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Rainbow over Woolsthorpe Manor

From the frontispiece of the Notes and Records of the Royal Society of London, v. 36 (1981–82), with permission. Photograph
by Dr. Roy L. Bishop, Physics Department, Acadia University, Nova Scotia, Canada, with permission.

Commentary

The faint line below the main colored arc is a supernumerary rainbow, produced by the interference of
different sun-rays traversing a raindrop and emerging in the same direction. For each color, the intensity
profile across the rainbow is an Airy function. Airy invented his function in 1838 precisely to describe
this phenomenon more accurately than Young had done in 1800 when pointing out that supernumerary
rainbows require the wave theory of light and are impossible to explain with Newton’s picture of light as
a stream of independent corpuscles. The house in the picture is Newton’s birthplace.

Sir Michael V. Berry
H. H. Wills Physics Laboratory

Bristol, United Kingdom
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32 Painlevé Transcendents
P. A. Clarkson . . . . . . . . . . . . . . . . 723

33 Coulomb Functions
I. J. Thompson . . . . . . . . . . . . . . . 741

34 3j, 6j, 9j Symbols
L. C. Maximon . . . . . . . . . . . . . . . . 757

35 Functions of Matrix Argument
D. St. P. Richards . . . . . . . . . . . . . . 767

36 Integrals with Coalescing Saddles
M. V. Berry, C. J. Howls . . . . . . . . . . 775
Bibliography . . . . . . . . . . . . . . . . 795
Notations . . . . . . . . . . . . . . . . . 873
Index . . . . . . . . . . . . . . . . . . . . 887

v





Foreword

In 1964 the National Institute of Standards and Technology1 published the Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathematical Tables, edited by Milton Abramowitz
and Irene A. Stegun. That 1046-page tome proved to be an invaluable reference for the many scien-
tists and engineers who use the special functions of applied mathematics in their day-to-day work,
so much so that it became the most widely distributed and most highly cited NIST publication
in the first 100 years of the institution’s existence.2 The success of the original handbook, widely
referred to as “Abramowitz and Stegun” (“A&S”), derived not only from the fact that it provided
critically useful scientific data in a highly accessible format, but also because it served to standardize
definitions and notations for special functions. The provision of standard reference data of this type
is a core function of NIST.

Much has changed in the years since A&S was published. Certainly, advances in applied mathe-
matics have continued unabated. However, we have also seen the birth of a new age of computing
technology, which has not only changed how we utilize special functions, but also how we commu-
nicate technical information. The document you are now holding, or the Web page you are now
reading, represents an effort to extend the legacy of A&S well into the 21st century. The new
printed volume, the NIST Handbook of Mathematical Functions, serves a similar function as the
original A&S, though it is heavily updated and extended. The online version, the NIST Digital
Library of Mathematical Functions (DLMF), presents the same technical information along with
extensions and innovative interactive features consistent with the new medium. The DLMF may
well serve as a model for the effective presentation of highly mathematical reference material on the
Web.

The production of these new resources has been a very complex undertaking some 10 years in
the making. This could not have been done without the cooperation of many mathematicians,
information technologists, and physical scientists both within NIST and externally. Their unfailing
dedication is acknowledged deeply and gratefully. Particular attention is called to the generous
support of the National Science Foundation, which made possible the participation of experts from
academia and research institutes worldwide.

Dr. Patrick D. Gallagher
Director, NIST

November 20, 2009
Gaithersburg, Maryland

1Then known as the National Bureau of Standards.
2D. R. Lide (ed.), A Century of Excellence in Measurement, Standards, and Technology, CRC Press, 2001.
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Preface

The NIST Handbook of Mathematical Functions, to-
gether with its Web counterpart, the NIST Digital Li-
brary of Mathematical Functions (DLMF), is the cul-
mination of a project that was conceived in 1996 at the
National Institute of Standards and Technology (NIST).
The project had two equally important goals: to develop
an authoritative replacement for the highly successful
Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, published in 1964 by
the National Bureau of Standards (M. Abramowitz and
I. A. Stegun, editors); and to disseminate essentially the
same information from a public Web site operated by
NIST. The new Handbook and DLMF are the work of
many hands: editors, associate editors, authors, valida-
tors, and numerous technical experts. A summary of
the responsibilities of these groups may help in under-
standing the structure and results of this project.

Executive responsibility was vested in the editors:
Frank W. J. Olver (University of Maryland, College
Park, and NIST), Daniel W. Lozier (NIST), Ronald F.
Boisvert (NIST), and Charles W. Clark (NIST). Olver
was responsible for organizing and editing the mathe-
matical content after receiving it from the authors; for
communicating with the associate editors, authors, val-
idators, and other technical experts; and for assembling
the Notations section and the Index. In addition,
Olver was author or co-author of five chapters. Lozier
directed the NIST research, technical, and support staff
associated with the project, administered grants and
contracts, together with Boisvert compiled the Soft-
ware sections for the Web version of the chapters,
conducted editorial and staff meetings, represented the
project within NIST and at professional meetings in
the United States and abroad, and together with Olver
carried out the day-to-day development of the project.
Boisvert and Clark were responsible for advising and
assisting in matters related to the use of information
technology and applications of special functions in the
physical sciences (and elsewhere); they also participated
in the resolution of major administrative problems when
they arose.

The associate editors are eminent domain experts
who were recruited to advise the project on strategy, ex-
ecution, subject content, format, and presentation, and
to help identify and recruit suitable candidate authors
and validators. The associate editors were:

Richard A. Askey
University of Wisconsin, Madison

Michael V. Berry
University of Bristol

Walter Gautschi (resigned 2002)
Purdue University

Leonard C. Maximon
George Washington University

Morris Newman
University of California, Santa Barbara

Ingram Olkin
Stanford University

Peter Paule
Johannes Kepler University

William P. Reinhardt
University of Washington

Nico M. Temme
Centrum voor Wiskunde en Informatica

Jet Wimp (resigned 2001)
Drexel University

The technical information provided in the Hand-
book and DLMF was prepared by subject experts from
around the world. They are identified on the title pages
of the chapters for which they served as authors and in
the table of Contents.

The validators played a critical role in the project,
one that was absent in its 1964 counterpart: to provide
critical, independent reviews during the development of
each chapter, with attention to accuracy and appropri-
ateness of subject coverage. These reviews have con-
tributed greatly to the quality of the product. The val-
idators were:

T. M. Apostol
California Institute of Technology

A. R. Barnett
University of Waikato, New Zealand

A. I. Bobenko
Technische Universität, Berlin

B. B. L. Braaksma
University of Groningen

D. M. Bressoud
Macalester College

ix
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B. C. Carlson
Iowa State University

B. Deconinck
University of Washington

T. M. Dunster
University of California, San Diego

A. Gil
Universidad de Cantabria

A. R. Its
Indiana University–Purdue University, Indianapo-
lis

B. R. Judd
Johns Hopkins University

R. Koekoek
Delft University of Technology

T. H. Koornwinder
University of Amsterdam

R. J. Muirhead
Pfizer Global R&D

E. Neuman
University of Illinois, Carbondale

A. B. Olde Daalhuis
University of Edinburgh

R. B. Paris
University of Abertay Dundee

R. Roy
Beloit College

S. N. M. Ruijsenaars
University of Leeds

J. Segura
Universidad de Cantabria

R. F. Swarttouw
Vrije Universiteit Amsterdam

N. M. Temme
Centrum voor Wiskunde en Informatica

H. Volkmer
University of Wisconsin, Milwaukee

G. Wolf
Universität Duisberg-Essen

R. Wong
City University of Hong Kong

All of the mathematical information contained in the
Handbook is also contained in the DLMF, along with
additional features such as more graphics, expanded ta-
bles, and higher members of some families of formulas;
in consequence, in the Handbook there are occasional
gaps in the numbering sequences of equations, tables,
and figures. The Web address where additional DLMF
content can be found is printed in blue at appropriate
places in the Handbook. The home page of the DLMF
is accessible at http://dlmf.nist.gov/.

The DLMF has been constructed specifically for
effective Web usage and contains features unique to
Web presentation. The Web pages contain many ac-
tive links, for example, to the definitions of symbols
within the DLMF, and to external sources of reviews,
full texts of articles, and items of mathematical soft-
ware. Advanced capabilities have been developed at
NIST for the DLMF, and also as part of a larger re-
search effort intended to promote the use of the Web
as a tool for doing mathematics. Among these capabili-
ties are: a facility to allow users to download LaTeX and
MathML encodings of every formula into document pro-
cessors and software packages (eventually, a fully seman-
tic downloading capability may be possible); a search
engine that allows users to locate formulas based on
queries expressed in mathematical notation; and user-
manipulable 3-dimensional color graphics.

Production of the Handbook and DLMF was a mam-
moth undertaking, made possible by the dedicated lead-
ership of Bruce R. Miller (NIST), Bonita V. Saunders
(NIST), and Abdou S. Youssef (George Washington
University and NIST). Miller was responsible for infor-
mation architecture, specializing LaTeX for the needs of
the project, translation from LaTeX to MathML, and
the search interface. Saunders was responsible for mesh
generation for curves and surfaces, data computation
and validation, graphics production, and interactive
Web visualization. Youssef was responsible for mathe-
matics search indexing and query processing. They were
assisted by the following NIST staff: Marjorie A. Mc-
Clain (LaTeX, bibliography), Joyce E. Conlon (bibliog-
raphy), Gloria Wiersma (LaTeX), Qiming Wang (graph-
ics generation, graphics viewers), and Brian Antonishek
(graphics viewers).

The editors acknowledge the many other individuals
who contributed to the project in a variety of ways.
Among the research, technical, and support staff at
NIST these are B. K. Alpert, T. M. G. Arrington, R.
Bickel, B. Blaser, P. T. Boggs, S. Burley, G. Chu, A.
Dienstfrey, M. J. Donahue, K. R. Eberhardt, B. R.
Fabijonas, M. Fancher, S. Fletcher, J. Fowler, S. P.
Frechette, C. M. Furlani, K. B. Gebbie, C. R. Hagwood,
A. N. Heckert, M. Huber, P. K. Janert, R. N. Kacker,
R. F. Kayser, P. M. Ketcham, E. Kim, M. J. Lieber-
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man, R. R. Lipman, M. S. Madsen, E. A. P. Mai, W.
Mehuron, P. J. Mohr, S. Olver, D. R. Penn, S. Phoha,
A. Possolo, S. P. Ressler, M. Rubin, J. Rumble, C. A.
Schanzle, B. I. Schneider, N. Sedransk, E. L. Shirley,
G. W. Stewart, C. P. Sturrock, G. Thakur, S. Wakid,
and S. F. Zevin. Individuals from outside NIST are S. S.
Antman, A. M. Ashton, C. M. Bender, J. J. Benedetto,
R. L. Bishop, J. M. Borwein, H. W. Braden, C. Brezin-
ski, F. Chyzak, J. N. L. Connor, R. Cools, A. Cuyt,
I. Daubechies, P. J. Davis, C. F. Dunkl, J. P. Goed-
bloed, B. Gordon, J. W. Jenkins, L. H. Kellogg, C. D.
Kemp, K. S. Kölbig, S. G. Krantz, M. D. Kruskal, W.
Lay, D. A. Lutz, E. L. Mansfield, G. Marsaglia, B. M.
McCoy, W. Miller, Jr., M. E. Muldoon, S. P. Novikov,
P. J. Olver, W. C. Parke, M. Petkovsek, W. H. Reid, B.
Salvy, C. Schneider, M. J. Seaton, N. C. Severo, I. A.
Stegun, F. Stenger, M. Steuerwalt, W. G. Strang, P. R.
Turner, J. Van Deun, M. Vuorinen, E. J. Weniger, H.
Wiersma, R. C. Winther, D. B. Zagier, and M. Zelen.
Undoubtedly, the editors have overlooked some individ-
uals who contributed, as is inevitable in a large long-
lasting project. Any oversight is unintentional, and the
editors apologize in advance.

The project was funded in part by NSF Award
9980036, administered by the NSF’s Knowledge and
Distributed Intelligence Program. Within NIST finan-
cial resources and staff were committed by the Informa-

tion Technology Laboratory, Physics Laboratory, Sys-
tems Integration for Manufacturing Applications Pro-
gram of the Manufacturing Engineering Laboratory,
Standard Reference Data Program, and Advanced Tech-
nology Program.

Notwithstanding the great care that has been exer-
cised by the editors, authors, validators, and the NIST
staff, it is almost inevitable that in a work of the mag-
nitude and scope of the NIST Handbook and DLMF
errors will still be present. Users need to be aware that
none of these individuals nor the National Institute of
Standards and Technology can assume responsibility for
any possible consequences of such errors.

Lastly, the editors appreciate the skill, and long ex-
perience, that was brought to bear by the publisher,
Cambridge University Press, on the production and
publication of the new Handbook.

Frank W. J. Olver
Editor-in-Chief and Mathematics Editor

Daniel W. Lozier
General Editor

Ronald F. Boisvert
Information Technology Editor

Charles W. Clark
Physical Sciences Editor





Mathematical Introduction

Organization and Objective

The mathematical content of the NIST Handbook of
Mathematical Functions has been produced over a ten-
year period. This part of the project has been carried
out by a team comprising the mathematics editor, au-
thors, validators, and the NIST professional staff. Also,
valuable initial advice on all aspects of the project was
provided by ten external associate editors.

The NIST Handbook has essentially the same ob-
jective as the Handbook of Mathematical Functions that
was issued in 1964 by the National Bureau of Standards
as Number 55 in the NBS Applied Mathematics Series
(AMS). This objective is to provide a reference tool for
researchers and other users in applied mathematics, the
physical sciences, engineering, and elsewhere who en-
counter special functions in the course of their everyday
work.

The mathematical project team has endeavored to
take into account the hundreds of research papers and
numerous books on special functions that have appeared
since 1964. As a consequence, in addition to providing
more information about the special functions that were
covered in AMS 55, the NIST Handbook includes sev-
eral special functions that have appeared in the interim
in applied mathematics, the physical sciences, and en-
gineering, as well as in other areas. See, for example,
Chapters 16, 17, 18, 19, 21, 27, 29, 31, 32, 34, 35, and
36.

Two other ways in which this Handbook differs from
AMS 55, and other handbooks, are as follows.

First, the editors instituted a validation process for
the whole technical content of each chapter. This pro-
cess greatly extended normal editorial checking proce-
dures. All chapters went through several drafts (nine in
some cases) before the authors, validators, and editors
were fully satisfied.

Secondly, as described in the Preface, a Web ver-
sion (the NIST DLMF) is also available.

Methodology

The first three chapters of the NIST Handbook and
DLMF are methodology chapters that provide detailed
coverage of, and references for, mathematical topics that
are especially important in the theory, computation,
and application of special functions. (These chapters
can also serve as background material for university

graduate courses in complex variables, classical anal-
ysis, and numerical analysis.)

Particular care is taken with topics that are not dealt
with sufficiently thoroughly from the standpoint of this
Handbook in the available literature. These include, for
example, multivalued functions of complex variables, for
which new definitions of branch points and principal val-
ues are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or
delta function), which is introduced in a more readily
comprehensible way for mathematicians (§1.17); numer-
ically satisfactory solutions of differential and difference
equations (§§2.7(iv), 2.9(i)); and numerical analysis for
complex variables (Chapter 3).

In addition, there is a comprehensive account of the
great variety of analytical methods that are used for
deriving and applying the extremely important asymp-
totic properties of the special functions, including dou-
ble asymptotic properties (Chapter 2 and §§10.41(iv),
10.41(v)).

Notation for the Special Functions

The first section in each of the special function chapters
(Chapters 5–36) lists notation that has been adopted
for the functions in that chapter. This section may also
include important alternative notations that have ap-
peared in the literature. With a few exceptions the
adopted notations are the same as those in standard
applied mathematics and physics literature.

The exceptions are ones for which the existing no-
tations have drawbacks. For example, for the hyperge-
ometric function we often use the notation F(a, b; c; z)
(§15.2(i)) in place of the more conventional 2F1(a, b; c; z)
or F (a, b; c; z). This is because F is akin to the notation
used for Bessel functions (§10.2(ii)), inasmuch as F is an
entire function of each of its parameters a, b, and c: this
results in fewer restrictions and simpler equations. Sim-
ilarly in the case of confluent hypergeometric functions
(§13.2(i)).

Other examples are: (a) the notation for the Fer-
rers functions—also known as associated Legendre func-
tions on the cut—for which existing notations can eas-
ily be confused with those for other associated Legendre
functions (§14.1); (b) the spherical Bessel functions for
which existing notations are unsymmetric and inelegant
(§§10.47(i) and 10.47(ii)); and (c) elliptic integrals for
which both Legendre’s forms and the more recent sym-
metric forms are treated fully (Chapter 19).

xiii



xiv Mathematical Introduction

The Notations section beginning on p. 873 includes
all the notations for the special functions adopted in this
Handbook. In the corresponding section for the DLMF
some of the alternative notations that appear in the first
section of the special function chapters are also included.

Common Notations and Definitions

C complex plane (excluding infinity).
D decimal places.
det determinant.
δj,k or δjk Kronecker delta: 0 if j 6= k; 1 if

j = k.
∆ (or ∆x) forward difference operator:

∆f(x) = f(x+ 1)− f(x).
∇ (or ∇x) backward difference operator:

∇f(x) = f(x)− f(x− 1). (See also
del operator in the Notations
section.)

empty sums zero.
empty products unity.
∈ element of.
/∈ not an element of.
∀ for every.
=⇒ implies.
⇐⇒ is equivalent to.
n! factorial: 1 · 2 · 3 · · ·n if

n = 1, 2, 3, . . .; 1 if n = 0.
n!! double factorial: 2 · 4 · 6 · · ·n if

n = 2, 4, 6, . . . ; 1 · 3 · 5 · · ·n if
n = 1, 3, 5, . . . ; 1 if n = 0,−1.

bxc floor or integer part: the integer
such that x− 1 < bxc ≤ x, with x
real.

dxe ceiling: the integer such that
x ≤ dxe < x+ 1, with x real.

f(z)|C = 0 f(z) is continuous at all points of a
simple closed contour C in C.

<∞ is finite, or converges.
� much greater than.
= imaginary part.
iff if and only if.
inf greatest lower bound (infimum).
sup least upper bound (supremum).
∩ intersection.
∪ union.
(a, b) open interval in R, or open

straight-line segment joining a and b
in C.

[a, b] closed interval in R, or closed
straight-line segment joining a and b
in C.

(a, b] or [a, b) half-closed intervals.

⊂ is contained in.
⊆ is, or is contained in.
lim inf least limit point.
[aj,k] or [ajk] matrix with (j, k)th element aj,k or

ajk.
A−1 inverse of matrix A.
tr A trace of matrix A.
AT transpose of matrix A.
I unit matrix.
mod or modulo m ≡ n (mod p) means p divides

m− n, where m, n, and p are
positive integers with m > n.

N set of all positive integers.
(α)n Pochhammer’s symbol:

α(α+ 1)(α+ 2) · · · (α+ n− 1) if
n = 1, 2, 3, . . . ; 1 if n = 0.

Q set of all rational numbers.
R real line (excluding infinity).
< real part.
res residue.
S significant figures.
signx −1 if x < 0; 0 if x = 0; 1 if x > 0.
\ set subtraction.
Z set of all integers.
nZ set of all integer multiples of n.

Graphics

Special functions with one real variable are depicted
graphically with conventional two-dimensional (2D) line
graphs. See, for example, Figures 10.3.1–10.3.4.

With two real variables, special functions are de-
picted as 3D surfaces, with vertical height correspond-
ing to the value of the function, and coloring added to
emphasize the 3D nature. See Figures 10.3.5–10.3.8 for
examples.

Special functions with a complex variable are de-
picted as colored 3D surfaces in a similar way to func-
tions of two real variables, but with the vertical height
corresponding to the modulus (absolute value) of the
function. See, for example, Figures 5.3.4–5.3.6. How-
ever, in many cases the coloring of the surface is chosen
instead to indicate the quadrant of the plane to which
the phase of the function belongs, thereby achieving a
4D effect. In these cases the phase colors that corre-
spond to the 1st, 2nd, 3rd, and 4th quadrants are ar-
ranged in alphabetical order: blue, green, red, and yel-
low, respectively, and a “Quadrant Colors” icon appears
alongside the figure. See, for example, Figures 10.3.9–
10.3.16.

Lastly, users may notice some lack of smoothness in
the color boundaries of some of the 4D-type surfaces;
see, for example, Figure 10.3.9. This nonsmoothness
arises because the mesh that was used to generate the
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figure was optimized only for smoothness of the surface,
and not for smoothness of the color boundaries.

Applications

All of the special function chapters include sections de-
voted to mathematical, physical, and sometimes other
applications of the main functions in the chapter. The
purpose of these sections is simply to illustrate the im-
portance of the functions in other disciplines; no at-
tempt is made to provide exhaustive coverage.

Computation

All of the special function chapters contain sections
that describe available methods for computing the main
functions in the chapter, and most also provide refer-
ences to numerical tables of, and approximations for,
these functions. In addition, the DLMF provides refer-
ences to research papers in which software is developed,
together with links to sites where the software can be
obtained.

In referring to the numerical tables and approxima-
tions we use notation typified by x = 0(.05)1, 8D or 8S.
This means that the variable x ranges from 0 to 1 in
intervals of 0.05, and the corresponding function values
are tabulated to 8 decimal places or 8 significant figures.

Another numerical convention is that decimals fol-
lowed by dots are unrounded; without the dots they
are rounded. For example, to 4D π is 3.1415 . . . (un-
rounded) and 3.1416 (rounded).

Verification

For all equations and other technical information this
Handbook and the DLMF either provide references to
the literature for proof or describe steps that can be
followed to construct a proof. In the Handbook this in-
formation is grouped at the section level and appears
under the heading Sources in the References section.
In the DLMF this information is provided in pop-up
windows at the subsection level.

For equations or other technical information that ap-
peared previously in AMS 55, the DLMF usually in-
cludes the corresponding AMS 55 equation number, or
other form of reference, together with corrections, if
needed. However, none of these citations are to be re-
garded as supplying proofs.
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Notation

1.1 Special Notation

(For other notation see pp. xiv and 873.)

x, y real variables.
z real variable in §§1.5–1.6.
z, w complex variables in §§1.9–1.11.
j, k, ` integers.
m,n nonnegative integers, unless specified

otherwise.
〈f, g〉 distribution.
deg degree.
primes derivatives with respect to the variable,

except where indicated otherwise.

Areas

1.2 Elementary Algebra

1.2(i) Binomial Coefficients

In (1.2.1)–(1.2.5) k and n are nonnegative integers and
k ≤ n.

1.2.1

(
n

k

)
=

n!
(n− k)!k!

=
(

n

n− k

)
.

Binomial Theorem

1.2.2

(a+ b)n = an +
(
n

1

)
an−1b+

(
n

2

)
an−2b2

+ · · ·+
(

n

n− 1

)
abn−1 + bn.

1.2.3

(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

n

)
= 2n.

1.2.4

(
n

0

)
−
(
n

1

)
+ · · ·+ (−1)n

(
n

n

)
= 0.

1.2.5

(
n

0

)
+
(
n

2

)
+
(
n

4

)
+ · · ·+

(
n

k

)
= 2n−1,

where k is n or n− 1 according as n is even or odd.
In (1.2.6)–(1.2.9) k and m are nonnegative integers

and n is unrestricted.

1.2.6

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!

=
(−1)k(−n)k

k!
= (−1)k

(
k − n− 1

k

)
.

1.2.7

(
n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)
.

1.2.8

m∑
k=0

(
n+ k

k

)
=
(
n+m+ 1

m

)
.

1.2.9

(
n

0

)
−
(
n

1

)
+ · · ·+(−1)m

(
n

m

)
= (−1)m

(
n− 1
m

)
.

1.2(ii) Finite Series

Arithmetic Progression

1.2.10
a+ (a+ d) + (a+ 2d) + · · ·+ (a+ (n− 1)d)

= na+ 1
2n(n− 1)d = 1

2n(a+ `),

where ` = last term of the series = a+ (n− 1)d.

Geometric Progression

1.2.11
a+ ax+ ax2 + · · ·+ axn−1

=
a(1− xn)

1− x
, x 6= 1.

1.2(iii) Partial Fractions

Let α1, α2, . . . , αn be distinct constants, and f(x) be a
polynomial of degree less than n. Then

1.2.12

f(x)
(x− α1)(x− α2) · · · (x− αn)

=
A1

x− α1
+

A2

x− α2
+ · · ·+ An

x− αn
,

where

1.2.13 Aj =
f(αj)∏

k 6=j
(αj − αk)

.

Also,

1.2.14

f(x)
(x− α1)n

=
B1

x− α1
+

B2

(x− α1)2
+ · · ·+ Bn

(x− α1)n
,

where

1.2.15 Bj =
f (n−j)(α1)

(n− j)!
,

and f (k) is the k-th derivative of f (§1.4(iii)).
If m1,m2, . . . ,mn are positive integers and deg f <∑n
j=1mj , then there exist polynomials fj(x), deg fj <

mj , such that

1.2.16

f(x)
(x− α1)m1(x− α2)m2 · · · (x− αn)mn

=
f1(x)

(x− α1)m1
+

f2(x)
(x− α2)m2

+ · · ·+ fn(x)
(x− αn)mn

.

To find the polynomials fj(x), j = 1, 2, . . . , n, multiply
both sides by the denominator of the left-hand side and
equate coefficients. See Chrystal (1959, pp. 151–159).



1.3 Determinants 3

1.2(iv) Means

The arithmetic mean of n numbers a1, a2, . . . , an is

1.2.17 A =
a1 + a2 + · · ·+ an

n
.

The geometric mean G and harmonic mean H of n
positive numbers a1, a2, . . . , an are given by

1.2.18 G = (a1a2 · · · an)1/n,

1.2.19
1
H

=
1
n

(
1
a1

+
1
a2

+ · · ·+ 1
an

)
.

If r is a nonzero real number, then the weighted mean
M(r) of n nonnegative numbers a1, a2, . . . , an, and n
positive numbers p1, p2, . . . , pn with

1.2.20 p1 + p2 + · · ·+ pn = 1,
is defined by

1.2.21 M(r) = (p1a
r
1 + p2a

r
2 + · · ·+ pna

r
n)1/r,

with the exception

1.2.22 M(r) = 0, r < 0 and a1a2 . . . an = 0.

1.2.23 lim
r→∞

M(r) = max(a1, a2, . . . , an),

1.2.24 lim
r→−∞

M(r) = min(a1, a2, . . . , an).

For pj = 1/n, j = 1, 2, . . . , n,

1.2.25 M(1) = A, M(−1) = H,

and

1.2.26 lim
r→0

M(r) = G.

The last two equations require aj > 0 for all j.

1.3 Determinants

1.3(i) Definitions and Elementary Properties

1.3.1 det[ajk] =
∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21.

1.3.2

det[ajk]

=

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31.

Higher-order determinants are natural generalizations.
The minor Mjk of the entry ajk in the nth-order de-
terminant det[ajk] is the (n − 1)th-order determinant
derived from det[ajk] by deleting the jth row and the
kth column. The cofactor Ajk of ajk is

1.3.3 Ajk = (−1)j+kMjk.

An nth-order determinant expanded by its jth row is
given by

1.3.4 det[ajk] =
n∑
`=1

aj`Aj`.

If two rows (or columns) of a determinant are inter-
changed, then the determinant changes sign. If two rows
(columns) of a determinant are identical, then the de-
terminant is zero. If all the elements of a row (column)
of a determinant are multiplied by an arbitrary factor
µ, then the result is a determinant which is µ times the
original. If µ times a row (column) of a determinant is
added to another row (column), then the value of the
determinant is unchanged.

1.3.5 det[ajk]T = det[ajk],

1.3.6 det[ajk]−1 =
1

det[ajk]
,

1.3.7 det([ajk][bjk]) = (det[ajk])(det[bjk]).

Hadamard’s Inequality

For real-valued ajk,

1.3.8

∣∣∣∣a11 a12

a21 a22

∣∣∣∣2 ≤ (a2
11 + a2

12)(a2
21 + a2

22),

1.3.9 det[ajk]2 ≤

(
n∑
k=1

a2
1k

)(
n∑
k=1

a2
2k

)
. . .

(
n∑
k=1

a2
nk

)
.

Compare also (1.3.7) for the left-hand side. Equality
holds iff

1.3.10 aj1ak1 + aj2ak2 + · · ·+ ajnakn = 0

for every distinct pair of j, k, or when one of the factors∑n
k=1 a

2
jk vanishes.

1.3(ii) Special Determinants

An alternant is a determinant function of n variables
which changes sign when two of the variables are inter-
changed. Examples:

1.3.11 det[fk(xj)], j = 1, . . . , n; k = 1, . . . , n,

1.3.12 det[f(xj , yk)], j = 1, . . . , n; k = 1, . . . , n.

Vandermonde Determinant or Vandermondian

1.3.13

∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n

∣∣∣∣∣∣∣∣∣ =
∏

1≤j<k≤n

(xk − xj).
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Cauchy Determinant

1.3.14

det
[

1
aj − bk

]
= (−1)n(n−1)/2

×
∏

1≤j<k≤n

(ak − aj)(bk − bj)

/
n∏

j,k=1

(aj − bk).

Circulant

1.3.15

∣∣∣∣∣∣∣∣∣
a1 a2 · · · an
an a1 · · · an−1

...
...

. . .
...

a2 a3 · · · a1

∣∣∣∣∣∣∣∣∣
=

n∏
k=1

(a1 + a2ωk + a3ω
2
k + · · ·+ anω

n−1
k ),

where ω1, ω2, . . . , ωn are the nth roots of unity (1.11.21).

Krattenthaler’s Formula

For

1.3.16
tjk = (xj + an)(xj + an−1) · · · (xj + ak+1)

× (xj + bk)(xj + bk−1) · · · (xj + b2),

1.3.17 det[tjk] =
∏

1≤j<k≤n

(xj − xk)
∏

2≤j≤k≤n

(bj − ak).

1.3(iii) Infinite Determinants

Let aj,k be defined for all integer values of j and k, and
Dn[aj,k] denote the (2n+ 1)× (2n+ 1) determinant

1.3.18

Dn[aj,k] =

∣∣∣∣∣∣∣∣∣
a−n,−n a−n,−n+1 . . . a−n,n
a−n+1,−n a−n+1,−n+1 . . . a−n+1,n

...
...

. . .
...

an,−n an,−n+1 . . . an,n

∣∣∣∣∣∣∣∣∣ .
If Dn[aj,k] tends to a limit L as n → ∞, then we say
that the infinite determinant D∞[aj,k] converges and
D∞[aj,k] = L.

Of importance for special functions are infinite de-
terminants of Hill’s type. These have the property that
the double series

1.3.19

∞∑
j,k=−∞

|aj,k − δj,k|

converges (§1.9(vii)). Here δj,k is the Kronecker delta.
Hill-type determinants always converge.

For further information see Whittaker and Watson
(1927, pp. 36–40) and Magnus and Winkler (1966, §2.3).

1.4 Calculus of One Variable

1.4(i) Monotonicity

If f(x1) ≤ f(x2) for every pair x1, x2 in an interval
I such that x1 < x2, then f(x) is nondecreasing on I.
If the ≤ sign is replaced by <, then f(x) is increas-
ing (also called strictly increasing) on I. Similarly for
nonincreasing and decreasing (strictly decreasing) func-
tions. Each of the preceding four cases is classified as
monotonic; sometimes strictly monotonic is used for the
strictly increasing or strictly decreasing cases.

1.4(ii) Continuity

A function f(x) is continuous on the right (or from
above) at x = c if

1.4.1 f(c+) ≡ lim
x→c+

f(x) = f(c),

that is, for every arbitrarily small positive constant ε
there exists δ (> 0) such that

1.4.2 |f(c+ α)− f(c)| < ε,

for all α such that 0 ≤ α < δ. Similarly, it is continuous
on the left (or from below) at x = c if

1.4.3 f(c−) ≡ lim
x→c−

f(x) = f(c).

And f(x) is continuous at c when both (1.4.1) and
(1.4.3) apply.

If f(x) is continuous at each point c ∈ (a, b), then
f(x) is continuous on the interval (a, b) and we write
f ∈ C (a, b). If also f(x) is continuous on the right
at x = a, and continuous on the left at x = b, then
f(x) is continuous on the interval [a, b], and we write
f(x) ∈ C [a, b].

A removable singularity of f(x) at x = c occurs when
f(c+) = f(c−) but f(c) is undefined. For example,
f(x) = (sinx)/x with c = 0.

A simple discontinuity of f(x) at x = c occurs when
f(c+) and f(c−) exist, but f(c+) 6= f(c−). If f(x)
is continuous on an interval I save for a finite number
of simple discontinuities, then f(x) is piecewise (or sec-
tionally) continuous on I. For an example, see Figure
1.4.1

Figure 1.4.1: Piecewise continuous function on [a, b).
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1.4(iii) Derivatives

The derivative f ′(x) of f(x) is defined by

1.4.4 f ′(x) =
df

dx
= lim
h→0

f(x+ h)− f(x)
h

.

When this limit exists f is differentiable at x.

1.4.5 (f + g)′(x) = f ′(x) + g′(x),

1.4.6 (fg)′(x) = f ′(x)g(x) + f(x)g′(x),

1.4.7

(
f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)
(g(x))2

.

Higher Derivatives

1.4.8 f (2)(x) =
d2f

dx2 =
d

dx

(
df

dx

)
,

1.4.9 f (n) = f (n)(x) =
d

dx
f (n−1)(x).

If f (n) exists and is continuous on an interval I, then
we write f ∈ Cn (I). When n ≥ 1, f is continuously dif-
ferentiable on I. When n is unbounded, f is infinitely
differentiable on I and we write f ∈ C∞ (I).

Chain Rule

For h(x) = f(g(x)),

1.4.10 h′(x) = f ′(g(x))g′(x).

Maxima and Minima

A necessary condition that a differentiable function f(x)
has a local maximum (minimum) at x = c, that is,
f(x) ≤ f(c), (f(x) ≥ f(c)) in a neighborhood c − δ ≤
x ≤ c+ δ (δ > 0) of c, is f ′(c) = 0.

Mean Value Theorem

If f(x) is continuous on [a, b] and differentiable on (a, b),
then there exists a point c ∈ (a, b) such that

1.4.11 f(b)− f(a) = (b− a)f ′(c).
If f ′(x) ≥ 0 (≤ 0) (= 0) for all x ∈ (a, b), then f is
nondecreasing (nonincreasing) (constant) on (a, b).

Leibniz’s Formula

1.4.12

(fg)(n) = f (n)g +
(
n

1

)
f (n−1)g′ + · · ·

+
(
n

k

)
f (n−k)g(k) + · · ·+ fg(n).

Faà Di Bruno’s Formula

1.4.13

dn

dxn
f(g(x))

=
∑(

n!
m1!m2! · · ·mn!

)
f (k)(g(x))

×
(
g′(x)

1!

)m1
(
g′′(x)

2!

)m2

. . .

(
g(n)(x)
n!

)mn
,

where the sum is over all nonnegative integers
m1,m2, . . . ,mn that satisfy m1 + 2m2 + · · ·+nmn = n,
and k = m1 +m2 + · · ·+mn.

L’Hôpital’s Rule

If

1.4.14 lim
x→a

f(x) = lim
x→a

g(x) = 0 (or ∞),

then

1.4.15 lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

,

when the last limit exists.

1.4(iv) Indefinite Integrals

If F ′(x) = f(x), then
∫
f dx = F (x) + C, where C is a

constant.

Integration by Parts

1.4.16

∫
fg dx =

(∫
f dx

)
g −

∫ (∫
f dx

)
dg

dx
dx.

1.4.17

∫
xn dx =


xn+1

n+ 1
+ C, n 6= −1,

ln |x|+ C, n = −1.

For the function ln see §4.2(i).
See §§4.10, 4.26(ii), 4.26(iv), 4.40(ii), and 4.40(iv)

for indefinite integrals involving the elementary func-
tions.

For extensive tables of integrals, see Apelblat (1983),
Bierens de Haan (1867), Gradshteyn and Ryzhik (2000),
Gröbner and Hofreiter (1949, 1950), and Prudnikov
et al. (1986a,b, 1990, 1992a,b).

1.4(v) Definite Integrals

Suppose f(x) is defined on [a, b]. Let a = x0 < x1 <
· · · < xn = b, and ξj denote any point in [xj , xj+1],
j = 0, 1, . . . , n− 1. Then

1.4.18

∫ b

a

f(x) dx = lim
n−1∑
j=0

f(ξj)(xj+1 − xj)

as max(xj+1 − xj)→ 0. Continuity, or piecewise conti-
nuity, of f(x) on [a, b] is sufficient for the limit to exist.

1.4.19∫ b

a

(cf(x) + dg(x)) dx = c

∫ b

a

f(x) dx+ d

∫ b

a

g(x) dx,

c and d constants.

1.4.20

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

1.4.21

∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.
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Infinite Integrals

1.4.22

∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.

Similarly for
∫ a
−∞. Next, if f(b) = ±∞, then

1.4.23

∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx.

Similarly when f(a) = ±∞.
When the limits in (1.4.22) and (1.4.23) exist, the

integrals are said to be convergent. If the limits exist
with f(x) replaced by |f(x)|, then the integrals are ab-
solutely convergent. Absolute convergence also implies
convergence.

Cauchy Principal Values

Let c ∈ (a, b) and assume that
∫ c−ε
a

f(x) dx and∫ b
c+ε

f(x) dx exist when 0 < ε < min(c − a, b − c), but
not necessarily when ε = 0. Then we define

1.4.24∫ b

a

f(x) dx = P

∫ b

a

f(x) dx

= lim
ε→0+

(∫ c−ε

a

f(x) dx+
∫ b

c+ε

f(x) dx

)
,

when this limit exists.
Similarly, assume that

∫ b
−b f(x) dx exists for all fi-

nite values of b (> 0), but not necessarily when b =∞.
Then we define

1.4.25∫ ∞
−∞

f(x) dx = P

∫ ∞
−∞

f(x) dx = lim
b→∞

∫ b

−b
f(x) dx,

when this limit exists.

Fundamental Theorem of Calculus

For F ′(x) = f(x) with f(x) continuous,

1.4.26

∫ b

a

f(x) dx = F (b)− F (a),

1.4.27
d

dx

∫ x

a

f(t) dt = f(x).

Change of Variables

If φ′(x) is continuous or piecewise continuous, then

1.4.28

∫ b

a

f(φ(x))φ′(x) dx =
∫ φ(b)

φ(a)

f(t) dt.

First Mean Value Theorem

For f(x) continuous and φ(x) ≥ 0 and integrable on
[a, b], there exists c ∈ [a, b], such that

1.4.29

∫ b

a

f(x)φ(x) dx = f(c)
∫ b

a

φ(x) dx.

Second Mean Value Theorem

For f(x) monotonic and φ(x) integrable on [a, b], there
exists c ∈ [a, b], such that
1.4.30∫ b

a

f(x)φ(x) dx = f(a)
∫ c

a

φ(x) dx+ f(b)
∫ b

c

φ(x) dx.

Repeated Integrals

If f(x) is continuous or piecewise continuous on [a, b],
then

1.4.31

∫ b

a

dxn

∫ xn

a

dxn−1 · · ·
∫ x2

a

dx1

∫ x1

a

f(x) dx

=
1
n!

∫ b

a

(b− x)nf(x) dx.

Square-Integrable Functions

A function f(x) is square-integrable if

1.4.32 ‖f‖22 ≡
∫ b

a

|f(x)|2 dx <∞.

Functions of Bounded Variation

With a < b, the total variation of f(x) on a finite or
infinite interval (a, b) is

1.4.33 Va,b(f) = sup
n∑
j=1

|f(xj)− f(xj−1)|,

where the supremum is over all sets of points x0 <
x1 < · · · < xn in the closure of (a, b), that is, (a, b)
with a, b added when they are finite. If Va,b(f) < ∞,
then f(x) is of bounded variation on (a, b). In this case,
g(x) = Va,x(f) and h(x) = Va,x(f) − f(x) are nonde-
creasing bounded functions and f(x) = g(x)− h(x).

If f(x) is continuous on the closure of (a, b) and f ′(x)
is continuous on (a, b), then

1.4.34 Va,b(f) =
∫ b

a

|f ′(x) dx|,

whenever this integral exists.
Lastly, whether or not the real numbers a and b sat-

isfy a < b, and whether or not they are finite, we define
Va,b(f) by (1.4.34) whenever this integral exists. This
definition also applies when f(x) is a complex function
of the real variable x. For further information on total
variation see Olver (1997b, pp. 27–29).

1.4(vi) Taylor’s Theorem for Real Variables

If f(x) ∈ Cn+1 [a, b], then

1.4.35 f(x) =
n∑
k=0

f (k)(a)
k!

(x− a)k +Rn,

1.4.36 Rn =
f (n+1)(c)
(n+ 1)!

(x− a)n+1, a < c < x,

and
1.4.37 Rn =

1
n!

∫ x

a

(x− t)nf (n+1)(t) dt.



1.5 Calculus of Two or More Variables 7

1.4(vii) Maxima and Minima

If f(x) is twice-differentiable, and if also f ′(x0) = 0 and
f ′′(x0) < 0 (> 0), then x = x0 is a local maximum
(minimum) (§1.4(iii)) of f(x). The overall maximum
(minimum) of f(x) on [a, b] will either be at a local
maximum (minimum) or at one of the end points a or
b.

1.4(viii) Convex Functions

A function f(x) is convex on (a, b) if

1.4.38 f((1− t)c+ td) ≤ (1− t)f(c) + tf(d)
for any c, d ∈ (a, b), and t ∈ [0, 1]. See Figure 1.4.2. A
similar definition applies to closed intervals [a, b].

If f(x) is twice differentiable, then f(x) is convex iff
f ′′(x) ≥ 0 on (a, b). A continuously differentiable func-
tion is convex iff the curve does not lie below its tangent
at any point.

Figure 1.4.2: Convex function f(x). g(t) = f((1− t)c+
td), l(t) = (1− t)f(c) + tf(d), c, d ∈ (a, b), 0 ≤ t ≤ 1.

1.5 Calculus of Two or More Variables

1.5(i) Partial Derivatives

A function f(x, y) is continuous at a point (a, b) if

1.5.1 lim
(x,y)→(a,b)

f(x, y) = f(a, b),

that is, for every arbitrarily small positive constant ε
there exists δ (> 0) such that

1.5.2 |f(a+ α, b+ β)− f(a, b)| < ε,

for all α and β that satisfy |α|, |β| < δ.
A function is continuous on a point set D if it is

continuous at all points of D. A function f(x, y) is
piecewise continuous on I1× I2, where I1 and I2 are in-
tervals, if it is piecewise continuous in x for each y ∈ I2
and piecewise continuous in y for each x ∈ I1.

1.5.3
∂f

∂x
= Dxf = fx = lim

h→0

f(x+ h, y)− f(x, y)
h

,

1.5.4
∂f

∂y
= Dyf = fy = lim

h→0

f(x, y + h)− f(x, y)
h

.

1.5.5
∂2f

∂x ∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y ∂x
=

∂

∂y

(
∂f

∂x

)
.

The function f(x, y) is continuously differentiable if
f , ∂f/∂x , and ∂f/∂y are continuous, and twice-
continuously differentiable if also ∂2f

/
∂x2 , ∂2f

/
∂y2 ,

∂2f/ ∂x ∂y, and ∂2f/ ∂y ∂x are continuous. In the lat-
ter event

1.5.6
∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

Chain Rule

1.5.7
d

dt
f(x(t), y(t)) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
,

1.5.8
∂

∂u
f(x(u, v), y(u, v)) =

∂f

∂x

∂x

∂u
+
∂f

∂y

∂y

∂u
,

1.5.9

∂

∂v
f(x(u, v), y(u, v), z(u, v))

=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
+
∂f

∂z

∂z

∂v
.

Implicit Function Theorem

If F (x, y) is continuously differentiable, F (a, b) = 0,
and ∂F/∂y 6= 0 at (a, b), then in a neighborhood of
(a, b), that is, an open disk centered at a, b, the equa-
tion F (x, y) = 0 defines a continuously differentiable
function y = g(x) such that F (x, g(x)) = 0, b = g(a),
and g′(x) = −Fx/Fy.

1.5(ii) Coordinate Systems

Polar Coordinates

With 0 ≤ r <∞, 0 ≤ φ ≤ 2π,

1.5.10 x = r cosφ, y = r sinφ,

1.5.11
∂

∂x
= cosφ

∂

∂r
− sinφ

r

∂

∂φ
,

1.5.12
∂

∂y
= sinφ

∂

∂r
+

cosφ
r

∂

∂φ
.

The Laplacian is given by

1.5.13 ∇2f =
∂2f

∂x2 +
∂2f

∂y2 =
∂2f

∂r2 +
1
r

∂f

∂r
+

1
r2

∂2f

∂φ2 .

Cylindrical Coordinates

With 0 ≤ r <∞, 0 ≤ φ ≤ 2π, −∞ < z <∞,

1.5.14 x = r cosφ, y = r sinφ, z = z.

Equations (1.5.11) and (1.5.12) still apply, but

1.5.15

∇2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 =
∂2f

∂r2 +
1
r

∂f

∂r
+

1
r2

∂2f

∂φ2 +
∂2f

∂z2 .
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Spherical Coordinates

With 0 ≤ ρ <∞, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π,

1.5.16 x = ρ sin θ cosφ, y = ρ sin θ sinφ, z = ρ cos θ.

The Laplacian is given by

1.5.17

∇2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2

=
1
ρ2

∂

∂ρ

(
ρ2 ∂f

∂ρ

)
+

1
ρ2 sin2 θ

∂2f

∂φ2

+
1

ρ2 sin θ
∂

∂θ

(
sin θ

∂f

∂θ

)
.

For applications and other coordinate systems see
§§12.17, 14.19(i), 14.30(iv), 28.32, 29.18, 30.13, 30.14.
See also Morse and Feshbach (1953a, pp. 655-666).

1.5(iii) Taylor’s Theorem; Maxima and Minima

If f is n+ 1 times continuously differentiable, then

1.5.18

f(a+ λ, b+ µ) = f +
(
λ
∂

∂x
+ µ

∂

∂y

)
f + · · ·

+
1
n!

(
λ
∂

∂x
+ µ

∂

∂y

)n
f +Rn,

where f and its partial derivatives on the right-hand
side are evaluated at (a, b), and Rn/(λ2 + µ2)n/2 → 0
as (λ, µ)→ (0, 0).

f(x, y) has a local minimum (maximum) at (a, b) if

1.5.19
∂f

∂x
=
∂f

∂y
= 0 at (a, b),

and the second-order term in (1.5.18) is positive definite
(negative definite), that is,

1.5.20
∂2f

∂x2 > 0 (< 0) at (a, b),

and

1.5.21
∂2f

∂x2

∂2f

∂y2 −
(

∂2f

∂x ∂y

)2
> 0 at (a, b).

1.5(iv) Leibniz’s Theorem for Differentiation of
Integrals

Finite Integrals

1.5.22

d

dx

∫ β(x)

α(x)

f(x, y) dy= f(x, β(x))β′(x)− f(x, α(x))α′(x)

+
∫ β(x)

α(x)

∂f

∂x
dy.

Sufficient conditions for validity are: (a) f and ∂f/∂x
are continuous on a rectangle a ≤ x ≤ b, c ≤ y ≤ d;
(b) when x ∈ [a, b] both α(x) and β(x) are continuously
differentiable and lie in [c, d].

Infinite Integrals

Suppose that a, b, c are finite, d is finite or +∞, and
f(x, y), ∂f/∂x are continuous on the partly-closed rect-
angle or infinite strip [a, b] × [c, d). Suppose also that∫ d
c
f(x, y) dy converges and

∫ d
c

(∂f/∂x ) dy converges
uniformly on a ≤ x ≤ b, that is, given any positive num-
ber ε, however small, we can find a number c0 ∈ [c, d)
that is independent of x and is such that

1.5.23

∣∣∣∣∣
∫ d

c1

(∂f/∂x ) dy

∣∣∣∣∣ < ε,

for all c1 ∈ [c0, d) and all x ∈ [a, b]. Then

1.5.24
d

dx

∫ d

c

f(x, y) dy =
∫ d

c

∂f

∂x
dy, a < x < b.

1.5(v) Multiple Integrals

Double Integrals

Let f(x, y) be defined on a closed rectangle R = [a, b]×
[c, d]. For

1.5.25 a = x0 < x1 < · · · < xn = b,

1.5.26 c = y0 < y1 < · · · < ym = d,

let (ξj , ηk) denote any point in the rectangle [xj , xj+1]×
[yk, yk+1], j = 0, . . . , n− 1, k = 0, . . . ,m− 1. Then the
double integral of f(x, y) over R is defined by

1.5.27

∫∫
R

f(x, y) dA

= lim
∑
j,k

f(ξj , ηk)(xj+1 − xj)(yk+1 − yk)

as max((xj+1−xj)+(yk+1−yk))→ 0. Sufficient condi-
tions for the limit to exist are that f(x, y) is continuous,
or piecewise continuous, on R.

For f(x, y) defined on a point set D contained in a
rectangle R, let

1.5.28 f∗(x, y) =

{
f(x, y), if (x, y) ∈ D,
0, if (x, y) ∈ R \D.

Then
1.5.29

∫∫
D

f(x, y) dA =
∫∫

R

f∗(x, y) dA,

provided the latter integral exists.
If f(x, y) is continuous, and D is the set

1.5.30 a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x),
with φ1(x) and φ2(x) continuous, then

1.5.31

∫∫
D

f(x, y) dA =
∫ b

a

∫ φ2(x)

φ1(x)

f(x, y) dy dx,

where the right-hand side is interpreted as the repeated
integral

1.5.32

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy

)
dx.



1.6 Vectors and Vector-Valued Functions 9

In particular, φ1(x) and φ2(x) can be constants.
Similarly, if D is the set

1.5.33 c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y),

with ψ1(y) and ψ2(y) continuous, then

1.5.34

∫∫
D

f(x, y) dA =
∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y) dx dy.

Change of Order of Integration

If D can be represented in both forms (1.5.30) and
(1.5.33), and f(x, y) is continuous on D, then

1.5.35∫ b

a

∫ φ2(x)

φ1(x)

f(x, y) dy dx =
∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y) dx dy.

Infinite Double Integrals

Infinite double integrals occur when f(x, y) becomes in-
finite at points in D or when D is unbounded. In the
cases (1.5.30) and (1.5.33) they are defined by taking
limits in the repeated integrals (1.5.32) and (1.5.34) in
an analogous manner to (1.4.22)–(1.4.23).

Moreover, if a, b, c, d are finite or infinite constants
and f(x, y) is piecewise continuous on the set (a, b) ×
(c, d), then

1.5.36

∫ b

a

∫ d

c

f(x, y) dy dx =
∫ d

c

∫ b

a

f(x, y) dx dy,

whenever both repeated integrals exist and at least one
is absolutely convergent.

Triple Integrals

Finite and infinite integrals can be defined in a similar
way. Often the (x, y, z) sets are of the form

1.5.37
a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x),
ψ1(x, y) ≤ z ≤ ψ2(x, y).

1.5(vi) Jacobians and Change of Variables

Jacobian

1.5.38
∂(f, g)
∂(x, y)

=
∣∣∣∣∂f/∂x ∂f/∂y
∂g/∂x ∂g/∂y

∣∣∣∣ ,
1.5.39

∂(x, y)
∂(r, φ)

= r (polar coordinates).

1.5.40
∂(f, g, h)
∂(x, y, z)

=

∣∣∣∣∣∣
∂f/∂x ∂f/∂y ∂f/∂z
∂g/∂x ∂g/∂y ∂g/∂z
∂h/∂x ∂h/∂y ∂h/∂z

∣∣∣∣∣∣ ,
1.5.41

∂(x, y, z)
∂(ρ, θ, φ)

= ρ2 sin θ (spherical coordinates).

Change of Variables

1.5.42

∫∫
D

f(x, y) dx dy

=
∫∫

D∗
f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv,
where D is the image of D∗ under a mapping (u, v) →
(x(u, v), y(u, v)) which is one-to-one except perhaps for
a set of points of area zero.

1.5.43

∫∫∫
D

f(x, y, z) dx dy dz

=
∫∫∫

D∗
f(x(u, v, w), y(u, v, w), z(u, v, w))

×
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw.
Again the mapping is one-to-one except perhaps for a
set of points of volume zero.

1.6 Vectors and Vector-Valued Functions

1.6(i) Vectors

1.6.1 a = (a1, a2, a3), b = (b1, b2, b3).

Dot Product (or Scalar Product)

1.6.2 a · b = a1b1 + a2b2 + a3b3.

Magnitude and Angle of Vector a

1.6.3 ‖a‖ =
√

a · a,

1.6.4 cos θ =
a · b
‖a‖ ‖b‖

;

θ is the angle between a and b.

Unit Vectors

1.6.5 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1),

1.6.6 a = a1i + a2j + a3k.

Cross Product (or Vector Product)

1.6.7 i× j = k, j× k = i, k× i = j,

1.6.8 j× i = −k, k× j = −i, i× k = −j.

1.6.9

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
= (a2b3− a3b2)i + (a3b1− a1b3)j + (a1b2− a2b1)k
= ‖a‖‖b‖(sin θ)n,

where n is the unit vector normal to a and b whose
direction is determined by the right-hand rule; see Fig-
ure 1.6.1.
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Figure 1.6.1: Vector notation. Right-hand rule for cross
products.

Area of parallelogram with vectors a and b as sides
= ‖a× b‖.

Volume of a parallelepiped with vectors a, b, and c
as edges = |a · (b× c)|.

1.6.10 a× (b× c) = b(a · c)− c(a · b),

1.6.11 (a× b)× c = b(a · c)− a(b · c).

1.6(ii) Vectors: Alternative Notations

The following notations are often used in the physics
literature; see for example Lorentz et al. (1923, pp. 122–
123).

Einstein Summation Convention

Much vector algebra involves summation over suffices of
products of vector components. In almost all cases of
repeated suffices, we can suppress the summation no-
tation entirely, if it is understood that an implicit sum
is to be taken over any repeated suffix. Thus pairs of
indefinite suffices in an expression are resolved by being
summed over (or “traced” over).

Example

1.6.12 ajbj =
3∑
j=1

ajbj = a · b.

Next,

1.6.13 e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1);

compare (1.6.5). Thus ajej = a.

Levi-Civita Symbol

1.6.14

εjk` =


+1, if j, k, ` is even permutation of 1, 2, 3,
−1, if j, k, ` is odd permutation of 1, 2, 3,

0, otherwise.

Examples

1.6.15 ε123 = ε312 = 1, ε213 = ε321 = −1, ε221 = 0.

1.6.16 εjk`ε`mn = δj,mδk,n − δj,nδk,m,
where δj,k is the Kronecker delta.
1.6.17 ej × ek = εjk`e`;
compare (1.6.8).

1.6.18 ajej × bkek = εjk`ajbke`;
compare (1.6.7)–(1.6.8).

Lastly, the volume of a parallelepiped with vectors
a, b, and c as edges is |εjk`ajbkc`|.

1.6(iii) Vector-Valued Functions

Del Operator

1.6.19 ∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

The gradient of a differentiable scalar function
f(x, y, z) is

1.6.20 grad f = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

The divergence of a differentiable vector-valued func-
tion F = F1i + F2j + F3k is

1.6.21 div F = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

The curl of F is

1.6.22

curl F = ∇× F =

∣∣∣∣∣∣∣
i j k
∂

∂x

∂

∂y

∂

∂z
F1 F2 F3

∣∣∣∣∣∣∣
=
(
∂F3

∂y
− ∂F2

∂z

)
i +
(
∂F1

∂z
− ∂F3

∂x

)
j

+
(
∂F2

∂x
− ∂F1

∂y

)
k.

1.6.23 ∇(fg) = f∇g + g∇f,

1.6.24 ∇(f/g) = (g∇f − f∇g)/g2,

1.6.25 ∇ · (fF) = f(∇ · F) + F · ∇f,

1.6.26 ∇ · (F×G) = G · (∇× F)− F · (∇×G),

1.6.27 ∇ · (∇× F) = div curl F = 0,

1.6.28 ∇× (fF) = f(∇× F) + (∇f)× F,

1.6.29 ∇× (∇f) = curl grad f = 0,

1.6.30 ∇2f = ∇ · (∇f),

1.6.31 ∇2(fg) = f∇2g + g∇2f + 2(∇f · ∇g),

1.6.32 ∇ · (∇f ×∇g) = 0,

1.6.33 ∇ · (f∇g − g∇f) = f∇2g − g∇2f,

1.6.34 ∇× (∇× F) = curl curl F = ∇(∇ · F)−∇2F.
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1.6(iv) Path and Line Integrals

Note: The terminology open and closed sets and bound-
ary points in the (x, y) plane that is used in this sub-
section and §1.6(v) is analogous to that introduced for
the complex plane in §1.9(ii).

c(t) = (x(t), y(t), z(t)), with t ranging over an inter-
val and x(t), y(t), z(t) differentiable, defines a path.

1.6.35 c′(t) = (x′(t), y′(t), z′(t)).

The length of a path for a ≤ t ≤ b is

1.6.36

∫ b

a

‖c′(t)‖ dt.

The path integral of a continuous function f(x, y, z) is

1.6.37

∫
c

f ds =
∫ b

a

f(x(t), y(t), z(t))‖c′(t)‖ dt.

The line integral of a vector-valued function F = F1i +
F2j + F3k along c is given by

1.6.38

∫
c

F · ds =
∫ b

a

F(c(t)) · c′(t) dt

=
∫ b

a

(
F1
dx

dt
+ F2

dy

dt
+ F3

dz

dt

)
dt

=
∫

c

F1 dx+ F2 dy + F3 dz.

A path c1(t), t ∈ [a, b], is a reparametrization of c(t′),
t′ ∈ [a′, b′], if c1(t) = c(t′) and t′ = h(t) with h(t) differ-
entiable and monotonic. If h(a) = a′ and h(b) = b′, then
the reparametrization is called orientation-preserving,
and
1.6.39

∫
c

F · ds =
∫

c1

F · ds.

If h(a) = b′ and h(b) = a′, then the reparametrization
is orientation-reversing and

1.6.40

∫
c

F · ds = −
∫

c1

F · ds.

In either case
1.6.41

∫
c

f ds =
∫

c1

f ds,

when f is continuous, and

1.6.42

∫
c

∇f · ds = f(c(b))− f(c(a)),

when f is continuously differentiable.
The geometrical image C of a path c is called a sim-

ple closed curve if c is one-to-one, with the exception
c(a) = c(b). The curve C is piecewise differentiable if c
is piecewise differentiable. Note that C can be given an
orientation by means of c.

Green’s Theorem

Let

1.6.43 F(x, y) = F1(x, y)i + F2(x, y)j

and S be the closed and bounded point set in the (x, y)
plane having a simple closed curve C as boundary. If C
is oriented in the positive (anticlockwise) sense, then

1.6.44∫∫
S

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
C

F · ds =
∫
C

F1 dx+F2 dy.

Sufficient conditions for this result to hold are that
F1(x, y) and F2(x, y) are continuously differentiable on
S, and C is piecewise differentiable.

The area of S can be found from (1.6.44) by taking
F(x, y) = −yi, xj, or − 1

2yi + 1
2xj.

1.6(v) Surfaces and Integrals over Surfaces

A parametrized surface S is defined by

1.6.45 Φ(u, v) = (x(u, v), y(u, v), z(u, v))

with (u, v) ∈ D, an open set in the plane.
For x, y, and z continuously differentiable, the vec-

tors

1.6.46 Tu =
∂x

∂u
(u0, v0)i +

∂y

∂u
(u0, v0)j +

∂z

∂u
(u0, v0)k

and

1.6.47 Tv =
∂x

∂v
(u0, v0)i +

∂y

∂v
(u0, v0)j +

∂z

∂v
(u0, v0)k

are tangent to the surface at Φ(u0, v0). The surface is
smooth at this point if Tu×Tv 6= 0. A surface is smooth
if it is smooth at every point. The vector Tu × Tv at
(u0, v0) is normal to the surface at Φ(u0, v0).

The area A(S) of a parametrized smooth surface is
given by

1.6.48 A(S) =
∫∫

D

‖Tu ×Tv‖ du dv,

and

1.6.49

‖Tu ×Tv‖

=

√(
∂(x, y)
∂(u, v)

)2

+
(
∂(y, z)
∂(u, v)

)2

+
(
∂(x, z)
∂(u, v)

)2

.

The area is independent of the parametrizations.
For a sphere x = ρ sin θ cosφ, y = ρ sin θ sinφ,

z = ρ cos θ,

1.6.50 ‖Tθ ×Tφ‖ = ρ2 |sin θ| .
For a surface z = f(x, y),

1.6.51 A(S) =
∫∫

D

√
1 +

(
∂f

∂x

)2

+
(
∂f

∂y

)2

dA.
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For a surface of revolution, y = f(x), x ∈ [a, b],
about the x-axis,

1.6.52 A(S) = 2π
∫ b

a

|f(x)|
√

1 + (f ′(x))2 dx,

and about the y-axis,

1.6.53 A(S) = 2π
∫ b

a

|x|
√

1 + (f ′(x))2 dx.

The integral of a continuous function f(x, y, z) over
a surface S is

1.6.54∫∫
S

f(x, y, z) dS =
∫∫

D

f(Φ(u, v))‖Tu ×Tv‖ du dv.

For a vector-valued function F,

1.6.55

∫∫
S

F · dS =
∫∫

D

F · (Tu ×Tv) du dv,

where dS is the surface element with an attached nor-
mal direction Tu ×Tv.

A surface is orientable if a continuously varying nor-
mal can be defined at all points of the surface. An
orientable surface is oriented if suitable normals have
been chosen. A parametrization Φ(u, v) of an oriented
surface S is orientation preserving if Tu × Tv has the
same direction as the chosen normal at each point of S,
otherwise it is orientation reversing.

If Φ1 and Φ2 are both orientation preserving or both
orientation reversing parametrizations of S defined on
open sets D1 and D2 respectively, then

1.6.56

∫∫
Φ1(D1)

F · dS =
∫∫

Φ2(D2)

F · dS;

otherwise, one is the negative of the other.

Stokes’s Theorem

Suppose S is an oriented surface with boundary ∂S
which is oriented so that its direction is clockwise rela-
tive to the normals of S. Then

1.6.57

∫∫
S

(∇× F) · dS =
∫
∂S

F · ds,

when F is a continuously differentiable vector-valued
function.

Gauss’s (or Divergence) Theorem

Suppose S is a piecewise smooth surface which forms
the complete boundary of a bounded closed point set
V , and S is oriented by its normal being outwards from
V . Then

1.6.58

∫∫∫
V

(∇ · F) dV =
∫∫

S

F · dS,

when F is a continuously differentiable vector-valued
function.

Green’s Theorem (for Volume)

For f and g twice-continuously differentiable functions

1.6.59

∫∫∫
V

(f∇2g +∇f · ∇g) dV =
∫∫

S

f
∂g

∂n
dA,

and
1.6.60∫∫∫

V

(f∇2g − g∇2f) dV =
∫∫

S

(
f
∂g

∂n
− g ∂f

∂n

)
dA,

where ∂g/∂n = ∇g · n is the derivative of g normal to
the surface outwards from V and n is the unit outer
normal vector.

1.7 Inequalities

1.7(i) Finite Sums

In this subsection A and B are positive constants.

Cauchy–Schwarz Inequality

1.7.1

 n∑
j=1

ajbj

2

≤

 n∑
j=1

a2
j

 n∑
j=1

b2j

 .

Equality holds iff aj = cbj , ∀j; c = constant.

Conversely, if
(∑n

j=1 ajbj

)2

≤ AB for all bj such

that
∑n
j=1 b

2
j ≤ B, then

∑n
j=1 a

2
j ≤ A.

Hölder’s Inequality

For p > 1,
1
p

+
1
q

= 1, aj ≥ 0, bj ≥ 0,

1.7.2

n∑
j=1

ajbj ≤

 n∑
j=1

apj

1/p n∑
j=1

bqj

1/q

.

Equality holds iff apj = cbqj , ∀j; c = constant.
Conversely, if

∑n
j=1 ajbj ≤ A1/pB1/q for all bj such

that
∑n
j=1 b

q
j ≤ B, then

∑n
j=1 a

p
j ≤ A.

Minkowski’s Inequality

For p > 1, aj ≥ 0, bj ≥ 0,

1.7.3

 n∑
j=1

(aj + bj)p

1/p

≤

 n∑
j=1

apj

1/p

+

 n∑
j=1

bpj

1/p

.

The direction of the inequality is reversed, that is, ≥,
when 0 < p < 1. Equality holds iff aj = cbj , ∀j;
c = constant.

1.7(ii) Integrals

In this subsection a and b (> a) are real constants that
can be ∓∞, provided that the corresponding integrals
converge. Also A and B are constants that are not si-
multaneously zero.
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Cauchy–Schwarz Inequality

1.7.4(∫ b

a

f(x)g(x) dx

)2
≤
∫ b

a

(f(x))2 dx

∫ b

a

(g(x))2 dx.

Equality holds iff Af(x) = Bg(x) for all x.

Hölder’s Inequality

For p > 1,
1
p

+
1
q

= 1, f(x) ≥ 0, g(x) ≥ 0,

1.7.5

∫ b

a

f(x)g(x) dx

≤

(∫ b

a

(f(x))p dx

)1/p(∫ b

a

(g(x))q dx

)1/q
.

Equality holds iff A(f(x))p = B(g(x))q for all x.

Minkowski’s Inequality

For p > 1, f(x) ≥ 0, g(x) ≥ 0,
1.7.6(∫ b

a

(f(x) + g(x))p dx

)1/p
≤

(∫ b

a

(f(x))p dx

)1/p

+

(∫ b

a

(g(x))p dx

)1/p
.

The direction of the inequality is reversed, that is, ≥,
when 0 < p < 1. Equality holds iff Af(x) = Bg(x) for
all x.

1.7(iii) Means

For the notation, see §1.2(iv).

1.7.7 H ≤ G ≤ A,
with equality iff a1 = a2 = · · · = an.

1.7.8 min(a1, a2, . . . , an)≤M(r)≤max(a1, a2, . . . , an),

with equality iff a1 = a2 = · · · = an, or r < 0 and some
aj = 0.

1.7.9 M(r) ≤M(s), r < s,

with equality iff a1 = a2 = · · · = an, or s ≤ 0 and some
aj = 0.

1.7(iv) Jensen’s Inequality

For f integrable on [0, 1], a < f(x) < b, and φ convex
on (a, b) (§1.4(viii)),

1.7.10 φ

(∫ 1

0

f(x) dx
)
≤
∫ 1

0

φ(f(x)) dx,

1.7.11 exp
(∫ 1

0

ln(f(x)) dx
)
<

∫ 1

0

f(x) dx.

For exp and ln see §4.2.

1.8 Fourier Series

1.8(i) Definitions and Elementary Properties

Formally,

1.8.1 f(x) = 1
2a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)),

1.8.2

an =
1
π

∫ π

−π
f(x) cos(nx) dx, n = 0, 1, 2, . . . ,

bn =
1
π

∫ π

−π
f(x) sin(nx) dx, n = 1, 2, . . . .

The series (1.8.1) is called the Fourier series of f(x),
and an, bn are the Fourier coefficients of f(x).

If f(−x) = f(x), then bn = 0 for all n.
If f(−x) = −f(x), then an = 0 for all n.

Alternative Form

1.8.3 f(x) =
∞∑

n=−∞
cne

inx,

1.8.4 cn =
1

2π

∫ π

−π
f(x)e−inx dx.

Bessel’s Inequality

1.8.5 1
2a

2
0 +

∞∑
n=1

(a2
n + b2n) ≤ 1

π

∫ π

−π
(f(x))2 dx.

1.8.6

∞∑
n=−∞

|cn|2 ≤
1

2π

∫ π

−π
|f(x)|2 dx.

Asymptotic Estimates of Coefficients

If f(x) is of period 2π, and f (m)(x) is piecewise contin-
uous, then

1.8.7 an, bn, cn = o
(
n−m

)
, n→∞.

