Re
X

N�1

p¼0

1þ
X

N

p¼1

1

 !

¼ 1:

Therefore, the inner product satisfies the orthonormality condition,

hcm, cni ¼ dmn (3:157)

where dmn is the Kronecker delta and the DCT matrix [C] is

shown to be unitary.

Similar considerations can be applied to the DST matrix [S] to
show that it is also unitary.

3.4.2.2 Inverse Transformation

As alluded to in Section 3.4.1, the unitary matrices [C] and [S] are
symmetric and, therefore, the inverse transformations are exactly

the same as the forward transformations, based on the above

unitarity properties. Therefore,

[C]�1 ¼ [C] and [S]�1 ¼ [S]: (3:158)

3.4.2.3 Scaling

Recall that in the discretization of the FCT, the time and fre-

quency intervals are related by

DfDt ¼ 1=2N or Df ¼ 1

2NDt
: (3:159)

Because the DCT and DST deal with discrete sample points, a

scaling in time has no effect in the transform, except in changing

the unit frequency interval in the transform domain. Thus, as Dt
changes to aDt, Df changes to Df=a, provided the number of

divisions N remains the same. Hence, the properties 3.16 and

3.87 for the FCT and FST are retained, except for the 1=a factor,

which is absent in the cases for DCT and DST.

Equation 3.159 may also be interpreted as giving the frequency

resolution of a set of discrete data points, sampled at a time

interval of Dt. Using T¼NDt as the time duration of the sequence

of data points, the frequency resolution for the transforms is

Df ¼ 1

2T
: (3:160)

3.4.2.4 Shift-in-t

Because the data are sampled, we obtain the shift-in-time prop-

erties of DCT and DST by examining the time shifts in units of

Dt. Thus, if x¼ [x(0), x(1), . . . , x(N)]T, we define the right-shifted
sequence as xþ¼ [x(1), x(2), . . . , x(Nþ 1)]T. Their corresponding

DCTs are given by

Xc ¼ [C]x and Xþ
c ¼ [C]xþ: (3:161)

The shift-in-time property seeks to relate Xþ
c with Xc. It turns out

that it relates not only to Xc but also to Xs, the DST of x. This is

to be expected because the shift-in-time properties of FCT and

FST are similarly related. It can be shown that the elements of Xþ
c

are given by

Xþ
c (m) ¼ cos

mp

N

� �

Xc(m)þ km sin
mp

N

� �

Xs(m)

þ
ffiffiffiffi

1

N

r

km � 1p
2

� �

cos
mp

N

� �

x(0)þ 1p
2
� 1

� �

x(1)

�

þ (�1)m
1p
2
� 1

� �

cos
mp

N

� �

x(N)þ (�1)m
1p
2
x(N þ 1)

�

:

(3:162)
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In Equation 3.162, Xc(m) and Xs(m) are respectively the mth

element of the DCT of the vector [x(0), x(1), . . . , x(N)]T and the

mth element of the DST of the vector [x(1), x(2), . . . , x(Nþ 1)]T.

While properties analogous to the so-called kernel-product prop-

erties for FCT in Section 3.2.2 may be developed, Equation 3.162

is more practical in that it provides for a way of updating a DCT

of a given dimension without having to recompute all the com-

ponents. The corresponding result of DST is

Xþs (m) ¼ cos
mp

N

� �

Xs(m)� sin
mp

N

� �

Xc(m)

þ
ffiffiffiffi

2

N

r

sin
mp

N

� � 1p
2
x(0)� 1� 1p

2

� �

(�1)mx(N)

� �

:

(3:163)

Here, it is noted that Xc(m) are the elements of the DCT the

vector [x(0), . . . , x(N)]T.

3.4.2.5 The Difference Property

For discrete sequences, the difference operator replaces the differ-

ential operator for continuous sequences. The FCT and the FST of

a derivative, therefore, are analogous to the DCT and the DST

of the difference operator. We can define a difference vector d as

d ¼ xþ � x (3:164)

where xþ is the right-shifted version of x. It is clear that the DCT

and the DST of d are simply given by

Dc ¼ Xþ
c � Xc and Ds ¼ Xþ

s � Xs: (3:165)

As we can see from Equation 3.165, the main operational advan-

tage of the FCT and FST, namely that in the differentiation

properties, have not carried over to the discrete cases. As well,

properties with both integration-in-t and integration-in-v are

also lost in the discrete cases.

We conclude this section by mentioning that no simple con-

volution properties exist in the cases of DCT and DST. For finite

sequences, it is possible to define a circular convolution for two

periodic sequences or a linear convolution of two nonperiodic

sequences. With these, certain convolution properties for some of

the DCTs may be developed. (For more details, the reader is

referred to Rao and Yip, 1990). The results, however, are neither

simple nor easy to apply.

3.4.3 Relation to the Karhunen–Loeve
Transform (KLT)

While the DCT and the DST discussed here are derived by dis-

cretizing the FCT and the FST, based on some unit time interval

of Dt and some unit frequency interval of Df, their forms are

closely related to the KLT in digital signal processing. KLT is an

optimal transform for digital signals in that it diagonalizes the

auto-covariance matrix of a data vector. It completely decorrelates

the signal in the transform domain, minimizes the mean squared

errors (MSEs) in data compression and packs the most energy

(variance) in the fewest number of transform coefficients.

Consider a Markov-1 signal with correlation coefficient r. The

N3N covariance matrix is a matrix [A], which is real, symmet-

ric, and Toeplitz. It is well known that a nonsingular symmetric

Toeplitz matrix has an inverse of tri-diagnonal form. In the case

of the covariance matrix [A] for a Markov-1 signal, we can write

[A]�1 ¼ (1� r2)�1

�
1 �r 0 0 . . . . . . . . .

�r 1þ r2 �r 0 . . . . . . . . .

. . . . . . . . . . . . . . . 1þ r2 �r

. . . . . . . . . . . . . . . �r 1

0

B

B

@

1

C

C

A

:

(3:166)

This matrix can be decomposed into a sum of two simpler

matrices,

[A]�1 ¼ [B]þ [R]

where

[B] ¼ (1� r2)�1

1þ r2 �
ffiffiffi

2
p

r 0 . . . . . .

�
ffiffiffi

2
p

r 1þ r2 �r . . . . . .

0 �r 1þ r2 �r . . .

. . . . . . . . . . . . . . .

. . . . . . . . . �
ffiffiffi

2
p

r 1þ r2

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

and

[R]¼ (1� r2)�1

�

�r2 (
ffiffiffi

2
p

� 1)r 0 . . . . . .

(
ffiffiffi

2
p

� 1)r 0 0 . . . . . .

. . . . . . . . . 0 (
ffiffiffi

2
p

� 1)r

. . . . . . . . . (
ffiffiffi

2
p

� 1)r �r2

0

B

B

B

@

1

C

C

C

A

:

(3:167)

We note that [R] is almost a null matrix and can be considered so

whenN is very large. Thus, the diagonalization of the matrix [B] is
asymptotically equivalent to the diagonalization of the matrix

[A]�1. Furthermore, it is well known that the similarity transform-

ation that diagonalizes [A]�1 will also diagonalize [A]. From these

arguments, it is concluded that the transformation that diagona-

lizes [B] will, asymptotically, diagonalize [A]. The transformation

that diagonalizes [B] depends on a three-terms recurrence relation

that is exactly satisfied by the Chebyshev polynomials. With these,

it can be shown that thematrix [V] that will diagonalize [B] and, in
turn, also [A] asymptotically, is defined by

[V]mn ¼ knkm

ffiffiffiffiffiffiffiffiffiffiffiffi

2

N � 1

r

cos
mnp

N � 1

� �

,

m, n ¼ 0, 1, . . . ,N � 1: (3:168)
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As can be seen in Equation 3.168, these are the elements of the

DCT matrix [C], except that N has been replaced by N� 1. For

large N, these are identical.
The foregoing has briefly demonstrated that for a Markov-1

signal, the diagonalization of the covariance matrix, which leads

to the KLT, is provided by a transformation matrix [V] which is

almost identical to the DCT matrix [C]. This explains why the

DCT performs so well in signal decorrelation, although it is

signal independent. Similar arguments can be applied to the DST.

In Figure 3.1, the basis functions forming the KLT for N¼ 16

are shown. The signal is a Markov-1 signal with a correlation

coefficient of r¼ 0.95. It is clear that the set of basis functions

and, hence, the KLT is signal dependent, because they are the

eigenvectors of the autocovariance matrix of the signal vector.

In Figures 3.2 and 3.3, the basis functions for N¼ 16 of DCT

and DST are shown. It is evident that they are very similar to the

KLT basis functions. While it is true that the dimensions of the

spaces spanned by the KLT and the DCT and DST are different,

it can be shown that as N increases, both discrete transforms will

asymptotically approach KLT.

However, it is true that the similarity of the basis functions

does not guarantee the asymptotic behavior of the DCT and

the DST, nor does it assure good performance. In applications,

such as data compression and transform domain coding, the

‘‘variance distribution’’ of the transform coefficient is an import-

ant criterion of performance. The variance of a transform coeffi-

cient is basically a measure of the information content of that

coefficient. Therefore, the higher the variances are in a few trans-

form coefficients, the more room there is for data compression in

that transform domain.

Let [A] be the data covariance matrix and let [T] be the

transformation. Then, the covariance matrix in the transform

domain, [A]T, is given by,

[A]T ¼ [T] [A] [T]�1: (3:169)

The diagonal elements of [A]T are the variances of the transform
coefficients. In Table 3.1, comparisons are shown for the variance

distributions of the DCT, the DST, and the discrete Fourier
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FIGURE 3.1 KLT Markov-1 signal r ¼ 0.95, N ¼ 16.
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FIGURE 3.2 DCT N ¼ 16.
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transform (DFT), based on a Markov-1 signal of r¼ 0.9 and

N¼ 16. It is clearly seen that both DCT and DST outperform

DFT is using variance distribution as a performance criterion.

When the transformation [T] in Equation 3.169 is not

the KLT, [A]T will not be diagonal. The nonzero off-diagonal

elements in [A]T form a measure of the ‘‘residual correlation.’’

The smaller the amount of residual correlation, the closer is the

transform to being optimal. Figure 3.4 shows the residual correl-

ation as a percentage of the total amount of correlation, for the

transforms DCT, DST, and DFT, in a Markov-1 signal with

N¼ 16. As can be seen, again DCT and DST outperform DFT

generally.

There are other criteria of performance for a given transform,

depending on what kind of signal processing is being done.

However, using the KLT as a benchmark, DCT and DST are

extremely good alternatives as signal independent, fast imple-

mentable transforms, because they are both asymptotic to the

KLT. This asymptotic property of the discrete trigonometric

transforms (particularly the DCT) has made them very import-

ant tools in digital signal processing. Although they are subopti-

mal, in the sense that they will not exactly diagonalize the data

covariance matrix, they are signal independent and are comput-

able using fast algorithms. KLT, though exactly optimal, is signal

dependent and possesses no fast computational algorithm. Some

typical applications are discussed in the next section.

3.5 Selected Applications

This section contains some typical applications. We begin

with fairly general applications to differential equations and

conclude with quite specific applications in the area of data

compression. (See Churchill, 1958 and Sneddon, 1972 for more

applications.)

3.5.1 Solution of Differential Equations

3.5.1.1 One-Dimensional Boundary Value Problem

Consider the second-order differential equation,

y00(t)� h2y(t) ¼ F(t) t � 0 (3:170)
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FIGURE 3.3 DST N ¼ 16.

TABLE 3.1 Variance Distributions

for N ¼ 16, r ¼ 0.9

i DCTa DST DFT

0 9.835 9.218 9.835

1 2.933 2.640 1.834

2 1.211 1.468 1.834

3 0.581 0.709 0.519

4 0.348 0.531 0.519

5 0.231 0.314 0.250

6 0.166 0.263 0.250

7 0.129 0.174 0.155

8 0.105 0.153 0.155

9 0.088 0.110 0.113

10 0.076 0.099 0.113

11 0.068 0.078 0.091

12 0.062 0.071 0.091

13 0.057 0.061 0.081

14 0.055 0.057 0.081

15 0.053 0.054 0.078

a DCT is DCT-II here.

15

10

DFT

DST

%
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DCT*

FIGURE 3.4 Percent residual correlation as a function of r, N ¼ 16.
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with boundary conditions: y0(0) and 0 and y(1)¼ 0, and

F(t) ¼ A for 0 < t < b

¼ 0 otherwise:

We note that F(t) can be expressed in terms of a Heaviside step

function, Thus,

F(t) ¼ A[1� U(t � b)]: (3:171)

Here, we assume h, A, and b to be constants. Applying the

operator ^c to the differential equation and using the results in

Equations 3.9 and 3.34, we get

�v2Yc � y0(0)� h2Yc ¼
A

v
sinvb: (3:172)

Applying the boundary condition and solving for Yc, we obtain

Yc ¼ � A

v(v2 þ h2)
sinvb

¼ � A

h2
sinvb

v
� v sinvb

v2 þ h2

� �

: (3:173)

The inversion of Yc can be accomplished with the use of Equa-

tions 3.34, 3.55, and 3.3. Noting that the inverse FCT has a

normalization factor of 2=p, the solution for the original bound-

ary value problem is given by

y(t) ¼ � A

h2
[1� U(t � b)� e�hb cosh ht] t < b,

¼ � A

h2
[1� U(t � b)þ e�ht sinh hb] for t > b:

These can be rewritten as

y(t) ¼ A

h2
(e�hb cosh ht � 1) for t < b,

¼ � A

h2
e�ht sinh hb for t > b: (3:174)

3.5.1.2 Two-Dimensional Boundary Value Problem

Consider a function y(x, y), which is bounded for x� 0, y� 0.

Let y(x, y) satisfy the boundary value problem:

q2y

qx2
þ q2y

qy2
¼ �h(x);

qy

qx

�

�

�

�

x¼0

¼ 0, y(x, 0) ¼ f (x): (3:175)

We further assume that
Ð

1

0

h(x)dx ¼ 0, and that the function

p(x) ¼
ð

1

x

ð

r

0

h(t)dt

2

4

3

5dr (3:176)

exists and that the functions p(x) and f(x) have FCTs. We note

from Equation 3.176 that

p00(x) ¼ h(x) and p0(0) ¼ 0,

leading to the following relation between their FCTs:

v2Pc(v) ¼ Hc(v) (3:177)

Applying ^c for the x variable in Equation 3.175 reduces the

partial differential equation to

�v2Vc(v, y)þ
q2

qy2
Vc(v, y) ¼ �v2Pc(v): (3:178)

Because Vc(v, y) is bounded for y> 0, Equation 3.178 has the

following solution,

Vc(v, y) ¼ Ce�vy þ Pc(v) (3:179)

where C is an arbitrary constant, to be determined by y(x, 0)¼ f(x).
In the v-domain, this means

Vc(v, 0) ¼ Fc(v): (3:180)

Thus,

Vc(v, y) ¼ [Fc(v)� Pc(v)]e
�vy þ Pc(v): (3:181)

This can be inverted and the solution in the (x, y) domain then is

given by

y(x, y) ¼ p(x)þ 1

p

ð

1

0

[ f (t)� p(t)]

� y

(x þ t)2 þ y2
þ y

(x � t)2 þ y2

� �

dt: (3:182)

Here, we have made use of Equation 3.44 and the convolution

result of Equation 3.20.

3.5.1.3 Time-Dependent One-Dimensional Boundary
Value Problem

Consider the function u(x, t), which is bounded for x, t� 0. Let

this function satisfy the partial differential equation,

qu

qt
þ q2u

qx2
¼ h(x, t) (3:183)

so that u(x, 0)¼ f(x) and u(0, t)¼ g(t) are the initial and bound-

ary conditions.

Applying the FST for the variable x to Equation 3.183 and

assuming the existence of all the integrals involved, we obtain
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qUs

qt
þ v2Us ¼ vg(t)þ Hs(v, t): (3:184)

The solution for Equation 3.184 is

Us(v, t)e
v2t ¼

ð

t

0

[vg(t)þHs(v, t)]e
v2tdtþ C: (3:185)

C is easily found to be Fs(v) using the condition Us(v, 0)¼ Fs(v).
With this, Equation 3.185 can be inverse transformed by apply-

ing the operator ^�1
s to get

u(x, t) ¼ 2

p

ð

1

0

Us(v, t) sinvx dv: (3:186)

We note that, depending on the forms of the functions Fs and Hs,

the inverse FST may be obtained by table look-up.

3.5.2 Cepstral Analysis in Speech Processing

In cepstral analysis, a sequence is converted by a transform T, the
logarithm of its absolute value is then taken and the cepstrum is

then obtained by inverse transformation T�1. Figure 3.5 shows

the essential steps in cepstral analysis. Here, {x(n)} is the input

speech sequence, {X(k)} is the transform sequence, and the out-

put {xR(n)} is called the real cepstrum.

The transform may be any invertible transform. When T is

an N-point DFT, the scheme can be implemented using the DCT.

In the computation to obtain the real cepstrum using the DFT,

the input sequence has to be padded with trailing zeros to double

its length. However, a simple relation between the DFT and the

DCT for real even sequences reduces the DFT to a DCT.

Let x(n), n¼ 0, 1, 2, . . . ,M be the input speech sequence to

be analyzed. To obtain the real cepstrum xR(n) using DFT,

the sequences is padded with zeros so that x(n)¼ 0, for nþMþ
1, . . . , 2M� 1. If we consider a symmetric sequence s(n) defined by

s(n) ¼ x(n) 0 < n < M,

¼ 2x(n) n ¼ 0,M

¼ x(2M � n) M < n � 2M � 1, (3:187)

then the DFT of s(n) can be obtained as

SF(k) ¼ 2 x(0)þ (�1)kx(M)þ
X

M�1

n¼1

x(n) cos
nkp

M

� �

" #

: (3:188)

Equation 3.188 is clearly in the form of a DCT of the sequence

{x(n)} up to a constant factor of normalization. Now, because

{s(n)} is a symmetric real sequence, constructed out of {x(n)},
we have

SF(k) ¼ Re[XF(k)]

where {XF(k)} is the 2M-point DFT of the zero-padded sequence.

Combining this with Equation 3.188 we see that

Re[XF(k)] ¼ 2[Xc(k)] (3:189)

where Xc is the (Mþ 1)-point DCT of the speech sequence

{x(n)}. Equation 3.189 is valid up to a normalization constant.

Because direct sparse matrix factorization of the (Mþ 1)3

(Mþ 1) DCT matrix is possible, fast algorithms exist for the

computation of the DCT. This means that in order to obtain

the real cepstrum of {x(n)}, there is no need to pad the sequence

with trailing zeros, and the computation for xR(k) can be

achieved through the use of DCT of the sequence {x(n)}.
Rather than using DCT as a means of computing the DFT, the

transform T in the cepstral analysis can directly be a DCT or a

DST. It has been found that the performance of speech cepstral

analysis using DCT and DST is comparable to the traditional

DFT cepstral analysis.

3.5.3 Data Compression

Data compression is an important application of transform cod-

ing when retrieval of a signal from a large database is required.

Transform coefficients with large variances can be retained to

represent significant features for pattern recognition, for example.

Those with small variances, below a certain threshold, can be

discarded. Such a scheme can be used in reducing the required

bandwidth for purposes of transmission or storage.

The transforms used for these data compression purposes

require maximal decorrelation of the data, with highest energy-

packing efficiency possible (efficiency is defined as how much

energy can be packed into the fewest number of transform

coefficients). The ideal or optimal transform is the KLT, which

will diagonalize the data covariance matrix and pack the most

energy into the fewest transform coefficients. Unfortunately, KLT

is data dependent, and has no known fast computational algo-

rithm, and, therefore, is not practical. On the other hand, Markov

models describe most of the data systems quite well, and sub-

optimal but asymptotically equivalent transforms such as the

DCT and the DST are data independent, and implementable

using fast algorithms. Therefore, in many applications, such as

storage of electrocardiogram (ECG) or vectorcardiogram (VCG)

data, or video data transmission over telephone lines for video

phones, suboptimal transforms such as the DCT are preferred

over the optimal KLT. For such applications, depending upon the

x(n) xR(n)X(k) |X(k)| log |X(k)|

T log T–1

FIGURE 3.5 Block diagram for cepstral analysis for x(n).
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required fidelity of the reconstructed data, compression ratios of

up to 10:1 have been reported, and compression ratios of 3:1 to

5:1 using DCT for both ECG (one-dimensional) and VCG (two-

dimensional) are commonplace.

Figure 3.6a and b show the block diagrams for processing,

storage, and retrieval of a one-dimensional ECG, using m:1,

compression ratio.

3.5.4 Transform Domain Processing

While discarding low variance coefficients in the DCT domain

will provide data compression, certain details or desired features

in the original data may be lost in the reconstruction. It is

possible to remedy this partially by processing the transform

coefficients before reconstruction. Adaptive processing can be

applied based on some subjective criteria, such as in video

phone applications. Coefficient quantization is another means

of processing to minimize the effect of noise.

Other processing techniques such as subsampling (decima-

tion) and up-sampling (interpolation) can also be performed in

the DCT domain, effectively combining the operations of filter-

ing and transform coding. Such processing techniques have been

successfully employed to convert high definition TV signals to

the standard NTSC TV signals.

One of the most popular digital signal processing tools is the

adaptive least-mean-square (LMS) filtering. This can be done

either in the time domain or in the transform domain. Figure 3.7

shows the block diagram for the adaptive DCT transform domain

LMS filtering. Here an0,an1, . . . , an,N�1 are the adaptive weights

for the transform domain filter. The desired response is {r(n)} and
{y(n)} is the filtered output. It has been found that such transform

domain filtering speeds up the convergence of the LMS algorithm

for speech-related applications such as spectral analysis and echo

cancellation.

3.5.5 Image Compression by the Discrete Local
Sine Transform (DLS)

3.5.5.1 Introduction

DCT has long been recognized as one of the best substitutes for

the optimal, but data-dependent KLT, in image processing. Many

standards, such as the JPEG (Joint Photographic Experts Group)

and MPEG (Moving Pictures Experts Group) have adopted

DCT as a standard transform technique for image compression.

(a)

(b)

Sampled

ECG

One-dimensional

DCT

Thresholding to

keep 1/m coef Storage

Padding with zeros

to original length

Inverse

DCT
Reconstructed

ECG

Storage

coeff

FIGURE 3.6 (a) Data compression for storage, (b) reconstruction from compressed data.

z–1

x(n – 1)

x ( n – N + 1 )

x(n) input

x(n)
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FIGURE 3.7 Adaptive transform domain LMS filtering.
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While both KLT and DCT satisfy the perfect reconstruction (PR)

condition when no compression (or dropping of transform coef-

ficients) takes place in the transform domain, both suffer from

the artifact of ‘‘blocking’’ whenever compression is done. The

severity of such an artifact depends on the amount of compres-

sion. In speech and audio processing, this appears as a clicking

sound in the reconstructed speech. In image compression, it

appears as ‘‘tiles’’ overlaying the reconstituted picture.

The blocking artifact can be attributed to the fact that two-

dimensional image processing by transform generally takes place

with blocks of pixels, the most common sizes being 83 8 and

163 16. When modification of the transform coefficients occurs

in compression or other transform domain processing, the PR

condition is violated. The mismatching of the edges in the recon-

structed blocks products this artifact.

Efforts to counter this compression artifact led to the devel-

opment of lapped transforms (see Malvar, 1992). The transforms

are based on basis functions with a wider support in the

data domain than in the transform domain, leading to overlaps

of the basis functions in the edge region of each block; hence,

the name ‘‘lapped’’ transform. Many such lapped transforms

can be constructed using different criteria. There are lapped

orthogonal transforms (LOTs), modulated lapped transforms

(MLTs), and hierarchical lapped transform (HLT). There are

also lapped transforms based on the discrete sine or cosine

basis functions.

In this section, one such lapped transform based on the dis-

crete sine basis function is described. This is called DLS. The

transform is applied in image compression at different compres-

sion ratios and the results are compared with other lapped

transforms.

3.5.5.2 Elements of the Lapped Orthogonal
Transform (LOT)

In general, a lapped transform will take N sample points in the

data domain and transform these into M coefficients in the con-

jugate domain, where N>M. Very often, N can be as much as

twice the size ofM. In matrix vector notations, a data vector xm of

length N is transformed into a vector Xm of length M, and the

transform is represented by theM3NmatrixFT in the equation

Xm ¼ FTxm (3:190)

HereF is the lapped transform matrix of dimension N3M. One

might interpret such a matrix as an M-dimensional matrix

spanned by M N-dimensional vectors. Specifically, if M¼ 2 and

N¼ 4, then the two-dimensional vector space is spanned by two

linearly independent four-dimensional vectors. As can be

imagined, such a scheme will provide additional flexibility in

the design of the transform basis functions.

When a data sequence is to be processed by a lapped trans-

form, the basic block transform matrixF is of dimension N3M,

whereas the overall transform matrix C will be in block diagonal

form, given by

C ¼
F O

F
�

O F

0

B

B

@

1

C

C

A

(3:191)

If FT ¼ a11 a21 a31 a41
a12 a22 a32 a42

� �

, the matrix C will appear as

C ¼

.
.

.

a11 a12
a21 a22
a31 a32 a11 a12
a41 a42 a21 a22

a31 a32
a41 a42

.
.

.

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3:192)

when the length of the overlap is 2.

For a data sequence xm of dimension K, the lapped trans-

formed sequence Xm is given by

Xm ¼CTxm: (3:193)

Evidently, in the segmented form of xm (each segment of

length N), the data points located at the ends, in the overlapped

regions, will be processed in two consecutive block transforms.

One can visualize this as a sliding window of size N moving over

the data sequence in shifts of size M each.

When compression or other processing is not applied, all

invertible transforms should satisfy the PR condition. In terms

of the transformation matrix, this PR condition is stated simply as

CCT ¼ IK and CTC ¼ IK (3:194)

where IK is a K3K identity matrix. From Equation 3.194 con-

ditions for the component block matrix F can be stated

FTF ¼ IM (3:195)

and

FTWF ¼ OM, (3:196)

where W is an M3M ‘‘one block shift’’ matrix defined by

W ¼ O1 IL
O2 O1

� �

:

Here, L is the length of the overlap region, O1 is an L3 (M� L)
null matrix, O2 is an (M� L)3 (M� L) null matrix, and OM is

anM3M null matrix. Thus, in addition to the usual orthonorm-

ality condition 3.195, lapped transforms require the additional

‘‘lapped orthogonality’’ condition 3.196 to preserve the overall

PR requirement.
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3.5.5.3 The Discrete Local Sine Transform (DLS)

By properly choosing a ‘‘core’’ and a ‘‘lapped’’ region together

with a specified function, a lapped transform basis set can be

constructed to satisfy the PR condition. The DLS is just such a

set, based on the continuous bases of Coifman and Meyer [See

Coifman and Meyer, 1991.]

Let Fs be the DLS transform matrix, so that

Fs ¼ [f0,f1, . . . ,fM�1]: (3:197)

Then the basis function fr’s are defined by

fr(n) ¼
p
(2=M) b(n) sin

2r þ 1

2
p

n

M
� e

� �

� �� �

;

n 2 [0,M þ L� 1]; r 2 [0,M � 1] (3:198)

where n, r are respectively the index for the data sample and

the index of the basis function; e¼ (L� 1)=2M; M is the

number of basis functions in the set and L is the length of the

lapped portion. b(n) is called a bell function and it controls the roll-
off over the lapped portion of the basis function. It is given by

b(n)¼

Se(n)¼ sin
np

2(L� 1)
� 1

4
sin

2np

L� 1

� �

, n¼ 0, . . . ,L� 1,

1, for n¼ L, . . . ,M� 1,

Ce(n�M)

¼ cos
(n�m)p

2(L� 1)
� 1

4
sin

2(n�M)p

L� 1

� �

, n¼M, . . . ,MþL� 1.

8
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Figure 3.8 shows the DLS basis functions in time and frequency

domains for M¼ 8, L¼ 8. These basis functions are very similar

to those of MLT developed by Malvar (1992).
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FIGURE 3.8 DLS basis functions in time and frequency domain, L¼M¼ 8.

3-26 Transforms and Applications Handbook



3.5.5.4 Simulation Results (For Details, See Li, 1997.)

The standard Lena image of 2563 256 pixels is used in the

simulations for image compression. The original image is repre-

sented by 8 bits=pixel or 8 bpp and is shown in Figure 3.9a.

Compressions based on a 163 16 block transform (M¼ L¼ 16

for lapped transforms) result in reconstructed images repre-

sented by 0.4 bpp, 0.24 bpp, and 0.16 bpp. A signal-to-noise

ratio is calculated for the compressed image, based on the energy

(variance) of the original image and the energy of the residual

image. The residual image is defined as the difference between

the original image and the compressed image. For lapped trans-

forms, zeros are padded on the actual border of the image to

enable the transform.

Table 3.2 shows a comparison of the final signal-to-noise

ratios for the several lapped transforms against the more con-

ventional DCT at different compression ratios. It is obvious that

the lapped transforms are superior in performance compared to

the DCT.

Figures 3.9 through 3.11 depict the various reconstructed

images using different lapped transforms at different compres-

sion ratios. It is seen that serious ‘‘block’’ artifacts are absent from

the compressed images even at the very low bits per pixel rates.

The performance of the DLS lies between those of the LOT and

the MLT.

3.6 Computational Algorithms

In actual computations of FCT and FST, the basic integrations

are performed with quadratures. Because the data are sampled

and the duration is finite, most of the quadratures can be imple-

mented via matrix computations. The fact that the FST and the

FCT are closely related to the Fourier transform translates dir-

ectly to the close relations between the computation of the DCT

and the DST with that of the DFT. Many algorithms have been

developed for the DFT. The most well known among them is the
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FIGURE 3.9 Comparison of original and reconstructed image,

M¼ L¼ 16, at 0.4 bpp: (a) original at 8 bpp, (b) DLS, (c) LOT, (d) MLT.

TABLE 3.2 Comparison of Signal-to-Noise Ratio (dB)

DLS LOT MLT DCT

0.4 bpp 16.3 15.8 16.5 13.9

0.24 bpp 13.8 13.6 14.3 12.2

0.16 bpp 12.2 12.2 12.7 11.2
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FIGURE 3.10 Comparisons for original and reconstructed image,

M¼ L¼ 16, at 0.24 bpp: (a) original at 8 bpp, (b) DLS, (c) LOT,

(d) MLT.
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FIGURE 3.11 Comparisons of original and reconstructed image,

M¼ L¼ 16, at 0.16 bpp: (a) original at 8 bpp, (b) DLS, (c) LOT,

(d) MLT.
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Cooley–Tukey fast Fourier transform (FFT), which is often

regarded as the single most important development in modern

digital signal processing. More recently, there have been other

algorithms such as the Winograd algorithm, which are based on

prime-factor decomposition and polynomial factorization.

While DST and DCT can be computed using relations with

DFT (thus, fast algorithms such as the Cooley–Tukey or the

Winograd), the transform matrices have sufficient structure to

be exploited directly, so that sparse factorizations can be applied

to realize the transforms. The sparse factorization depends on the

size of the transform, as well as the way permutations are applied

to the data sequence. As a result, there are two distinct types of

sparse factorizations, the decimation-in-time (DIT) algorithms

and the decimation-in-frequency (DIF) algorithms. (DIT algo-

rithms are of the Cooley–Tukey type while DIF algorithms are of

the Sande–Tukey type).

In Section 3.6.1, the computations of FST and FCT using FFT

are discussed. In Section 3.6.2, the direct fast computations of

DCT and DST are presented. Both DIT and DIF algorithms are

discussed. All algorithms discussed are radix-2 algorithms, where

N, which is related to the sample size, is an integer power of two.

3.6.1 FCT and FST Algorithms Based on FFT

3.6.1.1 FCT of Real Data Sequence

Let {x(n), n¼ 0, 1, . . . ,N} be an (Nþ 1)-point sequence. Its DCT

as defined in Equation 3.145 is given by

Xc(m) ¼
ffiffiffiffi

2

N

r

X

N

n¼0
kmkn cos

mnp

N

� �

x(n),

where

kn ¼ 1 for n 6¼ 0 or N

¼ 1=
p
2 for n ¼ 0 or N:

Construct an even or symmetric sequence using {x(n)} in the

following way,

s(n) ¼ x(n) 0 < n < N ,

¼ 2x(n) n ¼ 0,N ,

¼ x(2N � n) N < n � 2N � 1: (3:199)

Based on the fact that the Fourier transform of a real symmetric

sequence is real and is related to the cosine transform of the half-

sequence, it can be shown that the DFT of {s(n)} is given by

SF(m)¼ 2 x(0)þ (�1)mx(N)þ
X

N�1

n¼1

cos
mnp

N

� �

x(n)

" #

: (3:200)

Thus, the (Nþ 1)-point DCT of {x(n)} is the same as the

2N-point DFT of the sequence {s(n)}, up to a normalization

constant as indicated by Equation 3.145. This means that the

DCT of {x(n)} can be computed using a 2N-point FFT of {s(n)}.
We note here that

SF(m) ¼
X

2N�1

n¼0

s(n)Wmn
2N , (3:201)

where W2N¼ e�j2p=2N, the principal 2Nth root of unity, is used

for defining the DFT.

It should be pointed out that the direct 2N-point DFT of a real

even sequence may be considered inefficient, because inherent

complex arithmetics are used to produce real coefficients in the

transform. However, it is well known that a real 2N-point DFT
can be implemented using an N-point DFT for a complex

sequence. For details, the reader is referred to Chapter 2.

3.6.1.2 FST of Real Data Sequence

Let {x(n), n¼ 1, 2, . . . , N� 1} be an (N� 1)-point data sequence.

Its DST as defined in Equation 3.149 is given by

Xs(m) ¼
ffiffiffiffi

2

N

r

X

N�1

n¼1

sin
mnp

N

� �

x(n):

Construct a (2N� 1)-point odd or skew-symmetric sequence

{s(n)} using {x(n)},

s(n) ¼ x(n) 0 < n < N ,

¼ 0 n ¼ 0,N ,

¼ �x(2N � n) N < n � 2N � 1: (3:202)

The Fourier transform of a real skew-symmetric sequence is

purely imaginary and is related to the sine transform of the

half-sequence. From this, it can be shown that the 2N-point
DFT of {s(n)} in Equation 3.202 is given by

SF(m) ¼ �2j
X

N�1

n¼1

sin
mnp

N

� �

x(n): (3:203)

Thus, the 2N-point DFT of {s(n)} is the same as the (N� 1)-point

DST of {x(n)}, up to a normalization constant. Again SF(m) is as

defined in Equation 3.201 and the 2N-point DFT for the real

sequence can be implemented using an N-point DFT for a

complex sequence.

3.6.2 Fast Algorithms for DST and DCT
by Direct Matrix Factorization

3.6.2.1 Decimation-in-Time Algorithms

These are Cooley–Tukey-type algorithms, in which the time

ordering of the input data sequence is permuted to allow for

the sparse factorization of the transformation matrix. The essen-

tial idea is to reduce a size N transform matrix into a block
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diagonal form, in which each block is related to the same trans-

form of size N=2. Recursively applying this procedure, one finally
arrives at the basic 23 2 ‘‘butterfly.’’ We present here the essen-

tial equations for this reduction and also the flow diagrams for

the DIT computations of DCT and DST, in block form.

1. DIT algorithm for the DCT: Let

Xc(m) ¼
X

N

n¼0
Cmn
N ~x(n), m ¼ 0, 1, 2, . . . ,N , (3:204)

be the DCT of the sequence {x(n)} (i.e., ~x(n) is x(n) scaled
by the normalization constant and the factor kn, while
Xc(m) is scaled by km, as in Equation 3.145). Here we

have simplified the notations using the definition

Cmn
N ¼ cos

mnp

N

� �

: (3:205)

Equation 3.204 can be reduced to

Xc(m) ¼ gc(m)þ hc(m),

Xc(N �m) ¼ gc(m)� hc(m), for m ¼ 0, 1, . . . ,N=2,

and Xc(N=2) ¼ gc(N=2):

(3:206)

Here, gc and hc are related to the DCT of size N=2, defined
by the following equations:

gc(m) ¼
X

N=2

n¼0

Cmn
N=2~x(2n), for m ¼ 0, 1, . . . ,N=2,

hc(m) ¼ 1

2Cm
N

X

N=2

n¼0

Cmn
N=2[~x(2nþ 1)þ ~x(2n� 1)],

for m ¼ 0, 1, . . . ,N=2� 1,

and hc(N=2) ¼ 0 and where ~x(N þ 1) is set to zero:

(3:207)

We note that both gc(m) and hc(m) are DCTs of half the

original size. This way, the size of the transform can be

reduced by a factor of two at each stage. Some combin-

ations of inputs to the lower order DCT are required as

shown by the definition for hc(m), as well as some scaling

of the output of the DCT transform. Figure 3.12 shows a

signal flow graph for an N¼ 16 DCT. Note the reduction

into two N¼ 8 DCTs in the flow diagram.

2. DIT algorithm for DST: Let

Xs(m) ¼
X

N�1

n¼1

Smn
N ~x(n), m ¼ 1, 2, . . . ,N � 1, (3:208)

be the DST of the sequence {x(n)}, (i.e., ~x(n) is x(n) that
has been scaled with the proper normalization constant as

required in Equation 3.149 and we have defined

Smn
N ¼ sin

mnp

N

� �

: (3:209)
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Following the same reasoning for the DIT algorithm for DCT,

Equation 3.208 can be reduced to

Xs(m) ¼ gs(m)þ hs(m),

Xs(N �m) ¼ gc(m)� hs(m), for m ¼ 1, 2, . . . ,N=2� 1, and

Xs(N=2) ¼
X

N=2�1

n¼1

(�1)n~x(2N þ 1): (3:210)

Here, gs(m) and hs(m) are defined as

gs(m) ¼ 1

2Cm
N

X

N=2�1

n¼1

Smn
N=2[~x(2nþ 1)þ ~x(2n� 1)], and

hs(m) ¼
X

N=2�1

n¼1

Smn
N=2~x(2n):

(3:211)

As before, it can be seen that gs(m) and hs(m) are the DSTs of half

the original size, one involving only the odd input samples, and

the other involving only the even input samples. Figure 3.13

shows a DIT signal flow graph for the N¼ 16 DST. Note that it

is reduced to two blocks of N¼ 8 DSTs.

3.6.2.2 Decimation-in-Frequency Algorithms

These are Sande–Tukey-type algorithms in which the input sam-

ple sequence order is not permuted. Again, the basic principle is

to reduce the size of the transform, at each stage of the compu-

tation, by a factor of two. It would be of no surprise that

these algorithms are simply the conjugate versions of the DIT

algorithms.

1. The DIF algorithm for DCT: In Equation 3.204, consider

the even-ordered output points and the odd-ordered out-

put points,

Xc(2m) ¼ Gc(m), for m ¼ 0, 1, . . . ,N=2, and

Xc(2mþ 1) ¼ Hc(m)þHc(mþ 1),

for m ¼ 0, 1, . . . ,N=2� 1:

(3:212)

Here,

Gc(m)¼
X

N=2�1

n¼0

[~x(n)þ~x(N�n)]Cmn
N=2þ (�1)m~x(N=2), and

Hc(m)¼
X

N=2�1

n¼0

1

2Cn
N

[~x(n)�~x(N�n)]Cmn
N=2: (3:213)

As can be seen, both Gc(m) and Hc(m) are DCTs of size

N=2. Therefore, at each stage of the computation, the size

of the transform is reduced by a factor of two. The overall

result is a sparse factorization of the original transform

matrix. Figure 3.14 shows the signal flow graph for an

N¼ 16 DIF type DCT.

2. The GIF algorithm for DST: Equation 3.209 can be split

into even-ordered and odd-ordered output points, where

Xs(m) ¼ Gs(m), for m ¼ 1, 2, . . . ,N=2� 1,

Xs(2m� 1) ¼ Hs(m)þHs(m� 1)þ (�1)mþ1
~x(N=2),

for m ¼ 1, 2, . . . ,N=2� 1, and

Xs(N � 1) ¼ Hs(N=2� 1)þ (�1)N=2þ1
~x(N=2):

(3:214)
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FIGURE 3.13 DIT DST N¼ 16 flow graph ! (�1).
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Here, the outputs Gs(m) and Hs(m) are defined by DSTs of half

the original size as

Gs(m) ¼
X

N=2�1

n¼1

[~x(n)� ~x(N � n)]Smn
N=2, and

Hs(m) ¼
X

N=2�1

n¼1

1

2Cn
N

[~x(n)� ~x(N � n)]Smn
N=2:

(3:215)

Figure 3.15 shows the signal graph for an N¼ 16 DIF-type DST.

Note that this flow graph is the conjugate of the flow graph

shown in Figure 3.13.

3.7 Tables of Transforms

This section contains tables of transforms for the FCT and the

FST. They are not meant to be complete. For more details and a
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FIGURE 3.14 DIF DCT N¼ 16 flow graph ! (�1).
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more complete listing of transforms, especially those of orthog-

onal and special functions, the reader is referred to the Bateman

manuscripts (Erdelyi, 1954). Section 3.7.3 contains a list of con-

ventions and definitions of some special functions that have been

referred to in the tables.

3.7.1 Fourier Cosine Transforms

3.7.1.1 General Properties

f(t) Fc(v)¼
Ð1
0

f (t)cosvt dt v> 0

1 Fc(t) (p=2)f(v)
2 f(at) a> 0 (1=a)Fc(v=a)

3 f(at) cos bt a, b> 0 (1=2a) Fc
vþb
a

� �

þFc
v�b

a

� �� �

4 f(at) sin bt a, b> 0 (1=2a) Fs
vþ b

a

� ��

� Fs
v� b

a

� ��

5 t2n f(t) (�1)n
d2n

dv2n
Fc(v)

6 t2nþ 1 f(t) (�1)n
d2nþ1

dv2nþ1
Fs(v)

7
Ð1
0 f (r)[g(t þ r)þ
g(jt � rj)]dr

2Fc(v)Gc(v)

8
Ð1
t f (r)dr (1=v)Fs(v)

9 f(tþ a)� fo(t� a) 2Fs(v) sin av a> 0

10
Ð1
0 f (r)[g(t þ r)

þ go(t � r)]dr
2Fs(v)Gs(v)

3.7.1.2 Algebraic Functions

f(t) Fc(v)

1 (1=
p
t)

p
(p=2)(1=v)1=2

2 (1=
p
t)[1�U(t� 1)] (2p=v)1=2C(v)

3 (1=
p
t)U(t� 1) (2p=v)1=2[1=2�C(v)]

4 (tþ a)�1=2 jarg aj<p (p=2v)1=2 {cos av[1� 2C(av)]
þ sin av[1� 2S(av)]}

5 (t� a)�1=2U(t� a) (p=2v)1=2[cos av� sin av]

6 a(t2þ a2)�1 a> 0 (p=2) exp (�av)

7 t(t2þ a2)�1 a> 0 �1=2 e�avEi(av)
�

þ eavEi(av)�
8 (1� t2)(1þ t2)�2 (p=2)v exp(�v)

9 �t(t2� a2)�1 a> 0 cos avCi(av)þ sin av Si(av)

3.7.1.3 Exponential and Logarithmic Functions

f(t) Fc(v)

1 e�at Re a> 0 a(a2þv2)�1

2 (1þ t)e�t 2(1þv2)�2

3
p
te�at Re a> 0

ffiffiffiffi

p
p

2
(a2 þ v2)�3=4

cos [3=2 tan�1 (v=a)]

4 e�at=
p
t Re a> 0

p
(p=2)(a2þv2)�1=2

. [(a2þv2)1=2þ a]1=2

5 tne�at Re a> 0 n![a=(a2þv2)]nþ1

.

Pnþ1
2m¼0(�1)m

nþ1

2m

� �

v

a

� �2m

6 exp(�at2)=
p
t

Re a> 0
p(v=8a)1=2 exp(�v2=8a)

. I�1=4(�v2=8a)

7 t2n exp (�a2t2)
jarg aj<p=4

(�1)n
p
p2�n�1a�2n�1

.exp[�(v=2a)2]He2n(2
�1=2v=a)

8 t�3=2 exp(�a=t)
Re a> 0

(p=a)1=2 exp [� (2av)1=2]

cos (2av)1=2

9 t�1=2 exp(�a=
p
t)

Re a> 0
(p=2v)1=2[ cos (2a

p
v)

� sin (2a
p
v)]

10 t�1=2 ln t �(p=2v)1=2[ln(4v)þCþp=2]

11 (t2� a2)�1 ln t a> 0 (p=2v){sin(av)[ci(av)� ln a]
� cos(av)[si(av)�p=2]}

12 t�1 ln (1þ t) (1=2){[ci(v)]2þ [si(v)]2}
13 exp(�t=

p
2)

sin(p=4þ t=
p
2)

(1þ v4)�1

14 exp(�t=
p
2)

cos(p=4þ t=
p
2)

v2(1þ v4)�1

15 ln
a2 þ t2

1þ t2
a > 0 (p=v)[exp(�v)� exp(�av)]

16 ln[1þ (a=t)2] a> 0 (p=v)[1� exp(�av)]

3.7.1.4 Trigonometric Functions

f(t) Fc(v)

1 t�1 e�t sin t (1=2) tan�1 (2v�2)

2 t�2 sin2(at) a> 0 (p=2)(a� v=2)v < 2a
0 v > 2a

3
sin t

t

� �n

n ¼ 2, 3, . . .
np

2n

Xr<(vþn)=2

r>0

(�1)r(vþn�2r)n�1

r!(n�r)! , 0< v< n

4 exp(�bt2) cos at
Re b> 0

(1=2)(p=b)1=2 exp � a2 þ v2

4b

� �

cosh
av

2b

� �

5 (a2þ t2)�1(1� 2b
cos tþb2)�1

(1=2)(p=a)(1� b2)�1(ea � b)�1

Re a> 0, jbj< 1 . (ea�avþbeav) 0�v< 1
6 sin(at2) a> 0 (1=4)(2p=a)1=2

cos
v2

4a

� ��

� sin
v2

4a

� ��

7 sin[a(1� t2)] a> 0 �(1=2)(p=a)1=2

cos[aþp=4þv2=(4a)]

8 cos(at2) a> 0 (1=4)(2p=a)1=2

cos
v2

4a

� �

þ sin
v2

4a

� ���

9 cos[a(1� t2)] a> 0 (1=2)(p=a)1=2 sin[aþp=4þ
v2=(4a)]

10 tan�1(a=t) a> 0 (2v)�1[e�avEi(av)� eavEi(�av)
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3.7.2 Fourier Sine Transforms

3.7.2.1 General Properties

f(t) Fs(v)¼
Ð1
0

f (t) sinvt dt v> 0

1 Fs(t) (p=2)f(v)
2 f(at) a> 0 (1=a)Fs(v=a)

3 f(at) cos bt a, b> 0 (1=2a) Fs
vþb
a

� �

þFs
v�b

a

� �� �

4 f(at) sin bt a, b> 0 �(1=2a) Fc
vþ b

a

� ��

�Fc
v� b

a

� ��

5 t2n f(t) (�1)n
d2n

dv2n
Fs(v)

6 t2nþ 1 f(t) (�1)nþ1 d2nþ1

dv2nþ1
Fc(v)

7
Ð1
0

f (r)
Ð tþr
jt�rj g(s) ds dr (2=v)Fs(v)Gs(v)

8 fo(tþ a)þ fo(t� a) 2Fs(v) cos av

9 fe(t� a)� fe(tþ a) 2Fc(v) sin av

10
Ð1
0 f (r)[g(jt � rj)�
g(t þ r)]dr

2Fs(v)Gc(v)

3.7.2.2 Algebraic Functions

f(t) Fs(v)

1 1=t p=2
2 1=

p
t (p=2v)1=2

3 1=
p
t[1�U(t� 1)] (2p=v)1=2 S(v)

4 (1=
p
t)U(t� 1) (2p=v)1=2[1=2� S(v)]

5 (tþ a)�1=2 jarg aj<p (p=2v)1=2 {cos av[1� 2S(av)]
�sin av [1� 2C(av)]}

6 (t� a)�1=2U(t� a) (p=2v)1=2(sin avþ cos av)

7 t(t2þ a2)�1 a> 0 (p=2) exp(�av)

8 t(a2� t2)�1 a> 0 �(p=2) cos av

9 t(a2þ t2)�2 a> 0 (pv=4a) exp(�av)

10 a2[t(a2þ t2)]�1 a> 0 (p=2)[1� exp(�av)]

11 t(4þ t4)�1 (p=4) exp(�v) sin v

3.7.2.3 Exponential and Logarithmic Functions

f(t) Fs(v)

1 e�at Re a> 0 v(a2þv2)�1

2 Te�at Re a> 0 (2av)(a2þv2)�2

3 t(1þ at)e�at Re a> 0 (8a3v)(a2þv2)�3

4 e�atpt Re a> 0
p
(p=2)(a2þv2)�1=2

. [(a2þv2)1=2� a]1=2

5 t�3=2e�at Re a> 0 (2p)1=2[(a2þv2)1=2� a]1=2

6 exp(�at2) Re a> 0 �j(1=2)(p=a)1=2

exp (�v2=4a)Erf jv
2
p
a

� �

7 t exp (�t2=4a)
Re a> 0

2av
p
(pa) exp (�av2)

8 t�3=2 exp(�a=t)
jarg aj<p=2

(p=a)1=2 exp [� (2av)1=2]
sin (2av)1=2

9 t�3=4 exp(�a=
p
t)

jarg aj<p=2
�(p=2)(a=v)1=2[J1=4(a

2=8v)
. cos(p=8þ a2=8v)þY1=4(a

2=8v)
. sin(p=8þ a2=8v)]

10 t�1 ln t �(p=2)[Cþ ln v]
11 t(t2� a2)�1 ln t a> 0 �(p=2){cos av[Ci(av)� ln a]þ

sin av[Si(av)�p=2]}
12 t�1 ln(1þ a2t2) a> 0 �p Ei(�v=a)

13 ln
t þ a

jt � aj a > 0 (p=v) sin av

3.7.2.4 Trigonometric Functions

f(t) Fs(v)

1 t�1 sin2 (at) a> 0 p=4 0 < v < 2a
p=8 v ¼ 2a 0 v > 2a

2 t�2 sin2(at) a> 0 (1=4)(vþ 2a) ln jvþ 2aj
þ (1=4)(v� 2a) ln jv� 2aj
� (1=2)v ln v

3 t�2 [1� cos at] a> 0 (v=2) ln j(v2� a2)=v2j þ (a=2)
ln j(vþ a)=(v� a)j

4 sin(at2) a> 0 (p=2a)1=2{cos(v2=4a)
C[v=(2pa)1=2]þ sin(v2=4a)
S[v=(2pa)1=2]

5 cos(at2) a> 0 (p=2a)1=2{sin(v2=4a)
C[v=(2pa)1=2]� cos(v2=4a)
S[v=(2pa)1=2]

6 tan�1(a=t) a> 0 (p=2v)[1� exp(�av)]

3.7.3 Notations and Definitions

1. f(t): Piecewise smooth and absolutely integrable function

on the positive real line.

2. Fc(v): The FCT of f(t).
3. Fs(v): The FST of f(t).
4. fo(t): The odd extension of the function f over the entire

real line.

5. fe(t): The even extension of the function f over the entire

real line.

6. C(v) is defined as the integral:

(2p)�1=2

ð

v

0

t�1=2 cos t dt:

7. S(v) is defined as the integral:

(2p)�1=2

ð

v

0

t�1=2 sin t dt:

8. Ei(x) is the exponential integral function defined as

�
ð

1

�x

t�1e�tdt, jarg (x)j < p:
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9. Ei(x) is defined as (1=2)[Ei(xþ j0)þEi(x� j0)].
10. Ci(x) is the cosine integral function defined as

�
ð

1

�x

t�1 cos t dt:

11. Si(x) is the sine integral function defined as

ð

x

0

t�1 sin t dt:

12. Iy(z) is the modified Bessel function of the first kind

defined as

X

1

m¼0

(z=2)yþ2m

m!G(yþmþ 1)
, jzj < 1, jarg (x)j < p:

13. Hen(x) is the Hermite polynomial function defined as

(�1)n exp (x2=2)
dn

dxn
[exp (�x2=2)]:

14. C is the Euler constant defined as

lim
m!1

X

m

n¼1

(1=n)� lnm

" #

¼ 0:5772156649 . . .

15. ci(x) and si(x) are related to Ci(x) and Si(x) by the

equations:

ci(x)¼�Ci(x), si(x)¼ Si(x)�p=2.

16. Erf(x) is the error function defined by

(2=
p
p)

ð

x

0

exp (�t2)dt:

17. Jy(x) and Yy(x) are the Bessel functions for the first and

second kind, respectively,

Jy(x) ¼
X

1

m¼0

(�1)m
(x=2)yþ2m

m!G(yþmþ 1)

and

Yy(x)¼ cosec{yp[Jy(x) cos yp� J�y(x)]}.

18. U(t): is the Heaviside step function defined as

U(t) ¼ 0 t < 0,

¼ 1 t > 0:
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4.1 Introduction

The Hartley transform is an integral transformation that maps a

real-valued temporal or special function into a real-valued
frequency via the kernel, cas (vx) � cos (vx)þ sin (vx). This

novel symmetrical formulation of the traditional Fourier trans-

form (FT), attributed to Ralph Vinton Lyon Hartley in 1942,1

leads to a parallelism that exists between the function of the

original variable and that of its transform. Furthermore, the

Hartley transform permits a function to be decomposed

into two independent sets of sinusoidal components; these

sets are represented in terms of positive and negative frequency

components, respectively. This is in contrast to the complex

exponential, exp( jvx), used in classical Fourier analysis.

For periodic power signals, various mathematical forms of the

familiar Fourier series (FS) come to mind. For aperiodic energy

and power signals of either finite or infinite duration, the Fourier

integral can be used. In either case, signal and systems analysis

and design in the frequency domain using the Hartley transform

may be deserving of increased awareness due necessarily to the

existence of a fast algorithm that can substantially lessen the

computational burden when compared to the classical com-

plex-valued fast Fourier transform (FFT).

Throughout the remainder of this chapter, it is assumed

that the function to be transformed is real valued. In most

engineering applications of practical interest, this is indeed the

case. However, in the case where complex-valued functions are of

interest, they may be analyzed using the novel complex Hartley

transform formulation presented in Ref. [10].

4.2 Historical Background

Ralph V. L. Hartley was born in Spruce Mountain, approximately

50 miles south of Wells, Nevada, in 1888. After graduating with

the A.B. degree from the University of Utah in 1909, he studied

at Oxford for 3 years as a Rhodes Scholar where he received the

B.A. and B.Sc. degrees in 1912 and 1913, respectively. Upon

completing his education. Hartley returned from England and

began his professional career with the Western Electric Company

engineering department (New York) in September of the same

year. It was here at AT&T’s R&D unit that he became an expert on

receiving sets and was in charge of the early development of radio

receivers for the transatlantic radio telephone tests of 1915. His

famous oscillating circuit, known as the Hartley oscillator, was

invented during this work as well as a neutralizing circuit to offset

the internal coupling of triodes that tended to cause singing.
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During World War I, Hartley performed research on the

problem of binaural location of a sound source. He formulated

the accepted theory that direction was perceived by the phase

difference of sound waves caused by the longer path to one ear

then to the other. After the war, Hartley headed the research

effort on repeaters and voice and carrier transmission. During

this period, Hartley advanced Fourier analysis methods so that

AC measurement techniques could be applied to telegraph trans-

mission studies. In his effort to ensure some privacy for radio,

he also developed the frequency-inversion system known to some

as greyqui hoy.
In 1925, Hartley and his fellow research scientists and engineers

became founding members of the Bell Telephone Laboratories

when a corporate restructuring set R&D off as a separate

entity. This change affected neither Hartley’s position nor his

work. R. V. L. Hartley was well known for his ability to clarify and

arrange ideas into patterns that could be easily understood by

others. In his paper entitled ‘‘Transmission of Information’’ pre-

sented at the International Congress of Telegraphy and Telephony

in Commemoration of Volta at Lake Como, Italy, in 1927, he stated

the law that was implicity understood bymany transmission engin-

eers at that time, namely ‘‘the total amount of information which

may be transmitte over such a system is proportional to the product

of the frequency-range which it transmits by the time during which

it is available for the transmission.’’2 This contribution to informa-

tion theory was later known by his name.

In 1929, Hartley gave up leadership of his research group due

to illness. In 1939, he returned as a research consultant on

transmission problems. During World War II he acted as a

consultant on servomechanisms as applied to radar and fire

control. Hartley, a fellow of the Institute of Radio Engineers

(I.R.E.), the American Association for the Advancement of

Science, the Physical and Acoustical Societies, and a member of

the A.I.E.E., was awarded the I.R.E. Medal of Honor on January

24, 1946, ‘‘For his early work on oscillating circuits employing

triode tubes and likewise for his early recognition and clear

exposition of the fundamental relationship between the total

amount of information which may be transmitted over a trans-

mission system of limited band and the time required.’’ Hartley

was the holder of 72 patents that documented his contributions

and developments. A transmission expert, he retired from Bell

Laboratories in 1950 and died at the age of 81 on May 1, 1970.

4.3 Fundamentals of the Hartley
Transform

Perhaps one of Hartley’s most long-lasting contributions was a

more symmetrical Fourier integral originally developed for

steady-state and transient analysis of telephone transmission

system problems.1 Although this transform remained in a quies-

cent state for over 40 years, the Hartley transform was rediscov-

ered more than a decade ago by Wang3–6 and Bracewell7–9 who

authored definitive treatises on the subject.

The Hartley transform of a function f (x) can be expressed as

either

H(n) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x) cas (nx)dx (4:1a)

or

H( f ) ¼
ð

1

�1

f (x) cas (2pfx)dx (4:1b)

where the angular or radian frequency variable v is related to the

frequency variable f by v¼ 2pf and

H( f ) ¼
ffiffiffiffiffiffi

2p
p

H(2pf ) ¼
ffiffiffiffiffiffi

2p
p

H(n): (4:2)

Here the integral kernel, known as the cosine-and-sine or cas

function, is defined as

cas (nx) � cos (nx)þ sin (nx)

cas (nx) ¼
ffiffiffi

2
p

sin nx þ p

4

� �

cas (nx) ¼
ffiffiffi

2
p

cos nx � p

4

� �

(4:3)

Figure 4.1 depicts the cas function on the interval [0, 2p]. Add-

itional properties of the cas function are shown in Tables 4.1

through 4.5 below.

The inverse Hartley transform may be defined as either

f (x) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

H(n) cas (nx)dn (4:4a)

1.5
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n
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FIGURE 4.1 The cas function on the interval [0, 2p].
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or

f (x) ¼
ð

1

�1

H( f ) cas (2pfx)df : (4:4b)

The angular frequency variable v, with units of radians per

second, is equivalent to the frequency variable v in the Fourier

domain; however, it is used here to further distinguish H(v), the
Hartley transform of f (x), from the FT of f (x), F(v). From
Hartley’s original formulation expressed in Equations 4.1a and

4.4a, it is clear that the inverse transformation (synthesis equa-

tion) calls for the identical integral operation as the direct trans-

formation (analysis equation). The peculiar scaling coefficient

1=
ffiffiffiffiffiffi

2p
p

, chosen by Hartley for the direct and inverse transform-

ations, is used to satisfy the self-inverse condition depicted in

Figure 4.2. When the independent variable is angular frequency

with units of radians per second, other coefficients may be used

provided that the product of the direct and inverse transform

coefficients is 1=2p.

TABLE 4.1 Selected Trigonometric Properties of the cas Function

The cas function cas j ¼ cos jþ sin j

The cas function cas j ¼ 1
2
[(1þ j)exp(�jj)þ (1� j)exp( jj)]

The complementary

cas function

cas0 j ¼ cas (�j) ¼ cos j� sin j

The complementary

cas function

ffiffiffi

2
p

sin jþ 3p
4

� �

¼
ffiffiffi

2
p

cos jþ p
4

� �

Relation to cos cos j ¼ 1
2
[cas jþ cas (�j)]

Relation to sin sin j ¼ 1
2
[cas j� cas (�j)]

Reciprocal relation cas j ¼ csc jþsec j
sec jþcsc j

Product relation cas j ¼ cot j sin jþ tan j cos j

Function product relation cas t cas y ¼ cos (t� y)þ sin (tþ y)

Quotient relation cas j ¼ cot j sec jþtan j csc j
csc j sec j

Double angle relation cas 2j ¼ cas2 j� cas2(�j)

Indefinite integral relation
Ð

cas (t)dt ¼ �cas (�t) ¼ �cas0 t

Derivative relation d
dt cas t ¼ cas (�t) ¼ cas0 t

Angle–sum relation cas (tþ y) ¼ cos t cas yþ sin t cas0 y

Angle–difference relation cas (t� y) ¼ cos t cas0 yþ sin t cas y

Function–sum relation cas tþ cas y ¼ 2 cas 1
2
(tþ y) cos 1

2
(t� y)

Function–difference

relation

cas t� cas y ¼ 2 cas0 1
2
(tþ y) sin 1

2
(t� y)

TABLE 4.2 Signs of the cas Function

Quadrant cas

I þ
II þ and �
III �
IV þ and �

TABLE 4.3 Variations of the cas Function

Quadrant cas

I þ1 !þ 1 with a maximum at p
4

II þ1 ! �1

III �1 ! �1 with a minimum at 5p
4

IV �1 !þ 1

TABLE 4.4 Trigonometric Functions

of Some Special Angles

Angles cas

08¼ 0 0

30� ¼ p
6

1
2
(
ffiffiffi

3
p

þ 1)

45� ¼ p
4

ffiffiffi

2
p

60� ¼ p
3

1
2
(1þ

ffiffiffi

3
p

)

90� ¼ p
2

1

120� ¼ 2p
3

1
2
(�1þ

ffiffiffi

3
p

)

150� ¼ 5p
6

1
2
(1�

ffiffiffi

3
p

)

1808¼p �1

270� ¼ 3p
2 �1

f (x) f (x)H ( f )

HT HT

FIGURE 4.2 The self-inverse property associated with the Hartley

transform.

TABLE 4.5 The Trigonometric Function

of an Arbitrary Angle

y

x

r

θ

O X

Y

p(x, y)
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If one lets u be any angle in the x–y plane and p(x, y) denotes
any point on the terminal side of that angle, then denoting the

positive distance from the origin to p as r,

cas u ¼ cos uþ sin u ¼ x

r
þ y

r
¼ x þ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p :

The existence of the Hartley transform of f (x) given by

Equations 4.1a and b is equivalent to the existence of the FT of

f (x) given by

f (x) ¼ 1

2p

ð

1

�1

ð

1

�1

f (z) cos [v(x � z)]dz dv: (4:5)

Equation 4.5 can also be equivalently expressed by the following

three equations:

f (x) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

[C(v) cos (vx)þ S(v) sin (vx)]dv (4:6)

C(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x) cos (vx)dx

¼ He( f ) ¼ H( f )þ H(�f )

2
(4:7)

S(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x) sin (vx)dx

¼ Ho( f ) ¼ H( f )�H(�f )

2
(4:8)

where He( f ) and Ho( f ) are the even and odd part of the Hartley

transform H( f ), respectively Alternatively, Equation 4.5 can be

expressed as

f (x) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

F(v)ejvx dv (4:9a)

where

F(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x)e�jvx dx: (4:9b)

Although the transform pair defined by Equations 4.1a and 4.4a

are equivalent to either Equations 4.6 through 4.8 or Equations

4.9a and b, note that the variables x and v are symmetrically

embedded in the former but in neither of the latter.

To derive Equations 4.1a and 4.4a, let

H(n) ¼ C(v)þ S(v)jv¼n, (4:10)

the linear combination of the cosine and sine transforms. Then,

Equation 4.4a follows by linearity applied to Equations 4.7

and 4.8. Because C(v) and S(v) are an even and odd function

of v, respectively, then

1
ffiffiffiffiffiffi

2p
p

ð

1

�1

[C(v) sin (vx)þ S(v) cos (vx)]dv ¼ 0: (4:11)

When Equation 4.11 is added to the right-hand side of Equations

4.1a and 4.6 results. It is interesting to note that Equations 4.5

through 4.8 are similar to Equations 4.1a and 4.4a when f (x) is
real, in that C(v) and S(v) are real, as is H(v) via Equation 4.10.

This is in stark contract to the complex nature of Equation 4.9b

when f (x) is real.
The following expressions are used to further explain the

physical nature of the Hartley transform. The functions f (x)¼
f e(x)þ f o(x), x> 0, and H(v)¼H e(v)þH o(v), v> 0, can be

resolved into their even and odd components as follows:1

f e(x) ¼ 1

2
[ f (x)þ f (�x)], x > 0 (4:12)

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

He(n) cos (nx)dn

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

H(n) cos (nx)dn

(4:13)

f o(x) ¼ 1

2
[ f (x)� f (�x)], x > 0 (4:14)

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

Ho(n) sin (nx)dn

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

H(n) sin (nx)dn

(4:15)

He(n) ¼ 1

2
[H(n)þ H(�n)], n > 0 (4:16)

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f e(x) cos (nx)dx

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x) cos (nx)dx

(4:17)

Ho(n) ¼ 1

2
[H(n)�H(�n)], n > 0 (4:18)

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f o(x) sin (nx)dx

¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

f (x) sin (nx)dx:

(4:19)
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It is readily known that when the function to be transformed is

real valued, then its FT exhibits Hermitian symmetry. That is,

F(�v) ¼ F*(v) (4:20)

where the superscript* denotes complex conjugation. This

implies that the FT is over specified because a dependency exists

between transform values for positive and negative values of v,

respectively. This inherent redundancy is not present in the

Hartley transform. Observe the effect of positive and negative

values of v in Equation 4.1a. Specifically, for negative values of v,

cas (�nx) ¼
ffiffiffi

2
p

cos �nx � p

4

� �

¼
ffiffiffi

2
p

cos nx þ p

4

� �

: (4:21)

For positive values of v,

cas (nx) ¼
ffiffiffi

2
p

sin nx þ p

4

� �

: (4:22)

From Equation 4.4a it is clear that the function f (x) is composed

of an equal number of positive and negative frequency compon-

ents. In light of the two equations above, it seems that any two

components, one at v and the other �v, vary as the cosine and

sine of the same angle. Thus, whereas Equations 4.7 and 4.8

represent a resolution into sine and cosine components, each

of which is further decomposed into positive and negative fre-

quencies, the Hartley transform of Equation 4.1a amalgamates

these two resolutions into one. Equation 4.6 alludes to the fact

that although C(v) and S(v) are each defined for positive and

negative values of v, because of their respective symmetry prop-

erties, they are completely specified by their values over either

half range alone. This is due to the Hermitian symmetry

existing into the FT as shown by Equation 4.20. Note in Equation

4.1a that H(v) is a single function that contains no redundancy;

the value of H(v) for v< 0 is independent of that for v> 0.

Therefore, H(v) must be specified over the entire range of v.
Although not all time functions can be represented via the

Fourier integral, for those functions where such a representation

exists, there is a unique relationship between the function and its

FT. This is possible if and only if the integral is convergent.

Sufficient conditions (although not necessary to guarantee con-

vergence of the Fourier integral) are the well-known Dirichlet

conditions, which are stated below for convenience.

1.
Ð1
�1 jf (x)jdx < 1, that is, f (x) is absolutely integrable.

2. f (x) has a finite number of discontinuities over any finite

interval.

3. f (x) has a finite number of local maximum and local

minimum points over any finite interval.

The above sufficient conditions include most finite-energy sig-

nals of engineering interest. Unfortunately, important signals

such as periodic signals and the unit step function are not

absolutely integrable. If we allow the FT, and thus the Hartley

transform, to include the Dirac delta function, then even these

signals can be handled using methods similar to those for finite-

energy signals. This should not be surprising because the Hartley

transform is simply a symmetrical representation of the FT.

4.3.1 The Relationship between the Hartley
and the Sine and Cosine Transforms

The Hartley transform is trivially related to the cosine and sine

transforms (see also Chapter 3) by the linear combination in

Equation 4.10 and to each transform individually using the fifth

and sixth entries of Table 4.1, respectively.

4.3.2 The Relationship between the Hartley
and Fourier Transforms

The Hartley transform is closely related to the familiar FT. It can

be easily shown via Equation 4.9b that these transforms are

related in a very simple way

H(n) ¼ [5{F(v)}� ({F(v)}]v¼n (4:23)

where

5{F(v)} ¼ R(v) ¼ He(n) ¼ He(�n) (4:24)

({F(v)} ¼ I(v) ¼ �Ho(n) ¼ Ho(�n) (4:25)

and

H( f ) ¼ 1þ j1

2
F( f )þ 1� j1

2
F(�f )

H( f ) ¼ 1

2
e jp=4F( f )þ 1

2
e�jp=4F*( f ):

(4:26)

The FT expressed in terms of the Hartley transform is

F(v) ¼ H(n)þ H(�n)

2
� j

H(n)� H(�n)

2

� �

n¼v

(4:27)

F(v) ¼ [He(n)� jHo(n)]n¼v, (4:28)

or alternatively as

F( f ) ¼ 1

2
e�jp=4H( f )þ 1

2
e jp=4H(�f ): (4:29)

To summarize, the FT is the even part of the Hartley transform

plus negative j times the odd part; similarly, the Hartley trans-

form is the real part plus the negative imaginary part of the FT.

Equation 4.23 will be used most often by the engineer when

computing the Hartley transform of an arbitrary time or spacial

function when the FT is known or readily available via a table

lookup; when this is not the case, direct evaluation of Equation

4.1a or 4.1b is required
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4.3.3 The Relationship between the Hartley
and Hilbert Transforms

The Hilbert transform (see also Chapter 7), f̂ (x), of a function

f (x), is obtained by convolving f (x) with the function 1=px. That is,

f̂ (x) ¼ f (x) *
1

px
¼ 1

p

ð

1

�1

f (l)

x � l
dl

where the integral is assumed to be taken of its principal value.

Here,* denotes linear convolution (see Property 7 in Section 4.4

and Section 1.3). The FT of f̂ (x) is found by convolving 1=px with
the FT of f (x), F( f ). Applying Property 7 yields� j sgn f F( f ). The
Hartley transform of f̂ (x) is then found via Equation 4.23.

Thus, a Hilbert transform simply shifts all positive-frequency

components by �908 and all negative-frequency components

by þ908. The amplitude always remains constant throughout

this transformation.

4.3.4 The Relationship between the Hartley
and Laplace Transforms

Because the Hartley transform is the symmetrical form of the

classical FT defined in Equations 4.9a and b, it is most convenient

to review how the FT relates to the one-sided or unilateral

Laplace transform (LT). Although the unilateral LT is concerned

with time functions for t> 0, the FT includes both positive

and negative time but falters with functions have finite average

power because the concept of the Dirac delta function must

be introduced.

For most functions of practical engineering significance, the

conversion from the Laplace to the FT of f (x) is quite straight-

forward. However, more difficult situations do exist but are rarely

encountered in practical engineering problems; thus, these situ-

ations will not be discussed any further.

4.3.4.1 F(s) with Poles in the Left-Half
Plane (LHP) Only10

When the LT of a function f (x) has no poles on the jv axis and

poles only in the LHP, the FT may be computed from the LT by

simply substituting s¼ jv. These transforms include all finite-

energy signals defined for positive time only. As an example,

because

F(s) ¼ +{e�atu(t)} ¼ 1

sþ a
5(s) > �a

for all values of a, then if a is positive, the single pole of F(s)
resides in the LHP at s¼�a. Thus,

F(v) ¼ ^{e�atu(t)} ¼ F(s)js¼jv¼
1

sþ a

	

	

	

	

s¼jv

¼ 1

jvþ a
:

Lastly, to obtain the Hartley transform of f (x), apply Equation

4.23 to F(v) above, or evaluate Equation 4.4a directly. Thus,

H(n) ¼ 5
1

aþ jv


 �

� (
1

aþ jv


 �

¼ aþ v

a2 þ v2
:

4.3.4.2 F(s) with Poles in the LHP and on the jv Axis10

When the LT of a function f (x) has poles in the LHP and on the

jv axis, those terms with LHP poles are treated in the same

manner as described above in Section 4.3.4.1. Each simple pole

on the imaginary axis will result in two terms in the Fourier

domain: one is obtained by substituting s¼ jv and the other is

found by the method of residues. The latter term results in a d

function having strength of p times the residue at the pole.

Mathematically, this is expressed as

F(v) ¼ F(s)js¼jv þp
X

n

knd(v� vn): (4:30)

For example, consider the LT of the function cosv0tu(t). Via
partial fraction expansion, F(s) can be written as

F(s) ¼ s

s2 þ v2
0

¼
1
2

sþ jv0
þ

1
2

s� jv0
:

Invoking Equation 4.30 leads to the following expression in the

Fourier domain

F(v) ¼ jv

v2
0 � v2

þ p

2
[d(vþ v0)þ d(v� v0)]:

Once again, to obtain the Hartley transform of f (x), apply

Equation 4.23 to F(v).

4.3.5 The Relationship between the Hartley
and Real Fourier Transforms

The real Fourier transform (RFT) of a real signal f (x) of finite
energy can be defined as

F(V) ¼ 2

ð

1

�1

f (x) cos [2pVx þQ(V)]dx (4:31)

where

Q(V) ¼
0, if V � 0
p

2
, if V < 0

(

(4:32)

and V¼ f is the frequency variable with units of Hertz.

The inverse RFT is given by

f (x) ¼
ð

1

�1

F(V) cos [2pVx þQ(V)]dV: (4:33)
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The transformpair (4.31) and (4.33) can also bewritten forV� 0 as

Fe(V) ¼ 2

ð

1

�1

f (x) cos (2pVx)dx (4:34)

Fo(V) ¼ 2

ð

1

�1

f (x) sin (2pVx)dx (4:35)

and

f (x) ¼
ð

1

0

[Fe(V) cos (2pVx)þ Fo(V) sin (2pVx)]dV: (4:36)

Thus, F(V) equals Fe(V) for V� 0, and Fo(V) for V< 0. Note

the similarity between Equations 4.34 and 4.35 with Equations

4.7 and 4.8.

The Hartley transform of f (x) is related to the RFT by

H( f )
H(�f )

� �

¼ 1
2

1 1
1 �1

� �

Fe(V)
Fo(V)

� �

: (4:37)

4.3.6 The Relationship between the Hartley
and the Complex and Real Mellin
Transforms

The Mellin transform is useful in scale-invariant image and

speech recognition application.11 The complex Mellin transform

is given by

FM(s) ¼
ð

1

0

f (x)xs�1 dx (4:38)

where the complex variable s¼sþ jv. If one substitutes exp(�x)
for the variable x, then Equation 4.38 becomes

FM(s) ¼
ð

1

�1

f 0(x)e�xs dx (4:39)

where

f 0(x) ¼ f (e�x)

Thus, from Equation 4.39, the complex Mellin transform is the

two-sided or bilateral LT of f 0(x).
Equation 4.39 can also be written as

FM(sþ jv) ¼
ð

1

�1

f 00(x)e�jvx dx (4:40)

where

f 00(x) ¼ f (e�x)e�sx:

Thus, the complex Mellin transform is the FT of f 00(x). The
Hartley transform of f 00(x)¼ f (e�x)e�sx can then be found by

direct application of Equation 4.23.

The inverse complex Mellin transform can be written as

f (e�x) ¼ esx
ð

1

�1

FM(sþ jv)e jvx df : (4:41)

The real Mellin transform can be written as

Fe(s,v) ¼ 2

ð

1

�1

f 00(x) cos (vx)dx (4:42)

and

Fo(s,v) ¼ 2

ð

1

�1

f
00
(x) sin (vx)dx: (4:43)

By analogy to Equations 4.34 and 4.35, the Hartley transform of

f 00(x) is related to the real Mellin transform by

H( f )
H(�f )

� �

¼ 1
2

1 1
1 �1

� �

Fe(s,v)
Fo(s,v)

� �

: (4:44)

The inverse real Mellin transform is given by

f (e�x) ¼ esx
ð

1

0

[Fe(s,v) cos (vx)

þ Fo(s,v) sin (vx)]df : (4:45)

4.4 Elementary Properties of the Hartley
Transform

In this section, several Hartley transform theorems are presented.

These theorems are very useful for generating Hartley transform

pairs as well as in signal and systems analysis. In most cases,

proofs are presented; examples to illustrate their application are

left to specific example problems contained later in this chapter.

Property 1: Linearity
If f1(x) and f2(x) have the Hartley transforms H1( f ) and H2( f ),
respectively, then the sum af1(x)þbf2(x) has the Hartley trans-

form aH1( f )þbH2( f ). This property is established as follows:

ð

1

�1

[af1(x)þ bf2(x)]cas (2pfx)dx

¼ a

ð

1

�1

f1(x) cas (2pfx)dx þ b

ð

1

�1

f2(x) cas (2pfx)dx

¼ aH1( f )þ bH2( f ): (4:46)
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Property 2: Power spectrum and phase

The power spectrum for a signal f (x) can be expressed in the

Fourier domain as

P( f ) ¼ jF( f )j2 ¼ 5{F( f )}2 þ ({F( f )}2:

The power spectrum can be obtained directly from the Hartley

transform using Equations 4.16 through 4.19 as follows:

P( f ) ¼ jF( f )j2 ¼ 5{F( f )}2 þ ({F( f )}2

¼ [He( f )]2 þ [�Ho( f )]2

¼ 1

4
[H( f )þ H(�f )]2 þ 1

4
[H( f )�H(�f )]2

P( f ) ¼ [H( f )]2 þ [H(�f )]2

2
: (4:47)

The phase associated with the FT of f (x) is well known; this is
expressed as

F( f ) ¼ tan�1 ({F( f )}

5{F( f )}

� �

¼ tan�1 �Ho( f )

He( f )

� �

F( f ) ¼ tan�1 H(�f )� H( f )

H( f )þ H(�f )

� �

:

(4:48)

Note that the power spectrum P( f ) will always be even.

Property 3: Scaling=Similarity

If the Hartley transform of f (x) is H( f ), then the Hartley trans-

form of f (kx) where k is a real constant greater than zero is

determined by

ð

1

�1

f (kx) cas (2pfx)dx ¼
ð

1

�1

f (x0) cas
2pfx0

k

� 

dx0

k

¼ 1

k
H

f

k

� 

: (4:49)

For k negative, the limits of integration for the new variable x0 ¼ kx
are interchanged. Therefore, when k is negative, the last term in

Equation 4.49 becomes (1=�k)H( f=k). The amalgamation of these

two solutions can be expressed as follows: If f (x) has the Hartley

transformH( f ) then f (k=x)has theHartley transform(1=jkj)H( f=k).

Property 4: Function reversal

If f (x) and H( f ) are a Hartley transform pair, then the Hartley

transform of f (�x) is H(�f ). This is clearly seen when k¼�1 is

substituted into the last expression appearing in Property 3.

Property 5: Function shift=delay

If f (x) is shifted in time by a constant T, then by substituting

x0 ¼ x�T, the Hartley transform becomes

H( f ) ¼
ð

1

�1

f (x0) cas [2pf (x0 þ T)]dx0: (4:50)

Notice that the basis function in Equation 4.50 can be expanded

using the appropriate entry of Table 4.1 in the following

manner:

cas[2pf (x0þT)]¼cos(2pfx0)cos(2pf T)þcos(2pfx0)sin(2pf T)

þsin(2pfx0)cos(2pf T)�sin(2pfx0)sin(2pf T):

Expanding Equation 4.50 into four integrals and grouping the

first and third and second and fourth integrals, respectively, the

final result is

H( f ) ¼ cos (2pf T) H( f )þ sin (2pf T)H(�f ): (4:51)

Property 6: Modulation

If f (x) is modulated by the sinusoid cos (2pf0x), then transform-

ing to the Hartley space via Equation 4.1b yields

H( f ) ¼
ð

1

�1

f (x) cos (2pf0x) cas (2pfx)dx

H( f ) ¼
ð

1

�1

f (x) cos (2pf0x) cos (2pfx)dx

þ
ð

1

�1

f (x) cos (2pf0x) sin (2pfx)dx: (4:52)

Notice that if the function–product relations (i.e., cos a and b

and cos a sin b) are expanded and grouped accordingly, the

following relation results:

H( f ) ¼ 1

2
H( f � f0)þ

1

2
H( f þ f0): (4:53)

Property 7: Convolution (*)

If f1(x) has the Hartley transform H1( f ) and f2(x) has the Hartley

transform H2( f ), then f1(x) * f2(x) has the Hartley transform

1

2
[H1( f )H2( f )þ H1(�f )H2( f )þH1( f )H2(�f )

� H1(�f )H2(�f )]: (4:54)

To obtain this result directly, simply substitute the convolution

integral

f1(x) * f2(x) ¼
ð

1

�1

f1(l)f2(x � l)dl (4:55)
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into Equation 4.1b and utilize Property 5. The result is as follows:

H( f ) ¼
ð

1

�1

[f1(x) * f2(x)] cas (2pfx)dx

¼
ð

1

�1

ð

1

�1

f1(l)f2(x � l)dl

2

4

3

5cas (2pfx)dx

¼
ð

1

�1

f1(l)

ð

1

�1

f2(x � l) cas (2pfx)dx

2

4

3

5dl: (4:56)

Invoking the function shift=delay property (i.e., Property 5),

¼
ð

1

�1

f1(t)[cos (2pfl)H2( f )þ sin (2pf l)H2(�f )]dl:

Factoring the H2(�) term to the right and utilizing Equations 4.12

through 4.19, the result follows.

Note that Equation 4.54 simplifies for the following symmetries:

. If f1(x) and=or f2(x) is even, or if f1(x) is even and f2(x) is
odd, or if f1(x) is odd and f2(x) is even, then f1(x) * f2(x)¼
H1( f ) H2( f )

. If f1(x) is odd, then f1(x) * f2(x)¼H1( f ) H2(�f )

. If f2(x) is odd, then f1(x) * f2(x)¼H1(�f ) H2( f )

. If both functions are odd, then f1(x) * f2(x)¼H1( f ) H2( f )

In most practical situations, it is possible to shift one of the

functions entering into the convolution such that it exhibits

even or odd symmetry. When this is possible, Equation 4.54

simplifies to one real multiplication vs. the single complex
multiplication (¼four real multiplications and three real add-

itions) in the Fourier domain.

Property 8: Autocorrelation (�.)

If f1(x) has the Hartley transform H1( f ), then the autocorrelation

of f1(x) described by the equation below

f1(x)� f1(x) ¼ f1(x) * f1(�x) ¼
ð

1

�1

f1(l)f1(x þ l)dl, (4:57)

has the Hartley transform

1

2
H1( f )

2 þ H1(�f )2
� �

¼ [He( f )]2 þ [Ho( f )]2: (4:58)

Comparing Equations 4.55 through 4.57, it is evident that the

convolution and correlation integrals are closely related. Sub-

stituting the correlation integral of Equation 4.57 into the direct

Hartley transform and utilizing Property 5, the result is as

follows:

H( f ) ¼
ð

1

�1

ð

1

�1

f1(l)f1(x þ l)dl

2

4

3

5cas (2pfx)dx

¼
ð

1

�1

f1(x)

ð

1

�1

f1(x þ l) cas (2pfx)dx

2

4

3

5dl: (4:59)

Invoking the function shift=delay property with T¼�l,

¼
ð

1

�1

f1(x)[cos (2pfl)H1( f )� sin (2pf l)H1(�f )]dl:

Factoring H1(�) to the right and utilizing Equations 4.12 through

4.19, the desired result follows.

Property 9: Product

If f1(x) is multiplied by a second function f2(x), then the product

f1(x) f2(x) is

1

2
[H1( f ) *H2( f )þ H1(�f ) *H2( f )þ H1( f ) *H2(�f )

� H1(�f ) *H2(�f )]

¼ He
1( f ) *H

e
2( f )�Ho

1 ( f ) *H
o
2 ( f )þ He

1( f ) *H
o
2 ( f )

þ Ho
1 ( f ) *H

e
2( f ):

Property 10: nth derivative of a function f (n) (x)

The nth derivative of a function f (x) is

f (n)(x) ¼ cas0
np

2
(2pf )nH[(�1)nf ]: (4:60)

This property is derived by recursive application of Equation 4.23

to the FT of the function df (x)=dx and its higher-order derivatives.
A summary of the above properties appears in Table 4.6.

TABLE 4.6 A Summary of Hartley Transform Theorems

Theorem f (x) H( f )

Linearity f1(x)þ f2(x) H1( f )þH2( f )

Power

spectrum

P( f ) ¼ 1
2
{H( f )2þ

H(�f )2}
F( f ) ¼ tan�1 H(�f )�H( f )

H( f )þH(�f )

h i

Scaling=

similarity

f (kx) 1
k

	

	

	

	H f
k

� �

Reversal f (�x) H(�f )

Shift f (x�T) H( f )¼ cos (2pfT)H( f )
þ sin (2pfT)H(�f )

Modulation f (x) cos (2pf0t) H( f ) ¼ 1
2
H( f � f0)þ 1

2
H( f þ f0)

Convolution f1(x) * f2(x)
1
2
[H1( f )H2( f )þH1(�f )H2( f )
þH1( f )H2(�f )�H1(�f )H2(�f )]

Autocorrelation f1(x)� f1(x) 1
2
[H1( f )

2 þ H1(�f )2]

Product f1(x)f2(x)
1
2
[H1( f )*H2( f )þH1(�f )*H2( f )
þH1( f )*H2(�f )
�H1(�f )*H2(�f )]

nth derivative f(n)(x) f (n)(x) ¼ cas0 np
2
(2pf )nH[(�1)nf ]
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4.5 The Hartley Transform in Multiple
Dimensions

The Hartley transform also exists the dimensions. For a

function f (x, y) the two-dimensional Hartley transform and its

inverse is

H(y, n) ¼
ð

1

�1

ð

1

�1

f (x, y) cas [2p(yx þ ny)]dx dy (4:61)

f (x, y) ¼
ð

1

�1

ð

1

�1

H(y, n) cas [2p(yx þ ny)]dy dn: (4:62)

Although a three-dimensional (3D) Hartley transform exists,

it is above and beyond the scope of this treatise. That is, the

user will not typically utilize the higher dimension continuous-

time integral. Therefore, the reader is referred to Ref. [9] for

details.

4.6 Systems Analysis Using a Hartley
Series Representation of a Temporal
or Spacial Function

The Hartley series (HS) is an infinite series expansion of a

periodic signal in which the orthogonal basis functions in the

series are the cosine-and-sine function, cas (kn0t), where

n0¼ 2pf0¼ 2p=T0 is the fundamental radian frequency. This

series formulation differs from the FS in the selection of the

basis functions; namely, the cas function vs. the complex expo-

nential, fk(t)¼ exp (j2pkt=T0), k¼ 0,� 1,� 2, . . . over the inter-

val t0	 t	 t0þT0 where T0 is the fundamental period of the

periodic function. The HS, so named as a result of the analogy

drawn by Hartley to the FS,1 is capable of representing all

functions in that interval providing they satisfy certain math-

ematical conditions developed by Dirichlet (see Section 4.3).

If a system is linear and its impulse response is available, then

the response of this system to applied inputs can be found using

the principles of linearity and superposition. If the forcing func-

tion or excitation is represented as a weighted sum of individual

components, called basis functions, then it is only necessary to

calculate the response of the system to each of these components

and add them together. This method leads to the convolution

integral that was presented in Chapter 1. Before proceeding with

a mathematical description of a set of basis functions fk(t),
consider a desired forcing function being represented as a sum

of weighted (i.e., having different strengths) impulse functions.

These impulse functions produce responses that are amplitude-

scaled and time-shifted versions of the response to a unit

impulse. Summing all responses to each impulse results in the

total response of the system to the forcing function. It seems that

the impulse function may be a type of basis function, and

indeed it is.

There are a variety of basis functions that can be used for linear

systems analysis. In addition to the impulse function, d(t), one of
the most familiar basis functions is the complex exponential f

(t)¼ exp(jv0t) corresponding to the FS. Another frequently used

basis function is the complex exponential, f(t)¼ exp(st) where
s¼sþ jv is a complex number. Clearly, the Fourier basis func-

tion is a specialization of exp(st) with s¼ 0. When applications

involve linear systems analysis, sinusoidal functions are a conveni-

ent choice for basis functions. The reason for this choice is that the

sum or difference of two sinusoids of the same frequency is still a

sinusoid, and the derivative or integral of a sinusoid is still a

sinusoid. These characteristics lend themselves well to sinusoidal

steady-state analysis using the phasor concept.

Before proceeding further, it is helpful to summarize briefly

properties and characteristics of basis functions. A most desirable

quality of a set of basis functions is known as finality of coeffi-

cients. Referring to the equation below,

x(t) 

X

N

n¼�N

anfn(t), (4:63)

a function represented by a finite number of coefficients and

basis functions in the form of a linear combination can always

be more a accurately described by adding additional terms (i.e.,

increasing N) to the linear combination without affecting any of

the earlier coefficients. This desirable quality can be achieved if

the basis functions are orthogonal over the time interval of

interest (see also Section 1.5).

Definition 4.1: A set of functions {fn}, n¼ 0,�1,�2, . . . is

an orthogonal set on the interval a	 t	 b if for every i 6¼ k,

(fi,fk) ¼ 0

where (�,�) denotes the inner product. Here, the inner product of

two functions f and g is defined as

( f , g) ¼
ð

b

a

f (t)g*(t)dt:

Using the integral relationship for an inner product, the condi-

tion for orthogonality of basis functions is that for all k,

ð

tþT0

t

fn(t)fk*(t)dt ¼
lk, if k ¼ n
0, if k 6¼ n




(4:64)

where fk
*(t) is the complex conjugate of fk(t) and the lk are real

and lk 6¼ 0. If the basis functions are real, then fk
*(t) can be
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replaced by fk(t). Note that Equation 4.64 can be expressed more

compactly by the following notation:

fn(t)fk*(t)ð Þ ¼ lkdnk
lk, if k ¼ n
0, if k 6¼ n




(4:65)

where dnk is the Kroneckar delta function.

In order to calculate the coefficients an appearing in Equation

4.63, the orthogonality property of the basis functions really

demonstrates its desirable quality. If Equation 4.63 is multiplied

on both sides by fi
*(t), for any i, and then integrated over the

specified interval t to tþT, the following results:

ð

tþT0

t

fi
*(t)x(t)dt ¼

ð

tþT0

t

fi
*(t)

X

N

n¼�N

anfn(t)

" #

dt

¼
X

N

n¼�N

an

ð

tþT0

t

fi
*(t)fn(t)dt: (4:66)

From Equation 4.64 above,

ai ¼
1

li

ð

tþT0

t

fi*(t)x(t)dt (4:67)

when the basis functions are orthogonal. When the basis func-

tions are complex, as in the case of the FS, a complex-valued

coefficient ai¼ai will result. For real-valued signals of interest,

the imaginary terms will always cancel.

Now that the coefficients to Equation 4.63 have been calcu-

lated, is it possible to find a different set of coefficients that yield a

better approximation to x(t) for the same value of N? To inves-

tigate this question, it is necessary to measure the closeness of the

approximation of Equation 4.63 when N is finite and when N
approaches infinity. One measure that is frequently used is the

mean-squared error. This approach is generalized in detail for

complex basis functions by minimizing the mean-squared error

of the N-term truncation approximation to an infinite series.

The decomposition of a time function into a weighted linear

combination of basis functions is an exact representation when

the function is described by

f (t) ¼
X

1

k¼�1
akfk(t): (4:68)

However, for practical numerical calculations it is computation-

ally necessary to truncate the above sum to 2N terms. In this way,

an approximation to the signal f (t) may be calculated; this is

guaranteed by the convergence properties of the FS via the

Riemann–Lebesgue lemma. If we now denote the truncated

linear combination of 2N basis functions by

f̂ (t) ¼
X

1

k¼�N

âkfk(t), (4:69)

how can the possibly complex-valued weighting factors, âk, be
selected in order to minimize the mean-squared error between

f(t) and f̂ (t)? Let the mean-squared error be represented by e,

then

0 	 e 	 kx � x̂k2 ¼ x �
X

N

k¼1

âkfk

�

�

�

�

�

�

�

�

�

�

2

¼ x �
X

k

âkfk, x �
X

j

âjfj

 !

¼ (x, x)� x,
X

j

âjfj

 !

�
X

k

âkfk, x

 !

þ
X

k

âkfk,
X

j

âjfj

 !

¼ (x, x)�
X

j

âj*(x,fj)�
X

k

âk(fk, x)

þ
X

k

âk
X

j

âj*(fk,fj)

¼ (x, x)�
X

j

âj*aj �
X

k

âkak* þ
X

k

âk
X

j

âj*dkj:

(4:70)

Note that in the above step, the following results were used:

aj ¼ (x,fj) (4:71)

aj* ¼ (x,fj)* ¼ (fj, x) (4:72)

(fk,fj) ¼ dkj: (4:73)

Utilizing only one set of subscripts and adding

X

j

ajaj* �
X

j

jajj2

to the right-hand side of the previous equation,

¼ (x, x)�
X

j

jajj2 �
X

j

âjaj* �
X

j

âj*aj þ
X

j

âjâj* þ
X

j

ajaj*

2	 (x, x)�
X

j

jajj2 þ
X

j

jâj � ajj2 (4:74)

where

X

j

jâj � ajj2 ¼
X

j

(âj � aj)
�

âj* � aj*
�

¼
X

j

(âj � aj)(âj � aj)*:

In Equation 4.74, the first and second terms are independent of

âj and are strictly greater than or equal to zero. The ‘‘best

choice’’ of âj, j¼ 1, . . . , N is chosen such that kx �PN
j¼1 âjfjk

is as small as possible. Therefore, choose âj¼ aj. This results in
the following:

0 	 x �
X

N

j¼1

âjfj

�

�

�

�

�

�

�

�

�

�

¼ kxk2 �
X

j

jajj2:
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From the above expression, the well-known Bessel’s inequality is

formed when N in the sum over j approaches 1:

X

1

j¼1
jajj2 	 kxk2:

When Bessel’s inequality is an exact equality, the familiar

Parseval’s equality results. From the results presented there, it

can be concluded that the aj of Equation 4.71 are the best

coefficients from the standpoint of minimizing the approxima-

tion error, e, when only a finite number of terms are used. Thus,

the use of orgthogonal basis functions provide two desirable

qualities: they guarantee the finality of coefficients and also the

same coefficients minimize the mean-squared error of the func-

tion representation.

An additional property that is vitally important in the discus-

sion of the FS is the Riemann–Lebesgue Lemma. Briefly, this

lemma states that supposing the function f (t) is absolutely inte-

grable on the interval (a, b), then

ð

b

a

f (t)e jvtdt ) 0 as jvj ) 1:

Because this also implies that

ð

b

a

f (t) cos (vt)dt ) 0 as jvj ) 1:

and

ð

b

a

f (t) sin (vt)dt ) 0 as jvj ) 1,

by linearity,

ð

b

a

f (t) cas (vt)dt ) 0 as jvj ) 1:

Note that (a, b) may range from �1 to 1. The importance of

this result foreshadows the concept of a complete set of basis

functions.

A set of basis functions is termed complete in the sense of

mean convergence if the error in the approximation of f (t) can be

made arbitrarily small by making the value of N in Equation 4.63

sufficiently large.

That is,

lim
N!1

kf � SNk ¼ 0

where SN(.), N¼ 1, 2, . . . is the partial sum of piecewise continu-

ous functions defined on the open interval (a, b). Also, it can be

shown that a necessary and sufficient condition for an orthonor-

mal set {fn(t)} to be complete is that for each function x con-

sidered, Parseval’s equation

X

1

n¼1

(x,fn)
2 ¼ kxk2

must be satisfied. Note that (x,fn)¼ an.
Now, attention turns to the analog of the complex FS repre-

sented as follows:

x(t) ¼
X

1

n¼�1
ane

jnv0t (4:75)

where

an ¼
1

T0

ð

tþT0

t

x(t)e�jnv0t dt, (4:76)

which can also be written as a single-sided series

x(t) ¼ a0
2
þ
X

1

n¼1

[an cos (nv0t)þ bn sin (nv0t)] (4:77)

by nothing that

a�n* ¼ an ¼
1

2
(an � jbn)

from which

an ¼ an þ an*

bn ¼ an � an*:

The properties and use of the FS are well known and well

documented in the literature.

The set of basis functions used by the Hartley transform and

in the HS is the set {fn(t)}, n¼ 0,�1,�2, . . . where {fn(t)}¼
cas (nv0t). This is an orthogonal set over the interval t	 t0 	 tþ
T0 and is capable of representing any time function that the FS

can in that interval. This set of time functions possesses a FS or

HS if the well-known Dirichlet conditions are met as presented in

Section 4.3.

Let {fn(t)}¼ cas (nv0t)=
ffiffiffiffiffiffi

2p
p

, n¼ 0, �1, �2, . . . on the inter-

val [�p, p].

Definition 4.2: A set of functions {fn}, n¼ 0,�1,�2, . . . is

an ‘‘orthonormal set’’ on the interval a	 t	 b if

(fi,fk) ¼ dik ¼
1, if i ¼ k
0, if i 6¼ k:
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Claim

A set of functions {fn(t)}, n¼ 0,�1,�2, . . . where {fn(t)} ¼
cas (nv0t)=

ffiffiffiffiffiffi

2p
p

is an orthonormal set on the interval�p	 t	p.

Proof

(fi,fk) ¼
ð

p

�p

fi(t)fk
*(t)dt ¼

ð

p

�p

fi(t)fk(t)dt

¼
ð

p

�p

1
ffiffiffiffiffiffi

2p
p cas (iv0t):

1
ffiffiffiffiffiffi

2p
p cas (kv0t)dt

¼ 1

2p

ð

p

�p

cas (iv0t) cas (kv0t)dt:

If each function of the integrand in the above equation is

expanded to cos (�)þ sin (�) and then multiplied together, four

terms result: cos (�) cos (�), sin (�) sin (�), and two cross products,

cos (�) sin (�) and sin (�) cos (�). The integral of the two cross

products are zero by the familiar orthogonality property for the

cosine and sine functions, respectively. The other two integrands,

when evaluated on the interval from �p to p, equal 0 for i 6¼ k
and p when i¼ k. Therefore,

(fi,fk) ¼
1, if i ¼ k
0, if i 6¼ k:




Thus, the basis functions {fn} are an orthonormal system on the

interval [�p,p].

Let the periodic signal x(t) with period T0,

x(t þ T0) ¼ x(t) 8t

be written as an orthogonal series expansion (i.e., a linear com-

bination possessing an orthogonal set of basis functions)

x(t) ¼
X

1

i¼�1
gifi(t) (4:78)

where fi(t) are orthogonal basis functions. It has been shown

previously that

fi(t) ¼ cas (iv0t)

is an orthogonal basis function over the interval [t, tþT0]

ð

tþT0

t

cas (iv0t) cas (kv0t)dt ¼
T0, if i ¼ k
0, if i 6¼ k




where v0¼ 2p=T0. Therefore the gi in Equation 4.78 are readily

obtained using the orthogonality property,

x(t) cas (kv0t) ¼
X

1

i¼�1
gi cas (iv0t) cas (kv0t)

1

T0

ð

tþT0

t

x(t) cas (kv0t)dt ¼ 0þ 0þ 0, . . . , þ gk þ 0þ 0þ � � �

This gives what will be termed the HS,

x(t) ¼
X

1

i¼�1
gi cas (iv0t)

v0 ¼
2p

T0

gi ¼
1

T0

ð

tþT0

t

x(t) cas (iv0t)dt: (4:79)

It is a simple matter to show that

gk ¼
5{ak}� ({ak} k 6¼ 0
ak k ¼ 0:




(4:80)

Specifically, from Equation 4.76 let

5{ak} ¼
1

T0

ð

tþT0

t

x(t) cos (kv0t)dt

({ak} ¼
�1

T0

ð

tþT0

t

x(t) sin (kv0t)dt

then

5{ak}� ({ak} ¼
1

T0

ð

tþT0

t

x(t) cas (kv0t)dt:

If v0¼ v0, then the result follows. The FS coefficients are also

related to the HS coefficients by

ai ¼ %{gi}� j2{gi} (4:81)

where %{�} and 2{�} are the even and odd parts of a function,

%{ui} ¼
1

2
(ui þ u�i) (4:82)

2{ui} ¼
1

2
(ui � u�i) (4:83)

As an example, the two-sided FS for the square wave

x(t) ¼
1

i

2
� 1

4
< t <

i

2
þ 1

4
i even

�1
i

2
� 1

4
< t <

i

2
þ 1

4
i odd

8

>

<

>

:
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is

x(t) ¼ � � � þ 2

5p
e�j5v0t � 2

3p
e�j3v0t þ 2

p
e�jv0t

þ 0þ 2

p
e jv0t � 2

3p
e j3v0t þ 2

5p
e j5v0t � � � �

and the HS is

x(t) ¼ � � � þ 2

5p
cas (�5n0t)�

2

3p
cas (�3n0t)þ

2

p
cas (�n0t)

þ 0þ 2

p
cas (n0t)�

2

3p
cas (3n0t)þ

2

5p
cas (5n0t)� � � �

where n0þv0þ 2p radians per second.

From Equations 4.81 through 4.83, all of the familiar properties

of the FS can be rewritten in terms of the HS. Table 4.7 summar-

izes some of these properties. A listing of the corresponding FS

property is shown in the table for comparison. For purposes of this

table, both the FS and HS of f (t) and the function f (t) itself are
assumed to exist. For example, the table is read as follows: if a

function f (t) possesses an HS with coefficients gi,�1< i<1,

then the HS of the indefinite integral

ð

h(t)dt

has coefficients Gi where

Gi ¼
g�i

iv0
,

The entry for convolution in Table 4.7 deserves special mention.

If a periodic signal f (t) is applied to a system with impulse

response h(t), the FS of the output (i.e., f (t) * h(t)) has coefficient
aiH(iv0) where H(v) is the FT of h(t); similarly, the HS coeffi-

cients are Gi,

Gi ¼ 1

2
[giH(in0)þ giH(�in0)þ g�iH(in0)� g�iH(�in0)]:

(4:84)

Note that for the linear system response problem, the FS

methodology requires one complex multiplication for each coef-

ficient and the HS methodology requires four real multiplica-

tions and three additions. However, Equation 4.84 can also be

written as

Gi ¼ giH
e(in0)þ g�iH

o(in0) (4:85)

where He(iv0) and Ho(iv0) are the even and odd parts of H(iv0),
respectively. Therefore, analogous use of the HS will require only

two real multiplications and one addition in general, and for

certain conditions of symmetry, the number of real multiplica-

tions reduces to one.

The HS methodology may be utilized wherever the FS meth-

odology is applicable. The HS entails no complex quantities or

calculations. Under certain types of symmetry, the HS simplifies

(as does the FS). Table 4.8 summarizes these symmetries. The

main properties of the HS are

. HS coefficients gk are always real

. For even functions x(t)¼ x(�t), g�k¼gk

. For odd functions x(t)¼�x(�t), g�k¼�gk

. The HS exists when the FS exists

Previously, it was mentioned that for some conditions of sym-

metry, the linear system response problem using the HS simpli-

fies. The simplification refers to one real multiplication for the

calculation of each HS coefficient of the output. Such is the case

when the input function f (t) is an even function; in this case,

gi¼g�i in Equations 4.84 and 4.85 become

Gi ¼ giH(in0) (4:86)

where H(iv0) is the sampled Hartley transform of the system

impulse response, H(v), and Gi are the HS coefficients of the

system output. Similarly, for odd f (t),

Gi ¼ giH(�in0): (4:87)

The HS analysis technique closely parallels that of FS analysis;

periodic excitation functions are resolved into a series where the

system response to each term in the series is subsequently evalu-

ated. The total response is the superposition of the individual

responses. This method is applicable to a wide range of systems

engineering problems, the only requirements begin linearity

of the system and existence of the HS (FS). Practical limitations

often impose constraints in case of high bandwidth signals.

TABLE 4.7 Selected Properties of the Hartley Series

Function

Fourier Series

Coefficients Hartley Series Coefficients

Integral
Ð

f (t)dt �jai

iv0

g�i

in0

Derivative df
dt jiv0ai �iv0g�i

Convolution

of f and h
ai H(iv0)

1
2
[giH(in0)þ giH(�in0)
þg�iH(in0)� g�iH(�in0)]

Time reversal f (�t) ai* g�i

TABLE 4.8 Simplifications in the Hartley and Fourier

Series for Symmetries in f (t)

Symmetry

Fourier Series

Coefficients

Hartley Series

Coefficients

Even

f (t)¼ f (�t) T{ai} ¼ 0 gi¼g�i

ai¼a�i

Odd

f (t)¼�f (�t) R{ai} ¼ 0 gi¼�gi

ai¼�a�i

Half-wave odd ai¼ 0 gi¼ 0

f (t) ¼ �f t þ T
2

� �

For even i For even i

None a�i ¼ a*i No simplification of gi
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For such signals, the system models are often difficult to obtain

accurately for frequencies far from the intended frequency band

of operation. A particularly applicable area is that of industrial

electric power distribution system analysis. This is the case

because bandwidth limits of the power distribution system com-

ponents naturally occur and thus limit the frequency range

that must be accommodated in the system component models.

Also, in power distribution applications, the periodicity of most

currents and voltages and the behavior of these physical quan-

tities virtually always ensure the existence of the HS (FS).

In industrial distribution circuits, although switched and pulsed

load currents commonly occur, these currents are nonetheless

periodic; the fundamental frequency of these phenomena is the

‘‘power frequency’’ (i.e., 50 or 60 Hz). In three-phase power

quality assessment, often times unbalanced conditions make a

full phase-by-phase analysis necessary. In such cases, the faster,

all-real calculations offered by the HS is particularly attractive.

4.6.1 Transfer Function Methodology
and the Hartley Series

The familiar transfer function methodology used with periodic

signals x(t) that possess and FS is well known. If a signal x(t) is
applied as an input to a linear time-invariant (LTI) system whose

frequency response matrix is H(v), then the output y(t),

y(t) ¼ x(t) * h(t)

h(t) ¼ ^�1{H(v)}

may be calculated by superimposing the individual responses to

the Fourier components ai exp( jiv0t),

x(t) ¼
X

i

aie
jiv0t

where
P

i refers to the summation over (�1, 1). Thus the FS

for y(t),

y(t) ¼
X

i

Aie
jiv0t

is readily found, noting

Ai ¼ aiH(iv0): (4:88)

This is a simple consequence of LTI systems and the impulse-

shifting property that is used with the FT of exp( jiv0t).
An analogous result occurs when periodic x(t) is expressed as

an HS. Consider x(t) applied to an LTI system. Let x(t) be written
as an HS

x(t) ¼
X

i

gi cas (in0t)

and let the system possess an impulse response h(t) whose HT is

H(v). Then, the output y(t) has an HS

y(t) ¼
X

i

Gi cas (in0t)

where the HS coefficients are readily calculated from either

Equation 4.84 or 4.85.

4.6.2 The Hartley Series Applied to Electric
Power Quality Assessment

Methodologies for electric power quality analysis and assessment

have taken on renewed importance in recent years. This is due to

two main factors: (1) the appearance of high-power switching

devices and switched loads that can cause power quality prob-

lems at the distribution level and (2) the need for power quality at

all power levels to avoid interference, excessive losses, and mis-

operation of critical loads. There are numerous fundamental

issues to be resolved relating to quantifying power quality prob-

lems, instrumentation, and monitoring (especially in the envir-

onment of digital computer loads). The methodology used for the

calculation of bus voltage and line current waveforms is also of

salient importance.

Electric power quality assessment often involves the calcula-

tion of a bus voltage or line current. The HS methodology

described above is applicable because:

1. Limited bandwidth of most electric distribution systems

makes truncation of the HS practical at a reasonably low

frequency (e.g., v ¼ �19v0 or�7163 rad=s in a 60 Hz

system,�5969 rad=s in a 50 Hz system)

2. Only real calculations are needed; thus microprocessor

applications using elementary codes are possible

3. Waveform symmetries inherent in the operation of electric

power systems makes further computational burden

reduction possible

Of course, these advantages also apply to any electric circuit, but

at least in (1) and (2), electric power system analysis is a particu-

larly appropriate application.

A brief example of the HS methodology is now presented.

Consider a six-pulse rectifier that is injecting an ideal current

waveform i(t) into the system of Figure 4.9. This current is shown

in Figure 4.3.

1

0.5

0

0 0.0083

i(
t)

 p
.u

.

0.0166 0.0249

t (s)

0.0332

–0.5

–1

FIGURE 4.3 An ideal six-pulse rectifier load current, i(t).
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Working only with phase A (and using the time invariance

property of the system to deduce the waveforms in the other two

phases), and using T0¼ 1 as a normalized period, v0 is 2p rad=s.

Let the impedance characteristic of the network be that shown in

Figure 4.4.

The one-sided FS of i(t) is

i(t) ¼
X

k¼6n�1
n¼integer

bk sin (2pfkt)

b6n�1 ¼
3

(6n� 1)p

where the sum in the equation above is carried over characteristic

harmonics of order 6n� 1, n¼ 0, 1, 2, . . . , and the HS of i(t) is

i(t) ¼ � � � � 3

7p
cas (�14pt)� 3

5p
cas (�10pt)

� 3

p
cas (�2pt)þ 3

p
cas (2pt)þ 3

5p
cas (10pt)

þ 3

7p
cas (14pt)þ � � �

Note that i(t) is odd (actually, odd half-wave symmetric) and

has HS coefficients which behave like g�k¼�gk. An important

consequence of the fact that i(t) is odd is that the convolution

property in Equation 4.84 collapses to one real multiplication,

Gi ¼ giZ18(�in0):

In this example, the HS of i(t) is calculated and used with

samples of the transfer impedance Z18(v) to find the HS of

v1(t). Here Z18(v) is the HT of z18(t), the impulse response

relating the current input at bus 8 to the voltage output at bus

1. The transfer impedance, Z18(v), is displayed in Figure 4.4

along with its Fourier analog Z18(v). The resulting nonsinusoi-

dal bus voltage, v1(t), produced by the rectifier load (i.e., only

the component due to the rectifier; the 60 Hz component is

excluded) is displayed in Figure 4.5. The superposition of this

nonsinusoidal voltage on the 60 Hz substation but voltage is

depicted in Figure 4.6. Of course, only the phase A to neutral

voltage (i.e., van) is calculated and the other phase voltage are

deduced by shifting van by �1=3 s.
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FIGURE 4.4 Transfer impedance between busses 1 and 8 in the Hartley and Fourier domains.
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FIGURE 4.5 Substation nonsinusoidal bus voltage, v1(t), phase A to

ground due to the current injection at bus 8.
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4.7 Application of the Hartley Transform
via the Fast Hartley Transform

The discretized versions of the continuous Fourier and Hartley

transform integrals may be put in an amenable form for digital

computation. Consider the discrete Fourier transform (DFT) and

inverse DFT (IDFT) of a periodic function of period NT seconds,

F(kVv) ¼
X

N�1

n¼0

f (nT)e�jkVvnT (4:89)

f (nT) ¼ 1

N

X

N�1

k¼0

F(kVv)e
jkVvnT (4:90)

where

T is the sampling time resolution of the function f (t)
N is the number of points in the data sequence

Vv is the frequency resolution in radians per second

Vv ¼ 2p

NT
:

Similarly, the discrete Hartley transform (DHT) is defined as

H(kVn) ¼
1
ffiffiffiffi

N
p

X

N�1

n¼0

h(nT) cas (kVnnT): (4:91)

The inverse DHT (IDHT) is

h(nT) ¼ 1
ffiffiffiffi

N
p

X

N�1

n¼0

H(kVn) cas (kVnnT) (4:92)

where Vv¼Vv is in radians per second. Note once again the

ambiguity of the summation coefficients shown in these expres-

sions. When working in radians per second, the product of the

coefficients in the discrete case is 1=N. The selection of 1=
ffiffiffiffi

N
p

is

made in the DHT and IDHT above so that the forward and

inverse transforms satisfy the self-inverse property. As expected,

the real-valued DHT is related to the DFT in a very simple way

H(kVn) ¼ 5{F(kVv)}� ({F(kVv)}: (4:93)

It should be noted that the continuous-time Hartley integral,

although necessary for theoretical development of the DHT, is

typically not utilized in solving engineering problems. In fact, it is

the existence of a fast Hartley transform (FHT) algorithm that

has spurred the research and use of this transform for a large

number of applications. In particular, the FHT is used in single-

and multiple-dimension filtering applications where the compu-

tational time is of great importance. To this end, the convolution

property is of particular interest, and as such, will be discussed in

some detail below.

The success of the DFT in the solution of engineering prob-

lems is largely due to the highly efficient algorithms that exist for

evaluating both the DFT and IDFT. These are collectively known

as the FFT algorithms. The FFT is an exact evaluation of the

DFT. Numerous formulations exist when implementing the FFT;

the most popular being either decimation in time or frequency

and split-radix algorithms. At the crux of all FFT algorithms is

the exploitation of the symmetry of exp{�j[(2pkn=N)]} in order

to render the computational burden lower. The existence of these

algorithms suggests that an analog exists for rapid calculation of

the DHT. This is indeed the case.

At first glance, it seems strange that the N real values of

the DHT can contain the same amount of information as the N
complex values of the DFT, a total of 2N real numbers. Due to

the Hermitian property of the DFT (i.e., F(�kVv)¼ F*(kVv)),

the DFT is redundant by a factor of two. The N=2 real numbers

needed to specify the cosine transform and the N=2 needed

for the sine transform combine to form a total of N DHT

coefficients containing no degeneracy due to symmetry. This

implies that the DFT, and therefore the FFT, is overspecified

for performing linear filtering of real data. It should be noted

that other efficient Fourier-based algorithms exist exclusively for

real and real-symmetric data. Other advantages of the DHT over

the DFT are

. The DHT avoids complex arithmetic

. The DHT requires only half the memory storage for real

data arrays vs. complex data arrays
. For a sequence of length N, the DHT performs O(N log2 N)

real operations vs. the DFT O(N log2 N) complex oper-

ations
. The DHT performs fewer operations that may lead to

fewer truncation and rounding errors from computer finite

word length
. The DHT is its own inverse (i.e., it has a self-inverse)

For reasons of computational advantage either occurring through

waveform symmetry or simply the use of real quantities, the

Hartley transform is recommended as a serious alternative to

the FT for frequency-domain analysis. The salient disadvantage

of the Hartley approach is that Fourier amplitude and phase

information is not readily interpreted. This is not a difficulty in

many applications because this information is typically used as

an intermediate stage toward a final goal. Where complex num-

bers are needed, they can be easily constructed as a final step by

Equation 4.27 or 4.28.
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FIGURE 4.6 Superposition of the 60Hz substation bus voltage and v1(t).
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Due to the cited advantages above, it is clear that the Hartley

transform has much to offer when engineering applications war-

rant digital filtering of real-valued signals. In particular, the FHT

should be used when either the computation time is to be

minimized; for example, in real-time signal processing. The

minimization of computing time includes many other issues,

such as memory allocation, real vs. complex variables, computing

platforms, and so forth. However, when one is interested in

computing the Hartley transform or the convolution or correl-

ation integral, the Hartley transform is the method of choice. In

general, most engineering applications based on the FFT can be

reformulated in terms of the all-real FHT in order to realize a

computational advantage. This is due primarily to the vast

amounts of research within the past decade on FHT algorithm

development as evidenced in Ref. [11]. A voluminous number of

applications exist for the Hartley transform,11 some of which are

listed below;

. Fast convolution, correlation, interpolation, and extrapo-

lation, finite-impulse response and multidimensional filter

design
. Acoustics and speech processing, power spectrum, and

cepstrum analysis
. Numerical evaluation of the LT integral and Hilbert trans-

formation
. Multidimensional optics and imaging compression appli-

cations; image reconstruction, decorrelation, coding,

restoration, identification, lensless microwave imaging,

pattern=image matching, feature extraction, and rough

surface classification
. Power engineering applications, which include relaying,

analysis of electrical transients, harmonic propagation in

electric power systems, simulation of LTI electrical sys-

tems, and electromagnetic wave propagation in multicon-

ductor transmission systems
. Biomedical applications, which include edge enhancement

of digital radiographs, pattern recognition for real-time

arrhythmias, autocorrelation to improve the 3D plot of

transcutaneous human electrogastrograms, functional

angiographic images, electroencephalograms classification,

and MRI applications
. Probability and number theory, which includes computing

Wigner–Ville and pseudo-Wigner distributions, for

example
* Artificial neural network applications, which include

adaptive digital filtering, tracking problems, velocity

estimation, and motion analysis
* Adaptive antenna arrays
* Geophysical applications
* Chemical applications
* Astronomical applications

Because many of the above applications involve the fast, efficient

evaluation of the convolution integral, additional details are

provided below.

4.7.1 Convolution in the Time
and Transform Domains

Transforms are a well-used mathematical tool in systems analy-

sis. In engineering applications, the one-sided LT,

F(s) ¼
ð

1

0

f (t)e�stdt, (4:94)

s¼aþ jv and the two-sided FT,

F(v) ¼
ð

1

�1

f (t)e�jvtdt, (4:95)

are most widely used. Both the LT and FT have been widely used

because of their special convolution property, which renders the

convolution operation to a simple complex product in the trans-

form domain.

Consider the two functions h(t) and x(t) and their transforms

H(v) and X(v). Let H(v) and X(v) be multiplied to form the

new function Y(v) such that

Y(v) ¼ H(v)X(v) (4:96)

and consider the inverse transform, y(t). Here, y(t) can be repre-

sented by the time-domain convolution integral

y(t) ¼
ð

1

�1

h(j)x(t � j)dj (4:97)

or

y(t) ¼ h(t) * x(t): (4:98)

The above convolution integral can be represented in a form

convenient for digital implementation as follows:

y(n) ¼ T
X

N�1

j¼0

h( j)x(n� j)

y(n) ¼ T
X

N�1

j¼0

x( j)h(n� j)

(4:99)

that is, as a sum of lagged products. The time required to

compute y(n) from either form in Equation 4.99 is proportional

to approximately N2. If one computes the transforms of x and h,
performs the complex multiplication of Equation 4.96, and then

computes the inverse transform of Y(v), one requires a time

proportional of N log2 N if the FFT is utilized. The approximate

ratio of computing the convolution in Equation 4.96 to that of

Equation 4.99 is given by
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N log2 N

N2
¼ log2 N

N
¼ r

N
(4:100)

where N¼ 2r. For example, if N¼ 210, the FFT requires less than

1% of the normal computing time. Timing studies have shown

that for N greater then about 32, the FFT method is at least an

order of magnitude faster than the lagged products approach of

Equation 4.99.

The convolution property in the transform domain is of great

interest. The familiar convolution property of the DFT has an

analog in the Hartley space that suggests potential use of the

DHT for the numerical solution of electric circuits problems.

Many electric circuits problems involve the notion of convolu-

tion. A typical format of such problems is that an impedance is

known, and a current associated with that impedance results in a

voltage. In terms of the one-sided LT.

V(s) ¼ Z(s)I(s): (4:101)

The impedance Zmay be an open-circuit driving point or a transfer

impedance. Other problems are frequently encountered in electric

circuit analysis, andmany of these are of the same form as Equation

4.101 with Z(s) replaced by a transfer function, frequency response
matrix or similar parameter. This is the case, for example, in the

presence of power electronic loads and sources characterized by

nonsinusoidal waveforms. ‘‘Quasiperiodic’’ transient inputs ener-

gizing a relaxed electric power system (i.e., zero initial conditions) at

time 0�, produce responses throughout the system that may be

superimposed upon the sinusoidal steady-state solution. In the time

domain, the impedance Z(v) is, in fact, an impulse response, z(t).
In this context, z(t) is the voltage response to an input that is a unit

current impulse. The responses to these quasiperiodic inputs are

found analytically via the convolution integral

n(t) ¼
ð

1

�1

z(t � j)i(j)dj ¼ z(t) * i(t) (4:102)

and for causal systems

n(t) ¼
ð

t

�1

z(t � j)i(j)dj (4:103)

where z(�) is the impulse response satisfying z(t� j)¼ 0 for j> t,
that is, z(t)¼ 0 for t< 0. In Equations 4.98 and 4.102, (*) denotes

conventional or linear convolution. The limits of integration may

be changed to [0, t] if i(t) is a causal signal, that is, if i(t)¼ 0 for

t< 0. Convolution in the time domain becomes a simple complex

multiplication in the s-domain; this property makes the LT

particularly attractive for systems analysis.

The familiar FT also possesses a similar convolution property

V(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

n(t)e�jvtdt (4:104)

I(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

i(t)e�jvtdt (4:105)

Z(v) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

z(t)e�jvtdt (4:106)

^{n(t)} ¼ ^{z(t)*i(t)} ¼ V(v) ¼ Z(v)I(v): (4:107)

Note that in Equations 4.104 through 4.107 above, the factor

1=
ffiffiffiffiffiffi

2p
p

is often omitted in engineering work; when this factor is

included in the transform, the inverse transform is

n(t) ¼ 1
ffiffiffiffiffiffi

2p
p

ð

1

�1

V(v)e jvtdv: (4:108)

Analogously, a salient property of the Hartley transform for this

application is that convolution is rendered to a simple sum of real

products under the transform,

*{n(t)} ¼ *{z(t) * i(t)} ¼ V(v): (4:109)

Specifically,

V(n) ¼ 1

2
[Z(n)I(n)þ Z(�n)I(n)þ Z(n)I(�n)

� Z(�n)I(�n)] (4:110)

¼ Z(n)
[I(n)þ I(�n)]

2
þ Z(�n)

[I(n)� I(�n)]

2
(4:111)

¼ Z(n)Ie(n)þ Z(�n)Io(n) (4:112)

¼ 1

2
[Va(n)� Va(�n)þ Vb(n)þ Vb(�n)] (4:113)

where Va(v)¼Z(v) I(v) and Vb(v)¼Z(v) I(�v). Thus, it is pos-
sible to solve a certain class of electric circuit problems using the

Hartley transform.

As with the DFT=FFT, the DHT=FHT can be readily used for

performing convolution. The DHT assumes periodicity of the

function being transformed; that isH(kVv)¼H[(Nþ k)Vv]. There-

fore, H(�kVv) for �N	 k	�1, is equivalent to H[(N� k)Vv].

When convolution is represented by a*, linear or time-domain

convolution is implied. In the frequency domain, as a result of the

characteristic moduloN operations inherent in the DFT or DHT, a

different form of convolution results in the time domain. Circular

or cyclic convolution, denoted by (�), in the time domain is the

result of multiplication of two functions in the frequency domain.

Let n represent the nth point of some finite-duration sequence, then

cyclic convolution in the time domain is expressed as

f1(n)� f2(n) ¼
X

N�1

t¼0

f1 mod
N

(t)

� 

f2 mod
N

(n� t)

� 

(4:114)
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where t and n� t are depicted modulo N. The equivalent form
of Equations 4.110 through 4.113 in the Hartley domain is

expressed as

V(kVn) ¼ 1

2
[Z(kVn)I(kVn)þ Z((N � k)Vn)I(kVn)

þ Z(kVn)I((N � k)Vn)

� Z((N � k)Vn)I((N � k)kVn)] (4:115)

¼ Z(kVn)I
e(kVn)þ Z((N � k)Vn)I

o(kVn) (4:116)

¼ 1

2
[Va(kVv)� Va((N � k)Vv)þ Vb(kVn)

þ Vb((N � k)Vn)] (4:117)

where Va(kVv) ¼ Z(kVv)I(kVv) and Vb(kVv) ¼ Z(kVv)

I((N � k)Vv).

There are times when cyclic convolution is desired and other

times when linear convolution is needed. Because both the DFT

and DHT perform cyclic convolution, it would be unfortunate if

methods for obtaining linear convolution by cyclic convolution

were nonexistent. Fortunately, this is not the case. Linear convo-

lution can be extracted from cyclic convolution, but at some

expense. For finite-duration sequences f1(n) and f2(n) of length
M and L, respectively, their convolution is also finite in duration.

In fact, the duration is Mþ L� 1. Therefore, a DFT or DHT of

size N�Mþ L� 1 is required to represent the output sequence

in the frequency domain without overlap. This implies that the

N-point circular convolution of f1(n) and f2(n) must be equiva-

lent to the linear convolution of f1(n) to f2(n). By increasing the

length of both sequences to N points (i.e., by appending zeros),

and then circularly convolving the resulting sequences, the end

result is as if the two sequences were linearly convolved. Clearly

with zero padding, the DHT can be used to perform linear

filtering. It should be clear that aliasing results in the time

domain if N<Mþ L� 1.

When N zero values are appended to a time sequence of N data

samples, the 2N-point DHT reduces to that of theN-point DHT at

the even index values. The odd values of the 2N sequence repre-

sent the interpolated DHT values between the original N-point
DHT values. Themore zeros padded to the originalN-point DHT,

the more interpolation takes place on the sequence. In the limit,

infinite zero padding may be viewed as taking the discrete-time

Hartley transform of an N-point windowed data sequence. The

prevalent misconception that zero padding improves the reso-

lution of the sequence or additional information is obtained is

well known. Zero padding does not increase the resolution of the

transformmade from a given finite sequence, but simply provides

an interpolated transform with a smoother appearance. The

advantage of zero padding is that signal components with center

frequencies that lie between the N frequency bins of an unpadded

DHT can now be discerned. Thus, the accuracy of estimating the

frequency of spectral peaks is also enhanced with zero padding.

When comparing the number of real operations performed

by Equation 4.96 (with v replaced by kVv) and Equation 4.116

or 4.117, the DHT always offers a computational advantage of

two as compared to the DFT method; in many (if not most)

applications, currents in electrical engineering calculations

exhibit symmetry, which results in a computational advantage

of four favoring the Hartley method. In the case where z(t) or i(t)
in Equation 4.109 contains even symmetry, the four-term prod-

uct of Equation 4.115 reduces to Z(kVv)I(kVv) or Va(kVv). If z(t)
or i(t) is odd, then Equation 4.115 degenerates to Z(kVv)I(N� k)
Vv or Vb(kVv) and Z((N� k)Vv)I(kVv), respectively. That is,

only one, vs. the FFT’s four real multiplications, is needed.

The above symmetry conditions are more often the rule than

the exception. Other symmetries exist as discussed by Bracewell

for the Hartley transform.9

As a brief example of the method, consider the periodic load

current shown in Figure 4.7 having the description

f (t) ¼
X

1

m¼�1
fm(t) (4:118)

where

f0(t) ¼ f (t)[u(t)� u(t � T)] ¼ ee�t[u(t)� u(t � 1)] (4:119)

fm(t) ¼ f0(t �mT) (4:120)

and T¼ 1. The transfer function, H(s), for the RC network in

Figure 4.7 is clearly 1=(sþ 1). (Note the system is initially

relaxed—zero initial conditions.) If one denotes ym(t) as the

zero-state response due to fm(t), then from the time shift property

f(t)

f0(t)

0 t

t0

T = 1

T = 1

f(t) 1 Ω 1F y(t)

+

–

FIGURE 4.7 Injected load current into a simple RC network.
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of a LTI system, ym(t)¼ y0(t�mT). From the principle of super-

position, y(t)¼Sym(t). Thus, the crux of the problem is to find

y0(t), the response for 0	 t<1 due to the single pulse, f0(t), in
Figure 4.7.

The convolution of f0(t) and the impulse response, h(t), by the
convolution integral is straightforward.

In fact, the response, y0(t), depicted in Figure 4.8, is readily

calculated as

y0(t) ¼ tee�t , if 0 	 t 	 1
ee�t , if t > 1




(4:121)

or alternatively by

y0(t) ¼ +�1{Y0(s)} ¼ +�1 e� e�s

(sþ 1)2


 �

(4:122)

where Y0(s)¼ F0(s)H(s) and F0(s) ¼ +{ f0(t)}. The calculation of

the steady-state system response to the input f (t) in Figure 4.7 is

more interesting. It is well known that for periodic y(t),

y(t) ¼ +�1 Y0(s)

1� e�sT


 �

¼ +�1{Y(s)} (4:123)

when Y0(s) represents the LT of any one period of y(t) (i.e., y0(t)).
In general, the partial fraction expansion of Y(s) is a nontrivial

computation. How then does one solve for the response y(t)?
Utilizing the assumed periodicity of the DHT (FHT), one can

perform conventional convolution via circular convolution if

provisions are made for aliasing (i.e., zero padding). This method

of solution can be summarized by (assuming one of the convolv-

ing functions is even)

y(t) ¼ f (t)� h(t) ¼ DHT{DHT{f (t)}� DHT{h(t)}} (4:124)

where y(t) is shown in Figure 4.8. An FHT software program to

compute the DHT efficiently can be found in the Appendix of

this section. Additional details concerning circular convolution

of aperiodic inputs are discussed below.

4.7.2 An Illustrative Example

In this section, an illustrative example is presented from sub-

transmission and distribution engineering to illustrate the calcu-

lation of nonsinusoidal waveform propagation in an electric

power system. Figure 4.9 displays the distribution network

model and the injected nonlinear load current into the network.

The electrical load at bus 8 causes a nonsinusoidal current to
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FIGURE 4.8 Output response (top) y0(t) to the input pulse f0(t) and (bottom) y(t) to the input f (t) ¼
P9

m¼0 fm(t) ¼ f0(t �m).
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propagate throughout the system and impact other loads in an

unknown fashion.

The fast decay in this current results in high frequency signals

in the network. An important consideration in this method is the

selection of the sampling interval T and its effect on the max-

imum frequency component, Vv,max¼p=T, represented in the

simulation. Because power systems are essentially band-limited

due necessarily to system components designed to operate at or

near the power frequency (e.g., distribution transformers), the

nonlinear load current containing frequency components

above Vv,max become negligible. That is, no matter how close

the current approaches an impulse (e.g., a lightning strike), the

significant energy components above Vv,max are multiplied in the

transform domain by the system impedance frequency compon-

ents that are asymptotically approaching zero. This can be seen

by observing the Fourier magnitude, jI8(kVv)j and jZ18(kVv)j, in
Figures 4.10 and 4.11 for selected values of N (and thus T). The
Hartley transform of i(t), I8(kVv), is shown in Figure 4.12.

Load currents that decay rapidly are becoming less unusual

with the advent of high-power semiconductor switches.

Referring to the system in Figure 4.9, the transformer at the

load bus is modeled as a conventional T equivalent. A lumped

capacitance is used to model electrostatic coupling between the

primary and secondary windings, and two lumped capacitances
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FIGURE 4.9 Load current injected at bus 8 of an example 8-bus distribution system.
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are used to model interwinding capacitance. Bus 1 is the substa-

tion bus and the negative-sequence impedance equivalent tie to

the remainder of the network is shown as a shunt R-L series

branch. The circuits shown between busses are all three-phase

balanced, fixed series R-L branches, and frequency independent

(i.e., R¼R(v)). The latter assumption need not be made because

frequency dependence may be included if required. The import-

ance of frequency dependence should not be underestimated,

particularly for cases in which significant energy components

of the injection current spectrum lie above and beyond the

17th harmonic of 60 Hz, or approximately 1 kHz. Distributed

parameter models can be readily represented as lumped param-

eters placed at the terminals of long lines. These refinements

are quite important in actual applications, but they are omitted

from this abbreviated example. If the injection current at bus 8

were ‘‘in phase’’ with the line to neutral voltage at that bus,

the nonlinear device at bus 8 would be a source. Similarly,

other phase values would result in different generation or load

levels.

Each bus voltage was calculated using the Hartley transform

simulation algorithm. These results were verified using an Euler

predictor–trapezoidal corrector integration algorithm and time

domain convolution implemented by Equation 4.99. In order to

choose an adequate time step, T, for calculating the ‘‘theoretical

solution’’ by the predictor–corrector method, it was necessary to

capture all system modes. The eigenvalues calculated by the

International Mathematics and Statistical Library (IMSL) sub-

routine EVLRG are shown in Table 4.9. Routine EVLRG com-

putes the eigenvalues of a real matrix by first balancing the

matrix; second, orthogonal similarity transformations are used

to reduce this balanced matrix to a real upper Hessenberg mat-

rix; third, the shifted QR algorithm is used to compute the

eigenvalues of the Hessenberg matrix. This method is generally

accepted as being most reliable.

In this example, the transfer impedance between the substa-

tion bus (bus 1) and bus 8 is of interest. Figures 4.13 and 4.14

display the DFT of z18(t), Z18(kVv). Of course, two graphs are

required to illustrate this transfer impedance because the DFT is
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FIGURE 4.10 Fourier magnitude of the injected bus current, i(t), and
system impulse response, z18(t) for N¼ 256.
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FIGURE 4.11 Fourier magnitude of the injected bus current, i(t), and
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FIGURE 4.12 Hartley transform of the injected bus current, i(t).

TABLE 4.9 Calculated Eigenvalues

for the Example 8-Bus Power System

li R{li} T{li}

l1 �757,718 0

l2.3 �13,548 �52,901

l4 �11,988 0

l5.6 �8,976 �19,575

l7.8 �8,690 �50,131

l9.10 �5,033 �38,050

l11.12 �4,245 �43,600

l13 �1,523 0

l14.15 �214 �4,877

l16 �40 0

l17 �3 0
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a complex transformation. Figure 4.15 shows the DHT of z18(t),
Z18(kVv). One figure illustrates this real transform.

The resulting bus voltages due to the current injection at bus 8

are depicted in Figures 4.16 and 4.17.

4.7.3 Solution Method for Transient
or Aperiodic Excitations

Convolution of two finite-duration waveforms is straightforward.

One simply samples the two functions every T seconds and

assumes that both sampled functions are periodic with period N.
If the period is chosen according to that discussed earlier, there is

no overlap in the resulting convolution. As long as N is chosen

correctly, discrete convolution results in a periodic function where

each period approximates the continuous convolution results of

Equation 4.102.

The algorithm implemented by Equation 4.124 assumed that

the input is time limited and the system impulse response is band

limited. That is, the periodic input is truncated to an integer

multiple of its fundamental frequency and the system impulse

response is of infinite duration. For stable systems, the system

impulse response z(t) must decrease to zero or to negligible

values for large jtj. In reality, the system impulse response cannot

be both time limited and band limited; therefore, one band limits

in the frequency domain such that negligible signal energy exists

for t�T0.
The convolution of an aperiodic excitation with the system

impulse response can be regarded as a periodic convolution of

functions having an equal period. Through suitable modifica-

tions to the method presented in Equation 4.124, one can use

circular convolution to compute an aperiodic convolution when

each function is zero everywhere outside some single time win-

dow of interest.
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FIGURE 4.13 Fourier magnitude of the transfer impedance, Z18(kVv).
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Let the functions x(t) and h(t) be convolved where

both functions are finite in length. Let the larger sequence, x(t),
contain L discrete points and the smaller contain M discrete

points. Then the resulting convolution of these functions can

be obtained by circularly or cyclically convolving suitable zero-

augmented functions. That is,

Xpad(n) ¼
x(nþ n0), if 1 	 n 	 L
0, if Lþ 1 	 n 	 N
xpad(nþ nN) otherwise

8

<

:

(4:125)

where

n0 is the first point in the function window of interest

N is the smallest power of two greater than or equal toMþ L� 1

Similarly for h(t), simply replace x with h and L by M in

Equation 4.125. If one allows these zero-augmented functions to

be periodic of period N, then the intervals of padded zeros

disallow the two functions to be overlapped even though the

convolution is a circular one. These periodic functions are

formed by the superposition of the nonperiodic function shifted

by all multiples of the fundamental period, T0 where T0¼NT.
That is,

fp(t) ¼
X

1

k¼�1
f (t þ kT0): (4:126)

Thus, while the result is a periodic function (i.e., due to the

assumed periodicity of the DHT=FHT), each period is an exact

replica of the desired aperiodic convolution.

The relationship between the DHT and HT for finite-duration

waveforms is different when the input i(t) is time limited.

Because i(t) is time limited, its Hartley transform cannot be

band limited; therefore, sampling this function leads to aliasing

in the frequency domain. It is necessary to choose the sampling

interval T to be sufficiently small such that aliasing is reduced to

an insignificant level.

If the number of samples of the time-limited waveform is

chosen as N, then it is not necessary to window in the time

domain. For this set of waveforms, the only error introduced is

aliasing. Errors introduced by aliasing can be reduced by choos-

ing T sufficiently small. This allows the DHT sample values to

agree reasonably well with samples of the HT.

4.8 Table of Hartley Transforms

Tables 4.10 through 4.12 contain the Hartley transforms of

commonly encountered signals in engineering applications.

When scanning the table entries, the Hartley transform entries

seem to have more sophisticated expressions; this is usually

the case. More exotic Hartley transforms may be generated in

one of three ways. First, one can apply the elementary properties

provided in Section 4.4 to the entries of Tables 4.10 and 4.11;

second, one can alternatively apply Equation 4.23 to the FT

entries of more comprehensive table listings such as those

found in Refs. [12–14]; or third, use a DHT or FHT algorithm

to evaluate numerically the Hartley transform of a discrete-

time signal generated using a high-level computing language

(e.g., FOTRAN, C, Cþþ, etc.). A sample FHT algorithm,

coded in the C programming language, is included in the

Appendix.

Note that in the eighth entry to Table 4.11, an is a complex

number representing the FS expansion of the arbitrary periodic

function. The value an is also equal to 1=T FT(n=T) where FT( f )
is the FT of F( f ) over a single period evaluated at n=T. Also, in
that same entry, note that gn ¼ 5{an}� ({an}.
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TABLE 4.10 Hartley Transforms of Energy Signals

Description f (t) F( f ) H( f )

Rectangular

pulse
u t þ T

2

� �

� u t � T
2

� �

T sin pTf
pTf ¼ T sinc Tf

Because f (t) is even, H( f )¼ F( f )

Exponential be�atu(t) b
jvþa

b(aþ 2p f )
a2 þ (2p f )2

Triangular 1� 2 jtj
T , jtj < T

2
T
2
sinc2 Tf

2

� �

¼ 1�cos p f T
T p2 f 2 Because f (t) is even, H( f )¼ F( f )

Gaussian e�a2t2
ffiffiffi

p
p

a e�(p2 f 2=a2) Because f (t) is even, H( f )¼ F( f )

Double exp e�ajtj 2a
a2 þ 4p2 f 2 Because f (t) is even, H( f )¼ F( f )

Damped sine e�at sin (v0t)u(t)
v0

(aþ j2pf )2 þv2
0

v0 a2 þv2
0�4p2 f 2 þ 4pfað Þ

a2 þv2
0�4p2 f 2ð Þ2 þ (4pfa)2

Damped

cosine

e�at cos (v0t)u(t)
aþ j2pf

(aþ j2pf )2 þv2
0

(a�2pf ) a2 þv2
0�4p2 f 2ð Þþ (4pfa)(aþ 2pf )

a2 þv2
0�4p2 f 2ð Þ2 þ (4pfa)2

One-sided exp 1
b�a (e

�at � e�bt)u(t) 1
(aþ j2pf )(bþ j2pf )

ab�2p f (aþbþ 2pf )
[ab� (2pf )2]2 þ [2pf (aþb)]2

Cosine pulse cosv0t u t þ T
2

� �

� u t � T
2

� �� �

T
2

sin pT( f�f0)
pT( f�f0)

þ sin pT( fþf0)
pT( fþf0)

h i

Because f (t) is
even, H( f )¼ F( f )

TABLE 4.11 Hartley Transforms of Power Signals

Description f (t) F( f ) H( f )

Impulse Kd (t) K K

Constant K Kd ( f ) Kd ( f )

Unit step u(t) 1
2
d( f )þ 1

j2pf
1
2
d( f )þ 1

2pf

Signum function sgnt ¼ t
jtj

1
jpf

1
pf

Cosine wave cos v0t
1
2
[d( f � f0)þ d( f þ f0)] Because f (t) is even, H( f )¼ F( f )

Sine wave sin v0t
�j
2
[d( f � f0)� d( f þ f0)] 1

2
[d( f � f0)� d( f þ f0)]

Impulse train
P1

�1 d(t � nT) 1
T

P1
�1 d f � n

T

� �

Because f (t) is even, H( f )¼ F( f )

Periodic wave
P1

�1 anejn2pf0t
P1

�1 and f � n
T

� �
P1

�1 gnd f � n
T

� �

Complex sinusoid Ae jv0t Ad ( f� f0) H( f )¼ F( f )

Unit ramp tu(t) j
4p d

0( f )� 1
4p2 f 2

�1
4p d

0( f )� 1
4p2 f 2

TABLE 4.12 Hartley Transforms

of Various Engineering Signals

f (t)¼ d(t)

F(s)¼ 1

F(n)¼ 1

f (t)¼ d (t� a)

F(s)¼ e�as

F(v)¼ cos avþ sin av

f (t)¼ u(t)

F(s) ¼ 1
s

F(n) ¼ 1
n þ pd(n)

f (t)¼ u(t� a)

F(s) ¼ e�as

s

F(n) ¼ 1
n ( cos an� sin an)þ pd(n)

f (t)¼ e�atu(t), a> 0

F(s) ¼ 1
sþ a

F(n) ¼ aþ n
a2 þ n2

f (t)¼ cos at

F(n)¼p[d(n� a)þ d(nþ a)]

f (t)¼ sin at

F(n)¼p[d(n� a)� d(nþ a)]

f (t)¼ cos at u(t)

F(s) ¼ s
s2 þ a2

F(n) ¼ n
n2 � a2 þ p

2
[d(n� a)þ d(nþ a)]

f (t)¼ sin at u(t)

F(s) ¼ a
s2 þ a2

F(n) ¼ �a
n2 � a2 þ p

2
[d(n� a)� d(nþ a)]

f (t)¼ ejat

F(n) ¼ p[d(n� a)þ d(nþ a)]þ jp[d(n� a)� d(nþ a)]

f (t) ¼Pþ1
n¼�1 d(t � nT)

F(n) ¼ n0
Pþ1

n¼�1 d(n� n0), v0 ¼ 2p
T

f (t)¼ e�ajtj, a> 0

F(n) ¼ 2a
a2 þ n2

f (t) ¼ e�t2=2s2

F(n) ¼ s
ffiffiffiffiffiffi

2p
p

e�s2n2=2

f (t)¼ 1, 0	 t	 a
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TABLE 4.12 (continued) Hartley Transforms

of Various Engineering Signals

F(s) ¼ 1�e�as

s

F(n) ¼ 1
n (sin an� cos anþ 1)

f (t)¼ 1, �a	 t	 a

F(s) ¼ sinh as

s

F(n) ¼ 2 sin an

n
f (t)¼ t, 0	 t	 a

F(s) ¼ 1�(1þas)e�as

s2

F(n) ¼ 1
n2 [(1� an) cos anþ (1þ an) sin an� 1]

f (t) ¼ t, 0 	 t 	 a
2a� t, a 	 t 	 2a




F(s) ¼ (1�e�as)2

s2

F(n) ¼ 1
n2 [2 cos anþ sin 2an� cos 2an� 1]

f (t) ¼ a� t, 0 	 t 	 a
aþ t, �a 	 t 	 0




F(s) ¼ 2a(cosh as�1)
s2

F(n) ¼ 4a sin2 (an=2)
n2

f (t) ¼ sin at
t

F(n)¼p, � a	 n	 a

f (t) ¼ t, 0 	 t 	 a
a, t > a




F(s) ¼ 1�e�as

s2

F(n) ¼ 1
n2 (cos an� 1)þ pad(n)

f (t)¼ e�at cos bt u(t), a> 0

F(s) ¼ sþ a
(sþa)2 þ b2

F(n) ¼ a(a2 þ b2)þ (a2�b2)nþ an2 þ n3

(a2 þ b2 þ n2)2 � 4b2n2

f (t) ¼ e�at sin bt u(t), a > 0

F(s) ¼ b
(sþa)2 þ b2

F(n) ¼ b(a2 þ b2)þ 2abn� bn2

(a2 þ b2 þ n2)2 � 4b2n2

f (t) ¼ e�zvnt

vn

ffiffiffiffiffiffiffiffi

1�z2
p sinvn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

tu(t), zvn > 0

F(s) ¼ 1
s2 þ 2zvnsþv2

n

F(n) ¼ v2
n � n2 þ 2zvnn

(v2
n � n2)2 þ (2zvnn)

2

f (t) ¼ e�atcoshbt u(t), a > jbj
F(s) ¼ sþ a

(sþa)2 � b2

F(n) ¼ a(a2 � b2)þ (a2 þ b2)nþ an2 þ n3

(a2 þ b2 þ n2)2 � 4a2b2

f (t) ¼ e�atsinhbt u(t), a > jbj
F(s) ¼ b

(sþ a)2 � b2

F(n) ¼ b(a2 � b2�2an� n2)
(a2 þ b2 þ n2)2 � 4a2b2

f (t) ¼ a sin bt� b sin at
a2 � b2 u(t)

F(s) ¼ ab
(s2 þ a2)(s2 þ b2)

F(n) ¼ ab
(a2 � n2)(b2 � n2) þ pb

2(b2 � a2) [d(n� a)� d(nþ a)]

þ pa
2(a2 � b2) [d(n� b)� d(nþ b)]

f (t) ¼ cos bt� cos at
a2 � b2 u(t)

F(s) ¼ s
(s2 þ a2)(s2 þ b2)

F(n) ¼ �n
(a2 � n2)(b2 � n2) þ p

2(b2 � a2) [d(n� a)þ d(nþ a)]

þ p
2(a2 � b2) [d(n� b)þ d(nþ b)]

f (t) ¼ a sin at� b sin bt
a2 � b2 u(t)

F(s) ¼ s2

(s2 þ a2)(s2 þ b2)

F(n) ¼ �n2

(a2 � n2)(b2 � n2) þ pa
2(b2 � a2) [d(nþ a)� d(n� a)]

þ pb
2(a2 � b2) [d(nþ b) � d(n� b)]

f (t) ¼ a2 cos at� b2 cos bt
a2 � b2 u(t)

F(s) ¼ s3

(s2 þ a2)(s2 þ b2)

F(n) ¼ n3

(a2 � n2)(b2 � n2) � pa2

2(b2 � a2) [d(nþ a) þ d(n� a)]

� pb2

2(a2 � b2) [d(nþ b) þ d(n� b)]

f (t) ¼ tn� 1

(n� 1)!
e�at u(t), a > 0, n positive integer

F(s) ¼ 1
(sþ a)n

F(n) ¼ P

n

k¼0

ak
n
k

� 

an� knk,

ak ¼ 1, k ¼ 4m or k ¼ 4mþ 1
� 1, k ¼ 4mþ 2 or k ¼ 4mþ 3




m integer

f (t) ¼ 1
a (1 � e�at)u(t), a > 0

F(s) ¼ 1
s(sþ a)

F(n) ¼ a� n
n(a2 þ n2) þ p

a d(n)

f (t) ¼ 1
ab 1� b

b� a e
�at þ a

b� a e
�bt

� �

u(t), a, b > 0

F(s) ¼ 1
s(sþ a)(sþ b)

F(n) ¼ ab� (aþ b)n� n2

n(a2 þ n2)(b2 þ n2) þ p
ab d(n)

f (t) ¼ 1
ab a� b(a� a)

b� a e�at þ a(a� b)
b� a e�bt

� �

u(t), a, b > 0

F(s) ¼ sþa
s(sþ a)(sþ b)

F(n) ¼ aabþ [ab�a(aþ b)]nþ (aþ b�a)n2 � n3

n(a2 þ n2)(b2 þ n2) þ ap
ab d(n)

f (t) ¼ 1
b� a (e

�at � e�bt)u(t), a, b > 0

F(s) ¼ 1
(sþ a)(sþ b)

F(n) ¼ abþ (aþ b)n� n2

(a2 þ n2)(b2 þ n2)

f (t) ¼ 1
b� a [(a� a)e�at � (a� b)e�bt]u(t), a, b > 0

F(s) ¼ sþa
(sþ a)(sþ b)

F(n) ¼ aab� [ab�a(aþ b)]nþ (aþ b�a)n2 þ n3

(a2 þ n2)(b2 þ n2)

f (t) ¼ 1
b� a (ae

�at � be�bt)u(t), a, b > 0

F(s) ¼ s
(sþ a)(sþ b)

F(n) ¼ n3 þ (aþ b)n2 � abn
(a2 þ n2)(b2 þ n2)

f (t) ¼ e�at

(b� a)(c� a) þ e�bt

(a� b)(c� b) þ e�ct

(a� c)(b� c)

h i

u(t), a, b, c > 0

F(s) ¼ 1
(sþ a)(sþ b)(sþ c)

F(n) ¼ abcþ (abþ acþ bc)n� (aþ bþ c)n2 � n3

(a2 þ n2)(b2 þ n2)(c2 þ n2)

f (t) ¼ (a� a)e�at

(b� a)(c� a) þ
(a� b)e�bt

(a� b)(c� b) þ
(a� c)e�ct

(a� c)(b� c)

h i

u(t), a, b, c > 0

F(s) ¼ sþa
(sþ a)(sþ b)(sþ c)

F(n) ¼ aPþ (aR�P)nþ (R�aQ)n2 þ (Q�a)n3 � n4

(a2 þ n2)(b2 þ n2)(c2 þ n2)

P¼ abc, Q¼ aþ bþ c, R¼ abþ acþ bc

f (t) ¼
ffiffiffiffiffiffiffiffiffiffiffi

a2 þ a2
p

a sin (at þ f)u(t), f ¼ tan�1 a
a

F(s) ¼ sþa
s2 þ a2

F(n) ¼ a� n
a2 � n2 þ p

2
1 þ a

a

� �

d(n� a)þ 1 � a
a

� �

d(nþ a)
� �

f (t) ¼ sin (at þ u)u(t)

(continued)
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Appendix: A Sample FHT Program

= * Program

FHT . C**************************************************

*******************

=*

=* This FHT algorithm utilizes an efficient

permutation algorithm

=* developed by David M.W. Evans. Additional

details may be found

=* in: IEEE Transaction on Acoustics, Speech,

and Signal Processing,

=* vol.ASSP-35, n. 8, pp. 1120–1125, August 1987.

=*

=* This FHT algorithm, authored by Lakshmikantha

S. Prabhu, is

=* optimized for the SPARC RISC platform.

Additional details may

=* be found in his M.S.E.E. thesis referenced

below.

=*

=* L.S. Prabhu, ‘‘A Complexity-Based Timing

Analysis of Fast

=* Real Transform Algorithms,’’ Master’s

Thesis, University of

=* Arkansas,Fayetteville,AR,72701-1201,1993.

=*********************************************************

*****************

TABLE 4.12 (continued) Hartley Transforms

of Various Engineering Signals

F(s) ¼ s sin uþ a cos u
s2 þ a2

F(n) ¼ a cos u� n sin u
a2 � n2 þ p

2
[(sin uþ cos u)d(n� a)

þ (sin u� cos u)d(nþ a)]

f (t) ¼ 1
a2 (1� cos at)u(t)

F(s) ¼ 1
s(s2 þ a2)

F(n) ¼ 1
n(a2 � n2) þ p

a2 d(n)� p
2a2 [d(n� a)þ d(nþ a)]

f (t) ¼ a
a2 �

ffiffiffiffiffiffiffiffiffiffiffi

a2 þ a2
p

a2 cos (at þ f)
h i

u(t), f ¼ tan�1 a
a

F(s) ¼ sþa
s(s2 þ a2)

F(n) ¼ nþa
n(a2 � n2) þ ap

a2 d(n)� p
2a2 [(a� a)d(n� a)þ (aþ a)d(nþ a)]

f (t) ¼ e�at

a2 þ b2 þ 1
b
ffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p sin (bt � f)

h i

u(t), f ¼ tan�1 b
a , a > 0

F(s) ¼ 1
(sþ a)(s2 þ b2)

F(n) ¼ nþa
(a2 þ n2)(b2 � n2) þ p

2b(b2 � a2) [(a� b)d(n� a)� (a þ b)d(nþ a)]

f (t) ¼ 1
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a � a)2 þ b2
p

e�at sin (bt þ f)u(t),
f ¼ tan�1 b

a� 1
, a > 0

F(s) ¼ sþa
(sþ a)2 þ b2

F(n) ¼ a(a2 þ b2)� (a2 þ b2 � 2aa)nþ (2a�a)n2 þ n3

(a2 þ b2 þ n2)2 � 4b2n2

f (t) ¼ 1
a2 þ b2 þ e�at

b
ffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p sin (bt � f)

h i

u(t), f ¼ tan�1 � b
a

� �

, a > 0

F(s) ¼ 1
s[(sþ a)2 þ b2]

F(n) ¼ a2 þ b2 � 2an� n2

n(a2 þ b2 þ n2)2 � 4b2n2
þ p

a2 þ b2 d(n)

f (t) ¼ 1
v2
n
� e�zvnt

vn

ffiffiffiffiffiffiffiffiffi

1� z2
p sin vn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2t
p

þ f
� �

� �

u(t),

f ¼ cos�1 z, a > 0

F(s) ¼ 1
s s2 þ 2zvnsþv2

nð Þ

F(n) ¼ v2
n � n2 � 2zvnn

n v2
n � n2ð Þ2 þ (2zvnn)

2
� �þ p

v2
n
d(n)

f (t) ¼ e�ct

(c� a)2 þ b2
þ e�at

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c� a)2 þ b2
p sin (bt � f)

� �

u(t),

f ¼ tan�1 b
c� a , a, c > 0

F(s) ¼ 1
(sþ c)[(sþ a)2 þ b2]

F(n) ¼ c(a2 þ b2)þ (a2 þ b2 þ 2ac)n� (2aþ c)n2 � n3

[(a2 þ b2 þ n2)2 � 4b2n2](c2 þ n2)

f (t) ¼ a
a2 þ b2 þ 1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� a)2 þ b2

a2 þ b2

q

e�at sin (bt þ f)

� �

u(t),

f ¼ tan�1 b
a� a � tan�1 � b

a

� �

, a > 0

F(s) ¼ sþa
s[(sþ a)2 þ b2]

F(n) ¼ a(a2 þ b2)þ (a2 þ b2 � 2aa)nþ (2a�a)n2 � n3

n[(a2 þ b2 þ n2)2 � 4b2n2]
þ ap

a2 þ b2 d(n)

f (t) ¼ 1
c(a2 þ b2) � e�ct

c[(c� a)2 þ b2]
þ e�at sin (bt�f)

b
ffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c� a)2 þ b2
p

� �

u(t), a, c > 0

f ¼ tan�1 b
c� a þ tan�1 � b

a

� �

F(s) ¼ 1
s(sþ c)[(sþ a)2 þ b2]

F(n) ¼ c(a2 þ b2)� (a2 þ b2 þ 2ac)n� (2aþ c)n2 þ n3

n[(a2 þ b2 þ n2)2 � 4b2n2](c2 þ n2)
þ p

c(a2 þ b2) d(n)

f (t) ¼ a
c(a2 þ b2) þ

(c�a)e�ct

c[(c� a)2 þ b2]

h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� a)2 þ b2
p

b
ffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c� a)2 þ b2
p e�at sin (bt � f)u(t), a, c > 0

f ¼ tan�1 b
a� a � tan�1 b

c� a � tan�1 � b
a

� �

F(s) ¼ sþa
s(sþ c)[(sþ a)2 þ b2]

F(n) ¼ aBcþ (cA�aB)nþ (Aþ 2ac�ac)n2 � (2aþ c�a)n3 � n4

n[(a2 þ b2 þ n2)2 � 4b2n2](c2 þ n2)
þ ap

c(a2 þ b2) d(n)

A¼ a2þ b2� 2aa, B¼ a2þ b2

f (t) ¼ 1
a2 (1� e�at � ate�at)u(t), a > 0

F(s) ¼ 1
s(sþ a)2

F(n) ¼ a2 � 2an� n2

n(a2 þ n2) þ p
a2 d(n)

f (t) ¼ 1
a2 [a� ae�at þ a(a� a)te�at]u(t), a > 0

F(s) ¼ sþa
s(sþ a)2

F(n) ¼ aa2 þ (a2 � 2aa)nþ (2a�a)n2 � n3

n(a2 þ n2)2
þ ap

a2 d(n)

f (t) ¼ a0

ab þ a2 �a1aþa0

a(a� b) e�at � b2 �a1bþa0

b(a� b) e�bt
h i

u(t), a, b > 0

F(s) ¼ s2 þa1sþa0

s(sþ a)(sþ b)

F(n) ¼ a0abþ [a1ab�a0(aþ b)]nþ [a1(aþ b)� ab�a0]n
2 þ (aþ b�a1)n

3 þ n4]
n[(a2 þ b2 þ n2)2 � 4b2n2]

þ a0p
ab d(n)

f (t) ¼ a0

c2 þ 1
bc [(a

2 � b2 � a1aþ a0)
2

�

þ b2(a1 � 2a)2]1=2e�at sin (bt þ f)
i

u(t), a > 0

f ¼ tan�1 b(a1 � 2a)
a2 � b2 �a1aþa0

� tan�1 � b
a

� �

F(s) ¼ s2 þa1sþa0

s[(sþ a)2 þ b2]

F(n) ¼ a1Aþa1(A� 2a)nþ (2a1a�a1 �A)n2 þ (2a� 1)n3 þ n4

n[(a2 þ b2 þ n2)2 � 4b2n2]
þ a0p

A d(n),

A ¼ a2 þ b2
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=* This program assumes a maximum array length

of 2^M¼N where *=

=* M¼9 and N¼512. *=

=* See Line 52 if the array length is increased.

*=

# include <stdio.h>

# include <math.h>

# define M 3

# define N 8

float* myFht ( );

main ( )

{

=* Read the integer values 1,..., N into the

vector X[N].*=

int i;

float X[N] ;

for (i¼0; i<N; iþþ)
X[i]¼iþ1;

for (i¼0; i<N; iþþ)
printf (‘‘%fn;n’’, X[i]);

myFht (X, N, M);

printf (‘‘nn’’);
for (i¼0; i<N; iþþ)
printf (‘‘%d: %fnn’’, i, X[i]=N);

=* It is assumed that the user divides by the

integer N.*=

}

float*

myFht (x, n, m)

float* x;

int n, m;

{

int i, j, k, kk, 1, 10, 11, 12, 13, 14, 15, m1, n1,

n2, NN, s;

int diff¼0, diff2, gamma, gamma2¼2, n2 �2,
n2 �4, n �2, n �4, n �8, n �16;
int itemp, ntemp, phi, theta �by �2;
float ee, temp1, temp2, xtemp1, xtemp2;

float h �sec �b, x0, x1, x2, x3, x4, x5, xtemp;

double cc1, cc2, ss1, ss2;

double sine[257];

=*********************************************************

****************=

=* Digit reverse counter. *=

=*********************************************************

*****************=

int powers �of �2[16], seed[256];

int firstj, log2 �n, log2 �seed �size;
int group �no, nn, offset;

log2 �n¼m >> 1;

nn¼2� (log2 �n�1);

if ( (m % 2) ¼ ¼1 )

log2 �n¼log2 �nþ1;

seed[0]¼0; seed[1]¼1;

for (log2 �seed �size¼2; log2 �seed �size <¼
log2 �n; log2 �seed �sizeþþ)

{

for ( i¼0; i <2 � (log2 �seed �size – 2);

iþþ)

{

seed[i]¼2 * seed[i];

for (k¼1; k<2; kþþ)

seed[ iþk * (2 � (log2 �seed �size – 1)>>

1) ]¼seed[i];

}

}

for (offset¼1, offset<nn; offsetþþ)

{

{firstj¼nn * seed[offset];

i¼offset; j¼firstj;

xtemp¼x[i];

x[i]¼x[j];

x[j]¼xtemp;

for ( group �no¼1; group �no<seed[offset];

group noþþ)

{

i¼iþnn; j¼firstjþseed[group.no];

xtemp¼x[i];

x[i]¼x[j];

x[j]¼xtemp;

}

}

j¼0;

n1¼n�1;

n �16¼n >> 4;

n �8¼n >> 3;

n �4¼n >> 2;

n �2¼n >> 1;

=*********************************************************

******************=

=* Start the transform computation with 2-point

butterflies.*=

=*********************************************************

*****************=

for (i¼0; i<n; i þ¼ 2)

{

s¼iþ1;

xtemp¼x[i];

x[i] þ¼ x[s];

x[s]¼xtemp�x[s];

}

=*********************************************************

******************=

=* Now, the 4-point butterflies.*=

=*********************************************************

******************=

for ( i¼0; i<N; i þ¼ 4)

{
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xtemp¼x[i];

x[i] þ¼ x[iþ2];
x[iþ2]¼xtemp�x[iþ2];

xtemp¼x[iþ1];

x[iþ1] þ¼ x[iþ3];

x[iþ3]¼xtemp�x[iþ3];

}

=*********************************************************

******************=

=* Sine table initialization.*=

=*********************************************************

*****************=

NN¼n �4;
sine[0]¼0;

sine[n �16]¼0.382683432;

sine[n �8]¼0.707106781;

sine[3*n �16]¼0.923879533;

sine[n �4]¼1.000000000;

h �sec �b¼0.509795579;

diff¼n �16;
theta �by �2¼n �4 >> 3;

j¼0;

while (theta �by2 >¼ 1)

{

for ( i¼0; i <¼ n �4; i þ¼ diff)

{

sine[jþtheta �by �2]¼h �sec �b * (sine[j]

þsine[jþdiff] );

j¼jþdiff;

}

j¼0;

diff¼diff >> 1;

theta �by �2¼theta �by �2 >> 1;

h �sec �b¼1 = sqrt(2þ1=h �sec �b);
=*********************************************************

******************=

=* Other butterflies.*=

=*********************************************************

******************=

for ( i¼3; i <¼ m; iþþ )

{

diff¼1; gamma¼0;

ntemp¼0; phi¼2 � (m-i) >> 1;

ss1¼sine[phi];

cc1¼sine[n �4�phi];

n2¼2 � (i-1);

n2 �2¼n2 >>1;

n2 �4¼n2 >> 2;

gamma2¼n2 �4;
diff2¼gamma2þgamma2�1;

item¼n2 �4;
k¼0;

=*********************************************************

******************=

=* Initial section of stages 3, 4,...for which

sines & cosines are*=

=* not required.*=

=*********************************************************

*****************=

for (k¼0; k<(2 � (m-i)>>1); kþþ)

{

10¼gamma;

11¼10þn2 �2;
13¼gamma2;

14¼gamma2þn2 �2;
15¼11þitemp;

x0¼x[10];

x1¼x[11];

x3¼x[13];

x5¼x[15];

x10¼x0þx1;

x[11]¼x0�x1;

x[13]¼x3þx5;

x[14]¼x3�x5;

gamma¼gammaþn2;

gamma2¼gamma2þn2;

}

gamma¼diff;

gamma2¼diff2;

=*********************************************************

*****************=

=* Next sections of stages 3, 4,...*=

=*********************************************************

******************=

for ( j¼1; j<2 � (i-3); jþþ )

{

for ( k¼0; k<(2 � (m-i) >> 1); kþþ)

{

10¼gamma;

11¼10þn2 �2;
13¼gamma2;

14¼13þn2 �2;
x0¼x[10];

x1¼x[11];

x3¼x[13];

x4¼x[14];

x[10]¼x0þx1 * cc1þx4 * ss1;

x[11]¼x0�x1 * cc1�x4 * ss1;

x[13]¼x3�x4 * cc1þx1 * ss1;

x[14]¼x3þx4 * cc1�x1 * ss1;

gamma¼gammaþn2;

gamma2¼gamma2þn2;

}

itemp¼0;

phi¼ phiþ( 2 � (m-i) >> 1 );
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ntemp¼(phi<n �4) ? 0 : n �4;
ss1¼sine[phi�ntemp];

cc1¼sine[n �4�phiþntemp];

diffþþ;diff2-;

gamma¼diff;

gamma2¼diff2;

}

}

}
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5.1 Introduction*

The Laplace transform has been introduced into the mathemat-

ical literature by a variety of procedures. Among these are: (a) in

its relation to the Heaviside operational calculus, (b) as an exten-

sion of the Fourier integral, (c) by the selection of a particular

form for the kernel in the general Integral transform, (d) by a

direct definition of the Laplace transform, and (e) as a math-

ematical procedure that involves multiplying the function f(t) by
e�st dt and integrating over the limits 0 to1. We will adopt this

latter procedure.

Not all functions f(t), where t is any variable, are Laplace

transformable. For a function f(t) to be Laplace transformable,

it must satisfy the Dirichlet conditions—a set of sufficient but not

necessary conditions. These are

1. f(t) must be piecewise continuous; that is, it must be single

valued but can have a finite number of finite isolated

discontinuities for t> 0.

2. f(t) must be of exponential order; that is, f(t) must remain

less than Me�aot as t approaches1, where M is a positive

constant and ao is a real positive number.

For example, such functions as: tan bt, cot bt, et
2

are not Laplace

transformable. Given a function f(t) that satisfies the Dirichlet

conditions, then

F(s) ¼
ð

1

0

f (t)e�stdt written +{f (t)} (5:1)

is called the Laplace transformation of f(t). Here s can be either a

real variable or a complex quantity. Observe the shorthand nota-

tion +{f(t)} to denote the Laplace transformation of f(t). Observe
also that only ordinary integration is involved in this integral.

To amplify the meaning of condition (2), we consider piece-

wise continuous functions, defined for all positive values of the

variable t, for which

lim
t!1

f (t)e�ct ¼ 0, c ¼ real constant:

Functions of this type are known as functions of exponential

order. Functions occurring in the solution for the time response

of stable linear systems are of exponential order zero. Now we

can recall that the integral
Ð1
0 f (t)e�st dt converges if

ð

1

0

f (t)e�stj jdt <1, s ¼ sþ jv

If our function is of exponential order, we can write this integral as

ð

1

0

f (t)j je�cte�(s�c)tdt:

This shows that for s in the range s> 0 (s is the abscissa of

convergence) the integral converges; that is

ð

1

0

f (t)e�stj jdt <1, Re(s) > c:

* All the contour integrations in the complex plane are counterclockwise.
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The restriction in this equation, namely, Re(s)¼ c, indicates that
we must choose the path of integration in the complex plane as

shown in Figure 5.1.

5.2 Laplace Transform of Some
Typical Functions

We illustrate the procedure in finding the Laplace transform of a

given function f(t). In all cases it is assumed that the function f(t)
satisfies the conditions of Laplace transformability.

Example 5.1

Find the Laplace transform of the unit step function f(t)¼ u(t),

where u(t)¼ 1, t> 0, u(t)¼ 0, t< 0.

SOLUTION

By Equation 5.1 we write

+{u(t)} ¼
ð

1

0

u(t)e�stdt ¼
ð

1

0

e�stdt ¼ e�st

s

�

�

�

�

1

0

¼ 1

s
: (5:2)

The region of convergence is found from the expression
Ð1
0

e�stj jdt ¼
Ð1
0

e�stdt <1, which is the entire right half-

plane, s> 0.

Example 5.2

Find the Laplace transform of the function f (t) ¼ 2
ffiffiffi

t
p

q

F(s) ¼ 2
ffiffiffiffi

p
p

ð

1

0

t
1
2e�stdt: (5:3)

To carry out the integration, define the quantity x ¼ t
1
2, then

dx ¼ 1
2
t�

1
2 dt, from which dt ¼ 2t

1
2 dx ¼ 2x dx. Then

F(s) ¼ 4
ffiffiffiffi

p
p

ð

1

0

x2e�sx
2

dx:

But the integral

ð

1

0

x2e�sx
2

dx ¼
ffiffiffiffi

p
p

4s3=2
:

Thus, finally,

F(s) ¼ 1

s3=2
: (5:4)

Example 5.3

Find the Laplace transform of f (t) ¼ erfc k
2
ffiffi

t
p , where the error

function, erf t, and the complementary error function, erfc t,

are defined by

erf t ¼ 2
ffiffiffiffi

p
p

ð

t

0

e�u
2

du, erfc t ¼ 2
ffiffiffiffi

p
p

ð

1

t

e�u
2

du,

SOLUTION

Consider the integral

I ¼ 2
ffiffiffiffi

p
p

ð

1

0

e�st
ð

1

l
ffi

t
p

e�u
2

du

2

6

6

4

3

7

7

5

dt where l ¼ k

2
: (5:5)

Change the order of integration, noting that u ¼ l
ffiffi

t
p , t ¼ l2

u2

I ¼ 2
ffiffiffiffi

p
p

ð

1

0

e�u
2

ð

1

l2

u2

e�st

2

6

6

4

3

7

7

5

dtdu ¼ 2

s
ffiffiffiffi

p
p

ð

1

0

exp �u2 � l2s

u2

� �

du

The value of this integral is known

¼ 2

s
ffiffiffiffi

p
p �

ffiffiffiffi

p
p

2
e�2l

ffiffi

s
p
,

which leads to

+ erfc
k

2
ffiffi

t
p

� �

¼ 1

s
exp {�k

ffiffi

s
p

}: (5:6)

0

Abscissa of convergence

Region of absolute
convergenceS-plane

jω

c σ

σ + jω

σ – jω

σ

FIGURE 5.1 Path of integration for exponential order function.
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Example 5.4

Find the Laplace transform of the function f(t)¼ sinh at.

SOLUTION

Express the function sinh at in its exponential form

sinh at ¼ eat � e�at

2
:

The Laplace transform becomes

+{ sinh at} ¼ 1

2

ð

1

0

e�(s�a)t � e�(sþa)t
� 	

dt

¼ a

s2 � a2
: (5:7)

A moderate listing of functions f(t) and their Laplace trans-

forms F(s)¼+{f(t)} are given in Table A.5.1.

5.3 Properties of the Laplace Transform

We now develop a number of useful properties of the Laplace

transform; these follow directly from Equation 5.1. Important in

developing certain properties is the definition of f(t) at t¼ 0, a

quantity written f(0þ) to denote the limit of f(t) at t approaches
zero, assumed from the positive direction. This designation is

consistent with the choice of function response for t> 0. This

means that f(0þ) denotes the initial condition. Correspondingly,
f (n) (0þ) denotes the value of the nth derivative at time t¼ 0þ,
and f (�n) (0þ) denotes the nth time integral at time t¼ 0þ. This
means that the direct Laplace transform can be written

F(s) ¼ lim
a!0þ
R!1

ð

R

a

f (t)e�stdt, R > 0, a > 0: (5:8)

We proceed with a number of theorems.

THEOREM 5.1 Linearity

The Laplace transform of the linear sum of two Laplace trans-

formable functions f(t)þ g(t) with respective abscissas of conver-

gence sf and sg, with sg>sf, is

+{ f (t)þ g(t)} ¼ F(s)þ G(s): (5:9)

Proof From Equation 5.8 we write

+{ f (t)þ g(t)} ¼
ð

1

0

[f (t)þ g(t)]e�stdt ¼
ð

1

0

f (t)e�stdt þ
ð

1

0

g(t)e�stdt,

Re(s) > sg :

Thus,

+{ f (t)þ g(t)} ¼ F(s)þ G(s):

As a direct extension of this result, for K1 and K2 constants,

+{K1f (t)þ K2g(t)} ¼ K1F(s)þ K2G(s): (5:10)

THEOREM 5.2 Differentiation

Let the function f(t) be piecewise continuous with sectionally

continuous derivatives df(t)=dt in every interval 0� t�T. Also
let f(t) be of exponential order ect as t!1. Then when Re(s)> c,
the transform of df(t)=dt exists and

+
df (t)

dt

� �

¼ s+{ f (t)}� f (0þ) ¼ sF(s)� f (0þ): (5:11)

Proof Begin with Equation 5.8 and write

+
df (t)

dt

� �

¼ lim
T!1

ð

T

0

df (t)

dt
e�stdt:

Write the integral as the sum of integrals in each interval in

which the integrand is continuous. Thus, we write

ð

T

0

e�st f (1)(t)dt ¼
ð

t1

0

[ ]þ
ð

t2

t1

[ ]þ � � � þ
ð

T

tn�1

[ ]:

Each of these integrals is integrated by parts by writing

u ¼ e�st du ¼ �se�stdt

dv ¼ df

dt
dt v ¼ f

with the result

e�stf (t)
�

�

�

t1

0
þ e�st f (t)

�

�

�

t2

t1
þ � � � þ e�st f (t)

�

�

�

T

tn�1

þ s

ð

T

0

e�stf (t)dt:

But f(t) is continuous so that f(t1� 0)¼ f(t1þ 0), and so forth,

hence

ð

T

0

e�st f (1)(t)dt ¼ �f (0þ)þ e�sT f (T)þ s

ð

T

0

e�st f (t)dt:
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However, with limt!1 f(t)e�st¼ 0 (otherwise the transform

would not exist), then the theorem is established.

THEOREM 5.3 Differentiation

Let the function f(t) be piecewise continuous, have a continuous
derivative f (n�1)(t) of order n� 1 and a sectionally continuous

derivative f (n)(t) in every finite interval 0� t�T. Also, let f(t)
and all its derivatives through f (n�1)(t) be of exponential order ect

as t!1. Then the transform of f (n)(t) exists when Re(s)> c and
it has the following form:

+{ f (n)(t)} ¼ snF(s)� sn�1f (0þ)� sn�2f (1)f (0þ)

� � � � � sn�nf (n�1)(0þ): (5:12)

Proof The proof follows as a direct extension of the proof of

Theorem 5.2.

Example 5.5

Find +{tm} where m is any positive integer.

SOLUTION

The function f(t)¼ tm satisfies all the conditions of Theorem

5.3 for any positive c. Thus,

f (0þ) ¼ f (1)f (0þ) ¼ � � � ¼ f (m�1)(0þ) ¼ 0

f (m)(t) ¼ m!, f (mþ1)(t) ¼ 0:

By Equation 5.12 with n¼mþ 1 we have

+{ f (mþ1)(t)} ¼ 0 ¼ smþ1+{tm}�m!:

It follows, therefore, that

+{tm} ¼ m!

smþ1
:

THEOREM 5.4 Integration

If f(t) is sectionally continuous and has a Laplace transform, then

the function
Ð t
0 f (j)dj has the Laplace transform given by

+

ð

t

0

f (j)dj

8

<

:

9

=

;

¼ F(s)

s
þ 1

s
f (�1)(0þ): (5:13)

Proof Because f(t) is Laplace transformable, its integral is written

+

ð

t

�1

f (j)dj

8

<

:

9

=

;

¼
ð

1

0

ð

t

�1

f (j)dj

2

4

3

5e�stdt:

This is integrated by parts by writing

u ¼
ð

t

�1

f (j)dj du ¼ f (j)dj ¼ f (t)dt

dv ¼ e�stdt v ¼ � 1

s
e�st:

Then

+

ð

t

�1

f (j)dj

8

<

:

9

=

;

¼ � e�st

s

ð

t

�1

f (j)dj

2

4

3

5

�

�

�

�

�

�

1

0

þ 1

s

ð

1

0

f (t)e�stdt

¼ 1

s

ð

1

0

f (t)e�stdt þ 1

s

ð

0

�1

f (j)dj

from which

+

ð

t

0

f (j)dj

8

<

:

9

=

;

¼ 1

s
F(s)þ 1

s
f (�1)(0þ)

where [ f (�1)(0þ)=s] is the initial value of the integral of f(t) at
t¼ 0þ. The negative number in the bracketed exponent indicates

integration.

Example 5.6

Deduce the value of +{sin at} from +{cos at} by employing

Theorem 5.4.

SOLUTION

By ordinary integration

ð

t

0

cos ax dx ¼ sin at

a
:

From Theorem 5.4 we can write, knowing that

+{ cos at} ¼ s
s2þa2

.

+
sin at

a

� �

¼ 1

s2 þ a2
:

so that

+{ sin at} ¼ a

s2 þ a2
:
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THEOREM 5.5

Division of the transform of a function by s corresponds to

integration of the function between the limits 0 and t

+�1
F(s)

s

� �

¼
ð

t

0

f (j)dj

+�1
F(s)

s2

� �

¼
ð

t

0

ð

j

0

f (l)dldj

(5:14)

and so forth, for division by sn, provided that f(t) is Laplace

transformable.

Proof The proof of this theorem follows from Theorem 5.4.

THEOREM 5.6 Multiplication by t

If f(t) is piecewise continuous and of exponential order, then each

of the Laplace transforms: +{ f(t), +{tf(t), +{t2f(t), . . . is uni-

formly convergent with respect to s when s¼ c, where s> c, and

+{tnf (t)} ¼ (�1)n d
nF(s)

dsn
: (5:15)

Further

lim
s!1

dnF(s)

dsn
¼ 0, +s!1{t

nf (t)} ¼ 0, n ¼ 1, 2, 3, . . .

Proof If follows from Equation 5.8 when this integral is uni-

formly convergent and the integral converges, that

qF(s)

qs
¼
ð

1

0

e�st(�t)f (t)dt ¼ +{�tf (t)}:

Further, it follows that

q2F(s)

qs2
¼
ð

1

0

e�st(�t)2f (t)dt ¼ +{t2f (t)}:

Similar procedures follow for derivatives of higher order.

THEOREM 5.7 Differentiation of a Transform

Differentiation of the transform of a function f(t) corresponds to
the multiplication of the function by �t; thus

dnF(s)

dsn
¼ F(n)(s) ¼ +{(�t)n f (t)}, n ¼ 1, 2, 3, . . . (5:16)

Proof This is a restatement of Theorem 5.6. This theorem is

often useful for evaluating some types of integrals, and can be

used to extend the table of transforms.

Example 5.7

Employ Theorem 5.7 to evaluate qF(s)=qs for the function

f(t)¼ sinh at.

SOLUTION

Initially we establish sinh at

+{ sinh at} ¼
ð

1

0

e�st
e at � e�at

2


 �

dt ¼ a

s2 � a2
¼ F(s):

By Theorem 5.7

qF(s)

qs
¼
ð

1

0

(�t) sinh at e�stdt ¼ q

qs

a

s2 � a2

h i

¼ � 2as

(s2 � a2)2

from which

ð

1

0

e�stt sinh at dt ¼ +{t sinh at} ¼ 2as

(s2 � a2)2
:

We can, of course, differentiate F(s) with respect to a. In this

case, Theorem 5.7 does not apply. However, the result is

significant and is

qF(s)

qa
¼
ð

1

0

e�st(t cosh at)dt ¼ +{t cosh at} ¼ q

qa

a

s2 � a2

h i

¼ s2 þ a2

(s2 � a2)2
:

THEOREM 5.8 Complex Integration

If f(t) is Laplace transformable and provided that limt!0þ
f (t)
t

exists, the integral of the function
Ð1
s F(s)ds corresponds to the

Laplace transform of the division of the function f(t) by t,

+
f (t)

t

� �

¼
ð

1

0

F(s)ds: (5:17)

Proof Let F(s) be piecewise continuous in each finite interval

and of exponential order. Then

F(s) ¼
ð

1

0

e�stf (t)dt
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is uniformly convergent with respect to s. Consequently, we can
write for Re(s)> c and any a> c

ð

a

s

F(s)ds ¼
ð

a

s

ð

1

0

e�st f (t)dtds:

Express this in the form

¼
ð

1

0

f (t)

ð

a

s

e�stdsdt ¼
ð

1

0

f (t)

t
(e�st � e�at)dt:

Now if f(t)=t has a limit as t ! 0, then the latter function is

piecewise continuous and of exponential order. Therefore, the

last integral is uniformly convergent with respect to a. Thus, as a
tends to infinity

ð

1

s

F(s)ds ¼ +
f (t)

t

� �

:

THEOREM 5.9 Time Delay; Real Translation

The substitution of t�l for the variable t in the transform

+{ f(t)} corresponds to the multiplication of the function F(s)
by e�ls; that is,

+{ f (t � l)} ¼ e�slF(s): (5:18)

Proof Refer to Figure 5.2, which shows a function f(t) u(t) and
the same function delayed by the time t¼ l, where l is a positive

constant.

We write directly

+{ f (t � l)u(t � l)} ¼
ð

1

0

f (t � l)u(t � l)e�stdt:

Now introduce a new variable t¼ t�l. This converts this equa-

tion to the form

+{ f (t)u(t)} ¼ e�sl
ð

1

�l

f (t)u(t)e�stdt ¼ e�sl
ð

1

0

f (t)e�stdt

¼ e�slF(s)

because u(t)¼ 0 for �l� t� 0.

We would similarly find that

+{ f (t þ l)u(t þ l)} ¼ eslF(s): (5:19)

Example 5.8

Find the Laplace transform of the pulse function shown in

Figure 5.3.

SOLUTION

Because the pulse function can be decomposed into step func-

tions, as shown in Figure 5.3, its Laplace transform is given by

+ 2 u(t)� u(t � 1:5)½ �f g ¼ 2
1

s
� 1

s
e�1:5s


 �

¼ 2

s
(1� e�1:5s)

where the translation property has been used.

THEOREM 5.10 Complex Translation

The substitution of sþ a for s, where a is a real or complex, in the

function F(sþ a), corresponds to the Laplace transform of the

product e�atf(t).

Proof We write

ð

1

0

e�at f (t)e�stdt ¼
ð

1

0

f (t)e�(sþa)tdt for Re(s) > c� Re(a),

f(
t)

f (t) f (t – λ)

t

λ

FIGURE 5.2 A function f(t) at the time t¼ 0 and delayed time t¼ l.

f (t)

2

1.5
t

f (t)

2

0

–2

1.5

2u(t)

–2u(t – 1.5)

t

FIGURE 5.3 Pulse function and its equivalent representation.
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which is

F(sþ a) ¼ +{e�at f (t)}: (5:20)

In a similar way we find

F(s� a) ¼ +{eat f (t)}: (5:21)

THEOREM 5.11 Convolution

The multiplication of the transforms of two sectionally continu-

ous functions f1(t) (¼F1(s)) and f2(t) (¼F2(s)) corresponds to the

Laplace transform of the convolution of f1(t) and f2(t).

F1(s)F2(s) ¼ +{ f1(t) * f2(t)} (5:22)

where the asterisk * is the shorthand designation for convolution.

Proof By definition, the convolution of two functions f1(t)
and f2(t) is

f1(t) * f2(t) ¼
ð

1

0

f1(t � t)f2(t)dt ¼
ð

1

0

f1(t)f2(t � t)dt: (5:23)

Thus,

+{ f1(t) * f2(t)} ¼ +

ð

1

0

f1(t � t)f2(t)dt

8

<

:

9

=

;

¼
ð

1

0

ð

1

0

f1(t � t)f2(t)dt

2

4

3

5e�stdt

¼
ð

1

0

f2(t)dt

ð

1

0

f1(t � t)e�stdt:

Now effect a change of variable, writing t� t¼ j and therefore

dt¼ dj, then

¼
ð

1

0

f2(t)dt

ð

1

�t

f1(j)e
�s(jþt)dj:

But for positive time functions f1(j)¼ 0 for j< 0, which permits

changing the lower limit of the second integral to zero, and so

¼
ð

1

0

f2(t)e
�stdt

ð

1

0

f1(j)e
�sjdj,

which is

+{ f1(t) * f2(t)} ¼ F1(s)F2(s):

Example 5.9

Given f1(t)¼ t and f2(t)¼ eat, deduce the Laplace transform of

the convolution t * eat by the use of Theorem 5.11.

SOLUTION

Begin with the convolution

t * eat ¼
ð

t

0

(t � t)eatdt ¼ teat

a

�

�

�

�

t

0

� teat

a
� eat

a2


 �t

0

¼ 1

a2
(eat � at � 1):

Then

+{t * eat } ¼ 1

a2
1

s� a
� 1

s2
� 1

s

� �

¼ 1

s2
1

(s� a)
:

By Theorem 5.11 we have

F1(s) ¼ +{ f1(t)} ¼ +{t} ¼ 1

s2
,

F2(s) ¼ +{ f2(t)} ¼ +{eat } ¼ 1

s� a
:

and

+{t * eat } ¼ 1

s2
1

(s� a)
:

THEOREM 5.12

The multiplication of the transforms of three sectionally continu-

ous functions f1(t), f2(t), and f3(t) corresponds to the Laplace

transform of the convolution of the three functions

+{ f1(t) * f2(t) * f3(t)} ¼ F1(s)F2(s)F3(s): (5:24)

Proof This is an extension of Theorem 5.11. The result is

obvious if we write

F1(s)F2(s)F3(s) ¼ +{ f1(t) *+
�1{F2(s)F3(s)}}:

Example 5.10

Deduce the values of the convolution products: 1 * f(t); 1 * 1 * f(t).

SOLUTION

By Equations 5.21 and 5.23 we write directly

a. For f1(t)¼ 1, f2(t)¼ f(t), +{1 * f (t)} ¼ F(s)
s
¼ +

Ð t

0
f (j)dj

n o

by Equation 5.14

b. For f1(t)¼ 1, f2(t)¼ 1, f3(t)¼ f(t), +{1 * 1 * f (t)} ¼ F(s)
s2
¼

+
Ð t

0

Ð j

0
f (l)dl dj

n o
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THEOREM 5.13 Frequency Convolution—s-Plane

The Laplace transform of the product of two piecewise and

sectionally continuous functions f1(t) and f2(t) corresponds to

the convolution of their transforms, with

+{ f1(t)f2(t)} ¼
1

2pj
[F1(s) * F2(s)]: (5:25)

Proof Begin by considering the following line integral in the

z-plane:

f2(t) ¼
1

2pj

ð

C2

F2(z)e
ztdz, s2 ¼ axis of the convergence:

This means that the contour intersects the x-axis at x1>s2

(see Figure 5.4). Then we have

ð

1

0

f1(t)f2(t)e
�stdt ¼ 1

2pj

ð

1

0

f1(t)dt

ð

C2

F2(z)e
(z�s)tdz:

Assume that the integral of F2(z) is convergent over the path of

integration. This equation is now written in the form

ð

1

0

f1(t)f2(t)e
�stdt ¼ 1

2pj

ð

s2þj1

s2�j1

F2(z)dz

ð

1

0

f1(t)e
�(s�z)tdt

¼ 1

2pj

ð

s2þj1

s2�j1

F2(z)F1(s� z)dz ¼D +{ f1(t)f2(t)}:

(5:26)

The Laplace transform of f1(t), the integral on the right, con-

verges in the range Re(s� z)>s1, were s1 is the abscissa of

convergence of f1(t). In addition, Re(z)¼s2 for the z-plane
integration involved in Equation 5.25. Thus, the abscissa of

convergence of f1(t) f2(t) is specified by

Re(s) > s1 þ s2: (5:27)

This situation is portrayed graphically in Figure 5.4 for the case

when both s1 and s2 are positive. As far as the integration in the

complex plane is concerned, the semicircle can be closed either

to the left or to the right just so long as F1(s) and F2(s) go to zero

as s!1.

Based on the foregoing, we observed the following:

. Poles of F1(s� z) are contained in the region Re(s� z)<s1

. Poles of F2(z) are contained in the region Re(z)<s2

. From (a) and Equation 5.27 Re(z)>Re(s�s1)>s2

. Poles of F1(s� z) lie to the right of the path of integration

. Poles of F2(z) are to the left of the path of integration

. Poles of F1(s� z) are functions of s whereas poles of F2(z)
are fixed in relation to s

Example 5.11

Find the Laplace transform of the function f(t)¼ f1(t) f2(t)¼
e�t e�2t u(t).

SOLUTION

From Theorem 5.13 and the absolute convergence region for

each function, we have

F1(s) ¼
1

sþ 1
, s1 > �1

F2(s) ¼
1

sþ 2
, s2 > �2:

Further, f(t)¼ exp [�(2þ 1)t] u(t) implies that sf¼s1þs2¼ 3.

We now write

F2(z)F1(s� z) ¼ 1

z þ 2

1

s� z þ 1

¼ 1

3þ s

1

z � (1þ s)
� 1

3þ s

1

z þ 2
:

To carry out the integration dictated by Equation 5.26 we use

the contour shown in Figure 5.5. If we select contour C1 and

use the residue theorem, we obtain

F(s) ¼ 1

2pj

þ

C1

F2(z)F1(s� z)dz ¼ 2pj Re s F2(z)F1(s� z)½ � z¼�2j

¼ 1

sþ 3
:

C2

σ1

Region of

values of s

z-plane

jy

σ > σ2 + σ1σ2

x
x1

FIGURE 5.4 The contour C2 and the allowed range of s.
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The inverse of this transform is exp(�3t). If we had selected

contour C2, the residue theorem gives

F(s) ¼ 1

2pj

þ

C2

F2(z)F1(s� z)dz ¼ �2pj Re s[F2(z)F1(s� z)]jz¼1þs

¼ � � 1

sþ 3


 �

¼ 1

sþ 3
:

The inverse transform of this is also exp(�3t), as to be

expected.

THEOREM 5.14 Initial Value Theorem

Let f(t) and f (1)(t) be Laplace transformable functions, then for

case when lim sF(s) as s !1 exists,

lim
s!1

sF(s) ¼ lim
t!0þ

f (t): (5:28)

Proof Begin with Equation 5.13 and consider

lim
s!1

ð

1

0

df

dt
e�stdt ¼ lim

s!1
sF(s)� f (0þ)½ �:

Because f(0þ) is independent of s, and because the integral

vanishes for s ! 1, then

lim
s!1

sF(s)� f (0þ)½ � ¼ 0:

Furthermore, f(0þ)¼ limt!0þ f(t) so that

lim
s!1

sF(s) ¼ lim
t!0þ

f (t):

If f(t) has a discontinuity at the origin, this expression specifies

the value of the impulse f(0þ). If f(t) contains an impulse term,

then the left-hand side does not exist, and the initial value

property does not exist.

THEOREM 5.15 Final Value Theorem

Let f(t) and f (1)(t) be Laplace transformable functions, then for

t ! 1

lim
t!1

f (t) ¼ lim
s!0

sF(s): (5:29)

Proof Begin with Equation 5.13 and Let s ! 0. Thus, the

expression

lim
s!0

ð

1

0

df

dt
e�stdt ¼ lim

s!0
sF(s)� f (0þ)½ �:

Consider the quantity on the left. Because s and t are independ-
ent and because e�st ! 1 as s ! 0, then the integral on the left

becomes, in the limit

ð

1

0

df

dt
dt ¼ lim

t!1
f (t)� f (0þ):

Combine the latter two equations to get

lim
t!1

f (t)� f (0þ) ¼ lim
s!1

sF(s)� f (0þ):

It follows from this that the final value of f(t) is given by

lim
t!1

f (t) ¼ lim
s!0

sF(s):

This result applies F(s) possesses a simple pole at the origin, but it

does not apply if F(s) has imaginary axis poles, poles in the right

half plane, or higher order poles at the origin.

Example 5.12

Apply the final value theorem to the following two functions:

F1(s) ¼
sþ a

(sþ a)2 þ b2
, F2(s) ¼

s

s2 þ b2
:

SOLUTION

For the first function from sF1(s),

lim
s!0

s(sþ a)

(sþ a)2 þ b2
¼ 0:

Imaginary

–1–2

C2
C1

Real

s-plane

FIGURE 5.5 The contour for Example 5.11.
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For the second function,

sF(s) ¼ s2

s2 þ b2
:

However, this function has singularities on the imaginary axis

at s¼�jb, and the final value theorem does not apply.

The important properties of the Laplace transform are con-

tained in Table A.5.2.

5.4 The Inverse Laplace Transform

We employ the symbol +�1{F(s)}, corresponding to the direct

Laplace transform defined in Equation 5.1, to denote a function

f(t) whose Laplace transform is F(s). Thus, we have the Laplace pair

F(s) ¼ +{ f (t)}, f (t) ¼ +�1{F(s)}: (5:30)

This correspondence between F(s) and f(t) is called the inverse

Laplace transformation of f(t).
Reference to Table A.5.1 shows that F(s) is a rational function

in s if f(t) is a polynomial or a sum of exponentials. Further, it

appears that the product of a polynomial and an exponential

might also yield a rational F(s). If the square root of t appears on
f(t), we do not get a rational function in s. Note also that a

continuous function f(t) may not have a continuous inverse

transform.

Observe that the F(s) functions have been uniquely deter-

mined for the given f(t) function by Equation 5.1. A logical

question is whether a given time function in Table A.5.1 is the

only t-function that will give the corresponding F(s). Clearly,
Table A.5.1 is more useful if there is a unique f(t) for each F(s).
This is an important consideration because the solution of prac-

tical problems usually provides a known F(s) from which f(t)
must be found. This uniqueness condition can be established

using the inversion integral. This means that there is a one-

to-one correspondence between the direct and the inverse trans-

form. This means that if a given problem yields a function F(s),
the corresponding f(t) from Table A.5.1 is the unique result. In

the event that the available tables do not include a given F(s), we
would seek to resolve the given F(s) into forms that are listed in

Table A.5.1. This resolution of F(s) is often accomplished in

terms of a partial fraction expansion.

A few examples will show the use of the partial fraction form

in deducing the f(t) for a given F(s).

Example 5.13

Find the inverse Laplace transform of the function

F(s) ¼ s� 3

s2 þ 5sþ 6
: (5:31)

SOLUTION

Observe that the denominator can be factored into the form

(sþ 2) (sþ 3). Thus, F(s) can be written in partial fraction

form as

F(s) ¼ s� 3

(sþ 2)(sþ 3)
¼ A

sþ 2
þ B

sþ 3
: (5:32)

where A and B are constants that must be determined.

To evaluate A, multiply both sides of Equation 5.32 by

(sþ 2) and then set s¼�2. This gives

A ¼ F(s)(sþ 2)js¼�2 ¼
s� 3

sþ 3

�

�

�

�

s¼�2

¼ �5

and B(sþ 2)=(sþ 3)js¼�2 is identically zero. In the same manner,

to find the value of B we multiply both sides of Equation 5.32

by (sþ 3) and get

B ¼ F(s)(sþ 3)js¼�3 ¼
s� 3

sþ 3

�

�

�

�

s¼�3

¼ 6:

The partial fraction form of Equation 5.32 is

F(s) ¼ �5

sþ 2
þ 6

sþ 3
:

The inverse transform is given by

f (t) ¼ +�1{F(s)} ¼ �5+�1 1

sþ 2

� �

þ 6+�1 1

sþ 3

� �

¼ �5e�2t þ 6e�3t

where entry 8 in Table A.5.1, is used.

Example 5.14

Find the inverse Laplace transform of the function

F(s) ¼ sþ 1

[(sþ 2)2 þ 1](sþ 3)
:

SOLUTION

This function is written in the form

F(s) ¼ A

sþ 3
þ Bsþ C

[(sþ 2)2 þ 1]
¼ sþ 1

[(sþ 2)2 þ 1](sþ 3)
:

The value of A is deduced by multiplying both sides of this

equation by (sþ 3) and then setting s¼�3. This gives

A ¼ (sþ 3)F(s)js¼�3¼
�3þ 1

(�3þ 2)2 þ 1
¼ �1:
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To evaluate B and C, combine the two fractions and equate the

coefficients of the powers of s in the numerators. This yields

�1[(sþ 2)2 þ 1]þ (sþ 3)(Bsþ C)

[(sþ 2)2 þ 1](sþ 3)
¼ sþ 1

[(sþ 2)2 þ 1](sþ 3)

from which it follows that

�(s2 þ 4sþ 5)þ Bs2 þ (C þ 3B)sþ 2C ¼ sþ 1:

Combine like-powered terms to write

(�1þ B)s2 þ (�4þ C þ 3B)sþ (�5þ 3C) ¼ sþ 1:

Therefore,

�1þ B ¼ 0, �4þ C þ 3B ¼ 1, �5þ 3C ¼ 1:

From these equations we obtain

B ¼ 1, C ¼ 2:

The function F(s) is written in the equivalent form

F(s) ¼ �1
sþ 3

þ sþ 2

(sþ 2)2 þ 1
:

Now using Table A.5.1, the result is

f (t) ¼ �e�3t þ e�2t cos t, t > 0:

In many cases, F(s) is the quotient of two polynomials with real

coefficients. If the numerator polynomials is of the same or

higher degree than the denominator polynomial, first divide the

numerator polynomial by the denominator polynomial; the div-

ision is carried forward until the numerator polynomial of the

remainder is one degree less than the denominator. This results

in a polynomial in s plus a proper fraction. The proper fraction

can be expanded into a partial fraction expansion. The result of

such an expansion is an expression of the form

F0(s) ¼ B0 þ B1(s)þ � � � þ A1

s� s1
þ A2

s� s2
þ � � � þ Ap1

s� sp

þ Ap2

(s� sp)
2 þ � � � þ Apr

(s� sp)
r : (5:33)

This expression has been written in a form to show three types of

terms; polynomial, simple partial fraction including all terms with

distinct roots, and partial fraction appropriate to multiple roots.

To find the constants A1, A2, . . . the polynomial terms are

removed, leaving the proper fraction

F0(s)� (B0 þ B1sþ � � � ) ¼ F(s) (5:34)

where

F(s) ¼ A1

s� s1
þ A2

s� s2
þ � � � þ Ak

s� sk
þ Ap1

s� sp
þ Ap2

(s� sp)
2 þ � � �

þ Apr

(s� sp)
r :

To find the constants Ak that are the residues of the function F(s)
at the simple poles sk, it is only necessary to note that as s ! sk
the term Ak(s� sk) will become large compared with all other

terms. In the limit

Ak ¼ lim
s!sk

(s� sk)F(s): (5:35)

Upon taking the inverse transform for each simple pole, the

result will be a simple exponential of the form

+�1 Ak

s� sk

� �

¼ Ake
skt : (5:36)

Note also that because F(s) contains only real coefficients, if sk is a
complex pole with residue Ak, there will also be a conjugate pole

sk* with residue Ak*. For such complex poles

+�1 Ak

s� sk
þ Ak*

s� sk*

� �

¼ Ake
skt þ Ak*e

sk*t :

These can be combined in the following way:

response ¼ (ak þ jbk)e
(skþjvk)t þ (ak � jbk)e

(sk�jvk)t

¼ eskt (ak þ jbk)( cos vkt þ j sin vkt)½
þ (ak � jbk)( cos vkt þ j sin vkt)�

¼ 2eskt(ak cos vkt � bk sin vkt)

¼ 2Ake
skt cos (vkt þ uk) (5:37)

where uk¼ tan�1 (bk=ak) and Ak¼ ak=cos uk.
When the proper fraction contains a multiple pole of order r,

the coefficients in the partial-fraction expansion Ap1, Ap2, . . .Apr

that are involved in the terms

Ap1

(s� sp)
þ Ap2

(s� sp)
2 þ � � � þ Apr

(s� sp)
r

must be evaluated. A simple application of Equation 5.35 is not

adequate. Now the procedure is to multiply both sides of Equa-

tion 5.34 by (s� sp)
r, which gives

(s� sp)
rF(s) ¼ (s� sp)

r A1

s� s1
þ A2

s� s2
þ � � � þ Ak

s� sk


 �

þ Ap1(s� sp)
r�1 þ � � �

þ Ap(r�1)(s� sp)þ Apr (5:38)
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In the limit as s¼ sp all terms on the right vanish with the

exception of Apr. Suppose now that this equation is differentiated

once with respect to s. The constant Apr will vanish in the

differentiation but Ap(r�1) will be determined by setting s¼ sp.
This procedure will be continued to find each of the coefficients

Apk. Specifically, the procedure is specified by

Apk ¼
1

(r � k)!

dr�k

dsr�k
F(s)(s� sp)

r

� �

s¼sp
, k ¼ 1, 2, . . . , r:

(5:39)

Example 5.15

Find the inverse transform of the following function:

F(s) ¼ s3 þ 2s2 þ 3sþ 1

s2(sþ 1)
:

SOLUTION

This is not a proper fraction. The numerator polynomial is

divided by the denominator polynomial by simple long div-

ision. The result is

F(s) ¼ 1þ s2 þ 3sþ 1

s2(sþ 1)
:

The proper fraction is expanded into partial fraction form

Fp(s) ¼
s2 þ 3sþ 1

s2(sþ 1)
¼ A11

s
þ A12

s2
þ A2

sþ 1
:

The value of A2 is deduced using Equation 5.35

A2 ¼ [(sþ 1)Fp(s)]s¼�1 ¼
s2 þ 3sþ 1

s2

�

�

�

�

s¼�1
¼ �1:

To find A11 and A12 we proceed as specified in Equation 5.39

A12 ¼ [s2Fp(s)]s¼0 ¼
s2 þ 3sþ 1

sþ 1

�

�

�

�

s¼0
¼ 1

A11 ¼
1

1!

d

ds
s2Fp(s)

� �

s¼0
¼ d

ds

s2 þ 3sþ 1

sþ 1


 �

s¼0

¼ s2 þ 3sþ 1

(sþ 1)2
þ 2sþ 3

sþ 1

�

�

�

�

s¼0
¼ 4:

Therefore,

F(s) ¼ 1þ 4

s
þ 1

s2
� 1

sþ 1
:

From Table A.5.1 the inverse transform is

f (t) ¼ d(t)þ 4þ t � e�t , for t � 0:

If the function F(s) exists in proper fractional form as the quo-

tient of two polynomials, we can employ the Heaviside expansion

theorem in the determination of f(t) from F(s). This theorem is

an efficient method for finding the residues of F(s). Let

F(s) ¼ P(s)

Q(s)
¼ A1

s� s1
þ A2

s� s2
þ � � � þ Ak

s� sk

where P(s) and Q(s) are polynomials with no common factors

and with the degree of P(s) less than the degree of Q(s).
Suppose that the factors of Q(s) are distinct constants. Then, as

in Equation 5.35 we find

Ak ¼ lim
s!sk

s� sk
Q(s)

P(s)


 �

:

Also, the limit P(s) is P(sk). Now, because

lim
s!sk

s� sk
Q(s)

¼ lim
s!sk

1

Q(1)(s)
¼ 1

Q(1)(sk)
,

then

Ak ¼
P(sk)

Q(1)(sk)
:

Thus,

F(s) ¼ P(s)

Q(s)
¼
X

k

n¼1

P(sn)

Q(1)(sn)
� 1

(s� sn)
: (5:40)

From this, the inverse transformation becomes

f (t) ¼ +�1 P(s)

Q(s)

� �

¼
X

k

n¼1

P(sn)

Q(1)(sn)
esnt :

This is the Heaviside expansion theorem. It can be written in

formal form.

THEOREM 5.16: Heaviside Expansion Theorem

If F(s) is the quotient P(s)=Q(s) of two polynomials in s such that

Q(s) has the higher degree and contains simple poles the factor

s� sk, which are not repeated, then the term in f(t) corresponding
to this factor can be written P(sk)

Q(1)(sk)
eskt .
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Example 5.16

Repeat Example 5.13 employing the Heaviside expansion

theorem.

SOLUTION

We write Equation 5.31 in the form

F(s) ¼ P(s)

Q(s)
¼ s� 3

s2 þ 5sþ 6
¼ s� 3

(sþ 2)(sþ 3)
:

The derivative of the denominator is

Q(1)(s) ¼ 2sþ 5

from which, for the roots of this equation,

Q(1)(�2) ¼ 1, Q(1)(�3) ¼ �1:

Hence,

P(�2) ¼ �5, P(�3) ¼ �6:

The final value for f(t) is

f (t) ¼ �5e�2t þ 6e�3t:

Example 5.17

Find the inverse Laplace transform of the following function

using the Heaviside expansion theorem:

+�1
2sþ 3

s2 þ 4sþ 7

� �

:

SOLUTION

The roots of the denominator are

s2 þ 4sþ 7 ¼ (sþ 2þ j
ffiffiffi

3
p

)(sþ 2� j
ffiffiffi

3
p

):

That is, the roots of the denominator are complex. The deriva-

tive of the denominator is

Q(1)(s) ¼ 2sþ 4:

We deduce the values P(s)=Q(1)(s) for each root

For s1 ¼ �2� j
ffiffiffi

3
p

Q(1)(s1) ¼ �j2
ffiffiffi

3
p

P(s1) ¼ �1� j2
ffiffiffi

3
p

For s2 ¼ �2þ j=3 Q(1)(s2) ¼ þj2
ffiffiffi

3
p

P(s2) ¼ �1þ j2
ffiffiffi

3
p

:

Then

f (t) ¼ �1� j2
ffiffiffi

3
p

�j2
ffiffiffi

3
p e(�2�j2

ffiffi

3
p

)t þ �1þ j2
ffiffiffi

3
p

j2
ffiffiffi

3
p e(�2þj2

ffiffi

3
p

)t

¼ e�2t
�1� j2

ffiffiffi

3
p

�j2
ffiffiffi

3
p e�j2

ffiffi

3
p

t þ �1þ j2
ffiffiffi

3
p

j2
ffiffiffi

3
p e j2

ffiffi

3
p

t


 �

¼ e�2t
(e�j2

ffiffi

3
p

t � ej2
ffiffi

3
p

t)

j2
ffiffiffi

3
p þ (e�j2

ffiffi

3
p

t þ e j2
ffiffi

3
p

t )

" #

¼ e�2t 2 cos 2
ffiffiffiffi

3t
p
� 1

ffiffiffi

3
p sin 2

ffiffiffiffi

3t
p� �

5.5 Solution of Ordinary Linear
Equations with Constant
Coefficients

The Laplace transform is used to solve homogeneous and non-

homogeneous ordinary differential equations or systems of such

equations. To understand the procedure, we consider a number

of examples.

Example 5.18

Find the solution to the following differential equation subject

to prescribed initial conditions: y(0þ); (dy=dt)þ ay¼ x(t).

SOLUTION

Laplace transform this differential equation. This is accom-

plished by multiplying each term by e�stdt and integrating

from 0 to1. The result of this operation is

sY(s)� y(0þ)þ aY(s) ¼ X (s),

from which

Y(s) ¼ X (s)

sþ a
þ y(0þ)

sþ a
:

If the input x(t) is the unit step function u(t), then X(s)¼ 1=s
and the final expression for Y(s) is

Y(s) ¼ 1

s(sþ a)
þ y(0þ)

sþ a
:

Upon taking the inverse transform of this expression

y(t) ¼ +�1{Y(s)} ¼ +�1
1

a

1

s
� 1

sþ a


 �

þ y(0þ)
sþ a

� �

with the result

y(t) ¼ 1

a
(1� e�at )þ y(0þ)e�at:
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Example 5.19

Find the general solution to the differential equation

d2y

dt2
þ 5

dy

dt
þ 4y ¼ 10

subject to zero initial conditions.

SOLUTION

Laplace transform this differential equation. The result is

s2Y(s)þ 5sY(s)þ 5Y(s) ¼ 10

s
:

Solving for Y(s), we get

Y(s) ¼ 10

s(s2 þ 5sþ 4)
¼ 10

s(sþ 1)(sþ 4)
:

Expand this into partial-fraction form, thus

Y(s) ¼ A

sþ 1
þ B

sþ 4
þ C

s
:

Then

A ¼ Y(s)(sþ 1)js¼�1¼
10

s(sþ 4)

�

�

�

�

s¼�1
¼ � 10

3

B ¼ Y(s)(sþ 4)js¼�4¼
10

s(sþ 1)

�

�

�

�

s¼�4
¼ 10

12

C ¼ sY(s)js¼0¼
10

(sþ 1)(sþ 4)

�

�

�

�

s¼0
¼ 10

4

and

Y(s) ¼ 10 � 1

3(sþ 1)
þ 1

12(sþ 4)
þ 1

4s


 �

:

The inverse transform is

x(t) ¼ 10 � 1

3
e�t þ 1

12
e�4t þ 1

4


 �

:

Example 5.20

Find the velocity of the system shown in Figure 5.6a when the

applied force is f(t)¼ e�tu(t). Assume zero initial conditions.

Solve the same problem using convolution techniques. The

input is the force and the output is the velocity.

SOLUTION

The controlling equation is, from Figure 5.6b,

dv

dt
þ 5v þ 4

ð

t

0

v dt ¼ e�tu(t):

Laplace transform this equation and then solve for F(s).

We obtain

V (s) ¼ s

(sþ 1)(s2 þ 5sþ 4)
¼ s

(sþ 1)2(sþ 4)
:

Write this expression in the form

V (s) ¼ A

sþ 4
þ B

sþ 1
þ C

(sþ 1)2

where

A ¼ s

(sþ 1)2

�

�

�

�

s¼�4
¼ � 4

9

B ¼ 1

1!

d

ds

s

sþ 4

� ��

�

�

�

s¼�1
¼ 4

9

C ¼ s

sþ 4

�

�

�

�

s¼�1
¼ � 1

3
:

The inverse transform of V(s) is given by

v(t) ¼ � 4

9
e�4t þ 4

9
e�t � 1

3
te�t , t � 0:

To find v(t) by the use of the convolution integral, we first find

h(t), the impulse response of the system. The quantity h(t) is

specified by

dh

dt
þ 5hþ 4

ð

h dt ¼ d(t)

(a)

f

V

M = 1

D = 5

K = 4

(b)

f V

D = 5

K = 4

+

M = 1

FIGURE 5.6 The mechanical system and its network equivalent.
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where the system is assumed to be initially relaxed. The

Laplace transform of this equation yields

H(s) ¼ s

s2 þ 5sþ 4
¼ s

(sþ 4)(sþ 1)
¼ 4

3

1

sþ 4
� 1

3

1

sþ 1
:

The inverse transform of this expression is easily found to be

h(t) ¼ 4

3
e�4t � 1

3
e�t , t � 0:

The output of the system to the input e�tu(t) is written

v(t) ¼
ð

1

�1

h(t)f (t � t)dt ¼
ð

t

0

e�(t�t) 4

3
e�4t � 1

3
e�t


 �

dt

¼ e�t 4

3

ð

t

0

e�3tdt� 1

3

ð

t

0

dt

2

4

3

5 ¼ e�t 4

3

1

�3

� �

e�3t

�

�

�

�

t

0

� 1

3
t


 �

¼ � 4

9
e�4t þ 4

9
e�t � 1

3
te�t , t � 0

:

This result is identical with that found using the Laplace

transform technique.

Example 5.21

Find an expression for the voltage v2(t) for t> 0 in the circuit of

Figure 5.7. The source v1(t), the current iL(0�) through L¼ 2 H,

and the voltage vc(0�) across the capacitor C¼ 1 F at the

switching instant are all assumed to be known.

SOLUTION

After the switch is closed, the circuit is described by the loop

equations

3i1 þ
2di1

dt

� �

� 1i2 þ
2di2

dt

� �

¼ v2(t)

� 1i1 þ
2di1

dt

� �

þ 3i2 þ
2di2

dt
þ
ð

i2dt

� �

¼ 0

v2(t) ¼ 2i2(t):

All terms in these equations are Laplace transformed. The

result is the set of equations

(3þ 2s)I1(s)� (Iþ 2s)I2(s)¼ V1(s)þ 2[i1(0þ)� i2(0þ)]

�(1þ 2s)I1(s)þ 3þ 2sþ 1

s

� �

I2(s)¼ 2[� i1(0þ)þ i2(0þ)]� q2(0þ)

s

V2(s)¼ 2I2(s):

The current through the inductor is

iL(t) ¼ i1(t)� i2(t):

At the instant t¼ 0þ

iL(0þ) ¼ i1(0þ)� i2(0þ):

Also, because

1

C
q2(t) ¼

1

C

ð

t

�1

i2(t)dt

¼ 1

C
lim
t!0þ

ð

t

0

i2(t)dt þ
1

C

ð

0

�1

i2(t)dt ¼ 0þ vc(0�),

then

q2(0þ)

C
¼D vc(0þ) ¼ vc(0�) ¼ i(�1)

2 (0) ¼ q2(0þ)

1
:

The equation set is solved for I2(s), which is written by

Cramer’s rule

I2(s) ¼

3þ 2s V1(s)þ 2iL(0þ)

�(1þ 2s) �2iL(0þ)� vc (0þ)
s

�

�

�

�

�

�

�

�

�

�

3þ 2s �(1þ 2s)

�(1þ 2s) 3þ 2sþ 1
s

�

�

�

�

�

�

�

�

�

�

¼ (3þ 2s) �2iL(0þ)� vc (0þ)
s

� 	

þ (1þ 2s)[V1(s)þ 2iL(0þ)]

(3þ 2s) 2s2þ3sþ1
s

� 

� (1þ 2s)2

¼ �(2s2 þ 3s)vc(0þ)� 4siL(0þ)þ (2s2 þ s)V1(s)

8s2 þ 10sþ 3
:

Further

V2(s) ¼ 2I2(s):

Then, upon taking the inverse transform

v1(t) ¼ 2+�1{I2(s)}:

If the circuit contains no stored energy at t¼ 0, then iL(0þ)¼
vc(0þ)¼ 0 and now

v2(t) ¼ 2+�1 (2s2 þ s)V1(s)

8s2 þ 10sþ 3

� �

:

2 Ω

υc

2 Ωs

+

v1 (t)

1 Ω

1 F

+

2 HiL

i1

+

v2 (t)i2

FIGURE 5.7 The circuit for Example 5.21.
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For the particular case when vl¼ u(t) so that V1(s)¼ 1=s

v2(t) ¼ 2+�1
2sþ 1

8s2 þ 10sþ 3

� �

¼ 2+�1
2sþ 1

8 sþ 1
2

� 

(sþ 3=4)

( )

¼ 1

2
+�1

1

sþ 3
4

( )

¼ 1

2
e�3t=4 , t � 0:

The validity of this result is readily confirmed because at the

instant t¼ 0þ the inductor behaves as an open circuit and

the capacitor behaves as a short circuit. Thus, at this instant,

the circuit appears as two equal resistors in a simple series

circuit and the voltage is shared equally.

Example 5.22

The input to the RL circuit shown in Figure 5.8a is the recurrent

series of impulse functions shown in Figure 5.8b. Find the

output current.

SOLUTION

The differential equation that characterizes the system is

di(t)

dt
þ i(t) ¼ v(t):

For zero initial current through the inductor, the Laplace

transform of the equation is

(sþ 1)I(s) ¼ V (s):

Now, from the fact that +{d(t)}¼ 1 and the shifting property

of Laplace transforms, we can write the explicit form for V(s),

which is

V (s) ¼ 2þ e�s þ 2e�2s þ e�3s þ 2e�4s þ � � �
¼ (2þ e�s)(1þ e�2s þ e�4s þ � � � )

¼ 2þ e�s

1� e�2s
:

Thus, we must evaluate i(t) from

I(s) ¼ 2þ e�s

1� e�2s

1

sþ 1
¼ 2

(1� e�2s)(sþ 1)
þ e�s

(1� e�2s)(sþ 1)
:

Expand these expressions into

I(s) ¼ 2

sþ 1
1þ e�2s þ e�4s þ e�6s þ � � �
� 

þ 1

sþ 1
e�s þ e�3s þ e�5s þ e�7s þ � � �
� 

:

i(t)

+

R = 1 Ω

(a)

L = 1 H
v(t)

2

1

0 1

(b)

2 3 4 5
t

v(t)

FIGURE 5.8 (a) The circuit, (b) the input pulse train.

i(
t)

3

2

1

0
1 2 3 4 5 6

FIGURE 5.9 The response of the RL circuit to the pulse train.
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The inverse transform of these expressions yields

i(t) ¼ 2e�tu(t)þ 2e�(t�2)u(t � 2)þ 2e�(t�4)u(t � 4)þ � � �
þ e�(t�1)u(t � 1)þ e�(t�3)u(t � 3)þ e�(t�5)u(t � 5)þ � � �

The result has been sketched in Figure 5.9.

5.6 The Inversion Integral

The discussion in Section 5.4 related the inverse Laplace trans-

form to the direct Laplace transform by the expressions

F(s) ¼ +{ f (t)} (5:41a)

f (t) ¼ +�1{F(s)}: (5:41b)

The subsequent discussion indicated that the use of Equation 5.41b

suggested that the f(t) so deduced was unique; that there was no

other f(t) that yielded the specified F(s).We found that although f(t)
represents a real function of the positive real variable t, the trans-
form F(s) can assume a complex variable form.What this means, of

course, is that a mathematical form for the inverse Laplace trans-

form was not essential for linear functions that satisfied the Dirich-

let conditions. In some cases, Table A.5.1 is not adequate for many

functions when s is a complex variable and an analytic form for the

inversion process of Equation 5.41b is required.

To deduce the complex inversion integral, we begin with the

Cauchy second integral theorem, which is written

þ

F(z)

s� z
dz ¼ j2pF(s)

where the contour encloses the singularity as s. The function F(s)
is analytic in the half plane Re(s)� c. If we apply the inverse

Laplace transformation to the function s on both sides of this

equation, we can write

j2p+�1{F(s)} ¼ lim
v!1

ð

sþjv

s�jv

F(z)+�1 1

s� z

� �

dz:

But F(s) is the Laplace transform of f(t); also, the inverse trans-
form of 1=(s� z) is ezt. Then it follows that

f (t) ¼ 1

2pj
lim
v!1

ð

sþjv

s�jv

eztF(z)dz ¼ 1

2pj

ð

sþj1

s�j1

eztF(z)dz: (5:42)

This equation applies equally well to both the one-sided and the

two-sided transforms.

It was pointed out in Section 5.1 that the path of integration

(Equation 5.42) is restricted to value of s for which the direct

transform formula converges. In fact, for the two-sided Laplace

transform, the region of convergence must be specified in order to

determine uniquely the inverse transform. That is, for the two-sided

transform, the regions of convergence for functions of time that are

zero for t> 0, zero for t< 0, or in neither category, must be

distinguished. For the one-sided transform, the region of conver-

gence is given bys, wheres is the abscissa of absolute convergence.

The path of integration in Equation 5.42 is usually taken as

shown in Figure 5.10 and consists of the straight line ABC
displayed to the right of the origin by s and extending in the

limit from �j1 to þj1 with connecting semicircles. The evalu-

ation of the integral usually proceeds by using the Cauchy inte-

gral theorem, which specifies that

f (t) ¼ 1

2pj
lim
R!1

þ

G1

F(s)estds

¼
X

residues of F(s)estat the singularities

to the left of ABC; t > 0: (5:43)

But the contribution to the integral around the circular path with

R!1 is zero, leaving the desired integral along the pathABC, and

f (t) ¼ 1

2pj
lim
R!1

þ

G2

F(s)estds

¼ �
X

residues of F(s)est at the singularities

to the right of ABC; t < 0: (5:44)

We will present a number of examples involving these equations.

Example 5.23

Use the inversion integral to find f(t) for the function

F(s) ¼ 1

s2 þ w2
:

Note that by entry 15 of Table A.5.1, this is sin wt=w.

jω

R

C t < 0

B

A

σ

σ

Г1 Г1

Г2

Г2

t > 0

FIGURE 5.10 The path of integration in the s-plane.
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SOLUTION

The inversion integral is written in a form that shows the poles

of the integrand.

f (t) ¼ 1

2pj

þ

est

(sþ jw)(s� jw)
ds:

The path chosen is G1 in Figure 5.10. Evaluate the residues

Res (s� jw)
est

s2 þ w2


 �

s¼jw
¼ est

sþ jw

�

�

�

�

s¼jw
¼ e jwt

2wj

Res (sþ jw)
est

s2 þ w2


 �

s¼�jw
¼ est

s� jw

�

�

�

�

s¼�jw
¼ e�jwt

�2wj :

Therefore,

f (t) ¼
X

Res ¼ e jwt � e�jwt

2jw
¼ sinwt

w
:

Example 5.24

Evaluate +� 1=
ffiffi

s
p� �

.

SOLUTION

The function F(s) ¼ ffiffi

s
p

is a double-valued function because of

the square root operation. That is, if s is represented in polar

form by re ju, re j(uþ 2p) is a second acceptable representation,

and
ffiffi

s
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rej(uþ2p)
p

¼ �
ffiffiffiffiffiffiffi

reju
p

, thus showing two different

values for
ffiffi

s
p

. But a double-valued function is not analytic

and requires a special procedure in its solution.

The procedure is to make the function analytic by restrict-

ing the angle of s to the range �p< u<p and by excluding

the point s¼ 0. This is done by constructing a branch cut

along the negative real axis, as shown in Figure 5.11. The end

of the branch cut, which is the origin in this case, is called a

branch point. Because a branch cut can never be crossed, this

essentially ensures that F(s) is single valued. Now, however, the

inversion integral (Equation 5.43) becomes for t> 0

f (t) ¼ lim
R!1

1

2pj

ð

GAB

F(s)estds ¼ 1

2pj

ð

sþj1

s�j1

F(s)estds

¼ � 1

2pj

ð

BC

þ
ð

G2

þ
ð

‘�

þ
ð

g

þ
ð

‘þ

þ
ð

G3

þ
ð

FG

2

6

4

3

7

5
, (5:45)

which does not include any singularity.

First we will show that for t> 0 the integrals over the con-

tours BC and CD vanish as R ! 1, from which
Ð

G2
¼

Ð

G3
¼ GBC ¼

Ð

FG
¼ 0. Note from Figure 5.11 thatb¼ cos�1(s=R)

so that the integral over the arc BC is, because je juj ¼ 1,

Ij j �
ð

BC

este jvt

R
1
2 eju=2

jRe judu

�

�

�

�

�

�

�

�

�

�

¼ est
ffiffiffi

R
p ð

p=2

b

du

¼ est
ffiffiffi

R
p p

2
� cos�1 s

R

� �

¼ est
ffiffiffi

R
p

sin�1 s

R

But for small arguments sin�1(s=R)¼s=R, and in the limit as

R ! 1, I ! 0. By a similar approach, we find that the integral

over CD is zero. Thus, the integrals over the contours G2 and

G3 are also zero as R ! 1.

For evaluating the integral over g, let s¼ reju¼ r(cos uþ
j sin u) and

ð

g

F(s)estds ¼
ð

p

�p

er( cos uþj sin u)t

ffiffiffiffi

re
p ju=2

jre judu ¼ 0 as r ! 0:

The remaining integrals in Equation 5.45 are written

f (t) ¼ � 1

2pj

ð

‘�

F(s)estdsþ
ð

‘þ

F(s)estds

2

4

3

5: (5:46)

Along path l�, let s¼ ue jp¼�u;
ffiffi

s
p ¼ j

ffiffiffi

u
p

, and ds¼�du,

where u and
ffiffiffi

u
p

are real positive quantities. Then

ð

‘�

F(s)estds ¼ �
ð

0

1

e�ut

j
ffiffiffi

u
p du ¼ 1

j

ð

1

0

e�ut

j
ffiffiffi

u
p du:

Along path lþ, s ¼ �ue j2p ¼ �u,
ffiffi

s
p ¼ �j

ffiffiffi

u
p

(notþ j
ffiffiffi

u
p

),

and ds ¼ �du: Then

ð

‘þ

F(s)estds ¼ �
ð

1

0

e�ut

�j
ffiffiffi

u
p du ¼ 1

j

ð

1

0

e�ut

j
ffiffiffi

u
p du:

jω

C

D

E

F G

σ

σ
γ

B

R
Г1

Г2

Г3

β

A
Hl–

l+

FIGURE 5.11 The integration contour for +�1{1=
ffiffi

s
p

}.
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Combine these results to find

f (t) ¼ � 1

2pj

2

j

ð

1

0

u�
1
2e�utdu

2

4

3

5 ¼ 1

p

ð

1

0

u�
1
2e�utdu,

which is a standard form integral with the value

f (t) ¼ 1

p

ffiffiffiffi

p

t

r

¼ 1
ffiffiffiffiffi

pt
p , t > 0:

Example 5.25

Find the inverse Laplace transform of the function

F(s) ¼ 1

s(1þ e�s)
:

SOLUTION

The integrand in the inversion integral est

s(1þe�s) possesses

simple poles at: s¼ 0 and s¼ jnp, n ¼ �1,�3,�1 . . . (odd

values). These are illustrated in Figure 5.12. We see that the

function est=s(1þ e�s) is analytic in the s-plane except at the

simple poles at s¼ 0 and s¼ jnp. Hence, the integral is

specified in terms of the residues in the various poles. We

have, specifically

Res
sest

s(1þ e�s)

� ��

�

�

�

s¼0

¼ 1

2
for s ¼ 0

Res
(s� jn)est

s(1þ e�s)

� ��

�

�

�

s¼jn

¼ 0

0
for s ¼ jnp:

(5:47)

The problem we now face in this evaluation is that

Res (s� a)
n(s)

d(s)

� ��

�

�

�

s¼a

¼ 0

0

where the roots of d(s) are such that s¼ a cannot be factored.

However, we know from complex function theory that

d[d(s)]

ds

�

�

�

�

s¼a

¼ lim
s!a

d(s)� d(a)

s� a
¼ lim

s!a

d(s)

s� a

because d(a)¼ 0. Combine this result with the above equation

to obtain

Res (s� a)
n(s)

d(s)

� ��

�

�

�

s¼a

¼ n(s)
d
ds
[d(s)]

�

�

�

�

�

s¼a

: (5:48)

By combining Equation 5.48 with Equation 5.47, we obtain

Res
est

s d
ds
(1þ e�s)

( )�

�

�

�

�

s¼jnp

¼ e jnpt

jnp
n odd:

We obtain, by adding all of residues,

f (t) ¼ 1

2
þ
X

1

n¼�1

e jnpt

jnp
:

This can be rewritten as follows

f (t) ¼ 1

2
þ � � � þ e�j3pt

�j3p
þ e�jpt

�jp
þ e jpt

jp
þ e j3pt

j3p
þ � � �


 �

¼ 1

2
þ
X

1

n odd
n¼1

2j sin npt

jnp
:

This assumes the form

f (t) ¼ 1

2
þ 2

p

X

1

k¼1

sin (2k � 1)pt

2k � 1
: (5:49)

As a second approach to a solution to this problem, we will

show the details in carrying out the contour integration for

this problem. We choose the path shown in Figure 5.12 that

includes semicircular hooks around each pole, the vertical

connecting line from hook to hook, and the semicircular

path at R ! 1. Thus, we examine

f (t) ¼ 1

2pj

þ

est

s(1þ e�s)
ds

¼ 1

2pj

ð

I1
BCA

þ
ð

I2
vertical connecting lines

þ
X

ð

I3
Hooks

�
X

Res

2

6

6

4

3

7

7

5

: (5:50)

We consider the several integrals in this equation.

R

σ

B (k + 1)th pole
k th pole

–k th pole
(–k + 1)th pole

s-plane

C

A

jω

FIGURE 5.12 The pole distribution of the given function.
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Integral I1. By setting s¼ re ju and taking into consideration

that cos u¼�cos u for u>p=2, the integral I1! 0 as r!1.

Integral I2. Along the Y-axis, s¼ jy and

I2 ¼ j

ð

1

r!0
�1

e jyt

jy(1þ e�jy )
dy:

Note that the integrand is an odd function, whence I2¼ 0.

Integral I3. Consider a typical hook at s¼ jnp. The result is

lim
s!jnp
r!0

(s� jn)est

s(1þ e�s)


 �

¼ 0

0
�

This expression is evaluated (as for Equation 5.47) and yields

e jnpt=jnp. Thus, for all poles

I3 ¼
1

2pj

ð

p
2

�p
2

est

s(1þ e�s)
ds ¼ jp

2pj

X

1

n odd
n¼�1

e jnpt

jnp
þ 1

2

2

4

3

5

¼ 1

2

1

2
þ 2

p

X

1

n odd
n¼1

sin npt

n

2

6

4

3

7

5
:

Finally, the residues enclosed within the contour are

Res
est

s(1þ e�s)
¼ 1

2
þ
X

1

n odd
n¼�1

ejnpt

jnp
¼ 1

2
þ 2

p

X

1

n odd
n¼1

sin npt

n
,

which is seen to be twice the value around the hooks. Then

when all terms are included in Equation 5.50, the final result is

f (t) ¼ 1

2
þ 2

p

X

1

n odd
n¼1

sin npt

n
¼ 1

2
þ 2

p

X

1

k¼1

sin (2k � 1)pt

2k � 1
�

We now shall show that the direct and inverse transforms

specified by Equation 5.30 and listed in Table A.5.1 constitute

unique pairs. In this connection, we see that Equation 5.42 can

be considered as proof of the following theorem:

THEOREM 5.17

Let F(s) be a function of a complex variable s that is analytic and
of order O(s�k) in the half-plane Re(s)� c, where c and k are real
constants, with k> 1. The inversion integral (Equation 5.42)

written +�1
t {F{(s)} along any line x¼s, with s� c converges

to the function f(t) that is independent of s,

f (t) ¼ +�1
t {F(s)}

whose Laplace transform is F(s),

F(s) ¼ +{ f (t)}, Re(s) � c:

In addition, the function f(t) is continuous for t> 0 and f(0)¼ 0,

and f(t) is of the order O(ect) for all t> 0.

Suppose that there are two transformable functions f1(t) and
f2(t) that have the same transforms

+{ f1(t)} ¼ +{ f2(t)} ¼ F(s):

The difference between the two functions is written f(t)

f(t) ¼ f1(t)� f2(t)

where f(t) is a transformable function. Thus,

+{f(t)} ¼ F(s)� F(s) ¼ 0:

Additionally,

f(t) ¼ +�1
t {0} ¼ 0, t > 0:

Therefore, this requires that f1(t)¼ f2(t). The result shows that it
is not possible to find two different functions by using two

different values of s in the inversion integral. This conclusion

can be expressed as follows:

THEOREM 5.18

Only a single function f(t) that is sectionally continuous, of expo-
nential order, and with a mean value at each point of discontinuity,

corresponds to a given transform F(s).

5.7 Applications to Partial Differential
Equations

The Laplace transformations can be very useful in the solution

of partial differential equations. A basic class of partial differ-

ential equations is applicable to a wide range of problems.

However, the form of the solution in a given case is critically

dependent on the boundary conditions that apply in any par-

ticular case. In consequence, the steps in the solution often will

call on many different mathematical techniques. Generally, in

such problems the resulting inverse transforms of more com-

plicated functions of s occur than those for most linear systems

problems. Often the inversion integral is useful in the solution

of such problems. The following examples will demonstrate the

approach to typical problems.

Example 5.26

Solve the typical heat conduction equation

q2w

qx2
¼ qw

qt
, 0 < x < 1, t � 0 (5:51)
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subject to the conditions

C-1: w(x, 0) ¼ f (x), t ¼ 0

C-2:
qw

qx
¼ 0, w(x, t) ¼ 0 x ¼ 0:

SOLUTION

Multiply both sides of Equation 5.51 by e�sx dx and integrate

from 0 to1.

F(s, t) ¼
ð

1

0

e�sxw(x, t)dx:

Also

ð

1

0

q2w

qx2
e�sxdx ¼ s2F(s, t)� sw(0þ)� qw

qx
(0þ):

Equation 5.51 thus transforms, subject to C-2 and zero bound-

ary conditions, to

dF

dt
� s2F ¼ 0:

The solution to this equation is

F ¼ Aes
2t:

By an application of condition C-1, in transformed form, we have

F ¼ A ¼
ð

1

0

f (l)e�sldl:

The solution, subject to C-1, is then

F(s, t) ¼ eþs
2t

ð

1

0

f (l)e�sldl:

Now apply the inversion integral to write the function in terms

of x from s,

w(x, t) ¼ 1

2pj

ð

1

�1

eþs
2t

ð

1

0

f (l)e�sldl

2

4

3

5esxds

¼ 1

2pj

ð

1

�1

f (l)dl

ð

1

0

es
2t�slþsxds:

Note that we can write

s2t � s(x � l) ¼ s
ffiffi

t
p
� (x � l)

2
ffiffi

t
p

� �2

� (x � l)2

4t
:

Also write

s
ffiffi

t
p
� (x � l)

2
ffiffi

t
p ¼ u:

Then

w(x, t) ¼ 1

2pj

ð

1

�1

f (l) exp� (x � l)2

4t


 �

dl

ð

1

0

e�u
2 du
ffiffi

t
p :

But the integral

ð

1

0

e�u
2

du ¼
ffiffiffiffi

p
p

:

Thus, the final solution is

w(x, t) ¼ 1

2
ffiffiffiffiffi

pt
p

ð

1

�1

f (l)e�
(x�l)2

4t dl:

Example 5.27

A semi-infinite medium, initially at temperature w¼ 0

throughout the medium, has the face x¼ 0 maintained at

temperature w0. Determine the temperature at any point of

the medium at any subsequent time.

SOLUTION

The controlling equation for this problem is

q2w

qx2
¼ 1

K

qw

qt
(5:52)

with the boundary conditions:

a. w¼w0 at x¼ 0, t> 0

b. w¼ 0 at t¼ 0, x> 0.

To proceed, multiply both sides of Equation 5.52 by e�st dt
and integrate from 0 to 1. The transformed form of Equa-

tion 5.52 is

d2F

dx2
� s

K
F

� �

¼ 0, K > 0:

The solution of this differential equation is

F ¼ Ae�x
ffiffiffiffiffi

s=k
p
þ Bex

ffiffiffiffiffi

s=k
p

:
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But F must be finite or zero for infinite x; therefore, B¼ 0 and

F(s, x) ¼ Ae�
ffiffi

s
K

p
x :

Apply boundary condition (a) in transformed form, namely

F(0, s) ¼
ð

1

0

e�stw0dt ¼
w0

s
for x ¼ 0:

Therefore,

A ¼ w0

s

and the solution in Laplace transformed form is

F(s, x) ¼ w0

s
e�

ffiffi

s
K

p
x : (5:53)

To find w(x, t) requires that we find the inverse transform of

this expression. This requires evaluating the inversion integral

w(x, t) ¼ w0

2pj

ð

sþj1

s�j1

e�x
ffiffi

s
K

p
est

s
ds: (5:54)

This integral has a branch point at the origin (see Figure 5.13).

To carry out the integration, we select a path such as that

shown (see also Figure 5.11). The integral in Equation 5.54 is

written

w(x, t) ¼ w0

2pj

ð

BC

þ
ð

G2

þ
ð

l�

þ
ð

g

þ
ð

lþ

þ
ð

G3

þ
ð

FG

2

6

4

3

7

5
:

As in Example 5.24

ð

G2

¼
ð

G3

¼
ð

BC

¼
ð

FG

¼ 0:

For the segments

ð

‘�

, let s ¼ rejp and for

ð

‘þ

, let s ¼ rejp:

Then for ‘� and ‘þ, writing this sum I‘,

I‘ ¼
1

2pj

ð

1

0

e�st ejx
ffiffiffiffiffi

s=K
p

� e�jx
ffiffiffiffiffi

s=K
ph i ds

s

¼ � 1

p

ð

1

0

e�st sin x

ffiffiffi

s

K

r

ds

s
:

Write

u ¼
ffiffiffi

s

K

r

, s ¼ ku2 , ds ¼ 2ku du:

Then we have

I‘ ¼ �
2

p

ð

1

0

e�Ku
2t sin ux

du

u
:

This is a known integral that can be written

Il ¼ �
2
ffiffiffiffi

p
p

ð

x

2
ffiffi

Kt
p

0

e�u
2

du:

Finally, consider the integral over the hook,

Iy ¼
1

2pj

ð

g

est
ex
ffiffiffiffiffi

s K=
p

s
ds:

Let us write

s ¼ re ju , ds ¼ jre judu,
ds

s
¼ ju,

then

Ig ¼
j

2pj

ð

etre
ju

ex
ffiffiffiffiffi

r K=
p

e ju=2 du:

jω

C

D

E

F G

σ

σ

γ

B

Г1

Г2

Г3

A
l–

l+

FIGURE 5.13 The path of integration.
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For r ! 0, Ig ¼ j 2p
2pj ¼

2pj
2pj , then Ig¼ 1. Hence, the sum of the

integrals in Equation 5.53 becomes

w(t) ¼ w0 1� 2
ffiffiffiffi

p
p

ð

x

2
ffiffi

Kt
p

0

e�u
2

du ¼ w0 1� erf
x

2
ffiffiffiffi

Kt
p


 �

2

6

4

3

7

5
:

(5:55)

Example 5.28

A finite medium of length l is at initial temperature w0. There is

no heat flow across the boundary at x¼ 0, and the face at x¼ l

is then kept at w1 (see Figure 5.14). Determine the tempera-

ture w(t).

SOLUTION

Here we have to solve

q2w

qx2
¼ 1

k

qw

qt

subject to the boundary conditions:

a: w ¼ w0 t ¼ 0 0 � x � l

b: w ¼ w1 t > 0 x ¼ 1

c:
qw

qx
¼ 0 t > 0 x ¼ 0:

Upon Laplace transforming the controlling differential equa-

tion, we obtain

d2F

dx2
� s

k
F ¼ 0:

The solution is

F ¼ A0e�x
ffiffi

s
k

p
þ B0ex

ffiffi

s
k

p
¼ A cosh x

ffiffiffi

s

k

r

þ B sinh x

ffiffiffi

s

k

r

:

By condition c

dF

dx
¼ 0 x ¼ 0 t > 0:

This imposes the requirement that B¼ 0, so that

F ¼ A cosh x

ffiffiffi

s

k

r

:

Now condition b is imposed. This requires that

w1

s
¼ A cosh

ffiffiffi

s

k

r
�

:

Thus, by b and c

F ¼ w1

cosh x
ffiffi

s
k

p

s cosh
ffiffi

s
k

p� :

Now, to satisfy c we have

F ¼ w0

s
� w0

s

cosh x
ffiffi

s
k

p

cosh
ffiffi

s
k

p� :

Thus, the final form of the Laplace transformed equation that

satisfies all conditions of the problem is

F ¼ w0

s
þ w1 � w0

s

cosh x
ffiffi

s
k

p

cosh
ffiffi

s
k

p� :

To find the expression for w(x, t), we must invert this expres-

sion. That is,

w(x, t) ¼ w0 þ
w1 � w0

2pj

ð

sþj1

s�j1

est
cosh x

ffiffi

s
k

p

cosh
ffiffi

s
k

p�

ds

s
: (5:56)

The integrand is a single valued function of s with poles

at s¼ 0 and s ¼ �k 2n�1
2

� 2 p2

l2
, n ¼ 1, 2, . . . :

We select the path of integration that is shown in Figure

5.15. But the inversion integral over the path BCA(¼G)¼ 0.

Thus, the inversion integral becomes

1

2pj

ð

sþj1

s�j1

est
cosh x

ffiffi

s
k

p

cosh
ffiffi

s
k

p

ds
s
:

�

By an application of the Cauchy integral theorem, we require

the residues of the integrand at its poles. There results

Resjs¼0 ¼ 1

Insulator

Insulator

In
su

la
to

r

0 l
x

(t) 1

FIGURE 5.14 Details for Example 5.28.
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Resj
s¼�k n�1

2ð Þ2p2
l2

¼ e�k n�1
2ð Þ2p2

l2 cosh j n� 1
2

� 
px
l

s d
ds

cosh l
ffiffi
s
k

p� �

s¼�k n�1
2ð Þ2p2

l2


 � :

Combine these with Equation 5.55 to write finally

w(x, t) ¼ w0 þ
4(w1 � w0)

p

X

1

n¼1

(�1)n
2n� 1

l�k n�1
2ð Þ2p2=l2

� cos n� 1

2

� �

px=l


 �

: (5:57)

Example 5.29

A circular cylinder of radius a is initially at temperature zero.

The surface is then maintained at temperature w0. Determine

the temperature of the cylinder at any subsequent time t.

SOLUTION

The heat conduction equation in radial form is

q2w

qr2
þ 1

r

qw

qr
¼ 1

k

qw

qt
, 0 � r < a, t > 0: (5:58)

And for this problem the system is subject to the boundary

conditions

C-1. w¼ 0 t¼ 0 0� r< a

C-2. w¼w0 t> 0 r¼ a.

To proceed, we multiply each term in the partial differen-

tial equation by e�st dt and integrate. We write

ð

1

0

we�st dt ¼ F(r, s)

Then Equation 5.57 transforms to

k
d2F

dr2
þ 1

r

dF

dr

� �

� sF ¼ 0,

which we write in the form

d2F

dr2
þ 1

r

dF

dr
� mF ¼ 0, m ¼

ffiffiffi

s

k

r

:

This is the Bessel equation of order 0 and has the solution

F ¼ AI0 mrð Þ þ BN0 mrð Þ:

However, the Laplace transformed form of C-1 when z¼ 0

imposes the condition B¼ 0 because N0(0) is not zero. Thus,

F ¼ AI0(mr):

The boundary condition C-2 requires F(r, a) ¼ w0

s
when r¼ a,

hence,

A ¼ w0

s

1

I(ma)

so that

F ¼ w0

s

I0(mr)

I0(ma)
:

To find the function w(r, t) requires that we invert this function.
By an application of the inversion integral, we write

w(r, t) ¼ w0

2pj

ð

sþj1

s�j1

elt
I0(jr)

I0(ja)

dl

l
, j ¼

ffiffiffi

l

k

r

: (5:59)

Note that I0(jr)=I0(ja) is a single-valued function of l. To evalu-

ate this integral, we choose as the path for this integration that

shown in Figure 5.16. The poles of this function are at l¼ 0

and at the roots of the Bessel function J0(ja) (¼ I0(jja)); these

occur when J0(ja)¼ 0, with the roots for J0(ja)¼ 0, namely

l ¼ �kj21 , � kj22 , . . .. The approximations for I0(jr) and I0(ja)
show that when n ! 1 the integral over the path BCA tends

to zero. The resultant value of the integral is written in terms of

the residues at zero and when l ¼ kj2n . These are

Resj¼0 ¼ 1

Res kj2n
¼ ldI0(ja)

dl

�

�

�

�

�

�

�

�

kj2n

:

Therefore,

w(r, t) ¼ w0 1þ
X

n

e�kj2nt
J0(jnr)

l d
dl I0(ja)jl¼kj2n

" #

:

jω

C

R

A

σ

σ

B

Г

FIGURE 5.15 The path of integration for Example 5.28.
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Further, l d
dl I0(jna) ¼ 1

2
jaI(1)0 (ja). Hence, finally,

w(t) ¼ w0 1þ 2

a

X

1

n¼1
e�kj

2
nt

J0(jnr)

jnJ
(1)
0 (jna)

" #

: (5:60)

Example 5.30

A semi-infinite stretched string is fixed at each end. It is given

an initial transverse displacement and then released. Deter-

mine the subsequent motion of the string.

SOLUTION

This requires solving the wave equation

a2
q2w

qx2
¼ q2w

qt2
(5:61)

subject to the conditions

C-1. w(x, 0)¼ f(x) t¼ 0, w(0, t)¼ 0 t> 0

C-2. limx!1 w(x, t)¼ 0.

To proceed, multiply both sides of Equation 5.61 by e�st dt
and integrate. The result is the Laplace-transformed equation

a2
d2F

dx2
¼ s2F� sw(0þ), x > 0: (5:62)

C-1. F(0, s)¼ 0

C-2. limx!1 F(x, s)¼ 0.

To solve Equation 5.62 we will carry out a second Laplace

transform, but this with respect to x, that is +{F (x, s)}¼N(z, s).

Thus,

N(z, s) ¼
ð

1

0

F(x, s)e�zx dx:

Apply this transformation to both members of Equation 5.62

subject to F(0, s)¼ 0. The result is

s2N(z, s)� sF(z) ¼ a2 z2N(z, s)� qF

qx
(0, s)


 �

, F(z) ¼ +{w0}:

We denote qF
qx
(0, s) by C. Then the solution of this equation is

N(z, s) ¼ C

z2 � s2

a2

� s

a2
F(z)

1

z2 � s2

a2

:

The inverse transformation with respect to z is, employing

convolution.

F(x, s) ¼ aC

s
sinh

sx

a
� 1

a

ð

x

0

w(j) sinh
s

a
(x � j)dj:

To satisfy the condition limx!1 F(x, s)¼ 0 requires that the

sinh terms be replaced by their exponential forms. Thus, the

factors

sinh
sx

a
! 1

2
, sinh

s

a
(x � j)! e�sj a=

2
, x !1:

Then we have the expression

F(x, s) ¼ aC

2s
� 1

2a

ð

x

0

w(j)e�sj a= dj:

But for this function to be zero for x !1 requires that

aC

s
¼ 1

a

ð

1

0

w(j)e�sj a= dj, x !1:

Combine this result with F(x, s) to get

2aF(x, s) ¼
ð

1

0

w(j)e�s(j�x)=a dj�
ð

1

0

w(j)e�s(xþj)=a dj

þ
ð

x

0

w(j)e�s(x�j) a= dj:

Each integral in this expression is integrated by parts. Here

we write

u ¼ w(j), du ¼ w(1)(j)dj; dv ¼ e�
s(j�x)

a dj, v ¼ a

s
e�s(j�k)=a:

jω

C

B

A

σ
0

FIGURE 5.16 The path of integration for Example 5.29.
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The resulting integrations lead to

F(x, s) ¼ 1

s
w(x)þ 1

2s

ð

1

x

w(1)(j)e�
s(j�x)

a dj� 1

2s

ð

1

0

w(1)(j)e�
s(xþj)

a dj

� 1

2s

ð

1

0

w(1)(j)e�
s(x�j)

a dj:

We note by entry 61, Table A.5.1 that

+�1
1

s
e
�s(j�x)

a

� �

¼ 1 when at > j� x

¼ 0 when at < j� x:

This function of j vanishes except when j� xþ at. Thus,

+�1 1

2

ð

1

x

w(1)(j)e�s(jþx)=adj

8

<

:

9

=

;

¼ 1

2

ð

xþat

x

w(1)(j)dj

¼ 1

2
w(x þ at)� 1

2
w(x):

Proceed in the same way for the term

+�1 1

2

ð

1

0

w(1)(j)e�s(xþj)=adj

8

<

:

9

=

;

¼ 1 when at > x þ j

¼ 0 when at < x þ j:

Thus, the second term becomes

+�1 1

2

ð

1

x

w(1)(j)e�s(xþj)=adj

8

<

:

9

=

;

¼ 1

2

ð

xþat

x

w(1)(j)dj

¼ 1

2
w(x � at):

The final term becomes

� 1
2
w(x) when at > x

� 1
2
w(x)þ 1

2
w(x � at) when at < x:

The final result is

w(x, t) ¼ 1

2
[f (at þ x)� f (at � x)] when t > x a=

¼ 1

2
[f (x þ at)þ f (x � at)] when t < x a= : (5:63)

Example 5.31

A stretched string of length l is fixed at each end as shown

in Figure 5.17. It is plucked at the midpoint and then released

at t¼ 0. The displacement is b. Find the subsequent motion.

SOLUTION

This problem requires the solution of

q2y

qy2
¼ c2

q2y

qt2
, 0 < y < l, t > 0 (5:64)

subject to

1: y ¼ 2bx

l
0 < x < l=2

2: y ¼ 2b

l
(l � x)

1

2
< x < l

9

>

>

=

>

>

;

t ¼ 0

3:
qy

qt
¼ 0 0 < x < l t ¼ 0

4: y ¼ 0 x ¼ 0; x ¼ l t > 0:

To proceed, multiply Equation 5.63 by e�stdt and integrate in t.

This yields

s2Y � sy(0) ¼ c2
d2Y

dx2

or

c2
d2Y

dx2
� s2Y ¼ sy(0) ¼ �sf (x) (5:65)

subject to Y(0, s)¼ Y(l, s)¼ 0. To solve this equation, we pro-

ceed as in Example 5.30; that is, we apply a transformation

on x, namely +{Y(x, s)}¼N(z, s). Thus,

s2N(z, s)� sY(0) ¼ c2 z2N(z, s)� y(0, s)

x


 �

:

This equation yields, writing sY(0) as F(x, s),

N(z, s) ¼ F(z, s)

z2 � s2

c2

0 l/2

b

l

FIGURE 5.17 A stretched string plucked at its midpoint.
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The inverse transform is

Y(x, s) ¼ +�1{N(x, s)} ¼ F(x, s)

c sinh s
c

where

F(x, s) ¼ sinh
(l � x)s

c

ð

x

0

y(j) sinh
js

c
dj

þ sinh
xs

c

ð

l

0

y(j) sinh
(l � j)s

c
dj:

Combine these integrals with the known form of f(x) in C-1

and C-2. Upon carrying out the integrations, the resulting

forms become, with k ¼ s
c
,

lY

2b
¼ x

s
� c

s2
sinh kx

cosh kl
2

, 0 � x � l=2

lY

2b
¼ (l � x)

s
� c sinh k(l � x)

s2 cosh kl
2

,
l

2
� x � l:

To find y(t), we must invert these expressions. Note that

symmetry exists and so we need consider only the first term.

We use the inversion integral on the term 1
s2

sinh kx
coshkl

2

. Thus, we

consider the integral

I ¼ 1

2pj

ð

sþj1

s�j1

elb
sinh xl

c

cosh xl
2c

dl

l2
:

We choose the path in the l-plane as shown in Figure 5.18. The
value of the integral over path G is zero. Thus, the value of the

integral is given in terms of the residues. These occur at l¼ 0

and at the values for which cosh l
2c
¼ 0, which exist where

l

2c
¼ j

2n� 1

l

p

2
or l ¼ �j

2n� 1

l
pc:

Thus, we have, by the theory of residues

Resjl¼0¼
x

c

Resjj2n�1
l pc¼ e j(2n�1) pcx

l

sinh j(2n� 1) px
l

d
dl l2 cosh ll

2c

� 	

j2n�1
l
pc

:

These poles lead to

¼ (�1)n
2l

p2c

sin (2n� 1) px
l

(2n� 1)2
ej(2n�1)pc

l
t:

Thus, the poles at �j(2n� 1)pc
l
lead to

¼ (�1)n
4l

p2c

sin (2n� 1) px
l
cos (2n� 1) pc

l
t

(2n� 1)2
:

Then we have

‘y

2b
¼ x

� x þ 4l

p2

X

1

n¼1

(�1)n

(2n� 1)2
sin (2n� 1)

px

l
cos (2n� 1)

pct

l

( )

so that finally

y ¼ 8b

p2

X

1

n¼1

(�1)n�1

(2n� 1)2
sin (2n� 1)

px

l
cos (2n� 1)

pct

l
,

0 � x � l

2
:

For the string for which l
2
� x < l, the corresponding expres-

sion is the same except that (l� x) replaces x.

Note that this equation can be written, with h ¼ (2n� 1) p
l
,

sin hx cos hct ¼ sin h(x � ct)þ sin h(x þ ct)

2
,

which shows the traveling wave nature of the solution.

5.8 The Bilateral or Two-Sided
Laplace Transform

In Section 5.1 we discussed the fact that the region of absolute

convergence of the unilateral or one-sided Laplace transform is

the region to the left of the abscissa of convergence. The situation

for the two-sided Laplace transform is rather different; the region

jω

C

Г

B

λ-plane

A

σ

σ

FIGURE 5.18 The path of integration for Example 5.31.
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of convergence must be specified if we wish to invert a function

F(s) that was obtained using the bilateral Laplace transform. This

requirement is necessary because different time signals might

have the same Laplace transform but different regions of absolute

convergence.

To establish the region of convergence, write the bilateral

Laplace transform in the form

F2(s) ¼
ð

1

�1

e�st f (t)dt ¼
ð

1

0

e�st f (t)dt þ
ð

0

�1

e�st f (t)dt: (5:66)

If the function f(t) is of exponential order (es1 t), then the region

of convergence for t> 0 is Re(s)>s1. If the function f(t) for t< 0

is of exponential order exp(s2t), then the region of convergence

is Re(s)<s2. Hence, the function F2(s) exists and its analytic in

the vertical strip defined by s1<Re(s)<s2, provided, of course,

that s1<s2. If s2>s1, no region of convergence would exist

and the inversion process could not be performed. This region of

convergence is shown in Figure 5.19.

Example 5.32

Find the bilateral Laplace transform of the signals f(t)¼ e�atu(t)
and f(t)¼�e�atu(t) and specify their regions of convergence.

SOLUTION

Using the basic definition of the transform (Equation 5.66), we

obtain

F2(s) ¼
ð

1

�1

e�atu(t)e�stdt ¼
ð

1

0

e�(sþa)tdt ¼ 1

sþ a

and its region of convergence is Re(s)>�a.

For the second signal,

F2(s) ¼
ð

1

�1

�e�atu(�t)e�stdt ¼ �
ð

0

�1

e�(sþa)tdt ¼ 1

sþ a

and its region of convergence is Re(s)<�a.
Clearly, the knowledge of the region of convergence is

necessary to find the time functions unambiguously.

Example 5.33

Find the function f(t), if its Laplace transform is given by

F2(s) ¼
3

(s� 4)(sþ 1)(sþ 2)
, �2 < Re(s) < �1:

SOLUTION

The region of convergence and the paths of integration are

shown in Figure 5.20. For t> 0 we close the contour to the left

and we obtain

f (t) ¼ 3est

(s� 4)(sþ 1)

�

�

�

�

s¼�2
¼ 1

2
e�2t , t > 0:

For t< 0, the contour closes to the right and now

f (t) ¼ 3est

(s� 4)(sþ 2)

�

�

�

�

s¼�1
þ 3est

(sþ 1)(sþ 2)

�

�

�

�

s¼4
¼ � 3

5
e�t þ e4t

10
,

t < 0:

σ
σ0 σ2σ1

jω

σ + jω

σ – jω

FIGURE 5.19 Region of convergence for the bilateral transform.

1 2
σ

t < 0t > 0

s-Plane

–3 –2 3 4

jω

–1

FIGURE 5.20 Illustrating Example 5.33.
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Appendix A

TABLE A.5.1 Laplace Transform Pairs

F(s) f(t)

1 sn d(n)(t) nth derivative of the delta function

2 s
dd(t)

dt

3 1 d(t)

4 1

s

1

5
1

s2
t

6
1

sn
(n ¼ 1, 2, . . . )

tn�1

(n� 1)

7
1
ffiffi

s
p 1

ffiffiffiffiffi

pt
p

8 s�3 2=

ffiffiffiffi

t

p

2

r

9 s�[nþ(1=2)](n ¼ 1, 2, . . . )
2ntn�(1 2= )

1 � 3 � 5 � � � (2n� 1)
ffiffiffiffi

p
p

10
G(k)

sk
(k � 0) tk�1

11
1

s� a
eat

12
1

(s� a)2
teat

13
1

(s� a)n
(n ¼ 1, 2, . . . )

1

(n� 1)
tn�1eat

14
G(k)

(s� a)k
(k � 0) tk�1eat

15
1

(s� a)(s� b)

1

(a� b)
(eat � ebt)

16
s

(s� a)(s� b)

1

(a� b)
(aeat � bebt)

17
1

(s� a)(s� b)(s� c)
� (b� c)eat þ (c� a)ebt þ (a� b)ect

(a� b)(b� c)(c� a)

18
1

(sþ a)
e�at valid for complex a

19
1

s(sþ a)

1

a
(1� e�at)

20
1

s2(sþ a)

1

a2
e�at þ at � 1ð Þ

21
1

s3(sþ a)

1

a2
1

a
� t þ at2

2
� 1

a
e�at


 �

22
1

(sþ a)(sþ b)

1

(b� a)
e�at � e�bt
� 

23
1

s(sþ a)(sþ b)

1

ab
1þ 1

(a� b)
be�at � ae�bt
� 


 �

24
1

s2(sþ a)(sþ b)

1

(ab)2
1

(a� b)
a2e�bt � b2e�at
� 

þ abt � a� b


 �

25
1

s3(sþ a)(sþ b)

1

(ab)

a3 � b3

(ab)2(a� b)
þ 1

2
t2 � (aþ b)

ab
t þ 1

(a� b)

b

a2
e�at � a

b2
e�bt

� �
 �

26
1

(sþ a)(sþ b)(sþ c)

1

(b� a)(c� a)
e�at þ 1

(a� b)(c� b)
e�bt 1

(a� c)(b� c)
e�ct

27
1

s(sþ a)(sþ b)(sþ c)

1

abc
� 1

a(b� a)(c� a)
e�at � 1

b(a� b)(c� b)
e�bt � 1

c(a� c)(b� c)
e�ct

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

28
1

s2(sþ a)(sþ b)(sþ c)

ab(ct � 1)� ac� bc

(abc)2
þ 1

a2(b� a)(c� a)
e�at

þ 1

b2(a� b)(c� b)
e�bt þ 1

c2(a� c)(b� c)
e�ct

8

>

>

<

>

>

:

29
1

s3(sþ a)(sþ b)(sþ c)

1

(abc)3
(abþ acþ bc)2 � abc(aþ bþ c)
� 	

� abþ acþ bc

(abc)2
t þ 1

2abc
t2

� 1

a3(b� a)(c� a)
e�at � 1

b3(a� b)(c� b)
e�bt � 1

c3(a� c)(b� c)
e�ct

8

>

>

<

>

>

:

30
1

s2 þ a2
1

a
sin at

31
s

s2 þ a2
cos at

32
1

s2 � a2
1

a
sinh at

33
s

s2 � a2
cosh at

34
1

s(s2 þ a2)

1

a2
(1� cos at)

35
1

s2(s2 þ a2)

1

a3
(at � sin at)

36
1

(s2 þ a2)2
1

2a3
( sin at � at cos at)

37
s

(s2 þ a2)2
t

2a
sin at

38
s2

(s2 þ a2)2
1

2a
( sin at þ at cos at)

39
s2 � a2

(s2 þ a2)2
t cos at

40
s

(s2 þ a2)(s2 þ b2)
(a2 6¼ b2)

cos at � cos bt

b2 � a2

41
1

(s� a)2 þ b2
1

b
eat sin bt

42
s� a

(s� a)2 þ b2
eat cos bt

43
1

[(sþ a)2 þ b2]n
�e�at
4n�1b2n

X

n

r¼1

2n� r � 1
n� 1

� �

(�2t)r�1 dr

dtr
[ cos (bt)]

44
s

(sþ a)2 þ b2
� 	n

e�at

4n�1b2n

X

n

r¼1

2n� r � 1

n� 1

 !

(�2t)r�1 dr

dtr
[a cos (bt)þ b sin (bt)]

(

�2b
X

n�1

r¼1
r

2n� r � 2

n� 1

 !

(�2t)r�1 dr

dtr
[ sin (bt)]

)

8

>

>

>

>

>

<

>

>

>

>

>

:

45
3a2

s3 þ a3
e�at � e(at)=2 cos

at
ffiffiffi

3
p

2
�

ffiffiffi

3
p

sin
at

ffiffiffi

3
p

2

� �

46
4a3

s4 þ 4a4
sin at cosh at � cos at sinh at

47
s

s4 þ 4a4
1

2a2
( sin at sinh at)

48
1

s4 � a4
1

2a3
( sinh at � sin at)

49
s

s4 � a4
1

2a2
( cosh at � cos at)

50
8a3s2

(s2 þ a2)3
(1þ a2t2) sin at � cos at

51
1

s

s� 1

s

� �n

Ln(t) ¼
et

n!

dn

dtn
(tne�t)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

[Ln(t) is the Laguerre polynomial of degree n]

52
1

(sþ a)n
t(n�1)e�at

(n� 1)!
where n is a positive integer

53
1

s(sþ a)2
1

a2
[1� e�at � ate�at]

54
1

s2(sþ a)2
1

a3
[at � 2þ ate�at þ 2e�at]

55
1

s(sþ a)3
1

a3
1� 1

2
a2t2 þ at þ 1

� �

e�at

 �

56
1

(sþ a)(sþ b)2
1

(a� b)2
e�at þ (a� b)t � 1½ �e�bt
� �

57
1

s(sþ a)(sþ b)2
1

ab2
� 1

a(a� b)2
e�at � 1

b(a� b)
t þ a� 2b

b2(a� b)2


 �

e�bt

58
1

s2(sþ a)(sþ b)2
1

a2(a� b)2
e�at þ 1

ab2
t � 1

a
� 2

b

� �

þ 1

b2(a� b)
t þ 2(a� b)� b

b3(a� b)2


 �

e�bt

59
1

(sþ a)(sþ b)(sþ c)2

1

(c� b)(c� a)
t þ 2c� a� b

(c� a)2(c� b)2


 �

e�ct

þ 1

(b� a)(c� a)2
e�at þ 1

(a� b)(c� b)2
e�bt :

8

>

>

<

>

>

:

60
1

(sþ a)(s2 þ v2)

1

a2 þ v2
e�at þ 1

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ v2
p sin (vt � f); f ¼ tan�1 v

a

� �

61
1

s(sþ a)(s2 þ v2)

1

av2
� 1

a2 þ v2

1

v
sinvt þ a

v2
cosvt þ 1

a
e�at

� �

62
1

s2(sþ a)(s2 þ v2)

1

av2
t � 1

a2v2
þ 1

a2(a2 þ v2)
e�at

þ 1

v3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ v2
p cos (vt þ f); f ¼ tan�1 a

v

� �

8

>

>

<

>

>

:

63
1

(sþ a)2 þ v2
� 	2

1

2v3
e�at[ sin vt � vt cos vt]

64
1

s2 � a2
1

a
sinh at

65
1

s2(s2 � a2)

1

a3
sinh at � 1

a2
t

66
1

s3(s2 � a2)

1

a4
( cosh at � 1)� 1

2a2
t2

67
1

s3 þ a3
1

3a2
e�at � e

a
2t cos

ffiffiffi

3
p

2
at �

ffiffiffi

3
p

sin

ffiffiffi

3
p

2
at

� �
 �

68
1

s4 þ 4a4
1

4a3
( sin at cosh at � cos at sinh at)

69
1

s4 � a4
1

2a3
( sinh at � sin at)

70
1

[(sþ a)2 � v2]

1

v
e�at sinh vt

71
sþ a

s[(sþ a)2 þ v2]

a

b2 þ v2
� 1

v
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� b)2 þ v2

b2 þ v2

s

e�bt sin (vt þ f);

f ¼ tan�1 v

b

� �

þ tan�1 v

a� b

� �

8

>

>

>

<

>

>

>

:

72
sþ a

s2[(sþ b)2 þ v2]

1

b2 þ v2
[1þ at]� 2ab

(b2 þ v2)2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� b)2 þ v2
p

v(b2 þ v2)
e�bt sin (vt þ f)

f ¼ tan�1 v

a� b

� �

þ 2 tan�1 v

b

� �

8

>

>

<

>

>

:

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

73
sþ a

(sþ c)[(sþ b)2 þ v2]

a� c

(c� b)2 þ v2
e�ct þ 1

v
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� b)2 þ v2

(c� b)2 þ v2

s

e�bt sin (vt þ f)

f ¼ tan�1
v

a� b

� �

� tan�1
v

c� b

� �

8

>

>

>

<

>

>

>

:

74
sþ a

s(sþ c)[(sþ b)2 þ v2]

a

c(b2 þ v2)
þ (c� a)

c[(b� c)2 þ v2]
e�ct

� 1

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ v2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a� b)2 þ v2

(b� c)2 þ v2

s

e�bt sin (vt þ f)

f ¼ tan�1
v

b

� �

þ tan�1
v

a� b

� �

� tan�1
v

c� b

� �

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

75
sþ a

s2(sþ b)3
a

b3
t þ b� 3a

b4
þ 3a� b

b4
þ a� b

2b2
t2 þ 2a� b

b3
t


 �

e�bt

76
sþ a

(sþ c)(sþ b)3
a� c

(b� c)3
e�ct þ a� b

2(c� b)
t2 þ c� a

(c� b)2
t þ a� c

(c� b)3


 �

e�bt

77
s2

(sþ a)(sþ b)(sþ c)

a2

(b� a)(c� a)
e�at þ b2

(a� b)(c� b)
e�bt þ c2

(a� c)(b� c)
e�ct

78
s2

(sþ a)(sþ b)2
a2

(b� a)2
e�at þ b2

(a� b)
t þ b2 � 2ab

(a� b)2


 �

e�bt

79
s2

(sþ a)3
2� 2at þ a2

2
t2


 �

e�at

80
s2

(sþ a)(s2 þ v2)

a2

(a2 þ v2)
e�at � v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ v2
p sin (vt þ f); f ¼ tan�1

v

a

� �

81
s2

(sþ a)2(s2 þ v2)

a2

(a2 þ v2)
t � 2av2

(a2 þ v2)2


 �

e�at � v

(a2 þ v2)
sin (vt þ f);

f ¼ �2 tan�1 v
a

� 

8

>

<

>

:

82
s2

(sþ a)(sþ b)(s2 þ v2)

a2

(b� a)(a2 þ v2)
e�at þ b2

(a� b)(b2 þ v2)
e�bt

� v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a2 þ v2)(b2 þ v2)
p sin (vt þ f); f ¼ � tan�1

v

a

� �

þ tan�1
v

b

� �h i

8

>

<

>

:

83
s2

(s2 þ a2)(s2 þ v2)
� a

(v2 � a2)
sin (at)� v

(a2 � v2)
sin (vt)

84
s2

(s2 þ v2)2
1

2v
( sin vt þ vt cos vt)

85
s2

(sþ a)[(sþ b)2 þ v2)]

a2

(a� b)2 þ v2
e�at þ 1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(b2 � v2)2 þ 4b2v2

(a� b)2 þ v2

s

e�bt sin (vt þ f)

f ¼ tan�1
�2bv
b2 � v2

� �

� tan�1
v

a� b

� �

8

>

>

>

>

<

>

>

>

>

:

86
s2

(sþ a)2[(sþ b)2 þ v2]

a2

(a� b)2 þ v2
te�at � 2

a[(b� a)2 þ v2]þ a2(b� a)

[(b� a)2 þ v2]2


 �

e�at

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(b2 � v2)2 þ 4b2v2

v[(a� b)2 þ v2]

s

e�bt sin (vt þ f)

f ¼ tan�1
�2bv
b2 � v2

� �

� 2 tan�1
v

a� b

� �

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

87
s2 þ a

s2(sþ b)

b2 þ a

b2
e�bt þ a

b
t � a

b2

88
s2 þ a

s3(sþ b)

a

2b
t2 � a

b2
t þ 1

b3
b2 þ a� (aþ b2)e�bt
� 	

89
s2 þ a

s(sþ b)(sþ c)

a

bc
þ (b2 þ a)

b(b� c)
e�bt � (c2 þ a)

c(b� c)
e�ct
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

90
s2 þ a

s2(sþ b)(sþ c)
b2 þ a

b2(c� b)
e�bt þ c2 þ a

c2(b� c)
e�ct þ a

bc
t � a(bþ c)

b2c2

91
s2 þ a

(sþ b)(sþ c)(sþ d)

b2 þ a

(c� b)(d � b)
e�bt þ c2 þ a

(b� c)(d � c)
e�ct þ d2 þ a

(b� d)(c� d)
e�dt

92
s2 þ a

s(sþ b)(sþ c)(sþ d)

a

bcd
þ b2 þ a

b(b� c)(d � b)
e�bt þ c2 þ a

c(b� c)(c� d)
e�ct þ d2 þ a

d(b� d)(d � c)
e�dt

93
s2 þ a

s2(sþ b)(sþ c)(sþ d)

a

bcd
t � a

b2c2d2
(bcþ cd þ db)þ b2 þ a

b2(b� c)(b� d)
e�bt

þ c2 þ a

c2(c� b)(c� d)
e�ct þ d2 þ a

d2(d � b)(d � c)
e�dt

8

>

>

>

<

>

>

>

:

94
s2 þ a

(s2 þ v2)2
1

2v3
(aþ v2) sin vt � 1

2v2
(a� v2)t cos vt

95
s2 � v2

(s2 þ v2)2
t cos vt

96
s2 þ a

s(s2 þ v2)2
a

v4
� (a� v2)

2v3
t sin vt � a

v4
cos vt

97
s(sþ a)

(sþ b)(sþ c)2
b2 � ab

(c� b)2
e�bt þ c2 � ac

b� c
t þ c2 � 2bcþ ab

(b� c)2


 �

e�ct

98
s(sþ a)

(sþ b)(sþ c)(sþ d)2

b2 � ab

(c� b)(d � b)2
e�bt þ c2 � ac

(b� c)(d � c)2
e�ct þ d2 � ad

(b� d)(c� d)
te�dt

þ a(bc� d2)þ d(dbþ dc� 2bc)

(b� d)2(c� d)2
e�dt :

8

>

>

>

<

>

>

>

:

99
s2 þ a1sþ a0
s2(sþ b)

b2 � a1bþ a0
b2

e�bt þ a0
b
t þ a1b� a0

b2

100
s2 þ a1sþ a0
s3(sþ b)

a1b� b2 � a0
b3

e�bt þ a0
2b

t2 þ a1b� a0
b2

t þ b2 � a1bþ a0
b3

101
s2 þ a1sþ a0
s(sþ b)(sþ c)

a0
bc
þ b2 � a1bþ a0

b(b� c)
e�bt þ c2 � a1cþ a0

c(c� b)
e�ct

102
s2 þ a1sþ a0
s2(sþ b)(sþ c)

a0
bc

t þ a1bc� a0(bþ c)

b2c2
þ b2 � a1bþ a0

b2(c� b)
e�bt þ c2 � a1cþ a0

c2(b� c)
e�ct

103
s2 þ a1sþ a0

(sþ b)(sþ c)(sþ d)

b2 � a1bþ a0
(c� b)(d � b)

e�bt þ c2 � a1cþ a0
(b� c)(d � c)

e�ct þ d2 � a1d þ a0
(b� d)(c� d)

e�dt

104
s2 þ a1sþ a0

s(sþ b)(sþ c)(sþ d)

a0
bcd
� b2 � a1bþ a0
b(c� b)(d � b)

e�bt � c2 � a1cþ a0
c(b� c)(d � c)

e�ct � d2 � a1d þ a0
d(b� d)(c� d)

e�dt

105
s2 þ a1sþ a0
s(sþ b)2

a0
b2
� b2 � a1bþ a0

b
t e�bt þ b2 � a0

b2
e�bt

106
s2 þ a1sþ a0
s2(sþ b)2

a0
b2

t þ a1b� 2a0
b3

þ b2 � a1bþ a0
b2

te�bt þ 2a0 � a1b

b3
e�bt

107
s2 þ a1sþ a0
(sþ b)(sþ c)2

b2 � a1bþ a0
(c� b)2

e�bt þ c2 � a1cþ a0
(b� c)

te�ct þ c2 � 2bcþ a1b� a0
(b� c)2

e�ct

108
s3

(sþ b)(sþ c)(sþ d)2

b3

(b� c)(d � b)2
e�bt þ c3

(c� b)(d � c)2
e�ct þ d3

(d � b)(c� d)
te�dt

þ d2 d2 � 2d(bþ c)þ 3bc½ �
(b� d)2(c� d)2

e�dt

8

>

>

>

<

>

>

>

:

109
s3

(sþ b)(sþ c)(sþ d)(sþ f )2

b3

(b� c)(d � b)(f � b)2
e�bt þ c3

(c� b)(d � c)(f � c)2
e�ct

þ d3

(d � b)(c� d)(f � d)2
e�dt þ f 3

(f � b)(c� f )(d � f )
te�ft

þ 3f 2

(b� f )(c� f )(d � f )




þf 3 (b� f )(c� f )þ (b� f )(d � f )þ (c� f )(d � f )½ �
(b� f )2(c� f )2(d � f )2

�

e�dt :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

110
s3

(sþ b)2(sþ c)2 � b3

(c� b)2
te�bt þ b2(3c� b)

(c� b)3
e�bt � c3

(b� c)2
te�ct þ c2(3b� c)

(b� c)3
e�ct

111
s3

(sþ d)(sþ b)2(sþ c)2

� d3

(b� d)2(c� d)2
e�dt þ b3

(c� b)2(b� d)
te�bt

þ 3b2

(c� b)2(d � b)
þ b3(cþ 2d � 3b)

(c� b)3(d � b)2


 �

e�bt þ c3

(b� c)2(c� d)
te�ct

þ 3c2

(b� c)2(d � c)
þ c3(bþ 2d � 3c)

(b� c)3(d � c)2


 �

e�ct

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

112
s3

(sþ b)(sþ c)(s2 þ v2)

b3

(b� c)(b2 þ v2)
e�bt þ c3

(c� b)(c2 þ v2)
e�ct

� v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(b2 þ v2)(c2 þ v2)
p sin (vt þ f)

f ¼ tan�1
c

v

� �

� tan�1
v

b

� �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

113
s3

(sþ b)(sþ c)(sþ d)(s2 þ v2)

b3

(b� c)(d � b)(b2 þ v2)
e�bt þ c3

(c� b)(d � c)(c2 þ v2)
e�ct

þ d3

(d � b)(c� d)(d2 þ v2)
e�dt

� v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(b2 þ v2)(c2 þ v2)(d2 þ v2)
p cos (vt � f)

f ¼ tan�1
v

b

� �

þ tan�1
v

c

� �

þ tan�1
v

d

� �

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

114
s3

(sþ b)2(s2 þ v2)

� b3

b2 þ v2
t e�bt þ b2(b2 þ 3v2)

(b2 þ v2)2
e�bt � v2

(b2 þ v2)
sin (vt þ f)

f ¼ tan�1
b

v

� �

� tan�1
v

b

� �

8

>

>

>

<

>

>

>

:

115
s3

s4 þ 4v4
cos (vt) cosh (vt)

116
s3

s4 � v4

1

2
[ cosh (vt)þ cos (vt)]

117
s3 þ a2s2 þ a1sþ a0

s2(sþ b)(sþ c)

a0
bc

t � a0(bþ c)� a1bc

b2c2
þ�b

3 þ a2b2 � a1bþ a0
b2(c� b)

e�bt

þ�c
3 þ a2c2 � a1cþ a0

c2(b� c)
e�ct

8

>

>

>

<

>

>

>

:

118
s3 þ a2s2 þ a1sþ a0
s(sþ b)(sþ c)(sþ d)

a0
bcd
��b

3 þ a2b2 � a1bþ a0
b(c� b)(d � b)

e�bt ��c
3 þ a2c2 � a1cþ a0
c(b� c)(d � c)

e�ct

��d
3 þ a2d2 � a1d þ a0
d(b� d)(c� d)

e�dt

8

>

>

>

<

>

>

>

:

119
s3 þ a2s2 þ a1sþ a0
s2(sþ b)(sþ c)(sþ d)

a0
bcd

t þ a1
bcd
� a0(bcþ bd þ cd)

b2c2d2


 �

þ�b
3 þ a2b2 � a1bþ a0
b2(c� b)(d � b)

e�bt

þ�c
3 þ a2c2 � a1cþ a0
c2(b� c)(d � c)

e�ct þ�d
3 þ a2d2 � a1d þ a0
d2(b� d)(c� d)

e�dt

8

>

>

>

<

>

>

>

:

120
s3 þ a2s2 þ a1sþ a0

(sþ b)(sþ c)(sþ d)(sþ f )

�b3 þ a2b2 � a1bþ a0
(c� b)(d � b)(f � b)

e�bt þ�c
3 þ a2c2 � a1cþ a0

(b� c)(d � c)(f � c)
e�ct

þ�d
3 þ a2d2 � a1d þ a0

(b� d)(c� d)(f � d)
e�dt þ�f

3 þ a2f 2 � a1f þ a0
(b� f )(c� f )(d � f )

e�ft

8

>

>

>

<

>

>

>

:

121
s3 þ a2s2 þ a1sþ a0

s(sþ b)(sþ c)(sþ d)(sþ f )

a0
bcdf

��b
3 þ a2b2 � a1bþ a0

b(c� b)(d � b)(f � b)
e�bt ��c

3 þ a2c2 � a1cþ a0
c(b� c)(d � c)(f � c)

e�ct

��d
3 þ a2d2 � a1d þ a0

d(b� d)(c� d)(f � d)
e�dt ��f

3 þ a2f 2 � a1f þ a0
f (b� f )(c� f )(d � f )

e�ft

8

>

>

>

<

>

>

>

:
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

122 s3 þ a2s2 þ a1sþ a0
(sþ b)(sþ c)(sþ d)(sþ f )(sþ g)

�b3 þ a2b2 � a1bþ a0
(c� b)(d � b)(f � b)(g � b)

e�bt þ �c3 þ a2c2 � a1cþ a0
(b� c)(d � c)(f � c)(g � c)

e�ct

þ �d3 þ a2d2 � a1d þ a0
(b� d)(c� d)(f � d)(g � d)

e�dt þ �f 3 þ a2f 2 � a1f þ a0
(b� f )(c� f )(d � f )(g � f )

e�ft

þ �g3 þ a2g2 � a1g þ a0
(b� g)(c� g)(d � g)(f � g)

e�gt

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

123
s3 þ a2s2 þ a1sþ a0
(sþ b)(sþ c)(sþ d)2

�b3 þ a2b2 � a1bþ a0
(c� b)(d � b)2

e�bt þ�c
3 þ a2c2 � a1cþ a0
(b� c)(d � c)2

e�ct

þ�d
3 þ a2d2 � a1d þ a0
(b� d)(c� d)

te�dt

a0(2d � b� c)þ a1(bc� d2)

þþa2d(dbþ dc� 2bc)þ d2(d2 � 2db� 2dcþ 3bc)

(b� d)2(c� d)2
e�dt

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

124
s3 þ a2s2 þ a1sþ a0
s(sþ b)(sþ c)(sþ d)2

a0
bcd2
��b

3 þ a2b2 � a1bþ a0
b(c� b)(d � b)2

e�bt ��c
3 þ a2c2 � a1cþ a0
c(b� c)(d � c)2

e�ct

��d
3 þ a2d2 � a1d þ a0
d(b� d)(c� d)

te�dt � 3d2 � 2a2d þ a1
d(b� d)(c� d)

e�dt

� (�d3 þ a2d2 � a1d þ a0) (b� d)(c� d)� d(b� d)� d(c� d)½ �
d2(b� d)2(c� d)2

e�dt

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

125
s3 þ a2s2 þ a1sþ a0

(sþ b)(sþ c)(sþ d)(sþ f )2

�b3 þ a2b2 � a1bþ a0
(c� b)(d � b)(f � b)2

e�bt þ�c3 þ a2c2 � a1cþ a0
(b� c)(d � c)(f � c)2

e�ct

þ�d3 þ a2d2 � a1d þ a0
(b� d)(c� d)(f � d)2

e�dt þ�f 3 þ a2f 2 � a1f þ a0
(b� f )(c� f )(d � f )

te�ft

(�f 3 þ a2f 2 � a1f þ a0)[(b� f )(c� f ):

þ 3f 2 � 2a2f þ a1
(b� f )(c� f )(d � f )

e�ft �þ(b� f )(d � f )þ (c� f )(d � f )]

(b� f )2(c� f )2(d � f )2
e�ft

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

126
s

(s� a)3=2
1
ffiffiffiffiffi

pt
p eat(1þ 2at)

127
ffiffiffiffiffiffiffiffiffiffi

s� a
p �

ffiffiffiffiffiffiffiffiffiffi

s� b
p 1

2
ffiffiffiffiffiffiffi

pt3
p (ebt � eat)

128
1
ffiffi

s
p þ a

1
ffiffiffiffiffi

pt
p � aea

2t erfc(a
ffiffi

t
p

)

129

ffiffi

s
p

s� a2
1
ffiffiffiffiffi

pt
p þ aea

2t erf a
ffiffi

t
p� 

130

ffiffi
s

p

sþ a2
1
ffiffiffiffiffi
pt

p � 2a
ffiffiffiffi
p

p e�a2 t

ða
ffiffi
t

p

0

el
2

dl

131
1

ffiffi
s

p
s� a2ð Þ

1

a
ea

2t erf a
ffiffi

t
p� 

132
1

ffiffi
s

p
sþ a2ð Þ

2

a
ffiffiffiffi
p

p e�a2 t

ða
ffiffi
t

p

0

el
2

dp

133
b2 � a2

(s� a2)(bþ ffiffi
s

p
)

ea
2t[b� a erf (a

ffiffi
t

p
)]� beb

2 t erfc(b
ffiffi
t

p
)

134
1

ffiffi
s

p ffiffi
s

p þ að Þ ea
2t erfc(a

ffiffi
t

p
)

135
1

(sþ a)
ffiffiffiffiffiffiffiffiffiffi
sþ b

p 1
ffiffiffiffiffiffiffiffiffiffiffi

b� a
p e�at erf

� ffiffiffiffiffiffiffiffiffiffiffi

b� a
p ffiffi

t
p 

136
b2 � a2

ffiffi
s

p
(s� a2)(

ffiffi
s

p þ b)
ea

2t b

a
erf (a

ffiffi
t

p
)� 1


 �

þ eb
2t erfc(b

ffiffi

t
p

)

137
(1� s)n

snþ(1=2)

n!

(2n)!
ffiffiffiffiffi

pt
p H2n

ffiffi

t
p� 

Hn(t) ¼ Hermite polynomial ¼ ex
2 dn

dxn
(e�x2 )


 �

8

>

>

>

<

>

>

>

:
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

138 (1� s)n

snþ(3=2)
� n!

ffiffiffiffi

p
p

(2nþ 1)!
H2nþ1

ffiffi

t
p� 

139

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 2a
p

ffiffi
s
p � 1

ae�at[I1(at)þ I0(at)]

[In(t) ¼ j�nJn(jt) where Jn is Bessel0s function of the first kind]

(

140
1

ffiffiffiffiffiffiffiffiffiffi
sþ a
p ffiffiffiffiffiffiffiffiffiffi

sþ b
p e�(1=2)(aþb)tI0

a� b

2
t

� �

141
G(k)

(sþ a)k(sþ b)k
(k � 0)

ffiffiffiffi

p
p t

a� b

� �k�(1=2)

e�(1=2)(aþb)tIk�(1=2)
a� b

2
t

� �

142
1

(sþ a)1=2(sþ b)3=2
te�(1=2)(aþb)t I0

a� b

2
t

� �

þ I1
a� b

2
t

� �
 �

143

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ 2a
p

� ffiffi

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

sþ 2a
p

þ ffiffi

s
p 1

t
e�atI1(at)

144
(a� b)k

ffiffiffiffiffiffiffiffiffiffi

sþ a
p þ

ffiffiffiffiffiffiffiffiffiffi

sþ b
p� 2k

(k > 0)
k

t
e�(1=2)(aþb)tIk

a� b

2
t

� �

145

ffiffiffiffiffiffiffiffiffiffi

sþ a
p þ ffiffi

s
p� �2n

ffiffi

s
p ffiffiffiffiffiffiffiffiffiffi

sþ a
p 1

an
e�(1=2)(at)In

1

2
at

� �

146
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p J0(at)

147

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

� s
� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p (n > �1) anJn(at)

148
1

(s2 þ a2)k
(k > 0)

ffiffiffiffi

p
p

G(k)

t

2a

� �k�(1=2)

Jk�(1=2)(at)

149
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

� s
� k

(k > 0)
kak

t
Jk(at)

150
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p� �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p (n > �1) anIn(at)

151
1

s2 � a2ð Þk
(k > 0)

ffiffiffiffi

p
p

G(k)

t

2a

� �k�(1=2)

Ik�(1=2)(at)

152
1

s
ffiffiffiffiffiffiffiffiffiffi

sþ 1
p erf

ffiffi

t
p� 

; erf (y)D the error function ¼ 2
ffiffiffiffi

p
p

ð

y

0

e�u2du

153
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p J0(at); Bessel function of 1st kind, zero order

154
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s

J1(at)

at
; J1 is the Bessel function of 1st kind, 1st order

155
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s
� 	N

N

aN
JN (at)

t
; N ¼ 1, 2, 3, . . . , JN is the Bessel function of 1st kind,Nth order

156
1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s
� 	N

N

aN

ð

t

0

JN (au)

u
du; N ¼ 1, 2, 3, . . . , JN is the Bessel function of 1st kind,Nth order

157
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s
� 

1

a
J1(at); J1 is the Bessel function of 1st kind, 1st order

158
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s
� 	N

1

aN
JN (at); N ¼ 1, 2, 3, . . . , JN is the Bessel function of 1st kind,Nth order

159
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � a2
p I0(at); I0 is the modified Bessel function of 1st kind, zero order

160
e�ks

s
Sk(t) ¼

0 when 0 < t < k

1 when t > k

�

161
e�ks

s2
0 when 0 < t < k

t � k when t > k

�

162
e�ks

sm
(m > 0)

0 when 0 < t < k

(t � k)m�1

G(m)
when t > k

8

<

:
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

163 1� e�ks

s

1 when 0 < t < k

0 when t > k

�

164
1

s(1� e�ks)
¼ 1þ coth 1

2
ks

2s
S(k, t) ¼ {n when (n� 1)k < t < nk (n ¼ 1, 2, . . . ):

165
1

s eþks � að Þ Sk(t) ¼
0 when 0 < t < k

1þ aþ a2 þ � � � þ an�1

when nk < t < (nþ 1)k (n ¼ 1, 2, . . . )

8

>

<

>

:

166
1

s
tanh ks

M(2k, t) ¼ (�1)n�1

when 2k(n� 1) < t < 2nk

(n ¼ 1, 2, . . . )

8

>

<

>

:

167
1

s(1þ e�ks)

1

2
M(k, t)þ 1

2
¼ 1� (�1)n

2
when (n� 1)k < t < nk

�

168
1

s2
tanh ks

H(2k, t) [H(2k, t) ¼ kþ (r � k)(�1)n where t ¼ 2knþ r;
0 � r � 2k; n ¼ 0, 1, 2, . . . ]

�

169
1

s sinh ks
2S(2k, t þ k)� 2 ¼ 2(n� 1) when (2n� 3)k < t < (2n� 1)k (t > 0)f

170
1

s cosh ks
M(2k, t þ 3k)þ 1 ¼ 1þ (�1)n when (2n� 3)k < t < (2n� 1)k (t > 0)f

171
1

s
coth ks 2S(2k, t)� 1 ¼ 2n� 1 when 2k(n� 1) < t < 2knf

172
k

s2 þ k2
coth

ps

2k
sin ktj j

173
1

(s2 þ 1)(1� e�ps)

sin t when (2n� 2)p < t < (2n� 1)p

0 when (2n� 1)p < t < 2np

�

174
1

s
e�k s= J0 2

ffiffiffiffi

kt
p

� 

175
1
ffiffi

s
p e�k s= 1

ffiffiffiffiffi

pt
p cos 2

ffiffiffiffi

kt
p

176
1
ffiffi

s
p ek s= 1

ffiffiffiffiffi

pt
p cosh 2

ffiffiffiffi

kt
p

177
1

s3=2
e�k s= 1

ffiffiffiffiffiffi

pk
p sin 2

ffiffiffiffi

kt
p

178
1

s3=2
ek s= 1

ffiffiffiffiffiffi

pk
p sinh 2

ffiffiffiffi

kt
p

179
1

sm
e�k=s (m > 0)

t

k

� �(m�1)=2

Jm�1 2
ffiffiffiffi

kt
p� �

180
1

sm
ek=s (m > 0)

t

k

� �(m�1)=2

Im�1 2
ffiffiffiffi

kt
p� �

181 e�k
ffiffi

s
p

(k > 0)
k

2
ffiffiffiffiffiffiffi

pt3
p exp � k2

4t

� �

182
1

s
e�k

ffiffi

s
p

(k � 0) erfc k
2
ffiffi

t
p

� �

183
1
ffiffi

s
p e�k

ffiffi

s
p

(k � 0)
1
ffiffiffiffiffi

pt
p exp � k2

4t

� �

184 s�3=2e�k
ffiffi

s
p

(k � 0) 2

ffiffiffiffi

t

p

r

exp � k2

4t

� �

� k erfc
k

2
ffiffi

t
p

� �

185
ae�k

ffiffi

s
p

s(aþ ffiffi

s
p

)
(k � 0) �eakea

2t erfc a
ffiffi

t
p

þ k
2
ffiffi

t
p

� �

þ erfc k
2
ffiffi

t
p

� �

186
e�k

ffiffi

s
p

ffiffi

s
p

aþ ffiffi

s
pð Þ (k � 0) eakea

2t erfc a
ffiffi

t
p

þ k
2
ffiffi

t
p

� �

187
e�k

ffiffiffiffiffiffiffiffiffi

s(sþa)
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s(sþ a)
p

0 when 0 < t < k

e�(1=2)atI0 1
2
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

(

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

188 e�k
ffiffiffiffiffiffiffiffiffi

s2þa2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2 þ a2)
p

0 when 0 < t < k

J0 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

(

189
e�k

ffiffiffiffiffiffiffiffiffi

s2�a2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2 � a2)
p

0 when 0 < t < k

I0 a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

(

190
e�k

ffiffiffiffiffiffiffiffiffi

s2þa2
p

�sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2 þ a2)
p (k � 0) J0 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 þ 2kt
p� 

191 e�ks � e�k
ffiffiffiffiffiffiffiffiffi
s2þa2

p 0 when 0 < t < k
ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p J1 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

8

<

:

192 e�k
ffiffiffiffiffiffiffiffiffi

s2þa2
p

� e�ks

0 when 0 < t < k
ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p I1 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

8

<

:

193
ane�k

ffiffiffiffiffiffiffiffiffi

s2�a2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2 þ a2)
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p

þ s
� n (v > �1)

0 when 0 < t < k

t � k

t þ k

� �(1=2)n

Jn a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � k2
p� �

when t > k

8

<

:

194
1

s
log s G0(1)� log t [G0(1) ¼ �0:5772]

195
1

sk
log s (k > 0) tk�1 G0(k)

[G(k)]2
log t

G(k)

� �

196
log s

s� a
(a > 0) eat log a� Ei(�at)½ �

197
log s

s2 þ 1
cos tSi(t)� sin tCi(t)

198
s log s

s2 þ 1
�sin t Si(t)� cos t Ci(t)

199
1

s
log (1þ ks) (k > 0) �Ei � t

k

� �

200 log
s� a

s� b

1

t
(ebt � eat)

201
1

s
log (1þ k2s2) �2Ci

t

k

� �

202
1

s
log (s2 þ a2) (a > 0) 2 log a� 2Ci(at)

203
1

s2
log (s2 þ a2) (a > 0)

2

a
at log aþ sin at � atCi(at)½ �

204 log
s2 þ a2

s2
2

t
(1� cos at)

205 log
s2 � a2

s2
2

t
(1� cosh at)

206 arctan
k

s

1

t
sin kt

207
1

s
arctan

k

s
Si(kt)

208 ek
2s2erfc(ks) (k > 0)

1

k
ffiffiffiffi

p
p exp � t2

4k2

� �

209
1

s
ek

2s2erfc(ks) (k > 0) erf
t

2k

� �

210 ekserfc
ffiffiffiffi

ks
p� �

(k > 0)

ffiffiffi

k
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t(t þ k)
p

211
1
ffiffi

s
p erfc(

ffiffiffiffi

ks
p

)
0 when 0 < t < k

(pt)�1=2 when t > k

�

212
1
ffiffi

s
p ekserfc(

ffiffiffiffi

ks
p

) (k > 0)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(t þ k)
p

213 erf
k
ffiffi

s
p
� �

1

pt
sin 2k

ffiffi

t
p� 
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

214
1
ffiffi

s
p ek

2=serfc
k
ffiffi

s
p
� �

1
ffiffiffiffiffi

pt
p e�2k

ffiffi

t
p

215 �easEi(�as) 1

t þ a
; (a > 0)

216
1

a
þ seasEi(�as) 1

(t þ a)2
; (a > 0)

217
p

2
� Si(s)

h i

cos sþ Ci(s) sin s
1

t2 þ 1

218 K0(ks)
0 when 0 < t < k

(t2 � k2)�1=2 when t > k

� [Kn(t)is Bessel function of the

second kind of imaginary argument]

219 K0 k
ffiffi

s
pð Þ 1

2t
exp � k2

4t

� �

220
1

s
eksK1(ks)

1

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t(t þ 2k)
p

221
1
ffiffi

s
p K1(k

ffiffi

s
p

)
1

k
exp � k2

4t

� �

222
1
ffiffi

s
p ek=sK0

k

s

� �

2
ffiffiffiffiffi

pt
p K0(2

ffiffiffi

2
p

kt)

223 pe�ksI0(ks)
t(2k� t)½ ��1=2 when 0 < t < 2k

0 when t > 2k

(

224 e�ksI1(ks)
k�t

pk
ffiffiffiffiffiffiffiffiffiffiffi

t(2k�t)
p when 0 < t < 2k

0 when t > 2k

(

225
1

s sinh (as)
2
P

1

k¼0

u[t � (2kþ 1)a]

0
0 a 3a 5a 7a t

2

4

6

8 f (t)

226
1

s cosh s
2
P

1

k¼0

(�1)ku(t � 2k� 1)

0
0 1 2 3 4 5 6 7 t

2

f (t)

227
1

s
tanh

as

2

� �

u(t)þ 2
P

1

k¼1

(�1)ku(t � ak)

a 2a 3a 4a 5a t

1

0

–1

f (t) Square wave

228
1

2s
1þ coth

as

2

� �

P

1

k¼0

u(t � ak)

a 2a 3a 4a t

4

3

2

1

0
0

f (t) Stepped function

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

229
m

s2
�ma

2s
coth

as

2
� 1

� �

mt �ma
P

1

k¼1
u(t � ka)

3a t2aa

f (t) SLOPE = m

Sawtooth function

0
0

230
1

s2
tanh

as

2

� � 1

a
t þ 2

X

1

k¼1
(�1)k(t � ka) � u(t � ka)

" #

3a 4a 5a 6a t2aa

f (t)

Triangular wave

0
0

1

231
1

s(1þ e�s)

P

1

k¼0

(�1)ku(t � k)

f (t)

0
0 1 2 3 4 5 6 7 t

1

232
a

(s2 þ a2)(1� e�
p
as)

X

1

k¼0

sin a t � k
p

a

� �h i

� u t � k
p

a

� �

f (t)

Half-wave rectification of sine wave

1

0
0 t

a
π

a
2π

a
3π

a
4π

233
a

(s2 þ a2)


 �

coth
ps

2a

� �

sin (at)½ � � u(t)þ 2
X

1

k¼1

sin a t � k
p

a

� �h i

� u t � k
p

a

� �

f (t)
Full-wave rectification of sine wave

1

0
0 t

a
π

a
2π

a
3π

a
4π

234
1

s
e�as u(t � a)

f (t)

1

0
0 a

∞

t
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

235
1

s
(e�as � e�bs)

u(t � a)� u(t � b)

f (t)

1

0
0 a b t

236
m

s2
e�as m � (t � a) � u(t � a)

f (t)

SLOPE = m

0
0

a t

mt � u(t� a)

Or

237
ma

s
þm

s2

h i

e�as [maþm(t � a)] � u(t � a)

f (t)

SLOPE = mE

0
0 a t

238
2

s3
e�as (t � a)2 � u(t � a)

f (t)

0
0 a t

239
2

s3
þ 2a

s2
þ a2

s


 �

e�as t2 � u(t � a)

f (t)

0
0 a

a2

t2

t

240
m

s2
�m

s2
e�as mt � u(t)�m(t � a) � u(t � a)

f (t)

ma

0
0 a t

SLOPE = m

241
m

s2
� 2m

s2
e�as þm

s2
e�2as mt � 2m(t � a) � u(t � a)þm(t � 2a) � u(t � 2a)

SLOPE
=m

SLOPE
= – m

2a

f (t)

ma

0
0 a t

(continued)
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TABLE A.5.1 (continued) Laplace Transform Pairs

F(s) f(t)

242
m

s2
� ma

s
þm

s2

� �

e�as mt � [maþm(t � a)] � u(t � a)

SlOPE = m

f (t)

ma

0
0 a t

243
(1� e�s)2

s3
0.5t2 for 0� t< 1

1� 0.5(t� 2)2 for 0� t< 2

1 for 2� t

3 t21

f (t)
1

0
0

244
(1� e�s)

s


 �3

0.5t2 for 0� t< 1

0.75� (t� 1.5)2 for 1� t< 2

0.5(t� 3)2 for 2� t< 3

0 for 3< t

f (t)
1

0
3 t210

b

s(s� b)
þ (eba � 1) (ebt � 1) � u(t)� (ebt � 1) � u(t � a)þ Ke�b(t�a) � u(t � a)

245
1

sþ b
� sþ b

eba�1

s(s� b)

" #

e�as where K¼ (eba� 1)

f (t)

0
0

K

ta

TABLE A.5.2 Properties of Laplace Transforms

F(s) f(t)

1 Ð

1

0

e�st f (t)dt
f(t)

2 AF(s)þBG(s) Af(t)þBg(t)

3 sF(s)� f(þ0) f 0(t)

4 snF(s)� sn�1f (þ0)� sn�2f (1)(þ0)� � � � � f (n�1)(þ0) f (n)(t)

5
1

s
F(s)

Ð

t

0

f (t)dt

6
1

s2
F(s)

Ð

t

0

Ð

t

0

f (l)dldt

5-42 Transforms and Applications Handbook



References

1. R.V. Churchill,Modern Operational Mathematics in Engin-
eering, McGraw-Hill, New York, 1944.

2. J. Irving and N. Mullineux, Mathematics in Physics and
Engineering, Academic Press, New York, 1959.

3. H.S. Carslaw and J.C. Jaeger, Operational Methods in
AppliedMathematics, Dover Publications, Dover, NH, 1963.

4. W.R. LePage, Complex Variables and the Laplace Trans-
form for Engineers, McGraw-Hill, New York, 1961.

5. R.E. Bolz and G.L. Turve, Eds., CRC Handbook of Tables for
Applied Engineering Science, 2nd edn., CRC Press, Boca

Raton, FL, 1973.

6. A.D. Poularikas and S. Seeley, Signals and Systems, cor-
rected 2nd edn., Krieger Publishing Co., Melbourne, FL,

1994.

7. G.A. Campbell and R.M. Foster, Fourier Integrals for
Practical Applications, Van Nostrand, Princeton, NJ,

1948.

8. N.W. McLachlan and P. Humbert, Formulaire pour le
calcul symbolique, Gauthier–Villars, Paris, 1947.

9. A. Erdélyi and W. Magnus, Eds., Tables of Integral Trans-
forms, Bateman Manuscript Project, California Institute of

Technology, McGraw-Hill, New York, 1954; based on

notes left by Harry Bateman.

TABLE A.5.2 Properties of Laplace Transforms

F(s) f(t)

7 F1(s)F2(s) Ð

t

0

f1(t � t)f2(t)dt ¼ f1 * f2

8 �F0(s) tf (t)

9 (�1)nF(n)(s) tnf(t)

10
Ð

1

s
F(x)dx

1

t
f (t)

11 F(s� a) eatf(t)

12 e�bsF(s) f(t� b), where f(t)¼ 0; t< 0

13 F(cs)
1

c
f

t

c

� �

14 F(cs� b)
1

c
e(bt)=cf

t

c

� �

15

Ð a
0 e�st f (t)dt

1� e�as
f(tþ a)¼ f(t) periodic signal

16

Ð a
0 e�st f (t)dt

1þ e�as
f(tþ a)¼�f(t)

17
F(s)

1� e�as
f1(t), the half-wave rectification of f(t) in No. 16.

18 F(s) coth
as

2
f2(t), the full-wave rectification of f(t) in No. 16.

19
p(s)

q(s)
, q(s) ¼ (s� a1)(s� a2) � � � (s� am)

X

m

1

p(an)

q0(an)
eant

20
p(s)

q(s)
¼ f(s)

(s� a)r
eat
X

r

n¼1

f(r�n)(a)

(r � n)

tn�1

(n� 1)
þ � � �

Sources: Campbell, G.A. and Foster, R.M., Fourier Integrals for Practical Applications, Van Nostrand,

Princeton, NY, 1948; McLachlan, N.W. and Humbert, P., Formulaire pour le calcul symbolique, Gauthier-
Villars, Paris, TX, 1947; A. Erdélyi and W. Magnus, Eds., Tables of Integral Transforms, Bateman Manuscript

Project, California Institute of Technology, McGraw-Hill, New York, 1954; based on notes left by Harry

Bateman.

Note: In these tables, only those entries containing the condition 0< g or k< g, where g is our t, are Laplace
transforms. Several additional transforms, especially those involving other Bessel functions, can be found in

sources.
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6.1 Introduction

The Z-transform is a powerful method for solving difference

equations and, in general, to represent discrete systems. Although

applications of Z-transforms are relatively new, the essential

features of this mathematical technique date back to the early

1730s when DeMoivre introduced the concept of a generating

function that is identical with that for the Z-transform. Recently,

the development and extensive applications of the Z-transform
are much enhanced as a result of the use of the digital computers.

6.1.1 One-Sided Z-Transform

6.1.1.1 The Z-Transform and Discrete Functions

Let f(t) be defined for t� 0. The Z-transform of the sequence

{ f(nT)} is given by

Z f (nT)f g _¼ F(z) ¼
X

1

n¼0

f (nT)z�n (6:1)

where T, the sampling time, is a positive number.*

To find the values of z for which the series converges, we use

the ratio test or the root test. The ratio test states that a series of

complex numbers

X

1

n¼0

an

with limit

lim
n!1

anþ1

an

�

�

�

�

�

�

�

�

¼ A (6:2)

converges absolutely if A< 1 and diverges if A> 1 the series may

or may not converge.

The root test states that if

lim
n!1

ffiffiffiffiffiffiffi

janjn
p

¼ A (6:3)

then the series converges absolutely if A< 1, and diverges if

A> 1, and may converge or diverge if A¼ 1.

More generally, the series converges absolutely if

lim
n!1

ffiffiffiffiffiffiffi

janjn
p

< 1 (6:4)

where lim denotes the greatest limit points of limn!1
f (nT)j j1=n, and diverges if

lim
n!1

ffiffiffiffiffiffiffi

anj jn
p

> 1 (6:5)

If we apply the root test in Equation 6.1 we obtain the conver-

gence condition

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f (nT)z�nj jn
p

¼ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f (nT)j j z�1j jnn

q

< 1

or

jzj > lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f (nT)j jn
p

¼ R (6:6)

where R is known as the radius of convergence for the series.

Therefore, the series will converge absolutely for all points in the

z-plane that lie outside the circle of radius R, and is centered at

the origin (with the possible exception of the point at infinity).

This region is called the region of convergence (ROC).

Example

The radius of convergence of f(nT)¼ e�anTu(nT), a positive

number, is

z�1e�aT
�

�

�

� < 1 or jzj > e�aT
* The symbol _¼ means equal by definition.
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The Z-transform of f(nT)¼ e�anTu(nT) is

F(z) ¼
X

1

n¼0

f (nT )z�n ¼
X

1

n¼0

(e�aT z�1)n ¼ 1

1� e�aT z�1

If a¼ 0

F(z) ¼
X

1

n¼0

u(nT )z�n ¼ 1

1� z�1
¼ z

z � 1

Example

The function f(nT)¼ anT cos nTv u(nT) has the Z-transform

F(z) ¼
X

1

n¼0

anT
e jnTv þ e�

jnTv

2
z�n

¼ 1

2

X

1

n¼0

(aT e jTvz�1)n þ 1

2

X

1

n¼0

(aTe�jTvz�1)n

¼ 1

2

1

1� aTe jTvz�1
þ 1

2

1

1� aT e�jTvz�1

¼ 1� aT z�1 cos Tv

1� 2aT z�1 cos Tvþ a2T z�2
:

The ROC is given by the relations

jaT e jTvz�1j < 1 or jzj > jaT j
jaT e�jTvz�1j < 1 or jzj > jaT j

Therefore, the ROC is jzj> jaTj.

6.1.1.2 Properties of the Z-Transform

6.1.1.2.1 Linearity

If there exists transforms of sequences Z ci fi(nT)f g ¼ ciFi(z),
ci are complex constants, with radii of convergence Ri> 0 for

i¼ 0, 1, 2, . . . , ‘(‘ finite), then

Z
X

‘

i¼0

ci fi(nT)

( )

¼
X

‘

i¼0

ciFi(z) jzj > maxRi (6:7)

6.1.1.2.2 Shifting Property

Z f (nT � kT)f g ¼ z�kF(z), f (�nT) ¼ 0 n ¼ 1, 2, . . . (6:8)

Z f (nT � kT)f g ¼ z�kF(z)þ
X

k

n¼1

f (�nT)z�(k�n) (6:9)

Z f (nT þ kT)f g ¼ zkF(z)�
X

k�1

n¼0

f (nT)zk�n (6:10)

Z f (nT þ T)f g ¼ z F(z)� f (0)½ � (6:10a)

Example

To find the Z-transform of y(nT) we proceed as follows:

d2y(t)

dt2
¼ x(t),

y(nT )� 2y(nT � T )þ y(nT � 2T )

T 2
¼ x(nT ),

Y(z)� 2 z�1Y(z)þ y(�T )z�0
� �

þ z�2Y(z)þ y(�T )z�1

þ y(�2T )z�0 ¼ X (z)T2

or

Y(z) ¼ 2y(�T )� y(�T )z�1 � y(�2T )þ X (z)T 2

1� 2z�1 þ z�2

6.1.1.2.3 Time Scaling

Z anT f (nT)
� �

¼ F(a�Tz) ¼
X1

n¼0

f (nT)(a�Tz)�n (6:11)

Example

Z sinvnTu(nT )f g ¼ z sinvT

z2 � 2z cosvT þ 1
jzj > 1,

Z e�n sinvnTu(nT )f g ¼ eþ1z sinvT

eþ2z2 � 2eþ1z cosvT þ 1
jzj > e�1

6.1.1.2.4 Periodic Sequence

Z f (nT)f g ¼ zN

zN � 1
Z f1(nT)f g ¼ zN

zN � 1
F1(z),

f1(nT) ¼ first period

(6:12)

where

N is the number of the time units in a period, jzj>R
R is the radius of convergence of F1(z)

Proof

Z f (nT)f g ¼ Z f1(nT)f g þ Z f1(nT � NT)f g
þ Z f1(nT � 2NT)f g þ � � �

¼ F1(z)þ z�NF1(z)þ z�2NF1(z)þ � � �

¼ F1(z)
1

1� z�N
¼ zN

zN � 1
F1(z)

For finite sequence of K terms

F(z) ¼ F1(z)
1� z�N(Kþ1)

1� z�N
(6:12a)
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6.1.1.2.5 Multiplication by n and nT

R is the radius of convergence of F(z)

Z nf (nT)f g ¼ �z
dF(z)

dz
(6:13)

Z nTf (nT)f g ¼ �Tz
dF(z)

dz
jzj > R

Proof

X

1

n¼0

nT(nT)z�n ¼ Tz
X

1

n¼0

f (nT) � d

dz
z�n

� 	

¼ �Tz
d

dz

X1

n¼0

f (nT)z�n

" #

¼ �Tz
dF(z)

dz

Example

Z u(n)f g ¼ z

z � 1
, Z nu(n)f g ¼ �z

d

dz

z

z � 1


 �

¼ z

(z � 1)2
,

Z n2u(n)
� �

¼ �z
d

dz

z

(z � 1)2

� 

¼ z(z2 � 1)

(z � 1)4

6.1.1.2.6 Convolution

If Z f (nT)f g ¼ F(z)jzj > R1 and Z h(nT)f g ¼ H(z)jvj > R2,

then

Z f (nT) * h(nT)f g ¼ Z
X1

m¼0

f (mT)h(nT �mT)

( )

¼ F(z)H(z) jzj > max (R1,R2) (6:14)

Proof

Z f (nT) * h(nT)f g ¼
X1

n¼0

X1

m¼0

f (mT)h(nT �mT)

" #

z�n

¼
X1

m¼0

f (mT)
X1

n¼0

h(nT �mT)z�n

¼
X1

m¼0

f (mT)
X1

r¼�m

h(rT)z�rz�m

¼
X1

m¼0

f (mT)z�m
X1

r¼0

h(rT)z�r ¼ F(z)H(z):

The value of h(nT) for n< 0 is zero.

Additional relations of convolution are

Z f (nT) * h(nT)f g ¼ F(z)H(z) ¼ Z h(nT) * f (nT)f g
¼ F(z)H(z) (6:14a)

Z f (nT)þ h(nT)f g * g(nT)f gf g ¼ Z f (nT) * g(nT)f g
þ Z h(nT) * g(nT)f g

¼ F(z)G(z)þ H(z)G(z) (6:14b)

Z f (nT) * h(nT) * g(nT)f g: ¼ Z f (nT) * h(nT) * g(nT)f gf g
¼ F(z)H(z)G(z) (6:14c)

Example

The Z-transform of the output of the discrete system

y(n) ¼ 1=2y(n� 1)þ 1=2x(n), when the input is the unit step

function u(n) given by Y(z)¼H(z)U(z). The Z-transform of the

difference equation with a delta function input d(n) is

H(z)� 1

2
z�1H(z) ¼ 1

2
or H(z) ¼ 1

2

1

1� 1
2
z�1

¼ 1

2

z

z � 1
2

Therefore, the output is given by

Y(z) ¼ 1

2

z

z � 1
2

z

z � 1

Example

Find the f(n) if

F(z) ¼ z2

(z � e�a)(z � e�b)
a, b are constants:

From this equation we obtain

f1(n) ¼ Z�1 z

z � e�a

n o

¼ e�an , f2(n) ¼ Z�1 z

(z � e�b)

� �

¼ e�bn

Therefore,

f (n) ¼ f1(n) * f2(n) ¼
Xn

m¼0

e�ame�b(n�m) ¼ e�bn
Xn

m¼0

e�(a�b)m

¼ e�bn 1� e�(a�b)(nþ1)

1� e�(a�b)

6.1.1.2.7 Initial Value

f (0) ¼ lim
z!1

F(z) (6:15)
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The above value is obtained from the definition of the

Z-transform. If f(0)¼ 0, we obtain f(1) as the limit

lim
z!1

zF(z) (6:15a)

6.1.1.2.8 Final Value

lim
n!1

f (n) ¼ lim
z!1

(z � 1)F(z) if f (1) exists (6:16)

Proof

Z f (kþ 1)� f (k)f g ¼ lim
n!1

X

n

k¼0

f (kþ 1)½ �� f (k)½ �z�k

zF(z)� zf (0)� F(z) ¼ (z � 1)F(z)� zf (0)

¼ lim
n!1

X

n

k¼0

f (kþ 1)½ �� f (k)½ �z�k

By taking the limit as z ! 1, the above equation becomes

lim
z!1

(z � 1)F(z)� f (0) ¼ lim
n!1

X

n

k¼0

f (kþ 1)½ �� f (k)½ �

¼ lim
n!1

f (1)� f (0)þ f (2)� f (1)þ � � �f

þ f (n)� f (n� 1)þ f (nþ 1)� f (n)g
¼ lim

n!1
�f (0)þ f (nþ 1)f g

¼ �f (0)þ f (1)

which is the required result.

Example

If F(z)¼ 1=[(1� z�1)(1� e�1z�1)] with jzj> 1 then

f (0) ¼ lim
z!1

F(z) ¼ 1

1� 1
1

� �
1� e�1 1

1
� � ¼ 1

lim
n!1

f (n) ¼ lim
z!1

(z � 1)
1

(1� z�1)(1� e�1z�1)
¼ lim

z!1

z2

(z � e�1)

¼ 1

(1� e�1)

6.1.1.2.9 Multiplication by (nT)k

Z nkTkf (nT)
� �

¼ �Tz
d

dz
Z (nT)k�1f (nT)
� �

k > 0 and is an integer

(6:17)

As a corollary to this theorem, we can deduce

Z n(k)f (n)
� �

¼ z�k dkF(z)

d(z�1)k
,

n(k) ¼ n(n� 1)(n� 2) � � � (n� kþ 1)

(6:17a)

The following relations are also true:

Z (�1)kn(k)f (n� kþ 1)
� �

¼ z
dkF(z)

dzk
(6:17b)

Z n(nþ 1)(nþ 2) � � � (nþ k� 1)f (n)f g

¼ (�1)kzk
dkF(z)

dzk
(6:17c)

Example

Z{n} ¼ �z
d

dz

z

z � 1


 �

¼ z

(z � 1)2
,

Z{n2} ¼ �z
d

dz
Z{n} ¼ �z

d

dz

z

(z � 1)2
¼ z(z þ 1)

(z � 1)3
,

Z{n3} ¼ �z
d

dz

z(z þ 1)

(z � 1)3
¼ z(z2 þ 4z þ 1)

(z � 1)4

6.1.1.2.10 Initial Value of f(nT)

Z f (nT)f g ¼ f (0T)þ f (T)z�1 þ f (2T)z�2 þ � � � ¼ F(z)

f (0T) ¼ lim
z!1

F(z) jzj > R (6:18)

6.1.1.2.11 Final Value for f(nT)

lim
n!1

f (nT) ¼ lim
z!1

(z � 1)F(z) f (1T) exists (6:19)

Example

For the function

F(z) ¼ 1

(1� z�1)(1� e�T z�1)
jzj > 1

we obtain

f (0T ) ¼ lim
z!1

F(z) ¼ 1

1� 1
1

� �
1� e�T

1
� � ¼ 1

lim
n!1

f (nT ) ¼ lim
z!1

(z � 1)
z

z � 1

z

1� e�T
¼ 1

1� e�T

6.1.1.2.12 Complex Conjugate Signal

F(z) ¼
X1

n¼0

f (nT)z�n jzj > R or F(z*) ¼
X1

n¼0

f (nT)(z*)�n

or

F*(z*) ¼
X1

n¼0

f *(nT)z�n ¼ Z f *(nT)f g
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Hence,

Z
�
f *(nT)

�
¼ F*(z*) jzj > R (6:20)

6.1.1.2.13 Transform of Product

If

Z f (nT)f g ¼ F(z) jzj > Rf

Z h(nT)f g ¼ H(z) jzj > Rh

then

Z g(nT)f g¼: Z f (nT)h(nT)f g

¼
X1

n¼0
f (nT)h(nT)z�n

¼ 1

2pj

þ

C

F(t)H
z

t


 � dt

t
jzj > RjRh

(6:21)

where C is a simple contour encircling counterclockwise the

origin with (see Figure 6.1)

Rf < jtj < jzj
Rh

(6:21a)

Proof The integration is performed in the positive sense along

the circle, inside which lie all the singular points of the function F(t)
and outside which lie all the singular points of the function

H(z=t). From Equation 6.21, we write

G(z) ¼ 1

2pj

þ

C

F(t)
X1

n¼0

h(nT)
z

t


 ��n dt

t
(6:22)

which converges uniformly for some choice of contour C and

values of z. From Equation 6.22, we must have

Rh
z

t


 ��1
�
�
�
�

�
�
�
� < 1 or

z

t

�
�
�

�
�
� > Rh or jtj < jzj

Rh
(6:23)

so that the sum in Equation 6.22 converges. Because jzj>Rf and
t takes the place of z, then Equation 6.22 implies that

jtj > Rf (6:24)

Rf < jtj < jzj
Rh

(6:25)

and also

RfRh < jzj:

Figure 6.1 shows the ROC.