Uniqueness of Fourier Series

If f(x) and g(x) are continuous, have the same period
and same Fourier coefficients, then f(x) = g(x) for all
x.

Lebesgue Constants

1.8.8 Ln =
1
π

∫ π

0

∣∣sin(n+ 1
2

)
t
∣∣

sin
(

1
2 t
) dt, n = 0, 1, . . . .

As n→∞

1.8.9 Ln ∼ (4/π2) lnn;

see Frenzen and Wong (1986).
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Riemann–Lebesgue Lemma

For f(x) piecewise continuous on [a, b] and real λ,

1.8.10

∫ b

a

f(x)eiλx dx→ 0, as λ→∞.

(1.8.10) continues to apply if either a or b or both are
infinite and/or f(x) has finitely many singularities in
(a, b), provided that the integral converges uniformly
(§1.5(iv)) at a, b, and the singularities for all sufficiently
large λ.

1.8(ii) Convergence

Let f(x) be an absolutely integrable function of period
2π, and continuous except at a finite number of points in
any bounded interval. Then the series (1.8.1) converges
to the sum

1.8.11 1
2f(x−) + 1

2f(x+)

at every point at which f(x) has both a left-hand deriva-
tive (that is, (1.4.4) applies when h→ 0−) and a right-
hand derivative (that is, (1.4.4) applies when h→ 0+).
The convergence is non-uniform, however, at points
where f(x−) 6= f(x+); see §6.16(i).

For other tests for convergence see Titchmarsh
(1962, pp. 405–410).

1.8(iii) Integration and Differentiation

If an and bn are the Fourier coefficients of a piecewise
continuous function f(x) on [0, 2π], then

1.8.12∫ x

0

(f(t)− 1
2a0) dt =

∞∑
n=1

an sin(nx) + bn(1− cos(nx))
n

,

0 ≤ x ≤ 2π.

If a function f(x) ∈ C2 [0, 2π] is periodic, with pe-
riod 2π, then the series obtained by differentiating the
Fourier series for f(x) term by term converges at every
point to f ′(x).

1.8(iv) Transformations

Parseval’s Formula

1.8.13
1
π

∫ π

−π
f(x)g(x) dx = 1

2a0a
′
0 +

∞∑
n=1

(ana′n + bnb
′
n),

when f(x) and g(x) are square-integrable and an, bn and
a′n, b

′
n are their respective Fourier coefficients.

Poisson’s Summation Formula

Suppose that f(x) is twice continuously differentiable
and f(x) and |f ′′(x)| are integrable over (−∞,∞).
Then
1.8.14

∞∑
n=−∞

f(x+ n) =
∞∑

n=−∞
e2πinx

∫ ∞
−∞

f(t)e−2πint dt.

An alternative formulation is as follows. Suppose
that f(x) is continuous and of bounded variation on
[0,∞). Suppose also that f(x) is integrable on [0,∞)
and f(x)→ 0 as x→∞. Then
1.8.15

1
2f(0) +

∞∑
n=1

f(n) =
∫ ∞

0

f(x) dx

+ 2
∞∑
n=1

∫ ∞
0

f(x) cos(2πnx) dx.

As a special case

1.8.16

∞∑
n=−∞

e−(n+x)2ω

=
√
π

ω

(
1 + 2

∞∑
n=1

e−n
2π2/ω cos(2nπx)

)
,

<ω > 0.

1.8(v) Examples

For collections of Fourier-series expansions see Prud-
nikov et al. (1986a, v. 1, pp. 725–740), Gradshteyn and
Ryzhik (2000, pp. 45–49), and Oberhettinger (1973).

1.9 Calculus of a Complex Variable

1.9(i) Complex Numbers

1.9.1 z = x+ iy, x, y ∈ R.
Real and Imaginary Parts

1.9.2 <z = x, =z = y.

Polar Representation

1.9.3 x = r cos θ, y = r sin θ,
where

1.9.4 r = (x2 + y2)1/2,

and when z 6= 0,

1.9.5 θ = ω, π − ω, −π + ω, or − ω,
according as z lies in the 1st, 2nd, 3rd, or 4th quadrants.
Here

1.9.6 ω = arctan(|y/x|) ∈
[
0, 1

2π
]
.
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Modulus and Phase

1.9.7 |z| = r, ph z = θ + 2nπ, n ∈ Z.

The principal value of ph z corresponds to n = 0, that
is, −π ≤ ph z ≤ π. It is single-valued on C \ {0}, except
on the interval (−∞, 0) where it is discontinuous and
two-valued. Unless indicated otherwise, these principal
values are assumed throughout this Handbook. (How-
ever, if we require a principal value to be single-valued,
then we can restrict −π < ph z ≤ π.)

1.9.8 |<z| ≤ |z|, |=z| ≤ |z|,

1.9.9 z = reiθ,

where

1.9.10 eiθ = cos θ + i sin θ;

see §4.14.

Complex Conjugate

1.9.11 z = x− iy,

1.9.12 |z| = |z|,
1.9.13 ph z = −ph z.

Arithmetic Operations

If z1 = x1 + iy1, z2 = x2 + iy2, then

1.9.14 z1 ± z2 = x1 ± x2 + i(y1 ± y2),

1.9.15 z1z2 = x1x2 − y1y2 + i(x1y2 + x2y1),

1.9.16
z1

z2
=
z1z2

|z2|2
=
x1x2 + y1y2 + i(x2y1 − x1y2)

x2
2 + y2

2

,

provided that z2 6= 0. Also,

1.9.17 |z1z2| = |z1| |z2|,

1.9.18 ph(z1z2) = ph z1 + ph z2,

1.9.19

∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

,

1.9.20 ph
z1

z2
= ph z1 − ph z2.

Equations (1.9.18) and (1.9.20) hold for general values
of the phases, but not necessarily for the principal val-
ues.

Powers

1.9.21

zn =
(
xn −

(
n

2

)
xn−2y2 +

(
n

4

)
xn−4y4 − · · ·

)
+ i

((
n

1

)
xn−1y −

(
n

3

)
xn−3y3 + · · ·

)
,

n = 1, 2, . . . .

DeMoivre’s Theorem

1.9.22 cosnθ + i sinnθ = (cos θ + i sin θ)n, n ∈ Z.

Triangle Inequality

1.9.23 ||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2| .

1.9(ii) Continuity, Point Sets, and
Differentiation

Continuity

A function f(z) is continuous at a point z0 if
lim
z→z0

f(z) = f(z0). That is, given any positive num-

ber ε, however small, we can find a positive number δ
such that |f(z) − f(z0)| < ε for all z in the open disk
|z − z0| < δ.

A function of two complex variables f(z, w) is con-
tinuous at (z0, w0) if lim

(z,w)→(z0,w0)
f(z, w) = f(z0, w0);

compare (1.5.1) and (1.5.2).

Point Sets in C

A neighborhood of a point z0 is a disk |z − z0| < δ. An
open set in C is one in which each point has a neighbor-
hood that is contained in the set.

A point z0 is a limit point (limiting point or accu-
mulation point) of a set of points S in C (or C ∪ ∞)
if every neighborhood of z0 contains a point of S dis-
tinct from z0. (z0 may or may not belong to S.) As
a consequence, every neighborhood of a limit point of
S contains an infinite number of points of S. Also, the
union of S and its limit points is the closure of S.

A domain D, say, is an open set in C that is con-
nected, that is, any two points can be joined by a polyg-
onal arc (a finite chain of straight-line segments) lying
in the set. Any point whose neighborhoods always con-
tain members and nonmembers of D is a boundary point
of D. When its boundary points are added the domain
is said to be closed, but unless specified otherwise a do-
main is assumed to be open.

A region is an open domain together with none,
some, or all of its boundary points. Points of a region
that are not boundary points are called interior points.

A function f(z) is continuous on a region R if for
each point z0 in R and any given number ε (> 0) we can
find a neighborhood of z0 such that |f(z)− f(z0)| < ε
for all points z in the intersection of the neighborhood
with R.

Differentiation

A function f(z) is differentiable at a point z if the fol-
lowing limit exists:

1.9.24 f ′(z) =
df

dz
= lim
h→0

f(z + h)− f(z)
h

.

Differentiability automatically implies continuity.
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Cauchy–Riemann Equations

If f ′(z) exists at z = x+iy and f(z) = u(x, y)+iv(x, y),
then
1.9.25

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
at (x, y).

Conversely, if at a given point (x, y) the partial
derivatives ∂u/∂x , ∂u/∂y , ∂v/∂x , and ∂v/∂y exist,
are continuous, and satisfy (1.9.25), then f(z) is differ-
entiable at z = x+ iy.

Analyticity

A function f(z) is said to be analytic (holomorphic) at
z = z0 if it is differentiable in a neighborhood of z0.

A function f(z) is analytic in a domain D if it is an-
alytic at each point of D. A function analytic at every
point of C is said to be entire.

If f(z) is analytic in an open domain D, then each
of its derivatives f ′(z), f ′′(z), . . . exists and is analytic
in D.

Harmonic Functions

If f(z) = u(x, y)+iv(x, y) is analytic in an open domain
D, then u and v are harmonic in D, that is,

1.9.26
∂2u

∂x2 +
∂2u

∂y2 =
∂2v

∂x2 +
∂2v

∂y2 = 0,

or in polar form ((1.9.3)) u and v satisfy

1.9.27
∂2u

∂r2 +
1
r

∂u

∂r
+

1
r2

∂2u

∂θ2 = 0

at all points of D.

1.9(iii) Integration

An arc C is given by z(t) = x(t) + iy(t), a ≤ t ≤ b,
where x and y are continuously differentiable. If x(t)
and y(t) are continuous and x′(t) and y′(t) are piece-
wise continuous, then z(t) defines a contour.

A contour is simple if it contains no multiple points,
that is, for every pair of distinct values t1, t2 of t,
z(t1) 6= z(t2). A simple closed contour is a simple con-
tour, except that z(a) = z(b).

Next,

1.9.28

∫
C

f(z) dz =
∫ b

a

f(z(t))(x′(t) + iy′(t)) dt,

for a contour C and f(z(t)) continuous, a ≤ t ≤ b. If
f(z(t0)) = ∞, a ≤ t0 ≤ b, then the integral is defined
analogously to the infinite integrals in §1.4(v). Similarly
when a = −∞ or b = +∞.

Jordan Curve Theorem

Any simple closed contour C divides C into two open do-
mains that have C as common boundary. One of these
domains is bounded and is called the interior domain
of C; the other is unbounded and is called the exterior
domain of C.

Cauchy’s Theorem

If f(z) is continuous within and on a simple closed con-
tour C and analytic within C, then

1.9.29

∫
C

f(z) dz = 0.

Cauchy’s Integral Formula

If f(z) is continuous within and on a simple closed con-
tour C and analytic within C, and if z0 is a point within
C, then

1.9.30 f(z0) =
1

2πi

∫
C

f(z)
z − z0

dz,

and
1.9.31

f (n)(z0) =
n!

2πi

∫
C

f(z)
(z − z0)n+1

dz, n = 1, 2, 3, . . . ,

provided that in both cases C is described in the posi-
tive rotational (anticlockwise) sense.

Liouville’s Theorem

Any bounded entire function is a constant.

Winding Number

If C is a closed contour, and z0 6∈ C, then

1.9.32
1

2πi

∫
C

1
z − z0

dz = N (C, z0),

where N (C, z0) is an integer called the winding num-
ber of C with respect to z0. If C is simple and oriented
in the positive rotational sense, then N (C, z0) is 1 or 0
depending whether z0 is inside or outside C.

Mean Value Property

For u(z) harmonic,

1.9.33 u(z) =
1

2π

∫ 2π

0

u(z + reiφ) dφ.

Poisson Integral

If h(w) is continuous on |w| = R, then with z = reiθ

1.9.34 u(reiθ) =
1

2π

∫ 2π

0

(R2 − r2)h(Reiφ) dφ
R2 − 2Rr cos(φ− θ) + r2

is harmonic in |z| < R. Also with |w| = R, lim
z→w

u(z) =

h(w) as z → w within |z| < R.

1.9(iv) Conformal Mapping

The extended complex plane, C ∪ {∞}, consists of the
points of the complex plane C together with an ideal
point ∞ called the point at infinity. A system of open
disks around infinity is given by

1.9.35 Sr = {z | |z| > 1/r} ∪ {∞}, 0 < r <∞.

Each Sr is a neighborhood of ∞. Also,

1.9.36 ∞± z = z ±∞ =∞,



1.9 Calculus of a Complex Variable 17

1.9.37 ∞ · z = z · ∞ =∞, z 6= 0,

1.9.38 z/∞ = 0,

1.9.39 z/0 =∞, z 6= 0.
A function f(z) is analytic at ∞ if g(z) = f(1/z) is
analytic at z = 0, and we set f ′(∞) = g′(0).

Conformal Transformation

Suppose f(z) is analytic in a domain D and C1, C2 are
two arcs in D passing through z0. Let C ′1, C

′
2 be the

images of C1 and C2 under the mapping w = f(z). The
angle between C1 and C2 at z0 is the angle between the
tangents to the two arcs at z0, that is, the difference of
the signed angles that the tangents make with the pos-
itive direction of the real axis. If f ′(z0) 6= 0, then the
angle between C1 and C2 equals the angle between C ′1
and C ′2 both in magnitude and sense. We then say that
the mapping w = f(z) is conformal (angle-preserving)
at z0.

The linear transformation f(z) = az + b, a 6= 0, has
f ′(z) = a and w = f(z) maps C conformally onto C.

Bilinear Transformation

1.9.40 w = f(z) =
az + b

cz + d
, ad− bc 6= 0, c 6= 0.

1.9.41 f(−d/c) =∞, f(∞) = a/c.

1.9.42 f ′(z) =
ad− bc

(cz + d)2
, z 6= −d/c.

1.9.43 f ′(∞) =
bc− ad
c2

.

1.9.44 z =
dw − b
−cw + a

.

The transformation (1.9.40) is a one-to-one confor-
mal mapping of C ∪ {∞} onto itself.

The cross ratio of z1, z2, z3, z4 ∈ C ∪ {∞} is defined
by

1.9.45
(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

,

or its limiting form, and is invariant under bilinear
transformations.

Other names for the bilinear transformation are frac-
tional linear transformation, homographic transforma-
tion, and Möbius transformation.

1.9(v) Infinite Sequences and Series

A sequence {zn} converges to z if lim
n→∞

zn = z. For

zn = xn + iyn, the sequence {zn} converges iff the se-
quences {xn} and {yn} separately converge. A series∑∞
n=0 zn converges if the sequence sn =

∑n
k=0 zk con-

verges. The series is divergent if sn does not converge.
The series converges absolutely if

∑∞
n=0 |zn| converges.

A series
∑∞
n=0 zn converges (diverges) absolutely when

lim
n→∞

|zn|1/n < 1 (> 1), or when lim
n→∞

|zn+1/zn | < 1

(> 1). Absolutely convergent series are also convergent.
Let {fn(z)} be a sequence of functions defined on a

set S. This sequence converges pointwise to a function
f(z) if

1.9.46 f(z) = lim
n→∞

fn(z)

for each z ∈ S. The sequence converges uniformly on S,
if for every ε > 0 there exists an integer N , independent
of z, such that

1.9.47 |fn(z)− f(z)| < ε

for all z ∈ S and n ≥ N .
A series

∑∞
n=0 fn(z) converges uniformly on S, if the

sequence sn(z) =
∑n
k=0 fk(z) converges uniformly on S.

Weierstrass M -test

Suppose {Mn} is a sequence of real numbers such that∑∞
n=0Mn converges and |fn(z)| ≤ Mn for all z ∈ S

and all n ≥ 0. Then the series
∑∞
n=0 fn(z) converges

uniformly on S.
A doubly-infinite series

∑∞
n=−∞ fn(z) converges

(uniformly) on S iff each of the series
∑∞
n=0 fn(z) and∑∞

n=1 f−n(z) converges (uniformly) on S.

1.9(vi) Power Series

For a series
∑∞
n=0 an(z − z0)n there is a number R,

0 ≤ R ≤ ∞, such that the series converges for all z in
|z − z0| < R and diverges for z in |z − z0| > R. The
circle |z − z0| = R is called the circle of convergence of
the series, and R is the radius of convergence. Inside
the circle the sum of the series is an analytic function
f(z). For z in |z − z0| ≤ ρ (< R), the convergence is
absolute and uniform. Moreover,

1.9.48 an =
f (n)(z0)

n!
,

and

1.9.49 R = lim inf
n→∞

|an|−1/n.

For the converse of this result see §1.10(i).

Operations

When
∑
anz

n and
∑
bnz

n both converge

1.9.50

∞∑
n=0

(an ± bn)zn =
∞∑
n=0

anz
n ±

∞∑
n=0

bnz
n,

and

1.9.51

( ∞∑
n=0

anz
n

)( ∞∑
n=0

bnz
n

)
=
∞∑
n=0

cnz
n,

where

1.9.52 cn =
n∑
k=0

akbn−k.

Next, let

1.9.53 f(z) = a0 + a1z + a2z
2 + · · · , a0 6= 0.
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Then the expansions (1.9.54), (1.9.57), and (1.9.60) hold
for all sufficiently small |z|.

1.9.54
1

f(z)
= b0 + b1z + b2z

2 + · · · ,

where

1.9.55 b0 = 1/a0, b1 = −a1/a
2
0, b2 = (a2

1 − a0a2)/a3
0,

1.9.56

bn = −(a1bn−1 + a2bn−2 + · · ·+ anb0)/a0, n ≥ 1.
With a0 = 1,

1.9.57 ln f(z) = q1z + q2z
2 + q3z

3 + · · · ,
(principal value), where

1.9.58
q1 = a1, q2 = (2a2 − a2

1)/2,
q3 = (3a3 − 3a1a2 + a3

1)/3,
and
1.9.59

qn = (nan − (n− 1)a1qn−1 − (n− 2)a2qn−2 − · · ·
− an−1q1)/n,

n ≥ 2.
Also,

1.9.60 (f(z))ν = p0 + p1z + p2z
2 + · · · ,

(principal value), where ν ∈ C,

1.9.61 p0 = 1, p1 = νa1, p2 = ν((ν − 1)a2
1 + 2a2)/2,

and
1.9.62

pn = ((ν − n+ 1)a1pn−1 + (2ν − n+ 2)a2pn−2 + · · ·
+ ((n− 1)ν − 1)an−1p1 + nνan)/n,

n ≥ 1.
For the definitions of the principal values of ln f(z) and
(f(z))ν see §§4.2(i) and 4.2(iv).

Lastly, a power series can be differentiated any num-
ber of times within its circle of convergence:

1.9.63
f (m)(z) =

∞∑
n=0

(n+ 1)man+m(z − z0)n,

|z − z0| < R, m = 0, 1, 2, . . . .

1.9(vii) Inversion of Limits

Double Sequences and Series

A set of complex numbers {zm,n} where m and n take
all positive integer values is called a double sequence. It
converges to z if for every ε > 0, there is an integer N
such that

1.9.64 |zm,n − z| < ε

for all m,n ≥ N . Suppose {zm,n} converges to z and
the repeated limits

1.9.65 lim
m→∞

(
lim
n→∞

zm,n

)
, lim

n→∞

(
lim
m→∞

zm,n

)

exist. Then both repeated limits equal z.
A double series is the limit of the double sequence

1.9.66 zp,q =
p∑

m=0

q∑
n=0

ζm,n.

If the limit exists, then the double series is convergent ;
otherwise it is divergent. The double series is absolutely
convergent if it is convergent when ζm,n is replaced by
|ζm,n|.

If a double series is absolutely convergent, then it
is also convergent and its sum is given by either of the
repeated sums

1.9.67

∞∑
m=0

( ∞∑
n=0

ζm,n

)
,

∞∑
n=0

( ∞∑
m=0

ζm,n

)
.

Term-by-Term Integration

Suppose the series
∑∞
n=0 fn(z), where fn(z) is contin-

uous, converges uniformly on every compact set of a
domain D, that is, every closed and bounded set in D.
Then

1.9.68

∫
C

∞∑
n=0

fn(z) dz =
∞∑
n=0

∫
C

fn(z) dz

for any finite contour C in D.

Dominated Convergence Theorem

Let (a, b) be a finite or infinite interval, and
f0(t), f1(t), . . . be real or complex continuous functions,
t ∈ (a, b). Suppose

∑∞
n=0 fn(t) converges uniformly in

any compact interval in (a, b), and at least one of the
following two conditions is satisfied:

1.9.69

∫ b

a

∞∑
n=0

|fn(t)| dt <∞,

1.9.70

∞∑
n=0

∫ b

a

|fn(t)| dt <∞.

Then

1.9.71

∫ b

a

∞∑
n=0

fn(t) dt =
∞∑
n=0

∫ b

a

fn(t) dt.

1.10 Functions of a Complex Variable

1.10(i) Taylor’s Theorem for Complex Variables

Let f(z) be analytic on the disk |z − z0| < R. Then

1.10.1 f(z) =
∞∑
n=0

f (n)(z0)
n!

(z − z0)n.

The right-hand side is the Taylor series for f(z) at
z = z0, and its radius of convergence is at least R.
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Examples

1.10.2 ez = 1 +
z

1!
+
z2

2!
+ · · · , |z| <∞,

1.10.3 ln(1 + z) = z − z2

2
+
z3

3
− · · · , |z| < 1,

1.10.4

(1− z)−α = 1 + αz +
α(α+ 1)

2!
z2 +

α(α+ 1)(α+ 2)
3!

z3

+ · · · , |z| < 1.
Again, in these examples ln(1 + z) and (1 − z)−α have
their principal values; see §§4.2(i) and 4.2(iv).

Zeros

An analytic function f(z) has a zero of order (or mul-
tiplicity) m (≥1) at z0 if the first nonzero coefficient in
its Taylor series at z0 is that of (z− z0)m. When m = 1
the zero is simple.

1.10(ii) Analytic Continuation

Let f1(z) be analytic in a domain D1. If f2(z), analytic
in D2, equals f1(z) on an arc in D = D1 ∩ D2, or on
just an infinite number of points with a limit point in
D, then they are equal throughout D and f2(z) is called
an analytic continuation of f1(z). We write (f1, D1),
(f2, D2) to signify this continuation.

Suppose z(t) = x(t) + iy(t), a ≤ t ≤ b, is an arc and
a = t0 < t1 < · · · < tn = b. Suppose the subarc z(t),
t ∈ [tj−1, tj ] is contained in a domain Dj , j = 1, . . . , n.
The function f1(z) on D1 is said to be analytically con-
tinued along the path z(t), a ≤ t ≤ b, if there is a chain
(f1, D1), (f2, D2), . . . , (fn, Dn).

Analytic continuation is a powerful aid in establish-
ing transformations or functional equations for complex
variables, because it enables the problem to be reduced
to: (a) deriving the transformation (or functional equa-
tion) with real variables; followed by (b) finding the
domain on which the transformed function is analytic.

Schwarz Reflection Principle

Let C be a simple closed contour consisting of a seg-
ment AB of the real axis and a contour in the upper
half-plane joining the ends of AB . Also, let f(z) be an-
alytic within C, continuous within and on C, and real
on AB . Then f(z) can be continued analytically across
AB by reflection, that is,

1.10.5 f(z) = f(z).

1.10(iii) Laurent Series

Suppose f(z) is analytic in the annulus r1 < |z − z0| <
r2, 0 ≤ r1 < r2 ≤ ∞, and r ∈ (r1, r2). Then

1.10.6 f(z) =
∞∑

n=−∞
an(z − z0)n,

where

1.10.7 an =
1

2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1

dz,

and the integration contour is described once in the pos-
itive sense. The series (1.10.6) converges uniformly and
absolutely on compact sets in the annulus.

Let r1 = 0, so that the annulus becomes the punc-
tured neighborhood N : 0 < |z − z0| < r2, and assume
that f(z) is analytic in N , but not at z0. Then z = z0

is an isolated singularity of f(z). This singularity is re-
movable if an = 0 for all n < 0, and in this case the
Laurent series becomes the Taylor series. Next, z0 is a
pole if an 6= 0 for at least one, but only finitely many,
negative n. If −n is the first negative integer (counting
from −∞) with a−n 6= 0, then z0 is a pole of order (or
multiplicity) n. Lastly, if an 6= 0 for infinitely many
negative n, then z0 is an isolated essential singularity.

The singularities of f(z) at infinity are classified in
the same way as the singularities of f(1/z) at z = 0.

An isolated singularity z0 is always removable when
limz→z0 f(z) exists, for example (sin z)/z at z = 0.

The coefficient a−1 of (z−z0)−1 in the Laurent series
for f(z) is called the residue of f(z) at z0, and denoted
by resz=z0 [f(z)], res

z=z0
[f(z)], or (when there is no ambi-

guity) res[f(z)].
A function whose only singularities, other than the

point at infinity, are poles is called a meromorphic func-
tion. If the poles are infinite in number, then the point
at infinity is called an essential singularity : it is the
limit point of the poles.

Picard’s Theorem

In any neighborhood of an isolated essential singularity,
however small, an analytic function assumes every value
in C with at most one exception.

1.10(iv) Residue Theorem

If f(z) is analytic within a simple closed contour C, and
continuous within and on C—except in both instances
for a finite number of singularities within C—then

1.10.8

1
2πi

∫
C

f(z) dz = sum of the residues of f(z) within C.

Here and elsewhere in this subsection the path C is de-
scribed in the positive sense.
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Phase (or Argument) Principle

If the singularities within C are poles and f(z) is ana-
lytic and nonvanishing on C, then

1.10.9 N − P =
1

2πi

∫
C

f ′(z)
f(z)

dz =
1

2π
∆C(ph f(z)),

where N and P are respectively the numbers of zeros
and poles, counting multiplicity, of f within C, and
∆C(ph f(z)) is the change in any continuous branch of
ph(f(z)) as z passes once around C in the positive sense.
For examples of applications see Olver (1997b, pp. 252–
254).

In addition,
1.10.10

1
2πi

∫
C

zf ′(z)
f(z)

dz = (sum of locations of zeros)

− (sum of locations of poles),
each location again being counted with multiplicity
equal to that of the corresponding zero or pole.

Rouché’s Theorem

If f(z) and g(z) are analytic on and inside a simple
closed contour C, and |g(z)| < |f(z)| on C, then f(z)
and f(z) + g(z) have the same number of zeros inside
C.

1.10(v) Maximum-Modulus Principle

Analytic Functions

If f(z) is analytic in a domain D, z0 ∈ D and |f(z)| ≤
|f(z0)| for all z ∈ D, then f(z) is a constant in D.

Let D be a bounded domain with boundary ∂D and
let D = D∪∂D. If f(z) is continuous on D and analytic
in D, then |f(z)| attains its maximum on ∂D.

Harmonic Functions

If u(z) is harmonic in D, z0 ∈ D, and u(z) ≤ u(z0) for
all z ∈ D, then u(z) is constant in D. Moreover, if D is
bounded and u(z) is continuous on D and harmonic in
D, then u(z) is maximum at some point on ∂D.

Schwarz’s Lemma

In |z| < R, if f(z) is analytic, |f(z)| ≤M , and f(0) = 0,
then
1.10.11 |f(z)| ≤ M |z|

R
and |f ′(0)| ≤ M

R
.

Equalities hold iff f(z) = Az, where A is a constant
such that |A| = M/R.

1.10(vi) Multivalued Functions

Functions which have more than one value at a given
point z are called multivalued (or many-valued) func-
tions. Let F (z) be a multivalued function and D be a
domain. If we can assign a unique value f(z) to F (z) at
each point of D, and f(z) is analytic on D, then f(z) is
a branch of F (z).

Example

F (z) =
√
z is two-valued for z 6= 0. If D = C \ (−∞, 0]

and z = reiθ, then one branch is
√
reiθ/2, the other

branch is −
√
reiθ/2, with −π < θ < π in both cases.

Similarly if D = C \ [0,∞), then one branch is
√
reiθ/2,

the other branch is −
√
reiθ/2, with 0 < θ < 2π in both

cases.
A cut domain is one from which the points on finitely

many nonintersecting simple contours (§1.9(iii)) have
been removed. Each contour is called a cut. A cut neigh-
borhood is formed by deleting a ray emanating from the
center. (Or more generally, a simple contour that starts
at the center and terminates on the boundary.)

Suppose F (z) is multivalued and a is a point such
that there exists a branch of F (z) in a cut neighborhood
of a, but there does not exist a branch of F (z) in any
punctured neighborhood of a. Then a is a branch point
of F (z). For example, z = 0 is a branch point of

√
z.

Branches can be constructed in two ways:
(a) By introducing appropriate cuts from the branch

points and restricting F (z) to be single-valued in the cut
plane (or domain).

(b) By specifying the value of F (z) at a point z0 (not
a branch point), and requiring F (z) to be continuous on
any path that begins at z0 and does not pass through
any branch points or other singularities of F (z).

If the path circles a branch point at z = a k times
in the positive sense, and returns to z0 without encir-
cling any other branch point, then its value is denoted
conventionally as F ((z0 − a)e2kπi + a).

Example

Let α and β be real or complex numbers that are not
integers. The function F (z) = (1−z)α(1+z)β is many-
valued with branch points at ±1. Branches of F (z) can
be defined, for example, in the cut plane D obtained
from C by removing the real axis from 1 to∞ and from
−1 to −∞; see Figure 1.10.1. One such branch is ob-
tained by assigning (1− z)α and (1 + z)β their principal
values (§4.2(iv)).

Figure 1.10.1: Domain D.

Alternatively, take z0 to be any point in D and set
F (z0) = eα ln(1−z0)eβ ln(1+z0) where the logarithms as-
sume their principal values. (Thus if z0 is in the in-
terval (−1, 1), then the logarithms are real.) Then the
value of F (z) at any other point is obtained by analytic
continuation.
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Thus if F (z) is continued along a path that circles
z = 1 m times in the positive sense and returns to
z0 without circling z = −1, then F ((z0 − 1)e2mπi +
1) = eα ln(1−z0)eβ ln(1+z0)e2πimα. If the path also circles
z = −1 n times in the clockwise or negative sense be-
fore returning to z0, then the value of F (z0) becomes
eα ln(1−z0)eβ ln(1+z0)e2πimαe−2πinβ .

1.10(vii) Inverse Functions

Lagrange Inversion Theorem

Suppose f(z) is analytic at z = z0, f ′(z0) 6= 0, and
f(z0) = w0. Then the equation

1.10.12 f(z) = w

has a unique solution z = F (w) analytic at w = w0, and

1.10.13 F (w) = z0 +
∞∑
n=1

Fn(w − w0)n

in a neighborhood of w0, where nFn is the residue of
1/(f(z) − f(z0))n at z = z0. (In other words nFn is
the coefficient of (z − z0)−1 in the Laurent expansion
of 1/(f(z) − f(z0))n in powers of (z − z0); compare
§1.10(iii).)

Furthermore, if g(z) is analytic at z0, then

1.10.14 g(F (w)) = g(z0) +
∞∑
n=1

Gn(w − w0)n,

where nGn is the residue of g′(z)/(f(z) − f(z0))n at
z = z0.

Extended Inversion Theorem

Suppose that

1.10.15 f(z) = f(z0) +
∞∑
n=0

fn(z − z0)µ+n,

where µ > 0, f0 6= 0, and the series converges in a
neighborhood of z0. (For example, when µ is an integer
f(z)−f(z0) has a zero of order µ at z0.) Let w0 = f(z0).
Then (1.10.12) has a solution z = F (w), where

1.10.16 F (w) = z0 +
∞∑
n=1

Fn(w − w0)n/µ

in a neighborhood of w0, nFn being the residue of
1/(f(z)− f(z0))n/µ at z = z0.

It should be noted that different branches of (w −
w0)1/µ used in forming (w−w0)n/µ in (1.10.16) give rise
to different solutions of (1.10.12). Also, if in addition
g(z) is analytic at z0, then

1.10.17 g(F (w)) = g(z0) +
∞∑
n=1

Gn(w − w0)n/µ,

where nGn is the residue of g′(z)/(f(z) − f(z0))n/µ at
z = z0.

1.10(viii) Functions Defined by Contour
Integrals

Let D be a domain and [a, b] be a closed finite segment
of the real axis. Assume that for each t ∈ [a, b], f(z, t)
is an analytic function of z in D, and also that f(z, t)
is a continuous function of both variables. Then

1.10.18 F (z) =
∫ b

a

f(z, t) dt

is analytic in D and its derivatives of all orders can be
found by differentiating under the sign of integration.

This result is also true when b =∞, or when f(z, t)
has a singularity at t = b, with the following conditions.
For each t ∈ [a, b), f(z, t) is analytic in D; f(z, t) is a
continuous function of both variables when z ∈ D and
t ∈ [a, b); the integral (1.10.18) converges at b, and this
convergence is uniform with respect to z in every com-
pact subset S of D.

The last condition means that given ε (> 0) there
exists a number a0 ∈ [a, b) that is independent of z and
is such that

1.10.19

∣∣∣∣∣
∫ b

a1

f(z, t) dt

∣∣∣∣∣ < ε,

for all a1 ∈ [a0, b) and all z ∈ S; compare §1.5(iv).

M -test

If |f(z, t)| ≤ M(t) for z ∈ S and
∫ b
a
M(t) dt converges,

then the integral (1.10.18) converges uniformly and ab-
solutely in S.

1.10(ix) Infinite Products

Let pk,m =
∏m
n=k(1 + an). If for some k ≥ 1, pk,m →

pk 6= 0 as m → ∞, then we say that the infinite prod-
uct

∏∞
n=1(1 + an) converges. (The integer k may be

greater than one to allow for a finite number of zero
factors.) The convergence of the product is absolute if∏∞
n=1(1 + |an|) converges. The product

∏∞
n=1(1 + an),

with an 6= −1 for all n, converges iff
∑∞
n=1 ln(1 + an)

converges; and it converges absolutely iff
∑∞
n=1 |an| con-

verges.
Suppose an = an(z), z ∈ D, a domain. The conver-

gence of the infinite product is uniform if the sequence
of partial products converges uniformly.

M -test

Suppose that an(z) are analytic functions in D. If there
is an N , independent of z ∈ D, such that

1.10.20 | ln(1 + an(z))| ≤Mn, n ≥ N ,
and

1.10.21

∞∑
n=1

Mn <∞,

then the product
∏∞
n=1(1 + an(z)) converges uniformly

to an analytic function p(z) in D, and p(z) = 0 only
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when at least one of the factors 1 + an(z) is zero in D.
This conclusion remains true if, in place of (1.10.20),
|an(z)| ≤Mn for all n, and again

∑∞
n=1Mn <∞.

Weierstrass Product

If {zn} is a sequence such that
∑∞
n=1 |z−2

n | is convergent,
then

1.10.22 P (z) =
∞∏
n=1

(
1− z

zn

)
ez/zn

is an entire function with zeros at zn.

1.10(x) Infinite Partial Fractions

Suppose D is a domain, and

1.10.23 F (z) =
∞∏
n=1

an(z), z ∈ D,

where an(z) is analytic for all n ≥ 1, and the conver-
gence of the product is uniform in any compact subset
of D. Then F (z) is analytic in D.

If, also, an(z) 6= 0 when n ≥ 1 and z ∈ D, then
F (z) 6= 0 on D and

1.10.24
F ′(z)
F (z)

=
∞∑
n=1

a′n(z)
an(z)

.

Mittag-Leffler’s Expansion

If {an} and {zn} are sequences such that zm 6= zn
(m 6= n) and

∑∞
n=1 |anz−2

n | is convergent, then

1.10.25 f(z) =
∞∑
n=1

an

(
1

z − zn
+

1
zn

)
is analytic in C, except for simple poles at z = zn of
residue an.

1.11 Zeros of Polynomials

1.11(i) Division Algorithm

Horner’s Scheme

Let

1.11.1 f(z) = anz
n + an−1z

n−1 + · · ·+ a0.

Then

1.11.2 f(z) = (z−α)(bnzn−1 +bn−1z
n−2 + · · ·+b1)+b0,

where bn = an,

1.11.3 bk = αbk+1 + ak, k = n− 1, n− 2, . . . , 0,

1.11.4 f(α) = b0.

Extended Horner Scheme

With bk as in (1.11.1)–(1.11.3) let cn = an and

1.11.5 ck = αck+1 + bk, k = n− 1, n− 2, . . . , 1.
Then

1.11.6 f ′(α) = c1.

More generally, for polynomials f(z) and g(z), there
are polynomials q(z) and r(z), found by equating coef-
ficients, such that

1.11.7 f(z) = g(z)q(z) + r(z),
where 0 ≤ deg r(z) < deg g(z).

1.11(ii) Elementary Properties

A polynomial of degree n with real or complex coef-
ficients has exactly n real or complex zeros counting
multiplicity. Every monic (coefficient of highest power
is one) polynomial of odd degree with real coefficients
has at least one real zero with sign opposite to that of
the constant term. A monic polynomial of even degree
with real coefficients has at least two zeros of opposite
signs when the constant term is negative.

Descartes’ Rule of Signs

The number of positive zeros of a polynomial with real
coefficients cannot exceed the number of times the co-
efficients change sign, and the two numbers have same
parity. A similar relation holds for the changes in sign
of the coefficients of f(−z), and hence for the number
of negative zeros of f(z).

Example

1.11.8
f(z) = z8 + 10z3 + z − 4,

f(−z) = z8 − 10z3 − z − 4.

Both polynomials have one change of sign; hence for
each polynomial there is one positive zero, one negative
zero, and six complex zeros.

Next, let f(z) = anz
n + an−1z

n−1 + · · · + a0. The
zeros of znf(1/z) = a0z

n + a1z
n−1 + · · ·+ an are recip-

rocals of the zeros of f(z).
The discriminant of f(z) is defined by

1.11.9 D = a2n−2
n

∏
j<k

(zj − zk)2,

where z1, z2, . . . , zn are the zeros of f(z). The elemen-
tary symmetric functions of the zeros are (with an 6= 0)

1.11.10

z1 + z2 + · · ·+ zn = −an−1/an,∑
1≤j<k≤n

zjzk = an−2/an,

...
z1z2 · · · zn = (−1)na0/an.
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1.11(iii) Polynomials of Degrees Two, Three,
and Four

Quadratic Equations

The roots of az2 + bz + c = 0 are

1.11.11
−b±

√
D

2a
, D = b2 − 4ac.

The sum and product of the roots are respectively −b/a
and c/a.

Cubic Equations

Set z = w − 1
3a to reduce f(z) = z3 + az2 + bz + c

to g(w) = w3 + pw + q, with p = (3b − a2)/3, q =
(2a3 − 9ab+ 27c)/27. The discriminant of g(w) is

1.11.12 D = −4p3 − 27q2.

Let
1.11.13 A = 3

√
− 27

2 q + 3
2

√
−3D, B = −3p/A.

The roots of g(w) = 0 are

1.11.14 1
3 (A+B), 1

3 (ρA+ ρ2B), 1
3 (ρ2A+ ρB),

with

1.11.15 ρ = − 1
2 + 1

2

√
−3 = e2πi/3, ρ2 = e−2πi/3.

Addition of − 1
3a to each of these roots gives the roots

of f(z) = 0.

Example

f(z) = z3−6z2 +6z−2, g(w) = w3−6w−6, A = 3 3
√

4,
B = 3 3

√
2. Roots of f(z) = 0 are 2 + 3

√
4 + 3

√
2,

2 + 3
√

4ρ+ 3
√

2ρ2, 2 + 3
√

4ρ2 + 3
√

2ρ.
For another method see §4.43.

Quartic Equations

Set z = w− 1
4a to reduce f(z) = z4 + az3 + bz2 + cz+ d

to

1.11.16

g(w) = w4 + pw2 + qw + r,

p = (−3a2 + 8b)/8, q = (a3 − 4ab+ 8c)/8,
r = (−3a4 + 16a2b− 64ac+ 256d)/256.

The discriminant of g(w) is
1.11.17

D = 16p4r− 4p3q2− 128p2r2 + 144pq2r− 27q4 + 256r3.

For the roots α1, α2, α3, α4 of g(w) = 0 and the roots
θ1, θ2, θ3 of the resolvent cubic equation

1.11.18 z3 − 2pz2 + (p2 − 4r)z + q2 = 0,
we have

1.11.19

2α1 =
√
−θ1 +

√
−θ2 +

√
−θ3,

2α2 =
√
−θ1 −

√
−θ2 −

√
−θ3,

2α3 = −
√
−θ1 +

√
−θ2 −

√
−θ3,

2α4 = −
√
−θ1 −

√
−θ2 +

√
−θ3.

The square roots are chosen so that

1.11.20
√
−θ1

√
−θ2

√
−θ3 = −q.

Add − 1
4a to the roots of g(w) = 0 to get those of

f(z) = 0.

Example

f(z) = z4 − 4z3 + 5z + 2, g(w) = w4 − 6w2 − 3w + 4.
Resolvent cubic is z3 + 12z2 + 20z + 9 = 0 with roots
θ1 = −1, θ2 = − 1

2 (11 +
√

85), θ3 = − 1
2 (11 −

√
85),

and
√
−θ1 = 1,

√
−θ2 = 1

2 (
√

17 +
√

5),
√
−θ3 =

1
2 (
√

17 −
√

5). So 2α1 = 1 +
√

17, 2α2 = 1 −
√

17,
2α3 = −1 +

√
5, 2α4 = −1 −

√
5, and the roots of

f(z) = 0 are 1
2 (3±

√
17), 1

2 (1±
√

5).

1.11(iv) Roots of Unity and of Other Constants

The roots of

1.11.21 zn − 1 = (z − 1)(zn−1 + zn−2 + · · ·+ z + 1) = 0

are 1, e2πi/n, e4πi/n, . . . , e(2n−2)πi/n, and of zn + 1 = 0
they are eπi/n, e3πi/n, . . . , e(2n−1)πi/n.

The roots of

1.11.22 zn = a+ ib, a, b real,

are

1.11.23 n
√
R

(
cos
(
α+ 2kπ

n

)
+ i sin

(
α+ 2kπ

n

))
,

where R = (a2 + b2)1/2, α = ph(a+ ib), with the prin-
cipal value of phase (§1.9(i)), and k = 0, 1, . . . , n− 1.

1.11(v) Stable Polynomials

1.11.24 f(z) = a0 + a1z + · · ·+ anz
n,

with real coefficients, is called stable if the real parts of
all the zeros are strictly negative.

Hurwitz Criterion

Let

1.11.25

D1 = a1, D2 =
∣∣∣∣a1 a3

a0 a2

∣∣∣∣ , D3 =

∣∣∣∣∣∣
a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣ ,
and

1.11.26 Dk = det[h(1)
k , h

(3)
k , . . . , h

(2k−1)
k ],

where the column vector h
(m)
k consists of the first k

members of the sequence am, am−1, am−2, . . . with aj =
0 if j < 0 or j > n.

Then f(z), with an 6= 0, is stable iff a0 6= 0;
D2k > 0, k = 1, . . . ,

⌊
1
2n
⌋
; signD2k+1 = sign a0,

k = 0, 1, . . . ,
⌊

1
2n−

1
2

⌋
.
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1.12 Continued Fractions

1.12(i) Notation

The notation used throughout this Handbook for the
continued fraction

1.12.1
b0 +

a1

b1 +
a2

b2 + .. .
is

1.12.2 b0 +
a1

b1 +
a2

b2+
· · · .

1.12(ii) Convergents

1.12.3 C = b0 +
a1

b1 +
a2

b2 +
· · · , an 6= 0,

1.12.4 Cn = b0 +
a1

b1 +
a2

b2 +
· · ·

an

bn
=
An
Bn

.

Cn is called the nth approximant or convergent to C.
An and Bn are called the nth (canonical) numerator
and denominator respectively.

Recurrence Relations

1.12.5
Ak = bkAk−1+akAk−2 , Bk = bkBk−1+akBk−2,

k = 1, 2, 3, . . . ,

1.12.6 A−1 = 1, A0 = b0, B−1 = 0, B0 = 1.

Determinant Formula

1.12.7

AnBn−1 −BnAn−1 = (−1)n−1
n∏
k=1

ak, n = 0, 1, 2, . . . .

1.12.8 Cn −Cn−1 =
(−1)n−1

∏n
k=1 ak

Bn−1Bn
, n = 1, 2, 3, . . . ,

1.12.9 Cn = b0 +
a1

B0B1
− · · ·+ (−1)n−1

∏n
k=1 ak

Bn−1Bn
.

1.12.10 an =
An−1Bn −AnBn−1

An−1Bn−2 −An−2Bn−1
, n = 1, 2, 3, . . . ,

1.12.11 an =
Bn
Bn−2

Cn−1 − Cn
Cn−1 − Cn−2

, n = 2, 3, 4, . . . ,

1.12.12 bn =
AnBn−2 −An−2Bn

An−1Bn−2 −An−2Bn−1
, n = 1, 2, 3, . . . ,

1.12.13 bn =
Bn
Bn−1

Cn − Cn−2

Cn−1 − Cn−2
, n = 2, 3, 4, . . . ,

1.12.14 b0 = A0 = C0, b1 = B1, a1 = A1 −A0B1.

Equivalence

Two continued fractions are equivalent if they have the
same convergents.

b0 +
a1

b1 +
a2

b2 +
· · · is equivalent to b′0 +

a′1
b′1 +

a′2
b′2 +

· · · if there is a sequence {dn}∞n=0, d0 = 1,

dn 6= 0, such that

1.12.15 a′n = dndn−1an, n = 1, 2, 3, . . . ,
and

1.12.16 b′n = dnbn, n = 0, 1, 2, . . . .

Formally,

1.12.17

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
· · · = b0 +

a1/b1

1 +
a2/(b1b2)

1 +
a3/(b2b3)

1 +
· · ·

an/(bn−1bn)
1 +

· · ·

= b0 +
1

(1/a1 )b1 +
1

(a1/a2 )b2 +
1

(a2/(a1a3) )b3 +
1

(a1a3/(a2a4) )b4 +
· · ·.

Series

1.12.18 p0 +
n∑
k=1

p1p2 · · · pk = p0 +
p1

1−
p2

1 + p2 −
p3

1 + p3 −
· · ·

pn

1 + pn
, n = 0, 1, 2, . . . ,

when pk 6= 0, k = 1, 2, 3, . . . .

1.12.19

n∑
k=0

ckx
k = c0 +

c1x

1−
(c2/c1 )x

1 + (c2/c1 )x−
(c3/c2 )x

1 + (c3/c2 )x−
· · ·

(cn/cn−1 )x
1 + (cn/cn−1 )x

, n = 0, 1, 2, . . . ,

when ck 6= 0, k = 1, 2, 3, . . . .
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Fractional Transformations

Define

1.12.20 Cn(w) = b0 +
a1

b1 +
a2

b2 +
· · · an

bn + w
.

Then
1.12.21 Cn(w) =

An +An−1w

Bn +Bn−1w
, Cn(0) = Cn, Cn(∞) = Cn−1 =

An−1

Bn−1
.

1.12(iii) Existence of Convergents

A sequence {Cn} in the extended complex plane, C∪{∞}, can be a sequence of convergents of the continued fraction
(1.12.3) iff

1.12.22 C0 6=∞, Cn 6= Cn−1, n = 1, 2, 3, . . . .

1.12(iv) Contraction and Extension

A contraction of a continued fraction C is a continued fraction C ′ whose convergents {C ′n} form a subsequence of
the convergents {Cn} of C. Conversely, C is called an extension of C ′. If C ′n = C2n, n = 0, 1, 2, . . . , then C ′ is called
the even part of C. The even part of C exists iff b2k 6= 0, k = 1, 2, . . . , and up to equivalence is given by

1.12.23 b0 +
a1b2

a2 + b1b2 −
a2a3b4

a3b4 + b2(a4 + b3b4)−
a4a5b2b6

a5b6 + b4(a6 + b5b6)−
a6a7b4b8

a7b8 + b6(a8 + b7b8)−
· · · .

If C ′n = C2n+1, n = 0, 1, 2, . . . , then C ′ is called the odd part of C. The odd part of C exists iff b2k+1 6= 0,
k = 0, 1, 2, . . . , and up to equivalence is given by

1.12.24
a1 + b0b1

b1
−

a1a2b3/b1

a2b3 + b1(a3 + b2b3)−
a3a4b1b5

a4b5 + b3(a5 + b4b5)−
a5a6b3b7

a6b7 + b5(a7 + b6b7)−
· · · .

1.12(v) Convergence

A continued fraction converges if the convergents Cn
tend to a finite limit as n→∞.

Pringsheim’s Theorem

The continued fraction
a1

b1 +
a2

b2 +
· · · converges when

1.12.25 |bn| ≥ |an|+ 1, n = 1, 2, 3, . . . .
With these conditions the convergents Cn satisfy |Cn| <
1 and Cn → C with |C| ≤ 1.

Van Vleck’s Theorem

Let the elements of the continued fraction
1

b1 +
1

b2 +
· · · satisfy

1.12.26 − 1
2π + δ < ph bn < 1

2π − δ, n = 1, 2, 3, . . . ,
where δ is an arbitrary small positive constant. Then
the convergents Cn satisfy

1.12.27 − 1
2π + δ < phCn < 1

2π − δ, n = 1, 2, 3, . . . ,
and the even and odd parts of the continued fraction
converge to finite values. The continued fraction con-
verges iff, in addition,

1.12.28

∞∑
n=1

|bn| =∞.

In this case |phC| ≤ 1
2π.

1.12(vi) Applications

For analytical and numerical applictions of continued
fractions to special functions see §3.10.

1.13 Differential Equations

1.13(i) Existence of Solutions

A domain in the complex plane is simply-connected if it
has no “holes”; more precisely, if its complement in the
extended plane C ∪ {∞} is connected.

The equation

1.13.1
d2w

dz2 + f(z)
dw

dz
+ g(z)w = 0,

where z ∈ D, a simply-connected domain, and f(z),
g(z) are analytic in D, has an infinite number of an-
alytic solutions in D. A solution becomes unique, for
example, when w and dw/dz are prescribed at a point
in D.
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Fundamental Pair

Two solutions w1(z) and w2(z) are called a fundamental
pair if any other solution w(z) is expressible as

1.13.2 w(z) = Aw1(z) +Bw2(z),
where A and B are constants. A fundamental pair can
be obtained, for example, by taking any z0 ∈ D and
requiring that
1.13.3

w1(z0) = 1, w′1(z0) = 0, w2(z0) = 0, w′2(z0) = 1.

Wronskian

The Wronskian of w1(z) and w2(z) is defined by

1.13.4 W {w1(z), w2(z)} = w1(z)w′2(z)− w2(z)w′1(z).
Then

1.13.5 W {w1(z), w2(z)} = ce−
R
f(z) dz,

where c is independent of z. If f(z) = 0, then the Wron-
skian is constant.

The following three statements are equivalent:
w1(z) and w2(z) comprise a fundamental pair in D;
W {w1(z), w2(z)} does not vanish in D; w1(z) and w2(z)
are linearly independent, that is, the only constants A
and B such that

1.13.6 Aw1(z) +Bw2(z) = 0, ∀z ∈ D,
are A = B = 0.

1.13(ii) Equations with a Parameter

Assume that in the equation

1.13.7
d2w

dz2 + f(u, z)
dw

dz
+ g(u, z)w = 0,

u and z belong to domains U and D respectively, the
coefficients f(u, z) and g(u, z) are continuous functions
of both variables, and for each fixed u (fixed z) the two
functions are analytic in z (in u). Suppose also that at
(a fixed) z0 ∈ D, w and ∂w/∂z are analytic functions
of u. Then at each z ∈ D, w, ∂w/∂z and ∂2w

/
∂z2 are

analytic functions of u.

1.13(iii) Inhomogeneous Equations

The inhomogeneous (or nonhomogeneous) equation

1.13.8
d2w

dz2 + f(z)
dw

dz
+ g(z)w = r(z)

with f(z), g(z), and r(z) analytic in D has infinitely
many analytic solutions in D. If w0(z) is any one
solution, and w1(z), w2(z) are a fundamental pair of
solutions of the corresponding homogeneous equation
(1.13.1), then every solution of (1.13.8) can be expressed
as

1.13.9 w(z) = w0(z) +Aw1(z) +Bw2(z),
where A and B are constants.

Variation of Parameters

With the notation of (1.13.8) and (1.13.9)

1.13.10

w0(z) = w2(z)
∫

w1(z)r(z)
W {w1(z), w2(z)}

dz

− w1(z)
∫

w2(z)r(z)
W {w1(z), w2(z)}

dz.

1.13(iv) Change of Variables

Transformation of the Point at Infinity

The substitution ξ = 1/z in (1.13.1) gives

1.13.11
d2W

dξ2 + F (ξ)
dW

dξ
+G(ξ)W = 0,

where

1.13.12

W (ξ) = w

(
1
ξ

)
,

F (ξ) =
2
ξ
− 1
ξ2
f

(
1
ξ

)
,

G(ξ) =
1
ξ4
g

(
1
ξ

)
.

Elimination of First Derivative by Change of Dependent
Variable

The substitution

1.13.13 w(z) = W (z) exp
(
− 1

2

∫
f(z) dz

)
in (1.13.1) gives

1.13.14
d2W

dz2 −H(z)W = 0,

where

1.13.15 H(z) = 1
4f

2(z) + 1
2f
′(z)− g(z).

Elimination of First Derivative by Change of Independent
Variable

In (1.13.1) substitute

1.13.16 η =
∫

exp
(
−
∫
f(z) dz

)
dz.

Then

1.13.17
d2w

dη2 + g(z) exp
(

2
∫
f(z) dz

)
w = 0.

Liouville Transformation

Let W (z) satisfy (1.13.14), ζ(z) be any thrice-
differentiable function of z, and

1.13.18 U(z) = (ζ ′(z))1/2W (z).

Then
1.13.19

d2U

dζ2 =
(
ż2H(z)− 1

2 {z, ζ}
)
U.
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Here dots denote differentiations with respect to ζ, and
{z, ζ} is the Schwarzian derivative:

1.13.20 {z, ζ} = −2ż 1/2 d2

dζ2 (ż− 1/2 ) =
...
z

ż
− 3

2

(
z̈

ż

)2
.

Cayley’s Identity

For arbitrary ξ and ζ,

1.13.21 {z, ζ} = (dξ/dζ )2 {z, ξ}+ {ξ, ζ} .

1.13.22 {z, ζ} = −(dz/dζ )2 {ζ, z} .

1.13(v) Products of Solutions

The product of any two solutions of (1.13.1) satisfies

1.13.23

d3w

dz3 + 3f
d2w

dz2 + (2f2 + f ′ + 4g)
dw

dz
+ (4fg+ 2g′)w = 0.

If U(z) and V (z) are respectively solutions of

1.13.24
d2U

dz2 + IU = 0,
d2V

dz2 + JV = 0,

then W = UV is a solution of

1.13.25

d

dz

(
W ′′′ + 2(I + J)W ′ + (I ′ + J ′)W

I − J

)
= −(I − J)W.

1.13(vi) Singularities

For classification of singularities of (1.13.1) and expan-
sions of solutions in the neighborhoods of singularities,
see §2.7.

1.13(vii) Closed-Form Solutions

For an extensive collection of solutions of differential
equations of the first, second, and higher orders see
Kamke (1977).

1.14 Integral Transforms

1.14(i) Fourier Transform

The Fourier transform of a real- or complex-valued
function f(t) is defined by

1.14.1 F (x) =
1√
2π

∫ ∞
−∞

f(t)eixt dt.

(Some references replace ixt by −ixt.)
If f(t) is absolutely integrable on (−∞,∞), then

F (x) is continuous, F (x)→ 0 as x→ ±∞, and

1.14.2 |F (x)| ≤ 1√
2π

∫ ∞
−∞
|f(t)| dt.

Inversion

Suppose that f(t) is absolutely integrable on (−∞,∞)
and of bounded variation in a neighborhood of t = u
(§1.4(v)). Then

1.14.3 1
2 (f(u+) + f(u−)) =

1√
2π

∫ ∞
−∞

F (x)e−ixu dx,

where the last integral denotes the Cauchy principal
value (1.4.25).

In many applications f(t) is absolutely integrable
and f ′(t) is continuous on (−∞,∞). Then

1.14.4 f(t) =
1√
2π

∫ ∞
−∞

F (x)e−ixt dx.

Convolution

For Fourier transforms, the convolution (f ∗g)(t) of two
functions f(t) and g(t) defined on (−∞,∞) is given by

1.14.5 (f ∗ g)(t) =
1√
2π

∫ ∞
−∞

f(t− s)g(s) ds.

If f(t) and g(t) are absolutely integrable on (−∞,∞),
then so is (f ∗ g)(t), and its Fourier transform is
F (x)G(x), where G(x) is the Fourier transform of g(t).

Parseval’s Formula

Suppose f(t) and g(t) are absolutely integrable on
(−∞,∞), and F (x) and G(x) are their respective
Fourier transforms. Then

1.14.6 (f ∗ g)(t) =
1√
2π

∫ ∞
−∞

F (x)G(x)e−itx dx,

1.14.7

∫ ∞
−∞

F (x)G(x) dx =
∫ ∞
−∞

f(t)g(−t) dt,

1.14.8

∫ ∞
−∞
|F (x)|2 dx =

∫ ∞
−∞
|f(t)|2 dt.

(1.14.8) is Parseval’s formula.

Uniqueness

If f(t) and g(t) are continuous and absolutely inte-
grable on (−∞,∞), and F (x) = G(x) for all x, then
f(t) = g(t) for all t.

1.14(ii) Fourier Cosine and Sine Transforms

These are defined respectively by

1.14.9 Fc(x) =

√
2
π

∫ ∞
0

f(t) cos(xt) dt,

1.14.10 Fs(x) =

√
2
π

∫ ∞
0

f(t) sin(xt) dt.
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Inversion

If f(t) is absolutely integrable on [0,∞) and of bounded
variation (§1.4(v)) in a neighborhood of t = u, then

1.14.11 1
2 (f(u+) +f(u−)) =

√
2
π

∫ ∞
0

Fc(x) cos(ux) dx,

1.14.12 1
2 (f(u+) + f(u−)) =

√
2
π

∫ ∞
0

Fs(x) sin(ux) dx.

Parseval’s Formula

If
∫∞

0
|f(t)| dt < ∞, g(t) is of bounded variation on

(0,∞) and g(t)→ 0 as t→∞, then

1.14.13

∫ ∞
0

Fc(x)Gc(x) dx =
∫ ∞

0

f(t)g(t) dt,

1.14.14

∫ ∞
0

Fs(x)Gs(x) dx =
∫ ∞

0

f(t)g(t) dt,

1.14.15

∫ ∞
0

(Fc(x))2 dx =
∫ ∞

0

(f(t))2 dt,

1.14.16

∫ ∞
0

(Fs(x))2 dx =
∫ ∞

0

(f(t))2 dt,

where Gc(x) and Gs(x) are respectively the cosine and
sine transforms of g(t).

1.14(iii) Laplace Transform

Suppose f(t) is a real- or complex-valued function and s
is a real or complex parameter. The Laplace transform
of f is defined by

1.14.17 L (f(t); s) =
∫ ∞

0

e−stf(t) dt.

Alternative notations are L (f(t)), L (f ; s), or even
L (f), when it is not important to display all the vari-
ables.

Convergence and Analyticity

Assume that on [0,∞) f(t) is piecewise continuous and
of exponential growth, that is, constants M and α exist
such that

1.14.18 |f(t)| ≤Meαt, 0 ≤ t <∞.
Then L (f(t); s) is an analytic function of s for <s > α.
Moreover,

1.14.19 L (f(t); s)→ 0, <s→∞.
Throughout the remainder of this subsection we as-

sume (1.14.18) is satisfied and <s > α.

Inversion

If f(t) is continuous and f ′(t) is piecewise continuous
on [0,∞), then
1.14.20

f(t) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT
ets L (f(t); s) ds, σ > α.

Moreover, if L (f(t); s) = O
(
s−K

)
in some half-plane

<s ≥ γ and K > 1, then (1.14.20) holds for σ > γ.

Translation

If <s > max(<(a+ α), α), then

1.14.21 L (f(t); s− a) = L
(
eatf(t); s

)
.

Also, if a ≥ 0 then

1.14.22 L (H(t− a)f(t− a); s) = e−as L (f(t); s),

where H is the Heaviside function; see (1.16.13).

Differentiation and Integration

If f(t) is piecewise continuous, then
1.14.23

dn

dsn
L (f(t); s) = L ((−t)nf(t); s), n = 1, 2, 3, . . . .

If also limt→0+ f(t)/t exists, then

1.14.24

∫ ∞
s

L (f(t);u) du = L

(
f(t)
t

; s
)
.

Periodic Functions

If a > 0 and f(t+ a) = f(t) for t > 0, then

1.14.25 L (f(t); s) =
1

1− e−as

∫ a

0

e−stf(t) dt.

Alternatively if f(t+ a) = −f(t) for t > 0, then

1.14.26 L (f(t); s) =
1

1 + e−as

∫ a

0

e−stf(t) dt.

Derivatives

If f(t) is continuous on [0,∞) and f ′(t) is piecewise
continuous on (0,∞), then

1.14.27 L (f ′(t); s) = sL (f(t); s)− f(0+).

If f(t) and f ′(t) are piecewise continuous on [0,∞)
with discontinuities at (0 =) t0 < t1 < · · · < tn, then

1.14.28

L (f ′(t); s) = sL (f(t); s)− f(0+)

−
n∑
k=1

e−stk(f(tk+)− f(tk−)).

Next, assume f(t), f ′(t), . . . , f (n−1)(t) are contin-
uous and each satisfies (1.14.18). Also assume that
f (n)(t) is piecewise continuous on [0,∞). Then
1.14.29

L
(
f (n)(t); s

)
= sn L (f(t); s)− sn−1f(0+)

− sn−2f ′(0+)− · · · − f (n−1)(0+).

Convolution

For Laplace transforms, the convolution of two functions
f(t) and g(t), defined on [0,∞), is

1.14.30 (f ∗ g)(t) =
∫ t

0

f(u)g(t− u) du.

If f(t) and g(t) are piecewise continuous, then

1.14.31 L (f ∗ g) = L (f) L (g).
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Uniqueness

If f(t) and g(t) are continuous and L (f) = L (g), then
f(t) = g(t).

1.14(iv) Mellin Transform

The Mellin transform of a real- or complex-valued func-
tion f(x) is defined by

1.14.32 M (f ; s) =
∫ ∞

0

xs−1f(x) dx.

Alternative notations for M (f ; s) are M (f(x); s)
and M (f).

If xσ−1f(x) is integrable on (0,∞) for all σ in
a < σ < b, then the integral (1.14.32) converges and
M (f ; s) is an analytic function of s in the vertical strip
a < <s < b. Moreover, for a < σ < b,

1.14.33 lim
t→±∞

M (f ;σ + it) = 0.

Note: If f(x) is continuous and α and β are real
numbers such that f(x) = O(xα) as x → 0+ and
f(x) = O

(
xβ
)

as x → ∞, then xσ−1f(x) is integrable
on (0,∞) for all σ ∈ (−α,−β).

Inversion

Suppose the integral (1.14.32) is absolutely convergent
on the line <s = σ and f(x) is of bounded variation in
a neighborhood of x = u. Then
1.14.34

1
2 (f(u+) + f(u−)) =

1
2πi

lim
T→∞

∫ σ+iT

σ−iT
u−s M (f ; s) ds.

If f(x) is continuous on (0,∞) and M (f ;σ + it) is
integrable on (−∞,∞), then

1.14.35 f(x) =
1

2πi

∫ σ+i∞

σ−i∞
x−s M (f ; s) ds.

Parseval-type Formulas

Suppose x−σf(x) and xσ−1g(x) are absolutely in-
tegrable on (0,∞) and either M (g;σ + it) or
M (f ; 1− σ − it) is absolutely integrable on (−∞,∞).
Then for y > 0,

1.14.36

∫ ∞
0

f(x)g(yx) dx

=
1

2πi

∫ σ+i∞

σ−i∞
y−s M (f ; 1− s) M (g; s) ds,

1.14.37

∫ ∞
0

f(x)g(x) dx

=
1

2πi

∫ σ+i∞

σ−i∞
M (f ; 1− s) M (g; s) ds.

When f is real and σ = 1
2 ,

1.14.38

∫ ∞
0

(f(x))2 dx =
1

2π

∫ ∞
−∞

∣∣M (
f ; 1

2 + it
)∣∣2 dt.

Convolution

Let
1.14.39 (f ∗ g)(x) =

∫ ∞
0

f(y)g
(
x

y

)
dy

y
.

If xσ−1f(x) and xσ−1g(x) are absolutely integrable on
(0,∞), then for s = σ + it,

1.14.40

∫ ∞
0

xs−1(f ∗ g)(x) dx = M (f ; s) M (g; s).

1.14(v) Hilbert Transform

The Hilbert transform of a real-valued function f(t) is
defined in the following equivalent ways:

1.14.41 H (f ;x) =H (f(t);x) =H(f) =
1
π

∫ ∞
−∞

f(t)
t− x

dt,

1.14.42 H (f ;x) = lim
y→0+

1
π

∫ ∞
−∞

t− x
(t− x)2 + y2

f(t) dt,

1.14.43 H (f ;x) = lim
ε→0+

1
π

∫ ∞
ε

f(x+ t)− f(x− t)
t

dt.

Inversion

Suppose f(t) is continuously differentiable on (−∞,∞)
and vanishes outside a bounded interval. Then

1.14.44 f(x) = − 1
π

∫ ∞
−∞

H (f ;u)
u− x

du.

Inequalities

If |f(t)|p, p > 1, is integrable on (−∞,∞), then so is
|H (f ;x)|p and

1.14.45

∫ ∞
−∞
|H (f ;x)|p dx ≤ Ap

∫ ∞
−∞
|f(t)|p dt,

where Ap = tan
(

1
2π/p

)
when 1 < p ≤ 2, or cot

(
1
2π/p

)
when p ≥ 2. These bounds are sharp, and equality holds
when p = 2.

Fourier Transform

When f(t) satisfies the same conditions as those for
(1.14.44),

1.14.46
1√
2π

∫ ∞
−∞
H (f ; t)eixt dt = −i(signx)F (x),

where F (x) is given by (1.14.1).

1.14(vi) Stieltjes Transform

The Stieltjes transform of a real-valued function f(t) is
defined by

1.14.47 S (f ; s) = S (f(t); s) = S(f) =
∫ ∞

0

f(t)
s+ t

dt.

Sufficient conditions for the integral to converge are
that s is a positive real number, and f(t) = O

(
t−δ
)

as t→∞, where δ > 0.
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If the integral converges, then it converges uniformly
in any compact domain in the complex s-plane not con-
taining any point of the interval (−∞, 0]. In this case,
S (f ; s) represents an analytic function in the s-plane
cut along the negative real axis, and

1.14.48

dm

dsm
S (f ; s) = (−1)mm!

∫ ∞
0

f(t) dt
(s+ t)m+1

,

m = 0, 1, 2, . . . .

Inversion

If f(t) is absolutely integrable on [0, R] for every finite
R, and the integral (1.14.47) converges, then

1.14.49
lim
t→0+

S (f ;−σ − it)− S (f ;−σ + it)
2πi

= 1
2 (f(σ+) + f(σ−)),

for all values of the positive constant σ for which the
right-hand side exists.