The integral is solved with the aid of the residue theorem,

which yields in this case

G(z) ¼
XK

i¼1

rest¼ti

F(t)H z=tð Þ
t

� �

(6:26)

where K is the number of different poles ti(i¼ 1, 2, . . . ,K) of the
function F(t)=t. For the residue at the pole ti of multiplicity m of

the function F(t)=t, we have

rest¼ti

F(t)H z=tð Þ
t

� �

¼ 1

(m� 1)!
lim
t!ti

dm�1

dtm�1

� (t� ti)
m F(t)H z

t

� �

t

� 	

(6:27)

Hence, for a simple pole, m¼ 1, we obtain

rest¼ti

F(t)H z=tð Þ
t

� �

¼ lim
t!ti

(t� ti)
F(t)H z

t

� �

t

� �

(6:28)

Example

See Figure 6.2 for graphical representation of the complex

integration.

Z{nT }¼: H(z) ¼ z

(z� 1)2
T jzj > 1, Z{e�nT }¼: F(z) ¼ z

z � e�T
jzj > e�T

Hence,

Z{nTe�nT } ¼ 1

2pj

þ

C

T
z

t(t� e�T ) z
t � 1
� �2

dt:

ROC F(z) and H(z/τ)

Re{τ}

|τ| =
|z|

Rh

C

Im{τ}

|τ|=Rf

FIGURE 6.1
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The contour must have a radius jtj of the value e�T< jtj<
jzj ¼ 1 and we have from Equation 6.28

Z{nTe�nT} ¼ rest¼e�T (t� e�T )T
zt

(t� e�T)(z � t)2

� �

¼ T
ze�T

(z � e�T)2

From Equation 6.17

Z{nTe�nT} ¼ �Tz
d

dz

1

1� e�Tz�1

� 

¼ T
ze�T

(z � e�T )2

and verifies the complex integration approach.

6.1.1.2.14 Parseval’s Theorem

If Z f (nT)f g ¼ F(z), jzj > Rf and Z h(nT)f g ¼ H(z), jzj > Rh

with jzj ¼ 1>RfRh, then

X1

n¼0

f (nT)h(nT) ¼ 1

2pj

þ

C

F(z)H(z�1)
dz

z
(6:29)

where the contour is taken counterclockwise.

Proof From Equation 6.21 set z¼ 1 and change the dummy

variable t to z.

Example

f(nT)¼ e�nT u(nT) has the following Z-transform:

F(z) ¼ 1

1� e�T z�1
jzj > e�T

From Equation 6.29 and with C a unit Circle (Rf ¼ e�T< 1)

X1

n¼0

f (nT )f (nT ) ¼ 1

2pj

þ

C

1

1� e�T z�1

1

1� e�T z

dz

z

¼ 1

2pj

þ

C

1

z � e�T

eT

eT � z
dz

¼ 2pj

2pj

X

i

residues ¼ eT

eT � e�T
¼ 1

1� e�2T

6.1.1.2.15 Correlation

Let the Z-transform of the two consequences Z f (nT)f g ¼ F(z)
and Z h(nT)f g ¼ H(z) exist for jzj ¼ 1. Then the cross correlation
is given by

g(nT)¼: f (nT)� h(nT) ¼
X1

m¼0

f (mT)h(mT � nT)

¼ lim
z!1þ

X1

m¼0

f (mT)h(mT � nT)z�m

¼ lim
z!1þ

Z f (mT)h(mT � nT)f g

But Z {h(mT�nT)}¼ z�nH(z) and, therefore, (see Equation 6.21)

g(nT) ¼ lim
z!1þ

1

2pj

þ

C

F(t)
z

t


 ��n
H

z

t


 � dt

t

¼ 1

2pj

þ

C

F(t)H
1

t

� 

tn�1dt n � 1 (6:30)

This relation is the inverse Z-transform of g(nT) and, hence,

Z g(nT)f g¼: Z f (nT)� h(nT)f g

¼ F(z)H
1

z

� 

for jzj ¼ 1 (6:31)

If f (nT)¼ h(nT) for n� 0 the autocorrelation sequence is

g(nT)¼: f (nT)� h(nT)

¼
X1

m¼0

f (mT)f (mT � nT)

¼ 1

2pj

þ

C

F(t)F
1

t

� 

tn�1dt (6:32)

and, hence,

G(z) ¼ Z g(nT)f g ¼ Z f (nT)� h(nT)f g ¼ F(z)F
1

z

� 

(6:33)

If we set n¼ 0, we obtain the Parseval’s theorem in the same

form it was developed above.

j Im τ

C

1e–T Re τ

=|z|=1
|z|

Rh

FIGURE 6.2
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Example

The sequence f(t)¼ e�nT, n� 0, has the Z-transform

Z{e�nT } ¼ z

z � e�T
jzj > e�T

The autocorrelation is given by Equation 6.32 in the form

G(z)¼: Z f (nT )� f (nT )f g ¼ z

z � e�T

1
z

1
z
� e�T

¼ � z

z � e�T

eT

z � eT

The function is regular in the region e�T< jzj< eT. Using the

residue theorem from Equation 6.30, we obtain

g(nT ) ¼
X

K

i¼1

rest¼ti F(t)H
1

t

� � �

tn�1 (6:34)

where ti are all poles of the integrand inside the circle jtj ¼ 1.

Similarly from Equation 6.33

g(nT ) ¼
XK

i¼1

rest¼ti F(t)F
1

t

� 

tn�1

� �

(6:35)

where ti are the poles included inside the unit circle.

Example

From the previous example we obtain (only the root inside

the unit circle)

� 1

2pj

þ

C

z

z � e�T

eT

z � eT
zn�1dz ¼ �resz¼e�T

zeT

z � eT
zn�1

� �

¼ e2T

e2T � 1
e�Tn

which is equal to the autocorrelation of f(nT)¼ e�nT u(nT).

Using the summation definitions, we obtain

X1

m¼0

e�mTu(mT )e�T (m�n)u(mT � nT )

¼ eTn
X1

m¼n

e�2mT

¼ eTn e�2nT þ e�2nT e�2T þ e�2nT e�4T þ � � �
� �

¼ e�nT 1þ e�2T þ (e�2T )2 þ � � �
� �

¼ e�nT 1

1� e�2T
¼ e�nT e2T

e2T � 1

6.1.1.2.16 Z-Transforms with Parameters

Z q

qa
f (nT , a)

� �

¼ q

qa
F(z, a) (6:36)

Z lim
a!a0

f (nT , a)

� �

¼ lim
a!a0

F(z, a) (6:37)

Z
ða1

a0

f (nT , a)da

8

<

:

9

=

;
¼

ða1

a0

F(z, a)da finite integral (6:38)

Table A.6.1 contains the Z-transform properties for positive-time

sequences.

6.1.1.3 Inverse Z-Transform

The inverse Z-transform provides the object function from its

given transform. We use the symbolic solution

f (nT) ¼ Z�1 F(z)f g (6:39)

To find the inverse transform, we may proceed as follows:

1. Use tables

2. Decompose the expression into simpler partial forms,

which are included in the tables

3. If the transform is decomposed into a product of partial

sums, the resulting object function is obtained as the

convolution of the partial object function

4. Use the inversion integral

6.1.1.3.1 Power Series Method

When F(z) is analytic for jzj>R (and at z¼1), the value f(nT)
is obtained as the coefficient of z�n in the power series expansion

(Taylor’s series of F(z) as a function of z�1). For example, if

F(z) is the ratio of two polynomials in z�1, the coefficients

f(0T), . . . , f(nT) are obtained as follows:

F(z) ¼ p0 þ p1z�1 þ p2z�2 þ � � � þ pnz�n

q0 þ q1z�1 þ q2z�2 þ � � � þ qnz�n

¼ f (0T)þ f (T)z�1 þ f (2T)z�2 þ � � � (6:40)

where

p0 ¼ f (0T)q0

p1 ¼ f (1T)q0 þ f (0T)q1

.

.

.

pn ¼ f (nT)q0 þ f (n� 1)T½ �q1 þ f (n� 2)T½ �q2 þ � � � þ f (0T)qn

(6:41)

The same can be accomplished by synthetic division.

Example

F(z) ¼ 1þ z�1

1þ 2z�1 þ 3z�2
¼ z2 þ z

z2 þ 2z þ 3

¼ 1� z�1 � z�2 þ 5z�3 þ � � � jzj >
ffiffiffi

6
p
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From Equation 6.41: 1¼ f(0T)�1 or f(0T)¼ 1, 1¼ f(1T)�1þ 1�2 or
f(1T)¼�1, 0¼ f(2T)�1þ f(1T)�2þ f(0T)�3or f(2T) ¼ þ 2� 3¼�1,

0¼ f(3T)�1þ f(2T)2þ f(1T)3þ f(0T)�0 or f(3T)¼ 2þ 3¼ 5, and

so forth.

6.1.1.3.2 Partial Fraction Expansion

If F(z) is a rational function of z and analytic at infinity, it can be

expressed as follows:

F(z) ¼ F1(z)þ F2(z)þ F3(z)þ � � � (6:42)

and therefore,

f (nT) ¼ Z�1 F1(z)f g þ Z�1 F2(z)f g þ Z�1 F3(z)f g þ � � �
(6:43)

For an expansion of the form

F(z) ¼ F1(z)

(z � p)n
¼ A1

z � p
þ A2

(z � p)2
þ � � � þ An

(z � p)n
(6:44)

the constants Ai are given by

An ¼ (z � p)nF(z)jz¼p

An�1 ¼
d

dz
(z � p)nF(z)½ �jz¼p

.

.

.

An�k ¼
1

k!

dk

dzk
(z � p)nF(z)½ �jz¼p

.

.

.

A1 ¼
1

(n� 1)!

dn�1

dzn�1
(z � p)nF(z)½ �jz¼p

(6:45)

Example

Let

F(z) ¼ 1þ 2z�1 þ z�2

1� 3
2
z�1 þ 1

2
z�2

¼ z2 þ 2z þ 1

z2 � 3
2
z þ 1

2

¼ 1þ 7

2
z�1 þ 23

4
z�2 þ � � � jzj > 1

Also,

F(z) ¼ 1þ
7
2
z þ 1

2

(z � 1) z � 1
2

� � ¼ 1þ A

z � 1
þ B

z � 1
2

from which we find that

A ¼ (z � 1) 7
2
z þ 1

2

� �

(z � 1) z � 1
2

� �

�
�
�
�
�
z¼1

¼ 8

and

B ¼ z � 1
2

� �
7
2
z þ 1

2

� �

(z � 1) z � 1
2

� �

�
�
�
�
z¼1=2

¼ � 9

2

Hence,

F(z) ¼ 1þ 8

z � 1
� 9

2

1

z � 1
2

¼ 1þ z�1 8z

z � 1
� 9

2
z�1 z

z � 1
2

and, therefore, its inverse transform is f (nT ) ¼ d(nT )þ
8u(nT � T )� 9

2
1
2

� �n�1
u(nT� T) with ROCjzj> 1.

Example

(a) If

F(z) ¼ z2 þ 1

(z � 1)(z � 2)
¼ Aþ Bz

z � 1
þ Cz

z � 2
jzj > 2

then we obtain

A ¼ 0þ 1

(0� 1)(0� 2)
¼ 1

2
,

B ¼ 1

z

z2 þ 1

(z � 2)

�
�
�
�
z¼1

¼ �2,

and

C ¼ 1

z

z2 þ 1

(z � 1)

�
�
�
�
z¼2

¼ 5

2

Hence,

F(z) ¼ 1

2
� 2

z

z � 1
þ 5

2

z

z � 2

and its inverse is f (nT ) ¼ 1
2
d(nT )� 2u(nT )þ 5

2
(2)nu(nT ).

(b) If

F(z) ¼ z þ 1

(z � 1)(z � 2)
¼ A

z � 1
þ B

z � 2

then we obtain

A ¼ z þ 1

(z � 2)

�
�
�
�
z¼1

¼ �2

and

B ¼ z þ 1

(z � 1)

�
�
�
�
z¼2

¼ 3
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Hence,

F(z) ¼ �2
1

(z � 1)
þ 3

1

(z � 2)

and

f (nT ) ¼ �2u(nT � T )þ 3(2)n�1u(nT � T )

with ROC jzj> 2.

Example

If F(z) ¼ z2 þ 1
(zþ 1)(z� 1)2

¼ A
zþ 1

þ B
z� 1

þ C
(z� 1)2

with jzj> 1, then

we find

A ¼ z2 þ 1

(z � 1)2

�

�

�

�

z¼�1

¼ 1

2
,

C ¼ z2 þ 1

z þ 1

�

�

�

�

z¼1

¼ 1:

To find B we set any value of z (small for convenience) in the

equality. Hence, with say z¼ 2, we obtain

z2 þ 1

(z þ 1)(z � 1)2

�

�

�

�

z¼2

¼ 1

2

1

z þ 1

�

�

�

�

z¼2

þ B
1

z � 1

�

�

�

�

z¼2

þ 1

(z � 1)2

�

�

�

�

z¼2

or B¼ 1=2. Therefore, F(z) ¼ 1
2

1
zþ1

þ 1
2

1
z�1

þ 1
(z�1)2

and its

inverse transform is f (nT ) ¼ 1
2
(�1)n�1u(nT � T )þ

1
2
u(nT � T )þ (nT � T )u(nT � T ) with ROC jzj> 1.

Example

The function F(z)¼ z3=(z� 1)2 with jzj> 1 can be expanded as

follows: F(z) ¼ z þ 2þ 3z�2
(z�1)2

or F(z) ¼ z þ 2þ 3z�2
(z�1)2

¼ zþ

2þ A
z�1

þ B
(z�1)2

. Therefore, we obtain B ¼ (3z�2)(z�1)2

(z�1)2

�

�

�

z¼1
¼ 1.

Set any value of z (e.g., z¼ 2) in the above equality we obtain

2þ 2þ 3 � 2� 2

(2� 1)2
¼ 2þ 2þ A

1

2� 1
þ 1

(2� 1)2
or A ¼ 3

Hence,

F(z) ¼ z þ 2þ 3

z � 1
þ 1

(z � 1)2

and its inverse transform is

f (nT ) ¼ d(nT þ T )þ 2d(nT )þ 3u(nT � T )þ (nT � T )u(nT � T )

with ROC jzj> 1.

Tables A.6.3 and A.6.4 are useful for finding the inverse

transforms.

6.1.1.3.3 Inverse Transform by Integration

If F(z) is a regular function in the region jzj>R, then there exists

a single sequence { f(nT)} for which Z{f(nT)}¼ F(z), namely

f (nT) ¼ 1

2pj

þ

C

F(z)zn�1dz ¼
X

k

i¼1

resz¼zi F(z)zn�1
� �

n ¼ 0, 1, 2, . . .

(6:46)

The contour C encloses all the singularities of F(z) as shown in

Figure 6.3 and it is taken in a counterclockwise direction.

6.1.1.3.4 Simple Poles

If F(z)¼H(z)=G(z), then the residue at the singularity z¼ a is

given by

lim
z!a

(z � a)F(z)zn�1 ¼ lim
z!a

(z � a)
H(z)

G(z)
zn�1

� 	

(6:47)

6.1.1.3.5 Multiple Poles

The residue at the pole zi with multiplicity m of the function

F(z)zn�1 is given by

resz¼zi F(z)zn�1
� �

¼ 1

(m� 1)!
lim
z!zi

dm�1

dzm�1

� (z � zi)
mF(z)zn�1

� �
(6:48)

6.1.1.3.6 Simple Poles Not Factorable

The residue at the singularity am is

F(z)zn�1jz¼am
¼ H(z)

dG(z)
dz

zn�1

�
�
�
�
�
z¼am

(6:49)

j Im z

z-Plane

ROC

Contour of
integration CPoles of F(z)

Re z

FIGURE 6.3
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6.1.1.3.7 F(z) Is Irrational Function of z

Let F(z)¼ [(zþ 1)=z]a, where a is a real noninteger. By Equation

6.46 we write.

f (nT) ¼ 1

2pj

þ

C

z þ 1

z

� a

zn�1dz

where the closed contour C is that shown in Figure 6.4.

It can easily be shown that at the limit as z ! 0 the integral

around the small circle BCD is zero (set z¼ re ju and take the

limit r ! 0). Also, the integral along EA is also zero. Because

along AB z¼ xe�jp and along DE z¼ xe jp, which implies that x is
positive, we obtain

f (nT) ¼ 1

2pj

ð

0

1

xe�jp þ 1

xe�jp

� a

xn�1e�jpndx

2

4

þ
ð

1

0

xe jp þ 1

xe jp

� a

xn�1e jpndx

3

5

¼ 1

2pj
�
ð

1

0

(1� x)axn�1�ae�jp(n�a)dx

2

4

þ
ð

1

0

(1� x)axn�1�ae jp(n�a)dx

3

5

¼ sin (n� a)p½ �
p

ð

1

0

xn�1�a(1� x)adx (6:50)

But the beta function is given by

B(m, k) ¼ G(m)G(k)

G(mþ k)
¼
ð

1

0

xm�1(1� x)k�1dx (6:51)

and, hence,

f (nT) ¼ sin (n� a)p½ �
p

G(n� a)G(aþ 1)

G(nþ 1)
(6:52)

But,

G(m)G(1�m) ¼ p

sinpm
(6:53)

and, therefore,

f (nT) ¼ G(n� a)G(aþ 1)

G(nþ 1)

1

G(n� a)G(a� nþ 1)

¼ G(aþ 1)

G(nþ 1)G(a� nþ 1)
(6:54)

The Taylor’s expansion of F(z) is given as follows:

F(z) ¼ z þ 1

z

� a

¼ (1þ z�1)a ¼
X

1

n¼0

1

n!

dn(1þ z�1)a

(dz�1)n

�

�

�

�

�

z�1¼0

z�n

¼
X

1

n¼0

1

n!
a(a� 1)(a� 2) � � � (a� nþ 1)z�n (6:55)

But,

G(aþ 1) ¼ a(a� 1)(a� 2) � � � (a� nþ 1)G(a� nþ 1),

G(nþ 1) ¼ n! (6:56)

and, therefore, Equation 6.55 becomes

F(z) ¼
X

1

n¼0

G(aþ 1)

G(nþ 1)G(a� nþ 1)
z�n (6:57)

The above equation is a Z-transform expansion and, hence, the

function F(nT) is that given in Equation 6.54.

Example

To find the inverse of the transform

F(z) ¼ (z � 1)

(z þ 2) z � 1
2

� � jzj > 2

we proceed with the following approaches:

1. By fraction expansion

(z � 1)

(z þ 2) z � 1
2

� � ¼ A

(z þ 2)
þ B

z � 1
2

,

A ¼ (z � 1)

z � 1
2

� �

�
�
�
�
�
z¼�2

¼ 6

5
, B ¼ (z � 1)

(z þ 2)

�
�
�
�
z¼1

2

¼ � 1

5

z-Plane

Branch cut

Branch point

C

z = xe jπ

z = xe–jπ
B

DE

A
–1 x

jy

FIGURE 6.4
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f (nT ) ¼ Z�1 6

5

1

z þ 2
� 1

5

1

z � 1
2

( )

¼ 6

5
(�2)n�1 � 1

5

1

2

� n�1

n � 1

2. By integration

f (nT ) ¼ resz¼�2 (z þ 2)
z � 1

(z þ 2) z � 1
2

� � zn�1

( )

þ resz¼1
2

z � 1

2

� 
z � 1

(z þ 2) z � 1
2

� � zn�1

( )

¼ 6

5
(�2)n�1 � 1

5

1

2

� n�1

n � 1

3. By power expansion

z � 1

z2 þ 3
2
z � 1

¼ z�1 � 5

2
z�2 þ 19

4
z�3 þ � � �

¼ z�1 1� 5

2
z�1 þ 19

4
z�2 þ � � �

� 

The multiplier z�1 indicates one time-unit shift and,

hence, f (nT )f g ¼ 1, � 5

2
,
19

4
, . . .

� �

n ¼ 1, 2 . . . :

Example

1. By expansion

By F(z) has the ROC jzj> 5, then

F(z) ¼ 5z

(z � 5)2
¼ 5z

z2 � 10z þ 25
¼ 5z�1 þ 50z�2

þ 375z�3 þ � � �
¼ 0 � 50z�0 þ 1 � 5z�1 þ 2 � 52z�2 þ 3 � 53z�3 þ � � �

Hence, f(nT)¼ n5n n¼ 0, 1, 2, . . . , which sometimes is

difficult to recognize using the expansion method.

2. By fraction expansion

F(z) ¼ 5z

(z � 5)2
¼ Az

z � 5
þ Bz2

(z � 5)2
,

B ¼ 5

z

�
�
�
�
z¼5

¼ 1,

5� 6

(6� 1)2
¼ A� 6

6� 5
þ 62

(6� 5)2
or A ¼ �1:

Hence,

F(z) ¼ � z

z � 5
þ z2

(z � 5)2

and f (nT ) ¼ �(5)n þ (nþ 1)5n ¼ n5n , n � 0:

3. By integration

1

(2� 1)!

d2�1

dz2�1
(z � 5)2

5z

(z � 5)2
zn�1

� 	�
�
�
�
z¼5

¼ 5nzn�1jz¼5

¼ n5n , n � 0:

Figure 6.5 shows the relation between pole location and type of

poles and the behavior of causal signals; m stands for pole

multiplicity. Table A.6.5 gives the Z-transform of a number of

sequences.

6.1.2 Two-Sided Z-Transform

6.1.2.1 The Z-Transform

If a function f (z) is defined by �1< t<1, then the

Z-transform of its discrete representation f(nT) is given by

ZII f (nT)f g¼: F(z) ¼
X1

n¼�1
f (nT)z�n Rþ > jzj < R� (6:58)

where

Rþ is the radius of convergence for the positive time of the

sequence

R� is the radius of convergence for the negative time of the

sequence

Example

F(z) ¼ Z II e�jnT j
n o

¼
X�1

n¼�1
enT z�n þ

X1

n¼0

e�nT z�n

¼
X0

n¼�1
enT z�n � 1þ

X1

n¼0

e�nT z�n

¼
X1

n¼0

e�nT zn � 1þ
X1

n¼0

e�nT z�n

¼ 1

1� e�T z
� 1þ 1

1� e�T z�1

The first sum (negative time) converges if je�Tzj< 1 or jzj< eT.

The second sum (positive time) converges if je�Tz�1j< 1 or

e�T< jzj. Hence, the ROC is Rþ¼ e�T< jzj< R�¼ eT. The two

poles of F(z) are z¼ eT and z¼ e�T.

Example

The Z-transform of the functions of u(nT) and �u(�nT� T) are

Z II u(nT )f g ¼
X1

n¼0

u(nT )z�n ¼ 1

1� z�1
¼ z

z � 1
jzj > 1

Z-Transform 6-11



z-Plane

z-Plane

1

m = 1

f (n)

n

f (n)

z-Plane

1

m = 1

f (n)

n

z-Plane

1

m = 1

f (n)

n

z-Plane

1

m = 1

f (n)

n

f (n)
z-Plane

1

m = 1

n

1

m = 1

n

Single real poles—Causal signals

FIGURE 6.5
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z-Plane

1

m = 2

f (n)

n

z-Plane

1

m = 2

f (n)

n

z-Plane

1

m = 2

f (n)

n

z-Plane

1

m = 2

f (n)

n

z-Plane

1

m = 2

f (n)

n

z-Plane

1

m = 2

f (n)

n

Double real poles—Causal signals

FIGURE 6.5 (continued)

(continued)
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Z II �u(�nT � T )f g ¼ �
X

�1

n¼�1
u(�nT � T )z�n

¼ �
X

0

n¼�1
z�n � 1

" #

¼ 1�
X

1

n¼0

zn ¼ 1� 1

1� z
¼ z

z � 1
jzj < 1

Although their Z-transform is identical their ROC is different.

Therefore, to find the inverse Z-transform the ROC must also

be given.

Figure 6.6 shows signal characteristics and their corre-

sponding ROC.

Assuming that the algebraic expression for the Z-transform
F(z) is a rational function and that f(nT) has finite amplitude,

except possibly at infinities, the properties of the ROC are

1. The ROC is a ring or disc in the z-plane and centered at

the origin, and 0�Rþ< jzj<R��1.

2. The Fourier transform converges also absolutely if and

only if the ROC of the Z-transform of f(nT) includes the
unit circle.

3. No poles exist in the ROC.

4. The ROC of a finite sequence { f(nT)} is the entire z-plane
except possibly for z¼ 0 or z¼1.

5. If f(nT) is left handed, 0� n<1, the ROC extends inward

from the innermost pole of F(z) to infinity.

6. If f(nT) is left handed, �1< n< 0, the ROC extends

inward from the innermost pole of F(z) to zero.

Complex-conjugate poles—Causal signals

z-Plane

m = 1

1

r ω0

–ω0

f (n)

rn

n

z-Plane

r = 1

r = 1

m = 1

1

ω0

–ω0

rn = 1f (n)

n

z-Plane

m = 1

1

r

ω0

–ω0

rnf (n)

n

z-Plane

m = 2r = 1

1

ω0

–ω0

f (n)

n

FIGURE 6.5 (continued)
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Finite-duration signals

Infinite-duration signals

Causal Entire z-plane
except z = 0

Rez

j Imz

n

Anticausal

n

Entire z-plane
except z = ∞

Rez

j Imz

Two-sided

Two-sided

n

Entire z-plane
except z = 0
and z = ∞

Rez

j Imz

Causal

n Rez

j Imz

R+

Anticausal

n Rez

j Imz

|z| < R–

|z| > R+

R–

n
Rez

j Imz

R+ < |z| < R–
R+

R–

FIGURE 6.6
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7. An infinite-duration two-sided sequence { f(nT)} has a ring
as its ROC, bounded on the interior and exterior by a pole.

The ring contains no poles.

8. The ROC must be a connected region.

6.1.2.2 Properties

6.1.2.2.1 Linearity

The proof is similar to the one-sided Z-transform.

6.1.2.2.2 Shifting

ZII f (nT 	 kT)f g ¼ z	kF(z) (6:59)

Proof

ZII f (nT � kT)f g ¼
X

1

n¼�1
f (nT � kT)z�n

¼ z�k
X

1

m¼�1
f (mT)z�m

The last step results from setting m¼ n� k. Proceed similarly for

the positive sign. The ROC of the shifted functions is the same as

that of the unfinished function except at z¼ 0 for k> 0 and

z¼1 for k< 0.

Example

To find the transfer function of the system y(nT)� y(nT� T)þ
2y(nT� 2T)¼ x(nT)þ 4x(nT� T), we take the Z-transform of

both sides of the equation. Hence, we find

Y(z)� z�1Y(z)þ 2z�2Y(z) ¼ X (z)þ 4z�1X (z)

or

H(z) ¼ Y(z)

X (z)
¼ 1þ 4z�1

1� z�1 þ 2z�2

Example

Consider the Z-transform

F(z) ¼ 1

z � 1
2

jzj > 1

2

Because the pole is inside the ROC, it implies that the function

is causal. We next write the function in the form

F(z) ¼ z�1 z

z � 1
2

¼ z�1 1

1� 1
2
z�1

jzj > 1

2

which indicates that it is a shifted function (because of the

multiplier z�1). Hence, the inverse transform is f (n) ¼ 1
2

� �n�1

u(n� 1) because the inverse transform of 1 1� 1
2
z�1

� ��
is

equal to 1
2

� �n
.

6.1.2.2.3 Scaling

If

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

then

ZII anT f (nT)
� �

¼ F(a�Tz) jaT jRþ < jzj < jaT jR� (6:60)

Proof

ZII anT f (nT)
� �

¼
X1

n¼�1
anT f (nT)z�n ¼

X1

n¼�1
f (nT)(a�Tz)�n

¼ F(a�Tz)

Because the ROC of F(z) is Rþ< jzj<R�, the ROC of F(a�Tz) is

Rþ < ja�Tzj < R� or RþjaT j < jzj < jaT jR�

Example

If the Z-transform of f(nT)¼ exp (�jnTj) is

F(z) ¼ 1

1� e�nT z
þ 1

1� e�nT z�1
� 1 e�T < jzj < eT

then the Z-transform of g(nT)¼ anT f(nT) is

G(z) ¼ 1

1� e�nTa�T z
þ 1

1� e�nTaT z�1
� 1 aTe�T < jzj < eTaT

6.1.2.2.4 Time Reversal

If

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

then

ZII f (�nT)f g ¼ F(z�1)
1

R�
< jzj < 1

Rþ
(6:61)

Proof

ZII f (�nT)f g ¼
X1

n¼�1
f (nT)z�n ¼

X1

n¼�1
f (nT)(z�1)�n ¼ F(z�1)

6-16 Transforms and Applications Handbook



and

1

(n� 1)!
(kþ 1)(kþ 2) � � � (kþ n� 1)ak, k��1 and jzj< 1

Rþ

The above means that if z0 belongs to the ROC of F(z) then 1=z0
is in the ROC of F(z�1). The reflection in the time domain

corresponds to inversion in the z-domain.

Example

The Z-transform of f(n)¼ u(n) is z=(z� 1) for jzj> 1. Therefore,

the Z-transform of f(�n)¼ u(�n) is

1
z

1
z
� 1

¼ 1

1� z

Also, from the definition of the Z-transform, we write

Z u(�n)f g ¼
X

0

n¼�1
z�n ¼

X

1

n¼0

zn ¼ 1

1� z

6.1.2.2.5 Multiplication by nT

If

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

then

ZII nTf (nT)f g ¼ �zT
dF(z)

dz
Rþ < jzj < R� (6:62)

Proof A Laurent series can be differentiated term-by-term in

its ROC and the resulting series has the same ROC. Therefore,

we have

dF(z)

dz
¼ d

dz

X

1

n¼�1
f (nT)z�n ¼

X

1

n¼�1
�nf (nT)z�n�1

for Rþ < jzj < R�

Multiply both sides by �zT

�zT
dF(z)

dz
¼
X

1

n¼�1
nTf (nT)z�n ¼ Z nTf (nT)f g for Rþ < jzj < R�

Example

If F(z)¼ log(1þ az�1) jzj> jaj, then

dF(z)

dz
¼ �az�2

1þ az�1
or �z

dF(z)

dz
¼ az�1 1

1� (�a)z�1
jzj> jaj

The z�1 implies a time shift, and the inverse transform

of the fraction is (�a)n. Hence, the inverse transform is

a(�a)n�1 u(n� 1). From the differentiation property (with

T¼ 1), we obtain

nf (n) ¼ a(�a)n�1u(n� 1) or f (n) ¼ (�1)n�1 a
n

n
u(n� 1)

Example

If f(nT)¼ au(nT) then its Z-transform is F(z)¼ a=(1� z�1) for

jzj> 1. Therefore,

Z nTau(nT )f g ¼ �zTa
dF(z)

dz
¼ aT

z

(z � 1)2
jzj > 1

6.1.2.2.6 Convolution

If

ZII f1(nT)f g ¼ F1(z) and ZII f2(nT)f g ¼ F2(z)

then

F(z) ¼ ZII f1(nT) * f2(nT)f g ¼ F1(z)F2(z) (6:63)

The ROC of F(z) is, at least, the intersection of that for F1(z)
and F2(z).

Proof

F(z) ¼
X

1

n¼�1
f (nT)z�n ¼

X

1

n¼�1

X

1

m¼�1
f1(mT)f2(nT �mT)

" #

z�n

¼
X

1

m¼�1
f1(mT)

X

1

n¼�1
f2(nT �mT)z�n

" #

¼
X

1

m¼�1
f1(mT)z�mF2(z) ¼ F1(z)F2(z)

where the shifting property was invoked.

Example

The Z-transform of the convolution of e�nu(n) and u(n) is

Z II e�nu(n)ð Þ * u(n)f g ¼ Z
X

n

m¼0

e�mu(n�m)

( )

¼ Z{e�n}Z u(n)f g ¼ z

z � e�1

z

z � 1

Also, from the convolution, definition we find

Z
X

n

m¼0

e�mu(n�m)

( )

¼ Z 1� e�n�1

1� e�1

� �

¼ Z 1

1� e�1
� e�1

1� e�1
e�n

� �

¼ 1

1� e�1

z

z � 1
� e�1 z

z � e�1


 �

¼ z2

(z � 1)(z � e�1)
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which verifies the convolution property. The ROC for e�nu(n) is

jzj> e�1 and the ROC of u(n) is jzj> 1. The ROC of e�nu(n) * u

(n) is the intersection of these two ROCs and, hence, the ROC

is jzj> 1.

Example

The convolution of f1(n)¼ {2, 1,�3} for n¼ 0, 1, and 2, and

f2(n)¼ {1, 1, 1, 1} for n¼ 0, 1, 2, and 3 is

G(z) ¼ F1(z)F2(z) ¼ (2þ z�1 � 3z�2)(1þ z�1 þ z�2 þ z�3)

¼ 2þ 3z�1 � 2z�4 � 3z�5

which indicates that the output is g(n)¼ {2, 3, 0, 0,�2,�3}

which can easily be found by simply convoluting f1(n)

and f2(n).

6.1.2.2.7 Correlation

If

ZII f1(nT)f g ¼ F1(z) and ZII f2(nT)f g ¼ F2(z)

then

ZII rf1f2 (‘T)
� �

¼: ZII f1(nT)� f2(nT)f g

¼ ZII

X1

n¼�1
f1(nT)f2(nT � ‘T)

( )

¼ Rf1f2(z) ¼ F1(z)F2(z
�1) (6:64)

The ROC of Rf1f2 (z) is at least the intersection of that for F1(z)
and F1(z

�1).

Proof But rf1f2(‘T) ¼ f1(‘T) * f2(�T‘) and, hence, from the con-

volution property and the time-reversal property Rf1f2(z) ¼
F1(z)F2(z�1).

Example

The transform of the autocorrelation sequencing f(nT)¼ anT

u(n), �1< a< 1 is

Rff (z) ¼: Z II rff (‘T )f g ¼ F(z)F(z�1)

But,

F(z) ¼ 1

1� aT z�1
jzj > jajT causal signal

and

F(z�1) ¼ 1

1� aT z
jzj < 1

jajT
anticausal signal

Hence,

Rff (z) ¼
1

1� aT (z þ z�1)þ a2T
ROCjajT < jzj < 1

jajT

Because the ROC of Rff(z) is a ring, it implies that rff(‘T) is a two-
sided signal.

We proceed to find the autocorrelation first

rff (nT ) ¼
X1

m¼n

amTa(m�n)T ¼ a�nT
X1

m¼0

a2Tm � a�nT
Xn�1

m¼0

a2Tm

¼ a�nT 1

1� a2T
� a�nT 1� a2Tn

1� a2T
¼ anT

1� a2T
n � 0

rff (nT ) ¼
X1

m¼0

amTa(m�n)T ¼ a�nT 1

1� a2T
n � 0

and then compare by inverting the function F(z) F(z�1).

6.1.2.2.8 Multiplication by e�anT

If

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

then

ZII e�anT f (nT)
� �

¼ F(e�aTz)je�aT jRþ < jzj < je�aT jR�

Proof

ZII e�anT f (nT)
� �

¼
X1

n¼�1
f (nT)(eaTz)�n ¼ F(eaTz) Rþ < jeaTzj< R�

6.1.2.2.9 Frequency Translation

If the ROC of F(z) includes the unit circle and g(nT) ¼
e jv0nT f (nT), then

G(v) ¼ F(v� v0) (6:65)

Proof From (6.6.7) G(z) ¼ F e�jv0Tzð Þ and has the same ROC as

F(z) because jexp (jv0T)j ¼ 1. Therefore,

G(v) ¼ G(z)jz¼e jvT ¼ F e j(v�v0)T
� �

¼ F(v� v0)

6.1.2.2.10 Product

If

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f (6:66)

ZII h(nT)f g ¼ H(z) Rþh < jzj < R�h (6:67)

g(nT) ¼ f (nT)h(nT)
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then

ZII f (nT)h(nT)f g¼: G(z) ¼
X

1

n¼�1
f (nT)h(nT)z�n

¼ 1

2pj

þ

C

F(t)H
z

t


 � dt

t

RþfRþh < jzj < R�fR�h (6:68)

where C is any simple closed curve encircling the origin counter-

clockwise with

max Rþf ,
jzj
R�h

� 

< jtj < min R�f ,
jzj
Rþh

� 

(6:69)

Proof The series in Equation 6.68 will converge to an analytic

function G(z) for Rþg< jzj<R�g. Using the root test (see Section

6.2), we obtain

Rþg ¼ lim
n!1

f (nT)h(nT)j jð Þ1=n

� lim
n!1

f (nT)j jð Þ1=n lim
n!1

h(nT)j jð Þ1=n

¼ RþfRþh (6:70)

for positive n. However,

F(z) ¼
X0

n¼�1
f (nT)z�n ¼

X1

n¼�0

f (�nT)zn (6:71)

and this series converges if

jzj < 1

limn!1 f (�nT)j jð Þ1=n
¼ R�f (6:72)

Hence,

R�g ¼
1

limn!1 f (�nT)h(�nT)j jð Þ1=n

� 1

limn!1 f (�nT)j jð Þ1=nlimn!1 h(�nT)j jð Þ1=n

� R�fR�h (6:73)

Replacing f(nT) in the summation of Equation 6.68 by its inver-

sion formula 6.46, we find

G(z) ¼
X1

n¼�1

1

2pj

þ

C

F(t)tn
dt

t
h(nT)z�n

¼ 1

2pj

þ

C

F(t)
X1

n¼�1
h(nT)

z

t


 ��n dt

t
(6:74)

The interchange of the sum and integral is justified if the inte-

grand converges uniformly for some choice of C and z. The
contour must be chosen so that

Rþf < jtj < R�f (6:75)

If

Rþh <
z

t

�
�
�

�
�
� < R�h or

jzj
R�h

< jtj < jzj
Rþh

(6:76)

the series in the integrand of Equation 6.74 will converge uni-

formly to H(z=t), and otherwise will diverge. Figure 6.7 shows the
ROC for F(t) and H(z=t). Form Equations 6.75 and 6.76 we

obtain

jzj
R�h

< R�f or jzj < R�fR�h

jzj
Rþh

> Rþf or jzj > RþfRþh

or equivalently

RþfRþh < jzj < R�fR�h (6:77)

When z satisfies the above equation, the intersection of the

domain identified by Equations 6.75 and 6.76 is

Rþf < jtj < R�f

� �
\ jzj

R�h
< jtj < jzj

Rþh

� 

¼ max Rþf ,
jzj
R�h

� 

< jtj < min R�f ,
jzj
Rþh

� 

(6:78)

The contour must be located inside the intersection.

j Im{τ}

Re{τ}

|τ| = R–f

|τ| =
R–h

|z|

|τ| = R+f

|τ| =
R+h

|z|

FIGURE 6.7
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When signals are causal, R�f¼R�h¼1 and the conditions

6.77 and 6.78 reduce to

RþfRþh < jzj (6:79)

Rþf < jtj < jzj
Rþh

(6:80)

Hence, all of the poles of F(t) lie inside the contour and all the

poles of H(z=t) lie outside the contour.

Example

The Z-transform of u(nT) is

F(z) ¼ 1

1� z�1
jzj > 1 ¼ Rþf , R�f ¼ 1

and the Z-transform of h(nT)¼ exp(�jnTj) is

H(z) ¼ 1� e�2T

(1� e�T z�1)(1� e�T z)
Rþh ¼ e�T < jzj < eT ¼ R�h

But R�f¼1 and, hence, from Equation 6.68 1� exp(�T)<
jzj<1. The contour must lie in the region max (1, jzje�T)<
jtj<min(�1, jzje�T) as given by Equation 6.78. The pole-zero

configuration and the contour are shown in Figure 6.8.

If we choose jzj> eT, then the contour is that shown in the

figure. Therefore, Equation 6.68 becomes

Z II u(nT )h(nT )f g¼: G(z) ¼ 1

2pj

þ

C

1

1� t�1

� 1� e�2T

1� e�T t
z

� �
1� e�T z

t

� �
dt

t

The poles of H(z=t) are at t¼ z exp(�T) and t¼ z exp(T).

Hence, the contour encloses the poles t¼ 1 and t¼ z exp(�T).

Applying the residue theorem next we obtain

G(z) ¼ 1

(1� e�T z�1)
jzj > e�T

which has the inverse function g(nT)¼ e�nTu(nT), as expected.

6.1.2.2.11 Parseval’s Theorem

If

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f

ZII h(nT)f g ¼ H(z) Rþh < jzj < R�h

(6:81)

with

RþfRþh < jzj ¼ 1 < R�fR�h (6:82)

then we have

X1

n¼�1
f (nT)h(nT) ¼ 1

2pj

þ

C

F(z)H(z�1)
dz

z
(6:83)

where the contour encircles the origin with

max Rþf ,
1

R�h

� 

< jzj < min R�f ,
1

Rþh

� 

(6:84)

Proof In Equations 6.68 and 6.69 set z¼ 1 and replace the

dummy variable t and z to obtain Equations 6.83 and 6.84.

For complex signals Parseval’s relation 6.83 is modified as

follows:

X1

n¼�1
f (nT)h * (nT) ¼

1

2pj

þ

C

F(z)H *
1

z*

� 
dz

z
(6:85)

If f(nT) and h(nT) converge on the unit circle, we can use the unit

circle as the contour. We then obtain

X1

n¼�1
f (nT)h * (nT) ¼

1

vs

ðvs=2

�vs=2

F(e jvT)H * (e
jvT )dv

vs ¼
2p

T
(6:86)

where we set z¼ e jvT. If f(nT)¼ h(nT) then

X1

n¼�1
f (nT)j j2¼ 1

vs

ðvs=2

�vs=2

F(e jvT)
�
�

�
�
2
dv (6:87)

j Im{τ}

C

zeT

ze–T

1

|τ| = |z|e–T

|τ| = |z|eT

|τ| = 1

Re{τ}

FIGURE 6.8
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Example

The Z-transform of f(nT)¼ exp(�nT)u(nT) is F(z)¼ 1=(1� e�Tz�1)

for jzj> e�T. From Equation 6.83 we obtain

X

1

n¼�1
f 2(nT ) ¼

X

1

n¼0

f 2(nT ) ¼ 1

2pj

þ

C

1

1� e�T z�1

1

1� e�T z

dz

z

From Equation 6.84 we see that max (e�T, 0)< jzj<min

(1, eT). The contour encircles the pole at z¼ e�T so that

X

1

n¼0

f 2(nT ) ¼ res
z � e�T

(z � e�T )(1� e�T z)

� 	� �

z¼e�T

¼ 1

1� e�2T

Also we find directly

X1

n¼0

e�nT e�nT ¼
X1

n¼0

e�2nT ¼ 1þ e�2T þ (e�2T )2 þ � � �
� �

¼ 1

1� e�2T

6.1.2.2.12 Complex Conjugate Signal

If

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f

then

ZII f * (nT)f g ¼ F * (z*) Rþf < jzj < R�f (6:88)

Proof By definition we have

F(z) ¼
X1

n¼�1
f (nT)z�n

Replacing z with z* and taking the conjugate of both sides of the

above equation, we obtain Equation 6.88.

6.1.2.3 Inverse Z-Transform

6.1.2.3.1 Power Series Expansion

The inverse Z-transform in operational form is given by

f (nT) ¼ Z�1
II F(z)f g

If F(z) corresponds to a causal signal, then the signal can be

found by dividing the denominator into the numerator to gen-

erate a power series in z�1 and recognizing that f(nT) is the

coefficient of z�n. Similarly, if it is known that f(nT) is zero for

positive time (n positive), the value of f(nT) can be found by

dividing the denominator into the numerator to generate a power

series in z.

Example

If F(z)¼ [z(zþ 1)]=(z2� 2zþ 1)¼ (1þ z�1)=(1� 2z�1þ z�2) and

the ROC is jzj> 1, then

1� 2z�1 þ z�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z�1
p

1þ3z�1þ5z�2þ7z�3þ���

1� 2z�1 þ z�2

3z�1 � z�2

3z�1 � 6z�2 þ 3z�3

5z�2 � 3z�3

. . .

and by continuing the division we recognize that

f (nT ) ¼ 0 n < 0

(2nþ 1) n � 0

�

If f(nT) is known to be zero for positive n, that the ROC is

jzj< 1, then

z�2 � 2z�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z�1 þ 1
1
p

zþ3z2þ5z3þ���

z�1 � 2þ z

3� z

3� 6z þ 3z2

5z � 3z2

. . .

This series is recognized as

f (nT ) ¼ �(2nþ 1) n < 0

0 n � 0

�

Example

If F(z)¼ log (1þ 2z�1), jzj> 2, then using power series expan-

sion for log (1þ x), with jxj< 1, we obtain

F(z) ¼
X1

n¼1

(�1)nþ12nz�n

n

which indicates that

f (nT ) ¼ (�1)nþ1 2n

n
n � 0

0 n � 0

�

In general, any improper rational function (M�N) can be

expressed as

F(z) ¼ N(z)

D(z)
¼ b0 þ b1z�1 þ � � � þ bMz�M

1þ a1z�1 þ � � � þ aNz�N

¼ c0 þ c1z
�1 þ � � � þ cM�Nz

�(M�N) þ N1(z)

D(z)
(6:89)
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where the inverse Z-transform of the polynomial can easily be

found by inspection.

A proper function (M<N) is of the form

F(z) ¼ N(z)

D(z)
¼ b0 þ b1z�1 þ � � � þ bMz�M

1þ a1z�1 þ � � � þ aNz�N
aN 6¼ 0, M < N

or

F(z) ¼ N(z)

D(z)
¼ b0zN þ b1zN�1 þ � � � þ bMzN�M

zN þ a1zN�1 þ � � � þ aN
(6:90)

Because N>M, the function

F(z)

z
¼ b0zN�1 þ b1zN�2 þ � � � þ bMzN�M�1

zN þ a1zN�1 þ � � � þ aN
(6:91)

is always a proper function.

6.1.2.3.2 Partial Fraction Expansion

Distinct poles

If the poles p1, p2, . . . , pN on a proper function F(z) are all

different, then we expand it in the form

F(z)

z
¼ A1

z � p1
þ A2

z � p2
þ � � � þ AN

z � pN
(6:92)

where all Ai are unknown constants to be determined.

The inverse Z-transform of the kth term of Equation 6.92 is

given by

Z�1 1

1� pkz�1

� �

¼
(pk)

nu(nT) if ROC: jzj > jpkj(causal signal)
�(pk)

nu(�nT � T) if ROC: jzj < jpkj(anticausal signal)

(

(6:93)

If the signal is causal, the ROC is jzj> pmax, where pmax¼max

{jp1j, jp2j, . . . , jpNj}. In this case, all terms in Equation 6.92 result

in causal signal components.

Example

(a) If F(z)¼ z(zþ 3)=(z2� 3zþ 2) with jzj> 2 then

F(z)

z
¼ (z þ 3)

(z � 2)(z � 1)
¼ A1

(z � 2)
þ A2

(z � 1)

A1 ¼
(z þ 3)(z � 2)

(z � 2)(z � 1)

�
�
�
�
z¼2

¼ 5, A2 ¼
(z þ 3)(z � 1)

(z � 2)(z � 1)

�
�
�
�
z¼1

¼ �4

Therefore,

F(z) ¼ 5
z

z � 2
� 4

z

z � 1
or f (nT ) ¼ 5(2)n � 4(1)n n � 0

(b) If F(z)¼ z(zþ 3)=(z2� 3zþ 2) with 1< jzj> 2, then fol-

lowing exactly the same procedure

F(z) ¼ 5
z

z � 2
� 4

z

z � 1

However, the pole at z¼ 2 belongs to the negative-time

sequence and the pole at z¼ 1 belongs to the positive-

time sequence. Hence,

f (nT ) ¼ �4(1)n n � 0

�5(2)n n � �1

�

Example

To determine the inverse Z-transform of F(z)¼ 1=(1� 1.5z�1þ
0.5z�2) if (a) ROC: jzj> 1, (b) ROC: jzj< 0.5, and (c) ROC:

0.5< jzj< 1, we proceed as follows:

F(z) ¼ z2

z2 � 1:5z þ 0:5
¼ z2

(z � 1) z � 1
2

� � ¼ Aþ Bz

z � 1
þ Cz

z � 1
2

or

F(z) ¼ 2
z

z � 1
� z

z � 1
2

(a) f(nT)¼ 2(1)n� (1=2)n, n� 0 because both poles are out-

side the ROC jzj> 1 (inside the unit circle).

(b) f(nT)¼�2(1)n u(�nT� T)þ (1=2)n u(�nT� T), n��1

because both poles are outside the ROC (outside the

circle jzj ¼ 0.5).

(c) Pole at 1=2 provides the causal part and the pole at 1

provides the anticausal. Hence,

f (nT ) ¼ �2(1)nu(�nT � T )� 1

2

� n

u(nT ) �1 < n < 1

Multiple poles

If F(z) has repeated poles, we must modify the form of the

expansion. Suppose F(z) has a pole of multiplicity m at z¼ pi.

Then one form of expansion is of the form

A1
z

z � pi
þ A2

z2

(z � pi)
2
þ � � � þ Am

zm

(z � pi)
m (6:94)

The following example shows how to find Ai’s.
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Example

Let the transfer function of each of two cascade systems be

1=(1� (1=2)z�1). If the input to this system is the unit step

function 1=(1� z�1), then its output is

F(z) ¼ 1

1� z�1

1

1� 1
2
z�1

� �2
¼ z3

(z � 1) z � 1
2

� �2

¼ A0 þ
A1z

z � 1
þ A2z

z � 1
2

þ A3z
2

z � 1
2

� �2
jzj > 1

If we set z¼ 0 in both sides, we find that A0¼ 0. Next the find

A3 by multiplying both sides by (z� 1=2)2 and setting z¼ 1=2.
Hence.

A3 ¼
z3 z � 1

2

� �2

z2(z � 1) z � 1
2

� �2

�
�
�
�
�
z¼1

2

¼
1
2

1
2
� 1

¼ �1

and then we write

z3

(z � 1) z � 1
2

� �2
¼ A1z

z � 1
þ A2z

z � 1
2

� z2

z � 1
2

� �2

¼ A1z z � 1
2

� �2þ A2z(z � 1) z � 1
2

� �
� z2(z � 1)

(z � 1) z � 1
2

� �2

¼ (A1 þ A2 � 1)z3 þ 1� 3
2
A2 � A1

� �
z2 þ 1

4
A1 þ 1

2
A2

� �
z

(z � 1) z � 1
2

� �2

Equating coefficients of equal powers, we obtain the system

A1þA2� 1¼ 1, 1�A1 �
3

2
A2 ¼ 0, A1 ¼ 4 and A2 ¼�2

Hence,

z3

(z � 1) z � 1
2

� �2
¼ 4

z

z � 1
� 2

z

z � 1
2

� z2

z � 1
2

� �2

and the output is

f (nT ) ¼ 4(1)n � 2
1

2

� n

�(nþ 1)
1

2

� n

n � 0

Another form of expansion of a proper function (the degree

of the denominator is one less than the numerator) is of

the form

A1

z � pi
þ A2z

(z � pi)
2
þ A3z(z þ pi)

(z � pi)
3

(6:95)

and the following example explains its use (see Table A.6.4).

Example

Using the previous example for F(z) with jzj> 1, we obtain

F(z) ¼ z3

(z � 1) z � 1
2

� �2
¼ 1þ 2z2 � 5

4
z þ 1

4

(z � 1) z � 1
2

� �2

¼ 1þ A1

z � 1
þ A2

z � 1
2

� �þ A3z

z � 1
2

� �2

Hence,

A1 ¼
2z2 � 5

4
z þ 1

4

� �
(z � 1)

(z � 1) z � 1
2

� �2

�
�
�
�
�
z¼1

¼ 4,

A3 ¼
1

z

2z2 � 5
4
z þ 1

4

� �
z � 1

2

� �2

(z � 1) z � 1
2

� �2

�
�
�
�
�
z¼1

2

¼ � 1

2
,

A2 ¼ � 3

2

where A2 was found by setting an arbitrary value of z, that is,

z¼�1, in both sides of the equation. Therefore, the inverse

Z-transform is given by

f (nT ) ¼
d(n) n ¼ 0

4(1)n�1 � 3

2

1

2

� n�1

� 1

2
n

1

2

� n�1

n � 1

8

<

:

Example

Now let us assume the same example but with jzj< 1=2. This
indicates that the output signal is anticausal. Hence, from

F(z) ¼ 4
z

z � 1
� 2

z

z � 1
2

� z2

z � 1
2

� �2

and Table A.6.3, we obtain

f (nT ) ¼ �4(1)n þ 2
1

2

� n

þ (nþ 1)
1

2

� n

n � �1

Similarly from

F(z) ¼ 1þ 4
1

z � 1
� 3

2

1

z � 1
2

� 1

2

z

z � 1
2

� �2

and Table A.6.4, we obtain

f (nT ) ¼
d(n) n ¼ 0

�4(1)n�1 þ 3

2

1

2

� n�1

þ 1

2
n

1

2

� n�1

n � �1

8

<

:
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6.1.2.3.3 Integral Inversion Formula

THEOREM 6.1

If

F(z) ¼
X

1

m¼�1
f (mT)z�m (6:96)

converges to an analytic function in the annular domain

Rþ< jzj<R�, then

f (nT) ¼ 1

2pj

þ

C

F(z)zn
dz

z
(6:97)

where C is any simple closed curve separating jzj ¼Rþ from

jzj ¼R� and it is traced in the counterclockwise direction.

Proof Multiply Equation 6.96 by zn�1 and integrate around C.
Then

1

2pj

þ

C

F(z)zn
dz

z
¼
X

1

m¼�1
f (mT)

1

2pj

þ

C

zn�m dz

z
(6:98)

Set z¼Reju with Rþ<R<R� to obtain

1

2pj

þ

C

zn�m dz

z
¼ 1

2pj

ð

2p

0

Rn�m�1e ju(n�m�1)Rje judu

¼ 1

2p
Rk

ð

2p

0

e jukdu

¼ 1 k ¼ 0

0 elsewhere

�

(6:99)

Hence, the summation on the right-hand side of Equation 6.98

reduces to f(nT).
Let {ak} be the set of poles of F(z)z

n�1 inside the contour C and

{bk} be the set of poles of F(z)z
n�1 outside C in a finite region of

the z-plane. By Cauchy’s residue theorem

f (nT) ¼
X

k

Res F(z)zn�1, ak
� �

n � 0 (6:100)

f (nT) ¼ �
X

k

Res F(z)zn�1, bk
� �

n < 0 (6:101)

Example

Let

F(z) ¼ 1

(1� z�1)(1� aT z�1)
a < 1, jzj > 1

The function F(z)zn�1¼ znþ 1=(z� 1)(z� aT) has two poles

enclosed by C for n� 0. Hence,

f (nT ) ¼ Res F(z)zn�1 , 1
� �

þ Res F(z)zn�1 , a
� �

¼ 1

1� aT
þ a(nþ1)T

aT � 1
n � 0

Example

Let

F(z) ¼ 1� 0:82

(1� 0:8z)(1� 0:8z�1)
0:8 < jzj < 0:8�1

For n� 0 the contour C encloses only the pole z¼ 0.8 of the

function F(z)zn�1. Therefore,

f (nT ) ¼ Res F(z)zn�1
� �

jz¼0:8¼
(1� 0:82)zn(z � 0:8)

(1� 0:8z)(z � 0:8)

�
�
�
�
z¼0:8

¼ 0:8n n � 0

For n< 0 only the pole z¼ 1=0.8 is outside C. Hence,

f (nT ) ¼ �Res F(z)zn�1
� �

jz¼1=0:8

¼ � (1� 0:82)0:8�1zn(z � 0:8�1)

�(1� 0:8�1)(z � 0:8)

�
�
�
�
z¼0:8�1

¼ 0:8�n n � �1

The residue for a multiple pole of order k at z0 is given by

Res F(z)zn�1
� �

jz¼z0
¼ lim

z!z0

1

(k � 1)!

dk�1

dzk�1

� (z � z0)
kF(z)zn�1

� �
(6:102)

6.1.3 Applications

6.1.3.1 Solutions of Difference Equations
with Constant Coefficients

Based on the relation

Z f (n�m)f g ¼
X�1

‘¼�m

f (‘)z�(‘þm) ¼ z�mF(z) (6:103)

where Z f (n)f g ¼ F(z), we can solve a difference equation of the

form

XN

k¼0

aky(n� k) ¼
XL

k¼0

bkf (n� k) (6:104)

using the Z-transform approach.
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Example

To find the solution to y(n)¼ y(n� 1)þ 2y(n� 2) with initial

conditions y(0)¼ 1 and y(1)¼ 2, we proceed as follows:

From the difference equation

y(0) ¼ y(�1)þ 2y(�2) ¼ 1

y(1) ¼ y(0)þ 2y(�1) ¼ 2

Hence, y(�1) ¼ 1
2
and y(�2) ¼ 1

4
. The Z-transform of the

difference equation is given by

Y(z)¼
X

�1

‘¼�1

y(‘)z�(‘þ1)þ z�1Y(z)þ 2
X

�1

‘¼�2

y(‘)z�(‘þ2)þ z�2Y(z)

 !

¼ y(�1)þ z�1Y(z)þ 2 y(�2)þ y(�1)z�1 þ z�2Y(z)
� �

¼ 1

2
þ z�1Y(z)þ 1

2
þ z�1þ 2z�2Y(z)

¼ 1þ z�1 þ z�1Y(z)þ 2z�2Y(z)

Hence,

Y(z) ¼ 1

1� z�1 � 2z�2
þ z�1

1� z�1 � 2z�2

¼ z2

z2 � z � 2
þ z

z2 � z � 2

and

Z�1 Y(z)f g¼: y(n) ¼ Z�1 z2

z2 � z � 2

� �

þZ�1 z

z2 � z � 2

n o

Example

The solution of the difference equation y(n)� ay(n� 1)¼ u(n)

with initial condition y(�1)¼ 2 and jaj< 1 proceeds as

follows:

Y(z)� ay(�1)� az�1Y(z) ¼ z

z � 1

Y(z) ¼ 2a

1� az�1
þ z

z � 1

1

1� az�1
¼ 2a

1� az�1
þ z2

(z � 1)(z � a)

¼ 2a

1� az�1
þ 1

1� a

1

1� z�1
þ a

a� 1

1

1� az�1

Hence, the inverse Z-transform gives

y(n) ¼ 2a � an
|fflffl{zfflffl}

zero input

þ 1

1� a
u(n)þ a

a� 1
an

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

zero state

¼ 1

1� a
u(n)

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

steady state

þ 2a� 1

a� 1
anþ1

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

transient

n � 0

6.1.3.2 Analysis of Linear Discrete Systems

6.1.3.2.1 Transfer Function

From Equation 6.104 we obtain the transfer function by ignoring

initial conditions. The result is

H(z) ¼ Y(z)

F(z)
¼

PL
k¼0 bkz

�k

PN
k¼0 akz

�k
¼ transfer function (6:105)

where H(z) is the transform of the impulse response of a
discrete system.

6.1.3.2.2 Stability

Using the convolution relation between input and output of a

discrete systems, we obtain

y(n)j j ¼
Xn

k¼0

h(k)f (n� k)

�
�
�
�
�

�
�
�
�
�
� M

X1

k¼0

h(k)j j < 1 (6:106)

where M is the maximum value of f(n). The above inequality

specifies that a discrete system is stable if to a finite input the

absolute sum of its impulse response is finite. From the proper-

ties of the Z-transform, the ROC of the impulse response satis-

fying Equation 6.106 is jzj> 1. Hence, all the poles of H(z) of a
stable system lie inside the unit circle.

The modified Schur–Cohn criterion establishes if the zeros

of the denominator of the rational transfer function H(z)¼
N(z)=D(z) are inside or outside the unit circle.

The first step is to form the polynomial

Drp(z) ¼ zND(z�1) ¼ d0z
N þ � � � þ dN�1z þ dN

where D(z�1)¼ d0 þ� � �þ dN�1z
N�1þ dNz

N. This Drp(z) is called
the reciprocal polynomial associated with D(z). The roots

of Drp(z) are the reciprocals of the roots of D(z) and jDrp(z)j ¼
jD(z)j on the unit circle. Next, we must divide Drp(z) by D(z)
starting at the high power and obtain the quotient a0¼ d0=dN
and the remainder D1rp(z) of degree N� 1 or less, so that

Drp(z)

D(z)
¼ a0 þ

D1rp(z)

D(z)

The division is repeated with D1rp(z) and its reciprocal poly-

nomial D1(z) and the sequence a0, a1, . . . ,aN�2 is generated

according to the rule

Dkrp(z)

Dk(z)
¼ ak þ

D(kþ1)rp(z)

Dk(z)
for k ¼ 0, 1, 2, . . . ,N � 2

The zeros of D(z) are all inside the unit circle (stable system)

if and only if the following three conditions are satisfied:
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1. D(1)> 0

2. D(�1)
< 0 N odd
> 0 N even

�

3. jakj< 1 for k¼ 0, 1, . . . ,N� 2

Check conditions (1) and (2) before proceeding to (3). If they are

not satisfied, the system is unstable.

Example

D(z) ¼ z3 � 0:2z2 þ z � 0:2, Drp(z) ¼ �0:2z3 þ z2 � 0:2z þ 1

a0 ¼
�0:2z3 þ z2 � 0:2z þ 1

z3 � 0:2z2 þ z � 0:2
¼ �0:2þ 0:8z2 þ 0:96

D(z)
,

a1 ¼
0:96z2 þ 0:96

0:96z2 þ 0:96
¼ 1

Because ja1j ¼ 1, condition (3) is not satisfied and the system

is unstable.

The transfer function of a feedback system with forward

(open-loop) gain D(z)G(z) and unit feedback gain is given by

H(z) ¼ D(z)G(z)

1þ D(z)G(z)

Assuming that all the individual systems are causal andhave rational

transfer function, the open-loop gain D(z)G(z) can be written as

D(z)G(z) ¼ A(z)

B(z)

where

A(z)¼ aLz
Lþ �� �þ a0, B(z)¼ zM þ bM�1z

M�1þ �� �þ b0, L�M

Hence, the total transfer function becomes

H(z) ¼ A(z)

B(z)þ A(z)

which indicates that the system will be stable if B(z)þA(z)
or 1þD(z)G(z) has zeros inside the unit circle.

6.1.3.2.3 Causality

A system is causal if h(n)¼ 0 for n< 0. From the properties of

the Z-transform, H(z) is regular in the ROC and at the infinity

point. For rational functions the numerator polynomial has to be

at most of the same degree as the polynomial in the denominator.

The Paley–Wiener theorem provides the necessary and suffi-

cient conditions that a frequency response characteristic H(v)
must satisfy in order for the resulting filter to be causal.

6.1.3.2.4 Paley–Wiener Theorem

If h(n) has finite energy and h(n)¼ 0 for n< 0, then

ðp

�p

j‘njH(v)kdv < 1

Conversely, if jH(v)j is square integrable and if the above integral
is finite, then we can associate with jH(v)j a phase response

with w(v) so that the resulting filter with frequency response

H(v) ¼ H(v)j je jw(v)

is causal.

The relationship between the real and imaginary parts of an

absolutely summable, causal, and real sequence is given by the

relation

Hi(v) ¼ � 1

2p

ðp

�p

Hr(l)cot
v� l

2
dl

which is known as the discrete Hilbert transform.
Summary of causality

1. H(v) cannot be zero except at a finite set of points.

2. jH(v)j cannot be constant in any finite range of frequencies.
3. The transition from pass band to stop band cannot be

infinitely sharp.

4. The real and imaginary parts of H(v) are independent and
are related by the discrete Hilbert transform.

5. jH(v)j and w(v) cannot be chosen arbitrarily.

6.1.3.2.5 Frequency Characteristics

With input f(n)¼ ejvn, the output is

y(n) ¼
X1

k¼0

h(k)e jv(n�k) ¼ e jvn
X1

k¼0

h(k)e�jvk

¼ e jvnH(e jv) (6:107)

where

H(e jv) ¼ H(z)jz¼e jv ¼ Hr(e
jv)þ jHi(e

jv)

¼ A(v)e jw(v) (6:108)

A(v) ¼ H2
r (e

jv)þ H2
i (e

jv)
� �1=2¼ amplitude response (6:109)

w(v) ¼ tan�1 Hi(e
jv) Hr(e

jv)
� �

¼ phase response
�

(6:110)

t(v) ¼ � dw(v)

dv
¼ �Re z

d

dz
‘nH(z)

� ��
�
�
�
z¼e jv

¼ group delay
characteristic

(6:111)

Because H(ejv)¼H(ej(vþ 2pk)) it implies that the frequency char-
acteristics of discrete systems are periodic with period 2p.

6.1.3.2.6 Z-Transform and Discrete Fourier Transform (DFT)

If x(n) has a finite duration of length N or less, the sequence can

be recovered from its N-point DFT. Hence, its Z-transform is

uniquely determined by its N-point DFT. Hence, we find
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X(z) ¼
X

N�1

n¼0

x(n)z�n ¼
X

N�1

n¼0

1

N

X

N�1

k¼0

X(k)e j2pkn=N
" #

z�n

¼ 1

N

X

N�1

k¼0

X(k)
X

N�1

n¼0

�
e j2pk=Nz�1

�n

¼ 1� z�N

N

XN�1

k¼0

X(k)

1� e j2pk=Nz�1
(6:112)

Set z¼ ejv (evaluated on the unit circle) to find

X(e jv) ¼: X(v) ¼ 1� e�jvN

N

XN�1

k¼0

X(k)

1� e�j(v�2pk=N)
(6:113)

X(v) is the Fourier transform of the finite-duration sequence

in terms of its DFT.

6.1.3.3 Digital Filters

6.1.3.3.1 Infinite Impulse Response (IIR) Filters

A discrete, linear, and time invariant system can be described by

a higher-order difference equation of the form

y(n)�
XN

k¼1

aky(n� k) ¼
XN

k¼0

bkx(n� k) (6:114)

Taking the Z-transform of the above equation and solving for the

ratio Y(z)=X(z), we obtain

H(z) ¼ Y(z)

X(z)
¼

PM
k¼0 bkz

�k

1�PN
k¼1 akz

�k
(6:115)

The block diagram representation of Equation 6.114, in the form

of the following pair of equations:

y(n) ¼
XM

k¼0

bkx(n� k) (6:116)

y(n) ¼
XN

k¼1

aky(n� k)þ y(n) (6:117)

is shown in Figure 6.9. Each appropriate rearrangement of the

block diagram represents a different computational algorithm

for implementing the same system.

u(n)+

+

+

+

+

+

+

+

+

+

+

+

a1

aN – 1

aN

a

y(n – 1)

y(n – 1)

y(n – 2)

y(n – N)

y(n)
b0

b1

bM – 1

bM

x(n)

x(n – 1)

x(n – 2)

x(n – M)

y(n)

x(n) y(n)

y(n)y(n)

Summing element Pickoff point Delay element Product

y(n) + x(n)

z–1

z–1

z–1

z–1

z–1z–1

ΣΣ

Σ

Σ

Σ

Σ

y(n) y(n) ay(n)
Σ

+

+

z–1

FIGURE 6.9
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Figure 6.9 can be viewed as an implementation of H(z)
through the decomposition

H(z) ¼ H2(z)H1(z)

¼ 1

1�PN
k¼1 akz

�k

 !

X

M

k¼0

bkz
�k

 !

(6:118)

or through the pair of equations

V(z) ¼ H1(z)X(z) ¼
X

M

k¼0

bkz
�k

 !

X(z) (6:119)

Y(z) ¼ H2(z)V(z) ¼
1

1�PN
k¼1 akz

�k

 !

V(z) (6:120)

If we arrange Equation 6.118, we can create the following two

equations:

W(z) ¼ H2(z)X(z) ¼
1

1�PN
k¼1 akz

�k

 !

X(z) (6:121)

Y(z) ¼ H1(z)W(z) ¼
X

M

k¼1

bkz
�k

 !

W(z) (6:122)

The last two equations are presented graphically in Figure 6.10

(M¼N).
The time domain the Figure 6.10 is the pair of equations

w(n) ¼
X

N

k¼1

akw(n� k)þ x(n) (6:123)

y(n) ¼
X

M

k¼0

bkw(n� k) (6:124)

Because the two internal branches of Figure 6.10 are identical, they

can be combined in one branch so that Figure 6.11. Figure 6.9

represents the direct form I of the general Nth-order system

and Figure 6.11 is often referred to as the direct form II or

canonical direct form implementation.

6.1.3.3.2 Finite Impulse Response (FIR) Filters

For causal FIR systems, the difference equation describing such a

system is given by

y(n) ¼
X

M

k¼0

bkx(n� k) (6:125)

which is recognized as the discrete convolution of x(n) with the

impulse response

w(n)

w(n – 1)

w(n – N + 1)

w(n – N )

bN – 1

bN

aN – 1

aN

w(n – 1)

w(n – 2)

w(n – N )

w(n) y(n)x(n) b0

b1

Σ
+

+

+

+

+

+

+

+

+

+

+

+

a1

z–1

z–1

z–1

z–1

z–1

z–1

Σ

Σ

Σ

Σ

Σ

FIGURE 6.10
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h(n) ¼ bn n ¼ 0, 1, . . . , M
0 otherwise

n

(6:126)

The direct form I and direct form II structures are shown in

Figures 6.12 and 6.13. Because of the chain of delay elements

across the top of the diagram, this structure is also referred to as a

tapped delay line structure or a transversal filter structure.

6.1.3.4 Linear, Time-Invariant, Discrete-Time,
Dynamical Systems

The mathematical models describing dynamical systems are

almost always of finite-order difference equations. If we know

the initial conditions at t¼ t0, their behavior can be uniquely

determined for t� t0. To see how to develop a dynamic, let us

consider the example below.

Example

Let a discrete system with input v(n) and output y(n) be

described by the difference equation

y(n)þ 2y(n� 1)þ y(n� 2) ¼ y(n) (6:127)

If y(n0� 1) and y(n0� 2) are the initial conditions for n> n0,

then y(n) can be found recursively from Equation 6.127. Let us

take the pair y(n� 1) and y(n� 2) as the state of the system at

time n. Let us call the vector

x(n) ¼
x1(n)

x2(n)

� 	

¼
y(n� 2)

y(n� 1)

� 	

(6:128)

the state vector for the system. From the definition above,

we obtain

x1(nþ 1) ¼ y(nþ 1� 2) ¼ y(n� 1) (6:129)

and

x2(nþ 1) ¼ y(n) ¼ y(n)� y(n� 2)� 2y(n� 1) (6:130)

or

x2(nþ 1) ¼ y(n)� x1(n)� 2x2(n) (6:131)
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+

+ +

+

+

+

+

y(n)x(n) w(n) b0

b1

bNaN

a1

aN – 1 bN – 1

Σ

+

+

Σ

Σ Σ

ΣΣ

FIGURE 6.11

y(n)

z–1 z–1 z–1

Σ

h(0)

x(n)

h(1) h(2) h(M – 1) h(M)

+
+

Σ

+
+

Σ

+
+

Σ

+
+

FIGURE 6.12

Σ
+

+

Σ
+

+

Σ
+

+

Σ Σ
+

+

+

+

y(n)

h(M) h(2) h(1) h(0)h(M – 1) h(M – 2)

x(n)

z–1 z–1 z–1 z–1

FIGURE 6.13

Z-Transform 6-29



Equations 6.129 and 6.131 can be written in the form

x1(nþ 1)

x2(nþ 1)

� 	

¼ 0 1

�1 �2

� 	
x1(n)

x2(n)

� 	

þ 0

1

� 	

y(n) (6:132)

or

x(nþ 1) ¼ A x(n)þ By(n) (6:133)

But Equation 6.130 can be written in the form

y(n) ¼ y(n)� x1(n)� 2x2(n) ¼ [�1� 2]
x1(n)

x2(n)

� 	

þ y(n)

or

y(n) ¼ Cx þ y(n) (6:134)

Hence, the system can be described by vector–matrix differ-

ence equations (6.133) and an output equation (6.134) rather

than by the second-order difference equation (6.127).

A time-invariant, linear, and discrete dynamic system is

described by the state equation

x(nT þ T ) ¼ Ax(nT )þ By(nT ) (6:135)

and the output equation is of the form

y(nT ) ¼ Cx(nT )þ Dy(nT ) (6:136)

where

x(nT ) ¼ N-dimensional column vector

y(nT ) ¼ M-dimensional column vector

y(nT ) ¼ R-dimensional column vector

A ¼ N � N nonsingular matrix

B ¼ N �M matrix

C ¼ R� N matrix

D ¼ R�M matrix

When the input is identically zero, Equation 6.135 reduces to

x(nT þ T ) ¼ A x(nT ) (6:137)

so that

x(nT þ 2T ) ¼ A x(nT þ T ) ¼ A A x(nT ) ¼ A2x(nT )

and so on. In general we have

x(nT þ kT ) ¼ Akx(nT ) (6:138)

The state transition matrix from n1T to n2T (n2> n1) is given by

w(n2T , n1T ) ¼ An2�n1 (6:139)

This is a function only of the time difference n2T� n1T. There-

fore, it is customary to name the matrix

w(nT ) ¼ An (6:140)

the state transition matrix with the understanding that

n¼ n2� n1. It follows that the system states at two times,

n2T and n1T, are related by the relation

x(n2T ) ¼ w(n2T , n1T )x(n1T ) (6:141)

when the input is zero. From Equation 6.139 we obtain the

following relationships:

(a) w(nT , nT ) ¼ I ¼ identity matrix (6:142)

(b) w(n2T , n1T ) ¼ w�1(n1T , n2T ) (6:143)

(c) w(n3T , n2T )w(n2T , n1T ) ¼ w(n3T , n1T ) (6:144)

If the input is not identically zero and x(nT) is known, then

the progress (later states) of the system can be found recur-

sively from Equation 6.135. Proceeding with the recursion, we

obtain

x(nT þ 2T ) ¼ A x(nT ,þ T )þ B y(nT þ T )

¼ A A x(nT )þ A B y(nT )þ B y(nT þ T )

¼ w(nT þ 2T , nT )x(nT )þ w(nT þ 2T , nT þ T )B y(nT )

þ B y(nT þ T )

In general, for k> 0 we have the solution

x(nT þ kT ) ¼ w(nT þ kT , nT )x(nT )

þ
Xnþk�1

i¼n

w(nT þ kT , iT þ T )B y(iT ) (6:145)

From Equation 6.141, when the input is zero, we obtain the

relation

x(n2T ) ¼ w(n2T � n1T )x(n1T ) ¼ An2�n1x(n1T ) (6:146)

According to Equation 6.145, the solution to the dynamic

system when the input is not zero is given by

x(nT þ kT ) ¼ w(nT þ kT � nT )x(nT )

þ
Xnþk�1

i¼n

w (nþ k � i � 1)T½ Þ�By(iT ) (6:147)

or

x(nT þ kT ) ¼ w(kT )x(nT )þ
Xnþk�1

i¼n

w (nþ k � i � 1)T½ Þ�

B y(iT ) k > 0 (6:148)
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To find the solution using the Z-transform method, we define

the one-sided Z-transform of an R3 S matrix function f (nT)

as the R3 S matrix

F(z) ¼
X

1

n¼0
f (nT )z�n (6:149)

The elements of F(z) are the transforms of the corresponding

elements of f (nT). Taking the Z-transform of both sides of the

state equation (6.135), we find

zX (z)� zx(0) ¼ A X (z)þ B V (z)

or

X (z) ¼ (zI � A)�1zx(0)þ (zI � A)�1B V (z) (6:150)

From the output Equation 6.136, we see that

Y(z) ¼ C X (z)þ DV (z) (6:151)

The state of the system x(nT) and its output y(nT) can be found

for n� 0 by taking the inverse Z-transform of Equations 6.150

and 6.151

For a zero input, Equation 6.150 becomes

X (z) ¼ (zI � A)�1zx(0) (6:152)

so that

x(nT ) ¼ Z�1 (zI � A)�1z
� �

x(0) (6:153)

If we let n1¼ 0 and n2¼ n, then Equation 6.146 becomes

x(nT ) ¼ w(nT )x(0) ¼ Anx(0) (6:154)

Comparing Equations 6.153 and 6.154 we observe that

w(nT ) ¼ An ¼ Z�1 (zI � A)�1z
� �

n � 0 (6:155)

or equivalently,

F(z) ¼ Z{An} ¼ (zI � A)�1z (6:156)

The Z-transform provides straightforward method for calculat-

ing the state transition matrix.

Next combine Equations 6.150 and 6.156 to find

X (z) ¼ F(z)x(0)þF(z)z�1B V (z) (6:157)

By applying the convolution theorem and the fact that

Z�1 F(z)z�1
� �

¼ w(nT � T )u(nT � T ) (6:158)

the inverse Z-transform of Equation 6.157 is given by

x(kT ) ¼ w(kT )x(0)þ
Xk�1

i¼0

w (k � i � 1)T½ Þ�B y(iT ) (6:159)

The above equation is identical to Equation 6.148 with n¼ 0.

The behavior of the system with zero input depends on

the location of the poles of

F(z) ¼ (zI � A)�1z (6:160)

Because

(zI � A)�1 ¼ adj(zI � A)

det(zI � A)
(6:161)

where adj(�) denotes the regular adjoint in matrix theory,

these poles can only occur at the roots of the polynomial

D(z) ¼ det(zI � A) (6:162)

D(z) is known as the characteristic polynomial for A (for the

system) and its roots are known as the characteristic values or

eigenvalues of A. If all roots are inside the unit circle, the

system is stable. If even one root is outside the unit circle,

the system is unstable.

Example

Consider the system

x1(nT þ T )

x2(nT þ T )

� 	

¼ 0 2

0:22 2

� 	
x1(nT )

x2(nT )

� 	

þ 0

1

� 	

y(nT )

y(nT ) ¼ [0:22 2]
x1(nT )

x2(nT )

� 	

þ y(nT )

For this system we have

A ¼ 0 2

0:22 2

� 	

, B ¼ 0

1

� 	

, C ¼ [0:22 2], D ¼ [1]

The characteristic polynomial is

D(z) ¼ det(zI � A] ¼ det
z 0

0 z

" #

�
0 2

0:22 2

" #" #

¼ det
z �2

�0:22 z � 2

" #

¼ z(z � 2)� 0:44 ¼ z2 � 2z � 0:44 ¼ (z � 2:2)þ (z þ 0:2)

Hence, we obtain (see Equation 6.160)

F(z) ¼ z

(z � 2:2)(z þ 0:2)

z � 2 2

0:22 z

" #

¼

z(z � 2)

(z � 2:2)(z þ 0:2)

2z

(z � 2:2)(z þ 0:2)

0:22z

(z � 2:2)(z þ 0:2)

z2

(z � 2:2)(z þ 0:2)

2

6
6
4

3

7
7
5

Z-Transform 6-31



Because D(z) has a root outside the unit circle at 2.2, the

system is unstable. Taking the inverse transform we find that

w(nT ) ¼

1

12
(2:2)n þ 11

12
(�0:2)n

5

6
(2:2)n � 5

6
(�0:2)n

11

120
(2:2)n � 11

120
(�0:2)n

11

12
(2:2)n þ 1

12
(�0:2)n

2

6

6

4

3

7

7

5

n � 0

To check, set n¼ 0 to find w(0)¼ I and w(T)¼A.

Let x(0)¼ 0 and the input be, the unit impulse y(nT)¼
d(nT) so that V(z)¼ 1. Hence, according to Equation 6.157

X (z) ¼ F(z)z�1B V (z) ¼ 1

(z � 2:2)(z þ 0:2)

z � 2 2

0:22 z

" #

0

1

" #

¼ 1

(z � 2:2)(z þ 0:2)

2

z

" #

The inverse Z-transform gives

x(nT ) ¼ 5

6

(2:2)n�1 �(�0:2)n�1

1

2
(2:2)n � 1

2
(�0:2)n

2

4

3

5 n > 0

and the output is given by

y(nT ) ¼ C x(nT )þ Dy(nT )

¼
1 n ¼ 0

5

12
(2:2)nþ1 � 5

12
(�0:2)nþ1 n > 0

8

<

:

6.1.3.5 Z-Transform and Random Processes

6.1.3.5.1 Power Spectral Densities

The Z-transform of the autocorrelation function Rxx(t)¼
E{x(tþ t)x(t)} sampled uniformly at nT times is given by

Sxx(z) ¼
X

1

n¼�1
Rxx(nT)z

�n (6:163)

where the Fourier transform of Rxx(t) is designated by Sxx(v).
The sampled power spectral density for x(nT) is defined to be

Sxx(e
jvT ) ¼ Sxx(z)jz¼e jvT ¼

X

1

n¼�1
Rxx(nT)e

�jvnT (6:164)

However, from the sampling theorem we have

Sxx(e
jvT ) ¼ 1

T

X

1

n¼�1
Sxx(v� nvs), vs ¼ 2p=T (6:165)

Because Sxx(v) is real, nonnegative, and even, it follows from

Equation 6.165 that Sxx(e
jvT) is also real, nonnegative, and even.

If the envelope of Rxx(t) decays exponentially for jtj> 0, then the

ROC for Sxx(z) includes the unit circle. If Rxx(t) has undamped

periodic components the series in Equation 6.164 converges in

the distribution sense that contains impulse function.

The average power in x(nT) is

E x2(nT)
� �

¼ Rxx(0) ¼
1

2pj

þ

C

Sxx(z)
dz

z
(6:166)

where C is a simple, closed contour lying in the ROC and the

integration is taken in counterclockwise sense. If C is the unit

circle, then

Rxx(0) ¼
1

vs

ðvs=2

�vs=2

Sxx(e
jvT)dv vs ¼

2p

T
(6:167)

Sxx(e
jvT)

dv

vs
¼ average power in dv (6:168)

Sxy(z) is called the cross power spectral density for two jointly

wide-sense stationary processes x(t) and y(t). It is defined by the

relation

Sxy(z) ¼
X1

n¼�1
Rxy(nT)z

�n (6:169)

Because Rxy(nT)¼Ryx(�nT) it follows that

Sxy(z) ¼ Syx(z
�1), Sxx(z) ¼ Sxx(z

�1) (6:170)

Equivalently, we have

Sxx(e
jvT ) ¼ Sxx(e

�jvT ) (6:171)

If Sxx(z) is a rational polynomial, it can be factored in the form

Sxx(z) ¼
N(z)

D(z)
¼ g2G(z)G(z�1) (6:172)

where

G(z) ¼
QL

k¼1 (1� akz�1)
QM

k¼1 (1� bkz�1)
¼

PL
k¼0 akz

�k

PM
k¼0 bkz

�k

g2> 0, jakj< 1, jbkj< 1, ak and bk are real

6.1.3.5.2 Linear Discrete-Time Filters

Let Rxx(nT), Ryy(nT), and Rxy(nT) be known. Let two systems

have transfer functions H1(z) and H2(z), respectively. The output
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of these filters, when the inputs are x(nT) and y(nT) (see Figure
6.14), are

y(nT) ¼
X

1

k¼�1
h1(kT)x(nT � kT) (6:173)

w(nT) ¼
X

1

k¼�1
h2(kT)y(nT � kT) (6:174)

Let n¼ nþm in Equation 6.173, multiply by y(nT), and take the

ensemble average to find

Ryy(mT) ¼
X

1

k¼�1
h1(kT)E x(mT þ nT � kT)y(nT)f g

¼
X

1

k¼�1
h1(kT)Rxy(mT � kT) (6:175)

Hence, by taking the Z-transform we obtain

Syy(z) ¼ H1(z)Sxy(z) (6:176)

Similarly from Equation 6.174 we obtain

Ryw(mT) ¼
X

1

k¼�1
h2(kT)Ryy(mT þ kT) (6:177)

and

Syw(z) ¼ H2(z
�1)Syy(z) (6:178)

From Equations 6.176 and 6.178, we obtain

Syw(z) ¼ H1(z)H2(z
�1)Sxy(z) (6:179)

Also, for x(nT)¼ y(nT) and h1(nT)¼ h2(nT)¼ h(nT), Equation
6.179 becomes

Syy(z) ¼ H(z)H(z�1)Sxx(z) (6:180)

and

Syy(e
jvT) ¼ H(e jvT )H(e�jvT)Sxx(e

jvT)

¼ H(e jvT )
�

�

�

�

2
Sxx(e

jvT) (6:181)

6.1.3.5.3 Optimum Linear Filtering

Let y(nT) be an observed wide-sense stationary process and x
(nT) be a desired wide-sense stationary process. The process y
(nT) could be the result of the desired signal x(nT) and a noise

signal y(nT). It is desired to find a system with transfer function

H(z) such that the error e(nT) ¼ x(nT)� x̂(nT) ¼ x(nT)�
Z�1 Y(z)H(z)f g is minimized. Referring to Figure 6.15 and to

Equation 6.180, we can write

Saa(z) ¼
1

H1(z)H1(z�1)
Syy(z) ¼ g2 (6:182)

where a(nT) is taken as white noise (uncorrelated process).

We, therefore, can write

Raa(mT) ¼ g2d(mT) (6:183)

The signal a(nT) is known as the innovation process associated

with y(nT). From Figure 6.15, we obtain

x̂(nT) ¼
X

1

k¼�1
g(kT)a(nT � kT) (6:184)

The mean square error is given by

E e2(nT)
� �

¼ E x(nT)�
X1

k¼�1
g(kT)a(nT � kT)

" #2( )

¼ E x2(nT)
� �

� 2E
X1

k¼�1
g(kT)x(nT)a(nT � kT)

( )

þE
X1

k¼�1
g(kT)a(nT � kT)

" #2( )

¼ Rxx(0)� 2
X1

k¼�1
g(kT)Rxa(kT)þ g2

X1

k¼�1
g2(kT)

¼ Rxx(0)þ
X1

k¼�1
gg(kT)� Rxa(kT)

g

� 	2

� 1

g2

X1

k¼�1
R2
xa(kT)

υ(nT)

ω(nT )y(nT )

x(nT )

H1(z)

H2(z)

FIGURE 6.14

a(nT )
G(z)

x̂(nT )y(nT ) 1

H1(z)

FIGURE 6.15
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To minimize the error we must set the quantity in the brackets

equal to zero. Hence,

g(nT) ¼ 1

g2
Rxa(nT) �1 < n < 1

and its Z-transform is

G(z) ¼ 1

g2
Sxa(z)

but from Equation 6.179 (because y(nT )¼ x(nT ) implies that

H1(z)¼ 1) we have

Sxy(z) ¼ H1(z
�1)Sxa(z) or Sxa(z) ¼

Sxy(z)

H1(z�1)
(6:185)

G(z) ¼ 1

g2
Sxy(z)

H1(z�1)
(6:186)

From Figure 6.15, the optimum filter is given by (see also Equa-

tion 6.182)

H(z) ¼ 1

H1(z)
G(z) ¼ Sxy(z)

g2H1(z)H1(z�1)
¼ Sxy(z)

Syy(z)
(6:187)

The mean square error for an optimum filter is

E e2(nT)
� �

¼ Rxx(0)�
1

g2

X1

k¼�1
R2
xa(kT) (6:188)

Applying Parseval’s theorem in the above equation, we obtain

E e2(nT)
� �

¼ 1

2pj

þ

C

Sxx(z)�
1

g2
Sxa(z)Sxa(z

�1)

� 	
dz

z

¼ 1

2pj

þ

C

Sxx(z)�
Sxy(z)Sxy(z�1)

Syy(z)

� 	
dz

z

¼ 1

2pj

þ

C

Sxx(z)� H(z)Sxy(z
�1)

� � dz

z
(6:189)

where C can be the unit circle.

6.1.3.6 Relationship between the Laplace
and Z-Transform

The one-sided Laplace transform and its inverse are given by the

following two equations:

F(s) ¼: + f (t)f g ¼
ð1

0

f (t)e�stdt Re{s} > sc (6:190)

f (t) ¼ +�1 F(s)f g ¼ 1

2pj

ðcþj1

c�j1

F(s)estds c > sc (6:191)

where sc is the abscissa of convergence.

The Laplace transform of a sampled function

fs(t) ¼ f (t)
X1

k¼�1
d(t � nT)¼: f (t)combT(t)

¼
X1

k¼�1
f (nT)d(t � nT) (6:192)

is given by

Fs(s) ¼: + fs(t)f g ¼
X1

k¼�1
f (nT)e�nTs (6:193)

because

+ d(t � nT)f g ¼
ð1

�1

d(t � nT)e�stdt ¼ e�snT (6:194)

From Equation 6.193 we obtain

F(z) ¼ Fs(s)js¼T�1‘nz (6:195)

and, hence,

F(z)jz¼eTs ¼ Fs(s)¼: + fs(t)f g ¼ + f (t)combT (t)f g (6:196)

If the ROC for F(z) includes the unit circle, jzj ¼ 1, then

Fs(v) ¼ F(z)jz¼e jvT ¼
X1

n¼�1
f (nT)e�jvnT (6:197)

Fs(sþ jvs) ¼ Fs(s) ¼ periodic vs ¼
2p

T
(6:198)

The knowledge of Fs(s) in the strip �vs=2<v�vs=2 determines

Fs(s) for all s. The transformation z¼ esT maps this strip

uniquely onto the complex z-plane. Therefore, F(z) contains

all the information in Fs(s) without redundancy. Letting

s¼ sþ jv, then

z ¼ esTe jvT (6:199)

Because jzj ¼ esT, we obtain

jzj ¼
< 1 s < 0

¼ 1 s ¼ 0

> 1 s > 0

8

<

:
(6:200)
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Therefore, we have the following correspondence between the

s- and z-planes:

1. Points in the left half of the s-plane are mapped inside the

unit circle in the z-plane
2. Points on the jv-axis are mapped onto the unit circle

3. Points in the right half of the s-plane are mapped outside

the unit circle

4. Lines parallel to the jv-axis are mapped into circles with

radius jzj ¼ esT

5. Lines parallel to the s-axis are mapped into rays of the

form arg z¼vT radians from z¼ 0

6. The origin of the s-plane corresponds to z¼ 1

7. The s-axis corresponds to the positive u¼Re z-axis
8. As v varies between �vs=2 and vs=2, arg z¼vT varies

between �p and p radians

Let f(t) and g(t) be causal functions with Laplace transforms F(s)
and G(s) that converge absolutely for Re s>sf and Re s>sg,

respectively; then

+{ f (t)g(t)} ¼ 1

2pj

ð

cþj1

c�j1

F(p)G(s� p)dp (6:201)

The contour is parallel to the imaginary axis in the complex

p-plane with

s ¼ Res > sf þ sg and sf < c < s� sg (6:202)

With this choice the poles G(s� p) lie to the right of the inte-

gration path. For causal f(t), its sampling form is given by

fs(t) ¼ f (t)
X

1

n¼0

d(t � nT) ¼: f (t)combT (t)

¼
X

1

n¼0

f (nT)d(t � nT) (6:203)

If

g(t) ¼ combT (t)¼:
X

1

n¼0

d(t � nT) (6:204)

then its Laplace transform is

G(s) ¼ + g(t)f g ¼
X

1

n¼0

e�nTs ¼ 1

1� e�Ts
Res > 0 (6:205)

Because sg¼ 0, then Equation 6.201 becomes

Fs(s) ¼
1

2pj

ð

cþj1

c�j1

F(p)

1� e�(s�p)T
dp s > sf , sf < c < s (6:206)

The distance p in Figure 6.16 is given by

p ¼ cþ Re ju p=2 � u � 3p=2 (6:207)

If the function F(p) is analytic for some jpj greater than a finite

number R0 and has a zero at infinity, then in the limit as R ! 1
the integral along the path BDA is identically zero and the

integral along the path AEB averages to Fs(s). The contour

C1þC2 encloses all the poles of F(p). Because of these assump-

tions, F(p) must have a Laurent series expansion of the form

F(p) ¼ a�1

p
þ a�2

p2
þ � � � ¼ a�1

p
þ Q(p)

p2
jpj > R0 (6:208)

Q(p) is analytic in this domain and

Q(p)j j < M < 1 jpj > R0 (6:209)

Therefore, from Equation 6.208

a�1 ¼ lim
p!1

pF(p) (6:210)

From the initial value theorem

a�1 ¼ f (0þ) (6:211)

Applying Cauchy’s residue theorem to Equation 6.206, we obtain

Fs(s) ¼
X

k

Res
F(p)

1� epT e�sT

�� �
�
�
�
p¼pk

� lim
R!1

1

2pj

ð

C2

F(p)

1� epT e�sT
dp

(6:212)

where {pk} are the poles of F(p) and s¼Re{s}>sf.

Introducing Equations 6.208 and 6.211 into the above equa-

tion, it can be shown (see Jury, 1973)

Fs(s) ¼
X

k

Res
F(p)

1� epT e�sT

� ��
�
�
�
p¼pk

� f (0þ)

2
(6:213)

j Im p

Poles of F(p)

B

Re p

R θ

P

C2

C1

D E

A

c

FIGURE 6.16
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By letting z¼ esT, the above equation becomes

F(z) ¼ Fs(s)s¼1
T ‘nz
¼
X

k

Res
F(p)

1� epT z�1

� ��
�
�
�
p¼pk

� f (0þ)

2
jzj > esf T (6:214)

Example

The Laplace transform of f(t)¼ tu(t) is 1=s2. The integrand jte�st

e�jvtj<1 for s> 0 implies that the ROC is Re{s}> 0. Because

f(t) has a double pole at s¼ 0, Equation 6.214 becomes

F(z) ¼ Res
1

p2(1� ep
T
z�1)

� ��
�
�
�
p¼0

� 0

2

¼ d

dp

p2

p2(1� ep
T
z�1)

�
�
�
�
p¼0

¼ Tz�1

(1� z�1)2

Example

The Laplace transform of f(t)¼ e�at u(t) is 1=(sþ a). The ROC is

Res>�a and from Equation 6.214 we obtain

F(z) ¼ Res
1

(pþ a)(1� ep
T
z�1)

� ��
�
�
�
p¼�a

� 1

2
¼ 1

1� e�aT z�1
� 1

2

The inverse transform is

f (nT ) ¼ � 1

2
d(n)þ e�anTu(nT )

If we had proceeded to find the Z-transform from f(nT)¼
exp(�anT)u(nT), we would have found F(z)¼ 1=(1� e�aT� z�1).

Hence, to make a causal signal f(t) consistent with F(s) and the

inversion formula, f(0) should be assigned the value f(0þ)=2.

It is conventional in calculating with the Z-transform of causal

signals to assign the value of f(0þ) to f(0). With this convention

the formula for calculating F(z) from F(s) reduces to

F(z) ¼
X

k

Res
F(p)

1� epT z�1

� ��
�
�
�
p¼pk

, jzj > esf T (6:215)

6.1.3.7 Relationship to the Fourier Transform

The sampled signal can be represented by

fs(t) ¼
X1

n¼�1
f (nT)d(t � nT) (6:216)

with corresponding Laplace and Fourier transforms

Fs(s) ¼
X1

n¼�1
f (nT)e�snT (6:217)

Fs(v) ¼
X1

n¼�1
f (nT)e�jvnT (6:218)

If we set z¼ esT in the definition of the Z-transform, we see that

Fs(s) ¼ F(z)jz¼esT (6:219)

If the ROC for F(z) includes the unit circle, jzj ¼ 1, then

Fs(v) ¼ F(z)jz¼e jvT (6:220)

Because Fs(s) is periodic with period vs¼ 2p=T, we need only

consider the strip �vs=2<v�vs=2, which uniquely determines

Fs(s) for all s. The transformation z¼ exp(sT) maps this strip

uniquely onto the complex z-plane so that F(z) contains all the
information in Fs(s) without the redundancy.

Appendix: Tables

TABLE A.6.1 Z-Transform Properties for Positive-Time Sequences

1. Linearity

Z cifi(nT)f g ¼ ciFi(z) jzj > Ri , ci are constants

Z P‘

i¼0

cifi(nT)

� �

¼ P‘

i¼0

ciFi(z) jzj > maxRi

2. Shifting property

Z f (nT � kT)f g ¼ z�kF(z), f (�nT) ¼ 0 for n ¼ 1, 2, . . .

Z f (nT � kT)f g ¼ z�kF(z)þ Pk

n¼1

f (�nT)z�(k�n)

Z f (nT þ kT)f g ¼ ZkF(z)� Pk�1

n¼0

f (nT)zk�n

Z f (nT þ T)f g ¼ z f (z)� f (0)½ �
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TABLE A.6.1 (continued) Z-Transform Properties for Positive-Time Sequences

3. Time scaling

Z anT f (nT)
� �

¼ F(a�Tz) ¼ P1

n¼0

f (nT)(a�Tz)�n jzj > aT

4. Periodic sequence

Z f (nT)f g ¼ zN

zN � 1
F(1)(z) jzj > R

N¼number of time units in a period

R¼ radius of convergence of F(1)(z)

F(1)(z)¼Z-transform of the first period

5. Multiplication by n and nT

Z nf (nT)f g ¼ �z
dF(z)

dz
jzj > R

Z nTf (nT)f g ¼ �zT
dF(z)

dz
jzj > R

R¼ radius of convergence of F(z)

6. Convolution

Z f (nT)f g ¼ F(z) jzj > R1

Z h(nT)f g ¼ H(z) jzj > R2

Z f (nT)*h(nT)f g ¼ F(z)H(z) jzj > max (R1,R2)

7. Initial value

f (0T) ¼ lim
z!1

F(z) jzj > R if F(1)exists

8. Final value

lim
n!1

f (nT) ¼ lim
z!1

(z � 1)F(z) if f (1T) exists

9. Multiplication by (nT)k

Z nkTkf (nT)
� �

¼ �Tz
d

dZ
Z (nT)k�1f (nT)
� �

k > 0 and is an integer

10. Complex conjugate signals

Z f (nT)f g ¼ F(z) jzj > R

Z f *(nT)f g ¼ F*(z*) jzj > R

11. Transform of product

Z f (nT)f g ¼ F(z) jzj > Rf

Z h(nT)f g ¼ H(z) jzj > Rh

Z f (nT)h(nT)f g ¼ 1

2pj

þ

C

F(t)H
z

t


 � dt

t
, jZj > Rf Rh, Rf < jtj < jZj

Rh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

counterclockwise direction
12. Parseval’s theorem

Z f (nT)f g ¼ F(z) jzj > Rf

Z h(nT)f g ¼ H(z) jzj > Rh
X1

n¼0

f (nT)h(nT) ¼ 1

2pj

þ

C

F(z)H(z�1)
dz

z
jzj ¼ 1 > Rf Rh

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

counterclockwise integration

13. Correlation

f (nT)� h(nT) ¼ P1

m¼0

f (mT)h(mT � nT) ¼ 1
2pj

Þ

C

F(t)H 1
t

� �
tn�1dt n � 1

Both f(nT) and h(nT) must exist for jzj> 1. The integration is taken in

counterclockwise direction.

14. Transform with parameters

Z q

qa
f (nT , a)

� �

¼ q

qa
F(z, a)

Z lim
a!a0

f (nT, a)

� �

¼ lim
a!a0

F(z, a)

Z
Ða1

a0

f (nT , a)da

( )

¼
Ða1

a0

F(z, a)da finite interval
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TABLE A.6.2 Z-Transform Properties for Positive- and

Negative-Time Sequences

1. Linearity

ZII
P

‘

i¼0
ci fi(nT)

� �

¼P‘

i¼0
ciFi(z) maxRiþ < jzj < minRi�

2. Shifting property

ZII f (nT 	 kT)f g ¼ z	kF(z) Rþ < jzj < R�

3. Scaling

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

ZII anT f (nT)
� �

¼ F(a�Tz) jaT jRþ < jzj < jaT jR�

4. Time reversal

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

ZII f (�nT)f g ¼ F(z�1)
1

R�
< jzj < 1

Rþ
5. Multiplication by nT

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

ZII nTf (nT)f g ¼ �zT
dF(z)

dz
Rþ > jzj < R�

6. Convolution

ZII f1(nT) * f2(nT)f g ¼ F1(z)F2(z)

ROC F1(z) [ ROC F2(z�1) max (Rþf1 , Rþf2 ) < jzj < min (R�f1 , R�f2 )

7. Correlation

Rf1 f2 (z) ¼ ZII f1(nT)� f2(nT)f g ¼ F1(z)F2(z�1)

ROC F1(z) [ ROC F2(z�1) max (Rþf1 , Rþf2 ) < jzj < min (R�f1 , R�f2 )

8. Multiplication by e�anT

ZII f (nT)f g ¼ F(z) Rþ < jzj < R�

ZII e�anT f (nT)
� �

¼ F(eaTz) je�aT jRþ < jzj < je�aT jR�

9. Frequency translation

G(v) ¼ ZII e jv0nT f (nT)
� �

¼ G(z)jz¼ejvT ¼ F ej(v�v0)T
� �

¼ F(v� v0)

ROC of F(z) must include the unit circle

10. Product

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f

ZII h(nT)f g ¼ H(z) Rþh < jzj < R�h

ZII f (nT)h(nT)f g ¼ G(z) ¼ 1

2pj

þ

C

F(t)H
z

t


 � dt

t
, RþfRþh < jzj < R�f R�h

max Rþf ,
jzj
R�h

� 

< jtj < min R�f ,
jzj
Rþh

� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

counterclockwise integration

11. Parseval’s theorem

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f

ZII h(nT)f g ¼ H(z) Rþh < jzj < R�h

X1

n¼�1
f (nT)h(nT) ¼ 1

2pj

þ

C

F(z)H(z�1)
dz

z
RþfRþh < jzj ¼ 1 < R�f R�h

max Rþf ,
1

R�h

� 

< jzj < min R�f ,
1

Rþh

� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

counterclockwise integration

12. Complex conjugate signals

ZII f (nT)f g ¼ F(z) Rþf < jzj < R�f

ZII f *(nT)f g ¼ F*(z*) Rþf < jzj < R�f
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TABLE A.6.3 Inverse Transforms of the Partial Fractions of F(z)

Partial Fraction Term Inverse Transform Term in F(z) Converges Absolutely for Some jzj> jaj
z

z � a
ak, k� 0

z2

(z � a)2
(kþ 1)ak, k� 0

z3

(z � a)3
1

2
(kþ 1)(kþ 2)ak, k � 0

.

.

.
.
.
.

zn

(z � a)n
1

(n� 1)!
(kþ 1)(kþ 2) � � � (kþ n� 1)ak, k � 0

Partial fraction term Inverse transform term in F(z) converges absolutely for some jzj< jaj
z

z � a
�ak, k��1

z2

(z � a)2
�(kþ 1)ak, k��1

z3

(z � a)3
� 1

2
(kþ 1)(kþ 2)ak, k � �1

.

.

.
.
.
.

zn

(z � a)n
1

(n� 1)!
(kþ 1)(kþ 2) � � � (kþ n� 1)ak, k � �1

TABLE A.6.4 Inverse Transforms of the Partial Fractions of Fi(z)
a

Elementary Transforms

Term Fi(z)

Corresponding Time Sequence

(I) Fi(z) Converges for jzj>Rc (II) Fi(z) Converges for jzj<Rc

1.
1

z � a
ak�1jk� 1 �ak�1jk� 0

2.
z

(z � a)2
kak�1jk� 1 �kak�1jk� 0

3.
z(z þ a)

(z � a)3
k2ak�1jk� 1 �k2ak�1jk� 0

4.
z(z2 þ 4az þ a2)

(z � a)4
k3ak�1jk� 1 �k3ak�1jk� 0

a The function must be a proper function.

TABLE A.6.5 Z-Transform Pairs

Z-Transform

Number Discrete Time-Function f(n), n� 0 F (z) ¼ Z f (n)½ � ¼ P

1

n¼0

f (n)z�njzj > R

1 u(n) ¼1,
0,

for n � 0
otherwise

n z

z � 1

2 e�an z

z � e�a

3 n
z

(z � 1)2

4 n2
z(z þ 1)

(z � 1)3

5 n3
z(z2 þ 4z þ 1)

(z � 1)4

6 n4
z(z3 þ 11z2 þ 11z þ 1)

(z � 1)5

7 n5
z(z4 þ 26z3 þ 66z2 þ 26z þ 1)

(z � 1)6

(continued)
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TABLE A.6.5 (continued) Z-Transform Pairs

Z-Transform

Number Discrete Time-Function f(n), n� 0 F (z) ¼ Z f (n)½ � ¼
P

1

n¼0
f (n)z�njzj > R

8 nk
(�1)kDk z

z � 1


 �

; D ¼ z
d

dz

9 u(n� k)
z�kþ1

z � 1

10 e�an f(n) F (eaz)

11 n(2)¼ n(n� 1) 2
z

(z � 1)3

12 n(3)¼ n(n� 1) (n� 2) 3!
z

(z � 1)4

13 n(k)¼ n(n� 1) (n� 2) . . . (n� kþ 1) k!
z

(z � 1)kþ1

14 n[k] f(n), n[k]¼ n(nþ 1) (nþ 2) . . . (nþ k� 1) (�1)kzk
dk

dzk
F (z)½ �

15 (�1)kn(n� 1) (n� 2) . . . (n� kþ 1) fn�kþ 1
a zF (k)(z), F (k)(z) ¼ dk

dzk
F (z)

16 �(n� 1) fn�1 F (1)(z)

17 (�1)k(n� 1) (n� 2) . . . (n� k) fn�k F (k)(z)

18 nf(n) �zF (1)(z)

19 n2 f(n) z2F (2)(z)þ zF (1)(z)

20 n3 f(n) �z3F (3)(z)� 3z2F (2)(z)� zF (1)(z)

21
cn

n!
ec=z

22
( ln c)n

n!
c1=z

23
k
n

� 

cnak�n,
k
n

� 

¼ k!

(k� n)!n!
, n � k

(az þ c)k

zk

24
nþ k
k

� 

cn
zkþ1

(z � c)kþ1

25
cn

n!
, (n ¼ 1, 3, 5, 7, . . . ) sinh

c

z


 �

26
cn

n!
, (n ¼ 0, 2, 4, 6, . . . ) cosh

c

z


 �

27 sin (an)
z sina

z2 � 2z cosaþ 1

28 cos (an)
z(z � cosa)

z2 � 2z cosaþ 1

29 sin (anþc)
z2 sincþ z sin (a� c)

z2 � 2z cosaþ 1

30 cosh (an)
z(z � cosha)

z2 � 2z coshaþ 1

31 sinh (an)
zsinha

z2 � 2z coshaþ 1

32
1

n
, n > 0 ln

z

z � 1

33
1� e�an

n
aþ ln

z � e�a

z � 1
, a > 0

34
sinan

n
aþ tan�1 sina

z � cosa
, a > 0

35
cosan

n
, n > 0 ln

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2z cosaþ 1

p

36
(nþ 1)(nþ 2) . . . (nþ k� 1)

(k� 1)!
1� 1

z

� �k

, k ¼ 2, 3, . . .

37
Xn

m¼1

1

m

z

z � 1
ln

z

z � 1
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TABLE A.6.5 (continued) Z-Transform Pairs

Z-Transform

Number Discrete Time-Function f(n), n� 0 F (z) ¼ Z f (n)½ � ¼ P

1

n¼0

f (n)z�njzj > R

38 X

n�1

m¼0

1

m!

e1=z

z � 1

39

(�1)(n�p)=2

2n n�p
2

� �
!

nþp
2

� �
!
, for n � p and n� p ¼ even

¼ 0, for n < p or n� p ¼ odd

Jp(z
�1)

40
a
n=k

� 

bn=k, n ¼ mk, (m ¼ 0, 1, 2, . . . )

¼ 0 n 6¼ mk

8

<

:

9

=

;

zk þ b

zk

� a

41 anPn(x) ¼
an

2nn!

d

dx

� n

(x2 � 1)n
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2xaz þ a2

p

42 anTn(x)¼ an cos(n cos�1 x)
z(z � ax)

z2 � 2xaz þ a2

43
Ln(x)

n!
¼

X1

r¼0

n
r

� 
(�x)r

r!

z

z � 1
e�x=(z�1)

44
Hn(x)

n!
¼

X[n=2]

k¼0

(�1)n�kxn�2k

k(n� 2k)!2k
e�x=z�1=2z2

45 anPm
n (x) ¼ an(1� x2)m=2 d

dx

� m

Pn(x), m ¼ integer
(2m)!

2mm!

zmþ1(1� x2)m=2am

(z2 � 2xaz þ a2)mþ1=2

46
Lmn (x)

n!
¼ d

dx

� m Ln(x)

n!
, m ¼ integer

(�1)mz

(z � 1)mþ1 e
�x=(z�1)

47
� 1

n
Z�1 z

F 0(z)

F (z)
� G0(z)

G(z)

� 	

, where F (z) and G(z)

are rational polynomials in z of the same order

ln
F (z)

G(z)

48
1

m(mþ 1)(mþ 2) . . . (mþ n)
(m� 1)!zm e1=z �

Xm�1

k¼0

1

k!zk

" #

49
sin (an)

n!
ecosa=z � sin sina

z

� 

50
cos (an)

n!
ecosa=z � cos sina

z

� 

51
Pn

k¼0

fkgn�k F (z)G(z)

52
Pn

k¼0

kfkgn�k F (1)(z)G(z), F (1)(z) ¼ dF (z)

dz

53
Pn

k¼0

k2fkgn�k F (2)(z)G(z)

54
an þ (�a)n

2a2

1

a2

z2

z2 � a2

55
an � bn

a� b

z

(z � a)(z � b)

56 (nþ k)(k) k!zk
z

(z � 1)kþ1

57 (n� k)(k) k!z�k z

(z � 1)kþ1

58
(n
 k)(m)

m!
ea(n�k) z1
kema

(z � ea)mþ1

59
1

n
sin

p

2
n

p

2
þ tan�1 1

z

60
cosa(2n� 1)

2n� 1
, n > 0

1

4
ffiffiffi
z

p ln
z þ 2

ffiffiffi
z

p
cosaþ 1

z � 2
ffiffiffi
z

p
cosaþ 1

61
gn

(g� 1)2
þ n

1� g
� 1

(1� g)2
z

(z � g)(z � 1)2

(continued)
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TABLE A.6.5 (continued) Z-Transform Pairs

Z-Transform

Number Discrete Time-Function f(n), n� 0 F (z) ¼ Z f (n)½ � ¼ P

1

n¼0

f (n)z�njzj > R

62 gþ a0
(g� 1)2

gn þ 1þ a0
1� g

nþ 1

1� g
� a0 þ 1

(1� g)2

� 

z(z þ a0)

(z � g)(z � 1)2

63 an cospn
z

z þ a

64 e�an cos an
z(z � e�a cos a)

z2 � 2ze�a cos aþ e�2a

65 e�an sinh (anþc)
z2 sinhcþ ze�asinh (a� c)

z2 � 2ze�acosh aþ e�2a

66
gn

(g� a)2 þ b2
þ (a2 þ b2)n=2 sin (nuþ c)

b (a� g)2 þ b2
� �1=2

z

(z � g) (z � a)2 þ b2
� �

u ¼ tan�1 b

a
c ¼ tan�1 b

a� g

67
ngn�1

(g� 1)3
� 3gn

(g� 1)4
þ 1

2

n(n� 1)

(1� g)2
� 4n

(1� g)3
þ 6

(1� g)4

� 	
z

(z � g)2(z � 1)3

68
Xk

y¼0

(�1)y
k
y

� 
(nþ k� y)(k)

k!
ea(n�y) z(z � 1)k

(z � ea)kþ1

69
f (n)

n

ð1

z

p�1F (p)dpþ lim
n!0

f (n)

n

70
fnþ2

nþ 1
,

f0 ¼ 0
f1 ¼ 0

z
Ð1

z
F (p)dp

71
1þ a0

(1� g) (1� a)2 þ b2
� �

z(z þ a0)

(z � 1)(z � g) (z � a)2 þ b2
� �

þ (gþ a0)gn

(g� 1) (g� a)2 þ b2
� �

þ [a2 þ b2]n=2 (a0 þ a)2 þ b2
� �1=2

b (a� 1)2 þ b2
� �1=2

(a� g)2 þ b2
� �1=2

,

� sin (nuþ cþ l)

c ¼ c1 þ c2, c1 ¼ � tan�1 b

a� 1
, u ¼ tan�1 b

a

l ¼ tan�1 b

a0 þ a
, c2 ¼ � tan�1 b

a� g

72 (nþ 1)ean� 2nea(nþ 1)þ ea(n�2)(n� 1)
z � 1

z � ea

� 2

73 (�1)n
cosan

n
, n > 0 ln

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 2z cosaþ 1

p

74
(nþ k)!

n!
fnþk, fn ¼ 0, for 0 � n < k (�1)kz2k

dk

dzk
F (z)½ �

75
f (n)

nþ h
, h > 0 zh

Ð1

z
p�(1þh)F (p)dp

76 �nan cos
p

2
n

2a2z2

(z2 þ a2)2

77 nan
1þ cospn

2

2a2z2

(z2 � a2)2

78 an sin
p

4
n � 1þ cospn

2

a2z2

z4 þ a4

79 an
1þ cospn

2
� cos

p

2
n

� 
2a2z2

z4 � a4

80
Pn(x)

n!
exz

�1

J0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

z�1

 �

81
P(m)
n (x)

(nþm)!
, m > 0, Pm

n ¼ 0, for n < m (�1)mexz
�1

Jm
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

z�1

 �
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TABLE A.6.5 (continued) Z-Transform Pairs

Z-Transform

Number Discrete Time-Function f(n), n� 0 F (z) ¼ Z f (n)½ � ¼ P

1

n¼0

f (n)z�njzj > R

82 1

(nþ a)b
, a > 0, Re b > 0 F z�1, a, bð Þ,

where F(1, b, a) ¼ z(b, a)¼
generalized Rieman–Zeta function

83 an
1þ cospn

2
þ cos

p

2
n

� 

2z4

z4 � a4

84
cn

n
, (n ¼ 1, 2, 3, 4, . . . ) ln z� ln(z� c)

85
cn

n
, n ¼ 2, 4, 6, 8, . . . ln z � 1

2
ln (z2 � c2)

86 n2cn
cz(z þ c)

(z � c)3

87 n3cn
cz(z2 þ 4cz þ c2)

(z � c)4

88 nkcn � dF (z=c)

dz
, F (Z) ¼ Z nk�1

� �

89 � cos
p

2
n

X(n�2)=4

i¼0

n=2
2iþ 1

� 

an�2�4i(a4 � b4)i
z2

z4 þ 2a2z2 þ b4

90 nk f(n), k> 0 and integer �z
d

dz
F 1(z), F 1(Z) ¼ Z nk�1f (n)

� �

91
(n� 1)(n� 2)(n� 3) . . . (n� kþ 1)

(k� 1)!
an�k 1

(z � a)k

92
k(k� 1)(k� 2) . . . (k� nþ 1)

n!
1þ 1

z

� k

93 nan cos bn
(z=a)3 þ z=a
� �

cos b� 2(z=a)2

(z=a)2 � 2(z=a) cos bþ 1
� �2

94 nan sin bn
(z=a)3 sin b� (z=a) sin b

(z=a)2 � 2(z=a) cos bþ 1
� �2

95
nan

(nþ 1)(nþ 2)

z(a� 2z)

a2
ln 1� a

z


 �

� 2

a
z

96
(�a)n

(nþ 1)(2nþ 1)
2

ffiffiffiffiffiffiffi

z=a
p

tan�1
ffiffiffiffiffiffiffi

a=z
p

� z

a
ln 1þ a

z


 �

97
an sinan

nþ 1

z cosa

a
tan�1 a sina

z � a cosa

þ z sina

2a
ln
z2 � 2az cosaþ a2

z2

98
an cos (p=2)n sina(nþ 1)

nþ 1

z

4a
ln
z2 þ 2az sinaþ a2

z2 � 2az sinaþ a2

99
1

(2n)!
cos h(z�1=2)

100
� 1

2

n

� 

(�a)n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z=(z � a)
p

101
� 1

2
n
2

� 

an cos
p

2
n

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � a2
p

102
Bn(x)

n!
Bn(x) are Bernoulli polynomials

ex=z

z e1=z � 1ð Þ

103 Wn(x) ¼: Chebyshev polynomials of the second kind
z2

z2 � 2xz þ 1

104 sin
np

m

�
�
�

�
�
�, m ¼ 1, 2, . . .

z sinp=m

z2 � 2z cosp=mþ 1

1þ z�m

1� z�m

105 Qn(x)¼ sin (n cos�1 x)
z

z2 � 2xz þ 1

Source: Jury, E.I. Theory and Application of the Z-Transform Method, John Wiley & Sons, Inc., New York, 1964. With permission.
a It may be noted that fn is the same as f(n).
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7.1 Introduction

The Hilbert transformations are of widespread interest because

they are applied in the theoretical description of many devices

and systems and directly implemented in the form of Hilbert

analog or digital filters (transformers). Let us quote some import-

ant applications of Hilbert transformations:

1. The complex notation of harmonic signals in the form of

Euler’s equation exp( jvt)¼ cos(vt)þ j sin(vt) has been

used in electrical engineering since the 1890s and now-

adays is commonly applied in the theoretical description

of various, not only electrical systems. This complex

notation had been introduced before Hilbert derived

his transformations. However, sin(vt) is the Hilbert trans-

form of cos(vt), and the complex signal exp( jvt) is a

precursor of a wide class of complex signals called analytic

signals.

2. The concept of the analytic signal11 of the form c(t)¼
u(t)þ jv(t), where v(t) is the Hilbert transform of u(t),
extends the complex notation to a wide class of signals for

which the Fourier transform exists. The notion of the ana-

lytic signal is widely used in the theory of signals, circuits,

and systems. A device called the Hilbert transformer

(or filter), which produces at the output the Hilbert trans-

form of the input signal, finds many applications, especially

in modern digital signal processing.

3. The real and imaginary parts of the transmittance of a

linear and causal two-port system form a pair of Hilbert

transforms. This property finds many applications.

4. Recently two-dimensional (2-D) and multidi-

mensional Hilbert transformations have been applied to

define 2-D and multidimensional complex signals, open-

ing the door for applications in multidimensional signal

processing.13

7.2 Basic Definitions

The Hilbert transformation of a 1-D real signal (function) u(t) is
defined by the integral

y(t) ¼ �1
p

P

ð

1

�1

u(h)

h� t
dh ¼ 1

p
P

ð

1

�1

u(h)

t � h
dh (7:1)

and the inverse Hilbert transformation is

u(t) ¼ 1

p
P

ð

1

�1

y(h)

h� t
dh ¼ �1

p
P

ð

1

�1

y(h)

t � h
dh (7:2)

where P stands for principal value of the integral. For conveni-

ence, two conventions of the sequence of variables in the denom-

inator are given; both have been used in studies. The left-hand

side formulae is used in this chapter. The following terminology

is applied: the algorithm, that is, the right-hand side of Equations

7.1 or 7.2, is called ‘‘transformation,’’ and the specific result for a

given function, that is, the left-hand side of Equations 7.1 or 7.2,

is called the ‘‘transform.’’ The above definitions of Hilbert trans-

formations are conveniently written in the convolution notations

y(t) ¼ u(t) *
1

pt
(7:3)

u(t) ¼ y(t) *
1

pt
(7:4)

The integrals in definition (7.1) are improper because the inte-

grand goes to infinity for h¼ t. Therefore, the integral is defined
as the Cauchy principal value (sign P) of the form
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y(t) ¼ lim
e)0
A)1

�1
p

ð

�e

�A

þ
ð

A

e

u(h)

h� t
dh

0

@

1

A (7:5)

Using numerical integration in the sense of the Cauchy principal

value with uniform sampling of the integrand, the origin h¼ 0

should be positioned exactly at the center of the sampling

interval. The limit e) 0 is substituted by a given value of the

sampling interval and the limit A)1 by a given value of A.
The accuracy of the numerical integration increases with smaller

sampling intervals and larger values of A.
The Hilbert transformation was originally derived by Hilbert

in the frame of the theory of analytic functions. The theory of

Hilbert transformations is closely related to Fourier transform-

ation of signals of the form

U(v) ¼
ð

1

�1

u(t)e�jvtdt; v ¼ 2pf (7:6)

The complex function U(v) is called the Fourier spectrum or

Fourier image of the signal u(t) and the variable f¼v=2p, the

Fourier frequency. The inverse Fourier transformation is

u(t) ¼
ð

1

�1

U(v)e jvtdf (7:7)

The pair of transforms (Equations 7.6 and 7.7) may be denoted

u(t)()F U(v) (7:8)

called a Fourier pair. Similarly the Hilbert transformations

(Equations 7.1 and 7.2) may be denoted

u(t)()H y(t) (7:9)

forming a Hilbert pair of functions. Contrary to other transform-

ations, the Hilbert transformation does not change the domain.

For example, the function of a time variable t (or of any other

variable x) is transformed to a function of the same variable,

while the Fourier transformation changes a function of time into

a function of frequency.

The Fourier transform (see also Chapter 2) of the kernel of the

Hilbert transformation, that is, Q(t)¼ 1=(pt) (see Equations 7.3
and 7.4) is

Q(t) ¼ 1

pt
()F �j sgn(v) (7:10)

with the signum function (distribution) defined as follows:

sgn(v) ¼
þ1 v > 0

0 v ¼ 0

�1 v < 0

8

<

:

(7:11)

The multiplication to convolution theorem of the Fourier analy-

sis yields the following spectrum of the Hilbert transform:

y(t)()F V(v) ¼ �j sgn(v)U(v) (7:12)

that is, the spectrum of the signal u(t) should be multiplied

by the operator �j sgn(v). This relation enables the calculation

of the Hilbert transform using the inverse Fourier transform of

the spectrum defined by Equation 7.12, that is, using the follow-

ing algorithm:

u(t))F U(v)) V(v) ¼ �j sgn(v)U)F
�1

y(t) (7:13)

where the symbols F and F�1 denote the Fourier and inverse

Fourier transformations, respectively. In practice, the algorithms

of DFT (Discrete Fourier Transform) or FFT (Fast Fourier

Transform) can be applied (Section 7.21).

7.3 Analytic Functions Aspect
of Hilbert Transformations

The complex signal whose imaginary part is the Hilbert trans-

form of its real part is called the analytic signal. The simplest

example is the harmonic complex signal given by Euler’s for-

mula c(t)¼ exp( jvt)¼ cos(vt)þ j sin(vt). A more general

form of the analytic signal was defined in 1946 by Gabor.11

The term ‘‘analytic’’ is used in the meaning of a complex

function C(z) of a complex variable z¼ tþ jt, which is defined

as follows:39

Consider a plane with rectangular coordinates (t, t) (called

C plane or C ‘‘space’’) and take a domain D in this plane. If we

define a rule connecting to each point in D a complex number c,

we defined a complex function c(z), z 2 D. This function may be

regarded as a complex function of two real variables:

c(z) ¼ c(t, t) ¼ u(t, t)þ jv(t, t) (7:14)

in the domain D 2 R2 (R2 is Euclidean plane or ‘‘space’’). The

complete derivative of the function c(z) has the form

dc ¼ qc

qz
dz þ qc

qz*
dz* (7:15)
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where z*¼ t� jt is the complex conjugate and the partial deriva-

tives are

qc

qz
¼ 1

2

qc

qt
� j

qc

qt

� �

;
qc

qz*
¼ 1

2

qc

qt
þ j

qc

qt

� �

(7:16)

The function c(z)¼ u(t, t)þ jv(t, t) is called the analytic function
in the domain D if and only if u(t, t) and v(t, t) are continuously
differentiable. It can be shown that this requirement is satisfied, if

qc=qz*¼ 0. This complex equation may be substituted by two

real equations

qu

qt
¼ qy

qt
;

qu

qt
¼ qy

qt
(7:17)

called the Cauchy–Riemann equations. These equations should

be satisfied if the function c(z) is analytic in the domain z 2 D.

For example, the complex function

c(z) ¼ 1

a� jz
¼ u(t, t)þ jy(t, t) (7:18)

is analytic because

u(t, t) ¼ (aþ t)

(aþ t)2 þ t2
; y(t, t) ¼ t

(aþ t)2 þ t2
(7:19)

and the differentiation

qu(t, t)

qt
¼ qy(t, t)

qt
¼ �2t(aþ t)

[(aþ t)2 þ t2]2
(7:20)

verifies the Cauchy–Riemann equations.

It was shown by Cauchy that if z0 is a point inside a closed

contour C 2 D such that c(z0) is analytic inside and on C, then
(see also Appendix A)

c(z0) ¼
1

2pj

ð

C

c(z)

z � z0
dz (7:21)

c(z0) ¼
1

2pj

ð

C

c(y þ z0)

y
dy (7:22)

This is a contour integral in the (t, jt) plane. Let us take the

contour C in the form shown in Figure 7.1. It is a sum of Ctþ
CeþCR, where Ct is a line parallel to the t axis shifted by e, Ce is a

half-circle of radius e and CR a half-circle of radius R. The
analytic signal is defined as a complex function of the real

variable t given by the formula

c(t) ¼ u(t, 0þ)þ jy(t, 0þ) (7:23)

obtained by inserting in the Equation 7.14 t¼ 0þ, where the sub-

scriptþ indicates that the path Ct approaches the t axis from the

upperside. The Equation 7.23 is the result of contour integration

along the path of Figure 7.1 using the limit e! 0, R!1. We have

c(t0, 0þ) ¼ lim
e!0,R!1

1

2pj

� P

ðR

�R

c(z)

z � z0
dz þ

ð

CR

c(z)

z � z0
dz þ

ð

Ce

c(z)

z � z0
dz

8

<

:

9

=

;

(7:24)

The symbol P denotes the Cauchy principal value, that is,

P

ðR

�R

¼
ðt0�e

�R

þ
ðR

t0þe

(7:25)

For analytic functions the integral along CR vanishes for R ! 1
and in the limit e ! 0 the integral along the small half-circle Ce

equals 0.5 c(t0, 0þ) since within the very small circle around t0
the function c(z)¼c(t0, 0þ) is a constant and the integral
ð

Ce

dz

z � z0
¼ pj. In consequence, the real and imaginary parts

of the analytic signal are given by the integrals (a Hilbert pair)

v(t) ¼ �1

p
P

ð1

�1

u(h, 0)

h� t
dh (7:26)

u(t) ¼ �1

p
P

ð1

�1

v(h, 0)

h� t
dh (7:27)

where the subscripts t0 and 0þ are deleted. The only difference

between the above integrals and those defined by Equations 7.1

and 7.2 consists in notation (deleting zeros in parentheses).

Therefore, the real and imaginary parts of the analytic signal

c(t) ¼ u(t)þ jv(t) (7:28)

j τ

R

ε
z0 = t0 + jε

Large half-circle path

Small half-circle path Cε

CR

Ct

R–R
t

r = ε

FIGURE 7.1 The integration path defining the analytic signal (Equa-

tion 7.23).
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form a Hilbert pair of functions. For example, inserting t¼ 0 in

Equation 7.19 yields the Hilbert pair

u(t) ¼ a

a2 þ t2
()H y(t)

t

a2 þ t2
(7:29)

The signal u(t) is called the Cauchy signal and v(t) is its Hilbert

transform.

A real signal u(t) may be written in terms of analytic signals

u(t) ¼ c(t)þ c*(t)

2
(7:30)

and its Hilbert transform is

v(t) ¼ c(t)� c*(t)

2j
(7:31)

where c*(t)¼ u(t)� jv(t) is the conjugate analytic signal. For this
signal the Equation 7.24 takes the form c(t)¼ u(t, 0�)� jv(t, 0�)
and the path C is in the lower half of the z plane. Notice, that the
above formulae present a generalization of Euler’s formulae

cos (vt) ¼ e jvt þ e�jvt

2
(7:32)

sin (vt) ¼ e jvt � e�jvt

2j
(7:33)

7.4 Spectral Description of the Hilbert
Transformation: One-Sided
Spectrum of the Analytic Signal

Any real signal u(t) may be decomposed into a sum

u(t) ¼ ue(t)þ u0(t) (7:34)

where the even term is defined as

ue(t) ¼
u(t)þ u(�t)

2
(7:35)

and the odd term

u0(t) ¼
u(t)� u(�t)

2
(7:36)

The decomposition is relative, i.e., changes with the shift of the

origin of the coordinate t 0¼ t� t0. In general, the Fourier image

of u(t) defined by Equation 7.6 is a complex function

U(v) ¼ URe(v)þ jUIm(v) (7:37)

where the real part is given by the cosine transform

URe(v) ¼
ð

1

�1

ue(t) cos (vt)dt (7:38)

and the imaginary part of the sine transform

UIm(v) ¼ �
ð

1

�1

u0(t) sin (vt)dt (7:39)

The multiplication of the Fourier image by the operator

�j sgn(v) changes the real part of the spectrum to the imaginary

one and vice versa (see Equation 7.12). The spectrum of the

Hilbert transform is

V(v) ¼ VRe(v)þ jVIm(v) (7:40)

where

VRe(v) ¼ �j sgn(v)[ jUIm(v)] ¼ sgn(v)UIm(v) (7:41)

and

VIm(v) ¼ �sgn(v)URe(v) (7:42)

Therefore, the Hilbert transformation changes any even term to

an odd term and any odd term to an even term. The Hilbert

transforms of harmonic functions are

H[cos (vt)] ¼ sin (vt) (7:43)

H[sin (vt)] ¼ �cos (vt) (7:44)

H[e jvt] ¼ �j sgn(v)e jvt ¼ sgn(v)e j(vt�0:5p) (7:45)

Therefore, the Hilbert transformation changes any cosine term to

a sine term and any sine term to a reversed signed cosine term.

Because sin(vt)¼ cos(vt� 0.5p) and�cos(vt)¼ sin(vt� 0.5p),

the Hilbert transformation in the time domain corresponds to a

phase lag by�0.5p (or�908) of all harmonic terms of the Fourier

image (spectrum). Using the complex notation of the Fourier

transform, the multiplication of the spectral function U(v) by

the operator �j sgn(v) provides a 908 phase lag at all positive

frequencies and a 908 phase lead at all negative frequencies.

A linear two-port network with a transfer function H(v)¼�j
sgn(v) is called an ideal Hilbert transformer or filter. Such a filter

cannot be exactly realized because of constraints imposed by

causality (details in Section 7.22).

The Fourier image of the analytic signal

c(t) ¼ u(t)þ jv(t) (7:46)

is one-sided. We have

u(t)()H y(t) u(t)()F U(v); y(t)()F j sgn(v)U(v): (7:47)

Therefore,

c(t)()F U(v)þ j[�j sgn(v)U(v)] ¼ [1þ sgn(v)]U(v)

(7:48)
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where

1þ sgn(v) ¼
2 for v > 0
1 for v ¼ 0
0 for v < 0

8

<

:

(7:49)

The Fourier image of the analytic signal is doubled at positive

frequencies and canceled at negative frequencies with respect to

U(v). For the conjugate signal c*(t)¼ u(t)� jv(t) the Fourier

image is doubled at negative frequencies and canceled at positive

frequencies.

Examples

1. Consider the analytic signal e jv0t ¼ cos (v0t)þ
j sin (v0t). We have

cos (v0t)()
H

sin (v0t); v0 ¼ 2pf0

cos (v0t)()
F

0:5[d(f þ f0)þ d(f � f0)]

cos (v0t)()
F

0:5[d(f þ f0)þ d(f � f0)]

e jv0t()F d(f � f0)

The spectra are shown in Figure 7.2.

2. Consider the analytic signal c(t) ¼ 1
1þt2 þ j t

1þt2 . We have

t

1þ t2
()H t

1þ t2

1

1þ t2
()F pe�jvj ;

t

1þ t2
()F �j sgn(v)pejvj

c(t)()F [1þ sgn(v)]pe�jvj

The signals and spectra are shown in Figure 7.3.

7.4.1 Derivation of Hilbert Transforms Using
Hartley Transforms

Alternatively, the Hilbert transform may be derived using a

special Fourier transformation known as Hartley transformation

(See also Chapter 4); it is given by the integral

0

j

–ω0 ω0

0 ω0

0–ω0

ω

ω

ω

δ(ω + ω0)1
2

δ(ω + ω0)1
2

δ(ω – ω0)1

2

δ(ω – ω0)

δ(ω – ω0)

–j

2

FIGURE 7.2 The spectra of cos(v0t), sin(v0t), and of the analytic

signal e jv0t .

U (ω) = πe – |ω|

V (ω) = –j sgn(ω)πe – |ω|

π (1 + sgn(ω))e– |ω|

t

t

ω

ω

ω

u(t) =
1

1 + t2

v(t) =
t

1 + t2

FIGURE 7.3 The Cauchy pulse, its Hilbert transform, and the corresponding spectra and the spectrum of the analytic signal c(t) ¼ 1=(1� jt).
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UHa(v) ¼
ð

1

�1

u(t)cas(vt)dt; v ¼ 2pf (7:50)

and the inverse Hartley transformation is

u(t) ¼
ð

1

�1

UHa(v) cas(vt)df (7:51)

where cas(vt)¼ cos(vt)þ sin(vt). The Hartley spectral function

was denoted by the index Ha because in this chapter the index H

denotes the Hilbert transform. Consider the Hartley pair

u(t)()Ha
UHa(v) (7:52)

The Hartley spectral function of the Hilbert transform is

VHa(v) ¼ sgn(v)UHa(�v) (7:53)

Therefore, the Hilbert transform is given by the inverse Hartley

transformation

y(t) ¼
ð

1

�1

sgn(v)UHa(�v)cas(vt)df (7:54)

Example

Consider the one-sided square pulsePa (t� a) (see Figure 7.4).

The Hartley transform of this pulse is

UHa(v) ¼
ð

2a

0

[ cos (vt)þ sin (vt)]dt ¼ 2a
sin (2va)

2va
þ sin2 (va)

va

� �

The spectrum of the Hilbert transform given by Equation 7.53 is

VHa(v) ¼ 2a sgn(v)
sin (2va)

2va
� sin2 va

va

� �

The inverse Hartley transformation of this spectrum is

ð1

�1

2a sgn(v)
sin (2va)

2va
þ sin2 (va)

va

� �

[ cos (vt)þ sin (vt)]df

Notice that the integrals of products of opposite symmetry

equal zero and the integration yields

y(t) ¼ 1

p
ln

t

t � 2a

�
�
�

�
�
�

(see Equation 7.61).

7.5 Examples of Derivation
of Hilbert Transforms

1. The harmonic signal u(t)¼ cos(vt); v¼ 2pf, where f is a
constant. The Hilbert transform of the periodic cosine

signal using the defining integral (Equation 7.1) is

H[cos (vt)] ¼ y(t) ¼ �1
p

P

ð1

�1

cos (vh)

h� t
dh (7:55)

The change of variable y¼h� t, dy¼ dh yields

y(t) ¼ �1
p

P

ð1

�1

cos [v(y þ t)]

y
dy

¼ �1
p

cos (vt)P

ð1

�1

cos (vy)

y
dy

8

<

:

� sin (vt)P

ð1

�1

sin (vy)

y
dy

9

=

;
(7:56)

The integrals inside the brackets are

P

ð1

�1

cos (vy)

y
dy ¼ 0; P

ð1

�1

sin (vy)

y
dy ¼ p (7:57)

Therefore, v(t)¼ sin(vt). The same derivation for the

function u(t)¼ sin(vt) yields v(t)¼�cosv(t).
2. The two-sided symmetric unipolar square pulse

u(t) ¼ Pa(t) ¼
1 for jtj < a

0:5 for jtj ¼ a

0 for jtj > a

8

<

:
(7:58)

a
t

0

1

Πa (t – a)

2a

FIGURE 7.4 One-sided square pulse.
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The Hilbert transform of this pulse is

y(t)¼ H[Pa(t)]¼
�1
p

P

ð

1

�1

Pa(h)

h� t
dh

¼ lim
e)0

�1
p

ð

t�e

�a

dh

h� t
� 1

p

ð

a

tþe

dh

h� t

8

<

:

9

=

;

¼ lim
e)0

� 1

p
ln (h� t)

�
�
�
�

t�e

�a
� 1

p
ln (h� t)

�
�
�
�

a

tþe

� �

(7:59)

The insertion of the limits of integration yields

y(t) ¼ 1

p
ln

t þ a

t � a

�
�
�

�
�
� (7:60)

The square pulse and its Hilbert transform are shown in

Figure 7.5. Notice that the support of the square pulse is

limited within the interval jtj � a, while the support of the
Hilbert transform is infinite. This statement applies to

all Hilbert transforms of functions of limited support.

Of course, the inverse Hilbert transformation of the loga-

rithmic function (Equation 7.60) restores the square

pulse of limited support. The change of variable t0 ¼ t� a
(time shift of the pulse) yields the Hilbert transform of a

one-sided square pulse.

H[Pa(t � a)] ¼ 1

p
ln

t

t � 2a

�
�
�

�
�
� (7:61)

3. The Hilbert transform of a constant function u(t)¼ u0
equals zero. This is easily seen from Equation 7.60 at the

limit a ) 1. The mean value of a function is given by the

integral

u0 ¼ lim
T)1

1

T

ðT=2

�T=2

u(t)dt (7:62)

Therefore, the Hilbert transform of a function u(t) ¼ u0 þ
u1(t) is

H[u0 þ u1(t)] ¼ H[u1(t)] (7:63)

that is, in electrical terminology the Hilbert transformation

cancels the DC term u0.
4. Consider the Gaussian pulse and its Fourier image

e�pt2 ()F e�pf 2 ; v ¼ 2pf (7:64)

Because for this signal the Hilbert transform defined by the

integral (Equation 7.1) has no closed form, it is convenient

to derive the Hilbert transform using the inverse Fourier

transformation of the Fourier image (Equation 7.64). This

inverse transform has the form

y(t) ¼
ð1

�1

�j sgn(v)e�pf 2e jvtdf (7:65)

Because the integrand is an odd function, this integral has

the simplified form

y(t) ¼
ð1

0

e�pf 2 sin(vt)df (7:66)

This integral has no closed solution and may be repre-

sented by a power series defining a function called Ei(t).

a–a
t

FIGURE 7.5 The square pulse Pa(t) and its Hilbert transform.

0

0.5

e–π t
2

H [e–πt
2

]

–0.5

–1–2 1 2 t

πt
1

FIGURE 7.6 The Gaussian pulse and its Hilbert transform.
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However, in the days of proliferation of computers it is

much simpler to find a numerical solution of this integral.

The Gaussian pulse and its Hilbert transform computed

using Equation 7.66 are shown in Figure 7.6.

7.6 Definition of the Hilbert
Transformation by Using
a Distribution

It is well known that the concept of the delta function, the unit

step, and similar functions extend the class of functions for

which the Fourier transform exists. The formal Fourier integral

theory restricts the functions to those satisfying Dirichlet’s con-

ditions, including the requirement of finite energy (finite value

of the integral of the square). The mathematicians eliminated

this restriction by introducing the concept of a distribution,

giving a rigorous foundation to the notions of the delta pulse,

the signum function, and so forth. The notion of a distribution is

not unique, because there exist several definitions. The most

accepted theory of a distributions was formulated by Schwartz,35

who used the concept of a functional. Another useful approach

was formulated by Mikusinski23 who used sequences of approxi-

mating functions.

Equation 7.48 shows that the Fourier image of analytic signals

is one-sided. A good example is the one-sided spectrum given by

the doubled unit step 2 1( f ) defined as a distribution in the

Fourier frequency domain. This distribution may be decomposed

into the even and odd parts:

2 1( f ) ¼ 1þ sgn( f ) (7:67)

where

1 is a constant distribution

sgn( f ) is a signum distribution

The inverse Fourier transformation of this unit step is given by

the integral

cd(t) ¼
ð

1

�1

2 1( f )e jvtdf ; v ¼ 2pf (7:68)

or by the integral

cd(t) ¼ 2

ð

1

0

e jvtdf (7:69)

which defines the complex delta distribution of the form

cd(t) ¼ d(t)þ jP
1

pt
¼ F�1[2 1( f )] (7:70)

with P the Cauchy principal value. We observe, that the delta

distribution and the kernel of the Hilbert transformation are

forming a Hilbert pair

d(t)()H P
1

pt
(7:71)

where the Fourier images are

d(f )()F 1; Q(t) ¼ P
1

pt
()F �j sgn(v) (7:72)

Therefore, the kernel of the Hilbert transformations (Equations

7.3 and 7.4) denoted by Q(t) has been redefined as a distribu-

tion in the form of the Hilbert transform of the delta pulse

(distribution).

The analytic signal (Equation 7.28) may be defined in the form

of a convolution of a given function (or distribution) u(t) with
the complex delta distribution; that is,

c(t) ¼ cd(t) * u(t) ¼ d(t)þ jP
1

pt

� �

* u(t) (7:73)

Indeed, the well-known alternative definition of the delta distri-

bution is

u(t) ¼ u(t) * d(t) (7:74)

This is a convolution equation. The application of the theorem

about the Hilbert transform of a convolution (see Table 7.1)

yields the following two alternative forms of H[u(t)]:

y(t) ¼ u(t) *
1

pt
; y(t) ¼ y(t) * d(t) (7:75)

The complex delta distribution may be defined alternatively

using approximating functions. A convenient choice is the Cau-

chy signal (see Equation 7.29):

cd(t) ¼ lim
a)0

a

p(a2 þ t2)
þ j

t

p(a2 þ t2)

� �

(7:76)

(see Figure 7.7). The division by p is needed to get the integral of

the real part equal to 1. In terms of this representation, the

distribution Q(t)¼ 1=p t equals zero for t¼ 0. The real and

imaginary parts of the complex delta distribution, as for any

analytic signal, are orthogonal; that is, the integral of their prod-

uct equals zero

P

ð1

�1

d(t)

pt
dt ¼ 0 (7:77)
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7.7 Hilbert Transforms
of Periodic Signals

A real function (signal) up(t) is periodic if there is some interval

T (the period) for which

up(t) ¼ up(t þ kT) (7:78)

for all t in (�1,1), where k is an integer (�1,1). The funda-

mental frequency is f¼ 1=T and the fundamental angular

frequency is v¼ 2pf¼ 2p=T. The periodic function may be

alternatively defined using a periodic repetition of a so-called gen-
erating function uT(t). This repetition is represented by the infinite

series

up(t) ¼
X

1

k¼�1
uT(t � kT) (7:79)

where the generating function is

uT(t) ¼
up(t) in the interval t0, t0 þ T

0 otherwise

�

(7:80)

Using the well-known shifting property of the convolution of

a given function with the delta pulse, the periodic function

(Equation 7.79) may be written in the form

up(t) ¼ uT(t)*
X1

k¼�1
d(t ¼ kT) (7:81)

that is, the generating function is convolved with the periodic

sequence of delta pulses well known from the sampling theory.

Three different methods of derivation of the Hilbert transform

of periodic functions are presented here:

1. A method using Fourier series.

2. Direct derivation in the form of infinite products.

3. The convolution with a cotangent periodic function.

7.7.1 First Method

The periodic function may be expanded into a Fourier series:

up(t) ¼ U0 þ
X1

n¼1
Un cos (nv0t þFn); v0 ¼

2p

T
(7:82)

The number of terms of this series may be finite or infinite.

BecauseH[cos(nv tþF)]¼ sin(nv tþF), the Hilbert transform

of the periodic function up(t) is given by the Fourier series

np(t) ¼
X1

n¼1
Un sin (nv0t þFn) (7:83)

Notice the cancellation of the constant term U0 (in electrical

terminology the DC term). If the Fourier series is given using

the complex notation

up(t) ¼
X1

n¼�1
Cne

jnv0t (7:84)

where the complex coefficient Cn is given by the integral

Cn ¼
1

T

ðT=2

�T=2

up(t)e
�jnv0tdt (7:85)

1–2 2

1

.25

.1

t

t

–1 0

1

2

1

–2

2

–1

0

α

α

πt
1

.1

.25

1

FIGURE 7.7 The approximation of the delta pulse d(t) and its Hilbert

transform Q(t) ¼ 1=(pt) by Cauchy pulses and its Hilbert transforms

(see Figure 7.3).
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then the Hilbert transform has the form (see Equation 7.45)

yp(t) ¼
X

1

n¼�1
�j sgn(n)Cne

jnv0t ; v0 > 0 (7:86)

Again, the constant term is eliminated (sgn(0)¼ 0).

Example

Consider the Fourier series of the periodic square wave given

by the formula up(t)¼ sgn[cos (vt)] (v¼ 2pf� a constant):

up(t) ¼
4

p
cos (vt)� 1

3
cos (3vt)þ 1

5
cos (5vt)

�

� 1

7
cos (7vt)þ � � �

�

(7:87)

The Hilbert transform has the form

yp(t) ¼
4

p
sin (vt)� 1

3
sin (3vt)þ 1

5
sin (5vt)

�

� 1

7
sin (7vt)þ � � �

�

(7:88)

Figure 7.8a and b shows the signals represented by the Fourier

series (Equations 7.87 and 7.88) truncated at the fifth harmonic

and at a much higher harmonic term. We observe the Gibbs

peaks for the cosine series. Because in the limit, the energy

of the Gibbs peaks equals zero (a zero function), the Gibbs

peaks disappear for the sine series.

7.7.2 Second Method

The derivation of the Hilbert transform of a periodic signal

directly in the time domain (or any other domain) using the

basis integral definition of the Hilbert transformation given by

Equation 7.1 has the form of the infinite sum of integrals over

successive periods. Only one of these integrals includes the pole

of the kernel 1=(p t). For example, the Hilbert transform of the

periodic square wave (see Figure 7.9a) has the form

yp(t) ¼�
1

p
� � �

ð�3b

�5b

dh

h� t
�
ð�b

�3b

dh

h� t

8

<

:

þ lim
e)0

ðt�e

�b

dh

h� t
þ
ðb

tþe

dh

h� t

2

4

3

5

�
ð3b

b

dh

h� t
þ
ð5b

3b

dh

h� t
� � � �

9

=

;
(7:89)

(a)

t

2

1

t0–π π
2

– π
22

– 3 π

1.1

0.9

5

85° 90°

1.0

Enlarged

t

4

3

2

1

t

–1

–2

–3

–4

–5
(b)

3 π
2

– –
π
2

π
2

FIGURE 7.8 (a) The waveforms given by the truncation of the Fourier

series of a square wave at the 5th harmonic number and of the corre-

sponding Hilbert transform. (b) Analogous waveforms by the truncation

at a high harmonic number.
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where b¼T=4. The result of this integration has the form

yp(t) ¼
2

p
ln

Pm¼1 2m� 1� (1)mx½ �
Pm¼1 2m� 1þ (1)mx½ �

�
�
�
�

�
�
�
�

� �

(7:90)

where x¼ 4t=T and m¼ 1, 2, 3,. . . . The first terms of the infinite

products are

yp(t) ¼
2

p
ln

(1þ x)(3� x)(5þ x)(7� x) � � �
(1� x)(3þ x)(5� x)(7þ x) � � �

�
�
�
�

�
�
�
� (7:91)

The infinite products in the above formulas are convergent.

Using the numerical evaluation of Equation 7.91 we have to

truncate the products having the same number of terms in

the nominator and denominator. For the odd square wave

up(t)¼ sgn[sin(vt)] (see Figure 7.9b), Equation 7.91 changes to

yp(t) ¼
2

p
ln

y(4� y2)(16� y2)(36� y2) � � �
(1� y2)(9� y2)(15� y2)(7� y) � � �

�
�
�
�

�
�
�
�;

y ¼ 2x ¼ 2t=T

(7:92)

Notice that the denominator has been truncated so that a half-

term of (49� y2)¼ (7� y) (7þ y) is deleted. This is needed to

obtain a symmetrical truncation. Using a computer, the quotients

in Equations 7.91 or 7.92 should be calculated using one term of

the nominator divided by one term of the denominator. Other-

wise there is a danger of entering in the overflow range of the

computer (number too big). Let us recall that the harmonic

functions have a representation in the form of infinite series.

sin (z) ¼ z
Y1

k¼1

1� z2

k2p2

� �

(7:93)

cos (z) ¼
Y1

k¼1

1� 4z2

(2k� 1)2p2

� �

(7:94)

7.7.3 Third Method: Cotangent Hilbert
Transformations

The cotangent form of the Hilbert transformation of periodic

functions may be conveniently derived starting with the convolu-

tion equation (Equation 7.81). The Hilbert transform of a convo-

lution of two functions equals the convolution of the Hilbert

transform of one function (arbitrary choice) with the original of

the other function (see Table 7.3). The Hilbert transform of the

delta sampling sequence is

bt–b–3b

(a)

–5b 3b 5b η

η – t

1

t

(b)

–2b 2b 4b–4b η

FIGURE 7.9 Illustration to the derivation of the Hilbert transform of a square wave.
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dp(t) ¼
X

1

k¼�1
d(t � kT)()H Qp(t)

¼ 1

T

X

1

k¼�1
cot

p

T
(t � kT)

h i

(7:95)

This Hilbert pair is shown in Figure 7.10. The derivation is given

at the end of this section. The insertion of this Hilbert transform

in the convolution equation (Equation 7.75) yields the following

form of the Hilbert transform of periodic functions:

yp(t) ¼ uT(t)*
1

T

X

1

k¼�1
cot

p

T
(t � kT)

h i

(7:96)

where uT(t) is the generating function defined by Equation 7.80.

Contrary to Fourier series, Equation 7.96 has a closed integral

form and for many generating functions a closed analytic solu-

tion. If the analytic solution does not exist, a numerical evalu-

ation of the convolution yields the desired Hilbert transform.

Example

Consider again the square wave of sgn[cos(vt)]. The generat-

ing function is

uT(t) ¼ sgn[ cos (vt)] for jtj � 0:5T ; v ¼ 2p

T

0 otherwise

(

(7:97)

This generating function equals �1 in the intervals �T=2 to

�T=4 and T=4 to T=2 and equals 1 in the interval �T=4 to T=4.
The insertion of the integration intervals (Cauchy principal

value)

�
�T=4

�T=2

�
�
�
� þ

t � e

�T=4

�
�
�
� þ

T=4

t þ e

�
�
�
� �

T=2

T=4

�
�
�
� (7:98)

into the integral

1

T

ð

cot
p

T
(t� t)

h i

dt ¼ 1

p
ln sin

p

T
(t� t)

h i�
�
�

�
�
� (7:99)

yields the following form of the Hilbert transform of the

square wave

yp(t) ¼
2

p
ln

sin
p

T

T

4
� t

� �� �

sin
p

T

T

4
þ t

� �� �

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(7:100)

Using trigonometric relations, we get the Hilbert pair

sgn[ cos (vt)]()H 2

p
ln j tan (vt=2þ p=4) (7:101)

Similarly, it may be shown that

sgn[ sin (vt)]()H 2

p
ln j tan (vt=2)j (7:102)

The Hilbert transform of the periodic delta sequence given by

Equation 7.95 may be derived as follows: We start with the

Hilbert pair

d(t)()H 1

pt
(7:103)

The support of the Hilbert transform 1=(pt) is infinite. There-
fore, in the interval of one period, for example, the interval

from 0 to T, there is a summation of successive tails of

functions Qn(t)¼ 1=[p (t� nT)], i.e., the generating function

of the Hilbert transform of the delta sampling sequence is

QT(t) ¼
X1

n¼�1

1

p(t � nT )
¼ 1

T
cot (pt=T ) (7:104)

that is, the infinite sum converges to the cotangent function.

The repetition of this generating function yields the periodic

Hilbert transform of the delta sampling sequence of the form

Qp(t) ¼
X1

k¼�1
QT(t � kT ) ¼ 1

T

X1

k¼�1
cot

p

T
(t � kT )

h i

(7:105)

0 T

–T 0 T

cot (πt/T )

2T
t

2T
t

T

FIGURE 7.10 The periodic sequence of delta pulses and its Hilbert

transform.
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This sequence also may be written in the convolution form

Qp(t) ¼
1

T
cot (pt=T ) *

X

1

k¼�1
d(t � kT ) (7:106)

The generating function QT(t) (Equation 7.104) may be alter-

natively derived using Fourier transforms. The well-known

Fourier pair is

X

1

k¼�1
d(t � kT )()F 1

T

X

1

k¼�1
d(f � k=T ) (7:107)

The multiplication of this Fourier image by the operator

�j sgn ( f ) yields the Fourier image of the generating

function QT(t):

QT(t)()
F 1

T

X

1

n¼�1
�j sgn(f )d(f � n=T ) (7:108)

The inverse Fourier transform of this spectrum yields

QT(t) ¼
j

T

X

1

n¼�1
e�j2pnt=T � j

T

X

1

n¼1
e j2pn=T

¼ 2

T

X

1

n¼1
sin (2p nt=T ) (7:109)

The insertion of the relation (in the distribution sense)

X

1

n¼1
sin (nx) ¼ 1

2
cot (x=2) (7:110)

yields Q(t) given by the formula 7.104. Notice that the deriv-

ation of the periodic Hilbert transform Qp(t) involves two

summations. The first yields the generating function QT(t)

and the second gives the periodic repetition of this function

(Figure 7.11).

7.8 Tables Listing Selected
Hilbert Pairs and Properties
of Hilbert Transformations

Table 7.1 presents the Hilbert transforms of some selected a

periodic signals and the two basic periodic harmonic signals cos

(vt) and sin(vt). The Hilbert transforms of selected other periodic

signals are listed in Table 7.2. The knowledge of the Hilbert

transforms listed in these tables and the application of various

properties of the Hilbert transformation listed in Table 7.3 enables

an easy derivation of a large variety of Hilbert transforms. Appli-

cations of the properties listed in these tables are given in Sections

7.9 through 7.15, which also include selected derivations and

applications of the properties of Hilbert transformations.

7.9 Linearity, Iteration,
Autoconvolution,
and Energy Equality

The Hilbert transformation is linear and, if a complicated wave-

form can be decomposed into a sum of simpler waveforms, then

the summation of the Hilbert transforms of each term yields the

desired transform. For example, the waveform of Figure 7.12amay

be a decomposed into a sum of two rectangular pulses. Therefore,

the Hilbert transform of this waveform is (see Table 7.1)

y(t) ¼ H Pa(t)þPb(t)½ � ¼ P̂a(t)þ P̂b(t)

¼ 1

p
ln

t þ a

t � a

�
�
�

�
�
�þ ln

t þ b

t � b

�
�
�
�

�
�
�
�

� �

¼ 1

p
ln

(t þ b)(t þ a)

(t � b)(t � a)

�
�
�
�

�
�
�
�

(7:111)

Let us derive in a similar way the Hilbert transform of the ‘‘ramp’’

pulse shown in Figure 7.12b. We decompose this pulse into a sum

of one-sided square pulse and one-sided inverse triangle. The

summation of Equation 7.61 and No. 8 of Table 7.1 yields

H[ramp] ¼ H[Pb=2(t � b=2)]�H[1(t)tri(t)]

¼ 1

p
ln

t

t � b

�
�
�

�
�
�� (1� t=a) ln

t

t þ a

�
�
�
�

�
�
�
�
� 1

� �

(7:112)

7.9.1 Iteration

Iteration of the Hilbert transformation two times yields the

original signal with the reverse sign, and the iteration four

times restores the original signal u(t). In the Fourier frequency

domain the n-time iteration is translated to the n-time multipli-

cation by the operator �j sgn(v). We have (�j sgn(v))2¼�1,

(�j sgn(v))3¼ j sgn(v), and (�j sgn(v))4¼ 1. In analog or

digital signal processing, the Hilbert transform is produced

approximately and with a delay. The n-time iteration is imple-

mented using a series connection of Hilbert filters (see Section

7.22) and the time delay increases n-times.

u(t)

0.5

–b –a 0 a b
t

FIGURE 7.11 A trapezoidal pulse (see Table 7.1, #9.)

7-14 Transforms and Applications Handbook



TABLE 7.1 Selected Useful Hilbert Pairs

Number Name u(t) y(t)

1 sine sin (vt) �cos (vt)
2 cosine cos (vt) sin (vt)

3 Exponential harmonic e jvt �j sgn(v)e jvt

4 Square pulse
Q

a (t)
a 1

p
ln

t þ a

t � a

�
�
�

�
�
�

5 Bipolar pulse Pa(t) sgn(t)
1

p
ln j1� (a=t)2j

6 Double triangle tPa(t) sgn(t)
1

p
ln j1� (a=t)2j

7 Triangle 1� jt=aj; jtj � a
�1

p
ln

t � a

t þ a

�
�
�
�

�
�
�
�
þ t

a
ln

t2

t2 � a2

�
�
�
�

�
�
�
�

� �

tri(t) 0; jtj > a

8 One-sided triangle 1(t) tri(t)
1

p
(1� t=a) ln

t

t þ a

�
�
�
�

�
�
�
�þ 1

� �

9 Trapezoid pulse Waveformb �1

p

b

b� a
ln

(aþ t)(b� t)

(bþ t)(a� t)

�
�
�
�

�
�
�
�þ

t

b� a
ln

a2 � t2

b2 � t2

�
�
�
�

�
�
�
�þ ln

a� t

aþ t

�
�
�
�

�
�
�
�

� �

10 Cauchy pulse
a

a2 þ t2
; a > 0

t

a2 þ t2

11 Gaussian pulse e�pt2
2

ð1

0

e�pf 2 sin (vt)df

v ¼ 2pf

12 Parabolic pulse 1� jt=aj2; jtj � a
�1

p
[1� (t=a)2] ln

t � a

t þ a

�
�
�
�

�
�
�
��

2t

a

� �

0; jtj > a

13 Symmetric exponential e�ajtj 2

ð1

0

2a

a2 þ v2
sin (vt)df

or
�1

p
{ exp (�ajtj)E(�ajtj)� exp (ajtj)E(-ajtj)

where E(x) ¼
ð1

X

exp (� t)

t
dt

14 Antisymmetric exponential sgn(t)e�ajtj �2

ð1

0

2v

a2 þ v2
cos (vt)df

15 One-sided exponential 1(t)e�ajtj 2

ð1

0

a sin (vt)� v cos (vt)

a2 þ v2
df

16 sinc pulse
sin (at)

at

sin2 (at=2)

(at=2)
¼ 1� cos (at)

at

17 Video test pulse cos2 (pt=2a); jtj � a 2

ð1

0

2a2

4a2 � v2

sin (pv=2a)

v
sin (vt)df

0; jtj > a

18 Constant a zero

Hyperbolic functions: Approximation by summation of Cauchy signals (see Hilbert pairs 10 and 43)c

Number u(t) y(t)

19 tanh (t) ¼ 2
X1

h¼0

t

(hþ 0:5)2p2 þ t2
�2p

X1
h¼0

(hþ 0:5)

(hþ 0:5)2p2 þ t2

The part of finite energy of tanh(t) is

20 sgn(t)� tanh (t); pd(t)þ 2p
X1

h¼0

(hþ 0:5)

(hþ 0:5)2p2 þ t2

21 coth (t) ¼ 1

t
þ 2

X1
h¼1

t

(hp)2 þ t2
; �pd(t)þ 2p

X1
h¼1

h

(hp)2 þ t2

22 sech(t) ¼ �2p
X1

h¼0
(�1)(h�1) (hþ 0:5)

(hþ 0:5)2p2 þ t2
; �2

X1
h¼0

(�1)(h�1) t

(hþ 0:5)2p2 þ t2

23 cosech(t) ¼ 1

t
� 2

X1
h¼1

(�1)(h�1) t

(hp)2 þ t2
; �pd(t)þ 2p

X1
h¼1

(�1)(h�1) n

(hp)2 þ t2

(continued)
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TABLE 7.1 (continued) Selected Useful Hilbert Pairs

Number u(t) y(t)

Hyperbolic functions by inverse Fourier transformation (v¼ 2pf) u(t)y(t)

24 sgn(t)� tanh (at=2); Re a > 0; 2

ð1

0

2p

a sinh (pv=a)
� 2

v

� �

cos (vt)df

25 coth (at=2)� sgn(t); 2

ð1

0

2p

a
coth (pv=a� 2

v

� �

cos (vt)df

26 sech(at=2); 2

ð1

0

2p

a cosh (pv=2a)
sin (vt)df

27 cosech(at=2); �2
ð1

0

2p

a
tanh (pv=2a) cos (vt)df

28 sech2(at=2); 2

ð1

0

2pv

a sinh (pv=2a)
sin (vt)df

Delta distribution, 1=pt distribution, and its derivatives

29 d(t) 1=pt

30 1=pt �d(t)
31 d(1)(t) �1=pt2
32 1=pt2 d(1)(t)

33 d(2)(t) 2=pt3

34 1=pt3 �0:5d(2)(t)
35 d(3)(t) �6=pt4
36 1=pt4 (1=6)d(3)(t)

37 u(t)d(t) y(t) ¼ 1=ptð Þu(0)

Equality of convolutions

38 d(t) ¼ d(t) * d(t) d(t) ¼ �(1=pt)*(1=pt)
39 d(1)(t) ¼ d(1)(t) * d(t) d(1)(t) ¼ (1=pt2)*(1=pt)

40 d(2)(t) ¼ d(1)(t) * d(1)(t) d(2)(t) ¼ �(1=pt2)*(1=pt2)
41 d(3)(t) ¼ d(3)(t) * d(t) ¼ d(2)(t) * d(1)(t)

d(3)(t) ¼ (6=pt4)*(1=pt)
¼ (2=pt3)*(1=pt2)

Approximating functions to the above distributions

42

ð

d(a, t)dt ¼ 1

p
tan�1 (t=a);

ð

Q(a, t)dt ¼ ln (a2 þ t2)

2p

43 d(a, t) ¼ 1

p

a

a2 þ t2
; Q(a, t) ¼ 1

p

t

a2 þ t2

44 d(1)(a, t) ¼ 1

p

�2at
(a2 þ t2)2

; Q(1)(a, t) ¼ 1

p

a2 � t2

(a2 þ t2)2

45 d(2)(a, t) ¼ 1

p

6at2 � 2a2

(a2 þ t2)3
; Q(2)(a, t) ¼ 1

p

2t3 � 6at2

(a2 þ t2)3

46 d(3)(a, t) ¼ 1

p

24a3t � 24at2

(a2 þ t2)4
; Q(3)(a, t) ¼ 1

p

�6t2 þ 36a2t2 � 6a4

(a2 þ t2)4

Trigonometric functions

47
sin (at)

t

1� cos (at)

t

48
cos (at)

t
�pd(t)þ sin (at)

t

49
sin (at)

t2
�pad(t)þ 1� cos (at)

t2

50
cos (at)

t2
pd(1)(t)� a

t
þ sin (at)

t2

51
sin (at)

t3
pad(1)(t)� a2

2t
þ 1� cos (at)

t3

52
cos (at)

t3
�p

2
d(2)(t)þ a2p

2
d(t)� a

t2
þ sin (at)

t3

a See Figure 7.5.
b See Figure 7.11.
c Notice the infinite energy of the functions tanh(t), coth(t), and cosech(t).
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TABLE 7.2 Selected Useful Hilbert Pairs of Periodic Signals

Number Name up(t) yp(t)

1 Sampling sequence
X1

k¼�1 d(t � kT) 1

T

X1
k¼�1 cot [(p=T)(t � kT)]

2 Even square wave sgn[ cos (vt)] (2=p) ln j tan (vt=2þ p=4)j
v ¼ 2p=T

3 Odd square wave sgn[ sin (vt)] (2=p) ln j tan (vt=2)j
v ¼ 2p=T

4 Squared cosine cos2 (vt) 0.5 sin (2vt)

5 Squared sine sin2 (vt) �0.5 sin (2vt)

6 Cube cosine cos3 (vt)
3

4
sin (vt)þ 1

4
sin (3vt)

7 Cube sine sin3 (vt) � 3

4
cos (vt)þ 1

4
cos (3vt)

8 cos4 (vt)
1

2
sin (2vt)þ 1

8
sin (4vt)

9 sin4 (vt)
�1
2

sin (2vt)þ 1

8
sin (4vt)

10 e�jvt �j sgn(v)e�jvt

11 Product cos (atþw) cos (btþc) cos(atþw) sin (btþc)

0 < a < b;

w, c are constants

12 Fourier series U0 þ
Xn

k¼1
Uk cos (kvt þ fk)

Xn

k¼1
Uk sin (kvt þ fk)

13 Any periodic function uT (t)*
X1

k¼�1 d(t � kT)ia uT (t)*
1

T

X1
k¼�1 cot [(p=T)(t � kT)]

a uT(t) is the generating function (see Equation 7.96).

TABLE 7.3 Properties of the Hilbert Transformation

Number Name Original or Inverse Hilbert Transform Hilbert Transform

1 Notations u(t) or H�1[y] y(t) or û(t) or H[u]

2 Time domain definitions
u(t) ¼ 1

p

ð1

�1

y(h)

h� t
dh

u(t) ¼ �1

pt
*y(t)

8

>

>

<

>

>

:

or
y(t) ¼ �1

p

ð1

�1

u(h)

h� t
dh

y(t) ¼ 1

pt
*u(t)

3 Change of symmetry u(t)¼ u1e(t)þ u2o(t); y(t)¼ y1o(t)þ y2e(t)

4 Fourier spectra u(t)()F U(v) ¼ Ue(v)þ j Uo(v); y(t)()F V(v) ¼ Ve(v)þ jVo(v)

U(v)¼ j sgn(v)V(v); V(v)¼�j sgn(v)U(v)

For even functions the Hilbert

transform is odd:

Ue(v) ¼ 2
Ð1
0 u1e(t) cos (vt)dt yo(t) ¼ 2

Ð1
0 Ue(v) sin (vt)df

For odd functions the Hilbert

transform is even:

Uo(v) ¼ �2
Ð1
0 u2o(t) sin (vt)dt ye(t) ¼ 2

Ð1
0 Uo(v) cos (vt)df

5 Linearity au1(t)þ bu2(t) ay1(t)þ by2(t)

6 Scaling and time reversal u(at); a> 0 y(at)

u(�at) �y(�at)

7 Time shift u(t� a) y(t� a)

8 Scaling and time shift u(bt� a) y(bt� a)

Fourier image

9 Iteration H[u(t)]¼ y(t) �j sgn(v)U(v)

H[H[u]]¼�u(t) [�j sgn(v)]2 U(v)

H[H[H[u]]]¼�y(t) [�j sgn(v)]3 U(v)

H[H[H[Hu]]]¼ u(t) [�j sgn(v)]4 U(v)

10 Time derivatives First option

_u(t) ¼ �1

pt * _y(t) _y(t) ¼ 1
pt * _u(t)

Second option

_u(t) ¼ d

dt
(�1=pt)

� �

* y(t) _y(t) ¼ d

dt
(1=pt)

� �

* u(t)

(continued)

Hilbert Transforms 7-17



7.9.2 Autoconvolution and Energy Equality

The energy of a real signal u(t)()F U(v) is given by the integrals

Eu ¼
ð

1

�1

u2(t)dt ¼
ð

1

�1

jU(v)j2df ; v ¼ 2pf (7:113)

The above equality of the energy defined in the time domain and

Fourier frequency domain is called Parseval’s theorem. The

squared magnitude of the Fourier image of the Hilbert transform

n(t) ¼ H[u(t)]()F V(v) ¼ �j sgn(v)U(v) is

V vð Þj j2¼ �j sgn vð ÞU vð Þj j2¼ U vð Þj j2 (7:114)

that is, the energy of the Hilbert transform is given by the integrals

Ev ¼
ð

1

�1

y2(t)dt ¼
ð

1

�1

jU(v)j2df (7:115)

Therefore, the energies Eu and Ev are equal. This property of

a pair of Hilbert transforms may be used to check the algorithms

of numerical evaluation of Hilbert transforms. A large discrep-

ancy DE¼Ev� Eu indicates a fault in the program. A small

discrepancy may be used as a measure of the accuracy. Notice

that the Hilbert transformation cancels the mean value of the

signal. Therefore, the energy (or the power) of this term is rejected.

The signals forming a Hilbert pair are orthogonal; that is, the
mutual energy defined by the integral

ð

1

�1

u(t)y(t)dt ¼ 0 (7:116)

TABLE 7.3 (continued) Properties of the Hilbert Transformation

Number Name Original or Inverse Hilbert Transform Hilbert Transform

11 Convolution u1(t) * u2(t)¼�y1(t) * y2(t) u1(t) * y2(t)¼ y1(t) * u2(t)

12 Autoconvolution equality
Ð

u(t)u(t � t)dt ¼ �
Ð

y(t)y(t � t)dt
for t¼ 0 energy equality

13 Multiplication by t tu(t) ty(t)�
Ð1
�1 u(t)dt

14 Multiplication of signals

with nonoverlapping spectra

u1(t) (low pass signal) u2(t) (high pass signals)

u1(t)u2(t) u1(t)y2(t)

15 Analytic signal c(t)¼ u(t)þ jH[u(t)] H[c(t)]¼�jc(t)
16 Product of analytic signals c(t)¼c1(t)c2(t) H[c(t)]¼c1(t)H[c2(t)]¼H[c1(t)]c2(t)

17 Nonlinear transformations u(x) y(x)

17a x ¼ c

bt þ a
u1(t) ¼ u

c

bt þ a

� �

y1(t) ¼ y
c

bt þ a

� �

� 1

p
P

ð1

�1

u(t)

t
dt

17b x ¼ aþ b

t
u1(t) ¼ u aþ b

t

� �

y1(t) ¼
b

a
y aþ b

t

� �

� y(a)

� �

Notice that the nonlinear transformation may change the signal u(t) of finite energy to a signal u1(t) of infinite energy.
P is the Cauchy principal value.

18 Asymptotic value as t )1 for even functions of finite support:

ue(t)¼ ue(�t) limt)1 jyo(t)j ¼
1

pt

ð

S
ue(t)dt

a

Note: e, even; o, odd.
a S is support of ue(t).

a b t0

0.5

1
u(t)

–a–b
(a)

(b)

b t

t

t

u(t)

1

b

b

0

0

a

a

–1

FIGURE 7.12 (a) A pulse given by the summation of two square pulses

Pa(t)þPb(t) and (b)The ‘‘ramp’’pulse and its decomposition in two pulses.
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equals zero. The autoconvolution of the signal u(t) is defined by

the integral

ru�u(t) ¼ u(t) * u(t) ¼
ð

1

�1

u(t)u(t � t)dt (7:117)

The autoconvolution equality theorem for a Hilbert pair of

signals has the form

ru�u(t) ¼ �rv�v(t) (7:118)

that is, the autoconvolutions of u(t) and v(t) have the same

waveform and differ only by sign.

Proof Let us apply the convolution to multiplication theorem of

Fourier analysis to both sides of the equality (Equation 7.118).

We get the Fourier pairs

ru�u(t) ¼ u(t) * u(t)()
F

U2(v) (7:119)

ry�y(t) ¼ y(t) * y(t)()
F

[� j sgn(v)U(v)]2

¼ �U2(v) (7:120)

We have shown that the functions ru�u(t) and �rv�v(t) have the
same waveforms because they have equal Fourier transforms.

Examples

1. It is really amazing to observe the result of calculation of

the autoconvolutions of some Hilbert pairs. Consider the

Hilbert pair d(t)()H 1

pt
. Because the autoconvolution of

the delta pulse is d(t)¼ d(t) * d(t) (see Section 7.6), the

autoconvolution equality yields the surprising result

d(t) ¼ � 1

pt
*
1

pt
(7:121)

that is, the autoconvolution of the function (distribution)
1

pt
of infinite support yields the delta pulse of a point

support. Figure 7.13 shows the result of a numerical

approximate calculation of the autoconvolution (Equa-

tion 7.121).

2. Consider the square pulse and its Hilbert transform

Pa(t)()
H 1

p
ln

t þ a

t � a

�
�
�

�
�
� (7:122)

The waveforms are shown in Figure 7.5. The autocon-

volution of the square pulse is a tri(t) (triangle) pulse of

doubled support (Figure 7.14a). Again, the autoconvo-

lution of the logarithmic function of infinite support

defined by Equation 7.122, which has infinite peaks at

points jtj ¼ a, yields the triangle pulse of finite support.

Indeed, we have

Sample at t = 0; 50.64

—1 10

Floor samples ~ 5 . 10–3

FIGURE 7.13 The discrete delta pulse obtained by numerical comput-

ing of the autoconvolution �1=(pt) * 1=(pt).

X (t)

X (t) * X (t)

0.5

2a 2a

–a

–a

(a)
0 2a–2a

–a
a t

t –2a 0 2a t

t

1

X (t)ˆ

–X (t) * X (t)ˆ ˆ

a

(b)

0.8

0.6

0.4

0.2

–3 –1 1 3 t0

1

ˆ ˆ–X(t)*X(t)

ˆ 1n t + 1
t – 1

1
2π

X(t) =

FIGURE 7.14 (a) An example of the autoconvolution equality: (left) the square pulse and its autoconvolution; (right) the Hilbert transform of the

square pulse and its autoconvolution. (b) The result of numerical computing of the autoconvolution of the Hilbert transform.
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tri(t) ¼ � 1

p2
ln

t þ a

t � a

�
�
�

�
�
� * ln

t þ a

t � a

�
�
�

�
�
�

n o

(7:123)

Figure 7.14b shows the result of a numerical evaluation

of the above autoconvolution.

7.10 Differentiation of Hilbert Pairs

Consider a Hilbert pair u(t)()H n(t). Differentiation of both

sides gives a new Hilbert pair:

_u(t)()H _y(t) (7:124)

Therefore, differentiation is a useful tool for creating new Hilbert

pairs. Obviously, the operation can be repeated to get the next

Hilbert pairs:

dnu

dtn
()H dny

dtn
(7:125)

Because the signal c(t)¼ u(t)þ jv(t) is an analytic function, in

principle all of its derivatives exist.39

Consider the convolution notation of the Hilbert transform-

ations:

u(t) ¼ �1
pt * y(t)()

H
y(t) ¼ 1

pt *
u(t) (7:126)

The derivative of a convolution has two options: the convolution
of the derivative of the first term with the second term, or the

convolution of the first term with the derivative of the second

term; i.e., the first option has the form

_u(t) ¼ d

dt
(t=pt) * y(t)()

H
_y(t) ¼ d

dt
(t=pt) * u(t)

¼ [1=(pt2)] * y(t) ¼ [�1=(pt2)] * u(t) (7:127)

and the second option is

_u(t) ¼ � 1

pt *
_y(t)()H _y(t) ¼ 1

pt *
_u(t) (7:128)

Proof The Hilbert integrals (Equations 7.1 and 7.2) are

y(t) ¼ �1
p

P

ð1

�1

u(h)

h� t
dh; u(t) ¼ 1

p
P

ð1

�1

y(h)

h� t
dh (7:129)

The differentiation of these integrals with respect to t yields

_y(t) ¼ 1

p
P

ð1

�1

u(h)

(h� t)2
dh;

_u(t) ¼ �1
p

P

ð1

�1

y(h)

(h� t)2
dh

(7:130)

These integrals have in the convolution notation the form (Equa-

tion 7.127). The change of variable y¼h� t yields the following
form of the Hilbert integrals:

y(t) ¼ �1
p

P

ð1

�1

u(y þ t)

y
dy;

u(t) ¼ 1

p
P

ð1

�1

y(y þ t)

y
dy

(7:131)

and the differentiation yields

_y(t) ¼ �1
p

P

ð1

�1

_u(y þ t)

y
dy;

_u(t) ¼ 1

p
P

ð1

�1

_y(y þ t)

y
dy

(7:132)

These integrals have in the convolution notation the form (Equa-

tion 7.128).

Very illustrative is the same proof in terms of the frequency

domain representation:

y(t) ¼ 1

pt *
u(t)()F �j sgn(v)U(v) (7:133)

Time domain differentiation corresponds to the multiplication of

the Fourier image by the differentiation operator jv. Therefore,

_y(t)()F �jv[� j sgn(v)U(v)] (7:134)

However, the operator jv may be arbitrarily assigned to the first

or second factor of the product in parentheses. In the time

domain, this arbitrary choice corresponds to the two options of

the convolution.

Example 1

Consider the Hilbert pair

d(t)()H 1

pt
(7:135)

The derivatives are

_d(t)()H d

dt
(1=pt) ¼ � 1

pt2
(7:136)

The derivative _d(t) and, hence, the function d=dt(1=p t) are

defined in the distribution sense (notation FP 1=(p t2), where

FP denotes ‘‘finite part of’’).35 The energy of these signals is

infinite.
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Example 2

Consider the Hilbert pair

u(t) ¼ 1

1þ t2
()H t

1þ t2
¼ y(t) (7:137)

Let us differentiate n-times both sides of this equation. In this

way we find an infinite series of Hilbert transform pairs as

shown in Table 7.4. The derivations are simpler by using the

differentiation of the analytic signal

c(t) ¼ u(t)þ jy(t) ¼ 1

1� jt
(7:138)

and determining the real and imaginary parts of the deriva-

tives in the form of Hilbert pairs.

The waveforms of the first four terms of the Hilbert pairs of

Table 7.4 are shown in Figure 7.15a and b. The energy was

normalized to unity by division of the amplitudes by the SQR

of energy. The Cauchy pulse may serve as the function

approximating the delta pulse (see Equation 7.76). Therefore,

the derivatives of the Cauchy–Hilbert pair may serve as the

approximating functions defining the derivatives of the com-

plex delta distribution. For example,

_d(t) ¼ lim
a)0

1

p

�2at
(a2 þ t2)2

� �

()H _Q(t)

¼ lim
a)0

1

p

a2 � t2

(a2 � t2)2

� �

(7:139)

(see Table 7.1, 42–46).

7.11 Differentiation and Multiplication
by t: Hilbert Transforms of Hermite
Polynomials and Functions

Consider the Gaussian Fourier pair:

e�t
2()F p0:5e�p

2f 2 (7:140)

The successive differentiation of the Gaussian pulse exp(�t2)
generates the nth order Hermite polynomial (see Table 7.5).

TABLE 7.4 Hilbert Transforms of the Derivatives of the Cauchy Signal u(t)¼ 1=(1þ t2)

n Signal u(n) Hilbert Transform y(n) Analytic Signal c(n) Energy

0 1

1þ t2
t

1þ t2
1

1� jt

p

2

1
�2t

(1þ t2)2
1� t2

(1þ t2)2
j

(1� jt)2
p

4

2 2
3t2 � 1

(1þ t2)3
2

t3 � 3t

(1þ t2)3
�2

(1� jt)3
3p

4

3 �6 4t3 � 4t

(1þ t2)4
�6 t

4 � 6t2 þ 1

(1þ t2)4
�6j

(1� jt)4
45

8
p

4 24
5t4 � 10t2 þ 1

(1þ t2)5
24

t5 � 10t3 þ 5t

(1þ t2)5
24

(1� jt)5
315

4
p

n
(� j)nn!

(1� jt)nþ1
a

a Energy ¼
ð1

0

n!dt

(1þ t2)nþ1
¼ (n!)21:35 . . . (2n� 1)

2:46 . . . 2n

p

2

1

–3 –2

–1

0

1 2

t

u(n) (t)

u(t) =
1

1 + t2

u

–1

(a) (b)

1

1

–1 0

υ

u

υ

υ

u

υ(n) (t)

υ(t)=
t

1 + t2

FIGURE 7.15 (a) The waveforms of the Cauchy pulse and of its derivatives. (b) The waveforms of the corresponding Hilbert transforms.
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The Hermite polynomials are defined by the formula (see also

Chapter 1)

Hn(t) ¼ (�1)net2 d
n

dtn
e�t

2

(7:141a)

n ¼ 0, 1, 2, . . . ; t 2 �1

(Roman H is used to denote the Hermite polynomial in distinc-

tion from the italic H for the Hilbert transform). The Hermite

polynomials are also defined by the recursion formula

Hn(t) ¼ 2tHn�1(t)� 2(n� 1)Hn�2(t); n ¼ 1, 2, . . . (7:141b)

The first terms of the Hermite polynomials weighted by the

generating function exp(�t2) and their Hilbert transforms are

listed in Table 7.5. The Hilbert transform of the first term was

calculated using the frequency domain method represented by

the Hilbert pair (see Table 7.1, the Hilbert transform of the

Gaussian pulse).

e�t2 ()H 2p0:5

ð

1

0

e�p2f 2 sin (vt)df ; v ¼ 2pf (7:142)

The next terms are obtained by calculating the successive time

derivatives of both sides of this Hilbert pair. For example, the

second term is

2te�t2 ()H �2p0:5

ð

1

0

ve�p2f 2 cos (vt)df (7:143)

The value of the energy of successive terms is listed in the last

column of Table 7.5. The waveforms are shown in Figure 7.16.

Each Hilbert pair in Table 7.5 is a pair of orthogonal functions.

TABLE 7.5 Weighted Hermite Polynomials and Their Hilbert Transforms

Hermite Polynomial Hilbert Transform Energy

n Hnu H(Hnu) E

0 (1)u 2
ffiffiffiffi
p

p Ð1
0 exp(�p2f 2) sin (vt)df

ffiffiffiffiffiffiffiffi

p=2
p

1 (2t)u �2
ffiffiffiffi
p

p Ð1
0 v exp(�p2f 2) cos (vt)df

ffiffiffiffiffiffiffiffi

p=2
p

2 (4t2� 2)u �2
ffiffiffiffi
p

p Ð1
0 v2 exp(�p2f 2) sin (vt)df 3

ffiffiffiffiffiffiffiffi

p=2
p

3 (8t3� 12t)u 2
ffiffiffiffi
p

p Ð1
0 v3 exp(�p2f 2) cos (vt)df 15

ffiffiffiffiffiffiffiffi

p=2
p

4 (16t4� 48t2þ 12)u 2
ffiffiffiffi
p

p Ð1
0 v4 exp(�p2f 2) sin (vt)df 105

ffiffiffiffiffiffiffiffi

p=2
p

5 (32t5� 160t3þ 120t)u �2
ffiffiffiffi
p

p Ð1
0 v5 exp(�p2f 2) cos (vt)df 945

ffiffiffiffiffiffiffiffi

p=2
p

n Hnu¼ (�1)n[2tHn�1(t)� 2(n� 1)Hn�2(t) (�1)n2
ffiffiffiffi
p

p Ð1
0 vn exp(�p2f 2) sin (vt þ np=2)df

Notes: Notation: u¼ exp(�t2).
Energy ¼

Ð1
�1 u2H2

ndt ¼
Ð1
�1 [H(uHn)]

2dt ¼ 1� 3� 5� � � � � j2n� 1j �
ffiffiffiffiffiffiffiffi

p=2
p

.

(a)

u (t)

u (t)

u (t) = e–t
2

u (t)

–1

–3 –1 0 1

1

2 3 t

–2 –1

–1

1

2

H [u]

0 1

1

2 3 4 t

H [u]

H [u]

υ(t)= H  e–t 2

(b)

FIGURE 7.16 (a) The waveforms of Hermite polynomials. (b) The waveforms of the corresponding Hilbert transforms.
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However, the weighted Hermite polynomials do not form a set of

orthogonal functions; that is, the integral of the product

ð

1

�1

e�2t
2

Hn(t)Hm(t)dt 6¼ 0 for n 6¼ m (7:144)

differs from zero for n 6¼ m. The Hermite polynomials can be

orthogonalized by replacing the weighting function exp(�t2) by
exp(�2t2) because

ð

1

�1

e�t
2

Hn(t)Hm(t) ¼
0 for n 6¼ m

2n n!p0:5 for n ¼ m

�

(7:145)

Therefore, the functions denoted by small italic h(t)

hn(t) ¼ (2nn!)�0:5p�0:25e�t
2=2Hn(t); n ¼ 0, 1 . . . (7:146)

are forming an orthonormal (energy is equal unity) set of func-

tions called Hermite functions. Let us derive the Hilbert trans-

forms of the Hermite functions. Combining the Equations 7.141

and 7.145 we get the following recurrency:

hn(t) ¼
2(n� 1)!

n

� �0:5

thn�1(t)

� (n� 1)
(n� 2)!

n!

� �0:5

hn�2(t) (7:147)

The Hilbert transforms H[hn(t)] may be derived using the multi-

plication by t theorem (see Table 7.3):

tu(t)()H ty(t)� 1

p

ð1

1

u(t)d t (7:148)

Proof The formula 7.1 yields

H[tu(t)] ¼ � 1

p

ð1

�1

hu(h)

h� t
dh (7:149)

The insertion of the new variable y¼h� t gives

H[tu(t)] ¼ � 1

p

ð1

�1

(y þ t)u(y þ t)

y
dy

¼ � 1

p

ð1

�1

tu(y þ t)

y
dy � 1

p

ð1

�1

u(y þ t)dy

¼ t H[u(t)]� 1

p

ð1

�1

u(t)dt (7:150)

This is exactly the relation (Equation 7.148). The second term in

this equation equals zero for odd functions u(t). The first term

in the recurrent formula 7.147 has the form of the product th(t)
enabling the application of Equation 7.148. Therefore, the Hilbert

transforms of the Hermite functions hn(t) have the form

H[hn(t)] ¼ yn(t) ¼
2(n� 1)!

n!

� �0:5

tyn�1(t)�
1

p

ð1

�1

un�1(t)dt

2

4

3

5

� (n� 1)
(n� 2)!

n!

� �0:5

yn�2(t) (7:151)

To derive the Hilbert transforms of Hermite functions, we have

to derive by any method the first term v0(t) and then apply the

above recurrency. Let us use the frequency domain method.

The function h0(t) and its Fourier image are

h0(t) ¼ p�0:25 exp (�t2=2)()F (4p)0:25 exp �2(pf )2

 �

(7:152)

By using Equation 7.66 we obtain

H h0(t)½ � ¼ y0(t) ¼ 2(4p)0:25
ð1

0

e�2p2f 2 sin (vt)df (7:153)

Introducing the abbreviated notation (v¼ 2pf )

b ¼ p0:25, g(t) ¼
ð1

0

e�2p2f 2 sin (vt)df (7:154)

we get the form of Equation 7.152 used in Table 7.6. The next

terms y1, y2, . . . in this table are derived by using Equation 7.150.

They are listed using two notations: the recurrent and non-

recurrent. The waveforms of the first four terms of the Hermite

functions hn(t) and their Hilbert transforms are shown in

Figure 7.17a and b.

7.12 Integration of Analytic Signals

Consider the analytic signal defined by Equation 7.28 as a com-

plex function of a real variable t in the form

c(t) ¼ u(t)þ j v(t) (7:155)

This function is integrable in the Riemann sense in the interval

[a,b] if and only if the functions u(t) and v(t) are integrable; that is,

F(t) ¼
ðt

a

c(t)dt ¼
ðt

a
a�t�b

u(t)dt þ j

ðt

a

y(t)dt (7:156)
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TABLE 7.6 Hilbert Transforms of Orthonormal Hermite Functions (Energy¼ 1)

Hermite Functions hn(t) Hilbert Transforms yn(t)

Recurrent notation

h0 ¼ a y0 ¼ 2
ffiffiffi
2
p

bg(t)

h1 ¼
ffiffiffi
2
p

th0 y1 ¼
ffiffiffi

2
p

ty0
�

ffiffiffi
2
p

b

p

� �

h2 ¼ th1 �
ffiffiffiffiffiffiffi

1=2
p

h0 y2 ¼ ty1 �
ffiffiffiffiffiffiffi

1=2
p

y0

h3 ¼
ffiffiffiffiffiffiffi

2=3
p

[th2 � h1] y3 ¼
ffiffiffiffiffiffiffi

2=3
p

ty2 �
b

p
� y1

� �

h4 ¼
ffiffiffiffiffiffiffi

1=2
p

th3 �
ffiffiffiffiffiffiffi

3=4
p

h2 y4 ¼
ffiffiffiffiffiffiffi

1=2
p

ty3 �
ffiffiffiffiffiffiffi

3=4
p

y2

h5 ¼
ffiffiffiffiffiffiffi

2=5
p

th4 �
ffiffiffiffiffiffiffi

4=5
p

h3 y5 ¼
ffiffiffiffiffiffiffi

2=5
p

ty4 �
ffiffiffi
3
p

b

2p

� �

�
ffiffiffiffiffiffiffi

4=5
p

y3

hn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2(n�1)!

n!

q

thn�1 þ (n� 1)
ffiffiffiffiffiffiffiffiffiffi
(n�2)!
n!

q

hn�2 yn ¼
ffiffiffiffiffiffiffiffiffiffiffi
2(n�1)!

n!

q

tyn�1 þ� 1
p

Ð
hn�1(t)dt


 �
� (n� 1)

ffiffiffiffiffiffiffiffiffiffi
(n�2)!
n!

q

yn�2

Nonrecurrent notation

h0 ¼ a1 2
ffiffiffi
2
p

bg(t)

h1 ¼
ffiffiffi
2
p

at 2b[2 tg(t)� p�1]

h2 ¼
a
ffiffiffi
8
p (4t2 � 2) 2b [(2t2 � 1) g(t)� tp�1]

h3 ¼
a
ffiffiffiffiffi
48
p (8t3 � 12t)

ffiffiffiffiffiffiffi

8=3
p

b (2t3 � 3t)g(t)� t2

p
þ 1

2p

� �

h4 ¼
a
ffiffiffiffiffiffiffi
384
p (16t4 � 48t2 þ 12)

ffiffiffiffiffiffiffi

4=3
p

b (2t4 � 6t2 þ 1:5)g(t)� t3

p
þ 2r

p

� �

h5 ¼
a
ffiffiffiffiffiffiffi
384
p

0
(32t5 � 160t3 þ 120t)

ffiffiffiffiffiffiffiffiffiffi

8=15
p

b (2t5 � 10t3 þ 7:5t)g(t)þ� (t4 � 4t2)þ 1:75

p

� �

hn(t) ¼
a
ffiffiffiffiffiffiffiffiffi

2nn!
p Hn(t), Hn(t) ¼ 2tHn�1(t)� 2(n� 1)Hn�2(t)

n 0 1 2 3 4 5 . . .
Ð1
�1 hn(t)dt

ffiffiffi
2
p

b 0 b 0
ffiffiffiffiffiffiffi

3=4
p

b 0 . . .

Note: Notations: h0(t), h1(t), . . .) h0, h1, . . . ; y0(t), y1(t), . . .) y0, y, . . .

g(t) ¼
Ð1
0 e�2p

2 f 2 sin (2pf t) df ; a ¼ p�0:25e�t
2=2; b ¼ p0:25

–2 –1

–1

0

1

2

1

hn (t)

h0 h1
h2 h3 h4 h5

3 t

(a)

FIGURE 7.17 (a) Waveforms of Hermite functions.
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Let us define

F(t) ¼ U(t)þ jV(t) (7:157)

The functions U(t) and V(t) are forming a Hilbert pair only if

F(z) is an analytic function of a complex variable z¼ tþ jt.
Therefore, let us give without a proof the following theorem:

If the function c(z)¼ u(t, t)þ jv(t, t) is analytic in a simply

connected domain D, then the function

F(z) ¼
ð

z

z0

c(z)dz (7:158)

is also analytic, and the derivative F0(z)¼c(z). The integral

(Equation 7.158) is defined as a path integral in the plane (t, t),
and in the domain D the integral depends on z and z0 but not on
the particular path G connecting them (Figure 7.18).39

If function 7.155 is continuous in the interval [a, b], then the

function defined by the integral

F(t) ¼
ð

t

a

c(t)dt; a � t � b (7:159)

is called the primary function, or antiderivative of c(t), and has

in the interval [a,b] a continuous derivative F0(t)¼c(t), the
relation holds

ð

b

a

c(t)dt ¼ F(t)jba¼ F(b)�F(a) (7:160)

Example

The function ejt has in the interval (�1,1) the primary

function ejt=jþ c, where c is any complex constant. We have

ð

p=2

0

e jtdt ¼ e jt

j

�
�
�
�

p=2

a

¼ ep j=2 � 1

j
¼ 1þ j

If the analytic function has a representation in the form of a

power series

c(z) ¼
X1

n¼0

dn(z � z0)
n (7:161)

–3–4–5 –1–2

–1

0 1 432

1
H [hn(t)]

5 t

H[h0(t)]

H[h2(t)]

H[h4(t)]

(b)

FIGURE 7.17 (continued) (b) Waveforms of the corresponding Hermite transforms.

t

j τ

Г1

Г3Г2

z1

z0

FIGURE 7.18 Passes of integration in the complex plane (t, jt).
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its integral must have a power series in the form

F(z) ¼ aþ
X

1

n¼0

dn

nþ 1
(z � z0)

nþ1 (7:162)

This means that the power series representation can be inte-

grated term by term.

Integration in the time domain can be converted by using

the Fourier transforms into integration in the frequency

domain. For instance, the function u(t) can be integrated

using the Fourier pairs

u(t)()F U(v) (7:163)

ð

t

�1

u(t)dt()F U(v)
d(f )

2
þ 1

jv

� �

(7:164)

v ¼ 2pf

The term [d( f )=2] U(v) is equal to (1=2) U(0) and the term 1=jv
is the well-known integration operator. The same algorithm

may be used to integrate the Hilbert transform v(t).

Example

Consider the analytic function of the complex variable z¼ tþ jt

c(z) ¼ 1

p

1

a� jz
¼ 1

p

1

aþ t� jt
(7:165)

where a is a real constant (a> 0). We get

c(z) ¼ c(t, t) ¼ u(t, t)þ jv(t, t) (7:166)

where

u(t, t) ¼ 1

p

aþ t

(aþ t)2 þ t2
(7:167)

and

y(t, t) ¼ 1

p

t

(aþ t)2 þ t2
(7:168)

Let us integrate the function (Equation 7.165) in the interval

[�a, t] where a> 0 is a real constant. Hence, we find

F(z) ¼
ðt

�a

1

p

dz

a� jz
¼ j

p
Ln(a� jz)

�
�
�
�

t

�a

¼ j

p
Ln(aþ t� jt)

�
�
�
�

t

�a
(7:169)

The insertion of the limits of integration and change of coord-

inates from rectangular to polar yields

F(t, t) ¼ 1

p
tan�1

t

aþ t

� �

þ tan�1
a

aþ t

� �� �

þ j

2p
Ln

(aþ t)2 þ t2

(aþ t)2 þ a2

� �

(7:170)

Because arg(a� jz) is only determined to within a constant

multiple of 2p, the function (1=p) Ln(a� jz) is not single

valued (Notation Ln instead of ln). They prevent any winding

of the integration path around z¼�ja, let us make a cut

extending from the point z¼�ja to infinity. Then F(z) is

analytic in the remaining part of the z-plane and satisfies the

Cauchy–Riemann equation (see also Appendix A).

Example

Consider a signal represented by the product:

u(t) ¼ sgn(t)Pa(t) (7:171)

where

Pa(t) is defined by Equation 7.58

sgn(t) is defined by Equation 7.11

We have the Fourier pair

0:5 sgn(t)Pa(t)()
F 1� cos (va)

jv
(7:172)

The above Fourier spectrum is easy to derive by decomposing

u(t) into right-sided and reverse sign left-sided square pulses

and adding the spectra of these pulses. In a similar way

we can derive the Hilbert transform by adding the two Hilbert

transforms defined by Equation 7.61. The resulting Hilbert

pair is

0:5 sgn(t)Pa(t)()
H 1

2p
ln

t2

t2 � a2

�
�
�
�

�
�
�
� (7:173)

Let us integrate the signal u(t) by frequency domain integra-

tion. We get the spectrum of the primary function using the

operator 1=jv:

Up(v) ¼
1

jv

1� cos (va)

jv
¼ �1þ cos (va)

v2
(7:174)

The primary function of u(t) is the inverse Fourier transform of

Equation 7.174 and has the form of a reverse-signed triangle

pulse.

�a

2
tri(t)()F �1þ cos (va)

v2
(7:175)
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The signal tri(t) is defined in Table 7.1 and its Hilbert transform is

�a

2
tri(t)()H 1

2p
a ln

t � a

t þ a

�
�
�
�

�
�
�
�
þ ln

t2

t2 � a2

�
�
�
�

�
�
�
�

� �

(7:176)

7.13 Multiplication of Signals
with Nonoverlapping Spectra

Consider a signal of the form of the product

u(t) ¼ f (t) g(t) (7:177)

where

f (t) is a low-pass signal
g(t) a high-pass signal

The Fourier spectra of these signals do not overlap; that is, if

f (t)()F F(v) (7:178)

g(t)()F G(v) (7:179)

then (v¼ 2pf)

jF( f )j ¼ 0 for j f j > W (7:180)

jG( f )j ¼ 0 for j f j < W (7:181)

as shown in Figure 7.19. In terms of Fourier methods, the Hilbert

transform of the product u(t)¼ f (t)g(t) may be derived using

the multiplication-convolution theorem of the form (see also

Chapter 2)

f (t)g(t)()F
ð1

�1

F( f � u)G(u)du (7:182)

The multiplication of the spectrum by �j sgn( f ) (see Equation

7.12) yields the spectrum of the Hilbert transform

H[f (t)g(t)]()F j sgn( f )

ð1

�1

F( f � u)G(u)du (7:183)

However, the product f (t)H[g(t)] and its Fourier transform are

f (t)H[g(t)]()F
ð1

�1

F( f � u)[j sgn(u)G(u)]du (7:184)

One can show4 that the right-hand sides of Equations 7.183 and

7.184 are identical. Therefore, the left-hand sides are identical

too, and

H[f (t)g(t)] ¼ f (t)H[g(t)] (7:185)

This equation presents Bedrosian’s theorem: Only the high-pass

signal in the product of low-pass and high-pass signals gets

Hilbert transformed.4

Example

Consider a signal in the form of the amplitude-modulated

harmonic function:

u(t) ¼ A(t) cos (Vt þF); V ¼ 2pF (7:186)

A(t)()F CA( f ) (7:187)

and the magnitude CA( f ) is low-pass limited:

jCA( f )j ¼ 0 for f 	 F (7:188)

By using Bedrosian’s theorem, we get

v(t) ¼ H[u(t)] ¼ A(t) sin(V t þF) (7:189)

Therefore, the amplitude-modulated signal (Equation 7.186) is

a real part of the analytic signal:

c(t) ¼ A(t) e j(VtþF) (7:190)

and has a geometrical representation in the form of a phasor

of instantaneous amplitude A(t) and rotating with a constant

regular velocity V. Bedrosian’s theorem was extended by

Nuttal and Bedrosian25 to include ‘‘frequency-translated’’ ana-

lytic signals. The condition, which applies to vanishing spectra

at negative frequencies, can be applied more generally to

signals whose Fourier spectra satisfy the condition

F(v) ¼ F[c1(t)] ¼ 0, v < �a

G(v) ¼ F[c2(t)] ¼ 0, v > a
(7:191)

where a is an arbitrary positive constant. The extension of

Bedrosian’s theorem for multidimensional signals is given in

Section 7.23.

–W 0 W

|F( f )| |G( f )|

f

FIGURE 7.19 Nonoverlapping Fourier spectra of two signals.
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7.14 Multiplication of Analytic Signals

TheHilbert transform of the analytic signal is given by the formula

H[c(t)] ¼ H[u(t)þ jH[u(t)]] ¼ H[u(t)]� ju(t)
¼ �jc(t) (7:192)

where the formula H[H[u(t)]]¼�u(t) (iteration) (see Table 7.3)
has been applied. The Hilbert transform of the product of two

analytic signals is given by the formula

H[c1(t) c2(t)] ¼ c1(t)H[c2(t)] ¼ c2(t)H[c1(t)] (7:193)

that is, the Hilbert transformation should be applied to one term
of the product only (to the first or the second).

Proof The product of two analytic functions is an analytic

function.39 Therefore, if

c(t) ¼ c1(t) c2(t) (7:194)

where c1(t) and c2(t) are analytic signals, then using Equation

7.192, we get

H[c(t)] ¼ �jc(t) ¼ �jc1(t) c2(t) (7:195)

However, the operator �j may be assigned either to c1(t) or

c2(t). The application of Equation 7.193 yields two options:

H[c(t)] ¼ H[c1(t)]c2(t); H[c] ¼ c1(t)H[c2(t)] (7:196)

Let us apply Equations 7.186 and 7.190 to find the Hilbert

transforms of the nth power of the analytic signal. We get

H[c2(t)] ¼ c(t)H[c(t)] ¼ �jc2(t) (7:197)

H[cn(t)] ¼ cn�1(t)H[c(t)] ¼ �jcn(t) (7:198)

Example

Let us find the Hilbert transform of

c2(t) ¼ (1� jt)�2 (7:199)

The application of Equation 7.192 gives

H[c(t)] ¼ �j(1� jt)�1 (7:200)

and Equation 7.197 yields

H[c2(t)] ¼ (1� jt)�1 [� j(1� jt)�1] ¼ �j(1� jt)�2

Equation 7.192 has a generalized form given by the formula

H[c(at)] ¼ �jsgn(a)c(at) (7:201)

where a is a real positive or negative constant. The negative

sign of amay be interpreted as time reversal. For example, the

Hilbert transform of exp( jv t) is

H(e jvt) ¼ �j sgn(v) e jvt

where v may be positive or negative.

7.15 Hilbert Transforms of Bessel
Functions of the First Kind

The Bessel functions (see also Chapter 1) are the solution of the

second order Bessel differential equation:

z2c00(z)þ zc0(z)þ (z2 � l2)c(z) ¼ 0 (7:202)

where c(z) is a complex function of a complex variable z¼ tþ jt
and l is a complex constant. If l¼ n, where n is an integer

(0, 1, 2, . . . ), and z¼ t, we get the solution in the form of Bessel

functions of the first kind of the order n denoted Jn(t). They find
numerous applications in signal and system theory. For example,

they are used to calculate the Fourier spectra of frequency modu-

lated signals.

The substitution in Equation 7.202 of a solution in the form of

a series Jn(t) ¼
P1

m¼0 amxm gives the power series representation

Jn(t) ¼
X

1

k¼0

(�1)k
k!(n� k)!

(t=2)nþ2k; �1 < t <1 (7:203)

The computation of the Bessel functions by means of this power

series is inconvenient. Due to the truncation of the series at some

value of k, we get divergence for large values of t. It is possible to
apply Equation 7.203 up to t< t1 and calculate the values for

t> t1 using the asymptotic formula

Jn(t) ¼
2

pt
sin t � pn

2
þ p

4

� 

þ r(t)

t
ffiffi
t
p (7:204)

The term r(t) is a limited function for t )1. However, it is

much easier to compute the Bessel functions and its Hilbert

transforms using integral forms, as described below.

Let us start with the periodic complex function exp( jt sin(w))
and its Hilbert transform. We have a Hilbert pair

e jt sin (w)()
H

H[e jt sin (w)] ¼ �j sgn[ sin (w)]e jt sin (w) (7:205)

The Fourier series expansion of the left-hand side is

e jtsin(w) ¼
X1

n¼�1
Jn(t)e

jnw (7:206)
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The Bessel functions, i.e., the coefficients of this series, are given

by the integral

Jn(t) ¼
1

2p

ð

p

�p

e j(t sin (w)�nw)dw (7:207)

The odd-ordered Bessel functions are odd functions of the argu-

ment t, while the even-ordered are even functions and

J�n(t) ¼ (�1)nJn(t) (7:208)

In fact, the integral of the imaginary part of Equation 7.207

equals zero, and due to the evenness of the real part of the

integrand, we have

Jn(t) ¼
1

p

ð

p

0

cos [t sin (w)� nw]dw (7:209)

This formula enables very efficient calculation of Bessel functions

Jn(t) using numerical integration. The number of integration

steps may be halved using two separate integrals:

J2n(t) ¼
2

p

ð

p=2

0

cos [t sin (w)] cos (2nw)dw (7:210)

J2nþ1(t) ¼
2

p

ð

p2

0

sin [t sin (w)] sin [(2nþ 1)w]dw (7:211)

The real part of the Fourier series (Equation 7.206) is

cos [t sin (w)] ¼ J0(t)þ 2
X

1

n¼1
J2n(t) cos (2nw) (7:212)

and the imaginary part is

sin [t sin (w)] ¼ 2
X

1

n¼1
J2n�1(t) sin [(2n� 1)w] (7:213)

Inserting w¼p=2 gives the well-known formulae

cos(t) ¼ J0(t)� 2J2(t)þ 2J4(t)� � � � (7:214)

sin(t) ¼ 2J1(t)� 2J3(t)þ � � � (7:215)

The following recursion formula is very useful

(2n=t)Jn(t) ¼ Jn�1(t)þ Jnþ1(t) (7:216)

The derivative of a Bessel function is also given by the recursion

formula

2jn(t) ¼ Jn�1(t)� Jnþ1(t) (7:217)

For example

j0(t) ¼ 0:5[ J�1(t)� J1(t)] ¼ �J1(t) (7:218)

(we used Equation 7.218).

The left-hand side of Equation 7.205 was expanded in the

Fourier series (Equation 7.206). Similarly, due to the linearity of

the Hilbert transformation, the right-hand side may be expanded

in the Fourier series

H[e jt sinw] ¼ �j sgn(w)e jt sinw ¼
X

1

n¼�1
Ĵn(t)e

jnw (7:219)

where Ĵn(t) ¼ H[Jn(t)] are the Hilbert transforms of the Bessel

functions. For these functions we have the relation

Ĵ�n(t) ¼ (�1)nþ1 Ĵn(t) (7:220)

because the Hilbert transforms of odd functions are even, and

vice versa (compared with Equation 7.208). The functions Ĵn(t),
i.e., the coefficients of the Fourier series (Equation 7.219), are

given by the integral

Ĵn(t) ¼
1

2p

ð

p

�p

H[e j[t sinw�nw]]dw (7:221)

As in Equation 7.207, the integral of the imaginary part equals

zero and due to the evenness of the real part, we have

Ĵn(t) ¼
1

p

ð

p

0

sin [t sinw� nw]dw (7:222)

Notice that the integrand is even because it is multiplied by

sgn(w) (see Equation 7.219). As before, using numerical integra-

tion, the Hilbert transforms of the Bessel functions can be easily

computed. The first five Bessel functions and their Hilbert trans-

forms computed using Equations 7.219 and 7.222 are shown in

Figure 7.20a and b.

Let us derive the Hilbert transforms of the Bessel functions

Jn(t) using Fourier transforms. The Fourier transform of the

function J0(t) is

J0(t)()
F

C0( f ) ¼
2

(1� v2)0:5
for jvj < 1

0 for jvj > 1

8

<

:

(7:223)
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Proof Let us find the inverse transform of this spectrum:

J0(t) ¼
1

2p

ð

1

�1

2

(1� v2)0:5
cos (vt)dv ¼ v ¼ sin (w)

dv ¼ cos (w)dw

� �

¼ 1

p

ðp

0

cos [t sinw]dw (7:224)

(See Equation 7.209) The Fourier transforms of higher-order

Bessel functions can be calculated using the recursion formula

(Equation 7.217) and frequency domain differentiation. We have

Jnþ1(t) ¼ Jn�1(t)� 2_Jn(t) (7:225)

obtaining the following Fourier parts

J0(t)()
F

C0( f ) ¼
2

(1� v2)0:5
(7:226)

J1(t) ¼ �_J0(t)()
F �jvC0( f ) (7:227)

J2(t) ¼ �J0(t)� 2_J1(t)()
F

C0( f )� 2jvC1( f ) (7:228)

Successive application of the recurrency gives the Fourier spectra

of the Bessel functions Jn(t) tabulated in Table 7.7. We find that

_Jn(t)()
F

Cn( f ) ¼ (�j)n2n�1Tn(t)C0( f ) (7:229)

where C0( f ) is defined by Equation 7.226 and Tn(t) is a

Chebyshev polynomial defined by the formula

(a)

–1 1

1

Jn

J1 J2
J3 J4 J5J0

2 3 5 6 7

t
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4

(b)

–1
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1

1

Jn

ˆ

ˆ

J0 Ĵ1

Ĵ5

Ĵ2 Ĵ3 Ĵ4

2
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7

8

t

9 10

4

FIGURE 7.20 (a) Waveforms of the first five Bessel functions Jn(t). (b) Waveforms of the corresponding Hilbert transforms.
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Tn(t) ¼ cos [n cos�1 (t)]; n ¼ 0, 1, 2, . . . (7:230)

A recursion formula can be applied

Tnþ1(t)� 2t Tn(t)þ Tn�1(t) ¼ 0; n ¼ 1, 2, . . . (7:231)

Because we derived the analytical expressions for the Fourier

images of the Bessel functions, the use of inverse Fourier trans-

formations enables the evaluation of either the Bessel function

Jn(t) or its Hilbert transform Ĵn(t). For example

J0(t) ¼
1

p

ð

1

0

2

(1� v2)0:5
cos (vt)dv (7:232)

and the Hilbert transform is

Ĵ0(t) ¼ H[J0(t)] ¼
1

p

ð

1

0

2

(1� v2)0:5
sin (vt)dv (7:233)

Hence, we have an analytic signal

c0(t) ¼ J0(t)þ ĵJ0(t) (7:234)

Equations 7.232 and 7.233 may be regarded as alternative defin-

itions of the Bessel functions J0(t) and Ĵ0(t). However, the com-

putation by means of the integrals (7.209 and 7.210) (n¼ 0) gives

much better accuracy with a given number of integration steps.

The expressions for the Fourier images of Bessel functions and

their Hilbert transforms derived using these images are listed

in Table 7.7. If needed, the Fourier spectra enable the derivation

of the coefficients of the power series representation of Jn(t)
and Ĵn(t). Starting with the power series for Jn(t) given by Equa-

tion 7.203, let us derive the power series for Ĵn(t). We start

with the expression defining the Taylor series

Ĵn(t) ¼
X

1

n¼0

Ĵ(n)n (t ¼ 0)

n!
(7:235)

The derivatives Ĵ(n)n (t) (t ¼ 0) can be obtained by differentiation

of the integrand of the integrals listed in Table 7.7. By inserting

t¼ 0, we obtain

Ĵ0(0) ¼
1

p

ð

1

0

2dv

(1� v2)0:5
sin (0) ¼ 0

Ĵ(1)0 (0) ¼ 1

p

ð

1

0

2vdv

(1� v2)0:5
cos (0) ¼ 2

p

Ĵ(2)0 (0) ¼ � 1

p

ð

1

0

2v2dv

(1� v2)0:5
sin (0) ¼ 0

Ĵ (3)0 (0) ¼ � 1

p

ð

1

0

2v3dv

(1� v2)0:5
cos (0) ¼ �4

3p

(7:236)

TABLE 7.7 Fourier and Hilbert Transforms of Bessel Functions of the First Kind

Bessel Function Fourier Transform Hilbert Transform

Jn(t) Cn(f ) Ĵn(t) ¼ H[Jn(t)]

J0(t)
C0 ¼

2

(1� v2)0:5
; jvj < 1

¼ 0; jvj > 0

1

p

ð1

0

C0(f ) sin (vt)dv

J1(t) C1 ¼ �jvC0 � 1

p

ð1

0

jC1(f )j cos (vt)dv

J2(t) C2 ¼ �(2v2 � 1)C0 � 1

p

ð1

0

jC2(f )j sin (vt)dv

J3(t) C3 ¼ j(4v3 � 3v)C0
1

p

ð1

0

jC3(f )j cos (vt)dv

J4(t) C4 ¼ (8v4 � 8v2 þ 1)C0
1

p

ð1

0

jC4(f )j sin (vt)dv

J5(t) C5 ¼ �j(16v5 � 20v3 þ 5v)C0 � 1

p

ð1

0

jC5(f )j cos (vt)dv

J6(t) C6 ¼ �(32v6 � 48v4 þ 18v2 � 1)C0 � 1

p

ð1

0

jC6(f )j sin (vt)dv

Jn(t) Cn ¼ (�j)n2n�1Tn(v)C0

(�1)n=2
p

ð1

0

jCn(f )j sin (vt)dv

for n ¼ 0, 2, 4, . . .

(�1)(nþ1=2)
p

ð1

0

jCn(f )j cos (vt)dv

for n ¼ 1, 3, 5, . . .

Note: Tn(v)¼ cos[n cos�1(v)] is the Chebyshev polynomial.
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where (1), (2), . . . denote the order of the derivative. Continuing

the differentiation using Equation 7.235, we get the following

power series:

Ĵ0(t) ¼
2

p
t � 1

9
t3 þ 1

225
t5 � 2

33075
t7

�

þ � � � þ (�1)(3þn)=22n�2
n!(1:3:5::n)

tn þ � � �
#

(7:237)

In the same way one can derive the power series of higher order

Hilbert transforms of the Bessel functions.

7.16 Instantaneous Amplitude,
Complex Phase, and Complex
Frequency of Analytic Signals

Signal theory needs precise definitions of various quantities

such as the instantaneous amplitude, instantaneous phase,
and instantaneous frequency if a given signal and many other

quantities. Let us recall that neither definition is true or false.
If we define something, we simply propose to make an agreement
to use a specific name in the sense of the definition. When using

this name, for instance, ‘‘instantaneous frequency,’’ we should

never forget what we have defined. The history of signal theory

contains examples of misunderstanding when various authors

applied the same name, instantaneous frequency, to different

definitions and then tried to discuss which is true or false.

Such a discussion is meaningless. Of course, one may discuss

which definition has advantages or disadvantages from a specific

point of view or whether it is compatible with other definitions or

existing knowledge. The notions of the instantaneous amplitude,

instantaneous phase, and instantaneous frequency of the analytic

signal c(t)¼ u(t)þ jy(t) may be uniquely and conveniently

defined introducing the notion of a phasor rotating in the

Cartesian (u, y) plane, as shown in Figure 7.21. The change of

coordinates from rectangular (u, y) to polar (A, w) gives

u tð Þ ¼ A tð Þ cos w tð Þ½ � (7:238)

y tð Þ ¼ A tð Þ sin w tð Þ½ � (7:239)

c tð Þ ¼ A tð Þe jw tð Þ (7:240)

We define the instantaneous amplitude of the analytic signal

equal to the length of the phasor (radius vector) A:

A(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2(t)þ y2(t)
p

(7:241)

and define the instantaneous phase of the analytic signal equal to

the instantaneous angle

w(t) ¼ Tan�1 y(t)

u(t)
(7:242)

The notation with capital T indicates the multibranch character

of the Tan�1 function, as shown in Figure 7.22. As times elapses,

the phasor rotates in the (u, y) plane and its instantaneous

angular speed defines the instantaneous angular frequency of

the analytic signal given by the time derivative

_w(t) ¼ V(t) ¼ 2pF(t) (7:243)

jυ (t)

u (t)

Ω
(t)

A
(t

)

(t)

FIGURE 7.21 A phasor in the Cartesian (u, n) plane representing the

analytic signal c(t)¼ u(t)þ jn(t)¼A(t)ejw(t).

2π

π

0 5

υ(t)

u(t)–5

(t)

FIGURE 7.22 The multibranch function w(t)¼ tan�1[y(t)=u(t)]. As
time elapses (arrows) they are jumps from one branch to a next branch.
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or

V(t) ¼ d

dt
tan�1

y(t)

u(t)
¼ u(t) _y(t)� y(t) _u(t)

u2(t)þ y2(t)
(7:244)

Notice the anticlock direction of rotation for positive angular

frequencies. The instantaneous frequency is defined by the

formula

F(t) ¼ V(t)

2p
¼ 1

2p
_w(t) (7:245)

Summarizing, using the notion of the analytic signal, we defined

the instantaneous amplitude, phase, and frequency. A number of

different definitions of the notion of instantaneous amplitude,

phase, and frequency have developed over the years. There are

many pairs of functions A(t) and w(t), which inserted into

Equation 7.238 reconstruct a given signal u(t), for example,

functions defining a phasor in the phase plane [u(t), _u(t)]. But
only the analytic signal has the unique feature of having a one-

sided Fourier spectrum. Let us recall that a real signal and its

Hilbert transform are given in terms of analytic signals by Equa-

tions 7.30 and 7.31 (see Section 7.3). Figure 7.23 shows the

geometrical representation of these formulae in the form of two

phasors of a length 0.5 A(t) and opposite direction of rotation,

positive for c(t) and negative for c*(t). Equation 7.242 defines

the instantaneous frequency of a signal regardless of the band-

width. It is sometimes believed that the notion of instantaneous

frequency has a physical meaning only for narrow-band signals

(high-frequency [HF]-modulated signals). However, using

adders, multipliers, dividers, Hilbert filters, and differentiators,

it is possible to implement a frequency demodulator used for

wide-band signals, for example, speech signals, the algorithm

defined by Equation 7.244. Modern VLSI enables efficient imple-

mentation of such frequency demodulators at reasonable cost.

7.16.1 Instantaneous Complex Phase
and Complex Frequency

Signal and systems theory widely uses the Laplace transformation

of a real signal u(t) of the form

U(s) ¼
ð

1

0

u(t)e�stdt (7:246)

where

s ¼ aþ jv; v ¼ 2pf

is a time-independent complex frequency (a and v are real).

The exponential kernel e�st has the form of a harmonic wave

with an exponentially decaying amplitude; that is, its instantan-

eous amplitude is

A(t) ¼ e�at (7:247)

The notion of the complex frequency has been generalized by this

author in 1964 defining a complex instantaneous variable fre-

quency using the notion of the analytic signal.12 It is convenient

to define the instantaneous complex frequency as the time deriva-

tive of a complex phase. The instantaneous complex phase of the

analytic signal c(t) is defined by the formula

Fc(t) ¼ Ln[c(t)] (7:248)

Capital L denotes the multibranch character of the logarithmic

function of the complex function c(t). The insertion of the polar

form of the analytic signal (see Equation 7.240) yields

Fc(t) ¼ Ln[A(t)]þ jw(t) (7:249)

Ω
(t

) Ω
(t)

jυ

–Ψ*(t)

Ψ*(t)

Ψ(t)

u

Ω
(t)

–Ω
(t

)

jυ

Ψ*(t)

Ψ(t)

u

FIGURE 7.23 A pair of conjugate phasors representing the Equations 7.2.17 and 7.2.18.
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The instantaneous complex frequency is defined by the derivative

s(t) ¼ _Fc(t) ¼
_A(t)

A(t)
þ jv(t) (7:250)

or

s tð Þ ¼ a tð Þ þ jv tð Þ (7:251)

where

a(t) ¼
_A(t)

A(t)
(7:252)

is the instantaneous radial frequency (a measure of the radial

velocity representing the speed of changes of the radius or amp-

litude of the phasor), and

v(t) ¼ _w(t) (7:253)

is the instantaneous angular frequency. Equation 7.252 has

the form of a first-order differential equation. The solution of

this equation yields the following form of the instantaneous

amplitude

A(t) ¼ A0e
Ð t

0
a(t)dt

(7:254)

A0 is the value of the amplitude at the moment t¼ 0. Let us

introduce the notation

b(t) ¼
ð

t

0

a(t)dt (7:255)

Using this notation the complex phase can be written as

Fc(t) ¼ ln A0 þ b(t)þ jw(t) (7:256)

or

Fc(t) ¼ ln A0 þ
ð

t

0

s(t)dt þ jF0 (7:257)

F0 is the integration constant or the angular position of the phasor

at t¼ 0. The introduction of the concept of a complex constant

c0 ¼ A0e jF0 gives the following form of the analytic signal

C(t) ¼ c0e
Ð t

0
s(t)dt

(7:258)

Examples

1. Consider the analytic signal given by Equation 7.76:

cd(t) ¼
a

p(a2 þ t2)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

u(t)

þ j
t

p(a2 þ t2)
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

y(t)

(7:259)

The polar form of this signal is

cd(t) ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ t2
p

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A(t)

exp j tan�1 (t=a)

 �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

w(t)

(7:260)

Therefore, the instantaneous complex phase is

Fc(t) ¼ Ln
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ t2
p

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

b(t)

þ j tan�1 (t=a)
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

w(t)

(7:261)

and the instantaneous complex frequency is

s(t) ¼ _Fc(t) ¼
�t

a2 þ t2
|fflfflffl{zfflfflffl}

a(t)

þ j
a

a2 þ t2
|fflfflffl{zfflfflffl}

v(t)

(7:262)

Because in the limit a) 0 the signal (Equation 7.253)

approximates the complex delta distribution (see Equa-

tion 7.64), the instantaneous complex phase of this

distribution is

Fcd(t) ¼ Ln
1

pjtj
|{z}

A(t)

þ j 0:5p sgn(t)
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

w(t)

(7:263)

and the complex frequency is

sd(t) ¼
�1
t
|{z}

a(t)

þ j pd(t)
|ffl{zffl}

v(t)

(7:264)

2. Consider the analytic signal

c(t) ¼ sin (at)

at
|{z}

u(t)

þ j
sin2 (0:5at)

0:5at
|ffl{zffl}

y(t)

(7:265)

where u(t) is the well-known interpolating function of the

sampling theory. Equations 7.241 and 7.242 yield, using

trigonometric relations, the polar form of this signal:

c(t) ¼ sin (0:5at)

0:5at

�
�
�
�

�
�
�
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A(t)

exp ( j at=2)
|fflfflffl{zfflfflffl}

w(t)

(7:266)
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Therefore, the instantaneous complex phase is

cc(t) ¼ Ln
sin (0:5at)

0:5at

�
�
�
�

�
�
�
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

A(t)

þ j at=2 (7:267)

and the instantaneous complex frequency

s(t) ¼ a

2
cot (0:5at)� 1

t
þ j

a

2
(7:268)

In conclusion, the interpolating function may be

regarded as a signal of a variable amplitude and a

constant angular frequency v¼ a=2.
3. The classic complex notation of a frequency- or phase-

modulated signal (Carson and Fry, 1937) has the form41

c(t) ¼ A0e
j[V0 tþF0þw(t)] ; V0 ¼ 2pF0 (7:269)

where w(t) represents the angle modulation. The whole

argument of the exponential function F(t)¼V0tþ
F0¼w(t) defines the instantaneous phase and its

derivative, the instantaneous frequency

F(t) ¼ 1

2p

dF

dt
¼ F0 þ

1

2p

dw

dt
(7:270)

The signal (Equation 7.269) is represented by a phasor in

the plane (cos[(F(t)], sin[F(t)]), as shown in Figure 7.24.

These definitions of the instantaneous phase and fre-

quency differ from the definition using the analytic

signal that is represented by a phasor in the (cos[F(t)],

H(cos[F(t)]) plane, because sin[F(t)] is not the Hilbert

transform of cos[F(t)] and the signal (7.269) is not an

analytic function. However, it may be nearly analytic if

the carrier frequency is large. If the spectra of the

functions cos[w(t)] and sin[w(t)] have a limited low-

pass support of a highest frequency jWj< jF0j, then
Bedrosian’s theorem (see Section 7.13) may be applied

and

H{ cos [V0t þF0 þ w(t)]} ¼ cos [w(t)]H[ cos (V0t þF0)]

� sin [w(t)]H[ sin (V0t þF0)]

¼ sin [V0t þF0 þ w(t)] (7:271)

In the case of harmonic modulation with w(t)¼b sin

(vt), where b is the modulation index, the spectra of

the function cos[w(t)] and sin[w(t)] are given by the

Fourier series

cos b sin (vt)½ � ¼ J0(b)þ 2
X1

n¼1

J2n(b) cos (2nvt) (7:272)

sin b sin (vt)½ � ¼ 2
X1

n¼1

J2n�1(b) sin (2n� 1)vt½ � (7:273)

and this is not a pair of Hilbert transforms (see Section

7.7). Although the number of terms of the series is

infinite, the number of significant terms is limited and

for a good approximation Bedrosian’s theorem may be

applied for large values of F0. Further comments are

given in Reference 25.

7.17 Hilbert Transforms
in Modulation Theory

This section is devoted to the theory of analog modulation of a

harmonic carrier uc(t)¼A0 cos(2p F0tþF0) with emphasis on

the role of Hilbert transformation, analytic signals, and complex

frequencies. The theory of amplitude and angle modulation is

mentioned briefly in favor of a more detailed description of the

theory of single side-band (SSB) modulations. The last are con-

veniently defined using Hilbert transforms. Many modulators are

implemented using Hilbert filters, mostly digital filters, because

nowadays modulated signals can be conveniently generated digit-

ally and converted into analog signals.

7.17.1 Concept of the Modulation Function
of a Harmonic Carrier

The complex notation of signals is widely used in modern modu-

lation theory. The harmonic carrier is written in the form of the

analytic signal

cc(t) ¼ A0e
j(V0tþF0) (7:274)

Analog modulation is the operation of continuous change of one

or more of the three parameters of the carrier: the amplitude A0,

Ω(t)

A0 sin[Ω (t)]

A0 cos[Ω(t)]

A0

FIGURE 7.24 A phasor representing a frequency (or phase) modulated

signal.
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the frequency F0, or the phase F0, resulting in amplitude, fre-

quency, or phase modulation. The complex-modulated signal has

a convenient representation in the form of a product3

c(t) ¼ g(t)cc(t) ¼ A0g(t)e
j(V0tþF0) (7:275)

The function g(t) is called the modulation function. It is a

function of the modulating signal (the message) x(t), that is,

g(t)¼g[x(t)]. Any kind of modulation, for example, amplitude,

frequency, or phase modulation, is represented by a specific real

or complex modulation function. We shall investigate models of

modulating signals for which the Fourier transform exists and is

given by the Fourier pair

x(t)()F X(v); v ¼ 2pf (7:276)

The frequency band containing the terms of the spectrum X(v) is
called the baseband. In general, the modulation function is a

nonlinear function of the variable x, and the spectrum of the

modulation function differs from X(v) and is represented by

the Fourier pair:

g(t)()F G(v) (7:277)

The nonlinear transformations of the spectrum may have a

complicated analytic representation. Usually only approximate

determination of the spectrum is possible. The approximations

are easier to perform if the energy of the modulating signal is

nonuniformly distributed and concentrated in the low-frequency

part of the baseband, for example, the energy of voice, music,

or TV signals. Usually it is possible to find the terms of G(v)

for harmonic modulating signals. In special cases, if the

modulation function is proportional to the message, that is,

g(t)¼mx(t) (m is a constant), we have

G( f ) ¼ mX( f ) (7:278)

The initial phase of the carrierF0 is of importance only if we deal

with two or more modulated carriers of the same frequency, for

example, by summation or multiplication of modulated signals.

It is convenient to write the modulated signal in the form

c(t) ¼ A0g(t)e
jF0e jV0t (7:279)

and define a modified modulation function in the form of the

product

g1(t) ¼ g(t)e jF0 (7:280)

The new Fourier spectrum is

g1(t)()
F

G1(v) ¼ G(v)e jF0 (7:281)

We observe that the spectra, in Equations 7.277 and 7.281, have

the same magnitude and differ only by the phase relations.

Notice that the spectrum G1(v) is defined at zero carrier fre-

quency and the spectrum of the modulated signal is obtained by

shifting this spectrum from zero to carrier frequency by the

Fourier shift operator e jV0t . This approach enables us to study

the spectra of modulated signals at zero carrier frequency.

Examples of modulation functions:

The modulation function for a linear full-carrier AM has

the form

g(t) ¼ 1þmx(t); jmx(t)j < 1 (7:282)

The number 1 represents the carrier term. Therefore, the modu-

lation function for balanced modulation (suppressed carrier) has

the simple form

g(t) ¼ mx(t) (7:283)

Therefore, the spectra of the message and of the modulation

function are to within the scale factor m, the same. The message

may be written in the form (see Equation 7.30)

x(t) ¼ cx(t)þ cx
*(t)

2
(7:284)

This formula shows that the upper sideband of the AM signal is

represented by the analytic signal cx(t) of a one-sided spectrum

at positive frequencies and the lower sideband by the conjugate

analytic signal cx
*(t) of a one-sided spectrum at negative frequen-

cies. The sidebands have the geometric form of two conjugate

phasors (see Figure 7.23). The instantaneous amplitude of the

phasors is

A(t) ¼ m

2
jcx(t)j ¼

m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2(t)þ (x̂(t))2
q

(7:285)

(x̂(t) ¼ H[x(t)]) and the instantaneous angular frequency is

vx(t) ¼ � d

dt
tan�1 x̂(t)

x(t)

� �

(7:286)

Therefore, a SSB represents a signal with simultaneous amplitude

and phase modulation. The multiplication of cx(t) or cx
*(t) with

the complex carrier (Fourier shift operator) e jV0t yields the high-

frequency analytic signals. The upper sideband (F0¼ 0) is

(with mA0¼ 2)

cupper(t) ¼ cx(t)e
jV0t (7:287)

with the modulation function cx(t), and the lower sideband is

c(t) ¼ cx
*(t)e jV0t (7:288)
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with the conjugate modulation function cx*(t). The above signals
represent the complex form of SSB AM. The real notation of

these signals is

uSSB(t) ¼ x(t) cos (V0t)� x̂(t) sin (V0t) (7:289)

with the minus sign for the upper sideband and plus sign for the

lower one. The products x(t) cos(V0t) and x̂(t) in (V0t) repre-
sent double side-band (DSB) compressed carrier AM signals.

Therefore, an SSB modulator may be implemented, as shown in

Figure 7.25.

The angle modulation is represented by the exponential modu-

lation function of the form

g(t) ¼ e jw[x(t)] (7:290)

Therefore, the complex signal representation of the angle modu-

lation has the form

C(t) ¼ A0e
j[V0tþw(t)] (7:291)

where w is a function of the modulating signal x(t). In general,

this complex signal may be only approximately analytic (see

Section 7.16, Example 3). In the case of a linear phase modula-

tion, the modulation function has the form

g(t) ¼ e jmx(t) (7:292)

and for the linear frequency modulation

g(t) ¼ e jm
Ð1
�1

x(t)dt
(7:293)

The Fourier spectrum of the modulation function is given by the

integral

G(v) ¼
ð

1

�1

e jw[x(t)]e�jvtdt (7:294)

If for a specific function w[x(t)] the closed form of this integral

does not exist, a numerical integration may be applied. In the

simplest case of linear phase modulation with a harmonic modu-

lating signal the modulation function (Equation 7.292) has

the form

g(t) ¼ e jb sin (v0t) (7:295)

where b is the modulation index (in radians). The Fourier series

expansion of this complex periodic function has the form:

g(t) ¼ J0(b)þ
X

1

n¼1

J2n(b) cos (2 nv0t)

þ
X

1

n¼1

J2n�1(b) sin [(2n� 1)v0t] (7:296)

Using Euler’s formulae (see Equations 7.32 and 7.33), this modu-

lation function becomes

g(t) ¼ J0(b)þ
X

1

n¼1

J2n(b)
e j2 nv0t þ e�j2nv0t

2

� �

þ
X1

n¼1

J2n�1(b)
e j(2n�1)v0t � e�j(2n�1)v0t

2

� �

(7:297)

Because the exponentials in the time domain are represented by

delta functions in the frequency domain
�
e�jnv0t ()F d( f � n f0)

�
,

the spectrum of the modulation function (zero carrier frequency)

has the form shown in Figure 7.26 (b¼ 4).

7.17.2 Generalized Single Side-Band
Modulations

The SSB AM signal defined by Equations 7.287 and 7.288 is an

example of many other possible SSB modulations. Any kind of

modulation of a harmonic carrier is called SSB modulation if the

modulation function is an analytic single of a one-sided spectrum

at positive frequencies for the upper sideband and at negative

Delay

X (t)

Balanced
modulator

Hilbert
transformer

Modulating
signal

Carrier

cos Ω0t

sin Ω0t

Balanced
modulator

Lower

Upper

sidebands
+

–

FIGURE 7.25 Block diagram of a SSB modulator (phase method) implementing Equation 7.16.16.
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frequencies for the lower sideband. Therefore, the modulation

function should have the form

g(t) ¼ gx(t)þ jĝx(t) ¼ A(t)e jw(t) (7:298)

where gx(t)()
H

ĝx(t). Let us use here the notion of the instant-
aneous complex phase defined by Equation 7.248 of the form

fc(t) ¼ lnA(t)þ jf(t) (7:299)

The modulation function (Equation 7.298) can be written in

the form

g(t) ¼ efc(t) ¼ eln [A(t)]þjf(t) (7:300)

that is, the instantaneous amplitude is written in the exponen-

tial form

A(t) ¼ eln [A(t)] (7:301)

We now put the question: under what conditions are g(t) and
simultaneously fc(t) analytic? That is, when is not only the

relation (Equation 7.298), but also the relation

lnA(t)()H f(t) ¼ LN
^

[A(t)] (7:302)

satisfied? The answer comes from the dual (time domain) version

of the Paley–Wiener criterion28

ð

1

�1

Ln[A(t)]j j
1þ t2

dt <1 (7:303)

which should be satisfied. Let us remember that A(t) is defined
as a nonnegative function of time. The Paley–Wiener criterion

is equivalent to a requirement that A(t) should not approach

zero faster than any exponential function. This is a property

of each signal with finite bandwidth that is of any practical

signal.

7.17.3 CSSB: Compatible Single Side-Band
Modulation

The CSSB signal has the same instantaneous amplitude as the

conventional DSB full-carrier AM signal, that is, of the form

A(t) ¼ A0(1þmx(t)); mx(t) < 1 (7:304)

and can be demodulated by a conventional linear diode demodu-

lator (but not by a synchronous detector). The one-sided spec-

trum of the CSSB signal is achieved by a simultaneous specific

phase modulation. The analytic modulation function should

satisfy the requirement (Equation 7.302) and has the form

g(t) ¼ [1þmx(t)]e j ln
^
[1þmx(t)] (7:305)

Figure 7.27 shows a block diagram of a modulator producing a

high-frequency CSSB signal implemented by the use of Equation

7.305. This modulation function guarantees the exact cancella-

tion of the undesired sideband. Using digital implementation, the

level of the undesired sideband depends only on design.

The bandwidth of the nonlinear logarithmic device, the Hilbert

filter and phase modulator, should be several times wider

than the bandwidth of the input signal. In practice it should be

three to four times larger than the baseband. The instantaneous

0.3

0.5 Jn (β) δ ( f/f0 – n)

0.2

0.1

0

–0.1

–0.2

–7 –5

–6 –4 –2 –1

1

2 3 4 5 6 7
nf/f0

–3

–0.3

FIGURE 7.26 The spectrum of a phase modulated signal translated to zero carrier frequency, i.e., of the modulation function. Phase deviation b¼ 4

radians.
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amplitude A(t) should never fall to zero because the logarithm of

zero equals minus infinity. Tradeoff is needed between the smal-

lest value of A and the phase deviation.

7.17.4 Spectrum of the CSSB Signal

It may be a surprise that the bandwidth of the one-sided spec-

trum of the CSSB signal is limited. If the spectrum of the modu-

lating signal exists in the interval �W< f<W, then the

spectrum of the modulation function exists in the interval

0< f< 2W. Seemingly, the bandwidths of the CSSB and DSB

AM signals are equal. However, the spectra of many messages

such as speech or video signals are nonuniform, with significant

terms concentrated at the lower part of the baseband. This

enables us to transmit the CSSB signal in a smaller band; for

example, from F0 to F0þW instead to F0þ 2W, at the cost of

some distortions enforced by the truncation of insignificant

terms of the spectrum. Let us investigate the spectra and distor-

tions using the model of a wide-band modulating signal given in

the form of the Fourier series.

x(t) ¼
X

N

k¼0
(�1)kC2kþ1 cos (2kþ 1)v0t½ �; v0 ¼ 2pf0 (7:306)

For C2kþ 1¼ 1=(2kþ 1) this modulating signal is a truncated

Fourier series of a square wave. Its bandwidth equals

W¼ (2Nþ 1) f0. The insertion of this signal in Equation 7.304

yields a periodic modulation function given by the Fourier series

g(t) ¼
X

4Nþ2

k¼0

Ake
jkv0t (7:307)

The truncation of this series at the term 4Nþ 2 is not arbitrary

because it will be shown that terms for k> 4Nþ 2 vanish. There-

fore, the bandwidth of g(t) equals exactly 2W. To give the

evidence, let us insert x(t) given by Equation 7.306 in Equation

7.305. The square of the instantaneous amplitude of so-defined

modulation function is

A2(t) ¼ 1þm
X

N

k¼0

(�1)kC2kþ1 cos [(2kþ 1)v0t]

" #2

(7:308)

The highest term of this Fourier series has the harmonic number

4Nþ 2. Analogously, the square of the instantaneous amplitude

of the modulation function (Equation 7.307) is

A2(t) ¼
X

4Nþ2

k¼0

Ak cos (kv0t)

" #2

þ
X

4Nþ2

k¼1

Ak sin (kv0t)

" #2

(7:309)

However, the functions 7.307 and 7.308 should be equal. Therefore,

they should have the same coefficients of the Fourier series.

The comparison of these coefficients yields a set of 4Nþ 3 equa-

tions. The solution of these equations yields the coefficients

A0,A1,A2, . . . ,A2Nþ2 as functions of the modulation index m and

the amplitudes C2kþ1 of the modulating signal (Equation 7.304).

Examples

1. For the harmonic modulating signal x(t)¼ cos(v0t),

N¼ 0, C1¼ 1, and C2kþ 1¼ 0 for k> 0. The comparison

of the squares of the instantaneous amplitudes yields

three equations:

A20 þ A21 þ A22 ¼ (1þm2=2)C1 (7:310)

A0A1 þ A1A2 ¼ mC1 (7:311)

A0A2 ¼ (mC1)
2=4 (7:312)

The solution of these equations yields (C1¼ 1): The

amplitude of the zero frequency carrier

A0 ¼ 0:5þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m2
p

(7:313)

The amplitude of the first sideband

A1 ¼ m (7:314)

and the amplitude of the second sideband

A2 ¼ 0:5� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�m2
p

(7:315)

Figure 7.28 shows an example of the spectrum of the

CSSB signal and Figure 7.29, the dependence of the

amplitudes on m.

Driver

Hilbert
transformer

Nonlinear
logarithmic

device

Phase
modulator

Delay

Amplitude
modulator

CSSB signal

A0 cos Ω0t
ˆA0 cos[Ω0t + ln(1 + mx(t – τ)]

ˆln[1 + mx(t – τ)]

ln[1 + mx(t )]

x (t – τ)

x (t )

FIGURE 7.27 Diagram of the modulator producing the compatible

single side-band AM signal.

Hilbert Transforms 7-39



2. For the modulating signal x(t)¼ C1 cos(v0t)� C3 cos

(3v0t), N¼ 1, and C2kþ1¼ 0 for k> 1. We get seven

equations of the form

X

6

k¼0
A2k ¼ 1þm2

2
(C2

1 þ C2
3 ) (7:316)

X

5

k¼0
AkAkþ1 ¼ mC1 ;

X

4

k¼0
AkAkþ2 ¼

m2

2
(0:5C2

1 � C1C3) (7:317)

X

3

k¼0
AkAkþ3 ¼ mC3 ;

X

2

k¼0
AkAkþ4 ¼

�m2

2
C1C3 (7:318)

X

1

k¼0
AkAkþ5 ¼ 0;

X

0

k¼0
AkAkþ6 ¼

m2

4
C2
3 (7:319)

The solutions of these equations yield the seven terms

of the CSSB signal. In practice it is simpler to find these

terms applying any numerical method of determin-

ation of the coefficients of the Fourier series expansion

of the modulation function (Equation 7.305). However,

the above set of equations gives the evidence that the

spectrum has a finite number of terms (example in

Figure 7.30). The above equations may be used to

control the accuracy of numerical calculations. Notice

that Equations 7.310 and 7.316 have the form of power

equality equations.

Let us quote three other modulation functions

generating CSSB AM signals. The analytic modulation

function of the form

g(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þmx(t)
p

e j
1
2 ln [1þmx(t)] (7:320)

uses the square root of the instantaneous amplitude

of an AM signal. Its spectrum is exactly one-sided.

A squaring demodulator should be applied at the

receiver. The phase deviation equals one-half of the

phase deviation of the function (7.299). Some years

ago Kahn implemented a CSSB modulator using the

modulation function17

g(t) ¼ [1þmx(t)]e
j tan�1

mx̂(t)
1þmx(t) (7:321)

Similarly Villard (1948) implemented a modulator using

another modulation function40

g(t) ¼ (mx(t))e jmx̂(t) (7:322)

The last two modulation functions are not exactly

analytic and their spectra are only approximately

one-sided.

1.2
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FIGURE 7.28 Example of a spectrum of the CSSB AM signal with a

cosine envelope.
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FIGURE 7.29 The dependence of the three terms of the spectrum on

the modulation index m.
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FIGURE 7.30 The spectrum of the CSSB AM signal with an envelope

given by the Fourier series of a square wave truncated at the 15th

harmonic number.
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7.17.5 CSSB Modulation for Angle Detectors

The modulation function of a SSB modulation compatible with a

linear phase detector has the form

g(t) ¼ e�bx̂(t)þjbx(t) (7:323)

and the modulation function of a SSB modulation compatible

with a linear frequency demodulator has the form

g(t) ¼ e�mfH
Ð

x(t)dt

 �

þjmf

Ð
x(t)dt

(7:324)

where b and mf are modulation indexes of phase or frequency

modulation (in radians). The above modulation functions

are analytic. Therefore, their spectra are exactly one-sided due

to the simultaneous amplitude and angle modulation. Notice the

exponential amplitude modulation function. For large modula-

tion indexes the required dynamic range of the amplitude modu-

lator is extremely large. An example is the modulating signal

x(t)¼ sin (v0t). Here, the instantaneous amplitude has the

form A(t)¼ exp[b cos (v0t)] and is shown in Figure 7.31.

Figure 7.32 shows the amplitudes of the one-sided spectrum in

dependence of b.

7.18 Hilbert Transforms in the Theory
of Linear Systems: Kramers–Kronig
Relations

The notions of impedance, admittance, and transfer function
are commonly used to describe the properties of linear, time-
invariant (LTI) systems. If the signal at the input port of the LTI

system varies in time as exp( jvt), the signal at the output is a sine
wave of the same frequency with a different amplitude and phase.

In other words, the LTI conserves the waveform of sine signals.

A pure sine waveform is a mathematical entity. However, it is

easy to generate physical quantities that vary in time practically

as exp( jvt). Signal generators producing nearly ideal sine waves

are widely used in many applications, including precise measure-

ments of the behavior of circuits and systems. The transfer

function of the LTI system is defined as a quotient of the output

and input analytic signals

H(jv) ¼ c2(t)

c1(t)
¼ A2e j(vtþw2)

A1e j(vtþw1)
(7:325)

This transfer function describes the steady-state, input-output

relations. Theoretically, the input sine wave should be applied

at the time at minus infinity. In practice, the steady state arrives if

the transients die out. The transfer function is time independent

because the term exp(jvt) may be deleted from the nominator

and denominator of Equation 7.325.

The frequency domain description by means of the transfer

function can be converted into the time-domain description

2
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6
eβ cos (ωt)

β = 3
2

1

0.5
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1

0 0.5 π–0.5 π–π π ωt

FIGURE 7.31 Envelope of the compatible with a linear FM detector

single side-band FM signal. b-modulation index in radians.
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FIGURE 7.32 One-sided spectrum of the modulation function of the

compatible with a linear detector FM signal.
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using the Fourier transformation. A response of the LTI system

to the delta pulse, i.e., the impulse response, is defined by the

Fourier pair:

h(t) ¼ d(t) * h(t)()
F

1H( jv) ¼ H( jv) (7:326)

where d(t) F
()

1.

7.18.2 Causality

All physical systems are causal. Causality implies that any

response of a system at the time t, depends only on excitations

at earlier times. For this reason, the impulse response of a causal

system is one-sided; that is, h(t)¼ 0 for t< 0. But one-sided time

signals have analytic spectra (see Section 7.4). Therefore, the

spectrum of the impulse response given by Equation 7.326, and

thus the transfer function of a causal system is an analytic

function of the complex frequency s¼aþ jv. The analytic trans-
fer function

H(s) ¼ A(a,v)þ j B(a,v) (7:327)

satisfies the Cauchy–Riemann equations (see Equation 7.17)

qA

qa
¼ qB

qv
;

qA

qv
¼ � qB

qa
(7:328)

and the real and imaginary parts (a¼ 0) of the transfer function

form a Hilbert pair:

A(v) ¼ �1
p

P

ð

1

�1

B(l)

l� v
dl (7:329)

B(v) ¼ 1

p
P

ð

1

�1

A(l)

l� v
dl (7:330)

A one-sided impulse response can be regarded as a sum of

noncausal even and odd parts (see Equations 7.35 and 7.36)

h(t) ¼ he(t)þ ho(t) (7:331)

because h(t) is real, we have the following Fourier pairs:

he(t) ¼
1

2
[h(t)þ h(�t)]()F A(v) (7:332)

ho(t) ¼
1

2
[h(t)� h(�t)]()F jB(v) (7:333)

The causality of h(t) yields the relations

he(t) ¼ sgn(t)ho(t) (7:334)

ho(t) ¼ sgn(t)he(t) (7:335)

These products are the time-domain representation of the con-

volution integrals (Equations 7.329 and 7.330) (convolution to

multiplication theorem).

7.18.3 Physical Realizability of Transfer
Functions

The Hilbert relations between real and imaginary parts of trans-

fer functions are valid for physically realizable transfer functions.

The terminology ‘‘physically realizable’’ may be misleading

because a transfer function given by a closed algebraic form is a

mathematical representation of a model of a circuit built using

ideal inductances, capacitances, and resistors or amplifiers. Such

models are a theoretical, approximate description of physical

systems. The physical realizability of a particular transfer func-

tion in the sense of circuit (or systems) theory is defined by

means of causality. A general question of whether a particular

amplitude characteristic can be realized by a causal system (filter)

is answered by the Paley–Wiener criterion. Consider a specific

magnitude of a transfer function jH( jv)j (an even function of v).

It can be realized by means of a causal filter if and only if the

integral

ð

1

�1

ln jH(jv)j
1þ v2

dv <1 (7:336)

is bounded.28 Then a phase function exists such that the impulse

response h(t) is causal. The Paley–Wiener criterion is satisfied

only if the support of jH( jv)j is unbounded, otherwise jH( jv)j
would be equal to zero over finite intervals of frequency resulting

in infinite values of the logarithm (lnjH( jv)j ¼�1).

7.18.4 Minimum Phase Property

Transfer functions satisfying the Paley–Wiener criterion have a

general form:

H( jv) ¼ Hw( jv)Hap( jv) (7:337)

where Hw( jv) is called a minimum phase transfer function and

Hap( jv) is an all-pass transfer function. The minimum phase

transfer function

Hw( jv) ¼ jH( jv)je jw (v) ¼ Aw(v)þ jBw(v) (7:338)

has a minimum phase lag w(v) for a given magnitude character-

istic. The minimum phase transfer function Hw(s) has all the

zeros lying in the left half-plane (i.e., a< 0) of the s-plane. The
minimum phase transfer function is analytic and its real and

imaginary parts form a Hilbert pair

Aw(v)()
H �Bw(v) (7:339)
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An important feature of the minimum phase transfer function is

that the propagation function

g(s) ¼ ln [H(s)] ¼ b(a,v)þ jw(a,v) (7:340)

is analytic in the right half-plane. It is so because all zeros are in

the left half-plane and, because we postulate stability, all poles are

in the left half-plane, too. Then the real and imaginary part of the

propagation function form a Hilbert pair:

w(v) ¼ �1
p

P

ð

1

�1

b(l)

l� v
dl ¼ �1

p
P

ð

1

�1

ln jH(jl)j
l� v

dl (7:341)

b(v) ¼ 1

p
P

ð

1

�1

w(l)

l� v
(7:342)

These relations can be converted to take the form of the well-

known Bode phase-integral theorem:

w(v0) ¼
p

2

db

du

�
�
�
�

�
�
�
�
o

þ 1

p
P

ð1

�1

db

du

�
�
�
�

�
�
�
��

db

du

�
�
�
�

�
�
�
�
o

� �

ln [cothju=2j]du

(7:343)

where

u¼ ln(v=v0) is the normalized logarithmic frequency scale

db=du is the slope of the b-curve in ln–ln scale

The Bode formula shows that for the minimum-phase transfer

functions the phase depends on the slope of the b-curve (b is the

damping coefficient). The factor ln[cothju=2j] is peaked at u¼ 0

(or v¼v0) and, hence, the phase at a given v0 is mostly influ-

enced by the slope db=du in the vicinity of v0.

The all-pass part of the nonminimum phase transfer function
defined by Equation 7.337 may be written in the form

Hap(jv) ¼ e jc(v) (7:344)

Therefore, the total phase function has two terms:

arg [H(jv)] ¼ w(v)þ c(v) (7:345)

where

w(v) is the minimum phase

c(v) is the nonminimum phase part of the total phase

7.18.5 Amplitude-Phase Relations
in DLTI Systems

A discrete, linear, and time-invariant system (DLTI) is charac-

terized by the Z-pair (see also Chapter 6)

h(i)()Z H(z); z ¼ e jc (7:346)

The sequence h(i) (i¼ 0, 1, 2, . . . ) is the impulse response of the

system to the excitation by the Kronecker delta and H(z) is the
one-sided Z transform of the impulse response called the transfer

function (or frequency characteristic) of the DLTI system, a

function of the dimensionless normalized frequency c¼ 2pf=fs,
where f is the actual frequency and fs the sampling frequency.

For causal systems the impulse response is one-sided (h(i)¼ 0 for

i< 0). The transfer function H(e jc) is periodic with the period

equal to 2p. This periodic function may be expanded into a

Fourier series

H(e jc) ¼
X1

i¼�1
h(i)e�jci ¼

X1

i¼0
h(i)e�jci (7:347)

The Fourier coefficients h(t) are equal to the terms of the impulse

response and are given by the Fourier integral:

h(i) ¼ 1

2p

ðp

�p

H(e
jc

)e jcidc (7:348)

In general, the transfer function is a complex quantity

H(e jc) ¼ A(c)þ jB(c) (7:349)

Analogously to Equation 7.331 the causal impulse response h(i)
can be regarded as a sum of two noncausal even and odd parts of

the form

h(i) ¼ h(0)þ he(i)þ ho(i) (7:350)

The even part is defined by the equation

he(i) ¼ 0:5[h(i)þ h(�i)]; jij > 0 (7:351)

and the odd part by the equation:

ho(i) ¼ 0:5[h(i)� h(�i)] (7:352)

Let us write the Fourier series (Equation 7.347) term by term.

We get

H(e jc) ¼ h(0)þ
X1

i¼l
h(i) cos (ci)� j

X1

i¼l
h(i) sin (ci) (7:353)

The comparison of Equations 7.349 and 7.353 shows that

H(c) ¼ h(0)þ
X1

i¼l
h(i) cos (ci) ¼ h(0)þ F�1[he(i)] (7:354)

and

B(c) ¼ �
X1

i¼l
h(i) sin (ci) ¼ F�1[ho(i)] (7:355)
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and we have a Hilbert pair

A(c)()H B(c) (7:356)

We used the relations H[h(0)]¼ 0 and H[cos (ci)]¼ sin (ci).
Because A(c) and B(c) are periodic functions of c, we may apply

the cotangent form of the Hilbert transform (see Section 7.7).

B(c) ¼ 1

2p
P

ð

p

�p

A(Q)cot[(Q� c)=2]dQ (7:357)

and

A(c) ¼ h(0)� 1

2p
P

ð

p

�p

B(Q) cot [(Q� c)=2]dQ (7:358)

7.18.6 Minimum Phase Property
in DLTI Systems

Analogous to Equations 7.337 and 7.338 the transfer function of

DLTI system may be written in the form:

H(z) ¼ Hw(z)Hap(z) (7:359)

where

Hw(z) satisfies the constraints of a minimum phase transfer
function; that is, has all the zeros inside the unit circle of

the z-plane
Hap(z) is an all-pass function consisting of a cascade of factors

of the form

Hap(z) ¼ [z�1 � zi]=[1� zi*z
�1] (7:360)

The all-pass function has a magnitude of one, hence, H(z) and
Hw(z) have the same magnitude. Hw(z) differs from H(z) in that

the zeros of H(z), lying outside the unit circle at points z¼ 1=zi,
are reflected inside the unit circle at z ¼ zi*. Let us take the

complex logarithm of Hw (e jc):

ln [Hw(e
jc)] ¼ ln jHw(e

jc) j þ j arg [Hw(e
jc)] (7:361)

and analogous to Equations 7.341 and 7.342, we have a Hilbert pair

ln jHw(e
jc) j ¼ ln [h(0)]� 1

2p
P

ð

p

�p

arg[Hw(e
jQ)] cot [(Q� c)=2]

(7:362)

arg [Hw(e
jQ)] ¼ 1

2p
P

ð

p

�p

log jHw(e
jQ)j cot [(Q� c)=2] dQ

(7:363)

It can be proved that the relations (Equations 7.362 and 7.363)

are valid for transfer functions with zeros on the unit circle. In

general, a stable and causal system has all its poles inside, while

its zero may lie outside the unit circle. However, starting from a

nonminimum-phase transfer function, a minimum-phase func-

tion can be constructed by reflecting those zeros lying outside the

unit circle, inside it.

7.18.7 Kramers–Kronig Relations in Linear
Macroscopic Continuous Media

The amplitude-phase relations of the circuit theory are known

in the macroscopic theory of continuous lossy media as the

Kramers–Kronig relations.18,19 Almost all media display some

degree of frequency dependence of some parameters, called dis-
persion. Let us take the example of a linear and isotropic electro-

magnetic medium. The simplest constitutive macroscopic

relations describing this medium are32

D ¼ ee0E ¼ (1þ xe)e0E (7:364)

B ¼ mm0H ¼ (1þ xm)m0H (7:365)

and

P ¼ xee0E (7:366)

M ¼ xmH (7:367)

where

E [V=m] is the electric field vector

H [A=m] is the magnetic field vector

D [C=m2] is the electric displacement

B [Wb=m2] is the magnetic induction

m0¼ 4p 10�7[Hy=m] is the permeability

e0¼ 1=36p 10�9[F=m] is the permittivity of free space

e, m, xm, and xe are dimensionless constants

The vectors P and M are called polarization and magnetization

of the medium. If we substitute the electrostatic field vector E
with a field varying in time as exp( jvt), then the properties of

the medium are described by the frequency-dependent complex

susceptibility

x( jv) ¼ x0(v)� jx00(v) (7:368)

where x0 is an even and x00 an odd function of v. The imaginary

term x00 represents the conversion of electric energy into heat; that
is, losses of the medium. In fact, x( jv) plays the same role as the

transfer function in circuit theory and is defined by the equation

x( jv) ¼ Pme j(vtþw)

e0Eme jvt
¼ Pm

e0Em
e jw (7:369)

Let us apply Fourier spectral methods to examine Equations

7.366 and 7.369. We consider a disturbance E(t) given by the

Fourier pair
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E(t)()F XE( jv) (7:370)

The response P(t) is represented by the Fourier pair

P(t)()F Xp( jv) (7:371)

where

Xp( jv) ¼ e0x ( jv)XE( jv) (7:372)

The multiplication convolution theorem yields the time-domain

solution

P(t) ¼ e0

ð

1

�1

h(t) E(t � t) dt (7:373)

where h(t) is given by the Fourier pair

h(t)()F x( jv) (7:374)

is the ‘‘impulse response’’ of the medium; that is, the response to

the excitation d(t). For any physical medium, the impulse

response is causal. This is possible if x( jv) is analytic. Therefore,
its real and imaginary parts form a Hilbert pair

x00(v) ¼ � 1

p
P

ð

1

�1

x0(h)

h� v
dh (7:375)

x0(v) ¼ 1

p
P

ð

1

�1

x00(h)

h� v
dh (7:376)

These relations are known as the Kramers–Kronig relations and

are a direct consequences of causality. They apply for many

media; for example, in optics, the real and imaginary parts of

the complex reflection coefficient form a Hilbert pair.

7.18.8 Concept of Signal Delay
in Hilbertian Sense

Consider a signal and its Fourier transform

x(t)()F X( jv) (7:377)

Let us assume that the Fourier spectrum X( jv) may be written in

the form of a product defined by Equation 7.337

X( jv) ¼ X1( jv) X2( jv) (7:378)

where

X1( jv) fulfills the constraints of a minimum-phase function

X2( jv) is an ‘‘all-pass’’ function of the magnitude equal to one

and the phase function c(v); that is, X2( jv)¼ e jc(v)

The application of the convolution-multiplication theory yields

the convolution

x(t) ¼ x1(t)*x2(t) (7:379)

where x1(t)()
F

X1( jv) is defined as a minimum-phase signal

satisfying relations (7.341 and 7.342); that is,

arg [X1( jv)]()
H

ln jX1( jv)j (7:380)

and the signal

x2(t)()
F

X2( jv) ¼ e jc(v) (7:381)

is defined as the nonminimum-phase part of the signal x(t).
Let us formulate the following definitions:

Definition 7.1 The minimum phase signal x1(t) has a zero

delay in the Hilbert sense.

Definition 7.2 The delay of the signal relative to the

moment t¼ 0 is defined by a specific property of the signal

x2(t). Krylov and Ponomariev20 used the name ‘‘ambiguity

function’’ for x2(t) and proposed to define the delay by the

position of its maximum. Another possibility is to define the

delay using the position of the center of gravity of x2(t).

Examples

1. If the function x2(t)¼ d(t), the delay equals zero because

x(t) ¼ x1(t)*d(t) ¼ x1(t) (7:382)

2. If the function x2(t)¼ d(t� t0), the delay equals t0
because

x(t) ¼ x1(t)*d(t � t0) ¼ x1(t � t0) (7:383)

3. Consider a phase-delayed harmonic signal and its Four-

ier image:

cos (v0t � w0)()
F

pd(vþ v0)e
jw0 þ pd(vþ v0)e

�jw0

(7:384)

or

cosv0t*d t � w0

v0

� �

()F p[d(vþ v0)þ d(v� v0)]e
�jw0 sgn v

(7:385)
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Evidently the ambiguity function x2(t) is

x2(t) ¼ d t � w0

v0

� �

()F e�jw0 sgn v (7:386)

and the time delay is, of course, t0¼w0=v0, as we could

expect.

4. Consider the series connection of the first-order low-

pass with the transfer function

X1( jv) ¼
1

1þ jvt
(7:387)

and the first-order all-pass with the phase function of

the form

arg [X2( jv)] ¼ tan�1
2vt

(vt)2 � 1
(7:388)

The impulse response of the low-pass is

x1(t) ¼ F�1
1

1þ jvt

� �

¼ 1(t)e�t=t (7:389)

and satisfies the definition of the minimum-phase sig-

nal. The impulse response of the all-pass plays here the

role of the ambiguity function and has the form

x2(t) ¼ F�1 exp
�2vt

v2t2 � 1

� �

¼ 1(t)
2

t
e�t=t � d(t)

We observe that the maximum of x2(t) is at t¼ 0.

However, we expect that the all-pass introduces some

delay. In this case it would be advisable to define the

delay using the center of gravity of the signal x2(t).

7.19 Hilbert Transforms
in the Theory of Sampling

The generation of a sequence of samples of a continuous signal

(sampling) and the recovery of this signal from its samples

(interpolation) is a widely used procedure in modern signal

processing and communications techniques. Basic and advanced

theory of sampling and interpolation is presented in many

textbooks. This section presents the role of Hilbert transforms

in the theory of sampling and interpolation. Figure 7.33, for

reference, is the usual means by which the sequence of samples

is produced. In general, the sampling pulses may be nonequidi-

stant. However, this section presents the role of Hilbert trans-

forms in the basisWKS (Wittaker, Kotielnikow, Shannon) theory

of periodic sampling and interpolation.

The periodic sequence of sampling pulses may be written in

the form (see Equation 7.81)

p(t) ¼ pT(t)*
X1

k¼�1
d(t � kT) (7:390)

where

pT(t) defines the waveform of the sampling pulse (the gener-

ating function of the periodic sequence of pulses)

f¼ 1=T is the sampling frequency

From the point of view of the presentation of the role of

Hilbert transforms in sampling and interpolation, it is sufficient

to use the delta sampling sequence inserting pT(t)¼ d(t). The
delta sampling sequence is given by the formula (remember that d

(t) * d(t)¼ d(t))

p(t) ¼
X1

k¼�1
d(t � kT) (7:391)

For convenience, let us write here the Hilbert transform of this

sampling sequence (see Section 7.7, Equation 7.95)

X1

k¼�1
d(t � nT)()H 1

T

X1

k¼�1
cot [(p=T)(t � kT)] (7:392)

The Fourier image of the delta sampling sequence is given by

another periodic delta sequence

X1

k¼�1
d(t � kT)()F 1

T

X1

k¼�1
d( f � k=T) (7:393)

The sampler produces as an output a sequence of samples given

by the formula

xs(t) ¼
X1

k¼�1
x(kT)d(t � kT) (7:394)

that is, a sequence of delta functions weighted by the samples of

the signal x(t). Let us recall the basic WKS sampling theorem.

Consider a signal x(t) and its Fourier image X( f), v¼ 2pf.

Sampling sequence

Sequence of
samples

T

t

X (t)X (t) ˆ

FIGURE 7.33 A method of generation of a sequence x̂ (t) of samples of

the analog signal x(t).
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If the Fourier image is low-pass band limited, i.e., jX( jf )j ¼ 0 for

j f j>W, then x(t) is completely determined by the sequence

of its samples taken at the moments tk spaced T¼ 1=2W apart.

The sampling frequency fs¼ 2W is called the Nyquist rate. The

multiplication to convolution theorem yields the spectrum of the

sequence of samples

Xs( jf ) ¼ X( jf )*
1

T

X

1

k¼�1
d( f � k=T) (7:395)

Figure 7.34 shows an example of a low-pass band-limited spec-

trum of a signal x(t) and the well-known three spectra of the

sequence of samples: the spectrum of oversampled signal with no

aliasing with the sampling frequency fs¼ 1=T> 2W, the limit

case with fs¼ 2W, and the spectrum of undersampled signal

wife fs< 2 W. Notice that the sequence of samples given by

Equation 7.394 may be regarded as a model of a signal with

pulse amplitude modulation (PAM). The original signal x(t)
may be recovered by filtering this PAM signal using the ideal

noncausal and physically unrealizable low-pass filter defined by

the transfer function

Y(jf ) ¼
1 for j f j < W

0:5 for j f j ¼W

0 for j f j > W

8

<

:

(7:396)

The noncausal impulse response of this filter is

h(t) ¼ F�1[Y( jf )] ¼ 2W
sin (2pWt)

2pWt
(7:397)

–W

–W

–W

–W

–2W

W

W

W

W

2W 3W 4W 5W f

f

f

f

fs

fs

fs

2 fs 3 fsfs

2 fs

X ( j f )

(a)

(b)

(c)

(d)

X [ j ( f – 2nW )]

X [ j ( f – nfs)]

X [ j ( f – nfs)]

0

0

0

0

Aliasing

FIGURE 7.34 (a) A band-limited low-pass spectrum of a signal, (b) the corresponding spectrum of the sequence of sampled with Nyquist rate of

sampling fs< 2W, (c) spectrum by oversampling fs,> 2W, and (d) spectrum by undersampling fs< 2W showing the aliasing of the sidebands.
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and is called the interpolatory function. The total response is a

sum of responses to succeeding samples giving the well-known

interpolatory expansion ( fs¼ 2W):

x(t) ¼
X

1

k¼�1
x

k

2W

� �
sin 2pW t � k

2W

� �
 �

2pW t � k
2W

� � (7:398)

The summation exactly restores the original signal x(t). In the

following text the argument of the interpolatory function will be

written using the notation

2a(t, k) ¼ 2pW t � k

2W

� �

(7:399)

giving the following form of the interpolation expansion

x(t) ¼
X1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

2a(t, k)
(7:400)

Notice that the sampling of the function x(t)¼ a (a constant)

yields the formula

X1

k¼�1

sin [2a(t, k)]

2a(t, k)
¼ 1 (7:401)

This equation may be used to calculate the accuracy of the

interpolation due to any truncation of the summation.

The Whittaker’s interpolatory function and its Hilbert trans-

form are forming the Hilbert pair

sin [2a(t, k)]

2a(t, k)
()H sin2 [a(t, k)]

a(t, k)
(7:402)

Therefore, the interpolatory expansion of the Hilbert transform

H[x(t)] ¼ x̂(t), due to the linearity property, is given by the

formula

x̂(t) ¼
X1

k¼�1
x

k

2W

� �
sin2 [a(t, k)]

a(t, k)
(7:403)

This formula may be applied to calculate the Hilbert transforms

of low-pass signals using their samples. The transfer function of

the low-pass Hilbert filter (transformer) is given by the Fourier

transform of the impulse response given by the right-hand side of

Equation 7.402:

YH( jf ) ¼ F
sin2 (a, k)

a(t, k)

� �

¼ �j sgn( f ) Y( jf )

¼
j for jf j < W

0 for f ¼ 0; 0:5 for jf j
�j for jf j < W

8

><

>:

(7:404)

The sampling of the function x(t)¼ a yields

X1

k¼�1

sin2 [a(t, k)]

a(t, k)
¼ 0 (7:405)

The expansion of the analytic signal c(t) ¼ x(t)þ jx̂(t) using

interpolatory functions has the form

c(t) ¼
X1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

2a(t, k)
þ j

sin2 [a(t, k)]

a(t, k)

� �

(7:406)

and using trigonometric identities we get the following form of

the interpolatory expansion of the analytic signal:

c(t) ¼ �j
X1

k¼�1
x

k

2W

� �
e j2a(t, k) � 1

2a(t, k)
(7:407)

7.19.1 Band-Pass Filtering of the Low-Pass
Sampled Signal

Consider the ideal band-pass with a physically unrealizable trans-

fer function in the form of a ‘‘spectral window’’ as shown in

Figure 7.35. The impulse response of this filter is

h(t) ¼ 2( f2 � f1)
sin [p( f2 � f1)]

p( f2 � f1)t
cos [p( f1 þ f2)t] (7:408)

The insertion f1¼W and f2¼ 3W yields

h(t) ¼ 4W
sin (2pWt)

2pWt
cos (4pWt) (7:409)

If the sequence of samples of the signal x(t) is applied to the input
of this band-pass, the output signal z(t) is given by the inter-

polatory expansion of the form

z(t) ¼
X1

k¼�1
x(k=(2W))

sin [2a(t, k)]

2a(t, k)
cos [4a(t, k)]

� �

(7:410)

0–f1 f1 f2 f

|H ( f )|

–f2

FIGURE 7.35 The magnitude of the transfer function of an ideal

band-pass.

7-48 Transforms and Applications Handbook



where a(t, k) is given by Equation 7.399. We obtained the

compressed-carrier amplitude-modulated signal of the form

z(t) ¼ x(t) cos (4pWt) (7:411)

with a carrier frequency 2W. Therefore, the AM-balanced modu-

lator may be implemented using a sampler and a band-pass.

Multiplication of the carrier frequency is possible using

band-pass filters with f1¼ 3W and f2¼ 5W or f1¼ 5W, and

f2¼ 7W,. . . . The conclusion is that in principle one may multiply

the carrier frequency of AM signals getting undistorted sidebands

(envelope). The comparison of Equations 7.400 and 7.411

enables us to write the signal z(t) in the form

z(t) ¼
X

1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

2a(t, k)

( )

cos (4pWt) (7:412)

and because cos(4pWt� k2p)¼ cos(4pWt), in the form

z(t) ¼
X1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

2a(t, k)
cos (4pWt) (7:413)

Analogously, a SSB AM signal may be produced by band-pass

filtering of the sequence of samples using a filter with f1¼ 2W
and f2¼ 3W (upper sideband). The impulse response of this

filter is

h(t) ¼ 2W
sin (pWt)

pWt
cos (5pWt) (7:414)

\and the interpolatory expansion is

zSSB(t) ¼
X1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

a(t, k)
cos [5a(t, k)] (7:415)

This SSB signal may be written in the standard form given by

Equation 7.289 (see Section 7.17)

zSSB(t) ¼ x(t) cos (4pWt)� x̂(t) sin (4pWt) (7:416)

Let us derive the above form starting with Equation 7.414. Using

the trigonometric identity cos (5a)¼ cos a cos (4a)� sin a sin

(4a), Equation 7.415 becomes

zSSB(t) ¼
X1

k¼�1
x

k

2W

� �
sin [2a(t, k)]

2a(t, k)

�

cos [4a(t, k)]

� sin2 [a(t, k)]

a(t, k)
sin [4a(t, k)]

�

(7:417)

It may be shown in the same manner as before that Equations

7.416 and 7.417 have identical left-hand sides.

7.19.2 Sampling of Band-Pass Signals

Consider a band-pass signal f (t) with the spectrum limited in

band f1< j f j< f2¼ f1þW (see Figure 7.36). In general, a

so-called second-order sampling should be applied to recover,

using interpolation, the signal f (t). However, it may be shown

that alternatively, first-order sampling at the rate W may be

applied with simultaneous sampling of the signal f (t) and of its

Hilbert transform H[ f (t)] ¼ f̂ (t). The following interpolation

formula has to be applied to recover the signal using the

sequences of samples f (k=W) and f̂ (k=W).

f (t) ¼
X1

k¼�1
f

n

W

� 

s t � n

W

� 

þ f̂
n

W

� 

ŝ t � n

W

� 

(7:418)

where the interpolating functions are given by the impulse

response of the band-pass

s(t) ¼ sin (pWt)

pWt
cos 2p f1 þ

W

2

� �

t

� �

(7:419)

and of a band-pass Hilbert filter (see Section 7.22)

ŝ(t) ¼ sin (pWt)

pWt
sin 2p f1 þ

W

2

� �

t

� �

(7:420)

7.20 Definition of Electrical Power
in Terms of Hilbert Transforms
and Analytic Signals

The problem of efficient energy transmission from the source to

the load is of importance in electrical systems. Usually the voltage

and current waveforms may be regarded as sinusoidal. However,

many loads are nonlinear and, therefore, nonsinusoidal cases

should be investigated. In many applications the voltages and

currents are nearly periodic, unperiodic, or even random. There-

fore, some generalizations of theories developed for periodic

cases are needed.

|X( f )|

W

0–f2 –f1 f1 f2 f

W

FIGURE 7.36 The magnitude of the spectrum of a band-pass signal.
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Consider an electrical one-port (linear or nonlinear) as shown

in Figure 7.37. The instantaneous power is defined by the equation

P(t) ¼ u(t)i(t) (7:421)

where

u(t) is the instantaneous voltage across the load
i(t) the instantaneous current in the load

We arbitrarily assign a positive sign to P if the energy P(t)dt is
delivered from the source to the load and a negative sign for the

opposite direction. The above formal definition of power involves

all limitations associated with the definition of voltage, current,

and the electrical one-port.

Let us introduce the notion of quadrature instantaneous power
defined by the equation

Q(t) ¼ u(t)̂i(t) ¼ �û(t)i(t) (7:422)

where û and î are Hilbert transforms of the voltage and current

waveforms.

7.20.2 Harmonic Waveforms of Voltage
and Current

Consider the classical case of a linear load with sine waveforms of

u(t) and i(t). We have

u(t) ¼ U cos (vt þ wu) (7:423)

i(t) ¼ J cos (vt þ wi) (7:424)

The instantaneous power is

P(t) ¼ UJ cos (vt þ wu) cos (vt þ wi) (7:425)

The Fourier series expansion of P(t) is

P(t)¼ 0:5UJ cos (wi�wu)þ 0:5UJ[ cos [2(vtþwi)] cos (wi�wu)

� sin [2(vtþwi)] sin (wi�wu)] (7:426)

The instantaneous quadrature power is

Q(t) ¼ UJ cos (vt þ wu) sin (vt þ wi) (7:427)

The Fourier series expansion of Q(t) is

Q(t)¼ 0:5UJ sin (wi�wu)þ 0:5UJ [ sin [2(vtþwi)] cos (wi�wu)

þ cos [2(vtþwi)] sin (wi�wu)] (7:428)

The mean value of P(t) defined by the equation

�P ¼ 1

T

ð

T

0

P(t)dt ¼ 0:5UJ cos (wi � wu); v ¼ 2p

T
(7:429)

is called the active power and it is a measure of the unilateral

energy transfer from the source to the load. The mean value of

the quadrature power Q(t) defined by the equation

�Q ¼ 1

T

ð

T

0

Q(t)dt ¼ 0:5UJ sin (wi � wu) (7:430)

is called the reactive power. The value of the reactive power

depends on energy that is delivered periodically back and forth

between the source and the load with no net transfer. The

waveform of the instantaneous power given by Equation 7.426

is shown in Figure 7.38 (for convenience wu¼ 0). The energy

transfer from the source to the load is given by the integral

Eþ ¼
1

v

ð

p=2�wi

�p=2

UI cos (vt) cos (vt þ wi)dvt

¼ UI

2v
[(p� w) coswþ sinw] (7:431)

and the energy transfer from the load to the source during the

remaining part of the half-period is

Linear or
nonlinear

load
u (t)

i (t)

FIGURE 7.37 An electrical one-port where u(t) is the instantaneous

voltage and i(t) the instantaneous current.

0 0.5 π π ωt

P (t)

φi

FIGURE 7.38 The waveform of the instantaneous power given by

Equation 7.425.
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E� ¼
1

v

ð

p=2

p=2�wi

UI cos (vt) cos (vt þ wi)dvt

¼ UI

2v
[w cosw� sinw] (7:432)

Therefore, the net energy transfer toward the load is

E ¼ Eþ � E� ¼
UIT

4
cos (wi) (7:433)

The division of this energy by 0.5T gives the mean value of the

power equal to the active power. However, the division of E� by

0.5T yields

�P� ¼
2E

T
[w coswi � sinwi] (7:434)

and this mean power differs from the reactive power defined by

Equation 7.430. Therefore, the notions of active and reactive

power differ considerably. The active power equals the time-

independent or constant term of the instantaneous power given

by the Fourier series (Equation 7.426) while the reactive

power equals the amplitude of the quadrature (or sine) term of

Equation 7.426. Notice that in the Fourier series (Equation 7.428)

the role of both quantities is reversed. Let us recall that the

quantity

S ¼ 0:5UJ ¼ URMSJRMS (7:435)

is called the apparent power and the quantity

r ¼ cos (wi � wu) ¼
�P

S
(7:436)

is called the power factor. The power factor may be regarded as a

normalized correlation coefficient of the voltage and current signals

while sin (wi�wu)¼ SQR(1� r2) may be called the anticorrelation

coefficient. The quantities S, �P, and �Q satisfy the relation

S2 ¼ �P2 þ �Q2 (7:437)

7.20.3 Notion of Complex Power

Consider the analytic (complex) form of the voltage and current

harmonic signals defined by Equations 7.423 and 7.424. We have

cu(t)¼U exp(vtþwu) and ci(t)¼ J exp(vtþwi). The complex

power is defined by the equation

S ¼ 1

2
cu(t)ci

*(t) ¼ 0:5U J exp [ j(wi � wu)] (7:438)

In the following text, the symbol S will be used to denote the

complex power. We have

S ¼ P þ j Q ¼ jSj exp [ j(wi � wu)] (7:439)

The real part of S equals the active power and the imaginary

part equals the reactive power. The module of the complex power

equals the apparent power and the argument equals the phase

angle wi�wu.

7.20.4 Generalization of the Notion of Power

The above-described well-known notions of apparent, active, and

reactive power were in the past generalized by several authors for

nonsinusoidal cases and later for signals with finite average

power. The nonsinusoidal periodic waveforms of u(t) and i(t)
may be described in the frequency domain by the Fourier series:

u(t) ¼ U0 þ
X

N

n¼1
Un cos (nvt þ wun) (7:440)

i(t) ¼ I0 þ
X

N

n¼1
Jn cos (nvt þ win) (7:441)

where

v is a constant equal to the fundamental angular frequency,

v¼ 2p=T
T is the period

Some or even all harmonics of the voltage waveform may not be

included in the current waveform and vice versa. The active

power may be defined using the same equation (Equation 7.429)

as for sinusoidal waveforms. Inserting Equations 7.440 and 7.441

into Equation 7.429 yields

�P ¼ U0J0 þ
X

0:5UnJn cos (win � wun) (7:442)

The summation involves terms included in both waveforms.

Analogously, the reactive power is defined using Equation 7.430:

�Q ¼
X

0:5UnJn sin (win � wun) (7:443)

This definition of the reactive power was proposed in 1927 by

Budeanu6 and is nowadays commonly accepted. It has been

sometimes criticized as ‘‘lacking of physical meaning.’’ Another

definition of reactive power was introduced by Fryze10 who

proposed to resolve the current waveform in two components:

i(t) ¼ ip(t)þ iq(t) (7:444)

The ‘‘in-phase’’ component is given by the relation

ip(t) ¼
1
T

Ð T
0 iudt

1
T

Ð T
0 u2dt

u(t) ¼
�P

U2
RMS

u(t) (7:445)
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URMS is the root mean square (RMS) value of the voltage. The

‘‘quadrature’’ component is

iq ¼ i� ip (7:446)

and satisfies the orthogonality property

ð

T

0

iqipdt ¼ 0 (7:447)

This orthogonality yields for the RMS values:

I2RMS ¼ I2p,RMS þ I2q,RMS (7:448)

The reactive power is defined by the product

Q ¼ URMS Iq, RMS (7:449)

The comparison of Budeanu’s and Fryze’s definitions of the

reactive power shows how misleading it is to apply the same

name, ‘‘reactive power,’’ for notions having different definitions.
Let us illustrate this statement with an example. A source of a

cosine voltage is loaded with the ideal diode with a nonlinear

characteristic (see Figure 7.39)

i ¼ Gu if u > 0
i ¼ 0 if u < 0

(7:450)

The current has the waveform of a half-wave rectified cosine

(see Figure 7.39a) and may be resolved into the in-phase and

quadrature components. The Fourier series expansion of the

current has the form

i(t) ¼ U

p
1� p

2
cos (vt)þ 2

3
cos (2vt)

�

� 2

15
cos (4vt)þ 2

35
cos (6vt)� � � �

�

(7:451)

The in-phase component is

ip(t) ¼
U

2
cos (vt) (7:452)

and the Fourier series of the quadrature component (full-wave

rectified cosine) is

iq(t) ¼
U

p
1þ 2

3
cos (2vt)� 2

15
cos (4vt)

�

þ 2

35
cos (6vt)� � � �

�

(7:453)

The reactive power defined by Equation 7.443 equals zero while

the reactive power is defined by Equation 7.449 equals

Q ¼ U2

8
(7:454)

However, the instantaneous power (Figure 7.39) is always posi-

tive, so there is no energy oscillating back and forth between the

source and load. Therefore, we should expect that the reactive

power equals zero. This requirement is satisfied using Budeanu’s

definition but not Fryze’s definition.

7.20.5 Generalization of the Notion of Power
for Signals with Finite Average Power

A generalized theory of electric power by use of Hilbert trans-

forms was presented by Nowomiejski.24 He considered voltages

and currents with finite average power; that is, finite RMS defined

by the equations

URMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T)1

1

2T

ðT

�T

u2(t)dt

v
u
u
u
t (7:455)

IRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T)1

1

2T

ðT

�T

i2(t)dt

v
u
u
u
t (7:456)

i (t)

u (t)
t

t

t

t

P (t)

i (t)

ip (t)

iq (t)

Voltage
and

current

In-phase
current

Quadrature
current

Instantaneous
power

u (t)

FIGURE 7.39 (a) A source of sine voltage loaded with a diode, (b) the

voltage and current waveforms, (c) the in-phase component of the cur-

rent, (d) the quadrature component of the current, and (e) the waveform

of the instantaneous power.
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The apparent power is defined as

S ¼ URMS IRMS (7:457)

and the active and reactive powers are defined by means of the

relations

�P ¼ lim
T)1

1

2T

ð

T

�T

u(t)i(t)dt (7:458)

and

�Q ¼ lim
T)1

1

2T

ð

T

�T

u(t)i(t)dt (7:459)

or

�Q ¼ � lim
T)1

1

2T

ð

T

�T

û(t)i(t)dt (7:460)

where ^ indicates the Hilbert transform. Nowomiejski has not

explicitly defined the notion of the quadrature power (see Equa-

tion 7.422) but in fact the integrand in Equations 7.459 and 7.460

equals Q(t). However, a new quantity called distortion power was
defined. Generally, for each value of T the identity

ð

T

�T

u2(t)dt

ð

T

�T

i2(t)dt ¼
ð

T

�T

u(t)i(t)dt

�
�
�
�
�
�

�
�
�
�
�
�

2

þ
ðT

�T

ðT

�T

1

2
[u(t)i(t)

� u(t)i(t)]2dtdt (7:461)

holds true, and because the limit exists

S2 lim
T)1

1

2T

ðT

�T

u2(t)dt

8

<

:

9

=

;
lim
T)1

1

2T

ðT

�T

i2(t)dt

8

<

:

9

=

;
(7:462)

the quantity D, called distortion power, may be defined by means

of the equation

�D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T)1

1

2T

� � ðT

�T

ðT

�T

1

2
[u(t)i(t)� u(t)i(t)]2dtdt

v
u
u
u
t (7:463)

Based on Equation 7.461 we arrive at

S2 ¼ �P2 þ �D2 (7:464)

In the case

i(t) ¼ const u(t) (7:465)

the quadrature component defined by Equation 7.439 equals

zero and the distortion power equals zero, too. Otherwise, the

distortion power is given by

�D ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
T)1

1

2T

ðT

�T

i2q(t)dt

v
u
u
u
t (7:466)

Let us define a power factor rD using the relation

rD ¼
�P

�P2 þ �D2
(7:467)

The power factor is a measure of the efficiency of the utilization

of the power supplied to the load being equal to unity only, if the

distortion power D¼ 0. The cross-correlation of the instantan-

eous voltage and current waveforms is defined by the integral

rui(t) ¼ lim
T)1

1

2T

ðT

�T

u(t)i(t � t)dt (7:468)

This function enables us to introduce the frequency domain

interpretations of the above-defined powers. The cross-power
spectrum Q(v) is defined by the Fourier pair

ru�i(t)()
F

Q(v) (7:469)

It may be shown that the active power is given by the integral of

the power spectrum

�P ¼ 1

2p

ð1

�1

Q(v)dv (7:470)

In general, Q(v) is a complex function, but the integral of the

odd imaginary part equals zero. The reactive power is given by

�Q ¼ 1

2pj

ð1

�1

sgn(v)Q(v)dv (7:471)

Hence, the complex power is

S ¼ �P þ j�Q ¼ 1

2p

ð1

�1

[1þ sgn(v)]Q(v)dv (7:472)

Because the integrand presents a one-sided complex power spec-

trum, the complex power is an analytic function and �P and �Q
form a pair of Hilbert transforms. If at least one of the signals u(t)
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or i(t) does not contain a constant component, Equation 7.472

reduces to the form

S ¼ �P þ j�Q ¼ 1

p

ð

1

�1

Q(v)dv (7:473)

Notice that the Wiener–Khinchin relation (Equation 7.469)

holds for stationary and ergodic processes. If the load presents

a linear, time-invariant, and strictly stable system defined by the

Fourier pair

h(t)()F H(jv) (7:474)

(where h(t) is the impulse response and H(jv) is the transfer

function) then the autocorrelation function of the voltage and its

power spectrum are given by the Fourier pair

ru�u(t)()
F

F(v) (7:475)

and the RMS values of the voltage and current have the form

U2
RMS ¼ ru�u(0); I2RMS ¼

1

2p

ð

1

�1

F(v)jH(jv)j2 dv (7:476)

and the complex power is given by

S ¼ �P þ j�Q ¼ 1

p

ð

1

�1

F(v)H*(v)dv (7:477)

7.21 Discrete Hilbert Transformation

The theory and applications of the discrete Hilbert transform-

ation (DHT) are closely tied with the principles of digital signal

processing.26,30 Because discrete transforms will be included in

another handbook in this series, this section presents only basic

concepts. The formulas for the DFT and for the Z-transform-

ation are given to fix the notations because there are various

notations (definitions) of the DFT.

For reference, let us recall the Fourier transformations given

by Equations 7.6 or 7.7 and defined using the exponential kernels

exp(�j2pft) and exp( j2pft), respectively (v¼ 2pf). In digital

signal processing, a time signal u(t) is substituted by a sequence

of samples u(i). Therefore, in the DFT the time variable t is

replaced by the discrete integer variable i, 0� i�N� 1, where

N is the length of the sequence. The discrete signal has the form

of a sequence of samples u(0), u(1), u(2), . . . , u(N� 1). The DFT

of this sequence is defined by the formula

U(k) ¼
X

N�1

i¼0

u(i)e�jw; w ¼ 2pik=N (7:478)

where k is a discrete integer frequency variable, 0� k�N� 1.

The discrete spectrum is periodic; that is U(k)¼U(kþN)¼
U(kþ 2N). . . . The inverse transformation denoted DFT�1 has

the form

u(i) ¼ 1

N

X

N�1

k¼0

U(k)e jw (7:479)

The sequence generated by this inverse transformation is

periodic; that is, u(t)¼ u(iþN)¼ u(iþ 2N) ¼ . . . . Usually of

interest is the basic period. The comparison of Fourier integrals

with the DFT shows that integration is replaced by summation

and the exponential kernel exp(�jvt) is replaced by exp(�jw).
The discrete Fourier pair may be shortened to

u(i)()DFT
U(k) (7:480)

In general, for real sequences u(i) is the spectral function U(k) is
complex, i.e.,

U(k) ¼ Ure(k)þ j Uim(k) (7:481)

The real part is defined by the cosine DFT of the form

Ure(k) ¼
X

N�1

i¼0

u(i) cos (w) (7:482)

and the imaginary part by the sine DFT of the form

Uim(k) ¼
X

N�1

i¼0

u(i) sin (w) (7:483)

A given sequence may be resolved in two parts

u(i) ¼ ue(i)þ uo(i) (7:484)

where for even values of N the even and odd parts are given by

ue(i) ¼
u(N=2þ i)þ u(N=2� i)

2
;

uo(i) ¼
u(N=2þ i)� u(N=2� i)

2

(7:485)

with N=2� i�N� 1. The cosine transform depends only on

ue(i) and the sine transform on u0(i). Using the complex form

(Equation 7.481) the inverse DFT may be written in the form

u(i) ¼ 1

N

X

N�1

k¼0

[URe(k) cos (w)� Uim(k) sin (w)] (7:486)

The one-sided Z-transformation of the sequence u(i) is defined
by the formula (see also Chapter 6)

U(z) ¼
X

N�1

i¼0

u(i)z�1 (7:487)
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where the complex frequency variable z¼ xþ jy is continuous

differently than the discrete frequencies used in the DFTs.

We shall denote the Z-pair by

u(i)()z U(z) (7:488)

The discrete one-sided convolution is defined by the equation

y(i) ¼
X

N�1

m¼0
h(i�m)u(m) (7:489)

and if h(i)()z H(z) and u(i)()z U(z) then the well-known

convolution to multiplication property yields the Z-pair

y(i)()z H(z)U(z) (7:490)

Because the DFT is periodic, it is a periodic function of the

normalized frequency

c ¼ 2pk=N (7:491)

The basic period equals the interval 0�c< 2p, the next period

is 2p�c< 4p, and so forth. The DFT equals the Z-transform
for values of z given by

z ¼ e jc; c ¼ 2pk=N (7:492)

that is, equally spaced on the unit circle of the z-plane (see Figure
7.40). The half-period 0�c<p (upper half-circle) is classified as

positive frequencies and the other half-period, p�c< 2p, as

negative frequencies. The insertion of Equation 7.492 in Equation

7.490) yields the k-domain form of the multiplication to convolu-

tion theorem

y(i) ¼ u(i)*h(i)()DFT
U(k)H(k) (7:493)

The discrete equivalent of the delta pulse is the Kronecker delta

sample

dK (i) ¼ 1 for i ¼ 0
0 for i 6¼ 0

�

(7:494)

The impulse response of the DLTI system defined as the response

to the dK sample and the transfer function H(z) of the system are

forming a Z-pair

h(i)()z H(z) (7:495)

The insertion z¼ e jc (c¼ 2p k=N) yields the relation

h(i)()DFT
H(k) (7:496)

The transfer function of an ideal discrete Hilbert filer is defined

by the equation (N even)7

(k) ¼
�j for k ¼ 1, 2, . . . ,N=2� 1

0 for k ¼ 0 and N=2� 1

j for k ¼ N=2þ 1,N=2þ 2, . . . ,N � 1

8

><

>:

(7:497)

This transfer function may be written in the closed form

H(k) ¼ �j sgn(N=2� k)sgn(k) (7:498)

where

sgn(x) ¼
1 for x > 0

0 for x ¼ 0

�1 for x < 0

8

<

:
(7:499)

The output sequence y(i) of the Hilbert filter by a given input

sequence u(i) defines the discrete Hilbert pair

u(i)()DHT
y(i) (7:500)

11

N
2

12

13 N = 24

jY

k = 23

k = 24

k = 0

k = 1

k = 2

Positive frequencies

e
j 2π

k
N

Negative frequencies

FIGURE 7.40 The unit circle in the z¼ xþ jy plane (see Equation

7.492, N¼ 24).
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The impulse response of the Hilbert filter is given by the inverse

DFT of H(k):

h(i) ¼ 1

N

X

N�1

k¼0
H(k)e jw ¼ 1

N

X

N�1

k¼0
�jsgn(N=2� k)sgn(k)e jw

¼ 1

N

X

N�1

k¼0
sin(w) (7:501)

(w¼ 2pik=N). The closed form of this sum is (see Figure 7.41)

h(i) ¼ 2

N
sin2(pi=2)cot(pi=N) i ¼ 0, 1, . . . ,N � 1 (7:502)

Therefore, the impulse response is given by the samples of the

cotangent function (compare with Equation 7.104 with the even

samples (i¼ 0, 2, 4, . . . , N) canceled by the term sin2 (pi=2). The
convolution to multiplication theorem (Equation 7.493) yields

the DHT in the form of the convolution

y(i) ¼ �u(i)
 h(i) ¼ �u(i)
 2

N
sin2(pi=2)cot(pi=N)

i ¼ 0, 1, . . . ,N � 1(N even) (7:503)

where the sign 
 denotes a so-called circular convolution. This

convolution may be written in the form

y(i) ¼
X

N�1

r¼0
h(i� r)u(r) (7:504)

Concluding, the DHT of a given sequence u(i) may be calculated

using the above circular convolution or alternatively via the DFT

using the algorithm

u(i) )DFTU(k)) V(k) ¼ �j sgn (N=2� k) sgn(k)U(k)

)DFT
�1

y(i) i ¼ 0, 1, . . . ,N � 1(N even) (7:505)

Both algorithms give exactly the same result. Of course, the

convolution algorithm is faster, because it involves only a single

summation. However, the DFT may be replaced by the FFT.

The above formulas apply for even values of N. If N is odd, the

transfer function of the Hilbert filter has the form

(k) ¼
�j for k ¼ 1, 2, . . . , (N � 1)=2

0 for k ¼ 0

j for k ¼ N=2þ 1, (N þ 1)=2, . . . ,N � 1

8

>

<

>

:

(7:506)

and the impulse response is

h(i) ¼ 2

N

X

(n�1)=2

k¼1
sin (2pik=N); i ¼ 0, 1, 2, . . . ,N � 1 (7:507)

or

h(i) ¼ 1

N
1� cos (pi)

cos (pi=N)
cot (pi=N)

� �

(7:508)

7.21.1 Properties of the DFT and DHT
Illustrated with Examples

7.21.1.1 Parseval’s Theorem

Consider the discrete Fourier part u(i)()DFT U(k). The discrete

form of the Parseval’s energy (or power) equality has the form

E[u(i)] ¼
XN�1

i¼0
ju(i)j2 ¼ 1

N

XN�1

k¼0
jU(k)j2 (7:509)

This equation may be used to check the correctness of calcula-

tions of DFTs and DHTs. However, the energies of the sequences

u(i) and its DHT, y(i), may differ, in general,

E[u(i)] 6¼ E[y(i)] (7:510)

The explanation is given by Equation 7.505. The operator� j
sgn(N=2� k) sgn(k) cancels the spectral terms U(0) and U
(N=2). The term U(0) has the form

U(0) ¼
XN�1

i¼0
u(i) ¼ N uDC (7:511)

h(i)

126 18 24
i

0

cot(πi/N )2
N

FIGURE 7.41 The noncausal impulse response of a Hilbert filter (see

Equation 7.20.5), N¼ 24.
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where uDC is the mean value of the signal sequence u(i), or
in electrical terminology, the DC term. The algorithm of

DHT cancels this term. Therefore, the sequence y(i) is defined by

the DHT pair

uAC(i)()
DFT

y(i) (7:512)

where uAC(i)¼ u(i)� uDC is the alternate current component of

the signal sequence (with DC term removed). The energies of the

sequences uAC(i) and y(i) are given by the equation

X

N�1

i¼1
juAC(i)j2 ¼

X

N�1

i¼1
jy(i)j2 þ jU(N=2)j2

N
(7:513)

that is, the energies differ by the energy of the spectral term

U(N=2) and only if this term equals zero are both energies

equal.

Example

Consider the signal given by a Kronecker delta u(0)¼ dK(i) and
u(i)¼ 0 for i	 1, N¼ 8. This sequence and its DFT are shown in

Figure 7.42a and b. The circular convolution (Equation 7.503)

yields in this case

y(i) ¼ �dK (i)*
1

4
sin2 (pi=2) cot (pi=N) (7:514)

that is, the following sequence

i 0 1 2 3 4

y(i) 0 [cot (p=8)]=4 0 [cot (3p=8)]=4 0

5 6 7

�[cot (3p=8)]=4 0 �[cot (3p=8)]=4

where

[cot (p=8)]=4 ¼ (
ffiffiffi

2
p

þ 1)=4 ¼ 0:6035 . . .

[cot (3p=8)]=4 ¼ (
ffiffiffi

2
p

� 1)=4 ¼ 0:1035 . . . :

The sequence y(i) and it DFT are shown in Figure 7.42c

and d. The DC term defined by Equation 7.511 is

uDC¼ 1=N¼ 0.125. For convenience, Figure 7.42e and f

shows the sequence uAC(i) and its DFT. The energies are E[u

(i)]¼ 1, E[uAC(i)]¼ 1� 12=N¼ 0.875, E[y(i)]¼ 1� 12=N� 12=
N¼ 1� 2=N¼ 0.75.

7.21.1.2 Shifting Property

Consider the discrete Fourier pair u(i)()DFT
U(k). It can be

shown that

u(iþm)()DFT
e j2pmk=NU(k) (7:515)

where m is an integer.

Example

The spectrum of Figure 7.42b is real with all samples equal

to 1. The shifted-by-one interval (m¼ 1) delta pulse and its

spectrum are

dK (i �m)()DFT e�j2pmk=N (7:516)

This spectrum is complex and of the form

k 0 1 2 3 4 5 6 7

Ure(k) 1
ffiffiffi
2

p
=2 0 �

ffiffiffi
2

p
=2 �1 �

ffiffiffi
2

p
=2 0

ffiffiffi
2

p
=2

Uim(k) 0 �
ffiffiffi
2

p
=2 �1 �

ffiffiffi
2

p
=2 0

ffiffiffi
2

p
=2 1

ffiffiffi
2

p
=2

jU(k)j 1 1 1 1 1 1 1 1

This example shows the general rule that shift changes in

phase relations will have no effect on the magnitude of the

spectrum.

7.21.1.3 Linearity

Consider the discrete Fourier pairs u1(i)()DFT
U1(k) and

u2(i)()DFT
U2(k). Due to the linearity property the summation

of the sequences yields

au1(i)þ bu2(i)()DFT
aU1(k)þ bU2(k) (7:517)

60(a)

(b)

(c)

(d)

(e)

(f )

u (i)

υ (i)

V (k)

uAC (i)

UAC (k)

U (k)

1 2 3 4 5 7 8 9

60 1 2 3 4 5 7 8 9

6

0 1 2 3 4

5 7

8 9

6

0

0

1 2 3 4

1 2 3 4

5 7

65 7

8

9

8 9

i

k

k

i

i

60 1 2 3 4 5 7 8 9
k

FIGURE 7.42 (a) The sequence u(i) consisting of a single sample dK(i),
(b) its spectrum U(k) given by the DFT, (c) the samples of the discrete

Hilbert transform, (d) the corresponding spectrum V(k), (e) the samples

of the AC component of u(i), and ( f ) the corresponding spectrumUAC(k).
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where a and b are constants. The linearity property applies also

for the DHTs:

au1(i)þ bu2(i)()
DFT

ay1(i)þ by2(i) (7:518)

Example

Consider the sequence of two deltas u(i)¼ dK(i)þ dK(i� 1) for

i¼ 0 and 1 and u(i)¼ 0 for 1< i�N� 1, N¼ 8. The DFT of this

sequence may be obtained by adding to each term of the real

part of the spectrum given by Equation 7.516 the number 1;

that is, the terms of the spectrum of dK(i) (see Figure 7.42b).

This yields the complex spectrum

k 0 1 2 3 4 5 6 7

Ure(k) 2 1þ
ffiffiffi
2

p
=2 1 1�

ffiffiffi
2

p
=2 0 1�

ffiffiffi
2

p
=2 1 1þ

ffiffiffi
2

p
=2

Uim(k) 0 �
ffiffiffi
2

p
=2 �1 �

ffiffiffi
2

p
=2 0

ffiffiffi
2

p
=2 1

ffiffiffi
2

p
=2

jU(k)j 2 1:847 . . .
ffiffiffi
2

p
0:765 . . . 0 0:765 . . .

ffiffiffi
2

p
1:847 . . .

Notice that the term U(N=2)¼U(4) equals zero. Therefore, the

energies E[uAC(i)]¼ E[y(i)]¼ 2� 22=N¼ 1.5 are equal. The DC

term uDC¼ 2=N¼ 0.25.

Example

Consider the sequence

u(i) ¼ e�0:05p[(N�1)=2�i]2 ; N ¼ 16 (7:519)

representing a sample Gaussian pulse as shown in Figure 7.43

(top). Figure 7.43 (middle=bottom) shows the DFT of this

pulse and the DHT calculated via the DFT. The DC term equals

uDC¼ 0.2795. . . . The energies are E[u(i)]¼ 3.1622 . . . , E[uAC(i)]¼
E[y(i)]¼ 1.9122 . . . , that is, the energy difference is negligible

due to the negligible value of the term U(N=2).

7.21.2 Complex Analytic Discrete Sequence

A sequence of complex samples of a signal and its discrete

Hilbert transform does not represent an analytic signal in the

sense of the definition of the analytic function. However, it is

possible to define the analytic sequence of the form of a sequence

of samples

c(i) ¼ u(i)þ jy(i) (7:520)

where y(i) is the DHT of u(i). Let us derive the spectrum of the

sequence c(i). If u(i)()DFT
U(k), then the spectrum of y(i) given

by Equation 7.505, and due to the linearity property, the spec-

trum of the complex sequence c(i) is

c(i)()DFT
U(k)þ j[� j sgn(N=2� k) sgn(k)]U(k)

that is,

c(i)()DFT
[1þ sgn(N=2� k) sgn(k)]U(k)

k ¼ 0, 1, . . . ,N � 1(N even)
(7:521)

The spectrum is doubled at positive frequencies and canceled at

negative frequencies.

Example

Consider the signals and spectra of Figure 7.42. Figure 7.44

shows the real spectra of the delta pulse and its DHT and the

resulting spectrum of the complex sequence. The terms of

the spectrum of u(i) are canceled at negative frequencies and

doubled at positive frequencies. The DC term, i.e., U(0), is

unaltered. The property that analytic sequences have a one-

sided spectrum makes it possible to implement antialiasing

schemes of sampling.

0.5

0.5

u (i)

|U (k)|

υ (i)

0

0

5

4

3

2

1

0 8 16

0

0

8 16

8 16

i

i

k

1

FIGURE 7.43 (Top) A sequence of samples of a Gaussian pulse,

(middle) the samples of the DHT, and (bottom) the samples of the

magnitude of the DFT of the Gaussian pulse.
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7.21.3 Bilinear Transformation and
the Cotangent Form of Hilbert
Transformations

The transfer function of an analog LTI system is defined as the

quotient of the output-to-input analytic signals (see Equation

7.325), and if analytical, is an analytic function of the complex

frequency s¼aþ jv. Similarly, the transfer function of the

DLTI system defined by Equation 7.495, if analytical, is an analytic

function of the complex variable z¼ xþ jy. Let us study the prob-
lemof a conformalmapping of the s-plane into the z-plane bymeans

of the bilinear transformations defined by the formulae

z ¼ 1þ s

1� s
(7:522)

and

s ¼ z � 1

z þ 1
(7:523)

where s is a normalized complex frequency (normalized

s¼ s=fs¼ sDt, where fs is the sampling frequency and Dt the

sampling period). Inserting s¼aþ jv into Equation 7.522 and

equating the real and imaginary parts yields

x ¼ 1� a2 � v2

(1� a)2 þ v2
; y ¼ 2v

(1� a)2 þ v2
(7:524)

These equations are mapping a family of orthogonal lines

a¼ const. andv¼ const. of the s-plane into a family of orthogonal

of the z-plane, as shown in Figure 7.45. The magnitude of the

variable is jzj ¼ SQR(x2þ y2) giving

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1þ a)2 þ v2

(1� a)2 þ v2

s

(7:525)

and the argument

c ¼ arg (z) ¼ tan�1
2

1� a2 � v2

� �

(7:526)

This equation defines the nonlinear dependence between the

angular frequency v and the normalized frequency c defined by

the representation z¼ e jc (see Equation 7.492). For s¼ jv; that is,
a¼ 0, Equation 7.526 takes the form of a quadratic equation

tan (c)v2 þ 2v� tan (c) ¼ 0 (7:527)

The roots of this equation are

v ¼ tan (c=2) (7:528)

and

v ¼ �cot (c=2) (7:529)

Let us use these nonlinear relations to derive a new form of Hilbert

transformations. We start with the Hilbert transformation

B(v) ¼ � 1

p
P

ð1

�1

A(h)

h� v
dh (7:530)

Let us introduce the notations

h ¼ tan (f=2);v ¼ tan (c=2) (7:531)

and dh¼ 0.5[1þ tan2(f=2)]df. We get

B(c) ¼ 1

p
P

ðp

�p

A[ tan (f=2)]

tan (f=2)� tan (c=2)
0:5[1þ tan2 (f=2)]df

(7:532)

4 5 6 7

5 6 7

8 9
k

k

k

8 9

0

0

1

1

2 3

4 5 6 7 8 90 1 2 3

2 3 4

U (k)

V (k)

Ψ (k)

FIGURE 7.44 (Top, middle) The spectra U(k) and V(k) of Figure 7.42;
(bottom) the corresponding spectrum of the analytic sequence.
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FIGURE 7.45 The mapping of the s-plane, s¼aþ jv, into the z-plane,
z¼ xþ jy, defined Equation 7.524. Let us introduce the notations
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By means of the trigonometric relation

1þ tan2 (f=2)

tan (f=2)� tan (c=2)
¼ tan (f=2)þ cot [(f� c)=2] (7:533)

we get

B(c) ¼ � 1

2p

ð

p

�p

A[ tan (f=2)] tan (f=2)df

� 1

2p

ð

p

�p

A[ tan (f=2)] cot [(f� c)=2]df (7:534)

If we start with the inverse Hilbert transformation

A(v) ¼ 1

p
P

ð

1

�1

B(h)

h� v
d h (7:535)

the same derivation gives

A(c) ¼ 1

2p

ð

p

�p

B[ tan (f=2)] tan (f=2)df

þ 1

2p

ð

p

�p

B[ tan (f=2)]cot [(f� c)=2]df (7:536)

The first term of Equation 7.534 is a constant depending only on

the even part of A[tan(f=2)], while the first term of Equation

7.536 depends only on the odd part of B[tan(c=2)].
If we use instead of Equation 7.528 the next root defined by

Equation 7.529, then Hilbert transformations (7.534) and (7.536)

have the alternative form:

B(c) ¼ �1
2p

ð

2p

0

A[�cot (f=2)] cot (f=2)df

� 1

2p

ð

2p

0

A[�cot (f=2)] cot [(f� c)=2]df (7:537)

A(c) ¼ 1

2p

ð

2p

0

B[�cot (f=2)] cot (f=2)df

þ 1

2p

ð

2p

0

B[�cot (f=2)] cot [(f� c)=2]df (7:538)

The Hilbert transforms in the cotangent form are periodic func-

tions of the variable c.

Example

Consider the square function

A(v) ¼
1 for jvj < a

0:5 for jvj ¼ a

0 for jvj > a

8

>

<

>

:

(7:539)

Introducing v¼ tan(c=2) gives

A[ tan (c=2)] ¼
1 for jcj < cp ¼ 2 tan�1 (a)

0:5 for jcj ¼ cp

0 for jcj > cp

8

>

<

>

:

(7:540)

The Hilbert transform defined by Equation 7.538 is here

B(c) ¼ � 1

2p

ð

cp

�cp

tan
f

2

� �

df

� 1

2p

ð
cp

�cp

cot
f� c

2

� �

df (7:541)

The first integral equals zero and the result of the second

integration (Cauchy Principal Value (CPV) value) is

3

–3

–10 10ψ

–10 10ψ

B
(ψ

)

3

–3

B
(ψ

)

ψp = 0.4 π

ψp = 0.1 π

FIGURE 7.46 The function B(c) given by Equation 7.542.
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B(c) ¼ 1

p
ln

sin
cp þ c

2

sin
cp � c

2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

(7:542)

Figure 7.46 shows B(c) for two values of cp:0.4p and 0.1p
corresponding to the normalized frequencies v ffi 0.726

and 0.155. The functions A(c) and B(c) are periodic with the

period of 2p.

7.22 Hilbert Transformers (Filters)

The Hilbert transformer, also called a quadrature filter or wide-
band 908 phase shifter, is a device in the form of a linear two-port

whose output signal is a Hilbert transform of the input signal.

Hilbert transformers find numerous applications, for example, in

radar systems, SSB modulators, speech processing, measurement

systems, schemes of sampling band-pass signals, and many

other systems. They are implemented as analog or digital filters.

The transfer function of the ideal analog Hilbert filter is (see

Equation 7.10)

H(jf ) ¼ F[1=(pt)] ¼ jH( jf )jejw( f ) ¼ �j sgn( f ) (7:543)

Hence, the transfer function is given by

H(jf ) ¼
�j for f > 0
0 for f ¼ 0
j for f < 0

8

<

:
(7:544)

The magnitude is jH( jf)j ¼ 1 and the phase function is

w( f ) ¼ arg [H(jf )] ¼ �(p=2) sgn( f ) (7:545)

Notice that the convention with aþ sgn by w( f) results in a

negative slope of the phase function. The last equation explains

the terminology ‘‘quadrature filter’’ or ‘‘wide-band 908 phase

shifter.’’ The ideal Hilbert filter is noncausal and physically

unrealizable. Causality implies the introduction of an infinite

delay. In any practical implementation of the Hilbert filter, the

output signal is a delayed and more or less distorted Hilbert

transform of the input signal. The spectrum of the input signal

should be band-limited between the low-frequency edge f1 and

high-frequency edge f2 of the pass-band. The necessary delay

depends only on f1. Inside the pass-bandW¼ f2� f1, it is possible
to get an approximate version of the transfer function defined by

Equation 7.543. Good approximations require sophisticated

methods of design and implementations.

Hilbert transformers can be implemented in the form of

analog or digital convolvers using the time definition of the

Hilbert transforms given by Equations 7.3 and 7.4 (analog con-

volutions) or by Equation 7.503 (discrete circular convolution).

An other implementation uses so-called quadrature filters.

The performance of analog Hilbert transformers depends on

design and alignment. Having in mind that ideal alignment is

impossible and that even by good initial alignment it is detoriated

by aging and various physical changes; for example, temperature,

humidity, pressure, vibrations, and others, the use of extremely

sophisticated design methods and implementations may be

unreasonable. Differently, the performance of digital Hilbert

transformers may depend only on design.

Because the magnitude of the transfer function defined by

Equation 7.544 equals 1, all-pass filters are frequently used in

analog and digital implementations of Hilbert transformers.

7.22.1 Phase-Splitter Hilbert Transformers

Analog Hilbert transformers are mostly implemented in the form

of a phase splitter consisting of two parallel all-pass filters with a

common input port and separated output ports, as shown in

Figure 7.47. The transfer functions of the all-pass filters are

H1( jf ) ¼ e jw1( f ); H2( jf ) ¼ e jw2 (7:546)

The magnitude of both functions equals 1. The antisymmetry of

the phase functions allows us to consider only the positive

frequency part. The phase difference of the harmonic signals at

the output ports of the phase splitter should be

d( f ) ¼ w1( f )� w2( f ) ¼ �p=2; all f > 0 (7:547)

The realization of this requirement is possible in a limited fre-

quency band between the low-frequency edge f1 and the high-

frequency edge f2, as shown in Figures 7.52 through 7.55. There-

fore, the spectrum of the input signal should be band limited

between f1 and f2. Due to unavoidable amplitude and phase

errors, the output signals of the phase splitter approximately

are forming a Hilbert pair. The phase functions of the all-pass

filters defined by Equation 7.546 should be inside the band

W¼ f2� f1, approximately linear in the logarithmic frequency

scale, but are nonlinear in a linear scale. This nonlinearity intro-

duces phase distortions. Therefore, the output signals are form-

x(t)

H1( j f )
Port a

Port b

H2( j f )

FIGURE 7.47 A phase splitter Hilbert transformer, where H1( jf ) and
H2( jf) are all-pass transfer functions.
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ing a distorted in relation to the input signal Hilbert pair. The

distortions can be removed using a suitable phase equalizer

connected in series to the input port, as shown in Figure 7.48.

By proper phase equalization the output signals are forming an

undistorted pair of Hilbert transforms.

7.22.2 Analog All-Pass Filters

Hilbert transformers in the form of phase splitters are imple-

mented using all-pass filters. A convenient choice is the all-pass

consisting of two complementary filters, a low-pass and a high-

pass, as shown in Figure 7.49a. The impedance Z( jv)¼X( jv) is
a loss-less one-port (pure reactance). The transfer function of this

all-pass has the form

H( jv) ¼ R� jX(v)

Rþ jX(v)
; v ¼ 2pf (7:548)

The magnitude of this function equals one for all f and the phase

function is

w(v) ¼ arg[(R� jX(v))2] ¼ tan�1
2RX(v)

R2 � X2(v)

� �

(7:549)

The insertion X¼ 1=vC (see Figure 7.49b) yields the phase func-

tion of a first-order all-pass

w(y) ¼ tan�1
�2g
1� g2

� �

; y ¼ vRC ¼ vt (7:550)

The insertion X¼vL� 1=vC (see Figure 7.49c) yields a phase

function of a second-order all-pass

w(y) ¼ tan�1
2(1� y2)qy

(1� y2)2 � q2y2

� �

(7:551)

where

y ¼ v=vr,vr ¼ 1=
ffiffiffiffiffiffi

LC
p

q ¼ vrRC ¼ R
ffiffiffiffiffiffiffiffiffi

C=L
p

The phase functions defined by Equations 7.550 and 7.551

are shown in Figure 7.50 in linear and logarithmic frequency

scales. The second-order function best shows linearity in the

logarithmic scale for q¼ 4. Notice that the phase functions are

continuous if we remove the phase jumps by p by changing the

branch of a multiple-valued tan�1 function, similar to that in

Figure 7.22. To get a wider frequency range of Hilbert transform-

ers, higher order all-passes have to be applied. But more practical

is the use of a series connection of first-order all-passes with

appropriate staggering of the individual phase functions. For a

given frequency band W¼ f2� f1, optimum staggering yields the

smallest value of the RMS phase error. The local value of the

phase error is defined as a difference between d( f ) given by

Equation 7.547 and �p=2. Therefore, the local error is

x(t)

H1( j f )

Port a

Port b

H2( j f )

Equalizer

FIGURE 7.48 The series connection of a phase equalizer and the

Hilbert transformer of Figure 7.47.
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R

x(t)

–1

(b)

C

C

R
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L
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x(t)

Output

1

–1

(c)

FIGURE 7.49 An all-pass consisting of (a) a low-pass and a comple-

mentary high-pass, (b) a first-order RC low-pass and complementary CR

high-pass, and (c) a second-order RLC low-pas and complementary RLC

high-pass.
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e( f ) ¼ d( f )þ p=2 (7:552)

The design methods of 908 phase splitters were described by

Dome9 in 1946. Later Darlington,8 Orchard,27 Weaver,38 and

Saraga33 described design methods based on a Chebyshev

approximation of a desired phase error. Tables and diagrams of

these approximations can be found in Bedrosian.2

7.22.3 A Simple Method of Design of Hilbert
Phase Splitters

Analog Hilbert transformers are designed using models of a

given filter consisting of loss-less capacitors, low-loss inductors,

ideal resistors, and ideal operational amplifiers. More accurate

models that take into account spurious capacitances, induct-

ances, and other spurious effects are sophisticated and rarely

applied at the design stage. The alignment of circuits with an

accuracy better than 0.5%–1% is difficult to achieve. Having in

mind the above arguments, the required accuracy of design of the

parameters of the phase splitter is limited. Therefore, the simple

method of design using a personal computer may be effective in

many applications and is presented here.