Laplace Transform

If f(t) is piecewise continuous on [0,∞) and the integral
(1.14.47) converges, then

1.14.50 S(f) = L (L (f)).

1.14(vii) Tables

Table 1.14.1: Fourier transforms.

f(t)
1√
2π

∫ ∞
−∞

f(t)eixt dt

{
1, |t| < a,

0, otherwise

√
2
π

sin(ax)
x

e−a|t|
√

2
π

a

a2 + x2
, a > 0

te−a|t|
√

2
π

2iax
(a2 + x2)2

, a > 0

|t|e−a|t|
√

2
π

a2 − x2

(a2 + x2)2
, a > 0

e−a|t|

|t|1/2
(a+ (a2 + x2)1/2)1/2

(a2 + x2)1/2
, a > 0

sinh(at)
sinh(πt)

1√
2π

sin a
coshx+ cos a

, −π <
a < π

cosh(at)
cosh(πt)

√
2
π

cos
(

1
2a
)

cosh
(

1
2x
)

coshx+ cos a
, −π <

a < π

e−at
2 1√

2a
e−x

2/(4a), a > 0

sin
(
at2
)

− 1√
2a

sin
(
x2

4a
− π

4

)
, a > 0

cos
(
at2
) 1√

2a
cos
(
x2

4a
− π

4

)
, a > 0
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Table 1.14.2: Fourier cosine transforms.

f(t)
√

2
π

∫ ∞
0

f(t) cos(xt) dt, x > 0

{
1, 0 < t ≤ a,
0, otherwise

√
2
π

sin(ax)
x

1
a2 + t2

√
π

2
e−ax

a
, <a > 0

1
(a2 + t2)2

√
π

2
(1 + ax)e−ax

2a3
, <a > 0

4a3

4a4 + t4
√
πe−ax sin

(
ax+ 1

4π
)
, <a > 0

e−at
√

2
π

a

a2 + x2
, <a > 0

e−at
2 1√

2a
e−x

2/(4a), <a > 0

sin
(
at2
)

− 1√
2a

sin
(
x2

4a
− π

4

)
, a > 0

cos
(
at2
) 1√

2a
cos
(
x2

4a
− π

4

)
, a > 0

ln
(

1 +
a2

t2

) √
2π

1− e−ax

x
, <a > 0

ln
(
a2 + t2

b2 + t2

) √
2π
e−bx − e−ax

x
, <a > 0,

<b > 0

Table 1.14.3: Fourier sine transforms.

f(t)
√

2
π

∫ ∞
0

f(t) sin(xt) dt, x > 0

t−1

√
π

2

t−1/2 x−1/2

t−3/2 2x1/2

t

a2 + t2

√
π

2
e−ax, <a > 0

t

(a2 + t2)2

√
π

8
x

a
e−ax, <a > 0

1
t(a2 + t2)

√
π

2
1− e−ax

a2
, <a > 0

e−at

t

√
2
π

arctan
(x
a

)
, <a > 0

e−at
√

2
π

x

a2 + x2
, <a > 0

te−at
√

2
π

2ax
(a2 + x2)2

, <a > 0

te−at
2

(2a)−3/2xe−x
2/(4a), |ph a| < 1

2π

sin(at)
t

1√
2π

ln
∣∣∣∣x+ a

x− a

∣∣∣∣, a > 0

arctan
(
t

a

) √
π

2
e−ax

x
, a > 0

ln
∣∣∣∣ t+ a

t− a

∣∣∣∣ √
2π

sin(ax)
x

, a > 0
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Table 1.14.4: Laplace transforms.

f(t)
∫ ∞

0

e−stf(t) dt

1
1
s

, <s > 0

tn

n!
1

sn+1
, <s > 0

1√
πt

1√
s

, <s > 0

e−at
1

s+ a
, <(s+ a) > 0

tne−at

n!
1

(s+ a)n+1
, <(s+ a) > 0

e−at − e−bt

b− a
1

(s+ a)(s+ b)
, a 6= b,
<s > −<a,
<s > −<b

sin(at)
a

s2 + a2
, <s > |=a|

cos(at)
s

s2 + a2
, <s > |=a|

sinh(at)
a

s2 − a2
, <s > |<a|

cosh(at)
s

s2 − a2
, <s > |<a|

t sin(at)
2as

(s2 + a2)2
, <s > |=a|

t cos(at)
s2 − a2

(s2 + a2)2
, <s > |=a|

e−bt − e−at

t
ln
(
s+ a

s+ b

)
, <s > −<a,

<s > −<b

2(1− cosh(at))
t

ln
(

1− a2

s2

)
, <(s+ a) > 0

2(1− cos(at))
t

ln
(

1 +
a2

s2

)
, <s > 0

sin(at)
t

arctan
(a
s

)
, <s > 0

Table 1.14.5: Mellin transforms.

f(x)
∫ ∞

0

xs−1f(x) dx

{
1, x < a,

0, x ≥ a
as

s
, a ≥ 0, <s > 0{

ln(a/x), x < a,

0, x ≥ a
as

s2
, a ≥ 0, <s > 1

1
1− x

π cot(sπ), 0 < <s < 1,
(Cauchy p. v.)

1
1 + x

π csc(sπ), 0 < <s < 1

ln(1 + ax)
π csc(sπ)
sas

, |ph a| < π,
−1 < <s < 0

ln
∣∣∣∣1 + x

1− x

∣∣∣∣ π tan
(

1
2sπ

)
s

, −1 < <s < 1

ln(1 + x)
x

π csc(sπ)
1− s

, 0 < <s < 1

arctanx −
π sec

(
1
2sπ

)
2s

, −1 < <s < 0

arccotx
π sec

(
1
2sπ

)
2s

, 0 < <s < 1

1 + x cos θ
1 + 2x cos θ + x2

π cos(sθ)
sin(sπ)

, −π < θ < π,
0 < <s < 1

x sin θ
1 + 2x cos θ + x2

π sin(sθ)
sin(sπ)

, −π < θ < π,
0 < <s < 1

1.14(viii) Compendia

For more extensive tables of the integral transforms
of this section and tables of other integral transforms,
see Erdélyi et al. (1954a,b), Gradshteyn and Ryzhik
(2000), Marichev (1983), Oberhettinger (1972, 1974,
1990), Oberhettinger and Badii (1973), Oberhettinger
and Higgins (1961), Prudnikov et al. (1986a,b, 1990,
1992a,b).
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1.15 Summability Methods

1.15(i) Definitions for Series

1.15.1 sn =
n∑
k=0

ak.

Abel Summability

1.15.2

∞∑
n=0

an = s (A),

if

1.15.3 lim
x→1−

∞∑
n=0

anx
n = s.

Cesàro Summability

1.15.4

∞∑
n=0

an = s (C,1),

if
1.15.5 lim

n→∞

s0 + s1 + · · ·+ sn
n+ 1

= s.

General Cesàro Summability

For α > −1,

1.15.6

∞∑
n=0

an = s (C,α),

if

1.15.7 lim
n→∞

n!
(α+ 1)n

n∑
k=0

(α+ 1)k
k!

an−k = s.

Borel Summability

1.15.8

∞∑
n=0

an = s (B),

if

1.15.9 lim
t→∞

e−t
∞∑
n=0

sn
n!
tn = s.

1.15(ii) Regularity

Methods of summation are regular if they are consis-
tent with conventional summation. All of the methods
described in §1.15(i) are regular. For example if

1.15.10

∞∑
n=0

an = s,

then

1.15.11

∞∑
n=0

an = s (A).

1.15(iii) Summability of Fourier Series

Poisson Kernel

1.15.12

P (r, θ) =
1− r2

1− 2r cos θ + r2
=

∞∑
n=−∞

r|n|einθ, 0 ≤ r < 1,

1.15.13
1

2π

∫ 2π

0

P (r, θ) dθ = 1.

As r → 1−

1.15.14 P (r, θ)→ 0,

uniformly for θ ∈ [δ, 2π−δ]. (Here and elsewhere in this
subsection δ is a constant such that 0 < δ < π.)

Fejér Kernel

For n = 0, 1, 2, . . . ,

1.15.15 Kn(θ) =
1

n+ 1

(
sin
(

1
2 (n+ 1)θ

)
sin
(

1
2θ
) )2

,

1.15.16
1

2π

∫ 2π

0

Kn(θ) dθ = 1.

As n→∞

1.15.17 Kn(θ)→ 0,

uniformly for θ ∈ [δ, 2π − δ].

Abel Means

1.15.18 A(r, θ) =
∞∑

n=−∞
r|n|F (n)einθ,

where

1.15.19 F (n) =
1

2π

∫ 2π

0

f(t)e−int dt.

A(r, θ) is a harmonic function in polar coordinates
((1.9.27)), and

1.15.20 A(r, θ) =
1

2π

∫ 2π

0

P (r, θ − t)f(t) dt.

Cesàro (or (C,1)) Means

Let

1.15.21 σn(θ) =
s0(θ) + s1(θ) + · · ·+ sn(θ)

n+ 1
,

n = 0, 1, 2, . . . , where

1.15.22 sn(θ) =
n∑

k=−n

F (k)eikθ.

Then

1.15.23 σn(θ) =
1

2π

∫ 2π

0

Kn(θ − t)f(t) dt.
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Convergence

If f(θ) is periodic and integrable on [0, 2π], then as
n → ∞ the Abel means A(r, θ) and the (C,1) means
σn(θ) converge to

1.15.24 1
2 (f(θ+) + f(θ−))

at every point θ where both limits exist. If f(θ) is also
continuous, then the convergence is uniform for all θ.

For real-valued f(θ), if

1.15.25

∞∑
n=−∞

F (n)einθ

is the Fourier series of f(θ), then the series

1.15.26 F (0) + 2
∞∑
n=1

F (n)einθ

can be extended to the interior of the unit circle as an
analytic function

1.15.27

G(z) = G(x+ iy) = u(x, y) + iv(x, y)

= F (0) + 2
∞∑
n=1

F (n)zn.

Here u(x, y) = A(r, θ) is the Abel (or Poisson) sum of
f(θ), and v(x, y) has the series representation

1.15.28 −
∞∑

n=−∞
i(signn)F (n)r|n|einθ;

compare §1.15(v).

1.15(iv) Definitions for Integrals

Abel Summability∫∞
−∞ f(t) dt is Abel summable to L, or

1.15.29

∫ ∞
−∞

f(t) dt = L (A),

when
1.15.30 lim

ε→0+

∫ ∞
−∞

e−ε|t|f(t) dt = L.

Cesàro Summability∫∞
−∞ f(t) dt is (C,1) summable to L, or

1.15.31

∫ ∞
−∞

f(t) dt = L (C,1),

when

1.15.32 lim
R→∞

∫ R

−R

(
1− |t|

R

)
f(t) dt = L.

If
∫∞
−∞ f(t) dt converges and equals L, then the in-

tegral is Abel and Cesàro summable to L.

1.15(v) Summability of Fourier Integrals

Poisson Kernel

1.15.33 P (x, y) =
2y

x2 + y2
, y > 0, −∞ < x <∞.

1.15.34
1

2π

∫ ∞
−∞

P (x, y) dx = 1.

For each δ > 0,

1.15.35

∫
|x|≥δ

P (x, y) dx→ 0, as y → 0.

Let
1.15.36 h(x, y) =

1√
2π

∫ ∞
−∞

e−y|t|e−ixtF (t) dt,

where F (t) is the Fourier transform of f(x) (§1.14(i)).
Then
1.15.37 h(x, y) =

1
2π

∫ ∞
−∞

f(t)P (x− t, y) dt

is the Poisson integral of f(t).
If f(x) is integrable on (−∞,∞), then

1.15.38 lim
y →0+

∫ ∞
−∞
|h(x, y)− f(x)| dx = 0.

Suppose now f(x) is real-valued and integrable on
(−∞,∞). Let

1.15.39 Φ(z) = Φ(x+ iy) =
i

π

∫ ∞
−∞

f(t)
1

(x− t) + iy
dt,

where y > 0 and −∞ < x < ∞. Then Φ(z) is an ana-
lytic function in the upper half-plane and its real part
is the Poisson integral h(x, y); compare (1.9.34). The
imaginary part

1.15.40 =Φ(x+ iy) =
1
π

∫ ∞
−∞

f(t)
x− t

(x− t)2 + y2
dt

is the conjugate Poisson integral of f(x). Moreover,
limy→0+ =Φ(x+ iy) is the Hilbert transform of f(x)
(§1.14(v)).

Fejér Kernel

1.15.41 KR(s) =
1
πR

1− cos(Rs)
s2

,

1.15.42

∫ ∞
−∞

KR(s) ds = 1.

For each δ > 0,

1.15.43

∫
|s|≥δ

KR(s) ds→ 0, as R→∞.

Let

1.15.44 σR(θ) =
1√
2π

∫ R

−R

(
1− |t|

R

)
e−iθtF (t) dt,

then

1.15.45 σR(θ) =
∫ ∞
−∞

f(t)KR(θ − t) dt.
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If f(θ) is integrable on (−∞,∞), then

1.15.46 lim
R→∞

∫ ∞
−∞
|σR(θ)− f(θ)| dθ = 0.

1.15(vi) Fractional Integrals

For <α > 0, the fractional integral operator of order α
is defined by

1.15.47 Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t) dt.

For Γ(α) see §5.2, and compare (1.4.31) in the case when
α is a positive integer.

1.15.48 IαIβ = Iα+β , <α > 0, <β > 0.

For extensions of (1.15.48) see Love (1972b).
If

1.15.49 f(x) =
∞∑
k=0

akx
k,

then

1.15.50 Iαf(x) =
∞∑
k=0

k!
Γ(k + α+ 1)

akx
k+α.

1.15(vii) Fractional Derivatives

For 0 < <α < n, n an integer,

1.15.51 Dαf(x) =
dn

dxn
In−αf(x),

1.15.52 DkIα = DnIα+n−k, k = 1, 2, . . . , n.

When none of α, β, and α+ β is an integer

1.15.53 DαDβ = Dα+β .

Note that D1/2D 6= D3/2. See also Love (1972b).

1.15(viii) Tauberian Theorems

If

1.15.54

∞∑
n=0

an = s (A), an > −
K

n
, n > 0, K > 0,

then

1.15.55

∞∑
n=0

an = s.

If

1.15.56 lim
x→1−

(1− x)
∞∑
n=0

anx
n = s,

and either |an| ≤ K or an ≥ 0, then

1.15.57 lim
n→∞

a0 + a1 + · · ·+ an
n+ 1

= s.

1.16 Distributions

1.16(i) Test Functions

Let φ be a function defined on an open interval I =
(a, b), which can be infinite. The closure of the set of
points where φ 6= 0 is called the support of φ. If the sup-
port of φ is a compact set (§1.9(vii)), then φ is called
a function of compact support. A test function is an
infinitely differentiable function of compact support.

A sequence {φn} of test functions converges to a test
function φ if the support of every φn is contained in a
fixed compact set K and as n→∞ the sequence {φ(k)

n }
converges uniformly on K to φ(k) for k = 0, 1, 2, . . . .

The linear space of all test functions with the above
definition of convergence is called a test function space.
We denote it by D(I).

A mapping Λ on D(I) is a linear functional if it takes
complex values and

1.16.1 Λ(α1φ1 + α2φ2) = α1Λ(φ1) + α2Λ(φ2),
where α1 and α2 are real or complex constants. Λ :
D(I) → C is called a distribution if it is a continuous
linear functional on D(I), that is, it is a linear functional
and for every φn → φ in D(I),

1.16.2 lim
n→∞

Λ(φn) = Λ(φ).

From here on we write 〈Λ, φ〉 for Λ(φ). The space
of all distributions will be denoted by D∗(I). A distri-
bution Λ is called regular if there is a function f on I,
which is absolutely integrable on every compact subset
of I, such that

1.16.3 〈Λ, φ〉 =
∫
I

f(x)φ(x) dx.

We denote a regular distribution by Λf , or simply f ,
where f is the function giving rise to the distribution.
(If a distribution is not regular, it is called singular.)

Define

1.16.4 〈Λ1 + Λ2, φ〉 = 〈Λ1, φ〉+ 〈Λ2, φ〉 ,

1.16.5 〈cΛ, φ〉 = c 〈Λ, φ〉 = 〈Λ, cφ〉 ,
where c is a constant. More generally, if α(x) is an
infinitely differentiable function, then

1.16.6 〈αΛ, φ〉 = 〈Λ, αφ〉 .
We say that a sequence of distributions {Λn} converges
to a distribution Λ in D∗ if

1.16.7 lim
n→∞

〈Λn, φ〉 = 〈Λ, φ〉

for all φ ∈ D(I).

1.16(ii) Derivatives of a Distribution

The derivative Λ′ of a distribution is defined by

1.16.8 〈Λ′, φ〉 = −〈Λ, φ′〉 , φ ∈ D(I).
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Similarly

1.16.9

〈
Λ(k), φ

〉
= (−1)k

〈
Λ, φ(k)

〉
, k = 1, 2, . . . .

For any locally integrable function f , its distributional
derivative is Df = Λ′f .

1.16(iii) Dirac Delta Distribution

1.16.10 〈δ, φ〉 = φ(0), φ ∈ D(I),

1.16.11 〈δx0 , φ〉 = φ(x0), φ ∈ D(I),

1.16.12

〈
δ(n)
x0
, φ
〉

= (−1)nφ(n)(x0), φ ∈ D(I).

The Dirac delta distribution is singular.

1.16(iv) Heaviside Function

1.16.13 H(x) =

{
1, x > 0,
0, x ≤ 0.

1.16.14 H(x− x0) =

{
1, x > x0,

0, x ≤ x0.

1.16.15 DH = δ,

1.16.16 DH(x− x0) = δx0 .

Suppose f(x) is infinitely differentiable except at x0,
where left and right derivatives of all orders exist, and

1.16.17 σn = f (n)(x0+)− f (n)(x0−).

Then

1.16.18
Dmf = f (m) + σ0δ

(m−1)
x0

+ σ1δ
(m−2)
x0

+ · · ·
+ σm−1δx0 , m = 1, 2, . . . .

For α > −1,

1.16.19 xα+ = xαH(x) =

{
xα, x > 0,
0, x ≤ 0.

For α > 0,

1.16.20 Dxα+ = αxα−1
+ .

For α < −1 and α not an integer, define

1.16.21 xα+ =
1

(α+ 1)n
Dnxα+n

+ ,

where n is an integer such that α + n > −1. Similarly,
we write

1.16.22 ln+ x = H(x) lnx =

{
lnx, x > 0,
0, x ≤ 0,

and define

1.16.23 (−1)nn!x−1−n
+ = D(n+1) ln+ x, n = 0, 1, 2, . . . .

1.16(v) Tempered Distributions

The space T (R) of test functions for tempered dis-
tributions consists of all infinitely-differentiable func-
tions such that the function and all its derivatives are
O
(
|x|−N

)
as |x| → ∞ for all N .

A sequence {φn} of functions in T is said to converge
to a function φ ∈ T as n → ∞ if the sequence {φ(k)

n }
converges uniformly to φ(k) on every finite interval and
if the constants ck,N in the inequalities

1.16.24 |xNφ(k)
n | ≤ ck,N

do not depend on n.
A tempered distribution is a continuous linear func-

tional Λ on T . (See the definition of a distribution in
§1.16(i).) The set of tempered distributions is denoted
by T ∗.

A sequence of tempered distributions Λn converges
to Λ in T ∗ if

1.16.25 lim
n→∞

〈Λn, φ〉 = 〈Λ, φ〉 ,

for all φ ∈ T .
The derivatives of tempered distributions are defined

in the same way as derivatives of distributions.
For a detailed discussion of tempered distributions

see Lighthill (1958).

1.16(vi) Distributions of Several Variables

Let D(Rn) = Dn be the set of all infinitely differentiable
functions in n variables, φ(x1, x2, . . . , xn), with compact
support in Rn. If k = (k1, . . . , kn) is a multi-index and
x = (x1, . . . , xn) ∈ Rn, then we write xk = xk11 · · ·xknn
and φ(k)(x) = ∂kφ/( ∂xk11 · · · ∂xknn ). A sequence {φm}
of functions in Dn converges to a function φ ∈ Dn if
the supports of φm lie in a fixed compact subset K of
Rn and φ(k)

m converges uniformly to φ(k) in K for every
multi-index k = (k1, k2, . . . , kn). A distribution in Rn is
a continuous linear functional on Dn.

The partial derivatives of distributions in Rn can
be defined as in §1.16(ii). A locally integrable function
f(x) = f(x1, x2, . . . , xn) gives rise to a distribution Λf
defined by

1.16.26 〈Λf , φ〉 =
∫

Rn
f(x)φ(x) dx, φ ∈ Dn.

The distributional derivative Dkf of f is defined by
1.16.27 〈

Dkf, φ
〉

= (−1)|k|
∫

Rn
f(x)φ(k)(x) dx, φ ∈ Dn,

where k is a multi-index and |k| = k1 + k2 + · · ·+ kn.
For tempered distributions the space of test func-

tions Tn is the set of all infinitely-differentiable functions
φ of n variables that satisfy

1.16.28 |xmφ(k)(x)| ≤ cm,k, x ∈ Rn.
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Here m = (m1,m2, . . . ,mn) and k = (k1, k2, . . . , kn) are
multi-indices, and cm,k are constants. Tempered distri-
butions are continuous linear functionals on this space
of test functions. The space of tempered distributions
is denoted by T ∗n .

1.16(vii) Fourier Transforms of Distributions

Suppose φ is a test function in Tn. Then its Fourier
transform is

1.16.29 F (x) = F =
1

(2π)n/2

∫
Rn
φ(t)eix·t dt,

where x = (x1, x2, . . . , xn) and x · t = x1t1 + · · · +
xntn. F (x) is also in Tn. For a multi-index α =
(α1, α2, . . . , αn), set |α| = α1 + α2 + · · ·+ αn and

1.16.30 Dα = i−|α|Dα =
(

1
i

∂

∂x1

)α1

· · ·
(

1
i

∂

∂xn

)αn
,

1.16.31 P (x) = P =
∑

cαxα =
∑

cαx
α1
1 · · ·xαnn ,

and

1.16.32 P (D) =
∑

cαDα.

Then

1.16.33
1

(2π)n/2

∫
Rn

(P (D)φ)(t)eix·t dt = P (−x)F (x),

and

1.16.34
1

(2π)n/2

∫
Rn
P (t)φ(t)eix·t dt = P (D)F (x).

If u ∈ T ∗n is a tempered distribution, then its Fourier
transform F(u) is defined by

1.16.35 〈F(u), φ〉 = 〈u, F 〉 , φ ∈ Tn,

where F is given by (1.16.29). The Fourier transform
F(u) of a tempered distribution is again a tempered
distribution, and

1.16.36 F(P (D)u) = P (−x)F(u),

1.16.37 F(Pu) = P (D)F(u).

In (1.16.36) and (1.16.37) the derivatives in P (D) are
understood to be in the sense of distributions.

1.17 Integral and Series Representations of
the Dirac Delta

1.17(i) Delta Sequences

In applications in physics and engineering, the Dirac
delta distribution (§1.16(iii)) is historically and custom-
arily replaced by the Dirac delta (or Dirac delta func-
tion) δ(x). This is an operator with the properties:

1.17.1 δ(x) = 0, x ∈ R, x 6= 0,

and
1.17.2

∫ ∞
−∞

δ(x− a)φ(x) dx = φ(a), a ∈ R,

subject to certain conditions on the function φ(x).
From the mathematical standpoint the left-hand side
of (1.17.2) can be interpreted as a generalized integral
in the sense that

1.17.3 lim
n→∞

∫ ∞
−∞

δn(x− a)φ(x) dx = φ(a),

for a suitably chosen sequence of functions δn(x), n =
1, 2, . . . . Such a sequence is called a delta sequence and
we write, symbolically,

1.17.4 lim
n→∞

δn(x) = δ(x), x ∈ R.

An example of a delta sequence is provided by

1.17.5 δn(x− a) =
√
n

π
e−n(x−a)2 .

In this case

1.17.6 lim
n→∞

√
n

π

∫ ∞
−∞

e−n(x−a)2φ(x) dx = φ(a),

for all functions φ(x) that are continuous when x ∈
(−∞,∞), and for each a,

∫∞
−∞ e−n(x−a)2φ(x) dx con-

verges absolutely for all sufficiently large values of n.
The last condition is satisfied, for example, when φ(x) =
O
(
eαx

2
)

as x→ ±∞, where α is a real constant.
More generally, assume φ(x) is piecewise continuous

(§1.4(ii)) when x ∈ [−c, c] for any finite positive real
value of c, and for each a,

∫∞
−∞ e−n(x−a)2φ(x) dx con-

verges absolutely for all sufficiently large values of n.
Then
1.17.7

lim
n→∞

√
n

π

∫ ∞
−∞

e−n(x−a)2φ(x) dx = 1
2φ(a−) + 1

2φ(a+).

1.17(ii) Integral Representations

Formal interchange of the order of integration in the
Fourier integral formula ((1.14.1) and (1.14.4)):

1.17.8
1

2π

∫ ∞
−∞

e−iat
(∫ ∞
−∞

φ(x)eitx dx
)
dt = φ(a)

yields

1.17.9

∫ ∞
−∞

(
1

2π

∫ ∞
−∞

ei(x−a)t dt

)
φ(x) dx = φ(a).

The inner integral does not converge. However, for
n = 1, 2, . . . ,

1.17.10
1

2π

∫ ∞
−∞

e−t
2/(4n)ei(x−a)t dt =

√
n

π
e−n(x−a)2 .

Hence comparison with (1.17.5) shows that (1.17.9) can
be interpreted as a generalized integral (1.17.3) with

1.17.11 δn(x− a) =
1

2π

∫ ∞
−∞

e−t
2/(4n)ei(x−a)t dt,
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provided that φ(x) is continuous when x ∈ (−∞,∞),
and for each a,

∫∞
−∞ e−n(x−a)2φ(x) dx converges abso-

lutely for all sufficiently large values of n (as in the case
of (1.17.6)). Then comparison of (1.17.2) and (1.17.9)
yields the formal integral representation

1.17.12 δ(x− a) =
1

2π

∫ ∞
−∞

ei(x−a)t dt.

Other similar integral representations of the Dirac
delta that appear in the physics literature include the
following:

Bessel Functions and Spherical Bessel Functions
(§§10.2(ii), 10.47(ii))

1.17.13
δ(x− a) = x

∫ ∞
0

t Jν(xt) Jν(at) dt,

<ν > −1, x > 0, a > 0,
1.17.14

δ(x− a) =
2xa
π

∫ ∞
0

t2 j`(xt) j`(at) dt, x > 0, a > 0.

See Arfken and Weber (2005, Eq. (11.59)) and Konopin-
ski (1981, p. 242). For a generalization of (1.17.14) see
Maximon (1991).

Coulomb Functions (§33.14(iv))

1.17.15

δ(x− a) =
∫ ∞

0

s(x, `; r) s(a, `; r) dr, a > 0, x > 0.

See Seaton (2002).

Airy Functions (§9.2)

1.17.16 δ(x− a) =
∫ ∞
−∞

Ai(t− x) Ai(t− a) dt.

See Vallée and Soares (2004, §3.5.3).

1.17(iii) Series Representations

Formal interchange of the order of summation and inte-
gration in the Fourier summation formula ((1.8.3) and
(1.8.4)):

1.17.17
1

2π

∞∑
k=−∞

e−ika
(∫ π

−π
φ(x)eikx dx

)
= φ(a),

yields

1.17.18

∫ π

−π
φ(x)

(
1

2π

∞∑
k=−∞

eik(x−a)

)
dx = φ(a).

The sum
∑∞
k=−∞ e

ik(x−a) does not converge, but
(1.17.18) can be interpreted as a generalized integral
in the sense that

1.17.19 lim
n→∞

∫ π

−π
δn(x− a)φ(x) dx = φ(a),

where

1.17.20

δn(x− a)

=
1

2π

n∑
k=−n

eik(x−a)

(
=

sin
(
(n+ 1

2 )(x− a)
)

2π sin
(

1
2 (x− a)

) )
,

provided that φ(x) is continuous and of period 2π; see
§1.8(ii).

By analogy with §1.17(ii) we have the formal series
representation

1.17.21 δ(x− a) =
1

2π

∞∑
k=−∞

eik(x−a).

Other similar series representations of the Dirac
delta that appear in the physics literature include the
following:

Legendre Polynomials (§§14.7(i) and 18.3)

1.17.22 δ(x− a) =
∞∑
k=0

(k + 1
2 )Pk(x)Pk(a).

Laguerre Polynomials (§18.3)

1.17.23 δ(x− a) = e−(x+a)/2
∞∑
k=0

Lk(x)Lk(a).

Hermite Polynomials (§18.3)

1.17.24 δ(x− a) =
e−(x2+a2)/2

√
π

∞∑
k=0

Hk(x)Hk(a)
2kk!

.

Spherical Harmonics (§14.30)

1.17.25

δ(cos θ1 − cos θ2) δ(φ1 − φ2)

=
∞∑
`=0

∑̀
m=−`

Y`,m(θ1, φ1)Y ∗`,m(θ2, φ2).

(1.17.22)–(1.17.24) are special cases of Morse and
Feshbach (1953a, Eq. (6.3.11)). For (1.17.25) see Ar-
fken and Weber (2005, p. 792).

1.17(iv) Mathematical Definitions

The references given in §§1.17(ii)–1.17(iii) are from the
physics literature. For mathematical interpretations of
(1.17.13), (1.17.15), (1.17.16) and (1.17.22)–(1.17.25)
that resemble those given in §§1.17(ii) and 1.17(iii) for
(1.17.12) and (1.17.21), see Li and Wong (2008). For
(1.17.14) combine (1.17.13) and (10.47.3).



References 39

References

Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§1.2 Chrystal (1959, pp. 62–70, 482–483, 489), Hardy
et al. (1967, pp. 12–15).

§1.3 Vein and Dale (1999, pp. 3–12, 33–34, 51–52, 57,
79–81), For (1.3.17) see Bressoud (1999, p. 67).

§1.4 Hardy (1952, Chapters 5–7, and pp. 234–235,
247–248, 258, 285–292, 327–328), Olver (1997b,
pp. 28, 73), Rudin (1976, Chapter 5), Hardy et al.
(1967, pp. 70–77). For (1.4.13) see Riordan (1958,
pp. 35–36) and Knuth (1968, p. 50). For (1.4.31)
integrate by parts.

§1.5 Marsden and Tromba (1996, Chapters 2, 3, 5, 6,
and pp. 358–371), Davis and Snider (1987, Chap-
ter 5), Protter and Morrey (1991, pp. 288, 298)
For (1.5.36) see Love (1970, 1972a).

§1.6 Marsden and Tromba (1996, Chapter 1 and
pp. 144–147, 273–283, 396–417, 421–459, 470, 485,
506). For (1.6.9) see Hubbard and Hubbard (2002,
pp. 82–84).

§1.7 Hardy et al. (1967, pp. 1–32, 130–147, 151).

§1.8 Protter and Morrey (1991, Chapter 10), Tolstov
(1962, Chapter 1 and p. 77), Titchmarsh (1962,
Chapter 13 and pp. 419, 421). For the Riemann–
Lebesgue lemma see Olver (1997b, p. 73). For
Poisson’s summation formula see Rademacher
(1973, pp. 71–75), Titchmarsh (1986a, p. 61). For
(1.8.16) set f(x) = e−ωx

2
in (1.8.14).

§1.9 Copson (1935, Chapters 1–3 and pp. 56–69, 92–
98), Levinson and Redheffer (1970, Chapters 1–
3, and pp. 259–277, 349–351, 360), Markushevich
(1983, pp. 14–18, 41–46, 131–135), Markushevich
(1985, vol. 1, §34), Ahlfors (1966, pp. 168–169).
For a proof of the Jordan Curve Theorem see, for
example, Dienes (1931, pp. 177–197). The theo-
rem is valid with less restrictive conditions than
those assumed here. For the operations on series,
see Henrici (1974, Chapter 1) or Olver (1997b,
pp. 19–22). For (1.9.69)–(1.9.71), see Titchmarsh
(1962, §1.77).

§1.10 Copson (1935, pp. 72–81, 106–113, 117–120,
192–193, 438–440), Levinson and Redheffer (1970,
pp. 64–77, 140–143, 162–170, 392–395, 398–
402), Markushevich (1983, pp. 106–121, 234–245),
Titchmarsh (1962, pp. 13–19, 165–169, 246–250).
For (1.10.13) and (1.10.14) see Copson (1935,
§6.23). See also Andrews et al. (1999, pp. 629–
631) and Henrici (1974, pp. 57–59). The Extended
Inversion Theorem is proved in a similar way.

§1.11 Burnside and Panton (1960, Chapter 2 and
pp. 80–81), Dummit and Foote (1999, pp. 300–
301, 591–595, 611–616), Henrici (1977, vol. 2,
pp. 555–559). For the Horner scheme, see Burn-
side and Panton (1960, pp. 8–9). The double
Horner scheme is derived similarly.

§1.12 Jones and Thron (1980, pp. 20, 31–37, 42–43, 88,
92), Lorentzen and Waadeland (1992, pp. 8–9, 30,
32, 84–85).

§1.13 Olver (1997b, pp. 141–142, 145–147, 190–191),
Temme (1996a, pp. 84, 103), Watson (1944,
pp. 145–146). For (1.13.10) see Simmons (1972,
pp. 90–92).

§1.14 Titchmarsh (1986a, pp. 3–15, 42, 50–60, 119–
132, and 176–210), Schiff (1999, pp. 12–57, 91–93,
151–157, and 209–218), Paris and Kaminski (2001,
pp. 79–89), Wong (1989, pp. 147–152 and 192–
194), Henrici (1986, vol. 3, pp. 197–202), Wid-
der (1941, pp. 325–328, 340–341), Davies (1984,
pp. 11–13, 103–108, 152–153, 209–211), Pinkus
and Zafrany (1997, pp. 147–149). For (1.14.46)
see Sneddon (1972, p. 234).

§1.15 Hardy (1949, pp. 10, 154–155), Weiss (1965,
pp. 131–135, 143–148), Andrews et al. (1999,
pp. 111–114, 602–607), Wong (1989, pp. 197–
198), Widder (1941, Chapter 5). For (1.15.24)
see Körner (1989, Chapters 2, 27).

§1.16 Wong (1989, pp. 241–254, 261–279).

§1.17 (1.17.6) is a special case of Theorem 7.1 of
Olver (1997b, Chapter 3) when φ(a) 6= 0. This
theorem also extends straightforwardly to cover
φ(a) = 0. (1.17.7) is proved in a similar man-
ner. For (1.17.10) complete the square in the to-
tal power of e, make the change of variable τ =
(t/(2

√
n)−i(x−a)

√
n, and use

∫∞
−∞ e−τ

2
dτ =

√
π.





Chapter 2

Asymptotic Approximations
F. W. J. Olver1 and R. Wong2

Areas 42
2.1 Definitions and Elementary Properties . . 42
2.2 Transcendental Equations . . . . . . . . . 43
2.3 Integrals of a Real Variable . . . . . . . . 43
2.4 Contour Integrals . . . . . . . . . . . . . 46
2.5 Mellin Transform Methods . . . . . . . . 48
2.6 Distributional Methods . . . . . . . . . . 51

2.7 Differential Equations . . . . . . . . . . . 55
2.8 Differential Equations with a Parameter . 58
2.9 Difference Equations . . . . . . . . . . . 61
2.10 Sums and Sequences . . . . . . . . . . . 63
2.11 Remainder Terms; Stokes Phenomenon . 66

References 69

1Institute for Physical Science and Technology and Department of Mathematics, University of Maryland, College Park, Maryland.
2Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
Copyright c© 2009 National Institute of Standards and Technology. All rights reserved.

41



42 Asymptotic Approximations

Areas

2.1 Definitions and Elementary Properties

2.1(i) Asymptotic and Order Symbols

Let X be a point set with a limit point c. As x → c in
X

f(x) ∼ φ(x)⇐⇒ f(x)/φ(x)→ 1.2.1.1

f(x) = o(φ(x))⇐⇒ f(x)/φ(x)→ 0.2.1.2

f(x) = O(φ(x))⇐⇒ |f(x)/φ(x)| is bounded.2.1.3

The symbol O can also apply to the whole set X, and
not just as x→ c.

Examples

2.1.4 tanhx ∼ x, x→ 0 in C.

2.1.5 e−x = o(1), x→ +∞ in R.

2.1.6 sin
(
πx+ x−1

)
= O

(
x−1

)
, x→ ±∞ in Z.

2.1.7 eix = O(1), x ∈ R.
In (2.1.5) R can be replaced by any fixed ray in the
sector |phx| < 1

2π, or by the whole of the sector
|phx| ≤ 1

2π − δ. (Here and elsewhere in this chapter
δ is an arbitrary small positive constant.) But (2.1.5)
does not hold as x → ∞ in |phx| < 1

2π (for example,
set x = 1 + it and let t→ ±∞.)

If
∑∞
s=0 asz

s converges for all sufficiently small |z|,
then for each nonnegative integer n

2.1.8

∞∑
s =n

asz
s = O(zn), z → 0 in C.

Example

2.1.9 ez = 1 + z +O
(
z2
)
, z → 0 in C.

The symbols o and O can be used generically. For
example,

2.1.10 o(φ) = O(φ) , o(φ) + o(φ) = o(φ) ,
it being understood that these equalities are not re-
versible. (In other words = here really means ⊆.)

2.1(ii) Integration and Differentiation

Integration of asymptotic and order relations is permis-
sible, subject to obvious convergence conditions. For
example, suppose f(x) is continuous and f(x) ∼ xν as
x→ +∞ in R, where ν (∈ C) is a constant. Then

2.1.11

∫ ∞
x

f(t) dt ∼ − x
ν+1

ν + 1
, <ν < −1,

2.1.12

∫
f(x) dx ∼


a constant, <ν < −1,
lnx, ν = −1,
xν+1/(ν + 1), <ν > −1.

Differentiation requires extra conditions. For exam-
ple, if f(z) is analytic for all sufficiently large |z| in a
sector S and f(z) = O(zν) as z →∞ in S, ν being real,
then f ′(z) = O

(
zν−1

)
as z → ∞ in any closed sector

properly interior to S and with the same vertex (Ritt’s
theorem). This result also holds with both O’s replaced
by o’s.

2.1(iii) Asymptotic Expansions

Let
∑
asx
−s be a formal power series (convergent or

divergent) and for each positive integer n,

2.1.13 f(x) =
n−1∑
s=0

asx
−s +O

(
x−n

)
as x → ∞ in an unbounded set X in R or C. Then∑
asx
−s is a Poincaré asymptotic expansion, or simply

asymptotic expansion, of f(x) as x→∞ in X. Symbol-
ically,

2.1.14 f(x) ∼ a0 + a1x
−1 + a2x

−2 + · · · , x→∞ in X.

Condition (2.1.13) is equivalent to

2.1.15 xn

(
f(x)−

n−1∑
s=0

asx
−s

)
→ an, x→∞ in X,

for each n = 0, 1, 2, . . . . If
∑
asx
−s converges for all

sufficiently large |x|, then it is automatically the asymp-
totic expansion of its sum as x→∞ in C.

If c is a finite limit point of X, then

2.1.16

f(x) ∼ a0 + a1(x− c) + a2(x− c)2 + · · · , x→ c in X,

means that for each n, the difference between f(x)
and the nth partial sum on the right-hand side is
O((x− c)n) as x→ c in X.

Most operations on asymptotic expansions can be
carried out in exactly the same manner as for conver-
gent power series. These include addition, subtraction,
multiplication, and division. Substitution, logarithms,
and powers are also permissible; compare Olver (1997b,
pp. 19–22). Differentiation, however, requires the kind
of extra conditions needed for the O symbol (§2.1(ii)).
For reversion see §2.2.

Asymptotic expansions of the forms (2.1.14),
(2.1.16) are unique. But for any given set of coefficients
a0, a1, a2, . . . , and suitably restricted X there is an in-
finity of analytic functions f(x) such that (2.1.14) and
(2.1.16) apply. For (2.1.14) X can be the positive real
axis or any unbounded sector in C of finite angle. As
an example, in the sector |ph z| ≤ 1

2π − δ (< 1
2π) each

of the functions 0, e−z, and e−
√
z (principal value) has

the null asymptotic expansion

2.1.17 0 + 0 · z−1 + 0 · z−2 + · · · , z →∞.
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2.1(iv) Uniform Asymptotic Expansions

If the set X in §2.1(iii) is a closed sector α ≤ phx ≤
β, then by definition the asymptotic property (2.1.13)
holds uniformly with respect to phx ∈ [α, β] as |x| →
∞. The asymptotic property may also hold uniformly
with respect to parameters. Suppose u is a parameter
(or set of parameters) ranging over a point set (or sets)
U, and for each nonnegative integer n∣∣∣∣∣xn

(
f(u, x)−

n−1∑
s=0

as(u)x−s
)∣∣∣∣∣

is bounded as x→∞ in X, uniformly for u ∈ U. (The
coefficients as(u) may now depend on u.) Then

2.1.18 f(u, x) ∼
∞∑
s=0

as(u)x−s

as x→∞ in X, uniformly with respect to u ∈ U.
Similarly for finite limit point c in place of ∞.

2.1(v) Generalized Asymptotic Expansions

Let φs(x), s = 0, 1, 2, . . . , be a sequence of functions
defined in X such that for each s

2.1.19 φs+1(x) = o(φs(x)), x→ c in X,
where c is a finite, or infinite, limit point of X. Then
{φs(x)} is an asymptotic sequence or scale. Suppose
also that f(x) and fs(x) satisfy

2.1.20 f(x) =
n−1∑
s=0

fs(x) +O(φn(x)), x→ c in X,

for n = 0, 1, 2, . . . . Then
∑
fs(x) is a generalized

asymptotic expansion of f(x) with respect to the scale
{φs(x)}. Symbolically,

2.1.21 f(x) ∼
∞∑
s=0

fs(x); {φs(x)}, x→ c in X.

As in §2.1(iv), generalized asymptotic expansions can
also have uniformity properties with respect to param-
eters. For an example see §14.15(i).

Care is needed in understanding and manipulating
generalized asymptotic expansions. Many properties
enjoyed by Poincaré expansions (for example, multipli-
cation) do not always carry over. It can even happen
that a generalized asymptotic expansion converges, but
its sum is not the function being represented asymptot-
ically; for an example see §18.15(iii).

2.2 Transcendental Equations

Let f(x) be continuous and strictly increasing when
a < x <∞ and
2.2.1 f(x) ∼ x, x→∞.
Then for y > f(a) the equation f(x) = y has a unique
root x = x(y) in (a,∞), and
2.2.2 x(y) ∼ y, y →∞.

Example

2.2.3 t2 − ln t = y.

With x = t2, f(x) = x − 1
2 lnx. We may take a = 1

2 .
From (2.2.2)

2.2.4 t = y
1
2 (1 + o(1)) , y →∞.

Higher approximations are obtainable by successive re-
substitutions. For example

2.2.5 t2 = y + ln t = y + 1
2 ln y + o(1),

and hence

2.2.6 t = y
1
2
(
1 + 1

4y
−1 ln y + o

(
y−1

))
, y →∞.

An important case is the reversion of asymptotic
expansions for zeros of special functions. In place of
(2.2.1) assume that

2.2.7 f(x) ∼ x+ f0 + f1x
−1 + f2x

−2 + · · · , x→∞.

Then

2.2.8 x ∼ y − F0 − F1y
−1 − F2y

−2 − · · · , y →∞,

where F0 = f0 and sFs (s ≥ 1) is the coefficient of
x−1 in the asymptotic expansion of (f(x))s (Lagrange’s
formula for the reversion of series). Conditions for the
validity of the reversion process in C are derived in Olver
(1997b, pp. 14–16). Applications to real and complex
zeros of Airy functions are given in Fabijonas and Olver
(1999). For other examples see de Bruijn (1961, Chap-
ter 2).

2.3 Integrals of a Real Variable

2.3(i) Integration by Parts

Assume that the Laplace transform

2.3.1

∫ ∞
0

e−xtq(t) dt

converges for all sufficiently large x, and q(t) is infinitely
differentiable in a neighborhood of the origin. Then

2.3.2

∫ ∞
0

e−xtq(t) dt ∼
∞∑
s=0

q(s)(0)
xs+1

, x→ +∞.

If, in addition, q(t) is infinitely differentiable on
[0,∞) and

2.3.3 σn = sup
(0,∞)

(t−1 ln |q(n)(t)/q(n)(0)|)

is finite and bounded for n = 0, 1, 2, . . . , then the nth
error term (that is, the difference between the integral
and nth partial sum in (2.3.2)) is bounded in absolute
value by |q(n)(0)/(xn(x − σn))| when x exceeds both 0
and σn.
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For the Fourier integral∫ b

a

eixtq(t) dt

assume a and b are finite, and q(t) is infinitely differen-
tiable on [a, b]. Then

2.3.4

∫ b

a

eixtq(t) dt ∼ eiax
∞∑
s=0

q(s)(a)
(
i

x

)s+1

− eibx
∞∑
s=0

q(s)(b)
(
i

x

)s+1

,

x→ +∞.

Alternatively, assume b = ∞, q(t) is infinitely differen-
tiable on [a,∞), and each of the integrals

∫
eixtq(s)(t) dt,

s = 0, 1, 2, . . . , converges as t→∞ uniformly for all suf-
ficiently large x. Then

2.3.5∫ ∞
a

eixtq(t) dt ∼ eiax
∞∑
s=0

q(s)(a)
(
i

x

)s+1

, x→ +∞.

In both cases the nth error term is bounded in abso-
lute value by x−n Va,b

(
q(n−1)(t)

)
, where the variational

operator Va,b is defined by

2.3.6 Va,b(f(t)) =
∫ b

a

|f ′(t) dt|;

see §1.4(v). For other examples, see Wong (1989, Chap-
ter 1).

2.3(ii) Watson’s Lemma

Assume again that the integral (2.3.1) converges for all
sufficiently large x, but now

2.3.7 q(t) ∼
∞∑
s=0

ast
(s+λ−µ)/µ, t→ 0+,

where λ and µ are positive constants. Then the series
obtained by substituting (2.3.7) into (2.3.1) and inte-
grating formally term by term yields an asymptotic ex-
pansion:

2.3.8∫ ∞
0

e−xtq(t) dt ∼
∞∑
s=0

Γ
(
s+ λ

µ

)
as

x(s+λ)/µ
, x→ +∞.

For the function Γ see §5.2(i).
This result is probably the most frequently used

method for deriving asymptotic expansions of special
functions. Since q(t) need not be continuous (as long as
the integral converges), the case of a finite integration
range is included.

Other types of singular behavior in the integrand
can be treated in an analogous manner. For example,
2.3.9∫ ∞

0

e−xtq(t) ln t dt ∼
∞∑
s=0

Γ′
(
s+ λ

µ

)
as

x(s+λ)/µ

− (lnx)
∞∑
s=0

Γ
(
s+ λ

µ

)
as

x(s+λ)/µ
,

provided that the integral on the left-hand side of (2.3.9)
converges for all sufficiently large values of x. (In other
words, differentiation of (2.3.8) with respect to the pa-
rameter λ (or µ) is legitimate.)

Another extension is to more general factors than
the exponential function. In addition to (2.3.7) assume
that f(t) and q(t) are piecewise continuous (§1.4(ii)) on
(0,∞), and
2.3.10 |f(t)| ≤ A exp(−atκ), 0 ≤ t <∞,

2.3.11 q(t) = O(exp(btκ)), t→ +∞,
where A, a, b, κ are positive constants. Then

2.3.12

∫ ∞
0

f(xt)q(t) dt ∼
∞∑
s=0

M

(
f ;
s+ λ

µ

)
as

x(s+λ)/µ
,

x→ +∞,
where M (f ;α) is the Mellin transform of f(t) (§2.5(i)).

For a more detailed treatment of the integral (2.3.12)
see §§2.5, 2.6.

2.3(iii) Laplace’s Method

When p(t) is real and x is a large positive parameter,
the main contribution to the integral

2.3.13 I(x) =
∫ b

a

e−xp(t)q(t) dt

derives from the neighborhood of the minimum of p(t)
in the integration range. Without loss of generality, we
assume that this minimum is at the left endpoint a.
Furthermore:

(a) p′(t) and q(t) are continuous in a neighborhood of
a, save possibly at a, and the minimum of p(t) in
[a, b) is approached only at a.

(b) As t→ a+

2.3.14

p(t) ∼ p(a) +
∞∑
s=0

ps(t− a)s+µ,

q(t) ∼
∞∑
s=0

qs(t− a)s+λ−1,

and the expansion for p(t) is differentiable. Again
λ and µ are positive constants. Also p0 > 0 (con-
sistent with (a)).

(c) The integral (2.3.13) converges absolutely for all
sufficiently large x.
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Then
2.3.15∫ b

a

e−xp(t)q(t) dt ∼ e−xp(a)
∞∑
s=0

Γ
(
s+ λ

µ

)
bs

x(s+λ)/µ
,

x→ +∞,
where the coefficients bs are defined by the expansion

2.3.16
q(t)
p′(t)

∼
∞∑
s=0

bsv
(s+λ−µ)/µ, v → 0+,

in which v = p(t)− p(a). For example,

2.3.17

b0 =
q0

µp
λ/µ
0

,

b1 =
(
q1

µ
− (λ+ 1)p1q0

µ2p0

)
1

p
(λ+1)/µ
0

,

b2 =
(
q2

µ
− (λ+ 2)(p1q1 + p2q0)

µ2p0

+
(λ+ 2)(λ+ µ+ 2)p2

1q0

2µ3p2
0

)
1

p
(λ+2)/µ
0

.

In general
2.3.18

bs =
1
µ

res
t=a

[
q(t)

(p(t)− p(a))(λ+s)/µ

]
, s = 0, 1, 2, . . . .

Watson’s lemma can be regarded as a special case of
this result.

For error bounds for Watson’s lemma and Laplace’s
method see Boyd (1993) and Olver (1997b, Chapter 3).
These references and Wong (1989, Chapter 2) also con-
tain examples.

2.3(iv) Method of Stationary Phase

When the parameter x is large the contributions from
the real and imaginary parts of the integrand in

2.3.19 I(x) =
∫ b

a

eixp(t)q(t) dt

oscillate rapidly and cancel themselves over most of the
range. However, cancellation does not take place near
the endpoints, owing to lack of symmetry, nor in the
neighborhoods of zeros of p′(t) because p(t) changes rel-
atively slowly at these stationary points.

The first result is the analog of Watson’s lemma
(§2.3(ii)). Assume that q(t) again has the expansion
(2.3.7) and this expansion is infinitely differentiable, q(t)
is infinitely differentiable on (0,∞), and each of the inte-
grals

∫
eixtq(s)(t) dt, s = 0, 1, 2, . . . , converges at t =∞,

uniformly for all sufficiently large x. Then

2.3.20

∫ ∞
0

eixtq(t) dt

∼
∞∑
s=0

exp
(

(s+ λ)πi
2µ

)
Γ
(
s+ λ

µ

)
as

x(s+λ)/µ
,

x→ +∞,

where the coefficients as are given by (2.3.7).
For the more general integral (2.3.19) we assume,

without loss of generality, that the stationary point (if
any) is at the left endpoint. Furthermore:

(a) On (a, b), p(t) and q(t) are infinitely differentiable
and p′(t) > 0.

(b) As t→ a+ the asymptotic expansions (2.3.14) ap-
ply, and each is infinitely differentiable. Again λ,
µ, and p0 are positive.

(c) If the limit p(b) of p(t) as t → b− is finite, then
each of the functions

2.3.21 Ps(t) =
(

1
p′(t)

d

dt

)s
q(t)
p′(t)

, s = 0, 1, 2, . . . ,

tends to a finite limit Ps(b).

(d) If p(b) =∞, then P0(b) = 0 and each of the inte-
grals

2.3.22
∫
eixp(t)Ps(t)p′(t) dt, s = 0, 1, 2, . . . ,

converges at t = b uniformly for all sufficiently
large x.

If p(b) is finite, then both endpoints contribute:
2.3.23∫ b

a

eixp(t)q(t) dt

∼ eixp(a)
∞∑
s=0

exp
(

(s+ λ)πi
2µ

)
Γ
(
s+ λ

µ

)
bs

x(s+λ)/µ

− eixp(b)
∞∑
s=0

Ps(b)
(
i

x

)s+1

, x→ +∞.

But if (d) applies, then the second sum is absent. The
coefficients bs are defined as in §2.3(iii).

For proofs of the results of this subsection, error
bounds, and an example, see Olver (1974). For other
estimates of the error term see Lyness (1971). For ex-
tensions to oscillatory integrals with logarithmic singu-
larities see Wong and Lin (1978).

2.3(v) Coalescing Peak and Endpoint:
Bleistein’s Method

In the integral

2.3.24 I(α, x) =
∫ k

0

e−xp(α,t)q(α, t)tλ−1 dt

k (≤ ∞) and λ are positive constants, α is a variable
parameter in an interval α1 ≤ α ≤ α2 with α1 ≤ 0 and
0 < α2 ≤ k, and x is a large positive parameter. As-
sume also that ∂2p(α, t)

/
∂t2 and q(α, t) are continuous

in α and t, and for each α the minimum value of p(α, t)
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in [0, k) is at t = α, at which point ∂p(α, t)/∂t van-
ishes, but both ∂2p(α, t)

/
∂t2 and q(α, t) are nonzero.

When x → +∞ Laplace’s method (§2.3(iii)) applies,
but the form of the resulting approximation is discon-
tinuous at α = 0. In consequence, the approximation is
nonuniform with respect to α and deteriorates severely
as α→ 0.

A uniform approximation can be constructed by
quadratic change of integration variable:

2.3.25 p(α, t) = 1
2w

2 − aw + b,

where a and b are functions of α chosen in such a way
that t = 0 corresponds to w = 0, and the stationary
points t = α and w = a correspond. Thus

2.3.26 a = (2p(α, 0)− 2p(α, α))1/2, b = p(α, 0),

2.3.27

w = (2p(α, 0)− 2p(α, α))1/2 ± (2p(α, t)− 2p(α, α))1/2,

the upper or lower sign being taken according as t ≷ α.
The relationship between t and w is one-to-one, and
because

2.3.28
dw

dt
= ± 1

(2p(α, t)− 2p(α, α))1/2

∂p(α, t)
∂t

it is free from singularity at t = α.
The integral (2.3.24) transforms into

2.3.29

I(α, x) = e−xp(α,0)

×
∫ κ

0

exp
(
−x
(

1
2w

2 − aw
))
f(α,w)wλ−1 dw,

where

2.3.30 f(α,w) = q(α, t)
(
t

w

)λ−1
dt

dw
,

κ = κ(α) being the value of w at t = k. We now expand
f(α,w) in a Taylor series centered at the peak value
w = a of the exponential factor in the integrand:

2.3.31 f(α,w) =
∞∑
s=0

φs(α)(w − a)s,

with the coefficients φs(α) continuous at α = 0. The
desired uniform expansion is then obtained formally as
in Watson’s lemma and Laplace’s method. We replace
the limit κ by ∞ and integrate term-by-term:

2.3.32 I(α, x) ∼ e−xp(α,0)

xλ/2

∞∑
s=0

φs(α)
Fs(a
√
x)

xs/2
, x→∞,

where

2.3.33 Fs(y) =
∫ ∞

0

exp
(
− 1

2τ
2 + yτ

)
(τ − y)sτλ−1 dτ.

For examples and proofs see Olver (1997b, Chapter
9), Bleistein (1966), Bleistein and Handelsman (1975,
Chapter 9), and Wong (1989, Chapter 7).

2.4 Contour Integrals

2.4(i) Watson’s Lemma

The result in §2.3(ii) carries over to a complex param-
eter z. Except that λ is now permitted to be complex,
with <λ > 0, we assume the same conditions on q(t) and
also that the Laplace transform in (2.3.8) converges for
all sufficiently large values of <z. Then

2.4.1

∫ ∞
0

e−ztq(t) dt ∼
∞∑
s=0

Γ
(
s+ λ

µ

)
as

z(s+λ)/µ

as z → ∞ in the sector |ph z| ≤ 1
2π − δ (< 1

2π), with
z(s+λ)/µ assigned its principal value.

If q(t) is analytic in a sector α1 < ph t < α2 con-
taining ph t = 0, then the region of validity may be
increased by rotation of the integration paths. We as-
sume that in any closed sector with vertex t = 0 and
properly interior to α1 < ph t < α2, the expansion
(2.3.7) holds as t → 0, and q(t) = O

(
eσ|t|

)
as t → ∞,

where σ is a constant. Then (2.4.1) is valid in any
closed sector with vertex z = 0 and properly interior
to −α2 − 1

2π < ph z < −α1 + 1
2π. (The branches of

t(s+λ−µ)/µ and z(s+λ)/µ are extended by continuity.)
For examples and extensions (including uniformity

and loop integrals) see Olver (1997b, Chapter 4), Wong
(1989, Chapter 1), and Temme (1985).

2.4(ii) Inverse Laplace Transforms

On the interval 0 < t < ∞ let q(t) be differentiable
and e−ctq(t) be absolutely integrable, where c is a real
constant. Then the Laplace transform

2.4.2 Q(z) =
∫ ∞

0

e−ztq(t) dt

is continuous in <z ≥ c and analytic in <z > c, and by
inversion (§1.14(iii))

2.4.3 q(t) =
1

2πi
lim
η→∞

∫ σ+iη

σ−iη
etzQ(z) dz, 0 < t <∞,

where σ (≥ c) is a constant.
Now assume that c > 0 and we are given a function

Q(z) that is both analytic and has the expansion

2.4.4 Q(z) ∼
∞∑
s=0

Γ
(
s+ λ

µ

)
as

z(s+λ)/µ
, z →∞,

in the half-plane <z ≥ c. Here <λ > 0, µ > 0, and
z(s+λ)/µ has its principal value. Assume also (2.4.4) is
differentiable. Then by integration by parts the integral

2.4.5 q(t) =
1

2πi

∫ σ+i∞

σ−i∞
etzQ(z) dz, 0 < t <∞,

is seen to converge absolutely at each limit, and be in-
dependent of σ ∈ [c,∞). Furthermore, as t → 0+, q(t)
has the expansion (2.3.7).
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For large t, the asymptotic expansion of q(t) may be
obtained from (2.4.3) by Haar’s method. This depends
on the availability of a comparison function F (z) for
Q(z) that has an inverse transform

2.4.6 f(t) =
1

2πi
lim
η→∞

∫ σ+iη

σ−iη
etzF (z) dz

with known asymptotic behavior as t → +∞. By sub-
traction from (2.4.3)
2.4.7

q(t)−f(t) =
eσt

2π
lim
η→∞

∫ η

−η
eitτ (Q(σ+iτ)−F (σ+iτ)) dτ.

If this integral converges uniformly at each limit for
all sufficiently large t, then by the Riemann–Lebesgue
lemma (§1.8(i))

2.4.8 q(t) = f(t) + o
(
ect
)
, t→ +∞.

If, in addition, the corresponding integrals with Q and
F replaced by their derivatives Q(j) and F (j), j =
1, 2, . . . ,m, converge uniformly, then by repeated inte-
grations by parts

2.4.9 q(t) = f(t) + o
(
t−mect

)
, t→ +∞.

The most successful results are obtained on moving the
integration contour as far to the left as possible. For
examples see Olver (1997b, pp. 315–320).

2.4(iii) Laplace’s Method

Let P denote the path for the contour integral

2.4.10 I(z) =
∫ b

a

e−zp(t)q(t) dt,

in which a is finite, b is finite or infinite, and ω is the an-
gle of slope of P at a, that is, lim(ph(t− a)) as t → a
along P. Assume that p(t) and q(t) are analytic on
an open domain T that contains P, with the possible
exceptions of t = a and t = b. Other assumptions are:

(a) In a neighborhood of a

2.4.11

p(t) = p(a) +
∞∑
s=0

ps(t− a)s+µ,

q(t) =
∞∑
s=0

qs(t− a)s+λ−1,

with <λ > 0, µ > 0, p0 6= 0, and the branches of
(t − a)λ and (t − a)µ continuous and constructed
with ph(t− a)→ ω as t→ a along P.

(b) z ranges along a ray or over an annular sector
θ1 ≤ θ ≤ θ2, |z| ≥ Z, where θ = ph z, θ2− θ1 < π,
and Z > 0. I(z) converges at b absolutely and
uniformly with respect to z.

(c) Excluding t = a, <
(
eiθp(t)− eiθp(a)

)
is positive

when t ∈P, and is bounded away from zero uni-
formly with respect to θ ∈ [θ1, θ2] as t → b along
P.

Then

2.4.12 I(z) ∼ e−zp(a)
∞∑
s=0

Γ
(
s+ λ

µ

)
bs

z(s+λ)/µ

as z →∞ in the sector θ1 ≤ ph z ≤ θ2. The coefficients
bs are determined as in §2.3(iii), the branch of ph p0

being chosen to satisfy

2.4.13 |θ + µω + ph p0| ≤ 1
2π.

For examples see Olver (1997b, Chapter 4). For er-
ror bounds see Boyd (1993).

2.4(iv) Saddle Points

Now suppose that in (2.4.10) the minimum of <(zp(t))
on P occurs at an interior point t0. Temporarily as-
sume that θ (= ph z) is fixed, so that t0 is independent
of z. We may subdivide

2.4.14 I(z) =
∫ b

t0

e−zp(t)q(t) dt−
∫ a

t0

e−zp(t)q(t) dt,

and apply the result of §2.4(iii) to each integral on the
right-hand side, the role of the series (2.4.11) being
played by the Taylor series of p(t) and q(t) at t = t0.
If p′(t0) 6= 0, then µ = 1, λ is a positive integer, and
the two resulting asymptotic expansions are identical.
Thus the right-hand side of (2.4.14) reduces to the er-
ror terms. However, if p′(t0) = 0, then µ ≥ 2 and
different branches of some of the fractional powers of p0

are used for the coefficients bs; again see §2.3(iii). In
consequence, the asymptotic expansion obtained from
(2.4.14) is no longer null.

Zeros of p′(t) are called saddle points (or cols) owing
to the shape of the surface |p(t)|, t ∈ C, in their vicin-
ity. Cases in which p′(t0) 6= 0 are usually handled by
deforming the integration path in such a way that the
minimum of <(zp(t)) is attained at a saddle point or at
an endpoint. Additionally, it may be advantageous to
arrange that =(zp(t)) is constant on the path: this will
usually lead to greater regions of validity and sharper er-
ror bounds. Paths on which =(zp(t)) is constant are also
the ones on which | exp(−zp(t))| decreases most rapidly.
For this reason the name method of steepest descents is
often used. However, for the purpose of simply deriving
the asymptotic expansions the use of steepest descent
paths is not essential.

In the commonest case the interior minimum t0 of
<(zp(t)) is a simple zero of p′(t). The final expansion
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then has the form
2.4.15∫ b

a

e−zp(t)q(t) dt ∼ 2e−zp(t0)
∞∑
s=0

Γ
(
s+ 1

2

) b2s
zs+(1/2)

,

in which
2.4.16

b0 =
q

(2p′′)1/2
,

b2 =
(

2q′′ − 2p′′′q′

p′′
+
(

5(p′′′)2

6(p′′)2
− piv

2p′′

)
q

)
1

(2p′′)3/2
,

with p, q and their derivatives evaluated at t0. The
branch of ω0 = ph(p′′(t0)) is the one satisfying |θ+2ω+
ω0| ≤ 1

2π, where ω is the limiting value of ph(t− t0) as
t→ t0 from b.

Higher coefficients b2s in (2.4.15) can be found from
(2.3.18) with λ = 1, µ = 2, and s replaced by 2s. For
integral representations of the b2s and their asymptotic
behavior as s→∞ see Boyd (1995). The last reference
also includes examples, as do Olver (1997b, Chapter 4),
Wong (1989, Chapter 2), and Bleistein and Handelsman
(1975, Chapter 7).

2.4(v) Coalescing Saddle Points: Chester,
Friedman, and Ursell’s Method

Consider the integral

2.4.17 I(α, z) =
∫

P

e−zp(α,t)q(α, t) dt

in which z is a large real or complex parameter, p(α, t)
and q(α, t) are analytic functions of t and continuous in t
and a second parameter α. Suppose that on the integra-
tion path P there are two simple zeros of ∂p(α, t)/∂t
that coincide for a certain value α̂ of α. The problem of
obtaining an asymptotic approximation to I(α, z) that
is uniform with respect to α in a region containing α̂
is similar to the problem of a coalescing endpoint and
saddle point outlined in §2.3(v).

The change of integration variable is given by

2.4.18 p(α, t) = 1
3w

3 + aw2 + bw + c,

with a and b chosen so that the zeros of ∂p(α, t)/∂t cor-
respond to the zeros w1(α), w2(α), say, of the quadratic
w2 + 2aw + b. Then
2.4.19

I(α, z)

= e−cz
∫

Q

exp
(
−z
(

1
3w

3 + aw2 + bw
))
f(α,w) dw,

where Q is the w-map of P, and

2.4.20 f(α,w) = q(α, t)
dt

dw
= q(α, t)

w2 + 2aw + b

∂p(α, t)/∂t
.

The function f(α,w) is analytic at w = w1(α) and
w = w2(α) when α 6= α̂, and at the confluence of these

points when α = α̂. For large |z|, I(α, z) is approx-
imated uniformly by the integral that corresponds to
(2.4.19) when f(α,w) is replaced by a constant. By
making a further change of variable

2.4.21 w = z−1/3v − a,
and assigning an appropriate value to c to modify the
contour, the approximating integral is reducible to an
Airy function or a Scorer function (§§9.2, 9.12).

For examples, proofs, and extensions see Olver
(1997b, Chapter 9), Wong (1989, Chapter 7), Olde
Daalhuis and Temme (1994), Chester et al. (1957), and
Bleistein and Handelsman (1975, Chapter 9).

For a symbolic method for evaluating the coefficients
in the asymptotic expansions see Vidūnas and Temme
(2002).

2.4(vi) Other Coalescing Critical Points

The problems sketched in §§2.3(v) and 2.4(v) involve
only two of many possibilities for the coalescence of end-
points, saddle points, and singularities in integrals asso-
ciated with the special functions. For a coalescing sad-
dle point and a pole see Wong (1989, Chapter 7) and van
der Waerden (1951); in this case the uniform approxi-
mants are complementary error functions. For a coalesc-
ing saddle point and endpoint see Olver (1997b, Chapter
9) and Wong (1989, Chapter 7); if the endpoint is an
algebraic singularity then the uniform approximants are
parabolic cylinder functions with fixed parameter, and
if the endpoint is not a singularity then the uniform
approximants are complementary error functions.

For two coalescing saddle points and an endpoint see
Leubner and Ritsch (1986). For two coalescing saddle
points and an algebraic singularity see Temme (1986),
Jin and Wong (1998). For a coalescing saddle point,
a pole, and a branch point see Ciarkowski (1989). For
many coalescing saddle points see §36.12. For double
integrals with two coalescing stationary points see Qiu
and Wong (2000).

2.5 Mellin Transform Methods

2.5(i) Introduction

Let f(t) be a locally integrable function on (0,∞), that
is,
∫ T
ρ
f(t) dt exists for all ρ and T satisfying 0 < ρ <

T <∞. The Mellin transform of f(t) is defined by

2.5.1 M (f ; z) =
∫ ∞

0

tz−1f(t) dt,

when this integral converges. The domain of analytic-
ity of M (f ; z) is usually an infinite strip a < <z < b
parallel to the imaginary axis. The inversion formula is
given by

2.5.2 f(t) =
1

2πi

∫ c+i∞

c−i∞
t−z M (f ; z) dz,
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with a < c < b.
One of the two convolution integrals associated with

the Mellin transform is of the form

2.5.3 I(x) =
∫ ∞

0

f(t)h(xt) dt, x > 0,

and

2.5.4 M (I; z) = M (f ; 1− z) M (h; z).
If M (f ; 1− z) and M (h; z) have a common strip of
analyticity a < <z < b, then

2.5.5 I(x) =
1

2πi

∫ c+i∞

c−i∞
x−z M (f ; 1− z) M (h; z) dz,

where a < c < b. When x = 1, this identity is a
Parseval-type formula; compare §1.14(iv).

If M (f ; 1− z) and M (h; z) can be continued ana-
lytically to meromorphic functions in a left half-plane,
and if the contour <z = c can be translated to <z = d
with d < c, then
2.5.6

I(x) =
∑

d<<z<c

res
[
x−z M (f ; 1− z) M (h; z)

]
+ E(x),

where

2.5.7 E(x) =
1

2πi

∫ d+i∞

d−i∞
x−z M (f ; 1− z) M (h; z) dz.

The sum in (2.5.6) is taken over all poles of
x−z M (f ; 1− z) M (h; z) in the strip d < <z < c, and
it provides the asymptotic expansion of I(x) for small
values of x. Similarly, if M (f ; 1− z) and M (h; z) can
be continued analytically to meromorphic functions in
a right half-plane, and if the vertical line of integra-
tion can be translated to the right, then we obtain an
asymptotic expansion for I(x) for large values of x.