The method consists of two steps. In the first step, the phase

function w1( f ), given by Equation 7.546, is linearized in the

logarithmic frequency scale. In the second step, the phase function

w2( f ) is obtained by shifting the function w1( f ) in order to get a

minimum value of the RMS phase error defined by Equation

7.547. The lower and upper frequency edges f1 and f2 are chosen
as abcissae at which the error function diverges. The method is

illustrated by four examples of design of Hilbert transformers

given by the circuit models in Figure 7.51.

Example

First example: The Hilbert transformer of this example is imple-

mented using two first-order all-pass filters (see Figure 7.51a).

The phase function of the first filter is

10 20 30

ωRC

ω/ωr

ωRC

ω/ωr
0 0

0.1

( f )1

( f )1

1

2
Equation 7.550

3

4

5

6

(a)
(b)

1

2

3

4

5

6

1 10 40

Equation 7.551

Equation 7.551

Equation 7.550

q = 4

q = 8

q = 4

q = 2

FIGURE 7.50 (a) Nonlinear phase functions of the first-order all-pass given by Equation 7.550 and the second-order all-pass given by Equation

7.551. (b) The same functions in a logarithmic frequency scale. The second-order function shows best linearity for q¼ 4.

(a)

All-pass
τ

y(t)

x(t)

y(t)ˆAll-pass
aτ

(b)

x(t)

All-pass
τ

y(t)

y(t)ˆAll-pass
bτ

All-pass
abτ

All-pass
aτ

(c)

y(t)

y(t)ˆ

x(t)

All-pass
τ

All-pass
cτ

All-pass
acτ

All-pass
aτ

All-pass
bcτ

All-pass
bτ

FIGURE 7.51 The phase splitter Hilbert transformer using (a) first-

order all-pass filters, (b) a series connection of two first-order all-passes,

(c) three first-order all-passes, and

(continued)
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(see Equation 7:550 w1( f ) ¼ tan�1
�2y
y2 � 1

� �

;

y ¼ 2pf RC ¼ 2pft (7:553)

The first step is abandoned because w1( f ) has no degree of

freedom for linearization. In the second step we have to find

the shift parameter denoted a in the phase function

w2( f ) ¼ tan�1
�2ay

a2y2 � 1

� �

, Y ¼ 2pf RC (7:554)

giving the minimum RMS phase error. The functions w1( f ),

w2( f ), and the error function e( f) are shown in Figure 7.52.

Simple computer calculations yield the value of a¼ 0.167 giv-

ing the normalized frequency edges y1¼ 1.75 and y2¼ 3, 5, and

the RMS phase error eRMS¼ 0.012. The pass-band equals one

octave.

Second example: The phase splitter of this example is imple-

mented using two first-order all-pass filters in each chain (see

Figure 7.51b). The phase function of the first filter is

w1( f ) ¼ tan�1
�2y
y2 � 1

� �

þ tan�1
�2ay

a2y2 � 1

� �

,

Y ¼ 2pf RC (7:555)

In the first step, we have to find the shift parameter a to get

the best linearity of w1( f ) in the logarithmic scale. Small

changes of a introduce a tradeoff between the RMS phase

error and the pass-band of the Hilbert transformer. In the

second step we have to find the value of the shift parameter

b in the phase function

w2( f ) ¼ tan�1
�2by

b2y2 � 1

� �

þ tan�1
�2aby

a2b2y2 � 1

� �

,

y ¼ 2pfR: (7:556)

yielding theminimumof the RMS phase error. Figure 7.53 shows

an example with a¼ 0.08 and b¼ 0.24 giving the normalized

edge frequencies y1¼ 1.6 and y2¼ 30 ( f2=f1¼ 18.75 or more

than 4 octaves) with eRMS¼ 0.016.

y(t)ˆ

y(t)
C

CL

R

R

L

x(t)

1

–1

(d)

aC

aCaL

R

R

aL

1

–1

FIGURE 7.51 (continued) (d) second-order all-passes.
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FIGURE 7.52 The phase functions and the phase error of the Hilbert transformer of Figure 7.51a.
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Third example: The phase splitter consists of three first-

order all-passes in each chain (see Figure 7.51c). The phase

functions are

w1( f ) ¼ tan�1
�2y
y2 � 1

� �

þ tan�1
�2ay

a2y2 � 1

� �

þ tan�1
�2by

b2y2 � 1

� �

(7:557)

and

w2( f ) ¼ tan�1
�2cy

c2y2 � 1

� �

þ tan�1
�2cay

c2a2y2 � 1

� �

þ tan�1
�2cby

c2b2y2 � 1

� �

(7:558)

Good linearity of the phase function w1( f) depend on the shift

parameters a and b. The first step yields a¼ 0.08 and

b¼ 0.008. In the second step the parameter c¼ 0.24 yields

the minimum value of the RMS phase error. Figure 7.54

shows the phase functions and the error distribution e( f ).

The RMS phase error is eRMS¼ 0.025. The edge frequencies

are y1¼ 1.8, y2¼ 300 giving f2=f1¼ 166 (more than 7 octaves).

A smaller phase error may be achieved at the cost of fre-

quency range.

Fourth example: The phase splitter consists of one second-

order all-pass in each chain (see Figure 7.51d). The phase

functions are

w1( f ) ¼ tan�1
2(1� y2)qy

(1� y2)2 � q2y2

� �

, Y ¼ 2pf RC (7:559)
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–1

–2

–3

–4

–5

–6

1( f )

2( f )

y1 y2 y = 2π tτ

2( f )

= – π
2

Δ

1( f )

FIGURE 7.53 The phase functions and the phase error of the Hilbert transformer of Figure 7.51b.
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FIGURE 7.54 The phase functions and the phase error of the Hilbert

transformer of Figure 7.51c.
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w2( f ) ¼ tan�1
2(1� a2y2)qay

(1� a2y2)2 � q2a2y2

� �

, Y ¼ 2pf RC (7:560)

Good linearity of w1( f ) yields the value q¼ 4 (see Figure 7.55).

The minimum value of the RMS phase error yields the shift

parameter a¼ 0.232. The phase functions and the error

distribution are shown in Figure 7.50. The edge frequencies

are y1¼ 0.5 and y2¼ 9 giving f2=f1¼ 18 with eRMS¼ 0.0186.

The bandwidth is about the same as in the second example

with two first order all-passes in each chain.

7.22.4 Delay, Phase Distortions,
and Equalization

The phase functions of the all-pass filters used to implement the

Hilbert transformer are, disregarding the small phase errors,

linear in the logarithmic frequency scale, but nonlinear in a linear

frequency scale. Let us investigate the phase distortions due to

that nonlinearity for the Hilbert filter of the second example.

Consider a wide-band test signal given by the Fourier series of a

square wave truncated at the seventh harmonic term:

x(t) ¼ 4

p
sin (v1t)þ

1

3
sin (3v1t)þ

1

5
sin (5v1t)þ

1

7
sin (7v1t)

� �

(7:561)

where v1¼ 2p f1¼ 1.75=t was chosen near the low-frequency

edge of the pass-band W. The spectrum of this signal is enclosed

inside W. The waveforms of this signal and its Hilbert transform

are shown in Figure 7.56a. The phase-distorted Hilbert pair at the

output ports of the phase splitter is shown in Figure 7.56b.

The phase distortions can be removed by connecting a phase

equalizer in series to the input port, predistorting the input signal

(see the waveform of Figure 7.56d). The required phase functions

of the equalizer may have the form

0
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0.01 0.1
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2π fτ
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0

εRMS = 0.0186
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FIGURE 7.55 The phase functions and the phase error of the Hilbert

transformer of Figure 7.51d.
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FIGURE 7.56 The waveform given by (a) the truncated Fourier series

(7.557) and of its Hilbert transform, (b) the distorted Hilbert pair at the

output with no equalization, (c) the equalized undistorted and delayed

Hilbert pair, and (d) the input signal predistorted by the equalizer.
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FIGURE 7.57 The phase functions of the equalizer given by Equation

7.552 for the phase function w2( f ) given by Equation 7.556.
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wequalizer( f ) ¼ wL( f )� w2( f ) (7:562)

where w2( f ) is given by Equation 7.550 and

wL( f ) ¼ w2( f0)þ
dw2( f )

df

�
�
�
�
f¼f0

( f � f0) (7:563)

is a linear phase function tangential to w2( f ) at f¼ f0. Figure 7.57
shows the phase function of the equalizer for three different

values of the abcissae f0. Figure 7.56c shows the delayed and

practically undistorted output waveforms of the equalized Hilbert

transformer with f0¼ 0. The delay is given by the slope of the

phase function

t0 ¼
dw2( f )

df

�
�
�
�
f0¼0
¼ 2tb(1þ a) (7:564)

giving the delay t0¼ 0.5065 s (t¼ 1). Another method of linear-

ization of the phase function is given in Ref. 21.

7.22.5 Hilbert Transformers
with Tapped Delay-Line Filters

Tapped delay-line filters often referred to as transversal filters

may be used as phase equalizers. Such a filter enables the

approximation of a given transmittance H( jf ) with a desired

accuracy. Therefore, a Hilbert filter may be implemented

using a tapped delay line,15,34 (see Figure 7.58). If the spectrum

of the input signal is band-pass limited such that X( f )¼ 0

for j f j>W, then the transfer function of the ideal Hilbert trans-

former given by Equation 7.544 may be truncated at j f j ¼W.

The tapped delay-line Hilbert filter may be designed using

a periodic repetition of this truncated function, as shown in

Figure 7.59. The expansion of this function in a Fourier series

yields, using truncation, the following approximate form of the

transfer function

HN( jf ) ¼ 2j
X(N�1)=2

i¼1
b(i) sin [i2pf t0]; t0 ¼

1

2W
(7:565)

with

b(i) ¼ � 2

pi
sin2

pi

2

� �

(7:566)

Different from the implementations of Hilbert transformers with

all-pass filters, where the design amplitude equals error zero and

the phase error is distributed over the pass-band, here the roles are

interchanged. The amplitude error is distributed over the pass-

band and there is no phase error (linear phase). The RMS ampli-

tude ripple decreases with the increasing number of tapes of the

delay line (increasing number of coefficients b(n)). The transversal
Hilbert transformer, disregarding the small distortions due to the

amplitude ripple, produces at the output a delayed undistorted

signal and its Hilbert transform. However, analog implementa-

tions are rarely used in favor of digital implementations in the

form of FIR (Finite Impulse Response) Hilbert transformers.

2t0 2t0 t0 t0 2t0 2t0
……

Summer

ˆ

X(t)

b(–n) b(–3) b(–1) b(1) b(3)

Y1(t) = X(t – nt0)

Y2(t) = X(t – nt0)

b(n)

FIGURE 7.58 A tapped delay line Hilbert transformer.

0 f

…

…

–2W 2W–W W

–j

j

Y( j f )

FIGURE 7.59 A truncated at�W and periodically repeated transfer

function of an ideal Hilbert transformer (see Equation 7.544).
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7.22.6 Band-Pass Hilbert Transformers

The transfer function of a band-pass Hilbert transformer may

be defined as the frequency-translated transfer function of a

low-pass Hilbert transformer. The transfer function of an

ideal low-pass with linear phase is given by the formula

HLP( jf ) ¼ P[f =(2W)]e�j2pf t (7:567)

where t is the time delay and P(x) has the form

P(x) ¼
1 for jxj < 0:5

0:5 for jxj ¼ 0:5

0 for jxj > 0:5

8

<

:

(7:568)

This is illustrated in Figure 7.60. The impulse response of this

filter is

hLP(t) ¼ F�1[HLP( jf )] ¼ 2W
sinX

X
(7:569)

where X¼ 2p W(t� t). The response, as shown in Figure 7.61 is

noncausal, but for large delays t is nearly causal. The transfer

function of the Hilbert transformer derived from Equation 7.567

is given by

HH( jf ) ¼ HLP( jf ) e
�j[0:5p sgn( f )þ2pf t] (7:570)

as illustrated in Figure 7.60a and c. The impulse response of such

a Hilbert transformer is

hH(t) ¼ F�1[HH( jf )]

¼ 1

p(t � t)
[1� cos 2pW(t � t)] (7:571)

or

hH(t) ¼
2 sin2 [pW(t � t)]

p(t � t)
(7:572)

This is illustrated in Figure 7.61b. If W goes to infinity the mean

value of hH(t) taken over the period T¼ 1=W approximates

the distribution 1=(p(t� t)). The transfer function of an ideal

band-pass filter is given by

HBP( jf ) ¼
Y f þ f0

2W

� �

þ
Y f � f0

2W

� �� �

e�j2pf t (7:573)

This is illustrated in Figure 7.62a and b. The impulse response of

this filter is

hBP(t) ¼ 2W
sinX

X
cos [2pf0(t � t)] (7:574)

(a)

f0–W W

|HLP| = |HH|

(b)

f

arg HLP

2π Wτ

(c)

f

0.5π

–0.5π

arg HH

FIGURE 7.60 The transfer function of the ideal low-pass: (a) magnitude, (b) linear phase function, and (c) phase function of a Hilbert transformer

derived from the low-pass function.
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and is shown in Figure 7.63a. The transfer function of an ideal

band-pass Hilbert transformer derived from the transfer function

(Equation 7.573) is

HHBP( jf ) ¼ HBP( jf ) exp{�j 0:5p[sgn( f þ f0)
þ sgn( f � f0)]} (7:575)

This is illustrated in Figure 7.62a and c. The impulse response of

this Hilbert transformer is

hHBP(t) ¼
2 sin2 [pW(t � t)]

p(t � t)
cos [2pf0(t � t)] (7:576)

and is shown in Figure 7.63b.

Consider the response of the band-pass Hilbert transformer to a

band-pass signal u1(t)¼ x(t) cos (2p f0t) where x(t) has no spectral
terms for j f j>W and f0>W. This response has the form

u2(t) ¼ x̂(t � t) cos [2pf0(t � t)] (7:577)

that is, the modulating signal x(t) is replaced by the delayed

version of its Hilbert transform. Notice that due to Bedrosian’s

theorem the Hilbert transform of the input signal (see Section

7.13) has the form

u2(t) ¼ x(t � t) sin [2pf0(t � t)] (7:578)

that is, only the carrier is Hilbert transformed, compared to

signal (7.577), for which the envelope is transformed. The trans-

fer function of a band-pass producing at the output the Hilbert

transform in agreement with Bedrosian’s theorem is given by the

equation

HHBP(jf ) ¼ �j sgn( f ) HBP(jf ) (7:579)

where HBP( jf ) is given by Equation 7.21.31 and is shown in

Figure 7.64.
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FIGURE 7.61 Impulse responses of (a) the low-pass and (b) the corresponding Hilbert transformer. Transfer functions are shown in Figure 7.60.
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A possible implementation of a band-pass Hilbert transformer

defined by Equation 7.573 is shown in Figure 7.65. It consists of a

linear phase lower side-band band-pass, analogous upper side-

band, band-pass, and a substractor. Figure 7.66 shows the imple-

mentation of such a Hilbert transformer by use of a SAW

(surface acoustic wave) filter.

7.22.7 Generation of Hilbert Transforms
Using SSB Filtering

The Hilbert transform of a given signal may be obtained by

band-pass filtering of a DSB AM signal. The SSB signal has the

form (see Section 7.17)

uSSB(t) ¼ x(t) cos (2pF0t)� x̂(t) sin (2pF0t) (7:580)

where F0 is the carrier frequency. Such a signal can be obtained

by band-pass filtering of a DSB AM signal. A synchronous

demodulator using the quadrature carrier sin (2p F0t) generates
at his output the Hilbert transform x̂(t).

7.22.8 Digital Hilbert Transformers

The ideal discrete-time Hilbert transformer is defined as an all-

pass with a pure imaginary transfer function, that is, if

H(e jc) ¼ Hr(c)þ jHi(c), then

Hr(c) ¼ 0 all f
(7:581)

and

H(e jc) ¼ jHi(c) ¼
�j 0 < c < p
0 c ¼ 0, jcj ¼ p
j �p < c < 0

8

<

:

(7:582)

or in another equivalent notation

H(e jc) ¼ �j sgn (sinc) ¼ �sgn(sinc)e jp=2

¼ jHðcÞje j arg H(c) (7:583)

(b)

(a)

1

|HBP| = |HHBP|

0
f

–f0 –f0 f0–f0 + W f0 + Wf0 – W –W

f
–f0 f0

arg HBP

2π f0τ

(c)

f
–f0 f0

arg HHBP

2π f0τ

π

FIGURE 7.62 The transfer functions of an ideal band-pass filter and of the corresponding Hilbert transformer: (a) the magnitude, (b) the phase

function of the band-pass, and (c) the Hilbert transformer.
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The magnitude (see Figure 7.67) has the form

jH(c)j ¼ jsgn(sinc)j ¼ 1, 0 < jcj < p
0, c ¼ 0, jcj ¼ p

�

(7:584)

and the phase function is

arg[H(c)] ¼ �(p=2)sgn(sin c) (7:585)

Notice that c¼ 2p fn, where fn¼ f=fs is a frequency normalized

against the sampling frequency fs.
The basic period has the interval from �p to p corresponding

to the values of fn from �0.5 to 0.5.

The noncausal infinite range impulse response of the ideal

Hilbert transformer has the form of the antisymmetric sequence
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FIGURE 7.63 The envelopes of the impulse responses of (a) a band-

pass and (b) the Hilbert transformer. Transfer functions are shown in

Figure 7.62.
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FIGURE 7.64 The transfer function of a Hilbert transformer that

transforms the carrier signal with no change of the waveform of the

envelope.
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FIGURE 7.65 The implementation of the Hilbert transformer of the

transfer function defined in Figure 7.62 using two band-pass filters.

In

Out

λ/4

λ/4

FIGURE 7.66 A SAW filter implementing the band-pass Hilbert trans-

former of Figure 7.21.19.
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h(i) ¼ (2=p i)sin2 (ip=2) (7:586)

If one allows the addition of a linear phase term in the ideal

frequency response introducing a frequency-independent group

delay (in samples), then the transfer function (Equation 7.582)

takes the form

H(e jc) ¼
�je�jct 0 < c < p
0 c ¼ 0, jcj ¼ p
je�j(c� 2p)t p < c < 2p

8

<

:

(7:587)

and the impulse response takes the form

h(i) ¼ (2=p)
sin2[(p=2)(i� t)]

i� t
, i ¼ 0, �1, 2, . . . (7:588)

The important feature of the impulse response given by Equation

7.586 is that even-numbered samples are exactly zero, and that

the samples are antisymmetric, that is,

h(i) ¼ �h(�i); i ¼ 0, 1, . . . (7:589)

7.22.9 Methods of Design

There are several methods of realizing digital Hilbert transform-

ers. The three basic implementations are as follows:

1. The FIR Hilbert transformer

2. The IIR (Infinite Impulse Response) Hilbert transformer

3. Digital phase splitter Hilbert transformer

It is possible to realize a differentiating Hilbert transformer that

produces at the output the derivative of the Hilbert transform of

the input signal.

7.22.10 FIR Hilbert Transformers25,31

The FIR Hilbert transformer is a digital version of the taped

delay line Hilbert transformer (see Section 7.22). Its structure is

shown in Figure 7.68. The string of z�1 delays acts as a discrete

taped delay line. Such a filter is inherently stable and its

1

0

|H (e jψ)|
……

(b) –2π 2π 3π ψ–π π

0

H (e jψ)

j

–j

–3π

…

…

–2π

(a)

2π 3π ψ–π π

0.5π

0

–0.5π …

…

(c)

–2π–3π 2π 3π ψ–π π

arg H (e jψ)

FIGURE 7.67 An ideal discrete-time Hilbert transformer’s (a) transfer

function, (b) magnitude, and (c) phase function.
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FIGURE 7.68 The structure of the FIR Hilbert transformer.
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impulse response is given by the coefficients (gains) h(0),
h(1), h(2), . . . , h(i), . . . , h(N� 1), that is, has the length of N
samples. An example of the impulse response of the FIR Hilbert

transformer is shown in Figure 7.69b, where for convenience, N
is an odd number. This causal impulse response is obtained by a

truncation and shifting by (N �1)=2 samples of the finite impulse

response of the ideal Hilbert transformer in Figure 7.69a. The

transfer function of the Hilbert filter defined by the causal

impulse response (see Equations 7.487 and 7.488 is given by

the Z-transform

HH(i1) ¼
X

N�1

i1¼0
h1(i1)z

�i1 (7:590)

where i1 is the discrete coordinate given in the Equation 7.591.

The shifted causal impulse response h1(i1) and the noncausal

impulse h(i) of Figure 7.69a satisfy the relation

h1[iþ (N � 1)=2] ¼ h(i), i1 ¼ iþ (N � 1)=2,

i ¼ N � 1

2
, . . . , 0, . . . ,

N � 1

2
(7:591)

The insertion of z¼ ejc in Equation 7.590 (see Equation 7.492)

and using Equation 7.591 yields

HH(e
jc) ¼ e�jc(N�1)=2

X

(N�1)

i¼�(N�1)=2
h(i)e�jci (7:592)

Using Euler’s formula for the sine function and the relation

h(i)¼�h(�i), this transfer function takes the form

HH(e
jc) ¼ e�jc(N�1)=2

X

(N�1)=2

i¼1
�j2h(i) sin (ci) (7:593)

Because every second sample of the impulse response equals

zero, the summation should be written: from i¼ 1 to (N� 1)=2

step 2. Let us denote this by

G(e jc) ¼ �
X

(N�1)=2

i¼1
2 h(i) sin (ci) (7:594)

1

–11 –9 –7

(a)

(b)

–5 –3 –1

3 5 7 9 11

h(i)

13 15

N = 19

N samples

Including zeros at i = 1, 3,…

11 13 15 17

i

…

i

…
1 3 5 7

N–1

2

9

FIGURE 7.69 Impulse responses of (a) the ideal discrete time Hilbert transformer (see Equation 7.586) and (b) a FIR Hilbert transformer given by

the truncation and shifting of the impulse response shown in (a).
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This function has the form of a Fourier series and defines the

amplitude of the transfer function of the Hilbert transformer

(this is not the magnitude G(e jc) has positive and negative

values). An example is shown in Figure 7.70. The normalized

dimensionless pass-band of this Hilbert transformer is given by

the edge frequencies

Wc ¼ c2 � c1 ¼ p� 2D (7:595)

Because c¼ 2p f=fs, where f is the frequency in hertz [Hz] and fs
is the sampling frequency, the pass-band in hertz is

Wf [Hz] ¼ p� 2D

2p
fs (7:596)

The pass-band increases and the amplitude d of the ripple

decreases with increasing length N of the impulse response;

that is, at the cost of the delay, which equals (N� 1)=2 samples.

The amplitude ripple in the pass-band depends on the coeffi-

cients h(i) in the Fourier series (Equation 7.594). Let us consider

three cases:

1. The coefficients h(i) are given by the Fourier series of an

odd square periodic function of the form

G(e jc) ¼ � 4

p
sin (ci)þ 1

3
sin (3ci)þ 1

5
sin (5ci) � � �

�

þ 1

2iþ 1
sin [ci(N � 1)=2

�

(7:597)

corresponding to the truncation of the Fourier series by a

rectangular window. This yields a nonequiripple amplitude

distribution with ‘‘Gibbs peaks’’ at the edges of the pass-

band, as shown in Figure 7.70.

2. The coefficients h(i) in the above Fourier series are

changed using an appropriate spectral window function;

for example, Blackman, Hamming, or Kaiser windows.

This yields a more uniform amplitude ripple.

3. The coefficients h(i) are calculated to obtain an equiripple

amplitude distribution in the pass-band in the mini-max

or Chebyshev sense; for example, using the Parks–

McClellan algorithm.22 Figure 7.71 shows an example

for N¼ 19. The product of N and D is given by the

asymptotic relation derived by Kaiser29

ND ffi 0:61 log10 d (7:598)

Concluding, the FIR Hilbert transformer has a linear-

phase characteristic and an amplitude ripple in the pass-

band depending on design. Odd values of N are preferred.

Design with even N is possible but inconvenient because all

the impulse response coefficients are nonzero and the

frequency response cannot have the required symmetry.

A symmetric FIR Hilbert transformer (odd N) may be

eventually derived from the corresponding designs of sym-

metric half-band FIR filters.16
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FIGURE 7.70 The G(e jc) function of a FIR Hilbert transformer defined by the Fourier series (7.597).

7-74 Transforms and Applications Handbook



7.22.11 Digital Phase Splitters

A digital Hilbert transformer may be implemented in the form of

a digital phase splitter as shown in Figure 7.72. The transfer

functions of the all-pass filters may be derived directly form the

analog transfer functions by use of the bilinear frequency trans-

formation (see Section 7.21). Details of the procedure can be

found in any textbook on digital filters. All basic properties of

the analog implementation are conserved. Without a phase

equalizer the output Hilbert pair is distorted in reference to the

input signal. Nonlinearity of the bilinear transformation intro-

duces some tradeoffs not present in the analog case.

7.22.12 IIR Hilbert Transformers

IIR Hilbert transformers may be derived using noncausal gener-

alized half-band filters. Generalized half-band filters are derived

bymodifying the conventional elliptic filter design so that all poles

of the half-band filter lie on the imaginary axis. The IIR ideal half-

band transfer function proposed by Ansari1 has the form

HHB(z) ¼ 1þ z�1G(z2) (7:599)

where G(z2) is an all-pass filter with unit magnitude. The ideal

example of this transfer function is shown in Figure 7.73a.

Let us show that the transfer function of an ideal IIR Hilbert

transformer is given by

HH(z) ¼ z�1G(�z2) (7:600)

This is illustrated step by step in Figure 7.73. The term

F(z) ¼ z�1G(�z2) (7:601)

is an all-pass with F(e jc) shown in Figure 7.73b. It has a unit

magnitude and a phase function equal to zero in the pass-band

and �p in the stop-band as shown in Figure 7.73d. This phase

function can be written in the form

1.2

1

0.8

0.6

0.4

0.2

Δ
0

–0.2
–0.5πG

(e
jψ

)

0.5π

ψ1

δ

ψ2
ψ

–0.4

–0.6

–0.8

–1

–1.2

Δ

FIGURE 7.71 The equiripple G(e jc) function of a FIR Hilbert transformer designed in the mini-max or Chebyshev sense.

h1 (i)

x (i)

Y (i)

Y(i)ˆh2 (i)

FIGURE 7.72 The discrete-time (or digital) version of the phase split-

ter Hilbert transformer of Figure 7.21.1
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F(c) ¼ 0:5p[sgn(sin (2c))� sgn(c)] (7:602)

The term F(z) can be written in the form (z¼ e jc)

F(e jc) ¼ e�jce jFG(c) ¼ e jF(c) (7:603)

where

FG(c) ¼ F(c)þ c (7:604)

This phase function is shown in Figure 7.73e. Because z2¼ e j2c

and �z2¼ e j2(0.5pþc), we have

HH(e
jc) ¼ e�jce jFG(0:5pþc) (7:605)

The phase function FG(0.5pþc) is shown in Figure 7.73f and is

the same as the phase function of the ideal Hilbert transformer

(see Equation 7.579) and finally the phase function of HH(z) is
shown in Figure 7.73g.

Differently than FIR transformers, the above IIR Hilbert trans-

former is designed with an equiripple phase function and exact

amplitude. The explicit form of the noncausal transfer function

may have the form

H(z) ¼ z�1
X

N

i¼1

1� aiz2

z2 � ai
(7:606)

where N is an integer. Let us present an example. Consider the

IIR Hilbert transformer with the low-frequency edge c1¼ 0.02p,

the high-frequency edge c2¼ 0.98p(D¼ 0.02p), and with the

required amplitude of the phase ripple jDFj � 0.01p. The

following relation between the phase ripple and the stop-band

amplitude ripple of the half-band filter was derived1

d ¼ sin (0:5DF) (7:607)

Inserting DF¼ 0.01p gives d¼ 0.0157. The design procedure

described in Reference 1a was applied to find the filter coeffi-

cients a(i) giving a(1)¼ 5.36078, a(2)¼ 1.2655, a(3)¼ 0.94167,

and a(4)¼ 0.53239. The insertion of the coefficients in Equation

7.606 enabled the calculation of the phase function shown in

Figure 7.74. The phase error has a symmetric distribution around

C¼ 0.5p, i.e., half of the sampling frequency. The pass-band of

this Hilbert transformer covers about 4.5 octaves. The phase

ripple in the pass-band may be eliminated using half-band

Butterworth IIR filters. For this kind of filter the coefficients

a(i) in Equation 7.606 are given by a simple formula

ai ¼ tan2 [pi=2N þ 1]; i ¼ 1, 2, . . . ,N (7:608)

(d)

arg F(z)

Φ(ψ) = arg F(z) –π
–π

π
π

ψ

(c)

|F(z)|

|F(z)| –π π ψ0
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(b) –1

–π π

ψ
F(z) = z–1G(z2)

(a) HHB(z) = 1 + z–1G(z–2)

HHB(z)

1

–π –0.5π 0.5π π ψ0z = e jψ

(e) ΦG(ψ) = ΦG(ψ) + ψ –π
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π

π

ΦG

ψ

(f ) arg G(z2) = ΦG(0.5π + ψ) –π

–π

π

π
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(g)arg{z–1G(–z2)}= –ψ + ΦG(0.5π + ψ) –π
–π

π
π

ψ

FIGURE 7.73 Step-by-step derivation of the IIR transfer function of a

Hilbert transformer defined by Equation 7.600, starting from the transfer

function of the ideal half-band filter given by Equation 7.599.
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FIGURE 7.74 An example of the equiripple phase function of the IIR

Hilbert transformer.
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Figure 7.75 shows a family of maximum flat phase functions for

N¼ 2, 4, and 6. The pass-band depends considerably on the

permissible phase error at the edges. The edge frequencies for

edge errors 0.1% and 1% are given in the table:

N
2 4 6

Edge Error c1 c2 c1 c2 c1 c2

0.1% 0.36 0.64 0.24 0.76 0.165 0.835

1% 0.265 0.735 0.165 0.835 0.115 0.885

The widest pass-band for N¼ 6 and 1% error covers about

3 octaves and the smallest for N¼ 2 and 0.1% only 1 octave.

The frequency around which the phase function is maximally flat

equals c¼ 0.5p. It can be shifted by use of a suitable digital-

to-digital frequency transformation. The disadvantage of the

Butterworth filter is that the ratio of the first to the last coefficient

is very large and increases with N.

7.22.13 Differentiating Hilbert Transformers

The differentiating Hilbert transformer is defined as a linear

system the output of which is the derivative of the Hilbert

transform of the input signal. In principle, a differentiating

Hilbert transformer may be implemented as a cascade connec-

tion of a differentiator and a Hilbert transformer as shown in

Figure 7.76. However, it may be designed as a specialized FIR

filter. Due to the cascade connection, the transfer function of the

differentiating discrete Hilbert transformer is given by the prod-

uct of the transfer function of the discrete Hilbert transformer

given by Equation 7.587 and the transfer function of the ideal

discrete differentiator of the form29

HD(e
jc) ¼

jce�jct 0 < c < p
1 jcj ¼ kp; k ¼ 0, 1, 2
j(c� 2p)e�j(c�2p)t p < c < 2p

8

<

:

(7:609)

or using the equivalent notation

HD(e
jc) ¼ [cþ sgn(sin (c))� 1]e j[0:5p�ct�pt(sgn( sin (c))�1)

0 < c < 2p (7:610)

The product of both transfer functions may be written in the form

HHD(e
jc) ¼ [cþ p(sgn(sin (c))� 1]

sgn(sin (c))e�j[2ct�pt(sgn( sin (c))�1) (7:611)

The magnitude and the phase function of this transfer function

of the differentiating Hilbert transformer are shown in

2
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FIGURE 7.75 Phase errors of Butterworth IIR Hilbert transformers.
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X(t) H [X(t)]

Hilbert tr.

HHD = 2π | f |

HD ( j f ) = j2π f HH ( j f ) = –jsgn f
˙

FIGURE 7.76 A cascade connection of a Hilbert transformer and a

differentiating filter.
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Figure 7.77. The inverse Fourier transform with (t¼ 0) yields the

noncausal, even, and of infinite duration impulse response:

hHD(i) ¼
a(i) ¼ �[2 sin2 (0:5pi)]=(pi2); i 6¼ 0

0:5p i ¼ 0

�

(7:612)

This is illustrated in Figure 7.78a. The design method is the same

as for the discrete Hilbert filter. The impulse response should be

truncated to include N samples and shifted by t¼ (N �1)=2
samples as shown in Figure 7.77b. The G(ejc) function defined

by Equation 7.21.52 here takes the form

GHD(e
jc) ¼ [cþ p(sgn(sin (c))� 1]

sgn(sin (c)): 0 < c < 2p (7:613)

and in this case is equal to the magnitude of the transfer function

(see Figure 7.77). The truncated Fourier series is

GHDT(e
jc) ¼ 0:5p�

X(N�1)=2

i¼1
2a(i) cos (ci) (7:614)

Compare this function with the analogous function of the FIR

Hilbert transformer (see Equation 7.573). The design methods to

get the desired amplitude ripple are the same as described in the

three points following Equation 7.594. However, the Fourier

series given by Equation 7.595 takes for the differentiating

Hilbert transformer the form

GHDT(e
jc) ¼ p

2
� 4

p

� �

coscþ 1

9

� �

cos 3c

�

þ 1

25

� �

cos 5cþ � � �
�

(7:615)
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FIGURE 7.77 The transfer function of a differentiating Hilbert trans-

former: (a) magnitude and (b) phase function.
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FIGURE 7.78 The impulse responses of the differentiating Hilbert

transformer: (a) noncausal ideal and (b) truncated and causal.
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This Fourier series differs by three important features from the

series given by Equation 7.595. First, it converges faster (coeffi-

cients 1=i2 instead 1=i) and, second, there are no Gibbs peaks at

the edges of the pass-band. Third, the function is unipolar with

the mean value equal to p=2. An example of the magnitude

designed in the minimax sense is shown in Figure 7.79. The

coefficients are given in Table 7.8.

7.23 Multidimensional Hilbert
Transformations

Multidimensional transformations are applied in modern multi-

dimensional digital signal processing. The theory of complex

notation of multidimensional signals uses multidimensional

Hilbert transforms. These are the reasons basic definitions and

properties of multidimensional Hilbert transformations are pre-

sented here. As in the one-dimensional case, the theory of Hilbert

transformations is closely tied with multidimensional Fourier

transformations.

Let us define the n-dimensional signal u(x) as a function of the

n-dimensional variable x¼ {x1, x2, . . . , xn}, an n-D real column

vector. For example, a single frame of a video black-and-white

signal may be described by the 2-D signal u(x1, x2).

7.23.1 Evenness and Oddness
of N-Dimensional Signals

Let us remember that the 1-D signal may be resolved in a sum of

the even and odd parts (see Equations 7.35 and 7.36). Therefore,

it has two degrees of freedom concerning evenness or oddness. In

general, the n-dimensional real signal u(x) has 2n degrees of

freedom in this respect. For example, a 2-D function may be

resolved into a sum of four terms:

u(x2, x1) ¼ uee(x2, x1)þ ueo(x2, x1)þ uoe(x2, x1)þ uoo(x2, x1)

(7:616)

where the indices ‘‘e’’ and ‘‘o’’ indicate evenness or oddness in

respect to the variables x1 and x2. Notice that the indices ‘‘ee,’’ ‘‘eo,’’

‘‘oe’’ and ‘‘oo’’ are written in the natural order of binary numbers

using ‘‘e’’¼ 0 (zero) and ‘‘o’’¼ 1, i.e., 00, 01, 10, 11. The even-even

part is given by

uee(x2, x1) ¼
u(x2, x1)þ u(x2, �x1)þ u(�x2, x1)þ u(�x2,�x1)

4
(7:617)

the even-odd part by

ueo(x2, x1) ¼
u(x2, x1)� u(x2, �x1)þ u(�x2, x1)� u(�x2,�x1)

4
(7:618)

the odd-even part by

uoe(x2, x1) ¼
u(x2, x1)þ u(x2, �x1)� u(�x2, x1)þ u(�x2,�x1)

4
(7:619)

and the odd-odd part by

uoo(x2, x1) ¼
u(x2, x1)� u(x2, �x1)� u(�x2, x1)þ u(�x2, �x1)

4
(7:620)

We used a reversed order of the indices, that is, (x2, x1) instead of

(x1, x2) and as before used the order 00, 01, 10, 11. The sign of a

given term in nominators of Equations 7.617 through 7.620 is

TABLE 7.8 Coefficients of FIR Differentiating Hilbert Transformer

Pass-Band Edges

c1¼ 0 c2¼p c1¼ 0.2p c2¼ 0.8pa

N¼ 7 N¼ 11 N¼ 19 N¼ 11 N¼ 19

a(1) 0.6426919 0.6388893 0.6373537 0.6068935 0.6184231

a(3) 0.0997952 0.07348499 0.0715001 0.0450341 0.05423771

a(5) 0.0459263 0.0263422 0.00615878 0.0118350a

a(7) 0.0140561 0.00260689

a(9) 0.0020769 0.0003889

Source: Cizek, V.V., Differentiating FIR Hilbert transformer, in Proc. 1989
URSI Internat Symp. Signals, Syst., Electron., Erlangen, Germany, September

1989.
a Corrected by Cizek.
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FIGURE 7.79 The G(e jc) function of a FIR differentiating Hilbert

transformer.
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equal to the product of the signs of odd indexed variables. If only

one variable is odd, as in Equations 7.618 or 7.613, its sign

decides. For example, in Equation 7.619 we have �u(�x2, x1)
and �u(�x2, �x1) because only the variable x2 is odd indexed.

A 3-D function may be resolved into a sum of eight terms:

u x3, x2, x1ð Þ ¼ ueee þ ueeo þ ueoe þ ueoo þ uoee

þ uoeo þ uooe þ uooo (7:621)

Using the same rules as above, we get

It is possible to introduce a geometric interpretation of the

decomposition of a function into even and odd terms, as shown

in Figure 7.80, and to define the ‘‘distance’’ between the terms.

The distance D is

1 > D > n (7:626)

For example, the distance between fe and fo or between feo and foo
equals 1, between fee and foo equals 2.

7.23.2 n-D Hilbert Transformations

The n-dimensional (n-D) Hilbert transformation of the n-D
function u(x) is defined by the n-fold integral37

y(x) ¼ Hn[u(x)] ¼
1

pn
P

ð

1

�1

� � �
ð

1

�1

u(H)

Pn
k¼1(xk � hk)

dH;

H ¼ {h1,h2, . . . ,hn}
dH ¼ d h1, d h2, . . . , d hn

(7:627)

where

P denotes the CPV

Hn is the operator of the n-D Hilbert transformation

The inverse transformation is

u(x) ¼ H�1n [y(x)]

¼ (�1)n
pn

P

ð

1

�1

� � �
ð

1

�1

y(H)

Pn
k¼1(xk � hk)

dH (7:628)

The n-D Hilbert pair will be denoted by

u(x)()n�H
y(x) (7:629)

Analogous to the 1-D case, the n-D Hilbert transformation

changes the indices of the terms in equations, such as Equations

7.616 or 7.621, from even to odd and from odd to even. Similar to

the 1-D case, the n-D Hilbert transformation may be derived

from the n-D Cauchy integral

f (z) ¼ 1

(2pi)n

ð

G

f (z)dz

(z� z)
z ¼ {z1, . . . , zn}
z ¼ {z1, . . . , zn}

(7:630)

ueee(x3, x2, x1) ¼
u(x3, x2, x1)þ u(x3, x2,�x1)þ u(x3,�x2, x1)þ u(x3,�x2,�x1)

16

þ u(�x3, x2, x1)þ u(�x3, x2,�x1)þ u(�x3,�x2, x1)þ u(�x3,�x2,�x1)
16

(7:622)

ueeo(x3, x2, x1) ¼
u(x3, x2, x1)� u(x3, x2,�x1)þ u(x3,�x2, x1)� u(x3,�x2,�x1)

16

þ u(�x3, x2, x1)� u(�x3, x2,�x1)þ u(�x3,�x2, x1)� u(�x3,�x2,�x1)
16

(7:623)

uooe(x3, x2, x1) ¼
u(x3, x2, x1)þ u(x3, x2,�x1)� u(x3,�x2, x1)� u(x3,�x2,�x1)

16

þ�u(�x3, x2, x1)� u(�x3, x2,�x1)þ u(�x3,�x2, x1)þ u(�x3,�x2,�x1)
16

(7:624)

uooo(x3, x2, x1) ¼
u(x3, x2, x1)� u(x3, x2,�x1)� u(x3,�x2, x1)þ u(x3,�x2,�x1)

16

þ�u(�x3, x2, x1)þ u(�x3, x2,�x1)þ u(�x3,�x2, x1)� u(�x3,�x2,�x1)
16

(7:625)

D = 2

D = 1e

eo

ee

oo

oe

o

D = 3

eeo oeo

oeeeee

ooeeoo

eoo ooo

FIGURE 7.80 The geometrical interpretation of the ‘‘distance’’ con-

cerning the evenness and oddness of 1-D, 2-D, and 3-D functions.
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where G¼ qD1 3� � �3 qDn is an n-D surface, being the bound of

qD, where the region D has the form of the Cartesian product

D¼D1 3� � �3 qDn.

7.23.3 2-D Hilbert Transformations

The 2-D Hilbert transformation is given by Equation 7.627 with

n¼ 2 and has the form36

y(x) ¼ H[u(x)]

¼ 1

p2
P

ð

1

�1

ð

1

�1

u(h1,h2)

(x1 � h1)(x2 � h2)
d h1d h2 (7:631)

and because n is even, the inverse Hilbert transformation has the

same form

u(x) ¼ H[y(x)]

¼ 1

p2
P

ð

1

�1

ð

1

�1

y(h1,h2)

(x1 � h1)(x2 � h2)
d h1d h2 (7:632)

The 2-D Hilbert transformation may be written using the con-

volution notation

y(x1, x2) ¼ u(x1, x2)**
1

p2x1x2
(7:633)

u(x1, x2) ¼ y(x1, x2)**
1

p2x1x2
(7:634)

7.23.4 Partial Hilbert Transformations

The partial Hilbert transformation of the n-D function

u(x), x¼ {x1, x2, . . . , xn} is defined as the Hilbert transformation

in respect to a part of the variables. For example, the partial

transformation of a 2-D function in respect to x1 has the form

y1(x1, x2) ¼
1

p
P

ð

1

�1

u(h1, x2)

(x1 � h1)
d h1 (7:635)

and in respect to the variable x2

y2(x1, x2) ¼
1

p
P

ð

1

�1

u(x2,h2)

(x2 � h2)
d h2 (7:636)

For 3-D functions it is possible to derive three first-order partial

Hilbert transforms denoted y1, y2, y3 and three second-orderHilbert

transforms denoted y12, y13, y23. For example,

y1(x1, x2, x3) ¼
1

p
P

ð

1

�1

u(h1, x2, x3)

(x1 � h1)
d h1 (7:637)

and

y12(x1, x2, x3) ¼
1

p2
P

ð

1

�1

ð

1

�1

u(h1,h2, x3)

(x1 � h1)(x2 � h2)
d h1d h2

(7:638)

7.23.5 Spectral Description of n-D Hilbert
Transformations

The n-D Fourier transformation of u(x) is defined by the n-fold
integral

U(V) ¼ Fn[u(x)] ¼
ð

1

�1

� � �
ð

1

�1

u(x) exp (�jVTx)dx (7:639)

where V¼ {v1, v2, . . . , vn} is the n-D column vector of Fourier

frequencies. The index ‘‘T’’ denotes transpose. Therefore, the

exponential kernel of the n-D Fourier transformation has the form

exp (�jVTx) ¼ e�j(v1x1þv2x2þ���þvnxn) (7:640)

The inverse Fourier transformation is definedby then-fold integral

u(x) ¼ F�1n [U(V)]

¼
ð

1

�1

� � �
ð

1

�1

U(V) exp ( jVTx) df1df2 . . . dfn (7:641)

where dfi¼ dvi=2p (i¼ 1, 2, . . . , n). The n-D Fourier pair may be

denoted

u(x)()n�F U(V) (7:642)

The n-D Fourier image of the Hilbert transform is given by the

formula

V(V) ¼ Fn{Hn[u(x)]} ¼ (�j)n
Y

n

k¼1
sgn(vk)

" #

U(V) (7:643)

Proof By the definition given by Equation 7.639

Fn{Hn[u(x)]} ¼
1

pn

ð

1

�1

ð

1

�1

U(H)

Pn
k¼1(xk � hk)

dH

8

<

:

9

=

;

� exp (�jVTx)dx (7:644)
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where H¼ {h1,h2, . . . ,hn}, dH¼ dh1, dh2, . . . , dhn and for con-

venience the n-fold integrals are denoted by a single integral sign.

Formally

Fn{Hn[u(x)]} ¼
1

pn

ð

1

�1

u(H)dH

ð

1

�1

exp (�jVTx)

Pn
k¼1(xk � hk)

dx

¼
ð

1

�1

u(H) dH
Y

n

k¼1

1

p

ð

1

�1

exp (�jvkxk)

xk � hk

dxk

0

@

1

A

(7:645)

In the 1-D case, we have

H exp (�jv x)½ � ¼ j sgn(v) exp (�jv x) (7:646)

Hence,

Fn{Hn[u(x)]} ¼ (�j)n
Y

n

k¼1

sgn(vk)

" #

�
ð

1

�1

u(x) exp (�jVTx)dx (7:647)

and this is equal to Equation 7.643.

This equation enables the calculation of the n-D Hilbert trans-

form using the inverse Fourier transform of the spectrum given

by the above equation, i.e., using the algorithm

u(x) )n�F
U(V) ) V(V)

¼ (�j)n
Y

n

k¼1

sgn(vk)

" #

U(V) )2�F�1

y(x) (7:648)

For example, in the 2-D case the Hilbert transform is given by

y(x1, x2) ¼
ð

1

�1

ð

1

�1

� sgn(v1) sgn(v2)U(v1,v2)e
j(v1x1þv2x2)df1df2 (7:649)

(v1¼ 2pf1, v2¼ 2pf2). This general formula may be simplified, if

the signal given by Equation 7.610 has only a part of the four

terms.

Example14

Consider the 2-D Gaussian signal and its Fourier image given

by the Fourier pair

u(x1 , x2) ¼ e�p(x21þx22 ) ()2�F
U(v1 ,v2) ¼ e�p( f 21þf 22 ) (7:650)

where

v1 ¼ 2pf1

v2 ¼ 2pf2

The Fourier image of the Hilbert transform is

V (v1 ,v2) ¼ �sgn(v1) sgn(v2)e
�p( f 21 þf 22 ) (7:651)

Because this spectral function is real and odd-odd, the 2-D

inverse Fourier transformation takes the simplified form

y(x1 , x2) ¼ 4

ð

1

0

ð

1

0

e�p( f 21 þf 22 ) sin (w1x1) sin (v2x2)df1df2 (7:652)

7.23.6 n-D Hilbert Transforms
of Separable Functions

The n-D function u(x) is said to be separable in the coordinates

x¼ {x1, x2, . . . , xn} if it is given by the product of 1-D functions

u(x) ¼ f1(x1)f2(x2) . . . fn(xn) (7:653)

Let us denote by g1(x1), g2(x2), . . . , gn(xn) the Hilbert transforms

of the terms of this product. Because the Fourier image of a

separable function is a separable function of the Fourier coord-

inates V¼ {v1,v2, . . . ,vn} the inverse Fourier transform is a

product of 1-D integrals. Therefore, the Hilbert transform of

a separable function has the form

y(x) ¼ g1(x1)g2(x2) . . . gn(xn) (7:654)

Analogously, the partial Hilbert transforms of u(x) are separable
functions; for example, a first-order partial transform is

y(x) ¼ g1(x1)f2(x2) . . . fn(xn) (7:655)

and a second-order partial transform is

y12(x) ¼ g1(x1)g2(x2)f3(x3) . . . fn(xn) (7:656)

Examples

1. The 2-D delta pulse is a separable distribution of

the form

d(x1 , x2) ¼ d(x1)d(x2) (7:657)
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Because d(x1)()
H

1=(px1) and d(x2)()
H

1=(px2), the
Hilbert transform of the 2-D delta pulse has the form

d(x1 , x2)()
2�H

1
�

(p2x1x2) (7:658)

and the partial transforms are

y(x1 , x2) ¼ d(x2)
�

(px1);

y1(x1 , x2) ¼ d(x1)
�

(px2); (7:659)

2. The 2-D signal has the form

u(x1 , x2) ¼ Pa(x1)Pb(x2) (7:660)

The Hilbert transform takes the form (see Table 7.1, 4)

y(x1 , x2) ¼
1

p2
ln

x1 þ a

x1 � a

�
�
�
�

�
�
�
� ln

x2 þ b

x2 � b

�
�
�
�

�
�
�
� (7:661)

and the partial transforms are

y(x1 , x2) ¼
1

p
ln

x1 þ a

x1 � a

�
�
�
�

�
�
�
�Pb(x2);

y2(x1 , x2) ¼
1

p
Pa(x1) ln

x2 þ b

x2 � b

�
�
�
�

�
�
�
�

(7:662)

3. Derivation of the Hilbert Transform of a nonseparable

function defined by the equation

u(x1 , x2) ¼
h

a
(a� jx1j � jx2j);

u(x1 , x2) ¼ 0;

(x1 , x2) 2 S

(x1 , x2) =2 S
(7:663)

The support S is shown in Figure 7.81b. This function

has the geometric form of a pyramid (Figure 7.81a). The

Hilbert transform of this function is

y(x1 , x2) ¼
h

p2a
P

ða

0

ða�x2

0

a� h� g

(x1 � h)(x2 � g)
d gd h

8

<

:

þ P

ð�a

0

ð0

�aþx2

a� h� g

(x1 � h)(x2 � g)
d gdh

þ P

ð0

�a

ð�aþx2

0

a� h� g

(x1 � h)(x2 � g)
d gdh

þ P

ð0

�a

ð0

�a�x2

a� h� g

(x1 � h)(x2 � g)
d gdh

9

=

;
(7:664)

0

h

U (X1, X2)

a

X1

X2

a–a

(a)

(b)

(c)

–a

a

–a

–a

a

X1 = a – X2X1 = –a + X2

X1 = –a – X2

X1

X1 = a + X2

0

X2

a

a

Support of V2

Support of V1

–a

–a

0

X2

X1

FIGURE 7.81 (a) The pyramid pulse. (b) The support of the pyramid

pulse. (c) The supports of the partial Hilbert transforms of this pulse.

Hilbert Transforms 7-83



The integration yields

y(x1 ,x2)¼
h

p2a

(

2x1 ln jx1j ln
x2� a

x2þ a

�
�
�
�

�
�
�
�

þ P

ða

0

(x1þg� a) ln jx1þg�ajþ (x1þ a�g) ln jx1þ a�gj
x2�g

dg

þP
ð0

�a

(x1� a�g) ln jx1� a�gj þ (aþ x1þg) ln jaþ x1þgj
x2�g

dg

9

=

;

(7:665)

The 1-D integrals do not have a closed solution and a

numerical integration should be applied. Notice that

the support of the Hilbert transform (Equation 7.665)

is infinite, which is different than the finite support of

u(x1, x2). The partial Hilbert transforms, defined by Equa-

tions 7.635 and 7.636 are

y1(x1 , x2) ¼
h

pa
[�2x1 ln jx1j þ (x1 þ x2 � a) ln jx1 þ x2 � aj

þ (x1 þ a� x2) ln jx1 þ a� x2j] (7:666)

y2(x1 , x2) ¼
h

pa
[�2x2 ln jx2j þ (x2 þ x1 � a) ln jx2 þ x1 � aj

þ (x2 þ a� x1) ln jx2 þ a� x1j] (7:667)

The supports of these functions are shown in Figure

7.81c. They are infinite in one dimension and finite in a

band (�a, a) in the second dimension.

7.23.7 Properties of 2-D Hilbert Transformations

Selected properties of 2-D Hilbert transformations are summar-

ized in Table 7.9.

7.23.7.1 Orthogonality

The terms of the 1-D Hilbert pair form a pair of orthogonal

functions satisfying the condition

E ¼
ð

u(t)y(t)dt ¼ 0 (7:668)

that is, the mutual energy of both signals equals zero. In general,

the terms of the 2-D Hilbert pair are not orthogonal; that is, the

mutual energy

E ¼
ðð

u(x1, x2)y(x1, x2)dxdx 6¼ 0 (7:669)

does not equal zero. However, this integral equals zero for 2-D

separable signals and for nonseparable signals with certain

symmetry; for example, the pyramid signal defined by Equation

7.657. For separable signals the above double integral takes form

of a product of single integrals, each of which equals zero.

Example

Consider the 2-D Gaussian signal of the form14

u(x1 , x2) ¼ 2ps1s2SQR(1� r2)

 ��1

� exp �(1� r2)�1 (x1=s1)
2 þ (x2=s2)

2

�

� 2rx1x2=(s1s1)
��

(7:670)

TABLE 7.9 Properties of 2-D Hilbert Transforms

Number Name Original Signal or the Inverse Transform Hilbert Transform

1 Notations u(x1, x2) ¼ H�1
2 [y(x1, x2)]; y(x1, x2)¼H2[u(x1, x2)]

2 Signal domain definitions u(x1, x2)¼ 1=(p2x1x2)**y(x1, x2);
a y(x1, x2)¼ 1=(p2x1x2)**u(x1, x2);

b

3 Fourier spectra
u(x1, x2)()2�F

U(v1,v2) ¼
� sgn(v1)sgn(v2)V(v1,v2)

y(x1, x2)()2�F
V(v1,v2) ¼

� sgn(v1)sgn(v2)U(v1,v2)

4 Linearity aua(x1, x2)þ bub(x1, x2); aya(x1, x2)þ byb(x1, x2)

5 Change of symmetry ueeþ uooþ ueoþ uoe; yooþ yee� yoe� yeo
c

6 Iteration y(x1, x2) )
2�H

u(x1, x2)

7 Energy quality
Ð Ð

u2(x1, x2)dx1dx2 ¼
Ð Ð

y2(x1, x2)dx1dx2

8 Product of low-pass

and high-pass signals

with strongly

separated spectra

uLP(x1, x2) Low-pass signal

uHP(x1, x2) High-pass signal

H2(uLPuHP)¼ uLP[H2(uHP)]

9 Separable functions f1(x1)()H g1(x1); f2(x2)()H g2(x2)

Total Hilbert tr. u(x1, x2)¼ f1f2 y(x1, x2)¼ g1g2

Partial Hilbert tr. y1(x1, x2)¼ g1f2 y2(x1, x2)¼ f1g2

Note: Indices: e, even, o, odd.
a See Equation 7.632.
b See Equation 7.631.
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This function is well known in probability theory. It is a separ-

able function if the parameter r¼ 0. Otherwise, for 0< r< 1,

it is a nonseparable function. Its Hilbert transform may be

calculated using the inverse Fourier transform of the Fourier

image, which has the form

U(v1 ,v2) ¼ exp �0:5 s2
1v

2
1 þ s2

2v
2
2 þ 2rs1s2v1v2


 �� �

(7:671)

Because U is a real function, the inverse Fourier transformation

has the simplified form

y(x1 , x2) ¼
ð1

�1

ð1

�1

�sgn(v1)sgn(v2)U(v1 ,v2)

� cos (v1x1 þ v2x2)df1df2 (7:672)

and the partial Hilbert transforms are given by the integrals

y1(x1 , x2) ¼
ð1

�1

ð1

�1

�sgn(v1)U(v1 ,v2)

� sin (v1x1 þ v2x2)df1df2 (7:673)

y2(x1 , x2) ¼
ð1

�1

ð1

�1

�sgn(v2)U(v1 ,v2)

� sin (v1x1 þ v2x2)df1df2 (7:674)

Because these integrals cannot be expressed in the closed

form, a numerical integration scheme must be used for their

approximation. Figure 7.82 shows the equal-value contour

lines of the Gaussian function u(x1, x2) and the total and partial

Hilbert transforms (r¼ 0.5, s1¼ 1, s2¼ 2). The numerical inte-

gration yields the value of the mutual energy E ffi 0.25 (relative

to the signal energy). E equals zero only if r¼ 0, i.e., for

separable Gaussian signals.

7.23.8 Stark’s Extension of Bedrosian’s
Theorem37

Bedrosian’s theorem defines the Hilbert transform of a

product of low-pass and high-pass signals. Stark formulated an

extension of this theorem for 2-D signals. A 2-D function

uLP(x1, x2)()2�F
ULP(v1,v2) is said to be low-pass with cutoff

vector V0¼ {v10, v20} if

max jv1j ¼ v10 and max jv2j ¼ v20

all v1 2 supp ULP(v1,v2) all v2 2 ULP(v1,v2)
(7:675)

where supp ULP denotes the support of the Fourier image; that

is, the set of points for which ULP(v1, v2) is not zero. Analo-

gously, the function UHP(x1, x2)()2�F
UHP(v1,v2) is said to be

high-pass with cutoff vector V0¼ {v10, v20} if

min jv1j ¼ v10 and min jv2j ¼ v20

all v1 2 supp UHP(v1,v2) all v2 2 UHP(v1,v2)
(7:676)

The signals uLP and uHP are said to be strongly spectrally separable

if the conditions (Equations 7.675 and 7.676) are satisfied. We say

that the functions ULP and UHP are spectrally disjointed if they

have nonoverlapping supports. However, spectral disjointedness

may not coincide with strong separability, as shown in Figure 7.83.

Stark’s extension of Bedrosian’s theorem has the form

H2[uLP(x1, x2)uHP(x1, x2)] ¼ uLP(x1, x2)H2[uHP(x1, x2)] (7:677)

that is, only the high-pass term of the product is transformed.

7.23.9 Appendix (Section 7.23)

Consider the 2-D signal given by Equation 7.616. Its 2-D Fourier

transform is (Table 7.10)

U(v1,v2) ¼
ð1

�1

ð1

�1

u(x1, x2)e
�j(v1x1þv2x2)dx1dx2

¼ URe þ jUlm

¼ Uee � Uoo � j(Ueo þ Uoe) (7:678)

where (Tables 7.11 and 7.12)

Uee(v1,v2) ¼
ð1

�1

ð1

�1

uee(x1, x2) cos (v1x1) cos (v2x2) dx1dx2

(7:679)

Uoo(v1,v2) ¼
ð1

�1

ð1

�1

uoo(x1, x2) sin (v1x1) sin (v2x2) dx1dx2

(7:680)

Uoe(v1,v2) ¼
ð1

�1

ð1

�1

uoe(x1, x2) sin (v1x1) cos (v2x2) dx1dx2

(7:681)

Ueo(v1,v2) ¼
ð1

�1

ð1

�1

ueo(x1, x2) cos (v1x1) sin (v2x2) dx1dx2

(7:682)

Using computer programs for numerical integration, the inser-

tion in these integrals of u(x1, x2) instead of uee, uoo, . . . does not
change the result because the trigonometric kernels are selecting

the right terms themselves. Because the Fourier image of the

Hilbert transform is

V(v1,v2) ¼ �sgn(v1)sgn(v2)[Uee � Uoo � j(Uoe þ Ueo)]

(7:683)
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the inverse Fourier transform yields the Hilbert transform

y(x1, x2) ¼ yee þ yoo þ yoe þ yeo (7:684)

where due to the symmetry conditions, the terms of u may be

given by one-sided integrals

Vee(x1, x2) ¼ 4

ð

1

0

ð

1

0

Uee(v1,v2) cos (v1x1) cos (v2x2) df1df2

(7:685)

Voo(x1,x2)¼ 4

ð

1

0

ð

1

0

Uoo(v1,v2) sin (v1x1)sin(v2x2) df1df2 (7:686)
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FIGURE 7.82 The elliptical equal-value contours of a nonseparable Gaussian function (see Equation 7.670) and of the Hilbert transforms y, y1, and

y2, where r¼ 0.5, s1¼ 1,s2¼ 2.
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Voe(x1, x2) ¼ 4

ð

1

0

ð

1

0

Uoe(v1,v2) sin (v1x1)cos(v2x2) df1df2

(7:687)

Veo(x1, x2) ¼ 4

ð

1

0

ð

1

0

Ueo(v1,v2) cos (v1x1) sin (v2x2) df1df2

(7:688)

7.23.9 Two-Dimensional Hilbert Transformers

The transfer function of the ideal ‘‘noncausal’’ 2-D Hilbert trans-

former is given by a product of 1-D transfer functions (see

Equations 7.553 through 7.555). Therefore,

H2�H( f1, f2) ¼ [�j sgn( f1)] [� j sgn( f2)]

¼ jH2�H j e jF( f1 , f2) (7:689)

HP

LP

f2

f1

HPHP
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FIGURE 7.83 (a) LP is the support of the spectrum of a low-pass signal, HP is the support of the spectrum of a high-pass signal strongly separable

from the low-pass. (b) Analogous spectra with spectral disjointedness.

TABLE 7.10 2-D Total and Partial Hilbert Transforms

Number Name Original Signal, Total, and Partial Hilbert Transforms

1 Delta u¼ d(x1, x2) y¼ 1=(p2x1x2)

y1¼ d(x2)=(px1) y2¼ d(x1)=(px2)

2 Gaussian pulse u ¼ e�p x21þx22ð Þ v1¼ 2pf1; v2¼ 2pf2

y ¼ 4
Ð1
0

Ð1
0 e�p f 21 þf 22

� �

sin (v1x1) sin (v2x2) df1 df2

y1 ¼ 4
Ð1
0

Ð1
0 e�p f 21 þf 22

� �

sin (v1x1) cos (v2x2) df1 df2

y2 ¼ 4
Ð1
0

Ð1
0 e�p f 21 þf 22

� �

cos (v1x1) sin (v2x2) df1 df2

3 Cauchy pulse u ¼ ab

a2 þ x21ð Þ b2 þ x22ð Þ y ¼ x1x2
a2 þ x21ð Þ b2 þ x22ð Þ

y1 ¼
x1b

a2 þ x21ð Þ b2 þ x22ð Þ y2 ¼
ax2

a2 þ x21ð Þ b2 þ x22ð Þ

4 Cube pulse u¼Pa(x)Pb(x2) y ¼ 1

p2
ln

x1 þ a

x1 � a

�
�
�
�

�
�
�
�
ln

x2 þ b

x2 � b

�
�
�
�

�
�
�
�

y1 ¼
1

p
ln

x1 þ a

x1 � a

�
�
�
�

�
�
�
�
Pb(x2) y2 ¼

1

p
ln

x2 þ b

x2 � b

�
�
�
�

�
�
�
�
Pa(x1)

5 Sinc pulse u ¼ sin (ax1) sin (bx2)

abx1x2
y ¼ 4

sin2 (ax1=2) sin2 (bx2=2)

abx1x2

y1 ¼ 2
sin2 (ax1=2) sin (bx2)

abx1x2
y2 ¼ 2

sin (ax1) sin2 (bx2=2)

abx1x2
6 Nonseparable Gaussian pulse See Equations 7.670 through 7.674

7 Pyramid pulse See Equations 7.663 through 7.667

8 2-D periodic signals See Table 7.11

Note: Notations: u(x1, x2), original signal; y(x1, x2), total Hilbert transform; y1(x1, x2) or y2(x1, x2), partial Hilbert transforms.
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The magnitude equals 1 and the phase function is

F( f1, f2) ¼ �
p

2
sgn( f1)�

p

2
sgn( f2) (7:690)

7.24 Multidimensional Complex Signals

7.24.1 Short Historical Review

The complex notation of harmonic signals in the form of Euler’s

equation e jvt¼ cos(vt)þ j sin(vt) was introduced to electrical

engineering at the end of the nineteenth century (E. Kennedy and

C. Steinmetz) and soon proliferated to many science and engin-

eering disciplines. Restating the equation in the form cos(vt)¼
0.5(e jvtþ e�jvt) introduces the concept of negative frequencies,
commonly used in modern Fourier spectral analysis. In 1946,

Gabor11 introduced the extension of the complex notation of

time signals in the form of the analytic signal c(t)¼ u(t)þ jy(t)
where y(t) is the Hilbert transform of u(t) (see Section 7.4). It has

the unique feature that its Fourier transform is one-sided. In

1964 this author12 used the analytic signal to define the notion

of the instantaneous complex frequency. This section presents

TABLE 7.11 2-D Total and Partial Hilbert Transforms of Periodic Functions

Number Original Signal, Total, and Partial Hilbert Transforms

1 u¼ cos(v1x1) cos(v2x2) y¼ sin(v1x1) sin(v2x2)

y1¼ sin(v1x1) cos(v2x2) y2¼ cos(v1x1) sin(v2x2)

2 u¼ sin(v1x1) sin(v2x2) y¼ cos(v1x1) cos(v2x2)

y1¼�cos(v1x1) sin(v2x2) y2¼�sin(v1x1) cos(v2x2)

3 u¼ cos(v1x1 þ v2x2) y¼�cos(v1x1þv2x2)

y1¼ sin(v1x1þv2x2) y2¼ sin(v1x1þv2x2)

4 u¼ sin(v1x1þv2x2) y¼�sin(v1x1þv2x2)

y1¼�cos(v1x1þv2x2) y2¼ cos(v1x1þv2x2)

5 u ¼ ej(v1x1þv2x2) y ¼ �sgn(v1) sgn(v2)ej(v1x1þv2x2)

y1 ¼ �j sgn(v1)ej(v1x1þv2x2) ; y2 ¼ �j sgn(v2)ej(v1x1þv2x2)

6 u¼ sgn[cos(v1x1)] sgn[cos(v2x2)] (2-D square wave)

y¼ (4=p2) ln j tan(v2x1=2þp=4)j ln jtan(v1x2=2þp=4)j
y1¼ (2=p) ln j tan(v1x1=2þp=4)j sgn[cos(v2x2)]

y2¼ (2=p) ln j tan(v2x2=2þp=4)j sgn[cos(v1x1)]

7 u ¼
X1

n¼�1

X1
m¼�1 d(x1 � na, x2 �mb)(2-D delta sampling sequence)

y ¼ 1

ab

X1
n¼�1

X1
m¼�1 cot[(p=a)(x1 � na)]cot[(p=b)(x2 �mb)]

y1 ¼
1

a

X1
n¼�1

X1
m¼�1 cot[(p=a)(x1 � na)]d(x2 �mb)

y2 ¼
1

b

X1
n¼�1

X1
m¼�1 cot[(p=b)(x2 �mb)]d(x1 � na)

Note: Notations: u(x1, x2), original signal; y(x1, x2), total Hilbert transforms; y1(x1, x2)
or y2(x1, x2), partial Hilbert transforms.

TABLE 7.12 n-D Hilbert Transforms of Harmonic Functions

n Function Hilbert Transform

1 cos(vt) sin(vt)

sin(vt) �cos(vt)
2 cos(v1x1þv2x2) �cos(v1x1þv2x2)

sin(v1x1þv2x2) �sin(v1x1þv2x2)

3 cos(v1x1þv2x2þv3x3) �sin(v1x1þv2x2þ v3x3)

sin(v1x1 þ v2x2þv3x3) cos(v1x1þv2x2þv3x3)

4 cos(v1x1þv2x2þv3x3þv4x4) cos(v1x1þv2x2þv3x3þv4x4)

sin(v1x1þv2x2þv3x3þv4x4) sin(v1x1þv2x2þv3x3þv4x4)

1 ejvt �j sgn(v)ejvt

2 ej(v1x1þv2x2) �sgn(v1)sgn(v2)ej(v1x1þv2x2)

3 ej(v1x1þv2x2þv3x3) �j sgn(v1)sgn(v2) sgn(v3)ej(v1x1þv2x2þv3x3)

4 ej(v1x1þv2x2þv3x3þv4x4) sgn(v1)sgn(v2) sgn(v3) sgn(v4)ej(v1x1þv2x2þv3x3þv4x4)
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how the complex notation of signals and the notion of the

analytic signal can be generalized for multidimensional signals.

This generalization has been recently developed by this author.13

7.24.2 Definition of the Multidimensional
Complex Signal

Let us remember that no definition is ‘‘true’’ or ‘‘false.’’ However,

it is very desirable that a definition of the n-D complex signal

satisfy certain requirements. The basic requirement is the com-
patibility with the 1-D case, i.e., with the definition of the analytic

signal. Many other requirements may be formulated, such as

usefulness in applications. The definition of the multidimen-

sional complex signal introduced in Ref. 13 is based on the

frequency domain description of the multidimensional signals

given by the Fourier pair

u(x)()n�F U(V) (7:691)

where x¼ {x1, x2, . . . , xn} and V¼ {v1,v2, . . . ,vn} are n-D real

column vectors (see Section 7.23). Let us remember that the

kernels of the n-D Fourier transformations are in 1-D e�jvt,

in 2-D e�j(v1x1þv2x2), in 3-D e�j(v1x1þv2x2þv3x3), and in

n-D e�j(v1x1þ...þvnxn). These kernels have the form of complex

signals of a constant amplitude A¼ 1 and linear phase in respect

to the variables x1, x2, . . . , xn. Therefore, a compatible definition of

a multidimensional complex signal should define n-dimensional

complex harmonic signals in the form of the above kernels n-D
Fourier transformation. Because the 1-D complex analytic signal

has a one-sided spectrum at positive frequencies, let us define the

n-D complex signal using the inverse Fourier transform of its

spectrum canceled at all orthants of the Fourier frequencies

space except in the first orthant. In 1-D this space has two half-
axes, in 2-D four quadrants, in 3-D eight octants, and in general

2n orthants. Mathematicians denote the orthant with all the axis

of positive sign by Rþ. Therefore, the n-D complex signal is

defined by the Fourier pair

c(x)()n�F
G(V) ¼ 2n1(V)U(V) (7:692)

The cancellation of the spectrum in all but the first orthant is

achieved by multiplication of the n-D Fourier image by the n-D
unit step function (or distribution) 1(V) defined by the formula

(V¼ {v1,v2, . . . ,vn})

1(V) ¼
1 all v > 0
0:5 all v ¼ 0
0 all v < 0

(

(7:693)

The numerical factor 2n is used to normalize the energy of the

complex signal. The n-D unit step may be written in the form of

a product of 1-D unit steps; that is, given by the formula

1(V) ¼ 1(v1)
 1(v2)
 . . .
 1(vn) (7:694)

where 
 denotes a tensor product of distributions. In the follow-

ing text we will suppress the symbol 
 because here it has a pure

formal meaning. The 1-D unit step may be written in the form

1(v)¼ 0.5[1þ sgn(v)] (see Equation 7.49). The insertion of this

form in Equation 7.694 yields

1(V) ¼ [0:5 sgn(v1)] [0:5þ 0:5 sgn(v2)] . . . [0:5þ 0:5 sgn(vn)]

(7:695)

The application of the convolution to multiplication theorem of

Fourier analysis to the spectrum G(V) defined by Equation 7.692

yields the signal domain definition of the n-D complex signal in

the form of the n-fold convolution

c(x) ¼ cd(x)* � � � *u(x) (7:696)

where the signal cd (x) is given by the inverse Fourier transform

of the unit step; that is,

cd(x)()n�F
2n1(V) (7:697)

The n-D delta pulse (distribution) d(x)¼ d(x1) d(x2) . . . d(xn)
may be defined by the inverse Fourier transform of the spectrum

U(V)¼ 1, i.e., by the Fourier pair

d(x)()n�F
1 (7:698)

Therefore, the signal cd(x) defines the n-D complex delta distri-
bution (see the 1-D case, Section 7.6, Equation 7.67 and a more

detailed description in the next part of this section). Notice that

Equations 7.692 and 7.696 uniquely define the n-D complex

signal due to the uniqueness theorem of the Fourier analysis.

To get the structure of the n-D complex signal c(x) let us

insert in the spectrum G(V) defined by Equation 7.692 the

developed form of the multiple product given by Equation

7.695, as shown in Table 7.13. The real part of the complex

signals c1 in Table 7.13 corresponds to the spectral terms

obtained by multiplication of G(V) by 1, sgn(v1) sgn(v2), . . . ,

sgn(v1) sgn(v2) sgn(v3) sgn(v4), . . . ; that is, by a product of an

even number of signum functions, and the imaginary part by sgn

(v1), . . . , sgn(v1) sgn(v2) sgn(v3), . . . ; that is, by a product of an

odd number of signum functions.

Example

Consider the 2-D harmonic signal u¼ cos(v1x1) cos(v2x2). The

Hilbert transforms are (see Table 7.11) y¼ sin(v1x1) sin(v2x2),

y1¼ sin(v1x1) cos(v2x2), y2¼ cos(v1x1) sin(v2x2). The insertion

of u, y, y1, and y2 into Equation 7.700 yields the complex signal
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c1(x1 , x2) ¼ cos (v1 , x1) cos (v2 , x2)� sin (v1 , x1) cos (v2 , x2)

þ j[ sin (v1 , x1) cos (v2 , x2)

þ cos (v1 , x1) cos (v2 , x2)] (7:703)

The application of standard trigonometric relations yields

v1(x1 , x2) ¼ e j(v1x1þv2x2) (7:704)

Notice that the real part of the signal u� y¼ cos(v1x1þv2x2)

and is not equal to u. Then n-D generalization of the above

signal is u(x)¼ cos(v1x1) cos(v2x2)� � �cos(v2x2), yielding the

complex signal

c(x) ¼ e j(v1x1þv2x2þ...vnxn ) (7:705)

This formula gives evidence that the important requirement of

compatibility of the definition of a multidimensional complex

signal with the 1-D case is satisfied by complex signals with

single orthant spectra.

Example

Consider the 2-D delta pulse distribution d(x1, x2)¼ d(x1) d(x2).

The Hilbert transforms are given in Table 7.14 and Equation

7.700 yields the following form of the 2-D complex delta

distribution

cd(x1 , x2) ¼ d(x1 , x2)� 1=(p2x1x2)þ j[d(x2)=(px1)

þ d(x1)=(px2)] (7:706)

The insertion in Equation 7.701 of the appropriate Hilbert

transforms of the 3-D delta pulse d(x1, x2, x3) yields the follow-

ing form of the 3-D complex delta distribution

cd(x1 , x2 , x3) ¼ d(x1 , x2 , x3)�
d(x3)

p2x1x2
� d(x2)

p2x1x3
� d(x1)

p2x2x3

þ j
d(x2 , x3)

px1
þ d(x1 , x3)

px2
þ d(x1 , x2)

px2
� 1

p3x1x2x3

� �

(7:707)

7.24.3 Conjugate 2-D Complex Signals

The 2-D complex signal defined by Equation 7.700 has the single

quadrant spectrum in the first quadrant. Let us define 2-D

complex signals with single quadrant spectra in successive quad-

rants. The accepted numeration of the quadrants is shown in

Figure 7.84. The so-defined complex signals and their spectra are

shown in Table 7.14.

TABLE 7.13 The n-D Complex Signals and Their Fourier Spectra

n-D Complex Signal Fourier Image

1-D c1¼ uþ jy G(v)¼ [1þ sgn(v)]U(v) (7.699)

2-D c1¼ u� yþ j(y1þ y2) G(v1,v2)¼U (v1,v2)3 [1þ sgn(v1)þ sgn(v2)þ sgn(v1) sgn(v2)] (7.700)

3-D c1¼ u� y12� y13� y23þ j(y1þ y2þ y3� y) G(v1,v2,v3)¼U(v1, v2, v3)3 [1þ sgn(v1)þ sgn(v2)þ sgn(v3)þ sgn(v1) sgn(v2)

þ sgn(v1) sgn(v3)þ sgn(v2) sgn(v3)þ sgn(v1) sgn(v2) sgn(v3)]

(7.701)

.

.

.
.
.
.

n-D c1¼ F�1[G(V)] [G(V)]¼ 2n1(V)U(V) (7.702)

Note: u is the original signal, y is its total Hilbert transform, y1, y2, y3 are the first-order partial Hilbert transform y12, y13, y23 are the second-order partial

Hilbert transforms. For notations ease, the dependence of u, y, y1, . . . on x1, x2, x3, . . . is omitted. The index 1 in c1 indicates a complex signal with a single

orthant spectrum in the first orthant (in Rþ).

TABLE 7.14 2-D Complex Signals with Single-Quadrant Spectra in Successive Quadrants of the Fourier Frequency Plane (v1,v2)

Quadrant Complex Signal Fourier Image

1 c1¼ u� yþ j(y1þ y2) G1(v1,v2)¼ 4 1(v1,v2)U(v1,v2)¼U[1þ sgn(v1)þ sgn(v2)þ sgn(v1) sgn(v2)]

2 c2¼ uþ y� j(y1� y2) G2(v1,v2)¼ 4 1(�v1,v2)U(v1,v2)¼U[1� sgn(v1)þ sgn(v2)� sgn(v1) sgn(v2)]

3 c3¼ uþ yþ j(y1� y2) G3(v1,v2)¼ 4 1(v1,�v2)U(v1,v2)¼U[1þ sgn(v1)� sgn(v2)� sgn(v1) sgn(v2)]

4 c4¼ u� y� j(y1þ y2) G4(v1,v2)¼ 4 1(�v1,�v2)U(v1,v2)¼U[1� sgn(v1)� sgn(v2)þ sgn(v1) sgn(v2)]

Note: Two pairs of conjugate signals: c1 ¼ c4
* and c3 ¼ c2

*. Notations: See Table 7.13.

12

4 3

ω1

ω2

FIGURE 7.84 The numeration of quadrants (see Appendix 7.24.7).
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7.24.4 Local (or ‘‘Instantaneous’’) Amplitudes,
Phases, and Complex Frequencies

Let us write the complex signals of Table 7.14 in polar coordinates:

c1(x1, x2) ¼ c4
*(x1, x2) ¼ A1(x1, x2)e

jF1(x1 , x2) (7:708)

c3(x1, x2) ¼ c2
*(x1, x2) ¼ A2(x1, x2)e

jF2(x1 , x2) (7:709)

This representation defines the local (or ‘‘instantaneous’’) ampli-
tudes

A1(x1, x2) ¼ SQR{[u(x1, x2)� y(x1, x2)]
2 þ [y1(x1, x2)

þ y2(x1, x2)]
2} (7:710)

A2[x1, x2] ¼ SQR{[u(x1, x2)þ y(x1, x2)]
2 þ [y1(x1, x2)

þ y2(x1, x2)]
2} (7:711)

and the local (or ‘‘instantaneous’’) phases

F1(x1, x2) ¼ tan�1
y1(x1, x2)þ y2(x1, x2)

u(x1, x2)� y(x1, x2)
(7:712)

F2(x1, x2) ¼ tan�1
y1(x1, x2)� y2(x1, x2)

u(x1, x2)þ y(x1, x2)
(7:713)

of the real signal u(x1, x2). Analogous to the 1-D case (see Section

7.16, Equation 7.249) let us define the complex phases

F1c(x1, x2) ¼ Ln c1(x1, x2) (7:714)

F2c(x1, x2) ¼ Ln c3(x1, x2) (7:715)

and the partial instantaneous complex frequencies

s1x1 (x1, x2) ¼
qF1c(x1, x2)

qx1
¼ a1x1 (x1, x2)þ jv1x1(x1, x2) (7:716)

s1x2 (x1, x2) ¼
qF1c(x1, x2)

qx2
¼ a1x2 (x1, x2)þ jv1x2(x1, x2) (7:717)

s2x1 (x1, x2) ¼
qF2c(x1, x2)

qx1
¼ a2x1 (x1, x2)þ jv2x1(x1, x2) (7:718)

s2x2 (x1, x2) ¼
qF2c(x1, x2)

qx2
¼ a2x2 (x1, x2)þ jv2x2(x1, x2) (7:719)

In Equations 7.716 and 7.718 x2 is a parameter and the complex

frequencies are defined along the lines parallel to the x1 axis.

Similarly, Equations 7.717 and 7.719 define complex frequencies

parallel to the x2 axis.
For separable 2-D signals (see Equation 7.653), the amplitudes

A1 and A2 defined by Equations 7.710 and 7.711 are equal and

given by the formula

A(x1, x2) ¼ SQR u2 þ y2 þ y21 þ y22

 �

(7:720)

and the phases (Equations 7.712 and 7.713) are

F1(x1, x2) ¼ w1(x1)þ w2(x2) (7:721)

F2(x1, x2) ¼ w1(x1)� w2(x2) (7:722)

where w1¼ tan�1(g1=f1) (see Equation 7.653). The complex fre-

quencies have, for separable signals, the simplified form

s1x1 ¼ s2x1 ¼ a1 þ jv1 (7:723)

s1x2 ¼ s2x2* ¼ a2 þ jv2 (7:724)

Example

Consider the 2-D signal of the form

u(x1 , x2) ¼
sin (ax1) sin (bx2)

abx1x2
(7:725)

The insertion of this signal and its Hilbert transforms y, y1, and
y2 (see Table 7.10) in Equation 7.720 using certain trigonomet-

ric relations yields

A(x1 , x2) ¼
1� cos (ax1)

sin (ax1)

�
�
�
�

�
�
�
�

1� cos (bx2)

sin (bx2)

�
�
�
�

�
�
�
�

(7:726)

The phase functions (Equations 7.721 and 7.722) take the form

F1(x1 , x2)¼ tan�1
1� cos (ax1)

sin (ax1)
þ tan�1

1� cos (bx2)

sin (bx2)
¼ a

2
x1 þ

b

2
x2

(7:727)

F2(x1 , x2)¼ tan�1
1� cos (ax1)

sin (ax1)
� tan�1

1� cos (bx2)

sin (bx2)
¼ a

2
x1 �

b

2
x2

(7:728)

The local partial angular frequencies defined by the imaginary

parts of (7.723) and (7.724) are v1¼ a=2 and v2¼ b=2. The
local amplitude (7.726) is a product of local amplitudes of the

separable terms of the signal (7.725), and the phase is a sum

(or difference) of phases of these terms. The phase functions in

this example are linear (a constant slope if we remove the

jumps of the multibranch tan�1 function), giving constant

values of the angular frequencies.

7.24.5 Relations between Real
and Complex Notation

In one dimension, we have the following well-known relations:

u(t) ¼ c(t)þ c*(t)

2
; y(t) ¼ c(t)� c*(t)

2j
(7:729)
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In two dimensions, the corresponding relations become (see

Table 7.14)

u(x1, x2) ¼
c1 þ c2 þ c3 þ c4

4
(7:730)

y(x1, x2) ¼
c1 � c2 þ c3 � c4

4
(7:731)

y1(x1, x2) ¼
c1 � c2 þ c3 � c4

4j
(7:732)

y2(x1, x2) ¼
c1 þ c2 � c3 � c4

4j
(7:733)

Using the relations c1 ¼ c4
* and c3 ¼ c2

*, the real part of the

complex signal c1 takes the form

u� y ¼ 0:5(c1 þ c4) ¼ 0:5(c1 þ c1
*) (7:734)

and the real part of c3 is

uþ y ¼ 0:5(c2 þ c3) ¼ 0:5(c2 þ c2
*) (7:735)

Notice that the spectra of these two signals exist in two quadrants

of the Fourier frequency plane. The insertion of the polar repre-

sentations (Equations 7.708 and 7.709) into Equations 7.734 and

7.735 yield

u� y ¼ A1 cos (F1) (7:736)

uþ y ¼ A2 cos (F2) (7:737)

The summation (or subtraction) yields the following relations:

u(x1, x2) ¼
A1 cos (F1)þ A2 cos (F2)

2
(7:738)

y(x1, x2) ¼
A2 cos (F2)þ A1 cos (F1)

2
(7:739)

and analogous derivation yields

y1(x1, x2) ¼
A1 sin (F1)þ A2 sin (F2)

2
(7:740)

y2(x1, x2) ¼
A2 sin (F2)� A1 sin (F1)

2
(7:741)

For separable signals, these relations have the simplified form

u(x1, x2) ¼ A cos [w1(x1)] cos [w2(x2)] (7:742)

y(x1, x2) ¼ A sin [w1(x1)] sin [w2(x2)] (7:743)

y1(x1, x2) ¼ A sin [w1(x1)] cos [w2(x2)] (7:744)

y2(x1, x2) ¼ A cos [w1(x1)] sin [w2(x2)] (7:745)

In three dimensions the number of octants equals eight and the

relation between the real and complex notation becomes

(we applied the method of numeration of octants given in

Appendix 7.24.7),

u(x1, x2, x3) ¼
c1 þ c2 þ c3 þ c4 þ c5 þ c6 þ c7 þ c8

8

(7:746)

Using the relations c1 ¼ c8
* ¼ A1e jF1 ,c2 ¼ c7

* ¼ A2e jF2 ,

c3 ¼ c6
* ¼ A3e jF3 , and c4 ¼ c5

* ¼ A4e jF4 , the above formula

takes the form

(x1,x2,x3)¼
A1 cos (F1)þA2 cos (F2)þA3 cos (F3)þA4 cos (F4)

8

(7:747)

For separate signals all amplitudes are equal and the phase

functions are

F1(x1, x2, x3) ¼ w1(x1)þ w2(x2)þ w3(x3) (7:748)

F2(x1, x2, x3) ¼ �w1(x1)þ w2(x2)þ w3(x3) (7:749)

F3(x1, x2, x3) ¼ w1(x1)� w2(x2)þ w3(x3) (7:750)

F4(x1, x2, x3) ¼ �w1(x1)� w2(x2)þ w3(x3) (7:751)

The insertion of these phase functions in Equation 7.747 yields

u(x1, x2, x3) ¼ A cos [w1(x1)] cos [w2(x2)] cos [w3(x3)] (7:752)

Similar formulae for u, u1, and u2 may be easily derived or

written directly by comparison with the 2-D case. In general,

for the n-D separable signal of the form u(x) ¼Qn
k¼1 akf (xk) this

formula takes the form u(x) ¼ A
Qn

k¼1 cos [w(xk)], where

A ¼Qn
k¼1 ak. If all ak’s are equal to a, then A¼ an or a ¼

ffiffiffiffi
An
p

.

Example

Consider again the signal u(x1, x2)¼ cos(v10x1) cos(v20x2) of

the previous example. The four complex signals of Table 7.14

and their spectra are

Quadrant Complex Signal Fourier Image

1 c1 ¼ e j(v10x1þv20x2) d(v1 � v10; v2 � v20)

2 c2 ¼ e j(�v10x1þv20x2) d(v1 þ v10; v2 � v20)

3 c3 ¼ e j(v10x1�v20x2) d(v1 � v10; v2 þ v20)

4 c1 ¼ e j(�v10x1�v20x2) d(v1 þ v10; v2 þ v20)

The spectrum of the signal u is shown in Figure 7.85. The

insertion of these functions in Equations 7.730 through 7.741

gives the verifications of these relations.

7.24.6 2-D Modulation Theory

The 1-D modulated signal has the complex representation in the

form of a product of the modulation function and the complex
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harmonic carrier (see Section 7.17, Equation 7.279). From the

formal point of view, the concept of the modulation function

can be extended to multidimensional modulating signals with

multidimensional harmonic carriers. The n-D complex harmonic

carrier has the form

Cc(x) ¼ A0e
j(v10x1þw1þv20x2þw2þ���þvn0xnþwn) (7:753)

We define the n-D modulated signal in the form of a product

c(x) ¼ g(x)cc(x) (7:754)

where g(x)¼ f [u(x)] is called the n-D modulation function and

f[u(x)] is a function of the n-D message u(x). As in the 1-D case,

the function f defines a specific type of modulation. The 2-D

modulated signal has the form

C(x1, x2) ¼ g(x1, x2)A0e
j(v10x1þv20x2) (7:755)

where for convenience, the phases w1¼w2¼ 0.

Example

Consider a 2-D low-pass message and its Fourier image

u(x1 , x2)()
2�F

U( jv1 , jv2) (7:756)

with the base-band spectrum band limited such that

U( jv1, jv2)¼ 0 for jv1j> a and jv2j> b. The modulation func-

tion of the 2-D suppressed carrier amplitude modulation is

gAM(x1 , x2) ¼ mu(x1 , x2) (7:757)

Figure 7.86 shows the spectra of the base-band signal u and of

the modulated signal.

The 2-D equivalent of the 1-D SSB modulation is the single

quadrant modulation (SQM). The modulation function is given

by the inverse Fourier transform of the base-band single

quadrant spectrum

gSQM(x1 , x2) ¼ F�1[41(v1 ,v2) U(v1 ,v2)]

¼ u(x1 , x2)� y(x1 , x2)þ j[y1(x1 , x2)þ y2(x1 , x2)]

(7:758)

that is, in the form of the complex signal (7.700) in Table 7.13.

The insertion of this modulation function in Equation 7.745

yields the complex SQM signal

CSQM(x1 , x2) ¼ {u(x1 , x2)� y(x1 , x2)þ j[y1(x1 , x2)

þ y2(x1 , x2)]}A0e
j(v10x1þv20x2) (7:759)

and its real notation is

uSOM(x1 , x2) ¼ u cos (v10x1) cos (v20x2)þ y sin (v10x1) sin (v20x2)þ
� y1 sin (v10x1) cos (v20x2)� y2 cos (v10x1) sin (v20x2)

(7:760)

Figure 7.87 shows the supports of the spectra of gSQM, CSQM,

and uSQM.

1/4 1/4

1/41/4

0

F (cos ω10x1 . cos ω20x2)

f2

f20

f10–f10

–f20

f1

FIGURE 7.85 The Fourier spectrum of the 2-D harmonic signal u(x1, x2)¼ cos (v10x1) cos (v20x2).
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7.24.7 Appendix: A Method
of Labeling Orthants

The applied numbering method of successive orthants is the

following: we assign the binary number zero to a plus sign and

the binary number 1 to a minus sign of the variable v. For

example, the unit step function 1(v4, �v3, �v2, v1) corresponds

to the binary number 0110. If the decimal-coded binary number

is a, we assign to the given orthant the decimal number l¼ aþ 1.

So, we have in four dimensions:

Sign of the V Axis

l¼ aþ 1 Binary v4 v3 v2 v1

1 0000 þ þ þ þ
2 0001 þ þ þ �
3 0010 þ þ � þ
4 0011 þ þ � �
16 1111 � � � �

7.25 Quaternionic 2-D Signals

7.25.1 Quaternion Numbers and Quaternion-
Valued Functions

The concept of the quaternion number was introduced by

Hamilton in 1843 and defined by the formula

0

b

12

–a a

4 3

Baseband

–b

f2

f20

f1
–f10 f10

–f20

FIGURE 7.86 The supports of the spectrum of a 2-D carrier with 2-D amplitude modulation.

Baseband

a

34

b

Support of the
spectrum of ΨSQM

Baseband of the
complex signal 

–a

–b

0

12

–f10 f10

–f20

f20

f2

f1

Ψ(X1, X2)

FIGURE 7.87 The supports of the spectrum of a 2-D signal with single

quadrant modulation (SQM).
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q ¼ 1aþ ibþ jcþ kd (7:761)

where a, b, c, d 2 R and imaginary units i, j, k obey the algebra

presented in Table 7.15.

Note, that this algebra is noncommutative, i.e., ij 6¼ ji. If we
replace the constants a, b, c, and d with 2-D functions, we get a

quaternion-valued function:

cq(x1, x2) ¼ a(x1, x2)þ ib(x1, x2)þ jc(x1, x2)þ kd(x1, x2)

(7:762)

7.25.2 Quaternionic Spectral Analysis

The 2-D Fourier transformation of a real signal u(x1, x2) is

defined by the Equation 7.639 for n¼ 2:

U( f1, f2) ¼
ð

1

�1

ð

1

�1

e�jv1x1u(x1, x2)e
�jv2x2dx1dx2 (7:763)

where we intentionally have written the kernel e�j(v1x1þv2x2) in a

separate form to get a comparison with the corresponding

quaternionic Fourier transformation (QFT)

Uq( f1, f2) ¼
ð

1

�1

ð

1

�1

e�iv1x1u(x1, x2)e
�jv2x2dx1dx2 (7:764)

Here the order of the terms of the integrand cannot be changed.

It can be shown [46] that

Uq( f1, f2) ¼
1� k

2
U( f1, f2)þ

1þ k

2
U(�f1, f2) (7:765)

The signal u(x1, x2) can be decomposed in a union of four terms

given by the Equation 7.616. This yields the following form of the

2-D FT:

U( f1, f2) ¼ Uee � Uoo � j(Uoe þ Ueo) (7:766)

The corresponding quaternionic spectrum is

Uq( f1, f2) ¼ Uee � iUoe � jUeo þ kUoo (7:767)

where

a1 ¼ 2pf1x1 and a2 ¼ 2pf2x2. Note, that the 2-D FT and the

QFT are defined by the same four terms indexed ee, oo, ee, and

eo (see Equations 7.616 through 7.619). For even–even signals

both transforms are real and equal, i.e., 2-D FT¼QFT.

7.25.3 Hermitian Symmetry of the 2-D Fourier
Spectrum

An important feature of the 2-D FT is the Hermitian symmetry

defined by the equations

U( f1, f2) ¼ U*(�f1, � f2)

U(�f1, f2) ¼ U*( f1, � f2)
(7:768)

where ‘‘*’’ denotes the complex conjugate. Due to this symmetry,

the signal can be recovered from its half-plane spectrum,

for example, the half-plane f1> 0 (Remark: A half-plane may

be defined w.r.t. any line crossing the origin. However, the choice

of a coordinate axis yields simpler relations). The spectrum in the

complementary half-plane is redundant. We say that all spectral

information about the real signal u(x) is given by a half-plane

spectrum. A half-plane is a union of two quadrants. In general,

the single-quadrant spectra of a half-plane differ. However, for

separable signals of the form of a product of 1-D signals

u(x1, x2) ¼ f1(x1)f2(x2), the spectral information in both quad-

rants is the same. More specifically, the two single-quadrant

spectra are forming a mirror image w.r.t. the axis separating

these quadrants.

7.25.3.1 Quaternionic Hermitian Symmetry
of the QFT44

The quaternionic spectrum defined by the QFT obeys the rules of

the quaternionic Hermitian symmetry defined by the relations

Uq(�f1, f2) ¼ aj[Uq( f1, f2)],

Uq(�f1,� f2) ¼ ak[Uq( f1, f2)],

Uq( f1,� f2) ¼ ai[Uq( f1, f2)]

(7:769)

where the functions ai, aj, and ak are called involutions of Uq

and are defined as follows:

ai( f1, f2) ¼ �iUqi ¼ Uee � iUoe þ jUeo � kUoo,

aj( f1, f2) ¼ �jUq j ¼ Uee þ iUoe � jUeo � kUoo, (7:770)

ak( f1, f2) ¼ �kUqk ¼ Uee þ iUoe þ jUeo þ kUoo

Due to the quaternionic Hermitian symmetry all spectral infor-

mation is contained in a single-quadrant spectrum. The infor-

mation in the other three quadrants is redundant.

TABLE 7.15 The Algebra of Imaginary Units

1 I j k

i i2¼�1 ij¼ k ik¼�j
j ji¼�k j2¼�1 jk¼ i

k ki¼ j kj¼� i k2¼�1

Hilbert Transforms 7-95



7.25.3.2 The Quaternionic Signal
with Single-Quadrant Spectrum

The quaternionic signal QS with a single-quadrant spectrum is

defined by the inverse QFT of the form

cq(x1, x2) ¼
ð

1

�1

ð

1

�1

ei2pf1x1 [1þ sgn( f1)þ sgn( f2)

þ sgn( f1) sgn( f2)]Uq( f1, f2)e
j2pf2x2df1df2 (7:771)

The integration yields the following QS:

cq(x1, x2) ¼ uþ iv1 þ jv2 þ kv, (7:772)

where v1, v2, and v are the same Hilbert transforms as used in

Table 7.14 for 2-D analytic signals with single-quadrant spectra.

The polar notation of this signal is

cq(x1, x2) ¼ Aqe
if1ekwke jwj (7:773)

where the amplitude is given by the formula

Aq(x1, xx) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v21 þ v22 þ v2
q

(7:774)

and the phase functions are

fi(x1, x2) ¼ 0:5Tan�1
2(uv1 þ vv2)

u2 � v21 þ v22 � v2

� �

(7:775)

fj(x1, x2) ¼ 0:5Tan�1
2(uv2 þ vv1)

u2 þ v21 � v22 � v2

� �

(7:776)

fk(x1, x2) ¼ 0:5 sin�1
D2

A2
q

" #

(7:777)

where D2 ¼ 2(uv � v1v2).

7.25.3.3 Comparison of the Polar Notation of 2-D
Analytic Signals and Quaternionic Signals

Let us write the local amplitudes of the 2-D analytic signal given

by the Equations 7.711 and 7.712 in the form

A1(x1, x2) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
q þ D2

q

¼ Aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin (2fk)
p

(7:778)

A2(x1, x2) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
q � D2

q

¼ Aq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin (2fk)
p

(7:779)

Therefore,

Aq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2

2

r

(7:780)

and

sin (2fk) ¼
A2
1 � A2

2

A2
1 þ A2

2

: (7:781)

We see that the angle fk 2 (�p=4,p=4) and fk ¼ �p=4 if

A1 ¼ A2. It can be shown that the quaternionic phase functions

fi and fj are related to the analytic phase functions f1 and f2 by

the equations

Tan(2fi) ¼ Tan(f1 þ f2), i:e:, fi ¼ 0:5(f1 þ f2) (7:782)

Tan(2fj) ¼ Tan(f1 � f2), i:e:,fj ¼ 0:5(f1 � f2) (7:783)

The real signal u(x1, x2) can be reconstructed in terms of

two analytic signals with single-quadrant spectra using the Equa-

tion 7.730:

u(x1, x2) ¼
A1 cos (f1)þ A2 cos (f2)

2
(7:738)

The reconstruction formula for the quaternionic signal is

u(x1, x2) ¼ Aq[ cos (fi) cos (fj) cos (fk)

� sin (fi) sin (fj) sin (fk)] (7:784)

In both cases the reconstruction requires four functions. In the

analytic case two amplitudes and two phase functions and in the

quaternionic case a single amplitude and three phase functions.

The methods are equivalent and the choice may depend on

secondary arguments. However, for separable signals of the

form u(x1, x2) ¼ f1(x1)f2(x2) all the amplitudes are equal

A ¼ Aq ¼ A1 ¼ A2, the quaternionic angle fk ¼ 0. The phase

functions of the analytic functions are given by the Equations

7.721 and 7.722. This yields the following form of the recon-

struction formula (Equation 7.739)

u(x1, x2) ¼ A cos [w1(x1)] cos [w2(x2)]: (7:785)

The same formula applies for the quaternionic case replacing (7.784).

7.26 The Monogenic 2-D Signal

Another generalization of the notion of the 1-D AS for 2-D is the

monogenic signal (MS) developed and described in detail in [45].

Let us present shortly the notion of the MS. It has the form

cM(x1, x2) ¼ u(x1, x2)þ ivr1(x1, x2)þ jvr2(x1, x2): (7:786)

It is a quaternion-valued function. In comparison to the QS (Equa-

tion 7.772), the partial Hilbert transforms v1 and v2 are substituted
by the Riesz transforms vr1 and vr2 and the term kv is deleted. The
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Riesz transforms, called also isotropic Hilbert transforms,47 have the
form of a convolution of the signal u with Riesz kernels, i.e.,

vr1(x1, x2) ¼ u(x1, x2)** r1(x1, x2), (7:787)

vr2(x1, x2) ¼ u(x1, x2)** r2(x1, x2), (7:788)

where the Riesz kernels are

r1(x1, x2) ¼
x1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
ph i3 , (7:789)

r2(x1, x2) ¼
x2

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ x22
ph i3 : (7:790)

Note that the Riesz transforms are defined using the convolution

of u with r1 or r2 w.r.t. both variables x1 and x2, as in the case of

the total Hilbert transform (Equation 7.631 or 7.633) and not as

in the case of partial Hilbert transforms (Equations 7.635 and

7.636). It may be shown that the total energy of the monogenic

signal equals twice the energy of the real signal. However, only

the sum of the energies of vr1 and vr2 equals the energy of u, since
the energies of vr1 and vr2 may be different.

The Fourier transforms of the Riesz kernels are46

Ur1( f1, f2) ¼
�jf1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p (7:791)

Ur2( f1, f2) ¼
�jf2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p (7:792)

The insertion of the above 2-D FT’s in (Equation 7.765) yields

the corresponding QFT’s

QFT[r1(x1, x2)] ¼
�if1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p (7:793)

QFT[r2(x1, x2)] ¼
�jf2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p : (7:794)

In comparison to (7.791), for QFT[r1] the ‘‘j-unit’’ is replaced by

the ‘‘i-unit’’, with no change for QFT[r2]. The quaternionic

spectrum of the MS has the form

QFT[cM(x1, x2)] ¼ QFT[u] 1þ f1 þ f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p

" #

(7:795)

where QFT[u] is given by Equation 7.795). The comparison with

2-D analytic signals with single-quadrant spectra (see Table 7.14)

shows that Equation 7.796 is not a spectrum with a single-

quadrant support. Figure 7.88 compares the single-quadrant

operator of Table 7.14 with the operator of Equation 7.795.

Note the four quadrant support of the last one and the negative

values in the quadrant ( f1< 0, f2< 0).

7.26.1 Spherical Coordinates Representation
of the MS

The spherical coordinates representation of the MS (see Figure

7.89) defines its amplitude

AM(x1, x2) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2r1 þ v2r2

q

(7:796)

and two angles Q and F. The angle F is called by the authors

of [45] the orientation angle and Q is called the phase. They are

given by the equations

F(x1, x2) ¼ Tan�1
vr2
vr1

� �

(7:797)
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FIGURE 7.88 (a) The single-quadrant operator [1þ sgn( f1)] [1þ sgn( f2)]. (b) The operator 1þ
f1 þ f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22
p used in (7.790).
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and

Q(x1, x2) ¼ cos�1
u

AM

� �

¼ Tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2r1 þ v2r2
p

u

 !

: (7:798)

In terms of (AM, F, Q), the MS has the form

cM ¼ AM[ cosQþ i sinQ cosFþ j sinQ sinF]: (7:799)

7.27 Wigner Distributions of 2-D
Analytic, Quaternionic,
and Monogenic Signals

The time–frequency Wigner distribution of the 1-D analytic

signal c(t) ¼ u(t)þ jv(t) is defined by the Fourier transform of

the correlation product r(t, t) ¼ c(t þ 0:5t)c*(t � 0:5t) w.r.t.

the time shift variable t:

W(t, f ) ¼
ð1

�1

r(t, t)e�j2pf tdt (7:800)

This function is one-sided in the frequency domain (zero

values in the half-plane f< 0). The use of the analytic signal

avoids the generation of the cross terms between the analytic

signal c(t) and its conjugate c*(t). Note that the real signal

has the form u(t) ¼ 0:5[c(t)þ c*(t)]. In consequence the

Wigner distribution of a real signal produces cross-terms due

to the interaction of c(t) with c*(t) (see Chapter 12).

The Wigner distribution of any signal, real or complex, is a real

function.

The Wigner distribution can be defined for n-D signals

c(x), x 2 (x1, x2, . . . , xn). The extension for 2-D signals is not

unique. The Wigner distribution can be defined for analytic

signals cA(x1, x2), quaternionic signals cQ(x1, x2) and monogenic

signals cM(x1, x2). It is a 4-D function given by the Fourier

transforms of the correlation products: The analytic correlation

product

rA(x1, x2,x1,x2) ¼ cA(x1 þ 0:5 x1, x2 þ 0:5 x2)

� cA
*(x1 � 0:5x1, x2 � 0:5 x2) (7:801)

the quaternionic correlation product

rQ(x1, x2,x1,x2) ¼ cQ(x1 þ 0:5 x1, x2 þ 0:5 x2)

� cQ
*(x1 � 0:5x1, x2 � 0:5x2) (7:802)

and the monogenic correlation product

rM(x1, x2,x1,x2) ¼ cM(x1 þ 0:5 x1, x2 þ 0:5 x2)

� cM
*(x1 � 0:5x1, x2 � 0:5x2) (7:803)

The 4-D Wigner distribution is defined by the Fourier transform

WK(x1, x2, f1, f2)

¼
ð1

�1

ð1

�1

e�i2pf1x1rK(x1, x2, x1,x2)e
�j2pf2x2d x1d x2

(7:804)

In the analytic case rK ¼ rA and we apply a normal

Fourier transformation inserting the imaginary unit i1 ¼ j1.
In the quaternionic and monogenic case we apply the quaternio-

nic Fourier transformation inserting rK ¼ rQ or rK ¼ rM.
The 4-D Wigner distribution of the 2-D analytic signal with

single-quadrant Fourier support remains a real function. How-

ever, in general, a given real signal is represented by two distri-

butions of signals analytic signals, for example, c1 and c3 (see

Table 7.14). Differently, the Wigner distributions of quaternionic

or monogenic signals are represented by a single quaternion-

valued function [46].

7.28 The Clifford Analytic Signal56

The n-D analytic signal with single orthant spectra are described

in Section 7.24. For example, the 3-D analytic signal correspond-

ing to the real signal u(x), x 2 (x1, x2, x3) has in the x domain

the form

cA(x1, x2, x3) ¼ u(x1, x2, x3)*** d(x1)þ j
1

px1

� �

� d(x2)þ j
1

px2

� �

d(x3)þ j
1

px3

� �

(7:805)

The 3-D Fourier transform of this signal is

G( f1, f2, f3)

¼ [1þ sgn( f1)] [1þ sgn( f2)] [1þ sgn( f3)]U( f1, f2, f3) (7:806)

u

Φ

Θ
AM

vr2

vr1

q = v2
r1 + v2

r2

FIGURE 7.89 Spherical coordinates of the monogenic signal.
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where u(x) ,3�FU( f ), f 2 ( f1, f2, f3). The n-D hypercomplex ana-

lytic signal is defined using the notion n-D Clifford Fourier

transform given by [56]

UC(f ) ¼
ð

R
n

u(x)
Y

n

k¼1
exp (�ekfkxk)dnx (7:807)

where

f ¼ ( f1, f2, . . . , fn),x¼ (x1,x2, . . . ,xn)

e1,e2, . . . ,en are basis unit vectors of the Clifford algebra Ro,n

The n-D hypercomplex analytic signal is defined by the formula

cC(x) ¼
Y

n

i¼1
d(xi)þ

ei
pxi

� �

(7:808)

and is given by the inverse Clifford Fourier transform of

the form

GC( f ) ¼ u(x)*
Yn

i¼1
[1þ sgn( fi)]UC( f ) (7:809)

7.29 Hilbert Transforms and Analytic
Signals in Wavelets

In this handbook properties of wavelet transforms are described

in Chapter 10. This short note presents in a descriptive manner

the role of Hilbert transforms and analytic signals in wavelets. In

[47] the authors describe the following four problems with real

wavelets: (1) Oscillations: Since wavelets are band-pass functions,

the wavelet coefficients tend to oscillate around the singularities.

(2) Shift invariance: A small shift of the signal greatly perturbs

the wavelet oscillation pattern around singularities. (3) Aliasing:

see [47]. (4) Lack of directionality in 2-D wavelets. All this

shortcomings of real wavelets can be considerably deleted by

using complex wavelets. In principle, analytic wavelets should

be applied. For 1-D signals the Fourier transform of an analytic

signal should be a one-sided function at positive frequencies.

However, a complex wavelet has the form of an envelope of

finite support modulated with a pair of oscillating orthogonal

functions (a pair of Hilbert transforms). The modulus of the

Fourier transform of such a signal has leakage into negative

frequencies region. Such a signal is called quasi-analytic. In

practice various kinds of complex wavelets are quasi-analytic.

Examples are described in [48–51]. For 2-D signals the Fourier

transform of an analytic signal should have a single-quadrant

support (see [13] and Section 7.24). The notion of quasianalycity

can be extended for 2-D signals. The authors of [48] describe 2-D

quasi-analytic wavelets. Analogous 2-D wavelets using quater-

nionic and monogenic signals are described in [53–55].
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8.1 Introduction

The Austrian mathematician Johann Radon (1887–1956) wrote a
classic paper in 1917, ‘‘Über die Bestimmung von Funktionen
durch ihre Integralwerte längs gewisser Mannigfaltigkeiten’’

(on the determination of functions from their integrals along
certain manifolds) (Radon, 1917). This work forms the founda-
tion for what we now call the Radon transform. English transla-
tions are available in the monograph by Deans (1983, 1993)
and the translation by Parks (1986). The problem of determining
a function f(x, y) from knowledge of its line integrals (the two-
dimensional (2D) case), or a function f(x, y, z) from integrals
over planes the (three-dimensional [3D] case) arises in widely
diverse fields. These include medical imaging, astronomy,

crystallography, electron microscopy, geophysics, optics, and
material science. In these applications the central aim is to obtain
certain information about the internal structure of an object
either by passing some probe (such as x-rays) through the
object or by using information from the source itself when it is
self-emitting, such as an organ in the body that contains a
radioactive isotope, or perhaps the interior of the Earth when
motions occur. Comprehensive reviews of these and other appli-
cations are contained in Brooks and Di Chiro (1976), Scudder
(1978), Barrett (1984), Chapman (1987), and Deans (1983, 1993).

The general problem of unfolding internal structure of an
object by observations of projections is known as the problem
of reconstruction from projections. Many situations arise
when it is possible to determine (reconstruct) various structural
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properties of an object or substance by methods that utilize
projected information and leave the object in an essentially
undamaged state. The Radon transform and it inversion forms
the mathematical framework common to a large class of
these problems. This problem of reconstructing a function from
knowledge of its projections emerges naturally in fields so diverse
that those working in one area seldom communicate with their
counterparts in the other areas. This was especially true prior to
the advent of computerized tomography in the 1970s. As a
consequence, there is an interesting history of the independent
development of applications of the Radon transform by individ-
uals who were not aware of the original work by Radon in 1917,
or of contemporary work in other fields. Those interested in
pursuing these historical matters can consult Cormack (1973,
1982, 1984), Barrett et al. (1983), and Deans (1985, 1993).

Also, the Radon transform has varying degrees of relevance
in three Nobel prizes: (Medicine 1979, Allan M. Cormack
and Godfrey N. Hounsfield) (DiChiro and Brooks, 1979, 1980),
(Cormack, 1980), and (Hounsfield, 1980); (Chemistry 1982,
Aaron Klug) (Caspar and DeRosier, 1982); (Chemistry 1991,
Richard R. Ernst) (Amato, 1991).

As short a time as a decade ago, the Radon transform was
known by very few engineers and scientists. Only those working
directly on reconstruction from projections in one of the major
areas of application had knowledge of this transform. Today, the
Radon transform is widely known by working scientists in medi-
cine, engineering, physical science, and mathematics. It has made
its way into the image processing texts (Kak, 1984, 1985), (Kak
and Slaney, 1988), (Jain, 1989), (Jähne, 1993), and is widely
appreciated in many diverse areas; among the best known
include: medical imaging (Herman, 1980), (Macovski, 1983),
(Natterer, 1986), (Swindell and Webb, 1988), (Parker, 1990),
(Russ, 1992), (Cho et al., 1993); optics and holographic interfer-
ometry (Vest, 1979); geophysics (Claerbout, 1985), (Chapman,
1987), (Ruff, 1987), (Bregman et al., 1989); radio astronomy
(Bracewell, 1979); and pure mathematics (Grinberg and Quinto,
1990), (Gindikin and Michor, 1994).

The purpose of this chapter is to review (and illustrate with
examples) important properties of Radon and Abel transforms
and indicate some of the applications, along with important
sources for applications. Because the Abel transform is a special
case of the Radon transform, most of the discussion is for the
more general transform. This is especially important to keep in
mind for applications where the Abel transform can be used.
Section 8.10 is devoted to Abel integral equations and Abel
transforms. The formal connection between Abel and Radon
transforms is made in Section 8.11; the reader primarily interest
in Abel transforms may want to look at those two sections first.

The overall goal is to provide the reader with basic material
that can be used as a foundation for understanding current
research that makes use of the transforms. A conscientious
attempt is made to present essential mathematical material in a
way that is easily understood by anyone having a basic know-
ledge of Fourier transforms. In keeping with this goal, the
emphasis will be on the 2D and 3D cases. The extension to

higher dimensions will be mentioned at various times, especially
when the extension is rather obvious. For the most part, deriv-
ations are kept as simple and intuitive as possible. Reference is
made to more rigorous discussions and abstract applications.
The same policy is followed for highly technical problems related
to sampling and numerical implementation of inversion algo-
rithms. These are ongoing research problems that lie a level
above the basic treatment presented here. Section 8.1.1 contains
a brief summary of how the chapter is organized. An attempt is
made to cross reference the various sections, so the reader inter-
ested in a given topic can go directly to that topic without having
to read everything that precedes. Finally, it is to be noted that
liberal use is made of material contained in books by the author
on the same subject (Deans, 1983, 1993).

8.1.1 Organization of the Chapter

Section 8.2 is devoted mainly to fundamental definitions, concepts,
and spaces. The definitions are given several ways and for various
dimensions to make it easier for the reader to make connection
with usage in the current literature. The section on probes, struc-
ture, and transforms outlines the connection of the Radon trans-
form to physical applications. A very important theorem known as
the central-slice theorem serves to relate three spaces of special
importance: feature space, Radon space, and Fourier space.
A proof is provided for the 2D case and an example is given to
illustrate how a function transforms among the three spaces.

Some of the most basic properties of the Radon transform are
presented in Section 8.3 and compared with the corresponding
properties for the Fourier transform. These properties are used
many times throughout the sections that follow.

A brief, but important, discussion of the Radon transform of a
linear transformation is in Section 8.4. This provides the foun-
dation for powerful methods to calculate transforms of various
functions. In Section 8.5 this idea is combined with the basic
properties to illustrate, by several examples, just how the Radon
transform works when applied to certain special functions. These
examples are selected to bring out subtle points that emerge
when actually computing a transform.

More advanced topics on derivatives and the transform are in
Section 8.6. This work serves as background for transforms
involving Hermite polynomials in Section 8.7 and Laguerre
polynomials in Section 8.8.

The important problem of inversion is initiated in Section 8.9.
Details are given for two and three dimensions, and the founda-
tion is provided for some of the currently utilized inversion
methods outlined in sections that follow.

Abel transforms and Abel-type integral equations are dis-
cussed in Section 8.10. Four different types of Abel transforms
are defined along with the corresponding inverses. Interrelation-
ships among the transforms are illustrated along with several
useful examples. A rule is given to establish a method for finding
Abel transforms from extensive tables of Riemann–Liouville and
Weyl (fractional) integrals. The way the Radon and Fourier
transforms relate to the Abel and Hankel transforms is developed
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in Section 8.11. An important observation is that the Abel trans-
form is a special case of the Radon transform. Examples are given
to demonstrate the connection for specific cases.

The earlier work on inversion is supplemented in Section 8.12
by some methods that form the basis for modern algorithms for
numerical inversion of discrete data using backprojection and
convolution methods. Diagrams that clearly illustrate the various
options are included in this section.

Series methods for inversion are discussed in Section 8.13,
with emphasis on two and three dimensions. Special attention
is given to functions defined on the unit disk in feature space.
Several examples are provided to illustrate both techniques and
the connection with earlier sections.

The Parseval relation for the Radon transform is given in
Section 8.14 for the general n-dimensional case. A useful example
in two dimensions serves to highlight the difference between the
Fourier and Radon cases.

Extensions and emerging concepts are mentioned briefly in
Section 8.15. An especially exciting area involves the use of the
wavelet transform to facilitate inversion of the Radon transform.

Finally, Appendix 8.A contains a compilation of formulas and
special functions used throughout the chapter, and a list of
selected Radon and Abel transforms appears in Appendix 8.B.

8.1.2 Remarks about Notation

The Radon transform is defined on real Euclidean space for two
and higher dimensions. Many results are just as easy to obtain for
the n-dimensional transform as for the 2D transform. However,
most illustrations (and applications) of the transform are easier in
two or three dimensions. Consequently, several equivalent nota-
tions are appropriate for vectors. Various notations are given here
and the policy throughout the entire discussion is to change freely
from one notation to the other with absolutely no apology.

Both component and matrix notations will be used. In com-
ponent notation, all of the following expressions are used,

x ¼ r(x, y) x ¼ (x1, x2) y ¼ (y1, y2):

In matrix notation these would be:

x ¼ r ¼ x
y

� �

x ¼ x1
x2

� �

y ¼ y1
y2

� �

:

Similar notations are used for three dimensions by appending
z or x3 or y3. For the n-dimensional case we use:

x ¼ (x1, . . . , xn) y ¼ (y1, . . . , yn),

or the equivalent matrix form. When there is no confusion about
which variables are being integrated, the abbreviated notation

ð

f (x) dx �
ð1

1

. . .

ð1

�1

f (x1, . . . , xn) dx1 . . . dxn

will be used for integration over all space.

8.2 Definitions

In a discussion of the Radon transform it is convenient to
identify three spaces. These spaces are designated by feature

space, Radon space, and Fourier space.

Feature space is just Euclidean space in two, three, or n dimen-
sions, designated by 2D, 3D, or nD. This is where the spatial
distribution f of some physical property is defined. Radon space
and Fourier space designate the spaces for the corresponding
transforms of this distribution. Functions in feature space that
represent the distribution are designated by f (x, y), f (x, y, z), and
f (x1, . . . , xn), depending on the dimensions of the transform.
For the purposes of this presentation, these functions f are selected
from some nice class of functions, such as the class of infinitely
differentiable (C1) functions with compact support or rapidly
decreasing C1 functions (Schwartz, 1966). This assumption
serves well for the current discussion; however, it can be relaxed
in more general treatments (Gel’fand et al., 1966; Lax and Phillips,
1970, 1979; Helgason, 1980; Grinberg and Quinto, 1990;
Mikusiński and Zayed, 1993; Gindikin and Michor, 1994).

The transformation from one space to another can be repre-
sented symbolically as a mapping operation. Let R be the oper-
ator that transforms f to Radon space. If the corresponding
function in Radon space is designated by f

^

, the mapping oper-
ation is expressed by

f
^

¼ f : (8:1)

In a similar way, the transformation to Fourier space is written:

f
^

¼ F f : (8:2)

These operations will be made more precise in the next sections
where explicit definitions are given for various dimensions.

8.2.1 Two Dimensions

The Radon transform of the function f (x, y) is defined as the line
integral of f for all lines ‘ defined by the parameters f and p,
illustrated in Figure 8.1. There are several ways this can be
expressed. In terms of integrals along ‘,

f
^

(p,f) ¼
ð1

�1

f (r)d‘, (8:3)

where r¼ (x, y) is a general position vector. Another way to write
this is to define the unit vector j¼ (cosf, sinf) and the per-
pendicular vector j0 ¼ (�sin f, cos f), then the position vector is
given by r¼ p jþ t j0 and (note that r2¼ p2þ t2)

f
^

(p, j) ¼
ð1

�1

f (pjþ tj0) dt: (8:4)
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An equivalent definition making use of the delta function (see
Chapter 1) is most convenient for the current discussion,

f
^

(p,f) ¼
ð

1

�1

ð

1

�1

f (x, y)d(p� x cosf� y sinf)dx dy: (8:5)

Note that due to the property of the delta function and the fact
that the normal form for the equation of the line ‘ is given by
p¼ x cos fþ y sin f, the integral over the plane reduces to a line
integral in agreement with the previous definitions. A slightly
different form proves especially useful for generalization to
higher dimensions. In terms of the vector r and j,

f
^

(p, j) ¼
ð

1

�1

ð

1

�1

f (r)d(p� j � r)dx dy, (8:6)

where j � r¼ j1xþ j2y¼ x cos fþ y sin f.

It is important to understand that f
^

is not defined on a circular
polar coordinate system. The appropriate space is on the surface
of a half-cylinder. Consider an infinite cylinder of radius unity.
Let the parameter p measure length along the cylinder from �1
toþ1, and let the angle f measure the angle of rotation with
respect to an arbitrary reference position. A point on an arbitrary
cross section of the cylinder is represented by (p, f) as illustrated
in Figure 8.2.

Observe that from the definition of the transform, if f
^

is
known for �1< p<1, then only values of f in the range
0�f<p are needed. To verify this, recall that the delta function

is even d(x)¼ d(�x), and the change f! fþp corresponds to
j ! �j. Hence, the coordinates (�p, f) and (p, fþp) denote
the same point in Radon space. Likewise, the function f

^

is
completely defined for 0� p<1 and 0�f< 2p. More
will be said about properties of f

^

in Section 8.3.
Now, suppose we unroll the half-cylinder in Figure 8.2.

The resulting surface is a plane with points represented by
(p,f) on a rectangular grid. It is convenient to let p vary along
the vertical axis and f along the horizontal axis, restricted to the
range 0 to p. This construction is especially useful for illustra-
tions because the values of f

^

can be represented as a surface in the
third dimension perpendicular to this plane. Also, note that for
most practical applications the object of interest in feature space
does not extend to infinity. Suppose f(r)¼ 0 for jrj>R, where R
is finite. It follows that f

^

¼ 0 for jpj>R, and p varies on a finite
interval.

To help interpret Equation 8.6 let f (x, y) represent the density
(in 2D) for some finite mass distributed throughout the plane.
(Here, we are considering a special case of the more general result
in nD discussed by Gel’fand et al. (1966). If m(p, j) denotes the
total mass in the region j � r< p, then

m(p, j) ¼
ð ð

j�r<p

f (x, y)dx dy ¼
ð ð

f (x, y)U(p� j � r)dx dy,

where U(�) denotes the unit step function. Now from the relation
qU(p)

qp
¼ d(p) for generalized functions, the above equation

becomes

qm(p, j)

qp
¼
ð

1

�1

ð

1

�1

f (r)d(p� j � r)dx dy ¼ R{ f (x, y)}: (8:7)

y

x

t

(x, y)

r

p

φ

ξ

ξ΄

FIGURE 8.1 Coordinates in feature space used to define the Radon
transform. The equation of the line is given by p¼ x cos fþ y sin f.

–
p

1

φ

(p, φ)

0

0

p

FIGURE 8.2 Coordinates in Radon space on the surface of a cylinder.
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This result shows that if f(x, y) denotes a density with which a finite
mass is distributed throughout space, its Radon transform is

f
^

(p, j)
qm(p, j)

qp
:

where m(p, j) is the mass in the half-space j � r< p, and the
derivative with respect to p is assumed to exist. It is important to
observe that to have complete knowledge of the Radon transform
one must know the mass distribution for all values of the variable
p and j. If the transform is found for only selected values of
these variables, we may call the result a sample of the Radon
transform. The next example illustrates this idea.

Example 8.1

Find a sample of the Radon transform for the case shown in

Figure 8.3, for the case where the mass in proportional to the

area. For simplicity, let the proportionality constant be unity.

The equation of the line specified in the figure x¼ p and the

angle is f¼ 0. The required sample is found from

f
^

¼ qA

qp
,

where A is the area in the neighborhood of the line x¼ p. This

example is simple enough to yield, by simple calculus for

finding areas, an explicit expression for A as a function of p,

A(p) ¼ 2

ð

p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

dx:

It follows that f
^

¼ 2
ffiffiffiffiffiffiffiffi

�p2
p

.

In this example, it is worth nothing that although a sample of
the Radon transform is found, the result has relevance to the
entire Radon transform for circular symmetry. More will be said
about this in several of the sections that follow. Also, observe that f

^

depends on how A changes with p where the derivative is taken,
and not on how much area lies to the left or right of the line x¼ p.

From Equation 8.3 the Radon transform can also be defined by

f
^

(p,f) ¼
ð

j �r¼p

f (x, y)ds, (8:8)

where the integration is taken along the line X � r¼ p and ds is an
infinitesimal element on the line. Observe specifically that each
line can be uniquely specified by the two coordinates f and p.

In terms of rotated coordinates of Figure 8.4, Equations 8.5
and 8.8 can be expressed in the form (with x¼ p cos f� t sin f,
y¼ p sin fþ t cos f)

f
^

(p,f) ¼
ð1

�1

f (p cosf� t sinf, p sinfþ t cosf)dt: (8:9)

This reflects a rotation of the coordinate axes by f such that
the p axis is perpendicular to the original line X � r¼ p. The
above equation can also be interpreted as follows: if ff(p, t) is
the representation of f(x, y) with respect to the rotated coordinate
system, then f

^

f( p) is the integral of ff(p, t) with respect to t for
fixed f. That is

f
^

f (p) ¼
ð1

�1

ff(p, t)dt, (8:10)

where ff (p, t)¼ f(p cos f� t sin f, p sin fþ t cos f). The
interpretation given here covers those cases where the Radon

1

1

x

y

p

FIGURE 8.3 A semicircle of unit radius. The equation of the line is x¼ p.

x

p

y

t

φ

FIGURE 8.4 Rotated coordinates so the line of integration (dashed) is
perpendicular to the p axis.
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transform is treated as a function of a single variable p with the
angle f¼F viewed as a parameter. In this case the functions of p
for various of F are called the projections of f (x, y) at angle F.

8.2.2 Three Dimensions

The definition given by Equation 8.6 is easy to extend to three
dimensions. Let the line ‘ be replaced by a plane, and let
the vector j be a unit vector from the origin such that the vector
pj is perpendicular to the plane. That is, the perpendicular
distance from the origin to the plane is p and the vector j defines
the direction. Now, the equation of the plane is given by p¼ j � r,
where the position vector is extended to three dimension,
r¼ (x, y, z). The Radon transform of this function is given by

f
^

(p, j) ¼
ð

1

�1

ð

1

�1

ð

1

�1

f (r)d(p� j � r)dx dy dz: (8:11)

Here, it is understood that the integral is over all planes defined
by the equation p¼ j � r.

8.2.3 Higher Dimensions

The extension to higher dimensions is accomplished by defining
the position vector r¼ (x1, . . . , xn), extending the unit vector
j to n dimensions, and integrating over all hyperplanes with
equation given by p¼ j � r,

f
^

(p, j) ¼
ð

1

�1

� � �
ð

1

�1

f (r)d(p� j � r)dx1 . . . dxn: (8:12)

Although we do not emphasize use of the transform in higher
dimensions in this discussion, it should be noted that the nD
version is just a natural extension of the 3D transform. And, as
might be expected, most of the major properties and theorems
are just logical extensions of the corresponding results for two
and three dimensions (Ludwig, 1966; Helgason, 1980).

8.2.4 Probes, Structure, and Transforms

The Radon transform encompasses the appropriate mathematical
formalism for solving a large class of practical problems related
to reconstruction from projections. This is easy to see by the
following considerations. Suppose there exists some physical
probe that is capable of producing a projection (profile) that
approximates a cumulative measurement of some property of
the internal structure of an object. For a fixed angle f this corres-
ponds to knowledge of f

^

at each point along a line on the cylinder
of Figure 8.2. We say that the distribution (represented by f ) of
some physical property of the object is measured by the probe
to produce the indicated profile. The correspondence is that:

[physical probe] acting on (Distribution)! Profile

corresponds to

[Radon transform] acting on ( f )! f
^

F

for a fixed value of the angle f¼F. Here, the notation f
^

F is used
to emphasize that a single profiles serves only to determine
a sample of the function f

^

: A complete determination of f
^

requires the measurement of the profiles for all angles 0�f<p.
In applications, typical probes include x-rays, gamma rays,

visible light, microwaves, electrons, protons, heavy ions, sound
waves, and magnetic resonance signals. These probes are used to
obtain information about a wide variety of internal distributions:
various types of attenuation coefficients, various densities,
isotope distributions, index of refraction distributions, solar
microwave distributions, radar brightness distributions, synthetic
seismograms, and electron momentum is solids. References for
applications and reviews of applications are given in Section 8.1.

8.2.5 Transforms between Spaces,
Central-Slice Theorem

The general result is that the nD Fourier transform Fn of f(r) is
equivalent to the Radon transform of f(r) followed by a 1D
Fourier transform F1 on the variable p. This can be represented
by the diagram

Feature space

Fourier space

Radon space

n 1

Or, in operator equation form

F1Rf ¼ F1 f
^

¼ Fn f ¼ ~f : (8:13)

This result is important enough to have a special name. It is
known as the central-slice theorem, very nicely illustrated and
discussed by Swindell and Barrett (1977). This designation fol-
lows from the observation that the 1D Fourier transform of
a projection of f for a fixed angle is a slice of the nD Fourier
transform of f for the same fixed angle. A proof is given for n¼ 2.
The extension to higher dimensions is not difficult.

Start with the 2D Fourier transform.

~f (u, v) ¼
ð

1

�1

ð

1

�1

f (x, y)e�i2p(uxþvy)dx dy: (8:14)

By using the delta function, this can be rewritten as

~f (u, v) ¼
ð

1

�1

dx

ð

1

�1

dy

ð

1

�1

ds f (x, y)e�i2psd(s� ux � vy):
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Next, interchange the order of integration and let s¼ qp with
q> 0. This gives

~f (u, v) ¼ q

ð

1

�1

dp

ð

1

�1

dx

ð

1

�1

dy f (x, y) e�i2pqpd(qp� ux � vy):

In Fourier space, let u¼ q cos f and v¼ q sin f. Then the
variable q can be factored from the delta function by use of the
general property (see Section 1.2) d(ax)¼ d(x)=jaj,

~f (u, v) ¼
ð

1

�1

dp e�i2pqp
ð

1

�1

dx

ð

1

�1

dy f (x, y)d(p� x cosf

� y sinf):

This integral over the (x, y) plane is just the Radon transform of
f from Equation 8.5, and the desired result follows easily

~f (q cosf, q sinf) ¼
ð

1

�1

f
^

(p,f) e�i2pqp dp (8:15)

It is interesting to observe the simple result obtained if the
coordinates are selected such that the angle f is fixed and equal
to zero, F¼ 0, then

~f (q, 0) ¼
ð

1

�1

f
^

(p, 0) e�i2pqp dp: (8:16)

By thinking about what the last two equations mean it should be
clear that the 1D Fourier transform of a projection of f for fixed
angle f¼F is a slice of the 2D Fourier transform of f, and this
slice in Fourier space is defined by the angle F. One further
remark is in order here. This result is sometimes referred to as
the projection-slice theorem; however, for higher dimensions this
designation may have a slightly different meaning as used by
Mersereau and Oppenheim (1974). To avoid confusion, in the
current presentation (Equation 8.13) is called the nD form of the
central-slice theorem.

For historical purposes, it is to be noted that Bracewell (1956)
derived and used this theorem without prior knowledge of the
theory of the Radon transform.

Example 8.2

A simple example is useful to illustrate the use of transforms

between spaces. Suppose the feature space function is the 2D

Gaussian

f (x, y) ¼ e�x
2�y2 :

First, compute the Fourier transform. Let x¼ r cos u and y¼ r

sin u, then the polar form of Equation 8.14 is given by

~f (u, v) ¼
ð

1

0

dr r e�r
2

ð

2p

0

du e[�i2p q r cos (u�f)] ,

with u¼ q cos f and v¼ q sin f. The integral over u is given

by 2p J0 (2p qr), where J0 is a Bessel function of order zero

(see Section 1.5.6). The remaining integral is a Hankel trans-

form of order zero.

It follows that

~f ¼ 2p

ð

1

0

r e�r
2

J0(2pqr)dr ¼ pe�p
2q2 :

Now use Equation 8.12 in the form

f
^

¼ F
�1~f ,

to obtain (see Appendix 8.A)

f
^

(p, j) ¼ p

ð

1

�1

e�p
2q2 ei2pqpdq ¼ ffiffiffiffi

p
p

e�p
2

: (8:17)

In this example the path from feature space to Radon space

was taken through Fourier space for purposes of illustration.

Actually, in this case, it is easier to compute the Radon trans-

form directly; see Example 8.3 in Section 8.5.

8.3 Basic Properties

Important properties of the Radon transform follow directly
from the definition. These properties can be compared with the
corresponding properties of the Fourier transform discussed in
detail by Bracewell (1986). In this section these basic properties
(theorems) are given for the 2D case, along with the correspond-
ing results for the Fourier transform. The slight loss is generality
suffered by using 2D illustrations is compensated for by being
able to show details that are familiar from a knowledge of
elementary calculus. It proves useful to keep the notation for
the components of the unit vector j as simple as possible. Rather
than always using (cos f, sin f) for these components, the
notation (j1, j2) is often convenient, where it is understood that

j1 ¼ cosf, j2 ¼ sinf, and j21 þ j22 ¼ 1: (8:18)

This means that for the discussion in this Section 8.2.5 may be
modified to read

f
^

(p, j1, j2) ¼
ð1

�1

ð1

�1

f (x, y) d(p� xj1 � yj2)dx dy: (8:19)

The 2D Fourier transform is still given by Equation 8.14. Also, in
the following discussion it is always assumed that the transforms
actually exist. The reader interested in examples can look ahead
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to Section 8.5 where several of these basic properties are used to
illustrate ways to find transforms. The reader should also consult
Chapter 2 for detail exposition of the Fourier transform properties.

8.3.1 Linearity

The Radon and Fourier transforms are both linear. If f(x, y) and
g(x, y) are functions in feature space, then for any constants
a and b,

R[af þ bg] ¼ af
^

þ bg
^

(8:20)

and

F[af þ bg] ¼ a~f þ b~g: (8:21)

8.3.2 Similarity

If Rf (x, y) ¼ f
^

(p, j1, j2), then for arbitrary constants a and b the
Radon transform of f(ax, by) is given by

Rf (ax, by) ¼ 1

abj jf
^

p,
j1
a
,
j2
b

� �

: (8:22)

This follows immediately by making the change of variable
x 0¼ ax and y 0¼ by in the expression

ð1

�1

ð1

�1

f (ax, by)d (p� xj1 � yj2)dx dy:

The corresponding scaling equation for Fourier transforms:
If Ff (x, y) ¼ ~f (u, v) then

Ff (ax, by) ¼ 1

abj j
~f

u

a
,
v

b

� �

: (8:23)

8.3.3 Symmetry

A similar technique can be applied to give an important sym-

metry property. Examine the expression

f
^

(ap, aj) ¼
ð

1

�1

ð

1

�1

f (x, y)d (ap� axj1 � ayj2)dx dy:

The constant a can be factored from the delta function to yield

f
^

(ap, aj) ¼ aj j�1f
^

(p, j): (8:24)

If a¼�1 this demonstrates that the Radon transform is an even
homogenous function of degree �1,

f
^

(�p,�j) ¼ f
^

(p, j): (8:25)

Another useful form for the symmetry property is

f
^

(p, sj) ¼ sj j�1f
^ p

s
, j

� �

: (8:26)

8.3.4 Shifting

Given thatRf (x, y) ¼ f
^

(p, j), then for arbitrary constants a and b
the Radon transform of f(x� a, y� b) is found by

Rf (x � a, y � b) ¼ f
^

(p� aj1 � bj2, j): (8:27)

As in the previous case, the proof follows immediately by intro-
ducing a change of variables. Let x 0¼ x� a and y 0¼ y� b in the
expression

ð

1

�1

ð

1

�1

f (x � a, y � b)d (p� xj1 � j2)dx dy:

The corresponding theorem for the Fourier transform is a little
different, involving a phase change

Ff (x � a, y � b) ¼ e�i2p(auþbv)~f (u, v): (8:28)

8.3.5 Differentiation

Details of the derivation are given for the Radon transform of
qf=qx. Other results follow directly by using the same method.
First note that

qf

qx
¼ lim

e!0

f [x þ (e=j1), y]� f (x, y)

e=j1

Now take the Radon transform of both sides and apply Equation
8.27 with a¼�e=j1 and b¼ 0 to get

R
qf

qx
¼ j1 lim

e!0

f
^

(pþ e, j)� f
^

(p, j)

e
:

By definition of a partial derivative it follows that

R
qf

qx
¼ j1

qf
^

(p, j)

qp
(8:29a)

Likewise, differentiation with respect to y yields

R
qf

qy
¼ j2

qf
^

(p, j)

qp
(8:29b)

Using the same approach, the second derivatives are given by

R
q2f

qx2
¼ j21

q2f
^

(p, j)

qp2

R
q2f

qxqy
¼ j1j2

q2f
^

(p, j)

qp2

R
q2f

qy2
¼ j22

q2f
^

f
^

f
^

(p, j)

qp2
:

(8:30)
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The derivative theorems for the 2D Fourier transform are

F
qf

qx
¼ 2piu ~f (u, v), F

qf

qy
¼ 2piv ~f (u, v), (8:31)

and

F
q2f

qx2
¼ �4p2u2~f (u, v)

F
q2f

qxqy
¼ �4p2uv ~f (u, v)

F
q2f

qy2
¼ �4p2v2 ~f (u, v):

(8:32)

8.3.6 Convolution

The convolution of two functions f and g is commonly desig-
nated by f * g, regardless of the dimension. Here, this convention
is modified slightly to emphasize the distinction between convo-
lution in one and two dimensions. We write 2D convolution as

f ** g ¼
ð

1

�1

ð

1

�1

f (x0, y0) g (x � x0, y � y0)dx0 dy0: (8:33)

The Fourier convolution theorem is very simple, yielding a
simple product in Fourier space,

F( f ** g) ¼ ~f (u, v)~g(u, v): (8:34)

The corresponding theorem for the Radon transform is consid-
erably more complicated. If f¼ g**h, then the Radon transform
of f is given by a 1D convolution in Radon space, rather than a
simple product as in the Fourier case,

f
^

(p, j) ¼ R(g**h) ¼ g
^

*h
^

¼
ð

1

�1

g
^

(t, j) h
^

(p� t, j)dt: (8:35)

The proof follows by applying the definition followed by some
tricky manipulations with double integrals and delta functions.
The details are given by Deans (1983, 1993).

8.4 Linear Transformations

A practical method for finding Radon transforms involves mak-
ing a change of variables. This approach can be related to the
Radon transform of a function of a linear transformation of
coordinates. Here, inner products are designated by

j � x ¼ j1x1 þ j2x2 þ � � � þ jnxn: (8:36)

Or, in matrix notation

jTx ¼ (j1 j2 . . . jn)

x1
x2
.
.
.

xn

0

B

B

B

@

1

C

C

C

A

¼ j1x1 þ j2x2 þ � � � þ jnxn, (8:37)

where T means transpose.
Let A be a nonsingular n3 nmatrix with real elements, then a

change of coordinates follows by matrix multiplication

y ¼ Ax: (8:38)

An important identity, in matrix notation, is

jTy ¼ jTAx ¼ (ATj)Tx (8:39)

and the same identity in the ‘‘dot’’ notation is

j � y ¼ j � Ax ¼ ATj � x: (8:40)

Because A is nonsingular, the inverse exists. For convenience,
let B¼A�1, then x¼By. The Radon transform of f(Ax) follows:

R f (Ax) ¼
ð

f (Ax)d(p� j � x)dx

¼ det Bj j
ð

f (y)d(p� j � By)dy

¼ det Bj j
ð

f (y)d(p� BTj � y)dy

¼ det Bj j f
^

(p, BTj): (8:41)

The term jdet Bj appears because the Jacobian of the transform-
ation is just the magnitude of the determinant of the matrix B.
Because A¼B�1, an equivalent result is

R f (B�1x) ¼ j det Bjf
^

(p, BTj): (8:42)

A word of caution is in order here. It may be that BTj is not a
unit vector. In such case, it is a good idea to define s equal to the
magnitude of the vector BTj and observe that

m ¼ BTj

s
(8:43)

is a unit vector. Now from the results of Section 8.3.3 the right
side of Equation 8.42 becomes

j det Bjf
^

(p, BTj) ¼ j det Bjf
^

(p, sm) ¼ j det Bj
s

f
^ p

s
,m

� �

: (8:44)
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Finally, we have the useful result that

R f (B�1x) ¼ j det Bj
s

f
^ p

s
,m

� �

, with s ¼ jBTjj: (8:45)

There are two important special cases that deserve attention.
First, suppose B is orthogonal. Then B�1¼BT¼A, with
jdet Bj ¼ 1, and

R f (Ax) ¼ f
^

(p, Aj), (8:46)

where Aj is a unit vector. The other special case is for A equal to
a multiple of the identity. If A¼ cI with c real, then
B¼A�1¼ c�1 I, and

R f (cx) ¼ 1

jcjn f
^

p,
j

c

� �

¼ 1

jcjn�1
f
^

(cp, j): (8:47)

8.5 Finding Transforms

In this section some simple examples are worked out in detail to
illustrate the use of the various formulas developed in the previ-
ous sections. These examples demonstrate how to find trans-
forms and point out pitfalls that sometimes occur during a
calculation. The definite integrals that occur in the calculations
are tabulated in Appendix 8.A.

Example 8.3

Recall from Example 8.2 in Section 8.2 that the Radon trans-

form of

f (x, y) ¼ e�x
2�y2

was found by going through Fourier space to yield

f
^

(p, j) ¼
ffiffiffiffi

p
p

e�p
2

:

In this example the Radon transform is calculated directly.

Suppose the matrix A from Section 8.4 is given in terms of

the components of the unit vector j¼ (cos f, sin f),

A ¼ j1 j2
�j2 j1

� �

:

Now define the components of the transformed vector by

u

v

� �

¼ A
x

y

� �

¼ j1x þ j2y
�j2x þ j1y

� �

:

Observe that A is orthogonal and Equation 8.46 applies. Also,

note that u2þ v2¼ x2þ y2 and u¼ j1xþ j2y. It follows that

R f (Ax) ¼ R f (u, v) ¼
ð1

�1

ð1

�1

e�u
2�v2d(p� u)du dv

¼ e�p
2

ð1

�1

e�v
2

dv ¼ ffiffiffiffi

p
p

e�p
2

:

Because this result is not dependent on j, or equivalently f, it
follows that

R{e�x
2�y2 } ¼ ffiffiffiffi

p
p

e�p
2

(8:48)

The lack of dependence on f is certainly expected because

the Gaussian is symmetric and centered at the origin.

Example 8.4

Extend the result in the previous example to three dimen-

sions. Let the orthogonal transformation matrix be selected as

A ¼

j1 j2 j3
�j1j2

s
s
�j2j3

s

�j3
s

0
j1
s

0

B
B
B
B
@

1

C
C
C
C
A

where s ¼ (j21 þ j23)
1=2 and jjj ¼ 1. If the components of the

transformed vector are given by (u, v, w) then after the

substitutions are made in Equation 8.46 the transform is

given by the integral

ð1

�1

ð1

�1

ð1

�1

e�u
2�v2�w2

d(p� u) du dv dw ¼ p e�p
2

:

The final result above is obtained by use of the delta function

and the evaluation of the two remaining Gaussian integrals

over v and w. Once again by the invariance argument it

follows that

R
�

e�x
2�y2�z2� ¼ ffiffiffiffi

p
p

e�p
2

: (8:49)

Example 8.5

If the results of the previous example are extended on n

dimensions, then

R{ exp (�x21 � � � � � x2n)} ¼ (
ffiffiffiffi

p
p

)n�1 e�p
2

: (8:50)

Example 8.6

Start with f(x, y)¼ exp(�x2� y2) and apply Equation 8.47 with

n¼ 2 and c ¼ 1=s
ffiffiffi

2
p

. This yields the Radon transform of the

symmetric Gaussian probability density function. Note that
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f (A x) ¼ exp � x2

2s2
� y2

2s2

� �

and

1

c
f
^

(cp, j) ¼ s
ffiffiffiffiffiffi

2p
p

e�p
2=2s2

:

An overall division by 2ps2 yields the standard form,

R
1

2ps2
exp � x2

2s2
� y2

2s2

� �	 


¼ 1

s
ffiffiffiffiffiffi

2p
p exp � p2

2s2

� �

(8:51)

Example 8.7

The problem here is to find the Radon transform of

exp � x

a

� �2

� y

b

� �2
� �

with both a and b real. Again, the starting function is selected

to be

f (x, y) ¼ e�x
2�y2 :

Now we use Equation 8.45 with

B ¼ a 0

0 b

� �

, B�1 ¼
1

a
0

0
1

b

0

B
@

1

C
A, jdet Bj ¼ jabj:

In this example

BT j ¼ a cosf
b sinf

� �

is not a unit vector, having magnitude

s ¼ (a2 cos2 fþ b2 sin2 f)1=2:

With these observations, Equation 8.45 yields

R exp � x

a

� �2

� y

b

� �2
� �	 


¼ jabj
ffiffiffiffi

p
p

s
exp � p2

s2

� �

: (8:52)

Note that once the symmetry is lost in feature space the angle

f appears in the transform.

Example 8.8

Use the similarity theorem to obtain Equation 8.52. Applica-

tion of Equation 8.22 with

f (x, y) ¼ e�x
2�y2 and f

^

(p, j) ¼ ffiffiffiffi

p
p

e�p
2

yields

R f
x

a
,
y

b

� �

¼ jabjf
^

p,
j1
a
,
j2
b

� �

This is not in the desired form, so we let m¼ (aj1=s, bj2=s) with
s defined as in the previous example so m is a unit vector. Now

the right side of the above equation becomes

jabj f
^

(p, sm) ¼ jabj
s

f
^ p

s
,m

� �

¼ jabj
ffiffiffiffi

p
p

s
exp � p2

s2

� �

(8:53)

as in the previous example.

Example 8.9

Find the Radon transform of the characteristic function of a

unit disk, sometimes called the cylinder function, cyl(r). This

function is given by

f (x, y) ¼ 1, for x2 þ y2 � 1

0, for x2 þ y2 > 1 .

	

(8:54a)

By inspection, the transform is given by the length of a chord

at a distance p from the center and is independent of the

angle f,

f
^

(p,f) ¼ 2(1� p2)1=2 , for p � 1

0, for p > 1 .

(

(8:54b)

Example 8.10

Find the Radon transform of the characteristic function of an

ellipse where f is given by

f (x, y) ¼ 1, for (x=a)2 þ (y=b)2 � 1

0, for (x=a)2 þ (y=b)2 > 1 .

(

(8:55a)

If the matrix B is selected as in Example 8.7 above, then from

the result in Example 8.9 it follows immediately that

f
^

(p,f) ¼
2jabj
s

1� p

s

� �2
� �1=2

, for
jpj
s
� 1

0, for
jpj
s
> 1

8

>
>
<

>
>
:

(8:55b)

where s¼ (a2 cos2 fþ b2 sin2 f)1=2.

Example 8.11

Use the method of Example 8.3 to find a general expression

for the Radon transform of a function defined on the unit disk,
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and zero outside the unit disk. From the matrix in A Example

8.3, it follows that (see Figure 8.4 with (p, t) ! (u, v))

x ¼ u cosf� v sinf and y ¼ u sinfþ v cosf:

Therefore,

f
^

(p,f) ¼
ð

disk

f (x, y)d(p� x cosf� y sinf)dx dy

¼
ð

disk

f (u cosf� v sinf, u sinfþ v cosf)d(p� u)du dv:

After the integration over u,

f
^

(p,f) ¼
ð

ffiffiffiffiffiffiffiffi

1�p2
p

�
ffiffiffiffiffiffiffiffi

1�p2
p

f (p cosf� v sinf, p sinf

þ v cosf)dv: (8:56)

Example 8.12

Find the Radon transform over the unit square, situated as

indicated in Figure 8.5. It is adequate to consider the transform

for 0<f�p=4.

f
^

(p,f) ¼

p

sinf cosf
for region 1, 0 < p < sinf

secf for region 2, sinf < p < cosf

for region

sinfþ cosf� p

sinf cosf
cosf < p < sinfþ cosf:

8

>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
:

(8:57a)

By symmetry, for p=4�f<p=2,

f
^

(p,f) ¼

p

sinf cosf
for region 1, 0 < p < cosf

cscf for region 2, cosf < p < sinf

sinfþ cosf� p

sinf cosf

for region 3, sinf < p <

sinfþ cosf:

8

>
>
>
>
>
<

>
>
>
>
>
:

(8:57b)

Example 8.13

The shift theorem from Section 8.3.4 can be written as

Rf (x� a) ¼ f
^

(p� p0 , j), with p0 ¼ j � a:

Apply this equation with

a ¼ (a, b) and p0 ¼ a cosfþ b sinf

to the result of Example 8.6 above. This gives the transform of

a 2D Gaussian density function

R
1

2ps2
exp � (x � a)2

2s2
� (y � b)3

2s2

� �	 


¼ 1

s
ffiffiffiffiffiffi

2p
p exp � (p� p0)

2

2s2

� �

: (8:58)

Again, note that the loss of rotational symmetry about the

origin in feature space causes the function in Radon space to

have explicit dependence of the angle f.

Example 8.14

In the previous example, if the limit s !þ0 is taken, both

sides are convergent d sequences.

R{d(x � a)d(y � b)} ¼ d(p� p0), (8:59)

y

1

φ

1
x

pRegion 1

Region 2Region 3

FIGURE 8.5 Coordinates for unit square with regions defined as p

varies along dotted line.

p

3

2

1

0
π 2π

φ
π
2

–1

–2

–3

3π
2

FIGURE 8.6 The impulse function maps to a sinusoidal curve.
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with p0¼ a cos fþ b sin f. This result also follows easily by

substitution of

f (x, y) ¼ d(x � a)d(y � b) � d(x � a, y � b)

into the definition of the Radon transform, Section 8.2.5. This

example has some special significance because it demon-

strates how an impulse function centered at (a, b) in feature

space transforms to Radon space. In Radon space (p, f) there
is an impulse function everywhere along a sinusoidal curve

with the equation of the curve given by

p ¼ a cosfþ b sinf: (8:60)

An illustration is given in Figure 8.6 for p¼ 2 cos fþ sin f.

Example 8.15

Another way to approach the transform of the delta function

is to observe that for the delta function centered at the origin

d(x, y)¼ d(p, t). Then, in the rotated system (see Figure 8.4) it

follows that

ð

1

�1

d(p, t)dt ¼ d(p):

This result can be used to obtain the transform of the shifted

delta function. By use of Section 8.3.4 it follows that Equation 8.59

holds. If f0 ¼ tan�1 b
a
and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

, then p0¼ r0 cos

(f0�f) and

R{d(x � a, y � b)} ¼ d[p� r0 cos (f0 � f)]:

As with the example in Figure 8.6, the region of support for

the delta function is a sinusoidal curve in Radon space.

Example 8.16

Find the Radon transform of a finite-extended delta function

(see Figure 8.7a),

f (x, y) ¼ d(x � p0), for jyj < L 2=

0, for jyj � L 2:=

	

φ

φ

2ππ–2π –π

2ππ–2π –π

1

1

(c)

(d)

f̌ (±p0, φ)

p
Region of
support

1

f (x, y) = δ(x–p0, 0)

p0

x

y

t

y
p

p

p0

L/2

L/2
xφ

φ

L/2–L/2

(a) (b)

FIGURE 8.7 Radon transform of finite-extended delta function.
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We write

f
^

(p,f) ¼
ð

L
2

�L
2

d(p cosf� t sinf� p0)dt

¼
Ld(p� p0), for f ¼ 2np

Ld(pþ p0), for f ¼ (2nþ 1)p:

(

However, if the angle f is different from a multiple of p, then

we obtain (see Section 1.2)

f
^

(p,f) ¼ jsinfj�1 , for jp� p0 cosfj � jL2 sinfj
0, otherwise:

(

The inequality canbededuced from thegeometry of Figure 8.7b.

The region of support is shown in Figure 8.7c and the transform

is illustrated in Figure 8.7d.

This example illustrates a useful property of the Radon

transform; namely, its ability to serve as an instrument for

the detection of line segments in images. A slightly more

general version of this example is given by Deans (1985).

Example 8.17

Find the Radon transform of the cylinder function defined

in Example 8.9 displaced at the point (x0, y0) as shown in

Figure 8.8a. The solution follows immediately from the

solution of Example 8.9 combined with the shifting property

in Section 8.3.4. Also, the solution can be deduced from the

geometry in Figure 8.8a. When d¼ 1, the length t¼ 0; also,

for p such that the line of integration passes through the

cylinder,

t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� [p� r0 cos (f0 � f)]2
q

:

Further, when f varies, the values p can assume follow from

the geometry. The transform is

f
^

(p,f)¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� [p� r0 cos (f0�f)]2 ,
p � 1þ r0 cos (f0�f)�

p� 1þ r0 cos (f0�f)

0, otherwise:

8

>
<

>
:

Figure 8.8b shows the (sinusoidal) region of support of the

transform.

Example 8.18

Suppose the points in feature space lie along a line defined

by parameters p0 and f0 as indicated in Figure 8.9. All of

these collinear points map to sinusoidal curves in Radon

space; moreover, these curves all intersect at the same

point (p0,f0) in Radon space. By selecting an appropriate

threshold and only plotting values of f
^

above the threshold it

follows that a single point in Radon space serves to identify a

line of collinear points in feature space. It is in this sense that

the Radon transform is sometimes regarded as a line-to-point

transformation. This ideas has been used by various authors

(a)

r0 p

2√1 – d2

x

p

φ
φ0

1

(x0, y0)

d

t y

(b)

φ

1+r0

–1+r0

p

φ0

–1 + r0 cos (φ0 – φ)

1 + r0cos (φ0 – φ)

p = r0 cos (φ0 – φ)

2

FIGURE 8.8 Displaced cylinder function and region of support of the transform.
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interested in detecting lines in digital images: Duda and Hart

(1972) and Shapiro and Iannino (1979). When the Radon

transform is used in this fashion, it is often referred to as

the Hough transform after the work of Hough (1962).

8.6 More on Derivatives

In Section 8.3.5 basic equations were given for the Radon
transform of derivatives in two dimensions. Clearly, these
results can be generalized and it is useful to do that, especially
in connection with using the Radon transform in connection
with partial differential equations and series expansions.
Another use of derivatives is related to the derivatives of
the Radon transform. Both of these cases are covered in this
section.

8.6.1 Transform of Derivatives

Let f(x)¼ f(x1, . . . , xn). The generalization of Equations 8.29a
and b is

R
qf

qxk

	 


¼ jk
q f

^

(p, j)

qp
(8:61)

where jk is the kth component of the unit vector j. The linearity
property (Equation 8.20) can be used to find the transform of
the sum

Xn

k¼1
ak

qf

qxk

for arbitrary constants ak. If the constants are components of the
vector a, then

R
Xn

k¼1
ak

qf

qxk

( )

¼ (a � j) q f
^

(p, j)

qp
: (8:62)

Example 8.19

Let n¼ 3, and let r be the gradient operator (q=qx1, q=qx2,
q=qx3). Now Equation 8.62 is interpreted as the Radon trans-

form of a directional derivative.

R{a � rf } ¼ (a � j) q f
^

(p, j)

qp
: (8:63)

Another obvious generalization from Section 8.3.5 is

R
q2f

qx1qxk

	 


¼ jl jk
q2f

^

(p, j)

qp2
: (8:64)

Consequently, for arbitrary constant vectors a and b,

R
Xn

l¼1

Xn

k¼1
albk

q2f

qxlqxk

( )

¼ (a � j)(b � j) q
2 f
^

(p, j)

qp2
(8:65)

Example 8.20

There is a very important special case of the last equation.

Suppose the product albk reduces to the Kronecker delta,

albk ¼ dlk ¼ 1, for l ¼ k

0, for l 6¼ k .

	

Now the operator is just the Laplacian operator

r2 ¼ q2

qx21
þ � � � þ q2

qx2n

and

R{r2f (x)} ¼ jj j2 q
2f
^

(p, j)

qp2
¼ q2f

^

(p, j)

qp2
: (8:66)

Note that jjj ¼ 1 has been used.

Results of this type have been used by John (1955) in

applications of the Radon transform to partial differential

equations.

p

p0

πφ0

φ0
φ

p0

x

y

FIGURE 8.9 After thresholding, a single point in Radon space corres-
ponds to a line in feature space.
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Example 8.21

Suppose f is a function of both time and space variables. For

example, if n¼ 3, then f¼ f(x, y, z; t). The wave equation in

three dimensions is given by

q2f

qx2
þ q2f

qy2
þ q2f

qz2
¼ q2f

qt2
: (8:67)

Because the operator R does not involve time, it must com-

mute with the time derivative operator q=qt. Thus, the Radon

transform of the wave equation yields

q2 f
^

qp2
¼ q2f

^

qt2
(8:68)

where it is understood that f
^

now depends on time,

f
^

¼ f
^

(p, j; t) ¼ Rf (x, y, z; t). The important significance is that

the wave equation in three spatial dimensions has been

reduced to a wave equation in one spatial dimension.

8.6.2 Derivatives of the Transform

Here we investigate what happens when f
^

is differentiated with
respect to one of the components of the unit vector j. To
facilitate this, an identity related to derivatives of the delta func-
tion is needed. First, note that

q

qy
d(x � y) ¼ � q

qx
d(x � y)

and if y is replaced by ay,

q

q(ay)
d(x � ay) ¼ 1

a

q

qy
d(x � ay) ¼ � q

qx
d(x � ay):

In n dimensions

q

qyj
d(x � y) ¼ � q

qxj
d(x � y):

From these equations it is easy to see that

q

qhj

d(p� h � x) ¼ �xj
q

qp
d(p� h � x): (8:69)

This identity is in terms of h � x where hmust not be restricted to
being a unit vector; however, the desired derivatives are in terms
of components of the unit vector j. The way to deal with this is to

take derivatives with respect to components of h and then
evaluate the results at h¼ j. This prescription is followed start-
ing with

f
^

(p,h) ¼
ð

f (x) d (p� h � x)dx,

q f
^

qjk
¼ q f

^

(p,h)

qhk

" #

h¼j
¼

ð

f (x)
q

qhk

d(p� h � x)dx
� �

h¼j

¼ � q

qp

ð

xk f (x)d (p� j � x) dx:

This gives the desired formula,

q f
^

qjk
¼ q

qhk

R{ f (x)}

� �

h¼j
¼ � q

qp
R{xk f (x)}: (8:70)

Convention: Whenever the transformed function f
^

is dif-
ferentiated with respect to a component of the unit vector
j, it is understood that

q f
^

(p, j)

qjk
� q f

^

(p,h)

qhk

" #

h¼j
: (8:71)

The following example clearly illustrates the need for caution
when taking derivatives of f

^

.

Example 8.22

Start with

f (x, y) ¼ e�x
2�y2 and f

^

(p, j) ¼ ffiffiffiffi

p
p

e�p
2

:

Apply the scaling relation (Equation 8.26) with

h ¼ sj and s ¼ (h2
1 þ h2

2)
1=2 ,

to obtain

f
^

(p,h) ¼ f
^

(p, sj) ¼
ffiffiffiffi

p
p

s
e�p

2=s2 :

Now use

q

qhk

¼ qs

qhk

q

qs
, (k ¼ 1, 2),

to get

q f
^

qhk

¼ ffiffiffiffi

p
p hk

s

q

qs
(s�1e�p

2=s2 )

¼ ffiffiffiffi

p
p hk

s5
(2p2 � s2)e�p

2=s2 :
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The desired derivative is found when this expression is evalu-

ated at h¼ j, or equivalently for s¼ 1,

q f
^

qjk
¼

ffiffiffiffi

p
p

jk(2p
2 � 1)e�p

2

:

The significance of this result becomes more apparent when

compared with Example 8.27 in Section 8.7.

Example 8.23

In Example 8.43 of Section 8.13 it is shown that the Radon

transform of x2þ y2 confined to the unit disk and zero outside

the disk is given by

R{x2 þ y2} ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

(1þ 2p2),

and in Example 8.45 of the same section

R{x(x2 þ y2)} ¼ 2

3
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

(1þ 2p2) cos f:

It is left as an exercise for the reader to demonstrate that

Equation 8.70 is satisfied by this pair of transforms. That is,

verify that

h1

s

q f
^

(p,h)

qs

" #

h¼j
¼ � q

qp
R{x(x2 þ y2)},

where

f
^

(p,h) ¼ 2

3
s�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � p2
p

(s2 þ 2p2):

This can be done by showing that both sides reduce to

2

3
cosf(1� p2)�1=2(8p4 � 4p2 � 1):

There are some rather obvious generalizations for derivatives

of higher order. These results follow immediately by differen-

tiating Equation 8.70; it is understood that the convention

(Equation 8.71) always applies. For second derivatives

q2f
^

(p, j)

qjlqjk
¼ q2

qp2
R{xlxk f (x)}: (8:72)

For higher derivatives the procedure is to differentiate this

expression. For example, one of the third derivatives is given by

q3f
^

(p, j)

qjlqj
2
k

¼ q3

qp3
R{xlx

2
k f (x)}: (8:73)

Note that there is an alternating sign,þ for even derivatives

and� for odd derivatives. One final example is given here. Add-

itional examples involving derivatives are given in Section 8.7.

Example 8.24

If f¼ f(x, y) is a 2D function, a generalization of Equation 8.73 to

arbitrarily high derivatives provides a method for finding many

additional transforms of functions in two dimensions,

qlþkf
^

(p, j)

qjl1 qj
k
2

¼ � q

qp

� �lþk
R{xl yk f (x, y)}: (8:74)

8.7 Hermite Polynomials

In this section the discussion is confined to two dimensions, and
the components of j are written as (j1, j2)¼ (cos f, sin f) to
emphasize the dependence of the transform on f. The extension
to higher dimensions does not involve complications except that
the formulas contain more variables. The previous section on
derivatives can be used to find transforms of functions of the form

Hl(x)Hk(y)e
�x2�y2

where Hl and Hk are Hermite polynomials of order l and k,
respectively. More information on these polynomials is con-
tained in Appendix 8.A of this chapter and in Section 1.5.

We start with the Rodrigues formula for Hermite polynomials
(Rainville 1960),

e�x
2

Hl(x) ¼ (�1)l q

qx

� �l

e�x
2

: (8:75)

A similar formula holds for the variable y. When these are
combined, the joint formula is

Hl(x)Hk(y)e
�x2�y2 ¼ (�1)lþk q

qx

� �l
q

qy

� �k

e�x
2�y2 : (8:76)

From the methods developed in Section 8.6, we deduce that

R
q

qx

� �l
q

qy

� �k

f (x, y)

( )

¼ (cosf)l(sinf)k
q

qp

� �lþk
f
^

(p, j):

By using this derivative relation, it follows that the Radon trans-
form of the Rodrigues formula gives

R{Hl(x)Hk(y) e
�x2�y2 }¼ (�1)lþk(cosf)l(sinf)k q

qp

� �lþk
ffiffiffiffi

p
p

e�p
2

:

By application of the Rodrigues formula in one variable to the
right side of this equation, the basic formula for transforms of
Hermite polynomials is

R{Hl(x)Hk(y) e
�x2�y2 } ¼ ffiffiffiffi

p
p

(cosf)l(sinf)ke�p
2

Hlþk(p):

(8:77)
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The importance of the last equation becomes more apparent after
observing that members of the sequence

1, x, y, x2, xy, y2, . . . , xl yk, . . . :

can be expressed in terms of Hermite polynomials. Some
examples are given to illustrate the way transforms of members
of this sequence are found.

Example 8.25

Find the Radon transform of xy2 e�x
2�y2 . From Appendix 8.A,

xy2 ¼ 1

8
H1(x)H2(y)þ

1

4
H1(x)H0(y):

It follows immediately from the fundamental relation (Equa-

tion 8.77) that

R{xy2 e�x
2�y2 } ¼

ffiffiffiffi

p
p

8
[ cosf sin2 fH3(p)

þ 2 cosfH1(p)]e
�p2 : (8:78)

This result can be modified by using explicit expressions for

the Hermite polynomials, from Appendix 8.A,

R{xy2 e�x
2�y2 } ¼

ffiffiffiffi

p
p

2
e�p

2

[2p3 cosf sin2 f

þ p cosf (1� 3 sin2 f)]: (8:79)

Example 8.26

The method used for the previous example can be applied to

obtain some basic results; then other theorems can be applied

to get easy extensions. The linear property is especially useful.

Given that

R{xe�x
2�y2 } ¼ ffiffiffiffi

p
p

p e�p
2

cosf: (8:80)

By just changing x to y and cos f to sin f it follows that

R{y e�x
2�y2 } ¼ ffiffiffiffi

p
p

p e�p
2

sinf: (8:81)

Now, by linearity

R{(x þ y)e�x
2�y2 } ¼ ffiffiffiffi

p
p

p e�p
2

( cosfþ sinf): (8:82)

The same technique can be applied to obtain:

R{x2 e�x
2�y2 } ¼

ffiffiffiffi

p
p

2
(2p2 cos2 fþ sin2 f)e�p

2

; (8:83)

R{y2 e�x
2�y2 } ¼

ffiffiffiffi

p
p

2
(2p2 sin2 fþ cos2 f)e�p

2

; (8:84)

R{(x2 þ y2)e�x
2�y2 } ¼

ffiffiffiffi

p
p

2
(2p2 þ 1)e�p

2

: (8:85)

Example 8.27

It is instructive to relate the transforms in the last example to

earlier results. We focus attention on formula (Equation 8.80),

R{x e�x
2�y2 } ¼ ffiffiffiffi

p
p

p e�p
2

cosf:

From Example 8.22 of Section 8.6.2 with k¼ 1,

q f
^

qj1
¼

ffiffiffiffi

p
p

cosf (2p2 � 1) e�p
2

:

Now, from formula (Equation 8.70) it should be true that this is

the same as

� q

qp

ffiffiffiffi

p
p

pe�p
2

n o

,

and, of course, the consistency is verified by doing the differ-

entiation. This explicitly demonstrates that

q f
^

qj1
¼ � q

qp
R{x e�x

2�y2 }:

Example 8.28

It is easy to find the extension of Equation 8.77 for scaled

variables. By use of Equation 8.22 with a¼ b¼ c,

R Hl(cx)Hk(cy) e
�c2(x2þy2 )

n o

¼
ffiffiffiffi

p
p

c
( cosf)l( sinf)ke�c

2p2Hlþk(cp):

(8:86)

8.8 Laguerre Polynomials

Here, a very brief introduction to transforms of Laguerre polyno-
mials is given. Amuchmore extensive treatment is given be Deans
(1983, 1993), where several examples and applications are pro-
vided. Additional applications are contained in the work by
Maldonado and Olsen (1966) and Louis (1985). As in the previous
section, the discussion is confined to two dimensions and the angle
f appears explicitly in the transform. The approach is the same as
with the Hermite polynomials. We start with the Rodrigues for-
mula for the Laguerre polynomials (Szegö, 1939; Rainville, 1960),

e�ttlLlk(t) ¼
1

k!

q

qt

� �k

e�ttlþk, (8:87)

and derive a generalized expression that accommodates the
Radon transform,

q

qx
� i

q

qy

� �l
q2

qx2
þ q2

qy2

� �k

e�x
2�y2

¼ (�1)lþk22kþlk!(x � iy)le�x
2�y2Llk(x

2 þ y2): (8:88)
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From the two previous sections, the Radon transform of the
left side is

R
q

qx
� i

q

qy

� �l
q2

qx2
� q2

qy2

� �k

e�x
2�y2

( )

¼ (�1)2kþl ffiffiffiffipp e�ilfe�p
2

Hlþ2k(p),

leading to the expression

R (�1)k22kþlk!(x � iy)le�x
2�y2Llk(x

2 þ y2)
n o

¼ ffiffiffiffi

p
p

e�ilfe�p
2

Hlþ2k(p): (8:89)

A more standard form is obtained by making substitutions,

x2 þ y2 ¼ r2, (x� iy)l ¼ (x2 þ y2)l=2e�ilu with u ¼ tan�1
y

x

� �

,

and defining a normalization constant by

N l
k ¼

1

22kþl
1

k!(l þ k)!

� �1=2

: (8:90)

These changes lead to the standard form for the transform of
expressions that involve Laguerre polynomials,

R (�1)k k!

(l þ k)!

� �1=2

rle�iluLlk(r
2)

( )

¼ N l
ke
�ilfe�p

2

Hlþ2k(p): (8:91)

8.9 Inversion

Inversion of the Radon transform is especially important because
it yields information about an object in feature space when some
probe has been used to produce projection data. This inversion is
the solution of the problem of ‘‘reconstruction from projections’’
when the projections can be interpreted as the Radon transform
of some function in feature space.

There are several routes that can be followed to go from Radon
space to feature space. The direct route illustrated by the diagram

Feature space  R�1
Radon space

is probably the most difficult to derive and certainly the most
difficult to implement in practical situations; however, see the
alternative method used by Nievergelt (1986). The direct method
is discussed in some detail by John (1955) and Deans (1983,
1993).

For those already familiar with Fourier transforms, the route
through Fourier space pioneered by Bracewell (1956) may be
easier. Other important early references include Helgason (1965)

and Ludwig (1966). The route from feature space to Fourier space
and the route from Radon space to Fourier space is discussed in
Section 8.2.5. The basic ideas presented there can be used to derive
formulas for the inverse Radon transform.

It turns out that there is a fundamental difference between
inversion in even dimension and inversion in odd dimension.
Although this may seem a bit strange at first, it is something
that is quite common in the study of partial differential equations
and Green’s function for the wave equation: Morse and Feshbach
(1953) and Wolf (1979). This difference is discussed in connec-
tion with the Radon transform by Shepp (1980), Barrett (1984),
Berenstein and Walnut (1994), and Olson and DeStefano
(1994). The important observation is that the operations required
for the inverse in two dimensions are global; the transform must
be known over all of Radon space. By contrast, in three dimen-
sions, because derivatives are required, the inversion operations
are local. Hence, the procedure here is to give separate deriv-
ations for two and three dimensions. It is not very much more
difficult to do the derivation for general even and odd dimen-
sions; however, it is a bit easier to follow the specific cases.
And, after all, these are the most important for applications
anyway. The method used is patterned after that used by Barrett
(1984) and Deans (1985).

8.9.1 Two Dimensions

The notation is the same as used previously for vectors, x¼ (x, y)
and j¼ (cos f, sin f). The coordinates in Fourier space are
designated by (u, v)¼ (q cos f, q sin f)¼ q j. The starting
point is Equation 8.15,

f
^

(qj) ¼ F1Rf (x, y) (8:92)

along with the observation that f is given by the inverse 2D
Fourier transform,

f (x, y) ¼ F
�1
2
~f (u, v):

In polar form,

f (x, y) ¼
ð1

�1

dqjqj
ðp

0

df~f (q j)ei2pq j�x

¼
ðp

0

df

ð1

�1

dqjqj~f (q j)ei2pqp
2

4

3

5

p¼j�x

: (8:93)

Now the term in square brackets is the inverse 1D Fourier
transform of the product jqj~f and this is to be evaluated at
p¼ j � x. The convolution theorem for Fourier transforms can
be used to obtain

F
�1{jqj~f (q j)} ¼ F

�1{jqj}*F�1{~f (q j)}:
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From Section 8.2.5 the last term on the right is just the Radon
transform f

^

(p, j). This observation leads to

f (x, y) ¼
ð

p

0

df[f
^

(p, j) *F�1{jqj}]p¼j�x: (8:94)

The inverse Fourier transform in this equation is interpreted in
terms of generalized functions to give (Lighthill, 1962; Bracewell,
1986)

F
�1{jqj} ¼ F

�1{2piq} *F�1
sgn q

2pi

n o

:

Here, we have written

jqj ¼ q sgn q ¼ 2piq
sgn q

2pi
,

where

sgn q ¼
þ1, for q > 0

0, for q ¼ 0

�1, for q < 0:

8

>

<

>

:

(8:95)

The methods needed to work with these inverse Fourier trans-
forms is given by Lighthill (1962) and Bracewell (1986). By use of
the derivative theorem

F�1{2piq} ¼ d0(p),

where the prime denotes first order derivative with respect to
variable p. The other transform is given in terms of a Cauchy
principal value,

F
�1 sgn q

2pi

n o

¼ 1

2p2
3

1

p

� �

:

It follows that

F
�1{jqj} ¼ d0(p)*

1

2p2
3

1

p

� �

:

Now, Equation 8.94 becomes

f (x, y) ¼ 1

2p2

ðp

0

df f
^

(p, j)*d0(p)*3
1

p

� �� �

p¼j�x
: (8:96)

By using the derivative theorem for convolution and the proper-
ties of the delta function,

f
^

(p, j)*d0(p) ¼ f
^

(p, j)

qp
*d(p) ¼ f

^

(p, j)

qp
:

It is convenient to use the subscript notation for partial deriva-
tives and write

f
^

p(p, j) �
f
^

(p, j)

qp
:

Now the term in square brackets in Equation 8.96 can bewritten as

f
^

p(p, j)*3
1

p

� �� �

p¼j�x
¼ 3

ð1

�1

f
^

t(t, j)

p� t

2

4

3

5

p¼j�x

¼ �3
ð1

�1

f
^

t(t, j)

t � j � x dt:

Note that t is a dummy variable in the last integral, and can be
replaced by p to agree with earlier notation. The final formula
follows by substituting this result in Equation 8.96 to get

f (x, y) ¼ �1
2p2

3

ðp

0

df

ð1

�1

f
^

p(p, j)

p� j � x dp: (8:97)

Here, the Cauchy principal value is related to the integral over
p. It has been placed outside for convenience. Sometimes the 3 is
dropped altogether; in this case it is ‘‘understood’’ that the singular
integral is interpreted in terms of the Cauchy principal value.

The inversion formula (Equation 8.97) can be expressed in
terms of a Hilbert transform (see also Chapter 7). The Hilbert
transform of f (t) is defined by Sneddon (1972) and Bracewell
(1986),

*i[ f (t); t ! x] ¼ 1

p

ð1

�1

f (t)dt

t � x
, (8:98)

where the Cauchy principal value is understood. Thus, the inver-
sion formula can be written as

f (x, y) ¼ �1
2p

ðp

0

*i[f
^

p(p, j); p! j � x]df: (8:99)

For reasons that will become apparent in the subsequent discus-
sion it is extremely desirable to make the following definition for
the Hilbert transform of the derivative of some function, say g,

�g(t) ¼ �1
4p

*i[gp(p); p! t] for n ¼ 2: (8:100)

If this is done, the inversion formula for n¼ 2, is given by

f (x, y) ¼ 2

ðp

0

df f
^�(t, j)
h i

t¼j�x
: (8:101)
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8.9.2 Three Dimensions

The inversion formula in three dimensions is actually easier to
derive because no Hilbert transforms emerge. The path through
Fourier space is used again with the unit vector j given in terms
of the polar angle u and azimuthal angle f,

j ¼ ( sin u cosf, sin u sinf, cos u):

The feature space function f(x)¼ f(x, y, z) is found from the
inverse 3D Fourier transform,

f (x) ¼ F
�1
3
~f (qj) ¼

ð

1

0

dqq2
ð

jjj¼1

dj~f (qj)ei2pqj�x: (8:102)

Here, the integral over the unit sphere is indicated by

ð

jjj¼1

dj ¼
ð

2p

0

df

ð

p

0

sin u du:

Now recall that ~f is given by the 1D Fourier transform of f
^

, and
from the symmetry properties of f

^

the integral over q from 0 to
1 can be replaced by one-half the integral from �1 to1.

f (x) ¼ 1

2

ð

jjj¼1

dj

ð

1

�1

dqq2~f (qj)ei2pqp

2

4

3

5

p¼j�x

¼ 1

2

ð

jjj¼1

djF�1[q2~f (qj)]p¼j�x

:

Now from the inverse of the 1D derivative theorem

F
�1[q2~f ] ¼ �1

4p

q2f
^

qp2
¼ �1

4p
f
^

pp,

one form of the inversion formula is

f (x) ¼ �1
8p2

ð

jjj¼1

dj f
^

pp(p, j)
h i

p¼j�x
: (8:103)

Another form for Equation 8.103 comes from the observation
that for any function of j � x

r2c(j � x) ¼ jjj2[cpp(p)]p¼j�x ¼ [cpp(p)]p¼j�x:

The last equality follows because j is a unit vector. These obser-
vations lead to the inversion formula

f (x) ¼ �1
8p2
r2

ð

jjj¼1

f
^

(j � x, j) dj: (8:104)

8.10 Abel Transforms

In this section we focus attention on a particular class of singular
integral equations and how transforms known as Abel trans-
forms emerge. Actually, it is convenient to define four different
Abel transforms. Although all of these transforms are called Abel
transforms at various places in the literature, there is no agree-
ment regarding the numbering. Consequently, an arbitrary deci-
sion is made here in that respect. There is an intimate connection
with the Radon transform; however, that discussion is delayed
until Section 8.11. There are some very good recent references
devoted primarily to Abel integral equations, Abel transforms,
and applications. The monograph by Gorenflo and Vessella
(1991) is especially recommended for both theory and applica-
tions. Also, the chapter by Anderssen and de Hoog (1990)
contains many applications along with an excellent list of refer-
ences. A recent book by Srivastava and Bushman (1992) is
valuable for convolution integral equations in general. Other
general references include Kanwal (1971), Widder (1971),
Churchill (1972), Doetsch (1974), and Knill (1994). Another
valuable resource is the review by Lonseth (1977). His remarks
on page 247 regarding Abel’s contributions ‘‘back in the spring-
time of analysis’’ are required reading for those who appreciate
the history of mathematics. Other references to Abel transforms
and relevant resource material are contained in Section 8.11 and
in the following discussion.

8.10.1 Singular Integral Equations, Abel Type

An integral equation is called singular if either the range of
integration is infinite or the kernel has singularities within the
range of integration. Singular integral equations of Volterra type
of the first kind are of the form (Tricomi, 1985)

g(x) ¼
ð

x

0

k(x, y) f (y) dy x > 0, (8:105)

where the kernel satisfies the condition k(x, y) � 0 if y> x. If
k(x, y)¼ k(x� y), then the equation is of convolution type. The
type of kernel of interest here is

k(x � y) ¼ 1

(x � y)a
0 < a < 1:

This leads to an integral equation of Abel type,

g(x) ¼
ð

x

0

f (y)

(x � y)a
dy ¼ f (x)*

1

xa
, x > 0,

0 < a < 1:

(8:106)

Integral equations of the type in Equation 8.106 were studied
by the Norwegian mathematician Niels H. Abel (1802–1829)
with particular attention to the connection with the tautochrone
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problem. This work by Abel (1823, 1826a,b) served to introduce
the subject of integral equations. The connection with the tauto-
chrone problem emerges when a¼ 1=2 in the integral equation.
This is the problem of determining a curve through the origin in
a vertical plane such that the time required for a massive particle
to slide without friction down the curve to the origin is inde-
pendent of the starting position. It is assumed that the particle
slides freely from rest under the action of its weight and the
reaction of the curve (smooth wire) that constrains its move-
ment. Details of this problem are discussed by Churchill (1972)
and Widder (1971).

One way to solve Equation 8.105 when k(x, y)¼ k(x� y) is by
use of the Laplace transform (see Chapter 5); this yields

G(s) ¼ F(s)K(s): (8:107)

The solution for F(s) can be written in two forms,

F(s) ¼ G(s)

K(s)
¼ [sG(s)]

1

sK(s)

� �

(8:108)

The second form is used when the inverse Laplace transform
of 1=K(s) does not exist.

Example 8.29

Solve Equation 8.106 for f (x). From Equation 8.107 and Laplace

transform tables (Chapter 5),

G(s) ¼ L{ f (x)}L
1

xa

	 


¼ F(s)sa�1G(1� a):

To find F(s) we must invert the equation

F(s) ¼ s

G(a)G(1� a)
[G(a)s�aG(s)]:

The inversion yields

f (x) ¼ L
�1 s

G(a)G(1� a)
[G(a)s�aG(s)]

	 


¼ L
�1 s

G(a)G(1� a)
L

ðx

0

(x � y)a�1g(y)dy

8

<

:

9

=

;

8

<

:

9

=

;
:

By invoking the property df(x)=dx¼L�1 {sL{f(x)}} the above

equation becomes

f (x) ¼ sinap

p

d

dx

ðx

0

(x � y)a�1g(y)dy: (8:109)

Here, use is made of the gamma function identity

G(a)G(1� a) ¼ p

sinap
:

Another form of Equation 8.108 can be found if g(y) is

differentiable. One way to find this other solution is to use

integration by parts,
Ð

u dv¼ uv�
Ð

v du, with u¼ g(y) and

dv¼ (x� y)a�1dy,

ðx

0

(x � y)a�1g(y)dy ¼ g(þ0)xa
a

þ 1

a

ðx

0

(x � y)ag0(y)dy:

When this expression is multiplied by sin ap=p and differen-

tiated with respect to x the alternative expression for Equation

8.109 follows,

f (x) ¼ sinap

p

g(þ 0)

x1�a
þ
ðx

0

g0(y)

(x � y)1�a
dy

2

4

3

5: (8:110)

Remark

It is tempting to take a quick look at Equation 8.106 and assume
that g(0)¼ 0. This is wrong! The proper interpretation is to do
the integral first and then take the limit as x! 0 through positive
values. This is why we have written g(þ0) in Equation 8.110.

The above Equation 8.110 also follows by taking into consid-
eration the convolution properties and derivatives for the Laplace
transform. We observe that Equation 8.108 can be written in two
alternative forms,

F(s) ¼ s[G(s)H(s)] ¼ [sG(s)] [H(s)],

Where H (s) is defined by

H(s) ¼ 1

sK(s)
:

The inversion gives

f (x) ¼ d

dx

ðx

0

g(y)h(x � y)dy, (8:111a)

or

f (x) ¼ g(0)h(x)þ
ðx

0

g 0(y)h(x � y)dy: (8:111b)

The previous equations can be used to solve an integral equation
of the form

g(x) ¼
ðx

0

f (y)k(x2 � y2)dy: (8:112)
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After making the substitutions,

x ¼ u
1
2, y ¼ v

1
2, f1(v) ¼

1

2
f (v

1
2) v�

1
2, g1(u) ¼ g(u

1
2),

Equation 8.112 becomes

g1(u) ¼
ð

u

0

f1(v) k(u� v) dv: (8:113)

This equation is identical to Equation 8.105 with k(x, y)¼ k(x� y)
and the solution is given by Equations 8.111a and b with k

replaced by h,

f1(u) ¼
d

du

ð

u

0

g1(v) h(u� v) dv

¼ g1(0)h(u)þ
ð

u

0

g 01(v) h(u� v) dv,

where h(x)¼L�1{1=sK(s)}. Using the substitutions in reverse
gives

f (x)

2x
¼ 1

2x

d

dx

ð

x

0

g(y)h(x2 � h2) 2ydy,

or

f (x) ¼ 2
d

dx

ð

x

0

y g(y) h(x2 � h2) dy, (8:114a)

and if the derivative of g exists,

f (x) ¼ 2xg(0)h(x2)þ 2x

ð

x

0

g 0(y) h(x2 � y2) dy: (8:114b)

Example 8.30

Find the solution of Equation 8.112 if the kernel is k(x)¼ x�a

and 0<a< 1. With this kernel the equation to be solved is

g(x) ¼
ð

x

0

f (y) dy

(x2 � y2)a
: (8:115a)

We need the inverse Laplace transform of H (s)¼ 1=sK(s). From

K (s) ¼
ð

1

0

e�sx x�a dx ¼ G(1� a)sa�1 ,

it follows that

h(x) ¼ L
�1 1

G(1� a)

1

sa

	 


¼ 1

G(a)G(1� a)
xa�1 ¼ sinap

p
xa�1:

Now the solution follows directly from Equation 8.114a,

f (x) ¼ 2 sinap

p

d

dx

ðx

0

y g(y)dy

(x2 � y2)1�a
: (8:115b)

Example 8.31

Apply Equation 8.114b to find an alternative expression for the

inverse Equation 8.115b. Note that

h(x2) ¼ sinap

p
x2a�2

follows from Example 8.30. Consequently, the desired equa-

tion is

f (x) ¼ 2 sinap

p
g(0)x2a�1 þ x

ðx

0

g0(y)dy

(x2 � y2)1�a

2

4

3

5: (8:115c)

There are other integral equations similar to the one in

Example 8.30 that are of particular interest here. The relevant

results are given without proof. The derivations are very similar

to the procedures used above. A transform pair related to the

pair of Equation 8.115a,b is

g(x) ¼
ð1

x

f (y)dy

(y2 � x2)a
, 0 < a < 1, f (1) ¼ 0, (8:116a)

and

f (x) ¼ � 2 sinap

p

d

dx

ð1

x

y g(y)dy

(y2 � x2)1�a
: (8:116b)

Another pair of interest is

g(x) ¼ 2

ð1

x

y f (y)dy

(y2 � x2)a
0 < a < 1, f (1) ¼ 0, (8:117a)
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and

f (x) ¼ � sinap

p

ð

1

x

g0(y)dy

(y2 � x2)1�a
: (8:117b)

8.10.2 Some Abel Transform Pairs

If the choice a ¼ 1
2 is made in Equations 8.115 through 8.117 the

resulting transforms are known as Abel transforms. In order,
these are designated by !1{ f }, !2{ f }, and !3{f }. The numerical
designation is not standard, and some authors leave a in the
equations. With the exception of a constant factor, Sneddon
(1972) uses the same notation for !1{ f } and !2{ f }. Bracewell
(1986) introduces only !3{ f }, and uses the notation !{ f }. This
is the transform most directly related to the Radon transform.
It is discussed in much more detail in Section 8.11. Also, for
completeness we add a fourth transform. It is related to
Riemann–Liouville (fractional) integrals of order 1=2, discussed
in Section 8.10.3.

Explicitly, the transforms are designated by

f̂1(x) � !1{ f1(r); x} ¼
ð

x

0

f1(r)dr

(x2 � r2)
1
2

, x > 0 (8:118a)

f̂2(x) � !2{ f2(r); x} ¼
ð

1

x

f2(r)dr

(r2 � x2)
1
2

, x > 0 (8:118b)

f̂3(x) � !3{ f3(r); x} ¼ 2

ð

1

x

r f3(r)dr

(r2 � x2)
1
2

, x > 0 (8:118c)

f̂4(x) � !4{ f4(r); x} ¼ 2

ð

x

0

r f4(r)dr

(x2 � r2)
1
2

, x > 0: (8:118d)

Note the change from y ! r to agree with the short tables of
transforms given in Appendix 8.B. Also note the change g ! f̂ ,
and the use of subscripts to keep track of which transform is
being applied.

The corresponding inversion expressions are

f1(r) ¼
2

p

d

dr

ð

r

0

x f̂1(x)dx

(r2 � x2)
1
2

(8:119a)

f2(r) ¼ �
2

p

d

dr

ð

1

r

x f̂2(x)dx

(x2 � r2)
1
2

(8:119b)

f3(r) ¼ �
1

pr

d

dr

ð

1

r

x f̂3(x)dx

(x2 � r2)
1
2

(8:119c)

f4(r) ¼
1

pr

d

dr

ð

r

0

x f̂4(x)dx

(r2 � x2)
1
2

: (8:119d)

There are alternative ways to write the above inverses. The results
can be verified by integrating by parts before taking the derivative
with respect to r:

f1(r) ¼
2 f̂1(0)

p
þ 2r

p

ð

r

0

f̂ 01(x)dx

(r2 � x2)
1
2

(8:120a)

f2(r) ¼ �
2r

p

ð

1

r

f̂ 02(x)dx

(x2 � r2)
1
2

(8:120b)

f3(r) ¼ �
1

p

ð

1

r

f̂ 03(x)dx

(x2 � r2)
1
2

(8:120c)

f4(r) ¼
f̂4(0)

pr
þ 1

p

ð

r

0

f̂ 04(x)dx

(r2 � x2)
1
2

: (8:120d)

In these equations it is assumed that the transform vanishes
at infinity, f̂ (1) � 0, and the prime means derivative with
respect to x.

There is yet another form that is useful for f3. The result comes
from a study of the Radon transform (Deans, 1983, 1993):

f3(r) ¼ �
1

p

d

dr

ð

1

r

r f̂3(x)dx

x(x2 � r2)
1
2

: (8:121)

To verify that this indeed reduces to Equation 8.120c, let the
integration by parts be done in Equation 8.121 with

u ¼ r f̂3(x), du ¼ r f̂ 0(x)dx, v ¼ 1

r
cos�1

r

x
,

dv ¼ dx

x(x2 � r2)
1
2

:

After doing the integration by parts, take the derivative with
respect to r to get Equation 8.120c.

Some important observations

From the definitions of the transforms !i, it follows that

!3{ f (r)} ¼ 2!2{rf (r)} (8:122a)

!4{ f (r)} ¼ 2!1{rf (r)} (8:122b)

!4{r
�1f1(r)} ¼ 2f̂1(x) (8:122c)

!3{r
�1f2(r)} ¼ 2f̂2(x) (8:122d)

f1(r) � !�11 {f̂1(x)} ¼
2

p

d

dr
!1{xf̂1(x)} (8:122e)

f2(r) � !�12 {f̂2(x)} ¼ �
2

p

d

dr
!2{xf̂2(x)}: (8:122f)

These equations (along with obvious variations) can be used
to find transforms and inverse transforms. A few samples are
provided in the examples of Section 8.10.4.

8-24 Transforms and Applications Handbook



8.10.3 Fractional Integrals

The Abel transforms are related to the Riemann–Liouville and
Weyl (fractional) integrals of order 1=2; these are discussed along
with an extensive tabulation in Chapter 13 of Erdélyi et al.
(1954). In the notation of this reference, the Riemann–Liouville
integral is given by

g(y;m) ¼ 1

G(m)

ð

y

0

f (x)(y � x)m�1 dx, (8:123)

and the Weyl integral is given by

h(y;m) ¼ 1

G(m)

ð

1

y

f (x)(x � y)m�1 dx: (8:124)

Now in Equation 8.123 let m¼ 1=2, make the replacement
y! x2, and change the variable of integration x¼ r2 to obtain.

ffiffiffiffi

p
p

g x2,
1

2

� �

¼ 2

ðx

0

r f (r2)dr

(x2 � r2)
1
2

:

Clearly, this form of the Riemann–Liouville integral can be con-
verted to Equation 8.118d by the appropriate replacements. By a
similar argument, the Weyl integral (Equation 8.124) can be
converted to Equation 8.118c. This leads to the following useful
rule for finding Abel transforms !3 and !4 from the tables in
Chapter 13 of Erdélyi et al. (1954).

Rule

1. Replace: m! 1
2

2. Replace: x! r2 (column on left).
3. Replace: y! x2 and multiply the transform by

ffiffiffiffi

p
p

(column

on right).

It is easy to verify that this rule works by its application to cases
that yield results quoted in Appendix 8.B for !3. Verification of
the rule for !4 follows immediately from the use of standard
integral tables. Although the rule works most directly for the !3

and!4 transforms, it can be extended to apply to finding!1 and
!2 transforms by use of the formulas in Equations 8.122a
through f. Finally, it is interesting to note that these integrals
lead to an interpretation for fractional differentiation and frac-
tional integration. A good resource for details on this concept is
the monograph by Gorenflo and Vessella (1991).

8.10.4 Some Useful Examples

We close this section with a few useful examples. These are
especially valuable for those concerned with the analytic compu-
tation of Abel transforms or inverse Abel transforms.

Example 8.32

Consider the Abel transform

f̂1(x) ¼ !1{a� r} ¼ pa

2
� x:

This is a simple case where f̂1(x) is not zero at x¼ 0; here,

f̂1(0) ¼ pa=2 and f̂ 01(x) ¼ �1. If Equation 8.120a is used to

verify the transform, the calculation is

f1(r) ¼
2

p

pa

2
þ 2r

p

ðr

0

�dx
(r2 � x2)

1
2

¼ a� r:

Verification of this inverse for Equation 8.119a follows by using

the appropriate integral formulas from Appendix 8.A, and

application of the derivative with respect to r:

2

p

d

dr

ðr

0

1
2
pax � x2

(r2 � x2)
1
2

dx ¼ a� r:

From Equation 8.122c we know the transform

!4{r
�1(a� r)} ¼ pa� 2x:

Inversion formulas (Equation 8.119d) and (Equation 8.120d)

apply for this case.

Example 8.33

It is instructive to apply inversion formulas (8.119c), (8.120c),

and (8.121) to the same problem. From Appendix 8.B, we use

!3{x(r=a)} ¼ 2(a2 � x2)
1
2x(x a):=

Application of Equation 8.119c gives

� 1

pr

d

dr

ða

r

2x(a2 � x2)
1
2 dx

(x2 � r2)
1
2

¼ � 2

pr

d

dr

ða

r

x(a2 � x2)dx

(a2 � x2)
1
2(x2 � r2)

1
2

¼ � 2

pr

d

dr

ða

r

a2x dx

(a2 � x2)
1
2(x2 � r2)

1
2

þ 2

pr

d

dr

ða

r

x3 dx

(a2 � x2)
1
2(x2 � r2)

1
2

¼ � 2

pr

d

dr

a2p

2

� �

þ 2

pr

d

dr
(a2 þ r2)

p

4

¼ 0þ 1 ¼ 1:

Application of Equation 8.120c gives

� 1

p

ða

r

�2x dx
(a2 � x2)

1
2(x2 � r2)

1
2

¼ 2

p

ða

r

x dx

(a2 � x2)
1
2(x2 � r2)

1
2

¼ 1:
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Application of Equation 8.121 gives

� 1

p

d

dr

ð

a

r

2r(a2 � x2)
1
2 dx

x(x2 � r2)
1
2

¼ � 2

p

d

dr

ð

a

r

r(a2 � x2)dx

x(a2 � x2)
1
2(x2 � r2)

1
2

¼ � 2

p

d

dr

ð

a

r

ra2 dx

x(a2 � x2)
1
2(x2 � r2)

1
2

þ 2

p

d

dr

ð

a

r

rx dx

(a2 � x2)
1
2(x2 � r2)

1
2

¼ � 2

p

d

dr
(a2r)

p

2ar

� �

þ 2

p

d

dr

rp

2

� �

¼ 0þ 1 ¼ 1:

Evaluation of the various integrals above follows from material

in Appendix 8.A.

Example 8.34

The following Bessel function identities are used in this

example.

q

qx
xv Jv (bx)f g ¼ bxv Jv�1(bx): (8:125a)

q

qx
x�v Jv (bx)f g ¼ �bx�v Jvþ1(bx): (8:125b)

It follows from the formulas

p

2
J0(bx) ¼

ð

x

0

cos br dr

(x2 � r2)
1
2

,
p

2
J0(bx) ¼

ð

1

x

sin br dr

(r2 � x2)
1
2

,

for the Bessel function J0 that

!1{ cos br} ¼
p

2
J0(bx),

and

!2{ sin br} ¼
p

2
J0(bx):

Differentiation of the previous two expressions with respect to

the parameter b yields the formulas

!1{r sin br} ¼
p x

2
J1(bx)

and

!2{r cos br} ¼ �
p x

2
J1(bx):

From formula (Equation 8.122e) with f̂1(x) ¼ sin bx,

2

p

d

dt
!1{x sin bx} ¼

2

p

d

dt

1

2
p t J1(bt)

	 


¼ bt J0(bt):

This means that

!�11 { sin bx} ¼ bt J0(bt),

or equivalently

!1{r J0(br)} ¼
sin bx

b
:

And by the same technique, from Equation 8.122f

!2{rJ0(br)} ¼
cos bx

b
:

From Equation 8.122f with f̂2(x) ¼ x�1 sin bx,

!�12 {x�1 sin bx} ¼ � 2

p

d

dt
!2{ sin bx} ¼ �

2

p

d

dt

1

2
p J0(bt)

	 


¼ b J1(bt)

or

!2{J1(br)} ¼
sin bx

bx
:

From the formulas developed above for the !2 transforms

and Equation 8.122a,

!3{ cos br} ¼ �p x J1(bx),

!3{r
�1 sin br} ¼ p J0(bx),

!3{J0(br)} ¼
2 cos bx

b
,

and

!3{r
�1 J1(br)} ¼

2 sin bx

bx
:

Additional formulas similar to those in the previous example are

contained in Sneddon (1972) and Gorenflo and Vessella (1991).

These authors also make use of the formulas of this example to

make the connection between the Abel transform and the

Hankel transform. This connection is also discussed in Section

8.11 in the more general context of the Radon transform.

Example 8.35

Use the rule in Section 8.10.3 to compute

!4{r
2 v�2}:
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From item (7) of Table 13.1, Riemann–Liouville fractional inte-

grals, of Erdélyi et al. (1954)

!4{r
2v�2} ¼

ffiffiffiffi

p
p

G(v)

G v þ 1
2

� � x2v�1:

A special case is provided by v¼ 2. This leads to the expression

2

ðx

0

r3 dr

(x2 � r2)
1
2

¼ 4x3

3
:

8.11 Related Transforms and Symmetry,
Abel and Hankel

The direct connection of the Radon transform and the Fourier
transform is used extensively throughout earlier sections of this
chapter. Several other transforms are also related to the Radon
transform. Some of these are related by circumstances that
involve some type of symmetry. The Abel and Hankel transforms
emerge naturally in this context. Other related transforms follow
more naturally from considerations of orthogonal function series
expansions. In this section some of these relations are explored
and examples provided to help illustrate the connections.

8.11.1 Abel Transform

The Abel transform is closely connected with a generalization of
the tautochrone problem. This is the problem of determining a
curve through the origin in a vertical plane such that the time
required for a particle to slide without friction down the curve to
the origin is independent of the starting position. It was the
generalization of this problem that led Abel to introduce the
subject of integral equations (see Section 8.10). More recent
applications of Abel transforms in the area of holography and
interferometry with phase objects (of practical importance in
aerodynamics, heat and mass transfer, and plasma diagnostics)
are discussed by Vest (1979), Schumann et al. (1985) and Ladou-
ceur and Adiga (1987). A very good description of the relation of
the Abel and Radon transform to the problem of determining the
refractive index from knowledge of a holographic interferogram
is provided by Vest (1979); in particular, see Chapter 6, where
many references to original work are cited. Minerbo and Levy
(1969), Sneddon (1972), and Bracewell (1986) also contain useful
material on the Abel transform. Many other references are con-
tained in Section 8.10.

Suppose the feature space function f (x,y) is rotationally sym-
metric and depends only on (x2þ y2)1=2. Now, knowledge of one
set of projections, for any angle f, serves to define the Radon
transform for all angles. For simplicity, let f¼ 0 in the definition
(Equation 8.5). Then f

^

(p,f) ¼ f
^

(p, 0); because there is no
dependence on angle there is no loss of generality by writing
this as f

^

(p). With these modifications taken into account, the
definition becomes

f
^

(p) ¼
ð1

�1

ð1

�1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p� �

d(p� x) dx dy

¼
ð1

�1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ y2
p� �

dy

¼ 2

ð1

0

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ y2
p� �

dy:

Clearly, because p appears only as p2, the function f
^

(p) is even
and it is sufficient to always choose p> 0. A change of variable
r2¼ (p2þ y2) yields

f
^

(p) ¼ 2

ð1

pj j

r f (r)

(r2 � p2)1 2=
dr:

This equation is just the defining equation for the Abel transform
(Bracewell, 1986), designated by

fA(p) ¼ !{ f (r)} ¼ 2

ð1

pj j

r f (r)

(r2 � p2)1 2=
dr: (8:126)

The absolute value can be removed if p is restricted to p> 0 and
fA(p)¼ fA(�p).

Remark about notation: The Abel transform used here is !3 of
Section 8.10; that is, ! � !3.

The Abel transform can be inverted by using the Laplace trans-
form, Section 8.10, or by using the Fourier transform (Bracewell,
1986). For purposes of illustration, themethod employed by Barrett
(1984) is used here. Equation 8.13, with n¼ 2, coupled with the
observation that the Radon transform operatorR¼! when f(x,y)
has rotational symmetry, becomes

F1! f ¼ F2f : (8:127)

Moreover, for rotationally symmetric functions, the F2 operator
is just the Hankel transform operator of order zero,*0. (More on
the Hankel transform appears in Section 8.12 and in Chapter 9.)
This means that

F2 f ¼ fH(q) ¼ 2p

ð1

0

f (r)J0(2pqr)r dr:

From the observation that F2¼*0, and from the reciprocal
property of the Hankel transform, *0 ¼ *�10 , we have

*0f ¼ F1 fA
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or

f ¼ *�10 F1 fA ¼ *0F1 fA:

It follows that the inverse Abel transform operator is given by

!�1 ¼ *0F1: (8:128)

From Equation 8.128 the first step in finding the inverse Abel
transform is to determine the Fourier transform of fA,

FfA ¼
ð

1

�1

fA(p)e
�i2pq pdp ¼ 2

ð

1

0

fA(p) cos (2p q p)dp:

The last step follows because fA(p) is an even function. Integra-
tion by parts gives

FfA ¼
�1
pq

ð

1

0

f 0A(p) sin (2pqp)dp,

where it is assumed that fA(p) ! 0 as p ! 0. The prime means
differentiation with respect to p. Now the inverse of Equation
8.126 is given by

f (r) ¼ 2p

ð

1

0

dq q J0(2p q r)
�1
p q

� � ð1

0

f 0A(p) sin (2pq p)dp

or, after simplification and interchanging the order of integration,

f (r) ¼ �2
ð1

0

dp f 0A(p)

ð1

0

dq sin (2p q p)J0(2p q r):

The integral over q is tabulated (Gradshteyn et al., 1994); it
vanishes for 0< p< r and gives

1

2p
(p2 � r2)�1 2= for 0 < r < p:

Hence, the inverse is found from

f (r) ¼ � 1

p

ð1

r

f 0A(p)(p
2 � r2)�1=2 dp: (8:129)

This equation and Equation 8.126 are an Abel transform pair.
Other forms for the inversion are given in Section 8.10. It may be
useful to observe that, for rotationally symmetric functions, if the
angle f in the Radon transform is chosen f¼ 0, then the p that
appears in these formulas is just the same as x, the projection of
the radius r on the horizontal axis. For this reason, in many
discussions of the Abel transform the variable p used here is

replaced by the variable x. This notation is used in Section 8.10
and in Appendix 8.B.

Because the Abel transform is a special case of the Radon
transform, all of the various basic theorems for the Radon trans-
form apply to the Abel transform. One way to make use of this is
to apply the theory of the Radon transform to obtain general
results. Then observe that for all rotationally symmetric functions
the same results apply to the Abel transform. Some examples of
Radon transforms already worked out illustrate the idea.

Example 8.36

Consider Example 8.3 in Section 8.5. The feature space func-

tion has the required rotational symmetry, so it follows imme-

diately that the corresponding Abel transform is

!{e�r
2

} ¼ ffiffiffiffi

p
p

e�p
2

: (8:130)

From Example 8.9 of that same section, if x (r) represents the

characteristic function of a unit disk, then

!{x(r)} ¼ 2(1� p2)1=2 , for p < 1

0, for p > 1.

	

(8:131)

Another rotationally symmetric case worked out for the Radon

transform is from the last part of Example 8.26 in Section 8.7.

The corresponding Abel transform is

!{r2e�r
2

} ¼
ffiffiffiffi

p
p

2
(2p2 þ 1)e�p

2

: (8:132)

Example 8.37

In some cases it is just as easy to apply the definition of

the Abel directly; for example, the transform of (a2þ r2)�1 is

given by

! (a2 þ r2)�1
� �

¼ 2

ð1

p

r dr

(r2 � p2)1=2(r2 þ a2)
:

The change of variables z2¼ r2þ a2 leads to a form that is easy

to evaluate; see Appendix 8.A,

!{(a2 þ r2)�1} ¼ p

(p2 þ a2)1=2
: (8:133)

Example 8.38

Suppose the desired transform is of (1� r2)1=2 restricted to the

unit disk or

f (r) ¼ (1� r2)1=2x(r):
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One way to do this is to find the Radon transform of this

function and identify the result with the Abel transform. From

the definition of the Radon transform, taking f¼ 0, and

restricting the integral to the unit disk D,

f
^

(r,f) ¼
ð

D

(1� x2 � y2)1=2 d(p� x)dx dy:

The integral over x is easy using the delta function, and the

remaining integral over y is accomplished by observing that

over the unit disk y2þ p2¼ 1, thus

f
^

¼
ð

ffiffiffiffiffiffiffiffi

1�p2
p

�
ffiffiffiffiffiffiffiffi

1�p2
p

(1� p2)� y2
� �1=2

dy:

This integral can be evaluated by use of trigonometric sub-

stitution or from integral tables (Appendix 8.A). The result is

the Abel transform

f
^

¼ !
�

(1� r2)1=2x(r)
�

¼ p

2
(1� p2) x(p): (8:134)

Now suppose it is desired to scale this result to a disk of radius

a. The scaling can be accomplished by application of Section

8.3.2 in the form

R f
x

a
,
y

a

� �

¼ a2 f
^

(p, aj) ¼ a f
^ p

a
, j

� �

:

The scaled Abel transform follows, with r ! r=a,

! 1� r2

a2

� �1=2

x
r

a

� �
( )

¼ pa

2
1� p2

a2

� �

x
p

a

� �

or

! (a2 � r2)1=2x
r

a

� �n o

¼ p

2
(a2 � p2)x

p

a

� �

: (8:135)

By following the approach used in the last example, it is

possible to find a whole class of Abel transforms. These are

listed in Appendix 8.B. More results for Abel transforms appear

in sections that follow, especially in the section on transforms

restricted to the unit disk.

8.11.2 Hankel Transform

See Chapter 9 for details about Hankel transforms. By using an
approach similar to that in Section 8.11.1 it is possible to find the
connection between the Hankel transform of order v and the
Radon transform. Note that throughout this discussion, if v¼ 0
the results here correspond to results for the Abel transform.
Let the feature space function be given by a rotationally symmet-
ric function multiplied by eivu,

f (x, y) ¼ f (r) eivu:

The polar form of the 2D Fourier transform is given by

~f (q,f) ¼
ð2p

0

ð1

0

eivu e�i2pqr cos (u�f)r f (r)dr du:

Now, after the change of variables b¼ u�f, followed by an
interchange of the order of integration,

~f (q,f) ¼ eivu
ð1

0

dr rf (r)

ð2p

0

db ei(vb�2pqr cosb):

The integral over b can be related to a Bessel function identity
from Appendix 8.A to yield

~f (q,f) ¼ 2p eivf e�ivp=2
ð1

0

f (r) Jv(2pqr)r dr:

This is where the Hankel transform of order v comes in, by
definition,

*v{ f (r)} ¼ 2p

ð1

0

f (r) Jv(2pqr)r dr: (8:136)

Thus,

~f (q,f) ¼ (�i)veinf *v{ f (r)}: (8:137)

This equation can be related to the Radon transform by first
finding the Radon transform of f, and then applying the Fourier
transform as indicated in Equation 8.13. In polar form,

f
^

(p,f) ¼
ð2p

0

ð1

0

eivuf (r) d [p� r cos (u� f)] r drdu:

Once again, the change of variablesb¼ u�f is employed to obtain

f
^

(p,f) ¼ eivf
ð1

0

dr rf (r)

ð2p

0

db einb d(p� r cosb):

The integration over b in this expression has been discussed by
many authors, including Cormack (1963, 1964) and Barrett
(1984), where details can be found leading to

f
^

(p,f) ¼ 2eivf
ð1

jpj

f (r)Tv
p

r

� �

1� p2

r2

� ��1=2
dr: (8:138)

Some of the more useful properties of the Chebyshev polyno-
mials of the first kind Tv are given in Appendix 8.A. For more
details, see the summary by Arfken (1985) and the interesting
discussion by Van der Pol and Weijers (1934).
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It is useful to identify a Chebyshev transform by

7v{ f (r)} ¼ 2

ð

1

jpj

f (r)Tv
p

r

� �

1� p2

r2

� ��1=2
dr: (8:139)

Then,

f
^

(p,f) ¼ eivf7v{ f (r)}:

The Fourier transform of Equation 8.138 must be equal to
Equation 8.137. It follows that the Hankel transform is given in
terms of the Radon transform by

(�i)veivf*v{ f (r)} ¼ FR f ¼ eivf7v{ f (r)}: (8:140)

Or, in terms of the Chebyshev transform, because the eivf term
cancels,

*v{ f (r)} ¼ ivF7v{ f (r)}: (8:141)

Note that an operator identity follows immediately,

*v ¼ ivF7v: (8:142)

This relation between the Hankel transform and the Fourier
transform of the Radon transform is a useful expression because
it serves as the starting point for finding Hankel transforms
without having to do integrals over Bessel functions. Several
authors have made contributions in this area. For applications
and references to the literature see Hansen (1985), Higgins and
Munson (1987, 1988), and Suter (1991).

In this section we have concentrated on how the Hankel
transform relates to the Radon transform. A logical extension
of some of the ideas presented in this discussion appear in
Section 8.13 on circular harmonic decomposition.

8.11.3 Spherical Symmetry, Three Dimensions

An interesting generalization of the above cases arises when the
function f(x, y, z) has spherical symmetry. In this case, the Radon
transform of f can be found by letting both the polar angle u and
the azimuthal angle f be zero. Now the unit vector j¼ (0, 0, 1),
and formula (Equation 8.7) is given by

f
^

(p) ¼
ð1

�1

ð1

�1

ð1

�1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p� �

d(p� z)dxdydz

¼
ð1

�1

ð1

�1

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ p2
p� �

dxdy

¼
ð2p

0

ð1

0

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ p2
p� �

r drdf

¼ 2p

ð1

0

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ p2
p� �

r dr:

In these equations the transformation x¼ r cos f, y¼ r cos f is
used. One more transformation, r2þ p2¼ r2, leads to

f
^

(p) ¼ 2p

ð1

p

f (r)r dr, p > 0: (8:143)

Note that the lower limit follows from r¼ (p2)1=2 when r¼ 0.
The interesting point is that for this highly symmetric case, the
original function f can be found by differentiation,

df
^

(p)

dp
¼ �2p p f (p):

In this equation, the variable p is actually a dummy variable and
it can be replaced by r,

f (r) ¼ �1
2p r

f
^0
(r): (8:144)

This same result can be found directly from the inversion
methods of Section 8.9.2. Also, Barrett (1984) does the same
derivation and he makes the interesting observation that (Equa-
tion 8.144) was given in the optics literature by Vest and Steel
(1978), but was actually known much earlier by Du Mond (1929)
in connection with Compton scattering, and by Stewart (1957)
and Mijnarends (1967) in connection with positron annihilation.

8.12 Methods of Inversion

The inversion formulas given by Radon (1917) and the formulas
given in Section 8.9 serve only as a beginning for an applied
problem. This point is emphasized by Shepp and Kruskal (1978).
The main problem is that these formulas are rigorously valid for
an infinite number of projections, and in practical situations the
projections are a discrete set. This discrete nature of the projec-
tions gives rise to subtle and difficult questions. Most of these are
related in some way to the ‘‘Indeterminacy Theorem’’ by Smith
et al. (1977). After a little rephrasing, the theorem establishes that:
a function f(x, y) with compact support is uniquely determined by

an infinite set of projections, but not by any finite set of projections.

This clearly means that uniqueness must be sacrificed in applica-
tions. Experience with known images shows that this is not so
serious if one can come close to the actual f

^

and then apply an
approximate reconstruction algorithm. Moreover, some encour-
agement comes from another theorem by Hamaker et al. (1980).
The main thrust of this theorem is that arbitrarily good approx-
imations to f can be found by utilization of an arbitrarily large
number of projections. Perhaps the way to express all of this is to
say: even though you can’t win you must never give up!

There are several other considerations about inversion. The
inverse Radon transform is technically an ill-posed problem.

Small errors in knowledge of the function f
^

can lead to very
large errors in the reconstructed function f. Hence, problems of
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stability, ill-posedness, accuracy, resolution, and optimal methods
of sampling must be addressed when working with experimental
data. These are obviously very important problems, and the sub-
ject of ongoing research. A thorough discussion would have to be
highly technical and inappropriate for inclusion here. For those
concerned with these matters, the papers by Lindgren and Rattey
(1981), Rattey and Lindgren (1981), Louis (1984), Madych and
Nelson (1986), Hawkins and Barrett (1986), Hawkins et al. (1988),
Kruse (1989), Madych (1990), Faridani (1991), Faridani et al.
(1992), Maass (1992), Desbat (1993), Natterer (1993), Olson and
DeStefano (1994), and the books by Herman (1980) and Natterer
(1986) are good starting points for methods and references to
other important work. Good examples illustrating many of the
difficulties encountered when dealing with real data along with
defects in the reconstructed image associated with the perform-
ance of various algorithms are given in Chapter 7 of the book by
Russ (1992).

There are several methods that serve as the basis for the
development of algorithms that can be viewed as discrete imple-
mentations of the inversion formula. Our purpose here is to
present several of these along with reference to their implemen-
tation. Those interested in more detail and other flow charts may
want to see Barrett and Swindell (1977) and Deans (1983, 1993).
The first topic below, the operation of backprojection, is an
essential step in some of the reconstruction algorithms. Also,
this operation is closely related to the adjoint of the Radon
transform, discussed in Section 8.14. More on inversion methods
is contained in Section 8.13 on series.

8.12.1 Backprojection

Let G(p,f) be an arbitrary function of a radial variable p and
angle f. The backprojection operation is defined by replacing p

by x cos fþ y sin f and integrating over the angle f, to obtain a
function of x and y,

g(x, y) ¼ @G(p,f) ¼
ð

p

0

G(x cosfþ y sinf,f) df: (8:145)

Note: From the definition of the backprojection operator it follows
that the inversion formula (Equation 8.101) can be written as

f (x, y) ¼ 2@
�
f
^

(t,f): (8:146)

8.12.2 Backprojection of the Filtered Projections

The algorithm known as the filtered backprojection algorithm

is presently the optimum computational method for reconstruct-
ing a function from knowledge of its projections. This algorithm
can be considered as an approximate method for computer
implementation of the inversion formula for the Radon trans-
form. Unfortunately, there is some confusion associated with the
name, because the filtering of the projections is done before the
backprojection operation. Hence, a better name is the one chosen

for the title of this section. There are several ways to derive the
basic formula for this algorithm. Because we want to emphasize
its relation to the inversion formula, the starting point is Equa-
tion 8.146. First, rewrite that equation as

f ¼ 2@F
�1
F
�
f
^

: (8:147)

Here, the identity operator for the 1D Fourier transform is used.
Now, making use of various operations from Section 8.9.1, we
obtain

f ¼ 2@

4p2
F
�1

F
q

qp

1

p
*f
^

(p,f)

� �	 


¼ @

2p2
F
�1 (i2pk) F

1

p

� �� �

[Ff
^

(p,f)]

	 


¼ @

2p2
F
�1{(i2pk)(ipsgnk)Ff

^

(p,f)}

¼ @F
�1{jkjFf

^

(p,f)}: (8:148)

The inverse Fourier transform operation converts a function of k
to a function of some other radial variable, say s. This observation
leads to a natural definition; for convenience of notation, define

F(s,f) ¼ F
�1{jkjFf

^

(p,f)} ¼ F
�1{jkj

~
f
^

(k,f)}: (8:149)

Now the feature space function is recovered by backprojection of F,

f (x, y) ¼ @ F(s,f) ¼
ðp

0

F(x cosfþ y sinf,f) df: (8:150)

The beautiful part of this formula is that the need to use the
Hilbert transform has been eliminated. From a computational
viewpoint this is a real plus. For additional information on
computationally efficient algorithms based on these equations,
see Rowland (1979) and Lewitt (1983).

8.12.2.1 Convolution Methods

Due to the presence of the jkj in Equation 8.149 the story is not
over. This causes a problem with numerical implementation due
to the behavior for large values of k. It would be desirable to have
a well-behaved function, say g, such that Fg¼ jkj. Then Equation
8.149 could be modified to read

F(s,f) ¼ F
�1[(Fg)(Ff

^

)]:

And, by the convolution theorem,

F(s,f) ¼ f
^

* g ¼
ð1

�1

f
^

(p,f)g(s� p)dp: (8:151)

A function g such that Fg¼ jkj can be found, but is not well
behaved. In fact, it is a singular distribution (Lighthill, 1962).
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In view of these difficulties a slight compromise is in order.
Rather than looking for a function whose Fourier transform
equals jkj, try to find a well-behaved function with a Fourier
transform that approximates jkj. The usual approach is to define
a filter function in terms of a window function; that is, let

Ig ¼ jkjw(k): (8:152)

Then Equation 8.151 can be used to find the function F used in
the backprojection equation. One advantage of this approach
is that there is no need to find the Fourier transform of the
projection data f

^

; however, it is necessary to compute the con-
volver function

g(s) ¼ F
�1{jkjw(k)} (8:153)

before implementing Equation 8.151. This signal space convolu-
tion approach is discussed in some detail by Rowland (1979).
An approach directly aimed toward computer implementation is
in Rosenfeld and Kak (1982). Excellent practical discussions of
windows and filters are given by Harris (1978) and by Embree
and Kimble (1991).

8.12.2.2 Frequency Space Implementation

It should be noted that there are times when it is desirable to
implement the filter is Fourier space and use Equation 8.149 in
the form

F(s,f) ¼ F
�1{jkjw(k)Ff

^

(p,f)} ¼ F
�1{jkjw(k)

~
f
^

(k,f)}, (8:154)

to approximate F before backprojecting. This has been empha-
sized by Budinger et al. (1979) for data where noise is an import-
ant consideration.

A diagram of the options associated with the algorithm for
backprojection of the filtered projections is given in Figure 8.10.

8.12.3 Filter of the Backprojections

In this approach to reconstruction, the backprojection operation
is applied first and the filtering or convolution comes last. When
the backprojection operator is applied to the projections, the
result is a blurred image that is related to the true image by a
2D convolution with 1=r. Let this blurred image of the back-
projected projections be designated by

b(x, y) ¼ @f
^

(p,f)

¼
ð

p

0

f
^

(x cosfþ y sinf,f) df: (8:155)

The true image is related by b by

b(x, y) ¼ f (x, y) **
1

r

¼
ð

1

�1

ð

1

�1

f (x0, y0)dx0 dy0

[(x � x0)2 þ (y � y0)2]1 2=
: (8:156)

This is not an obvious result; it can be deduced by considering
Equation 8.13 in the form

f
^

¼ F
�1
1 F2 f :

Apply the backprojection operator to obtain

b ¼ @f
^

¼ @F
�1
1 F2f : (8:157)

(In this section, subscripts on the Fourier transform operator are
shown explicitly to avoid any possible confusion.) There is a
subtle point lurking in this equation. Suppose the 2D Fourier
transform of f produces ~f (u, v). The inverse 1D operator F�11 is
understood to operate on a radial variable in Fourier space.
This means ~f (u, v) must be converted to polar form, say ~f (q,f)
before doing the inverse 1D Fourier transform. The variable _q is
the radial variable in Fourier space, q2¼ u2þ v2. If we designate
the inverse 1D Fourier transform of ~f (q,f) by f(s, f), then

b(x, y) ¼ @f (s,f) ¼ @

ð

1

�1

~f (q,f)ei2psq dq:

f (x, y) f ( p, φ)ˇ

F ( s, φ) ˇ
~

|k | f ( k, φ) ˇ
~
f ( k, φ)

Convolution
methods

.|k |
–1

FIGURE 8.10 Filtered backprojection, convolution.
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Explicitly, the backprojection operation with s ! x cos fþ y

sin f gives

b(x, y) ¼
ð

p

0

ð

1

�1

dq~f (q,f)ei2pq(x cosfþy sinf)

¼
ð

2p

0

ð

1

�1

q�1~f (q,f)ei2pqr cos (u�f)q dq df,

where the replacements x¼ r cos u and y¼ r sin u have been
made, and the radical integral is over positive values of q. We
observe that the expression on the right is just the inverse 2D
Fourier transform,

b(x, y) ¼ F
�1
2 {jqj�1~f }, (8:158)

and from the convolution theorem

b(x, y) ¼ F
�1
2 {~f }

h i

** F
�1
2 {jqj�1}

� �

: (8:159)

The last term on the right is just the Hankel transform of jqj�1 that
gives jrj�1, and the other term yields f(x, y). These substitutions
immediately verify Equation 8.156.

The desired algorithm follows by taking the 2D Fourier trans-
form of Equation 8.158,

F2b(x, y) ¼ jqj�1~f (u, v)

or

~f (u, v) ¼ jqjF2b:

Application of F�12 to both sides of this equation, along with the
replacement b ¼ @f

^

, yields the basic reconstruction formula for
filter of the backprojected projections.

f (x, y) ¼ F
�1
2

�

jqjF2@f
^�

: (8:160)

Just as in the previous section a window function can be intro-
duced, but this time it must be a 2D function. Let

~g(u, v) ¼ jqjw(u, v):

Now Equation 8.160 becomes

f (x, y) ¼ F
�1
2 {~gF2@f

^

}

¼ F
�1
2 {~g}

� �

**
�

@f
^�

¼ g(x, y)**b(x, y): (8:161)

Once the window function is selected, g can be found in advance
by calculating the inverse 2D Fourier transform, and the recon-
struction is accomplished by a 2D convolution with the back-
projection of the projections.

Options for implementation of these results are illustrated
in Figure 8.11. Important references for applications and numer-
ical implementation of this algorithm are Bates and Peters
(1971), Smith et al. (1973), Gullberg (1979), and Budinger
et al. (1979).

8.12.4 Direct Fourier Method

The direct Fourier method follows immediately from the central-
slice theorem, Section 8.2.5, in the form

f ¼ F
�1
2 F1f

^

: (8:162)

The important point is that the 1D Fourier transform of the
projections produces ~f (q,f) defined on a polar grid in Fourier
space. An interpolation is needed to get ~f (u, v) and then
apply F

�1
2 to recover f (x, y). The procedure is illustrated in

Figure 8.12. Although this appears to be the simplest inversion
algorithm, it turns out that there are computational problems
associated with the interpolation and there is a need to do a
2D inverse Fourier transform. For a detailed discussion see:
Mersereau (1976), Stark et al. (1981), and Sezan and
Stark (1984).

f (x, y) f ( p, φ)ˇ

~

Convolution
methods

.|q |
|q |b(u, υ)

~
b(u, υ) b(x, y)

–1
2

2

FIGURE 8.11 Filter of backprojections and convolution, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ v2
p

.
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8.12.5 Iterative and Algebraic Reconstruction
Techniques

The so-called algebraic reconstruction techniques (ART) form a
large family of reconstruction algorithms. They are iterative
procedures that vary depending on how the discretization is
performed. There is a high computational cost associated with
ART, but there are some advantages, too. Standard numerical
analysis techniques can be applied to a wide range of problems
and ray configurations, and a priori information can be
incorporated in the solution. Details about various methods, the
history, and extensive reference to original work is provided by
Herman (1980), Rosenfeld and Kak (1982), and Natterer (1986).
Also, the discrete Radon transform and its inversion is described
by Beylkin (1987) and Kelley and Madisetti (1993), where both
the forward and inverse transforms are implemented using
standard methods of linear algebra.

8.13 Series

There are many series approaches to finding an approximation to
the original feature space function f when given sufficient infor-
mation about the corresponding function f

^

in Radon space.
The particular method selected usually depends on the physical
situation and the quality of the data. The purpose of this section
is to present some of the more useful approaches and observe
that the basic ideas developed here carry over to other series
techniques not discussed.

The approach is to give details for some of the 2D cases and
quote results and references for higher dimensional cases. The
first method discussed, the circular harmonic expansion, is the

method used by Cormack (1963, 1964) in his now famous
work that many regard as the beginning of modern computed
tomography.

8.13.1 Circular Harmonic Decomposition

The basic ideas developed in Section 8.11.2 can be extended to
obtain the major results. First, note that in polar coordinates in
feature space, functions that represent physical situations are
periodic with period 2p. This immediately leads to a consideration
of expanding the function in a Fourier series. If f (x, y) is written
for f (r, u), then the decomposition is

f (r, u) ¼
X

l

hl(r) e
ilu: (8:163)

The sum is understood to be from �1 to 1, and the Fourier
coefficient hl is given by

hl(r) ¼
1

2p

ð

2p

0

f (r, u)e�iludu: (8:164)

The Radon transform of f can also be expanded in a Fourier
series of the same form,

f
^

(p,f) ¼
X

l

h
^

l(p) e
ilf, (8:165)

where

h
^

l(p) ¼
1

2p

ð

2p

0

f
^

(p,f)e�ilf df, p � 0, (8:166a)

and

h
^

l(�p) ¼ (�1)lh
^

l(p): (8:166b)

The connection between the Fourier coefficients in the two
spaces can be determined by taking the Radon transform of f,
as given by Equation 8.163. The polar form of the transform gives

f
^

(p,f) ¼
X

l

ð

2p

0

ð

1

0

eiluhl(r) d[p� r cos (u� f)] r dr du:

Now, the change of variables b¼ u�f leads to an expression
similar to one obtained in Section 8.11.2,

f
^

(p,f) ¼
X

l

eilf
ð

1

0

dr rhl(r)

ð

2p

0

db eilb d(p� r cos b): (8:167)

f (x, y) f ( p, φ)ˇ

~
f  (u, υ) ˇ

~
f  (q, φ)Interpolation

–1

2 1

FIGURE 8.12 Direct Fourier method.
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From the linear independence of the functions eilf, it follows by
comparison of Equations 8.165 and 8.167 that

h
^

l(p) ¼
ð

1

0

dr rhl(r)

ð

2p

0

db eilb d(p� r cos b):

From Equation 8.138 this gives the connection between the
Fourier coefficients in terms of a Chebyshev transform,

h
^

l(p) ¼ 2

ð

1

p

hl(r)Tl
p

r

� �

1� p2

r2

� ��1=2
dr, p � 0: (8:168a)

One form of the inverse is

hl(r) ¼ �
1

pr

ð1

r

h
^0
l(p)Tl

p

r

� � p2

r2
� 1

� ��1=2
dp, r > 0: (8:168b)

Here the prime means derivative with respect to p.
The inverse (Equation 8.168b) can be found by various tech-

niques. These include use of the Mellin transform, contour integra-
tion, and orthogonality properties of the Chebyshev polynomials
of the first and second kinds. The method used by Barrett (1984)
is easy to follow, and he provides extensive reference to other
derivations and some of the subtleties related to the stability and
uniqueness of the inverse. The problem with this expression for
the inverse is that Tl increases exponentially as l!1 and h

^

l is a
rapidly oscillating function. The integration of the product of these
two functions leads to severe cancellations and numerical instabil-
ity. For a further discussion of stability, uniqueness, and other forms
for the inverse, seeHansen (1981), Hawkins andBarrett (1986), and
Natterer (1986). Additional details on the circular harmonic Radon
transform are given by Chapman and Cary (1986).

8.13.1.1 Extension to Higher Dimensions

The extension to higher dimensions is presented in detail by
Ludwig (1966). Other relevant references include Deans (1978,
1979) and Barrett (1984). The nD counterpart of the transform
pair is given by Equations 8.168a and b is a Gegenbauer trans-
form pair for the radial functions,

h
^

l(p) ¼
(4p)vG(l þ 1)G(v)

G(l þ 2v)

ð1

p

r2vhl(r)C
v
l

p

r

� �

1� p2

r2

� �v�1
2

dr,

(8:169a)

and

hl(r) ¼
(�1)2vþ1G(l þ 1)G(v)

2pvþ1G(l þ 2v) r

ð1

p

h
^(2vþl)
l (p)Cv

l

p

r

� � p2

r2
� 1

� �v�1
2

dp:

(8:169b)

In these equations, r� 0, p� 0, h
^(2vþ1)
1 ¼ (d=dp)(2vþ1) h

^

l(p),
h
^

l(�p) ¼ (�1)l h
^

l(p), and v is related to dimension n by v¼
(n� 2)=2.

The Gegenbauer polynomials Cv
l are orthogonal over the inter-

val [�1,þ1] (Rainville, 1960) and (Szegö, 1939). This leads to
questions about the integration in Equation 8.169b. And, just as
mentioned in connection with Equation 8.168b, this formula is
not practical for numerical implementation. However, the integral
can be understood because it is possible to define Gegenbauer
functions Gv

l (z) analytic in the complex z plane cut from �1 to
�1. For a discussion and proofs, see Durand et al. (1976).

8.13.1.2 Three Dimensions

The 3D version of the expansion (Equation 8.163) is in terms of
the real orthonormal spherical harmonics Slm(v), discussed by
Hochstadt (1971),

f (r,v) ¼
X

l,m

Alm hl(r) Slm(v): (8:170)

The Alm are real constants and v is a 3D unit vector,

v ¼ (sin u cosf, sin u sinf, cos u):

The corresponding expansion in Radon space is

f
^

(p, j) ¼
X

l,m

Alm h
^

l(r)Slm(j): (8:171)

It follows from the orthogonality of the spherical harmonics that

Alm h
^

l(p) ¼
ð

jjj¼1

f
^

(p, j)Slm(j)dj, (8:172)

where dj is the surface element on a unit sphere. The Gegenbauer
transform Equations 8.169a and b reduces to a Legendre trans-
form for n¼ 3, v ¼ 1

2, and the radial functions satisfy

h
^

l(p) ¼ 2p

ð1

p

rhl(r)Pl
p

r

� �

dr, (8:173a)

hl(r) ¼
1

2p r

ð

1

r

h
^

l
00(p)Pl

p

r

� �

dp: (8:173b)

The spherical harmonics Ylm(u,f), discussed by Arfken (1985),
are probably more familiar to engineers and physicists. These can
be used in place of the Slm suggested here. However, various
properties (real, orthonormal, symmetry) of the Slm make them
more suitable for use in connection with problems involving the
general nD Radon transform (Ludwig, 1966).
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For the 3D case, one possible connection is given by

Slm ¼

Ylm þ Ylm*
ffiffiffi

2
p , for m ¼ 1, 2 , . . . , l

Yl0, for m ¼ 0

Ylm � Ylm*

i
ffiffiffi

2
p , for m ¼ �1,�2 , . . . ,�l,

8

>
>
>
>
>
<

>
>
>
>
>
:

where Yl,�m ¼ (�1)mYlm* . Note that under the parity operation

(x! �x, y! �y, z ! �z),

the well known result Ylm! (�1)lYlm carries over to the Slm(v),
giving

Slm(�v) ¼ (�1)lSlm(v):

8.13.2 Orthogonal Functions on the Unit Disk

In most practical reconstruction problems the function in feature
space is confined to a finite region. This region can always be
scaled to fit inside a unit disk. Hence, the development of an
orthogonal function expansion on the unit disk holds promise as
a useful approach for inversion using series methods. (In this
connection, note that when the problem is confined to the unit
disk the infinite upper limit on all integrals in the previous
section can be replaced by unity.) Orthogonal polynomials that
have been used for many years in optics are especially good
candidates. These are the Zernike polynomials; a standard refer-
ence is Born and Wolf (1975); also see Chapter 1. A more recent
reference, Kim and Shannon (1987), contains a graphic library of
37 selected Zernike expansion terms. One reason why these
functions are desirable is that their transforms (R and F) lead
to orthogonal function expansions in both Radon and Fourier
space. This choice for basis functions in reconstruction has been
discussed by Cormack (1964), Marr (1974), Zeitler (1974), and
Hawkins and Barrett (1986), and examples similar to those given
here are given by Deans (1983, 1993).

The approach is to assume that f(x, y) can be approximated by
a sum of monomials of the form xky j. Then xky j can be written as
rkþj multiplied by some function of sin u and cos u. This leads to
the consideration of an expansion of the form

f (r, u) ¼
X1

l¼�1
hl(r) e

ilu ¼
X1

s¼0

X1

l¼�1
AlsZ

jlj
jljþ2s(r)e

ilu, (8:174)

in terms of complex constants Als and Zernike polynomials
Zl
m(r), with m¼ jlj þ 2s. The Radon transform of this expression

can be found exactly, and it contains the same constants.
These constants are evaluated in Radon space, and the feature
space function is found by the expansion (Equation 8.174). There
are several subtle points associated with this process, and it is
useful to break the problem into separate parts. First, we discuss

relevant properties of the Zernike polynomials, and give some
simple examples. This is followed with the transform to Radon
space, and more examples. Next, the expression for the constants
Als is found in terms of f, which is assumed known from experi-
ment. Finally, to emphasize that this application also extends to
Fourier space, the transform to Fourier space is illustrated, along
with some observations regarding three different orthonormal
basis sets.

8.13.2.1 Zernike Polynomials

The Zernike polynomials (see Section 1.5) can be found by
orthogonalizing the powers

rl , rlþ2, rlþ4, . . .

with weight function r over the interval [0, 1]. The exponent l is a
nonnegative integer. The resulting polynomial Zl

m(r) is a degree
m¼ lþ 2s and it contains no powers of r less than l. The poly-
nomials are even if l is even and odd if l is odd. This leads to an
important symmetry relation,

Zl
m(�r) ¼ (�1)lZl

m(r): (8:175)

The orthogonality condition is given by

ð1

0

Zl
lþ2s(r)Z

l
lþ2t(r) r dr ¼

1

2(l þ 2sþ 1)
dst : (8:176)

It follows that the expansion coefficients are given by

Als ¼
2(l þ 2sþ 1)

2p

ð2p

0

ð1

0

f (r cos u, r sin f)Zl
lþ2s(r)e

�ilur dr du:

(8:177a)

In this equation l� 0. To find the expansion coefficient for
negative values of l, use the complex conjugate,

A�l, s ¼ Als*: (8:177b)

Some simple examples are useful to gain an understanding of just
how the expansion works. A short table of Zernike polynomials is
given in Appendix 8.A. Methods for extending the table and
many other properties are given by Born and Wolf (1975).

Example 8.39

Let the feature space function be given by f(x, y)¼ y in the unit

circle and zero outside the circle. Thus, in terms of r,

f (x, y) ¼ r sin u:
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Here, the degree is 1 and jlj þ 2s� 1. The series expansion

(Equation 8.174) reduces to

f (x, y) ¼ A00Z
0
0 þ A10Z

1
1e

iu þ A�10Z
1
1e
�iu:

This case is easy enough to do by inspection of the table of

Zernike polynomials in Appendix 8.A. The coefficients are

A00¼ 0, A10 ¼ 1
2i
, A�10 ¼ �1

2i
. This choice gives

f (x, y) ¼ r
eiu � e�iu

2i
¼ Z11(r) sin u:

Example 8.40

This time let f(x, y)¼ xy, so f(r, u)¼ r2 cos u sin u. It follows
immediately from the angular part of the integral in Equation

8.177a that the only nonzero coefficients are given by A20 ¼ 1
4i

and A�20 ¼ 1
4i
. This leads to the expansion

f (x, y) ¼ (A20e
2iu þ A�20e

�2iu)Z2
2 (r)

or

f (x, y) ¼ r2
e2iu � e�2iu

4i
¼ r2 cos u sin u:

Example 8.41

Let f(x, y)¼ x (x2þ y2). Now, changing to r and u gives f(r, u)¼
r3 cos u. It is tempting to take a quick look at the table and say

the expansion must contain A30 and Z33 because this polyno-

mial is equal to r3. This is not the correct thing to do! A quick

inspection of the angular part of Equation 8.177a reveals that

A30 vanishes. The nonzero constants are A11 ¼ A�11 ¼ 1
6
, and

A10 ¼ A�10 ¼ 1
3
. This gives the correct expansion

f (x, y) ¼ 1

3
Z13 (r) cos uþ

2

3
Z11 (r) cos u ¼ r3 cos u:

8.13.2.2 Transform of the Zernike Polynomials

We need to find the Radon transform of a function of the form

f (x, y) ¼ Zl
m(r)e

ilu:

It is adequate to consider l� 0, because the negative case follows
by complex conjugation. The angular part transforms to eilf and
the radial part must satisfy Equation 8.168a with upper limit 1,

h
^

l(p) ¼ 2

ð

1

p

Zl
m(r)Tl

p

r

� �

1� p2

r2

� ��1=2
dr, p � 0: (8:178)

There are various ways to evaluate this integral, and the
details are not shown here. The method used by Zeitler (1974)
and Deans (1983, 1993) makes use of the path through Fourier
space to find the transformed function in Radon space. The
important result is that the orthogonal set of Zernike polynomials
transforms to the orthogonal set of Chebyshev polynomials of the
second kind,

R Zl
m(r)e

ilu
� �

¼ 2

mþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

Um(p)e
ilf, (8:179)

with m¼ lþ 2s. Basic properties of the Um are given in Appendix
8.A, and summaries are given by Arfken (1985) and Erdélyi
et al. (1953).

The Radon transform of Equation 8.174 follows immediately
by use of Equation 8.179,

f
^

(p,f) ¼
X1

s¼0

X1

l¼�1
Als

2

lj j þ 2sþ 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

U lj jþ2s(p)e
ilf: (8:180)

Some more examples serve to illustrate how the method devel-
oped here relates to transforms found in earlier sections when the
function is confined to the unit disk. Also, these examples are
designed to point out ways certain pitfalls can be avoided.

Example 8.42

If f(x, y)¼ 1 on the unit disk and zero elsewhere, the expansion

in terms of Zernike polynomials is just f ¼ Z0
0 , with A00¼ 1.

From Equation 8.180, f
^

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

, because U0¼ 1. Note

that this is just another way of doing Example 8.9.

Example 8.43

If f (x, y) ¼ x2 ¼ r2 cos2 u ¼ 1
2
r2(1þ cos 2u) on the unit disk, then

f (x, y) ¼ 1

4
Z0
0 þ Z02

� �

þ 1

2
Z2
2 cos 2u:

This serves to identify the coefficients Als and by use of

Equation 8.180

f
^

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p 1

4
2U0 þ

2

3
U2

� �

þ 1

3
U2 cos 2f

� �

:

After simplification,

R{x2} ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

2p2 cos2 fþ 2

3
(1� p2) sin2 f

� �

:

Now note that if f (x, y) ¼ y2 ¼ 1
2
r2(1� cos 2u), the change is

(cos f $ sin f) in the equation for R{x2}, and

R{y2} ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

2p2 sin2 fþ 2

3
(1� p2) cos2 f

� �

:
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Finally, by linearity, the transform of f(x, y)¼ x2þ y2 is given by

the sum of the above transforms

R{x2 þ y2} ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

(2p2 þ 1):

Example 8.44

Let f(x, y)¼ 1� r2 on the unit disk. By using the methods of the

earlier examples in this section

f ¼ z00 �
1

2
Z00 þ Z02
� �

¼ 1

2
Z0
0 �

1

2
Z0
2 :

From Equation 8.180

f
^

¼ 1

2
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

U0 �
1

2

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

U2:

Or, after substitution for U0 and U2 from Appendix 8.A,

f
^

¼ 4

3
(1� p2)

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

:

Another way to obtain this is to use Examples 8.42 and 8.43

and linearity.

Example 8.45

For f(x, y)¼ x(x2þ y2) as in Example 8.41, it follows from know-

ing that Als that

f
^

¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p 1

2
U3 þ 2U1

� �

cosf

¼ 2

3
p(2p2 þ 1)

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

cosf:

Example 8.46

It may be worthwhile to emphasize that there are certain

transforms that cannot be found by a naive application of the

Zernike polynomials. To illustrate, suppose f (x, y) ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

.

Although this has the form f ¼ xr ¼ Z22 cos u, it is not a simple

sum over monomials xky j, and the method of this section does

not apply. The transform can be found by use of the technique

in Example 8.11 of Section 8.5. The solution is

f
^

(p,f) ¼ 2p cosf
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

þ p2

2
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

p

 !" #

:

Clearly, this does not follow by Zernike decomposition of xr.

8.13.2.3 Evaluation in Radon Space

In the previous section, Equation 8.180 was used to find
Radon transforms when the constants Als can be determined by
knowing the feature space function. Here the idea is to determine
the same constants by knowledge of the Radon space function f

^

.
It is easy to solve for the constants directly from Equation 8.180.
Multiply both sides by e�il

0fUl0þ 2t and integrate over p and f.
Then use the orthogonality equation for the Um in Appendix 8.A
to find the constants,

Als ¼
jlj þ 2sþ 1

2p2

ð2p

0

ð1

�1

f
^

(p,f)e�ilfUjljþ2s dp df: (8:181)

Example 8.47

This simplest test of Equation 8.181 is for the inverse of the

problem of Example 8.42. We assume that f
^

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

with

l¼ s¼ 0, then f¼ 1 on the unit disk

A00 ¼
1

2p2

ð2p

0

ð1

�1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

dp df

¼ 2

p

ð1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

dp ¼ 1:

8.13.2.4 Transform to Fourier Space

The Radon transform of the basis set given in Equation 8.179
transformed one orthogonal set to another orthogonal set. It is
interesting to examine the Fourier transform of the basis set.
It turns out that this also leads to another orthogonal set. Details
are given by Zeitler (1974) and Deans (1983, 1993). The import-
ant result is that

F2 Zl
lþ2s(r)e

ilu
� �

¼ (�i)l(�1)seilf Jlþ2sþ1(2pq)
q

: (8:182)

This equation is obtained using the symmetric form of the
Fourier transform (see Equation 8.14). These Bessel functions
are orthogonal with respect to weight function q�1, and have
been studied by Wilkins (1948),

ð1

0

Jjljþ2sþ1(q) Jjljþ2tþ1(q)q
�1 dq ¼ dst

2(jlj þ 2sþ 1)
:

The Fourier space version of Equation 8.174 is

~f (q,f) ¼
X1

s¼0

X1

l¼�1
(�i)l(�1)s Alse

ilf Jjljþ2sþ1(2pq)

q
: (8:183)
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Example 8.48

The Fourier transform of the characteristic function of the unit

disk, Example 8.42, with A00¼ 1 and l¼ s¼ 0, is given by

J1(2pq)=q.

Example 8.49

For the function in Example 8.44, the expansion (Equation

8.183), with A00 ¼ 1
2
and A01 ¼ �1

2
, yields

F2{1� r2} ¼ J1(2pq)

2q
þ J3(2pq)

2q
¼ J2(2pq)

pq2
:

The last equality follows from the Bessel function identity

Jn�1(z)þ Jnþ1(z) ¼
2n

z
Jn(z)

with n¼ 2 and z¼ 2pq.

Example 8.50

Repeat Example 8.43 with transforms to Fourier space using

Equation 8.183.

F2{x
2} ¼ J1(2pq)

4q
� J3(2pq)

4q
� J3(2pq)

2q
cos 2f

F2{y
2} ¼ J1(2pq)

4q
� J3(2pq)

4q
þ J3(2pq)

2q
cos 2f

F2{x
2 þ y2} ¼ J1(2pq)

2q
� J3(2pq)

2q
¼ J1(2pq)

q
� J2(2pq)

pq2
:

The last part follows from the identity in Example 8.49. Also,

note that the result for x2þ y2 follows directly from Examples

8.48 and 8.49 and linearity.

8.13.2.5 Some Final Observations

It is possible to find orthogonal function expansions that trans-
form to each other in all three spaces. In feature space the
Zernike polynomials, defined on the unit disk, are orthogonal
with weight function r over the interval 0� r� 1. In Radon
space the Chebyshev polynomials of the second kind emerge,
orthogonal on the interval �1� p� 1 with weight function
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

. These are both defined on finite intervals and conse-
quently, as is to be expected, in Fourier space the interval in
infinite, 0� q�1. The orthogonal functions are no longer
polynomials, they are orthogonal Bessel functions with weight
function q�1. The orthogonality integrals over the three spaces,
including the angles, are given by

ð2p

0

ð1

0

Z
jlj
jljþ2s(r)e

ilu
h i*

Z
jl0j
jl0jþ2s0 (r)e

il0u r dr du

¼ p

jlj þ 2sþ 1
dll0 dss0 , (8:184a)

ð2p

0

ð1

�1

U
jlj
jljþ2s(p)e

ilf
h i*

U
jl0j
jl0 jþ2s0 (p)e

il0f
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p2
p

dp df

¼ p2 dll0 dss0 , (8:184b)

ð2p

0

ð1

0

Jjljþ2sþ1(q)e
ilf

� �*
Jjl0jþ2s0þ1(q)e

il0fq�1 dq df

¼ p

jlj þ 2sþ 1
dll0 dss0 : (8:184c)

8.14 Parseval Relation

In the notation of Section 8.1.2, let inner products in nD be
designated by

h f , gi ¼
ð

f *(x)g(x)dx:

If the nD Fourier transforms of f and g are designated by ~f and ~g,
the Parseval relation for the Fourier transform is given by

h f , gi ¼ h~f , ~gi: (8:185)

The integral on the right is over all Fourier space. If g¼ f, then
the integrals are normalization integrals. This guarantees that if f
is normalized to unity, then its Fourier transform is also normal-
ized to unity.

The corresponding expression for the Radon transform is
considerably more complicated, and we need to extend some of
the previous work in order to give a general result. First, define
the adjoint for the Radon transform. If inner products in
Radon space are designated by square brackets, then Ry is
ense that

h f ,Ry gi ¼ [R f ,G]: (8:186)

Here, G is a function of the variables in Radon space, G¼G(p, j),
and the adjoint operator Ry converts G to a function of x,
designated by g(x)¼Ry G(p, j). For example, in 2D the adjoint
is just two times the backprojection operator, Ry¼ 2B.
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Example 8.51

It is instructive to see how Equation 8.186 comes from the

definitions,

hf ,Ry gi ¼
ð

dx f (x)g(x)

¼
ð

dx f (x)

ð

jjj¼1

djG(j � x, j)

¼
ð

dx f (x)

ð

jjj¼1

dj

ð

1

�1

dp G(p, j) d(p� j � x)

¼
ð

jjj¼1

dj

ð

1

�1

dp

ð

dx f (x) d(p� j � x)G(p, j)

¼
ð

jjj¼1

dj

ð

1

�1

dpf
^

(p, j)G(p, j)

¼ [Rf ,G]:

The significance of this result is more apparent after making

a generalization of Section 8.9 to include the nD inversion

formula. Define the operator Y to cover both the even and

odd dimension cases (Ludwig, 1966), (Deans, 1983, 1993):

y�g(t) ¼ Yg

¼
Nn

q

qp

� �n�1
g(p)

" #

p¼t
n odd

Nn

i
*i

q

qp

� �n�1
g(p)

( )" #

p¼t
n even,

8

>>>>><

>>>>>:

(8:187)

where Nn ¼ 1
2
(2pi)1�n . This reduces to Equation 8.100 for n¼ 2

and to Equation 8.103 for n¼ 3.

With this definition the inversion formula for the Radon

transform is given by

f ¼ R
y �
f
^

¼ R
y Y f

^

¼ Ry YRf : (8:188)

This leads to the operator identity operating in feature

space,

I ¼ R
y YR: (8:189)

By starting with

R
y
G ¼ g ¼ Ig ¼ R

y YRR
y
G,

if follows that the identity operating on functions in Radon

space is given by

I ¼ YRR
y: (8:190)

When Equations 8.186 and 8.190 are combined, we obtain the

desired form for the Parseval relation for the Radon transform,

hf , gi ¼ hf ,Ry Gi
¼ [R f , IG]

¼ [Rf ,YRR
y
G]

¼ [Rf ,YRg]

¼ [f
^

,Yg
^

] (8:191)

An important special case is for g¼ f, then

hf , f i ¼ [f
^

,Yf
^

]: (8:192)

Example 8.52

Verify the Parseval relation (Equation 8.192) explicitly in all

three spaces for f (x, y) ¼ e�x
2�y2 . This looks simple, but it

demonstrates the difficulty of dealing with Radon space com-

pared with feature space and Fourier space.

Feature space:

hf , f i ¼
ð1

�1

ð1

�1

e�x
2�y2e�x

2�y2 dx dy

¼
ð1

�1

ð1

�1

e�2x
2�2y2 dx dy

¼
ffiffiffiffi

p
p
ffiffiffi

2
p

ffiffiffiffi

p
p
ffiffiffi

2
p ¼ p

2
:

Fourier space: Note that q2¼ u2þ v2. Then

h~f ,~f i ¼
ð1

�1

ð1

�1

pe�p
2 (u2þv2)pe�p

2 (u2þv2) du dn

¼ p2

ð1

�1

ð1

�1

e�2p
2u2e�2p

2n2 du dn

¼ p2

ffiffiffiffi

p
p
ffiffiffiffiffiffiffiffi

2p2
p

ffiffiffiffi

p
p
ffiffiffiffiffiffiffiffi

2p2
p ¼ p

2
:

Radon space: Verification in Radon space is not as easy as the

other two cases due to the presence of the Hilbert transform.

The entire calculation is shown in detail, because there are

some tricky parts. First note that qf
^

=qp ¼ �2 ffiffiffiffi

p
p

p e�p
2

. Then

Equation 8.192 is

[f
^

,Yf
^

] ¼ ffiffiffiffi

p
p

e�p
2

,
�1
4p

*i

qf
^

qp

 !" #

¼ ffiffiffiffi

p
p

e�p
2

,
�1
4p

� �

�2 ffiffiffiffi

p
p� �

*i(pe
�p2 )

� �

¼ 1

2
e�p

2

,*i(p e
�p2 )

h i

:
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Because there is no angle dependence, the integral
Ð

jjj
dj ¼ 2p.

Hence, the last inner product becomes

[f
^

,Yf
^

] ¼ 2p

2

ð

1

�1

dp e�p
2 1

p

ð

1

�1

ds
se�s

2

s� p

¼
ð

1

�1

dp e�p
2

ð

1

�1

ds
se�s

2

s� p
:

Now the problem is to demonstrate that this double integral

yields p=2. Change the order of integration to get

[f
^

,Y f
^

] ¼
ð

1

�1

ds se�s
2

ð

1

�1

dp
e�p

2

s� p
:

From page 227 of Davis and Rabinowitz (1984), this becomes

[f
^

,Y f
^

] ¼
ð

1

�1

ds se�s
2 ffiffiffiffi

p
p

se�s
2

ð1

�1

dpes
2p2 :

Another change in the order of integration followed by

evaluation of the definite integrals (Appendix 8.A) yields the

desired result,

�

f
^
,Y f

^�
¼ ffiffiffiffi

p
p ð1

�1

dp

ð1

�1

ds s2 e�(2�p
2 )s2

¼
ffiffiffiffi

p
p ffiffiffiffi

p
p

2

ð1

�1

dp

(2� p2)3=2

¼ p

ð1

0

dp

(2� p2)3=2

¼ p

2
:

8.15 Generalizations and Wavelets

Mathematical generalization of the Radon transform and some of
the more technical applications are discussed in the recent pub-
lications edited by Grinberg and Quinto (1990) and Gindikin and
Michor (1994). There are many other references and the reader
interested in some of the more abstract treatments will find these
two books good entry points to the literature.

A generalization that has important applicability in the area of
image reconstruction in nuclear medicine is known as the
attenuated Radon transform. One way to define this transform
is to modify Equation 8.4 to read

f
^

m(p,f) ¼
ð1

�1

f (pjþ tj0)

exp �
ð1

t

m(p jþ s j0) ds

2

4

3

5dt: (8:193)

If the attenuation term m is a constant, say m0, that vanishes
outside a finite region, then this equation reduces to what is often
referred to as the exponential Radon transform,

f
^

m0
(p,f) ¼

ð1

�1

em0t f (p jþ tj0)dt: (8:194)

These transforms are fundamental in single photon emission
computed tomography (SPECT), and to a lesser degree in posi-
tron emission tomograph (PET) where corrections can be intro-
duced to compensate for attenuation (Budinger et al., 1979). For
details see Natterer (1979, 1986), Tretiak and Metz (1980),
Clough and Barrett (1983), Hawkins et al. (1988), Hazou and
Solmon (1989), and Nievergelt (1991).

One of the most recent and certainly one of the most exciting
new developments is the use of the wavelet transform in connec-
tion with the Radon transform. The application of wavelets to
inversion of the Radon transform has been investigated by Kaiser
and Streater (1992). They make use of a change of variables to
connect a generalized version of the Radon transform to a con-
tinuous wavelet transform. Work along related lines was done by
Holschneider (1991) where the inverse wavelet transform is
used to obtain a pointwise and uniformly convergent inversion
formula for the Radon transform.

Berenstein and Walnut (1994) use the theory of the continu-
ous wavelet transform to derive inversion formulas for the Radon
transform. The inversion formula they obtain is ‘‘local’’ in even
dimensions in the following sense (stated for 2D): to recover f to
a given accuracy in a circle of radius r about a point (x0, y0) it is
sufficient to know only those projections through a circle of
radius rþa about (x0, y0) for some a> 0. The accuracy increases
as a increases. In a related paper, Walnut (1992) demonstrates
how the Gabor and wavelet transforms relate to the Radon
transform. He finds inversion formulas for f

^

based on Gabor
and wavelet expansions by a direct method and by the filtered
backprojection method.

More work on wavelet localization of the Radon transform is
in the papers by Olson and DeStefano (1994), and Olson (1995).
As mentioned in Section 8.9, they emphasize that one problem
with the Radon transform in two dimensions (most relevant
in medical imaging) is that the inversion formula is globally
dependent upon the line integral of the object function f.
A fundamental important aspect of their work is that they are
able to develop a stable algorithm that uses properties of wavelets
to ‘‘essentially localize’’ the Radon transform. This means collect
line integrals which pass through the region of interest, plus a
small number of integrals not through the region. Recent work
by Rashid-Farrokhi et al. (1997) makes use of the properties of
wavelets with many vanishing moments to reconstruct local
regions of a cross section using almost completely local data. A
comprehensive discussion of the Radon transform and local
tomography is given in the book by Ramm and Katsevich (1996).

The work by Donoho (1992) on nonlinear solution of linear
inverse problems by wavelet-vaguelette decomposition is relevant
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to the inversion of Abel-type transforms and Radon transforms.
This method serves as a substitute for the singular value decom-
position of an inverse problem, and applies to a large class of
ill-posed inverse problems.

Another important applied generalization is related to fan
beam and cone beam tomography. Recent work in these areas
can be found in papers by Natterer (1993), Kudo and Saito (1990,
1991), Rizo et al. (1991), Gullberg et al. (1991), and in the book
by Natterer (1986).

In recent work by Wood and Barry (1994), the Winger distri-
bution is combined with the Radon transform to facilitate the
analysis of multicomponent linear FM signals. These authors
provide several references to other applications of this combined
transform, now known as the Radon–Wigner transform.

8.16 Discrete Periodic Radon Transform

A natural extension of the continuous Radon transform that can
be used for discrete data sets has been developed by Gertner
(1988). Further work by Hsung et al. (1996) demonstrates many
details regarding both the forward and inverse discrete periodic
Radon transform (DPRT). The application of this transform to
N3N sets of data when N is prime will be demonstrated here.
This is the simplest case; however, further generalizations are
possible and for these we refer the reader to Hsung et al. (1996).

Clearly, a prime factor algorithm is not greatly restrictive since
there are primes just a little greater than any power of two
and zeros can be added with absolutely no consequence of
importance. The purpose here is to make as much contact with
the continuous transform as possible, while defining a discrete
transform and its inverse. The extension here is applied directly
to the continuous transform defined in Section 8.2.1 for two
dimensions.

8.16.1 The Discrete Version of the Image

The function f defines the image in terms of coordinates (x, y).
Here we let x and y be discrete and vary from 0 to P� 1, where P
is prime. Moreover, for values of x and y greater than or equal to
P we define the periodic extension of f such that for positive
integers l, n

f (x þ lP, y þ nP) ¼ f (x, y):

This means that knowledge of f(x, y) for x and y in the set
{0, 1, 2, . . . ,P� 1} serves to define f everywhere. For example,
suppose P¼ 3, then f(4, 1)¼ f(1, 1) and f(6, 8)¼ f(0, 2). To make
this more precise, if the residue of a modulo P is designated by

a mod P � [a]p, Definition

then

f (x, y) ¼ f ([x]p, [y]p):

This square bracket notation is especially useful for some of the
formulas. In terms of an image, this amounts to reproducing the
image over and over again in both the vertical and horizontal
directions. This will be illustrated when interpreting the discrete
transform.

8.16.2 A Discrete Transform

The prime factor DPRT is defined by three equations:

f
^

(b, l ) ¼
X

P�1

y¼0
f (b, y) vertical

f
^

(b, 0) � f
^

(b, $ ) ¼
X

P�1

x¼0
f (x, b) horizontal

f
^

(b,m) ¼
X

P�1

x¼0
f x, [bþmx]p
� �

m ¼ 1, 2, . . . ,P � 1:

In all of these equations b¼ 0, 1, . . . , P� 1. Note that for compu-
tational and coding purposes the last two equations can be
combined by letting m vary from 0 to P� 1. At this point, an
example followed by a generalization will be especially valuable.

Example 8.53

Suppose P¼ 5 and we wish to calculate f
^

(1, 2). Set b¼ 1 and

m¼ 2, then

f
^

(1, 2) ¼ f (0, 1)þ f (1, 3)þ f (2, 0)þ f (3, 2)þ f (4, 4):

The graphical interpretation is shown in Figure 8.13, where the

periodic extension is shown explicitly on the right. Also, note

that for this P¼ 5 case:

tan u ¼ m for m ¼ 1, 2 and tan u ¼ m� P for m ¼ 3, 4:

4

3

2

1

0

4

4

x

y

3

3

2

2

1

1
0

0

x

y

4

4

3

3

2

2

1

1

0
0

FIGURE 8.13 Use of the periodic property.
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The generalization of the previous example to arbitrary values

of P follows by induction. The slope variable takes on the

values

m ¼ 1, 2, . . . ,
P � 1

2
,
P þ 1

2
, . . . , P � 1:

The angles u (slope angle) and f (used in continuous case) are

related by

tanu¼m, 1�m� P� 1

2
, 0< u<

p

2
, f¼� p

2
� u

� �

,

tanu¼m� P,
Pþ 1

2
�m� P� 1,

p

2
< u< p, f¼ u�p

2
:

A Word of Caution

The equations apply to a function f(x, y) where x is horizontal
and y is vertical as indicated in Figure 8.13. If you are using a
matrix of numbers M(i, j) where i designates rows and j desig-
nates columns, you will have to make some changes, since x

actually labels columns and y labels rows. Also (x, y)¼ (0, 0) is
in the lower left corner and often M(0, 0) is in the upper left
corner.

8.16.3 The Inverse Transform

The inverse transform is given by

f (x, y) ¼ 1

P

X

P�1

m¼0
f
^

[y �mx þ P2]P ,m
� �

� 1

P

X

P�1

b¼0
f
^

(b, l )þ 1

P
f
^

(x, l ):

This can be derived by using a discrete version of the projection-
slice theorem in Section 8.2.5 along with the discrete 2D Fourier
transform. It is important to realize that this result is exact. See
Hsung et al. (1996) for more details and extensions.

Example 8.54

We illustrate the transform with a 53 5 matrix of data f (x, y)

y

4 1 2 1 4 5

3 6 0 1 9 3

2 4 5 8 0 1

1 0 3 4 7 6

0 0 1 2 3 8

0 1 2 3 4 x

The transform f
^

(b,m) is given by

m

4 9 12 16 23 24

3 9 16 18 18 23

l 11 11 16 23 23

2 16 7 27 25 9

1 25 18 14 18 9

$ 14 20 18 19 13

0 1 2 3 4 b

8.16.4 Good News and Bad News

The discrete transform and inversion algorithm given here repre-
sents a natural evolution from the continuous case to the discrete
case. It yields exact results, is simple and very fast (the inverse is
free of multiplications). It is completely different from algorithms
used in commercial machines designed for tomography. Those
algorithms are usually based on filtered backprojection, convolu-
tion techniques, and utilize projections at equal angle increments,
Huesman et al. (1977), Brooks and Di Chiro (1976), Rosenfeld
and Kak (1982). The prime factor discrete algorithm here requires
specific slopes that translate to an irregular sampling with respect
to angle. This results in a tradeoff. Although this algorithm is
exact and fast, it may not be easy to implement in an experimental
setting. Also, if the prime factor P is large (greater than about 13)
the angles are very closely spaced as the slope parameter m

approaches the vertical. Moreover, the algorithm requires the
use of periodicity and in experimental situations this is likely to
be a problem.

Appendix 8.A: Functions and Formulas

Various functions and formulas are recorded here for the con-
venience of the reader. (Also, see Chapter 1 and Appendices.)
The information here can be found in standard sources. In
particular, those used here include Abramowitz and Stegun
(1972), Arfken (1985), Born and Wolf (1975), Erdélyi et al.
(1953), Gradshteyn et al. (1994), Lide (1993), Rainville (1960),
and Szegö (1939).

8.A.1 Chebyshev Polynomials:
First Kind: T1(x)

Definitions

Tl(x) ¼ cos (l arccos x), 0 < x < 1

Tl(x) ¼ cosh (l cosh�1 x), 1 < x <1

Tl(x) ¼
1

2
x þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p� �l

þ 1

2
x �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p� �l

, 0 < x <1

Tl(1) ¼ 1, Tl(0) ¼ cos
lp

2
, Tl(�x) ¼ (�1)lTl(x)
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Orthogonality

ð

1

�1

Tl(x)Tm(x)(1� x2)�1=2dx ¼
0, for l 6¼ m
p

2
, for l ¼ m 6¼ 0

p, for l ¼ m ¼ 0

8

>

<

>

:

Recurrence and derivations

Tlþ1 ¼ 2xTl � Tl�1

(1� x2)T 0l ¼ lTl�1 � lxTl

(1� x2)T 00l � xT 0l þ l2Tl ¼ 0

First few

T0 ¼ 1

T1 ¼ x

T2 ¼ 2x2 � 1

T3 ¼ 4x3 � 3x

Useful integrals

ð

b

a

Tl(x=a)Tl(x=b)dx

x(b2 � x2)
1
2(x2 � a2)

1
2

¼ p

2ab

ð

b

a

dx

x(b2 � x2)
1
2(x2 � a2)

1
2

¼ p

2ab

ð

b

a

x dx

(b2 � x2)
1
2(x2 � a2)

1
2

¼ p

2

ð

b

a

x3 dx

(b2 � x2)
1
2(x2 � a2)

1
2

¼ p

4
(a2 þ b2)

8.A.2 Chebyshev Polynomials:
Second Kind: Ul(x)

Definitions

Ul�1(x)¼
cos (l arccosx)

ffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p , 0< x< 1

Ul�1(x)¼
sinh(l cosh�1 x)

ffiffiffiffiffiffiffiffiffiffiffiffi

x2� 1
p , 1< x<1

Ul�1(x)¼
�

xþ
ffiffiffiffiffiffiffiffiffiffiffiffi

x2� 1
p �l�

�

x�
ffiffiffiffiffiffiffiffiffiffiffiffi

x2� 1
p �l

2
ffiffiffiffiffiffiffiffiffiffiffiffi

x2� 1
p , 0< x<1, x 6¼ 1

Ul(�x)¼ (�1)lUl(x), Ul(1)¼ lþ 1, Ul(0)¼ cos
lp

2

Orthogonality

ð1

�1

Ul(x)Um(x)(1� x2)1=2dx ¼ p

2
dlm

Recurrence and derivatives

Ulþ1 ¼ 2xUl � Ul�1

(1� x2)U 0l ¼ (l þ 1)Ul�1 � lxUl

(1� x2)Ul
00 � 3xU 0l þ l(l þ 2)Ul ¼ 0

First few

U0 ¼ 1

U1 ¼ 2x

U2 ¼ 4x2 � 1

U3 ¼ 8x3 � 4x

U4 ¼ 16x4 � 12x2 þ 1

Miscellaneous connections

Ul�1 ¼
1

l
T 0l , l � 1

Tl ¼ Ul � xUl�1, l � 1

(1� x2)Ul ¼ xTlþ1 � Tlþ2

Tl
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p � Ul�1 ¼

�

x �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p �l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ¼

�

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ��l
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p , x 6¼ 1

8.A.3 Hermite Polynomials: Hl(x)

Generating function

e2xt�t
2 ¼

X1

l¼0

Hl(x)tl

l

Orthogonality

ð1

�1

Hl(x)Hm(x)e
�x2dx ¼ ffiffiffiffi

p
p

2lldlm

Recurrence and derivatives

Hlþ1 ¼ 2x Hl � 2l Hl�1

H0l ¼ 2l Hl�1

Hl
00 � 2x H0l þ 2l Hl ¼ 0
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Special values

Hl(x) ¼ (�1)lHl(�x)

H2l(0) ¼ (�1)l (2l)!
l!

H2lþ1(0) ¼ 0

First few

H0 ¼ 1

H1 ¼ 2x

H2 ¼ 4x2 � 2

H3 ¼ 8x3 � 12x

H4 ¼ 16x4 � 48x2 þ 12

Reverse expansions

x0 ¼ H0

x1 ¼ 1

2
H1

x2 ¼ 1

4
(H2 þ 2H0)

x3 ¼ 1

8
(H3 þ 6H1)

x4 ¼ 1

16
(H4 þ 12H2 þ 12H0)

8.A.4 Zernike Polynomials: Zlm (r)

Definition

The Zernike polynomials can be defined in terms of the more
general Jacobi polynomials Pn

(a,b) (z) by

Zl
lþ2s(r) ¼ rjljP(0, jlj)

s (2r2 � 1):

An extensive discussion of the Zernike polynomials is given by
Born and Wolf (1975). Jacobi polynomials are discussed by the
other references cited at the beginning of this appendix.

First few

Z0
0 ¼ 1

Z1
1 ¼ r

Z0
2 ¼ 2r2 � 1

Z2
2 ¼ r2

Z1
3 ¼ 3r3 � 2r

Z3
3 ¼ r3

Z0
4 ¼ 6r4 � 6r2 þ 1

Z2
4 ¼ 4r4 � 3r2

Z4
4 ¼ r4

8.A.5 Selected Integral Formulas

ð

1

�1

e�ax
2

dx ¼
ffiffiffiffi

p

a

r

ð1

�1

x2e�ax
2

dx ¼ 1

2a

ffiffiffiffi

p

a

r

ða

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

dx ¼ ap

2

ð
x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

ð
dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ¼ log

�

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p �

ð
dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ¼ 1

a
cos�1

a

x

� �

ð
dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

a2x
ð

dx

(a2 � x2)3=2
¼ x

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

ð
dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ¼ sin�1

x

a

� �

ð
x2 dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ¼ � x

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

þ a2

2
sin�1

x

a

� �

ð
x3 dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a2 � x2)3
q

� a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

ð
dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

a2x

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

dx

x2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

x
� sin�1

x

a

� �

ð
p=2

0

cosn x dx ¼ 1 � 3 � 5 . . . (n� 1)

2 � 4 � 6 � 8 . . . n
p

2
, for n even integer

ð
p=2

0

cosn x dx ¼ 2 � 4 � 6 . . . (n� 1)

1 � 3 � 5 � 7 . . . n , for n odd integer

Appendix 8.B: Short List of Abel
and Radon Transforms

The list of transforms recorded here is by no means complete.
It contains some of the more common and useful transforms that
can be found in closed form. Other Radon and Abel transforms
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are scattered throughout this chapter. The notation for the Abel
transforms is the same as in Section 8.10.2, and the notation for
the 2D Radon transform is the same as in other parts of the
chapter.

Also, just to remind the user of these tables, the sinc function
is defined by

sine x ¼ sin px

px
,

and the characteristic function for the unit disk, designated by
x(r) is defined by

x(r) ¼ 1, for 0 � r � 1
0, for r > 1 .

	

The complete elliptic integral of the first kind is designated by
F(12p, t) and the complete elliptic integral of the second kind is
designated by E(12p, t). A good source for these is the tabulation
by Gradshteyn et al. (1994). The constant C(n) in the table for
!3 is C(n) ¼ 2

Ð p=2
0 cosn x dx, with n� 1; it can be calculated

from Appendix 8.A. Bessel functions of the first kind Jv, and
second kind Nv (Neumann functions) conform to the standard
definitions in Arfken (1985) and Gradshteyn et al. (1994).
In these tables, a> 0 and b> 0.

Abel Transforms A1

f (r) A1{ f (r); x}
x(r=a) sin�1 a

x

� �

, x > a

d(r � a) (x2 � a2)�
1
2, x > a

(a2 � r2)�
1
2 a�1F p

2,
x
a

� �

, x < a

(a2 � r2)
1
2 a E p

2,
x
a

� �

, x < a

r2(a2 � r2)�
1
2 a F p

2 ,
x
a

� �

� E p
2,

x
a

� �� �

, x < a

a� r 1
2pa� x, x < a

cos br 1
2pJ0(bx)

r sin br 1
2pxJ1(bx)

r J0(br) b�1 sin bx

Jv(br) 1
2p Jv

2

bx
2

� �
h i2

rvþ1Jv(br) p
1
2(2b)�

1
2xvþ

1
2J
vþ12

(bx)

Abel Transforms A2

f(r) A2{f(r); x}

x(r=a) log aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

x

� �

, x < a

d(r� a) (a2 � x2)�
1
2, x < a

(a2 � r2)�
1
2x(r=a) a�1F(12p, t), x < a

(a2 � r2)
1
2x(r=a) a F 1

2p, t
� �

� E 1
2p, t
� �� �

, x < a

r2(a2 � r2)�
1
2x(r=a) a E 1

2p, t
� �

; x < a

(a� r)x(r=a) log aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

x

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

, x < a

sin br 1
2pJ0(bx)

r cos br �1
2pxJ1(bx)

r J0(br) b�1 cos bx

Note: t ¼ a�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

.

Abel Transforms A3

f(r) A3{f(r); x}

(a2 � r2)�
1
2x(r=a) px(x=a)

x(r=a) 2(a2 � x2)
1
2x(x=a)

(a2 � r2)
1
2x(r=a) 1

2p(a
2 � x2)x(r=a)

(a2 �r2)x(r=a) 4
3(a

2 � x2)
3
2x(x=a)

(a2 � r2)
3
2x(r=a) 3p

8 (a
2 � x2)2x(x=a)

(a2� r2)2x(r=a) 15
16(a

2 � x2)
5
2x(x=a)

(a2 � r2)
n�1
2 x(r=a) C(n)(a2 � x2)

n
2x(x=a)

(a2þ r2)�1 p(a2 þ x2)�
1
2

(a2 þ r2)�
3
2 2(a2þ x2)�1

e�r
2 ffiffiffiffi

p
p

e�x
2

r2e�r
2 1

2

ffiffiffiffi

p
p

(2x2 þ 1)e�x
2

sine 2ar 1
2aJ0(2pax)

cos br �pxJ1(bx)
J0(br) 2b�1 cos bx

r�1J1(br) 2(bx)�1 sin bx

r�1Jv(br) �pJv
2

bx
2

� �

Nv
2

bx
2

� �

r�1Nv(br)
1
2p Jv

2

bx
2

� �
h i2

�1
2p Nv

2

bx
2

� �
h i2

Radon Transforms

f(x, y) f
^

(p,f)

e�x
2�y2 ffiffiffiffi

p
p

e�p
2

(x2 þ y2)e�x
2�y2 1

2

ffiffiffiffi

p
p

(2p2 þ 1)e�p
2

x e�x
2�y2 ffiffiffiffi

p
p

e�p
2
cosf

y e�x
2�y2 ffiffiffiffi

p
p

e�p
2
sinf

x2e�x
2�y2 1

2

ffiffiffiffi

p
p

(2p2 cos2 fþ sin2 f)e�p
2

y2 e�x
2�y2 1

2

ffiffiffiffi

p
p

(2p2 sin2 fþ cos2 f)e�p
2

exp � x
a

� �2� y
a

� �
h i2 jabj ffiffiffipp

s
exp � p

s

� �2
h i

d(x� a) d(y� b) d(p� p0)

x(r) 2(1� p2)
1
2x(p)
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x(ellipse) (See Example 8.10)
x(square) (See Example 8.12)

x2x(r) (1� p2)
1
2 2p2 cos2 f½

þ2
3(1� p2) sin2 f

�

y2x(r) (1� p2)
1
2 2p2 sin2 f½

þ2
3(1� p2) cos2 f

�

(x2þ y2)x(r) 2
3(1� p2)

1
2(2p2 þ 1)

The following notation is used in the above table,

s ¼ (a2 cos2 fþ b2 sin2 f)
1
2, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

,

p0 ¼ a cosfþ b sinf:

Formulas for Radon transforms involving Hermite polyno-
mials, Laguerre polynomials, and Zernike polynomials appear
in Sections 8.7, 8.8, and 8.13, respectively.
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Hankel transforms are integral transformations whose kernels
are Bessel functions. They are sometimes referred to as Bessel
transforms. When we are dealing with problems that show cir-
cular symmetry, Hankel transforms may be very useful. Laplace’s
partial differential equation in cylindrical coordinates can be
transformed into an ordinary differential equation by using the
Hankel transform. Because the Hankel transform is the two-
dimensional Fourier transform of a circularly symmetric func-
tion, it plays an important role in optical data processing.

9.1 Introductory Definitions
and Properties

Bessel functions are solutions of the differential equation

x2y00 þ xy0 þ (x2 � p2)y ¼ 0 (9:1)

where p is a parameter.
Equation 9.1 can be solved using series expansions. The Bessel

function Jp(x) of the first kind and of order p is defined by

Jp(x) ¼
1

2
x

� �pX1

k¼0

� 1
4 x

2
� �k

k!G(pþ kþ 1)
: (9:2)

The Bessel function Yp(x) of the second kind and of order p is
another solution that satisfies

W(x) ¼ det
Jp(x) Yp(x)

J 0p(x) Y 0p(x)

" #

¼ 2

px
:

Properties of Bessel function have been studies extensively (see
Refs. [7,22,26]).

Elementary properties of the Bessel functions are

1. Asymptotic forms.

Jp(x) �
ffiffiffiffiffiffi

2

px

r

cos x � 1

2
pp� 1

4
p

� �

, x!1: (9:3)

2. Zeros. Jp(x) and Yp(x) have an infinite number of real zeros,
all of which are simple, with the possible exception of
x¼ 0. For nonnegative p the sth positive zero of Jp(x) is
denoted by jp,s. The distance between two consecutive
zeros tends to p: lim

s!1
(jp,sþ1 � jp,s) ¼ p.

3. Integral representations.

Jp(x)¼
1
2x
� �p

p1=2G(pþ 1=2)

ðp

0

cos (x cos u) sin2p udu: (9:4)
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If p is a positive integer or zero, then

Jp(x) ¼
1

p

ð

p

0

cos (x sin u� pu)du

¼ j�n

p

ð

p

0

e jx cos u cos (pu)du: (9:5)

4. Recurrence relations.

Jp�1(x)�
2p

x
Jp(x)þ Jpþ1(x) ¼ 0 (9:6)

Jp�1(x)� Jpþ1(x) ¼ 2J 0p(x) (9:7)

J 0p(x) ¼ Jp�1(x)�
p

x
Jp(x) (9:8)

J 0p(x) ¼ �Jpþ1(x)þ
p

x
Jp(x): (9:9)

5. Hankel’s repeated integral. Let f(r) be an arbitrary function
of the real variable r, subject to the condition that

ð

1

0

f (r)
ffiffi
r
p

dr

is absolutely convergent. Then for p��1=2

ð1

0

s ds

ð1

0

f (r)Jp(sr)Jp(su)r dr ¼
1

2
[f (uþ)þ f (u�)] (9:10)

provided that f(r) satisfies certain Dirichlet conditions.
For a proof, see Ref. [26]. The reader should also refer to

Section 1.5.6 for more information regarding Bessel functions.

9.2 Definition of the Hankel Transform

Let f(r) be a function defined for r� 0. The vth-order Hankel
transform of f(r) is defined as

Fv(s) � *v{f (r)} �
ð1

0

rf (r)Jv(sr)dr: (9:11)

If v>�1=2, Hankel’s repeated integral immediately gives the
inversion formula

f (r) ¼ *�1
v {Fv(s)} �

ð1

0

sFv(s)Jv(sr)ds: (9:12)

The most important special cases of the Hankel transform cor-
respond to v¼ 0 and v¼ 1. Sufficient but not necessary condi-
tions for the validity of Equations 9.11 and 9.12 are

1. f(r)¼O(r�k), r ! 1 where k> 3=2
2. f 0(r) is piecewise continuous over each bounded subinter-

val of [0, 1)
3. f(r) is defined as [ f(rþ)þ f(r�)]=2

These conditions can be relaxed.

9.3 Connection with the Fourier
Transform

We consider the two-dimensional Fourier transform of a func-
tion w(x, y), which shows a circular symmetry. This means that
w(r cos u, r sin u) � f(r, u) is independent of u.

The Fourier transform of w is

F(z,h) ¼ 1

2p

ð1

�1

ð1

�1

f (x, y)e�j(xz,yh)dxdy: (9:13)

We introduce the polar coordinates

x ¼ r cos u, y ¼ r sin u

and

z ¼ s cos w, h ¼ s sin w:

We have then

f(s cos w, s sin w) � F(s,w) ¼ 1

2p

ð1

0

rdr

ð2p

0

e�jrs cos (u�w)f (r)du

¼ 1

2p

ð1

0

rf (r)dr

ð2p

0

e�jrs cosada

¼
ð1

0

rf (r)J0(rs)dr:

This result shows that F(s, w) is independent of w, so that we can
write F(s) instead of F(s, w). Thus, the two-dimensional Fourier
transform of a circularly symmetric function is, in fact, a Hankel
transform of order zero.

This result can be generalized: the N-dimensional Fourier
transform of a circularly symmetric function of N variables is
related to the Hankel transform of order N=2� 1. If f(r, u)
depends on u, we can expand it into a Fourier series

f (r, u) ¼
X1

n¼�1
fn(r)e

jnu (9:14)
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and, similarly

F(s,w) ¼ 1

2p

ð

1

0

rdr

ð

1

0

e�jrs cos (u�w)f (r, u)du ¼
X

1

n¼�1
Fn(s)e

jnw

(9:15)

where

fn(r) ¼
1

2p

ð

2p

0

f (r, u)e�jnudu (9:16)

and

Fn(s) ¼
1

2p

ð

2p

0

F(s,w)e�jnwdw: (9:17)

Substituting Equation 9.15 into Equation 9.17 and using Equa-
tion 9.14, we obtain

Fn(s) ¼
1

(2p)2

ð

2p

0

e�jnwdw

ð

2p

0

du

ð

1

0

f (r, u)e jsr cos (u�w)rdr

¼ 1

(2p)2

ð

2p

0

e�jnwdw

ð

1

0

rdr

ð

2p

0

e jsr cos (u�w)du�
X

1

m¼�1
fm(r)e

jmu

¼ 1

(2p)

ð

1

0

rdr

ð

2p

0

e�jnae jsr cos afn(r)da

¼
ð

1

0

rfn(r)Jn(sr)dr

¼ *n{fn(r)}:

In a similar way, we can derive

fn(r) ¼ ^n{Fn(s)}: (9:18)

9.4 Properties and Examples

Hankel transforms do not have as many elementary properties as
do the Laplace or the Fourier transforms.

For example, because there is no simple addition formula for
Bessel functions, the Hankel transform does not satisfy any
simple convolution relation.

1. Derivatives. Let

Fv(s) ¼ *v{f (x)}:

Then

Gv(s) ¼ *v{f
0(x)} ¼ s

v þ 1

2v
Fv�1(s)�

v � 1

2v
Fvþ1(s)

� �

: (9:19)

Proof

Gv(s) ¼
ð

1

0

xf 0(x)Jv(sx)dx

¼ [xf (x)Jv(sx)]
1
0 �

ð

1

0

f (x)
d

dx
[xJv(sx)]dx:

In general, the expression between the brackets is zero, and

d

dx
[xJv(sx)] ¼

sx

2v
[(v þ 1)Jv�1(sx)� (v � 1)Jvþ1(sx)]:

Hence, we have Equation 9.19.

2. The Hankel transform of the Bessel differential operator.
The Bessel differential operator

Dv �
d2

dr2
þ 1

r

d

dr
� v

r

	 
2
¼ 1

r

d

dr
r
d

dr
� v

r

	 
2

is derived from the Laplacian operator

r2 ¼ q2

qr2
þ 1

r

q

qr
þ 1

r2
q

qu2
þ q2

qz2

after separation of variables in cylindrical coordinates
(r, u, z).

Let f(r) be an arbitrary function with the property that
lim
r!1

f (r) ¼ 0. Then

*v{Dvf (r)} ¼ �s2*v{f (r)}: (9:20)

This result shows that the Hankel transform may be a useful tool
in solving problems with cylindrical symmetry and involving the
Laplacian operator.

Proof Integrating by parts, we have

*v{Dvf (r)} ¼
ð1

0

d

dr
r
df

dr
� v2

r
f (r)

� �

Jv(sr)dr

¼
ð1

0

s2Jv
00(sr)þ s

x
J 0v(sr)�

v2

r2
Jv(sr)

� �

f (r)rdr

¼ �s2
ð1

0

rf (r)Jv(rs)dr

¼ �s2*v{f (r)}:
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This property is the principal one for applications of the
Hankel transforms to solving differential equations. See
Refs. [2,3,24,25,28].

3. Similarity.

*v{f (ar)} ¼
1

a2
Fv

s

a

	 


: (9:21)

4. Division by r.

*v{r
�1f (r)} ¼ s

2v
[Fv�1(s)þ Fvþ1(s)]: (9:22)

5.

*v rv�1
d

dr
[r1�vf (r)]

� �

¼ �sFv�1(s): (9:23)

6.

*v r�v�1
d

dr
[rvþ1f (r)]

� �

¼ sFvþ1(s): (9:24)

7. Parseval’s theorem. Let

Fv(s) ¼ *v{f (r)}

and

Gv(s) ¼ *v{g(r)}:

Then

ð1

0

Fv(s)Gv(s)s ds ¼
ð1

0

Fv(s)s ds

ð1

0

r g(r)Jv(sr)dr

¼
ð1

0

r g(r)dr

ð1

0

sFv(s)Jv(sx)ds

¼
ð1

0

r g(r)f (r)dr: (9:25)

Example 9.1

From the Fourier pair (see Chapter 2) F{e�a(x
2þy2)} ¼

(p=a)e�(z
2þh2 )=4a and the Fourier transform relationship

F f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ y2
p	 
n o

¼ 2pF0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2þh2
p	 


� 2pF0(s), we obtain

the Hankel transform

* e�ar2
n o

¼ 1

2a
e�s2=4a , a > 0:

Example 9.2

From the relationship
Ð a

0
rJ0(sr)dr ¼

Ð a

0
(1=s)(d=dr)[rJ1(sr)] ¼

[aJ1(as)]=s (see Section 1.5.6), we conclude that

*0{pa(r)} ¼
aJ1(as)

s

where pa(r)¼ 1 for jrj< a and zero otherwise.

Example 9.3

From the identity
Ð1
0

J0(sr)dr ¼ 1=s, s > 0 (see Section 1.5.6),

we obtain

*0

1

r

� �

¼ 1

s
:

Example 9.4

Since
Ð1
0

rd(r � a)J0(sr)dr ¼ aJ0(as) (see Section 1.2.4), we

obtain

*0{d(r � a)} ¼ aJ0(as), a > 0

and because of symmetry

*0{aJ0(ar)} ¼ d(s� a), a > 0:

Convolution Identity

Let f1(r) and f2(r) have Hankel transforms F1(s) and F2(s),

respectively. From Section 2.4.1 above, we have

F

ð ð1

�1

f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ y21

q� �

f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x � x1)
2 þ (y � y1)

2

q� �

dx1dy1

8

<

:

9

=

;

¼ 4p2F1(s)F2(s):

Hence, we have

*0{f1(r)**f2(r)} ¼
1

2p
F(2){f1(r) * * f2(r)} ¼ 2pF1(s)F2(s):

Therefore, to find the inverse Hankel transform of 2pF1(s)F2(s),

we convolve f1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p	 


with f2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p	 


, and in the

answer we replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

by r. We can also write the above

relationship in the form

*0{2pf1(r)f2(r)} ¼ F1(s) ? ?F2(s):
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Example 9.5

If f1(r)¼ f2(r)¼ [J1(ar)]=r then from the convolution identity

above, we obtain

*0 2p
J21(ar)

r2

� �

¼ 1

a2
Pa(s) ? ?Pa(s)

where

pa(s) ? ?pa(s) ¼ 2 cos�1
s

2a
� s

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2

4a2

r !

a2:

Hence,

*0 2p
J21(ar)

r2

� �

¼ 2 cos�1
s

2a
� s

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2

4a2

r !

p2a(s)

p2a(s) ¼
1 jsj � 2a

0 otherwise

�

Example 9.6

From the definition, the Hankel transform of rvh(a� r), a> 0 is

given by

*v {r
vh(a� r)} ¼

ða

0

rvþ1Jv (sr)dr ¼
1

svþ2

ðas

0

xvþ1Jv (x)dx

since h(a� r) is the unit step function with value equal to

1 for r� a and 0 for r> a. But
Ð
tvJv�1(t)dt ¼ tvJv (t)þ C (see

Table 1.13) and hence,

*v {r
vh(a� r)} ¼ (as)vþ1

svþ2
Jvþ1(as) ¼

avþ1

s
Jvþ1(as),

a > 0, v > � 1

2
:

Example 9.7

The Hankel transform of rv�1e�ar, a> 0 is given by

*v {r
v�1e�ar } ¼

ð1

0

rve�arJv (sr)dr ¼
1

svþ1

ð1

0

tvJv (t)e
� a

s
tdt

¼ 1

svþ1
L tvJv (t); p ¼

a

s

n o

where we set t¼ rs and L is the Laplace transform operator

(see also Chapter 5). But

tvJv (t) ¼
X1

n¼0

(�1)nt2nþ2v
n!G(nþ v þ 1)22nþv

and, hence,

+{tvJv (t); p} ¼
X1

n¼0

(�1)n
n!G(nþ v þ 1)22nþv

L{t2nþ2v ; p}

¼
X1

n¼0

(�1)nG(2nþ 2v þ 1)

n!G(nþ v þ 1)22nþvp2nþ2vþ1
:

From Section 1.2.5, the duplication formula of the gamma

function gives the relationship

G(2nþ 2v þ 1)

G(nþ v þ 1)
¼ 1

ffiffiffiffi
p
p 22nþ2vG nþ v þ 1

2

� �

and, therefore, the Laplace transform relation becomes

+{tvJv (t); p} ¼
2v
ffiffiffiffi
p
p

p2vþ1

X1

n¼0

(�1)nG nþ v þ 1
2

� �

n!

1

p2

� �n

:

The last series can be summed by using properties of the

binomial series

(1þ x)�b ¼
X1

n¼0

�b
n

� �

xn ¼
X1

n¼0

(�1)nG(nþ b)

n!G(b)
xn , jxj < 1

where the relation

�b
n

� �

¼ (�1)nb(bþ 1) � � � (bþ n� 1)

n!
¼ (�1)nG(nþ b)

n!G(b)

was used. The Laplace transform now becomes

+{tvJv (t); p} ¼
2nG nþ 1

2

� �

ffiffiffiffi
p

p
(p2 þ 1)nþ

1
2

¼ 2nG nþ 1
2

� �

ffiffiffiffi
p

p
a
s

� �2þ1
h inþ1

2

, Re(p) > 1

and, hence,

*n{r
n�1e�ar } ¼ 1

snþ1

2nG nþ 1
2

� �

ffiffiffiffi
p

p
a
s

� �2þ1
h inþ1

2

¼ sn2nG nþ 1
2

� �

ffiffiffiffi
p

p
(a2 þ s2)nþ

1
2 ,

n > � 1

2
:

If we set v¼ 0 and a¼ 0 in the above equation, we obtain the

results of Example 9.3. If we set v¼ 0, we obtain

*0{r
�1e�ar } ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ s2
p , a > 0:
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Example 9.8

The Hankel transform *0{e
�ar} is given by

*0{e
�ar } ¼ +{r J0(sr); r ! a} ¼ � d

da
(s2 þ a2)�

1
2

h i

¼ a

[s2 þ a2]3=2
, a > 0

since multiplication by r corresponds to differentiation in the

Laplace transform domain.

Example 9.9

From Section 1.5.6, we have the following identity:

d2rn(x)

dx2
þ 1

x

drn(x)

dx
þ rn(x) ¼ 2nrnþ1(x),

where rn(x)¼ Jn(x)=x
n.

Using the Hankel transform property of the Bessel oper-

ator, we obtain the relationship

(1� s2)Rn(s) ¼ 2nRnþ1(s)

or

Rnþ1(s) ¼
1� s2

2n
Rn(s) ¼ � � � ¼ (1� s2)n

2nn!
R1(s):

But from Example 9.2, *0
J1(r)
r

 �
¼ p1(s) and, hence,

*0

Jn(r)

rn

� �

¼ (1� s2)n�1

2n�1(n� 1)!
p1(s)

where p1(s) is a pulse of width 2 centered at s¼ 0.

Example 9.10

If the impulse response of a linear space invariant system is h(r)

and the input to the system is f(r), then its output is g(r)¼
f(r)??h(r) and, hence,

G(s) ¼ 2pF(s)H(s):

Since *0{J0(ar)}¼ [d(s� a)]=a (see Example 9.4) and

w(s)d(s� a)¼w(a)d(s� a), we conclude that if the input is f(r)¼
J0(ar), then

G(s) ¼ 2p

a
d(s� a)H(s) ¼ 2pH(a)

a
d(s� a):

Therefore, the output is

g(r) ¼ 2pH(a)J0(ar):

9.5 Applications

9.5.1 The Electrified Disc

Let y be the electric potential due to a flat circular electrified disc,
with radius R¼ 1, the center of the disc being at the origin of the
three-dimensional space and its axis along the z-axis.

In polar coordinates, the potential satisfies Laplace’s equation

r2y � q2y

qr2
þ 1

r

qy

qr
þ q2y

qz2
¼ 0: (9:26)

The boundary conditions are

y(r, 0) ¼ y0, 0 � r < 1 (9:27)

qy

qz
(r, 0) ¼ 0, r > 1: (9:28)

In Equation 9.27, y0 is the potential of the disc. Condition
(Equation 9.28) arises from the symmetry about the plane z¼ 0.

Let

V(s, z) ¼ *0{y(r, z)}

so that

*0{r2y} ¼ �s2V(s, z)þ q2V

qz2
(s, z) ¼ 0:

The solution of this differential equation is

V(s, z) ¼ A(s)e�sz þ B(s)esz

where A and B are functions that we have to determine using the
boundary conditions.

Because the potential vanishes as z tends to infinity, we have
B(s) � 0. By inverting the Hankel transform, we have

y(r, z) ¼
ð1

0

sA(s)e�szJ0(sr)ds: (9:29)

The boundary conditions are now

y(r, 0) ¼
ð1

0

sA(s)J0(rs)ds ¼ y0, 0 � r < 1 (9:30)

qy

qz
(r, 0) ¼

ð1

0

s2A(s)J0(rs)ds ¼ 0, r > 1: (9:31)

Using entries (Equations 9.8 and 9.9) of Table 9.1 (see Section
9.11), we see that A(s)¼ sin s=s2 so that
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y(r, z) ¼ 2y0
p

ð

1

0

sin s

s
e�szJ0(sr)ds: (9:32)

In Figure 9.1, the graphical representation of y(r, z) for y0¼ 1 is
depicted on the domain 0� r� 2, 0� z� 1. The evaluation of
y(r, z) requires numerical integration.

Equations 9.30 and 9.31 are special cases of the more general
pair of equations

ð

1

0

f (t)t2aJv(xt)dt ¼ a(x), 0 � x < 1 (9:33)

ð

1

0

f (t)Jv(xt)dt ¼ 0, x > 1 (9:34)

where a(x) is given and f(x) is to be determined.
The solution of Equation 9.29 can be expressed as a repeated

integral:12

f (x) ¼ 2�ax1�a

G(aþ 1)

ð

1

0

s�n�aJnþa(xs)
d

ds

ð

s

0

a(t)tnþ1(s2 � t2)adtds,

�1 < a < 0 (9:35)

f (x) ¼ (2x)1�a

G(a)

ð

1

0

s�n�aþ1Jnþa(xs)

ð

s

0

a(t)tnþ1(s2 � t2)a�1dtds,

0 < a < 1: (9:36)

If a(x)¼ xb, and a< 1, 2aþb>�3=2, aþ v>�1, v>�1, then

f (x) ¼ G 1þ bþn
2

� �
x�(2aþbþ1)

2aG 1þ aþ bþn
2

� �

ðx

0

taþbþ1Jnþa(t)dt: (9:37)

With b¼ v and a< 1, aþ v>�1, v>�1 further simplification
is possible:

f (x) ¼ G(nþ 1)

(2x)aG(nþ aþ 1)
Jvþaþ1(x): (9:38)

TABLE 9.1 Hankel Transforms of Order 0

f(r) F0(s)¼H 0{f(r)}

(1) 1

r

1

s

(2) r�m, 12<m< 2
21�m

G 1� m
2

� �

G m
2

� �
1

s2�m

(3) h(a� r) a

s
J1(as)

(4) e�ar a

(s2 þ a2)3=2

(5) e�ar

r

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

(6) 1� e�ar

r2 log
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ s2
p

s

� �

(7)
log 1þ a2

r2

� �
2

s

1

s
� aK1(as)

� �

(8) sin r

r

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1� s2
p , s < 1

0, s > 1

(9) sin r

r2

p

2
, s � 1

arcsin
1

s
, s > 1

(10) sin (ar)

r2 þ b2

p

2
e�abI0(bs), 0 < s < a

(11) cos (ar)

r2 þ b2
cosh(ab)K0(bs), a< s<1

(12) e�a
2r2 e�s

2=4a2

2a2

(13) 1

r(r þ a)

p

2
[H0(as)� Y0(as)]

(14) 1

r2 þ a2
K0(as)

(15) 1

r(r2 þ a2)

p

2a
[I0(as)� L0(as)]

(16) 1

1þ r4
�Kei(s)

(17) r3

1þ r4
Ker(s)

(18) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2
p e�sa

s

(19) 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ a4
p K0(as=

ffiffiffi
2
p

)J0(as=
ffiffiffi
2
p

)

(20) 1� J0(ar)

r2
log

a

s
, s � a

0, s � a

(21) a

r
J1(ar) 1, if 0 < s < a

0, if s > a

(22) 1

r
J0(2

ffiffiffiffiffi
ar

p
)

1

s
J0

a

s

	 


0

0

1

1

1

2

v

r

z

FIGURE 9.1 Electrical potential due to an electrified disc.
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9.5.2 Heat Conduction

Heat is supplied at a constant rate Q per unit area and per unit
time through a circular disc of radius a in the plane z¼ 0, to the
semi-infinite space z> 0. The thermal conductivity of the space is
K. The plane z¼ 0 outside the disc is insulated. The mathemat-
ical model of this problem is very similar to that of Section 9.5.1.
The temperature is denoted by y(r, z). We have again the Laplace
Equation 9.26 in polar coordinates, but the boundary conditions
are now

�K qy(r, z)

qz
¼ Q, r < a, z ¼ 0

¼ 0, r > a, z ¼ 0:
(9:39)

The Hankel transform of the differential equation is again

q2V

qz2
(s, z)� s2V(s, z) ¼ 0: (9:40)

We can now transform also the boundary condition, using
formula (3) in Table 9.1:

�K qV

qz
(s, 0) ¼ QaJ1(as)=s: (9:41)

The solution of Equation 9.39 must remain finite as z tends to
infinity. We have

V(s, z) ¼ A(s)e�sz:

Using condition (Equation 9.41) we can determine

A(s) ¼ QaJ1(as)=(Ks
2):

Consequently, the temperature is given by

y(r, z) ¼ Qa

K

ð

1

0

e�szJ1(as)J0(rs)s
�1ds: (9:42)

9.5.3 The Laplace Equation in the Half-Space
z> 0, with a Circularly Symmetric
Dirichlet Condition at z¼ 0

We try to find the solution y(r, z) of the boundary value problem

q2y

qr2
þ 1

r

qy

qr
þ q2y

qz2
¼ 0, z > 0, 0 < r <1

y(r, 0) ¼ f (r):

8

<

:

(9:43)

Taking the Hankel transform of order 0 yields

q2V

qz2
(s, z)� s2V(s, z) ¼ 0

and

V(s, 0) ¼
ð

1

0

rf (r)J0(sr)dr:

The solution is

V(s, z) ¼ e�sz
ð

1

0

rf (r)J0(sr)dr

so that

y(r, z) ¼
ð

1

0

se�szJ0(sr)ds

ð

1

0

pf (p)J0(sp)dp: (9:44)

For the special case

f (r) ¼ h(a� r)

where h(r) is the unit step function, we have the solution

y(r, z) ¼ a

ð

1

0

e�szJ0(sr)J1(as)ds: (9:45)

9.5.4 An Electrostatic Problem

The electrostatic potential Q(r, z) generated in the space between
two grounded horizontal plates at z¼	‘ by a point charge q at
r¼ 0, z¼ 0 shows a singular behavior at the origin. It is given by

y(r, z) ¼ w(r, z)þ q(r2 þ z2)�1=2: (9:46)

where w(r, z) satisfies Laplace’s Equation 9.26. The boundary
conditions are

w(r, 	‘)þ q(r2 þ ‘2)�1=2 ¼ 0 (9:47)

Taking the Hankel transform of order 0, we obtain

q2F

qz2
(s, z)� s2F(s, z) ¼ 0 (9:48)

F(s, 	‘) ¼ � qe�s‘

s
(9:49)

(see formula (18) in Table 9.1).
The solution is

A(s)e�sz þ B(s)esz
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where A(s) and B(s) must satisfy

A(s)eþs‘ þ B(s)e�s‘ ¼ � qe�s‘

s

A(s)e�s‘ þ B(s)es‘ ¼ � qe�s‘

s
:

Hence,

A(s) ¼ B(s) ¼ � qe�s‘

2s cosh (s‘)

and

F(s, z) ¼ � qe�s‘

s

cosh (sz)

cosh (s‘)
:

Hence,

w(r, z) ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p � q

ð1

0

e�st
cosh (sz)

cosh (s‘)
J0(sr)ds: (9:50)

9.6 The Finite Hankel Transform

We consider the integral transformation

Fn(a) ¼ Hn{f ,a} ¼
ð1

0

rf (r)Jn(ar)dr: (9:51)

A property of this transformation is that

Hn(Dnf ,a) ¼ �a2Fn(a)þ Jn(a)f
0(1)� aJ 0n(a)f (1)

� �

where Dv is the Bessel differential operator.
If a is equal to the sth positive zero jv,s of Jv(x), we have

Hn(Dnf , jn,s) ¼ �j2n,sHn(f , jn,s)þ jn,sJnþ1(jn,s)f (1):

If a is equal to the sth positive root bv,s of

hJn(x)þ xJ 0n(x) ¼ 0

where h is a nonnegative constant, we have

Hn(Dnf ,bn,s) ¼ �b2
n,sHn(f ,bn,s)þ Jn(bn,s)[hf (1)þ f 0(1)]:

The transformation Equation 9.51 with a¼ jv,s, s¼ 1, 2, . . . is the
finite Hankel transform. It maps the function f(r) into the vector
(Fv(jv,1), Fv(jv,2), Fv(jv,3) . . . ). The inversion formula can be
obtained from the well-known theory of Fourier–Bessel series

f (r) ¼ 2
X1

s¼1

Fn(jn,s)

J2nþ1(jn,s)
Jn(jn,sr): (9:52)

The transformation Equation 9.51 with a¼bv,s, s¼ 1, 2, . . . is the
modified finite Hankel transform. The inversion formula is

f (r) ¼ 2
X1

s¼1

b2
n,sFn(bn,s)

h2 þ b2
n,s � n2

Jn(bn,sr)

J2n (bn,s)
: (9:53)

If h¼ 0, bv,s is the sth positive zero of J 0v(x), denoted by j0v,s.
Formulas for the computation of jv,s and j0v,s are given by

Olver.15 Values of jv,s and j0v,s are tabulated in Ref. [1]. A Fortran
program for the computation of jv,s and j0v,s is given in Ref. [18].

Application

We calculate the temperature y(r, t) at time t of a long solid
cylinder of unit radius. The initial temperature is unity and
radiation takes place at the surface into the surrounding medium
maintained at zero temperature.

The mathematical model of this problem is the diffusion
equation in polar coordinates

q2y

qr2
þ 1

r

qy

qr
¼ qy

qt
, 0 � r < 1, t > 0 (9:54)

The initial condition is

y(r, 0) ¼ 1, 0 � r � 1: (9:55)

The radiation at the surface of the cylinder is described by the
mixed boundary condition

qy

qr
(1, t) ¼ �hy(1, t) (9:56)

where h is a positive constant.
Transformation of Equation 9.54 by the modified finite

Hankel transform yields

dV

dt
(b0,s, t) ¼ �b2

0,sV(b0,s, t) (9:57)

where

V(a, t) ¼
ð1

0

ry(r, t)J0(ar)dr

so that

V(a, 0) ¼
ð1

0

rJ0(ar)dr ¼
J1(a)

a
: (9:58)
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The solution of Equation 9.57, with the initial condition (Equa-
tion 9.58), is

V(b0,s, t) ¼
J1(b0,s)

b0,s
e�b

2
0,st :

Using the inversion formula, we obtain

y(r, t) ¼ 2
X

1

j¼1
e�b

2
0,st

b0,sJ1(b0,s)

h2 þ b2
0,s

J0(b0,sr)

J20 (b0,s)
: (9:59)

9.7 Related Transforms

For some applications, Hankel transforms with a more general
kernel may be useful. We give one example.

We consider the cylinder function

Zn(s, r) ¼ Jv(sr)Yv(s)� Yv(sr)Jv(s): (9:60)

Using this function as a kernel, we can construct the following
transform pair:

Fv(s) ¼
ð

1

1

rf (r)Zv(s, r)dr (9:61)

f (r) ¼
ð

1

0

sFv(s)
Zv(s, r)

J2v (s)þ Y2
v (s)

ds (9:62)

The inversion formula follows immediately from Weber’s inte-
gral theorem (see Watson26):

ð

1

1

u du

ð

1

0

f (s)Zv(r, u)Zv(s, u)s ds

¼ 1

2
J2v (r)þ Y2

v (r)
� �

[f (rþ)þ f (r�)]: (9:63)

For this reason, we will refer to Equations 9.61 and 9.62 as the
Weber transform. This transform has the following important
property:

If

f (x) ¼ g 00(x)þ 1

x
g 0(x)� n2

x2
g(x) (9:64)

then

Fv(s) ¼ �s2Gv(s)�
2

p
g(1): (9:65)

We may expect that this transform is useful for solving Laplace’s
equation in cylindrical coordinates, with a boundary condition
at r¼ 1.

Example

We want to compute the steady-state temperature u(r, z) in a

horizontal infinite homogeneous slab of thickness 2‘, through
which there is a vertical circular hole of radius 1. The horizontal

faces are held at temperature zero and the circular surface in

the hole is at temperature T0.

The mathematical model is

q2u

qr2
þ 1

r

qu

qr
þ q2u

qz2
¼ 0

u(r, ‘) ¼ u(r, �‘) ¼ 0

u(1, z) ¼ T0:

(9:66)

Taking the Weber transform of order zero, we have

q2U0

qz2
(s, z)� s2U0(s, z) ¼

2

p
T0:

The solution of this ordinary differential equation, satisfying the
boundary condition, is

U0(s, z) ¼
2T0

ps2
cosh sz

cosh s‘
� 1

� �

:

Consequently, we have

u(r, z) ¼ 2T0

p

ð1

0

1

s

cosh sz

cosh s‘
� 1

� �
Z0(s, r)

J20 (s)þ Y2
0 (s)

ds (r > 1):

(9:67)

9.8 Need of Numerical Integration
Methods

When using the Hankel transform for solving partial differential
equations, the solution is found as an integral of the form

I(a, p, v) ¼
ða

0

Jv(px)f (x)dx (9:68)

where a is a positive real number or infinite. In most cases,
analytical integration of Equation 9.68 is impossible, and numer-
ical integration is necessary. But integrals of type (Equation 9.68)
are difficult to evaluate numerically if

1. The product ap is large
2. a is infinite
3. f (x) shows a singular or oscillatory behavior

In cases 1 and 2, the difficulties arise from the oscillatory behav-
ior of Jv(x) and they grow when the oscillations become stronger.
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We give here a survey of numerical methods that are especially
suited for the evaluation of I(a, p, v) when ap is large or a is
infinite. We restrict ourselves to cases where f(x) is smooth, or
where f(x)¼ xag(x) where g(x) is smooth and a is a real number.

9.9 Computation of Bessel Function
Integrals over a Finite Interval

Integral Equation 9.68 can be written as

I(a, p, v) ¼ aaþ1
ð

1

0

xaJv(apx)g(ax)dx: (9:69)

We assume that aþ v>�1. If (aþ v) is not an integer, there is
an algebraic singularity of the integrand at x¼ 0. If ap is large,
then the integrand is strongly oscillatory.

If (aþ v) is an integer and ap is small, classical numerical
integration methods, such as Romberg integration, Clenshaw–
Curtis integration of Gauss–Legendre integration (see Davis and
Rabinowitz4) are applicable. If (aþ v) is not an integer and ap is
small, the only difficulty is the algebraic singularity at x¼ 0, and
Gauss–Jacobi quadrature or Iri–Moriguti–Takesawa (IMT) inte-
gration4 can be used. If ap is large, special methods should be
applied that take into account the oscillatory behavior of the
integrand. We describe two methods here.

9.9.1 Integration between the Zeros of Jv(x)

We denote the sth positive zero of Jv(x) by jv,s and we set jv,0¼ 0.
Then

I(a, p, v) ¼
X

N

k¼1
(�1)kþ1Ik þ

ð

a

jv,N=p

Jv(px)f (x)dx (9:70)

where

Ik ¼
ð

jv,k=p

jv,k�1=p

jJv(px)jf (x)dx (9:71)

and where N is the largest natural number for which jv,N� ap.
This means that N is large when ap is large.

Using a transformation attributed to Longman,10 the summa-
tion in Equation 9.70 can be written as

S¼
X

N

k¼1
(�1)kþ1Ik¼

1

2
I1�

1

4
DI1þ

1

8
D2I1þ � � �þ (�1)p�12�pDp�1I1

þ (�1)N�1 1

2
IN þ1

4
DIN�1þ

1

8
D2IN�2þ�� �þ2�pDp�1In�pþ1

� �

þ2�p(�1)p DpI1�DpI2þDpI3��� �þ (�1)N�1�pDpIN�p

� �
:

Assuming now that N and p are large and that high-order
differences are small, the last bracket may be neglected and

S ’ 1

2
I1 �

1

4
DI1 þ

1

8
D2I1 � � � � þ (�1)N�1

� 1

2
IN þ 1

4
DIN�1 þ

1

8
D2IN�2 þ � � �

� �

: (9:72)

The summations in Equation 9.72 may be truncated as soon as
the terms are small enough. For the evaluation of Ik, k¼ 1, 2, . . . ,
classical integration methods (e.g., Lobatto’s rule) can be used,
but special Gauss quadrature formulas (see Piessens16) are more
efficient. If the integral I1 has an algebraic singularity at x¼ 0,
then the Gauss–Jacobi rules or the IMT rule are recommended.

9.9.2 Modified Clenshaw–Curtis Quadrature

The Clenshaw–Curtis quadrature method is a well-known and
efficient method for the numerical evaluation of an integral I
with a smooth integrand. This method is based on a truncated
Chebyshev series approximation of the integrand. However, when
the integrand shows a singular or strongly oscillatory behavior, the
classical Clenshaw–Curtis method is not efficient or even applic-
able, unless it is modified in an appropriate way, taking into
account the type of difficulty of the integrand.We call this method
then a modified Clenshaw–Curtis method (MCC method). The
principle of the MCC method is the following: the integration
interval is mapped onto [�1, þ1] and the integrand is written as
the product of a smooth function g(x) and a weight function
w(x) containing the singularities or the oscillating factors of the
integrand; that is

I ¼
ðþ1

�1

w(x)g(x)dx: (9:73)

The smooth function is then approximated by a truncated series
of Chebyshev polynomials

g(x) ’
XN

k¼0

0ckTk(x), �1 � x � 1: (9:74)

Here the symbol S0 indicates that the first term in the sum must
be halved. For the computation of the coefficients ck in Equation
9.74 several good algorithms, based on the fast Fourier transform,
are available.

The integral in Equation 9.73 can now be approximated by

I ’
XN

k¼0

0ckMk (9:75)
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where

Mk ¼
ð

þ1

�1

w(x)Tk(x)dx

are called modified moments.
The integration interval may also be mapped onto [0, 1]

instead of [�1, 1], but then the shifted Chebyshev polynomials
Tk*(x) are to be used.

We now consider the computation of the integral
Equation 9.69,

I ¼
ð

1

0

xaJn(vx)g(x)dx: (9:76)

If

g(x) ’
X

N

k¼0

0ckT
0
k(x) (9:77)

then

I ’
X

N

k¼0

0ckMk(v, n,a) (9:78)

where

Mk(v, n,a) ¼
ð

1

0

xaJn(vx)Tk*(x)dx: (9:79)

These modified moments satisfy the following homogeneous,
linear, nine-term recurrence relation:

v2

16
Mkþ4þ (kþ3)(kþ3þ2a)þa2�n2�v2

4

� �

Mkþ2

þ [4(n2�a2)�2(kþ2)(2a�1)]Mkþ1

� 2(k2�4)þ6(n2�a2)�2(2a�1)�3v2

8

� �

Mk

þ [4(n2�a2)þ2(k�2)(2a�1)]Mk�1

þ (k�3)(k�3�2a)þ a2�n2�v2

4

� �� �

Mk�2þ
v2

16
Mk�4¼ 0:

(9:80)

Because of the symmetry of the recurrence relation of the shifted
Chebyshev polynomials, it is convenient to define

T�k* (x) ¼ Tk*(x), k ¼ 1, 2, 3, . . .

and consequently

M�k(v, n,a) ¼ Mk(v, n,a):

To start the recurrence relation with k¼ 0, 1, 2, 3, . . . we need only
M0,M1,M2, and M3. Using the explicit expressions of the shifted
Chebyshev polynomials, we obtain

M0 ¼ G(v, n,a)

M1 ¼ 2G(v, n,aþ 1)� G(v, n,a)

M2 ¼ 8G(v, n,aþ 2)� 8G(v, n,aþ 1)þ G(v, n,a)

M3 ¼ 32G(v, n,aþ 3)� 48G(v, n,aþ 2)

þ 18G(v, n,aþ 1)� G(v, n,a)

(9:81)

where

G(v, n,a) ¼
ð

1

0

xaJv(vx)dx: (9:82)

Because

v2G(v, n,aþ 2) ¼ [n2 � (aþ 1)2]G(v, n,a)

þ (aþ nþ 1)Jv(v)� vJv�1(v) (9:83)

we need only G(v, n, a) and G(v, n, aþ 1).
Luke12 has given the following formulas:

1. A Neumann series expansion that is suitable for small v

G(v, n,a) ¼ 2

v(aþ nþ 1)

�
X

1

k¼0

(v þ 2kþ 1) n�aþ1
2

� �

nþaþ3
2

� �

k

Jvþ2kþ1(v) (9:84)

2. An asymptotic expansion that is suitable for large v

G(v, n,a) ¼ 2aG nþaþ1
2

� �

vaþ1G n�aþ1
2

� ��
ffiffiffiffiffiffiffiffiffi

2

pv3

r

(g1 cos uþ g2 sin u)

(9:85)

where

u ¼ v� np=2þ p=4

and

g1 �
X1

k¼0

(�1)ka2kv
�2k, v ! 1

g2 �
X1

k¼0

(�1)ka2kþ1v
�2k�1, v ! 1

ak ¼
(1=2� n)k(1=2þ n)k

2kk!
bk

b0 ¼ 1

bkþ1 ¼ 1þ 2(kþ 1)(a� k� 1=2)

(n� k� 1=2)(nþ kþ 1=2)
bk:
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If a and n are integers, the following formulas are useful:1

ð

1

0

J2n(vx)dx ¼
ð

1

0

J0(vx)dx�
2

v

X

n�1

k¼0
J2kþ1(v)

ð

1

0

J2nþ1(vx)dx ¼
1� J0(v)

v
� 2

v

X

n

k¼1
J2k(v):

For the evaluation of

ð

1

0

J0(vx)dx

Chebyshev series approximations are given by Luke.11 We now
discuss the numerical aspect of the recurrence formula (Equation
9.80). The numerical stability of forward recursion depends on
the asymptotic behavior of Mk(v, y, a) and of eight linearly
independent solutions yi,k, i¼ 1, 2, . . . , 8, k!1.

Using the asymptotic theory of Fourier integrals, we find

jy1,kj � k�2

jy2,kj � k�4

jy3,kj � k�2(aþ1)�2v

jy4,kj � k�2(aþ1)þ2v , if v 6¼ 0

� k�2(aþ1)‘nk, if v ¼ 0

jy5,kj � jy6,kj �
v

4k

	 
k

ekka

jy7,kj � jy8,kj �
4k

v

� �k

e�kka

(9:86)

and

Mk(v,n,a)��
1

2
Jn(v)k

�2

þ (�1)k2�3n�2a�1 vn

G(nþ1)
cos[p(aþ1)]

�G(2aþ2)k�2a�2n�2: (9:87)

The asymptotically dominant solutions are y7,k and y8,k. The
asymptotically minimal solutions are y5,k and y6,k. We may con-
clude that forward and backward recursion are asymptotically
unstable. However, the instability of forward recursion is less
pronounced if k�v=2. Indeed, practical experiments demon-
strate thatMk(v, n, a) can be computed accurately using forward
recursion for k�v=2. For k>v=2 the loss of significant figures
increases and forward recursion is no longer applicable. In that
case, Oliver’s algorithm14 has to be used. This means that Equa-
tion 9.80 has to be solved as a boundary value problem with six
initial values and two end values. The solution of this boundary

value problem requires the solution of a linear system of equa-
tions having a band structure.