Example

2.5.8 I(x) =
∫ ∞

0

J2
ν (xt)
1 + t

dt, ν > − 1
2 ,

where Jν denotes the Bessel function (§10.2(ii)), and
x is a large positive parameter. Let h(t) = J2

ν (t) and
f(t) = 1/(1 + t). Then from Table 1.14.5 and Watson
(1944, p. 403)

2.5.9 M (f ; 1− z) =
π

sin(πz)
, 0 < <z < 1,

2.5.10

M (h; z) =
2z−1 Γ

(
ν + 1

2z
)

Γ2
(
1− 1

2z
)

Γ
(
1 + ν − 1

2z
)

Γ(z)
π

sin(πz)
,

−2ν < <z < 1.
In the half-plane <z > max(0,−2ν), the product
M (f ; 1− z) M (h; z) has a pole of order two at each
positive integer, and
2.5.11

res
z=n

[
x−z M (f ; 1− z) M (h; z)

]
= (an lnx+ bn)x−n,

where

2.5.12 an =
2n−1 Γ

(
ν + 1

2n
)

Γ2
(
1− 1

2n
)

Γ
(
1 + ν − 1

2n
)

Γ(n)
,

2.5.13
bn = −an

(
ln 2 + 1

2 ψ
(
ν + 1

2n
)

+ ψ
(
1− 1

2n
)

+ 1
2 ψ
(
1 + ν − 1

2n
)
− ψ(n)

)
,

and ψ is the logarithmic derivative of the gamma func-
tion (§5.2(i)).

We now apply (2.5.5) with max(0,−2ν) < c < 1,
and then translate the integration contour to the right.
This is allowable in view of the asymptotic formula

2.5.14 |Γ(x+ iy)| =
√

2πe−π|y|/2|y|x−(1/2) (1 + o(1)) ,
as y → ±∞, uniformly for bounded |x|; see (5.11.9).
Then as in (2.5.6) and (2.5.7), with d = 2n+ 1− ε (0 <
ε < 1), we obtain

2.5.15
I(x) = −

2n∑
s=0

(as lnx+ bs)x−s +O
(
x−2n−1+ε

)
,

n = 0, 1, 2, . . . .
From (2.5.12) and (2.5.13), it is seen that as = bs = 0
when s is even. Hence

2.5.16 I(x) =
n−1∑
s=0

(cs lnx+ ds)x−2s−1 +O
(
x−2n−1+ε

)
,

where cs = −a2s+1, ds = −b2s+1.

2.5(ii) Extensions

Let f(t) and h(t) be locally integrable on (0,∞) and

2.5.17 f(t) ∼
∞∑
s=0

ast
αs , t→ 0+,

where <αs > <αs′ for s > s′, and <αs → +∞ as
s→∞. Also, let

2.5.18 h(t) ∼ exp(iκtp)
∞∑
s=0

bst
−βs , t→ +∞,

where κ is real, p > 0, <βs > <βs′ for s > s′, and
<βs → +∞ as s → ∞. To ensure that the integral
(2.5.3) converges we assume that

2.5.19 f(t) = O
(
t−b
)
, t→ +∞,

with b+ <β0 > 1, and

2.5.20 h(t) = O(tc), t→ 0+,
with c + <α0 > −1. To apply the Mellin transform
method outlined in §2.5(i), we require the transforms
M (f ; 1− z) and M (h; z) to have a common strip of an-
alyticity. This, in turn, requires −b < <α0, −c < <β0,
and either −c < <α0 + 1 or 1 − b < <β0. Following
Handelsman and Lew (1970, 1971) we now give an ex-
tension of this method in which none of these conditions
is required.
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First, we introduce the truncated functions f1(t) and
f2(t) defined by

2.5.21 f1(t) =

{
f(t), 0 < t ≤ 1,
0, 1 < t <∞,

2.5.22 f2(t) = f(t)− f1(t).

Similarly,

2.5.23 h1(t) =

{
h(t), 0 < t ≤ 1,
0, 1 < t <∞,

2.5.24 h2(t) = h(t)− h1(t).

With these definitions and the conditions (2.5.17)–
(2.5.20) the Mellin transforms converge absolutely and
define analytic functions in the half-planes shown in Ta-
ble 2.5.1.

Table 2.5.1: Domains of convergence for Mellin trans-
forms.

Transform Domain of Convergence

M (f1; z) <z > −<α0

M (f2; z) <z < b

M (h1; z) <z > −c
M (h2; z) <z < <β0

Furthermore, M (f1; z) can be continued analyt-
ically to a meromorphic function on the entire z-
plane, whose singularities are simple poles at −αs,
s = 0, 1, 2, . . . , with principal part

2.5.25 as/ (z + αs) .

By Table 2.5.1, M (f2; z) is an analytic function in
the half-plane <z < b. Hence we can extend the defini-
tion of the Mellin transform of f by setting

2.5.26 M (f ; z) = M (f1; z) + M (f2; z)

for <z < b. The extended transform M (f ; z) has the
same properties as M (f1; z) in the half-plane <z < b.

Similarly, if κ = 0 in (2.5.18), then M (h2; z) can be
continued analytically to a meromorphic function on the
entire z-plane with simple poles at βs, s = 0, 1, 2, . . . ,
with principal part

2.5.27 −bs/ (z − βs) .
Alternatively, if κ 6= 0 in (2.5.18), then M (h2; z) can
be continued analytically to an entire function.

Since M (h1; z) is analytic for <z > −c by Table
2.5.1, the analytically-continued M (h2; z) allows us to
extend the Mellin transform of h via

2.5.28 M (h; z) = M (h1; z) + M (h2; z)

in the same half-plane. From (2.5.26) and (2.5.28), it
follows that both M (f ; 1− z) and M (h; z) are defined
in the half-plane <z > max(1− b,−c).

We are now ready to derive the asymptotic expan-
sion of the integral I(x) in (2.5.3) as x → ∞. First we
note that

2.5.29 I(x) =
2∑

j,k=1

Ijk(x),

where
2.5.30 Ijk(x) =

∫ ∞
0

fj(t)hk(xt) dt.

By direct computation
2.5.31 I21(x) = 0, for x ≥ 1.
Next from Table 2.5.1 we observe that the integrals for
the transform pair M (fj ; 1− z) and M (hk; z) are ab-
solutely convergent in the domain Djk specified in Table
2.5.2, and these domains are nonempty as a consequence
of (2.5.19) and (2.5.20).

Table 2.5.2: Domains of analyticity for Mellin trans-
forms.

Transform Pair Domain Djk

M (f1; 1− z), M (h1; z) −c < <z < 1 + <α0

M (f1; 1− z), M (h2; z) <z < min(1 + <α0,<β0)

M (f2; 1− z), M (h1; z) max(−c, 1− b) < <z
M (f2; 1− z), M (h2; z) 1− b < <z < <β0

For simplicity, write
2.5.32 Gjk(z) = M (fj ; 1− z) M (hk; z).
From Table 2.5.2, we see that each Gjk(z) is analytic
in the domain Djk. Furthermore, each Gjk(z) has an
analytic or meromorphic extension to a half-plane con-
taining Djk. Now suppose that there is a real number
pjk in Djk such that the Parseval formula (2.5.5) applies
and

2.5.33 Ijk(x) =
1

2πi

∫ pjk+i∞

pjk−i∞
x−zGjk(z) dz.

If, in addition, there exists a number qjk > pjk such
that
2.5.34 sup

pjk ≤x≤qjk
|Gjk(x+ iy)| → 0, y → ±∞,

then

2.5.35
Ijk(x) =

∑
pjk<<z<qjk

res
[
−x−zGjk(z)

]
+ Ejk(x),

where

2.5.36 Ejk(x) =
1

2πi

∫ qjk+i∞

qjk−i∞
x−zGjk(z) dz = o

(
x−qjk

)
as x → +∞. (The last order estimate follows from
the Riemann–Lebesgue lemma, §1.8(i).) The asymp-
totic expansion of I(x) is then obtained from (2.5.29).

For further discussion of this method and examples,
see Wong (1989, Chapter 3), Paris and Kaminski (2001,
Chapter 5), and Bleistein and Handelsman (1975, Chap-
ters 4 and 6). The first reference also contains explicit
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expressions for the error terms, as do Soni (1980) and
Carlson and Gustafson (1985).

The Mellin transform method can also be extended
to derive asymptotic expansions of multidimensional in-
tegrals having algebraic or logarithmic singularities, or
both; see Wong (1989, Chapter 3), Paris and Kaminski
(2001, Chapter 7), and McClure and Wong (1987). See
also Brüning (1984) for a different approach.

2.5(iii) Laplace Transforms with Small
Parameters

Let h(t) satisfy (2.5.18) and (2.5.20) with c > −1, and
consider the Laplace transform

2.5.37 L (h; ζ) =
∫ ∞

0

h(t)e−ζt dt.

Put x = 1/ζ and break the integration range at t = 1,
as in (2.5.23) and (2.5.24). Then

2.5.38 ζL (h; ζ) = I1(x) + I2(x),
where
2.5.39 Ij(x) =

∫ ∞
0

e−thj(xt) dt, j = 1, 2.

Since M (e−t; z) = Γ(z), by the Parseval formula
(2.5.5), there are real numbers p1 and p2 such that
−c < p1 < 1, p2 < min(1,<β0), and
2.5.40

Ij(x) =
1

2πi

∫ pj+i∞

pj−i∞
x−z Γ(1− z) M (hj ; z) dz, j = 1, 2.

Since M (h; z) is analytic for <z > −c, by (2.5.14),

2.5.41

I1(x) = M (h1; 1)x−1

+
1

2πi

∫ ρ+i∞

ρ−i∞
x−z Γ(1− z) M (h1; z) dz,

for any ρ satisfying 1 < ρ < 2. Similarly, since M (h2; z)
can be continued analytically to a meromorphic func-
tion (when κ = 0) or to an entire function (when
κ 6= 0), we can choose ρ so that M (h2; z) has no poles
in 1 < <z ≤ ρ < 2. Thus

2.5.42

I2(x) =
∑

<β0≤<z≤1

res
[
−x−z Γ(1− z) M (h2; z)

]
+

1
2πi

∫ ρ+i∞

ρ−i∞
x−z Γ(1− z) M (h2; z) dz.

On substituting (2.5.41) and (2.5.42) into (2.5.38),
we obtain
2.5.43

L (h; ζ) = M (h1; 1)

+
∑

<β0≤<z≤1

res
[
−ζz−1 Γ(1− z) M (h2; z)

]
+

∑
1<<z<l

res
[
−ζz−1 Γ(1− z) M (h; z)

]
+

1
2πi

∫ l−δ+i∞

l−δ−i∞
ζz−1 Γ(1− z) M (h; z) dz,

where l (≥ 2) is an arbitrary integer and δ is an arbi-
trary small positive constant. The last term is clearly
O
(
ζl−δ−1

)
as ζ → 0+.

If κ = 0 in (2.5.18) and c > −1 in (2.5.20), and if
none of the exponents in (2.5.18) are positive integers,
then the expansion (2.5.43) gives the following useful
result:

2.5.44

L (h; ζ) ∼
∞∑
n=0

bn Γ(1− βn)ζβn−1

+
∞∑
n=0

(−ζ)n

n!
M (h;n+ 1), ζ → 0+.

Example

2.5.45 L (h; ζ) =
∫ ∞

0

e−ζt

1 + t
dt, <ζ > 0.

With h(t) = 1/(1 + t), we have M (h; z) = π csc(πz) for
0 < <z < 1. In the notation of (2.5.18) and (2.5.20),
κ = 0, βs = s + 1, and c = 0. Straightforward calcula-
tion gives

2.5.46

res
z=k

[
−ζz−1 Γ(1− z)π csc(πz)

]
= (− ln ζ + ψ(k))

ζk−1

(k − 1)!
,

where ψ(z) = Γ′(z)/Γ(z). From (2.5.28)

2.5.47
res
z=1

[
−ζz−1 Γ(1− z) M (h2; z)

]
= (− ln ζ − γ)−M (h1; 1),

where γ is Euler’s constant (§5.2(ii)). Insertion of these
results into (2.5.43) yields
2.5.48

L (h; ζ) ∼ (− ln ζ)
∞∑
k=0

ζk

k!
+
∞∑
k=0

ψ(k + 1)
ζk

k!
, ζ → 0+.

To verify (2.5.48) we may use

2.5.49 L (h; ζ) = eζ E1(ζ);
compare (6.2.2) and (6.6.3).

For examples in which the integral defining the
Mellin transform M (h; z) does not exist for any value
of z, see Wong (1989, Chapter 3), Bleistein and Han-
delsman (1975, Chapter 4), and Handelsman and Lew
(1970).

2.6 Distributional Methods

2.6(i) Divergent Integrals

Consider the integral

2.6.1 S(x) =
∫ ∞

0

1
(1 + t)1/3(x+ t)

dt,

where x > 0. For t > 1,

2.6.2 (1 + t)−1/3 =
∞∑
s=0

(
− 1

3

s

)
t−s−(1/3).
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Motivated by Watson’s lemma (§2.3(ii)), we substitute
(2.6.2) in (2.6.1), and integrate term by term. This leads
to integrals of the form

2.6.3

∫ ∞
0

t−s−(1/3)

x+ t
dt, s = 1, 2, 3, . . . .

Although divergent, these integrals may be interpreted
in a generalized sense. For instance, we have

2.6.4∫ ∞
0

tα−1

(x+ t)α+β
dt =

Γ(α) Γ(β)
Γ(α+ β)

1
xβ

, <α > 0, <β > 0.

But the right-hand side is meaningful for all values of
α and β, other than nonpositive integers. We may
therefore define the integral on the left-hand side of
(2.6.4) by the value on the right-hand side, except when
α, β = 0,−1,−2, . . . . With this interpretation

2.6.5

∫ ∞
0

t−s−(1/3)

x+ t
dt =

2π√
3

(−1)s

xs+(1/3)
, s = 0, 1, 2, . . . .

Inserting (2.6.2) into (2.6.1) and integrating formally
term-by-term, we obtain

2.6.6 S(x) ∼ 2π√
3

∞∑
s=0

(−1)s
(
− 1

3

s

)
x−s−(1/3), x→∞.

However this result is incorrect. The correct result is
given by

2.6.7

S(x) ∼ 2π√
3

∞∑
s=0

(−1)s
(
− 1

3

s

)
x−s−(1/3)

−
∞∑
s=1

3s(s− 1)!
2 · 5 · · · (3s− 1)

x−s;

see §2.6(ii).
The fact that expansion (2.6.6) misses all the terms

in the second series in (2.6.7) raises the question: what
went wrong with our process of reaching (2.6.6)? In the
following subsections, we use some elementary facts of
distribution theory (§1.16) to study the proper use of
divergent integrals. An important asset of the distribu-
tion method is that it gives explicit expressions for the
remainder terms associated with the resulting asymp-
totic expansions.

For an introduction to distribution theory, see Wong
(1989, Chapter 5). For more advanced discussions, see
Gel’fand and Shilov (1964) and Rudin (1973).

2.6(ii) Stieltjes Transform

Let f(t) be locally integrable on [0,∞). The Stieltjes
transform of f(t) is defined by

2.6.8 S (f ; z) =
∫ ∞

0

f(t)
t+ z

dt.

To derive an asymptotic expansion of S (f ; z) for large
values of |z|, with |ph z| < π, we assume that f(t) pos-
sesses an asymptotic expansion of the form

2.6.9 f(t) ∼
∞∑
s=0

ast
−s−α, t→ +∞,

with 0 < α ≤ 1. For each n = 1, 2, 3, . . . , set

2.6.10 f(t) =
n−1∑
s=0

ast
−s−α + fn(t).

To each function in this equation, we shall assign a tem-
pered distribution (i.e., a continuous linear functional)
on the space T of rapidly decreasing functions on R.
Since f(t) is locally integrable on [0,∞), it defines a
distribution by

2.6.11 〈f, φ〉 =
∫ ∞

0

f(t)φ(t) dt, φ ∈ T .

In particular,

2.6.12
〈
t−α, φ

〉
=
∫ ∞

0

t−αφ(t) dt, φ ∈ T ,

when 0 < α < 1. Since the functions t−s−α, s =
1, 2, . . . , are not locally integrable on [0,∞), we can-
not assign distributions to them in a similar manner.
However, they are multiples of the derivatives of t−α.
Motivated by the definition of distributional derivatives,
we can assign them the distributions defined by

2.6.13
〈
t−s−α, φ

〉
=

1
(α)s

∫ ∞
0

t−αφ(s)(t) dt, φ ∈ T ,

where (α)s = α(α + 1) · · · (α + s− 1). Similarly, in the
case α = 1, we define

2.6.14
〈
t−s−1, φ

〉
= − 1

s!

∫ ∞
0

(ln t)φ(s+1)(t) dt, φ ∈ T .

To assign a distribution to the function fn(t), we first
let fn,n(t) denote the nth repeated integral (§1.4(v)) of
fn:

2.6.15 fn,n(t) =
(−1)n

(n− 1)!

∫ ∞
t

(τ − t)n−1fn(τ) dτ.

For 0 < α < 1, it is easily seen that fn,n(t) is bounded
on [0, R] for any positive constant R, and is O(t−α) as
t→∞. For α = 1, we have fn,n(t) = O

(
t−1
)

as t→∞
and fn,n(t) = O(ln t) as t → 0+. In either case, we
define the distribution associated with fn(t) by

2.6.16 〈fn, φ〉 = (−1)n
∫ ∞

0

fn,n(t)φ(n)(t) dt, φ ∈ T ,

since the nth derivative of fn,n is fn.
We have now assigned a distribution to each func-

tion in (2.6.10). A natural question is: what is the
exact relation between these distributions? The answer
is provided by the identities (2.6.17) and (2.6.20) given
below.
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For 0 < α < 1 and n ≥ 1, we have
2.6.17

〈f, φ〉 =
n−1∑
s=0

as
〈
t−s−α, φ

〉
−

n∑
s=1

cs

〈
δ(s−1), φ

〉
+ 〈fn, φ〉

for any φ ∈ T , where

2.6.18 cs =
(−1)s

(s− 1)!
M (f ; s),

M (f ; z) being the Mellin transform of f(t) or its ana-
lytic continuation (§2.5(ii)). The Dirac delta distribu-
tion in (2.6.17) is given by

2.6.19

〈
δ(s), φ

〉
= (−1)sφ(s)(0), s = 0, 1, 2, . . . ;

compare §1.16(iii).
For α = 1

2.6.20

〈f, φ〉 =
n−1∑
s=0

as
〈
t−s−1, φ

〉
−

n∑
s=1

ds

〈
δ(s−1), φ

〉
+ 〈fn, φ〉

for any φ ∈ T , where

2.6.21

(−1)s+1ds+1 =
as
s!

s∑
k=1

1
k

+
1
s!

lim
z→s+1

(
M (f ; z)

+
as

z − s− 1

)
,

for s = 0, 1, 2, . . . .
To apply the results (2.6.17) and (2.6.20) to the

Stieltjes transform (2.6.8), we take a specific function
φ ∈ T . Let ε be a positive number, and

2.6.22 φε(t) =
e−εt

t+ z
, t ∈ (0,∞).

From (2.6.13) and (2.6.14)

2.6.23 lim
ε→0

〈
t−s−α, φε

〉
=

π

sin(πα)
(−1)s

zs+α
,

2.6.24 lim
ε→0

〈
t−s−1, φε

〉
=

(−1)s+1

zs+1

s∑
k=1

1
k

+
(−1)s

zs+1
ln z,

with s = 0, 1, 2, . . . . From (2.6.11) and (2.6.16), we also
have

2.6.25 lim
ε→0
〈f, φε〉 = S (f ; z),

2.6.26 lim
ε→0
〈fn, φε〉 = n!

∫ ∞
0

fn,n(t)
(t+ z)n+1

dt.

On substituting (2.6.15) into (2.6.26) and interchanging
the order of integration, the right-hand side of (2.6.26)
becomes

(−1)n

zn

∫ ∞
0

τnfn(τ)
τ + z

dτ.

To summarize,

2.6.27

S (f ; z) =
π

sin(πα)

n−1∑
s=0

(−1)s
as
zs+α

−
n∑
s=1

(s− 1)!
cs
zs

+Rn(z),

if α ∈ (0, 1) in (2.6.9), or

2.6.28

S (f ; z) = ln z
n−1∑
s=0

(−1)s
as
zs+1

+
n−1∑
s=0

(−1)s
d̃s
zs+1

+Rn(z),

if α = 1 in (2.6.9). Here cs is given by (2.6.18),

2.6.29 d̃s = lim
z→s+1

(
M (f ; z) +

as
z − s− 1

)
,

and

2.6.30 Rn(z) =
(−1)n

zn

∫ ∞
0

τnfn(τ)
τ + z

dτ.

The expansion (2.6.7) follows immediately from
(2.6.27) with z = x and f(t) = (1 + t)−(1/3); its region
of validity is |phx| ≤ π − δ (< π). The distribution
method outlined here can be extended readily to func-
tions f(t) having an asymptotic expansion of the form

2.6.31 f(t) ∼ eict
∞∑
s=0

ast
−s−α, t→ +∞,

where c (6= 0) is real, and 0 < α ≤ 1. For a more de-
tailed discussion of the derivation of asymptotic expan-
sions of Stieltjes transforms by the distribution method,
see McClure and Wong (1978) and Wong (1989, Chapter
6). Corresponding results for the generalized Stieltjes
transform

2.6.32

∫ ∞
0

f(t)
(t+ z)ρ

dt, ρ > 0,

can be found in Wong (1979). An application has been
given by López (2000) to derive asymptotic expansions
of standard symmetric elliptic integrals, complete with
error bounds; see §19.27(vi).

2.6(iii) Fractional Integrals

The Riemann–Liouville fractional integral of order µ is
defined by

2.6.33 Iµf(x) =
1

Γ(µ)

∫ x

0

(x− t)µ−1f(t) dt, µ > 0;

see §1.15(vi). We again assume f(t) is locally integrable
on [0,∞) and satisfies (2.6.9). We now derive an asymp-
totic expansion of Iµf(x) for large positive values of x.

In terms of the convolution product

2.6.34 (f ∗ g)(x) =
∫ x

0

f(x− t)g(t) dt

of two locally integrable functions on [0,∞), (2.6.33)
can be written

2.6.35 Iµf(x) =
1

Γ(µ)
(tµ−1 ∗ f)(x).
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The replacement of f(t) by its asymptotic expansion
(2.6.9), followed by term-by-term integration leads to
convolution integrals of the form

2.6.36
(tµ−1 ∗ t−s−α)(x) =

∫ x

0

(x− t)µ−1t−s−α dt,

s = 0, 1, 2, . . . .

Of course, except when s = 0 and 0 < α < 1, none of
these integrals exists in the usual sense. However, the
left-hand side can be considered as the convolution of
the two distributions associated with the functions tµ−1

and t−s−α, given by (2.6.12) and (2.6.13).
To define convolutions of distributions, we first in-

troduce the space K+ of all distributions of the form
Dnf , where n is a nonnegative integer, f is a locally in-
tegrable function on R which vanishes on (−∞, 0], and
Dnf denotes the nth derivative of the distribution as-
sociated with f . For F = Dnf and G = Dmg in K+,
we define

2.6.37 F ∗G = Dn+m(f ∗ g).

It is easily seen that K+ forms a commutative, asso-
ciative linear algebra. Furthermore, K+ contains the
distributions H, δ, and tλ, t > 0, for any real (or com-
plex) number λ, where H is the distribution associated
with the Heaviside function H(t) (§1.16(iv)), and tλ is
the distribution defined by (2.6.12)–(2.6.14), depending
on the value of λ. Since δ = DH, it follows that for
µ 6= 1, 2, . . . ,

2.6.38 tµ−1 ∗ δ(s−1) =
Γ(µ)

Γ(µ+ 1− s)
tµ−s, t > 0.

Using (5.12.1), we can also show that when µ 6= 1, 2, . . .
and µ− α is not a nonnegative integer,

2.6.39

tµ−1 ∗ t−s−α =
Γ(µ) Γ(1− s− α)
Γ(µ+ 1− s− α)

tµ−s−α, t > 0,

and

2.6.40

tµ−1 ∗ t−s−1 =
(−1)s

µ · s!
Ds+1 (tµ (ln t− γ − ψ(µ+ 1))) ,

t > 0,

where γ is Euler’s constant (§5.2(ii)).
To derive the asymptotic expansion of Iµf(x), we

recall equations (2.6.17) and (2.6.20). In the sense of
distributions, they can be written

2.6.41 f =
n−1∑
s=0

ast
−s−α −

n∑
s=1

csδ
(s−1) + fn,

and

2.6.42 f =
n−1∑
s=0

ast
−s−1 −

n∑
s=1

dsδ
(s−1) + fn.

Substituting into (2.6.35) and using (2.6.38)–(2.6.40),
we obtain

2.6.43

tµ−1 ∗ f =
n−1∑
s=0

as
Γ(µ) Γ(1− s− α)
Γ(µ+ 1− s− α)

tµ−s−α

−
n∑
s=1

cs
Γ(µ)

Γ(µ− s+ 1)
tµ−s + tµ−1 ∗ fn

when 0 < α < 1, or

2.6.44

tµ−1 ∗ f =
n−1∑
s=0

(−1)sas
µ · s!

Ds+1 (tµ (ln t− γ − ψ(µ+ 1)))

−
n∑
s=1

ds
Γ(µ)

Γ(µ− s+ 1)
tµ−s + tµ−1 ∗ fn

when α = 1. These equations again hold only
in the sense of distributions. Since the function
tµ (ln t− γ − ψ(µ+ 1)) and all its derivatives are lo-
cally absolutely continuous in (0,∞), the distributional
derivatives in the first sum in (2.6.44) can be replaced by
the corresponding ordinary derivatives. Furthermore,
since f (n)

n,n(t) = fn(t), it follows from (2.6.37) that the re-
mainder terms tµ−1∗fn in the last two equations can be
associated with a locally integrable function in (0,∞).
On replacing the distributions by their corresponding
functions, (2.6.43) and (2.6.44) give

2.6.45

Iµf(x) =
n−1∑
s=0

as
Γ(1− s− α)

Γ(µ+ 1− s− α)
xµ−s−α

−
n∑
s=1

cs
Γ(µ+ 1− s)

xµ−s +
1
xn
δn(x),

when 0 < α < 1, or

2.6.46

Iµf(x)

=
n−1∑
s=0

(−1)sas
s! Γ(µ+ 1)

ds+1

dxs+1 (xµ (lnx−γ−ψ(µ+ 1)))

−
n∑
s=1

ds
Γ(µ− s+ 1)

xµ−s +
1
xn
δn(x),

when α = 1, where

2.6.47 δn(x) =
n∑
j=0

(
n

j

)
Γ(µ+ 1)

Γ(µ+ 1− j)
Iµ
(
tn−jfn,j

)
(x),

fn,j(t) being the jth repeated integral of fn; compare
(2.6.15).

Example

Let f(t) = t1−α/(1 + t), 0 < α < 1. Then

2.6.48 Iµf(x) =
1

Γ(µ)

∫ x

0

(x− t)µ−1t1−α(1 + t)−1 dt,
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where µ > 0. For 0 < t <∞

2.6.49 f(t) =
n−1∑
s=0

(−1)st−s−α + (−1)n
t1−n−α

1 + t
.

In the notation of (2.6.10), as = (−1)s and

2.6.50 fn(t) = (−1)n
t1−n−α

1 + t
.

Since

2.6.51 M (f ; s) = (−1)sπ/ sin(πα),

from (2.6.45) it follows that

2.6.52

Iµf(x) =
n−1∑
s=0

(−1)s
Γ(1− s− α)

Γ(µ+ 1− s− α)
xµ−s−α

− π

sin(πα)

n∑
s=1

1
Γ(µ+ 1− s)

xµ−s

(s− 1)!

+
1
xn
δn(x).

Moreover,

2.6.53

|δn(x)| ≤ Γ(µ+ 1) Γ(1− α)
Γ(µ+ 1− α) Γ(n+ α)

×
n∑
j=0

(
n

j

)
Γ(n+ α− j)
|Γ(µ+ 1− j)|

xµ−α

for x > 0.
It may be noted that the integral (2.6.48) can

be expressed in terms of the hypergeometric function
2F1(1, 2− α; 2− α+ µ;−x); see §15.2(i).

For proofs and other examples, see McClure and
Wong (1979) and Wong (1989, Chapter 6). If both f
and g in (2.6.34) have asymptotic expansions of the form
(2.6.9), then the distribution method can also be used
to derive an asymptotic expansion of the convolution
f ∗ g; see Li and Wong (1994).

2.6(iv) Regularization

The method of distributions can be further extended to
derive asymptotic expansions for convolution integrals:

2.6.54 I(x) =
∫ ∞

0

f(t)h(xt) dt.

We assume that for each n = 1, 2, 3, . . . ,

2.6.55 f(t) =
n−1∑
s=0

ast
s+α−1 + fn(t),

where 0 < α ≤ 1 and fn(t) = O
(
tn+α−1

)
as t → 0+.

Also,

2.6.56 h(t) =
n−1∑
s=0

bst
−s−β + hn(t),

where 0 < β ≤ 1, and hn(t) = O
(
t−n−β

)
as t → ∞.

Multiplication of these expansions leads to
2.6.57

f(t)h(xt) =
n−1∑
j=0

n−1∑
k=0

ajbkt
j+α−1−k−βx−k−β

+
n−1∑
j=0

ajt
j+α−1hn(xt)

+
n−1∑
k=0

bkx
−k−βt−k−βfn(t) + fn(t)hn(xt).

On inserting this identity into (2.6.54), we immediately
encounter divergent integrals of the form

2.6.58

∫ ∞
0

tλ dt, λ ∈ R.

However, in the theory of generalized functions (distri-
butions), there is a method, known as “regularization”,
by which these integrals can be interpreted in a mean-
ingful manner. In this sense

2.6.59

∫ ∞
0

tλ dt = 0, λ ∈ C.

From (2.6.55) and (2.6.59)

2.6.60 M (f ; z) = M (fn; z),
where M (f ; z) is the Mellin transform of f or its ana-
lytic continuation. Also, when α 6= β,

2.6.61 M (hx; j + α) = x−j−α M (h; j + α),
where hx(t) = h(xt). Inserting (2.6.57) into (2.6.54), we
obtain from (2.6.59)–(2.6.61)

2.6.62

I(x) =
n−1∑
j=0

aj M (h; j + α)x−j−α

+
n−1∑
k=0

bk M (f ; 1− k − β)x−k−β + δn(x)

when α 6= β, where

δn(x) =
∫ ∞

0

fn(t)hn(xt) dt.

There is a similar expansion, involving logarithmic
terms, when α = β. For rigorous derivations of these
results and also order estimates for δn(x), see Wong
(1979) and Wong (1989, Chapter 6).

2.7 Differential Equations

2.7(i) Regular Singularities: Fuchs–Frobenius
Theory

An ordinary point of the differential equation

2.7.1
d2w

dz2 + f(z)
dw

dz
+ g(z)w = 0
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is one at which the coefficients f(z) and g(z) are ana-
lytic. All solutions are analytic at an ordinary point,
and their Taylor-series expansions are found by equat-
ing coefficients.

Other points z0 are singularities of the differential
equation. If both (z−z0)f(z) and (z−z0)2g(z) are ana-
lytic at z0, then z0 is a regular singularity (or singularity
of the first kind). All other singularities are classified
as irregular.

In a punctured neighborhood N of a regular singu-
larity z0

2.7.2

f(z) =
∞∑
s=0

fs(z − z0)s−1, g(z) =
∞∑
s=0

gs(z − z0)s−2,

with at least one of the coefficients f0, g0, g1 nonzero.
Let α1, α2 denote the indices or exponents, that is, the
roots of the indicial equation

2.7.3 Q(α) ≡ α(α− 1) + f0α+ g0 = 0.
Provided that α1−α2 is not zero or an integer, equation
(2.7.1) has independent solutions wj(z), j = 1, 2, such
that

2.7.4 wj(z) = (z − z0)αj
∞∑
s=0

as,j(z − z0)s, z ∈ N,

with a0,j = 1, and

2.7.5 Q(αj + s)as,j = −
s−1∑
r=0

((αj + r)fs−r + gs−r) ar,j ,

when s = 1, 2, 3, . . . .
If α1 − α2 = 0, 1, 2, . . . , then (2.7.4) applies only in

the case j = 1. But there is an independent solution

2.7.6

w2(z) = (z − z0)α2

∞∑
s=0

s6=α1−α2

bs(z − z0)s

+ cw1(z) ln(z − z0), z ∈ N.

The coefficients bs and constant c are again determined
by equating coefficients in the differential equation, be-
ginning with c = 1 when α1 − α2 = 0, or with b0 = 1
when α1 − α2 = 1, 2, 3, . . . .

The radii of convergence of the series (2.7.4), (2.7.6)
are not less than the distance of the next nearest singu-
larity of the differential equation from z0.

To include the point at infinity in the foregoing clas-
sification scheme, we transform it into the origin by re-
placing z in (2.7.1) with 1/z; see Olver (1997b, pp. 153–
154). For corresponding definitions, together with ex-
amples, for linear differential equations of arbitrary or-
der see §§16.8(i)–16.8(ii).

2.7(ii) Irregular Singularities of Rank 1

If the singularities of f(z) and g(z) at z0 are no worse
than poles, then z0 has rank `− 1, where ` is the least

integer such that (z−z0)`f(z) and (z−z0)2`g(z) are an-
alytic at z0. Thus a regular singularity has rank 0. The
most common type of irregular singularity for special
functions has rank 1 and is located at infinity. Then

2.7.7 f(z) =
∞∑
s=0

fs
zs
, g(z) =

∞∑
s=0

gs
zs
,

these series converging in an annulus |z| > a, with at
least one of f0, g0, g1 nonzero.

Formal solutions are

2.7.8 eλjzzµj
∞∑
s =0

as,j
zs

, j = 1, 2,

where λ1, λ2 are the roots of the characteristic equation

2.7.9 λ2 + f0λ+ g0 = 0,

2.7.10 µj = −(f1λj + g1)/(f0 + 2λj),
a0,j = 1, and

2.7.11

(f0 + 2λj)sas,j = (s− µj)(s− 1− µj)as−1,j

+
s∑
r=1

(λjfr+1 + gr+1

− (s− r − µj)fr) as−r,j ,
when s = 1, 2, . . . . The construction fails iff λ1 = λ2,
that is, when f2

0 = 4g0: this case is treated below.
For large s,

2.7.12

as,1 ∼
Λ1

(λ1 − λ2)s

×
∞∑
j=0

aj,2(λ1 − λ2)j Γ(s+ µ2 − µ1 − j),

2.7.13

as,2 ∼
Λ2

(λ2 − λ1)s

×
∞∑
j=0

aj,1(λ2 − λ1)j Γ(s+ µ1 − µ2 − j),

where Λ1 and Λ2 are constants, and the Jth remain-
der terms in the sums are O(Γ(s+ µ2 − µ1 − J)) and
O(Γ(s+ µ1 − µ2 − J)), respectively (Olver (1994a)).
Hence unless the series (2.7.8) terminate (in which case
the corresponding Λj is zero) they diverge. However,
there are unique and linearly independent solutions
wj(z), j = 1, 2, such that

2.7.14 wj(z) ∼ eλjz((λ2 − λ1)z)µj
∞∑
s=0

as,j
zs

as z →∞ in the sectors

2.7.15 − 3
2π + δ ≤ ph((λ2 − λ1)z) ≤ 3

2π − δ, j = 1,

2.7.16 − 1
2π + δ ≤ ph((λ2 − λ1)z) ≤ 5

2π − δ, j = 2,
δ being an arbitrary small positive constant.

Although the expansions (2.7.14) apply only in the
sectors (2.7.15) and (2.7.16), each solution wj(z) can
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be continued analytically into any other sector. Typical
connection formulas are

2.7.17
w1(z) = e2πiµ1w1(ze−2πi) + C1w2(z),
w2(z) = e−2πiµ2w2(ze2πi) + C2w1(z),

in which C1, C2 are constants, the so-called Stokes mul-
tipliers. In combination with (2.7.14) these formulas
yield asymptotic expansions for w1(z) in 1

2π + δ ≤
ph((λ2 − λ1)z) ≤ 5

2π − δ, and w2(z) in − 3
2π + δ ≤

ph((λ2 − λ1)z) ≤ 1
2π − δ. Furthermore,

2.7.18 Λ1 = −ie(µ2−µ1)πiC1/(2π), Λ2 = iC2/(2π).
Note that the coefficients in the expansions (2.7.12),

(2.7.13) for the “late” coefficients, that is, as,1, as,2 with
s large, are the “early” coefficients aj,2, aj,1 with j small.
This phenomenon is an example of resurgence, a classi-
fication due to Écalle (1981a,b). See §2.11(v) for other
examples.

The exceptional case f2
0 = 4g0 is handled by Fabry’s

transformation:

2.7.19 w = e−f0z/2W, t = z1/2.

The transformed differential equation either has a reg-
ular singularity at t =∞, or its characteristic equation
has unequal roots.

For error bounds for (2.7.14) see Olver (1997b,
Chapter 7). For the calculation of Stokes multipliers
see Olde Daalhuis and Olver (1995b). For extensions
to singularities of higher rank see Olver and Stenger
(1965). For extensions to higher-order differential equa-
tions see Stenger (1966a,b), Olver (1997a, 1999), and
Olde Daalhuis and Olver (1998).

2.7(iii) Liouville–Green (WKBJ) Approximation

For irregular singularities of nonclassifiable rank, a pow-
erful tool for finding the asymptotic behavior of solu-
tions, complete with error bounds, is as follows:

Liouville–Green Approximation Theorem

In a finite or infinite interval (a1, a2) let f(x) be real,
positive, and twice-continuously differentiable, and g(x)
be continuous. Then in (a1, a2) the differential equation

2.7.20
d2w

dx2 = (f(x) + g(x))w

has twice-continuously differentiable solutions
2.7.21

w1(x) = f−1/4(x) exp
(∫

f1/2(x) dx
)

(1 + ε1(x)) ,

2.7.22

w2(x) = f−1/4(x) exp
(
−
∫
f1/2(x) dx

)
(1 + ε2(x)) ,

such that

2.7.23
|εj(x)|, 1

2f
−1/2(x)|ε′j(x)| ≤ exp

(
1
2 Vaj ,x(F )

)
− 1,

j = 1, 2,

provided that Vaj ,x(F ) < ∞. Here F (x) is the error-
control function

2.7.24 F (x) =
∫ (

1
f1/4

d2

dx2

(
1

f1/4

)
− g

f1/2

)
dx,

and V denotes the variational operator (§2.3(i)). Thus
2.7.25

Vaj ,x(F ) =
∫ x

aj

∣∣∣∣( 1
f1/4(t)

d2

dt2

(
1

f1/4(t)

)
− g(t)
f1/2(t)

)
dt

∣∣∣∣ .
Assuming also Va1,a2(F ) <∞, we have

2.7.26

w1(x) ∼ f−1/4(x) exp
(∫

f1/2(x) dx
)

, x→ a1+,

2.7.27

w2(x) ∼ f−1/4(x) exp
(
−
∫
f1/2(x) dx

)
, x→ a2−.

Suppose in addition |
∫
f1/2(x) dx| is unbounded as

x→ a1+ and x→ a2−. Then there are solutions w3(x),
w4(x), such that
2.7.28

w3(x) ∼ f−1/4(x) exp
(∫

f1/2(x) dx
)

, x→ a2−,

2.7.29

w4(x) ∼ f−1/4(x) exp
(
−
∫
f1/2(x) dx

)
, x→ a1+.

The solutions with the properties (2.7.26), (2.7.27) are
unique, but not those with the properties (2.7.28),
(2.7.29). In fact, since

2.7.30 w1(x)/w4(x)→ 0, x→ a1+,
w1(x) is a recessive (or subdominant) solution as x →
a1+, and w4(x) is a dominant solution as x → a1+.
Similarly for w2(x) and w3(x) as x→ a2−.

Example

2.7.31
d2w

dx2 = (x+ lnx)w, 0 < x <∞.

We cannot take f = x and g = lnx because
∫
gf−1/2 dx

would diverge as x → +∞. Instead set f = x + lnx,
g = 0. By approximating

2.7.32 f1/2 = x1/2 + 1
2x
−1/2 lnx+O

(
x−3/2(lnx)2

)
,

we arrive at

2.7.33 w2(x) ∼ x−(1/4)−
√
x exp

(
2x1/2 − 2

3x
3/2
)
,

2.7.34 w3(x) ∼ x−(1/4)+
√
x exp

(
2
3x

3/2 − 2x1/2
)
,

as x→ +∞, w2(x) being recessive and w3(x) dominant.
For other examples, and also the corresponding re-

sults when f(x) is negative, see Olver (1997b, Chap-
ter 6), Olver (1980a), Taylor (1978, 1982), and Smith
(1986). The first of these references includes extensions
to complex variables and reversions for zeros.



58 Asymptotic Approximations

2.7(iv) Numerically Satisfactory Solutions

One pair of independent solutions of the equation

2.7.35 d2w
/
dz2 = w

is w1(z) = ez, w2(z) = e−z. Another is w3(z) = cosh z,
w4(z) = sinh z. In theory either pair may be used to
construct any other solution

2.7.36 w(z) = Aw1(z) +Bw2(z),
or

2.7.37 w(z) = Cw3(z) +Dw4(z),
where A,B,C,D are constants. From the numerical
standpoint, however, the pair w3(z) and w4(z) has the
drawback that severe numerical cancellation can occur
with certain combinations of C and D, for example if
C and D are equal, or nearly equal, and z, or <z, is
large and negative. This kind of cancellation cannot
take place with w1(z) and w2(z), and for this reason,
and following Miller (1950), we call w1(z) and w2(z) a
numerically satisfactory pair of solutions.

The solutions w1(z) and w2(z) are respectively re-
cessive and dominant as <z → −∞, and vice versa as
<z → +∞. This is characteristic of numerically satis-
factory pairs. In a neighborhood, or sectorial neighbor-
hood of a singularity, one member has to be recessive.
In consequence, if a differential equation has more than
one singularity in the extended plane, then usually more
than two standard solutions need to be chosen in order
to have numerically satisfactory representations every-
where.

In oscillatory intervals, and again following Miller
(1950), we call a pair of solutions numerically satisfac-
tory if asymptotically they have the same amplitude and
are 1

2π out of phase.

2.8 Differential Equations with a Parameter

2.8(i) Classification of Cases

Many special functions satisfy an equation of the form

2.8.1 d2w
/
dz2 =

(
u2f(z) + g(z)

)
w,

in which u is a real or complex parameter, and asymp-
totic solutions are needed for large |u| that are uniform
with respect to z in a point set D in R or C. For ex-
ample, u can be the order of a Bessel function or degree
of an orthogonal polynomial. The form of the asymp-
totic expansion depends on the nature of the transition
points in D, that is, points at which f(z) has a zero or
singularity. Zeros of f(z) are also called turning points.

There are three main cases. In Case I there are no
transition points in D and g(z) is analytic. In Case II
f(z) has a simple zero at z0 and g(z) is analytic at z0.
In Case III f(z) has a simple pole at z0 and (z−z0)2g(z)
is analytic at z0.

The same approach is used in all three cases. First
we apply the Liouville transformation (§1.13(iv)) to
(2.8.1). This introduces new variables W and ξ, related
by

2.8.2 W = ż−1/2w,

dots denoting differentiations with respect to ξ. Then

2.8.3
d2W

dξ2 =
(
u2ż2f(z) + ψ(ξ)

)
W,

where

2.8.4 ψ(ξ) = ż2g(z) + ż1/2 d
2

dξ2 (ż−1/2).

The transformation is now specialized in such a way
that: (a) ξ and z are analytic functions of each other at
the transition point (if any); (b) the approximating dif-
ferential equation obtained by neglecting ψ(ξ) (or part
of ψ(ξ)) has solutions that are functions of a single vari-
able. The actual choices are as follows:

2.8.5 ż2f(z) = 1, ξ =
∫
f1/2(z) dz,

for Case I,

2.8.6 ż2f(z) = ξ, 2
3ξ

3/2 =
∫ z

z0

f1/2(t) dt,

for Case II,

2.8.7 ż2f(z) = 1/ξ, 2ξ1/2 =
∫ z

z0

f1/2(t) dt,

for Case III.
The transformed equation has the form

2.8.8 d2W
/
dξ2 =

(
u2ξm + ψ(ξ)

)
W,

with m = 0 (Case I), m = 1 (Case II), m = −1
(Case III). In Cases I and II the asymptotic solutions
are in terms of the functions that satisfy (2.8.8) with
ψ(ξ) = 0. These are elementary functions in Case I,
and Airy functions (§9.2) in Case II. In Case III the
approximating equation is

2.8.9
d2W

dξ2 =
(
u2

ξ
+

ρ

ξ2

)
W,

where ρ = lim(ξ2ψ(ξ)) as ξ → 0. Solutions are
Bessel functions, or modified Bessel functions, of order
±(1 + 4ρ)1/2 (§§10.2, 10.25).

For another approach to these problems based on
convergent inverse factorial series expansions see Dun-
ster et al. (1993) and Dunster (2001a, 2004).
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2.8(ii) Case I: No Transition Points

The transformed differential equation is

2.8.10 d2W
/
dξ2 = (u2 + ψ(ξ))W,

in which ξ ranges over a bounded or unbounded interval
or domain ∆, and ψ(ξ) is C∞ or analytic on ∆. The
parameter u is assumed to be real and positive. Corre-
sponding to each positive integer n there are solutions
Wn,j(u, ξ), j = 1, 2, that depend on arbitrarily chosen
reference points αj , are C∞ or analytic on ∆, and as
u→∞
2.8.11

Wn,1(u, ξ) = euξ

(
n−1∑
s=0

As(ξ)
us

+O

(
1
un

))
, ξ ∈∆1(α1),

2.8.12

Wn,2(u, ξ) = e−uξ

(
n−1∑
s=0

(−1)s
As(ξ)
us

+O

(
1
un

))
,

ξ ∈∆2(α2),

with A0(ξ) = 1 and

2.8.13

As+1(ξ) =− 1
2A
′
s(ξ)+ 1

2

∫
ψ(ξ)As(ξ) dξ, s = 0, 1, 2, . . . ,

(the constants of integration being arbitrary). The ex-
pansions (2.8.11) and (2.8.12) are both uniform and dif-
ferentiable with respect to ξ. The regions of validity
∆j(αj) comprise those points ξ that can be joined to
αj in ∆ by a path Qj along which <v is nondecreasing
(j = 1) or nonincreasing (j = 2) as v passes from αj to
ξ. In addition, VQj

(A1) and VQj
(An) must be bounded

on ∆j(αj).
For error bounds, extensions to pure imaginary or

complex u, an extension to inhomogeneous differential
equations, and examples, see Olver (1997b, Chapter 10).
This reference also supplies sufficient conditions to en-
sure that the solutions Wn,1(u, ξ) and Wn,2(u, ξ) having
the properties (2.8.11) and (2.8.12) are independent of
n.

2.8(iii) Case II: Simple Turning Point

The transformed differential equation is

2.8.14 d2W
/
dξ2 = (u2ξ + ψ(ξ))W,

and for simplicity ξ is assumed to range over a finite or
infinite interval (α1, α2) with α1 < 0, α2 > 0. Again,
u > 0 and ψ(ξ) is C∞ on (α1, α2). Corresponding to
each positive integer n there are solutions Wn,j(u, ξ),
j = 1, 2, that are C∞ on (α1, α2), and as u→∞

2.8.15 Wn,1(u, ξ) = Ai
(
u2/3ξ

)(n−1∑
s=0

As(ξ)
u2s

+O

(
1

u2n−1

))
+ Ai′

(
u2/3ξ

)(n−2∑
s=0

Bs(ξ)
u2s+(4/3)

+O

(
1

u2n−1

))
,

2.8.16 Wn,2(u, ξ) = Bi
(
u2/3ξ

)(n−1∑
s=0

As(ξ)
u2s

+O

(
1

u2n−1

))
+ Bi′

(
u2/3ξ

)(n−2∑
s=0

Bs(ξ)
u2s+(4/3)

+O

(
1

u2n−1

))
.

Here A0(ξ) = 1,

2.8.17 Bs(ξ) =


1

2ξ1/2

∫ ξ

0

(ψ(v)As(v)−A′′s (v))
dv

v1/2
, ξ > 0,

1
2(−ξ)1/2

∫ 0

ξ

(ψ(v)As(v)−A′′s (v))
dv

(−v)1/2
, ξ < 0,

and
2.8.18 As+1(ξ) = − 1

2B
′
s(ξ) + 1

2

∫
ψ(ξ)Bs(ξ) dξ,

when s = 0, 1, 2, . . . . For Ai and Bi see §9.2. The expan-
sions (2.8.15) and (2.8.16) are both uniform and differ-
entiable with respect to ξ. These results are valid when
Vα1,α2

(
|ξ|1/2B0

)
and Vα1,α2

(
|ξ|1/2Bn−1

)
are finite.

An alternative way of representing the error terms in
(2.8.15) and (2.8.16) is as follows. Let c = −0.36604...
be the real root of the equation

2.8.19 Ai(x) = Bi(x)

of smallest absolute value, and define the envelopes of

Ai(x) and Bi(x) by

2.8.20 env Ai(x) = env Bi(x) =
(
Ai2(x) + Bi2(x)

)1/2
,

−∞ < x ≤ c,

2.8.21
env Ai(x) =

√
2 Ai(x), env Bi(x) =

√
2 Bi(x),

c ≤ x <∞.

These envelopes are continuous functions of x, and as
u→∞
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2.8.22

Wn,1(u, ξ) = Ai
(
u2/3ξ

) n−1∑
s=0

As(ξ)
u2s

+ Ai′
(
u2/3ξ

) n−2∑
s=0

Bs(ξ)
u2s+(4/3)

+ env Ai
(
u2/3ξ

)
O

(
1

u2n−1

)
,

2.8.23

Wn,2(u, ξ) = Bi
(
u2/3ξ

) n−1∑
s=0

As(ξ)
u2s

+ Bi′
(
u2/3ξ

) n−2∑
s=0

Bs(ξ)
u2s+(4/3)

+ env Bi
(
u2/3ξ

)
O

(
1

u2n−1

)
,

uniformly with respect to ξ ∈ (α1, α2).
For error bounds, more delicate error estimates, ex-

tensions to complex ξ and u, zeros, connection formulas,
extensions to inhomogeneous equations, and examples,

see Olver (1997b, Chapters 11, 13), Olver (1964b), Reid
(1974a,b), Boyd (1987), and Baldwin (1991).

For other examples of uniform asymptotic approx-
imations and expansions of special functions in terms
of Airy functions see especially §10.20 and §§12.10(vii),
12.10(viii); also §§12.14(ix), 13.20(v), 13.21(iii),
13.21(iv), 15.12(iii), 18.15(iv), 30.9(i), 30.9(ii), 32.11(ii),
32.11(iii), 33.12(i), 33.12(ii), 33.20(iv), 36.12(ii), 36.13.

2.8(iv) Case III: Simple Pole

The transformed equation (2.8.8) is renormalized as

2.8.24
d2W

dξ2 =
(
u2

4ξ
+
ν2 − 1

4ξ2
+
ψ(ξ)
ξ

)
W.

We again assume ξ ∈ (α1, α2) with −∞ ≤ α1 < 0,
0 < α2 ≤ ∞. Also, ψ(ξ) is C∞ on (α1, α2), and u > 0.
The constant ν (=

√
1 + 4ρ) is real and nonnegative.

There are two cases: ξ ∈ (0, α2) and ξ ∈ (α1, 0).
In the former, corresponding to any positive integer n
there are solutions Wn,j(u, ξ), j = 1, 2, that are C∞ on
(0, α2), and as u→∞

2.8.25 Wn,1(u, ξ) = ξ1/2 Iν

(
uξ1/2

) n−1∑
s=0

As(ξ)
u2s

+ ξ Iν+1

(
uξ1/2

) n−2∑
s=0

Bs(ξ)
u2s+1

+ ξ1/2 Iν

(
uξ1/2

)
O

(
1

u2n−1

)
,

2.8.26 Wn,2(u, ξ) = ξ1/2Kν

(
uξ1/2

) n−1∑
s=0

As(ξ)
u2s

− ξ Kν+1

(
uξ1/2

) n−2∑
s=0

Bs(ξ)
u2s+1

+ ξ1/2Kν

(
uξ1/2

)
O

(
1

u2n−1

)
.

Here A0(ξ) = 1,

2.8.27 Bs(ξ) = −A′s(ξ) +
1
ξ1/2

∫ ξ

0

(
ψ(v)As(v)−

(
ν + 1

2

)
A′s(v)

) dv

v1/2
,

2.8.28 As+1(ξ) = νBs(ξ)− ξB′s(ξ) +
∫
ψ(ξ)Bs(ξ) dξ,

s = 0, 1, 2, . . . . For Iν and Kν see §10.25(ii). The expansions (2.8.25) and (2.8.26) are both uniform and differentiable
with respect to ξ. These results are valid when V0,α2

(
ξ1/2B0

)
and V0,α2

(
ξ1/2Bn−1

)
are finite.

If ξ ∈ (α1, 0), then there are solutions Wn,j(u, ξ), j = 3, 4, that are C∞ on (α1, 0), and as u→∞

2.8.29 Wn,3(u, ξ) = |ξ|1/2 Jν
(
u|ξ|1/2

)(n−1∑
s=0

As(ξ)
u2s

+O

(
1

u2n−1

))
− |ξ| Jν+1

(
u|ξ|1/2

)(n−2∑
s=0

Bs(ξ)
u2s+1

+O

(
1

u2n−2

))
,

2.8.30 Wn,4(u, ξ) = |ξ|1/2 Yν
(
u|ξ|1/2

)(n−1∑
s=0

As(ξ)
u2s

+O

(
1

u2n−1

))
− |ξ|Yν+1

(
u|ξ|1/2

)(n−2∑
s=0

Bs(ξ)
u2s+1

+O

(
1

u2n−2

))
.

Here A0(ξ) = 1,

2.8.31 Bs(ξ) = −A′s(ξ) +
1
|ξ|1/2

∫ 0

ξ

(
ψ(v)As(v)−

(
ν + 1

2

)
A′s(v)

) dv

|v|1/2
,

s = 0, 1, 2, . . . , and (2.8.28) again applies. For Jν and Yν see §10.2(ii). The expansions (2.8.29) and (2.8.30) are both
uniform and differentiable with respect to ξ. These results are valid when Vα1,0

(
|ξ|1/2B0

)
and Vα1,0

(
|ξ|1/2Bn−1

)
are

finite.
Again, an alternative way of representing the error terms in (2.8.29) and (2.8.30) is by means of envelope functions.

Let x = Xν be the smallest positive root of the equation

2.8.32 Jν(x) + Yν(x) = 0.
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Define

2.8.33 env Jν(x) =
√

2 Jν(x), env Yν(x) =
√

2 |Yν(x)|, 0 < x ≤ Xν ,

2.8.34 env Jν(x) = env Yν(x) =
(
J2
ν (x) + Y 2

ν (x)
)1/2

, Xν ≤ x <∞.
Then as u→∞

2.8.35 Wn,3(u, ξ) = |ξ|1/2 Jν
(
u|ξ|1/2

) n−1∑
s=0

As(ξ)
u2s

− |ξ| Jν+1

(
u|ξ|1/2

) n−2∑
s=0

Bs(ξ)
u2s+1

+ |ξ|1/2 env Jν
(
u|ξ|1/2

)
O

(
1

u2n−1

)
,

2.8.36 Wn,4(u, ξ) = |ξ|1/2 Yν
(
u|ξ|1/2

) n−1∑
s=0

As(ξ)
u2s

− |ξ|Yν+1

(
u|ξ|1/2

) n−2∑
s=0

Bs(ξ)
u2s+1

+ |ξ|1/2 env Yν
(
u|ξ|1/2

)
O

(
1

u2n−1

)
,

uniformly with respect to ξ ∈ (α1, 0).
For error bounds, more delicate error estimates, ex-

tensions to complex ξ, ν, and u, zeros, and examples see
Olver (1997b, Chapter 12), Boyd (1990a), and Dunster
(1990a).

For other examples of uniform asymptotic approx-
imations and expansions of special functions in terms
of Bessel functions or modified Bessel functions of
fixed order see §§13.8(iii), 13.21(i), 13.21(iv), 14.15(i),
14.15(iii), 14.20(vii), 15.12(iii), 18.15(i), 18.15(iv),
18.24, 33.20(iv).

2.8(v) Multiple and Fractional Turning Points

The approach used in preceding subsections for equa-
tion (2.8.1) also succeeds when z0 is a multiple or frac-
tional turning point. For the former f(z) has a zero
of multiplicity λ = 2, 3, 4, . . . and g(z) is analytic. For
the latter (z − z0)−λf(z) and g(z) are both analytic at
z0, λ (> −2) being a real constant. In both cases uni-
form asymptotic approximations are obtained in terms
of Bessel functions of order 1/(λ + 2). More generally,
g(z) can have a simple or double pole at z0. (In the
case of the double pole the order of the approximating
Bessel functions is fixed but no longer 1/(λ+ 2).) How-
ever, in all cases with λ > −2 and λ 6= 0 or ±1, only
uniform asymptotic approximations are available, not
uniform asymptotic expansions. For results, including
error bounds, see Olver (1977c).

For connection formulas for Liouville–Green ap-
proximations across these transition points see Olver
(1977b,a, 1978).

2.8(vi) Coalescing Transition Points

Corresponding to the problems for integrals outlined in
§§2.3(v), 2.4(v), and 2.4(vi), there are analogous prob-
lems for differential equations.

For two coalescing turning points see Olver (1975a,
1976) and Dunster (1996a); in this case the uniform

approximants are parabolic cylinder functions. (For
envelope functions for parabolic cylinder functions see
§14.15(v)).

For a coalescing turning point and double pole see
Boyd and Dunster (1986) and Dunster (1990b); in this
case the uniform approximants are Bessel functions of
variable order.

For a coalescing turning point and simple pole see
Nestor (1984) and Dunster (1994b); in this case the uni-
form approximants are Whittaker functions (§13.14(i))
with a fixed value of the second parameter.

For further examples of uniform asymptotic approx-
imations in terms of parabolic cylinder functions see
§§13.20(iii), 13.20(iv), 14.15(v), 15.12(iii), 18.24.

For further examples of uniform asymptotic approx-
imations in terms of Bessel functions or modified Bessel
functions of variable order see §§13.21(ii), 14.15(ii),
14.15(iv), 14.20(viii), 30.9(i), 30.9(ii).

For examples of uniform asymptotic approximations
in terms of Whittaker functions with fixed second pa-
rameter see §18.15(i) and §28.8(iv).

Lastly, for an example of a fourth-order differential
equation, see Wong and Zhang (2007).

2.9 Difference Equations

2.9(i) Distinct Characteristic Values

Many special functions that depend on parameters sat-
isfy a three-term linear recurrence relation

2.9.1
w(n+ 2) + f(n)w(n+ 1) + g(n)w(n) = 0,

n = 0, 1, 2, . . . ,

or equivalently the second-order homogeneous linear dif-
ference equation

2.9.2
∆2w(n) + (2 + f(n)) ∆w(n)

+ (1 + f(n) + g(n))w(n) = 0, n = 0, 1, 2, . . . ,

in which ∆ is the forward difference operator (§3.6(i)).
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Often f(n) and g(n) can be expanded in series

2.9.3
f(n) ∼

∞∑
s=0

fs
ns
, g(n) ∼

∞∑
s=0

gs
ns

, n→∞,

with g0 6= 0. (For the case g0 = 0 see the final para-
graph of §2.9(ii) with Q negative.) This situation is
analogous to second-order homogeneous linear differen-
tial equations with an irregular singularity of rank 1 at

infinity (§2.7(ii)). Formal solutions are

2.9.4 ρnj n
αj

∞∑
s =0

as,j
ns

, j = 1, 2,

where ρ1, ρ2 are the roots of the characteristic equation

2.9.5 ρ2 + f0ρ+ g0 = 0,

2.9.6 αj = (f1ρj + g1)/(f0ρj + 2g0),
a0,j = 1, and

2.9.7 ρj(f0 + 2ρj)sas,j =
s∑
r=1

(
ρ2
j2
r+1

(
αj + r − s
r + 1

)
+ ρj

r+1∑
q=0

(
αj + r − s
r + 1− q

)
fq + gr+1

)
as−r,j ,

s = 1, 2, 3, . . . . The construction fails iff ρ1 = ρ2, that
is, when f2

0 = 4g0.
When f2

0 6= 4g0, there are linearly independent so-
lutions wj(n), j = 1, 2, such that

2.9.8 wj(n) ∼ ρnj nαj
∞∑
s=0

as,j
ns

, n→∞.

If |ρ2| > |ρ1|, or if |ρ2| = |ρ1| and <α2 > <α1, then
w1(n) is recessive and w2(n) is dominant as n→∞. As
in the case of differential equations (§§2.7(iii), 2.7(iv))
recessive solutions are unique and dominant solutions
are not; furthermore, one member of a numerically sat-
isfactory pair has to be recessive. When |ρ2| = |ρ1| and
<α2 = <α1 neither solution is dominant and both are
unique.

For proofs see Wong and Li (1992a). For error
bounds see Zhang et al. (1996). See also Olver (1967b).

For asymptotic expansions in inverse factorial series
see Olde Daalhuis (2004a).

2.9(ii) Coincident Characteristic Values

When the roots of (2.9.5) are equal we denote them
both by ρ. Assume first 2g1 6= f0f1. Then (2.9.1) has
independent solutions wj(n), j = 1, 2, such that

2.9.9 wj(n) ∼ ρn exp
(
(−1)jκ

√
n
)
nα

∞∑
s=0

(−1)js
cs
ns/2

,

where

2.9.10
√
g0κ =

√
2f0f1 − 4g1, 4g0α = g0 + 2g1,

c0 = 1, and higher coefficients are determined by formal
substitution.

Alternatively, suppose that 2g1 = f0f1. Then the
indices α1, α2 are the roots of

2.9.11 2g0α
2 − (f0f1 + 2g0)α+ 2g2 − f0f2 = 0.

Provided that α2 − α1 is not zero or an integer, (2.9.1)
has independent solutions wj(n), j = 1, 2, of the form

2.9.12 wj(n) ∼ ρnnαj
∞∑
s=0

as,j
ns

, n→∞,

with a0,j = 1 and higher coefficients given by (2.9.7) (in
the present case the coefficients of as,j and as−1,j are
zero).

If α2−α1 = 0, 1, 2, . . . , then (2.9.12) applies only in
the case j = 1. But there is an independent solution

2.9.13

w2(n) ∼ ρnnα2

∞∑
s=0

s6=α2−α1

bs
ns

+ cw1(n) lnn, n→∞.

The coefficients bs and constant c are again determined
by formal substitution, beginning with c = 1 when
α2 − α1 = 0, or with b0 = 1 when α2 − α1 = 1, 2, 3, . . . .
(Compare (2.7.6).)

For proofs and examples, see Wong and Li (1992a).
For error bounds see Zhang et al. (1996).

For analogous results for difference equations of the
form

2.9.14 w(n+ 2) + nP f(n)w(n+ 1) + nQg(n)w(n) = 0,

in which P and Q are any integers see Wong and Li
(1992b).

2.9(iii) Other Approximations

For asymptotic approximations to solutions of second-
order difference equations analogous to the Liouville–
Green (WKBJ) approximation for differential equations
(§2.7(iii)) see Spigler and Vianello (1992, 1997) and
Spigler et al. (1999). Error bounds and applications
are included.
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For discussions of turning points, transition points,
and uniform asymptotic expansions for solutions of lin-
ear difference equations of the second order see Wang
and Wong (2003, 2005).

For an introduction to, and references for, the gen-
eral asymptotic theory of linear difference equations of
arbitrary order, see Wimp (1984, Appendix B).

2.10 Sums and Sequences

2.10(i) Euler–Maclaurin Formula

As in §24.2, let Bn and Bn(x) denote the nth Bernoulli
number and polynomial, respectively, and B̃n(x) the
nth Bernoulli periodic function Bn(x− bxc).

Assume that a,m, and n are integers such that
n > a, m > 0, and f (2m)(x) is absolutely integrable
over [a, n]. Then

2.10.1
n∑
j=a

f(j) =
∫ n

a

f(x) dx+ 1
2f(a) + 1

2f(n)

+
m−1∑
s=1

B2s

(2s)!

(
f (2s−1)(n)− f (2s−1)(a)

)
+
∫ n

a

B2m− B̃2m(x)
(2m)!

f (2m)(x) dx.

This is the Euler–Maclaurin formula. Another version
is the Abel–Plana formula:

2.10.2
n∑
j=a

f(j) =
∫ n

a

f(x) dx+ 1
2f(a) + 1

2f(n)

− 2
∫ ∞

0

=(f(a+ iy))
e2πy − 1

dy

+
m∑
s=1

B2s

(2s)!
f (2s−1)(n)

+ 2
(−1)m

(2m)!

∫ ∞
0

=(f (2m)(n+ iϑny))
y2m dy

e2πy − 1
,

ϑn being some number in the interval (0, 1). Sufficient
conditions for the validity of this second result are:

(a) On the strip a ≤ <z ≤ n, f(z) is analytic in its
interior, f (2m)(z) is continuous on its closure, and
f(z) = o

(
e2π|=z|) as =z → ±∞, uniformly with

respect to <z ∈ [a, n].

(b) f(z) is real when a ≤ z ≤ n.

(c) The first infinite integral in (2.10.2) converges.

Example

2.10.3 S(n) =
n∑
j=1

j ln j

for large n. From (2.10.1)
2.10.4

S(n) = 1
2n

2 lnn− 1
4n

2 + 1
2n lnn+ 1

12 lnn+ C

+
m−1∑
s=2

(−B2s)
2s(2s− 1)(2s− 2)

1
n2s−2

+Rm(n),

where m (≥ 2) is arbitrary, C is a constant, and

2.10.5 Rm(n) =
∫ ∞
n

B̃2m(x)−B2m

2m(2m− 1)x2m−1
dx.

From §24.12(i), (24.2.2), and (24.4.27), B̃2m(x)−B2m is
of constant sign (−1)m. Thus Rm(n) and Rm+1(n) are
of opposite signs, and since their difference is the term
corresponding to s = m in (2.10.4), Rm(n) is bounded
in absolute value by this term and has the same sign.

Formula (2.10.2) is useful for evaluating the con-
stant term in expansions obtained from (2.10.1). In the
present example it leads to

2.10.6 C =
γ + ln(2π)

12
− ζ ′(2)

2π2
=

1
12
− ζ ′(−1),

where γ is Euler’s constant (§5.2(ii)) and ζ ′ is the deriva-
tive of the Riemann zeta function (§25.2(i)). eC is some-
times called Glaisher’s constant. For further informa-
tion on C see §5.17.

Other examples that can be verified in a similar way
are:
2.10.7

n−1∑
j=1

jα ∼ ζ(−α) +
nα+1

α+ 1

∞∑
s=0

(
α+ 1
s

)
Bs
ns

, n→∞,

where α (6= −1) is a real constant, and

2.10.8

n−1∑
j=1

1
j
∼ lnn+ γ − 1

2n
−
∞∑
s=1

B2s

2s
1
n2s

, n→∞.

In both expansions the remainder term is bounded in
absolute value by the first neglected term in the sum,
and has the same sign, provided that in the case of
(2.10.7), truncation takes place at s = 2m− 1, where m
is any positive integer satisfying m ≥ 1

2 (α+ 1).
For extensions of the Euler–Maclaurin formula to

functions f(x) with singularities at x = a or x = n (or
both) see Sidi (2004). See also Weniger (2007).

For an extension to integrals with Cauchy principal
values see Elliott (1998).

2.10(ii) Summation by Parts

The formula for summation by parts is

2.10.9

n−1∑
j=1

ujvj = Un−1vn +
n−1∑
j=1

Uj(vj − vj+1),
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where
2.10.10 Uj = u1 + u2 + · · ·+ uj .