An important advantage of the MCC method is that the
function evaluations of g, needed for the computation of the
coefficients ck of the Chebyshev series expansion, are independ-
ent of the value of v. Consequently, the same function evalu-
ations may be used for different values of v, and have to be
computed only once.

Numerical examples can be found in Refs. [19,20].

9.10 Computation of Bessel Function
Integrals over an Infinite Interval

In this section we consider methods for the computation of

I(p, n) ¼
ð1

0

Jn(px)f (x)dx: (9:88)

9.10.1 Integration between the Zeros of Jv(x)
and Convergence Acceleration

We have

I(p, n) ¼
X1

k¼1

(�1)kþ1Ik (9:89)

where

Ik ¼
ðjn,k=p

jn,k�1=p

jJn(px)jf (x)dx: (9:90)

Using Euler’s transformation,4 the convergence of series Equa-
tion 9.89 can be accelerated

I(p, n) ¼ 1

2
I1 �

1

4
DI1 þ

1

8
D2I1 �

1

16
D3I1 þ � � � : (9:91)

It is not always desirable to start the convergence acceleration
with I1, but with some later term, say Im, so that

I(p, n) ¼
ðjn,m�1=p

0

Jn(px)f (x)dx þ (�1)m�1

� 1

2
Im � 1

4
DIm þ 1

8
D2Im � � � �

� �

:

Other convergence accelerating methods, for example the
e-algorithm,23 are also applicable (for an example, see Ref. [21]).
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9.10.2 Transformation into a Double Integral

Substituting the integral expression

Jn(x) ¼ 2
(x=2)n

G(nþ 1=2)
ffiffiffiffi
p
p

ð1

0

(1� t2)n�1=2 cos (xt)dt (9:92)

into Equation 9.88 and changing the order of integration, we
obtain

I(p, n) ¼ 2(p=2)n

G(nþ 1=2)
ffiffiffiffi
p
p

ð1

0

(1� t2)n�1=2F(t)dt (9:93)

where

F(t) ¼
ð1

0

xnf (x) cos (pxt)dx: (9:94)

We assume that the integral in Equation 9.94 is convergent. If we
want to evaluate Equation 9.93 using an N-point Gauss–Jacobi
rule, then we have to compute the Fourier integral Equation 9.94
for N values of t. Because F(t) shows a peaked or even a singular
behavior especially when f(x) is slowly decaying, a large enough
N has to be chosen.

This method is closely related to Linz’s method,8 which is
based on the Abel transformation of I (p, n).

TABLE 9.2 Hankel Transforms of General Order v

f(r) Fn(s)¼H n{f(r)}

(1) 1

r

1

s

(2) r�m, 1
2 < m < nþ 2 21�m

s2�m
G nþ2�m

2

� �

G nþm
2

� �

(3) xn(a2� r2)mh(a� r), m>�1 2mamþnþ1s�m�1G(mþ 1)Jnþmþ1(as)

(4) sin ar

r

1

(s2 � a2)1=2
sin n arcsin

a

s

	 
	 


s > a

cos
nn

2

	 
 1

(a2 � s2)1=2
sn

aþ (a2 � s2)1=2
	 
n s < a

(5) sin ar

r2
n�1sn

(aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � s2
p

)n
sin

np

2
s � a

n�1 sin n arcsin a
s

� �� �
s > a

(6) e�ar

r
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

� a)n

sn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

(7) e�ar

r2
(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ a2
p

� a)n

nsn

(8) rn� 1e�ar (2s)nG(nþ 1=2)

(s2 þ a2)nþ1=2
ffiffiffiffi
p
p

(9) rne�ar 2a(2s)nG(nþ 3=2)

(s2 þ a2)nþ3=2
ffiffiffiffi
p
p

(10) e�a
2r2 rn sn

(2a2)nþ1
exp � s2

4a2

� �

(11) e�a
2r2 rm G( (nþ mþ 2)=2) 1

2
s
a

� �n

2amþ2G(nþ 1)
�1F1

nþ mþ 2

2
; nþ 1;� s2

4a2

� �

(12) rn

(r2 þ a2)mþ1

sman�m

2mG(mþ 1)
Kn�m(as)

(13) rn

(r4 þ 4a4)nþ
1
2

1
2 s
� �n ffiffiffiffi

p
p

(2a)2nG nþ 1
2

� � Jn(as)Kn(as)

(14) rnþ2

(r4 þ 4a4)nþ
1
2

1
2 s
� �n ffiffiffiffi

p
p

2(2a)2n�2G nþ 1
2

� � Jn�1(as)Kn�1(as)

0 0< s< a

(15) rm� n Jm(ar) 2m�nþ1am(s2 � a2)n�m�1

snG(n� m)
a < s
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9.10.3 Truncation of the Infinite Interval

If a is an arbitrary positive real number, we can write

I(p, v) ¼
ð

a

0

Jv(px)f (x)dx þ R(p, a) (9:95)

where

R(p, a) ¼
ð

1

a

Jv(px)f (x)dx: (9:96)

The first integral in the right side of Equation 9.95 can be
computed using the methods of Section 9.9

If a is sufficiently large and f is strongly decaying, then we may
neglect R(p, a). If

f (x) � c1

x
þ c2

x2
þ � � � (9:97)

is an asymptotic series approximation which is sufficiently accur-
ate in the interval [a, 1), then

R(p, a) ’
X

k

ck

ð

1

a

Jv(px)

xk
dx: (9:98)

Longman9 has tabulated the values of the integrals in Equation
9.98 for some values of v and ap.

Using Hankel’s asymptotic expansion,1 for x ! 1

Jv(px) �
ffiffiffiffiffiffiffiffi

2

ppx

s

[Pv(px) cos x� Qv(px) sin x] (9:99)

where x¼ px� (v=2þ 1=4)p, and where Pv(x) and Qv(x) can
be expressed as a well-known asymptotic series, R(p, a) can be
written as the sum of two Fourier integrals.

Especially, if a¼ (8þ v=2þ 1=4)p=p, we have

R(p, a) ¼
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pp(uþ a)

s

Pv(p(uþ a))f (uþ a) cos pu du

�
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

pp(uþ a)

s

Qv(p(uþ a))f (uþ a) sin pu du:

(9:100)

For the computation of the Fourier integrals in Equation 9.100,
tailored methods are available.4

9.11 Tables of Hankel Transforms

Table 9.1 lists the Hankel transform of some particular functions
for the important special case v¼ 0. Table 9.2 lists Hankel trans-
forms of general order v. In these tables, h(x) is the unit step
function, Iv and Kv are modified Bessel functions, L0 and H0 are
Struve functions, and Ker and Kei are Kelvin functions as defined
in Abramowitz and Stegun.1 Extensive tables are given by Erdélyi
et al.,6 Ditkin and Prudnikov,5 Luke,11 Wheelon,27 Sneddon,24

and Oberhettinger.13
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The wavelet transform is a new mathematical tool developed
mainly since the middle of the 1980s. It is efficient for local analysis
of nonstationary and fast transient wideband signals. The wavelet
transform is a mapping of a time signal to the timescale joint
representation, that is used in the short-time Fourier transform,
the Wigner distribution and the ambiguity function. The temporal
aspect of the signals is preserved. The wavelet transform provides
multiresolution analysis with dilated windows. The higher fre-
quency analysis is done using narrower windows and the lower
frequency analysis is done using wider windows. Thus, the wavelet
transform is a constant-Q analysis.

The basis functions of the wavelet transform, the wavelets, are
generated from a basic wavelet function by dilations and trans-
lations. They satisfy an admissible condition so that the original
signal can be reconstructed by the inverse wavelet transform. The
wavelets satisfy also the regularity condition so that the wavelet
coefficients decrease fast with the decreasing of the scale. The
wavelet transform is local not only in time but also in frequency
domain.

To reduce the time–bandwidth product of the wavelet trans-
form output, the discrete wavelet transform with discrete dila-
tions and translations of the continuous wavelets can be used.
The orthonormal wavelet transform is implemented in the multi-
resolution signal analysis framework, which is based on the
scaling functions. The discrete translates of the scaling functions
form an orthonormal basis at each resolution level. The wavelet
basis is generated from the scaling function basis. The two bases
are mutually orthogonal at each resolution level. The scaling
function is an averaging function. The orthogonal projection of
a function onto the scaling function basis is an averaged approxi-
mation. The orthogonal projection onto the wavelet basis is the
difference between two approximations at two adjacent reso-
lution levels. Both the scaling functions and the wavelets satisfy
the orthonormality conditions and the regularity conditions.

The discrete orthonormal wavelet series decomposition and
reconstruction are computed in the multiresolution analysis frame-
work with recurring two discrete low-pass and high-pass filters,
that are, in fact, the 2-band paraunitary perfect reconstruction
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quadrature mirror filters, developed in the subband coding theory,
with the additional regularity. The tree algorithm operating the
discrete wavelet transform requires only O(L) operations where L
is the length of the data vector. The time–bandwidth product of the
wavelet transform output is only slightly increased with respect to
that of the signal.

The wavelet transform is powerful for multiresolution local
spectrum analysis of nonstationary signals, such as the sound,
radar, sonar, seismic, electrocardiographic signals, and for image
compression, image processing and pattern recognition.

In this chapter all integrations extend from �1 to1, if not
stated otherwise. The formulation of the wavelet transform in
this chapter is one-dimensional (1-D). The wavelet transform
can be easily generalized to any dimensions.

10.1 Introduction

10.1.1 Continuous Wavelet Transform

Definition Let L2(R) denote the vector space of measurable,
square-integrable functions. The continuous wavelet transform
of a function f (t) 2 L2(R) is a decomposition of f(t) into a set of
basis functions hs,t(t) called the wavelets:

W f (s, t) ¼
ð

f (t)hs,t* (t)dt (10:1)

where * denotes the complex conjugate. However, most wavelets
are real valued. The wavelets are generated from a single basic
wavelet (mother wavelet) h(t) by scaling and translation:

hs,t(t) ¼
1
ffiffi

s
p h

t � t

s

� �

(10:2)

where
s is the scale factor
t is the translation factor

We usually consider only positive scale factor s> 0. The wavelets
are dilated when the scale s> 1 and are contracted when s< 1.
The wavelets hs,t(t) generated from the same basic wavelet have
different scales s and locations t, but all have the identical shape.

The constant s�1=2 in the expression (Equation 10.2) of
the wavelets is for energy normalization. The wavelets are
normalized in terms of energy as

ð

jhs,t(t)j2dt ¼
ð

jh(t)j2dt ¼ 1

so that all the wavelets scaled by the factor s would have the same
energy. The wavelets can also be normalized in terms of ampli-
tude as

ð

jhs,t(t)jdt ¼ 1

In this case, the normalization constant is s�1 instead of s�1=2,
and the wavelets are generated from the basic wavelet as

hs,t(t) ¼
1

s
h

t � t

s

� �

(10:3)

In this chapter we consider mostly the normalization of the
wavelet in terms of energy.

On substituting Equation 10.2 into Equation 10.1 we express
the wavelet transform of f(t) as a correlation between the signal
and the scaled wavelets h(t=s):

W f (s, t) ¼
1
ffiffi

s
p
ð

f (t)h*
t � t

s

� �

dt (10:4)

10.1.1.1 Wavelet Transform in Frequency Domain

The Fourier transform of the wavelet is

Hs,t(v) ¼
ð

1
ffiffi

s
p h

t � t

s

� �

exp (�jvt)dt

¼
ffiffi

s
p

H(sv) exp (�jvt) (10:5)

where H(v) is the Fourier transform of the basic wavelet h(t). In
the frequency domain the Fourier transform of the wavelet is scaled
by 1=s, multiplied by a phase factor exp(�jvt) and by a normaliza-
tion factor s1=2. The amplitude of the scaled wavelet is proportional
to s�1=2 in the time domain and is proportional to s1=2 in the
frequency domain. Note that when the wavelets are normalized in
terms of amplitude, their Fourier transforms of different scales will
have the same amplitude. This is suitable for implementation of the
continuous wavelet transformusing the frequency domain filtering.

Equation 10.5 shows a well known concept that a dilatation
t=s (s> 1) of a function in the time domain produces a contrac-
tion sv of its Fourier transform. The term 1=s has a dimension of
frequency and is equivalent here to the frequency. However, we
prefer the term ‘‘scale’’ to the term ‘‘frequency’’ for the wavelet
transform. The term ‘‘frequency’’ is reserved to be a parameter
related to the Fourier transform.

The correlation between the signal and the wavelets in the
time domain can be written as the inverse Fourier transform of
the product of the Fourier transform of the wavelets and the
Fourier transform of the signal:

W f (s, t) ¼
ffiffi

s
p

2p

ð

F(v)H*(sv) exp ( jvt)dv (10:6)

The Fourier transforms of the wavelets
ffiffi

s
p

H(sv) are referred to
as the wavelet transform filters, and the impulse response of the
wavelet transform filter is the scaled wavelet s�1=2h(t=s), where
the explicit phase shift exp ( jvt) in the frequency and translation
t in the time are removed. Therefore, the wavelet transform is a
bank of wavelet transform filters with different scales s.

In the definition of the wavelet transform, the kernel function,
wavelet, is not specified. This is a difference between the wavelet
transform and other transforms such as the Fourier transform.
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The theory of wavelet transform deals with general properties
of the wavelet and the wavelet transform, such as the admissibil-
ity, regularity, and orthogonality. The wavelet basis is built to
satisfy these basic conditions. The wavelets can be given as
analytical or numerical functions. They can be orthonormal or
nonorthonormal, continuous or discrete. One can choose or even
build himself a proper wavelet basis for a specific application.
Therefore, when talking about the wavelet transform one used to
specify what wavelet is used in the transform.

The most important properties of the wavelets are the admis-
sibility and regularity. As we shall see below, according to the
admissible condition the wavelet must oscillate to have its mean
value equal to zero. According to the regularity condition the
wavelet have exponential decay so that its first low order
moments are equal to zero. Therefore, in the time domain the
wavelet is just like a small wave that oscillates and vanishes, as
that described by the name wavelet. The wavelet transform is a
local operator in the time domain.

The orthonormality is a property which belongs to the discrete
wavelet transform. We shall discuss the discrete orthonormal and
biorthonormal wavelet transforms in Sections 10.3 through 10.9.

10.1.2 Time–Frequency Space Analysis

The wavelets transform of a 1-D signal is a two-dimensional (2-D)
function of the scale s and the time shift t, that represents the signal
in the timescale space and is referred to as the timescale joint
representation. The timescale wavelet representation is equivalent
to the time–frequency joint representation, which is familiar in the
analysis of nonstationary and fast transient signals.

10.1.2.1 Nonstationary Signals

The wavelet transform is of particular interest for analysis of
nonstationary and fast transient signals. Signals are stationary
if their properties do not change during the course of signals.
The concept of the stationarity is well defined in the theory of
stochastic processes. A stochastic process is called strict-sense
stationary if its statistical properties are invariant to a shift of
the origin of the time axis. A stochastic process is called wide-
sense (or weak) stationary if its second-order statistics is invari-
ant to shift in time and depends only on the time difference.

Most signals in the nature are nonstationary. Examples of
nonstationary signals are speech, radar, sonar, seismic, electro-
cardiographic signals, and music. The nonstationary signals are
in general characterized by their local features rather than by
their global features. 2-D images are also nonstationary as the
image features such as edges, textures, and deterministic objects
are distributed in different locations and orientations.

10.1.2.2 Time–Frequency Joint Representation

An example of the nonstationary signal is music. The frequency
spectrum of a music signal changes with the time. At a specific
time, for instance, a piano key is knocked, that gives rise to a
sound which has a specific frequency spectrum. At another time,
another key will be knocked generating another spectrum.

The notation of music score is an example of the time–
frequency joint representation. A piece of music can be described
accurately by air pressure as a function of time. It can be equally
accurately described by the Fourier transform of the pressure
function. However, neither of the those two signal representa-
tions would be useful for a musician, who wants to perform a
certain piece. Musicians prefer a 2-D plot, with time and loga-
rithmic frequency as axes. The music scores tell them when and
what notes should be played.

10.1.2.3 Fourier Analysis of Nonstationary Signals

The Fourier transform is widely used in signal analysis and
processing. When the signal is periodic and sufficiently regular,
the Fourier coefficients decay quickly with the increasing of the
frequency. For nonperiodic signals, the Fourier integral gives a
continuous spectrum. The fast Fourier transform (FFT) permits
efficient numerical Fourier analysis.

The Fourier transform is not satisfactory for analyzing signals
whose spectra vary with time, such as the music signals. The
Fourier transform is a decomposition of a signal into two series
of orthogonal functions cos vt and j sin vt with j¼ (�1)1=2. The
Fourier bases are of infinite duration along the time axis. They
are perfectly local in frequency, but are global in time. A signal
may be reconstructed from its Fourier components, which are
the Fourier basis functions of infinite duration weighted by the
corresponding Fourier coefficients of the signal. Most signals that
we are interested in are, however, of finite extent. Outside this
finite time duration window, its Fourier components, which are
nonzero, must be canceled by their own summation. A short
pulse that is local in time is not local in frequency. Its Fourier
spectrum decays slowly with frequency. The reconstruction of
the pulse from its Fourier components depends on the cancella-
tion of the high frequency Fourier components heavily and,
therefore, is sensitive to high frequency noise.

The Fourier spectrum analysis is global in time and is basically
not suitable to analyze nonstationary and fast varying transient
signals. Many temporal aspects of the signal, such as the start and
end time of a finite signal and the instant of appearance of a
singularity in a transient signal, are not preserved in the Fourier
spectrum. The Fourier transform does not provide any information
regarding the time evolution of spectral characteristics of the signal.

The short-time Fourier transform also referred to as the Gabor
transform, the Wigner distribution and the ambiguity function
are usually used to overcome the drawback of the Fourier analy-
sis for nonstationary and fast transient signals. The Wigner
distribution and the ambiguity function are not linear, but are
bilinear transforms.

10.1.3 Short-Time Fourier Transform

Definition An intuitive way to analyze a nonstationary signal
is to perform a time-dependent spectral analysis. A nonstationary
signal is divided into a sequence of time segments in which the
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signal may be considered as quasistationary. Then, the Fourier
transform is applied to each of the local segments of the signal.

The short-time Fourier transform is associated with a window
of fixed width. Gabor in 1946 was the first to introduce the short-
time Fourier transform [1] which is known as the sliding window
Fourier transform. The transform is defined as

Sf (v
0, t) ¼

ð

f (t)g*(t � t) exp (�jv0t)dt

where g(t) is a square integrable short-time window, which has a
fixed width and is shifted along the time axis by a factor t.

10.1.3.1 Gabor Functions

The Gabor transform may also be regarded as an inner product
between the signal and a set of kernel functions, called the Gabor
functions: g(t� t) exp( jv0t). The Gabor basis is generated from a
basic window function g(t) which is translated along the time
axis by t. The phase modulation exp( jv0t) corresponds to trans-
lation of the Gabor function spectrum along the frequency axis
by v0. The Fourier transform of the basic Gabor function g(t)exp
( jv0t) is expressed as

ð

g(t) exp ( jv0t) exp (�jvt)dt ¼ G(v� v0)

The Fourier transform G(v) of the basic window function g(t) is
shifted along the frequency axis by v0. The short-time Fourier
transform of a 1-D signal is a complex valued function of
two real parameters: time t and frequency v0 in the 2-D time–
frequency space.

10.1.3.2 Inverse Short-Time Fourier Transform

When t and v0 are continuous variables, the signal f(t) may be
reconstructed completely by integrating the Gabor functions
weighted by the short-time Fourier transform coefficients:

f (t) ¼ 1

2p

ðð

Sf (v
0, t)g(t � t) exp ( jv0t)dv0dt

and this holds for any chosen window g(t). The inverse short-time
Fourier transform may be proved by the following calculation:

ðð

Sf (v
0, t)g(t � t) exp ( jv0t)dv0dt

¼
ððð

f (t0)g*(t0 � t) exp (�jv0t0)g(t � t) exp ( jv0t)dv0dtdt0

¼
ðð

2pd(t0 � t)f (t0)g*(t0 � t)g(t � t)dtdt0

¼ 2pf (t)

ð

jg(t � t)j2dt ¼ 2pf (t)

provided that the window function is normalized as

ð

jg(t)j2dt ¼ 1 (10:7)

10.1.3.3 Time and Frequency Resolution

In the short-time Fourier transform the signal is multiplied by a
sliding window that localizes the signal in time domain, but is
blurring the signal in the frequency domain. The narrower the
window, the better we localize the signal and the poorer we
localize its spectrum.

The width Dt of the window g(t) in time domain and the
bandwidth Dv of the window G(v) in frequency domain are
defined respectively as

Dt2 ¼
Ð

t2jg(t)j2dt
Ð

jg(t)j2dt
Dv2 ¼

Ð

v2jG(v)j2dv
Ð

jG(v)j2dv
(10:8)

where the denominator is the energy of the window in time and
frequency domains, respectively.

The two sinusoids can be discriminated only if they are more
thanDv apart. Thus,Dv is the resolution in the frequency domain
of the short-time Fourier transform. Similarly, two pulses in time
domain can be discriminated only if they are more than Dt apart.
Note that once a window has been chosen for the short-time
Fourier transform, the time and frequency resolutions given by
Equation 10.8 are fixed over the entire time–frequency plane. The
short-time Fourier transform is a fixed window Fourier transform.

10.1.3.4 Uncertainty Principle

The time–frequency joint representation has an intrinsic limita-
tion: the product of the resolutions in time and frequency is
limited by the uncertainty principle:

DtDv � 1=2 (10:9)

This is also referred to as Heisenberg inequality, familiar in
quantum mechanics and important for time–frequency joint
representation. A signal cannot be represented as a point in the
time–frequency space. One can only determine its position in
the time–frequency space within a rectangle of DtDv.

10.1.3.5 Gaussian Window

The time–bandwidth product DtDv must obey the uncertainty
principle. We can only trade time resolution for frequency reso-
lution or vice versa. Gabor proposed the Gaussian function as the
window function. The Gaussian function has the minimum
time–bandwidth product determined by the uncertainty prin-
ciple Equation 10.9. The Fourier transform of the Gaussian
window is still a Gaussian as

g(t) ¼ 1
ffiffiffiffiffiffi

2p
p

s
exp � t2

2s2

� �

and G(v) ¼ exp (�s2v2=2)

which have a minimum spread. A simple calculation using Equa-
tion 10.8 shows that

Dt2 ¼ s2

2
and Dv2 ¼ 1

2s2
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which satisfies the uncertainty principle Equation 10.9 and
achieves the minimum time–bandwidth product DtDv ¼ 1=2.

The short-time Fourier analysis depends critically on the
choice of the window. Its application requires a priori informa-
tion concerning the time evolution of the signal properties in
order to make a priori choice of the window function. Once a
window is chosen, the width of the window along both time and
frequency axes are fixed in the entire time–frequency plane.

10.1.3.6 Discrete Short-Time Fourier Transform

When the translation factors of the Gabor functions along the
time and the frequency axes, t and v, take discrete values, t¼ nt0
and v¼mv0 with m and n 2 Z, the discrete Gabor functions are
written as

gm,n(t) ¼ g(t � nt0) exp ( jmv0t)

and their Fourier transforms are

Gm,n(v) ¼ G(v�mv0) exp [ j(v�mv0)nt0]

The discrete Gabor transform is

Sf (m,n) ¼
ð

f (t)g*(t � nt0) exp (�jmv0t)dt

The signal f(t) can still be recovered from the coefficients
Sf(m, n), provided that t0 and v0 are suitably chosen. Gabor’s
original choice was v0t0¼ 2p.

10.1.3.7 Regular Lattice

If the window function is normalized as shown in Equation 10.7
and is also centered to the origin in the time–frequency space,
so that:

ð

tjg(t)j2dt ¼ 0

ð

vjG(v)j2dv ¼ 0

then the locations of the Gabor functions in the time–frequency
space are determined by

ð

tjgm, n(t)
2jdt ¼

ð

tjg(t � nt0)j2dt ¼ nt0

and

ð

vjGm, n(v)j2dv ¼
ð

vjG(v�mv0)j2dv ¼ mv0

The discrete Gabor function set will be represented by a regular
lattice with the equal intervals t0 and v0 in the time–frequency
space, as will be shown in Figure 10.2a.

10.1.4 Wigner Distribution
and Ambiguity Functions

The Wigner distribution function and the ambiguity function are
second-order transform or bilinear transforms, that perform
mapping of the signals into the time–frequency space.

10.1.4.1 Wigner Distribution Function

The Wigner distribution function [2] is an alternative to the
short-time Fourier transform for nonstationary and transient
signal analysis. The Wigner distribution of a function f(t) is
defined in the time domain as

W f (t,v) ¼
ð

f tþ t

2

� �

f * t� t

2

� �

exp (�jvt)dt (10:10)

that is the Fourier transform of the product, f(tþ t=2)f *(t� t=2),
between the dilated signal f(t=2) and the dilated by 2 and inverted
signal f *(�t=2). Furthermore, the product is shifted along the
time axis by t. The Wigner distribution is a complex valued
function in the time–frequency space and is a time–frequency
joint representation of the signal. In the frequency domain the
Wigner distribution function is expressed as

W f (t,v) ¼
1

2p

ð

F vþ j

2

� �

F* v� j

2

� �

exp ( jtj)dj (10:11)

where F(v) is the Fourier transform of f(t).
The inverse relations of the Wigner distribution function can

be obtained from the inverse Fourier transforms of Equations
10.10 and 10.11. With the changes of variables t1¼ tþ t=2 and
t2¼ t� t=2, the inverse Fourier transform of the Wigner distri-
bution of Equation 10.10 gives

f (t1)f *(t2)¼
1

2p

ð

W f
t1 þ t2

2
,v

� �

exp [ j(t1 � t2)v]dv (10:12)

Similarly, with the changes of variables v1 ¼ vþ (j=2) and v2 ¼
v� (j=2) the inverse Fourier transform of Equation 10.11 gives

F(v1)F*(v2) ¼
ð

W f t,
v1 þ v2

2

� �

exp [�j(v1 � v2)t]dt

The signal f(t) can be recovered from the inverse Wigner distri-
bution function. Let t1¼ t and t2¼ 0, Equation 10.12 becomes

f (t)f *(0) ¼ 1

2p

ð

W f
t

2
,v

� �

exp ( jvt)dv

where f *(0) is a constant. Hence, the function f(t) is recon-
structed from the inverse Fourier transform of the Wigner dis-
tribution function Wf(t=2, v), dilated by 2 in the time domain.

As the basic properties of the Wigner distribution function we
mention that the projection of Wf(t,v) along the t-axis in the
time–frequency space gives the square modulus of F(v), because
according to Equation 10.11 the projection along the t-axis is

ð

W f (t,v)dt ¼
1

2p

ðð

F vþ j

2

� �

F* v� j

2

� �

exp ( jtj)dtdj

¼ jF(v)j2
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The projection of Wf(t,v) along the v-axis gives the square
modulus of f(t), because according to Equation 10.11 the projec-
tion along the ù-axis is

ð

W f (t,v)dv ¼
ðð

f tþ t

2

� �

f * t� t

2

� �

exp (�jvt)dtdv

¼ 2pj f (t)j2

Furthermore, there is the conservation of energy of the Wigner
distribution in the time–frequency joint representation:

1

2p

ð

W f (t,v)dtdv ¼
1

2p

ð

jF(v)j2dv ¼
ð

j f (t)j2dt

10.1.4.2 Ambiguity Function

The ambiguity function is a mapping of a transient time function
signal f(t) into the time–frequency space. The ambiguity function
is defined in the time domain as [3]

Af (t,v) ¼
ð

f tþ t

2

� �

f * t� t

2

� �

exp (�jvt)dt (10:13)

In the frequency domain, the ambiguity function is expressed as

Af (t,v) ¼
1

2p

ð

F jþ v

2

� �

F* j� v

2

� �

exp ( jtj)dj

The ambiguity function can be viewed as a time–frequency
autocorrelation function of the signal with the time delay t and
the Doppler frequency shift v. The ambiguity function has found
wide applications for radar signal processing.

According to the definitions (Equations 10.10 and 10.13) the
double Fourier transform of the product f(tþ t=2)f *(t �t=2)
with respect to both variables t and t gives the relation between
the Wigner distribution function and the ambiguity function

ð

Af (t,v) exp (�jvt)dt ¼
ð

W f (t,v) exp (�jvt)dt

The cross ambiguity function is defined as the Fourier transform
of the product f (t)g*(t) of two functions f(t) and g(t)

A(t,v) ¼
ð

f tþ t

2

� �

g* t� t

2

� �

exp ( jvt)dt

High value ofA(t,v) means that the two functions are ambiguous.
The function g(t) can also be considered as a window function
of fixed width that is shifted along the time axis by t=2. Hence, the
cross ambiguity function is the fixed-window short-time Fourier
transform. The cross Wigner distribution function is defined as

W(t,v) ¼
ð

f tþ t

2

� �

g* t� t

2

� �

exp ( jvt)dt

that can be seen as the Fourier transform of the signal f(t) dilated
by a factor of two and multiplied with an inverted window g(�t)
which is also dilated by a factor of two and shifted by t.

Both the ambiguity function and the Wigner distribution
function are useful for active and passive transient signal analysis.
Both transforms are bilinear transform. However, the mapping of
a summation of signals f1(t)þ f2(t) into the time–frequency space
with the ambiguity function or with the Wigner distribution
function produces cross-product interference terms that might
be a nuisance in the projections in the time–frequency space and
in the reconstruction of the signal.

10.2 Properties of the Wavelets

In this section we discuss some basic properties of the wavelets.
One of them is related to the fact that we must be able to
reconstruct the signal from its wavelet transform. This property
involves the resolution of identity, the energy conservation in the
timescale space and the wavelet admissible condition. First any
square integrable function which has finite energy and satisfies
the wavelets admissible condition can be a wavelet. The second
basic property is related to the fact that the wavelet transform
should be a local operator in both time and frequency domains.
Hence, the regularity condition is usually imposed on the wave-
lets. The third basic property is related to the fact that the wavelet
transform is a multiresolution signal analysis.

10.2.1 Admissible Condition

10.2.1.1 Resolution of Identity

The wavelet transform of a 1-D signal is a 2-D timescale joint
representation. No information should be lost during the wavelet
transform. Hence, the resolution of identity must be satisfied,
that is expressed as

ð
ds

s2

ð

dt < f1, hs, t><hs, t, f2>¼ ch < f1, f2> (10:14)

where <,> denotes the inner product so that < f1, hs, t > is the
wavelet transform of f1 as defined in Equation 10.4 and ch is a
constant. In the left-hand side of Equation 10.14 the extra factor
1=s2 in the integral is the Haar invariant measure, owing to the
timescale space differential elements, dtd(1=s)¼ dtds=s2. We have
assumed positive dilation s> 0. Using the expression (Equation
10.6) for the wavelet transform in the Fourier domain we have

ð
ds

s2

ð

dt < f1, hs, t><hs, t, f2>

¼ 1

4p2

ð
ds

s2

ð

dt

ðð

sF1(v1)H*(sv1)F2*(v2)H(sv2)e
jt(v1v2)dv1dv2

¼ 1

2

ðð

F1(v1)F2*(v1)jH(sv1)j2
ds

s
dv1

¼ ch

2p

ððð

F1(v1)F2*(v1)dv1
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where we used the change of variables v¼ sv1 and ds ¼ dv=jv1j,
so that ds and dv are of the same sign. Because s> 0, we have
ds=s ¼ dv=jvj, then we defined the constant

ch ¼
ð

jH(v)j2 dvjvj

According to the Parseval’s equality in the Fourier transform
we have

1

2p

ð

F1(v1)F2*(v1)dv1 ¼
ð

f1(t)f2*(t)dt ¼< f1, f2>

Hence, the resolution of identity is satisfied on the condition that

ch ¼
ð jH(v)j2
jvj dv < þ1 (10:15)

10.2.1.2 Admissible Condition

The condition (Equation 10.15) is the admissible condition of the
wavelet, which implies that the Fourier transform of the wavelet
must be equal to zero at the zero frequency:

jH(v)j2 jv¼0 ¼ 0 (10:16)

Equivalently, in the time domain the wavelet must be oscillatory,
like a wave, to have a zero-integrated area, or a zero-mean value:

ð

h(t)dt ¼ 0 (10:17)

10.2.1.3 Energy Conservation

When f1¼ f2, the resolution of identity, Equation 10.14 becomes

ðð

jW f (s, t)j2dt
ds

s2
¼ ch

ð

j f (t)j2dt (10:18)

This is the energy conservation relation of the wavelet trans-
form, equivalent to the Parseval energy relation in the Fourier
transform.

10.2.1.4 Inverse Wavelet Transform

By withdrawing f2i from the both sides of the resolution of
identity (Equation 10.14) we have directly

f (t) ¼ 1

ch

ðð

W f (s, t)
1
ffiffi

s
p h

t � t

s

� �

dt
ds

s2
(10:19)

This is the inverse wavelet transform. The function f(t) is recov-
ered from the inverse wavelet transform by the integrating in the
timescale space the wavelets hs,t(t) weighted by the wavelet trans-
form coefficients Wf (s, t).

Thus, the wavelet transform is a decomposition of a function
into a linear combination of the wavelets. The wavelet transform
coefficients Wf (s, t) are the inner products between the function
and the wavelets. The Wf (s, t) indicate how close the function f(t)
is to the corresponding basis functions hs,t(t).

10.2.1.5 Reproducing Kernel

The inverse wavelet transform shows that the original signal may
be synthesized by summing up all the projections of the signal
onto the wavelet basis. In this sense, the continuous wavelet
transform behaves like an orthogonal transform. We refer to
this property of the continuous wavelet transform as the qua-
siorthogonality. Obviously, a set of the wavelet basis functions
hs,t(t) with continuously varying scale and shift is not orthogonal,
but is heavily redundant.

Applying the wavelet transforms in the two sides of Equation
10.19 yields

W f (s0, t0) ¼
ðð

W f (s, t)K(s0, s; t0, t)dt
ds

s2

where the reproducing kernel

K(s0, s; t0, t) ¼
1

ch

1
ffiffiffiffiffiffi
ss0
p

ð

h*
t � t0
s0

� �

h
t � t

s

� �

dt

is not zero with continuously varying factors s0, s, v0 and v. This
expression describes the intrinsic redundancy between the values
of the wavelets at (s, t) and at (s0, t0).

Any square integrable function satisfying the admissible con-
dition may be a wavelet. When the wavelets satisfy the admissible
condition, the signal can be recovered by the inverse wavelet
transform. No signal information is lost.

10.2.2 Regularity

The wavelets should be local in both time and frequency
domains. This is achieved by applying the regularity condition
to the wavelet. The regularity is not an obligated condition, but is
usually required as an important property of the wavelet.

10.2.2.1 Regularity of Wavelet

For the sake of simplicity, let the translation of the wavelet t¼ 0
and consider the convergence to zero of the wavelet transform
coefficients with increasing of 1=s and decreasing of s. The signal
f(t) is expanded into the Taylor series at t¼ 0 until order n.
The wavelet transform coefficients become [4]

W f (s, 0) ¼
1
ffiffi

s
p
ð

f (t)h*
t

s

� �

dt

¼ 1
ffiffi

s
p

Xn

p¼0
f (p)(0)

ð
tp

p!
h

t

s

� �

dt þ
ð

R(t)h
t

s

� �

dt

" #

(10:20)
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where the remainder in the Taylor series is

R(t) ¼
ðt

0

(t � t0)n

n!
f (nþ1)(t0)d0t

and f (p)(0) denotes the pth derivative of f(t) at t¼ 0. Denoting the
moments of the wavelets by Mp

Mp ¼
ð

tph(t)dt

it is easy to show that the last term in the right-hand side of
Equation 10.20 which is the wavelet transform of the remainder,
decreases as snþ 2. We have then a finite development as

W f (s, 0) ¼
1
ffiffi

s
p f (0)M0sþ

f 0(0)

1!
M1s

2 þ f 00(0)

2!

�

M2s
3 þ � � � þ f (n)(0)

n!
Mns

nþ1 þ O(snþ2)

�

(10:21)

According to the admissible condition of the wavelet,M0¼ 0, the
first term in the right-hand side of Equation 10.21 must be zero.
The speed of convergence to zero of the wavelet transform
coefficients Wf (s, t) with decreasing of the scale s or increasing
of 1=s is then determined by the first nonzero moment of the
basic wavelet h(t). It is in general required that the wavelets have
the first nþ 1 moments until order n, equal to zero:

Mp ¼
ð

tph(t)d t ¼ 0 for p ¼ 0, 1, 2, . . . , n (10:22)

Then, according to Equation 10.21 the wavelet transform coeffi-
cient Wf(s, t) decays as fast as s

nþ (1=2) for a smooth signal f(t).
This regularity condition leads to localization of the wavelet
transform in the frequency domain.

The wavelet satisfying the condition (Equation 10.22) is called
the wavelet of order n. In frequency domain, this condition is
equivalent to the derivatives of the Fourier transform of the
wavelet h(t) up to order n to be zero at the zero frequency v¼ 0:

H(p)(0) ¼ 0 for p ¼ 0, 1, 2, . . . , n: (10:23)

The Fourier transform of the wavelet has a zero of order nþ 1.
The order (nþ 1) is a measure of the flatness of the wavelet in the
frequency domain about v¼ 0.

10.2.2.2 Time–Bandwidth Product

While the wavelet transform of an 1-D function is 2-D, the wavelet
transform of a 2-D function is four-dimensional. As a conse-
quence we would have an explosion of the time–bandwidth prod-
uct with the wavelet transform, which is in contradiction with the
restrictions of many applications, such as data compression and

pattern classification, where the signals need to be characterized
efficiently by fewer transform coefficients.

We usually impose the regularity property to the wavelets such
that the wavelet transform coefficients decrease fast with decreas-
ing of the scale s and increasing of 1=s. For this purpose, the
Fourier transform, H(v), of the basic wavelet should have some
smoothness and concentration in the frequency domains,
according to the wavelet transform in the frequency domain
Equation 10.6. The wavelet transform should be a local operator
in frequency domain.

10.2.3 Multiresolution Wavelet Analysis

The wavelet transform performs the multiresolution signal
analysis with the varying scale factor s. The purpose of the
multiresolution signal analysis is decomposing the signal in mul-
tiple frequency bands in order to process the signal in multiple
frequency bands differently and independently. Hence, we need
the wavelet to be local in both time and frequency domains.
Historically, looking for a kernel function which is local in both
time and frequency domains has been a hard research topic and
has conducted to invention of the wavelet transform.

Example

Figure 10.1 shows a typical wavelet multiresolution analysis

for an electrical power system transient signal. The signal

is decomposed with different resolutions corresponding to

different scale factors of the wavelets. The signal components

in multiple frequency bands and the times of occurrence of

those components are well presented in the figure. This figure

is a timescale joint representation, with the vertical axis in each

discrete scale representing the amplitude of wavelet compon-

ents. More detailed discussion will be given in Section 10.10.1.

10.2.3.1 Localization in Time Domain

According to the admissible condition the wavelet must oscillate
to have a zero mean. According to the regularity condition the
wavelet of order n has first nþ 1 vanishing moments and decays
as fast as t�n. Therefore, in the time domain the wavelet must be
a small wave that oscillates and vanishes, as that described by the
name wavelet. The wavelet is localized in the time domain.

10.2.3.2 Localization in Frequency Domain

According to the regularity condition the wavelet transform with
a wavelet of order n decays with s as snþ(1=2) for a smooth signal.
According to the frequency domain wavelet transform, Equation
10.6 when the scale s decreases the wavelet H(sv) in the fre-
quency domain is dilated to cover a large frequency band of the
signal Fourier spectrum. Therefore, the decay with s as snþ(1=2) of
the wavelet transform coefficient implies that the Fourier trans-
form of the wavelet must decay fast with the frequency v. The
wavelet must be local in frequency domain.
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10.2.3.3 Band-Pass Filters

In the frequency domain, the wavelet is localized according to the
regularity condition, and is equal to zero at the zero frequency
according to the admissible condition. Therefore, the wavelet is
intrinsically a band-pass filter.

10.2.3.4 Bank of Multiresolution Filters

The wavelet transform is the correlation between the signal and
the dilated wavelets. The Fourier transform of the wavelet is a
filter in the frequency domain. For a given scale, the wavelet
transform is performed with a wavelet transform filter

ffiffi

s
p

H(sv)
in the frequency domain, which is in the time domain the scaled
wavelet h(t=s). When the scale s varies, the wavelet transform
performs a multiscale signal analysis.

In the timescale joint representation, as shown in Figure 10.1,
in each horizontal stripe along the time axis the wavelet trans-
form coefficient is computed by the correlation between the
signal and the wavelets h(t=s) at a given scale. When the scale is
small the wavelet is concentrated in time, the wavelet analysis
gives detailed view of the signal. When the scale increases
the wavelet becomes spread out in time, the wavelet analysis
gives global view and takes into account the longtime behavior

of the signal. Hence, the wavelet transform is a bank of multi-
resolution filters.

The wavelet transform is a bank of multiresolution band-
pass filters.

10.2.3.5 Constant Fidelity Analysis

Scale change of the wavelet permits the wavelet analysis to
zoom in on the discontinuities, singularities and edges, and
to zoom out for a global view. This is a unique property of the
wavelet transform, important for nonstationary and fast transient
signal analysis. The fixed window short-time Fourier transform
has not this ability.

With the bank of multiresolution wavelet transform filters, the
signal is divided into different frequency subbands. In each sub-
band the signal is analyzed with a resolution matched to the
scales of the wavelets. When the scale changes, the bandwidth
(Dv)s of the wavelet transform filter becomes, according to the
definition of the bandwidth Equation 10.8:

(Dv)2s ¼
Ð

v2jH(sv)j2dv
Ð

jH(sv)j2dv
¼
Ð

(sv)2jH(sv)j2d(sv)
s2
Ð

jH(sv)j2d(sv)
¼ 1

s2
(Dv)2
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FIGURE 10.1 Multiresolution wavelet analysis of a transient signal in the electrical power system. (From Robertson, D. C. et al., Proc. SPIE, 2242,
474, 1994. With permission.)
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The fidelity factor Q refers to, in general, the central frequency
divided by the bandwidth of a filter and is, by this definition, the
inverse of the relative bandwidth. The relative bandwidths of
the wavelet transform filters are constant because

1

Q
¼ (Dv)s

1=s
¼ (Dv) (10:24)

which is independent of the scale s. Hence, the wavelet transform is
a constant-Q analysis. At low frequency, corresponding to a large
scale factor, s, the wavelet transform filter has a small bandwidth,
which implies a broad time window with a low time resolution. At
high frequency, corresponding to a small scale factor, s, the wavelet
transform filter has a wide bandwidth, which implies a narrow time
window with high time resolution. The time resolution of the
wavelet analysis increases with decrease of the window size. This
adaptive window property is desirable for time–frequency analysis.

When the constant-Q relation (Equation 10.24) is satisfied, the
frequency bandwidth Dv changes with the center frequency 1=s
of the wavelet transform filter. The product DvDt satisfies still
the uncertainty principle (Equation 10.9). In the wavelet trans-
form the time window size, Dt, can be arbitrarily small at small
scale and the frequency window size, Dv, can be arbitrarily
small at large scale. Figure 10.2 shows the coverage of the time-
scale space for the wavelet transform and, as a comparison, that
for the short-time Fourier transform.

10.2.3.6 Scale and Resolution

The scale is related to the window size of the wavelet. The wavelet
transform of a large scale performs an analysis of global view, and
that of a small scale performs an analysis of detailed view. The
resolution is related to the frequency of the wavelet oscillation.
For a given wavelet function, reducing the scale will reduce the
window size and increase the resolution in the same time.
For some wavelets, such as the Gabor-wavelets the scale and
frequency may be chosen separately.

Example

Figure 10.3a shows the cos-Gaussian wavelets in comparison

with the real part of the Gabor transform basis functions.

Both functions consist of a cosine function with a Gaussian

window. The basic cos-Gaussian wavelet is

h(t) ¼ 1
ffiffiffiffiffiffi

2p
p cos (v0t) exp

�t2
2

� �

where v0¼ 5 in Figure 10.3a. The wavelets hs,t(t) are gener-

ated from h(t) by dilation and translation

hs, t ¼
1
ffiffi

s
p h

t � t

s

� �

with the discrete scale factor s¼ 2m and the discrete transla-

tion factor (t=s)¼ n where m and n are integers, the wavelets

become discrete as hm,n(t)

The discrete Gabor function gm,n(t) is defined as

gm, n(t) ¼ g(t � nt0) exp ( jmv0t)

where v0¼p in Figure 10.3a and g(t) is the Gaussian window

with a fixed width

In Figure 10.3a we see that the wavelets are with the dilated
window. All the dilated wavelets contain the same number of
oscillations. The wavelet transform performs multiresolution
analysis with high frequency analysis for narrow windowed
signals and low frequency analysis for wide windowed signals.
This constant-Q analysis property makes the wavelet transform
surpass the fixed-window short-time Fourier transform for
analysis of local property of signals.

Figure 10.3b shows a comparison between the wavelet trans-
form and the Gabor transform for a step function input. The
wavelets are with the dilated windows. The Gabor functions are
with windows of fixed width. The timescale joint representation
log s� t of the wavelet transform and the time–frequency joint
representation log v� t of the Gabor transform are also shown.
The wavelet transform with very small scale s and very narrow
window is able to ‘‘zoom in’’ on the discontinuity and to indicate
the arrival time of the step signal, while the Gabor transform
cannot do this.

ω

τ τ

1/s

(a) (b)

FIGURE 10.2 Coverage of the time frequency space with (a) the short-time Fourier transform, where Dv and Dt are fixed in the whole plane;
(b) the wavelet transform, where the frequency bandwidth Dv increases and the time resolution Dt improves with increase of D(1=s).
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10.2.4 Linear Transform Property

By definition the wavelet transform is a linear operation. Given a
function f(t), its wavelet transformWf (s, t) satisfies the following
relations

1. Linear superposition without the cross terms

Wf1þf2 (s, t) ¼Wf1 (s, t)þWf2(s, t),

2. Translation

Wf (t�t0)(s, t) ¼Wf (t)(s, t� t0)

3. Rescale

Wa1=2f (at)(s, t) ¼Wf (t)(as,at)

Different from the standard Fourier transform and other trans-
forms, the wavelet transform is not ready for closed form solu-
tion apart from some very simple functions such as:

1. For f(t)¼ 1, from the definition (Equation 10.4) and the
admissible condition of the wavelets, Equation 10.17 we have

W f (s, t) ¼ 0

The wavelet transform of a constant is equal to zero.
2. For a sinusoidal function f(t)¼ exp( jv0t), we have

directly from the Fourier transform of the wavelets
(Equation 10.6) that

W f (s, t) ¼
ffiffi

s
p

H*(sv0) exp ( jv0t)
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(b)
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FIGURE 10.3 (a) The cos-Gaussian wavelets hm,n(t) and the real part of the Gabor functions gm,n(t), with the scale factor s ¼ 2m and the translation
factor t ¼ ns for different values of m. The wavelets have a dilated window. The Gabor functions have a window with fixed width. (b) Time-scale
joint representation of the wavelet transform and time-frequency joint representation of the Gabor transform for a step function. (From Szu, H. et al.
Appl. Optics, 31(17), 1992. Freeman, M.O. Photonics New, August 1995, 8–14. With permission.)

Wavelet Transform 10-11



The wavelet transform of a sinusoidal function is a sinus-
oidal function of the time shift t. Its modulus jW f (s, t)j
depends on the scale s as

ffiffi

s
p jH*(sv0)j.

3. For a linear function f(t)¼ t, we have

W f (s, t) ¼
1
ffiffi

s
p
ð

t h*
t � t

s

� �

dt

¼ s3=2
ð

t h*(t � t0)dt ¼ s3=2

j

dH*(v)

dv

	
	
	
	
v¼0

Hence, if the wavelet h(t) is regular and of order n� 1 so
that its moments of order n� 1 is equal to zero and its
derivatives of first-order is equal to zero at v¼ 0, then the
wavelet transform of f(t)¼ t is equal to zero.

10.2.4.1 Wavelet Transform of Regular Signals

According to what discussed in the precedent the wavelet trans-
form of a constant is zero. The wavelet transform of a linear
signal is zero, when the wavelet has the first-order vanishing
moment: M1 ¼ 0. The wavelet transform of a quadratic signal
could be zero, when the wavelet has the first-and second-order
vanishing moments: M1 ¼ M2 ¼ 0. The wavelet transform of a
polynomial signal of degree m could be equal to zero, when the
wavelet has the vanishing moments up to the order n�m.

Thus, the wavelet transform is efficient for detecting singular-
ities in signal and analyzing nonstationary, transient signal.

For most functions the wavelet transforms have no closed
analytical solutions and can be calculated only by numerical
computer or by optical analog computer. The optical continuous
wavelet transform is based on the explicit definition of the
wavelet transform Equation 10.4 and implemented using a
bank of optical wavelet transform filters as described in Equation
10.6 in the Fourier plane in an optical correlator [21–23].

10.2.5 Examples of the Wavelets

In this section we give some examples of the wavelets, mainly
used for the continuous wavelet transform. Examples of the
wavelets for the discrete orthonormal wavelet transform will be
given in Section 10.8.

10.2.5.1 Haar Wavelet

The Haar wavelet was historically introduced by Haar [5] in
1910. It is a bipolar step function:

h(t) ¼
1 when 0 < t < 1=2
�1 when 1=2 < t < 1
0 otherwise

(

The Haar wavelet can be written as a correlation between a
dilated rectangle function rect(2t) and two delta functions

h(t) ¼ rect 2 t � 1

4

� �� �

� rect 2 t � 3

4

� �� �

¼ rect(2t)* d t � 1

4

� �

� d t � 3

4

� �� �

where the rectangular function is defined as

rect(t) ¼ 1 when � 1=2 < t < 1=2
0 otherwise




The Haar wavelet is real-valued and antisymmetric with respect
to t¼ 1=2, as shown in Figure 10.4. The wavelet admissible
condition (Equation 10.17) is satisfied. The Fourier transform
of the Haar wavelet is complex valued and is equal to the product
of a sine function and a sinc function.

H(v) ¼ 2j exp �j
v

2

� �

sinc
v

4

� �

sin
v

4

� �

¼ 4j exp �j
v

2

� � 1� cos v2
v

(10:25)

whose amplitude is even and symmetric to v¼ 0. That is a band-
pass filter, as shown in Figure 10.4. The phase factor exp(�jv=2)
is related to the shift of h(t) to t¼ 1=2, which is necessary for the
causal filtering of time signals.

The Haar wavelet transform involves a bank of multiresolution
filters that yield the correlations between the signal and the Haar
wavelets scaled by factor s. The Haar wavelet transform is a local
operation in the time domain. The time resolution depends on the
scale s. When the signal is constant, the Haar wavelet transform is

0

0

|H(ω)|

ω–1

1

h(t)

1 t1
2

FIGURE 10.4 Haar basic wavelet h(t) and its Fourier transform H(v). (From Sheng, Y. et al. Opt. Eng., 31, 1840, 1992. With permission.)
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equal to zero. The amplitude of the Haar wavelet transform has
high peak values when there are discontinuities of the signal.

The Haar wavelet is irregular. Its first derivative is discontinu-
ous and its first-order moment is not zero. According to Equa-
tion 10.25 the amplitude of Fourier spectrum of the Haar wavelet
converges to zero slowly as 1=v. According to Equation 10.21 the
Haar wavelet transform decays with increasing of 1=s at least as
slowly as (1=s)�3=2. The Haar wavelet transform has not found
many practical applications because of its poor localization prop-
erty in the frequency domain.

The set of discrete dilations and translations of the Haar
wavelets constitute the simplest discrete orthonormal wavelet
basis. We shall use the Haar wavelets as an example of the
orthonormal wavelet basis in Sections 10.5 and 10.7.

10.2.5.2 Gaussian Wavelet

The Gaussian function is perfectly local in both time and fre-
quency domains and is infinitely derivable. In fact, a derivative of
any order n of the Gaussian function may be a wavelet. The
Fourier transform of the nth-order derivative of the Gaussian
function is

H(v) ¼ ( jv)n exp �v2

2

� �

that is the Gaussian functionmultiplied by ( jv)n, so thatH(0)¼ 0.
The wavelet admissible condition is satisfied. The derivatives up to
nth-order of the Gaussian wavelets H(n�1)(0)¼ 0. The Gaussian
wavelet is a regular wavelet of order n. Both h(t) and H(v) are
infinitely derivable. The Gaussian wavelet transform coefficients
decay with increasing of 1=s as fast as (1=s)n�(1=2).

10.2.5.3 Mexican-Hat Wavelet

The Mexican-hat like wavelet was first introduced by Gabor. It is
the second-order derivative of the Gaussian function [7]:

h(t) ¼ (1� t2) exp � t2

2

� �

The Mexican-hat wavelet is even and real valued. The wavelet
admissible condition is satisfied. The Fourier transform of the
Mexican-hat wavelet is

H(v) ¼ �v2 exp �v2

2

� �

that is also even and real-valued, as shown in Figure 10.5.
The 2-D Mexican-hat wavelet is well known as the Laplacian

operator, widely used, for instance, for zero-crossing image edge
detection.

10.2.5.4 Gabor-Wavelet

The Gabor function in the short-time Fourier transform with
Gaussian window is defined as

h(t) ¼ exp ( jv0t) exp �
(t � t)2

2

� �

Its real part is a cosine-Gaussian and its imaginary part is a sine-
Gaussian function. The Gaussian window in the Gabor function
has a fixed width and is shifted along the time axis by t. The
Fourier transform of the Gabor function is again a Gaussian
window shifted along the frequency axis by v0.

The Gabor function can also have a dilated window and is
defined as

h(t) ¼ exp ( jv0t) exp �
t2

2s2

� �

where the scale factor s is also the width of the Gaussian window.
The term exp ( jv0t) introduces a translation in the spectrum of

H(ω)

ω

t0

h(t)

0
√

—
2–√

—
2

FIGURE 10.5 Mexican hat wavelet h(t) and its Fourier transform H(v). (From Sheng, Y. et al. Opt. Eng., 31, 1840, 1992. With permission.)
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the Gabor wavelet. The Gabor function with the dilation of both
window and Fourier kernel is the Gabor-wavelet. This wavelet
has been used by Martinet, Morlet, and Grossmann for analysis
of sound patterns [6]. The Morlet’s basic wavelet function is the
Fourier basis multiplied with a Gaussian window. Its real part is
the cosine-Gaussian wavelet, whose Fourier transform consists of
two Gaussian functions shifted to v0 and �v0, respectively:

H(v) ¼
ffiffiffiffiffiffi

2p
p

p exp � (v� v0)
2

2

� �

þ exp � (vþ v0)
2

2

� �� �

that are real positive-valued, even and symmetric to the origin
v¼ 0. The Gaussian window is perfectly local in both time and
frequency domains and achieves the minimum time–bandwidth
product determined by the uncertainty principle, as shown by
Equation 10.9. The cos-Gaussian wavelets are band-pass filters in
frequency domain. They converge to zero like the Gaussian
function as the frequency increases. Figure 10.6 shows the
cosine-Gaussian wavelet and its Fourier spectrum.

The Gabor wavelets do not satisfy the wavelet admissible
condition, because

H(0) 6¼ 0

that leads to ch ¼ þ/. But the value of H(0) is very close to zero
provided that the v0 is sufficiently large. When v0¼ 5, for
example,

H(0) ¼ (2p)3=2 exp � 25

2

� �

that is of the order of magnitude of 10�5 and can be practically
considered as zero in numerical computations.

10.3 Discrete Wavelet Transform

The continuous wavelet transform is a mapping of a 1-D time
signal into a 2-D timescale joint representation. The time-
bandwidth product of the continuous wavelet transform output

is the square of that of the signal. For most applications, however,
the goal of signal processing is to represent the signal efficiently
with fewer parameters. The use of the discrete wavelet transform
can reduce the time-bandwidth product of the wavelet transform
output.

By the term discrete wavelet transform we mean, in fact, the
continuous wavelets with the discrete scale and translation fac-
tors. The wavelet transform is then evaluated at discrete scales
and translations. The discrete scale is expressed as s ¼ si0, where
i is integer and s0> 1 is a fixed dilation step. The discrete
translation factor is expressed as t ¼ kt0s

i
0, where k is integer.

The translation depends on the dilation si0. The corresponding
discrete wavelets are written as

hi,k(t) ¼ s
�i=2
0 h s�i0 t � kt0s

i
0

� �� �

¼ s
�i=2
0 h s�i0 t � kt0

� �

(10:26)

The discrete wavelet transform with the dyadic scaling factor
with s0¼ 2 is effective in the computer implementation.

10.3.1 Timescale Space Lattices

The discrete wavelet transform evaluated at discrete times and
scales performs a sampling in the timescale space. The timescale
joint representation of a discrete wavelet transform is a grid
along the scale and time axes. To show the sampling we
consider localization points of the discrete wavelets in the time-
scale space.

The sampling along the time axis has the interval t0si0, that is
proportional to the scale si0. The time sampling step is small for
small scale wavelet analysis and is large for large scale wavelet
analysis. With the varying scale the wavelet analysis will be able
to ‘‘zoom in’’ on singularities of the signal using more concen-
trated wavelets of very small scale. For this detailed analysis the
time sampling step is very small. As only the signal detail is of
interest, only a few small time translation steps would be needed.
Therefore, the wavelet analysis provides a more efficient way to
represent transient signals.

There is an analogy between the wavelet analysis and the
microscope. The scale factor si0 corresponds to the magnification

h(t)
H(ω)

2
π

t0

0ω0 ω0 ω

FIGURE 10.6 Cos-Gaussian wavelet h(t) and its Fourier transform H(v). (From Sheng, Y. et al. Opt. Eng., 31, 1840, 1992. With permission.)
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or the resolution of microscope. The translation factor t corres-
ponds to the location where one makes observation with the
microscope. If one looks at very small details, the magnification
and the resolution must be large, that corresponds to a large and
negative-valued i. In this case the wavelet is very concentrated.
The step of translation is small, that justifies the choice t ¼ kt0s

i
0.

For large and positive-valued i, the wavelet is spread out, and the
large translation steps kt0s

i
0 are adapted to this wide width of

the wavelet analysis function. This is another interpretation
of the constant-Q analysis property of the wavelet transform,
discussed in Section 10.2.3.

The behavior of the discrete wavelets depends on the scale and
time steps s0 and t0. When s0 is close to 1 and t0 is small, the
discrete wavelets are close to the continuous wavelets. For a fixed
scale step s0, the localization points of the discrete wavelets along
the scale axis are logarithmic as log s¼ i log s0, as shown in
Figure 10.7.

The frequency sampling interval has the unit as octave in the
music. One octave is the interval between two frequencies having
a ratio of two. One octave frequency band has the bandwidth
equal to one octave.

The discrete time step is t0s
i
0. We choose usually t0¼ 1.

Hence, the time sampling step is a function of the scale and is
equal to 2i for the dyadic wavelets with s0¼ 2. Along the t-axis
the localization points of the discrete wavelets depends on the
scale. The intervals between the localization points at the same
scale are equal and are proportional to the scale si0. The transla-
tion steps are small for small positive-valued i with the small
scale wavelets, and are large for large positive-valued i with
large scale wavelets. In the localization of the discrete wavelets
in the timescale space shown in Figure 10.7, where the scale axis
is logarithmic, log s¼ i log 2, and the localization is uniform
along the time axis t with the time steps proportional to the scale
factor s¼ 2i.

10.3.2 Wavelet Frame

With the discrete wavelet basis a continuous function f(t) is
transformed to a sequence of wavelet coefficients

W f (i, k) ¼
ð

f (t)hi, k* (t)dt ¼< f , hi, k> (10:27)

A raising questing for the discrete wavelet transform is how well
the function f(t) can be reconstructed from the discrete sequence
of wavelet coefficients:

f (t) ¼ A
X

i

X

k

W f (i, k)hi, k(t) (10:28)

where A is a constant that does not depend on f(t). Obviously, if
s0 is close enough to 1 and t0 is small enough, the set of wavelets
approaches as continuous. The reconstruction (Equation 10.28)
is then close to the inverse continuous wavelet transform.
The signal reconstruction takes place without restrictive condi-
tions other than the admissible condition on the wavelet h(t).
On the other hand, if the sampling is sparse, s0¼ 2 and t0¼ 1,
the reconstruction (Equation 10.28) can be achieved only for
some special choices of the wavelet h(t).

The theory of wavelet frames provides a general framework,
that covers the above-mentioned two extreme situations. It per-
mits one to balance between the redundancy, which is the sam-
pling density in the scale-time space, and the restriction on the
wavelet h(t) for the reconstruction scheme (Equation 10.28) to
work. If the redundancy is large with high over-sampling, then
only mild restrictions are put on the wavelet basis. If the redun-
dancy is small with critical sampling, then the wavelet basis
functions are very constrained.

Daubechies [8] has proven that the necessary and sufficient
condition for the stable reconstruction of a function f(t) from its
wavelet coefficients Wf(i, k) is that the energy, which is the sum
of square moduli of Wf(i, k), must lie between two positive
bounds:

A fk k2�
X

j, k

j < f , hi, k> j2 � B fk k2 (10:29)

where fk k2 is the energy of f(t), A> 0, B <1 and A, B are
independent of f(t). When A¼B, the energy of the wavelet
transform is proportional to the energy of the signal. This is
similar to the energy conservation relation (Equation 10.18) of
the continuous wavelet transform. When A 6¼B there is still some
proportional relation between the energies of the signal and its
wavelet transform.

When Equation 10.29 is satisfied, the family of the wavelet
basis functions {hi,k(t)} with i, k e Z is referred to as a frame and
A, B are termed frame bounds. Hence, when proportionality
between the energy of the function and the energy of its discrete
transform function is bounded between something greater than
zero and less than infinity for all possible square integrable
functions, then the transform is complete. No information is
lost and the signal can be reconstructed from its decomposition.

Daubechies has shown that the accuracy of the reconstruction is
governed by the frame bounds A and B. The frame bounds
A and B can be computed from the dilation step s0, the translation

log s

τ

FIGURE 10.7 Localization of the discrete wavelets in the time-scale
space.
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step t0 and the basis function h(t). The closer A and B, the more
accurate the reconstruction. When A¼B, the frame is tight and
the discrete wavelets behave exactly like an orthonormal basis.
WhenA¼B¼ 1 Equation 10.29 is simply the energy conservation
equivalent to the Parseval relation of the Fourier transform. It is
important to note that the same reconstruction works even when
the wavelets are not orthogonal to each other.

When A 6¼ B the reconstruction can still work exactly for the
discrete wavelet transform if for reconstruction we use the syn-
thesis function basis, which is different from the decomposition
function basis for analysis. The former constitute the dual frame
of the later.

10.4 Multiresolution Signal Analysis

The multiresolution signal analysis is a technique that permits us
to analyze signals in multiple frequency bands. Two existing
approaches of multiresolution analysis are the Laplacian pyramid
and the subband coding, which were developed independently on
the wavelet transform in the late 1970s and early 1980s. Meyer
and Mallat [9] found in 1986 that the orthonormal wavelet
decomposition and reconstruction can be implemented in the
multiresolution signal analysis framework.

10.4.1 Laplacian Pyramid

The multiresolution signal analysis was first proposed by Burt
and Adelson in 1983 [10] for image decomposition, coding, and
reconstruction.

10.4.1.1 Gaussian Pyramid

The multiresolution signal analysis is based on a weighting func-
tion, which is also called a smoothing function. The original
data, represented as a sequence of real numbers, c0(n), n 2 Z, is
averaged in neighboring pixels by the weighting function, which
can be a Gaussian function and used as the impulse response of a
low-pass filter. The correlation of the signal with the weighting
function reduces the resolution of the signal. Hence, after the
averaging process the data sequence is down-sampled by a factor
of two. The resultant data sequence c1(n) is the averaged approxi-
mation of c0(n).

The averaging and down-sampling process can be iterated. For
instance, they are applied at the level i¼ 1 to the averaged
approximation data c1(n) with the smoothing function, which is
also dilated by a scale factor of two. Then, they are applied to
c2(n) with the smoothing function, which is again dilated by two,
and so on. In the iteration process the smoothing function is
dilated with dyadic scales 2i with i 2 Z to average the signals at
multiple resolutions. Hence, the original data is represented by a
set of successive approximations. Each approximation corres-
ponds to a smoothed version of the original data at a given
resolution.

Assume that the original data are of size 2N. Then, the
smoothed sequence c1(n) has a reduced size 2N�1. By iterating

the process, the successive averaging and down-sampling result
in a set of data sequences of exponentially decreasing size. If we
imagine these data sequences stacked on top of one another,
then they constitute an hierarchical pyramid structure with
log2 N pyramid levels.

The original data c0(n) are at the bottom or zero level of the
pyramid. At ith pyramid level the signal sequence is obtained
from the data sequence in the (i�1)th level by

ci(n) ¼
X

k

p(k� 2n)ci�1(k) (10:30)

where p(n) is the weighting function. The operation described in
Equation 10.30 is a correlation between ci�1(k) and p(k) followed
by a down-sampling by two. Note that a shift by two in ci�1(k)
results in a shift by one in ci(n). The sampling interval in level i is
double of that in the previous level i�1. The size of the sequence
ci(n) is half as long as its predecessor ci�1(n). When the weighting
function is the Gaussian function, the pyramid of the smoothed
sequences is referred to as the Gaussian pyramid. Figure 10.8
shows a part of the Gaussian pyramid.

10.4.1.2 Laplacian Pyramid

By the low-pass filtering with the weighting function p(n), the
high frequency detail of the signal is lost. The lost information
can be recovered by computing the difference between two
successive Gaussian pyramid levels of different size. In this pro-
cess we have to first expand the data sequence ci(n) in two
steps: (1) inserting a zero between every samples of ci(n), that is
up-sampling ci(n) by two; (2) interpolating the sequence with a
filter whose impulse response is p0(n). The expand process results
in a sequence c 0i�1(n) that has the same size as the size of ci�1(n).
In general c 0i�1(n) 6¼ ci�1(n). The difference can be represented
by a sequence di�1(n)

di�1(n) ¼ ci�1(n)� c0i�1(n) (10:31)

which contains the lost detail information of the signal. All the
differences between each pair in the sequences of successive
Gaussian pyramid levels form a set of sequences di(n) that
constitute another pyramid, referred to as the Laplacian pyramid.
The original signal can be reconstructed exactly by summing the
Laplacian pyramid levels.

The Laplacian pyramid contains the compressed signal data in
the sense that the pixel to pixel correlation of the signal is
removed by the averaging and subtracting process. If the original
data is an image that is positively valued, then the values on the
Laplacian pyramid nodes are both positive and negative. Their
absolute values are smaller and are shifted toward zero, so that
they can be represented by fewer bits. The multiresolution analy-
sis is useful for image coding and compression.

The Laplacian pyramid signal representation is redundant.
One stage of the pyramid decomposition leads to a half size,
low resolution signal and a full size, difference signal, resulting in
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an increase in the number of signal samples by 50%. Figure 10.9
shows the scheme for building the Laplace pyramid.

10.4.2 Subband Coding

Subband coding [11] is a multiresolution signal processing
approach that is different from the Laplacian pyramid. The
basic objective of the subband coding is to divide the signal
spectrum into independent subbands in order to treat the signal
in individual subbands for different purposes. Subband coding is
an efficient tool for multiresolution spectral analysis and has been
successful in speech signal processing.

10.4.2.1 Analysis Filtering

Given an original data sequence c0(n), n 2 Z, the lower reso-
lution approximation of the signal is derived by low-pass filtering
with a filter having its impulse response p(n).

c1(n) ¼
X

k

p(k� 2n)c0(k) (10:32)

which is the correlation between c0(k) and p(k) down-sampled by
a factor of two. The process is exactly the same as the averaging
process in the Laplacian pyramid decomposition, as described in
Equation 10.30. In order to compute the detail information that
is lost by the low-pass filtering with p(n), a high-pass filter with
the impulse response q(n) is applied to the data sequence c0(n) as

d1(n) ¼
X

k

q(k� 2n)c0(k) (10:33)

which is the correlation between c0(k) and q(k) down-sampled by
a factor of two. Hence, the subband decomposition leads to a half
size low resolution signal and a half size detail signal.
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FIGURE 10.8 Multiresolution analysis Gaussian pyramid. The weighting function is p(n) with n ¼ 0 � 1, �2. The even and odd number nodes in
c0(n) have different connections to the nodes in c1(n).
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FIGURE 10.9 Schematic pyramid decomposition and reconstruction.
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10.4.2.2 Synthesis Filtering

To recover the signal c0(n) from the down-sampled approxima-
tion c1(n) and the down-sampled detail d1(n), both c1(n) and
d1(n) are up-sampled by a factor of two. The up-sampling is
performed by first inserting a zero between each node in c1(n)
and d1(n) and then interpolating with the filters p(n) and q(n)
respectively. Finally, adding together the two up-sampled
sequences yields c0(n). Figure 10.10 shows the scheme of the
two-channel subband system.

The reconstructed signal c00(n), in general, is not identical to
the original c0(n), unless the filters meet a specific constraint, that
the analysis filters P(n), q(n) and the synthesis filters p0(n), q0(n)
satisfy the perfect reconstruction condition, which will be dis-
cussed in Section 10.6.2.

The scheme shown in Figure 10.10 is a two-channels system
with a bank of two-band filters. The two-band filter bank can be
extended to M-band filter bank by using a bank of M analysis
filters followed by down-sampling and a bank of M up-samplers
followed by M synthesis filters.

The two-band filter bank and theM-band filter bank can also be
iterated: the filter bank divides the input spectrum into two equal
subbands, yielding the low (L) and high (H) bands. Then, the two-
band filter bank can be again applied to these (L) and (H) half
bands to generate the quarter bands: (LL), (LH), (HL) and (HH).
The scheme of this multiresolution analysis has a tree structure.

10.4.3 Scale and Resolution

In the multiresolution signal analysis each layer in the pyramid is
generated by a bank of low-pass and high-pass filters at a given
scale, that corresponds to the scale of that layer.

In general, scale and resolution are different concept. Scale
change of a continuous signal does not alter its resolution. The
resolution of a continuous signal is related to its frequency
bandwidth. In a geographic map a large scale means a global
view and a small scale means a detailed view. However, if the size
of the map is fixed, then enlarging the map scale would require
reducing the resolution.

In the multiresolution signal analysis the term of scale is that
of the low-pass and high-pass filters. At each scale, the down-
sampling by two, which follows the low-pass filtering, halves the
resolution. When a signal is transferred from a scale level i to a

larger scale level iþ 1, its resolution is reduced by two. The size of
the approximation signal also is reduced by two. Therefore, each
scale level corresponds to a specific resolution. The larger the
scale, the lower the resolution.

10.5 Orthonormal Wavelet Transform

The first orthonormal wavelet basis was found by Meyer
when he looked for the orthonormal wavelets that are localized
in both time and frequency domains. The multiresolution
Laplacian pyramid ideas of hierarchal averaging the signal and
computing the difference triggered Mallat and Meyer to view
the orthonormal wavelet bases as a vehicle for multiresolution
analysis [9]. The multiresolution analysis is now a standard way
to construct orthonormal wavelet bases and to implement the
orthonormal wavelets transforms. Most orthonormal wavelet
bases are now constructed from the multiresolution analysis
framework.

In the multiresolution analysis framework the dyadic ortho-
normal wavelet decomposition and reconstruction use the tree
algorithm that permits very fast computation of the orthonormal
wavelet transform in the computer.

10.5.1 Multiresolution Signal Analysis Bases

10.5.1.1 Scaling Functions

The multiresolution analysis is based on the scaling function.
The scaling function is a continuous, square integrable and, in
general, real-valued function. The scaling function does not
satisfy the wavelet admission condition: the mean value of the
scaling function f(t) is not equal to zero, but is usually normal-
ized to unity.

The basic scaling function f(t) is dilated by dyadic scale
factors. At each scale level the scaling function is shifted by
discrete translation factors as

fi, k(t) ¼ 2�i=2f(2�it � k) (10:34)

where k 2 Z and the coefficient 2�i=2 is a normalization constant.
Here, the scaling function basis is normalized in the L2(R) norm,
similar to the normalization of the wavelet described by Equation
10.2. We shall restrict ourselves to the dyadic scaling with

c0(n) c0́ (n)

c1 (n)
p (n) ṕ (n)2 2

d1 (n)
q (n) q́ (n)2 2

+

FIGURE 10.10 Schematic two-channel subband coding decomposition and reconstruction.
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the scaling factor 2i for i 2 Z. The scaling functions of all scales 2i

with i 2 Z generated from the same f(t) are all similar in shape.
At each resolution level i the set of the discrete translations of the
scaling functions, fi,k(t), forms a function basis that spans a
subspace Vi.

A continuous signal function may be decomposed into the
scaling function bases. At each resolution level i, the decompos-
ition is evaluated at discretely translated points. The scaling
functions play a role of the average and smoothing function in
the multiresolution signal analysis.

At each resolution level, the correlation between the scaling
function and the signal produces the averaged approximation of
signal, which is sampled at a set of discrete points. After the
averaging by the scaling functions, the signal is down-sampled by
factor of two that halves the resolution. Then, the approximated
signal is decomposed into the dilated scaling function basis at the
next coarser resolution.

10.5.1.2 Wavelets

In the multiresolution analysis framework the wavelet bases
are generated from the scaling function bases. In order to empha-
size the dependence of the wavelets to the scaling functions in the
multiresolution analysis framework, from now on we change
the notation of the wavelet and use c(t) to denote the wavelet
in the discrete wavelet transform instead of h(t) in the previous
sections for the continuous wavelet transform.

Similarly to the scaling function, the wavelet is scaled with
dyadic scaling factors and is translated at each resolution level as

ci, k(t) ¼ 2�i=2c(2�it � k) (10:35)

where k 2 Z and the coefficient 2�i=2 is a normalization constant.
The wavelet basis is normalized in the L2(R) norm for energy
normalization, as discussed in Section 10.1. At each resolution
level i, the set of the discrete translations of the wavelets, ci,k(t),
forms a function basis, that spans a subspace Wi. A signal
function may be decomposed into the wavelet bases. At each
resolution level, the decomposition is evaluated at discrete trans-
lated points.

In the multiresolution analysis framework the orthonormal
wavelet transform is the decomposition of a signal into approx-
imations at lower and lower resolutions with less and less detail
information by the projections of the signal onto the orthonor-
mal scaling function bases. The differences between each two
successive approximations are computed with the projections
of the signal onto the orthonormal wavelet bases, as shown in
the next.

10.5.1.3 Two-Scale Relation

The two-scale relation is the basic relation in the multiresolution
analysis with the dyadic scaling. The scaling functions and the
wavelets form two bases at every resolution level by their discrete
translates. Let f(t) be the basic scaling function whose translates

with integer step span the subspaceV0. At the next finer resolution
the subspace V�1 is spanned by the set {f(2t� k)}, that is gener-
ated from the scaling function f(t) by a contraction with a factor
of two and by translations with half integer steps. The set {f
(2t� k)} can also be considered as a sum of two sets of even and
odd translates, {f(2t� 2k)} and {f[2t� (2kþ 1)]}, all are with
integer steps k 2 Z. The scaling function at resolution i¼ 0may be
decomposed as linear combination of the scaling functions at the
higher resolution level i¼�1, as

f(t) ¼
X

k

p(k)f(2t � k) (10:36)

where the discrete decomposition coefficient sequence p(k) is
called the interscale coefficients, that will be used in the wavelet
decomposition as the discrete low-pass filter and will be dis-
cussed in Section 10.5.4. This decomposition may be considered
as the projection of the basis function f(t) 2 V0 onto the finer
resolution subspace V�1. The two scale relation, or called the
two-scale difference equation, (Equation 10.36) is the fundamen-
tal equation in the multiresolution analysis. The basic ingredient
in the multiresolution analysis is a scaling function such that the
two scale relation holds for some p(k). The sequence p(k) of the
interscale coefficients in the two scale relation governs the struc-
ture of the scaling function f(t).

Let c(t) 2 V0 be the basic wavelet, which can also be expanded
onto the scaling function basis {f(2t� k)} in the finer resolution
subspace V�1 as

c(t) ¼
X

k

q(k)f(2t � k) (10:37)

where the sequence q(k) is the interscale coefficients that will be
used in the wavelet decomposition as the discrete high-pass filter
and will be discussed in Section 10.5.4. Equation 10.37 is a part of
the two scale relation, and is useful for generating the wavelets
from the scaling functions, as shown in the next.

On the both sides of the two scale relations, (Equations 10.36
and 10.37. f(t) and c(t) are continuous scaling function and
wavelet. On the right-hand side of the two scale relations, the
interscale coefficients, p(k) and q(k), are discrete with k 2 Z. The
two scale relations express the relations between the continuous
scaling function f(t) and wavelet c(t) and the discrete sequences
of the interscale coefficients p(k) and q(k).

10.5.2 Orthonormal Bases

We should show in this section first how the discrete translates of
the scaling function and of the wavelet form the orthonormal
bases at each given scale level, and then how the scaling function
generates the multiresolution analysis.

10.5.2.1 Orthonormal Scaling Function Basis

At a given scale level the discrete translates of a basic scaling
function f(t) can form an orthonormal basis, if f(t) satisfies
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some orthonormality conditions. The scaling function can be
made orthonormal to its own translates. When a basic scaling
function f(t) has its discrete translates that form an orthonormal
set {f(t�k)}, we have

<fi, k,fi, k0>¼ 2�i
ð

fi(t � k)fi(t � k0)dt ¼ dk, k0 (10:38)

10.5.2.2 Orthonormal Wavelet Basis

Similarly, the discrete translates of a basic wavelet c(t) can
form an orthonormal basis, if c(t) satisfies some orthonormality
condition. At the same scale level, the wavelet can be made
orthonormal to its own translates. When a basic wavelet c(t)
has its discrete translates that form an orthonormal set {c(t� k)},
we have

<ci, k,ci, k0>¼ 2�i
ð

ci(t � k)ci(t � k0)dt ¼ dk, k0 (10:39)

10.5.2.3 Cross-Orthonormality

The orthonormal wavelet basis is not only orthogonal to their
own translates at the same scale level. The set of the wavelet
translates is also orthogonal to the set of the scaling function
translates at the same scale level

<fi, k,ci, n>¼ 2�i
ð

fi(t � k)ci(t � n)dt ¼ 0 (10:40)

for all k and n 2 Z.

Example: Orthonormal Haar’s Bases

An simple example for the orthonormal wavelet basis is the

historical Haar wavelet. The Haar scaling function is the simple

rectangle function in the interval [0, 1).

f(t) ¼ 1 0 � t < 1

0 otherwise




Obviously, the translations with integer steps of this rectangu-

lar function form an orthonormal set, satisfying Equation 10.38

because the translates f(t� k) and f(t� k0) with k, k0 2 Z and

n 6¼ k do not overlap.

The contracted Haar scaling function f(2t) is a rectangular
function in the interval [0, 1=2). Its discrete translates with

half integer steps form an orthonormal basis {f(2t� k)}.

Automatically, within every fixed scale 2�i, the Haar scaling

functions form an orthonormal basis with the translation

step of 2�i

As f(2t� k) are of half integer width, the f(t) in V0 can be

expressed as a linear combination of the even and odd

translates of f(2t) in V�1:

f(t) ¼ 1
ffiffiffi

2
p [f(2t)þ f(2t � 1)]

This is the two-scale relation for the Haar’s basis described in

Equation 10.36 with the interscale coefficients

p(0) ¼ 1
ffiffiffi

2
p , p(1) ¼ 1

ffiffiffi

2
p ,

p(k) ¼ 0 for k 6¼ 0, 1

The Haar’s basic wavelet has a compact support of [0, 1):

c(t) ¼
1 0 � t � 1=2

�1 1=2 � t � 1

0 otherwise

8

<

:

Obviously, The integer translates of c(t) constitute an ortho-

normal basis {c(t� k)}, because the translated wavelets

c(t� k) and c(t� k0) do not overlap for k and k0 2 Z and

k 6¼ k0 . Also, within every fixed scale level i the discrete trans-

lates of the Haar wavelets form an orthonormal basis. Further-

more, the Haar wavelets are orthogonal to the Haar scaling

function because

ð

f(t � k)c(t � n)dt ¼ 0

The Haar wavelet can be expressed as a linear combination of

the Haar scaling functions in a higher resolution level:

c(t) ¼ 1
ffiffiffi

2
p [f(2t)� f(2t � 1)]

This is the two scale relation for the Haar’ basis described in

Equation 10.37 with the interscale coefficients

q(0) ¼ 1
ffiffiffi

2
p q(1) ¼ � 1

ffiffiffi

2
p

q(k) ¼ 0 for k 6¼ 0, 1

The Haar wavelets are orthonormal at the same scale and also

orthonormal across the scales. One can verify that

ð

ci, k(t)cm, n(t)dt ¼ di,mdk, n

10.5.3 Orthonormal Subspaces

Assume that the basic scaling function f(t) satisfies some ortho-
gonality condition at a given scale level, so that its discrete
translates {f(t� k)} with integer translations k 2 Z form an
orthonormal set. The projection of a function f (t) 2 L2(R) on
the orthonormal basis {f(t� k)} is a correlation between the
original function f(t) and the scaling function f(t) sampled at
integer intervals.
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The scaling function plays the role of a smoothing function in
the multiresolution analysis. The projection of f(t) on the scaling
function basis results in a blurred approximation of f(t). All the
approximations of f (t) 2 L2(R) form a subspace V0 2 L2(R).
The vector space V0 can be interpreted as the set of all possible
approximations of functions in L2(R) generated by the orthonor-
mal set {f(t� k)}. The space V0 is spanned by the basis
{f(t� k)}.

Now we consider the dilation of the scaling function. All the
scaling functions are generated from the basic scaling function
f(t) by dyadic dilations and discrete translations. The basic
scaling function f(t) generates the orthonormal basis {f(t� k)}
of V0 with integer translation step. The dilated scaling function
f(t=2) will generate the orthonormal basis {f(2�1t� k)} of V1

with translation step of two, and the dilated scaling function
f(t=4) will generate the orthonormal basis {f(2�2t� k)} of V2

with translation step of four, and so on. There is then a set of
orthogonal bases of scaling functions. Each scaling function basis
is orthonormal at its own scale level.

The projections of functions in L2(R) on the set of orthonor-
mal scaling function bases form a set of subspaces Vi. Each
subspace Vi is the set of all possible approximations of functions
in L2(R) generated by the orthonormal scaling function basis
{f(2�it� k)}. The subspace Vi is spanned by the orthonormal
scaling function basis at the scale level i. Hence, the scaling
function f(t) generates the subspaces of the multiresolution
analysis.

Similarly, the projection of a signal function f(t) on the ortho-
normal wavelet bases, at a given resolution level i, is a correlation
between f(t) and ci(t) sampled at discrete intervals. The projec-
tions of all functions in L2(R) on the orthonormal wavelet basis
{c(2�it� k)} form a subspace Wi. The subspace Wi is spanned
by {c(2�it� k)}.

Because of the cross-orthonormality between the wavelet
set and the scaling function set, {f(2�it� k)} is orthogonal to
{c(2�it� k)}, the subspaceWi is an orthogonal complement ofVi:

Wi ? Vi

Both Vi and Wi are the subspaces on V i�1 2 V i, W i 2 V i�1.
Since Wi is orthogonal to Vi, the subspace Vi�1 is the direct
sum of Vi and Wi.

Vi�1 ¼ Vi �Wi

10.5.3.1 Properties of the Multiresolution Subspaces

The multiresolution analysis associated with the scaling function
has some interesting properties. The approximates of a function
f(t) at different resolutions must be similar, because they are all
generated by the same scaling function only with different scales.
The approximation spaces Vi then may be deduced from each
other by simple dilation.

f (t) 2 Vi , f (2t) 2 Vi�1

All the information useful to compute the approximate function
at the coarser resolution and large scale level i are contained in
the approximate function at the finer resolution and smaller scale
level (i� 1). The Vi is a subspace in Vi�1. This is a causality
property. We have a fine-to-coarse sequence as

� � �V2 � V1 � V0 � V�1 � V�2 � � � � L2(R)

where i 2 Z. When the resolution increases with i tending to
�1 the approximated function should converge to the original
function. Any function in L2(R) can be approximated as closely
as desired by its project in Vi when i tends to �1. This property
may be described as

[

i

Vi ¼ L2(R)

Conversely, when the resolution decreases to zero with i tending
toþ1, the approximations contain less and less information
and converges to zero:

\

i

Vi ¼ {0}

In summary, the multiresolution analysis is generated by the
scaling function f(t). The f(t) is scaled with the dyadic scaling
factor 2i. The discrete translates f(2�it� k) form an orthonor-
mal basis and span the subspace Vi at the resolution level i. All
the dilates and translates of the scaling function bases and the
wavelet bases are generated from a single basic scaling function
and are, therefore, not linearly independent.

10.5.4 Wavelet Series Decomposition

In this section we show how the wavelet series decomposition
and reconstruction can be implemented by iterating the discrete
filter bank. A function f (t) 2 V0 can be represented as a linear
superposition of the translated scaling functions f(t� k) in V0

f (t) ¼
X

k

c0(k)f(t � k) (10:41)

where the coefficients in the combination can be obtained using
the orthonormality of the scaling function set as

c0(k) ¼
ð

f (t)f(t � k)dt ¼< f ,f0, k> (10:42)

We now apply the entire multiresolution analysis to the
function f(t).

10.5.4.1 Orthonormal Projections on the Subspaces

The function to be analyzed is in V0. At the next coarser
resolution i¼ 1, there are two mutually orthogonal subspaces
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V1 and W1, spanned by the orthonormal bases, {f1,k(t)} and
{c1,k(t)} respectively. The subspace W1 is the orthogonal
complement of V1. Because V0 is the direct sum of V1 and
W1, V0¼V1 � W1, there is one and only one way to express a
function f (t) 2 V0 as the sum of two functions in V1 and W1,
respectively:

f ¼ P1f þ Q1f (10:43)

where the two terms on the right-hand side are the orthonormal
projections of f(t) on V1 and W1, with P1 and Q1 denoting the
orthonormal projection operators on the subspaces V1 and W1

respectively.

P1f ¼
X

n

c1(k)f1,k

Q1f ¼
X

n

d1(k)c1,k

(10:44)

where the explicit time dependence in f, fi,k and ci,k is not shown
for ease of notation.

Because the scaling function set {f1,k} is orthonormal in V1

and the wavelet set {c1,k} is orthonormal in W1 and they are
mutually orthogonal, multiplying the scaling function f1,k with
both sides of the expansions (Equation 10.43) and computing the
inner products yields

<f1,k, f >¼<f1,k,P1f > (10:45)

Multiplying f1,k with both sides of Equation 10.44, computing
the inner products and using Equation 10.45 yields

c1(k) ¼<f1,k,P1f >¼<f1,k, f > (10:46)

d1(k) ¼<c1,k,Q1f >¼<c1,k, f > (10:47)

The discrete sequences, c1(k) and d1(k), are the coefficients in the
decomposition of a continuous function f(t) onto the bases {f1,k}
in V1 and {c1,k} inW1, respectively, where both scaling functions
and wavelets are continuous. The sequence c1 is the averaged
approximation of f(t) and referred to as the discrete approxima-
tion of f(t). The sequence d1 represents the difference between the
original f(t) and the approximation P1f and is referred to as the
discrete wavelet transform coefficients of f(t) at the coarse reso-
lution level i¼ 1.

10.5.4.2 Low-Pass and High-Pass Filters

The discrete expansion coefficient sequence, c1(k) and d1(k), may
be calculated by

c1(k) ¼ 2�1=2
X

n

p(n� 2k)c0(n) (10:48)

d1(k) ¼ 2�1=2
X

n

q(n� 2k)c0(n) (10:49)

These are the correlations between the signal data c0 and
p(n) and q(n) respectively. The correlation results are down-
sampled by a factor of two, because of the double-shift of p(n)
and q(n) in the correlations. The discrete interscale coefficients
p(n) and q(n) are called the discrete low-pass and high-pass
filters, respectively.

The Equations 10.48 and 10.49 may be proved as follows:
substituting Equation 10.41 into Equations 10.46 and 10.47
yields:

c1(k) ¼
X

n

hf1,k,f0,nic0(n)

d1(k) ¼
X

n

hc1,k,f0,nic0(n)
(10:50)

The inner product between the scaling function and the wavelet
sets {f1,k} and {c1,k} at the scale i¼ 1 and the scaling function set,
{f0,n}, at the next finer scale level i¼ 0 can be computed as

<f1,k,f0,n> ¼ 2�1=2

ð

f
t

2
� k

� �

f(t � n)dt

¼ 21=2
ð

f(t)f[2t � (n� 2k)]dt (10:51)

<c1,k,f0,n> ¼ 21=2
ð

c(t)f[2t � (n� 2k)]dt (10:52)

Substituting the two scale relation:

f(t) ¼
X

n

p(n)f(2t � n)

c(t) ¼
X

n

q(n)f(2tn)

into Equations 10.51 and 10.52 and using the orthonormality of
the set {f(2t)} we obtain

<f1,k,f0,n> ¼ 2�1=2p(n� 2k) (10:53)

<c1,k,f0, n> ¼ 21=2q(n2k) (10:54)

Substituting Equations 10.53 and 10.54 into Equation 10.50
results in Equation 10.49.

10.5.4.3 Recursive Projections

The projection procedure can be iterated. The orthonormal
projections at one resolution level can continue to the next
coarser resolution. At the next coarser resolution the subspace
V2 andW2 are orthogonal complement, V1¼V2 �W2, and V1 is
the direct sum of V2 and W2. We can decompose P1 f 2 V1 into
two components along V2 and W2

P1f ¼ P2f þ Q2f (10:55)

10-22 Transforms and Applications Handbook



with

P2 f ¼
X

n

c2(n)f2,n (10:56)

Q2 f ¼
X

n

d2(n)c2,n (10:57)

Multiplying by f2,k both sides of expansions (Equation 10.56)
and using the orthonormality of the set {f2,n}, and multiplying
by f2,k both sides of expansions (Equation 10.55) and using the
mutual orthonormality between f2,n and c2,k we obtain the
discrete approximation c2(k) as

c2(k) ¼<f2,k,P2f >¼<f2,k,P1f >

¼
X

n

<f2,k,f1,n> c1(n)

Similarly, multiplying c2,k with both sides of expansions (Equa-
tions 10.55 and 10.57) and using the orthonormality of {f2,n} and
the mutual orthogonality between f2,k and c2,n within the same
scale we obtain the discrete wavelet coefficients d2(k) as

d2(k) ¼<c2,k,Q2 f >¼<c2,k, P1f >

¼
X

n

<c2,k,f1,n> c1(n)

The decomposition into smoothed approximations and details at
larger scale can be continued as far as wanted. The procedure can
be iterated as many times as wanted. The successive projections
Pi f correspond to more and more blurred version of f(t). The
successive projections Qi f correspond to the differences between
the two approximations of f(t) at two successive scale levels.
At every step i one has the orthonormal projection of Pi�1 f

along the subspaces Vi and Wi

Pi�1f ¼ Pif þ Qif

¼
X

k

ci(k)fi,k þ
X

k

di(k)ci,k (10:58)

It is easy to verify that similarly to Equations 10.53 and 10.54 and
independently of the scale level we have for scale level i:

<fi, k,fi�1, n> ¼ 21=2p(n� 2k)

<ci, k,fi�1, n> ¼ 21=2q(n� 2k)
(10:59)

It follows that

ci(k) ¼ 2�1=2
X

n

p(n� 2k)ci�1(n)

di(k) ¼ 2�1=2
X

n

q(n� 2k)ci�1(n)
(10:60)

We define the low-pass and high-pass filtering operators L and H

respectively such that the operations on a sequence a(n) are

(La)(k) ¼ 2�1=2
X

n

p(n� 2k)a(n)

(Ha)(k) ¼ 2�1=2
X

n

q(n� 2k)a(n)

Then, Equation 10.60 can be shortened to

Ci ¼ Lci�1

di ¼ Hci�1

10.5.4.4 Wavelet Series Decomposition

The approximation ci�1(n) is recursively decomposed into the
sequences ci(n) and di(n) by iterating the low-pass and high-pass
filters, according to Equation 10.60. The successive discrete
approximation sequences ci(n) are lower and lower resolution
versions of the original data c0(n), each sampled twice as sparsely
as their predecessor. The successive wavelet coefficient sequence
di(n) represents the difference between the two approximations
at resolutions levels i and i� 1.

Continuing up to resolution M we can represent the original
function f(t) by a series of detail functions plus one smoothed
approximation

f (t) ¼ PMLþ QMf þ QM�1f þ � � � þ Q1f

and

f (t) ¼
X

keZ

2�M=2cM(k)f(2
�Mt � k)

þ
XM

i¼1

X

keZ

2�i=2di(k)c(2
�it � k) (10:61)

Equation 10.61 is referred to as the wavelet series decomposition.
The function f(t) is represented as an approximation at resolution
i¼M plus the sum of M detail components at dyadic scales. The
first term in the right-hand side of Equation 10.61 is the smoothed
approximation of f(t) at very low resolution i¼M. When M

approaches to infinity the projection of f(t) on with the scaling
functions of very large scale would smooth out any signal detail
and converge to a constant. The function f(t) is then represented as
a series of its orthonormal projections on the wavelet bases.

The wavelet series decomposition is a practical representation of
the wavelet expansion and points out the complementary role of the
scaling function in the wavelet decomposition. Note that in the
wavelet series decomposition the function f(t), the scaling function
bases f(t) and the wavelet bases c(t) are all continuous. The
approximation coefficients cM(k) and the wavelet coefficients di(k)
with i¼ 1, 2, . . . ,M are discrete. In this sense, the wavelet series
decomposition is similar to the Fourier series decomposition.

The discrete approximations ci(n) and the discrete wavelet
coefficients di(n) can be computed with an iterative algorithm,
described by Equation 10.60. This is essentially a discrete
algorithm implemented by recursive applications of the discrete
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low-pass and high-pass filter bank to the discrete approximations
ci(n). The algorithm is called the tree algorithm.Thefirst two stages
of the tree algorithm for computing the wavelet decomposition is
shown in Figure 10.11. The decomposition into coarser smoothed
approximations and details can be continued as far as wanted.

Example: Decomposition with Haar Wavelets

A simple example for orthonormal wavelet decomposition is

that with the Haar’s orthonormal bases. Let subspace V0 be

spanned by the Haar scaling function basis, {f(t� k)}, defined

as a rectangular function of unit width [0, 1). The projection

of a function f(t) on V0 is an approximation of f(t) that is

piecewise constant over the integer interval. The projection

of f(t) on V�1 with the orthonormal basis {f(2t� k)} of the

next finer resolution is piecewise constant over the half inte-

ger interval. Since V�1¼V0þW0, and

P�1f ¼ P0f þ Q0f

with the projection Q0f represents the difference between the

approximation in V0 and the approximation in V�1.
The approximations P0f in V0 and P�1f in V�1 and the detail

Q0f are shown in Figure 10.12. In the figure the projection Q0f is

constant over half integer intervals, which can be added to the

approximation P0f to provide the next finer approximation P�1f.

When the scale level i approaches minus infinity with finer
and finer resolution the approximations P�i f will converge to the
original function f(t) as closely as desired.

The projection of f(t) onto the subspace Vi spanned by the
Haar scaling function basis at the resolution level i is

Pif ¼
X

k

ci(k)fi,k

with the discrete approximation coefficients

ci(k) ¼< f ,fi,k>¼ 2�i=2
ð2i(kþ1)

2ik

f (t)dt

As fiþ 1,k is a rectangular function with width of 2iþ 1 and fi,k is
with width of 2i, it is easy to verify that

fiþ1,k ¼ 2�1=2(fi,2k þ fi,2kþ1)

ciþ1,k ¼ 2�1=2(fi,2k � fi,2kþ1)
(10:62)

The discrete approximation ciþ 1(k) can be obtained directly by
the orthonormal projection of f(t) onto Viþ 1

ciþ1(k) ¼< f ,fiþ1,k>¼ 2�1=2(ci(2k)þ ci(2kþ 1)) (10:63)

The difference between the two successive approximations is
obtained using Equation 10.62 and

2

2
c1 (n)

c0 (n)

q (n)

p (n)

d1 (n)

2

2
c2 (n)

q (n)

p (n)

d2 (n)

2

2
c3 (n)

q (n)

p (n)

d3 (n)

FIGURE 10.11 Schematic wavelet series decomposition in the tree algorithm.

f (t)

p0 f

p–1 f

–Q0 f

t

t

t

FIGURE 10.12 Orthogonal projections P0f and Q0f onto the Haar
scaling function and wavelet bases. The projection at the next finer
resolutions, P�1f ¼ P0f þ Q0f. (From Akansu, A. N. and Haddad, R. A.
Multiresolution Signal Decomposition, Academic Press, Boston, 1992.
With permission.)
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Pi f � Piþ1 f ¼
X

k

[ci(k)fi,k � ciþ1(k)fiþ1,k]

¼
X

k

[(ci(2k)fi,2k þ ci(2kþ 1)fi,2kþ1)

� 2�1=2(ci(2k)þ ci(2kþ 1))2�1=2(fi,2k þ fi,2kþ1)]

¼ 1

2

X

k

(ci(2k)� ci(2kþ 1))(fi,2k � fi,2kþ1)

¼ 1

2

X

k

(ci(2k)� ci(2kþ 1))ciþ1,k

Hence, the projection of f(t) onto the subspace Wiþ1 is the
difference between Pi f and Piþ 1 f

Qiþ1,k ¼
X

k

diþ1(k)ciþ1,k ¼ Pif � Piþ1f

provided that

diþ1(k) ¼ 2�1=2(ci(k)� ci(2kþ 1)) (10:64)

The interscale coefficients that are the discrete low-pass and
high-pass filers, p(n) and q(n), are given for the Haar’s bases
have been given in Section 10.5.2. Hence, the iterated filtering by
the low-pass and high-pass filters becomes

ciþ1(k) ¼
1
ffiffiffi

2
p

X

n

p(n� 2k)ci(n) ¼
1
ffiffiffi

2
p (ci(2k)þ ci(2kþ 1))

diþ1(k) ¼
1
ffiffiffi

2
p

X

n

q(n� 2k)ci(n) ¼
1
ffiffiffi

2
p (ci(2k)� ci(2kþ 1))

that are agree with Equations 10.63 and 10.64.

10.5.5 Reconstruction

10.5.5.1 Recursive Reconstruction

The original signal sequence c0(n) can be reconstructed from
the sequences of the approximation coefficients ci(n) and of the
wavelet coefficients di(n) with 0 < i � M, where i¼M is the
lowest resolution in the decomposition. At each resolution
level i we have the wavelet decomposition described by Equations
10.58 and 10.60. On multiplying the both sides of Equation 10.58
by fi�1,n and integrating the both sides we obtain

ci�1(n) ¼<Pi�1f ,fi�1,n>

¼
X

k

ci(k) <fi,k,fi�1,n> þ
X

k

di(k) <ci,k,fi�1,n>

¼ 2�1=2
X

k

ci(k)p(n� 2k)þ 2�1=2
X

k

di(k)q(n� 2k)

(10:65)

where the inner products<fi,k, fi�1,n> and<ci,k, ci�1,n>
are obtained in Equation 10.59 as the interscale coefficients
p(n� 2k) and q(n� 2k). Hence, the discrete approximation
ci�1(n) at the next finer resolution can be obtained as the sum
of two convolutions between the discrete approximation ci(n)
and the low-pass synthesis filter p(n) and between the wavelet
coefficients di(n) and the high-pass synthesis filter q(n).

The synthesis filters are identical to the analysis filters. But the
filtering operations become the convolutions for synthesis and
reconstruction instead of the correlations for analysis and
decomposition. To compute the convolution with the synthesis
filters in Equation 10.65 one must first put zeros between each
sample of the sequences ci(n) and di(n) before convolving the
resulting sequences with the synthesis low-pass and high-pass
filters p(n) and q(n). The process is quite similar to the expand
operation in the reconstruction algorithm of the multiresolution
Laplacian pyramid and the subband coding. The reconstruction
process can be repeated by iterations. We define the synthesis
filtering operators L0 and H0 as

(L0a)(n) ¼
1
ffiffiffi

2
p

X

k

p(n� 2k)a(k)

(H0a)(n) ¼
1
ffiffiffi

2
p

X

k

q(n� 2k)a(k)

and rewrite Equation 10.65 in a shorten form

ci�1 ¼ L0ci þ H0di

The block diagram shown in Figure 10.13 illustrates the recon-
struction algorithm, where the up-sampling by two means put-
ting zeros between the sample of the sequences.

To reconstruct the original data c0(n) we start from the lowest
resolution approximation cM. According to Equation 10.65
we have

cM�1 ¼ H0dM þ L0cM

cM�2 ¼ H0dM�1 þ L0(H0dM þ L0cM)

¼ H0dM�1 þ L0H0dM þ (L0)
2cM

When the discrete approximation ci�1 is obtained from ci(n) and
di(n), the next finer approximation ci�2(n) can be obtained from
the approximation ci�1(n) and the wavelet coefficients di�1(n).

p (n)
ci (n) ci–1 (n)

di (n)

+2

q (n)2

FIGURE 10.13 Schematic wavelet reconstruction.
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The process can continue until the original sequence c0(n) is
reconstructed. The reconstruction formula for the original
sequence is

c0 ¼
XM

i¼1
(L0)

i�1H0di þ (L0)
McM (10:66)

In this reconstruction procedure it is the low-pass filtering oper-
ator L0 that is iteratively applied to generate the finer resolution
discrete approximations.

10.5.5.2 Discussion

In summary, we have introduced in this section the orthonormal
wavelet series decomposition and reconstruction. In the multi-
resolution analysis framework, the basic function of the orthonor-
mal wavelet transform is the scaling functionf(t) that satisfies the
two scale relation. The discrete translates of the scaling functions
form the orthonormal bases within each resolution level. The
discrete translates of the wavelets also form the orthonormal
bases within each resolution level. The scaling and the wavelet
function bases aremutually orthogonal within the same resolution
level. The recursive orthonormal projections on the multiresolu-
tion subspaces yield the wavelet series decomposition.

The wavelet series decomposition and reconstruction are com-
puted by iterating the discrete low-pass filters p(n) and the
discrete high-pass filters q(n), in the tree algorithms, in order to
compute a set of discrete wavelet transform coefficients di(n) and
a set of discrete approximation coefficients ci(n).

The scaling function and wavelet bases are orthonormal only
with discrete translations and dilations. The decomposition of a
continuous function onto the orthonormal scaling and wavelet
function bases yields discrete sequences of expansion coefficients.
Hence, there is an analogy of the orthonormal wavelet transform
with the Fourier series decomposition.

10.5.6 Biorthogonal Wavelet Bases

The biorthogonal wavelet bases give more flexibility to the filter
design. We define in the multiresolution framework two hier-
archies of approximation subspaces:

� � �V2 � V1 � V0 � V�1 � V�2 � � �
� � �V2 � V1 � V0 � V�1 � V�2 � � �

where the subspaces Vi are spanned by the translates of the
scaling function f(t), and �Vi are spanned by the translates of
the dual scaling function �f(t). The wavelet subspace Wi is com-
plementary to Vi in the finer resolution subspace Vi�1, but is not
an orthogonal complement. Instead, Wi is the orthogonal com-
plement to �Vi. Similarly, the dual wavelet subspace �Wi is the
orthogonal complement to Vi. Thus,

Wi ? V i and W i ? Vi

V i�1 ¼ V i �Wi and Vi�1 ¼ Vi �W i

The orthogonality between the wavelet and the dual scaling
function and between the scaling function and the dual wavelet
can also be expressed as

<f(t � k),c(t � n)> ¼ 0

<c(t � k),f(t � n)> ¼ 0

for any n, k 2 Z. We expect also the orthogonality between
the scaling function and its dual and between the wavelet and
its dual:

<f(t � k),f(t � n)> ¼ dk,n

<c(t � k),c(t � n)> ¼ dk,n

The orthogonality expressed in the four preceding equations is
referred to as the biorthogonality. Indeed, the biorthogonal scal-
ing functions and wavelets can be found with the polynomial
B-splines scaling functions and wavelets. The cross scale ortho-
gonality of the wavelet and its dual can also be obtained

<ci,k,cm, n>¼ di,mdk,n

Any function f 2 L2(R) can be expanded onto the biorthogonal
scaling function and the wavelet bases as

f (t) ¼
X

i

X

k

< f ,ci,k> ci,k(t)

¼
X

i

X

k

< f ,ci,k> ci,k(t)

and also

f (t) ¼
X

i

X

k

< f ,fi,k> fi,k(t)

¼
X

i

X

k

< f ,fi,k> fi,k(t)

The implementation of the wavelet transform on the biorthogo-
nal bases is also with the discrete low-pass and high-pass filters
p(n) and q(n) in the multiresolution framework. In the recon-
struction from the biorthogonal wavelet transform, however,
the discrete synthesis filters p0(n) and q0(n) are not identical to
the analysis filters p(n) and q(n). They can have no equal length.
We shall discuss the low-pass and high-pass filters for the
biorthogonal wavelet transform in detail in Section 10.6.4 in the
framework of the subband coding theory. The discrete iterated
filters are introduced with the two scale relations as

f(t) ¼
X

n

p(n)f(2t � n)

f(t) ¼
X

n

p0(�n)�f(2t � n)
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and

c(t) ¼
X

n

q(n)f(2t � n)

c(t) ¼
X

q0(�n)�f(2t � n)

One stage of the wavelet decomposition and reconstruction with
the biorthogonal filter bank is shown in Figure 10.14.

10.5.6.1 Biorthogonal Wavelet Decomposition

Similar to the orthogonal decomposition in Equation 10.60 the
decomposition with the biorthogonal wavelets is implemented
with the biorthogonal analysis filters p(n) and q(n) as:

ci(k) ¼ 2�1=2
X

n

p(n� 2k)ci�1(n)

and

di(k) ¼ 2�1=2
X

n

q(n� 2k)ci�1(n)

10.5.6.2 Biorthogonal Wavelet Reconstruction

Similar to the reconstruction with the orthonormal wavelet
transform (Equation 10.65) the signal is reconstructed with the
biorthogonal synthesis filters p0(n) and p0(n) as

ci�1(n) ¼ 2�1=2
X

k

ci(k)p0(n� 2k)þ 2�1=2
X

k

di(k)q0(n� 2k)

We shall discuss the biorthogonal analysis and synthesis filters in
Section 10.6.

10.6 Filter Bank

The discrete and dyadic wavelet transform is computed in the
multiresolution signal analysis framework with the recurring
low-pass and high-pass filters, that can be designed in the multi-
resolution signal analysis framework with the subband coding
theory. The properties of the filters may be studied equivalently
in the time domain and in the frequency or the z-transform
domain.

10.6.1 FIR Filter Bank

10.6.1.1 Two Channel Filter Bank

The two-channel filter bank, shown in the Figure 10.14, is a
building block of the discrete wavelet transform and subband
coding. An input signal x(k) is filtered in the two channels by the
low-pass filter p(k) and high-pass filter q(k), which are the
analysis filters for decomposing the signal. The analysis filtering
is followed by a down-sampling by two. The filters p0(k) and
q0(k) are the synthesis filters for reconstructing the signal. There
is up-sampling before the synthesis filters.

The low-pass and high-pass filters p(k) and q(k) are discrete
and usually real-valued sequences with k 2 Z. For the sake of
consistency with the wavelet decomposition described in Section
10.5, we define that the analysis filtering is a correlation oper-
ation, and the synthesis filtering is a convolution operation.

10.6.1.2 Finite Impulse Response (FIR) Filters

Digital filers can be classified into two groups. In the first group,
the filter is a finite-extent sequence, called the finite impulse
response (FIR) filter. In the second group, the filter is of infinite
extent, called the infinite impulse response (IIR) filters. The
FIR filters have compact supports. Only a finite number of p(k)
and q(k) are not zero: p(k) 6¼ 0 and q(k) 6¼ 0, for 0 � k � N � 1.
However, in the biorthonormal filter banks the low-pass and
high-pass filters can have different lengths.

The Fourier transforms of the FIR filters p(k) and q(k) with
compact support would have no fast decay. There is a trade-off
between the compactness and the regularity of the FIR filter.

10.6.1.3 Transfer Functions

Both filters p(k) and q(k) for k 2 Z have limited lengths (FIR
filters). The filter length is N. Their Fourier transforms exist as

P(v) ¼
X

k

p(k) exp (�jkv)

Q(v) ¼
X

k

q(k) exp (�jkv)
(10:67)

where k¼ 0, 1, 2, . . .N� 1 and the Fourier transforms of the filters,
i.e., the transfer functions, P(v) and Q(v), are complex-valued
continuous functions. Note that Equation 10.67 may be consid-
ered as the Fourier series expansions of P(v) and Q(v), therefore,
both P(v) and Q(v) are periodic functions of period v¼ 2p.

χ (n) χ΄(n)

p (n) p0 (n)2 2

q (n) q0 (n)2 2

+

FIGURE 10.14 Schematic wavelet decomposition and reconstruction with the biorthogonal scaling function and wavelet bases.
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The Fourier series expansions (Equation 10.67) are equivalent
to the z-transform of the sequences p(k) and q(k). With the
definition of z as z¼ exp(jv), Equation 10.67 can be rewritten
as the Laurent polynomial:

P(z) ¼
X

k

p(k)z�k

Q(z) ¼
X

k

q(k)z�k
(10:68)

where k¼ 0, 1, 2, . . . , N�1 and both P(z) and Q(z) are complex-
valued continuous functions of the complex variable z.

The degree of the Laurent polynomial P(z) is then equal to
N�1, i.e., the length of the FIR filter p(k) minus one.

The analysis filtering is a correlation operation. In the fre-
quency domain, the filtering of the signal x(k) by the low-pass
and high-pass filters, p(k) and q(k), is equivalent to multiplying
the Fourier transform of x(k), X(z), by the transfer functions
P(z) and Q(z). That yields X(z)P(z�1) and X(z)Q(z�1), respect-
ively, where P(z�1) and Q(z�1) are complex conjugated P(z)
and Q(z), used in the correlation operations. Note that the coeffi-
cients p(k) and q(k) are real-valued in the Laurent polynomial
Equation 10.68.

10.6.1.4 Time Delay and Causality

If the signal x(n) is a time sequence, then the filtering convolu-
tion operation with a filter g(k) is written as

X

k

g(k)x(n� k) ¼ g(0)x(n)þ g(1)x(n� 1)þ � � �

where x(n) is the current input, x(n� 1) is the input earlier by
one time step etc. The output has a time delay with respect to the
input. The filter g(k) is a causal filter, and g(�k) must be zero,
because the output cannot be a function of the later input. For
instance, if g(�1) 6¼ 0, then the filtering output would contain a
term of g(�1)x(nþ 1), where x(nþ 1) is the input of one time
step later. According to the causality principle the filtering output
at a time step n cannot be a function of x(nþ 1) so that g(�1)
must be zero.

10.6.1.5 Linear-Phase Filters

The low-pass FIR filters p(k) are usually real-valued and sym-
metric. In this case, the transfer function P(v) as the Fourier
transform of p(k) is itself a real-valued and even function, with
zero phase. Because p(k) is causal, p(�k) is not allowed. There-
fore, the filter p(k) must be shifted in time domain, centered at
N=2, that corresponds to a time delay, where N is the length of
the FIR filter. Hence, the symmetric and antisymmetric filters
should be

Symmetric p(k) ¼ p(N � k)

Antisymmetric p(k) ¼ �p(N � k)
(10:69)

Their transfer function P(v) would have a linear phase, and
becomes P(v)exp(�jmv), or P(z)z�m. Its modulus jP(v)j would
be even.

In some wavelet bases, such as the Daubechies bases, the low-
pass filters are not symmetric. A nonsymmetric filter would
introduce a nonlinear phase to the transfer function, that can
distort the proper registration of different frequency compon-
ents. For instance, in image processing applications of the non-
symmetrical filters will introduce important image distortions.

10.6.1.6 Binary Coefficient Filters

A binary coefficients or dyadic coefficient is an integer divided by
a power of 2. In the computer, multiplication by a binary number
can be executed entirely by shifts and adds without round-off
error. Also, in some architectures, the filters need less time and
less space. We are therefore highly interested in binary coefficient
filters.

10.6.2 Perfect Reconstruction

10.6.2.1 Down-Sampling

The down-sampling by factor of two is a decimation operation,
that is to save the even-numbered and discard the odd-numbered
components of data sequence. The down-sampling by two can be
considered as being achieved in two steps. First, the signal x(n) is
sampled with the double sampling interval:

x0(n) ¼ x(n) for n ¼ 0, �2, �4, . . .

0 otherwise




The intermediate signal x0(n) has the same time clock rate as that
of x(n). Then, the time clock rate is reduced by two to obtain the
down-sampled signal y(n) as

y(n) ¼ x0(2n) for n ¼ 0, �1, �2 . . . :

Its spectrum Y(v) in the Fourier domain is two-times larger than
X(v), because Y(v)¼X0(v=2).

Discarding the odd-numbered components leads to a loss in
information. This loss of information is definitive. In the fre-
quency domain this is aliasing error. The down-sampling process
is not invertible.

The down-sampling is not shift-invariant. By the down-
sampling by two of its output, the convolution of a filter becomes
a convolution with the filter that is shifted only by even numbers,
i.e., a double-shift convolution. Therefore, when the input signal
is shifted by an odd number, the results of the double shift
convolution can change dramatically. The Laplacian pyramid,
discrete and dyadic wavelet transform, subband coding and
all other multiresolution analysis using the down-sampling are
all highly dependent of the relative alignment of the input signal
with the sub-sampling lattices and are not shift-invariant.
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10.6.2.2 Up-Sampling

The up-sampling by factor of two is an expansion operation, that
is to insert zeros as the odd-numbered components into the data
sequence. The up-sampling is also implemented in two steps.
First, insert zeros between nodes of the down-sampled signal y(n)
and then increase the time clock rate by two and let

y0(n) ¼ y(n=2) for n ¼ 0, �2, �4, . . .

0 otherwise




In the Fourier domain the spectrum of the up-sampled data Y0(v)
is compressed by two with respect to the original Y(v), because
Y0(v)¼Y(2v). Thus, a low-pass filter should be used for smooth-
ing the up-sampled signal. The up-sampling processes also is not
shift-invariant. When the input signal is shifted by an odd num-
ber, the results of the up-sampling can change dramatically.

10.6.2.3 Aliasing Cancellation

Aliasing error is introduced by the down-sampling. The signal
x(k) is filtered in the two channels by the low-pass and high-pass
filters. The filtered signals are described in the frequency domain
as X(z)P(z�1) and X(z)Q(z�1) before the down-sampling. The
combination process of the down-sampling followed by the
up-sampling would put to zero all the odd-numbered compon-
ents of the filtered signals. This corresponds in the z-domain to
keep only the even powers of z in X(z)P(z�1) and X(z)Q(Z�1),
that can be represented as [12]

Low � pass channel output
1

2
[X(z)P(z�1)þ X(�z)P(�z�1)]

High� pass channel output
1

2
[X(z)Q(z�1)þ X(�z)Q(�z�1)]

(10:70)

or equivalently in the frequency domain

1

2
[X(v)P*(v)þ X(vþ p)P*(vþ p)]

1

2
[X(v)Q*(v)þ X(vþ p)Q*(vþ p)]

(10:71)

where the terms X(�z)P(�z�1) and X(�z)Q(�z�1) are aliasing
errors introduced by the down-sampling, which are not canceled
by the up-sampling.

In the two channel filter bank, the alias termsX(�z)P(�z�1) and
X(�z)Q(�z�1) can be canceled in the synthesis step by
the synthesis filters P0(z) and Q0(z) with the aliasing term, X(�z)
P(�z�1), in the low-pass channel multiplied by P0(z) and the
aliasing term, X(�z)Q(�z�1), in the high-pass channel multiplied
by Q0(z). Hence, the aliasing terms are canceled, if the condition

P0(z)P(�z�1)þ Q0(z)Q(�z�1) ¼ 0 (10:72)

is satisfied. The Equation 10.72 is the antialiasing condition.

10.6.2.4 Perfect Reconstruction Condition

The perfect reconstruction requires x̂(n) ¼ cx(n)z�m, i.e., the
output is equal to the input in the building block shown in
Figure 10.14 with an extra constant c. When the input x(n) passes
the two channels without divided by two, but the data from the
two channels are added up in the end for the output, we have c¼ 2.
If the analysis and synthesis filters are normalized to remove the
constant c, we have c¼ 1. The extra phase shift z�m with m 2 Z

corresponds to a possible time delay between the output and the
input data sequences. The filter bank can be causal.

Now, the signal passes both the low-pass filter and high-
pass filter channels. Each is followed by down-sampling and
up-sampling, respectively as expressed in Equation 10.70. We
then multiply each by the synthesis filters, P0(z) and Q0(z),
respectively and sum them up. When the antialiasing condition
(Equation 10.72) is satisfied, and the two aliasing terms X(�z)P
(�z�1) and X(�z)Q(�z�1) in Equation 10.70 are canceled, the
output could be identical to the input, and the building block
could behave like an identity operation if:

P0(z)P(z
�1)þ Q0(z)Q(z

�1) ¼ cz�m (10:73)

The ensemble of Equation 10.73 for perfect reconstruction and
Equation 10.72 for aliasing error cancellation is referred to as the
perfect reconstruction condition.

10.6.2.5 Modulation Matrix

Two 23 2 modulation matrices are defined as

M(z) ¼
P(z) P(�z)
Q(z) Q(�z)

" #

and

M0(z) ¼
P0(z) P0(�z)
Q0(z) Q0(�z)

" # (10:74)

where M(z) is the analysis modulation matrix and M0(z) is the
synthesis modulation matrix.

The perfect reconstruction conditions (Equations 10.72 and
10.73) condition may be summarized to

P0(z) Q0(z)½ 	M(z�1) ¼ c 1 0½ 	 (10:75)

where the constant extra time delay z�m are removed in the
sake of simplicity. If we want the synthesis filters, P0(�z) and
Q0(�z), to play the same role as P0(z) and Q0(z), then the aliasing
cancellation Equation 10.72 becomes

P0(�z)P(�z�1)þ Q0(�z)Q(�z�1) ¼ 0

and the perfect reconstruction condition (Equation 10.73) becomes

P0(�z)P(z�1)þ Q0(�z)Q(z�1) ¼ cz�m
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then combining with Equation 10.75 we have

M0(z)
tM(z�1) ¼ cI (10:76)

where I is the identity matrix. Note that in the time domain, the
filters with the transfer function P0(�z) and Q0(�z), are only
shifted by one with respect to that with the transfer function
P0(z) and Q0(z). Moreover, if we need the two modulation
matrices be even reversible, then we need also the perfect recon-
struction condition as

M(z�1)M0(z)
t ¼ cI (10:77)

that will introduce the cross-filter relation as shown in the next
sections.

10.6.3 Orthonormal Filter Bank

10.6.3.1 Paraunitary Matrix

The orthogonal filter bank is the perfect reconstruction filter
bank with the synthesis filters equal to the analysis filters,
P0(z) ¼ P(z) and Q0(z) ¼ Q(z), in the building block shown in
Figure 10.14. Therefore, for the orthogonal filter bank we have
from Equations 10.76 and 10.77

M(z)tM(z�1) ¼ cI and M(z�1)M(z)t ¼ cI (10:78)

The modulation matrix M(z) is a para-unitary matrix, if the
constant factor c in the right-hand side of Equation 10.78 is
not considered. Hence, the low-pass and high-pass filters for
the discrete wavelet transform are the two-channel paraunitary
filter bank.

10.6.3.2 Orthonormality Condition

From the paraunitary filter bank condition (Equation 10.78)
it follows that

jP(z)j2 þ jP(�z)j2 ¼ c and jP(v)j2 þ jP(vþ p)j2 ¼ c

jQ(z)j2 þ jQ(�z)j2 ¼ c and jQ(v)j2 þ jQ(vþ p)j2 ¼ c

(10:79)

We call both jP(z)j2 and jQ(z)j2 the half-band filters and shall
discuss their properties later in this section. The relation (Equa-
tion 10.79) can be also obtained from the orthonormality condi-
tion of the scaling function and wavelet bases in the frequency
domain, as will be shown in Section 10.7.

10.6.3.3 Cross-Filter Orthonormality

From the paraunitary filter bank condition (Equation 10.78) it
also follows that

P(z�1)Q(z)þ P(�z�1)Q(�z) ¼ 0

Q(z�1)P(z)þ Q(�z�1)P(�z) ¼ 0
(10:80)

The relation (Equation 10.80) can be also obtained from the
cross-orthonormality condition of the scaling function and wave-
let bases in the frequency domain, as will shown in Section 10.7.

In this section we introduced the paraunitary filter bank,
which leads to the orthonormality and cross-filter ortho normal-
ity conditions. The paraunitary filter bank is a solution of the
aliasing error cancellation and perfect reconstruction conditions
(Equation 10.75), which becomes the modulation matrix Equa-
tions 10.76 and 10.77 with the additional constraints. In Section
10.7 we shall demonstrate the orthonormality and cross-filter
normality conditions on the low-pass and high-pass filters, and
then use the orthonormality and cross-filter ortho normality
conditions to demonstrate the paraunitary filter bank condition.

10.6.3.4 Alternating Flip

It is easy to verify that the solution

Q(z) ¼ (�z)�(N�1)P(�z�1) (10:81)

satisfies the cross-filter orthonormality condition (Equation
10.80), with an arbitrary even number N, which is the length of
the filter in time domain.

The inverse z-transform of the solution (Equation 10.81) gives
the relation between the low-pass filters p(n) and high-pass filters
q(n) in the time domain. In multiresolution signal analysis,
the wavelet bases are generated by the basic scaling functions.
Similarly, the high-pass filters in the filter bank are generated
from the low-pass filter by the alternating flip relation. In the
orthonormal wavelet transform the high-pass filters q(n) are
obtained from the low-pass filters p(n), by the inverse z-trans-
form of Equation 10.81:

q(n) ¼ (�1)np(N � 1� n) for n ¼ 0, 1, 2, . . . ,N � 1 (10:82)

for an even N, such that the low-pass and high-pass filters p(n)
and q(n) satisfy the cross-filter orthogonality, where N is the
length of the FIR filters, or can be any even number. Note that
an arbitrary even number can be added to N, resulting in an even
number shift of p(N� 1� n).

10.6.3.5 Quadrature Mirror Filters (QMF)

The alternating flip filters are a solution of the cross-filter ortho-
normality condition (Equation 10.80). For the alternating flip
filter bank, the low-pass and high-pass filters satisfy

jQ(z)j2 ¼ jP(�z�1)j2 or equivalently

jQ(v)j2 ¼ jP(vþ p)j2 (10:83)

and are referred to as a pair of quadrature mirror filters. If
the high-pass filter Q(v) is such that Q(v)jv¼0 ¼ 0, then from
the quadrature mirror property (Equation 10.83) we have
P(v)jv¼p ¼ 0. If the low-pass filter P(v) is normalized such that
P(v)jv¼0 ¼ 1, then from the quadrature mirror property (Equa-
tion 10.83) the high-pass filter would be such that Q(v)jv¼p ¼ 1.
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10.6.3.6 Mirror Filters

A pair of FIR filters L(v) and H(v) are referred to as mirror
filters, if

L(z) ¼ H(�z) or equivalently L(v) ¼ H(vþ p) (10:84)

In the time domain the two FIR mirror filters with real-valued
coefficients satisfy the relation

l(k) ¼ (�1)kh(k) (10:85)

that is the inverse z-transform of Equation 10.84.
The filter pair L(v) and H(v) are mirror filters because on

substituting for v by v�p=2 in Equation 10.84 and noting that
the low-pass filter L(n) is real valued, and jL(v)j is an even
function of v, we obtain

H
p

2
þ v

� �	
	
	

	
	
	 ¼ L

p

2
� v

� �	
	
	

	
	
	 (10:86)

This is the mirror image property of jL(v)j and jH(v)j about
v¼p=2.

10.6.3.7 Ideal Half-Band Filters

Intuitively, if a low-pass filter is an ideal low-pass filter: L(v)¼ 1
for �p=2�v�p=2 and P(v)¼ 0 elsewhere, then its mirror
filter H(v) is the ideal half-band high-pass filter : H(v)¼ 0 for
�p=2�v�p=2 and equal to 1 elsewhere. They are both brick-
wall filters and are rectangular functions. Hence, the input spec-
trum in the full band �p�v�p is divided into two equal
subbands by the analysis mirror filters L(v) and H(v).

10.6.3.8 Half-Band Filters

The idea half-band filters are orthonormal. In practice of multi-
resolution signal analysis, it is not necessary to use the ideal low-
pass and high-pass filters. A filter G(z) is a half-band filter if

G(z)þ G(�z) ¼ 2 or equivalently

G(v)þ G(vþ p) ¼ 2 (10:87)

The filter G(v) is half-band because on substituting for v by
v–p=2 in Equation 10.87 and noting that the low-pass filter g(n)
is real valued, and jG(v)j is an even function of v, we obtain

G
p

2
� v

� �	
	
	

	
	
	 ¼ G

p

2
þ v

� �	
	
	

	
	
	 (10:88)

There is the mirror image property of jG(v)j about v¼p=2,
which is referred to as the half-band frequency.

In the Laurent polynomial (Equation 10.68) of the half-band
filters G(z) all the even powers of z must be zero, and all the odd
powers of z must be canceled by each others, except the zero
power term G(0)¼ 1.

Note that the low-pass and high-pass filters in the multiresolu-
tion signal analysis are not themselves half-band, but their square
modula are half-band filters, according to Equation 10.79 and
are the quadrature mirror filters according to Equation 10.83.

10.6.3.9 Power Complementary Filters

The filter pair {L(v), H(v)} are referred to as the power comple-
mentary filters if

jL(v)j2 þ jH(v)j2 ¼ c (10:89)

where the constant c¼ 1 or 2. This relation shows the energy
complementary property of the low-pass and high-pass filters.
From the orthonormality condition (Equation 10.79) and quad-
rature mirror condition (Equation 10.83) it follows that P(v) and
Q(v) are complementary, because:

jP(z)j2 þ jQ(z)j2 ¼ c or

jP(v)j2 þ jQ(v)j2 ¼ cjP(�z)j2 þ jQ(�z)j2 ¼ c or

jP(vþ p)j2 þ jQ(vþ p)j2 ¼ c (10:90)

10.6.4 Orthonormal Filters in Time Domain

From the orthonormal filter condition (Equation 10.79) both
jP(z)j2 and jQ(z)j2 are half-band filters so that in their Laurent
polynomials all the even powers of zmust be zero. Note that P(z)
and Q(z) are the Fourier transforms of the time domain filters
p(k) and q(k) respectively. The inverse Fourier transform of
the square modulus jP(z)j2 is the autocorrelation of p(k). Let a
product filter Pr (z) ¼ jP(z)j2 . In the Laurent polynomial of
Pr(z), the coefficients pr(2n) ¼ 0 for n 6¼ 0 and pr(0) ¼ 1.
Hence, the time domain low-pass filter has the double-shift
orthogonality as

X

k

p(k)p(k� 2n) ¼ d(n)

and similarly for the high-pass filter

X

k

q(k)q(k� 2n) ¼ d(n)

From the cross-filter orthonormality (Equation 10.80) and using
the similar process we can have the cross-filter orthonormality in
the time domain as

X

k

p(k)q(k� 2n) ¼ 0

All the filters are shifted in the time domain by even integers in the
correlations. Therefore, at the same resolution level, the low-pass
filter p(n) is orthonormal to its own translates by two or by any
even numbers. The high-pass filter q(n) also is orthonormal to its
own translates by two or by any even numbers. Also, the low-pass
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and high-pass filters translated by two, or any even numbers, are
mutual orthogonal. This is the double-shift orthonormality of the
low-pas and high-pass filters in the time domain.

In the multiresolution signal analysis, the double-shift of the
low-pass and high-pass filters in the time domain correspond to
the filtering followed by the down-sampling by factor of two.

The double-shift orthonormality implies that the orthonormal
wavelet transform filters p(n) and q(n) must have even lengths.

10.6.5 Biorthogonal Filter Bank

In the two-channel filter bank, shown in Figure 10.14, the syn-
thesis filters may be different from the analysis filters, that brings
more freedom in the filter design. The perfect reconstruction
conditions should be still satisfied. The filter bank in this case is
biorthogonal.

The choice for the synthesis filters P0(z) and Q0(z) as

P0(z) ¼ Q(�z�1)
Q0(z) ¼ �P(�z�1)

(10:91)

satisfies the alias cancellation equation:

P0(z)P(�z�1)þ Q0(z)Q(�z�1) ¼ 0

Thus, the synthesis filters are associated to the analysis filters.
The low-pass synthesis filter is equal to the high-pass analysis
filter. They have the same length. The high-pass synthesis filter is
equal to the low-pass analysis filter. They have the same length.
The synthesis filters cancels the alias errors, caused by the analy-
sis filters, and the down- and up-sampling.

10.6.5.1 Product Filters

With the choice (Equation 10.91) for the synthesis filters the
perfect reconstruction Equation 10.73

P0(z)P(z
�1)þ Q0(z)Q(z

�1) ¼ 2z�m

becomes

P0(z)P(z
�1)� P0(�z)P(�z�1) ¼ 2z�m (10:92)

The left-hand side of Equation 10.92 is an odd function of z.
Therefore, in the right-hand side of Equation 10.92 the power
�m of z must be odd. We define the product filter Pr(z) as:

Pr (z) ¼ P0(z)P(z
�1) (10:93)

and the normalized product filter as

~Pr(z) ¼ P0(z)P(z
�1)zm

where m is an odd number. Then, the perfect reconstruction
condition (Equation 10.92) becomes

~Pr(z)þ ~Pr(�z) ¼ 2 (10:94)

The normalized product filter ~Pr(z) has to be a half-band filter.
Hence, all the even powers of z in ~Pr(z) must be zero, except for
zero power term ~Pr(0) ¼ 2. There are only the odd powers of z in
the polynomial ~Pr(z) and all the odd powers must be canceled by
each others,

10.6.5.2 Degrees and Symmetries

Because the normalized product filter is half-band, and m is an
odd number, the product filter Pr (z) ¼ P0(z)P(z�1) must be a
polynomial in z of even degrees. Its two factors, the low-pass
analysis and synthesis filters, P(z�1) and P0(z), must both have
even degrees or both have odd degrees. In the time domain, the
low-pass analysis and synthesis filters must be both of odd
lengths or both of even length.

The symmetric or antisymmetric filters are linear-phase filters.
The product filter can be symmetric, but can not be antisymmetric,
because the half-band filter ~Pr(0) 6¼ 0 also the low-pass filter can
not have a zero mean:

P

p(k) 6¼ 0. Hence, the low-pass analysis
and synthesis filters, P(z�1) and P0(z), can only be both symmetric.
In this case, the low-pass analysis and synthesis filters in the time
domain, are both symmetric and have either both odd lengths or
both even lengths.

The synthesis filters are obtained from the analysis filters as
shown in Equation 10.91:

P0(z) ¼ Q(�z�1)

Q0(z) ¼ �P(�z�1)

by changing �z to z that alters the signs of all the coefficients of
the high-pass filters in time domain, q(k) and q0(k). When P(z�1)
and P0(z) are symmetric and of odd lengths, changing �z to z

does not change the symmetry of the high-pass filters. Then, the
high-pass filters are also both symmetric and of odd lengths.
When P(z�1) and P0(z) are symmetric and of even lengths,
changing �z to z and changing the signs of the p0(k) and q0(k)
of odd k do change the symmetry to antisymmetry, so that the
high-pass filters of even lengths are both antisymmetric.

10.6.5.3 Design Biorthonormal Filters

The biorthonormal filter bank is design to satisfy the perfect
reconstruction condition (Equation 10.92). First, one chooses
the product filter ~Pr(z) satisfying the half-band condition (Equa-
tion 10.94). If the analysis and synthesis filters in the time
domain have the lengths N and N0, respectively, the degrees of
the polynomials P(z�1) and P0(z) would be N�1 and N0� 1,
respectively. Then, the degree of the polynomial ~Pr(z) will be
NþN0� 2, which is usually determined at the beginning. Then,
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one factorize the product filter Pr(z) into the low-pass analysis
and synthesis filters P(z�1) and P0(z). The high-pass filters can be
finally determined according to the alternating flip relation
(Equation 10.91). Splitting Pr(z) into P(z�1) and P0(z) can have
some degrees of freedom which can be used for providing some
useful properties, such as the linear phase filters (symmetry or
antisymmetry).

In one of design methods the product filter Pr(z) takes the
form as

Pr (z) ¼ 1þ z�1

2

� �M

F(z) (10:95)

where the first term is the Fourier spectrum of a low-pass filter
whose corresponding scaling function is a spline function, as will
be discussed in Section 10.8.1. Note that z ¼ e jv and
j(1þ e�jv) 2j ¼ jcos vj= . Hence, this term insures jPr (v)j to
have a zero of order M at z¼�1 and at v¼p, and to have M
vanishing derivatives at v¼ 0. The second term F(z) insures the
Pr(z) to satisfy the perfect reconstruction condition and being a
half-band filter.

The biorthonormal wavelet transform filter banks can be
designed with the lifting steps and the polyphase representation.
Readers interested in the polyphase, lifting and spectral factor-
ization are referred to other reference books [24]. The lifting
steps can be considered as a balancing operation between the
smoothness of the analysis and synthesis filters [24], that is
moving the factor (1þ z�1) 2= from the synthesis filter P0(z) to
the analysis filter P(z�1) where P0(z) and P(z�1) are two factors
in the same product filter Pr (z) ¼ P0(z)P(z�1). Multiplying
(1þ z�1) 2= to P(z�1) corresponds to in the time domain

pnew(k) ¼ 1

2
[pold(k)þ pold(k� 1)]

The synthesis filter P0(z) is divided by (1þ z�1) 2= then

Pnew
0 (z) ¼ Pold

0 (z)
1þ z�1

2

� ��1
and

Pnew
0 (z) ¼ 2Pold

0 (z)� z�1Pnew
0 (z)

Hence, the synthesis filter in the time domain is changed as

pnew0 (k) ¼ 2pold0 (k)� pnew0 (k� 1)
 �

The biorthonormality is preserved because

Pnew(z�1)Pnew
0 (z) ¼ Pold(z�1)Pold

0 (z)

This process alsomaintains the binary coefficients of the filters [24].

Example

The pair of low-pass analysis and synthesis filters

p1 ¼ [1] and p07 ¼ [�1 0 9 16 9 0 �1]=16

are symmetric and binary coefficient filters. Balancing will

produce 2=6 and 3=5 filters as

p2 ¼ [11]=2 and p0 6 ¼ [�1 1 8 8 1 �1]=8

p3 ¼ [1 2 1]=4 and p0 5 ¼ [�1 2 6 2 �1]=4

These filters are biorthonormal and of binary coefficients.

10.7 Wavelet Theory

The dyadic discrete wavelet decomposition and reconstruction
are computed by iterating the discrete low-pas and high-pass
filters in the tree algorithm in the multiresolution signal analysis
framework. The low-pass and high-pass filters for the orthonor-
mal wavelet transform are the paraunitary 2-band perfect recon-
struction (PR) quadrature mirror filter (QMF) bank, which can
be designed using the subband coding theory.

When computing the discrete wavelet transform one is given
by a bank of low-pass and high-pass filters to iterate. The wavelet
and scaling function are not given by explicit expressions during
the wavelet transform computation. They even have no closed
forms for many wavelets.

However, in the wavelet theory an extra regularity condition is
imposed on the scaling function and the wavelets. The orthonor-
mal wavelet transform can be applied to continuous functions
and therefore serves as a transform tool for analytic signals. The
multiresolution Laplacian pyramid and the subband coding are
discrete. The multiresolution wavelet transform algorithm is also
essentially discrete. But the algorithm leads to a wavelet series
expansion that decomposes a continuous function into a series of
continuous wavelet functions.

The novelties in the wavelet theory with respect to that devel-
oped in the subband theory are the wavelet decomposition of
continuous signal functions into the continuous scaling function
and wavelet bases; the regularity of the scaling function, wavelet
as well as the quadrature mirror filters; the localization of the
scaling function and wavelet in both time and frequency
domains; the zero-mean condition on the high-pass filter and
the generation of the continuous scaling function and wavelet by
iterating the low-pass and high-pass filters.

The basic properties of the orthonormal scaling functions and
wavelets are the orthonormality and regularity, which are applied
to the discrete low-pass and high-pass filters as well. Most analy-
sis on the filter properties will be done in the Fourier domain.
The knowledge on those properties is useful for designing and
using the wavelet bases.
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10.7.1 Orthonormality

The scaling function and the wavelets can be orthonormal to
their own discrete translates at each resolution level, constructing
orthonormal bases, in the condition that the scaling function and
wavelet satisfy the orthonormality conditions. The orthonorm-
ality conditions can be expressed in the frequency domain.

10.7.1.1 Orthonormality Conditions

Consider a generic basic scaling function f(t) that is, in most
cases, real valued. At a given scale, its discrete translations form
an orthonormal set {f(t� k)}, such that:

ð

f(t � k)f(t � k0)dt ¼ dk,k0 k, k0 2 Z

The orthonormality of the discrete translations of f(t) is equiva-
lent to the fact that the autocorrelation off(t) evaluated at discrete
time steps (k� k0) must be zero everywhere except at the origin
k¼ k0. The Fourier transform of the autocorrelation of a function
is equal to the squared modulus of the Fourier transform of that
function. Hence, the orthonormality of the basic scaling function
in the Fourier domain may be written as

ð

jF(v)j2 exp (�jnv)dv ¼ 2pdn,0 (10:96)

where n¼ k� k0 with n 2 Z, and F(v) is the Fourier transform
of f(t). Hence, the Fourier transform of the scaling function,
jF(v)j2, evaluated at discrete frequency steps n must be equal to
zero except at the origin n¼ 0. We shall prove that the ortho-
normality condition (Equation 10.96) for the basic scaling func-
tion may be expressed as

X

n

jF(vþ 2np)j2 ¼ 1 (10:97)

The sum of the series of its Fourier spectrum intensity jF(v)j2
discretely translated by 2np must be equal to one.

Similarly, the orthogonality condition for a basic wavelet is
that its Fourier spectrum satisfies:

X

n

jC(vþ 2np)j2 ¼ 1 (10:98)

10.7.1.2 Poisson Summation Formula

To prove the orthonormality condition (Equations 10.97 and
10.98) we need to use the Poisson summation formula

X

n

f (x þ 2pn) ¼ 1

2p

X

n

F(n) exp ( jnx) (10:99)

If f(x) is a delta function, then Equation 10.99 is the well known
Fourier transform of a comb function. If f(x) is continuous and
has a compact support smaller than 2p, then the left-hand side of
Equation 10.99 is a periodic function, and the right-hand side
of Equation 10.99 is the Fourier series expansion of that periodic
function, where F(n) is the Fourier transform of f(x). The Poisson
summation formula then corresponds to the simple Fourier
series decomposition of the periodic function

P

f (x þ 2np).
The Poisson summation formula is valid when f(x) satisfies
some regularity conditions and has a compact support such
that the series

P

f (x þ 2np) converges to a periodic function
of period 2p.

Assume that the Fourier spectrum jF(v)j2 of the basic scaling
function f(t) is regular, and has a compact support. Let jF(v)j2
be the f(x) in the Poisson summation formula, (Equation 10.99),
we obtain

X

n

jF(vþ 2np)j2 ¼ 1

2p

X

n

R(n) exp ( jnv)

where R(n) is the Fourier transform of jF(v)j2. If F(v) satisfy
the orthonormality condition (Equation 10.96) R(n) would be
equal to zero for n 6¼ 0 and equal to 2p for n¼ 0, that proves
the orthonormality condition (Equation 10.97), and similarly we
have Equation 10.98.

10.7.1.3 Discussion

To gain an insight of the orthonormality condition (Equation
10.97) we expand a function g(t) onto the orthonormal basis of
the translates {f(t� k)} with k 2 Z that is

g(t) ¼
X

k

c(k)f(t � k) ¼ f(t)*
X

k

c(k)d(t � k)

where * denotes the convolution and c(k) are the coefficients of
expansion. In the Fourier domain this expansion becomes

G(v) ¼ F(v)
X

k

c(k) exp (�jkv) ¼ F(v)M(v)

where M(v) is defined as

M(v) ¼
X

k

c(k) exp (�jkv)

which is a periodic with period 2p: M(v)¼M(vþ 2np).
According to the Parseval’s relation of the Fourier transform

1

2p

ð2p

0

jM(v)j2dv ¼
X

n

jc(n)j2

10-34 Transforms and Applications Handbook



We can compute the energy of g(t) by

ð1

�1

jg(t)j2dt ¼ 1

2p

ð1

�1

jF(v)j2jM(v)j2dv

¼ 1

2p

X1

n¼�1

ð2p(nþ1)

2pn

jF(v)j2jM(v)j2dv

¼ 1

2p

X1

n¼�1

ð2p

0

jF(vþ 2np)j2jM(vþ 2np)j2dv

¼ 1

2p

ð2p

0

jM(v)j2
X1

n¼�1
jF(vþ 2np)j2dv

where we used the property that F(vþ 2np) is periodic of
period 2p. From the orthogonality condition (Equation 10.97)
we can write

ð

jg(t)j2dt ¼
X

n

jc(n)j2 (10:100)

This is the energy conservation relation for the expansion onto the
orthonormal scaling function and wavelet bases, and is similar to
the energy conservation relation (Equation 10.18) for the continu-
ous wavelet transform in Section 10.2.1. According to the wavelet
frame theory in Section 10.3.2, Equation 10.100 means the frame
is tight, the discrete scaling function basis behaves like an ortho-
normal basis.

10.7.2 Two Scale Relations
in Frequency Domain

The two scale relations in themultiresolution analysis are the basic
relations between the continuous scaling function f(t), wavelet c
(t) and the discrete low-pass and high-pass filters, p(n) and q(n):

f(t) ¼
X

k

p(k)f(2t � k)

c(t) ¼
X

k

q(k)f(2t � k)

In the multiresolution wavelet decomposition the low-pass filter
p(n) plays the role of the weighting function and the high-pass
filter q(n) is used to compute the detail information. The Fourier
transform of the two scale relations gives

F(v) ¼
X

k

p(k)

ð

f(2t � k) exp (�jvt)dt

¼ 1

2

X

k

p(k) exp ( jkv=2)

" #

F
v

2

� �

¼ P
v

2

� �

F
v

2

� �

(10:101)

and similarly,

C(v) ¼ Q
v

2

� �

F
v

2

� �

(10:102)

where P(v) andQ(v) are the Fourier transform of the sequences of
the low-pass and high-pass filters, as defined in Equations 10.67
and 10.68. BothP(v) andQ(v) are periodic functions of period 2p.

According to Equation 10.101 the Fourier transform F(v) of
the coarser resolution scaling function f(t) is the product of the
twice wider Fourier transforms F(v=2) of the finer resolution
scaling function f(2t) and that of the low-pass filter P(v=2).
Equation 10.101 is a recursion equation. The recursion can be
repeated m times to yield F(v=2), F(v=4) . . . so on, that gives

F(v) ¼
Ym

i¼1
P

v

2i

� �

F
v

2m

� �

(10:103)

When m approaches to infinity and 1=2m tends to zero we have
the Fourier transform of the continuous scaling function
expressed as

F(v) ¼
Y1

i¼1
P

v

2i

� �

(10:104)

provided that the scaling function f(t) is normalized with respect
to the L1(R) as

ð

f(t)dt ¼ F(0) ¼ 1

Similarly, we can replace the second term F(v=2) in the right-
hand side of Equation 10.102 with the infinite product derived in
Equation 10.104 and obtain

C(v) ¼ Q
v

2

� �Y1

i¼2
P

v

2i

� �

(10:105)

It can be proved that if for some e> 0 the sequence of interscale
coefficients p(n) satisfies

X

n

jp(n)jjnje <1

then the infinite product on the right-hand side of Equation
10.104 converges pointwise and the convergence is uniform.
That is, the low-pass filter p(n) decays as fast as ne. This is a
very mild condition, because in most practical cases the low-
pass filters p(n) are the FIR filters with only a limited number of
p(n) 6¼ 0.

The two Equations 10.104 and 10.105 express relations
between the Fourier transforms of the continuous scaling func-
tion and wavelet and the infinite product of the Fourier trans-
forms of the low-pass and high-pass filters.
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10.7.2.1 Filters Orthonormality

Using the Fourier domain two scale relation (Equation 10.101)
and the orthonormality condition (Equation 10.97) we can write

X

n

jF(2vþ4np)j2¼ jP(v)j2
X

n

jF(vþ2np)j2¼ jP(v)j2

X

n

jF(2vþ2(2nþ1)p)j2¼ jP(vþp)j2
X

n

jF(vþ (2nþ1)p)j2

¼ jP(vþp)j2

which correspond to the summation of F(v) translated by 4np
and by (2nþ 1)2p respectively. Adding these two equations and
applying again the orthonormality condition (Equation 10.97)
to the two summations of F(v) on the left-hand side of the
preceding equations we have

jP(v)j2 þ jP(vþ p)j2 ¼ 2 (10:106)

This is the orthonormality condition for the square modulus of
the low-pass filter P(v) in the Fourier domain. Similarly, the
orthonormality condition for the high-pass filter c(v) in the
Fourier domain is

jQ(v)j2 þ jQ(vþ p)j2 ¼ 2 (10:107)

Both Equations 10.106 and 10.107 are identical to Equation 10.79
introduced in Section 10.6.3.

10.7.2.2 Cross-Filter Orthogonality

The scaling functions and the wavelets must be mutually orthog-
onal within the same scale:

ð

f(t � n0)c(t � k)dt ¼ 0

for all n0, k 2 Z. In the Fourier domain the condition for the
cross-filter orthogonality can be written as

ð

F(v)C*(v) exp (�jnv)dv ¼ 0 (10:108)

where n¼ n0� k and n 2 Z. Using the Poisson summation
formula (Equation 10.99):

X

n

f (x þ 2np) ¼ 1

2p

X

n

F(n) exp ( jnx)

and assuming that the product F(v)c*(v) is regular and of finite
support and let it be the f(x) in the Poisson summation formula,
and using the cross-filter orthogonality condition (Equation
10.108) we have the Fourier transform of F(v)c*(v) equal to
zero and

X

n

F(vþ 2np)C*(vþ 2np) ¼ 0 (10:109)

We separate the translations of 4kp and of (2kþ 1)2p of the
product F(v)c*(v) an rewrite (Equation 10.109) as

X

n

F(2vþ 4np)C*(2vþ 4np)

þ
X

n

F(2vþ 2(2nþ 1)p)C*(2vþ 2(2nþ 1)p) ¼ 0

On substituting the Fourier domain two scale relations (Equa-
tions 10.101 and 10.102) for F(v) and C*(v) into the above
expression and using the periodicity of period 2p of P(v) and
Q(v) we have

P(v)Q*(v)
X

n

jF(vþ 2np)j2 þ P(vþ p)Q*(vþ p)



X

n

jF(vþ (2nþ 1)p)j2 ¼ 0

Using the orthonormality condition for F(v) described in Equa-
tion 10.97 we have

P(v)Q*(v)þ P(vþ p)Q*(vþ p) ¼ 0

P*(v)Q(v)þ P*(vþ p)Q(vþ p) ¼ 0

This is the cross filter orthogonality condition on the low-pass
and high-pass filters P(v) and Q(v) in the Fourier domain,
which is identical to Equation 10.80 introduced in Section 10.6.3.

10.7.2.3 Paraunitary Matrix

We observe the orthonormality conditions for the low-pass and
high-pass filters and the cross-filter orthogonality in terms of the
z-transform as

P(z)P(z�1)þ P(�z)P(�z�1) ¼ 2

Q(z)Q(z�1)þ Q(�z)Q(�z�1) ¼ 2

P(z)Q(z�1)þ P(�z)Q(�z�1) ¼ 0

P(z�1)Q(z)þ P(�z�1)Q(�z) ¼ 0

(10:110)

and choose the alternating flip filter bank as a solution for the
cross-filter orthogonality as Equation 10.81

Q(z) ¼ (�z)�(N�1)P(�z�1) (10:111)

where N is an arbitrary even number. That leads to

jQ(z)j2 ¼ jP(�z)j2 and jQ(v)j2 ¼ jP(vþ p)j2 (10:112)

The conjugate quadrature filters jP(�z)j2 and jQ(z)j2 are the
mirror filters, as defined in Equation 10.84.
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The first two equations in 10.110 are

jP(z)j2 þ jP(�z)j2 ¼ 2

jQ(z)j2 þ jQ(�z)j2 ¼ 2
(10:113)

From Equations 10.112 and 10.113 we have

jP(z)j2 þ jQ(z)j2 ¼ 2 and jP(v)j2 þ jQ(v)j2 ¼ 2

jP(�z)j2 þ jQ(�z)j2 ¼ 2 and

jP(vþ p)j2 þ jQ(vþ p)j2 ¼ 2

(10:114)

The filter pair {P(z),Q(z)} are power complementary as defined
in Equation 10.90. The orthogonality conditions described in
Equation 10.110 and the power complementary properties
described in Equation 10.114 are equivalent to the requirement
that the 23 2 modulation matrix defined in Equation 10.74
should be paraunitary:

p(z�1) P(�z�1)
Q(z�1) Q(�z�1)

	
	
	
	

	
	
	
	

p(z) Q(z)

P(�z) Q(�z)

	
	
	
	

	
	
	
	
¼ 2

1 0

0 1

	
	
	
	

	
	
	
	

(10:115)

The paraunitary properties are useful for designing the compactly
supported orthonormal scaling function and the wavelet bases.
All the properties for orthonormality, cross-filter orthonormality,
alternating flip filters, conjugate quadrature mirror filters, com-
plementary filters and the paraunitary filter banks, and relations
(Equations 10.106 through 10.115) have been introduced and
discussed in Section 10.6. from the perfect reconstruction property
of the filter bank. However, the orthonormality of P(v) and Q(v)
and the cross-filter orthonormality are obtained here from the
orthonormality of the scaling function and wavelet bases.

Example: Orthonormality of the Haar’s Bases

Let us consider the orthonormality condition for the Haar’s

bases, as an example. We know that the Haar’s bases are

orthonormal at every scale. The Fourier transforms of the

Haar scaling functions and wavelets are

F(v) ¼ e�jv=2
sin (v=2)

v=2

C(v) ¼ e�jv=2
sin2 (v=2)

v=4

We have for the scaling function F(v)jv¼0 ¼ 1 and for the

wavelet C(v)jv¼0 ¼ 0. It can be verified that the orthonorm-

ality condition expressed as

X

n

jF(vþ 2np)j2 ¼ 1

X

n

jC(vþ 2np)j2 ¼ 1

are satisfied.

The two-scale relations of the Haar scaling functions and
the Haar wavelets are obtained in Section 10.5.2. On substituting
the interscale coefficients of the Haar’s bases: p(n)¼ 1=

p
2 for

n¼ 0, 1 and p(n)¼ 0 otherwise, q(0)¼ 1=
p
2, q(1)¼�1=p2

and q(n)¼ 0 otherwise according to Equations 10.63 and 10.64
into the Fourier transform of p(n) and q(n), we obtain the
quadrature mirror filters of the Haar’s bases as

P(v) ¼ 2�1=2 cos
v

2
exp (�jv=2)

Q(v) ¼ j2�1=2 sin
v

2
exp (�jv=2)

It is easy to verify that the Haar’s quadrature mirror filters satisfy
all the orthonormality conditions because:

jP(v)j2 þ jP(vþ p)j2 ¼ 1

2
cos2

v

2

� �

þ cos2
vþ p

2

� �h i

¼ 1

jQ(v)j2 þ jQ(vþ p)j2 ¼ 1

2
sin2

v

2

� �

þ sin2
vþ p

2

� �h i

¼ 1

and

P(v)Q*(v)þ P(vþ p)Q*(vþ p)

¼ �j 1
2
cos

v

2
sin

v

2
� j

1

2
cos

vþ p

2
sin

vþ p

2
¼ 0

We have also that

jP(v)j2 þ jQ(v)j2 ¼ 1

jP(�v)j2 þ jQ(�v)j2 ¼ 1

and that the matrix

p(v) Q(v)

P(vþ p) Q(vþ p)

	
	
	
	

	
	
	
	

are paraunitary.

10.7.3 Orthogonal Filters in Time Domain

10.7.3.1 Double-Shift Orthonormality

When the basic scaling function and the wavelet satisfy the
orthonormality condition, their discrete translates with integer
translation steps form two orthonormal bases, and those two
bases are mutually orthogonal

<f0,k,f0,n> ¼ dk,n

<c0,k,c0,n> ¼ dk,n

<c0, k,f0,n> ¼ 0

Wavelet Transform 10-37



In Section 10.5.4 we obtained (Equations 10.53 and 10.54) from
the two scale relations

<f1,k,f0,n> ¼ 2�1=2p(n� 2k)

<c1,k,f0,n> ¼ 2�1=2q(n� 2k)

Hence, at the resolution level i¼ 1 the inner products of two
translated scaling functions and wavelets may be written in terms
of p(n) and q(n) as

<f1,k,f1,k0> ¼
X

n,m

p(n� 2k)p(m� 2k0) <f0,n,f0,m>

¼
X

n

p(n� 2k)p(n� 2k0) ¼ dk, k0

<c1,k,c1,k0> ¼
X

n,m

q(n� 2k)q(m� 2k0) <f0,n,f0,m>

¼
X

n

q(n� 2k)q(n� 2k0) ¼ dk, k0

<c1,k,f1,k0> ¼
X

n,m

q(n� 2k)p(m� 2k0) <f0,n,f0,m>

¼
X

n

q(n� 2k)p(n� 2k0) ¼ 0

The double-shift orthonormality and cross-filter orthonormality
also have been obtained from the paraunitary matrix properties
of the filter bank in Section 10.6.4.

10.7.3.2 Equal Contribution Constraint

The low-pass filter p(n) in time domain should satisfy the
equal contribution constraint, stipulating that all the node in one
resolution level contribute the same total amount to the next level
and that the sum of all the weights for a given node n

is independent of n. Hence, the weighting function should satisfy:

X

n

p(2n) ¼
X

n

p(2nþ 1)

In an example of multiresolution signal analysis shown in
Figure 10.8 the odd number nodes and the even number nodes
in the data sequence ci�1(n) have two different connections with
the low-pass filter p(n) because of the down-sampling by 2 of
ci(k). The even nodes in c0(n) are connected to c1(n) with the
weighting factors p(�2), p(0), and p(2), the odd nodes are con-
nected to c1(n) with the weighting factors p(�1) and p(1). When
the preceding relation is satisfied the sums of the weights are
equal for odd and even nodes in c1(n).

From the orthonormality condition (Equation 10.97)

X

k

jF(vþ 2kp)j2 ¼ 1

we find that if the scaling function is normalized such that its
mean value is unity

ð

f(t)dt ¼ 1 and F(0) ¼ 1

then at v¼ 0, we have F(2kp) ¼ 0 for k¼ 1, 2, . . . . Therefore,
we have

P

k

jF[2(2kþ 1)p]j2 ¼ 0. Using the two scale relation

F(2v) ¼ P(v)F(v)

at v ¼ (2kþ 1)p we have

X

k

jP[(2kþ 1)p]j2jF[(2kþ 1)p]j2 ¼ 0

As F[(2kþ 1)p] 6¼ 0 we must have P[(2nþ 1)p]¼ 0 and
equivalently for the low-pass filter in the time domain we have,
according to the Fourier transform (Equation 10.67)

P(p) ¼
X

k

(�1)kp(k) ¼ 0

but

P(0) ¼
X

k

p(k) ¼ 1

Addition and subtraction of the two preceding equations yield,
respectively

X

k

p(2k) ¼ 1 and
X

k

p(2kþ 1) ¼ 1

This is the equal constraint condition for the multiresolution
signal analysis filters.

10.7.4 Wavelet and Subband Filters

The discrete orthonormal wavelet transform low-pass and high-
pass filters are simply the 2-band paraunitary perfect reconstruc-
tion quadrature mirror filters developed in the subband coding
theory. The novelties of the wavelet transform are

1. Continuous function bases
The wavelet transform is defined on the scaling function
and wavelet bases, which are continuous function bases of
continuous variables, so that the wavelet transform can
serve as a mathematical transform tool to analogue signal
functions. The subband coding technique is based on the
discrete filters and applied to discrete data.

2. Zero-mean high-pass filter:
Applying the wavelet admissible condition C(v)jv¼0 ¼ 0
to the Fourier domain two-scale relation (Equation
10.105), it follows that

Q(v)jv¼0 ¼ 0 (10:116)

The high-pass filter q(n) in the time domain must have a
zero mean.
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3. Regularity of the scaling function and wavelet
On substituting the zero mean property of the high-pas
filter, Q(v)jv¼0 ¼ 0, into the quadrature mirror filter prop-
erty (Equation 10.112) we have P(v)jv¼p ¼ 0. The low-pass
filter P(v) must contain at least one term of (1þ e�jv) or
(1þ z�1), which equals to zero at v¼p or z¼�1. The
regularity of the low-pass filter P(v) insures the iterations of
the low-pass filter to converge, as will be discussed in
Section 10.7.5.

10.7.5 Regularity

The regularity of the wavelet basis functions is an important
property of the wavelet transform, that results in the localization
of the wavelet transform in both time and frequency domains. In
Section 10.2.2 we discussed the regularity condition for the
continuous wavelet transform. For the wavelet transform coeffi-
cients to decay as fast as snþ 1=2 with an increase of (1=s), where s
is the scale factor, the wavelet c(t) must have the first nþ 1
moments of the order 0, 1, . . . n equal to zero, and equivalently,
the Fourier transform C(v) of the wavelets must have the first n
derivatives of the order up to n equal to zero about zero fre-
quency v¼ 0.

In this section we shall discuss the regularity condition on
the orthonormal scaling functions and wavelets, and on the
quadrature mirror filters P(v) and Q(v) in the multiresolution
analysis framework. We shall discuss the regularity condition in a
slightly different way from that in Section 10.2.2. The regularity
conditions are applied for ensuring convergence of the recon-
struction from the orthonormal wavelet decomposition. How-
ever, the regularity conditions obtained in both approaches are
equivalent.

10.7.5.1 Smoothness Measure

The regularity is a measure of smoothness for scaling functions
and wavelets. The regularity of the scaling function is determined
by the decay of its Fourier transform F(v) and is defined as the
maximum value of r such that

jF(v)j � c

(1þ jvj)r

for v 2 R. Hence, the jF(v)j has exponential decay as v�M,
where M� r. This in turn implies that f(t) is (M� 1)-times
continuously differentiable, and both f(t) and c(t) are smooth
functions.

10.7.5.2 Convergence of Wavelet Reconstruction

The reconstruction from the wavelet series decomposition is
described by Equation 10.66

c0 ¼
XM

i¼1
(L0)

i�1H0di þ (L0)
McM

where the synthesis filtering operators applied to a sequence
a(k), L0 and H0, are defined as

(L0a)(n) ¼
1
ffiffiffi

2
p

X

k

p(n� 2k)a(k)

(H0a)(n) ¼
1
ffiffiffi

2
p

X

k

q(n� 2k)a(k)

Note that in the reconstruction it is the low-pass filter L0 that is
iterated.

The problem of the convergence of the wavelet reconstruction
may be formulated for a particular example, where the original
function to be decomposed is the scaling function itself. In this
case the wavelet series coefficients must be cM ¼ d0,n and
d0 ¼ � � � ¼ dM ¼ 0, where the sequence d0,n has only one non-
zero entry for n¼ 0. The reconstruction formula becomes

c0(n) ¼ (L0)
McM

It is therefore important to study the behavior of the iterated
filtering operator (L0)

icM for large i. Ideally we want (L0)
icM to

converge to a reasonably regular function when i tends to infin-
ity. However, when i approaches to infinity (L0)

icM can converge
to a continuous function, or to a function with finite discontinu-
ities, even to a fractal function. The sequence (L0)

icM may also
not converge at all. The condition for the reconstruction to
converge is the regularity of the scaling function.

With a graphic representation shown in Figure 10.15, we
represent the sequence cM(n) at the resolution level i¼M by a
rectangular function h0(t):

h0(t) ¼ 1 �1=2 � t � 1=2
0 otherwise




Assume that the sequence cM(n) has the time clock rate of 1. At
the next finer resolution level i¼M� 1 the sequence cM�1(n) is

CM�1(n) ¼ L0cM(n) ¼
X

k

p(n� 2k)d0,k ¼ p(n)

In fact, to compute cM�1(n) we first increase the time clock rate
such that cM(n) is with a time interval of length 1=2. The cM(n) is
then convolved with the discrete filter p(n) that has also the time
interval of 1=2. The amplitude of cM�1(n) is equal exactly to p(n),
as shown in Figure 10.14. We represent cM�1(n) by a piecewise
constant function, h1(t), that is constant over the interval of 1=2.
It is easy to see that the h1(t) may be expressed as

h1(t) ¼
X

n

p(n)h0(2t � n)

Continuing for computing cM�2(n) ¼ (L0)
2cM(n) we put a zero

between each node of the sequence cM�1(n) and increase the time
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clock rate. Thus, at this resolution level both the data sequences
c(n) and the filter p(n) have the time interval of 1=4. Their
convolution yields the sequence cM�2(n). We represent cM�2(n)
by the piecewise constant function h2(t) of a step of length 1=4, as
shown in Figure 10.15. It is easy to verify that

h2(t) ¼
X

n

p(n)h1(2t � n)

Similarly hi(t) ¼ (L0)
icM(n) is a piecewise constant function with

a step of length 2�i and

hi(t) ¼
X

n

p(n)hi�1(2t � n)

When i approaches to infinity (L0)
icM can converge to h/ and

lim
i!1

h1(t) ¼ f(t)

in the condition that the scaling function f(t) is regular, that we
shall discuss next.

10.7.5.3 Construction of Scaling Function

The above recursion process with the low-pass filter operator L0,
associated to the low-passfilterp(n), is a reconstructionof the scaling
function f(t). Starting from the rectangular function h0, the recur-
sion gives the values of f(t) of half-integers. Then, the recursion
gives f(t) at the quarter-integers, and ultimately, at all dyadic point
t¼ k=2i. Finer and finer detail of f(t) is achieved by the recursion
when the number of iterations i approaches to infinity. Therefore,
the basic scaling function f(t) is constructed from the discrete low-
pass filter p(n). This process is useful to compute the continuous
scaling and wavelet functions, f(t) and c(t) from the discrete low-
pass and high-pass filters, p(n) and q(n).

10.7.5.4 Regularity of Quadrature Mirror Filter

The regularity of the scaling function should not only ensure
that the reconstructed scaling function h1(t) converges, but
also ensure that (1) h1(t) is sufficiently regular or the Fourier
transform of h1(t) has sufficient decay, and (2) hi(t) converges to
h1(t) point-wisely when i approaches to infinity. Daubechies [13]

0 1/2–1/2

cM, η0

cM–1, η1

cM–2, η2

0 1/2 1–1/2

0 1/4–1/4–1/2 1/2 1–1

0

0 1–1

–1/2 1/2 1–1

–1

FIGURE 10.15 Reconstruction from cM(n) ¼ 1, for n ¼ 0 and cM(n) ¼ 0 for n ¼ 0 and the corresponding rectangle functionh0(t). The time clock rate
is equal to 1 for cM(n), 1=2 for cM�1(n) and 1=4 for cM�2(n). (From Daubechies, I., Commun. on Pure and Appl. Math, XLI, 909, 1988. With permission.)
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has proven that the above two conditions can be satisfied when
the Fourier transform of the low-pass filter p(n), satisfies

P(v) ¼ 1þ e�jv

2

� �M

F(e�jv) (10:117)

or, written in terms of the z-transform, as

P(z�1) ¼ 1þ z�1

2

� �M

F(z�1)

where M> 1 and F(z�1) is a polynomial in z�1, or in e�jv with
real coefficients and satisfies some conditions so that the infinite
product

Y1

k¼0
F(zk=2)

	
	
	
	
	

	
	
	
	
	
� 2k(N�M�1) (10:118)

converges and is bounded. Because the low-pass filter p(n) is a
FIR filter, p(n) 6¼ 0 only for n¼ 0, 1, . . . ,N� 1, then its Fourier
transform, P(v), is a polynomial in e�jv or in z�1, of degree
N� 1. Hence, F(z�1) is a polynomial in z�1 of degree N� 1�M

where N is the length of p(n).
According to Equation 10.117 the quadrature mirror filter P(v)

must haveM zeros at v¼p or z¼�1. We know that P(v) must
have at least one zero at v¼p, because according to the wavelet
admissible condition for the high-pass filter (Equation 10.116):

Q(v)jv¼0 ¼ 0

and the quadrature mirror filter condition (Equation 10.112)

jP(vþ p)j2 ¼ jQ(v)j2

Hence,

P(v)jv¼p ¼ 0

P(v) must contain at least one term of (1þ e�jv), the powerM in
Equation 10.117 must be at least equal to one. However, the
regularity condition (Equation 10.117) requires P(v) to have
more zeros with M> 1 to insure convergence of the wavelet
reconstruction.

10.7.5.5 Regularity of Scaling Function

Regularity condition (Equation 10.117) implies that

jP(v)j ¼ cos
v

2

	
	
	

	
	
	

M

jF(e�jv)j

On substituting the preceding relation into the infinite product
form (Equation 10.104) of the Fourier transform F(v) of the
scaling function we obtain the regularity condition on F(v) as

jF(v)j ¼
Y1

i¼1
cos

v

2iþ1

	
	
	
	
	

M

�
	
	
	
	
	

Y1

i¼1
F(e�jv=2

i

)

	
	
	
	
	

	
	
	
	
	

(10:119)

but

cos
v

2
¼ sin v

2 sin (v=2)

The first infinite product term in Equation 10.119 is therefore

lim
M!1

YM

i¼1

	
	
	
	
	

	
	
	
	
	

sin (v=2i)

2 sin (v=2iþ1)

	
	
	
	

	
	
	
	

M

¼ lim
M!1

sin (v=2)

2M sin (v=2Mþ1)

	
	
	
	

	
	
	
	

M

¼ sin (v=2)

(v=2)

� �M

and

jF(v)j ¼ sin (v=2)

v=2

	
	
	
	

	
	
	
	

M Y1

i¼1
F(e�jv=2

i

)

	
	
	
	
	

	
	
	
	
	

(10:120)

The first term in the right-hand side of Equation 10.120 contrib-
utes to the exponential decay ofF(v) as v�M. The second term is
bounded according to the condition (Equation 10.118).

The number M of zeros of the quadrature mirror filter P(v)
at v¼p, or at z¼�1 is a measure of flatness of P(v) at v¼p.
From the regularity conditions (Equations 10.117 and 10.120)
we see that the exponential decay of the scaling function F(v)
and the flatness of the quadrature mirror filter P(v) are equiva-
lent. When the scaling function F(v) has the exponential decay
as v�M, the quadrature mirror filter P(v) has number M of zero
at v¼p. M is a measure of the regularity of the scaling
function.

10.7.5.6 Smoothness in Time Domain

The regularity also implies the smoothness of the low-pass filter
p(n) in the time domain. We rewrite Equation 10.117 as

P(v) ¼ exp (�jMv=2) cos
v

2

� �M

F(v)

Its rth derivative is

drP(v)

dvr
¼ cos

v

2

� �M�r
gr(v) (10:121)

where [cos(v=2)]M�r is the minimum power of cos(v=2) that the
rth derivative contains and gr(v) is the residual terms of the
derivative. The term [cos(v=2)]M�r makes the rth derivative of
P(v) equal to zero at v¼p for r¼ 0, 1, . . . , M� 1. On the other
hand, because P(v) is the Fourier transform of p(n), we have

drP(v)

dvr
¼
X

n

(�jn)rp(n) exp (�jnv)
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Then,

drP(v)

dvr

	
	
	
	
v¼p
¼ (�j)r

X

n

nr(�1)np(n) ¼ 0 (10:122)

for r¼ 0, 1, . . . ,M� 1. Hence, the low-pass filter p(n) is a smooth
filter. Substituting the alternating flip filter expression

Q(z) ¼ (�z)�(N�1)P(�z�1)

where N is an even number, into the regularity condition (Equa-
tion 10.122) we have

Q(z) ¼ 1� z

2

� �M

z�NF(�z�1)

or in terms of the Fourier transform frequency v as

Q(v) ¼ sin
v

2

� �M

gr(v)

where gr(v) is the residual terms. The [sin(v=2)]M term insures
that Q(v) has the vanishing derivatives at v¼ 0

drQ(v)

dvr

	
	
	
	
v¼0
¼ 0

As Q(v) is the Fourier transform of q(n), the rth derivative of
Q(v) is equal to zero at v¼ 0 for r¼ 0, 1, . . . , M� 1

X

n

rnq(n) ¼ 0 (10:123)

The high-pass filter q(n) has vanishing moment of order r.
Both the low-pass filter p(n) and high-pass filter q(n) are FIR

filters: p(n) 6¼ 0 only for n¼ 0, 1, . . . ,N� 1 and N is the length of
p(n). The compactness of p(n) and q(n), described by (N� 1) is
in contrast with the regularity of P(v) and Q(v) and of the
scaling and wavelet functions, described byM, because according
the regularity condition (Equation 10.119) M<N� 1. There is a
trade-off between the compactness of the filters and the regular-
ity of the scaling function and wavelet. We will discuss this issue
in Section 10.8.3.

10.8 Some Orthonormal Wavelet Bases

In this section we summarize some orthonormal wavelet
bases. In general, the orthonormal wavelet bases generated in
the multiresolution analysis framework are associated to the
orthonormal scaling function bases. Different orthonormal
scaling function and wavelet bases are designed to satisfy the

orthonormality condition and the regularity condition in slightly
different ways.

More filter banks and wavelet filter coefficients may be
founded in MATLAB1 Wavelet Toolbox and in WaveLab
(http:==playfair.stanford.edu=�wavelab), and in many other
computer software.

10.8.1 B-Spline Bases

One of the basic methods for constructing the orthonormal
wavelet families involves the B-spline functions, which are
familiar in the approximation theory for interpolating a given
sequence of data points. In this section we give a brief descrip-
tion of the multiresolution analysis with the B-spline scaling
function and wavelet bases, and the related low-pass and high-
pass filters.

10.8.1.1 B-Spline

The B-spline of degree n is generated by repeated (nþ 1)-fold
convolutions [14] of the rectangular function:

b0(t) ¼ 1 for 0 � t < 1

0 otherwise




(10:124)

where n is an arbitrary positive integer. The nth degree B-spline
is then

bn(t) ¼ (bn�1*b0)(t)

¼
ð1

�1

bn�1(t � x)b0(x)dx ¼
ð1

0

bn�1(t � x)dx (10:125)

Equation 10.125 is recursive. Because of the repeated convolu-
tions, the nth degree B-spline has a support of size (0, nþ 1) in
time. This support increases with the degree n. The B-spline is a
bell-shaped and symmetric function with respect to the center of
its support t¼ 1=2. There is also the central B-spline which is
defined such that it is symmetric with respect to the origin.

The B-spline of zero degree b0(t) has been used as the Haar
scaling function. It is not even differentiable. The B-spline of first
degree is the linear spline, which is a triangle function, called the
hat function. Its first derivative is not continuous. The B-spline of
second degree is the quadratic spline. It has continuous first
derivatives. The B-spline of degree 3 is the cubic spline. It has
the first and second continuous derivatives. The higher-order
B-splines with the degree n> 1 are smooth bell shaped functions
and have continuous derivatives of orders up to n� 1.

According to the definition, the Fourier transform of the
B-spline of degree n is

Bn(v) ¼ 1� e�jv

jv

� �nþ1
¼ e�j(nþ1)v=2

sin (v=2)

v=2

� �nþ1
(10:126)
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Its modulus, Bn(v)j j has the exponential decay as 1=vnþ 1.
When n increases, the B-spline becomes more regular but its
support becomes less compact. There is then the typical trade-off
between the regularity and the compactness of the B-splines.

10.8.1.2 Spline Interpolation

The polynomial splines are linear combinations of the translated
B-splines. The polynomial splines f n(t) can be used to interpolate
a given sequence of data point {s(k)}:

f n(t) ¼
X

k

c(k)bn(t � k)

When the polynomial coefficients equal to the signal data
c(k)¼ s(k), f n(t) is a cardinal spline interpolator, that has piece-
wise polynomial segments of n-degree. Hence, the B-spline of
degree n is the interpolation function. When n¼ 0, the sequence
of points {s(k)} with equal intervals is interpolated by b0(t)
which is a staircase function, as that shown in the case of the
Haar scaling function approximation. When n¼ 1, the sequence
of points are connected by the straight line segment in each
interval [k, kþ 1]. When n> 2, the data points is interpolated
by a function that is, in each interval, a polynomial in degree n.

10.8.1.3 Spline Scaling Function

The B-spline itself can be used as the scaling function. The
scaling function can be dilated and translated to form the spline
scaling function bases at different resolution levels. However,
the B-spline of degree n has a support of (0, nþ 1). Their integer
translates do not necessarily form an orthonormal basis within a
resolution level.

When the B-spline of degree m� 1 is used as the scaling
function F(v) ¼ Bm�1(v), the corresponding low-pass filter
P(v) can be derived as that follows. From the two-scale relation
(Equation 10.101)

F(2v) ¼ P(v)F(v)

and Equation 10.126 we have

1� e�2jv

2jv

� �m

¼ P(v)
1� e�jv

jv

� �m

and

P(v) ¼ 1þ e�jv

2

� �m

¼ 1þ z�1

2

� �m

(10:127)

The coefficients of the corresponding low-pass filter, p(k), in the
time domain can be obtained from Equation 10.127 by the
inverse z-transform.

Example

When the cubic spline is the scaling function in the multi-

resolution analysis, the corresponding low-pass filter

P(z) ¼ [(1þ z�1)=2]4 ¼ (1þ 4z�1 þ 6z�2 þ 4z�3 þ z�4) 16=

Hence, the low-pass filter in time is p(k)¼ [1, 4, 6, 4, 1].

10.8.2 Lemarie and Battle Wavelet Bases

The Lemarie and Battle wavelet bases are a family of orthonormal
scaling functions and wavelets, that are associated to the B-spline,
with an additional condition that the Lemarie and Battle poly-
nomial scaling functions and wavelets are orthonormal within
the given resolution level. The orthonormality is obtained by
imposing the orthonormality constraints on the B-spline scaling
functions and wavelets.

10.8.2.1 Nonorthonormal Spline Basis

When the spline of degree m� 1, bm�1(v), is used as the scaling
function. The orthonormality condition is not satisfied, because
from Equation 10.126 we have

X

k

jBm�1(vþ 2pk)j2 ¼
X

k

sin [(v=2)þ pk]

((v=2)þ pk)

� �2m

¼ sin2m (v=2)
X

2m

v

2

� �

(10:128)

where with x¼v=2 we define

X

2m

(x) �
X

k

1

x þ pk

� �2m

From the complex analysis we have

cot x ¼ lim
n!1

Xn

k¼�n

1

x þ nk

We can differentiate this identity 2m� 1 times to obtain

X

2m

(x) ¼
X

k

1

(x þ pk)2m
¼ � 1

(2m� 1)!

d2m�1

dx2m�1
cot x

(10:129)

Substituting Equation 10.129 into Equation 10.128, we obtain

X

k

jbm�1(vþ 2pk)j2 ¼ � sin2m (x)

(2m� 1)!

d2m�1

dx2m�1
cot x (10:130)

where x¼v=2. Hence, for the zero-degree spline m¼ 1, we have

X

k

jb0(vþ 2pk)j2 ¼ 1
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The Haar scaling function is orthonormal. However, for the
spline with m¼ 2, we have

X

k

jb1(vþ 2pk)j2 ¼ 1

3
þ 2

3
cos2

v

2

� �

which is between 1=3 and 1. The linear spline scaling function
basis is not orthonormal. In general, the higher degree spline
scaling function bases are not orthogonal.

10.8.2.2 Lemarie–Battle Basis

The Lemarie and Battle’s multiresolution basis [15] is built
from the B-spline. Lemarie has found a scaling function that is
associated to the (m� 1)th degree splines and its integer trans-
lates form an orthonormal basis within the same resolution level.
The Lemarie–Battle scaling function is given by its Fourier trans-
form as

F(v) ¼ 1

vm

X

k

1

(vþ 2pk)2m

� �
 !�1=2

¼ 1

vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

2m (v)
p (10:131)

It is easy to verify that the orthonormality condition

X

k

jF(vþ 2pk)j2 ¼ 1

is satisfied. The Lemarie–Battle scaling function F(v) defined in
Equation 10.131 can be computed using Equation 10.129.

10.8.2.3 Quadrature Mirror Filters

The low-pass quadrature mirror filter P(v) can be obtained
from the two scale relation in the Fourier domain, described
(Equation 10.101)

F(2v) ¼ P(v)F(v)

According to Equation 10.131 we obtain

P(v) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

2m (v)

2m
P

2m (2v)

s

(10:132)

The Fourier transform of the corresponding orthonormal wavelet
can be derived also from the two scale relation

C(v) ¼ Q
v

2

� �

F
v

2

� �

where the conjugate quadrature mirror filter Q(v) satisfying the
orthonormal condition is obtained from the alternating flip
property as described in Equation 10.82

Q(z) ¼ (�z)�(N�1)P(�z�1)
Q(v) ¼ e�j(N�1)(vþp)P*(vþ p)

where N is an even number. Hence,

C(v) ¼ e�j(N�1)(vþp)=2P*
vþ p

2

� �

F
v

2

� �

(10:133)

Example

The Lemarie and Battle scaling function basis from the cubic

spline with m� 1¼ 3 can be obtained from Equations 10.129

and 10.131 as [25]

From the expression for
P

2m (v), the Fourier transforms

F(v) and C(v) of the scaling function and wavelet and the

quadrature mirror filters, P(v) and Q(v), can be calculated.

Table 10.1 gives the first 12 coefficients of the discrete low-

pass filter p(n) that are the impulse response of P(v) useful for

the wavelet series decomposition. The coefficients of the

F(v) ¼ v�4
X

(vþ 2pk)�8
h i�1=2

¼ 8v�4
1

315

d7

dv7
cot

v

2

� ��1=2

¼ 16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

315 sin4 (v=2)
p

v�4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

315 cos6 (v=2)þ 515 cos4 (v=2) sin2 (v=2)
p

þ 231 cos2 (v=2) sin4 (v=2)þ 17 sin6 (v=2)

TABLE 10.1 Low-Pass Filter p(k) of the Lemarie–Battle
Wavelet Basis Associated with the Cubic B-Spline

k p(k) q(k) k p(k) q(k)

0 0.542 �0.189 6 0.012 0.005

1 0.307 0.099 7 �0.013 0.054

2 �0.035 0.312 8 0.006 0.027

3 �0.078 0.099 9 0.006 0.018

4 0.023 �0.189 10 �0.003 0.017

5 �0.030 �0.161 11 �0.002 0.000
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high-pass filter q(n) obtained from the low-pass filter p(n) with

Equation 10.133 are also given.

Figure 10.16 shows the Lemarie–Battle wavelet c(t) and its

Fourier transform C(v), which is given by Equation 10.133.

The wavelet is associated to the linear spline of degree m¼ 1.

Hence, the wavelet consists of the straight line segments

between the discrete nodes. When m increases the

Lemarie–Battle scaling function and wavelet associated to

high order B-splines become smoother. The Lemarie–Battle

wavelet is symmetrical to t¼ 1=2 and has no compact sup-

port. The wavelet c(t) decays slowly with time t.

10.8.3 Daubechies Bases

The Daubechies wavelet basis [13] is a family of orthonormal,
compactly supported scaling and wavelet functions, that have
the maximum regularity and the maximum flatness at v¼ 0
and v¼p for a given length of the support of the quadrature
mirror filters. The Daubechies basis is not given in closed
form. The decomposition and the reconstruction are implemen-
ted by iterating the discrete low-pass and high-pass filters p(n)
and q(n).

10.8.3.1 Maximum Flatness Filter

The Daubechies scaling and wavelet functions are built based on
the consideration for the regularity condition, (Equation 10.117),
and the orthonormality, (Equation 10.106), on the quadrature
mirror filter P(v) in the Fourier domain, expressed as

P(v) ¼ 1þ e�jv

2

� �M

F(e�jv)

and

jP(v)j2 þ jP(vþ p)j2 ¼ 1

The squaremodulus of the low-pass filter jP(v)j2 is half-band. The
length N of the discrete low-pass filters p(n) is to be chosen first.
The discrete high-pass filters q(n) has the same length of N. The
low-pass filter p(n) of a compact support of length N is the FIR
filter or called theN-tap filter, p(n) 6¼ 0 only for n¼ 0, 1, . . . ,N� 1.
Its Fourier transform P(v) is a polynomial in e�jv of degreeN� 1,
according to the definition (Equation 10.67):

P(v) ¼
XN�1

k¼0
p(k) exp (�jkv)

In the regularity condition (Equation 10.117), M> 1 is the regu-
larity, and F(e�jv) is a polynomial in e�jv with real coefficients.
Since P(v) is a polynomial in e�jv of degree N� 1, the polyno-
mial F(e�jv) in e�jv is of degree N� 1�M. The quadrature
mirror filter P(v) and its impulse response p(n) is determined
by the choice of the polynomial F(e�jv).

We consider the square modulus relation for jP(v)j2, which is,
from Equation 10.117:

jP(v)j2 ¼ cos2
v

2

� �M

jF(e�jv)j2 (10:134)

where jP(v)j2 should be a polynomial in cos2(v=2) and sin2(v=2)
of degree N� 1. Because the polynomial F(e�jv) has real-valued
coefficients, F*(e�jv)¼ F(ejv) and jF(e�jv)j2 is a symmetric poly-
nomial and can be rewritten as a polynomial in cos v or,
equivalently, as a polynomial in sin2(v=2), rewritten as G

[sin2(v=2)]:

jF(e�iv)j2 ¼ G sin2
v

2

� �

which is of degree

L ¼ N � 1�M (10:135)

0

t10

ω

Ψ(ω)
ψ (t)

FIGURE 10.16 Lemarie–Battle wavelet and its Fourier transform associated with the second order B-spline. (From Sheng, Y. et al. Opt. Eng., 31,
1840, 1992. With permission.)
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Introducing a variable y¼ cos2(v=2), Equation 10.134 can be
written as

jP(v)j2 ¼ (y)MG(1� y)

jP(vþ p)j2 ¼ (1� y)MG(y)
(10:136)

Combining these regularity conditions with the orthonormality
condition we obtain

yMG(1� y)þ (1� y)MG(y) ¼ 1

This equation can be solved for G(y), which is a polynomial in y

of minimum degree M� 1. Daubechies chose the minimum
degree for G(y) as L¼M� 1. Compared with Equation 10.135,
we have

M ¼ N=2

Hence, the term (cos2(v=2))M has the maximum value of M. The
regularity M of the Daubechies scaling function is then the
maximum and increases linearly with the width of their support,
i.e., with the length N of the discrete filters p(n) and q(n), because
M¼N=2.

In Equation 10.136 the term [cos(v=2)]M insures jP(v)j to
have M zeros at v¼p, and to have M vanishing derivatives
at v¼ 0. The term G(sin2(v=2)) ensures jP(vþ p)j to have
L¼ (M� 1) zeros at v¼ 0, and to have M� 1 vanishing deriva-
tives at v¼p. This corresponds to the unique maximally flat
magnitude response of the frequency responses of the Daube-
chies low-pass and high-pass filters. Daubechies solved for P(v)
from jP(v)j2 by spectral factorization.

10.8.3.2 Daubechies Filters in Time Domain

The values of the coefficients pM(n) for the cases M¼ 2, 3, . . . , 10
are listed in Table 10.2, where the filter length N¼ 2M. For the
most compact support M¼ 2 and N¼ 4 the discrete low-pass
filter is given as

p(0) ¼ 1

4
(1þ

ffiffiffi

3
p

)=
ffiffiffi

2
p
¼ 0:483

p(1) ¼ 1

4
(3þ

ffiffiffi

3
p

)=
ffiffiffi

2
p
¼ 0:836

p(2) ¼ 1

4
(3�

ffiffiffi

3
p

)=
ffiffiffi

2
p
¼ 0:224

p(3) ¼ 1

4
(1�

ffiffiffi

3
p

)t=
ffiffiffi

2
p
¼ �0:13

(10:137)

The discrete high-pass filter q(n) can be obtained from p(n) by
the alternating flip relation

TABLE 10.2 The Low-Pass Filter of the Daubechies Wavelet Bases
with the Support of the Filter N¼ 2M and M¼ 2, 3, . . . , 10

n PM(n) n PM(n)

M ¼ 2 0 .482962913145 M ¼ 8 0 .054415842243

1 .836516303738 1 .312871590914

2 .224143868042 2 .675630736297

3 �.129409522551 3 .585354683654

M ¼ 3 0 .332670552950 4 �.015829105256
1 .806891509311 5 �.284015542962
2 .459877502118 6 .000472484574

3 �.135011020010 7 .128747426620

4 �.085441273882 8 �.017369301002
5 .035226291882 9 �.044088253931

M ¼ 4 0 .230377813309 10 .013981027917

1 .714846570553 11 .008746094047

2 .630880767930 12 �.004870352993
3 �.027983769417 13 �.000391740373
4 �.187034811719 14 .000675449406

5 .030841381836 15 �.000117476784
6 .032883011667 M ¼ 9 0 .038077947364

7 �.010597401785 1 .243834674613

M ¼ 5 0 .160102397974 2 .604823123690

1 .603829269797 3 .657288078051

2 .724308528438 4 .133197385825

3 .138428145901 5 �.293273783279
4 �.242294887066 6 �.096840783223
5 �.032244869585 7 .148540749338

6 .077571493840 8 .030725681479

7 �.006241490213 9 �.067632829061
8 �.012580751999 10 .000250947115

9 .003335725285 11 .022361662124

M ¼ 6 0 .111540743350 12 �.004723204758
1 .494623890398 13 �.004281503682
2 .751133908021 14 .001847646883

3 .315250351709 15 .000230385764

4 �.226264693965 16 �.000251963189
5 �.129766867567 17 .000039347320

6 .097501605587 M ¼ 10 0 .026670057901

7 .027522865530 1 .188176800078

8 �.031582039318 2 .527201188932

9 .000553842201 3 .688459039454

10 .004777257511 4 .281172343661

11 �.001077301085 5 �.249846424327
M ¼ 7 0 .007852054085 6 �.195946274377

1 .396539319482 7 .127369340336

2 .729132090846 8 .093057364604

3 .469782287405 9 �.071394147166
4 �.143906003929 10 �.029457536822
5 �.224036184994 11 .033212674059

6 .071309219267 12 .003606553567

7 .080612609151 13 �.010733175483
8 �.038029936935 14 .001395351747

9 �.016574541631 15 .001992405295

10 .012550998556 16 �.000685856695
11 .000429577973 17 �.000116466855
12 �.001801640704 18 .000093588670

13 .000353713800 19 �.000013264203

Source: Daubechies, I., Commun. on Pure and Appl. Math., XLI, 909, 1988.
With permission.
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q(n) ¼ (�1)np(N � 1� n)

where N is an even number and n¼ 0, 1, 2, . . . ,N.
It is easy to verify that the translates of p(n) and q(n) with double

integer steps are orthonormal, respectively. Figure 10.17a and b
show the Daubechies scaling function and wavelet with compact
support M¼ 2 and N¼ 4 and their Fourier transforms. The
scaling function is generated from the quadrature mirror filter
p(n) given with the method of reconstruction discussed in
Section 10.5.5. Those functions have the most compact support,
but are neither smooth nor regular. When the length of the
filters p(n) and q(n) increase the Daubechies scaling functions
and wavelets become smoother and more regular, at the cost of
larger number of nonzero coefficients of p(n) and q(n) that
results in large support widths for the scaling functions and
wavelets.

Another important feature of Figure 10.17 is the lack of any
symmetry or antisymmetry axis for the Daubechies scaling func-
tion and wavelet. Daubechies has shown that it is impossible to
obtain an orthonormal and compactly supported wavelet that is
either symmetric or antisymmetric around any axis, except for
the trivial Haar wavelets.

10.9 Fast Wavelet Transform

The wavelet transform is not ready for explicit calculus. Only for
few simple functions the wavelet transform have analytical solu-
tions as given in Section 10.2.4. For most functions the wavelet

transforms must be computed in the digital computer. In the
multiresolution analysis framework, the orthonormal wavelet
transform is implemented by iterating the quadrature mirror
filters in the tree algorithm. In the computer both the function
to be transformed and the iterated quadrature mirror filters
are discrete. The orthonormal wavelet series decomposition and
reconstruction are essentially discrete. The wavelet tree algorithm
permits the fast wavelet transform. One of the main reasons
for the recent success of the wavelet transform is the existence
of this fast wavelet transform algorithm which only requires
a number O(L) of the operations where L is the size of the
initial data.

The discrete wavelet decomposition and reconstruction algo-
rithms are discussed in Sections 10.5.4 and 10.5.5. In this section
we implement the algorithm by matrix operations and introduce
the discrete wavelet matrix and we discuss the number of oper-
ations, the time-bandwidth product of the wavelet transform
output.

10.9.1 Wavelet Matrices

The discrete orthonormal wavelet transform is a linear oper-
ation. Given a vector of data that has a length of an integer
power of two, the wavelet decomposition and reconstruction
are numerically computed by recurring two conjugate quadra-
ture mirror filters p(n) and q(n) that are the FIR filters com-
pactly supported with a finite number N of nonzero coefficients.
The degree of the Laurent polynomial of the transfer function of

φ(t)

ψ(t) Ψ(ω)

Φ(ω)

ωt(a)

(b) ωt

FIGURE 10.17 Daubechies scaling function (a) and wavelet (b) and their Fourier transforms with the compact support N ¼ 4. (From Daubechies,
I., Commun. on Pure and Appl. Math., XLI, 909, 1988. With permission.)
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the filters is N� 1. The wavelet decomposition and reconstruc-
tion are computed with recursive applications of the wavelet
filter bank in the tree algorithm. In the following we show an
example of the wavelet decomposition and reconstruction with
the Daubechies wavelets of N¼ 4, called the DAUB4, in the
matrix formalization.

Let f(n) be the vector of initial data, we generate a wavelet
transform matrix [17] with the translated discrete filters

c(1)

d(1)

c(2)

d(2)

�

�

�

�

�

�

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

p(0) p(1) p(2) p(3) � � � � � � � �

p(3) �p(2) p(1) �p(0) � � � � � � � �

� � p(0) p(1) p(2) p(3) � � � � � �

� � p(3) �p(2) p(1) �p(0) � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � p(0) p(1) p(2) p(3)

� � � � � � � � p(3) �p(2) p(1) �p(0)

p(2) p(3) � � � � � � � � p(0) p(1)

p(1) �p(0) � � � � � � � � p(3) �p(2)
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B
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B
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B
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f (1)

f (2)

f (3)

f (4)

�

�

�

�

�

f (N)

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
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B
B
B
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B
B
B
B
B
B
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C
C
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C
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C
C
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C
C
C
C
C
A

(10:138)

In the wavelet transform matrix the odd rows are the low-
pass filters p(n). The low-pass filter p(n) in the third row is
translated by two with respect to that in the first row and so
on. The even rows are the high-pass filters q(n) which are also
translates by two from the second row to the fourth row and
so on. The wavelet transform matrix acts on a column vector of
data, f(n), resulting in two related correlations between the data
vector f(n) and the filters p(n) and q(n), that are the discrete
approximation c(n) and the discrete wavelet coefficients d(n)
respectively.

It is easy to verify that the low-pass filter p(n) is a smoothing
filter as described in Equation 10.122. With the coefficients of the
Daubechies’ bases given in Equation 10.137 we have

p(0)2 þ p(1)2 þ p(2)2 þ p(3)2 ¼ 1

The high-pass filter q(n) is obtained from the low-pass filter p(n)
from the cross filter orthogonality (Equation 10.82)

q(n) ¼ (�1)np(N � 1� n)

Let N¼ 4 and n¼ 0, 1, 2, 3, we have q(0)¼ p(3), q(1)¼�p(2),
q(2)¼ p(1) and q(4)¼�p(0). The high-pass filter q(n) has the
property that

p(3)� p(2)þ p(1)� p(0) ¼ 0

corresponding to Equation 10.116, Q(0)¼ 0, obtained from the
orthonormality condition, and

0p(3)� 1p(2)þ 2p(1)� 3p(0) ¼ 0

corresponding to Equation 10.123 obtained for the regularity of
the wavelets.

It is easy to see that in the wavelet transform matrix the ortho-
normality between the double integer translates p(n) and that of
q(n) and the cross filter orthogonality between p(n) and q(n) are
insured because

p(2)p(0)þ p(3(1) ¼ 0

It is also possible to reconstruct the original data f(n) of length L

from the approximation sequence c(n) and the wavelet coeffi-
cients d(n), both sequences are of the length of L=2. From the
preceding equations we see that the wavelet transform matrix in
Equation 10.138 is orthonormal, so that its inverse is just the
transposed matrix

p(0) p(3) � � � � � � � � p(2) p(1)

p(1) �p(2) � � � � � � � � p(3) �p(0)
p(2) p(1) p(0) p(3) � � � � � � � �
p(3) �p(0) p(1) �p(2) � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � p(2) p(1) p(0) p(3) � �
� � � � � � p(3) �p(0) p(1) �p(2) � �
� � � � � � � � p(2) p(1) p(0) p(3)

� � � � � � � � p(3) �p(0) p(1) �p(2)
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C
A

(10:139)

The discrete wavelet decomposition is computed by applying
the wavelet transform matrix with the operation (Equation
10.138) hierarchically with the down-sampling by a factor of
two after each iteration. The down-sampling by two is imple-
mented by a permutation of the output vector in the left-hand
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side of Equation 10.138 as shown in the following diagram
with N¼ 16.
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If the length of the data vector N> 16 there were be more stages
of applying (Equation 10.140) and permuting. The final output
vector will always be a vector with two approximation coeffi-
cients C0(1) and C0(2) at the lowest resolution and a hierarchy of
the wavelet coefficients D0(1), D0(2) for the lowest resolution and
D(1)�D(4) for higher resolution and d(1)� d(8) for still higher
resolution, etc. Notice that once the wavelet coefficients d’s are
generated, they simply propagate through to all subsequent
stages without further computation.

The discrete wavelet reconstruction can be computed by sim-
ple reversed procedure, starting with the lowest resolution level

in the hierarchy and working from right to left with the diagram
(Equation 10.140). The inverse wavelet transform matrix (Equa-
tion 10.139), is used instead of Equation 10.138.

The above wavelet transform matrix method shows a clear
figure of the discrete wavelet decomposition and reconstruction.
The wavelet transform can also be computed with other methods
iterating the discrete filters in the tree algorithms without using
the wavelet transform matrix.

10.9.2 Number of Operations

We consider now the number of operations required for the
discrete orthonormal wavelet transform of a vector of data. Let
L be the length of the data vector and N the length of the FIR
filters p(n) and q(n). As the wavelet transform is a local operation
usually N  L. At the highest frequency band the first stage of
decomposition requires 2NL multiplies and adds. In the tree
algorithm at the next coarser frequency band the vector length
of the discrete approximation c(n) is reduced to N=2. Therefore
the next stage of decomposition requires 2(NL=2) multiplies and
adds. The total number of operations of the orthonormal wavelet
decomposition is then

2 NLþ NL

2
þ NL

4
þ � � �

� �

¼ 2NL 1þ 1

2
þ 1

4
þ � � �

� �

� 4NL

As N is a small number, the orthonormal wavelet transform
requires only an O(L) computations. This is even faster than
the FFT for the Fourier transform, that requires O(L log2 L)
multiplies and adds, due to its global nature.

10.9.3 Time–Bandwidth Product

The wavelet transform is a mapping of a function of time, in 1-D
case, to the 2-D timescale joint representation. At first glance the
time-bandwidth product of the wavelet transform output would
be squared of that of the signal. In the multiresolution analysis
framework, however, the size of the data vector is reduced by a
factor of two in moving from one frequency band to the next
coarser resolution frequency band. The time-bandwidth product
also is reduced by a factor of two. If the original data vector c0(n)
has L samples, in the tree algorithm for the wavelet decompos-
ition shown in Figure 10.11 the first stage wavelet coefficients
outputs d1(n) has L=2 samples, that of the second stage has L=4
samples etc. Let the length of the data vector L¼ 2K, the total
time–bandwidth product of the wavelet decomposition including
all the wavelet coefficients di(n) with i¼ 1, 2, .. . . .K� 1 and the
lowest resolution approximation ck�1(n) is equal to the original
data vector length

L
1

2
þ 1

4
þ � � �

� �

� L
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10.10 Applications of the Wavelet
Transform

In this section we present some popular applications of the
wavelet transform for multiresolution transient signal analysis
and detection, image edge detection, and compression with some
simple examples.

10.10.1 Multiresolution Analysis of Power
System Signal

In this section we show an example of multiresolution analysis
for a simple transient signal. Transient signals in the power
system are nonstationary time-varying voltage and current that
can occur as a result of changes in the electrical configuration
and in industrial and residential loads, and of a variety of dis-
turbances on transmission lines, including capacitor switching,
lightning strikes and short-circuits. The waveform data of the
transient signals are captured by digital transient recorders.
Analysis and classification of the power system disturbance can
help to provide more stability and efficiency in power delivery by
switching transmission lines to supply additional current or
switching capacitor banks to balance inductive loads, and help
to prevent system failures.

The power system transient signals contain a range of frequen-
cies from a few hertz to impulse components with microsecond
rise times. The normal 60 Hz sinusoidal voltage and current
waveforms are interrupted or superimposed with impulses, oscil-
lations, and reflected waves. An experienced power engineer can
visually analyze the waveform data in order to determine the type
of system disturbance. However, the Fourier analysis with its
global operation nature is not as appropriate for the transient
signals as the timescale joint representation provided by the wave-
let transform.

10.10.1.1 Multiresolution Wavelet Decomposition
of Transient Signal

The wavelet transform provides a decomposition of power system
transient signals into meaningful components in multiple
frequency bands, and the digital wavelet transform is computa-
tionally efficient [18]. Figure 10.1 in Section 10.1 shows the wave-
let components in the multiple frequency bands. At the top is
the input voltage transient signal. There is a disturbance of a
capacitor bank switching on a three-phase transmission line.
Below the first line are the wavelet components as a function of
the scale and time shift. The scales of the discrete wavelets increase
by a factor of two successively from SCALE 1 to SCALE 64,
corresponding to the dyadic frequency bands. The vertical axis
in each discrete scale is the normalized magnitude of the signal
component in voltage. The three impulses in high frequency
band SCALE 1 correspond to the successive closing of each
phase of the three-phase capacitor bank. SCALE 2 and SCALE 4
are the bands of system response frequencies. SCALE 4 contains
most energy from the resonant frequency caused by the addition

of a capacitor bank to a primarily inductive circuit. The times
of occurrence of all those components can be determined on
the time axis. SCALE 64 contains only the basic signal of continu-
ous 60 Hz.

The wavelet analysis decomposes the power system transient
into the meaningful components, whose modulus maxima then
can be used for further classification. The nonorthogonal multi-
resolution analysis wavelets with FIR quadratic spline wavelet
filters were used in this example of application.

10.10.1.2 Shift Invariance

One problem in this application and many other applications
with the dyadic wavelet transform is the lack of shift invariance.
The dyadic wavelet transform is not shift invariant. In the wave-
let decomposition the analysis low-pass and high-pass filters are
double shifted by two as described by Equation 10.60. If the input
signal is shifted by one sampling interval distance, then the
output of the dyadic wavelet transform is not simple shifted by
the same distance, but the values of the wavelet coefficients
would be changed dramatically. This aliasing error is caused by
the down-sampled by factor of two in the multiresolution signal
analysis and is discussed in Section 10.6.2. This is a disadvantage
of the dyadic wavelet transform, because many applications such
as real-time signal analysis and pattern recognition require shift
invariant wavelet transform. In the above example of application,
the orthonormal quadrature mirror filters has been found sensi-
tive to translations of the input. Hence, nonorthonormal quad-
ratic spline wavelets have been used.

10.10.2 Signal Detection

The detection of weak signals embedded in a stronger stationary
stochastic process, such as the detection of radar and sonar
signals in zero-mean Gaussian white noise, is a well-studied
problem. If the shape of the expected signal is known, the
correlation and the matched filter provide optimum solution in
terms of the signal-to-noise ratio in the output correlation.

In the detection of speech or biomedical signals, the exact
shape of the signal is unknown. The Fourier spectrum analysis
could be effective for those applications, only when the expected
signal has spectral features that are clearly distinguished from the
noise. The effectiveness of the Fourier spectrum analysis is gen-
erally proportional to the ratio of the signal to noise energy. For
short-time, low-energy transients, the change in the Fourier
spectrum is not easily detected. Such transient signals can be
detected by the wavelet transform. An example of electrocardio-
gram signal detection follows [19].

Figure 10.18 shows the clinical electrocardiogram with normal
QRS peaks and an abnormality called ventricular late potentials
(VLP) right after the second QRS peak. The amplitude of the VLP
signal is about 5% of the QRS peaks. Its duration was about 0.1 s,
or a little less than 10% of the pulse period. The VLP’s are weak
signals, swamped by noise, and they occur somewhat randomly.

Figure 10.19 shows the magnitude of continuous wavelet
transform with the cos-Gaussian wavelets of scale s¼ 1=11,
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1=16 and 1=22. The peak after the second QRS spike observed for
s¼ 1=16 is very noticeable and gives a clear indication of the
presence of the VLP.

10.10.3 Image Edge Detection

Edges and boundaries, representing shapes of objects, intersec-
tions between surfaces and between textures, are among the most
important features of images, useful for image segmentation and
pattern recognition. An edge in image is a set of locally connected
pixels, which are characterized by sharp intensity variation in their
neighborhood in one direction, i.e., the maximum of the gradient
of intensity, and smooth intensity variation in the direction per-
pendicular to the gradient. Edges are local features of an image.

The wavelet transform is a local operation. The wavelet trans-
form of a constant is equal to zero and the wavelet transform of a
polynomial function of degree n is also equal to zero if the
Fourier transform of the wavelet has the zero of order nþ 1
about the frequency v¼ 0, as described in Section 10.2.4,
Hence, the wavelet transform is useful for detecting singularities
of functions and edges of images.

10.10.3.1 Edge Detectors

The edge detectors smooth first an image at various scales
and then detect sharp variation from the first- or second-order
derivative of the smoothed images. The extrema of the first-
order derivative correspond to the zero crossing of the second-
order derivative and to the inflection points of the image.

An simple example of edge detector is the first- or second-
order derivative of the Gaussian function g(x, y). The Gaussian
function gs(x, y) is scaled by a factor s. The first- and second-
order derivative, i.e., the gradient and the Laplacian, of gs(x, y) are
the Gaussian wavelets satisfying the wavelet admissible condi-
tion, as described in Section 10.2.5.

By the definition, the wavelet transform of an image f(x, y) is
correlation between f(x, y) and the scaled wavelets. We derive that

W f (s; x, y) ¼ f *(srgs) ¼ sr( f *gs)(x, y)

where * denotes the correlation with the first-order derivative
Gaussian wavelet and s is the scale factor, so that

W f (x, y) ¼ f * s2D2gs
� �

¼ s2D2( f *gs)(x, y)
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FIGURE 10.18 (Left) Normal electrocardiogram, (right) electrocardiogram with VLP abnormality. (From Combes, J. M. et al., Wavelets, 2nd ed.
Springer-Verlag, Berlin, 1990. With permission.)
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FIGURE 10.19 Wavelet transform of the abnormal electrocardiogram for scale factor s ¼ 11, 16, 22. The bulge to the right of the second QRS peak
for s ¼ 1=16 indicates the presence of the VLP. (From Combes, J. M. et al., Wavelets, 2nd ed. Springer-Verlag, Berlin, 1990. With permission.)
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with the second-order derivative Gaussian wavelet, which is the
Mexican-hat wavelet. The wavelet transform is then the gradient
or the Laplacian of the image smoothed by the Gaussian function
gs(x, y) at the scale s.

The local maxima of the wavelet transform with the first-
derivative of Gaussian wavelet can be extracted as edges. This is
the Canny edge detector. The zero-crossing of the wavelet
transform with the Mexican-hat wavelet corresponds to the
inflection points of the smoothed image f *gs(x, y), which can
be extracted as edges. This is the zero-crossing Laplacian edge
detector.

10.10.3.2 Two-Dimensional Wavelet Transform

The wavelet transform can be easily extended to 2-D case for
image processing applications. The wavelet transform of a 2-D
image f(x, y) is

W f (sx , sy ; u, v) ¼
1
ffiffiffiffiffiffiffi
sxsy
p

ðð

f (x, y)c
x � u

sx
;
y � v

sy

� �

dx dy

that is a four-dimensional function. It is reduced to a set of two-
dimension functions of (u, v) with different scales, when the scale
factors sx¼ sy¼ s. When c(x, y)¼c(r) with r¼ (x2þ y2)1=2,
the wavelets are isotropic and have no selectivity for spatial
orientation. Otherwise, the wavelet can have particular orienta-
tion. The wavelet can also be a combination of the 2-D wavelets
with different particular orientations, so that the 2-D wavelet
transform has orientation selectivity.

At each resolution the pair of the 1-D low-pass and high-pass
filters are first applied to each row of the image, that results in a
horizontally approximation image and a horizontal detail image.
Then the pair of the 1-D filters are applied to each column of the
two horizontally filtered images. The down-sampling by two is

applied after each filtering. The two-step filtering and down-
sampling result in four subband images : (LL) for the low-pass
filtered both horizontally and vertically image, (HH) for the high-
pass filtered both horizontally and vertically image, (LH) for low-
pass filtered in horizontal direction and high-pass filtered in
vertical direction image and (HL) for high-pass filtered in vertical
direction and high-pass filtered in horizontal direction image, as
shown in Figure 10.20 [16].

All the four images have the half size of the input image.
We put the detail images (LH), (HL) and (HH) in three respect-
ive quadrants as shown in Figure 10.21. The image (LL) is the
approximation image in both horizontal and vertical directions
and is down-sampled in both directions. Then, we apply the
whole process of two-step filtering and down-sampling again to
the image (LL) in this lower resolution level. The iteration can
continue many times until, for instance, the image (LL) has only
a size of 23 2. Figure 10.21 show a disposition of the detail
images (LH), (HL) and (HH) at three resolution levels (1, 2, 3)
and the approximation image (LL) at the fourth low resolution
level (4). If the original image has L2 pixels at the resolution i¼ 0,
then each image (LH), (HL) and (HH) at resolution level i has
(L=2i)2 pixels (i> 0) The total number of pixels of the orthonor-
mal wavelet representation is therefore still equal to L2, as shown
in Figure 10.21. The dyadic wavelet transform does not increase
the volume of data. This is owing to the orthonormality of the
discrete wavelet decomposition.

10.10.3.3 Multiscale Edges

The wavelet transform of a 2-D image for edge detection is
performed at a set of dyadic scales, generating a set of detail
images. Similarly to the reconstruction process described in
Section 10.5.5, the detail images from the wavelet decomposition
can be used to reconstruct the original image.
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x
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FIGURE 10.20 Schematic two-dimensional wavelet decomposition with quadrature mirror low-pass and high-pass filters p(n) and q(n).
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If the wavelet is the first-order derivative of the Gaussian
smoothing function and we retain the modulus maxima of the
wavelet components then we obtain the edge images, which
correspond to the maximum variation of the smoothed image
at a scale s. The multiscale edge information provided by the
wavelet transform can also be used to analyze the regularity of
the image function by observing the propagation of the modulus
maxima from one scale to next scale. A similar approach is used
to reduce the noise in the image, since the noise has different
regularity than that of the image and image edges.

10.10.4 Image Compression

Image compression is to use fewer bits to represent the image
information for different purposes, such as image storage, image
transmission, and feature extraction. The general idea behind is
to remove the redundancy in an image to find more compact
representation.

A popular method for image compression for removing the
spatial redundancy is so-called transform coding, that represents
the image in the transformation basis such that the transform-
ation coefficients are decorrelated. We see in Section 10.5.4 that
the multiresolution wavelet decomposition is projections onto
subspaces spanned by scaling function basis and the wavelet
basis. The projections on the scaling function basis yield approx-
imations of the signal and the projections on the wavelet basis
yield the differences between the approximations at two adjacent
resolution levels. Therefore, the wavelet detail images are dec-
orrelated and can be used for image compression. Indeed, the

detail images obtained from the wavelet transform consist of
edges in the image. There is only few correlation among the
values on pixels in the edge images.

One example of image compression applications is the gray-
scale fingerprint image compression using the wavelet transform
[20]. The fingerprint images are captured as 500 pixels per inch
and 256 gray levels. The wavelet subband decomposition is
accomplished by the tree algorithm described by Figure 10.20.
The dominant ridge frequency in fingerprint images is in roughly
v¼p=8 up to v¼p=4 bands. Because the wavelet decompos-
ition removes the correlation among image pixels, only
the wavelet coefficients with large magnitude are retained. The
wavelet decomposition uses pairs of symmetric biorthogonal
wavelet filters with 7 and 9 taps.

Most wavelet transform coefficients are equal or close to zero
in the regions of smooth image intensity variation. After a
thresholding on the wavelet coefficients the retained coefficients
are subsequently coded according to a scalar quantizer and are
mapped to a set of 254 symbols for Huffman encoding using
the classical image coding technique. The thresholding and the
Huffman coding can achieve high compression ratio.

The analysis low-pass and high-pass filters, the quantization
rule and the Huffman code table are included with the com-
pressed images, so that a decoder can reconstruct approxima-
tions of the original images by performing the inverse wavelet
transform. After compression at 20:1, the reconstructed images
conserve the ridge features: ridge ending or bifurcations that are
definitive information useful for determination.
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11.1 Finite Hankel Transforms

11.1.1 Introduction

This chapter is devoted to the study of the finite Hankel trans-

form and its basic operational properties. The usefulness of this
transform is shown by solving several initial-boundary problems
of physical interest. The method of finite Hankel transforms was
first introduced by Sneddon (1946).

11.1.2 Definition of the Finite Hankel Transform
and Examples

Just as problems on finite intervals�a< x< a lead to Fourier
series, problems on finite intervals 0< r< a, where r is the
cylindrical polar coordinate, lead to the Fourier–Bessel series

representation of a function f(r), which can be stated in the
following theorem.

THEOREM 11.1

If f (r) is defined in 0� r� a and

~f n(ki) ¼
ða

o

r f (r)Jn(rki)dr, (11:1)

then f (r) can be represented by the Fourier–Bessel series as

f (r) ¼ 2

a2

X1

i¼1

~f n(ki)
Jn(rki)

J2nþ1(aki)
, (11:2)

where ki(0< k1< k2< . . . ) are the roots of the equation
Jn(aki)¼ 0, which means

J 0n(aki) ¼ Jn�1(aki) ¼ �Jnþ1(aki), (11:3)
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due to the standard recurrence relations among J 0n(x), Jn�1(x),
and Jnþ1(x).

Proof We write the Bessel series expansion of f(r) formally as

f (r) ¼
X1

i¼1
ciJn(rki), (11:4)

where the summation is taken over all the positive zeros k1, k2, . . .
of the Bessel function Jn(aki). Multiplying Equation 11.4 by
rJn(rki), integrating both sides of the result from 0 to a, and then
using the orthogonal property of the Bessel functions, we obtain

ða

o

rf (r)Jn(rki)dr ¼ ci

ða

o

rJ2n(rki)dr:

Or,

~f n(ki) ¼
a2ci

2
J2nþ1(aki),

hence, we obtain

ci ¼
2

a2

~f n(ki)

J2nþ1(aki)
: (11:5)

Substituting the value of ci into Equation 11.4 gives
Equation 11.2.

Definition 11.1: The finite Hankel transform of order n of a
function f (r) is denoted by *n{f(r)}¼~f n(ki) and is defined by

*n{ f (r)} ¼ ~f n(ki) ¼
ða

0

rf (r)Jn(rki)dr: (11:6)

The inverse finite Hankel transform is then defined by

*�1n {~f n(ki)} ¼ f (r) ¼ 2

a2

X1

i¼1

~f n(ki)
Jn(rki)

J2nþ1(aki)
, (11:7)

where the summation is taken over all positive roots of
Jn(ak)¼ 0.

The zero-order finite Hankel transform and its inverse are
defined by

*0{ f (r)} ¼ ~f 0(ki) ¼
ða

0

r f (r)J0(rki)dr, (11:8)

*�10 {~f 0(ki)} ¼ f (r) ¼ 2

a2

X1

i¼1

~f 0(ki)
J0(rki)

J21 (aki)
, (11:9)

where the summation is taken over the positive roots of
J0(ak)¼ 0.

Similarly, the first-order finite Hankel transform and its
inverse are

*1{ f (r)} ¼ ~f 1(ki) ¼
ða

0

rf (r)J1(rki)dr, (11:10)

*�11 {~f 1(ki)} ¼ f (r) ¼ 2

a2

X1

i¼1

~f 1(ki)
J1(rki)

J22 (aki)
, (11:11)

where ki is chosen as a positive root of J1(ak)¼ 0. &

We now give examples of finite Hankel transforms of some
functions.

Example 11.1

If f (r)¼ rn, then

*n{r
n} ¼

ða

0

rnþ1Jn(rki), dr ¼
anþ1

ki
Jnþ1(aki): (11:12)

When n¼ 0,

*0{1} ¼
a

ki
J1(aki): (11:13)

&

Example 11.2

If f(r)¼ (a2� r2), then

*0{(a
2 � r2)} ¼

ða

0

r(a2 � r2)J0(aki)dr ¼
4a

k3i
J1(aki)�

2a2

k2i
J0(aki):

Since ki are the roots of J0 (ak)¼ 0, we find

*0{(a
2 � r2)} ¼ 4a

k3i
J1(aki): (11:14)

&

11.1.3 Basic Operational Properties

We state the following operational properties of finite Hankel

transforms:

*n{ f
0(r)} ¼ ki

2n
[(n� 1)*nþ1{ f (r)}� (nþ 1)*n�1{ f (r)}], n � 1,

(11:15)

provided f(r) is finite at r¼ 0.
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When n¼ 1, we obtain the finite Hankel transform of
derivatives

*1{ f
0(r)} ¼ �ki*0{ f (r)} ¼ �ki ~f 0(ki): (11:16)

*n
1

r

d

dr
{r f 0(r)}� n2

r2
f (r)

� �

¼ �k2i ~f n(ki)� aki f (a)J
0
n(aki):

(11:17)

When n¼ 0

*0 f 00(r)þ 1

r
f 0(r)

� �

¼ �k2i ~f 0(ki)þ akif (a)J1(aki): (11:18)

If n¼ 1, Equation 11.17 becomes

*1 f 00(r)þ 1

r
f 0(r)� 1

r2
f (r)

� �

¼ �k2i ~f 1(ki)� akif (a)J
0
1(aki):

(11:19)

Results (Equations 11.18 and 11.19) are very useful for finding
solutions of differential equations in cylindrical polar coordinates.

The proofs of the above results are elementary exercises for
the reader.

11.1.4 Applications of Finite Hankel Transforms

Example 11.3 (Temperature Distribution

in a Long Circular Cylinder)

Find the solution of the axisymmetric heat conduction equation

qu

qt
¼ k

q2u

qr2
þ 1

r

qu

qr

� �

, 0 � r � a, t > 0 (11:20)

with the boundary and initial conditions

u(r, t) ¼ f (t) on r ¼ a, t > 0 (11:21)

u(r, 0) ¼ 0, on 0 � r � a: (11:22)

Application of the finite Hankel transform defined by

~u(ki , t) ¼ *0{u(r, t)} ¼
ð

a

0

rJo(rki)u(r, t)dr, (11:23)

yields the given system with the boundary condition

~ut þ kk2i ~u ¼ kakiJ1(aki)f (t),

~u(ki , 0) ¼ 0:
(11:24a,b)

The solution of the first-order system is

~u(ki , t) ¼ kakiJ1(aki)

ð

t

0

f (t) exp �kk2i (t � t)
� �

dt (11:25)

The inverse transform gives the formal solution

u(r, t) ¼ 2k

a

� �

X

1

i¼1

kiJ0(rki)

J1(aki)

ð

t

0

f (t) exp �kk2i (t � t)
� �

dt:

(11:26)

In particular, if f(t)¼ T0¼ constant,

u(r, t) ¼ 2T0

a

� �

X

1

i¼1

J0(rki)

kiJ1(aki)
1� exp �kk2i t

� 	
 �

: (11:27)

Using the inverse version of Equation 11.7 gives the final

solution

u(r, t) ¼ T0 �
2T0

a

� �

X

1

i¼1

J0(rki)

kiJ1(aki)
exp �kk2i t

� 	

: (11:28)

This solution representing the temperature distribution con-

sists of the steady-state term, and the transient term which

decays to zero as t ! 1. Consequently, the steady tempera-

ture is attained in the limit as t ! 1. &

Example 11.4 (Unsteady Viscous Flow in a Rotating

Long Circular Cylinder)

The axisymmetric unsteady motion of a viscous fluid in an

infinitely long circular cylinder of radius a is governed by

ut ¼ v urr þ
1

r
ur �

u

r2

� �

, 0 � r � a, t > 0, (11:29)

where u¼ u(r,t) is the tangential fluid velocity and v is the

constant kinematic viscosity of the fluid.

The cylinder is initially at rest at t¼ 0, and it is then allowed

to rotate with constant angular velocity V. Thus, the boundary

and initial conditions are

u(r, t) ¼ aV on r ¼ a, t > 0, (11:30)

u(r, t) ¼ 0 at t ¼ 0 for 0 < r < a: (11:31)

We solve the problem by using the joint Laplace and the finite

Hankel transform of order one defined by

~�u(ki , s) ¼
ð

1

0

e�stdt

ð

a

0

rJ1(kir)u(r, t)dr, (11:32)

where ki are the positive roots of J1(aki)¼ 0.

Application of the joint transform gives

s~�u(ki , s) ¼ �n k2i
~�u(ki , s)�

na2Vki

s
J01(aki):

Or,

~�u(ki , s) ¼ � na2VkiJ
0
1(aki)

s sþ nk2ið Þ : (11:33)
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The inverse Laplace transform gives

~u(ki , t) ¼ �
a2V

ki
J01(aki) 1� exp �ntk2i

� 	
 �

: (11:34)

Thus, the final solution is found from Equation 11.34 by

using the inverse Hankel transform with J01(aki) ¼ �J2(aki) in
the form

u(r, t) ¼ 2V
X

1

i¼1

J1(rki)

kiJ2(aki)
1� exp �ntk2i

� 	
 �

: (11:35)

This solution is the sum of the steady-state and the transient

fluid velocities.

In view of Equation 11.12 for n¼ 1, we can write

r ¼ *�11

a2

ki
J2(aki)

� 

¼ 2
X

1

i¼1

J1(rki)

kiJ2(aki)
: (11:36)

This result is used to simplify Equation 11.35 so that the final

solution for u(r, t) takes the form

u(r, t) ¼ rV� 2V
X

1

i¼1

J1(rki)

kiJ2(aki)
exp �ntk2i

� 	

: (11:37)

In the limit as t!1, the transient velocity component decays

to zero, and the ultimate steady state flow is attained in the

form

u(r, t) ¼ rV: (11:38)

Physically, this represents the rigid body rotation of the fluid

inside the cylinder. &

Example 11.5 (Vibrations of a Circular Membrane)

The free symmetric vibration of a thin circular membrane of

radius a is governed by the wave equation

utt ¼ c2 urr þ
1

r
ur

� �

, 0 < r < a, t > 0 (11:39)

with the initial and boundary data

u(r, t) ¼ f (r),
qu

qt
¼ g(r) at t ¼ 0 for 0 < r < a, (11:40a,b)

u(a, t) ¼ 0 for all t > 0: (11:41)

Application of the zero-order finite Hankel transform of u(r, t)

defined by Equation 11.23 in Equation 11.39 through 11.41

gives

d2~u

dt2
þ c2k2i ~u ¼ 0, (11:42)

~u ¼ ~f (ki) and
d~u

dt

� �

t¼0
¼ ~g(ki): (11:43ab)

The solution of this system is

~u(ki , t) ¼ ~f (ki) cos (ctki)þ
~g(ki)

cki
sin (ctki): (11:44)

The inverse transform yields the formal solution

u(r, t) ¼ 2

a2

X

1

i¼1
f (ki) cos (ctki)

J0(rki)

J21(aki)
þ 2

ca2

X

1

i¼1
g(ki) sin (ctki)

J0(rki)

kiJ
2
1(aki)

,

(11:45)

where the summation is taken over all positive roots of

J0(aki)¼ 0.

We consider a more general form of the finite Hankel

transform associated with a more general boundary condition

f 0(r)þ h f (r) ¼ 0 at r ¼ a, (11:46)

where h is a constant.

We define the finite Hankel transform of f (r) by

*n{ f (r)} ¼ ~f n(ki) ¼
ð

a

0

rJn(rki)f (r)dr, (11:47)

where ki are the roots of the equation

kiJ
0
n(aki)þ hJn(aki) ¼ 0: (11:48)

The corresponding inverse transform is given by

f (r) ¼ *�1n {~f n(ki)} ¼ 2
X

1

i¼1

k2i
~f n(ki)Jn(rki)

k2i þ h2ð Þa2 � n2
� �

J2n(aki)
:

(11:49)

This finite Hankel transform has the following operational

property

*n

1

r

d

dr
{rf 0(r)}� n2

r2
f (r)

� �

¼ �k2i ~f n(ki)þ a[f 0(a)þ h f (a)]Jn(aki),

(11:50)

which is, by Equation 11.48

¼ �k2i ~f n(ki)�
aki

h
[f 0(a)þ h f (a)]J0n(aki): (11:51)

Thus, result (Equation 11.51) involves f 0(a)þ hf(a) as the

boundary condition. &

We apply these more general finite Hankel transform pairs

(Equations 11.47 and 11.49) to solve the following axisym-

metric initial-boundary value problem.
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Example 11.6 (Temperature Distribution

of Cooling of a Circular Cylinder)

Solve the axisymmetric heat conduction problem for an infin-

itely long circular cylinder of radius r¼ a with the initial

constant temperature T0, and the cylinder cooling by radiation

of heat from its boundary surface at r¼ a to the outside

medium at zero temperature according to Newton’s law of

cooling, which satisfies the boundary condition

qu

qr
þ hu ¼ 0 at r ¼ a, t > 0, (11:52)

where h is a constant.

The problem is governed by the axisymmetric heat con-

duction equation

ut ¼ k urr þ
1

r
ur

� �

, 0 � r � a, t > 0, (11:53)

with the boundary condition (Equation 11.52) and the initial

condition

u(r, 0) ¼ T0 at t ¼ 0, for 0 < r < a: (11:54)

Application of the zero-order Hankel transform (Equation

11.47) with (Equation 11.48) to the system (Equations 11.52

through 11.54) gives

d~u

dt
þ kk2i ~u ¼ 0, t > 0 (11:55)

~u(ki , 0) ¼ T0

ð

a

0

rJ0(rki)dr ¼
aT0

ki
J1(aki): (11:56)

The solution of Equations 11.55 and 11.56 is

~u(ki , t) ¼
aT0

ki

� �

J1(aki) exp (�ktk2i ): (11:57)

The inverse transform (Equation 11.49) with n¼ 0 and

kiJ
0
0(aki)þ hj0(aki) ¼ 0, that is, kiJ1(aki)¼ hj0(aki), leads to the

formal solution

u(r, t) ¼ 2hT0

a

� �

X

1

i¼1

J0(rki) exp (�ktk2i )

k2i þ h2ð ÞJ0(aki)
, (11:58)

where the summation is taken over all the positive roots of

kiJ1(aki)¼ hJ0(aki). &

11.1.5 Additional Relations

1. *n
Jn(ar)

Jn(aa)

� 

¼ aki

a2 � k2ið Þ J
0
n(aki)

2. If *n{f(r)} is the finite Hankel transform of f (r) defined
by Equation 11.6, and if n> 0, then
(a) *n{r�1f 0(r)} ¼ 1

2 ki[*nþ1{r�1f (r)}�*n�1{r�1f (r)}],
(b) *0{r�1f 0(r)} ¼ ki *1{r�1f (r)}� f (a):

3. If we define the finite Hankel transform of f (r) by

*n{ f (r)} ¼ ~f n(ki) ¼
ð

b

a

rf (r)An(rki)dr, b > a,

where

An(rki) ¼ Jn(rki)Yn(aki)� Yn(rki)Jn(aki),

and Yn(x) is the Bessel function of the second kind of order
n, then the inverse transform is

*�1
n {~f n(ki)} ¼ f (r) ¼ p2

2

X

1

i¼1

k2i
~f n(ki)An(rki)J2n(bki)

J2n(aki)� J2n(bki)
,

where ki are the positive roots of An(bki)¼ 0.

4. For the transform defined in problem 3, then

*n f 00(r)þ1

r
f 0(r)�n2f (r)

r2

� �

¼�k2i
~f n(ki)

þ 2

p
f (b)

Jn(aki)

Jn(bki)
� f (a)

� �

:

11.2 Legendre Transforms

11.2.1 Introduction

We consider in this chapter the Legendre transform with a
Legendre polynomial as kernel and discuss basic operational
properties including the convolution theorem. Legendre trans-
forms are then used to solve boundary value problems in poten-
tial theory. This chapter is based on papers by Churchill (1954)
and Churchill and Dolph (1954).

11.2.2 Definition of the Legendre Transform
and Examples

Churchill (1954) defined the Legendre transform of a function
f(x) defined in�1< x< 1 by the integral

7n{ f (x)} ¼ ~f (n) ¼
ð

1

�1

Pn(x)f (x)dx, (11:59)

provided the integral exists and where Pn(x) is the Legendre

polynomial of degree n (�0). Obviously 7n is a linear integral
transformation.

When x¼ cos u, Equation 11.59 becomes

7n{ f (cos u)} ¼ ~f (n) ¼
ð

p

0

Pn(cos u)f (cos u) sin udu: (11:60)
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The inverse Legendre transform is given by

f (x) ¼ 7�1n {~f (n)} ¼
X1

n¼0

2nþ 1

2

� �

~f (n)Pn(x): (11:61)

This follows from the expansion of any function f (x) in the form

f (x) ¼
X

1

n¼0
anPn(x), (11:62)

where the coefficient an can be determined from the orthogonal
property of Pn(x). It turns out that

an ¼
2nþ 1

2

� �
ð

1

�1

Pn(x)f (x)dx ¼
2nþ 1

2

� �

~f (n), (11:63)

and hence, result (Equation 11.61) follows.

Example 11.7

7n{ exp (iax)} ¼
2p

a

� �1=2

in Jnþ1=2(a), (11:64)

where Jv(x) is the Bessel function.

We have, by definition,

7n{ exp (iax)} ¼
ð

1

�1

exp (iax)Pn(x)dx,

which is, by a result in Copson (1935, p. 341),

¼
ffiffiffiffiffiffi

2p

a

r

inJnþ1=2(a):

Similarly,

7n{ exp (ax)} ¼
ffiffiffiffiffiffi

2p

a

r

Inþ1=2(a), (11:65)

where Iv (x) is the modified Bessel function of the first kind.

Example 11.8

a: 7n{(1� x2)�1=2} ¼ p P2n(0) (11:66)

b: 7n

1

2(t � x)

� 

¼ Qn(t), jtj > 1, (11:67)

where Qn(t) is the Legendre function of the second kind

given by

Qn(t) ¼
1

2

ð

1

�1

(t � x)�1Pn(x)dx:

These results are easy to verify with the aid of results given in

Copson (1935, p. 292, 310). &

Example 11.9

If jrj � 1, then

a: 7n{(1� 2rx þ r2)�1=2} ¼ 2rn

(2nþ 1)
, (11:68)

b: 7n{1� 2rx þ r2)�3=2} ¼ 2rn

(1� r2)
: (11:69)

We have, from the generating function of Pn (x),

(1� 2rx þ r2)�1=2 ¼
X

1

n¼0

rnPn(x), jrj < 1:

Multiplying this result by Pn (x) and using the orthogonality

condition of the Legendre polynomial gives

ð

1

�1

(1� 2rx þ r2)�1=2Pn(x)dx ¼
2rn

(2nþ 1)
: (11:70)

In particular, when r¼ 1, we obtain

7n{(1� x)�1=2} ¼ 2
ffiffiffi

2
p

(2nþ 1)
: (11:71)

Differentiating Equation 11.70 with respect to r gives

1

2

ð

1

�1

(1� 2rx þ r2)�3=2(2rx � 2r2)Pn(x)dx ¼
2nrn

(2nþ 1)
,

so that

�7n{(1� 2rxþ r2)�1=2}þ (1� r2)7n{(1� 2rxþ r2)�3=2}¼ 2nrn

(2nþ 1)
:

Using Equation 11.68, we obtain Equation 11.69. &

Example 11.10

If jrj< 1 and a> 0, then

7n

ð

r

0

ta�1dt

(1� 2xt þ t2)1=2

8

<

:

9

=

;

¼ 2rnþa

(2nþ 1)(nþ a)
: (11:72)
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We replace r by t in Equation 11.68 and multiply the result

by ta�1 to obtain

7n{t
a�1(1� 2xt þ t2)�1=2} ¼ 2tnþa�1

(2nþ 1)
:

Integrating this result on (0, r) we find Equation 11.72. &

Example 11.11

If H (x) is a Heaviside unit step function, then

7n{H(x)} ¼
1, n ¼ 0

Pn�1(0)� Pnþ1(0)

(2nþ 1)
, n � 1

8

<

:

9

=

;
: (11:73)

Obviously,

7n{H(x)} ¼
ð1

0

Pn(x)dx ¼ 1 when n ¼ 0

However, for n> 1, we use the recurrence relation for

Pn(x) as

(2nþ 1)Pn(x) ¼ P0nþ1(x)� P0n�1(x) (11:74)

to derive

7n{H(x)} ¼
1

(2nþ 1)

ð1

0

[P0nþ1(x)� P0n�1(x)]dx

¼ 1

2nþ 1
[Pn�1(0)� Pnþ1(0)]:

Debnath and Harrel (1976) introduced the associated Legendre

transform defined by

7n,m{ f (x)} ¼ ~f (n,m) ¼
ð1

�1

(1� x2)�m=2Pmn (x) f (x)dx, (11:75)

where Pmn (x) is the associated Legendre function of the

first kind.

The inverse transform is given by

f (x)¼7�1
n,m{

~f (n,m)}¼
X1

n¼0

(2nþ1)

2

(n�m)!

(nþm)!
~f (n,m)(1� x2)m=2Pmn (x):

(11:76)

The reader is referred to Debnath and Harrel (1976) for a

detailed discussion of this transform. &

11.2.3 Basic Operational Properties
of Legendre Transforms

THEOREM 11.2

If f 0(x) is continuous and f 00(x) is bounded and integrable in each
subinterval of � 1� x �, and if 7n{f(x)} exists and

lim
jxj!1

(1� x2)f (x) ¼ lim
jxj!1

(1� x2)f 0(x) ¼ 0, (11:77)

then

7n{R[f (x)]} ¼ �n(nþ 1)~f (n), (11:78)

where R [ f(x)] is a differential form given by

R[f (x)] ¼ d

dx
(1� x2)

d

dx
f (x)

� �

, n > 0: (11:79)

Proof We have, by definition,

7n{R[f (x)]} ¼
ð

1

�1

d

dx
(1� x2)

d

dx
f (x)

� �

Pn(x)dx

which is, by integrating by parts together with Equation 11.77,

¼ �
ð

1

�1

(1� x2)P0
n(x)

d

dx
f (x)dx:

Integrating this result by parts again, we obtain

7n{R[f (x)]} ¼ �[(1� x2)]P0
n(x)f (x)]

1
�1

þ
ð

1

�1

d

dx
[(1� x2)]P0

n(x), f (x)dx:

Using Equation 11.77 and the differential equation for the
Legendre polynomial

d

dx
(1� x2)

dy

dx

� �

þ n(nþ 1)y ¼ 0, (11:80)

we obtain the desired result

7n{R[f (x)]} ¼ �n(nþ 1)~f (n):

We may extend this result to evaluate the Legendre transforms of
the differential forms R2[f (x)],R3[f (x)], . . . ,Rk[f (x)]. &
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Clearly

7n{R
2[f (x)]} ¼ 7n{R[R[f (x)] ]}

¼ �n(nþ 1)7n{R[ f (x)]} ¼ n2(nþ 1)2~f (n),

(11:81)

provided f 0(x) and f 00(x) satisfy the conditions of Theorem 11.2.
Similarly,

7n{R
3[ f (x)]} ¼ (�1)3n3(nþ 1)3~f (n): (11:82)

More generally, for a positive integer k,

7n{R
k[ f (x)]} ¼ (�1)knk(nþ 1)k~f (n): (11:83)

COROLLARY 11.1

If 7n{R[ f (x)]} ¼ �n(nþ 1)~f (n), then

7n
1

4
f (x)� R[ f (x)]

� 

¼ nþ 1

2

� �2
~f (n): (11:84)

Proof We replace n(nþ1) by nþ 1
2

� 	2� 1
4 in Equation 11.78

to obtain

7n{R[f (x)]} ¼ � nþ 1

2

� �2

� 1

4

" #

~f (n): (11:85)

Rearranging the terms in Equation 11.85 gives

7n
1

4
f (x)� R[f (x)]

� 

¼ nþ 1

2

� �2
~f (n):

In general, this result can be written as

(�1)k7n{R
k[f (x)]� 4�kf (x)}

¼
X

k�1

r¼0
(�1)r k

r

� �

4�r nþ 1

2

� �2k�2r
" #

~f (n): (11:86)

The proof of Equation 11.86 follows from Equation 11.83
by replacing n(nþ1)with nþ 1

2

� 	2� 1
4 and using the binomial

expansion. &

Example 11.12

7n{ log (1� x)} ¼
2(log 2� 1), n ¼ 0

� 2

n(nþ 1)
, n > 0

8

<

:

9

=

;

: (11:87)

Clearly,

R[ log (1� x)] ¼ d

dx
(1� x2)

d

dx
log (1� x)

� �

¼ �1:

Although
d

dx
log (1� x) does not satisfy the conditions of

Theorem 11.2, we integrate by parts to obtain

7n{R[ log (1� x)]} ¼
ð

1

�1

R[log(x)]Pn(x)dx

¼ [�(1þ x)Pn(x)]
1
�1 þ

ð

1

�1

(1þ x)P0n(x)dx,

which is, since (1þ x) ¼ �(1� x2)
d

dx
log (1� x), and by inte-

grating by parts,

¼ �2þ
ð

1

�1

log (1� x)
d

dx
[(1� x2)]P0n(x)dx: (11:88)

By integrating by parts twice, result (Equation 11.88) gives

7n{R[ log (1� x)]} ¼ �2þ
ð

1

�1

d

dx
(1� x2)

d

dx
log (1� x)

� �

Pn(x)dx,

which is, by Equation 11.78,

¼ �2� n(nþ 1)~f (n), (11:89)

where ~f (n) ¼ 7n{ log (1� x)}.

However, R[log(1� x)]¼�1 so that 7n{R[log(1� x)]}¼ 0

for all n> 0 and hence, result (Equation 11.89) gives

7n[ log (1� x)] ¼ ~f (n) ¼ � 2

n(nþ 1)
:

On the other hand, since P0(x)¼ 1, we have

70{[ log (1� x)]} ¼
ð

1

�1

log (1� x)dx,

which is, by direct integration,

¼ �[(1� x){ log (1� x)� x}]1�1 ¼ 2( log 2� 1):

&

THEOREM 11.3

If f (x) and f 0(x) are piecewise continuous in�1< x< 1,
R�1[ f(x)]¼ h(x), and f (0) ¼

Ð 1
�1 f (x)dx ¼ 0, then
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7�1n

~f (n)

n(nþ 1)

( )

¼ A�
ðx

0

ds

(1� s2)

ðs

�1

f (t)dt, (11:90)

where A is an arbitrary constant of integration.

Proof We have

R[h(x)] ¼ f (x)

or,

d

dx
(1� x2)

d

dx
h(x)

� �

¼ f (x):

Integrating over (�1, x) gives

ð

x

�1

f (t)dt ¼ (1� x2)
d

dx
h(x), (11:91)

which is a continuous function of x in jxj< 1 with limit zero as
jxj ! 1.

Integration of Equation 11.91 gives

h(x) ¼
ð

x

0

ds

(1� s2)

ð

s

�1

f (t)dt � A,

where A is an arbitrary constant. Clearly, h(x) satisfies the con-
ditions of Theorem 11.2, and there exists a positive real constant
m< 1 such that

jh(x)j ¼ O{(1� x2)�m} as jxj ! 1:

Hence, 7n{R[h(x)]} exists, and by Theorem 11.2, it follows that

7n{R[h(x)]} ¼ �n(nþ 1)7n{h(x)}
¼ �n(nþ 1)7n{R

�1[f (x)]}, (11:92)

from which it turns out that

7n{R
�1{ f (x)}} ¼ �

~f (n)

n(nþ 1)
: (11:93)

Inversion leads to the results

7�1n

f (n)

n(nþ 1)

� 

¼ �R�1{ f (x)} ¼ �h(x)

¼ A�
ð

x

0

ds

1� s2

ð

s

�1

f (t)dt:

(11:94)

This proves the theorem. &

THEOREM 11.4

If f(x) is continuous in each subinterval of (�1, 1) and a con-
tinuous function g(x) is defined by

g(x) ¼
ð

x

�1

f (t)dt, (11:95)

then

7n{g
0(x)} ¼ ~f (n) ¼ g(1)�

ð

1

�1

g(x)P0n(x)dx: (11:96)

Proof We have, by definition,

7n{g
0(x)} ¼

ð

1

�1

g 0(x) Pn(x)dx,

which is, by integrating by parts,

¼ [Pn(x)g(x)]
1
�1 �

ð

1

�1

g(x)P0n(x)dx:

Since Pn(1)¼ 1 and g(�1)¼ 0, the preceding result becomes
Equation 11.96. &

COROLLARY 11.2

If result (Equation 11.96) is true and g(x) is given by Equation
11.95, then

7n{g(x)} ¼ f (0)� f (1) when n ¼ 0

¼
~f (n� 1)� ~f (nþ 1)

(2nþ 1)
when n > 1

)

: (11:97)

Proof We write ~f (n� 1) and ~f (nþ 1) using Equation 11.96 and
then subtract so that the resulting expression gives Equation
11.97 with the help of Equation 11.74. &

COROLLARY 11.3

If g0(x) is a sectionally continuous function and g(x) is the
continuous function given by Equation 11.95, then
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7n{g
0(x)} ¼ g(1), when n ¼ 0

¼ g(1)� (2n� 1)~g(n� 1)� (2n� 5)~g(n� 3)

� � � � � g(0) when n ¼ 1, 3, 5, . . .

¼ g(1)� 2(2n� 1)~g(n� 1)� (2n� 5)~g(n� 3)

� � � � � 3g(1) when n ¼ 2, 4, 6, . . .

)

(11:98)

These results can readily be verified using Equations 11.74
and 11.96. &

THEOREM 11.5 (Convolution)

If 7n{ f (x)} ¼ ~f (n) and 7n{g(x)} ¼ ~g(n), then

7n{ f (x)} * g(x) ¼ ~f (n)~g(n), (11:99)

where the convolution f (x) * g(x) is given by

f (x) * g(x) ¼ h(x) ¼ 1

p

ðp

0

f ( cos m) sin m dm

ðp

0

g( cos l)db,

(11:100)

with

x ¼ cos n and cos l ¼ cos m cos nþ sin m sin n cos b:

(11:101)

Proof We have, by definition (Equation 11.60),

~f (n)~g(n)¼
ðp

0

f (cosm)Pn(cosm)sin mdm

ðp

0

g(cosl)Pn(cosl)sinldl

¼
ðp

0

f (cosm)sinm

ðp

0

g(cosl)Pn(cosl)Pn(cosm)sinldl

2

4

3

5dm,

(11:102)

where f(x)¼ f(cosm) and g(x)¼ g(cosl).
With the aid of an addition formula (see Sansone, 1959,

p. 169) given as

Pn( cos l)Pn( cos m) ¼
1

p

ðp

0

Pn( cos n)da, (11:103)

where cos n¼ cos l cos mþ sin l sin m cos a, the product can be
rewritten in the form

~f (n)~g(n)¼ 1

p

ðp

0

f (cosm)sinm

ðp

0

ðp

0

g(cosm)Pn(cosm)sinldadl

2

4

3

5dm:

(11:104)

We next use Churchill and Dolph’s (1954, pp. 94–96) geomet-
rical arguments to replace the double integral inside the square
bracket by

ðp

0

ðp

0

g( cos m cos nþ sin m sin n cos b)Pn( cos n) sin n dn:

(11:105)

Substituting this result in Equation 11.102 and changing the
order of integration, we obtain

~f (n)~g(n)¼ 1

p

ðp

0

Pn(cosn)sinn

ðp

0

ðp

0

f (cosm)sinm g(cosl)dmdb

2

4

3

5dn

¼
ðp

0

h(cos n)Pn(cos n)sin ndn,

(11:106)

where

cos l ¼ cos m cos nþ sin m sin n cos b, (11:107)

and

h( cos n) ¼ 1

p

ðp

0

f ( cos m) sin m dm

ðp

0

g( cos l)db:

This proves the theorem.
In particular, when v¼ 0, result Equation 11.100 becomes

h(1) ¼
ð1

�1

f (t)g(�t)dt, (11:108)

and when v¼p, Equation 11.100 gives

h(� 1) ¼
ð1

�1

f (t)g(�t)dt: (11:109)

&

11.2.4 Applications of Legendre Transforms
to Boundary Value Problems

We solve the Dirichlet problem for the potential u(r, u) inside a
unit sphere r¼ 1, which satisfies the Laplace equation

q

qr
r2
qu

qr

� �

þ q

qx
(1� x2)

qu

qx

� �

¼ 0, 0 < r < 1, (11:110)

with the boundary condition (x¼ cos u)
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u(1, x) ¼ f (x), �1 < x < 1: (11:111)

We introduce the ‘‘Legendre transform’’ ~u(r, n) ¼ 7n{u(r, u)}
defined by Equation 11.59. Application of this transform to
Equations 11.110 and 11.111 gives

r2
d2~u(r, n)

dr2
þ 2r

d~u

dr
� n(nþ 1)~u(r, n) ¼ 0, (11:112)

~u(1, n) ¼ ~f (n), (11:113)

where ~u(r, n) is to be continuous function for r for 0� r< 1.
The bounded solution of Equations 11.112 and 11.113 is

~u(r, n) ¼ ~f (n)rn, 0 � r < 1, for n ¼ 0, 1, 2, 3, . . . (11:114)

Thus, the solution for u(r, x) can be found by the inverse
transform so that

u(r, x) ¼
X1

n¼0

nþ 1

2

� �

~f (n)rnPn(x) for 0 < r � 1, jxj < 1:

(11:115)

The convolution theorem allows us to give another represen-
tation of the solution. In view of Equation 11.69, we find

7�1
n {rn} ¼ 1

2
(1� r2)(1� 2rx þ r2)�3=2:

Thus, it follows from Equation 11.114 that

u(r, cos u) ¼ 7�1
n {~f (n)rn}

¼ 1

2p

ð

p

0

f ( cos m) sin m dm

ð

p

0

(1� r2)dl

(1� 2r cos v þ r2)3=2
,

(11:116)

where

cos n ¼ cos m cos uþ sin m sin u cos l: (11:117)

Integral Equation 11.116 is called the Poisson integral formula

for the potential inside the unit sphere for the Dirichlet problem.
On the other hand, for the Dirichlet exterior problem, the

potential w(r, cos u) outside the unit sphere (r> 1) can be
obtained with the boundary condition w(1, cos u)¼ f(cos u).
The solution of the Legendre transformed problem is

~w(r, n) ¼ 1

r
~f (n)r�n, n ¼ 0, 1, 2, . . . , (11:118)

which is, in terms of w,

w(r, cos u) ¼ 1

r
w

1

r
, cos u

� �

, r > 1 (11:119)

¼ 1

2p

ð

p

0

f ( cos m) sin m dm

ð

p

0

(r2 � 1)dl

(1� 2r cos nþ r2)3=2
, (11:120)

where cos v is given by Equation 11.117.

11.2.5 Additional Relations

1. If jrj< 1,

a. 7n{xn} ¼
2nþ1(n!)2

(2nþ 1)!
.

b. 7n log
r�xþ (1�2rxþr2)1=2

1�x

( )" #

¼ 2rnþ1

(nþ1)(2nþ1)
.

c. 7n {2r(1� rx þ r2)�1=2}
h

� log
r � x þ (1� 2rx þ r2)1=2

1� x

( )#

¼ 2rnþ1

(nþ 1)
:

d. 7n � log
1

2
{1� rxþ (1� 2rxþ r2)1=2}

� �

¼
0, n¼ 0

2rn

n(2nþ 1)
, n> 0

8

<

:

e. 7n (1� 2rx þ r2)�
1
2

h

� 1

2
log

1� rx þ (1� 2rx þ r2)1=2

2

( )#

¼ rn

n
:

11.3 Jacobi and Gegenbauer Transforms

11.3.1 Introduction

This chapter deals with Jacobi and Gegenbauer transforms
and their basic operational properties. The former is a fairly
general finite integral transform in the sense that both Gegen-
bauer and Legendre transforms follow as special cases of the
Jacobi transform. Some applications of both Jacobi and Gegen-
bauer transforms are discussed. This chapter is based on the
papers by Debnath (1963, 1967), Scott (1953), Conte (1955),
and Lakshmanarao (1954). All these special transforms have
been unified by Eringen (1954) in his paper on the finite
Sturm–Liouville transform.
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11.3.2 Definition of the Jacobi Transform
and Examples

Debnath (1963) introduced the Jacobi transform of a function
F(x) defined in�1< x< 1 by the integral

J{F(x)} ¼ f (a,b)(n)

¼
ð1

�1

(1� x)a(1þ x)bP(a,b)
n (x)F(x)dx, (11:121)

where P(a,b)
n (x) is the Jacobi polynomial of degree n and orders

a(>�1) and b(>�1).
We assume that F(x) admits the following series expansion

F(x) ¼
X1

n¼1
anP

(a,b)
n (x): (11:122)

In view of the orthogonal relation

ð1

�1

(1� x)a(1þ x)bP(a,b)
n (x)P(a,b)

m (x)dx ¼ dn dmn, (11:123)

where dnm is the Kronecker delta symbol,

dn ¼
2aþbþ1G(nþ aþ 1)G(nþ bþ 1)

n!(aþ bþ 2nþ 1)G(nþ aþ bþ 1)
, (11:124)

and the coefficients an in Equation 11.122 are given by

an ¼
1

dn

ð1

�1

(1� x)a(1þ x)bF(x)P(a,b)
n (x)dx ¼ f (a,b)(n)

dn
:

(11:125)

Thus, the inverse Jacobi transform is given by

J�1{ f (a,b)(n)} ¼ F(x) ¼
X1

n¼0
(dn)

�1f (a,b)(n)P(a,b)
n (x): (11:126)

Note that both J and J�1 are linear transformations.

Example 11.13

If F(x) is a polynomial of degree m< n, then

J{F(x)} ¼ 0: (11:127)

&

Example 11.14

J P(a,b)m (x)
� �

¼ dmn: (11:128)

&

Example 11.15

From the uniformly convergent expansion of the generating

function for jzj< 1

2aþbQ�1(1� z þ Q)�a(1þ z þ Q)�b ¼
X

1

n¼0
znP(a,b)n (x),

(11:129)

where Q ¼ (1� 2xz þ z2)
1
2 , it turns out that

J{2aþbQ�1(1� z þ Q)�a(1þ z þ Q)�b}

¼
X

1

n¼0
zn

ð

1

�1

(1� x)a(1þ x)bP(a,b)n (x)P(a,b)n (x)dx

¼
X

1

n¼0
(dn)z

n: (11:130)

&

Example 11.16

J{xn} ¼
ð

1

�1

(1� x)a(1þ x)bP(a,b)n (x)xndx

¼ 2nþaþbþ1
G(nþ aþ 1)G(nþ bþ 1)

G(nþ aþ bþ 1)
: (11:131)

&

Example 11.17

If p>b� 1, then

J{(1þ x)p�b}¼
ð

1

�1

(1� x)a(1þ x)pP(a,b)n (x)dx

¼
nþa

n

� �

2aþpþ1
G(pþ 1)G(aþ 1)G(p�bþ 1)

G(aþ pþ nþ 2)G(p�bþ nþ 1)
:

(11:132)

In particular, when a¼b¼ 0, the above results reduce to the

corresponding results for the Legendre transform defined by

Equation 11.59 so that

7n{(1þ x)p} ¼
ð

1

�1

(1þ x)pPn(x)dx

¼ 2pþ1{G(1þ p)}2

G(pþ nþ 2)G(pþ nþ 1)
, (p > �1):

(11:133)

&
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Example 11.18

If Re s>�1, then

J{(1� x)s�a} ¼
ð1

�1

(1� x)s(1þ x)bP(a,b)n (x)dx, Re s > �1,

¼ 2sþbþ1

n!G(a� s)
� G(sþ 1)G(nþ bþ 1)G(a� sþ n)

G(bþ sþ nþ 2)
,

(11:134)

&

Example 11.19

If Re s>�1 then

J (1þx)s�bP(a,s)m (x)
� �

¼
ð

1

�1

(1�x)a(1þx)sP(a,b)n (x)P(a,s)m (x)dx

¼2aþsþ1G(nþaþ1)G(aþbþmþnþ1)G(sþmþ1)
m!(n�m)!G(aþbþnþ1)G(aþsþmþnþ2)

� G(s�bþ1)

G(a�bþmþ1)
: (11:135)

&

11.3.3 Basic Operational Properties

THEOREM 11.6

If J{F(x)}¼ f (a,b)(n),

lim
jxj!1

(1� x)aþ1(1þ x)bþ1F(x) ¼ 0, (11:136a)

lim
jxj!1

(1� x)aþ1(1þ x)bþ1F0(x) ¼ 0, (11:136b)

R[F(x)] ¼ (1� x)�a(1þ x)�b d

dx
(1� x)aþ1(1þ x)bþ1 d

dx
F(x)

� �

,

(11:137)

then J{R[F(x)]} exists and is given by

J{R[F(x)]} ¼ �n(nþ aþ bþ 1)f (a,b)(n), (11:138)

where n¼ 0, 1, 2, 3, . . .

Proof We have, by definition,

J{R[F(x)]} ¼
ð

1

�1

d

dx
(1� x)aþ1(1þ x)bþ1 dF

dx

� �

P(a,b)
n (x)dx,

which is, by integrating by parts and using the orthogonal rela-
tion (Equation 11.123),

¼ �n(nþ aþ bþ 1)

ð

1

�1

(1� x)a(1þ x)bP(a,b)
n (x)F(x)dx

¼ �n(nþ aþ bþ 1)f (a,b)(n):

This completes the proof.
If F(x) and R[F(x)] satisfy the conditions of Theorem 11.6,

then J{[R[F(x)] ]} exists and is given by

J{R2[F(x)]} ¼ J{R[R[F(x)] ]}

¼ (�1)2n2(nþ aþ bþ 1)2f (a,b)(n): (11:139)

More generally, if F(x) and Rk[F(x)] satisfy the conditions of
Theorem 11.6, where k¼ 1, 2, . . . , m� 1, and m is a positive
integer then

J{Rm[F(x)]} ¼ (�1)mnm(nþ aþ bþ 1)mf (a,b)(n): (11:140)

When a ¼ b ¼ 0, P(0, 0)
n (x) becomes the Legendre polynomial

Pn(x) and the Jacobi transform pairs (Equations 11.121 and
11.125) reduce to the Legendre transform pairs (Equations
11.59 and 11.61). All results for the Jacobi transform also reduce
to those given in Chapter 14.

11.3.4 Applications of Jacobi Transforms to the
Generalized Heat Conduction Problem

The one-dimensional generalized heat equation for temperature
u(x, t) is

q

qx
k
qu

qx

� �

þ Q(x, t) ¼ rc
qu

qt
, (11:141)

where
k is the thermal conductivity
Q(x,t) is a continuous heat source within the medium
r and c are density and specific heat, respectively

If the thermal conductivity is k¼ a(1� x2), where a is a real
constant, and the source is Q(x, t) ¼ (mx þ n) qu

qx
, then the heat

Equation 11.141 reduces to

q

qx
(1� x2)

qu

qx

� �

þ mx þ n

a

� � qu

qx
¼ rc

a

� � qu

qt
: (11:142)

We consider a nonhomogeneous beam with ends at x ¼ �1
whose lateral surface is insulated. Since k¼ 0 at the ends, the
ends of the beam are also insulated. We assume the initial
conditions as

u(x, 0) ¼ G(x) for all �1 < x < 1, (11:143)

where G(x) is a suitable function so that J{G(x)} exists.
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If we write
m

a
¼ �(aþ b) and

n

a
¼ b� a so that

(a,b) ¼ � mþ n

2a
,
m� n

2a

� �

, the left-hand side of Equation

11.142 becomes

q

qx
(1� x2)

qu

qx

� �

þ [(b� a)� (bþ a)x]
qu

qx

¼ q

qx
(1� x2)

qu

qx

� �

þ [(1� x)b� (1þ x)a]
qu

qx

¼ (1� x)�a(1þ x)�b (1� x)a(1þ x)b
q

qx
(1� x2)

qu

qx

� ��

þ[b(1þ x)b(1� x)aþ1 � a(1� x)a(1þ x)bþ1]
qu

qx



¼ (1� x)�a(1þ x)�b
q

qx
(1� x)aþ1(1þ x)bþ1

qu

qx

� �� 

¼ R[u(x, t)]:

Thus, Equation 11.142 reduces to

R[u(x, t)] ¼ 1

d

� �

qu

qt
, d ¼ a

rc

� �

: (11:144)

Application of the Jacobi transform to Equations 11.143 and
11.144 gives

d

dt
u(a,b)(n, t) ¼ �dn(nþ aþ bþ 1)u(a,b)(n, t), (11:145)

u(a,b)(n, 0) ¼ g(a,b)(n): (11:146)

The solution of this system is

u(a,b)(n, t) ¼ g(a,b)(n) exp [�n(nþ aþ bþ 1)td]: (11:147)

The inverse Jacobi transform gives the formal solution

u(x, t) ¼
X

1

n¼0
d�1n g(a,b)(n)P(a,b)

n (x) exp [�n(nþ aþ bþ 1)td],

(11:148)

where a ¼ � 1

2a
(mþ n) and b ¼ 1

2a
(m� n).

11.3.5 The Gegenbauer Transform and Its Basic
Operational Properties

When a ¼ b ¼ n� 1

2
, the Jacobi polynomial P(a,b)

n (x) becomes

the Gegenbauer polynomial Cn
n(x) which satisfies the self-adjoint

differential form

d

dx
(1� x2)nþ

1
2
dy

dx

� �

þ n(nþ 2n)(1� x2)n�1y ¼ 0, (11:149)

and the orthogonal relation

ð

1

�1

(1� x2)n�
1
2Cn

m(x) C
n
n(x)dx ¼ dndmn, (11:150)

where

dn ¼
21�2npG(nþ 2n)

n! (nþ n)[G(n)]2
: (11:151)

Thus, when a ¼ b ¼ n� 1

2
, the Jacobi transform pairs (Equa-

tions 11.121 and 11.126) reduce to the Gegenbauer transform

pairs, in the form

G{F(x)} ¼ f (n)(n) ¼
ð

1

�1

(1� x2)n�
1
2Cn

n(x) F(x)dx, (11:152)

G�1{ f (n)(n)} ¼ F(x) ¼
X

1

n¼0
d�1n Cn

n(x)f
(n)(n), �1 < x < 1:

(11:153)

Obviously, G and G�1 stand for the Gegenbauer transformation
and its inverse respectively. They are linear integral transform-
ations.

When a ¼ b ¼ n� 1

2
, the differential form (Equation 11.137)

becomes

R[F(x)] ¼ (1� x2)
d2F

dx2
� (2nþ 1)x

dF

dx
, (11:154)

which can be expressed as

R[F(x)] ¼ (1� x2)
1
2�n d

dx
(1� x2)nþ

1
2
dF

dx

� �

: (11:155)

Under the Gegenbauer transformation G, the differential form
(Equation 11.154) is reduced to the algebraic form

G{R[F(x)]} ¼ �n(nþ 2n)f (n)(n): (11:156)

This follows directly from the relation (Equation 11.138).
Similarly, we obtain

G{R2[F(x)]} ¼ (�1)2n2(nþ 2n)2f (n)(n): (11:157)

More generally,

G{Rk[F(x)]} ¼ (�1)knk(nþ 2n)kf (n)(n), (11:158)

where k¼ 1, 2, . . .
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CONVOLUTION THEOREM 11.7

If G{F(x)} ¼ f (v)(n) and G{G(x)} ¼ g(v)(n), then

f (n)(n)g(n)(n) ¼ G{H(x)} ¼ h(n)(n), (11:159)

where

H(x) ¼ G�1{h(n)(n)} ¼ G�1{ f (n)(n)g(n)(n)} ¼ F(x) *G(x),

(11:160)

and H(x) is given by

H( cos c) ¼ A(sin c)1�2n
ðp

0

ðp

0

F(cos u)G(cos f)(sin u)2n

� (sin f)2n�1(sin l)2n�1duda, (11:161)

where a is defined by Equation 11.167.

Proof We have, by definition,

f (n)(n)g(n)(n) ¼
ð1

�1

F(x)(1� x2)v�
1
2Cn

n(x)dx

�
ð1

�1

G(x)(1� x2)n�
1
2Cn

n(x)dx

¼
ðp

0

F(cos u)(sin u)2nCn
n(cos u)du

�
ðp

0

G(cos f)(sin f)2nCn
n(cos f)df

¼
ðp

0

F(cos u)(sin u)2n
"
ðp

0

G(cos f)Cn
n(cos u)

� Cn
n(cos f)(sin f)2ndf

#

du: (11:162)

The addition formula for the Gegenbauer polynomial (see
Erdélyi, 1953, p. 177) is

Cn
n(cos u)C

n
n(cos f) ¼ A

ðp

0

Cn
n(cos c)(sin l)2n�1dl, (11:163)

where

A ¼ {G(nþ 2n)=n!22n�1G2(n)}, (11:164)

and

cos c ¼ cos u cos fþ sin u sin f cos l: (11:165)

In view of this formula, result (Equation 11.162) assumes the
form

f (u)(n)g(n)(n) ¼ A

ðp

0

F( cos u)(sin u)2n
"
ðp

0

ðp

0

G(cos f)Cn
n(cos c)

� (sin f)2n(sin l)2n�1dldf

#

du: (11:166)

We next introduce a new variable a defined by the relation

cos f ¼ cos u cos cþ sin u sin c cos a: (11:167)

Thus, under transformation of coordinates defined by Equations
11.165 and 11.167, the elementary area dl df¼ (sin c=sin f)
3 dcda, where (sin c=sin f) is the Jacobian of the transformation.
In view of this transformation, the square region of the f�l plane
given by (0�f�p�l�p) transforms into a square region of
the same dimension in the c�a plane. Consequently, the double
integral inside the square bracket in Equation 11.166 reduces to

ðp

0

ðp

0

G(cos f)Cn
n(cos c)(sin w)2n�1(sin l)2n�1 sin c dcda,

(11:168)

where cos c is defined by Equation 11.165 and cos f is defined
by Equation 11.167. If the double integral (Equation 11.168) is
substituted into Equation 11.166, and if the order of integration
is interchanged, Equation 11.166 becomes

f (n)(n)g(n)(n)¼
ðp

0

(sin c)2nCn
n(cos c)H(cos c)dc¼ G{H(cos c)},

(11:169)

where

H(cos c) ¼ A(sin c)1�2n
ðp

0

ðp

0

F(cos u)G(cos f)(sin u)2n

� (sin f)2n�1(sin l)2n�1duda:

(11:170)

When n ¼ 1

2
,C

1
2
n(x) becomes the Legendre polynomial, the

Gegenbauer transform pairs (Equations 11.152 and 11.153)
reduce to the Legendre transform pairs (Equations 11.59 and
11.61), and the convolution theorem 11.7 reduces to the corre-
sponding convolution theorem 11.5 for the Legendre transform.
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11.3.6 Application of the Gegenbauer Transform

The generalized one-dimensional heat equation in a nonhomo-
geneous solid beam for the temperature u(x,t) is

q

qx
(1� x2)

qu

qx

� �

� (2nþ 1)x
qu

qx
¼ 1

d

qu

lt
, (11:171)

where k¼ (1� x2) is the thermal conductivity, d ¼ a

rc

� �

, and

the second term on the left-hand side represents the continuous
source of heat within the solid beam. We assume that the beam is
bounded by the planes at x ¼ �1 and its lateral surfaces are
insulated. The initial condition is

u(x, 0) ¼ G(x) for�1 < x < 1, (11:172)

where G(x) is a given function so that its Gegenbauer transform
exists.

Application of the Gegenbauer transform to Equations 11.171
and 11.172 and the use of Equation 11.156 gives

d

dt
u(n)(n, t) ¼ �d n(nþ 2n)u(n)(n, t), (11:173)

u(n)(n, 0) ¼ g(n)(n): (11:174)

This solution of this system is

u(n)(n, t) ¼ g(n)(n) exp [�n(nþ 2n)td]: (11:175)

The inverse transform gives the formal solution

u(x, t) ¼
X

1

n¼0

d�1
n Cn

n(x)g
(n)(n) exp [�n(nþ 2n)td], (11:176)

where dn is given by Equation 11.151.

11.4 Laguerre Transforms

11.4.1 Introduction

This chapter is devoted to the study of the Laguerre transform
and its basic operational properties. It is shown that the Laguerre
transform can be used effectively to solve the heat conduction
problem in a semi-infinite medium with variable thermal con-
ductivity in the presence of a heat source within the medium.

11.4.2 Definition of the Laguerre Transform
and Examples

Debnath (1960) introduced the Laguerre transform of a function
f(x) defined in 0� x<1 by means of the integral

L{ f (x)} ¼ ~f a(n) ¼
ð

1

0

e�xxaLan (x)f (x)dx, (11:177)

where Lan (x) is the Laguerre polynomial of degree n(�0) and
order a(>�1), which satisfies the ordinary differential equation
expressed in the self-adjoint form

d

dx
e�xxaþ1 d

dx
Lan (x)

� �

þ ne�xxaLan (x) ¼ 0: (11:178)

In view of the orthogonal property of the Laguerre polynomials

ð

1

0

e�xxaLan (x)L
a
m(x)dx ¼ nþ a

n

� �

G(aþ 1)dmn ¼ dndnm,

(11:179)

where dmn is the Kronecker delta symbol, and dn is given by

dn ¼ nþ a
n

� �

G(aþ 1): (11:180)

The inverse Laguerre transform is given by

f (x) ¼ L�1{~f a(n)} ¼
X

1

n¼0

(dn)
�1~f a(n)L

a
n (x): (11:181)

When a¼ 0, the Laguerre transform pairs due to McCully (1960)
follow from Equations 11.177 and 11.181 in the form

L{ f (x)} ¼ ~f 0(n) ¼
ð

1

0

e�xLn(x)f (x)dx, (11:182)

L�1{~f 0(n)} ¼ f (x) ¼
X

1

n¼0

~f 0(n)Ln(x), (11:183)

where Ln(x) is the Laguerre polynomial of degree n and order
zero.

Obviously, L and L�1 are linear integral transformations. The
following examples (Debnath, 1960) illustrate the Laguerre trans-
form of some simple functions.

Example 11.20

If f (x) ¼ Lam(x) then L Lam(x)
� �

¼ dndnm: (11:184)

This follows directly from the definitions (Equations 11.177

and 11.179). &

Example 11.21

If f (x)¼ xs�1 where s is a positive real number, then

L{xs�1} ¼
ð

1

0

e�xxaþs�1Lan (x)dx ¼
G(sþ a)G(n� sþ 1)

n!G(1� s)
,

(11:185)

in which a result due to Howell (1938) is used. &
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Example 11.22

If a>�1, and f(x)¼ e�ax, then

L{e�ax } ¼
ð1

0

e�x(1þa)xaLan (x)dx ¼
G(nþ aþ 1)an

n!(aþ 1)nþaþ1
, (11:186)

where the result in Erdélyi et al. (1954, vol. 2, p. 191)

is used. &

Example 11.23

If f (x) ¼ e�axLam(x), then

L e�axLam(x)
� �

¼
ð

1

0

e�x(aþ1)xaLan (x)L
a
m(x)dx,

which is, due to Howell (1938),

¼ 1

n! m!

G(nþ aþ 1)G(mþ aþ 1)

G(1þ a)
� (a� 1)n�mþaþ1

anþmþ2aþ2

� 2F1 nþ aþ 1,
mþ aþ 1

aþ 1
,
1

a2

� �

,

(11:187)

where 2F1(x,a,b) is the hypergeometric function. &

Example 11.24

L{ f (x)xb�a} ¼
ð

1

0

e�xxbLan (x)f (x)dx:

We use a result from Erdélyi (1953, vol. 2, p. 192)

Lan (x) ¼
X

n

m¼0

(m!)�1(a� b)mL
b
n�m(x) (11:188)

to obtain the following result:

L{ f (x)xb�a} ¼
X

n

m¼0

(m!)�1(a� b)m~f b(n�m): (11:189)

In particular, when b¼a� 1, we obtain

L
f (x)

x

� 

¼
X

n

m¼0

(m!)�1~f a�1(n�m):

&

Example 11.25

L{exx�aG(a, x)} ¼
X

1

n¼0

dn
(nþ 1)

, �1 < a < 0: (11:190)

We use a result from Erdélyi (1953, vol. 2, p. 215) as

exx�aG(a, x) ¼
X

1

n¼0

(nþ 1)�1Lan (x), (a > �1, x > 0),

in the definition (Equation 11.177) to derive Equation

11.190. &

Example 11.26

If b> 0, then

L{xb} ¼ G(aþ bþ 1)
X

1

n¼0

(�b)ndn
G(nþ aþ 1)

: (11:191)

Using the result from Erdélyi (1953, vol. 2, p. 214)

xb ¼ G(aþ bþ 1)
X

1

n¼0

(�b)n
G(nþ aþ 1)

Lan (x),

where

�b < 1þmin a,
a

2
� 1

4

� �

, x > 0,a > �1,

we can easily obtain Equation 11.191. &

Example 11.27

If jzj< 1 and a � 0, then

a: L (1� z)�(aþ1) exp
xz

z � 1

� �n o

¼
X

1

n¼0

dnz
n , (11:192)

b: L (xz)�
a
2 ezJa 2(xz)

1
2

h in o

¼
X

1

n¼0

dnz
n

G(nþ aþ 1)
: (11:193)

We have the following generating functions (Erdélyi, 1953,

vol. 2, p. 189)

(1� z)�(aþ1) exp
xz

z � 1

� �

¼
X

1

n¼0

Lan (x)z
n , jzj < 1,

(xz)�a=2ezJa 2
ffiffiffiffi

xz
p
 �

¼
X

1

n¼0

znLan (x)

G(nþ aþ 1)
, jzj < 1:

In view of these results combined with the orthogonality

relation (Equation 11.179), we obtain Equations 11.192 and

11.193. &
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Example 11.28

(Recurrence Relations).

a: ~f aþ1(n) ¼ (nþ aþ 1)~f a(n)� (nþ 1)~f a(nþ 1), (11:194)

b: n! ~fm�n(n) ¼ (�1)n�mm!

Xm

k¼0
(k!)�1(2n� 2m)k~fm�n(m� k):

(11:195)

We have

~f aþ1(n) ¼
ð1

0

e�xxaþ1Laþ1n (x)f (x)dx,

which is, by using the recurrence relation for the Laguerre

polynomial,

¼
ð1

0

e�xxa (nþ aþ 1)Lan (x)� (nþ 1)Lanþ1(x)

 �

f (x)dx

¼ (nþ aþ 1)~f a(n)� (nþ 1)~f a(nþ 1):

Similarly, we find

n! ~fm�n(n) ¼
ð1

0

e�xxm�nn! Lm�nn (x)f (x)dx:

We next use the following result due to Howell (1938)

n! Lm�nn (x) ¼ (�1)n�mm! Ln�mm (x)

to obtain

n! ~fm�n(n) ¼ (�1)n�mm!

ð1

0

e�xxm�nLn�mm (x)f (x)dx

¼ (�1)n�mm!

Xm

k¼0
(k!)�1(2n� 2m)k~fm�n(m� k):

&

11.4.3 Basic Operational Properties

We obtain the Laguerre transform of derivatives of f(x) as

L{ f 0(x)} ¼ ~f a(n)� a
Xn

k¼0
f a�1(k)þ

Xn�1

k¼0
f a(k), (11:196)

L{ f 00(x)} ¼ ~f a(n)� 2a
Xn

m¼0

~f a�1(n�m)þ 2
Xn�1

m¼0

~f a(n�m� 1)

� 2a
Xn�1

m¼0
(mþ 1)~f aþ1(n�m� 1)þ a(a� 1)

�
Xn

m¼0

(mþ 1)fa�2(n�m)þ
Xn�2

m¼0

(mþ 1)~f a(n�m� 2)

(11:197)

and so on for the Laguerre transforms of higher derivatives.
We have, by definition,

L{ f 0(x)} ¼
ð1

0

e�xxaLan (x)f
0(x)dx

¼ e�xnaLan (x)f (x)

 �1

0
þ
ð1

0

e�xxaLan (x)f (x)dx

� a

ð1

0

e�xxa�1Lan (x)f (x)dx �
ð1

0

e�xxa
d

dx
Lan (x)

� �

f (x)dx,

which is, due to Erdélyi et al (1954, vol. 2, p. 192),

¼ ~f a(n)� a
X

n

k¼0

~f a�1(k)þ
X

n�1

k¼0

f a(k):

Similarly, we can derive Equation 11.197.

THEOREM 11.8

If g(x) ¼
Ð x

0 f (t)dt so that g(x) is absolutely continuous and g0(x)
exists, and if g0(x) is bounded and integrable, then

~f a(n)� ~f a(n� 1) ¼ ~ga(n)� a~ga�1(n), (11:198)

and

L

ð

x

0

f (t)dt

8

<

:

9

=

;

¼ ~f 0(n)� ~f 0(n� 1), (11:199)

where L stands for the zero-order Laguerre transform defined by
Equation 11.182.

Proof We have

~f a(n) ¼
ð

1

0

e�xxaLan (x)g
0(x)dx,
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which is, by integrating by parts,

¼
ð1

0

e�xxaLan (x)g(x)dx � a

ða

0

e�xxa�1Lan (x)g(x)dx

�
ð1

0

e�xxa
d

dx
Lan (x)

� �

g(x)dx:

Thus,

~f a(n)� ~f a(nþ 1) ¼
ð

1

0

e�xxa Lan (x)� Lanþ1(x)

 �

g(x)dx

þ a

ð

1

0

e�xxa Lanþ1(x)� Lan (x)

 �

g(x)dx

�
ð

1

0

e�xxa
d

dx
Lan (x)� Lanþ1(x)

 �

g(x)dx:

Thus,

~f a(n)�~f a(nþ1)¼
ð

1

0

e�xxa Lan (x)�Lanþ1(x)

 �

g(x)dx

þa

ð

1

0

e�xxaLa�1nþ1 (x)g(x)dx�
ð

1

0

e�xxaLan (x)g(x)dx

¼�~ga(nþ1)þa ~ga�1(nþ1):

This proves Equation 11.198.
Putting a¼ 0 and replacing n by n� 1 gives

~g0(n) ¼ ~f 0(n)� ~f 0(n� 1):

Or,

L

ð

x

0

f (t)dt

8

<

:

9

=

;

¼ ~f 0(n)� ~f 0(n� 1):

&

THEOREM 11.9

If L{ f(x)}¼~f a(n) exists, then

L{R[f (x)]} ¼ �n~f a(n), (11:200)

where R[ f(x)] is the differential operator given by

R[ f (x)] ¼ exx�a
d

dx
e�xxaþ1

d

dx
f (x)

� �

: (11:201)

Proof We have, by definition,

L{R[ f (x)]} ¼
ð

1

0

Lan (x)
d

dx
e�xxaþ1

df

dx

� �

dx,

which is, by integrating by parts and using Equation 11.178,

¼ �n
ð

1

0

e�xxaLan (x)f (x)dx ¼ �n~f a(n):

This completes the proof of the basic operational property. This
result can easily be extended as follows:

L{R2[ f (x)]} ¼ L{R[R[ f (x)] ]} ¼ (�1)2n2~f a(n): (11:202)

More generally,

L{Rm[ f (x)]} ¼ (�1)mnm~f a(n), (11:203)

where m is a nonnegative integer. &

The convolution theorem for the Laguerre transform can be
stated as follows:

THEOREM 11.10 (Convolution Theorem)

If L{f(x)}¼~f a(n) and L{g(x)}¼ ~ga(n), then

L�1{~f a(n)~ga(n)} ¼ h(x), (11:204)

where h(x) is given by the following repeated integral

h(x) ¼ G(nþ aþ 1)
ffiffiffiffi

p
p

G(nþ 1)

ð

1

0

e�ttaf (t)dt

ð

p

0

exp �
ffiffiffiffi

xt
p

cosf
� 	

� sin2a f g x þ t þ 2
ffiffiffiffi

xt
p

cosf
� 	 Ja�1

2

ffiffiffiffi

xt
p

sinf
� 	

df

1
2

ffiffiffiffi

xt
p

sinf
� 	
 �a�1

2

:

(11:205)

In order to avoid long proof of this convolution theorem 11.10,
we will not present the proof here, but refer the reader to the
article of Debnath (1969). However, when a¼ 0 and f is
replaced by (p – u), and the standard result

J�1
2
(x) ¼

ffiffiffiffiffiffi

2

px

r

cos x (11:206)

is used, the convolution theorem 11.10 reduces to that of
McCully’s (1960). We now state and proveMcCully’s convolution

theorem as follows:
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THEOREM 11.11 (McCully’s Theorem)

If L{f(x)}¼~f 0(n) and L{g(x)}¼ ~g0(n), then

L�1{~f 0(n)~g0(n)} ¼ h(x), (11:207)

where h(x) is given by the formula

h(x) ¼ 1

p

ð1

0

e�t f (t)dt

ðp

0

exp
ffiffiffiffi

xt
p

cos u
� 	

cos
ffiffiffiffi

xt
p

sin u
� 	

� g(x þ t � 2
ffiffiffiffi

xt
p

cos u)du:

(11:208)

Proof We have, by definition,

~f 0(n)~g0(n) ¼
ð

1

0

e�xLn(x)f (x)dx

ð

1

0

e�yLn(y)g(y)dy

¼
ð

1

0

e�xf (x)dx

ð

1

0

e�yLn(x)Ln(y)g(y)dy: (11:209)

This can be written in the form

~f 0(n)~g0(n) ¼ L{h(t)} ¼
ð

1

0

e�tLn(t)h(t)dt:

This shows that h is the convolution of f and g and has the
representation

h(x) ¼ f (x) * g(x): (11:210)

It follows from a formula of Bateman (1944, p. 457) that

Ln(x)Ln(y)¼
1

p

ð

p

0

e
ffiffiffiffi

xy
p

cos u cos
ffiffiffiffiffi

xy
p

sin u
� 	

Ln xþy�2
ffiffiffiffiffi

xy
p

cos u
� 	

du:

(11:211)

In view of this result, Equation 11.209 becomes

p~f 0(n)~g0(n) ¼
ð

1

0

e�xf (x)dx

"

ð

1

0

e�yg(y)

ð

p

0

exp
ffiffiffiffiffi

xy
p

cos u
� 	

� cos
ffiffiffiffiffi

xy
p

sin u
� 	

Ln x þ y � 2
ffiffiffiffiffi

xy
p

cos u
� 	

dudy

#

:

(11:212)

Using
ffiffiffi

y
p

as the variable of integration combined with polar
coordinates, the integral inside the square bracket in Equation
11.212 can be reduced to the form

ð

1

0

e�tLn(t)dt

ð

p

0

exp
ffiffiffiffi

xt
p

cos f
� 	

cos
ffiffiffiffi

xt
p

sin f
� 	

� g x þ t � 2
ffiffiffiffi

xt
p

cos f
� 	

df, (11:213)

so that Equation 11.212 becomes

~f 0(n)~g0(n) ¼ L{h(t)} ¼
ð

1

0

e�tLn(t)h(t)dt,

where h(x) is given by

h(x) ¼ 1

p

ð

1

0

e�t f (t)dt

ð

p

0

exp
ffiffiffiffi

xt
p

cos u
� 	

cos
ffiffiffiffi

xt
p

sin u
� 	

� g x þ t � 2
ffiffiffiffi

xt
p

cos u
� 	

du: (11:214)

This proves the McCully’s theorem for the Laguerre transform
(Equation 11.182). &

11.4.4 Applications of Laguerre Transforms

Example 11.29 (Heat Conduction Problem)

The diffusion equation for one-dimensional linear flow of heat

in a semi-infinite medium 0� x<1 with a source Q(x, t) in

the medium is

q

qx
k
qu

qx

� �

þ Q(x, t) ¼ rc
qu

qt
, t > 0, (11:215)

where k¼ k(x)¼ le�x xb is the variable thermal conductivity;

Q(x, t) ¼ me�x xb
0 qu
qx
; r ¼ ne�x xb

0
; l,m, n and c are constants;

and b� 1 and b�b0 ¼ 1. Thus, the above equation reduces

to

q

qx
e�xxb

qu

qx

� �

þ m

l
e�xxb

0 qu

qx
¼ nc

l
e�xxb

0 qu

qt
: (11:216)

The initial condition is

u(x, 0) ¼ g(x), 0 � x < 1 (11:217)

Clearly, Equation 11.216 assumes the form

exx�a q

qx
e�xxaþ1 qu

qx

� �

¼ g
qu

qt
, (11:218)

where a ¼ m

l
þ b� 1 and g ¼ nc

l
.
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Application of the Laguerre transform to Equation 11.218

gives

d

dt
ua(n, t) ¼ �

n

g
ua(n, t), ua(n, 0) ¼ ga(n):

Thus, the solution of this system is

ua(n, t) ¼ ga(n) exp �
nt

g

� �

: (11:219)

The inverse transform (Equation 11.181) gives the formal

solution

u(x, t) ¼
X

1

n¼0
(dn)

�1ga(n)L
a
n (x) exp �

nt

g

� �

, (11:220)

where dn is given by Equation 11.180. &

Example 11.30 (Diffusion Equation)

Solve Equation 11.215 with

k ¼ xe�x , Q(x, t) ¼ e�x f (t), and rc ¼ e�x :

In this case, the diffusion Equation 11.215 becomes

qu

qt
¼ ex

q

qx
x e�x

qu

qx

� �

þ f (t), 0 � x < 1, t > 0, (11:221)

and has to be solved with the initial-boundary data

u(x, 0) ¼ g(x), 0 � x < 1
q

qt
u(x, t) ¼ f (x), at t ¼ 0, for x > 0

9

=

;

: (11:222)

Application of the Laguerre transform L{u(x, t)}¼ ~u0 (n,t) to

Equations 11.221 and 11.222 gives

~u0(n, t) ¼ g0(n)e
�nt , n ¼ 1, 2, 3, . . . (11:223)

~u0(0, t) ¼ g0(0)þ
ð

t

0

f (t)dt: (11:224)

The inverse Laguerre transform (Equation 11.181) leads to the

formal solution

u(x, t) ¼ g0(0)þ
ð

t

0

f (t)dtþ
X

1

n¼1

g0(n)e
�ntLn(x)

¼
ð

t

0

f (t)dtþ
X

1

n¼0

g0(n)e
�ntLn(x): (11:225)

In view of the convolution theorem 11.11, this result takes the

form

u(x, t)¼
ð

t

0

f (t)dtþ 1

p

ð

1

0

e�t(et�1)�1 exp
�t

et�1

� �

�
ð

p

0

exp
ffiffiffiffiffi

xt
p

cos u
� 	

cos
ffiffiffiffiffi

xt
p

sin u
� 	

g xþt�2
ffiffiffiffiffi

xt
p

cos u
� 	

dudt:

(11:226)

This result is obtained by McCully (1960).
Another application of the Laguerre transform to the problem

of oscillations of a very long and heavy chain with variable
tension was discussed by Debnath (1961).

We conclude this chapter by adding references of recent work
on the Laguerre–Pinney transformation and the Wiener–
Laguerre transformation by Glaeske (1981, 1986). For more
details, the reader is referred to these papers. &

11.4.5 Additional Relations

1. If L{ f (x)} ¼ f0(n) ¼
Ð1
0 e�xLn(x)f (x)dx, and a> 0, show

that

a. L{ sin ax} ¼ an

(1þa2)
nþ1
2
sin n tan�1 1

a

� 	

þ tan�1(�a)

 �

,

b. L{ cos ax} ¼ an

(1þa2)
nþ1
2
cos n tan�1 1

a

� 	

þ tan�1(�a)

 �

.

2. If L{ f (x)} ¼ ~f 0(n) ¼
Ð1
0 e�xLn(x)f (x)dx, show that:

a. L{xf 0(x)} ¼ �(nþ 1)~f 0(nþ 1)þ n~f 0(n),

b. L ex
d

dx
{x e�xf 0(x)}

� �

¼ �n~f 0(n),

c. L e�x d

dx
{x exf 0(x)}

� �

¼ n~f 0(n)� 2(nþ 1)~f 0(nþ 1),

d. L
d

dx
{xf 0(x)}

� �

¼ �(nþ 1)~f 0(nþ 1).

11.5 Hermite Transforms

11.5.1 Introduction

In this chapter we introduce the Hermite transform with a kernel
involving a Hermite polynomial and discuss its basic operational
properties, including the convolution theorem. Debnath (1964)
first introduced this transform and proved some of its basic oper-
ational properties. This chapter is based on papers by Debnath
(1964, 1968) and Dimovski and Kalla (1988).

11.5.2 Definition of the Hermite Transform
and Examples

Debnath (1964) defined the Hermite transform of a function F(x)
defined in�1< x<1 by the integral

H{F(x)} ¼ fH(n) ¼
ð

1

�1

exp (�x2)Hn(x)F(x)dx, (11:227)

where Hn(x) is the well-known Hermite polynomial of degree n.

Finite Hankel Transforms, Legendre Transforms, Jacobi and Gegenbauer Transforms 11-21



The inverse Hermite transform is given by

H�1{ fH(n)} ¼ F(x) ¼
X1

n¼0
(dn)

�1fH(n)Hn(x), (11:228)

where dn is given by

dn ¼
ffiffiffiffi

p
p

n!2n: (11:229)

This follows from the expansion of any function F(x) in the form

F(x) ¼
X

1

n¼0
an Hn(x), (11:230)

where the coefficients an can be determined from the orthogonal
relation of the Hermite polynomial Hn(x)as

ð

1

�1

exp (�x2)Hn(x)Hn(x)dx ¼ dnm dn: (11:231)

Multiplying Equation 11.230 by exp (�x2)Hm(x) and integrating
over (�1, 1) and using Equation 11.230, we obtain

an ¼ d�1n fH(n) (11:232)

so that Equation 11.228 follows immediately.

Example 11.31

If F(x) is a polynomial of degree m, then

fH(n) ¼ 0 for n > m: (11:233)

&

Example 11.32

If F(x)¼Hm(x), then

H{Hm(x)} ¼
ð

1

�1

exp (�x2)Hn(x)Hm(x)dx ¼ dndnm: (11:234)

&

Example 11.33

If

exp (2 xt � t2) ¼
X

1

n¼0

tn

n!
Hn(x) (11:235)

is the generating function of Hn(x), then

H{ exp (2xt � t2)} ¼
ffiffiffiffi

p
p X

1

n¼0
(2t)n , jtj < 1

2
: (11:236)

We have, by definition,

H{ exp (2xt � t2)} ¼
X

1

n¼0

tn

n!

ð

1

�1

exp (�x2)H2
n(x)ds

¼
X

1

n�0
dn

tn

n!
¼

ffiffiffiffi

p
p X

1

n¼0
(2t)n , jtj < 1

2
:

&

Example 11.34

If F(x)¼Hm(x) Hp(x), then

H{Hm(x)Hp(x)} ¼

ffiffiffiffi

p
p

2km! n! p!

(k �m)!(k � n)!(k � p)!
,

mþ nþ p ¼ 2k,

k � m, n, p

0, otherwise

8

>

<

>

:

9

>

=

>

;

:

(11:237)

This follows from a result proved by Bailey (1939). &

Example 11.35

If F(x) ¼ H2
m(x)Hn(x), then

H H2
m(x)Hn(x)

� �

¼ 2mdn
X

n

k¼0

m

k

� �

n

k

� �

2k

k

� �

,

if m > n:

(11:238)

Using a result proved by Feldheim (1938), Equation 11.238

follows immediately. &

Example 11.36

If F(x)¼Hnþpþq(x) Hp(x)Hq(x), then

H{F(x)} ¼ dnþpþq: (11:239)

We have, by definition,

H{F(x)} ¼
ð

1

�1

exp (�x2)Hnþpþq(x)Hp(x)Hq(x)dx ¼ dnþpþq ,

where a result due to Bailey (1939) is used and dn is given by

Equation 11.229. &

Example 11.37

If F(x)¼ exp(ax), then

H{ exp (ax)} ¼
ffiffiffiffi

p
p X

an exp
1

4
a2

� �

: (11:240)

11-22 Transforms and Applications Handbook



This result follows from the standard result

ð1

�1

exp (�x2 þ 2bx)Hn(x)dx ¼
ffiffiffiffi

p
p

(2b)n exp (b2):

&

Example 11.38

If j2zj< 1, show that

H exp(z2)sin
ffiffiffi

2
p

xz
� �n o

¼
0, n 6¼2mþ1

ffiffiffiffi

p
p P

1

m¼0
(�1)m(2z)2mþ1 , n¼2mþ1

8

<

:

9

=

;

:

(11:241)

We have, by definition,

H exp (z2) sin
ffiffiffi

2
p

xz
� �n o

¼
ð

1

�1

exp (z2 � x2)Hn(x) sin
ffiffiffi

2
p

xz
� �

dx:

We use a result (see Erdélyi et al., 1954, vol. 2, p. 194)

exp (z2) sin
ffiffiffi

2
p

xz
� �

¼
X

1

m¼0
(�1)mH2mþ1(x)

z2mþ1

(2mþ 1)!
,

(11:242)

to derive

H exp (z2) sin
ffiffiffi

2
p

xz
� �n o

¼
X

1

m¼0
(�1)m z2mþ1

(2mþ 1)!

ð

1

�1

exp (�x2)Hn(x)H2mþ1(x)dx

¼
ffiffiffiffi

p
p P

1

m¼0
(�1)m(2z)2mþ1 , n ¼ 2mþ 1

0, n 6¼ 2mþ 1

8

>

<

>

:

9

>

=

>

;

:

&

Example 11.39

H (1� z2)�
1
2 exp

2xyz � (x2 þ y2)z2

(1� z2)

� � �

¼
ffiffiffiffi

p
p X

1

m¼0
zm Hm(y)dmn:

(11:243)

We use a result (see Erdélyi et al., 1954, vol. 2, p. 194)

(1� z2)�
1
2 exp

2xyz � (x2 þ y2)z2

(1� z2)

� 

¼
X

1

m¼0

1

2
z

� �m
1

m!
Hm(x)Hm(y)

to derive

H (1� z2)�
1
2 exp

2xyz � (x2 þ y2)z2

(1� z2)

� � �

¼
X

1

m¼0

1

2
z

� �m
1

m!
Hm(y)

ð

1

�1

exp (�x2)Hn(x)Hm(x)dx

¼
X

1

m¼0

1

2
z

� �m
1

m!
Hm(y)dm dmn ¼

ffiffiffiffi

p
p X

1

m¼0
zm Hm(y)dmn:

11.5.3 Basic Operational Properties

THEOREM 11.12

If F 0(x) is continuous and F 00(x) is bounded and locally inte-
grable in the interval�1< x<1, and if H{F(x)}¼ fH(n), then

H{R[F(x)]} ¼ �2n fH(n), (11:244)

where R[F(x)] is the differential form given by

R[F(x)] ¼ exp (x2)
d

dx
exp (�x2) dF

dx

� �

: (11:245)

Proof We have, by definition,

H{R[F(x)]} ¼
ð

1

�1

d

dx
exp (�x2) dF

dx

� �

Hn(x)dx

which is, by integrating by parts and using the orthogonal rela-
tion (Equation 11.234),

¼ �2n
ð

1

�1

exp (�x2) Hn(x) F(x)dx ¼ �2n fH(n):

Thus, the theorem is proved.
If F(x) and R[F(x)] satisfy the conditions of Theorem 11.12,

then

H{R2[F(x)]} ¼ H{R[R[F(x)]]} ¼ (�1)2(2n)2fH(n): (11:246)

H{R3[F(x)]} ¼ (�1)3(2n)3fH(n): (11:247)

More generally,

H{Rm[F(x)]} ¼ (�1)m(2n)mfH(n), (11:248)

where m¼ 1, 2, . . . , m� 1 &
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THEOREM 11.13

If F(x) is bounded and locally integrable in �1< x<1, and
fH (0)¼ 0, then H{F(x)}¼ fH (n) exists and for each constant C,

H�1 � fH(n)

2n

� 

¼ R�1[F(x)]

¼
ð

x

0

exp (s2)

ð

s

�1

exp (�t2) F(t)dt dsþ C,

(11:249)

where R�1 is the inverse of the differential operator R and n is a
positive integer.

Proof We write

R�1[F(x)] ¼ Y(x)

so that Y (x) is a solution of the differential equation

R[Y(x)] ¼ F(x): (11:250)

Since fH(0)¼ (0), and H0 (x)¼ 1, then

ð

1

�1

exp (�x2)F(x)dx ¼ 0:

The first integral of Equation 11.250 is

exp (�x2)Y 0(x) ¼
ð

x

�1

exp (�t2)F(t)dt,

which is a continuous function of x and tends to zero as jxj !1.
The second integral

Y(x) ¼
ð

x

0

exp (s2)

ð

s

�1

exp (�t2)F(t)dt dsþ C,

where C is an arbitrary constant, is also continuous. Evidently,

lim
jxj!1

exp (�x2)Y(x) ¼ 0

provided Y(x) is bounded.
Then H{Y(x)} exists and

H{R[Y(x)]} ¼ �2n H{Y(x)}:

Or,

H[F(x)] ¼ �2n H{Y(x)}:

Hence,

fH(n) ¼ �2n H{R�1[F(x)]}:

Thus, for any positive integer n,

H{R�1[F(x)]} ¼ � fH(n)

2n
:

THEOREM 11.14

If F(x) has bounded derivatives of orderm and if H{F(x)}¼ fH (n)
exists, then

H{F(m)(x)} ¼ fH(nþm): (11:251)

Proof We have, by definition,

H{F0(x)} ¼
ð

1

�1

exp (�x2)Hn(x)F
0(x)dx,

which is, by integrating by parts,

¼ [exp (�x2)F(x)Hn(x)]
1
�1 �

ð

1

�1

F(x)
d

dx
[e�x

2

Hn(x)]dx

¼ 2

ð

1

�1

x exp (�x2)Hn(x)F(x)dx �
ð

1

�1

F(x) exp (�x2)H0n(x)dx:

(11:252)

We use the recurrence relations for the Hermite polynomial

Hnþ1(x)� 2xHn(x)þ 2nHn�1(x) ¼ 0

H1
n(x) ¼ 2xHn�1(x)

to rewrite Equation 11.252 in the form

H{F0(x)} ¼
ð

1

�1

exp (�x2)[Hnþ1(x)þ 2nHn�1(x)]F(x)dx

� 2n

ð

1

�1

exp (�x2)Hn�1(x)F(x)dx

¼
ð

1

�1

exp (�x2)Hnþ1(x)F(x)dx ¼ fH(nþ 1):

Proceeding in a similar manner, we can prove

H{F(m)(x)} ¼ fH(nþm):

Thus, the theorem is proved. &
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THEOREM 11.15

If the Hermite transforms of F(x) and xF(m�1)(x) exist, then

H{xF(m)(x)} ¼ nfH(mþ n� 1)þ 1

2
fH(mþ nþ 1): (11:253)

Proof We have, by definition,

H{xF(m)(x)} ¼
ð1

�1

exp (�x2)Hn(x) x
dmF(x)

dxm

� 

dx

¼ [x exp (�x2)Hn(x)F
(m�1)(x)]1�1

�
ð

1

�1

d

dx
[x exp (�x2)Hn(x)]F

(m�1)(x)dx:

Thus,

H{xF(m)(x)} ¼
ð

1

�1

2x2 exp (�x2)Hn(x)F
(m�1)(x)dx

�
ð

1

�1

exp (�x2)Hn(x)F
(m�1)(x)dx

� n

ð

1

�1

2x exp (�x2)Hn�1(x)F
(m�1)(x)dx,

which is, by the recurrence relations (Equations 11.253, 11.254
and 11.251),

¼
ð

1

�1

x exp (�x2)[Hnþ1(x)þ 2nHn�1(x)]F
(m�1)(x)dx

� n

ð

1

�1

exp (�x2)[Hn(x)þ 2(n� 1)Hn�2(x)]F
(m�1)(x)dx

� fH(nþmþ 1)

¼ 1

2

ð

1

�1

exp (�x2)[Hnþ2(x)þ 2(nþ 1)Hn(x)]F
(m�1)(x)dx

þ n

ð

1

�1

exp (�x2)[Hn(x)þ 2(n� 1)Hn�2(x)]F
(m�1)(x)dx

� nfH(nþm� 1)� 2n(n� 1)fH(nþm� 3)� fH(nþmþ 1)

¼ 1

2
fH(nþmþ 1)þ (nþ 1)fH(nþm� 1)

þ n[fH(nþm� 1)þ 2(n� 1)fH(nþm� 3)]

� nfH(nþm� 1)� 2n(n� 1)fH(nþm� 3)� fH(nþmþ 1)

¼ nfH(nþm� 1)þ 1

2
fH(nþmþ 1):

In particular, when m¼ 1 and m¼ 2, we obtain

H{xF0(x)} ¼ nfH(n)þ
1

2
fH(nþ 2), (11:254)

H{xF00(x)} ¼ nfH(nþ 1)þ 1

2
fH(nþ 3): (11:255)

The reader is referred to a paper by Debnath (1968) for other
results similar to those of Equations 11.254 and 11.255.

Definition 11.2: (Generalized Convolution) The
generalized convolution of F(x) and G(x) for the Hermite
transform defined by

H{F(x) *G(x)} ¼ mnH{F(x)}H{G(x)} ¼ mn fH(n)gH(n),

(11:256)

where mn is a nonzero quantity given by

mn ¼
ffiffiffiffi

p
p

(� 1)n 22nþ1G nþ 3

2

� �� �1
: (11:257)

Debnath (1968) first proved the convolution theorem of the
Hermite transform for odd functions. However, Dimovski and
Kalla (1988) extended the theorem for both odd and even func-
tions. We follow Dimovski and Kalla to state and prove the
convolution theorem of the Hermite transform. Before we dis-
cuss the theorem, it is observed that, if F(x) is an odd function,
then

H{F(x); 2n} ¼ fH(2n) ¼
ð

1

�1

exp (�x2)H2n(x)F(x)dx ¼ 0,

(11:258)

but

H{F(x); 2nþ 1} ¼ fH(2nþ 1) 6¼ 0: (11:259)

On the other hand, if F(x) is an even function, then

H{F(x); 2nþ 1} ¼ fH(2nþ 1) ¼ 0, (11:260)

but

H{F(x); 2n} ¼ fH(2n) 6¼ 0: (11:261)
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THEOREM 11.16 (Convolution of the Hermite

Transform for Odd Functions)

If F(x) and G(x) are odd functions and n is an odd positive
integer, then

H F(x)�*G(x); 2nþ 1
� �

¼ mn fH(2nþ 1)gH(2nþ 1), (11:262)

where �
* denotes the convolution operation for odd functions and

is given by

F(x)�*G(x) ¼
x

p

ð

1

�1

exp (�t2)tF(t)dt

ð

p

0

exp (�xt cosf) sinf

�
ð

p

0

G[(x2 þ t2 þ 2xt cos f)]
1
2

(x2 þ t2 þ 2xt cos f)
1
2

J0(xt sinf)df,

(11:263)

and J0(z) is the Bessel function of the first kind of order zero.

Proof We have, by definition,

fH(2nþ 1) ¼
ð

1

�1

exp (�x2)H2nþ1(x)F(x)dx: (11:264)

We replace H2nþ 1(x) by using a result for Erdélyi (1953, vol. 2,
p. 1993)

H2nþ1(x) ¼ (�1)n22nþ1n! x L
1
2
n(x

2), (11:265)

where Lan (x) is the Laguerre polynomial of degree n and order a
so that Equation 11.264 reduces to the form

fH(2nþ 1) ¼ (�1)n22nþ2n!

ð

1

0

x exp (�x2)L
1
2
n(x

2)F(x)dx:

(11:266)

Invoking the change of variable x2¼ t, we obtain

H{F(x); 2nþ 1} ¼ (�1)n22nþ1n!

ð

1

0

ffiffi

t
p

exp (�t)L
1
2
n(t)

F
ffiffi

t
p� 	

ffiffi

t
p dt:

(11:267)

It is convenient to introduce the transformation T by

(TF)(t) ¼ F
ffiffi

t
p� 	

ffiffi

t
p , 0 � t < 1 (11:268)

so that the inverse of T is given by

T�1(F)(x) ¼ x F(x2): (11:269)

Consequently, Equation 11.267 takes the form

H{F(x); 2nþ 1} ¼ (�1)n22nþ1n!L{T F(x)}, (11:270)

where L is the Laguerre transformation of degree n and order

a ¼ 1

2
defined by (11.227).

The use of Equation 11.270 allows us to write the product
of two Hermite transforms as the product of two Laguerre
transforms as

fH(2nþ 1)gH(2nþ 1) ¼ 24nþ2(n!)2L{TF(x)}L{T G(x)}:

(11:271)

We now apply the convolution theorem for the Laguerre trans-
form (when a¼ 0) proved by Debnath (1969) in the form

L{F~*G(x)} ¼ n!
ffiffiffiffi

p
p

G nþ 3
2

� 	 L{F(x)}L{G(x)}, (11:272)

where F~*G is given by

F~*G(x) ¼
ð

1

0

exp (�t)
ffiffiffi

t
p

F(t)dt

ð

p

0

exp �
ffiffiffiffi

tt
p

cosf
� 	

sinf

� G t þ tþ 2
ffiffiffiffi

tt
p

cosf
� 	

J0
ffiffiffiffi

tt
p

sinf
� 	

df:

(11:273)

Substituting Equation 11.272 into 11.271, we obtain

fH(2nþ 1)gH(2nþ 1) ¼ p�1
224nþ2n!G nþ 3

2

� �

L{TF ~*TG},

which is, by Equation 11.270,

¼ 22nþ1G nþ 3
2

� 	

(�1)n
ffiffiffiffi

p
p H{T�1 (T F ~*T G)}: (11:274)

or, equivalently,

H F �
* G(x); 2nþ 1

n o

¼ mnH{F(x)}H{G(x)}, (11:275)

where

F �
* G(x) ¼ T�1{TF �

* TG(x)}: (11:276)

This coincides with Equation 11.263. Thus, the proof is complete.

11-26 Transforms and Applications Handbook



THEOREM 11.17 (Convolution of the Hermite

Transform for Even Functions)

If F(x) and G(x) are even functions and n is an even positive
integer, then

H F(x)e* G(x); 2n
n o

¼ mnH{F(x); 2n}H{G(x); 2n}: (11:277)

Proof We use result (Equation 11.251), that is,

H{F0(x); n} ¼ H{F(x); nþ 1}

so that

H{I F(x); 2nþ 1} ¼ H{F(x), 2n}, (11:278)

where

I F(x) ¼
ðx

0

F(t)dt and [I F(x)]0 ¼ F(x):

Obviously,

H{F(x)e*G(x); 2n} ¼ H{[I F(x)e*I G(x)]
0; 2n}

¼ H I F(x)�*I G(x); 2nþ 1
� �

¼ mnH{I F(x); 2nþ 1}H{I G(x);2nþ 1}

¼ mnH{F(x);2n}H{G(x); 2n}:

This proves the theorem. &

THEOREM 11.18

If F(x) and G(x) are two arbitrary functions such that their
Hermite transforms exist, then

H{F(x)*G(x); n} ¼ m[n=2]H{F(x); n} H{G(x); n}, (11:279)

where

F(x)*G(x) ¼ F0(x)
�
* G0(x)þ Fe(x)

e
* Ge(x), (11:280)

and

F0(x) ¼
1

2
[F(x)� F(�x)] and

Fe(x) ¼
1

2
[F(x)þ F(�x)]:

(11:281)

Proof We first note that arbitrary functions F(x) and G(x) can
be expressed as sums of even and odd functions, that is, F(x)¼
Fo(x)þ Fe(x) and G(x)¼Go(x)þGe(x) so that result (Equation
11.281) follows.

Suppose n is odd. Then

H{F(x); n} ¼ H{Fo(x); n},H{G(x); n} ¼ H{Go(x); n},

and

H{F(x)þ G(x); n} ¼ H{Fo(x)þ Go(x); n}:

Clearly,

H{F(x)*G(x);2nþ 1}

¼ H{Fo(x)
�
* Go(x);2nþ 1}þ H{Fe(x)

e
* Ge(x); 2nþ 1}

¼ mn H{Fo(x)}H{Go(x)} ¼ mn H{F(x)}H{G(x)}:

Similarly, the case for even n can be handled without any
difficulty.

We conclude this chapter by citing some recent work on the
generalized Hermite transformation by Glaeske (1983, 1986,
1987). These papers include some interesting discussion on oper-
ational properties and convolution structure of the generalized
Hermite transformations. For more details, the reader is referred
to these papers.

11.5.4 Additional Relations

1. The relation below

H{xn} ¼
ffiffiffiffi

p
p

n!Pn(1),

Is true, where Pn(x) is the Legendre polynomial.

2. Also

H H2
n(x)

� �

¼
ffiffiffiffi

p
p X

n

r¼0

n
r

� �

2rþn(2r)!n!:
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12.1 Introduction

In contrast to Fourier and Laplace transformations that were
introduced to solve physical problems, Mellin’s transformation
arose in a mathematical context. In fact, the first occurrence of
the transformation is found in a memoir by Riemann in which he
used it to study the famous Zeta function. References concerning
this work and its further extension by M. Cahen are given in
Ref. [1]. However, it is the Finnish mathematician, R. H. Mellin
(1854–1933), who was the first to give a systematic formulation
of the transformation and its inverse. Working in the theory of
special functions, he developed applications to the solution of
hypergeometric differential equations and to the derivation
of asymptotic expansions. The Mellin contribution gives a prom-
inent place to the theory of analytic functions and relies essentially
on Cauchy’s theorem and the method of residues. A biography
of R. H. Mellin including a sketch of his works can be found in
Ref. [2]. Actually, the Mellin transformation can also be placed in
another framework, which in some respects conforms more
closely to the original ideas of Riemann.

In this approach, the transformation is seen as a Fourier
transformation on the multiplicative group of positive real num-
bers (i.e., group of dilations) and its development parallels the
group-theoretical presentation of the usual Fourier transform.3,4

One of the merits of this alternative presentation is to emphasize
the fact that the Mellin transformation corresponds to an isom-
etry between Hilbert spaces of functions. Besides its use in
mathematics, Mellin’s transformation has been applied in many
different areas of physics and engineering.

Maybe the most famous application is the computation of
the solution of a potential problem in a wedge-shaped region
where the unknown function (e.g., temperature or electrostatic
potential) is supposed to satisfy Laplace’s equation with given

boundary conditions on the edges. Another domain where Mel-
lin’s transformation has proved useful is the resolution of linear
differential equations in x(d=dx) arising in electrical engineering
by a procedure analogous to Laplace’s. More recently, traditional
applications have been enlarged and new ones have emerged.
A new impulse has been given to the computation of certain
types of integrals by Marichev,5 who has extended the
Mellin method and devised a systematic procedure to make
it practical.

The alternative approach to Mellin’s transformation involving
the group of dilations has specific applications in signal analysis
and imaging techniques. Used in place of Fourier’s transform
when scale invariance is more relevant than shift invariance,
Mellin’s transform suggests new formal treatments. Moreover, a
discretized form can be set up and allows the fast numerical
computation of general expressions in which dilated functions
appear, such as wavelet coefficients and time-frequency trans-
forms.

This chapter is divided into two parts that can be read inde-
pendently. The first part (Section 12.2) deals with the introduc-
tion of the transformation as a holomorphic function in the
complex plane, in a manner analogous to what is done with
Laplace’s transform. The definition of the transform is given in
Section 12.2.1; its properties are described in detail and illustrated
by examples. Emphasis is put in Section 12.2.1.6 on inversion
procedures that are essential for a practical use of the transform.
The applications considered in this first part (Section 12.2.2) are
well-known for the most part: summation of series, computation
of integrals depending on a parameter, solution of differential
equations, and asymptotic expansion. The last example (Section
12.2.2.6), however, concerns a fairly recent application to the
asymptotic analysis of harmonic sums arising in the analysis of
algorithms.6
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The second part (Section 12.3), which is especially oriented
towards signal analysis and imaging, deals with the introduction
of the Mellin transform from a systematic study of dilations. In
Section 12.3.1, some notions of group theory are recalled in the
special case of the group of positive numbers (dilation group)
and Mellin’s transformation is derived together with properties
relevant to the present setting. The discretization of the trans-
formation is performed in Section 12.3.2. A choice of practical
applications is then presented in Section 12.3.3.

12.2 The Classical Approach
and Its Developments

12.2.1 Generalities on the Transformation

12.2.1.1 Definition and Relation to Other
Transformations

Definition 12.1: Let f(t) be a function defined on the
positive real axis 0< t<1. The Mellin transformation } is
the operation mapping the function f into the function F

defined on the complex plane by the relation:

}[f ; s] � F(s) ¼
ð1

0

f (t)ts�1dt (12:1)

The function F(s) is called the Mellin transform of f. In general,
the integral does exist only for complex values of s¼ aþ jb such
that a< a1< a2, where a1 and a2 depend on the function f(t) to
transform. This introduces what is called the strip of definition

of the Mellin transform that will be denoted by S(a1, a2). In some
cases, this stripmay extend to a half-plane (a1¼�1 or a2¼þ1)
or to the whole complex s-plane (a1¼�1 and a2 ¼ þ1)

Example 12.1

Consider

f (t) ¼ H(t � t0)t
z (12:2)

where

H is Heaviside’s step function

t0 is a positive number

z is complex

The Mellin transform of f is given by

}[f ; s] ¼
ð1

t0

tzþs�1dt ¼ � tzþs0

z þ s
(12:3)

provided s is such that Re(s)<�Re(z). In this case the function

f(s) is holomorphic in a half-plane.

Example 12.2

The Mellin transform of the function:

f (t) ¼ e�pt p > 0 (12:4)

is equal, by definition, to

}[f ; s] ¼
ð1

0

e�ptts�1 dt (12:5)

Using the definition (see Appendix 12.A) of the Gamma func-

tion, we obtain

}[f ; s] ¼ p�sG(s) (12:6)

Recalling that the Gamma function is analytic in the region

Re(s)> 0, we conclude that the strip of holomorphy is a half-

plane as in the first example.

Example 12.3

Consider the function:

f (t) ¼ (1þ t)�1 (12:7)

Its Mellin transform can be computed directly using the cal-

culus of residues. But another method consists in changing

the variables in Equation 12.1 from t to x defined by

t þ 1 ¼ 1

1� x
, x ¼ t

t þ 1
, dx ¼ dt

(t þ 1)2
(12:8)

The transform of Equation 12.7 is then expressed by

}[f ; s] ¼
ð1

0

xs�1(1� x)�s dx (12:9)

with the condition 0< Re(s)< 1. This integral is known

(Appendix 12.A) to define the beta function B(s, 1� s) which

can also be written in terms of Gamma functions. The result is

given by the expression:

}[f ; s] ¼ B(s, 1� s)

¼ G(s)G(1� s)
(12:10)

which is analytic in the strip of existence of Equation 12.9.

An equivalent formula is obtained using a property (Appendix

12.A) of the Gamma function:

}[f ; s] ¼ p

sin ps
(12:11)

valid in the same strip.
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12.2.1.1.1 Relation to Laplace and Fourier Transformations

Mellin’s transformation is closely related to an extended form
of Laplace’s. The change of variables defined by

t ¼ e�x , dt ¼ �e�x dx (12:12)

transforms the integral (Equation 12.1) into

F(s) ¼
ð1

�1

f (e�x)e�sx dx (12:13)

After the change of function:

g(x) � f (e�x) (12:14)

one recognizes in Equation 12.13 the two-sided Laplace trans-
form of g usually defined by

L[g; s] ¼
ð1

�1

g(x)e�sxdx (12:15)

This can be written symbolically as

}[f (t); s] ¼ L[f (e�x); s] (12:16)

The occurrence of a strip of holomorphy for Mellin’s transform
can be deduced directly from this relation. The usual right-sided
Laplace transform is analytic in a half-plane Re(s)>s1. In the
same way, one can define a left-sided Laplace transform analytic
in the region Re(s)<s2. If the two half-planes overlap, the region
of holomorphy of the two-sided transform is thus the strip
s1<Re(s)<s2 obtained as their intersection.

To obtain Fourier’s transform, write now s¼ aþ 2pjb in
Equation 12.13:

F(s) ¼
ð1

�1

f (e�x) e�ax e�j2pbx dx (12:17)

The result is

}[f (t); aþ j2pb] ¼ F[f (e�x)e�ax ;b] (12:18)

where J represents the Fourier transformation defined by

J[f ;b] ¼
ð1

�1

f (x)e�j2pbx dx (12:19)

Thus, for a given value of Re(s)¼ a belonging to the definition
strip, the Mellin transform of a function can be expressed as a
Fourier transform.

12.2.1.2 Inversion Formula

A direct way to invert Mellin’s transformation (Equation 12.1) is
to start from Fourier’s inversion theorem. As is well known, if
f
^

¼ J[f ;b] is the Fourier transform (Equation 12.19) of f, the
original function is recovered by

f (x) ¼
ð1

�1

f
^

(b)ej2pbx db (12:20)

Applying this formula to Equation 12.17 with s¼ aþ j2pb
yields:

f (e�x)e�ax ¼
ð1

�1

F(s) ej2pbx db (12:21)

Hence, going back to variables t and s:

f (t) ¼ t�a
ð1

�1

F(s) t�j2pb db (12:22)

The inversion formula finally reads:

f (t) ¼ (1=2pj)

ð
aþj1

a�j1

F(s) t�s ds (12:23)

where the integration is along a vertical line through Re(s)¼ a.
Here a few questions arise. What value of a has to be put into the
formula? What happens when a is changed? Is the inverse
unique? In what case is f a function defined for all t’s?

It is clear that if F is holomorphic in the strip S(a1, a2) and
vanishes sufficiently fast when Im(s) ! �1, then by Cauchy’s
theorem, the path of integration can be translated sideways inside
the strip without affecting the result of the integration. More
precisely, the following theorem holds:7,8

THEOREM 12.1

If, in the strip S(a1, a2), F(s) is holomorphic and satisfies the
inequality:

jF(s)j � Kjsj�2 (12:24)

for some constant K, then the function f(t) obtained by formula
(Equation 12.23) is a continuous function of the variable t 2 (0,1)
and its Mellin transform is F(s).

Remark that this result gives only a sufficient condition for the
inversion formula to yield a continuous function.
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From a practical point of view, it is important to note that the
inversion formula applies to a function F, holomorphic in a given
strip, and that the uniqueness of the result holds only with
respect to that strip. In fact, a Mellin transform consists of a
pair: a function F(s) and a strip of holomorphy S(a1, a2). A
unique function F(s) with several disjoint strips of holomorphy
will in general have several reciprocals, one for each strip. Some
examples will illustrate this point.

Example 12.4

The Mellin transform of the function:

f (t) ¼ (H(t � t0)� H(t))tz (12:25)

is given by

}[f ; s] ¼ � tzþs
0

(z þ s)
(12:26)

provided Re(s)>�Re(z). Comparing Equations 12.3 and 12.26,

we see an example of two functions F(s) having the same

analytical expression but considered in two distinct regions

of holomorphy: the inverse Mellin transforms, given respect-

ively by Equations 12.2 and 12.25 are indeed different (see

Figure 12.1).