This identity can be used to find asymptotic approxima-
tions for large n when the factor vj changes slowly with
j, and uj is oscillatory; compare the approximation of
Fourier integrals by integration by parts in §2.3(i).
Example

2.10.11 S(α, β, n) =
n−1∑
j=1

eijβjα,

where α and β are real constants with eiβ 6= 1.
As a first estimate for large n

2.10.12

|S(α, β, n)| ≤
n−1∑
j=1

jα = O(1), O(lnn), or O
(
nα+1

)
,

according as α < −1, α = −1, or α > −1; see (2.10.7),
(2.10.8). With uj = eijβ , vj = jα,

2.10.13 Uj = eiβ(eijβ − 1)/(eiβ − 1),
and

2.10.14

S(α, β, n) =
eiβ

eiβ − 1

ei(n−1)βnα − 1

+
n−1∑
j=1

eijβ (jα − (j + 1)α)

 .

Since

2.10.15 jα − (j + 1)α = −αjα−1 + α(α− 1)O
(
jα−2

)
for any real constant α and the set of all positive integers
j, we derive
2.10.16

S(α, β, n) =
eiβ

eiβ − 1

(
ei(n−1)βnα − αS(α− 1, β, n)

+O
(
nα−1

)
+O(1)

)
.

From this result and (2.10.12)
2.10.17 S(α, β, n) = O(nα) +O(1).
Then replacing α by α − 1 and resubstituting in
(2.10.16), we have
2.10.18

S(α, β, n) =
einβ

eiβ − 1
nα +O

(
nα−1

)
+O(1), n→∞,

which is a useful approximation when α > 0.
For extensions to α ≤ 0, higher terms, and other

examples, see Olver (1997b, Chapter 8).

2.10(iii) Asymptotic Expansions of Entire
Functions

The asymptotic behavior of entire functions defined by
Maclaurin series can be approached by converting the
sum into a contour integral by use of the residue theo-
rem and applying the methods of §§2.4 and 2.5.

Example

From §§16.2(i)–16.2(ii)

2.10.19 0F2(−; 1, 1;x) =
∞∑
j=0

xj

(j!)3
.

We seek the behavior as x→ +∞. From (1.10.8)

2.10.20

n−1∑
j =0

xj

(j!)3
=

1
2i

∫
C

xt

(Γ(t+ 1))3
cot(πt) dt,

where C comprises the two semicircles and two parts of
the imaginary axis depicted in Figure 2.10.1.

Figure 2.10.1: t-plane. Contour C .

From the identities

2.10.21
cot(πt)

2i
= −1

2
− 1
e−2πit − 1

=
1
2

+
1

e2πit − 1
,

and Cauchy’s theorem, we have

2.10.22

n−1∑
j =0

xj

(j!)3
=
∫ n−(1/2)

−1/2

xt

(Γ(t+ 1))3
dt

−
∫

C1

xt

(Γ(t+ 1))3

dt

e−2πit − 1

+
∫

C2

xt

(Γ(t+ 1))3

dt

e2πit − 1
,

where C1,C2 denote respectively the upper and lower
halves of C . (5.11.7) shows that the integrals around
the large quarter circles vanish as n→∞. Hence

2.10.23

0F2(−; 1, 1;x) =
∫ ∞
−1/2

xt

(Γ(t+ 1))3
dt

+ 2<
∫ i∞

−1/2

xt

(Γ(t+ 1))3

dt

e−2πit − 1

=
∫ ∞

0

xt

(Γ(t+ 1))3
dt+O(1),

x→ +∞,
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the last step following from |xt| ≤ 1 when t is on the
interval [− 1

2 , 0], the imaginary axis, or the small semi-
circle. By application of Laplace’s method (§2.3(iii))
and use again of (5.11.7), we obtain

2.10.24 0F2(−; 1, 1;x) ∼
exp
(
3x1/3

)
2π31/2x1/3

, x→ +∞.

For generalizations and other examples see Olver
(1997b, Chapter 8), Ford (1960), and Berndt and Evans
(1984). See also Paris and Kaminski (2001, Chapter 5)
and §§16.11(i)–16.11(ii).

2.10(iv) Taylor and Laurent Coefficients:
Darboux’s Method

Let f(z) be analytic on the annulus 0 < |z| < r, with
Laurent expansion

2.10.25 f(z) =
∞∑

n=−∞
fnz

n, 0 < |z| < r.

What is the asymptotic behavior of fn as n → ∞ or
n → −∞? More specially, what is the behavior of the
higher coefficients in a Taylor-series expansion?

These problems can be brought within the scope of
§2.4 by means of Cauchy’s integral formula

2.10.26 fn =
1

2πi

∫
C

f(z)
zn+1

dz,

where C is a simple closed contour in the annulus that
encloses z = 0. For examples see Olver (1997b, Chap-
ters 8, 9).

However, if r is finite and f(z) has algebraic or loga-
rithmic singularities on |z| = r, then Darboux’s method
is usually easier to apply. We need a “comparison func-
tion” g(z) with the properties:

(a) g(z) is analytic on 0 < |z| < r.

(b) f(z)− g(z) is continuous on 0 < |z| ≤ r.

(c) The coefficients in the Laurent expansion

2.10.27 g(z) =
∞∑

n=−∞
gnz

n, 0 < |z| < r,

have known asymptotic behavior as n→ ±∞.

By allowing the contour in Cauchy’s formula to ex-
pand, we find that
2.10.28

fn − gn =
1

2πi

∫
|z|=r

f(z)− g(z)
zn+1

dz

=
1

2πrn

∫ 2π

0

(
f
(
reiθ

)
− g

(
reiθ

))
e−niθ dθ.

Hence by the Riemann–Lebesgue lemma (§1.8(i))

2.10.29 fn = gn + o
(
r−n

)
, n→ ±∞.

This result is refinable in two important ways. First,
the conditions can be weakened. It is unnecessary for
f(z)− g(z) to be continuous on |z| = r: it suffices that
the integrals in (2.10.28) converge uniformly. For exam-
ple, Condition (b) can be replaced by:

(b′) On the circle |z| = r, the function f(z) − g(z)
has a finite number of singularities, and at each
singularity zj , say,

2.10.30 f(z)− g(z) = O
(
(z − zj)σj−1

)
, z → zj ,

where σj is a positive constant.

Secondly, when f(z)− g(z) is m times continuously
differentiable on |z| = r the result (2.10.29) can be
strengthened. In these circumstances the integrals in
(2.10.28) are integrable by parts m times, yielding

2.10.31 fn = gn + o
(
r−n|n|−m

)
, n→ ±∞.

Furthermore, (2.10.31) remains valid with the weaker
condition

2.10.32 f (m)(z)− g(m)(z) = O
(
(z − zj)σj−1

)
,

in the neighborhood of each singularity zj , again with
σj > 0.

Example

Let α be a constant in (0, 2π) and Pn denote the Leg-
endre polynomial of degree n. From §14.7(iv)

2.10.33

f(z) ≡ 1
(1− 2z cosα+ z2)1/2

=
∞∑
n=0

Pn(cosα)zn, |z| < 1.

The singularities of f(z) on the unit circle are branch
points at z = e±iα. To match the limiting behavior of
f(z) at these points we set

2.10.34
g(z) = e−πi/4(2 sinα)−1/2

(
e−iα − z

)−1/2

+ eπi/4(2 sinα)−1/2
(
eiα − z

)−1/2
.

Here the branch of
(
e−iα − z

)−1/2 is continuous in
the z-plane cut along the outward-drawn ray through
z = e−iα and equals eiα/2 at z = 0. Similarly for(
eiα − z

)−1/2. In Condition (c) we have
2.10.35

gn =
(

2
π sinα

)1/2 Γ
(
n+ 1

2

)
n!

cos
(
nα+ 1

2α−
1
4π
)
,

and in the supplementary conditions we may set m = 1.
Then from (2.10.31) and (5.11.7)
2.10.36

Pn(cosα) =
(

2
πn sinα

)1/2
cos
(
nα+ 1

2α−
1
4π
)
+o
(
n−1

)
.

For higher terms see §18.15(iii).
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For uniform expansions when two singularities coa-
lesce on the circle of convergence see Wong and Zhao
(2005).

For other examples and extensions see Olver (1997b,
Chapter 8), Olver (1970), Wong (1989, Chapter 2),
and Wong and Wyman (1974). See also Flajolet and
Odlyzko (1990).

2.11 Remainder Terms; Stokes
Phenomenon

2.11(i) Numerical Use of Asymptotic
Expansions

When a rigorous bound or reliable estimate for the re-
mainder term is unavailable, it is unsafe to judge the
accuracy of an asymptotic expansion merely from the
numerical rate of decrease of the terms at the point of
truncation. Even when the series converges this is un-
wise: the tail needs to be majorized rigorously before
the result can be guaranteed. For divergent expansions
the situation is even more difficult. First, it is impossi-
ble to bound the tail by majorizing its terms. Secondly,
the asymptotic series represents an infinite class of func-
tions, and the remainder depends on which member we
have in mind.

As an example consider

2.11.1 I(m) =
∫ π

0

cos(mt)
t2 + 1

dt,

with m a large integer. By integration by parts (§2.3(i))

2.11.2 I(m) ∼ (−1)m
∞∑
s=1

qs(π)
m2s

, m→∞,

with

2.11.3

q1(t) = − 2t
(t2 + 1)2

, q2(t) =
24(t3 − t)
(t2 + 1)4

,

q3(t) = −240(3t5 − 10t3 + 3t)
(t2 + 1)6

.

On rounding to 5D, we have q1(π) = −0.05318, q2(π) =
0.04791, q3(π) = −0.08985. Hence

2.11.4
I(10) ∼ −0.00053 18 + 0.00000 48− 0.00000 01

= −0.00052 71.
But this answer is incorrect: to 7D I(10) =
−0.00045 58. The error term is, in fact, approximately
700 times the last term obtained in (2.11.4). The ex-
planation is that (2.11.2) is a more accurate expansion
for the function I(m)− 1

2πe
−m than it is for I(m); see

Olver (1997b, pp. 76–78).
In order to guard against this kind of error remaining

undetected, the wanted function may need to be com-
puted by another method (preferably nonasymptotic)
for the smallest value of the (large) asymptotic variable

x that is intended to be used. If the results agree within
S significant figures, then it is likely—but not certain—
that the truncated asymptotic series will yield at least
S correct significant figures for larger values of x. For
further discussion see Bosley (1996).

In C both the modulus and phase of the asymptotic
variable z need to be taken into account. Suppose an
asymptotic expansion holds as z →∞ in any closed sec-
tor within α < ph z < β, say, but not in α ≤ ph z ≤ β.
Then numerical accuracy will disintegrate as the bound-
ary rays ph z = α, ph z = β are approached. In conse-
quence, practical application needs to be confined to a
sector α′ ≤ ph z ≤ β′ well within the sector of validity,
and independent evaluations carried out on the bound-
aries for the smallest value of |z| intended to be used.
The choice of α′ and β′ is facilitated by a knowledge of
the relevant Stokes lines; see §2.11(iv) below.

However, regardless whether we can bound the re-
mainder, the accuracy achievable by direct numerical
summation of a divergent asymptotic series is always
limited. The rest of this section is devoted to general
methods for increasing this accuracy.

2.11(ii) Connection Formulas

From §8.19(i) the generalized exponential integral is
given by

2.11.5 Ep(z) =
e−zzp−1

Γ(p)

∫ ∞
0

e−zttp−1

1 + t
dt

when <p > 0 and |ph z| < 1
2π, and by analytic con-

tinuation for other values of p and z. Application of
Watson’s lemma (§2.4(i)) yields

2.11.6 Ep(z) ∼
e−z

z

∞∑
s=0

(−1)s
(p)s
zs

when p is fixed and z → ∞ in any closed sector within
|ph z| < 3

2π. As noted in §2.11(i), poor accuracy is
yielded by this expansion as ph z approaches 3

2π or− 3
2π.

However, on combining (2.11.6) with the connection for-
mula (8.19.18), with m = 1, we derive

2.11.7 Ep(z) ∼
2πie−pπi

Γ(p)
zp−1 +

e−z

z

∞∑
s=0

(−1)s
(p)s
zs

,

valid as z →∞ in any closed sector within 1
2π < ph z <

7
2π; compare (8.20.3). Since the ray ph z = 3

2π is well
away from the new boundaries, the compound expan-
sion (2.11.7) yields much more accurate results when
ph z → 3

2π. In effect, (2.11.7) “corrects” (2.11.6) by in-
troducing a term that is relatively exponentially small in
the neighborhood of ph z = π, is increasingly significant
as ph z passes from π to 3

2π, and becomes the dominant
contribution after ph z passes 3

2π. See also §2.11(iv).
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2.11(iii) Exponentially-Improved Expansions

The procedure followed in §2.11(ii) enabled Ep(z) to
be computed with as much accuracy in the sector
π ≤ ph z ≤ 3π as the original expansion (2.11.6) in
|ph z| ≤ π. We now increase substantially the accuracy
of (2.11.6) in |ph z| ≤ π by re-expanding the remainder
term.

Optimum truncation in (2.11.6) takes place at s =
n− 1, with |p+ n− 1| = |z|, approximately. Thus

2.11.8 n = ρ− p+ α,

where z = ρeiθ, and |α| is bounded as n → ∞. From
(2.11.5) and the identity

2.11.9
1

1 + t
=
n−1∑
s=0

(−1)sts + (−1)n
tn

1 + t
, t 6= −1,

we have

2.11.10

Ep(z) =
e−z

z

n−1∑
s=0

(−1)s
(p)s
zs

+ (−1)n
2π

Γ(p)
zp−1Fn+p(z),

where

2.11.11

Fn+p(z) =
e−z

2π

∫ ∞
0

e−zttn+p−1

1 + t
dt=

Γ(n+ p)
2π

En+p(z)
zn+p−1

.

With n given by (2.11.8), we have

2.11.12

Fn+p(z) =
e−z

2π

∫ ∞
0

exp
(
−ρ
(
teiθ − ln t

)) tα−1

1 + t
dt.

For large ρ the integrand has a saddle point at t =
e−iθ. Following §2.4(iv), we rotate the integration path
through an angle −θ, which is valid by analytic con-
tinuation when −π < θ < π. Then by application of
Laplace’s method (§§2.4(iii) and 2.4(iv)), we have

2.11.13

Fn+p(z) ∼
e−i(ρ+α)θ

1 + e−iθ
e−ρ−z

(2πρ)1/2

∞∑
s=0

a2s(θ, α)
ρs

, ρ→∞,

uniformly when θ ∈ [−π + δ, π − δ] (δ > 0) and |α| is
bounded. The coefficients are rational functions of α
and 1 + eiθ, for example, a0(θ, α) = 1, and

2.11.14

a2(θ, α) =
1
12

(6α2 − 6α+ 1)− α

1 + eiθ
+

1
(1 + eiθ)2

.

Owing to the factor e−ρ, that is, e−|z| in (2.11.13),
Fn+p(z) is uniformly exponentially small compared with
Ep(z). For this reason the expansion of Ep(z) in
|ph z| ≤ π − δ supplied by (2.11.8), (2.11.10), and
(2.11.13) is said to be exponentially improved.

If we permit the use of nonelementary functions as
approximants, then even more powerful re-expansions
become available. One is uniformly valid for −π + δ ≤

ph z ≤ 3π − δ with bounded |α|, and achieves uniform
exponential improvement throughout 0 ≤ ph z ≤ π:

2.11.15

Fn+p(z) ∼ (−1)nie−pπi
(

1
2 erfc

(√
1
2ρ c(θ)

)

− ie
iρ(π−θ)e−ρ−z

(2πρ)1/2

∞∑
s=0

h2s(θ, α)
ρs

)
.

Here erfc is the complementary error function (§7.2(i)),
and
2.11.16 c(θ) =

√
2(1 + eiθ + i(θ − π)),

the branch being continuous with c(θ) ∼ π−θ as θ → π.
Also,

2.11.17

h2s(θ, α) =
eiα(π−θ)

1 + e−iθ
a2s(θ, α)

+ (−1)s−1i
1 · 3 · 5 · · · (2s− 1)

(c(θ))2s+1
,

with a2s(θ, α) as in (2.11.13), (2.11.14). In particular,

2.11.18 h0(θ, α) =
eiα(π−θ)

1 + e−iθ
− i

c(θ)
.

For the sector −3π+ δ ≤ ph z ≤ π− δ the conjugate
result applies.

Further details for this example are supplied in Olver
(1991a, 1994b). See also Paris and Kaminski (2001,
Chapter 6), and Dunster (1996b, 1997).

2.11(iv) Stokes Phenomenon

Two different asymptotic expansions in terms of ele-
mentary functions, (2.11.6) and (2.11.7), are available
for the generalized exponential integral in the sector
1
2π < ph z < 3

2π. That the change in their forms is
discontinuous, even though the function being approx-
imated is analytic, is an example of the Stokes phe-
nomenon. Where should the change-over take place?
Can it be accomplished smoothly?

Satisfactory answers to these questions were found
by Berry (1989); see also the survey by Paris and Wood
(1995). These answers are linked to the terms involving
the complementary error function in the more power-
ful expansions typified by the combination of (2.11.10)
and (2.11.15). Thus if 0 ≤ θ ≤ π − δ (< π), then
c(θ) lies in the right half-plane. Hence from §7.12(i)

erfc
(√

1
2ρ c(θ)

)
is of the same exponentially-small or-

der of magnitude as the contribution from the other
terms in (2.11.15) when ρ is large. On the other hand,
when π + δ ≤ θ ≤ 3π − δ, c(θ) is in the left half-plane

and erfc
(√

1
2ρ c(θ)

)
differs from 2 by an exponentially-

small quantity. In the transition through θ = π,

erfc
(√

1
2ρ c(θ)

)
changes very rapidly, but smoothly,

from one form to the other; compare the graph of its
modulus in Figure 2.11.1 in the case ρ = 100.
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Figure 2.11.1: Graph of | erfc
(√

50 c(θ)
)
|.

In particular, on the ray θ = π greatest accuracy
is achieved by (a) taking the average of the expansions
(2.11.6) and (2.11.7), followed by (b) taking account of
the exponentially-small contributions arising from the
terms involving h2s(θ, α) in (2.11.15).

Rays (or curves) on which one contribution in a
compound asymptotic expansion achieves maximum
dominance over another are called Stokes lines (θ =
π in the present example). As these lines are
crossed exponentially-small contributions, such as that
in (2.11.7), are “switched on” smoothly, in the manner
of the graph in Figure 2.11.1.

For higher-order Stokes phenomena see Olde Daal-
huis (2004b) and Howls et al. (2004).

2.11(v) Exponentially-Improved Expansions
(continued)

Expansions similar to (2.11.15) can be constructed for
many other special functions. However, to enjoy the
resurgence property (§2.7(ii)) we often seek instead
expansions in terms of the F -functions introduced in
§2.11(iii), leaving the connection of the error-function
type behavior as an implicit consequence of this prop-
erty of the F -functions. In this context the F -functions
are called terminants, a name introduced by Dingle
(1973).

For illustration, we give re-expansions of the re-
mainder terms in the expansions (2.7.8) arising in
differential-equation theory. For notational convenience
assume that the original differential equation (2.7.1) is
normalized so that λ2 − λ1 = 1. (This means that, if
necessary, z is replaced by z/(λ2 − λ1).) From (2.7.12),
(2.7.13) it is then seen that the optimum number of
terms, n, in (2.7.14) is approximately |z|. We set

2.11.19 wj(z) = eλjzzµj
n−1∑
s=0

as,j
zs

+R(j)
n (z), j = 1, 2,

and expand

2.11.20 R(1)
n (z) = (−1)n−1ie(µ2−µ1)πieλ2zzµ2

(
C1

m−1∑
s=0

(−1)sas,2
Fn+µ2−µ1−s(z)

zs
+R(1)

m,n(z)

)
,

2.11.21 R(2)
n (z) = (−1)nie(µ2−µ1)πieλ1zzµ1

(
C2

m−1∑
s=0

(−1)sas,1
Fn+µ1−µ2−s(ze

−πi)
zs

+R(2)
m,n(z)

)
,

with m = 0, 1, 2, . . . , and C1, C2 as in (2.7.17). Then as z →∞, with |n− |z|| bounded and m fixed,

2.11.22 R(1)
m,n(z) =

{
O
(
e−|z|−zz−m

)
, |ph z| ≤ π,

O(z−m), π ≤ |ph z| ≤ 5
2π − δ,

2.11.23 R(2)
m,n(z) =

{
O
(
e−|z|+zz−m

)
, 0 ≤ ph z ≤ 2π,

O(z−m), − 3
2π + δ ≤ ph z ≤ 0 and 2π ≤ ph z ≤ 7

2π − δ,

uniformly with respect to ph z in each case.
The relevant Stokes lines are ph z = ±π for w1(z),

and ph z = 0, 2π for w2(z). In addition to achiev-
ing uniform exponential improvement, particularly in
|ph z| ≤ π for w1(z), and 0 ≤ ph z ≤ 2π for w2(z), the
re-expansions (2.11.20), (2.11.21) are resurgent.

For further details see Olde Daalhuis and Olver
(1994). For error bounds see Dunster (1996c). For other
examples see Boyd (1990b), Paris (1992a,b), and Wong
and Zhao (2002b).

Often the process of re-expansion can be repeated
any number of times. In this way we arrive at hy-

perasymptotic expansions. For integrals, see Berry and
Howls (1991), Howls (1992), and Paris and Kaminski
(2001, Chapter 6). For second-order differential equa-
tions, see Olde Daalhuis and Olver (1995a), Olde Daal-
huis (1995, 1996), and Murphy and Wood (1997).

For higher-order differential equations, see Olde
Daalhuis (1998a,b). The first of these two references
also provides an introduction to the powerful Borel
transform theory. In this connection see also Byatt-
Smith (2000).

For nonlinear differential equations see Olde Daal-
huis (2005a,b).
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For another approach see Paris (2001a,b).

2.11(vi) Direct Numerical Transformations

The transformations in §3.9 for summing slowly conver-
gent series can also be very effective when applied to
divergent asymptotic series.

A simple example is provided by Euler’s transforma-
tion (§3.9(ii)) applied to the asymptotic expansion for
the exponential integral (§6.12(i)):

2.11.24 exE1(x) ∼
∞∑
s=0

(−1)s
s!
xs+1

, x→ +∞.

Taking x = 5 and rounding to 5D, we obtain
2.11.25

e5E1(5) = 0.20000− 0.04000 + 0.01600− 0.00960
+ 0.00768− 0.00768 + 0.00922− 0.01290
+ 0.02064− 0.03716 + 0.07432− · · · .

The numerically smallest terms are the 5th and 6th.
Truncation after 5 terms yields 0.17408, compared with
the correct value

2.11.26 e5E1(5) = 0.17042 . . . .
We now compute the forward differences ∆j , j =

0, 1, 2, . . . , of the moduli of the rounded values of the
first 6 neglected terms:

2.11.27

∆0 = 0.00768 , ∆1 = 0.00154 ,
∆2 = 0.00214 , ∆3 = 0.00192 ,
∆4 = 0.00280 , ∆5 = 0.00434 .

Multiplying these differences by (−1)j2−j−1 and sum-
ming, we obtain

2.11.28
0.00384− 0.00038 + 0.00027− 0.00012

+ 0.00009− 0.00007 = 0.00363.
Subtraction of this result from the sum of the first 5
terms in (2.11.25) yields 0.17045, which is much closer
to the true value.

The process just used is equivalent to re-expanding
the remainder term of the original asymptotic series
(2.11.24) in powers of 1/(x+ 5) and truncating the new
series optimally. Further improvements in accuracy can
be realized by making a second application of the Euler
transformation; see Olver (1997b, pp. 540–543).

Similar improvements are achievable by Aitken’s
∆2-process, Wynn’s ε-algorithm, and other accelera-
tion transformations. For a comprehensive survey see
Weniger (1989).

The following example, based on Weniger (1996), il-
lustrates their power.

For large |z|, with |ph z| ≤ 3
2π−δ (< 3

2π), the Whit-
taker function of the second kind has the asymptotic
expansion (§13.19)

2.11.29 Wκ,µ(z) ∼
∞∑
n=0

an,

in which

2.11.30
an =

e−z/2

zn−κn!
(
µ2 − (κ− 1

2 )2
) (
µ2 − (κ− 3

2 )2
)

· · ·
(
µ2 − (κ− n+ 1

2 )2
)
.

With z = 1.0, κ = 2.3, µ = 0.5, the values of an to 8D
are supplied in the second column of Table 2.11.1.

Table 2.11.1: Whittaker functions with Levin’s transfor-
mation.

n an sn dn

0 0.60653 066 0.60653 066 0.60653 066

1 −1.81352 667 −1.20699 601 −0.91106 488

2 0.35363 770 −0.85335 831 −0.82413 405

3 0.02475 464 −0.82860 367 −0.83323 429

4 −0.00736 451 −0.83596 818 −0.83303 750

5 0.00676 062 −0.82920 756 −0.83298 901

6 −0.01125 643 −0.84046 399 −0.83299 429

7 0.02796 418 −0.81249 981 −0.83299 530

8 −0.09364 504 −0.90614 485 −0.83299 504

9 0.39736 710 −0.50877 775 −0.83299 501

10 −2.05001 686 −2.55879 461 −0.83299 503

The next column lists the partial sums sn = a0+a1+
· · · + an. Optimum truncation occurs just prior to the
numerically smallest term, that is, at s4. Comparison
with the true value

2.11.31 W2.3,0.5(1.0) = −0.83299 50268 27526 · · ·
shows that this direct estimate is correct to almost 3D.

The fourth column of Table 2.11.1 gives the results
of applying the following variant of Levin’s transforma-
tion:

2.11.32 dn =

∑n
j=0(−1)j

(
n
j

)
(j + 1)n−1 sj

aj+1∑n
j=0(−1)j

(
n
j

)
(j + 1)n−1 1

aj+1

.

By n = 10 we already have 8 correct decimals. Further-
more, on proceeding to higher values of n with higher
precision, much more accuracy is achievable. For exam-
ple, using double precision d20 is found to agree with
(2.11.31) to 13D.

However, direct numerical transformations need to
be used with care. Their extrapolation is based on as-
sumed forms of remainder terms that may not always
be appropriate for asymptotic expansions. For example,
extrapolated values may converge to an accurate value
on one side of a Stokes line (§2.11(iv)), and converge to
a quite inaccurate value on the other.
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Areas

3.1 Arithmetics and Error Measures

3.1(i) Floating-Point Arithmetic

Computer arithmetic is described for the binary based
system with base 2; another frequently used system is
the hexadecimal system with base 16.

A nonzero normalized binary floating-point machine
number x is represented as

3.1.1 x = (−1)s · (b0.b1b2 . . . bp−1) · 2E , b0 = 1,

where s is equal to 1 or 0, each bj , j ≥ 1, is either 0 or
1, b1 is the most significant bit, p (∈ N) is the number
of significant bits bj , bp−1 is the least significant bit, E
is an integer called the exponent, b0.b1b2 . . . bp−1 is the
significand, and f = .b1b2 . . . bp−1 is the fractional part.

The set of machine numbers Rfl is the union of 0 and
the set

3.1.2 (−1)s2E
p−1∑
j=0

bj2−j ,

with b0 = 1 and all allowable choices of E, p, s, and bj .

Let Emin ≤ E ≤ Emax with Emin < 0 and Emax > 0.
For given values of Emin, Emax, and p, the format width
in bits N of a computer word is the total number of bits:
the sign (one bit), the significant bits b1, b2, . . . , bp−1

(p− 1 bits), and the bits allocated to the exponent (the
remaining N − p bits). The integers p, Emin, and Emax

are characteristics of the machine. The machine epsilon
εM , that is, the distance between 1 and the next larger
machine number with E = 0 is given by εM = 2−p+1.
The machine precision is 1

2εM = 2−p. The lower and
upper bounds for the absolute values of the nonzero ma-
chine numbers are given by

3.1.3 Nmin ≡ 2Emin ≤ |x| ≤ 2Emax+1
(
1− 2−p

)
≡ Nmax.

Underflow (overflow) after computing x 6= 0 occurs
when |x| is smaller (larger) than Nmin (Nmax).

IEEE Standard

The current standard is the ANSI/IEEE Standard 754;
see IEEE (1985, §§1–4). In the case of normalized bi-
nary representation the memory positions for single pre-
cision (N = 32, p = 24, Emin = −126, Emax = 127)
and double precision (N = 64, p = 53, Emin = −1022,
Emax = 1023) are as in Figure 3.1.1. The respec-
tive machine precisions are 1

2εM = 0.596 × 10−7 and
1
2εM = 0.111× 10−15.

1

s
8

E

23 bits

f
N = 32,
p = 24

1

s
11

E

52 bits

f
N = 64,
p = 53

Figure 3.1.1: Floating-point arithmetic. Memory posi-
tions in single and double precision, in the case of binary
representation.

Rounding

Let x be any positive number with

3.1.4 x = (1.b1b2 . . . bp−1bpbp+1 . . . ) · 2E ,
Nmin ≤ x ≤ Nmax, and

3.1.5
x− = (1.b1b2 . . . bp−1) · 2E ,
x+ = ((1.b1b2 . . . bp−1) + εM ) · 2E .

Then rounding by chopping or rounding down of x
gives x−, with maximum relative error εM . Symmet-
ric rounding or rounding to nearest of x gives x− or x+,
whichever is nearer to x, with maximum relative error
equal to the machine precision 1

2εM = 2−p.
Negative numbers x are rounded in the same way as

−x.
For further information see Goldberg (1991) and

Overton (2001).

3.1(ii) Interval Arithmetic

Interval arithmetic is intended for bounding the total
effect of rounding errors of calculations with machine
numbers. With this arithmetic the computed result can
be proved to lie in a certain interval, which leads to vali-
dated computing with guaranteed and rigorous inclusion
regions for the results.

Let G be the set of closed intervals {[a, b]}. The ele-
mentary arithmetical operations on intervals are defined
as follows:

3.1.6 I ∗ J = {x ∗ y |x ∈ I, y ∈ J}, I, J ∈ G,
where ∗ ∈ {+,−, ·, /}, with appropriate roundings of
the end points of I ∗ J when machine numbers are be-
ing used. Division is possible only if the divisor interval
does not contain zero.

A basic text on interval arithmetic and analysis is
Alefeld and Herzberger (1983), and for applications and
further information see Moore (1979) and Petković and
Petković (1998). The last reference includes analogs for
arithmetic in the complex plane C.

3.1(iii) Rational Arithmetics

Computer algebra systems use exact rational arithmetic
with rational numbers p/q, where p and q are multi-
length integers. During the calculations common di-
visors are removed from the rational numbers, and the
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final results can be converted to decimal representations
of arbitrary length. For further information see Matula
and Kornerup (1980).

3.1(iv) Level-Index Arithmetic

To eliminate overflow or underflow in finite-precision
arithmetic numbers are represented by using general-
ized logarithms ln`(x) given by

3.1.7 ln0(x) = x, ln`(x) = ln(ln`−1(x)), ` = 1, 2, . . . ,

with x ≥ 0 and ` the unique nonnegative integer such
that a ≡ ln`(x) ∈ [0, 1). In level-index arithmetic x
is represented by ` + a (or −(` + a) for negative num-
bers). Also in this arithmetic generalized precision can
be defined, which includes absolute error and relative
precision (§3.1(v)) as special cases.

For further information see Clenshaw and Olver
(1984) and Clenshaw et al. (1989). For applications see
Lozier (1993).

For further references on level-index arithmetic (and
also other arithmetics) see Anuta et al. (1996). See also
Hayes (2009).

3.1(v) Error Measures

If x∗ is an approximation to a real or complex number
x, then the absolute error is

3.1.8 εa = |x∗ − x| .
If x 6= 0, the relative error is

3.1.9 εr =
∣∣∣∣x∗ − xx

∣∣∣∣ =
εa
|x|
.

The relative precision is

3.1.10 εrp = |ln(x∗/x )| ,
where xx∗ > 0 for real variables, and xx∗ 6= 0 for
complex variables (with the principal value of the loga-
rithm).

The mollified error is

3.1.11 εm =
|x∗ − x|

max(|x| , 1)
.

For error measures for complex arithmetic see Olver
(1983).

3.2 Linear Algebra

3.2(i) Gaussian Elimination

To solve the system

3.2.1 Ax = b,

with Gaussian elimination, where A is a nonsingular
n×n matrix and b is an n×1 vector, we start with the
augmented matrix

3.2.2

a11 · · · a1n b1
...

. . .
...

...
an1 · · · ann bn

 .
By repeatedly subtracting multiples of each row

from the subsequent rows we obtain a matrix of the
form

3.2.3


u11 u12 · · · u1n y1

0 u22 · · · u2n y2

...
. . . . . .

...
...

0 · · · 0 unn yn

 .
During this reduction process we store the multipli-

ers `jk that are used in each column to eliminate other
elements in that column. This yields a lower triangular
matrix of the form

3.2.4 L =


1 0 · · · 0
`21 1 · · · 0
...

. . . . . .
...

`n1 · · · `n,n−1 1

 .
If we denote by U the upper triangular matrix com-
prising the elements ujk in (3.2.3), then we have the
factorization, or triangular decomposition,

3.2.5 A = LU.

With y = [y1, y2, . . . , yn]T the process of solution can
then be regarded as first solving the equation Ly = b
for y (forward elimination), followed by the solution of
Ux = y for x (back substitution).

For more details see Golub and Van Loan (1996,
pp. 87–100).

Example

3.2.6

1 2 3
2 3 1
3 1 2

 =

1 0 0
2 1 0
3 5 1

1 2 3
0 −1 −5
0 0 18

 .
In solving Ax = [1, 1, 1]T, we obtain by forward elim-
ination y = [1,−1, 3]T, and by back substitution x =
[ 1
6 ,

1
6 ,

1
6 ]T.

In practice, if any of the multipliers `jk are unduly
large in magnitude compared with unity, then Gaussian
elimination is unstable. To avoid instability the rows
are interchanged at each elimination step in such a way
that the absolute value of the element that is used as a
divisor, the pivot element, is not less than that of the
other available elements in its column. Then |`jk| ≤ 1
in all cases. This modification is called Gaussian elimi-
nation with partial pivoting.

For more information on pivoting see Golub and
Van Loan (1996, pp. 109–123).
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When the factorization (3.2.5) is available, the accu-
racy of the computed solution x can be improved with
little extra computation. Because of rounding errors,
the residual vector r = b−Ax is nonzero as a rule. We
solve the system Aδx = r for δx, taking advantage of
the existing triangular decomposition of A to obtain an
improved solution x + δx.

3.2(ii) Gaussian Elimination for a Tridiagonal
Matrix

Tridiagonal matrices are ones in which the only nonzero
elements occur on the main diagonal and two adjacent
diagonals. Thus

3.2.7 A =


b1 c1 0
a2 b2 c2

. . . . . . . . .
an−1 bn−1 cn−1

0 an bn

 .
Assume that A can be factored as in (3.2.5), but with-
out partial pivoting. Then

3.2.8 L =


1 0 0
`2 1 0

. . . . . . . . .
`n−1 1 0

0 `n 1

 ,

3.2.9 U =


d1 u1 0
0 d2 u2

. . . . . . . . .
0 dn−1 un−1

0 0 dn

 ,
where uj = cj , j = 1, 2, . . . , n− 1, d1 = b1, and

3.2.10 `j = aj/dj−1, dj = bj − `jcj−1, j = 2, . . . , n.
Forward elimination for solving Ax = f then becomes
y1 = f1,

3.2.11 yj = fj − `jyj−1, j = 2, . . . , n,
and back substitution is xn = yn/dn, followed by

3.2.12 xj = (yj − ujxj+1)/dj , j = n− 1, . . . , 1.
For more information on solving tridiagonal systems

see Golub and Van Loan (1996, pp. 152–160).

3.2(iii) Condition of Linear Systems

The p-norm of a vector x = [x1, . . . , xn]T is given by

3.2.13
‖x‖p =

 n∑
j=1

|xj |p
1/p

, p = 1, 2, . . . ,

‖x‖∞ = max
1≤j≤n

|xj | .

The Euclidean norm is the case p = 2.
The p-norm of a matrix A = [ajk] is

3.2.14 ‖A‖p = max
x6=0

‖Ax‖p
‖x‖p

.

The cases p = 1, 2, and ∞ are the most important:

3.2.15

‖A‖1 = max
1≤k≤n

n∑
j=1

|ajk| ,

‖A‖∞ = max
1≤j≤n

n∑
k=1

|ajk| ,

‖A‖2 =
√
ρ(AAT),

where ρ(AAT) is the largest of the absolute values of
the eigenvalues of the matrix AAT; see §3.2(iv). (We
are assuming that the matrix A is real; if not AT is re-
placed by AH, the transpose of the complex conjugate
of A.)

The sensitivity of the solution vector x in (3.2.1) to
small perturbations in the matrix A and the vector b
is measured by the condition number

3.2.16 κ(A) = ‖A‖p ‖A−1‖p,
where ‖ · ‖p is one of the matrix norms. For any norm
(3.2.14) we have κ(A) ≥ 1. The larger the value κ(A),
the more ill-conditioned the system.

Let x∗ denote a computed solution of the system
(3.2.1), with r = b −Ax∗ again denoting the residual.
Then we have the a posteriori error bound

3.2.17
‖x∗ − x‖p
‖x‖p

≤ κ(A)
‖r‖p
‖b‖p

.

For further information see Brezinski (1999) and
Trefethen and Bau (1997, Chapter 3).

3.2(iv) Eigenvalues and Eigenvectors

If A is an n× n matrix, then a real or complex number
λ is called an eigenvalue of A, and a nonzero vector x
a corresponding (right) eigenvector, if

3.2.18 Ax = λx.
A nonzero vector y is called a left eigenvector of A
corresponding to the eigenvalue λ if yTA = λyT or,
equivalently, ATy = λy. A normalized eigenvector has
Euclidean norm 1; compare (3.2.13) with p = 2.

The polynomial

3.2.19 pn(λ) = det[λI−A]
is called the characteristic polynomial of A and its zeros
are the eigenvalues of A. The multiplicity of an eigen-
value is its multiplicity as a zero of the characteristic
polynomial (§3.8(i)). To an eigenvalue of multiplicity
m, there correspond m linearly independent eigenvec-
tors provided that A is nondefective, that is, A has a
complete set of n linearly independent eigenvectors.
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3.2(v) Condition of Eigenvalues

If A is nondefective and λ is a simple zero of pn(λ), then
the sensitivity of λ to small perturbations in the matrix
A is measured by the condition number

3.2.20 κ(λ) =
1
|yTx|

,

where x and y are the normalized right and left eigen-
vectors of A corresponding to the eigenvalue λ. Because∣∣yTx

∣∣ = |cos θ|, where θ is the angle between yT and
x we always have κ(λ) ≥ 1. When A is a symmetric
matrix, the left and right eigenvectors coincide, yield-
ing κ(λ) = 1, and the calculation of its eigenvalues is a
well-conditioned problem.

3.2(vi) Lanczos Tridiagonalization of a
Symmetric Matrix

Define the Lanczos vectors vj by v0 = 0, a nor-
malized vector v1 (perhaps chosen randomly), and for
j = 1, 2, . . . , n− 1,

3.2.21
βj+1vj+1 = Avj − αjvj − βjvj−1,

αj = vT
j Avj , βj+1 = vT

j+1Avj .

Then all vj , 1 ≤ j ≤ n, are normalized and vT
j vk = 0

for j, k = 1, 2, . . . , n, j 6= k. The tridiagonal matrix

3.2.22 B =


α1 β2 0
β2 α2 β3

. . . . . . . . .
βn−1 αn−1 βn

0 βn αn


has the same eigenvalues as A. Its characteristic poly-
nomial can be obtained from the recursion

3.2.23
pk+1(λ) = (λ− αk+1)pk(λ)− β2

k+1pk−1(λ),
k = 0, 1, . . . , n− 1,

with p−1(λ) = 0, p0(λ) = 1.
For numerical information see Stewart (2001,

pp. 347–368).

3.2(vii) Computation of Eigenvalues

Many methods are available for computing eigenvalues;
see Golub and Van Loan (1996, Chapters 7, 8), Tre-
fethen and Bau (1997, Chapter 5), and Wilkinson (1988,
Chapters 8, 9).

3.3 Interpolation

3.3(i) Lagrange Interpolation

The nodes or abscissas zk are real or complex; function
values are fk = f(zk). Given n+1 distinct points zk and

n+1 corresponding function values fk, the Lagrange in-
terpolation polynomial is the unique polynomial Pn(z)
of degree not exceeding n such that Pn(zk) = fk,
k = 0, 1, . . . , n. It is given by

3.3.1 Pn(z) =
n∑
k=0

`k(z)fk =
n∑
k=0

ωn+1(z)
(z − zk)ω′n+1(zk)

fk,

where

3.3.2 `k(z) =
n∏′

j=0

z − zj
zk − zj

, `k(zj) = δk,j .

Here the prime signifies that the factor for j = k is to
be omitted, δk,j is the Kronecker symbol, and ωn+1 is
the nodal polynomial

3.3.3 ωn+1(z) =
n∏
k=0

(z − zk).

With an error term the Lagrange interpolation for-
mula for f is given by

3.3.4 f(z) =
n∑
k=0

`k(z)fk +Rn(z).

If f , x (= z), and the nodes xk are real, and f (n+1) is
continuous on the smallest closed interval I containing
x, x0, x1, . . . , xn, then the error can be expressed

3.3.5 Rn(x) =
f (n+1)(ξ)
(n+ 1)!

ωn+1(x),

for some ξ ∈ I. If f is analytic in a simply-connected
domain D (§1.13(i)), then for z ∈ D,

3.3.6 Rn(z) =
ωn+1(z)

2πi

∫
C

f(ζ)
(ζ − z)ωn+1(ζ)

dζ,

where C is a simple closed contour in D described in
the positive rotational sense and enclosing the points
z, z1, z2, . . . , zn.

3.3(ii) Lagrange Interpolation with
Equally-Spaced Nodes

The (n+ 1)-point formula (3.3.4) can be written in the
form
3.3.7

ft = f(x0 + th) =
n1∑
k=n0

Ankfk +Rn,t, n0 < t < n1,

where the nodes xk = x0 + kh (h > 0) and function f
are real,

3.3.8 n0 = − 1
2 (n− σ), n1 = 1

2 (n+ σ),

3.3.9 σ = 1
2 (1− (−1)n),

and Ank are the Lagrangian interpolation coefficients de-
fined by

3.3.10 Ank =
(−1)n1+k

(k − n0)! (n1 − k)!(t− k)

n1∏
m=n0

(t−m).
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The remainder is given by
3.3.11

Rn,t = Rn(x0 + th) =
hn+1

(n+ 1)!
f (n+1)(ξ)

n1∏
k=n0

(t− k),

where ξ is as in §3.3(i).
Let cn be defined by

3.3.12 cn =
1

(n+ 1)!
max

n1∏
k=n0

|t− k| ,

where the maximum is taken over t-intervals given in
the formulas below. Then for these t-intervals,

3.3.13 |Rn,t| ≤ cnhn+1
∣∣∣f (n+1)(ξ)

∣∣∣ .
Linear Interpolation

3.3.14 ft = (1− t)f0 + tf1 +R1,t, 0 < t < 1,

3.3.15 c1 = 1
8 , 0 < t < 1.

Three-Point Formula

3.3.16 ft =
1∑

k=−1

A2
kfk +R2,t, |t| < 1,

3.3.17 A2
−1 = 1

2 t(t− 1), A2
0 = 1− t2, A2

1 = 1
2 t(t+ 1),

3.3.18 c2 = 1/(9
√

3) = 0.0641 . . . , |t| < 1.
For four-point to eight-point formulas see http:

//dlmf.nist.gov/3.3.ii.

3.3(iii) Divided Differences

The divided differences of f relative to a sequence of
distinct points z0, z1, z2, . . . are defined by

3.3.34

[z0]f = f0,

[z0, z1]f = ([z1]f − [z0]f)/(z1 − z0),
[z0, z1, z2]f = ([z1, z2]f − [z0, z1]f)/(z2 − z0),

and so on. Explicitly, the divided difference of order n
is given by
3.3.35

[z0, z1, . . . , zn]f =
n∑
k=0

f(zk)

/ ∏
0≤j≤n
j 6=k

(zk − zj)

 .

If f and the zk (= xk) are real, and f is n times contin-
uously differentiable on a closed interval containing the
xk, then

3.3.36 [x0, x1, . . . , xn]f =
f (n)(ξ)
n!

and again ξ is as in §3.3(i). If f is analytic in a simply-
connected domain D, then for z ∈ D,

3.3.37 [z0, z1, . . . , zn]f =
1

2πi

∫
C

f(ζ)
ωn+1(ζ)

dζ,

where ωn+1(ζ) is given by (3.3.3), and C is a simple
closed contour in D described in the positive rotational
sense and enclosing z0, z1, . . . , zn.

3.3(iv) Newton’s Interpolation Formula

This represents the Lagrange interpolation polynomial
in terms of divided differences:

3.3.38

f(z) = [z0]f + (z − z0)[z0, z1]f
+ (z − z0)(z − z1)[z0, z1, z2]f + · · ·
+ (z − z0)(z − z1) · · · (z − zn−1)[z0, z1, . . . , zn]f
+Rn(z).

The interpolation error Rn(z) is as in §3.3(i). New-
ton’s formula has the advantage of allowing easy up-
dating: incorporation of a new point zn+1 requires only
addition of the term with [z0, z1, . . . , zn+1]f to (3.3.38),
plus the computation of this divided difference. An-
other advantage is its robustness with respect to con-
fluence of the set of points z0, z1, . . . , zn. For example,
for k+ 1 coincident points the limiting form is given by
[z0, z0, . . . , z0]f = f (k)(z0)/k!.

3.3(v) Inverse Interpolation

In this method we interchange the roles of the points zk
and the function values fk. It can be used for solving a
nonlinear scalar equation f(z) = 0 approximately. An-
other approach is to combine the methods of §3.8 with
direct interpolation and §3.4.

Example

To compute the first negative zero a1 =
−2.33810 7410 . . . of the Airy function f(x) = Ai(x)
(§9.2). The inverse interpolation polynomial is given by

3.3.39
x(f) = [f0]x+ (f − f0)[f0, f1]x

+ (f − f0)(f − f1)[f0, f1, f2]x;

compare (3.3.38). With x0 = −2.2, x1 = −2.3, x2 =
−2.4, we obtain

3.3.40
x = −2.2

+ 1.44011 1973(f − 0.09614 53780) + 0.08865 85832
× (f − 0.09614 53780)(f − 0.02670 63331),

and with f = 0 we find that x = −2.33823 2462, with
4 correct digits. By using this approximation to x as
a new point, x3 = x, and evaluating [f0, f1, f2, f3]x =
1.12388 6190, we find that x = −2.33810 7409, with 9
correct digits.

For comparison, we use Newton’s interpolation for-
mula (3.3.38)

3.3.41
f(x) = 0.09614 53780 + 0.69439 04495(x+ 2.1)

− 0.03007 14275(x+ 2.2)(x+ 2.3),

with the derivative

3.3.42 f ′(x) = 0.55906 90257− 0.06014 28550x,
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and compute an approximation to a1 by using New-
ton’s rule (§3.8(ii)) with starting value x = −2.5. This
gives the new point x3 = −2.33934 0514. Then by
using x3 in Newton’s interpolation formula, evaluat-
ing [x0, x1, x2, x3]f = −0.26608 28233 and recomputing
f ′(x), another application of Newton’s rule with start-
ing value x3 gives the approximation x = 2.33810 7373,
with 8 correct digits.

3.3(vi) Other Interpolation Methods

For Hermite interpolation, trigonometric interpolation,
spline interpolation, rational interpolation (by using
continued fractions), interpolation based on Chebyshev
points, and bivariate interpolation, see Bulirsch and
Rutishauser (1968), Davis (1975, pp. 27–31), and Mason
and Handscomb (2003, Chapter 6). These references
also describe convergence properties of the interpolation
formulas.

For interpolation of a bounded function f on R the
cardinal function of f is defined by

3.3.43 C(f, h)(x) =
∞∑

k=−∞

f(kh)S(k, h)(x),

where
3.3.44 S(k, h)(x) =

sin(π(x− kh)/h)
π(x− kh)/h

,

is called the Sinc function. For theory and applications
see Stenger (1993, Chapter 3).

3.4 Differentiation

3.4(i) Equally-Spaced Nodes

The Lagrange (n+ 1)-point formula is
3.4.1

hf ′t = hf ′(x0 + th) =
n1∑
k=n0

Bnk fk + hR′n,t, n0 < t < n1,

and follows from the differentiated form of (3.3.4). The
Bnk are the differentiated Lagrangian interpolation coef-
ficients:

3.4.2 Bnk = dAnk/dt ,

where Ank is as in (3.3.10).
If f (n+2)(x) is continuous on the interval I defined

in §3.3(i), then the remainder in (3.4.1) is given by

3.4.3

hR′n,t =
hn+1

(n+ 1)!

(
f (n+1)(ξ0)

d

dt

n1∏
k=n0

(t− k)

+ f (n+2)(ξ1)
n1∏
k=n0

(t− k)

)
,

where ξ0 and ξ1 ∈ I.

For the values of n0 and n1 used in the formulas
below
3.4.4

h
∣∣R′n,t∣∣ ≤ hn+1

(
cn

∣∣∣f (n+2)(ξ1)
∣∣∣+

1
n+ 1

∣∣∣f (n+1)(ξ0)
∣∣∣) ,

n0 < t < n1,
where cn is defined by (3.3.12), with numerical values
as in §3.3(ii).

Two-Point Formula

3.4.5 hf ′t = −f0 + f1 + hR′1,t, 0 < t < 1.

Three-Point Formula

3.4.6
hf ′t = − 1

2 (1− 2t)f−1− 2tf0 + 1
2 (1 + 2t)f1 +hR′2,t,

|t| < 1.
For four-point to eight-point formulas see http:

//dlmf.nist.gov/3.4.i.
For corresponding formulas for second, third, and

fourth derivatives, with t = 0, see Collatz (1960, Ta-
ble III, pp. 538–539). For formulas for derivatives with
equally-spaced real nodes and based on Sinc approxi-
mations (§3.3(vi)), see Stenger (1993, §3.5).

3.4(ii) Analytic Functions

If f can be extended analytically into the complex plane,
then from Cauchy’s integral formula (§1.9(iii))

3.4.17
1
k!
f (k)(x0) =

1
2πi

∫
C

f(ζ)
(ζ − x0)k+1

dζ,

where C is a simple closed contour described in the pos-
itive rotational sense such that C and its interior lie in
the domain of analyticity of f , and x0 is interior to C.
Taking C to be a circle of radius r centered at x0, we
obtain

3.4.18
1
k!
f (k)(x0) =

1
2πrk

∫ 2π

0

f(x0 + reiθ)e−ikθ dθ.

The integral on the right-hand side can be approximated
by the composite trapezoidal rule (3.5.2).

Example

f(z) = ez, x0 = 0. The integral (3.4.18) becomes

3.4.19
1
k!

=
1

2πrk

∫ 2π

0

er cos θ cos(r sin θ − kθ) dθ.

With the choice r = k (which is crucial when k is large
because of numerical cancellation) the integrand equals
ek at the dominant points θ = 0, 2π, and in combina-
tion with the factor k−k in front of the integral sign this
gives a rough approximation to 1/k!. The choice r = k
is motivated by saddle-point analysis; see §2.4(iv) or ex-
amples in §3.5(ix). As explained in §§3.5(i) and 3.5(ix)
the composite trapezoidal rule can be very efficient for
computing integrals with analytic periodic integrands.
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3.4(iii) Partial Derivatives

First-Order

For partial derivatives we use the notation ut,s = u(x0+
th, y0 + sh).

3.4.20
∂u0,0

∂x
=

1
2h

(u1,0 − u−1,0) +O
(
h2
)
,

3.4.21

∂u0,0

∂x
=

1
4h

(u1,1 − u−1,1 + u1,−1 − u−1,−1) +O
(
h2
)
.

Second-Order

3.4.22
∂2u0,0

∂x2 =
1
h2

(u1,0 − 2u0,0 + u−1,0) +O
(
h2
)
,

3.4.23

∂2u0,0

∂x2 =
1

12h2
(−u2,0 + 16u1,0 − 30u0,0

+ 16u−1,0 − u−2,0) +O
(
h4
)
,

3.4.24

∂2u0,0

∂x2 =
1

3h2
(u1,1−2u0,1 +u−1,1 +u1,0−2u0,0 +u−1,0

+ u1,−1 − 2u0,−1 + u−1,−1) +O
(
h2
)
.

3.4.25

∂2u0,0

∂x ∂y
=

1
4h2

(u1,1 − u1,−1 − u−1,1 + u−1,−1) +O
(
h2
)
,

3.4.26

∂2u0,0

∂x ∂y
=− 1

2h2
(u1,0+u−1,0+u0,1+u0,−1−2u0,0

− u1,1 − u−1,−1) +O
(
h2
)
.

Laplacian

3.4.27 ∇2u =
∂2u

∂x2 +
∂2u

∂y2 .

3.4.28
∇2u0,0 =

1
h2

(u1,0 + u0,1 + u−1,0 + u0,−1 − 4u0,0)

+O
(
h2
)
,

3.4.29

∇2u0,0

=
1

12h2
(−60u0,0 + 16(u1,0 + u0,1 + u−1,0 + u0,−1)

− (u2,0 + u0,2 + u−2,0 + u0,−2)) +O
(
h4
)
.

For fourth-order formulas and the biharmonic oper-
ator see http://dlmf.nist.gov/3.4.iii.

The results in this subsection for the partial deriva-
tives follow from Panow (1955, Table 10). Those for the
Laplacian and the biharmonic operator follow from the
formulas for the partial derivatives.

For additional formulas involving values of ∇2u and
∇4u on square, triangular, and cubic grids, see Collatz
(1960, Table VI, pp. 542–546).

3.5 Quadrature

3.5(i) Trapezoidal Rules

The elementary trapezoidal rule is given by

3.5.1

∫ b

a

f(x) dx = 1
2h(f(a) + f(b))− 1

12h
3f ′′(ξ),

where h = b− a, f ∈ C2 [a, b], and a < ξ < b.
The composite trapezoidal rule is

3.5.2∫ b

a

f(x) dx = h( 1
2f0 + f1 + · · ·+ fn−1 + 1

2fn) + En(f),

where h = (b − a)/n, xk = a + kh, fk = f(xk),
k = 0, 1, . . . , n, and

3.5.3 En(f) = −b− a
12

h2f ′′(ξ), a < ξ < b.

If in addition f is periodic, f ∈ Ck (R), and the
integral is taken over a period, then

3.5.4 En(f) = O
(
hk
)
, h→ 0.

In particular, when k = ∞ the error term is an
exponentially-small function of 1/h, and in these cir-
cumstances the composite trapezoidal rule is exception-
ally efficient. For an example see §3.5(ix).

Similar results hold for the trapezoidal rule in the
form

3.5.5

∫ ∞
−∞

f(t) dt = h
∞∑

k=−∞

f(kh) + Eh(f),

with a function f that is analytic in a strip containing
R. For further information and examples, see Good-
win (1949a). In Stenger (1993, Chapter 3) the rule
(3.5.5) is considered in the framework of Sinc approx-
imations (§3.3(vi)). See also Poisson’s summation for-
mula (§1.8(iv)).

If k in (3.5.4) is not arbitrarily large, and if odd-order
derivatives of f are known at the end points a and b,
then the composite trapezoidal rule can be improved by
means of the Euler–Maclaurin formula (§2.10(i)). See
Davis and Rabinowitz (1984, pp. 134–142) and Temme
(1996a, p. 25).

3.5(ii) Simpson’s Rule

Let h = 1
2 (b−a) and f ∈ C4 [a, b]. Then the elementary

Simpson’s rule is

3.5.6

∫ b

a

f(x) dx = 1
3h(f(a) + 4f( 1

2 (a+ b)) + f(b))

− 1
90h

5f (4)(ξ),

where a < ξ < b.
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Now let h = (b−a)/n, xk = a+kh, and fk = f(xk),
k = 0, 1, . . . , n. Then the composite Simpson’s rule is

3.5.7

∫ b

a

f(x) dx = 1
3h(f0 + 4f1 + 2f2 + 4f3 + 2f4 + · · ·

+ 4fn−1 + fn) + En(f),

where n is even and

3.5.8 En(f) = −b− a
180

h4f (4)(ξ), a < ξ < b.

Simpson’s rule can be regarded as a combination of
two trapezoidal rules, one with step size h and one with
step size h/2 to refine the error term.

3.5(iii) Romberg Integration

Further refinements are achieved by Romberg integra-
tion. If f ∈ C2m+2 [a, b], then the remainder En(f) in
(3.5.2) can be expanded in the form

3.5.9 En(f) = c1h
2 + c2h

4 + · · ·+ cmh
2m +O

(
h2m+2

)
,

where h = (b− a)/n. As in Simpson’s rule, by combin-
ing the rule for h with that for h/2, the first error term
c1h

2 in (3.5.9) can be eliminated. With the Romberg
scheme successive terms c1h2, c2h

4, . . . , in (3.5.9) are
eliminated, according to the formula

3.5.10

Gk( 1
2h) = Gk−1( 1

2h) +
Gk−1( 1

2h)−Gk−1(h)
4k − 1

, k ≥ 1,

beginning with

3.5.11 G0(h) = h( 1
2f0 + f1 + · · ·+ fn−1 + 1

2fn),

although we may also start with the elementary rule
with G0(h) = 1

2h(f(a) + f(b)) and h = b− a. To gener-
ate Gk(h) the quantities G0(h), G0(h/2), . . . , G0(h/2k)
are needed. These can be found by means of the recur-
sion

3.5.12 G0( 1
2h) = 1

2G0(h) + 1
2h

n−1∑
k=0

f
(
x0 + (k + 1

2 )h
)
,

which depends on function values computed previously.
If f ∈ C2k+2 (a, b), then for j, k = 0, 1, . . . ,

3.5.13

∫ b

a

f(x) dx−Gk
(
b− a

2j

)
= − (b− a)2k+3

2k(k+1)

4−j(k+1)

(2k + 2)!
|B2k+2| f (2k+2)(ξ),

for some ξ ∈ (a, b). For the Bernoulli numbers Bm see
§24.2(i).

When f ∈ C∞, the Romberg method affords a
means of obtaining high accuracy in many cases with
a relatively simple adaptive algorithm. However, as il-
lustrated by the next example, other methods may be
more efficient.

Example

With J0(t) denoting the Bessel function (§10.2(ii)) the
integral

3.5.14

∫ ∞
0

e−pt J0(t) dt =
1√
p2 + 1

is computed with p = 1 on the interval [0, 30]. Using
(3.5.10) with h = 30/4 = 7.5 we obtain G7(h) with 14
correct digits. About 29 = 512 function evaluations are
needed. (With the 20-point Gauss–Laguerre formula
(§3.5(v)) the same precision can be achieved with 15
function evaluations.) With j = 2 and k = 7, the coef-
ficient of the derivative f (16)(ξ) in (3.5.13) is found to
be (0.14 . . . )× 10−13.

See Davis and Rabinowitz (1984, pp. 440–441) for
modifications of the Romberg method when the func-
tion f is singular.

3.5(iv) Interpolatory Quadrature Rules

An interpolatory quadrature rule

3.5.15

∫ b

a

f(x)w(x) dx =
n∑
k=1

wkf(xk) + En(f),

with weight function w(x), is one for which En(f) = 0
whenever f is a polynomial of degree ≤ n − 1. The
nodes x1, x2, . . . , xn are prescribed, and the weights wk
and error term En(f) are found by integrating the prod-
uct of the Lagrange interpolation polynomial of degree
n− 1 and w(x).

If the extreme members of the set of nodes
x1, x2, . . . , xn are the endpoints a and b, then the
quadrature rule is said to be closed. Or if the set
x1, x2, . . . , xn lies in the open interval (a, b), then the
quadrature rule is said to be open.

Rules of closed type include the Newton–Cotes for-
mulas such as the trapezoidal rules and Simpson’s
rule. Examples of open rules are the Gauss formu-
las (§3.5(v)), the midpoint rule, and Fejér’s quadrature
rule. For the latter a = −1, b = 1, and the nodes
xk are the extrema of the Chebyshev polynomial Tn(x)
(§3.11(ii) and §18.3). If we add −1 and 1 to this set of
xk, then the resulting closed formula is the frequently-
used Clenshaw–Curtis formula, whose weights are pos-
itive and given by

3.5.16 wk =
gk
n

1−
bn/2c∑
j=1

bj
4j2 − 1

cos(2jkπ/n)

 ,

where xk = cos(kπ/n), k = 0, 1, . . . , n, and

3.5.17 gk =

{
1, k = 0, n,
2, otherwise,

bj =

{
1, j = 1

2n,

2, otherwise.
For further information, see Mason and Handscomb

(2003, Chapter 8), Davis and Rabinowitz (1984, pp. 74–
92), and Clenshaw and Curtis (1960).
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For a detailed comparison of the Clenshaw–Curtis
formula with Gauss quadrature (§3.5(v)), see Trefethen
(2008).

3.5(v) Gauss Quadrature

Let {pn} denote the set of monic polynomials pn of de-
gree n (coefficient of xn equal to 1) that are orthogonal
with respect to a positive weight function w on a finite
or infinite interval (a, b); compare §18.2(i). In Gauss
quadrature (also known as Gauss–Christoffel quadra-
ture) we use (3.5.15) with nodes xk the zeros of pn,
and weights wk given by

3.5.18 wk =
∫ b

a

pn(x)
(x− xk)p′n(xk)

w(x) dx.

The wk are also known as Christoffel coefficients or
Christoffel numbers and they are all positive. The re-
mainder is given by

3.5.19 En(f) = γnf
(2n)(ξ)/(2n)!,

where

3.5.20 γn =
∫ b

a

p2
n(x)w(x) dx,

and ξ is some point in (a, b). As a consequence, the rule
is exact for polynomials of degree ≤ 2n− 1.

In practical applications the weight function w(x) is
chosen to simulate the asymptotic behavior of the inte-
grand as the endpoints are approached. For C∞ func-
tions Gauss quadrature can be very efficient. In adap-
tive algorithms the evaluation of the nodes and weights
may cause difficulties, unless exact values are known.

For the derivation of Gauss quadrature formulas see
Gautschi (2004, pp. 22–32), Gil et al. (2007a, §5.3), and
Davis and Rabinowitz (1984, §§2.7 and 3.6). Stroud and
Secrest (1966) includes computational methods and ex-
tensive tables. For further extensions, applications, and
computation of orthogonal polynomials and Gauss-type
formulas, see Gautschi (1994, 1996, 2004). For effec-
tive testing of Gaussian quadrature rules see Gautschi
(1983).

For the classical orthogonal polynomials related to
the following Gauss rules, see §18.3. The given quanti-
ties γn follow from (18.2.5), (18.2.7), Table 18.3.1, and
the relation γn = hn

/
k2
n .

Gauss–Legendre Formula

3.5.21

[a, b] = [−1, 1], w(x) = 1, γn =
22n+1

2n+ 1
(n!)4

((2n)!)2
.

The nodes xk and weights wk for n = 5, 10 are
shown in Tables 3.5.1 and 3.5.2. The pn(x) are the
monic Legendre polynomials, that is, the polynomials
Pn(x) (§18.3) scaled so that the coefficient of the highest
power of x in their explicit forms is unity.

Table 3.5.1: Nodes and weights for the 5-point Gauss–
Legendre formula.

±xk wk
0.00000 00000 00000 0.56888 88888 88889
0.53846 93101 05683 0.47862 86704 99366
0.90617 98459 38664 0.23692 68850 56189

Table 3.5.2: Nodes and weights for the 10-point Gauss–
Legendre formula.

±xk wk
0.14887 43389 81631 211 0.29552 42247 14752 870
0.43339 53941 29247 191 0.26926 67193 09996 355
0.67940 95682 99024 406 0.21908 63625 15982 044
0.86506 33666 88984 511 0.14945 13491 50580 593
0.97390 65285 17171 720 0.06667 13443 08688 138

For corresponding results for n = 20, 40, 80; see
http://dlmf.nist.gov/3.5.v.

Gauss–Chebyshev Formula

3.5.22

[a, b] = [−1, 1], w(x) = (1− x2)−1/2, γn =
π

22n−1
.

The nodes xk and weights wk are known explicitly:

3.5.23

xk = cos
(

2k − 1
2n

π

)
, wk =

π

n
, k = 1, 2, . . . , n.

Nodes and weights are also known explicitly for the
other three weight functions in the set w(x) = (1 −
x)±1/2(1+x)±1/2; see http://dlmf.nist.gov/3.5.v.

Gauss–Jacobi Formula

3.5.26
[a, b] = [−1, 1], w(x) = (1− x)α(1 + x)β , γn =

Γ(n+ α+ 1) Γ(n+ β + 1) Γ(n+ α+ β + 1)
(2n+ α+ β + 1)(Γ(2n+ α+ β + 1))2

22n+α+β+1n!,

α > −1, β > −1.

The pn(x) are the monic Jacobi polynomials P (α,β)
n (x) (§18.3).

Gauss–Laguerre Formula

3.5.27 [a, b) = [0,∞), w(x) = xαe−x, γn = n! Γ(n+ α+ 1), α > −1.
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If α 6= 0 this is called the generalized Gauss–Laguerre formula.
The nodes xk and weights wk for α = 0 and n = 5, 10 are shown in Tables 3.5.6 and 3.5.7. The pn(x) are the

monic Laguerre polynomials Ln(x) (§18.3).

Table 3.5.6: Nodes and weights for the 5-point Gauss–Laguerre formula.

xk wk
0.26356 03197 18141 0.52175 56105 82809
0.14134 03059 10652×101 0.39866 68110 83176
0.35964 25771 04072×101 0.75942 44968 17076×10−1

0.70858 10005 85884×101 0.36117 58679 92205×10−2

0.12640 80084 42758×102 0.23369 97238 57762×10−4

Table 3.5.7: Nodes and weights for the 10-point Gauss–Laguerre formula.

xk wk
0.13779 34705 40492 431 0.30844 11157 65020 141
0.72945 45495 03170 498 0.40111 99291 55273 552
0.18083 42901 74031 605×101 0.21806 82876 11809 422
0.34014 33697 85489 951×101 0.62087 45609 86777 475×10−1

0.55524 96140 06380 363×101 0.95015 16975 18110 055×10−2

0.83301 52746 76449 670×101 0.75300 83885 87538 775×10−3

0.11843 78583 79000 656×102 0.28259 23349 59956 557×10−4

0.16279 25783 13781 021×102 0.42493 13984 96268 637×10−6

0.21996 58581 19807 620×102 0.18395 64823 97963 078×10−8

0.29920 69701 22738 916×102 0.99118 27219 60900 856×10−12

For the corresponding results for n = 15, 20 see http://dlmf.nist.gov/3.5.v.

Gauss–Hermite Formula

3.5.28 (a, b) = (−∞,∞), w(x) = e−x
2
, γn =

√
π
n!
2n
.

The nodes xk and weights wk for n = 5, 10 are shown in Tables 3.5.10 and 3.5.11. The pn(x) are the monic
Hermite polynomials Hn(x) (§18.3).

Table 3.5.10: Nodes and weights for the 5-point Gauss–Hermite formula.

±xk wk
0.00000 00000 00000 0.94530 87204 82942
0.95857 24646 13819 0.39361 93231 52241
0.20201 82870 45609×101 0.19953 24205 90459×10−1

Table 3.5.11: Nodes and weights for the 10-point Gauss–Hermite formula.

±xk wk
0.34290 13272 23704 609 0.61086 26337 35325 799
0.10366 10829 78951 365×101 0.24013 86110 82314 686
0.17566 83649 29988 177×101 0.33874 39445 54810 631×10−1

0.25327 31674 23278 980×101 0.13436 45746 78123 269×10−2

0.34361 59118 83773 760×101 0.76404 32855 23262 063×10−5

For the corresponding results for n = 15, 20 see http://dlmf.nist.gov/3.5.v.

Gauss Formula for a Logarithmic Weight Function

3.5.29 [a, b] = [0, 1], w(x) = ln(1/x).
The nodes xk and weights wk for n = 5, 10 are shown in Tables 3.5.14 and 3.5.15.
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Table 3.5.14: Nodes and weights for the 5-point Gauss formula for the logarithmic weight function.

xk wk
0.29134 47215 19721×10−1 0.29789 34717 82894
0.17397 72133 20898 0.34977 62265 13224
0.41170 25202 84902 0.23448 82900 44052
0.67731 41745 82820 0.98930 45951 66331×10−1

0.89477 13610 31008 0.18911 55214 31958×10−1

Table 3.5.15: Nodes and weights for the 10-point Gauss formula for the logarithmic weight function.

xk wk
0.90426 30962 19965 064×10−2 0.12095 51319 54570 515
0.53971 26622 25006 295×10−1 0.18636 35425 64071 870
0.13531 18246 39250 775 0.19566 08732 77759 983
0.24705 24162 87159 824 0.17357 71421 82906 921
0.38021 25396 09332 334 0.13569 56729 95484 202
0.52379 23179 71843 201 0.93646 75853 81105 260×10−1

0.66577 52055 16424 597 0.55787 72735 14158 741×10−1

0.79419 04160 11966 217 0.27159 81089 92333 311×10−1

0.89816 10912 19003 538 0.95151 82602 84851 500×10−2

0.96884 79887 18633 539 0.16381 57633 59826 325×10−2

For the corresponding results for n = 15, 20 see http://dlmf.nist.gov/3.5.v.

3.5(vi) Eigenvalue/Eigenvector Characterization
of Gauss Quadrature Formulas

All the monic orthogonal polynomials {pn} used with
Gauss quadrature satisfy a three-term recurrence rela-
tion (§18.2(iv)):
3.5.30

pk+1(x) = (x− αk)pk(x)− βkpk−1(x), k = 0, 1, . . . ,
with βk > 0, p−1(x) = 0, and p0(x) = 1.

The Gauss nodes xk (the zeros of pn) are the eigen-
values of the (symmetric tridiagonal) Jacobi matrix of
order n× n:
3.5.31

Jn =



α0

√
β1 0

√
β1 α1

√
β2

. . . . . . . . .√
βn−2 αn−2

√
βn−1

0
√
βn−1 αn−1


.

Let vk denote the normalized eigenvector of Jn cor-
responding to the eigenvalue xk. Then the weights are
given by

3.5.32 wk = β0v
2
k,1, k = 1, 2, . . . , n,

where β0 =
∫ b
a
w(x) dx and vk,1 is the first element of

vk. Also, the error constant (3.5.20) is given by

3.5.33 γn = β0β1 · · ·βn.

Tables 3.5.1, 3.5.2, 3.5.6, 3.5.7, 3.5.10, and 3.5.11
can be verified by application of the results given in the
present subsection. In these cases the coefficients αk
and βk are obtainable explicitly from results given in
§18.9(i).

3.5(vii) Oscillatory Integrals

Integrals of the form

3.5.34

∫ b

a

f(x) cos(ωx) dx,
∫ b

a

f(x) sin(ωx) dx,

can be computed by Filon’s rule. See Davis and Rabi-
nowitz (1984, pp. 146–168).

Oscillatory integral transforms are treated in Wong
(1982) by a method based on Gaussian quadrature. A
comparison of several methods, including an extension
of the Clenshaw–Curtis formula (§3.5(iv)), is given in
Evans and Webster (1999).

For computing infinite oscillatory integrals, Long-
man’s method may be used. The integral is written
as an alternating series of positive and negative subin-
tegrals that are computed individually; see Longman
(1956). Convergence acceleration schemes, for example
Levin’s transformation (§3.9(v)), can be used when eval-
uating the series. Further methods are given in Clen-
denin (1966) and Lyness (1985).

For a comprehensive survey of quadrature of highly
oscillatory integrals, including multidimensional inte-
grals, see Iserles et al. (2006).
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3.5(viii) Complex Gauss Quadrature

For the Bromwich integral

3.5.35

I(f) =
1

2πi

∫ c+i∞

c−i∞
eζζ−sf(ζ) dζ, s > 0, c > c0 > 0,

a complex Gauss quadrature formula is available. Here
f(ζ) is assumed analytic in the half-plane <ζ > c0 and
bounded as ζ →∞ in |ph ζ| ≤ 1

2π. The quadrature rule
for (3.5.35) is

3.5.36 I(f) =
n∑
k=1

wkf(ζk) + En(f),

where En(f) = 0 if f(ζ) is a polynomial of degree
≤ 2n − 1 in 1/ζ. Complex orthogonal polynomials
pn(1/ζ) of degree n = 0, 1, 2, . . . , in 1/ζ that satisfy
the orthogonality condition

3.5.37

∫ c+i∞

c−i∞
eζζ−spk(1/ζ)p`(1/ζ) dζ = 0, k 6= `,

are related to Bessel polynomials (§§10.49(ii) and
18.34). The complex Gauss nodes ζk have positive real
part for all s > 0.

The nodes and weights of the 5-point complex Gauss
quadrature formula (3.5.36) for s = 1 are shown in Ta-
ble 3.5.18. Extensive tables of quadrature nodes and
weights can be found in Krylov and Skoblya (1985).

Table 3.5.18: Nodes and weights for the 5-point complex Gauss quadrature formula with s = 1.

ζk wk
3.65569 4325+6.54373 6899i 3.83966 1630−0.27357 03863i
3.65569 4325−6.54373 6899i 3.83966 1630+0.27357 03863i
5.70095 3299+3.21026 5600i −25.07945 221 +2.18725 2294i
5.70095 3299−3.21026 5600i −25.07945 221 −2.18725 2294i
6.28670 4752+0.00000 0000i 43.47958 116 +0.00000 0000i

Example. Laplace Transform Inversion

From §1.14(iii)

3.5.38 G(p) =
∫ ∞

0

e−ptg(t) dt,

3.5.39 g(t) =
1

2πi

∫ σ+i∞

σ−i∞
etpG(p) dp,

with appropriate conditions. The pair

3.5.40 g(t) = J0(t), G(p) =
1√
p2 + 1

,

where J0(t) is the Bessel function (§10.2(ii)), satisfy
these conditions, provided that σ > 0. The integral
(3.5.39) has the form (3.5.35) if we set ζ = tp, c = tσ,
and f(ζ) = t−1ζsG(ζ/t). We choose s = 1 so that
f(ζ) = O(1) at infinity. Equation (3.5.36), without the
error term, becomes

3.5.41 g(t) =
n∑
k=1

wkζk√
ζ2
k + t2

,

approximately.
Using Table 3.5.18 we compute g(t) for n = 5. The

results are given in the middle column of Table 3.5.19,
accompanied by the actual 10D values in the last col-
umn. Agreement is very good for small values of t, but
not for larger values. For these cases the integration
path may need to be deformed; see §3.5(ix).

Table 3.5.19: Laplace transform inversion.

t g(t) J0(t)
0.0 1.00000 00000 1.00000 00000
0.5 0.93846 98072 0.93846 98072
1.0 0.76519 76866 0.76519 76865
2.0 0.22389 07791 0.22389 10326
5.0 −0.17759 67713 −0.17902 54097

10.0 −0.24593 57645 −0.07540 53543

3.5(ix) Other Contour Integrals

A frequent problem with contour integrals is heavy can-
cellation, which occurs especially when the value of the
integral is exponentially small compared with the maxi-
mum absolute value of the integrand. To avoid cancella-
tion we try to deform the path to pass through a saddle
point in such a way that the maximum contribution of
the integrand is derived from the neighborhood of the
saddle point. For example, steepest descent paths can
be used; see §2.4(iv).

Example

In (3.5.35) take s = 1 and f(ζ) = e−2λ
√
ζ , with

λ > 0. When λ is large the integral becomes expo-
nentially small, and application of the quadrature rule
of §3.5(viii) is useless. In fact from (7.14.4) and the
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inversion formula for the Laplace transform (§1.14(iii))
we have

3.5.42 erfcλ =
1

2πi

∫ c+i∞

c−i∞
eζ−2λ

√
ζ dζ

ζ
, c > 0,

where erfc z is the complementary error function, and
from (7.12.1) it follows that

3.5.43 erfcλ ∼ e−λ
2

√
πλ

, λ→∞.

With the transformation ζ = λ2t, (3.5.42) becomes

3.5.44 erfcλ =
1

2πi

∫ c+i∞

c−i∞
eλ

2(t−2
√
t) dt

t
, c > 0,

with saddle point at t = 1, and when c = 1 the vertical
path intersects the real axis at the saddle point. The
steepest descent path is given by =(t− 2

√
t) = 0, or in

polar coordinates t = reiθ we have r = sec2
(

1
2θ
)
. Thus

3.5.45 erfcλ =
e−λ

2

2π

∫ π

−π
e−λ

2 tan2( 1
2 θ) dθ.

The integrand can be extended as a periodic C∞ func-
tion on R with period 2π and as noted in §3.5(i), the
trapezoidal rule is exceptionally efficient in this case.

Table 3.5.20 gives the results of applying the com-
posite trapezoidal rule (3.5.2) with step size h; n indi-
cates the number of function values in the rule that are
larger than 10−15 (we exploit the fact that the integrand
is even). All digits shown in the approximation in the
final row are correct.

Table 3.5.20: Composite trapezoidal rule for the integral
(3.5.45) with λ = 10.

h erfcλ n

0.25 0.20949 49432 96679×10−44 5
0.20 0.20886 11645 34559×10−44 6
0.15 0.20884 87588 72946×10−44 8
0.10 0.20884 87583 76254×10−44 11

A second example is provided in Gil et al. (2001),
where the method of contour integration is used to eval-
uate Scorer functions of complex argument (§9.12). See
also Gil et al. (2003b).

If f is meromorphic, with poles near the saddle
point, then the foregoing method can be modified. A
special case is the rule for Hilbert transforms (§1.14(v)):

3.5.46 H (f ;x) =
1
π

∫ ∞
−∞

f(t)
t− x

dt, x ∈ R,

where the integral is the Cauchy principal value. See
Kress and Martensen (1970).

Other contour integrals occur in standard inte-
gral transforms or their inverses, for example, Han-
kel transforms (§10.22(v)), Kontorovich–Lebedev trans-
forms (§10.43(v)), and Mellin transforms (§1.14(iv)).

3.5(x) Cubature Formulas

Table 3.5.21 supplies cubature rules, including weights
wj , for the disk D, given by x2 + y2 ≤ h2:

3.5.47
1
πh2

∫∫
D

f(x, y) dx dy =
n∑
j=1

wjf(xj , yj) +R,

and the square S, given by |x| ≤ h, |y| ≤ h:

3.5.48
1

4h2

∫∫
S

f(x, y) dx dy =
n∑
j=1

wjf(xj , yj) +R.

For these results and further information on cuba-
ture formulas see Cools (2003).

For integrals in higher dimensions, Monte Carlo
methods are another—often the only—alternative. The
standard Monte Carlo method samples points uniformly
from the integration region to estimate the integral and
its error. In more advanced methods points are sampled
from a probability distribution, so that they are concen-
trated in regions that make the largest contribution to
the integral. With N function values, the Monte Carlo
method aims at an error of order 1/

√
N , independently

of the dimension of the domain of integration. See Davis
and Rabinowitz (1984, pp. 384–417) and Schürer (2004).
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Table 3.5.21: Cubature formulas for disk and square.

Diagram (xj , yj) wj R

(0, 0) 1
2 O

(
h4
)

(±h, 0) 1
8

(0,±h) 1
8

(± 1
2h,±

1
2h) 1

4 O
(
h4
)

(0, 0) 1
6 O

(
h6
)

(±h, 0), (0,±h) 1
24

(± 1
2h,±

1
2h) 1

6

(0, 0) 1
4 O

(
h6
)

(± 1
3

√
6h, 0) 1

8

(± 1
6

√
6h,± 1

2

√
2h) 1

8

(0, 0) 4
9 O

(
h4
)

(±h, 0), (0,±h) 1
9

(±h,±h) 1
36

(± 1
3

√
3h,± 1

3

√
3h) 1

4 O
(
h4
)

(0, 0) 16
81 O

(
h6
)

(±
√

3
5h, 0), (0,±

√
3
5h) 10

81

(±
√

3
5h, 0), (±

√
3
5h, 0) 25

324

3.6 Linear Difference Equations

3.6(i) Introduction

Many special functions satisfy second-order recurrence
relations, or difference equations, of the form

3.6.1 anwn+1 − bnwn + cnwn−1 = dn,

or equivalently,

3.6.2
an ∆2wn−1

+ (2an− bn) ∆wn−1 + (an− bn + cn)wn−1 = dn,

where ∆wn−1 = wn−wn−1, ∆2wn−1 = ∆wn−∆wn−1,
and n ∈ Z. If dn = 0, ∀n, then the difference equation
is homogeneous; otherwise it is inhomogeneous.

Difference equations are simple and attractive for
computation. In practice, however, problems of severe
instability often arise and in §§3.6(ii)–3.6(vii) we show
how these difficulties may be overcome.

3.6(ii) Homogeneous Equations

Given numerical values of w0 and w1, the solution wn
of the equation

3.6.3 anwn+1 − bnwn + cnwn−1 = 0,
with an 6= 0, ∀n, can be computed recursively for
n = 2, 3, . . . . Unless exact arithmetic is being used,
however, each step of the calculation introduces round-
ing errors. These errors have the effect of perturbing
the solution by unwanted small multiples of wn and of
an independent solution gn, say. This is of little conse-
quence if the wanted solution is growing in magnitude
at least as fast as any other solution of (3.6.3), and the
recursion process is stable.

But suppose that wn is a nontrivial solution such
that

3.6.4 wn/gn → 0, n→∞.
Then wn is said to be a recessive (equivalently, min-
imal or distinguished) solution as n → ∞, and it is
unique except for a constant factor. In this situation
the unwanted multiples of gn grow more rapidly than
the wanted solution, and the computations are unstable.
Stability can be restored, however, by backward recur-
sion, provided that cn 6= 0, ∀n: starting from wN and
wN+1, with N large, equation (3.6.3) is applied to gen-
erate in succession wN−1, wN−2, . . . , w0. The unwanted
multiples of gn now decay in comparison with wn, hence
are of little consequence.

The values of wN and wN+1 needed to begin the
backward recursion may be available, for example, from
asymptotic expansions (§2.9). However, there are alter-
native procedures that do not require wN and wN+1 to
be known in advance. These are described in §§ 3.6(iii)
and 3.6(v).

3.6(iii) Miller’s Algorithm

Because the recessive solution of a homogeneous equa-
tion is the fastest growing solution in the backward di-
rection, it occurred to J.C.P. Miller (Bickley et al. (1952,
pp. xvi–xvii)) that arbitrary “trial values” can be as-
signed to wN and wN+1, for example, 1 and 0. A “trial
solution” is then computed by backward recursion, in
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the course of which the original components of the un-
wanted solution gn die away. It therefore remains to
apply a normalizing factor Λ. The process is then re-
peated with a higher value of N , and the normalized
solutions compared. If agreement is not within a pre-
scribed tolerance the cycle is continued.

The normalizing factor Λ can be the true value of w0

divided by its trial value, or Λ can be chosen to satisfy
a known property of the wanted solution of the form

3.6.5

∞∑
n=0

λnwn = 1,

where the λ’s are constants. The latter method is usu-
ally superior when the true value of w0 is zero or patho-
logically small.

For further information on Miller’s algorithm, in-
cluding examples, convergence proofs, and error anal-
yses, see Wimp (1984, Chapter 4), Gautschi (1967,
1997a), and Olver (1964a). See also Gautschi (1967)
and Gil et al. (2007a, Chapter 4) for the computation
of recessive solutions via continued fractions.

3.6(iv) Inhomogeneous Equations

Similar principles apply to equation (3.6.1) when
ancn 6= 0, ∀n, and dn 6= 0 for some, or all, values of

n. If, as n → ∞, the wanted solution wn grows (de-
cays) in magnitude at least as fast as any solution of
the corresponding homogeneous equation, then forward
(backward) recursion is stable.

A new problem arises, however, if, as n → ∞, the
asymptotic behavior of wn is intermediate to those of
two independent solutions fn and gn of the correspond-
ing inhomogeneous equation (the complementary func-
tions). More precisely, assume that f0 6= 0, gn 6= 0 for
all sufficiently large n, and as n→∞

3.6.6 fn/gn → 0, wn/gn → 0.

Then computation of wn by forward recursion is unsta-
ble. If it also happens that fn/wn → 0 as n→∞, then
computation of wn by backward recursion is unstable
as well. However, wn can be computed successfully in
these circumstances by boundary-value methods, as fol-
lows.

Let us assume the normalizing condition is of the
form w0 = λ, where λ is a constant, and then solve the
following tridiagonal system of algebraic equations for
the unknowns w(N)

1 , w
(N)
2 , . . . , w

(N)
N−1; see §3.2(ii). Here

N is an arbitrary positive integer.

3.6.7



−b1 a1 0

c2 −b2 a2

. . . . . . . . .

cN−2 −bN−2 aN−2

0 cN−1 −bN−1





w
(N)
1

w
(N)
2

...

w
(N)
N−2

w
(N)
N−1


=



d1 − c1λ
d2

...

dN−2

dN−1


.

Then as N →∞ with n fixed, w(N)
n → wn.

3.6(v) Olver’s Algorithm

To apply the method just described a succession of val-
ues can be prescribed for the arbitrary integer N and
the results compared. However, a more powerful pro-
cedure combines the solution of the algebraic equations
with the determination of the optimum value of N . It
is applicable equally to the computation of the reces-
sive solution of the homogeneous equation (3.6.3) or the
computation of any solution wn of the inhomogeneous
equation (3.6.1) for which the conditions of §3.6(iv) are
satisfied.

Suppose again that f0 6= 0, w0 is given, and we wish
to calculate w1, w2, . . . , wM to a prescribed relative ac-
curacy ε for a given value of M . We first compute, by
forward recurrence, the solution pn of the homogeneous
equation (3.6.3) with initial values p0 = 0, p1 = 1. At
the same time we construct a sequence en, n = 0, 1, . . . ,

defined by

3.6.8 anen = cnen−1 − dnpn,
beginning with e0 = w0. (This part of the process is
equivalent to forward elimination.) The computation is
continued until a value N (≥M) is reached for which

3.6.9

∣∣∣∣ eN
pNpN+1

∣∣∣∣ ≤ ε min
1≤n≤M

∣∣∣∣ en
pnpn+1

∣∣∣∣ .
Then wn is generated by backward recursion from

3.6.10 pn+1wn = pnwn+1 + en,

starting with wN = 0. (This part of the process is back
substitution.)

An example is included in the next subsection.
For further information, including a more general form
of normalizing condition, other examples, convergence
proofs, and error analyses, see Olver (1967a), Olver and
Sookne (1972), and Wimp (1984, Chapter 6).
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3.6(vi) Examples

Example 1. Bessel Functions

The difference equation
3.6.11 wn+1 − 2nwn + wn−1 = 0, n = 1, 2, . . . ,
is satisfied by Jn(1) and Yn(1), where Jn(x) and Yn(x)
are the Bessel functions of the first kind. For large n,

3.6.12 Jn(1) ∼ 1
(2πn)1/2

( e

2n

)n
,

3.6.13 Yn(1) ∼
(

2
πn

)1/2(2n
e

)n
,

(§10.19(i)). Thus Yn(1) is dominant and can be com-
puted by forward recursion, whereas Jn(1) is recessive
and has to be computed by backward recursion. The
backward recursion can be carried out using indepen-
dently computed values of JN (1) and JN+1(1) or by
use of Miller’s algorithm (§3.6(iii)) or Olver’s algorithm
(§3.6(v)).
Example 2. Weber Function

The Weber function En(1) satisfies
3.6.14 wn+1 − 2nwn + wn−1 = −(2/π)(1− (−1)n),

for n = 1, 2, . . . , and as n→∞

3.6.15 E2n(1) ∼ 2
(4n2 − 1)π

,

3.6.16 E2n+1(1) ∼ 2
(2n+ 1)π

;

see §11.11(ii). Thus the asymptotic behavior of the
particular solution En(1) is intermediate to those of
the complementary functions Jn(1) and Yn(1); more-
over, the conditions for Olver’s algorithm are satisfied.
We apply the algorithm to compute En(1) to 8S for
the range n = 1, 2, . . . , 10, beginning with the value
E0(1) = −0.56865 663 obtained from the Maclaurin
series expansion (§11.10(iii)).

In the notation of §3.6(v) we have M = 10 and
ε = 1

2 × 10−8. The least value of N that satisfies
(3.6.9) is found to be 16. The results of the compu-
tations are displayed in Table 3.6.1. The values of wn
for n = 1, 2, . . . , 10 are the wanted values of En(1). (It
should be observed that for n > 10, however, the wn
are progressively poorer approximations to En(1): the
underlined digits are in error.)

Table 3.6.1: Weber function wn = En(1) computed by Olver’s algorithm.

n pn en en/(pnpn+1) wn
0 0.00000 000 −0.56865 663 −0.56865 663
1 0.10000 000×101 0.70458 291 0.35229 146 0.43816 243
2 0.20000 000×101 0.70458 291 0.50327 351×10−1 0.17174 195
3 0.70000 000×101 0.96172 597×101 0.34347 356×10−1 0.24880 538
4 0.40000 000×102 0.96172 597×101 0.76815 174×10−3 0.47850 795×10−1

5 0.31300 000×103 0.40814 124×103 0.42199 534×10−3 0.13400 098
6 0.30900 000×104 0.40814 124×103 0.35924 754×10−5 0.18919 443×10−1

7 0.36767 000×105 0.47221 340×105 0.25102 029×10−5 0.93032 343×10−1

8 0.51164 800×106 0.47221 340×105 0.11324 804×10−7 0.10293 811×10−1

9 0.81496 010×107 0.10423 616×108 0.87496 485×10−8 0.71668 638×10−1

10 0.14618 117×109 0.10423 616×108 0.24457 824×10−10 0.65021 292×10−2

11 0.29154 738×1010 0.37225 201×1010 0.19952 026×10−10 0.58373 946×10−1

12 0.63994 242×1011 0.37225 201×1010 0.37946 279×10−13 0.44851 387×10−2

13 0.15329 463×1013 0.19555 304×1013 0.32057 909×10−13 0.49269 383×10−1

14 0.39792 611×1014 0.19555 304×1013 0.44167 174×10−16 0.32792 861×10−2

15 0.11126 602×1016 0.14186 384×1016 0.38242 250×10−16 0.42550 628×10−1

16 0.33340 012×1017 0.14186 384×1016 0.39924 861×10−19 0.00000 000

3.6(vii) Linear Difference Equations of Other
Orders

Similar considerations apply to the first-order equation

3.6.17 anwn+1 − bnwn = dn.

Thus in the inhomogeneous case it may sometimes be
necessary to recur backwards to achieve stability. For

analyses and examples see Gautschi (1997a).
For a difference equation of order k (≥ 3),

3.6.18 an,kwn+k + an,k−1wn+k−1 + · · ·+ an,0wn = dn,

or for systems of k first-order inhomogeneous equations,
boundary-value methods are the rule rather than the
exception. Typically k − ` conditions are prescribed at
the beginning of the range, and ` conditions at the end.
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Here ` ∈ [0, k], and its actual value depends on the
asymptotic behavior of the wanted solution in relation
to those of the other solutions. Within this framework
forward and backward recursion may be regarded as the
special cases ` = 0 and ` = k, respectively.

For further information see Wimp (1984, Chapters
7–8), Cash and Zahar (1994), and Lozier (1980).

3.7 Ordinary Differential Equations

3.7(i) Introduction

Consideration will be limited to ordinary linear second-
order differential equations

3.7.1
d2w

dz2 + f(z)
dw

dz
+ g(z)w = h(z),

where f , g, and h are analytic functions in a domain
D ⊂ C. If h = 0 the differential equation is homoge-
neous, otherwise it is inhomogeneous. For applications
to special functions f , g, and h are often simple rational
functions.

For general information on solutions of equation
(3.7.1) see §1.13. For classification of singularities of
(3.7.1) and expansions of solutions in the neighborhoods
of singularities, see §2.7. For an introduction to numer-
ical methods for ordinary differential equations, see As-
cher and Petzold (1998), Hairer et al. (1993), and Iserles
(1996).

3.7(ii) Taylor-Series Method: Initial-Value
Problems

Assume that we wish to integrate (3.7.1) along a finite
path P from z = a to z = b in a domain D. The
path is partitioned at P + 1 points labeled successively
z0, z1, . . . , zP , with z0 = a, zP = b.

By repeated differentiation of (3.7.1) all derivatives
of w(z) can be expressed in terms of w(z) and w′(z) as
follows. Write
3.7.2

w(s)(z) = fs(z)w(z)+gs(z)w′(z)+hs(z), s = 0, 1, 2, . . . ,
with

3.7.3
f0(z) = 1, g0(z) = 0, h0(z) = 0,
f1(z) = 0, g1(z) = 1, h1(z) = 0.

Then for s = 2, 3, . . . ,

3.7.4

fs(z) = f ′s−1(z)− g(z)gs−1(z),
gs(z) = fs−1(z)− f(z)gs−1(z) + g′s−1(z),
hs(z) = h(z)gs−1(z) + h′s−1(z).

Write τj = zj+1 − zj , j = 0, 1, . . . , P , expand w(z)
and w′(z) in Taylor series (§1.10(i)) centered at z = zj ,
and apply (3.7.2). Then

3.7.5

[
w(zj+1)
w′(zj+1)

]
= A(τj , zj)

[
w(zj)
w′(zj)

]
+ b(τj , zj),

where A(τ, z) is the matrix

3.7.6 A(τ, z) =
[
A11(τ, z) A12(τ, z)
A21(τ, z) A22(τ, z)

]
,

and b(τ, z) is the vector

3.7.7 b(τ, z) =
[
b1(τ, z)
b2(τ, z)

]
,

with

3.7.8

A11(τ, z) =
∞∑
s=0

τs

s!
fs(z),

A12(τ, z) =
∞∑
s=0

τs

s!
gs(z),

A21(τ, z) =
∞∑
s=0

τs

s!
fs+1(z),

A22(τ, z) =
∞∑
s=0

τs

s!
gs+1(z),

3.7.9 b1(τ, z) =
∞∑
s=0

τs

s!
hs(z), b2(τ, z) =

∞∑
s=0

τs

s!
hs+1(z).

If the solution w(z) that we are seeking grows in
magnitude at least as fast as all other solutions of
(3.7.1) as we pass along P from a to b, then w(z)
and w′(z) may be computed in a stable manner for
z = z0, z1, . . . , zP by successive application of (3.7.5) for
j = 0, 1, . . . , P − 1, beginning with initial values w(a)
and w′(a).

Similarly, if w(z) is decaying at least as fast as all
other solutions along P, then we may reverse the label-
ing of the zj along P and begin with initial values w(b)
and w′(b).

3.7(iii) Taylor-Series Method: Boundary-Value
Problems

Now suppose the path P is such that the rate of growth
of w(z) along P is intermediate to that of two other
solutions. (This can happen only for inhomogeneous
equations.) Then to compute w(z) in a stable manner
we solve the set of equations (3.7.5) simultaneously for
j = 0, 1, . . . , P , as follows. Let A be the (2P )×(2P +2)
band matrix
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3.7.10 A =



−A(τ0, z0) I 0 · · · 0 0

0 −A(τ1, z1) I · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · −A(τP−2, zP−2) I 0

0 0 · · · 0 −A(τP−1, zP−1) I


(I and 0 being the identity and zero matrices of order 2× 2.) Also let w denote the (2P + 2)× 1 vector

3.7.11 w = [w(z0), w′(z0), w(z1), w′(z1), . . . , w(zP ), w′(zP )]T ,
and b the (2P )× 1 vector

3.7.12 b = [b1(τ0, z0), b2(τ0, z0), b1(τ1, z1), b2(τ1, z1), . . . , b1(τP−1, zP−1), b2(τP−1, zP−1)]T .

Then

3.7.13 Aw = b.

This is a set of 2P equations for the 2P + 2 unknowns,
w(zj) and w′(zj), j = 0, 1, . . . , P . The remaining two
equations are supplied by boundary conditions of the
form

3.7.14
α0w(z0) + β0w

′(z0) = γ0,

α1w(zP ) + β1w
′(zP ) = γ1,

where the α’s, β’s, and γ’s are constants.
If, for example, β0 = β1 = 0, then on moving the

contributions of w(z0) and w(zP ) to the right-hand side
of (3.7.13) the resulting system of equations is not tridi-
agonal, but can readily be made tridiagonal by annihi-
lating the elements of A that lie below the main diago-
nal and its two adjacent diagonals. The equations can
then be solved by the method of §3.2(ii), if the differen-
tial equation is homogeneous, or by Olver’s algorithm
(§3.6(v)). The latter is especially useful if the endpoint
b of P is at ∞, or if the differential equation is inho-
mogeneous.

It will be observed that the present formulation of
the Taylor-series method permits considerable paral-
lelism in the computation, both for initial-value and
boundary-value problems.

For further information and examples, see Olde
Daalhuis and Olver (1998, §7) and Lozier and Olver
(1993). General methods for boundary-value problems
for ordinary differential equations are given in Ascher
et al. (1995).

3.7(iv) Sturm–Liouville Eigenvalue Problems

Let (a, b) be a finite or infinite interval and q(x) be a
real-valued continuous (or piecewise continuous) func-
tion on the closure of (a, b). The Sturm–Liouville eigen-
value problem is the construction of a nontrivial solution

of the system

3.7.15
d2wk

dx2 + (λk − q(x))wk = 0,

3.7.16 wk(a) = wk(b) = 0,

with limits taken in (3.7.16) when a or b, or both, are
infinite. The values λk are the eigenvalues and the cor-
responding solutions wk of the differential equation are
the eigenfunctions. The eigenvalues λk are simple, that
is, there is only one corresponding eigenfunction (apart
from a normalization factor), and when ordered increas-
ingly the eigenvalues satisfy

3.7.17 λ1 < λ2 < λ3 < · · · , limk→∞ λk =∞.

If q(x) is C∞ on the closure of (a, b), then the dis-
cretized form (3.7.13) of the differential equation can
be used. This converts the problem into a tridiagonal
matrix problem in which the elements of the matrix are
polynomials in λ; compare §3.2(vi). The larger the ab-
solute values of the eigenvalues λk that are being sought,
the smaller the integration steps |τj | need to be.

For further information, including other methods
and examples, see Pryce (1993, §2.5.1).

3.7(v) Runge–Kutta Method

The Runge–Kutta method applies to linear or nonlinear
differential equations. The method consists of a set of
rules each of which is equivalent to a truncated Taylor-
series expansion, but the rules avoid the need for ana-
lytic differentiations of the differential equation.

First-Order Equations

For w′ = f(z, w) the standard fourth-order rule reads

3.7.18 wn+1 = wn + 1
6 (k1 + 2k2 + 2k3 + k4) +O

(
h5
)
,
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where h = zn+1 − zn and

3.7.19

k1 = hf(zn, wn),
k2 = hf(zn + 1

2h,wn + 1
2k1),

k3 = hf(zn + 1
2h,wn + 1

2k2),
k4 = hf(zn + h,wn + k3).

The order estimate O
(
h5
)

holds if the solution w(z) has
five continuous derivatives.

Second-Order Equations

For w′′ = f(z, w,w′) the standard fourth-order rule
reads

3.7.20
wn+1 = wn + 1

6h(6w′n + k1 + k2 + k3) +O
(
h5
)
,

w′n+1 = w′n + 1
6 (k1 + 2k2 + 2k3 + k4) +O

(
h5
)
,

where
3.7.21

k1 = hf(zn, wn, w′n),
k2 = hf(zn + 1

2h,wn + 1
2hw

′
n + 1

8hk1, w
′
n + 1

2k1),
k3 = hf(zn + 1

2h,wn + 1
2hw

′
n + 1

8hk2, w
′
n + 1

2k2),
k4 = hf(zn + h,wn + hw′n + 1

2hk3, w
′
n + k3).

The order estimates O
(
h5
)

hold if the solution w(z) has
five continuous derivatives.

An extensive literature exists on the numerical solu-
tion of ordinary differential equations by Runge–Kutta,
multistep, or other methods. See, for example, Butcher
(1987), Dekker and Verwer (1984, Chapter 3), Hairer
et al. (1993, Chapter 2), and Hairer and Wanner (1996,
Chapter 4).

3.8 Nonlinear Equations

3.8(i) Introduction

The equation to be solved is

3.8.1 f(z) = 0,
where z is a real or complex variable and the function f
is nonlinear. Solutions are called roots of the equation,
or zeros of f . If f(z0) = 0 and f ′(z0) 6= 0, then z0 is a
simple zero of f . If f(z0) = f ′(z0) = · · · = f (m−1)(z0) =
0 and f (m)(z0) 6= 0, then z0 is a zero of f of multiplicity
m; compare §1.10(i).

Sometimes the equation takes the form

3.8.2 z = φ(z),
and the solutions are called fixed points of φ.

Equations (3.8.1) and (3.8.2) are usually solved by
iterative methods. Let z1, z2, . . . be a sequence of ap-
proximations to a root, or fixed point, ζ. If

3.8.3 |zn+1 − ζ| < A |zn − ζ|p

for all n sufficiently large, where A and p are indepen-
dent of n, then the sequence is said to have convergence

of the pth order. (More precisely, p is the largest of the
possible set of indices for (3.8.3).) If p = 1 and A < 1,
then the convergence is said to be linear or geometric.
If p = 2, then the convergence is quadratic; if p = 3,
then the convergence is cubic, and so on.

An iterative method converges locally to a solution ζ
if there exists a neighborhood N of ζ such that zn → ζ
whenever the initial approximation z0 lies within N .

3.8(ii) Newton’s Rule

This is an iterative method for real twice-continuously
differentiable, or complex analytic, functions:

3.8.4 zn+1 = zn −
f(zn)
f ′(zn)

, n = 0, 1, . . . .

If ζ is a simple zero, then the iteration converges lo-
cally and quadratically. For multiple zeros the conver-
gence is linear, but if the multiplicity m is known then
quadratic convergence can be restored by multiplying
the ratio f(zn)/f ′(zn) in (3.8.4) by m.

For real functions f(x) the sequence of approxima-
tions to a real zero ξ will always converge (and converge
quadratically) if either:

(a) f(x0)f ′′(x0) > 0 and f ′(x), f ′′(x) do not change
sign between x0 and ξ (monotonic convergence).

(b) f(x0)f ′′(x0) < 0, f ′(x), f ′′(x) do not change sign
in the interval (x0, x1), and ξ ∈ [x0, x1] (mono-
tonic convergence after the first iteration).

Example

f(x) = x− tanx. The first positive zero of f(x) lies in
the interval (π, 3

2π); see Figure 4.15.3. From this graph
we estimate an initial value x0 = 4.65. Newton’s rule is
given by

3.8.5 xn+1 = φ(xn), φ(x) = x+ x cot2 x− cotx.
Results appear in Table 3.8.1. The choice of x0 here
is critical. When x0 ≤ 4.2875 or x0 ≥ 4.7125, New-
ton’s rule does not converge to the required zero. The
convergence is faster when we use instead the function
f(x) = x cosx−sinx; in addition, the successful interval
for the starting value x0 is larger.

Table 3.8.1: Newton’s rule for x− tanx = 0.

n xn
0 4.65000 00000 000
1 4.60567 66065 900
2 4.55140 53475 751
3 4.50903 76975 617
4 4.49455 61600 185
5 4.49341 56569 391
6 4.49340 94580 903
7 4.49340 94579 091
8 4.49340 94579 091
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3.8(iii) Other Methods

Bisection Method

If f(a)f(b) < 0 with a < b, then the interval [a, b] con-
tains one or more zeros of f . Bisection of this interval is
used to decide where at least one zero is located. All ze-
ros of f in the original interval [a, b] can be computed to
any predetermined accuracy. Convergence is slow how-
ever; see Kaufman and Lenker (1986) and Nievergelt
(1995).

Regula Falsi

Let x0 and x1 be such that f0 = f(x0) and f1 =
f(x1) have opposite signs. Inverse linear interpolation
(§3.3(v)) is used to obtain the first approximation:

3.8.6 x2 = x1 −
x1 − x0

f1 − f0
f1 =

f1x0 − f0x1

f1 − f0
.

We continue with x2 and either x0 or x1, depending
which of f0 and f1 is of opposite sign to f(x2), and so
on. The convergence is linear, and again more than one
zero may occur in the original interval [x0, x1].

Secant Method

Whether or not f0 and f1 have opposite signs, x2 is
computed as in (3.8.6). If the wanted zero ξ is simple,
then the method converges locally with order of conver-
gence p = 1

2 (1 +
√

5) = 1.618 . . . . Because the method
requires only one function evaluation per iteration, its
numerical efficiency is ultimately higher than that of
Newton’s method. There is no guaranteed convergence:
the first approximation x2 may be outside [x0, x1].

Steffensen’s Method

This iterative method for solving z = φ(z) is given by
3.8.7

zn+1 = zn −
(φ(zn)− zn)2

φ(φ(zn))− 2φ(zn) + zn
, n = 0, 1, 2, . . . .

It converges locally and quadratically for both R and C.
For other efficient derivative-free methods, see Le

(1985).

Eigenvalue Methods

For the computation of zeros of orthogonal polynomials
as eigenvalues of finite tridiagonal matrices (§3.5(vi)),
see Gil et al. (2007a, pp. 205–207). For the computa-
tion of zeros of Bessel functions, Coulomb functions, and
conical functions as eigenvalues of finite parts of infinite
tridiagonal matrices, see Grad and Zakraǰsek (1973),
Ikebe (1975), Ikebe et al. (1991), Ball (2000), and Gil
et al. (2007a, pp. 205–213).

3.8(iv) Zeros of Polynomials

The polynomial

3.8.8 p(z) = anz
n + an−1z

n−1 + · · ·+ a0, an 6= 0,

has n zeros in C, counting each zero according to its mul-
tiplicity. Explicit formulas for the zeros are available if
n ≤ 4; see §§1.11(iii) and 4.43. No explicit general for-
mulas exist when n ≥ 5.

After a zero ζ has been computed, the factor z−ζ is
factored out of p(z) as a by-product of Horner’s scheme
(§1.11(i)) for the computation of p(ζ). In this way poly-
nomials of successively lower degree can be used to find
the remaining zeros. (This process is called deflation.)
However, to guard against the accumulation of round-
ing errors, a final iteration for each zero should also be
performed on the original polynomial p(z).

Example

p(z) = z4 − 1. The zeros are ±1 and ±i. Newton’s
method is given by

3.8.9 zn+1 = φ(zn), φ(z) =
3z4 + 1

4z3
.

The results for z0 = 1.5 are given in Table 3.8.2.

Table 3.8.2: Newton’s rule for z4 − 1 = 0.

n zn
0 1.50000 00000 000
1 1.19907 40740 741
2 1.04431 68969 414
3 1.00274 20038 676
4 1.00001 12265 490
5 1.00000 00001 891
6 1.00000 00000 000

As in the case of Table 3.8.1 the quadratic nature
of convergence is clearly evident: as the zero is ap-
proached, the number of correct decimal places doubles
at each iteration.

Newton’s rule can also be used for complex zeros of
p(z). However, when the coefficients are all real, com-
plex arithmetic can be avoided by the following iterative
process.

Bairstow’s Method

Let z2−sz−t be an approximation to the real quadratic
factor of p(z) that corresponds to a pair of conjugate
complex zeros or to a pair of real zeros. We con-
struct sequences qj and rj , j = n + 1, n, . . . , 0, from
qn+1 = rn+1 = 0, qn = rn = an, and for j ≤ n− 1,

3.8.10
qj = aj + sqj+1 + tqj+2, rj = qj + srj+1 + trj+2.

Then the next approximation to the quadratic factor is
z2 − (s+ ∆s)z − (t+ ∆t), where

3.8.11

∆s =
r3q0 − r2q1

r2
2 − `r3

, ∆t =
`q1 − r2q0

r2
2 − `r3

, ` = sr2 + tr3.
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The method converges locally and quadratically, ex-
cept when the wanted quadratic factor is a multiple fac-
tor of q(z). On the last iteration qnz

n−2 + qn−1z
n−3 +

· · ·+ q2 is the quotient on dividing p(z) by z2 − sz − t.

Example

p(z) = z4 − 2z2 + 1. With the starting values s0 = 7
4 ,

t0 = − 1
2 , an approximation to the quadratic factor

z2 − 2z + 1 = (z − 1)2 is computed (s = 2, t = −1).
Table 3.8.3 gives the successive values of s and t. The
quadratic nature of the convergence is evident.

Table 3.8.3: Bairstow’s method for factoring z4−2z2+1.

n sn tn
0 1.75000 00000 000 −0.50000 00000 000
1 2.13527 29454 109 −1.21235 75284 943
2 2.01786 10488 956 −1.02528 61401 539
3 2.00036 06329 466 −1.00047 63067 522
4 2.00000 01474 803 −1.00000 01858 298
5 2.00000 00000 000 −1.00000 00000 000

This example illustrates the fact that the method
succeeds even if the two zeros of the wanted quadratic
factor are real and the same.

For further information on the computation of zeros
of polynomials see McNamee (2007).

3.8(v) Zeros of Analytic Functions

Newton’s rule is the most frequently used iterative pro-
cess for accurate computation of real or complex zeros
of analytic functions f(z). Another iterative method is
Halley’s rule:

3.8.12 zn+1 = zn −
f(zn)

f ′(zn)− (f ′′(zn)f(zn)/(2f ′(zn)))
.

This is useful when f(z) satisfies a second-order linear
differential equation because of the ease of computing
f ′′(zn). The rule converges locally and is cubically con-
vergent.

Initial approximations to the zeros can often be
found from asymptotic or other approximations to f(z),
or by application of the phase principle or Rouché’s the-
orem; see §1.10(iv). These results are also useful in en-
suring that no zeros are overlooked when the complex
plane is being searched.

For an example involving the Airy functions, see
Fabijonas and Olver (1999).

For fixed-point methods for computing zeros of spe-
cial functions, see Segura (2002), Gil and Segura (2003),
and Gil et al. (2007a, Chapter 7).

3.8(vi) Conditioning of Zeros

Suppose f(z) also depends on a parameter α, denoted
by f(z, α). Then the sensitivity of a simple zero z to
changes in α is given by

3.8.13
dz

dα
= −∂f

∂α

/
∂f

∂z
.

Thus if f is the polynomial (3.8.8) and α is the co-
efficient aj , say, then

3.8.14
dz

daj
= − zj

f ′(z)
.

For moderate or large values of n it is not uncommon
for the magnitude of the right-hand side of (3.8.14) to
be very large compared with unity, signifying that the
computation of zeros of polynomials is often an ill-posed
problem.

Example. Wilkinson’s Polynomial

The zeros of

3.8.15 p(x) = (x− 1)(x− 2) · · · (x− 20)
are well separated but extremely ill-conditioned. Con-
sider x = 20 and j = 19. We have p′(20) = 19! and
a19 = 1 + 2 + · · · + 20 = 210. The perturbation factor
(3.8.14) is given by

3.8.16
dx

da19
= −2019

19!
= (−4.30 . . . )× 107.

Corresponding numerical factors in this example
for other zeros and other values of j are obtained in
Gautschi (1984, §4).

3.8(vii) Systems of Nonlinear Equations

For fixed-point iterations and Newton’s method for solv-
ing systems of nonlinear equations, see Gautschi (1997b,
Chapter 4, §9) and Ortega and Rheinboldt (1970).

3.8(viii) Fixed-Point Iterations: Fractals

The convergence of iterative methods

3.8.17 zn+1 = φ(zn), n = 0, 1, . . . ,
for solving fixed-point problems (3.8.2) cannot always
be predicted, especially in the complex plane.

Consider, for example, (3.8.9). Starting this itera-
tion in the neighborhood of one of the four zeros ±1,±i,
sequences {zn} are generated that converge to these ze-
ros. For an arbitrary starting point z0 ∈ C, conver-
gence cannot be predicted, and the boundary of the set
of points z0 that generate a sequence converging to a
particular zero has a very complicated structure. It is
called a Julia set. In general the Julia set of an an-
alytic function f(z) is a fractal, that is, a set that is
self-similar. See Julia (1918) and Devaney (1986).
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3.9 Acceleration of Convergence

3.9(i) Sequence Transformations

All sequences (series) in this section are sequences (se-
ries) of real or complex numbers.

A transformation of a convergent sequence {sn} with
limit σ into a sequence {tn} is called limit-preserving if
{tn} converges to the same limit σ.

The transformation is accelerating if it is limit-
preserving and if

3.9.1 lim
n→∞

tn − σ
sn − σ

= 0.

Similarly for convergent series if we regard the sum as
the limit of the sequence of partial sums.

It should be borne in mind that a sequence (series)
transformation can be effective for one type of sequence
(series) but may not accelerate convergence for another
type. It may even fail altogether by not being limit-
preserving.

3.9(ii) Euler’s Transformation of Series

If S =
∑∞
k=0(−1)kak is a convergent series, then

3.9.2 S =
∞∑
k=0

(−1)k2−k−1 ∆ka0,

provided that the right-hand side converges. Here ∆ is
the forward difference operator :

3.9.3 ∆ka0 = ∆k−1a1 − ∆k−1a0, k = 1, 2, . . . .

Thus

3.9.4 ∆ka0 =
k∑

m=0

(−1)m
(
k

m

)
ak−m.

Euler’s transformation is usually applied to alter-
nating series. Examples are provided by the following
analytic transformations of slowly-convergent series into
rapidly convergent ones:

3.9.5

ln 2 = 1− 1
2

+
1
3
− 1

4
+ · · ·= 1

1 · 21
+

1
2 · 22

+
1

3 · 23
+ · · · ,

3.9.6

π

4
= 1− 1

3
+

1
5
− 1

7
+ · · ·

=
1
2

(
1 +

1!
1 · 3

+
2!

3 · 5
+

3!
3 · 5 · 7

+ · · ·
)
.

3.9(iii) Aitken’s ∆2-Process

3.9.7 tn = sn −
(∆sn)2

∆2sn
= sn −

(sn+1 − sn)2

sn+2 − 2sn+1 + sn
.

This transformation is accelerating if {sn} is a linearly
convergent sequence, i.e., a sequence for which

3.9.8 lim
n→∞

sn+1 − σ
sn − σ

= ρ, |ρ| < 1.

When applied repeatedly, Aitken’s process is known
as the iterated ∆2-process. See Brezinski and Redivo Za-
glia (1991, pp. 39–42).

3.9(iv) Shanks’ Transformation

Shanks’ transformation is a generalization of Aitken’s
∆2-process. Let k be a fixed positive integer. Then
the transformation of the sequence {sn} into a sequence
{tn,2k} is given by

3.9.9 tn,2k =
Hk+1(sn)
Hk(∆2sn)

, n = 0, 1, 2, . . . ,

where Hm is the Hankel determinant

3.9.10 Hm(un) =

∣∣∣∣∣∣∣∣∣
un un+1 · · · un+m−1

un+1 un+2 · · · un+m

...
...

. . .
...

un+m−1 un+m · · · un+2m−2

∣∣∣∣∣∣∣∣∣ .
The ratio of the Hankel determinants in (3.9.9) can

be computed recursively by Wynn’s epsilon algorithm:
3.9.11

ε
(n)
−1 = 0, ε

(n)
0 = sn, n = 0, 1, 2, . . . ,

ε
(n)
m+1 = ε

(n+1)
m−1 +

1

ε
(n+1)
m − ε(n)

m

, n,m = 0, 1, 2, . . . .

Then tn,2k = ε
(n)
2k . Aitken’s ∆2-process is the case

k = 1.
If sn is the nth partial sum of a power series f ,

then tn,2k = ε
(n)
2k is the Padé approximant [(n + k)/k]f

(§3.11(iv)).
For further information on the epsilon algorithm see

Brezinski and Redivo Zaglia (1991, pp. 78–95).

Example

In Table 3.9.1 values of the transforms tn,2k are supplied
for

3.9.12 sn =
n∑
j=1

(−1)j+1

j2
,

with s∞ = 1
12π

2 = 0.82246 70334 24 . . . .
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Table 3.9.1: Shanks’ transformation for sn =
∑n
j=1(−1)j+1j−2.

n tn,2 tn,4 tn,6 tn,8 tn,10

0 0.80000 00000 00 0.82182 62806 24 0.82244 84501 47 0.82246 64909 60 0.82246 70175 41
1 0.82692 30769 23 0.82259 02017 65 0.82247 05346 57 0.82246 71342 06 0.82246 70363 45
2 0.82111 11111 11 0.82243 44785 14 0.82246 61821 45 0.82246 70102 48 0.82246 70327 79
3 0.82300 13550 14 0.82247 78118 35 0.82246 72851 83 0.82246 70397 56 0.82246 70335 90
4 0.82221 76684 88 0.82246 28314 41 0.82246 69467 93 0.82246 70314 36 0.82246 70333 75
5 0.82259 80392 16 0.82246 88857 22 0.82246 70670 21 0.82246 70341 24 0.82246 70334 40
6 0.82239 19390 77 0.82246 61352 37 0.82246 70190 76 0.82246 70331 54 0.82246 70334 18
7 0.82251 30483 23 0.82246 75033 13 0.82246 70400 56 0.82246 70335 37 0.82246 70334 26
8 0.82243 73137 33 0.82246 67719 32 0.82246 70301 49 0.82246 70333 73 0.82246 70334 23
9 0.82248 70624 89 0.82246 71865 91 0.82246 70351 34 0.82246 70334 48 0.82246 70334 24

10 0.82245 30535 15 0.82246 69397 57 0.82246 70324 88 0.82246 70334 12 0.82246 70334 24

3.9(v) Levin’s and Weniger’s Transformations

We give a special form of Levin’s transformation in
which the sequence s = {sn} of partial sums sn =∑n
j=0 aj is transformed into:

3.9.13

L(n)
k (s) =

∑k
j=0(−1)j

(
k
j

)
cj,k,n sn+j/an+j+1∑k

j=0(−1)j
(
k
j

)
cj,k,n/an+j+1

,

where k is a fixed nonnegative integer, and

3.9.14 cj,k,n =
(n+ j + 1)k−1

(n+ k + 1)k−1
.

Sequences that are accelerated by Levin’s transforma-
tion include logarithmically convergent sequences, i.e.,
sequences sn converging to σ such that

3.9.15 lim
n→∞

sn+1 − σ
sn − σ

= 1.

For further information see Brezinski and Redivo Za-
glia (1991, pp. 39–42).

In Weniger’s transformations the numbers cj,k,n in
(3.9.13) are chosen as follows:

3.9.16 cj,k,n =
(β + n+ j)k−1

(β + n+ k)k−1

,

or

3.9.17 cj,k,n =
(−γ − n− j)k−1

(−γ − n− k)k−1

,

where (a)0 = 1 and (a)j = a(a + 1) · · · (a + j − 1) are
Pochhammer symbols (§5.2(iii)), and the constants β
and γ are chosen arbitrarily subject to certain condi-
tions. See Weniger (1989).

3.9(vi) Applications and Further
Transformations

For examples and other transformations for convergent
sequences and series, see Wimp (1981, pp. 156–199),
Brezinski and Redivo Zaglia (1991, pp. 55–72), and Sidi

(2003, Chapters 6, 12–13, 15–16, 19–24, and pp. 483–
492).

For applications to asymptotic expansions, see
§2.11(vi), Olver (1997b, pp. 540–543), and Weniger
(1989, 2003).

3.10 Continued Fractions

3.10(i) Introduction

See §1.12 for relevant properties of continued fractions,
including the following definitions:

3.10.1 C = b0 +
a1

b1 +
a2

b2 +
· · · , an 6= 0,

3.10.2 Cn = b0 +
a1

b1 +
a2

b2 +
· · · an

bn
=
An
Bn

.

Cn is the nth approximant or convergent to C.

3.10(ii) Relations to Power Series

Every convergent, asymptotic, or formal series

3.10.3 u0 + u1 + u2 + · · ·
can be converted into a continued fraction C of type
(3.10.1), and with the property that the nth convergent
Cn = An/Bn to C is equal to the nth partial sum of the
series in (3.10.3), that is,

3.10.4
An
Bn

= u0 + u1 + · · ·+ un, n = 0, 1, . . . .

For instance, if none of the un vanish, then we can define

3.10.5

b0 = u0, b1 = 1, a1 = u1,

bn = 1 +
un
un−1

, an = − un
un−1

, n ≥ 2.

However, other continued fractions with the same
limit may converge in a much larger domain of the
complex plane than the fraction given by (3.10.4) and
(3.10.5). For example, by converting the Maclaurin
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expansion of arctan z (4.24.3), we obtain a continued
fraction with the same region of convergence (|z| ≤ 1,
z 6= ±i), whereas the continued fraction (4.25.4) con-
verges for all z ∈ C except on the branch cuts from i to
i∞ and −i to −i∞.

Stieltjes Fractions

A continued fraction of the form

3.10.6 C =
a0

1−
a1z

1−
a2z

1−
· · ·

is called a Stieltjes fraction (S-fraction). We say that it
corresponds to the formal power series

3.10.7 f(z) = c0 + c1z + c2z
2 + · · ·

if the expansion of its nth convergent Cn in ascending
powers of z agrees with (3.10.7) up to and including the
term in zn−1, n = 1, 2, 3, . . . .

Quotient-Difference Algorithm

For several special functions the S-fractions are known
explicitly, but in any case the coefficients an can al-
ways be calculated from the power-series coefficients by
means of the quotient-difference algorithm; see Table
3.10.1.

Table 3.10.1: Quotient-difference scheme.

e1
0

e2
0

e3
0

e4
0

q0
1

q1
1

q2
1

q3
1

. . .

e0
1

e1
1

e2
1

e3
1

q0
2

q1
2

q2
2

. . .

e0
2

e1
2

e2
2

q0
3

q1
3

. . .

e0
3

e1
3

. . .

. . .

The first two columns in this table are defined by

3.10.8
en0 = 0, n = 1, 2, . . . ,
qn1 = cn+1/cn, n = 0, 1, . . . ,

where the cn (6= 0) appear in (3.10.7). We continue by
means of the rhombus rule

3.10.9
ekj = ek+1

j−1 + qk+1
j − qkj , j ≥ 1, k ≥ 0,

qkj+1 = qk+1
j ek+1

j /ekj , j ≥ 1, k ≥ 0.

Then the coefficients an of the S-fraction (3.10.6) are
given by

3.10.10

a0 = c0, a1 = q0
1 , a2 = e0

1, a3 = q0
2 , a4 = e0

2, . . . .

The quotient-difference algorithm is frequently un-
stable and may require high-precision arithmetic or ex-
act arithmetic. A more stable version of the algorithm
is discussed in Stokes (1980). For applications to Bessel
functions and Whittaker functions (Chapters 10 and
13), see Gargantini and Henrici (1967).

Jacobi Fractions

A continued fraction of the form

3.10.11 C =
β0

1− α0z −
β1z

2

1− α1z −
β2z

2

1− α2z −
· · ·

is called a Jacobi fraction (J-fraction). We say that it is
associated with the formal power series f(z) in (3.10.7)
if the expansion of its nth convergent Cn in ascend-
ing powers of z, agrees with (3.10.7) up to and includ-
ing the term in z2n−1, n = 1, 2, 3, . . . . For the same
function f(z), the convergent Cn of the Jacobi fraction
(3.10.11) equals the convergent C2n of the Stieltjes frac-
tion (3.10.6).

Examples of S- and J-Fractions

For elementary functions, see §§ 4.9 and 4.35.
For special functions see §5.10 (gamma function),

§7.9 (error function), §8.9 (incomplete gamma func-
tions), §8.17(v) (incomplete beta function), §8.19(vii)
(generalized exponential integral), §§10.10 and 10.33
(quotients of Bessel functions), §13.6 (quotients of con-
fluent hypergeometric functions), §13.19 (quotients of
Whittaker functions), and §15.7 (quotients of hyperge-
ometric functions).

For further information and examples see Lorentzen
and Waadeland (1992, pp. 292–330, 560–599) and Cuyt
et al. (2008).

3.10(iii) Numerical Evaluation of Continued
Fractions

Forward Recurrence Algorithm

The An and Bn of (3.10.2) can be computed by means
of three-term recurrence relations (1.12.5). However,
this may be unstable; also overflow and underflow may
occur when evaluating An and Bn (making it necessary
to re-scale from time to time).

Backward Recurrence Algorithm

To compute the Cn of (3.10.2) we perform the iterated
divisions
3.10.12

un = bn, uk = bk +
ak+1

uk+1
, k = n− 1, n− 2, . . . , 0.

Then u0 = Cn. To achieve a prescribed accuracy, either
a priori knowledge is needed of the value of n, or n is
determined by trial and error. In general this algorithm
is more stable than the forward algorithm; see Jones
and Thron (1974).
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Forward Series Recurrence Algorithm

The continued fraction

3.10.13 C =
a0

1−
a1

1−
a2

1−
· · ·

can be written in the form

3.10.14 C =
∞∑
k=0

tk,

where

3.10.15

t0 = a0, tk = ρktk−1, ρ0 = 0,

ρk =
ak(1 + ρk−1)

1− ak(1 + ρk−1)
, k = 1, 2, 3, . . . .

The nth partial sum t0 + t1 + · · ·+ tn−1 equals the nth
convergent of (3.10.13), n = 1, 2, 3, . . . . In contrast to
the preceding algorithms in this subsection no scaling
problems arise and no a priori information is needed.

In Gautschi (1979b) the forward series algorithm is
used for the evaluation of a continued fraction of an
incomplete gamma function (see §8.9).

Steed’s Algorithm

This forward algorithm achieves efficiency and stabil-
ity in the computation of the convergents Cn = An/Bn,
and is related to the forward series recurrence algorithm.
Again, no scaling problems arise and no a priori infor-
mation is needed.

Let
3.10.16

C0 = b0, D1 = 1/b1, ∇C1 = a1D1, C1 = C0 +∇C1.

(∇ is the backward difference operator.) Then for n ≥ 2,

3.10.17

Dn =
1

Dn−1an + bn
,

∇Cn = (bnDn − 1)∇Cn−1,
Cn = Cn−1 +∇Cn.

The recurrences are continued until (∇Cn)/Cn is within
a prescribed relative precision.

For further information on the preceding algorithms,
including convergence in the complex plane and meth-
ods for accelerating convergence, see Blanch (1964) and
Lorentzen and Waadeland (1992, Chapter 3). For the
evaluation of special functions by using continued frac-
tions see Cuyt et al. (2008), Gautschi (1967, §1), Gil
et al. (2007a, Chapter 6), and Wimp (1984, Chapter 4,
§5). See also §§6.18(i), 7.22(i), 8.25(iv), 10.74(v), 14.32,
28.34(ii), 29.20(i), 30.16(i), 33.23(v).

3.11 Approximation Techniques

3.11(i) Minimax Polynomial Approximations

Let f(x) be continuous on a closed interval [a, b].
Then there exists a unique nth degree polynomial

pn(x), called the minimax (or best uniform) polyno-
mial approximation to f(x) on [a, b], that minimizes
maxa≤x≤b |εn(x)|, where εn(x) = f(x)− pn(x).

A sufficient condition for pn(x) to be the minimax
polynomial is that |εn(x)| attains its maximum at n+ 2
distinct points in [a, b] and εn(x) changes sign at these
consecutive maxima.

If we have a sufficiently close approximation

3.11.1 pn(x) = anx
n + an−1x

n−1 + · · ·+ a0

to f(x), then the coefficients ak can be computed iter-
atively. Assume that f ′(x) is continuous on [a, b] and
let x0 = a, xn+1 = b, and x1, x2, . . . , xn be the zeros of
ε′n(x) in (a, b) arranged so that
3.11.2 x0 < x1 < x2 < · · · < xn < xn+1.

Also, let

3.11.3 mj = (−1)jεn(xj), j = 0, 1, . . . , n+ 1.
(Thus the mj are approximations to m, where ±m is
the maximum value of |εn(x)| on [a, b].)

Then (in general) a better approximation to pn(x)
is given by

3.11.4

n∑
k=0

(ak + δak)xk,

where

3.11.5

n∑
k=0

xkj δak = (−1)j(mj −m), j = 0, 1, . . . , n+ 1.

This is a set of n+ 2 equations for the n+ 2 unknowns
δa0, δa1, . . . , δan and m.

The iterative process converges locally and quadrat-
ically (§3.8(i)).

A method for obtaining a sufficiently accurate first
approximation is described in the next subsection.

For the theory of minimax approximations see
Meinardus (1967). For examples of minimax polynomial
approximations to elementary and special functions see
Hart et al. (1968). See also Cody (1970) and Ralston
(1965).

3.11(ii) Chebyshev-Series Expansions

The Chebyshev polynomials Tn are given by

3.11.6 Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1.
They satisfy the recurrence relation
3.11.7

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0, n = 1, 2, . . . ,
with initial values T0(x) = 1, T1(x) = x. They enjoy an
orthogonal property with respect to integrals:

3.11.8

∫ 1

−1

Tj(x)Tk(x)√
1− x2

dx =


π, j = k = 0,
1
2π, j = k 6= 0,
0, j 6= k,
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as well as an orthogonal property with respect to sums,
as follows. When n > 0 and 0 ≤ j ≤ n, 0 ≤ k ≤ n,

3.11.9

n∑′′

`=0

Tj(x`)Tk(x`) =


n, j = k = 0 or n,
1
2n, j = k 6= 0 or n,
0, j 6= k,

where x` = cos(π`/n) and the double prime means that
the first and last terms are to be halved.

For these and further properties of Chebyshev poly-
nomials, see Chapter 18, Gil et al. (2007a, Chapter 3),
and Mason and Handscomb (2003).

Chebyshev Expansions

If f is continuously differentiable on [−1, 1], then with

3.11.10 cn =
2
π

∫ π

0

f(cos θ) cos(nθ) dθ, n = 0, 1, 2, . . . ,

the expansion

3.11.11 f(x) =
∞∑′

n=0

cn Tn(x), −1 ≤ x ≤ 1,

converges uniformly. Here the single prime on the
summation symbol means that the first term is to be
halved. In fact, (3.11.11) is the Fourier-series expansion
of f(cos θ); compare (3.11.6) and §1.8(i).

Furthermore, if f ∈ C∞ [−1, 1], then the conver-
gence of (3.11.11) is usually very rapid; compare (1.8.7)
with k arbitrary.

For general intervals [a, b] we rescale:

3.11.12 f(x) =
∞∑′

n=0

dn Tn

(
2x− a− b
b− a

)
.

Because the series (3.11.12) converges rapidly we ob-
tain a very good first approximation to the minimax
polynomial pn(x) for [a, b] if we truncate (3.11.12) at
its (n + 1)th term. This is because in the notation of
§3.11(i)

3.11.13 εn(x) = dn+1 Tn+1

(
2x− a− b
b− a

)
,

approximately, and the right-hand side enjoys exactly
those properties concerning its maxima and minima
that are required for the minimax approximation; com-
pare Figure 18.4.3.

More precisely, it is known that for the interval [a, b],
the ratio of the maximum value of the remainder

3.11.14

∣∣∣∣∣
∞∑

k=n+1

dk Tk

(
2x− a− b
b− a

)∣∣∣∣∣
to the maximum error of the minimax polynomial pn(x)
is bounded by 1+Ln, where Ln is the nth Lebesgue con-
stant for Fourier series; see §1.8(i). Since L0 = 1, Ln
is a monotonically increasing function of n, and (for ex-
ample) L1000 = 4.07 . . . , this means that in practice the

gain in replacing a truncated Chebyshev-series expan-
sion by the corresponding minimax polynomial approx-
imation is hardly worthwhile. Moreover, the set of min-
imax approximations p0(x), p1(x), p2(x), . . . , pn(x) re-
quires the calculation and storage of 1

2 (n+ 1)(n+ 2) co-
efficients, whereas the corresponding set of Chebyshev-
series approximations requires only n+ 1 coefficients.

Calculation of Chebyshev Coefficients

The cn in (3.11.11) can be calculated from (3.11.10), but
in general it is more efficient to make use of the orthogo-
nal property (3.11.9). Also, in cases where f(x) satisfies
a linear ordinary differential equation with polynomial
coefficients, the expansion (3.11.11) can be substituted
in the differential equation to yield a recurrence relation
satisfied by the cn.

For details and examples of these methods, see Clen-
shaw (1957, 1962) and Miller (1966). See also Mason
and Handscomb (2003, Chapter 10) and Fox and Parker
(1968, Chapter 5).

Summation of Chebyshev Series: Clenshaw’s Algorithm

For the expansion (3.11.11), numerical values of the
Chebyshev polynomials Tn(x) can be generated by ap-
plication of the recurrence relation (3.11.7). A more
efficient procedure is as follows. Let cn Tn(x) be the
last term retained in the truncated series. Beginning
with un+1 = 0, un = cn, we apply
3.11.15

uk = 2xuk+1 − uk+2 + ck, k = n− 1, n− 2, . . . , 0.
Then the sum of the truncated expansion equals 1

2 (u0−
u2). For error analysis and modifications of Clenshaw’s
algorithm, see Oliver (1977).

Complex Variables

If x is replaced by a complex variable z and f(z) is
analytic, then the expansion (3.11.11) converges within
an ellipse. However, in general (3.11.11) affords no ad-
vantage in C for numerical purposes compared with the
Maclaurin expansion of f(z).

For further details on Chebyshev-series expansions
in the complex plane, see Mason and Handscomb (2003,
§5.10).

3.11(iii) Minimax Rational Approximations

Let f be continuous on a closed interval [a, b] and w be
a continuous nonvanishing function on [a, b]: w is called
a weight function. Then the minimax (or best uniform)
rational approximation

3.11.16 Rk,`(x) =
p0 + p1x+ · · ·+ pkx

k

1 + q1x+ · · ·+ q`x`

of type [k, `] to f on [a, b] minimizes the maximum value
of |εk,`(x)| on [a, b], where

3.11.17 εk,`(x) =
Rk,`(x)− f(x)

w(x)
.
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The theory of polynomial minimax approximation
given in §3.11(i) can be extended to the case when pn(x)
is replaced by a rational function Rk,`(x). There exists
a unique solution of this minimax problem and there
are at least k + ` + 2 values xj , a ≤ x0 < x1 < · · · <
xk+`+1 ≤ b, such that mj = m, where

3.11.18 mj = (−1)jεk,`(xj), j = 0, 1, . . . , k + `+ 1,
and ±m is the maximum of |εk,`(x)| on [a, b].

A collection of minimax rational approximations to
elementary and special functions can be found in Hart
et al. (1968).

A widely implemented and used algorithm for calcu-
lating the coefficients pj and qj in (3.11.16) is Remez’s
second algorithm. See Remez (1957), Werner et al.
(1967), and Johnson and Blair (1973).
Example

With w(x) = 1 and 14-digit computation, we obtain
the following rational approximation of type [3, 3] to
the Bessel function J0(x) (§10.2(ii)) on the interval
0 ≤ x ≤ j0,1, where j0,1 is the first positive zero of
J0(x):

3.11.19 R3,3(x) =
p0 + p1x+ p2x

2 + p3x
3

1 + q1x+ q2x2 + q3x3
,

with coefficients given in Table 3.11.1.

Table 3.11.1: Coefficients pj , qj for the minimax rational
approximation R3,3(x).

j pj qj
0 0.99999 99891 7854
1 −0.34038 93820 9347 −0.34039 05233 8838
2 −0.18915 48376 3222 0.06086 50162 9812
3 0.06658 31942 0166 −0.01864 47680 9090

The error curve is shown in Figure 3.11.1.

Figure 3.11.1: Error R3,3(x) − J0(x) of the minimax
rational approximation R3,3(x) to the Bessel function
J0(x) for 0 ≤ x ≤ j0,1 (= 0.89357 . . .).