Example 12.5 Gamma function continuation

From the result of Example 12.2 considered for p¼ 1, the

function f(t)¼ e�1, t> 0 is known to be the inverse Mellin

transform of G(s), Re(s)> 0. Besides, it may be checked that

G(s) satisfies the hypotheses of Theorem 12.1; this is done by

using Stirling’s formula which implies the following behavior

of the Gamma function:5

jG(aþ ib)j �
ffiffiffiffiffiffi

2p
p

jbja�1=2
e�jbjp=2 , jbj ! 1 (12:27)

Thus, the inversion formula (Equation 12.23) can be applied

here and gives an integral representation of e�t as

e�t � (1 2pj= )

ðaþj1

a�j1

G(s)t�s ds, a > 0 (12:28)

It is known that the G-function can be analytically continued

in the left half-plane except for an infinite number of poles at

the negative or zero integers. The inverse Mellin transform of

the Gamma function for different strips of holomorphy will

now be obtained by transforming the identity (Equation

12.28). The contour of integration can be shifted to the left

and the integral will only pick up the values of the residues at

each pole (Figure 12.2). Explicitly, if a> 0 and �N< a0 <�N, N

integer, we have

(1=2pj)

ðaþj1

a�j1

G(s)t�s ds ¼
XN�1

n¼0

(�1)n

n!
tn þ (1=2pj)

ða0þj1

a0�j1

G(s)t�s ds

(12:29)

Hence, the inversion formula of the G-function in the strip

S(�N, �Nþ 1) gives the result:

(1=2pj)

ða0þj1

a0�j1

G(s)t�s ds¼ e�t �
XN�1

n¼0

(�1)n

n!
tn , �N < a0 <�Nþ 1

(12:30)

The integral term represents the remainder in the Taylor

expansion of e�t and can be shown to vanish in the limit

N ! 1 by applying Stirling formula.

f2 (t)f1 (t)

0 t0

f1 (t) = tz H(t – t0) f2 (t) = tz [H(t – t0)–H(t)]

Im(s)

Re(s)

F (s) = –
t0

z + s

z + s

–2 0

t
0

t0
t

FIGURE 12.1 Examples of results when the regions of holomorphy are
changed.

Im (s)

Re(s)aa΄

Poles of the Γ–function

0

FIGURE 12.2 Different contours of integration for the inverse Mellin
transform of the Gamma function. The contributions from the horizon-
tal parts go to zero as Im(s) goes to infinity.
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As a corollary of the inversion formula, a Parseval relation can
be established for suitable classes of functions.

COROLLARY 12.1

Let }[ f; s] and }[g; s] be the Mellin transforms of functions
f and g with strips of holomorphy Sf and Sg, respectively,
and suppose that some real number c exists such that c 2 Sf
and 1� c 2 Sg. Then Parseval’s formula can be written as

ð1

0

f (t)g(t) dt ¼ 1

2pj

ð
cþj1

c�j1

}[f ; s]}[g; 1� s] ds (12:31)

This formula may be established formally by computing the
right-hand side of Equation 12.31 using definition (12.1):

1

2pj

ð
cþj1

c�j1

}[f ; s]}[g; 1� s]ds¼ 1

2pj

ð
cþj1

c�j1

}[g; 1� s]

ð1

0

f (t)ts�1dt ds

(12:32)

Exchanging the two integrals:

1

2pj

ð
cþj1

c�j1

}[f ; s]}[g; 1� s]ds¼ 1

2pj

ð1

0

f (t)

ð
cþj1

c�j1

}[g; 1� s]ts�1dt ds

(12:33)

and using the inverse formula (Equation 12.23) for g leads to
Equation 12.31.

Different sets of conditions ensuring the validity of this Parse-
val formula may be stated (see Ref. [9, p. 108]). The crucial point
is the interchange of integrals that cannot always be justified.

12.2.1.3 Transformation of Distributions

The extension of the correspondence (Equation 12.1) to distri-
butions has to be considered to introduce a larger framework
in which Dirac delta and other singular functions can be
treated straightforwardly. The distributional setting of Mellin’s
transformation has been studied mainly by Kang,10 Zemanian,7

and Misra and Lavoine.8 We refer the interested reader
to these works for a thorough treatment. As we will see, several
approaches of the subject are possible as it was the case for
Fourier’s transformation.

It is possible to define the Mellin transform for all distribu-
tions belonging to the space $0

þ of distributions on the half-line
(0, 1) The procedure10 is to start from the space $(0,1) of
infinitely differentiable functions of compact support on (0, 1)
and to consider the set Q of their Mellin transforms. It can be
shown that it is a space of entire functions which is isomorphic,
as a linear topological space, to the space Z of Gelfand and

Shilov.11 This space can be used as a space of test functions and
the one-to-one correspondence thus defined between elements of
spaces$(0,1) and Q can then be carried (i.e., transposed) to the
dual spaces $0

þ and Q0. In this operation, a Mellin transform is
associated with any distribution in$0

þ and the result belongs to a
space Q0 formed of analytic functionals (see Example 12.6 for an
illustration). The situation is quite analogous to that encountered
with the Fourier transformation where a correspondence
between distributions spaces $0 and Z0 are established.

Actually, it may be efficient to restrict the class of distributions
for which the Mellin transformation will be defined, as is usually
done in Fourier analysis with the introduction of the space 60 of
tempered distributions.11 In the present case, a similar approach
can be based on the possibility to single out subspaces of $0

þ
whose elements are Mellin-transformed into functions which are
analytic in a given strip. This construction will now be sketched.

The most practical way to proceed is to give a new interpret-
ation of formula (Equation 12.1) by considering it as the appli-
cation of a distribution f to a test function ts� 1:

F(s) ¼ h f , ts�1i (12:34)

A suitable space of test functions 7(a1, a2) containing all func-
tions ts�1 for s in the region a1<Re(s)< a2 may be introduced as
follows.8 The space 7(a1, a2) is composed of functions f(t)
defined on (0, 1) and with continuous derivatives of all orders
going to zero as t approaches either zero or infinity. More
precisely, there exists two positive numbers z1, z2, such that, for
all integers k, the following conditions hold:

tkþ1�a1�z1 f(k)(t) ! 0, t ! 0 (12:35)

tkþ1�a2�z2 f(k)(t) ! 0, t ! 0 (12:36)

A topology on 7 is defined accordingly, it can be verified that all
functions in $(0, 1) belong to 7(a1, a2).* The space of distri-
butions 70(a1, a2) is then introduced as a linear space of con-
tinuous linear functionals on 7(a1, a2). It may be noticed that if
a1, a2 are two real numbers such that a1<a1<a2< a2, then
7(a1, a2) is included in 7(a1, a2). One may so define a whole
collection of ascending spaces 7(a1, a2) with compatibley topol-
ogies, thus ensuring the existence of limit spaces when a1 !�1
and=or a2 ! 1.

Hence, the dual spaces of distributions are such that70(a1, a2)�
70(a1, a2) and7

0(�1,þ1) is included in all of them. Moreover,
as a consequence of the status of$(0,1) relatively to7 (a1, a2), the
space 70(a1, a2) is a subspace of distributions in $0

þ. The precise
construction of these spaces is explained in Ref. [8]. A slightly
different presentation is given in Ref. [7] and leads to these same
spaces denoted by}0(a1, a2).

* More precisely, one can show that $ (0, 1) is dense in 7(a1,a2)
y In fact, 7(�1, a2), 7(a1, þ1), and 7(�1, þ1) are defined as inductive
limits.
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With the above definitions, the Mellin transform of an element
f 2 70(a1, a2) is defined by

}[f ; s] � F(s) ¼ hf , ts�1i (12:37)

The result is always a conventional function F(s) holomorphic in
the strip a1<Re(s)< a2.

In summary, every distribution in $0
þ has a Mellin transform

which, as a rule, is an analytic functional. Besides, it is possible to
define subspaces 70(a1, a2) of $

0
þ whose elements, f, are Mellin

transformed by formula (Equation 12.37) into functions F(s)
holomorphic in the strip S(a1, a2). Any space, 70, contains in
particular Dirac distributions and arbitrary distributions of
bounded support. They are stable under derivation and multipli-
cation by a smooth function. Their complete characterization is
given by the following theorems.

THEOREM 12.2

(Uniqueness theorem7) Let }[ f; s]¼ F(s) and }[h; s]¼H(s)
be Mellin transforms with strips of holomorphy Sf and Sh, respect-
ively. If the strips overlap and if F(s) � H(s) for s 2 Sf \ Sh, then
f � h as distributions in 70(a1, a2) where the interval (a1, a2) is
given by the intersection of Sf \ Sh with the real axis.

THEOREM 12.3

(Characterization of the Mellin transform of a distribution in
70(a1, a2).

7,8 A necessary and sufficient condition for a function
F(s) to be the Mellin transform of a distribution f 2 70(a1, a2) is

. F(s) is analytic in the strip a1<Re (s)< a2),

. For any closed substrip a1�Re(s)�a2 with a1<a1<

a2< a2 there exists a polynomial P such that jF(s)j �
P (jsj) for a1�Re(s)�a2.

Example 12.6 (Example of analytic functional)

The function tz, z complex, defines a distribution in $0
þ

according to

htz ,fi ¼
ð1

0

tzf(t) dt, f 2 $(0,1) (12:38)

But it may seem that this distribution does not belong to any

of the spaces 70(a1, a2). Its Mellin transform may nevertheless

be defined by the following formula:

h}[tz ],ciM ¼ htz ,fi (12:39)

where <, >M denotes duality in the space of Mellin trans-

forms, f � M�1c is an element of $(0,1) and, consequently,

c is an entire function.

According to Equation 12.39 and Definition 12.1, we obtain:

h}[tz],CiM ¼ }[f; z þ 1]

¼ c(z þ 1) (12:40)

Since distribution }[tz] applied to c gives the value of c in a
point of the complex plane, it can be symbolized by a delta
function. To introduce the notation, we need the explicit form
of duality <, >M which comes out of Parseval formula. Accord-
ing to Equation 12.31, it is given for entire functions x, c by

hx,ciM ¼ 1

2pj

ð
cþj1

c�j1

x(s)c(1� s) ds (12:41)

where c is any real number. A more usual form is obtained by
setting:

~c(s) � c(1� s) (12:42)

and

hx, ~ci � hx,ciM (12:43)

¼ 1

2pj

ð
cþj1

c�j1

x(s)~c(s) ds (12:44)

With these definitions, Equation 12.40 can be written:

h}[tz], ~ci ¼ ~c(�z) (12:45)

and the notation:

}[tz] ¼ d(sþ z) (12:46)

can be proposed. Such Dirac distributions in the complex plane
are defined in Ref. [11].

Example 12.7

The Mellin transform of the Dirac distribution d(t� t0) is found

by applying the general rule:

hd(t � t0),fi ¼ f(t0) (12:47)

12-6 Transforms and Applications Handbook



to the family of functions f(t)¼ ts�1. One obtains:

}[d(t � t0); s], ¼ hd(t � t0), t
s�1i

¼ ts�1
0 (12:48)

for any value of the positive number t0. Moreover the result is

holomorphic in the whole complex s-plane.

It is instructive to verify explicitly the inverse formula on

this example. According to Equation 12.23, the inverse Mellin

transform }�1[ts�1
0 ; t] can be written as

}�1[ts�1
0 ; t] ¼ 1

2pjt0

ðj1

�j1

t

t0

� ��s

ds (12:49)

since the choice a¼ 0 is allowed by the holomorphy property

of the integrand in the whole plane. Setting s¼ jb in Equation

12.49 and performing the integration leads to the equivalent

expressions:

}�1[ts�1
0 ; t] ¼ 1

2pt0

ð

1

�1

e�jb ln (t=t0 ) db

¼ t�1
0 d( ln t � ln t0) (12:50)

The expected result:

}�1[ts�1
0 ; t] ¼ d(t � t0) (12:51)

comes out by using the classical formula:

d(f (t)) ¼ jf 0(t0)j�1 d(t � t0) (12:52)

in which f(t) is a function having a simple zero in t¼ t0.

Example 12.8

Consider the distribution:

f ¼
X

1

n¼1

d(t � pn), p > 0 (12:53)

Its Mellin transform is given by

X

1

n¼1

d(t � pn), ts�1

* +

¼
X

1

n¼1

(pn)s�1

¼ ps�1
X

1

n¼1

ns�1 (12:54)

The sum converges uniformly for Re(s)< 0 and can be

expressed in terms of Riemann’s Zeta function13 (see Appen-

dix 12.A). Explicitly, we have

}
X

1

n¼1

d(t � pn); s

" #

¼ ps�1z(1� s), Re(s) < 0 (12:55)

12.2.1.4 Some Properties of the Transformation

This paragraph describes the effect on the Mellin transform}[ f; s]
of some special operations performed on f. The resulting
formulas are very useful for deducing new correspondences from
a given one.

Let F(s)¼}[ f; s] be the Mellin transform of a distribution
which is supposed to belong to 70(s1, s2) and denote by Sf¼
{s:s1<Re(s)<s2} its strip of holomorphy (s1 is either finite or
�1, s2 is finite or 1). Then the following formulas hold with
the regions of holomorphy as indicated. The notation of func-
tions will be used but this must not obscure the fact that f is a
distribution and that all operations performed on f, especially
differentiation, must be understood in the generalized sense of
distributions.

. Scaling of the original variable by a positive number:

}[f (rt); s) ¼ r�sF(s), s 2 Sf , r > 0 (12:56)

. Raising of the original variable to a real power:

}[f (tr); s] ¼ jrj�1 F(r�1 s), r�1 s 2 Sf , r real 6¼ 0 (12:57)

. Multiplication of the original function by ln t:

}[( ln t)k f (t); s] ¼ dk

dsk
F(s), s 2 Sf , k positive integer (12:58)

. Multiplication of the original function by some power of t:

}[(t)z f (t); s] ¼ F(sþ z), sþ z 2 Sf , z complex (12:59)

. Derivation of the original function:

}
dk

dtk
f (t); s

� �

¼ (�1)k (s� k)k F(s� k),

s� k 2 Sf , k positive integer (12:60)

where the symbol (s� k)k is defined for k integer by

(s� k)k � (s� k)(s� kþ 1) . . . (s� 1) (12:61)

Formulas (Equation 12.59) and (Equation 12.60) can be used in
various ways to find the effect of linear combinations of differ-
ential operators such that tk(d=dt)m, k, m integers. The most
remarkable result is

} t
d

dt

� �k

f (t); s

" #

¼ (�1)ksk F(s) (12:62)

Other combinations can be computed. We have, for example,

}
dk

dtk
tk f (t); s

� �

¼ (�1)k(s� k)k F(s) (12:63)
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} tk
dk

dtk
f (t); s

� �

¼ (�1)k(s)kF(s) (12:64)

where s 2 Sf, k is a positive integer and

(s)k � s(sþ 1) . . . (sþ k� 1) (12:65)

These relations are easily verified on infinitely differentiable
functions. It is important to stress that they are essentially true
for distributions. That implies in particular that all derivatives
occurring in the formulas are to be taken according to the
distribution rules. An example dealing with a discontinuous
function will make this manifest.

Example 12.9

Consider the function:

f (t) ¼ H(t � t0)t
z , z complex (12:66)

According to the results of Example 12.1, the Mellin transform

of f is given by

}[f ; s] � F(s) ¼ � tzþs
0

z þ s
(12:67)

Applying formula (Equation 12.60) for k¼ 1 yields:

}
df

dt
; s

� �

¼ �(s� 1)F(s� 1)

¼ (s� 1)
tzþs�1
0

z þ s� 1
(12:68)

which can be rewritten as

}
df

dt
; s

� �

¼ �z
tzþs�1
0

z þ s� 1
þ tzþs�1

0 (12:69)

or, recognizing the Mellin transforms obtained in Examples

12.1 and 12.7:

}
df

dt
; s

� �

¼ } zH(t � t0)t
zþs�1 ; s

� �

þ} tz0d(t � t0); s
� �

(12:70)

This result shows explicitly that, in formula (Equation 12.60), f is

differentiated as a distribution. The first term in Equation 12.70

corresponds to the derivative of the function for t 6¼ t0 and the

second term is the Dirac distribution arising from the discon-

tinuity at t¼ t0.

Additional results on the Mellin transforms of primitives

can be established for particular classes of functions. Namely,

if x> 1, integration by parts leads to the result:

}

ð

1

x

f (t) dt; s

2

4

3

5 ¼
ð

1

0

s�1xsf (x) dx

¼ s�1F(sþ 1) (12:71)

provided the integrated part s�1xs
Ð1
x

f (t) dt is equal to zero

for x¼ 0 and x¼1.

In the same way, but with different conditions on f, one

establishes:

}

ð

x

0

f (t) dt; s

2

4

3

5 ¼ �s�1 F(sþ 1) (12:72)

12.2.1.5 Relation to Multiplicative Convolution

The usual convolution has the property of being changed into
multiplication by either a Laplace or a Fourier transformation.
In the present case, a multiplicative convolution,10 also called
Mellin-type convolution,7,8 is defined which has a similar prop-
erty with respects to Mellin’s transformation. In the same way as
the usual convolution of two distributions in $(IR) does not
necessarily exist, the multiplicative convolution of distributions
in $0

þ can fail to define a distribution. To avoid such problems,
we shall restrict our considerations to spaces 70(a1, a2).

Definition 12.2: Let f, g be two distributions belonging to
some space70(a1, a2). The multiplicative convolution of f and g is
a functional ( f _ g) whose action on test functions u 2 7(a1, a2)
is given by

hf � g, ui ¼ hf (t), hg(t), u(tt)ii (12:73)

It can be shown that f _ g is a distribution which belongs to the
space 70(a1, a2).

If the distributions f and g are represented by locally inte-
grable functions, definition (Equation 12.73) can be written
explicitly as

h f � g, ui ¼
ð

1

0

ð

1

0

f (t)g(t)u(tt)dt dt (12:74)

A change of variables then leads to the following expression for
the multiplicative convolution of the functions f and g:

( f � g)(t) ¼
ð

1

0

f (t)g
t

t

	 
 dt

t
(12:75)

The so-called exchange formula for usual convolution has an
analog for multiplicative convolution. It is expressed by the
following theorem.7,8
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THEOREM 12.4 (Exchange Formula)

The Mellin transform of the convolution product f _ g of two
distributions belonging to 70(a1, a2) is given by the formula:

}[f _ g; s] ¼ F(s)G(s), a1 < Re(s) < a2 (12:76)

where F(s) and G(s) are the Mellin transforms of distributions
f and g, respectively.

The proof is a simple application of the definitions. According
to Equation 12.37, the Mellin transform of distribution f _ g 2
70(a1, a2) is given by

}[f _ g; s] ¼ hf _ g, ts�1i, a1 < Re(s) < a2 (12:77)

or, using the definition (Equation 12.73) of convolution:

}[f � g; s] ¼ f (t), hg(t), (tt)s�1i
� �

(12:78)

which can be rewritten as

}[f � g; s] ¼ hf (t), ts�1ihg(t), ts�1i (12:79)

Formula (Equation 12.73) allows to consider the multiplicative
convolution of general distributions not belonging to space
70(a1, a2). However, in that case, it is not ensured that the
product exists as a distribution.

12.2.1.5.1 General Properties of the Multiplicative Convolution

In this paragraph, f and g are distributions which belong to
70(a1, a2) and k is a positive integer. The following properties
are easy to verify. In fact, some of them are a direct consequence
of the exchange formula.

1. Commutativity

f _ g ¼ g _ f (12:80)

2. Associativity

(f _ g) _ h ¼ f _ (g _ h) (12:81)

3. Unit element

f _ d(t � 1) ¼ f (12:82)

4. Action of the operator t(d=dt)

t
d

dt

� �k

( f � g) ¼ t
d

dt

� �k

f

" #

� g

¼ f � t
d

dt

� �k

g

" # (12:83)

i.e., it is sufficient to apply the operator to one of the factors.

5. Multiplication by ln t.

( ln t)(f _ g) ¼ [( ln t)f ] _ g þ f _ [( ln t)g] (12:84)

6. Convolution with Dirac distributions and their derivatives

d(t � a) � f ¼ a�1f (a�1t) (12:85)

d(t � p) � d(t � p0) ¼ d(t � pp0), p, p0 > 0 (12:86)

d(k)(t � 1) � f ¼ (d dt= )k(tkf ) (12:87)

Proof of relation (12.87)
According to the definition of the k-derivative of the Dirac

distribution, the multiplicative convolution of f with d(k) (t� 1) is
given by

hf � d(k)(t� 1),u(t)i ¼ hf (t), hd(k)(t� 1),u(tt)ii

¼ f (t), d(t� 1), (�1)k
d

dt

� �K

u(tt)

* +* +

(12:88)

or, after performing an ordinary differentiation and applying the
definition of d:

hf � d(k)(t � 1), u(t)i ¼ hf (t), (�1)k tku(k)(t)i (12:89)

The usual rules of calculus with distributions and the commu-
tativity of convolution yield:

hd(k)(t � 1) � f , u(t)i ¼ d

dt

� �k

(tkf (t)), u(t)

* +

(12:90)

Finally, identity (Equation 12.87) follows from the fact that
Equation 12.90 holds for any function u belonging to 7(a1, a2).

12.2.1.6 Hints for a Practical Inversion
of the Mellin Transformation

In many applications, it is essential to be able to perform expli-
citly the Mellin inversion. This is often the most difficult part of
the computation and we now give some indications on different
ways to proceed.

Compute the inversion integral: This direct approach is not
always the simplest. In some cases, however, the integral Equa-
tion 12.23 can be computed by the method of residues.

Use rules of Section 12.2.1.4 to exploit the inversion formula:
Property (Equation 12.62) in particular can be used to extend the
domain of practical utility of the inversion formula (Equation
12.23). Indeed, in the case where the Mellin transform F(s),
holomorphic in the strip S(a1, a2) with (a1, a2) finite, does not
satisfy condition (Equation 12.24), suppose that a positive integer
k can be found such that:

s�kF(s)






 � K sj j�2 (12:91)

Mellin Transform 12-9



The inversion formula (Equation 12.23) can now be used on the
function G(s) defined by

G(s) ¼ (�1)ks�kF(s), a1 < Re(s) < a2 (12:92)

and yields a continuous function g(t). Using rule (Equation
12.62) and the uniqueness of the Mellin transform, we conclude
that the reciprocal of F(s) is the distribution f defined by

f ¼ t
d

dt

� �k

g(t) (12:93)

In spite of the fact that the continuous function g(t) is not
necessarily differentiable everywhere, formula (Equation 12.93)
remains meaningful since derivatives are taken in the sense of
distributions. In fact, the above procedure corresponds to gener-
alizing Theorem 12.1 in the following form:

THEOREM 12.57,8

Let F(s) be a function holomorphic in the strip S(a1, a2) with
a1, a2 finite. If there exists an integer k� 0 such that s2�k F(s) is
bounded as jsj goes to infinity, then the inverse Mellin transform
of F(s) is the unique distribution f given by

f ¼ t
d

dt

� �k

g(t) (12:94)

where g(t) is a continuous function obtained by the formula:

g(t) ¼ (�1)k

2pj

ð

aþj1

a�j1

F(s) s�kt�s ds (12:95)

with a 2 S(a1, a2).
Other inversion formulas may be obtained in the same way,8

by using rules (Equation 12.63) and (Equation 12.64), respect-
ively. They are

f ¼ tk
d

dt

� �k

g(t), where g(t) ¼ (�1)k

2pj

ð

aþj1

a�j1

F(s)

(s)k
t�s ds

(12:96)

f ¼ d

dt

� �k

tkg(t), where g(t) ¼ (�1)k

2pj

ð

aþj1

a�j1

F(s)

(s� k)k
t�s ds

(12:97)

Use the tables: In simple cases, exploitation of tables14–16 and use
of the rules of calculus exhibited in Section 12.2.1.4 are sufficient
to obtain the result.

In more difficult cases, it may be rewarding to use the system-
atic approach developed by Marichev5 and applicable to a large
number of functions. Suppose we are given a function F(s)
holomorphic in the strip S(s1, s2) and we want to find its inverse
Mellin transform. The first step is to try and cast F into the form
of a fraction involving only products G-functions, the variable s
appearing only with the coefficient�1. This looks quite restrict-
ive, but in fact many simple functions can be so rewritten using
the properties of G-functions, recalled in Appendix 12.A. Thus,
F(s) is brought to the form:

F(s) ¼ C
Y

i, j, k, l

G(ai þ s)G(bj � s)

G(ck þ s)G(dl � s)
(12:98)

where C, ai, bj, ck, dl are constants and where Re(s) is restricted to
the strip S(s1,s2) now defined in terms of these.

For such functions, the explicit computation of the inversion
integral Equation 12.23 can be performed by the theory of
residues and yields a precise formula given in Ref. [5] as Slater’s
theorem. The result has the form of a function of hypergeometric
type. The important point is that most special functions are
included in this class. For a thorough description of the method,
the reader is referred to Marichev’s book5 which contains simple
explanations along with all the proofs and exhaustive tables.

Special forms related to the use of polar coordinates:17 The
analytical solution of some two-dimensional problems in polar
coordinates (r, u) is obtained by using a Mellin transformation
with respect to the radial variable r. In this approach, one can be
faced with the task of inverting expressions of the type cos(su)
F(s) or sin(su) F(s). We will show that, for a large class of
problems, the reciprocals of the products cos(su)F(s) and
sin (su)F(s) can be obtained straightforwardly from the know-
ledge of the reciprocal of F(s).

Let f(r), f real-valued, be the inverse Mellin transform of F(s) in
strip S(a1, a2) and suppose that f can be analytically continued
into a function f(z), z � re ju, in some sector juj<b of the
complex plane. If the rule of scaling (Equation 12.56) can be
extended to the complex numbers, we have

}[f (re ju); s] ¼ e�jus}[f (r); s] (12:99)

where the Mellin transforms are with respect to r.
In fact, this formula can be established by contour integration

in a sector jarg zj<b where the function f is such that:

zsf (z) ! 0 as jzj ! 0 or1 (12:100)

Remark that since f has a Mellin transform with strip of defin-
ition S(a1, a2), this condition already holds on the real axis when
a1<Re (s)< a2.
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Recalling that f is real-valued, we can take the real and imagin-
ary parts of Equation 12.99 and obtain, for real s, the formulas:

}[Re(f (reju)); s] ¼ cos (su)F(s) (12:101)

}[Im(f (reju)); s] ¼ �sin (su)F(s) (12:102)

These can be extended to complex s and yield the inverse Mellin
transforms of cos (su)F(s) and sin (su)F(s) for a1<Re(s)< a2 and
juj<b.

EXAMPLE 12.1017

To illustrate the use of the above rules, we shall perform explicitly
the inversion of

F(s) ¼ cos su

s cos sa
,a real (12:103)

in the strip 0<Re(s)<p=(2a).
Using the result of Example 12.3 and rule (Equation 12.57), we

obtain:

}[(1þ r2)�1; s] ¼ t

2 sin (ps 2= )
, 0 < Re(s) < 1 (12:104)

Recalling that

ð1

r

dx

1þ s2
¼ p 2= � tan�1 r (12:105)

and using rule (Equation 12.71) gives

}[p 2= � tan�1 r; s] ¼ p

2s cos ps 2=
, 0 < Re(s) < 1 (12:106)

Using again property (Equation 12.57) but with v¼p=2a finally
gives

}[p 2= � tan�1 rv; s] ¼ p

2s cos (ps 2v= )
, 0 < Re(s) < v

(12:107)

To find the domain in which function f(z)¼p=2� tan�1zv,
where z¼ reju, verifies the condition (Equation 12.100), we
write it under the form:

f (z) ¼ (1 2= j) ln
zv þ j

zv � j

� �

(12:108)

subject to the choice of the determination for which 0<
tan�1r<p=2. The results is juj � jarg (z)j<p=2. Relation (Equa-
tion 12.101) yields the result:

}�1 cos(su)

s cos(sa)
;s

� �

¼Re(p 2= �tan�1 zv), 0<Re(s)<p (2a= ),juj<p 2=

(12:109)

The real part of f(reju) is given explicitly by

Re(p 2= � tan�1 zv) ¼
1� p�1 tan�1 2r

v cos vu

1� r2v
0 � r < 1

p�1 tan�1 2r
v cos vu

r2v�1
r > 1

8

>

<

>

:

12.2.2 Standard Applications

12.2.2.1 Summation of Series

Even if a numerical computation is intended, Mellin’s transform-
ation may be used with profit to transform slowly convergent
series either into integrals that can be computed exactly or into
more rapidly convergent series.

Let S represent a series of the form:

S ¼
X

1

n¼1

f (n) (12:110)

in which the terms are samples of a function f(t) for integer
values of the variable t 2 (0,1). If this function has a Mellin
transform F(s) with S(a1, a2) as strip of holomorphy, it can be
written:

f (t) ¼ (2pj)�1
ð

aþj1

a�j1

F(s)t�s ds, a1 < a < a2 (12:111)

Substituting this identity in Equation 12.110 yields:

S ¼ (2pj)�1
X

1

n¼1

ð

aþj1

a�j1

F(s)n�s ds (12:112)

Now, if F(s) is such that sum and integral can be exchanged, an
integral expression for S is obtained:

S ¼ (2pj)�1
ð

aþj1

a�j1

F(s)z(s) ds (12:113)

where z(s) is the Riemann zeta function defined by

z(s) ¼
X

1

n¼1

n�s (12:114)
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The integral Equation 12.113 is then evaluated by the methods of
Section 12.2.1.6. The calculus of residues may give the result as
an infinite sum which, hopefully, will be more rapidly convergent
than the original series.

Some care is necessary when going from Equations 12.112 and
12.113. Actually, if the interchange of summation and integration
is not justified, the expression (Equation 12.113) can fail to
represent the original series (see Ref. [17, p. 216], for an
example).

Example 12.11

Compute the sum:

S(y) ¼
X1

n¼1

cos ny

n2
(12:115)

From Table 12.1 and properties (12.56) and (12.59), one finds:

TABLE 12.1 Some Standard Mellin Transform Pairs

Original Function Mellin Transform

f(t), t> 0 }[f ; s] �
Ð1
0 f (t) ts�1 dt Strip of Holomorphy

e�pt, p> 0 p�sG(s) Re(s)> 0

H(t� a)tb, a> 0 � abþs

bþ s
Re(s)<�Re(b)

(H(t� a)�H(t))tb � abþs

bþ s
Re(s)>�Re(b)

(1þ t)�1 p

sin (ps)
0<Re(s)< 1

(1þ t)�a G(s)G(a� s)

G(a)
0<Re(s)<Re(a)

(1� t)�1 pcot(ps) 0<Re(s)< 1

H(1� t)(1� t)b�1, Re(b)> 0
G(s)G(b)

G(sþ b)
Re(s)> 0

H(t� 1)(t� 1)�b G(b� s)G(1� b)

G(1� s)
Re(s)<Re(b)< 1

H(t� 1) sin(a ln t)
a

s2 þ a2
Re(s)<�jIm(a)j

H(1� t) sin (�a ln t)
a

s2 þ a2
Re(s)> jIm(a)j

(H(t)�H(t� p)) ln(p=t), p> 0
ps

s2
Re(s)> 0

ln(1þ t)
p

s sin (ps)
�1<Re(s)< 0

H(p� t) ln (p� t) �ps s�1[c(sþ 1)þ p�1 ln g] Re(s)> 0

t�1 ln(1þ t)
p

(1� s) sin (ps)
0<Re(s)< 1

ln
1þ t

1� t

















(p=s) tan(ps) �1<Re(s)< 1

(et� 1)�1 G(s)z(s) Re(s)> 1

t�1e�t�1
G(1� s) �1<Re(s)< 1

e�x2 (1=2)G(s=2) 0<Re(s)<þ1
eiat a�sG(s)eip(s=2) 0<Re(s)< 1

tan�1(t)
�p

2s cos (ps=2)
�1<Re(s)< 0

cotan�1(t)
p

2s cos (ps=2)
0<Re(s)< 1

d(t� p), p> 0 ps�1 Whole plane
P1

n¼1 d(t � pn), p > 0 ps�1 z(1� s) Re(s)< 0

Jv(t)
2s�1G[(sþ v)=2]

G[(1=2)(v � s)þ 1]
�v<Re(s)< 3=2

Pþ1
n¼�1 p�nrd(t � pn)

1

ln p

Xþ1
n¼�1 d b� n

ln p

� �

s¼ rþ jb

p> 0, r real b¼ Im(s)

tb d(bþ s) None (analytic functional)
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}
cos ty

t2
; s

h i

¼ �y2�sG(s� 2) cos (ps 2= ), 2 < Re(s) < 3

(12:116)

Hence, the sum can be rewritten as

S ¼ �(1 2pj= )

ðaþj1

a�j1

y2�sG(s� 2) cos (ps 2= )z(s) ds (12:117)

where the interchange of summation and integration is justi-

fied by absolute convergence. The integral can be rearranged

by using Riemann’s functional relationship (see Ref. [17] and

Appendix 12.A):

psz(1� s) ¼ 21�sG(s) cos (ps 2= )z(s) (12:118)

Then Equation 12.117 becomes:

S ¼ �(1 2pj= )

ðaþj1

a�j1

y2�s2s�1ps z(1� s)

(s� 1)(s� 2)
ds (12:119)

The integral is easily computed by the method of residues,

closing the contour to the left where the integrand goes to

zero. The function z(s) is analytic everywhere except at s¼ 1

where it has a simple pole with residue equal to 1. The result is

S ¼ y2

4
� py

2
þ p2

6
(12:120)

12.2.2.2 Computation of Integrals Depending
on a Parameter

Essentially, the technique concerns integrals which can be
brought to the form:

K(x) ¼
ð1

0

K0(t)K1(x t= )
dt

t
, x > 0 (12:121)

One recognizes the expression of a multiplicative convolution.
Such an integral can be computed by performing the following
steps:

. Mellin transform functions K0 and K1 to obtain }[K0; s]
and }[K1; s].

. Multiply the transforms to obtain }[K; s] � }[K0; s]
}[K1; s].

. Find the inverse Mellin transform of }[K; s] using the
tables. The result will in general be expressed as a combin-
ation of generalized hypergeometric series.

For the last operation, the book by Marichev5 can be of great
help as previously mentioned in Section 12.2.1.6. The method
can be extended to allow the computation of integrals of the
form:

K(x1, . . . , xN ) ¼
ð1

0

K0(t)
Yn

i¼1

Ki
xi

t

	 


" #

dt

t
(12:122)

where x1, . . . , xN are positive variables.
It can be verified that the multiple Mellin transform defined by

[K ; s1, . . . , sN ] ¼
ð

1

0

. . .

ð

1

0

K(x1, . . . , xN )x
s1�1
1 . . . xsN�1

N dx1 . . . dxN

(12:123)

allows the expression (Equation 12.122) to be factored as

}[K ; s1, . . . , sN ] ¼ }[K0; s1 þ s2 þ 	 	 	 þ sN ]
Y

N

i¼1

}[Ki; si]

(12:124)

Techniques of inversion for this expression are developed in a
book by Sasiella18 devoted to the propagation of electromagnetic
waves in turbulent media.

12.2.2.3 Mellin’s Convolution Equations

These are not always expressed with integrals of type (Equation
12.75) but also with differential operators which are polynomials
in (t(d=dt)). Such equations are of the general form:

Lu(t) � an t
d

dt

� �n

þan�1 t
d

dt

� �n�1

þ 	 	 	 þ a0

 !

u(t) ¼ g(t)

(12:125)

By using the identity:

(t(d dt= ))k u(t) � (t(d dt= ))k d(t � 1)
� �

� u(t) (12:126)

they can be written as a convolution:

X

n

k¼0

ak t(d dt= )ð Þkd(t � 1) � u(t) ¼ g(t) (12:127)

The more usual Euler–Cauchy differential equation, which is
written as

bnt
n(d dt= )n þ bn�1t

n�1(d dt= )n�1 þ 	 	 	 þ b0
� �

u(t) ¼ g(t)

(12:128)

can be brought to the form (Equation 12.125) by using relations
such that:
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t
d

dt

� �2

¼ t
d

dt
þ t2

d2

dt2
(12:129)

It can also be transformed directly into a convolution which
reads:

X

n

k¼0
bkt

kd(k)(t � 1) � u(t) ¼ g(t) (12:130)

The Mellin treatment of convolution equations will be explained
in the case of Equation 12.127 since it is the most characteristic.

Suppose that the known function g has a Mellin transform
}[g; s]¼G(s) that is holomorphic in the strip S(sl, sr). We shall
seek solution u which admit a Mellin transform U(s) holo-
morphic in the same strip or in some substrip. The Mellin
transform of Equation 12.127 is obtained by using the convolu-
tion property and relation (Equation 12.62):

A(s)U(s) ¼ G(s) (12:131)

where

A(s) �
X

1

k¼0

ak(�1)ksk (12:132)

Two different situations may arise.

1. Either A(s) has no zeros in the strip S(sl,sr). In that case,
U(s) given by G(s)=A(s) can be inverted in the strip.
According to Theorems 12.2 and 12.3, the unique solution
is a distribution belonging to 70(s1,s2).

2. Or A(s) has m zeros in the strip. The main strip S(sl,sr)
can be decomposed into adjacent substrips

sl < Re(s) < s1,s1 < Re(s) < s2, . . . , sm < Re(s) < sr

(12:133)

The solution in the k-substrip is given by the Mellin inverse
formula:

u(t) ¼ 1

2pj

ð

cþj1

c�j1

G(s)t�s

A(s)
ds (12:134)

where sk< c<skþ1. There is a different solution in each strip,
two solutions differing by a solution of the homogeneous
equation.

12.2.2.4 Solution of a Potential Problem in a Wedge7,8,17

The problem is to solve Laplace’s equation in an infinite two-
dimensional wedge with Dirichlet boundary conditions. Polar
coordinates with origin at the apex of the wedge are used and
the sides are located at u ¼ �a. The unknown function u(r, u) is
supposed to verify:

Du ¼ 0, 0 < r < 1, �a < u < a (12:135)

with the following boundary conditions:

1. On the sides of the wedge, if R is a given positive number:

u(r, �a) ¼ 1 if 0 < r < R

0 if r > R

�

(12:136)

or, equivalently:

u(r, �a) ¼ H(R� r) (12:137)

2. When r is finite, u(r, u) is bounded.
3. When r tends to infinity, u(r, u) � r�b, b> 0.

In polar coordinates, Equation 12.135 multiplied by r2 yields:

r2
q2u

qr2
þ r

qu

qr
þ q2u

qu2
¼ 0 (12:138)

The above conditions on u(r, u) ensure that its Mellin transform
U(s, u) with respect to r exists as a holomorphic function in some
region 0<Re(s)<b. The equation satisfied by U is obtained
from Equation 12.138 by using property (Equation 12.59) of
the Mellin transformation and reads:

d2U

du2
(s, u)þ s2U(s, u) ¼ 0 (12:139)

The general solution of this equation can be written as

U(s, u) ¼ A(s)ejsu þ B(s)e�jsu (12:140)

Functions A, B are to be determined by the boundary condition
(Equation 12.137) which leads to the following requirement
on U:

U(s, �a) ¼ Rss�1 for Re(s) > 0 (12:141)

Explicitly, this is written as

A(s)ejsa þ B(s)e�jsa ¼ as s�1 (12:142)

A(s)e�jsa þ B(s)ejsa ¼ as s�1 (12:143)

and leads to the solution:

A(s) ¼ B(s) ¼ Rs

2s cos (sa)
(12:144)

The solution of the form (Equation 12.140) which verifies Equa-
tion 12.141 is given by

U(s, u) ¼ Rs cos (su)

s cos (sa)
(12:145)
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This function U is holomorphic in the strip 0<Re(s)<p=(2a).
Its inverse Mellin transform is a function u(r, u) that is obtained
from the result of Example 12.10.

12.2.2.5 Asymptotic Expansion of Integrals

The Laplace transform I[ f; l] defined by

I[f ; l] ¼
ð1

0

e�lt f (t) dt (12:146)

has an asymptotic expansion as l goes to infinity which is
characterized by the behavior of the function f when t !
0þ.9,14,19 With the help of Mellin’s transformation, one can
extend this type of study to other transforms of the form:

I[f ; l] ¼
ð1

0

h(lt)f (t) dt (12:147)

where h is a general kernel.
Examples of such h-transforms9 are

. Fourier transform: h(lt)¼ ejlt

. Cosine and Sine transforms: h(lt)¼ cos (lt) or sin (lt)

. Laplace transform: h(lt)¼ e�lt

. Hankel transform: h(lt) ¼ Jv( _lt)(lt)
1=2 where Jv is the

Bessel function of the first kind
. Generalized Stieltjes transform: h(lt) ¼ lv

Ð1
0 f (t)=

(1þ lt)vdt

A short formal overview of the procedure will be given below.
The theory is exposed in full generality in Ref. [9]. It includes the
study of asymptotic expansions when l ! 0þ in relation with
the behavior of f at infinity and the extension to complex values
of l. The case of oscillatory h-kernels is given special attention.

Suppose from now on that f and h are locally integrable
functions such that the transform I[ f; l] exists for the large l.
The different steps leading to an asymptotic expansion of I[ f;l]
in the limit l ! þ1 are the following:

1. Mellin transform the functions h and f and apply Parseval’s

formula. The Mellin transforms }[ f; s] and }[h; s] are
supposed to be holomorphic in the strips h1<Re(s)<h2

and<a1<Re(s)<a2, respectively. Assuming that Parse-
val’s formula may be applied and using property (Equation
12.56), one can write Equation 12.146 as

I[f ;l] ¼ 1

2pj

ð
rþj1

r�j1

l�s}[h; s]}[f ; 1� s] ds (12:148)

where r is any real number in the strip of analyticity of the
function G defined by

G(s)¼}[h; s]}[f ; 1�s], max(a1,1�h2)<Re(s)<min(a2,1�h1)

(12:149)

2. Shift of the contour of integration to the right and use of

Cauchy’s formula. Suppose G(s) can be analytically con-
tinued in the right half-plane Re(s)�min(a2, 1�h1) as a
meromorphic function. Remark that this assumption
implies that M[ f; s] may be continued to the right half-
plane Re(s)>a2 andM[h; s] to the left Re(s)<h1. Suppose
moreover that the contour of integration in Equation
12.148 can be displaced to the right as far as the line
Re(s)¼R> r. A sufficient condition ensuring this property
is that

lim
jbj!1

G(aþ jb) ¼ 0 (12:150)

for all a in the interval [r, R].
Under these conditions, Cauchy’s formula may be applied
and yields:

I[f ;l] ¼ �
X

r<Re(s)<R

Res(l�sG(s))þ 1

2pj

ð
Rþj1

R�j1

l�sG(s) ds

(12:151)

where the discrete summation involves the residues
(denoted Res) of function l�sG(s) at the poles lying inside
the region r<Re(s)<R.

3. The asymptotic expansion. The relation (Equation 12.151)
is an asymptotic expansion provided the error bound hold.
A sufficient condition to ensure that the integral term is of
order O(l�R) is that G satisfy:

ð1

�1

jG(Rþ jb)jdb < 1 (12:152)

The above operations can be justified step by step when treating a
particular case. The general theory gives a precise description of
the final form of the asymptotic expansion, when it exists, in
terms of the asymptotic properties of h when t !þ1 and of
f when t ! 0þ.

The above procedure is easily adapted to give the asymptotic
expansion of I[ f; l] when l ! 0þ.

Example 12.12

Consider the case where the kernel, h, is given by

h(t) ¼ 1

1þ t
(12:153)

The integral under consideration is thus:

I[f ; l] ¼
ð1

0

f (t)

1þ lt
dt (12:154)
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The function f must be such that the integral exists. In add-

ition, it is supposed to have a Mellin transform holomorphic in

the strip s1< Re(s)<s2 and to have an asymptotic develop-

ment as t ! 0 of the form:

f �
X1

m¼0

tampm (12:155)

where the numbers Re(am) increase monotonically toþ1 as

m !þ1 and the numbers pm may be arbitrary.

To apply the method, we first compute the Mellin trans-

form of h which is given by

}[(1þ t)�1 ; s] ¼ p

sinps
, 0 < Re(s) < 1 (12:156)

It can be continued in the half-plane Re(s)> 0 where it has

simple poles at s¼ 1, 2, . . . and decays along imaginary lines as

follows:

p

sinp(aþ jb)
¼ O e�pjbj

	 


for all a (12:157)

As for function f, its behavior given by Equation 12.155

ensures9 that the Mellin transform }[ f; s] has an analytic

continuation in the half-plane Re(s)�s1¼� Re(a0) which is

a meromorphic function with poles at the points s¼� am.

Moreover, one finds the following behavior at infinity for the

continued Mellin transform:

lim
jbj!1

}[f ; aþ jb] ¼ 0, for all a < s2 (12:158)

In this situation, the method will lead to an asymptotic expan-

sion which can be written explicitly. For example, in the case

where am 6¼ 0, 1, 2, . . . , the poles of }[ f; 1� s], which occur at

1� s¼�am are distinct from those of}[h; s] at s¼mþ 1 and

the expansion of I is given by

I[f ; l] �
X

1

m¼0

l�1�am
p

sin (p am)
Ress¼1þam {}[f ; 1� s]}

þ
X

1

m¼0

l�1�m}[f ; �m]Ress¼mþ1

p

sin (ps)

� �

(12:159a)

Hence,

I[f ; l] �
X

1

m¼0

l�1�ampm
p

sin (pam)
þ
X

1

m¼0

(�1)ml�1�m}[f ; �m]

(12:159b)

In particular, if f(t)¼ (1=t)e�(1=t), all the pm are equal to zero and

the expansion is just:

I[f ; l] �
X

1

n¼0

(�1)n(l)�n�1G(nþ 1) (12:160)

12.2.2.6 Asymptotic Behavior of Harmonic Sums

A more recent application of Mellin’s transformation concerns
the study of functions defined by series of the following type:

g(x) �
X

k

lkf (mkx), k integer, x > 0 (12:161)

where lk and mk are real parameters.20,21 Such functions, which
can be interpreted as a superposition of generalized harmonics
associated with a base function f(x), are referred to as harmonic
sums,6 the parameters lk, mk being interpreted as amplitude and
frequency, respectively. Those expressions arise in applications of
combinatorial theory, especially in the evaluation of algorithms
where the problem is to find the behavior of g(x) when x tends to
0 or infinity.22 Mellin’s transformation comes in as an essential
tool to obtain asymptotic expansions of this type of function. In
the following, a brief account of the method will be given and an
example will be treated. For further details, the reader should
refer to the review paper by Flajolet et al.6 which contains precise
theorems and numerous examples of application.

The first step in establishing an asymptotic expansion of the
function g(x) defined by Equation 12.161 is to find the expression
of its Mellin transform }[g; s] � G(s). When the sum on k is
finite, the linearity of the transformation and the property (Equa-
tion 12.56) relative to scaling allow one to write:

G(s) � }[g; s] ¼ L(s)F(s) (12:162)

where

F(s) � }[f ; s] (12:163)

and the function L(s) is defined by

L(s) �
X

k

lkm
�s
k (12:164)

Thus, the Mellin transformation performs a separation between
the base function f(x) and the parameters lk, mk. In the more
general case of an infinite sum, the validity of the procedure, which
involves interchanging sum and integral, will depend on the
properties of the functions f(x) and L(s); the latter has the form
of a generalized Dirichlet series for which convergence theorems
exist. From now on, we suppose that the Mellin transform of g(x)
has the form (Equation 12.162) and, in addition, is holomorphic in
a strip S(s1,s2) and satisfies the conditions of Theorem 12.1. In
that case, the inversion formula (Equation 12.23) allows to recover
g(x) by an integration in the complex s plane along an imaginary
line in the strip of holomorphy according to

g(x) ¼ (1=2pj)

ð

aþj1

a�j1

L(s)F(s)x�sds (12:165)

With s1< a<s2.

12-16 Transforms and Applications Handbook



The second step relies on the possibility to continue the func-
tion G(s) in a half plane as a meromorphic function of sufficient
decrease at infinity. The asymptotic development of g(x) as x! 0
is then given by the approximate computation of Equation 12.165
using the method of residues in the left half-plane Pl:

g(x) �
X

Pl

Res[G(s)x�s] (12:166)

The development for x ! 1 is likewise obtained by considering
the right half-plane Pr:

g(x) � �
X

Pr

Res[G(s)x�s] (12:167)

This formal procedure is valid under general conditions involving
the separate behaviors of the functions L(s), associated with the
parameters, and F(s), characterizing the base function. The result
is a systematic correspondence between the properties of the
poles ofG(s) in the complex plane and the terms of the asymptotic
series of g(x).6,21 A simple example will illustrate this procedure.

Example 12.13

Consider the sum

g(x) ¼
X1

k¼1

d(k)e�kx (12:168)

where d(k) represents the number of divisors of k. The Mellin

transform is given by

}[g; s] � G(s) ¼
X1

k¼1

d(k)k�sG(s) (12:169)

The identity12

X1

k¼1

d(k)k�s ¼ z2(s) (12:170)

allows us to write

G(s) ¼ z2(s)G(s) (12:171)

The holomorphy domain of G(s) is Re(s)> 1. Recall that the

Zeta function has a simple pole at s¼ 1 and simple zeros at

the pair negative integers. Hence, taking also into account the

properties of the Gamma function, we find that G(s) has a

double pole in s¼ 1 and simple poles at s¼ 0 and s¼�2n�1,

n integer. The singular terms of the Laurent expansion of G(s)

are

At s¼ 1

G(s) � 1

(s� 1)2
þ g

s� 1
, g ¼ Euler constant

At s¼ 0

G(s) � 1

4s
(12:172)

At s¼ �2n� 1

G(s) � � z2(�2n� 1)

(2nþ 1)(sþ 2nþ 1)

In addition, the decreasing properties of G(s) when jsj ! þ1
allow to write:

G(s) �
X

Re(s)�1

Res G(s)x�sð Þ (12:173)

Computation of the residue at s¼ 1 gives

Ress¼1 G(s)x�sð Þ ¼ d

ds
[(s� 1)2G(s)x�s]s¼1 (12:174)

or using Equation 12.172:

Ress¼1(G(s)x
�s) ¼ (g� ln x)x�1 (12:175)

The other residues are at simple poles and the asymptotic

expansion of g(x) for x!0 finally reads:

g(x) ¼ (g� ln x)
1

x
þ 1

4
þ
X1

k¼0

z2(� 2n� 1)

(2nþ 1)
x2nþ1 (12:176)

The value of z(�2n �1) can be found in tables in Ref. [16].

In this example, the use of Mellin’s transformation has led

easily to the x¼ 0 behavior of g(x) which was not obvious on

the definition (Equation 12.168). Other types of series involv-

ing poles in the complex domain of s can be handled in an

analogous way.6

12.3 Alternative Approach Related
to the Dilation Group
and Its Representations

12.3.1 Theoretical Aspects

12.3.1.1 Construction of the Transformation

Rather than start directly by giving the explicit formula of the
Mellin transformation, we will construct it explicitly as a tool
especially devoted to the computation of functionals involving
scalings of a variable. Such an introduction of the transform may
be found, for example, in the book by Vilenkin3 or, in a more
applied context, in articles.23–25

If Z(v) is a function defined on the positive half-axis (0, 1), a
scaling of the variable v by a positive number a leads to a new
function Z0(v) which is related to Z(v) by the change of variable:
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n! an (12:177)

The set of such transformations forms a group which is iso-
morphic to the multiplicative group of positive real numbers.
In practice, the scaled function is often defined by the trans-
formation:

Z(n)! a1 2= Z(an) (12:178)

which does not change the value of the usual scalar product:

(Z1,Z2) �
ð1

0

Z1(n)Z2* (n)dn (12:179)

in which the symbol * denotes complex conjugation. However,
there are serious physical reasons to consider more general
transformations of the form:

$a:Z(n) ! ($aZ)(n) � arþ1Z(an) (12:180)

where r is a given real number. The general correspondence
a $ $a is such that:

$a$a0 ¼ $aa0

$1$a ¼ $a$1 ¼ $a

($a)
�1 ¼ $a�1

(12:181)

Thus, for any value of r, the set of $a operations constitutes a
representation of a group. These transformations preserve the
following scalar product:

(Z1,Z2) �
ð1

0

Z1(n)Z2* (n)n
2rþ1dn (12:182)

that is to say, we have

($aZ1,$aZ2) ¼ (Z1,Z2) (12:183)

The scalar product (Equation 12.182) defines a norm for the
functions Z(v) on the positive axis IRþ. We have

kZ k2 �
ð1

0

jZ(n)j2 n2rþ1dn (12:184)

The corresponding Hilbert space will be denoted by
L2(IRþ, v2rþ1dv). It is handled in the same manner as an ordinary
L2 space with the measure dv replaced by v2rþ1 dv in all formulas.
In this space, the meaning of Equation 12.183 is that the set of
operations $a constitutes a unitary representation of the multi-
plicative group of positive numbers.

The value of r will be determined by the specific applications
to be dealt with. Examples of adjustments of this parameter are
given in Ref. [26] where the occurrence of dilations in radar
imaging is analyzed.

When confronted with expressions involving functions modi-
fied by dilations of the form (Equation 12.180), it may be advan-
tageous to use a Hilbert space basis in which the operators $a

have a diagonal expression. This leads to a decomposition of
functions Z into simpler elements on which the scaling operation
breaks down to a mere multiplication by a complex number.
Such a procedure is familiar when considering the operation
which translates a function f(t), t 2 IR according to

f (t) ! f (t � t0) (12:185)

In that case, the exponentials elt, l complex, are functions that
are multiplied by a number elt0 in a translation. If l¼ ja, a real,
these functions are unitary representations of the translation
group in L2(IR) and provide a generalized* orthonormal basis
for functions in this space. The coefficients of the development of
function f(t) on this basis are obtained by scalar product with the
basis elements and make up the Fourier transform. In the present
case, analogous developments will connect the Mellin transform-
ation to the unitary representations of the dilation group in
L2(IRþ, v2rþ1dv).

For simplicity and for future reference, the diagonalization of
$a will be performed on its infinitesimal form defined by the
operator @ whose action on function Z(v) is given by

(@Z)(n) � � 1

2pj

d

da
[($aZ)(n)](a¼1) (12:186)

The computation yields:

@ ¼ � 1

2pj
n
d

dn
þ r þ 1

� �

(12:187)

The operator @ is a self-adjoint operator and the unitary repre-
sentation $a is recovered from @ by exponentiation:y

$a ¼ e�2pja@ (12:188)

where the exponential of the operator is defined formally by the
infinite series:

e�2pja@ ¼
X

1

n¼0

(�1)n
(2pja@)n

n
(12:189)

* Such families of functions which do not belong to the Hilbert space under
consideration but are treated like bases by physicists are called improper

bases. Their use can be rigorously justified.
y This is know as Stone’s theorem.
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Here, we only need to find the eigenfunctions of @, i.e., the
solutions of the differential equation:

@Z(n) ¼ bZ(n) (12:190)

with b real.
The solution is, up to an arbitrary factor:

Eb(n) ¼ n�2pj@�r�1 (12:191)

As ensured by the construction, any member of this family of
functions Eb is just multiplied by a phase when a scaling is
performed:

$a: Eb(n) ! a�2pjbEb(n) (12:192)

Moreover, the family {Eb} is orthonormal and complete as will
now be shown. The orthonormality is obtained by setting v¼ e�x

in the expression:

(Eb,Eb0 ) ¼
ð1

0

n�2pj(b�b0)�1dn (12:193)

which becomes

(Eb, Eb0 ) ¼
ð1

�1

e2pj(b�b0)xdx (12:194)

The result is

(Eb,Eb0 ) ¼ d(b� b0) (12:195)

To show completeness, we compute:

ð1

�1

Eb(n)Eb* (n
0)db �

ð1

�1

e�2pjb ln (n n0= )(nn0)�r�1db (12:196)

¼ (nn0)�r�1d( ln (n)� ln (n0)) (12:197)

and, using the rule of calculus with delta functions recalled in
Equation 12.52, we obtain:

ð1

�1

Eb(n)Eb* (n
0)db ¼ n�2r�1d(n� n0) (12:198)

Any function Z in L2(IRþ, v2rþ1dv) can thus be decomposed on
the basis Eb with coefficients }[Z](b) given by

}[Z](b) ¼ (Z,Eb) (12:199)

or explicitly:

}[Z](b) ¼
ð1

0

Z(n)n2pjbþrdn (12:200)

The set of coefficients, considered as a function of b, constitutes
what is called the Mellin transform of function Z. This definition
coincides with the usual one (12.1) provided we set s¼ rþ 1þ
2pjb. Thus,

}[Z](b) � }[Z; r þ 1þ 2pjb] (12:201)

But the viewpoint here is different. The value of Re(s)¼ rþ 1 is
fixed once and for all as it is forced upon us by the representation
of dilations occurring in the physical problem under study. Thus,
the situation is closer to the Fourier than to the Laplace case and
an L2 theory is developed naturally.

The property (Equation 12.198) of completeness for the basis
implies that the Mellin transformation (Equation 12.199) from
Z(v) to }[Z](b) is norm-preserving:

ð1

�1

j}[Z](b)j2db ¼ (Z,Z) (12:202)

A Parseval formula (also called unitarity property) follows imme-
diately:

ð1

�1

}[Z1](b)}* [Z2](b)db ¼ (Z1,Z2) (12:203)

where

}* [Z](b) � [}[Z](b)]* (12:204)

The decomposition formula of function Z(v) on basis
{Eb(v)} � v�2pjb�r�1 which can be obtained from Equations
12.198 and (12.200) constitutes the inversion formula for the
Mellin transformation:

Z(n) ¼
ð1

�1

}[Z](b)n�2pjb�r�1db (12:205)

By construction, the Mellin transformation performs the diago-
nalization of the operators @ and $a. Indeed, by definition
(Equation 12.199), the Mellin transform of the function (@Z)(v)
is given by

}[@Z](b) ¼ (@Z, Eb) (12:206)
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or, using the fact that @ is self-adjoint and that Eb is an eigen-
function of @:

}[@Z](b) ¼ b(Z, Eb) (12:207)

Thus,

}[@Z](b) ¼ b}[Z](b) (12:208)

In the same way, the Mellin transform of $aZ is computed using
the unitarity of $a:

}[$aZ](b) ¼ ($a Z,Eb)

¼ (Z,$a�1Eb)
(12:209)

Thus,

}[$aZ](b) ¼ a�2pjb}[Z](b) (12:210)

All these results can be summed up in the following proposition.

THEOREM 12.6

Let Z(v) be a function in L2 (IRþ, v2rþ1 dv). Its Mellin transform
defined by

}[Z](b) ¼
ð1

0

Z(n)n2pjbþrdn (12:211)

belongs to L2 (IR).
The inversion formula is given by

Z(n) ¼
ð1

�1

}[Z](b)n�2pjb�r�1db (12:212)

An analog of Parseval’s formula (unitarity) holds as

ð1

�1

}[Z1](b)}* [Z2](b)db ¼
ð1

0

Z1(n)Z2* (n)n
2rþ1dn (12:213)

For any function Z, the Mellin transform of the dilated function

($aZ)(n) � arþ1Z(an) (12:214)

is given by

}[$aZ](b) ¼ a�2pjb}[Z](b) (12:215)

12.3.1.2 Uncertainty Relations

As in the case of the Fourier transformation, there is a relation
between the spread of a function and the spread of its Mellin
transform. To find this relation, we will consider the first two
moments of the density functions jZ(v)j2 and j}[Zj(b)j2 con-
nected by Equation 12.213. The mean value of v with density
jZ(v)j2 is defined by the formula:

�n � (Z, nZ)

(Z,Z)
(12:216)

The mean value of v2 is defined by an analogous formula. The
mean square deviation s2

v of variable v can then be computed
according to

s2
n � (n� �n)2 (12:217)

In the same way, in the space of Mellin transforms, the mean
value of b is defined by

�b � (~Z,b~Z)

(~Z, ~Z)
(12:218)

where ~Z denotes the Mellin transform of Z. Using Parseval
formula (Equation 12.213) and property (Equation 12.208), one
can also rewrite this mean value in terms of the original function
Z(v) as

�b ¼ (Z,@Z)

(Z,Z)
(12:219)

where the operator @ has been defined by formula (Equation
12.187). At this point, it is convenient to introduce the following
notation for any operator 2 acting on Z:

2h i � (Z,2Z)

(Z,Z)
(12:220)

and to rewrite Equation 12.219 as

�b ¼ @h i (12:221)

The mean square deviation s2
b of variable b can also be expressed

in terms of the operator @ according to

s2
b ¼ (@� �b)2

� �

(12:222)

A simple way to obtain a lower bound on the product sbsv is to
introduce the operator X defined by

X � @� �bþ jl(n� �n) (12:223)
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where l is a real parameter. The obvious requirement that the
norm of XZ(v) must be positive or zero whatever the value of l is
expressed by the inequality:

kXZk2¼ (Z,X*XZ) � 0 (12:224)

where X* denotes the adjoint of X. This constraint implies the
positivity of the expression:

(@� �bþ jl(n� �n))(@� �b� jl(n� �n))h i (12:225)

Developing and using relations (Equation 12.217) and (Equation
12.222), we obtain:

l2s2
n þ jl n@�@nh i þ s2

b � 0 (12:226)

The computation of v@�@v yields:

(n@�@n)Z(n) ¼ �1

2pj
n2

d

dn
� n

d

dn
n

� �

Z(n) (12:227)

¼ 1

2pj
nZ(n) (12:228)

With this result, condition (Equation 12.226) becomes

l2s2
n þ (l=2p)�nþ s2

b � 0 (12:229)

The left member is a quadratic expression of the parameter l. Its
positivity whatever the value of l means that the coefficients of
the expression verify:

snsb � �n 4p= (12:230)

The functions for which this product is minimal are such that
there is equality in Equation 12.224. Hence, they are solutions of
the equation:

[@� �b� jl(n� �n)]Z(n) ¼ 0 (12:231)

and are found to be

K(n) � e�2plnn2pl�n�r�1�2pj�b (12:232)

These functions, first introduced by Klauder,27 are the analogs of
Gaussians in Fourier theory.

12.3.1.3 Extension of the Mellin Transformation
to Distributions

The definition of the transformation has to be extended to
distributions to be able to treat generalized functions such as
Dirac’s which are currently used in electrical engineering. Section
12.2.1.3 can be read at this point for a general view of the possible
approaches. Here we only give a succinct definition that will

generally be sufficient and we show on explicit examples how
computations can be performed.

First, a test function 7 is constructed so as to contain the
functions v2pjbþr , v > 0,b 2 IR for a fixed value of r. Examples of
such spaces are the spaces 7(a1, a2) of Section 12.2.1.3 provided
a1, a2 are chosen verifying the inequality a1 < r þ 1 < a2.

7,8

Then the space of distributions 70 is defined as usual as a linear
space 70 of continuous functionals on 7. It can be shown that
the space 70 contains the distributions of bounded support on
the positive axis and, in particular, the Dirac distributions.

The Mellin transform of a distribution Z in a space 70 can
always be obtained as the result of the application of Z to the set
of test functions v2pjbþr ,b 2 IR, i.e., as

}[Z](b) � hZ, n2pjbþri (12:233)

With this extended definition, it is easily verified that relations
(Equation 12.208) and (Equation 12.215) still hold. One more
property that will be useful, especially for discretization, is rela-
tive to the effect of translations on the Mellin variable. Comput-
ing }[Z] for the value bþ c, c real, yields:

}[Z](bþ c) ¼ hZ, n2pj(bþc)þri
¼ hZn2pjc, n2pjbþri (12:234)

and the result

}[Z](bþ c) ¼ }[Zn2pjc](b) (12:235)

Example 12.14

The above formula (Equation 12.233) allows to compute the

Mellin transform of d(v�v0) by applying the usual definition of

the Dirac disribution:

hd(n� n0),fi ¼ f(n0) (12:236)

to the function f(v) ¼ v2pjbþr , thus giving

}[d(n� n0)](b) � hd(n� n0), n
2pjbþri ¼ n2pjbþr

0 (12:237)

Example 12.15 The Geometric Dirac Comb

In problems involving dilations, it is natural to introduce a

special form of the Dirac comb defined by

Dr
A(n) �

X

þ1

n¼�1
A�nrd(n� An)

�
X

þ1

n¼�1
Anrd(n� A�n) (12:238)
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where A is a positive number. The values of v which are picked

out by this distribution form a geometric progression of ratio

A. Moreover, the comb Dr
A is invariant in a dilation by an

integer power of A. Indeed, using definition (Equation

12.214), we have

$AD
r
A(n) � Arþ1Dr

A(An) (12:239)

¼
X1

n¼�1
A�(n�1)rd(n� An�1) (12:240)

¼ Dr
A(n) (12:241)

The distribution Dr
A will be referred to as the geometric Dirac

comb and is represented in Figure 12.3.

Distribution Dr
A does not belong to 70 and, hence, its

Mellin transform cannot be obtained by formula (Equation

12.233). However, the property of linearity of the Mellin trans-

formation and result (Equation 12.237) allow to write:

}[Dr
A](b) ¼

Xþ1

n¼�1
A2jpbn (12:242)

The right-hand side of Equation 12.242 is a Fourier series

which can be summed by Poission’s formula:

ln A
X1

n¼�1
e2jpnb ln A ¼

X1

n¼�1
d b� n

ln A

	 


(12:243)

This leads to

}[Dr
A](b) ¼

1

ln A

X

þ1

n¼�1
d b� n

ln A

	 


(12:244)

Thus, the Mellin transform of a geometric Dirac comb Dr
A on

IRþ is an arithmetic Dirac comb on IR (Figure 12.3).

12.3.1.4 Transformations of Products and Convolutions

The relations between product and convolution that are estab-
lished by a Fourier transformation have analogs here. Classical
convolution and usual product in the space of Mellin transforms
correspond respectively to a special invariant product and a

multiplicative convolution in the original space. The latter oper-
ations can also be defined directly by their transformation prop-
erties under a dilation as will now be explained.

Invariant product

The dilation-invariant product of the functions Z1 and Z2
which will be denoted by the symbol 8 is defined as

(Z1 
 Z2)(v) � vrþ1Z1(v)Z2(v) (12:245)

It is nothing but the usual product of the functions multiplied by
the (rþ 1)th power of the variable. Relation (Equation 12.245)
defines an internal law on the set of functions that is stable by
dilation since:

$a[Z1] 
$a[Z2] ¼ $a[Z1 
 Z2] (12:246)

where $a is the operation (Equation 12.180).
Now, we shall compute the Mellin transform of the product

Z1 
 Z2. According to definition (Equation 12.211), this is
given by

}[Z1 
 Z2](b) ¼
ð

þ1

0

vrþ1Z1(v)Z2(v)v
2jpbþrdv (12:247)

Replacing Z1 and Z2 by their inverse Mellin transforms given by
Equation 12.212 and using the orthogonality relation (Equation
12.195) to perform the v-integration, we obtain:

}[Z1
Z2](b)¼
ð

1

�1

db1

ð

1

�1

}[Z1](b1)}[Z2](b2)db2 d(b�b1�b2)

(12:248a)

¼
ð

1

�1

}[Z1](b1)}[Z2](b� b1) db1 (12:248b)

where we recognize the classical convolution of the Mellin
transforms.

0

Δ
r A

(v
)

[Δr
A](β)

0 βv

FIGURE 12.3 Geometrical dirac comb in IRþ-space and corresponding arithmetical Dirac comb in the Mellin space (case r¼�1=2).
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THEOREM 12.7

The Mellin transform of the invariant product (Equation 12.245)
of the two functions Z1 and Z2 is equal to the convolution of their
Mellin transforms:

}[Z1 
 Z2](b) ¼ (}[Z1]*}[Z2])(b) (12:249)

Multiplicative convolution: For a given function Z1 (resp Z2), the
usual convolution Z1*Z2 can be seen as the most general linear
operation commuting with translations that can be performed on
Z1 (resp Z2). By analogy, the multiplicative convolution of Z1 and
Z2 is defined as the most general linear operation on Z1 (resp Z2)
that commutes with dilations. More precisely, suppose that a
linear operate ! is defined in terms of a kernel function A(v,
v0) according to

![Z1](n) ¼
ðþ1

0

A(n, n0)Z1(n
0)dn0 (12:250)

Then the requirement that transformation $a applied either on
Z1 or ![Z1] yield the same results implies that:

arþ1![Z1](an) ¼ arþ1

ðþ1

0

A(n, n0)Z1(an
0)dn0 (12:251)

must be true for any function Z1. Comparing Equation 12.251 to
Equation 12.250, we thus obtain the following constraint on the
kernel A(v, v0):

A(n, n0) � aA(an, an0) (12:252)

valid for any a. For a¼ v0�1, we obtain the identity:

A(n, n0) � 1

n0
A

n

n0
, 1

	 


(12:253)

which shows that the operator ! can be expressed by using a
function of a single variable. Thus, any linear transformation
acting on function Z1 and commuting with dilations can be
written in the form:

ð

þ1

0

Z1(n
0)Z2

n

n0

	 
 dn0

n0
(12:254)

where Z2(v) is an arbitrary function.
It can be verified, by changing variables, that the above expres-

sion is symmetrical with respect to the two functions Z1 and Z2.
It defines the multiplicative convolution of these functions which
is usually denoted by Z1 � Z2:

Z1 � Z2 �
ð

þ1

0

Z1(n
0)Z2

n

n0

	 
 dn0

n0
(12:255)

On this definition, it can be observed that dilating one of the
factors Z1 or Z2 of the multiplicative convolution is equivalent to
dilating the result, i.e.,

$a[(Z1 � Z2)(n)] � [Z1 � ($aZ2)](n) (12:256)

� [($aZ1) � Z2](n) (12:257)

where $a is defined in Equation 12.214.
For applications, an essential property of the multiplicative

convolution is that it is converted into a classic product when a
Mellin transformation is performed.

}[Z1 � Z2](b) ¼ }[Z1](b)}[Z2](b) (12:258)

To prove this result, we write the definition of }[Z1�Z2](b)
which is, according to Equations 12.211 and 12.255:

}[Z1 � Z2](b) ¼
ð

1

0

n2p=bþrZ1(n
0)Z2

n

n0

	 
 dn0

n0
dn (12:259)

The change of variables from v to x¼ v=v0 yields the result.

THEOREM 12.8

The Mellin transform of the multiplicative convolution (Equa-
tion 12.255) of functions Z1 and Z2 is equal to the product of
their Mellin transforms:

}[Z1 � Z2](b) ¼ }[Z1](b)}[Z2](b) (12:260)

Remark

It can be easily verified that the above theorems remain true if
Z1, Z2 are distributions provided the composition laws involved
in the formulas may be applied.

12.3.2 Discretization and Fast Computation
of the Transform

Discretization of the Mellin transform (Equation 12.211) is per-
formed along the same lines as discretization of the Fourier
transform. It concerns signals with support practically limited,
both in v-space and in b-space. The result is a discrete formula
giving a linear relation between N geometrically spaced samples
of Z(v) and N arithmetically spaced samples of }[Z](b).24,25,28

The fast computation of this discretized transform involves
the same algorithms as used in the fast Fourier transformation
(FFT).
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Before proceeding to the discretization itself, we introduce the
special notions of sampling and periodizing that will be applied
to the function Z(v).

12.3.2.1 Sampling in Original and in Mellin Variables

Sampling and periodizing are operations that are well defined in
the Mellin space of functions ~Z(b) and can be expressed in terms
of Dirac combs. We shall show that the corresponding operations
in the space of original functions Z(v) involve the geometrical
Dirac combs introduced in Section 12.3.1.3.

12.3.2.1.1 Arithmetic Sampling in Mellin Space

Given a function M(b) � }[Z](b), the arithmetically sampled
function Ms(b) with sample interval 1=ln Q,Q real, is usually
defined by

Ms(b) �
1

ln Q

Xþ1

n¼�1
}[Z](b) d b� n

ln Q

� �

(12:261)

Remark that besides sampling, this definition contains a factor
1=lnQ that is a matter of convenience.

To compute the inverse Mellin transform of this function
Ms(b), we remark that, due to relation (Equation 12.244), it can
also be written as a product of Mellin transform in the form:

Ms(b) ¼ }[Z](b)}[Dr
Q](b) (12:262)

where Dr
Q is the geometric Dirac comb (Equation 12.238). Apply-

ing now theorem 12.8, we write MS as

Ms(b) ¼ }[Z � Dr
Q](b) (12:263)

This relation implies that the inverse Mellin transform of the
impulse function MS(b) is the function ZD(v) given by

ZD(v) � (Z _ Dr
Q)(v) (12:264)

The definition of ZD can be cast into a more explicit form by
using the definition of the multiplicative convolution and the
expression (Equation 12.238) of Dr

Q:

(Z � Dr
Q)(v) ¼

ð

þ1

0

Z
v

v0

	 


X

þ1

n¼�1
Qnrd(v0 � Q�n)

" #

dv0

v0
(12:265)

The expression (Equation 12.264) finally becomes

ZD(v) ¼
X

þ1

n¼�1
Qn(rþ1)Z(Qnv) (12:266)

As seen on Figure 12.4, function ZD is constructed by juxtaposing
dilated replicas of Z. This operation will be referred to as dila-
tocyling and the function ZD itself as the dilatocycled form of
Z with ratio Q. In the special case where the support of function
Z is the interval [v1, v2] and the ratio Q verifies Q� [v2=v1], the
restriction of ZD to the support [v1, v2] is equal to the original
function Z.

Result

The Mellin transform MS(b) of the dilatocycled form ZD of a
signal Z is equal to a regular sampled form of the Mellin trans-
form of Z. Explicitly, we have

ZD(v) ¼ (Dr
Q _ Z)(v) (12:267)

where

Dr
Q(v) �

X

þ1

n¼�1
Qnrd(v � Q�n) (12:268)

and the result is

MS(b) �
1

lnQ

X

þ1

n¼�1
}[Z](b)d b� n

lnQ

� �

(12:269)

12.3.2.1.2 Geometric Sampling in the Original Space

Given a function Z(v), its geometrically sampled version is
defined as the function ZS equal to the invariant product (Equa-
tion 12.245) of Z with the geometric Dirac comb Dr

q, i.e., as

ZS � Z 
 Dr
q (12:270)

0 v1 v2

Z
D

(v
)

0

MS (β)

βv

FIGURE 12.4 Correspondence between the dilatocycled form of a function and its Mellin transform.
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or, using the expression (Equation 12.238):

ZS(v) ¼ Z(v)
Xþ1

n¼�1
q�nrd(v � qn)vrþ1 (12:271)

¼
Xþ1

n¼�1
qnZ(qn)d(v � qn) (12:272)

The result is a function made of impulses located at points
forming a geometric progression in v-space (Figure 12.5).

Let us compute the Mellin transform MP(b) of Zs(v). Using
definition (Equation 12.270) and property (Equation 12.249), we
can write:

MP(b) � }[ZS](b) (12:273)

¼ }[Z 
 Dr
q](b) (12:274)

¼ (}[Z]*}[Dr
q])(b) (12:275)

Thus, function MP(b) is equal to the convolution between }[Z]
and the transform }[Dr

q] which has been shown in Equation
12.244 to be a classical Dirac comb. As a consequences, it is
equal to the classical periodized form of }[Z](b) which is given
explicitly by

MP(b) � 1

ln q

Xþ1

n¼�1
}[Z] b� n

ln q

� �

(12:276)

If the function M(b) � }[Z](b) is equal to zero outside the
interval [b1, b2], then to avoid aliasing, the period l=ln q must be
chosen such that:

1

ln q
� b2 � b1 (12:277)

In that case, the functions MP(b) and (1=ln q)M(b) coincide on
the interval [b1, b2].

Result

The geometrically sampled form of Z(v) defined by

ZS(v) �
X

þ1

n¼�1
qnZ(qn)d(v � qn) (12:278)

is connected by Mellin’s correspondence to the periodized form
of }[Z](b) given by

MP(b) ¼ 1

ln q

X

1

n¼�1
}[Z] b� n

ln q

� �

(12:279)

12.3.2.2 The Discrete Mellin Transform

Let Z(v) be a function with Mellin transform M(b) and suppose
that these functions can be approximated by their restriction to
the intervals [v1, v2] and [b1, b2], respectively, (see Figure 12.6a
and b). For such functions, it is possible to write down a dis-
cretized form of the transform which is very similar to what is
done for the Fourier transformation. One may obtain the explicit
formulas by performing the following steps:

Dilatocylce function Z(v) with ratio Q. This operation leads to the
function ZD defined by Equation 12.267. To avoid aliasing, the
real number Q must be chosen such that:

Q � v2

v1
(12:280)

The Mellin transform of ZD is the sampled function MS defined
by Equation 12.269 is terms of }[Z](b) � M(b) (Figure 12.6d).

Periodize MS(b) with a period 1=ln q. This is performed by rule
(Equation 12.279) and yields a function MP

S (b) given by

MP
S (b) ¼

1

ln q

X

1

n¼�1
MS b� n

ln q

� �

(12:281)

To avoid aliasing in b-space, the period must be chosen greater
than the approximate support of }[Z](b) and this leads to the
condition:

1

ln q
� b2 � b1 (12:282)

The inverse Mellin transform of MP
S is the geometrically sampled

form of ZD (Figure 12.6e) given, according to Equation 12.278, by

ZD
S (v) ¼

X

1

n¼�1
qnZD(qn)d(v � qn) (12:283)

Z
(v

)

MP(β)

0

1/ln q

β0 v1 v2 v

FIGURE 12.5 Correspondence between the geometrically sampled function and its Mellin transform.
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The use of Equation 12.269 allows to rewrite definition (Equation
12.281) as

MP
S (b) ¼

1

ln q ln Q

X1

n, p¼�1
M

p

ln Q

� �

d b� n

ln q
� p

ln Q

� �

(12:284)

We now impose that the real numbers q and Q be connected by
the relation:

Q ¼ qN ,N positive integer (12:285)

This ensures that the function MP
S defined by Equation 12.281 is

of periodic impulse type which can be written as

MP
S (b) ¼

1

ln q ln Q

X

1

n, p¼�1
M

p

N ln q

� �

d b� nN þ p

N ln q

� �

(12:286)

or, changing the p-index to k � pþ nN:

MP
S (b) ¼

1

ln q ln Q

X

1

n, k¼�1
M

k

N ln q
� n

ln q

� �

d b� k

N ln q

� �

(12:287)

Thus, recalling definition (Equation 12.279)

MP
S (b) ¼

1

ln Q

X

1

k¼�1
MP k

ln Q

� �

d b� k

ln Q

� �

(12:288)

Connect the v and b samples. This is done by writing explicitly
that MP

S as given by Equation 12.288 is the Mellin transform
(Equation 12.211) of ZD

S and computing:

MP
S (b) ¼

X

1

n¼�1
qn(rþ1)ZD(qn)e2jpnb ln q (12:289)

This formula shows that qn(rþ1) ZD(qn) for different values of n
are the Fourier series coefficients of the periodic function MP

S (b).
They are computed as

ZD(qn) ¼ q�n(rþ1) ln q

ð

1= ln q

0

1

ln Q

X

1

k¼�1
d b� k

ln Q

� �

�MP k

ln Q

� �

e�j2pnb ln q db

¼ q�n(rþ1)

N

X

KþN�1

k¼K

MP k

ln Q

� �

e�2jpkn=N

(12:290)
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M(β)
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0
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0
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FIGURE 12.6 Steps leading to the discrete Mellin transform. Continuous form of the function Z(v) (a) and its Mellin transform M(b)
(b). Dilatocycled function (c) and its Mellin transform (d). Correspondence between samples of a cycle (e) in v-space and samples of a period
(f) in b-space.
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where the summation is on these values of b lying inside the
interval [b1, b2]. The integer K is thus given by the integer part of
b1 ln Q.

Inversion of Equation 12.290 is performed using the classical
techniques of discrete Fourier transform (DFT). This leads to the
discrete Mellin transform formula:

MP m

ln Q

� �

¼
X

JþN�1

n¼J

qn(rþ1)ZD(qn)e2jpnm=N (12:291)

where the integer J is given by the integer part of ln v1=ln q. In
fact, since the definition of the periodized MP contains a factor
N=lnQ¼ 1=ln q, the true samples of M(b) are given by (lnQ=n)
MP(m=ln Q).

It is clear on formulas (Equation 12.290) and (Equation
12.291) that their implementation can be performed with a FFT
algorithm.

Choose the number of samples of handle. The number of
samples N is related to q and Q according to Equation 12.285 by

N ¼ ln Q

ln q
(12:292)

The conditions for nonaliasing given by Equations 12.280 and
(12.282) lead to the sampling condition:

N � (b2 � b1) ln
v2

v1

� �

(12:293)

which gives the minimum number of samples to consider in
terms of the spreads of Z(v) and }[Z](b). In practice, the spread
of the Mellin transform of a function is seldom known. However,
as we will see in the applications, there are methods to estimate it.

12.3.2.3 Interpolation Formula in v-Space

In the same way as the Fourier transformation is used to recon-
struct a band-limited function from its regularly spaced samples,
Mellin’s transformation allows to recover a function Z(v) with
limited spread in the Mellin space from its samples spaced
according to a geometric progression. If the Mellin transform
}[Z] has a bounded support [�b0=2, b0=2], it will be equal on
this interval to its periodized form with period 1=ln q¼b0. Thus,

}[Z](b) ¼
X

þ1

n¼�1
}[Z] b� n

ln q

� �

g
b

b0

� �

(12:294)

where the window function g is the characteristic function of the
[�1=2, 1=2]-interval.

The inverse Mellin transform of this product is the multiplica-
tive convolution of the two functions Z1 and Z2 defined as

Z1(v) ¼ ln q
X

þ1

n¼�1
qnZ(qn)d(v � qn) (12:295)

and

Z2(v) ¼
ð

1

�1

g
b

b0

� �

v�2jpb�r�1 db (12:296)

¼ v�r�1 sin (pb0 ln v)

p ln v
(12:297)

The multiplicative convolution between Z1 and Z2 takes the
following form:

Z(v)¼
ð

þ1

0

ln q
X

þ1

n¼�1
qnZ(qn)d(v0�qn)

v

v0

	 
�r�1 sin pb0 ln
v
v0

� �� �

p ln v
v0

� �

dv0

v0

(12:298)

which reduces to

Z(v) ¼ v�r�1
X

þ1

n¼�1
qn(rþ1)Z(qn)

sinp ln v
ln q

	 


� n
	 


p ln v
ln q

	 


� n
	 
 (12:299)

where the relation b0¼ 1=ln q has been used.
This is the interpolation formula of a function Z(v) from its

geometrically spaced samples Z(qn).

12.3.3 Practical Use in Signal Analysis

12.3.3.1 Preliminaries

As seen above, Mellin’s transformation is essential in problems
involving dilations. Thus, it is not surprising that it has come to
play a dominant role in the development of analytical studies of
wideband signals. In fact, expressions involving dilations arise in
signal theory any time the approximation of small relative band-
width is not appropriate. Recent examples of the use of the
Mellin transform in this context can be found in time-frequency
analysis where it has contributed to the introduction of several
classes of distributions.29–36 This fast growing field cannot be
explored here but an illustration of the essential role played by
Mellin’s transformation in the analysis of wide-band signals will
be given in Section 12.3.3.2 where Cramer–Rao bound for velo-
city estimation is derived.37

Numerical computation of Mellin’s transform has been under-
taken in various domains such as signal analysis,38,39 optical
image processing,40 or pattern recognition.41–43 In the past, how-
ever, all these applications have been restricted by the difficulty of
assessing the validity of the results, due to the lack of definite
sampling rules. Such a limitation does not exist any more as we
will show in Section 12.3.3.3 by deriving a sampling theorem and
a practical way to use it. The technique will be applied in Sections
12.3.3.4 and 12.3.3.5 to the computation of a wavelet coefficient
and of an affine time-frequency distribution.47–49
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12.3.3.2 Computation of Cramer–Rao Bounds
for Velocity Estimation in Radar Theory37

In a classical radar or sonar experiment, a real signal is emitted and
its echo is processed in order to find the position and velocity of
the target. In simple situations, the received signal will differ from
the original one only by a time shift and a Doppler compression.
In fact, the signal will also undergo an attenuation and a phase
shift; moreover, the received signal will be embedded in noise.

The usual procedure, which is adapted to narrow-band signals,
is to represent the Doppler effect by a frequency shift.44 This
approximation will not be made here so that the results will be
valid whatever the extent of the frequency band. Describing the
relevant signals by their positive frequency parts (so-called ana-
lytic signals), we can write the expression of the received signal
x(t) in terms of the emitted signal z(t) and noise n(t) as

xa0 (t) ¼ a
0�1 2=
1 A0z(a

0�1
1 t � a02)e

jf þ n(t) (12:300)

where A0 and f characterize the unknown changes in amplitude
and phase and the vector a0 � (a01, a

0
2) represents the unknown

parameters to be estimated. The parameter a02 is the delay and a
0
1 is

the Doppler compression given in terms of the target velocity v by

a01 ¼
cþ v

c� v
, c velocity of light (12:301)

The noise n(t) is supposed to be a zero mean Gaussian white
noise with variance equal to s2. Relation (Equation 12.300) can
be written in terms of the Fourier transforms Z, X, N of z, x, n
(defined by Equation 12.19):

Xa0 (f ) ¼ a
01 2=
1 A0e

�jpfa01a
0
2Z(a01f )e

jf þ N(f ) (12:302)

The signal Z( f) is supposed normalized so that:

kZ(f )k2�
ð1

0

jZ(f )j2df ¼ 1 (12:303)

Hence, the delayed and compressed signal will also be of
norm equal to one. Remark that here we work in the space
L2(IRþ, f 2rþ1 df) with r¼�1=2 (cf Section 12.3.1.1).

We will consider the maximum-likelihood estimates âi of the
parameters a0i. They are obtained by maximizing the likelihood
function L(a0, a) which is given in the present context by

L(a0, a) � 1

2s2
jA(a0, a)j2 (12:304)

where

A(a0, a) �
ðþ1

0

Xa0 (f )Z* (a1f )e
2jpa1a2f df (12:305)

is the broad-band ambiguity function.45

The efficiency of an estimator âi is measured by its variance s2
ij

defined by

s2
ij � E[(âi � ai)(âj � aj)] (12:306)

where the mean value operation E includes an average on noise.
For an unbiased estimator (E(âi) ¼ ai), this variance satisfies

the Cramer–Rao inequality46 given by

s2
ij � (J�1)ij (12:307)

where the matrix J, the so-called Fisher information matrix, is
defined by

Jij ¼ �E
q2L

qaiqaj

� �� �

ij

(12:308)

with the partial derivatives evaluated at the true values of the
parameters. The minimum value of the variance given by

(s0
ij)

2 ¼ (J�1)ij (12:309)

is called the Cramer–Rao bound and is attained in the case of an
efficient estimator such as the maximum-likelihood one.

The determination of the matrix (Equation 12.308) by classical
methods is intricate and does not lead to an easily interpretable
result. On the contrary, we shall see how the use of Mellin’s
transformation allows a direct computation and leads to a phys-
ical interpretation of the matrix coefficients.

The computation of J is done in the vicinity of the value a¼ a0

which maximizes the likelihood function L and, without loss of
generality, all partial derivatives will be evaluated at the point
a1¼ 1, a2¼ 0. Using Parseval’s formula (Equation 12.213), we
can write the ambiguity function A(a0, a) as

A(a0, a) ¼
ð

þ1

�1

}[X](b)}* [Za2 ](b)a
2jpb
1 db (12:310)

with

Za2 � Z(f )e�2jpa2f (12:311)

On this form, the partial derivatives with respect to a are easily
computed and the result is

qA

qa1

� �

¼ 2jp

ð

þ1

�1

b}[X](b)}* [Z](b)db (12:312)

qA

qa2

� �

¼ 2jp

ð

þ1

�1

}[X](b)}* [fZ(f )](b)db (12:313)

¼ 2jp

ð

þ1

0

fX(f )Z* (f )df (12:314)
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q2A

qa1qa2

� �

¼�4p2

ðþ1

�1

b}[X](b)}*[fZ(f )](b)db (12:315)

q2A

qa21

� �

¼2jp

ðþ1

�1

b(2jpb�1)}[X](b)}*[Z](b)db (12:316)

q2A

qa22

� �

¼ �4p2

ðþ1

0

f 2X(f )Z* (f )df (12:317)

where the curly brackets mean that the functions are evaluated
for the values a1¼ a01¼ 1, a2¼ a02¼ 0.

The corresponding Fisher information matrix can now be
computed. To obtain J11, we substitute the expression (Equation
12.304) in definition (Equation 12.308) and use (Equation
12.312) and (Equation 12.316):

J11 ¼ � 1

s2
E Re A*

q2A

qa21

� �

þ qA

qa1

















2
( ) !" #

(12:318)

¼ � 1

s2
Re

ð

þ1

�1

ð

þ1

�1

E[}[X](b1)}* [X](b2)]}* [Z](b1)}[Z](b2)

� [2jpb1(2jpb1 � 1)þ 4p2b1b2]db1db2 (12:319)

The properties of the zero mean white Gaussian noise n(t) lead to
the following expression for the covariance of the Mellin trans-
form of X:

E[}[X](b1)}* [X](b2)] ¼ A2
0}[Z](b1)}* [Z](b2)þ s2d(b1 � b2)

(12:320)

Substituting this relation in Equation 12.319, we obtain the
expression of the J11 coefficient:

J11 ¼
4p2A2

0

s2
s2
b (12:321)

where the variance s2
b of parameter b defined in Equation 12.217

is given explicitly by

s2
b ¼

ð

þ1

�1

(b� �b)2j}[Z](b)j2db,

�b ¼
ð

þ1

�1

bj}[Z](b)j2db

(12:322)

The computation of the J22 coefficient is performed in the same
way and leads to

J22 ¼
4p2A2

0

s2
s2
f (12:323)

where

s2
f ¼

ð

þ1

�1

( f � �f )2jZ(f )j2df , �f ¼
ð

þ1

�1

f jZ( f )j2df (12:324)

The computation of the symmetrical coefficient J12¼ J21 is a little
more involved. Writing the definition in the form:

J12 ¼ � 1

s2
E Re A*

q2A

qa1qa2

� �

þ qA*

qa1

qA

qa2

� �� �� �

(12:325)

and using relations (Equations 12.312 through 12.315), (Equa-
tion 12.320), we get

J12 ¼
4p2A2

0

s2
Re

ð

þ1

�1

b1}* [fZ(f )](b1)}[Z](b1)db1

2

4

�
ð

þ1

�1

}* [fZ(f )](b1)}[Z](b1)db1

ð

þ1

�1

b2j}[Z](b2)j2db2

3

5

(12:326)

This expression is then transformed to the frequency domain
using the Parseval formula (Equation 12.213) and the property
(Equation 12.208) of the operator @ defined by Equation 12.187
(with r¼�1=2). The result is

J12 ¼
4p2A2

0

s2
Re

ð

þ1

0

@Z(f )fZ*(f )df � bf

2

4

3

5

¼ 4p2A2
0

s2
[M � bf ] (12:327)

where M is the broad-band modulation index defined by

M � 1

2p
Im

ð

þ1

0

f 2
dZ*

df
Z(f ) df (12:328)

The inversion of the matrix J just obtained leads according to
Equation 12.307 to the explicit expression of the Cramer–Rao
bound for the case of delay and velocity estimation with broad-
band signals:

s0
ij

	 
2
¼ s2

4p2A2
0 s2

f s
2
b � (M � bf )

	 
2

s2
f bf �M

bf �M s2
b

 !

(12:329)
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Relation (Equation 12.301) allows to deduce from this result the
minimum variance of the velocity estimator:

E (v � v̂)2
� �

¼ c2

4
E (a1 � â1)

2
� �

(12:330)

¼ c2

4
s0
11

� �2
(12:331)

Comparing these results to the narrow-band case, we see that the
delay resolution measured by s0

22 is still related to the spread of
the signal in frequency:

s0
22

� �2 � s2

4p2A2
0

1

s2
f

(12:332)

while the velocity resolution now depends in an essential way on
the spread in Mellin’s space:

E[(v � v̂)2] � c2s2

16p2A2
0s

2
b

(12:333)

Thus, for wide-band signals, it is not the duration of the signal
that determines the velocity resolution, but the spread in the dual
Mellin variable measured by the variance s2

b.
As an illustrative example, consider the hyperbolic signal

defined by

Z( f ) ¼ f �2jpb0�1=2 (12:334)

Its Mellin transform which is equal to d(b�b0) can be consid-
ered to have zero spread in b. Hence, such a signal cannot be of
any help if seeking a finite velocity resolution.

These remarks can be developed and applied to the construc-
tion of radar codes with given characteristics in the variables
f and b.37

The above results can be seen as a generalization to arbitrary
signals of a classical procedure since, in the limit of narrow band,
the variance of the velocity estimator can be shown to tend
toward its usual expression:

E[(v � v̂)2] ¼ c2s2

16p2A2
0f

2
0

s2
f

s2
ts

2
f � (m� f0t0)

2 (12:335)

where the modulation index m is given by

m ¼ 1

2p
Im

ð

þ1

�1

tz*(t)
dz

dt
dt ¼ 1

2p
Im

ð

þ1

�1

tZ(f )
dZ*

df
df (12:336)

and the variance s2
t by

s2
t ¼

ð

1

�1

(t ��t)2jz(t)j2dt, �t ¼
ð

1

�1

tjz(t)j2dt (12:337)

12.3.3.3 Interpretation of the Dual Mellin Variable
in Relation to Time and Frequency

Consider a signal defined by a function of time z(t) such that its
Fourier transform Z( f) has only positive frequencies (so-called
analytic signal). In that case a Mellin transformation can be
applied to Z( f) and yields a function }[Z](b). But while vari-
ables t and f have a well defined physical meaning as time and
frequency, the interpretation of variable b and its relation to
physical parameters of the signal has still to be worked out.
This will be done in the present paragraph, thus allowing a
formulation of the sampling condition (Equation 12.293) for
the Mellin transform in terms of the time and frequency spreads
of the signal.

As seen in Section 12.3.1.1, the Mellin transform }[Z](b)
gives the coefficients of the decomposition of Z on the basis
{Eb( f)}:

Z( f ) ¼
ð

1

�1

}[Z](b)Eb(f )db (12:338)

The elementary parts:

Eb( f ) ¼ f �2pjb�r�1 � f �r�1ejf(f ) (12:339)

can be considered as filters with group delay given by

T(f ) � � 1

2p

df(f )

df

¼ b

f
(12:340)

As seen on this expression, the variable b has no dimension and
labels hyperbolas in a time-frequency half-plane f> 0. Hyper-
bolas displaced in time, corresponding to a group delay law
t¼ jþb=f are obtained by time shifting the filters Eb to Ej

b ( f)
defined by

Ej
b(f ) ¼ e�2pjjf f�2pjb�r�1 (12:341)

A more precise characterization of signals (Equation 12.339) and,
hence, of variable b is obtained from a study of a particular affine
time-frequency distribution which is to dilations what Wigner–
Ville’s is to frequency translations. We give only the practical
results of the study, referring the interested reader to the litera-
ture.28–31 The explicit form of the distribution is

P0(t, f )¼ f 2rþ2

ð

þ1

�1

(l(u)l(�u))rþ1 Z(f l(u))Z*(f l(�u)) e2 jpftu du

(12:342)
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where function l is given by

l(u) ¼ ueu=2

2 sinh u=2
(12:343)

This distribution realizes an exact localization of hyperbolic
signals defined by Equation 12.341 on hyperbolas of the time-
frequency half-plane as follows:

Z(f ) ¼ e�2pjjf f �r�1 f �2jpb ! P0(t, f ) ¼ f �1d(t � j� b=f )

(12:344)

It can be shown that the affine time-frequency distribution
(Equation 12.342) has the so-called tomographic property29–31

which reads:

ðþ1

�1

dt

ðþ1

0

P0(t, f )d(t � j� b=f )f �1 df ¼ j}[Z](b)j2 (12:345)

Formulas (Equation 12.344) and (Equation 12.345) are basic for
the interpretation of the b variable. It can be shown that for a
signal z(t) $ Z( f) having a duration T¼ t2� t1 and a bandwidth
B¼ f2� f1, distribution P0 has a support approximately localized
in a bounded region of the half-plane f> 0 (see Figure 12.7)
around the time j¼ (t1þ t2)=2 and the mean frequency f0¼
( f1þ f2)=2. Writing that the hyperbolas at the limits of this region
have the equation:

t ¼ j� b0=f (12:346)

and pass through the points of coordinates j�T=2, f0þB=2, we
find:

b0 ¼ (f0 þ B=2)(T=2) (12:347)

The support [b1, b2] of the Mellin transform }[Z](b) thus can
be written in terms of B and T as

b2 � b1 ¼ 2b0 (12:348)

The condition (Equation 12.293) to avoid aliasing when perform-
ing a discrete Mellin transform can now be written in terms of

the time-bandwidth product BT and the relative bandwidth R

defined by

R � B

f0
(12:349)

The result giving the minimum number of samples to treat is

N � BT
1

2
þ 1

R

� �

ln
1þ R=2

1� R=2
(12:350)

12.3.3.4 The Mellin Transform and the Wavelet
Transform47,48

The Mellin transform is well suited to the computation of expres-
sions containing dilated functions and, in particular, of scalar
products such as

(Z1,$aZ2) ¼ arþ1

ð

þ1

0

Z1(f )Z*2 (af )f
2rþ1 df (12:351)

Because of the dilation parameter, a numerical computation of
these functions of a by standard techniques (such asDFT) requires
the use of oversampling and interpolation. By contrast, the Mellin
transform allows a direct and more efficient treatment. The
method will be explained on the example of the wavelet transform
for one-dimensional signals. But it can also be used in more
general situations such as those encountered in radar imaging.47,48

Let s(t) be a real signal with Fourier transform S( f) defined by

S(f ) ¼
ð

1

�1

s(t)e�2jpf dt (12:352)

The reality of s implies that:

S(�f ) ¼ S*(f ) (12:353)

Given a real function f(t) (the so-called mother wavelet), one
defines the continuous wavelet transform of signal s(t) as a
function C(a, b) of two variables a> 0, b real given by

C(a, b) ¼ 1
ffiffiffi

a
p

ð

þ1

�1

z(t)f*
t � b

a

� �

dt (12:354)

Transposed to the frequency domain by a Fourier transformation
and the use of property (Equation 12.353), the definition
becomes:

C(a, b) ¼ 2Re
ffiffiffi

a
p ð

þ1

0

Z(f ) F*(af ) e2jpfb df

8

<

:

9

=

;

(12:355)

where F denotes the Fourier transforms of f.

Hyperbolas: t = ξ ± β0/f

f
P (t, f )ξ

t

FIGURE 12.7 Time-frequency localization of a signal between hyper-
bolas with equations t¼ jþb0=f and t¼ j�b0=f.
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If we define the function Zb ( f) by

Zb(f ) � Z(f )e2jpbf (12:356)

the scale invariance property (Equation 12.215) of the Mellin
transform with r¼�1=2 and the unitarity property (Equation
12.213) allow to write Equation 12.355 in Mellin’s space as

C(a, b) ¼ 2Re

ðþ1

�1

}[Zb(b)}*[F](b)a2jpb db

8

<

:

9

=

;
(12:357)

In this form, there are no more dilations and the computation of
the wavelet coefficient reduces to Fourier and Mellin transforms
which can all be performed using an FFT algorithm. First the
Mellin transform of the wavelet is computed once and for all.
Then, for each value of b, one computes the Mellin transform of
Zb and the inverse Fourier transform with respect to b of the
product}[Zb](b)}*[F](b). The complexity of this algorithm is
given by (2Mþ 1) FFT with 2N points if the wavelet coefficients
are discretized in (N,M) points on the (a, b) variables. The signal
and the mother wavelet are supposed geometrically sampled with
the same geometric ratio q.

The same procedure can be applied to the computation of the
broad band ambiguity function.45 This function is used in prob-
lems of radar theory involving target detection and estimation of
its characteristics (range, velocity, angle, . . . ). It is defined for an
analytic signal z(t) with Fourier transform Z( f) by

X(a, b) ¼ 1
ffiffiffi

a
p

ðþ1

�1

z(t)z*
t

a
� b

	 


dt (12:358)

¼
ffiffiffi

a
p ð

þ1

�1

Z(f )Z*(af )e2jpabf df (12:359)

The parameters a and b are respectively called the Doppler
compression factor and the time shift.

12.3.3.5 Numerical Computation of Affine
Time–Frequency Distributions49

In this section, the Mellin transformation is applied to the fast
computation of the affine time-frequency distribution29–31 given by

P0(t,f )¼ f 2rþ2�q

ð

þ1

�1

(l(u)l(�u))rþ1Z(f l(u))Z*(f l(�u)) e2jpftu du

(12:360)

where the function l is defined by

l(u) ¼ ue
u
2

2 sinh
u

2

	 
 (12:361)

and where r and q are real numbers.

Setting

g ¼ ft and ~P0(g, f ) ¼ P0(t, f ) (12:362)

one can write Equation 12.360 as

f �r�1þq ~P0(g, f ) ¼
ð

þ1

�1

(l(u)l(�u))rþ1[f rþ1 Z(f l(u)) Z*

(f l(�u))]e2 jpgu du

(12:363)

To perform the Mellin transformation of this expression with
respect to f, we notice that the term in brackets represents the
invariant product of the two functions of f defined by Z( fl(u))
and Z*( fl(�u)). By relation (Equation 12.249), we know that the
Mellin transform of this product is equal to the convolution of
the functions}[Z( fl(u))] and}[Z*( fl(�u))]. Besides, the scal-
ing property (Equation 12.215) allows to write:

}[Z(fl(u))](b) ¼ l(u)�2jpb�r�1 }[Z](b) (12:364)

and

}[Z*(f l(�u))](b) ¼ l(�u)�2jpb�r�1 }*[Z](�b) (12:365)

where

}*[Z](�b) � [}[Z](�b)]* (12:366)

Introducing the notation:

X(b, u) � l(u)�2jpb }[Z](b) (12:367)

we can write the convolution between Equations 12.364 and
12.365 as

(l(u)l(�u))�r�1
ð

þ1

�1

X(b1, u)X* (b1�b,�u) db1 (12:368)

The Mellin transform of expression (Equation 12.363) is now
written as

}[f �r�1þq ~P0(g, f )](b) ¼
ð

þ1

�1

"

ð

þ1

�1

X(b1, u)X*

(b1 � b,�u) db1

#

e2jpgu du

(12:369)
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The cross-correlation inside brackets is computed in terms of the
Fourier transform of X(b, u) defined by

F(u, u) ¼
ðþ1

�1

X(b, u)e�2jpub db (12:370)

and Equation 12.369 becomes

}[f �r�1þq ~P0(g, f )](b) ¼
ðþ1

�1

ðþ1

�1

F(u, u)

F *(u, �u) e2jpub e2jpgu du du

(12:371)

Finally, inverting the Mellin transform by Equation 12.212, recal-
ling Equation 12.362 and taking into account the property of the
integrand in the change u ! �u, one obtains the following form
of the affine Wigner function P0:

P0(t, f ) ¼ 2Re f �q

ðþ1

0

F( ln f , u)F *( ln f , �u) e2jptfu du

8

<

:

9

=

;

(12:372)

where Re denotes the real part operation. In this form, the
numerical computation of P0 has been reduced to a Fourier
transform. The operations leading from Z to F are a Fourier
and a Mellin transform, both of which are performed using the
Fast Fourier Transform algorithm. The approximate complexity
of the whole algorithm for computing P0 can be expressed in
terms of the number of FFT performed. If the time-frequency

distribution P0(t, f) is characterized by (M, N) points, respect-
ively, in time and frequency, we have to deal with 2Mþ FFT of
2N points and N FFT of M points. The Figure 12.8 gives an
example of affine distribution computed by this method.

Appendix 12.A: Some Special Functions
Frequently Occurring
as Mellin Transforms

12.A.1 The Gamma Function
(See Also Chapter 1)

Definition: The gamma function G(s) is defined on the
complex half-plane Re(s)> 0 by the integral:

G(s) ¼
ð1

0

e�tts�1 dt (12:A:1)

Analytic continuation. The analytically continued gamma func-
tion is holomorphic in the whole plane except at the points
s¼�n, n¼ 0, 1, 2, . . . where it has a simple pole.

Residues at the poles

Re ss¼�n(G(s)) ¼
(�1)n

n!
(12:A:2)

Relation to the factorial

G(nþ 1) ¼ n! (12:A:3)
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FIGURE 12.8 Affine time-frequency representation of a hyperbolic signal.
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Functional relations

G(sþ 1) ¼ sG(s) (12:A:4)

G(s)G(1� s) ¼ p

sin (ps)
(12:A:5)

G
1

2

� �

¼
ffiffiffiffi

p
p

(12:A:6)

G(2s) ¼ p�1=222s�1 G(s)G(sþ 1=2) (12:A:7)

(Legendre’s duplication formula)

G(ms) ¼ mms�1=2(2p)(1�m)=2
Y

m�1

k¼0

G(sþ k=m), m ¼ 2, 3, . . .

(12:A:8)

(Gauss–Legendre multiplication formula5)

Stirling asymptotic formula

G(s)�
ffiffiffiffiffiffi

2p
p

ss�1=2 exp �s 1þ 1

12s
þO(s�2)

� �� �

s!1, jarg(s)j<p

(12:A:9)

12.A.2 The Beta Function

Definition:

B(x, y) �
ð

1

0

tx�1(1� t)y�1dt (12:A:10)

Relation to the gamma function

B(x, y) ¼ G(x)G(y)

G(x þ y)
(12:A:11)

12.A.3 The Psi Function (Logarithmic Derivative
of the Gamma Function)

Definition:

C(s) � d

ds
lnG(s) (12:A:12)

¼ �gþ
X

1

n¼0

1

nþ 1
� 1

sþ n

� �

(12:A:13)

Euler’s constant g, also called C, is defined by

g � �G0(1)=G(1) (12:A:14)

and has value g ffi 0:577 . . .

12.A.4 Riemann’s Zeta Function12,13

Definition:

z(z) �
X

1

n¼1

1

nz
, Re(z) > 1 (12:A:15)

Other forms of the definition, which are valid for all complex
values of z, have been written down. They coincide with Equation
12.A.15 for Re(z)> 1 and allow the continuation of z(z) as a
meromorphic function in the whole complex z-plane. The result-
ing function has only one pole, situated in z¼ 1; it is simple, with
residue equal to þ1. In addition, the z-function has simple zeros
at z¼�2n, n 6¼ 0. All other zeros are in the strip 0�Re(z)� 1.

Functional equation

p�z=2G(z=2)z(z) ¼ p1=2(z�1)G
1� z

2

� �

z(1� z) (12:A:16)

Other forms of this equation can be obtained by using the
properties of the Gamma function.

Asymptotic estimates. Let s � Re(z) and t � Im(z). The behavior
of z(z) when jtj ! 1 is such that:

jz(z)j < C(2)jtjm(s)þ2, 2> 0 (12:A:17)

where C(2) is a constant and m(s) is a function defined as
follows:

m(s) ¼ 0 s > 1

m(s) � 1� s

2
0 < s < 1

m(s) ¼ 1

2
� s s < 0

(12:A:18)

For s¼ 1=2, more precise estimates have been proven. In
particular:12

z(1=2þ it) ¼ O(jtj9=56þ2), 2> 0 (12:A:19)
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Appendix 12.B: Summary of Properties
of the Mellin
Transformation

Definition: The Mellin transformation of a function f(t),
0< t<1 is defined by

}jf ; sj �
ð1

0

f (t)ts�1 dt

and the result is a function holomorphic in the strip Sf of the
complex plane s.

When the real part Re(s) � rþ 1 of s is held fixed, the Mellin
transform is defined by

}[f ](b) � }[f ; r þ 1þ 2pjb]

In that case, it is an isomorphism between the space L2(IRþ,
t2rþ1 dt) of functions f(t) on (0, 1) equipped with the scalar
product:

(f , g) �
ð1

0

f (t)g*(t)t2rþ1 dt

and the space L2(IR) of functions }[ f](b).

Moreover, the scaled function defined by

$af (t) � arþ1f (at)

is transformed according to

}[$af ](b) ¼ a�j2pb}[f ](b)

Inversion formulas

f (t) ¼ (1=2pj)

ð
aþj1

a�j1

}[f ; s]t�s ds

f (t) ¼
ðþ1

�1

}[f ](b)t�2jpb�r�1 db

Parseval formulas

ð1

0

f (t)g(t)dt ¼ 1

2pj

ð
cþj1

c�j1

}[f ; s]}[g; 1� s]ds

ð1

0

f (t)g*(t)t2rþ1 dt ¼
ð1

1

}[f ](b)}*[g](b)db

Other basic formulas involving the Mellin transforms}[ f; s] and
}[ f](b) are recalled in Tables 12.2 and 12.3.

TABLE 12.2 Properties of the Mellin Transform in s Variable (Definition (12.1))

Original Function Mellin Transform

f(t), t> 0 }[f ; s] �
Ð1

0
f (t)ts�1dt Strip of Holomorphy

f(t) F(s) Sf

f(at), a> 0 a�s F(s) Sf

f(ta), a real 6¼ 0 jaj�1 F(a�1 s) a�1 s2 Sf

(ln t)k f(t)
dk

dsk
F(s) s 2 Sf

(t)z f(t), z complex F(sþ z) sþ z 2 Sf
dk

dtk
f (t) (�1)k (s� k)k F(s� k) s� k 2 Sf

(s� k)k � (s� k)(s� kþ 1) . . . (s� 1)

t
d

dt

� �k

f (t) (�1)k sk F(s) s 2 Sf

dk

dtk
tkf (t) (�1)k (s� k)k F(s) s 2 Sf

tk
dk

dtk
f (t) (�1)k(s)k F(s) s 2 Sf

(s)k � s(sþ 1) . . . (sþ k� 1)
Ð1
t f (x) dx s�1 F(sþ 1)
Ð t

0 f (x) dx �s�1 F(sþ 1)
Ð1
0 f1(t) f2(t=t)(dt=t) F1(s) F2(s) s 2 Sf1 \ Sf2

Note: Here k is a positive integer.
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Multiplicative convolution. It is defined by

(f � g)(t) �
ð1

0

f (t)f (t=t)(dt=t)

f � d(t � 1) ¼ f

t
d

dt

� �k

(f � g) ¼ t
d

dt

� �k

f

" #

� g

¼ f � t
d

dt

� �k

g

" #

( ln t)(f _ g) ¼ [( ln t)f ] _ g þ f _ [( ln t)g]

d(t � a) _ f ¼ a�1f (a�1t)

d(t � p) _ d(t � p0) ¼ d(t � pp0), p, p0 > 0

d(k)(t � 1) _ f ¼ (d=dt)k(tkf )

Invariant product. It is defined by

(f 
 g)(t) � trþ1f (t) g(t)

$a[f ] 
$a[g] ¼ $a[f 
 g]

}[f 
 g](b) ¼ (}[f ]*}[g])(b)

Useful formulas for discretization. In the following, the variable n
goes from 0 to 1 and Z(n) is a (possibly generalized) function.

Geometric Dirac comb:

Dr
Q(n) �

X

þ1

n¼�1
Q�nr d(n� Qn), Q > 0

Dilatocycled form of function Z:

ZD(n) �
X

þ1

n¼�1
Qn(rþ1) Z(Qnn), Q > 0

ZD(n) Dr
Q � Z

h i

(n)

}[ZD](b) ¼ 1

lnQ

X

þ1

n¼�1
}[Z](b)d b� n

lnQ

� �

Geometrically sampled form of function Z:

Zs(n) �
X

þ1

n¼�1
qn Z(qn) d(n� qn)

Zs(v) ¼ Z 
 Dr
q

	 


(v)

}[ZS](b) ¼
1

ln q

X

þ1

n¼�1
}[Z] b� n

ln q

� �

Discrete Mellin transform pair.

MP m

N ln q

� �

¼
X

MþN�1

n¼M

qn(rþ1) ZD(qn)e2jpnm=N

ZD(qn) ¼ q�n(rþ1)

N

X

KþN�1

k¼K

MP k

N ln q

� �

e2jpkn=N

where N is the number of samples. In practice, the choice of the
ratio q is facilitated by the time-frequency interpretation of the
signal Z(n) (see Section 12.3.3.3).
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13.1 Introduction

Mixed time–frequency representations are transformations of
time-varying signals that depict how the spectral content of a
signal is changing with time. They are multidimensional, time-
varying extensions to conventional Fourier transform spectral
analysis of signals and systems. Most time–frequency representa-
tions (TFRs) transform a one-dimensional signal, x(t), into a two-
dimensional function of time and frequency, Tx(t, f). These trans-
formations represent a surface above the time–frequency ‘‘plane’’
which gives an indication as to which spectral components of the
signal are present at a given time and their relative amplitude.
They are conceptually similar to a musical score with time run-
ning along one axis and frequency along the other.37,50 Just as the
location and the shape of the notes on a musical score represent
the pitch, time of occurrence, and duration of each sound in a
piece of music, so too does the location of the local maximum and
the shape of the surface of the TFR give an indication as to the
frequency content, onset, and duration of various dominant sig-
nal components. Such representations are useful for the analysis,
modification, synthesis, and detection of a variety of nonstation-
ary signals with time-varying spectral content.1–4,30,91

The purpose of this chapter is to give an overview of many of
the linear and quadratic time–frequency representations that
have been developed over the past 60 years. The chapter first

reviews various one-dimensional spectral representations, such
as the Fourier transform, the instantaneous frequency, and the
group delay. A brief discussion follows of a few commonly used
TFRs such as the short-time Fourier transform (STFT), the
Wigner distribution (WD), the Altes Q distribution, and the
Bertrand unitary P0 distribution. These TFRs will be used as
examples in the subsequent section, which describes many useful
properties that an ideal TFR should satisfy. Unfortunately, no
one TFR exists which satisfies all of these desirable properties.
The relative merits of these TFRs can be understood by grouping
them into ‘‘classes’’ of TFRs that share two or more properties.
The remainder of the chapter is devoted to defining and under-
standing these classes. Important insights into these classes of
TFRs can be gained by examining a set of five two-dimensional
kernel functions that are unique to each TFR. These kernels
greatly simplify the analysis and application of TFRs.

Other tutorials that discuss properties of TFRs satisfy or that
give references to a variety of interesting applications can be
found in Refs. [1–6,8,10,12,13,16–18,20,22–30,37–39,41–43,45,
47,49,54,56,60,61,63–69,71–75,81,84,86,87–92,97,99,100,103,104,
109–111,113–119,121]. Although this chapter deals primarily
with the TFRs of continuous-time signals and systems, issues
related to discrete-time implementation algorithms for TFRs are
discussed in Refs. [12,18,21,24,34,38,45,47–49,60,78,85,93–95,
102–104,106,107].
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13.2 One-Dimensional Spectral
Representations

13.2.1 Fourier Transform

Conventional spectral analysis of a signal has been based
on Fourier transform techniques. The Fourier transform of a
signal x(t),*

X(f ) ¼
ð

x(t)e�j2p ftdt, (13:1)

is a useful tool for analyzing the spectral content of a stationary
signal and for transforming the difficult operations of convolu-
tion, differentiation, and integration into relatively simple alge-
braic operations in the Fourier dual domain.32,33,101,105 The
inverse Fourier transform or synthesis equation

x(t) ¼
ð

X( f )e j2p ftdf , (13:2)

represents the signal x(t) as a linear combination of infinite
duration complex sinusoids, e j2pft. Throughout this chapter, the
double arrow will be used to denote a Fourier transform pair:

x(t)$ X(f ):

A variety of useful Fourier transform pairs and properties are
summarized in Table 13.1. For example, the first entry states that
d(t �t0), which is a Dirac impulse101,105 centered at time t0, has a
Fourier transform that is a complex exponential whose phase is
proportional to t0. The next entry is the ‘‘dual’’ Fourier transform
relationship for a Dirac impulse centered at the frequency f0. In
fact, by making use of the Duality property of Fourier transforms,
given in entry 13 in Table 13.1, almost all of the Fourier trans-
forms can be written in dual pairs:

(i) x(t)$ X( f) and (ii) y(t)¼X(t) $ Y( f)¼ x(�f).

For example, in entry 2 in Table 13.1, since the Fourier
transform of a rectangular function in the time domain is a
sinc function in the frequency domain, then by the duality
property, the Fourier transform of a sinc function in the time
domain must be a rectangular function in frequency. In this
example, the frequency reversal of the duality property has no
effect as the rectangular function is an even function. The dila-
tion property in entry 12 of Table 13.1 states that if a recorded
segment of speech is played back on a tape recorder at five times
the original recording speed (a¼ 5), then the bandwidth of the
accelerated speech will be increased by a factor of 5. So com-
pressing the signal in one domain has the inverse effect of

dilating the signal in the Fourier dual domain. The effects of
linear convolution, differentiation, dilation, and translation on a
signal or its Fourier transform will be exploited throughout this
chapter.

Traditional Fourier transform analysis techniques have several
disadvantages. In the synthesis equation (Equation 13.2), the
value X( f0) of the Fourier transform at the frequency f0 can be
thought of as the weighting coefficient of the complex sinusoidal
basis function, e j2pf0t . Since these sinusoidal basis functions are
infinite duration, Fourier analysis implicitly assumes that each
sinusoidal component with nonzero weighting coefficient is
always present, and hence that the spectral content of the signal
under analysis is unchanging, i.e., stationary. However, many

* Unless otherwise noted, all limits of integration are assumed to be from
�1 to1 and j ¼

ffiffiffiffiffiffi

�1
p

. Also, throughout the text, lowercase letters denote
a time-domain signal and uppercase letters denote its Fourier transform.

TABLE 13.1 Table of Fourier Transform Pairs and Properties

Signal or Property y(t) Y(f ) ¼
Ð

y(t)e�j2pftdt

1 Impulse$
exponential

d(t� t0) e�j2pft0

e j2p f0 t d( f� f0)

2 Box$ Sinc recta(t)
sin (2paf )

pf
sin(2pat)

pt
recta( f)

3 One-sided
exponential

e�at~u(t), a> 0
1

aþ j2pf
1

aþ j2pt
ea f

~u(�f), a> 0

4 Two-sided
exponential

e�ajtj, a> 0
2a

a2 þ 4p2f 2

2a

a2 þ 4p2t2
e�ajfj, a> 0

5 Unit step ~u(t)
1

2
d( f )� j

1

2pf
1

2
d(t)� j

1

2pt
~u(�f )

6 Signum function sgn(t)
1

j2pf
1

j2pt
sgn(�f)¼�sgn( f )

7 Gaussian$
Gaussian

1
ffiffiffi

s
p e�p(t=s)

2 ffiffiffi

s
p

e�p(sf )
2

8 Linear FM chirp e jpat
2 1

ffiffiffiffiffiffiffiffi�jap e�jpf
2=a

9 Axis reversal x(�t) X(�f )
10 Convolution$

multiplication

Ð

x(t)h(t � t)dt X( f )H( f )

x(t)h(t)
Ð

X(n)H( f � n)dn

11 Differentiation
dn

dtn
x(t) ( j2pf )n X( f )

Mult. by Fourier
parameter

(�j2pt)n x(t) dn

df n
x( f )

12 Dilation$
compression

x(at)
1

jajX
f

a

� �

13 Duality X(t) x(�f )
14 Linearity ax(t)þbq(t) aX( f )þbQ( f )

15 Translation$
phase change

x(t� t0) X( f )e�j2pft0

x(t)e j2pf0t X( f� f0)

Note: Here, recta ¼ 1, jt j< ja j
0, jt j< ja j

�

, ~u(t) ¼ 1, t > 0
0, t < 0

�

, and sgn

(t) ¼ 1, t > 0
�1, t < 0

�

are the rectangular, unit step, and signum functions,

respectively. x(t) $ X( f ) and q(t)$ Q( f ) are Fourier transform pairs.
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naturally occurring signals, such as speech, music, biosonar, etc.,
intrinsically have spectral characteristics that change with time.
For example, from the Fourier transform of a piece of music, it
would be relatively easy to discern the frequency or pitch of
various notes that were played, but relatively difficult to extract
when each note was played. Hence, Fourier transform spectral
decomposition techniques are inadequate for the analysis of most
real-world signals.

An example of the dichotomy that exists between time-domain
analysis versus frequency-domain analysis accomplished via a
Fourier transform is depicted in Figure 13.1. The time-domain
signal, x(t), which is plotted at the bottom of the figure, consists of
three successive tone bursts. The exact value of the frequency of
each tone is not immediately obvious. Its Fourier transform,
whose squared magnitude jX( f)j is plotted vertically on the left
side of Figure 13.1, clearly shows the frequencies of the three tones,
but obscures the time of their onset. In such a situation, it is
desirable to have the ideal TFR, Tx(t, f), such as the one plotted
in the middle of Figure 13.1, which facilitates simultaneous analy-
sis in both the time domain and the frequency domain.

13.2.2 Instantaneous Frequency
and Group Delay

The instantaneous frequency and the group delay of a signal are
one-dimensional transformations which attempt to represent

temporal and spectral signal characteristics simultaneously.
They work best for phase modulated signals, i.e., x(t) ¼ e j2pu(t)

or X( f ) ¼ e j2pf( f ), where u(t),f(f ) 2 <, have only one fre-
quency component present at any given time or one temporal
component present at any given frequency, respectively. However,
most signals that occur in nature are a rich mixture of spectral
components. Further, even if the signal is mono-component, it is
often corrupted by environmental or measurement noise.

An understanding of the definition of the instantaneous fre-
quency, which has been frequently used in communication
theory,101,119 can be gained by examining a complex exponential.
The (constant) frequency, f0, of the complex exponential,
x(t) ¼ e j2pf0t , is proportional to the derivative of the phase of
the signal, i.e., f0 / d

dt
(2pf0t). The instantaneous frequency of a

time-varying signal is thus defined as the instantaneous change in
the phase of that signal,

fx(t) ¼
1

2p

d

dt
arg x(t): (13:3)

For example, the signal x(t) ¼ e jpat
2
is called a linear FM

chirp since its instantaneous frequency is the line fx(t)¼at.
The slope or ‘‘sweep rate’’ a gives the change in frequency per
unit time.

A dual concept, known as group delay, is useful in filter
analysis. If an ideal complex exponential of frequency f0 is put
into a linear time-invariant filter whose frequency response* is
H( f ) ¼ e�j2pf t, then the output of the filter is equal to the input
delayed by t.101 Thus, in this simple case, temperol translation
information can be obtained by looking at the derivative of the
phase response of a filter, commonly known as its group delay,

th( f ) ¼ �
1

2p

d

df
arg H( f ): (13:4)

For linear phase systems, the group delay is nondispersive, i.e.,
constant for all frequencies.

These time-varying spectral representations give counterintui-
tive information for multicomponent signals. For example, let

y(t) ¼ e j2pf1t þ e j2pf2t , a1, a2 2 <

¼ e j
2pu(t)

, where u(t) ¼ arctan
sin (2pf1t)þ sin (2pf2t)

cos (2pf1t)þ cos (2pf2t)

� �

(13:5)

be the sum of two complex exponentials of frequency f1 and f2.
The instantaneous frequency of y(t) can be derived in closed

form using the property a
d

da
arctan b ¼ 1

1þ b2
db

da
,

|X( f )|2

f f

f2

f1

x(t)

t

f3

0 t1 t2 t3

Tx(t,  f )

t

FIGURE 13.1 Ideal time–frequency representation for a signal that
consists of three consecutive, short-duration tones of frequencies, f1, f2,
and f3, respectively. The corresponding time-domain signal is plotted on
the bottom and its Fourier spectrum is plotted vertically along the left-
hand side.

* The frequency response of a linear, time-invariant filter is the Fourier
transform of the filter’s impulse response, h(t).101
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Thus, the instantaneous frequency of this signal is the numer-
ical average of the frequency of its two sinusoidal components.
This is not very useful information, in general, as there are an
infinite number of pairs of frequencies, e.g., f1þ e and f2� e,
which have the same numerical average for all e. In addition,
letting f2¼�f1 in Equation 13.5, shows that the real signal 2 cos
(2pf1t) has an instantaneous frequency equal to zero, which is
clearly unintuitive.

13.3 Classical Time–Frequency
Representations

In this section, several commonly used linear and quadratic TFRs
are described. The first TFR is the STFT, which is a linear
transformation of the signal. The remaining TFRs that are dis-
cussed in this section, such as the spectrogram, the WD, the
Altes Q distribution, and the unitary form of the Bertrand P0
distribution, are quadratic functions of the signal.

13.3.1 Short-Time Fourier Transform

The most commonly used and easy to understand TFR is
the STFT,

STFTx(t, f ;G) ¼
ð

x(t)g*(t� t)e�j2pf tdt (13:7)

¼ e�j2ptf ¼
ð

X( f 0 )G*( f 0 � f )e j2ptf
0
df 0, (13:8)

which is a linear function of the signal x(t).47,68,69,92,103,104,107,112

The first STFT equation in Equation 13.7 indicates that the STFT
can be thought of as the Fourier transform of a windowed
segment of the data, [x(t) g*(t� t)]. Typically, the analysis
window, g(t), is real and even, so that the STFT is equivalent to
the Fourier transform of a segment of the signal centered at the
output time, t. The second STFT equation in Equation 13.8
illustrates that the STFT can also be thought of as filtered version
of the signal. If the analysis window is a lowpass function, then
evaluating the STFT is equivalent to sending the signal through
a band-pass filter G*( f 0� f ) centered at the output frequency, f.
Thus, the STFT can be thought of as the frequency content of the
signal near the output time t or the temporal fluctuations of
the signal spectrum near the output frequency f. Analog STFT
techniques known as spectrograms9,83 were originally used to

analyze the local frequency content of speech signals. In the
TFR literature, the squared magnitude of the STFT is sometimes
referred to as the spectrogram:

SPECx(t, f ;G) ¼ jSTFTx(t, f ;G)j2

¼
�

�

�

�

ð

x(t)g*(t� t)e�j2pf tdt

�

�

�

�

2

¼
�

�

�

�

ð

X( f 0)G*(f 0 � f )e j2ptf
0
df 0
�

�

�

�

2

: (13:9)

The following two simple examples provide insight into the STFT.
First, consider the case of the STFT of an impulsive signal, x(t) ¼
d(t� t0). Using Equation 13.7, it can be shown that the STFT of a
Dirac impulse simplifies to the complex conjugate of the shifted
STFT analysis window, g(t), modulated by a complex exponential:

STFTx(t, f ;G) ¼
ð

d(t� t0)g*(t� t)e�j2pf tdt

¼ g*(t0 � t)e�j2pft0 : (13:10)

Hence, if the window is real and even, then the nonzero support
region of the STFT will be centered at t¼ t0. The time duration of
the STFT in this example is equal to the duration of the analysis
window. The second example is that of a complex exponential
whose Fourier transform, Y( f )¼ d( f� f0), is perfectly concen-
trated at the frequency f0. Using Equation 13.8 reveals that the
magnitude of the STFT will be equal to the magnitude of the
Fourier transform of the analysis window, shifted by an amount
proportional to the frequency f0 of the signal

STFTy(t, f ;G) ¼ e�j2ptf
ð

d(f 00 � f0)G*(f
0 � f )e j2pf

00tdf 0

¼ G*(f0 � f )e�j2p(f�f0)t : (13:11)

The STFT’s region of nonzero support about f0 in this example is
equal to the content bandwidth of the analysis window for all
output frequencies. Thus, the STFT gives a constant bandwidth
or fixed resolution time-varying analysis.

There are several advantages and drawbacks to the STFT. The
STFT is a linear signal transformation, i.e.,

y(t) ¼ ax1(t)þ bx2(t)¼)

STFTy(t, f ,G) ¼ aSTFTx1(t, f ,G)þ bSTFTx2(t, f ,G): (13:12)

fy(t) ¼
1

2p

d

dt
arctan

sin(2pf1t)þ sin(2pf2t)

cos(2pf1t)þ cos(2pf2t)

� �

¼ 1

2p

1

1þ (sin(2pf1t)þ sin(2pf2t))
2=(cos(2pf1t)þ cos(2pf2t))

2

� 2p
f1( cos(2pf1t)þ f2 cos(2pf2t))

cos(2pf1t)þ cos(2pf2t)
� (sin(2pf1t)þ sin(2pf2t))(�f1 sin(2pf1t)� f2 sin(2pf2t))

( cos(2pf1t)þ cos(2pf2t))
2

� �

¼ f1 þ f2

2
(13:6)
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It is easy to understand and compute and has been widely used
in the analysis of quasistationary signals. In general, however,
the STFT is complex-valued and its time duration and bandwidth
are greater than that of the signal, producing a spreading of the
support of the signal in the time–frequency plane. Second,
there is a tradeoff between time resolution and frequency reso-
lution. Consider the following multicomponent signal:
q(t) ¼ d(t � t0)þ e j2pf0t . Using the linearity of the STFT in
Equation 13.12, it can be shown that the STFT of q(t) is the
sum of the two STFTs derived in Equations 13.10 and 13.11. If
the analysis window is the Gaussian function in Table 13.1,

g(t) ¼ 1
ffiffiffi

s
p e�p(t=s)

2 $ G(f ) ¼
ffiffiffi

s
p

e�p(sf )
2

, (13:13)

then it can be shown using Equations 13.10 through 13.12 that
the STFT of q(t) is as follows:

STFTq(t, f ;G) ¼
1
ffiffiffi

s
p e�p(t�t0)

2=s2

e�j2pft0

þ
ffiffiffi

s
p

e�ps
2(f�f0)2e�j2p(f�f0)t : (13:14)

This STFT corresponds to a two-dimensional Gaussian function
centered at t0 and f0. Ideally, the STFT would be highly concen-
trated about the time t¼ t0 and the frequency f¼ f0, correspond-
ing to the fact that the signal contains an impulse in time and an
impulse in frequency at those locations. However, for the
STFTq(t, f ;G) to be highly concentrated in time, Equation 13.14
reveals that the Gaussian analysis window must be very short
duration, i.e., s� 0. For the STFT to be highly concentrated in
frequency about f¼ f0, then the analysis window must be very
narrowband, i.e., s >> 0. Clearly, both conditions on s cannot be
met simultaneously. The STFT can achieve either good time
resolution or good frequency resolution but generally not both.
Hence, the STFT works best on quasistationary signals, which are
signals whose spectral content is changing slowly with time.

13.3.2 Wigner Distribution and Woodward
Ambiguity Function

The first TFR proposed was the WD in the field of quantum
mechanics.37,60,88,120 The WD of a signal x(t),

WDx(t, f ) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


e�j2pf tdt (13:15)

¼
ð

X f þ v

2

	 


X* f � v

2

	 


e j2ptvdv (13:16)

¼
ð ð

AFx(t, v)e
j2p(tv�f t)dtdv, (13:17)

can be obtained using either the signal in Equation 13.15 or its
Fourier transform in Equation 13.16. Equation 13.17 shows that

the WD is related to the Woodward narrowband ambiguity
function (AF),

AFx(t, v) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


e�j2pvtdt (13:18)

¼
ð

X f þ v

2

	 


X* f � v

2

	 


e j2ptf df

¼
ð ð

WDx(t, f )e
�j2p(vt�tf )dtdf , (13:19)

via a two-dimensional Fourier transform. The AF is a two-
dimensional auto-correlation function commonly used in radar
and sonar to track the distance (range) and velocity (range rate) of
a moving target.39,109,114,115,121

For real, band-limited signals, replacing the signal in Equa-
tions 13.15 through 13.17 with its corresponding analytic signal,

zx(t) ¼ x(t)þ jx̂(t) $ Zx(f ) ¼
2X( f ), f > 0

X( f ), f ¼ 0

0, f < 0

8

<

:

(13:20)

often simplifies the analysis. Here,

x̂(t) ¼ PV

p

ð

x(t)

t � t
dt

is the Hilbert transform101,105 of x(t) and PV indicates principal
value. The spectrum of the analytic signal in Equation 13.20 is
proportional to that of the original signal for positive frequencies,
but is equal to zero for negative frequencies. For real signals, this
zeroing out of the negative frequency signal components results
in no loss of information as the Fourier transform of a real signal
is conjugate symmetric, i.e., X( f )¼X*(�f ). The TFR that results
from this substitution

WDzx (t, f ) ¼
ð

zx t þ t

2

	 


zx* t � t

2

	 


e�j2pf tdt, (13:21)

is often referred to as the Wigner–Ville distribution.24,60,61,119

Using Wigner–Ville distribution instead of the WD greatly simpli-
fies the analysis of band-limited signals, but can distort the analysis
of lowpass signals.

The WD can be computed in closed form for a variety of
signals, as is indicated in Table 13.2. The first entry in Table 13.2
states that a Dirac impulse at t¼ t0, x(t)¼ d(t� t0), has a WD
that is also an impulse concentrated at the same time t¼ t0.

Proof Let x(t)¼ d(t� t0).

WDx(t, f ) ¼
ð

d(t þ t=2� t0)d(t � t=2� t0)e
�j2pf tdt

¼ 2d(2(t � t0))e
�j4pf (t�t0) ¼ d(t � t0):
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In a dual manner, the second entry in Table 13.2 indicates
that the WD of a complex exponential, i.e., X( f)¼ d( f� f0), is
Dirac function centered at the same frequency f¼ f0. The next
entry in Table 13.2 is that of WD of a linear FM signal,
x(t) ¼ e jpat

2
with a sweep rate a. Its WD is a Dirac function

perfectly concentrated along the signal’s linear instantaneous
frequency, fx(t)¼at.

Proof Let x(t) ¼ e jpat
2
. Using Equation 13.15, one obtains the

following proof:

WDx(t, f ) ¼
ð

e jpa(tþt=2)
2

e�jpa(t�t=2)
2

e�j2pf tdt,

¼
ð

e jpa(t
2þttþt2=4�t2þtt�t2=4)2e�j2pf tdt

¼
ð

e�j2p(f�at)tdt ¼ d( f � at):

Another interesting example is that of the WD of a Gaussian
signal. Recall from Equation 13.13, the Fourier transform of a

TABLE 13.2 Signals with Closed-Form Equations for Their Wigner Distribution and Ambiguity Function

Signal, x(t) Fourier Transform, X( f) Wigner Distribution, WDx(t, f) Ambiguity Function, AFx(t, n)

d(t � ti) e�j2pfti d(t � ti) e�j2pvtid(t)

e j2pfi t d( f � fi) d( f � fi) e j2pfitd(v)

eþjpat
2 1

ffiffiffiffiffiffiffiffi�jap e�jpf
2=a d( f � at) d(v � at)

1
ffiffiffiffiffi

ja
p e jpt

2=a e�jpaf
2

d(t � af ) d(t� av)

e jp(at
2þ2fi tþc) 1

ffiffiffiffiffiffiffiffi�jap e jp[c�( f�fi)
2=a] d( f � fi � at) d(v � at)ej2pfit

1
ffiffiffi

s
p e�p(t=a)

2 ffiffiffi

s
p

e�p(sf )
2 ffiffiffi

2
p

e�2p[(t=s)
2þ(sf )2] 1

ffiffiffi

2
p e�(p=2)[(t=s)

2þ(sv)2]

1
ffiffiffi

s
p e�p(t=s)

2

e jpat
2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s[s�2 � ja]
p exp �p f 2

s�2 þ ja

a�4 þ a2

� �

ffiffiffi

2
p

e�2p[(t=s)
2þ(s)2( f�at)2] 1

ffiffiffi

2
p e�(p=2)[(t=s)

2þ(s)2(n�at)2]

1
ffiffiffi

s
p e�p[(t�ti)=s]

2

e j2pfi t
ffiffiffi

s
p

e�ps
2( f�fi)2 e�j2p( f�fi)ti

ffiffiffi

2
p

e�2p [(t�ti)=s]2þs2( f�fi)2½ � 1
ffiffiffi

2
p e�(p=2)[(t=s)2þ(sn)2]ej2p(fit�tin)

recta(t)
sin(2paf )

pf

sin [4p(a� jtj)f ]
pf

recta(t)
sin [pn(2a� jtj)]

pn
rect2a(t)

sin(2p at)

pt
recta( f )

sin [4p(a� j f j)t]
pt

recta( f )
sin [pt(2a� jnj)]

pt
rect2a(n)

e jpat
2
recta(t)

1
ffiffiffiffiffiffiffiffi�ja

p
ð

e�jpa( f�b)2 sin 2pab

pb
db

sin [4p(a� jtj)( f � at)]

p( f � at)
recta(t)

sin [p(n� at)(2a� jtj)]
p(n� at)

rect2a(t)

~u(t) ¼ 1, t > 0
0, t < 0

�

d( f )

2
� j

2pf

sin (4pft)

pf
~u(t)

d(n)

2
� j

2pn

� �

e�jpnjtj

e�st
~u(t)

1

sþ j2p f
e�2st sin 4pft

pf
~u(t)

e�(sþjpn)jtj � 1

2sþ j2pn

un(t), n¼ 0, 1, . . . (�j)nun( f ) 2e�2p(t2þf 2)Ln(4p(t2 þ f 2)) e�p(t2þn2)=2Ln(p(t2 þ n2))

cos(2pfit) [d( fþ fi)þ d( f� fi)]=2 [d( fþ fi)þ d( f� fi)þ 2d( f )cos(4pfit)]=4 [d(nþ 2fi)þ d(n� 2fi)þ 2d(n)cos(2pfit)]=4

sin(2pfit) j[d( fþ fi)� d( f� fi)]=2 [d( fþ fi)þ d( f� fi)� 2d( f )cos(4pfit)]=4 �[d(nþ 2fi)þ d(n� 2fi)� 2d(n)cos(2pfit)]=4

d(t� ti)þ d(t� tm) e�j2pfti þ e�j2pftm
d(t � ti)þ d(t � tm)

þ 2d t � ti þ tm

2

	 


cos (2p(ti � tm)f )

[e�j2pnti þ e�j2pntm ]d(t)

þ e�jp(tiþtm)n[d(t� (ti � tm))

þ d(tþ (ti � tm))]

e j2pfi t þ e j2pfmt d( f� fi)þ d( f� fm)

d(f � fi)þ d( f � fm)

þ 2d f � fi þ fm
2

� �

cos (2p( fi � fm)t)

[e j2pfit þ e j2pfmt]d(n)

þ ejp( fiþfm)t[d(n� ( fi � fm))

þ d(nþ ( fi � fm))]

P

k cke
j2pkf0 t

P

k ckd( f � kf0)

X

k
jckj2d( f � kf0)þ

X

k

X

m6¼k
ckcm*d f � kþm

2
f0

� �

e j2p(k�m)f0 t

X

k
jckj2e j2pkf0td(t)þ

X

k

X

m 6¼k
ckcm*e

jp(kþm)f0td(n� (k�m)f0)

Note: Here, s> 0, a, a, c2 <, sgn(a), and recta(t) are defined in Table 13.1; un(t) ¼
21=4
ffiffiffiffi

n!
p e�pt2Hn 2

ffiffiffiffiffi

pt
p� �

,Hn(t) ¼ (�1)net
2=2 dn

dtn
e�t2=2 is the nth order

Hermite polynomial; Ln(t) ¼
1

n!
et

dn

dtn
(tne�t) ¼

Xn

k¼0

n!

k!(n� k)!
(�t)k is the nth-order Laguerre polynomial.
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Gaussian signal is itself a Gaussian function, but one with
inversely proportional variance. The WD of this Gaussian signal
is the two-dimensional Gaussian function given in Table 13.2.

Proof Let g(t) ¼ 1ffiffiffi
s
p e�p(t=s)

2

.

WDg(t, f ) ¼
1

s

ð

e�p[(tþt=2)=s]
2

e�p[(t�t=2)=s]
2

e�j2pf tdt,

¼ 1

s

ð

e�p(t
2þttþt2=4þt2�ttþt2=4)=s2

e�j2pf tdt

¼ 1

s

ð

e�2p(t=s)
2
ð

e�pt
2=(2s2)e�j2pf tdt

¼
ffiffiffiffiffi

2e
p �2p[(t=s)2þ(sf )2]

: (13:22)

Note that if s is very small, then the Gaussian signal g(t) is very
short duration, but its Fourier transform G( f ) is broadband in
frequency; likewise, Equation 13.22 reveals that the WD of g(t)
will be concentrated in time but broadband in frequency.

The AF of a variety of signals is given in the right-hand column
of Table 13.2. Equations 13.17 and 13.19 indicate that theWD and
the AF are two-dimensional Fourier transform pairs. hence,
we can exploit the Fourier transform properties in Table 13.1 to
gain insight into the relationship between the AF and the WD of
any signal. Some of these relationships are given in Table 13.3,
which lists the effects of signal operations on the WD and AF.
For example, the first entry in Table 13.3 shows that the WD is
insensitive to the phase of proportionality constants, i.e.,

y(t) ¼ e jax(t)¼)WDy(t, f ) � WDx(t, f ), 8a 2 <: (13:23)

The WD and the AF are not one-to-one signal transformations;
rather, they are only unique to a unit amplitude proportionality
factor as indicated in Equation 13.23. The next entry in
Table 13.3 shows that reversing the time axis of the signal in
turn reverses its frequency axis as well; this produces a corre-
sponding reversal in both the time and frequency axes of the WD
and the AF. The fifth entry in Table 13.3 states that if a signal is

TABLE 13.3 Effects of Signal Operations on the Wigner Distribution and Ambiguity Function

Signal, y(t) Fourier Transform, Y( f) Wigner Distribution, WDy(t, f) Ambiguity Function, AFy(t, n)

ax(t) aX( f ) jaj2WDx(t, f) jaj2AFx(t, n)
x(�t) X(�f ) WDx(�t,�f) AFx(�t,�n)

ffiffiffiffiffi

jaj
p

x(at)
1
ffiffiffiffiffi

jaj
p X( f =a) WDx(at, f=a) AFx(at, n=a)

ffiffiffiffiffi

jaj
p

X(at)
1
ffiffiffiffiffi

jaj
p x(� f =a) WDx(�f=a, at) AFx(�n=a, at)

x(t)¼�x(�t) X( f )¼�X(�f ) �2AFx(2t, 2f) � 1
2WDx(t=2, n=2)

x*(t) X*(�f ) WDx(t, �f) AFx*(t, � n)

x(t � ti)e j2pfi t X( f � fi)e�j2p( f�fi)ti WDx (t �ti, f� fi) AFx(t, n)e j2p( fit�tin)

x(t)h(t)
Ð

X( f 0)H( f � f 0)df 0
Ð

WDx(t, f 0)WDh(t, f � f 0) df 0
Ð

AFx(t, n0)AFh(t, n� n0) dn0

Ð

x(t0)h(t � t0)dt0 X( f )H( f )
Ð

WDx(t0 , f )WDh(t � t0 , f )dt0
Ð

AFx(t0 , n)AFh(t� t0, n)dt0

x(t)e jpat
2 1ffiffiffiffiffiffi

�ja
p Ð

X(f � f 0)e�jpf 02=adf 0 WDx(t, f�at) AFx (t, n�at)

Ð ffiffiffiffiffiffi

jaj
p

e jpau
2
x(t � u)du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jsgn(a)
p

X( f )e�jpf 2=a WDx(t� f=a, f) AFx(t� n=a,n)

XN�1

i¼0
x(t � i� N�1

2

� �

Tr),

Tr > 0

X( f )
sin (pTrNf )

sin (pTr f )

XN�1

i¼0
WDx t � i� N � 1

2

� �

Tr , f

� �

þ 2
XN�2

i¼0

XN�1

m¼iþ1
WDx t � (iþm)� (N � 1)

2
Tr , f

� �

� cos [2pTr , (i�m)f ]

XN�1

n¼�Nþ1
AFx(t� nTr , n)

sinpnTr(N � jnj)
sin (pnTr)

XN

i¼1
x(t � ti)e j2pfi t

XN

i¼1
X( f � fi)e

�j2p( f�fi)ti
XN

i¼1
WDx(t � ti, f � fi)

þ 2
XN�1

i¼1

XN

m¼iþ1
WDx t � ti þ tm

2
, f � fi þ fm

2

� �

� cos 2p

( fi � fm)t � (ti � tm)f þ
fi þ fm

2
(ti � tm)

� �

AFx(t, n)
XN

i¼1
e j2p(fit�nti)

þ
XN

i¼1

XN
m¼1
m6¼i

AFx(t� (ti � tm), n� (fi � fm))

exp j2p
fi þ fm

2
t� ti þ tm

2
n

��

þ (fi � fm)
ti þ tm

2


i

Note: Here, s> 0, a, a, s, c 2 <, and sgn(a) is the Signum function defined in Table 13.1.
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even or odd, then its WD and AF are scaled versions of one
another. For example, if x(t)¼ x(�t) is even, then its AF

AFx(t, n) ¼
1

2
WDx

t

2
,
n

2

	 


.

Proof Let x(t)¼ x(�t).

AFx(t, n) ¼
ð

x(t þ t=2)x*(t � t=2)e�j2pntdt

¼
ð

x(t þ t=2)x*(� (t � t=2))e�j2pntdt

¼ 1

2

ð

x
t

2
þ g

2

	 


x*
t

2
� g

2

	 


e�j2p(n=2)gdg

¼ 1

2
WDx

t

2
,
n

2

	 


:

Just as Table 13.1 indicates that time shifts in a signal change the
phase of its Fourier transform, so too does Table 13.3 indicate
that time or frequency shifts in the WD cause phase changes in
its Fourier transform, the AF.

Proof Let WDy(t, f ) ¼WDx(t � t0, f � f0) in (13.19).

AFy(t, n) ¼
ð ð

WDx(t � t0, f � f0)e
�j2p(nt�tf )dtdf

¼
ð ð

WDx(t
0, f 0)e�j2p[n(t

0þt0)�t(f 0þf0)]dt0df 0

¼ e�j2p(nt0�tf0)AFx(t, n)

13.3.3 Altes Q or ‘‘Wideband’’ Wigner
Distribution

The Altes Q distribution was originally proposed as a
‘‘wideband’’ version of the WD.6,97

QX(t, f ) ¼ f

ð

X( feu=2)X*( fe�u=2)e j2ptfudu, f > 0

¼ f

ð

1

0

X(f
ffiffiffi

a
p

)X*( f =
ffiffiffi

a
p

)e j2ptf�1da (13:24)

¼
ð ð

HAFx(z,b)e
j2p(tfb�z ln(f =fr))dzdb: (13:25)

Here, fr is a positive reference frequency. Marinovich proposed a
dual formulation to Equation 13.24, called the scale-invariant WD,

MSIWDx(t, c) ¼
ð

x(tes=2)x*(te�s=2)e�j2pcsds,

which used the time-domain version of the signal x(t) instead of
the signal spectrum used in Equation 13.24.51,57,86 The Q distri-
bution is related to the hyperbolic AF (HAF),

HAFx(z,b) ¼
ð

1

0

X( feb=2)X*( fe�b=2)e j2pzIn( f =fr)df

¼ fr

ð

ebX( fre
bþb=2)X*( fre

b�b=2)e j2pzbdb (13:26)

¼
ð

1

�1

ð1

0
QX(t, f )e

�j2p(tfb�[ ln ( f =fr)]z)dtdf (13:27)

¼
ð ð

QX
c

freb
, fre

b

� �

e�j2p(bc�zb)dcdb, (13:28)

via Fourier and Mellin transformations. Like the Mellin
transform,32,60,94

MTx(s) ¼
ð

1

0

X(u)e�j2ps ln (u)
du

u
(13:29)

¼
ð

X(eb)e�j2psb db, (13:30)

the Altes Q distribution is useful for analyzing signals that have
undergone scale change, e.g., the compressions or dilations that
occur in wideband Doppler analysis of a moving target. Both
Equations 13.27 and 13.28 and Equations 13.29 and 13.30
demonstrate that the Mellin transform is equivalent to the
Fourier transform if the argument of the function being trans-
formed is first prewarped in an exponential fashion. This
allows the Mellin transform and the Altes Q distribution to
be implemented efficiently using fast Fourier transform (FFT)
techniques.95,106

The Altes Q distribution and the HAF of several signals are
given in Table 13.4. This table shows that the Q distribution is
well matched to signals with hyperbolic group delay. For
example, the second entry in Table 13.4 states that the analytic

signal Y( f ) ¼ 1
ffiffiffi

f
p e�j2pc ln f =fr~u(f ) has a Q distribution that is

perfectly localized along the signal’s hyperbolic group delay,
ty( f )¼ c=f, f> 0.

Proof Let Y(f ) ¼ 1
ffiffiffi

f
p e�j2pc ln f =fr~u(f ) ¼ 1

ffiffiffi

f
p

r

f

fr

� ��j2pc�1
2

~u(f )

where ~u( f) is the unit step function defined in Table 13.1.

QY (t, f ) ¼ f

ð

1
ffiffiffiffiffiffiffiffiffi

feu=2
p e�j2pc ln (fe

u=2=fr)
1
ffiffiffiffiffiffiffiffiffiffiffiffi

fe�u=2
p e j2pc ln (fe

�u=2=fr)

e j2ptfudu, f > 0

¼
ð

e�j2pc ln e
u

e j2ptfudu

¼
ð

e j2p(tf�c)
u

du ¼ d(tf � c) ¼ 1

j f j d(t � c=f ): (13:31)
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13.3.4 TFR Warping

TheAltes Q and theWDs are warped versions of each other.6,97,100

QX(t, f ) ¼WDWX
tf

fr
, fr ln

f

fr

� �

(13:32)

WDX(t, f ) ¼ QW�1X(te
�f =fr , fre

f =fr ) (13:33)

In Equations 13.32 and 13.33, the signal is first prewarped using
the following unitary signal transformations,

(WX)( f ) ¼
ffiffiffiffiffiffiffiffi

e f =fr
p

X( fre
f =fr ) (13:34)

(W�1X)(f ) ¼
ffiffiffi

fr

f

s

X fr ln
f

fr

� �

, f > 0, (13:35)

respectively, followed by a warping of the time–frequency axis.
Since W and W�1 in Equations 13.34 and 13.35 are inverse

operators, i.e., (W�1WX)( f)¼X( f), then Equation 13.32 can
also be written as

QW�1X(t, f ) ¼WDX
tf

fr
, fr ln

f

fr

� �

, (13:36)

which is the first entry in Table 13.4. Likewise, it can be shown
that the Woodward AF in Equation 13.18 and the HAF in
Equation 13.26 are related by a simple axis scaling, once the
signal has been prewarped appropriately97,100:

HAFX(z,b) ¼ AFWX(z=fr, frb) (13:37)

HAFW�1X(z,b) ¼ AFX(z=fr, frb) (13:38)

Consequently, and table of WD and AF pairs, such as Table 13.2,
can be transformed into an equivalent table of the Altes Q
and HAF transform pairs by using Equation 13.35 to warp the
signal spectrum and Equations 13.36 and 13.38 to warp the WD
and the AF. For example, the second entry of Table 13.2 can be
used to derive the third entry in Table 13.4.

TABLE 13.4 Signals with Closed form Expressions for Their Altes Q Distribution and Hyperbolic Ambiguity Function

Analytic Signal Y( f), f> 0 Altes Distr., QY(t, f), f> 0 Hyperbolic AF, HAFY(z, b)
ffiffiffi

fr

f

s

X( fr ln ( f =fr)) WDX
tf

fr
, fr ln

f

fr

� �

AFX
z

f
, frb

� �

ffiffiffi

fr

f

s

e�j2pti fr ln ( f =fr) ¼ f

fr

� ��j2pti fr�1
2 fr

f

�

�

�

�

�

�

�

�

d t � tifr

f

� �

fre
�j2pti frbd(B)

ffiffiffiffiffiffiffiffiffi

e fi=fr
p

d( f � fre
fi=fr ) je fi=fr jd(f � fre

fi=fr )
1

fr
e
j2pfiz=frd(b)

ffiffiffi

fr

f

s

e�jpaf
2
r ( ln ( f =fr))

2 fr

f

�

�

�

�

�

�

�

�

d t � af 2r
ln ( f =f r)

f

� �

frd(z� af 2r b)

ffiffiffi

fr

f

s

e�jpaf
2
r ( ln ( f =fr))

2

e�j2pti fr ln ( f =fr)
fr

f

�

�

�

�

�

�

�

�

d t � frti

f
� af 2r

ln ( f =f r)

f

� �

frd z� af 2r b
� �

e�j2pti frb

ffiffiffiffiffiffiffiffiffiffi

fr

�jaf

s

e jp[c�( fr ln ( f =fr)�fi)
2=a] fr

af

�

�

�

�

�

�

�

�

d t � f 2r ln (f =fr)

af
þ fifr

af

� �

1

fr
d b� a

f 2r
z

� �

e j2pfiz=fr

ffiffiffiffiffiffiffiffiffi

e fi=fr
p

d( f � fre
fi=fr )

þ
ffiffiffiffiffiffiffiffiffiffiffi

e�fi=fr
p

d( f � fre
�fi=fr )

je f i=fr jd( f � fre
fi=fr )

þ je�fi=fr jd( f � fre
�fi=fr )

þ 2d( f � fr) cos (4p fitf )

d bþ 2fi
fr

� �

þ d b� 2fi
fr

� �

þ 2d(b) cos (2pfiz=fr)

� �

=fr

ffiffiffi

fr

f

s

sin (2pafr ln ( f =fr))

pfr ln ( f =fr)

sin [4p(afr � jtf j) ln ( f =fr)]
pfr ln ( f =fr)

recta
tf

f r

� �

fr
sin [pb(2afr � jzj)]

pz
rect2a

z

fr

� �

ffiffiffi

fr

f

s

d(f � fr)

2
� j

2p fr ln ( f =fr)

� �

sin 4ptf ln ( f =fr)

pfr ln ( f =fr)
~u(tf =fr)

ffiffiffiffiffiffi

sfr
f

s

e�p(sfr ln (f =fr))
2 ffiffiffi

2
p

exp �p tf

s fr

� �2

þ (sfr ln ( f =fr))
2

" # !

1
ffiffiffi

2
p exp �p

2

z

frs

� �2

þ (s frb)
2

" # !

(�j)n
ffiffiffi

fr

f

s

un( fr ln ( f =fr))
2 exp �2p (tf =fr)

2 þ ( fr ln ( f =fr))
2

 �� �

� Ln 4p( (tf =fr)
2 þ ( fr ln ( f =fr))

2
� �

exp �p

2
(z=fr)

2 þ ( frb)
2

 �

	 


� Ln p (z=fr)
2 þ ( frb)

2
� �� �

Note that all signals in column one are assumed to be analytic, i.e., Y( f ) ¼ 0, f< 0. Here, ~u(t) and recta(t) are the unit step function and the rectangular

function defined in Table 13.1. un(t) ¼
21=4
ffiffiffiffi

n!
p e�pt2Hn(2

ffiffiffiffiffi

pt
p

),Hn(t) ¼ (�1)net
2=2 d

n

dtn
e�t2=2 is the nth-order Hermite polynomial, and

Ln(t) ¼
1

n!
et

dn

dtn
(tne�1) ¼Pn

k¼0

n!

k!(n� k)!
(�t)k is the nth-order Laguerre polynomial.
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Proof From the second entry in Table 13.2, let

X( f ) ¼ d( f � fi))WDx(t, f ) ¼ d( f � fi)

) AFx(t, n) ¼ ei2pfitd(n):

By prewarping X( f ) to form

Y( f ) ¼ (W�1Xi)( f ) ¼
ffiffiffi

fr

f

s

d fr ln
f

fr
� fi

� �

¼
ffiffiffiffiffiffiffiffi

efi=fr
p

d( f � fre
fi=fr ),

one obtains using Equations 13.36 and 13.38

QY (t, f ) ¼WDx
tf

fr
, fr ln

f

fr

� �

¼ d fr ln
f

fr
� fi

� �

¼ jefi=fr jd( f � fre
fi=fr )

HAFY (z,b) ¼ AFx(z=fr, frb) ¼ e j2pfiz=frd( frb)

which corresponds to the third entry in Table 13.4.

13.3.5 Bertrand Pk Distributions

The Pk distributions proposed by the Bertrands,19,20,95

BPkDX(t, f ;m)

¼ f

ð

X( f lk(u))X*( f lk(� u))m(u)e j2ptf (lk(u)�lk(�u))du,

f > 0 (13:39)

with

l0(u) ¼
u=2eu=2

sinh(u=2)
¼ u

1� e�u
,

l1(u) ¼ exp 1þ ue�u

e�u�1

� �

,

lk(u) ¼ k
e�u � 1

e�ku � 1

� � 1
k�1
, k 6¼ 0, 1,

and m(u)¼m*(�u), are affine TFRs that are covariant to all
affine time transformations on analytic signals, i.e.,

Y( f ) ¼ 1
ffiffiffiffiffi

jaj
p X

f

a

� �

e�j2pft0 , f > 0

) BPkDY (t, f ;m) ¼ BPkDX a(t � t0),
f

a
;m

� �

, f > 0:

This affine covariance is useful in wideband Doppler applica-
tions. By properly selecting, k, the versatile Pk distributions also
have extended convariance to dispersive, i.e., nonconstant, time

shifts on the signal including those proportional to power, hyper-
bolic, or logarithmic functions of frequency:

k 6¼ 0, 1; Y( f ) ¼ 1
ffiffiffiffiffi

jaj
p e�j2p(bfþcf

k)X
f

a

� �

) BPkDY (t, f ;m)

¼ BPkDX a(t � b� kcf k�1),
f

a
;m

� �

(13:40)

k ¼ 0; Y( f ) ¼ 1
ffiffi

j
p

aj
e�j2p(bfþc ln f )X

f

a

� �

) BP0DY (t, f ;m) ¼ BP0DX a t � b� c

f

� �

,
f

a
;m

� �

(13:41)

k ¼ 1; Y( f ) ¼ 1
ffiffiffiffiffi

jaj
p e�j2p(bfþcf ln f )X

f

a

� �

) BP1DY (t, f ;m)

¼ BP1Dx a(t � b� c[1þ ln f ]),
f

a
;m

� �

: (13:42)

Note that the dispersive time shifts in the Bertrand Pk distribu-
tions in Equations 13.40 and 13.42 are equivalent to the change
in the group delay of X( f ) brought about by multiplication with
the complex exponential terms used to form Y( f ). The most
commonly used Bertrand distribution is the unitary form of the
k¼ 0 or P0 Bertrand distribution:

BP0DX(t, f ;m0) ¼ f

ð

X f
u=2eu=2

sinh u=2

� �

X* f
u=2e�u=2

sinh u=2

� �

u=2

sinh u=2
e j2ptfudu, f > 0: (13:43)

This special form of the P0 distribution in Equation 13.39 with

m0(u) ¼
u=2

sinh u=2
is called the unitary P0 as the resulting TFR

preserves inner products:

ð ð

1

0

BP0DX(t, f ;m0)BP0DY*(t, f ;m0)dtdf ¼
ð

1

0

X( f )Y*( f )df

�

�

�

�

�

�

�

�

�

�

�

�

2

:

13.3.6 Cross Terms of Quadratic
Time–Frequency Representations

The spectrogram, Wigner, Altes Q, and Bertrand Pk distribu-
tions, as well as several other ‘‘energetic’’ TFRs listed in later
sections, are quadratic functions of the signal. These nonlinear
functions produce ‘‘cross terms’’ which can make visual analysis
of TFRs difficult. For example, the nonlinear operation,

jx(t)þ y(t)j2 ¼ jx(t)j2 þ jy(t)j2 þ 2Real{x(t)y*(t)},
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is equal to the sum of the two ‘‘auto’’ terms jx(t)j2, jy(t)j2 plus the
cross term 2Real{x(t)y*(t)}. The following discussion will focus
on the characteristics of the cross terms of the WD.52,70,82

The WD of a multicomponent signal,

y(t) ¼
XN

i¼1
xi(t))

WDy(t, f ) ¼
XN

i¼1
WDxi (t, f )þ 2

XN�1

i¼1

XN

k¼iþ1
Real{WDxixk (t, f )},

(13:44)

consists of N auto-terms, WDxi (t, f ), and
N(N � 1)

2
cross terms,

WDxixk(t, f ) ¼
ð

xi(t þ t=2)xk*(t � t=2)e�j2pf tdt

¼WDxkxi
* (t, f ): (13:45)

An intuitive understanding of these cross terms can be obtained
by analyzing the WD and the AF of the multicomponent signal
y(t) in Equation 13.44 for the special case that each signal
component, xi(t), is a shifted version of basic envelope x(t), i.e.,

xi(t) ¼ x(t � ti)e
j2pfit : (13:46)

The WD and the AF given below were taken from the last entry
in Table 13.3:

WDy(t, f ) ¼
XN

i¼1
WDx(t � ti, f � fi)

þ 2
XN�1

i¼1

XN

m¼iþ1
WDx t � ti þ tm

2
, f � fi þ fm

2

� �

� cos 2p ( fi � fm)t � (ti � tm)f þ
fi þ fm

2
(ti � tm)

� �

(13:47)

AFy(t,n) ¼ AFx(t,n)
X

N

i¼1

e j2p( fit�nti)

þ
X

N�1

i¼1

X

N

m¼1
m6¼i

AFx(t� (ti � tm),n� ( fi � fm))

� exp j2p
fi þ fm

2
t� ti þ tm

2
nþ ( fi � fm)

ti þ tm

2

� �� �

(13:48)

The ith auto WD term in the first sum in Equation 13.47 has
been shifted by (ti, fi) in the same way that the basic signal
component xi(t) in Equation 13.46 was shifted. In the second
summation, the cross WD term corresponding to the pair of auto
terms xi(t) and xm(t) is equal to the WD of the envelope x(t),
shifted to midway in the time–frequency plane, i.e.,
ti þ tm

2
,
fi þ fm

2

� �

, between the pair of auto signal components;

the cross term oscillates with a spatial frequency proportional
to the distance (ti� tm, fi� fm) between the pair of auto terms.
This is depicted in Figure 13.2. In Equation 13.48, the AF of each
auto term is equal to the AF of the envelope multiplied by a
complex exponential; all auto AF terms map on top of one
another at the origin of the AF plane. The cross terms in the
second summation correspond to the AF of the basic envelope,
x(t), shifted away from the origin of the (t, n) plane by an
amount equal to the distance between each pair of signal terms,
as indicated in Figure 13.3. Signal components which occur at the
same time, i.e., ti¼ tm, or at the same frequency, fi¼ fm, have
cross terms which are shifted along the axes in the AF plane.
The greater the separation between any two signal components,
the more rapidly the corresponding cross term in Equation 13.47
oscillates in the WD plane and the farther away from the origin
the cross term in Equation 13.48 maps to in the AF plane.
For example, Table 13.2 indicates that the WD of a cosine,

x(t) ¼ cos (2pfit) $ X( f ) ¼ [d( f þ fi)þ d( f � fi)]=2 (13:49)

) WDx(t, f ) ¼ [d( f þ fi)þ d( f � fi)þ 2d( f ) cos (4pfit)]=4,

(13:50)

consists of two auto terms, which are the impulses located at
f¼�fi, plus the oscillatory cross term located at mid-frequency
f¼ 0. Increasing the sinusoidal frequency fi increases the oscilla-
tion rate of the cross term, but produces no change in its location.
The AF of this cosine,

x(t) ¼ cos (2pfit) ) AFx(t, v)

¼ [d(y){e j2pfit þ e�j2pfit}þ d(v þ 2fi)þ d(v � 2fi)]=4,

has two auto terms which always map to the origin of the AF
plane and two cross terms which occur at v¼�2fi.

The characteristics of the cross terms of the spectrogram, Altes
Q, and the Bertrand, Pk are described in Refs. [12,46,62,65,76,82].
The spectrogram contains undulating cross terms that occur
wherever the STFT of the auto signal components xi(t) overlap
in the time–frequency plane. Using Equation 13.11 and the
cosine example from Equation 13.49, one can show that

x(t) ¼ cos (2pfit) )

SPECx(t, f ;G) ¼
1

4
[jG( fi � f )j2 þ jG(� fi � f )j2

þ 2Real{G*( fi � f )G(� fi � f )e j2p(2fi)t}]:

(13:51)

If the bandwidth of the analysis window, G( f ), is greater than the
sinusoidal frequency fi, i.e., jG(�fi)j 6¼ 0, then the cross term in
Equation 13.51 is nonzero and is modulated by a cosine whose
frequency, 2fi, equals the distance between the signal’s spectral
components at f¼�fi. Likewise, the Bertrand Pk distributions
produce an oscillatory cross term corresponding to each air of
signal components; closed form expression can be obtained for
some of the Pk distributions revealing that their cross terms occur
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at the location corresponding to the generalized mean of the
locations of the corresponding pair of auto terms.

The presence of cross terms can make visual analysis of non-
linear TFRs difficult. Two basic approaches are used to minimize
the effects of these cross terms. The first approach is to use the
analytic form of real, bandpass signals to zero out redundant
negative frequency axis components of the signal’s Fourier
transform. The advantage of replacing real signals with their
analytic counterpart can be demonstrated by comparing the
Wigner–Ville distribution in Equation 13.21 for a band-limited
cosine,

x(t) ¼ cos(2pfit))zx(t) ¼ x(t)þ jx̂(t) ¼ e j2pfit

)WDzx (t, f ) ¼ d( f � fi): (13:52)

The analytic signal corresponding to the cosine is a single
tone located at Zx( f )¼ d( f� fi), and as such its WD is a simple
impulse at f¼ fi. Comparison of Equation 13.50 with Equation
13.52 demonstrates that using the Wigner–Ville distribution for
band-limited signals removes all cross WD terms that arise from
signal components occurring on the negative frequency axis.
The second approach to cross term removal exploits the fact
that cross terms which oscillate rapidly in the time–frequency
plane can be removed by smoothing or lowpass filtering the WD.
Applying an ideal lowpass filter to the WD is equivalent to
multiplying the signal’s AF by a function that (1) approximately
equal to one in the region near the origin where the auto AF

terms map to in Equation 13.48 and (2) is approximately zero in
the region away from the origin of the AF plane where the AF
cross terms map. Examples of TFRs that are a smoothed version
of the WD are given in Table 13.5. The most commonly known
smoothed WD is the spectrogram in Equation 13.9. The pseudo
WD and the smoothed pseudo WD use lowpass analysis win-
dows g(t) and s(t) to smooth out the oscillatory cross terms.
Unfortunately, the cost to be paid for smoothing away of cross
terms is a loss of resolution between signal components in the
time–frequency plane,55,80 and, as we shall see in Section 13.4, a
loss of desirable TFR properties.39

13.4 Desirable Properties of
Time–Frequency Representations

One way of selecting which TFR to use is to examine which one
has the most desirable properties for the particular application at
hand. This section is a summary of several such properties, listed
in Table 13.6. This table can be broken up conceptually into the
following categories of ideal TFR properties: covariance, statis-
tical or energy distribution, signal analysis, localization, and
inner products.10,24,39,43,60,68,69

In the following section, each of the ideal TFR properties are
discussed individually and at least one example is given demon-
strating how to prove whether or not a certain TFR satisfies that
property. Additional proofs can be found in Refs.
[10,25,39,60,81,103,111].

TABLE 13.5 Many TFRs are Equivalent to Smoothed or Warped Wigner Distributions

TFR Name TFR Formulation

Cohen’s class Cx(t, f ;CC) ¼
Ð Ð

cC(t � t0, f � f 0)WDx(t0, f 0)dt0 df 0

Pseudo Wigner PWDx(t, f ;G) ¼
Ð

WDg(0, f � f 0)WDx(t, f 0)df 0

Scalogram SCALx(t, f ;G) ¼
Ð Ð

WDg
f

fr
(t0 � t), fr

f 0

f

� �

WDx(t0 , f 0)dt0 df 0

Smoothed pseudo Wigner SPWDx(t, f ;G, s) ¼
Ð Ð

s(t � t0)WDg(0, f � f 0)WDx(t0, f 0)dt0 df 0

Spectrogram SPECx(t, f ;G) ¼
Ð Ð

WDg(t0 � t, f 0 � f )WDx(t0, f 0)dt0 df 0

Altes Q QX (t, f ) ¼WDWX
tf

fr
, fr ln

f

fr

� �

kth power Wigner WD(k)
X (t, f ) ¼WDWkX

t

kj f =frjk�1
, frsgn( f )j f =frjk

 !

, k 6¼ 0

Hyperbologram HYPX(t, f ;G) ¼
Ð Ð1

0 WDWG t0 � tf

fr
, f 0 � fr ln

f

fr

� �

WDWX(t0 , f 0)dt0 df 0

Pseudo Altes Q PQX(t, f ;G) ¼ fr
Ð1
0 WDWG 0, fr ln

f

f 0

� �

WDWX
tf

fr
, fr ln

f 0

fr

� �

df 0

f 0

Smoothed pseudo Altes Q SPQX(t, f ;G, s) ¼ fr
Ð1
�1

Ð1
0 s(tf � c)WDWG 0, fr ln

f
f 0

	 


�WDWX
c
fr
, fr ln

f 0

fr

	 


dc df
0

f 0

Note: Alternative formulations for these TFRs can be found in Tables 13.9, 13.11, 13.13, and 13.15. Here fr> 0
is a positive reference frequency, (W X)( f ) ¼

ffiffiffiffiffiffiffiffi

e f =fr
p

X( fre f =fr ), (WkX)( f ) ¼ jkj f =frj(k�1)=kj�1=2

X( frsgn( f )j f =frj1=k), k 6¼ 0, and sgn( f ) is defined in Table 13.1. Also cc(t, f ) $ CC(t, n) and g(t) $ G( f)
are Fourier transform pairs.
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13.4.1 Covariance Properties

The covariance properties P1�P6 in Table 13.6 state that certain
operations on the signal, such as translation, dilation, or convo-
lution, should be preserved in the TFR. That is, if the signal is
changed in some way, then its TFR should change in exactly the
same fashion.

P1: Frequency-shift covariance

y(t) ¼ x(t)e j2pf0t ) Y( f ) ¼ X( f � f0)) Ty(t, f ) ¼ Tx(t, f � f0)

Property P1 states that if a signal is modulated or shifted
in frequency by an amount f0, then the TFR of that signal
should also be shifted by f0. This property is very important for
analyzing a variety of signals such as speech, music, or sonar. Both
the WD and the spectrogram satisfy this property; the STFT
does not.

Proof Let Y( f )¼X( f� f0).

WDy(t, f ) ¼
ð

Y( f þ n=2)Y*( f � n=2)e j2pntdn

¼
ð

X([f þ n=2]� f0)X*([ f � n=2]� f0)e
j2pntdn

¼
ð

X([f � f0]þ n=2)X*([ f � f0]� n=2)e j2pntdn

¼Wx(t, f � f0)

STFTy(t, f ;G)¼ e�j2ptf
ð

Y( f 0)G*( f 0� f )e j2ptf
0
df 0

¼ e�j2ptf
ð

X( f 0� f0)G*( f
0� f )e j2ptf

0
df 0

¼ e�j2ptf
ð

X(n)G*(nþ f0� f )e j2pt[nþf0]dn

¼ e�j2p[f�f0]t
ð

X(n)G*(n� [ f � f0])e
j2ptndn

¼ e�j2p[ f�f0]tSTFTx(t, f � f0;G) 6¼ STFTx(t, f � f0;G)

SPECy(t, f ;G)¼ jSTFTy(t, f ;G)j2 ¼ je�j2p[f�f0]tSTFTx(t, f � f0;G)j2

¼ SPECx(t, f � f0;G)

TABLE 13.6 Ideal Time-Frequency Representation (TFR) Properties

Property Name TFR Property

P1: Frequency-shift covariance Ty(t, f ) ¼ Tx(t, f � f0) for y(t) ¼ x(t)e j2pf0 t

P2: Time-shift covariance Ty(t, f ) ¼ Tx(t � t0, f ) for y(t) ¼ x(t � t0)

P3: Scale covariance Ty(t, f ) ¼ Tx(at, f =a) for y(t) ¼
ffiffiffiffiffi

jaj
p

x(at)

P4: Hyperbolic time shift Ty(t, f ) ¼ Tx(t � c=f , f ) if Y( f ) ¼ exp �j2pc ln f

fr

� �

X( f )

P5: Convolution covariance Ty(t, f ) ¼
Ð

Th(t � t, f )Tx(t, f ) dt for y(t) ¼
Ð

h(t � t)x(t)dt

P6: Modulation covariance Ty(t, f ) ¼
Ð

Th(t, f � f 0)Tx(t, f 0) df 0 for y(t) ¼ h(t)x(t)

P7: Real-valued Tx*(t, f ) ¼ Tx(t, f )

P8: Positivity Tx(t, f)� 0

P9: Time marginal
Ð

Tx(t, f )df ¼ jx(t)j2

P10: Frequency marginal
Ð

Tx(t, f )dt ¼ jX(f )j2

P11: Energy distribution
Ð Ð

Tx(t, f )dt df ¼
Ð

jX( f )j2df
P12: Time moments

Ð Ð

tnTx(t, f )dt df ¼
Ð

tnjx(t)j2 dt

P13: Frequency moments
Ð Ð

f nTx(t, f )dt df ¼
Ð

f njX( f )j2 df

P14: Finite time support Tx(t, f ) ¼ 0 for t =2 (t1, t2) if x(t) ¼ 0 for t =2 (t1, t2)

P15: Finite freq. support Tx(t, f ) ¼ 0 for f =2 ( f1, f2) if X( f ) ¼ 0 for f =2 ( f1, f2)

P16: Instantaneous freq.

Ð

f Tx(t, f ) x( f ) df
Ð

Tx(t, f ) df
¼ 1

2p

d

dt
arg{x(t)}

P17: Group delay

Ð

tTx(t, f ) dt
Ð

Tx(t, f ) dt
¼ � 1

2p

d

df
arg{X( f )}

P18: Fourier transform Ty(t, f ) ¼ Tx(�f , t) for y(t) ¼ X(t)

P19: Freq. localization Tx(t, f ) ¼ d( f � f0) for X( f ) ¼ d( f � f0)

P20: Time localization Tx(t, f ) ¼ d(t � t0) for x(t) ¼ d(t � t0)

P21: Linear chirp localization Tx(t, f ) ¼ d(t � cf ) for X( f ) ¼ e�jpcf
2

P22: Hyperbolic localization Tx(t, f ) ¼
1

f
d t � c

f

� �

, f > 0 if Xc( f ) ¼
1
ffiffiffi

f
p e�j2pc ln

f
fr , f > 0

P23: Chirp convolution Ty(t, f ) ¼ Tx(t � f =c, f ) for y(t) ¼
Ð

x(t � t)
ffiffiffiffiffi

jcj
p

e jpct
2
dt

P24: Chirp multiplication Ty(t, f ) ¼ Tx(t, f � ct) for y(t) ¼ x(t)e jpct
2

P25: Moyal’s Formula
Ð Ð

Tx(t, f )Ty*(t, f ) dt df ¼ j
Ð

x(t)y*(t)dtj2
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P2: Time-shift covariance

y(t) ¼ x(t � t0)) Ty(t, f ) ¼ Tx(t � t0, f )

Property P2 states that any time translations in the signal should
be preserved in its TFR. Equivalently, P2 states that an ideal TFR
should be covariant to any constant shift in the signal’s group
delay. The WD and the spectrogram satisfy this property, but the
STFT does not.

Proof Let
y(t) ¼ x(t � t0)$ Y( f ) ¼ e�j2pft0X( f )) ty( f ) ¼ tx( f )� t0:

WDy(t, f ) ¼
ð

y t þ t

2

	 


y* t � t

2

	 


e�j2pf tdt

¼
ð

x t þ t

2
� t0

	 


x* t � t

2
� t0

	 


e�j2pf tdt

¼
ð

x [t � t0]þ
t

2

	 


x* [t � t0]�
t

2

	 


e�j2pf tdt

¼Wx(t � t0, f )

STFTy(t, f ;G) ¼
ð

y(t)g*(t� t)e�j2pf tdt

¼
ð

x(t� t0)g*(t� t)e�j2pf tdt

¼
ð

x(b)g*(bþ t0 � t)e�j2pf [bþt0]dt

¼ e�j2pft0
ð

x(b)g*(b� [t � t0])e
�j2pfbdt

¼ e�j2pft0STFTx(t � t0, f ;G) 6¼ STFTx(t � t0, f ;G)

jSTFTy(t, f ;G)j2 ¼ je�j2pft0STFTx(t � t0, f ;G)j2

¼ jSTFTx(t � t0, f ;G)j2

P3: Scale covariance

y(t) ¼
ffiffiffiffiffi

jaj
p

x(at)) Ty(t, f ) ¼ Tx at,
f

a

� �

To understand property P3, recall that the dilation property in
Table 13.1 indicates that if the time axis of a signal is compressed
by a scalar factor a, then its Fourier transform is expanded by

a factor of 1=a. That is, if y(t) ¼
ffiffiffiffiffi

jaj
p

x(at), then Y( f ) ¼
1
ffiffiffiffiffi

jaj
p X

f

a

� �

. Hence, property P3 states that if the signal’s time

axis is compressed by a scale factor a, then its TFR’s time axis
should also be compressed by a and its frequency axis expanded
by the factor 1=a. The WD, the Altes Q distribution, and the
Bertrand Pk distributions are scale covariant, but the STFT is not
for any nontrivial scale factor a 6¼ 1.

Proof Let y(t) ¼
ffiffiffiffiffi

jaj
p

x(at)$ Y( f ) ¼ 1
ffiffiffiffiffi

jaj
p X

f

a

� �

.

WDy(t, f ) ¼
ð

y t þ t

2

	 


y* t � t

2

	 


e�j2pf tdt

¼ jaj
ð

x t þ t

2

h i

a
	 


x* t � t

2

h i

a
	 


e�j2pf tdt

¼
ð

x at þ u

2

	 


x* at � u

2

	 


e�j2pf =adu

¼Wx at,
f

a

� �

QY (t, f ) ¼ f

ð

Y( feu=2)Y*( fe�u=2)e j2ptfudu, f > 0

¼ f

a

ð

X
f

a
eu=2

� �

X*
f

a
e�u=2

� �

e j2p(at)( f =a)udu, a > 0

¼ QX at,
f

a

� �

BPkDY (t, f ;m)

¼ f

ð

Y( f lk(u))Y*( f lk(� u))m(u)e j2ptf (lk(u)�lk(�u))du, f > 0

¼ f

a

ð

X
f

a
lk(u)

� �

X*
f

a
lk(� u)

� �

m(u)e j2p(at)( f =a)(lk(u)�lk(�u))du, a > 0

¼ BPkDY at,
f

a
; u

� �

STFTy(t, f ;G) ¼
ð

ffiffiffiffiffi

jaj
p

x(at)g*(t� t)e�j2pf tdt

¼ 1
ffiffiffi

a
p

ð

x(t0)g*
t0

a
� t

� �

e�j2pf t0=adt0, a > 0

¼
ð

x(t0)~g*(t0 � at)e�j2p( f =a)t
0
dt0, where ~g(t)

¼ 1
ffiffiffiffiffi

jaj
p g

t

a

	 


¼ STFTx at,
f

a
; ~G

� �

6¼ STFTx at,
f

a
;G

� �

unless a ¼ 1

P4: Hyperbolic time-shift covariance

Y( f ) ¼ exp �j2pcln f

fr

� �

X( f )) Ty(t, f ) ¼ Tx t � c

f
, f

� �

Property P4 states that an ideal TFR should be covariant to
hyperbolic changes in this signal’s group delay. If the signal’s
Fourier transform or spectrum undergoes a logarithmic phase
change, then its group delay undergoes a hyperbolic shift, i.e.,

ty( f ) ¼ tx( f )þ
c

f
: Property P4 states that an ideal TFR of a

logarithmic FM-modulated signal should correspond to the
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TFR of the original signal, but with a dispersive temporal shift
equal to the hyperbolic change in the group delay. The Altes Q
distribution and the general form of the Bertrand P0 distribution
satisfy this property.

Proof Let
Y( f ) ¼ exp �j2pc ln f

fr

� �

X( f )) ty( f ) ¼ tx( f )þ
c

f
:

QY (t, f ) ¼ f

ð

Y( feu=2)Y*( fe�u=2)e j2ptfudu, f > 0

¼ f

ð

X( feu=2)e�j2pc ln ( fe
u=2=fr)

X*( fe�u=2)e j2pc ln ( fe
�u=2=fr)e j2ptfudu

¼ f

ð

X( feu=2)X*( fe�u=2)

� e�j2pc[ ln ( f =fr)þu=2�ln ( f =fr)þu=2]e j2pt fudu

¼ f

ð

X( feu=2)X*( fe�u=2)e j2p[t�c=f ]fudu

¼ QX(t � c=f , f )

BP0DY (t, f ;m) ¼ f

ð

X f
u=2eu=2

sinhu=2

� �

e
�j2pcln f

fr
, u=2e

u=2

sinhu=2

� �

X* f
u=2e�u=2

sinhu=2

� �

e
j2pcln f

fr
, u=2e

�u=2

sinhu=2

� �

m(u)e j2ptfudu

¼ f

ð

X f
u=2eu=2

sinhu=2

� �

X* f
u=2e�u=2

sinhu=2

� �

e�j2pclneum(u)e j2ptfudu

¼ f

ð

X f
u=2eu=2

sinh u=2

� �

X* f
u=2e�u=2

sinhu=2

� �

� m(u)e j2p(t�c=f )fudu

¼ BP0DX(t � c=f , f ;m)

P5: Convolution covariance

y(t) ¼
ð

h(t � t)x(t)dt ) Ty(t, f ) ¼
ð

Th(t � t, f )Tx(t, f )dt

Property P5 states that convolving two signals together in the
time domain should produce the equivalent effect of convolving
their corresponding TFRs together in the time domain. The WD
is one of the few TFRs that satisfies this property.

Proof Let y(t) ¼
Ð

h(t � t)x(t)dt.

WDy(t, f ) ¼
ð

y(t þ t0=2)y*(t � t0=2)e�j2pft0dt0

¼
ð ð

h(t þ t0=2� a)x(a)da

� �

�
ð

h*(t � t0=2� g)x*(g)dg

� �

e�j2pft0dt0

Substituting a¼ tþ p=2, g¼ t� p=2, and t0 ¼ qþ p produces

WDy(t, f ) ¼
ððð

h (t � t)þ q

2

	 


h* (t � t)� q

2

	 


x tþ p

2

	 


x* t� p

2

	 


e�j2pf (qþp)dqdtdp

¼
ð

WDh(t � t, f )WDx(t, f )dt:

P6: Modulation covariance

y(t) ¼ h(t)x(t) ) Y( f ) ¼
ð

H( f � f 0)X( f 0)df 0

) Ty(t, f ) ¼
ð

Th(t, f � f 0)Tx(t, f
0)df 0

If two signals are modulated together in time, then Table 13.1
indicates that their Fourier transforms are convolved together in
frequency. Similarly, property P6 states that whenever the Fourier
transforms of two signals are convolved together in the frequency
domain, then the TFR of the resulting signal should be equal to
the convolution in frequency of the two signals’ respective TFRs.
It can be shown using the dual to the proof in P5 above that the
WD satisfies this property.

13.4.2 Statistical Energy Density
Distribution Properties

The second category of properties in Table 13.6 originates from
the desire to generalize the concepts of the one-dimensional
instantaneous signal energy, jx(t0)j2, and power spectral density,
jX( f )j2, into a two-dimensional instantaneous signal probability
density function or an energy distribution, Tx(t0, f0), which would
ideally provide a measure of the local signal energy or the
probability that a signal contains a sinusoidal component of
the frequency f0 at the time t0. Properties P7–P13 state that such
an energy distribution TFR should be real, nonnegative, and have
its marginal distributions equal to the signal’s temporal and
spectral energy densities, jx(t)j2 and jX( f)j2, respectively. A TFR
should also preserve the signal energy, mean, variance, and other
higher order moments of the signal’s temporal and spectral
energy density. These ideal statistical or energy density TFR
properties are described below.

P7: Real

Tx(t, f ) ¼ Tx*(t, f ), 8x(t)

For a TFR to be real, it must be equal to its own complex
conjugate for all signals. The WD, the Altes Q distribution, and
the spectrogram are always real valued. Equations 13.10 and
13.11 are examples of the fact that the STFT is complex, which
is why its squared magnitude, the spectrogram, is usually used for
visual analysis.
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Proof

WDx*(t, f ) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


e�j2pf tdt

� �*

¼
ð

x* t þ t

2

	 


x t � t

2

	 


e j2pf tdt

¼
ð

x* t � t0

2

� �

x t þ t0

2

� �

e�j2pft
0
dt0 ¼Wx(t, f )

QX*(t, f ) ¼ f

ð

X*( feu=2)X( fe�u=2)e�j2t fudu

¼ f

ð

X*( fe�b=2)X( feb=2)e j2pt f bdb ¼ QX(t, f )

P8: Positivity

Tx(t, f ) � 0, 8x(t)

If a TFR is to be interpreted as a two-dimensional distribution of
signal energy, then it should be nonnegative. By definition, since
the spectrogram is equal to the squared magnitude of the STFT, it
is always nonnegative. However, Tables 13.2 and 13.4 reveal that
the WD and the Q distribution, respectively, have negative values
for some signals. For example, Table 13.2 states that the WD of a
rectangular box function is a variable width sinc function, which
is frequently negative. The last five entries in Table 13.2 corres-
pond to the WD of multicomponent signals. Each has a WD with
cross terms that oscillate about zero.

P9: Time marginal preservation

ð

Tx(t, f )df ¼ jx(t)j2,8x(t)

If TFR is to be interpreted as a signal’s two-dimensional energy
distribution over the time–frequency plane, then integrating out
the frequency variable should result in the signal’s instantaneous
energy in the time domain. The WD satisfies this property; the
spectrogram does not.

Proof

ð

Wx(t, f )df ¼
ðð

x(t þ t=2)x*(t � t=2)e�j2pftdtdf

¼
ð

x(t þ t=2)x*(t � t=2)d(t)dt ¼ jx(t)j2

ð

jSTFTx(t, f ;G)j2df ¼
ð ð

x(t)g*(t� t)e�j2pf tdt

� �

�
ð

x*(t0)g(t0� t)e j2pft
0
dt0

� �

df

¼
ðð

x(t)x*(t0)g*(t� t)g(t0� t)d(t� t0)dtdt0

¼
ð

jx(t0)j2jg(t0� t)j2dt0:

Hence, the marginal distribution corresponding to the two-
dimensional spectrogram is equal to a weighted average of the
signal’s instantaneous signal energy, jx(t0)j2, in the neighborhood
of the output time t. The weighting function is a shifted version
of the analysis window. The spectrogram only satisfies P9 if the
analysis window is a Dirac impulse in time.

P10: Frequency marginal preservation

ð

Tx(t, f )dt ¼ jX( f )j2, 8x(t)

If the TFR is the signal’s two-dimensional energy distribution,
then integrating out the time axis should result in the signal’s
spectral density function, jX( f)j2. The Wigner and Altes Q dis-
tributions satisfy this property; the spectrogram does not.

Proof

ð

WDx(t, f )dt ¼
ðð

X( f þ n=2)X*( f � n=2)e j2pntdndt

¼
ð

X( f þ n=2)X*( f � n=2)d(n)dn ¼ jX( f )j2

ð

QX(t, f )dt ¼
ð

f

ð

X( feu=2)X*( fe�u=2)e j2tfududt

¼ f

ð

X( feu=2)X*( fe�u=2)d( fu)du ¼ jX( f )j2

ð

jSTFTx(t, f ;G)j2dt ¼
ð ð

e�j2ptfX( f 0)G*( f 0 � f )e j2pt f
0
df 0

� �

�
ð

e j2pt fX*(n)G(n� f )e�j2p tndn

� �

dt

¼
ðð

X( f 0)X*(n)G*( f 0 � f )G(n� f )

� d(n� f 0)df 0dn

¼
ð

jX( f 0)j2jG( f 0 � f )j2df 0:

Hence, the spectrogram does not satisfy P10 unless the Fourier
transform of the STFT analysis window is a Dirac function.

P11: Energy preservation

ðð

Tx(t, f )dt df ¼
ð

jX( f )j2df ¼ Ex

If the TFR is a distribution of the signal’s energy over the whole
time–frequency plane, then integrating the TFR should give you
back the total signal energy, Ex. The Wigner and Altes Q distri-
butions satisfy this property. The proof is simplified by making
use of the fact that they were shown to preserve the frequency-
domain marginals in P10 above.
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Proof

ðð

WDx(t, f )dtdf ¼
ð

jX( f )j2df ¼ Ex

ðð

QX(t, f )dtdf ¼
ð

jX( f )j2df ¼ Ex:

P12: Time moment preservation

ðð

tnTx(t, f )dtdf ¼
ð

tnjx(t)j2dt

The nth moment of a signal g(t) is defined to be

mg(n) ¼
ð

tng(t)dt:

Property P12 states that the value of the nth time moment of the
signal’s instantaneous energy, jx(t)j2, and the nth time moment
of the signal’s TFR should be identical. The WD satisfies this
property.

Proof

ðð

tnWDx(t, f )dtdf ¼
ðð ð

tnx(t þ t=2)x*(t � t=2)e�j2pf t

� dtdtdf

¼
ðð

tnx(t þ t=2)x*(t � t=2)d(t)dtdt

¼
ð

tnjx(t)j2dt: (13:53)

P13: Frequency moment preservation

ðð

f nTx(t, f )dtdf ¼
ð

f njX( f )j2df

The nth moment of the power spectral density, jX( f )j2, and
the nth frequency moment of the signal’s TFR should be
identical. The Wigner and the Altes Q distributions satisfy this
property.

Proof

ðð

f nWDx(t, f )dtdf ¼
ðð ð

f nX( f þ n=2)X*( f � n=2)e j2pnt

dn dtdf

¼
ðð

f nX( f þ n=2)X*( f � n=2)d(n)dn df

¼
ð

f njX( f )j2df (13:54)

ðð

f nQX(t, f )dtdf ¼
ðð ð

f nþ1X( feu=2)X*( fe�u=2)e j2ptfududtdf

¼
ðð

f nþ1X( feu=2)X*( fe�u=2)d( fu)dudf

¼
ð

f njX( f )j2df : (13:55)

Note that an alternative way to prove that the WD and the Altes
Q distribution satisfy the energy preservation property P11 is to
evaluate Equations 13.54 and 13.55 for the special case of n¼ 0.

13.4.3 Signal Analysis Properties

The next category of properties in Table 13.6 is P14 through P18
which arise from signal processing considerations. A TFR should
have the same nonzero support, i.e., duration and bandwidth, as the
signal under analysis. At any given time, t, the average or mean
frequency should equal the instantaneous frequency of the signal,
while the average or center of gravity of the TFR in the time
direction should equal the group delay of the signal. These
two properties have been used to analyze the distortion of audio
systems and the complex FM sonar signals used by bats and whales
for echolocation.5,7,24,53,69,75 Property P18 is the TFR equivalent of
the duality property of Fourier transforms in Table 13.1.

P14: Finite time support

x(t) ¼ 0 for t =2 (t1, t2) ) Tx(t, f ) ¼ 0 for t =2 (t1, t2)

Property P14 states that if a signal starts at time t1 and stops at time
t2, then an ideal TFR should also start and stop at the same
time. This is a very intuitive property for the TFR to have if it is
to be interpreted as a two-dimensional energy distribution;
there should be no nonzero values of the TFR at any time before
the signal starts up nor after the signal has stopped. However, this
property is sometimes referred to as ‘‘weak’’ time support,43 as it
simply guarantees that the TFR will have the same global time
support as the signal under analysis. It does not guarantee that
the TFR will be equal to zero whenever the signal or its spectrum
are equal to zero. TheWD satisfies the finite support property, but
the STFT does not for any analysis window g(t) 6¼ kd(t).

Proof Assume x(t)¼ 0 for t =2 (t1, t2).
A sufficient condition for the WD of x(t) in Equation 13.15 to

be equal to zero is that the signal product [x(tþ t=2)x*(t� t=2)]
inside the integral be zero everywhere, or equivalently, that the
nonzero support region of these two shifted signals do not overlap.
Since x(tþ t=2)¼ 0 for t =2 (2(t1� t), 2(t2� t)) and x*(t� t=2)¼ 0
for t =2 (2(t� t2), 2(t� t1)), then the WD in Equation 13.15 will be
equal to zero whenever the nonzero support region of x(tþ t=2)
lies entirely to the right or entirely to the left of that of x*(t� t=2),
i.e., 2(t� t1,< 2(t1� t) or 2(t� t2)> 2 (t2� t), respectively. Sim-
plifying these last two inequalities, we see that the WD of a finite
duration signal is identically zero for t< t1 and t> t2.
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P15: Finite frequency support

jX( f )j ¼ 0 for f =2 ( f1, f2)) Tx(t, f )¼ 0 for f =2 ( f1, f2), f1 < f2

Property P15 is the dual to the finite time support property above.
It states that if the Fourier transform of the signal is band limited,
then its TFR should also have the same nonzero support in the
frequency domain. It is easy to show using the ‘‘frequency-
domain’’ formulations of the WD and the STFT in Equations
13.16 and 13.8, respectively, that the WD satisfies this property,
but the STFT does not unless the Fourier transform of the
analysis window is G( f )¼ cd( f ). Again, P15 is a ‘‘weak’’ fre-
quency support property, as it only guarantees that the global
bandwidth of the TFR matches that of the signal spectrum.

P16: Instantaneous frequency

Ð

fTx(t, f )df
Ð

Tx(t, f )df
¼ fx(t) ¼

1

2p

d

dt
arg{x(t)} (13:56)

Property P16 states that the first normalized moment in frequency
of the TFR should be equal to the instantaneous frequency of the
signal. Hence, this property asserts that the TFR’s average value or
center of gravity in the frequency direction should correspond
to the signal’s instantaneous frequency in Equation 13.3. TheWD
satisfies this property.

Proof First, write the signal in terms of its polar form, x(t)¼ A(t)
e j2pf(t), whereA(t)> 0 is the real amplitude function andf(t) is the
phase of the signal. The proof will first evaluate the numerator of the
expression in Equation 13.56 and then denominator. Let the fol-
lowing notation be used to represent the partial time derivative of a
function, followed by that derivative being evaluated at the time t0:

_g(t0) ¼
q

qt
g(t)

�

�

�

�

t¼t0
(13:57)

ð

fWDx(t, f )df ¼
ð

f

ð

A(tþt=2)e j2pf(tþt=2)

�A(t�t=2)e�j2pf(t�t=2)e�j2pf tdtdf

¼
ð

A(tþt=2)A(t�t=2)e�j2p[f(t�t=2)�f(tþt=2)]

�
ð

fe�j2pf tdf

� �

dt

¼
ð

A(tþt=2)A(t�t=2)e�j2p[f(t�t=2)�f(tþt=2)]

� 1

j2p

q

qt
d(t)dt¼ 1

j2p

� q

qt
A(tþt=2)A(t�t=2)e�j2p[f(t�t=2)�f(tþt=2)]
h i

�

�

�

�

t¼0

¼ 1

j2p
[ _A(t)A(t)=2�A(t) _A(t)=2þA2(t)j2p _f(t)]

¼A2(t) _f(t) (13:58)

ð

WDx(t, f )df ¼ jx(t)j2 ¼ A2(t) from P9: (13:59)

Dividing Equation 13.58 by 13.59, one obtains

Ð

fWDx(t, f )df
Ð

WDx(t, f )df
¼ A2(t) _f(t)

A2(t)
¼ _f(t) ¼ fx(t): (13:60)

This property is very useful for the analysis of FM signals. For
example, we see from the third entry in Table 13.2 that the WD
of a linear FM chirp in the time domain is a Dirac function
centered along the chirp’s linear instantaneous frequency. Since a
Dirac function is symmetrical, this also shows that the average
value or center of gravity of the chirp’s WD in the frequency
direction is also located along the signal’s linear instantaneous
frequency. Table 13.2 shows that all even signals modulated by a
linear FM chirp have a WD that is symmetric with respect to the
instantaneous frequency of the chirp; hence, the center of gravity
of the WD in the frequency direction is equal to the signal’s
instantaneous frequency.

In general, the spectrogram does not satisfy this property.39 Its
center of gravity,

Ð

f SPECx(t, f ;G)df
Ð

SPECx(t, f ;G)df
¼
Ð

_f(t)jx(t)j2jg(t� t)j2dt
Ð

jx(t)j2jg(t� t)j2dt
,

is only equal to the instantaneous frequency if the analysis
window is a Dirac function.

P17: Group delay

Ð

tTx(t, f )dt
Ð

Tx(t, f )dt
¼ � 1

2p

d

df
arg {X( f )}

Property P17 is the dual to property P16. It states that the TFR’s
normalized average value or center of gravity in the time direc-
tion should be equal to the group delay of the signal in Equation
13.4. The WD satisfies this property. The proof is similar to that
of P16 above except that the signal’s Fourier transform is
expressed in polar form and the frequency-domain formulation
of the WD in Equation 13.16 is used. The spectrogram does not
satisfy this property.39

P18: Fourier transform

y(t) ¼ X(t) ) Y( f ) ¼ x(�f ) ) Ty(t, f ) ¼ Tx(�f , t)

Property P18 is the TFR equivalent of the duality property of the
Fourier transform in Table 13.1, which states what happens to
the Fourier transform if the time and frequency-domain forms of
a signal x(t) are switched. If y(t) is set equal to the Fourier
transform of x(t), i.e., y(t)¼X(t), then the Fourier transform of
y(t) is equal to x(t), but with its argument replaced by t¼�f, i.e.,
Y( f )¼ x(�f ). Property P18 states that the TFR of the dual signal
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y(t)¼X(t) should likewise have the role of time and frequency
interchanged, but with the frequency variable negated. The WD
satisfies this property.

Proof Let y(t)¼X(t).

WDy(t, f ) ¼
ð

y(t þ t=2)y*(t � t=2)e�j2pf tdt

¼
ð

X(t þ t=2)X*(t � t=2)e�j2pf tdt

¼
ð

X(t þ n=2)X*(t � n=2)e j2p(�f )ndn

¼WDx(�f , t):

This useful property can be used to simplify the derivation of many
TFRs. For example, it has been shown inmany articles that theWD
of a rectangular function is a variable width sinc function.37,103 See
Table 13.2. Since the rectangular and sinc functions are Fourier
transform pairs in Table 13.1, then property P18 shows that theWD
of a sinc function is equal to theWDof a rectangle, but with the time
and frequency variables interchanged. That is, if

x(t) ¼ recta(t) ¼
1, jtj < a

0, jtj > a

(

)WDx(t, f )

¼ sin[4p(a� jtj)f ]
pf

recta(t),

then

y(t) ¼ X(t) ¼ sin 2pat

pt
)WDy(t, f ) ¼WDx(�f , t)

¼ sin [4p(a�j� f j)t]
pt

recta(�f )

¼ sin [4p(a�j f j)t]
pt

recta( f ):

The negation of the frequency axis has no effect in this example
since the magnitude and rectangular functions are even functions.

13.4.4 Signal Localization

The group of properties P19 through P24 in Table 13.6 are ideal
TFR localization properties that are desirable for high-resolution
capabilities. These properties state that if a signal is perfectly
concentrated in time or frequency (i.e., the signal is an impulse
or a sinusoid) then its TFR should also be perfectly concentrated
at the same time or frequency, respectively. Properties P21 and
P22 state that the TFRs of a linear or hyperbolic spectral FM chirp
signal should be perfectly concentrated along that signal’s group
delay. Property P24 states that a signal modulated by a linear FM
chirp should have a TFR whose frequency axis has been sheared
by an amount equal to the linear instantaneous frequency of the
chirp. P23 is the dual to property P24; it states that multiplication
by a linear FM chirp in the frequency domain should shear the

time axis of the TFR by an amount equal to the group delay of
the chirp.

P19: Frequency localization

X( f ) ¼ d( f � f0)) Tx(t, f ) ¼ d( f � f0)

This property states that if the signal is a complex sinusoid whose
Fourier transform is perfectly concentrated about a certain fre-
quency, f0, then its TFR should also be perfectly concentrated
about that same frequency. The WD and the Altes Q distribution
satisfy this property. As Equation 13.11 shows, the STFT does
not, unless the Fourier transform of the analysis window is
proportional to a Dirac function.

Proof Let X( f )¼ d( f� f0).

WDx(t, f ) ¼
ð

d( f þ v=2� f0)d( f � v=2� f0)e
j2pvtdv

¼ 2d f þ 2( f � f0)

2
� f0

� �

e j4p( f�f0)t ¼ d( f � f0)

QX(t, f ) ¼ f

ð

X( feu=2)X*( fe�u=2)e j2ptfudu,

¼ f

ð

d( feu=2 � f0)d( fe
�u=2 � f0)e

j2ptfu

¼ f

ð

d(u� 2ln( f0=f ))
1
2 fe

u=2
�

�

�

�

" #

d(uþ 2 ln( f0=f ))

� 1
2 fe
�u=2

�

�

�

�

" #

e j2ptfudu

¼ 4

j f j d(4 ln( f0=f ))e
j4ptf ln( f0=f )

¼ 4

j f j
d( f � f0)

4 f
f0

�f0
f 2

h i�

�

�

�

�

�

e j4ptf ln( f0=f ) ¼ d( f � f0):

P20: Time localization

x(t) ¼ d(t � t0)) Tx(t, f ) ¼ d(t � t0)

This property states that if the signal is an impulse perfectly
localized at time t¼ t0, then its TFR should also be concentrated
at time t¼ t0. The WD satisfies this property. The proof is the
dual to that used in property P19 above with the time-domain
WD formulation in Equation 13.15 being used in place of Equa-
tion 13.16. The STFT does not satisfy this property in general; as
Equation 13.10 indicates, the STFT experiences spreading about
t¼ t0 equal to the duration of the analysis window.

P21: Linear chirp localization

X( f ) ¼ e�jpcf
2 ) Tx(t, f ) ¼ d(t � cf )

This property states that if a signal’s Fourier transform is equal to
a linear FM chirp, then its TFR should be perfectly concentrated
along the chirp’s linear group delay, tx( f )¼ cf. The WD satisfies
this property.

13-20 Transforms and Applications Handbook



Proof Let X( f ) ¼ e�jpcf
2
:

WDx(t, f ) ¼
ð

e�jpc( fþn=2)
2

e jpc( f�n=2)
2

e j2pntdn

¼
ð

e�jpc[f
2þf nþn2=4�f 2þf n�n2=4]e j2pntdv

¼
ð

e j2pn(t�cf )dn ¼ d(t � cf ): (13:61)

When property P18 is coupled with P21, it can be shown that
the WD also satisfies a dual property to linear chirp localization.
If the signal is a linear FM time-domain chirp, then its TFR
should be concentrated along its instantaneous frequency.
Thus, if x(t) ¼ e�jpct

2
, then WDx(t, f)¼ d( fþ ct).

Proof Let X( f ) ¼ e�jpcf
2

with WD, WDx(t, f)¼ d(t� cf)
derived in Equation 13.61. Coupling properties P18 and P21,
one can show that if y(t) ¼ X(t) ¼ e�jpct

2
, then WDy(t, f)¼

WDx(�f, t)¼ d( fþ ct).

P22: Hyperbolic chirp localization

Xc( f ) ¼
1
ffiffiffi

f
p e�j2pc ln

f

fr
, f > 0) Txc (t, f ) ¼

1

f
d t � c

f

� �

, f > 0

This property is useful for analyzing FM signals whose group
delay is hyperbolic. That is, signals with logarithmic phase spec-
tra should have TFRs that are perfectly concentrated along its

hyperbolic group delay, tx( f ) ¼
c

f
~u( f ): Chirps with logarithmic

phase are Doppler invariant; they have been used to model the
biosonar signals used by bats.7,53 The Atles Q distribution and
the Unitary Bertrand P0 distribution are two of the few distribu-
tions that satisfy this property.

Proof Let X( f ) ¼ 1
ffiffiffi

f
p e�j2pcln( f =fr)~u( f ):

QX(t, f ) ¼ f

ð

1
ffiffiffiffiffiffiffiffi

f u=2
p e�j2pc ln[ fe

u=2=fr]
1
ffiffiffiffiffiffiffiffiffiffiffiffi

fe�u=2
p

� e�j2pc ln[fe�u=2=fr]e j2ptfudu, f > 0

¼
ð

e�j2pc[ ln( f =fr)þu=2�(ln f =fr)þu=2]e j2ptfudu

¼
ð

e j2p(t�c=f )fudu ¼ d(t � c=f ):

P23: Chirp convolution

y(t) ¼
ð

x(t � t)
ffiffiffiffiffi

jcj
p

e jpct
2

dt ) Ty(t, f ) ¼ Tx t � f

c
, f

� �

To understand this property, recall from Table 13.1 that a Gaussian
signal and its Fourier transform have inversely proportional vari-
ances. Thus, time-domain convolution of a signal x(t) with a linear
FM chirp with sweep rate c is equivalent to multiplying the Fourier
transform of the signal with a linear FM chirp of sweep rate �1=c:

y(t) ¼
ð

x(t � t)
ffiffiffiffiffi

jcj
p

e jpct
2

dt $ Y( f )

¼ X( f )
ffiffi

j
p

e�jpf 2=c (13:62)

jY( f )j ¼ jX( f )j (13:63)

ty( f ) ¼ tx( f )þ f =c: (13:64)

This multiplication in Equation 13.62 of the signal spectrum with
a linear FM chirp leaves the magnitude of X( f ) unchanged in
Equation 13.63, but changes the signal’s group delay in Equation
13.64 by the group delay of the chirp. Because changes in the
group delay correspond to a temporal translation of each spectral
component, property P23 states that the TFR of the convolution
output y(t) in Equation 13.62 should therefore be equal to the
TFR of x(t), but with the time axis adjusted for the frequency-
dependent change in the group delay brought about by the
convolution. Note that this results in a shearing of the TFR.
Such shearing has been exploited in RADAR analysis.109,114 By
definition in Equation 13.39, the Bertrand k¼ 2 distribution in
Equation 13.40 satisfies this property. The WD is one of the few
other TFRs that satisfies this property.

Proof Let Y( f ) ¼ X( f )
ffiffi

j
p

e�jpf 2=c:

WDy(t, f ) ¼
ð

X( f þ v=2)
ffiffi

j
p

e�jp( fþv=2)2=cX*( f � v=2)

�
ffiffiffiffiffi

�j
p

e jp( f�v=2)2=ce j2pvtdv

¼
ð

X( f þ v=2)X*( f � v=2)

� e�jp[f 2þfvþv2=4�f 2þvf�v2=4]=ce j2pvtdv

¼
ð

X( f þ v=2)X*( f � v=2)e j2pv(t�f =c)dv

¼ WDx(t � f =c, f ):

P24: Chirp multiplication

y(t) ¼ x(t)e jpct
2 ) Ty(t, f ) ¼ Tx(t, f � ct)

This property is the dual to property P23 with multiplication by
a linear FM chirp occurring in the time domain rather than in the
frequency domain as before. If a signal is multiplied in the time
domain by a linear FM chirp with sweep rate c, then its magni-
tude is unchanged, but its instantaneous frequency is changed by
the linear instantaneous frequency of the linear FM chirp, i.e.,
fy(t)¼ fx(t)� ct. Property P24 states that the TFR of y(t) should
correspond to the TFR of x(t) but with the frequency axis
corrected to account for the time-dependent change in the
signal’s instantaneous frequency. The WD is one of the few
TFRs to satisfy this property. The proof is similar to that of P23
except that the time-domain formulation of the WD in Equation
13.15 is used. An alternative proof is to use the fact that the WD
satisfies the convolution covariance property P5 coupled with the
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fact that the WD of a linear FM chirp in Table 13.2 is a Dirac
function centered around its instantaneous frequency:

y(t) ¼ x(t)e jpct
2 )WDy(t, f ) ¼

ð

WDx(t, f
0)d(( f � f 0)� ct)df 0

¼WDx(t, f � ct):

Example

Table 13.2 states that the rectangular signal,

x(t) ¼ recta(t)) WDx (t, f ) ¼
sin [4p(a� jtjf ]

pf
recta(t),

has a WD that is equal to a sinc function whose mainlobe width

varies with time. Near t¼ 0, the sinc function is a relatively

narrow function of frequency centered near f¼ 0. For time

values near the edges of the rectangle, the spectral width of

the sinc’s main lobe is very broad. This is an intuitive result as the

middle of the rectangle is very smooth, so its WD should be

narrowband and lowpass; however, near the edges of the rect-

angle, where a sharp discontinuity exists, the WD is broadband.

Property P24 states that the WD of a chirp modulated rectangle,

y(t) ¼ recta(t)e
jpct2 ) WDy (t, f )

¼ WDx (t, f � ct) ¼ sin [4p(a� jtj)( f � ct)]

p( f � ct)
recta(t),

is a variable width sinc function as before, but centered along

the chirp’s linear instantaneous frequency, f¼ ct, in the time–

frequency plane.

Proof Let y(t) ¼ recta(t)e jpct
2
.

WDy(t, f ) ¼
ð

e jpc(tþt=2)
2

recta(t þ t=2)e�jpc(t�t=2)
2

� recta(t � t=2)e�j2pf tdt

¼
ð

recta(t þ t=2)recta(t � t=2)e�j2p( f�ct)tdt

¼ 2

ð

recta(t
0)recta(2t � t0)e�j4p( f�ct)(t0�t)dt0

¼

0, 2t þ a < �a

2
Ð2tþa

�a

e�j4p( f�ct)(t0�t)dt0

¼ sin 4p( f � ct)(aþ t)

p( f � ct)
, �a < 2t þ a < a

2
Ða

2t�a

e�j4p( f�ct)(t0�t)dt0

¼ sin 4p( f � ct)(a� t)

p( f � ct)
, �a < 2t � a < a

0, 2t � a > a

8

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
:

¼ sin 4p( f � ct)(a� jtj)
p( f � ct)

recta(t):

13.4.5 Preserving Inner Products

The last property in Table 13.6, known as Moyal’s formula39,60

or the unitarity property, states that TFRs should preserve the
signal projections, inner products, and norm metrics which are
used frequently in signal detection, synthesis, approximation
theory, and pattern recognition.24,28,56,60,69,72,77,96,108 It also states
that if two basis functions are orthogonal, i.e., their inner product
is equal to zero, then their respective TFRs should also be
orthogonal. Hence, TFRs that satisfy Moyal’s formula can be
used to induce a set of two-dimensional, orthogonal basis func-
tions, Tgi (t, f ) from a set of one-dimensional orthogonal basis
functions, gi(t), i¼ 1, . . . , N.

P25: Moyal’s formula

ð

x(t)y*(t)dt

�

�

�

�

�

�

�

�

2

¼
ðð

Tx(t, f )Ty*(t, f )dtdf

This property states that an ideal TFR should preserve inner
products. It is analogous to Parseval’s theorem for the Fourier
transform.101,105

ð

x(t)y*(t)dt ¼
ð

X( f )Y*( f )df ,

which states that the inner product of two signals in the time
domain should be equal to the inner product of their respective
Fourier transforms in the frequency domain. The Wigner,
Altes Q, and the Unitary Bertrand P0 distributions satisfy this
property.

Proof

ðð

WDx(t, f )WDy*(t, f )dtdf

¼
ðð ð

x(t þ u=2)x*(t � u=2)e�j2pfudu

� �

�
ð

y*(t þ t0=2)y(t � t0=2)e j2pft
0
dt0

� �

dtdf

¼
ðð ð

x(t þ u=2)y*(t þ t0=2)x*(t � u=2)y(t � t0=2)

� d(t0 � u)dudtdt0

¼
ðð

[x(t þ u=2)y*(t þ u=2)] [x(t � u=2)

� y*(t � u=2)]*dudt

¼
ð

x(t)y*(t)dt

�

�

�

�

�

�

�

�

2
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ðð

QX(t, f )QY*(t, f )dt df

¼
ðð

f

ð

X( feu=2)X*( fe�u=2)e j2ptfudu

� �

� f

ð

Y*( feb=2)Y( fe�b=2)e�j2ptfbdb

� �

dtdf

¼
ðð ð

f 2X( feu=2)Y*( feb=2)X*( fe�u=2)Y( fe�b=2)

� d( f (u� b))du db df

¼
ðð

f X( feu=2)Y*( feu=2)X*( fe�u=2)Y( fe�u=2)dudf

¼
ð

X(a)Y*(a)da

�

�

�

�

�

�

�

�

2

, f > 0

13.5 Classes of TFRs with Common
Properties

The list of ideal TFR properties given in Section 13.4 is far
from exhaustive; others have been proposed in Refs.
[1,4,12,43,60,84,122]. Nonetheless, the checklist summary in
Table 13.7 reveals that no known TFR satisfies all such proper-
ties. To understand the relative advantages of various TFRs, and
to understand their inter-relationships, this section will group
TFRs into classes. Each class is defined by the two or three ideal
TFR properties that all member TFRs must satisfy. A review will
be given of Cohen’s class of shift covariant TFRs, the affine class
of affine covariant TFRs, the hyperbolic class, developed for
signals with hyperbolic group delay, and the power class, which
is useful for signals with power group delay.43,60,69,73,97,98,100

The grouping of TFRs into classes sharing common properties
has the following advantages. It provides very helpful insight as
to which types of TFRs will work best in different situations. For
example, many members of Cohen’s class TFRs are well suited to
constant bandwidth analysis whereas several affine class TFRs are
best suited for multiresolution analysis. Within a given class, each
TFR is completely characterized by a unique set of TFR-depen-
dent kernels that can be compared against the list of class-
dependent kernel constraints in Table 13.8 to quickly determine
which ideal properties a given TFR satisfies. The shape of these
kernels can be analyzed to ascertain which is best for auto term
preservation or cross term removal in a particular application.

13.5.1 Cohen’s Class of TFRs

Cohen0s class ¼ {Tx(t, f )jy(t) ¼ x(t � t0)e
j2pf0t ) Ty(t, f )

¼ Tx(t � t0, f � f0)}:

Cohen’s class consists of all quadratic TFRs that satisfy the
frequency-shift and time-shift covariance properties. Several
TFRs in Cohen’s class are listed in Table 13.9. Since each

Cohen’s-class TFR automatically satisfies properties P1–P2 in
Table 13.6, then it must have a checkmark in the first two property
rows in Table 13.7.39–41,43,60,69 Time- and frequency-shift
covariance are very useful properties in the analysis of speech,
narrowband Doppler systems, and multipath environments.

13.5.1.1 Alternative Formulations

Any TFR in Cohen’s class can be written in one of the four
equivalent ‘‘Normal Forms,’’39,60,69

Cx(t, f ;CC) ¼
ð ð

wC(t � t0, t)x

� t0 þ t

2

	 


x* t0 � t

2

	 


e�j2pf tdt0dt (13:65)

¼
ð ð

FC( f � f 0, n)X f 0 þ n

2

	 


X* f 0 � n

2

	 


e j2ptndf 0dn (13:66)

¼
ð ð

cC(t � t0, f � f 0)WDx(t
0, f 0)dt0df 0 (13:67)

¼
ð ð

CC(t, n)AFx(t, n)e
j2p(tn�f t)dtdn, (13:68)

or in the ‘‘bi-frequency’’ form

Cx(t, f ;CC) ¼
ð ð

GC( f � f1, f � f2)

� X( f1)X*( f2)e
j2pt( f1�f2)df1df2: (13:69)

Each normal form is characterized by one of the four kernel
wC(t, t), FC( f, n), cC(t, f), and CC(t, n), which are interrelated
by the following Fourier transforms,

wC(t, t) ¼
ð ð

FC( f , n)e
j2p( f tþnt)dfdn

¼
ð

CC(t, n)e
j2pntdn

$ FC( f , n) (13:70)

cC(t, f ) ¼
ð ð

CC(t, n)e
j2p(nt�f t)dtdn

¼
ð

FC( f , n)e
j2pntdn

$ CC(t, n) (13:71)

GC( f1, f2) ¼ FC
f1 þ f2

2
, f2 � f1

� �

: (13:72)

The kernels for the TFRs in Cohen’s class are given in Table
13.10. They can be combined with Equations 13.65 through 13.69
to provide alternative formulations for any of the Cohen’s-class
TFRs given in Table 13.9. These kernels can also be compared
against the constraints in the second column of Table 13.8 to
determine which properties a given Cohen’s-class TFR satisfies.

Mixed Time–Frequency Signal Transformations 13-23



T
A
B
L
E
1
3
.7

D
es
ir
ab
le
P
ro
pe
rt
ie
s
Sa
ti
sfi
ed

by
T
FR

s
D
efi
n
ed

in
T
ab
le
s
13
.9
,1
3.
11
,
13
.1
3,

an
d
13
.1
5

M
S

S
S

T
A

B
B

B
C

C
C

C
G

G
H

T
W

P
R

C
S

P
P

U
U

F
C

0
J

U
W

K
A

D
F

G
E

W
Y

L
M

E
N

P
D

P
W

I
R

A
P

W
E

A
P

W
R

K
Q

D
D

D
D

D
S

S
D

Q
D

D
P

D
H

D
D

D
k

Q
D

D
D

L
Q

D
C

D
D

D
c

a
c

c
c

c
c

c
c

C
la
ss
(e
s)

a
h

h
a

c
a

c
c

c
a

h
c

a
h

c
a

c
c

c
p

h
c

a
a

a
h

c
c

a
a

a

P
ro
p
er
ty

1
F
re
q
u
en
cy

sh
if
t

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

2
T
im

e

sh
if
t

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p

3
S
ca
le

co
va
ri
an

ce

p
p

p
p

p
1
p

p
p

p
1
p

p
p

p
9

p
p

p
p

p
p

p
p

p

4
H
yp
er
b
o
li
c

ti
m
e
sh
if
t

p
p

p
p

p
p

5
C
o
n
vo
lu
ti
o
n

p
6
p

p
10

p
p

p

6
M
o
d
u
la
ti
o
n

p
7
p

p
p
10

p
p

p

7
R
ea
l-
va
lu
ed

p
p

p
p

p
p

p
4
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
17

p
18

p
p

p
p

8
P
o
si
ti
vi
ty

p
p

p
p

p

9
T
im

e

m
ar
g
in
al

p
p

p
p

p
p

p
p

p
p
11

p
p
13

p
p

p
p

10
F
re
q
u
en
cy

m
ar
g
in
al

p
p

p
p

p
p

p
p

p
p

p
p

p
11

p
p

p
p

p
p

p

11
E
n
er
g
y

d
is
tr
ib
u
ti
o
n

p
p

p
p

p
p

p
p

p
p

p
8
p

p
p

p
p

p
p
12

p
13

p
p

p
16

p
12

p
19

p
20

p
p

p

12
T
im

e

m
o
m
en
ts

p
p

p
p

p
p

p
p

p
11

p
p
13

p
p

p

13
F
re
q
u
en
cy

m
o
m
en
ts

p
p

p
p

p
p

p
p

p
11

p
p

p
p

13-24 Transforms and Applications Handbook



14
F
in
it
e
ti
m
e

su
p
p
o
rt

p
p

p
5

p
p

p
p

p
p

15
F
in
it
e

fr
eq
u
en
cy

su
p
p
o
rt

p
p

p
p
5

p
5

p
p

p
p

p
p

16
In
st
an

ta
n
eo
u
s

fr
eq
u
en
cy

p
p

p
2
p

p
2

p
p

p
11

p
p
14

p
p

17
G
ro
u
p
d
el
ay

p
p

p
p

p
3
p

p
p
3

p
p
11

p
p

p
p

p

18
F
o
u
ri
er

tr
an

sf
o
rm

p
p

p
1
p

p
1

p
p
9

p
15

p

19
F
re
q
u
en
cy

lo
ca
li
za
ti
o
n

p
p

p
p

p
p

p
p

p
p

p
p

p
11

p
p

p
p

p
p

p

20
T
im

e

lo
ca
li
za
ti
o
n

p
p

p
p

p
p

p
p

p
p
11

p
p
13

p
p

p
p

p

21
L
in
ea
r
ch
ir
p

lo
ca
li
za
ti
o
n

p

22
H
yp
er
b
o
li
c

lo
ca
li
za
ti
o
n

p
p

p

23
C
h
ir
p

co
n
vo
lu
ti
o
n

p

24
C
h
ir
p

m
u
lt
ip
li
ca
ti
o
n

p

25
M
o
ya
l’
s

fo
rm

u
la

p
p

p
p

p
p

p
p

p

In
th
e
se
co
n
d
ro
w
,t
he

le
tt
er
s
c,
a,
h
,a
n
d
p
in
di
ca
te

th
at

th
e
co
rr
es
po

n
di
n
g
T
FR

is
a
m
em

be
r
of

th
e
C
oh

en
,a
ffi
n
e,
h
yp
er
bo
lic
,a
n
d
k
th

po
w
er

cl
as
s,
re
sp
ec
ti
ve
ly
.A
p

in
di
ca
te
s
th
at

th
e
tf
r
ca
n
be

sh
ow

n
to

h
ol
d
th
e
gi
ve
n
pr
op

er
ty
.a

n
um

be
r
fo
llo

w
in
g
th
e
p

in
di
ca
te
s
th
at
ad
di
ti
on

al
co
n
st
ra
in
ts
ar
e
n
ee
de
d
to

sa
ti
sf
y
th
e
pr
op

er
ty
.T

h
e
C
on

st
ra
in
ts
ar
e
as

fo
llo
w
s:
(1
)
M
¼
N
;(
2)

M
>
1=
2;
(3
)
N
>
1=
2;
(4
)
g(
t)

ev
en
;

(5
)
ja
j<

1=
2;
(6
)
M
¼
1=
2;
(7
)
N
¼
1=
2;
(8
)
Ð
1 0
jG
(f
)j2

d
f
¼

1;
(9
)
a
¼
1;
(1
0)

r
¼
0,
a
¼
1,
g
¼
1=
4;
(1
1)

a
6¼

1;
(1
2)
jr

r
(0
)j2
¼

1 f r
;(
13
)
jg
(0
)j
¼
1;
(1
4)

g
(0
)¼

1;
(1
5)

s(
b
)
ev
en
;(
16
)
Ð

jG
(b
)j2

d
b jbj
¼

1;
(1
7)

s(
c)
2

R
ea
l;
(1
8)

s(
t)
2
R
ea
l;
(1
9)

S(
0)
jg
(0
)j2
¼
1;
(2
0)
Ð

jg
(t
)j2

d
t
¼

1.

Mixed Time–Frequency Signal Transformations 13-25



T
A
B
L
E
1
3
.8

K
er
n
el
C
on

st
ra
in
ts
N
ee
de
d
to

Sa
ti
sf
y
Id
ea
l
T
FR

P
ro
pe
rt
ie
s
fo
r
th
e
T
FR

s
in

C
oh

en
’s
A
ffi
n
e
an
d
k
th

P
ow

er
C
la
ss
es

P
ro
pe
rt
y
N
am

e
K
er
n
el
C
on

st
ra
in
ts
fo
r
C
oh

en
’s
C
la
ss

K
er
n
el
C
on

st
ra
in
ts
fo
r
th
e
A
ffi
n
e
C
la
ss

K
er
n
el
C
on

st
ra
in
ts
fo
r
th
e
H
yp
er
bo

lic
C
la
ss

K
er
n
el
C
on

st
ra
in
ts
fo
r
th
e
k
th

P
ow

er
C
la
ss

P
1
:F

re
qu

en
cy

sh
if
t
co
va
ri
an
t

A
lw
ay
s
sa
ti
sfi
ed

C
(A

)
A

(z
,b
)
¼

S A
(z
b
)e
�
j2
p
z

P
2
:T

im
e
sh
if
t
co
va
ri
an
t

A
lw
ay
s
sa
ti
sfi
ed

A
lw
ay
s
sa
ti
sfi
ed

C
(H

)
H

(z
,b
)
¼

S A
H
(b
)e
�
j2
p
z
ln

m
0
(b
)

w
it
h
m
0
(b
)
¼

b
=2

si
n

h
(b
=
2)

G
(k
)

P
C
(b

1
,b

2
)
¼
ð

d
(b

1
�
l
k
(u
))

�
d
(b

2
�
l
k
(�

u
))
m
(u
)d
u

P
3
:S
ca
le
co
va
ri
an
t

C
C
(t
,n
)¼

S C
(t

n
)

A
lw
ay
s
sa
ti
sfi
ed

A
lw
ay
s
sa
ti
sfi
ed

A
lw
ay
s
sa
ti
sfi
ed

P
4
:H

yp
er
bo

lic
ti
m
e
sh
if
t

F
(A
)

A
(b
,b
)
¼

G
(A
)

A
(b
)d

b
þ
b 2
co
th
b 2

�
�

A
lw
ay
s
sa
ti
sfi
ed

P
5
:C

on
vo
lu
ti
on

co
va
ri
an
t

C
C
(t

1
þ
t 2
,n

)¼
C

C
(t

1
,n
)C

C
(t

2
,n
)

C
(A

)
A

(z
1
þ
z 2
,b
)
¼

C
(A
)

A
(z

1
,b
)C

(A
)

A
(z

2
,b

)
F

(H
)

H
(b

1
,b

)F
(H

)
H

(b
2
,b

)

¼
eb

1
F

H
(b

1
,b
)d
(b

1
�
b 2
)

P
6
:M

od
ul
at
io
n
co
va
ri
an
t

C
C
(t

1
,n

1
þ
n
2
)¼

C
C
(t
,n

1
)C

C
(t
,n

2
)

P
7
:R

ea
l-
va
lu
ed

C
C*
(�

t,
�
n
)
¼

C
C
(t
,n
)

F
(A
)

A
(b
,b
)
¼

F
(A
)*

A
(b
,
�
b
)

C
(H

)*
H

(�
z,
�
b
)
¼

C
(H

)
H

(z
,b
)

F
(A
)

P
C
(b
,b
)
¼

F
(A
)*

P
C

(b
,�

b
)

P
8
:P

os
it
iv
it
y

C
C
(t
,n
)¼

A
F
g
(�

t,
�
n
)

C
(H

)*
H

(z
,b
)
¼

H
A
F G

(�
z,
�
b
)

P
9
:T

im
e
m
ar
gi
n
al

C
C
(0
,n
)¼

1
Ð

F
(A
)

A
(b
,2
b)

d
b jbj
¼

1

P
1
0
:F

re
qu

en
cy

m
ar
gi
n
al

C
C
(t
,0
)¼

1
F

(A
)

A
(b
,0
)
¼

d
(b

þ
1)

C
(H

)
H

(z
,0
)
¼

1
F

(A
)

P
C
(b
,0
)
¼

d
(b

þ
1)

P
1
1
:E

n
er
gy

di
st
ri
bu

ti
on

C
C
(0
,0
)¼

1
Ð

F
(A
)

A
(b
,0
)
d
b jbj
¼

1
C

(H
)

H
(0
,0
)
¼

1

ð

F
(A
)

P
C
(b
,0
)
d
b jbj
¼

1

P
1
2
:T

im
e
m
om

en
ts

C
C
(0
,n
)¼

1

P
1
3
:F

re
qu

en
cy

m
om

en
ts

C
C
(t
,0
)¼

1

P
1
4
:F

in
it
e
ti
m
e
su
pp

or
t

w
C
(t
,t
)
¼

0,
t t

� � �

� � �
>

1 2
w
(A
)

A
(c
,z
)
¼

0,
c z

� � � �

� � � �

>
1 2

P
1
5
:F

in
it
e
fr
eq
.s
up

po
rt

F
C
(f
,n
)
¼

0,
f n

� � � �

� � � �

>
1 2

F
(A
)

A
(b
,b
)
¼

0,
b
þ
1

b

� � � �

� � � �

>
1 2

F
(H

)
H

(c
,z
)
¼

0,
c z

� � � �

� � � �

>
1 2

f
(A
)

P
C
(b
,b
)
¼

0,
b
þ
1

b

� � � �

� � � �

>
1 2

P
1
6
:I
n
st
an
ta
n
eo
us

Fr
eq
ue
n
cy

C
C
(0
,n
)
¼

1
an
d

q q
t
C

C
(t
,n
)j t

¼
0
¼

0

P
1
7
:G

ro
up

de
la
y

C
C
(t
,0
)
¼

1
an
d

q q
n

C
C
(t
,n
)j n

¼
0
¼

0

F
(A
)

A
(b
,0
)
¼

d
(b

þ
1)

an
d

q q
b

F
(A
)

A
(b
,b

)j b
¼
0
¼

0

C
(H

)
H

(z
,0
)
¼

1
an
d

q q
b

C
(H

)
H

(z
,b
)� � � �

b
¼
0

¼
0

F
(A
)

P
C
(b
,0
)
¼

d
(b

þ
1)

an
d

q q
b
F

(A
)

P
C
(b
,b
)� � � �

b
¼
0

¼
0

P
1
8
:F

ou
ri
er

tr
an
sf
or
m

C
C
(�

n
,t
)¼

C
C
(t
,n
)

P
1
9
:F

re
q.

lo
ca
liz
at
io
n

C
C
(t
,0
)¼

1
F

(A
)

A
(b
,0
)
¼

d
(b

þ
1)

C
(H

)
H

(z
,0
)
¼

1
F

(A
)

P
C
(b
,0
)
¼

d
(b

þ
1)

P
2
0
:T

im
e
lo
ca
liz
at
io
n

C
C
(0
,n
)¼

1

P
2
1
:L

in
ea
r
ch
ir
p
lo
ca
liz
at
io
n

C
C
(t
,n
)¼

1

P
2
2
:H

yp
er
bo

lic
lo
ca
liz
at
io
n

C
(H

)
H

(0
,b
)
¼

1

P
2
3
:C

h
ir
p
co
n
vo
lu
ti
on

C
C

t
�
n c
,n

	



¼
C

C
(t
,n
)

P
2
4
:C

h
ir
p
m
ul
ti
pl
ic
at
io
n

C
C
(t
,n

�
ct
)¼

C
C
(t
,n
)

P
2
5
:M

oy
al

’s
fo
rm

ul
a

jC
C
(t
,n
)j
¼
1

Ð

F
(A
)*

A
(b
b
,~h
b
)F

(A
)

A
(b
,~h
b
)d

b
C

(H
)

H
(z
,b

)
� � �

� � �
¼

1
Ð

F
(A
)*

P
C

(b
b
,a
b
)F

(A
)

P
C
(b
,a
b
)d
b

¼
d
(b

�
1)
,8
~h

¼
d
(b

�
1)
,8
a

N
ot
e:

H
er
e,
l
k
(u
)
is
D
efi
n
ed

in
(1
3.
39
)
an
d
m
(u
)¼

m
*(
�
u
).

13-26 Transforms and Applications Handbook



TABLE 13.9 Cohen’s Class TFRs

Cohen’s-Class Distribution Formula

Ackroyd AC Kx(t, f ) ¼ Re{x*(t)X(f )e j2p ft}

Affine-Cohen subclass ACx(t, f ; SAC) ¼
Ð Ð 1

jtj SAC
t � t0

t

� �

x t0 þ t

2

	 


x* t0 � t

2

	 


e�j2p f tdt0 dt

Born–Jordon BJDx(t, f ) ¼
Ð Ð sin (ptn)

ptn
AFx(t, n)e

j2p(tn�f t)dt dn

¼
Ð 1

t

Ð tþjtj=2
t�jtj=2 x t0 þ t

2

	 


x* t0 � t

2

	 


dt0
h i

e�j2p f tdt

Butterworth BUDx(t, f ;M,N) ¼
ðð

1þ t

t0

� �2M n

n0

� �2N
 !�1

AFx(t, n)e
j2p(tn�f t)dt dn

Choi–Williams (Exponential) CWDx(t, f ; s) ¼
ðð

e�(2ptn)
2=s

AFx(t, n)e
j2p(tn�f t)dt dn

¼
ð ð

ffiffiffiffiffiffi

s

4p

r

1

jtj exp �
s

4

t � t0

t

� �2
" #

x t0 þ t

2

	 


x* t0 � t

2

	 


e�j2p f tdt0 dt

Cone Kernel CKDx(t, f ) ¼
ðð

g(t)jtj sin (ptn)
ptn

AFx(t, n)e
j2p(tn�f t)dt dn

Cummulative attack spectrum CASx(t, f ) ¼
Ð t

�1 x(t)e�j2pf tdt
�

�

�

�

2

Cummulative decay spectrum CDSx(t, f ) ¼
Ð1
t x(t)e�j2p f tdt
�

�

�

�

2

Generalized exponential GEDx(t, f ) ¼
ðð

exp � t

t0

� �2M
n

n0

� �2N
" #

AFx(t, n)e
j2p(tn�f t)dt dn

Generalized rectangular GRDx(t, f ) ¼
Ð

rect1(jtjM=N jnj=s)AFX(t, n)e j2p(tn�f t)dt dn

Generalized Wigner GWDx(t, f ; ~a) ¼
ð

x t þ 1

2
þ ~a

� �

t

� �

x* t � 1

2
� ~a

� �

t

� �

e�j2pf tdt

Levin LDx(t, f ) ¼ �
d

dt

ð1

t

x(t)e�j2pf tdt

�

�

�

�

�

�

�

�

2

Margineau-Hill MHx(t, f ) ¼ Re{x(t)X*( f ) e�j2pft}

Multiform tiltable kernel MTx(t, f ; S) ¼
ðð

S ~m
t

t0
,
n

n0
;a, r,b, g

� �2l
 !

AFx(t, n)e
j2p(tn�f t)dt dn

SMTED(b) ¼ e�pb, SMTBUD(b) ¼ [1þ b]�1

Nutall NDx(t, f ) ¼
ðð

exp �p t

t0

� �2

þ n

n0

� �2

þ2r tn

t0n0

� �

" #( )

AFx(t, n)e
j2p(tn�f t)dt dn

Page PDx(t, f ) ¼ 2 Re x*(t)e j2pt f
ðt

�1
x(t)e�j2pf tdt

� �

Pseudo Wigner PWDx(t, f ;G) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


g
t

2

	 


g* � t

2

	 


e�j2p f tdt

¼
ð

WDg(0, f � f 0)WDx(t, f
0)df 0

Reduced interference RIDx(t, f ) ¼
ðð

1

jtj s
t � t0

t

� �

x t0 þ t

2

	 


x* t0 � t

2

	 


e�j2p f tdt0dt

with S(b) 2 < S(0) ¼ 1,
d

db
S(b)jb¼0 ¼ 0, S(a) ¼ 0 forjaj > 1

2

� �

Rihaczek RDx(t, f ) ¼ x(t)X*(f )e�j2pt f

Smoothed Pseudo Wigner SPWDx(t, f ;G, s) ¼
ð

s(t � t0) PWDx(t
0 , f ;G)dt0

¼
ð ð

s(t � t0) WDg(0, f � f 0) WDx(t
0 , f 0) dt0 df 0

Spectrogram SPECx(t, f ;G) ¼ j
Ð

x(t)g*(t� t)e�j2pf tdtj2 ¼ j
Ð

X( f 0)G*( f 0 � f )e j2pt f
0
df 0j2

Wigner WDx(t, f ) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


e�j2p f tdt ¼
ð

X f þ n

2

	 


X* f � n

2

	 


e j2ptndn

Note: Here, recta(t) ¼
1, jtj < jaj
0, jtj > jaj

� �

, AFx(t, n) is defined in Equation 13.18, and ~m(~t, ~n ;a, r,b, g) ¼ ~t2(~n2)aþ
(~t)a~n2 þ 2r( ((~t~n)b)g)2. Functions with lower- and uppercase letters, e.g., g(t) and G( f), are Fourier transform pairs.
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TABLE 13.10 Kernels of Cohen’s Shift Covariant Class of TFRs Defined in Table 13.9

TFR cC(t, f) CC(t, n) wC(t, t) FC( f, v)

AC
ð
1

jtj sAC
t

t

	 


e�j2pf tdt
SAC(tn) 1

jtj sAC
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 1
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2
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BJD
sin (ptn)
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1
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8
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" #

CKD g(t)jtj sin (ptn)
ptn
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1

2
d(� n)� 1
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� �
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GED exp � t
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" # n0

2
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p t0
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exp
�n20t2M0 t2

4t2M

� �

N ¼ 1 only

t0

2
ffiffiffiffi

p
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n

�

�

�

�

�

�

N

exp
�t20n2N0 f 2

4n2N

� �

M ¼ 1 only

GRD

1,

0,
jtjM=N jnj=s
jtjM=N jnj=s

�

�

�

�

�

�

�

�

�

�

< 1

> 1

8

>

<

>

:

sin (2pjsjt=jtjM=N )

pt

GWD
1

j~aj e
j2ptf =~a e j2p~atn d(t þ ~at) d( f � ~an)

LD ejpjtjn d(tþ jtj=2)

MH 2 cos(4ptf ) cos(ptn)
d(t þ t=2)þ d(t � t=2)

2

d( f � n=2)þ d( f þ n=2)

2

MT S ~m
t

t0
,
n

n0
;a, r,b, g

� �2l
 !

ND exp �p~m t

t0
,
n

n0
; 0, r, 1, 1

� �� �

PD e�jpjtjn d(t� jtj=2) d f þ n

2

	 


þ d f � n

2

	 


þ
h

j
n

p( f 2 � n2=4)

�

=2

PWD d(t)WDg (0, f) g(t=2)g*(�t=2) d(t)g(t=2)g*(�t=2) W Dg(0, f)

RGWD
1

j~aj cos (2ptf =~a) cos (2p~atn)
d(t þ ~at)þ d(t � ~at)

2

d( f � ~an)þ d( f þ ~an)

2

RID

ð

1

jbj s
t

b

� �

e�j2p f bdb S(tn),
1

jtj s
t

t

	 


,
1

jnj s �
f

n

� �

,

S(b) 2 <, S(0) ¼ 1,
d

db
S(b)

�

�

�

�

b¼0
¼ 0 s(a) ¼ 0, jaj > 1

2
s(a) ¼ 0, jaj > 1

2

RD 2e�j4ptf e�jptn d(t� t=2) d( fþ n=2)

SPWD s(t)WDg(0, f ) S(n)g
t

2

	 


g* � t

2

	 


s(t)g
t

2

	 


g* � t

2

	 


S(v)WDg(0, f )

SPEC WDg(�t, �f ) AFg(�t, �n) g �t � t

2

	 


g* �t þ t

2

	 


G �f � n

2

	 


G* �f þ n

2

	 


WD d(t)d( f ) 1 d(t) d( f )

Here, ~m(~t, ~n;a, r,b, g) ¼ ((~t)2( (~n)2)a((~t)2)a(~n)2 þ 2r((~t~n)b)g). Functions with Lowercase and Uppercase Letters, e.g., g(t) and G( f ), Indicate Fourier
Transform Pairs.
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A checklist summary of the properties that each Cohen’s-class
TFRs satisfies is given in Table 13.7.

13.5.1.2 Implementation Considerations

The formulations in Equations 13.65 through 13.69 provide
alternative ways of understanding and computing a given
Cohen’s-class TFR. For example, inserting the Choi–Williams
or exponential distribution kernels in Table 13.10 into Equations
13.65 through 13.69 yields the following five equivalent formu-
lations for this popular TFR.35

CWDx(t, f ;s) ¼
ffiffiffiffiffiffi

s

4p

r ð ð
1

jtj exp
�s
4

t � t0

t

� �2
 !

x t0 þ t

2

	 


� x* t0 � t

2

	 


e�j2pf tdt0dt (13:73)

¼
ffiffiffiffiffiffi

s

4p

r

ð ð

1

jnj exp
�s

4

f � f 0

n

� �2
 !

X f 0 þ n

2

	 


� X* f 0 � n

2

	 


e j2ptndf 0dn (13:74)

¼
ffiffiffiffiffiffi

s

4p

r

ð ð ð

1

juj exp
�s

4

t � t0

u

� �2
 !

e�j2p( f�f 0)u

�WDx(t
0, f 0)du dt0 df 0 (13:75)

¼
ð ð

e�(2ptn)2=sAFx(t, n)e
j2p(tn�f t)dt dn (13:76)

¼
ffiffiffiffiffiffi

s

4p

r ð ð
1

jf1 � f2j

� exp
�s

4

f � ( f1 þ f2)=2

f1 � f2

� �2
 !

(13:77)

� X( f1)X*( f2)e
j2pt( f1�f2)df1df2:

The Choi–Williams exponential distribution (CWD) is often
used as a compromise between the high-resolution but cluttered
WD versus the smeared, but easy to interpret spectrogram.24,35,79

The most intuitive formulation for the CWD is Equation 13.76,
which states that the CWD is the two-dimensional Fourier trans-
form of the product of the AF of the signal with a lowpass kernel.
This kernel, CCWD (t, n)¼ exp[�(2ptn)2=s], is a Gaussian
function when evaluated at the product of the kernel argu-
ments tn. The disadvantage of Equation 13.76 is that the signal
must be known for all time before the AF can be computed.
Fast algorithms for calculating the CWD are frequently imple-
mented using Equation 13.73, which can be computed directly
from the signal x(t). If s is large, then the Gaussian kernel in
Equation 13.73 falls off quickly to zero, which means that the
integration requires knowledge of only short, local segments of
the signal, making real-time implementations a possibility. If the
spectrum of the signal is very narrowband, then the frequency-
domain formulations in Equation 13.74 or 13.77 may prove
more computationally efficient. The bi-frequency formulation

in Equation 13.77 states explicitly how signal components from
different spectral bands interact and how they are weighted to
produce the quadratic CWD.

Hence, the four normal forms offer various computational and
analysis advantages. The first two normal forms in Equations
13.65 and 13.66 can be computed directly from the signal, x(t), or
its Fourier transform, X( f ), via a one-dimensional convolution
with wC(t, t) or FC( f, n), respectively. If the kernel wC(t, t) is
fairly short duration, then it may be possible to implement a
discrete-time version of Equation 13.65 on a digital computer in
real time using only a small number of local signal samples. The
third normal form in Equation 13.67 indicates that any TFR in
Cohen’s-shift covariant class can be computed by convolving the
TFR-dependent kernel cC(t, f), with the WD of the signal,
defined in Equation 13.15 through 13.17. Hence, the WD is one
of the key members of Cohen’s class and many TFRs correspond
to smoothed WDs, as can be seen in the top of Table 13.5.
Equation 13.71 and the fourth normal form in Equation 13.68
indicate that the two-dimensional convolution in Equation 13.67
transforms to multiplication of the Fourier transform of the
kernel, cC(t, f), with the Fourier transform of the WD, which is
the AF. This last normal form provides an intuitive interpretation
that the ‘‘AF-domain’’ kernel, CC(t, n), can be thought of as the
frequency response of a two-dimensional filter. Equation 13.48
reveals that this AF plane kernel should be an ideal lowpass
filter in order to retain AF auto terms which map to the origin
and to reduce AF cross terms which map away from the origin in
the AF plane.

13.5.1.3 Determination of TFR Properties
by Kernel Constraints

The kernels in Equations 13.65 through 13.69 are signal-inde-
pendent and provide valuable insight into the performance of
each Cohen’s-class TFR, regardless of the input signal. The
kernels can be used to evaluate which ideal TFR property a
given TFR satisfies and the relative merits of one TFR over
another. Given on the left in each row in Table 13.8 is one of
the ideal TFR properties discussed earlier; provided in the second
column are the corresponding constraints that a TFR’s kernel in
Equation 13.65 through 13.68 must satisfy for the ideal property
to hold. For example, the second column in Table 13.8 reveals
that the time–frequency marginal, moment, and localization
properties are automatically satisfied by any Cohen’s-class TFR
whose AF plane kernel CC(t, n) in Table 13.10 is equal to one
along its axes, i.e., CC(0, n)¼ 1¼CC(t, 0). The row for P25 in
Table 13.8 indicates that Moyal’s formula is satisfied by any
Cohen’s class TFR whose AF-domain kernel has unit modulus.
Hence, it can be easily seen by examining the third column of
Table 13.10 that the WD with unit kernel CWD(t, n)¼ 1 trivially
satisfies these properties. In fact, the checklist in Table 13.7
indicates that the WD satisfies P1–P7, P9–P21, and P23–P25.
The product kernels, CC(t, n)¼ S(t n), used in the reduced
interference distributions (RID) and the CWD35,79 can easily be
made to satisfy the time–frequency moment, marginal, and
localization properties simply by normalizing the kernel to be
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one at its origin, i.e., S(0)¼ 1. In addition, if S(b) is an even
function, then these distributions automatically satisfy the
instantaneous frequency, group delay, and Fourier transform
properties as well.

There is a tradeoff between Cohen’s class TFRs that have good
cross-term reduction versus those TFRs that satisfy Moyal’s
formula or the marginal, moment, or localization properties.
The WD kernel, CWD(t, n)¼ 1, satisfies the constraint for
Moyal’s formula, but it unfortunately acts as an allpass filter in
the AF-domain formulation in Equation 13.68, passing all cross
terms in Equation 13.48. For good cross-term reduction and little
auto-term distortion, the kernel CC(t, n) given in Table 13.8
should be as close as possible to an ideal lowpass filter. Kernels
that are equal to one along the axes in the AF plane satisfy the
time–frequency marginal, moment, and localization properties,
but they cannot reduce the cross terms in Equation 13.48 that
occur along the AF plane axes, i.e., those across terms which
correspond to pairs of signal components that occur at the same
time or at the same frequency. The Born-Jordon, Butterworth,
Choi–Williams, generalized exponential, Auger generalized rect-
angular, reduced interference, and multiform tiltable kernel dis-
tributions11,43,45,60 all use one-dimensional prototype kernels in
the third column of Table 13.10 that were designed to be lowpass
and to be equal to one along the axes. For example, the CWD has
equal amplitude iso-contours along hyperbolas in the (t, n)
plane; it is equal to one along the AF plane axes and decreases
to zero away from the AF plane origin in a Gaussian fashion.
It can be used to reduce those cross terms in Equation 13.48 that
map away from the axes. The CWD scaling factor s determines
the width of the passband region in the AF plane; small values
for s allow the user to select a narrow passband for good cross-
term reduction whereas large values of s produce good
auto-term preservation; unfortunately, both are not always pos-
sible with CWD. The generalized exponential, Butterworth, and
the multiform tiltable distributions are extensions to the CWD
and the RID that use nonlinear axis mappings with several
degrees of freedom that can be exploited to satisfy both passband
and stopband constraints. Although the lowpass nature of pro-
duce kernels is useful for cross-term reduction, it prevents any
such TFR from satisfying Moyal’s formula or the linear chirp
localization property.

13.5.2 Affine Class of TFRs

Affine class ¼
�

Tx(t, f )jy(t) ¼
ffiffiffiffiffi

jaj
p

x(a(t � t0))) Ty(t, f )

¼ Tx a(t � t0),
f

a

� ��

TFRs that are covariant to scale changes and time translations,
i.e., properties P2 to P3 in Table 13.6, are members of the affine
class.19,20,60,63,111 Several such TFRs are given in Table 13.11.

The scale covariance property, P3, is useful for several applica-
tions, including wideband Doppler systems, signals with fractal
structure,58 octave band systems like the cochlea of the inner ear,
and short duration ‘‘transients.’’2,3,30,36,81,90,91

13.5.2.1 Alternative Formulations

Any affine class TFR can be written in the four normal forms
and bi-frequency form equations similar to those of Cohen’s
class60,100,111:

Ax t, f ;C(A)
A

	 


¼ j f j
ðð

w(A)
A ( f (t � t0), f t)x(t0 þ t=2)

� x*(t0 � t=2)dt0 dt (13:78)

¼ 1

j f j

ðð

F(A)
A � f 0

f
,
n

f

� �

X( f 0 þ n=2)

� X*( f 0 � n=2)e j2ptndf 0 dn (13:79)

¼
ðð

c(A)
A f (t � t0), � f 0

f

� �

�WDx(t
0, f 0)dt0 df 0 (13:80)

¼
ðð

C(A)
A f t,

n

f

� �

AFx(t, n)e
j2ptndt dn (13:81)

¼ 1

jf j

ðð

G(A)
A

f1

f
,
f2

f

� �

X( f1)

� X*( f2)e
j2pt( f1�f2)df1 df2: (13:82)

The affine-class kernels are interrelated by the same Fourier
transforms given in Equations 13.70 and 13.71, i.e.,

w(A)
A (c, z) $ F(A)

A (b,b)

c(A)
A (c, b) $ C(A)

A (z,b):

The bi-frequency kernel is related to the normal form kernels by
the following equation:

G(A)
A (b1, b2) ¼ F(A)

A � b1 þ b2

2
, b1 � b2

� �

:

Note that the third normal form of the affine class in Equation
13.80 involves an affine smoothing of the WD of the signal, i.e.,
the output frequency f is inversely proportional to the amount of
time smoothing and proportional to the amount of frequency
smoothing.63 In Table 13.11, various members of the affine class,
such as the Bertrand P0 distribution, the scalogram, and the
Unterberger distributions, are defined.

The four normal form kernels used to formulate affine-class
TFRs in Equations 13.78 through 13.81 are listed in Table 13.12.
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TABLE 13.11 TFRs in the Affine Class

Affine Class Distr. Formula

Ackroyd ACKx(t, f)¼Re{x*(t)X( f )e j2pft}

Affine-Cohen Subclass ACx(t, f ; SAC) ¼
ðð

1

jtj SAC
t � t0

t

� �

x t0 þ t

2

	 


x* t0 � t

2

	 


e�j2pf tdt0 dt

Affine-Hyp. Subclass AHX(t, f ; SAH) ¼ f

ð

SAH( f (t � t0))B P0DX (t
0, f ;m0)dt

0

¼ f

ð

X f
b=2eb=2

sinhb=2

� �

X* f
b=2e�b=2

sinhb=2

� �

SAH(b)
b=2

sinhb=2
e j2pt fbdb

(Unitary) Bertrand P0 BP0DX (t, f ;m0) ¼ f

ð

X f
u=2 eu=2

sinh (u=2)

� �

X* f
u=2 e�u=2

sinh (u=2)

� �

u=2

sinh (u=2)
e j2ptfudu

(General) Bertrand P

0

BP0DX(t, f ;m) ¼ j f j
ð

X f
b=2

sinhb=2
eb=2

� �

X* f
b=2

sinhb=2
e�b=2

� �

m(b)e j2ptfbdb

¼ j f j
ð

X f
u

2
coth

u

2
þ u

2

h i	 


X* f
u

2
coth

u

2
� u

2

h i	 


m(u)e j2ptfudu

Bertrand Pk BPkDX (t, f ;m) ¼ f
Ð

X( flk(u))X*( flk(�u))m(u)e j2ptf (lk(u)� lk(�u))du,

l0(u) ¼
u=2eu=2

sinh(u=2)
, l1(u) ¼ exp 1þ ue�u

e�u � 1

� �

, lk(u) ¼ k
e�u � 1

e�ku � 1

� � 1
k�1
, k 6¼ 0, 1 and m(u) ¼ m*(�u)

Born-Jordon BJDx(t, f ) ¼
ðð

sin (ptn)

ptn
A Fx(t, n)e

j2p(tn�f t) dt dn

Choi–Williams Exp. CWDx(t, f ;s) ¼
Ð Ð

e�(2ptn)
2=s

AFx(t, n)e j2p(tn�f t) dt dn

Flandrin D FDX(t, f ) ¼ f

ð

X f 1þ u

4

h i2
� �

X* f 1� u

4

h i2
� �

1� u

4

	 
2
� �

e j2ptfu du

Generalized Wigner GWDx(t, f ; ~a) ¼
ð

x t þ 1

2
þ ~a

� �

t

� �

x* t � 1

2
� ~a

� �

t

� �

e�j2pf tdt

Localized Affine LAX(t, f ;G(A), F(A)) ¼ f
Ð

X( f (�F(A)(b)þ b=2))X*( f (�F(A)(b)� b=2))G(A)(b)e j2ptfb db

Margineau-Hill MHx(t, f ) ¼ Re{x(t)X*( f )e�j2pft}

Reduced Interference RIDx(t, f ) ¼
ðð

1

jtj s
t � t0

t

� �

x t0 þ t

2

	 


x* t0 � t

2

	 


e�j2pf t dt0dt

with S(b) 2 <, S(0) ¼ 1,
d

db
S(b)jb¼0 ¼ 0, s(a) ¼ 0 for jaj > 1

2

� �

Rihaczek RDx(t, f ) ¼ x(t)X*( f )e�j2ptf

Scalogram SCALx(t, f ; G) ¼
ð

x(t)

ffiffiffiffiffiffi

f

fr

�

�

�

�

�

�

�

�

s

g*
f

fr
(t� t)

� �

dt

�

�

�

�

�

�

�

�

�

�

2

¼ fr

f

�

�

�

�

�

�

�

�

ð

X(f̂ )G* fr
f̂

f

 !

e j2pt f̂ df̂

�

�

�

�

�

�

�

�

�

�

2

Unterberger Active UADX(t, f ) ¼ f

ð1

0
X( fu)X*( f =u)[1þ u�2]e j2ptf (u�1=u) du

¼ f

ð

X f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q

þ b=2

� �� �

X* f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q

� b=2

� �� �

e j2ptfb db

Unterberger Passive UPDX(t, f ) ¼ 2f

ð1

0
X( fu)X*( f =u)

1

u

� �

e j2pt f (u�1=u) du

¼ f

ð

X f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b

2

� �2
s

þ b

2

0

@

1

A

0

@

1

AX* f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b

2

� �2
s

� b

2

0

@

1

A

0

@

1

A

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q e j2ptfbdb

Wigner WDx(t, f ) ¼
ð

x t þ t

2

	 


x* t � t

2

	 


e�j2pf tdt ¼
ð

X f þ n

2

	 


X* f � n

2

	 


e j2ptn dn

The Bertrand P0, Generalized WD, Unterberger active and passive, and the Wigner distributions are special cases of the localized affine distributions with

g(a)(b) and f(a)(b) defined accordingly, e.g., F(A)
UAD(b) ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q

and G(A)
UAD(b) ¼ 1.
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These kernels can be compared with the constraints listed in the
third column of Table 13.8 to determine which of the ideal
properties a given affine TFR satisfies. A checklist summary of
the properties that the affine-class TFRs satisfy is provided in
Table 13.7. Any affine-class TFR must necessarily have a check
mark in the rows for P2 and P3. Because of the scale covariance
property, many TFRs in the affine class exhibit constant-Q
behavior, permitting multiresolution analysis.60,112

The scalogram60,111 in Table 13.11 is the squared magnitude
of the recently introduced wavelet transform
(WT)2,3,36,49,60,69,89,112,118:

WTx(t, f ;G) ¼
ð

x(t)

ffiffiffiffiffiffiffi

f

f0

�

�

�

�

�

�

�

�

s

g*
f

f0
(t� t)

� �

dt (13:83)

¼
ð

X( f 0)

ffiffiffiffiffiffiffiffi

f0

f

�

�

�

�

�

�

�

�

s

G*
f0

f
f 0

� �

e j2ptf
0
df 0: (13:84)

It uses a special sliding analysis window, g(t), called the
mother wavelet, to analyze local spectral information of the
signal x(t).

The mother wavelet is either compressed or dilated to give a
multiresolution signal representation. Assume that g(t) is a band-
pass filter centered near time t¼ 0 and frequency f¼ f0 with
(approximate) time duration D and one-sided spectral band-
width B, i.e., jg(t)j � 0, jtj>D and jG( f )j � 0, jf� f0j>B. Then
the scaled mother wavelet in Equation 13.83 is centered near the

output time t and its time duration is
f0

f
D

�

�

�

�

�

�

�

�

.

TABLE 13.12 Kernels of Affine-Class TFRs Defined in Table 13.11

TFR c(A)
A (c, b) C(A)

A (z,b) w(A)
A (c, z) F(A)

A (b,b)

AC
ð

1

jzj SAC
1

z

� �

e�j2pc(1þb)z dz
SAC(zb)e

�j2p z 1

jzj SAC
c

z

� �

e�j2pz 1

jbj SAC � 1þ b

b

� �

AH

ð

SAH(b) b=2

sinhb=2
d bþ b

2
coth

b

2

� �

e j2pcb db

SAH(b)b=2

sinhb=2
e�j2pz b

2coth
b
2½ �

ð

SAH(b)b=2

sinhb=2
e�j2p z b

2coth
b
2½ ��cbð Þd b

SAH(b)b=2

sinhb=2
d bþ b

2
coth

b

2

� �

Unitary

ð

b=2

sinhb=2
d bþ b

2
coth

b

2

� �� �

e j2pc bd b

b=2

sinhb=2
e�j2pz b

2
coth

b

2

� �
ð

b=2

sinhb=2
e�j2p z b

2coth
b
2½ ��cbð Þd b

b=2

sinhb=2

d bþ b

2
coth

b

2

� �� �

B P0 D

General

ð

m(b) d bþ b

2
coth

b

2

� �

e j2pcbdb m(b)e�j2pzb2coth
b
2

Ð

m(b)e�j2p zb2coth
b
2�cbð Þdb m(b)d bþ b

2
coth

b

2

� �

B P0 Dm

FD
ð

1� b

4

� �2
" #

d bþ 1þ b

4

� �2
" # !

e j2pcbdb

1� b

4

� �2
" #

e�j2pz[1þ(b=4)2]

ð

1� b

4

� �2
" #

e�j2p(z[1þ(b=4)2]�cb)db

1� b

4

� �2
" #

d(bþ [1þ (b=4)2])

GWD
1

j~aj e
j2pc(1þb)=~a e�j2pz[1�~ab] e�j2pzd(cþ ~az) d(bþ 1� ~ab)

LA
Ð

G(b)d(b� F(b))e j2pcbdb G(b)eþj2pzF(b)
Ð

G(b)eþj2p(zF(b)þcb)db G(b)d(b� F(b))

SCAL WDg(�c=fr,�frb) AFg(�z=fr, �frb)

1

fr
g

1

fr
(�c� z=2)

� �

g*
1

fr
(� cþ z=2)

� �

¼ 1

fr
uG(�c=fr,�z=fr)

frG fr �b� b

2

� �� �

G* fr �bþ b

2

� �� �

¼ frUG(� frb, � frb)

UAD
Ð

d bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2=4
p

	 


e j2pcb db e�j2pz
ffiffiffiffiffiffiffiffiffiffiffiffi

1þb2=4
p

Ð

e�j2p z
ffiffiffiffiffiffiffiffiffiffiffiffi

1þb2=4
p

�cb
� �

db d bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2=4
p

	 


UPD

ð

1þ b2

4

� ��1
2

d bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2

4

r !

e j2pcbdb

1þ b2

4

� ��1
2

e�j2pz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2=4
q

ð

1þ b2

4

� ��1
2

e�j2p z
ffiffiffiffiffiffiffiffiffiffiffiffi

1þb2=4
p

�cb
� �

db 1þ b2

4

� ��1
2

d bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2=4
q

� �

WD d(bþ 1)d(c) e�j2pz e�j2p z d(c) d(bþ 1)

Members of the affine-Cohen (AC) subclass in the first row include the Ackroyd, Margineau-Hill, Born-Jordon, Choi–Williams, generalized Wigner, reduced
interference, Rihaczek, and Wigner distributions. They have the following kernels: SACK(b)¼ SMH(b)¼ cospb, SBJD(b)¼ sinpb=pb, SCWD(b) ¼ e�(2pb)2=s,
SE(b) ¼ e j2p~ab, SRID(b) ¼ SRID(b)*( sinpb=pb), SRD(b) ¼ e�jpb, where * denotes convolution and swd(b)¼ 1, respectively. Here, uG(c,z)¼g(cþ z=2)g*(c� z=2)
and uG(b,b)¼G(bþb=2)G*(b�b=2), where g(t) $ G( f ) are Fourier transform pairs.
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Likewise, G*
f0

f
f 0

� �

in Equation 13.84 is centered near the

output frequency, f, and has spectral bandwidth B
f

f0

�

�

�

�

�

�

�

�

. Hence,

for f> f0, the WT in Equation 13.83 compresses the time dur-
ation of the mother wavelet while simultaneously expanding its
spectral bandwidth in Equation 13.84. In fact, the WT imple-
ments a ‘‘constant-Q’’ signal analysis, since the mother wavelet’s
quality factor,60

Q ¼ Center frequency

Bandwidth
¼ f

Bj f =f0j
¼ f0

b
, f > 0,

is constant for all output frequencies.
Thus, the scalogram can be thought of as the multiresolution

output of a parallel bank of octave band filters.69,111,112 High-
frequency regions of the WT domain have very good time reso-
lution, whereas low-frequency regions of the WT domain have
very good spectral resolution. The wavelet transform has been
used to code images, to model the mid- to high-frequency oper-
ation of the cochlea, to track transients such as speech pitch and
the onset of the QRS complex in ECG signals, and to analyze
fractal and chaotic signals.1–4,30,36,60,91,118 One drawback of the
scalogram is its poor temporal resolution at low-frequency
regions of the time–frequency plane and poor spectral resolution
at high frequencies. The quadratic scalogram produces cross
terms whenever signal components overlap.82 Further, many
discrete WT implementations do not preserve the important
time-shift covariance property.

13.5.3 Affine-Cohen Subclass

Affine-Cohen subclass ¼
�

Ty(t, f )jy(t) ¼
ffiffiffiffiffi

jaj
p

x(a(t � t0))e
j2pf0t

) Ty(t, f ) ¼ Tx a(t � t0),
f � f0

a

� ��

Those TFRs listed in both Tables 13.9 and 13.11 are members of
the intersection of Cohen’s class of time–frequency shift-covariant
TFRs with the affine class of affine-covariant TFRs. This intersec-
tion is depicted graphically in Figure 13.4. All shift-scale covariant
TFRs must satisfy properties P1–P3 in Table 13.6. This subclass is
characterized by those Cohen’s-class TFRs whose AF-domain
kernel, CC(t, n)¼ f cn(t n), is a product kernel, that is, a one-
dimensional function evaluated at the product t n. Inspection
of the third column of Table 13.10 reveals that the affine-
Cohen subclass includes the Ackroyd, Margineau-Hill, Born-
Jordon, Choi–Williams, generalized Wigner, reduced interfer-
ence, Rihaczek, and WDs. Further, the affine-class kernels used
in Equations 13.78 through 13.81 and the Cohen’s-class kernels
used in Equations 13.65 through 13.68 of each shift scale covariant
TFR are related as follows:

c(A)
AC(c, b) ¼ cAC(c, 1þ b) ! C(A)

AC(z,b) ¼ CAC(z,b)e
�j2pz

¼ SAC(zb)e
�j2pz

w(A)
AC(c, z) ¼ wAC(c, z)e

�j2pz  ! F(A)
AC(b,b) ¼ FAC(1þ b,b):

13.5.4 Hyperbolic Class of TFRs

Hyperbolic class

¼ TX(t, f )jY( f ) ¼
1
ffiffiffiffiffi

jaj
p X

f

a

� �

1
ffiffiffi

f
p e�j2pc ln ( f =fr) ) TY (t, f )

(

¼ TX a t � c

f

� �

,
f

a

� ��

The hyperbolic class of TFRs consists of all TFRs that are covariant
to scale changes and hyperbolic time shifts on analytic signals, i.e.,
properties P3 and P4 in Table 13.6.97,98,100 They can be analyzed
using the following alternative forms, valid for f> 0,

HX(t, f ;C
(H)
H ) ¼

ðð

w(H)
H (tf � c, z)

� yX(c, z)e
�j2p[ln( f =fr)]zdc dz (13:85)

¼
ðð

F(H)
H ln

f

fr
� b,b

� �

fre
bX( fre

bþb=2)

� X*( fre
b�b=2)e j2ptfbdb db (13:86)

¼
ðð

1

0

c(H)
H tf � t0f 0, ln

f

f 0

� �

QX(t
0, f 0)dt0 df 0 (13:87)

¼
ðð

C(H)
H (z,b)HAFX(z,b)

� e j2p(tfb�[ln( f =fr)]z)dz db (13:88)

¼ 1

f

ð

1

0

ð1

0
G(H)
H

f1

f
,
f2

f

� �

X( f1)

� X*( f2)e
j2ptfln( f1=f2)df1 df2, (13:89)

where QX(t, f) is the Altes Q distribution defined in Equation
13.24, HAFX(z,b) is the hyperbolic ambiguity function defined
in Equation 13.26, and the quadratic signal product,

yX(c, z) ¼
ð

1

0

X( f )
f

fr

� �j2p(cþz=2)
df
ffiffiffi

f
p

0

@

1

A

�
ð

1

0

X*(n)
n

fr

� ��j2p(c�z=2)
dn
ffiffiffi

n
p

0

@

1

A (13:90)

¼ 1

fr
rx([cþ z=2]=fr)r

*
x ([c� z=2]=fr), (13:91)
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is proportional to the product of modified Mellin transform-
ations of the signal spectrum, where

rx(t) ¼
ð

ffiffiffiffiffiffiffiffi

ef =fr
p

X( fre
f =fr)e j2pftdf $ (WX)( f )

¼
ffiffiffiffiffiffiffiffi

ef =fr
p

X( fre
f =fr ), (13:92)

¼
ffiffiffi

fr
p

ð1

0

X(n)
n

fr

� �j2pfrt dn
ffiffiffi

n
p (13:93)

corresponds to the unitary warping of the frequency axis of the
signal given in Equation 13.34. The four normal form kernels in
Equations 13.85 through 13.88 are interrelated via the Fourier
transforms in Equations 13.70 and 13.71. The relationship of the
hyperbolic bi-frequency kernel (Equation 13.89) to the normal
form II kernel in Equation 13.86 is as follows:

G(H)
H (b1, b2) ¼

1
ffiffiffiffiffiffiffiffiffiffiffi

jb1b2j
p F(H)

H � ln
ffiffiffiffiffiffiffiffiffiffiffi

jb1b2j
p

, ln (b1=b2)
	 


:

Table 13.13 reveals that the Altes Q distribution, the Bertrand P0
distribution, and the hyperbologram are members of the hyper-
bolic class. Their corresponding hyperbolic kernels are given in
Table 13.14. Listed in the fourth column of Table 13.8 are the
constraints on these hyperbolic kernels needed for the corre-
sponding TFR to satisfy the ideal properties listed in the first
column. A summary of the ideal properties that the hyperbolic
class TFRs satisfy is provided in Table 13.7. Note that any
member of the hyperbolic class must, by definition, have the
rows for properties P3 and P4 checked off.

The hyperbolic class TFRs give highly concentrated TFR rep-
resentations for signals with hyperbolic group delay. They are
well suited for the analysis of self-similar random processes or
of wideband Doppler-invariant signals similar to the biosonar
signals used by bats and dolphins for echolocation.7,53,59,69,100

GED

SPEC
AC

CWD

GWD FD

Mapping

Cohen’s class Hyperbolic class

PUD

P
1

SCAL

AUD

AH

P
0

P
0
(κ) HP

AP

Pκ

WD(κ)

GWD(κ)

FD(κ)

UPD(κ)

UAD(κ)

Power class

(κ≠0 , 1)

Mapping

Affine class

Power class  (κ=1)

POW(κ)

GQ

PQ

SPQ

HYP

Q

WD

FIGURE 13.4 A pictorial summary of the different classes of QTFRs considered in this manuscript: Cohen’s class, affine class, hyperbolic class, and
kth power class (k 6¼ 0, 1) together with their intersection subclasses and some important QTFR members. The spectrogram (SPEC), the Wigner
distribution (WD), the generalized WD (GWD), the Choi–Williams exponential distribution (CWD), and the generalized exponential distribution
(GED) are members of Cohen’s class. The WD, GWD, CWD, scalogram (SCAL), Flandrin D (FD), passive Unterberger (UPD), active Unterberger
(UAD), Bertrand P0-distribution, Bertrand P1-distribution, and Bertrand Pk-distributions, k 6¼ 0, 1, are members of the affine class. The affine-
Cohen’s intersection (AC) contains the WD, GWD, and CWD. The hyperbologram (HYP), the Altes-Marinovich Q-distribution (Q), the generalized
Q (GQ), the pseudo Q (PQ), the smoothed pseudo Q (SPQ), the Bertrand P0-distribution, and the kth power form of the Bertrand P0-distribution
(P(k)

0 ) are members of the hyperbolic class. The affine-hyperbolic intersection (AH) contains the Bertrand P0-distribution. The powergram, POW(k);
the power Wigner distribution WD(k); the generalized WD(k), GWD(k); the Bertrand Pk-distributions; the power Bertrand P0-distribution, P

(k)
0 ;

the power FD, FD(k); the power UPD, UPD(k); and the power UAD, UAD(k); are all Pk-distributions. The hyperbolic-power intersection (HP)
contains P(k)

0 . The hyperbolic and Cohen’s classes, and the affine and power classes are related through unitary mappings.
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Each hyperbolic-class TFR, kernel, and property corresponds
to a warped version of a Cohen’s-class TFR, kernel, and property,
respectively.14,15,44,97,100 That is, each hyperbolic-class TFR, H,
corresponds to an axis-warped version of a corresponding
Cohen’s class TFR, CH,

HX t, f ;C(H)
H

	 


¼ CHWX

tf

fr
, fr ln

f

fr
;CCH

� �

(13:94)

CHX
(t, f ;CCH ) ¼ HW�1X te�f =fr , fre

f =fr ;C(H)
H

	 


, (13:95)

provided that the signal is first prewarped by WX or W�1X
defined in Equations 13.34 and 13.35, respectively. Examples
are given in the bottom of Table 13.5. Also, in Equation 13.32,
the Altes Q distribution is equal to the WD after warping
both the signal and the time–frequency axes. In this case,
H¼Q and CH¼WD in Equation 13.94. Likewise, the
hyperbologram is a warped version of the spectrogram, pro-
vided that both the signal and the analysis window are
prewarped:

TABLE 13.13 Hyperbolic TFRs

Hyperbolic TFR Formula, f> 0

Affine-Hyperbolic AHX(t, f ; SAH) ¼ j f j
Ð

SAH( f (t � t0))B P0DX(t0, f ;m0)dt
0

Subclass

¼ j f j
ð

X f
b

2
coth

b

2
þ b

2

� �� �

X* f
b

2
coth

b

2
� b

2

� �� �

SAH(b)
b=2

sinhb=2
e j2ptfbdb

¼ j f j
ð

X f
b=2

sinhb=2
eb=2

� �

X* f
b=2

sinhb=2
e�b=2

� �

SAH(b)
b=2

sinhb=2
e j2ptfbdb

Altes QX(t, f ) ¼ f
Ð

X( feu=2)X*( fe�u=2)e j2pt fudu

Unitary Bertrand P0 BP0DX(t, f ;m0) ¼ f

ð

X f
u=2

sinh(u=2)
eu=2

� �

X* f
u=2

sinh(u=2)
e�u=2

� �

u=2

sinh(u=2)
e j2ptfudu,

General Bertrand P0

BP0DX(t, f ;m) ¼ f

ð

X f
b=2

sinhb=2
eb=2

� �

X* f
b=2

sinhb=2
e�b=2

� �

m(b)e j2ptfbd b,

¼
ð

X f
b

2
coth

b

2

� �

þ b

2

� �� �

X* f
b

2
coth

b

2

� �

� b

2

� �� �

m(b)e j2ptfbdb

Generalized Altes GQX(t, f ; ~a) ¼ f

ð

e�~auX fe
1
2�~að Þu	 


X* fe�
1
2þ~að Þu	 


e j2ptfudu

Hyp. Choi–Williams HCWDX(t, f ;s) ¼
ðð

e�(2ptv)
2=sAFWX(t, v)e

j2p(tvf =fr�tfr ln f =fr) dt dv

kth Hyp. Power Subclass HP(k)
X (t, f ;G(H)) ¼ f

ð

X f
kb=2

sinh(kb=2)

� �1=k

eb=2

 !

X* f
kb=2

sinh(kb=2)

� �1=k

e�b=2
 !

kb=2

sinh(kb=2)

� �1=k

G(H)(b)e j2ptfb db

¼ f

k

�

�

�

�

�

�

�

�

ð

g(H) f

k
[t � t0]

� �

BP0D
(k)
X (t0, f ;m0)dt

0

Hyperbologram HYPX(t, f ;G) ¼
fr

f

�

�

�

�

�

�

�

�

ð1

0
X(j)G*

fr

f
j

� �

e j2pt f ln (j=fr)d j

�

�

�

�

�

�

�

�

2

¼
ð1

�1

ð1

0
QG

1

fr

f

f 0
(t0f 0 � t f ), fr

f 0

f

� �

QX(t
0 , f 0)dt0 df 0

Localized Hyp. Subclass LHX(t, f ;G
(H) , F(H)) ¼ f

ð

X( f e�F
(H)(b)þb=2)X*( f e�F

(H)(b)�b=2)e�F
(H)(b)G(H)(b)e j2ptfbdb

Power-Warp Hyp. Subclass PWHX(t, f ; s(H)) ¼
Ð

s(H)(� h)GQX(t, f ;h)dh

Pseudo Altes PQX(t, f ;G) ¼ fr
Ð1
0 QG 0, fr

f
f 0

	 


QX
tf
f 0 , f

0
	 


df 0

f 0

Smoothed Pseudo Altes SPQX(t, f ;G, s) ¼
ð

s(t f � c) PQX
c

f
, f ;G

� �

dc

¼ fr

ðð1

0
s(tf � c)QG 0, fr

f

f 0

� �

QX
c

f 0
, f 0

� �

dc
df 0

f 0

Warped Cohen Class HX(t, f ;C
(H)
H ) ¼ CHWX

t f

fr
, fr ln

f

fr
; CCH

� �

Members of the localized hyperbolic (lh) subclass include the affine hyperbolic (ah) and the kth hyperbolic power subclasses as well as the altes, bertrand p0,
and generalized altes distributions. (wx)( f) is the unitary signal warping defined in Equation 13.34, and m(u)¼m*(�u) is a real and even function.
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HYPX(t, f ;G) ¼ SPECWX
tf

fr
, fr ln

f

fr
;WG

� �

SPECX(t, f ;G) ¼ HYPW�1X(te
�f =fr , fre

f =fr ;W�1G): (13:96)

The constant bandwidth analysis of many Cohen’s-class TFRs,
such as the spectrogram, is mapped into the multiresolution,
constant Q analysis of many of the hyperbolic-class TFRs.
Equation 13.96 demonstrates that the relatively new hyperbolo-
gram can be computed using standard spectrogram implemen-
tations. This one-to-one correspondence between TFRs in
the Cohen and the hyperbolic classes greatly facilitates their
analysis and gives alternative methods for calculating various
TFRs.34,106

The hyperbolic and Cohen’s-class kernels are related by a
simple scaling factor, provided that any analysis windows are
warped appropriately:100

c(H)
H (c, b) ¼ cCH

c

fr
, frb

� �

$ C(H)
H (z,b) ¼ CCH

z

fr
, frb

� �

w(H)
H (c, z) ¼ 1

fr
fCH

c

fr
,
z

fr

� �

$ F(H)
H (b,b) ¼ frFCH ( frb, frb)

G(H)
H (b1, b2) ¼

1
ffiffiffiffiffiffiffiffiffiffiffi

jb1b2j
p FCH � ln

ffiffiffiffiffiffiffiffiffi

b1b2
p

, ln (b1=b2)
	 


:

For example, comparing the WD kernels in Table 13.10 with the
Altes Q kernels in Table 13.14 reveals that the Altes kernel

TABLE 13.14 Kernels of the Hyperbolic Class of TFRs Defined in Table 13.13

TFR c(H)
H (c, b) C(H)

H (z,b) w(H)
H (c, z) F(H)

H (b,b)

AH
ð

SAH(b)d b� ln
sinb=2

b=2

� �

SAH(b)
Ð

SAH(b) SAH(b)

� ej2pcb db � e
j2pz lnsinb=2

b=2

�

�

�

� � e
j2p z lnsinb=2

b=2

�

�

�

�1þcb
� �

db � d b� ln sinhb=2
b=2

	 
	 


Unitary
Ð

d(bþ lnm0(b))e
j2pcbdb e�j2pz lnm0(b)

Ð

e j2p(cb�z lnm0(b))db d(bþ lnm0(b))

B P0D

General

ð

m(b)

m0(b)
d(bþ lnm0(b))e

j2pcbdb
m(b)

m0(b)
e�j2pB lnm0(b)

ð

m(b)

m0(b)
e j2p(cb�z lnm0(b))db

m(b)

m0(b)
d(bþ lnm0(b))

B P0D

Power
Ð

d(b� F(k)(b))e j2pcbdb eþj2pzF(K) (b)
Ð

e j2p(cbþzF(K)(b))db d(b� F(k)(b))

B P0D
(k)

GQ
1

j~aj e
j2pcb=~a e j2p~azb d(cþ ~az) d(b� ~ab)

HP(k)
Ð

G(H)(b)d(b� F(k)(b)) G(H)(b)e j2pzF
(k)
(b)

Ð

G(H)(b) G(H)(b)

� e j2pcb db � e j2p[zF
(k)(b)þcb]d b � d b� 1

k
ln

sinh(kb=2)

(kb=2)

� �� �

HYP QG
�c

fre�b
, fre

�b

� �

HAFG(�z, �b) yG(�c, �z) VG(�b, �b)

¼ WDWG
�c

fr
, � bfr

� �

¼ AFWG
�z
fr
, � frb

	 


¼ 1

fr
uWG(� c=fr, � z=fr) ¼ frUWG(� frb, � frb)

LH
Ð

G(H)(b)d(b� F(H)(b))e j2pcbd b G(H)(b)e j2pzF
(H)
(b)

Ð

G(H)(b)e j2p[zF
(H)(b)þcb]d b G(H)(b)d(b� F(H)(b))

PQ frd(c)QG(0, fre
b) fryG(0, z) frd(c)yG(0, z) fr QG(0, fre

b)

¼ d(c=fr)WDWG(0, frb) ¼ uWG(0, z=fr) ¼ 1

fr
d

c

fr

� �

uWG(0, z=fr) ¼ frWDWG(0, frb)

PWH

ð

s(H)(h)
1

jhj e
�j2pcb

hdh S(H)(zb)
1

jzj s(H) c

z

� �

1

jbj s(H) � b

b

� �

Q d(c)d(b) 1 d(c) d(b)

SPQ frs(c) QG(0, fre
b) frS(b)yG(0, z) frs(c)yG(0, z) frS(b)QG(0, fre

b)

¼ s(c=fr)WDWG(0, frb) ¼ S( frb)uWG(0, z=fr) ¼ 1

fr
s(c=fr)uWG(0, z=fr) ¼ frS( frb)WDWG(0, frb)

Warped CH cCH
(c=fr , frb) CCH

(z=fr, frb)
1

fr
wCH

(c=fr, z=fr) frFCH
( frb, frb)

Note: Here, HAF is the Hyperbolic AF,

AF,m0(b) ¼
b=2

sinh (b=2)
,m(b) ¼ SAH(b)m0(b),VG(b,b) ¼ fre

bG( fre
bþb=2)

G*( fre
b�b=2), F(k)(b) ¼ 1

k
ln
sinh(k b=2)

k b=2
, uG(c, z) ¼ g(cþ z=2)g*(cþ z=2),UG(b,b) ¼ G(bþ b=2)G*(bþ b=2), and nG(c, z) and (WG)(f )

are defined in Equations 13.90 and 13.34, respectively.
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c(H)
Q (c, b) ¼ cWD(c=fr, frb) ¼ d(c=fr)d( frb) ¼ d(c)d(b)

is identical to that of theWD; similarly, examining the spectrogram
and hyperbologramkernels reveals that the kernels are related by an
axis scaling and a warping of the spectrogram analysis window:

c(H)
HYP(c, b) ¼ cSPEC(c=fr, frb) ¼WDWG(�c=fr, � bfr)

Properties of Cohen’s-class TFRs also map in a one-to-one fash-
ion to properties of the hyperboliclass TFRs.100 For example, the
WD’s perfect localization of linear FM chirps (P22) warps to the
Altes Q distribution’s perfect localization for hyperbolic FM
chirps (P23).

13.5.4.1 Affine-Hyperbolic Subclass

Affine-hyperbolic subclass

¼ TY (t, f )jY( f ) ¼
1
ffiffiffiffiffi

jaj
p X

f

a

� �

e�j2pc ln ( f =fr)e j2pft0

(

) TY (t, f ) ¼ TX a t � t0 �
c

f

� �

,
f

a

� ��

TFRs that satisfy properties P2–P4 in Table 13.6 are members of
the intersection of the affine class with the hyperbolic class, as
depicted graphically in Figure 13.4. The most commonly known
member of the affine-hyperbolic subclass is the unitary form of
the Bertrand P0 distribution. The first entry in Table 13.13
indicates that any member of the affine-hyperbolic subclass can
be written as an affine smoothed version of the unitary Bertrand
P0 distribution. Evaluation of the first entry in Table 13.14 reveals
that the two-dimensional kernels of the TFRs in this subclass
simplify to a function of a one-dimensional prototype SAH(b).
This greatly simplifies the kernel constraints in Table 13.8.

13.5.5 kth Power Class

kth power class

¼ TX(t, f )jY( f ) ¼
1
ffiffiffiffiffi

jaj
p X

f

a

� �

exp (�j2pc[sgn( f )]jf =frjk)
(

) TY (t, f ) ¼ TX a t � k

fr

f

fr

�

�

�

�

�

�

�

�

k�1
 !

,
f

a

 !)

The power classes of TFRs consists of many classes of TFRs, each
indexed by �1<k<1.73,100 These TFRs are scale covariant
(property P3) and power time-shift covariant, i.e.,

PC(k)
Y (t, f ) ¼ PC(k)

X t � c
d

df
jk( f =fr), f

� �

for Y( f )

¼ e�j2pcjk( f =fr)X( f )

¼ PC(k)
X t � c

k

fr

f

fr

�

�

�

�

�

�

�

�

k�1
, f

 !

(13:97)

where

jk( f ) ¼ sgn( f )j f jk for k 6¼ 0 (13:98)

is a one-to-one phase function involving the kth power of
frequency, f.73,98,100 Consequently, the kth power class perfectly
represents dispersive group delay changes in the signal that
are proportional to powers of frequency. When k¼ 1, the
power class is equivalent to the affine class in Equation 13.78.
Any member of the power class can be written in the
following four normal forms and the corresponding bi-frequency
form:

PC(k)
X t, f ;C(A)

PC

	 


¼ jk
f

fr

� ��

�

�

�

�

�

�

�

ðð

w(A)
PC jk

f

fr

� �

t

tk( f )
� c

� �

,

�

� jk
f

fr

� �

z

�

n(k)X (c, z)dc dz (13:99)

¼ 1

jk
f
fr

	 
�

�

�

�

�

�

ðð

F(A)
PC

�b

jk
f
fr

	 
 ,
b

jk
f
fr

0

@

1

A

� V (k)
X (b,b)e j2p

t
tk ( f )

bdb d b (13:100)

¼
ðð

c(A)
PC jk

f

fr

� � �t0

tk( f 0)
þ t

tk( f )

� �

,

�

�jk
f 0

f

� ��

WD(k)
X (t0, f 0) dt0 df 0 (13:101)

¼
ðð

c(A)
PC jk

f

fr

� �

z,
b

jk
f
fr

	 


0

@

1

A

� AF(k)X (z,b)e j2p
t

tk ( f )
bdz db (13:102)

¼ 1

j f j

ðð

G(A)(k)
PC

f1

f
,
f2

f

� �

e j2p
t

tk( f )
jk

f1
fr

� �

�jk
f2
fr

� � �

� X( f1)X*( f2)df1 df2: (13:103)

Below are the definitions of the kth signal product,

n(k)X (c, z) ¼ r(k)X (cþ z=2)r(k)*X (c� z=2), with

r(k)X (c) ¼
ð

X( f )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jtk( f )j
p

e j2pcjk( f =fr)df , (13:104)

the kth power signal spectrum product,

V (k)
X (b,b) ¼ fr

jkkb2 � b2=4jk�1
2k

X frj
�1
k (bþ b=2)

� �

X*( frj
�1
k (b� b=2))

¼ fr(WkX)([bþ b=2] fr)(WkX)*([b� b=2]fr)

(13:105)
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the kth central member,

WD(k)
X (t, f ) ¼WDWkX

t

frtk( f )
, frjk

f

fr

� �� �

¼ f

k

�

�

�

�

�

�

�

�

ð

1

1� b2

4

�

�

�

�

�

�

k�1
2k

X f j�1k 1þ b

2

� �� �

� X* f j�1
k 1� b

2

� �� �

e j2p
tf
kb d b, (13:106)

the kth power AF,

AF(k)X (z,b) ¼ AFWkX
z

fr
, frb

� �

¼
ð

fr

jkj b2 � b2

4

�

�

�

�

�

�

k�1
2k

X frj
�1
k (bþ b=2)

� �

� X* frj
�1
k b� b

2

� �� �

e j2pzbdb, (13:107)

the kth power inverse phase function,

j�1
k (b) ¼ sgn(b)jbj1=k, f 2 <, k 6¼ 0, (13:108)

the kth power group delay,

tk( f )¼
d

df
jk

f

fr

� �

¼ k

fr

f

fr

�

�

�

�

�

�

�

�

k�1

, f 2 < for k 6¼ 0, (13:109)

and the kth power signal warping.

(WkX)( f ) ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fr tk frj
�1
k

f
fr

	 
	 
�

�

�

�

�

�

r X frj
�1
k

f

fr

� �� �

¼ 1
ffiffiffi

k
p j f =frj

k�1
2k

X( frsgn( f )jf =frj1=k): (13:110)

TABLE 13.15 kth Power Class TFRs

kth PC TFR Formula

Affine Class Ax t, f ;C(A)
A

	 
 ¼ PC(1)
X (t, f ;C(A)

A )

Hyperbolic-Power H P(k)
X (t, f ;G(H)) ¼ f

k

�

�

�

�

�

�

�

�

ð

g(H) f

k
(t � t0)

� �

B P0D
(k)
X (t0 , f ;m0)dt

0, f > 0

Localized-Power LP(k)
X (t, f ;G(A) , F(A)) ¼ f

k

�

�

�

�

�

�

�

�

ð

G(A)(b)

j � F(A)2(b) � b2=4jk�1
2k

X( f j�1
k (�F(A)(b)þ b=2))

�X*( f j�1
k (�F(A)(b)� b=2))e j2ptf b=kd b

Pow. Unitary P0 BP0D
(k)
X (t, f ;m0) ¼ f

ð

X f
kb=2

sinhkb=2

� �1=k

eb=2

 !

X* f
kb=2

sinhkb=2

� �1=k

e�b=2

 !
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sinh kb=2

� �1=k

e j2ptf b db

Bertrand Pk BPkDX(t, f;m) ¼ f
Ð

X(f lk(u))X*(flk(�u))m(u)e j2ptf (lk(u)�lk(�u))du, f > 0

with lk(u) ¼ k
e�u � 1

e�ku � 1

� � 1
k�1

, k 6¼ 0, 1,l1(u) ¼ exp 1þ ue�u

e�u � 1

� �

, and m(u)¼m*(�u)

Power Flandrin FD(k)
X (t, f ) ¼ jk

f

fr

� ��

�

�

�

�

�

�

�

ð

V (k)
X jk

f

fr

� �

1þ b

4

� �2
" #

	 jk
f

fr

� �

b

 !

1� b

4

� �2
" #

e j2ptf b=kd b

Powegram POW(k)
X (t, f ;G) ¼ fr

j f j

ð

X(f 0)G*( frf
0=f )e

j2p t
tk( f )

jk(f
0=fr)

df 0
�

�

�

�

�

�

�

�

2

Pow. Unterberger Act. UAD(k)
X (t, f ) ¼ jjk( f =fr)j

ð

V (k)
X (jk( f =fr)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q

� �

, jk( f =fr)b)e
j2ptf b=kdb

Pow. Unterberger Pass. UAD(k)
X (t, f ) ¼ jjk( f =fr)j

ð

V (k)
X (jk( f =fr)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q

� �

, jk( f =fr)b)
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (b=2)2
q e j2ptf b=kdb

Power Generalized GWD(k)
X (t, f ; ~a) ¼ fr

jkj

ð

1

j(jk(f =fr)� ~ab)2 � b2=4jk�12k

X( frj
�1
k (jk( f =fr)� ~abþ b=2))X*( frj

�1
k (jk( f =fr)� ~ab

�b=2))e j2p
t

tk ( f )
bdb

Power Wigner WD(k)
X (t, f ) ¼ f

k

�

�

�

�

�

�

�

�

ð

1

j1� b2=4jk�1k
X( f j�1k (1þ b=2))X*( f j�1k (1� b=2))e j2ptf b=kdb

Note: v(k)X (c, z) and V (k)
X (b,b) are power signal products defined in Equations 13.104 and 13.105, and the power functions jk(b) and tk( f ) are given in

Equations 13.98 and 13.109, respectively.
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The bi-frequency kernel in Equation 13.103 is related to the
normal form kernels as follows:

G(A)(k)
PC (b1, b2) ¼

j0k
ffiffiffiffiffiffiffiffiffiffiffi

jb1b2j
p	 


�

�

�

�

�

�

F(A)
PC �

jk(b1)þ jk(b2)

2
,

�

jk(b1)� jk(b2)

�

, k 6¼ 0

G(A)
PC (b1, b2), k ¼ 1.

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

A list of power-class TFRs is given in Table 13.15. These PC TFRs
are well matched to power chirps and dispersive power-time
shifts, e.g.,

X( f ) ¼
ffiffiffiffiffiffiffiffiffiffiffi

tX( f )
p

e�j2pjk( f =fr) )WD(k)
X (t, f )

¼ jtk( f )jd(t � ctk( f )):

The best known among them are the Bertrand Pk distributions.
The PC TFR kernels for us in Equations 13.99 through 13.102 are
given in Table 13.16. The last column in Table 13.7 lists the
kernel constrains for a given power class TFR to have ideal

properties.100 All TFRs, kernels, and properties of the power
class correspond to a warped version of the TFRs, kernels, and
properties, respectively, of the affine class. Every TFR, APC, in the
affine class that is covariant to scale changes and constant time
shifts, maps to a corresponding power-class TFR

PC(k)
X t, f ;C(A)

PC

	 


¼ AWk ,X
t

frtk( f )
, frjk

f

fr

� �

;C(A)
APC

� �

(13:111)

that is covariant to scale changes and the dispersive time shifts in
Equation 13.97 that are proportional to powers of frequency. Just as
in Cohen’s-class to hyperbolic-classmapping in Equation 13.94, the
transformation in Equation 13.111 involves a unitary warping
of the signal and a scaling of the time–frequency axes. Likewise,
affine-class TFR kernels and their corresponding PC TFR kernels
are equivalent, provided any analysis windows are prewarped
appropriately. For example, the affine-class Unterberger active dis-
tribution, UADX(t, f), in Table 13.11 maps to the power-class TFR,
UAD(k)

X (t, f ), inTable 13.15. Their respective kernels inTables 13.12
and 13.16 are identical. The scalogram in Table 13.11 maps to the
powergram in Table 13.15; their respective kernels in Tables 13.12
and 13.16 differ only in the power warping in Equation 13.110 of
the analysis window spectrum G( f ).

TABLE 13.16 Normal Form Kernels of the Power-Class TFRs Defined in Table 13.15

PC TFR c(A)
PC (z,b) c(A)

PC (z,b) f(A)
PC (c, z) F(A)

PC (b,b)

Unitary
ð

b=2

sinh b=2
d bþ b

2
coth(b=2)

� �

e j2pcbdb
b=2

sinh b=2
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b
2coth

b
2
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b=2

sinhb=2
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b
2cothb=2)db

b=2

sinhb=2
d bþ b

2
coth

b

2

� �
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(k)

LP(k)
Ð
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FD(k)
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1� b
4

� �2
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4

� �2
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4
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" #
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� �
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1� b
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� �2
 !
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4
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G(A)(b)d(b� F(A)(b))e j2pcbdb G(A)(b)e j2pzF
(A)(b)

Ð

G(A)(b)e j2p(cbþzF
(A)(b))db G(A) (b)d(b� F(A) (b))

POW(k) WD(k)
G �tk frj

�1
k (b)

�� �

c, � frj
�1
k (b)Þ AF(k)
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�e j2pcb db �e
�j2pz

ffiffiffiffiffiffiffiffiffiffiffi

1þ b
2ð Þ2

q
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db �d bþ
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1þ b
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� �2
s

0

@

1

A

WD(k) d(c) d(bþ 1) e�j2pz e�j2pz d(c) d(bþ 1)

Note: Here, AF(k)
X (z,b), n(k)G (c, z),V (k)

G (b,b), and (WkX)( f ) are defined in Equations 13.104, 13.105, 13.107, and 13.110, respectively, and UG(b, b)¼
G(bþb=2)G*(b�b=2).
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13.6 Summary

This chapter has focused on linear and quadratic TFRs and the
different types of properties that they should satisfy. Properties
of the Fourier transform, Mellin transform, and unitary oper-
ators were used to understand the relative merits of these time-
varying spectral representations. No known TFR is ideal for all
applications, so the search continues for new ones. There are
many other TFRs in the literature that are highly nonlinear
functions of the signal; they have been proposed to adapt
automatically to changes in the signal, to be always nonnegative,
to extend the concepts of higher order cummulants and spectra,
or to solve time-varying constrained optimization prob-
lems.1,4,24,103,116 Recent research has focused on the mapping
of known TFRs to multidimensional representations of arbitrary
variables.44
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14.1 Introduction

The ordinary Fourier transform and related techniques are of
great importance in many areas of science and engineering. The
fractional Fourier transform (FRT) is a generalization of the
ordinary Fourier transform with an order (or power) parameter a.
This chapter provides an introduction to the fractional Fourier
transform and discusses some of its more important properties.
The FRT also has a growing list of applications in several areas.
An overview of applications that have received interest so far are
provided at the end of this chapter. Those interested in learning
about the transform and its applications in greater depth are
referred to [23,122,123,129].

Mathematically the ath order fractional Fourier transform
operator is the ath power of the ordinary Fourier transform
operator. (Readers not familiar with functions of operators may
think of them in analogy with functions of matrices. In the
discrete case, where the discrete ordinary and fractional Fourier
transform operators are represented by matrices, this is actually
the case.) If we denote the ordinary Fourier transform operator
by F , then the ath order fractional Fourier transform operator is
denoted by F a. The zeroth-order fractional Fourier transform

operator F 0 is equal to the identity operator I . The first-order
fractional Fourier transform operator F 1 is equal to the ordinary
Fourier transform operator. Integer values of a correspond to
repeated application of the Fourier transform; for instance, F 2

corresponds to the Fourier transform of the Fourier transform.
F�1 corresponds to the inverse Fourier transform operator.
The a0th order transform of the ath order transform is equal to
the (a0 þ a)th order transform; that is F a0F a ¼ F a0þa, a property
referred to as index additivity. For instance, the 0.5th fractional
Fourier transform operator F 0.5, when applied twice, amounts to
ordinary Fourier transformation. Or, the 0.4th transform of the
0.3rd transform is the 0.7th transform. The order a may assume
any real value, however the operator F a is periodic in a with
period 4; that isF aþ4j ¼ F a where j is any integer. This is because
F 2 equals the parity operator P which maps f(u) to f (�u) andF 4

equals the identity operator. Therefore, the range of a is usually
restricted to (�2, 2] or [0, 4). Complex-ordered transforms have
also been discussed by some authors, although there remains
much to do in this area both in terms of theory and applications.

The same facts can also be thought of in terms of the functions
which these operators act on. For instance, the zeroth-order
fractional Fourier transform of the function f(u) is merely

* Parts of this chapter appeared in or were adapted from Ozaktas and Kutay [121].
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the function itself, and the first-order transform is its ordinary
Fourier transform F(m), where m denotes the frequency domain
variable. The ath fractional Fourier transform of f(u) is denoted
by fa(u) so that f0(u) ¼ f (u) and f1(m) ¼ F(m) (or f1(u) ¼ F(u)
since the functional equality does not depend on the dummy
variable employed).

An example is given in Figure 14.1, where we see the magnitude
of the fractional Fourier transforms of the rectangle function for
different values of the order a 2 [0, 1]. We observe that as a varies
from 0 to 1, the rectangle function evolves into a sinc function,
which is the ordinary Fourier transform of the rectangle function.

The earliest known references dealing with the transform go
back to the 1920s and 1930s; since then the transform has been
reinvented several times. It has received the attention of a few
mathematicians during the 1980s [100,106,109]. However, inter-
est in the transform really grew with its reinvention=reintroduc-
tion by researchers in the fields of optics and signal processing,
who noticed its relevance for a variety of application areas
[8,88,102,117,124,125]. A detailed account of the history of the
transform may be found in [129].

Fractionalization of the Fourier transform has led to interest in
fractionalization of other transforms [5,91,175] such as theHilbert
transform [137] and the cosine–sine and Hartley transforms
[30,134], and extensions to the study of time–frequency distribu-
tions [130,132,143]. These will not be dealt with in this chapter.

Throughout this chapter, the imaginary unit is denoted by i

and the square root is defined such that the argument of the
result lies in the interval (�p=2,p=2].

The first three to five sections can be read as a tutorial on the
fractional Fourier transform, and the other sections can be read
or consulted as needed.

14.2 Definition and Essential Properties

The most straightforward way of defining the fractional Fourier
transform is as a linear integral transform as follows:

fa(u) ¼
ð1

�1

Ka(u, u
0)f (u0) du0, (14:1)

Ka(u, u
0) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i cot a
p

exp [ip( cot a u2 � 2 csc a uu0

þ cot a u
02)],

a ¼ ap

2
,

when a 6¼ 2j for integer j. When a ¼ 4j the transform is defined
as Ka(u, u0) ¼ d(u� u0) and when a ¼ 4jþ 2 the transform is
defined as Ka(u, u0) ¼ d(uþ u0). It can be shown that the above
kernel for a 6¼ 2j indeed approaches these delta function kernels
as a approaches even integers. For 0 < jaj < 2, the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i cot a
p

can be written as exp {�i[psgn(a)=4� a=2]}=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j sin aj
p

where sgn(�) is the sign function. It is easy to show
that when a¼ 1 the kernel reduces to exp (�i2puu0), corre-
sponding to the ordinary Fourier transform, and that when
a ¼ �1 the kernel reduces to exp (i2puu0), corresponding to
the ordinary inverse Fourier transform.

It is not easy to see from the above definition that the trans-
form is indeed the operator power of the ordinary Fourier
transform. In order to find the operator power of the ordinary
Fourier transform, we first consider its eigenvalue equation:

Fcn(u) ¼ e�inp=2cn(u): (14:2)
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FIGURE 14.1 Magnitude of the fractional Fourier transform of the rectangle function as a function of the transform order. (From Ozaktas, H. M.
and Kutay, M. A., Proceedings of the European Control Conference. European Union Control Association and University of Porto, Porto, Portugal,
2001. With permission.)
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Here the eigenfunctions cn(u), n ¼ 0, 1, 2 . . . are the Hermite–
Gaussian functions defined as cn(u) ¼ (21=4=

ffiffiffiffiffiffiffiffiffi

2nn!
p

)
Hn(

ffiffiffiffiffiffi

2p
p

u) exp (�pu2), where Hn(u) are the standard Hermite
polynomials. exp (�inp=2) is the eigenvalue associated with the
nth eigenfunction cn(u). Now, following a standard procedure
also used to define functions of matrices, the fractional Fourier
transform may be defined such that it has the same eigenfunc-
tions, but the eigenvalues raised to the ath power:

F acn(u) ¼ (e�inp=2)acn(u): (14:3)

This definition is not unique for at least two reasons. First, it
depends on the choice of the Hermite–Gaussian set as the set of
eigenfunctions (which is not the only such possible set). Second,
it depends on how we resolve the ambiguity in evaluating
[ exp (�inp=2)]a. The particular definition, which has so far
received the greatest attention, has the most elegant properties,
and which has found the most applications, follows from choos-
ing [ exp (�inp=2)]a ¼ exp (�ianp=2). With this choice, the
fractional Fourier transform of a square-integrable function f(u)
can be found by first expanding it in terms of the set of Hermite–
Gaussian functions cn(u) as

f (u) ¼
X1

n¼0
Cncn(u), (14:4)

Cn ¼
ð1

�1

cn(u)f (u) du, (14:5)

and then applying F a to both sides to obtain

F af (u) ¼
X1

n¼0
CnF acn(u), (14:6)

fa(u) ¼
X1

n¼0
Cne

�ianp=2cn(u), (14:7)

fa(u) ¼
ð1

�1

X1

n¼0
e�ianp=2cn(u)cn(u

0)

" #

f (u0) du0 (14:8)

The final form can be shown to be equal to that given by
Equation 14.1 through a standard identity (for instance, see
Table 2.8.9 in [129]).

Alternative definitions of the transform will arise if we make
different choices regarding the eigenfunctions or in taking the
fractional powers of the eigenvalues [31,77]. For instance, if the
ambiguity in evaluating za is resolved by choosing the principal
power of z, it turns out that the ath fractional Fourier transform
of f(u) can be expressed as a linear combination of the form

b0(a)f (u)þ b1(a)F(u)þ b2(a)f (�u)þ b3(a)F(�u), (14:9)

where
F(u) is the ordinary Fourier transform of f(u)
bk(a) are the order-dependent coefficients of the linear com-

bination (page 139 of [129])

This definition is merely a linear combination of a function and
its Fourier transform (and their time-reversed versions). It is
worth emphasizing that the definition of the FRT which is the
subject of this chapter not only does not correspond to choosing
the principal powers, it does not correspond to any unambiguous
way of specifying the power function za. The special nature of
resolving the ambiguity in evaluating [ exp (�inp=2)]a by taking
it equal to exp (�ianp=2) is further discussed in [129].

The fractional Fourier transform fa(u) of a function f(u) also
corresponds to the solution of the following differential equation,
with f0(u) ¼ f (u) acting as the initial condition:

� 1

4p

q2

qu2
þ pu2 � 1

2

� �

fa(u) ¼ i
2

p

qfa(u)

qa
: (14:10)

The solution to Equation 14.10 can be expressed as

fa(u) ¼
ð

1

�1

Ka(u, u
0)f0(u

0) du0, (14:11)

where Ka(u, u0) is the same kernel as defined in Equation 14.1, a
fact which can be shown by direct substitution. Equation 14.10 is
the quantum-mechanical harmonic oscillator differential equa-
tion, which can be obtained from the classical harmonic oscilla-
tor equation through standard procedures [84]. In this
interpretation, the order parameter a corresponds to time and
fa(u) gives us the time evolution of the wave function. The kernel
Ka(u, u0) is sometimes referred to as the harmonic oscillator
Green’s function: it is the response of the system to
f0(u) ¼ d(u� u0) [95]. (To be precise, we must note that the
harmonic oscillator differential equation differs from equation
10 by the term �1=2; see [129].) Further discussion of the
relationship of the fractional Fourier transform to harmonic
oscillation may be found in [13,84].

The fractional Fourier transform operator can also be
expressed in hyperdifferential form:

F a ¼ e�i(ap=2)H,

H ¼ p(D2 þ U2)� 1

2
,

(14:12)

where
U is the coordinate multiplication operator defined as
Uf (u) ¼ uf (u)

D is the differentiation operator defined as Df (u) ¼
(i2p)�1df (u)=du

With these definitions, Equation 14.12 corresponds to the fol-
lowing expression in the time domain:
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fa(u) ¼ F af (u) ¼ exp �i ap

2

� �

� 1

4p

d2

du2
þ pu2 � 1

2

� �� �

f (u):

(14:13)

We can convince ourselves that this way of expressing the frac-
tional Fourier transform is equivalent to earlier expressions by
noting that the differential equation 10 can be written as
Hfa(u) ¼ i(2=p)qfa(u)=qa. The solution of this equation can be
formally expressed as fa(u) ¼ exp (�i(ap=2)H)f0(u) where f0(u)
serves as the initial or boundary condition, which is the same as
Equation 14.12. In other words, Equation 14.12 is simply the
solution of the differential equation given in Equation 14.10,
expressed in hyperdifferential form.

We will conclude this section with a derivation that links
together several of the concepts presented above. Let us recall
the eigenvalue equation (Equation 14.3):

F acn(u) ¼ e�ianp=2cn(u) ¼ e�iancn(u), (14:14)

where a ¼ ap=2 and cn(u) are the Hermite–Gaussian functions
satisfying the differential equation (Table 2.8.6 of [129])

d2

du2
þ 4p2 2nþ 1

2p
� u2

� �� �

cn(u) ¼ 0: (14:15)

Now, starting from the last two equations, let us seek a hyper-
differential representation for F a of the form exp (�iaH).
Differentiating

exp (�iaH)cn(u) ¼ e�iancn(u) (14:16)

with respect to a and setting a ¼ 0, we obtain

Hcn(u) ¼ ncn(u), (14:17)

which upon comparison with Equation 14.15 leads to

Hcn(u) ¼ � 1

4p

d2

du2
þ pu2 � 1

2

� �

cn(u): (14:18)

By expanding arbitrary f(u) in terms of the cn(u), we obtain

Hf (u) ¼ � 1

4p

d2

du2
þ pu2 � 1

2

� �

f (u), (14:19)

by virtue of the linearity ofH. Now, in abstract operator form, we
may write

H ¼ p(D2 þ U2)� 1

2
, (14:20)

precisely corresponding to Equation 14.12.
A brief list of the fractional Fourier transforms of common

functions is provided in Section 14.4. Many of the elementary
and operational properties of the FRT are collected in

Section 14.5, which can be recognized as generalizations of the
corresponding properties of the ordinary Fourier transform.

14.3 Fractional Fourier Domains

One of the most important concepts in Fourier analysis is the
concept of the Fourier (or frequency) domain. This ‘‘domain’’ is
understood to be a space where the Fourier transform represen-
tation of the signal lives, with its own interpretation and qualities.
This naturally leads one to inquire into the nature of the domain
where the fractional Fourier transform representation of a func-
tion lives. This is best understood by referring to Figure 14.2,
which shows the phase space spanned by the axes u (usually
time or space) and m (temporal or spatial frequency). This phase
space is also referred to as the time–frequency or space–frequency
plane in the signal processing literature. The horizontal axis u is
simply the time or space domain, where the original function lives.
The vertical axis m is simply the frequency (or Fourier) domain
where the ordinary Fourier transform of the function lives.
Oblique axes making angle a constitute domains where the ath
order fractional Fourier transform lives, where a and a are related
through a ¼ ap=2. Notice that this description is consistent with
the fact that the second Fourier transform is equal to the parity
operation (associated with the �u axis), the fact that the �1st
transform corresponds to the inverse Fourier transform (associ-
ated with the �m axis), and the periodicity of fa(u) in a (adding a
multiple of 4 to a corresponds to adding a multiple of 2p to a).

For those familiar with phase spaces from a mechanics—
rather than a signal analysis—perspective, we note that the cor-
respondence between spatial frequency and momentum allows
one to construct a correspondence between the familiar mech-
anical phase space of a single degree of freedom (defined by the
space axis and the momentum axis), and the phase space of
signal analysis (defined by the space axis and the spatial fre-
quency axis). What is important to understand for the present
purpose is that the phase space or time– and=or space–frequency
planes we are talking about is essentially the same physical
construct as the classical phase space of mechanics.

u

μ

α=aπ/2

FIGURE 14.2 Phase space and the ath order fractional Fourier
domain. (From Ozaktas, H. M. and Kutay, M. A., Proceedings of the

European Control Conference. European Union Control Association and
University of Porto, Porto, Portugal, 2001. With permission.)
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Referring to axes making angle a ¼ ap=2 with the u axis as
the ‘‘ath fractional Fourier domain’’ is supported by several of the
properties of the fractional Fourier transform to be discussed
further in Section 14.5. However, the most substantial justifica-
tion is based on the fact that

fractional Fourier transformation corresponds to rotation

in phase space.

This can be formulated in many ways, the most straightforward
being to consider a phase-space distribution (or time=space–
frequency representation) of the function f(u), such as the
Wigner distribution Wf (u,m), which is defined as

Wf (u,m) ¼
ð1

�1

f (uþ u0=2)f *(u� u0=2)e�i2pmu
0
du0: (14:21)

The many properties of the Wigner distribution [37,67] support
its interpretation as a function giving the distribution of signal
energy in phase space (the time- or space-frequency plane). That
is, the Wigner distribution answers the question ‘‘How much of
the signal energy is located near this time and frequency?’’
(Naturally, the answer to this question can only be given within
limitations imposed by the uncertainty principle.) Three of the
important properties of the Wigner distribution are

ð1

�1

Wf (u,m) dm ¼ R0[Wf (u,m)] ¼ jf (u)j2, (14:22)

ð1

�1

Wf (u,m) du ¼ Rp=2[Wf (u,m)] ¼ jF(m)j2, (14:23)

ð1

�1

ð1

�1

Wf (u,m) du dm ¼ fk k2¼ Signal energy: (14:24)

Here Ra denotes the integral projection (or Radon transform)
operator which takes an integral projection of the two-dimensional
function Wf (u,m) onto an axis making angle a with the u axis,
to produce a one-dimensional function (page 56 of [129]).

Now, it is possible to show that the Wigner distribution
Wfa(u,m) of fa(u) is a clockwise rotated version of the Wigner
distribution Wf (u,m) of f(u). Mathematically,

Wfa(u,m) ¼Wf (u cos a� m sin a, u sin aþ m cos a):

(14:25)

That is, the act of fractional Fourier transformation on the
original function, corresponds to rotation of the Wigner distri-
bution [88,107,117]. An immediate corollary of this result, sup-
ported by Figure 14.3, is

Ra[Wf (u,m)] ¼ jfa(u)j2, (14:26)

which is a generalization of Equations 14.22 and 14.23. This
equation means that the projection of the Wigner distribution
of f(u) onto the axis making angle a gives us jfa(u)j2, the squared
magnitude of the ath fractional Fourier transform of the func-
tion. Since projection onto the u axis (the time or space domain)
gives jf (u)j2 and projection onto the m ¼ u1 axis (the frequency
domain) gives jF(m)j2, it is natural to refer to the axis making
angle a as the ath order fractional Fourier domain.

Closely related to the Wigner distribution is the ambiguity
function Af (�u, �m) of the function f(u), defined as

Af (�u, �m) ¼
ð1

�1

f (u0 þ �u=2)f * (u0 � �u=2)e�i2p�mu0 du0: (14:27)

Whereas the Wigner distribution is the prime example of an
energetic time-frequency representation, the ambiguity function

(a)

μ

Wf (u, μ)

u

μ

u

Wf
a
(u, μ)

(b)

FIGURE 14.3 (a) Projection ofWf (u,m) onto the ua axis. (b) Projection ofWfa (u,m) onto the u axis. (FromOzaktas, H.M. andKutay,M.A.,Proceedings
of the European Control Conference. European Union Control Association and University of Porto, Porto, Portugal, 2001. With permission.)
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is the prime example of a correlative time–frequency representa-
tion. The ambiguity function deserves this by virtue of the
following properties [37,67]:

Af (�u, 0) ¼ S0[Af (�u, �m)] ¼
ð1

�1

f (u0 þ �u)f *(u0) du0, (14:28)

Af (0, �m) ¼ Sp=2[Af (�u, �m)] ¼
ð1

�1

F(m0 þ �m)F*(m0) dm0, (14:29)

Af (�u, �m) � Af (0, 0) ¼ fk k2¼ En[f ] ¼ Signal energy, (14:30)

which say that the on-axis profiles of the ambiguity function are
equal to the autocorrelation of the signal in the time and fre-
quency domains, respectively. Here Sa denotes the slice operator
that returns the slice Af (r cosa , r sin a) of the two-dimensional
function Af (�u, �m) (page 56 of [129]).

Now, it is possible to show that slices of the ambiguity func-
tion Af (�u, �m) satisfy

Sa[Af (�u, �m)](r) ¼ Af (r cos a, r sin a) ¼ f2a=p(r) * f2a=p* (�r),

(14:31)

where * denotes ordinary convolution. Just as oblique projections
of the Wigner distribution correspond to the squared magnitudes
of the fractional Fourier transforms of the function, the oblique
slices of the ambiguity function correspond to the autocorrela-
tions of the fractional Fourier transforms of the function.

Finally, we note that the ambiguity function is related to the
Wigner distribution by what is essentially a two-dimensional
Fourier transform:

Af (�u, �m) ¼
ð1

�1

ð1

�1

Wf (u,m)e
�i2p(�mu��um) du dm: (14:32)

14.4 Fractional Fourier Transforms
of Some Common Functions

Below we list the fractional Fourier transforms of some common
functions. Transforms of most other functions must usually be
computed numerically (Section 14.13).

Unit function: The fractional Fourier transform of f (u) ¼ 1 is

F a[1] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ i tan a
p

e�ipu2 tana: (14:33)

This equation is valid when a 6¼ 2jþ 1 where j is an arbitrary
integer. The transform is d(u) when a ¼ 2jþ 1.

Delta function: The fractional Fourier transform of a delta
function f (u) ¼ d(u� u0) is

F a[d(u� u0)] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i cot a
p

eip(u
2 cota�2uu0 cscaþu20 cota):

(14:34)

This expression is valid when a 6¼ 2j. The transform of d(u� u0)
is d(u� u0) when a ¼ 4j and d(uþ u0) when a ¼ 4jþ 2.

Harmonic function: The fractional Fourier transform of a har-
monic function f (u) ¼ exp (i2pm0u) is

F a[ei2pm0u] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ i tan a
p

e�ip(u2 tana�2um0 secaþm2
0 tana):

(14:35)

This equation is valid when a 6¼ 2jþ 1. The transform of
exp (i2pm0u) is d(u� m0) when a ¼ 4jþ 1 and d(uþ m0)
when a ¼ 4jþ 3.

General chirp function: The fractional Fourier transform of a
general chirp function f (u) ¼ exp [ip(xu2 þ 2ju)] is

F a[eip(xu
2þ2ju)]

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ i tan a

1þ x tan a

s

eip[u
2(x�tana)þ2uj seca�j2 tana]=[1þx tana]:

(14:36)

This equation is valid when a� (2=p) arctan x 6¼ 2jþ 1.
The transform of exp (ipxu2) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=(1� ix)
p

d(u) when
[a� (2=p) arctan x] ¼ 2jþ 1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=(1� ix)
p

when
[a� (2=p) arctan x] ¼ 2j.

Hermite–Gaussian functions: The fractional Fourier transform
of a Hermite–Gaussian function f (u) ¼ cn(u) is

F a[cn(u)] ¼ e�ina cn(u): (14:37)

General Gaussian function: The fractional Fourier transform of
a general Gaussian function f (u) ¼ exp [�p(xu2 þ 2ju)] is

F a[e�p(xu2þ2ju)]

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i cot a

x� i cot a

s

eip cota[u2(x2�1)þ2uxj secaþj2]=[x2þcota]

� e�p csc2 a(u2xþ2uj cosa�xj2 sin2 a)=(x2þcota): (14:38)

Here x > 0 is required for convergence.

14.5 Basic and Operational Properties
of the Fractional Fourier Transform

Here we present a list of the more important basic and oper-
ational properties of the FRT. Readers can easily verify that the
operational properties, such as those for scaling, coordinate
multiplication, and differentiation, reduce to the corresponding
property for the ordinary Fourier transform when a¼ 1.

Linearity: Let F a denote the ath order fractional Fourier trans-
form operator. Then F a

P

k bkfk(u)] ¼
P

k bk[F afk(u)
	 


.
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Integer orders: F k ¼ (F )k where F denotes the ordinary Four-
ier transform operator. This property states that when a is equal
to an integer k, the ath order fractional Fourier transform is
equivalent to the kth integer power of the ordinary Fourier
transform, defined by repeated application. It also follows that
F 2 ¼ P (the parity operator), F 3 ¼ F�1 ¼ (F )�1 (the inverse
transform operator), F 4 ¼ F 0 ¼ I (the identity operator), and
F j ¼ F jmod 4.

Inverse: (F a)�1 ¼ F�a. In terms of the kernel, this property is
stated as K�1a (u, u0) ¼ K�a(u, u0).

Unitarity: (F a)�1 ¼ (F a)H ¼ F�a where ()H denotes the con-
jugate transpose of the operator. In terms of the kernel, this
property can be stated as K�1a (u, u0) ¼ Ka* (u0, u).

Index additivity: F a2F a1 ¼ F a2þa1 . In terms of kernels this can
be written as Ka2þa1(u, u

0) ¼
Ð

Ka2 (u, u
00)Ka1 (u

00, u0) du00.

Commutativity: F a2F a1 ¼ F a1F a2 .

Associativity: F a3 (F a2F a1) ¼ (F a3F a2)F a1 .

Eigenfunctions: F a[cn(u)] ¼ exp (�ianp=2)cn(u). Here cn(u)
are the Hermite–Gaussian functions defined in Section 14.2.

Parseval:
Ð

f *(u)g(u)du ¼
Ð

fa* (u)ga(u)du. This property is
equivalent to unitarity. Energy or norm conservation
(En[f ] ¼ En[fa] or fk k ¼ fak k) is a special case.
Time reversal: Let P denote the parity operator: P[f (u)] ¼
f (�u), then

F aP ¼ PF a (14:39)

F a[f (�u)] ¼ fa(�u) (14:40)

Transform of a scaled function: LetM(M) andQ(q) denote the
scalingM(M)[f (u)] ¼ jMj�1=2f (u=M) and chirp multiplication
Q(q)[f (u)] ¼ e�ipqu

2
f (u) operators, respectively. Here the nota-

tion M(M)[f (u)] means that the operatorM(M) is applied to
the function f(u). Then

F aM(M) ¼ Q(� cot a (1� ( cos2 a0)=( cos2 a)))

�M( sin a=M sin a0)F a0 , (14:41)

F a[jMj�1=2f (u=M)] ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� i cot a

1� iM2 cot a

r

eipu
2 cota(1�( cos2 a0)=( cos2 a))

� fa0
Mu sin a0

sin a

� �

: (14:42)

Here a0 ¼ arctan (M�2 tan a) and a0 is taken to be in the same
quadrant as a. This property is the generalization of the ordinary
Fourier transform property stating that the Fourier transform of
f (u=M) is jMjF(Mm). Notice that the fractional Fourier trans-
form of f (u=M) cannot be expressed as a scaled version of fa(u)
for the same order a. Rather, the fractional Fourier transform of
f (u=M) turns out to be a scaled and chirp modulated version of
fa0 (u) where a0 6¼ a is a different order.

Transform of a shifted function: Let SH(u0) and PH(m0)
denote the shift SH(u0)[f (u)] ¼ f (uþ u0) and the phase shift
PH(m0)[f (u)] ¼ exp (i2pm0u)f (u) operators, respectively. Then

F a SH(u0) ¼ eipu
2
0 sina cosaPH(u0 sin a)SH(u0 cos a)F a,

(14:43)

F a[f (uþ u0)] ¼ eipu
2
0 sina cosaei2puu0 sina fa(uþ u0 cos a):

(14:44)

We see that the SH(u0) operator, which simply results in a
translation in the u domain, corresponds to a translation fol-
lowed by a phase shift in the ath fractional domain. The amount
of translation and phase shift is given by cosine and sine multi-
pliers which can be interpreted in terms of ‘‘projections’’ between
the axes.

Transform of a phase-shifted function:

F a PH(m0) ¼ e�ipm2
0 sina cosaPH(m0 cos a)SH(�m0 sin a)F a,

(14:45)

F a[ exp (i2pm0u)f (u)] ¼ e�ipm2
0 sina cosaei2pum0 cosa

fa(u� m0 sin a): (14:46)

Similar to the shift operator, the phase-shift operator, which
simply results in a phase shift in the u domain, corresponds to
a translation followed by a phase shift in the ath fractional
domain. Again the amount of translation and phase shift are
given by cosine and sine multipliers.

Transform of a coordinate multiplied function: Let U and D
denote the coordinate multiplication U[f (u)] ¼ uf (u) and
differentiation D[f (u)] ¼ (i2p)�1df (u)=du operators, respect-
ively. Then

F a Un ¼ [ cos aU � sin aD]nF a, (14:47)

F a[unf (u)] ¼ [ cos a u� sin a (i2p)�1d=du]nfa(u): (14:48)

When a¼ 1, the transform of a coordinate multiplied function
uf (u) is the derivative of the transform of the original function
f(u), a well-known property of the Fourier transform. For arbi-
trary values of a, we see that the transform of uf (u) is a linear
combination of the coordinate-multiplied transform of the ori-
ginal function and the derivative of the transform of the original
function. The coefficients in the linear combination are cos a
and� sin a. As a approaches 0, there is more uf (u) and less
df (u)=du in the linear combination. As a approaches 1, there is
more df (u)=du and less uf (u).

Transform of the derivative of a function:

F a Dn ¼ [ sin aU þ cos aD]nF a, (14:49)

F a[[(i2p)�1d=du]nf (u)] ¼ [ sin a uþ cos a (i2p)�1d=du]nfa(u):

(14:50)
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When a¼ 1 the transform of the derivative of a function
df (u)=du is the coordinate-multiplied transform of the original
function. For arbitrary values of a, we see that the transform is
again a linear combination of the coordinate-multiplied trans-
form of the original function and the derivative of the transform
of the original function.

Transform of a coordinate divided function:

F a[f (u)=u] ¼ �i csc a eipu
2 cota

ð2pu

�1

fa(u
0)e(�ipu

02 cota) du0:

(14:51)

Transform of the integral of a function:

F a

ðu

u0

f (u0) du0

2

4

3

5 ¼ sec a e�ipu
2 tana

ðu

u0

fa(u
0)eipu

02 tana du0:

(14:52)

A few additional properties are

F a[f *(u)] ¼ f�a* (u), (14:53)

F a[(f (u)þ f (�u))=2] ¼ (fa(u)þ fa(�u))=2, (14:54)

F a[(f (u)� f (�u))=2] ¼ (fa(u)� fa(�u))=2: (14:55)

It is also possible to write convolution and multiplication
properties for the fractional Fourier transform, though these are
not of great simplicity (page 157 of [129] and [9,174]).

A function and its ath order fractional Fourier transform
satisfy an ‘‘uncertainty relation,’’ stating that the product of the
spread of the two functions, as measured by their standard
deviations, cannot be less than j sin (ap=2)j=4p [116].

We may finally note that the transform is continuous in the
order a. That is, small changes in the order a correspond to small
changes in the transform fa(u). Nevertheless, care is always
required in dealing with cases where a approaches an even
integer, since in this case the kernel approaches a delta function.

14.6 Dual Operators and Their Fractional
Generalizations

The dual of the operator A will be denoted by AD and satisfies

AD ¼ F�1AF : (14:56)

AD performs the same action on the frequency-domain repre-
sentation F(m), that A performs on the time-domain represen-
tation f(u). For instance, if A represents the operation of
multiplying with the coordinate variable u, then the dual AD

represents the operation of multiplying F(m) with m, which
in the time domain corresponds to the operator (i2p)�1d=du.

The fractional operators we deal with in this section perform the
same action in a fractional domain:

Aa ¼ F�aAF a: (14:57)

This equation generalizes Equation 14.56 and reduces to it when
a¼ 1 with A1 ¼ AD. If again A corresponds to the multiplica-
tion of f(u) with u, then Aa corresponds to the multiplication of
fa(ua) with ua, where ua denotes the coordinate variable
associated with the ath fractional Fourier domain. The effect
of Aa in the ordinary time domain can be expressed as
cos a uf (u)þ sin a (i2p)�1df (u)=du (see ‘‘Transform of a
coordinate multiplied function’’ in Section 14.5).

To distinguish the kind of fractional operators discussed in
this section from the ath operator power of A which is denoted
by Aa, we are denoting them by Aa. The FRT is the ath operator
power of the ordinary Fourier transform, but the fractional
operators here are operators that perform the same action, such
as coordinate multiplication, in different fractional Fourier
domains. To further emphasize the difference, we note that for
a¼ 0, A0 ¼ A while A0 ¼ I ; and for a¼ 1, A1 ¼ AD while
A1 ¼ A. In other words, Aa interpolates between the operator
A and its dual AD, gradually evolving from one member of the
dual pair to the other as the fractional order goes from zero to
one. On the other hand, Aa interpolates between the identity
operator and the operator A.

The first pair of dual operators we will consider are the coord-
inate multiplication U and differentiation D operators, whose
effects in the time domain are to take a function f(u) to uf (u)
and (i2p)�1df (u)=du, respectively. The fractional forms of these
operators Ua andDa are defined so as to have the same functional
effect in the ath domain; they take fa(ua) to uafa(ua) and
(i2p)�1dfa(ua)dua, respectively. In the time domain these oper-
ations correspond to taking f(u) to cos a uf (u)þ sin a (i2p)�1

df (u)=du and� sinauf (u)þcosa(i2p)�1df (u)=du, respectively.
(These and similar results are a consequence of the operational
properties presented in Section 14.5.) These relationships can be
captured elegantly in the following operator form:

Ua ¼ cos aU þ sin aD,
Da ¼ �sin aU þ cos aD: (14:58)

The phase shift operator PH(h) and the translation operator
SH(j) are also duals which are defined in terms of the U
and D operators as PH(h) ¼ exp (i2phU) and SH(j) ¼
exp (i2pjD). (Such expressions are meant to be interpreted
in terms of their series expansions.) These operators take f(u)
to exp (i2phu)f (u) and f (uþ j), respectively. The fractional
forms of these operators are defined as PHa(h) ¼ exp (i2phUa)
and SHa(j) ¼ exp (i2pjDa) and satisfy

PHa(h) ¼ exp (iph2 sina cosa)PH(h cos a)SH(h sina),

SHa(j) ¼ exp (�ipj2 sina cosa)PH(�j sin a)SH(j cosa):

(14:59)
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The scaling operator M(M) can be defined as M(M) ¼
exp [�ip( lnM)(UD þDU)] where M > 0. It takes f(u) to
ffiffiffiffiffiffiffiffiffiffi

1=M
p

f (u=M). This operator is its own dual in the sense that
scaling in the time domain corresponds to descaling in the
frequency domain: the Fourier transform of

ffiffiffiffiffiffiffiffiffiffi

1=M
p

f (u=M) is
ffiffiffiffiffi

M
p

F(Mm). The fractional form is defined as Ma(M) ¼
exp [�ip( lnM)(UaDa þDaUa)] and satisfies

Ma(M) ¼ F�aM(M)F a: (14:60)

The dual chirp multiplication Q(q) and chirp convolution
R(r) operators are defined as Q(q) ¼ exp (�ip qU2) and
R(r) ¼ exp (�ip rD2). In the time domain they take f(u) to
exp (�ip qu2)f (u) and exp (�ip=4)

ffiffiffiffiffiffiffi

1=r
p

exp (ip u2=r)*f (u),
respectively. Their fractional forms are defined as
Qa(q) ¼ exp (�ipqU2

a) and Ra(r) ¼ exp �iprD2
a

� �

and satisfy

Qa(q) ¼ R(�tan a)Q(q cos2 a)R( tan a),

Ra(r) ¼ Q(�tan a)R(r cos2 a)Q( tan a):
(14:61)

We now turn our attention to the final pair of dual operators
we will discuss. The discretization DI (Dm) and periodization
PE(Du) operators can be defined in terms of the phase shift
and translation operators: DI (Dm) ¼P1k¼�1 PH(kDm) and
PE(Du) ¼P1k¼�1 SH(kDu). The parameters Du > 0 and
Dm > 0 correspond to the period of replication in the time
and frequency domains, respectively. Unlike the other operators
defined above, these operators do not in general have inverses.
Since sampling in the time domain corresponds to periodic
replication in the frequency domain and vice versa, we also
define du ¼ 1=Dm and dm ¼ 1=Du, denoting the sampling inter-
val in the time and frequency domains, respectively. It is possible
to show that the discretization and periodization operators take
f(u) to du

P1
k¼�1 d(u� kdu)f (kdu) and

P1
k¼�1 f (u� kDu),

respectively. In the time domain, the discretization operator
corresponds to multiplication with an impulse train, and the
periodization operator corresponds to convolution with an
impulse train (and vice versa in the frequency domain). Discre-
tization in the time domain corresponds to periodization in
the frequency domain and periodization in the time domain
corresponds to discretization in the frequency domain. This is
what is meant by the duality of these two operators. The frac-
tional versions of these operators can be defined as
DI a(Dm) ¼

P1
k¼�1 PHa(kDm) and PEa(Du) ¼

P1
k¼�1

SHa(kDu) and satisfy

DI a(Dm) ¼ R(�tan a)DI (Dm cos a)R( tan a),

PEa(Du) ¼ Q(�tan a)PE(Du cos a)Q( tan a):
(14:62)

Equations 14.58 through 14.62 all express the fractional oper-
ators in terms of their non-fractional counterparts. Equations 14.58
through 14.60 are directly related to the corresponding operational
properties presented in Section 14.5, and may be considered

abstract ways of expressing them (transform of a coordinate multi-
plied or differentiated function, transform of a phase-shifted or
shifted function, transform of a scaled function, respectively).

The fractional operators in Equation 14.62 interpolate between
periodicity and discreteness with the smooth transition being
governed by the parameter a. However, this is not the only
significance of the fractional periodicity and discreteness oper-
ators. In practice, one cannot realize infinite periodic replication;
any periodic replication must be limited to a finite number of
periods. This corresponds to multiplying the infinite periodic
replication operator with a window function, and will be referred
to as partial periodization. Likewise, one cannot realize discreti-
zation with true impulses; any discretization will involve finite-
width sampling pulses. This corresponds to convolving a true
impulse sampling operator with a window function, and will be
referred to as partial discretization. Thus, the partial periodiza-
tion and discretization operations represent practical real-life
replication and sampling operations. It has been shown that
fractional periodization and discretization operators can be
expressed in terms of partial periodization and discretization
operators [128]. Therefore, the fractional periodization and dis-
cretization operators are also related to real-life sampling and
periodic replication.

The subject matter of this section is further discussed in
[128,156].

14.7 Time-Order and Space-Order
Representations

Interpreting the fractional Fourier transforms fa(u) of a function
f(u) for different values of the order a as a two-dimensional
function of u and a leads to the concept of time-order (or
space-order) signal representations. Just like other time-
frequency and time-scale (or space-frequency and space-scale)
signal representations, they constitute an alternative way of dis-
playing the content of a signal. These representations are redun-
dant in that the information of a one-dimensional signal is
displayed in two dimensions. There are two variations of the
time-order representation, the rectangular time-order represen-
tation and the polar time-order representation.

For the rectangular time-order representation, fa(u) is inter-
preted as a two-dimensional function, with u the horizontal
coordinate and a the vertical coordinate. As such, the represen-
tations of the signal f(u) in all fractional domains are displayed
simultaneously. Mathematically, the rectangular time-order rep-
resentation Tf (u, a) of a signal f is defined as

Tf (u, a) ¼ fa(u): (14:63)

Figure 14.4 illustrates the definition of the rectangular time-order
representation. Such a display of the fractional Fourier trans-
forms of the rectangle function is shown in Figure 14.1.

For the polar time-order representation, fa(u) ¼ f2a=p(r) is
interpreted as a polar two-dimensional function where r is the
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radial coordinate and a is the angular coordinate. As such, all the
fractional Fourier transforms of f(u) are displayed such that fa(r)
lies along the radial line making angle a ¼ ap=2 with the hori-
zontal axis. Mathematically, the polar time-order representation
Tf (r,a) of a signal f is defined as

Tf (r,a) ¼ f2a=p(r): (14:64)

Tf (r,a) is periodic in a with period 2p as a result of the fact that
fa(r) is periodic in a with period 4. Tf (r,a) can be consistently
defined for negative values of r as well by using the property

fa�2(r) ¼ fa(�r), from which it also follows that
Tf (r,a) ¼ Tf (�r,a� p). Figure 14.5 illustrates the definition
of the polar time-order representation.

As a consequence of its definition, there is a direct relation
between the polar time-order representation and the concept of
fractional Fourier domains. Each fractional Fourier transform
fa(r) of the signal f ‘‘lives’’ in the ath domain, defined by the
radial line making angle a ¼ ap=2 with the u axis. The polar
time-order representation can be considered as a time–frequency
space since the horizontal and vertical axes correspond to time
and frequency. The oblique slices of the polar representation are
simply equal to the fractional Fourier transforms. The slice at
a ¼ 0 is the time-domain representation f (r), the slice at
a ¼ p=2 is the frequency-domain representation F(r), and
other slices correspond to fractional transforms of other orders.

We now discuss a number of properties of the polar time-
order representation. The original function is obtained from the
distribution as

f (u) ¼ f0(u) ¼ Tf (u, 0): (14:65)

The time-order representation of the a0th fractional Fourier
transform of a function is simply a rotated version of the time-
order representation of the original function

Tfa0 (r,a) ¼ Tf (r,aþ a0), (14:66)

where a0 ¼ a0p=2. Since the time-order representation is linear,
the representation of any linear combination of functions is the
same as the linear combination of their representations.

We now discuss the relationship of time-order representations
with the Wigner distribution and the ambiguity function. We
had already encountered the Radon transform of the Wigner
distribution:

Ra[Wf (u,m)](r) ¼ jf2a=p(r)j2 ¼ jTf (r,a)j2: (14:67)

Thus, the Radon transform of the Wigner distribution, inter-
preted as a polar function, corresponds to the absolute square
of the polar time-order representation. We also already en-
countered the following result, which is a consequence of the
projection-slice theorem (page 56 of [129]):

Sa[Af (�u, �m)](r) ¼ Af (r cos a, r sin a)

¼ Tf (r,a)*Tf*(�r,a) ¼ f2a=p(r)*f2a=p* (�r),

(14:68)

where * denotes ordinary convolution. The Radon transforms
and slices of the Wigner distribution and the ambiguity function
are summarized in Table 14.1. For both the Wigner distribution
and the ambiguity function, the Radon transform is of product
form and the slice is of convolution form. The essential difference
between the Wigner distribution and the ambiguity function lies
in the scaling of r by 2 or 1=2 on the right-hand side.

u

f1.0(u)

f0.6(u)

f0.2(u)

f–0.2(u)

f–0.6(u)

a
f1.4(u)

f–1.4(u)

f–1.0(u)

FIGURE 14.4 The rectangular time-order representation. (From
Ozaktas, H. M. and Kutay M. A., Technical Report BU-CE-0005, Bilkent
University, Department of Computer Engineering, Ankara, January
2000; Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A., The Fractional

Fourier Transform with Applications in Optics and Signal Processing.
John Wiley & Sons, New York, 2001. With permission.)

f1.8 (ρ)

f–1.8 (ρ)

f–1.4 (ρ)

f1.4 (ρ)

f1.0 (ρ)

f0.6 (ρ)

f0.2 (ρ)

f–0.2 (ρ)

f–0.6 (ρ)

f–1.0 (ρ)

FIGURE 14.5 The polar time-order representation. (From Ozaktas,
H. M. and Kutay M. A., Technical Report BU-CE-0005, Bilkent Univer-
sity, Department of Computer Engineering, Ankara, January 2000;
Ozaktas, H. M., Zalevsky, Z., and Kutay, M. A., The Fractional Fourier
Transform with Applications in Optics and Signal Processing. John Wiley
& Sons, New York, 2001. With permission.)
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Analogous expressions for the Radon transforms and slices of
the polar time-order representation Tf (r,a) and its two-dimen-
sional Fourier transform ~Tf (�r, �a) are given in Table 14.2. The slice
of Tf (r,a) at a certain angle is simply equal to the fractional
Fourier transform fa(r) by definition (with a ¼ ap=2). The
Radon transform of ~Tf (�r, �a) at an angle f is given by fbþ1(r) or
Tf (r,fþ p=2), a p=2 rotated version of Tf (r,a) (with
f ¼ bp=2). We already know that the time-frequency representa-
tion whose projections are equal to jfa(u)j2 is the Wigner distribu-
tion. We now see that the time–frequency representation whose
projections are equal to fa(u) is the two-dimensional Fourier trans-
form of the polar time-order representation (within a rotation).

Thus in Tables 14.1 and 14.2 we present a total of eight
expressions for the Radon transforms and slices of the Wigner
distribution and its two-dimensional Fourier transform (the
ambiguity function), and the Radon transforms and slices of
the polar time-order representation and its two-dimensional
Fourier transform.

The polar time-order representation is a linear time–frequency
representation, unlike the Wigner distribution and ambiguity
function which are quadratic. Its importance stems from the
fact that the Radon transforms (integral projections) and slices
of the Wigner distribution and the ambiguity function can be
expressed in terms of products or convolutions of various scaled
forms of the time-order representation and its two-dimensional

Fourier transform. These representations are discussed in greater
detail in Chapter 5 of [129].

14.8 Linear Canonical Transforms

Linear canonical transforms (LCTs) are a three-parameter family
of linear integral transforms. Many important operations and
transforms including the FRT are special cases of linear canonical
transforms. Readers wishing to learn more than we can cover
here are referred to [129,164].

The linear canonical transform fM(u) of f(u) with parameterM
is most conveniently defined as

fM(u) ¼
ð1

�1

CM(u, u
0)f (u0) du0, (14:69)

CM(u, u
0) ¼

ffiffiffi

b
p

e�ip=4 exp [ip(au2 � 2buu0 þ gu
02)],

where a, b, and g are real parameters. The label M represents
the three parameters a, b, and g which completely specify the
transform. Linear canonical transforms are unitary; that is, the
inverse transform kernel is the Hermitian conjugate of the ori-
ginal transform kernel: C�1M (u, u0) ¼ CM* (u0, u).

The composition of any two linear canonical transforms is
another linear canonical transform. In other words, the effect of
consecutively applying two linear canonical transforms with dif-
ferent parameters is equivalent to applying another linear canon-
ical transform whose parameters are related to those of the first
two. (Actually this is strictly true only within a � sign factor
[129,164].) Such compositions are not in general commutative,
but they are associative.

Finding the parameters of the composite transform is made
easier if we define a 23 2 unit-determinant matrix to represent
the parameters of the transform. We let the symbol M (which
until now denoted the three parameters a, b, g) now be defined
as a matrix of the form

M¼ A B
C D

� �

¼ g=b 1=b
�bþag=b a=b

� �

¼ a=b �1=b
b�ag=b g=b

� ��1

,

(14:70)

with determinant AD� BC ¼ 1. The three original parameters
can be expressed in terms of the matrix elements as a ¼ D=B,
b ¼ 1=B, and g ¼ A=B, and the definition of linear canonical
transforms can be rewritten as

fM(u) ¼
ð

1

�1

CM(u, u
0)f (u0) du0, (14:71)

CM(u, u
0) ¼

ffiffiffiffiffiffiffiffi

1=B
p

e�ip=4 exp ip
D

B
u2 � 2

1

B
uu0 þ A

B
u

02

� �� �

:

Now, it is easy to show the following results: The matrix M3

corresponding to the composition of two systems is the matrix

TABLE 14.1 Radon Transforms and Slices of the Wigner Distribution
and the Ambiguity Function

RDN a[Wf (u,m)](r) ¼ f2a=p(r)f2a=p* (r) ¼ Tf (r,a)Tf*(r,a)

RDN a[Af (�u, �m)](r) ¼ f2a=p(r=2)f2a=p* (�r=2) ¼ Tf (r=2,a)Tf*(�r=2,a)

SLCa[Wf (u,m)](r) ¼ 2f2a=p(2r)*2f2a=p* (2r) ¼ 2Tf (2r,a)*2Tf*(2r,a)

SLCa[Af (�u, �m)](r) ¼ f2a=p(r)*f2a=p* (�r) ¼ Tf (r,a)*Tf*(�r,a)

Sources: From Ozaktas, H. M. and Kutay, M. A., Technical Report BU-CE-
0005, Bilkent University, Department of Computer Engineering, Ankara,
January 2000; Ozaktas, H. M., et al., The Fractional Fourier Transforms

with Applications in Optics and Signal Processing. John Wiley & Sons,
New York, 2001. With permission.)
Note: The upper row can also be expressed as jf2a=p(r)j2 ¼ jTf (r,a)j2.

TABLE 14.2 Radon Transforms and Slices of the Polar
Time-Order Representation and Its Two-Dimensional
Fourier Transform

RDN f[Tf (r,a)](R) ¼
Ð p=2
�p=2 f2(fþu)=p(R sec u)R sec2 u du

RDN f[~T f (�r, �a)](R) ¼ f2f=pþ1(R)

SLCf[Tf (r,a)](R) ¼ f2f=p(R)

SLCf[~T f (�r, �a)](R) ¼ i
2p

Ð p=2
�p=2 f

0
2(fþu)=pþ1(R cos u) sec u du

Sources: From Ozaktas, H. M. and Kutay, M. A.,
Technical Report BU-CE-0005, Bilkent University,
Department of Computer Engineering, Ankara, January
2000; Ozaktas, H. M., et al., The Fractional Fourier

Transforms with Applications in Optics and Signal

Processing. John Wiley & Sons, New York, 2001. With
permission.)
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product of the matrices M2 and M1 corresponding to the indi-
vidual systems. That is,

M3 ¼ M2M1, (14:72)

where
M1 is the matrix of the transform that is applied first
M2 is the matrix of the transform that is applied next

Furthermore, the matrix corresponding to the inverse of a linear
canonical transform is the inverse of the matrix corresponding to
the original transform.

The set of linear canonical transforms satisfies all the axioms
of a noncommutative group (closure, associativity, existence of
identity, inverse of each element), just like the set of all unit-
determinant 23 2 matrices (again within a� sign). Certain sub-
sets of the set of linear canonical transforms are groups in
themselves and thus are subgroups. Some of them will be
discussed below. For example, the fractional Fourier transform
is a subgroup with one real parameter.

The effect of linear canonical transforms on the Wigner dis-
tribution of a function can be expressed quite elegantly in terms
of the elements of the matrix M:

WfM (Auþ Bm,Cuþ Dm) ¼ Wf (u,m), (14:73)

WfM(u,m) ¼ Wf (Du� Bm,�Cuþ Am): (14:74)

A similar relationship holds for the ambiguity function as
well. The above result means that the Wigner distribution of
the transformed function is simply a linearly distorted form
of the Wigner distribution of the original function, with the
value of the Wigner distribution at each time=space–frequency
point beingmapped to another time=space–frequency point. Since
the determinant ofM is equal to unity, this pointwise geometrical
distortion or deformation is area preserving; it distorts but does
not concentrate or deconcentrate the Wigner distribution.

We now discuss several special cases of linear canonical
transforms that correspond to specific forms of the matrix M.
The last of these special cases will be the fractional Fourier
transform which corresponds to the case where M is the rota-
tion matrix.

The scaling operation takes f(u) to
ffiffiffiffiffiffiffiffiffiffi

1=M
p

f (u=M). The
inverse of a scaling operation with parameter M > 0 is a scaling
operation with parameter 1=M. The M matrix is of the form

M 0
0 1=M

� �

(14:75)

and the Wigner distribution of the scaled function is
Wf (u=M,Mm) (Figure 14.6b shows how the Wigner distribution
is scaled for M¼ 2).

Let us now consider chirp multiplication which takes f(u) to
e�ipqu2 f (u). The inverse of this operation with parameter q has
the same form but with parameter� q. Its M matrix is

1 0
�q 1

� �

(14:76)

and the Wigner distribution of the chirp multiplied function is
Wf (u,mþ qu) (Figure 14.6c shows this vertical shearing for
q¼ 1).

Now consider chirp convolution which takes f(u) to
e�ip=4

ffiffiffiffiffiffiffi

1=r
p

exp (ipu2=r)*f (u). The inverse of this operation
with parameter r has the same form but with parameter�r.
Its M matrix is

1 r
0 1

� �

(14:77)
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FIGURE 14.6 (a) Rectangular region in the time=space-frequency
plane, in which most of the signal energy is assumed to be concentrated.
Effect of (b) scaling withM ¼ 2, (c) chirp multiplication with q ¼ 1, (d)
chirp convolution with r ¼ 1, (e) Fourier transformation, (f) fractional
Fourier transformation with a ¼ 0.5. (From Ozaktas, H. M., Zalevsky,
Z., and Kutay, M. A., The Fractional Fourier Transform with Applications

in Optics and Signal Processing. John Wiley & Sons, New York, 2001.
With permission.)
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and the Wigner distribution of the chirp convolved function is
Wf (u� rm,m) (Figure 14.6d shows this horizontal shearing for
r¼ 1).

The ordinary Fourier transform takes f(u) to
Ð1
�1 f (u0)e�i2puu

0
du0. However, the Fourier transform that is a

special case of linear canonical transforms has a slightly modified
definition, taking f(u) to e�ip=4

Ð

f (u0)e�i2puu
0
du0. TheMmatrix is

0 1
�1 0

� �

(14:78)

and the Wigner distribution of the Fourier transformed function
is Wf (�m, u) (Figure 14.6e shows this p=2 rotation).

Finally, we turn our attention to the fractional Fourier trans-
form, which takes f(u) to fa(u) as defined in Equation 14.1. The
inverse of the ath order FRT is the�ath order FRT. The M

matrix is

cos (ap=2) sin (ap=2)
�sin (ap=2) cos (ap=2)

� �

(14:79)

and the Wigner distribution of the Fourier transformed
function is

Wf [ cos (ap=2) u� sin (ap=2)m, sin (ap=2) uþ cos (ap=2)m]:

(14:80)

We have already encountered this expression before in Equation
14.25 (Figure 14.6f shows this rotation by angle a ¼ ap=2 when
a¼ 0.5).

To summarize, we see that fractional Fourier transforms con-
stitute a one-parameter subgroup of linear canonical transforms
corresponding to the case where the M matrix is the rotation
matrix, and the fractional order parameter corresponds to the
angle of rotation. Fractional Fourier transformation corresponds
to rotation of the Wigner distribution in the time=space–
frequency plane (phase space). The ordinary Fourier transform
is a special case of the fractional Fourier transform, which is in
turn a special case of linear canonical transforms.

The matrix formalism not only allows one to easily determine
the parameters of the concatenation (composition) of several
LCTs, it also allows a given LCT to be decomposed into more
elementary operations such as scaling, chirp multiplication and
convolution, and the fractional Fourier transform. This is often
useful for both analytical and numerical purposes. Of the many
such possible decompositions here we list only a few (see page
104 of [129]):

A B
C D

� �

¼ 1 (A� 1)=C
0 1

� �

1 0
C 1

� �

1 (D� 1)=C
0 1

� �

(14:81)

¼ 1 0
(D� 1)=B 1

� �

1 B
0 1

� �

1 0
(A� 1)=B 1

� �

: (14:82)

Such decompositions usually show how an arbitrary LCT can be
expressed in terms of its special cases. Specifically, the above two
decompositions show how any unit-determinant matrix can be
written as the product of lower and upper triangular matrices,
which we have seen correspond to chirp multiplication and
convolution operations.

Another important decomposition is the decomposition of an
arbitrary LCT into a fractional Fourier transformation followed
by scaling followed by chirp multiplication:

A B
C D

� �

¼ 1 0
�q 1

� �

M 0
0 1=M

� �

cos a sin a
�sin a cos a

� �

,

(14:83)

where

a ¼ arccot(A=B), (14:84)

M ¼ sgn(A)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

, (14:85)

q ¼ A

B(A2 þ B2)
� D

B
, (14:86)

where sgn(A) is the sign of A. The ranges of the square root and
the arccotangent both lie in (�p=2,p=2]. Equation 14.83 can be
interpreted geometrically as follows: any linear distortion in the
time=space–frequency plane can be realized as a rotation fol-
lowed by scaling followed by shearing. This decomposition is
important because it forms the basis of a fast and accurate
algorithm for digitally computing arbitrary linear canonical
transforms [76,119]. These algorithms compute LCTs with a
performance similar to that of the fast Fourier transform (FFT)
algorithm in computing the Fourier transform, both in terms of
speed and accuracy. Further discussion of decompositions of the
type of Equation 14.83 may be found in [4]. Other works on the
computation of LCTs include [64,65].

Many of the elementary and operational properties of LCTs
are collected in Section 14.9, which can be recognized as
generalizations of the corresponding properties of the fractional
Fourier transform.

14.9 Basic and Operational Properties
of Linear Canonical Transforms

Here we present a list of the more important basic and oper-
ational properties of the LCTs. Readers can easily verify that
the operational properties reduce to the corresponding property
for the fractional Fourier transform when M is the rotation
matrix.

Linearity: Let CM denote the linear canonical transform operator
with parameter matrix M. Then CM[

P

k bkfk(u)] ¼
P

k bk[CMfk(u)].
Inverse: (CM)�1 ¼ CM�1 .
Unitarity: (CM)�1 ¼ (CM)H ¼ CM�1 where ()H denotes the con-
jugate transpose of the operator.
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Associativity: (CM1CM2 )CM3 ¼ CM1 (CM2CM3 ).

Eigenfunctions: Eigenfunctions of linear canonical transforms
are discussed in [133].

Parseval:
Ð

f *(u)g(u)du ¼
Ð

fM* (u)gM(u)du. This property is
equivalent to unitarity. Energy or norm conservation
(En[f ] ¼ En[fM] or fk k ¼ fMk k) is a special case.
Time reversal: Let P denote the parity operator:
P[f (u)] ¼ f (�u), then

CMP ¼ PCM, (14:87)

CM[f (�u)] ¼ fM(�u): (14:88)

Transform of a scaled function:

CM[jKj�1f (u=K)] ¼ CM0 [f (u)] ¼ fM0 (u): (14:89)

HereM0 is the matrix that corresponds to the parameters a0 ¼ a,
b0 ¼ Kb, and g0 ¼ K2g.

Transform of a shifted function:

CM[f (u� u0)] ¼ exp [ip(2uu0C � u20AC)]fM(u� Au0):

(14:90)

Here u0 is real.

Transform of a phase-shifted function:

CM[ exp (i2pm0u)f (u)] ¼ exp [ipm0D(2u� m0B)]fM(u� Bm0):

(14:91)

Here m0 is real.

Transform of a coordinate multiplied function:

CM[unf (u)] ¼ [Du� B(i2p)�1d=du]nfM(u): (14:92)

Here n is a positive integer.

Transform of the derivative of a function:

CM[ [(i2p)�1d=du]nf (u)] ¼ [�Cuþ A(i2p)�1d=du]nfM(u):

(14:93)

Here n is a positive integer.
A few additional properties are

CM[ f *(u)] ¼ fM�1* (u), (14:94)

CM[(f (u)þ f (�u))=2] ¼ (fM(u)þ fM(�u))=2, (14:95)

CM[(f (u)� f (�u))=2] ¼ (fM(u)� fM(�u))=2: (14:96)

A function and its linear canonical transform satisfy an
‘‘uncertainty relation,’’ stating that the product of the spread of
the two functions, as measured by their standard deviations,
cannot be less than jBj=4p [129].

14.10 Filtering in Fractional Fourier
Domains

Filtering, as conventionally understood, involves taking the Four-
ier transform of a signal, multiplying it with a Fourier-domain
transfer function, and inverse transforming the result (Figure
14.7a). Here, we consider filtering in fractional Fourier domains,
where we take the fractional Fourier transform, apply a filter
function in the fractional Fourier domain, and inverse transform
to the original domain (Figure 14.7b). Formally the filter output
is written as

fsingle(u) ¼ F�a Lh F a½ �f (u) ¼ T single f (u), (14:97)

where
F a is the ath order fractional Fourier transform operator
Lh denotes the operator corresponding to multiplication by

the filter function h(u)
T single is the operator representing the overall filtering config-

uration

To understand the basic motivation for filtering in fractional
Fourier domains, consider Figure 14.8, where the Wigner distri-
butions of a desired signal and an undesired noise term are
superimposed. We observe that the signal and noise overlap in
both the 0th and 1st domains, but they do not overlap in the
0.5th domain (consider the projections onto the u0 ¼ u, u1 ¼ m,
and u0.5 axes). Although it is not possible to eliminate the noise
in the time or frequency domains, we can eliminate it easily by
using a simple amplitude mask in the 0.5th domain.

Fractional Fourier domain filtering can be applied to the
problem of signal recovery or estimation from observations,
where the signal to be recovered has been degraded by a
known distortion or blur, and the observations are noisy. The
problem is to reduce or eliminate these degradations and noise.
The solution of such problems depends on the observation
model and the prior knowledge available about the desired signal,
degradation process, and noise. A commonly used observation
model is

g(u) ¼
ð

hd(u, u
0)f (u0) du0 þ n(u), (14:98)

where
hd(u, u0) is the kernel of the linear system that distorts or blurs

the desired signal f(u)
n(u) is an additive noise term

The problem is to find an estimation operator represented by the
kernel h(u, u0), such that the estimated signal

fest(u) ¼
ð

h(u, u0)g(u0) du0 (14:99)
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optimizes some criteria. Despite its limitations, one of the most
commonly used objectives is to minimize the mean square error
s2
err defined as

s2
err ¼

ð

jfest(u)� f (u)j2 du
 �

, (14:100)

where the angle brackets denote an ensemble average. The esti-
mation or recovery operator minimizing s2

err is known as the
optimal Wiener filter. The kernel h(u, u0) of this optimal filter
satisfies the following relation [87]:

Rfg(u, u
0) ¼

ð

h(u, u00)Rgg(u
00, u0) du00 for all u, u0, (14:101)

where
Rfg(u, u0) is the statistical cross-correlation of f(u) and g(u)
Rgg(u, u0) is the statistical autocorrelation of g(u)

In the general case hd(u, u0) represents a time varying system, and
there is no fast algorithm for obtaining fest(u).

We can formulate the problem of obtaining an estimate
fest(u) ¼ fsingle(u) of f(u) by using the ath order fractional Fourier
domain filtering configuration (Equation 14.97). As we will see in
Section 14.13, the fractional Fourier transform can be efficiently
computed with an �N logN algorithm similar to the fast Fourier
transform algorithm used to compute the ordinary Fourier trans-
form. Therefore, the fractional Fourier transform can be imple-
mented nearly as efficiently as the ordinary Fourier transform,
and the cost of fractional Fourier domain filtering is approxi-
mately the same as the cost of ordinary Fourier domain filtering.
The optimal multiplicative filter function h(u) for a given order a
that minimizes the mean square error defined in Equation 14.100
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FIGURE 14.7 (a) Filtering in the frequency domain; (b) filtering in the ath order fractional Fourier domain; (c) multi-stage (series) filtering;
(d) multi-channel (parallel) filtering.
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FIGURE 14.8 Filtering in a fractional Fourier domain as observed in
the time- or space-frequency plane. a ¼ 0.5 as drawn. (From Ozaktas,
H. M., et al., J Opt Soc Am A-Opt Image Sci Vis, 11:547–559, 1994.
With permission.)
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for the filtering configuration represented by Equation 14.97 is
given by [85]:

h(ua) ¼
ÐÐ

Ka(ua, u)K�a(ua, u0)Rfg(u, u0) du0 du
ÐÐ

Ka(ua, u)K�a(ua, u0)Rgg(u, u0) du0 du
, (14:102)

where the statistical cross-correlation and autocorrelation func-
tions Rfg(u, u0) and Rgg(u, u0) can be obtained from the functions
Rff (u, u0) and Rnn(u, u0), which are assumed to be known. The
corresponding mean square error can be calculated from Equa-
tion 14.100 for different values of a, and the value of a resulting
in the smallest error can be determined.

Generalizations of the ath order fractional Fourier domain
filtering configuration are the multistage (repeated or serial)
and the multichannel (parallel) filtering configurations. These
systems consist of M single-domain fractional Fourier filtering
stages in series or in parallel (Figure 14.7). M¼ 1 corresponds to
single-domain filtering in both cases. In the multistage system
shown in Figure 14.7c, the input is first transformed into the a1th
domain where it is multiplied by a filter h1(u). The result is then
transformed back into the original domain and the same process
is repeated M times consecutively. This amounts to sequentially
visiting the domains a1, a2, a3, . . ., and applying a filter in each.
On the other hand, the multichannel system consists ofM single-
domain blocks in parallel (Figure 14.7d). For each channel k, the
input is transformed to the akth domain, multiplied with a filter
hk(u), and then transformed back. If these configurations are
used to obtain an estimate fser(u) or fpar(u) of f(u) in terms of
g(u), we have

fser(u) ¼ F�aMLhM � � � F a2�a1Lh1F a1½ � g(u) ¼ T ser g(u),

(14:103)

fpar(u) ¼
XM

k¼1

F�akLhkF ak

" #

g(u) ¼ T par g(u), (14:104)

where
F ak represents the akth order fractional Fourier transform

operator
Lhk denotes the operator corresponding to multiplication by

the filter function hk(u)
T ser, T par are the operators representing the overall filtering

configurations

Both of these equations reduce to Equation 14.97 for M¼ 1.
Multistage and multichannel filtering systems as described

above are a subclass of the class of general linear systems whose
input–output relation is given in Equation 14.99. Such linear
systems have in general N2 degrees of freedom, where N is the
time-bandwidth product of the signals. Obtaining the output
from the input normally takes �N2 time, unless the system
kernel h(u, u0) has some special structure which can be exploited.
Shift-invariant (time- or space-invariant) systems are also a

subclass of general linear systems whose system kernels h(u, u0)
can always be expressed in the form h(u, u0) ¼ h(u� u0). They
are a restricted subclass with only N degrees of freedom, but
can be implemented in �N logN time in the ordinary Fourier
domain.

We may think of shift-invariant systems and general linear
systems as representing two extremes in a cost–performance
trade-off. Shift-invariant systems exhibit low cost and low
performance, whereas general linear systems exhibit high cost
and high performance. Sometimes use of shift-invariant
systems may be inadequate, but at the same time use of general
linear systems may be an overkill and prohibitively costly.
Multistage and multichannel fractional Fourier domain filter-
ing configurations interpolate between these two extremes,
offering greater flexibility in trading off between cost and
performance.

Both filtering configurations have at mostMN þM degrees of
freedom. Their digital implementation will take O(MN logN)
time since the fractional Fourier transform can be implemented
in �N logN time. These configurations interpolate between gen-
eral linear systems and shift-invariant systems both in terms of
cost and flexibility. If we chooseM to be small, cost and flexibility
are both low; M¼ 1 corresponds to single-stage filtering. If we
choose M to be larger, cost and flexibility are both higher; as M
approaches N, the number of degrees of freedom approaches that
of a general linear system.

Increasing M allows us to better approximate a given linear
system. For a given value of M, we can approximate this system
with a certain degree of accuracy (or error). For instance, a shift-
invariant system can be realized with perfect accuracy with
M¼ 1. In general, there will be a finite accuracy for each value
of M. As M is increased, the accuracy will usually increase (but
never decrease). In dealing with a specific application, we can
seek the minimum value of M which results in the desired
accuracy, or the highest accuracy that can be achieved for
given M. Thus these systems give us considerable freedom in
trading off efficiency and greater accuracy, enabling us to seek the
best performance for a given cost, or the least cost for a given
performance. In a given application, this flexibility may allow us
to realize a system which is acceptable in terms of both cost and
performance.

The cost-accuracy trade-off is illustrated in Figure 14.9, where
we have plotted both the cost and the error as functions of the
number of filters M for a hypothetical application. The two plots
show how the cost increases and the error decreases as we
increase M. Eliminating M from these two graphs leads us to a
graph of error versus cost.

The multistage and multichannel configurations may be fur-
ther extended to generalized filtering configurations or generalized
filter circuits where we combine the serial and parallel filtering
configurations in an arbitrary manner (Figure 14.10).

Having discussed quite generally the subject of filtering in
fractional Fourier domains, we now discuss the closely related
concepts of fractional convolution and fractional multiplication
[108,117]. The convolution of two signals h and f in the
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ath fractional Fourier domain is defined such that their ath order
fractional Fourier domain representations ha(ua) and fa(ua) are
convolved to give the corresponding representation of some new
signal g:

ga(ua) ¼ ha(ua) * fa(ua), (14:105)

where * denotes ordinary convolution. Likewise, multipli-
cation of two signals in the ath fractional Fourier domain is
defined as

ga(ua) ¼ ha(ua)fa(ua): (14:106)

Of course, convolution (or multiplication) in the a¼ 0th
domain is ordinary convolution (or multiplication) and convo-
lution (or multiplication) in the a¼ 1st domain is ordinary
multiplication (or convolution). More generally, convolution
(or multiplication) in the ath domain is multiplication (or
convolution) in the (a� 1)th domain (which is orthogonal to
the ath domain), and convolution (or multiplication) in the ath
domain is again convolution (or multiplication) in the (a� 2)th
domain (the sign-flipped version of the ath domain). Convolu-
tion or multiplication in an arbitrary ath domain is an oper-
ation ‘‘interpolating’’ between the ordinary convolution and
multiplication operations [129]. In light of these definitions,
filtering in the ath fractional Fourier domain corresponds to
the multiplication of two signals in the ath fractional Fourier
domain or equivalently the convolution of two signals in the
a� 1th fractional Fourier domain.

14.11 Fractional Fourier Domain
Decompositions

The fractional Fourier domain decomposition (FFDD) [86] is
closely related to multichannel filtering and is analogous to the
singular-value decomposition in linear algebra [68,154].

The SVD of an arbitrary Nout � Nin complex matrix H is

HNout�Nin ¼ UNout�Nout SNout�Nin VH
Nin�Nin

, (14:107)

where U and V are unitary matrices whose columns are the
eigenvectors of HHH and HHH, respectively. The superscript H
denotes Hermitian transpose. S is a diagonal matrix whose
elements lk (the singular values) are the nonnegative square
roots of the eigenvalues of HHH and HHH. The number of
strictly positive singular values is equal to the rank R of H. The
SVD can also be written in the form of an outer product (or
spectral) expansion

H ¼
XR

k¼1

lkukv
H
k , (14:108)

where uk and vk are the columns of U and V. It is common to
assume that the lk are ordered in decreasing value.

Let FaN denotes the N-point ath order discrete fractional Four-
ier transform matrix. The discrete fractional Fourier transform
will be defined in Section 14.12. For the purpose of this section, it
will suffice to think of this transform in analogy with the ordin-
ary discrete Fourier transform. The discrete Fourier transform of
a discrete signal represented by a vector of length N can be
obtained by multiplying the vector by the N-point discrete Four-
ier transform matrix FN. Likewise, the ath order discrete frac-
tional Fourier transform of a vector is obtained by multiplying it
by FaN . The discrete transforms can be used to approximately
compute the continuous transforms.

The columns of the inverse discrete fractional Fourier trans-
form matrix F�a

N constitute an orthonormal basis for the ath
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domain, just as the columns of the identity matrix constitute a
basis for the time domain and the columns of the ordinary
inverse DFT matrix constitute a basis for the frequency domain.
Now, let H be a complex Nout � Nin matrix and {a1, a2, . . . , aN } a
set of N ¼ max (Nout,Nin) distinct real numbers such that
�1 < a1 < a2 < � � � < aN � 1. For instance, aks may be chosen
uniformly spaced in this interval. We define the FFDD of H
as [86]

HNout�Nin ¼
XN

k¼1

F�ak
Nout

(Lhk )Nout�Nin
F�ak
Nin

� �H
, (14:109)

where the Lhk are Nout � Nin diagonal matrices with
N 0 ¼ min (Nout,Nin) complex elements. Starting from the upper
left corner, the lth diagonal element of Lhk is denoted as hkl ,
l ¼ 1, 2, . . . ,N 0 (the lth element of the column vector hk). When
H is Hermitian (skew Hermitian), hk is real (imaginary). We also
recall that F�ak

Nin

� �H¼ FakNin
. The FFDD always exists and is

unique [129].
If we compare one term in the summation on the right-hand side

of Equation 14.109 with the right-hand side of Equation 14.107, we
see that they are similar in that they both consist of three terms of
corresponding dimensionality, the first and third being unitary
matrices and the second being a diagonal matrix. Whereas the
columns of U and V constitute orthonormal bases specific to H,
the columns of F�ak

Nout
and F�ak

Nin
constitute orthonormal bases for the

akth fractional Fourier domain. Customization of FFDD is achieved
through the coefficients hkl and=or perhaps also the orders ak.

When H is a square matrix of dimension N, the FFDD
becomes

H ¼
XN

k¼1

F�ak Lhk(F
�ak )H, (14:110)

where all matrices are of dimension N. The continuous counter-
part of the FFDD is similar to this equation, with the summation
being replaced by an integral over a [167].

Equation 14.109 represents a decomposition of a matrix H

into N terms. Each term corresponds to filtering in the akth
fractional Fourier domain (see Equation 14.97). All terms taken
together, the FFDD can be interpreted as the decomposition of a
matrix into fractional Fourier domain filters of different orders.
An arbitrary matrix H will in general not correspond to multi-
plicative filtering in the time or frequency domain or in any other
single fractional Fourier domain. However, H can always be
expressed as a combination of filtering operations in different
fractional domains.

A sufficient number of different-ordered fractional Fourier

domain filtering operations ‘‘span’’ the space of all linear

operations.

The fundamental importance of the FFDD is that it shows how
an arbitrary linear system can be decomposed into this complete
set of domains in the time-frequency plane.

Truncating some of the singular values in SVD of H has many
applications [68,154]. Similary we can eliminate domains for
which the coefficients hk1, hk2, . . . , hkN 0 are small. This procedure,
which we refer to as pruning the FFDD, is the counterpart of
truncating the SVD. An alternative to this procedure will be
referred to as sparsening, in which one simply employs a more
coarsely spaced set of domains. In any event, the resulting smal-
ler number of domains will be denoted by M < N . The upper
limit of the summation in equation 109 is replaced by M and the
equality is replaced by approximate equality. The equation
H ¼ ~Ph is likewise replaced by H 	 ~Ph. If we solve this in the
least-squares sense, minimizing kH� ~Phk, we can find the filter
coefficients resulting in the best M-domain approximation to H.
(This procedure amounts to projecting H onto the subspace
spanned by the MN 0 basis matrices, which now do not span the
whole space.) The correspondence between the pruned FFDD
and multichannel filtering configurations is evident; it is possible
to interpret multichannel filtering configurations as pruned
FFDDs. These concepts have found application in to image
compression [166].

14.12 Discrete Fractional Fourier
Transforms

Ideally, a discrete version of a transform should exhibit a high
level of analogy with its continuous counterpart. This analogy
should include basic structural similarity and analogy of oper-
ational properties. Furthermore, it is desirable for the discrete
transform to usefully approximate the samples of the continuous
transform, so that it can provide a basis for digital computation
of the continuous transform. The following can be posed as a
minimal set of properties that we would like to see in a definition
of the discrete fractional Fourier transform (DFRT):

1. Unitarity
2. Index additivity
3. Reduction to the ordinary discrete Fourier transform

(DFT) when a¼ 1
4. Approximation of the samples of the continuous FRT

Several definitions of the DFRT have been proposed in the
literature. Some of these correspond to totally distinct continuous
transforms. For example, one proposal was based on the power
series expansion of the DFT matrix and employed the Cayley–
Hamilton theorem [147]. If we let Fa be the N � N matrix
representing the discrete fractional Fourier transform, this defin-
ition can be stated as follows:

Fa ¼
X3

n¼0

exp j
3

4
p(n� a)

� �

sin p(n� a)

4 sin 1
4p(n� a)

Fn, (14:111)

where Fn is the nth (integer) power of the DFT matrix. This
definition satisfies all the desired properties listed above, except
the critical fourth one: it can not be used to approximate the
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samples of the continuous fractional Fourier transform which is
the subject of this chapter. Rather, it corresponds to the continu-
ous fractional Fourier transform based on principal powers of the
eigenvalues discussed in Equation 14.9.

In the rest of this section, we focus on discrete fractional
Fourier transforms that correspond to the continuous FRT
defined in this chapter. The main task is to first find an eigen-
vector set of the DFT matrix which can serve as discrete versions
of the Hermite–Gaussian functions. Such Hermite–Gaussian vec-
tors have been defined in [26] based on [136]. It can be shown
that [26] as h! 0 the difference equation

f (uþ h)� 2f (u)þ f (u� h)

h2
þ 2( cos (2phu)� 1)

h2
f (u) ¼ lf (u)

(14:112)

approximates the Hermite–Gaussian generating differential
equation

d2f (t)

dt2
� 4pt2f (t) ¼ lf (t): (14:113)

When h ¼ 1
ffiffiffiffi

N
p the difference equation (Equation 14.112) has

periodic coefficients. Therefore the solutions of the difference
equation is also periodic and can be written as the eigenvectors
of the following matrix, denoted by S:

S¼

2 1 0 . . . 0 1
1 2 cos (2p=N) 1 . . . 0 0
0 1 2 cos (2p2=N) . . . 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

1 0 0 . . . 1 2 cos (2p(N � 1)=N)

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

(14:114)

In other words, the difference equation can be written as Sf ¼ lf .
It can also been shown that S commutes with DFT matrix. Since
two commuting matrices share a common eigenvector set [154],
the eigenvectors of S are also eigenvectors of the DFT matrix.
Thus the eigenvectors of S constitute an orthogonal eigenvector
set of the DFT matrix which are analogous to and which approxi-
mate the Hermite–Gaussian functions. Further details such as the
distinctness of the eigenvectors and enumeration of the eigen-
vectors with respect to the continuous Hermite–Gaussian func-
tions are discussed in [26].

Having obtained an appropriate set of eigenvectors, the dis-
crete fractional Fourier transform matrix can now be defined as
follows:

Fa ¼
PN

k¼0, k 6¼N�1 uke
�jp2kauTk , when N even

PN
k¼0, k 6¼N uke

�jp2kauTk , when N odd

(

(14:115)

where uk corresponds to the eigenvector of the S matrix with k

zero-crossings [26]. The necessity of separately writing the sum-

mation in equation 14.115 for even and odd dimensions N is a
consequence of the eigenvalue multiplicity of the ordinary DFT
matrix [26]. This definition of the fractional DFT satisfies all four
of the desirable properties we had set out at the beginning. A
complementary perspective to this line of development may be
found in [13].

A MATLAB1 routine ‘‘dFRT’’ for the calculation of the
discrete fractional Fourier transform matrix defined above is
available [25]. The following steps show how to use the routine
to compute and plot the samples of the ath order FRT of a
continuous function f(u):

1. h ¼ 1=
ffiffiffiffi

N
p

; tsamples¼ (�N=2 * h):h: (N=2� 1) * h;
2. f0¼ f(tsamples);
3. f0shifted¼ fftshift(f0);
4. Fa¼ dFRT(N,a,order); {order can be any number in

[2,N�1]}
5. fashifted¼ Fa*f0shifted;
6. fa¼ fftshift(fashifted);
7. plot(tsamples,fa);

The ‘‘fftshift’’ operations are needed since the DFRT matrix
follows the well-known circular indexing rule of the DFT matrix.
Normally the approximation ‘‘order’’ is set to 2; higher values
correspond to higher-order approximations to the continuous
transform than have been discussed here. The approximation
order should not be confused with the fractional Fourier trans-
form order a. Figure 14.11 compares the N¼ 64 samples calcu-
lated with this routine with the continuous fractional Fourier
transform of the example function f (u) ¼ sin (2pu)rect(u). This
function can be interpreted as the windowed version of a single
period of the sine waveform between �0.5 and 0.5. As can be
seen, the discrete transform fairly closely approximates the
continuous one.

A number of other definitions of the discrete FRT which are
still compatible with the continuous FRT discussed in this
chapter have been proposed. In [138], the authors start with
vectors formed by sampling the continuous Hermite–Gaussian
functions. These are neither orthogonal nor eigenvectors of the
DFT matrix. The authors orthogonalize these through a
Gram–Schmidt process involving the S matrix. These orthog-
onal vectors are then used to define the fractional DFRT. We
find this method less desirable in that it is based on a numer-
ical rather than an analytical approach. The approach of [101]
is similar, but here the eigenvectors of the DFT matrix are
constructed by sampling periodically replicated versions of
the Hermite–Gaussian functions (which are not orthogonal
either).

In [12] another finite dimensional approximation to the Four-
ier transform similar to the DFT is proposed. This transform has
strong connections with the Fourier transform within a group
theoretical framework [165]. Furthermore, analytical expressions
for the transform can be written in terms of the so-called
Kravchuk polynomials, which are known to approximate the
Hermite polynomials. A major disadvantage of this approach
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is that the discrete FRT thus defined does not reduce to the
ordinary DFT when a¼ 1.

In [26,61,135,148] yet other definitions are proposed based on
the commuting matrices approach already discussed in relation
to the S matrix. These matrices can be interpreted as higher-
order approximation matrices which can be used to obtain
increasingly accurate approximations to the continuous trans-
form. A comparison of such matrices is given in [27].

14.13 Digital Computation of the
Fractional Fourier Transform

The FRT of a continuous function whose time- or space-bandwidth
product is N can be computed in the order of N logN time [115],
similar to the ordinary Fourier transform. Therefore, if in some
application any improvements can be obtained by using the FRT
instead of the ordinary Fourier transform, these improvements
come at no additional cost.

The following formula allows one to compute the samples of
the fractional Fourier transform fa(u) of a function f(u), in terms
of the samples of f(u), in �N logN time where N ¼ Du2, under
the assumption that Wigner distribution of f(u) is approximately
confined to a circle of diameter Du:

fa
k

2Du

� �

¼ Aa

2Du
eip( cota�csca)(k=2Du)2

�
X

N�1

l¼�N

eip csca((k�l)=2Du)2eip( cota�csca)(l=2Du)2 f
l

2Du

� �

:

(14:116)

The summation is recognizable as a convolution, which can be
computed in �N logN time by using the fast Fourier transform
(FFT). The result is then obtained by a final chirp multiplication.
The overall procedure takes �N logN time. A MATLAB code
based on this formula may be found in [79]. A broader discus-
sion of computational issues may be found in [115].

Note that this method is distinct from that discussed in
Section 12. There, the discrete fractional Fourier transform was
defined. The samples of the fractional Fourier transform of a
function are then found by multiplying the discrete fractional
Fourier transform matrix with the sample vector of the function
to be transformed. Since a method for calculating this matrix
product in �N logN time is presently not available, the
operation will take �N2 time. The approach in this section
does not involve a definition of the discrete fractional Fourier
transform, and can be viewed as a method to numerically com-
pute the fractional Fourier transform integral.
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FIGURE 14.11 Approximation of the continuous fractional Fourier transform of f (u) ¼ sin(2pu)rect(u) with the discrete fractional Fourier
transform.
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14.14 Applications

The purpose of this section is to highlight some of the applica-
tions of the fractional Fourier transform which have received
greater interest so far. The reader may consult [23,122,123,129]
for further references.

The fractional Fourier transform is of potential usefulness in
every area in which the ordinary Fourier transform is used.
The typical pattern of discovery of a new application is to
concentrate on an application where the ordinary Fourier trans-
form is used and ask if any improvement or generalization might
be possible by using the fractional Fourier transform instead. The
additional order parameter often allows better performance or
greater generality because it provides an additional degree of
freedom over which to optimize.

Typically, improvements are observed or are greater when
dealing with time=space-variant signals or systems. Furthermore,
very large degrees of improvement often becomes possible when
signals of a chirped nature or with nearly linearly increasing
frequencies are in question, since chirp signals are the basis
functions associated with the fractional Fourier transform
(just as harmonic functions are the basis functions associated
with the ordinary Fourier transform). Fractional Fourier trans-
forms are also of special use when dealing with integral trans-
forms whose kernels are of quadratic-exponential type, the
diffraction integral being the most common example.

14.14.1 Applications in Signal and Image
Processing

The FRT has found widespread application in signal and image
processing, some of which are reviewed here (also see [157]).

One of the most striking applications is that of filtering in
fractional Fourier domains, whose foundations have been discussed
in Section 14.10 [117]. In traditional filtering, one takes the Fourier
transform of a signal, multiplies it with a Fourier-domain transfer
function, and inverse transforms the result. Here, one takes the
fractional Fourier transform, applies a filter function in the frac-
tional Fourier domain, and inverse transforms to the original
domain. It has been shown that considerable improvement in
performance is possible by exploiting the additional degree of
freedom coming from the order parameter a. This improvement
comes at no additional cost since computing the fractional Fourier
transform is not more expensive than computing the ordinary
Fourier transform (Section 14.13). The concept has been general-
ized tomultistage andmultichannel filtering systems which employ
several fractional Fourier domain filters of different orders [81,82].
These schemes provide flexible and cost-efficient means of design-
ing time=space-variant filtering systems to meet desired objectives.
Fractional Fourier domain filtering has been useful in optical signal
separation [43] and signal and image recovery and restoration in
the presence of time=space-varying distortions such as space-vary-
ing blurs and nonstationary noise, with application to compensa-
tion of nonconstant velocity camera motion and atmospheric
turbulence [48,50,83,85].

The FRT has also found many applications in pattern recog-
nition and detection. Correlation is the underlying operation in
matched filtering, which is used to detect signals. Fractional
correlation has been defined in a number of different ways
[71,92,103,180]. It has been shown how to control the degree of
shift-invariance by adjusting the order a, which in turn allows
one to design systems which detect objects within a certain
region but reject them otherwise [92]. Joint-transform correl-
ation is a well-known optical correlation technique, whose frac-
tional version has received considerable attention [78,90]. The
FRT has been studied as a preprocessing unit for neural network
object recognition [14]. Some other applications in the pattern
recognition area are face recognition [72] and realization and
improvement of navigational tasks [149].

The windowed fractional Fourier transform has been studied
in [29,46,104]. The possibility of changing the fractional order as
the window is moved and=or choosing different orders in the two
dimensions makes this a very flexible tool suited for various
pattern recognition tasks, such as fingerprint recognition [171]
or detection of targets in specific locations [59]. A review of
applications of the FRT to pattern recognition as of 1998 is
presented in [105].

The FRT has found a number of applications in radar signal
processing. In [2], detection of linear frequency modulated sig-
nals is studied. In [69], radar return transients are analyzed in
fractional domains. In [35,155], detection of moving targets for
airborne radar systems is studied. In [11,10], synthetic aperture
radar image reconstruction algorithms have been developed
using the fractional Fourier transform.

The transform has found application to interpolation [53,150]
and superresolution of multidimensional signals [32,62,151],
phase retrieval from two or more intensity measurements
[6,7,41,54,55], system and transform synthesis [50], processing
of chirplets [22], signal and image compression [117,162,166],
watermarking [40,112], speech processing [176], acoustic signal
processing [60,173], ultrasound imaging [17], and antenna
beamforming [168]. A large number of publications discuss the
application of the FRT to encryption; for instance, see
[33,63,66,111,161].

14.14.2 Applications in Communications

The FRT has found applications in spread spectrum communi-
cations systems [1], multicarrier communications systems [97],
in the processing of time-varying channels [110], and beamform-
ing for next generation wireless communication systems [75].

The concept of multiplexing in fractional Fourier domains,
which generalizes time-domain and frequency-domain multi-
plexing, has been proposed in [117].

14.14.3 Applications in Optics and Wave
Propagation

The fractional Fourier transform has received a great deal
of interest in the area of optics and especially optical signal
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processing (also known as Fourier optics or information optics)
[5,18,91,118,127,129,139,159]. Optical signal processing is an
analog signal processing method which relies on the representa-
tion of signals by light fields and their manipulation with optical
elements such as lenses, prisms, transparencies, holograms, and
so forth. Its key component is the optical Fourier transformer
which can be realized using one or two lenses separated by
certain distances from the input and output planes. It has been
shown that the fractional Fourier transform can be optically
implemented with equal ease as the ordinary Fourier transform
[88,124,127,146], allowing a generalization of conventional
approaches and results to their more flexible or general fractional
counterparts.

The fractional Fourier transform has also been shown to be
intimately related to wave and beam propagation and diffraction.
The process of diffraction of light in free space (or any other
disturbance satisfying a similar wave equation) has been shown
to be nothing but a process of continual fractional Fourier trans-
formation; the distribution of light becomes fractional Fourier
transformed as it propagates, evolving through continuously
increasing orders [118,126,127,139].

More generally, it is well known that a rather broad class of
optical systems can be modeled as linear canonical transforms,
which were discussed in Section 14.8 [15,129]. These include
optical systems consisting of arbitrary concatenations of thin
lenses and sections of free space, as well as sections of quadratic
graded-index media. It has been shown that all such systems can
be expressed in the form of a fractional Fourier transform oper-
ation followed by appropriate scaling and a residual chirp factor,
which can be interpreted as a change in the radius of curvature of
the output plane (Equation 14.83) [118,119]. Therefore, all such
optical systems can be interpreted as fractional Fourier trans-
formers [16,118,127], and the propagation of light through such
systems can be viewed as a process of continual fractional Fourier
transformation with the fractional transform order monotonic-
ally increasing as light propagates through the system. The case
of free-space optical diffraction in the Fresnel approximation,
discussed in the previous paragraph, is a special case of this
more general result, and rests on expressing the Fresnel integral
in terms of the FRT. Similar results hold for other wave and beam
propagation modalities that satisfy a similar wave equation as the
optical wave equation, or an equation similar to that of the
quantum-mechanical harmonic oscillator, including electromag-
netic and acoustic waves [47].

As noted above, the fractional Fourier transform plays a cen-
tral role in the study of optical systems consisting of arbitrary
sequences of lenses. Also of interest are systems in which thin
optical filters (masks) are inserted at various points along the
optical axis. Such systems can be modeled as multistage frac-
tional Fourier domain filtering systems with multiplicative filters
inserted between fractional Fourier transform stages, which were
discussed in Section 14.10.

The fractional Fourier transform has also found application in
the study of laser resonators and laser beams. The order of the
fractional transform has been shown to be proportional to the

Gouy phase shift accumulated during Gaussian beam propagation
[49,126] and also to be related to laser resonator stability
[126,140,179]. Other laser applications have also been reported [94].

The FRT has also found use in increasing the resolution of
low-resolution wave fields [32], optical phase retrieval from
two or more intensity measurements [41,54,55], coherent and
partially coherent wave field reconstruction using phase-space
tomography [99,144,145], optical beam characterization and
shaping [3,38,44,172,177], synthesis of mutual intensity func-
tions [52], and the study of partially coherent light
[20,24,51,153,160,163].

It has found further use in quantum optics [170], studies of the
human eye [141,142], lens design problems [42], diffractive optics
[58,158], optical profilometry [181], speckle photography [131]
and metrology [73], holographic interferometry [152], holo-
graphic data storage [70], digital holography [34,36,178],
holographic three-dimensional television [113,114], temporal
pulse processing [21,45,89], solitons [39], and fiber Bragg
gratings [98].

14.14.4 Other Applications

The fractional Fourier transform has found several other appli-
cations not falling under the above categories. We discuss some
of these here.

The FRT has been employed in quantum mechanics
[56,57,93,96]. It has been shown that certain kinds of time-varying
second-order differential equations (with nonconstant coefficients)
can be solved by exploiting the additional degree of freedom
associated with the fractional order parameter a [74,100,109].
Based on the relationship of the fractional Fourier transform to
harmonic oscillation (Section 14.2), it may be expected to play an
important role in the study of vibrating systems [84]. It has so far
received only limited attention in the area of control theory and
systems [28], but we believe it has considerable potential for use in
this field. The FRT has been shown to be related to perspective
projections [169]. The transform has been employed to realize
free-space optical interconnection architectures [50].
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15.1 Introduction

In this chapter, an effort will be made to cover the basic aspects of

lapped transforms. It is a subject that has been extensively stud-

ied, making available a large number of papers and books. This is

mostly true because of the direct correspondence among lapped

transforms, filter banks, wavelets, and time–frequency trans-

formations. Some of those topics are well covered in other

chapters in this handbook. In any case it will be certainly imprac-

tical to reference all the contributions in the field. Therefore, the

presentation will be more focused rather than general. We refer

the reader to chapters on wavelet and time–frequency transforms

in this handbook, as well as Refs. [20,44,50,53] for a more

detailed treatment of filter banks.

We expect the reader to have a background in digital signal

processing. An introductory chapter in this handbook on signals

and systems, the chapter on Z-transforms, and the chapter on the

discrete cosine transform (DCT) are certainly useful.

15.1.1 Notation

In terms of notation, our conventions are: In is the n3 n identity

matrix. On is the n3 n null matrix, while On3m stands for the

n3m null matrix. Jn is the n3 n counter-identity, or exchange,

or reversing matrix, illustrated by the following example:

J3 ¼
0 0 1
0 1 0
1 0 1

2

4

3

5:

J reverses the order of elements of a vector. []T means transpos-

ition. []H means transposition combined with conjugation, where

this combination is usually called the Hermitian of the vector or

matrix. Unidimensional concatenation of matrices and vectors is

indicated by a comma. In general, capital bold face letters are

reserved for matrices, so that a represents a (column) vector

while A represents a matrix.

15.1.2 Brief History

In the early 1980s transform coding was maturing itself and the

DCT38 was the preferred transformation method. At that time,

DCT-based image compression was state-of-the-art, but

researchers were uncomfortable with the blocking artifacts

which are common (and annoying) artifacts found at images

which were compressed at low bit rates using block transforms.

To resolve this problem, the idea of a lapped transform (LT, for

short) was developed in the early 1980s at MIT. The idea was to

extend the basis function beyond the block boundaries, creating

an overlap, in order to eliminate the blocking effect. This idea

was not new, but the new ingredient to overlapping blocks would
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be the fact that the number of transform coefficients would be

the same as if there was no overlap, and that the transform

would maintain orthogonality. Cassereau3 introduced the lapped

orthogonal transform (LOT). However, it was Malvar12–14 who

gave the LOT an elegant design strategy and a fast algorithm,

thus making the LOT practical and a serious contender to replace

the DCT for image compression.

It was later pointed by Malvar16 the equivalence between a

LOT and a multirate filter bank which is now a very popular

signal processing tool.50 Based on cosine modulated filter

banks,27 modulated lapped transforms were designed.15,40 Modu-

lated transforms were generalized for an arbitrary overlap later,

creating the class of extended lapped transforms (ELT).18–21

Recently a new class of LTs with symmetric bases were developed

yielding the class of generalized LOTs (GenLOTs).29,31,34 The

GenLOTs were made to have an arbitrary length (not a multiple

of the block size),46 extended to the nonorthogonal case49 and

even made to have filters of different lengths.48 As we mentioned,

filter banks and LTs are the same, although studied independ-

ently in the past. Because of this duality, it would be impractical

to mention all related work in the field. Nevertheless, Vaidya-

nathan’s book50 is considered an excellent text on filter banks,

while Malvar’s book20 is a good reference to bridge the gap

between lapped transforms and filter banks. We, however,

refer to LTs for uniform FIR filter banks with fast implementa-

tion algorithms based on special factorizations of the basis

functions, with particular design attention for signal (mainly

image) coding.10,14,15,20,30,36,46,55

15.1.3 Block Transforms

We assume a one-dimensional input sequence x(n) which is

transformed into several coefficients yi(n), where yi(n) would

belong to the ith subband. In traditional block-transform

processing, such as in image and audio coding, the signal is

divided into blocks of M samples, and each block is processed

independently,4,9,20,26,37–39 Let the samples in the mth block be

denoted as

xTm ¼ [x0(m), x1(m), . . . , xM�1(m)], (15:1)

for xk(m)¼ x(mMþ k) and let the corresponding transform

vector be

yTm ¼ [y0(m), y1(m), . . . , yM�1(m)]: (15:2)

For a real unitary transform A, AT¼A�1. The forward and

inverse transforms for the mth block are

ym ¼ Axm, (15:3)

and

xm ¼ ATym: (15:4)

The rows of A, denoted aTn (0� n�M� 1), are called the basis

vectors because they form an orthogonal basis for the M-tuples

over the real field.39 The transform vector coefficients [y0(m),

y1(m), . . . , yM�1(m)] represent the corresponding weights of

vector xm with respect to this basis.

If the input signal is represented by vector x while the sub-

bands are grouped into blocks in vector y, we can represent the

transform H which operates over the entire signal as a block

diagonal matrix:

H ¼ diag{ . . . ,A,A,A, . . . }, (15:5)

where, of course, H is an orthogonal matrix if A is also an

orthogonal matrix. In summary, a signal is transformed by seg-

mentation into blocks followed by transformation, which

amounts to transforming the signal with a sparse matrix. Also,

it is well known that the signal energy is preserved under an

orthogonal transformation,9,38 assuming stationary signals, i.e.,

Ms2
x ¼

XM�1

i¼0

s2
i , (15:6)

where

s2
i is the variance of yi(m)

s2
x is the variance of the input samples

15.1.4 Factorization of Discrete Transforms

Four our purposes, discrete transforms of interest are linear and

governed by a square matrix with real entries. Square matrices

can be factorized into a product of sparse matrices of the same

size. Notably, orthogonal matrices can be factorized by a product

of plane (Givens) rotations.8 Let A be an M3M real orthogonal

matrix and letQ(i, j, un) be a matrix with entriesQkl which is like

the identity matrix IM except for four entries:

Qii ¼ cos (un) Qjj ¼ cos (un) Qij ¼ sin (un) Qji ¼ �sin (un),

(15:7)

i.e., Q(i, j, un) corresponds to a plane rotation along the ith and

the jth axes by an angle un. Then, A can be factorized as

A ¼ S
YM�Z

i¼0

YM�1

j¼iþ1

Q(i, j, un) (15:8)

where n is increased by one for every matrix and S is a diagonal

matrix with entries �1 to correct for any sign error.8 This

correction is not necessary in most cases and is not required if

we could apply variations of the rotation matrix defined in

Equation 15.7 as

Qii ¼ cos (un) Qjj ¼ �cos (un) Qij ¼ sin (un) Qji ¼ sin (un):

(15:9)
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All combinations of pairs of axes shall be used for a complete

factorization. Figure 15.1a shows an example of the factorization

of a 43 4 orthogonal matrix into plane rotations (the order

differs from that in Equation 15.8, but the factorization is also

complete). If the matrix is not orthogonal, we can always decom-

pose the matrix using singular value decomposition (SVD).8 A is

decomposed through SVD as

A ¼ ULV (15:10)

where

U and V are orthogonal matrices

L is a diagonal matrix containing the singular values of A

While L is already a sparse matrix, we can further decompose

the orthogonal matrices using Equation 15.8, i.e.,

A ¼ S
YM�2

i¼0

YM�1

j¼iþ1
Q i, j, uUn
� �

 !

L
YM�1

i¼0

YM�1

j¼iþ1
Q i, j, uVn
� �

 !

(15:11)

where uUn and uVn compose the set of angles for U and V,

respectively. Figure 15.1c illustrates the factorization for a 43 4

nonorthogonal matrix, where ai are the singular values.

The factorization is an invaluable tool for the design of block

and lapped transforms as we will explain later. In the orthogonal

case the angles are all the degrees of freedom. In an M3M
orthogonal matrix, there are M(M � 1)=2 angles, and by span-

ning all the angle spaces (0 to 2p for each one) one spans the

space of all M3M orthogonal matrices. The idea is to span the

angles in order to design orthogonal matrices through uncon-

strained optimization. In the general case, there areM2 degrees of

freedom either by utilizing the matrix entries directly or by using

the SVD decomposition. However, we are mainly concerned with

invertible matrices. Using the SVD-based method, one can

design invertible matrices by freely spanning the angles, with

the only mild constraint to assure that all singular values are

not zero. The author commonly uses unconstrained nonlinear

optimization based on simplex search provided by MATLAB1 to

span all angles and possibly singular values as well.

15.1.5 Discrete MIMO Linear Systems

Let a multi-input multi-output (MIMO)50 discrete linear FIR

system have M input and M output sequences with respective

Z-transforms Xi(z) and Yi(z), for 0� i�M� 1. Then, Xi(z) and
Yi(z) are related by

Y0(z)

Y1(z)

.

.

.

YM�1(z)

2

6
6
6
6
4

3

7
7
7
7
5

¼

E0, 0(z) E0, 1(z) � � � E0,M�1(z)

E1, 0(z) E1, 1(z) � � � E1,M�1(z)

.

.

.
.
.
.

.
.

.
.
.
.

EM�1, 0(z) EM�1, 1(z) � � � EM�1,M�1(z)

2

6
6
6
6
4

3

7
7
7
7
5

�

X0(z)

X1(z)

.

.

.

XM�1(z)

2

6
6
6
6
4

3

7
7
7
7
5

(15:12)

where Eij(z) are entries of the given MIMO system E(z). E(z) is
called the transfer matrix of the system and we have chosen it to

be square for simplicity. It is a regular matrix whose entries are

polynomials. Of relevance to us is the case wherein the entries

belong to the field of real-coefficient polynomials of z�1, i.e., the

entries represent real-coefficient FIR filters. The degree of E(z)
(or the McMillan degree, Nz) is the minimum number of delays

necessary to implement the system. The order of E(z) is the

(c) θ3

θ2

θ1

θ4

θ5 θ6 θ9

θ10θ8

θ7

α4

α3

α2

α1

θ11 θ12

θ3
(a) (b)

θ2

θ1

θ4

θ5 θ6
θk cos(θk)

–sin(θk)

sin(θk)

cos(θk)

FIGURE 15.1 Factorization of a 43 4 matrix. (a) Orthogonal factorization into givens rotations. (b) Detail of the rotation element. (c) Factorization

of a nonorthogonal matrix through SVD with the respective factorization of SVD’s orthogonal factors into rotations.
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maximum degree among all Eij(z). In both cases, causal FIR

filters are assumed.

A special subset of great interest comprises the transfer matri-

ces which are normalized paraunitary. In the paraunitary case,

E(z) becomes a unitary matrix when evaluated on the unit circle:

EH(ejv)E(ejv) ¼ E(ejv)EH(ejv) ¼ IM: (15:13)

Furthermore:

E�1(z) ¼ ET(z�1): (15:14)

For causal inverses of paraunitary systems,

E0(z) ¼ z�nET(z�1): (15:15)

is often used, where n is the order of E(z), since E0(z)E(z)¼
z�nIM.

For paraunitary systems, the determinant of E(z) is of the form
az�Nz , for a real constant a,50 where we recall that Nz is the

McMillan degree of the system. For FIR causal entries, they are

also said to be lossless systems.50 In fact, an orthogonal matrix is

one where all Eij(z) are constant for all z.
We also have interest in invertible, although nonparaunitary,

transfer matrices. In this case, it is required that the matrix be

invertible in the unit circle, i.e., for all z¼ ejv, v real. Nonpar-

aunitary systems are also called biorthogonal or perfect recon-

struction (PR).50

15.1.6 Block Transform as a MIMO System

The sequences xi(m) in Equation 15.1 are called the polyphase

components of the input signal x(n). In the other hand, the

sequences yi(m) in Equation 15.2 are the subbands resulting

from the transform process. In an alternative view of the trans-

formation process, the signal samples are ‘‘blocked’’ or paralle-

lized into polyphase components through a sequence of delays

and decimators as shown in Figure 15.2. Each block is trans-

formed by system A into M subband samples (transformed

samples). Inverse transform (for orthogonal transforms) is

accomplished by system AT whose output are polyphase com-

ponents of the reconstructed signal, which are then serialized by

a sequence of upsamplers and delays. In this system, blocks are

processed independently. Therefore, the transform can be viewed

as a MIMO system of order 0, i.e., E(z)¼A, and if A is unitary,

so is E(z) which is obviously also paraunitary. The system matrix

relating the polyphase components to the subbands is referred to

as the polyphase transfer matrix (PTM).

15.2 Lapped Transforms

The motivation for a transform with overlap as we mentioned in

the introduction was to try to improve the performance of block

(nonoverlapped) transforms for image and signal compression.

Compression commonly implies signal losses due to quantiza-

tion.9 As the bases of block transforms do not overlap, there may

be discontinuities along the boundary regions of the blocks.

Different approximations of those boundary regions in each

side of the border may cause an artificial ‘‘edge’’ between blocks,

the so-called blocking effect. In Figure 15.3 is shown an example

signal which is to be projected into bases, by segmenting the

signal into blocks and projecting each segment into the desired

bases. Alternatively, one can view the process as projecting the

whole signal into several translated bases (one translation per

block). Figure 15.3a shows translated versions of the first basis

of the DCT, in order to account for all the different blocks.

In Figure 15.3b, shows the same diagram for the first basis of a

typical short LT. Note that the bases overlap spatially. The idea is

that overlap would help decrease, if not eliminate, the blocking
effect.

Although Figure 15.3 shows just one basis for either DCT or

LT, there are M of them. An example of the bases for M¼ 8 is

shown in Figure 15.4. It shows the bases for the DCT and for

the LOT, which is a particular LT that will be discussed later.

z–1

M

A

y0 (m) ŷ0 (m)

ŷ1 (m)y1 (m)

yM–1 (m) ŷM–1(m)

M

M

M

M

M M

M

M

M

M

M

z–1

z–1

z–1 z–1

z–1

z–1

AT

z–1

x̂ (n)

x(n)

FIGURE 15.2 The signal samples are parallelized into polyphase components through a sequence of delays and decimators (# M means

subsampling by a factor of M). Effectively the signal is ‘‘blocked’’ and each block is transformed by system A into M subband samples (transformed

samples). Inverse transform (for orthogonal transforms) is accomplished by system AT whose outputs are polyphase components of the reconstructed

signal, which are then serialized by a sequence of up-samplers (" M means subsampling by a factor of M, padding the signal with M� 1 zeros) and

delays.
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The reader may note that not only are the LOT bases

longer, but they are also smoother than their DCT counter-

parts. Figure 15.5a shows an example of an image compressed

using the standard JPEG baseline coder,26 where the reader

can readily perceive the blocking artifacts at the boundaries of

83 8 pixel blocks. By replacing the DCT with the LOT at

the same compression ratio, we obtain the image shown in

Figure 15.5b, where blocking is largely reduced. This brief

introduction to the motivation behind the development of

LTs helps to illustrate the overall problem, without detail

on how to apply LTs. In this section we will develop the

LT framework.

15.2.1 Orthogonal Lapped Transforms

For lapped transforms,20 the basis vectors can have length L,
such that L>M, extending across traditional block boundaries.

Thus, the transform matrix is no longer square and most of the

equations valid for block transforms do not apply to an LT.

We will concentrate our efforts on orthogonal LTs20 and

consider L¼NM, where N is the overlap factor. Note that N,
M, and hence L are all integers. As in the case of block trans-

forms, we define the transform matrix as containing the ortho-

normal basis vectors as its rows. A LT matrix P of dimensions

M3 L can be divided into square M3M submatrices Pi

(i¼ 0, 1, . . . , N� 1) as

P ¼ [P0,P1, . . . ,PN�1]: (15:16)

x(n)

(a) (b)

FIGURE 15.3 The example discrete signal on top is to be projected into a number of bases. (a) spatially displaced versions of the first DCT basis,

(b) spatially displaced versions of the first basis of a typical short LT.
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FIGURE 15.4 Bases for the 8-point DCT (M¼ 8) (a) and for the LOT

(b) with M¼ 8. The LOT is a particular LT which will be explained later.
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The orthogonality property does not hold because P is no

longer a square matrix and it is replaced by the PR property,20,23

defined by

XN�1�l

i¼0
PiP

T
iþl ¼

XN�1�l

i¼0
PT
iþlPi ¼ d(l)IM , (15:17)

for l¼ 0, 1, . . . , N� 1, where d(l) is the Kronecker delta, i.e.,

d(0)¼ 1 and d(l)¼ 0 for l 6¼ 0. As we will see later (Equation

15.17) states the PR conditions and orthogonality of the trans-

form operating over the entire signal.

If we divide the signal into blocks, each of size M, we would

have vectors xm and ym such as in Equations 15.1 and 15.2. These

blocks are not used by LTs in a straightforward manner. The

actual vector which is transformed by the matrix P has to have L
samples and, at block numberm, it is composed of the samples of

xm plus L�M samples. These samples are chosen by picking

(L�M)=2 samples at each side of the block xm, as shown in

Figure 15.6, for N¼ 2. However, the number of transform coef-

ficients at each step is M, and, in this respect, there is no change

in the way we represent the transform-domain blocks ym.

The input vector of length L is denoted as vm, which is

centered around the block xm, and is defined as

vTm x mM � (N � 1)
M

2

� �

� � � x mM þ (N þ 1)
M

2
� 1

� �� �

:

(15:18)

Then, we have

ym ¼ Pvm: (15:19)

The inverse transform is not direct as in the case of block trans-

forms, i.e., with the knowledge of ym we do not know the samples

in the support region of vm, or in the support region of xm. We can

reconstruct a vector v̂m from ym, as

v̂m ¼ PTym, (15:20)

where v̂m 6¼ vm. To reconstruct the original sequence, it is

necessary to accumulate the results of the vectors v̂m, in a sense

that a particular sample x(n) will be reconstructed from the sum

of the contributions it receives from all v̂m, such that x(n) was
included in the region of support of the corresponding vm. This

additional complication comes from the fact that P is not a

square matrix.20 However, the whole analysis-synthesis system

(applied to the entire input vector) is orthogonal, assuring the PR

property using Equation 15.20.

We can also describe the process using a sliding rectangular

window applied over the samples of x(n). As an M-sample block

ym is computed using vm, ymþ1 is computed from vmþ1 which is

obtained by shifting the window to the right by M samples, as

shown in Figure 15.7.

As the reader may have noticed, the region of support of all

vectors vm is greater than the region of support of the input

vector. Hence, a special treatment has to be given to the

(a) (b)

FIGURE 15.5 Zoom of image compressed using JPEG at 0.5 bit per pixel. (a) DCT, (b) LOT.

M

2M 2M

2M 2M

M M M M M M M

FIGURE 15.6 The signal samples are divided into blocks of M samples. The lapped transform uses neighboring block samples, as in this example

for N¼ 2, i.e., L¼ 2M, yielding an overlap of (L�M)=2¼M=2 samples on either side of a block.
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transform at the borders. We will discuss this fact later and

assume infinite-length signals until then, or assume the length

is very large and the borders of the signal are far enough from the

region to which we are focusing our attention.

If we denote by x the input vector and by y the transform-

domain vector, we can be consistent with our notation of trans-

form matrices by defining a matrix H such that y¼Hx and

x̂¼HTy. In this case, we have

H ¼

.
.

.
0

P
P

P

0 .
.

.

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

: (15:21)

Where the displacement of the matrices P obeys the following:

H ¼

.
.

.
.
.

.
.
.

.
0

P0 P1 � � � PN�1
P0 P1 � � � PN�1

0 .
.

.
.
.

.
.
.

.

2

6
6
6
6
4

3

7
7
7
7
5

: (15:22)

H has as many block-rows as transform operations over each

vector vm.

Let the rows of P be denoted by 13 L vectors pTi (0� i�
M� 1), so that PT¼ [p0, . . . , pM�1]. In an analogy to the block

transform case, we have

yi(m) ¼ pTi vm: (15:23)

The vectors pi are the basis vectors of the lapped transform. They

form an orthogonal basis for an M-dimensional subspace (there

are only M vectors) of the L-tuples over the real field. As a

remark, assuming infinite length signals, from the orthogonality

of the basis vectors and from the PR property in Equation 15.17,

the energy is preserved, such that Equation 15.6 is valid.

In order to compute the variance of the subband signals of a

block or lapped transform, assume that x(n) is a zero-mean

stationary process with a given autocorrelation function. Let its

L3 L autocorrelation matrix be Rxx. Then, from Equation 15.23:

E[yi(m)] ¼ pTi E[vm] ¼ pTi 0L�1 ¼ 0, (15:24)

so that:

s2
i ¼ E[y2i (m)] ¼ pTi E[vmv

T
m]pi ¼ pTi Rxxpi, (15:25)

i.e., the output variance is easily computed from the input auto-

correlation matrix for a given basis P.

Assuming that the entire input and output signals are repre-

sented by the vectors x and y, respectively, and that the signals

have infinite length, then, from Equation 15.21, we have

y ¼ Hx (15:26)

and, if H is orthogonal,

x ¼ HTy: (15:27)

Note that H is orthogonal if and only if Equation 15.17 is

satisfied. Thus, the meaning for Equation 15.17 becomes clear,

as it forces the transform operating over the entire input-output

signals to be orthogonal. So, the LT is called orthogonal. For

block transforms as there is no overlap, it is sufficient to state the

orthogonality of A because H will be a block-diagonal matrix.

These formulations for LTs are general, and if the transform

satisfies the PR property described in Equation 15.17, then the

LTs are independent of the contents of the matrix P. The defin-

ition of P with a given N can accommodate any LT whose length

of the basis vectors lies betweenM and NM. For the case of block

transforms, N¼ 1, i.e., no overlap. In fact, block transforms are

a special case of lapped transforms and can be easily padded

with zeroes. Similarly, basis functions can be increased by zero-

padding as long as Equation 15.17 is respected.

Causal notation—If one is not concerned with particular

localization of the transform with respect to the origin x(0) of
the signal x(n), it is possible to change the notation to apply a

causal representation. In this case, we can represent vm as

vTm ¼ xTm�Nþ1, . . . , x
T
m�1, x

T
m

� 	
, (15:28)

which is identical to the previous representation, except for a

shift in the origin to maintain causality. The block ym is found in

a similar fashion as

ym ¼ Pvm ¼
XN�1

i¼0

PN�1�ixm�i: (15:29)

M samples

vm

ym

vm+1

x (n)

y (n)

x̂(n)v̂m+1

v̂m

ym+1

FIGURE 15.7 Illustration of a lapped transform with N¼ 2 applied to

signal x(n), yielding transform domain signal y(n). The input L-tuple as
vector vm is obtained by a sliding window advancing M samples, gener-

ating ym. This sliding is also valid for the synthesis side.
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Similarly, v̂m can be reconstructed as in Equation 15.20 where the

support region for the vector is the same, except that the relation

between it and the blocks x̂m will be changed accordingly.

15.2.2 Nonorthogonal Lapped Transforms

So far, we have discussed orthogonal LTs. In those, a segment of

the signal is projected onto the basis functions of P, yielding the

coefficients (subband samples). The signal is reconstructed by

the overlapped projection of the same bases weighted by the

subband samples. In the nonorthogonal case, we define another

LT matrix Q as

Q ¼ [Q0,Q1, . . . ,QN�1], (15:30)

in the same way as we did for P with the same size. The

difference is that Q instead of P is used in the reconstruction

process so that Equation 15.20 is replaced by

v̂m ¼ QTym: (15:31)

We also define another transform matrix as

H0 ¼

.
.

.
.
.

.
.
.

.
0

Q0 Q1 � � � QN�1
Q0 Q1 � � � QN�1

0 .
.

.
.
.

.
.
.

.

2

6
6
6
6
4

3

7
7
7
7
5

: (15:32)

The forward and inverse transformation are now:

y ¼ HFx, x ¼ HIy: (15:33)

In the orthonormal case. HF¼H and HI¼HT. In the general

case, it is required that HI ¼ H�1F . With the choice of Q as the

inverse LT, then HI ¼ H
0T , while HF¼H. Therefore the perfect

reconstruction condition is

H
0TH ¼ I1: (15:34)

The reader can check that the above equation can also be

expressed in terms of the LTs P and Q as

XN�1�m

k¼0
QT

kPkþm ¼
XN�1�m

k¼0
QT

kþmPk ¼ d(m)IM , (15:35)

which establish general necessary and sufficient conditions for

the perfect reconstruction of the signal by using P as a forward

LT and Q as an inverse LT. Unlike the orthogonal case in

Equation 15.17, here both sets are necessary conditions, i.e., a

total of 2N� 1 matrix equations.

15.3 LTs as MIMO Systems

As we discussed in Sections 15.1.3 and 15.1.6, the input signal

can be decomposed into M polyphase signals xi(m), each

sequence having one Mth of the original rate. As there are

M subbands yi(m), under some circumstances and since only

linear operations are used to transform the signal, there is a

MIMO system F(z) that converts the M polyphase signals to

the M subband signals. Those transfer matrices are also called

PTM (Section 15.1.6). The same is true for the inverse transform

(from subbands ŷi(m) to polyphase x̂i(m)). Therefore, we can use

the diagram shown in Figure 15.8 to represent the forward and

inverse transforms. Note that Figure 15.8 is identical to Figure

15.2 except for the fact that the transforms have memory, i.e.,

depend not only on the present input vector, but also on past

input vectors. One can view the system as a clocked one, in which

at every clock, a block is input, transformed, and output. The

parallelization and serialization of blocks is performed by the

chain of delays, upsamplers and down-samplers as shown in

Figure 15.8. If we express the forward and inverse PTM as matrix

polynomials:

F(z) ¼
XN�1

i¼0
Fiz
�1, (15:36)

M

M

F(z)

x (n)

y0 (m)

y1 (m)

M

M

M

M

M

M

G(z)

M

M

M

M

z–1 z–1

z–1

z–1

z–1

z–1

z–1

z–1

ŷ0 (m)

ŷ1 (m)

yM – 1 (m) ŷM – 1 (m)

x̂(n)

FIGURE 15.8 The filter bank represented as a MIMO system is applied to the polyphase components of the signal. The matrices F(z) and G(z) are
called polyphase transfer matrices. For a PR system both must be inverses of each other and for paraunitary filter banks they must be paraunitary

matrices, i.e., G(z)¼ F�1(z)¼ FT(z�1). For a PR paraunitary causal system of order N, we must choose G(z)¼ z�(N�1)FT(z�1).
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G(z) ¼
XN�1

i¼0
Giz

�1, (15:37)

then the forward and inverse transforms are given by

ym ¼
XN�1

i¼0
Fixm�i, (15:38)

x̂m ¼
XN�1

i¼0
Giŷm�i: (15:39)

In the absence of any processing ŷm¼ ym and F(z) and G(z) are
connected together back-to-back, so that PR is possible if they are

inverses of each other. Since the inverse of a causal FIR MIMO

system may be noncausal, we can delay the entries of the inverse

matrix to make it causal. Since the MIMO system’s PTM is

assumed to have order N (because N is the overlap factor of the

equivalent LT), PR requires that:

G(z)F(z) ¼ z�Nþ1IM ! G(z) ¼ z�Nþ1F�1(z): (15:40)

In this case, x̂¼ xm�Nþ1, i.e., the signal is perfectly reconstructed

after a system’s delay. Because of the delay chains combined with

the block delay (system’s order), the reconstructed signal delay is

x̂(n)¼ x(n�NMþ 1)¼ x(n� L� 1).

By combining Equations 15.38 through 15.40 we can restate

the PR conditions as

XN�1

i¼0

XN�1

j¼0
GiFiz

�i�j ¼ z�Nþ1IM , (15:41)

which, by equating the powers of z, can be rewritten as

XN�1�m

k¼0
GkFkþm ¼

XN�1�m

k¼0
GkþmFk ¼ d(m)IM : (15:42)

The reader should note the striking similarity of the above

equation against Equation 15.35. In fact, the simple comparison

of the transformation process in space domain notation (Equa-

tion 15.33) against the MIMO system notation in Equations

15.38 and 15.39 would reveal the following relations:

Fk ¼ PN�1�k Gk ¼ QT
k (15:43)

for 0� k<N. In fact, the conditions imposed in Equations 15.34,

15.35, 15.40, and 15.42 are equivalent and each one of them

implies the others. This is a powerful tool in the design of lapped

transforms. As an LT, the matrix is nonsquare but the entries are

real. As a MIMO system, the matrix is square, but the entries

are polynomials. One form may complement the other, facilitat-

ing tasks such as factorization, design, and implementation.

As mentioned earlier, paraunitary (lossless) systems are a class

of MIMO systems of interest. Let E(z) be a paraunitary PTM so

that E�1(z)¼ET(z�1), and let:

F(z) ¼ E(z), G(z) ¼ z�(N�1)ET(z�1): (15:44)

As a result, the reader can verify that it implies that Pi¼Qi

and that:

XN�1�l

i¼0

PiP
T
iþl ¼

XN�1�l

i¼0

PT
i Piþl ¼ d(l)IM , (15:45)

HHT ¼ HTH ¼ I1: (15:46)

In other words, if the system’s PTM is paraunitary, then the LT

(H) is orthogonal and vice-versa.

15.4 Factorization of Lapped Transforms

There is an important results for paraunitary PTM which states

that any paraunitary E(z) can be decomposed into a series of

orthogonal matrices and delay stages.6,51 In this decomposition

there are Nz delay stages and Nzþ 1 orthogonal matrices, where

Nz is the McMillan degree of E(z) (the degree of the determinant

of E(z)). Then,

E(z) ¼ B0

YNz

i¼1

(Y(z)Bi) (15:47)

where

Y(z)¼ diag{z�1, 1, 1, . . . , 1}

Bi are orthogonal matrices

It is well-known that an M3M orthogonal matrix can be

expressed as a product of M(M� 1)=2 plane rotations. However,

in this case, only B0 is a general orthogonal matrix, while the

matrices B1 through BNz have only M� 1 degrees of freedom.52

This result states that it is possible to implement an orthogonal

LT using a sequence of delays and orthogonal matrices. It also

defines the total number of degrees of freedom in a lapped

transform, i.e., if one changes arbitrarily any of the plane rota-

tions composing the orthogonal transforms, one will span all

possible orthogonal lapped transform, for given values of

M and L. It is also possible to prove29 that the (McMillan) degree

of E(z) is bounded by Nz� (L�M)=2 with equality for a general

structure to implement all LTs whose bases have length up to

L¼NM, i.e., E(z) of order N� 1.

In fact Equation 15.47 may be able to implement all lapped

transforms (orthogonal or not) whose degree is Nz. For that

it is only required that all the multiplicative factors that com-

pose the PTM are invertible. Let us consider a more particular

factorization:
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F(z) ¼
Y

(N�1)=(K�1)

i¼0
Bi(z) (15:48)

where Bi(z) ¼
PK�1

k¼0 Bikz�k is a stage of order K� 1. If F(z) is
paraunitary then all Bi(z) must be paraunitary, so that perfect

reconstruction is guaranteed if

G(z) ¼ z�Nþ1FT(z�1) ¼
Y0

i¼(N�1)=(K�1)

XK�1

k¼0
BT
ikz
�(K�1�k)

 !

:

(15:49)

In the case the PTM is not paraunitary, all factors have to be

invertible in the unit circle for PR. More strongly put, there have

to be factors Ci(z) of order K such that:

Ci(z)Bi(z) ¼ z�Kþ1IM: (15:50)

Being that the case, the inverse PTM is simply given by

G(z) ¼
Y0

i¼(N�1)=(K�1)
Ci(z) (15:51)

With factorization, the design of F(z) is broken down in the

design of Bi(z). Lower order factors simplify the constraint

analysis and facilitate the design of a useful transform, either

paraunitary or allowing inverse. Even more desirable is to fac-

torize the PTM as

F(z) ¼ B0

YN�1

i¼0
L(z)Bi (15:52)

where Bi are square matrices and L(z) is a paraunitary matrix

containing only entries 1 and z�1. In this case, if the PTM is

paraunitary:

G(z) ¼
Y0

i¼N�1
BT
i
~L(z)

 !

BT
0 (15:53)

where ~L(z) ¼ z�1L(1=z). If the PTM is not paraunitary, then:

G(z) ¼
Y0

i¼N�1
B�1i

~L(z)

 !

B�10 , (15:54)

i.e., the design can be simplified by only applying invertible real

matrices Bi. This factorization approach is the basis for most

useful LTs. It allows efficient implementation and design. We will

discuss some useful LTs later on. For example, for M even, the

symmetric delay factorization (SDF) is quite useful. In that,

L(z) ¼ z�1IM=2 0
0 IM=2

� �

, ~L(z) ¼ IM=2 0
0 z�1IM=2

� �

:

(15:55)

The flow graph for implementing an LT which can be parame-

terized using SDF is shown in Figure 15.9.

If we are given the SDF matrices instead of the basis coeffi-

cients, one can easily reconstruct the LT matrix. For this, start

with the last stage and recur the structure in Equation 15.52 using

Equation 15.55. Let P(i) be the partial reconstruction of P after

including up to the ith stage. Then,

P(0) ¼ BN�1 (15:56)

P(i) ¼ BN�1�i
IM=2 0M=2 0M=2 0M=2

0M=2 0M=2 0M=2 IM=2

� �

P(i�1) 0M
0M P(i�1)

� �

(15:57)

P ¼ P(N�1) (15:58)

Similarly, one can find Q from the factors B�1i .

15.5 Hierarchical Connection of LTs:
Introduction

So far we have focused on the construction of a single LT

resulting in M subband signals. What happens if we cascade

LTs by connecting them hierarchically, in such a way that a

subband signal is the actual input for another LT? Also, what

are the consequences of submitting only part of the subband

signals to further stages of LTs? We will try to introduce the

answer to those questions.

The subject has been intensively studied and a large number

of publications are available. Our intent, however, is just to

provide a basic introduction, while leaving more detailed

analysis to the references. The relation between filter banks

and discrete wavelets42,50,52 is well-known. Under conditions

BN–1

B
T
N – 1 B

T
N – 2 B

T
1 B

T
0

BN–2 B1

. . .

. . .

. . .

. . .

(a)
1

1

1

1

(b)

B0

z–1

z–1

z–1

z–1

FIGURE 15.9 Flow graph for implementing an LT where F(z) can be

factorized using symmetric delays and N stages. Signals x(n) and y(n)
are segmented and processed using blocks of M samples, all branches

carry M=2 samples, and blocks Bi are M3M orthogonal or invertible

matrices. (a) Forward transform section; (b) inverse transform section.
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that are easily satisfied,50 an infinite cascade of filter banks

will generate a set of continuous orthogonal wavelet bases. In

general, if only the low-pass subband is connected to another

filter bank, for a finite number of stages, we call the resulting

filter bank a discrete wavelet transform (DWT).50,52 A free

cascading of filter banks, however, is better known as a discrete

wavelet packet (DWP).5,28,42,54 As LTs and filter banks are

equivalent in most senses, the same relations apply to LTs

and wavelets. The system resulting from the hierarchical asso-

ciation of several LTs will be called here a hierarchical lapped

transform (HLT).17

15.5.1 Time–Frequency Diagram

The description of the cascaded connection of LTs is better

carried with the aid of simplifying diagrams. The first is the

time–frequency (TF) diagram. It is based on the TF plane,

which is well known from the fields of spectral and time–

frequency analysis.1,2,25 The time–frequency representation of

signals is a well-known method (for example, the time-dependent

discrete Fourier transform (DFT) and the construction of spec-

trograms; see Refs. [1,2,25] for details on TF signal representation,

and other chapters in this handbook for the DFT). The TF repre-

sentation is obtained by expressing the signal x(n) with respect to

bases that are functions of both frequency and time. For example,

the size-r DFT of a sequence extracted from x(n) (from x(n) to
x(nþ r� 1))25 can be

a(k, n) ¼
Xr�1

i¼0
x(iþ n) exp � j2pki

r

� �

: (15:59)

Using a sliding window w(m) of length r which is nonzero only

in the interval n�m� nþ r� 1, (which in this case is rectangu-

lar), we can rewrite the last equation as

a(k, n) ¼
X

1

i¼�1
x(i)w(i) exp � jk(i� n)2p

r

� �

: (15:60)

For more general bases we may write:

a(k, n) ¼
X

1

i¼�1
x(i)f(n� i, k) (15:61)

where

f(n, k) represents the bases for the space of the signal
n represents the index where the basis is located in time

k is the frequency index

As the signal is assumed to have an infinite number of sam-

ples, consider a segment of Nx samples extracted from signal x
(n), which can be extended in any fashion in order to account for

the overlap of the window of r samples outside the signal domain.

In such segment we can construct a spectrogram with a reso-

lution of r samples in the frequency axis and Nx samples in the

time axis. Assuming a maximum frequency resolution we can

have a window with length up to r¼Nx. In this case, the diagram

for the spectrogram is given in Figure 15.10a. We call such

diagrams TF diagrams, because they only indicate the number

of samples used in the TF representation of the signal. Assuming

an ideal partition of the TF plane (using filters with ideal fre-

quency response and null transition regions), each TF coefficient

would represent a distinct region in a TF diagram. Note that in

such representation, the signal is represented by N2
x TF coeffi-

cients. We are looking for maximally decimated TF representa-

tion which is defined as a representation of the signal where the

TF plane diagram would be partitioned into Nx regions, i.e., Nx

TF coefficients will be generated. Also, we require that all

Nx samples of x(n) can be reconstructed from the Nx TF coeffi-

cients. If we use less than Nx samples in the TF plane, we clearly

cannot reconstruct all possible combinations of samples in x(n),
from the TF coefficients, solely using linear relations.

Under these assumptions, Figure 15.10b shows the TF dia-

gram for the original signal (only resolution in the time axis) for

Nx¼ 16. Also, for Nx¼ 16, Figure 15.10c shows a TF diagram

with maximum frequency resolution, which could be achieved by

transforming the original Nx-sample sequence with an Nx-sample

DCT or DFT.

(a) (b)
Nx Nx Nx

(c)

00
t t t

0

π π π

ω ω ω

FIGURE 15.10 Examples of rectangular partitions of the time–frequency plane for a signal which has Nx samples. (a) Spectrogram with a Nx-length

window, resulting in N2
x TF samples; (b) Input signal, no processing; (c) A transform such as the DCT or DFT is applied to all Nx samples.
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15.5.2 Tree-Structured Hierarchical
Lapped Transforms

The tree diagram is helpful to describe the hierarchical connec-

tion of filter banks. In this diagram we represent an M-band LT

by nodes and branches of an M-ary tree. Figure 15.11a shows an

M-band LT, where all theM subband signals have sampling rates

M times smaller than that of x(n). Figure 15.11b shows the

equivalent notation for the LT in a tree diagram, i.e., a single-

stage M-branch tree, which is called here a tree cell. Recalling

Figure 15.10, the equivalent TF diagram for an M-band LT is

shown in Figure 15.11c, for a 16-sample signal and for M¼ 4.

Note that the TF diagram of Figure 15.11c resembles that of

Figure 15.10a. This is because for each 4 samples in x(n) there
is a corresponding set of 4 transformed coefficients. So, the TF

representation is maximally decimated. Compared to Figure

15.10b, Figure 15.11c implies an exchange of resolution from

time to frequency domain achieved by the LT.

The exchange of resolution in the TF diagram is obtained

by the LT. As we connect several LTs following the paths of a

tree, each new set of branches (each new tree cell) connected

to the tree will force the TF diagram to exchange from time to

frequency resolution. We can achieve a more versatile TF

representation by connecting cells in unbalanced ways. For

example, Figure 15.12, shows some examples of HLTs given by

their tree diagrams and respective TF diagrams. Figure 15.12a

shows the tree diagram for the 3-stages DWT. Note that only the

lowpass subband is further processed. Also, as all stages are

chosen to be 2-channel LTs, this HLT can be represented by a

binary tree. In Figure 15.12b, a more generic hierarchical con-

nection of 2-channel LTs is shown. First the signal is split into

low- and high-pass. Each output branch is further connected to

another 2-channel LT. In the third stage only the most low-pass

subband signal is connected to another 2-channel LT. Figure

15.12c shows a 2-stage HLT obtaining the same TF diagram as

Figure 15.12b. Note that the succession of 2-channel LTs was

substituted by a single stage 4-channel LT, i.e., the signal is split

into four subbands and, then, one subband is connected to

another LT. Figure 15.12d shows the TF diagram corresponding

to Figure 15.12a, while Figure 15.12e shows the TF diagram

corresponding to Figure 15.12b and c. Note that, as the tree-

paths are unbalanced, we have irregular partitions of the TF

plane. For example, in the DWT, low-frequency TF coefficients

have poor time localization and good frequency resolution, while

high-frequency ones have poor frequency resolution and better

time localization.

(a) (b) (c)

t
0 Nx

ω

yM–1 (n) yM–1 (n)

x (n)
Blocking

and 
PTM

x(n)

y0 (n)

y1 (n)

y0 (n)
y1 (n)

π

FIGURE 15.11 Representation of an M-channel LT as tree nodes and branches. (a) Forward section of an LT, including the blocking device.

(b) Equivalent notation for (a) using an M-branch single-stage tree. (c) Equivalent TF diagram for (a) or (b) assuming M¼ 4 and Nx¼ 16.

(a) (b) (c) (d)
Nx Nx

t t

(e)

0 0

ω ω

π π

FIGURE 15.12 Tree and TF diagrams. (a) The 3-stage DWT binary-tree diagram, where only the low-pass subband is submitted to further LT

states. (b) A more generic 3-stages tree diagram. (c) A 2-stages tree-diagram resulting in the same TF diagram as (b). (d) TF diagram for (a).

(e) TF diagram for (b) or (c).
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To better understand how connecting an LT to the tree can

achieve the exchange between time and frequency resolution,

Figure 15.13 shows the basis functions resulting from two similar

tree-structured HLTs. The difference between them is one tree

cell which is applied or not to a terminal branch of the tree.

15.5.3 Variable-Length LTs

In the tree-structured method to cascade LTs, every time an LT is

added to the structure, more subbands are created by further

subdividing previous subbands, so that the overall TF diagram of

the decomposition is altered. There is a useful alternative to the

tree structure in which the number of subbands does not change.

We refer to Figure 15.14, where the ‘‘blocking’’ part of the

diagram corresponds to the chain of delays and decimators

(as in Figure 15.8) that parallelizes the signal into polyphase

components. System A(z) of M bases of length NAM is postpro-

cessed by system B(z) of K bases of length NBK. Clearly, entries in
A(z) have order NA� 1 and entries in B(z) have order NB� 1.

Without loss generality, we associate system B(z) to the first K
output subbands of A(z). The overall PTM is given by

F(x) ¼ B(z) 0
0 IM�K

� �

A(z), (15:62)

where F(z) has K bases of order NAþNB� 2 and M�K bases of

order NA� 1. As the resulting LT hasM channels the final orders

dictate that the first K bases have length (NAþNB� 1) M while

the others still have length NAM. In other words the effect of

cascading A(z) and B(z) was only to modify K bases, so that the

length of the modified bases is equal or larger than the length of

the initial bases. An example is shown in Figure 15.15. We start

with the bases corresponding to A(z) shown in Figure 15.15a.

There are 8 bases of length 16 so that A(z) has order 1. A(z) is
postprocessed by B(z) which is a 43 4 PTM of order 3 whose

0
0 0

1

1
1 1

0

0

0 0

0

(a) (b) (c)

020 2040 4060 6010 20

1
1

2,3

3

3 3

2

2 2

FIGURE 15.13 Two HLTs and resulting bases. (a) The 2-channel 16-tap-bases LT, showing low-and high-frequency bases, f0(n) and f1(n),
respectively. (b) Resulting basis functions of a 2-stage HLT based on (a), given by f0(n) through f3(n). Its respective tree diagram is also shown. (c)

Resulting HLT, by pruning one high-frequency branch in (b). Note that the two high-frequency basis functions are identical to the high-frequency

basis function of (a) and, instead of having two distinct bases for high frequencies occupying distinct spectral slots, the two bases are now shifted in

time. Thus, better time localization is attainable, at the expense of frequency resolution.
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FIGURE 15.14 Cascade of PTMs A(z) of M channels and B(z) of K
channels. The total number of subbands does not change, however, of

A(z) bases are increased in length and order.
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corresponding bases are shown in Figure 15.15b. The resulting

LT is shown in Figure 15.15c. There are 4 bases of length 16 and

4 of length 40. The shorter ones are identical to those in Figure

15.15b, while the longer ones have orders which are the sums of

the others of A(z) and B(z), i.e., order 4, and the shape of the

longer bases in F(z) is very different from the corresponding ones

in A(z).

The effect of postprocessing few bases is a means to construct

a new LT with larger bases from an initial one. In fact it can be

shown that variable length LTs can be factorized using post-

processing stage.47,48 A general factorization of LTs is as shown

in Figure 15.16. Assume a variable-length F(z) whose bases

are arranged in decreasing length order. Such a PTM can be

factorized as

F(z) ¼
YM�2

i¼0

Bi(z) 0
0 Ii

� �

(15:63)

where I0 is understood to be nonexisting and Bi(z) has size

(M� i)3 (M� i). The factors Bi can have individual orders Ki

and can be factorized differently into factors Bik(z) for 0� k<Ki.

Hence,

F(z) ¼
Y

M�2

i¼0

Y

Ki�1

k¼0

Bik(z) 0
0 Ii

� �

: (15:64)

In a later section we will show a very useful LT which is based on

the factorization principles of Equation 15.64.

15.6 Practical Symmetric LTs

We have discussed LTs in a general sense as a function of several

parameters such as matrix entries, orthogonal or invertible fac-

tors, etc. The design of an LT suitable for a given application

is the single most important step in the study of LTs. In order

to do that, one may factorize the LT to facilitate optimization

techniques.

An LT with symmetric bases in commonly used in image

processing and compression applications. By symmetric bases

we mean that:

pi, j ¼ (�1)pi, L�1�j: (15:65)

The bases can be symmetric or antisymmetric. In terms of the

PTM, this constraint is given by42,43

F(z) ¼ z�(N�1)SF(z�1)JM , (15:66)

where S is a diagonal matrix whose diagonal entries sii are �1,

depending whether the ith basis is symmetric (þ1) or antisym-

metric (�1). Note that we require that all bases share the same

center of symmetry.

15.6.1 The Lapped Orthogonal Transform: LOT

LOT12–14 was the first useful LT with a well defined factorization.

Malvar developed the fast LOT based on the work by Cassereau3

to provide not only a factorization, but a factorization based on

the DCT. The DCT is attractive for many reasons, among them,

fast implementation and near-optimal performance for block

transform coding.38 Also, since it is a popular transform, it has
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FIGURE 15.15 Example of constructing variable-length bases through

cascading LTs. (a) The basis corresponding to A(z): (b) an LT with

8 bases of length 16 (order 1). (c) The bases corresponding to F(z):
4 of the 8 bases have order 1, i.e., length 16, while the remaining 4 have

order 4, i.e., length 40.
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FIGURE 15.16 General factorization of a variable-length LT.
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a reduced cost and it easily available in either software or hard-

ware. The DCT matrix D is defined as having entries:

dij ¼
ffiffiffiffiffi

2

M

r

ki cos
(2jþ 1)ip

2M

� �

(15:67)

where k0¼ 1 and ki ¼ 1=
ffiffiffi
2
p

, for 1� i�M� 1.

The LOT as defined by Malvar is orthogonal. Then, according

to our notation, P¼Q and H�1¼HT. It is also a symmetric LT

with M even. The LT matrix is given by

PLOT ¼ IM 0
0 VR

� �
De �Do JM=2(De �Do)
De �Do �JM=2(De �Do)

� �

(15:68)

where

De is the M=23M matrix with the even-symmetric basis

functions of the DCT

Do is the matrix of the same size with the odd-symmetric ones

In our notation, De also corresponds to the even numbered rows

of D and Do corresponds to the odd numbered rows of D. VR is

an M=23M=2 orthogonal matrix, which according to Refs.

[15,21] should be approximated by M=2� 1 plane rotations as

VR ¼
Y0

i¼M=2�2

Q(i, iþ 1, ui) (15:69)

where Q is defined in Section 15.1.4. Suggestions of rotation

angles which were designed to yield a good transform for image

compression are20

M ¼ 4 ! u0 ¼ 0:1p (15:70)

M ¼ 8 ! {u0, u1, u2} ¼ {0:13, 0:16, 0:13}� p (15:71)

M ¼ 16 ! {u0, . . . , u7}

¼ {0:62, 0:53, 0:53, 0:50, 0:44, 0:35, 0:23, 0:11}� p: (15:72)

For M� 16 it is suggested to use:

VR ¼ DT
IVD

T (15:73)

where DIV is the DCT type IV matrix38 whose entries are

dIVij ¼
ffiffiffiffiffi

2

M

r

cos
(2jþ 1)(2iþ 1)p

4M

� �

: (15:74)

A block diagram for the implementation of the LOT is shown in

Figure 15.17 for M¼ 8.

15.6.2 The Lapped Biorthogonal Transform: LBT

The LOT is a large improvement over the DCT for image

compression mainly because it reduces the so-called blocking
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FIGURE 15.17 Implementation of the LOT for M¼ 8. (a) Forward transform, (b) inverse transform.

Lapped Transforms 15-15



effects. Although there is a very large reduction, blocking is not

eliminated. The reason for that lies in the format of the low

frequency bases of LOT. In image compression, few bases are

used to reconstruct the signal. From Figure 15.4, one can see

that the ‘‘tails’’ of the lower frequency bases of the LOT do not

exactly decay to zero. For that reason there is some blocking

effect (Figure 15.4a) in images compressed using the LOT at

lower bit rates.

To help resolve this problem, Malvar recently proposed to

modify the LOT, creating the lapped biorthogonal transform

(LBT).22 (Biorthogonal is a jargon used in the filter banks com-

munity to designate transforms and filter banks which are not

orthogonal.) In any case, the factorization of the LBT is almost

identical to that of the LOT. However:

PLBT ¼
IM 0
0 VR

� �

De �YDo JM=2(De �YDo)
De �YDo �JM=2(De �YDo)

� �

(15:75)

where Y is the M=23M=2 diagonal matrix given by

Y ¼ diag
ffiffiffi
2
p

, 1, . . . , 1
� �

. Note that it only implies that one of

the DCT’s output in multiplied by a constant. The inverse is

given by the LT QLBT which is found in an identical manner as in

Equation 15.75 except that the multiplier is inverted, i.e.,

Y ¼ diag 1=
ffiffiffi
2
p

, 1, . . . , 1
� �

. The diagram for implementing an

LBT for M¼ 8 is shown in Figure 15.18.

Because of the multiplicative factor, the LT is no longer

orthogonal. However the factor is very easily inverted. The result

is a reduction of amplitude of lateral samples of the first bases of

the LOT into the new bases of the forward LBT, as it can be seen

in Figure 15.19. In Figure 15.19 the reader can note the reduction

in the amplitude of the boundary samples of the LBT and an
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enlargement of the same samples in the inverse LBT. This simple

‘‘trick’’ improved noticeably the performance of the LOT=LBT

for image compression at negligible overhead. Design of the

other parameters of the LOT are not changed. It is recommended

to use the LBT instead of the LOT whenever a nonorthogonal LT

can be used.

15.6.3 The Generalized LOT: GenLOT

The formulation for the LOT14 which is shown in Equation

15.68, is not the most general there is for this kind of LT. In

fact it can be generalized to become:

P ¼ U 0
0 V

� �

De �Do JM=2(De �Do)
De �Do �JM=2(De �Do)

� �

: (15:76)

As long as U and V remain orthogonal matrices, the LT is

orthogonal. In terms of the PTM, F(z) can be expressed similarly.

Let:

W ¼ 1
ffiffiffi
2
p

IM=2 IM=2

IM=2 �IM=2

" #

, (15:77)

Fi ¼
Ui 0M=2

0M=2 Vi

" #

, (15:78)

L(z) ¼ IM=2 0M=2

0M=2 z�1IM=2

� �

, (15:79)

and let D bet the M3M DCT matrix. The, for the general LOT,

F(z) ¼ F1WL(z)WD: (15:80)

Where U1¼U and V1¼�V. Note that the regular LOT is the

case where U1¼ IM=2 and V1¼�VR. The implementation dia-

gram for M¼ 8 is shown in Figure 15.20.

From this formulation along with other results it was real-

ized34 that all orthogonal symmetric LTs can be expressed as

F(z) ¼ KN�1(z)KN�2(z) � � �K1(z)K0 (15:81)

where

Ki(z) ¼ FiWL(z)W, (15:82)

and where K0 is any orthogonal symmetric matrix. The inverse is

given by

G(z) ¼ KT
0K
0
1(z)K

0
2(z) � � �K0N�1(z) (15:83)
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where:

K0i(z) ¼ z�1WL(z�1)WFT
i : (15:84)

From the perspective, the GenLOT is defined as the orthogonal

LT as in Equation 15.81 in which K0¼D, i.e.,

F(z) ¼ KN�1(z) � � �K1(z)D: (15:85)

A diagram for implementing a GenLOT for even M is shown in

Figure 15.21. In this diagram, the scaling parameters are

b¼ 2�(N�1) and account for the terms 1=
ffiffiffi
2
p

in the definition ofW.

The degrees of freedom of a GenLOT are the orthogonal

matrices Ui and Vi. There are 2(N� 1) matrices to optimize,

each of size M=23M=2. From Section 15.1.4 we know that

each one can be factorized into M(M� 2)=8 rotations. Thus,

the total number of rotations is (L�M) (M� 2)=4, which is

less than the initial number of degrees of freedom in a symmetric

M3 L matrix, LM=2. However, it is still a large number of

parameters to design. In general, GenLOTs are designed through

nonlinear unconstrained optimization. Rotation angles are

searched to minimize some cost function. GenLOT examples

are given elsewhere34 and we present two examples, for M¼ 8,

in Tables 15.1 and 15.2, which are also plotted in Figure 15.22.

In case M is odd, the GenLOT is defined as

F(z) ¼ K(N�1)=2(z) � � �K1(z)D: (15:86)

where the stages Ki have necessarily order 2 as

Ki(z) ¼ Fo
2iW

oLo1(z)WoFo
2i�1W

oLo2(z)Wo (15:87)

and where:

Fo
2i ¼

U2i 0
0 V2i

� �

, (15:88)

Fo
2i�1 ¼

U2i�1 0
1

0 V2i�1

2

4

3

5, (15:89)
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b¼ 2�(N�1) accounts for all terms of the form 1=
ffiffiffi
2
p

which make the butterflies (W) orthogonal.
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TABLE 15.1 GenLot Example for N¼ 4

p0n p1n p2n p3n p4n p5n p6n p7n

0.004799 0.004829 0.002915 �0.002945 0.000813 �0.000109 0.000211 0.000483

0.009320 �0.000069 �0.005744 �0.010439 0.001454 0.003206 0.000390 �0.001691
0.006394 �0.005997 �0.011121 �0.010146 0.000951 0.004317 0.000232 �0.002826
�0.011794 �0.007422 �0.001800 0.009462 �0.001945 �0.001342 �0.000531 0.000028

�0.032408 �0.009604 0.008083 0.031409 �0.005262 �0.007504 �0.001326 0.003163

�0.035122 �0.016486 0.001423 0.030980 �0.005715 �0.006029 �0.001554 0.001661

�0.017066 �0.031155 �0.027246 0.003473 �0.003043 0.005418 �0.000789 �0.005605
0.000288 �0.035674 �0.043266 �0.018132 �0.000459 0.013004 �0.000165 �0.010084
�0.012735 �0.053050 0.007163 �0.083325 0.047646 0.011562 0.048534 0.043066

�0.018272 �0.090207 0.131531 0.046926 0.072761 �0.130875 �0.089467 �0.028641
0.021269 �0.054379 0.109817 0.224818 �0.224522 0.136666 0.022488 �0.025219
0.126784 0.112040 �0.123484 �0.032818 �0.035078 0.107446 0.147727 0.109817

0.261703 0.333730 �0.358887 �0.379088 0.384874 �0.378415 �0.339368 �0.216652
0.357269 0.450401 �0.292453 �0.126901 �0.129558 0.344379 0.439129 0.317070

0.383512 0.369819 0.097014 0.418643 �0.419231 0.045807 �0.371449 �0.392556
0.370002 0.140761 0.478277 0.318691 0.316307 �0.433937 0.146036 0.427668

Note: The even bases are symmetric while the odd ones are antisymmetric, so that only their first half is shown.

TABLE 15.2 GenLot Example for N¼ 6

p0n p1n p2n p3n p4n p5n p6n p7n

�0.000137 �0.000225 0.000234 0.000058 �0.000196 �0.000253 0.000078 0.000017

�0.000222 �0.000228 0.000388 0.000471 0.000364 0.000163 �0.000220 �0.000283
0.001021 0.000187 0.002439 0.001211 �0.000853 �0.002360 0.000157 �0.000823
0.000536 0.000689 0.000029 0.000535 0.000572 0.000056 0.000633 0.000502

�0.001855 0.000515 �0.006584 �0.002809 0.003177 0.006838 �0.000886 0.001658

0.001429 0.001778 �0.000243 0.000834 0.000977 �0.000056 0.001687 0.001429

0.001440 0.001148 0.000698 0.000383 0.000109 �0.000561 �0.000751 �0.001165
0.001056 0.001893 0.002206 0.005386 0.005220 0.001676 0.001673 0.000792

0.009734 0.002899 0.018592 0.004888 �0.006600 �0.018889 �0.000261 �0.006713
�0.005196 �0.013699 �0.008359 �0.021094 �0.020406 �0.009059 �0.012368 �0.005263
�0.000137 �0.001344 �0.027993 �0.028046 0.026048 0.024169 �0.001643 �0.000402
�0.007109 �0.002130 0.002484 0.013289 0.013063 0.002655 �0.002180 �0.006836
�0.011238 �0.002219 0.033554 0.062616 �0.058899 �0.031538 �0.001404 0.004060

�0.020287 �0.006775 0.003214 0.019082 0.018132 0.004219 �0.006828 �0.019040
�0.028214 �0.018286 �0.059401 �0.023539 0.024407 0.056646 0.009849 0.021475

�0.034379 �0.055004 �0.048827 �0.052703 �0.051123 �0.048429 �0.049853 �0.031732
�0.029911 �0.106776 0.070612 �0.088796 0.086462 �0.066383 0.097006 0.031014

�0.004282 �0.107167 0.197524 0.049701 0.051188 0.193302 �0.104953 �0.006324
0.058553 �0.026759 0.144748 0.241758 �0.239193 �0.143627 0.020370 �0.048085
0.133701 0.147804 �0.123524 0.026563 0.025910 �0.125263 0.147501 0.130959

0.231898 0.330343 �0.376982 �0.365965 0.366426 0.377886 �0.332858 �0.228016
0.318102 0.430439 �0.312564 �0.174852 �0.174803 �0.314092 0.431705 0.317994

0.381693 0.368335 0.061832 0.393949 �0.395534 �0.060887 �0.369244 �0.384842
0.417648 0.144412 0.409688 0.318912 0.319987 0.411214 0.145256 0.419936

Note: The even bases are symmetric while the odd ones are antisymmetric, so that only their first half is shown.
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Wo ¼
I(M�1)=2 0(M�1)=2�1 I(M�1)=2

01�(M�1)=2 1 01�(M�1)=2

I(M�1)=2 0(M�1)=2�1 �I(M�1)=2

2

4

3

5, (15:90)

Lo1(z) ¼ diag{ 1, 1, . . . , 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

(Mþ1)=2�10s

, z�1, . . . , z�1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

(M�1)=2�z�1

},
(15:91)

Lo2(z) ¼ diag{ 1, 1, . . . , 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

(M�1)=2�10s

, z�1, . . . , z�1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

(Mþ1)=2�z�1

},
(15:92)

Although it may seem that the formulation of the odd-channel

case is more complex than the one for the even-M case, the

implementation is very similar in complexity as shown in Figure

15.23. The main difference is that two stages have to be con-

nected together. The inverse transform is accomplished in the

same way as for the even channel case:

G(z) ¼ DTK0
1(z)K

0
2(z) � � �K0N�1(z) (15:93)

7

6

B
as

is
/f

il
te

r 
n

u
m

b
er

B
as

is
/f

il
te

r 
n

u
m

b
er5

4

3

2

1

0

7

6

5

4

3

2

1

0

0 0 24 4716 31(a) (b)

FIGURE 15.22 Example of optimized GenLOT bases forM¼ 8 and for

(a) N¼ 4, and (b) N¼ 6.
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where the inverse factors are:

K0i(z) ¼ z�2KT
i (z
�1), (15:94)

whose structure is evident from Figure 15.23.

15.6.4 The General Factorization: GLBT

The general factorization for all symmetric LTs49 can be viewed

either as an extension of GenLOTs or as a generalization of the

LBT. It can be shown that for M even, all LTs obeying Equation

15.65 or Equation 15.66 can be factorized as in Equation 15.81,

where the Ki(z) factors are given in Equation 15.82 with the

matrices Ui and Vi (which compose Fi) being only required to

be general invertible matrices. From Section 15.1.4, each factor

can be decomposed as

Ui ¼ UiBUidUiA, Vi ¼ ViBVidViA, (15:95)

where UiA, UiB, ViA, and ViB are general M=23M=2 orthogonal

matrices, while Uid and Vid are diagonal matrices with nonzero

diagonal entries.

The first factor K0 is given by

K0 ¼ F0W, (15:96)

whereFi is given as in Equation 15.78, and factors U0 and V0 are

only required to be invertible. The general factorization can be

viewed as a generalized LBT (GLBT) and its implementation flow

graph for M even is shown in Figure 15.24.

The inverse GLBT is similar to the GenLOT case, where:

K0i(z) ¼ z�1WL(z)WF�1i : (15:97)

and

F�1i ¼
U�1i 0M=2

0M=2 V�1i

� �

¼ UT
iAU

�1
id UT

iB 0M=2

0M=2 VT
iAV
�1
id VT

iB

� �

(15:98)

while

K�10 ¼WF�10 : (15:99)

The diagram for the implementation of the inverse stages of the

GLBT is shown in Figure 15.24.

Examples of bases for the GLBT of particular interest to image

compression are given in Tables 15.3 and 15.4.

For the odd case, the GLBT can be similarly defined. It follows

the GenLOT factorization:

F(z) ¼ K(N�1)=2(z) � � �K1(z)K0 (15:100)

where the stages Ki are as in Equation 15.87 with the following

differences: (1) all factors Ui and Vi are only required to be

invertible; (2) the center element of F2i�1 is a nonzero constant

u0 and not 1. Again K0 is a symmetric invertible matrix. Forward

and inverse stages for the odd-channel case are illustrated in

Figure 15.25.
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FIGURE 15.24 Implementation of the factors of the general factoriza-

tion (GLBT) for M even. (a) factor of the forward transform: Ki(z).
(b) factor of the inverse transform: K0i(z).

TABLE 15.3 Forward GLBT Bases Example for M¼ 8 and N¼ 2

p0n p1n p2n p3n p4n p5n p6n p7n

�0.21192 �0.18197 0.00011 �0.09426 0.03860 �0.03493 0.04997 0.01956

�0.13962 �0.19662 0.16037 0.05334 0.09233 0.12468 �0.09240 �0.03134
�0.03387 �0.09540 0.17973 0.25598 �0.24358 �0.12311 0.01067 �0.01991
0.09360 0.10868 �0.06347 �0.01332 �0.05613 �0.10218 0.16423 0.11627

0.23114 0.34101 �0.36293 �0.39498 0.42912 0.36084 �0.35631 �0.22434
0.35832 0.46362 �0.35056 �0.16415 �0.13163 �0.31280 0.47723 0.31907

0.46619 0.42906 0.00731 0.42662 �0.45465 �0.07434 �0.40585 �0.38322
0.53813 0.22604 0.42944 0.36070 0.32595 0.43222 0.15246 0.39834

Note: The even bases are symmetric while the odd ones are antisymmetric, so that only their first half is shown.
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15.7 The Fast Lapped Transform: FLT

The motivation behind the fast lapped transform (FLT) is to

design an LT with minimum possible complexity compared to

a block transform and, yet, to provide some advantage over a

block transform. For that we use the principles of Section 15.5.3

and define the FLT as the LT whose PTM is given by

F(z) ¼ E(z) 0
0 IM�K

� �

DM (15:101)

where E(z) is a K3K PTM and DM is the M3M DCT matrix.

The PTM for the inverse LT is given by

G(z) ¼ DT
M

E0(z) 0
0 IM�N

� �

, (15:102)

where E0(z) is the inverse of E(z).
The design of E(z) can be done in two basic ways. Firstly, one

can use direct optimization. Secondly, one can design E(z) as

E(z) ¼ C(z)DT
K (15:103)

where C(z) is a known LT and DK is the K3K DCT matrix, i.e.,

we perform an inverse DCT followed by a known LT. For

example, if C(z) is the LOT, GenLOT, or LBT, of K channels,

the first stage (DK) cancels the inverse DCT. Examples of FLT are

TABLE 15.4 Inverse GLBT Bases Example for M¼ 8 and N¼ 2

p0n p1n p2n p3n p4n p5n p6n p7n

0.01786 �0.01441 0.06132 0.01952 0.05243 0.05341 0.04608 0.08332

0.05692 �0.01681 0.16037 0.12407 0.04888 0.16065 �0.09042 �0.02194
0.10665 0.06575 0.12462 0.24092 �0.21793 �0.13556 0.02108 �0.00021
0.16256 0.20555 �0.12304 �0.03560 �0.02181 �0.08432 0.13397 0.12747

0.22148 0.34661 �0.38107 �0.35547 0.36530 0.39610 �0.30170 �0.23278
0.27739 0.40526 �0.32843 �0.12298 �0.12623 �0.35462 0.41231 0.34133

0.32711 0.33120 0.03939 0.38507 �0.38248 �0.08361 �0.35155 �0.40906
0.36617 0.13190 0.44324 0.30000 0.28191 0.45455 0.13232 0.41414

Note: The even bases are symmetric while the odd ones are antisymmetric, so that only their first half is shown.
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FIGURE 15.25 Implementation of the factors of the general factorization (GLBT) forM odd. (a) factor of the forward transform: Ki(z). (b) factor of
the inverse transform: K0i(z).
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given in Figure 15.26. In that example, the first case where K¼ 2,

direct optimization is recommended, for which the values {a00,

a01, a10, a20, a21}¼ {1.9965, 1.3193, 0.4388, 0.7136, 0.9385,

1.2878} yield an excellent FLT for image compression. Figure

15.26b the case K¼ 4 can be optimized by optimizing two invert-

ible matrices. In the case where we use the method in Equation

15.103 and the LBT as the K channel postprocessing stage, we

can see that the LBT’s DCT stage is cancelled yielding a very

simple flow-graph. The respective bases for forward and inverse

transforms for the two FLTs (K¼ 2 with the given parameters,

and K¼ 4 using the LBT) are shown in Figure 15.27. Both bases

are excellent for image coding, virtually eliminating ringing,

despite the minimal complexity added to the DCT (which by

itself can be implemented in a very fast manner).38

15.8 Modulated LTs

Cosine modulated LTs50 use a low-pass prototype to modulate

a cosine sequence. By a proper choice of the phase of the

cosine sequence, Malvar developed the modulated lapped trans-

form (MLT),15 which led to the so-called ELT.18–21 The

ELT allows several overlapping factors, generating a family of

orthogonal cosine modulated LTs. Both designations

(MLT and ELT) are frequently applied to this class of filter

banks. Other cosine-modulation approaches have also been

developed and the most significant difference among them is

the low- pass prototype choice and the phase of the cosine

sequence.11,15,19,20,24,27,40,44,45,49

In the ELTs, the filters’ length L is basically an even multiple of

the block size M, as L¼NM¼ 2KM. Thus, K is referred to as the

overlap factor of the ELT. The MLT-ELT class is defined by

pk, n ¼ h(n) cos kþ 1

2

� �

n� L� 1

2

� �

p

M
þ (N þ 1)

p

2

� �� �

(15:104)

for k¼ 0, 1, . . . , M� 1 and n¼ 0, 1, . . . , L� 1. h(n) is a symmet-

ric window modulating the cosine sequence and the impulse

response of a low-pass prototype (with cutoff frequency at

p=2M) which is translated in frequency to M different frequency

slots in order to construct the LT. A very useful ELT is the one

with K¼ 2, which will be designated as ELT-2, while ELTs with

other values of K will be referred as ELT-K.
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stage cancelled.

Lapped Transforms 15-23



The ELTs have as their major plus a fast implementation

algorithm. The algorithm is based on a factorization of the

PTM into a series of plane rotation stages and delays and a

DCT type IV38 orthogonal transform in the last stage, which

has fast implementation algorithms. The lattice-style algorithm

is shown in Figure 15.28 for an ELT with generic overlap factor

K. In Figure 15.28 each branch carries M=2 samples and both

analysis (forward transform) and synthesis (inverse transform)

flow-graphs are shown. The plane rotation stages are of the form

indicated in Figure 15.29 and contain M=2 orthogonal butterflies

to implement the M=2 plane rotations. The stages Qi contain the

plane rotations and are defined by

Qi ¼
�Ci SiJM=2

JM=2Si JM=2CiJM=2

" #

,

Ci ¼ diag cos (u0, i), cos (u0, i), . . . , cos uM
2�1, i

� �n o

Si ¼ diag sin (u0, i), sin (u1, i), . . . , sin uM
2�1, i

� �n o

:

(15:105)

ui,j are rotation angles. These angles are the free parameters in

the design of an ELT because they define the modulating

window h(n). Note that there are KM angles, while h(n) has
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2KM samples, however, h(n) is symmetric and brings the total

number of degrees of freedom to KM.

In general, there is no simple relation among the rotation

angles and the window. Optimized angles for several values of

M and K are presented in extensive tables in Ref. [21]. In the

ELT-2 case, however, one can use a parameterized design.19–21

In this design, we have

uk, 0 ¼ �
p

2
þ mM=2þk (15:106)

uk, 1 ¼ �
p

2
þ mM=2�1�k (15:107)

where

mi ¼
1� g

2M

� �

(2kþ 1)þ g

� �

(15:108)

and g is a control parameter, for 0� k� (M=2)� 1. In general,

although suboptimal for individual applications, g¼ 0.5 provides

a balanced trade-off of stopband attenuation and transition range

for the equivalent filters (which are the bases of the LT viewed as

a filter bank). The equivalent modulating window h(n) is related
to the angles as

h(n) ¼ cos (un0) cos (un1)

h(M � 1� n) ¼ cos (un0)sin(un1)

h(M þ n) ¼ sin (un0) cos (un1)

h(2M � 1� n) ¼ � sin (un0) sin (un1)

(15:109)

for 0� n� (M=2)� 1. In the case K¼ 1, some example angles

are

uk,0 ¼
p

2
� p

2M
kþ 1

2

� �

(15:110)

for 0� k� (M=2)� 1. The corresponding modulating window

h(n) is

h(n) ¼ h(2M � 1� n) ¼ �cos (un0)

h(M þ n) ¼ h(M � 1� n) ¼ �sin (un0)
(15:111)

for 0� n� (M=2)� 1. The bases for the ELT using the suggested

angles are shown in Figure 15.30. In this figure, the 8-channel

examples are for N¼ 2 (K¼ 1) and for N¼ 4 (K¼ 2).

15.9 Finite-Length Signals

Since the LT matrices are not square, in order to obtain n
transformed subband samples one has to evaluate more than n
samples of the input signal. For the same reason, n subband

samples would generate more than n signals samples after inverse

transformation. All the analysis so far has assumed infinite-

length signals. Processing finite-length signals, however, is not

trivial. Without proper consideration there will be a distortion in

the reconstruction of the boundary samples of the signal.

There are basically three methods to process finite-length signals

with LTs:

. Signal extension and windowing of subband coefficients

. Same as above but using different extensions for different

bases
. Using time-varying bases for the boundary regions

We will discuss the first method only. The second is just applic-

able to few transforms and filter banks and can be covered

elsewhere. The subject of time-varying LTs is very rich and

provides for solutions to several problems including the process-

ing of boundary samples. We will not cover it in this chapter. The

reader is referred to Refs. [7,28,29,32,41] and their references for

further information on time-varying LTs.

15.9.1 Overall Transform

Here we assume the model of extension and windowing

described in Figure 15.31.33 The input vector x is assumed to

have Nx¼NBM samples and is divided into three sections:

xT ¼ xTl , x
T
c , x

T
r

� 	
, where x1 and xr contain the first and last l

samples of x, respectively. Following the signal extension model,

x is extended into ~x as

~xT ¼ xTe, l , x
T, xTe, r

� 	
¼ (Rlxl)

T, xTl , x
T
c , x

T
r , (Rrxr)

T
� 	

: (15:112)

The extended sections are found by a linear transform of the

boundary samples of x as shown in Figure 15.32, i.e.,

xe, l ¼ Rlxl , xe, r ¼ Rrxr (15:113)
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FIGURE 15.30 Example of ELT bases for the given angles design

method for M¼ 8. (a) K¼ 1, N¼ 2, (b) K¼ 2, N¼ 4.
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and Rl and Rr are arbitrary l3l ‘‘extension’’ matrices. For

example, Rl¼Rr¼ Jl yields a symmetric extension.

The transformation from the Nxþ 2l samples in ~x to vector y

with NBM¼Nx subband samples is achieved through the block-

banded matrix ~P, i.e.,

~P ¼

.
.

.
.
.

.
0

P0 P1 � � � PN�1
P0 P1 � � � PN�1

P0 P1 � � � PN�1

0 .
.

.
.
.

.

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

:

(15:114)

Note that there are NB block rows and that l¼ (N� 1)M=2. The

difference between ~P andH defined in Equation 15.21 is thatH is

assumed to be infinite and ~P is assumed to have only NB block

rows. We can use the same notation for ~Q with respect to Qi, so

that, again, the difference between ~Q and H0 defined in Equation

15.32 is that H0 is assumed to be infinite and ~Q is assumed to

have only NB block rows. The forward and inverse transform

systems are given by

~y ¼ ~P~x, �~x ¼ ~Q
T
~y: (15:115)

In the absence of quantization or processing of the subband

signals, then ~y¼ y and

�~x ¼ ~Q
T
~y ¼ ~Q

T
~P~x ¼ ~T~x (15:116)

where �~x is the reconstructed vector in the absence of quantization

and ~T¼ ~QT~P is the transform matrix between �~x and ~x. Note that
~T has size (Nxþl)3 (Nxþ l) because it maps two extended

signals. From Equation 15.35 we can easily show that the trans-

form matrix is

________

________

~T ¼ ~Q
T
~P ¼

TL 0

INx�2l

0 TR

2

6
4

3

7
5 (15:117)

where Tl and Tr are some 2l3 2l matrices. Thus, distortion is

just incurred to the l boundary samples in each side of x (2l

samples in each side of ~x).

In another view of the process, regardless of the extension

method, there is a transform T such that

y ¼ Tx, �x ¼ T�1�y (15:118)

without resorting to signal extension. The key is to find T and to

invert it. If T is made orthogonal one can easily invert it by

applying transposition. This is the concept behind the use of

time-varying LTs for correcting boundary distortions. For

example, the LT can be changed near the borders to ensure T’s

orthogonality.32 We will not use time-varying LTs here but rather

use extended signals and transform matrices.

15.9.2 Recovering Distorted Samples

Let:

[FljFr] ¼

P0 P1 � � � PN�2
P0 P1 � � �

.
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FIGURE 15.31 Extension and windowing in transformation of a

finite-length signal using LTs. (a) Overall forward transform section.

(b) Overall inverse transform section.
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FIGURE 15.32 Illustration of signal extension of vector x into vector ~x.

In each border, l¼ (L�M)=2 samples outside initial signal boundaries

are found by linear relations applied to the l boundary samples of x, i.e.,

xe,l¼Rlxl and xe,r¼Rrxr. As only l samples are affected across the signal

boundaries, it is not necessary to use an infinite-length extension. Also, xl
and xr contain the samples possibly affected by the border distortions

after the inverse transformation.
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[CljCr]¼

Q0 Q1 � � � QN�2
Q0 Q1 � � �

.
.

.
.
.

.
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QN�1 0
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(15:120)

Hence,

Tl ¼ CT
l Fl , Tr ¼ CT

r Fr: (15:121)

If we divide �~x in the same manner as ~x,

�~x ¼ �xTe, l , �x
T
l , �x

T
c ,�x

T
r ,�x

T
e, r

� 	
, (15:122)

then,

�xe, l
�xl

� �

¼ Tl
xe, l
xl

� �

¼ Tl
Rlxl
xl

� �

¼ Tl
Rt

Il

� �

xl ¼ Glxl (15:123)

where

Gl ¼ Tl
Rl

Il

� �

(15:124)

is a 2l3l matrix. If and only if Gl has rank l, then xl can be

recovered through the pseudo-inverse of Gl as

xl ¼ Gþl
�xe, l
�xl

� �

¼ GT
l Gl

� ��1
GT
l

�xe, l
�xl

� �

: (15:125)

For the other (‘‘right’’) border the identical result is trivially

found to be

xr ¼ Gþr
�xr
�xe, r

� �

¼ GT
r Gr

� ��1
GT
r

�xr
�xe, r

� �

, (15:126)

where

Gr ¼ Tr
Il
Rr

� �

(15:127)

is also assumed to have rank l. It is necessary thatFl,Fr,Cl and

Fr have rank l, but not sufficient since rank can be reduced by

the matrix products. It is also possible to express in more detail

the conditions but without any useful analytical solution, so that

numerical rank checking is the best choice.

Summarizing, the steps to achieve PR for given Rl and Rr are:

. Select P and Q and identify their submatrices Pi and Qi

. Find Fl, Fr, Cl, Cr, from Equations 15.119 and 15.120

. Find Tl and Tr from Equation 15.121

. Find Gl and Gr from Equations 15.124 and 15.127

. Test rank of Gl and Gr

. If ranks are l, obtain Gþl ,G
þ
r and reconstruct xl and xr

This is an extension of Ref. [33] to nonorthogonal LTs, with the

particular concern to test whether the pseudo inverses exist.

The model in Figure 15.31 and the proposed method are not

applicable for some LTs. The notable classes of LTs include those

LTs whose bases have different length and different symmetries.

Examples are: (1) some two-channel nonorthogonal LTs with

odd-length; (2) the FLT; (3) other composite systems, i.e., cas-

caded systems such as those used in Refs. [35,36]. For the first

example, it is trivial to use symmetric extensions, but different

symmetries for different bases.44 The second example has the

same reasoning, however an FLT can be efficiently implemented

by applying the method just described to each of the stages of the

transformation (i.e., first apply the DCT and then use the method

above for the second part). The reason for problems is that

different filters would require different extensions during the

forward transformation process, therefore, the model in Figure

15.31 is not applicable.

The above method works very well for M-channel filter banks

whose filters have same length. The phase of the filters and the

extensions can be arbitrary, and the method has been shown to

be consistent for all uniform-length filter banks of interest tested.

15.9.3 Symmetric Extensions

In case the LT is symmetric and obeys Equations 15.65 and 15.66,

there is a much simpler method to implement the LT over a

finite-length signal of NB blocks of M samples.

In the forward transform section we perform symmetric

extension as described, applied to the last l¼ (L�M)=2 samples

on each border, resulting in a signal ~x(n) with Nxþ 2l¼Nxþ
L�M samples, as

x(l� 1), . . . , x(0), x(0), . . . , x(Nx � 1), x(Nx � 1), . . . , x(Nx � l):

(15:128)

The signal is processed by the PTM F(z) as a clocked system,

without concern for border locations. The internal states of the

system F(z) can be initialized in any way. So, the NBþN� 1

blocks of the extended signal are processed yielding an equal

number of blocks of subband samples. Discard the first N� 1

output blocks, obtaining NB transform-domain blocks corre-

sponding to NB samples of each subband.

The general strategy to achieve perfect reconstruction without

great increase in complexity or change in the implementation

algorithm, is to extend the samples in the subbands, generating

more blocks to be inverse transformed, in such a way that after

inverse transformation, assuming no processing of the subband

signals, the signal recovered is identical to the original at the

borders. The extension of the kth subband signal depends on the

symmetry of the kth basis. Let pkn¼ vkpk, L�1�n for 0� k�
M� 1 and 0� n� L� 1, i.e., vk¼ 1 if pkn is symmetric and

vk¼�1 if pkn is antisymmetric. Before inverse transformation,

for each subband signal �yk(m), of NB samples, fold the borders

of �yk(m), (as in the analysis section) in order to find a signal
�~yk(m), and invert the sign of the extended samples if pkn is
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antisymmetric. For s samples reflected around the borders, then

the kth subband signal will have samples:

vkŷk(s� 1), . . . , vkŷk(0), ŷk(0), . . . ŷk(NB � 1),

vkŷk(NB � 1), . . . , vkŷk(NB � s):

The inverse transformation can be performed as

. N odd—Reflect s¼ (N� 1)=2 samples around each border,

getting, thus, NBþN� 1 blocks with subband samples to

be processed. To obtain the inverse transformed samples

x̂(n), initialize the internal states in any way, run the

system G(z) over the NBþN� 1 blocks, and discard the

first N� 1 reconstructed blocks, retaining the Nx¼NBM
remaining samples.

. N even—Reflect s¼N=2 samples around each border, get-

ting, thus, NBþN blocks to be processed. To obtain the

inverse transformed samples x̂(n), initialize the internal

states in any way and run the system G(z) over the NBþN
blocks. Discard the first N� 1 reconstructed blocks and the

first M=2 samples of the Nth block. Include in the recon-

structed signal the last M=2 samples of the Nth block and

the subsequent (NB� 1)M samples. In the last block,

include the first M=2 samples in the reconstructed signal

and discard the rest.

The approach will assure the perfect reconstruction property and

orthogonality of the overall transformation if the LT is orthog-

onal.32 The price paid is to run the algorithm over extra N or

N� 1 blocks. As it is common to have NB >> N, the computa-

tional increase is only marginal.

15.10 Conclusions

We hope this material will serve as an introduction to lapped

transforms and give some insight into their nature. This chapter

should be viewed as a first step, whereas the references, and the

references therein, should give a more detailed treatment of the

subject.

It was shown how lapped transforms can replace block trans-

forms allowing overlap of the basis functions. It was also shown

that the analyses of MIMO systems, mainly their factorizations,

are invaluable tools for the design of useful lapped transforms.

That was the case in the design of transforms such as the LOT,

LBT, GenLOT, GLBT, FLT, MLT, and ELT. Those practical LTs

were presented by not only presenting the general factorization,

but by also plotting bases and describing in detail how to construct

at least a good design example, either by printing basis entries or

by providing all parameters necessary to construct the bases. Even

if the particular examples are not ideal for a particular application

the reader might have in mind, they may provide an experimental

example, from which one can build up on, by exploring the

references and performing customized optimization.

It is worth pointing that we intentionally avoided viewing the

transforms as filter banks, so that the bases were not discussed as

impulse responses of filters and their frequency response was not

analyzed. Nevertheless the framework is the same and so is the

analysis of MIMO systems. Therefore, this chapter should give

insight in such a vast field which is based on the study of multi-

rate systems.

Good luck in the field of lapped transforms!

References

1. Boashash, B., Ed. 1992. Time-Frequency Signal Analysis,
New York: John Wiley & Sons.

2. Bordreaux-Bartels, G. F. Mixed Time-Frequency Signal
Transformations, Boca Raton, FL: CRC Press.

3. Cassereau, P. 1985. A new class of optimal unitary trans-

forms for image processing, Master’s thesis, Mass. Inst.

Tech., Cambridge, MA.

4. Clarke, R. J. 1985. Transform Coding of Images, Orlando,
FL: Academic Press.

5. Coifman, R., Meier, Y., Quaker, D., and Wickerhauser, V.

1991. Signal processing and compression using wavelet

packets, Technical Report, Department of Mathematics,

Yale University, New Heaven, CT.

6. Doganata, Z., Vaidyanathan, P. P., and Nguyen, T. Q. 1988.

General synthesis procedures for FIR lossless transfer

matrices, for perfect reconstruction multirate filter banks

applications, IEEE Trans. Acoust. Speech Signal Process., 36
(10), 1561–1574.

7. Herley, C., Kovacevic, J., Ramchandran, K., and Vetterli, M.

1993. Tilings of the time-frequency plane: Construction of

arbitrary orthogonal bases and fast tiling algorithms, IEEE
Trans. Signal Process., 41, 3341–3359.

8. Hohn, F. E. 1964. Elementary Matrix Algebra, 2nd edn.,

New York: Macmillan.

9. Jayant, N. S. and Noll, P. 1984. Digital Coding of Wave-
forms, Englewood Cliffs, NJ: Prentice-Hall.

10. Jozawa, H. and Watanabe, H. September 4–6, 1991. Intra-

filed=Interfield adaptive lapped transform for compatible

HDTV coding, Proceedings of the 4th International Work-
shop on HDTV and Beyond, Torino, Italy.

11. Koilpillai, R. D. and Vaidyanathan, P. P. 1992. Cosine

modulated FIR filter banks satisfying perfect reconstruc-

tion, IEEE Trans. Signal Process., 40, 770–783.
12. Malvar, H. S. 1986. Optimal pre- and post-filtering in noisy

sampled-data systems, PhD dissertation. Mass. Inst. Tech.,

Cambridge, MA.

13. Malvar, H. S. 1988. Reduction of blocking effects in

imaging coding with a lapped orthogonal transform,

Proceedings of the International Conference on Acoustics
Speech Signal Processing, Glasgow, Scotland, pp. 781–784.

14. Malvar, H. S. and Staelin, D. H. 1989. The LOT: Transform

coding without blocking effects, IEEE Trans. Acoust. Speech
Signal Process., ASSP-37, 553–559.

15. Malvar, H. S. 1990. Lapped transforms for efficient trans-

form=subband coding, IEEE Trans. Acoust. Speech Signal
Process., ASSP-38, 969–978.

15-28 Transforms and Applications Handbook



16. Malvar, H. S. 1988. The LOT: A link between block trans-

form coding and multirate filter banks, Proceedings of the
International Symposium on Circuits and Systems, Espoo,
Finland, pp. 835–838.

17. Malvar, H. S. 1990. Efficient signal coding with hierarchical

lapped transforms, Proceedings of the International Confer-
ence on Acoustics, Speech, Signal Processing, Albuquerque,
NM, pp. 761–764.

18. Malvar, H. S. 1990. Modulated QMF filter banks with

perfect reconstruction, Electron. Lett., 26, 906–907.
19. Malvar, H. S. 1991. Extended lapped transform: Fast algo-

rithms and applications, Proceedings of the International
Conference on Acoustics, Speech, Signal Processing,
Toronto, Canada, pp. 1797–1800.

20. Malvar, H. S. 1992. Signal Processing with Lapped Trans-
forms. Norwood, MA: Artech House.

21. Malvar, H. S. 1992. Extended lapped transforms: Proper-

ties, applications and fast algorithms, IEEE Trans. Signal
Process., 40, 2703–2714.

22. Malvar, H. S. 1998. Biorthogonal and nonuniform lapped

transforms for transform coding with reduced blocking

and ringing artifacts, IEEE Trans. Signal Process., 46,

1043–1053.

23. Nayebi, K., Barnwell, T. P., and Smith, M. J. 1992. The time

domain filter bank analysis: A new design theory, IEEE
Trans. Signal Process., 40, 1412–1429.

24. Nguyen, T. Q. and Koilpillai, R. D. 1996. Theory and design

of arbitrary-length cosine-modulated filter banks and

wavelets satisfying perfect reconstruction, IEEE Trans. Sig-
nal Process., 44, 473–483.

25. Oppenheim, A. V. and Schafer, R. W. 1989. Discrete-Time
Signal Processing, Englewoods Cliffs, NJ: Prentice-Hall.

26. Pennebaker, W. B. and Mitchell, J. L. 1993. JPEG: Still
Image Compression Standard, New York: Van Nostrand

Reinhold.

27. Princen, J. P. and Bradley, A. B. 1986. Analysis=synthesis

filter bank design based on time domain aliasing cancella-

tion, IEEE Trans. Acoust. Speech Signal Process., ASSP-34,
1153–1161.

28. de Queiroz, R. L. and Rao, K. R. 1993. Time-varying lapped

transforms and wavelet packets, IEEE Trans. Signal Pro-
cess., 41, 3293–3305.

29. de Queiroz, R. L. 1996. On lapped transforms, PhD disser-

tation, The University of Texas at Arlington, Arlington, TX.

30. de Queiroz, R. L. and Rao, K. R. 1995. The extended lapped

transform for image coding, IEEE Trans. Image Process., 4,
828–832.

31. de Queiroz, R. L., Nguyen, T. Q., and Rao, K. R. January

1994. The generalized lapped orthogonal transforms,

Electron. Lett., 30, 107–107.
32. de Queiroz, R. L. and Rao, K. R. 1995. On orthogonal

transforms of images using paraunitary filter banks, J. Vis.
Commun. Image Rep., 6(2), 142–153.

33. de Queiroz, R. L. and Rao, K. R. 1995. On reconstruc-

tion methods for processing finite-length signals with

paraunitary filter banks, IEEE Trans. Signal Process., 43,
2407–2410.

34. de Queiroz, R. L., Nguyen, T. Q., and Rao, K. R. 1996. The

GenLOT: Generalized linear-phase lapped orthogonal

transform, IEEE Trans. Signal Process., 44, 497–507.
35. de Queiroz, R.L. 1997. Uniform filter banks with non-

uniform bands: Post-processing design, Proc. of Intl.
Cong. Acoust. Speech Signal Proc., Seattle, WA, Vol. III,

1341–1344.

36. de Queiroz, R. L. and Eschbach, R. 1997. Fast downscaled

inverses for images compressed with M-channel lapped

transforms, IEEE Trans. Image Process., 6, 794–807.
37. Rabbani, M. and Jones, P. W. 1991. Digital Image Com-

pression Techniques, Bellingham, WA: SPIE Optical Engin-

eering Press.

38. Rao, K. R. and Yip, P. 1990. Discrete Cosine Transform:
Algorithms, Advantages, Applications, San Diego, CA:

Academic Press.

39. Rao, K. R. (ed.), 1985. Discrete Transforms and Their
Applications, New York: Van Nostrand Reinhold.

40. Schiller, H. 1988. Overlapping block transform for image

coding preserving equal number samples and coefficients,

Proc. SPIE, Vis. Commun. Image Process., 1001, 834–839.
41. Sodagar, I., Nayebi, K., and Barnwell, T. P. 1993. A class of

time-varyingwavelt transforms,Proc. Intl. Conf. Acoust. Speech
Signal Process., Minneapolis, MN, Vol. III, pp. 201–204.

42. Soman, A. K. and Vaidyanathan, P. P. 1992. Paraunitary

filter banks and wavelet packets, Proc. Intl. Conf. Acoust.
Speech Signal Process., IV, 397–400.

43. Soman, A. K., Vaidyanathan, P. P., and Nguyen, T. Q. 1993.

Linear-phase paraunitary filter banks: Theory, factoriza-

tions and applications, IEEE Trans. Signal Process., 41,
3480–3496.

44. Strang, G. and Nguyen, T. 1996. Wavelets and Filter Banks,
Wellesley, MA: Wellesley-Cambridge.

45. Temerinac, M. and Edler, B. 1992. A unified approach to

lapped orthogonal transforms, IEEE Trans. Image Process.,
1, 111–116.

46. Tran, T. D., de Queiroz, R., and Nguyen, T. Q. 2000. Linear

phase perfect reconstruction filter bank: Lattice structure,

design, and application in image coding, IEEE Trans. on
Signal Processing., 48, 133–147. Available at http:==image.

unb.br=queiroz=papers=fullpaper_glbt.pdf

47. Tran, T. D. 1998. Linear phase perfect reconstruction filter

banks: Theory, structure, design, and application in image

compression, PhD thesis, University of Wisconsin,

Madison, WI.

48. Tran, T. D., de Queiroz, R. L., and Nguyen, T. Q. 1998. The

variable-length generalized lapped biorthogonal transform,

Proc. Intl. Conf. Image Process., Chicago, IL, Vol. III,

pp. 697–701.

49. Tran, T. D., de Queiroz, R., and Nguyen, T. Q. 1998.

The generalized lapped biorthogonal transform, Proc. Intl.
Conf. Acoust. Speech Signal Proc., Seattle, WA, Vol. III,

pp. 1441–1444.

Lapped Transforms 15-29



50. Vaidyanathan, P. P. 1993. Multirate Systems and Filter
Banks, Englewood Cliffs, NJ: Prentice-Hall.

51. Vaidyanathan, P. P. and Hoang, P. 1988. Lattice structures

for optimal design and robust implementation of 2-channel

PR-QMF banks, IEEE Trans. Acoust. Speech Signal Process.,
ASSP-36, 81–94.

52. Vetterli, M. and Herley, C. 1992. Wavelets and filter banks:

Theory and design, IEEE Trans. Signal Process., 40, 2207–
2232.

53. Vetterli, M. and Kovacevic, J. 1995. Wavelets and Subband
Coding, Englewood Cliffs, NJ: Prentice-Hall.

54. Wickerhauser, M. V. 1992. Acoustical signal compression

using wavelet packets, in Wavelets: A Tutorial in Theory
and Applications, ed. C. K. Chui, San Diego, CA: Academic

Press.

55. Young, R. W. and Kingsbury, N. G. 1993. Frequency

domain estimation using a complex lapped transform,

IEEE Trans. Image Process., 2, 2–17.

15-30 Transforms and Applications Handbook



16
Zak Transform

Mark E. Oxley
Air Force Institute of Technology

Bruce W. Suter
Air Force Research Laboratory

16.1 Introduction................................................................................................................................. 16-1
Brief History of Zak Transform . Organization of the Chapter

16.2 Preliminary Background........................................................................................................... 16-1
Remarks about Notation . Linear Spaces of Functions

16.3 Continuous Zak Transform ..................................................................................................... 16-2
Definitions . General Properties . Algebraic Properties . Topological Properties .

Geometric Properties . Inverse Transform . Relationships to Other
Transformations . Extensions of the Continuous Zak Transform

16.4 Discrete Zak Transform.......................................................................................................... 16-14
Definitions . Properties . Inverse Transform . Extensions of the Discrete
Zak Transform

16.5 Finite Zak Transform .............................................................................................................. 16-15
Definition . Properties . Inverse Transform . Extensions of the Finite
Zak Transform

16.6 Applications............................................................................................................................... 16-17
Mathematics . Physics . Engineering . Suter–Stevens Fast Fourier
Transform Algorithm

16.7 Summary .................................................................................................................................... 16-19
References .............................................................................................................................................. 16-20

16.1 Introduction

The Zak transform inputs a signal and outputs a mixed time–
frequency representation of the signal. The signal may be real-
valued or complex-valued, defined on a continuum set (e.g., the
real numbers) or a discrete set (e.g., the integers or a finite subset
of integers). This chapter investigates the various properties and
attributes of the Zak transform.

16.1.1 Brief History of Zak Transform

The Zak transform was discovered by several people independ-
ently in different fields and, consequently, was called by different
names. It was called the ‘‘Gel’fand mapping’’ in the Russian
literature because I.M. Gel’fand introduced it in his work [15]
on eigenfunction expansions associated with Schrödinger
operators with periodic potentials. In 1967, the transform was
rediscovered by a solid-state physicist, Zak [39–41] who called it
the ‘‘k-q representation.’’ Zak introduced this representation to
construct a quantum mechanical representation for the motion
of a Bloch electron in the presence of a magnetic or electric field.
In [29], W. Schempp mentions that some properties of another
version of the Zak transform, called the ‘‘Weil–Brezin mapping’’

(see [10,38]), were known to the mathematician, Carl F. Gauss.
Since Zak was, indeed, the first to systematically study this
transform in a more general setting and recognize its usefulness,

the general consent among experts in the field is to call it the
Zak transform.

16.1.2 Organization of the Chapter

This chapter begins with some preliminary background material
in Section 16.2 that will be used throughout the chapter. The
continuous Zak transform is defined on continuum signals and
investigated in Section 16.3. The discrete Zak transform is
defined on discrete signals and investigated in Section 16.4.
Whereas the finite signals are a special case of discrete signals,
the finite Zak transform warrants its own study in Section 16.5.
Applications follow in Section 16.6 with important references.

16.2 Preliminary Background

16.2.1 Remarks about Notation

We will be consistent as possible with the notation and use the
following fonts for certain objects.

Special constants—e, Euler’s number; p, pi; i ¼
ffiffiffiffiffiffiffi

�1
p

, the
imaginary complex number.

Set of scalars—Roman, uppercase, blackboard bold, e.g.,
R, real numbers; C, complex numbers.

Vector—Roman, lowercase, boldfaced, e.g., t,m.
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Matrix—Roman, uppercase, Sans Serif, e.g., M.
Sets—Roman, uppercase, italics, e.g., C, S.
Function—Roman, lowercase, italics, e.g., f , g; except for

the Dirac delta function, d.
Variable—Roman or Greek, lowercase, italics, e.g., t,v.
Linear space of functions—Roman, uppercase, calli-

graphic, e.g., L.
Transformation—Roman, uppercase, boldfaced, e.g., Z,F.

16.2.2 Linear Spaces of Functions

We will use various linear spaces of functions and use the
following notation.

Function: The complex-valued function f defined on the
nonempty set S will be denoted by f : S! C. Here
the domain of definition of the function f is D(f ) ¼ S.
The image of f is the range set R(f ) � C. The symbol
f denotes the function (name). The symbols f (t)
denote the unique output of function f given the
input t. Hence, f (t) is ‘‘not’’ the function, but a complex
number.

Set of functions: Define the set of complex-valued func-
tions whose domain of definition is set S, by

F (S,C) ¼ {f : S ! C:D(f ) ¼ S}:

Linear spaces of functions: We will use several linear
spaces of functions.

C(R, C)—Define the linear space of continuous functions that
are defined over the set R, by

C(R,C) ¼ {f :R ! C: f is continuous at every t 2 R}:

For f , g 2 C(R,C) we write f ¼ g to mean point-wise
equality, that is, f (t) ¼ g(t) for every t 2 R.

L(R, C)—Define the linear space of Lebesgue measurable func-
tions that are defined over the set R, by

L(R,C) ¼ {f :R ! C: f is Lebesgue measurable}:

Recall that f may not be defined for every t 2 R, but
this set will have Lebesgue measure zero. Function
equality in this space is almost everywhere, that is,
f ¼ g if and only if the Lebesgue measure of the set
where f and g differ, that is, {t 2 R: f (t) 6¼ g(t)} has
Lebesgue measure zero, so

m({t 2 R: f (t) 6¼ g(t)}) ¼ 0:

Here, m denotes the Lebesgue measure. This set
includes where f or g are not defined. We write
f (t) ¼ g(t) for almost every t 2 R, for brevity,
just f (t) ¼ g(t) a.e. t 2 R.

Lp(R, C)—Define the linear space of Lebesgue measurable
functions that are Lebesgue p-integrable over the
set R, by

Lp(R,C) ¼ f 2 L(R,C):
ð

R

f (t)j jpdm < 1

8

<

:

9

=

;

where dm represents integration with respect to the
Lebesgue measure. The possible values of p 2 [1,1).

Lp
loc(R,C)—Define the linear space of Lebesgue measurable func-

tions that are locally Lebesgue p-integrable over the
set R, by

Lp
loc(R,C)¼

(

f 2 L(R,C):

ð

K

f (t)j jpdm<1 for every compact subset K � R

)

:

The importance of this linear space of functions
lies in the fact that the behavior at infinity is unim-
portant.

‘p(S, F)—Given a field of scalars F (e.g.,R orC), and p 2 [1,1),
define the linear space of F-valued, p-summable
sequences defined on the countable set S to be

‘p(S,F) ¼ f 2 F (S,F):
X

n2S
f (n)j jp< 1

( )

:

The order of summation is arbitrary since the series
is absolutely summable.

The relationships between these spaces are

C(R,C) � Lp(R,C) � Lp
loc(R,C) � L(R,C):

When we write an integration in the t variable, we will write

ð

expression(t) dt instead of

ð

expression(t) dm:

16.3 Continuous Zak Transform

The continuous Zak transform is called ‘‘continuous’’ because of
the domain of the function on which it acts. In this case, the
domain of the functions is the entire set of real numbers R, a
continuum set.

16.3.1 Definitions

There are several slightly different definitions of the continuous
Zak transform in the literature. We give four versions.
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Definition 16.1 (Version 1) The Zak transform Z of
f 2 L1

loc(R,C) is defined to be

[Zf ](t,v) ¼
X

k2Z
f (t þ k)e�i2pkv (16:1)

for a.e. (t,v) 2 R
2.

For a fixed t 2 R, the Zak transform is computed by taking
the discrete Fourier transform of the sequence of samples

( . . . , f (t � 1), f (t þ 0), f (t þ 1), . . . ):

Another version of the definition of the continuous Zak trans-
form is the following.

Definition 16.2 (Version 2) [24] Let T > 0. The Zak
transform ZT of f 2 L1

loc(R,C) is defined to be

[ZT f ](t,v) ¼
ffiffiffiffi

T
p X

k2Z
f (t þ kT)e�i2pkTv

for a.e. (t,v) 2 [0,T]� [0,T�1].

When T ¼ 1 we will see that this definition reduces to
Definition 16.1. Another version is the following.

Definition 16.3 (Version 3) The Zak transform Z of
f 2 L1

loc(R,C) is defined to be

[Zf ](t, n) ¼
X

k2Z
f (t þ k)e�ikn (16:2)

for a.e. (t, n) 2 R
2.

Choosing n ¼ 2pv yields Definition 16.1.

Definition 16.4 (Version 4) [24] Let a > 0. The Zak
transform Za of f 2 L1

loc(R,C) is defined to be

[Zaf ](t,v) ¼
ffiffiffi

a
p X

k2Z
f (at þ ak)e�i2pkv

for a.e. (t,v) 2 R
2.

Choosing a ¼ 1 yields Definition 16.1.
We will use Definition 16.1 throughout this chapter.

16.3.2 General Properties

The first question to answer is: When does the Zak transform
‘‘make sense?’’ That is, for what collection of functions does the
Zak transform exist? The first three theorems give some answers
to the convergence of the series.

THEOREM 16.1

The Zak transform is defined for every f 2 L1(R,C), and Zf is
defined for a.e. (t,v) 2 R� R, thus, D(Z) ¼ L1(R,C). The
corresponding range set of Z is R(Z) � L1([0, 1]2,C).

Proof Let f 2 L1(R,C), then for m, n 2 N

ð1

0

ð1

0

Xm

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

dt dv

�
ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)j j e�i2pkv
�

�

�

�dt dv

¼
ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)j jdt dv

¼
X

m

k¼�n

ð

1

0

f (t þ k)j jdt

¼
ð

mþ1

�n

f (t)j j dt:

Now, let m ! 1 and n ! 1 (any order) to get

lim
m!1

lim
n!1

ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

dt dv

� lim
m!1

lim
n!1

ð

mþ1

�n

f (t)j j dt ¼
ð

1

�1

f (t)j j dt < 1 (16:3)

since f 2 L1(R,C). Therefore, the series converges in the L1

sense. By the Lebesgue dominated convergence theorem
(LDCT) [25] we have

lim
m!1

lim
n!1

ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

dt dv

¼
ð

1

0

ð

1

0

lim
m!1

lim
n!1

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

dt dv

¼
ð

1

0

ð

1

0

X

1

k¼�1
f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

dt dv

¼
ð

1

0

ð

1

0

[Zf ](t,v)j jdt dv,
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so,

ð1

0

ð1

0

[Zf ](t,v)j jdt dv ¼
ð1

�1

f (t)j j dt <1:

Therefore, Zf 2 L1([0, 1]2,C) for every f 2 L1(R,C), so
D(Z) ¼ L1(R,C). Also, this shows that, R(Z) � L1([0, 1]2,C).

This theorem shows the Zak transform Z maps L1(R,C) into
L1([0, 1]2,C).

We are interested in signals with finite energy so we also
consider the linear space L2(R,C).

THEOREM 16.2

The Zak transform is defined for every f 2 L2(R,C), and Zf is
defined for a.e. (t,v) 2 R� R, thus, D(Z) ¼ L2(R,C). The cor-
responding range set of Z is R(Z) � L2([0, 1]2,C).

Proof Let f 2 L2(R,C) and m, n 2 N,

ð1

0

ð1

0

Xm

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼
ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

 !

X

m

‘¼�n

f (t þ ‘)e�i2p‘v

 !

dt dv

¼
ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

 !

X

m

‘¼�n

f (t þ ‘)ei2p‘v
 !

dt dv

¼
ð

1

0

ð

1

0

X

m

k¼�n

X

m

‘¼�n

f (t þ k)f (t þ ‘)e�i2pkvei2p‘vdt dv

¼
ð

1

0

X

m

k¼�n

X

m

‘¼�n

f (t þ k)f (t þ ‘)

ð

1

0

e�i2p(k�‘)vdv

0

@

1

Adt

¼
ð

1

0

X

m

k¼�n

X

m

‘¼�n

f (t þ k)f (t þ ‘)d(k� ‘)dt

¼
ð

1

0

X

m

k¼�n

f (t þ k)j j2 dt

¼
X

m

k¼�n

ð

1

0

f (t þ k)j j2 dt

¼
ð

mþ1

�n

f (t)j j2 dt:

Now, let m ! 1 and n ! 1 (any order) to get

lim
m!1

lim
n!1

ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼ lim
m!1

lim
n!1

ð

mþ1

�n

f (t)j j2 dt ¼
ð

1

�1

f (t)j j2 dt < 1

since f 2 L2(R,C). Therefore, the series converges in the L2

sense. By the LDCT [25] we have

lim
m!1

lim
n!1

ð

1

0

ð

1

0

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼
ð

1

0

ð

1

0

lim
m!1

lim
n!1

X

m

k¼�n

f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼
ð

1

0

ð

1

0

X

1

k¼�1
f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼
ð

1

0

ð

1

0

[Zf ](t,v)j j2dt dv,

so,

ð

1

0

ð

1

0

[Zf ](t,v)j j2dt dv ¼
ð

1

�1

f (t)j j2 dt < 1:

Therefore, Zf 2 L2([0, 1]2,C) and so, Z maps L2(R,C) into
L2([0, 1]2,C).

We are interested in continuous signals as well, so we consider
the linear space C(R,C).

THEOREM 16.3

If f 2 C(R,C) such that

f (t)j j � c(1þ tj j�1�e) as tj j ! 1 (16:4)

for some constants c, e > 0, then Zf is defined and continuous at
every (t,v) 2 R� R.

Condition (16.4) is called a decay condition. Two well-known
properties unique to the Zak transform are the following
theorems.
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THEOREM 16.4

(Quasi-periodic) For f 2 L1(R,C) then

[Zf ](t þ 1,v) ¼ ei2pv[Zf ](t,v), (16:5)

[Zf ](t,vþ 1) ¼ [Zf ](t,v), (16:6)

a.e. (t,v) 2 R
2.

Proof Property (16.5):

[Zf ](t þ 1,v) ¼
X

k2Z
f (t þ 1þ k)e�i2pkv

¼
X

‘2Z
f (t þ ‘)e�i2p(‘�1)v where ‘ ¼ 1þ k

¼ ei2pv
X

‘2Z
f (t þ ‘)e�i2p‘v

¼ ei2pv[Zf ](t,v):

Property (16.6):

[Zf ](t,vþ 1) ¼
X

k2Z
f (t þ k)e�i2pk(vþ1)

¼
X

k2Z
f (t þ k)e�i2pkve�i2pk

¼
X

k2Z
f (t þ k)e�i2pkv since e�i2pk ¼ 1

¼ [Zf ](t,v):

Property (16.6) implies Zf is periodic in v with period 1. There-
fore, we need only consider an interval of length 1, say, [0, 1].
Property (16.5) implies Zf is almost periodic in t with period 1.
The scale term ei2pv keeps the periodic condition from holding
true. This is the non-Abelian nature of the Zak transform [4].
But, the scale term ei2pv has modulus one for all real values of v,
consequently, Zf is said to be quasi-periodic in t. Likewise, one
need only consider an interval of length 1 for t. Define the unit
square in R

2 in the first quadrant to be Q, that is,

Q � {(t,v) 2 R
2
: 0 � t � 1, 0 � v � 1} ¼ [0, 1]� [0, 1]

¼ [0, 1]2,

then Zf is completely determined on Q. The Zak transform is a
mapping from Lp(R,C) into Lp(Q,C) for p 2 {1, 2}.

More general results are the following properties.

THEOREM 16.5

For every f 2 L1(R,C) and m, n 2 Z, then

[Zf ](t þm,v) ¼ e�i2pmv[Zf ](t,v),

[Zf ](t,vþ n) ¼ [Zf ](t,v),

a.e. (t,v) 2 R
2.

Proof These are simple extensions of Theorem 16.4 above.

Since Zf is quasi-periodic then Zf is not L1 over R� R (nor
over R� [0, 1] nor [0, 1]� R) but is locally integrable.

THEOREM 16.6

For every f 2 L1(R,C)

1. (Conjugation) [Z�f ](t,v) ¼ [�Zf ](t, � v).
2. (Symmetry) if f is an odd function, then [Zf ](�t,�v) ¼

�[Zf ](t,v).
3. (Symmetry) if f is an even function, then [Zf ](�t,�v) ¼

[Zf ](t,v).

Proof The proofs are straightforward from usingDefinition 16.1.

Some numerical results from special evaluations are given.

THEOREM 16.7

For every f 2 L1(R,C)

1. [Zf ](t, 0) ¼Pk2Z f (t þ k)
2. [Zf ](t, 12) ¼

P

k2Z (�1)kf (t þ k)
3. [Zf ](0, 0) ¼Pk2Z f (k)
4. [Zf ](0, 12) ¼

P

k2Z (�1)kf (k)
5. [Zf ](1, 12) ¼ �Pk2Z (�1)kf (k)

such that Zf exists at these points in Q.

Proof For f 2 L1(R,C):

1. Definition 16.1 and e�i2pk0 ¼ 1 for all k 2 Z implies this
equation is true.

2. Definition 16.1 and e�i2pk(1=2) ¼ e�ipk ¼ (�1)k for all
k 2 Z implies this equation is true.

3. From Theorem 16.7, statement 1 with t ¼ 0, this equation
is true.

4. From Theorem 16.7, statement 2 with t ¼ 0, this equation
is true.

5. Definition 16.1 evaluated at (1, 12) yields

[Zf ] 1,
1

2

� �

¼
X

k2Z
f (1þ k)e�i2pk(1=2)

¼
X

‘2Z
f (‘)e�ip(‘�1) where ‘ ¼ 1þ k

¼
X

‘2Z
(�1)‘�1f (‘)

¼ �
X

‘2Z
(�1)‘f (‘):
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THEOREM 16.8

(Zeroes) If f 2 C(R,C) and satisfies the decay condition (16.4),
then Zf has at least one zero on the horizontal line segment
connecting the points (0, 12) and (1, 12).

Proof Statements 4 and 5 of Theorem 16.7 imply a sign change
of the continuous function [Zf ]( � , 12). The intermediate value
theorem implies there exists at least one zero on the horizontal
line segment connecting the points (0, 12) and (1, 12).

16.3.3 Algebraic Properties

The Zak transform is a linear transformation from Lp(R,C) into
Lp(Q,C) for p 2 {1, 2}.

THEOREM 16.9

The Zak transform Z has the following properties:

1. (Total) Z is defined on the set L2(R,C), that is,
D(Z) ¼ L2(R,C) and R(Z) � L2(Q,C).

2. (Linear) Z is a linear transformation, that is, for any
complex scalars a,b 2 C and f , g 2 L2(R,C)

Z(af þ bg) ¼ aZ(f )þ bZ(g):

Definition 16.5: (Convolutions) Let f , g 2 L1(R,C) the
convolution f * g 2 L1(R,C) is defined to be

[f * g](t) ¼
ð1

�1

f (s)g(t � s)ds ¼
ð1

�1

g(s)f (t � s)ds:

Let x, y 2 L1(Q,C) the convolution x *
1 y (with respect to the first

variable) is defined to be

x *
1
y

h i

(t,v) ¼
ð1

0

x(s,v)y(t � s,v)ds ¼
ð1

0

y(s,v)x(t � s,v)ds:

The convolution x *
2 y (with respect to the second variable) is

defined to be

x *
2
y

h i

(t,v) ¼
ð1

0

x(t, n)y(t,v� n)dn ¼
ð1

0

y(t, n)x(t,v� n)dn:

For values of t, s 2 [0, 1] such that t � s =2 [0, 1] we use the
periodic extension of the function, or equivalently, use modulo 1
arithmetic. The same assumption is made for n,v 2 [0, 1].

THEOREM 16.10

Let f , g 2 L1(R,C) then

1. Zf *
1 Zg ¼ Z(f * g).

2. Zf *
2 Zg ¼ Z(f � g) where f � g is the point-wise function

multiplication of f with g.

Proof (1)

Zf *
1
Zg

h i

(t,v)

¼
ð1

0

[Zf ](s,v)[Zg](t � s,v)ds

¼
ð1

0

X

k2Z
f (sþ k)e�i2pkv

 !

X

‘2Z
g(t � sþ ‘)e�i2p‘v

 !

ds

¼
ð1

0

X

k2Z

X

‘2Z
f (sþ k)g(t � sþ ‘)e�i2p(kþ‘)v ds

¼
X

k2Z

X

‘2Z

ð1

0

f (sþ k)g(t � sþ ‘) ds

0

@

1

Ae�i2p(kþ‘)v

by LDCT

¼
X

‘2Z

X

k2Z

ð1

0

f (sþ k)g(t þ [kþ ‘]� [sþ k]) ds

0

@

1

Ae�i2p(kþ‘)v

¼
X

m2Z

X

k2Z

ðkþ1

k

f (s)g(t þm� s) ds

0

@

1

Ae�i2pmv

where s ¼ sþ k,m ¼ kþ ‘

¼
X

m2Z

ð1

�1

f (s)g(t þm� s) ds

0

@

1

Ae�i2pmv

¼
X

m2Z
[f * g](t þm)e�i2pmv

¼ [Z(f * g)](t,v):
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(2)

[Zf *
2
Zg](t,v)

¼
ð1

0

[Zf ](t, n)[Zg](t,v� n)dn

¼
ð1

0

X

k2Z
f (t þ k)e�i2pkn

 !

X

‘2Z
g(t þ ‘)e�i2p‘(v�n)

 !

dn

¼
ð1

0

X

k2Z

X

‘2Z
f (t þ k)g(t þ ‘)e�i2pkne�i2p‘(v�n) dn

¼
X

k2Z

X

‘2Z
f (t þ k)g(t þ ‘)e�i2p‘v

ð1

0

e�i2p(k�‘)ndn by LDCT

¼
X

k2Z

X

‘2Z
f (t þ k)g(t þ ‘)e�i2p‘vd(k� ‘)

¼
X

k2Z
f (t þ k)g(t þ k)e�i2pkv

¼
X

k2Z
[f � g](t þ k)e�i2pkv

¼ [Z(f � g)](t,v):

16.3.4 Topological Properties

Define the norm k�kin on the linear space L2(R,C) to be, for
each f 2 L2(R,C)

kf kin ¼
ð

R

f (t)j j2dt

0

@

1

A

1=2

then (L2(R,C), k�kin) is a complete normed linear space (i.e., a
Banach space). Define the norm k�kout on the linear space
L2(Q,C) to be, for each g 2 L2(Q,C)

kxkout ¼
ð

Q

g(t,v)j j2dt dv

0

B
@

1

C
A

1=2

then (L2(Q,C), k�kout) is a Banach space.

THEOREM 16.11

The Zak transform is a continuous linear transformation from
(L2(R,C), k�kin) into (L2(Q,C), k�kout). Also,

kZf kout ¼ kf kin

for every f 2 L2(R,C).

Proof For linear transformations, continuous and bounded are
equivalent [25], therefore, we will show that Z is bounded. Let
f 2 L2(R,C) then

kZf k2out ¼
ð

Q

Zf (t,v)j j2dt dv

¼
ð

Q

X

k2Z
f (t þ k)e�i2pkv

�

�

�

�

�

�

�

�

�

�

2

dt dv

¼
ð

Q

X

k2Z
f (t þ k)e�i2pkv

X

‘2Z
f (t þ ‘)e�i2p‘v dt dv

¼
ð

1

0

ð

1

0

X

k2Z

X

‘2Z
f (t þ k)f (t þ ‘)e�i2pkv ei2p‘vdt dv

¼
ð

1

0

X

k2Z

X

‘2Z
f (t þ k)f (t þ ‘)

ð

1

0

e�i2p(k�‘)v dv

0

@

1

Adt

¼
ð

1

0

X

k2Z

X

‘2Z
f (t þ k)f (t þ ‘)d(k� ‘)dt

¼
ð

1

0

X

k2Z
f (t þ k)f (t þ k)dt

¼
X

k2Z

ð

1

0

f (t þ k)j j2dt

¼
ð

1

�1

f (t þ k)j j2dt

¼ fk k2in:

Hence,

Zk k � sup
Zfk kout
fk kin

: 0 6¼ f 2 L2(R,C)

� �

¼ 1 < 1:

Since Z is a bounded linear transformation, then, Z is a continu-
ous linear transformation. Notice that Z preserves the energy of
the signal, since Zfk kout¼ fk kin for every f 2 L2(R,C).

16.3.5 Geometric Properties

Define the inner product �j�h iin on the linear space L2(R,C) to
be, for each f , g 2 L2(R,C)

f jgh iin ¼
ð

1

�1

f (t)g(t) dt,
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then (L2(R,C), �j�h iin) is a complete inner product space (i.e.,
a Hilbert space). Define the inner product �j�h iout on the linear
space L2(Q,C) to be, for each x, y 2 L2(Q,C)

xjyh iout¼
ð

Q

x(t,v)y(t,v) dt dv,

then (L2(Q,C), �j�h iout) is a Hilbert space.

THEOREM 16.12

(Unitary) The Zak transform is a unitary transformation, that is,
for every f , g 2 L2(R,C)

Zf jZgh iout ¼ f jgh iin:

Proof

Zf jZgh iout¼
ð

Q

[Zf ](t,v)[Zg](t,v)dt dv

¼
ð

Q

X

k2Z
f (tþk)e�i2pkv

 !

X

‘2Z
g(tþ‘)e�i2p‘v

 !

dt dv

¼
ð

Q

X

k2Z
f (tþk)e�i2pkv

 !

X

‘2Z
g(tþ‘)ei2p‘v

 !

dt dv

¼
ð

Q

X

k2Z

X

‘2Z
f (tþk)g(tþ‘)e�i2p(k�‘)v dt dv

¼
ð1

0

X

k2Z

X

‘2Z
f (tþk)g(tþ‘)

ð1

0

e�i2p(k�‘)vdv

0

@

1

Adt

¼
ð1

0

X

k2Z

X

‘2Z
f (tþk)g(tþ‘)d(k�‘)dt

¼
ð1

0

X

k2Z
f (tþk)g(tþk)dt

¼
X

k2Z

ð1

0

f (tþk)g(tþk)dt

¼
ð1

�1

f (t)g(t)dt

¼ f j gh iin:

This theorem implies that Z preserves the ‘‘angle’’ between
signals. The angle between f and g is defined to be

Ang(f , g) � Arc cos
f j gh iin

fk kin gk kin

� �

:

This theorem says

Ang(Zf ,Zg) ¼ Ang(f , g)

for every pair (f , g) 2 L2(R,C)� L2(R,C).

THEOREM 16.13

(Adjoint) The adjoint of Z is Z�1, that is, Z* ¼ Z�1.

Proof Since Z is a unitary transformation then

f jgh iin ¼ Zf jZgh iout ¼ f jZ*Zgh iout

for all f 2 L2(R,C). So

f j g � Z*Zgh iin¼ 0

for all f 2 L2(R,C), which implies Z*Zg ¼ g for all
g 2 L2(R,C). Hence, Z*Z ¼ I, the identity operator, implying
Z* ¼ Z�1.

16.3.6 Inverse Transform

THEOREM 16.14

The Zak transform Z has the following properties:

1. Z is a one-to-one transform.
2. Z is onto L2(Q,C), that is, R(Z) ¼ L2(Q,C).

Proof These follow from Theorem 16.13, since Z�1 exists.

The next theorem gives ideas about the definition of the
inverse Zak transform.

THEOREM 16.15

(Marginals) For every f 2 L2(R,C) such that Zf is continuous,
then, in fact, f is continuous and Ff (the Fourier transform) is
continuous. The marginals are

f (t) ¼
ð

1

0

[Zf ](t,v)dv a:e: t 2 R,

[Ff ](v) ¼
ð

1

0

[Zf ](t,v)dt a:e:v 2 R:
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Proof For every f 2 L2(R,C) such that Zf is continuous, then

ð1

0

[Zf ](t,v)dv ¼
ð1

0

X

k2Z
f (t þ k)e�i2pkvdv

¼
X

k2Z
f (t þ k)

ð1

0

e�i2pkvdv

¼
X

k2Z
f (t þ k)d(k)

¼ f (t):

The second result will be proved in Section 16.3.7.

This theorem demonstrates that the Zak transform is a linear
time–frequency representation. The first result of this theorem
motivates the definition of the inverse of the Zak transform. But,
first we define marginal transformations.

Definition 16.6: (Marginal Transforms) For every
g 2 L2(Q,C) define the marginal transforms

M(1)g
� 	

(v) ¼
ð

1

0

g(t,v)dt,

M(2)g
� 	

(t) ¼
ð

1

0

g(t,v)dv,

where the superscript denotes which variable is integrated.

These marginal transforms are continuous linear transform-
ations from L2(Q,C) into L2([0, 1],C).

Definition 16.7: (Inverse) The inverse Zak transform is
defined, for every g 2 L2(Q,C), to be

[Z�1g](t) ¼
ð

1

0

g(t,v)dv, (16:7)

a.e. t 2 [0, 1].
Notice that Z�1 is M(2).

THEOREM 16.16

The inverse Zak transform Z�1 satisfies the following properties:

1. Z�1:L2(Q,C)! L2([0, 1],C).
2. Z�1 is linear transform.
3. Z�1 is continuous transform.
4. Z�1 is unitary transform.

Proof (1) Let g 2 L2(Q,C) then

[Z�1g](t)
�

�

�

� ¼
ð

1

0

g(t,v)dv

�

�

�

�

�

�

�

�

�

�

�

�

�
ð

1

0

g(t,v)j j2dv

0

@

1

A

1=2

,

so

Z�1g












2

in
¼
ð

1

0

[Z�1g](t)
�

�

�

�

2
dt �

ð

1

0

ð

1

0

g(t,v)j j2dv dt

¼ gk k2out:

(2) Since Z is linear, then Z�1 is linear, (see [25]).
(3) By (1) Z�1 is bounded, therefore, Z�1 is continuous.
(4) Since Z�1 ¼ Z* then (Z�1)* ¼ Z** ¼ Z ¼ (Z�1)�1.

So the adjoint of Z�1 is (Z�1)�1 ¼ Z, its own inverse.
Thus, Z�1 is a unitary transform.

16.3.7 Relationships to Other Transformations

16.3.7.1 Fourier

Definition 16.8: (1D Continuous Fourier Transform) The
continuous Fourier transform of f 2 L2(R,C) is defined to be

[Ff ](v) ¼
ð

1

�1

f (t)e�i2ptvdt,

a.e. v 2 R, and F : L2(R,C) ! L2(R,C). The inverse continu-
ous Fourier transform of g 2 L2(R,C) is defined to be

[F�1g](t) ¼
ð

1

�1

g(v)ei2ptvdv,

a.e. t 2 R.

Definition 16.9: (1D Discrete Fourier Transform) The
discrete Fourier transform of f 2 ‘2(Z,C) is defined to be

[Fdf ](v) ¼
X

k2Z
f (k)e�i2pkv,

a.e. v 2 [0, 1], and Fd : ‘2(Z,C) ! L2([0, 1],C). The inverse
discrete Fourier transform of g 2 L2(R,C) is defined to be
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F�1d g
� 	

(k) ¼
ð

1

0

g(v)ei2pkvdv

for k 2 Z.

Definition 16.10: (2D Fourier Transform) The continuous
Fourier transform of x 2 L2(Q,C) is defined to be

[F2x](s, n) ¼
ð

1

0

ð

1

0

x(t,v)e�i2p(stþnv)dt dv,

a.e. (s, n) 2 Q, and F2 : L2(Q,C)! L2(Q,C). The inverse
continuous Fourier transform of y 2 L2(Q,C) is defined to be

F�12 y
� 	

(t,v) ¼
ð

1

0

ð

1

0

y(s, n)ei2p(stþnv)ds dn,

a.e. (t,v) 2 Q.

THEOREM 16.17

For every f 2 L2(R,C)

[Zf ](0,v) ¼ [Fdf ](v),

a.e. v 2 [0, 1].

Proof Let f 2 L2(R,C)

[Zf ](0,v) ¼
X

k2Z
f (k)e�i2pkv ¼ [Fdf ](v),

a.e. v 2 [0, 1].

For f 2 L2(R,C) define the multiplication operator C to be
[Cf ](t,v) ¼ x[0, 1](t) � f (t) where x[0, 1] is the characteristic func-
tion on the interval [0, 1].

THEOREM 16.18

For f 2 L2(R,C)

1.
Ð 1
0 [Zf ](t,v)e

�i2pvtdt ¼ [FCZf ](v) ¼ [Ff ](v).
2. FCZF�1f ¼ f .
3. [ZFf ](v, �t) ¼ e�i2ptv[Zf ](t,v).

4. F2(Zf � Zg)(m) ¼ [F(f � g)](m) for m 2 Z, where
[ ~Zg](t,v) � [Zg](t,�v).

Proof Let f 2 L2(R,C) then

1. For v 2 R

[FCZf ](v) ¼
ð

1

�1

(x[0, 1](t)[Zf ](t,v))e
�i2pvtdt

¼
ð

1

0

[Zf ](t,v)e�i2pvtdt

¼
ð

1

0

X

k2Z
f (t þ k)e�i2pkve�i2pvtdt

¼
X

k2Z

ð

1

0

f (t þ k)e�i2pv(tþk)dt

¼
X

k2Z

ð

kþ1

k

f (t)e�i2pvtdt where t ¼ t þ k 2 [k, kþ 1]

¼
ð

1

�1

f (t)e�i2pvtdt

¼ [Ff ](v):

2. Let f ¼ F�1g then by (1) FCZf ¼ Ff becomes

FCZF�1g ¼ FF�1g ¼ g:

Rename g to be f .
3. For (t,v) 2 Q then

[ZFf ](v,�t) ¼
X

k2Z
[Ff ](vþ k)e�i2pk(�t)

¼
X

k2Z

ð

1

�1

f (s)e�i2ps(vþk)ds

0

@

1

Ae�i2pk(�t)

¼
ð

1

�1

f (s)
X

k2Z
e�i2pk(s�t)

" #

e�i2psvds

¼
ð

1

�1

f (s)
X

k2Z
d(k� [s� t])

" #

e�i2psvds

¼
X

k2Z

ð

1

�1

f (s)d(k� sþ t)e�i2psvds

¼
X

k2Z
f (kþ t)e�i2p(kþt)v

¼ e�i2ptv
X

k2Z
f (kþ t)e�i2pkv

¼ e�i2ptv[Zf ](t,v):
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4. Let f , g 2 L2(R,C) then

[F2(Zf � Zg)](m, n)

¼
ð1

0

ð1

0

[Zf ](t,v)[Zg](t,�v)e�i2p(mtþnv) dt dv

¼
ð1

0

ð1

0

X

k2Z
f (t þ k)e�i2pkv

X

‘2Z
g(t þ ‘)ei2p‘ve�i2p(mtþnv) dt dv

¼
ð1

0

X

k2Z

X

‘2Z
f (t þ k)g(t þ ‘)

ð1

0

e�i2p(k�‘þn)v dv

0

@

1

Ae�i2pmtdt

¼
ð1

0

X

k2Z

X

‘2Z
f (t þ k)g(t þ ‘)d(k� ‘)e�i2pmtdt

¼
ð1

0

X

k2Z
f (t þ k)g(t þ k)e�i2pmtdt

¼
X

k2Z

ð1

0

f (t þ k)g(t þ k)e�i2pmtdt

¼
X

k2Z

ðkþ1

k

f (t)g(t)e�i2pm(t�k)dt where t ¼ t þ k

¼
X

k2Z

ðkþ1

k

f (t)g(t)e�i2pmtdt ei2pmk

¼
ð1

�1

f (t)g(t)e�i2pmtdt since ei2pmk ¼ 1

¼ [F(f � g)](m):

16.3.7.2 Translations and Modulations

Definition 16.11: (Translation Operators) For every
a, b 2 R, define the translation operators

. Ta acting on a function f 2 L2(R,C) to be

[Taf ](t) ¼ f (t þ a)

a.e. t 2 R.
. T(1)

a acting on the first variable of a function g 2 L2(R2,C)
to be

T(1)
a g

� 	

(t,v) ¼ g(t þ a,v)

a.e. (t,v) 2 R
2.

. T(2)
a acting on the second variable of a function

g 2 L2(R2,C) to be

T(2)
a g

� 	

(t,v) ¼ g(t,vþ a)

a.e. (t,v) 2 R
2.

. T(1, 2)
a, b acting on both variables of a function g 2 L2(R2,C)

to be

T(1, 2)
a, b g

h i

(t,v) ¼ g(t þ a,vþ b)

a.e. (t,v) 2 R
2.

THEOREM 16.19

For every a 2 R, the translation operator Ta satisfies the follow-
ing properties:

1. Ta is a linear operator on L2(R,C).
2. T0 ¼ I, the identity operator.
3. TaTb ¼ TbTa ¼ Taþb.
4. T�1

a ¼ T�a.

The proofs are straightforward. There are similar statements for
T(1)
a , T(2)

b , and T(1, 2)
a, b .

Definition 16.12: (Modulation Operators) For every
a, b 2 R define the modulation operators

. Ea acting on a function f 2 L2(R,C) to be

Eaf½ 	(t) ¼ e�i2pat f (t)

a.e. t 2 R.
. E(1)

a acting on the first variable of a function g 2 L2(R2,C)
to be

E(1)
a g

� 	

(t,v) ¼ e�i2patg(t,v)

a.e. (t,v) 2 R
2.

. E(2)
a acting on the second variable of a function

g 2 L2(R2,C) to be

E(2)
a g

� 	

(t,v) ¼ e�i2pavg(t,v)

a.e. (t,v) 2 R
2.

. E(1, 2)
a, b acting on both variables of a function g 2 L2(R2,C)

to be

E(1, 2)
a, b g

h i

(t,v) ¼ e�i2p(atþbv)g(t,v)

a.e. (t,v) 2 R
2.
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THEOREM 16.20

For every a, b 2 R, the modulation operator Ea satisfies the
following properties:

1. Ea is a linear operator on L2(R,C).
2. E0 ¼ I, the identity operator.
3. EaEb ¼ EbEa ¼ Eaþb.
4. E�1a ¼ E�a.

The following properties consider the relationships between
translations, modulations, and the Zak transform. We list expres-
sions where Z is the last transform and Z is the first transform in
separate theorems.

THEOREM 16.21

(Z is last) Let f 2 L2(R,C):

1. Zf ¼Pk2Z E
(2)
k Tkf .

2. ZTmf ¼ E(2)
�mZf for m 2 Z.

3. ZTaf ¼ T(1)
a Zf for a 2 R� Z.

4. ZEmf ¼ E(1)
m Zf for m 2 Z.

5. ZEaf ¼ E(1)
a T(2)

a Zf for a 2 R� Z.

6. ZE(2)
m Tmf ¼ Zf for m 2 Z.

7. ZE(2)
m Tnf ¼ E(2)

m�nZf for m, n 2 Z.

8. ZE(2)
a Taf ¼ Zf for a 2 R� Z.

9. ZTmEnf ¼ E(1, 2)
n,m Zf for m, n 2 Z.

Proof For a.e. (t,v) 2 Q

1.

[Zf ](t,v) ¼
X

k2Z
f (t þ k)e�i2pkv

¼
X

k2Z
[Tkf ](t)e

�i2pkv

¼
X

k2Z
E(2)
k Tkf

h i

(t,v):

2. For m 2 Z

[ZTmf ](t,v) ¼
X

k2Z
f (t þmþ k)e�i2pkv

¼
X

‘2Z
f (t þ ‘)e�i2p(‘�m)v where ‘ ¼ mþ k

¼ ei2pmv
X

‘2Z
f (t þ ‘)e�i2p‘v

¼ e�i2p(�m)v[Zf ](t,v)

¼ E(2)
�mZf

� 	

(t,v):

3. For a 2 R� Z

[ZTaf ](t,v) ¼
X

k2Z
f (t þ aþ k)e�i2pkv

¼ [Zf ](t þ a,v)

¼ T(1)
a Zf

� 	

(t,v):

4. For m 2 Z

[ZEmf ](t,v) ¼
X

k2Z
e�i2pm(tþk)f (t þ k)e�i2pkv

¼ e�i2pmt
X

k2Z
e�i2pmkf (t þ k)e�i2pkv

¼ e�i2pmt
X

k2Z
f (t þ k)e�i2pkv since e�i2pmk ¼ 1

¼ e�i2pmt[Zf ](t,v)

¼ E(1)
m Zf

� 	

(t,v):

5. For a 2 R� Z

[ZEaf ](t,v) ¼
X

k2Z
e�i2pa(tþk)f (t þ k)e�i2pkv

¼ e�i2pat
X

k2Z
f (t þ k)e�i2pk(vþa)

¼ e�i2pat[Zf ](t,vþ a)

¼ e�i2pat T(2)
a Zf

� 	

(t,v)

¼ E(1)
a T(2)

a Zf
� 	

(t,v):

6. For m 2 Z

ZE(2)
m Tmf

� 	

(t,v) ¼
X

k2Z
e�i2pmvf (t þmþ k)e�i2pkv

¼
X

k2Z
f (t þmþ k)e�i2p(mþk)v

¼
X

‘2Z
f (t þ ‘)e�i2p‘v where ‘ ¼ mþ k

¼ [Zf ](t,v):

7. For m, n 2 Z

ZE(2)
m Tnf

� 	

(t,v) ¼
X

k2Z
e�i2pmvf (t þ nþ k)e�i2pkv

¼
X

k2Z
f (t þ nþ k)e�i2p(mþk)v

¼
X

‘2Z
f (t þ ‘)e�i2p(mþ‘�n)v where ‘ ¼ nþ k

¼ e�i2p(m�n)v
X

‘2Z
f (t þ ‘)e�i2p‘v

¼ e�i2p(m�n)v[Zf ](t,v)

¼ E(2)
m�nZf

� 	

(t,v):
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8. For a, b 2 R� Z

ZE(2)
a Tbf

� 	

(t,v) ¼
X

k2Z
e�i2pavf (t þ bþ k)e�i2pkv

¼ e�i2pav
X

k2Z
f (t þ bþ k)e�i2pkv

¼ e�i2pav[Zf ](t þ b,v)

¼ e�i2pav T(1)
b Zf

h i

(t,v)

¼ E(2)
a T(1)

b Zf
h i

(t,v):

9. For m, n 2 Z

[ZTmEnf ](t,v)

¼
X

k2Z
e�i2pn(tþm)f (t þmþ k)e�i2pkv

¼ e�i2pnt
X

k2Z
e�i2pnmf (t þmþ k)e�i2pkv since e�i2pnm ¼ 1

¼ e�i2pnt
X

k2Z
f (t þ ‘)e�i2p(‘�m)v where ‘ ¼ mþ k

¼ e�i2pntei2pmv
X

k2Z
f (t þ ‘)e�i2p‘v

¼ e�i2pntei2pmv
X

k2Z
f (t þ ‘)e�i2p‘v

¼ e�i2pntei2pmv[Zf ](t,v)

¼ E(1)
n E(2)

m Zf
� 	

(t,v)

¼ E(1, 2)
n,m Zf

� 	

(t,v):

THEOREM 16.22

(Z is first) Let f 2 L2(R,C) and m 2 Z, then

T(1)
m Zf ¼ E(2)

m Zf :

Proof For m 2 Z

T(1)
m Zf

� 	

(t,v) ¼ [Zf ](t þm,v)

¼
X

k2Z
f (t þmþ k)e�i2pkv

¼
X

‘2Z
f (t þ ‘)e�i2p(‘�m)v where ‘ ¼ mþ k

¼ ei2pmv
X

‘2Z
f (t þ ‘)e�i2p‘v

¼ ei2pmv[Zf ](t,v)

¼ E(2)
�mZf

� 	

(t,v):

16.3.8 Extensions of the Continuous
Zak Transform

There have been several extensions to the Zak transform. We
mention, without discussion, the multiplicative Zak transform
and refer the reader to the article [17].

16.3.8.1 Multidimensional Continuous
Zak Transform

Definition 16.13: The multidimensional continuous Zak
transform of f 2 L2(Rd ,C) is defined to be

[Zf ](t,v) ¼
X

k2Zd

f (tþ k)e�i2pk�v (16:8)

for a.e. (t,v) 2 R
d � R

d .

A quasi-periodic condition also holds true.

THEOREM 16.23

Let f 2 L2(Rd ,C)

1. For m 2 Z
d then [Zf ](tþm,v) ¼ ei2pm �v[Zf ](t,v)

2. For n 2 Z
d then [Zf ](t,vþ n) ¼ [Zf ](t,v)

for a.e. (t,v) 2 R
d � R

dT .

Proof 1. For m 2 Z
d

[Zf ](tþm,v) ¼
X

k2Zd

f (tþmþ k)e�i2pk�v

¼
X

‘2Zd

f (tþ ‘)e�i2p(‘�m)�v where ‘ ¼ mþ k

¼ ei2pm�v
X

‘2Zd

f (tþ ‘)e�i2p‘�v

¼ ei2pm�v[Zf ](t,v):

2. For n 2 Z
d

[Zf ](t,vþ n) ¼
X

k2Zd

f (tþ k)e�i2pk�(vþn)

¼
X

k2Zd

f (tþ k)e�i2pk�(vþn)e�i2pk�n

¼ [Zf ](t,v)

since the dot product k � n 2 Z, then e�i2pk�n ¼ 1.
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THEOREM 16.24

The multidimensional continuous Zak transform Z:

1. Is defined for all f 2 L2(Rd ,C), i.e., D(Z) ¼ L2(Rd ,C)
2. Has range R(Z) � L2(Qd ,C) so Z : L2(Rd ,C) !

L2(Qd ,C)
3. Is linear transform
4. Is continuous transform
5. Is unitary transform
6. Is invertible transform, defined by

[Z�1g](t) ¼
ð

Qd

g(t,v)dv:

Proof All these results are simple extensions from the previous
one-dimensional theorems.

16.3.8.2 Multidimensional Weighted Continuous
Zak Transform

Definition 16.14: The multidimensional weighted
continuous Zak transform of f 2 L2(Rd ,C) is, for weight
matrix M 2 R

d�d , defined to be

[Zf ](t,v) ¼
X

k2Zd

f (tþMk)e�i2pk�v (16:9)

a.e. (t,v) 2 R
d � R

d .

16.3.8.3 Multidimensional Windowed, Weighted
Continuous Zak Transform

Definition 16.15: The multidimensional windowed,
weighted continuous Zak transform of f 2 L2(Rd ,C) is, for
weight matrix M 2 R

d�d and window function w 2 L(Rd ,Rþ)
with compact support, defined to be

[Zf ](t,v) ¼
X

k2Zd

f (tþMk)w(k)e�i2pk�v (16:10)

a.e. (t,v) 2 R
d � R

d .

16.4 Discrete Zak Transform

The discrete Zak transform is analogous to the continuous
Zak transform. The term ‘‘discrete’’ describes the input function.
The input function will be a countable function, that is,
a sequence. The output function will be discrete in t and
continuum in v.

16.4.1 Definitions

Definition 16.16: The discrete Zak transform Z of
f 2 ‘2(Z,C) is defined to be

[Zf ](m,v) ¼
X

k2Z
f (mþ k)e�i2pkv

for (m,v) 2 Z� R.

When f 2 L2(R,C) is defined at every integer, then the con-
tinuous Zak transform of f evaluated at the discrete times m 2 Z

yields the same results as this discrete Zak transform.

16.4.2 Properties

The discrete Zak transform satisfies quasi-periodic conditions.

THEOREM 16.25

The discrete Zak transform Z : ‘2(Z,C) ! ‘2(Z� R,C) is

1. A total transform, that is, D(Z) ¼ ‘2(Z,C).
2. A linear transform, that is, for all a,b 2 C and

f , g 2 ‘2(Z,C)

Z(af þ bg) ¼ aZf þ bZg

3. A continuous (equivalently, bounded) transform, and in
particular, Zfk kout¼ fk kin where

fk kin ¼
X

k2Z
f (k)j j2

 !1=2

,

xk kout ¼
X

k2Z

ð1

0

x(k,v)j j2dv

0

@

1

A

1=2

:

4. An unitary transform, that is, Zf jZgh iout¼ f jgh iin for all
f , g 2 ‘2(Z,C) where

f jgh iin ¼
X

k2Z
f (k)g(k),

xjyh iout ¼
X

k2Z

ð1

0

x(k,v)y(k,v)dv:

16.4.3 Inverse Transform

The unitary property of Z implies that the inverse transform does
exist. Observe the marginal property that motivates the inverse
transform.
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THEOREM 16.26

For every f 2 ‘2(Z,C)

f (m) ¼
ð1

0

[Zf ](m,v)dv

for m 2 Z.

Proof The proof is the same as for the inverse of the continuous
Zak transform with t replaced with m.

Definition 16.17: The inverse discrete Zak transform of
g 2 ‘2(Z� R,C) is defined to be

[Z�1g](m) ¼
ð1

0

g(m,v)dv

for m 2 Z.

16.4.4 Extensions of the Discrete
Zak Transform

Multidimensional discrete Zak transform takes as its input a
complex-valued function f whose input is a multidimensional
discrete set. That is, f 2 ‘2(Zd ,C) where d 2 N is the dimension
of the input set.

Definition 16.18: The multidimensional discrete Zak
transform of f 2 ‘2(Zd ,C) is defined to be

[Zf ](m,v) ¼
X

k2Zd

f (mþ k)e�i2pk�v

for (m,v) 2 Z
d � R

d .

Definition 16.19: Let matrix M 2 Z
d�d generate a lattice of

points in Z
d , that is, for every k 2 Z

d then Mk 2 Z
d . The

multidimensional weighted discrete Zak transform of
f 2 ‘2(Zd ,C) is defined to be

[Zf ](m,v) ¼
X

k2Zd

f (mþMk)e�i2pkTMT
v

for (m,v) 2 Z
d � R

d .

Definition 16.20: The multidimensional windowed,
weighted discrete Zak transform of f 2 ‘2(Zd ,C) is, for weight

matrix M 2 Z
d�d and window function w 2 ‘2(Zd ,Rþ) with

finite support, defined to be

[Zwf ](m,v) ¼
X

k2Zd

f (tþMk)w(k)e�i2pkTMT
v (16:11)

for (m,v) 2 Z
d � R

d .

Consider the short-time discrete Fourier transform Fw of
f 2 ‘2(Z,C) with window function w 2 ‘2(Z,Rþ)

[Fwf ](m,v) ¼
X

k2Z
f (k)w(k�m)e�i2pkv:

Let ‘ ¼ k�m then k ¼ ‘þm and

[Fwf ](m,v) ¼
X

‘2Z
f (‘þm)w(‘)e�i2p(‘þm)v

¼ e�i2pmv
X

‘2Z
f (‘þm)w(‘)e�i2p‘v

¼ e�i2pmv[Zwf ](m,v):

THEOREM 16.27

For every f 2 ‘2(Z,C)

[Fwf ](m,v) ¼ E(1)
�mZwf

� 	

(m,v)

for (m,v) 2 Z� R.

The multidimensional versions of this theorem follow by
simple extensions.

16.5 Finite Zak Transform

16.5.1 Definition

The finite Zak transform is a special case of the discrete Zak
transform where the input sequence is always a finite length
sequence. Assume the length is some L 2 N, then define the
finite set S ¼ {0, 1, . . . , L� 1}. Let F (S,C) be the set of functions
f : S ! C, then f is, in fact, a finite sequence. Actually,
F (S,C) ¼ C

L the complex vector space, and f is, essentially, a
complex vector of length L.

Definition 16.21: The finite Zak transform of f 2 F (S,C) is
defined to be

[Zf ](m, n) ¼
X

k2S
f (mþ

L
k)e�i2pnk=L ¼

X

L�1

k¼0

f (mþ
L
k)e�i2pnk=L

for (m, n) 2 S� S. Here,þ
L
meansmodulo L addition in S. Equiva-

lently, one can use the periodic extension of f for mþ k =2 S.
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16.5.2 Properties

The finite Zak transform satisfies a quasi-periodic condition,
in fact, a periodic condition.

THEOREM 16.28

(Quasi-periodic) For every f 2 F (S,C)

1. [Zf ](mþ
L
L, n) ¼ [Zf ](m, n) for (m, n) 2 S� S.

2. [Zf ](m, nþ
L
L) ¼ [Zf ](m, n) for (m, n) 2 S� S.

Proof For f 2 F (S,C)

1. And (m, n) 2 S� S

[Zf ](mþ
L
L, n) ¼

X

k2S
f mþ

L
Lþ

L
k

� �

e�i2pnk=L

¼
X

k2S
f mþ

L
k

� �

e�i2pnk=L

¼ [Zf ](m, n):

2. For (m, n) 2 S� S

[Zf ](m, nþ
L
L) ¼

X

k2S
f (mþ k)e

�i2p nþ
L

L

� �

k=L

¼
X

k2S
f (mþ k)e�i2pnk=L

¼ [Zf ](m, n):

Notice that the addition of nþ L in the exponent e�i2p(nþ
L

L)k=L

can be þ
L
or þ

R

since they both give the same answer. That is,

e�i2p


nþ
R

L
�

k=L ¼ e�i2pnk=L�i2pLk=L ¼ e�i2pnk=Le�i2pk ¼ e�i2p(n)k=L:

THEOREM 16.29

The finite Zak transform Z is

1. A total transform, that is, D(Z) ¼ F (S,C).
2. A linear transform from F (S,C) into F (S2,C):
3. A continuous (equivalently, bounded) transform, and in

particular, Zfk kout ¼ fk kin where

fk kin ¼
X

k2S
f (k)j j2

 !1=2

xk kout ¼
X

k2S

X

‘2S
x(k, ‘)j j2

 !1=2

:

4. an unitary transform, that is, Zf jZgh iout¼ f j gh iin for all
f , g 2 ‘2(Z,C) where

f jgh iin ¼
X

k2S
f (k)g(k)

xjyh iout ¼
X

k2S

X

‘2S
x(k,v)y(k,v):

16.5.3 Inverse Transform

Since Z is unitary then its inverse exists. We expect its inverse to
be a marginal operation.

Definition 16.22: The inverse finite Zak transform is, for
every x 2 F (S2,C), defined to be

[Z�1x](m) ¼ 1

L

X

L�1

n¼0

x(m, n) (16:12)

for m 2 S.

Just to check that this is correct, we determine Z�1Zf for any
f 2 F (S,C)

[Z�1Zf ](m) ¼ 1

L

X

L�1

n¼0

X

L�1

k¼0

f (mþ
L
k)e�i2pnk=L

 !

¼ 1

L

X

L�1

k¼0

X

L�1

n¼0

f (mþ
L
k)e�i2pnk=L

¼ 1

L

X

L�1

n¼0

X

L�1

‘¼0

f (‘)e�i2pn(‘�
L

m)=L where ‘ ¼ mþ
L
k

¼ 1

L

X

L�1

‘¼0

f (‘)
X

L�1

n¼0

e�i2pn(‘�
L

m)=L

 !

:

Observe that when ‘�
L
m ¼ 0 then e�i2pn(‘�

L

m)=L ¼ 1 so

X

L�1

n¼0

e�i2pn(‘�
L

m)=L ¼ L

but when ‘�
L
m 6¼ 0 then

X

L�1

n¼0

e�i2pn(‘�
L

m)=L ¼ 1� e�i2pL(‘�
L

m)=L

1� e�i2p(‘�
L
m)=L

¼ 1� e�i2p(‘�
L

m)

1� e�i2p(‘�
L
m)=L

¼ 1� 1

1� e�i2p(‘�
L
m)=L

¼ 0:

Therefore,

1

L

X

L�1

‘¼0

f (‘)
X

L�1

n¼0

e�i2pn(‘�
L

m)=L

 !

¼ 1

L

X

L�1

‘¼0

f (‘)Ld(‘�
L
m)

¼ f (m)
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and so

Z�1Zf ¼ f :

Hence, Equation 16.12 is the definition for the inverse finite
Zak transform.

16.5.4 Extensions of the Finite Zak Transform

Definition 16.23: [35] The weighted finite Zak transform,
with scalar weights M,N 2 N, of f 2 F (S,C) is defined to be

[Zf ](m, n) ¼
X

k2S
f (mþMk)e�i2pnNk=L

for (m, n) 2 S� S.

Definition 16.24: Let matrix M 2 Sd�d generate a lattice of
points in Sd . The Multidimensional weighted finite Zak
transform of f 2 ‘2(Sd ,C) is defined to be

[Zf ](m,n) ¼
X

k2Sd
f (mþMk)e�i2pkTMn

for (m, n) 2 Sd � Sd .

16.6 Applications

This section discusses some application areas where the Zak
transform is used. At the same time, we insert some important
references.

16.6.1 Mathematics

16.6.1.1 Jacobi Theta Functions

Jacobi’s third theta function, Q3, is defined to be [1],

Q3(z, q) � 1þ 2
X1

k¼1

qk
2

cos (2nz) ¼
X1

k¼�1
qk

2

e�i2kz

for z 2 C and nome q (a special function). ‘‘Theta functions are
important because every one of the Jacobi elliptic functions can
be expressed as the ratio of two theta functions ’’ [1].

If f (t) ¼ exp (�ct2) for constant c > 0 then Zf is related
to Q3 by

[Zf ](t,v) ¼
X

k2Z
e�c(tþk)2e�i2pkv

¼
X

k2Z
e�c(t2þ2ktþk2)e�i2pkv

¼ e�ct2
X

k2Z
e�ck2e�i2k(pv�ict)

¼ e�ct2Q3(pv� ict, e�c):

Articles of interest are [4,13], and the book by Igusa [22].

16.6.1.2 Gabor Expansions

In 1946, Gabor [14] (born Gábor Dénes) suggested the expansion
of a signal into a discrete set of shifted and modulated Gaussian
signals, that is, an expansion of the form

X

k2Z
cke

�(tþk)2e�i2pkt

for some set of scalars {ck}. His idea has various mathematical
implications as well as the signal analysis applications. ‘‘The Zak
transform can be helpful in determining the window function
that corresponds to a given elementary signal and how it can be
used to Gabor’s expansion coefficients’’ [7]. Papers of special
interest are by Gel’fand [15], Weil [38], Auslander and Tolimieri
[4], Brezin [10], Heil and Walnut [19], Hernandez and Weiss
[20], Piao et al. [28], Grochenig [18], Benedetto and Walnut [8],
Benedetto et al. [9].

16.6.2 Physics

The physics community has used the Zak transform to investi-
gate solid-state physics. Zak introduced this representation to
construct a quantum mechanical representation for the motion
of a Bloch electron in the presence of a magnetic or electric field.
Articles of interest are by Zak [39–41], and Janssen [23].

16.6.3 Engineering

16.6.3.1 Time–Frequency Analysis

The time–frequency representation of a signal will reveal more
information than a time representation or frequency representa-
tion. In the articles by Auslander et al. [2,3], they presented an
algorithm to compute coefficients of the finite double sum
expansion of time-varying nonstationary signals and to synthe-
size them from a finite number of expansion coefficients. The
algorithms are based on the computation of the discrete Zak
transform.

Brodzik and Tolimieri [11] proposed a new, time–frequency
formulation of the Gerchberg–Papoulis algorithm for extrapola-
tion of band-limited signals. The new formulation is obtained by
translating the constituent operations of the Gerchberg–Papoulis
procedure, the truncation and the Fourier transform, into the
language of the finite Zak transform. They showed that the use of
the Zak transform results in a significant reduction of the com-
putational complexity of the Gerchberg–Papoulis procedure and
in an increased flexibility of the algorithm.

Other articles of interest are by Janssen [23,27]. There are a
few books of interest in the time–frequency community, in
particular, Cohen [12], Suter [31], and Tolimieri and An [37].
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In [26], O0Hair and Suter define the Zak spectrogram and
show the connection between the short-time Fourier transform
(STFT) and the Zak transform. Figure 16.1 shows the relationship
between old multirate implementation and new multirate imple-
mentation. The point of interest is how the Zak transform is key to
the new implementation.

16.6.3.2 Weighted Fast Fourier Transforms

The main engine of almost every signal processing algorithm is
the finite Fourier transform. The signal processing engineer has
several goals when working with finite Fourier transforms:
(1) make them fast, thus, the fast Fourier transform (FFT); and
(2) make them big (i.e., large N). The chip designer wishes to
make the chip: (1) physically small; (2) small memory needs; and
(3) a low power consumer. So, designing a chip that will compute
the FFT has some conflicting goals.

In the mid-1960s, the problem of computing the FFT of a
vector that was too large to fit into main memory was addressed
by Gentleman and Sande [16]. In the late 1980s the approach was
rediscovered by Bailey [5] for multiprocessor applications of the
FFT algorithm running on hypercubes. The work done by
Gentleman and Bailey, and even the work of Suter and Stevens
[32] emphasized the connection to FFTs. As such, the Zak
transform was not mentioned explicitly. In all of these papers,
derivations were done in terms of FFTs, without realizing
their intimate link to the Zak transform. In contrast, in the
O’Hair and Suter paper [26], the Zak transform was explicitly
mentioned. Also, the goal of the Suter–Stevens research (e.g., see
[21]) was to ‘‘rediscover’’ the Zak transform approach as a
mathematical abstraction to support the design of a low-power,

high-performance asynchronous FFT architecture. Their
research produced a patent that we discuss next.

16.6.3.2.1 Suter–Stevens Patent

The patent by Suter and Stevens [33] uses the weighted finite Zak
transform to perform the finite Fourier transform. We give the
theory to demonstrate the application of the Zak transform.

Recall the finite Fourier transform of x 2 R
N to be

X(m) ¼ [Fx](m) ¼
XN�1

n¼0
x(n)e�i2pm

n
N for m ¼ 0, 1, . . . ,N � 1:

Assume N ¼ N1N2 for N1,N2 2 N. Let

m ¼ m1 þ N1m2,

n ¼ N2n1 þ n2,

where

m1, n1 ¼ 0, 1, . . . ,N1 � 1,

m2, n2 ¼ 0, 1, . . . ,N2 � 1:

The polyphase components of x are xn2 where, for each
n2 ¼ 0, 1, . . . ,N2 � 1,

xn2 (n1) ¼ x(N2n1 þ n2) for n1 ¼ 0, 1, . . . ,N1 � 1:

Old multirate implementation methodology
Degenerate case: decimation factor = 1

New multirate implementation methodology
Generalized case: decimation factor > 1

Short-time Fourier transform Zak transform

Windowed Zak transform

Zak spectrogram

Spectrogram

Weighted spectrogram Weighted Zak spectrogram

Time–frequency distributions Decimated time–frequency distributions

Multirate implementation 

FIGURE 16.1 Interrelations of logical elements in O’Hair and Suter paper [26].
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The finite Fourier transform of xn2 yields for each
m1 ¼ 0, 1, . . . ,N1 � 1,

Xm1 (m2)

¼
XN2�1

n2¼0

XN1�1

n1¼0
xn2 (n1)e

�i2pmn
N

¼
XN2�1

n2¼0

XN1�1

n1¼0
xn2 (n1)exp �i2p

m1þN1m2

N1

� �

N2n1þn2

N2

� �� �

¼
X

N2�1

n2¼0

X

N1�1

n1¼0
xn2 (n1)exp �i2p m2n1þ

m1n1

N1
þm2n2

N2
þm1n2

N1N2

� �� �

¼
X

N2�1

n2¼0

X

N1�1

n1¼0
xn2 (n1)e

�i2pm2n1e
�i2pm1n1

N1 e
�i2pm2n2

N2 e
�i2pm1n2

N1N2

¼
X

N2�1

n2¼0
e
�i2pm1n2

N1N2

X

N1�1

n1¼0
xn2 (n1)e

�i2pm1n1
N1

 !" #

e
�i2pm2n2

N2

¼
X

N2�1

n2¼0
e�i2p

m1n2
N

X

N1�1

n1¼0
x(n1N2þn2)e

�i2pm1n1
N1

 !" #

e
�i2pm2n2

N2

¼X(m2N1þm1):

Observe that

X

N1�1

n1¼0
x(n1N2 þ n2)e

�i2pm1n1
N1

is the weighted finite Zak transform [ZN2x](n2,m1) with weightN2.
This yields the algorithm generated in the patent.

Suter–Stevens Fast Fourier Transform
Algorithm [33]

Given: N ¼ N1N2 for some N1,N2 2 N. Given: f (n) for
n ¼ 0, 1, . . . ,N � 1

1. Compute the N2-weighted finite Zak transform

[ZN2 f ](n2,m1) ¼
X

N1�1

n1¼0
f (n2 þ n1N2)e

�i2pm1
n1
N1

for n2 ¼ 0, 1, . . . ,N2 � 1 and m1 ¼ 0, 1, . . . ,N1 � 1.
2. Scale the answer from 1.

g(m1 þ n2N1) � e�i2p
n2m1
N [ZN2 f ](n2,m1)

for n2 ¼ 0, 1, . . . ,N2 � 1 and m1 ¼ 0, 1, . . . ,N1 � 1.

3. Compute the N1-weighted finite Zak transform of g

[ZN1g](m1,m2) ¼
X

N1�1

n2¼0

g(m1 þ n2N1)e
�i2pm2

n2
N2

for m1 ¼ 0, 1, . . . ,N1 � 1 and m2 ¼ 0, 1, . . . ,N2 � 1

The FFT of f is the vector F

F(m) ¼ F(m1 þm2N1) ¼ ZN1g½ 	(m1,m2)

for m1 ¼ 0, 1, . . . ,N1 � 1 and m2 ¼ 0, 1, . . . ,N2 � 1.
The novelty of this patent is the hardware realization. Other

articles related to this patent are [6,30,34,36].

16.7 Summary

In this section we summarize the properties of the continuous
Zak transform. The functions f , g are complex-valued unless
stated otherwise. The pair (t,v) 2 Q ¼ [0, 1]� [0, 1] unless
stated otherwise.

1. [Z�f ](t,v) ¼ [�Zf ](t,�v).
2. [Zf ](t,v) ¼ [�Zf ](t,�v) for f real-valued.
3. [Zf ](t,v) ¼ [Zf ](�t,�v) for f even.
4. [Zf ](t,v) ¼ �[Zf ](�t,�v) for f odd.
5. Z(af þ bg) ¼ aZ(f )þ bZ(g).

6. [Zf ](t þ 1,v) ¼ ei2pv[Zf ](t,v).
7. [Zf ](t,v) ¼ [�Zf ](t,�v).
8. [Zf ](t þm,v) ¼ e�i2pmv[Zf ](t,v) for m 2 Z.
9. [Zf ](t,vþ n) ¼ [Zf ](t,v) for n 2 Z.
10. Zf *

1 Zg ¼ Z(f * g).
11. Zf *

2 Zg ¼ Z(f � g).
12. Zfk kout ¼ fk kin.
13. Zf jZgh iout ¼ f jgh iin.
14. [Z�1g](t) ¼

Ð 1
0 g(t,v)dv.

15.
Ð 1
0 [Zf ](t,v)e

�i2pvtdt ¼ [Ff ](v).

16. [ZFf ](v, � t) ¼ e�i2ptv[Zf ](t,v).

17. F2(Zf � Zg)(m) ¼ [F(f � g)](m) for m 2 Z, where
[Zg](t,v) � [Zg](t, � v).

18. Zf ¼Pk2Z E
(2)
k Tkf .

19. ZTmf ¼ E(2)
�mZf for m 2 Z.

20. ZTaf ¼ T(1)
a Zf for a 2 R� Z.

21. ZEmf ¼ E(1)
m Zf for m 2 Z.

22. ZEaf ¼ E(1)
a T(2)

a Zf for a 2 R�Z.

23. ZE(2)
m Tmf ¼ Zf for m 2 Z.

24. ZE(2)
m Tnf ¼ E(2)

m�nZf for m, n 2 Z.

25. ZE(2)
a Taf ¼ Zf for a 2 R�Z.

26. ZTmEnf ¼ E(1, 2)
n,m Zf for m, n 2 Z.
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17.1 Introduction

In this chapter we shall present both the discrete-time and
discrete Fourier transforms (DFT). We shall also present their
important properties and introduce examples to elucidate the
mathematical relationships.

17.2 Discrete-Time Fourier Transforms

17.2.1 Definitions of Discrete-Time Fourier
Transform (DTFT)

The DTFT pair is

X(e jv) � ^DT{x(n)} ¼
X1

n¼�1
x(n)e�jvn (17:1)

x(n) � ^�1
DT{X(e

jv)} ¼ 1

2p

ðp

�p

X(e jv)e jvndv (17:2)

where X(e jv) is a periodic function with period 2p. This implies
that all the spectral information contained in the fundamental
interval is necessary for the complete description of the signal.

If x(n) and X(e jv) are complex they have the form:

x(n) ¼ xr(n)þ jxi(n) (17:3)

X(e jv) ¼ Xr(e
jv)þ jXi(e

jv) (17:4)

Using the above equation, (Equations 17.1 and 17.2) become

Xr(e
jv) ¼

X1

n¼�1
(xr(n) cos vnþ xi(n) sin vn) (17:5)

Xi(e
jv) ¼

X1

n¼�1
(xr(n) sin vn� xi(n) cos vn) (17:6)

xr(e
jv) ¼ 1

2p

ðp

�p

Xr(e
jv) cos vn� Xi(e

jv) sin vn
� �

dv (17:7)

xi(n) ¼
1

2p

ðp

�p

Xr(e
jv) sin vnþ Xi(e

jv) cos vn
� �

dv (17:8)

Based on the above equations, Table 17.1 can be easily completed.

Example:

Find the DTFT of the function:

x(n) ¼ e�ann 0 � n � N � 1

0 otherwise

�

(17:9)

Solution

Using Equation 17.1 we obtain

X (e jv) ¼
X

N�1

n¼0

e�anne�jvn

¼ e�ae�jv

(1� e�ae�jv)2
1� Ne�a(N�1)e�jv(N�1)
�

þ (N � 1)e�aNe�jvN
�

(17:10)

The signal x(n) and jX(e jv)j are shown in Figure 17.1 with

a¼ 0.5.
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17.2.2 DTFT Properties

Linearity:

^DT{x1(n)þ x2(n)} ¼ ^DT{x1(n)}þ^DT{x2(n)}

¼ X1(e
jv)þ X2(e

jv) (17:11)

Time shifting:
If ^DT{x(n)}¼X(e jv), then:

^DT{x(n� n0)} ¼ e�jvn0X(e jv) (17:12)

Proof:

X1

n¼�1
x(n� n0)e

�jvn ¼
X1

m¼�1
x(m)e�jv(mþn0)

¼ e�jvn0
X1

m¼�1
x(m)e�jvm

Time reversal: If ^DT{x(n)}¼X(e jv), then:

^DT{x(�n)} ¼ X(e�jv) (17:13)

Convolution: If ^DT{x(n)}¼X(e jv) and ^DT{y(n)}¼Y(e jv),
then:

G(e jv) ¼ ^DT{x(n) * y(n)} ¼ X(e jv)Y(e jv) (17:14)

Proof:

G(e jv) ¼
X1

n¼�1

X1

m¼�1
x(m)y(n�m)e�jnv

¼
X1

n¼�1
x(m)

X1

m¼�1
y(n�m)e�jnv

¼
X1

m¼�1
x(m)

X1

r¼�1
y(r)e�j(mþr)v

¼
X1

m¼�1
x(m)e�jmv

X1

r¼�1
y(r)e�jrv

Frequency shifting: If ^DT{x(n)}¼X(e jv), then:

^DT e jv0nx(n)
� �

¼ X e j(v�v0)
� �

, (17:15)

Time multiplication: If ^DT{x(n)}¼X(e jv), then:

^DT{nx(n)} ¼ �z
dX(z)

dz

	

	

	

	

z¼e jv
(17:16)

For proof, see Chapter 6.
Modulation: If ^DT{x(n)}¼X(e jv), then:

^DT{x(n) cos v0n} ¼
1

2

X

1

n¼�1
x(n)e�j(vþv0)n

þ 1

2

X

1

n¼�1
x(n)e�j(v�v0)

¼ 1

2
X e j(vþv0)
� �

þ 1

2
X e j(v�v0)
� �

(17:17)

TABLE 17.1 Symmetry Properties of the Discrete-Time
Fourier Transforms

Sequence DTFT

Complex signals

x(n) X(e jv)

x*(n) X*(e�jv)

x*(�n) X*(e jv)

xr(n) Xe(e jv)¼
1

2
X(e jv)þX * (e�jv)
� �

jxi(n) Xo(e jv)¼
1

2
X(e jv)�X * (e�jv)
� �

xe(n) ¼
1

2
[x(n)þ x * (�n)] Xr(e

jv)

xo(n) ¼
1

2
[x(n)� x * (�n)] jXi(e

jv)

Real signals

x(n) X(e jv)¼X*(e�jv)

x(n) Xr(e
jv)¼Xr(e

�jv)

x(n) Xi(e
jv)¼�Xi(e

�jv)

x(n) jX(ejv)j ¼ jX(e�jv)j
x(n) angle X(e jv)¼�angle X(e�jv)

xe(n) ¼
1

2
[x(n)þ x(�n)] (real and even) Xr(e

jv) (real and even)

xo(n) ¼
1

2
[x(n)� x(�n)] (real and odd) jXi(e

jv) (imaginary and odd)
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Correlation: If ^DT{x(n)}¼X(e jv) and^DT{y(n)}¼Y(e jv), then:

^DT{x(n) ? y(n)} ¼
X1

n¼�1

X1

m¼�1
x(m)y(m� n)e�jvn

¼
X1

m¼�1
x(m)

X1

n¼�1
y(m� n)e�jvn

¼
X1

m¼�1
x(m)

X1

r¼�1
y(r)e�jv(m�r)

¼
X1

m¼�1
x(m)e�jvm

X1

r¼�1
y(r)e�j(�v)

¼ X(e jv)Y(e�jv) (17:18)

Example:

Find the autocorrelation of the signal

x(n)¼ an u(n) for jaj< 1.

Solution:

Since FDT{x(n)}¼
P1

n¼0

ane�jvn ¼
P1

n¼0

(ae�jv)n ¼ 1
1�ae�jv , then from

Equation 17.18

^DT{x(n) * y(n)} ¼
1

1� ae�jv

1

1� ae�jv
¼ 1

1� 2a cos vþ a2

Parseval’s theorem: If ^DT{x(n)}¼X(e jv) and ^DT{y(n)}¼
Y(e jv), then:

X1

n¼�1
x(n)y * (n) ¼ 1

2p

ðp

�p

X(e jv)Y * (e jv)dv (17:19)

Proof:

1

2p

ðp

�p

X1

n¼�1
x(n)e�jnv

" #

Y * (e jv)dv

¼
X1

n¼�1
x(n)

1

2p

ðp

�p

Y*(e jv)e�jvdv

For the case x(n)¼ y(n), then:

X1

n¼�1
jx(n)j2 ¼ 1

2p

ðp

�p

jX(e jv)j2dv (17:20)

Multiplication of sequence: If ^DT{x(n)}¼X(e jv) and
^DT{y(n)}¼Y(e jv), then:

^DT{x(n)y(n)} ¼
X1

n¼�1
x(n)y(n)e�jvn

¼
X1

n¼�1
x(n)

1

2p

ðp

�p

Y(e jl)e jlndl

2

4

3

5e�jvn

¼ 1

2p

ðp

�p

Y(e jl)dl
X1

n¼�1
x(n)e�j(v�l)n

¼ 1

2p

ðp

�p

Y(e jl)X(e j(v�l))dl

¼ 1

2p
Y(e jv) *X(e jv) (17:21)

Differentiation in the frequency domain: If ^DT{x(n)}¼X(e jv),
then:

dX(e jv)

dv
¼ d

dv

X1

n¼�1
x(n)e�jvn

" #

¼ �j
X1

n¼�1
nx(n)e�jvn ¼ �j^DT{nx(n)} (17:22)

Table 17.2 presents the DTFT properties and Table 17.3 presents
DTFT of some typical signals.

TABLE 17.2 Properties of the Fourier Transform
for Discrete-Time Signals

Property
Time Domain
x(n), y(n) Frequency Domain X(e jv), Y(e jv)

Linearity ax(n)þ by(n) aX(e jv)þ bY(e jv)

Time shifting x(n� n0) e�jvn0X(e jv)

Time reversal x(�n) X(e�jv)

Convolution x(n) ? y(n) X(e jv) Y(e jv)

Correlation x(n) ? y(n) X(e jv) Y(e�jv)¼X(e jv) Y*(e jv)

Frequency shifting e jv0nx(n) X(e j(v�v0))

Modulation x(n) cosv0n
1

2
X(e j(vþv0)), þ 1

2
X(e j(v�v0))

Multiplication x(n)y(n)
1

2p

ðp

�p

X(e jl)Y(e j(v�l))dl

Differentiation in the
frequency domain

nx(n) j
dX(e jv)

dv

Conjugation x*(n) X*(e�jv)

Parseval’s theorem
P1

n¼�1
x(n)y(n) ¼ 1

2p

ðp

�p

X(e jv)Y * (e jv)dv
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17.2.3 Finite Sequences

Practical considerations usually dictate that we deal with trun-
cated series. We must, therefore, consider the effect of the miss-
ing data, if, for example, the time series, x(n), is defined in the
whole interval 0� n<1.

The truncated Fourier transform is defined by

XN(e
jv) ¼

XN�1

n¼0

x(n)e�jvn (17:23)

We introduce the Fourier transform of x(n) in this expression
so that:

XN(e
jv) ¼

XN�1

n¼0

1

2p

ðp

�p

X(e jv0
)e jv0ndv0

2

4

3

5e�jvn

¼ 1

2p

ðp

�p

X(e jv0
)
XN�1

n¼0

e�j(v�v0)ndv0

¼ 1

2p

ðp

�p

X(e jv0
)W e j(v�v0)


 �

dv0 ¼ 1

2p
X(e jv) *W(e jv)

(17:24)

where

W(e jv) ¼
X

N�1

n¼0

e�jvn ¼ e�jv(N�1)=2 sin (vN=2)

sin (v=2)
(17:25)

the transform function W(e jv) is the rectangular window trans-

form. We observe that with a finite data sequence, a convolution
operation appears. From Equation 17.24 we observe that to
find X(e jv) we require W(e jv) to be a delta function in the
interval �p�v�p. However, the amplitude of jW(e jv)j ¼ sin
(vN=2)=sin(v=2) has the properties of a delta function and
approaches it as N ! 1. Thus, the longer the time-data
sequence that we observe, less distortion will occur in the spec-
trum of X(e jv).

Because ^�1
DT{pd(v�v0)þpd(vþv0)}¼ cosv0n, jvj< p,

then its truncated Fourier transform is given by

XN(e
jv) � ^DT{ cosv0n} ¼ e�j(v�v0)(N�1)=2 sin [(v� v0)N=2]

sin [(v� v0)=2]

þ e j(v�v0)(N�1)=2 sin [(vþ v0)N=2]

sin [(vþ v0)=2]
(17:26)

This indicates that instead of delta functions at v¼�v0, two
sine functions appear. This phenomenon is known as the smear-
ing effect.

TABLE 17.3 DTFTs of Some Typical Discrete-Time Signals

Time Function x(n) Magnitude of Spectrum jX(e jv)j
1. x(n)¼ d(n) X(e jv)¼ 1

1 2
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2. x(n)¼ u(n)� u(n�N� 1) X(e jv) ¼ e�j
v
2 (N�1) sin

vN

2
sin

v

2

.

35
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1
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3. x(n) ¼ sinv0n

pn
v0j j < p

n ¼ 0, �1, �2, . . .

X(e jv) ¼ 1 vj j < v0

0 v0 � vj j � p

�
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4. x(n)¼ anu(n) X(e jv) ¼ 1

1� ae�jv
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5. x(n) ¼ an cos nv0u(n),
jv0j < p

X(e jv) ¼ 1

2

1
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17.2.4 Frequency Response of LTI Discrete
Systems

The Nth-order discrete system is characterized by the difference
equation:

y(n)þ a1y(n� 1)þ � � � þ aN�1y(n� N þ 1)

¼ b0x(n)þ b1x(n� 1)þ � � � þ bN�1x(n� N þ 1) (17:27)

Assuming that the transforms of y(n), x(n), and the system
impulse response h(n) exist, the above equation becomes:

H(e jv) ¼ Y(e jv)

X(e jv)
¼

PN�1
i¼0 bie

�jvi

1þ
PN�1

i¼1 aie�jvi
(17:28)

where H(e jv) is its transfer function, a periodic function with
period 2p.

17.2.5 Approximation to Continuous-Time
Fourier Transforms

The Fourier transform of a continuous time function is
given by

X(V) ¼
ð1

�1

x(t)e�jVtdt (17:29)

where V is used to designate the frequency of a continuous-time
function. We can approximate the above integral in the form:

X(V) ¼
X1

n¼�1

ðnTþT

nT

x(t)e�jVtdt ffi
X1

n¼�1
Tx(nt)e�jVTn (17:30)

By comparing this equation with Equation 17.2, we observe the
following correspondence:

x(n) ¼ Tx(nT) (17:31)

v ¼ VT (17:32)

Therefore, the following steps can be taken to approximate the
continuous-time Fourier transform:

1. Select the time interval T such that X(V) ffi 0 for all
jVj>p=T

2. Sample x(t) at times, nT, to obtain x(nT)
3. Compute the discrete time Fourier transform using the

sequence {Tx(nT)}
4. The resulting approximation is then: X(V) ffi X(e jv) for

�p=T<V<p=T

17.3 The Discrete Fourier Transform

17.3.1 Definitions of the Discrete Fourier
Transform

The discrete Fourier transform pair is defined by

X(k) � ^D{x(n)} ¼
XN�1

n¼0

x(n)e�j2pkn=N , k ¼ 0, 1, 2, . . . ,N � 1

(17:33)

x(n) � ^�1
D {X(k)} ¼ 1

N

XN�1

k¼0

X(k)e j2pkn=N , n ¼ 0, 1, 2, . . . ,N � 1

(17:34)

where X(k) � X(2pk=N). If we substitute Equation 17.33 in
Equation 17.34, we obtain

1

N

XN�1

k¼0

XN�1

m¼0

x(m)e�j2pkm=N

" #

e j2pkn=N

¼ 1

N

XN�1

m¼0

x(m)
XN�1

k¼0

e�j2p(m�n)k=N

But the last summation is equal to zero form 6¼ n and equal to one
for m¼ n and, thus, the last expression becomes x(n)N=N¼ x(n)
which proves that Equations 17.33 and 17.34 are the DFT pair.

17.3.1.1 DFT as a Linear Transformation

Equations 17.23 and 17.24 can be considered as linear transform-
ations for the sequences x(n) and X(k). Let xN be an N-point
vector of the signal sequence and XN is an N-point sequence of
the frequency samples. We can write Equation 17.33 in the form

XN ¼ WNxN (17:35)

where

XN ¼

X(0)

X(1)

.

.

.

X(N� 1)

2

6
6
6
6
4

3

7
7
7
7
5

, xN ¼

x(0)

x(1)

.

.

.

x(N�1)

2

6
6
6
6
4

3

7
7
7
7
5

,

WN ¼

1 1 1 � � � 1

1 e�j2p=N (e�j2p=N)2 (e�j2p=N )N�1

.

.

.
.
.
.

1 (e�j2p=N )N�1 (e�j2p=N)2N�1 � � � (e�j2p=N )(N�1)(N�1)

2

6
6
6
6
4

3

7
7
7
7
5

(17:36)

If the inverse of WN exists, then Equation 17.35 gives

xN ¼ W�1
N XN (17:37)
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which is the inverse discrete Fourier transform (IDFT). The
matrix WN is symmetric and has the properties

W�1
N ¼ 1

N
W*

N , WNW
*
N ¼ NIN (17:38)

where
IN is an N3N identity matrix
WN is an orthogonal (unitary matrix)

17.3.2 Properties of the DFT

Periodicity: If x(n) and X(k) are DFT pair, then

x(nþ N) ¼ x(n) for all n (17:39)

X(kþ N) ¼ X(k) for all k (17:40)

which can easily be proved from Equations 17.33 and 17.34

Linearity: If ^D{x(n)}¼X(k) and ^D{y(n)}¼Y(k), then

^D{ax(n)þ by(n)} ¼ aX(k)þ bY(k) (17:41)

This is easily proved using Equations 17.33 and 17.34 and apply-
ing the linearity property of the summation operator.

Circular symmetries: The DFT of finite duration sequence, x(n)
for 0� n�N� 1, is equivalent to N-point DFT of the periodic
sequence

xp(n) ¼
X1

‘¼�1
x(n� ‘N) (17:42)

The shifted form of this equation is

xsp ¼ xp(n� k) ¼
X1

‘¼�1
x(n� k� ‘N) (17:43)

and from this we can define the new finite-duration sequence

xs(n) ¼ xsp 0 � n � N � 1
0 otherwise

�

(17:44)

which is related to the original sequence x(n) by a circular shift.
Hence, Equation 17.44 can be written in the form

xs ¼ x(n� k, modulo N) � x((n� k))N (17:45)

If an N-point sequence is folded; then modulo-N operators are
the argument x(�n) is defined by

x((�n)) ¼ x(0) n ¼ 0
x(N � n) 0 � n � N � 1

�

(17:46)

and is called a circular folding. The sequence x(n) is folded
counterclockwise and the points n¼ 0 and n¼N overlap. The
DFT is given by

^D{x((�n))N} ¼ X((�k))N
X(0) k ¼ 0

X(N � k) 1 � k � N � 1

�

(17:47)

For the circular shift of xs(n) with k¼ 2 and N¼ 4, we obtain
xs(n)¼ x((n� 2))4 and, thus,

xs(0) ¼ x((�2))4 ¼ x(2) xs(1) ¼ x((�1))4 ¼ x(3)

xs(2) ¼ x((0))4 ¼ x(0) xs(3) ¼ x((1))4 ¼ x(1)

Circularly even: x(N � n) ¼ x(n) 1 � n � N � 1 (17:48)

Circularly odd: x(N � n) ¼ �x(n) 1 � n � N � 1 (17:49)

Circularly even periodic: xp(n) ¼ xp(�n) ¼ xp(N � n)

(17:50)

Circularly odd periodic: xp(n) ¼ �xp(�n) ¼ �xp(N � n)

(17:51)

Conjugate even periodic: xp(n) ¼ xp*(N � n) (17:52)

Conjugate odd periodic: xp(n) ¼ �xp*(N � n) (17:53)

The above suggests the following relationships:

xp(n) ¼ xpe(n)þ xpo(n) (17:54)

xpe(n) ¼
1

2
xp(n)þ xp*(N � n)
� �

xpo(n) ¼
1

2
xp(n)� xp*(N � n)
� �

(17:55)

17.3.2.1 Symmetry Properties of the DFT

Let an N-point sequence {x(n)} and its DFT are complex valued.
Hence, we can express them in the form

x(n) ¼ xr(n)þ jxi(n) 0 � n � N � 1 (17:56a)

X(k) ¼ Xr(k)þ jXi(k) 0 � k � N � 1 (17:56b)

Introducing these relationships into Equations 17.33 and 17.34,
we obtain

Xr(k) ¼
X

N�1

n¼0

xr(n) cos
2pkn

N
þ xi(n) sin

2pkn

N

� 

(17:57a)

Xi(k) ¼ �
X

N�1

n¼0

xr(n) sin
2pkn

N
� xi(n) cos

2pkn

N

� 

(17:57b)
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xr(k) ¼
1

N

XN�1

n¼0

Xr(k) cos
2pkn

N
� Xi(k) sin

2pkn

N

� 

(17:58a)

xi(k) ¼
1

N

X

N�1

k¼0

Xr(k) sin
2pkn

N
þ Xi(k) cos

2pkn

N

� 

(17:58b)

17.3.2.2 Real-Valued Sequences

If the sequence x(n) is real, it follows directly from theDFT pair that

X(N � k) ¼ X*(k) ¼ X(�k) (17:59)

As a result of the above equation, we obtain

X(N � k)j j ¼ X(k)j j, angle{X(N � k)} ¼ �angle{X(k)}

(17:60)

Since xi(n)¼ 0, the x(n) can be determined by Equation 17.58a.

17.3.2.3 Real and Even Sequences

If x(n) is real and even; that is

x(n) ¼ x(N � n), 0 � n � N � 1 (17:61)

then Equation 17.57b yields Xi(k)¼ 0 and, hence, the DFT
becomes

X(k) ¼
X

N�1

n¼0

x(n) cos
2pkn

N
, 0 � k � N � 1 (17:62)

which is real and even. In addition, Xi(k)¼ 0 and the IDFT
reduces to

x(n) ¼ 1

N

X

N�1

k¼0

X(k) cos
2pkn

N
, 0 � n � N � 1 (17:63)

17.3.2.4 Real and Odd Sequences

If x(n) is real and odd (xi(n)¼ 0); that is

x(n) ¼ �x(N � n) (17:64)

then Equation 17.57a yields Xr(k)¼ 0, and hence, the DFT
becomes (see also Equation 17.56b)

X(k) ¼ �j
X

N�1

n¼0

x(n) sin
2pkn

N
, 0 � k � N � 1 (17:65)

which is purely imaginary and odd. Since Xr(k)¼ 0, the IDFT
reduces to

x(n) ¼ j
1

N

X

N�1

k¼0

X(k) sin
2pkn

N
, 0 � n � N � 1 (17:66)

17.3.2.5 Imaginary Sequences

If x(n)¼ jxi(n), Equations 17.57a and 17.56b reduce to

Xr(k) ¼
X

N�1

n¼0

xi(n) sin
2pkn

N
(17:67a)

Xi(k) ¼
X

N�1

n¼0

xi(n) cos
2pkn

N
(17:67b)

Xr(k) is odd and Xi(k) is even. If xi(n) is odd, Xi(k)¼ 0 and,
hence, X(k) is purely real. If xi(n) is even, Xr(k)¼ 0 and, hence
X(k) is purely imaginary.

The symmetry properties are given in Table 17.4.

17.3.2.6 Circular Convolution

Let x1(n), x2(n), and x3(n) are three sequences of length N. Then,
if we take the inverse transform of the DFT product X1(k)X2(k),
we obtain:

x3(n) ¼
1

N

X

N�1

k¼0

X1(k)X2(k)e
2pnk
N , 0 � n � N � 1 (17:68)

Substituting the inverse transform of X1(k) and X2(k) in Equation
17.68, we obtain the relation

x3(m) ¼
X

N�1

n¼0

x1(n)x2((m� n))N , 0 � m � N � 1 (17:69)

TABLE 17.4 Symmetries of DFT

N-Point Sequence x(n) 0� n�N� 1 DFT X(k) 0� k�N� 1

Complex signals

x(n) X(k)

x*(n) X*(N� k)

x*(N� n) X*(k)

xr(n) Xe(k) ¼
1

2
[X(k)þ X?(N � k)]

jxi(n) Xo(k) ¼
1

2
[X(k)� X?(N � k)]

xe(n) ¼
1

2
[x(n)þ x?(N � n)] Xr(k)

xo(n) ¼
1

2
[x(n)� x?(N � n)] jXi(k)

Real signals

x(n) X(k)¼X*(N� k)

x(n) Xr(k)¼Xr(N� k)

x(n) Xi(k)¼�Xi(N� k)

x(n) jX(k)j ¼ jX(N� k)j
x(n) angle {X(k)}¼ angle {X(N� k)}

xe(n) ¼
1

2
[x(n)þ x(N � n)] Xr(k)

xo(n) ¼
1

2
[x(n)� x(N � n)] jXi(k)
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Example:

The circular convolution of x1(n)¼ {1, 2, 1, 4}, x2(n)¼ {1, 2, 3, 4}

is found as follows

x3(m) ¼
XN�1

n¼0

x1(n)x2((m� n))N , x3(0) ¼
XN�1

n¼0

x1(n)x2((�n))N

¼ x1(0)x2(0)þ x1(1)x2(4� 1)þ x1(2)x2(4� 2)

þ x1(3)x2(4� 3) ¼ 1 � 1þ 2 � 4þ 1 � 3þ 4 � 2 ¼ 20, etc:

Therefore, we write

^D{x1(n)� x2(n)} ¼ X1(k)X2(k), 0 � k � N � 1 (17:70)

17.3.2.7 Time Reversal

If ^D{x(n)}¼X(k), then

^D{x((�n))N} ¼ ^D{x(N � n)} ¼ X((�k))N
¼ X(N � k), 0 � k � N � 1 (17:71)

Proof:

^D{x(N � n)} ¼
XN�1

n¼0

x(N � n)e�j2pkn=N ¼
XN�1

m¼0

x(m)e�j2pk(N�m)=N

¼
XN�1

m¼0

x(m)e j2pkm=N ¼
XN�1

m¼0

x(m)e�j2pm(N�k)=N

¼ X(N � k)

17.3.2.8 Circular Time Shift

If ^D{x(n)} ¼ X(k), then

^D{x((n� ‘))N } ¼ X(k)e�j2pk‘=N (17:72)

Proof:

^D{x((n� ‘))N } ¼
X‘�1

n¼0

x((n� ‘))Ne
�j2pk‘=N

þ
XN�1

n¼‘

x(n� ‘)e�j2pkn=N

¼
X‘�1

n¼0

x(n� ‘þ n)Ne
�j2pk‘=N

þ
XN�1

n¼‘

x(n� ‘)e�j2pkn=N

¼
XN�1

m¼N�‘

x(m)e�j2pk(mþ‘)=N

þ
XN�1�‘

m¼0

x(m)e�j2pk(mþ‘)=N

¼
XN�1

m¼0

x(m)e�j2pk(mþ‘)=N ¼ X(k)e�j2pk‘=N

17.3.2.9 Circular Frequency Shift

If ^D{x(n)} ¼ X(k), then

^D x(n)e j2p‘n=N
n o

¼ X((k� ‘))N (17:73)

17.3.2.10 Complex-Conjugate

If ^D{x(n)} ¼ X(k), then

^D x*(n)f g ¼ X* (�k)ð ÞN¼ X*(N � k) (17:74)

and since

1

N

XN�1

k¼0

X?(k)e j2pkn=N ¼ 1

N

XN�1

k¼0

X(k)e j2pk(N�n)=N

" #*

implies that

x? (� n)ð ÞN ¼ x?(N � n) ¼ ^�1
D X?(k)f g (17:75)

17.3.2.11 Circular Correlation

If ^D{x(n)}¼X(k) and ^D h(n)f g ¼ H(k), then the DFT of a
circular cross-correlation is

^D

XN�1

n¼0

x(n)h?((n� ‘))N

( )

¼ X(k)H?(k) (17:76)

Proof: The correlation of Equation 17.76 can be represented as
a circular convolution. Hence,

^D x(m)� h*(�m)f g ¼ X(k)H*(k) (17:77)

where Equation 17.70 was used. Furthermore, if x(n)¼ h(n), an
autocorrelation case, then

^D x(m)� x*(�m)f g ¼ X(k)j j2 (17:78)

17.3.2.12 Product

If ^D x(n)f g ¼ X(k) and ^D h(n)f g ¼ H(k), then

^D{x(n)h(n)} ¼
1

N
X(k)� H(k) (17:79)

By interchanging the roles of time and frequency in the expres-
sion for the circular convolution, Equation 17.79 results.
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17.3.2.13 Parseval’s Theorem

If ^D x(n)f g ¼ X(k) and ^D h(n)f g ¼ H(k), then

XN�1

n¼0

x(n)h?(n) ¼ 1

N

XN�1

k¼0

X(k)H?(k) (17:80)

Proof:
PN�1

n¼0 x(n)h?((n� ‘))N ¼ 1
N

PN�1
k¼0 X(k)H?(k)e j2pk‘=N

from Equation 17.76, taking its inverse transform.
Setting ‘ ¼ 0, we obtain Equation 17.80.
Table 17.5 presents the DFT properties.
Table 17.6 presents several DFT’s of specific functions. The

functions in this chapter were calculated using MATLAB1

software.

TABLE 17.5 Properties of DFT

Property
Time Functions

x(n), h(n)
Frequency Domain
Functions X(k), H(k)

Linearity ax(n)þ bh(n) aX(k)þ bH(k)

Periodicity x(n)¼ x(nþN) X(k)¼X(kþN)

Time reversal x(N� n) X(N� k)

Circular time shift x((n� ‘))N X(k)e�j2pk‘=N

Circular frequency shift x(n)e j2p‘n=N X((k� ‘))N
Complex conjugate x*(n) X*(N� k)

Circular convolution x(n) � h(n) X(k) H(k)

Circular correlation x(n) � h*(�n) X(k) H*(k)

Multiplication x(n) h(n)
1

N
X(k)�H?(k)

Symmetry
1

N
X(n) x(�k)

Parseval’s theorem
XN�1

n¼0

x(n)h?(n) ¼ 1

N

XN�1

k¼0

X(k)H?(k)

TABLE 17.6 Table of DFTs of Functions

1. f(n)¼ d(n� n0) 0� n0<N� 1, n0¼ integer F(k) ¼ e�j2pn0k=N , 0 � k � N � 1

0� n<N� 1

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0
0 10 20

f(n)

30 40 0 10 20

Abs[F(k)]

30 40

0.40.08

0.30.06

0.20.04

0.10.02

0
0 10 20

a = 0.5a = 0.5

Abs[F(k)]f(n)

30 40
0

0 10 20 30 40

1

0.5

0

–0.5

–1

1

0.5

0

–0.5

–1
0 10 20 30

n0 = 5

Im[F(k)]

400 10 20

Re[F(k)]

n0 = 5

30 40

0.4 0.3

0.2

0.1

0

–0.1

–0.2

–0.3

–0.4
0 10 20 30 40

0.3

0.2

0.1

0

–0.1
0 10

a = 0.5
a = 0.5

Re[F(k)] Im[F(k)]

20 30 40

1 35

30

25

20

15

10

5

0
0 10 20

k0 = 5

30 40

0.8

0.6

0.4

0.2

0
0 10 20 30

k0 = 5

Abs[f(n)] Abs[F(k)]

40

40 1

0.5

0

–0.5

–1

30

20

10

0
0 10 20 30 40 0 10 20

k0 = 5k0 = 5

Im[F(k)]Re[F(k)]

30 40

2. f(n)¼ exp(j2pk0=N), 0< k0<N� 1 F(k)¼ d(k� k0), 0� k�N� 1

k0¼ integer, 0� n�N� 1

1

0.8

0.6

0.4

0.2

0
0 10 20

f(n) Abs[F(k)]
35

30

25

20

15

10

5

0
0 10 20 30 4030 40

35

30

25

20

15

10

5

0
0 10 20

Re[F(k)] Im[F(k)]

30 40 0
–1

–0.5

0

0.5

1

10 20 30 40

(continued)
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TABLE 17.6 (continued) Table of DFTs of Functions

3. f(n)¼ u(n)� u(n�N), 0� n�N� 1 F(k) ¼ 1 k ¼ 0
0 otherwise

n

0
–1

–0.5

0

0.5

1

0
0 10 20

Abs[F(k)]f(n)

30 40

5

10

15

20

10 20 30 40

20

15

10

5

0
0 10 20

Re[F(k)] Im[F(k)]

30 40 0
–1

–0.5

0

0.5

1

10 20 30 40

4. f(n)¼ cos(2pk0n=N), 0< k0<N� 1 F(k)

N

2
d(k� k0) k ¼ k0

N

2
d[k� (N � k0)] k ¼ N � k0 .

8

>
>
<

>
>
:k0¼ integer, 0� n�N� 1

1 35

30

25

20

15

10

5

0

0.5

0

–0.5

–1
0 10 20 30 40 0 10 20

Abs[F(k)]f(n)

30 40 00
0

5

10

15

20

25

30

35

10 20 30 40
–1

–0.5

0

0.5

1
Im[F(k)]Re[F(k)]

10 20 30 40

5. f(n)¼ cos(pn), 0� n�N� 1 F(k) ¼ Nd k� N

2

� �

, 0 � k � N � 1

1 14

12

10

8

6

4

2

0

0.5

0

–0.5

–1
0 10 20 30 40 0 10 20

Abs[F(k)]f(n)

30 40

1.4

1.2

1

0.8

0.6

0.4

0.2

0

15

10

5

0

–5

–10

–15
0 10 20 30 400 10 20

Re[F(k)] Im[F(k)]

30 40

6. f (n) ¼ cos
pn

N


 �

, 0 � n � N � 1

F(k) ¼ 1

2

1� exp [�j(2pk� p)]

1� exp �j
2pk

N
� p

N

� �� 

þ 1

2

1� exp [�j(2pkþ p)]

1� exp �j
2pk

N
þ p

N

� ��  , 0 � k � N � 1

1

0.8

0.6

0.4

0.2

0

20

15

10

5

0
0 10 20 30 400 10 20

f (n) Abs[F(k)]

30 40

20

15

10

5

0

–5
0 10 20 30 40 0

–6

–4

–2

0

2

4

6
Im[F(k)]Re[F(k)]

10 20 30 40
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TABLE 17.6 (continued) Table of DFTs of Functions

7. f (n) ¼ n=N , 0 � n � N � 1 F(k) ¼
N

2
k ¼ 0

j
cos (kp) sin (kp=N)

2 sin2 (kp=N)
0 < k � N � 1

8

>
<

>
:

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40 0

0

1

2

3

4

5

6
Abs[F(k)]f(n)

m = 5m = 5

10 20 30 40

6

5

4

3

2

1

0

–1
0 10 20 30 40 0

–4

–2

0

2
m = 5m = 5

Im[F(k)]Re[F(k)]
4

10 20 30 40

8. f (n) ¼ 1 0 � n � m
0 m < n � N � 1

�

F(k) ¼ exp �j
pkm

N

� � sin
pk(mþ 1)

N

� �

sin
pk

N

, 0 � k � N � 1

1

0.8

0.6

0.4

0.2

0 0
0403020

f(n) Abs[F(k)]

100 10 20 30 40

5

10

15

20 20 15

10

5

0

–5

–10

–15
0 10 20 30

Im[F(k)]

40

15

10

5

0
0 10 20

Re[F(k)]

30 40

9. f (n) ¼
1 0 � n � N

2
� 1

0
N

2
< n � N � 1

8

>

>

<

>

>

:

F(k) ¼ exp �j
pk

N
(N � 1)

�  sin
pk

2

� �

sin
pk

N

� � , 0 � k � N � 1

10. f (n) ¼ exp (�an=N), a ¼ positive constant

0 � n � N � 1
F(k) ¼ 1� e�ae�j2pk

1� e�a=Ne�j2pk=N
, 0 � k � N � 1

1

0.8

0.6

0.4

0.2

0

14

12

10

8

6

4

2

0
0 10 20

Abs[F(k)]f(n)

30 400 10 20 30 40

14

12

10

8

6

4

2

0
0 10 20

a = 2.5

5

0

–5
0 10 20 30 40

Re[F(k)] Im[F(k)]

a = 2.5

30 40

11. f (n) ¼ 1� n

N � 1
, 0 � n � N � 1

F(k) ¼ 1� e�j2pk

1� e�j2pk=N
� 1

N � 1

e�j 2pkN

h

1� Ne�j 2pk(N�1)
N þ (N � 1)e�j2pk 1� e�j 2pkN


 �2
� 

, 0 � k � N � 1

�

1 20

15

10

5

0
0 10 20 30 40

0.8

0.6

0.4

0.2

0
0 10 20 30

f(n) Abs[F(k)]

40

20 6

4

2

0

–2

–4

–6
0 10 20

Im[F(k)]Re[F(k)]

30 40

15

10

5

0
0 10 20 30 40

(continued)
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TABLE 17.6 (continued) Table of DFTs of Functions

12. f (n) ¼ ne�an, 0 � n � N � 1

a ¼ positive constant
F(k) ¼ e�ae�j 2pkN

1� e�ae�j 2pkN


 �2

	 1� Ne�a(N�1)e�j
2pk(N�1)

N þ (N � 1)e�aNe�j
2pk
N

� �

,

0 � k � N � 1

0.8

0.6

0.4

0.2

0

4

3

2

1

0
0 10 20

Abs[F(k)]

30 400 10 20

f (n)

30 40

4

3

2

1

0

–1
0 10

a = 0.5

Re[F(k)]

20 30 40

3

2

1

0

–1

–2

–3
0 10 20 30 40

a = 0.5

Im[F(k)]

13. f (n) ¼ e�an cos
pn

N


 �

, 0 � n � N � 1

a ¼ positive constant

F(k) ¼ 1

2

1� e�aNe�jpe�j2pk

1� e�ae�jpNe�j 2pkN
þ 1

2

1� e�aNe jpe�j 2pk

1� e�ae j
p
Ne�j 2pkN

0 � k � N � 1

1.2 2.5

2

1.5

1

0.5

0
0 10 20 30 40

1

0.8

0.6

0.4

0.2

0

–0.2
0 10 20

a = 0.5

f (n)

a = 0.5

Abs[F(k)]

30 40

2.5 1

0.5

0

–0.5

–1

2

1.5

1

0.5

0
0 10 20

a = 0.5

Re[F(k)]

a = 0.5

Im[F(k)]

30 40 0 10 20 30 40

14. f (n) ¼ ean sin
pn

N


 �

, 0 � n � N � 1

a ¼ positive constant

F(k) ¼ 1

2j

1� e�aNe jpe�j2pk

1� e�ae j
p
Ne�j2pkN

� 1

2j

1� e�aNe�jpe�j2pk

1� e�ae�jpNe�j2pkN

0 � k � N � 1
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Discrete Fourier transform (DFT) has found tremendous applica-
tions in almost all fieldsmainly because it can be used tomatch the
multiple frequencies of a stationary signal with multiple harmon-
ics. In many applications, wideband and nonstationary signals,
however, often occur. One of the typical examples of such signals
is chirp-type signals that are usually encountered in radar signal
processing, such as synthetic aperture radar (SAR) and inverse
SAR (ISAR) imaging. Due to the motion of a target, the radar
return signals are usually chirps and their chirp rates include the
information about the target, such as the location and the velocity.

In this chapter, we study discrete chirp-Fourier transform
(DCFT), which is analogous to the DFT. Besides the multiple
frequency matching similar to the DFT, the DCFT can be used
to match the multiple chirp rates in a chirp-type signal with
multiple chirp components. We show that, when the signal length
N is prime, the magnitudes of all the sidelobes of the DCFT of a
linear chirp signal are 1 while themagnitude of themainlobe of the
DCFT is

ffiffiffiffi

N
p

. With this result, an upper bound for the number of
the detectable chirp components using the DCFT is provided in
terms of signal length, signal, and noise powers.We also show that
the N-point DCFT performs optimally when N is a prime.

18.1 Introduction

Discrete Fourier transform (DFT) has been applied in almost all
fields. The main reason is because the DFT matches the frequen-
cies in a signal of multiple harmonics. In other words, if a signal
has only several harmonics, theDFT of this signal has and only has
peaks at the frequencies of the signal harmonics and the peak
values correspond to the signal powers at the corresponding
harmonic frequencies. Therefore, the DFT can be used to
estimate the Fourier spectrum of a signal, which is known as

spectrum estimation that plays an important role in digital signal
processing applications. However, in order to have the DFT work
well, a signal has to be stationary. Although the stationarity
assumption applies in many applications, nonstationary signals
often occur in some real applications. Examples of nonstationary
signals are chirp-type signals that are encountered in radar signal
processing, such as in synthetic aperture radar (SAR) and inverse
SAR (ISAR) imaging, see for example, Refs. [1,2]. In SAR imaging,
when targets are moving, the radar return signals are chirps, in
particular linear chirps when the velocities of the moving targets
are constant. In ISAR imaging, when targets have maneuvering
motions, the radar return signals are also chirps. It is well-known
in the SAR and ISAR literature that the direct DFT applications to
the radar return signals shall smear the SAR or ISAR images of the
targets. Furthermore, the chirp rates in the radar return signals
include the important information about the moving targets, such
as the velocities and the location parameters of the moving targets
in SAR imaging. Therefore, the estimation of the chirp rates are
critically important in these applications.

For chirp-type signals, besides frequencies of multiple har-
monics there are chirp rates of multiple chirps, and the DFT
can be used only to match the multiple frequencies, but the
multiple chirps in this case may even reduce the resolution of
the frequency matching. The intent of this chapter is to general-
ize the DFT and its properties to discrete chirp-Fourier transform
(DCFT) [3] and corresponding properties, which is used not only
to match the multiple frequencies but also to match the multiple
chirp rates, simultaneously.

It should be noticed that there have been many researches on
chirp-type signals and their chirp rate estimations, such as high-
order ambiguity functions [4–6], adaptive chirplet transforms [7],
and other polynomial phase signal estimations [8–12]. Also, the

This work was supported in part by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-05-1-0161 and a DEPSCoR Grant
W911NF-07-0422 through ARO.
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chirp z-transform was proposed in Ref. [13] for the efficient DFT
implementation but not for chirp rate estimation. However, the
goal of this chapter is for chirp signal analysis and therefore
different. We first generalize the DFT to the DCFT and then
study the properties of the DCFT analogous to the DFT.
In particular, we show that, when signal length N is a prime,
the magnitudes of all the sidelobes (i.e., when the chirp rate is not
matched) of the DCFT of a single linear chirp signal without
noise are 1 while the magnitude of the mainlobe (i.e., when the
chirp rate and the harmonic frequency are both matched) of the
DCFT is

ffiffiffiffi

N
p

. The mainlobe and sidelobe magnitude ratio in this
case is

ffiffiffiffi

N
p

, which is shown to be optimal for a given length N. In
other words, the DCFT performs optimally in the matching of
the constant frequency and the chirp rate, when the signal length
N is a prime. When the chirp rate is precisely matched, the DCFT
is reduced to the DFT. Notice that, for any signal length N, the
magnitudes of all the sidelobes of the DFT of a single harmonic
signal without noise are 0 while the magnitude of the mainlobe of
the DFT is

ffiffiffiffi

N
p

. Themainlobe and sidelobemagnitude ratio in this
case is infinity, which tells us thatNmany different harmonics can
be estimated using the DFT when there is no noise. In general,
unlike the DFT for the harmonic estimation, less than

ffiffiffiffi

N
p

, many
different chirps can be estimated using the DCFT. This chapter is
focused on linear chirps that are common in radar applications.

This chapter is organized as follows. In Section 18.2, we
introduce the DCFT and study its basic properties for single
component chirp signals. In Section 18.3, we study the properties
of the DCFT for multiple component chirp signals. We present
an upper bound for the number of the components such that
they are detectable using the DCFT. In Section 18.4, we study its
connection with the analog chirp-Fourier transform (ACFT).
In Section 18.5, we present some numerical examples.

18.2 Discrete Chirp-Fourier Transform
and Its Basic Properties for Single
Component Chirp Signals

Before going to the DCFT, let us first briefly recall the DFT. For
a signal x(n) with length N, its N-point DFT is defined as

X(k) ¼ 1
ffiffiffiffi

N
p

XN�1

n¼0
x(n)Wnk

N , 0 � k � N � 1, (18:1)

where WN¼ exp(�2pj=N). The key properties of the DFT are
based on the following elementary identity

XN�1

n¼0

Wnk
N ¼ Nd(k), 0 � k � N � 1, (18:2)

where d(k) takes 1 when k¼ 0, and 0 otherwise. The identity 18.2
implies that, if x(n) is a single harmonic, i.e.,

x(n) ¼ exp j2p
k0

N
n

� �

,

for some integer k0 with 0� k0�N� 1, then its DFT matches
the frequency k0 perfectly, i.e.,

X(k) ¼
ffiffiffiffi

N
p

d(k� k0): (18:3)

Based on this property, when x(n) has I harmonics with
I�N, i.e.,

x(n) ¼
X

I

i¼1

Aki exp j2p
ki

N
n

� �

,

where ki1 6¼ ki2 for i1 6¼ i2, its DFT matches these frequencies
perfectly, i.e.,

X(k) ¼
ffiffiffiffi

N
p X

I

i¼1

Akid(k� ki), (18:4)

where the peaks in the DFT domain are shown at all ki and the
corresponding peak values are Aki for i¼ 1, 2, . . . , I.

We now introduce the DCFT. Let x(n), 0� n�N� 1, be a
signal of length N. Its N-point DCFT is defined as

Xc(k, l) ¼
1
ffiffiffiffi

N
p

X

N�1

n¼0

x(n)W ln2þkn
N , 0 � k, l � N � 1, (18:5)

where k represents the constant frequencies and l represents the
chirp rates. From the above DCFT, one can see that, for each
fixed l, {Xc(k, l)}0�k�N� 1 is the DFT of the signal x(n)W ln2

N .
When l¼ 0, the DCFT is the same as the DFT. Therefore, the
inverse DCFT (IDCFT) is

x(n) ¼ W�ln2

N

1
ffiffiffiffi

N
p

X

N�1

k¼0

Xc(k, l)W
�kn
N , 0 � n � N � 1, (18:6)

where l is an arbitrarily fixed integer. The above connection
between the DCFT and the DFT also suggests a fast algorithm
to compute the DCFT, i.e., for each l, the Fast Fourier transform
(FFT) may be used to compute Xc(k, l), 0� k�N� 1. The com-
putational complexity with this approach is, thus, O(N2 log(N)).

As a remark, the above chirp-Fourier transform is related to
the fractional Fourier transform (FRFT), where the rotation angle
is related to the variable l in the DCFT. For more about FRFT,
see, for example, [14–18].

The above DCFT definition is not surprising to see by follow-
ing the DFT definition. What is more interesting is its properties.
Can it be used to match the chirp rates and the constant fre-
quencies simultaneously? If so, how many of the chirp compon-
ents can be matched simultaneously? Similar to the previous DFT
study, let us first consider a single chirp signal

x(n) ¼ W�(l0n2þk0n)
N , (18:7)
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where k0 and l0 are two integerswith 0� k0, l0�N� 1.When k and
l in the DCFT (18.5) precisely match the above k0 and l0, we have

Xc(k0, l0) ¼
ffiffiffiffi

N
p

,

which is called the mainlobe of the DCFT Xc(k, l). The question
of interest here is what happens when the chirp rate l and the
constant frequency k do not match l0 and k0, i.e., what
the sidelobes of the DCFT are. Is there a similar property for
the DCFT as Equation 18.3 for the DFT? To study these ques-
tions, we first have the following lemma.

LEMMA 18.1

When N is a prime, we have the following identity: for 0� l,
k�N� 1,

XN�1

n¼0

W ln2þkn
N

�
�
�
�
�

�
�
�
�
�
¼

N , l ¼ 0 and k ¼ 0,
ffiffiffiffi
N

p
, l 6¼ 0,

0, l ¼ 0 but k 6¼ 0:

8

<

:
(18:8)

Proof Let

P(k, l) D¼
XN�1

n¼0

W ln2þkn
N :

Then, for 0< l�N� 1,

jP(k, l)j2 ¼
XN�1

n¼0

W ln2þkn
N

XN�1

m¼0

W�lm2�km
N

¼
XN�1

n¼0

XN�1

m¼0

W(n�m)(l(nþm)þk)
N

1¼
XN�1

n¼0

XN�1

e¼0

We(l(2n�e)þk)
N

¼
XN�1

e¼0

XN�1

n¼0

W2eln
N

 !

W�e2lþek
N , (18:9)

where e¼ n�m and the new range of e in the summation in Step
1 is from the periodicity of W ln

N in terms of the integer variable n
for any integer l. When N is a prime, 2el for 0< l�N� 1 and
0� e�N� 1 is a multiple of N if and only if e is a multiple of N,
i.e., e¼ 0. Thus,

XN�1

n¼0

W2eln
N ¼ 0 for 0 < e, l � N � 1:

Therefore, jP(k, l)j2¼N when l 6¼ 0. When l¼ 0, P(k, l) is reduced
to Equation 18.2. This proves the lemma. q.e.d.

From the second half of the above proof, one can see why
N needs to be prime in order for the second equality in
Equation 18.8 to hold. From this lemma, we immediately have
the following result.

THEOREM 18.1 Let x(n) be a single chirp

x(n) ¼ W�(l0n2þk0n)
N , (18:10)

for some integers k0 and l0 with 0� k0, l0�N� 1. If the length N

is a prime, then its DCFT magnitude has the following form

jXc(k, l)j ¼

ffiffiffiffi
N

p
, when l ¼ l0 and k ¼ k0,

1, when l 6¼ l0,
0, when l ¼ l0 but k 6¼ k0:

8

<

:
(18:11)

This result tells us that, for a single linear chirp, the peak or the
mainlobe of its DCFT has value

ffiffiffiffi
N

p
and appears at (k0, l0) in the

DCFT domain, and the sidelobes are not above 1. In other words,
the DCFT of a single linear chirp matches its chirp rate l0 and its
constant frequency k0 simultaneously. Surprisingly, one can see
that all the magnitudes of the sidelobes, unless the chirp rate is
matched, are all the same, which are 1.

In chirp rate and the constant frequency estimation, the smal-
ler the sidelobe magnitudes of the DCFT are, the better the
performance of the estimation is. When N is a prime, from
Equation 18.11 the maximal sidelobe magnitude of the DCFT
is 1, i.e.,

max
(k, l)6¼(k0 , l0)

jXc(k, l)j ¼ 1, when N is a prime: (18:12)

One might want to ask what will happen when N is not a prime.
The following result tells us that the maximal sidelobe magnitude
is the minimal when N is a prime, i.e., the N-point DCFT
performs the best when N is a prime in the estimation of chirp
rates and constant frequencies. This shall be also seen from the
numerical simulations in Section 18.5.

THEOREM 18.2

Let x(n) be the same as in Theorem 18.1, i.e., have the form in
Equation 18.10. If the length N is not a prime, then the maximal
sidelobe magnitude of the DCFT satisfies

max
(k, l)6¼(k0 , l0)

jXc(k, l)j �
ffiffiffi

2
p

: (18:13)

Proof To prove Equation 18.13, it is enough to prove that, when
N is not a prime, the following inequality holds

max
(k, l)6¼(0, 0)

jP(k, l)j2 � 2N , (18:14)

where P(k, l) is defined in the proof of Lemma 18.1. Assume N is
not a prime and let N¼N1 N2 with N1� 2 and N2� 2.

Case (i): Both N1 and N2 are odd. In this case, let l¼N1 and
k¼ 0. Then, by Equation 18.9,
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jP(k, l)j2 ¼
XN�1

e¼0

XN�1

n¼0
W2en

N2

 !

W�e2
N2

¼ N1

XN�1

e¼0

XN2�1

n¼0
W2en

N2

 !

W�e2
N2

:

Since N2 is odd, 2e is a multiple of N2 if and only if e is a multiple
of N2. Thus,

XN2�1

n¼0
W2en

N2
¼ 0, if e is not a multiple of N2:

Therefore, by setting e¼ e1N2 we have

jP(k, l)j2 ¼ N1

XN1�1

e1¼0

XN2�1

n¼0
W2e1N2n

N2

 !

W
�e21N2

2
N2

¼ N1

XN1�1

e1¼0
N2 ¼ N2

1N2 � 2N

:

Case (ii): One of N1 and N2 is even. Without loss of generality,
we may assume N2¼ 2. Let k¼ l¼N1. In this case, W2eln

N ¼ 1.
Thus, by Equation 18.9,

jP(k, l)j2 ¼ N
XN�1

e¼0

W�e(e�1)
2 :

Notice that e(e� 1) is always even, which implies W�e(e�1)
2 ¼ 1.

Therefore,

jP(k, l)j2 ¼ N2 � 2N:

By combining Case (i) and Case (ii), Equation 18.14 is proved.
q.e.d.

By this result, in what follows we only consider prime N. The
above results are based on the assumption that both l0 and k0 in
Equation 18.10 are integers. In practice, these two parameters
may not be precisely integers. Next, we want to briefly discuss the
DCFT performance when they are not integers but close to
integers. The reason why we only consider the case when l0 and
k0 are close to integers is because of the following argument.

Let us consider an analog chirp signal

xa(t) ¼ exp (j(b0t
2 þ a0t)), (18:15)

and consider the sampling t¼ n=N1=3. Then, the sampled chirp
becomes

~x(n)D¼ xa
n

N1=3

� �

¼ exp j
b0

N2=3
n2 þ a0

N1=3
n

� �� �

¼ W�(~l0n2þ~k0n)
N , (18:16)

where ~l0¼b0N
1=3=(2p) and ~k0¼a0N

2=3=(2p). Therefore, when
N is large enough (i.e., the sampling rate is fast enough), there
exist integers l0 and k0 such that

~l0 ¼
b0N

1=3

2p
� l0 and ~k0 ¼

a0N
2=3

2p
� k0: (18:17)

This implies that the real chirp rate is b0� 2pl0N
�1=3 and the

real constant frequency is a0� 2pk0N
�2=3 when integers l0 and

k0 are estimated. It also tells us that for a practical chirp signal
xa(t) in Equation 18.15, we only need to consider the discrete
chirp signal ~x(n) in Equation 18.16 with parameters ~l0 and ~k0
close to integers.

We now consider a discrete chirp signal

~x(n) ¼ W�(~l0n2þ~k0n)
N , (18:18)

where

j~l0 � l0j < e and j~k0 � k0j < h, (18:19)

where l0 and k0 are two integers with 0� l0, k0�N� 1, and
e and h are two positive numbers. By using the Taylor expansion
of exp(jy) in terms of jy, it is not hard to see that

jexp (jy)� 1j � jyj exp (jyj), y 2 R: (18:20)

Thus, for 0� n�N� 1,

j~x(n)� x(n)j � en2 þ hn

N
exp (en2 þ hn)

< (eN þ h) exp (eN þ h)D¼ j, (18:21)

where x(n) ¼ W �(l0n2þk0n)
N , that is the same as in Equation 18.10.

By using Theorem 18.1 and Equation 18.21, the following result
is therefore proved.

THEOREM 18.3

Let ~x(n) satisfy Equations 18.18 and 18.19 and ~Xc(k, l) be its
DCFT. Then

j~Xc(k, l)j
>

ffiffiffiffi
N

p
(1� j), if l ¼ l0 and k ¼ k0,

< 1þ
ffiffiffiffi
N

p
j, if l 6¼ l0,

<
ffiffiffiffi
N

p
j, if l ¼ l0 and k 6¼ k0,

8

><

>:

(18:22)

where j is defined in Equation 18.21.

From this theorem, one can see that as long as the chirp rate
error level e and the constant frequency error level h are low
enough (i.e., ~l0 and ~k0 are close enough to integers l0 and k0,
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i.e., e, h� 0, which can be achieved when the sampling rate is fast
enough), the DCFT of a linear chirp signal still has the peak
property as in Theorem 18.1. We shall see some numerical
examples in Section 18.5.

18.3 DCFT Properties for Multiple
Component Chirp Signals

We next consider a multiple component chirp signal x(n) of the
form

x(n) ¼
XI

i¼1

AiW
�(lin2þkin)
N þ z(n), (18:23)

where z(n) is an additive i.i.d. noise with mean 0 and variance
s2, jAij2> 0 is the signal power of the ith chirp component, and
ki1 , li1ð Þ 6¼ ki2 , li2ð Þ for i1 6¼ i2. For i¼ 1, 2, . . . , I, let

xi(n) ¼ AiW
�(lin2þkin)
N : (18:24)

Then, the DCFT Xc(k, l) of x(n) is

Xc(k, l) ¼
XI

i¼1

X(i)
c (k, l)þ Zc(k, l),

where X(i)
c (k, l) is the DCFT of the ith chirp component xi(n) and

Zc(k, l) is the DCFT of noise z(n). From the study in Section 18.2,
we know that each X(i)

c (k, l) has a peak at (ki, li) with peak value
jAij

ffiffiffiffi
N

p
and the maximal off-peak value is jAij. What we are

interested here is whether there is a peak of Xc(k, l) at each (ki, li),
1� i� I. If there is a peak at (ki, li), then a chirp component with
constant frequency ki and chirp rate li is detected. To study this
question, let us calculate the mean magnitude of Xc(k, l). We first
calculate the mean jXc(k, l)j at (ki, li). For i¼ 1, 2, . . . , I,

EjXc(ki, li)j
� X(i)

c (ki, li)
�
�

�
��
X

t6¼i

X(t)
c (ki, li)

�
�

�
�� EjZc(ki, li)j

1
� jAij

ffiffiffiffi

N
p

�
X

t6¼i

jAtj � (EjZc(ki, li)j2)1=2, (18:25)

where the inequality in Step 1 is because EjZc(ki, li)j �
(EjZc(ki, li)j2)1=2 from the Schwarz inequality with respect to
the expectation E. Thus, to estimate the lower bound of the
mean magnitude jXc(ki, li)j we need to estimate the mean
power of the DCFT of the noise z(n). Since, for any fixed l,
Zc(k, l) is the DFT of z(n)W ln2

N , the energy of Zc(k, l) in terms
of the frequency variable k is the same as the one of z(n)W ln2

N ,
i.e., the one of z(n). This proves

EjZc(k, l)j2 ¼ s2: (18:26)

Therefore, for i¼ 1, 2, . . . , I, by Equations 18.25 and 18.26 we
have

EjXc(ki, li)j �
ffiffiffiffi

N
p

jAij �
X

t6¼i

jAtj � s: (18:27)

Furthermore, for (k, l) 6¼ (ki, li) for i¼ 1, 2, . . . , I,

EjXc(k, l)j �
XI

i¼1

X(i)
c (k, l)

�
�

�
�þ (EjZc(k, l)j2)1=2

�
XI

i¼1

jAij þ s: (18:28)

By comparing Equations 18.27 and 18.28, there are peaks at
(ki, li) in the DCFT domain if

ffiffiffiffi

N
p

jAij �
X

t6¼i

jAtj � s >
XI

i¼1

jAij þ s:

Or,

jAij >
2
ffiffiffiffi
N

p
� 1

X

t6¼i

jAtj þ s

 !

: (18:29)

This concludes the following theorem.

THEOREM 18.4

Consider a multiple component chirp signal x(n) in Equation
18.23 with components at different constant frequency and chirp
rate pairs (ki, li) of power jAij2 for i¼ 1, 2, . . . , I. Its DCFT
magnitudes at (ki, li) are lower bounded by

EjXc(ki, li)j �
ffiffiffiffi

N
p

jAij �
X

t 6¼i

jAtj � s, i ¼ 1, 2, . . . , I, (18:30)

and its DCFT magnitudes at other (k, l) are upper bounded by

EjXc(k, l)j �
XI

i¼1

jAij þ s, (k, l) 6¼ (ki, li), i ¼ 1, 2, . . . , I:

(18:31)

For each i with 1� i� I, a peak in the DCFT domain appears at
(ki, li) if the inequality 18.29 holds.

From (18.29), one can see that, when the number I of multiple
chirp components is fixed, all the peaks at (ki, li) for i¼ 1, 2, . . . , I
will appear in the DCFT domain as long as the signal length N, a
prime, is sufficiently large. In other words, when the signal is
sufficiently long, all the chirp components can be detected by
using the DCFT.
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We next consider the special case when all the signal powers
jAij2 of the different chirp components are the same, i.e.,

jAij ¼ A, for i ¼ 1, 2, . . . , I:

In this case, (18.29) becomes

1 >
2
ffiffiffiffi
N
p
� 1

I � 1þ s

A

� �

¼ 2
ffiffiffiffi
N
p
� 1

I � 1þ 1
ffiffiffi
g
p

� �

,

where g is the signal-to-noise (SNR) ratio

g ¼ A2

s2
: (18:32)

In other words, given the SNR g, all peaks at (ki, li) for i¼ 1, 2,
. . . , I appear in the DCFT domain if the number of chirp com-
ponents satisfies

I <

ffiffiffiffi
N
p
þ 1

2
� 1

ffiffiffi
g
p : (18:33)

This gives us the following corollary.

COROLLARY 18.1

Let x(n) be of the form (18.23) with all equal powers jAij2¼A2

and the SNR g defined in Equation 18.32. Then, there are peaks
at (ki, li) for i¼ 1, 2, . . . , I if the number I of the chirp compon-
ents satisfies the upper bound (18.33).

The above corollary basically says that, in the case when all
signal powers of the multiple chirp components are the same, the
chirp components can be detected using the DCFT if the number
of them is less than

ffiffiffiffi
N
p

=2 when the signal length N is sufficiently
large. From the simulation results in Section 18.5, one will see that
the upper bound in Equation 18.33 is already optimal, i.e., tight.

Similar to the single chirp DCFT performance analysis in
Theorem 18.3, when the chirp rate and the constant frequency
parameters li and ki are not integers, the above results for mul-
tiple chirp DCFT can be generalized. Some numerical examples
will be presented in Section 18.5.

18.4 Connection to the Analog
Chirp-Fourier Transform

In this section, we want to see the relationship of the DCFT and
the ACFT. Let us first see the ACFT. For an analog signal xa(t),
its ACFT is

Xc,a(a,b) ¼
ð1

�1

xa(t) exp (�j(bt2 þ at))dt, (18:34)

where a and b are real. When xa(t) is a linear chirp, i.e.,

xa(t) ¼ exp (j(b0t
2 þ a0t)), (18:35)

the ACFT is

Xc,a(a,b) ¼
ð1

�1

exp (j[(b0 � b)t2 þ (a0 � a)t])dt

¼ 2

ð1

0

cos (b0 � b)t2 cos (a0 � a)t dt

þ 2j

ð1

0

sin (b0 � b)t2 cos (a0 � a)t dt

¼ 1

jb0 � bj1=2
(1þ sign(b0 � b))

� exp �j
(a0 � a)2

4(b0 � b)

� �

, (18:36)

where Equation 18.36 is from [19]. Clearly, when the constant
frequency a0 and the chirp rate b0 are both matched, i.e.,
when a¼a0 and b¼b0, the ACFT Xc,a(a, b)¼1, and other-
wise Xc,a(a, b) is a finite value, i.e., Xc,a(a, b)<1 for b 6¼ b0

or a 6¼ a0.
To consider the connection with the DCFT, let us consider

the following samplings for the above analog parameters t, a,
and b:

t:¼ n

N1=3
, b:¼ 2pn

N1=3
, a:¼ 2pn

N2=3
, (18:37)

where N is a positive integer. The reason for this sampling
method is for getting the DCFT form studied Sections 18.2 and
18.3 and the difference of the samplings between the chirp rate b
and the constant frequency a is due to the power difference
between the chirp term t2 and the constant frequency term t.
Truncate xa(t) such that it is zero for t =2 [0,N2=3]. Sample xa(t)
into x(n) ¼ xa(n=N1=3) for n ¼ 0, 1, 2, . . . ,N � 1. In this case,
the integral in Equation 18.34 can be discretized

Xc,a
2pk

N2=3
,
2pl

N1=3

� �

� 1

N1=3

XN�1

n¼0

x(n)W ln2þkn
N

¼ N1=2

N1=3
Xc(k, l):

In other words,

Xc(k, l) � N�1=6Xc,a
2pk

N2=3
,
2pl

N1=3

� �

, (18:38)

which gives a connection between the DCFT and the ACFT.
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18.5 Numerical Simulations

In this section, we want to see some simple numerical simula-
tions. Two signal lengths are considered: N¼ 67 and N¼ 66. We
first see some examples when N¼ 67. Two different SNRs g in
Equation 18.32 are considered, which are g1¼ 1 (0 dB) and
g2¼ 4 (6 dB). For the first SNR g1, the upper bound in Equation
18.33 for the number I of the detectable chirp components is 3,
i.e., I� I1¼ 3. For the second SNR g2, the upper bound in

Equation 18.33 for the number I of the detectable chirp com-
ponents is 4, i.e., I� I2¼ 4. In the following, three different
numbers I¼ 2, 3, 4 of chirp components are simulated, where
the constant frequencies ki and the chirp rates li for i¼ 1, 2, . . . , I
are arbitrarily chosen. The corresponding amplitudes Ai are set
to be all 1.

Figures 18.1 and 18.2 show the DCFTs of signals with two
chirp components at (ki, li)¼ (42, 15), (45, 44), and the SNRs
g¼g1¼ 0 dB and g¼ g2¼ 6 dB in Equation 18.32, respectively.
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FIGURE 18.1 The DCFT of two chirp components with additive SNR g¼ 0 dB: (a) three-dimensional plot and (b) image.
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FIGURE 18.2 The DCFT of two chirp components with additive SNR g¼ 6 dB: (a) three-dimensional plot and (b) image.
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Figures 18.3 and 18.4 show the DCFTs of signals with three chirp
components at (ki, li)¼ (12, 2), (49, 35), (18, 24), and the SNRs
g¼g1¼ 0 dB and g¼ g2¼ 6 dB in Equation 18.32, respectively.
Figures 18.5 and 18.6 show the DCFTs of signals with four chirp
components at (ki, li)¼ (44, 57), (38, 65), (53, 10), (55, 12), and
the SNRs g¼ g1¼ 0 dB and g¼g2¼ 6 dB in Equation 18.32,
respectively. One can see from Figure 18.5 that, although the

upper bound for I is 3 when the SNR g¼g1¼ 0 dB, the four
peaks can be seen in the DCFT domain. This is, however, not
always true from the following examples. Figures 18.7 and 18.8
show the DCFTs of another set of two signals with four chirp
components at (ki, li)¼ (64, 55), (21, 39), (8, 17), (53, 44), and the
SNRs g¼ g1¼ 0 dB and g¼ g2¼ 6 dB in Equation 18.32,
respectively. One can see from Figures 18.7 that the four peaks
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FIGURE 18.3 The DCFT of three chirp components with additive SNR g¼ 0 dB: (a) three-dimensional plot and (b) image.
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FIGURE 18.4 The DCFT of three chirp components with additive SNR g¼ 6 dB: (a) three-dimensional plot and (b) image.
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(I¼ 4) are not clear, which is because the upper bound for I in
Equation 18.33 is 3 when g¼ g1¼ 0 dB. The four peaks in Figure
18.8 are, however, clear because the upper bound for I in Equa-
tion 18.33 is 4 when g¼g2¼ 6 dB.

When N¼ 66, we consider the two chirp components (ki, li)¼
(42, 15), (45, 44) in Figure 18.2 with the SNR g¼g2¼ 6 dB. Its

DCFT is shown in Figure 18.9. Clearly, it fails to show the two
peaks, which illustrates the difference of the DCFT with respect
to having prime and nonprime length.

We next want to see some examples when the chirp rate and
the constant frequency parameters li and ki are not but close to
integers, i.e., e, h� 0. The parameter errors are randomly added
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FIGURE 18.5 The DCFT of four chirp components with additive SNR g¼ 0 dB: (a) three-dimensional plot and (b) image.
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FIGURE 18.6 The DCFT of four chirp components with additive SNR g¼ 6 dB: (a) three-dimensional plot and (b) image.
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with Gaussian distributions. Figures 18.10 and 18.11 show the
DCFTs of the two chirp components (ki, li)¼ (41.9897, 15.0180),
(45.0037, 43.9968) that are distorted from the chirp components
in Figures 18.1 and 18.2. Figures 18.12 and 18.13 show the DCFTs
of the three chirp components (ki, li)¼ (12.0050, 1.9883),

(48.9875, 35.0063), (17.9825, 24.0004) that are distorted from
the chirp components in Figures 18.3 and 18.4. Figures 18.14
and 18.15 show the DCFTs of the four chirp components
(ki, li)¼ (43.9977, 56.9989), (38.0013, 64.9920), (52.9976, 9.9991),
(54.9898, 12.0094) that are distorted from the chirp components
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FIGURE 18.7 The DCFT of another set of four chirp components with additive SNR g¼ 0 dB: (a) three-dimensional plot and (b) image.
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FIGURE 18.8 The DCFT of another set of four chirp components with additive SNR g¼ 6 dB: (a) three-dimensional plot and (b) image.
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in Figures 18.5 and 18.6. One can see that, unlike in Figures 18.5
and 18.6, in Figures 18.14 and 18.15 the four peaks are not all
shown well, which is due to the additional distortions of the
integer chirp rate and constant frequency parameters li and ki
as we studied in Theorem 18.3.

18.6 Conclusion

In this chapter, we studied the DCFT for discrete linear chirp
signals. The approach is analogous to the one of the DFT. We
showed that, when the signal length N is a prime, all the sidelobes
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FIGURE 18.9 The DCFT of two chirp components with additive SNR g¼ 6 dB: and signal length N¼ 66: (a) three-dimensional plot and (b) image.
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FIGURE 18.10 The DCFT of two chirp components (41.9897, 15.0180), (45.0037, 43.9968) with additive SNR g¼ 6 dB: (a) three-dimensional plot
and (b) image.
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(i.e., when the chirp rates or the constant frequencies are not
matched) of the DCFT are not above 1 while the mainlobe (i.e.,
when the chirp rates and the constant frequencies are matched
simultaneously) of the DCFT is

ffiffiffiffi
N
p

. We showed that this is
optimal, i.e., when N is not a prime, the maximal sidelobe
magnitude of the DCFT is greater than 1 (in fact, we showed

that the maximal sidelobe magnitude of the DCFT is greater
than

ffiffiffi
2
p

). We also presented an upper bound in terms of signal
length N and SNR for the number of the detectable chirp com-
ponents using the DCFT. Simulations were presented to illustrate
the theory. A connection of the DCFT with the ACFT was also
presented.
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FIGURE 18.11 The DCFT of two chirp components (41.9897, 15.0180), (45.0037, 43.9968) with additive SNR g¼ 0 dB: (a) three-dimensional plot
and (b) image.
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FIGURE 18.12 The DCFT of three chirp components (12.0050, 1.9883), (48.9875, 35.0063), (17.9825, 24.0004) with additive SNR g¼ 6 dB:
(a) three-dimensional plot and (b) image.
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Although the DCFT was defined for linear chirps that are quite
common in radar applications, it is not hard to generalize to
higher order chirps. Notice that the DCFT for higher order chirps
may not have the precise values but some roughly low values of the
sidelobes obtained in Sections 18.2 through 18.5 for linear chirps.
However, it might be possible but more tedious to calculate the

values of the sidelobes of the DCFT for higher order chirps when
the higher order powers of P(k, l) in Equation 18.9 in the proof of
Lemma 18.1 is used. Another comment we would like to make
here is that, similar to the spectrum estimation, when the chirp
rate and the constant frequency are not integers, other high
resolution techniques may exist and are certainly interesting.
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FIGURE 18.13 The DCFT of three chirp components (12.0050, 1.9883), (48.9875, 35.0063), (17.9825, 24.0004) with additive SNR g¼ 0 dB:
(a) three-dimensional plot and (b) image.
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FIGURE 18.14 The DCFT of four chirp components (43.9977, 56.9989), (38.0013, 64.9920), (52.9976, 9.9991), (54.9898, 12.0094) with additive
SNR g¼ 6 dB: (a) three-dimensional plot and (b) image.
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19.1 Introduction

The use of fast discrete unitary transforms has become a powerful
technique in multidimensional signal processing, and in particu-
lar in image processing. Image processing in the frequency
domain is used widely in image filtration, restoration, enhance-
ment, compression, image reconstruction by projections, and
other areas [1–4]. Among the unitary transforms, one should
note the Fourier, Hartley, Hadamard, and cosine transforms.
Theory of the Fourier transform is well developed, and effective
methods (or, fast algorithms) of the discrete Fourier transforms
(DFT’s) are used for solving many problems in different areas of
data processing such as signal and image processing, speech
analysis, and communication, etc. We also observe the consider-
able interest to many applications of the discrete Hartley trans-
form (DHT) together with the DFT, since the DHT relates
closely to the DFT and has been created as an alternative form

of the complex DFT, to eliminate the necessity of using complex
operations. Another transform is the discrete Hadamard trans-
form (DHdT), which is real, binary, and computationally advan-
tageous over the fast Fourier transform (FFT). The Hadamard
functions can be used for a series expansion of the signal, being
orthogonal and taking value �1 at each point. This transform
has found useful applications in signal and image processing,
communication systems, image coding, image enhancement, pat-
tern recognition, and general two-dimensional filtering. The dis-
crete cosine transform (DCT) is used in speech and image
processing, especially in image compression and transform cod-
ing in telecommunication [5–9].

The application of the multidimensional transform involves
the calculation of the transform, manipulation with transform
coefficients, and then calculation of the inverse transform. For
signals of large sizes, this process requires a great number of
operations when performing multidimensional transforms. It is
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desired to maximally reduce this number, and different methods
of effective calculation of multidimensional unitary transforms
have been developed. For instance, in most cases, the calculation
of the 2-D transform is reduced by partitioning the entire image
by one-dimensional (1-D) or two-dimensional (2-D) blocks and
calculating the transforms of these blocks. We here stand on the
traditional ‘‘row–column’’ algorithm, when 1-D transforms over
all rows and then columns are calculated, as well as the ‘‘vector–
radix’’ algorithm, when the image is divided consequently by four
blocks of equal size. The method of the polynomial transform-
ations developed by Nussbaumer is also considered. Then we
describe, in detail, the partitionings of multidimensional trans-
forms, which are based on the concepts of the tensor and paired
representations of multidimensional signals, including 2-D and
three-dimensional (3-D) images. In these new forms of represen-
tation, the multidimensional signals are described by sets of
1-D signals which carry the spectral information of multidimen-
sional signals in different subsets of frequency-points. The pro-
cessing of multidimensional signals thus is reduced to processing
1-D signals, which we call splitting-signals, since they represent
the multidimensional signals and split the transforms of these
signals. The splitting-signals are described for the 2-D and multi-
dimensional Fourier, Hartley, Hadamard, and cosine transforms.

19.1.1 Row–Column Algorithm

Many of the multidimensional transformations are separable,
meaning that these transforms over multidimensional signals can
be performed by calculating 1-D transforms consequently along
all dimensions of the signal. For instance, for a separable 2-D
transformation T, the transform of a 2-D signal or image f¼ {fn,m}
of size (N3N), N> 1, can be obtained by first calculating the 1-D
transforms over all columns of the image and, then calculating the
1-D transforms by the rows of the obtained 2-D data, as shown in
Figure 19.1.

In matrix form, the transform of f can be written as

[2�D T] [f ] ¼ [1�D T] [f ] [1�D T]t

where ‘‘t’’ denotes the matrix operation of transposition, and
square brackets [�] are used to denote the matrices of the trans-
formations T and image f.

As an example, we consider the 2-D DFT of the image fn,m,
which is defined by

Fp,s ¼ (FN ,N � f )p,s ¼
XN�1

n¼0

XN�1

m¼0

fn,mW
npþms, p, s ¼ 0: (N � 1),

(19:1)

where W¼WN¼ exp (�2pj=N) is the kernel of the transform-
ation, and j2¼�1. The designation p¼ 0: (N� 1) denotes p as an
integer that runs from 0 to (N� 1). The kernel is separable,
Wnpþms¼Wnp Wms, and the transform can thus be written as

Fp,s ¼
XN�1

n¼0

Fn(s) ¼
XN�1

m¼0

fn,mW
ms

" #

Wnp, p, s ¼ 0: (N � 1),

(19:2)

where Fn (s) is the value of the 1-D DFT of row number n at
point s. To calculate the 2-D DFT, 2N 1-D DFTs are used in the
row–column algorithm. This algorithm is simple, but requires
many operations of multiplication and addition. All twiddle
coefficients, Wt, t¼ 0: (N� 1), lie on N equidistant points of
the unit circle, and many of them are irrational numbers.

We now consider the transformation whose kernel lies only on
two points �1 on the unit circle. The 2-D separable DHdT of
order N3N, where N¼ 2r, r> 1, is defined as

Ap,s ¼ (AN ,N � f )p, s ¼
XN�1

n¼0

XN�1

m¼0

fn,ma(p; n)a(s;m)

¼
XN�1

n¼0

XN�1

m¼0

fn,ma(s;m)

" #

a(p; n): (19:3)

The kernel of the transformation is defined by the binary
function

a(p; n) ¼ (�1)n0p0þn1p1þ���þnrpr (19:4)

where (n0, n1, . . . , nr) and (p0, p1, . . . , pr) are the binary repre-
sentations of numbers n and p, respectively.

As an example, Figure 19.2 shows an image (5123 512) in
part (a), along with the 2-D discrete Fourier and Hadamard
transforms of the image in (b) and (c), respectively. The realiza-
tion of the Hadamard transformation requires only operations of
addition (and subtraction). From the computational point of
view, the 1-D Hadamard transform is faster than the complex
Fourier transform. These two different transforms can share the
same fast algorithm. For instance, the FFT by paired transforms
can also be used for the fast Hadamard transform, when con-
sidering all twiddle coefficients Wt equal 1 [11].

19.1.2 Vector Radix Algorithm

The ‘‘row–column’’ method of calculation of a separable 2-D DT
requires the transposition of the 2-D data table obtained after
performing all 1-D transforms over the rows. For tables of large
sizes, the transposition slows down the process of calculation of
the transform, and therefore other methods of fast calculation of
the transform have been developed to avoid the transposition.
That can be done by partitioning the square period (N3N) of
the transform by other than row and column sets.Wemention here
the idea of generalization of the 2-D ‘‘butterfly’’ operation from the

=1-D  DTs 1-D  DTs 2-D  DT

FIGURE 19.1 Block diagram of calculation of the 2-D discrete trans-
form (DT) (separable).
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1-D Cooley–Tukey algorithm [10] to the four-dimensional (4-D)
operation, when dividing the transforms by four parts of size
(N=23N=2) each.

The vector–radix algorithm for the 2-D DFT uses the ‘‘butter-
fly’’ 23 2 which is defined as the following Kronecker product of
two 2-D butterflies:

1 Wp1

1 �Wp1

� �

� 1 Ws1

1 �Ws1

� �

¼
1 Wp1 Ws1 Wp1þs1

1 �Wp1 Ws1 �Wp1þs1

1 Wp1 �Ws1 �Wp1þs1

1 �Wp1 �Ws1 Wp1þs1

2

6

6

4

3

7

7

5

(19:5)

where p1, s1¼ 0: (N=2� 1). The block diagram of the vector–
radix algorithm is given in Figure 19.3.

The image fn,m is reorganized into four parts of size (N=23
N=2), each of which contains only even–even, odd–even, even–
odd, or odd–odd coordinates,

{fn,m} !

an1 ,m1 ¼ f2n1 , 2m1

bn1 ,m1 ¼ f2n1þ1, 2m1

cn1 ,m1 ¼ f2n1 , 2m1þ1

dn1 ,m1 ¼ f2n1þ1, 2m1þ1

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

n1, m1 ¼ 0: (N=2� 1):

(19:6)

Then, the N=23N=2-point DFT of each part is calculated,

Ap1 ,s1 ¼ FN=2,N=2 � a
� �

p1 ,s1
¼
XN=2�1

n1¼0

XN=2�1

m1¼0

an1 ,m1W
n1p1þm1s1
N=2 ,

Bp1 ,s1 ¼ FN=2,N=2 � b
� �

p1 ,s1
,

Cp1 ,s1 ¼ FN=2,N=2 � c
� �

p1 ,s1
,

Dp1 ,s1 ¼ FN=2,N=2 � d
� �

p1 ,s1
:

FISH image 2-D DFT 2-D DHT

(a) (b) (c)

FIGURE 19.2 (a) Original image of size 5123 512, (b) 2-D DFT (in absolute mode), and (c) 2-D DHdT.

Dp1,s1
f2n1 + 1,2m1 + 1 Fp1 + N/2,s1 + N/2

{Wp
1
+ s

1}

Cp1,s1
f2n1,2m1 + 1 Fp1,s1 + N/2

{W s
1}

Bp1,s1
f2n1 + 1,2m1 Fp1 + N/2,s1

{Wp
1}

Ap
1
, s1

f2n1,2m1
Fp1,s1

1

n1,m1 = 0: (N/2 − 1) p1,s1 = 0:(N/2 − 1)

“Butterfly”  2 × 2

W = e−j 2π
N

N
2

× N
2

-point DFTs

FIGURE 19.3 Diagram of 2-D N3N-point DFT by using ‘‘butterfly’’ 23 2.
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where p1, s1¼ 0 : (N=2� 1). The 2-D DFT of the image fn,m can
be composed from these four 2-D DFTs by using the butterfly
operation (Equation 19.5) as follows:

Fp1 , s1 ¼ Ap1 , s1 þWp1Bp1 , s1 þWs1Cp1 , s1 þWp1þp1Dp1 , s1

Fp1þN=2, s1 ¼ Ap1 , s1 �Wp1Bp1 , s1 þWs1Cp1 , s1 �Wp1þs1Dp1 , s1

Fp1 , s1þN=2 ¼ Ap1 , s1 þWp1Bp1 , s1 �Ws1Cp1 , s1 �Wp1þs1Dp1 , s1

Fp1þN=2, s1þN=2 ¼ Ap1 , s1 �Wp1Bp1 , s1 �Ws1Cp1 , s1 þWp1þs1Dp1 , s1 :

The same method of partitioning can be applied to each of the
parts (N=23N=2), and then to each of the sixteen obtained
(N=43N=4) parts, and so on, until the parts be of size (23 2).
The vector–radix algorithms reduce the number of arithmetic
operations. For instance, the number of multiplications can be
estimated by the recurrent formula

mN ,N ¼ 4mN=2,N=2 þ 3(N=2)2

¼ 4[4mN=4,N=4 þ 3(N=4)2]þ 3(N=2)2

¼ 3

4
N2( log2 N � 2): (19:7)

The actual number of multiplications is smaller than mN, N, since
the number of trivial twiddle coefficients are not considered. For
large N, the vector–radix algorithms reduces the number of
multiplications by almost 25%, when compared with the row–
column algorithm. Indeed, the number of multiplications in the
row–column algorithm can be estimated by

mN ,N ¼ 2NmN ¼ 2N
N

2
( log2N� 3)þ 2)

� �

¼N2( log2N � 3)þ 4N:

(19:8)

We use the estimationmN¼N=2(log2 N� 3)þ 2, (N> 8), for the
number of multiplications used in the N-point DFT by the fast
paired transforms [11,12].

There are many modifications of the vector–radix technique
to decompose the image into many smaller 2-D transforms.
Another powerful method of calculation of the DFT is based
on using polynomial transforms, which was developed by
Nussbaumer [13,14].

19.1.3 Method of the Polynomial Transforms

The Nussbaumer algorithm uses the polynomial expansion of the
field of rational and complex numbers, where the Fourier trans-
formation exists. Such expansion represents the domain of poly-
nomials, in which the operations of addition and multiplication
of polynomials are considered modulo the given polynomial. We
here briefly describe the cases of most interest, which correspond
to the 2-D DFT of the equal orders N3N, when N is a prime and
a power of two.

Let us write the N3N-point DFT of the sequence fn1 ,n2 in the
separable form

Fp1 ,p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2W
n2p2

 !