3.11(iv) Padé Approximations

Let

3.11.20 f(z) = c0 + c1z + c2z
2 + · · ·

be a formal power series. The rational function

3.11.21
Np,q(z)
Dp,q(z)

=
a0 + a1z + · · ·+ apz

p

b0 + b1z + · · ·+ bqzq

is called a Padé approximant at zero of f if

3.11.22 Np,q(z)− f(z)Dp,q(z) = O
(
zp+q+1

)
, z → 0.

It is denoted by [p/q]f (z). Thus if b0 6= 0, then the
Maclaurin expansion of (3.11.21) agrees with (3.11.20)
up to, and including, the term in zp+q.

The requirement (3.11.22) implies

3.11.23

a0 = c0b0,

a1 = c1b0 + c0b1,

...
ap = cpb0 + cp−1b1 + · · ·+ cp−qbq,

0 = cp+1b0 + cpb1 + · · ·+ cp−q+1bq,

...
0 = cp+qb0 + cp+q−1b1 + · · ·+ cpbq,

where cj = 0 if j < 0. With b0 = 1, the last q equations
give b1, . . . , bq as the solution of a system of linear equa-
tions. The first p+ 1 equations then yield a0, . . . , ap.

The array of Padé approximants

3.11.24

[0/0]f [0/1]f [0/2]f · · ·
[1/0]f [1/1]f [1/2]f · · ·
[2/0]f [2/1]f [2/2]f · · ·

...
...

...
. . .

is called a Padé table. Approximants with the same de-
nominator degree are located in the same column of the
table.

For convergence results for Padé approximants, and
the connection with continued fractions and Gaussian
quadrature, see Baker and Graves-Morris (1996, §4.7).

The Padé approximants can be computed by Wynn’s
cross rule. Any five approximants arranged in the Padé
table as

W

S

C

N

E

satisfy
3.11.25

(N − C)−1 + (S − C)−1 = (W − C)−1 + (E − C)−1.

Starting with the first column [n/0]f , n = 0, 1, 2, . . . ,
and initializing the preceding column by [n/− 1]f =∞,
n = 1, 2, . . . , we can compute the lower triangular part
of the table via (3.11.25). Similarly, the upper triangu-
lar part follows from the first row [0/n]f , n = 0, 1, 2, . . . ,
by initializing [−1/n]f = 0, n = 1, 2, . . . .
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For the recursive computation of [n+ k/k]f by
Wynn’s epsilon algorithm, see (3.9.11) and the subse-
quent text.

Laplace Transform Inversion

Numerical inversion of the Laplace transform (§1.14(iii))

3.11.26 F (s) = L (f ; s) =
∫ ∞

0

e−stf(t) dt

requires f = L −1 F to be obtained from numerical val-
ues of F . A general procedure is to approximate F by
a rational function R (vanishing at infinity) and then
approximate f by r = L −1R. When F has an explicit
power-series expansion a possible choice of R is a Padé
approximation to F . See Luke (1969b, §16.4) for several
examples involving special functions.

For further information on Padé approximations, see
Baker and Graves-Morris (1996, §4.7), Brezinski (1980,
pp. 9–39 and 126–177), and Lorentzen and Waadeland
(1992, pp. 367–395).

3.11(v) Least Squares Approximations

Suppose a function f(x) is approximated by the poly-
nomial

3.11.27 pn(x) = anx
n + an−1x

n−1 + · · ·+ a0

that minimizes

3.11.28 S =
J∑
j=1

(f(xj)− pn(xj))
2
.

Here xj , j = 1, 2, . . . , J , is a given set of distinct real
points and J ≥ n+1. From the equations ∂S/∂ak = 0,
k = 0, 1, . . . , n, we derive the normal equations

3.11.29


X0 X1 · · · Xn

X1 X2 · · · Xn+1

...
...

. . .
...

Xn Xn+1 · · · X2n



a0

a1

...
an

 =


F0

F1

...
Fn

 ,
where

3.11.30 Xk =
J∑
j=1

xkj , Fk =
J∑
j=1

f(xj)xkj .

(3.11.29) is a system of n+1 linear equations for the
coefficients a0, a1, . . . , an. The matrix is symmetric and
positive definite, but the system is ill-conditioned when
n is large because the lower rows of the matrix are ap-
proximately proportional to one another. If J = n+ 1,
then pn(x) is the Lagrange interpolation polynomial for
the set x1, x2, . . . , xJ (§3.3(i)).

More generally, let f(x) be approximated by a linear
combination

3.11.31 Φn(x) = anφn(x)+an−1φn−1(x)+ · · ·+a0φ0(x)

of given functions φk(x), k = 0, 1, . . . , n, that minimizes

3.11.32

J∑
j =1

w(xj) (f(xj)− Φn(xj))
2
,

w(x) being a given positive weight function, and again
J ≥ n+ 1. Then (3.11.29) is replaced by

3.11.33


X00 X01 · · · X0n

X10 X11 · · · X1n

...
...

. . .
...

Xn0 Xn1 · · · Xnn



a0

a1

...
an

 =


F0

F1

...
Fn

 ,
with

3.11.34 Xk` =
J∑
j=1

w(xj)φk(xj)φ`(xj),

and

3.11.35 Fk =
J∑
j=1

w(xj)f(xj)φk(xj).

Since Xk` = X`k, the matrix is again symmetric.
If the functions φk(x) are linearly independent on

the set x1, x2, . . . , xJ , that is, the only solution of the
system of equations

3.11.36

n∑
k=0

ckφk(xj) = 0, j = 1, 2, . . . , J ,

is c0 = c1 = · · · = cn = 0, then the approximation
Φn(x) is determined uniquely.

Now suppose that Xk` = 0 when k 6= `, that is, the
functions φk(x) are orthogonal with respect to weighted
summation on the discrete set x1, x2, . . . , xJ . Then the
system (3.11.33) is diagonal and hence well-conditioned.

A set of functions φ0(x), φ1(x), . . . , φn(x) that is lin-
early independent on the set x1, x2, . . . , xJ (compare
(3.11.36)) can always be orthogonalized in the sense
given in the preceding paragraph by the Gram–Schmidt
procedure; see Gautschi (1997b).

Example. The Discrete Fourier Transform

We take n complex exponentials φk(x) = eikx, k =
0, 1, . . . , n−1, and approximate f(x) by the linear com-
bination (3.11.31). The functions φk(x) are orthogonal
on the set x0, x1, . . . , xn−1, xj = 2πj/n, with respect to
the weight function w(x) = 1, in the sense that

3.11.37

n−1∑
j =0

φk(xj)φ`(xj) = nδk,`, k, ` = 0, 1, . . . , n− 1,

δk,` being Kronecker’s symbol and the bar denoting
complex conjugate. In consequence we can solve the
system

3.11.38 fj =
n−1∑
k=0

akφk(xj), j = 0, 1, . . . , n− 1,
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and obtain

3.11.39 ak =
1
n

n−1∑
j=0

fjφk(xj), k = 0, 1, . . . , n− 1.

With this choice of ak and fj = f(xj), the correspond-
ing sum (3.11.32) vanishes.

The pair of vectors {f ,a}

3.11.40
f = [f0, f1, . . . , fn−1]T,
a = [a0, a1, . . . , an−1]T,

is called a discrete Fourier transform pair.

The Fast Fourier Transform

The direct computation of the discrete Fourier trans-
form (3.11.38), that is, of
3.11.41

fj =
n−1∑
k=0

akω
jk
n , ωn = e2πi/n, j = 0, 1, . . . , n− 1,

requires approximately n2 multiplications. The method
of the fast Fourier transform (FFT) exploits the struc-
ture of the matrix Ω with elements ωjkn , j, k =
0, 1, . . . , n−1. If n = 2m, then Ω can be factored into m
matrices, the rows of which contain only a few nonzero
entries and the nonzero entries are equal apart from
signs. In consequence of this structure the number of
operations can be reduced to nm = n log2 n operations.

The property

3.11.42 ω2(k−(n/2))
n = ωkn/2

is of fundamental importance in the FFT algorithm. If
n is not a power of 2, then modifications are possible.
For the original reference see Cooley and Tukey (1965).
For further details and algorithms, see Van Loan (1992).

For further information on least squares approxima-
tions, including examples, see Gautschi (1997b, Chapter
2) and Björck (1996, Chapters 1 and 2).

3.11(vi) Splines

Splines are defined piecewise and usually by low-degree
polynomials. Given n+ 1 distinct points xk in the real
interval [a, b], with (a =)x0 < x1 < · · · < xn−1 < xn(=
b), on each subinterval [xk, xk+1], k = 0, 1, . . . , n− 1, a
low-degree polynomial is defined with coefficients deter-
mined by, for example, values fk and f ′k of a function
f and its derivative at the nodes xk and xk+1. The
set of all the polynomials defines a function, the spline,
on [a, b]. By taking more derivatives into account, the
smoothness of the spline will increase.

For splines based on Bernoulli and Euler polynomi-
als, see §24.17(ii).

For many applications a spline function is a more
adaptable approximating tool than the Lagrange in-
terpolation polynomial involving a comparable number

of parameters; see §3.3(i), where a single polynomial
is used for interpolating f(x) on the complete interval
[a, b]. Multivariate functions can also be approximated
in terms of multivariate polynomial splines. See de Boor
(2001), Chui (1988), and Schumaker (1981) for further
information.

In computer graphics a special type of spline is used
which produces a Bézier curve. A cubic Bézier curve is
defined by four points. Two are endpoints: (x0, y0) and
(x3, y3); the other points (x1, y1) and (x2, y2) are con-
trol points. The slope of the curve at (x0, y0) is tangent
to the line between (x0, y0) and (x1, y1); similarly the
slope at (x3, y3) is tangent to the line between x2, y2

and x3, y3. The curve is described by x(t) and y(t),
which are cubic polynomials with t ∈ [0, 1]. A complete
spline results by composing several Bézier curves. A
special applications area of Bézier curves is mathemati-
cal typography and the design of type fonts. See Knuth
(1986, pp. 116-136).

3.12 Mathematical Constants

The fundamental constant

3.12.1 π = 3.14159 26535 89793 23846 . . .

can be defined analytically in numerous ways, for exam-
ple,

3.12.2 π = 4
∫ 1

0

dt

1 + t2
.

Other constants that appear in this Handbook include
the base e of natural logarithms

3.12.3 e = 2.71828 18284 59045 23536 . . . ,

see §4.2(ii), and Euler’s constant γ

3.12.4 γ = 0.57721 56649 01532 86060 . . . ,

see §5.2(ii).
For access to online high-precision numerical values

of mathematical constants see Sloane (2003). For his-
torical and other information see Finch (2003).

References

General References

Lozier and Olver (1994) gives an overview of the numer-
ical evaluation of special functions. For more detailed
information see Gautschi (1997b), Gil et al. (2007a),
Henrici (1974, 1977, 1986), Hildebrand (1974), Luke
(1969a,b).



References 101

Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§3.2 Young and Gregory (1988, pp. 741–743), Wilkin-
son (1988, Chapter 2, §§8–10, and pp. 394–395,
423).

§3.3 Davis (1975, Chapters 2–4), National Bureau of
Standards (1944, pp. xv–xvii), Hildebrand (1974,
Chapter 2), Ostrowski (1973, pp. 18–26).

§3.4 Hildebrand (1974, pp. 85–89). The coefficients Bnk
are obtained by differentiation of the Ank ; compare
(3.4.2).

§3.5 Davis and Rabinowitz (1984, pp. 54–58, 118–
120, 137, 434–436), Bauer et al. (1963), Golub
and Welsch (1969), Salzer (1955). For (3.5.18)–
(3.5.19) see Waldvogel (2006). For Table 3.5.21
see Stroud (1971, pp. 243–249, 278–279).

In §3.5(v) all numerical values of the nodes xk and
corresponding weights wk that appear in the ta-
bles in the text and on the Web site can be com-

puted, for example, by means of the quadruple-
precision analogs of the softwares recur and
gauss given in Gautschi (1994), or in the case of
the tables for the logarithmic weight function with
recur replaced by cheb, also provided in Gautschi
(1994). The three softwares can be used for other
values of n, and other values of the parameters α
and β that appear in some of the weight functions.

§3.6 Olver (1967a).

§3.8 Gautschi (1997b, pp. 217–225, 230–234), Os-
trowski (1973, Chapters 3–11), Traub (1964,
pp. 268–269), National Physical Laboratory
(1961, pp. 57–59), Hildebrand (1974, p. 582).

§3.9 Knopp (1964, pp. 253–255).

§3.10 Blanch (1964), Rutishauser (1957), Wall (1948,
pp. 17–19), Barnett et al. (1974), Barnett (1981a).

§3.11 Powell (1967), Meinardus (1967, §3), Wynn
(1966).

§3.12 For more digits in (3.12.1), (3.12.3), and (3.12.4)
see OEIS Sequences A000796, A001113, and
A001620. See also Sloane (2003).
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Notation

4.1 Special Notation

(For other notation see pp. xiv and 873.)

k,m, n integers.
a, c real or complex constants.
x, y real variables.
z = x+ iy complex variable.
e base of natural logarithms.

It is assumed the user is familiar with the definitions
and properties of elementary functions of real arguments
x. The main purpose of the present chapter is to extend
these definitions and properties to complex arguments
z.

The main functions treated in this chapter are the
logarithm ln z, Ln z; the exponential exp z, ez; the cir-
cular trigonometric (or just trigonometric) functions
sin z, cos z, tan z, csc z, sec z, cot z; the inverse trigono-
metric functions arcsin z, Arcsin z, etc.; the hyper-
bolic trigonometric (or just hyperbolic) functions sinh z,
cosh z, tanh z, csch z, sech z, coth z; the inverse hyper-
bolic functions arcsinh z, Arcsinh z, etc.

Sometimes in the literature the meanings of ln and
Ln are interchanged; similarly for arcsin z and Arcsin z,
etc. Sometimes “arc” is replaced by the index “−1”,
e.g. sin−1 z for arcsin z and Sin−1 z for Arcsin z.

Logarithm, Exponential, Powers

4.2 Definitions

4.2(i) The Logarithm

The general logarithm function Ln z is defined by

4.2.1 Ln z =
∫ z

1

dt

t
, z 6= 0,

where the integration path does not intersect the origin.
This is a multivalued function of z with branch point at
z = 0.

The principal value, or principal branch, is defined
by

4.2.2 ln z =
∫ z

1

dt

t
,

where the path does not intersect (−∞, 0]; see Fig-
ure 4.2.1. ln z is a single-valued analytic function on
C\ (−∞, 0] and real-valued when z ranges over the pos-
itive real numbers.

Figure 4.2.1: z-plane: Branch cut for ln z and zα.

The real and imaginary parts of ln z are given by

4.2.3 ln z = ln |z|+ i ph z, −π < ph z < π.

For ph z see §1.9(i).
The only zero of ln z is at z = 1.
Most texts extend the definition of the principal

value to include the branch cut

4.2.4 z = x, −∞ < x < 0,

by replacing (4.2.3) with

4.2.5 ln z = ln |z|+ i ph z, −π < ph z ≤ π.

With this definition the general logarithm is given by

4.2.6 Ln z = ln z + 2kπi,

where k is the excess of the number of times the path
in (4.2.1) crosses the negative real axis in the positive
sense over the number of times in the negative sense.

In this Handbook we allow a further extension by
regarding the cut as representing two sets of points, one
set corresponding to the “upper side” and denoted by
z = x + i0, the other set corresponding to the “lower
side” and denoted by z = x−i0. Again see Figure 4.2.1.
Then

4.2.7 ln(x± i0) = ln |x| ± iπ, −∞ < x < 0,

with either upper signs or lower signs taken throughout.
Consequently ln z is two-valued on the cut, and discon-
tinuous across the cut. We regard this as the closed
definition of the principal value.

In contrast to (4.2.5) the closed definition is symmet-
ric. As a consequence, it has the advantage of extending
regions of validity of properties of principal values. For
example, with the definition (4.2.5) the identity (4.8.7)
is valid only when |ph z| < π, but with the closed defi-
nition the identity (4.8.7) is valid when |ph z| ≤ π. For
another example see (4.2.37).

In this Handbook it is usually clear from the context
which definition of principal value is being used. How-
ever, in the absence of any indication to the contrary
it is assumed that the definition is the closed one. For
other examples in this chapter see §§4.23, 4.24, 4.37,
and 4.38.
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4.2(ii) Logarithms to a General Base a

With a, b 6= 0 or 1,

4.2.8 loga z = ln z/ln a ,

4.2.9 loga z =
logb z
logb a

,

4.2.10 loga b =
1

logb a
.

Natural logarithms have as base the unique positive
number

4.2.11 e = 2.71828 18284 59045 23536 . . .
such that

4.2.12 ln e = 1.
Equivalently,

4.2.13

∫ e

1

dt

t
= 1.

Thus

4.2.14 loge z = ln z,

4.2.15 log10 z = (ln z)/(ln 10) = (log10 e) ln z,

4.2.16 ln z = (ln 10) log10 z,

4.2.17 log10 e = 0.43429 44819 03251 82765 . . . ,

4.2.18 ln 10 = 2.30258 50929 94045 68401 . . . .
loge x = lnx is also called the Napierian or hyperbolic
logarithm. log10 x is the common or Briggs logarithm.

4.2(iii) The Exponential Function

4.2.19 exp z = 1 +
z

1!
+
z2

2!
+
z3

3!
+ · · · .

The function exp is an entire function of z, with no real
or complex zeros. It has period 2πi:

4.2.20 exp(z + 2πi) = exp z.
Also,

4.2.21 exp(−z) = 1/ exp(z).

4.2.22 | exp z| = exp(<z).
The general value of the phase is given by

4.2.23 ph(exp z) = =z + 2kπ, k ∈ Z.
If z = x+ iy, then

4.2.24 exp z = ex cos y + iex sin y.
If ζ 6= 0 then

4.2.25 exp z = ζ ⇐⇒ z = Ln ζ.

4.2(iv) Powers

Powers with General Bases

The general ath power of z is defined by

4.2.26 za = exp(aLn z), z 6= 0.

In particular, z0 = 1, and if a = n = 1, 2, 3, . . . , then

4.2.27
za = z · z · · · z︸ ︷︷ ︸

n times

= 1/z−a.

In all other cases, za is a multivalued function with
branch point at z = 0. The principal value is

4.2.28 za = exp(a ln z).

This is an analytic function of z on C \ (−∞, 0], and
is two-valued and discontinuous on the cut shown in
Figure 4.2.1, unless a ∈ Z.

4.2.29 |za| = |z|<a exp(−(=a) ph z),

4.2.30 ph(za) = (<a) ph z + (=a) ln |z|,
where ph z ∈ [−π, π] for the principal value of za, and
is unrestricted in the general case. When a is real

4.2.31 |za| = |z|a, ph(za) = aph z.

Unless indicated otherwise, it is assumed throughout
this Handbook that a power assumes its principal value.
With this convention,

4.2.32 ez = exp z,

but the general value of ez is

4.2.33 ez = (exp z) exp(2kzπi), k ∈ Z.

For z = 1

4.2.34 e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · .

If za has its general value, with a 6= 0, and if w 6= 0,
then
4.2.35 za = w ⇐⇒ z = exp

(
1
a

Lnw
)
.

This result is also valid when za has its principal value,
provided that the branch of Lnw satisfies

4.2.36 −π ≤ =
(

1
a

Lnw
)
≤ π.

Another example of a principal value is provided by

4.2.37
√
z2 =

{
z, <z ≥ 0,
−z, <z ≤ 0.

Again, without the closed definition the ≥ and ≤ signs
would have to be replaced by > and <, respectively.
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4.3 Graphics

4.3(i) Real Arguments

Figure 4.3.1: lnx and ex.

4.3(ii) Complex Arguments: Conformal Maps

Figure 4.3.2 illustrates the conformal mapping of the strip −π < =z < π onto the whole w-plane cut along the
negative real axis, where w = ez and z = lnw (principal value). Corresponding points share the same letters, with
bars signifying complex conjugates. Lines parallel to the real axis in the z-plane map onto rays in the w-plane, and
lines parallel to the imaginary axis in the z-plane map onto circles centered at the origin in the w-plane. In the
labeling of corresponding points r is a real parameter that can lie anywhere in the interval (0,∞).

(i) z-plane (ii) w-plane

A B C C D D E E F

z 0 r r + iπ r − iπ iπ −iπ −r + iπ −r − iπ −r
w 1 er −er + i0 −er − i0 −1 + i0 −1− i0 −e−r + i0 −e−r − i0 e−r

Figure 4.3.2: Conformal mapping of exponential and logarithm. w = ez, z = lnw.
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4.3(iii) Complex Arguments: Surfaces

In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the
phase. See also p. xiv.

Figure 4.3.3: ln(x+ iy) (principal value). There is a
branch cut along the negative real axis.

Figure 4.3.4: ex+iy.

4.4 Special Values and Limits

4.4(i) Logarithms

4.4.1 ln 1 = 0,

4.4.2 ln(−1± i0) = ±πi,

4.4.3 ln(±i) = ± 1
2πi.

4.4(ii) Powers

4.4.4 e0 = 1,

4.4.5 e±πi = −1,

4.4.6 e±πi/2 = ±i,

4.4.7 e2πki = 1, k ∈ Z,

4.4.8 e±πi/3 =
1
2
± i
√

3
2
,

4.4.9 e±2πi/3 = −1
2
± i
√

3
2
,

4.4.10 e±πi/4 =
1√
2
± i 1√

2
,

4.4.11 e±3πi/4 = − 1√
2
± i 1√

2
,

4.4.12 i±i = e∓π/2.

4.4(iii) Limits

4.4.13 lim
x→∞

x−a lnx = 0, <a > 0,

4.4.14 lim
x→0

xa lnx = 0, <a > 0,

4.4.15 lim
x→∞

xae−x = 0,

4.4.16 lim
z →∞

zae−z = 0, |ph z| ≤ 1
2π − δ (< 1

2π),

where a (∈ C) and δ (∈ (0, 1
2π]) are constants.

4.4.17 lim
n→∞

(
1 +

z

n

)n
= ez, z = constant.

4.4.18 lim
n→∞

(
1 +

1
n

)n
= e.

4.4.19
lim
n→∞

((
n∑
k=1

1
k

)
− lnn

)
= γ = 0.57721 56649 01532 86060 . . . ,

where γ is Euler’s constant; see (5.2.3).
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4.5 Inequalities

4.5(i) Logarithms

4.5.1
x

1 + x
< ln(1 + x) < x, x > −1, x 6= 0,

4.5.2 x < − ln(1− x) <
x

1− x
, x < 1, x 6= 0,

4.5.3 | ln(1− x)| < 3
2x, 0 < x ≤ 0.5828 . . . ,

4.5.4 lnx ≤ x− 1, x > 0,

4.5.5 lnx ≤ a(x1/a − 1), a, x > 0,

4.5.6 | ln(1 + z)| ≤ − ln(1− |z|), |z| < 1.
For more inequalities involving the logarithm func-

tion see Mitrinović (1964, pp. 75–77), Mitrinović (1970,
pp. 272–276), and Bullen (1998, pp. 159–160).

4.5(ii) Exponentials

In (4.5.7)–(4.5.12) it is assumed that x 6= 0. (When
x = 0 the inequalities become equalities.)

4.5.7 e−x/(1−x) < 1− x < e−x, x < 1,

4.5.8 1 + x < ex, −∞ < x <∞,

4.5.9 ex <
1

1− x
, x < 1,

4.5.10
x

1 + x
< 1− e−x < x, x > −1,

4.5.11 x < ex − 1 <
x

1− x
, x < 1,

4.5.12 ex/(1+x) < 1 + x, x > −1,

4.5.13 exy/(x+y) <

(
1 +

x

y

)y
< ex, x > 0, y > 0,

4.5.14 e−x < 1− 1
2x, 0 < x ≤ 1.5936 . . . ,

4.5.15 1
4 |z| < |e

z − 1| < 7
4 |z|, 0 < |z| < 1,

4.5.16 |ez − 1| ≤ e|z| − 1 ≤ |z|e|z|, z ∈ C.
For more inequalities involving the exponential func-

tion see Mitrinović (1964, pp. 73–77), Mitrinović (1970,
pp. 266–271), and Bullen (1998, pp. 81–83).

4.6 Power Series

4.6(i) Logarithms

4.6.1 ln(1 + z) = z− 1
2z

2 + 1
3z

3 − · · · , |z| ≤ 1, z 6= −1,

4.6.2
ln z =

(
z − 1
z

)
+

1
2

(
z − 1
z

)2
+

1
3

(
z − 1
z

)3
+ · · · ,

<z ≥ 1
2 ,

4.6.3
ln z = (z − 1)− 1

2 (z − 1)2 + 1
3 (z − 1)3 − · · · ,
|z − 1| ≤ 1, z 6= 0,

4.6.4

ln z = 2

((
z − 1
z + 1

)
+

1
3

(
z − 1
z + 1

)3
+

1
5

(
z − 1
z + 1

)5
+ · · ·

)
,

<z ≥ 0, z 6= 0,

4.6.5

ln
(
z + 1
z − 1

)
= 2

(
1
z

+
1

3z3
+

1
5z5

+ · · ·
)

, |z| ≥ 1, z 6= ±1,

4.6.6 ln(z + a) = ln a+ 2

((
z

2a+ z

)
+

1
3

(
z

2a+ z

)3
+

1
5

(
z

2a+ z

)5
+ · · ·

)
, a > 0, <z ≥ −a, z 6= −a.

4.6(ii) Powers

Binomial Expansion

4.6.7

(1+z)a = 1+
a

1!
z+

a(a− 1)
2!

z2+
a(a− 1)(a− 2)

3!
z3+· · · ,

valid when a is any real or complex constant and |z| < 1.
If a = 0, 1, 2, . . . , then the series terminates and z is un-
restricted.

4.7 Derivatives and Differential Equations

4.7(i) Logarithms

4.7.1
d

dz
ln z =

1
z
,

4.7.2
d

dz
Ln z =

1
z
,

4.7.3
dn

dzn
ln z = (−1)n−1(n− 1)!z−n,

4.7.4
dn

dzn
Ln z = (−1)n−1(n− 1)!z−n.
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For a nonvanishing analytic function f(z), the gen-
eral solution of the differential equation

4.7.5
dw

dz
=
f ′(z)
f(z)

is

4.7.6 w(z) = Ln(f(z)) + constant.

4.7(ii) Exponentials and Powers

4.7.7
d

dz
ez = ez,

4.7.8
d

dz
eaz = aeaz,

4.7.9
d

dz
az = az ln a, a 6= 0.

When az is a general power, ln a is replaced by the
branch of Ln a used in constructing az.

4.7.10
d

dz
za = aza−1,

4.7.11
dn

dzn
za = a(a− 1)(a− 2) · · · (a− n+ 1)za−n.

The general solution of the differential equation

4.7.12
dw

dz
= f(z)w

is
4.7.13 w = exp

(∫
f(z) dz

)
+ constant.

The general solution of the differential equation

4.7.14
d2w

dz2 = aw, a 6= 0,

is

4.7.15 w = Ae
√
az +Be−

√
az,

where A and B are arbitrary constants.
For other differential equations see Kamke (1977,

pp. 396–413).

4.8 Identities

4.8(i) Logarithms

In (4.8.1)–(4.8.4) z1z2 6= 0.

4.8.1 Ln(z1z2) = Ln z1 + Ln z2.

This is interpreted that every value of Ln(z1z2) is one
of the values of Ln z1 + Ln z2, and vice versa.

4.8.2 ln(z1z2) = ln z1 + ln z2, −π ≤ ph z1 + ph z2 ≤ π,

4.8.3 Ln
z1

z2
= Ln z1 − Ln z2,

4.8.4 ln
z1

z2
= ln z1 − ln z2, −π ≤ ph z1 − ph z2 ≤ π.

In (4.8.5)–(4.8.7) and (4.8.10) z 6= 0.

4.8.5 Ln(zn) = nLn z, n ∈ Z,

4.8.6 ln(zn) = n ln z, n ∈ Z, −π ≤ nph z ≤ π,

4.8.7 ln
1
z

= − ln z, |ph z| ≤ π.

4.8.8 Ln(exp z) = z + 2kπi, k ∈ Z,

4.8.9 ln(exp z) = z, −π ≤ =z ≤ π,

4.8.10 exp(ln z) = exp(Ln z) = z.

If a 6= 0 and az has its general value, then

4.8.11 Ln(az) = z Ln a+ 2kπi, k ∈ Z.
If a 6= 0 and az has its principal value, then

4.8.12 ln(az) = z ln a+ 2kπi,
where the integer k is chosen so that <(−iz ln a)+2kπ ∈
[−π, π].

4.8.13 ln(ax) = x ln a, a > 0.

4.8(ii) Powers

4.8.14 az1az2 = az1+z2 ,

4.8.15 azbz = (ab)z, −π ≤ ph a+ ph b ≤ π,

4.8.16 ez1ez2 = ez1+z2 ,

4.8.17 (ez1)z2 = ez1z2 , −π ≤ =z1 ≤ π.
The restriction on z1 can be removed when z2 is an
integer.

4.9 Continued Fractions

4.9(i) Logarithms

4.9.1
ln(1 + z) =

z

1 +
z

2 +
z

3 +
4z

4 +
4z

5 +
9z

6 +
9z
7+
· · · ,

|ph(1 + z)| < π.

4.9.2 ln
(

1 + z

1− z

)
=

2z
1−

z2

3−
4z2

5−
9z2

7−
16z2

9−
· · · ,

valid when z ∈ C \ (−∞,−1] ∪ [1,∞); see Figure
4.23.1(i).

For other continued fractions involving logarithms
see Lorentzen and Waadeland (1992, pp. 566–568). See
also Cuyt et al. (2008, pp. 196–200).
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4.9(ii) Exponentials

For z ∈ C,

4.9.3

ez =
1

1−
z

1 +
z

2−
z

3 +
z

2−
z

5 +
z

2−
· · ·

= 1 +
z

1−
z

2 +
z

3−
z

2 +
z

5−
z

2 +
z

7−
· · ·

= 1 +
z

1− (z/2) +
z2/(4 · 3)

1 +
z2/(4 · 15)

1 +
z2/(4 · 35)

1+
· · ·

z2/(4(4n2 − 1))
1+

· · ·

4.9.4 ez − en−1(z) =
zn

n!−
n!z

(n+ 1) +
z

(n+ 2)−
(n+ 1)z

(n+ 3) +
2z

(n+ 4)−
(n+ 2)z

(n+ 5) +
3z

(n+ 6)−
· · ·,

where

4.9.5 en(z) =
n∑
k=0

zk

k!
.

For other continued fractions involving the exponential function see Lorentzen and Waadeland (1992, pp. 563–
564). See also Cuyt et al. (2008, pp. 193–195).

4.9(iii) Powers

See Cuyt et al. (2008, pp. 217–220).

4.10 Integrals

4.10(i) Logarithms

4.10.1

∫
dz

z
= ln z,

4.10.2

∫
ln z dz = z ln z − z,

4.10.3

∫
zn ln z dz =

zn+1

n+ 1
ln z − zn+1

(n+ 1)2
, n 6= −1,

4.10.4

∫
dz

z ln z
= ln(ln z),

4.10.5

∫ 1

0

ln t
1− t

dt = −π
2

6
,

4.10.6

∫ 1

0

ln t
1 + t

dt = −π
2

12
,

4.10.7

∫ x

0

dt

ln t
= li(x), x > 1.

The left-hand side of (4.10.7) is a Cauchy principal value
(§1.4(v)). For li(x) see §6.2(i).

4.10(ii) Exponentials

For a, b 6= 0,

4.10.8

∫
eaz dz =

eaz

a
,

4.10.9

∫
dz

eaz + b
=

1
ab

(az − ln(eaz + b)),

4.10.10

∫
eaz − 1
eaz + 1

dz =
2
a

ln
(
eaz/2 + e−az/2

)
,

4.10.11

∫ ∞
−∞

e−cx
2
dx =

√
π

c
, <c > 0,

4.10.12

∫ ln 2

0

xex

ex − 1
dx =

π2

12
,

4.10.13

∫ ∞
0

dx

ex + 1
= ln 2.

4.10(iii) Compendia

Extensive compendia of indefinite and definite integrals
of logarithms and exponentials include Apelblat (1983,
pp. 16–47), Bierens de Haan (1939), Gröbner and Hofre-
iter (1949, pp. 107–116), Gröbner and Hofreiter (1950,
pp. 52–90), Gradshteyn and Ryzhik (2000, Chapters 2–
4), and Prudnikov et al. (1986a, §§1.3, 1.6, 2.3, 2.6).

4.11 Sums

For infinite series involving logarithms and/or exponen-
tials, see Gradshteyn and Ryzhik (2000, Chapter 1),
Hansen (1975, §44), and Prudnikov et al. (1986a, Chap-
ter 5).
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4.12 Generalized Logarithms and
Exponentials

A generalized exponential function φ(x) satisfies the
equations

4.12.1 φ(x+ 1) = eφ(x), −1 < x <∞,

4.12.2 φ(0) = 0,

and is strictly increasing when 0 ≤ x ≤ 1. Its inverse
ψ(x) is called a generalized logarithm. It, too, is strictly
increasing when 0 ≤ x ≤ 1, and

4.12.3 ψ(ex) = 1 + ψ(x), −∞ < x <∞,

4.12.4 ψ(0) = 0.

These functions are not unique. The simplest choice
is given by

4.12.5 φ(x) = ψ(x) = x, 0 ≤ x ≤ 1.

Then

4.12.6 φ(x) = ln(x+ 1), −1 < x < 0,

and

4.12.7 φ(x) = exp exp · · · exp(x− bxc), x > 1,

where the exponentiations are carried out bxc times.
Correspondingly,

4.12.8 ψ(x) = ex − 1, −∞ < x < 0,

and

4.12.9 ψ(x) = `+ ln(`) x, x > 1,

where ln(`) x denotes the `-th repeated logarithm of x,
and ` is the positive integer determined by the condition

4.12.10 0 ≤ ln(`) x < 1.

Both φ(x) and ψ(x) are continuously differentiable.
For further information, see Clenshaw et al. (1986).

For C∞ generalized logarithms, see Walker (1991). For
analytic generalized logarithms, see Kneser (1950).

4.13 Lambert W -Function

The Lambert W -function W (x) is the solution of the
equation

4.13.1 WeW = x.

On the x-interval [0,∞) there is one real solution,
and it is nonnegative and increasing. On the x-interval
(−1/e, 0) there are two real solutions, one increasing
and the other decreasing. We call the solution for which
W (x) ≥W (−1/e) the principal branch and denote it by
Wp(x). The other solution is denoted by Wm(x). See
Figure 4.13.1.

Figure 4.13.1: Branches Wp(x) and Wm(x) of the Lam-
bert W -function. A and B denote the points −1/e and
e, respectively, on the x-axis.

Properties include:

4.13.2
Wp(−1/e) = Wm(−1/e) = −1,
Wp(0) = 0, Wp(e) = 1.

4.13.3 U + lnU = x, U = U(x) = W (ex).

4.13.4
dW

dx
=

e−W

1 +W
, x 6= −1

e
.

4.13.5 Wp(x) =
∞∑
n=1

(−1)n−1 nn−2

(n− 1)!
xn, |x| < 1

e
.

4.13.6

W
(
−e−1−(t2/2)

)
=
∞∑
n=0

(−1)n−1cnt
n, |t| < 2

√
π,

where t ≥ 0 for Wp, t ≤ 0 for Wm,

4.13.7 c0 = 1, c1 = 1, c2 = 1
3 , c3 = 1

36 , c4 = − 1
270 ,

4.13.8 cn =
1

n+ 1

(
cn−1 −

n−1∑
k=2

kckcn+1−k

)
, n ≥ 2,

and

4.13.9 1 · 3 · 5 · · · (2n+ 1)c2n+1 = gn,

where gn is defined in §5.11(i).
As x→ +∞

4.13.10

Wp(x) = ξ − ln ξ +
ln ξ
ξ

+
(ln ξ)2

2ξ2
− ln ξ

ξ2
+O

(
(ln ξ)3

ξ3

)
,

where ξ = lnx. As x→ 0−
4.13.11

Wm(x) =−η− ln η− ln η
η
− (ln η)2

2η2
− ln η
η2

+O
(

(ln η)3

η3

)
,

where η = ln(−1/x).
For the foregoing results and further information see

Borwein and Corless (1999), Corless et al. (1996), de
Bruijn (1961, pp. 25–28), Olver (1997b, pp. 12–13), and
Siewert and Burniston (1973).

For integral representations of all branches of the
Lambert W -function see Kheyfits (2004).
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Trigonometric Functions

4.14 Definitions and Periodicity

4.14.1 sin z =
eiz − e−iz

2i
,

4.14.2 cos z =
eiz + e−iz

2
,

4.14.3 cos z ± i sin z = e±iz,

4.14.4 tan z =
sin z
cos z

,

4.14.5 csc z =
1

sin z
,

4.14.6 sec z =
1

cos z
,

4.14.7 cot z =
cos z
sin z

=
1

tan z
.

The functions sin z and cos z are entire. In C the ze-
ros of sin z are z = kπ, k ∈ Z; the zeros of cos z are
z =

(
k + 1

2

)
π, k ∈ Z. The functions tan z, csc z, sec z,

and cot z are meromorphic, and the locations of their
zeros and poles follow from (4.14.4) to (4.14.7).

For k ∈ Z
4.14.8 sin(z + 2kπ) = sin z,

4.14.9 cos(z + 2kπ) = cos z,

4.14.10 tan(z + kπ) = tan z.

4.15 Graphics

4.15(i) Real Arguments

Figure 4.15.1: sinx and cosx. Figure 4.15.2: Arcsinx and Arccosx. Principal values
are shown with thickened lines.

Figure 4.15.3: tanx and cotx. Figure 4.15.4: arctanx and arccotx. Only principal val-
ues are shown. arccotx is discontinuous at x = 0.
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Figure 4.15.5: cscx and secx.

�
Figure 4.15.6: arccscx and arcsecx. Only principal
values are shown. (Both functions are complex when
−1 < x < 1.)

4.15(ii) Complex Arguments: Conformal Maps

Figure 4.15.7 illustrates the conformal mapping of the strip − 1
2π < <z <

1
2π onto the whole w-plane cut along the

real axis from −∞ to −1 and 1 to ∞, where w = sin z and z = arcsinw (principal value). Corresponding points
share the same letters, with bars signifying complex conjugates. Lines parallel to the real axis in the z-plane map
onto ellipses in the w-plane with foci at w = ±1, and lines parallel to the imaginary axis in the z-plane map onto
rectangular hyperbolas confocal with the ellipses. In the labeling of corresponding points r is a real parameter that
can lie anywhere in the interval (0,∞).

(i) z-plane (ii) w-plane

A B C C D D E E F

z 0 1
2π

1
2π + ir 1

2π − ir ir −ir − 1
2π + ir − 1

2π − ir − 1
2π

w 0 1 cosh r + i0 cosh r − i0 i sinh r −i sinh r − cosh r + i0 − cosh r − i0 −1

Figure 4.15.7: Conformal mapping of sine and inverse sine. w = sin z, z = arcsinw.

4.15(iii) Complex Arguments: Surfaces

In the graphics shown in this subsection height corresponds to the absolute value of the function and color to the
phase. See also p. xiv.
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Figure 4.15.8: sin(x+ iy). Figure 4.15.9: arcsin(x+ iy) (principal value). There
are branch cuts along the real axis from −∞ to −1 and
1 to ∞.

Figure 4.15.10: tan(x+ iy). Figure 4.15.11: arctan(x+ iy) (principal value). There
are branch cuts along the imaginary axis from −i∞ to
−i and i to i∞.

Figure 4.15.12: csc(x+ iy). Figure 4.15.13: arccsc(x+ iy) (principal value). There
is a branch cut along the real axis from −1 to 1.
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The corresponding surfaces for cos(x+ iy),
cot(x+ iy), and sec(x+ iy) are similar. In consequence
of the identities

4.15.1 cos(x+ iy) = sin
(
x+ 1

2π + iy
)
,

4.15.2 cot(x+ iy) = − tan
(
x+ 1

2π + iy
)
,

4.15.3 sec(x+ iy) = csc
(
x+ 1

2π + iy
)
,

they can be obtained by translating the surfaces shown
in Figures 4.15.8, 4.15.10, 4.15.12 by − 1

2π parallel to
the x-axis, and adjusting the phase coloring in the case
of Figure 4.15.10.

The corresponding surfaces for arccos(x+ iy),
arccot(x+ iy), arcsec(x+ iy) can be visualized from
Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equa-
tions (4.23.16)–(4.23.18).

4.16 Elementary Properties

Figure 4.16.1: Quadrants for the angle θ.

Table 4.16.1: Signs of the trigonometric functions in the
four quadrants.

Quadrant sin θ, csc θ cos θ, sec θ tan θ, cot θ

I + + +

II + − −
III − − +

IV − + −

Table 4.16.2: Trigonometric functions: quarter periods
and change of sign.

x −θ 1
2π ± θ π ± θ 3

2π ± θ 2π ± θ
sinx − sin θ cos θ ∓ sin θ − cos θ ± sin θ

cosx cos θ ∓ sin θ − cos θ ± sin θ cos θ

tanx − tan θ ∓ cot θ ± tan θ ∓ cot θ ± tan θ

cscx − csc θ sec θ ∓ csc θ − sec θ ± csc θ

secx sec θ ∓ csc θ − sec θ ± csc θ sec θ

cotx − cot θ ∓ tan θ ± cot θ ∓ tan θ ± cot θ

Table 4.16.3: Trigonometric functions: interrelations. All square roots have their principal values when the functions
are real, nonnegative, and finite.

sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a

sin θ a (1− a2)1/2 a(1 + a2)−1/2 a−1 a−1(a2 − 1)1/2 (1 + a2)−1/2

cos θ (1− a2)1/2 a (1 + a2)−1/2 a−1(a2 − 1)1/2 a−1 a(1 + a2)−1/2

tan θ a(1− a2)−1/2 a−1(1− a2)1/2 a (a2 − 1)−1/2 (a2 − 1)1/2 a−1

csc θ a−1 (1− a2)−1/2 a−1(1 + a2)1/2 a a(a2 − 1)−1/2 (1 + a2)1/2

sec θ (1− a2)−1/2 a−1 (1 + a2)1/2 a(a2 − 1)−1/2 a a−1(1 + a2)1/2

cot θ a−1(1− a2)1/2 a(1− a2)−1/2 a−1 (a2 − 1)1/2 (a2 − 1)−1/2 a
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4.17 Special Values and Limits

Table 4.17.1: Trigonometric functions: values at multiples of 1
12π.

θ sin θ cos θ tan θ csc θ sec θ cot θ

0 0 1 0 ∞ 1 ∞
π/12 1

4

√
2(
√

3− 1) 1
4

√
2(
√

3 + 1) 2−
√

3
√

2(
√

3 + 1)
√

2(
√

3− 1) 2 +
√

3

π/6 1
2

1
2

√
3 1

3

√
3 2 2

3

√
3

√
3

π/4 1
2

√
2 1

2

√
2 1

√
2

√
2 1

π/3 1
2

√
3 1

2

√
3 2

3

√
3 2 1

3

√
3

5π/12 1
4

√
2(
√

3 + 1) 1
4

√
2(
√

3− 1) 2 +
√

3
√

2(
√

3− 1)
√

2(
√

3 + 1) 2−
√

3

π/2 1 0 ∞ 1 ∞ 0

7π/12 1
4

√
2(
√

3 + 1) − 1
4

√
2(
√

3− 1) −(2 +
√

3)
√

2(
√

3− 1) −
√

2(
√

3 + 1) −(2−
√

3)

2π/3 1
2

√
3 − 1

2 −
√

3 2
3

√
3 −2 − 1

3

√
3

3π/4 1
2

√
2 − 1

2

√
2 −1

√
2 −

√
2 −1

5π/6 1
2 − 1

2

√
3 − 1

3

√
3 2 − 2

3

√
3 −

√
3

11π/12 1
4

√
2(
√

3− 1) − 1
4

√
2(
√

3 + 1) −(2−
√

3)
√

2(
√

3 + 1) −
√

2(
√

3− 1) −(2 +
√

3)

π 0 −1 0 ∞ −1 ∞

4.17.1 lim
z →0

sin z
z

= 1,

4.17.2 lim
z →0

tan z
z

= 1.

4.17.3 lim
z →0

1− cos z
z2

=
1
2
.

4.18 Inequalities

Jordan’s Inequality

4.18.1
2x
π
≤ sinx ≤ x, 0 ≤ x ≤ 1

2π.

4.18.2 x ≤ tanx, 0 ≤ x < 1
2π,

4.18.3 cosx ≤ sinx
x
≤ 1, 0 ≤ x ≤ π,

4.18.4 π <
sin(πx)
x(1− x)

≤ 4, 0 < x < 1.

With z = x+ iy,

4.18.5 | sinh y| ≤ | sin z| ≤ cosh y,

4.18.6 | sinh y| ≤ | cos z| ≤ cosh y,

4.18.7 | csc z| ≤ csch |y|,

4.18.8 | cos z| ≤ cosh |z|,

4.18.9 | sin z| ≤ sinh |z|,

4.18.10 | cos z| < 2, | sin z| ≤ 6
5 |z|, |z| < 1.

For more inequalities see Mitrinović (1964, pp. 101–
111), Mitrinović (1970, pp. 235–265), and Bullen (1998,
pp. 250–254).

4.19 Maclaurin Series and Laurent Series

4.19.1 sin z = z − z3

3!
+
z5

5!
− z7

7!
+ · · · ,

4.19.2 cos z = 1− z2

2!
+
z4

4!
− z6

6!
+ · · · .

In (4.19.3)–(4.19.9), Bn are the Bernoulli numbers
and En are the Euler numbers (§§24.2(i)–24.2(ii)).

4.19.3

tan z = z +
z3

3
+

2
15
z5 +

17
315

z7 + · · ·

+
(−1)n−122n(22n − 1)B2n

(2n)!
z2n−1 + · · · ,

|z| < 1
2π,

4.19.4

csc z =
1
z

+
z

6
+

7
360

z3 +
31

15120
z5 + · · ·

+
(−1)n−12(22n−1 − 1)B2n

(2n)!
z2n−1 + · · · ,

0 < |z| < π,
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4.19.5

sec z = 1 +
z2

2
+

5
24
z4 +

61
720

z6 + · · ·

+
(−1)nE2n

(2n)!
z2n + · · · , |z| < 1

2π,

4.19.6

cot z =
1
z
− z

3
− z3

45
− 2

945
z5 − · · ·

− (−1)n−122nB2n

(2n)!
z2n−1 − · · · , 0 < |z| < π,

4.19.7 ln
(

sin z
z

)
=
∞∑
n=1

(−1)n22n−1B2n

n(2n)!
z2n, |z| < π,

4.19.8

ln(cos z) =
∞∑
n=1

(−1)n22n−1(22n − 1)B2n

n(2n)!
z2n, |z| < 1

2π,

4.19.9

ln
(

tan z
z

)
=
∞∑
n=1

(−1)n−122n(22n−1 − 1)B2n

n(2n)!
z2n,

|z| < 1
2π.

4.20 Derivatives and Differential Equations

4.20.1
d

dz
sin z = cos z,

4.20.2
d

dz
cos z = − sin z,

4.20.3
d

dz
tan z = sec2 z,

4.20.4
d

dz
csc z = − csc z cot z,

4.20.5
d

dz
sec z = sec z tan z,

4.20.6
d

dz
cot z = − csc2 z,

4.20.7
dn

dzn
sin z = sin

(
z + 1

2nπ
)
,

4.20.8
dn

dzn
cos z = cos

(
z + 1

2nπ
)
.

With a 6= 0, the general solutions of the differential
equations

4.20.9
d2w

dz2 + a2w = 0,

4.20.10

(
dw

dz

)2
+ a2w2 = 1,

4.20.11
dw

dz
− a2w2 = 1,

are respectively

4.20.12 w = A cos(az) +B sin(az),

4.20.13 w = (1/a) sin(az + c),

4.20.14 w = (1/a) tan(az + c),

where A,B, c are arbitrary constants.
For other differential equations see Kamke (1977,

pp. 355–358 and 396–400).

4.21 Identities

4.21(i) Addition Formulas

4.21.1 sinu±cosu=
√

2 sin
(
u± 1

4π
)

=
√

2 cos
(
u∓ 1

4π
)
.

4.21.2 sin(u± v) = sinu cos v ± cosu sin v,

4.21.3 cos(u± v) = cosu cos v ∓ sinu sin v,

4.21.4 tan(u± v) =
tanu± tan v

1∓ tanu tan v
,

4.21.5 cot(u± v) =
± cotu cot v − 1

cotu± cot v
.

4.21.6 sinu+ sin v = 2 sin
(
u+ v

2

)
cos
(
u− v

2

)
,

4.21.7 sinu− sin v = 2 cos
(
u+ v

2

)
sin
(
u− v

2

)
,

4.21.8 cosu+ cos v = 2 cos
(
u+ v

2

)
cos
(
u− v

2

)
,

4.21.9 cosu− cos v = −2 sin
(
u+ v

2

)
sin
(
u− v

2

)
.

4.21.10 tanu± tan v =
sin(u± v)
cosu cos v

,

4.21.11 cotu± cot v =
sin(v ± u)
sinu sin v

.

4.21(ii) Squares and Products

4.21.12 sin2 z + cos2 z = 1,

4.21.13 sec2 z = 1 + tan2 z,

4.21.14 csc2 z = 1 + cot2 z.

4.21.15 2 sinu sin v = cos(u− v)− cos(u+ v),

4.21.16 2 cosu cos v = cos(u− v) + cos(u+ v),

4.21.17 2 sinu cos v = sin(u− v) + sin(u+ v).

4.21.18 sin2 u− sin2 v = sin(u+ v) sin(u− v),

4.21.19 cos2 u− cos2 v = − sin(u+ v) sin(u− v),

4.21.20 cos2 u− sin2 v = cos(u+ v) cos(u− v).
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4.21(iii) Multiples of the Argument

4.21.21 sin
z

2
= ±

(
1− cos z

2

)1/2
,

4.21.22 cos
z

2
= ±

(
1 + cos z

2

)1/2
,

4.21.23

tan
z

2
= ±

(
1− cos z
1 + cos z

)1/2
=

1− cos z
sin z

=
sin z

1 + cos z
.

In (4.21.21)–(4.21.23) Table 4.16.1 and analytic contin-
uation will assist in resolving sign ambiguities.

4.21.24 sin(−z) = − sin z,

4.21.25 cos(−z) = cos z,

4.21.26 tan(−z) = − tan z.

4.21.27 sin(2z) = 2 sin z cos z =
2 tan z

1 + tan2 z
,

4.21.28

cos(2z) = 2 cos2 z − 1 = 1− 2 sin2 z

= cos2 z − sin2 z =
1− tan2 z

1 + tan2 z
,

4.21.29

tan(2z) =
2 tan z

1− tan2 z
=

2 cot z
cot2 z − 1

=
2

cot z − tan z
.

4.21.30 sin(3z) = 3 sin z − 4 sin3 z,

4.21.31 cos(3z) = −3 cos z + 4 cos3 z,

4.21.32 sin(4z) = 8 cos3 z sin z − 4 cos z sin z,

4.21.33 cos(4z) = 8 cos4 z − 8 cos2 z + 1.

De Moivre’s Theorem

When n ∈ Z

4.21.34 cos(nz) + i sin(nz) = (cos z + i sin z)n.

This result is also valid when n is fractional or complex,
provided that −π ≤ <z ≤ π.

4.21.35

sin(nz) = 2n−1
n−1∏
k=0

sin
(
z +

kπ

n

)
, n = 1, 2, 3, . . . .

If t = tan
(

1
2z
)
, then

4.21.36

sin z =
2t

1 + t2
, cos z =

1− t2

1 + t2
, dz =

2
1 + t2

dt.

4.21(iv) Real and Imaginary Parts; Moduli

With z = x+ iy

4.21.37 sin z = sinx cosh y + i cosx sinh y,

4.21.38 cos z = cosx cosh y − i sinx sinh y,

4.21.39 tan z =
sin(2x) + i sinh(2y)
cos(2x) + cosh(2y)

,

4.21.40 cot z =
sin(2x)− i sinh(2y)
cosh(2y)− cos(2x)

.

4.21.41

| sin z|
= (sin2 x+ sinh2 y)1/2 =

(
1
2 (cosh(2y)− cos(2x))

)1/2
,

4.21.42
| cos z| = (cos2 x+ sinh2 y)1/2

=
(

1
2 (cosh(2y) + cos(2x))

)1/2
,

4.21.43 | tan z| =
(

cosh(2y)− cos(2x)
cosh(2y) + cos(2x)

)1/2
.

4.22 Infinite Products and Partial Fractions

4.22.1 sin z = z
∞∏
n=1

(
1− z2

n2π2

)
,

4.22.2 cos z =
∞∏
n=1

(
1− 4z2

(2n− 1)2π2

)
.

When z 6= nπ, n ∈ Z,

4.22.3 cot z =
1
z

+ 2z
∞∑
n=1

1
z2 − n2π2

,

4.22.4 csc2 z =
∞∑

n=−∞

1
(z − nπ)2

,

4.22.5 csc z =
1
z

+ 2z
∞∑
n=1

(−1)n

z2 − n2π2
.

4.23 Inverse Trigonometric Functions

4.23(i) General Definitions

The general values of the inverse trigonometric functions
are defined by

4.23.1 Arcsin z =
∫ z

0

dt

(1− t2)1/2
,

4.23.2 Arccos z =
∫ 1

z

dt

(1− t2)1/2
,

4.23.3 Arctan z =
∫ z

0

dt

1 + t2
, z 6= ±i,

4.23.4 Arccsc z = Arcsin(1/z),

4.23.5 Arcsec z = Arccos(1/z),

4.23.6 Arccot z = Arctan(1/z).
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In (4.23.1) and (4.23.2) the integration paths may not
pass through either of the points t = ±1. The function
(1− t2)1/2 assumes its principal value when t ∈ (−1, 1);
elsewhere on the integration paths the branch is deter-
mined by continuity. In (4.23.3) the integration path
may not intersect ±i. Each of the six functions is a
multivalued function of z. Arctan z and Arccot z have
branch points at z = ±i; the other four functions have
branch points at z = ±1.

4.23(ii) Principal Values

The principal values (or principal branches) of the in-
verse sine, cosine, and tangent are obtained by introduc-
ing cuts in the z-plane as indicated in Figures 4.23.1(i)
and 4.23.1(ii), and requiring the integration paths in
(4.23.1)–(4.23.3) not to cross these cuts. Compare the

principal value of the logarithm (§4.2(i)). The princi-
pal branches are denoted by arcsin z, arccos z, arctan z,
respectively. Each is two-valued on the corresponding
cuts, and each is real on the part of the real axis that
remains after deleting the intersections with the corre-
sponding cuts.

The principal values of the inverse cosecant, secant,
and cotangent are given by

4.23.7 arccsc z = arcsin(1/z),

4.23.8 arcsec z = arccos(1/z).

4.23.9 arccot z = arctan(1/z), z 6= ±i.
These functions are analytic in the cut plane depicted
in Figures 4.23.1(iii) and 4.23.1(iv).

Except where indicated otherwise, it is assumed
throughout this Handbook that the inverse trigonomet-
ric functions assume their principal values.

(i) arcsin z and arccos z (ii) arctan z (iii) arccsc z and arcsec z (iv) arccot z
Figure 4.23.1: z-plane. Branch cuts for the inverse trigonometric functions.

Graphs of the principal values for real arguments are given in §4.15. This section also includes conformal mappings,
and surface plots for complex arguments.

4.23(iii) Reflection Formulas

4.23.10 arcsin(−z) = − arcsin z,

4.23.11 arccos(−z) = π − arccos z.

4.23.12 arctan(−z) = − arctan z, z 6= ±i.

4.23.13 arccsc(−z) = − arccsc z,

4.23.14 arcsec(−z) = π − arcsec z.

4.23.15 arccot(−z) = − arccot z, z 6= ±i.

4.23.16 arccos z = 1
2π − arcsin z,

4.23.17 arcsec z = 1
2π − arccsc z.

4.23.18 arccot z = ± 1
2π − arctan z, <z ≷ 0.

4.23(iv) Logarithmic Forms

Throughout this subsection all quantities assume their
principal values.

Inverse Sine

4.23.19
arcsin z = −i ln

(
(1− z2)1/2 + iz

)
,

z ∈ C \ (−∞,−1) ∪ (1,∞);

compare Figure 4.23.1(i). On the cuts

4.23.20

arcsinx = 1
2π ± i ln

(
(x2 − 1)1/2 + x

)
, x ∈ [1,∞),

4.23.21

arcsinx = − 1
2π ± i ln

(
(x2 − 1)1/2 − x

)
,

x ∈ (−∞,−1],
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upper signs being taken on upper sides, and lower signs
on lower sides.

Inverse Cosine

4.23.22
arccos z = 1

2π + i ln
(

(1− z2)1/2 + iz
)

,

z ∈ C \ (−∞,−1) ∪ (1,∞);

compare Figure 4.23.1(i). An equivalent definition is

4.23.23

arccos z = −2i ln

((
1 + z

2

)1/2

+ i

(
1− z

2

)1/2
)

,

z ∈ C \ (−∞,−1) ∪ (1,∞);

see Kahan (1987).
On the cuts

4.23.24 arccosx = ∓i ln
(

(x2 − 1)1/2 + x
)

, x ∈ [1,∞),

4.23.25
arccosx = π ∓ i ln

(
(x2 − 1)1/2 − x

)
,

x ∈ (−∞,−1],

the upper/lower signs corresponding to the upper/lower
sides.

Inverse Tangent

4.23.26

arctan z =
i

2
ln
(
i+ z

i− z

)
, z/i ∈ C \ (−∞,−1] ∪ [1,∞);

compare Figure 4.23.1(ii). On the cuts

4.23.27
arctan(iy) = ±1

2
π +

i

2
ln
(
y + 1
y − 1

)
,

y ∈ (−∞,−1) ∪ (1,∞),

the upper/lower sign corresponding to the right/left
side.

Other Inverse Functions

For the corresponding results for arccsc z, arcsec z, and
arccot z, use (4.23.7)–(4.23.9). Care needs to be taken
on the cuts, for example, if 0 < x <∞ then 1/(x+i0) =
(1/x)− i0.

4.23(v) Fundamental Property

With k ∈ Z, the general solutions of the equations
4.23.28 z = sinw,
4.23.29 z = cosw,

4.23.30 z = tanw,
are respectively

4.23.31 w = Arcsin z = (−1)k arcsin z + kπ,

4.23.32 w = Arccos z = ± arccos z + 2kπ,

4.23.33 w = Arctan z = arctan z + kπ, z 6= ±i.

4.23(vi) Real and Imaginary Parts

4.23.34 arcsin z = arcsinβ + i ln
(
α+ (α2 − 1)1/2

)
,

4.23.35 arccos z = arccosβ − i ln
(
α+ (α2 − 1)1/2

)
,

4.23.36

arctan z = 1
2 arctan

(
2x

1− x2 − y2

)
+ 1

4 i ln
(
x2 + (y + 1)2

x2 + (y − 1)2

)
,

where z = x + iy and x ∈ [−1, 1] in (4.23.34) and
(4.23.35), and |z| < 1 in (4.23.36). Also,

4.23.37 α = 1
2

(
(x+ 1)2 + y2

)1/2
+ 1

2

(
(x− 1)2 + y2

)1/2
,

4.23.38 β = 1
2

(
(x+ 1)2 + y2

)1/2 − 1
2

(
(x− 1)2 + y2

)1/2
.

4.23(vii) Special Values and Interrelations

Table 4.23.1: Inverse trigonometric functions: principal values at 0, ±1, ±∞.

x arcsinx arccosx arctanx arccscx arcsecx arccotx

−∞ – – − 1
2π 0 1

2π 0

−1 − 1
2π π − 1

4π − 1
2π π − 1

4π

0 0 1
2π 0 – – ∓ 1

2π

1 1
2π 0 1

4π
1
2π 0 1

4π

∞ – – 1
2π 0 1

2π 0
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For interrelations see Table 4.16.3. For example,
from the heading and last entry in the penultimate col-
umn we have arcsec a = arccot

(
(a2 − 1)−1/2

)
.

4.23(viii) Gudermannian Function

The Gudermannian gd(x) is defined by

4.23.39 gd(x) =
∫ x

0

sech t dt, −∞ < x <∞.

Equivalently,

4.23.40

gd(x) = 2 arctan(ex)− 1
2π

= arcsin(tanhx) = arccsc(cothx)
= arccos(sechx) = arcsec(coshx)
= arctan(sinhx) = arccot(cschx).

The inverse Gudermannian function is given by

4.23.41 gd−1(x) =
∫ x

0

sec t dt, − 1
2π < x < 1

2π.

Equivalently, and again when − 1
2π < x < 1

2π,

4.23.42

gd−1(x) = ln tan
(

1
2x+ 1

4π
)

= ln(secx+ tanx)
= arcsinh(tanx) = arccsch(cotx)
= arccosh(secx) = arcsech(cosx)
= arctanh(sinx) = arccoth(cscx).

4.24 Inverse Trigonometric Functions:
Further Properties

4.24(i) Power Series

4.24.1

arcsin z = z+
1
2
z3

3
+

1 · 3
2 · 4

z5

5
+

1 · 3 · 5
2 · 4 · 6

z7

7
+ · · · , |z| ≤ 1.

4.24.2

arccos z = (2(1− z))1/2

×

(
1 +

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)
22n(2n+ 1)n!

(1− z)n
)

,

|1− z| ≤ 2.

4.24.3

arctan z = z − z3

3
+
z5

5
− z7

7
+ · · · , |z| ≤ 1, z 6= ±i.

4.24.4

arctan z = ±π
2
− 1
z

+
1

3z3
− 1

5z5
+ · · · , <z ≷ 0, |z| ≥ 1.

4.24.5

arctan z =
z

z2 + 1

×

(
1 +

2
3

z2

1 + z2
+

2 · 4
3 · 5

(
z2

1 + z2

)2
+ · · ·

)
,

<(z2) > − 1
2 ,

which requires z (= x+ iy) to lie between the two rect-
angular hyperbolas given by

4.24.6 x2 − y2 = − 1
2 .

4.24(ii) Derivatives

4.24.7
d

dz
arcsin z = (1− z2)−1/2,

4.24.8
d

dz
arccos z = −(1− z2)−1/2,

4.24.9
d

dz
arctan z =

1
1 + z2

.

4.24.10
d

dz
arccsc z = ∓ 1

z(z2 − 1)1/2
, <z ≷ 0.

4.24.11
d

dz
arcsec z = ± 1

z(z2 − 1)1/2
, <z ≷ 0.

4.24.12
d

dz
arccot z = − 1

1 + z2
.

4.24(iii) Addition Formulas

4.24.13
Arcsinu±Arcsin v

= Arcsin
(
u(1− v2)1/2 ± v(1− u2)1/2

)
,

4.24.14
Arccosu±Arccos v

= Arccos
(
uv ∓ ((1− u2)(1− v2))1/2

)
,

4.24.15 Arctanu±Arctan v = Arctan
(
u± v
1∓ uv

)
,

4.24.16

Arcsinu±Arccos v

= Arcsin
(
uv ± ((1− u2)(1− v2))1/2

)
= Arccos

(
v(1− u2)1/2 ∓ u(1− v2)1/2

)
,

4.24.17

Arctanu±Arccot v = Arctan
(
uv ± 1
v ∓ u

)
= Arccot

(
v ∓ u
uv ± 1

)
.

The above equations are interpreted in the sense that
every value of the left-hand side is a value of the right-
hand side and vice versa. All square roots have either
possible value.

4.25 Continued Fractions

4.25.1

tan z =
z

1−
z2

3−
z2

5−
z2

7−
· · · , z 6= ± 1

2π, ± 3
2π, . . . .
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4.25.2 tan(az) =
a tan z
1 +

(1− a2) tan2 z

3 +
(4− a2) tan2 z

5 +
(9− a2) tan2 z

7+
· · · , |<z| < 1

2π, az 6= ± 1
2π,±

3
2π, . . . .

4.25.3
arcsin z√

1− z2
=

z

1−
1 · 2z2

3−
1 · 2z2

5−
3 · 4z2

7−
3 · 4z2

9−
· · · ,

valid when z lies in the open cut plane shown in Figure
4.23.1(i).

4.25.4 arctan z =
z

1 +
z2

3 +
4z2

5 +
9z2

7 +
16z2

9+
· · · ,

valid when z lies in the open cut plane shown in Figure
4.23.1(ii).
4.25.5

e2a arctan(1/z) = 1 +
2a

z − a+
a2 + 1
3z +

a2 + 4
5z +

a2 + 9
7z+

· · · ,

valid when z lies in the open cut plane shown in Figure
4.23.1(iv).

See Lorentzen and Waadeland (1992, pp. 560–571)
for other continued fractions involving inverse trigono-
metric functions. See also Cuyt et al. (2008, pp. 201–
203, 205–210).

4.26 Integrals

4.26(i) Introduction

Throughout this section the variables are assumed to
be real. The results in §§4.26(ii) and 4.26(iv) can be
extended to the complex plane by using continuous
branches and avoiding singularities.

4.26(ii) Indefinite Integrals

4.26.1

∫
sinx dx = − cosx,

4.26.2

∫
cosx dx = sinx.

4.26.3

∫
tanx dx = − ln(cosx), − 1

2π < x < 1
2π.

4.26.4

∫
cscx dx = ln

(
tan 1

2x
)
, 0 < x < π.

4.26.5

∫
secx dx = gd−1(x), − 1

2π < x < 1
2π.

For the right-hand side see (4.23.41) and (4.23.42).

4.26.6

∫
cotx dx = ln(sinx), 0 < x < π.

4.26.7

∫
eax sin(bx) dx=

eax

a2 + b2
(a sin(bx)−b cos(bx)),

4.26.8

∫
eax cos(bx) dx=

eax

a2 + b2
(a cos(bx)+b sin(bx)).

4.26(iii) Definite Integrals

Throughout this subsection m and n are integers.

Orthogonality Properties

4.26.9

∫ π

0

sin(mt) sin(nt) dt = 0, m 6= n,

4.26.10

∫ π

0

cos(mt) cos(nt) dt = 0, m 6= n,

4.26.11

∫ π

0

sin2(nt) dt =
∫ π

0

cos2(nt) dt = 1
2π, n 6= 0.

4.26.12

∫ ∞
0

sin(mt)
t

dt =


1
2π, m > 0,
0, m = 0,
− 1

2π, m < 0.

4.26.13

∫ ∞
0

sin
(
t2
)
dt =

∫ ∞
0

cos
(
t2
)
dt =

1
2

√
π

2
.

4.26(iv) Inverse Trigonometric Functions

4.26.14∫
arcsinx dx = x arcsinx+ (1− x2)1/2, −1 < x < 1,

4.26.15∫
arccosx dx = x arccosx− (1− x2)1/2, −1 < x < 1.

4.26.16

∫
arctanx dx = x arctanx− 1

2 ln
(
1 + x2

)
,

−∞ < x <∞,

4.26.17∫
arccscx dx = x arccscx+ ln

(
x+ (x2 − 1)1/2

)
,

1 < x <∞,

4.26.18∫
arcsecx dx = x arcsecx− ln

(
x+ (x2 − 1)1/2

)
,

1 < x <∞,

4.26.19∫
arccotx dx = x arccotx+ 1

2 ln
(
1 + x2

)
, 0 < x <∞.

4.26.20∫
x arcsinx dx =

(
x2

2
− 1

4

)
arcsinx+

x

4
(1− x2)1/2,

−1 < x < 1,

4.26.21∫
x arccosx dx =

(
x2

2
− 1

4

)
arccosx− x

4
(1− x2)1/2,

−1 < x < 1.
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4.26(v) Compendia

Extensive compendia of indefinite and definite integrals
of trigonometric and inverse trigonometric functions in-
clude Apelblat (1983, pp. 48–109), Bierens de Haan
(1939), Gradshteyn and Ryzhik (2000, Chapters 2–4),
Gröbner and Hofreiter (1949, pp. 116–139), Gröbner
and Hofreiter (1950, pp. 94–160), and Prudnikov et al.
(1986a, §§1.5, 1.7, 2.5, 2.7).