Wn1p1 , p1, p2 ¼ 0: (N � 1):

(19:9)

The polynomial transforms represent themselves the polyno-
mial expansion the 1-D DFTs when the complex exponents Wp2

are replaced by the variable z in the complex plane C2. Thus, we
consider the following transformation into polynomials:

XN�1

n2¼0

fn1 ,n2W
p2n2 ! Fn1 (z) ¼

XN�1

n2¼0

fn1 ,n2z
n2 , z 2 C2,

and, then, write the definition in (Equation 19.9) as

Fp1 ,p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2z
n2

 !

jz¼Wp2

Wn1p1

¼
XN�1

n1¼0

Fn1 (z)W
n1p1

 !

jz¼Wp2

(19:10)

or shortly

Fp1 ,p2 ¼
XN�1

n1¼0

Fn1 (z)W
n1p1 mod (z �Wp2 ): (19:11)

All twiddle coefficientsWp2 , p2 ¼ 0: (N � 1), are theNth roots
of the unit, or the roots of the polynomial zN� 1. We consider the
sum of the above equation modulo zN� 1 and denote it by

Gp1(z) ¼
XN�1

n1¼0

Fn1 (z)W
n1p1 mod (zN � 1): (19:12)

Thus, the 2-D DFT can be written in the form of

Fp1 , p2 ¼ Gp1(z) mod (z �Wp2 ), p2 ¼ 0: (N � 1): (19:13)

The polynomial zN� 1 can be represented as the product of
the cyclotomic polynomials (i.e., indivisible polynomials with
rational coefficients):

zN � 1 ¼ P1(z)P2(z) � � � Pm(z), m ¼ m(N) � N ,

and the residual of division of Gp1 (z) by the polynomial zN� 1 in
Equation 19.13 can be reduced to residuals by such indivisible
polynomials. For example, we consider the case when N is a
prime number> 2. The following decomposition of the poly-
nomial holds:

zN � 1 ¼ (z � 1)P2(z) ¼ (z � 1)(zN�1 þ zN�2 þ � � � þ 1):

(19:14)
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Since N is prime, and p2 6¼ 0, the transformation p1 ! (p1p2)
mod N maps the set of the integers p1¼ 0 : (N� 1) into itself.
The coefficientsWp2 are roots of the polynomial P2(z). Therefore,
Equation 19.13 takes the form

Fp1p2 , p2 ¼
XN�1

n1¼0

Fn1(z)W
n1p1p2 mod (zN � 1)

¼
XN�1

n1¼0

Fn1(z)z
n1p1 mod P2(z), z ¼ Wp2 , p2 ¼ 1: (N � 1),

where p1¼ 0 : (N� 1). The compact form of this equation is

Fp1p2 , p2 ¼
XN�1

n1¼0

Fn1 (z)z
n1p1 mod P2(z)

 !

mod (z �Wp2),

p1 ¼ 0: (N � 1), p2 ¼ 1: (N � 1):

(19:15)

Thus, the 2-D DFT at the frequency-points {(p1p2, p2); p2¼ 0 :
(N� 1)} can be defined as

Fp1p2 , p2 ¼ Gp1(z) mod (z �Wp2), p2 ¼ 0: (N � 1), (19:16)

where

Gp1(z) ¼
XN�1

n1¼0

Fn1(z)z
n1p1 mod P2(z), p1 ¼ 0: (N � 1): (19:17)

When p2¼ 0, the formula for the 2-D DFT takes the simple form
of the 1-D DFT,

Fp1 ,0 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2W
n1p1 ¼

XN�1

n1¼0

Fn1 (1)W
n1p1 , p1 ¼ 0: (N � 1):

(19:18)

The polynomial transform modulo P2(z) in Equation 19.17 does
not depend on p2 and is calculated without operations of multi-
plication. The multiplications are required to calculate the
N-point DFT in Equation 19.18 and the N-point DFT in Equa-
tion 19.16, for each p1¼ 0 : (N� 1). Thus, the N3N-point DFT
is calculated by means of the polynomial transforms modulo P(z)
and (Nþ 1) N-point DFTs.

In the case, when N equals a power of two, the following
decomposition of the polynomial holds:

zN � 1 ¼ zN=2 � 1
� 	

zN=2 þ 1
� 	

,

and all exponents z ¼ Wp2 with odd powers p2 are roots of the
polynomial zN=2� 1. Therefore it follows directly from Equation
19.10 through Equation 19.13, that all spectral components Fp1 , p2
at frequency-points (p1, p2), both coordinates of which p1 and p2
are not even, can be calculated by means of the polynomial

transforms modulo zN=2þ 1, 3N=2 reduced N-point DFTs and
one N=23N=2-point DFT for calculating all components of the
spectrum at frequency-points (p1, p2) with even p1 and p2. The
N=23N=2-point DFT can also be reduced by the polynomial
transforms modulus zN=4þ 1, to 3N=4 N=4-point reduced DFTs,
and the N=43N=4-point DFT. The sequential application of
the polynomial transforms modulo zN=2k þ 1, k ¼ 1 : (r �m)ð Þ,
when m¼ 1 : (r� 2), yields the decomposition of the N3N-
point DFT by 3N=2 N=2-point DFTs, 3N=4 N=4-point DFTs, etc.
In comparison with the row–column algorithm, the method of
polynomial transforms uses approximately two times less oper-
ations of multiplication and a small number of additions.

We now present the tensor approach and its improvement for
dividing the calculation of the 2-D DFT into the minimal num-
ber of short 1-D transforms. The approach is universal because it
can be implemented to calculate other discrete unitary trans-
forms, such as the Hadamard, cosine, and Hartley transforms
[15,16], and transforms of high dimensions.

19.2 Nontraditional Forms of
Representation

When processing a multidimensional signal fn1 , n2 ,..., nm , m � 2, in
frequency domain by a specific unitary transformation, for
instance the m-dimensional DFT, the signal can be represented
in a form that splits the structure of both signal and transform in
a way that yields an effective method of calculation of the trans-
form with the following signal processing. Such forms are not
necessarily of the matrix form, but other multidimensional fig-
ures. The work presented here does not rely on traditional
methods of processing multidimensional transforms and signals,
but more effective methods which are based on the discovery that
can be briefly formulated as follows. Multidimensional spectra
are split by appointed trajectories (such as orbits) and the move-
ment of a spectral point along each such trajectory is of great
interest in the process of formation of the spectra, as well as in
processing the spectra. Trajectories do not intersect, and it is
possible to extract the spectral information from such trajectories
or change and put desired information into trajectories. Vast
horizons lie before us in such an approach allowing new effective
methods of processing multidimensional spectra to be discovered
and applied in practice.

We present a theory of fast multidimension transforms based
on the concept of partitioning that reveals the transforms. We
stand in detail on the 2-D and 3-D cases; the application of the
discussed methods to high-dimensional signals is straightfor-
ward. At the same time, we present our vision of developing
and applying new methods of multidimensional signal process-
ing, such as image processing. We propose to use new forms of
image and transform representation, that simplify not only the
calculation of 2-D (or 3-D) transforms, but also lead to effective
solutions of different problems in image processing, such as
image enhancement, computerized tomography, image filtration,
and compression. We describe the theory of the so-called
tensor and paired forms of representation. Their main task is to
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represent uniquely the image in a form of a set of 1-D signals
which can be processed separately and then transferred back to
the image, as shown in the diagram of Figure 19.4 (with or
without block 2). The calculation of the 2-D DFT is reduced

to calculation of 1-D DFTs and processing of the 2-D image to
processing all or a few 1-D signals. The mathematical structure
of the 2-D DFT and other unitary transforms possess such
representations.

Image

fn,m

χ

Original

Image

gn,m

Processed

Signal 1

Signal L

1-D DSP

1-D DSP

2-D IDFT

F −1
N, N

Fp,s1
2

FIGURE 19.4 Block diagram of image processing by 1-D signals. DSP, digital signal processing.
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(c) 1-D DFT
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FIGURE 19.5 Fast transform-based method of image enhancement. (a) The original image, (b) the splitting-signal, (c) the amplitude spectrum of
the signal, (d) factors, (e) the processed signal, (f) marked locations of 256 frequency-points, and (g) the image enhanced by one signal.
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As an example, we consider the image enhancement by one
such signal, instead of calculating the 2-D DFT of the image and
manipulating its coefficients. Figure 19.5 shows the original
image of size 2563 256 in part a, along with a 1-D signal derived
from the image in (b), the 1-D DFT of the signal (in absolute
scale and shifted to the center) in (c), the coefficients to be
multiplied pointwise by the 1-D DFT in (d), a new 1-D signal
in (e), 256 frequency-points at which the spectral information of
the new signal will be recorded in the 2-D DFT of the processed
image in (f), and the enhanced image in (g). The enhanced image
can be obtained by the inverse 2-D DFT (2-D IDFT), as well as
directly from the new signal (of e) by using the 1-D DFT [18].
Thus the problem of the 2-D image enhancement can be reduced
to processing a 1-D signal (or a few such), by passing the
calculation of the 2-D DFT of the original image as well as the
inverse 2-D DFT (2-D IDFT) for the enhanced image. We now
describe methods of deriving such 1-D signals, which lead to
effective calculation of the 2-D DFT, as well as other unitary
transforms.

19.3 Partitioning of Multidimensional
Transforms

Let a sequence g¼ {g0, g1, . . . , gN� 1} of length N> 1 be linearly
and uniformly expressed by a sequence f¼ {f0, f1, . . . , fN� 1}

gp ¼
XN�1

n¼0

wp(n)fn, p ¼ 0: (N � 1): (19:19)

The transformation of f into g, by using this formula is called a
linear transformation, which we denote by A. Coefficients
ap,n¼wp(n) form a square (N3N) matrix A¼kap,nk, which is
called the matrix of the transformation. The linear transform-
ation can be written in matrix representation [g]¼A[ f], where
[g] and [ f] denote the vector–columns of sequences g and f,
respectively. Every linear 1-D transformation determines
uniquely a 2-D matrix A, and vice versa, every matrix A

determines the linear 1-D transformation. Similarly, each
2n-dimensional (n> 1) matrix determines a certain linear
n-dimensional transformation A of n-dimensional sequences,

A: f ¼ fn1 , n2 ,..., nnf g ! g ¼ gp1 , p2 ,..., pn

 �

(19:20)

where nk, pk¼ 0 : (Nk� 1) and Nk> 1, k¼ 1 : n. The numbers
N1, . . . , Nn are called orders of the transformation A:g ¼ A � f is
called the n-dimensional transform of f. For simplicity of future
calculations, we will consider mainly the case of equal orders,
when Nk¼N, k¼ 1 : n.

The transform of f is described by the following relation:

gp1 ,..., pn ¼
XN1�1

n1¼0

� � �
XNn�1

nn¼0
wp1 ,..., pn (n1, . . . , nn)fn1 ,..., nn (19:21)

where ap1 ,..., pn , n1 ,..., nn ¼ wp1 ,..., pn (n1, . . . , nn) are coefficients of
the matrix of the transformation A. Elements (p1, . . . , pn) 2 X

are referred to as frequency-points. We assume that sequences f
and the transforms A � f are defined on the same n-dimensional
rectangular integer lattice of size N1 3 . . .3 Nn

X ¼ XN1 ,...,Nn
¼ (n1, . . . , nn); nk ¼ 0: (Nk � 1), k ¼ 1 : nf g:

(19:22)

This set X is called the fundamental period of the trans-
formation A.

Example 19.1 (3-D Fourier Transformation)

Let f be a 3-D N3N3N-point sequence f ¼ fn1 , n2 , n3f g. The
N3N3N-point Fourier transform of the sequence f is

defined by

Fp1 ,p2 ,p3 ¼
XN�1

n1¼0

XN�1

n2¼0

XN�1

n3¼0

Wn1p1þn2p2þn3p3 fn1 ,n2 ,n3 , p1 , p2 , p2 ¼ 0 : (N � 1)

(19:23)

where W¼ exp(�2pj=N). The arithmetic action fn1 ,n2 ,n3 !
Fp1 ,p2 ,p3

 �

is called a 3-D N3N3N-point Fourier transform-

ation, which we shall denote by F N,N,N . The order of the

transformation FN,N,N equals N3N3N, and its matrix is the

six-dimensional matrix

[F N0 ,N,N] ¼ ap1 ,p2 ,p3 ,n1 ,n2 ,n3 ¼ Wn1p1þn2p2þn3p3
�
�

�
�,

nk , pk ¼ 0: (N � 1), k ¼ 1 : 3:

An n-dimensional DT A is called unitary, if the matrix of the
transformation is unitary, i.e., AA*¼ I, where I is the diagonal
matrix, and A* is the complex conjugate to A, which is defined by

A* ¼ �an1 ,..., nn , p1 ,..., pn
�
�

�
�

where the sign � denotes the transition to the complex conjugate
value, that is, �z¼ x� jy, if z¼ xþ jy. A real unitary transform-
ation is called orthogonal.

For a fixed (p1, . . . , pm), the function wp,..., pn ( � , . . . , � ) is
said to be the (p1, . . . , pm)-th basis function of the trans-
formation A, and the collection of such functions {w} ¼
wp,..., pn ( � , . . . , � )
n o

is called a basis or kernel of A. The unitary
property of the transformation is also expressed by the following
expression

X

(n1 ,..., nn)2X
wp1 ,..., pn (n1, . . . , nn)�ws1 ,..., sn (n1, . . . , nn) ¼

Yn

k¼1
d(pk, sk)

(p1, . . . , pn), (s1, . . . , sn) 2 X,

(19:24)
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where d is the kronecker delta-function, d(n, k)¼ 1, if n¼ k, and
d(n, k)¼ 0, otherwise. If the collection of functions {w} satisfies
this condition, then {w} is said to be a complete and orthonormal

set of functions (or orthogonal, if there is a factor different
from 1 in the right side of Equation 19.24, before the multipli-
cation sign) in the space of n-dimensional sequences defined on
X. For the unitary transformationA, the collection of functions is
a complete and orthonormal set of basis functions.

Example 19.2 (1-D Fourier Transformation)

Let f be a 1-D sequence f¼ {f0, f1, . . . , fN� 1}. The N-point Four-

ier transform of the sequence f is defined by

Fp ¼ (FN � f )p ¼
1
ffiffiffi
N

p
XN�1

n¼0

Wnpfn , p ¼ 0: (N � 1): (19:25)

The basis functions wp(n) are the pairs 1=
ffiffiffiffi
N

p
cos (vpn),

�

1=
ffiffiffiffi
N

p
sin (vpn)Þ of discrete-time cosine and sine waves with

frequencies vp¼ (2p=N)p. The waves are orthonormal, since

XN�1

n¼0

wp(n)�ws(n) ¼
1

N

XN�1

n¼0

Wn(p�s)

¼ 1

N

XN�1

n¼0

cos
2p(p� s)

N
n� j sin

2p(p� s)

N
n

� �

¼ 1, p ¼ s
0, p 6¼ s

�

and the transformation is unitary. The matrices of the transform-
ation and its conjugate are symmetric matrices

[FN ] ¼
1
ffiffiffiffi
N

p ke�
j2p
N npkn, p¼0:(N�1), FN*½ 	 ¼ 1

ffiffiffiffi
N

p ke
j2p
N npkn, p¼0:(N�1),

and [FN] FN*½ 	 ¼ I. The conjugate matrix is thus the matrix of
the inverse 1-D DFT.

19.3.1 Tensor Representation

In this section, we describe a concept of covering that reveals the
mathematical structure of many multidimensional transforms
[19–23]. The covering is considered to be composed by cyclic
groups of frequency-points of the period of transformations. This
covering leads to the tensor, or vectorial representation of multi-
dimensional signals.

In the general multidimensional case, the covering revealing
the transform is described in the following way. Suppose s¼ (T)
is an irreducible covering of an n-dimensional lattice X, n� 2. It
means that the set-theoretic union of all subsets T coincides with
X and any smaller family of subsets of T from s does not cover X.
We use card to denote the cardinality of a set. If a discrete
n-dimensional unitary transformation with the fundamental
period X can be split into a set of card s one-dimensional

card T-point unitary transformations A, then we say that the
considered multidimensional transformation is revealed by
the covering s, or, the covering s reveals the transformation.
Let f be an N1 3 � � �3 Nn sequence.

Definition 19.1: An N1 3 � � �3 Nn transformation P is said
to be revealed by the covering s of X if, for each set T 2 s, there
exists a 1-D orthogonal transformation A ¼ A(T) and a
sequence fT such that the restriction of the transform P � f on
the set of frequency-points T equals the transform A � fT , i.e.,

(P � f )jT ¼ A � fT : (19:26)

This condition is briefly written as PjT ~sA.

The set of the 1-D transforms {A(T); T 2 s} is called a
s-splitting of the n-dimensional transformationP by the covering
s and denoted byR(P;s). The set of 1-D sequences {fT; T 2 s} is
the s-representation of f with respect to the transformation P.

In the above definition, each 1-D transformation A is deter-
mined by the corresponding subset T, not f. It should also be
noted, that the covering s results in not only the splitting of the
n-dimensional transformation P by the 1-D transformations A
but also determines the corresponding representation of the
n-dimensional sequence f as a set of 1-D sequences fT. In other
words, two representations are defined, one for the given
sequence and another for its transform,

f ! {fT ; T 2 s}, and P � f ! {A � fT ; T 2 s}: (19:27)

19.3.2 Covering with Cyclic Groups

We consider a class of n-dimensional discrete unitary transform-
ations that are revealed by the irreducible covering s composed
only from additive cyclic groups

s ¼ sJ ¼ Tp1 ,..., pn

� �

(p1 ,..., pn)2J (19:28)

with generators (p1, . . . , pn) from a certain subset J 
 X ¼
XN1 ,...,Nn

. The cyclic group Twith a generator (p1, . . . , pn) is defined
as a set of frequency-points which are integer multiples to the
generator,

T ¼ Tp1 ,..., pn ¼ (kp1, . . . , kpn); k ¼ 0: (card T � 1)

 �

(19:29)

We use the short notation kpi ¼ (kpi) mod Ni for i¼ 1 : n.

Example 19.3

Let X be the lattice 53 5, what corresponds to the N1¼N2¼ 5

case. The group Tp1 , p2 with a generatrix (p1, p2) 2 X¼ X5,5 is

Tp1 , p2 ¼ (0, 0), (p1 , p2), (2p1 , 2p2), (3p1 , 3p2), (4p1 , 4p2)

 �

:
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There are six groups T which compose an irreducible covering
s¼sJ of X, namely

T0,1 ¼ (0, 0), (0, 1), (0, 2), (0, 3), (0, 4)f g
T1,1 ¼ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4)f g
T2,1 ¼ (0, 0), (2, 1), (4, 2), (1, 3), (3, 4)f g
T3,1 ¼ (0, 0), (3, 1), (1, 2), (4, 3), (2, 4)f g
T4,1 ¼ (0, 0), (4, 1), (3, 2), (2, 3), (1, 4)f g
T1,0 ¼ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0)f g

(19:30)

and the set of generators

J ¼ J5,5 ¼ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (1, 0)f g: (19:31)

Figure 19.6 shows the location of all frequency-points of these six
groups. These groups intersect only at point (0, 0). If the covering
composed by these groups reveals a 53 5-point transformation,
then that transformation can be split by six 5-point 1-D trans-
formations. It will be shown, that such transformations are the
Fourier, Hartley, and Hadamard transformations. To calculate,
for instance the 53 5-point 2-D DFT, there are only six 1-D
5-points transforms required, instead of 10 transforms in the
‘‘row–column’’ method.

In the generalN3N case, the elements of the groupTp1 , p2 lie on
parallel lines at angle u¼ tan�1(p2=p1) to the horizontal axis.
The number l of such lines is determined as follows. If p1¼ 0 or
p2¼ 0, then l¼ 1. For other cases, let k1 and k2 be the least integers
satisfying the relations k1p1 ¼ k2p2 ¼ N � 1. Then, l¼ k1=k2with
k1� k2, and l¼ k2=k1 with k1< k2. For instance, when N¼ 5 and
(p1, p2)¼ (2, 1), we obtain 2p1 ¼ 4p2 ¼ 4 and l¼ 4=2¼ 2.
The frequency-points of the group T2,1 lie on two parallel lines
at angle u¼ tan�1(1=2)¼ 26.56518 to the horizontal axis
(see Figure 19.6). The points of this group can be also considered
lying on three parallel lines at angle u1¼ u� 908¼ �63.43498 to
the horizontal axis. It should be noted, that if we splice the
opposite sides of the lattice bounds, then the lattice will be repre-
sented as a net traced on the surface of a three-dimensional torus
and thementioned l lines will compose a closed spiral on the torus,
which will pass through those points on the net, which correspond
to the points (0, 0) and (p1, p2). All elements of the cyclic group will
be points of intersection of the spiral with the net. As an example,
Figure 19.7 shows the points of the lattice X20,20 on the torus and
two spirals with frequency-points of the groups T1,1 and T1,2
which intersect at the knot (0, 0).

The irreducible covering s of the domain X composed from
groups (Equation 19.29) is unique. To illustrate this property,
we consider the 2-D case with the square lattice X5,5. The irre-
ducible covering s of X5,5 is the family of six groups given in
Equation 19.30:

s ¼ (T0,1, T1,1, T2,1, T3,1, T4,1, T1,0):

The cyclic group Tp1 , p2 with any other generatrix (p1, p2) 6¼ (0, 0),
different from generatrices (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), and
(1, 0), coincides with one of the groups of the covering s. For
instance,

T1, 2 ¼ (0, 0), (1, 2), (2, 4), (3, 1), (4, 3)f g ¼ T3, 1,

T3, 2 ¼ (0, 0), (3, 2), (1, 4), (4, 1), (2, 3)f g ¼ T4, 1,

T2, 2 ¼ (0, 0), (2, 2), (4, 4), (1, 1), (3, 3)f g ¼ T1, 1:

If an n-dimensional transformation P is revealing by the
covering s composed by cyclic groups (Equation 19.29), then
the sJ-representation of a n-dimensional sequence f by P, i.e., the
totality of 1-D signals {fT ; T 2 s}, is called a tensor, or vector

representation of f with respect to the transformation P [12]. The
1-D signals fT are called the splitting-signals of f.

0 2 4
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4

T0,1

0 2 4

0

2

4

T1,1

0 2 4
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T2,1

0 2 4

0

2

4

T3,1

0 2 4

0

2

4

T4,1

0 2 4

0

2

4

T1,0

FIGURE 19.6 Arrangement of frequency-points of groups Tp1 , p2 covering the lattice 53 5.

T1,2

T1,1

(0,0)

FIGURE 19.7 Torus of the lattice 203 20 with two spirals correspon-
sing to the groups T1,1 and T1,2.
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19.4 Fourier Transform Tensor
Representation

In this section, we discuss in detail the construction and proper-
ties of the tensor representation of the multidimensional signals
with respect to the DFT. We first consider the 2-D case as the
simplest case among multidimensional ones.

Let f ¼ fn1 ,n2f g be a sequence of sizeN13N2, and letN0¼ g.c.d.
(N1, N2)> 1, i.e., N1 ¼ N0N

0
1, N2 ¼ N0N

0
2. Let s ¼ sN1 ,N2 be the

irreducible covering of the rectangular latticeX ¼ XN1 ,N2 defined in
Equation 19.28. We denote by F ¼ FN1 ,N2 the N13N2-point 2-D
DFT. The 2-D DFT of the sequence f, accurate to the normalizing
factor 1=N1N2, is defined by the following relation:

Fp1 ,p2 ¼ (F � f )p1 ,p2 ¼
XN1�1

n1¼0

XN2�1

n2¼0

fn1 ,n2W
n1p1
n1

W
n2p2
N2

, (p1, p2) 2 X,

(19:32)

where WNk
¼ exp �2pj=Nkð Þ, k ¼ 1, 2.

For an arbitrary frequency-point (p1, p2), we determine in the
period X the sets of points

Vp1 ,p2 ,t ¼ (n1, n2);N
0
2n1p1þN 0

1n2p2 ¼ tmodN

 �

, t¼ 0 : (N�1),

(19:33)

where N¼N1 N2=N0. On these sets of points, we consider the
sums of the sequence f, i.e., the following N quantities

fp1 ,p2 ,t ¼
X

fn1 ,n2 ; (n2, n2) 2 Vp1 ,p2 ,t


 �
, t ¼ 0 : (N � 1):

(19:34)

For the spectral component Fp1 ,p2 , the following calculations
hold:

Fp1 ,p2 ¼
XN1�1

n1¼0

XN2�1

n2¼0

fn1 ,n2W
N 0
2n1p1þN 0

1n2p2
N ¼

XN�1

t¼0

fp1 ,p2 ,tW
t , (19:35)

where W ¼ WN ¼ e�j2pN . The general formula is also valid,

F
kp1 ,kp2

¼
XN�1

t¼0

fp1 ,p2 ,tW
kt , k ¼ 0 : (N � 1): (19:36)

In other words, N components F
kp1 , kp2

of the 2-D DFT of f can be
represented by the 1-D sequence of length N:

fTp1 ,p2
¼ fp1 ,p2 ,0, fp1 ,p2 ,1, . . . , fp1 ,p2 ,N�1


 �
: (19:37)

The sequence fTp1 , p2
determines the spectral information of the

image f at frequency-points of the set Tp1 ,p2 . We call such a
sequence the splitting-signal, or the image-signal if f is an
image. The components of the splitting-signal are numbered by
the set of three, (p1, p2, t), where two components represent the

frequency (p1, p2) and t is referred to as the time. Thus the
splitting-signal is a (2-D frequency)–(1-D time) representation
of the 2-D sequence f, which determines completely the 2-D DFT
of f at the frequency-points of the set Tp1 ,p2 .

Example 19.4

(53 5-point DFT) Let N¼ 5 and f be the following image of

size 53 5:

f ¼

1 2 1 3 1

2 0 1 1 2

1 3 2 2 1

4 1 0 1 3

2 4 1 2 1

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

:

The underlined unit shows the location of the zero point. We

consider the frequency-point (p1, p2)¼ (2, 1). All values of t in

the equations n1p1þ n2p2¼ t mod 5 can be written in the

form of the following matrix:

t ¼ (n1 � 2þ n2 � 1)mod5k kn2 ,n1¼0: 4¼

0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

3 4 0 1 2

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

:

Therefore, the components of the splitting-signal fT2,1 of f are
defined as follows:

fT2,1 ¼

f2,1,0 ¼ f0,0þ f1,3þ f2,1þ f3,4þ f4,2 ¼ 1þ 1þ 3þ 3þ1¼ 9

f2,1,1 ¼ f0,1þ f1,4þ f2,2þ f3,0þ f4,3 ¼ 2þ 2þ 2þ 4þ2¼ 12

f2,1,2 ¼ f0,2þ f1,0þ f2,3þ f3,1þ f4,4 ¼ 1þ 2þ 2þ 1þ1¼ 7

f2,1,3 ¼ f0,3þ f1,1þ f2,4þ f3,2þ f4,0 ¼ 3þ 0þ 1þ 0þ2¼ 6

f2,1,4 ¼ f0,4þ f1,2þ f2,0þ f3,3þ f4,1 ¼ 1þ 1þ 1þ 1þ4¼ 8

8

>>>>>><

>>>>>>:

(19:38)

and fT2, 1 ¼ {9, 12, 7, 6, 8}. The power of this signal equals the
power of the image f, i.e.,

X4

t¼0
f2, 1, t ¼ 9þ 12þ 7þ 6þ 8 ¼ 42 ¼

X4

n1¼0

X4

n2¼0
fn1 , n2 :

The 5-point DFT of the splitting-signal equals

F 5 � fT2, 1 ¼ {42, 4:6631� 4:3920j, �3:1631� 1:4001j, �3:1631
þ 1:4001j, 4:6631þ 4:3920j}:

This transform coincides with the 2-D DFT of the image f at
frequency-points of the group

T2, 1 ¼ (0, 0), (2, 1), (4, 2), (1, 3), (3, 4)f g,
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as shown in the following table:

42 0 0 0 0
0 0 0 �3:1631þ1:4001j 0
0 4:6631�4:3920j 0 0 0
0 0 0 0 4:6631þ4:3920j
0 0 �3:1631�1:4001j 0 0

2

6
6
6
6
4

3

7
7
7
7
5

(19:39)

We can fill the rest values of the 2-D DFT of the image, by
using other splitting-signals. For instance, for the signal corre-
sponding to the generator (p1, p2)¼ (3, 1), we have the following
table of time-points:

t ¼ (n1 � 3þ n1 � 1)mod 5k kn2 ,n1¼0:4¼

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

:

The components of the splitting-signal fT2, 1 are thus calculated as
follows:

fT3,1 ¼

f3,1,0 ¼ f0,0þ f1,2þ f2,4þ f3,1þ f4,3 ¼ 1þ 1þ 1þ 1þ2¼ 6
f3,1,1 ¼ f0,1þ f1,3þ f2,0þ f3,2þ f4,4 ¼ 2þ 1þ 1þ 0þ1¼ 5
f3,1,2 ¼ f0,2þ f1,4þ f2,1þ f3,3þ f4,0 ¼ 1þ 2þ 3þ 1þ2¼ 9
f3,1,3 ¼ f0,3þ f1,0þ f2,2þ f3,4þ f4,1 ¼ 3þ 2þ 2þ 3þ4¼ 14
f3,1,4 ¼ f0,4þ f1,1þ f2,3þ f3,0þ f4,2 ¼ 1þ 0þ 2þ 4þ1¼ 8

8

>>>><

>>>>:

(19:40)

and fT3,;1 ¼ {6, 5, 9, 14, 8}. The 5-point DFT of this splitting-
signal equals

F 5 � fT3, 1 ¼ {42, �8:5902þ 5:7921j, 2:5902� 2:9919j, 2:5902
þ 2:9919j, �8:5902� 5:7921j}:

This transform defines the 2-D DFT of the image at frequency-
points of the group

T3, 1 ¼ (0, 0), (3, 1), (1, 2), (4, 3), (2, 4)f g:

In this stage, we fill the 2-D DFT as shown in the following
table:

42 0 0 0 0

0 0 2:5902�2:9919j �3:1631þ1:4001j 0

0 4:6631�4:3920j 0 0 �8:5902�5:7921j

0 �8:5902þ5:7921j 0 0 4:6631þ4:3920j

0 0 �3:1631�1:4001j 2:5902þ2:9919j 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

In a similar way, the 1-D DFTs of the splitting-signals
fT0, 1 , fT1, 1 , fT4, 1 , and fT1, 0 , fill the rest of the table of the 2-D DFT
of the image f.

To illustrate the tensor representation in the general case, we
consider the case when N¼ 256 and the generator is (p1, p2)¼
(16, 1). Figure 19.8 shows (a) the clock-and-moon image

2563 256 in part (a), along with the image-signal fT16, 1 of length
256 in (b), the 1-D DFT of the image-signal (in absolute scale) in
(c), and 256 samples of this 1-D DFT at frequency-points of the
subset T16,1 of X256,256 at which the 2-D DFT of the image is filled
by the 1-D DFT in (d). The value of the 1-D DFT at point 0,
which is the power 43,885 of the image, has been truncated in
parts (c) and (d). Figure 19.9 shows another image-signal fT5, 1 in
part (a), along with the 256-point DFT of this signal in (b), and
the arrangement of values of the 1-D DFT in the 2-D DFT of the
image in (c).

19.4.1 2-D Directional Images

The components fp1 , p2 , t , t ¼ 0 : (N � 1), of the splitting-signals
of a 2-D sequence, or image fn1 , n2 , are defined as sums of the
image at points lying on the corresponding set Vp1 , p2 , t defined in
Equation 19.33. To describe these sets, we first consider the case
when N1¼N2¼N. Given a sample (p1, p2) 2 X and a nonnega-
tive integer t<N, the set

Vp1 ,p2 , t ¼ (n1, n2); n1p1 þ n2p2 ¼ t mod N , n1, n2 ¼ 0 : (N � 1)f g

if it is not empty, is the set of points (n1, n2) along a family of
parallel straight lines at the angle of c¼� arctan(p2=p1) to the
horizontal axis. The equations for these lines are

xp1 þ yp2 ¼ t

xp1 þ yp2 ¼ t þ N

� � � � � � �
xp1 þ yp2 ¼ t þ kN

8

>>><

>>>:

(19:41)

where k� p1þ p2. We denote this family by Lp1 , p2 , t . For different
values of t1 6¼ t2<N the families of lines Lp1 , p2 , t1 and Lp1 , p2 , t2 do
not intersect. All together, the sets Vp1 , p2 , t , t ¼ 0 : (N � 1), com-
pose a partition of the period X. It is interesting to note that
the direction of parallel lines of Lp1 , p2 , t is perpendicular to the
direction of frequency-points of the cyclic group Tp1 , p2 .

Example 19.5

On the lattice X8,8, we consider two sets of parallel lines L2, 1, 1

and L2, 1, 2 . Each family contains three parallel lines. For the

family L2, 1, 1 , the parallel lines are

y1: 2x þ y ¼ 1, y9: 2x þ y ¼ 9, y17: 2x þ y ¼ 17:

One point (0, 1) of the set V2,1,1 lies on the first line of L2, 1, 1, four
points (1, 7), (2, 5), (3, 3), (4, 1) on the second line and, three
points (5, 7), (6, 5), (7, 3) on the third one. Therefore,
f2, 1, 1 ¼ (x0, 1)þ (x1, 7 þ x2, 5 þ x3, 3 þ x4, 1)þ (x5, 7 þ x6, 5 þ x7, 3).
The parallel lines of the family L2, 1, 2 are defined by

y2 : 2x þ y ¼ 2, y10 : 2x þ y ¼ 10, y18 : 2x þ y ¼ 18,
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and the component f2, 1, 2 ¼ (x0, 2 þ x1, 0)þ (x2, 6 þ x3, 4 þ x4, 2þ
x5, 0)þ (x6, 6 þ x7, 4). The disposition of the points lying on the
parallel lines of these sets is given in Figure 19.10. The location of
the frequency-points of the group T2,1 is also shown in this figure.
Two parallel lines pass through these frequency-points, which are
defined in the frequency plane (w1, w2) as l1 : 2w2�w1¼ 0 and
l2 : 2w2�w1¼ 8. The parallel lines l1 and l2 are perpendicular to

the parallel lines yn of L2, 1, 1 and L2, 1, 2, as well as all other
families L2, 1, t , t ¼ 0, 3 : 7.

The disposition of the points of all disjoint eight sets V2,1,t,
when t¼ 0 : 7, is given in Figure 19.11.

We can again identify the opposite sides of the boundaries
of the square Y¼ [0, N]3 [0, N] and consider Y as a torus and
the 2-D lattice X as a net traced on the torus in the 3-D space.
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43,885

FIGURE 19.8 (a) The image 2563 256, (b) image-signal corresponding to the generator (p1, p2)¼ (16, 1), (c) absolute spectrum of the image-signal
(with the truncated zero component), and (d) the arrangement of values of the 1-D DFT in the 2-D DFT of the image (in the 3-D view).
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FIGURE 19.9 (a) Image-signal corresponding to the generator (5, 1), (b) absolute spectrum of the image-signal, and (c) the arrangement of values
of the 1-D DFT in the 2-D DFT of the image.
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Then, the straight lines of Lp1 , p2 , t will compose a closed spiral St
on the torus. The sums fp1 , p2 , t


 �
, calculated on N parallel spirals

St, t¼ 0 : (N� 1), represent the image fn1 , n2 in the group of
frequency-points Tp1 , p2 , which are also situated on a spiral that
passes through the initial point (0, 0) of the net and make
an angle p = 2 with the spirals St.

The image-signals are the discrete integrals (or image projec-
tions) along the parallel lines of Equation 19.41. Therefore, any
processing of the image-signal fT yields the change in the Fourier
spectrum at frequency-points of the corresponding cyclic group T.
After performing the 2-D IDFT, the corresponding change can be
observed in the image along the parallel lines of sets
Vp1 , p2 , t , t ¼ 0 : (N � 1). As an example, Figure 19.12 shows the
tree image of size (2563 256) in part (a), along with the results of

amplifying only one image-signal fT2, 1 by the factor of 4 in (b), and
signal fT5, 1 by the factor of 6 in (c). The directions of parallel lines
of the corresponding familiesL2, 1, t , andL5, 1, t , t ¼ 0 : 255, on the
image can easily be observed.

19.4.1.1 Superposition of Directions

The images of Figure 19.12 illustrates well that an image
f ¼ fn1 , n2 can be composed by specific collection of directional
images. To show that, we consider the tensor representation of f,

fn1 , n2f g ! fT ; T ¼ Tp1 , p2 2 sJ


 �
,

where s is the irreducible covering of the period X whose size we
assume equal, N3N.
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FIGURE 19.10 The locations of the points of sets V2,1,1 and V2,1,2 and frequency-points of the group T2,1.
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FIGURE 19.11 The disposition of eight sets of points of V2,1,t, when t¼ 0 : 7 (shown by filled circles).
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FIGURE 19.12 (a) Tree image before and after processing by the image-signals, (b) fT2, 1 and (c) fT5, 1 .
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Given a generator (p, s) 2 J, we define the complex data A¼A

(p, s) of size N3N by

Ap1 ,p2 ¼A(p, s)p1 ,p2 ¼
F
kp,ks, if (p1, p2)¼ kp, ks

� �
, k¼0: (N�1),

0, otherwise,

(

(19:42)

where p1, p2¼ 0 : (N� 1). The data A represent an incomplete
2-D DFT of the image, that is zero at all frequency-points except
the group Tp,s. Examples of such incomplete 2-D DFTs have been
shown in Equation 19.39 for the N¼ 5 case, as well as in the 3-D
view for the image 2563 256 in Figures 19.8d and 19.9c for
groups T16,1 and T5,1, respectively.

We define the ‘‘directional image’’ dn1 , n2 as the 2-D IDFT of
the data A,

dn1 ,n2 ¼ d(p,s)n1 ,n2
¼ F�1

N ,N � A
� �

n1 ,n2
¼ 1

N2

XN�1

p1¼0

XN�1

p2¼0

Ap1 ,p2W
n1p1þn2p2

n1, n2 ¼ 0 : (N � 1): (19:43)

Since the splitting-signal fTp, s defines the 2-D DFT of the image
at frequency-points of the group T¼Tp,s,

(FN � fT )k ¼ F
kp, ks, k ¼ 0 : (N � 1),

the following calculations hold:

dn1 ,n2 ¼
1

N2

XN�1

p1¼0

XN�1

p2¼0

Ap1 ,p2W
n1p1þn2p2 ¼ 1

N2

XN�1

k¼0

F
kp,ksW

n1(kp)þn2(ks)

¼ 1

N

1

N

XN�1

k¼0

F
kp,ksW

k(n1pþn2s) ¼ 1

N
fp,s, (n1pþn2s) mod N

:

(19:44)

Thus, N values of the splitting-signal are placed in all N2 points of
the square lattice XN,N. Namely, each value fp,s,t is placed at all
points which are situated along the parallel lines of the corre-
sponding family Lp,s,t .

As an example, we consider an image of size 2573 257, i.e.,
when N¼ 257. The first 10 directional images d(p,s)n1 ,n2 , for (p, s)¼
(0, 1), (1, 1), . . . , and (9, 1), are shown in Figure 19.13, for the tree
image (whose original size 2563 256 has been extended to the
size 2573 257).

When N is a prime, Nþ 1 directional signal-images are
required to compose the image f. Indeed, the covering s¼ (Tp,s;
(p, s) 2 J) consists of (Nþ 1) groups Tp,s. The set J of generators
(p, s) can be taken as

J ¼ (0, 1), (1, 1), (2, 1), (3, 1), . . . , (N � 1, 1), (1, 0)f g:

The cyclic groups T of sJ intersect only at the point (0, 0).
Therefore, for a given frequency-point (p1, p2), the following
holds

X

Tp,s2s
A(p, s)p1 ,p2 ¼ Fp1 ,p2 þ Ns0dp1 ,p2 ,

where s0¼ F0,0 or the power of the image. Taking the 2-D
IDFT of the sum of all incomplete 2-D DFTs, we obtain the
following:

X

(p,s)2J
F�1

N ,N � A(p, s)p1 ,p2
� �

¼ F�1
N ,N �

X

(p,s)2J
A(p, s)p1 ,p2

2

4

3

5

¼ F�1
N ,N � Fp1 ,p2

� �
þ s0

N
:

(19:45)

To simplify our calculations, we assume that the image is
centered fn1 ,n2 ! fn1 ,n2 � s0=N

2. Then, it directly follows from
Equation 19.45 that

(a) DI−(0,1) (b) DI−(1,1) (c) DI−(2,1) (d) DI−(3,1) (e) DI−(4,1)

(f ) DI−(5,1) (g) DI−(6,1) (h) DI−(7,1) (i) DI−(8,1) (j) DI−(9,1)

FIGURE 19.13 (a)–(j) The first 10 directional images of the tree image 2573 257. (All images have been scaled.)
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X

(p,s)2J
d(p,s)n1 ,n2

¼
X

(p,s)2J
F�1

N ,N � A(p, s)
� �

n1 ,n2
¼ fn1 ,n2 : (19:46)

The sum of the directional images equals to the image fn1 , n2 . Each
directional image can be determined by the corresponding
splitting-signal as shown in Equation 19.44. Therefore, the
whole image fn1 , n2 can be reconstructed from (Nþ 1) splitting-
signals as

fn1 ,n2 ¼
X

(p,s)2J
d(p,s)n1 ,n2

¼ 1

N

X

(p,s)2J
fp,s, (n1pþn2s) mod N : (19:47)

If the image is not centered, the reconstruction formula is

fn1 ,n2 ¼
X

(p,s)2J
d(p,s)n1 ,n2

� s0

N
¼ 1

N

X

(p,s)2J
fp,s,(n1pþn2s) mod N � s0

N
:

(19:48)

Each directional d(p,s) completes the original image with details,
or parallel straight lines of different brightness in gray scale.
The direction of these lines is defined by the generator (p, s).
Formula (19.48) describes the principle of the superposition of

directional images in image formation. Each directional image is
determined by the corresponding splitting-signal which is calcu-
lated by the discrete linear integrals (sums) of the image fn1 , n2
along the parallel lines of Lp, s, t , t ¼ 0 : (N � 1). These integrals
can be considered as the projection data along the angle defined
by the generator (p, s). Thus we obtain the simple formula of
reconstruction of the image by its projection data, by using
the splitting-signals of the tensor representation of the image
with respect to the Fourier transform. The number of projections
equals the number of generators, i.e., (Nþ 1), when N is prime.
This is the required number of projections for the exact recon-
struction of the image N3N. As an example, Figure 19.14 shows
the tree image after removing the projection data fp,s, (n1pþn2s) mod N

which corresponds to the generator (p, s)¼ (1, 0) in part
(a), (p, s)¼ (1, 1) in (b), and (p, s)¼ (0, 1) in (c).

The angles of the required projections for reconstruction of an
image of size 2573 257 by the splitting-signals (or direction
images) compose the following set

F257, 257 ¼ arcctg(p); p ¼ 0 : 257f g [ p=2f g:

Figure 19.15 illustrates all central angles of this set on the unit
circle. One can see that the points on the circle are not uniformly

(a) (b) (c)

FIGURE 19.14 Images reconstructed by 256 projections by splitting-signals, when the projection data of one generator (p, s) have been removed,
for (p, s) equals (a) (1, 0) (b) (1, 1), and (c) (0, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

90°

45°

26.57°
18.43°

FIGURE 19.15 Central angles of 258 projections required for reconstructing an image 2573 257.
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distributed, and the increment of the angles is not a constant.
The main part of the projections are taken along the small angles.
For instance, there are no projections for angles in the intervals
(458, 908) and (26.578, 458), as well as (18.438, 26.578).

19.5 Tensor Algorithm of the 2-D DFT

In this section, we consider the tensor algorithm for calculating
the 2-D DFT of order N13N2. Let s¼sJ be an irreducible
covering of the period X ¼ XN1 ,N2 consisting of cyclic groups T.
The algorithm of calculation of the 2-D DFT FN1 ,N2 � f of a 2-D
sequence fn1 , n2 is performed by the following two steps.

Step 1. Calculate the 1-D splitting-signals fT of the tensor-
representation of the image, i.e., calculate the transform

Xs : f ! {fT ; T 2 s} (19:49)

which we call the tensor transform of the image.

Step 2. Calculate the 1-D DFTs of the obtained splitting-signals,
FN(T) � fT , T 2 s.

Step 3. Allocate the 1-D DFTs in the 2-D data by cyclic groups
T 2 s,

[FN � fT ] ! Fp,s; (p, s) 2 T

 �

: (19:50)

Each splitting-signal fT defines the 2-D DFT at the frequency-
points of the cyclic group T,

F
kp1 , kp2

¼ (FN � fT)k, k ¼ 0 : (N � 1),

where the number N¼N1N2=g.c.d.(N1, N2). The number of 1-D
transforms required for calculating the 2-D DFT coincides with
the cardinality, card s, of the covering s, or the cardinality of the
set J of generators of these groups,

s ¼ sJ ¼ Tp1 ,p2

� �

(p1 ,p2)2J : (19:51)

We here separately consider the set of generators for the cases of
most interest, when N1¼N2¼N, and N is a general prime, the
product of two prime numbers, and then we describe the case
when N1 and N2 are arbitrary unequal integers.

19.5.1 N Is a Prime

Let N> 1 be a general prime. The irreducible covering sJ of the
set XN,N has the cardinality Nþ 1, i.e.,

cardsJ ¼ N þ 1: (19:52)

In other words, the minimum number of cyclic groups Tp,s which
together cover the period X equals (Nþ 1). Indeed, the irreducible
covering sJ is determined by the following set of generatrices

J ¼ JN ,N ¼ (0, 1), (1, 1), (2, 1), . . . , (N � 1, 1), (1, 0)f g:
(19:53)

Other sets of (Nþ 1) generators can also be taken, for instance,
J¼ {(1, 0), (1, 1), (1, 2), . . . , (1, N� 1), (0, 1)}. Therefore, to
calculate the N3N-point 2-D DFT, it is sufficient to fulfill
(Nþ 1) 1-D N-point DFTs.

Example 19.6

We consider the 33 3-point DFT of the following 2-D

sequence, or image:

f ¼ fn1 ,n2f g ¼
1 2 1

2 4 2

1 2 1

2

4

3

5:

The square lattice X3,3¼ {(n1, n2); n1, n2¼ 0, 1, 2} is covered by

the totality of sets s¼ (T0,1, T1,1, T2,1, T1,0). The tensor represen-

tation of f defines four splitting-signals,

Xs : fn1 ,n2f g ! {f0,1,t}, {f1,1,t }, {f2,1,t}, {f1,0,t }f g, t ¼ 0, 1, 2:

(19:54)

Step 1: We denote by f the vector–column composing from rows
of the sequence fn1 , n2 , i.e., f¼ (1, 2, 1, 2, 4, 2, 1, 2, 1)0. The first
splitting-signal {f0,1,t} is calculated by

f0,1,0

f0,1,1

f0,1,2

2

6
4

3

7
5 ¼

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

2

6
4

3

7
5f ¼ [4, 8, 4],

(19:55)

and the next three splitting-signals are calculated as follows:

f1,1,0

f1,1,1

f1,1,2

2

4

3

5 ¼
1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

2

4

3

5f ¼ [5, 5, 6],

(19:56)

f2,1,0

f2,1,1

f2,1,2

2

4

3

5 ¼
1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

2

4

3

5f ¼ [6, 5, 5],

(19:57)

f1, 0, 0
f1, 0, 1
f1, 0, 2

2

4

3

5 ¼
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

2

4

3

5f ¼ [4, 8, 4]:

(19:58)

Step 2: The three-point DFT of the first signal {f0,1,0, f0,1,1, f0,1,2}¼
[4, 8, 4] is calculated by

A0

A1

A2

2

4

3

5 ¼
1 1 1
1 W W2

1 W2 W

2

4

3

5

4
8
4

2

4

3

5 ¼
16

�2:0� j3:4641
�2:0þ j3:4641

2

4

3

5,
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where W¼ exp(�j2p=3). The power of each splitting-signal
equals 16, and there is no need to calculate the three-point
DFTs of other signals at zero. Therefore, we can perform three
incomplete three-point DFTs of these splitting-signals:

B1

B2

" #

¼
1 W W2

1 W2 W

" # 5

5

6

2

6
4

3

7
5 ¼

�0:5þ j0:8660

�0:5� j0:8660

" #

,

C1

C2

" #

¼
1 W W2

1 W2 W

" # 6

5

5

2

6
4

3

7
5 ¼

1

1

" #

,

D1

D2

� �

¼ 1 W W2

1 W2 W

� � 4
8
4

2

4

3

5 ¼ �2:0� j3:4641
�2:0þ j3:4641

� �

:

The splitting-signals and the energy Fourier spectrums of these
signals are shown in the first and second rows of Figure 19.16,
respectively.

Step 3: The location of frequency-points of four cyclic groups T 2 s

in the lattice 33 3, where the 1-D DFTs of the splitting-signals are
placed, is shown in the last row of the figure. As a result, we obtain
the following matrix expression for the 33 3-point DFT of the
given sequence f:

F0,0 F0,1 F0,2

F1,0 F1,1 F1,2

F2,0 F2,1 F2,2

2

6

4

3

7

5
¼

A0 A1 A2

D1 B1 C2

D2 C1 B2

2

6

4

3

7

5

¼
16 �2:0� j3:4641 �2þ j3:4641

�2� j3:4641 �0:5þ j0:8660 1

�2þ j3:4641 1 �0:5� j0:8660

2

6

4

3

7

5
:

If we unite four binary matrices 93 3 in Equations 19.55
through 19.58, we obtain the following matrix of the tensor
transformation in Equation 19.54:

[Xs] ¼

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

: (19:59)
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f0,1,t
f1,1,t f2,1,t f1,0,t
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FIGURE 19.16 Four splitting-signals (the first row), the 3-point DFTs (in absolute scale) of the splitting-signals (the second row), and the location
of the frequency-points of the cyclic groups T 2 s (the third row).
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In matrix form, the described tensor algorithm of the 33 3-point
DFT can be written as

F0,0
F0,1
F0,2
F1,1
F2,2
F2,1
F1,2
F1,0
F2,0

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1 1 1
1 W W2

1 W2 W
1 W W2

1 W2 W
1 W W2

1 W2 W
1 W W2

1 W2 W

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

[Xs]f:

The tensor algorithm of the 33 3-point DFT uses the follow-
ing number of arithmetical operations: 4 real multiplications
and 38 real additions, if the sequence f is real. Indeed, since
W2¼�1�W, we have the following:

F1

F2

� �

¼ 1 W W2

1 W2 W

� �
x

y

z

2

6

4

3

7

5
¼

x þWy � (z þWz)

x � (y þWy)þWz

� �

¼ x � z þW(y � z)

x � y �W(y � z)

� �

: (19:60)

The incomplete 3-point Fourier transform can thus be calcu-
lated by one complex multiplication. Moreover, since
W1 ¼ �

ffiffiffi
3

p
� j

� �
=2 and the division by 2 is the elementary

operation of shifting, the multiplication by W is equivalent to
one real multiplication and shifting. The 3-point DFT of real data
uses one operation of real multiplication, five additions, and one
shifting. Three additions are required to calculate the incomplete
3-point DFT, since �F2¼ F1. For the complex data, the 3-point
DFT uses two multiplications, two shiftings, and 16 operations of
real additions, and the incomplete DFT requires 12 additions.
Further, the direct calculation of the matrix [X ] of order 123 8 is
fulfilled in the given example via 24 operations of real addition
and subtraction. Therefore, the 33 3-point 2-D DFT requires
(5þ 33 3)þ 24¼ 38 additions for the real sequence f. We note
for comparison, the polynomial algorithm of the 33 3-point
DFT also uses four 3-point DFTs, polynomial transforms, reduc-
tions, and Chinese remainder operations, which requires 25
additions (against 24 for the tensor transform). In the row–
column algorithm, six 3-point DFTs are used, namely, three
transforms with real inputs and three transforms with complex
inputs. Therefore, the algorithm uses respectively 3þ 2(3)¼ 9
real multiplications and 33 5þ 33 16¼ 63 additions, when
data are real. Thus, in the tensor and polynomial algorithms,
we get the advantage of the number of multiplications by 3 times,
and 1.6 times for additions.

In the general case, for a prime number N> 3, in the trad-
itional row–column algorithm, 2N one-dimensional N-point
DFTs are used. Therefore, the tensor algorithm decreases the
number of multiplications by 2N=(Nþ 1) times, i.e., almost by
2 times, for large N. The tensor transform Xs requires N3�N

additions, and the polynomial transforms and reductions

and Chinese remainder operations require N3þN2� 5Nþ 4
additions [14].

19.5.2 N Is a Power of Two

When N¼ 2r, r> 1, the irreducible covering s of the lattice
X ¼ X2r ,2r can be taken as the following family of 3N=2 cyclic
groups:

sJ ¼ Tp1 ,1

� �

p1¼0:(2r�1)
, T1,2p2

� �

p2¼0:(2r�1�1)

� 	

: (19:61)

Thus, to calculate the 2r3 2r-point 2-D DFT, 3 � 2r� 1 1-D DFTs
are used in the tensor algorithm which is described by

F
kp, ks ¼ F 2r , 2r � fð Þ

kp, ks¼
X2
r�1

n1¼0

X2
r�1

n2¼0

fn1 ,n2W
n1kpþn2ks

¼ F 2r � fTð Þk¼
X2
r�1

t¼0

fp,s,tW
kt , k ¼ 0: (2r � 1), (19:62)

where the generators (p, s) are taken from the set

J ¼ (0, 1), (1, 1), (2, 1), . . . , (2r � 1, 1)f g
[ (1, 0), (1, 2), (1, 4), . . . , (1, 2r � 2)f g: (19:63)

The components of splitting-signals fT are calculated by the
characteristic functions of sets Vp,s,t,

fp,s,t ¼ X p,s,t � f ¼
X2
r�1

n1¼0

X2
r�1

n2¼0

Xp,s,t(n1, n2)fn1 ,n2 ¼
X

(n1 ,n2)2Vp,s,t

fn1 ,n2 :

(19:64)

These binary functions determine the tensor transform Xs and
are defined as

Xp,s,t(n1, n2) ¼
1, if n1pþ n2s ¼ t mod 2r ,

0, otherwise,

(

(n1, n2) 2 X:

(19:65)

All ones of the functions lie on parallel lines passing the knots of
the corresponding sets Vp,s,t.

Example 19.7

Consider the following 2-D sequence f of size 43 4 :

f ¼

f0,0 f0, 1 f0, 2 f0, 3

f1, 0 f1, 1 f1, 2 f1, 3

f2, 0 f2, 1 f2, 2 f2, 3

f3, 0 f3, 1 f3, 2 f3, 3

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

¼

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:
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The set of generators of the cyclic groups Tp,s of the covering
sJ equals

J ¼ (0, 1), (1, 1), (2, 1), (3, 1)f g [ (1, 0), (1, 2)f Þg: (19:66)

We first describe the splitting-signal corresponding to the
frequency-point (p, s)¼ (0, 1). For that, we write all values t in
equations npþms¼ tmod 4 in the form of the following matrix:

t ¼ (n � 0þm � 1) mod 4k kn,m¼0:3¼

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:

The components of this splitting-signal are calculated as follows:

f1,0,0 ¼ X 1,0,0 � f ¼

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

2

6
6
6
4

3

7
7
7
5
�

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

2

6
6
6
4

3

7
7
7
5

¼ 1þ 2þ 1þ 2 ¼ 6 (19:67)

f1,0,1 ¼ X 1,0,1 � f ¼

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

2

6
6
6
4

3

7
7
7
5
�

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

2

6
6
6
4

3

7
7
7
5

¼ 2þ 0þ 3þ 4 ¼ 9 (19:68)

f1,0,2 ¼ X 1,0,2 � f ¼

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

2

6
6
6
4

3

7
7
7
5
�

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

2

6
6
6
4

3

7
7
7
5

¼ 1þ 1þ 2þ 1 ¼ 5 (19:69)

f1,0,3 ¼ X 1,0,3 � f ¼

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

2

6
6
6
4

3

7
7
7
5
�

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

2

6
6
6
4

3

7
7
7
5

¼ 3þ 1þ 2þ 2 ¼ 8 (19:70)

The splitting-signal fT0, 1 ¼ {6, 9, 5, 8}. The four-point DFT of
this signal equals (F0, F1, F2, F3)¼ (28, 1� j, �6, 1þ j), which
can be written in the table of the 2-D DFT of f at the frequency-
points (0, 0), (0, 1), (0, 2), and (0, 3) as follows:

F0 F1 F2 F3

0 0 0 0

0 0 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
¼

28 1� j �6 1þ j

0 0 0 0

0 0 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
:

We also consider the splitting-signal corresponding to the next
generator (p, s)¼ (1, 1). For this generator, equations npþms¼ t

mod 4 result in the following matrix:

kt ¼ (n � 1þm � 1) mod 4kn,m¼0:3 ¼

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:

Therefore, the first component of this splitting-signal is calcu-
lated by

f1,1,0 ¼ X 1,1,0 � f ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2

6
6
6
4

3

7
7
7
5
�

1 2 1 3

2 0 1 1

1 3 2 2

2 4 1 2

2

6
6
6
4

3

7
7
7
5

¼ 1þ 1þ 2þ 4 ¼ 8 (19:71)

and similarly we obtain the next three components

f1,1,1 ¼ X1,1,1 � f ¼ 2þ 2þ 2þ 1 ¼ 7

f1,1,2 ¼ X1,1,2 � f ¼ 1þ 0þ 1þ 2 ¼ 4

f1,1,3 ¼ X1,1,3 � f ¼ 3þ 1þ 3þ 2 ¼ 9:

(19:72)

Thus, the splitting-signal fT1, 1 ¼ {8, 7, 4, 9}. The four-point DFT
of this signal equals (A0, A1, A2, A3)¼ (28, 4þ 2j, �4, 4� 2j),
which defines the 2-D DFT of f at the frequency-points (0, 0),
(1, 1), (2, 2), and (3, 3). At this step, we can record the other three
values of the 2-D DFT as follows:

F0 F1 F2 F3

0 A1 0 0

0 0 A2 0

0 0 0 A3

2

6
6
6
4

3

7
7
7
5
¼

28 1� j �6 1þ j

0 4þ 2j 0 0

0 0 �4 0

0 0 0 4� 2j

2

6
6
6
4

3

7
7
7
5
:

The first componentA0¼ F0¼ 28 and could be omitted from the
calculations, to avoid the redundancy. The redundancy of calcula-
tion takes place for other splitting-signals not only at frequency-
point (0, 0) but frequency-points with even coordinates, i.e., in the
quarter of all frequency-points, as it can be seen from Figure 19.17.

For instance, the four-point DFT of the splitting-signal
fT2, 1 ¼ {4, 8, 7, 9} equals (B0, B1, B2, B3)¼ (28, �3þ j, �6,
�3� j). These values define in the 2-D DFT at the frequency-
points (0, 0), (2, 1), (0, 2), and (2, 3). At this step, we can record
the other two values of the 2-D DFT as follows:

F0 F1 F2 F3

0 A1 0 0

0 B1 A2 B3

0 0 0 A3

2

6
6
6
4

3

7
7
7
5
¼

28 1� j �6 1þ j

0 4þ 2j 0 0

0 �3þ j �4 �3� j

0 0 0 4� 2j

2

6
6
6
4

3

7
7
7
5
:

It is clear, that the incomplete four-point DFT is required, to
avoid calculations for components B0 and B2 that have already
been calculated.
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We continue the calculation of the 2-D DFT. The 4 point DFT
of the splitting-signal fT3, 1 ¼ {5, 7, 7, 9} equals (C0, C1, C2, C3)¼
(28, �2þ 2j, �4, �2 �2j). It defines the 2-D DFT of f at the
frequency-points (0, 0), (3, 1), (2, 2), and (1, 3). At this step, we
can record two new values of the 2-D DFT as follows:

F0 F1 F2 F3

0 A1 0 C3

0 B1 A2 B3

0 C1 0 A3

2

6
6
6
4

3

7
7
7
5
¼

28 1� j �6 1þ j

0 4þ 2j 0 �2� 2j

0 �3þ j �4 �3� j

0 �2þ 2j 0 4� 2j

2

6
6
6
4

3

7
7
7
5
:

For this signal, the incomplete four-point DFT is required to
avoid calculations for components C0 and C2, which have already
been determined on the second step of our calculations (when
(p, s) was (1, 1)).

The remaining five values of the 2-D DFT will be calculated by
the splitting-signals corresponding to the generators (1, 0) and
(1, 2). The splitting-signal fT1, 0 ¼ {7, 4, 8, 8}. The 4-point DFT of
this signal equals (D0, D1, D2, D3)¼ (28, �1þ 5j, 2, �1 �5j)
and defines the 2-D DFT of f at the frequency-points (0, 0), (1, 0),
(2, 0), and (3, 0). At this step, we can record three new values of
the 2-D DFT as follows:

F0 F1 F2 F3

D1 A1 0 C3

D2 B1 A2 B3

D3 C1 0 A3

2

6
6
6
4

3

7
7
7
5
¼

28 1� j �6 1þ j

�1þ 5j 4þ 2j 0 �2� 2j

2 �3þ j �4 �3� j

�1� 5j �2þ 2j 0 4� 2j

2

6
6
6
4

3

7
7
7
5
:

The redundancy of calculation on this step is only at (0, 0). At the
last step, the four-point DFT of the splitting-signal
fT1, 2 ¼ {7, 9, 8, 4} is calculated. It equals (E0, E1, E2, E3) =
(28, �1 �5j, 2, �1þ 5j) and defines the 2-D DFT of f at the
frequency-points (0, 0), (1, 2), (2, 0), and (3, 2). We fill the 2-D
DFT by the values of E1 and E2,

F0 F1 F2 F3
D1 A1 E1 C3

D2 B1 A2 B3

D3 C1 E3 A3

2

6
6
4

3

7
7
5
¼

28 1� j �6 1þ j

�1þ 5j 4þ 2j �1� 5j �2� 2j

2 �3þ j �4 �3� j

�1� 5j �2þ 2j �1þ 5j 4� 2j

2

6
6
4

3

7
7
5

¼

F0,0 F0,1 F0,2 F0,3
F1,0 F1,1 F1,2 F1,3
F2,0 F2,1 F2,2 F2,3
F3,0 F3,1 F3,2 F3,3

2

6
6
4

3

7
7
5
:

For this signal, it is sufficient to perform an incomplete 4-point
DFT, to avoid the redundancy of calculations in two points.

Thus, the 43 4-point 2-D DFT is calculated in the tensor algo-
rithm by six 4-point DFTs. Namely, one full 4-point DFT and
five incomplete 4-point DFTs are required in this algorithm.

19.5.3 Modified Tensor Algorithms

When N is a power of two, many cyclic groups of the irreducible
covering s are intersected at frequency-points (p1, p2) 6¼ (0, 0),
which leads to a redundancy of the calculation. The demonstra-
tion of such a redundancy in the N¼ 4 case has been shown in
Example 19.7, when the repeated calculations have occured at all
frequency-points with even coordinates.

In general N¼ 2r case, when r> 1, the following intersection
holds

Tp1 ,1 \ Tp1þ2r�1 ,1 ¼ T2p1 ,2, T1,1p2 \ T1,2p2þ2r�1 ¼ T2,4p2 , (19:73)

when p1¼ 0 : (2r� 1� 1) and p2¼ 0 : (2r� 2� 1). For large 2r, we
can also consider other intersections:

Tp1 ,1 \ Tp1þ2r�k ,1 ¼ T2k(p1 ,1), T1,2p2 \ T1,2p2þ2r�k ¼ T2k(1,2p2),

(19:74)

when k¼ 2 : (r� 1) and p1¼ 0 : (2r�k� 1) and p2¼ 0 : (2r�k�1� 1).
Therefore, in the tensor algorithm, the calculation of many
2r-point DFTs of splitting-signals can be reduced to the calcula-
tion of incomplete DFTs, such as the 2r�1-point DFT, to remove
all repeated calculations of spectral components. As a result, we
can achieve the effective calculation of the 2r3 2r-point DFT
with the number of multiplications estimated as

m2r ,2r � (2r þ 1)m2r ¼ (2r þ 1) 2r�1(r � 3)þ 2
� �

, (19:75)

wherem2r denotes the number of multiplications required for the
2r-point DFT. We use the known estimateM2r ¼ 2r�1(r � 3)þ 2
for the Cooley–Tukey algorithm and the fast paired transforms
[10,11].

In each group Tp1 ,1 or T1,2p2 of the covering s, we consider the
set complement of the intersection T2k(p1 ,1) or T2k(1,2p2), respect-
ively. In other words, we define the following subsets

Tk
p1 ,1
¼ Tp1 ,1nT2k(p1 ,1) and Tk

1,2p2
¼ T1,2p2nT2k(1,2p2) (19:76)

0 1 2 3
0

1

2

3

T0,1

0 1 2 3
0

1

2

3
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0 1 2 3
0
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3
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0 1 2 3
0

1

2

3

T3,1

0 1 2 3
0

1

2

3
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1

2

3
T1,2

FIGURE 19.17 The disposition of frequency-points of six groups T of the covering sJ of X4,4.
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with 2r� 2r�k points each. When k¼ 1, and the totality of sets

s(1) ¼ Tp1 ,1,T
1
p1þ2r�1 ,1

� 	

p1¼0:(2r�1�1)
, T1,2p2 , T

1
1,2p2þ2r�1

� 	

p2¼0:(2r�2�1)

� �

is the covering of the period X2r ,2r . The calculation of the 2-D
DFT at frequency-points of each set T1 can be reduced to the
2r�1-point DFT. For that, we can use, for instance, the FFT
algorithm with decimation in frequency. Indeed, after the first
iteration in this algorithm, the 2r-point DFT is reduced to two
2r�1-point DFTs. One of them defines the 2r-point DFT at all
even frequencies and another at odd frequencies. Therefore, we
can determine the components of the 2-D DFT at frequency-
points of subsets T1

p1 ,1
and T1

1,2p2
, by fulfilling about half of the

operations of multiplication that are used for calculating the 2-D
DFT at frequency-points of the corresponding groups Tp1 ,1 and
T1,2p2 . Consequently, the number of multiplications in the tensor
algorithm can be reduced to

m2r ,2r ¼ 3 � 2r�2(m2r þm2r�1 þ 2r�1 � 2) � 9=8 � 2rm2r :

Continuing similar discussions, we can eliminate the intersections
T2k(p1 , 1) and T2k(1, 2p2), at other groups of T of the covering s(1),
for k¼ 2 : (r �1). As a result, we achieve a good estimation
of the number of multiplications, mr

2r , 2r � (2r þ 1)=2rð Þ�
2rm2r ¼ (2r þ 1)m2r . To demonstrate the described improvement
of the tensor algorithm, we consider in detail the N¼ 8 example.

Example 19.8

Let f ¼ fn1 , n2 ; n1 , n2 ¼ 0: 7f g be a two-dimensional sequence

and let F 8, 8 be the 83 8-point DFT. The tensor transform

f ! fTp,s ; Tp,s 2 sJ


 �

defines 12 splitting-signals with generators from the set

J ¼ (p1 , 1); p1 ¼ 0: 7f g [ (1, 2p2); p2 ¼ 0: 3f g:

We consider all groups of the irreducible covering sJ:

T0,1 ¼ (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)f g
T1,1 ¼ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)


 �

T2,1 ¼ (0, 0), (2, 1), (4, 1), (6, 3), (0, 4), (2, 5), (4, 6), (6, 7)

 �

T3,1 ¼ (0, 0), (3, 1), (6, 2), (1, 3), (4, 4), (7, 5), (2, 6), (5, 7)

 �

T4,1 ¼ (0, 0), (4, 1), (0, 2), (4, 3), (0, 4), (4, 5), (0, 6), (4, 7)

 �

T5,1 ¼ (0, 0), (5, 1), (2, 2), (7, 3), (4, 4), (1, 5), (6, 6), (3, 7)

 �

T6,1 ¼ (0, 0), (6, 1), (4, 2), (2, 3), (0, 4), (6, 5), (4, 6), (2, 7)

 �

T7,1 ¼ (0, 0), (7, 1), (6, 2), (5, 3), (4, 4), (3, 5), (2, 6), (1, 7)

 �

T1,0 ¼ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)

 �

T1,2 ¼ (0, 0), (1, 2), (2, 4), (3, 6), (4, 0), (5, 2), (6, 4), (7, 6)

 �

T1,4 ¼ (0, 0), (1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)

 �

T1,6 ¼ (0, 0), (1, 6), (2, 4), (3, 2), (4, 0), (5, 6), (6, 4), (7, 2)

 �

(19:77)

(many frequency-points that lie in the intersections of the groups
are underlined).

It directly follows from this covering, that to calculate the
83 8-point DFT, it is sufficient to fulfill the following full and
incomplete DFTs.

Step 1. The 8-point DFT, F 8, over the sequence fT0,1 , to determine
the 2-D DFT at frequency-points of the group T0,1,

F0,k ¼ F 8 � fT0,1

� �

k
, k ¼ 0: 7:

Step 2. Two incomplete DFTs over the splitting-signals fT1,1 and
fT1,0 , to determine the 2-D DFT at frequency-points of the groups
T1,1 and T1,0, except zero point (0, 0),

Fk,k ¼ F 8 � fT1,1

� �

k
, Fk,0 ¼ F 8 � fT1,0

� �

k
, k ¼ 1: 7:

Step 3. Three incomplete DFTs over the splitting-signals fT2,1 , fT3,1 ,
and fT1,2 , to determine the 2-D DFT at frequency-points of the
corresponding groups T2,1, T3,1, and T1,2, except the frequency-
points with the coordinates which are integer multiple to four,
i.e., the frequency-points (0, 0), (4, 0), (0, 4), and (4, 4),

F2k,k ¼ F 8 � fT2,1

� �

k
, F3k,k ¼ F 8 � fT3,1

� �

k
,

F
k,2k ¼ F 8 � fT1,2

� �

k
, k ¼ 1, 2, 3, 5, 6, 7:

Step 4. Six incomplete DFTs on the splitting-signals
fT4,1 , fT5,1 , fT6,1 , fT7,1 , fT1,4 , and fT1,6 , to determine the 2-D DFT at
frequency-points of corresponding groups T4,1, T5,1, T6,1, T7,1,
T1,4, and T1,6, except the frequency-points with even coordinates,

F4k,k ¼ F 8 � fT4,1

� �

k
, F5k,k ¼ F 8 � fT5,1

� �

k
, F6k,k ¼ F 8 � fT6,1

� �

k
,

F7k,k ¼ F 8 � fT7,1

� �

k
, F

k,4k ¼ F 8 � fT1,4

� �

k
, F

k,6k ¼ F 8 � fT1,6

� �

k
, k¼ 1, 3, 5, 7:

All reiterations of calculation of the 2-D DFT in the tensor
algorithm, the number of which equals 32, are eliminated in
the improved algorithm.

For large values of r, the improvement of the tensor algorithm
of the 2r3 2r-point DFT is estimated as 1.5 by the number of
multiplications,

k(2r) ¼ 3 � 2r�1m2r

(2r þ 1)m2r
� 3

2
:

The known Cooley–Tukey algorithm with base (23 2) uses
4r�1(3r� 4)þ 1 operations of multiplication, which exceeds 1.7
times the number of multiplications in the improved tensor
algorithm (see Table 19.1). The efficiency of the tensor algorithm
by operations of multiplication with respect to the Cooley–Tukey
algorithm is also given in the table.

19.5.4 Recursive Tensor Algorithm

We now describe another, more elegant improved tensor
algorithm for calculating the 2-D DFT, which we call the recur-
rent tensor algorithm, since it represents itself the recurrent
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procedure of calculation of the 2-D DFT by means of the 2-D
DFTs of small orders. The calculation of the 2r3 2r-point DFT is
reduced to 3 � 2r�1 incomplete transformations F 2r ;2 and one
2r�13 2r�1-point DFT. F 2r ;2 denotes the incomplete 2r-point
DFT when all 2r�1 components with even numbers are not
calculated. The number of operations of multiplication in such
a recurrent algorithm equals

m2r , 2r ¼ 4r=6(3r � 7)þ 8=3: (19:78)

In the tensor algorithm, the redundancy of the calculations (p1,
p2) occurs in all frequency-points with even coordinates. The set
of these frequency-points can be written as 2X2r�1 , 2r�1 . We can
define the following partition of the lattice X2r , 2r :

X2r ,2r ¼
[

(p,s)2J
Tp,snT2p,2s

� 	

[ 2X2r�1 , 2r�1 :

The calculation of the 1-D DFTs of the splitting-signals fTp, s at
only odd points can be reduced to the incomplete transforms
F 2r ; 2 � fTp, s . The calculation of the 2-D 2r3 2r-point DFT at all
even frequency-points can be reduced to the 2r�13 2r�1-point
DFT. Indeed, the following holds:

F2p1 , 2p2 ¼
X2
r�1

n1¼1

X2
r�1

n2¼1

fn1 , n2W
2n1p1þ2n2p2
2r

¼
X2
r�1�1

n1¼1

X2
r�1�1

n2¼1

gn1 , n2W
n1p1þn2p2
2r�1 ¼ F 2r�1 , 2r�1 � gð Þp1 , p2 ,

(19:79)

where the 2-D sequence g is defined as

gn1 , n2 ¼ fn1 , n2 þ fn1þ2r�1 , n2 þ fn1 , n2þ2r�1 þ fn1þ2r�1 , n2þ2r�1 ,

for p1, p2¼ 0 : (2r�1� 1). The number of operations of multipli-
cation required to fulfill the incomplete transform F 2r ;2 � fT
equals

m2r ;2 ¼ m2r �m2r�1 ¼ 2r�1 � 2þm2r�1 ¼ 2r�2(r � 2),

if we use the valuation m2r ¼ 2r�1(r � 3)þ 2. The number of
multiplications required in the recurrent algorithm of the 2r3 2r-
point DFT can be estimated as follows:

m2r , 2r ¼ m2r�1 , 2r�1 þ 3 � 2r�1m2r ; 2 ¼ m2r�1 , 2r�1 þ 3 � 22r�3(r � 2)

¼ 4r

6
(3r � 7)þ 8=3,

when we similarly continue the splitting of the 2r�13 2r�1-
point DFT, and then 2r�23 2r�2-point DFT, and so on. Table
19.2 shows the number of multiplications in the recurrent
algorithm in comparison with the tensor algorithm, for N¼ 2r,
when r¼ 8 : 15.

19.5.4.1 N Is a Power of an Odd Prime

We now consider a splitting of the N3N-point DFT, when
N¼ Lr, L> 1 is an arbitrary odd prime number, and r> 1. The
irreducible covering sJ¼ (Tp,s) of the lattice XLr , Lr consists of

TABLE 19.1 The Number of Operations of Multiplication Required for Calculating
the 2r3 2r-Point DFT in the Tensor and Improved Tensor Algorithms, as well as
by the Cooley–Tukey Algorithm with the Base (23 2)

2r T ¼ 3(2r�1)m2r I ¼ (2r þ 1)m2r C¼ 4r�1 (3r� 4)þ 1 C=T C=I

256 246,528 164,994 327,681 1.33 1.99

512 1,181,184 788,994 1,507,329 1.28 1.91

1024 5,508,096 3,675,650 6,815,745 1.24 1.85

2048 25,171,968 16,789,506 30,408,705 1.21 1.81

4096 113,258,496 75,524,098 134,217,729 1.19 1.78

8192 503,341,056 335,601,666 587,202,561 1.17 1.75

Note: It is assumed that m2r ¼ 2r�1(r � 3)þ 2.

TABLE 19.2 The Number of Operations of Multiplication Required for Calculation
of the 2r3 2r-Point DFT by the Tensor Algorithm and Recurrent Tensor Algorithm

r 2r T ¼ 3(2r�1)m2r R¼ 4r=6(3r� 7)þ 8=3 T = R

8 256 246,528 185,688 1.33

9 512 1,181,184 873,816 1.35

10 1,024 5,508,096 4,019,544 1.37

11 2,048 25,171,968 18,175,320 1.38

12 4,096 113,258,496 81,089,880 1.40

13 8,192 503,341,056 357,913,944 1.41

14 16,384 2,214,641,664 1,565,873,496 1.41

15 32,768 9,663,774,720 6,800,364,888 1.42
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Lr�1 (Lþ 1) cyclic groups and can be defined by the following set
of generators:

J ¼ JLr ,Lr ¼
[L
r�1

p1¼0

(p1, 1)
[ [L

r�1�1

p2¼0

1, Lp2
� �

: (19:80)

Therefore, to calculate the Lr3 Lr-point DFT, it is sufficient to
fulfill Lr�1(Lþ 1) Lr-point DFTs of the splitting-signals. The
number of multiplications is estimated as

mLr ,Lr ¼ Lr�1(Lþ 1)mLr :

The column–row algorithm uses 2(Lr) Lr-point DFTs and
2(Lr)mLr multiplications. The tensor algorithm reduces the num-
ber of multiplications by 2L=(Lþ 1) times.

The tensor algorithm can be improved, when removing the
redundancy of calculations in the intersections of the cyclic
groups Tp,s of the covering. For instance, for the r¼ 2 case, the
calculation of the L23 L2-point 2-D DFT can be reduced to one
L2-point DFT, L incomplete L2-point DFTs (without calculation
of the first component at zero point), and L2� 1 incomplete L2-
point DFTs (without calculation of components at points which
are integer multiple to L).

The redundancy of the algorithm is in calculation of the spectral
components at all frequency-points with coordinates which are
integer multiple to L. The recurrent tensor algorithm can be
constructed similar to the L¼ 2 case, when Lr3 Lr-point DFT is
reduced to one Lr�13 Lr�1-point 2-D DFT and Lr�1 (Lþ 1)
incomplete transforms F Lr ; L � fT . The incomplete transforms
are not calculated at points which are integer multiple to L. In
such a recurrent algorithm, the number of operations of multipli-
cation can be estimated by the following recursive formula:

mLr ,Lr ¼ mLr�1 ,Lr�1 þ (Lþ 1)Lr�1 mLr �mLr�1ð Þ: (19:81)

The difference of number of multiplications in the tensor and
recurrent tensor algorithms is estimated as:

DmLr ,Lr ¼ (Lþ 1)Lr�1mLr �mLr ,Lr � (L2 � 1)Lr�2mLr�1 :

For example, for the 253 25-point DFT, the recurrent tensor
algorithm saves more than 240 multiplications, and 768 multi-
plications for the 493 49-point DFT. We use the known valu-
ations m5¼ 10 and m7¼ 16, for the number of multiplications in
the five-point and seven-point DFTs, respectively.

19.5.4.2 Case N¼L1L2 (L1 6¼ L2> 1)

We consider the N¼ L1L2 case, where L1 and L2 are arbitrary
coprime numbers> 1. The irreducible covering sJ of the lattice
XL1L2 , L1L2 consists of (L1þ 1) (L2þ 1) cyclic groups Tp,s. Such a
covering sJ can be determined by the following set of generators:

J ¼
[L1L2�1

p1¼0

(p1, 1) [ (1, 0)f g [
[

g:c:d:(p2 , L1L2)>1

(1, p2)

0

@

1

A

[ (L1, L2)f g [ (L2, L1)f g: (19:82)

To calculate the 2-D (L1L2)3 (L1L2)-point DFT, it is sufficient to
perform (L1þ 1)(L2þ 1) L1L2-point 1-D DFTs of splitting-
signals fTp, s . The number of multiplications required for this
algorithm equals

mL1L2 , L1L2 ¼ (L1 þ 1)(L2 þ 1)mL1L2 : (19:83)

For instance, the calculation of the 203 20-point 2-D DFT is
reduced to calculation of thirty 20-point DFTs, instead of forty
20-point DFTs in the column–row algorithm.

19.5.4.3 Other Orders N13N2

The tensor algorithm as well as the improved tensor algorithm
can be constructed for other orders N13N2 of the 2-D DFT,
when N1 6¼ N2> 1. The tensor algorithm is defined by the
irreducible covering sJ of the lattice XN1 ,N2 by the cyclic groups
Tp,s. It is not difficult to compose such a covering for each
N13N2 case under consideration. By analyzing the intersections
of groups of the covering, where the calculations of the spectral
components are repeated, we can obtain an effective improve-
ment of the tensor algorithm.

Example 19.9

We consider 33 6-point DFT, F 3, 6 , i.e., the case when N1¼ 3

and N2¼ 6. Let f ¼ fn1 , n2 be a 33 6-point 2-D sequence. The

irreducible covering sJ of the lattice X3,6 can be defined by the

following set of four generators: J¼ {(0, 1), (1, 1), (2, 1), (1, 3)}.

All cyclic groups of this covering and their intersections are

shown below:

T0, 1 ¼ (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)f g
T1, 1 ¼ (0, 0), (1, 1), (2, 2), (0, 3), (1, 4), (2, 5)


 �

T2, 1 ¼ (0, 0), (2, 1), (1, 2), (0, 3), (2, 4), (1, 5)

 �

T1, 3 ¼
(0, 0), (0, 3)

(1, 0), (1, 3)

(2, 0), (2, 3)

8

><

>:

9

>=

>;

:

Figure 19.18 illustrates the locations of all frequency-points of
these four groups. The groups are intersected only at two fre-
quency-points (0, 0) and (0, 3), i.e., when the coordinates of the
points are integer multiple to 3. Therefore, the transformation
F 3, 6 can be split by one 6-point DFT and three incomplete
6-point DFTs,

F 3, 6 � {F 6, F 6;3, F 6;3, F 6;3}:

These transforms can be performed in the following way:

Step 1: One 6-point DFT over the splitting-signal fT0,1 , to deter-
mine the 2-D DFT at frequency-points of the group T0,1,

F0, k ¼ F 6 � fT0, 1

� �

k
, k ¼ 0: 5:

Step 2: Three incomplete 6-point DFTs over the splitting-
signals fT1,1 , fT2,1 , and fT1,3 , to determine the 2-D DFT at all
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frequency-points of the corresponding groups T1,1, T2,1, and T1,3,
except points (0, 0) and (0, 3),

Fk mod 3, k ¼ F 6;3 � fT1,1

� �

k
, F2k mod 3,k ¼ F 6;3 � fT2,1

� �

k
,

Fk mod 3, 3k mod 6 ¼ F 6;3 � fT1,3

� �

k
,

where k¼ 1, 2, 4, 5.
When the input is real, the 6-point DFT uses six operations

of multiplication by factors W6 ¼ exp �jp=3ð Þ ¼ 1� j
ffiffiffi
3

p� �
=2,

W3¼ exp �j2p=3ð Þ¼� 1þ j
ffiffiffi
3

p� �
=2, and W2

3 ¼ exp �j4p=3ð Þ¼
� 1� j

ffiffiffi
3

p� �
=2. We here consider the fast paired algorithm of

the six-point DFT [16]. Each such multiplication requires one
real multiplication by the factor of

ffiffiffi
3

p
and two shifting oper-

ations. Six real operations of multiplication are required for
the 6-point DFT. The incomplete Fourier transformation F 6;3

requires also six multiplications. Therefore, the 33 6-point
DFT uses the real multiplications in number 6þ 3(6)¼24. For
comparison, in the column–row algorithm, three 6-point DFTs
with real inputs and six 3-point DFTs with complex inputs are
used, and the number of multiplications equals 3(6)þ 6(2)¼30.

Example 19.10

We consider the 63 8-point Fourier transformation, F 6, 8 . Let

f ¼ fn1 , n2 be a 63 8-point 2-D sequence. The irreducible cov-

ering sJ of the lattice X6,8 can be defined by the set of

generators J¼ {(1, 1), (2, 1), (1, 2), (1, 4), (1, 0)}.

The intersections of the cyclic groups of this covering are
shown below:

T1,1 ¼
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 6), (1, 7)

(2, 0), (3, 1), (4, 2), (5, 3), (0, 4), (1, 5), (2, 6), (3, 7)

(4, 0), (5, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7)

8

><

>:

9

>=

>;

T2,1 ¼
(0, 0), (2, 1), (4, 2), (0, 3), (2, 4), (4, 5), (0, 6), (2, 7)

(4, 0), (0, 1), (2, 2), (4, 3), (0, 4), (2, 5), (4, 6), (0, 7)

(2, 0), (4, 1), (0, 2), (2, 3), (4, 4), (0, 5), (2, 6), (4, 7)

8

><

>:

9

>=

>;

T1,2 ¼
(0, 0), (1, 2), (2, 4), (3, 6)

(4, 0), (5, 2), (0, 4), (1, 6)

(2, 0), (3, 2), (4, 4), (5, 6)

8

><

>:

9

>=

>;

T1,4 ¼
(0, 0), (1, 4)

(2, 0), (3, 4)

(4, 0), (5, 4)

8

><

>:

9

>=

>;

T1,0 ¼

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0)

(5, 0)

8

>>>>>>>>><

>>>>>>>>>:

9

>>>>>>>>>=

>>>>>>>>>;

: (19:84)

The location of frequency-points of the five cyclic groups Tp,s of
the covering are shown in Figure 19.19

The groups are intersected only at 12 frequency-points with
even coordinates. Therefore, the transformation F 6, 8 can be
split by one 24-point DFT, two incomplete 24- and 12-point
DFTs, and two incomplete 6-point DFTs. Namely, the following
splitting is valid:

0 1 2
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5

T0,1

0 1 2
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T1,1

0 1 2
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5

T2,1

0 1 2
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T1,3

FIGURE 19.18 Arrangement of frequency-points of groups Tp1 , p2 covering the lattice X3,6.
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FIGURE 19.19 Arrangement of frequency-points of groups Tp,s covering the lattice X6,8.
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F 6, 8 � {F 24, F 24;2, F 12;2, F 6;2, F 6;2}:

All these incomplete DFTs are not calculated for the components
with even points, and, therefore, they can be reduced to calcula-
tion of the DFTs of twice smaller orders. Thus the 63 8-point
DFT can be split by the 24-, 12-, 6-point DFTs, and two 3-point
DFTs, and the redundancy of calculations in the tensor algorithm
will be removed.

These transforms can be performed in the following way:

Step 1: One 24-point DFT over the splitting-signal fT1, 1 , to deter-
mine the 2-D DFT at frequency-points of the group T1,1,

Fk mod 6, k mod 8 ¼ F 24 � fT1, 1

� �

k
, k ¼ 0 : 23:

Step 2: One incomplete 24-point DFT over the splitting-signal
fT2,1 , to determine the 2-D DFT at 12 frequency-points of the
group T2,1 with odd coordinates,

F2k mod 6, k mod 8 ¼ F 24 � fT2,1

� �

k
, k ¼ 1, 3, . . . , 21, 23:

Step 3: One incomplete 12-point DFT over the splitting-signal
fT1, 2 , to determine the 2-D DFT at frequency-points of the group
T2,1 with odd coordinates,

Fk mod 6, 2k mod 8 ¼ F 12 � fT1,2

� �

k
, k ¼ 1, 3, . . . , 9, 11:

Step 4: Two incomplete 6-point DFTs over the splitting-signals
fT1, 4 and fT1, 0 , to determine respectively the 2-D DFT at fre-
quency-points of the groups T1,4 and T1,0 with odd coordinates,

Fkmod 6,4kmod 8¼ F 6;2 � fT1,4

� �

k
, Fk,0¼ F 6;2 � fT1,0

� �

k
, k¼1, 3, 5:

The location of all 48 frequency-points of the cyclic groups of the
covering sJ, at which the calculations of the Fourier transform
components Fp1 , p2 are performed, are shown in Figure 19.20.

To estimate the number of real multiplications used in this
algorithm, we use the valuations of the fast 1-D DFT by paired
transforms [16]. The number of multiplications for the incom-
plete transforms F 6;2 and F 12;2 over real data equal 2 and 4,
respectively. The 24-point DFT of real data is reduced to the 12-
point DFT with additional 10 multiplications by twiddle factors,
which results in the total 16þ 20¼ 36 real multiplications, when

considering m12¼ 16 for complex data. The incomplete 24-point
DFT, F 24;2, requires 18 real multiplications. Thus, the above
described 63 8-point 2-D DFT uses 36þ 18þ 4þ 2þ 2¼ 62
real multiplications for real data fn1 , n2 . It should be noted
for the comparison, that the column–row algorithm for this
transform uses six 8-point DFTs of real inputs and eight
6-point DFTs of complex inputs with total 6(2)þ 8(12)¼ 108
real multiplications.

19.5.5 n-Dimensional DFT

The concepts of the tensor transform and representation can be
extended for the n-dimensional DFT, when n> 2. Let
f ¼ fn1 ,..., nnf g be an arbitrary n-dimensional sequence. We con-
sider for simplicity of our calculations that the sizes of f are equal,
i.e., nk¼ 0 : (N� 1), k¼ 1 : n. The n-dimensional DFT of the
sequence f at the frequency-point (p1, . . . , pn) 2 XN, . . . , N, accurate
to the normalizing factor Nn=2, is defined as

Fp1 ,..., pn ¼
XN�1

n1¼0

� � �
XN�1

nn¼0
fn1 ,..., nnW

n1p1þ���þnnpn (19:85)

where W¼WN¼ exp(�2pj=N). In the tensor representation,
each spectral component Fp1 ,..., pn is represented by the corre-
sponding vector of dimension N :

Fp1 ,..., pn ! fp1 ,..., pn , 0, fp1 ,..., pn , 1, . . . , fp1 ,..., pn ,N�1
� �0

(19:86)

whose superposition with the exponential wave of ‘‘the low
frequency’’ v0¼ (2p=N) equals to the component,

Fp1 ,..., pn ¼
XN�1

t¼0
fp1 ,..., pn , tW

t : (19:87)

To open the complex number Fp1 ,..., pn as a vector, we perform a
summation of the initial n-dimensional sequence at spacial
points of the following N disjoint subsets of the lattice X:

Vp1 ,..., pn , t ¼
�

(n1, . . . , nn);
Xn

k¼1
nkpk ¼ t modN

�

\ X (19:88)
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FIGURE 19.20 Arrangement of frequency-points of groups Tp,s which divide the lattice X6,8, after removing their intersections.
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where t¼ 0 : (N� 1). In other words, the components of the
vector in Equation 19.86 are calculated by

fp1 ,..., pn , t ¼
X

Vp1 ,..., pn , t

fn1 ,..., nn , t ¼ 0: (N � 1): (19:89)

The following assertion holds:

F
kp1 ,..., kpn

¼
XN�1

t¼0

fp1 ,..., pn , tW
kt , k ¼ 0: (N � 1): (19:90)

The frequency-points kp1,...,kpn
� �

¼ kp1modN , ... ,kpnmodNð Þ
compose the cyclic group

Tp1 ,..., pn ¼ kp1, . . . , kpn
� �

; k ¼ 0: (N � 1)

 �

:

The 1-D signal

fTp1 ,..., pn
¼ fp1 ,..., pn , t , t ¼ 0: (N � 1)

 �

(19:91)

is referred to as the splitting-signal, which carries the spectral
information of the n-dimensional sequence f at frequency-points
of Tp1 ,..., pn . To collect the whole spectral information of the
sequence, we need to cover the lattice X by the cyclic groups.
Let s ¼ Tp1 ,..., pn

� �
be an irreducible covering of the lattice X.

Then, the representation of the n-dimensional sequence as a set
of splitting-signals

fn1 ,..., nn ! fTp1 ,..., pn
; Tp1 ,..., pn 2 s

n o

is called the tensor transform of f. Thus, in the tensor repre-
sentation, the n-dimensional sequence is considered as the set of
the splitting-signals. The number of splitting-signals increases
with dimension n, but the lengths of all signals are the same
and equal N.

19.6 Discrete Hartley Transforms

In this section, we consider the DHT [24,25], whose kernel is
the sum of the cosine and sine waves of the exponential kernel
of the Fourier transformation. The Hartley transform of real
data is real, and it has many properties which are similar to the
Fourier transform. From the standpoint of the arithmetical
computation, both transforms have almost the same complexity
in the multidimensional case, as well as in 1-D case. Both
transformations lead to the same tensor representation of multi-
dimensional signals and images, and the transforms thus
are split by the same number of 1-D transforms. We first
describe the 2-D case and then the 3-D case which at the
same time will illustrate the tensor transformation for the 3-D
Fourier transform.

We denote by HN ,N the N3N-point DHT, whose image
HN,N � f upon an N3N sequence f ¼ fn1 , n2f g is defined as:

Hp1 ,p2 ¼ (HN ,N � f )p1 ,p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2Cas(n1p1 þ n2p2),

(p1, p2) 2 XN ,N , (19:92)

where the transform kernel is the real periodic function

Cas(x) ¼ CasN(x) ¼ cas
2px

N

� �

¼ cos
2px

N

� �

þ sin
2px

N

� �

:

(19:93)

The above defined 2-D DHT is a real-to-real and nonseparable
transform. The inversion formula for the DHT coincides with
the initial formula (accurate to the factor 1=N2), i.e.,
H�1

N,N ¼ 1=N2HN ,N .
The 1-D N-point DHT of a 1-D sequence f¼ {fn} is defined by

Hp ¼ (HN � f )p ¼
XN�1

n¼0

fnCas(np), p ¼ 0 : (N � 1): (19:94)

For a given frequency-point (p1, p2) of the lattice XN,N, the
following property holds:

H
kp1 ,kp2

¼
XN�1

t¼0

fp1 ,p2 ,tCas(kt), k ¼ 0 : (N � 1), (19:95)

where fp1 , p2 , t are components of the splitting-signals which are
defined exactly as for the Fourier transform,

fp1 ,p2 ,t ¼
X

Vp1 ,p2 ,t

fn1 ,n2 , t ¼ 0 : (N � 1): (19:96)

The uniqueness of the tensor representation for the Hartley and
Fourier transforms follows from the identical form of the relation
between the spatial points (n1, n2) and frequency-points (p1, p2)
in the kernel of these transforms. This is the Diophantus form
L(n1, n2; p1, p2) ¼ n1p1 þ n2p2. Therefore, if sJ is the irredu-
cible covering of the lattice XN,N, which is composed from the
cyclic groups Tp,s, then the 2-D DHT is split by the card(J) 1-D
DHT. The splitting of the 2-D DFT and DHT are similar; both
are defined by the same number of the 1-D transforms. We can
thus apply all reasonings used for the Fourier transform to the
Hartley transform in the 2-D case. The tensor algorithm of
calculation of the N3N-point 2-D DHT uses

mN ,N ¼ (card J)mN (19:97)

operations of multiplication, where mN denotes the number of
multiplications for the 1-D N-point DHT. In many cases of N, we
have card J< 2N, therefore the tensor algorithm uses less multi-
plications than the column–row method does for the separable
2-D DHT.
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For instance, when N is an odd prime L> 2, then the calcula-
tion of the L3 L-point DHT is reduced to calculations of (Lþ 1)
1-D L-point DHTs, and it is sufficient to fulfill

mL, L ¼ (Lþ 1)mL (19:98)

operations of multiplication. We can compare this estimation
with the known estimation mL,L¼ L2þ 2L� 3, which has been
obtained by Boussakta and Holt by using an index mapping
scheme, when calculating the L3 L-point DHT [26]. Using the
estimation mL¼ (L� 1) introduced with the Fermat number
transform [27], we gain the following number of multiplications:

D(L) ¼ mL,L �mL,L ¼ (L2 þ 2L� 3)� (Lþ 1)(L� 1) ¼ 2(L� 1):

(19:99)

Example 19.11

Let N¼ 3 and f be a 2-D sequence fn1 , n2 ;n1 , n2 ¼ 0, 1, 2f g. The
tensor algorithm of the 33 3-point DHT of f uses 4 real

multiplications and 45 real additions if f is real. Indeed, using

the covering s¼ (T0,1, T1,1, T2,1, T1,0), the 33 3-point DHT

reduces to calculation of four splitting-signals

fT0, 1 , fT1, 1 , fT2, 1 , and fT1, 0 as is described in Example 19.6. Then

one three-point DHT of the first splitting-signal is calculated

and three incomplete 3-point DHTs of other signals.

In matrix form, the tensor algorithm of the 33 3-point DHT
can be written as follows:

H0,0

H0,1

H0,2

H1,1

H2,2

H2,1

H1,2

H1,0

H2,0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

1 1 1

1 C1 C2

1 C2 C1

1 C1 C2

1 C2 C1

1 C1 C2

1 C2 C1

1 C1 C2

1 C2 C1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

[Xs]f

where the coefficients of the Hartley matrices equal C1¼Cas3(1)
and C2¼Cas3(2).

Each incomplete Hartley transform uses one real multiplica-
tion and five additions. Indeed, since Cas(1)¼ cos(2p=3)þ sin
(2p=3) and Cas(2)¼ cos(2p=3)� sin(2p=3), we can write the
transform as follows:

1 C1 C2

1 C2 C1

� �
x

y

z

2

6

4

3

7

5
¼

xþ (c1 þ s1)yþ (c1 � s1)z

xþ (c1 � s1)yþ (c1 þ s1)z

� �

¼
xþ c1(yþ z)þ s1(y� z)

xþ c1(yþ z)� s1(y� z)

� �

c1 ¼ �
ffiffiffi

3
p

=2, s1 ¼ �1=2:

(19:100)

The multiplication c1(yþ z) is the only nontrivial multiplication
used in this transform. The 3-point DHT requires one more add-
ition for calculating the first component at point 0, as xþ (yþ z).

The direct calculation of the tensor transform [X]f requires 24
additions (subtractions). Therefore, to calculate the 33 3-point
DHT by the tensor algorithm, it is sufficient to use
6þ 33 5þ 24¼ 45 real additions. In the column–row algorithm,
the calculation of the 33 3 separable DHT is fulfilled via six
3-point DHTs. Therefore, respectively 6 � 1¼ 6 and 6 � 6¼ 36 real
operations of multiplication and addition are used in such an
algorithm, i.e., three multiplications more, but nine additions less
than in the tensor algorithm.

In the general N3N case, the construction of the irreducible
covering

sJ ¼ (Tp, s)p, s2J (19:101)

of the square lattice XN,N can be implemented in the following
way [16]. We first define the set BN¼ {n 2 XN; g.c.d.(n, N)> 1}
and function b(p) which equals the number of elements s 2 BN
being coprime with p and such that ps<N. Then the set of
generators can be defined as follows:

J ¼
[N�1

p¼0
(p, 1)

[ [

s2BN

(1, s)

 !
[ [

p, s2BN , g:c:d:(p, s)¼1,p, s�N
(p, s)

0

@

1

A:

(19:102)

The number of generators in this set, or the number of 1-D
DHTs required to calculate the 2-D N3N-point DHT equals

cardsJ ¼ 2N � f(N)þ
X

p2BN

b(p) (19:103)

where we denote by f(N) Euler’s function, that is, the number of
positive integers which are smaller than N and coprime with N.
It is easy to verify, that f(N)�S{b(p); p2BN}, so that card
s� 2N. Herewith, the equality in this expression takes place
when L1¼ 2 and L2¼ 3 (or when L1¼ 3 and L2¼ 2); since card
s¼ 2(3)þ 2þ 3þ 1¼ 2(6)¼ 12. In this case, the column–row
and tensor algorithms use the same number, twelve, of the
6-point DHTs.

When r> 2 and L is a prime, the calculation of the Lr3 Lr-
point 2-D DHT is reduced to calculations of (Lþ 1)Lr�1 1-D
Lr-point DHTs. The covering of the lattice XLr , Lr is defined as

sJ ¼ (Tp, 1)p¼0:(Lr�1), (T1, Ls)s¼0:(Lr�1�1)

� �
: (19:104)

For example, the covering of the lattice X9,9 equals

sJ ¼ Tp, 1;p ¼ 0: 8
� �

, T1, 0, T1, 3, T1, 6

� �
: (19:105)

Therefore, the 93 9-point 2-D DHT is calculated in the tensor
algorithm by 12 1-D 9-point DHTs. In the column–row algo-
rithm, this 2-D transform requires 18 9-point DHTs.
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In the L¼ 2 case, the calculation of the 2r3 2r-point DHT of a
2-D sequence fn1 , n2 is performed by 3 � 2r�1 2r-point DHTs of the
splitting-signals fTp, s with generators (p, s) 2 J. This is the main
point in the tensor representation of the 2-D DHT, and 2-D DFT
as well. The image in the tensor representation is not considered
in the form of the 2-D square matrix in the spacial domain, but as
another figure in the 3-D domain, namely the (2-D frequency)–
(1-D time) domain,

fn1 , n2 ! fp, s, t ;t ¼ 0: (N � 1), (p, s) 2 J

 �

:

As an example, Figure 19.21 shows the original image of size
2563 256 in part a, along with the image-signal fT4, 1 of length
256 in part (b), and the 256-point DHT of the signal in (c), and
the magnitude of the Fourier transform of the signal in (d). For
both transforms, this image-signal carries the spectral informa-
tion of the image at frequency-points of the cyclic group T4,1. The
2-D DHT and DFT of the image are shown in parts (e) and (f),
respectively. The locations of all frequency-points (p1, s1) of this
group in the frequency domain of both transforms are also
shown. These points lie along four parallel lines at the angle
arctan(4)¼ 75.96388 to the verticals (which are assigned for the
first coordinates p1 of frequency-points).

The complete set of image-signals that represent a 2-D sequence
(or image), as well its 2-D DHT and DFT can be shown in the 3-D
space in different ways. As an example, Figure 19.22 shows a

3-D figure for the set of 384 all image-signals fTp, s , (p, s) 2 J , of
the above considered image 2563 256. Image-signals of length
256 are located along 384 directions in a ring with the inner circle
of radius 32.
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FIGURE 19.21 (a) The image 2563 256, (b) the image-signal fT4, 1 , (c) the 1-D DHT of the signal, (d) the 1-D DFT of the signal (in the absolute
scale), (e) the 2-D DHT, and (f) the 2-D DFT of the image. (The frequency-points of the group T4,1 are marked on the 2-D transforms.)
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FIGURE 19.22 The 3-D ring with 384 image-signals fTp, s of the image
2563 256.
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The presentation of the image f in the form of the ring is
performed through the transform:

Xs: f ! fp, s, t ;(p, s) 2 J , t ¼ 0: (N � 1)

 �

, (19:106)

where the set J of the generatrices (p, s) of sets T 2 s is defined by
Equation 19.102. We call the transformation Xs to be the tensor,
or vector transformation, because it transfers the image f into the
set of card s vectors, or image-signals fTp, s , (p, s) 2 J .

The number of required multiplication used in the 2r3
2r-point DHT can be estimated as follows:

m2r , 2r ¼ 3 � 2r�1m2r � 3 4r�1(r � 3)þ 2r
� �

: (19:107)

Here we use the well-known fact that, for computing the 2r-point
DHT, it is enough to fulfill M2r ¼ 2r�1(r � 3)þ 2 multiplica-
tions [28,29]. Comparing this estimation with the number of
multiplications m2r , 2r ¼ 2 � 4r(r � 2)þ 2rþ2 obtained in the
Bracewell algorithm [30], we obtain that m2

2r , 2r=M2r , 2r � 4=3. In
other words, the number of multiplications reduces 4=3 times.
The number of multiplications can be reduced, by removing the
redundancy of calculations at the intersections of the cyclic
groups, as is done for the 2-D DFT, when we have constructed
the improved and recurrent tensor algorithms.

19.6.1 3-D DHT Tensor Representation

In this section, we describe the tensor representation for dividing
the calculation of the nonseparable 3-D DHT by the 1-D DHTs.
For simplicity of future calculations, we discuss the case of the
transform of the order N3N3N, when N¼ 2r, r> 1. However,
the concept of tensor representation can be applied to the 3-D
DHT transform of an arbitrary order. It will be shown, that the
number of multiplications required for calculating the 3-D DHT
can be reduced to 7[8r�1(r� 3)þ 4r� 1]. This number can be
reduced about 1.6 times, when removing the redundancy of the
tensor algorithm, which occurs because of intersections of many
cyclic groups covering the 3-D lattice of the frequency-points.
Such improvement or the recurrent tensor algorithm can be
obtained similar to the algorithms described in Sections 19.5.3
and 19.5.4 for the 2-D DFT.

Let X be the cubic N3N3N lattice

XN ,N,N ¼ (p1, p2, p3); p1, p2, p3 ¼ 0: (N � 1)f g: (19:108)

We denote by HN ,N ,N the N3N3N-point DHT whose
image HN ,N ,N � f on a 3-D sequence f ¼ fn1 ,n2 ,n3f g is defined as
follows:

Hp1 ,p2 ,p3 ¼ (HN ,N ,N � f )p1 ,p2 ,p3

¼
XN�1

n1¼0

XN�1

n2¼0

XN�1

n3¼0

fn1 ,n2 ,n3Cas(n1p1 þ n2p2 þ n3p3), (19:109)

where (p1, p2, p3) 2 X. The tensor representation of f is defined by
the irreducible covering sJ of the lattice X, which is composed
by the following cyclic groups in X:

T¼Tp1 ,p2 ,p3 ¼ kp1,kp2,kp3
� �

; k¼0: (N�1)

 �

, T0,0,0¼ (0, 0, 0)f gð Þ:
(19:110)

For a given frequency-point (p1, p2, p3) 6¼ (0, 0, 0), the collec-
tion of subsets Vp1 , p2 , p3 , t ;t ¼ 0: (N � 1)


 �
is a partition of X.

Therefore, the following property holds for spectral components
of the 3-D DHT:

H
kp1 , kp2 , kp3

¼
XN�1

t¼0

fp1 , p2 , p3 , tCas(kt), k ¼ 0: (N � 1): (19:111)

Thus the splitting-signal

fTp1 , p2 , p3
¼ fp1 , p2 , p3 , 0, fp1 , p2 , p3 , 1, . . . , fp1 , p2 , p3 ,N�1


 �
(19:112)

carries the spectral information of the 3-D sequence f at fre-
quency-points of Tp1 , p2 , p3 . The complete set of the splitting-
signals fT, T 2 s, is the tensor representation of the sequence f

with respect to the 3-D DHT. With respect to the 3-D Fourier
transform, the sequence f has the same tensor representation, as
is mentioned in 19.5.5. The components of splitting-signals are
calculated by linear integrals

fp1 ,p2 ,p3t ¼
X

Vp1 ,p2 ,p3 ,t

fn1 ,n2 ,n3 , t ¼ 0: (N � 1), (19:113)

along the parallel hyperplanes lying in the sets

Vp1 ,p2 ,p3 ,t ¼ (n1, n2, n3); n1p1 þ n2p2 þ n3p3 ¼ tf g: (19:114):

Indeed, each set Vp1 , p2 , p3 , t , if it is not empty, is the set of spatial
points (n1, n2, n3) along parallel hyperplanes:

xp1 þ yp2 þ zp3 ¼ t

xp1 þ yp2 þ zp3 ¼ t þ N

� � � � � � �
xp1 þ yp2 þ zp3 ¼ t þ (p1 þ p2 þ p3 � 1)N

9

>>>=

>>>;

(19:115)

in the cube [0. N]3 [0, N]3 [0, N].
The number of 1-D DHTs splitting the 3-D DHT equals to the

number of generators of the cyclic groups of the irreducible
covering sJ of the lattice X. The set of these generators can be
constructed for any order of the transform, and we stand here on
examples, when N¼ 4 and 8.
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Example 19.12

We consider the lattice 43 43 4 and the following 3-D image

n3 ¼ 0 n3 ¼ 1 n3 ¼ 2 n3 ¼ 3

f ¼

1 2 3 1

1 0 1 2

2 1 2 1

3 2 1 2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

2 2 1 5

4 3 3 1

1 2 4 4

5 1 3 1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

3 1 2 1

1 2 1 6

3 2 4 1

4 5 2 4

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

1 2 2 3

1 2 3 3

1 1 4 4

1 5 5 4

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

which is presented separately by four 2-D matrices in planes

n3¼ 0, 1, 2, and 3. The value of f0,0,0¼ 1 is underlined.

Let the generator be (p1, p2, p3)¼ (2, 1, 1). All values of the
time variable t in the Diophantus form n1p1þ n2p2þ n3p3¼ t

mod N can be written in the form of the following four matrices
43 4 that compose a 3-D matrix 43 43 4:

t ¼ (n1 � 2þ n2 � 1þ n3 � 1) mod 4k kn3 ,n2 ,n1¼0:3¼
n3 ¼ 0 n3 ¼ 1 n3 ¼ 2 n3 ¼ 3

¼

0 1 2 3

2 3 0 1

0 1 2 3

2 3 0 1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

1 2 3 0

3 0 1 2

1 2 3 0

3 0 1 2

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

2 3 0 1

0 1 2 3

2 3 0 1

0 1 2 3

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

3 0 1 2

1 2 3 0

3 0 1 2

1 2 3 0

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Therefore, the image-signal fT2, 1, 1 of f is defined as follows:

f2,1,1,0 ¼
X

f0,0,0þ f1,2,0þ f2,0,0þ f3,2,0 ¼ 1þ 1þ2þ 1¼ 5

f0,3,1þ f1,1,1þ f2,3,1þ f3,1,1 ¼ 5þ 3þ4þ 1¼ 13

f0,2,2þ f1,0,2þ f2,2,2þ f3,0,2 ¼ 2þ 1þ4þ 4¼ 11

f0,1,3þ f1,3,3þ f2,1,3þ f3,3,3 ¼ 2þ 3þ1þ 4¼ 10

8

>>><

>>>:

¼ 39

f2,1,1,1 ¼
X

f0,1,0þ f1,3,0þ f2,1,0þ f3,3,0 ¼ 2þ 2þ1þ 2¼ 7

f0,0,1þ f1,2,1þ f2,0,1þ f3,2,1 ¼ 2þ 3þ1þ 3¼ 9

f0,3,2þ f1,1,2þ f2,3,2þ f3,1,2 ¼ 1þ 2þ1þ 5¼ 9

f0,2,3þ f1,0,3þ f2,2,3þ f3,0,3 ¼ 2þ 1þ4þ 1¼ 8

8

>>><

>>>:

¼ 33

f2,1,1,2 ¼
X

f0,2,0þ f1,0,0þ f2,2,0þ f3,0,0 ¼ 3þ 1þ2þ 3¼ 9

f0,1,1þ f1,3,1þ f2,1,1þ f3,3,1 ¼ 2þ 1þ2þ 1¼ 6

f0,0,2þ f1,2,2þ f2,0,2þ f3,2,2 ¼ 3þ 1þ3þ 2¼ 9

f0,3,3þ f1,1,3þ f2,3,3þ f3,1,3 ¼ 3þ 2þ4þ 5¼ 14

8

>>><

>>>:

¼ 38

f2,1,1,3 ¼
X

f0,3,0þ f1,1,0þ f2,3,0þ f3,1,0 ¼ 1þ 0þ1þ 2¼ 4

f0,2,1þ f1,0,1þ f2,2,1þ f3,0,1 ¼ 1þ 4þ4þ 5¼ 14

f0,1,2þ f1,3,2þ f2,1,2þ f3,3,2 ¼ 1þ 6þ2þ 4¼ 13

f0,0,3þ f1,2,3þ f2,0,3þ f3,2,3 ¼ 1þ 3þ1þ 5¼ 10

8

>>><

>>>:

¼ 41

Thus fT2, 1, 1 ¼ {39, 33, 38, 41} and the 4-point DHT of this split-
ting-signal is calculated by

H0

H1

H2

H3

2

6
6
4

3

7
7
5
¼

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

2

6
6
4

3

7
7
5

39
33
38
41

2

6
6
4

3

7
7
5
¼

151
�7
3
9

2

6
6
4

3

7
7
5
:

This transform coincides with the 3-D DHT of f at the following
frequency-points of the group T2,1,1 : (0, 0, 0), (2, 1, 1), (0, 2, 2),
and (2, 3, 3), as shown below

p3¼ 0 p3¼ 1 p3¼ 2 p3¼ 3

[H4,4,4 � f ]¼

151 � � �
� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� � � �
� �7 � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � 3 �
� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� � � �
� � � 9

� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:

We can construct similarly other splitting-signals and fill the 3-D
DHT by the 1-D DHTs of these signals. For, instance, when the
generator is (1, 1, 1), we obtain the splitting-signal fT1, 1, 1 ¼
{45, 30, 46, 30} and its 4-point DHT equals

151
�1
31
�1

2

6
6
4

3

7
7
5
¼

1 1 1 1
1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

2

6
6
4

3

7
7
5

45
30
46
30

2

6
6
4

3

7
7
5
:

This transform coincides with the 3-D DHT at the frequency-
points of the group T1,1,1, i.e., (0, 0, 0), (1, 1, 1), (2, 2, 2), and
(3, 3, 3). The first value, 151, has been already calculated in
the previous step. We can fill other three values of the 3-D
DHT as follows:

p3¼ 0 p3¼ 1 p3¼ 2 p3¼ 3

[H4,4,4 � f ]¼

151 � � �
� � � �
� � � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� �1 � �
� �7 � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � 3 �
� � � �
� � 31 �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� � � �
� � � 9

� � � �1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:

We consider also the generator (1, 2, 0), for which the splitting-
signal and its Hartley transform are defined as follows:

fT1, 2, 0 ¼ {31, 39, 38, 43} ! H4 � fT1, 2, 0 ¼ {151, �11, �13, �3}:

As a result, we define other three components the 3-D DHT
at the frequency-points of the group T1,2,0, namely, at (1, 2, 0),
(2, 0, 0), and (3, 2, l0), as shown:

p3¼ 0 p3¼ 1 p3¼ 2 p3¼ 3

[H4,4,4 � f ]¼

151 � � �
� � �11 �

�13 � � �
� � �3 �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� �1 � �
� �7 � �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � 3 �
� � � �
� � 31 �
� � � �

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

� � � �
� � � �
� � � 9

� � � �1

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

:

To calculate all values of the 3-D DHT, we need cover the 3-D
lattice 43 43 4 by cyclic groups Tp1 ,p2 ,p3 . No more than 28
generators are required for such a covering sJ, and they can be
taken from the following set:
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J ¼ (p, 1, z); p, z ¼ 0: 3f g [ (1, 2s, z); z ¼ 0: 3, s ¼ 0, 1f g
[ (0, 2, 1), (2, 2, 1), (2, 0, 1), (0, 0, 1)f g:

Therefore, the 43 43 4-point DHT can be calculated by 28
four-point DHTs.

Example 19.13

The number of 8-point DHTs required for calculation of the

83 83 8-point DHT by using the tensor representation is

equal to the minimum number of cyclic groups Tp1 , p2 , p3 cov-

ering the 3-D lattice 83 83 8. The generators (p1, p2, p3) of

these groups can be defined from the following set of 112

triplets:

J¼ (p, 1, z); p, z¼ 0: 7f g[ (1, 2s, z); z¼ 0: 7, s¼ 0: 3f g[
[ (2p, 2, z); z¼ 1, 3, p¼ 0: 3f g[ (2, 4s, z); z¼ 1, 3, s¼ 0, 1f g[
[ (0, 4, 1), (4, 4, 1), (4, 0, 1), (0, 0, 1)f g:

Thus, from the perspective of the tensor representation, the
83 83 8-DHT is calculated by 112 8-point DHTs.

It should be noted, that the 3-D DHT under the consideration
is not separable, but it can be expressed through the separable
3-D DFT. Indeed, the kernel of the Harley transform is the sum
of real and imaginary parts of the exponential kernel of the
Fourier transform,

cas(t) ¼ cos (t)þ sin (t) ¼ Re (e�jt)� Im(e�jt):

Therefore, the following relation holds:

Hp1 ,p2 ,p3 ¼ Re Fp1 ,p2 ,p3
� �

� Im Fp1 ,p2 ,p3
� �

: (19:116)

The 3-D DFT of order 83 83 8 has the splitting similar to the
Hartley transform, and it is calculated by 112 eight-point DFTs.
For comparison, we consider the column–row approach for
calculating the 3-D DFT, which is based on the expression

Fp1 ,p2 ,p3 ¼
X7

n3¼0

X7

n2¼0

X7

n1¼0

fn1 ,n2 ,n3W
n1p1þn2p2

 !

Wn3p3 ,

where W¼ exp(�2p j=8). In this approach, eight 83 8-point
DFTs are calculated first, and then 64 eight-point DFTs
along the third dimension n3. Totally, 8(2 � 8)þ 64¼ 3 � 64¼ 192
eight-point DFTs are used, or 80 eight-point DFTs more than the
tensor transform method uses. When using the row–column
approach to the 3-D DFT of the order N3N3N, as in the
above N¼ 8 case, all N-point DFTs in calculations have complex
input data, except the first N transforms in each (n1, n2)-plane, if
the 3-D sequence f is real. However, all 1-D DFTs in the tensor
algorithm are performed over the real splitting-signals, when f is
real.

In the general case when N¼ 2r, r� 1, we can construct the
irreducible covering sJ of the 3-D lattice X2r , 2r , 2r by using the
following set of 7 � 4r�1 generators:

J ¼
[2
r�1

z¼0

(1, s, z); s¼ 0: 2r � 1f g[ (2p, 1, z); p¼ 0: 2r�1 � 1

 �
 �

[r�1

k¼1

[2r�k�1�1

z¼1

(2k, 2ks, 2kzþ 1); s¼ 0: 2r�k � 1

 �

,



(2kþ1p, 2k, 2kzþ 1); p¼ 0: 2r�k�1 � 1

 �

g[ (0, 0, 1)f g:
(19:117)

Therefore, the 2r3 2r3 2r-point DHT (or DFT) can be split by
4r�1 7 1-D 2r-point DHTs (or DFTs). To estimate the total
number of multiplications required to calculate the 2r3 2r3 2r-
point DHT, we use the following estimate for the 2r-point DHT:

m2r ¼ 2r�1(r � 3)þ 2 (r � 3): (19:118)

The 3-D DHT by the tensor transform uses operations of multi-
plication in the number

m2r , 2r , 2r ¼ 7 � 4r�1m2r ¼ 7 8r�1(r � 3)þ 2 � 4r�1
� �

: (19:119)

For the comparison, Table 19.3 shows the number of multiplica-
tions required by the column–row approach based on the radix-2
algorithm [31,32], the radix-23 23 2 algorithm [33], and the
tensor algorithm, for calculating the 2r3 2r3 2r-point DHT
when r¼ 7 : 12. In the radix-23 23 2 algorithm, the 3-D DHT
is divided into eight 2r�13 2r�13 2r�1-point DHTs, and the
process of division is similarly repeated (r� 2) times, until we
receive the transforms of order 23 23 2.

19.6.2 n-Dimensional DHT

The tensor transform of an n-dimensional sequence f defines the
splitting-signals in the number which is determined by the cov-
ering sJ of the lattice X. In the 2-D case, the square lattice X2r , 2r is
covered by 3 � 2r�1 cyclic groups T. In the 3-D case, the cubic
lattice X2r ,2r ,2r is covered by 7 � 4r�1 groups T.

TABLE 19.3 The Number of Multiplications per
Sample, Which Are Required to Calculate the
2r3 2r3 2r-Point DHT by the Column–Row Radix-2
Algorithm (C–R), Radix-23 23 2 Algorithm,
and the Tensor Algorithm (T)

r C-R Radix-2 Radix-23 23 2 T

7 10.64 6.20 3.53

8 13.57 7.91 4.39

9 16.53 9.64 5.26

10 19.51 11.38 6.13

11 20.50 13.13 7.00

12 25.50 14.87 7.88
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In the general n� 2 case, the n-dimensional 2r3 2r3 � � �3 2r-
point DHT is split by 1-D DHTs in the number equal to the
cardinality of the covering sJ which is calculated by

cardsJ ¼ (2n � 1)2(r�1)(n�1): (19:120)

The number of multiplications required for computing the trans-
form can be estimated thus by

m2r , 2r ,..., 2r ¼ (2n � 1)2(r�1)(n�1) 2r�1(r � 3)þ 2
� �

: (19:121)

This number can be reduced, when removing repeated calcula-
tion of spectral components. For instance, in the 3-D case, we can
remove the repeated calculations for all components at fre-
quency-points 2k(p1, p2, p3), for k¼ 1 : (r� 1). The number of
these reiterations equals

D ¼ (7 � 4r�1)2r � 8r ¼ (3=4)8r

which is a quite big value. To remove them, we consider the
following partition of the set complement of all frequency-points
with even coordinates

s1 ¼ Tp1 ,p2 ,p3nT2p1 ,2p2 ,2p3 ; (p1, p2, p3) 2 J
� �

:

Each cyclic group T in the covering s is divided by two parts of
frequency-points with all even and not all even coordinates. Each
part consists of 2r�1 points. Therefore, we can obtain the recur-
rent algorithm for computing H2r , 2r , 2r via H2r�1 , 2r�1 , 2r�1 and 7 �
4r�1 incomplete 1-D 2r-point DHTs, which we denote by HN ;2

and for which only components with odd numbers are
calculated. Each such incomplete transform can be reduced to
2r� 1-point DHT. Herewith, for computing 3-D DHT, the num-
ber of real multiplications can be calculated by the following
recurrent formula:

m0
2r ,2r ,2r ¼ m0

2r�1 ,2r�1 ,2r�1 þ 7 � 4r�1 m2r �m2r�1ð Þ � 35 � 8r�3r,

(m8,8,8 ¼ 214): (19:122)

The reduction of multiplications in Equation 19.119 forms the
5=8 of all multiplications.

19.7 2-D Shifted DFT

In this section, tensor algorithms for calculating the two-dimen-
sional DCT are described. We analyze the multiplicative com-
plexity of the N3N-point 2-D DCT, for cases of the most
interest, when N¼ Lr, where L is a general prime number and
r� 1, and N¼ L1 L2, where L1 and L2 are arbitrary coprime
numbers. The tensor algorithm and its modification are
described in detail for the 83 8 and 153 15 cases.

We first move on to the study of the tensor representation of
the 2-D shifted discrete Fourier transform (SDFT) [34], which is
applied to 2-D sequences defined on the 2-D lattice YN,N which

is the square lattice XN,N shifted in the 2-D plane by the vector
(1=2, 1=2). The frequency-points of the transform are considered
on the square lattice X. For simplicity of indexing, we denote
points (n1þ 1=2, n2þ 1=2) of the lattice Y by (n1, n2), as well as
samples fn1þ1=2,n2þ1=2 of a sequence defined on Y by fn1 ,n2 .

The components of the 2-D SDFT, F s
N ,N , of a 2-D sequence

f ¼ fn1 ,n2 are defined by

Fs
p1 ,p2

¼ F s
N ,N � f

� �

p1 ,p2
¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2W
n1þ1

2ð Þp1þ n2þ1
2ð Þp2 ,

p1, p2 ¼ 0: (N � 1), (19:123)

where W¼ exp(�j2p=N). The transform is periodic, but its
fundamental period is the lattice X2N,2N, not XN,N. The following
properties are valid for this transform:

Fs
Nþp1 ,p2

¼ Fs
p1 ,Nþp2

¼ �Fs
p1 ,p2

, Fs
Nþp1 ,Nþp2

¼ Fs
p1 ,p2

, (19:124)

where p1, p2¼ 0 : (N=2� 1). Therefore, it is enough to perform
the calculations for the transform only at frequency-points of
one-fourth of the lattice X2N,2N, i.e., in XN,N. If f is real, then the
following properties of complex conjugacy hold:

Fs
N�p1 ,p2

¼ F
s

p1 ,N�p2
, Fs

N�p1 ,N�p2
¼ F

s

p1 ,p2
, p1, p2 ¼ 1: (N=2� 1):

(19:125)

It follows directly from the definition, that the 2-D SDFT can be
expressed through the 2-D DFT as

Fs
p1 ,p2

¼ W
1
2(p1þp2)Fp1 ,p2 , p1, p2 ¼ 0: (N � 1): (19:126)

Thus, in order to obtain the table of all values of the 2-D SDFT,
the table of values of the 2-DFT is multiplied point-wise by the
table of (2N� 1) twiddle coefficients W

1
2t , t ¼ 0: (2N � 1). For

instance, for N¼ 4, we have

W
1
2(p1þp2)

h i

p1 ,p2¼0:3
¼

1 W
1
2 W1 W

3
2

W
1
2 W1 W

3
2 W2

W1 W
3
2 W2 W

5
2

W
3
2 W2 W

5
2 W3

2

6
6
4

3

7
7
5
,

where W¼W4¼ exp(�2pj=4)¼�j. The splitting-signals
defined for the 2-D DFT can be applied to split the shifted 2-D
DFT by cyclic groups Tp,s of the covering sJ of the lattice XN,N.
The application can be described by the following three steps:

fn1 ,n2 ! fTp, s ! Fk ¼ F � fTp,s

� �

k

h i

! Fs
kp,ks ¼ W

1
2(pþs)kFk

h i

,

k ¼ 0: (N � 1), (19:127)

which are performed for each generator (p, s) of the set J.
Subscripts kp and ks are taken modulo 2N. However, we can
note that, if kpmod 2N¼Nþ p0 and p0<N, then p0¼ kpmod N
and the following is valid: Fs

kp, ks ¼ Fs
Nþp0 , ks

¼ �Fs
p0 , ks

, and if
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ks mod 2N¼Nþ s0 and s0<N, then s0¼ ks mod N and Fs
kp, ks ¼

Fs
kp,Nþs0

¼ �Fs
kp, s0

. In addition, Fs
kp, ks ¼ Fs

Nþp0 ,Nþs0
¼ Fs

p, s0
.

This is why, we can consider subscripts kp and ks by
modulo N, and

Fs
kp mod 2N , ks mod 2N ¼ �Fs

kp mod N , ks mod N , k ¼ 0: (N � 1):

(19:128)

We also can define the concept of the tensor representation of f
with respect to the 2-D SDFT, by using a method different
from what is given in Equation 19.127. In the kernel of this
transform, the relation between the spacial points and fre-
quency-points is described by the nonlinear form

L(n1, n2 ; p1, p2)¼ n1þ
1

2

� �

p1þ n2þ
1

2

� �

p2 ¼ (n1p1þn2p2)þ
1

2
(p1þ p2),

and in arithmetic modulo N it takes integer values as well as
mixed numbers with the fraction 1=2. Therefore complex coeffi-
cients of the kernel lie on the N or 2N equidistant points on the
unit circle. The number of these points depends on the evenness
of coordinates p1 and p2.

For a given frequency-point (p1, p2), we define the following
sets of points

~Vp1 ,p2 ,t ¼ (n1, n2); L(n1, n2; p1, p2) ¼ t mod Nf g (19:129)

and components

~fp1 ,p2 ,t ¼
X

~Vp1,p2,t

fn1 ,n2 , t 2 [0, N � 1], (19:130)

which allow for writing Equation 19.123 as

Fs
p1 ,p2

¼
XN�Dt

t¼1�Dt

~fp1 ,p2 ,tW
t : (19:131)

The number t in Equations 19.129 through 19.131 runs the
interval [0, N� 1] with the step Dt¼ 1 or 1=2, depending on
the evenness of coordinates of the frequency-point (p1, p2).
For instance, if both the coordinates are simultaneously even or
odd, then Dt¼ 1 and the variable t takes only integer values in
the interval [0, N� 1]. If the evenness of the coordinates of the
frequency-point (p1, p2) are different, then all numbers t in the
above formulas have the fraction Dt¼ 1=2. We write the fact of
equal evenness by e(p1, p2)¼ 0, and e(p1, p2)¼ 1, if the evenness
of coordinates are different.

The following general formula is valid:

Fs

kp1 ,kp2
¼
XN�Dt

t¼1�Dt

~fp1 ,p2 ,tW
kt , k ¼ 0: (N � 1): (19:132)

This property is used in the tensor algorithm of the 2-D SDFT.
Let sJ be an irreducible covering of the lattice XN,N, which is

composed by cyclic groups Tp1 , p2 . The spectral information of f at
frequency-points of a group Tp1 , p2 2 sJ is determined by the
following splitting-signal:

~fTp1 ,p2
¼ ~fp1 ,p2 ,1�Dt , ~fp1 ,p2 ,2�Dt , . . . , ~fp1 , p2 ,N�Dt

� 	

: (19:133)

Indeed, depending on the evenness of p1 and p2, the expression in
Equation 19.132 can be rewritten as follows:

Fs

kp1 ,kp2
¼
XN�1

t¼0

~fp1 ,p2 ,tW
kt , if e(p1, p2) ¼ 0, (19:134)

Fs

kp1 ,kp2
¼ W

k
2

XN�1

t¼0

~fp1 ,p2 ,tþ1
2
Wkt , if e(p1, p2) ¼ 1, (19:135)

where k¼ 0 : (N� 1). The 2-D SDFT of f at the group Tp1 , p2

coincides with the 1-D DFT of the splitting-signal, if p1 and p2
have the same evenness, otherwise it coincides with the modified
1-D DFT. This property can be written shortly as

F s
N ,N[f ]

� �

jTp1, p2
¼

FN
~fTp1,p2

h i

, e(p1, p2) ¼ 0;

(eN � FN ) ~fTp1,p2

h i

, e(p1, p2) ¼ 1;

8

<

:

(19:136)

where eN is the N-point DT with the diagonal matrix

[eN] ¼ diag 1, W
1
2, W1, W

3
2, W2, . . . , W

N
2�1, W

N
2�1

2

� 	

:

(19:137)

Thus, we split the 2-D SDFT and this splitting set which we
denote by R F s

N ,N ;sJ

� �
consists of the N-point transforms FN

and eN � FN . We remind for comparison, that the splitting of the
2-D DFT by the covering sJ consists only of the transforms FN .
The representation of the 2-D sequence f as a set of splitting-
signals {~f T; T 2 sJ} is called the tensor representation of f with
respect to the 2-D SDFT, and the transformation f! {~f T; T 2 sJ}
is the tensor transformation.

Example 19.14

We consider the N¼ 8 case. The irreducible covering sJ of the

lattice X8,8 consists of 12 cyclic groups whose generators (p, s)

can be taken from the set J¼ {(0, 1), (1, 1), (2, 1), . . . , (7, 1), (1, 0),

(1, 2), (1, 4), (1, 6)}. Four generators (p, s), which are (1, 1), (3, 1),

(5, 1), and (7, 1), have the same evenness, and the remaining

eight generators have different evenness. Therefore, the 83 8-

point SDFT is split into four 8-point DFTs, F 8 , and eight

compositions of the 8-point Fourier transform and scalar

transform e8, i.e.,

R F s
8, 8 ; sJ

� �
¼ F 8 , F 8 , F 8 , F 8 , e8 � F 8 , . . . ,e8 � F 8

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

8 times

8

<

:

9

=

;
:
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It is important to note, that the tensor representation of
the shifted 2-D DFT can be derived directly from the tensor
representation of the 2-D DFT. Indeed, the following relation
is valid:

~Vp,s,t ¼ Vp,s,(t�t0) mod N , t0 ¼ (pþ s)=2: (19:138)

If e(p, s)¼ 0, the subscript t� t0 takes only integer values, and
therefore ~fp,s,t ¼ fp,s,t�t0 mod N . If e(p, s)¼ 1, then the similar cyclic
shift can be performed over the splitting-signal fTp,s , to obtain the
signal ~fTp,s , namely, the cyclic shift by t0¼b(pþ s)=2c elements to
the right. We here denote by bxc the floor function, i.e., the great-
est integer� x. For instance, in the considered 83 8 case, the
cyclic shifting for the generators (1, 1), (2, 1), and (3, 1) are
performed by t0¼ 1, 1, and 2, respectively. Therefore, the follow-
ing relations hold between the splitting-signals of these generators:

fT1,1 ¼ f1,1,0, f1,1,1, f1,1,2, f1,1,3, f1,1,4, f1,1,5, f1,1,6, f1,1,7ð Þ
~fT1,1 ¼ f1,1,7, f1,1,0, f1,1,1, f1,1,2, f1,1,3, f1,1,4, f1,1,5, f1,1,6ð Þ
fT2,1 ¼ f2,1,0, f2,1,1, f2,1,2, f2,1,3, f2,1,4, f2,1,5, f2,1,6, f2,1,7ð Þ
~fT2,1 ¼ f2,1,7, f2,1,0, f2,1,1, f2,1,2, f2,1,3, f2,1,4, f2,1,5, f2,1,6ð Þ
fT3,1 ¼ f3,1,0, f3,1,1, f3,1,2, f3,1,3, f3,1,4, f3,1,5, f3,1,6, f3,1,7ð Þ
~fT3,1 ¼ f3,1,6, f3,1,7, f3,1,0, f3,1,1, f3,1,2, f3,1,3, f3,1,4, f3,1,5ð Þ

Taking into consideration this property, we can write the expres-
sions in Equations 19.134 and 19.135 respectively as follows:

Fs

kp1 ,kp2
¼
XN�1

t¼0

fp1 ,p2 ,t�p1þp2
2 mod NW

kt , (19:139)

Fs

kp1 ,kp2
¼ W

k
2

XN�1

t¼0

fp1 ,p2 ,t� p1þp2
2b c mod NW

kt , k ¼ 0 : (N � 1):

(19:140)

We now estimate the number of real multiplications used in
the 83 8-point SDFT. When f is real, all splitting-signals are real,
too. For each 8-point DFT, (F0, F1, . . . , F7), in Equation 19.140, it
is enough to calculate only the first 5 components. For instance,

F5 and F3 are complex conjugates, i.e., F5 ¼ F3 and

W
5=2
8 ¼W5

16 ¼�W3
16 ¼�W

3=2
8 . Therefore, W5=2

8 F5 ¼�W
3=2
8 F3.

Two other equalities are W
6=2
8 F6 ¼�W

2=2
8 F2 and W

7=2
8 F7 ¼

�W
1=2
8 F1. The twiddle coefficients Wk=2

8 ¼Wk
16, when k¼0 : 4,

equal to 1, 0.9239� 0.3827j, 0.7071(1� j), 0.3827� 0.9239j,
and �j, respectively. Multiplications of a complex number by
0.7071(1� j) required two real multiplications. We consider that
for each multiplications by W1=2 and W3=2 four real multiplica-
tions are used. Denoting by ms

8,8 and m8,8 respectively the

numbers of multiplications required to calculate the 83 8-point

SDFT and DFT by the corresponding splitting-signals ~f T
and fT, T 2 sJ, we obtain the following relation between these
estimates:

ms
8,8 ¼ 4m8 þ 8 m8 þ (4þ 4þ 2)ð Þ½ 	 ¼ 12m8 þ 80

¼ m8,8 þ 80 ¼ 12 � 2þ 80 ¼ 104, (19:141)

since the 8-point DFT requires two multiplications and
m8,8¼ 12m8¼ 24.

19.7.1 2r32r-Point SDFT

In the general 2r3 2r case, when r> 2, the covering sJ of the
lattice X2r , 2r consists of 3 � 2r cyclic groups. 2r�1 generators of
these groups have the same evenness and 2r generators have a
different evenness. The splitting of the 2r3 2r-point SDFT by the
1-D transforms can be written as

R F s
2r , 2r ; s

� �
¼ F 2r , F 2r , . . . , F 2r

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2r�1 times

, e2r �F 2r , . . . , e2r �F 2r
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2r times

8

<

:

9

=

;
:

Therefore, the number of multiplications, ms
2r , 2r , required to

calculate the 2r3 2r-point SDFT can be estimated by

ms
2r , 2r ¼ 2r�1m2r þ 2r m2r þ (2r � 2)m1 � 2ð Þ½ 	

¼ m2r , 2r þ 2r (2r � 2)m1 � 2½ 	, (19:142)

where we denote by m2r , 2r the number of multiplications used
for calculating the 2r3 2r-point DFT. m1 is the number of real
multiplications used for performing a complex multiplication,
which is considered equal 4. The number of operations of com-
plex multiplications is calculated as

ms
2r ,2r ¼ m2r ,2r þ 2r(2r � 2) ¼ 4r

r

2
� 1

6

� �

� 2rþ1 þ 8

3
:

(19:143)

19.7.2 Lr3Lr-Point SDFT

We now consider the case when N¼ Lr, (r� 1), and L is an odd
prime number.

In the N¼ L case, the irreducible covering of XL,L consists of
(Lþ 1) cyclic groups and can be taken as sJ¼ (T0,1 T1,1,. . .,
TL�1,1, T1,0). The number of the generators of the groups of s
that have the same evenness equals (L� 1)=2, and the remaining
(Lþ 3)=2 generators have a different evenness. Therefore, the
splitting of the L3 L-point SDFT consists of (L� 1)=2 L-point
DFTs and (Lþ 3)=2 modified DFTs which are the compositions
of the L-point DFT with the scalar transform eL, i.e.,

R F s
L,L; sJ

� �
¼ F L, F L, . . . ,F L

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

(L�1)=2 times

, eL � F L, . . . , eL � F L
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

(Lþ3)=2 times

8

><

>:

9

>=

>;

:

For instance, when L¼ 5, two generators (1, 1) and (3, 1) have the
same evenness, and the other four generators (0, 1), (2, 1), (4, 1)
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and (1, 0) have a different evenness. Therefore, the tensor repre-
sentation yields the following splitting of the 53 5-point
SDFT: R F s

5,5; sJ

� �
¼ {F 5, F 5, e5 �F 5, e5 �F 5, e5 �F 5, e5 �F 5}.

The number of multiplications required for calculating the
L3 L-point SDFT can be written as follows:

ms
L,L ¼

L�1

2
mLþ

Lþ3

2
(mLþL�1)¼ (Lþ1)mLþ

(Lþ3)(L�1)

2
,

(19:144)

or ms
L,L ¼ mL,L þ (Lþ 3)(L� 1)=2. For the above considered

53 5 example, the 53 5-point SDFT uses 16 operations of
multiplication more than the 53 5-point DFT, i.e., ms

5,5 ¼
m5,5 þ 16.

In the N¼ Lr case, with r> 1, the irreducible covering of XLr , Lr

can be taken as

sJ ¼ (Tp, 1)p¼0:(Lr�1), (T1, Ls)s¼0:(Lr�1�1)

� �
: (19:145)

(Lrþ Lr�1)=2� 1 generators of groups of this covering have the
same evenness and (Lrþ Lr�1)=2þ 1 generatrices have a different
evenness. Therefore, the splitting of the shifted 2-D DFT consists
of (Lr�1þ Lr)=2� 1 Lr-point DFTs and (Lr�1þ Lr)=2þ 1 modi-
fied Lr-point DFTs,

R F s
Lr ,Lr ; sJ

� �
¼ F Lr , F Lr , . . . ,F Lr

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lr�1(Lþ1)=2�1 times

, eLr � F Lr , . . . , eLr � F Lr
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lr�1(Lþ1)=2þ1 times

8

><

>:

9

>=

>;

:

For the number of multiplications required to calculate the Lr3
Lr-point SDFT, we have the following expression:

ms
Lr ,Lr ¼

Lr þ Lr�1

2
� 1

� �

mLr þ
Lr þ Lr�1

2
þ 1

� �

mLr þ Lr � 1ð Þ

¼ Lr�1(Lþ 1)mLr þ
L2r�1(Lþ 1)

2
� Lr�1 (Lþ 1)

2
� 1

:

For example, the splitting set for the 93 9-point SDFT equals

R F s
9,9; sJ

� �
¼ F 9, F 9, . . . , F 9

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

5 times

, e9 � F 9, . . . , e9 � F 9
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

7 times

8

<

:

9

=

;
:

The number of operations of multiplication for this transform
equals ms

9,9 ¼ 12m9 þ 47. The 9-point DFT requires 11 real
multiplications, when considering the paired fast transform, i.e.,
m9¼ 11. Additional 47 complex multiplications are used for
multiplications by twiddle factors Wk=2

9 , k ¼ 1 : 8. Therefore, we
can write ms

9,9 ¼ 12 � 11þ 47m1 ¼ 132þ 188 ¼ 220.

19.7.3 L1 L23L1 L2-Point SDFT

We now consider the N¼ L1 L2 case, with arbitrary coprime
numbers L1, L2> 1. The covering sJ for the lattice XL1L2 ,L1L2 has

been described in Section 19.5.4.2 and it has (L1þ 1)(L2þ 1)
generators. The simple analysis of the evenness of coordinates
of these generators leads to the tensor algorithm of calculation of
the (L1 L2)3 (L1 L2)-point SDFT.

For instance, if N¼ 3 � 5¼ 15, then we can consider the fol-
lowing covering of the lattice X15,15:

sJ ¼ (T1, s)s¼0:14 [ (T0,1, T3,1, T5,1, T6,1, T9,1, T10,1, T12,1, T3,5, T5,3):

24 generators are in this set, among which half of the generators
have the same evenness and the other half different. Therefore,
the splitting of 153 15-point SDFT equals

R F s
15,15; s

� �
¼ F 15, F 15, . . . , F 15

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

12 times

, e15 �F 15, . . . ,e15 �F 15
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

12 times

8

<

:

9

=

;
:

(19:146)

The number of multiplications required to compute the 153 15-
point SDFT can be calculated in the form ms

15, 15 ¼ 12m15þ
12(m15 þ 14) ¼ 24m15 þ 168.

19.8 2-D DCT

In this section we consider the tensor representation of the 2-D
DCT, by using the tensor algorithm of calculation of the
2-D SDFT.

Let N be an arbitrary even number and let f be a real even
sequence fn1 , n2 of the size N3N, which is determined by the
following relation:

fN�n1�1,N�n2�1 ¼ fn1 , n2
fN�n1 , n2 ¼ 0
fn1 ,N�n2 ¼ 0

9

=

;
, n1, n2 ¼ 0 : N=2� 1ð Þ: (19:147)

It is not difficult to see, that the shifted Fourier transformF s
N ,N over

the sequence f is real and can be expressed in the following form:

Fs
p1 ,p2

¼ 2
XN=2�1

n1¼0

XN=2�1

n2¼0

fn1 ,n2 cos
2p

N
n1þ

1

2

� �

p1þ n2þ
1

2

� �

p2

� �� �

,

p1, p2 ¼ 0: (N� 1):

(19:148)

The following relations hold between components of this trans-
form:

Fs
N�p1 ,N�p2

¼Fs
p1 , p2

, Fs
0,N�p2

¼ �Fs
0, p2

, Fs
N�p1 , 0

¼ �Fs
p1 , 0

,

p1, p2 ¼ 1 : N=2� 1ð Þ,
(19:149)

and Fs
N=2, 0 ¼ Fs

0,N=2 ¼ 0. Therefore, the calculation in Equation
19.148 can be performed only for half of the frequency-points
(p1, p2) of the lattice XN,N. The factor of 2 can also be omitted
from the definition.
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Example 19.15

Let N¼ 8, and let f be the following sequence fn1 , n2 of size

43 4, which is extended to 83 8 as follows:

f ¼ fn1 ,n2f g ¼
1 2 1 2

3 1 2 3

2 3 1 4

5 3 2 2

2

6
6
4

3

7
7
5
!

1 2 1 2

3 1 2 3

2 3 1 4

5 3 2 2

0

0

2 2 3 5

4 1 3 2

3 2 1 3

2 1 2 1

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

:

(19:150)

The sequence f is even. Below is the 83 8-point SDFT of this
sequence, which is written in the form of the table:

74 2.2961 9.8995 �5.5433 0 5.5433 �9.8995 �2.2961

�11.8519 �35.3137 �2.9302 �20.3848 5.5433 �20.1421 1.2137 �22.7279

�1.4142 11.8519 2 4.4609 �1.4142 2.7444 8 0.3170

�2.7444 �16.3848 �8.1564 �12.6863 �2.2961 2.7279 �3.3785 �8.1421

0 4.9092 4.2426 6.6257 18 6.6257 4.2426 4.9092

2.7444 �8.1421 �3.3785 2.7279 �2.2961 �12.6863 �8.1564 �16.3848

1.4142 0.3170 8 2.7444 �1.4142 4.4609 2 11.8519

11.8519 �22.7279 1.2137 �20.1421 5.5433 �20.3848 �2.9302 �35.3137

The table is divided by nine parts, in correspondence with the
properties of Equation 19.149.

Let us consider the values of the 83 8-point SDFT in the first
subtable (43 4),

which we call the 43 4-point DCT of f. These values are defined
by the cosine kernel function, and all values of the transform,
which are lying outside this subtable, are defined by transforms
whose kernel is the sine function. Indeed, the following holds:

FN=2þp1 , p2 ¼ �2
XN=2�1

n1¼0

XN=2�1

n2¼0

(�1)n1 fn1 , n2

 sin
2p

N
n1 þ

1

2

� �

p1 þ n2 þ
1

2

� �

p2

� �� �

,

and

Fp1 ,N=2þp2 ¼ �2
XN=2�1

n1¼0

XN=2�1

n2¼0

(�1)n2 fn1 , n2

 sin
2p

N
n1 þ

1

2

� �

p1 þ n2 þ
1

2

� �

p2

� �� �

,

where p1, p2¼ 0 : (N� 1).

In the general case, the 2-D SDFT is reduced to the transform
with the cosine kernel function, which is why we call this trans-
form the 2-D DCT. The N=23N=2-point DCT of a sequence
f ¼ fn1 , n2 ; n1, n2 ¼ 0: N=2� 1ð Þf g is defined by

Cp1 ,p2 ¼ CN=2,N=2 � f
� �

p1 ,p2

¼
XN=2�1

n1¼0

XN=2�1

n2¼0

fn1 ,n2 cos
p

N=2
n1þ

1

2

� �

p1þ n2þ
1

2

� �

p2

� �� �

,

p1, p2 ¼ 0: N=2�1ð Þ:
(19:152)

The 2-D DCT is nonseparable and periodical with the period (N,
N), not (N=2, N=2). Since this transform is a special case of the
shifted 2-D DFT, the tensor representation of the shifted 2-D
DFT can be used for splitting the 2-D DCT by a minimum
number of 1-D transforms.

Indeed, it directly follows from definitions (19.130) and
(19.147), that the relation

~fp1 , p2 , t ¼ ~fp1 , p2 ,N�t (19:153)

is valid, when t¼ 1 : (N=2� 1). If e(p1, p2)¼ 0, then the splitting-
signal corresponding to the generator (p1, p2) has the following
form:

~fTp1 ,p2
¼ ~fp1 ,p2 ,0,

~fp1 ,p2 ,1,
~fp1 ,p2 ,2, . . . ,

~fp1 ,p2 ,N=2, . . . , ~fp1 ,p2 ,2,
~fp1 ,p2 ,1

n o

,

(19:154)

i.e., the signal is even.
Therefore, the following calculations can be performed for the

transform in Equation 19.134:

XN�1

t¼0

~fp1 ,p2 ,tW
kt ¼~fp1 ,p2 ,0þ

XN=2�1

t¼1

~fp1 ,p2 ,t W
kt þWk(N�t)

� �
þ~fp1 ,p2 ,N=2W

kN=2

¼~fp1 ,p2 ,0þ2
XN=2�1

t¼1

~fp1 ,p2 ,t cos
2p

N
kt

� �

þ (�1)k~fp1 ,p2 ,N=2:

For simplicity of calculations, we denote ~fp1 , p2 , t ¼ ~fp1 , p2 , t=2, when
t¼ 0 and N=2. Thus, we can write the following:

C
kp1 ,kp2

¼
XN=2�1

t¼0

~fp1 ,p2 ,t cos
2p

N
kt

� �

þ (�1)k~fp1 ,p2 ,N=2, if e(p1, p2)¼ 0:

(19:155)

The sum in this equation represents the N=2-point DCT of type I,
which we denote by KN=2. The N=23N=2-point DCT at fre-
quency-points of the group Tp1 , p2 with generator having coord-
inates of the same evenness is defined by the N=2-point DCT of
type I plus=minus the value of ~fp1 , p2 ,N=2. The equation can also be
written as

74 2.2961 9.8995 �5.5433

�11.8519 �35.3137 �2.9302 �20.3848

�1.4142 11.8519 2.0000 4.4609

�2.7444 �16.3848 �8.1564 �12.6863

(19:151)
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C
kp1 , kp2

¼
XN=2

t¼0

~fp1 , p2 , t cos
2p

N
kt

� �

, if e(p1, p2) ¼ 0:

Wenow consider theN=23N=2-point DCT at frequency-points
of the group Tp1 , p2 , when the coordinates of its generator have
different evenness, e(p1, p2)¼ 1. In this case, the splitting-signal
corresponding to the generator (p1, p2) has the following form:

~fTp1 ,p2
¼ ~fp1 ,p2 ,12,

~fp1 ,p2 ,32, . . . ,
~fp1 ,p2 ,N=2�1

2
, ~fp1 ,p2 ,N=2þ1

2
, . . . ,

n

~fp1 ,p2 ,32,
~fp1 ,p2 ,12

o

: (19:156)

The modified Fourier transform in Equation 19.135 can thus be
written as follows:

Fs

kp1 ,kp2
¼
XN�1

t¼0

~fp1 ,p2 ,tþ1
2
Wk tþ1

2ð Þ ¼
XN=2�1

t¼0

~fp1 ,p2 ,tþ1
2
Wk tþ1

2ð Þ þWk N�t�1
2ð Þ

h i

¼ 2
XN=2�1

t¼0

~fp1 ,p2 ,tþ1
2
cos

2p

N
k tþ 1

2

� �� �

:

Then, the 2-D DCT at frequency-points of this group can be
written as

C
kp1 ,kp2

¼
XN=2�1

t¼0

~fp1 ,p2 ,tþ1
2
cos

2p

N
k t þ 1

2

� �� �

: (19:157)

The sum in Equation 19.157 represents the N=2-point DCT of
type II, which we denote by CN=2. Thus, for the generator (p1, p2)
with coordinates of the same evenness, the N-point DFT is
reduced to the N=2-point DCT of type I. For the generator with
coordinates of different evenness, the N-point modified trans-
form eN � FN is reduced to the N=2-point DCT of type II. We
note, that if gn is a sequence of length N, then the following
properties hold for these cosine transforms:

KN=2 � gn
� �

N�k
¼ KN=2 � gn
� �

k
and CN=2 � gn

� �

N�k
¼� CN=2 � gn

� �

k

when k¼ 1 : (N=2� 1). Therefore, we can consider kpn ¼
kpn mod N=2ð Þ, n ¼ 1, 2, in both Equations 19.155 and
19.157, wherein k¼ 0 : (N=2� 1). As a result, the following prop-
erty of the 2-D DCT is valid:

CN=2,N=2 � f
� �

jTp1 ,p2
¼ KN=2 �~fTp1 ,p2

þP �~fp1 ,p2 ,N=2, e(p1, p2)¼ 0;

CN=2 �~fTp1 ,p2
, e(p1, p2)¼ 1,

(

(19:158)

where P¼ (1, �1, 1, �1, . . . , 1, �1)0.
Note that the sets ~Vp1 ,p2 ,t and components ~fp1 ,p2 ,t of the split-

ting-signals, which are defined respectively in Equations 19.129
and 19.130, have been considered in the lattice XN,N, and the 2-D
DCT is considered for (n1, n2) 2 XN=2,N=2. Denoting by V�

p1 ,p2 ,t
the

set intersection ~Vp1 ,p2 ,t \ XN=2,N=2 and defining the components

fp1 ,p2 ,t ¼
X

fn1 ,n2 ; (n1, n2) 2 V�
p1 ,p2 ,t

n o

,

we obtain the following:

~fp1 ,p2 ,t�D ¼fp1 ,p2 ,t�D þ fp1 ,p2 ,N�tþD, t ¼ 1, 2, . . . ,N=2,

~fp1 ,p2 ,0 ¼ 2fp1 ,p2 ,0,
~fp1 ,p2 ,N=2 ¼ 2fp1 ,p2 ,N=2:

It follows from Equation 19.155 and 19.157, that for a given
group Tp1 , p2 2 s, the corresponding splitting-signal can be
written as

~fTp1 , p2
¼ fp1 , p2 , 0, fp1 , p2 , 1 þ fp1 , p2 ,N�1, . . . , fp1 , p2 ,N=2�1




þ fp1 , p2 ,N=2þ1, fp1 , p2 ,N=2

�
,

if p1 and p2 are the subscripts of the same evenness, or

~fTp1 , p2
¼ fp1 , p2 , 12 þ fp1 , p2 ,N�1

2
, fp1 , p2 , 32 þ fp1 , p2 ,N�3

2
, . . . ,

n

fp1 , p2 ,N=2�1
2
þ fp1 , p2 ,N=2þ1

2

o

,

if p1 and p2 are the subscripts of different evenness.

Example 19.16

When N¼ 8, the 43 4-point 2-D cosine transform of a

sequence fn1 , n2 is calculated by

Cp1 , p2 ¼
X3

n1¼0

X3

n2¼0

fn1 , n2 cos
p

4
n1 þ

1

2

� �

p1 þ n2 þ
1

2

� �

p2

� �� �

,

p1 , p2 ¼ 0 : 3: (19:159)

We consider the 2-D sequence f defined in Equation 19.150 and
two generators (p1, p2)¼ (1, 1) and (p1, p2)¼ (1, 2), with the
equal and different evenness. For the first generator, the values of
the form L(n1, n2, 1, 1) can be written as the following table:

jt ¼ n1 þ n2 þ 1jn1 , n2¼0:7 ¼

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

0

0

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

The corresponding splitting-signal of the tensor representation
f ! {~f T; T 2 s} is calculated as follows:

~fT1,1 ¼ ~f1,1,0, ~f1,1,1, ~f1,1,2, ~f1,1,3, ~f1,1,4
n o

¼ {0, 3, 11, 11, 12},
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where

~f1,1,0 ¼ f1,1,0 ¼ 0

~f1,1,1 ¼ f1,1,1 þ f1,1,7 ¼ f0,0 þ f3,3 ¼ 1þ 2 ¼ 3,

~f1,1,2 ¼ f1,1,2 þ f1,1,6 ¼ (f0,1 þ f1,0)þ (f2,3 þ f3,2)

¼ (2þ 3)þ (4þ 2) ¼ 11,

~f1,1,3 ¼ f1,1,3 þ f1,1,5 ¼ (f0,2 þ f1,1 þ f2,0)þ (f1,3 þ f2,2 þ f3,1)

¼ (1þ 1þ 2)þ (3þ 1þ 3) ¼ 11,

~f1,1,4 ¼ f1,1,4 ¼ f0,3 þ f1,2 þ f2,1 þ f3,0 ¼ 2þ 2þ 3þ 5 ¼ 12

:

For the generator (1, 2), the values of the form L(n1, n2, 1, 2)
can be written as the following table:

t ¼ n1 þ 2n2 þ
3

2

�
�
�
�

�
�
�
�
n1 ,n2¼0:7

¼ 1

2

3 7 11 15

5 9 13 1

7 11 15 3

9 13 1 5

0

0

11 15 3 7

13 1 5 9

15 3 7 11

1 5 9 13

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

Therefore the components ~f 1,2,t of the splitting-signal are
calculated by

~f1,2,12 ¼ f1,2,12 þ f1,2,152 ¼ (f1,3þ f3,2)þ (f0,3þ f2,2)¼ (3þ 2)þ (2þ 1)¼ 8,

~f1,2,32 ¼ f1,2,32 þ f1,2,132 ¼ (f0,0þ f2,3)þ (f1,2þ f3,1)¼ (1þ 4)þ (2þ 3)¼ 10,

~f1,2,52 ¼ f1,2,52 þ f1,2,112 ¼ (f1,0þ f3,3)þ (f0,2þ f2,1)¼ (3þ 2)þ (1þ 3)¼ 9,

~f1,2,72 ¼ f1,2,72 þ f1,2,92 ¼ (f0,1þ f2,0)þ (f1,1þ f3,0)¼ (2þ 2)þ (1þ 5)¼ 10,

and

~fT1,2 ¼ ~f1,2,12,
~f1,2,32,

~f1,2,52,
~f1,2,72

n o

¼ {8, 10, 9, 10}:

The following formulas hold for the 2-D DCT at frequency-
points of groups T1,1 and T1,2:

Ck,k ¼
X4

t¼0

~f1,1,t cos
p

4
kt

� 	

,

C
k,2k ¼

X3

t¼0

~f1,2,tþ1
2
cos

p

4
k t þ 1

2

� �� �

, k ¼ 0 : 3:

Similarly, we can consider other four elements of the tensor
representation, namely ~fT1, 3 ,

~fT1, 0 ,
~fT0, 1 , and

~fT2, 1 . In terms of the
tensor representation, the 43 4-point DCT is split by two trans-
forms K4, and four transforms C4, i.e., R(C4, 4; s) ¼
{K4, K4, C4, C4, C4, C4}.

We now consider the general case: N¼ 2r, when r� 2. The
irreducible covering sJ of the lattice X2r , 2r consists of 3N=2

groups Tp,s. Among all 3 � 2r�1 generators (p, s) of these groups,
2r�1 generators have coordinates of the same evenness and the
remaining 2r generators have coordinates of different evenness.
The splitting of the 2r3 2r-point DCT consists thus of 2r�1 2r-
point cosine transforms K2r and 2r cosine transforms C2r , that is,

R C2r , 2r ; sJð Þ ¼ K2r , K2r , . . . , K2r
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2r�1 times

, C2r , C2r , . . . , C2r
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2r times

8

<

:

9

=

;
:

(19:160)

The number of used multiplications, mc
2r , 2r , for calculating the

2-D DCT can be estimated by two different ways. The calculation
of the transform directly through the 2rþ13 2rþ1-point SDFT
yields the estimate

mc
2r , 2r ;SDFT ¼ 1

4
ms

2rþ1 , 2rþ1 ¼
1

4
4rþ1 r þ 1

2
� 1

6

� �

� 2rþ2 þ 8

3

� �

¼ 4r
r

2
þ 1

3

� �

� 2r þ 2

3
: (19:161)

In particular, for N¼ 8 and 16, we obtain mc
8, 8 ¼ 110 and

mc
16, 16 ¼ 582. It is clear, that the estimate in Equation 19.161

can be improved, if we use the concept of the pruning algorithm
[39], since the extended 2rþ13 2rþ1-point input for the SDFT
has 2 � 4r zeros.

Another estimate can be obtained by using the calculation of
the 2-D DCT in Equations 19.155 and 19.157 through the fast
1-D cosine transforms. Denoting by m(K2r ) and m(C2r ) respect-
ively the number of multiplications required to calculate the
cosine transforms K2r and C2r , we obtain from the splitting
(19.160) the following estimate:

mc
2r , 2r ¼ 2r�1m(K2r )þ 2rm(C2r ): (19:162)

The estimates for m(C2r ) are well known, and we can use, for
instance, the estimate [37,40]

m(C2r ) ¼ 2rþ1 � r � 2, r > 2, m(C4) ¼ 3ð Þ: (19:163)

For m(K2r ), we consider the following estimate obtained by the
1-D paired transforms [34]

m(K2r ) ¼ 2rþ1 � (r � 2)(r þ 5)

2
� 8, m(K4) ¼ 4ð Þ: (19:164)

Substituting these estimates into Equation 19.162, we obtain the
following multiplicative complexity of the 2-D DCT in the tensor
representation:

mc
2r , 2r ¼ 3 � 4r � 2r�2(r2 þ 7r þ 14): (19:165)

For N¼ 8, 16, and 32, we obtain respectively mc
8, 8 ¼ 104,

mc
16, 16 ¼ 536, and mc

32, 32 ¼ 2480.
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19.8.1 Modified Algorithms of the 2-D DCT

The tensor representation of the 2-D sequence with respect to the
2-D DCT associates with the covering sJ of the lattice XN,N, which
is not a partition. The deficiency of the tensor algorithm, which
splits the 2-D DCT into 1-D cosine transforms, is its reiteration of
the spectral component computations at the frequency-points (p1,
p2) which lie in the intersections of the groups of the covering. For
N¼ 2r, the number of these frequency-points equals 4r=2, which
composes half of the total number of frequency-points. We can
improve the tensor algorithm for the 2-D DCT, in order to avoid
the reiteration of the computations. Such an improvement can be
obtained similar to the way described above in the improved
tensor algorithms for the 2-D DFT and 2-D DHT.

For that, we consider a new covering s1
J of the lattice, which

contain 3 � 2r�2 groups T1, p2 and T2p1 , 1, p2 : 0: (2r�1 � 1),
p1 ¼ 0 : (2r�2 � 1), at which we can calculate the complete
2r-point DCTs. The rest of the covering consists of 3 � 2r�2 sub-
groups of T1, p2þ2r�1 and T2p1þ2r�1 , 1, where p2 : 0 : (2

r�1 �1), p1¼ 0 :
(2r�2�1), at which each second element is omitted. The calculation
of the 2-D DCT at frequency-points of these subgroups is reduced
to incomplete 1-D DCTs (or 2r�1-point DCTs), when only com-
ponents with odd numbers are calculated. We denote these incom-
plete DCTs of types I and II byK2r ;2 and C2r ;2 respectively. By using
this covering s1

J , we obtain the following splitting of the 2-D DCT
by 3 � 2r�2 complete and 3 � 2r�2 incomplete DCTs:

R C2r ,2r ; s1
� �

¼ K2r , . . . ,K2r
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

2r�2 times

, K2r ;2, . . . ,K2r ;2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

2r�2 times

, C2r , . . . , C2r
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2r�1 times

,

8

<

:

C2r ;2, . . . , C2r ;2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

2r�1 times

9

=

;
: (19:166)

The cyclic groups of the covering sJ intersect at the original
point, (0, 0), as well as the following intersections take place

T1,p2 \ T1,p2þ2r�k ¼ T2k(1,p2), Tp1 ,1 \ Tp1þ2r�k ,1

¼ T2k(p1 ,1), k ¼ 1: (r � 1), (19:167)

for an arbitrary (p1, p2) 2 X2r , 2r . We denote by Tk the set-com-
plements of these groups

Tk
1,p2

¼ T1,p2nT2k(1,p2), T
k
p1 ,1

¼ T2k(p1 ,1)nTp1 ,1, (19:168)

which contain (2r� 2r�k) frequency-points. The splitting
described in Equation 19.166 corresponds to the k¼ 1 case,
when the following covering of the lattice X2r , 2r is composed:

s1
J ¼ T1,p2 , T

1
1,p2þ2r�1

� 	

p2¼0:(2r�1�1)
, T2p1 ,1, T

1
2p1þ2r�1 ,1

� 	

p1¼0:(2r�2�1)

� �

:

This covering is smaller than the initial covering s, which means
that each set of s1

J includes in a group of sJ.

We can count the number of multiplications saved on this
stage of calculations. Denoting by m(K2r ;2) and m(C2r ;2) respect-
ively the numbers of multiplications required to compute the
incomplete cosine transforms K2r ;2 and C2r ;2, we can estimate the
total number of multiplications used in the splitting Equation
19.166 as

mc
2r , 2r ¼ 2r�2 m K2rð Þ þm K2r ;2ð Þ½ 	 þ 2r�1 m C2rð Þ þm C2r ;2ð Þ½ 	:

(19:169)

We consider that m K2r ;2ð Þ ¼ m K2rð Þ. For the incomplete cosine
transforms C2r ;2, we can use the recursive algorithm [35,36],
which splits the transform C2r into two transforms C2r�1 , by
dividing the frequencies k¼ 0 : (N� 1) into two sets of the
even and odd frequencies. Then, we can write that
m C2r ;2ð Þ ¼ m C2r�1ð Þ þ 2r�1. Therefore the estimate in Equation
19.169 can be calculated by

mc
2r ,2r ¼mc

2r ,2r jstep1 ¼ 2r�1m K2rð Þþ2r�1 m C2rð Þþm C2r�1ð Þþ2r�1
� �

:

(19:170)

In particular, for the 83 8-point DCT we obtain mc
8, 8jstep1 ¼

4 � 4þ 4(11þ 3þ 4) ¼ 88. In the general r> 3 case, by substi-
tuting the considered estimates for m K2rð Þ and m C2rð Þ into
Equation 19.170, we obtain

mc
2r ,2r jstep1 ¼ 11 � 4r�1 � (r2 þ 7r þ 12)2r�2: (19:171)

This number can be reduced if we consider other intersections
Tk, k¼ 2 : (r� 1), of the groups of the covering, and, to show
that, we describe the 83 8 case in detail.

Example 19.17

For the N¼ 8 case, we consider all groups of the irreducible

covering sJ of the lattice X8,8 :

T1,0 ¼ (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)f g,
T1,1 ¼ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)


 �
,

T1, 2 ¼ (0, 0), (1, 2), (2, 4), (3, 6), (4, 0), (5, 2), (6, 4), (7, 6)

 �

,

T1,3 ¼ (0, 0), (1, 3), (2, 6), (3, 1), (4, 4), (5, 7), (6, 2), (7, 5)

 �

,

T1,4 ¼ (0, 0), (1, 4), (2, 0), (3, 4), (4, 0), (5, 4), (6, 0), (7, 4)

 �

,

T1,5 ¼ (0, 0), (1, 5), (2, 2), (3, 7), (4, 4), (5, 1), (6, 6), (7, 3)

 �

,

T1,6 ¼ (0, 0), (1, 6), (2, 4), (3, 2), (4, 0), (5, 6), (6, 4), (7, 2)

 �

,

T1,7 ¼ (0, 0), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1)

 �

,

T0,1 ¼ (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)

 �

,

T2,1 ¼ (0, 0), (2, 1), (4, 2), (6, 3), (0, 4), (2, 5), (4, 6), (6, 7)

 �

,

T4,1 ¼ (0, 0), (4, 1), (0, 2), (3, 6), (0, 4), (4, 5), (0, 6), (4, 7)

 �

,

T6,1 ¼ (0, 0), (6, 1), (4, 2), (2, 3), (0, 4), (6, 5), (4, 6), (2, 7)

 �

:

In accordance with this covering sJ, the splitting of the 2-D

DCT is

R(C8, 8 ; sJ) ¼ {C8 , K8 , C8 , K8 , C8 , K8 , C8 , K8 , C8 , C8 , C8 , C8}:
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Let f ¼ fn1 , n2 ; n1, n2 ¼ 0 : 7f g be a 2-D sequence and let
{~f T; T2s} be the s-representation, or tensor representation of
the sequence f by the 83 8-point DCT. Then, to calculate the
83 8-point DCT, it is sufficient to fulfill:

Step 1: Four 8-point DCTs of type II, C8, over the sequences
~fT1, 0 , ~fT1, 2 , ~fT0, 1 , ~fT2, 1 , as well as two 8-point DCTs of type I, K8,
over the sequences ~fT1, 1 and ~fT1, 3 , to determine the 2-D DCT at
frequency-points of the corresponding six groups T1,0, T1,2, T0,1,
T2,1, T1,1, and T1,3.

Step 2: Four incomplete 8-point DCTs of type II, C8;2, over the
sequences ~fT1, 4 , ~fT1, 6 , ~fT4, 1 , ~fT6, 1 , as well as two incomplete 8-point
DCTs of type I, K8;2, over the sequences ~fT1, 5 and ~fT1, 7 , to deter-
mine the 2-D DCT at frequency-points of the subgroups
T1
1, 4, T

1
1, 6, T

1
4, 1, T

1
6, 1, T

1
1, 5, and T1

1, 7.
On Step 2, we save 4 multiplications every time we use the

incomplete cosine transform C8;2 instead of C8, thereby avoiding
repeated calculations at the frequency-points with even coordin-
ates. Therefore, we save 16 multiplications on this step of the
algorithm, which results in the total number of used multiplica-
tions to be mc

8, 8jstep, 1 ¼ 104� 16 ¼ 88.
We can see that this process of the improvement can be

continued. Indeed, to avoid the repeated calculations in the
groups T1,2, T1,3, and T2,1 at frequency-points with both coord-
inates multiple to 4, we can perform two incomplete cosine
transforms of type I, ~C8;4, without outputs at points 0 and 4.
The use of two transforms C8;4 saves in addition two multiplica-
tions by

ffiffiffi
2

p
=2, and the total number of multiplications reduces

to mc
8, 8jstep2 ¼ 88� 2 ¼ 86.

At last, we have only intersections of the group T1,0 with T1,1
and T0,1 at (0, 0). Although, these reiterations of calculations do
not reduce the multiplicative complexity of the algorithm, we
can perform two incomplete cosine transforms K8;0 and C8;0
avoiding the repeated calculations at the origin point. As a
result, we obtain a partition s0 of the lattice X8,8. The sets of
this partition and the 1-D DCTs used to calculate the 2-D DCT
at frequency-points of these sets are given below in the form of
the table:

T1,0 {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)} C8
T3
1,1 {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)} K8;0

T2
1,2 {(1, 2), (2, 4), (3, 6), (5, 2), (6, 4), (7, 6)} C8;4

T2
1,3 {(1, 3), (2, 6), (3, 1), (5, 7), (6, 2), (7, 5)} K8;4

T1
1,4 {(1, 4), (3, 4), (5, 4), (7, 4)} C8;2

T1
1,5 {(1, 5), (3, 7), (5, 1), (7, 3)} K8;2

T1
1,6 {(1, 6), (3, 2), (5, 6), (7, 2)} C8;2

T1
1,7 {(1, 7), (3, 5), (5, 3), (7, 1)} K8;2

T3
0,1 {((0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)} C8;0

T2
2,1 {(2, 1), (4, 2), (6, 3), (2, 5), (4, 6), (6, 7)} C8;4

T1
4,1 {(4, 1), (3, 6), (4, 5), (4, 7)} C8;2

T1
6,1 {(6, 1), (2, 3), (6, 5), (2, 7)} C8;2

Thus, all reiterations of computation of the 2-D DCT in the
tensor algorithm has been eliminated by using the incomplete
cosine transforms of types I and II.

In the general N� 8 case, we can use the similar procedure in
order to improve the tensor algorithm. So, for the next k¼ 2 step,
we can eliminate the intersections in other remained groups T of
the covering s1, using equalities (19.167). Then, we obtain the
following covering:

s2 ¼ T1, p2 , T
2
1, p2þ2r�2

� 	

p2¼0:(2r�2�1)
, T1

1, p2þ2r�1

� 	

p2¼0:(2r�1�1)
,

�

T2p1 , 1, T
2
2p1þ2r�2 , 1

� 	

p1¼0:(2r�3�1)
, T1

2p1þ2r�1 , 1

� 	

p1¼0:(2r�2�1)

�

,

wherein the sets T2 contain 3 � 2r� 2 frequency-points each.
Continuing such an improvement, we can estimate the number,
Dm0

2r , of multiplications saved by this improvement as follows:

Dm0
2r � 2r�1m C2r ;2ð Þþ 2r�2m C2r ;4ð Þþ � � �þ 2m C2r ;2r�1ð Þ

� 2r�1 m C2rð Þ� 1

2
m C2r�1ð Þ� 1

4
m C2r�2ð Þ� � � �� 1

2r�3
m(C8)

� �

� 2m(C4)�
1

3
(4r � 16)

� 1

3
(4r � 4)� 2r þ 8,

where we consider that m C2k ;2
� �

¼ m C2kð Þ �m C2k�1ð Þ � 2k�1,
for k¼ 3 : r, and m C2r ;2r�1ð Þ ¼ 2. Therefore, at the last step of
improvement, the total number of multiplications is reduced to

mc
2r , 2r jstep(r�1) ¼ mc

2r , 2r �Dm0
2r �

2

3
4rþ1 � 2r�2(r2 þ 7rþ 10)� 20

3
:

(19:172)

So, using the tensor representation of the shifted Fourier trans-
form, we obtain three estimates for the multiplicative complexity
of the 2-D DCT, which are estimated respectively by formulae
(19.161), (19.165), and (19.172). For some integers r, the values
of these estimates and the known estimates, which have been
received in the polynomial and recursive algorithms, are given in
Table 19.4. We should note, that a few addition multiplications
can be saved on the steps k¼ 2, 3, . . . , (r� 1) in the improved
tensor algorithm, if we succeed in calculating the incomplete 1-D
DCT of type I, K2r ;2k , by a method similar to the pruning
algorithm [39,41].

Example 19.18

We here describe the improved tensor algorithm of the

153 15-point DCT. The splitting of the 153 15-point DFT is

performed by twelve 15-point DFTs and twelve 15-point

modified DFTs, as is shown in (19.146). Therefore, the

153 15-point DFT can be split by twelve 15-point DCTs of
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type I, and twelve 15-point DCTs of type II. The number of

multiplications required to calculate this 2-D DCT can be

estimated as

mc
15, 15 ¼ 12 m(K15)þm(C15)½ 	:

Taking the known estimate m(C15) ¼ 18[38] and considering
that m(K15) < m(C15), we obtain mc

15, 15 < 24m(C15) ¼ 432.
However, this estimate can be essentially improved if we use
the modified tensor algorithm. Indeed, by means of the calcula-
tions similar to the ones given in Example 19.17, we can obtain
the following splitting R C15, 15; s0ð Þ of the 153 15-point DCT:

C15, K15;0, C15;0, C15;0, K15;5, C15;5, K15;3, 5, . . . , K15;3, 5
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

10times

,

8

<

:

C15;3, 5, . . . , C15;3, 5
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

8times

9

=

;
(19:173)

where K15;3, 5 and C15;3, 5 denote respectively the incomplete 15-
point DCTs of types I and II, wherein the outputs with numbers
multiple to 3 and 5 are not calculated. Outputs are calculated
only for eight points 1, 2, 4, 7, 8, 11, 13, and 14. In the incomplete
cosine transforms K15;5 and C15;5, the outputs with numbers 0, 5,
and 10 are not calculated. It is not difficult to see, that the 15-
point DCT can be split into three 5-point DCTs. For that we
consider the sets T 0

p0
¼ (p0 þ 6k) mod 15; k ¼ 0 : 4f g, where p0

is a number of the integer interval [0, 14]. Then, three subsets
T 0
0, T

0
5, and T 0

10 form a partition v0 of the set
X15 ¼ {0, 1, . . . , 14} : T 0

0 ¼ {0, 6, 12, 3, 9}, T 0
5 ¼ {5, 11, 2, 8, 14},

T 0
10 ¼ {10, 1, 7, 13, 4}. This partition corresponds to the well-

known Chinese remainder theorem mapping for N¼15. The
restriction of the 15-point DCT on each subset T0 2 v0 is the
5-point DCT. For instance, for p 2 T 0

0, we have the following:

Cp ¼ C(0;k) ¼
X14

n¼0

fn cos
p

15
n(0þ 6k)

� 	

¼
X14

n¼0

fn cos
p

5
2nk

� 	

¼
X4

n¼0

(fn þ fnþ5 þ fnþ10) cos
p

5
n(2k)

� 	

, k ¼ 0 : 4:

To calculate the incomplete 15-point DCT of type II, C15;3, 5, it is
sufficient to calculate two incomplete 5-point DCTs, C5;0, which
requires 12 multiplications. Therefore, using the splitting in
Equation 19.173, we can estimate the multiplicative complexity
of the 153 15-point DCT as

mc
15,15 � m(C15)þ 3m(C15;0)þ 2m(C15;5)þ 18m(C15;3, 5)

¼ 6 � 18þ 18 � 12 ¼ 324:

We note for comparison, that the same estimate have been
obtained in [38].

19.9 3-D Paired Representation

In this section, we introduce a more advanced form of represen-
tation of multidimensional signals and images, than the tensor
representation. Such a form associates with special partitions of
the spatial lattice in the frequency-domain, that reveal the multi-
dimensional DTs such as the Fourier, Hadamard, and cosine
transforms. We stand in detail on the 2-D case, since the three-
and more-dimensional cases are described similarly. In the tensor
and the new forms of representation proposed here, multidimen-
sional signals and images are represented by the sets of 1-D
splitting-signals, and dimensions of the signals change only the
cardinality of such sets.

The tensor representation of multidimensional signals is asso-
ciated with an irreducible covering sJ not being partitions of the
lattice. This is why, there is a redundancy in calculations; the
same spectral information contains in different groups of fre-
quency-points and the splitting-signals together contains more
points than the volume of the represented multidimensional
signals. As an illustration, Figure 19.23 shows the image
2563 256 in part (a), along with the image of 384 1-D split-
ting-signals in (b), which are lying on rows of this image. These
1-D signals are also called image-signals; they describe uniquely
the original image and at the same time they split the mathemat-
ical structure of the 2-D DFT (shown in (c)) into a set of separate
1-D transforms (shown all together as an image in (d)). The 2-D

TABLE 19.4 The Number of Multiplications Required to Calculate the 2r3 2r-Point DCT by the SDFT, Tensor, Improved Tensor, Polynomial, and
Recursive Algorithms

2r3 2r mc
SDFT mc

tensor mc
step1 mstep(r�1)c mc

polyn mc
rec

83 8 110 104 88 86 96 112

163 16 582 536 476 460 512 640

323 32 2,870 2,480 2,236 2,164 2,560 3328

643 64 13,590 10,816 9,820 9,508 12,288 —

1283 128 62,678 45,568 41,532 40,228 57,344 —

2563 256 283,734 188,032 171,772 166,436 262,144 —

5123 512 1,266,518 766,208 700,924 679,332 1,179,648 —

10243 1024 5,591,382 3,098,624 2,836,988 2,750,116 5,242,880 —
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DFT is thus considered as a unique set of separate 1-D DFTs. The
image in (b) is the tensor representation of the image, or the
tensor transform of the image,

X ¼ Xs: f ! fTp,s ; Tp,s 2 sJ


 �
: (19:174)

One can note, that a few slitting-signals are well expressed,
which can be seen also from the energy plot of all splitting-
signals, which is given in Figure 19.24. For this image, the high

energy is concentrated in the splitting-signals of numbers 1, 129,
257, 172, 52, 258, and 2 that correspond to the generators (p, s)¼
(0, 1), (128, 1), (1, 0), (171, 1), (51, 1), (1, 2), and (1, 1),
respectively. The processing of only these signals may lead to
good results, for instance in image enhancement [17,18].
One such example has been shown in Figure 19.5, where
the image is enhanced by one splitting-signal of the generator
(p, s)¼ (7, 1). However, all together the splitting-signals con-
tain 384 � 256 points which is much greater than the original
size 256 � 256.

(a) (c)
50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

300

350

(d)
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100

150

200

250

300

350

FIGURE 19.23 Conventional and tensor representation of the image and its spectrum. (a) Tree image 2563 256, (b) the image of all 384
splitting-signals. (c) the 2563 256-point DFT of the image, and (d) the image of the 256-point DFTs of splitting-signals. (All DFTs are shifted to the
centers.)
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In order to remove such a redundancy, we consider the con-
cept of the paired representation of multidimensional signals and
images. Unlike the tensor representation, the paired representa-
tion allows for distribution of the spectral information of multi-
dimensional signals and images by disjoint sets of frequency-
points. This property makes the paired representation the most
attractive in multidimensional signal and image processing as
well as in the construction of effective algorithms for calculating
multidimensional transforms. As examples, we first consider the
paired representation of images with respect to the discrete
unitary Fourier, Hadamard, Hartley, and cosine transforms on
the rectangular lattices. We also will describe the paired repre-
sentation of images defined on the hexagonal lattices.

19.9.1 2D-to-3D Paired Transform

A complete system of functions can be derived from the 2-D
DFT as a system that splits the transform [12,21]. In other words,
there exists a system of functions that reveals completely the
mathematical structure of the 2-D DFT when considering it as
a minimal composition of short 1-D DFTs. Such a system is 3-D,
i.e., the system of functions is numbered by three parameters,
namely, two parameters for the spatial frequencies and one
parameter for the time. The change in time determines a series
of functions, and the total number of triples numbering the
system of functions, since the system is complete, equals the
size of the 2-D DFT, let us say N3N. The complete systems of
such functions, which are called the paired functions, exist also in
the one- and multidimensional cases.

Let N be not a prime number. We consider an irreducible
covering sJ of the lattice XN, N and for each generator (p, s) 2 J,
we determine the characteristic functions of the sets Vp,s,t¼
{(n1, n2); n1pþ n2s¼ t mod N} as follows

X p,s,t(n1, n2) ¼
1; (n1, n2) 2 Vp,s,t,

0; otherwise,

�

t ¼ 0 : (N � 1):

(19:175)

These functions describe the tensor transformation of a 2-D
sequence or image f with respect to the Fourier transformation.

Indeed, the components fp,s,t of the splitting-signal fTp, s are
defined as

fp,s,t ¼ X p,s,t � f ¼
XN�1

n1¼0

XN�1

n2¼0

X p,s,t(n1, n2)fn1 ,n2 , t ¼ 0 : (N � 1):

(19:176)

Therefore, the tensor transformation Xs is described by the
following system of binary functions

Xs ¼ X p,s,t ;Tp,s 2 sJ , t ¼ 0 : (N � 1)

 �

: (19:177)

The tensor transformation is not orthogonal, but, by means of
this transformation, one can synthesize unitary transformations.

Definition 19.2: Let L be a nontrivial divisor of the number
N and let WL¼ exp (�2pj=L). For a given frequency-point
(p, s) 2 XN,N and integer t 2 {0, 1, 2, . . . , N=L� 1}, the function

X 0
p, s, t(n1, n2) ¼ X 0

p, s, t;L(n1, n2) ¼
XL�1

k¼0

Wk
LX p, s, tþkNL

(n1, n2)

(19:178)

is called an L-paired function.

The operation of the paired functions over a 2-D sequence f of
size N3N determines the components which can be calculated
from components of the tensor representation by

f 0p, s, t ¼ X 0
p, s, t � f ¼

XL�1

k¼0

fp, s, tþkN=LW
k
L , k ¼ 0 : N=L� 1ð Þ:

(19:179)

The N=L-point signal

f 0Tp, s ¼ f 0p, s, 0, f
0
p, s, 1, . . . , f

0
p, s,N=L�1

� 	

(19:180)

0 50 100 150 200 250 300 350
0

500

1000

1500

FIGURE 19.24 Energy of all 384 splitting-signals of the tree image.
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determines the 2-D DFT of f at frequency-points of the following
subset of the cyclic group Tp,s:

T 0 ¼ T 0
p, s;L ¼ (kLþ 1)p, (kLþ 1)s

� �
; k ¼ 0 : N=L� 1ð Þ


 �
:

(19:181)

Indeed, the following formula holds:

F(kLþ1)p, (kLþ1)s ¼ F(kLþ1)p, (kLþ1)s ¼
XN=L�1

t¼0

f 0p, s, tW
t

� 	

Wkt
N=L

(19:182)

where k¼ 0 : (N=L� 1). Thus, the N=L-point DFT of the modi-
fied signal

gT 0
p,s
¼ f 0Tp,s

W ¼ f 0p,s,0, f
0
p,s,1W, . . . , f 0p,s,N=L�1W

N=L�1
� 	

(19:183)

defines the 2-D DFT at frequency-points of the subset T 0
p, s;L. Here

W denotes the diagonal matrix with coefficients 1, W, W2, . . . ,
WN=L�1 on the diagonal. The signal fT 0

p, s
is called the paired

splitting-signal, and the signal gT 0
p, s

is the modified paired

splitting-signal.

It is interesting to note, that the subsets T 0
p, s compose a unique

partition s0 ¼ T 0
p, s

� 	

of the lattice XN,N. Indeed, each subset T 0
p, s

itself represents an orbit of the point (p, s) with respect to the
movement group G¼ {(kLþ 1) mod N; k¼ 0 : (N=L� 1)}. All
orbits are equal or disjoint between themselves, and together they
compose the whole lattice. In the general case, such a partition is
defined as

s0 ¼ s0
J 0 ¼ T 0

p,s;L

� 	

L2D

� 	

(p,s)2J 0

� �

, (19:184)

for a certain subset J0 of generators (p, s) and a set of factors D of
the number N. In many cases of N, the set D consists of only one
factor.

19.9.2 N Is a Power of Two

In this section, we consider the case of most interest, when N is a
power of two. We describe the paired representation of 2-D

signals or images f of size N3N, as well as the paired transform
of f on the example when N¼ 8. The general case, when N¼ 2r,
r> 1, is also considered.

Example 19.19

Let L¼ 2 and let X be the lattice X8,8. To compose a partition of

the lattice, we first note, that each subset T 0p, s is the orbit of the
point (p, s) with respect to the movement group G¼ {1, 3, 5, 7}.

For instance, the subset T 01, 1 ¼ T 01, 1;2 ¼ (1, 1), (3, 3),f (5, 5), (7, 7)g
is the orbit of the point (1, 1). The point (1, 1) ‘‘is moving’’

starting (at time t¼ 0) from itself and ‘‘returning’’ back in four

units of time (at time t¼ 4) as (1, 1)! (3, 3)! (5, 5)! (7, 7)!
(1, 1). In the orbit T 03, 1 , the point ‘‘is moving’’ as follows: (3, 1)!
(1, 3) ! (7, 5) ! (5, 7) ! (3, 1).

The set of all orbits dividing the lattice X8,8 in unique and can
be described as follows:

T 0
0,1 T 0

1,1 T 0
2,1 T 0

3,1 T 0
4,1 T 0

5,1 T 0
6,1 T 0

7,1 T 0
1,0 T 0

1,2 T 0
1,4 T 0

1,6 4
T 0
0,2 T 0

2,2 T 0
4,2 T 0

6,2 T 0
2,0 T 0

2,4 2
T 0
0,4 T 0

4,4 T 0
4,0 1

T 0
0,0 1

(19:185)

22 orbits divide the lattice, and the orbits shown on the same row
have equal cardinalities, which are shown in the right column of
this table. For instance, the point (0, 1) runs around its orbit for
time t¼ 4, and the orbit of the point (0, 2) is twice shorter, (0, 2)
! (0, 6)! (0, 2). The set of generators of these orbits are shown
in Figure 19.25 in part a, by the filled circles. The locations of
frequency-points of orbits T 0

p, s for generators (p, s)¼ (1, 1), (3, 1),
and (6, 1) are shown in parts (b) through (d), respectively.

Twenty-two splitting-signals defined for generators of the
subsets, or orbits T0 of the partition s0 determines the value of
the 2-D DFT at frequency-points of these subsets. For instance,
the signal f 0T1, 1

carries the spectral information of a 2-D signal f
at frequency-points (1, 1), (3, 3), (5, 5), and (7, 7). According to
the table of (19.185), the 2-D 83 8-point DFT is split by twelve
4-point DFTs, six 2-point DFTs, and four 1-point DFTs (which
are the identity transformations).

0 2 4 6
0

2

4

6

(a)
0 2 4 6

0

2

4

6

(b)
0 2 4 6

0

2

4

6

(c)
0 2 4 6

0

2

4

6

(d)

FIGURE 19.25 (a) Twenty-two generators on the lattice 83 8, and the orbits of points (b) (1, 1), (c) (3, 1), and (d) (6, 1). (The generators and
elements of the orbits are shown by the filled circles.)
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This table shows also the way of composing the complete
set of basis paired functions. Indeed, it follows from the defin-
ition (19.178), that 2-paired, or simply paired functions are
calculated by

X 0
p, s, t(n1, n2) ¼ X p, s, t(n1, n2)� X p, s, tþ4(n1, n2)

¼
1; if n1pþ n2s ¼ t mod 8,
�1; if n1pþ n2s ¼ t þ 4 mod 8:
0; otherwise,

(

(19:186)

where t¼ 0 : 3. For instance, the values of the function
X 0

3, 1, 2(n1, n2) can be written in the form of the following mask:

X 0
3, 1, 2

� �
¼

0 0 1 0 0 0 �1 0
0 0 0 �1 0 0 0 1
�1 0 0 0 1 0 0 0
0 1 0 0 0 �1 0 0
0 0 �1 0 0 0 1 0
0 0 0 1 0 0 0 �1
1 0 0 0 �1 0 0 0
0 �1 0 0 0 1 0 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

The 64 triplets (p, s, t), or numbers of the complete system of
paired functions X 0

p, s, t are composed from the generators (p, s)
and time variable t, which runs numbers 0, 1, 2, 3, for the orbits
in the first row in the table of Equation 19.185. For short orbits in
the second row, t takes only values of 0 and 2. Indeed, both
coordinates of points on these orbits are even, therefore condi-
tions (n1pþ n2s¼ t mod 8) and (n1pþ n2s¼ tþ 4 mod 8) do not
hold for odd t¼ 1 and 3. In other words, for these triples (p, s, t),
we have X 0

p, s, t � 0, and we do not consider such functions. There
is no movement (or t¼ 0) in single-point orbits for (p, s)¼ (0, 4),
(4, 4), (4, 0), and (0, 0). The set of 64 triplets for the complete
system of paired functions are given in the following table:

(p, s) t

(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (1, 0), (1, 2), (1, 4), (1, 6) 0, 1, 2, 3

(0, 2), (2, 2), (4, 2), (6, 2), (2, 0), (2, 4) 0, 2

(0, 4), (4, 4), (4, 0) 0

(0, 0) 0

(19:187)

Figure 19.26 shows all 64 basis paired functions X 0
p, s, t , which

are placed in the order given in the above table, starting form the
top on the left to the bottom to the right. For instance, the first

FIGURE 19.26 The complete system of 2-D basis functions of the 83 8-paired transform. (Values of 1 are shown by the filled circles, and�1 by the
open circles.)
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four functions have numbers (0, 1, t), where t¼ 0: 3. The filled
circle is used for value 1 and the open circle for �1. It is not
difficult to see that all these functions are orthogonal. The com-
plete set of paired functions define the paired representation of
the 2-D sequence or image f

f ! fT 0
p, s
; T 0

p, s 2 s0
n o

: (19:188)

The components of these paired splitting-signals fT 0
p, s

are calcu-
lated from the components of the splitting-signals fTp, s of the
tensor representation of f by

f 0p, s, t ¼ fp, s, t � fp, s, tþ4, t 2 {0, 1, 2, 3}: (19:189)

The transformation

X 0
: f ! f 0p, s, t ; T

0
p, s 2 s0, t ¼ 0: card T 0

p, s

� 	

� 1
� 	n o

(19:190)

is called the paired transformation. Thus the paired transform
is the representation of the image in the form of 1-D splitting-
signals; components of all splitting-signals together compose the
paired transform.

Let (p, s)¼ (3, 1) and let f be the following image of size 83 8 :

f ¼

1 2 1 3 1 2 1 3
2 0 1 2 2 4 2 1
1 3 2 2 1 1 1 2
4 1 0 1 3 1 3 1
2 4 1 2 1 3 2 2
2 4 1 2 1 2 2 1
2 4 1 2 1 5 2 1
2 4 1 2 1 1 3 2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

We will calculate the 2-D DFT of f at frequency-points of the
orbit of the point (3, 1). For that, first we write all values of t
in the equations 3n1þ n2¼ t mod 8 in the form of the
following table:

kt ¼ (3n1 þ n2) mod 8kn2 , n1¼0:7 ¼

0 1 2 3 4 5 6 7
3 4 5 6 7 0 1 2
6 7 0 1 2 3 4 5
1 2 3 4 5 6 7 0
4 5 6 7 0 1 2 3
7 0 1 2 3 4 5 6
2 3 4 5 6 7 0 1
5 6 7 0 1 2 3 4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

:

According to this table, the components of the splitting-signal
fT 0

3, 1
are defined as follows:

fT 0
3,1

¼

f 03, 1, 0 ¼ (f0, 0 þ f1, 5 þ f2, 2 þ f3, 7 þ f4, 4 þ f5, 1 þ f6, 6 þ f7, 3)�
(f0, 4 þ f1, 1 þ f2, 6 þ f3, 3 þ f4, 0 þ f5, 5 þ f6, 2 þ f7, 7)¼
(1þ 4þ 2þ 1þ 1þ 4þ 2þ 2)� (1þ 0þ 1þ 1þ 2þ 2þ 1þ 2)¼ 7

f 03, 1, 1 ¼ (f0, 1 þ f1, 6 þ f2, 3 þ f3, 0 þ f4, 5 þ f5, 2 þ f6, 7 þ f7, 4)�
(f0, 5 þ f1, 2 þ f2, 7 þ f3, 4 þ f4, 1 þ f5, 6 þ f6, 3 þ f7, 0)¼
(2þ 2þ 2þ 4þ 3þ 1þ 1þ 1)� (2þ 1þ 2þ 3þ 4þ 2þ 2þ 2)¼�2

f 03, 1, 2 ¼ (f0, 2 þ f1, 7 þ f2, 4 þ f3, 1 þ f4, 6 þ f5, 3 þ f6, 0 þ f7, 5)�
(f0, 6 þ f1, 3 þ f2, 0 þ f3, 5 þ f4, 2 þ f5, 7 þ f6, 4 þ f7, 1)

(1þ 1þ 1þ 1þ 2þ 2þ 2þ 1)� (1þ 2þ 1þ 1þ 1þ 1þ 1þ 4)¼�1

f 03, 1, 3 ¼ (f0, 3 þ f1, 0 þ f2, 5 þ f3, 2 þ f4, 7 þ f5, 4 þ f6, 1 þ f7, 6)�
(f0, 7 þ f1, 4 þ f2, 1 þ f3, 6 þ f4, 3 þ f5, 0 þ f6, 5 þ f7, 2)¼
(3þ 2þ 1þ 0þ 2þ 1þ 4þ 3)� (3þ 2þ 3þ 3þ 2þ 2þ 5þ 1)¼�5

8

>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

This splitting-signal is modified as fT 0
3, 1
W, where

W ¼ diag 1, e�jp=4, e�j2p=4, e�j3p=4
n o

¼ diag 1, a(1� j), � j, � a(1þ j)f g

and a ¼
ffiffiffi
2

p
=2 ¼ 0:7071. The four-point DFT of the modified

splitting-signal

gT 0
3, 1

¼ fT 0
3, 1
W ¼ {7, �1:4142þ j1:4142, j, 3:5355þ j3:5355}

is calculated as follows:

1 1 1 1
1 �j �1 j
1 �1 1 �1
1 j �1 �j

2

6
6
4

3

7
7
5

1 0 0 0
0 a(1� j) 0 0
0 0 �j 0
0 0 0 �a(1þ j)

2

6
6
4

3

7
7
5

7
�2
�1
�5

2

6
6
4

3

7
7
5

¼
9:1213þ j5:9497
4:8787þ j3:9497
4:8787� j3:9497
9:1213� j5:9497

2

6
6
4

3

7
7
5
:

The obtained 4-point DFT coincides with the 83 8-point DFT of
the image f at four frequency-points of the orbit T 0

3, 1, i.e.,

F3, 1
F1, 3
F7, 5
F5, 7

2

6
6
4

3

7
7
5
¼

9:1213þ j5:9497
4:8787þ j3:9497
4:8787� j3:9497
9:1213� j5:9497

2

6
6
4

3

7
7
5
:

We can also see from this example, that the pairs of complex
conjugate components F3,1 and F5,7, and F1,3 and F7,5 are
obtained from the same splitting-signal. In general, if (p1, p2)
lies on the orbit T 0

p, s, then the point (N� p1, N� p2) lies also on
this orbit.

In the N¼ 2r case, when r> 1, the partition s0 ¼ (T0) of the
lattice X2r , 2r is composed similarly to the case N¼ 8. For integers
n¼ 0 : (r� 1), we define the sets of generators

J2n , 2n ¼ (1, 0), (1, 1), . . . , (1, 2n � 1), (0, 1), (2, 1),f
(4, 1), . . . , (2n � 2, 1)g:
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The totality of 3 � 2r�2 subsets

s0 ¼ T 0
2np, 2ns

� 	

(p, s)2J2r�n , 2r�n

� �

n¼0:(r�1)

, (0, 0)f g
 !

(19:191)

is the partition of the lattice X. The complete set of paired

functions X 0 ¼ X 0
p, s, t ; (p, s, t) 2 U

n o

can thus be defined by

the following set of triplets:

U¼
[r�1

n¼0

2n(p, s, t); (p, s)2 J2r�n ,2r�n , t¼0:(2r�n�1�1)

 �

[ (0, 0, 0)f g:

(19:192)

The paired transform X 0
: f ! f 0p, s, t ; (p, s, t) 2 U

n o

does not

require multiplications, but only operations of addition and
subtraction.

For L¼ 2, the equation in Equation 19.182 takes the following
form:

F (2kþ1)p, (2kþ1)s ¼
X2
r�1�1

t¼0

f 0p,s,tW
t

� 	

Wkt
2r�1 , k ¼ 0: (2r�1 � 1),

(19:193)

where the components

f 0p,s,t ¼ fp,s,t � fp,s,tþ2r�1 , t ¼ 0: (2r�1 � 1):

It directly follows from Equation 19.193 and the given set of
triplets U, that the 2r3 2r-point DFT is split by the paired
transform into a set of 2r3� 2 short DFTs, namely 3 � 2r�1

2r�1-point DFTs, 3 � 2r�2 2r�2-point DFTs, . . . , six 2-point
DFTs, and four 1-point identity transforms, i.e.,

R F 2r ,2r ; s
0ð Þ ¼ F 2r�1 , . . . , F 2r�1

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3�2r�1 times

, F 2r�2 , . . . , F 2r�2
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3�2r�2 times

,

8

<

:

F 2r�3 , . . . , F 2r�3
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

3�2r�3 times

, . . . , F 2, . . . , F 2
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

6 times

, F 1, . . . , F 1
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

4 times

9

=

;
:

Indeed, at the frequency-points of the subset T 0
p, s of the parti-

tion s0, the 2-D DFT of f is completely determined by the 2r�n�1-
point splitting-signal

fT 0
p,s
¼ f 0p,s,0, f

0
p,s,2n , f

0
p,s,2�2n , f

0
p,s,3�2n , . . . , f

0
p,s,2r�1�2n

n o

,

where the integer n� 0 is defined by the simple equation 2n¼ g.c.

d(p, s). Indeed, if t is not divisible by 2n, then the sets Vp,s,t¼�
and Vp, s, tþ2r�1 ¼ �, and therefore f 0p, s, t � 0. Each 2r�1-point
DFT in the right side of Equation 19.193 itself represents the

2r�n�1-point DFT. In other words, if (p, s)¼ 2n(p0, s0) where
(p0, s0) 2 J2r�n , 2r�n , then

F(2kþ1)p, (2kþ1)s ¼
X2r�n�1�1

t¼0

f 0p, s, 2ntW
t
2r�n

� 	

Wkt
2r�n�1 , k¼ 0: (2r�n�1 � 1):

(19:194)

Example 19.20

We consider the N¼ 8 case, for which the partition s0 of the
lattice X8,8 has been described in Example 19.19. Twelve sub-

sets T0 of this partition consist of four points each, six subsets

of two points each, and the remaining four subsets are one-

point sets. The splitting of the 83 8-point DFT thus equals

R(F 8, 8 ; s
0) ¼ F 4 , . . . , F 4

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

12 times

, F 2 , . . . , F 2
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

6 times

, F 1 , . . . , F 1
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

4 times

8

<

:

9

=

;
:

(19:195)

The first twelve 4-point DFTs are calculated over the modified
splitting-signals

gT 0
p,s ¼ f 0p,s,0, f

0
p,s,1W, f 0p,s,2W

2, f 0p,s,3W
3

n o

¼ f 0p,s,0, a(1� j)f 0p,s,1, � jf 0p,s,2, �a(1þ j)f 0p,s,3

n o

(19:196)

where a ¼
ffiffiffi
2

p
=2 ¼ 0:7071 and W¼ exp(�j2p=8)¼ a(1 �j).

The generators (p, s) of these signals lie on the first row in the
table of Equation 19.187. The calculation in Equation 19.196 uses
two operations of multiplication by the factor of a, for each
splitting-signal. The next six 2-point DFTs are calculated over
the short modified splitting-signals

gT 0
p,s ¼ f 0p,s,0, f

0
p,s,2W

2
n o

¼ f 0p,s,0, � jf 0p,s,2

n o

which do not use multiplications. The generators (p, s) of these
signals lie on the second row in the above mentioned table. Thus,
the total number of operations of multiplication for calculating
the 83 8-point DFT through the splitting (19.195) equals
m0

8, 8 ¼ 12 � 2 ¼ 24.

Example 19.21

The calculation of the 163 16-point DFT by the paired trans-

form is performed by means of 216 operations of multiplica-

tion. Indeed, the splitting of the 163 16-point DFT by the

partition s0 ¼ (T0) equals

R(F 16, 16 ; s
0) ¼ F 8 , . . . , F 8

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

24 times

, F 4 , . . . , F 4
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

12 times

,

8

<

:

F 2 , . . . , F 2
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

6 times

, F 1 , . . . , F 1
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

4 times

9

=

;
:
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The cardinalities of the largest subsets T 0
p, s of the partition s0 of

the lattice X16,16 equal 8. The generators for these subsets are
taken from the set J16,16, and the corresponding modified split-
ting-signals have the following form:

gT 0
p, s
¼ fT 0

p, s
W ¼ f 0p, s, 0, f

0
p, s, 1W, f 0p, s, 2W

2, f 0p, s, 3W
3, . . . , f 0p, s, 7W

7
n o

(19:197)

whereW¼ exp (� j2p=16)¼ 0.9239� j0.3827. This product uses
six nontrivial operations of multiplication by the twiddle factors
Wt, t¼ 1, 2, 3, 5, 6, 7. The 8-point DFT requires two operations
of multiplication. Therefore the calculation of 24 eight-point
DFTs in the splitting of the 163 16-point DFT requires 24 � 8
operations of multiplication. The calculation of the 4-point DFTs
over the modified splitting-signals of length four has been
described in Example 19.20. Each such transform uses two oper-
ations of multiplication. The total number of operations of
multiplication required to calculate the 163 16-point DFT by
the paired transform is calculated by

m0
16, 16 ¼ 24(m8 þ 8� 2)þ 12(m4 þ 4� 2) ¼ 24(2þ 6)þ 12(2)

¼ 192þ 24 ¼ 216:

We note for comparison, that the tensor algorithm of the
163 16-point DFT uses 24m16¼ 24 � 10¼ 240 operations of
multiplication.

In the general N¼ 2r case, the number of operations of multi-
plication required for calculating the 2r3 2r-point DFT by the
paired transforms can be estimated as

m2r ,2r ¼
Xr�2

n¼1

2r�n3 m2r�n þ2r�n�2ð Þ�2 �4r�1(r�7=3)þ8=3, (r>2):

(19:198)

When estimating this number, we use the fact that the 2n-point
fast DFT requires m2n ¼ 2n�1(n� 3)þ 2 multiplications, when
n� 3 [11, 22].

As an illustration of the concept of the paired representation,
Figure 19.27 shows the tree image of size 2563 256 in part (a),
along with the splitting-signal fT 0

3, 1
of length 128 together with the

modified signal fT 0
3, 1

in (b), the 128-point DFT of the modified
signal in (c), and the samples of the 2-D DFT of the image at
frequency-points of the subset T 0

3, 1 on the lattice X256,256, at
which the 2-D DFT can be filled by the calculated 1-D DFT of
the modified signal.

(a)
0 50 100

−20

−10

0

10

20

(b)

fT3́,1

RegT3́,1

0 50 100
0

100

200

300

400

500

600

700

(c)
0 50 100 150 200 2500

100

200

0

100

200

(d)

FIGURE 19.27 (a) Tree image 2563 256, (b) the paired splitting-signal fT 0
3, 1

and the real part of the modified signal, (c) the 1-D DFT of the
modified signal, and (d) the arrangement of values of the 1-D DFT at frequency-points of the subset T 0

3, 1. (The 1-D DFT is shown in the absolute
scale.)
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The paired representation of 2-D signals or images in the form
of separate 1-D splitting-signals of different lengths is the trans-
formation of the 2-D data into 3-D space which is a space of 2-D
frequency with 1-D time,

X 0
: fn1 , n2 ! fT 0

p, s
¼ {f 0p, s, t}

n o

:

The paired transform is not separable, but the paired splitting-
signals carry the spectral information of fn1 , n2 at disjoint subsets
of frequency-points, and the processing of 2-D signals and
images thus can be reduced to processing their 1-D splitting-
signals. To illustrate such splitting-signals for images of large
sizes, Figure 19.28 shows the tree image fn1 , n2 of size 2563 256
in part (a), along with the totality of all 766 splitting-signals of
the image in (b). The first 384 splitting-signals of length 128 each
are shown in the form of the ‘‘image’’ 3843 128. The next 192
splitting-signals of length 64 each are shown in the form of the
image 1923 64, the splitting-signals of length 32 are shown in
the form of the image 963 32, and so on. The whole picture
represents the paired transform of the tree image. The set of the
1-D DFTs of all splitting-signals are shown in the form of a
similar figure in (c). These 1-D DFTs represent the splitting of
the 2-D DFT, by frequency-points which are distributed by
disjoint subsets, or orbits in the lattice 2563 256. The number
of elements in both images (b) and (c) are equal to 2562. As
compared with the tensor representation of the tree image and
splitting of the 2-D DFT of the image, which are shown in Figure
19.23, the paired representation provides the representation of
the image and the splitting of the 2-D DFT without redundancy.

19.9.3 N Is a Power of Odd Prime

For the Lr3 Lr case, when L> 2 is a prime number, the complete
set of 2-D paired functions

X 0 ¼ X 0
p, s, t ; (p, s, t) 2 U

n o

(19:199)

is defined by the following set of triplets:

U ¼
[r�1

n¼0

[L�1

k¼1

Uk;n [ (0, 0, 0)f g (19:200)

where the disjoint sets Uk;n are defined as

Uk;n ¼ Ln(k, kp2, t), L
n(kLp1, k, t); p2 ¼ 0 : (Lr�n � 1),f

p1, t ¼ 0: (Lr�n�1 � 1)
�
: (19:201)

The number of all triplets (p, s, t) in Equation 19.200 is equal to
L2r. The set U is not unique; one can replace, for instance, each
triplet (p, s, t) in U by (s, p, t); but that will change only the
numbering of the paired basis functions, and the sign for some of
them. Therefore, the new complete system of paired functions
will be similar to X 0. The set J0 of generators (p, s) in the triplets
(p, s, t) 2 U are taken from the partition of the lattice XLr , Lr by
subsets T 0

p, s, which are considered to be

sJ 0 ¼ T 0
p1 ,p2 ;L

� 	

(p1 ,p2)2kLnJLr�n ,Lr�n

� �

k¼1:(L�1)

 !

n¼0:(r�1)

, (0, 0)

0

@

1

A:

(19:202)
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FIGURE 19.28 (a) Tree image ({fn,m}), (b) the splitting-signals of lengths 128, 64, 32, 16, 8, 4, 2, 1 ({ f 0p,s,t}), and (c) 1-D DFTs of the modified
splitting-signals (the transforms are shown in the absolute scale and shifted to the center) ({F(2kþ1)p, (2kþ1)s}).
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In other words, this set equals

J 0 ¼ J 0Lr , Lr ¼
[r�1

n¼0

[L�1

k¼1

kLnJLr�n , Lr�n (19:203)

and has the cardinality (Lþ 1)(Lr� 1)þ 1. In the paired repre-
sentation, the set of 1-D DFTs which split the 2-D DFT of order
Lr3 Lr consists therefore of (Lþ 1)(Lr� 1)þ 1 transforms,
(L2� 1)Lr�1 of which are Lr�1-point DFTs, (L2� 1)Lr�2 are
Lr�2-point DFTs, . . . , and (L2� 1)L are L-point DFTs. The num-
ber of operations of multiplication which are used for calculating
the Lr3 Lr-point DFT by such splitting is estimated as

m0
Lr , Lr � (L2 � 1)

Xr�1

n¼1

Lr�nmLr�n þ (L� 1)L2r � (Lþ 1)Lr þ 2
� �

:

(19:204)

The number in the square brackets is referred to as the number of
multiplications by all twiddle factors that are used for the calcu-
lation of the modified splitting-signals of Equation 19.183. It is
supposed that each component f 0p, s, t of the paired transform is
calculated directly by the formula (19.179) with (L� 1) oper-
ations of complex multiplication by twiddle factors.

Example 19.22 (93 9-Paired Transformation)

Let N¼ 9, and let f be a sequence of size 93 9. The square

lattice X9,9 can be divided by the following totality of subsets:

s0 ¼
T 01, 0 , T

0
1, 1 , T

0
1, 2 , T

0
1, 3 , T

0
1, 4 , T

0
1, 5 , T

0
1, 6 , T

0
1, 7 , T

0
1, 8 , T

0
0, 1 , T

0
3, 1 , T

0
6, 1

T 02, 0 , T
0
2, 2 , T

0
2, 3 , T

0
2, 6 , T

0
2, 8 , T

0
2, 1 , T

0
2, 3 , T

0
2, 5 , T

0
2, 7 , T

0
0, 2 , T

0
3, 2 , T

0
6, 2

T 03, 0 , T
0
3, 3 , T

0
3, 3 , T

0
0, 3 , T

0
6, 0 , T

0
6, 6 , T

0
6, 3 , T

0
0, 6 , T

0
0, 0

0

@

1

A:

The first 24 subsets T 0
p, s of this partition (which lie on the first

two rows) consists of three elements each, and the remaining 9
subsets are 1-point each.

Using the tensor representation of f with respect to the 2-D
DFT, it is not difficult to calculate all 33 splitting-signals of the
3-paired representation of f :

fn,m !
fT 0

1, 0
, fT 0

1, 1
, fT 0

1, 2
, fT 0

1, 3
, fT 0

1, 4
, fT 0

1, 5
, fT 0

1, 6
, fT 0

1, 7
, fT 0

1, 8
, fT 0

0, 1
, fT 0

3, 1
, fT 0

6, 1
,

fT 0
2, 0
, fT 0

2, 2
, fT 0

2, 4
, fT 0

2, 6
, fT 0

2, 8
, fT 0

2, 1
, fT 0

2, 3
, fT 0

2, 5
, fT 0

2, 7
, fT 0

0, 2
, fT 0

3, 2
, fT 0

6, 2
,

fT 0
3, 0
, fT 0

3, 3
, fT 0

3, 6
, fT 0

0, 3
, fT 0

6, 0
, fT 0

6, 6
, fT 0

6, 3
, fT 0

0, 6
, fT 0

0, 0
:

8

<

:

The first 24 splitting-signals of the 3-paired representation of f
are 3-point signals each, and they are modified as:

fT 0
p, s
! gT 0

p, s
¼ f 0p1 , p2 , 0, f

0
p1 , p2 , 1

W, f 0p1 , p2 , 2W
2

n o

,

where W¼ exp (�2pj=9). The components of these signals are
calculated by

f 0p1 , p2 , 0 ¼ fp1 , p2 , 0 þ fp1 , p2 , 3W3 þ fp1 , p2 , 6W
2
3 ,

f 0p1 , p2 , 1 ¼ fp1 , p2 , 1 þ fp1 , p2 , 4W3 þ fp1 , p2 , 7W
2
3 ,

f 0p1 , p2 , 2 ¼ fp1 , p2 , 2 þ fp1 , p2 , 5W3 þ fp1 , p2 , 8W
2
3 ,

where W3¼ exp (�2pj=3)¼�0.5� j0.8660 and W2
3 ¼ W3. The

calculation of the 2-D DFT of f at frequency-points of subsets
T 0
p, s can be calculated by the 3-point DFTs of the modified

splitting-signals,

F(3kþ1)p mod 9, (3kþ1)s mod 9 ¼
X2

t¼0

f 0p, s, tW
t
9

� 	

Wkt
3 , k ¼ 0, 1, 2:

Other splitting-signals with generators (p, s) whose both
coordinates are multiple to 3, themselves represent one-point
sequences, f 0Tp, s

¼ f 0p, s, 0. We can also write, that

f 0Tp, s
¼ f 0p, s, 0, 0, 0
n o

. For example, fT 0
3, 0

¼ f 03, 0, 0, 0, 0

 �

, since

f 03, 0, 1 ¼ f 03, 0, 2 ¼ 0. Therefore, the 2-D DFT of f at these generators

equals to these 1-point signals, i.e., Fp, s ¼ f 0p, s, 0. As a result, the

3-paired representation leads to the following splitting of the
93 9 DFT:

R(F 9, 9; s
0) ¼ F 3, F 3, . . . , F 3

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

24 times

, 1, 1, . . . , 1
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

9 times

8

<

:

9

=

;
:

The number of operations of multiplication for calculating the
2-D DFT is estimated as

m0
9, 9 ¼ 24(m3 þ 2þ 1) ¼ 24m3 þ 72 ¼ 96,

where we consider that the 3-point DFT uses one operation of
multiplication, and each modified splitting-signal of length
three requires three real multiplications by the factor of
0.8660, which can be counted as one complex multiplication.
We note, that the tensor algorithm uses twelve 9-point
DFTs and m9,9¼ 12m9¼ 120 operations of multiplication.
We here consider that the 9-point DFT uses 10 operations of
multiplication.

19.9.4 Set-Frequency Characteristics

Each subset T 0
p, s of frequency-points generates the splitting-sig-

nal fT 0
p, s
, which carries the spectral information of the image fn,m

at these points. The splitting-signal is thus the set-frequency
characteristics of the image. This signal defines the correspond-
ing direction-image component of fn,m. Indeed, let Dp1 , s1 be the
following 2-D DFT composed only from the components of the
2-D DFT which lie on the given subset T 0

p, s:

Dp1 , s1 ¼
Fp1 , s1 ; if (p1, s1) 2 T 0

p, s,
0; otherwise

�

: (19:205)
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We first consider the case when g.c.d. (p, s)¼ 1, i.e., (p, s) 2 J2r , 2r .
The inverse transform of the defined 2-D DFT can be calculated
as follows:

dn,m ¼ 1

N2

XN�1

p1¼0

XN�1

s1¼0

Dp1 ,s1W
�(np1þms1) ¼ 1

N2

X

(p1 ,s1)2T 0
p, s

Fp1 ,s1W
�(np1þms1)

¼ 1

N2

XN=2�1

k¼0

F(2kþ1)p, (2kþ1)sW
� n(2kþ1)pþm(2kþ1)sð Þ

¼ 1

N2

XN=2�1

k¼0

F(2kþ1)p, (2kþ1)sW
�(2kþ1)(npþms)

¼ 1

2N

2

N

XN=2�1

k¼0

F(2kþ1)p, (2kþ1)sW
�kt
N=2

 !

W�t

¼ 1

2N
f 0p,s,tW

t
� 	

W�t ¼ 1

2N
f 0p,s,t

where we denote t¼ (npþms) mod N and consider
f 0p, s, tþN=2 ¼ �f 0p, s, t , t ¼ 0: N=2� 1ð Þ. Thus the direction image
is defined as

dn,m ¼ dn,m;p, s ¼
1

2N
f 0p, s, (npþms) mod N , (n, m) 2 XN ,N : (19:206)

In other words, the direction image N3N is filled by the N=2
values of the splitting-signal fT 0

p, s
, which are placed along the

parallel lines npþms¼ t mod N, t¼ 0 : (N� 1). The direction
of these lines is defined by the coordinates of the frequency-
point (p, s). As an example, Figure 19.29 shows the splitting-
signal fT 0

1, 1
of the tree image in part a, along with the 128-point

DFT (in absolute scale) of the modified splitting-signal in (b),
the set of frequency-points T 0

1, 1 on the square grid 2563 256 in
(c), and the direction image dn,m of the size 2563 256 in (d).
The frequency-points of the set T 0

1, 1 are located on the main
diagonal of the grid; they occupy each second point on the
diagonal.

In the case when g.c.d. (p, s)¼ 2k, k� 1, the 2-D IDFT of the
transform Dp1 , s1 results in the following direction image (or the
2-D signal with positive and negative values)

dn,m ¼ dn,m;p,s ¼
1

2kþ1N
f 0p,s,(npþms) mod N , (n, m) 2 XN ,N :

(19:207)

All (3N� 2) subsets T 0
p, s, with generators (p, s) from the set

J 0N ,N compose the partition of the grid XN,N. Therefore, the sum of
all directional images dn,m¼ dn,m;p,s results in the original image
fn,m. In other words, we obtain the following decomposition of the
image by the direction images:

fn,m ¼
X

(p,s)2J 0
N ,N

dn,m;p, s ¼
1

2N

Xr

k¼0

1

2k

X

(p,s)22kJ2r�k , 2r�k

f 0p,s, (npþms) mod N

(19:208)

where the k¼ r case corresponds to the set J0,0¼ (0, 0) and
normalize coefficient 1=2k�1 instead of 1=2k. Equation 19.208 is
the formula of reconstruction of the image by its paired
transform, by using operations of addition and division by
powers of two.

The processing of the splitting-signal fT 0
p0 , s0

! f̂T 0
p0, s0

with num-
ber (p0, s0) leads to the change of the 2-D DFT of the image at
frequency-points of the subset T 0

p0 , s0
. The image is changed as

fn,m ! fn,m þ 1

2kþ1N
Df 0p0 , s0(np0þms0) mod N (19:209)

where Df 0p0 , s0 , t ¼ f̂ 0p0 , s0 , t � f 0p0 , s0 , t , t ¼ 0: (N � 1). The process-
ing of the image through its splitting-signals is the process along
parallel lines in certain directions, which are referred to as projec-
tion data. Some splitting-signals, or direction images are highly
expressed and other little, by their characteristics (see Figure
19.28). For instance, the splitting-signals have different energy,

Ep, s ¼
1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0p, s, 0

� 	2
þ f 0p, s, 1

� 	2
þ � � � þ f 0

p, s,N=2�1

� 	2
r
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FIGURE 19.29 (a) The splitting-signal with number (p, s)¼ (1, 1), (b) 128-point DFT of the modified splitting-signal, (c) subset of frequency-
points T 0

1, 1, and (d) direction image 2563 256.
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which can be used for selecting signals with high energies. The
energy curve of all 766 splitting-signals of the tree image is given
in Figure 19.30. The signals are numbered by the order of
generators (p, s) in the set J0, which is divided by the subsets
J256,256, 2J128,128, . . . , 128J2,2, plus (0, 0). Taking the threshold for
energy equal E0¼ 100, we obtain 50 splitting-signals with high
energies Ep,s> E0. All together, the images of these splitting-
signals, or their direction images compose the image shown in
Figure 19.31a, and the rest of the direction images compose the
image in (b). The sum of these two images equals the original tree
image. The image in a provides no details but a very smooth and
‘‘hot’’ picture of the image, and opposite, the image in (b)
provides the details of the tree image but the luck of brightness.

19.9.4.1 Series Images

From each image specific periodic structures can be extracted,
which all together compose the image. To illustrate this property,
we call the sum of direction images corresponding to the subset
of generators 2kJ2r�k , 2r�k ,

S(k)n,m ¼
X

(p, s)22kJ2r�k , 2r�k

dn,m;p, s, S(r)n,m ¼ dn,m;0, 0 �
1

N2
F0, 0

� �

the kth series image, where k 2 {0, 1, . . . , r}. Figure 19.32 shows
the first five series images for the tree image in parts (a) through
(e). One can see that each series image, starting from the second
one, has a periodic structure with a resolution which increases
exponentially with the number of the series. We call the number
2k the resolution of the kth series image. This is an interesting
fact: each resolution is referred to as a periodic structure of one
part of the image. The first series image is the component of the
image with the lowest resolution, and the (r� 1)th series image is
the component of the image with the highest resolution. The
constant image S(r) has 0 resolution. Sum of the series images
equals the original image, as shown in (f) where the image is the
sum of only the first five series images. The remaining three
resolutions add more details in the image.

Periodic structure of the series images takes place for other
images as well. As an example, Figure 19.33 shows the first
series image of the girl image in part (a), along with the next
six series images in (b)–(g), and the sum of these series images
in (h). Series images have different ranges of intensities, which
decrease when the resolution increases. For instance, the first
four series images have values that vary in range 255, 101, 45,
and 15, respectively. Therefore for better illustration, all series

0 100 200 300 400 500 600 700
0

100

200

300

400

500

FIGURE 19.30 Energy of all splitting-signals of the tree image.

(a) (b)

FIGURE 19.31 (a) The sum of 50 direction images defined by splitting-signals of high energy, and (b) the sum of the remaining direction images.
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images in this figure, as well as in Figure 19.32, have been scaled
by using the MATLAB1 command ‘‘imagesc(.)’’.

19.9.4.2 Resolution Map

It is important to mention, that the first series image is also
composed by periodic structures N=23N=2. In this image, as
well as the remaining series images, we can separate subsets of

direction images in the following way. The set of generators J2k , 2k
is divided by three parts as

J(1)2r , 2r ¼ (1, 2s); s ¼ 0: N=2� 1ð Þf g,
J (2)2r , 2r ¼ (2p, 1); p ¼ 0: N=2� 1ð Þf g,
J(3)2r , 2r ¼ (1, 2sþ 1); s ¼ 0: N=2� 1ð Þf g:

(a) (b) (c)

(d) (e) (f )

FIGURE 19.32 (a)–(e) The first five series images of the tree image, (f) and the sum of these series images.

(a) (b) (c) (d)

(e) (f ) (g) (h)

FIGURE 19.33 (a)–(g) The first seven series images of the girl image, and (h) the sum of these images.
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In the first two sets, the coordinates of the generators are
replaced, i.e., these two sets are symmetric to each other. The
directions of the direction images that correspond to the first set
of generators are positive, and negative for the second set. The
directions defined by the third set of generators are unique. We
denote the division of the first series image S(0) by these subsets as

P(0)
n,m ¼

X

(p, s)2J (1)
2r , 2r

dn,m;p, s, N(0)
n,m ¼

X

(p, s)2J (2)
2r , 2r

dn,m;p, s,

U (0)
n,m ¼

X

(p, s)2J (3)
2r , 2r

dn,m;p, s,

so that S(0)¼ P(0)þN(0)þU(0).
Figure 19.34 shows the image P(0) for the girl image in part (a),

along with the images N(0) and U(0) in (b) and (c), respectively. In
these images, one can notice different parts of the girl image with
their negative versions periodically shifted by 128 along the
horizontal, vertical, and diagonal directions. Each image is div-
ided by four parts N=23N=2 with similar structures, which can
be used for composing the entire series image S(0). Indeed, it
follows directly from the definition of the paired functions that
the following equations are valid:

f 01, 2s, (nþN=2)þ2ms mod N ¼ �f 01, 2s, nþ2ms mod N

f 01, 2s, nþ2(mþN=2)s mod N ¼ f 01, 2s, nþ2ms mod N

f 01, 2s, (nþN=2)þ2(mþN=2)s mod N ¼ �f 01, 2s, nþ2ms mod N

8

>><

>>:

f 01, 2sþ1, (nþN=2)þm(2sþ1) mod N ¼ �f 01, 2sþ1, nþm(2sþ1) mod N

f 01, 2sþ1, nþ(mþN=2)(2sþ1) mod N ¼ �f 01, 2sþ1, nþm(2sþ1) mod N

f 01, 2sþ1, (nþN=2)þ(mþN=2)(2sþ1) mod N ¼ �f 01, 2sþ1, nþm(2sþ1) mod N

8

>><

>>:

for s¼ 0 : (N=2� 1), and

f 02p, 1, 2 nþN=2ð Þpþm mod N ¼ f 02p, 1,mþ2np mod N

f 02p, 1, 2npþ mþN=2ð Þ mod N ¼ �f 02p, 1,mþ2np mod N

f 02p, 1, 2 nþN=2ð Þpþ mþN=2ð Þ mod N ¼ �f 02p, 1,mþ2np mod N

8

><

>:

for p¼ 0 : (N=2� 1). Therefore, the series image components
P(0), N(0), and U(0) can be defined from their first quarters which
we denote by P1, N1, and U1, respectively, as follows:

P(0) ¼ P1 P1

�P1 �P1

� �

, N(0) ¼ N1 �N1

N1 �N1

� �

,

U (0) ¼
U1 �U1

�U1 U1

� �

:

Figure 19.35 shows the decomposition of the next series image
S(1) for the girl image. For this series image, as well as the
remaining series images S(k), k¼ 2 : (r� 1), the similar decom-
positions take place. Each of such images can be defined by the
three quarters Pkþ1, Nkþ1, and Ukþ1 of their periods N=2kþ13

N=2kþ1 in the way similar to the first series image. As a result, the
following resolution map (RM) associates with the image f :

RM[f ] ¼

P1 U1

P2 U2

N1 N2
P3 U3

N3 . . .

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

(19:210)

This resolution map has the same size as the image and contains
all periodic parts of the series images, i.e., all periods by means of
which the original image can be reconstructed. Each periodic
part is extracted from the direction image, whose directions are
given by subsets of generators of J 0N,N . In other words, the RM
represents itself the image packed by its periodic structures that
correspond to specific set of projections. The resolution map can
be used to change the resolution of the entire image, by process-
ing direction images for desired directions.

Good results of image processing, including the enhancement,
can be achieved when working with one or a few high energy
splitting-signals, as well as the sets of splitting-signals which are
combined by series and correspond to different resolutions writ-
ten in the image RM. Figure 19.36 shows all 766 generators
(p, s) 2 J 0256,256 in part (a), where the 12 generators for the 6th
series image and six generators for the 7th series image are

(a) (b) (c)

FIGURE 19.34 Three components of the first series images of the girl image.
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marked by ‘‘.’’ and ‘‘þ,’’ respectively. The girl image with ampli-
fied series image of number 7 by the factor of 2 is shown in (b), and
the image with the amplified series images of numbers 6 and 7
respectively by the factors of 1.2 and 1.5 in (c). These two images
are enhanced by resolutions 64 and 64 with 32, respectively.

Thus, the paired form of image representation leads to the
splitting of the 2-D DFT of the image by the set of 1-D DFTs of
splitting-signals which define the direction images as compon-
ents of the image. This representation allows for extracting the
periodic structures of the image, which are defined by direction
images united in special groups of directions, which are referred
to as series images. The image is packed and described by its
resolution map, which can be used for image enhancement and
compression. Each periodic structure in the resolution map can
be also represented by its resolution map. In such a recursive
way, the resolution map can be crushed into small pieces, from
which the whole image can be reconstructed.

19.10 2-D DFT on the Hexagonal Lattice

In this section, we generalize concepts of the tensor and paired
representations with respect to the 2-D DFTs whose fundamental
periods are hexagonal lattices. Hexagonal lattices are important
for many problems in image processing [42,43]. Sampling 2-D

isotropic functions on hexagonal lattices is significantly more
efficient than sampling on rectangular lattices [44]. It also was
shown that the vision system relates best to the regular hexagonal
tessellation [45,46], which has a lower number of neighbors than
the rectangular lattice.

Let us first consider the problem of splitting the 2-D DFT into
a set of short 1-D transforms, when samples of both 2-D
sequence f and transform F are arranged on the similar hex-
agonal lattices

Fp1þ[p2], p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1þ[n2], n2W
n1þ[n2]ð Þ p1þ[p2]ð Þþn2p2 (19:211)

where W¼ exp(�2pj=N) and [n2] ¼ 1� (� 1)n2ð Þ=4, [p2] ¼
1� (�1)p2ð Þ=4, for all n2, p2¼ 0 : (N� 1). Since [n]¼ 0 when
n is even, and [n]¼ 0.5 when n is odd, each second row of knots
of the hexagonal lattice is shifted by 0.5 with respect to the even
rows. As an example, Figure 19.37 shows the rectangular lattice
83 8 in part (a), along with the hexagonal lattice in (b).

It is clear that the traditional row–column method cannot be
applied directly for fast computing the values Fp1þ[p2], p2 . The
complexity of the 2-D discrete hexagonal Fourier transform
(DHFT) is due to the fact that the kernel of the transform has a

(a) (b) (c)

FIGURE 19.35 Three components of the 2nd series image of the girl image.
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FIGURE 19.36 (a) 766 generators of the set J 0256, 256, and the tree image with amplified (b) 7th series image, and (c) 6th and 7th series images.
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more complex form than in the rectangular case, and in addition
it is not separable.

For any integers p1 and p2, the following relations hold
between the spectral components of the transform:

F(p1þ2N)þ[p2þN], p2þN ¼ Fp1þ[p2], p2

F(p1þN)þ[p2þN], p2þN 6¼ Fp1þ[p2], p2

�

: (19:212)

The period of the transform is (2N, N), not (N, N). In other
words, the hexagonal lattice XN,N is not the fundamental period
of this transform. Therefore, we consider the 2-D hexagonal
lattice of size 2N3N,

X2N ,N ¼ p1 þ [p2], p2ð Þ; p1 ¼ 0 : (2N � 1), p2 ¼ 0 : (N � 1)f g,
(19:213)

and the 2-D sequence f ¼ fn1þ[n2],n2f g as a 2N3N-point
sequence defined (or extended) on this lattice.

Hereinafter, we define the 2-D DFT, F 2N ,N , on the lattice
X2N,N by

Fp1þ[p2], p2 ¼
X2N�1

n1¼0

XN�1

n2¼0

fn1þ[n2],n2W
n1þ[n2]ð Þ p1þ[p2]ð Þþn2p2 ,

p1 þ [p2], p2ð Þ 2 X2N ,N ,

(19:214)

and we call it the 2-D DHFT. We now describe a covering of the
lattice X2N,N that allows for splitting the structure of the 2-D
DHFT. For that, we define the following subsets (or cyclic
groups) of frequency-points on the lattice:

Tp1þ[p2], p2 ¼ k p1 þ [p2]ð Þ, kp2
� 	

, k ¼ 0 : (4N � 1)
n o

(19:215)

where k p1 þ [p2]ð Þ, kp2
� 	

¼ k p1 þ [p2]ð Þ mod 2N , kp2 mod Nð Þ.

Example 19.23

Let X be the hexagonal lattice X8,4. We consider two subsets

Tp1þ[p2 ], p2 for (p1, p2)¼ (1, 1) and (1, 2),

T1þ[1],1 ¼ T1:5,1 ¼
(0, 0), (1:5, 1), (3, 2), (4:5, 3), (6, 0), (7:5, 1), (1, 2), (2:5, 3)

(4, 0), (5:5, 1), (7, 2), (0:5, 3), (2, 0), (3:5, 1), (5, 2), (6:5, 3)

( )

T1þ[2],1 ¼ T1,1 ¼ (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)f g:

Since 1þ [1]¼ 1.5, 1þ [2]¼ 1, and k¼ 0 : 15, the first subset
consists of 16 frequency-points and the second subset has
8 frequency-points. The number of points of these sets is defined
as the smallest integer k> 0 for which k(p1þ [p2]) mod 8¼ 0.
These two subsets intersect only at (0, 0).

As in the case of the 2-D DFT on the rectangular lattice, for a
given (p1þ [p2], p2) 2 X2N,N, we unite all spatial points (n1þ [n2],
n2) on the lattice, for which the form

L n1 þ [n2], n2; p1 þ [p2], p2ð Þ ¼ n1 þ [n2]ð Þ p1 þ [p2]ð Þ þ n2p2

takes the same values t, where t varies from 0 through N�D with
a step D which depends on the values of p1 and p2. In other
words, we define the following disjoint subsets of points
(n1þ [n2], n2) :

Vp1þ[p2],p2 , t ¼ n1þ [n2], n2ð Þ; L n1þ [n2], n2; p1þ [p2], p2ð Þ ¼ t mod Nf g:
(19:216)

The sums of the elements of the image f on these subsets of
points are denoted by

fp1þ[p2], p2 , t ¼
X

Vp1þ[p2], p2 , t

fn1þ[n2], n2 , t ¼ 0, D, 2D, . . . , N � D:

(19:217)
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FIGURE 19.37 (a) Rectangular lattice and (b) hexagonal lattice.
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We now compose the following 1-D signal, which we call the
splitting-signal of the image,

fT ¼ fp1þ[p2], p2 ,0, fp1þ[p2], p2 ,D, fp1þ[p2], p2 , 2D, . . . , fp1þ[p2], p2 ,N�D


 �
:

The step D is calculated as follows:

D ¼
4�1, if p2 is odd;
2�1, if p1 is odd , p2 is even;
2n�1, if g:c:d(p1, p2) ¼ 2n, n � 1.

8

<

:

The splitting-signal fT corresponding to the generator (p1þ [p2],
p2) has the following form:

fT ¼
fp1þ1

2,p2 , 0
, fp1þ1

2,p2 ,
1
4
, fp1þ1

2,p2 ,
1
2
, . . . , fp1þ1

2,p2 ,N�1
4

n o

, if p2 is odd;

fp1 ,p2 , 0, fp1 ,p2 , 12 , fp1þ1
2,p2 , 1

, . . . , fp1 ,p2 ,N�1
2

n o

, if p1 is odd, p2 is even;

fp1 ,p2 , 0, fp1 ,p2 , 2n�1 , fp1 ,p2 , 2n , . . . , fp1 ,p2 ,N�2n�1


 �
, if p1 and p2 are even

8

>><

>>:

:

(19:218)

The following statement can be derived from the above defin-
itions. Let (p1þ [p2], p2) be a frequency-point of X2N,N, then the
2-D DHFT at this frequency-point, as well as at other frequency-
points of the subset T ¼ Tp1þ[p2], p2 can be calculated by the 1-D
Fourier transform as

F
k p1þ[p2]ð Þ, kp2 ¼

XN�D

t¼0,D

fp1þ[p2], p2 , tW
kt , k ¼ 0 : card(T)� 1ð Þ:

(19:219)

The index t varies from 0 through N�D with step D. The
cardinality of the set T equals N=D. Therefore, the sum in this
equation is referred to as the N=D-point DFT. The 2-D DHFT on
frequency-points of the subset Tp1þ[p2], p2 represents itself thus as
one of the following 1-D DFTs:

F 2N ,N jTp1þ[p2], p2
�

F 4N ; if p2 is odd ,
F 2N ; if p1 is odd , p2 is even,
FN=2n�1 ; if p1 and p2 are even.

8

<

:

(19:220)

As an example, Figure 19.38 illustrates the tree image 5123 256
written on the hexagonal lattice X512,256, along with the splitting-
signal fT1þ[1], 1 of length 1024 in part (b), the 1024-point DFT of
this signal in part (c), and 1024 samples of the 1-D DFT at
frequency-points of the subset T1þ[1],1, at which the 2-D DHFT
of the image coincides with the 1-D DFT, in part (d). In this
example, N ¼ 256, p1 ¼ 1, p2 ¼ 1, [p2] ¼ 0:5, card T1þ[1], 1 ¼
4 � 256 ¼ 1024. For this modeled image, all samples of the hex-
agonal lattice 5123 256 have been placed on the rectangular
lattice 10243 256 in a way shown in Figure 19.38a and b. Then
the image has been extended at other points of the rectangular
lattice, by calculating the means of the image at the nearest
samples of the hexagonal lattice, as shown in Figure 19.39.

The interpolation of samples has been performed by the cross
33 3, such that a¼ (1þ 6þ 6þ 5)=4¼ 4.5, b¼ (1þ 6þ 3þ 5)=
4¼ 3.75, and c¼ (2þ 3þ 3þ 4)=4¼ 3.

According to Equation 19.219, the calculation of the 2-D
DHFT is reduced to the composition of an irreducible covering
s of the hexagonal lattice X2N,N, which is composed of subsets
(19.215), i.e.,

s ¼ sJ ¼ Tp1þ[p2], p2

� �

p1þ[p2], p2ð Þ2J (19:221)

for a certain set of generators J � X2N,N. The 1-D DFTs of the
splitting-signals fT are calculated for all subsets T ¼
Tp1þ[p2], p2 2 s. These 1-D DFTs fill completely the 2-D DHFT.

Example 19.24

In the N¼ 4 case, the irreducible covering s of the hexagonal

lattice X8,4 can be defined as follows:

s8, 4 ¼ T0þ[1], 1 , T1þ[1], 1 , T1þ[0], 0 , T0þ[2], 2 , T2þ[2], 2 , T4þ[2], 2ð Þ

where the subsets T equal

T0þ[1], 1 ¼ T0:5, 1 ¼

(0, 0), (0:5, 1), (1, 2), (1:5, 3)

(2, 0), (2:5, 1), (3, 2), (3:5, 3)

(4, 0), (4:5, 1), (5, 2), (5:5, 3)

(6, 0), (6:5, 1), (7, 2), (7:5, 3)

8

>>><

>>>:

9

>>>=

>>>;

T1þ[1], 1 ¼ T1:5, 1 ¼

(0, 0), (1:5, 1), (3, 2), (4:5, 3)

(6, 0), (7:5, 1), (1, 2), (2:5, 3)

(4, 0), (5:5, 1), (7, 2), (0:5, 3)

(2, 0), (3:5, 1), (5, 2), (6:5, 3)

8

>>><

>>>:

9

>>>=

>>>;

T1þ[0], 0 ¼ T1, 0 ¼
(0, 0), (1, 0), (2, 0), (3, 0)

(4, 0), (5, 0), (6, 0), (7, 0)

� �

T0þ[2], 2 ¼ T0, 2 ¼ (0, 0), (0, 2)

 �

T2þ[2], 2 ¼ T2, 2 ¼ (0, 0), (2, 2), (4, 0), (6, 2)

 �

T4þ[2], 2 ¼ T4, 2 ¼ (0, 0), (4, 2)

 �

:

The 83 4-point DHFT at frequency-points of the subsets
T0þ[1],1, T1þ[1],1, and T1þ[0],0 is determined by the 16, 16, and
8-point DFTs, respectively. To calculate the DHFT at frequency-
points of all subsets of the covering, it is enough to calculate the
following:

1. One 16-point DFT of the splitting-signal fT0:5, 1 , to define
components of the DHFT at all 16 frequency-points of the
set T0.5,1.

2. One incomplete 16-point DFT of the splitting-signal fT1:5, 1 ,
when only spectral components with odd points are calcu-
lated. This transform can be reduced to the 8-point DFT
(which requires six additional multiplications with the
twiddle factors). The 2-D DHFT will be defined by the
incompleteDFTat frequency-points (1.5, 1), (4.5, 3), (7.5, 1),
(2.5, 1), (5.5, 1), (0.5, 1), (3.5, 1), and (6.5, 1).
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3. One incomplete 8-point DFT of the splitting-signal fT1, 0 ,
which is calculated at odd frequencies 1, 3, 5, and 7. This
transform can be reduced to the 4-point DFT, and for that
two additional multiplications are required. The 2-D
DHFT will be defined by the incomplete DFT at
frequency-points (1, 0), (3, 0), (5, 0), and (7, 0).

4. Two trivial incomplete 2-point DFTs of the splitting-
signals fT0, 2 and fT4, 2 , to calculate the DHFT at frequency-
points (0, 2) and (4, 2), respectively.

5. One incomplete 4-point DFT of the splitting-signal fT2, 2 , to
calculate the DHFT at frequency-points (2, 2) and (6, 2).

The calculation of the DHFT at frequency-points (0, 2), (2, 2),
(4, 2), and (6, 2) can also be performed in a different way, if we
note the following. In the case N� 4, we can write that

F2p1þ[2p2], 2p2 ¼
X2N�1

n1¼0

XN�1

n2¼0

fn1þ[n2], n2W
n1þ[n2]ð Þ 2p1þ[2p2]ð Þþn22p2

¼
XN�1

n1¼0

XN=2�1

n2¼0

gn1þ[n2], n2
W

n1þ[n2]ð Þp1þn2p2
N=2 ¼ Gp1 , p2 ,

(19:222)
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FIGURE 19.38 (a) Tree image 5123 256 with the hexagonal lattice X512,256 written on the rectangular lattice 10243 256. (b) Splitting-signal fT1þ[1], 1

of length 1024. (c) Absolute value of the 1024-point DFT of the splitting-signal. (d) Samples of the subset T1þ[1], 1 of X512,256, at which the 2-D DHFT
of the image coincides with the 1024-point DFT.
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FIGURE 19.39 Diagram for transferring (a) the tree image 2563 256 to (b) the hexagonal lattice 5123 256, and, then, extending (c) the image to
the rectangular lattice 10243 256.
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where p1¼ 0 : (N� 1) and p2¼ 1 : (N=2� 1). The sequence g is
defined on the hexagon lattice XN,N=2 as follows:

gn1þ[n2], n2 ¼ fn1þ[n2], n2 þ fn1þN=2þ[n2], n2 þ fn1þ[n2þN=2], n2þN=2

þ fn1þN=2þ[n2þN=2], n2þN=2

¼ fn1þ[n2], n2 þ fn1þN=2þ[n2], n2 þ fn1þ[n2], n2þN=2

þ fn1þN=2þ[n2], n2þN=2

for numbers n1¼ 0 : (N� 1) and n2¼ 0 : (N=2� 1).
Therefore, for p1¼ 0 : (N� 1) and p2¼ 1 : (N=2� 1), the set of

values F2p1 ,2p2 represents itself an incomplete N3N=2-point
DHFT whose spectral components at points (p1, 0), p1¼ 0 :
(N� 1), are not calculated. This transform is defined at
frequency-points (p1, p2) that lie on the rectangular lattice XN,

N=2. We denote this transform by F o
N ,N=2 and the number of

operations of multiplication required to calculate this transform
by mo

N ,N=2.
In the N¼ 4 case, we obtain the splitting F 16, F o

8, F o
4, F o

4, 2


 �

of the 83 4-point DHFT. The number of the required multipli-
cations can be estimated as m8, 4 ¼ m16 þ (m8 þ 6)þ (m4 þ 2)þ
mo

4, 2 ¼ 0
� �

¼ 10þ (2þ 6)þ 2 ¼ 20.
In the general N> 4 case, we consider the following covering

of the hexagonal lattice X2N,N :

s2N ,N ¼ Tp1þ[1],1

� �

p1¼0: N=2�1ð Þ, T1þ[4p2],4p2

� �

p2¼0: N=4�1ð Þ, 2X
o
N,N=2

� 	

(19:223)

where 2Xo
N,N=2 is a subset of X2N,N that contains all frequency-

points with even coordinates, except the first column,

2Xo
N ,N=2 ¼ (2p1, 2p2); p1 ¼ 0 : (N � 1), p2 ¼ 1 : N=2� 1ð Þf g:

The 2N3N-point DHFT can therefore be reduced to N=2 4N-
point DFTs, N=4 2N-point DFTs, and one incomplete N3N=2-
point DHFT. The repeated calculations of the 2-D DHFT at
intersections of subsets T 2 s2N,N can be removed similar to
the considered above N¼ 4 case.

The number of multiplications required to calculate the
2N3N-point DHFT is estimated as m2N ,N ¼ N=2m4N þ
N=4m2N þmo

N ,N=2. Considering the estimate mo
N ,N=2 ¼

mN ,N=2 �mN for N¼ 2r� 8, we obtain the following recursive
formula:

m2N ,N ¼ mN , N2
þ N

2
m4N þ N

4
m2N �mN

¼ mN , N2
þ N2

4
(5r � 6)� N

2
(r � 6)� 2: (19:224)

19.10.1 Paired Representation of the DHFT

In this section, we describe a partition of the hexagonal lattice
X2N,N, which leads to the splitting of the 2-D DHFT by the 1-D

DFTs on disjoint subsets of the frequency-points. Such a
partition allows also for representing the 2-D image defined
on the hexagonal lattice by a set of splitting-signals, which
are defined similarly to the paired-splitting signals for the 2-D
DFT.

Let (p1þ [p2], p2) be an arbitrary point of the lattice. Then, for
integers m¼ 0 : (N=(2D)� 1), the following relation is valid:

F(2mþ1)(p1þ[p2]), (2mþ1)p2
¼
XN=2�D

t¼0,D

f 0p1þ[p2], p2 , t
W t

� 	

Wmt
N=2, (19:225)

where

f 0p1þ[p2], p2 , t
¼ fp1þ[p2], p2 , t � fp1þ[p2], p2 , tþN=2, (19:226)

and numbers t run from 0 to N=2�D with the step D (which we
write as t¼ 0 : D : (N=2�D)).

To construct the paired-representation of the hexagonal image
f with respect to the DHFT, we define the following subsets of
sets (19.215):

T 0
p1þ[p2], p2

¼
n

(2mþ 1) p1 þ [p2]ð Þ, (2mþ 1)p2
� 	

,

m ¼ 0: N=(2D)� 1ð Þ
o

: (19:227)

Example 19.25

We consider the hexagonal lattice X8,4. For points (p1, p2)¼
(1, 1) and (1, 2), we have the following:

T 01þ[1], 1 ¼ T 01:5, 1 ¼
(1:5, 1), (4:5, 3), (7:5, 1), (2:5, 3)

(5:5, 1), (0:5, 3), (3:5, 1), (6:5, 3)

( )

T 01þ[2], 2 ¼ T 01, 2 ¼ (1, 2), (3, 2), (5, 2), (7, 2)f g:

The subsets T 0
p1þ[p2], p2

with different generators are disjoint or
coincide, and therefore, we can construct an unique partition of
the hexagonal lattice X2N,N

s0 ¼ s0
J 0 ¼ T 0

p1þ[p2], p2

� 	

p1þ[p2], p2ð Þ2J 0
(19:228)

for a certain set J0 of generators. Depending on the evenness of
generators, the 2-D DHFT at frequency-points of subsets
T 0
p1þ[p2], p2

represents itself one of the following 1-D DFT:

F 2N ,N 0
T0
p1þ[p2], p2

�
F 2N ; if p2 is odd,

FN ; if p1 is odd, p2 is even,

FN=2n ; if p1 and p2 are even.

8

><

>:

(19:229)
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The corresponding modified element of the s0-representation,
or the paired representation of f with respect to the 2-D DHFT
has the following form:

gT 0 ¼

f 0p1þ1
2, p2 , 0

, f 0p1þ1
2, p2 ,

1
4
W4N , . . . , f

0
p1þ1

2, p2 ,
N
2�1

4
W2N�1

4N

n o

;

if p2 is odd,

f 0p1 , p2 , 0, f
0
p1 , p2 , 12

W2N , . . . , f
0
p1 , p2 , N2�1

2
WN�1

2N

n o

;

if p1 is odd , p2 is even,

f 0p1 , p2 , 0, f
0
p1 , p2 , 2n�1WN=2n�1 , . . . , f 0p1 , p2 ,N=2�2n�1W

N=2n�1

N=2n�1

n o

;

if p1 and p2 are even
:

8

>>>>>>>>>>><

>>>>>>>>>>>:

(19:230)

For instance, when p2 is odd, we have the following 2N-point
DFT:

F
(2mþ1) p1þ1

2ð Þ,(2mþ1)p2
¼
X2N�1

t¼0

f 0p1þ1
2,p2 ,

t
4
Wt

4N

� 	

Wmt
2N , m¼0: (2N�1):

The partition s0 of the hexagonal lattice can be constructed dir-
ectly from the irreducible covering s of the lattice. Indeed, each set
T of the covering s can be divided by disjoint or coincident subsets
T 0. The removal of those coincident subsets results in a partition of
the lattice. To illustrate this property, we consider two examples.

Example 19.26

Let N¼ 4 and let s be the covering of the hexagonal lattice

X8,4, which has been composed in Example 19.24. The gener-

ators of sets T of this covering are taken from the set

J ¼ J8, 4 ¼ 0þ [1], 1ð Þ, 1þ [1], 1ð Þ, 1þ [0], 0ð Þ, 0þ [2], 2ð Þ,f
2þ [2], 2ð Þ, 4þ [2], 2ð Þg:

We first consider the set T0þ[1],1 that can be divided as follows:

T 0
0þ[1], 1 ¼

(0:5, 1), (1:5, 3), (2:5, 1), (3:5, 3)

(4:5, 1), (5:5, 3), (6:5, 1), (7:5, 3)

� �

T 0
1þ[2], 2 ¼ (1, 2), (3, 2), (5, 2), (7, 2)f g

T 0
2þ[0], 0 ¼ (2, 0), (6, 0)f g

T 0
4þ[0], 0 ¼ (4, 0)f g

T 0
0þ[0], 0 ¼ (0, 0)f g:

The next set T1þ[1],1 of the covering can be divided as

T 0
1þ[1], 1 ¼

(1:5, 1), (4:5, 3), (7:5, 1), (2:5, 3)

(5:5, 1), (0:5, 3), (3:5, 1), (6:5, 3)

� �

T 0
1þ[2], 2 ¼ (1, 2), (3, 2), (5, 2), (7, 2)f g

T 0
2þ[0], 0 ¼ (2, 0), (6, 0)f g

T 0
4þ[0], 0 ¼ (4, 0)f g

T 0
0þ[0], 0 ¼ (0, 0)f g

and the set T1þ[0],1 is divided as

T 0
1þ[2], 0 ¼ (1, 0), (3, 0), (5, 0), (7, 0)f g

T 0
2þ[0], 0 ¼ (2, 0), (6, 0)f g

T 0
4þ[0], 0 ¼ (4, 0)f g

T 0
0þ[0], 0 ¼ (0, 0)f g

:

One can see that all subsets T 0 of the decomposition of these
three sets T are disjoint or coincident. The first set T0þ[1],1

together with two subsets T 0
1þ[1], 1 and T 0

1þ[2], 0 cover 28
frequency-points of the lattice. The rest are the frequency-points
(2, 2), (6, 2), (2, 4), and (4, 2). Therefore, we can consider the
following partition of the lattice X8,4:

s0 ¼

T 0
0þ[1], 1 ¼ (0:5, 1), (1:5, 3), (2:5, 1), (3:5, 3),f

(4:5, 1), (5:5, 3), (6:5, 1), (7:5, 3)g
T 0
1þ[2], 2 ¼ (1, 2), (3, 2), (5, 2), (7, 2)f g

T 0
2þ[0], 0 ¼ (2, 0), (6, 0)f g

T 0
4þ[0], 0 ¼ (4, 0)f g

T 0
0þ[0], 0 ¼ (0, 0)f g
T 0
1þ[1], 1 ¼ (1:5, 1), (4:5, 3), (7:5, 1), (2:5, 3),f

(5:5, 1), (0:5, 3), (3:5, 1), (6:5, 3)g
T 0
1þ[2], 0 ¼ (1, 0), (3, 0), (5, 0), (7, 0)f g

T 0
2þ[2], 2 ¼ (2, 2), (6, 2)f g

T 0
2þ[4], 4 ¼ (2, 4)f g

T 0
4þ[2], 2 ¼ (4, 2)f g:

8

>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

To calculate the 83 4-point DHFT, it is required to calculate
two 8-point DFTs, two 4-point DFTs, two 2-point DFT, and four
1-point DFTs. Therefore, the following splitting of the 83 4-point
DHFT holds:

R F 8, 4; s
0ð Þ ¼ {F 8, F 8, F 4, F 4, F 2, F 2, 1, 1, 1, 1}:

Since the paired transform is fulfilled without multiplications,
the multiplicative complexity of the 83 4-point DHFT is esti-
mated as

m0
8, 4 ¼ 2(m8 þ 8� 2)þ 2(m4 þ 4� 2) ¼ 20:

It should be noted for comparison with the rectangular case, that
in the tensor representation, the 83 4-point DFT is split by the
covering s8, 4 ¼ T1, p2 ; p2 ¼ 0 : 3

� �
, T2p1 , 1; p1 ¼ 0 : 3
� �� �

as

R(F 8, 4; s8, 4) ¼ {F 8, F 8, F 8, F 8, F 4, F 4, F 4, F 4}

which requires 4(m8þm4)¼ 4m8¼ 8 operations of multiplication.

19-60 Transforms and Applications Handbook



Example 19.27

We now construct a partition s0 of the hexagonal lattice

X16,8. For that, we first consider the following covering of the

lattice:

s16, 8 ¼ Tp1þ[1], 1

� �

p1¼0:3
, T1þ[0], 0 , T1þ[4], 4 , T2þ[2], 0 , T6þ[2], 2 ,

�

T4p1þ[2], 2

� �

p1¼0:3

	

: (19:231)

The first four sets contain 32 elements each, the next two subsets
contain 16 elements each, T2þ[2],2 and T6þ[2],2 contain 8 elements
each, and the last four subsets T4p1þ[2], 2 contain 4 elements each.
The 163 8-point DHFT is thus split as

R(F 16, 4; s) ¼ F 32, F 32, F 32, F 32, F 16, F 16, F 8, F 8, F 4,f
F 4, F 4, F 4g:

To remove the redundancy of calculations that are due to the
intersections between sets T of the covering s16,8, we consider the
following decompositions of sets:

T0þ[1], 1 ¼ T 0
0:5, 1 þ T 0

1, 2 þ T 0
2, 4 þ T 0

4, 0 þ T 0
8, 0 þ T 0

0, 0

T1þ[1], 1 ¼ T 0
1:5, 1 þ T 0

3, 2 þ T 0
2, 4 þ T 0

4, 0 þ T 0
8, 0 þ T 0

0, 0

T2þ[1], 1 ¼ T 0
2:5, 1 þ T 0

1, 2 þ T 0
2, 4 þ T 0

4, 0 þ T 0
8, 0 þ T 0

0, 0

T3þ[1], 1 ¼ T 0
3:5, 1 þ T 0

3, 2 þ T 0
2, 4 þ T 0

4, 0 þ T 0
8, 0 þ T 0

0, 0

T1þ[0], 0 ¼ T 0
1, 0 þ T 0

2, 0 þ T 0
4, 0 þ T 0

8, 0 þ T 0
0, 0

T1þ[4], 4 ¼ T 0
1, 4 þ T 0

2, 0 þ T 0
4, 0 þ T 0

8, 0 þ T 0
0, 0

T2þ[2], 2 ¼ T 0
2, 2 þ T 0

4, 4 þ T 0
8, 0 þ T 0

0, 0

T6þ[2], 2 ¼ T 0
6, 2 þ T 0

4, 4 þ T 0
8, 0 þ T 0

0, 0

T0þ[2], 2 ¼ T 0
0, 2 þ T 0

0, 4 þ T 0
0, 0

T4þ[2], 2 ¼ T 0
4, 2 þ T 0

8, 4 þ T 0
0, 0

T8þ[2], 2 ¼ T 0
8, 2 þ T 0

0, 4 þ T 0
0, 0

T12þ[2], 2 ¼ T 0
12, 2 þ T 0

8, 4 þ T 0
0, 0:

By removing all subsets that are not underlined above, we obtain
the following partition of the hexagonal lattice X16,8:

s0
16,8 ¼ T 0

0:5,1, T
0
1,2, T

0
2,4, T

0
1:5,1, T

0
3,2, T

0
2:5,1, T

0
3:5,1, T

0
1,0, T

0
2,0, T

0
4,0, T

0
8,0,




T 0
0,0, T

0
1,4, T

0
2,2, T

0
4,4, T

0
6,2, T

0
0,2, T

0
0,4, T

0
4,2, T

0
8,4, T

0
8,2, T

0
12,2

�
:

(19:232)

The cardinalities of these subsets equal 16, 8, 4, 16, 8, 16, 16, 8, 4,
2, 1, 1, 8, 4, 2, 4, 2, 1, 2, 1, 2, 2, respectively. The splitting of the

163 8-point DHFT by the partition s0
16, 8 contains the following

1-D DFTs:

R(F 16, 4; s
0) ¼ F 16, . . . , F 16

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

4 times

, F 8, . . . , F 8
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

4 times

, F 4, . . . , F 4
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

4 times

,

8

<

:

F 2, . . . , F 2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

6 times

, 1, 1, 1, 1

9

=

;
:

Taking into account the multiplications by twiddle factors which
are used to calculate the modified paired representation of f (see
Equation 19.230), we can estimate the number of operations of
multiplication required for the 163 8-point DHFT as

m0
16, 8 ¼ 4(m16 þ 16� 2)þ 4(m8 þ 8� 2)þ 4(m4 þ 4� 2)

¼ 4(10þ 14)þ 4(2þ 6)þ 4(2) ¼ 96þ 32þ 8 ¼ 136:

To construct the partition s0 of the hexagonal lattice in the
general N� 8 case, we can use the covering of the form (19.223)
or take the following covering:

s2N ,N ¼ Tp1þ[1], 1

� �

p1¼0: N=2�1ð Þ, T1þ[4p2], 4p2

� �

p2¼0: N=4�1ð Þ,
�

T4p1þ[2], 2

� �

p1¼0:(N�1)

	

,

and, then, divide all its sets by the subsets T0 as

Tp1þ[p2], p2 ¼ T 0
p1þ[p2], p2

[ T 0
2p1 ,2p2

[ T 0
4p1 ,4p2

[ � � � [ T 0
N ,0 [ T 0

0,0:

After removing the equivalent subsets, we obtain a partition s0 ¼
(T0) of the hexagonal lattice X2N,N. This partition yields a splitting
of the 2N3N-point DHFT into a set of 1-D DFTs:

R(F 2N ,N ; s
0) ¼ F 2N , . . . , F 2N

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

N=2 times

, FN , . . . , FN
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

N=2 times

, . . . ,

8

><

>:

F 4, . . . , F 4
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

N=2 times

, F 2, . . . , F 2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

3N=4 times

, 1, . . . , 1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N=2 times

9

>=

>;

:

(19:233)

The number of operations of multiplication required to calculate
the 2N3N-point DHFT is estimated as follows:

m0
2N ,N ¼ N

2

Xrþ1

n¼2

m2n þ 2n � 2ð Þ

¼ N

2

Xrþ1

n¼2

2n�1(n� 3)þ 2
� �

þ 2n � 2
� �

¼ N2(r � 1)þ N: (19:234)
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The number of multiplications required to calculate the
2N3N-point DHFT at knots of the first part N3N of the
hexagonal lattice 2N3N is estimated as half of m0

2N ,N , i.e.,
about N2=2 (r �1)þN=2. Indeed, each subset T0 2 s0 (except
the one-point ones, such as T 0

N=2, 0 and T 0
0, 0) has the equal

number of points in both the parts of the lattice.
For comparison, we consider the estimate m�

N1
¼

N1(8 log7 N1 � 1) obtained in Ref. [47] for computing the 2-D
DHFT by the radix-7 decimation-in-space algorithm developed
for the N1¼ 7l case. Taking the number of hexagonal pixels
equal N2¼ 8l, we can see that the proposed paired method uses
m8ljsample* ¼ 0:75l� 0:5 operations of multiplication per sample.
In the part of the lattice consisting of 7l pixels which lie on the
hierarchical structure of the hexagonal aggregates, the radix-7
decimation-in-space algorithm uses m0

7ljsample ¼ 8l� 1 such
operations of multiplication per sample, i.e., at least 10 times
more operations than the proposed algorithm does.

19.10.1.1 2-D DHFT on Other Lattices

The concept of the 2-D DHFT can also be defined on hexagonal
lattices which are constructed in ways different from the lattice
considered in Equation 19.213. One can say, that the hexagonal
lattice X2N,N is constructed by the broken lines:

ln1 ¼ n1 þ [n2] ¼ nþ 1� (�1)n2

4
; n2 ¼ 0 : (N � 1)

� �

,

n1 ¼ 0 : (2N � 1):

The 2-D DHFT can be defined on another hexagonal lattice
X3N,N by [42]

Fp1þ[p2], p2 ¼
X3N�1

n1¼0

XN�1

n2¼0

fn1þ[n2], n2W
n1þ[n2]ð Þ p1þ[p2]ð Þþn2p2

¼
X3N�1

n1¼0

XN�1

n2¼0

fn1þ[n2], n2W
(2n1�n2)p1þ3n2p2½ 	
3N :

(19:235)

The period of this transformation equals (3N, N). The first
coordinates of spatial points (n1þ [n2], n2) and frequency-points
(p1þ [p2], p2) on the hexagonal lattice X3N,N are calculated by

n1 þ [n2] ¼ n1 �
n1 þ n2

3
, p1 þ [p2] ¼ p1 �

p1 þ p2

3
:

In this case, we consider conditionally that [n2]¼�(n1þ n2)=3
and [p2]¼�(p1þ p2)=3. The hexagonal lattice X3N,N is con-
structed by the straight parallel lines

mn1 ¼ n1 �
n1 þ n2

3
; n2 ¼ 0 : (N � 1)

n o

, n1 ¼ 0 : (3N � 1):

The points of this lattice are arranged horizontally, 3=2 times
more compactly than in the first lattice (see Figure 19.40). We
obtain the 3N3N-point DHFT with the fundamental period
X3N,N being the hexagonal lattice of size 3N3N. The given

notation of this 2-D DHFT is identical to the notation considered
in (214). The method of splitting the 3N3N-point DHFT into a
set of 1-D DFTs is similar to the 2N3N-point DHFT case.

19.11 Paired Transform–Based
Algorithms

In this section, we briefly describe the paired transform–based
algorithms of calculation of the 2-D Hartley, cosine, and Hada-
mard transforms of order N3N, when N¼ 2r, r> 1. The unitary
paired transform as a core for each of these transforms is derived
from the tensor transform in a way that all splitting-signals of
the image are transformed into a set of short signals which carry
the spectral information of the image at disjoint subsets of
frequency-points. The redundancy of the tensor transform is
thus removed completely.

19.11.1 Calculation of the 2-D DHT

The paired representation of an image fn1 , n2 with respect to the
Fourier transform can be used for splitting the 2-D DHT, HN ,N ,
defined as

Hp1 , p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 ,n2CasN (n1p1 þ n2p2), p1, p2 ¼ 0 : (N � 1),

(19:236)

where CasN(x)¼ cas(2px=N). Both 2-D DHT and DFT result in
the same tensor representation of the image, fn1 , n2f g ! fp1 , p2 , t


 �
,

as well as the paired representation

X 0
N ,N : fn1 ,n2f g ! f 0p1 , p2 , t ¼ fp1 , p2 , t � fp1 , p2 , tþN=2

n o

: (19:237)

The set of triplets (p1, p2, t) is considered to be the set U defined
in Equation 19.192. In other words, (p1, p2)¼ 2n(p, s), where
(p, s) 2 J2r�n , 2r�n and t¼ 2nt1, t1¼ 0 : (2r�n�1� 1). In terms of
the paired representation, the 2-D DHT is considered as a trans-
form composed by 1-D Hartley transforms of orders 2r�n�1,
n¼ 0 : (r� 1). Indeed, the following formula

H(2mþ1)p1 , (2mþ1)p2
¼

X2r�n�1�1

t¼0

f 0p1 , p2 , tCas2r�n�1 mþ 1

2

� �

t

� �

(19:238)

holds for integers m¼ 0 : (2r�n�1� 1). The N3N-point DHT is
thus determined at frequency-points of each orbit T 0

p1 , p2
by the

odd-frequency 2r�n�1-point DHT, which we denote by H2r�n�1jof
and define over a sequence fn by

H2r�n�1jof � f
� �

m
¼

X2r�n�1�1

n¼0

fnCas2r�n�1 mþ 1

2

� �

n

� �

,

m ¼ 0 : (2r�n�1 � 1):

(19:239)
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To estimate the number m2njof of multiplications required for
computing H2njof , we can use the known recursive estimates
m2njof ¼ 2n�1nþm2n�1jof , for n� 2 [48].

The sets J2r�n , 2r�n , n ¼ 0 : (r � 1), consist of 3 � 2r�n�1 gener-
ators, respectively. Therefore, by means of the paired transform
X 0

2r , 2r , the 2r3 2r-point DHT is split into 2r3� 2 short odd-
frequency DHTs, namely 2r�1-point DHTs in number 3 � 2r�1,
2r�2-point DHTs in number 3 � 2r�2, . . . , and six 2-point and
four 1-point DHTs. This splitting is similar to the splitting of the
2-D DFT, and for calculating the 2r3 2r-point DHT, it is enough
to fulfill

m0
2r , 2r � 2 � 4r�1 r � 7=3ð Þ þ 8=3� 12, (r > 3), (19:240)

operations of multiplication.

Example 19.28

In the N¼ 8 case, the lattice X8,8 is divided by 22 orbits T 0 2 s0 .
Twelve of these orbits have 4 points each, six orbits have

2 points each, and the other four orbits are 1-point. Therefore,

by using the paired transformation, we obtain the following

splitting of the 83 8-point DHT by the off-frequency DHTs:

R(H8, 8 ; s
0) ¼ H4jof , . . . , H4jof

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

12 times

, H2jof , . . . , H2jof
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

6 times

, 1, 1, 1, 1

8

><

>:

9

>=

>;

:

The off-frequency 4-point DHT has the matrix

H4jof
� �

¼
1 1 1 1

1:4142 0 �1:4142 0

1 �1 1 �1

0 1:4142 0 �1:4142

2

6
6
4

3

7
7
5

and requires only two multiplications. No multiplication is

required for the off-frequency two-point DHT: ( f0, f1) ! ( f0þ
f1, f0� f1). Therefore, the paired transform-based 83 8-point

DHT usesm0
8, 8 ¼ 12m4jof ¼ 24 operations of multiplication.

19.11.2 2-D Discrete Cosine Transform

We now consider the paired transform–based algorithm for
calculation of the 2-D DCT. We stand briefly on the main
properties of the algorithm, which is a modification of the tensor
algorithm described in detail in Section 19.8.

Let CN ,N be the 2-D discrete nonseparable N3N-point DCT
calculated at frequency-points (p1, p2) of the lattice XN,N by

Cp1 , p2 ¼
XN�1

n1¼0

XN�1

n2¼0

fn1 , n2Cos

n1p1 þ n2p2 þ
p1 þ p2

2

� 	

, p1, p2 ¼ 0: (N � 1),

(19:241)

where Cos(x)¼ cos(px=N).
The paired representation of the image f by the cosine trans-

form is described as a complete set of paired splitting-signals,
which are composed from the splitting-signals in the tensor
representation, by substituting the first half of the signals from
their second half. In other words, the paired splitting-signals
corresponding to the generators (p1, p2) are defined as follows:

1. If e(p1, p2)¼ 0, then

~fT 0
p1 , p2

¼ ~f 0p1 , p2 ,0,
~f 0p1 , p2 , 1,

~f 0p1 , p2 ,2, . . . ,
~f 0p1 , p2 ,N=2�1

n o

, (19:242)

where

~f 0p1 , p2 , t ¼ ~fp1 , p2 , t � ~fp1 , p2 ,N�t , t ¼ 0 : N=2� 1ð Þ: (19:243)

0 2 4 6
0

1

2

3

4

5

6

7

(a)

0 2 4 6
0

1

2

3

4

5

6

7

(b)

m6

l3

FIGURE 19.40 (a) The hexagonal lattice defined by straight lines mn1 (the line m6 is also shown), and (b) the hexagonal lattice defined by broken
lines ln1 (the line l3 is also shown).
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2. If e(p1, p2)¼ 1, then

~fT 0
p1 , p2

¼ ~f 0p1 , p2 , 12
, ~f 0p1 , p2 , 32

, . . . , ~f 0p1 , p2 ,N=2�1
2

n o

, (19:244)

where

~f 0p1 , p2 , tþ1
2
¼ ~fp1 , p2 , tþ1

2
� ~fp1 , p2 ,N�t�1

2
, t ¼ 0 : N=2� 1ð Þ:

(19:245)

Therefore, the slitting of the 2-D DCT is described by the fol-
lowing pair of equations:

C(2mþ1)p1 , (2mþ1)p2
¼

XN=2�1

t¼0

~f 0p1 , p2 , tCosN=2 mþ 1

2

� �

t

� �

,

if e(p1, p2) ¼ 0,

XN=2�1

t¼0

~f 0p1 , p2 , tþ1
2
CosN=2 mþ 1

2

� �

t þ 1

2

� �� �

,

if e(p1, p2) ¼ 1, m ¼ 0 : N=2� 1ð Þ:

8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

(19:246)

The right part of Equation 19.246 itself represents theN=2-point
DCT of type-III, CN=2;3, or the N=2-point DCT of type-IV, CN=2;4,
if p1 and p2 have the same or different evenness, respectively. We
here remind that the partition s0 ¼ (T0) of the lattice XN,N con-
sists of (3N� 2) subsets T 0

p1 , p2
, which are orbits of 3N=2 cyclic

groups Tp1 , p2 composing the covering s of the lattice. The gen-
erators (p1, p2) of N=2 groups Tp1 , p2 of this covering have the
same evenness and generators of the rest of N groups have
different evenness. The N3N-point DCT consists therefore of
N=2 N=2-point DCTs CN=2;3, and N DCTs CN=2;4, N=4N=4-point
DCTs CN=4;3 and N=8 DCTs CN=4;4, etc. In other words, the
splitting set of the N3N-point DCT equals

R(CN ,N ; s
0)¼

(

CN=2;3, CN=2;3, . . . , CN=2;3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N=2 times

, CN=2;4, CN=2;4, . . . , CN=2;4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N times

CN=4;3, CN=4;3, . . . , CN=4;3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N=4 times

, CN=4;4, CN=4;4, . . . , CN=4;4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N=2 times

CN=8;3, CN=8;3, . . . , CN=8;3
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N=8 times

, CN=8;4, CN=8;4, . . . , CN=8;4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N=4 times

. . . . . . . . . . . . . . .

C2;3, C2;3
|fflfflfflffl{zfflfflfflffl}

, C2;4, C2;4, C2;4, C2;4
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

, 1, 1, 1, 1

)

:

(19:247)

Example 19.29

In the N¼ 8 case, we obtain the following splitting of the

83 8-point DCT by the paired transform:

R(C8, 8 ; s0) ¼

(

C4;3 , . . . , C4;3
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

4 times

, C4;4 , C4;4 , . . . , C4;4
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

8 times

C2;3 , C2;3
|fflfflfflffl{zfflfflfflffl}

, C2;4 , C2;4 , C2;4C2;4
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

, 1, 1, 1, 1

)

:

(19:248)

The similar, but more complicated splitting set holds for the
2r3 2r-point DCT, as well as for other orders N3N of the
transform, and we leave these cases to the reader as exercises.

19.11.3 2-D Discrete Hadamard Transform

The basis functions of the DHdT take value 1 or �1 at each
point. The DHdT has found useful applications in signal and
image processing (image coding, enhancement, pattern recogni-
tion, and filtering). The two-dimensional DHdT of a 2-D
sequence or image f ¼ fn1 , n2f g of size N3N, where N¼ 2r,
r� 1, is defined by

Ap1 , p2 ¼ (AN ,N � f )p1 , p2 ¼
XN�1

n2¼0

XN�1

n1¼0

fn1 ,n2a(p1; n1)a(p2; n2),

(19:249)

where p1, p2¼ 0 : (N� 1). The transform is separable; it can be
calculated by the row–column method by using the 1-D DHdT,

Ap ¼ (AN � fn)p ¼
XN�1

n¼0

fna(p; n), p ¼ 0 : (N � 1),

where a(p; n) is the kernel of the transform, which is defined in
Equation 19.4. The matrix [AN] of the 1-D DHdT consists only
of the elements �1 and can be constructed recursively:

[AN] ¼
AN=2

� �
� AN=2

� �

AN=2

� �
AN=2

� �

�
�
�
�

�
�
�
�, (A1 ¼ 1): (19:250)

We here focus on the construction of the fast algorithm for
calculating the 2-D DHdT, which is based on a concept of the
paired transforms, which has been described above for the 2-D
DFT. The paired transform reveals the 2-D DHdT and DFT,
which means that the same splitting-signals

fT 0
p, s
¼ fp,s,0, fp,s,1, . . . , fp,s,N=2�1


 �
, (p, s) 2 JN,N ,

can be used for calculating both transforms. Namely, the follow-
ing property is valid for the 2-D DHdT. Let us consider the given
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in Section 19.9 formula (19.193) of calculation of the 2-D DFT
through the 1-D DFTs of the paired splitting-signals,

F(2mþ1)p, (2mþ1)s ¼
XN=2�1

t¼0

f 0p,s,tW
t

� 	

Wmt
N=2, m ¼ 0 : N=2� 1ð Þ,

for the case when g.c.d(p, s)¼ 1. The N=2-point DFT of the
modified splitting-signal defines the 2-D DFT at frequency-
points of the subset T 0

p, s. If we now omit all twiddle factors Wt

(i.e., the splitting-signals are not modified) and consider, in the
right side of this formula, the N=2-point DHdT instead of the
N=2-point DFT, we obtain the 2-D DHdT at frequency-points of
T 0
p, s. In other words, the following is valid:

A(2mþ1)p, (2mþ1)s ¼
XN=2�1

t¼0

f 0p, s, ta(m; t), m ¼ 0 : (N=2� 1):

(19:251)

A similar result can easily be derived for the case when g.c.d

(p, s)¼ 2k, where k¼ 1 : (r� 1), when the N=2-point DHdT in
the right side of Equation 19.251 is reduced to the N=2kþ1-point
DHdT. The illustration of this property can easily be seen in
the 1-D case.

19.11.3.1 1-D DFT and DHdT

The 1-D N-point discrete paired transform (DPT) X 0
N is

defined by the following complete system of the paired func-
tions [12]:

X 0
2k , 2kt(n) ¼ M cos

2p(n� t)

2r�k

� �� �

, t ¼ 0 : (2r�k�1 � 1),

k ¼ 0 : (r � 1), X 0
0, 0(n) � 1, n ¼ 0 : (N � 1), (19:252)

where M is the real function which differs from zero only on
the bounds of the interval [�1, 1] and takes values M(�1)¼�1,
M(1)¼ 1. The double numbering of the paired functions refers to
the frequency (p¼ 2k) and time (t). The paired transform is a
transform of the discrete-time signal fn to the set of frequency-
time signals,

fn ! f 02k , 0, f
0
2k , 2k , f

0
2k , 2k2, . . . , f

0
2k ,N=2kþ1�1

n o

, k ¼ 0 : (r � 1)
n o

,

which splits the 2r-point DFT by the 2r�k�1-point DFTs,
k¼ 0 : (r� 1). The components of these splitting-signals are
calculated by

f 02k , 2kt ¼ X 0
2k , 2kt � fn ¼

X2
r�1

n¼0

X 0
2k , 2kt(n)fn, t ¼ 0 : (2r�k�1 � 1):

Example 19.30

The matrix of the 8-point DPT is defined as follows:

X 0
8

� �
¼

X 0
1, 0

� �

X 0
1, 1

� �

X 0
1, 2

� �

X 0
1, 3

� �

X 0
2, 0

� �

X 0
2, 2

� �

X 0
4, 0

� �

X 0
0, 0

� �

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

¼

1 0 0 0 �1 0 0 0

0 1 0 0 0 �1 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 �1

1 0 �1 0 1 0 �1 0

0 1 0 �1 0 1 0 �1

1 �1 1 �1 1 �1 1 �1

1 1 1 1 1 1 1 1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

:

The first four basis paired functions correspond to the frequency
p¼ 1, the next two functions correspond to frequency p¼ 2, and
the last two functions correspond to the frequencies p¼ 4 and 0,
respectively. The process of composition of these functions from
the corresponding cosine waves defined in the interval [0, 7] is
illustrated in Figure 19.41.

Let fn be the signal {1, 2, 2, 4, 5, 3, 1, 3}. The paired transform
of this signal results in four splitting-signals as follows:

fn !

{�4, �1, 1, 1}

{3, �2}

{�3}

{21}

8

>><

>>:

The splitting of the 2r-point DFT into (rþ 1) short DFTs is
described by

F
(2mþ1)2k

¼
X2r�k�1�1

t¼0

f 0p, tW
t
2r�k

� 	

Wmt
2r�k�1 , m ¼ 0 : (2r�k�1 � 1):

(19:253)

The set of 2r frequency-points X2r ¼ {0, 1, 2, . . . , 2r � 1} is
divided by (rþ 1) subsets, or orbits T 0

p ¼ (2mþ 1)p mod 2r ;f
m ¼ 0: (2r�1=p� 1)g, where p¼ 2k, k¼ 0 : (r� 1), and
T 0
0 ¼ {0}. These subsets compose a partition s0 of X2r , and the

2r-point DFT is split as follows:

R F 2r ; s
0ð Þ ¼ F 2r�1 , F 2r�2 , F 2r�3 , . . . , F 2, 1, 1f g: (19:254)

Using the similar splitting for each short transform F 2r�k�1 of this
splitting, we obtain the full decomposition of the 2r-point DFT,
by the paired transforms.

The similar results are valid for the 1-D DHdT (up to a
permutation),

A
(2mþ1)2k

¼
X2r�k�1�1

t¼0

f 0p, ta(m, t), m¼ 0 : (2r�k�1� 1), (19:255)

and the splitting of the 2r-point DHdT equals

R A2r ; s
0ð Þ ¼ A2r�1 , A2r�2 , A2r�3 , . . . , A2, 1, 1f g: (19:256)
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Example 19.31

Let N¼ 8 and let fn be the signal of Example 19.30. According

to Equation 19.253, the calculation of the 8-point DFT of fn can

be written in the matrix form as

F7

F3

F5

F1

F6

F2

F4

F0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

[F 2]

1

1

2

6
4

3

7
5diag

1

�j

1

1

8

>>><

>>>:

9

>>>=

>>>;

X 0
4

� �

[F 2]

1

1

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

diag

1

W

�j

W3

1

�j

1

1

8

>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9

>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

X 0
8

� �

1

2

2

4

5

3

1

3

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

�5:4142þ j

�2:5858þ j

�2:5858� j

�5:4142� j

3� 2j

3þ 2j

�3

21

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

,

where the twiddle factors W¼ exp(�2pj=8)¼ 0.7071(1� j)

and W3¼�0.7071(1þ j).

The construction of the matrix [A8] of the 8-point DHdT is
illustrated in Table 19.5. The calculation of the Hadamard trans-
form of the signal fn is performed as

A7

A3!6

A5

A1!4

A6!3

A2

A4!1

A0

2

6
6
6
6
6
6
6
6
6
6
6
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4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

¼
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1

1

2

4

3

5 X 0
4

� �
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6
6
6
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3
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7
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3
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5

¼
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5

1

�3
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7
7
7
5

,

where the permutation of the components Ap is performed as
p¼ (p0, p1, p2) ! (p2, p1, p0), and

[A2] ¼ [F 2] ¼
1 �1
1 1

� �

:

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0
1

0 2 4 6
−1

0

1

(a)

0 2 4 6
−1

0
1

(b)

FIGURE 19.41 (a) Cosine waves and (b) discrete paired functions of the 8-point DPT.
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Thus, the following decomposition is valid:

[A8] ¼

[A4]

[A2]

1

1

2

6
6
6
4

3

7
7
7
5

X 0
8

� �

¼

[A2]

1

1

2

6
4

3

7
5 X 0

4

� �
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1

1
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6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

X 0
8

� �
:

In the general N¼ 2r case, where r� 2, the following matrix
decompositions hold for the 1-D DHdT and DFT:

A2r½ 	 ¼
Mr�1

k¼0

A2r�k�1½ 	
 !

� 1

" #

X 0
2r

� �
,

F 2r½ 	 ¼
Mr�1

k¼0

F 2r�k�1½ 	
 !

� 1

" #

D2r X 0
2r

� �
, (19:257)

where � denotes the operation of the Kronecker sum of matrices
and the diagonal matrix

D2r ¼ diag {1, W, W2, W3, . . . , W2r�1, 1, W2, W4, . . . ,

W2r�2, 1, W4, W8, . . . , W2r�4, 1, . . . , 1, 1}:

Thus for the calculation of the 2r-point DHdT, we can use the
paired algorithm of the DFT, from which all diagonal matrices
with twiddle factors are removed, or considered to be the identity
matrices. The paired transform splits the mathematical structures
of both transforms. In the 2-D case, the paired algorithm of the
2-D DFT can also be used for the calculation of the 2-D DHdT,
by removing all twiddle factors, or considering them equal 1.

19.12 Conclusion

The representation of the multidimensional signals and splitting
of the unitary transforms of the signals by the tensor and paired
transforms allows for developing effective methods of calculation

of the multidimensional transforms through the one-dimensional
splitting-signals. The splitting-signals can be processed separately
and in parallel; they carry the spectral information of the signals
and define the images of the multidimensional signals along the
different directions in the spatial domain. The paired transform-
ations are unitary and transfer the n-dimensional signals from
the spatial space to (nþ 1)-dimensional space which is the
n-dimensional space of frequency-points together with the 1-D
time interval. The basis functions of the paired transforms are
defined by linear integrals (sums) along specific parallel directions
in the spatial domain. We can also call the paired transforms the
directional unitary transforms which are derived from the kernels
of the multidimensional transforms, such as the Fourier and
cosine transforms. Therefore the paired transforms can be used
not only in effective calculation of the multidimensional trans-
forms, but in such practical applications as the image enhance-
ment, or computer tomography, when the 2-D or 3-D image is
reconstructed from the parallel projections directly from the
paired transforms. The images can be defined on the multidimen-
sional rectangular lattices, and other types of lattices, such as
hexagonal lattices were described for the 2-D Fourier transforms.
In this chapter, we have focused on the discrete Fourier, the
Hartley, the Hadamard, and the cosine transforms, but other
transforms can also be revealed by 1-D splitting-signals. The
important orthogonal transformation, the Haar transformation
has not been considered in this chapter. However, an attentive
reader would have noticed that the Haar transformation in the
1-D case can easily be derived from the paired transformation of
order N¼ 2r, r> 1. For that, a few permutations of columns and
rows of the matrix of the paired transformation are required. In
other words, the Haar transformation is a paired-like transform-
ation which is present in the mathematical structure of the DFT
[16]. In the two- and multidimensional cases, the paired trans-
formations are not separable and exist not only for orders being
powers of two, but for many other orders as well.
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20.1 Introduction

This chapter discusses the empirical mode decomposition (EMD)
and the bidimensional empirical mode decomposition (BEMD)
as well as theHilbert–Huang transformmethod (HHT). TheHHT
combines the EMD and the Hilbert spectral analysis; the Hilbert
spectral analysis involves the Hilbert transform of the basis
functions generated by the EMD. The HHT has been developed
to handle nonstationary data, which are properties of almost all
physical processes that are sampled for analysis. Traditionally,
Fourier-based approaches have been the main analysis procedures
for such physical processes, but stationarity must be assumed
for Fourier-based methods. The HHT, by the nature of the
method, presents a relative advantage over the Fourier analysis
methods because it does not implicitly assume stationarity. The
EMD has been extended to handle 2-D data, such as images, using
the BEMD, which follows a similar procedure as the 1-D version.

20.2 Empirical Mode Decomposition
and the Hilbert–Huang Transform

Huang et al. (1998) introduced the HHT as a signal-processing
tool that adaptively decomposes nonstationary signals into basis
functions called intrinsic mode functions (IMF). The Hilbert
transform of each IMF is well behaved, and the instantaneous
frequency and instantaneous amplitude can be determined from
the subsequent analytic signal that is formed from the IMF and
its Hilbert transform. The instantaneous frequency and instant-
aneous amplitude may be used to plot an energy–frequency–time
spectrum of the original signal.

The HHT consists of two parts: the EMD and the Hilbert
spectral analysis (HSA). The EMD generally separates nonsta-
tionary data into locally non-overlapping time scale components.
The signal decomposition process will break down the signal into
a set of complete and almost orthogonal components, which are
the IMFs. An IMF is a function that satisfies the following two
conditions:

. The number of extrema and the number of zero-crossings
must either equal or differ by at most one in whole data sets;

. The mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is
zero at every point.

To begin the EMD, a function or signal is decomposed as follows.
Identify all the local extrema; then connect all the local maxima

by cubic spline as the upper envelope. Repeat the procedure for the
local minima to produce the lower envelope. The upper and lower
envelopes should include all the data. If the mean of the upper and
lower envelopes is designated asm1 and the difference between the
data and m1 is the first component h1, then

x(t)�m1 ¼ h1: (20:1)

The mean m1 is given by

m1 ¼
Lþ U

2
, (20:2)

where
U is the local maxima
L is the local minima
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Technically, h1 is supposed to be an IMF, except that some
error might be introduced by the spline curve fitting process—in
many cases there are overshoots and undershoots after the first
round of processing; therefore, the sifting process has to be
repeated many times. The sifting process serves two purposes
(Huang et al., 1998): It eliminates riding waves (smaller waves
that seem to ‘‘ride’’ bigger waves), and it makes the signal or
profile more symmetric about the local zero-mean line.

In the second round of sifting, h1 is treated as the data or
the first component. Then a new mean is computed as before.
If the new mean is m11, then

h1 �m11 ¼ h11: (20:3)

After repeating the sifting process up to k times, h1k becomes an
IMF; that is

h1(k�1) �m1k ¼ h1k: (20:4)

Let h1k ¼ c1, the first IMF from the data. c1 should contain the
finest scale or the shortest period component of the data. The
process to generate one IMF may be considered as the inner loop.
Now c1 is separated from the original data begun with as

x(t)� c1 ¼ r1, (20:5)

where r1 is the residue, and it contains information on longer
period components; it is now treated as the new data and sub-
jected to the same sifting process. (This is now the beginning of
the outer loop, which will go on to the next inner loop for the
next IMF.) The procedure is repeated for all subsequent rj’s
resulting in

r1 � c2 ¼ r2; . . . rn�1 � cn ¼ rn, (20:6)

where c2 to cn are the subsequent IMFs of the data. The inner and
outer loops of the EMD can be pictured as in Figure 20.1.

There are stopping criteria for the sifting process for IMFs
since allowing sifting to go beyond a certain point may smooth
out important signal variations and features that arise from the
natural dynamics of the system: The IMF components need to
retain enough physical sense of both amplitude and frequency
modulations. This can be achieved by limiting the value of the
sum of the difference (SD) computed from two consecutive
sifting results as

SD ¼
PT

t¼0 hk�1(t)� hk(t)j j2
PT

t¼0 h
2
k�1(t)

: (20:7)

A value of SD between 0.2 and 0.3 is usually preferable based on
experimental analyses performed by Huang et al. (1998). To
check that the number of zero-crossings is equal to, or differs
by at most one from the number of extrema, an alternate stop-
ping criterion is proposed by Huang et al. (2003). Sifting is

stopped when the number of zero-crossings is equal to, or differs
by at most one from the number of extrema for S successive
sifting steps; the optimum value for S was found to be between
4 and 8. The optimum value for S came about while determining
a confidence limit for the EMD. Traditionally, the Fourier spec-
tral analysis has invoked the ergodic theory in computing the
confidence limit, treating the temporal average as the ensemble
average. The data span is cut into a certain number of sections,
and the Fourier spectra found for each section; the confidence
limit is then the statistical spread of the different spectra.
However, for nonstationary processes, the ergodic assumption
would not make much sense. Therefore, Huang et al. (2003)
decomposed a data set with EMD using different stopping
criteria—different S numbers, varying from 1 to 20. Since differ-
ent stopping criteria can produce different numbers of IMFs, the
intermittency criteria was invoked to force the same number of
IMFs for each S-number used.

Intermittency, which is an attribute of turbulent dynamical
systems, is defined as sudden erratic changes in wave heights. It is
not uncommon for data from natural physical systems to show
intermittency. According to Huang et al. (2003), intermittency
can introduce mode mixing, that is, having different time or
spatial scales mixed in one IMF. This has the effect of producing
additional, albeit spurious, variations in the IMFs and, therefore,
in the values of instantaneous frequency. To deal with intermit-
tency, a number, n1, is selected, which corresponds with the
number of data points within a certain chosen data limit; only
waves shorter than this limit are to be included in an IMF.
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FIGURE 20.1 Pictorial depiction of EMD process.
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Therefore, the upper and lower envelopes and their mean would
be available to extract IMFs only when the distance between
extrema is less than n1. The intermittency test can be difficult
to invoke, for it is not trivial to choose n1; the test should be done
only when serious mode mixing is detected after the data has first
been processed by EMD. The intermittency test can then be
applied, and waves of periods longer than a preset length scale
can be ignored for successive IMFs; this has the effect of includ-
ing waves of similar length in a single IMF. After getting IMFs
using different S-numbers, the mean of specific IMFs are deter-
mined in order to get a range of standard deviations that will
define the confidence limit.

The whole EMD process is stopped by any of the following
predetermining criteria:

. Either when the residue rn is a function having only one
extremum, or

. When the residue rn becomes a monotonic function from
which no IMF can be extracted.

Summing Equations 20.5 and 20.6 yields the following equation:

x(t) ¼
Xn

j¼1

cj þ rn, (20:8)

which indicates completeness, in that the sum of the IMFs and
the residue recovers the original signal. cj is the jth IMF, and n is
the number of sifted IMFs; rn can be interpreted as the general
trend of the signal. A measure of orthogonality may be deter-
mined from two consecutive IMFs, Cf, and Cg, as follows (Huang
et al., 1998):

IOfg ¼
X

t

CfCg

C2
f þ C2

g

(20:9)

where IOfg is the index of orthogonality between Cf and Cg, which
must be as close to zero as possible. Figure 20.2a through d depict
a pictorial flow of the sifting process.

In the next step, the Hilbert transform is applied to each of the
IMFs in order to compute instantaneous frequencies and instant-
aneous amplitudes so that the Hilbert amplitude spectra may be
plotted. The Hilbert transform of a real-valued function x(t),
which belongs to Lp, is given by

H(x(t)) ¼ y(t) ¼ 1

p
P

ð1

�1

x(t)

t � t
dt, (20:10)

where P is the Cauchy principal value.
The function, x(t), and its Hilbert transform, y(t), form an

analytic signal, z(t), given by

z(t) ¼ x(t)þ iy(t) ¼ a(t)eiu(t), (20:11)

where a(t) and u(t) represent the instantaneous amplitude and
instantaneous phase respectively. Now,

a(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, (20:12)

u(t) ¼ tan�1
y

x
: (20:13)

By definition, the instantaneous frequency is given as

v(t) ¼ du(t)

dt
: (20:14)

From Equations 20.11 and 20.14, after Hilbert transformation,
each IMF can be represented by

cj ¼ Re aj(t)e
i
Ð
vj(t)dt

h i

, (20:15)

and, therefore, the original data, x(t) can be recovered as

x(t) ¼ Re
Xn

j¼1
aj(t)e

i
Ð
vj(t)dt: (20:16)

Equation 20.15 gives both the amplitude and frequency of each
component as a function of time, and Equation 20.16 gives a
frequency–time distribution of the amplitude, which is called the
Hilbert spectrum, H(v, t). The corresponding Fourier represen-
tation would be as follows:

x(t) ¼ Re
X1

j¼1
aje

ivjt , (20:17)

with both aj and vj constants.
The residual trend is not included in Equation 20.16 since,

according to Huang et al. (1998), its energy could be over-
powering; rn should only be included if its inclusion can be well
justified. Knowing the instantaneous frequencies and amplitudes
of the IMFs, an energy–time–frequency spectrum, called the
Hilbert spectrum, may be plotted for the signal, x(t), in terms
of the IMFs. Following from Equation 20.15, which presents the
Hilbert spectrum, a marginal spectrum can be defined as

h(v) ¼
ðT

0

H(v, t)dt, (20:18)

where H(w, t) is used to represent the Hilbert spectrum. The
marginal spectrum as given by Equation 20.18 gives an indication
of the total energy contribution of each frequency value, v, over
the data span; it is similar to the Fourier spectrum.

The preceding discussion of the HHT shows that no a priori
basis sets are defined for the procedure, and the problem of the
Heisenberg uncertainty principle is not encountered. Table 20.1
compares the Fourier transform, the Wavelet transform, and the
HHT (Table 20.1)
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20.2.1 Drawbacks

The HHT procedure is empirical and the most computationally
intensive step is the EMD operation, which does not involve

convolution and other time-consuming operations (this makes
HHT ideal for signals of large size). However, there are
some drawbacks to the application of HHT. First, the EMD
may generate undesired low- or high-amplitude IMFs at the
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FIGURE 20.2 (a) Original signal. (b) Upper and Lower envelopes. (c) Mean envelope (dashed line). (d) IMF produced by subtracting mean
envelope from original signal.

TABLE 20.1 Comparison between Fourier, Wavelet, and HHT

Fourier Wavelet HHT

Basis A priori A priori Adaptive

Frequency Convolution: global, uncertainty Convolution: regional, uncertainty Differentiation: local, certainty

Presentation Energy–frequency Energy–time–frequency Energy–time–frequency

Nonlinear Not easily defined Not easily defined Not easily defined

Nonstationary No Yes Yes

Feature extraction No Yes Yes

Theoretical base Theory complete Theory complete Empirical

Source: Modified fromHuang, N.E. The Hilbert–Huang Transform in Engineering, Eds, Huang, N.E. and Attob-Okine, N.O., CRC Press, Boca Raton, FL, 1, 2005.
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low-frequency region, and bring up some undesired frequency
components; second, the first IMF may cover a wide frequency
range at the high-frequency region and therefore cannot satisfy
the monocomponent definition well—it has been observed to
contain most of the noise in the original signal, though; and
third, the EMD operation often cannot separate some low-energy
components from the analysis signal, therefore, those compon-
ents may not appear in the frequency–time plane.

20.2.2 Hilbert Transform and Hilbert–Huang
Transform

The major difference between the conventional Hilbert trans-
form and HHT is the definition of instantaneous frequency. The
instantaneous frequency has more physical meaning through its
definition within the IMF component; meanwhile, the classical
Hilbert transform of the original data might possess unrealistic
features (Huang et al., 1998). This implies that the IMF repre-
sents a generalized Fourier expansion basis. It has variable amp-
litude and instantaneous frequency, which enable the expansion
to accommodate nonstationary data. Furthermore, since the
instantaneous frequency is a derivative, it is very local and can,
therefore, describe intra-wave variations within the signal.
Physically, the definition of instantaneous frequency has a true
meaning for ‘‘monocomponent’’ signals, which has one fre-
quency, or at most a narrow range of frequencies, varying as a
function of time (narrow band). Since most data do not show
these necessary characteristics, sometimes the Hilbert transform
makes little physical sense in practical applications. Explaining
this sense of physical meaning, Huang (2005) directly Hilbert
transformed the length-of-day (LOD) data shown in Figure 20.3
and plotted the analytic function in complex phase plane. Instead
of simple circles, the data showed haphazardly intertwined curves
that looped around showing no apparent order as depicted in

Figure 20.4. Additionally, plotting the phase function and the
instantaneous frequency did not yield any meaningful result,
with the phase function showing random but finite jumps
(Figure 20.5) and the instantaneous frequency plot showing
equally likely positive and negative frequencies (Figure 20.6).
After performing EMD on the LOD data, the annual cycle is
extracted and plotted; it showed apparent order with near-circles
in the polar representation (also shown in Figure 20.4). This
illustrates why some preprocessing of the data is needed before
the Hilbert transform is performed on the data; this preproces-
sing step is the EMD, which decomposes the signal into IMFs
that have better-behaved Hilbert transforms.
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Empirical Mode Decomposition and the Hilbert–Huang Transform 20-5



20.2.3 Recent Developments

A number of recent developments have emerged regarding the
HHT (Huang, 2005). A normalized HHT was developed because
of two theorems concerning the Hilbert transform: the product
theorem for Hilbert transforms (Bedrosian, 1963) and the quad-
rature approximation to the Hilbert transform of modulated
signals (Nuttall, 1966).

According to the Bedrosian theorem, the Hilbert transform of
the product of two signals, f(x) and g(x), can be defined as

H[ f (x)g(x)] ¼ f (x)H[g(x)] (20:19)

only if the Fourier spectra of the f(x) and g(x) are non-overlapping
(disjoint) in frequency space and g(x) has a higher frequency
content than f(x), or both f(x) and g(x) are analytic. It would not
be entirely possible to define the phase function as in Equation
20.13 and represent an IMF as in Equation 20.15 unless the
following equation holds true:

H[a(t) cos u(t)] ¼ a(t)H[cos u(t)]: (20:20)

Equation 20.20 implies that a(t) has to have a very low frequency
content compared to cos u(t). Therefore, a way to satisfy this
condition would be to normalize the function with respect to
a(t), so that amplitude is always unity in the normalized function.
Applying this normalization in the EMD, Huang (2005) proposed
to find all the maxima of each IMF, connect the maxima by cubic
spline to form an upper envelope, E(t), and then divide the IMF by
E(t). In this way, the IMF is normalized with respect to amplitude.

The second condition to satisfy is given by the Nuttall the-
orem, which gives a measure of the discrepancy between the
Hilbert transform and the quadrature of a carrier wave with
amplitude or phase modulation or both. Let the signal be x(t)
with a Hilbert transform, xH(t); and let the quadrature of x(t) be

xq(t). Nuttall (1966) presents the discrepancy in terms of the
difference in energy of xH(t) and the energy of xq(t); if
the difference in energy is E, then the ratio of E to the energy
of the signal gives a relative measure of error in approximating
xH(t) by xq(t). This error measure is going to be constant over the
whole data range, and according to Huang (2005), a constant
error bound is not going to reveal the location of the error on the
time axis of a nonstationary signal. Therefore, Huang (2005)
proposed a variable error bound using the normalized IMF and
also a new method to compute the instantaneous frequency
through direct quadrature (Huang et al., in press). The squared
amplitudes of the normalized IMF would equal one if the Hilbert
transform were equal to the quadrature, and, therefore, the
difference between the squared amplitude and unity should
be zero; otherwise, the Hilbert transform cannot be exactly the
quadrature. Therefore, the error is the difference between the
squared normalized amplitude and unity, and is a function of
time. According to Huang (2005), detailed comparisons gave
satisfactory results. An error index calculated gave values that
were 10% or less over the data span.

Though the intermittency test could alleviate the mode mixing
to a certain degree, it is no longer totally adaptive. A better
method is to use the ensemble empirical mode decomposition
(EEMD) (Wu and Huang, 2009), in which noise is introduced to
help scale separation and achieve a truly dyadic filter effect.

20.2.4 End Effects

The spline fitting for upper and lower envelopes can create prob-
lems at the ends of the data where large swings are prone to occur.
These large swings can propagate into the data series and corrupt
the whole signal leading to an ineffective EMD. In Huang et al.
(1998), end effects are treated by adding characteristic waves at
both ends of the signal that have the capacity to contain the wide
swings that come from cubic spline fitting. Datig and Schlurmann
(2004) implement a signal extension procedure that adds new
maxima and minima to the front and rear of the signal, which
new extrema are derived from the original time span of the signal.
This has the effect of no information being canceled out and the
original data series remaining unaffected. Rilling et al. (2003)
mirrorized the extrema close to the edges in order to contain
wide swings. Chen et al. (2007) used axis-symmetry signal exten-
sion to handle end effects while Cheng et al. (2007) used support
vector regression machines to process end effects. So far, the best
approach is the one used by Wu and Huang (2009), where a
combination of linear extension based on the two neighboring
extrema was used in conjunction of the end point value.

20.3 Bidimensional Empirical Mode
Decomposition

The potential of the 1-D EMD generated research interests in
2-D applications for image processing. Existing traditional
methods are still Fourier-based and processing is global rather
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than local so that essential information may be lost in the image
during processing. To avoid loss of information a 2-D version of
the EMD has been recently developed. Algorithms have been
developed in the literature to do two-dimensional sifting for
BEMD (Damerval et al., 2005; Linderhed, 2004; Nunes et al.,
2003a,b), and they generally follow that for the one-dimensional
case, only modified to handle two-dimensional signals.

Linderhed (2002) first introduced EMD in two dimensions,
which is now popularly called the bidimensional empirical mode
decomposition (BEMD); BEMD was used for image compres-
sion, using only the extrema of the IMFs in the coding scheme.

Nunes et al. (2003a,b) developed a BEMD method for texture
image analysis; BEMD was used for texture feature extraction
and image filtering. The sifting process used is as follows:

. Identify the extrema of the image, I, by morphological
reconstruction based on geodesic operators

. Generate the 2-D envelope by connecting the maxima
points with radial basis function (RBF)

. Determine the local mean, mi, by averaging the two
envelopes

. Do I �mi ¼ hi

. Repeat the process

For the envelope construction, the authors used RBF of the form

s(x) ¼ pm(x)þ
XN

i¼1
liF(kx � xik), (20:21)

where
pm is a low degree polynomial, of the mth degree polynomial

in d variables
k:k denotes Euclidean norm
li are RBF coefficients
F is a real-valued function
xi are the RBF centers

The stopping criterion used is similar to that by Huang et al.
(1998), using standard deviation as discussed in Section 20.2 above.
Linderhed (2005) also developed a sifting process for 2-D time
series. Although the stopping criterion for IMF extraction is relaxed,
the stopping criterion for the whole EMD process is similar to that
of Huang et al. (1998). The IMF stopping criterion is based on the
condition that the extrema envelope is close enough to zero; there-
fore, there is no need to check for symmetry. The algorithm is
similar to that of Nunes et al. (2003a,b). However, the author
performs extrema detection by comparing a candidate data point
with its eight nearest-connected neighbors, and suggests thin-plate
splines, which are RBFs, for envelope construction.

Two general types of BEMD are presented in the literature.
One uses tensor products to generate upper and lower envelopes
for rows and columns of an image (Liu and Peng, 2005), and the
other (the more popular) uses neighboring-window technique for
extrema detection, and two-dimensional envelopes for interpol-
ation; for instance, the use of RBFs and Delaunay triangulation.

The former method is faster but does not take into account the
geometry of the image. In the literature, the preferred method
seems to be the latter, which uses two-dimensional lower and
upper envelopes to interpolate.

Just as in the 1-D EMD, intermittency can also pose problems
in BEMD in terms of mode mixing. Nunes et al. (2005) intro-
duced a modified algorithm for BEMD that included a treatment
of intermittency. Similar to the 1-D, it also uses a period length
criterion whereby a predetermined period length is set so that
any period length above the predetermined length is ignored;
subsequently waves of similar period lengths are included in
corresponding IMFs.

20.3.1 Extrema Detection and Scattered
Data Interpolation

Detection of extrema has been achieved with methods including
morphological reconstruction based on geodesic operators
(Nunes et al., 2003a,b), and neighboring windows (Damerval
et al., 2005; Linderhed, 2005). An important step in BEMD
after extrema detection is constructing the upper and lower
envelopes when sifting for IMFs; envelope construction is done
with scattered data interpolation. Scattered data interpolation
(SDI) is the construction of a function that interpolates data
values known at only some specific, scattered points; it is a
single-valued function. In general, for n-dimensional space, a
function is sought that maps Rn into R; that is

f :Rn ! R: (20:22)

Therefore, for BEMD, the SDI function maps R2 into R. SDI
functions are effective interpolants because of their meshless cap-
ability. While other methods may need regular meshes to work,
SDI interpolants do not need a regular mesh; they work on
irregularly spaced data. There are two general approaches to
SDI: global and local approaches. The global approach considers
all other points for each interpolated point, while local approaches
consider only points within a certain radius of support of each
interpolated point. There are generally five SDI methods classified
under global or local approaches as shown in Table 20.2.

The groupings in Table 20.2 are not rigid. Some global methods
may be made local by slight modifications; CSRBFs are local
variations of RBFs. Global approaches have higher computational
costs for very large data points. Morse et al. (2001) identified some
drawbacks when working with thin-plate RBFs, which are global
methods.

TABLE 20.2 Scattered Data Interpolation Methods

Global Local

RBFs Compactly supported RBFs (CSRBFs)

Inverse-distance weighted methods
(Shepard’s methods)

Triangulation-based methods
Natural neighbor methods
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Effective BEMD depends on proper scattered data interpol-
ation of the extrema. The interpolant must have continuous
second derivatives everywhere to ensure smoothness. Although
overshoots should necessarily be avoided, few may sometimes
persist that may generate spurious extrema, which can addition-
ally exaggerate or shift existing extrema. However, their effect is
indirect since the mean of the envelopes rather than the envel-
opes themselves are used in the sifting process; the essential
modes are still well recovered. To overcome the problem of
overshooting, a new method has been proposed recently by
Xu et al. (2006). The authors use finite element basis functions
to construct the local mean surface of the data instead of con-
structing it from the upper and lower envelopes. Damerval et al.
(2005) used Delaunay triangulation on the extrema, and then
performed piecewise cubic interpolation on triangles to build
extrema envelopes. Linderhed (2005) investigated the issue of
proper spline interpolation by using thin-plate smoothing
splines and triangle-based cubic interpolation to generate upper
and lower envelopes. For sparse data, thin-plate splines were
smoother than triangle-based cubic interpolation. Results of
comprehensive analyses performed by Bhuiyan et al. (2009)
were not conclusive regarding the superiority of one SDI method
over another when various methods were used in BEMD analyses
of texture and real images. The appropriate SDI method would
depend on the objective of the BEMD analysis.

20.3.2 Boundary Effects

Similar to end effects in 1-D EMD, boundary effect issues are
important in BEMD. In constructing extrema envelopes, extra
care is needed around image boundaries in order to prevent wide
swings and other artifacts from corrupting the decomposition
process. Basically, extension of the boundary has been the main
objective of various authors while treating boundary effects in
BEMD. Liu and Peng (2005) used texture synthesis to process
image boundaries. A modified form of nonparametric-sampling-
based texture synthesis is used to extend the image before BEMD
is performed; finally, the corresponding parts of the 2-D IMFs are
extracted from the extended versions. Linderhed (2004) added
extra points at the borders to the set of extrema points; the extra
points are placed at the corners of the image and also some
equally spaced along the borders.

20.4 Attempted Improvements on EMD

Constructing extrema envelopes may usually result in overshoots
and undershoots due to the nature of the cubic spline fitting
process. In addition, adverse end effects may propagate inward
into the signal during sifting, corrupting the whole resulting
signal. In order to do a mathematical study of the EMD, Chen
et al. (2006) introduced an innovative way of finding the mean of
1-D signals using B-splines, thereby avoiding the use of upper
and lower envelopes and their attendant problems. Building on
the idea by Chen et al. (2006), Xu et al. (2006) developed a new
method of finding the mean of a 2-D signal by using finite

elements for 2-D EMD without constructing extrema envelopes.
Frei and Osorio (2006) also introduced a new method of non-
linear and nonstationary time series analysis that finds the mean
of the signal without extrema envelopes and generates basis
functions similar to the IMF, but without iteration.

20.5 HHT for Global Health Monitoring
of Civil Infrastructure

HHT is being used in global health monitoring techniques
whereby signals from infrastructure are analyzed to determine the
presence of damage. Traditionally, Fourier analysis has been the
signal analysis method of choice; however, Fourier methods cannot
resolve signals locally, forcing the analysis to depend on averaging
to determine a single parameter. Attempts at achieving temporal
localization compromise frequency resolution and vice versa.

HHT is being used in determining mode shapes present in a
complicated signal produced by a structure through sensors, and
in feature identification. Signals produced by civil infrastructure
systems are mostly from nonlinear systems and are nonstationary.

In the literature, HHT has been used in various infrastructure
damage detection procedures. Xu and Chen (2004) use empirical
mode decomposition (EMD) for damage detection. The study is
motivated by the fact that current vibration-based structural
damage detection methods are global rather than local so that
the exact time instants of sudden damage events cannot be
accurately known. These methods assume that measured modal
parameters or properties derived from modal parameters are
indicative of the physical characteristics and behavior of the
structure, and therefore, changes in the modal parameters or
their properties indicate changes in the physical behavior of the
structure: the behavior of the structure is assumed to be linear.
Experimental investigations are carried out on a three-story shear
building model to identify structural damage caused by changes
in structural stiffness using EMD. Changes in structural stiffness
is induced by two pretensioned springs connecting the first floor
to fixed steel frames away from the building; during vibration of
the building the springs are released to simulate a sudden change
in structural stiffness. This arrangement is based on the assump-
tion that most damage occurs at the lower floors of a building
under seismic excitation. The vibrations are measured with
accelerometers installed on each floor in the building. Signals
from the accelerometers are analyzed with EMD to detect exact
damage instants; using intermittency check, the exact instant of
damage appears as a spike in the first IMF of the accelerometers.
Power spectral density analysis could not reveal the exact instant
of damage since the Fourier transform is a global method.
The spatial distribution of accelerometers is important in detect-
ing structural damage; since the signal response of sudden
damage is of high frequency and high decay rate, positioning
accelerometers close to damage location enhances effective dam-
age detection. However, it is not trivial to place accelerometers
such that they will be close enough to detect locally occurring
damage events.
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Chen et al. (2007) used HHT in a vibration-based damage
detection technique to detect damage in composite wingbox
structures. A damage feature index vector, extracted based on
HHT, is used for damage detection. Damage is simulated in a
structural dynamic model developed with vibration analysis and
finite element methods. The signal obtained from the vibration
analysis is decomposed into IMFs; a comparison of instantaneous
frequencies of undamaged and damaged wingbox signals reveals
obvious changes. A nondimensional index matrix is composed
from normalized instantaneous frequency values of undamaged
and damaged wingbox IMFs; elements of the matrix are func-
tions of the ratio of normalized instantaneous frequencies from
undamaged and damaged IMFs. Traditionally, variation of struc-
tural vibration natural frequencies and mode shapes are used as
parameters for damage detection. However, these parameters are
unable to detect small damage events in the wingbox structures.
In addition, the time-domain response signals of the damaged
and undamaged states do not show any noticeable differences.
But a comparison of IMFs of damaged and undamaged states
does not show any observable differences, too. Therefore, IMFs
are unable to detect damage directly. However, Hilbert trans-
forming IMFs and comparing undamaged and damaged states
reveal noticeable differences in instantaneous frequencies. Vari-
ations in instantaneous frequencies between undamaged and
damaged states used in a damage feature index matrix can help
in an online structural damage detection scheme.

Yang et al. (2004) detect damage time instants and locations
by EMD and HHT using a model ASCE four-story benchmark
building. Using EMD, an appropriate intermittency frequency is
set such that sharp spikes reveal damage time instants and
locations in the first IMF, and represent discontinuities in struc-
tural stiffness. The intermittency frequency is lower than the
frequency of the discontinuity but higher than the highest fre-
quency in the acceleration measurement of the structure. The
effectiveness of damage detection is dependent on factors such as
signal-to-noise ratio and damage severity. A second method
based on EMD, random decrement technique (RDT), and
Hilbert transform is used to detect damage time instants, natural
frequencies, and damping ratios.

Zhang et al. (2003) use HHT to analyze dynamic and earth-
quake motion recordings. HHT is found to be suitable for analyz-
ing nonstationary dynamic and earthquake motion recordings;
it also found to be better than Fourier transform in this regard.
However, although IMFs may contain some important inherent
signal information, the physical meaning of IMFs is not clear.

20.6 Applications and Potential
Application of BEMD

BEMD has been used for texture analysis (Nunes et al., 2005) and
image compression (Linderhed, 2004). Recently, Sinclair and
Pegram (2005) have used it for rainfall analysis and nowcasting.
Computer scientists, mathematicians, and electrical engineers
have usually used the method for image analyses.

The potential application for BEMD is in presmoothing of
images before feature detection techniques are applied; this can
pave the way for a hybrid method of edge detection that involves
the BEMD and an edge detector that does not have a presmooth-
ing step. Images usually tend to be noisy and so filtering out noise
is essential to make the image ready for further analysis. The first
few IMFs from BEMD usually contain most of the noise in
the original image; therefore, removing them and reconstructing
the image with the remaining IMFs tends to denoise the image.
The number of IMFs needed to be removed depends on the level
of noise in the image; very noisy images require more high
frequency IMFs removed than do less noisy images. This method
has been applied in a study of pavement cracks using two
popular edge detection techniques: the Sobel and the Canny
edge detectors (Ayenu-Prah and Attoh-Okine, 2008). The
Canny edge detector has a prefiltering step in which images are
denoised with a Gaussian filter before edge detection is accom-
plished. This detection method is computationally more expen-
sive due to the convolution processes required in Gaussian
smoothing. The Sobel edge detection method has no prefiltering
step; however, it is more susceptible to noise. Therefore, the
BEMD is used to first filter the images before the Sobel method
is applied. An advantage BEMD has over Gaussian filtering is
that it does not involve any convolution process, and it is a local
method of denoising. This method has been applied to asphalt
concrete and Portland cement concrete (PCC) pavement images
to detect cracks. The asphalt images tend to be noisier than the
PCC images, which is not unusual since PCC pavements tend to
be generally smoother than asphalt surfaces. Therefore, for PCC
images the first three IMFs are removed while only the first
IMF is removed for asphalt images; this decision is arrived at
after several trials. Results from the combination method of
BEMD=Sobel are compared with that from the Canny edge
detector; BEMD=Sobel method tends to be a very effective tech-
nique, easily comparable to the Canny method.

20.7 Recommendations

Fourier analysis has been around for almost two centuries and
has subsequently become very dominant in signal processing; it
has also been used to model many scientific phenomena such
as heat transfer and wave propagation. For HHT to be considered
a sound alternative, stakeholders have to know and appreciate
the efficacy of the HHT in treating nonstationary signals. It is not
the intention that HHT can or will replace Fourier transform;
however, it is being presented as a powerful signal processing
alternative that is relatively more efficient in dealing with non-
stationary signals. Technology is getting to the point where
accuracy is becoming ever more paramount as scientists and
engineers continually operate in the nano realm; it is, therefore,
reasonable to expect the possibility of the insufficiency of a
stationary assumption at some point in the near future. HHT
holds promise for the future of signal processing when stationary
assumptions may likely not suffice. However, the staying power
of Fourier analysis has been guaranteed by a sound mathematical
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foundation, while HHT essentially remains an empirical method
without the requisite mathematical support. For HHT to capture
a wider support of stakeholders, mathematicians would be
needed to develop a mathematical basis for the procedure with-
out necessarily invoking assumptions that may compromise the
a posteriori appeal of the method. Of concern also is the treat-
ment of the end effects in 1-D EMD and the boundary effects in
the BEMD; errors at the ends and boundaries during interpol-
ation tend to propagate inward, corrupting the whole signal in
the process. In addition, extrema points may shift or may be
exaggerated or both; however, this phenomenon ultimately tends
to average out by the end of the decomposition since essentially
the procedure works with the mean of the envelopes rather than
with the envelopes themselves. In any case, despite positive and
encouraging but varying efforts at mitigating end and boundary
effects such as adding characteristic waves at ends of signals and
boundary extension in images, a move toward a universal
method of processing the ends and boundaries during interpol-
ation should be most sought after. While the original inventors of
the HHT and a number of subsequent authors have endorsed
the cubic spline for envelope construction, there remain ques-
tions about the most preferable scattered data interpolation
method for BEMD envelope construction. Although the authors
of this article have participated in a comprehensive study to
determine an appropriately suitable method of scattered data
interpolation, the results have not been sufficiently conclusive
for endorsing one particular method over a number of candidate
RBF methods; at best, it is observed that RBF methods generally
seem to work best.

A persisting challenge has been the physical meaning of the
IMFs before Hilbert-transforming them. Using structural models,
researchers have attempted to analyze with EMD data acquired
from the models after excitation. Modal parameters for the struc-
ture are known before the excitation force is applied, and, there-
fore, are compared with modal parameters after excitation in
order to try and ultimately get the physical meaning of the IMFs.
While the effort is highly commendable, and is in the right direc-
tion, usually the modal parameters for existing real-life structures
are not known before, say, an earthquake strikes. Therefore,
assuming the structure is instrumented to record data during
vibration, analyzing the data with EMD would require interpret-
ing each IMF without the benefit of knowledge of any before-
excitation modal parameters; the task becomes more challenging
in that regard. The ability to pick out relevant IMFs from any
particular decomposition is a good first step toward interpreting
them; however, more research needs to be performed in order to
establish physical meaning for the IMFs.
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A.1 Basic Concepts

A complex variable z defined by

z ¼ x þ jy (A:1)

assumes certain values over a region Rz of the complex plane. If a
complex quantity W(z) is so connected with z that each z in Rz

corresponds with one value ofW(z) in Rw, then we say thatW(z)
is a single-valued function of z

W(z) ¼ u(x, y)þ jy(x, y) (A:2)

which has a domain Rz and a range Rw (see Figure A.1). The
function W(z) can be single valued or multiple valued. Examples
of single-valued functions include

W ¼ a0 þ a1z þ a2z
2 þ � � � þ anz

n n integer

W ¼ ez

Examples of multiple-valued functions are

W ¼ zn n not an integer

W ¼ log z

W ¼ sin�1 z

Definition A.1 A function W(z) is continuous at a point
z¼l of Rz if, for each number e > 0, however small, there exists
another number d> 0 such that whenever

z � lj j > d then W(z)�W(l)j j < e (A:3)

The geometric representation of this equation is shown in
Figure A.1.

Definition A.2 A functionW(z) is analytic at a point z if, for
each number e> 0, however small, there exist another number
d> 0 such that whenever

z � lj j < d then
W(z)�W(l)

z � l
� dW(l)

dz

�

�

�

�

�

�

�

�

< e (A:4)

* All contour integrals are taken counterclockwise, unless specifically indicated.
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Example A.1

Show that the function W(z)¼ ez satisfies Equation A.4.

SOLUTION

From Equation A.4, we obtain

lim
z!l

W(z)�W(l)

z � l
¼ lim

z!l

ez � el

z � l

¼ lim
z!l

e z 1� (z � l)

2!
þ (z � l)2

3!
� � � �

� �

¼ el ¼ de z

dz

�

�

�

�

z¼l

which proves the assertion.

In this example, we did not mention the direction from which
the z approaches l. We might surmise from this that the deriva-
tive of our analytic function is independent of the path of z as it
approaches the limiting point. However, this is not true in
general. By setting l ¼ z and z ¼ z þ Dz in Equation A.4, we
obtain an alternative form of that equation, namely,

dW

dz
¼ lim

Dz!0

W(z þ Dz)�W(z)

Dz

� �

(A:5)

For a function to possess a unique derivative, it is required that

dW

dz
¼ lim

Dz!0

DW

Dz
¼ lim

Dx!0
Dy!0

Duþ jDy

Dx þ jDy

But because

Du ¼ qu

qx
Dx þ qu

qy
Dy

Dy ¼ qy

qx
Dx þ qy

qy
Dy

the unique derivative becomes

dW

dz
¼ lim

Dx!0
Dy!0

qu
qx
þ j qy

qx

� �

Dx þ j qy
qy
� j qu

qy

	 


Dy

Dx þ jDy

For this to be independent of how Dx and Dy approach zero (that
is, for the derivative to be unique), it is necessary and sufficient
that Dxþ j Dy cancel in the numerator and denominator. This
requires that

dW

dz
¼ qu

qx
þ j

qy

qy
¼ qy

qx
� j

qu

qy

This condition can be met if

qu

qx
¼ qy

qy

qy

qx
¼ � qu

qy
(A:6)

These are the Cauchy-Riemann conditions. If the function
satisfies these equations, it possesses a unique derivative and it
is analytic at that point. These conditions are necessary and
sufficient.

A.1.1 Integration

Integration of a complex function is defined in a manner like that
for a real function, except for the important difference that the
path of integration as well as the end points must be specified. A
number of important theorems relate to integration, as we will
discuss later.

Recall that the real integral
Ð b

a f (x) dx means that the x-axis
is broken into tiny elements Dx from a to b, each element is
multiplied by the mean value of f(x) in the element, and then the
sum of all such products from a to b is taken as Dx ! 0.
The same general procedure is used to define the integral in

jy

Rz

Rz

W(z1)

jv = j Im W(z)

W(z2)
W(z3)

W(z1)

W(z2)

W(λ)

|W(z)–W(λ)|

u = Re W(z)

W(z3)

W(z)

z1

z2 z3

Rw

Rw

λ

|z – λ|

δ

z

x

FIGURE A.1 Illustration of the range and domain of complex functions.
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the complex plane. Instead of being restricted to the x-axis, the
path of integration can be anywhere in the z-plane, for example,
the arc ABC in Figure A.2. This arc is broken into n elements Dz,
and the corresponding mean value of W(z) over each element is
written Ws. Now from the sum

Pn
s¼1 WsDzs, over all values of s

from a to b, and take the limit Dzs ! 0, n ! 1. This limit, if it
exists, is the integral

I ¼
ðb

a

W(z)dz (A:7)

The only innovation introduced here is that the path over which
the integral is to be taken must be specified.

Example A.2

Evaluate the integral in Equation A.7 for the function W(z)¼
1=z over the semicircles shown in Figure A.3.

SOLUTION

Refer first to Figure A.3a, and introduce the polar coordinates

z ¼ re ju dz ¼ jre ju du

Then

ð

W(z)dz ¼
ð
dz

z
¼
ð

jdu

Over the path ACB, u varies between 0 and p, and the integral

equals jp. Over the path ADB, u varies from 0 to�p, and

the integral equals� jp. Thus, although the end points are the

same, the integrals over the two paths are different. (The fact

that one integral is numerically the negative of the other has

no general significance.)

In evaluating the real integral by starting at A and inte-

grating to B and then back to A, the result will be zero

because the integral from A to B is the negative of the integral

from B to A. The same result is not necessarily true for

complex variables, unless the path from A to B coincides

with the path from B to A. In the present complex integral,

the integration from A to B via C and then back to A via D

yields jp� (�jp)¼ j2p and no zero.

Now consider the integration over the semicircle dis-

placed from the origin, as shown in Figure A.3b. Introduce

the coordinates

z ¼ aþ Re jc dz ¼ j Re jc dc

Then

ð

ACBDA

dz

z
¼
ð2p

0

jRe jc

aþ Re jc
dc ¼ ln (aþ Re jc)

�
�
2p

0
¼ ln zjAA¼ 0

The results of these calculations emphasize the fact that the

two paths possess different features. The difference is that in

Figure A.3a, the path encloses a singularity (the function

becomes infinite) at the origin, whereas the path in Figure

A.3b does not encloses the singularity and W¼ 1=z is analytic
everywhere in the region and on the boundary.

It is easily shown that the integrals of the function

W(z) ¼ 1

z2
,W(z) ¼ 1

z3
, . . . ,W(z) ¼ 1

zn

around a contour encircling the origin of the coordinate axis

are each equal to zero; that is,

þ

1

z2
dz ¼

þ

1

z3
dz ¼ � � � ¼

þ

1

zn
dz ¼ 0 (A:8)

where the contour is taken counterclockwise.

Example A.3

Find the value of the integral
Ð z0
0
z dz from the point (0, 0)

to (2, j4).

jy

x

D

B

C

A
Δzs

FIGURE A.2 The path of integration in the complex plane.

jy

C

A

D

B
xθ

(a)

r

jy

A
R

aB

D

ψ

C

x

(b)

Z Z

FIGURE A.3 Integral of the function W ¼ 1=z over two paths.
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SOLUTION

Because z is an analytic function along any path, then

ðz0

0

z dz ¼ z2

2

�
�
�
�

2þj4

0

¼ �6þ j 8

Equivalently, we could write

ðz0

0

z dz ¼
ð2

0

x dz �
ð4

0

y dy þ j

ð4

0

x dy ¼ þ x2

2

�
�
�
�

2

0

� y2

2

�
�
�
�

4

0

þ jxyj40

¼ 2� 16

2
þ j2� 4 ¼ �6þ j8

We now state a very important theorem, and this is often

referred to as the principal theorem of complex variable theory.

This is the Cauchy first integral theorem.

THEOREM A.1

Given a region of the complex plane within whichW(z) is analytic
and any closed curve that lies entirely within this region, then

þ

C

W(z)dz ¼ 0 (A:9)

where the contour C is taken counterclockwise.

The integration over a closed path is called a contour integral.
Also, by convention the positive direction of integration is taken
so that when traversing the contour, the enclosed region is always
to the left. The proof of this theorem depends on the fact that
everywhere within C the Cauchy–Riemann equations are satis-
fied,W(z) possesses a unique derivative at all points of the path.

COROLLARY A.1

If the contour C2 completely encloses C1, and if W(z) is analytic
in the region between C1 and C2 and also on C1 and C2, then

þ

C1

W(z)dz ¼
þ

C2

W(z)dz (A:10)

Proof Refer to Figure A.4, which shows the two contours C1 and
C2 and two connecting lines D E and G A. In the region closed by
the contour A B D E F G A, the function W(z) is analytic every-
where, and

Þ

W dz ¼ 0 over the path. This means that

ð

ABD

þ
ð

DE

þ
ð

EFG

þ
ð

GA

¼ 0 (A:11)

where W(z) dz is to be understood after each integral sign. Now
allow A to approach D, and G to approach E, so that D E

coincides with A G. Then

ð

DE

¼
ð

AG

¼ �
ð

GA

Also

ð

ABD

¼ �
ð

C1

and

ð

EFG

¼
ð

C2

(A:12)

where strict attention has been paid to the convention given in
the determination of the positive direction of integration around
a contour. Combine Equations A.11 and A.12 so that

�
ð

C1

þ
ð

C2

¼ 0 or

ð

C1

W(z)dz ¼
ð

C2

W(z)dz

which was to be proved.
This is an important theorem because it allows the evaluation

around one contour by replacing that contour with a simpler
one, the only restriction being that in the region between the two
contours the integral must be regular. It does not require that the
function W(z) be analytic within C1.

COROLLARY A.2

If W(z) has a finite number n of isolated singularities within a
region G bounded by a curve C, then

ð

C

W(z)dz ¼
XN

s¼1

þ

Cs

W(z)dz (A:13)

jy

F
C1

B

D E

C2

GA

x

FIGURE A.4 To prove the first corollary.
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where Cs is any contour surrounding the sth singularity. The
contours are taken in the counterclockwise direction.

Proof Refer to Figure A.5. The proof for this case is evident
from the manner in which the first corollary was proved.

COROLLARY A.3

The integral
Ð B

A W(z) dz depends only upon the end points A and
B (refer to Figure A.2) and does not depend on the path of
integration, provided that this path lies entirely within the region
in which W(z) is analytic.

Proof Consider ACBDA of Figure A.2 as a contour that
encloses no singularity of W(z). Then

þ

C

¼ 0 ¼
ð

ADB

þ
ð

BCA

or

ð

ADB

¼
ð

ACB

(A:14)

Hence, the integral is the same whether taken over path D or C,
and thus is independent of the path and depends only on the end
points A and B.

THEOREM A.2 The Cauchy Second Integral

Theorem

If W(z) is the function W(z)¼ f(z)=(z� z0) and the contour
encloses the only singularity at z0, then

þ

C

f (z)

z � z0
dz ¼ j2pf (z0) (A:15)

or

f (z0) ¼
1

2pj

þ

C

f (z)

z � z0
dz (A:16)

(the contours are taken in the counterclockwise direction.)

Proof Refer to Figure A.6. Begin with the second corollary and
draw a circle C1 about the point z0. Then

ð

C

f (z)

z � z0
dz ¼

ð

C1

f (z)

z � z0
dz (A:17)

Let z0 ¼ z � z0 ¼ re ju, which permits writing

ð

C1

f (z)

z � z0
dz ¼

ð2p

0

f (z0 þ z0)

re ju
jre ju du ¼ j

ð2p

0

f (z0 þ z0)du

In the limit as r! 0, z0 ! 0, and

j

ð2p

0

f (z0 þ z0)du

�
�
�
�
�
�
lim r!0

¼ 2pj f (z0)

Combine with Equation A.17 to find

ð

C

f (z)

z � z0
¼ 2pjf (z0)

which proves the theorem.

A.1.2 Derivative of an Analytic Function W(z)

The derivative of an analytic function is also analytic, and con-
sequently itself possesses a derivative. Let C be a contour within
and upon which W(z) is analytic. Then if a is a point inside the
contour (the prime indicates first-order derivative)

W 0(a) ¼ lim
jhj!0

W(aþ h)�W(a)

h
(A:18)

and can be shown that

W 0(a) ¼ 1

2pj

þ

C

W(z)dz

(z � a)2
(A:19)

jy

Cs

C

x

FIGURE A.5 A contour enclosing n isolated singularities.

jy

C1

C

z

ρ

z0

x

FIGURE A.6 To prove the Cauchy second integral theorem.
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where the contour C is taken in a counterclockwise direction.
Proceeding, it can be shown that

W(n)(a) ¼ n!

2pj

þ

C

W(z)dz

(z � a)nþ1
(A:20)

The exponent (n) indicates nth derivative and the contour is
taken counterclockwise.

A.1.3 Taylor’s Theorem

Let f(z) be analytic in the neighborhood of a point z¼ a. Let the
contour C be a circle with center point a in the z-plane, and let
the function f(z) not have any singularity within and on the
contour. Let z¼ aþ h be any pint inside the contour; then by
Equation A.15 we obtain

f (aþ h) ¼ 1

2pj

þ

C

f (z)dz

z � a� h

¼ 1

2pj

þ

C

f (z)dz
1

z � a
þ h

(z � a)2
þ � � �

�

þ hn

(z � a)nþ1 þ
hnþ1

(z � a)nþ1(z � a� h)

�

¼ f (a)þ hf (1)(a)þ h2

2!
f (2)(a)þ � � �

þ hn

n!
f (n)(a)þ 1

2pj

þ

C

f (z)hnþ1dz

(z � a)nþ1(z � a� h)

But where z is on C the modulus f(z)=(z� a� h) is continuous
and therefore bounded. Its modulus will not exceed some finite
number M. Hence, with jz� aj ¼R for points on the circle, we
obtain

1

2pj

þ

C

f (z)hnþ1dz

(z � a)nþ1(z � a� h)

�
�
�
�
�
�

�
�
�
�
�
�

� M2pR

2p

jhj
R

� �nþ1

where jhj=R< 1 and therefore tends to zero as n tends to infinity.
Therefore, we have

f (aþ h) ¼ f (a)þ hf (1)(a)þ h2

2!
f (2)(a)þ � � � þ hn

n!
f (n)(a)þ � � �

(A:21)

or

f (z) ¼ f (a)þ (z � a)f (1)(a)þ (z � a)2

2!
f (2)(a)þ � � � þ (z� a)n

n!
f (n)(a)þ � � �

(A:22)

where the numbers in the exponents indicate order of differen-
tiation. The radius of convergence is such that it excludes from
the interior of the circle that singularity of the function that is
nearest to a.

A.1.4 Laurent’s Theorem

Let C1 and C2 be two concentric circles, as shown in Figure A.7,
with their center at a. The function f(z) is analytic with the ring
and (aþ h) is any point in it. From the figure and Cauchy’s
theorem, we obtain

1

2pj

þ

C2

f (z)dz

(z� a� h)
þ 1

2pj

þ

C1

f (z)dz

(z� a� h)
þ 1

2pj

þ

C3

f (z)dz

(z� a� h)
¼ 0

where the first contour is counterclockwise and the last two are
clockwise. The above equation becomes

f (aþ h) ¼ 1

2pj

þ

C2

f (z)dz

(z � a� h)
� 1

2pj

þ

C1

f (z)dz

(z � a� h)
(A:23)

where both the contours are taken counterclockwise. For the C2

contour jhj<j(z� a)j and for the C1 jhj >j(z� a)j. Hence, we
expand the above integral (contours in the counterclockwise
direction) as follows:

f (aþ h) ¼ 1

2pj

þ

C2

f (z)
1

z � a
þ h

(z � a)2
þ � � �

�

þ hn

(z � a)nþ1 þ
hnþ1

(z � a)nþ1(z � a� h)

�

dz

þ 1

2pj

þ

C1

f (z)
1

h
þ z � a

h2
þ � � � þ (z � a)n

hnþ1

�

þ (z � a)nþ1

hnþ1(z � a� h)

�

dz

j Im z

C2

C3
C1

C

z – plane

Re z

z = a + h
z = a

FIGURE A.7 Explaining Laurent’s theorem.
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From Taylor’s theorem it was shown that the integrals of the last
term in the two brackets tend to zero as n tends to infinity.
Therefore, we have

f (aþ h) ¼ a0 þ a1hþ a2h
2 þ � � � þ b1

h
þ b2

h2
þ � � � (A:24)

where (contours in the counterclockwise direction)

an ¼
1

2pj

þ

C2

f (z)dz

(z � a)nþ1 bn ¼
1

2pj

þ

C1

(z � a)nþ1f (z)dz

The above expansion can be put in more convenient form by
substituting h ¼ z � a, which gives

f (z) ¼ c0 þ c1(z � a)þ c2(z � a)2 þ � � � þ d1

(z � a)

þ d2

(z � a)2
þ � � � þ dn

(z � a)n
þ � � � (A:25)

Because z¼ aþ h, it means that z now is any point within the
ring-shaped space between C1 and C2 where f(z) is analytic.
Equation A.25 is the Laurent’s expansion of f(z) at a point zþ h

within the ring. The coefficients cn and dn are obtained from
Equation A.24 by replacing an, bn, z by cn, dn, z, respectively.
Here z is the variable on the contours and z is inside the ring.
When f(z) has a simple pole at z¼ a, there is only one term,
namely, d1=(z� a). If there exists an nth-order term, there are n
terms of which the last is dn=(z� a)n; some of the dn’s may be zero.

Ifm is the highest index of the inverse power of f(z) in Equation
A.25, it is said that f(z) has a pole of order m at z = a. Then

f (z) ¼
X1

n¼0

cn(z � a)n þ
Xm

n¼1

dn

(z � a)n
(A:26)

The coefficient d1 is the residue at the pole.
If the series in inverse powers of (z� a) in Equation A.25 does

not terminate, the function f(z) is said to have an essential

singularity at z¼ a. Thus,

f (z) ¼
X1

n¼0

cn(z � a)n þ
X1

n¼1

dn

(z � a)n
(A:27)

The coefficient d1 is the residue of the singularity.

Example A.4

Find the Laurent expansion of f(z)¼ 1=[(z� a)(z� b)n] (n� 1,

a 6¼ b 6¼ 0) near each pole.

SOLUTION

First remove the origin to z¼ a by the transformation z¼ (z� a).

Hence, we obtain

f (z) ¼ 1

z

1

(zþ c)n
¼ 1

cnz

1

1þ z
c

� �n c ¼ a� b

If jz=cj< 1, then we have

f (z) ¼ 1

cnz
1� nz

c
þ n(nþ 1)

2!

z2

c2
� � � �

� �

¼ � n

cnþ1
þ n(nþ 1)z

2!cnþ2
� � � �

� �

þ 1

cnz

which is the Laurent series expansion near the pole at z¼ a.

The residue is 1=cn¼ 1=(a� b)n.

For the second pole set z¼ (z� b) and expand as above

to find

f (z) ¼ � 1

cnþ1
þ z

znþ2
þ z2

cnþ3
þ � � �

� �

� 1

cnz
þ 1

cn�1z2
þ � � � þ 1

czn

� �

The second part of the expansion is the principal expansion

near z¼ b and the residue is �1=cn¼�1=(a� b)n.

Example A.5

Prove that

f (z)¼ exp
x

2
z� 1

2

� �� �

¼ J0(x)þ z J1(x)þ z2J2(x)þ � � � þ znJn(x)þ � � �

� 1

z
J1(x)þ

1

z2
J2(x)� � � � þ (�1)n

zn
Jn(x)þ � � �

where

Jn(x) ¼
1

2p

ð2p

0

cos (nu� x sin u) du

SOLUTION

The function f(z) is analytic except the point z¼ a. Hence, by

the Laurent’s theorem, we obtain

f (z) ¼ a0 þ a1z þ a2z
2 þ � � � þ b1

z
þ b2

z2
þ � � �

where (contours in the counterclockwise direction)

an ¼
1

2pj

þ

C2

exp
x

2
z � 1

z

� �� �

dz

znþ1
,

bn ¼
1

2pj

þ

C1

exp
x

2
z � 1

z

� �� �

zn�1dz
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where the contours are circles with center at the origin and

are taken counterclockwise. Set C2 equal to a circle of unit

radius and write z¼ exp(ju). Then we have

an ¼
1

2pj

ð2p

0

e jx sin ue�jnujdu ¼ 1

2p

ð2p

0

cos (nu� x sin u) du

because the last integral vanishes, as can be seen by writing

2p�w for u. Thus, an¼ Jn(x), and bn¼ (�1)nan because the

function is unaltered if �z�1 is substituted for z, so that

bn¼ (�1)nJn(x).

A.2 Sequences and Series

Consider a sequence of numbers, such as those that arise in
connection with the Z-transform. Suppose that the sequence of
complex numbers is given as z0, z1, z2,. . . .

The sequence of complex numbers is said to converge to the
limit L; that is,

lim
n!1

zn ¼ L

if for every positive d there exists an integer N such that

jZn � Lj < d for all n > N

That is, a convergent sequence is one whose terms approach
arbitrarily close to the limit L as n increases. If the series does not
converge, it is said to diverge.

THEOREM A.3

In order for a sequence {zn} of complex numbers to be conver-
gent, it is necessary and sufficient that for all d> 0 there exists a
number N(d) such that for all n>N and all p¼ 1, 2, 3, . . . the
inequality jznþ p� znj< d is fulfilled.

The sum of an infinite sequence of complex numbers z0,
z1, . . . is given by

S ¼ z0 þ z1 þ z2 þ � � � ¼
X1

n¼0

zn (A:28)

Consider the partial sum sequence of n terms, which is designated
Sn. The infinite series converges to the sum S if the partial sum
sequence Sn converges to S. That is, the series converges if for

Sn ¼
Xn

n¼0

zn lim
n!1

Sn ¼ S (A:29)

When the partial sum Sn diverges, the series is said to diverge.

A.2.1 Comparison Test

Let the terms of the numerical series (Equation A.28) for all
n� n0� 1 satisfy the condition jznj � bn. Then the convergence
of the series of positive terms

P1
n¼1 bn implies absolute conver-

gence of the above series.

A.2.2 Limit Comparison Test

If the numerical series
P1

n¼1 vn converges absolutely and for the
terms of the numerical series (Equation A.28) there takes place
the relationship

lim
n!1

zn

vn

�
�
�
�

�
�
�
�
¼ q ¼ const < 1

then series (Equation A.28) converges absolutely.

A.2.3 D’Alembert’s Test

If for the terms of the numerical series (Equation A.29) the
finite limit

lim
n!1

znþ1

zn

�
�
�
�

�
�
�
�
¼ l

then for 0� l< 1 series (Equation A.28) converges absolutely,
for l> 1 series (Equation A.28) diverges, and for l¼ 1 an add-
itional test is required.

A.2.4 Root Test

Consider the sequence

rn ¼
ffiffiffiffiffiffiffi

znj jn
p

If this sequence converges to l as n approaches infinity, then
the series (Equation A.28) converges absolutely if l< 1 and
diverges if l> 1.

A.2.5 Uniform Convergence
(Weierstrass M-Test)

If jun (z)j �Mn, where Mn is independent of z in a region U and
P1

n¼1 Mn converges, then
P1

n¼1 un(z) isuniformlyconvergent inU.

Example A.6

Show that
P1

n¼1
1

n2þz2
is uniformly convergent in the interval

1< jzj< 2.

SOLUTION

n2 þ z2j j � n2j j� z2j j � n2 � 4 � 1
2
n2 for n> 2 (the conver-

gence is not affected by dropping the first two terms of the
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series). Therefore,
1

n2 þ z2j j �
2

n2
and the series

P1
n¼3

2
n2
con-

verges. From the M test with Mn ¼ 2
n2
implies that the series

converges uniformly.

A.2.6 Analyticity of a Sequence of Functions

If the functions of sequence {fk(z)} are analytic in a region U and
the sum

F(z) ¼
X1

k¼1

fk(z)

is uniformly convergent, then F(z) is analytic in U.

Proof Because F(z) is uniformly convergent for any e, we can
find N such that jF(z)� Sk(z)j< e for all n>N, where
Sk ¼ partial sum ¼P1k¼1 fk(z). Because F(z) is uniformly con-
vergent, it implies that fk(z) are continuous and, hence, F(z) is
continuous. Integrating within the region U, we obtain (integra-
tion is performed counterclockwise)

þ

C

F(z)dz �
Xn

k¼1

þ

C

fk(z)dz

�
�
�
�
�
�

�
�
�
�
�
�

< e

þ

C

dz ¼ e‘(C)

where ‘(C) is the length of the contour. Since e ! 0 as n !1
implies that

Þ

C F(z)dz ¼
P1

k¼1
Þ

C fk(z)dz ¼ 0, since fk(z)’s are
analytic. Hence, F(z) is also analytic.

A.3 Power Series

A series of the form

W(z) ¼ a0 þ a1(z � z0)þ a2(z � z0)
2 þ � � �

¼
X1

n¼0

an(z � z0)
n (A:30)

where the coefficients an are given by

an ¼
1

n!

dnW(z)

dzn

�
�
�
�
z¼z0

(A:31)

is a Taylor series that is expanded about the point z¼ z0,
where z0 is a complex constant. That is, the Taylor series expands
an analytic function as an infinite sum of component functions.
More precisely, the Taylor series expands a functionW(z), which
is analytic in the neighborhood of the point z¼ z0, into an
infinite series whose coefficients are the successive derivatives
of the function at the given point. However, we know that the
definition of a derivative of any order does not require more than
the knowledge of the function in an arbitrarily small neighbor-
hood of the point z¼ z0. This means, therefore, that the Taylor
series indicates that the shape of the function at a finite distance
z0 from z is determined by the behavior of the function in the
infinitesimal vicinity of z¼ z0. Thus, the Taylor’s series implies

that any analytic function has a very strong interconnected
structure, and that by studying the function in a small vicinity
of the point z¼ z0, we can precisely predict what happens at the
point z¼ z0þDz0, which is a finite distance from the point of
study.

If z0¼ 0, the expansion is said to be about the origin and is
called a Maclaurin series.

A power series of negative powers of (z� z0),

W(z) ¼ a0 þ a1(z � z0)
�1 þ a2(z � z0)

�2 þ � � � (A:32)

is called a negative power series.
We first focus attention on the positive power series (Equation

A.30). Clearly, this series converges to a0 when z¼ z0. To ascer-
tain whether it converges for other values of z, we write

THEOREM A.4

A positive power series converges absolutely in a circle of radius
Rþ centered at z0 where jz� z0j<Rþ; it diverges outside of this
circle where jz� z0j>Rþ. The value of Rþ may be zero, a
positive number, or infinity. If Rþ¼ infinity, the series converges
everywhere, and if it is equal to zero the series converges only at
z¼ z0. The radius R

þ is found from the relation

Rþ ¼ lim
n!1

an

anþ1

�
�
�
�

�
�
�
�
if the limit exists (A:33)

or by

Rþ ¼ lim
n!1

1
ffiffiffiffiffiffiffi

anj jn
p if the limit exists (A:34)

Proof For a fixed value z, apply the ratio test, where

zn ¼ an(z � z0)
n

That is,

znþ1

zn

�
�
�
�

�
�
�
�
¼ anþ1(z � z0)

nþ1

an(z � z0)
n

�
�
�
�

�
�
�
�
¼ anþ1

an

�
�
�
�

�
�
�
�
z � z0j j

For the power series to converge, the ratio test requires that

lim
n!1

anþ1

an

�
�
�
�

�
�
�
�
z � z0j j < 1 or z � z0j j < lim

n!1
an

anþ1

�
�
�
�

�
�
�
�
¼ Rþ

That is, the power series converges absolutely for all z that satisfy
this inequality. It diverges for all z for which jz� z0j>Rþ. The
value of Rþ specified by Equation 3.5 is reduced by applying the
root test.
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Example A.7

Determine the region of convergence for the power series

W(z) ¼ 1

1þ z
¼ 1� z þ z2 � z3 þ � � �

SOLUTION

We have an¼ (�1)n, from which

Rþ ¼ lim
n!1

(�1)n

(�1)nþ1

�
�
�
�

�
�
�
�
¼ 1j j

The series converges for all z for which jzj< 1. Hence, this

expansion converges for any value of z within a circle of unit

radius about the origin. Note that there will be at least one

singular point of W(z) on the circle of convergence. In the

present case, the point z¼�1 is a singular point.

Example A.8

Determine the region of convergence for the power series

W(z) ¼ ez ¼ 1þ z þ z2

2!
þ z3

3!
þ � � � ¼

X1

n¼1

1

n!
zn

SOLUTION

We have an¼ 1=n! from which

Rþ ¼ lim
n!1

(nþ 1)!

n!

�
�
�
�

�
�
�
�
¼ lim

n!1
(nþ 1) ¼ 1

The circle of convergence is specified by Rþ¼ infinity; hence,

W(z)¼ ez converges for all finite values of z.

THEOREM A.5

A negative power series (Equation A.32) converges absolutely
outside a circle of radius R� centered at z0, where jz� z0j>R�; it
diverges inside of this circle where jz� z0j<R�. The radius of
convergence is determined from

R� ¼ lim
n!1

anþ1

an

�
�
�
�

�
�
�
�
if the limit exists (A:35)

or by

R� ¼ lim
n!1

ffiffiffiffiffiffiffi

anj jn
p

if the limit exists (A:36)

Proof The proof of this theorem parallels that of Theorem A.4.

If a function has a singularity at z¼ z0, it cannot be expanded
in a Taylor series about this point. However, if one deletes the
neighborhood of z0, it can be expressed in the form of a Laurent
series. The Laurent series is written

W(z)¼ � � � þ a�2

(z� z0)
þ a�1

(z� z0)
þ a0 þ a1(z� z0)þ a2(z� z0)

2 þ � � �

¼
X1

n¼�1
an(z� z0)

n (A:37)

If a circle is drawn about the point z0 such that the nearest
singularity of W(z) lies on the circle, then Equation A.37 defines
an analytic function everywhere within this circle except at its
center. The portion

P1
n¼0 an(z � z0)

n is regular at z¼ z0. The
portion

P�1
n¼�1 an(z � z0)

n is not regular and is called the prin-
cipal part of W(z) at z¼ z0.

The region of convergence for the positive series part of the
Laurent series is of the form

z � z0j j < Rþ (A:38)

while that for the principal part is given by

z � z0j j > R� (A:39)

The evaluation of Rþ and R� proceeds according to the methods
already discussed. Hence, the region of convergence of the
Laurent series is given by those points common to Equations
A.38 and A.39 or for

R� < z � z0j j < Rþ (A:40)

If R�>Rþ, the series converges nowhere. The annular region of
convergence for a typical Laurent series is shown in Figure A.8.

Converge

R+

Diverge

Diverge

R–
z0

FIGURE A.8
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Example A.9

Consider the Laurent series W(z) ¼
P

n anz
n where

an

1

3

� �n

for n ¼ 0, 1, 2, . . .

2n for n ¼ �1, �2, . . .

8

<

:

Determine the region of convergence.

SOLUTION

By Equations A.33 and A.38 we have R þ¼ 3. By Equations

A.35 and A.38 we have R¼ 2. Hence, the series converges for

all z for which 2< jzj< 3.

No convenient expression for obtaining the coefficients of

the Laurent series. However, because there is only one Laur-

ent expansion for a given function, the resulting series, how-

ever derived, will be the appropriate one. For example,

e1=z ¼ 1þ 1

z
þ 1

2!z2
þ 1

3!z3
þ � � � (A:41)

is obtained by replacing z by 1=z in the Maclaurin expansion

of exp(z). Note that in this case the coefficients of all positive

powers of z in the Laurent expansion are zero. As a second

illustration, consider the function W(z)¼ (cos z)=z. This is

found by dividing the Maclaurin series for cos z by z, with

the result

cos z

z
¼ 1

z
1� z2

2!
þ z4

4!
� � � �

� �

¼ 1

z
� z

2!
þ z3

4!
� � � � (A:42)

In this case, the Laurent expansion includes only one term 1=z
in descending powers of z, but an infinite number of terms in

ascending powers of z. That is, a�1¼ 1 and a�n¼ 0 if n 6¼ 1.

A.4 Analytic Continuation

The Taylor theorem shows that if a function f(z) is given by a
power in z, it can also be represented as a power series in
z� z0¼ f[(z� z0)þ z0] where z0 is any point within the original
circle of convergence, and this series will converge within any
circle about z0 that does not pass beyond the original circle of
convergence. Actually, it may converge within a circle that does
not pass beyond the original circle of convergence. Consider, for
example, the function

f (z) ¼ 1þ z þ z2 þ � � � ¼ 1

1� z
for zj j < 1

Choose z0¼ j=2, and the Taylor expansion of

f (z) ¼ 1

1� z � 1
2 j

� �

þ 1
2 j

� � ¼ 1

1� 1
2 j

� �

� z0
z0 ¼ z � 1

2
j

in powers of z0 is

f (z) ¼ 1

1� 1
2 j
þ z0

1� 1
2 j

� �2 þ
z
02

1� 1
2 j

� �3 þ � � �

This series must converge and be equal to the original function if
jz0j< 1=2, because j is the point of circle jzj ¼ 1 nearest to j=2,
a requirement of Taylor’s theorem. Actually this series converges
if z0j j < 1� 1

2 j
�
�

�
� ¼ 1

2

ffiffiffi

5
p

:

Suppose that the considered series represented no previously
known function. In this case, the new Taylor series would define
values of an analytic function over a range of z where no function
is defined by the original series. Then we can extend the range of
definition by taking a new Taylor series about a point in the new
region. This process is called analytic continuation. In practice,
when continuation is required, the direct use of the Taylor series
is laborious and is seldom used. Of more convenience is the
following theorem.

THEOREM A.6

If two functions f1(z) and f2(z) are analytic in a region D and
equal in a region D’ within D, they are equal everywhere in D.

A.5 Singularities of Complex Functions

A singularity has already been defined as a point at which a
function ceases to be analytic. Thus, a discontinuation function
has a singularity at the point of discontinuity, and multivalued
functions have a singularity at a branch point. There are two
important classes of singularities that a continuous, single-valued
function may possess.

Definition A function has an essential singularity at z¼ z0
if its Laurent expansion about the point z0 contains an infinite
number of terms in inverse powers of (z� z0).

Definition A function has a nonessential singularity or
pole of order m if its Laurent expansion can be expressed in
the form

W(z) ¼
X1

n¼�m

an(z � z0)
n (A:43)

Note that the summation extends from �m to infinity and not
from minus infinity to infinity; that is, the highest inverse power
of (z� z0) is m.

An alternative definition that is equivalent to this but somewhat
simpler to apply is the following: if limz!z0 (z � z0)

mW(z)½ � ¼ c,
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a nonzero constant (herem is a positive number), thenW(z) is said
to possess a pole of orderm at z0. The following examples illustrate
these definitions:

1. exp(1=z) (see Equation A.41) has an essential singularity at
the origin.

2. cos z=z (see Equation A.42) has a pole of order 1 at the
origin.

3. Consider the function.

W(z) ¼ ez

(z � 4)2(z2 þ 1)

Note that functions of this general type exist frequently in
the Laplace inversion integral. Because ez is regular at all
finite points of the z-plane, the singularities of W(z) must
occur at the points for which the denominator vanishes;
that is, for

(z � 4)2(z2 þ 1) ¼ 0 or z ¼ 4, þ j, � j

By the second definition above, it is easily shown thatW(z)
has a second-order pole at z¼ 4, and first-order poles at
the two pointsþ j and �j. That is,

lim
z!4

(z � 4)2
ez

(z � 4)2(z2 þ 1)

� �

¼ e4

17
6¼ 0

lim
z!j

(z � j)
ez

(z � 4)2(z2 þ 1)

� �

¼ ej

(j� 4)22j
6¼ 0

4. An example of a function with an infinite number of
singularities occurs in heat flow, wave motion, and similar
problems. The function involved is

W(z) ¼ 1= sinh az

The singularities in this function occur when sinh az¼ 0 or
az¼ jsp, where s¼ 0,�1,�2, . . . . That each of these is a first-
order pole follows from

lim
z!j(sp=a)

z � j
sp

a

	 
 1

sinh az
¼ 0

0

This can be evaluated in the usual manner by differentiating
numerator and denominator (L’Hospital rule) to find

lim
z!j(sp=a)

1

a cosh az
¼ 1

a cosh jsp
¼ 1

a cos sp
6¼ 0

Definition (Isolated Singularities) The point z¼ z0 is an
isolated singularity of W(z) if we can always find d such that

the circle jz� z0j ¼ d does not contain another singularity.
If no such d exists, the point z0 is known as a nonisolated

singularity.

Definition (Poles) If lim
z!z0

(z � z0)
nW(z) ¼ constant 6¼ 0,

where n is positive, then the point z¼ z0 is called a pole of

order n. If n¼ 1, z0 is called a simple pole.

Example A.10

It is interesting to study the variation of f(z) close to the pole.

For example, the function W(z)¼ 1=z¼ (1=r)e�ju has a simple

pole at zero. For any specific angle u1 the modulus jW(z)j
increases to infinity as r ! 0, and this is true for all the angles

from 0 to 2p.

Definition (Removable Singularities) The point z¼ z0 is a
removable singularity of W(z) if lim

z!z0
W(z) exists.

Definition (Branch Points) Multiple-valued functions
contain singular points known as the branch points.

Example A.11

Investigate the function W(z)¼ z1=2.

SOLUTION

In polar form we have W ¼ ffiffiffi

z
p ¼ r1=2 cos 1

2
uþ j sin 1

2
u

� �

(see

Figure A.9) where z ¼ x þ jy, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, and u¼ tan�1(y=x).

If we increase u by 2p, we obtain W ¼ ffiffiffi

z
p ¼ cos 1

2
uþ p

� �

þ
�

j sin 1
2
uþ p

� �

� ¼ � ffiffi

r
p

cos 1
2
uþ j sin 1

2
u

� �

which is evident from

Figure A.9b. This implies thatW(z) has two values, one value for

0� u�p and the other from p� u� 2p. This indicates thatW
(z) is not analytic on the positive real axis when the angle ranges

from 0� u� 2p. If we create a barrier (or cut) to exist along

0x (see Figure A.9c) then u cannot take the values 0, 2np,
n¼ 1, 2, . . . . Then for the angle 0< u< 2p W is single valued

and continuous and, therefore, analytic. This angle is known as

the principal branch of the function.

The origin 0 is called the branch point. To make W ¼ ffiffiffi

z
p

unique on each branch, the barrier must start from the branch

point. The angular position of the barrier is arbitrary.

Example A.12

Investigate phase change in relation to branch points.

SOLUTION

If the contour is that shown in Figure A.10a for the function

W(z)¼ z1=2, then as z varies on the contour from A to B it

A-12 Appendix A: Functions of a Complex Variable



sweeps the angle from u1 to u2. Then if it varies from B to C

continuous in the counterclockwise direction, the angle is

swept from u2 to u1. The angle swept out of OA is zero

since it oscillated to B and back. Hence, the value of the

function is that given by W ¼ ffiffi
r

p
cos 1

2
u1 þ j sin 1

2
u1

� �

.

Let’s investigate the function W(z) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z(z � a)
p

, which has

two branch points, z¼ 0 and z¼ a. From Figure A.10b we

obtain

W ¼ ffiffiffiffiffiffiffiffiffi
r1r2e
p j12(u1þu2 )

¼ ffiffiffiffiffiffiffi
r1r2
p

cos
1

2
u1 þ u2ð Þ þ j sin

1

2
(u1 þ u2)

� �

If we start from P moving counterclockwise, u1 varies by 2p
and u2 returns back to its original value. Hence,

W ¼ ffiffiffiffiffiffiffi

r1r2
p

cos
1

2
(u1 þ 2pþ u2)þ j sin

1

2
(u1 þ 2pþ u2)

� �

¼ � ffiffiffiffiffiffiffi

r1r2
p

cos
1

2
(u1 þ u2)þ j sin

1

2
(u1 þ u2)

� �

which implies that the function enters a new branch. When P

rotates twice, u1 becomes u1þ 4p and the function has its

original value.

From Figure A.10c, we observe that as we trace the con-

tour u1 and u2 change by 2p each. Therefore,

W ¼ ffiffiffiffiffiffiffi

r1r2
p

cos
1

2
(u1 þ u2 þ 4p)þ j sin

1

2
(u1 þ u2 þ 4p)

� �

¼ ffiffiffiffiffiffiffi

r1r2
p

cos
1

2
(u1 þ u2)þ j sin

1

2
(u1 þ u2)

� �

and the function regains its original value. Hence, the branch

cut can be from 0 to point a as indicated in the figure.

Example A.13 (Essential Singularity)

Let us investigate the function W(z)¼ e1=z as z! 0. We write

W ¼ e1=z ¼ e1=[re
ju]¼ e

1
re
�ju ¼ e

1
r cosue�j

sinu
r ¼ e

cosu
r cos

sinu

r
� j sin

sinu

r

� �

¼ uþ jy¼ r1e
�ju1 ¼ r1 cosu1� jr1 sinu1

where

r1 ¼ e
1
r
cos u , u1 ¼

sin u

r
, u ¼ r1 cos u1 y ¼ �r1 sin u1

jy

z plane

A

x
θ

(a)

O

ju

N1

N
u

θ/2

P

W plane

O

P1

(b)

jy

Principal
branch

Branch
point

Branch
cut

0<θ<2π

(c)

FIGURE A.9 Illustrating W(z) ¼ z1=2.
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FIGURE A.10 Illustrating Example A.12.
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We observe that for a specific value of 0< u<p=2 as r ! 0,

r1¼ ecosu=r and u1¼ sin u=r increase rapidly and, thus, the

point W¼ r1 cos u1� j r1 sinu1¼ r1[cos u1� j sin u1] rotates
with ever-increasing length and angular velocity (assuming

r ! 0 linearly with time). Although the function behaves

peculiar near the singularity, it is analytic there and it is said

that the singularity is isolated.

Definition (Singularity at1) A singularity ofW(z) at infinity
is the same as that of W(1=z) at z¼ 0, where z¼ 1=z).

Example A.14

The functionW(z)¼ z2 has a double pole at1 sinceW(1=z)¼
1(z)2 has a double pole at z¼ 0.

In general: (1) if a function has a branch point at z¼ z0, it

has no other type of singularity there; (2) if a function has an

essential singularity at z¼ z0, it has no pole there.

A.6 Theory of Residues

It has already been shown that the contour integral of any
function that encloses no singularities of the integrand will
vanish. (In this section all the contour integrals are taken coun-
terclockwise unless it is indicated otherwise.) Now our purpose is
to examine the integral, the path of which encloses one singu-
larity, say at z¼ z0. The Laurent expansion of such a function is

W(z) ¼
X1

n¼�1
an(z � z0)

n

and so

þ

C

W(z)dz ¼
X1

n¼�1
an

þ

Cn

(z � z0)
ndz

But by Equation A.11, each term in the sum vanishes except for
n¼�1, with

þ

C

(z � z0)
�1dz ¼ 2pj

In then follows that

þ

C

W(z)dz ¼
X1

n¼�1

þ

Cn

(z � z0)
ndz ¼ 2pja�1 (A:44)

Because the integral (1=2p j)
Þ

C W(z) dz will appear frequently in
subsequent applications, it is given a name; it is called the residue
of W(z) at z0 and is abbreviated Res(W).

From the second corollary Equation A.13, it follows that if
W(z) has n isolated singularities within C, then

1

2pj

þ

C

W(z)dz ¼
Xn

s¼1

1

2pj

þ

Cs

W(z)dz ¼
Xn

s¼1
Ress(W) (A:45)

or, in other words, the value of the contour integral equals the
sum of the residues within C. Observe that to evaluate integrals
in the complex plane, it is only necessary to find the residues at
the singularities of the integrand within the contour. One obvi-
ous way of doing this is (see Equation A.44) to find the coeffi-
cient a�1 in the Laurent expansion about each singularity.
However, this is not always an easy task.

Several theorems exist that make evaluating residues relatively
easy. We introduce these.

THEOREM A.7

If the limz!z0 (z � z0)W(z)½ � is finite, this limit is the residue of
W(z) at z¼ z0. If the limit is not finite, thenW(z) has a pole of at
least second order at z¼ z0 (it may possess an essential singu-
larity here). If the limit is zero, then W(z) is regular at z¼ z0.

Proof Suppose that the function is expanded into the Laurent
series

W(z) ¼ a�1

z � z0
þ a0 þ a1(z � z0)þ a2(z � z0)

2 þ � � �

Then the expression

lim
z!1

(z � z0)W(z)½ � ¼ lim
z!1

a�1 þ a0(z � z0)þ a1(z � z0)
2 þ � � �

� �

¼ a�1

This proves the theorem.
This process was previously used to ascertain whether or not a

function had a first-order pole at z¼ z0. Thus, referring back to
the examples in Section A.5, we have

Res
cos z

z

	 


z¼0
¼ 1

Res
ez

(z � 4)2(z2 þ 1)

� �

z¼j

¼ e j

(j� 4)22j

Res
1

sinh az

� �

z¼j(sp=a)

¼ 1

a cos sp

Many of the singularities that arise in system function studies
are first-order poles. The evaluation of the integral is relatively
direct.
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Example A.15

Evaluate the following integral

1

2pj

þ

C

e zt

(z2 þ v2)
dz

when the contour C encloses both first-order poles at z ¼ � jv.

Note that this is precisely the Laplace inversion integral of the

function 1=(z2þv2).

SOLUTION

This involves finding the following residues

Res
e z t

z2 þ v2

� �

z¼jv

¼ e jv t

2jv
Res

e z t

z2 þ v2

� �

z¼�jv

¼ � e�jv t

2jv

Hence,

1

2pj

þ

C

e z t

z2 þ v2
dz ¼

X

Res ¼ e jv t � e�jv t

2jv

� �

¼ sinv t

v

A slight modification of the method for finding residues of

simple poles

ResW(z0) ¼ lim
z!z0

(z � z0)W(z)½ � (A:46)

makes the process even simpler. This is specified by the

following theorem.

THEOREM A.8

Suppose that f (z) is analytic at z¼ z0 and suppose that g(z) is
divisible by z� z0 but not by (z� z0)

2. Then

Res
f (z)

g(z)

� �

z¼z0

¼ f (z0)

g 0(z0)
where g 0(z) ¼ dg(z)

dz
(A:47)

Proof We write the relation (z� z0) h(z)¼ g(z), then g0(z)¼
(z� z0) h0(z)þ h(z) so that for z¼ z0, g0(z0)¼ h(z0). Then we have

Res
f (z)

g(z)

� �

z¼z0

¼ lim
z!z0

(z � z0)
f (z)

g(z)

� �

¼ lim
z!z0

f (z)

h(z)

� �

¼ f (z0)

h(z0)

¼ f (z0)

g 0(z0)

which is the given result.
In reality, this theorem has already been used in the evaluation

of Res(1=sinh az)z¼ j(sp=a). Here f(z)¼ 1, g(z)¼ sinh az, and
g0(z)¼ a cosh az.

As a second illustration, consider the previously used function

W(z) ¼ ez

(z � 4)2(z2 þ 1)

Here, we take

f (z) ¼ ez

(z � 4)2
, g(z) ¼ z2 þ 1

thus, g0(z)¼ 2z and the previous result follows immediately with

Res
ez

(z � 4)2(z2 þ 1)

� �

¼ e j

(j� 4)22j

Equation A.47 permits a simple proof of the Cauchy second
integral theorem (A.15). This involves choosing g(z)¼ (z� z0)
in the integral

1

2pj

þ

C

f (z)

z � z0
dz ¼ f (z0)

1
¼ f (z0) (A:48)

Suppose that Equation A.48 is differentiated n� 1 times with
respect to z0. Then we write

dn�1f (z0)

dzn�1
0

¼: f (n�1)(z0) ¼
(n� 1)!

2pj

þ

C

f (z)

(z � z0)
n dz (A:49)

This species an any-order derivative of a complex function
expressed as a contour integral.

Our discussion so far has concentrated on finding the residue
of a first-order pole. However, Equation A.49 permits finding the
residue of a pole of any order. If, for example, W(z)¼ [ f(z)=
(z� z0)

n], then evidently W(z) has a pole of order n at z¼ z0
because f(z) is analytic at z¼ z0. Then f(z)¼ (z� z0)

nW(z), and
Equation A.49 becomes

Res W(z)ð Þjz¼z0
¼ 1

2pj

þ

C

W(z)dz

¼ 1

(n� 1)!

dn�1

dzn�1
(z � z0)

nW(z)½ �z¼z0
(A:50)

Example A.16

Evaluate the residue at the second-order pole at z¼ 4 of the

previously considered function

W(z) ¼ ez

(z � 4)2(z2 þ 1)
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SOLUTION

It follows from Equation A.50 that

ResW(z)jz¼4¼
1

1!

d

dz

ez

z2 þ 1

� �

z¼4

¼ 9e4

289

Example A.17

Evaluate the residue at the third pole of the function

W(z) ¼ e z t

(z þ 1)3

SOLUTION

A direct application of Equation A.50 yields

ResW(z)jz¼�1¼
1

2!

d2

dz2
(e zt)

�
�
�
�
z¼�1
¼ 1

2
t2e�t

There is no simple way of finding the residue at an essential

singularity. The Laurent expansion must be found and the

coefficient a�1 is thereby obtained. For example, from Equa-

tion A.41 it is seen that the residue of exp(1=z) at the origin is

unity. Fortunately, an essential singularity seldom arises in

practical applications.

Sometimes the function takes the form

W(z) ¼ f (z)

zg(z)
(A:51)

where the numerator and denominator are prime to each

other, g(z) has no zero at z¼ 0 and cannot be factored readily.

The residue due to the pole at zero is given by

ResW(z) ¼ f (z)

g(z)

�
�
�
�
z¼0
¼ f (0)

g(0)
(A:52)

If z¼ a is the zero of g(z) then the residue at z¼ a is given by

ResW(z) ¼ f (a)

ag0(a)
(A:53)

If there are N poles of g(z) then the residues at all simple poles

of W(z) are given by

X

Res ¼ f (z)

g(z)

�
�
�
�
z¼0
þ
XN

m¼1
f (z) z

dg(z)

dz

� �� �

z¼am

"

(A:54)

If W(z) takes the form W(z)¼ f(z)=[h(z)g(z)] and the simple

poles to the two functions are not common, then the residues

at all simple poles are given by

X

Res ¼
XN

m¼1

f (am)

h(am)g0(am)
þ
XR

r¼1

f (br )

h0(br )g(br )
(A:55)

Example A.18

Find the sum of the residues e2z=sinmz at the first Nþ 1 poles

on the negative axis.

SOLUTION

The simple poles occur at z¼�np=m, n¼ 0, 1, 2,. . . . Thus

X

Res ¼
XN

n¼0

e2z

m cosmz

� �

z¼�np=m
¼ 1

m

XN

n¼0
(�1)ne�2np=m

Example A.19

Find the sum of the residues of e2z=(z cosh mz) at the origin

and at the first N poles on each side of it.

SOLUTION

The zeros of cosh mz are z¼�j(nþ 1=2)p=m, n integral.

Because cosh mz has no zero at z¼ 0, then Equation A.55

gives

X

Res ¼ 1þ
XN�1

n¼�N

e2z

mz sinhmz

� ��
�
�
�
z¼� nþ1

2ð Þpj=m

Example A.20

Find the residue of zez=sin mz at the origin.

SOLUTION

Because near z¼ 0 sin mz	mz there is no pole at the origin

and, hence, the integral (1=2p j)
Ð

C
zezdz= sin mz is equal

to zero for a contour encircling the origin with radius less

than p=m.

A.7 Aids to Integration

The following three theorems will substantially simplify the
evaluation of certain integrals in the complex plane. Examples
will be found in later applications.

THEOREM A.9

If AB is the arc of a circle of radius jzj ¼R for which u1 � u � u2
and if limR!1 (zW(z))¼ k, a constant that may be zero, then

lim
R!1

ð

AB

W(z)dz ¼ jk(u2 � u1) (A:56)
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Proof Let zW(z)¼ kþ e, where e ! 0 as R approaches infinity.
Then

ð

AB

W(z)dz ¼
ð

AB

kþ e

z
dz ¼ (kþ e)

ðu2

u1

jdu ¼ (kþ e)j(u2 � u1)

In carrying out this integration, the procedure employed in
Example A.2 is used. In the limit as R approaches infinity
(Equation A.56) follows.

This theorem can be shown to be valid even if there are
a finite number of points on the arc A B for which the
limR!1(zW(z)) 6¼ k, provided only that the limit remains finite
for finite R at these points. This theorem can also be proved true if
we choose limR!1(z� a)W(z)¼ k when the integral is taken
around the arc u1� arg(z� a)� u2 of the circle jz� avj ¼ r.

THEOREM A.10

If AB is the arc of a circle of radius jz� z0j ¼ r for which
w1�w�w2 (as shown in Figure A.11) and if limz!z0

(z � z0)W(z)½ � ¼ k, a constant that may be zero, then

lim
r!0

ð

AB

W(z)dz ¼ jk(w2 � w1) (A:57)

where r and w are introduced polar coordinates, with the point
z¼ z0 as origin.

Proof The proof of this theorem follows along similar lines to
that of Theorem A.9.

Note specifically that Theorem A.9 will allow the evaluation of
integrals over infinitely large arcs, whereas Theorem A.10 will
allow the evaluation over infinitely small arcs.

THEOREM A.11

If the maximum value of W(z) along a path C (not necessarily
closed) is M, the maximum value of the integral of W(z) along C

isMl, where l is the length of C. When expressed analytically, this
specifies that

ð

C

W(z)dz

�
�
�
�
�
�

�
�
�
�
�
�

� Ml (A:58)

Proof The proof of this theorem is very simple if recourse is
made to the definition of an integral. Thus, from Figure A.12

ð

C

W(z)dz

�
�
�
�
�
�

�
�
�
�
�
�

¼ lim
Dzs!0
n!1

Xn

s¼1

WsDzs

�
�
�
�
�

�
�
�
�
�
� M lim

Dzs!0
n!1

Xn

s¼1

Dzsj j ¼ Ml

JORDAN’S LEMMA A.1

If t< 0 and

f (z) ! 0 as z ! 1 (A:59)

then

ð

C

etzf (z)dz ! 0 as r ! 1 (A:60)

where C is the arc shown in Figure A.13a.

Proof We must assume that the angle of C does not exceed p,
0� arg z�p. This is not true if c< 0. However, the portion of C
in the Re z< 0 region will have length not exceeding pjcj. Hence,
because of Equation A.59 the integration over this portion will
tend to zero. From Equation A.59 it follows that, given e> 0, we
can find a constant r0 such that

f (z)j j < e for zj j > r0

jy
B

z0

x

A

r

φ1φ2

FIGURE A.11

jy

C

Rr–r–R
x

FIGURE A.12
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Hence, with z¼ re ju, r> r0 we obtain (t< 0)

ð

C

etzf (z)dz

�
�
�
�
�
�

�
�
�
�
�
�

¼
ð
p=2

�p=2

etr( cos uþj sin u)f (re ju)jre judu

�
�
�
�
�
�
�

�
�
�
�
�
�
�

< er

ð
p=2

�p=2

etr cos udu � er2

ð
p=2

0

etr(1�2u=p)du

¼ erp

tj jr (1� ert) <
pe

tj j

Because e is arbitrarily small, the lemma is verified.
From the above lemma we conclude that if f(z) is analytic

everywhere in the Re z� c region except at a number of poles, then

ð

Br

etzf (z)dz ¼ �2pj
Xn

k¼1
Resk t < 0 (A:61)

where the Br stands for the Bromwich integration from c� j1 to
cþ j1, which is the line A B in Figure A.13a. Resk are the
corresponding residues; the minus sign occurs because of the
direction of integration along the Br line from B to A. The lemma
can easily be extended for t> 0 and C be an arc lying on the Re
z< c plane. The residues are given by

ð

Br

etzf (z)dz ¼ 2pj
Xn

k¼1
Resk t > 0 (A:62)

THEOREM A.12 Mellin 1

Let

(a) f(z) be analytic in the strip a< x<b, both alpha and beta
being real

(b)
Ð xþj1
x�j1 f(z)j jdz ¼

Ð1
�1 f(x þ jy)j jdy converges

(c) f(z) ! 0 uniformly as jyj ! 1 in the strip a< x<b

(d) u ¼ real and positive: if

f (u) ¼ 1

2pj

ð
cþj1

c�j1

u�zf(z)dz (A:63)

then

f(z) ¼
ð1

0

uz�1f (u)du (A:64)

THEOREM A.13 Mellin 2

For u real and positive, a<Re z<b, let f(u) be continuous or
piecewise continuous, and integral (Equation A.64) be absolutely
convergent. Then (Equation A.63) follows from (Equation A.64).

THEOREM A.14 Mellin 3

If in Equations A.63 and A.64 we write u¼ e�t, t being real, and
in Equation A.64 put p for z and g(t) for f(e�t), we get

g(t) ¼ 1

2pj

ð
cþj1

c�j1

e ztf(z)dz (A:65)

f(p) ¼
ð1

�1

e�ptg(t)dt (A:66)

A.7.1 Transformation of Contour

To evaluate formally the integral

I ¼
ða

0

cos xt dt (A:67)

we set y¼ xt that gives dx¼ dy=t and, thus,

I ¼ 1

t

ðat

0

cos y dy ¼ sin at

t
(A:68)

Regarding this as a contour integral along the real axis for x¼ 0
to a, the change to y¼ xt does not change the real axis. However,
the contour is unaltered except in length.

Let t be real and positive. If we set z¼ zt or z¼ z=t,
the contour in the z-plane is identical in type with that in

jIm z

B

C

c

r

A

Re z

1

1– 2
θ

θ

π

cos θ

2
π

FIGURE A.13
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the z-plane. If it were a circle of radius r in the z-plane, the
contour in the z-plane would be a circle of radius r=t. When t is
complex z ¼ r1e

ju1 , t ¼ r2e
ju2 , so z ¼ (r1=r2)e j(u1�u2), r1, u1 being

variables while r2 and u2 are fixed. If z ¼ jy ¼ zj je ju1 ¼ zj je jp=2
and if the phase of t was u2¼p=4 then the contour in the z-plane
would be a straight line at 458 with respect to the real axis. In
effect, any figure in the z-plane transforms into a similar figure in
the z-plane, whose orientation and dimensions are governed by
the factor 1 t= ¼ e�ju2=r2.

Example A.21

Make the transformation z¼ z t to the integral I ¼
Ð

c
e z=t dz

z
,

where C is a circle of radius r0 around the origin.

SOLUTION

dz=z ¼ dz=z so I ¼
Ð

C0 e
z dz

z , where C0 is a circle around the

origin of radius r0=r (r¼ jtj).

Example A.22

Discuss the transformation z¼ (z�a), a being complex and

finite.

SOLUTION

This is equivalent to a shift of the origin to point z¼�a.
Neither the contour nor the position of the singularities are

affected in relation to each other, so the transformation can

be made without any alteration in technique.

Example A.23

Find the new contour due to transformation z¼ z2 if the

contour was the imaginary axis, z¼ jy.

SOLUTION

Choosing the positive square root we have z¼ ( jy)1=2 above

and z¼ (�jy)1=2 below the origin. Because

ffiffi

j
p

¼ (e jp=2)1=2 ¼ e jp=4 and
ffiffiffiffiffi

�j
p

¼ (e�jp=2)1=2 ¼ e�jp=4

the imaginary axis of the z-plane transforms to that in

Figure A.14.

Example A.24

Evaluate the integral
Ð

C
dz
z
, where C is a circle of radius 4 units

around the origin, under the transformation z¼ z2.

SOLUTION

The integral has a pole at z¼ 0 and its value is 2p j. If we

apply the transformation z¼ z2 then dz¼ 2z dz. Also

z ¼ ffiffiffi
z
p ¼

ffiffi
r
p

e ju=2 if we choose the positive root. From this

relation we observe that as the z traces a circle around the

origin, the z traces a half-circle from 0 to p. Hence, the integral

becomes

2

ð

C0

dz

z
¼ 2

ðp

0

rje ju

re ju
du ¼ 2pj

as was expected.

A.8 The Bromwich Contour

The Bromwich contour takes the form

f (t) ¼ 1

2pj

ðcþj1

c�j1

e ztF(z)dz (A:69)

where F(z) is a function of z, all of whose singularities lie on the
left of the path, and t is the time, which is always real and
positive, t> 0.

A.8.1 Finite Number of Poles

Let us assume that F(z) has n poles at p1, p2, . . . , pn and no other
singularities; this case includes the important case of rational
transforms. To utilize the Cauchy’s integral theorem, we must
express f(t) as an integral along a closed contour. Figure A.15
shows such a situation. We know from Jordan’s lemma (see
Section A.7) that if F(z) ! 0 as jzj ! 1 on the contour C

then for t> 0

lim
R!1

ð

C

et zF(z)dz ! 0 t > 0 (A:70)

jIm z

z-plane

Re z

Br

jIm ζ

ζ-plane

Re ζ

ζ =
 √

ye
jπ

/4
ζ = √ye –jπ/4

FIGURE A.14
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and because

ðcþjy

c�jy

et zF(z)dz !
ð

Br

et zF(z)dz y!1 (A:71)

we conclude that f(t) can be written as a limit,

f (t) ��!
R!1

1

2pj

ð

C

e ztF(z)dz (A:72)

of an integral along the closed path as shown in Figure A.15.
If we make R large enough to contain all the poles of F(z) then
the integral along C is independent of R. Therefore, we write

f (t) ¼ 1

2pj

ð

C

e ztF(z)dz (A:73)

Using Cauchy’s theorem it follows that

ð

C

e ztF(z)dz ¼
Xn

k¼1

ð

Ck

e ztF(z)dz (A:74)

where Ck’s are the contours around each pole.

1. For simple poles we obtain

f (t) ¼
Xn

k¼1
Fk(zk)e

zkt t > 0 (A:75)

Fk(zk) ¼ F(z)(z � zk)jz¼zk

2. For a multiple pole of mþ 1 multiplicity, we obtain

ð

Ck

e ztF(z)dz ¼
ð

Ck

e ztFk(z)

(z � zk)
mþ1 dz

¼ 2pj

m!

dm

dzm
[e ztFk(z)]jz¼zk (A:76)

3. Infinitely many poles (see Figure A.16).

If we can find circular arcs with radii tending to infinity such that

F(z)! 0 as z !1 on Cn (A:77)

Applying Jordan’s lemma to the integral along those arcs, we
obtain

ð

Cn

e ztF(z)dz ��!
n!1

0 t > 0 (A:78)

and with Cn
0 the closed curve, consisting of Cn and the vertical

line Re z¼ c, we obtain

f (t) ¼ lim
n!1

1

2pj

ð

C0n

e ztF(z)dz t > 0 (A:79)

Hence, for simple poles z1, z2, . . . , zn of F(z), we obtain

f (t) ¼
X1

k¼1
Fk(zk)e

zkt (A:80)

where Fk(z)¼ F(z)(z� zk).
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Example A.25

Find f(t) from its transformed value F(z)¼ 1=(z cosh az), a> 0.

SOLUTION

The poles of the above function are

z0 ¼ 0, zk ¼ �j
(2k � 1)p

2a
k ¼ 1, 2, 3, . . .

We select the arcs Cn such that their radii are Rn¼ jnp. It
can be shown that 1=cosh az is bounded on Cn and, therefore,

1=(z cosh az) ! 0 as z ! 1 on Cn. Hence,

zF(z)jz¼0 ¼ 1, (z � zk)F(z)jz¼zk
¼ (�1)k2

(2k � 1)p

and from Equation A.80 we obtain

f (t) ¼ 1þ 2

p

X1

k¼1

(�1)k

2k � 1
e zk t þ 2

p

X1

k¼1

(�1)k

2k � 1
e�zk t

¼ 1þ 4

p

X1

k¼1

(�1)k

2k � 1
cos

(2k � 1)pt

2a

A.8.2 Branch Points and Branch Cuts

The singularities that have been considered are those points at
which jW(z)j ceases to be finite. At a branch point the absolute
value of W(z) may be finite but W(z) is not single-valued, and
hence is not regular. One of the simplest functions with these
properties is

W1(z) ¼ z1=2 ¼
ffiffi
r

p
e ju=2 (A:81)

which takes on two values for each value of z, one the negative of
the other depending on the choice of u. This follows because we
can write an equally valid form for z1=2 as

W2(z) ¼
ffiffi
r

p
e j(uþ2p)=2 ¼ �

ffiffi
r

p
e ju=2 ¼ �W1(z) (A:82)

Clearly, W1(z) is not continuous at points on the positive real
axis because

lim
u!2p

� ffiffi

r
p

e ju=2
�

¼ �
ffiffi

r
p

while lim
u!0

� ffiffi

r
p

e ju=2
�

¼
ffiffi

r
p

Hence,W0(z) does not exist when z is real and positive. However,
the branch W1(z) is analytic in the region 0� u� 2p, r ! 0.
The part of the real axis where x� 0 is called a branch cut for
the branch W1(z) and the branch is analytic except at points
on the cut. Hence, the cut is a boundary introduced so that the
corresponding branch is single valued and analytic throughout
the open region bounded by the cut.

Suppose that we consider the function W(z)¼ z1=2 and con-
tour C, as shown in Figure A.17a, which encloses the origin.
Clearly, after one complete circle in the positive direction enclos-
ing the origin, u is increased by 2p, given a value of W(z) that
changes from W1(z) to W2(z); that is, the function has changed
from one branch to the second. To avoid this and to make the
function analytic, the contour C is replaced by a contour G,
which consists of a small circle g surrounding the branch
point, a semi-infinite cut connecting the small circle and C,
and C itself (as shown in Figure A.17b). Such a contour, which
avoids crossing the branch cut, ensures that W(z) is single
valued. Because W(z) is single valued and excludes the origin,
we would write for this composite contour C

ð

C

W(z)dz ¼
ð

G

þ
ð

l�

þ
ð

g

þ
ð

lþ

¼ 2pj
X

Res (A:83)

The evaluation of the function along the various segments of C
proceeds as before.

Example A.26

If 0< a< 1, show that

ð1

0

xa�1

1þ x
dx ¼ p

sin ap

SOLUTION

Consider the integral

þ

C

za�1

1þ z
dz ¼

ð

G

þ
ð

l�

þ
ð

g

þ
ð

lþ

¼ I1 þ I2 þ I3 þ I4 ¼ 2pj
X

Res

which we will evaluate using the contour shown in Figure

A.18. Under the conditions

za

1þ z

�
�
�
�

�
�
�
�
! 0 as jzj ! 0 if a > 0

za

z þ 1

�
�
�
�

�
�
�
�
! 0 as jzj ! 1 if a < 1

jy

z plane

(a)

C

x x

jy

γ l+

Г

l–

z plane

(b)

FIGURE A.17
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the integral becomes by Equation A.56

ð

G

! 0

ð

l�

¼ �e2p ja

ð1

0

by Equation A.57

ð

g

! 0

ð

lþ

¼ 1

ð1

0

Thus

(1� e2pja)

ð1

0

xa�1

1þ x
dx ¼ 2pj

X

Res

Further, the residue at the pole z¼� 1, which is enclosed, is

lim
z¼e jp

(1þ z)
za�1

1þ z
¼ e jp(a�1) ¼ �e jpa

Therefore,

ð1

0

xa�1

x þ 1
dx ¼ 2pj

e jpa

e jpa � 1
¼ p

sin pa

If, for example, we have the integral (1=2pj)
Ð

Br1
e ztdz
zyþ1 to evaluate

with Re y>�1 and t real and positive, we observe that the
integral has a branch point at the origin if y is a nonintegral
constant. Because the integral vanishes along the arcs as R!1,
the equivalent contour can assume the form depicted in Figure
A.19a and marked Br2. For the contour made up of Br1, Br2, the
arc is closed and contains no singularities and, hence, the integral
around the contour is zero. Because the arcs do not contribute
any value, provided Re y>�1, the integral along Br1 is equal to
that along Br2, both being described positively. The angle g

between the barrier and the positive real axis may have any
value between p=2 and 3p=2. When the only singularity is a
branch point at the origin, the contour of Figure A.19b is an
approximate one.

Example A.27

Evaluate the integral I ¼ 1
2pj

Ð

Br2
ezdzffiffi

z
p , where Br2 is the contour

shown in Figure A.19b.

x

jy

γ l+

Г

l–

z - plane

FIGURE A.18

(a) (b)
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Barrier
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SOLUTION

1. Write z¼ reju on the circle. Hence, we get

I1 ¼
1

2pj

ðp

�p

ere
ju

d(re ju)
ffiffi
r
p

e ju=2
¼

ffiffi
r
p

2p

ðp

�p

rr( cos uþJ sin u)þju=2du

2. On the line below the barrier z¼ x exp(�jp) where
x¼ jxj. Hence, the integral becomes

I2 ¼
1

2pj

ðr

1

exe
�jp
d(xe�jp)
ffiffiffi
x
p

e�jp=2
¼ 1

2p

ð1

r

e�xx�1=2dx

3. On the line above the barrier z¼ x exp(jp) and, hence,

I3 ¼
1

2pj

ð1

r

e xe
jp

d(xe jp)
ffiffiffi
x
p

e jp=2
¼ 1

2p

ð1

r

e�xx�1=2dx

Hence, we have

I2 þ I3 ¼
1

p

ð1

r

e�xx�1=2dx

As r ! 0, I1! 0 and, hence,

I ¼ I1 þ I2 þ I3 ¼
1

p

ð1

0

e�xx�1=2dx ¼ G 1
2

� �

p

ffiffiffiffi

p
p

p
¼ 1

ffiffiffiffi

p
p

Example A.28

Evaluate the integral f (t) ¼ 1
2pj

Ð

Br

e zte�a
ffiffi
z
p

ffiffiffi

z
p dz, a > 0 (see

Figure A.20).

SOLUTION

The origin is a point branch and we select the negative axis as

the barrier. We select the positive of
p
z when z takes positive

real values in order that the integral vanishes as z approaches

infinity in the region Re z> g, where g indicates the region of

convergence, g� c. Hence, we obtain

z ¼ re ju � p < u � p
ffiffiffi

z
p

¼
ffiffiffiffi

re
p ju=2

(A:84)

The curve C¼ Brþ C1þ C2þ C3 encloses a region with no

singularities and, therefore, Cauchy’s theorem applies (the

integrand is analytic in the region). Hence,

ð

c

e zt
e�a

ffiffi
z
p

ffiffiffi

z
p dz ¼ 0 (A:85)

It is easy to see that the given function converges to zero as R

approaches infinity and therefore the integration over C1þ C2
does not contribute any value. For z on the circle, we obtain

e�a
ffiffi
z
p

ffiffiffi

z
p

�
�
�
�
�

�
�
�
�
�
! 0

Therefore, for fixed t> 0, we obtain

ð

c3

e zt
e�a

ffiffi
z
p

ffiffiffi

z
p dz

�
�
�
�
�
�

�
�
�
�
�
�

� 2pr
ert
ffiffi

r
p ¼ lim

r!0
2pr

ert
ffiffi

r
p ¼ 0

because

ð

c

f (z)dz

�
�
�
�
�
�

�
�
�
�
�
�

� ML

where L is the length of the contour and jf(z)j<M for z on C.

On A B, z ¼ �x, ffiffiffi

z
p ¼ j

ffiffiffi

x
p

, and on D E, z ¼ �x,
ffiffiffi

z
p ¼ �j ffiffiffi

x
p

. Therefore, we obtain

ð

ABþDE

e zt
e�a

ffiffi
z
p

ffiffiffi

z
p dz !

R!1
r!0 �

ð0

1

e�xt
e ja

ffiffi
x
p

j
ffiffiffi

x
p dx �

ð1

0

e�xt

� e�ja
ffiffi
x

p

�j
ffiffiffi

x
p dx (A:86)

But from Equation A.69

ð

Br

e zt
e�a

ffiffi
z

p

ffiffiffi

z
p dz ¼ 2pjf (t) (A:87)

and, hence, Equations A.85 and A.87 reduce to

f (t)þ 1

2pj

ð1

0

e�xt e
ja

ffiffi
x

p
þ e�ja

ffiffi
x

p

j
ffiffiffi

x
p dx ¼ 0 (A:88)
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If we set x¼ y2, we have

ð1

0

e�xt
cos a

ffiffiffi
x
p
ffiffiffi
x
p dx ¼ 2

ð1

0

e�y
2t cos ay dy (A:89)

But (see Fourier transform of Gaussian function, Chapter 3)

2

ð1

0

e�y
2t cos ay dy ¼

ffiffiffi
x

t

r

e�a
2=4t (A:90)

and, hence, Equation A.89 becomes

f (t) ¼ 1
ffiffiffiffi
p
p

t
e�a

2=4t (A:91)

Example A.29

Evaluate the integral I ¼ 1
2pj

Ð

c
e ztdzffiffiffiffiffiffiffiffi
z2�1
p where C is the contour

shown in Figure A.21.

SOLUTION

The Br contour is equivalent to the dumbbell-type contour

shown in Figure A.21, B1B2A2A1B1. Set the phase along the line

A2A1 equal to zero (it can also be set equal to p). Then on A2A1
z¼ x fromþ 1 to� 1. Hence, we have

I1 ¼
1

2pj

ð�1

1

extdx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ¼ 1

2p

ð1

�1

extdx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p xj j < 1 (A:92)

By passing around the z¼�1 point the phase changes by p

and, hence, on B1B2 z¼ x exp(2pj). The change by 2p is due

to the complete transversal of the contour that contains two

branch points. Hence, we obtain

I2 ¼ �
1

2pj

ð1

�1

extdx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ¼ 1

2p

ð1

�1

extdx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p (A:93)

Changing the origin to�1, we set z¼ zþ 1 or z¼ z� 1,

which gives

I3 ¼
e�t

2pj

ð
eztdz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(z� 2)z½ �
p (A:94)

On the small circle with z¼�1 as center, z¼ r exp (ju) and we

get

I3 ¼
e�t

2p

ð�p

p

ert( cos uþj sin u)þ(ju=2)
ffiffi
r

p
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

re ju � 2
p (A:95)

When u¼ 0 the intergrand has the value þ ffiffi
r

p
er t=

ffiffiffiffiffiffiffiffiffiffi
r � 2

p
;

and for u¼ 2p the value is �
ffiffi
r

p
er t=

ffiffiffiffiffiffiffiffiffiffi
r � 2

p
. Therefore, the

intergrand changes sign in rounding the branch point at

z¼�1. Similarly for the branch point at z¼ 1, where the

change is from� to þ. As r ! 0, I3 ! 0, and thus I3 vanishes.

The same is true for the branch point at z¼�1. Therefore, by

setting x¼ cos u we obtain

I¼ I1 þ I2 ¼
1

p

ð1

�1

ext
ffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p dx ¼ 1

p

ðp

0

et cosudu¼ 1

p

ðp

0

X1

k¼0

(t cosu)k

k!
du

¼ 1

p
pþp

1

2

t2

2!
þp

3

4

1

2

t4

4!
þp

5

6

3

4

1

2

t6

6!
þ �� �

� �

¼ 1þ t2

22
þ t4

2242
þ t6

224262
þ� � � ¼

X1

k¼0

1
2
t

� �2k

(k!)2
¼ I0(t)

(A:96)

where I0(t) is the modified Bessel function of the first kind and

zero order.

Example A.30

Evaluate the integral I ¼
Ð

c
e ztffiffiffiffiffiffiffiffi
z2þ1

p dz where C is the closed

contour shown in Figure A.22.

SOLUTION

The Br contour is equal to the dumbbell-type contour as

shown in Figure A.22, A B G D A¼ C1. Hence, we have

f (t) ¼ 1

2pj

ð

c1

e zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ 1
p dz (A:97)

But

e zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ 1
p
�
�
�
�

�
�
�
�
<

ert
ffiffi

r
p ffiffiffiffiffiffiffiffiffiffi

2� r
p

Barrier

Br

C

A1

B1–1 1

r
B2

A2

jIm z
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Re z
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on the circle on theþ j branch point and, therefore, for t> 0

ð
e zt
ffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þ 1
p dz

�
�
�
�

�
�
�
�
<

2p
ffiffi

r
p

ert
ffiffiffiffiffiffiffiffiffiffi

2� r
p ! 0 as r ! 0

We obtain similar results for the contour around the�j branch
point. However,

On AB, z ¼ jv,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

; on GD, z ¼ jv,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p

and, therefore, for t> 0 we obtain

f (t) ¼ j

2pj

ð1

�1

e jvt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p dvþ j

2pj

ð�1

1

e jvt

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p dv

¼ 1

p

ð1

�1

cosvt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2
p dv

If we set v¼ sin u (see also Chapter 1)

f (t) ¼ 1

p

ð
p=2

�p=2

cos (t sin u)du ¼ J0(t)

where J0(t) is the Bessel function of the first kind.

A.9 Evaluation of Definite Integrals

The principles discussed above find considerable applicability in
the evaluation of certain definite real integrals. This is a com-
mon application of the developed theory, as it is often
extremely difficult to evaluate some of these real integrals by
other methods. We employ such methods in the evaluation of
Fourier integrals. In practice the given integral is replaced by

a complex function that yields the specified integrand in its
appropriate limit. The integration is then carried out in
the complex plane, with the real integral being extracted for
the required result. The following several examples show this
procedure.

A.9.1 Evaluation of the Integrals of Certain
Periodic Functions (0 to 2p)

An integral of the form

I ¼
ð2p

0

F( cos u, sin u)du (A:98)

where the integral is a rational function of cos u and sin u finite
on the range of integration, and can be integrated by setting
z¼ exp( ju),

cos u ¼ 1

2
(z þ z�1), sin u ¼ 1

2j
(z � z�1) (A:99)

The integral (Equation A.98) takes the form

I ¼
ð

C

F(z)dz (A:100)

where F(z) is a rational function of z finite on C, which is a circle
of radius unity with center at the origin.

Example A.31

If 0< a< 1, find the value of the integral

I ¼
ð2p

0

du

1� 2a cos uþ a2
(A:101)

SOLUTION

Introducing Equation A.99 in A.101 we obtain

I ¼
ð

C

dz

j(1� az)(z � a)
(A:102)

The only pole inside the unit circle is at a. Therefore, by

residue theory we have

I ¼ 2pj lim
z!a

z � a

j(1� az)(z � a)
¼ 2p

1� a2

jIm z
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r
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A.9.2 Evaluation of Integrals
with Limits �1 andþ1

We can evaluate the integral I ¼
Ð1
�1 F(x) dx provided that the

function F(z) satisfies the following properties.

1. It is analytic when the imaginary part of z is positive or
zero (except at a finite number of poles).

2. It has no poles on the real axis.
3. As jzj ! 1, zF(z) ! 0 uniformly for all value of arg z

such that 0� arg z�p, provided that when
4. x is real, xF(x) ! 0 as x ! �1, in such a way that
Ð1
0 F(x) dx and

Ð 0
�1 F(x) dx both converge.

The integral is given by

I ¼
ð

C

F(z)dz ¼ 2pj
X

Res (A:103)

where the contour is the real axis and a semicircle having its
center in the origin and lying above the real axis.

Example A.32

Evaluate the integral I ¼
Ð1
�1

dx
(x2þ1)3

.

SOLUTION

The integral becomes

I ¼
ð

C

dz

(z2 þ 1)3
¼
ð

C

dz

(z þ j)3(z � j)3

which has one pole at j of order three (see Equation A.50).

Hence, we obtain

I ¼ 1

2!

d2

dz2
1

(z þ j)3

� ��
�
�
�
z¼j

¼ �j
3

16

Example A.33

Evaluate the integral I ¼
Ð1
0

dx
x2þ1

:

SOLUTION

The integral becomes

I ¼
ð

C

dz

z2 þ 1

where C is the contour of the real axis and the

upper semicircle. From z2þ 1¼ 0 we obtain z¼ exp( jp=2)
and z¼ exp(�jp=2). Only the pole z¼ exp( jp=2) exists inside
the contour. Hence, we obtain

2pj lim
z!e j=p=2

z � e jp=2

(z � e jp=2)(z � e�jp=2)

� �

¼ p

Therefore, we have

ð1

�1

dx

x2 þ 1
¼ 2

ð1

0

dx

x2 þ 1
¼ p or I ¼ p

2

A.9.3 Certain Infinite Integrals Involving
Sines and Cosines

If F(z) satisfies conditions (1), (2), and (3) above, and ifm> 0, then
F(z)ejmz also satisfies the same conditions. Hence,

Ð1
0 F(x)e jmxþ½

F(�x)e�jmx� dx is equal to 2pj
P

Res, where
P

Res means the
sum of the residues of F(z)ejmz at its poles in the upper half-plane.
Therefore,

1. If F(x) is an even function; that is, F(x)¼ F(�x), then

ð1

0

F(x) cos mxdx ¼ jp
X

Res (A:104)

2. If F(x) is an odd function; that is, F(x)¼�F(�x), then

ð1

0

F(x) sin mxdx ¼ p
X

Res (A:105)

Example A.34

Evaluate the integral I ¼
Ð1
0

cos x
x2þa2

dx, a > 0.

SOLUTION

Consider the integral

I1 ¼
ð

C

e jz

z2 þ a2
dz

where the contour is the real axis and the infinite semicircle

on the upper side with respect to the real axis. The contour

encircles the pole ja. Hence,

ð

C

e jz

z2 þ a2
dz ¼ 2pj

e jja

2ja
¼ p

a
e�a

However,

ð1

�1

e jz

z2 þ a2
dz ¼

ð1

�1

cos x

x2 þ a2
dxþ j

ð1

�1

sin x

x2 þ a2
dx ¼

ð1

�1

cos x

(x2 þ a2)
dx
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because the integrand of the third integral is odd and there-

fore is equal to zero. From the last two equations we find that

I ¼
ð1

�1

cos x

x2 þ a2
dx ¼ p

2a
e�a

because the integrand is an even function.

Example A.35

Evaluate the integral I ¼
Ð1
0

x sin ax

x2 þ b2
dx, k > 0 and a> 0.

SOLUTION

Consider the integral

I1 ¼
ð

C

ze jaz

z2 þ b2
dz

where C is the same type of contour as in Example A.34.

Because there is only one pole at z¼ jb in the upper half of

the z-plane, then

I1 ¼
ð1

�1

ze jaz

z2 þ b2
dz ¼ 2pj

jbe jajb

2jb
¼ jpe�ab

Because the integrand x sin ax=(x2þ b2) is an even function,

we obtain

I1 ¼ j

ð1

�1

x sin ax

x2 þ b2
dx ¼ jpe�ab or I ¼ p

2
e�ab

Example A.36

Show that
Ð1
�1

x sin px
x2þ2xþ5 dx ¼ �pe�2p .

INTEGRALS OF THE FORM
Ð1
0

xa�1f (x) dx, 0 < a < 1

It can be shown that the above integral has the value

I ¼
ð1

0

xa�1f (x)dx ¼ 2pj

1� e j2pa

XN

k¼1
Res[za�1f (z)]jz¼zk (A:106)

where f(z) has N singularities and za�1 f(z) has a branch point

at the origin.

Example A.37

Evaluate the integral I ¼
Ð1
0

x�1=2

xþ1 dx

SOLUTION

Because x�1=2¼ x1=2�1, it is simplified that a¼ 1=2. From the

integrand we observe that the origin is a branch point and

the f(x)¼ 1=(xþ 1) has a pole at�1. Hence, from Equation

A.106 we obtain

I ¼ 2pj

1� e j2p=2
Res

z�1=2

z þ 1

� ��
�
�
�
z¼�1
¼ 2pj

j(1� e jp)
¼ p

We can also proceed by considering the integral

I ¼
Ð

C
z�1=2

zþ1 dz. Because z¼ 0 is a branch point, we choose

the contour C as shown in Figure A.23. The integrand has a

simple pole at z¼�1 inside the contour C. Hence, the residue
at z¼�1¼ exp(jp) and is

Resjz¼�1¼ lim
z!�1

(z þ 1)
z�1=2

z þ 1
¼ e�j

p
2

Therefore, we write

þ

C

z�1=2

z þ 1
dz ¼

ð

AB

þ
ð

BDEFG

þ
ð

GH

þ
ð

HJA

¼ e�jp=2

The above integrals take the following form:

ðR

e

x�1=2

x þ 1
dx þ

ð2p

0

(Re ju)�1=2 jRe ju du

1þ Re ju

þ
ðe

R

(xe j2p)�1=2

1þ xe j2p
dx þ

ð0

2p

(ee ju)�1=2 jee judu

1þ ee ju
¼ j2pe�jp=2

where we have used z¼ x exp( j2p) for the integral along GH,

because the argument of z is increased by 2p in going around

the circle B D E F G.

jIm z

D

R

J
H

F

A B

G

E

–1

Barrier

Re z
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Taking the limit as e ! 0 and R ! 1 and noting that the

second and fourth integrals approach zero, we find

ð1

0

x�1=2

x þ 1
dx þ

ð0

1

e�j2p=2x�1=2

x þ 1
dx ¼ j2pe�jp=2

or

(1� e�jp)

ð1

0

x�1=2

x þ 1
dx ¼ j2pe�jp=2 or

ð1

0

x�1=2

x þ 1
dx ¼ j2p(�j)

2
¼ p

A.9.4 Miscellaneous Definite Integrals

The following examples will elucidate some of the approaches
that have been used to find the values of definite integrals.

Example A.38

Evaluate the integral I ¼
Ð1
�1

1
x2þa2 dx, a > 0.

SOLUTION

We write (see Figure A.24)

ð

C

dz

z2 þ a2
¼
ð

AB

þ
ð

BDA

¼ 2pj
X

Res

As R! 1

ð

BDA

dz

z2 þ a2
¼
ðp

0

Rje judu

R2e j2u þ a2
! 0R!1

and, therefore, we have

ð

AB

dx

x2 þ a2
¼
ð1

�1

dx

x2 þ a2
¼ 2pj

z � ja

z2 þ a2

�
�
�
�
z¼ja
¼ 2pj

1

2ja
¼ p

a

Example A.39

Evaluate the integral I ¼
Ð1
0

sin ax
x

dx.

SOLUTION

Because sin az=z is analytic near z¼ 0, we indent the contour

around the origin as shown in Figure A.25. With a positive we

write

ð1

0

sin ax

x
dx ¼ 1

2

ð

ABCD

sin az

z
dz ¼ 1

4j

ð

ABCD

e jaz

z
� e�jaz

z

� �

dz

¼ 1

4j

ð

ABCDA

e jaz

z
dz � 1

4j

ð

ABCDFA

e�jaz

z
dz ¼ 1

4j
2pj

1

1
� 0

� �

¼ p

2

because the lower contour does not include any singularity.

Because sin ax is an odd function of a and sin 0¼ 0, we obtain

ð1

0

sin x

x
dx ¼

p

2
a > 0

0 a ¼ 0

�p

2
a < 0

8

>
>
>
<

>
>
>
:

Example A.40

Evaluate the integral I ¼
Ð1
0

dx
1þx3 .

SOLUTION

Because the integrand f(x) is odd, we introduce the ln z.

Taking a branch cut along the positive real axis, we obtain

jIm z

D

ja

R

BA
Re z

FIGURE A.24

jIm z

D

F

R

DA B C

Re z

FIGURE A.25

A-28 Appendix A: Functions of a Complex Variable



ln z ¼ ln r þ ju 0 � u < 2p

The discontinuity of ln z across the cut is (see Figure A.26a)

ln z1 � ln z2 ¼ �2pj

Therefore, if f(z) is analytic along the real axis and the contri-

bution around an infinitesimal circle at the origin is vanishing,

we obtain

ð1

0

f (x)dx ¼ � 1

2pj

ð

ABC

f (x) ln (z)dz

If further f(z)! 0 as jzj ! 1, the contour can be completed

with C D A (see Figure A.26b). If f(z) has simple poles of order

one at points zk with residues Res ( f, zk), we obtain

ð1

0

f (x)dx ¼ �
X

k

Res(f , zk) ln zk

Hence, because z3þ 1¼ 0 has poles at z1¼ ej p=3, z2¼ ej p,

z3¼ ej 5p=3, then the integral is given by

I ¼
ð1

0

dx

x3 þ 1
¼ � jp=3

3e2jp=3
þ jp

3e j2p
þ j5p=3

3e j10p=3

� �

¼ 2p
ffiffiffi

3
p

9

Example A.41

Show that
Ð1
0

cos ax2dx ¼
Ð1
0

sin ax2dx ¼ 1
2

ffiffiffiffi
p
2a

p

, a > 0.

SOLUTION

We first form the integral

F ¼
ð1

0

cos ax2dx þ j

ð1

0

sin ax2dx ¼
ð1

0

e jax
2

dx

Because exp(jaz2) is analytic in the entire z-plane, we can use

Cauchy’s theorem and write (see Figure A.27)

F ¼
ð

AB

ajaz
2

dz ¼
ð

AC

e jaz
2

dz þ
ð

CB

e jaz
2

dz

Along the contour C B, we obtain

�
ð
p=4

0

e jR
2 cos2u�R2 sin 2ujRe judu

�
�
�
�
�
�

�
�
�
�
�
�

�
ð
p=4

0

e�R
2 sin 2uRdu¼ R

2

ð
p=2

0

e�R
2 sinfdf

� R

2

ð
p=2

0

e�R
2f=pdf¼ p

4R
(1� e�R

2

)

where the transformation 2u¼f and the inequality sin f� 2

f=p were used (0�f�p=2). Hence, as R approaches infinity
the contribution from C B contour vanishes. Hence,

F ¼
ð

AB

e jaz
2

dz ¼ e jp=4
ð1

0

e�ar
2

dr ¼ 1þ j
ffiffiffi

2
p 1

2

ffiffiffiffi

p

a

r

from which we obtain the desired result.
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Example A.42

Evaluate the integral I ¼
Ð 1

�1
dxffiffiffiffiffiffiffiffi

1�x2
p

(1þx2 ).

SOLUTION

Consider the integral

þ

C

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

(1þ z2)

whose contour C is that shown in Figure A.28. On the top side

of the branch cut we obtain I and from the bottom we also

get I. The contribution of the integral on the outer circle as R

approaches infinity vanishes. Hence, due to two poles we

obtain

2I ¼ 2pj
1

2j
ffiffiffi
2
p þ 1

2j
ffiffiffi
2
p

� �

¼ p
ffiffiffi

2
p

or I ¼
ffiffiffi

2
p

2
p

Example A.43

Evaluate the integral I ¼
Ð1
�1

eax

ebxþ1 dx, a, b > 0:

SOLUTION

From Figure A.29 we find

I ¼
ð

C

eaz

ebz þ 1
dz ¼

ð

C

eaz=b

ez þ 1
dz ¼ 2pj

X

Res

There is an infinite number of poles: at z¼ jp=b, residue is

�exp( jp a=b); at z¼ 3jp=b, residue is �exp(3jp a=b), and so

on. The sum of residue forms a geometric series and because

we assume a small imaginary part of a, jexp( j2p a=bj< 1.

Hence, by considering the common factor exp( jp a=b),
we obtain

I ¼ � 2p

b
j

e jpa=b

1� e j2pa=b
¼ 1

b

p

sin (pa=b)

The integral is of the form
Ð

e jvx f (x)dx whose evaluation can

be simplified by Jordan’s lemma (see also Equation A.60)

ð

C

e jvx f (x)dx ¼ 0

for the contour semicircle C at infinity for which Im(vx)> 0,

provided jf(Reju)j< e(R)! 0 as R!1 (note that the bound

on jf(x)j must be independent of u).

Example A.44

A relaxed R L series circuit with an input voltage source v(t) is

described by the equation Ldi=dtþ Ri¼ y(t). Find the current

in the circuit using the inverse Fourier transform when the

input voltage is a delta function.

SOLUTION

The Fourier transform of the differential equation with delta

input voltage function is

LjvI(v)þ RI(v) ¼ 1 or I(v) ¼ 1

Rþ jvL

and, hence,

i(t) ¼ 1

2p

ð1

�1

e jvt

Rþ jvL
dv

jIm z
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If t< 0, the integral is exponentially small for Im v! �1. If

we complete the contour by a large semicircle in the lower v-

plane, the integral vanishes by Jordan’s lemma. Because the

contour does not include any singularities, i(t)¼ 0, t< 0. For

t> 0, we complete the contour in the upper v-plane. Similarly

no contribution exists from the semicircle. Because there is

only one pole at v¼ jR=L inside the contour the value of the

integral is

i(t) ¼ 2pj
1

2p

1

jL
e j( jR=L)t ¼ 1

L
e�

R
L
t

which is known as the impulse response of the system.

A.10 Principal Value of an Integral

Refer to the limiting process employed in Example A.39, which
can be written in the form

lim
R!1

ðR

�R

e jx

x
dx ¼ jp

The limit is called the Cauchy principal value of the integral in
the equation

ð1

�1

e jx

x
dx ¼ jp

In general, if f(x) becomes infinite at a point x¼ c inside the
range of integration, and if

lim
e!0

ðR

�R

f (x)dx ¼ lim
e!0

ðc�e

�R

f (x)dx þ
ðR

cþe

f (x)dx

2

4

3

5

and if the separate limits on the right also exist, then the integral
is convergent and the integral is written as P

Ð
where the P

indicates the principal value. Whenever each of the integrals

ð0

�1

f (x)dx

ð1

0

f (x)dx

has a value, here R ! 1, the principal value is the same as the
integral. For example, if f(x)¼ x, the principal value of the
integral is zero, although the value of the integral itself does
not exist.

As another example, consider the integral

ðb

a

dx

x
¼ log

b

a

If a is negative and b is positive, the integral diverges at x¼ 0.
However, we can still define

P

ðb

a

dx

x
¼ lim

e!0

ð�e

a

dx

x
þ
ðb

eþ

dx

x

2

4

3

5 ¼ lim
e!0

log
e

�aþ log
b

a

� �

¼ log
b

jaj

This principal value integral is unambiguous. The condition that
the same value of e must be used in both sides is essential;
otherwise, the limit could be almost anything by taking the first
integral from a to�e and the second from k to b and making
these two quantities tend to zero in a suitable ratio.

If the complex variables were used, we could complete the
path by a semicircle from�e toþe about the origin, either above
or below the real axis. If the upper semicircle were chosen, there
would be a contribution�jp, whereas if the lower semicircle
were chosen, the contribution to the integral would beþjp.
Thus, according to the path permitted in the complex plane we
should have

ðb

a

dz

z
¼ log

b

jaj� jp

The principal value is the mean of these alternatives.
If a path in the complex plane passes through a simple pole

at z¼ a, we can define a principal value of the integral along the
path by using a hook of small radius e about the point a and
the making e tend to zero, as already discussed. If we change the
variable z to z and dz=dz is finite and not equal to zero at
the pole, this procedure will define an integral in the z-plane,
but the values of the integrals will be the same. Suppose that
the hook in the z-plane cuts the path at a� e and aþ e0, where
jej ¼ je0j, and in the z-plane the hook cuts the path at a�k and
aþk0. Then, if k and k0 tend to zero so that e=e0 ! 1, k and k0

will tend to zero so that k=k0 ! 1.
To illustrate this discussion, suppose we want to evaluate the

integral

I ¼
ðp

0

du

a� b cos u

where a and b are real and a> b> 0. A change of variable by
writing z¼ exp(ju) transforms this integral to (where a new
constant a is introduced)

I ¼
ðp

0

2e judu

2ae ju � b(e j2u þ 1)
¼�1

j

ð

C

2dz

bz2 � 2azþ b
¼�1

j

ð

C

2dz

b(z�a) z� 1
a

� �
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where the path of integration is around the unit circle. Because
the contour would pass through the poles, hooks are used to
isolate the poles as shown in Figure A.30. Because no singular-
ities are closed by the path, the integral is zero. The contributions
of the hooks are �jp times the residues, where the residues are

� 1

j

2
b

a� 1
a

� 1

j

2
b

1
a� a

These are equal and opposite and cancel each other. Therefore,
the principal value of the integral around the unit circle is zero.
This approach for finding principal values succeeds only at
simple poles.

A.11 Integral of the Logarithmic
Derivative

Of importance in the study of mapping from z-plane to W(z)-
plane is the integral of the logarithmic derivative. Consider,
therefore, the function

F(z) ¼ logW(z) (A:107)

Then

dF(z)

dz
¼ 1

W(z)

dW(z)

dz
¼W 0(z)

W(z)

The function to be examined is the following:

ð

C

dF(z)

dz
dz ¼

ð

C

W 0(z)

W(z)
dz (A:108)

The integrand of this expression will be analytic within the
contour C except for the points at which W(z) is either zero or
infinity.

Suppose thatW(z) has a pole of order n at z0. This means that
W(z) can be written

W(z) ¼ (z � z0)
ng(z) (A:109)

with n positive for a zero and n negative for a pole. We differ-
entiate this expression to get

W 0(z) ¼ n(z � z0)
n�1g(z)þ (z � z0)

ng 0(z)

and so

W 0(z)

W(z)
¼ n

z � z0
þ g 0(z)

g(z)
(A:110)

For n positive, W0(z)=W(z) will possess a pole of order one.
Similarly, for n negative W0(z)=W(z) will possess a pole of
order one, but with a negative sign. Thus, for the case of n

positive or negative, the contour integral in the positive sense
yields

ð

C

W 0(z)

W(z)
dz ¼ �

ð

C

n

z � z0
dz þ

ð

z

g 0(z)

g(z)
dz (A:111)

But because g(z) is analytic at the point z0, then
Ð

C [g
0(z)=g(z)]dz ¼ 0, and by Equation A.44

ð

C

W 0(z)

W(z)
dz ¼ �2pjn (A:112)

Thus, the existence of a zero of W(z) introduces a contribution
2pjnz to the contour integral, where nz is the multiplicity of the
zero of W(z) at z0. Clearly, if a number of zeros of W(z) exist,
the total contribution to the contour integral is 2pjN, where N is
the weighted value of the zeros of W(z) (weight 1 to a first-order
zero, weight 2 to a second-order zero, and so on).

For the case where n is negative, which specifies thatW(z) has
a pole of order n at z0, then in Equation A.112 n is negative and
the contribution to the contour integral is now �2pnp for each
pole of W(z); the total contribution is �2pjP, where P is the
weighted number of poles. Clearly, because both zeros and poles
of F(z) cause poles of W0(z)=W(z) with opposite signs, then the
total value of the integral is

ð

C

W 0(z)

W(z)
dz ¼ �2pj(N � P) (A:113)

r = 1
α

FIGURE A.30
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Note further that

ð

C

W 0(z)dz ¼
ð

C

dW(z)

dz
dz ¼

ð

d[ logW(z)]

¼
ð

d[ log W(z)j j þ j argW(z)]

¼ log W(z)j jj2p0 þj[argW(2p)� argW(0)]

¼ 0þ j[argW(2p)� argW(0)]

so that

[argW(0)� argW(2p)] ¼ 2p(N � P) (A:114)

This relation can be given simple graphical interpretation. Sup-
pose that the function W(z) is represented by its pole and zero
configuration on the z-plane. As z traverses the prescribed con-
tour on the z-plane, W(z) will move on the W(z)-plane accord-
ing to its functional dependence on z. But the left-hand side of
this equation denotes the total change in the phase angle ofW(z)
as z transverses around the complete contour. Therefore, the
number of times that the moving point representing W(z)
revolves around the origin in the W(z)-plane as z moves around
the specified contour is given by N�P.

The foregoing is conveniently illustrated graphically.
Figure A.31a shows the prescribed contour in the z-plane,
and Figure A.31b shows a possible form for the variation of
W(z). For this particular case, the contour in the z-plane encloses
one zero and no poles; hence, W(z) encloses the origin once in
the clockwise direction in the W(z)-plane.

Note that corresponding to a point z0 within the contour in
the z-plane, the point W(z0) is mapped inside theW(z)-plane. In
fact, every point on the inside of the contour in the z-plane maps
onto the inside of the W(z)-contour in the W(z)-plane (for
single-valued functions). Clearly, there is one point in the z-
plane that maps into W(z)¼ 0, the origin.

On the other hand, if the contour includes a pole but no zeros,
it can be shown by a similar argument that any point in the
interior of the z-contour must correspond to a corresponding
point outside of the W(z)-contour in the W(z)-plane. This is
manifested by the fact that the W(z)-contour is traversed in a
counterclockwise direction. With both zeros and poles present,
the situation depends on the value of N and P.

Of special interest is the locus of the network function that
contains no poles in the right-hand plane or on the jv-axis. In
this case the frequency locus is completely traced as z varies
along the v-axis from �j1 toþ j1. To show this, because
W(z) is analytic along the this path, W(z) can be written for
the neighborhood of a point z0 in a Taylor series

W(z) ¼ a0 þ a1(z � z0)þ a2(z � z0)
2 þ � � �

For the neighborhood z!1, we examineW(z0), where z0 ¼ 1=z.
Because W(z) does not have a pole at infinity, then W(z0) does
not have a pole at zero. Therefore, we can expand W(z0) in a
Maclaurin series

W(z0) ¼ a0 þ a1z
0 þ a2(z

0)2 þ � � �

which means that

W(z) ¼ a0 þ
a1

z
þ a2

z2
þ � � �

But as z approaches infinity, W(1) approaches infinity. In a real
network function when z* is written for z, then W(z*)¼W*(z),
This condition requires that a0¼a0þ j0 be a real number irre-
spective of how z approaches infinity; that is, as z approaches
infinity, W(z) approaches a fixed point in the W(z)-plane. This
shows that as z varies around the specific contour in the z-plane,
W(z) varies from W(�j1) to W(þj1) as z varies along the
imaginary axis. However, W(�j1)¼W(þj1), from the above,
which thereby shows that the locus is completely determined.
This is illustrated in Figure A.32.
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Appendix B: Series
and Summations

B.1 Series ...............................................................................................................................................B-1
B.2 Binomial .........................................................................................................................................B-1
B.3 Reversion of Series .......................................................................................................................B-1
B.4 Taylor ..............................................................................................................................................B-1
B.5 Maclaurin .......................................................................................................................................B-2
B.6 Exponential ....................................................................................................................................B-2
B.7 Logarithmic....................................................................................................................................B-2
B.8 Trigonometric ...............................................................................................................................B-2
B.9 Hyperbolic and Inverse Hyperbolic .........................................................................................B-3

B.1 Series

The expression in parentheses following certain of the series indi-
cates the region of convergence. If not otherwise indicated, it is
to be understood that the series converges for all finite values of x.

B.2 Binomial

(x þ y)n ¼ xn þ nxn�1y þ n(n� 1)

2!
xn�2y2

þ n(n� 1)(n� 2)

3!
xn�3y3 þ � � � (y2 < x2)

(1� x)n ¼ 1� nx þ n(n� 1)x2

2!
� n(n� 1)(n� 2)x3

3!
þ � � � (x2 < 1)

(1� x)�n ¼ 1� nx þ
n(nþ 1)x2

2!
�
n(nþ 1)(nþ 2)x3

3!
þ � � � (x2 < 1)

(1� x)�1 ¼ 1� x þ x2 � x3 þ x4 � x5 þ � � � (x2 < 1)

(1� x)�2 ¼ 1� 2x þ 3x2 � 4x3 þ 5x4 � 6x5 þ � � � (x2 < 1)

B.3 Reversion of Series

Let a series be represented by

y ¼ a1x þ a2x
2 þ a3x

3 þ a4x
4 þ a5x

5 þ a6x
6 þ � � � (a1 6¼ 0)

to find the coefficients of the series

x ¼ A1y þ A2y
2 þ A3y

3 þ A4y
4 þ � � �

A1 ¼
1

a1
A2 ¼ �

a2

a31
A3 ¼

1

a51
2a22 � a1a3
� �

A4 ¼
1

a71
5a1a2a3 � a21a4 � 5a32
� �

A5 ¼
1

a91
6a21a2a4 þ 3a21a

2
3 þ 14a42 � a31a5 � 21a1a

2
2a3

� �

A6 ¼
1

a111
7a31a2a5 þ 7a31a3a4 þ 84a1a

3
2a3 � a41a6 � 28a21a

2
2a4

�

� 28a21a2a
2
3 � 42a52

�

A7 ¼
1

a131
8a41a2a6 þ 8a41a3a5 þ 4a41a

2
4 þ 120a21a

3
2a4

�

þ 180a21a
2
2a

2
3 þ 132a62 � a51a7 � 36a31a

2
2a5 � 72a31a2a3a4

� 12a31a
3
3 � 330a1a

4
2a3

�

B.4 Taylor

1.

f (x)¼ f (a)þ (x� a)f 0(a)þ
(x� a)2

2!
f 00(a)þ

(x� a)3

3!
f 000(a)

þ � � � þ
(x� a)n

n!
f (n)(a)þ � � � (Taylor0s series)

(Increment form)
2.

f (x þ h) ¼ f (x)þ hf 0(x)þ
h2

2!
f 00(x)þ

h3

3!
f 000(x)þ � � �

¼ f (h)þ xf 0(h)þ
x2

2!
f 00(h)þ

x3

3!
f 000(h)þ � � �

3. If f(x) is a function possessing derivatives of all orders
throughout the interval a % x % b, then there is value X,
with a<X< b, such that
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f (b) ¼ f (a)þ (b� a)f 0(a)þ (b� a)2

2!
f 00(a)þ � � �

þ (b� a)n�1

(n� 1)!
f (n�1)(a)þ (b� a)n

n!
f (n)(X)

f (aþ h)¼ f (a)þ hf 0(a)þh2

2!
f 00(a)þ� � �þ hn�1

(n� 1)!
f (n�1)(a)

þ hn

n!
f (n)(aþ uh), b¼ aþ h, 0< u< 1:

or

f (x)¼ f (a)þ (x� a)f 0(a)þ (x� a)2

2!
f 00(a)þ � � � þ (x� a)n�1

� f (n�1)(a)

(n� 1)!
þ Rn,

where

Rn ¼
f (n) aþ u � (x � a)½ �

n!
(x � a)n, 0 < u < 1:

The above forms are known as Taylor’s series with the
remainder term.

4. Taylor’s series for a function of two variables

If h
q

qx
þ k

q

qy

� �

f (x, y)¼ h
qf (x, y)

qx
þ k

qf (x,y)

qy
;

h
q

qx
þ k

q

qy

� �2

f (x, y)¼ h2
q2f (x,y)

qx2
þ 2hk

q2f (x,y)

qxqy
þ k2

q2f (x,y)

qy2

etc., and if h
q

qx
þ k

q

qy

� �n

f (x, y)

�
�
�
�x¼a
y¼b

with the bar and

subscripts means that after differentiation we are to replace
x by a and y by b,

f (aþ h, bþ k) ¼ f (a, b)þ h
q

qx
þ k

q

qy

� �

f (x, y)

�
�
�
�
x¼ay¼b

þ � � � þ 1

n!
h
q

qx
þ k

q

qy

� �n

f (x, y)

�
�
�
�x¼a
y¼b

þ � � �

B.5 Maclaurin

f (x)¼ f (0)þ xf 0(0)þ x2

2!
f 00(0)þ x3

3!
f
000
(0)þ � � � þ xn�1 f

(n�1)(0)

(n� 1)!
þ Rn,

where

Rn ¼
xnf (n)(ux)

n!
, 0 < u < 1:

B.6 Exponential

e ¼ 1þ 1

1!
þ 1

2!
þ 1

3!
þ 1

4!
þ � � �

ex ¼ 1þ x þ x2

2!
þ x3

3!
þ x4

4!
þ � � � (all real values of x)

ax ¼ 1þ x loge aþ
(x loge a)

2

2!
þ (x loge a)

3

3!
þ � � �

ex ¼ ea 1þ (x � a)þ (x � a)2

2!
þ (x � a)3

3!
þ � � �

� �

B.7 Logarithmic

loge x ¼ x � 1

x
þ 1

2

x � 1

x

� �2

þ 1

3

x � 1

x

� �3

þ � � � x >
1

2

� �

loge x ¼ (x � 1)� 1

2
(x � 1)2 þ 1

3
(x � 1)3 � � � � (2 � x > 0)

loge x ¼ 2
x � 1

x þ 1
þ 1

3

x � 1

x þ 1

� �3

þ 1

5

x � 1

x þ 1

� �5

þ � � �
" #

(x > 0)

loge (1þ x) ¼ x � 1

2
x2 þ 1

3
x3 � 1

4
x4 þ � � � (�1 < x < 1)

loge (nþ 1)� loge (n� 1) ¼ 2
1

n
þ 1

3n3
þ 1

5n5
þ � � �

� �

loge (aþ x) ¼ loge aþ 2
x

2aþ x
þ 1

3

x

2aþ x

� �3
"

þ 1

5

x

2aþ x

� �5

þ � � �
�

(a > 0,�a < x < þ1)

loge
1þ x

1� x
¼ 2 xþ x3

3
þ x5

5
þ � � � þ x2n�1

2n� 1
þ � � �

� �

, �1< x < 1

loge x¼ loge aþ
(x� a)

a
� (x� a)2

2a2
þ (x� a)3

3a3
� �� � , 0< x	 2a

B.8 Trigonometric

sin x ¼ x � x3

3!
þ x5

5!
� x7

7!
þ � � � (all real values of x)

cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
þ � � � (all real values ofx)
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tan x ¼ x þ x3

3
þ 2x5

15
þ 17x7

315
þ 62x9

2835
þ � � �

þ 22n(22n � 1)Bn

(2n)!
x2n�1 þ � � � ,

x2 <
p2

4
, and Bn represents the nth Bernoulli number:

� �

cot x ¼ 1

x
� x

3
� x2

45
� 2x5

945
� x7

4725
� � � � � 22nBn

(2n)!
x2n�1 � � � � ,

[x2 < p2, and Bn represents the nth Bernoulli number:�

sec x ¼ 1þ x2

2
þ 5

24
x4 þ 61

720
x6 þ 277

8064
x8 þ � � � þ Enx

2n

(2n)!
þ � � � ,

x2 <
p2

4
, and En represents the nth Euler number:

� �

csc x ¼ 1

x
þ x

6
þ 7

360
x3 þ 31

15, 120
x5 þ 127

604, 800
x7 þ � � �

þ 2(22n�1 � 1)

(2n)!
Bnx

2n�1 þ � � � ,

[x2 < p2, and Bnfrepresents the nth Bernoulli number:]

sin x ¼ x 1� x2

p2

� �

1� x2

22p2

� �

1� x2

32p2

� �

� � � (x2 < 1)

cos x ¼ 1� 4x2

p2

� �

1� 4x2

32p2

� �

1� 4x2

52p2

� �

� � � (x2 < 1)

sin�1 x ¼ x þ x3

2 � 3þ
1 � 3

2 � 4 � 5 x
5 þ 1 � 3 � 5

2 � 4 � 6 � 7 x
7

þ � � � x2 < 1, � p

2
< sin�1 x <

p

2

	 


cos�1 x ¼ p

2
� x þ x3

2 � 3þ
1 � 3

2 � 4 � 5 x
5 þ 1 � 3 � 5x7

2 � 4 � 6 � 7þ � � �
� �

(x2 < 1, 0 < cos�1 x < p)

tan�1 x ¼ x � x3

3
þ x5

5
� x7

7
þ � � � (x2 < 1)

tan�1 x ¼ p

2
� 1

x
þ 1

3x2
� 1

5x5
þ 1

7x7
� � � � (x > 1)

tan�1 x ¼ �p

2
� 1

x
þ 1

3x2
� 1

5x5
þ 1

7x7
� � � � (x < �1)

cot�1x ¼ p

2
� x þ x3

3
� x5

5
þ x7

7
� � � � (x2 < 1)

loge sin x ¼ loge x �
x2

6
� x4

180
� x6

2835
� � � � (x2 < p2)

loge cos x ¼ � x2

2
� x4

12
� x6

45
� 17x8

2520
� � � � x2 <

p2

4

� �

loge tan x ¼ loge x þ
x2

3
þ 7x4

90
þ 62x6

2835
þ � � � x2 <

p2

4

� �

esin x ¼ 1þ x þ x2

2!
� 3x4

4!
� 8x5

5!
� 3x6

6!
þ 56x7

7!
þ � � �

ecos x ¼ e 1� x2

2!
þ 4x4

4!
� 31x6

6!
þ � � �

� �

etan x ¼ 1þ x þ x2

2!
þ 3x3

3!
þ 9x4

4!
þ 37x5

5!
þ � � � x2 <

p2

4

� �

sin x ¼ sin aþ (x � a) cos a� (x � a)2

2!
sin a� (x � a)3

3!

� cos aþ (x � a)4

4!
sin aþ � � �

B.9 Hyperbolic and Inverse Hyperbolic

Table of expansion of certain functions into power series

sinh x ¼ x þ x3

3!
þ x5

5!
þ x7

7!
þ � � � þ x2nþ1

(2nþ 1)!
þ � � � jxj < 1

cosh x ¼ 1þ x2

2!
þ x4

4!
þ x6

6!
þ � � � þ x2n

(2n)!
þ � � � jxj < 1

tanh x ¼ x � 1

3
x3 þ 2

15
x5 � 17

315
x7 þ 62

2835
x9 � � � �

þ (�1)nþ122n(22n � 1)

(2n)!
Bnx

2n�1 � � � � ,

Bn denotes Bernoulli0s numbers jxj < p

2

coth x ¼ 1

x
þ x

3
� x3

45
þ 2x5

945
� x7

4725
þ � � �

þ (�1)nþ122n

(2n)!
Bnx

2n�1 � � � � ,

Bn denotes Bernoulli0s numbers 0 < jxj < p

sech x ¼ 1� 1

2!
x2 þ 5

4!
x4 � 61

6!
x6 þ 1385

8!
x8 � � � �

þ (�1)n

(2n)!
Enx

2n � � � � , En denotes Euler0s numbers

jxj < p

2

cosech x ¼ 1

x
� x

6
þ 7x3

360
� 31x5

15, 120
þ � � � þ 2(�1)n(22n�1 � 1)

(2n)!

Bnx
2n�1 þ � � � , Bn denotes Bernoulli0s numbers

0 < jxj < p
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arg sinh x ¼ x � 1

2 � 3 x
3 þ 1 � 3

2 � 4 � 5 x
5 � 1 � 3 � 5

2 � 4 � 6 � 7 x
7 þ � � �

þ (�1)n � 1 � 3 � 5(2n� 1)

2 � 4 � 6 . . . 2n(2nþ 1)
x2nþ1 � � � � jxj < 1

arg cosh x ¼ � ln (2x)� 1

2 � 2x2 �
1 � 3

2 � 4 � 4x4 �
1 � 3 � 5

2 � 4 � 6 � 6x6 � � � �
� �

x > 1

arg tanh x ¼ x þ x3

3
þ x5

5
þ x7

7
þ � � � þ x2nþ1

2nþ 1
þ � � � jxj < 1

arg cothx¼ 1

x
þ 1

3x3
þ 1

5x5
þ 1

7x7
þ � � � þ 1

(2nþ 1)x2nþ1
þ � � � jxj> 1

Arithmetic Progression of the first order (first differences con-
stant), to n terms,

aþ (aþ d)þ (aþ 2d)þ (aþ 3d)þ � � � þ aþ (n� 1)df g


 naþ 1

2
n(n� 1)d


 n

2
(1st termþ nth term):

Geometric Progression, to n terms,

aþ ar þ ar2 þ ar3 þ � � � þ arn�1 
 a(1� rn)=(1� r)


 a(rn � 1)=(r � 1):

If r2< 1, the limit of the sum of an infinite number of terms
is a=(1� r).

The reciprocals of the terms of a series in arithmetic progres-
sion of the first order are in Harmonic Progression. Thus,

1

a
,

1

aþ d
,

1

aþ 2d
, � � � , 1

aþ (n� 1)d

are in Harmonic Progression.

The Arithmetic Mean of n quantities is

1

n
(a1 þ a2 þ a3 þ � � � þ an):

The Geometric Mean of n quantities is

(a1a2a3 . . . an)
1=n:

Let the Harmonic Mean of n quantities be H. Then

1

H
¼ 1

n

1

a1
þ 1

a2
þ 1

a3
þ � � � þ 1

an

� �

:

The arithmetic mean of a number of positive quantities is^ their
geometric mean, which in turn is ^ their harmonic mean.

1þ 2þ 3þ � � � þ n ¼ n

2
(nþ 1) ¼

X

n

k¼0

k

12 þ 22 þ 32 þ � � � þ n2 ¼ n

6
(nþ 1)(2nþ 1)

¼ n

6
(2n2 þ 3nþ 1) ¼

X

n

k¼0

k2

13 þ 23 þ 33 þ � � � þ n3 ¼ n2

4
(nþ 1)2

¼ n2

4
(n2 þ 2nþ 1) ¼

X

n

k¼0

k3

1þ 3þ 5þ 7þ 9þ � � � þ (2n� 1) ¼ n2 ¼
X

2n�1

k¼0

(2kþ 1)

1þ 8þ 16þ 24þ 32þ � � � þ 8(n� 1) ¼ (2n� 1)2

1þ 3x þ 5x2 þ 7x3 þ � � � ¼ 1þ x

(1� x)2

1þ ax þ (aþ b)x2 þ (aþ 2b)x3 þ � � � ¼ 1þ ax þ (b� a)x2

(1� x)2

1þ 22x þ 32x2 þ 42x3 þ � � � ¼ 1þ x

(1� x)3

1þ 32x þ 52x2 þ 72x3 þ � � � ¼ 1þ 6x þ x2

(1� x)3

a 1� (nþ 1)an þ nanþ1½ �
(1� a)2

¼
X

n

k¼0

kak

a (1þ a)� (nþ 1)2an þ (2n2 þ 2n� 1)anþ1 � n2anþ2
� �

(1� a)3

¼
X

n

k¼0

k2ak

a

(1� a)2
¼

X

1

k¼0

kak jaj < 1

a2 þ a

(1� a)3
¼

X

1

k¼0

k2ak jaj < 1
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Appendix C: Definite Integrals

ð1

0

xn�1e�xdx ¼
ð1

0

log
1

x

� �n�1

dx ¼ 1

n

Y1

m¼1

1þ 1
m

� �n

1þ n
m

¼ G(n), n 6¼ 0, � 1, �2, �3, . . .

(Gamma Function)

ð1

0

tnp�tdt ¼ n!

( log p)nþ1 (n ¼ 0, 1, 2, 3, . . . and p > 0)

ð1

0

tn�1e�(aþ1)tdt ¼ G(n)

(aþ 1)n
(n > 0, a > �1)

ð1

0

xm log
1

x

� �n

dx ¼ G(nþ 1)

(mþ 1)nþ1 (m > �1, n > �1)

G(n) is finite if n > 0; G(nþ 1) ¼ nG(n)

G(n) � G(1� n) ¼ p

sin np

G(n) ¼ (n� 1)! if n ¼ integer > 0

G
1

2

� �

¼ 2

ð1

0

e�t2dt ¼
ffiffiffiffi
p

p
¼ 1:7724538509 . . .

G nþ 1

2

� �

¼ 1 � 3 � 5 � 7 � � � (2n� 1)

2n
ffiffiffiffi
p

p
,

where n is an integer and > 0

ð1

0

xm�1(1� x)n�1dx ¼ B(m, n) (Beta function)

B(m, n) ¼ B(n,m) ¼ G(m)G(n)

G(mþ n)

where m and n are any positive real numbers

ð1

0

xm�1(1� x)n�1dx ¼
ð1

0

xm�1dx

(1þ x)mþn ¼
G(m)G(n)

G(mþ n)

ðb

a

(x � a)m(b� x)n dx ¼ (b� a)mþnþ1 G(mþ 1) � G(nþ 1)

G(mþ nþ 2)

(m > �1, n > �1, b > a)

ð1

0

dx

xm
¼ 1

m� 1
(m > 1)

ð1

0

dx

(1þ x)xp
¼ p csc pp (p < 1)

ð1

0

dx

(1� x)xp
¼ �p cot pp (p < 1)

ð1

0

xp�1dx

1þ x
¼ p

sin pp

¼ B(p, 1� p) ¼ G(p)G(1� p) (0 < p < 1)

ð1

0

xm�1dx

1þ xn
¼ p

n sin mp
n

(0 < m < n)

ð1

0

xadx

(mþ xb)c
¼ m

aþ 1

b� c

G aþ1
b

� �
G c� aþ1

b

� �

G(c)

� �

a > �1, b > 0,m > 0, c > aþ1
b

� �

ð1

0

dx

(1þ x)
ffiffiffi
x

p ¼ p

ð1

0

a dx

a2 þ x2
¼ p

2
, if a > 0; 0, if a ¼ 0; � p

2
, if a < 0

ða

0

xm a2 � x2
� �n

2dx ¼

1

2
amþnþ1B

mþ 1

2
,
nþ 2

2

� �

1

2
amþnþ1

G
mþ 1

2

� �

G
nþ 2

2

� �

G
mþ nþ 3

2

� �

8

>>>>>>>><

>>>>>>>>:
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ð1

0

dxp
1� xnð Þ ¼

ffiffiffiffi
p

p

n

G 1
n

� �

G 1
n
þ 1

2

� � (n > 0)

ð1

0

xmdxp
1� xnð Þ ¼

p
p

n

G mþ1
n

� �

G mþ1
n

þ 1
2

� � (mþ 1, n > 0)

ð1

0

xm(1� x2)pdx ¼ G(pþ 1)G mþ1
2

� �

2G pþ mþ3
2

� � (pþ 1,mþ 1 > 0)

ð1

0

xm(1� xn)pdx ¼ G(pþ 1)G mþ1
n

� �

nG pþ 1þ mþ1
n

� � (pþ 1,mþ 1, n > 0)

ð1

0

xmdxp
(1� x2)

¼ 2 � 4 � 6 � � � (m� 1)

3 � 5 � 7 � � �m (m an odd integer> 1)

¼ 1 � 3 � 5 � � � (m� 1)

2 � 4 � 6 � � �m
p

2
(m an even, positive integer)

¼
ffiffiffiffi
p

p

2

G mþ1
2

� �

G m
2 þ 1
� � (m any value>�1)

ð1

0

xp�1dx

1þ x
¼ p

sin (p� pp)
¼ p

sin pp
(0 < p < 1)

ð1

0

dx

(1þ x)
p
x
¼ p

ð1

0

xp�1dx

aþ x
¼ pap�1

sin pp
(0 < p < 1)

ð1

0

dx

1þ xp
¼ p

p sin p
p

(p > 1)

ð1

0

xpdx

(1þ ax)2
¼ pp

apþ1 sin pp
(0 < p < 1)

ð1

0

xpdx

1þ x2
¼ p

2 cos pp
2

(�1 < p < 1)

ð1

0

xp�1dx

1þ xq
¼ p

q sin pp
q

(0 < p < q)

ð1

0

xm�1dx

(1þ x)mþn ¼
G(m)G(n)

G(mþ n)
(m, n > 0)

ð1

0

xm�1dx

(aþ bx)mþn ¼
G(m)G(n)

anbmG(mþ n)
(a, b,m, n > 0)

ð1

0

dx

a2 þ x2ð Þn ¼
1 � 3 � 5 � � � (2n� 3)

2 � 4 � 6 � � � (2n� 2)

� p

2a2n�1
(a > 0; n ¼ 2, 3, . . . )

ð1

0

dx

a2 þ x2ð Þ b2 þ x2ð Þ ¼
p

2ab(aþ b)
(a, b > 0)

ðp=2

0

( sinn x)dx ¼

ðp=2

0

( cosn x)dx

1 � 3 � 5 � 7 � � � (n� 1)

2 � 4 � 6 � 8 � � � (n)
p

2
, (n an even integer,n 6¼ 0)

2 � 4 � 6 � 8 � � � (n� 1)

1 � 3 � 5 � 7 � � � (n) , (n an odd integer,n 6¼ 1)

ffiffiffiffi
p

p

2

G nþ1
2

� �

G n
2þ 1
� � , (n>�1)

8

>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð1

0

sin mx dx

x
¼ p

2
, if m > 0; if m ¼ 0; � p

2
, if m < 0

ð1

0

cos x dx

x
¼ 1

ð1

0

tan x dx

x
¼ p

2

ðp

0

sin ax � sin bx dx ¼
ðp

0

cos ax � cos bx dx ¼ 0,

(a 6¼ b; a, b integers)

ðp=a

0

sin (ax)½ � cos (ax)½ �dx ¼
ðp

0

sin (ax)½ � cos (ax)½ �dx ¼ 0

ðp

0

sin (ax)½ � cos (bx)½ �dx ¼ 2a

a2 � b2
, if a� b is odd,

or zero if a� b is even

ð1

0

sin x cos mx dx

x
¼ 0, if m < �1 or m > 1, ¼ p

4
, if m ¼ �1;

¼ p

2
, if m2 < 1

ð1

0

sin ax sin bx

x2
dx ¼ pa

2
(a � b)

ðp

0

sin2 mx dx ¼
ðp

0

cos2 mx dx ¼ p

2
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ð1

0

sin2 x dx

x2
¼ p

2

ð
cos mx

1þ x2
dx ¼ p

2
e�jmj

ð1

0

cos (x2)dx ¼
ð1

0

sin (x2)dx ¼ 1

2

ffiffiffiffi
p

2

r

ð1

0

sin x dx
ffiffiffi
x

p ¼
ð1

0

cos x dx
ffiffiffi
x

p ¼
ffiffiffiffi
p

2

r

ðp=2

0

dx

1þ a cos x
¼ cos�1 a

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p (a < 1)

ð1

0

dx

aþ b cos x
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p (a > b � 0)

ð2p

0

dx

1þ a cos x
¼ 2p

ffiffiffi
1

p
� a2

(a2 < 1)

ð1

0

cos ax � cos bx

x
dx ¼ log

b

a

ðp=2

0

dx

a2 sin2 x þ b2 cos2 x
¼ p

2ab

ðp=2

0

dx

(a2 sin2 x þ b2 cos2 x)2
¼ p(a2 þ b2)

4a3b3
(a, b > 0)

ðp=2

0

sinn�1 x cosm�1 x dx ¼ 1

2
B

n

2
,
m

2

	 


(m and n positive integers)

ðp=2

0

( sin2nþ1 u)du ¼ 2 � 4 � 6 � � � (2n)
1 � 3 � 5 � � � (2nþ 1)

(n ¼ 1, 2, 3 . . . )

ðp=2

0

( sin2n u)du ¼ 1 � 3 � 5 � � � (2n� 1)

2 � 4 � � � (2n)
p

2

	 


(n ¼ 1, 2, 3 . . . )

ðp=2

0

ffiffiffiffiffiffiffiffiffiffiffi

cos u
p

du ¼ (2p)
3
2

G 1
4

� �� �2

ð

p=2

0

( tanh u)du ¼ p

2 cos hp
2

� � (0 < h < 1)

ð1

0

tan�1(ax)� tan�1(bx)

x
dx ¼ p

2
log

a

b
(a, b > 0)

The area enclosed by a curve defined through the equation
xb=c þ yb=c ¼ ab=c where a> 0, c a positive odd integer, and b a
positive even integer is given by

G c
b

� �� �2

G 2c
b

� �
2ca2

b

� �

I ¼
ÐÐÐ

R x
h�1 ym�1 zn�1 dy, where R denotes the region of space

bounded by the coordinate planes and that portion of the surface
(x=a)p þ (y=b)q þ (z=c)k ¼ 1, which lies in the first octant
and where h,m, n, p, q, k, a, b, c, denote positive real numbers is
given by

ða

0

xh�1dx

ð
b 1� x

að ÞP
� �1

q

0

ymdy

ð

c 1� x
að Þp� y

bð Þq½ �
1
k

0

zn�1dz

¼ ahbmcn

pqk

G h
p

	 


G m
q

	 


G n
k

� �

G h
p
þ m

q
þ n

k
þ 1

	 


ðp=2

0

dx

a2 sin2 x þ b2 cos2 x
¼ p

2ab
(ab > 0)

ðp

0

dx

a2 sin2 x þ b2 cos2 x
¼ p

ab
(ab > 0)

ðp=2

0

sin2 x dx

a2 sin2 x þ b2 cos2 x
¼
ðp=2

0

dx

a2 þ b2ctn2 x

¼ p

2a(aþ b)
(a, b > 0)

ðp=2

0

cos2 x dx

a2 sin2 x þ b2 cos2 x
¼
ðp=2

0

dx

b2 þ a2 tan2 x

¼ p

2b(aþ b)
(a, b > 0)

ðp=2

0

dx

(a2 sin2 x þ b2 cos2 x)2
¼ p

4

(a2 þ b2)

a3b3
(ab > 0)
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ðp=2

0

sin2 x dx

(a2 sin2 x þ b2 cos2 x)2
¼ p

4a3b
(ab > 0)

ðp=2

0

cos2 x dx

(a2 sin2 x þ b2 cos2 x)2
¼ p

4ab3
(ab > 0)

ð1

0

sin (a2x2)dx ¼
ð1

0

cos (a2x2)dx ¼
p
p

2a
p
2

(a > 0)

ð1

0

sin
px2

2
dx ¼

ð1

0

cos
px2

2
dx ¼ 1

2
(Fresnel’s integrals)

ð1

0

sin (xp)dx ¼ G 1þ 1

p

� �

sin
p

2p
(p > 1)

ð1

0

cos (xp)dx ¼ G 1þ 1

p

� �

cos
p

2p
(p > 1)

ð1

0

sin a2x2 cos mx dx ¼
p
p

2a
sin

p

4
� m2

4a2

� �

(a > 0)

ð1

0

cos a2x2 cos mx dx ¼
p
p

2a
cos

p

4
� m2

4a2

� �

(a > 0)

ð1

0

sin2p mx

x2
dx ¼ 1 � 3 � 5 � � � (2p� 3)

2 � 4 � 6 � � � (2p� 2)

jmjp
2

(p ¼ 2, 3, 4, . . . )

ð1

0

sin3 mx

x3
dx ¼ 3

8
m2p (m > 0)

ð1

0

sin mx cos nx

x
dx ¼ p=2 (m > n > 0)

¼ p=4 (m ¼ n > 0)

¼ 0 (n > m > 0)

ð1

0

sin mx sin nx

x
dx ¼ 1

2
log

mþ n

m� n
(m > n > 0)

ð1

0

cos mx cos nx

x
dx ¼ 1

ð1

0

sin2 ax sin mx

x
dx ¼ p

4
(2a > m > 0)

¼ p

8
(2a ¼ m > 0)

¼ 0 (m > 2a > 0)

ð1

0

sin mx sin nx

x2
dx ¼ pm

2
(n^m > 0)

¼ pn

2
(m^ n > 0)

ð1

0

sin2 ax sin mx

x2
dx ¼ mþ 2a

4
log jmþ 2aj

þm� 2a

4
log jm� 2aj �m

2
log m (m > 0)

ð1

0

cos mx

a2 þ x2
dx ¼ p

2a
e�ma (a > 0;m^ 0)

ð1

0

sin2 mx

a2 þ x2
dx ¼ p

4a
(1� e�2ma) (a > 0;m^ 0)

ð1

0

cos2 mx

a2 þ x2
dx ¼ p

4a
(1þ e�2ma) (a > 0;m^ 0)

ð1

0

x sin mx

a2 þ x2
dx ¼ p

2
e�ma (a^ 0;m > 0)

ð1

0

sin mx

x(a2 þ x2)
dx ¼ p

2a2
(1� e�ma) (a > 0;m^ 0)

ð1

0

sin mx sin nx

a2 þ x2
dx ¼ p

2a
e�ma sinh na (a > 0;m^ n^ 0)

¼ p

2a
e�na sinhma (a > 0; n^m^ 0)

ð1

0

cos mx cos nx

a2 þ x2
dx ¼ p

2a
e�ma cosh na (a > 0;m^ n^ 0)

¼ p

2a
e�na coshma (a > 0; n^m^ 0)

ð1

0

x sin mx cos nx

a2 þ x2
dx ¼ p

2
e�ma cosh na (a > 0;m > n > 0)

¼ �p

2
e�na sinh ma (a > 0; n > m > 0)

ð1

0

cos mx

(a2 þ x2)2
dx ¼ p

4a3
(1þma)e�ma (a,m > 0)
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ð1

0

x sin mx

(a2 þ x2)2
dx ¼ pm

4a
e�ma (a,m > 0)

ð1

0

x2 cos mx

(a2 þ x2)2
dx ¼ p

4a
(1�ma)e�ma (a,m > 0)

ð1

0

sin2 ax cos mx

x2
dx ¼ p

2
a�m

2

	 


a >
m

2
> 0

	 


¼ 0
m

2
^ a^ 0

	 


ð1

0

1� cos mx

x2
dx ¼ pjmj

2

ð1

0

sin2 ax sin mx

x3
dx ¼ pam

2
� pm2

8
a^

m

2
> 0

	 


¼ pa2

2
m
2 ^ a > 0
� �

ð1

0

sin mxp
x

dx ¼
ð1

0

cos mxp
x

dx ¼
p
pp

(2m)
(m > 0)

ð1

0

sin mx

x
p
x

dx ¼ p
(2pm) (m > 0)

ð1

0

sin mx

xp
dx ¼ pmp�1

2 sin pp
2

� �
G(p)

(0 < p < 2;m > 0)

ð1

0

e�axdx ¼ 1

a
(a > 0)

ð1

0

e�ax � e�bx

x
dx ¼ log

b

a
(a, b > 0)

ð1

0

xne�ax dx ¼ G(nþ 1)

anþ1
(n > �1, a > 0)

¼ n!

anþ1
(n positive integer, a > 0)

ð1

0

e�a2x2dx ¼ 1

2a

ffiffiffiffi
p

p
¼ 1

2a
G

1

2

� �

(a > 0)

ð1

0

xe�x2dx ¼ 1

2

ð1

0

x2e�x2dx ¼
ffiffiffiffi
p

p

4

ð1

0

x2ne�ax2dx ¼ 1 � 3 � 5 � � � (2n� 1)

2nþ1an

ffiffiffiffi
p

a

r

ð1

0

xme�axdx ¼ m!

amþ1
1� e�a

Xm

r¼0

ar

r!

" #

ð1

0

e �x2�a2

x2
ð Þdx ¼ e�2a ffiffiffiffi

p
p

2
(a � 0)

ð1

0

e�nx
ffiffiffi
x

p
dx ¼ 1

2n

ffiffiffiffi
p

n

r

ð1

0

e�nx

ffiffiffi
x

p dx ¼
ffiffiffiffi
p

n

r

ð1

0

e�ax cosmx dx ¼ a

a2 þm2
(a > 0)

ð1

0

e�ax sinmx dx ¼ m

a2 þm2
(a > 0)

ð1

0

xe�ax sin (bx)½ �dx ¼ 2ab

(a2 þ b2)2
(a > 0)

ð1

0

xe�ax cos (bx)½ �dx ¼ a2 � b2

(a2 þ b2)2
(a > 0)

ð1

0

xne�ax sin (bx)½ �dx ¼ n! (a� ib)nþ1 � (aþ ib)nþ1
� �

2(a2 þ b2)nþ1

(i2 ¼ �1, a > 0)

ð

1

0

xne�ax cos (bx)½ �dx ¼ n! (a� ib)nþ1 þ (aþ ib)nþ1
� �

2(a2 þ b2)nþ1

(i2 ¼ �1, a > 0)

ð

1

0

e�ax sin x

x
dx ¼ cot�1 a (a > 0)

ð

1

0

e�a2x2 cos bx dx ¼
ffiffiffiffi
p

p

2a
e
�b2

4a2 (ab 6¼ 0)
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ð1

0

e�t cosftb�1 sin (t sin f)½ �dt

¼ [G(b)] sin (bf) b > 0, � p
2 < f < p

2

� �

ð1

0

e�t cosftb�1 cos (t sin f)½ �dt

¼ [G(b)] cos (bf) b > 0, � p
2 < f < p

2

� �

ð1

0

e�axc � e�bxc

x
dx ¼ 1

c
log

b

a
(a, b, c > 0)

ð1

0

1� e�ax2

x2
dx ¼ p

(ap) (a > 0)

ð1

0

exp �a2x2 � b2

x2

� �

dx ¼
ffiffiffiffi
p

p

2a
e�2ab (a, b > 0)

ð1

0

dx

eax � 1
¼ 1 (a > 0)

ð1

0

x dx

eax � 1
¼ p2

6a2
(a > 0)

ð1

0

e�ax � e�bx

x
dx ¼ log

b

a
(a, b > 0)

ð1

0

dx

eax þ 1
¼ log 2

a
(a > 0)

ð1

0

x dx

eax þ 1
¼ p2

12a2
(a > 0)

ð1

0

e�ax

x
sin mx dx ¼ tan�1 m

a
(a > 0)

ð1

0

e�ax

x
cos mx dx ¼ 1

ð1

0

e�ax

x
1� cos mxð Þ dx ¼ 1

2
ln 1þm2

a2

� �

(a > 0)

ð1

0

e�ax

x
cos mx � cos nxð Þdx ¼ 1

2
ln

a2 þ n2

a2 þm2
(a > 0)

ð1

0

e�ax � e�bx

x
cos mx dx ¼ 1

2
ln
b2 þm2

a2 þm2
(a, b > 0)

ð1

0

e�ax cos2 mx dx ¼ a2 þ 2m2

a(a2 þ 4m2)
(a > 0)

ð1

0

e�ax sin2 mx dx ¼ 2m2

a(a2 þ 4m2)
(a > 0)

ð1

0

e�ax

x
sin2 mx dx ¼ 1

4
ln 1þ 4m2

a2

� �

(a > 0)

ð1

0

e�ax

x2
sin2 mx dx ¼ m tan�1 2m

a
� a

4
ln 1þ 4m2

a2

� �

(a > 0)

ð1

0

e�ax sin mx sin nx dx ¼ 2amn

a2 þ (m� n)2
 �

a2 þ (mþ n)2
 �

(a > 0)

ð1

0

e�ax sin mx cos nx dx ¼ m(a2 þm2 � n2)

{a2 þ (m� n)2}{a2 þ (mþ n)2}

(a > 0)

ð1

0

e�ax cos mx cos nx dx ¼ a(a2 þm2 þ n2)

{a2 þ (m� n)2}{a2 þ (mþ n)2}

(a > 0)

ð1

0

e�ax

x
sin mx sin nx dx ¼ 1

4
log

a2 þ (mþ n)2

a2 þ (m� n)2
(a > 0)

ð1

0

e�a2x2 cos mx dx ¼
p
p

2a
e�m2=(4a2) (a > 0)

ð1

0

xe�a2x2 sin mx dx ¼ m
p
p

4a3
e�m2=(4a2) (a > 0)

ð1

0

e�a2x2

x
sin mx dx ¼ p

2
erf

m

2a

	 


(a > 0)

ð1

0

e�ax

p
x
cos mx dx ¼ aþp

(a2 þm2)f g1=2pp

(a2 þm2)1=2
p
2

(a > 0)

ð1

0

e�ax sin
p
(mx)dx ¼

p
(pm)

2a
p
a
e�m=(4a) (a,m > 0)
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ð1

0

e�ax

p
x
cos

p
(mx)dx ¼

p
pp
a
e�m=(4a) (a,m > 0)

ð1

0

e�ax sin (px þ q)dx ¼ a sin qþ p cos q

a2 þ p2
(a > 0)

ð1

0

e�ax cos (px þ q)dx ¼ a cos q� p sin q

a2 þ p2
(a > 0)

ð1

0

tb�1 cos t dt ¼ [G(b)] cos
bp

2

� �

(0 < b < 1)

ð1

0

tb�1( sin t) dt ¼ [G(b)] sin
bp

2

� �

(0 < b < 1)

ð1

0

( ln x)ndx ¼ (�1)n � n!

ð1

0

ln
1

x

� �1
2

dx ¼
ffiffiffiffi
p

p

2

ð1

0

ln
1

x

� ��1
2

dx ¼
ffiffiffiffi
p

p

ð1

0

ln
1

x

� �n

dx ¼ n!

ð1

0

x ln (1� x)dx ¼ � 3

4

ð1

0

x ln (1þ x)dx ¼ 1

4

ð1

0

ln x

1þ x
dx ¼ �p2

12

ð1

0

ln x

1� x
dx ¼ �p2

6

ð1

0

ln x

1� x2
dx ¼ �p2

8

ð1

0

ln
1þ x

1� x

� �

� dx
x

¼ p2

4

ð1

0

ln x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ¼ �p

2
ln 2

ð1

0

xm ln
1

x

� �� �n

dx ¼ G(nþ 1)

(mþ 1)nþ1 , if mþ 1 > 0, nþ 1 > 0

ð1

0

(xp � xq)dx

ln x
¼ ln

pþ 1

qþ 1

� �

(pþ 1 > 0, qþ 1 > 0)

ð1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffi

ln ( 1
x
)

q ¼
ffiffiffiffi
p

p

ð1

0

ln
ex þ 1

ex � 1

� �

dx ¼ p2

4

ðp=2

0

ln sin x dx ¼
ðp=2

0

ln cos x dx ¼ �p

2
ln 2

ðp=2

0

ln sec x dx ¼
ðp=2

0

ln csc x dx ¼ p

2
ln 2

ðp

0

x ln sin x dx ¼ �p2

2
ln 2

ðp=2

0

sin x ln sin x dx ¼ ln 2� 1

ðp=2

0

ln tan x dx ¼ 0

ðp

0

ln (a� b cos x)dx ¼ p log
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
p

2

 !

(a� b)

ð1

0

dx

cosh ax
¼ p

2a

ð1

0

x dx

sinh ax
¼ p2

4a2

ð1

0

e�ax cosh bx dx ¼ a

a2 � b2
(0 � jbj < a)
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ð1

0

e�ax sinh bx dx ¼ b

a2 � b2
(0 � jbj < a)

ð1

þ1

e�xu

u
du ¼ gþ ln x � x þ x2

2 � 2!�
x3

3 � 3!þ
x4

4 � 4!� � � � ,

where g ¼ lim
z!1

1þ 1

2
þ 1

3
þ � � � þ 1

z
� ln z

� �

¼ 0:5772157 . . . (0 < x < 1)

ðp=2

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 x
p ¼ p

2
1þ 1

2

� �2

k2 þ 1 � 3
2 � 4

� �2

k4

"

þ 1 � 3 � 5
2 � 4 � 6

� �2

k6 þ � � �
#

, if k2 < 1

ðp=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2 sin2 x
p

dx ¼ p

2
1� 1

2

� �2

k2 � 1 � 3
2 � 4

� �2
k4

3

"

� 1 � 3 � 5
2 � 4 � 6

� �2
k6

5
� � � �

#

, if k2 < 1

ð1

0

e�x ln x dx ¼ �g ¼ �0:5772157 . . .

ð1

0

1

1� e�x
� 1

x

� �

e�xdx ¼ g ¼ 0:5772157 . . . (Euler’s constant)

ð1

0

1

x

1

1þ x
� e�x

� �

dx ¼ g ¼ 0:5772157 . . .
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D.1 General Definitions

1.1 A matrix is an array of numbers consisting of m rows and
n columns. It is usually denoted by a boldface capital
letter, e.g.,

A
X

M:

1.2 The (i, j) element of a matrix is the element occurring in
row i and column j. It is usually denoted by a lowercase
letter with subscripts, e.g.,

aij sij mij:

Exceptions to this convention will be stated where required.
1.3 A matrix is called rectangular if m (number of rows) 6¼ n

(number of columns).
1.4 A matrix is called square if m¼ n.
1.5a In the transpose of a matrix A, denoted by A0, the element

in the jth row and ith column of A is equal to the element in
the ith row and jth column of A0. Formally, (A0)ij¼ (A)ji
where the symbol (A0)ij denotes the (i, j)th element of A0.

1.5b The Hermitian conjugate of a matrix A, denoted by AH or
Ay, is obtained by transposing A and replacing each elem-
ent by its conjugate complex. Hence, if

ak1 ¼ uk1 þ i yk1,

then

(AH)kl ¼ ukl � i ykl ,

where typical elements have been denoted by (k, l) to avoid
confusion with i ¼

ffiffiffiffiffiffiffi
�1

p
.

1.6a A square matrix is called symmetric if A¼A0.
1.6b A square matrix is called Hermitian if A¼AH.

1.7 A matrix with m rows and one column is called a
column vector and is usually denoted by boldface, lower-
case letters, e.g.,

b� a:

1.8 A matrix with one row and n columns is called a row
vector and is usually denoted by a primed, boldface, low-
ercase letter, e.g.,

a0 c0 m0:

1.9 A matrix with one row and one column is called a scalar
and is usually denoted by a lowercase letter, occasionally
italicized.

1.10 The diagonal extending from upper left (NW) to lower
right (SE) is called the principal diagonal of a square
matrix.

1.11a A matrix with all elements above the principal diagonal
equal to zero is called a lower triangular matrix.

Example

T ¼
t11 0 0

t21 t22 0

t31 t32 t33

2

6
4

3

7
5 is lower triangular:

1.11b The transpose of a lower triangular matrix is called an
upper triangular matrix.

1.12 A square matrix with all off-diagonal elements equal
to zero is called a diagonal matrix, denoted by the letter
D with a subscript indicating the typical element in the
principal diagonal.
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Example

Da ¼
a1 0 0

0 a2 0

0 0 a3

2

4

3

5 is diagonal:

D.2 Addition, Subtraction,
and Multiplication

2.1 Two matrices A and B can be added (subtracted) if the
number of rows (columns) in A equals the number of rows
(columns) in B.

A� B ¼ C

implies

aij � bij ¼ cij, i ¼ 1, 2, . . .m

j ¼ 1, 2, . . . n

2.2 Multiplication of a matrix or vector by a scalar implies
multiplication of each element by the scalar. If

B ¼ gA,

then

bij ¼ gaij

for all elements.
2.3a Two matrices A and B can be multiplied if the number of

columns in A equals the number of rows in B.
2.3b Let A be of order (m3 n) (have m rows and n columns)

and B of order (n3 p). Then the product of two matrices
C¼AB is a matrix of order (m3 p) with elements

cij ¼
Xn

k¼1

aikbkj:

The states that cij is the scalar product of the ith row vector
of A and the jth column vector of B.

Example

3 4 2

2 3 �1

� � 1 �2 �4

0 �1 2

6 �3 9

2

4

3

5 ¼ 15 �16 14

�4 �4 �11

� �

e.g.,

c23 ¼ 2 3 �1½ �
�4

2

9

2

6
4

3

7
5

¼ 2� (� 4)þ 3� 2þ (�1)� 9 ¼ �11

2.3c In general, matrix multiplication is not commutative:

AB 6¼ BA:

2.3d Matrix multiplication is associative:

A(BC) ¼ (AB)C:

2.3e The distributive law for multiplication and addition holds
as in the case of scalars:

(Aþ B)C ¼ ACþ BC

C(Aþ B) ¼ CAþ CB:

2.4 In some applications, the term-by-term product of two
matrices A and B of identical order is defined as

C ¼ A *B

where

cij ¼ aij bij:

2.5 (ABC)0 ¼C0B0A0.
2.6 (ABC)H¼CHBHAH.
2.7 If both A and B are symmetric, then (AB)0 ¼BA. Note

that the product of two symmetric matrices is generally not
symmetric.

D.3 Recognition Rules
and Special Forms

3.1 A column (row) vector with all elements equal to zero is
called a null vector and is usually denoted by the symbol 0.

3.2 A null matrix has all elements equal to zero.
3.3a A diagonal matrix with all elements equal to one in the

principal diagonal is called the identity matrix I.
3.3b g I, i.e., a diagonal matrix with all diagonal elements equal

to a constant g, is called a scalar matrix.
3.4 A matrix that has only one element equal to one and all

others equal to zero is called an elementary matrix (EL)ij.

Example

(EL)23 ¼

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

The order of the matrix is usually implicit.
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3.5a The symbol j is reserved for a column vector with all
elements equal to 1.

3.5b The symbol j0 is reserved for a row vector with
all elements equal to 1.

3.6 An expression ending with a column vector is a column
vector.

Example

ABx ¼ y

(It is assumed that rule 2.3a is satisfied, else matrix multiplica-

tion would not be defined.)

3.7 As expression beginning with a row vector is a row vector:

Example

y0(Aþ BC) ¼ d0:

3.8 An expression beginning with a row vector and ending
with a column vector is a scalar:

Example

a0Bc ¼ g:

3.9a IfQ is a square matrix, the scalar x0Qx is called a quadratic
form. If Q is nonsymmetric, one can always find
a symmetric matrix Q* such that

x0Qx ¼ x0Q*x

where

(Q*)ij ¼
1

2
(qij þ qji):

3.9b If Q is a square matrix, the scalar xHQx is called a
Hermitian form.

3.10 A scalar x0Qy is called a bilinear form.
3.11 The scalar x0x ¼P x2i , i.e., the sum of squares of all

elements of x.
3.12 The scalar x0y ¼P xiyi, i.e., the sum of products of elem-

ents in x by those in y. x and y have the same number of
elements.

3.13 The scalar x0Dwx ¼Pwix
2
i is called a weighted sum of

squares.
3.14 The scalar x0Dwy ¼Pwixiyi is called a weighted sum of

products.
3.15a The vector Aj is a column vector whose elements are the

row sums of A.

3.15b The vector j0A is a row vector whose elements are the
column sums of A.

3.15c The scalar j0Aj is the sum of all elements in A. Schemat-
ically,

A
�
� Aj

j0A
�
� j0Aj

3.16a If B¼DwA, then bij¼wiaij.
3.16b If B¼ADw, then bij¼ aijwj.
3.17 Interchanging summation and matrix notation:

If

ABCD ¼ E,

then

eij ¼
X

k

X

l

X

m

aikbklclmdmj:

The second subscript of an element must coincide with
the first of the next one. Reordering and transposing may
be required.

Example

If

eij ¼
X

k

X

l

X

m

aklbkicjmdml

¼
X

k

X

l

X

m

bkiakldmlcjm ,

then

E ¼ B0AD0C0:

3.18a A0A is a symmetric matrix whose (i, j) element is the scalar
product of the ith column vector and the jth column
vector of A.

3.18b AA0 is the symmetricmatrix whose (i, j) element is the scalar
product of the ith row vector and the jth row vector of A.

D.4 Determinants

4.1a A determinant jAj or det(A) is a scalar function of a
square matrix defined in such a way that

jAj jBj ¼ jABj

and

a11 a12
a21 a22

�
�
�
�

�
�
�
�
¼ a11a22 � a12a21:

4.1b jAj ¼ jA0j.
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4.2

a11 a12 a13

a21 a22 a23

a31 a32 a33

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ a11a22a33 þ a12a23a31 þ a13a21a32

� a13a22a31 � a11a23a32 � a12a21a33:

4.3

a11 a12 � � � a1n
a21 a22 � � � a2n

� � � � �
an1 an2 � � � anm

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

¼
X

(�1)da1i1a2i2 � � � anin

where the sum is over all permutations

i1 6¼ i2 6¼ � � � in

and d denotes the number of exchanges necessary to bring the
sequence (i1, i2, . . . in) back into the natural order (1, 2, . . . n).

4.4 If two rows (columns) in a matrix are exchanged, the deter-
minant will change its sign.

4.5 Adeterminant does not change its value if a linear combination
of other rows (columns) is added to any given row (column).

Example

a11 a12 a13 a14
b21 b22 b23 b24
a31 a32 a33 a34
a41 a42 a43 a44

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

¼
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

where

b2i ¼ a2i þ g1a1i þ g3a3i þ g4a4i ,

i ¼ 1, 2, 3, 4,

g1, g3, g4 arbitrary.

4.6 If the ith row (column) equals (a constant times) the jth row
(column) of a matrix, its determinant is equal to zero (i 6¼ j).

4.7 If, in a matrix A, each element of a row (column) is multi-
plied by a constant g, the determinant is multiplied by g.

4.8 jgAj ¼gnjAj assuming that A is of order (n3 n).
4.9 The cofactor of a square matrixA, cofij(A), is the determinant

of a matrix obtained by striking the ith row and jth column of
A and choosing positive (negative) sign if iþ j is even (odd):

Example

cof 23

2 4 3

6 1 5

�2 1 3

2

6
4

3

7
5 ¼ � 2 4

�2 1

�
�
�
�

�
�
�
�

¼ �(2þ 8) ¼ �10:

4.10 (Laplace development)

jAj ¼ ai1 cof i1(A)þ ai2 cof i2(A)þ � � � þ ain cof in(A)

¼ a1j cof 1j(A)þ a2j cof 2j(A)þ � � � þ anj cofnj(A)

for any row i or any column j.
4.11 Numerical evaluation of the determinant of a symmetric

matrix.
Note: If A is nonsymmetric, from A0A or AA0 by rule

3.18, obtain its determinant, and take the square root.
(‘‘Forward Doolittle Scheme,’’ ‘‘left side’’)
Let

p11 ¼ a11, p12 ¼ a12 ¼ a21, � � � p1n ¼ a1n

p11 p12 p13 � � � p1n

1 u12 u13 � � � u1n

a22 a23 � � � a2n

p22 p23 � � � p2n

1 u23 � � � u2n

a33 � � � a3n

p33 � � � p3n

1 � � � u3n

� � � � �
ann

pnn

1

u1i ¼ p1i=p11 i ¼ 1, 2, . . . n

p2i ¼ a2i � u12p1i i ¼ 2, 3, . . . n

u2i ¼ p2i=p22

p3i ¼ a3i �u13p1i�u23p2i i¼ 3,4, . . .n

u3i ¼ p3i=p33

pki ¼ aki�u1kp1i�u2kp2i� � � ��uk�1,kpk�1, i i¼ k,kþ 1, . . .n

k¼ 2,3, . . .n

uki ¼ pki=pkk

If, at some stage, pkk¼ 0, reordering of rows and columns
may be required. If the matrix is positive-definite (see 8.16)
(always true for AA0 or A0A; see rule 10.24), none of the pkk
will be zero. The pii are called pivots. Then

jAj ¼
Yn

i¼1

pii:

Further, if A is partitioned

A ¼ A11 A12

A0
12 A22

� �
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where A11 is of order (k3 k), then

jA11j ¼
Yn

i¼1

pii:

(Numerical examples: see 6.14.)

D.5 Singularity and Rank

5.1 A matrix A is called singular if there exists a vector x 6¼ 0

such thatAx¼ 0 orA0x¼ 0. Note x 6¼ 0 if a single element of x
is unequal to 0. If a matrix is not singular, it is called non-

singular.

5.2 If a matrix A1 can be formed by selection of r rows and
columns of A such that A1x 6¼ 0 or A0

1x 6¼ 0 for every x 6¼ 0,
and if addition of an (rþ 1)st row and column would pro-
duce a singular matrix, r is called the rank of A.

Example

A ¼
2 4 6

1 3 7

3 7 13

1 1 �1

2

6
6
4

3

7
7
5

Note that

[ 1, 1, �1 ]

2 4 6

1 3 7

3 7 13

2

4

3

5 ¼ [ 0 0 0 ]

and

[ 1, �1, �1 ]

2 4 6

1 3 7

1 1 �1

2

4

3

5 ¼ [ 0 0 0 ]

but

2 4

1 3

� �

x1
x2

� �

6¼ 0

0

� �

or

[ x1 x2 ]
2 4

1 3

� �

6¼ [ 0, 0 ]

for any arbitrary

[ x1 , x2 ] 6¼ [ 0, 0 ]:

Hence, the matrix has rank 2.

5.3 If A has rank r and if A1 is a nonsingular submatrix
consisting of r rows and columns of A, then A1 is called a
basis of A.

5.4a The determinant of a square singular matrix is 0.
5.4b The determinant of a nonsingular matrix is 6¼ 0.
5.5 rank(AB)�min[rank(A), rank(B)].
5.6 rank(AA0)¼ rank(A0A)¼ rank(A).
5.7 jA0Aj ¼ jAA0j ¼ jAj2 if A is square.
5.8 jA0Aj ¼ jAA0j � 0 for every A with real elements.

D.6 Inversion

Regular case, nonsingular matrices

6.1 If A is square and nonsingular (jAj 6¼ 0), there exists a
unique matrix A�1 such that AA�1¼A�1A¼ I.

6.2 (ABC)�1¼C�1B�1A�1 (provided that all inverses exist).
6.3 (A�1)0 ¼ (A0)�1.
6.4 Ax¼ b is a system of linear equations. If A is square and

nonsingular, there exists a unique solution

x ¼ A�1b:

6.5 (gA)�1¼ (1=g)A�1.
6.6 jA�1j ¼ 1jAj.
6.7 D�1

w ¼ D1=w where D is a diagonal matrix.
6.8 If

A ¼ Bþ uv0,

then

A�1 ¼ B�1 � lyz0

where

y ¼ B�1u, z0 ¼ v0B�1,

and

l ¼ 1=(1þ z0u):

Example 6.8.1

A ¼
4 2 4 5

3 9 12 15

2 4 11 10

1 2 4 10

2

6
6
4

3

7
7
5

This matrix can be written as

3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 5

2

6
6
4

3

7
7
5
þ

1

3

2

1

2

6
6
4

3

7
7
5
[ 1 2 4 5 ] ¼ Bþ uv0
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B�1 ¼
1=3 0 0 0

0 1=3 0 0

0 0 1=3 0

0 0 0 1=5

2

6
6
4

3

7
7
5

y ¼ B�1u ¼
1=3
1

2=3
1=5

2

6
6
4

3

7
7
5

z0 ¼ v0B�1 ¼ [ 1=3 2=3 4=3 1 ]

z0u ¼ 1=3� 1þ 2=3� 3þ 4=3� 2þ 1� 1 ¼ 6

l ¼ 1=7

A�1 ¼

1=3 0 0 0

0 1=3 0 0

0 0 1=3 0

0 0 0 1=5

2

6
6
6
6
6
4

3

7
7
7
7
7
5

� (1=7)

1=3

1

2=3

1=5

2

6
6
6
6
6
4

3

7
7
7
7
7
5

[ 1=3 2=3 4=3 1 ]

¼ (1=315)

100 �10 �20 �15

�15 75 �60 �45

�10 �20 65 �30

�3 �6 �12 54

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(This rule is especially useful if all off-diagonal elements are

equal; then u¼ kj and v0 ¼ j0 and B is diagonal.)

6.9 Let B (elements bij) have a known inverse, B�1 (elements bij).
Let A¼B except for one element ars¼ brsþ k. Then the
elements of A�1 are

aij ¼ bij � kbirbsj

1þ kbsr
:

6.10 (Partitioning)
Let

A ¼
(p) (q)

(p)

(q)

B C

D E

� � (letters in parentheses

denote order of the submatrices):

Let B�1 and E�1 exist. Then

A�1 ¼ X Y

Z U

� �

where

X ¼ (B� CE�1 D)�1

U ¼ (E�DB�1 C)�1

Y ¼ �B�1 CU

Z ¼ �E�1 DX:

6.11 (Partitioning of determinants)
Let

jAj ¼ B C

D E

�
�
�
�

�
�
�
�

(structure as in Equation 6:10):

Then

jAj ¼ jEj j(B� CE�1D)j ¼ jBj j(E�DB�1C)j:

6.12. Let

A ¼ Bþ UV

where B(n3 n) has an inverse
U is of order (n3 k), with k usually very small
V is of order (k3 n)

(the special case for k¼ 1 is treated in 6.8).
Then

A�1 ¼ B�1 � YLZ

where

Y ¼ B�1U(n� k)

Z ¼ VB�1(k� n)

and

L(k� k) ¼ [Iþ ZU]�1

6.13 Let aij denote the elements of A and aij those of A�1. Then

aij ¼ cof ji(A)=jAj

where cof is the determinant defined in 4.9.
6.14 ‘‘Doolittle’’ Method of inverting symmetric matrices (see

also 4.11). Let

p11 ¼ a11, p12 ¼ a12 ¼ a21, . . . p1n ¼ a1n ¼ an1:

Forward Solution

p11 p12 p13 � � � p1n
1 u12 u13 � � � u1n

1
u1I

a22 a23 � � � a2n
p22 p23 � � � p2n
1 u23 � � � u2n

0 1 �
p2I p2II �
u2I p2II

a33 � � � a3n
p33 � � � p3n
1 � � � u3n

0 0 1
p3I p3II p3III
u3I u3II u3III

� � � � �
ann
pnn
1

� � � � � �
0 0 0 � � � 1
pnI pnII pnIII � � � pnN
unI unII unIII � � � unN

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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u1i ¼ p1i=p11 i¼ 1, 2, . . .n, I

P2i ¼ a2i � u12p1i i¼ 2, 3, . . .n, I, II

u2i ¼ p2i=p22

p3i ¼ a3i � u13p1i � u23p2i i¼ 3, 4, . . .n, I, II, III

u3i ¼ p3i=p33

pki ¼ aki � u1kp1i � u2kp2i

� � � � � uk�1,kpk�1, i i¼ k,kþ 1, . . .n, I, II, . . .K

k¼ 2, 3, . . .n

uki ¼ pki=pkk

Backward Solution

j refers to Arabic, J refers to Roman numerals

The elements of A�1 are aij

anj ¼ unJ j ¼ 1, 2, . . . n;

J ¼ I, II, . . .N

an�1j ¼ un�1, J � un�1, na
nj j ¼ 1, 2, . . . (n� 1);

J ¼ I, II, . . . (N � 1)

an�2, j ¼ un�2, J � un�2, na
nj

� un�2, n�1a
n�1, j

j ¼ 1, 2, . . . (n� 2);

J ¼ I, II, . . . (N � 2)

an�k, j ¼ un�k, J � un�k, na
nj

� un�k, n�1a
n�1, j

� � � � � un�k, n�kþ1a
n�kþ1, j j ¼ 1, 2, . . . (n� k);

J ¼ I, II, . . . (N � k)

k ¼ 1, 2, . . . (n� 1),

and aji¼ aij.

Numerical Example 6.14.1

Invert the matrix

25 30 �10

30 40 �6

�10 �6 17

2

4

3

5

a1
u1

25 30 �10 1

1 1:2 �0:4 0:04

a2
P2
u2

40 �6 0 1

4 6 �1:2 1

1 1:5 �0:3 0:25

a3 17

p3 4

u3 1

0 0 1

2:2 �1:5 1

0:55 �0:375 0:25

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1:61 �1:125 0:55
�1:125 0:8125 �0:375
0:55 0:375 0:25

Enter row a1.

Elements in u1¼ elements in a1 divided by a11(¼ 25).

Enter row a2.

p22 ¼ 40� 1:2� 30 ¼ 4

p23 ¼ �6� 1:2� (�10) ¼ 6

p21 ¼ 0� 1:2� 1 ¼ �1:2

psII ¼ 1

Elements in u2¼ elements in p2 divided by p22(¼ 4).

Enter row a3.

p33 ¼ 17� (�0:4)� (�10)� 1:5� 6 ¼ 4

p31 ¼ 0� (�0:4)� 1� 1:5� (�1:2) ¼ 2:2

p3II ¼ 0� 1:5� 1 ¼ �1:5

p3III ¼ 1

Elements in u3¼ elements in p3 divided by p33(¼ 4).

Copy the right-hand side of the last (third) u-row as the last

column below the double line.

a21 ¼ �0:3� 1:5� 0:55 ¼ �1:125

a22 ¼ 0:25� 1:5� (�0:375) ¼ 0:8125

a23 ¼ 0� 1:5� 0:25 ¼ �0:375 (check against a32):

These are entered in the next to last (second) column below.

a11 ¼ 0:04� (�0:4)� 0:55� 1:2� (�1:125) ¼ 1:61

a12 ¼ 0� (�0:4)� (�0:375)� 1:2� 0:8125 ¼
� 1:125 (check against a21)

a13 ¼ 0� (�0:4)� (0:25)� 1:2� (�0:375)

¼ :55 (check against a31):

6.15 A matrix is called orthogonal is A0 ¼A�1 (or AA0 ¼ I).

D.7 Traces

7.1 If A is a square matrix, then the trace of A is tr A ¼Pi aii
i.e., the sum of the diagonal elements.

7.2 If A is of order (m3 k) and B of order (k3m) then
tr(AB)¼ tr(BA).

7.3 If A is of order (m3 k), B of order (k3 r), and C of order
(r3m), then

tr(ABC) ¼ tr(BCA) ¼ tr(CAB):

7.3a If b is a column vector and c0 a row vector, then

tr(Abc0) ¼ tr(bc0A) ¼ c0Ab:

since the trace of a scalar is the scalar.
7.4 tr(AþgB)¼ tr Aþg tr B, where g is a scalar.
7.5 tr(EL)ijA¼ tr A(EL)ij¼ aji, where (EL)ij is an elementary

matrix as defined in 3.4.
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7.6 tr(EL)ijA(EL)rsB¼ ajrbsi.
(These rules are useful in matrix differentiation)

7.7 The trace of the second order of a square matrix A is the

sum of the determinants of all
n
2

� �

matrices of order

(23 2) that can be formed by intersecting rows i and j

with columns i and j.

tr2A ¼
a11 a12

a21 a22

�
�
�
�

�
�
�
�þ

a11 a13

a31 a33

�
�
�
�

�
�
�
�

þ � � � þ
a11 a1n

an1 ann

�
�
�
�

�
�
�
�
þ

a22 a23

a32 a33

�
�
�
�

�
�
�
�

þ � � � þ
a22 a2n

an2 ann

�
�
�
�

�
�
�
�þ � � � þ

an�1, n�1 an�1, n

an, n�1 ann

�
�
�
�

�
�
�
�:

7.8 The trace of the kth order of a square matrix is the sum of

the determinants of all
n
k

� �

matrices of order (k3 k) that

can be formed by intersecting any k rows of A with the
same k columns.

trk A ¼
X

ai1i1 ai1i2 � � � ai1ik
ai2i1 ai2i2 � � � ai2ik
� � � � � �

aiki1 aiki2 � � � aikik

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

where the sum extends over all combinations of n elements
taken k at a time in order

i1 < i2 < . . . < ik:

7.9 Rules 7.2 and 7.3 (cyclic exchange) are valid for trace of
kth order.

7.10 trn A¼ jAj if A is of order (n3 n).

D.8 Characteristics Roots and Vector

8.1 If A is a square matrix of order (n3 n), then jA�lIj ¼ 0 is
called the characteristic equation of the matrix A. It is a
polynomial of the nth degree in l.

8.2 The n roots of the characteristic equation (not necessarily
distinct) are called the characteristic roots of A

ch(A) ¼ l1,l2, . . . ,ln:

8.3 The characteristic equation of A can be obtained by the
relation

ln � (tr A)ln�1 þ (tr2 A)ln�2 � (tr3 A)ln�3
. . .

� (�1)n(trn�1 A)lþ (�1)njAj ¼ 0

where trk is defined in 7.8.

Example 8.3.1

A ¼
25 30 �10

30 40 �6

�10 �6 17

2

6
6
4

3

7
7
5

tr A ¼ 25þ 40þ 17 ¼ 82

tr2 A ¼ (25� 40� 30� 30)þ (25� 17� 10� 10)

þ (40� 17� 6� 6) ¼ 1069

tr3 A ¼ jAj ¼ 25� 4� 4 ¼ 400

(cf. 6.14 and procedure stated in 4.11)

Hence,

l3 � 82l2 þ 1069l� 400 ¼ 0:

The solution (by Newton iteration) are

l1 ¼ 65:86108

l2 ¼ 15:75339

l3 ¼ 0:38553:

These are the characteristic roots of A.

8.4 ch(AþgI)¼ gþ ch(A).
8.5 ch(AB)¼ ch(BA)

except thatAB orBAmay have additional roots equal to zero.
8.6 ch(A�1)¼ 1=ch(A).
8.7 If l1,l2, . . . , ln are the roots of A, then

X

i

li ¼ trA

X

i<j

lilj ¼ tr2A

X

i<j<k

liljlk ¼ tr3A

Y

i

li ¼ jAj:

8.8 If x0 denotes the radius vector(running coordinates [x, y, z])
and if a matrix Q is positive-definite, then

x0 � x00
� 	

Q�1 x � x0ð Þ ¼ 1

is the equation of an ellipsoid with center at [x0, y0, z0] ¼ x00
and semi-axes equal to the square roots of the characteristic
roots of Q.

8.9 The characteristic roots of a triangular (or diagonal) matrix
are the diagonal elements of the matrix.

8.10 If A is a real matrix with positive roots, then

chmin(AA
0) � [chmin(A)]

2 � [chmax(A)]
2 � chmax(AA

0)

where chmin denotes the smallest and chmax the largest root.
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8.11 The ratio of two quadratic forms (B nonsingular)

u ¼ x0Ax

x0Bx

attains stationary values at the roots of B�1A. In particular,

umax ¼ chmax(B
�1A) and umin ¼ chmin(B

�1A):

8.12 The equation system

Ax ¼ lx

permits nonzero solutions only if l is one of the character-
istic roots of A. Such a solution x is called a characteristic
vector.

8.13 If x is a solution to 8.12, so is gx for an arbitrary scalar g.
8.14 A solution x which has unit length (x0x¼ 1) is called the

eigenvector associated with the characteristic root l of A.
The vector is frequently denoted by e.

8.15 A real symmetric matrix has real roots.
8.16 A matrix A is called positive-definite (abbreviated p.d.) if

the quadratic form x0Ax> 0 for every x 6¼ 0.
8.17 A matrix A is called positive-semidefinite (abbreviated

p.s.d.) if the quadratic form x0Ax> 0 and=or x0Ax¼ 0 for
some x 6¼ 0.

8.18 A positive-definite real symmetric matrix has only positive
characteristic roots.

8.19 If a real symmetric matrix is p.s.d., it has no negative roots.
The number of nonzero roots equals the rank of the matrix.

8.20 If all roots of a real symmetric matrix are distinct, the
associated eigenvectors are distinct.

8.21 The matrix of eigenvectors

E ¼ e1, e2, . . . en½ �

of a real symmetric matrix is (or can be chosen to be) orthog-
onal.

8.22 AE¼EDl.
8.23 For a real symmetric matrix, A¼EDlE

0 (decomposition
into matrices of unit rank)

E0 AE ¼ Dl

where Dl denotes the diagonal matrix of characteristic roots
ordered in the same way as the eigenvector columns in E.

8.24 If f(l) is a polynomial in l, then

f (A) ¼ EDf (l)E
�1

where
l are the characteristic roots of A
E is the matrix of associated eigenvectors

If A is symmetric, E�1¼E0.

Example 8.24.1

Consider the matrix in 8.3 (and 6.14).

A ¼
25 30 �10

30 40 �6

�10 �6 17

2

6
4

3

7
5:

The characteristic roots were found in Example 8.3.1,

l1 ¼ 65:86108 l2 ¼ 15:75339 l3 ¼ 0:38553:

To find some x such that Ax¼ l1x, we arbitrarily set the first

element of x equal to 1. Using only the first two rows of A, we

solve the equation system

25þ 30x2 � 10x3 ¼ 65:86108

30þ 40x2 � 6x3 ¼ 65:86108x2

which yields x2¼ 1.24294 and x3¼�0.35729. Substitution of

these values into the third equation

�10� 6x2 þ 17x3 ¼ 65:86108x3

yields zero to five decimal places, indicating the accuracy of

the first characteristic root. To reduce to unit length the

characteristic vector

1 1:24294 �0:35729½ �

we divide each element by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1:242942 þ 0:357292
p

and thus obtain the first eigenvector

0:61170 0:76030 �0:21855½ �:

This, written as a column vector, is e1. Repeating the same

process for the second and third eigenvector we obtain

e2 ¼
�0:08659

0:33896

0:93861

2

4

3

5 e3 ¼
0:78634

�0:55412

0:27318

2

4

3

5

The three vectors can be placed into the eigenvector matrix E,

which is easily seen to be orthogonal.

D.9 Conditional Inverses

9.1 Any matrix A (singular or nonsingular, rectangular or
square) has some conditional or generalized inverse A(�1)

defined by the relation

AA(�1) A ¼ A:
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9.2 If (and only if) A is square and nonsingular, A(�1) is
unique and equals A�1. Otherwise there will be infinitely
many matrices A(�1) which satisfy the defining relation 9.1.

9.3a If A is rectangular (n3m) of rank m, with m< n, then
A(�1) is of order (m3 n) and A(�1)A¼ I(m3m). Then
A(�1) is called an inverse from the right. AA(�1) 6¼ I In
this case.

9.3b If A is rectangular (n3m) of rank n withm> n, then A(�1)

is of order (m3 n) and AA(�1)¼ I (n3 n). Then A(�1) is
called an inverse to the right. In this case,

A(�1)A 6¼ I:

9.3c For a square, singular matrix, AA(�1) 6¼ I and A(�1) A 6¼ I.

Example 9.3.1

A ¼
3

2

1

2

4

3

5

The row vector [1=3 0 0] is an inverse from the left. The row

vector

x y (1� 3x � 2y)½ �

is a conditional inverse of the above matrix A for any values of

x and y. It is called the generalized inverse of A.

Example 9.3.2

A ¼
1 2 3

2 5 6

3 7 9

2

4

3

5

A conditional inverse is

A(�1) ¼
5 �2 0

�2 1 0

0 0 0

2

4

3

5

Here it was obtained by inversion of the basis (the 23 2

matrix in the upper left-hand corner) and replacement of the

other elements in zeros.

9.4 A square matrix A is called idempotent if AA¼A2¼A.
9.5 AA(�1) and A(�1) A are idempotent.
9.6 All characteristic roots of idempotent matrices are either

zero or one.
9.7 A system of linear equations (m equations in n unknowns)

Ax ¼ b

is called consistent if there exists some solution x that
satisfies the equation system.

Example 9.7.1

The system

x þ y ¼ 2

2x þ 2y ¼ 4 is consistent:

Example 9.7.2

The system

x þ y ¼ 2

2x þ 2y ¼ 5 is inconsistent:

for no pair of values (x, y) will satisfy this system.

9.8 If, in a system of equations (rectangular or square)

Ax ¼ b

AA(�1)b¼ b for some conditional inverse A(�1), then
AA(�1)b¼ b for every conditional inverse of A, and
Ax¼ b is consistent. Conversely, if AA(�1)b 6¼ b for some
conditional inverse A(�1), then AA(�1)b 6¼ b for every
conditional inverse of A, and Ax¼ b is inconsistent.

9.9 If Ax¼ b is consistent, then x¼A(�1)b is a solution (gen-
erally a different one for each A(�1)).

9.10 Let y(p3 1) be a set of linear functions of the solutions x
(n3 1) of a consistent system of equations Ax¼ b, given by
the relation y¼Cx. They y¼Cx is called unique if the
same values of y will result regardless of which solution x

is used.

Example 9.10.1

3x þ 4y þ 5z ¼ 22

x þ y þ z ¼ 6

is a consistent system. One solution would be

x ¼ 3 y ¼ 2 z ¼ 1:

Another solution is

x ¼ 2 y ¼ 4 z ¼ 0:

The linear function

[ 7 9 11 ]

x

y

z

2

4

3

5 ¼ u

(7xþ 9yþ 11z¼ u) will have the same value (50) regardless of

which of the two (or any other) solutions is substituted. Thus,

u is unique.
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9.11 Let Ax¼ b be a consistent system of equations. For Cx¼ y

to be a unique linear combination of the solution x, it is
necessary and sufficient that CA(�1)A¼C. If this relation
holds for some A(�1), it will hold for every conditional
inverse of A. If it is violated for some A(�1), it will be
violated for every A(�1), and y will be nonunique.

9.12 LetA be of rank r and select r rows and r columns that form a
basis ofA. Then a conditional inverse ofA can be obtained as
follows: Invert the (r3 r) matrix, place the inverse (without
transposing) into the r rows corresponding to the column
numbers and the r columns corresponding to the row num-
bers of the basis, and place zero into all remaining elements.
Thus, ifA is of order (53 4) and rank 3, and if rows 1, 2, 4 and
columns 2, 3, 4 are selected as a basis, A(�1), of order (43 5),
will contain the inverse elements of the basis in rows 2, 3, 4
and columns 1, 2, 4, and zeros elsewhere. (See Example 9.3.2.)

9.13 If A is a square, singular matrix of order (n3 n) and rank r,
letM be amatrix of order [n3 (n� r)] andK anothermatrix
of order [(n� r)3 n] chosen in such a way that AþMK is
nonsingular. Then (AþMK)�1 is a conditional inverse ofA.

Example 9.13.1

A ¼
3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 �1

�1 �1 �1 3

2

6
6
4

3

7
7
5

is of order (43 4) and rank 3. Take M¼ j (column vector

of ones) and K¼ j0 (row vector of ones). Then AþMK¼Aþ
jj0 ¼ 4I. Hence (1=4) I is a conditional inverse of A.

9.14 The ‘‘Doolittle’’method (see 6.14) can be employed to obtain
a conditional inverse of a symmetric matrix. If, at any stage,
the leading element of the p-row is zero, that cycle is dis-
regarded.

Example 9.14.1

Invert, conditionally, the matrix

A ¼
4 2 �2 4

2 17 11 6

�2 11 10 1

4 6 1 30

2

6
6
4

3

7
7
5

4 2 �2 4 1

1 :5 �:5 1 :25

17 11 6 0 1

16 12 4 �:5 1

1 :75 :25 �:03125 :0625

10 1 0 0 1

�
�
�
�
�
�
�
�
�
�
�
�

0

30 0 0 0 1

25 �:875 �:25 0 1

1 �:035 �:01 0 :04

:29625 �:0225 0 �:035

�:0225 :065 0 �:01

0 0 0 0

�:035 �:01 0 :04

2

6
6
6
4

3

7
7
7
5
¼ A(�1)

D.10 Matrix Differentiation

10.1a If the elements of a matrix Y(m3 n) are functions of a
scalar, x, the expression

qY=qx

denotes a matrix of order (m3 n) with elements qyij=qx.
10.1b If the elements of a column (row) vector y(y0) are func-

tions of a scalar, x, the expression

qY=qx (qy0=qx)

denotes a column (row) vector with elements qyi=qx.
10.2a If y is a scalar function of m3 n variables, xij, arranged

into a matrix X, the expression

qY=qX

denotes a matrix with elements qy=qxij.
(Note: Partial differentiation is performed with respect

to the element in row i and column j of X. If the same x-
variable occurs in another place as, e.g., in a symmetric
matrix, differentiation with respect to the distinct
(repeated) variable is performed in two stages.)

Example 10.2.1

If y¼ j0Xj (sum of all elements of a square matrix), qy=qX is a

matrix of ones. If X is symmetric, one can introduce a new

notation xij¼ xji¼ zij. Then

qy=qzij ¼ (qy=qxij )(qxij=qzij )þ (qy=qxji)(qxji=qzij )

¼ 1þ 1 ¼ 2 (if i 6¼ j)

¼ 1 (if i ¼ j)

10.2b If y is a scalar function of n variables, xi, arranged into a
column (row) vector x(x0), the expression

qy=qx (qy=qx0)

denotes a column (row) vector with elements qy=qxi.
10.3 If y is a column vector with m elements, each a function of

n variables, xi, arranged into a row vector x0, the expres-
sion qy=qx0 denotes a matrix with m rows and n columns,
with elements qyi=qxj.

10.4 qY=qyij¼ (EL)ij (see definition of (EL) in 3.4).
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10.5 qUV=qx¼ (qU=qx)VþU(qV=qx).
10.6 qAY=qx¼A(qY=qx) (if elements of A are not functions

of x).
10.7 qY0=qyij¼ (EL)ji.
10.8 qA0YA=qx¼A0(qY=qx)A.
10.9 qY0AY=qx¼ (qY0=qx)AYþY0A(qY=qx).
10.10 qa0x=qx¼ a.
10.11 qx0x=qx¼ 2x.
10.12 qx0Ax=qx¼AxþA0x.
10.13 (Chain Rule No. 1) qy=qx0 ¼ (qy=qz0)(qz=qx0).
10.14 qAx=qx0 ¼A.
10.15 q tr X=qX¼ I.
10.16 q tr AX=qX¼ q tr XA=qX¼A0.
10.17 q tr AXB=qX¼A0B0.
10.18 q tr X0AX=qX¼AXþA0X.
10.19 q log jXj=qX¼ (X0)�1 (log to base e).
10.20 qY�1=qx¼�Y�1(qY=qx)Y�1.
10.21 (Chain Rule No. 2)

qy=qx ¼ tr(qy=qZ) (qZ0=qx)

where y and x are scalars. The scalar y is a function of
m3 n variables zij, and each of the zij is a function of x.

Example 10.21.1

Obtain log jR� FF0j=qF, where R is symmetric. By Chain

Rule No. 2:

q log jR� FF0j=qfij
¼ tr[q log jR� FF0j=q(R� FF0)] [q(R� FF0)=qfij ]

(since R and FF0 are symmetric)

¼ tr(R� FF0)�1[q(R� FF0)=qfij ] (by 10:19)

¼ tr(R� FF0)�1[�(qF=qfij)F
0 � F(qF0=qfij )] (by 10:5)

¼ tr(R� FF0)�1[�(EL)ijF
0 � F(EL)ji] (by 10:4 and 10:7)

¼ �tr(R� FF0)�1(EL)ijF
0 � tr(R� FF0)�1F(EL)ji

¼ �tr(EL)ijF
0(R� FF0)�1 � tr(EL)ji(R� FF0)�1F (by 7:3)

¼ �[F0(R� FF0)�1]ji � [(R� FF0)�1F]ij ,

where [ ]ij denotes the (i, j) element of the matrix in brackets

(by 7.5),

¼�[(R�FF0)�1F]ij� [(R�FF0)�1F]ij (since R�FF0 is symmetric)

¼�2[(R�FF0)�1F]ij:

Hence, by definition 10.2a.

q log jR� FF0j=qF ¼ �2(R� FF0)�1F:

10.22 jqy=qx0j ¼ J(y; x) is called the Jacobian or functional

determinant used in variable transformation of multiple
integrals. Formally, if y is a column vector with m elem-
ents, each function of m variables xi arranged into a row
vector x0,

dx1dx2 . . . dxm ¼ jqy=qx0j�1dy1dy2 . . . dym:

10.23 For a scalar y (a function of m variables xi) to attain a
stationary value, it is necessary that

qy=qx ¼ 0:

10.24 For a stationary value to be a minimum (maximum) it is
necessary that

q(qy=qx)=qx0 (�q(qy=qx)=qx0)

be a positive-definite matrix for the value of x satisfying
10.23.

Example 10.24.1

Find the values of b that minimize u¼ x0x (the sum of squares

of xi) where x¼ y�Ab (with y and A known and fixed).

qu=qb0 ¼ (qu=qx0)(qx=qb0) (by Chain Rule No:1)

¼ �2x0A (by 10:11 and 10:14)

Hence,

qu=qb ¼ �2A0x

¼ �2A0(y� Ab)

Hence, for a stationary value, by 10.23, it is necessary that

A0Ab̂ ¼ A0y

where b̂ denotes the values that make u stationary. Now,

q(qu=qb)=qb0 ¼ 2q(A0Ab)=qb0 ¼ 2A0A:

If A has real elements, and if A0A is nonsingular, then it is

positive-definite (since, given an arbitrary real x 6¼ 0,

x0A0Ax¼ z0z, with z¼Ax; thus, this is a sum of squares).

Hence, b̂ minimizes u.

10.25 (Generalized Newton Iteration)
Let x00 be an initial estimate (m elements) of the roots of

the m equations

f(x0) ¼ 0
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where the m elements of the column vector f are each
functions of x1, x2, . . . xm. Then an improved root is

x1 ¼ x0 �Q�1
0 f x00

� 	

,

where Q0 is the matrix of derivatives qf=qx0 evaluated at
x¼ x0. The usual procedure consists of evaluating f x00

� 	

,
then solving Q0u ¼ f x00

� 	

for u. Then x1¼ x0� u.

Example 10.23.1

Solve

f1(x, y) ¼ x3 � x2y þ y2 � 3:526 ¼ 0

f2(x, y) ¼ x3 þ y3 � 14:911 ¼ 0

Q ¼ 3x2 � 2xy 2y � x2

3x2 3y2

� �

Take x0¼ 1, y0¼ 2

f1(x0 , y0) ¼ �0:526

f2(x0 , y0) ¼ �5:911

Q0 ¼
�1 3

3 12

� �

� uþ 3y ¼ �0:526

3uþ 12y ¼ �5:911

yields u ¼ �0:55, y ¼ �0:36:

Then,

x1 ¼ x0 � u ¼ 1:55

y1 ¼ y0 � y ¼ 2:36

f1(x1 , y1) ¼ 0:0976

f2(x1 , y1) ¼ 1:9572

Q1 ¼
�0:1085 2:3175

7:2075 16:7088

� �

� 0:1085uþ 2:3175y ¼ 0:0976

7:2075uþ 16:7088y ¼ 1:9572

yields u ¼ 0:157, y ¼ 0:049:

Then,

x2 ¼ x1 � u ¼ 1:393

y2 � y1 � y ¼ 2:311

f1(x2 , y2) ¼ 0:3337

f2(x2 , y2) ¼ 0:13443

Q2 ¼
�0:61710 2:68155

5:82135 16:02216

� �

� 0:61710uþ 2:68155y ¼ 0:03337

5:82135uþ 16:02216y ¼ 0:13443

yields u ¼ �0:0068, y ¼ 0:0109:

Then,

x3 ¼ x2 � u ¼ 1:3998

y3 ¼ y2 � y ¼ 2:3001

(The exact roots are x¼ 1.4 and y¼ 2.3).

D.11 Statistical Matrix Forms

11.1 Let E denote the expectation operator, and let y be a set of
p random variables. Then

E(y) ¼ m

states that E(yi)¼mi (i¼ 1, 2, . . . , p).
11.2 Let var denote variance. Then

var(y) ¼ S

denotes a p3 p symmetric matrix whose elements are cov
(yi, yj) and whose diagonal elements are var(yi), where cov
denotes covariance.

11.3 E(Ayþ b)¼AE(y)þ b¼Amþ b.
11.4 var(Ayþ b)¼A var(y)A0 ¼ASA0.
11.5 cov(y, z0) denotes a matrix with elements cov(yi, zj).

cov(z, y0)¼ [cov(y, z0)]0.
11.6 cov(Ayþ b, z0Cþ d0)¼A cov(y, z0)C.
11.7 var(y)¼E(yy0)� E(y) E(y0).
11.8 cov(y, z0)¼ E(yz0)�E(y) E(z0).
11.9 (Expected ‘‘sum of squares’’)

E(y0Qy) ¼ tr[Q var(y)]þ E(y0)QE(y):

11.10 If a matrix Q is symmetric and positive-definite, one can
find a lower triangular matrix T (with positive diagonal
terms, for uniqueness) such that TT0 ¼Q. The matrices T
and T�1 can be obtained from the Doolittle pattern (6.14)
(Gauss elimination or square-root method) as follows: In
each cycle, divide the p-row (left- and right-hand side) by
ffiffiffiffiffi
pii

p
(instead of pii for the u-row). Thus, obtain rows des-

ignated as t-rows. The left-hand side (Arabic subscripts) is
T0, and the right-hand side (Roman subscripts) is T�1.

11.11 If a coordinate system x is oblique, and if the cosines
between reference vectors (scalar products of basis vectors
of unit length) are stated in a symmetric matrix Q, then
T�1x¼ y is an orthogonal system, where T is obtained
from Q by 11.10.

11.12 The likelihood function of a sample of size n from a
multivariate normal distribution (p responses), with com-
mon variance–covariance matrix S(p3 p), and with
means or main effects replaced by maximum-likelihood
or least-squares estimates, can be written as

log L ¼ � np

2
log 2p� n

2
log jSj � n

2
trS�1S
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where
P

(p� p) is the common variance–covariance
matrix, and S is its maximum-likelihood estimate (matrix
of sums of squares and products due to error, divided by
sample size n) and log is base e.

11.13 If S has a structure under a model or null hypothesis, and
if elements of S are to be estimated, by maximum-likeli-
hood, two cases can be distinguished:

(11.14) S�1 has the same structure (intraclass correl-
ation, mixed model, compound symmetry, factor analysis).

(11.15) S�1 has a different structure (autocorrelation,
Simplex structure).

11.14 If the structure of S and S�1 are identical, and if u and y

are elements (or functions of elements) of S�1, then
estimates of S can be obtained from the relations (usually
requiring Newton iteration; see 10.25):

q log L=qu ¼ n

2
trA(S� S)

where A¼ qS�1=qu is frequently an elementary matrix
(see 3.4, especially rules 7.5 and 7.6).

q2 log L=qu qy ¼ n

2
tr (qA=qy)(S� S)þ n

2
trAS�1

BS
�1

where B¼ qS�1=qy. These rules are useful to obtain New-
ton iterations and asymptotic variance-covariance matri-
ces of the estimates. The log is base e.

11.15 If the structures of S and S�1 are different, then an
estimate of S can be obtained from the relations

q log L=qx ¼ � n

2
trA(S�1 �Q),

where

Q ¼ S�1SS�1

and

A ¼ qS=qx (see comments in 11:14):

q2 log L=qxqy ¼ � n

2
tr(qA=qy)(S�1 �Q)

þ n

2
trAS�1

B(S�1 �Q)� n

2
trAQBS

�1,

where

B ¼ qS=qy

x and y are elements (or functions of elements) of S. The
comments of 11.14 apply, but the iterative procedure is consid-
erably more complex. The log is base e.
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E.1 Definitions

Any quantity that is completely determined by its magnitude is
called a scalar. Examples of such are mass, density, temperature,
etc. Any quantity that is completely determined by its magnitude
and direction is called a vector. Examples of such are velocity,
acceleration, force, etc. A vector quantity is represented by a
directed line segment, the length of which represents the magni-
tude of the vector. A vector quantity is usually represented by a
boldface letter such as V. Two vectors V1 and V2 are equal to one
another if they have equal magnitudes and are acting in the same
directions. A negative vector, written as �V, is one that acts in
the opposite direction to V, but is of equal magnitude to it. If we
represent the magnitude of V by y, we write V¼ y. A vector
parallel to V, but equal to the reciprocal of its magnitude, is
written as V�1 or 1=V.

The unit vector V=y (y 6¼ 0) is that vector which has the same
direction as V, but which has a magnitude of unity (sometimes
represented as V0 or v̂).

E.2 Vector Algebra

The vector sum of V1 and V2 is represented by V1þV2. The
vector sum of V1 and �V2, or the difference of the vector V2

from V1, is represented by V1�V2.
If r is a scalar, then rV¼Vr and represents a vector r times the

magnitude of V, in the same direction as V if r is positive, and in
the opposite direction if r is negative. If r and s are scalars and V1,
V2, V3 vectors, then the following rules of scalars and vectors
hold:

V1 þ V2 ¼ V2 þ V1

(r þ s)V1 ¼ rV1 þ sV1; r(V1 þ V2) ¼ rV1 þ rV2

V1 þ (V2 þ V3) ¼ (V1 þ V2)þ V3 ¼ V1 þ V2 þ V3:

E.3 Vectors in Space

A plane is described by two distinct vectors V1 and V2. Should
these vectors not intersect one another, then one is displaced
parallel to itself until they do (Figure E.1). Any other vector V
lying in this plane is given by

V ¼ rV1 þ sV2:

A position vector specifies the position in space of a point relative
to a fixed origin. If, therefore, V1 and V2 are the position vectors
of the points A and B, relative to the origin O, then any point P
on the line AB has a position vector V given by

V ¼ rV1 þ (1� r)V2:

The scalar ‘‘r’’ can be taken as the parametric representation of
P since r¼ 0 implies P¼B and r¼ 1 implies P¼A (Figure E.2).
If P divides the line AB in the ratio r: s, then

V ¼ r

rþ s

� �

V1 þ
s

r þ s

� �

V2:

The vectors V1, V2, V3, . . . , Vn are said to be linearly dependent

if there exist scalars r1, r2, r3, . . . , rn, not all zero, such that

r1V1 þ r2V2 þ � � � þ rnVn ¼ 0:

A vector V is linearly dependent on the set of vectors V1, V2,
V3, . . . , Vn if

V ¼ r1V1 þ r2V2 þ r3V3 þ � � � þ rnVn:

Three vectors are linearly dependent if and only if they are
coplanar.
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All points in space can be uniquely determined by linear
dependence on three base vectors, i.e., three vectors any one of
which is linearly independent of the other two. The simplest set
of base vectors are the unit vectors along the coordinate Ox, Oy,
and Oz axes. These are usually designated by i, j, and k, respect-
ively.

If V is a vector in space and a, b, and c are the respective
magnitudes of the projections of the vector along the axes, then

V ¼ aiþ bjþ ck

and

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p

and the direction cosines of V are

cos a ¼ a=y, cos b ¼ b=y, cos g ¼ c=y:

The law of addition yields

V1 þ V2 ¼ (a1 þ a2)iþ (b1 þ b2)jþ (c1 þ c2)k:

E.4 The Scalar, Dot, or Inner Product
of Two Vectors V1 and V2

This product is represented as V1 � V2 and is defined to be equal
to y1y2 cos u, where u is the angle from V1 to V2, i.e.,

V1 � V2 ¼ y1y2 cos u:

The following rules apply for this product:

V1 � V2 ¼ a1a2 þ b1b2 þ c1c2 ¼ V2 � V1

It should be noted that scalar multiplication is commutative:

(V1 þ V2) � V3 ¼ V1 � V3 þ V2 � V3

V1 � (V2 þ V3) ¼ V1 � V2 þ V1 � V3:

If V1 is perpendicular to V2, then V1 � V2¼ 0, and if V1 is parallel
to V2, then V1 � V2 ¼ y1y2 ¼ rw2

1. In particular,

i � i ¼ j � j ¼ k � k ¼ 1,

and

i � j ¼ j � k ¼ k � i ¼ 0:

E.5 The Vector or Cross Product
of Vectors V1 and V2

This product is represented asV13V2 and is defined to be equal to
y1y2(sin u)1, where u is the angle fromV1 toV2 and 1 is a unit vector
perpendicular to the plane ofV1 andV2 and so directed that a right-
hand screw driven in the direction of 1 would carryV1 intoV2, i.e.,

V1 � V2 ¼ y1y2( sin u)1

and

tan u ¼ jV1 � V2j
V1 � V2

:

The following rules apply for vector products:

V1 � V2 ¼ �V2 � V1

V1 � (V2 þ V3) ¼ V1 � V2 þ V1 � V3

(V1 þ V2)� V3 ¼ V1 � V3 þ V2 � V3

V1 � (V2 � V3) ¼ V2(V3 � V1 � V3(V1 � V2)

i� i ¼ j� j ¼ k � k ¼ 01 (zero vector)

¼ 0

i� j ¼ k, j� k ¼ i, k � i ¼ j:

V1

V2

FIGURE E.1

V1

V2
A (r = 1)

B (r = 0)

0

1 > r  > 0

r > 1

0 > r 

FIGURE E.2
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If V1 ¼ a1iþ b1jþ c1k,V2 ¼ a2iþ b2jþ c2k,V3

¼ a3iþ b3jþ c3k, then

V1 � V2 ¼
i j k

a1 b1 c1

a2 b2 c2

�
�
�
�
�
�
�

�
�
�
�
�
�
�

¼ (b1c2 � b2c1)iþ (c1a2 � c2a1)j

þ (a1b2 � a2b1)k:

It should be noted that since V13V2¼�V23V1, the vector
product is not commutative.

E.6 Scalar Triple Product

There is only one possible interpretation of the expression
V1 � V23V3 and that is V1 � (V23V3), which is obviously
a scalar.

Further, V1 � (V23V3)¼ (V13V2) � V3¼V2 � (V33V1)

¼
a1 b1 c1

a2 b2 c2

a3 b3 c3

�
�
�
�
�
�

�
�
�
�
�
�

¼ y1y2y3 cos f sin u

where
u is the angle between V2 and V3

f is the angle between V1 and the normal to the plane of
V2 and V3

This product is called the scalar triple product and is written
as [V1V2V3].

The determinant indicates that it can be considered as the
volume of the parallelepiped whose three determining
edges are V1, V2, and V3.

It also follows that cyclic permutation of the subscripts does
not change the value of the scalar triple product so that

[V1V2V3] ¼ [V2V3V1] ¼ [V3V1V2]

but

[V1V2V3] ¼ �[V2V1V3], etc:

and

[V1V1V2] � 0, etc:

Given three noncoplanar reference vectors V1, V2, and V3 the
reciprocal system is given by V1*,V2*, andV3*, where

1 ¼ y1y1* ¼ y2y2* ¼ y3y3*

0 ¼ y1y2* ¼ y1y3* ¼ y2y1*, etc:

V1* ¼
V2 � V3

[V1V2V3]
, V2* ¼

V3 � V1

[V1V2V3]
, V3* ¼

V1 � V2

[V1V2V3]
:

The system i, j, k is its own reciprocal.

E.7 Vector Triple Product

The product V13 (V23V3) defines the vector triple prod-

uct. Obviously, in this case, the brackets are vital to the
definition:

V1 � (V2 � V3) ¼ (V1 � V3)V2 � (V1 � V2)V3

¼

i

a1
b2 c2

b3 c3

�
�
�
�

�
�
�
�

j

b1
c2 a2

c3 a3

�
�
�
�

�
�
�
�

k

c1
a2 b2

a3 b3

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

,

i.e., it is a vector, perpendicular to V1, lying in the plane of V2, V3.
Similarly,

(V1 � V2)� V3 ¼

i
b1 c1

b2 c2

�
�
�
�

�
�
�
�

a3

j

c1 a1

c2 a2

�
�
�
�

�
�
�
�

b3

k
a1 b1

a2 b2

�
�
�
�

�
�
�
�

c3

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

V1 � (V2 � V3)þ V2 � (V3 � V1)þ V3 � (V1 � V2) � 0:

If V13 (V23V3)¼ (V13V2)3V3, then V1, V2, V3 form an
orthogonal set. Thus, i, j, k form an orthogonal set.

E.8 Geometry of the Plane, Straight Line,
and Sphere

The position vectors of the fixed points A, B, C, D relative to
O are V1, V2, V3, V4, and the position vector of the variable point
P is V.

The vector form of the equation of the straight line through
A parallel to V2 is

V ¼ V1 þ rV2

or (V� V1) ¼ rV2

or (V� V1)� V2 ¼ 0,

while that of the plane through A perpendicular to V2 is

(V� V1) � V2 ¼ 0:

The equation of the line AB is

V ¼ rVþ (1� r)V2

and those of the bisectors of the angles between V1 and V2 are

V ¼ r
V1

y1
� V2

y2

� �

or

V ¼ r (v̂1 þ v̂2):

Appendix E: Vector Analysis E-3



The perpendicular from C to the line through A parallel to V2 has
as its equation

V ¼ V1 � V3 � v̂2 � (V1 � V3)v̂2:

The condition for the intersection of the two lines,

V ¼ V1 þ rV3

and

V ¼ V2 þ sV4

is

[(V1 þ V2)V3V4] ¼ 0:

The common perpendicular to the above two lines is the line of
intersection of the two planes

[(V� V1)V3(V3 � V4)] ¼ 0

and

[(V� V2)V4(V3 � V4)] ¼ 0

and the length of this perpendicular is

[(V� V2)V3V4]

jV3 � V4j
:

The equation of the line perpendicular to the plane ABC is

V ¼ V1 � V2 þ V2 � V3 þ V3 � V1,

and the distance of the plane from the origin is

[V1V2V3]

j(V2 � V1)� (V3 � V1)j
:

In general, the vector equation

V � V2 ¼ r

defines the plane that is perpendicular to V2, and the perpen-
dicular distance from A to this plane is

r � V1 � V2

y2
:

The distance from A, measured along a line parallel to V3, is

r � V1 � V2

V2 � v̂3
or

r � V1 � V2

y2 cos u

where u is the angle between V2 and V3.

(If this plane contains the point C, then r¼V3 � V2, and if it
passes through the origin, then r¼ 0.) Given two planes

V � V1 ¼ r

V � V2 ¼ s,

any planes through the line of intersection of these two planes is
given by

V � (V1 þ lV2) ¼ r þ ls

where l is a scalar parameter. In particular, l¼�y1=y2 yields the
equation of the two planes bisecting the angle between the given
planes.

The plane through A parallel to the plane of V2, V3 is

V ¼ V1 þ rV2 þ sV3

or

(V� V1) � V2 � V3 ¼ 0

or

[VV2V3]� [V1V2V3] ¼ 0

so that the expansion in rectangular Cartesian coordinates yields

(x � a1) (y � b1) (z � c1)
a2 b2 c2
a3 b3 c3

�
�
�
�
�
�

�
�
�
�
�
�

¼ 0 (V � xiþ yjþ zk),

which is obviously the usual linear equation in x, y, and z.
The plane through AB parallel to V3 is given by

[(V� V1)(V1 � V2)V3] ¼ 0

or

[VV2V3]� [VV1V3]� [V1V2V3] ¼ 0:

The plane through the three points A, B, and C is

V ¼ V1 þ s(V2 � V1)þ t(V3 � V1)

or

V ¼ rV1 þ sV2 þ tV3 (r þ sþ t � 1)

or

[(V� V1)(V1 � V2)(V2 � V3)] ¼ 0
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or

[VV1V2]þ [VV2V3]þ [VV3V1]� [V1V2V3] ¼ 0:

For four points A, B, C, D to be coplanar, then

rV1 þ sV2 þ tV3 þ uV4 � 0 � r þ sþ t þ u:

The following formulae relate to a sphere when the vectors are
taken to lie in three-dimensional space and to a circle when the
space is two-dimensional. For a circle in three dimensions, take
the intersection of the sphere with a plane.

The equation of a sphere with center O and radius OA is

V � V ¼ y21 (not V ¼ V1)

or

(V� V1) � (Vþ V1) ¼ 0,

while that of a sphere with center B radius y1 is

(V� V2) � (V� V2) ¼ y21

or

V � (V� 2V2) ¼ y21 � y22:

If the above sphere passes through the origin, then

V � (V� 2V2) ¼ 0:

Note that in two-dimensional polar coordinates this is simply

r ¼ 2a � cos u

while in three-dimensional Cartesian coordinates, it is

x2 þ y2 þ z2 � 2(a2x þ b2y þ c2x) ¼ 0:

The equation of a sphere having the points A and B as the
extremities of a diameter is

(V� V1) � (V� V2) ¼ 0:

The square of the length of the tangent from C to the sphere with
center B and radius y1 is given by

(V3 � V2) � (V3 � V2) ¼ y21:

The condition that the plane V � V3¼ s is tangential to the sphere
(V� V2) � (V� V2) ¼ y21 is

(s� V3 � V2) � (s� V3 � V2) ¼ y21y
2
3:

The equation of the tangent plane at D, on the surface of sphere
(V� V2) � (V� V2) ¼ y21, is

(V� V4) � (V4 � V2) ¼ 0

or

V � V4 � V2 � (Vþ V4) ¼ y21 � y22:

The condition that the two circles (V� V2) � (V� V2) ¼ y21 and
(V� V4) � (V� V4) ¼ y23 intersect orthogonally is clearly

(V2 � V4) � (V2 � V4) ¼ y21 þ y23:

The polar plane of D with respect to the circle

(V� V2) � (V� V2) ¼ y21 is

V � V4 � V2 � (Vþ V4) ¼ y21 � y22:

Any sphere through the intersection of the two spheres (V� V2) �
(V� V2) ¼ y21 and (V� V4) � (V� V4) ¼ y23 is given by

(V� V2) � (V� V2)þ l(V� V4) � (V� V4) ¼ y21 þ ly23,

while the radical plane of two such spheres is

V � (V2 � V4) ¼ � 1

2
y21 � y22 � y23 þ y24
� �

:

E.9 Differentiation of Vectors

If V1¼ a1iþ b1jþ c1k and V2¼ a2iþ b2jþ c2k and if V1 and V2

are functions of the scalar t, then

d

dt
(V1 þ V2 þ � � � ) ¼ dV1

dt
þ dV2

dt
þ � � � ,

where

dV1

dt
¼ da1

dt
iþ db1

dt
jþ dc1

dt
k, etc:

d

dt
(V1 � V2) ¼

dV1

dt
� V2 þ V1 �

dV2

dt
d

dt
(V1 � V2) ¼

dV1

dt
� V2 þ V1 �

dV2

dt

V � dV
dt

¼ y
dy

dt
:

In particular, if V is a vector of constant length then the right-
hand side of the last equation is identically zero showing that V is
perpendicular to its derivative.
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The derivatives of the triple products are

d

dt
[V1V2V3] ¼

dV1

dt

� �

V2V3

� 	

þ V1
dV2

dt

� �

V3

� 	

þ V1V2
dV3

dt

� �� 	

and

d

dt
{V1� (V2�V3)}¼

dV1

dt

� �

� (V2�V3)þV1

� dV2

dt

� �

�V3

� �

þV1� V2�
dV3

dt

� �� �

:

E.10 Geometry of Curves in Space

s the length of arc, measured from some fixed
point on the curve (Figure E.3).

V1 the position vector of the point A on the curve.
V1þ dV1 the position vector of the point P in the neigh-

borhood of A.
t̂ the unit tangent to the curve at the point A,

measured in the direction of s increasing.

The normal plane is that plane which is perpendicular to the
unit tangent. The principal normal is defined as the intersection
of the normal plane with the plane defined by V1 and V1þ dV1

in the limit as dV1� 0.

n̂ the unit normal (principal) at the point A. The
plane defined by t̂ and n̂ is called the osculating
plane (alternatively, plane of curvature or
local plane).

r the radius of curvature of A.
du the angle subtended at the origin by dV1.

k ¼ du

ds
¼ 1

r
:

b̂ the unit binormal, i.e., the unit vector that is
parallel to t̂� n̂ at the point A.

l the torsion of the curve at A.

Frenet’s formulae:

dt̂

ds
¼ kn̂

dn̂

ds
¼ �k̂tþ lb̂

db̂

ds
¼ �ln̂

The following formulae are also applicable:

Unit tangent:

t̂ ¼ dV1

ds
:

Equation of the tangent:

(V� V1)� t̂ ¼ 0

or

V ¼ V1 þ q̂t:

Unit normal:

n̂ ¼ 1d2V1

kds2
:

Equation of the normal plane:

(V� V1) � t̂ ¼ 0:

Equation of the normal:

(V� V1)� n̂ ¼ 0

or

V ¼ V1 þ rn̂:

Unit binormal:

b̂ ¼ t̂� n̂:

Equation of the binormal:

(V� V1)� b̂ ¼ 0

or

V ¼ V1 þ ub̂

V1 + δV1

δθ

V1

ρ

P
s increasing

s = 0

A
b̂

ˆ

ˆ

t

n

O

FIGURE E.3
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or

V ¼ V1 þ w
dV1

ds
� d2V1

ds2
:

Equation of the osculating plane:

[(V� V1 )̂tn̂] ¼ 0

or

(V� V1)
dV1

ds

� �
d2V1

ds2

� �� 	

¼ 0:

A geodetic line on a surface is a curve, the osculating plane of
which is everywhere normal to the surface.

The differential equation of the geodetic is

n̂dV1d
2V1


 �

¼ 0:

E.11 Differential Operators—
Rectangular Coordinates

dS ¼ qS

qx
� dx þ qS

qy
:dy þ qS

qz
� dz:

By definition,

= � del � i
q

qx
þ j

q

qy
þ k

q

qz

=2 � Laplacian � q2

qx2
þ q2

qy2
þ q2

qz2
:

If S is a scalar function, then

=S � grad S � qS

dx
iþ qS

dy
jþ qS

dz
k:

Grad S defines both the direction and magnitude of the max-
imum rate of increase of S at any point. Hence the name gradient
and also its vectorial nature. =S is independent of the choice of
rectangular coordinates.

=S ¼ qS

qn
n̂

where n̂ is the unit normal to the surface S¼ constant, in the
direction of S increasing. The total derivative of S at a point
having the position vector V is given by (Figure E.4)

dS ¼ qS

qn
n̂ � dV

¼ dV � =S

and the directional derivative of S in the direction of U is

U � =S ¼ U � (=S) ¼ (U � =)S:

Similarly, the directional derivative of the vector V in the direc-
tion of U is

(U � =)V:

The distributive law holds for finding a gradient. Thus, if S and T

are scalar functions,

=(Sþ T) ¼ =Sþ =T:

The associative law becomes the rule for differentiating a product:

=(ST) ¼ S=T þ T=S:

If V is a vector function with the magnitudes of the components
parallel to the three coordinate axes, Vx, Vy, Vz, then

= � V � divV � qVx

qx
þ qVy

qy
þ qVz

qz
:

The divergence obeys the distributive law. Thus, if V and U are
vectors functions, then

= � (Vþ U) ¼ = � Vþ = � U
= � (SV) ¼ (=S) � Vþ S(= � V)
= � (U� V) ¼ V � (=� U)� U � (=� V):

As with the gradient of a scalar, the divergence of a vector is
invariant under a transformation from one set of rectangular
coordinates to another:

=� V � curl V (sometimes = ^ V or rot V)

� qVz

qy
� qVy

qz

� �

iþ qVx

qz
� qVz

qx

� �

jþ qVy

qx
� qVx

qy

� �

k

¼
i j k
q
qx

q
qy

q
qz

Vx Vy Vz

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

S

S

V

O

V
 +

 dV

S + dS
S + dS

n

FIGURE E.4
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The curl (or rotation) of a vector is a vector that is invariant
under a transformation from one set of rectangular coordinates
to another

=� (Uþ V) ¼ =� Uþ =� V

=� (SV) ¼ (=S)� Vþ S(=� V)

=� (U� V) ¼ (V � =)U� (U � =)Vþ U(= � V)� V(= � U)
grad(U � V) ¼ =(U � V)

¼ (V � =)Uþ (U � =)Vþ V� (=� U)

þ U� (=� V):

If

V ¼ Vxiþ Vyjþ Vzk

= � V ¼ =Vx � iþ =Vy � jþ =Vz � k

and

=� V ¼ =Vx � iþ =Vy � jþ =Vz � k:

The operator r can be used more than once. The number of
possibilities where r is used twice are

= � (=u) � div grad u

=� (=u) � curl grad u

=(= � V) � grad div V

= � (=� V) � div curl V

=� (=� V) � curl curl V:

The surface PRS � u¼ const., and the face of the curvilinear
figure immediately opposite this is uþ du¼ const. etc.

In terms of these surface constants

P ¼ P(u, y,w)

Q ¼ Q(uþ du, y,w) and PQ ¼ h1du

R ¼ R(u, yþ dy,w) PR ¼ h2dy

S ¼ S(u, y,wþ dw) PS ¼ h3dw

where h1, h2, and h3 are functions of u, y, and w.
In rectangular Cartesians i, j, k,

h1 ¼ 1, h2 ¼ 1, h3 ¼ 1:

â

h1

q

qu
¼ i

q

qx
,

b̂

h2

q

qy
¼ j

q

qy
,

ĉ

h3

q

qw
¼ k

q

qz
:

In cylindrical coordinates r̂, f̂, k̂,

h1 ¼ 1, h2 ¼ r, h3 ¼ 1:

â

h1

q

qu
¼ r̂

q

qr
,

b̂

h2

q

qy
¼ f̂

r

q

qf
,

ĉ

h3

q

qw
¼ k̂

q

qz
:

In spherical coordinates r̂, û, f̂

h1 ¼ 1, h2 ¼ r, h3 ¼ r sin u

â

h1

q

qu
¼ r̂

q

qr
,

b̂

h2

q

qy
¼ f̂

r

q

qu
,

ĉ

h3

q

qw
¼ f̂

r sin u

q

qf
:

The general expressions for grad, div, and curl, together with
those for =2 and the directional derivative, are in orthogonal
curvilinear coordinates given by

=S ¼ â

h1

qS

qu
þ b̂

h2

qS

qy
þ ĉ

h3

qS

qw

(V � =)S ¼ V1

h1

qS

qu
þ V2

h2

qS

qy
þ V3

h3

qS

qw

= � V ¼ 1

h1h2h3

q

qu
(h2h3V1)þ

q

qy
(h3h1V2)þ

q

qw
(h1h2V3)

� 

=� V ¼ â

h2h3

q

qy
(h3V3)�

q

qw
(h2V2)

� 

þ b̂

h3h1

q

qw
(h1V1)�

q

qu
(h3V3)

� 

þ ĉ

h1h2

q

qu
(h2V2)�

q

qy
(h1V1)

� 

=2S ¼ 1

h1h2h3

q

qu

h2h3

h1

qS

qu

� �

þ q

qy

h3h1

h2

qS

qy

� ��

þ q

qw

h1h2

h3

qS

qw

� �

:

E.12 Transformation of Integrals

s the distance along some curve ‘‘C’’ in space and is
measured from some fixed point

S a surface area
V a volume contained by a specified surface
t̂ the unit tangent to C at the point P
n̂ the unit outward pointing normal
F some vector function
ds is the vector element of curve (¼ t̂ ds)
dS is the vector element of surface (¼ n̂ dS).

Then (Table E.1)

ð

(c)

F � t̂ds ¼
ð

(c)

F � ds

and when

F ¼ =f,
ð

(c)

(=f) � t̂ds ¼
ð

(c)

df:
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E.13 Gauss’ Theorem (Green’s Theorem)

When S defines a closed region having a volume V

ððð

(y)

(= � F)dV ¼
ðð

(S)

(F � n̂)dS ¼
ðð

(S)

F � dS

also

ððð

(y)

(=f)dV ¼
ðð

(S)

fn̂ dS

and

ððð

(y)

(=� F)dV ¼
ðð

(S)

(n̂� F)dS:

E.14 Stokes’ Theorem

When C is closed and bounds the open surface S,

ðð

(S)

n̂ � (=� F)dS ¼
ð

(c)

F � ds

and

ðð

(S)

(n̂� =f)dS ¼
ð

(c)

fds:

E.15 Green’s Theorem

ðð

(S)

(=f� =u)dS ¼
ðð

(S)

fn̂ � (=u)dS ¼
ððð

(y)

f(=2u)dV

¼
ðð

(a)

u � n̂(=u)dS ¼
ððð

(y)

u(=2f)dV :

TABLE E.1 Formulas of Vector Analysis

Rectangular Coordinates Cylindrical Coordinates Spherical Coordinates

Conversion to rectangular coordinates x¼ r cos w y¼ r sin w z¼ z x¼ r cos w sin u y¼ r sin w sin u

z¼ r cos u

Gradient
=f ¼ qf

qx
iþ qf

qy
jþ qf

qz
k =f ¼ qf

qr
rþ 1

r

qf

qw
fþ qf

qz
k =f ¼ qf

qr
rþ 1

r

qf

qu
uþ 1

r sin u

qf

qw
f

Divergence
= � A ¼ qAx

qx
þ qAy

qy
þ qAz

qz
= � A ¼ 1

r

q(rAr)

qr
þ 1

r

qAw

qw

þ qAz

qz

= � A ¼ 1

r2
q(r2Ar)

qr
þ 1

r sin u

q(Au sin u)

qu

þ 1

r sin u

qAw

qw

Curl

=� A ¼
i j k

q
qx

q
qy

q
qz

Ax Ay Az

�
�
�
�
�
�
�

�
�
�
�
�
�
�

=� A ¼

1
r
r f 1

r
k

q
qr

q
qw

q
qz

Ar rAw Az

�
�
�
�
�
�
�

�
�
�
�
�
�
�

=� A ¼

r

r2 sin u

u

r sin u

f

r
q
qr

q
qu

q
qw

Ar rAu rAw sin u

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Laplacian
=2f ¼ q2f

qx2
þ q2f

qy2
þ q2f

qz2
=2f ¼ 1

r

q

qr
r
qf

qr

� �

þ 1

r2
q2f

qw2

þ q2f

qz2

=2f ¼ 1

r2
q

qr
r2
qf

qr

� �

þ 1

r2 sin u

q

qu
sin u

qf

qu

� �

þ 1

r2 sin2 f

q2f

qw2
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F.1 Arithmetic Progression*

An arithmetic progression is a sequence of numbers such that
each number differs from the previous number by a constant
amount, called the common difference.

If a1 is the first term, an the nth term, d the common differ-
ence, n the number of terms, and sn the sum of n terms.

an ¼ a1 þ (n� 1)d, sn ¼
n

2
[a1 þ an],

sn ¼
n

2
[2a1 þ (n� 1)d]:

The arithmetic mean between a and b is given by
aþ b

2
.

F.2 Geometric Progression*

A geometric progression is a sequence of numbers such that each
number bears a constant ratio, called the common ratio, to the
previous number.

If a1 is the first term, an the nth term, r the common ratio, n
the number of terms, and sn the sum of n terms.

an ¼ a1r
n�1; sn ¼ a1

1� rn

1� r

¼ a1
rn � 1

r � 1
(r 6¼ 1)

¼ a1 � ran

1� r

¼ ran � a1

r � 1

If jrj< 1, then the sum of an infinite geometrical progression
converges to the limiting value

a1

1� r
, s1 ¼ lim

n!1
a1(1� rn)

1� r
¼ a1

1� r

� �

The geometric mean between a and b is given by
ffiffiffiffiffi

ab
p

.

F.3 Harmonic Progression

A sequence of numbers whose reciprocals form an arithmetic
progression is called an harmonic progression. Thus,

1

a1
,

1

a1 þ d
,

1

a1 þ 2d
, � � � , 1

a1 þ (n� 1)d
, � � � ,

where

1

an
¼ 1

a1 þ (n� 1)d

forms a harmonic progression. The harmonic mean between

a and b is given by
2ab

aþ b
.

If A, G, H, respectively, represent the arithmetic mean, geo-
metric mean, and harmonic mean between a and b, then
G2¼AH.

F.4 Factorials

ffn ¼ n! ¼ e�nnn
ffiffiffiffiffiffiffiffiffi

2pn
p

, approximately:* It is customary to represent an by l in a finite progression and refer to it as
the last term.
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F.5 Permutations

If M¼ nPr¼Pn:r denotes the number of permutations of n dis-
tinct things taken r at a time,

M ¼ n(n� 1)(n� 2) . . . (n� r þ 1) ¼ n!

(n� r)!

F.6 Combinations

IfM ¼n Cr ¼ Cn:r ¼ n
r

� �

denotes the number of combinations

of n distinct things taken r at a time,

M ¼ n(n� 1)(n� 2) . . . (n� r þ 1)

r!
¼ n!

r!(n� r)!

By definition
n
0

� �

¼ 1.

F.7 Quadratic Equations

Any quadratic equation may be reduced to the form,

ax2 þ bx þ c ¼ 0:

Then

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
:

If a, b, and c are real, then:

If b2� 4ac is positive, the roots are real and unequal.
If b2� 4ac is zero, the roots are real and equal.
If b2� 4ac is negative, the roots are imaginary and unequal.

F.8 Cubic Equations

A cubic equation, y3þ py2þ qyþ r¼ 0 may be reduced to the
form,

x3 þ ax þ b ¼ 0:

by substituting for y the value, x � p

3
. Here

a ¼ 1

3
(3q� p2) and b ¼ 1

27
(2p3 � 9pqþ 27r):

For solution, let

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� b

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

4
þ a3

27

r

,
3

s

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� b

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

4
þ a3

27

r

,
3

s

then the values of x will be given by,

x ¼ Aþ B, � Aþ B

2
þ A� B

2

ffiffiffiffiffiffiffi

�3
p

, � Aþ B

2
� A� B

2

ffiffiffiffiffiffiffi

�3
p

:

If p, q, r are real, then:

If
b2

4
þ a3

27
> 0, there will be one real root and two conjugate

imaginary roots.

If
b2

4
þ a3

27
¼ 0, there will be three real roots of which at least

two are equal.

If
b2

4
þ a3

27
< 0, there will be three real and unequal roots.

F.9 Trigonometric Solution
of the Cubic Equation

The form x3þ axþ b¼ 0 with ab 6¼ 0 can always be solved by
transforming it to the trigonometric identity

4 cos3 u� 3 cos u� cos (3u) � 0:

Let x¼m cos u, then

x3 þ ax þ b � m3 cos3 uþ am cos uþ b
� 4 cos3 u� 3 cos u� cos (3u) � 0:

Hence,

4

m3
¼ �

3

am
¼

�cos (3u)

b
,

from which follows that

m ¼ 2

ffiffiffiffiffiffiffi

�
a

3

r

, cos (3u) ¼
3b

am
:

Any solution u1 which satisfies cos (3u) ¼
3b

am
, will also have the

solutions

u1 þ
2p

3
and u1 þ

4p

3
:

The roots of the cubic x3þ axþ b¼ 0 are

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
a

3
cos u1

r

, 2

ffiffiffiffiffiffiffi

�
a

3

r

cos u1 þ
2p

3

� �

, 2

ffiffiffiffiffiffiffi

�
a

3

r

cos u1 þ
4p

3

� �

:

Example Where Hyperbolic Functions Are

Necessary for Solution with Latter

Procedure

The roots of the equation x3� xþ 2¼ 0 may be found as

follows:

Here,

a ¼ �1, b ¼ 2,m ¼ 2

ffiffiffi

1

3

r

¼ 1:155

cos (3u) ¼
6

�1:155
¼ �5:196

cos (3u) ¼ �cos (3u� p) ¼ �cosh [i(3u� p)] ¼ �5:196:
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Using hyperbolic function tables for cosh[i(3uþp)]¼ 5.196,

it is found that

i(3u� p) ¼ 2:332:

Thus,

3u� p ¼ �i(2:332)

3u ¼ p� i(2:332)

u1 ¼
p

3
� i(0:777)

u1 þ
2p

3
¼ p� i(0:777)

u1 þ
4p

3
¼ 5p

3
� i(0:777)

cos u1 ¼ cos
p

3
� i(0:777)

h i

¼ cos
p

3

� �

[ cos i(0:777)]þ sin
p

3

� �

[ sin i(0:777)]

¼ cos
p

3

� �

( cosh 0:777)þ i sin
p

3

� �

( sinh 0:777)

¼ (0:5)(1:317)þ i(0:866)(0:858) ¼ 0:659þ i(0:743):

Note that

cos m ¼ cosh (im) and sin m ¼ �i sinh (im):

Similarly,

cos u1 þ
2p

3

� �

¼ cos [p� i(0:777)]

¼ ( cos p)( cosh 0:777)þ i( sin p)( sinh 0:777)

¼ �1:317,

and

cos u1 þ
4p

3

� �

¼ cos
5p

3
� i(0:777)

� �

¼ cos
5p

3

� �

( cosh 0:777)þ i( sin
5p

3
)( sinh 0:777)

¼ (0:5)(1:317)� i(0:866)(0:858) ¼ 0:659� i(0:743):

The required roots are

1:155[0:659þ i(0:743)] ¼ 0:760þ i(0:858)

(1:155)(� 1:317) ¼ �1:520

(1:155)[0:659� i(0:743)] ¼ 0:760� i(0:858):

F.10 Quartic Equation

A quartic equation,

x4 þ ax3 þ bx2 þ cx þ d ¼ 0,

has the resolvent cubic equation

y3 � by2 þ (ac� 4d)y � a2d þ 4bd � c2 ¼ 0:

Let y be any root of this equation and

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2

4
� bþ y

r

:

If R 6¼ 0, then let

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2

4
� R2 � 2bþ 4ab� 8c� a3

4R

r

and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2

4
� R2 � 2b� 4ab� 8c� a3

4R

r

:

If R¼ 0, then let

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2

4
� 2bþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 4d
p

r

and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2

4
� 2b� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 4d
p

r

:

Then the four roots of the original equation are given by

x ¼ � a

4
þ R

2
� D

2

and

x ¼ � a

4
� R

2
� E

2
:

F.11 Partial Fractions

This section applies only to rational algebraic fractions with
numerator of lower degree than the denominator. Improper
fractions can be reduced to proper fractions by long division.

Every fraction may be expressed as the sum of component
fractions whose denominators are factors of the denominator of
the original fraction.

Let N(x)¼ numerator, a polynomial of the form

n0 þ n1x þ n2x
2 þ � � � þ nix

i
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1. Nonrepeated Linear Factors

N(x)

(x � a)G(x)
¼ A

x � a
þ F(x)

G(x)

A ¼ N(x)

G(x)

� �

x¼a

F(x) is determined by methods discussed in the following
sections.

Example

x2 þ 3

x(x � 2)(x2 þ 2x þ 4)
¼ A

x
þ B

x � 2
þ F(x)

x2 þ 2x þ 4

A ¼ x2 þ 3

(x � 2)(x2 þ 2x þ 4)

� �

x¼0

¼ � 3

8

B ¼ x2 þ 3

x(x2 þ 2x þ 4)

� �

x¼2

¼ 4þ 3

2(4þ 4þ 4)
¼ 7

24

2. Repeated Linear Factors

N(x)

xmG(x)
¼ A0

xm
þ A1

xm�1
þ � � � þ Am�1

x
þ F(x)

G(x)

F(x) ¼ f0 þ f1 þ f2x
2 þ � � � , G(x) ¼ g0 þ g1x þ g2x

2 þ . . .

A0 ¼
n0

g0
, A1 ¼

n1 � A0g1

g0
, A2 ¼

n2 � A0g2 � A1g1

g0

General Term:*

Ak ¼
1

g0
nk �

X

k�1

i¼0

Aigk�i

" #

m ¼ 1

f0 ¼ n1 � A0g1

f1 ¼ n2 � A0g2

fj ¼ njþ1 � A0gjþ1

8

>

<

>

:

m ¼ 2

f0 ¼ n2 � A0g2 � A1g1

f1 ¼ n3 � A0g3 � A1g2

fj ¼ njþ2 � [A0gjþ2 þ A1gjþ1]

8

>

<

>

:

m ¼ 3

f0 ¼ n3 � A0g3 � A1g2 � A2g1

f1 ¼ n3 � A0g4 � A1g3 � A2g2

fj ¼ njþ3 � [A0gjþ3 þ A1gjþ2 þ A2gjþ1]

8

>

>

<

>

>

:

any m : fj ¼ nmþj �
X

m�1

i¼0

Aigmþj�1

Example

x2 þ 1

x3(x2 � 3x þ 6)
¼ A0

x3
þ A1

x2
þ A2

x
þ f1x þ f0

x2 � 3x þ 6

A0 ¼
1

6
,

A1 ¼
0� 1

6

� �

(�3)

6
¼ 1

12
,

A2 ¼
1� 1

6

� �

(1)� 1

12

� �

(�3)

6
¼ 13

72
,

m ¼ 3
f0 ¼ 0� 1

6
(0)þ 1

12
(1)� 13

72
(�3) ¼ 11

24

f1 ¼ 0� 1

6
(0)� 1

12
(0)� 13

72
(1) ¼ � 13

72

8

>

<

>

:

3. Repeated Linear Factors

N(x)

(x � a)mG(x)
¼ A0

(x � a)m
þ A1

(x � a)m�1 þ � � � þ Am�1

(x � a)
þ F(x)

G(x)

Change to form
N 0(y)

ymG0(y)
by substitution of x¼ yþ a. Resolve into

partial fractions in terms of y as described in Method 2. Then
express in terms of x by substitution y¼ x� a.

Example

x � 3

(x � 2)2(x2 þ x þ 1)
:

Let x� 2¼ y, x¼ yþ 2

(y þ 2)� 3

y2[(y þ 2)2 þ (y þ 2)þ 1]
¼ y � 1

y2(y2 þ 5y þ 7)

¼ A0

y2
þ A1

y
þ f1 y þ f0

y2 þ 5y þ 7

A0 ¼ � 1

7
, A1 ¼

1� � 1

7

� �

(5)

7
¼ 12

49
,

m ¼ 2

f0 ¼ 0� � 1

7

� �

(1)� 12

49

� �

(5) ¼ � 53

49

f1 ¼ 0� � 1

7

� �

(0)� 12

49

� �

(1) ¼ � 12

49

0

B

B

@

;
y � 1

y2(y2 þ 5y þ 7)
¼

� 1

7
y2

þ
12

49
y
þ
� 12

49
y � 53

49
y2 þ 5y þ 7

Let y¼ x� 2, then

x � 3

(x � 2)2(x2 þ x þ 1)
¼

� 1

7
(x � 2)2

þ
12

35
(x � 2)

þ
� 12

49
(x � 2)� 53

49
x2 þ x þ 1

¼ � 1

7(x � 2)2
þ 12

35(x � 2)
þ �12x � 29

49(x2 þ x þ 1)* Note: If G(x) contains linear factors, F(x) may be determined by Method 1.
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4. Repeated Linear Factors

Alternative method of determining coefficients:

N(x)

(x� a)mG(x)
¼ A0

(x� a)m
þ � � � þ Ak

(x� a)m�k
þ � � � þAm�1

x� a
þ F(x)

G(x)

Ak ¼
1

k!
Dk

x

N(x)

G(x)

� �	 


x¼a

where Dk
x is the differentiating operator, and the derivative of

zero order is defined as:

D0
xu ¼ u:

5. Factors of Higher Degree

Factors of higher degree have the corresponding numerators
indicated.

N(x)

(x2 þ h1x þ h0)G(x)
¼ a1x þ a0

x2 þ h1x þ h0
þ F(x)

G(x)

N(x)

(x2þh1xþh0)
2G(x)

¼ a1xþa0

(x2þh1xþh0)
2þ

b1xþ b0

(x2þh1xþh0)
þ F(x)

G(x)

N(x)

(x3þh2x2þh1xþh0)G(x)
¼ a2x

2þa1xþa0

x3þh2x2þh1xþh0
þ F(x)

G(x)

.

.

.

Problems of this type are determined first by solving for the coef-
ficients due to linear factors as shown above, and then determining
the remaining coefficients by the general methods given below.

6. General Methods for Evaluating Coefficients

1.

N(x)

D(x)
¼ N(x)

G(x)H(x)L(x)
¼ A(x)

G(x)
þ B(x)

H(x)
þ C(x)

L(x)
þ � � �

Multiply both sides of equation by D(x) to clear fractions.
Then collect terms, equate like powers of x, and solve the re-
sulting simultaneous equations for the unknown coefficients.

2. Clear fractions as above. Then let x assume certain con-
venient values (x¼ 1.0, �1, . . . ). Solve the resulting equa-
tions for the unknown coefficients.

3.

N(x)

G(x)H(x)
¼ A(x)

G(x)
þ B(x)

H(x)

Then,

N(x)

G(x)H(x)
� A(x)

G(x)
¼ B(x)

H(x)

If A(x) can be determined, such as by Method 1, then B(x) can be
found as above.

F.12 Polar Coordinates in a Plane

Polar Coordinates

In a plane, let O X (called the initial line) be a fixed ray
radiating from point O (called the pole or origin). Then any
point P, other than O, in the plane is located by angle u (called
the vectorial angle) measured from O X to the line determined by
O and P and the distance r (called the radius vector) from O to P,
where u is taken as positive if measured counterclockwise and
negative if measured clockwise, and r is taken as positive if
measured along the terminal side of angle u and negative if
measured along the terminal side of u produced through the
pole. Such an ordered pair of numbers, (r, u), is called polar

coordinates of the point P. The polar coordinates of the pole O

are taken as (0, u), where u is arbitrary. It follows that, for a given
initial line and pole, each point of the plane has infinitely many
polar coordinates.

Example

Some polar coordinates of P are (2, 608), (2, 4208), (2, �3008),

(�2, 2408), (�2, 1208).

60°

P

2

O X

Points

Distance between P1 and P2:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21 þ r22 � 2r1r2 cos (u1 � u2)
q

Points P1, P2, P3 are collinear if and only if

r2r3 sin (u3 � u2)þ r3r1 sin (u1 � u3)þ r1r2 sin (u2 � u1) ¼ 0:

Polygonal Areas

Area of triangle P1P2P3:

1

2
[r1r2 sin (u2 � u1)þ r2r3 sin (u3 � u2)þ r3r1 sin (u1 � u3)]
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Area of polygon P1P2 . . .Pn:

1

2
[r1r2 sin (u2 � u1)þ r2r3 sin (u3 � u2)þ � � � þ rn�1rn

sin (un � un�1)þ rnr1 sin (u1 � un)]

The area is positive or negative according as P1P2 . . . Pn is a
counterclockwise or clockwise polygon.

Straight Lines

Let p¼ distance of line from O, v¼ counterclockwise angle from
O X to the perpendicular through O to the line:

Normal form: r cos(u�v)¼ p

Two-point form: r[r1 sin(u� u1)þ r2 sin(u� u2)]¼ r1r2
sin(u2� u1)

Circles

Center at pole, radius a: r¼ a

Center at (a, 0) and passing through the pole: r¼ 2a cos u
Center at a, p2

� �

and passing through the pole: r¼ 2a sin u

Center (h, a), radius a: r2� 2hr cos(u�a)þ h2� a2¼ 0

Conics

Let 2p¼ distance from directrix to focus, e¼ eccentricity.

Focus at pole, directrix to left of pole: r ¼ 2ep

1� e cos u

Focus at pole, directrix to right of pole: r ¼ 2ep

1þ e cos u

Focus at pole, directrix below pole: r ¼ 2ep

1� e sin u

Focus at pole, directrix above pole: r ¼ 2ep

1þ e sin u
Parabola with vertex at pole, directrix to left of pole:

r ¼ 4p cos u

sin2 u

Ellipse with center at pole, semiaxes a and b horizontal and
vertical, respectively:

r2 ¼ a2b2

a2 sin2 uþ b2 cos2 u

Hyperbola with center at pole, semiaxes a and b horizontal and
vertical, respectively:

r2 ¼ a2b2

a2 sin2 u� b2 cos2 u

Relations between Rectangular Polar Coordinates

Let the positive x-axis coincide with the initial line and let r be
nonnegative.

P

XX΄

Y

Y΄

x

y

θ

r

O

x ¼ r cos u, y ¼ r sin u,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, u ¼ arctan
y

x
,

sin u ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p , cos u ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

F.13 Rectangular Coordinates in Space

Rectangular (Cartesian) Coordinates

Let X0Y, Y0Y, Z0Z (called the y-axis, and the z-axis, respectively)
be three mutually perpendicular lines in space intersecting in a
point O (called the origin), forming in this way three mutually
perpendicular planes X O Y, X O Z, Y O Z (called the xy-plane,
the xz-plane, and the yz-plane, respectively). Then, any point P of
space is located by its signed distances x, y, z from the yz-plane,
the xz-plane, and the xy-plane, respectively, where x and y are the
rectangular coordinates with respect to the axes X0X and Y0Y of
the orthogonal projection P0 of P on the xy-plane (here, taken
horizontally) and z is taken as positive above and negative below
the xy-plane. The ordered triple of numbers, (x, y, z), are called
rectangular coordinates of the point P.

Y΄

Y

X

X

Z΄

Z

x

x

P(x,y,z)

y

y

z

O

΄
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Points

Let P1(x1, y1, z1) and P2(x2, y2, z2) be any two points.

Distance between P1 and P2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x2�x1)
2þ(y2�y1)

2þ(z2�z1)
2

q

Point dividing P1P2 in ratio r
s

rx2þ sx1

rþ s
,
ry2þ sy1

rþ s
,
rz2þ sz1

rþ s

� �

Midpoint of P1P2:
x1 þ x2

2
,
y1 þ y2

2
,
z1 þ z2

2

� �

Points P1, P2, P3 are collinear if and only if

x2 � x1: y2 � y1: z2 � z1 ¼ x3 � x1: y3 � y1: z3 � z1:

Points P1, P2, P3, P4 are coplanar if and only if

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

































¼ 0:

Area of triangle P1P2P3:

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y1 z1 1
y2 z2 1
y3 z3 1

























2

þ
z1 x1 1
z2 x2 1
z3 x3 1

























2

þ
x1 y1 1
x2 y2 1
x3 y3 1

























2
v

u

u

u

t

Volume of tetrahedron P1 P2 P3 P4:

1

6

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

































Direction Numbers and Direction Cosines

Let a, b, g (called direction angles) be the angles that P1P2, or any
line parallel to P1P2, makes with the x-, y-, and z-axis, respect-
ively. Let d¼ distance between P1 and P2.

Direction cosines of P1P2:

cos a ¼ x2 � x1

d
, cos b ¼ y2 � y1

d
, cos g ¼ z2 � z1

d

cos2 aþ cos2 bþ cos2 g ¼ 1

If a, b, c are direction numbers of P1P2, then:

a : b : c ¼ x2 � x1 : y2 � y1 : z2 � z1

¼ cos a : cos b : cos g

cos a ¼ a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p , cos b ¼ b

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p ,

cos g ¼ c

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p

Angle between two lines with direction angles, a1, b1, g1, and a2,
b2, g2:

cos u ¼ cos a1 cos a2 þ cos b1 cos b2 þ cos g1 cos g2

For parallel lines: a1¼a2, b1¼b2, g1¼g2
For perpendicular lines:

cos a1 cos a2 þ cos b1 cos b2 þ cos g1 cos g2 ¼ 0

Angle between two lines with directions (a1, b1, c1) and (a2, b2, c2):

cos u ¼ a1a2 þ b1b2 þ c1c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ b21 þ c21
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 þ b22 þ c22
p

sin u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(b1c2 � c1b2)
2 þ (c1a2 � a1c2)

2 þ (a1b2 � b1a2)
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a21 þ b21 þ c21
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 þ b22 þ c22
p

For parallel lines:

a1 : b1 : c1 ¼ a2 : b2 : c2

For perpendicular lines:

a1a2 þ b1b2 þ c1c2 ¼ 0

The direction

(b1c2 � c1b2, c1a2 � a1c2, a1b2 � b1a2)

is perpendicular to both directions (a1, b1, c1) and (a2, b2, c2).
The directions (a1, b1, c1), (a2, b2, c2), (a3, b3, c3) are parallel to

a common plane if and only if

a1 b1 c1
a2 b2 c2
a3 b3 c3

























¼ 0:

Straight Lines

Point direction form:
x � x1

a
¼ y � y1

b
¼ z � z1

c

Two-point form:
x � x1

x2 � x1
¼ y � y1

y2 � y1
¼ z � z1

z2 � z1

Parametric form: x¼ x1þ ta, y¼ y1þ tb, z¼ z1þ tc

General form:
A1x þ B1y þ C1z þ D1 ¼ 0
A2x þ B2y þ C2z þ D2 ¼ 0

	

Direction of line: (B1C2�C1B2, C1A2�A1C2, A1B2�B1A2)2

Projection of segment P1P2 on direction (a, b, c):

(x2 � x1)aþ (y2 � y1)bþ (z2 � z1)c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ c2
p
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Distance from point P0 to line through P1 in direction (a, b, c):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y0 � y1 z0 � z1
b c

















2

þ z0 � z1 x0 � x1
c a

















2

þ x0 � x1 y0 � y1
a b

















2

a2 þ b2 þ c2

v

u

u

u

t

Distance between line through P1 in direction (a1, b1, c1) and line
through P2 in direction (a2, b2, c2):

�

x2 � x1 y2 � y1 z2 � z1

a1 b1 c1

a2 b2 c2

























ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 c1

b2 c2

















2

þ c1 a1

c2 a2

















2

þ a1 b1

a2 b2

















2
s

The line through P1 in direction (a1, b1, c1) and the line through
P2 in direction (a2, b2, c2) intersect if and only if

x2 � x1 y2 � y1 z2 � z1
a1 b1 c1
a2 b2 c2

























¼ 0:

Planes

General form: AxþByþCzþD¼ 0
Direction to normal: (A, B, C)
Perpendicular to yz-plane: ByþCzþD¼ 0
Perpendicular to xz-plane: AxþCzþD¼ 0
Perpendicular to xy-plane: AxþByþD¼ 0
Perpendicular to x-axis: AxþD¼ 0
Perpendicular to y-axis: ByþD¼ 0
Perpendicular to z-axis: CzþD¼ 0

Intercept form:
x

a
þ y

b
þ z

c
¼ 1

Plane through point P1 and perpendicular to direction (a, b, c):

a(x � x1)þ b(y � y1)þ c(z � z1) ¼ 0

Plane through point P1 and parallel to directions (a1, b1, c1) and
(a2, b2, c2):

x � x1 y � y1 z � z1

a1 b1 c1

a2 b2 c2

























¼ 0

Plane through points P1 and P2 parallel to direction (a, b, c):

x � x1 y � y1 z � z1

x2 � x1 y2 � y1 z2 � z1

a b c

























¼ 0

Three-point form:

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

































¼ 0 or
x � x1 y � y1 z � z1
x2 � x1 y2 � y1 z2 � z1
x3 � x1 y3 � y1 z3 � z1

























¼ 0

Normal form (p¼ distance from origin to plane: a, b, g are
direction angles of perpendicular to plane from origin):

x cos aþ y cos bþ z cos g ¼ p

To reduce AxþByþCzþD¼ 0 to normal form, divide by

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2 þ C2
p

, where the sign of the radical is chosen oppos-
ite to the sign of D when D 6¼ 0, the same as the sign of C when
D¼ 0 and C 6¼ 0, the same as the sign of B when C¼D¼ 0.

Distance from point P1 to plane AxþByþCzþD¼ 0:

Ax1 þ By1 þ Cz1 þ D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2 þ C2
p

Angle u between planesA1xþB1yþC1zþD1¼ 0 andA2xþB2yþ
C2zþD2¼ 0:

cos u ¼ A1A2 þ B1B2 þ C1C2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ B2

1 þ C2
1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þ B2

2 þ C2
2

p

Planes parallel: A1: B1: C1¼A2: B2: C2

Planes perpendicular: A1A2þB1B2þC1C2¼ 0

Spheres

Center at origin, radius r: x2þ y2þ z2¼ r2

Center at (g, h, k), radius r: (x� g)2þ (y� h)2þ (z� k)2¼ r2

General form:

Ax2 þ Ay2 þ Az2 þ Dx þ Ey þ Fz þM ¼ 0, A 6¼ 0
x2 þ y2 þ z2 þ 2dx þ 2ey þ 2fz þm ¼ 0

	

Center: (�d, �e, �f)

Radius: r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ e2 þ f 2 �m
p

Sphere on P1P2 as diameter:

(x� x1) (x �x2)þ (y� y1) (y� y2)þ (z �z1) (z� z2)¼ 0

Four-point form:

x2 þ y2 þ z2 x y z 1
x21 þ y21 þ z21 x1 y1 z1 1
x22 þ y22 þ z22 x2 y2 z2 1
x23 þ y23 þ z23 x3 y3 z3 1
x24 þ y24 þ z24 x4 y4 z4 1









































¼ 0
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The 17 Quadric Surfaces in Standard Form

General Equation of Second Degree

The nature of the graph of the general quadratic equation in
x, y, z,

ax2 þ by2 þ cz2 þ 2fyzþ 2gzxþ 2hxyþ 2pxþ 2qyþ 2rzþ d ¼ 0,

is described in the following table in terms of r3, r4, D, k1, k2, k3,
where

e ¼
a h g
h b f
g f c

2

4

3

5, E ¼
a h g p
h b f q
g f c r
p q r d

2

6
6
4

3

7
7
5
,

r3¼ rank e, r4¼ rank E,
D¼ determinant of E,

k1, k2, k3 are the roots of
a� x h g
h b� x f
g f c� x

























¼ 0:

Cylindrical and Conical Surfaces

Any equation in just two of the variables x, y, z represents a
cylindrical surface whose elements are parallel to the axis of the
missing variables.

Any equation homogeneous in the variables x, y, z represents a
conical surface whose vertex is at the origin.

Transformation of Coordinates

To transform an equation of a surface from an old system of
rectangular coordinates (x, y, z) to a new system of rectangular
coordinates (x0, y0, z0), substitute for each old variable in the
equation of the surface its expression in terms of the new
variables.

Translation:

x ¼ x0 þ h

The new axes are parallel to the old axes and the coordinates of

y ¼ y0 þ k

the new origin in terms of the old system are (h, k, l).

z ¼ z0 þ l

Rotation about the origin:

x ¼ l1x
0 þ l2y

0 þ l3z
0

The new origin is coincident with the old origin and

y ¼ m1x
0 þ m2y

0 þ m3z
0

the x0-axis, y0-axis, x0-axis have direction cosines

z ¼ n1x
0 þ n2y

0 þ n3z
0(l1,m1, n1), (l2,m2, n2), (l3,m3, n3)

respectively, with respect to the old system of axes.

1. Real ellipsoid: x2=a2þ y2=b2þ z2=c2¼ 1

2. Imaginary ellipsoid: x2=a2þ y2=b2þ z2=c2¼�1

3. Hyperboloid of one sheet: x2=a2þ y2=b2� z2=c2¼ 1

4. Hyperboloid of two sheets: x2=a2þ y2=b2� z2=c2¼�1

5. Real quadratic cone: x2=a2þ y2=b2� z2=c2¼ 0

6. Imaginary quadric cone: x2=a2þ y2=b2þ z2=c2¼ 0

7. Elliptic paraboloid: x2=a2þ y2=b2þ 2z¼ 0

8. Hyperbolic paraboloid: x2=a2� y2=b2þ 2z¼ 0

9. Real elliptic cylinder: x2=a2þ y2=b2¼ 1

10. Imaginary elliptic cylinder: x2=a2þ y2=b2¼�1

11. Hyperbolic cylinder: x2=a2� y2=b2¼�1

12. Real intersecting planes: x2=a2� y2=b2¼ 0

13. Imaginary intersecting planes: x2=a2þ y2=b2¼ 0

14. Parabolic cylinder: x2þ 2rz¼ 0

15. Real parallel planes: x2¼ a2

16. Imaginary parallel planes: x2¼�a2

17. Coincident planes: x2¼ 0

Case r3 r4

Sign
of D

Nonzero
k’s

Same Sign?
Quadric
Surface

1 3 4 � Yes Real ellipsoid

2 3 4 þ Yes Imaginary ellipsoid

3 3 4 þ No Hyperboloid of one sheet

4 3 4 � No Hyperboloid of two sheets

5 3 3 No Real quadratic cone

6 3 3 Yes Imaginary quadric cone

7 2 4 � Yes Elliptic paraboloid

8 2 4 þ No Hyperbolic paraboloid

9 2 3 Yes Real elliptic cylinder

10 2 3 Yes Imaginary elliptic cylinder

11 2 3 No Hyperbolic cylinder

12 2 2 No Real intersecting planes

13 2 2 Yes Imaginary intersecting planes

14 1 3 Parabolic cylinder

15 1 2 Real parallel planes

16 1 2 Imaginary parallel planes

17 1 1 Coincident planes
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x0 ¼ l1x þ m1y þ n1z

y0 ¼ l2x þ m2y þ n2z

z0 ¼ l3x þ m3y þ n3z

Cylindrical Coordinates

If (r, u, z) are the cylindrical coordinates and (x, y, z) the
rectangular coordinates of a point P, then

x ¼ r cos u, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

,
y ¼ r sin u, u ¼ arctan y

x
,

z ¼ z, z ¼ z:

z

r

P

Z

X

Yθ

Spherical Coordinates

If (r, u, f) are the spherical coordinates and (x, y, z) the
rectangular coordinates of a point P, then

x ¼ r sin u cos f,

y ¼ r sin u sin f,

z ¼ r cos u,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2,
p

u ¼ arccos
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p ,

f ¼ arctan
y

x
:

r

P

Z

X

Y

θ
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cylindrical and conical surfaces, F-9
cylindrical coordinates, F-10
direction numbers and cosines, F-7
general quadratic equation, F-9
planes, F-8
points, F-7
quadric surfaces, F-9
spheres, F-8
spherical coordinates, F-10
straight lines, F-7–F-8
transformation, F-9–F-10

Algebraic reconstruction techniques (ART),
8-34

Altes Q distribution,
13-8–13-9

Analog all-pass filters,
7-62–7-63

Analog chirp Fourier transform, 18-6
Asymptotic sequence, 1-53
Attenuated Radon transform, 8-41
Autocorrelation sequence, 6-6

B

Backprojection
definition, 8-31
filter, 8-32–8-33
filtered projection

convolution methods, 8-31–8-32
feature space function, 8-31
frequency space implementation, 8-32
inverse Fourier transform, 8-31

Band-limited functions, 2-45
sampling theorem, 2-43–2-44
truncated sampling reconstruction, 2-44

Band-pass Hilbert transformers,
7-68–7-71

Bandwidth theorem
absolutely integrable functions, 2-17–2-18
finite energy functions, 2-18–2-19

Bedrosian’s theorem, 7-69, 7-85
Bertrand Pk distributions, 13-10
Bessel functions

Bessel’s equations solution, 2-32–2-33
Chebyshev polynomial, 7-30–7-31
definition, 1-35
finite Hankel transforms, 11-2, 11-5
Fourier Bessel series, 1-39
Fourier cosine transform (FCT), 3-9
Fourier sine transform (FST), 3-16
frequency domain differentiation, 7-30
Hankel transform

elementary properties, 9-1–9-2
finite interval, 9-11–9-13
infinite interval, 9-13–9-15

integral order Bessel functions, 2-34
integral representation, 1-37
inverse Fourier transformation, 7-31
nonintegral order Bessel functions, 2-35
power series representation, 7-28,

7-31–7-32
properties, 1-41–1-43
recurrence relation, 1-36
second order Bessel differential equation,

7-28
waveforms, 7-29–7-30
zero-order Bessel function, 2-33–2-34

Bessel’s equality, 2-15
Bessel’s inequality

Hartley series, 4-12
signal orthogonality, 1-20

Beta function, 12-34
Bidimensional empirical mode decomposition

(BEMD)
applications, 20-9
boundary effects, 20-8
extrema detection, 20-7–20-8
intermittency, 20-7
scattered data interpolation (SDI),

20-7–20-8
sifting process and stopping criterion,

20-7
texture image analysis, 20-6–20-7
types, 20-7

Bilateral Laplace transform, see Two-sided
Laplace transform

Binomial distribution, 2-56–2-57
Biorthogonal filter bank, 10-32–10-33
Boundary value problems, 11-10–11-11
Bounded input bounded output (BIBO)

stability, 1-17
Broad-band modulation index, 12-29
Bromwich contour

branch points and cuts
analytic and single valued function,

A-21
evaluation, A-22–A-25
singularity, A-22

finite number of poles, A-19–A-21
rational transforms, A-19

Butterworth IIR Hilbert transformers,
7-77

C

Cauchy principal values, 2-7
Cauchy–Riemann equations, 7-4
Cauchy–Schwarz inequality, 1-20
Cauchy second integral theorem, 5-17
Cauchy’s residue theorem, 6-24
Central-slice theorem, 8-2, 8-6–8-7
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Chebyshev polynomials
Bessel function, 7-30–7-31
circular harmonic decomposition, 8-35
Fourier cosine transform (FCT), 3-8
Fourier sine transform (FST), 3-15
functions and formulas, 8-43–8-44
integral order Bessel functions, 2-34
modified Clenshaw–Curtis quadrature

method, 9-11–9-12
orthogonal functions, unit disk, 8-39
signal orthogonality, 1-34–1-35

Chirp signal analysis, 18-1–18-2; see also
Discrete chirp-Fourier transform
(DCFT)

Choi–Williams exponential distribution
(CWD), 13-29–13-30

Circular harmonic decomposition
Chebyshev polynomial, 8-35
extension, higher dimensions, 8-35
Fourier series, 8-34
three dimensions, 8-35–8-36

Classical time–frequency representations
(TFRs)

Altes Q distribution, 13-8–13-9
Bertrand Pk distributions, 13-10
quadratic time–frequency representation

band-limited cosine, 13-13
interference geometry, 13-11–13-12
multicomponent signal, 13-11
nonlinear operation, 13-10

short-time Fourier transform (STFT),
13-4–13-5

TFR warping, 13-9–13-10
Wigner distribution and Woodward

ambiguity function
Dirac function, 13-6
Fourier transform, 13-7–13-8
Gaussian signal, 13-6–13-7
quantum mechanics, 13-5
signal operations, 13-7

Complex variable functions
analytic continuation, A-11
Bromwich contour

branch points and cuts,
A-21–A-25

finite number of poles, A-19–A-21
definite integral evaluation

infinite integrals, sines and cosines,
A-26–A-28

miscellaneous integrals, A-28–A-31
periodic functions (0 to 2p), A-25
�1 to þ1, A-26

derivative of analytic function, A-5–A-6
integration

Cauchy first integral theorem, A-4
Cauchy second integral theorem, A-5
contour integral, A-4
contour transformation, A-18–A-19
definition, A-2–A-3
evaluation theorem, A-16–A-18
logarithmic derivative, A-32–A-33
path, complex plane, A-3

Laurent’s theorem, A-6–A-7
power series

convergence, A-10–A-11
Maclaurin series, A-9
negative power series, A-10
positive power series, A-9
Taylor series, A-9

principal value integral, A-31–A-32
residue theory, A-14–A-16
sequences and series, A-8–A-9
single=multiple valued functions,

A-1–A-2
singularities

at 1, A-14
branch points, A-12–A-13
definition, A-11–A-12
essential and nonessential singularity,

A-11, A-13–A-14
isolated and nonisolated singularity,

A-12
phase change, A-12–A-13
poles, A-12
removable singularity, A-12

Taylor’s theorem, A-6
Computational algorithms

discrete sine and cosine transforms
(DST and DCT) algorithms

decimation-in-frequency algorithms,
3-30–3-31

decimation-in-time algorithms,
3-28–3-30

Fourier cosine and sine transform
(FCT and FST) algorithms, 3-28

Conditional inverses, D-9–D-11
Cosine-and-sine (cas) function, 4-2–4-3
Cramer–Rao bounds, velocity estimation

broad-band modulation index, 12-29
Doppler compression, 12-28
Fisher information matrix, 12-28–12-29
maximum-likelihood estimation, 12-28
Parseval’s formula, 12-28
variance, 12-30
zero mean white Gaussian noise, 12-29

Cross-power spectrum, 7-53
Cyclic convolution, 4-19–4-20

D

Daubechies basis
maximum flatness filter, 10-45–10-46
time domain, 10-46–10-47

Definite integrals, C-1–C-8
impulse response, A-31
infinite integrals, A-26
miscellaneous integrals, A-28–A-31
periodic functions (0 to 2p), A–25
�1 to þ1, A-26

Delta functions
periodic arrays, 2-26
regular arrays, 2-24–2-25
variables and derivatives, 2-27–2-28

Determinants, D-3–D-4

2-D DFT tensor algorithm
algorithm steps, 19-16
modified tensor algorithms, 19-20–19-21
n-dimensional DFT, 19-25–19-26
N, power of two, 19-18
N, prime, 19-16
recursive tensor algorithm

multiplication operation, 19-21–19-22
N¼ L1L2, 19-23
N13N2, 19-23–19-25
N, power of odd prime, 19-22–19-23

tensor image transform, 19-16
Differentiating Hilbert transformers

cascade connection, 7-77
coefficients, 7-79
definition, 7-77
Fourier series, 7-78–7-79
impulse response, 7-78
transfer function, 7-77–7-78

Digital filters
finite impulse response (FIR) filters,

6-28–6-29
infinite impulse response (IIR) filters,

6-27–6-28
Digital Hilbert transformers

antisymmetric sequence, 7-71
frequency-independent group delay, 7-72
magnitude and phase function, 7-71–7-72
transfer function, 7-70–7-71

Digital phase splitters, 7-75
Dirac delta function, see Impulse delta function
Dirac function, 13-6
Direct matrix factorization

decimation-in-frequency algorithms,
3-30–3-31

decimation-in-time algorithms, 3-28–3-30
Discrete chirp-Fourier transform (DCFT)

analog chirp-Fourier transform, 18-6
chirp rate estimation, 18-1–18-2
frequency matching, 18-1
magnitude, 18-2
multiple component chirp signals,

18-5–18-6
numerical simulations

four chirp components,
18-9, 18-13–18-14

multiple chirp components, 18-10
three chirp components,

18-8, 18-12–18-13
two chirp components,

18-7, 18-11–18-12
single component chirp signal

DFT, 18-2–18-3
inverse DCFT (IDCFT), 18-2
linear chirp signal, 18-4–18-5
sidelobe magnitude vs. estimation

performance, 18-3–18-4
2-D Discrete cosine transform (DCT)

fast 1-D cosine transforms, 19-38
modified DCT, 19-39
N=2-point DCT, 19-36–19-37
tensor representation, 19-35
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Discrete Fourier transforms (DFT),
2-41, 6-26–6-27

basic properties, 17-6
circular convolution and correlation,

17-7–17-8
circular time and frequency shift, 17-8
complex conjugate, 17-8
definition, 17-5
functions, 17-9–17-12
imaginary sequences, 17-7
linear transformation, 17-5–17-6
Parseval’s theorem, 17-9
product, 17-8
properties, 17-9
real-valued sequences, 17-7
SAR and ISAR imaging, 18-1
spectrum estimation, 18-1
symmetry properties, 17-6–17-7
time reversal, 17-8

Discrete Hartley transforms (DHT), 4-17
2-D DHT representation

3-D image-signals, 19-28–19-29
index mapping, 19-27
spectral information, frequency-points,

19-28
splitting-signals, 19-26
tensor algorithm, 19-26–19-27

3-D DHT tensor representation,
19-29–19-31

n-dimensional DHT, 19-31–19-32
2-D Discrete hexagonal Fourier transform

(DHFT)
calculation, frequency-points,

19-57–19-59
complexity, 19-55–19-56
definition, 19-56–19-57
paired representation, 19-59–19-62
8 3 4-point DHFT, 19-59
rectangular and hexagonal lattice, 19-56
regular hexagonal tessellation, 19-55

Discrete Hilbert transformation (DHT), 6-26
bilinear transformation, 7-59–7-60
circular convolution, 7-56
complex analytic discrete sequence, 7-58
discrete one-sided convolution, 7-55
exponential kernels, 7-54
impulse response, 7-55–7-56
inverse transformation, 7-54
linearity, 7-57–7-58
Parseval’s theorem, 7-56–7-57
shifting property, 7-57
transfer function, 7-55–7-56

Discrete, linear, and time-invariant (DLTI)
system, 7-43–7-44

Discrete Mellin transform
dilatocylce function Z(n) with ratioQ, 12-25
n and b sample connection,

12-26–12-27
number of samples, 12-27
periodize MS(b), period 1=ln q,

12-25–12-26
Discrete periodic Radon transform, 8-42–8-43

Discrete-time Fourier transforms (DTFT)
approximated continuous-time Fourier

transforms, 17-5
definition, 17-1–17-2
discrete-time signals, 17-4
finite sequences, 17-4
LTI discrete system frequency response,

17-5
properties, 17-2–17-3
smearing effect, 17-4

Discrete wavelet transform
timescale space lattices, 10-14–10-15
wavelet frame, 10-15–10-16

Distortion power, 7-53
Doppler compression, 12-28

E

Electrical power, Hilbert transforms
complex power notion, 7-51
instantaneous power, 7-50
power notion generalization

Budeanu’s vs. Fryze’s definitions, 7-52
finite average power, 7-52–7-54
in-phase component, 7-51–7-52
nonsinusoidal periodic waveform, 7-51
quadrature component, 7-52
reactive power, 7-51–7-52

quadrature instantaneous power, 7-50
voltage and current harmonic waveforms,

7-50–7-51
Empirical mode decomposition (EMD)

drawbacks, 20-4–20-5
end effects, 20-6
extrema envelope, 20-1
vs. Fourier and wavelet transform, 20-4
Hilbert transform, 20-5–20-6
intermittency, 20-2–20-3
pictorial depiction, 20-2
recent developments, 20-6
sifting process, 20-2–20-3
stopping criteria, 20-2, 20-3
without extrema envelopes, 20-8

Euler–Cauchy differential equation, 12-13
Euler’s equation, 7-88
Euler’s transformation, 9-13

F

Fast Hartley transform (FHT)
applications, 4-18
cyclic convolution, 4-19–4-20
DHTand IDHT, 4-17
FFT algorithm, 4-17
frequency domain, 4-19–4-20
nontrivial computation, 4-21
periodic load current, 4-20
program, 4-28–4-31
quasiperiodic transient inputs, 4-19
time-domain convolution, 4-18–4-19
transform domain, 4-19
zero padding, 4-20

Fast lapped transform (FLT),
15-22–15-23, 15-24

Filter bank
biorthogonal filter bank, 10-32–10-33
FIR filter bank, 10-27–10-28
orthonormal filter bank, 10-30–10-31
perfect reconstruction

aliasing cancellation, 10-29
down-sampling, 10-28
modulation matrix, 10-29–10-30
up-sampling, 10-29

time domain, orthonormal filters,
10-31–10-32

Filtered backprojection algorithm, 8-31
Final value theorem, 5-9
Finite energy functions

bandwidth theorem, 2-18–2-19
square integrable function, 2-18

Finite Hankel transforms, 9-9–9-10
definition, 11-1–11-2
long circular cylinder

temperature distribution, 11-3, 11-5
unsteady viscous flow, 11-3–11-4
vibrations, circular membrane, 11-4

operational properties, 11-2–11-3
Finite impulse response (FIR) Hilbert

transformers
equiripple function, 7-74–7-75
impulse responses, 7-73
normalized dimensionless pass-band, 7-74
structure, 7-72
transfer function, 7-73–7-74
Z-transform, 7-73

Finite Sturm–Liouville transform, 11-11
Fisher information matrix, 12-28–12-29
Fourier–Bessel series, 9-9, 11-1
Fourier cosine transform (FCT)

algebraic functions, 3-5–3-6, 3-32
Bessel functions, 3-9
complementary error function, 3-8
convolution property, 3-10
cosine integral function, 3-9
definitions, 3-1–3-2
differentiation-in-t, 3-9–3-10
differentiation-in-v, 3-10
exponential and logarithmic functions,

3-6–3-7, 3-32
exponential integral function, 3-9
orthogonal polynomials, 3-8
properties and operational rules, 3-2–3-5
real data sequence, 3-28
shift-in-t, shift-in-v and kernel product

property, 3-10
sine integral function, 3-8
trigonometric functions, 3-7, 3-32

Fourier inverse transform, 2-2
Fourier sine transform (FST)

algebraic functions, 3-13–3-14, 3-33
Bessel functions, 3-16
complementary error function, 3-15–3-16
cosine integral function, 3-16
definitions, 3-11
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exponential and logarithmic functions,
3-14, 3-33

exponential integral function, 3-16
orthogonal polynomials, 3-15
properties and operational rules, 3-11–3-13
real data sequence, 3-28
sine integral function, 3-16
trigonometric function, 3-14–3-15, 3-33

Fourier transforms
circularly symmetric functions and Hankel

transform, 2-38–2-39
definitions

Cauchy principal values, 2-7
generalized transforms, 2-3–2-4
notation, and terminology, 2-2
residue theorem, 2-4

discrete Fourier transform, 2-41
functions, 2-65–2-66

absolutely integrable functions,
2-16–2-18

band-limited functions, 2-20
Bessel functions, 2-32–2-35
causal functions, 2-30
with finite duration, 2-20
finite energy functions, 2-18–2-19
on finite intervals, 2-32
finite power functions, 2-20–2-22
on half-line, 2-31–2-32
negative powers and step functions,

2-28
periodic arrays, delta functions, 2-26
periodic functions, 2-22–2-24
rational functions, 2-29
real=imaginary valued even=odd

functions, 2-16
regular arrays, delta functions,

2-24–2-25
square integrable functions, 2-18
variables and derivatives, 2-27–2-28

fundamental Fourier identities, 2-65
general identities and relations

bandwidth theorem, 2-15
Bessel’s equality, 2-15
conjugation, 2-8–2-9
correlation, 2-11
differentiation and multiplication,

2-11–2-12
integration, 2-13–2-14
invertibility, 2-8
linearity, 2-9
modulation, 2-10
moments, 2-13
near-equivalence, 2-8
Parseval’s equality, 2-14–2-15
products and convolution, 2-10
scaling, 2-9
translation and multiplication, 2-9–2-10

graphical representations, 2-67–2-75
half-line sine and cosine transforms, 2-40
Hankel transform, 9-2–9-3
Hartley transform, 4-5
Laplace transform, 2-42–2-43

linear systems
casual systems, 2-52
complex exponentials and periodic

functions, 2-51
correlation, 2-60
differential equations, 2-52
linear shift invariant systems, 2-49
modulation and demodulation,

2-54–2-55
random signals, 2-60–2-61
reality and stability, 2-50
RLC circuits, 2-54

Mellin transform, 12-3
multidimensional Fourier transforms,

2-35–2-36
one-dimensional spectral representations,

13-2–13-3
partial differential equations

half-infinite rod, 2-64
infinite rod, 2-63–2-64
one-dimensional heat equation, 2-62

Radon and Abel transforms, 8-7–8-8
random variables

correlation, 2-60
multiple random process and

independence, 2-57
probability and statistics, 2-55–2-56
random signals and stationary random

signals, 2-59
sums of random processes, 2-58–2-59

sampled signal reconstruction
band-limited functions, 2-43–2-45
finite duration functions, 2-47
fundamental sampling formulas and

Poisson’s formula, 2-47–2-48
separable functions, multidimensional

transform, 2-36–2-37
signal analysis properties, 13-19–13-20
Wigner distribution, 13-7–13-8
Z-transform, 6-36

Fourier transform tensor representation
2-D directional images

2D IDTF, image-signal processing,
19-13–19-14

frequency point location, 19-11–19-12
image reconstruction, 19-15–19-16
point disposition, 19-12–19-13
superposition, 19-15

splitting-signal, 19-10–19-11
Fractional Fourier transform (FRT)

applications
communications, 14-21
optics and wave propagation,

14-21–14-22
quantum mechanics, 14-22
signal and image processing, 14-21

ath order, 14-1
definition

differential equation, 14-3–14-4
eigenvalues and eigenfunctions,

14-2–14-3
harmonic oscillation, 14-3

linear integral transforms, 14-2
square-integrable function, 14-3

digital computation, 14-19–14-20
discrete transform, 14-18–14-19
domains

frequency domain, 14-4
phase space, 14-4–14-5
space or time domain, 14-4
time-frequency domain, 14-4
Wigner distribution, 14-5–14-6

dual operators
chirp multiplication and chirp

convolution operator, 14-9
differentiation and multiplication

operator, 14-8
discretization and periodization

operator, 14-9
phase shift operator and translation

operator, 14-8
scaling operator, 14-9

filtering
convolution and multiplication

operations, 14-17
cost-accuracy trade-off, 14-16
filter function, 14-14
generalized filtering configurations,

14-17
multistage and multichannel

configuration, 14-15–14-16
optimal filter, 14-15
signal recovery, 14-15

fractional Fourier domain decomposition
(FFDD), 14-17–14-18

functions, 14-6
linear canonical transforms (LCT)

basic properties, 14-13
composite transform, 14-11
decompositions, 14-13
noncommutative group sets,

14-11–14-12
operational properties, 14-14
Wigner distribution, 14-12–14-13

magnitude, 14-2
operational properties, 14-7–14-8
properties, 14-6–14-7
singular-value decomposition (SVD),

14-17–14-18
-time-order and space-order representations

polar time-order representation,
14-9–14-10

rectangular time-order representation,
14-9

Wigner distribution and ambiguity
function, 14-10–14-11

zeroth-order, 14-1
Frequency matching, 18-1

G

Gamma function, 12-4, 12-33–12-34
Gaussian distribution, 3-6
Gauss–Jacobi rules, 9-11, 9-14
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Gauss quadrature formulas, 9-11
Gauss’ theorem, E-9
Gegenbauer polynomials, 1-34
Gegenbauer transform, 8-35

application, 11-16
definition, 11-14
operational properties, 11-14–11-15

Generalized lapped orthogonal transform
(GenLOT), 15-19

definition, 15-17–15-18
degrees of freedom, 15-18
implementation, 15-18
inverse and forward transform,

15-20–15-21
nonlinear unconstrained optimization,

15-18, 15-20
Geometric Dirac comb, 12-21–12-22
Gram–Schmidt orthonormalization process,

1-21
Green’s theorem, E-9

H

Hankel transform, 8-29–8-30
applications

electrified disc, 9-6–9-7
electrostatic problem, 9-8–9-9
heat conduction, 9-8
Laplace equation, 9-8

Bessel functions
elementary properties, 9-1–9-2
finite interval, 9-11–9-13
infinite interval, 9-13–9-15

definition, 9-2
finite Hankel transform, 9-9–9-10
Fourier transform, 9-2–9-3
Fourier transforms, 2-38–2-39
numerical integration methods, 9-10–9-11
properties, 9-3–9-4
Radon and Abel transforms, 8-29–8-30
Weber’s integral theorem, 9-10

Hartley oscillator, 4-1
Hartley transform

bus voltages, 4-24–4-25
cas function, 4-2–4-3
vs. classical complex-valued fast Fourier

transform (FFT), 4-1
complex and real Mellin transforms, 4-7
definition, 4-1
Dirichlet conditions, 4-5
distribution network model, 4-21–4-22
electrostatic coupling, 4-22
elementary properties

autocorrelation, 4-9
convolution, 4-8–4-9
function shift=delay and reversal, 4-8
linearity, 4-7
modulation, 4-8
nth derivative of a function, 4-9
power spectrum and phase, 4-8
product, 4-9
scaling=similarity, 4-8

energy signals, 4-26
engineering signals, 4-26–4-28
even and odd function, 4-4
expression, 4-2
fast Hartley transform (FHT)

applications, 4-18
cyclic convolution, 4-19–4-20
DHTand IDHT, 4-17
FFT algorithm, 4-17
frequency domain, 4-19–4-20
nontrivial computation, 4-21
periodic load current, 4-20
program, 4-28–4-31
quasiperiodic transient inputs, 4-19
time-domain convolution, 4-18–4-19
transform domain, 4-19
zero padding, 4-20

Fourier magnitude, 4-22–4-23
Fourier transforms, 4-5
greyqui hoy, 4-2
Hermitian symmetry, 4-5
Hilbert transforms, 4-6
impedance frequency components, 4-22
inverse Hartley transform, 4-2–4-3
Laplace transforms, 4-6
multiple dimensions, 4-10
nonsinusoidal waveform propagation,

4-21
power signals, 4-26
predictor–corrector method, 4-23
real Fourier transform (RFT), 4-6–4-7
scaling coefficient, 4-3
self-inverse property, 4-3
sine and cosine transforms, 4-5
systems analysis, Hartley series

Bessel’s inequality, 4-12
electric power quality assessment,

4-15–4-17
finality of coefficients, 4-10, 4-12
impulse function, 4-10
linear system response problem, 4-14
orthogonal basis function, 4-13
orthonormal set, 4-12–4-13
Parseval’s equality, 4-12
Riemann–Lebesgue lemma,

4-11–4-12
transfer function methodology, 4-15
truncation approximation, 4-11

transfer impedance, 4-23–4-24
transient=aperiodic excitations,

4-24–4-25
trigonometric properties and functions, 4-3

Heaviside expansion theorem, 5-12
Hermite polynomials, 8-17–8-18

definition, 1-28–1-29
Fourier cosine transform (FCT), 3-8
Fourier sine transform (FST), 3-15
functions and formulas, 8-44–8-45
integral representation and equation, 1-29
orthogonality relation, 1-29–1-30
properties, 1-31
recurrence relation, 1-29

Hermite transforms
basic operational properties, 11-23

even functions, 11-27
generalized convolution, 11-25
Laguerre transformation, 11-26
odd functions, 11-26
recurrence relations, 11-24–11-25

definition, 11-21–11-22
Hermitian symmetry, 4-5
Hierarchical lapped transform (HLT)

filter banks and discrete wavelets,
15-10–15-11

time–frequency diagram, 15-11
tree-structured transform

basis functions, 15-13
M-band LT, tree nodes and branches,

15-12
tree and TF diagram, 15-12

variable-length LT
cascading effect, 15-13–15-14
factorization, 15-14

High-pass filters, 10-22
Hilbert–Huang transform method (HHT)

bidimensional empirical mode
decomposition (BEMD)

applications, 20-9
boundary effects, 20-8
extrema detection, 20-7–20-8
intermittency, 20-7
scattered data interpolation (SDI),

20-7–20-8
sifting process and stopping criterion,

20-7
texture image analysis, 20-6–20-7
types, 20-7

empirical mode decomposition (EMD)
drawbacks, 20-4–20-5
end effects, 20-6
extrema envelope, 20-1
vs. Fourier and wavelet transform, 20-4
Hilbert transform, 20-5–20-6
intermittency, 20-2–20-3
pictorial depiction, 20-2
recent developments, 20-6
sifting process, 20-2–20-3
stopping criteria, 20-2, 20-3
without extrema envelopes, 20-8

global health monitoring technique,
20-8–20-9

recommendations, 20-9–20-10
Hilbert space, 12-18
Hilbert transformers

analog all-pass filters, 7-62–7-63
band-pass Hilbert transformers, 7-68–7-71
delay, phase distortions, and equalization,

7-66–7-67
design methods, 7-72
differentiating Hilbert transformers,

7-77–7-79
digital Hilbert transformers, 7-70–7-72
digital phase splitters, 7-75
finite impulse response (FIR), 7-72–7-75
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infinite impulse response (IIR), 7-75–7-77
phase-splitter Hilbert transformers,

7-61–7-62
SSB filtering, 7-70
tapped delay-line filters, 7-67

Hilbert transforms
analytic functions

Cauchy–Riemann equations, 7-4
complex function, 7-3–7-4
Euler’s formula, 7-3, 7-5

analytic signal
instantaneous amplitude, complex

phase, and complex frequency,
7-32–7-34

integration, 7-23, 7-25
multiplication, 7-28
wavelets, 7-99

autoconvolution and energy equality,
7-18–7-19

Bessel functions
Chebyshev polynomial, 7-30–7-31
Fourier series, 7-29
frequency domain differentiation, 7-30
integral form, 7-28
inverse Fourier transformation, 7-31
power series representation, 7-28,

7-31–7-32
second order Bessel differential

equation, 7-28
waveforms, 7-29–7-30

Clifford analytic signal, 7-98–7-99
definitions, 7-2–7-3
differentiation, 7-20
discrete Hilbert transformation (DHT)

bilinear transformation, 7-59–7-60
circular convolution, 7-56
complex analytic discrete sequence, 7-58
discrete one-sided convolution, 7-55
exponential kernels, 7-54
impulse response, 7-55–7-56
inverse transformation, 7-54
linearity, 7-57–7-58
Parseval’s theorem, 7-56–7-57
shifting property, 7-57
transfer function, 7-55–7-56

distribution, 7-9–7-10
electrical power

complex power notion, 7-51
instantaneous power, 7-50
power notion generalization, 7-51–54
quadrature instantaneous power, 7-50
voltage and current harmonic

waveforms, 7-50–7-51
Fourier transforms, 2-30
Hartley transform, 4-6
Hermite polynomials and functions

Fourier image, 7-23
Gaussian Fourier pair, 7-21
orthogonal function, 7-22–7-23
recursion formula, 7-22
waveforms, 7-22
weighting function, 7-23

Hilbert–Huang transform, 20-5–20-6
Hilbert pairs, 7-14–7-17
iteration, 7-14
linear systems, Kramers–Kronig relations

amplitude-phase relations, DLTI
systems, 7-43–7-44

causality, 7-42
linear macroscopic continuous media,

7-44–7-45
linear, time-invariant (LTI) systems,

7-41–7-42
minimum phase property, 7-42–7-44
physical realizability, transfer functions,

7-42
signal delay, Hilbertian sense, 7-45

modulation theory
compatible single side-band

modulation, 7-38–7-39, 7-41
generalized single side-band

modulation, 7-37–7-38
harmonic carrier, modulation function,

7-35–7-37
monogenic 2-D signal

quaternionic Fourier transformation
(QFT), 7-97

quaternion-valued function, 7-96
Riesz transform, 7-96–7-97
spherical coordinates representation,

7-97–7-98
multidimensional complex signals

conjugate 2-D complex signals, 7-90
definition, 7-89
2-D modulation theory, 7-92–7-93
Euler’s equation, 7-88
labeling orthants, 7-94
local amplitudes, phases, and complex

frequencies, 7-91
real and complex notation,

7-91–7-92
multidimensional Hilbert transformations

2-D Hilbert transformation,
7-81, 7-84

evenness and oddness, 7-79–7-80
partial Hilbert transformation, 7-81
separable functions, 7-82
spectral description, 7-81–7-82
Stark’s extension, Bedrosian’s theorem,

7-85
one-sided spectrum

even and odd term, 7-5
Gaussian pulse and Fourier image,

7-8–7-9
Hartley transforms, 7-6–7-7
linear two-port network, 7-5
mean value, 7-8
periodic cosine signal, 7-7
two-sided symmetric unipolar square

pulse, 7-7–7-8
periodic signals

cotangent Hilbert transformations,
7-12–7-13

generating function, 7-10

periodic function, Fourier series,
7-10–7-11

time domain, 7-11–7-12
properties, 7-17–7-18
quaternionic 2-D signals

Hermitian symmetry, 2-D Fourier
spectrum, 7-95–7-96

quaternionic spectral analysis,
7-95

quaternion numbers and quaternion-
valued functions, 7-94–7-95

sampling theory
band-pass signals, 7-48–7-49
delta sampling sequence, 7-46
interpolatory expansion, 7-48
low-pass band-limited spectrum,

7-47
low-pass sampled signal, 7-48–7-49
noncausal impulse response, 7-47
periodic sequence, 7-46
transfer function, 7-47–7-48

signal multiplication, nonoverlapping
spectra, 7-27

Wigner distribution, 7-98, 13-5

I

Impulse delta function, 1-4
Infinite impulse response (IIR) Hilbert

transformers, 7-75–7-77
Initial value theorem, 5-9
Integral order Bessel functions, 2-34
Integration

Cauchy first integral theorem, A-4
Cauchy second integral theorem, A-5
contour integral, A-4
contour transformation, A-18–A-19
definition, A-2–A-3
evaluation theorem, A-16–A-18
path, A-3

Interpolatory functions, 7-48
Inverse discrete Hartley transform (IDHT),

4-17
Inverse finite Hankel transform, 11-2
Inverse Fourier transform, 8-31
Inverse Hartley transform, 4-2–4-3
Inverse Hermite transform, 11-22
Inverse Jacobi transform, 11-12, 11-14
Inverse Laguerre transform, 11-16
Inverse Laplace transform

definition, 5-10
Heaviside expansion theorem, 5-12
partial fraction expansion, 5-10–5-11
proper fraction, 5-11

Inverse Legendre transform, 11-6
Inverse Z-transform

one-sided Z-transform
integration, 6-9
irrational function, 6-10
partial fraction expansion, 6-8
power series method, 6-7
simple and multiple poles, 6-9
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two-sided Z-transform
integral inversion formula, 6-24
partial fraction expansion, 6-22
power series expansion, 6-21

Isotropic Hilbert transform, see Riesz
transforms

J

Jacobi transforms
definition, 11-12
generalized heat conduction problem,

11-13–11-14
operational properties, 11-13

K

Karhunen–Loeve transform (KLT)
auto-covariance matrix

data vector, 3-19
signal vector, 3-20

diagonalization, 3-19–3-20
discrete cosine transform (DCT), 3-20
discrete sine transform (DST), 3-20–3-21
Markov-1 signal, 3-20
nonsingular symmetric Toeplitz matrix,

3-19
residual correlation, 3-21
signal decorrelation, 3-1
variance distribution, 3-20–3-21

Kelvin functions, 9-15

L

Laguerre polynomials
Fourier cosine transform (FCT), 3-8
Fourier sine transform (FST), 3-15
generating function, 1-30
Leibniz formula, 1-31
orthogonality, 1-32–1-33
properties, 1-33–1-34
Radon and Abel transforms, 8-18–8-19
recurrence relations, 1-31–1-32
Rodrigues formula, 1-31

Laguerre transforms
definition, 11-16
diffusion equation, 11-21
heat conduction problem, 11-20–11-21
operational properties, 11-18–11-20

Laplace equation, 9-8
Laplace transforms

Dirichlet conditions, 5-1
Fourier cosine transform (FCT)

exponential and logarithmic functions,
3-6

trigonometric functions, 3-7
Fourier sine transform (FST)

exponential and logarithmic functions,
3-14

trigonometric functions, 3-15
Hartley transform, 4-6
inverse Laplace transform

definition, 5-10

Heaviside expansion theorem, 5-12
partial fraction expansion, 5-10–5-11
proper fraction, 5-11

inversion integral
Cauchy second integral theorem, 5-17
region of convergence, 5-17
transformable function, 5-20

Laplace transform pairs, 5-29–5-42
Mellin transform, 12-3
ordinary linear equations, constant

coefficients, 5-13
partial differential equations, 5-20
path of integration, 5-2
piecewise continuous function, 5-1
properties, 5-42–5-43

complex integration, 5-5
complex translation, 5-6–5-7
convolution, 5-7
differentiation, 5-3–5-4
final value theorem, 5-9
frequency convolution, s-plane, 5-8
initial value theorem, 5-9
integration, 5-4–5-5
linearity, 5-3
multiplication, 5-5
time delay, real translation, 5-6

two-sided Laplace transform, 5-27–5-28
Z-transform, 6-34–6-36

Lapped transforms (LT)
block transforms, 15-2, 15-4
vs. DCT, 15-4–15-5, 15-6
DCT-based image compression, 15-1
discrete MIMO linear systems, 15-3–15-4
discrete transform factorization, 15-2–15-3
extended lapped transforms (ELT), 15-2
factorization, 15-9–15-20
fast lapped transform (FLT), 15-22–15-23,

15-24
finite-length signals

distorted sample recovery,
15-26–15-27

overall transform, 15-25–15-26
symmetric extensions, 15-27–15-28

general factorization (GLBT),
15-21–15-22

generalized LOT (GenLOT), 15-19
definition, 15-17–15-18
degrees of freedom, 15-18
implementation, 15-18
inverse and forward transform,

15-20–15-21
nonlinear unconstrained optimization,

15-18, 15-20
hierarchical lapped transform (HLT)

filter banks and discrete wavelets,
15-10–15-11

time–frequency diagram, 15-11
tree-structured transform,

15-12–15-13
variable-length LT, 15-13–15-14

image and signal compression,
15-4–15-5, 15-6

lapped biorthogonal transform (LBT)
factorization, 15-16
frequency basis, 15-15–15-16
vs. LOT, 15-16–15-17

lapped orthogonal transform (LOT), 15-2,
15-14–15-15

modulated LT=extended lapped transform
(ELT)

cosine sequence phase, 15-23
lattice-style algorithm, 15-24
plane rotation stages, 15-24–15-25

multi-input multi-output (MIMO) system,
15-8–15-9

nonorthogonal lapped transforms, 15-8
orthogonal lapped transforms

matrix, 15-5–15-6
notation, 15-7–15-8
PR property, 15-6
signal sampling, 15-6–15-7
subband signal variance, 15-7
vectors, 15-6–15-7

symmetric basis, 15-14
symmetric delay factorization (SDF),

15-20
Laurent’s theorem, A-6–A-7
Legendre polynomials

associated Legendre polynomials, 1-24
complete orthonormal system, 1-22–1-23
definition, 1-21
Fourier cosine transform (FCT), 3-8
Fourier sine transform (FST), 3-15
properties, 1-26–1-27
Rodrigues and recursive formula, 1-22
Schläfli’s integral formula, 1-22

Legendre transforms
boundary value problems, 11-10–11-11
definition, 11-5–11-6
operational properties, 11-7–11-10

Linear canonical transforms (LCT)
basic properties, 14-13
composite transform, 14-11
decompositions, 14-13
noncommutative group sets,

14-11–14-12
operational properties, 14-14
Wigner distribution, 14-12–14-13

Linear discrete system analysis
causality, 6-26
discrete Fourier transform (DFT),

6-26–6-27
frequency characteristics, 6-26
Paley–Wiener theorem, 6-26
stability, 6-25–6-26
transfer function, 6-25

Linear discrete-time filters, 6-32–6-33
Linear-phase filters, 10-28
Linear systems

casual systems, 2-52
complex exponentials and periodic

functions, 2-51
correlation, 2-60
differential equations, 2-52
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Kramers–Kronig relations
amplitude-phase relations, DLTI

systems, 7-43–7-44
causality, 7-42
linear macroscopic continuous media,

7-44–7-45
linear, time-invariant (LTI) systems,

7-41–7-42
minimum phase property, 7-42–7-44
physical realizability, transfer functions,

7-42
signal delay, Hilbertian sense, 7-45

linear shift invariant systems, 2-49
modulation and demodulation, 2-54–2-55
random signals, 2-60–2-61
reality and stability, 2-50
RLC circuits, 2-54

Linz’s method, 9-14
Low-pass filters, 2-49–2-50, 10-22

M

Matrices and determinants
addition, subtraction and multiplication,

D-2
characteristics roots and vector, D-8–D-9
conditional inverses, D-9–D-11
definition, D-1–D-2
determinants, D-3–D-5
inversion, D-5–D-7
matrix differentiation, D-11–D-13
recognition rules and special forms,

D-2–D-3
singularity and rank, D-5
statistical matrix forms, D-13–D-14
traces, D-7–D-8

Matrix differentiation, D-11–D-13
Matrix inversion, D-5–D-7
McCully’s theorem, 11-20
Mellin transforms, 4-7

beta function, 12-34
Cauchy’s theorem, 12-1, 12-3
definition, 12-2
discretization and fast computation

arithmetic sampling, Mellin space, 12-24
discrete Mellin transform, 12-25–12-27
geometric sampling, original space,

12-24–12-25
interpolation formula, v-space, 12-27

distribution transformation, 12-5–12-6,
12-21

gamma function, 12-33–12-34
hyperbolic class, 13-34
inversion formula, 12-3–12-5
Laplace and Fourier transformations, 12-3
multiplicative convolution, 12-8–12-9
practical inversion

inversion integral, 12-9
polar coordinates, 12-10–12-11
Slater’s theorem, 12-10

products and convolutions transformation,
12-22–12-23

properties, 12-7–12-8, 12-35–12-36
psi function, 12-34
Riemann’s zeta function, 12-34
signal analysis

affine time–frequency distributions,
12-32–12-33

Cramer–Rao bounds, velocity
estimation, 12-28–12-30

dual Mellin variable interpretation,
12-30–12-31

numerical computation, 12-27
wavelet transform, 12-31–12-32

standard applications
asymptotic expansion, integrals, 12-15
convolution equations, 12-12–12-14
harmonic sums, asymptotic behavior,

12-16–12-17
integral computation, 12-12
potential problem, wedge,

12-14–12-15
summation of series, 12-11–12-12

transformation construction, 12-17–12-20
uncertainty relations, 12-20–12-21

Mexican-hat wavelet, 10-13
Minimum phase transfer function, 7-42
Minkowski inequality, 1-20
Mixed time–frequency signal transformations

affine class, 13-31
alternative formulation, 13-30,

13-32–13-33
expression, 13-30
kernels, 13-32

affine-Cohen subclass, 13-33
classical time–frequency representations

(TFRs)
Altes Q distribution, 13-8–13-9
Bertrand Pk distributions, 13-10
quadratic time–frequency

representations, 13-10–13-13
short-time Fourier transform (STFT),

13-4–13-5
TFR warping, 13-9–13-10
Wigner distribution and Woodward

ambiguity function, 13-5–13-8
Cohen’s class, 13-27

alternative formulations, 13-23, 13-29
expression, 13-23
implementation consideration, 13-29
kernel constraints, 13-26, 13-29–13-30
shift covariant class, 13-28

covariance properties
convolution covariance, 13-16
frequency-shift covariance, 13-14
hyperbolic time-shift covariance,

13-15–13-16
modulation covariance, 13-16
scale covariance, 13-15
time-shift covariance, 13-15

hyperbolic class, 13-35
affine-hyperbolic subclass, 13-37
expression, 13-33
kernels, 13-36–13-37

Mellin transformation, 13-34
quadratic signal product, 13-33

inner products, 13-22–13-23
kth power class, 13-38–13-39

central member, 13-38
expression, 13-37
inverse phase function, 13-38
kernels, 13-39–13-40
power AF, 13-38
signal product, 13-37
signal warping, 13-38

musical score, 13-1
one-dimensional spectral representations

Fourier transform, 13-2–13-3
instantaneous frequency and group

delay, 13-3–13-4
signal analysis properties

finite frequency support, 13-19
finite time support, 13-18
Fourier transform, 13-19–13-20
group delay, 13-19
instantaneous frequency, 13-19

signal localization
chirp convolution, 13-21
chirp multiplication, 13-21–13-22
frequency localization, 13-20
hyperbolic chirp localization, 13-21
linear chirp localization, 13-20–13-21
time localization, 13-20

statistical energy density distribution
properties

energy preservation, 13-17–13-18
frequency marginal preservation,

13-17
frequency moment preservation,

13-18
positivity, 13-17
real, 13-16–13-17
time marginal preservation, 13-17
time moment preservation, 13-18

Modified Clenshaw–Curtis (MCC) quadrature
method, 9-11–9-13

Modified Schur–Cohn criterion, 6-25
Modulated lapped transform (MLT)=extended

lapped transform (ELT)
cosine sequence phase, 15-23
lattice-style algorithm, 15-24
plane rotation stages, 15-24–15-25

Monogenic 2-D signal
isotropic Hilbert transform, 7-97
quaternionic Fourier transformation

(QFT), 7-97
quaternion-valued function, 7-96
Riesz transform, 7-96–7-97
spherical coordinates representation,

7-97–7-98
Multidimensional complex signals

conjugate 2-D complex signals, 7-90
definition, 7-89
2-D modulation theory, 7-92–7-93
Euler’s equation, 7-88
labeling orthants, 7-94
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local amplitudes, phases, and complex
frequencies, 7-91

real and complex notation, 7-91–7-92
Multidimensional discrete unitary transforms

butterfly operation, 19-2–19-4
calculation, 19-1–19-2
data processing, 19-1
2-D DCT

fast 1-D cosine transforms, 19-38
modified DCT, 19-39–19-41
N=2-point DCT, 19-36–19-37
tensor representation, 19-35

2-D DFT, hexagonal lattice
calculation, frequency-points,

19-57–19-59
complexity, 19-55–19-56
definition, 19-56–19-57
paired representation, 19-59–19-62
8 3 4-point DHFT, 19-59
rectangular lattice, 19-56
regular hexagonal tessellation, 19-55

2-D DFT tensor algorithm
modified tensor algorithms,

19-20–19-21
n-dimensional DFT, 19-25–19-26
N, power of two, 19-18–19-20
N, prime, 19-16–19-18
recursive tensor algorithm,

19-21–19-25
discrete Hartley transforms

2-D DHT representation,
19-26–19-29

3-D DHT tensor representation,
19-29–19-31

n-dimensional DHT, 19-31–19-32
3-D paired representation

conventional and tensor representation,
19-41–19-42

2D-to-3D paired transform,
19-43–19-44

N, power of odd prime, 19-49–19-50
N, power of two, 19-44–19-49
set-frequency characteristics,

19-50–19-55
signal processing, 19-42–19-43
splitting-signals, 19-42, 19-43

2-D shifted DFT (SDFT)
components, 19-32
L1L23 L1L2-point SDFT, 19-35
Lr3 Lr-point SDFT, 19-34–19-35
2r3 2r-point SDFT, 19-34
tensor representation, 19-32–19-33

Fourier transform tensor representation
2-D directional images, 19-11–19-16
splitting-signal, 19-10–19-11

nontraditional representation
image enhancement method,

19-6–19-7
image processing diagram, 19-5–19-6
spectral information processing, 19-5

Nussbaumer algorithm, 19-4
paired transform–based algorithms

2-D DHT calculation, 19-62–19-63
2-D discrete cosine transform,

19-63–19-64
2-D discrete Hadamard transform,

19-64–19-67
partitioning

basis function, 19-7–19-8
covering, cyclic groups, 19-8–19-9
frequency-points, 19-8–19-9
fundamental period, 19-7
lattice torus, 19-9
linear transformation, 19-7
s-splitting, 19-8
tensor representation, 19-8
transformation orders, 19-7

polynomial transforms, 19-4–19-5
row–column algorithm, 19-2, 19-3
vector–radix algorithm, 192–19-4

Multidimensional Fourier transforms,
2-35–2-36

Multidimensional Hilbert transformations
2-D Hilbert transformations, 7-81, 7-84
evenness and oddness, 7-79–7-80
partial Hilbert transformation, 7-81
separable functions, 7-82
spectral description, 7-81–7-82
Stark’s extension, Bedrosian’s theorem,

7-85
Multiresolution signal analysis

Gaussian pyramid, 10-16
Laplacian pyramid, 10-16–10-17
orthonormal wavelet transform,

10-18–10-19
power system signal, 10-50
scale and resolution, 10-18
subband coding, 10-17–10-18

Multiresolution wavelet analysis
band-pass filters, 10-9
constant fidelity analysis, 10-9–10-10
multiresolution filter bank, 10-9
scale and resolution, 10-10
time and frequency domain localization,

10-8

N

Neumann series, 9-12
Nonintegral order Bessel functions, 2-35
Nonsingular symmetric Toeplitz matrix, 3-19
Normal distribution, 2-56
Nyquist interval, 1-49
Nyquist rate, 7-47

O

Oliver’s algorithm, 9-13
One-sided Z-transform

complex conjugate signal, 6-4–6-5
convolution, 6-3
correlation, 6-6
discrete functions, 6-1
final value, 6-4

initial value, 6-3–6-4
integration, 6-9
irrational function, 6-10
(nT)k multiplication, 6-4
linearity, 6-2
n and nT multiplication, 6-3
parameters, 6-7
Parseval’s theorem, 6-6
partial fraction expansion, 6-8
periodic sequence, 6-2
power series method, 6-7
product transform, 6-5
shifting property, 6-2
simple and multiple poles, 6-9
time scaling, 6-2

Optimum linear filters, 6-33–6-34
Orthogonal Bessel functions, 8-39
Orthonormal filter bank, 10-30–10-31
Orthonormal wavelet transform

biorthogonal wavelet basis, 10-26–10-27
multiresolution signal analysis basis,

10-18–10-19
orthonormal basis, 10-19–10-20
orthonormal subspaces, 10-20–10-21
reconstruction, 10-25–10-26
wavelet series decomposition, 10-23–10-24

Haar wavelets, 10-24–10-25
low-pass and high-pass filters, 10-22
orthonormal projections, 10-21–10-22
recursive projections, 10-22–10-23

P

3-D Paired representation
conventional and tensor representation,

19-41–19-42
2D-to-3D paired transform, 19-43–19-44
N, power of odd prime, 19-49–19-50
N, power of two

basis paired functions, 19-45
concept, 19-48–19-49
generator and orbits of points, 19-44
set of triplets, 19-47
transformation, 19-46

set-frequency characteristics
direction-image component, 19-50
inverse 2-D DFT, 19-51
resolution map, 19-53–19-55
series images, 19-52–19-53
splitting-signal, 19-51–19-52

signal processing, 19-42–19-43
splitting-signals, 19-42, 19-43

Paired transform–based algorithms
2-D DHT calculation, 19-62–19-63
2-D discrete cosine transform,

19-63–19-64
2-D discrete Hadamard transform (DHdT)

basis functions, 19-64
1-D DHdT, 19-64, 19-65–19-66
properties, 19-64–19-65

Paley–Wiener theorem, 6-26
Parks–McClellan algorithm, 7-74
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Parseval’s equality
Bessel’s inequality, 4-12
Fourier transforms, 2-14–2-15

Parseval’s theorem
definition, 7-18
discrete Hilbert transformation (DHT),

7-56–7-57
one-sided Z-transform, 6-6
two-sided Z-transform, 6-20

Partial differential equations, 5-20
half-infinite rod, boundary value problem,

2-64
infinite rod

heat sources and sinks, 2-63–2-64
initial value problem, 2-63

one-dimensional heat equation, 2-62
Phase-splitter Hilbert transformers,

7-61–7-62
Piecewise continuous function, 5-1
Poincaré sense asymptotic sequence, 1-53
Poisson integral formula, 11-11
Power series

convergence, A-10–A-11
Maclaurin series, A-9
negative power series, A-10
positive power series, A-9
Taylor series, A-9

Principal value integral, A-31–A-32
Psi function, 12-34

Q

Quadratic time–frequency representation
band-limited cosine, 13-13
interference geometry, 13-11–13-12
multicomponent signal, 13-11
nonlinear operation, 13-10

Quadrature filter, see Hilbert transformers

R

Radon and Abel transforms
Abel transform pairs, 8-24
circular harmonic decomposition

Chebyshev polynomial, 8-35
extension, higher dimensions, 8-35
Fourier series, 8-34
three dimensions, 8-35–8-36

component and matrix notations, 8-3
definitions

central-slice theorem, 8-6–8-7
feature, Radon, and Fourier space, 8-3
three and higher dimensions, 8-6
two dimensions, 8-3–8-5

derivatives, 8-15–8-16
discrete periodic Radon transform,

8-42–8-43
elliptic integral, 8-46
fractional integrals, 8-25
functions and formulas

Chebyshev polynomials, 8-43–8-44
Hermite polynomials, 8-44–8-45

selected integral formulas, 8-45
Zernike polynomials, 8-45

generalizations and wavelets, 8-41–8-42
Hankel transform, 8-29–8-30
integral equation, 8-2
inversion

backprojection, 8-31–8-33
direct Fourier method, 8-33–8-34
ill-posed problem, 8-30
indeterminacy theorem, 8-30
iterative and algebraic reconstruction

techniques, 8-34
three dimensions, 8-20
two dimensions, 8-19–8-20

Laguerre polynomials, 8-18–8-19
linear transformations, 8-9–8-10
orthogonal functions, unit disk

Chebyshev polynomials, 8-39
Fourier space, 8-38
orthogonal Bessel functions, 8-39
Radon space, evaluation, 8-38
Zernike polynomials, 8-36–8-37

Parseval relation, 8-39
properties

convolution, 8-9
differentiation, 8-8–8-9
Fourier transform, 8-7–8-8
linearity, 8-8
similarity, symmetry and shifting, 8-8

reconstruction problem, 8-1–8-2
rotationally symmetric function, 8-28
sinc function, 8-46
singular integral equations, 8-21–8-22
spherical symmetry, 8-30
tautochrone problem generalization, 8-27

Radon–Wigner transform, 8-42
Random signal, 1-1
Real Fourier transform (RFT), 4-6–4-7
Reduced interference distributions (RID),

13-29
Residue theory, A-14–A-16
Riemann–Lebesgue lemma, 4-11–4-12
Riemann’s zeta function, 12-34
Riess–Fischer theorem, 1-20
Riesz transform, 7-96–7-97
RLC circuits, 2-54

S

Sampled signal reconstruction
band-limited functions, 2-45

sampling theorem, 2-43–2-44
truncated sampling reconstruction, 2-44

finite duration functions, 2-47
fundamental sampling formulas and

Poisson’s formula, 2-47–2-48
Sampling theorem

aliasing, 1-49
delta sampling representation, 1-50–1-51
finite energy function, 1-49
frequency sampling, 1-51
Nyquist interval, 1-49

Papoulis extensions, 1-52
rectangular pulse train, 1-51

Schläfli’s integral formula, 1-22
Schwarz’s inequality

finite power function, 2-21
stationary random signal and independence

correlation, 2-60
Series and summations

binomial, B-1
exponential, B-2
hyperbolic and inverse hyperbolic,

B-3–B-4
logarithmic, B-2
Maclaurin, B-2
reversion, B-1
series, B-1
Taylor, B-1–B-2
trigonometric, B-2–B-3

2-D Shifted DFT (SDFT)
components, 19-32
L1L2 3 L1L2-point SDFT, 19-35
Lr 3 Lr-point SDFT, 19-34–19-35
2r 3 2r-point SDFT, 19-34
tensor representation, 19-32–19-33

Short-time Fourier transform (STFT)
classical time–frequency representation,

13-4–13-5
definition, 10-3–10-4
discrete short-time Fourier transform,

10-5
Gabor function, 10-4
Gaussian window, 10-4–10-5
inverse short-time Fourier transform, 10-4
regular lattice, 10-5
time and frequency resolution, 10-4
uncertainty principle, 10-4

Signals and systems
asymptotic series

asymptotic approximation, 1-53
asymptotic power series, 1-53–1-55
definition, 1-52–1-53
Poincaré sense asymptotic sequence,

1-53
Bessel functions

definition, 1-35
Fourier Bessel series, 1-39
integral representation, 1-37
nonintegral order, 1-36
properties, 1-41–1-43
recurrence relation, 1-36

beta function, 1-12–1-13
Chebyshev polynomials, 1-34–1-35
classification, 1-1
complete orthonormal set, 1-21
convolution

definition, 1-13–1-14
harmonic inputs, 1-18
impulse response, 1-15
nonanticipative convolution system,

1-15
properties, 1-16–1-18
stability, 1-17
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correlation, 1-19
delta function

definition, 1-4
properties, 1-6–1-7, 1-9

distance function, 1-20
distributions

definition, 1-5–1-6
generalized limit, 1-7–1-8
testing function, 1-4–1-5

energy and power signals, 1-4
functions (signals), variables, and point

sets, 1-1–1-2
gamma function

definition, 1-10
integral expressions, 1-11
properties and specific evaluations,

1-11–1-12
Hermite polynomials

definition, 1-28–1-29
integral representation and equation,

1-29
orthogonality relation, 1-29–1-30
properties, 1-31
recurrence relation, 1-29

inner product, 1-19
Laguerre polynomials

generating function, 1-30
Leibniz formula, 1-31
orthogonality, 1-32–1-33
properties, 1-33–1-34
recurrence relations, 1-31–1-32
Rodrigues formula, 1-31

Legendre polynomials
associated Legendre polynomials, 1-24
complete orthonormal system,

1-22–1-23
definition, 1-21
properties, 1-26–1-27
Rodrigues and recursive formula,

1-22
Schläfli’s integral formula, 1-22

limits and continuous functions, 1-2–1-3
normalization, 1-20
quadratically integrable functions,

1-19–1-20
series approximation, 1-21
signal sampling

aliasing, 1-49
delta sampling representation,

1-50–1-51
finite energy function, 1-49
Fourier transform, 1-48–1-49
frequency sampling, 1-51
Nyquist interval, 1-49
Papoulis extensions, 1-52
rectangular pulse train, 1-51
values and interval, 1-47–1-48

Zernike polynomials
definition, 1-40
piecewise continuous function, 1-45
Radial polynomials, 1-40, 1-45–1-46
Zernike moments, 1-45, 1-47–1-48

Sine and cosine transforms
cepstral analysis, speech processing, 3-23
computational algorithms

decimation-in-frequency algorithms,
3-30–3-31

decimation-in-time algorithms,
3-28–3-30

fast Fourier transform (FFT), 3-28
data compression, 3-23–3-24
differential equations

one-dimensional boundary value
problem, 3-21–3-22

time-dependent one-dimensional
boundary value problem,
3-22–3-23

two-dimensional boundary value
problem, 3-22

discrete sine and cosine transforms (DST
and DCT)

decimation-in-frequency algorithms,
3-30–3-31

decimation-in-time algorithms,
3-28–3-30

definitions, 3-17
Karhunen–Loeve transform (KLT),

3-19–3-21
properties and operational rules,

3-17–3-19
Fourier cosine transform (FCT)

algebraic functions, 3-5–3-6, 3-32
Bessel functions, 3-9
complementary error function, 3-8
convolution property, 3-10
cosine integral function, 3-9
definitions, 3-1–3-2
differentiation-in-t, 3-9–3-10
differentiation-in-v, 3-10
exponential and logarithmic functions,

3-6–3-7, 3-32
exponential integral function, 3-9
orthogonal polynomials, 3-8
properties and operational rules,

3-2–3-5
real data sequence, 3-28
shift-in-t, shift-in-v and kernel product

property, 3-10
sine integral function, 3-8
trigonometric functions, 3-7, 3-32

Fourier sine transform (FST)
algebraic functions, 3-13–3-14, 3-33
Bessel functions, 3-16
complementary error function,

3-15–3-16
cosine integral function, 3-16
definitions, 3-11
exponential and logarithmic functions,

3-14, 3-33
exponential integral function, 3-16
orthogonal polynomials, 3-15
properties and operational rules,

3-11–3-13
real data sequence, 3-28

sine integral function, 3-16
trigonometric function, 3-14–3-15, 3-33

image compression
discrete local sine transform (DLS),

3-26
lapped orthogonal transform (LOT),

3-25
original vs. reconstructed image, 3-27

transform domain processing, 3-24
Single side-band (SSB) filtering, 7-70
Singularities

at 1, A-15
branch points, A-12–A-13
definition, A-11–A-12
essential and nonessential singularity,

A-11, A-13–A-14
isolated and nonisolated singularity, A-12
phase change, A-12–A-13
poles, A-12
removable singularity, A-12

Singular-value decomposition (SVD),
14-17–14-18

Slater’s theorem, 12-10
Square matrix traces, D-7–D-8
Statistical matrix, D-13–D-14
Stokes’ theorem, E-9
Struve functions, 9-15
Surface acoustic wave (SAW) filter, 7-70–7-71
Systems analysis, Hartley series

Bessel’s inequality, 4-12
electric power quality assessment,

4-15–4-17
finality of coefficients, 4-10, 4-12
impulse function, 4-10
linear system response problem, 4-14
orthogonal basis function, 4-13
orthonormal set, 4-12–4-13
Parseval’s equality, 4-12
Riemann–Lebesgue lemma, 4-11–4-12
transfer function methodology, 4-15
truncation approximation, 4-11

T

Tapped delay-line filters, 7-67
Taylor’s theorem, A-6
Tempered generalized functions, 2-4
Three-term recurrence formula, 1-36
Transversal filter structure, 6-29
Two-sided Laplace transform, 5-27–5-28
Two-sided Z-transform

complex conjugate signal, 6-21
convolution, 6-17
correlation, 6-18
discrete representation, 6-11
e�anT multiplication, 6-18
frequency translation, 6-18
integral inversion formula, 6-24
linearity, 6-16
nT, multiplication, 6-17
Parseval’s theorem, 6-20
partial fraction expansion, 6-22
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power series expansion, 6-21
product, 6-18–6-20
region of convergence (ROC), 6-14–6-16
shifting and scaling, 6-16
time reversal, 6-16–6-17

U

Unitarity property, see Parseval’s formula

V

Vector analysis
cross product, E-2–E-3
definition, E-1
differential operators-rectangular

coordinates, E-7–E-8
differentiation, E-5–E-6
formulas, E-9
Gauss’ theorem, E-9
geometry

curves in space, E-6–E-7
sphere, E-5
straight line and plane, E-3–E-4

Green’s theorem, E-9
scalar, dot, and inner product, E-2
scalar triple product, E-3
Stokes’ theorem, E-9
transformation of integrals, E-8–E-9
triple product, E-3
vector algebra, E-1

W

Wavelet theory
orthogonal filters, time domain,

10-37–10-38
orthonormality, 10-34–10-35
regularity

construction of scaling function,
10-40

convergence, wavelet reconstruction,
10-39–10-40

quadrature mirror filter, 10-40–10-41
smoothness measure, 10-39
time domain, 10-41–10-42

two scale relations, frequency domain
cross-filter orthogonality, 10-36
Fourier transforms, 10-35
Haar’s basis, 10-37
paraunitary matrix, 10-36–10-37

wavelet and subband filters, 10-38–10-39
Wavelet transform

ambiguity function, 10-6
B-spline basis, 10-42–10-43
constant-Q analysis, 10-1
continuous wavelet transform, 10-2–10-3
Daubechies basis

maximum flatness filter, 10-45–10-46
time domain, 10-46–10-47

discrete wavelet transform
timescale space lattices, 10-14–10-15
wavelet frame, 10-15–10-16

fast wavelet transform, 10-47–10-49
filter bank

biorthogonal filter bank, 10-32–10-33
FIR filter bank, 10-27–10-28
orthonormal filter bank, 10-30–10-31
perfect reconstruction, 10-28–10-30
time domain, orthonormal filters,

10-31–10-32
Gabor-wavelet, 10-13–10-14
Gaussian pyramid, 10-16
Gaussian wavelet, 10-13
Haar wavelet, 10-12–10-13
image compression, 10-53
image edge detection

edge detectors, 10-51–10-52
multiscale edges, 10-52–10-53
two-dimensional wavelet transform,

10-52
Laplacian pyramid, 10-16–10-17
Lemarie and Battle wavelet bases,

10-43–10-45
Mellin transform, 12-31–12-32
Mexican-hat wavelet, 10-13
orthonormal wavelet transform

biorthogonal wavelet basis, 10-26–10-27
multiresolution signal analysis basis,

10-18–10-19
orthonormal basis, 10-19–10-20
orthonormal subspaces, 10-20–10-21
reconstruction, 10-25–10-26
wavelet series decomposition,

10-21–10-25
power system signal, 10-50
properties

admissible condition, 10-6–10-7
linear transform property, 10-11–10-12
multiresolution wavelet analysis,

10-8–10-10
regularity, 10-7–10-8

scale and resolution, 10-18
scaling function basis, 10-1
short-time Fourier transform

definition, 10-3–10-4
discrete short-time Fourier transform,

10-5
Gabor function, 10-4
Gaussian window, 10-4–10-5
inverse short-time Fourier transform,

10-4
regular lattice, 10-5
time and frequency resolution, 10-4
uncertainty principle, 10-4

signal detection, 10-50–10-51
subband coding, 10-17–10-18
time-frequency space analysis, 10-3
Wigner distribution functions, 10-5–10-6

Weber’s integral theorem, 9-10
Whittaker’s interpolatory function, 7-48
Wiener–Khintchine theorem, 2-21
Wigner distribution

Fourier transforms, 13-7–13-8
fractional Fourier transform (FRT)

ambiguity function, 14-5–14-6
definition, 14-5
filtering, 14-15
properties, 14-5
Radon transforms and slices,

14-10–14-11
Hilbert transforms, 7-98, 13-5
linear canonical transforms (LCT),

14-12–14-13
Wavelet transform, 10-5–10-6
Woodward ambiguity function

Dirac function, 13-6
Fourier transform, 13-7–13-8
Gaussian signal, 13-6–13-7
quantum mechanics, 13-5
signal operations, 13-7

Wigner–Ville distribution, 13-5, 13-13

Z

Zak transform
applications

Gabor expansions, 16-17
Jacobi theta functions, 16-17
Suter–Stevens fast Fourier transform

algorithm, 16-19
time–frequency analysis, 16-17–16-18
weighted fast Fourier transforms,

16-18–16-19
continuous transform

algebraic property, 16-6–16-7
definition, 16-2–16-3
Fourier transform, 16-9–16-11
general property, 16-3–16-6
geometric property, 16-7–16-8
inverse transform, 16-8–16-9
multidimensional transform,

16-13–16-14
multidimensional weighted transform,

16-14
multidimensional windowed, weighted

transform, 16-14
topological property, 16-7
translation and modulation operator,

16-11–16-13
discrete transform

definition, 16-14
extensions, 16-15
inverse transform, 16-14–16-15
property, 16-14

finite transform
definition, 16-15
extensions, 16-17
inverse transform, 16-16–16-17
property, 16-16

history, 16-1
linear spaces, 16-2
notation, 16-1–16-2

Zernike polynomials
definition, 1-40
functions and formulas, 8-45
orthogonal functions, unit disk, 8-36–8-37
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piecewise continuous function, 1-45
Radial polynomials, 1-40, 1-45–1-46
Zernike moments, 1-45, 1-47–1-48

Zero-order Bessel function, 2-33–2-34
Zero padding, 4-20
Z-transform

difference equations, constant coefficients,
6-24

digital filters
finite impulse response (FIR) filters,

6-28–6-29
infinite impulse response (IIR) filters,

6-27–6-28
Fourier transform, 6-36
inverse transforms, partial fractions, 6-39
Laplace transform, 6-34–6-36
linear discrete system analysis

causality, 6-26
discrete Fourier transform (DFT),

6-26–6-27
frequency characteristics, 6-26
Paley–Wiener theorem, 6-26
stability, 6-25–6-26
transfer function, 6-25

linear, time-invariant, discrete-time,
dynamical systems, 6-29

negative-time sequences, 6-38
one-sided Z-transform

complex conjugate signal, 6-4–6-5
convolution, 6-3
correlation, 6-6
discrete functions, 6-1
final value, 6-4
initial value, 6-3–6-4
integration, 6-9
irrational function, 6-10
(nT)k multiplication, 6-4
linearity, 6-2
n and nT multiplication, 6-3
parameters, 6-7
Parseval’s theorem, 6-6
partial fraction expansion, 6-8
periodic sequence, 6-2
power series method, 6-7
product transform, 6-5
shifting property, 6-2
simple and multiple poles, 6-9
time scaling, 6-2

positive-time sequences, 6-36–6-38
random process

linear discrete-time filters, 6-32–6-33
optimum linear filtering, 6-33–6-34
power spectral densities, 6-32

two-sided Z-transform
complex conjugate signal, 6-21
convolution, 6-17
correlation, 6-18
discrete representation, 6-11
e�anT multiplication, 6-18
frequency translation, 6-18
integral inversion formula, 6-24
linearity, 6-16
nT, multiplication, 6-17
Parseval’s theorem, 6-20
partial fraction expansion, 6-22
power series expansion, 6-21
product, 6-18–6-20
region of convergence (ROC),

6-14–6-16
shifting and scaling, 6-16
time reversal, 6-16–6-17

Z-transform pairs, 6-39–6-43
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