4.27 Sums

For sums of trigonometric and inverse trigonometric
functions see Gradshteyn and Ryzhik (2000, Chapter
1), Hansen (1975, §§14–42), Oberhettinger (1973), and
Prudnikov et al. (1986a, Chapter 5).

Hyperbolic Functions

4.28 Definitions and Periodicity

4.28.1 sinh z =
ez − e−z

2
,

4.28.2 cosh z =
ez + e−z

2
,

4.28.3 cosh z ± sinh z = e±z,

4.28.4 tanh z =
sinh z
cosh z

,

4.28.5 csch z =
1

sinh z
,

4.28.6 sech z =
1

cosh z
,

4.28.7 coth z =
1

tanh z
.

Relations to Trigonometric Functions

4.28.8 sin(iz) = i sinh z,

4.28.9 cos(iz) = cosh z,

4.28.10 tan(iz) = i tanh z,

4.28.11 csc(iz) = −i csch z,

4.28.12 sec(iz) = sech z,

4.28.13 cot(iz) = −i coth z.

As a consequence, many properties of the hyperbolic
functions follow immediately from the corresponding
properties of the trigonometric functions.

Periodicity and Zeros

The functions sinh z and cosh z have period 2πi, and
tanh z has period πi. The zeros of sinh z and cosh z are
z = ikπ and z = i

(
k + 1

2

)
π, respectively, k ∈ Z.

4.29 Graphics

4.29(i) Real Arguments

Figure 4.29.1: sinhx and coshx. Figure 4.29.2: Principal values of arcsinhx and
arccoshx. (arccoshx is complex when x < 1.)
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Figure 4.29.3: tanhx and cothx. Figure 4.29.4: Principal values of arctanhx and
arccothx. (arctanhx is complex when x < −1 or x > 1,
and arccothx is complex when −1 < x < 1.)

Figure 4.29.5: cschx and sechx. Figure 4.29.6: Principal values of arccschx and
arcsechx. (arcsechx is complex when x < 0 and x > 1.)

4.29(ii) Complex Arguments

The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w-plane and the z-plane
through an angle 1

2π, compare (4.28.8).
The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in

§4.15(iii) for the trigonometric and inverse trigonometric functions. They can be visualized with the aid of equations
(4.28.8)–(4.28.13).

4.30 Elementary Properties

Table 4.30.1: Hyperbolic functions: interrelations. All square roots have their principal values when the functions
are real, nonnegative, and finite.

sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a

sinh θ a (a2 − 1)1/2 a(1− a2)−1/2 a−1 a−1(1− a2)1/2 (a2 − 1)−1/2

cosh θ (1 + a2)1/2 a (1− a2)−1/2 a−1(1 + a2)1/2 a−1 a(a2 − 1)−1/2

tanh θ a(1 + a2)−1/2 a−1(a2 − 1)1/2 a (1 + a2)−1/2 (1− a2)1/2 a−1

csch θ a−1 (a2 − 1)−1/2 a−1(1− a2)1/2 a a(1− a2)−1/2 (a2 − 1)1/2

sech θ (1 + a2)−1/2 a−1 (1− a2)1/2 a(1 + a2)−1/2 a a−1(a2 − 1)1/2

coth θ a−1(a2 + 1)1/2 a(a2 − 1)−1/2 a−1 (1 + a2)1/2 (1− a2)−1/2 a
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4.31 Special Values and Limits

Table 4.31.1: Hyperbolic functions: values at multiples
of 1

2πi.

z 0 1
2πi πi 3

2πi ∞
sinh z 0 i 0 −i ∞
cosh z 1 0 −1 0 ∞
tanh z 0 ∞i 0 −∞i 1

csch z ∞ −i ∞ i 0

sech z 1 ∞ −1 ∞ 0

coth z ∞ 0 ∞ 0 1

4.31.1 lim
z →0

sinh z
z

= 1,

4.31.2 lim
z →0

tanh z
z

= 1,

4.31.3 lim
z →0

cosh z − 1
z2

=
1
2
.

4.32 Inequalities

For x real,

4.32.1 coshx ≤
(

sinhx
x

)3
,

4.32.2 sinx cosx < tanhx < x, x > 0,

4.32.3

| coshx− cosh y| ≥ |x− y|
√

sinhx sinh y, x > 0, y > 0,

4.32.4 arctanx ≤ 1
2π tanhx, x ≥ 0.

For these and other inequalities involving hyperbolic
functions see Mitrinović (1964, pp. 61, 76, 159) and
Mitrinović (1970, p. 270).

4.33 Maclaurin Series and Laurent Series

4.33.1 sinh z = z +
z3

3!
+
z5

5!
+ · · · ,

4.33.2 cosh z = 1 +
z2

2!
+
z4

4!
+ · · · .

4.33.3

tanh z = z − z3

3
+

2
15
z5 − 17

315
z7 + · · ·

+
22n(22n − 1)B2n

(2n)!
z2n−1 + · · · ,

|z| < 1
2π.

For B2n see §24.2(i). For expansions that correspond
to (4.19.4)–(4.19.9), change z to iz and use (4.28.8)–
(4.28.13).

4.34 Derivatives and Differential Equations

4.34.1
d

dz
sinh z = cosh z,

4.34.2
d

dz
cosh z = sinh z,

4.34.3
d

dz
tanh z = sech2 z,

4.34.4
d

dz
csch z = − csch z coth z,

4.34.5
d

dz
sech z = − sech z tanh z,

4.34.6
d

dz
coth z = − csch2 z.

With a 6= 0, the general solutions of the differential
equations

4.34.7
d2w

dz2 − a
2w = 0,

4.34.8

(
dw

dz

)2
− a2w2 = 1,

4.34.9

(
dw

dz

)2
− a2w2 = −1,

4.34.10
dw

dz
+ a2w2 = 1,

are respectively

4.34.11 w = A cosh(az) +B sinh(az),

4.34.12 w = (1/a) sinh(az + c),

4.34.13 w = (1/a) cosh(az + c),

4.34.14 w = (1/a) coth(az + c),

where A,B, c are arbitrary constants.
For other differential equations see Kamke (1977,

pp. 289–400).

4.35 Identities

4.35(i) Addition Formulas

4.35.1 sinh(u± v) = sinhu cosh v ± coshu sinh v,

4.35.2 cosh(u± v) = coshu cosh v ± sinhu sinh v,

4.35.3 tanh(u± v) =
tanhu± tanh v

1± tanhu tanh v
,

4.35.4 coth(u± v) =
± cothu coth v + 1

cothu± coth v
.
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4.35.5 sinhu+ sinh v = 2 sinh
(
u+ v

2

)
cosh

(
u− v

2

)
,

4.35.6 sinhu− sinh v = 2 cosh
(
u+ v

2

)
sinh

(
u− v

2

)
,

4.35.7 coshu+cosh v = 2 cosh
(
u+ v

2

)
cosh

(
u− v

2

)
,

4.35.8 coshu− cosh v = 2 sinh
(
u+ v

2

)
sinh

(
u− v

2

)
,

4.35.9 tanhu± tanh v =
sinh(u± v)
coshu cosh v

,

4.35.10 cothu± coth v =
sinh(v ± u)
sinhu sinh v

.

4.35(ii) Squares and Products

4.35.11 cosh2 z − sinh2 z = 1,

4.35.12 sech2 z = 1− tanh2 z,

4.35.13 csch2 z = coth2 z − 1.

4.35.14 2 sinhu sinh v = cosh(u+ v)− cosh(u− v),

4.35.15 2 coshu cosh v = cosh(u+ v) + cosh(u− v),

4.35.16 2 sinhu cosh v = sinh(u+ v) + sinh(u− v).

4.35.17 sinh2 u− sinh2 v = sinh(u+ v) sinh(u− v),

4.35.18 cosh2 u− cosh2 v = sinh(u+ v) sinh(u− v),

4.35.19 sinh2 u+ cosh2 v = cosh(u+ v) cosh(u− v).

4.35(iii) Multiples of the Argument

4.35.20 sinh
z

2
=
(

cosh z − 1
2

)1/2
,

4.35.21 cosh
z

2
=
(

cosh z + 1
2

)1/2
,

4.35.22

tanh
z

2
=
(

cosh z − 1
cosh z + 1

)1/2
=

cosh z − 1
sinh z

=
sinh z

cosh z + 1
.

The square roots assume their principal value on the
positive real axis, and are determined by continuity else-
where.
4.35.23 sinh(−z) = − sinh z,

4.35.24 cosh(−z) = cosh z,

4.35.25 tanh(−z) = − tanh z.

4.35.26 sinh(2z) = 2 sinh z cosh z =
2 tanh z

1− tanh2 z
,

4.35.27
cosh(2z) = 2 cosh2 z − 1 = 2 sinh2 z + 1

= cosh2 z + sinh2 z,

4.35.28 tanh(2z) =
2 tanh z

1 + tanh2 z
,

4.35.29 sinh(3z) = 3 sinh z + 4 sinh3 z,

4.35.30 cosh(3z) = −3 cosh z + 4 cosh3 z,

4.35.31 sinh(4z) = 4 sinh3 z cosh z + 4 cosh3 z sinh z,

4.35.32 cosh(4z) = cosh4 z + 6 sinh2 z cosh2 z + sinh4 z.

4.35.33

cosh(nz)± sinh(nz) = (cosh z ± sinh z)n, n ∈ Z.

4.35(iv) Real and Imaginary Parts; Moduli

With z = x+ iy

4.35.34 sinh z = sinhx cos y + i coshx sin y,

4.35.35 cosh z = coshx cos y + i sinhx sin y,

4.35.36 tanh z =
sinh(2x) + i sin(2y)
cosh(2x) + cos(2y)

,

4.35.37 coth z =
sinh(2x)− i sin(2y)
cosh(2x)− cos(2y)

.

4.35.38
| sinh z| = (sinh2 x+ sin2 y)1/2

=
(

1
2 (cosh(2x)− cos(2y))

)1/2
,

4.35.39
| cosh z| = (sinh2 x+ cos2 y)1/2

=
(

1
2 (cosh(2x) + cos(2y))

)1/2
,

4.35.40 | tanh z| =
(

cosh(2x)− cos(2y)
cosh(2x) + cos(2y)

)1/2
.

4.36 Infinite Products and Partial Fractions

4.36.1 sinh z = z
∞∏
n=1

(
1 +

z2

n2π2

)
,

4.36.2 cosh z =
∞∏
n=1

(
1 +

4z2

(2n− 1)2π2

)
.

When z 6= nπi, n ∈ Z,

4.36.3 coth z =
1
z

+ 2z
∞∑
n=1

1
z2 + n2π2

,

4.36.4 csch2 z =
∞∑

n=−∞

1
(z − nπi)2

,

4.36.5 csch z =
1
z

+ 2z
∞∑
n=1

(−1)n

z2 + n2π2
.
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4.37 Inverse Hyperbolic Functions

4.37(i) General Definitions

The general values of the inverse hyperbolic functions
are defined by

4.37.1 Arcsinh z =
∫ z

0

dt

(1 + t2)1/2
,

4.37.2 Arccosh z =
∫ z

1

dt

(t2 − 1)1/2
,

4.37.3 Arctanh z =
∫ z

0

dt

1− t2
, z 6= ±1,

4.37.4 Arccsch z = Arcsinh(1/z),

4.37.5 Arcsech z = Arccosh(1/z),

4.37.6 Arccoth z = Arctanh(1/z).

In (4.37.1) the integration path may not pass through
either of the points t = ±i, and the function (1 + t2)1/2

assumes its principal value when t is real. In (4.37.2)
the integration path may not pass through either of the
points ±1, and the function (t2−1)1/2 assumes its prin-
cipal value when t ∈ (1,∞). Elsewhere on the inte-
gration paths in (4.37.1) and (4.37.2) the branches are
determined by continuity. In (4.37.3) the integration
path may not intersect ±1. Each of the six functions
is a multivalued function of z. Arcsinh z and Arccsch z

have branch points at z = ±i; the other four functions
have branch points at z = ±1.

4.37(ii) Principal Values

The principal values (or principal branches) of the in-
verse sinh, cosh, and tanh are obtained by introducing
cuts in the z-plane as indicated in Figure 4.37.1(i)-(iii),
and requiring the integration paths in (4.37.1)–(4.37.3)
not to cross these cuts. Compare the principal value of
the logarithm (§4.2(i)). The principal branches are de-
noted by arcsinh, arccosh, arctanh respectively. Each is
two-valued on the corresponding cut(s), and each is real
on the part of the real axis that remains after deleting
the intersections with the corresponding cuts.

The principal values of the inverse hyperbolic cose-
cant, hyperbolic secant, and hyperbolic tangent are
given by

4.37.7 arccsch z = arcsinh(1/z),

4.37.8 arcsech z = arccosh(1/z).

4.37.9 arccoth z = arctanh(1/z), z 6= ±1.

These functions are analytic in the cut plane depicted
in Figure 4.37.1(iv), (v), (vi), respectively.

Except where indicated otherwise, it is assumed
throughout this Handbook that the inverse hyperbolic
functions assume their principal values.

(i) arcsinh z (ii) arccosh z (iii) arctanh z

(iv) arccsch z (v) arcsech z (vi) arccoth z
Figure 4.37.1: z-plane. Branch cuts for the inverse hyperbolic functions.

Graphs of the principal values for real arguments are given in §4.29. This section also indicates conformal
mappings, and surface plots for complex arguments.
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4.37(iii) Reflection Formulas

4.37.10 arcsinh(−z) = − arcsinh z.

4.37.11 arccosh(−z) = ±πi+ arccosh z, =z ≷ 0.

4.37.12 arctanh(−z) = − arctanh z, z 6= ±1.

4.37.13 arccsch(−z) = − arccsch z.

4.37.14 arcsech(−z) = ∓πi+ arcsech z, =z ≷ 0.

4.37.15 arccoth(−z) = − arccoth z, z 6= ±1.

4.37(iv) Logarithmic Forms

Throughout this subsection all quantities assume their
principal values.

Inverse Hyperbolic Sine

4.37.16
arcsinh z = ln

(
(z2 + 1)1/2 + z

)
,

z/i ∈ C \ (−∞,−1) ∪ (1,∞);
compare Figure 4.37.1(i). On the cuts
4.37.17

arcsinh(iy) = 1
2πi± ln

(
(y2 − 1)1/2 + y

)
, y ∈ [1,∞),

4.37.18
arcsinh(iy) = − 1

2πi± ln
(

(y2 − 1)1/2 − y
)

,

y ∈ (−∞,−1],
the upper/lower signs corresponding to the right/left
sides.

Inverse Hyperbolic Cosine

4.37.19

arccosh z = ln
(
±(z2 − 1)1/2 + z

)
, z ∈ C \ (−∞, 1),

the upper or lower sign being taken according as <z ≷ 0;
compare Figure 4.37.1(ii). Also,
4.37.20

arccosh(iy) = ± 1
2πi+ ln

(
(y2 + 1)1/2 ± y

)
, y ≷ 0.

It should be noted that the imaginary axis is not a cut;
the function defined by (4.37.19) and (4.37.20) is ana-
lytic everywhere except on (−∞, 1]. Compare Figure
4.37.1(ii).

An equivalent definition is

4.37.21
arccosh z = 2 ln

((
z + 1

2

)1/2

+
(
z − 1

2

)1/2
)

,

z ∈ C \ (−∞, 1);
see Kahan (1987).

On the part of the cuts from −1 to 1
4.37.22

arccoshx = ± ln
(
i(1− x2)1/2 + x

)
, x ∈ (−1, 1],

the upper/lower sign corresponding to the upper/lower
side.

On the part of the cut from −∞ to −1

4.37.23

arccoshx = ±πi+ ln
(

(x2 − 1)1/2 − x
)

, x ∈ (−∞,−1],

the upper/lower sign corresponding to the upper/lower
side.

Inverse Hyperbolic Tangent

4.37.24

arctanh z = 1
2 ln
(

1 + z

1− z

)
, z ∈ C \ (−∞,−1] ∪ [1,∞);

compare Figure 4.37.1(iii). On the cuts

4.37.25
arctanhx = ± 1

2πi+ 1
2 ln
(
x+ 1
x− 1

)
,

x ∈ (−∞,−1) ∪ (1,∞),

the upper/lower sign corresponding to the upper/lower
sides.

Other Inverse Functions

For the corresponding results for arccsch z, arcsech z,
and arccoth z, use (4.37.7)–(4.37.9); compare §4.23(iv).

4.37(v) Fundamental Property

With k ∈ Z, the general solutions of the equations

4.37.26 z = sinhw,

4.37.27 z = coshw,

4.37.28 z = tanhw,

are respectively given by

4.37.29 w = Arcsinh z = (−1)k arcsinh z + kπi,

4.37.30 w = Arccosh z = ± arccosh z + 2kπi,

4.37.31 w = Arctanh z = arctanh z + kπi, z 6= ±1.

4.37(vi) Interrelations

Table 4.30.1 can also be used to find interrelations
between inverse hyperbolic functions. For example,
arcsech a = arccoth

(
(1− a2)−1/2

)
.
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4.38 Inverse Hyperbolic Functions: Further
Properties

4.38(i) Power Series

4.38.1
arcsinh z = z− 1

2
z3

3
+

1 · 3
2 · 4

z5

5
− 1 · 3 · 5

2 · 4 · 6
z7

7
+ · · · ,

|z| < 1.

4.38.2

arcsinh z = ln(2z)+
1
2

1
2z2
− 1 · 3

2 · 4
1

4z4
+

1 · 3 · 5
2 · 4 · 6

1
6z6
−· · · ,

<z > 0, |z| > 1.

4.38.3

arccosh z = ln(2z)− 1
2

1
2z2
− 1 · 3

2 · 4
1

4z4

− 1 · 3 · 5
2 · 4 · 6

1
6z6
− · · · , |z| > 1.

4.38.4
arccosh z

= (2(z − 1))1/2

×

(
1 +

∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

22nn!(2n+ 1)
(z − 1)n

)
,

<z > 0, |z − 1| ≤ 2.

4.38.5

arctanh z = z +
z3

3
+
z5

5
+
z7

7
+ · · · , |z| ≤ 1, z 6= ±1.

4.38.6

arctanh z =±iπ
2

+
1
z

+
1

3z3
+

1
5z5

+ · · · , =z ≷ 0, |z| ≥ 1.

4.38.7

arctanh z =
z

1− z2

×

(
1 +

2
3

z2

z2 − 1
+

2 · 4
3 · 5

(
z2

z2 − 1

)2

+ · · ·

)
,

<(z2) < 1
2 ,

which requires z (= x+ iy) to lie between the two rect-
angular hyperbolas given by

4.38.8 x2 − y2 = 1
2 .

4.38(ii) Derivatives

In the following equations square roots have their prin-
cipal values.

4.38.9
d

dz
arcsinh z = (1 + z2)−1/2.

4.38.10
d

dz
arccosh z = ±(z2 − 1)−1/2, <z ≷ 0.

4.38.11
d

dz
arctanh z =

1
1− z2

.

4.38.12
d

dz
arccsch z = ∓ 1

z(1 + z2)1/2
, <z ≷ 0.

4.38.13
d

dz
arcsech z = − 1

z(1− z2)1/2
.

4.38.14
d

dz
arccoth z =

1
1− z2

.

4.38(iii) Addition Formulas

4.38.15
Arcsinhu±Arcsinh v

= Arcsinh
(
u(1 + v2)1/2 ± v(1 + u2)1/2

)
,

4.38.16
Arccoshu±Arccosh v

= Arccosh
(
uv ± ((u2 − 1)(v2 − 1))1/2

)
,

4.38.17 Arctanhu±Arctanh v = Arctanh
(
u± v
1± uv

)
,

4.38.18

Arcsinhu±Arccosh v

= Arcsinh
(
uv ± ((1 + u2)(v2 − 1))1/2

)
= Arccosh

(
v(1 + u2)1/2 ± u(v2 − 1)1/2

)
,

4.38.19

Arctanhu±Arccoth v = Arctanh
(
uv ± 1
v ± u

)
= Arccoth

(
v ± u
uv ± 1

)
.

The above equations are interpreted in the sense that
every value of the left-hand side is a value of the right-
hand side and vice-versa. All square roots have either
possible value.

4.39 Continued Fractions

4.39.1

tanh z =
z

1 +
z2

3 +
z2

5 +
z2

7 +
· · · , z 6= ± 1

2πi,±
3
2πi, . . . .

4.39.2

arcsinh z√
1 + z2

=
z

1 +
1 · 2z2

3 +
1 · 2z2

5 +
3 · 4z2

7 +
3 · 4z2

9 +
· · · ,

where z is in the open cut plane of Figure 4.37.1(i).

4.39.3 arctanh z =
z

1−
z2

3−
4z2

5−
9z2

7−
· · · ,

where z is in the open cut plane of Figure 4.37.1(iii).
For these and other continued fractions involving in-

verse hyperbolic functions see Lorentzen and Waadeland
(1992, pp. 569–571). See also Cuyt et al. (2008, pp. 211–
217).

4.40 Integrals

4.40(i) Introduction

Throughout this section the variables are assumed to
be real. The results in §§4.40(ii) and 4.40(iv) can be
extended to the complex plane by using continuous
branches and avoiding singularities.
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4.40(ii) Indefinite Integrals

4.40.1

∫
sinhx dx = coshx,

4.40.2

∫
coshx dx = sinhx,

4.40.3

∫
tanhx dx = ln(coshx).

4.40.4

∫
cschx dx = ln

(
tanh

(
1
2x
))

, 0 < x <∞.

4.40.5

∫
sechx dx = gd(x).

For the right-hand side see (4.23.39) and (4.23.40).

4.40.6

∫
cothx dx = ln(sinhx), 0 < x <∞.

4.40(iii) Definite Integrals

4.40.7 ∫ ∞
0

e−x
sin(ax)
sinhx

dx = 1
2π coth

(
1
2πa

)
− 1
a

, a 6= 0,

4.40.8

∫ ∞
0

sinh(ax)
sinh(πx)

dx = 1
2 tan

(
1
2a
)
, −π < a < π,

4.40.9

∫ ∞
−∞

eax(
cosh

(
1
2x
))2 dx =

4πa
sin(πa)

, −1 < a < 1,

4.40.10∫ ∞
0

tanh(ax)− tanh(bx)
x

dx = ln
(a
b

)
, a > 0, b > 0.

4.40(iv) Inverse Hyperbolic Functions

4.40.11

∫
arcsinhx dx = x arcsinhx− (1 + x2)1/2.

4.40.12∫
arccoshx dx = x arccoshx− (x2− 1)1/2, 1 < x <∞,

4.40.13

∫
arctanhx dx = x arctanhx+ 1

2 ln
(
1− x2

)
,

−1 < x < 1,

4.40.14∫
arccschx dx = x arccschx+ arcsinhx, 0 < x <∞,

4.40.15∫
arcsechx dx = x arcsechx+ arcsinx, 0 < x < 1,

4.40.16

∫
arccothx dx = x arccothx+ 1

2 ln
(
x2 − 1

)
,

1 < x <∞.

4.40(v) Compendia

Extensive compendia of indefinite and definite integrals
of hyperbolic functions include Apelblat (1983, pp. 96–
109), Bierens de Haan (1939), Gröbner and Hofre-
iter (1949, pp. 139–160), Gröbner and Hofreiter (1950,
pp. 160–167), Gradshteyn and Ryzhik (2000, Chapters
2–4), and Prudnikov et al. (1986a, §§1.4, 1.8, 2.4, 2.8).

4.41 Sums

For sums of hyperbolic functions see Gradshteyn and
Ryzhik (2000, Chapter 1), Hansen (1975, §43), Prud-
nikov et al. (1986a, §5.3), and Zucker (1979).

Applications

4.42 Solution of Triangles

4.42(i) Planar Right Triangles

Figure 4.42.1: Planar right triangle.

4.42.1 sinA =
a

c
=

1
cscA

,

4.42.2 cosA =
b

c
=

1
secA

,

4.42.3 tanA =
a

b
=

1
cotA

.

4.42(ii) Planar Triangles

Figure 4.42.2: Planar triangle.

4.42.4
a

sinA
=

b

sinB
=

c

sinC
,
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4.42.5 c2 = a2 + b2 − 2ab cosC,

4.42.6 a = b cosC + c cosB

4.42.7 area = 1
2bc sinA = (s(s− a)(s− b)(s− c))1/2 ,

where s = 1
2 (a+ b+ c) (the semiperimeter).

4.42(iii) Spherical Triangles

Figure 4.42.3: Spherical triangle.

4.42.8 cos a = cos b cos c+ sin b sin c cosA,

4.42.9
sinA
sin a

=
sinB
sin b

=
sinC
sin c

,

4.42.10 sin a cosB = cos b sin c− sin b cos c cosA,

4.42.11 cos a cosC = sin a cot b− sinC cotB,

4.42.12 cosA = − cosB cosC + sinB sinC cos a.
For these and other formulas see Smart (1962, Chap-

ter 1).

4.43 Cubic Equations

Let

4.43.1

A =
(
− 4

3p
)1/2

, B =
(

4
3p
)1/2

,

C =
(
−27q2

4p3

)1/2
, D = −

(
27q2

4p3

)1/2
,

where p(6= 0) and q are real constants. The roots of

4.43.2 z3 + pz + q = 0
are:

(a) A sin a, A sin
(
a+ 2

3π
)
, and A sin

(
a+ 4

3π
)
, with

sin(3a) = C, when p < 0 and C ≤ 1.

(b) A cosh a, A cosh
(
a+ 2

3πi
)
, and A cosh

(
a+ 4

3πi
)
,

with cosh(3a) = C, when p < 0 and C > 1.

(c) B sinh a, B sinh
(
a+ 2

3πi
)
, and B sinh

(
a+ 4

3πi
)
,

with sinh(3a) = D, when p > 0.

Note that in Case (a) all the roots are real, whereas
in Cases (b) and (c) there is one real root and a conju-
gate pair of complex roots. See also §1.11(iii).

4.44 Other Applications

For applications of generalized exponentials and gener-
alized logarithms to computer arithmetic see §3.1(iv).

For an application of the Lambert W -function to
generalized Gaussian noise see Chapeau-Blondeau and
Monir (2002).

Computation

4.45 Methods of Computation

4.45(i) Real Variables

Logarithms

The function lnx can always be computed from its as-
cending power series after preliminary scaling. Suppose
first 1/10 ≤ x ≤ 10. Then we take square roots repeat-
edly until |y| is sufficiently small, where

4.45.1 y = x2−m − 1.

After computing ln(1 + y) from (4.6.1)

4.45.2 lnx = 2m ln(1 + y).

For other values of x set x = 10mξ, where 1/10 ≤
ξ ≤ 10 and m ∈ Z. Then

4.45.3 lnx = ln ξ +m ln 10.

Exponentials

Let x have any real value. First, rescale via

4.45.4 m =
⌊

x

ln 10
+

1
2

⌋
, y = x−m ln 10.

Then

4.45.5 ex = 10mey,

and since |y| ≤ 1
2 ln 10 = 1.15 . . . , ey can be computed

straightforwardly from (4.2.19).

Trigonometric Functions

Let x have any real value. We first compute ξ = x/π,
followed by

4.45.6 m =
⌊
ξ + 1

2

⌋
, θ = π(ξ −m).

Then

4.45.7 sinx = (−1)m sin θ, cosx = (−1)m cos θ,

and since |θ| ≤ 1
2π = 1.57 . . . , sin θ and cos θ can be

computed straightforwardly from (4.19.1) and (4.19.2).
The other trigonometric functions can be found from

the definitions (4.14.4)–(4.14.7).
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Inverse Trigonometric Functions

The function arctanx can always be computed from
its ascending power series after preliminary transfor-
mations to reduce the size of x. From (4.24.15) with
u = v = ((1 + x2)1/2 − 1)/x, we have

4.45.8

2 arctan
(1 + x2)1/2 − 1

x
= arctanx, 0 < x <∞.

Beginning with x0 = x, generate the sequence

4.45.9 xn =
(1 + x2

n−1)1/2 − 1
xn−1

, n = 1, 2, 3, . . . ,

until xn is sufficiently small. We then compute
arctanxn from (4.24.3), followed by

4.45.10 arctanx = 2n arctanxn.

Another method, when x is large, is to sum

4.45.11 arctanx =
π

2
− 1
x

+
1

3x3
− 1

5x5
+ . . . ;

compare (4.24.4).
As an example, take x = 9.47376. Then

4.45.12
x1 = 0.90000 . . . , x2 = 0.38373 . . . ,
x3 = 0.18528 . . . , x4 = 0.09185 . . . .

From (4.24.3) arctanx4 = 0.09160 . . . . From
(4.45.10)

4.45.13 arctanx = 16 arctanx4 = 1.46563 . . . .

As a check, from (4.45.11)

4.45.14

arctanx = 1.57079 . . .− 0.10555 . . .+ 0.00039 . . .− · · ·
= 1.46563 . . . .

For the remaining inverse trigonometric functions,
we may use the identities provided by the fourth
row of Table 4.16.3. For example, arcsinx =
arctan

(
x(1− x2)−1/2

)
.

Hyperbolic and Inverse Hyperbolic Functions

The hyperbolic functions can be computed directly from
the definitions (4.28.1)–(4.28.7). The inverses arcsinh,
arccosh, and arctanh can be computed from the loga-
rithmic forms given in §4.37(iv), with real arguments.
For arccsch, arcsech, and arccoth we have (4.37.7)–
(4.37.9).

Other Methods

See Luther (1995), Ziv (1991), Cody and Waite (1980),
Rosenberg and McNamee (1976), Carlson (1972a). For
interval-arithmetic algorithms, see Markov (1981). For
Shift-and-Add and CORDIC algorithms, see Muller
(1997), Merrheim (1994), Schelin (1983). For multi-
precision methods, see Smith (1989), Brent (1976).

4.45(ii) Complex Variables

For ln z and ez

4.45.15 ln z = ln |z|+ iph z, −π ≤ ph z ≤ π,

4.45.16 ez = e<z(cos(=z) + i sin(=z)).

See §1.9(i) for the precise relationship of ph z to the
arctangent function.

The trigonometric functions may be computed from
the definitions (4.14.1)–(4.14.7), and their inverses from
the logarithmic forms in §4.23(iv), followed by (4.23.7)–
(4.23.9). Similarly for the hyperbolic and inverse hy-
perbolic functions; compare (4.28.1)–(4.28.7), §4.37(iv),
and (4.37.7)–(4.37.9).

For other methods see Miel (1981).

4.45(iii) Lambert W -Function

For x ∈ [−1/e,∞) the principal branch Wp(x) can be
computed by solving the defining equation WeW = x
numerically, for example, by Newton’s rule (§3.8(ii)).
Initial approximations are obtainable, for example, from
the power series (4.13.6) (with t ≥ 0) when x is close to
−1/e, from the asymptotic expansion (4.13.10) when x
is large, and by numerical integration of the differential
equation (4.13.4) (§3.7) for other values of x.

Similarly for Wm(x) in the interval [−1/e, 0).
See also Barry et al. (1995) and Chapeau-Blondeau

and Monir (2002).

4.46 Tables

Extensive numerical tables of all the elementary func-
tions for real values of their arguments appear in
Abramowitz and Stegun (1964, Chapter 4). This hand-
book also includes lists of references for earlier tables,
as do Fletcher et al. (1962) and Lebedev and Fedorova
(1960).

For 40D values of the first 500 roots of tanx = x, see
Robinson (1972). (These roots are zeros of the Bessel
function J3/2(x); see §10.21.)

For 10S values of the first five complex roots of
sin z = az, cos z = az, and cosh z = az, for selected
positive values of a, see Fettis (1976).

See also Luther (1995).

4.47 Approximations

4.47(i) Chebyshev-Series Expansions

Clenshaw (1962) and Luke (1975, Chapter 3) give 20D
coefficients for ln, exp, sin, cos, tan, cot, arcsin, arctan,
arcsinh. Schonfelder (1980) gives 40D coefficients for
sin, cos, tan.
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4.47(ii) Rational Functions

Hart et al. (1968) give ln, exp, sin, cos, tan, cot, arcsin,
arccos, arctan, sinh, cosh, tanh, arcsinh, arccosh. Pre-
cision is variable.

4.47(iii) Padé Approximations

Luke (1975, Chapter 3) supplies real and complex ap-
proximations for ln, exp, sin, cos, tan, arctan, arcsinh.
Precision is variable.

4.47(iv) Additional References

See Luke (1975, pp. 288–289) and Luke (1969b, pp.74–
76).

4.48 Software

See http://dlmf.nist.gov/4.48.
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Notation

5.1 Special Notation

(For other notation see pp. xiv and 873.)

j,m, n nonnegative integers.
k nonnegative integer, except in §5.20.
x, y real variables.
z = x+ iy complex variable.
a, b, q, s, w real or complex variables with |q| < 1.
δ arbitrary small positive constant.
γ Euler’s constant (§5.2(ii)).
primes derivatives with respect to the variable.

The main functions treated in this chapter are the
gamma function Γ(z), the psi function (or digamma
function) ψ(z), the beta function B(a, b), and the q-
gamma function Γq(z).

The notation Γ(z) is due to Legendre. Alternative
notations for this function are: Π(z − 1) (Gauss) and
(z − 1)!. Alternative notations for the psi function are:
Ψ(z− 1) (Gauss) Jahnke and Emde (1945); Ψ(z) Davis
(1933); F(z − 1) Pairman (1919).

Properties

5.2 Definitions

5.2(i) Gamma and Psi Functions

Euler’s Integral

5.2.1 Γ(z) =
∫ ∞

0

e−ttz−1 dt, <z > 0.

When <z ≤ 0, Γ(z) is defined by analytic continuation.
It is a meromorphic function with no zeros, and with
simple poles of residue (−1)n/n! at z = −n. 1/Γ(z) is
entire, with simple zeros at z = −n.

5.2.2 ψ(z) = Γ′(z)/Γ(z), z 6= 0,−1,−2, . . . .
ψ(z) is meromorphic with simple poles of residue −1 at
z = −n.

5.2(ii) Euler’s Constant

5.2.3
γ = lim

n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− lnn

)
= 0.57721 56649 01532 86060 . . . .

5.2(iii) Pochhammer’s Symbol

5.2.4 (a)0 = 1, (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1),

5.2.5 (a)n = Γ(a+ n)/Γ(a), a 6= 0,−1,−2, . . . .

5.3 Graphics

5.3(i) Real Argument

Figure 5.3.1: Γ(x) and 1/Γ(x). x0 = 1.46 . . . , Γ(x0) =
0.88 . . . ; see §5.4(iii).

2 4 6
x

]1

2

4

0

Figure 5.3.2: ln Γ(x). This function is convex on (0,∞);
compare §5.5(iv).

Figure 5.3.3: ψ(x).

5.3(ii) Complex Argument

In the graphics shown in this subsection, both the height
and color correspond to the absolute value of the func-
tion. See also p. xiv.
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Figure 5.3.4: |Γ(x+ iy)|.

Figure 5.3.5: 1/|Γ(x+ iy)|.

Figure 5.3.6: |ψ(x+ iy)|.

5.4 Special Values and Extrema

5.4(i) Gamma Function

5.4.1 Γ(1) = 1, n! = Γ(n+ 1).

5.4.2 n!! =

{
2

1
2n Γ

(
1
2n+ 1

)
, n even,

π−
1
2 2

1
2n+ 1

2 Γ
(

1
2n+ 1

)
, n odd.

(The second line of Formula (5.4.2) also applies when
n = −1.)

5.4.3 |Γ(iy)| =
(

π

y sinh(πy)

)1/2
,

5.4.4 Γ
(

1
2 + iy

)
Γ
(

1
2 − iy

)
=
∣∣Γ( 1

2 + iy
)∣∣2 =

π

cosh(πy)
,

5.4.5 Γ
(

1
4 + iy

)
Γ
(

3
4 − iy

)
=

π
√

2
cosh(πy) + i sinh(πy)

.

5.4.6
Γ
(

1
2

)
= π1/2

= 1.77245 38509 05516 02729 . . . ,

5.4.7 Γ
(

1
3

)
= 2.67893 85347 07747 63365 . . . ,

5.4.8 Γ
(

2
3

)
= 1.35411 79394 26400 41694 . . . ,

5.4.9 Γ
(

1
4

)
= 3.62560 99082 21908 31193 . . . ,

5.4.10 Γ
(

3
4

)
= 1.22541 67024 65177 64512 . . . .

5.4.11 Γ′(1) = −γ.

5.4(ii) Psi Function

5.4.12 ψ(1) = −γ, ψ′(1) = 1
6π

2,

5.4.13 ψ
(

1
2

)
= −γ − 2 ln 2, ψ′

(
1
2

)
= 1

2π
2.

For higher derivatives of ψ(z) at z = 1 and z = 1
2 , see

§5.15.

5.4.14 ψ(n+ 1) =
n∑
k=1

1
k
− γ,

5.4.15
ψ
(
n+ 1

2

)
= −γ− 2 ln 2 + 2

(
1 + 1

3 + · · ·+ 1
2n−1

)
,

n = 1, 2, . . . .

5.4.16 =ψ(iy) =
1
2y

+
π

2
coth(πy),

5.4.17 =ψ
(

1
2 + iy

)
=
π

2
tanh(πy),

5.4.18 =ψ(1 + iy) = − 1
2y

+
π

2
coth(πy).

If p, q are integers with 0 < p < q, then

5.4.19

ψ

(
p

q

)
= −γ − ln q − π

2
cot
(
πp

q

)
+

1
2

q−1∑
k=1

cos
(

2πkp
q

)
ln
(

2− 2 cos
(

2πk
q

))
.
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5.4(iii) Extrema

Table 5.4.1: Γ′(xn) = ψ(xn) = 0.

n xn Γ(xn)

0 1.46163 21449 0.88560 31944

1 −0.50408 30083 −3.54464 36112

2 −1.57349 84732 2.30240 72583

3 −2.61072 08875 −0.88813 63584

4 −3.63529 33665 0.24512 75398

5 −4.65323 77626 −0.05277 96396

6 −5.66716 24513 0.00932 45945

7 −6.67841 82649 −0.00139 73966

8 −7.68778 83250 0.00018 18784

9 −8.69576 41633 −0.00002 09253

10 −9.70267 25406 0.00000 21574

Compare Figure 5.3.1.
As n→∞,

5.4.20 xn = −n+
1
π

arctan
( π

lnn

)
+O

(
1

n(lnn)2

)
.

For error bounds for this estimate see Walker (2007,
Theorem 5).

5.5 Functional Relations

5.5(i) Recurrence

5.5.1 Γ(z + 1) = z Γ(z),

5.5.2 ψ(z + 1) = ψ(z) +
1
z
.

5.5(ii) Reflection

5.5.3 Γ(z) Γ(1− z) = π/ sin(πz), z 6= 0,±1, . . . ,

5.5.4 ψ(z)− ψ(1− z) = −π/ tan(πz), z 6= 0,±1, . . . .

5.5(iii) Multiplication

Duplication Formula

For 2z 6= 0,−1,−2, . . . ,

5.5.5 Γ(2z) = π−1/222z−1 Γ(z) Γ
(
z + 1

2

)
.

Gauss’s Multiplication Formula

For nz 6= 0,−1,−2, . . . ,

5.5.6 Γ(nz) = (2π)(1−n)/2nnz−(1/2)
n−1∏
k=0

Γ
(
z +

k

n

)
.

5.5.7

n−1∏
k =1

Γ
(
k

n

)
= (2π)(n−1)/2n−1/2.

5.5.8 ψ(2z) = 1
2

(
ψ(z) + ψ

(
z + 1

2

))
+ ln 2,

5.5.9 ψ(nz) =
1
n

n−1∑
k=0

ψ

(
z +

k

n

)
+ lnn.

5.5(iv) Bohr–Mollerup Theorem

If a positive function f(x) on (0,∞) satisfies f(x+ 1) =
xf(x), f(1) = 1, and ln f(x) is convex (see §1.4(viii)),
then f(x) = Γ(x).

5.6 Inequalities

5.6(i) Real Variables

Throughout this subsection x > 0.

5.6.1 1 < (2π)−1/2x(1/2)−xex Γ(x) < e1/(12x),

5.6.2
1

Γ(x)
+

1
Γ(1/x)

≤ 2,

5.6.3
1

(Γ(x))2
+

1
(Γ(1/x))2

≤ 2,

Gautschi’s Inequality

5.6.4 x1−s <
Γ(x+ 1)
Γ(x+ s)

< (x+ 1)1−s, 0 < s < 1.

5.6.5

exp
(

(1− s)ψ
(
x+ s1/2

))
≤ Γ(x+ 1)

Γ(x+ s)
≤ exp

(
(1− s)ψ

(
x+ 1

2 (s+ 1)
))

,

0 < s < 1.

5.6(ii) Complex Variables

5.6.6 |Γ(x+ iy)| ≤ |Γ(x)|,

5.6.7 |Γ(x+ iy)| ≥ (sech(πy))1/2 Γ(x), x ≥ 1
2 .

For b− a ≥ 1, a ≥ 0, and z = x+ iy with x > 0,

5.6.8

∣∣∣∣Γ(z + a)
Γ(z + b)

∣∣∣∣ ≤ 1
|z|b−a

.

For x ≥ 0,

5.6.9 |Γ(z)| ≤ (2π)1/2|z|x−(1/2)e−π|y|/2 exp
(

1
6 |z|
−1
)
.
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5.7 Series Expansions

5.7(i) Maclaurin and Taylor Series

Throughout this subsection ζ(k) is as in Chapter 25.

5.7.1
1

Γ(z)
=
∞∑
k=1

ckz
k,

where c1 = 1, c2 = γ, and

5.7.2
(k − 1)ck = γck−1 − ζ(2)ck−2 + ζ(3)ck−3 − · · ·

+ (−1)k ζ(k − 1)c1, k ≥ 3.

For 15D numerical values of ck see Abramowitz and
Stegun (1964, p. 256), and for 31D values see Wrench
(1968).

5.7.3

ln Γ(1 + z) = − ln(1 + z)

+ z(1− γ) +
∞∑
k=2

(−1)k(ζ(k)− 1)
zk

k
,

|z| < 2.

5.7.4 ψ(1 + z) = −γ +
∞∑
k=2

(−1)k ζ(k)zk−1, |z| < 1,

5.7.5

ψ(1 + z) =
1
2z
− π

2
cot(πz) +

1
z2 − 1

+ 1

− γ −
∞∑
k=1

(ζ(2k + 1)− 1)z2k,

|z| < 2, z 6= 0,±1.

For 20D numerical values of the coefficients of the
Maclaurin series for Γ(z + 3) see Luke (1969b, p. 299).

5.7(ii) Other Series

When z 6= 0,−1,−2, . . . ,

5.7.6

ψ(z) = −γ − 1
z

+
∞∑
k=1

z

k(k + z)

= −γ +
∞∑
k=0

(
1

k + 1
− 1
k + z

)
,

and

5.7.7 ψ

(
z + 1

2

)
− ψ

(z
2

)
= 2

∞∑
k=0

(−1)k

k + z
.

Also,

5.7.8 =ψ(1 + iy) =
∞∑
k=1

y

k2 + y2
.

5.8 Infinite Products

5.8.1

Γ(z) = lim
k→∞

k!kz

z(z + 1) · · · (z + k)
, z 6= 0,−1,−2, . . . ,

5.8.2
1

Γ(z)
= zeγz

∞∏
k=1

(
1 +

z

k

)
e−z/k,

5.8.3∣∣∣∣ Γ(x)
Γ(x+ iy)

∣∣∣∣2 =
∞∏
k=0

(
1 +

y2

(x+ k)2

)
, x 6= 0,−1, . . . .

If

5.8.4

m∑
k=1

ak =
m∑
k=1

bk,

then

5.8.5

∞∏
k=0

(a1 + k)(a2 + k) · · · (am + k)
(b1 + k)(b2 + k) · · · (bm + k)

=
Γ(b1) Γ(b2) · · ·Γ(bm)
Γ(a1) Γ(a2) · · ·Γ(am)

,

provided that none of the bk is zero or a negative integer.

5.9 Integral Representations

5.9(i) Gamma Function

5.9.1
1
µ

Γ
(
ν

µ

)
1

zν/µ
=
∫ ∞

0

exp(−ztµ)tν−1 dt,

<ν > 0, µ > 0, and <z > 0. (The fractional powers
have their principal values.)

Hankel’s Loop Integral

5.9.2
1

Γ(z)
=

1
2πi

∫ (0+)

−∞
ett−z dt,

where the contour begins at −∞, circles the origin once
in the positive direction, and returns to −∞. t−z has
its principal value where t crosses the positive real axis,
and is continuous. See Figure 5.9.1.

0

Figure 5.9.1: t-plane. Contour for Hankel’s loop inte-
gral.

5.9.3 c−z Γ(z) =
∫ ∞
−∞
|t|2z−1e−ct

2
dt, c > 0, <z > 0,

where the path is the real axis.

5.9.4
Γ(z) =

∫ ∞
1

tz−1e−t dt+
∞∑
k=0

(−1)k

(z + k)k!
,

z 6= 0,−1,−2, . . . .



140 Gamma Function

5.9.5
Γ(z) =

∫ ∞
0

tz−1

(
e−t −

n∑
k=0

(−1)ktk

k!

)
dt,

−n− 1 < <z < −n.

5.9.6 Γ(z) cos
(

1
2πz

)
=
∫ ∞

0

tz−1 cos t dt, 0 < <z < 1,

5.9.7 Γ(z) sin
(

1
2πz

)
=
∫ ∞

0

tz−1 sin t dt, −1 < <z < 1.

5.9.8

Γ
(

1 +
1
n

)
cos
( π

2n

)
=
∫ ∞

0

cos(tn) dt, n = 2, 3, 4, . . . ,

5.9.9

Γ
(

1 +
1
n

)
sin
( π

2n

)
=
∫ ∞

0

sin(tn) dt, n = 2, 3, 4, . . . .

Binet’s Formula

5.9.10

ln Γ(z) =
(
z − 1

2

)
ln z − z + 1

2 ln(2π)

+ 2
∫ ∞

0

arctan(t/z)
e2πt − 1

dt,

where |ph z| < π/2 and the inverse tangent has its prin-
cipal value.

5.9.11

ln Γ(z + 1) = −γz − 1
2πi

∫ −c+∞i
−c−∞i

πz−s

s sin(πs)
ζ(−s) ds,

where |ph z| ≤ π− δ (< π), 1 < c < 2, and ζ(s) is as in
Chapter 25.

For additional representations see Whittaker and
Watson (1927, §§12.31–12.32).

5.9(ii) Psi Function, Euler’s Constant, and
Derivatives

For <z > 0,

5.9.12 ψ(z) =
∫ ∞

0

(
e−t

t
− e−zt

1− e−t

)
dt,

5.9.13 ψ(z) = ln z +
∫ ∞

0

(
1
t
− 1

1− e−t

)
e−tz dt,

5.9.14 ψ(z) =
∫ ∞

0

(
e−t − 1

(1 + t)z

)
dt

t
,

5.9.15 ψ(z) = ln z − 1
2z
− 2

∫ ∞
0

t dt

(t2 + z2)(e2πt − 1)
.

5.9.16 ψ(z) + γ =
∫ ∞

0

e−t − e−zt

1− e−t
dt =

∫ 1

0

1− tz−1

1− t
dt.

5.9.17 ψ(z + 1) = −γ +
1

2πi

∫ −c+∞i
−c−∞i

πz−s−1

sin(πs)
ζ(−s) ds,

where |ph z| ≤ π − δ(< π) and 1 < c < 2.

5.9.18

γ = −
∫ ∞

0

e−t ln t dt =
∫ ∞

0

(
1

1 + t
− e−t

)
dt

t

=
∫ 1

0

(1− e−t) dt
t
−
∫ ∞

1

e−t
dt

t

=
∫ ∞

0

(
e−t

1− e−t
− e−t

t

)
dt.

5.9.19 Γ(n)(z) =
∫ ∞

0

(ln t)ne−ttz−1 dt, n ≥ 0, <z > 0.

5.10 Continued Fractions

For <z > 0,

5.10.1

ln Γ(z) + z −
(
z − 1

2

)
ln z − 1

2 ln(2π)

=
a0

z +
a1

z +
a2

z +
a3

z +
a4

z +
a5

z+
· · · ,

where
5.10.2

a0 = 1
12 , a1 = 1

30 , a2 = 53
210 , a3 = 195

371 ,

a4 = 22999
22737 , a5 = 299 44523

197 33142 , a6 = 10 95352 41009
4 82642 75462 .

For exact values of a7 to a11 and 40S values of a0

to a40, see Char (1980). Also see Cuyt et al. (2008,
pp. 223–228), Jones and Thron (1980, pp. 348–350),
and Lorentzen and Waadeland (1992, pp. 221–224) for
further information.

5.11 Asymptotic Expansions

5.11(i) Poincaré-Type Expansions

As z →∞ in the sector |ph z| ≤ π − δ (< π),
5.11.1

ln Γ(z)

∼
(
z − 1

2

)
ln z − z + 1

2 ln(2π) +
∞∑
k=1

B2k

2k(2k − 1)z2k−1

and

5.11.2 ψ(z) ∼ ln z − 1
2z
−
∞∑
k=1

B2k

2kz2k
.

For the Bernoulli numbers B2k, see §24.2(i).
With the same conditions,

5.11.3 Γ(z) ∼ e−zzz
(

2π
z

)1/2( ∞∑
k=0

gk
zk

)
,

where
5.11.4

g0 = 1, g1 = 1
12 , g2 = 1

288 , g3 = − 139
51840 ,

g4 = − 571
24 88320 , g5 = 1 63879

2090 18880 , g6 = 52 46819
7 52467 96800 .

Also,

5.11.5 gk =
√

2
(

1
2

)
k
a2k,
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where a0 = 1
2

√
2 and

5.11.6

a0ak +
1
2
a1ak−1 +

1
3
a2ak−2 + · · ·+ 1

k + 1
aka0

=
1
k
ak−1, k ≥ 1.

Wrench (1968) gives exact values of gk up to g20. Spira
(1971) corrects errors in Wrench’s results and also sup-
plies exact and 45D values of gk for k = 21, 22, . . . , 30.
For an asymptotic expansion of gk as k →∞ see Boyd
(1994).

Terminology

The expansion (5.11.1) is called Stirling’s series (Whit-
taker and Watson (1927, §12.33)), whereas the expan-
sion (5.11.3), or sometimes just its leading term, is
known as Stirling’s formula (Abramowitz and Stegun
(1964, §6.1), Olver (1997b, p. 88)).

Next, and again with the same conditions,

5.11.7 Γ(az + b) ∼
√

2πe−az(az)az+b−(1/2),

where a (> 0) and b (∈ C) are both fixed, and

5.11.8

ln Γ(z + h) ∼
(
z + h− 1

2

)
ln z − z + 1

2 ln(2π)

+
∞∑
k=2

(−1)k Bk(h)
k(k − 1)zk−1

,

where h (∈ [0, 1]) is fixed, and Bk(h) is the Bernoulli
polynomial defined in §24.2(i).

Lastly, as y → ±∞,

5.11.9 |Γ(x+ iy)| ∼
√

2π|y|x−(1/2)e−π|y|/2,

uniformly for bounded real values of x.

5.11(ii) Error Bounds and Exponential
Improvement

If the sums in the expansions (5.11.1) and (5.11.2) are
terminated at k = n− 1 (k ≥ 0) and z is real and pos-
itive, then the remainder terms are bounded in mag-
nitude by the first neglected terms and have the same
sign. If z is complex, then the remainder terms are
bounded in magnitude by sec2n

(
1
2 ph z

)
for (5.11.1), and

sec2n+1
(

1
2 ph z

)
for (5.11.2), times the first neglected

terms.
For the remainder term in (5.11.3) write

5.11.10
Γ(z) = e−zzz

(
2π
z

)1/2(K−1∑
k=0

gk
zk

+RK(z)

)
,

K = 1, 2, 3, . . . .

Then
5.11.11

|RK(z)| ≤ (1 + ζ(K)) Γ(K)

2(2π)K+1 |z|K
(

1+min(sec(ph z), 2K
1
2 )
)

,

|ph z| ≤ 1
2π,

where ζ(K) is as in Chapter 25. For this result and a
similar bound for the sector 1

2π ≤ ph z ≤ π see Boyd
(1994).

For further information see Olver (1997b, pp. 293–
295), and for other error bounds see Whittaker and Wat-
son (1927, §12.33), Spira (1971), and Schäfke and Fin-
sterer (1990).

For re-expansions of the remainder terms in (5.11.1)
and (5.11.3) in series of incomplete gamma functions
with exponential improvement (§2.11(iii)) in the asymp-
totic expansions, see Berry (1991), Boyd (1994), and
Paris and Kaminski (2001, §6.4).

5.11(iii) Ratios

In this subsection a, b, and c are real or complex con-
stants.

If z →∞ in the sector |ph z| ≤ π − δ (< π), then

5.11.12
Γ(z + a)
Γ(z + b)

∼ za−b,

5.11.13
Γ(z + a)
Γ(z + b)

∼ za−b
∞∑
k=0

Gk(a, b)
zk

.

Also, with the added condition <(b− a) > 0,

5.11.14

Γ(z + a)
Γ(z + b)

∼
(
z +

a+ b− 1
2

)a−b ∞∑
k=0

Hk(a, b)(
z + 1

2 (a+ b− 1)
)2k .

Here

5.11.15

G0(a, b) = 1, G1(a, b) = 1
2 (a− b)(a+ b− 1),

G2(a, b) =
1
12

(
a− b

2

)
(3(a+ b− 1)2 − (a− b+ 1)),

5.11.16

H0(a, b) = 1, H1(a, b) = − 1
12

(
a− b

2

)
(a− b+ 1),

H2(a, b) =
1

240

(
a− b

4

)
(2(a− b+ 1) + 5(a− b+ 1)2).

In terms of generalized Bernoulli polynomials B(`)
n (x)

(§24.16(i)), we have for k = 0, 1, . . . ,

5.11.17 Gk(a, b) =
(
a− b
k

)
B

(a−b+1)
k (a),

5.11.18 Hk(a, b) =
(
a− b

2k

)
B

(a−b+1)
2k

(
a− b+ 1

2

)
.

Lastly, and again if z → ∞ in the sector |ph z| ≤
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π − δ (< π), then
5.11.19

Γ(z + a) Γ(z + b)
Γ(z + c)

∼
∞∑
k=0

(−1)k
(c− a)k(c− b)k

k!
Γ(a+ b− c+ z − k).

For the error term in (5.11.19) in the case z = x (> 0)
and c = 1, see Olver (1995).

5.12 Beta Function

In this section all fractional powers have their princi-
pal values, except where noted otherwise. In (5.12.1)–
(5.12.4) it is assumed <a > 0 and <b > 0.

Euler’s Beta Integral

5.12.1 B(a, b) =
∫ 1

0

ta−1(1− t)b−1 dt =
Γ(a) Γ(b)
Γ(a+ b)

.

5.12.2

∫ π/2

0

sin2a−1 θ cos2b−1 θ dθ = 1
2 B(a, b).

5.12.3

∫ ∞
0

ta−1 dt

(1 + t)a+b
= B(a, b).

5.12.4∫ 1

0

ta−1(1− t)b−1

(t+ z)a+b
dt= B(a, b)(1+z)−az−b, |ph z| < π.

5.12.5∫ π/2

0

(cos t)a−1 cos(bt) dt

=
π

2a
1

aB
(

1
2 (a+ b+ 1), 1

2 (a− b+ 1)
) , <a > 0.

5.12.6

∫ π

0

(sin t)a−1eibt dt

=
π

2a−1

eiπb/2

aB
(

1
2 (a+ b+ 1), 1

2 (a− b+ 1)
) ,

<a > 0.
5.12.7∫ ∞

0

cosh(2bt)
(cosh t)2a

dt = 4a−1 B(a+ b, a− b), <a > |<b|.

5.12.8

1
2π

∫ ∞
−∞

dt

(w + it)a(z − it)b
=

(w + z)1−a−b

(a+ b− 1) B(a, b)
,

<(a+ b) > 1, <w > 0, <z > 0.
In (5.12.8) the fractional powers have their principal
values when w > 0 and z > 0, and are continued via
continuity.

5.12.9

1
2πi

∫ c+∞i

c−∞i
t−a(1− t)−1−b dt =

1
bB(a, b)

,

0 < c < 1, <(a+ b) > 0.
5.12.10

1
2πi

∫ (1+)

0

ta−1(t− 1)b−1 dt =
sin(πb)
π

B(a, b), <a > 0,

with the contour as shown in Figure 5.12.1.

10

Figure 5.12.1: t-plane. Contour for first loop integral for
the beta function.

In (5.12.11) and (5.12.12) the fractional powers are
continuous on the integration paths and take their prin-
cipal values at the beginning.

5.12.11
1

e2πia − 1

∫ (0+)

∞
ta−1(1 + t)−a−b dt = B(a, b),

when <b > 0, a is not an integer and the contour cuts
the real axis between −1 and the origin. See Figure
5.12.2.

]1 0

Figure 5.12.2: t-plane. Contour for second loop integral
for the beta function.

Pochhammer’s Integral

When a, b ∈ C

5.12.12

∫ (1+,0+,1−,0−)

P

ta−1(1− t)b−1 dt

= −4eπi(a+b) sin(πa) sin(πb) B(a, b),
where the contour starts from an arbitrary point P in
the interval (0, 1), circles 1 and then 0 in the positive
sense, circles 1 and then 0 in the negative sense, and re-
turns to P . It can always be deformed into the contour
shown in Figure 5.12.3.

Figure 5.12.3: t-plane. Contour for Pochhammer’s inte-
gral.
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5.13 Integrals

In (5.13.1) the integration path is a straight line parallel to the imaginary axis.

5.13.1
1

2πi

∫ c+i∞

c−i∞
Γ(s+ a) Γ(b− s)z−s ds =

Γ(a+ b)za

(1 + z)a+b
, <(a+ b) > 0, −<a < c < <b, |ph z| < π.

5.13.2
1

2π

∫ ∞
−∞
|Γ(a+ it)|2e(2b−π)t dt =

Γ(2a)
(2 sin b)2a

, a > 0, 0 < b < π.

Barnes’ Beta Integral

5.13.3
1

2π

∫ ∞
−∞

Γ(a+ it) Γ(b+ it) Γ(c− it) Γ(d− it) dt =
Γ(a+ c) Γ(a+ d) Γ(b+ c) Γ(b+ d)

Γ(a+ b+ c+ d)
, <a,<b,<c,<d > 0.

Ramanujan’s Beta Integral

5.13.4∫ ∞
−∞

dt

Γ(a+ t) Γ(b+ t) Γ(c− t) Γ(d− t)
=

Γ(a+ b+ c+ d− 3)
Γ(a+ c− 1) Γ(a+ d− 1) Γ(b+ c− 1) Γ(b+ d− 1)

, <(a+ b+ c+ d) > 3.

de Branges–Wilson Beta Integral

5.13.5
1

4π

∫ ∞
−∞

∏4
k =1 Γ(ak + it) Γ(ak − it)

Γ(2it) Γ(−2it)
dt =

∏
1≤j<k≤4 Γ(aj + ak)

Γ(a1 + a2 + a3 + a4)
, <(ak) > 0, k = 1, 2, 3, 4.

For compendia of integrals of gamma functions see Apelblat (1983, pp. 124–127 and 129–130), Erdélyi et al.
(1954a,b), Gradshteyn and Ryzhik (2000, pp. 644–652), Oberhettinger (1974, pp. 191–204), Oberhettinger and Badii
(1973, pp. 307–316), Prudnikov et al. (1986b, pp. 57–64), Prudnikov et al. (1992a, pp. 127–130), and Prudnikov et al.
(1992b, pp. 113–123).

5.14 Multidimensional Integrals

Let Vn be the simplex: t1 + t2 + · · ·+ tn ≤ 1, tk ≥ 0. Then for <zk > 0, k = 1, 2, . . . , n+ 1,

5.14.1

∫
Vn

tz1−1
1 tz2−1

2 · · · tzn−1
n dt1 dt2 · · · dtn =

Γ(z1) Γ(z2) · · ·Γ(zn)
Γ(1 + z1 + z2 + · · ·+ zn)

,

5.14.2

∫
Vn

(
1−

n∑
k=1

tk

)zn+1−1 n∏
k =1

tzk−1
k dtk =

Γ(z1) Γ(z2) · · ·Γ(zn+1)
Γ(z1 + z2 + · · ·+ zn+1)

.

Selberg-type Integrals

Let
5.14.3 ∆(t1, t2, . . . , tn) =

∏
1≤j<k≤n

(tj − tk).

Then

5.14.4

∫
[0,1]n

t1t2 · · · tm|∆(t1, . . . , tn)|2c
n∏

k =1

ta−1
k (1− tk)b−1 dtk =

1
(Γ(1 + c))n

m∏
k=1

a+ (n− k)c
a+ b+ (2n− k − 1)c

×
n∏
k=1

Γ(a+ (n− k)c) Γ(b+ (n− k)c) Γ(1 + kc)
Γ(a+ b+ (2n− k − 1)c)

,

provided that <a, <b > 0, <c > −min(1/n,<a/(n− 1),<b/(n− 1)).
Secondly,

5.14.5

∫
[0,∞)n

t1t2 · · · tm|∆(t1, . . . , tn)|2c
n∏
k=1

ta−1
k e−tk dtk =

m∏
k=1

(a+ (n− k)c)
∏n
k=1 Γ(a+ (n− k)c) Γ(1 + kc)

(Γ(1 + c))n
,

when <a > 0, <c > −min(1/n,<a/(n− 1)).
Thirdly,

5.14.6
1

(2π)n/2

∫
(−∞,∞)n

|∆(t1, . . . , tn)|2c
n∏
k=1

exp
(
− 1

2 t
2
k

)
dtk =

∏n
k=1 Γ(1 + kc)
(Γ(1 + c))n

, <c > −1/n.
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Dyson’s Integral

5.14.7
1

(2π)n

∫
[−π,π]n

∏
1≤j<k≤n

|eiθj − eiθk |2b dθ1 · · · dθn =
Γ(1 + bn)

(Γ(1 + b))n
, <b > −1/n.

5.15 Polygamma Functions

The functions ψ(n)(z), n = 1, 2, . . . , are called the
polygamma functions. In particular, ψ′(z) is the
trigamma function; ψ′′, ψ(3), ψ(4) are the tetra-, penta-,
and hexagamma functions respectively. Most properties
of these functions follow straightforwardly by differen-
tiation of properties of the psi function. This includes
asymptotic expansions: compare §§2.1(ii)–2.1(iii).

In (5.15.2)–(5.15.7) n,m = 1, 2, 3, . . . , and for
ζ(n+ 1) see §25.6(i).

5.15.1 ψ′(z) =
∞∑
k=0

1
(k + z)2

, z 6= 0,−1,−2, . . . ,

5.15.2 ψ(n)(1) = (−1)n+1n! ζ(n+ 1),

5.15.3 ψ(n)
(

1
2

)
= (−1)n+1n!(2n+1 − 1) ζ(n+ 1),

5.15.4 ψ′
(
n− 1

2

)
= 1

2π
2 − 4

n−1∑
k=1

1
(2k − 1)2

,

5.15.5 ψ(n)(z + 1) = ψ(n)(z) + (−1)nn!z−n−1,

5.15.6

ψ(n)(1− z) + (−1)n−1 ψ(n)(z) = (−1)nπ
dn

dzn
cot(πz),

5.15.7 ψ(n)(mz) =
1

mn+1

m−1∑
k=0

ψ(n)

(
z +

k

m

)
.

As z →∞ in |ph z| ≤ π − δ (< π)

5.15.8 ψ′(z) ∼ 1
z

+
1

2z2
+
∞∑
k=1

B2k

z2k+1
.

For B2k see §24.2(i).
For continued fractions for ψ′(z) and ψ′′(z) see Cuyt

et al. (2008, pp. 231–238).

5.16 Sums

5.16.1

∞∑
k=1

(−1)k ψ′(k) = −π
2

8
,

5.16.2

∞∑
k=1

1
k
ψ′(k + 1) = ζ(3) = −1

2
ψ′′(1).

For further sums involving the psi function see
Hansen (1975, pp. 360–367). For sums of gamma func-
tions see Andrews et al. (1999, Chapters 2 and 3) and
§§15.2(i), 16.2.

For related sums involving finite field analogs of the
gamma and beta functions (Gauss and Jacobi sums)
see Andrews et al. (1999, Chapter 1) and Terras (1999,
pp. 90, 149).

5.17 Barnes’ G-Function (Double Gamma
Function)

5.17.1 G(z + 1) = Γ(z)G(z), G(1) = 1,

5.17.2 G(n) = (n− 2)!(n− 3)! · · · 1!, n = 2, 3, . . . .

5.17.3

G(z + 1) = (2π)z/2 exp
(
− 1

2z(z + 1)− 1
2γz

2
)

×
∞∏
k=1

((
1 +

z

k

)k
exp
(
−z +

z2

2k

))
.

5.17.4

LnG(z + 1) = 1
2z ln(2π)− 1

2z(z + 1)

+ z Ln Γ(z + 1)−
∫ z

0

Ln Γ(t+ 1) dt.

In this equation (and in (5.17.5) below), the Ln’s have
their principal values on the positive real axis and are
continued via continuity, as in §4.2(i).

When z →∞ in |ph z| ≤ π − δ (< π),

5.17.5

LnG(z + 1) ∼ 1
4z

2 + z Γ(z + 1)−
(

1
2z(z + 1) + 1

12

)
Ln z

− lnA+
∞∑
k=1

B2k+2

2k(2k + 1)(2k + 2)z2k
;

see Ferreira and López (2001). This reference also pro-
vides bounds for the error term. Here B2k+2 is the
Bernoulli number (§24.2(i)), and A is Glaisher’s con-
stant, given by

5.17.6 A = eC = 1.28242 71291 00622 63687 . . . ,

where

5.17.7

C = lim
n→∞

(
n∑
k=1

k ln k −
(

1
2n

2 + 1
2n+ 1

12

)
lnn+ 1

4n
2

)

=
γ + ln(2π)

12
− ζ ′(2)

2π2
=

1
12
− ζ ′(−1),

and ζ ′ is the derivative of the zeta function (Chapter
25).

For Glaisher’s constant see also Greene and Knuth
(1982, p. 100) and §2.10(i).
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5.18 q-Gamma and Beta Functions

5.18(i) q-Factorials

5.18.1 (a; q)n =
n−1∏
k=0

(1− aqk), n = 0, 1, 2, . . . ,

5.18.2

n!q = 1(1 + q) · · · (1 + q+ · · ·+ qn−1) = (q; q)n (1− q)−n.
When |q| < 1,

5.18.3 (a; q)∞ =
∞∏
k=0

(1− aqk).

See also §17.2(i).

5.18(ii) q-Gamma Function

When 0 < q < 1,

5.18.4 Γq(z) = (q; q)∞ (1− q)1−z/ (qz; q)∞ ,

5.18.5 Γq(1) = Γq(2) = 1,

5.18.6 n!q = Γq(n+ 1),

5.18.7 Γq(z + 1) =
1− qz

1− q
Γq(z).

Also, ln Γq(x) is convex for x > 0, and the analog of the
Bohr-Mollerup theorem (§5.5(iv)) holds.

If 0 < q < r < 1, then

5.18.8 Γq(x) < Γr(x),

when 0 < x < 1 or when x > 2, and

5.18.9 Γq(x) > Γr(x),

when 1 < x < 2.

5.18.10 lim
q →1−

Γq(z) = Γ(z).

For generalized asymptotic expansions of ln Γq(z) as
|z| → ∞ see Olde Daalhuis (1994) and Moak (1984).

5.18(iii) q-Beta Function

5.18.11 Bq(a, b) =
Γq(a) Γq(b)
Γq(a+ b)

.

5.18.12
Bq(a, b) =

∫ 1

0

ta−1 (tq; q)∞
(tqb; q)∞

dqt,

0 < q < 1, <a > 0, <b > 0.

For q-integrals see §17.2(v).

Applications

5.19 Mathematical Applications

5.19(i) Summation of Rational Functions

As shown in Temme (1996a, §3.4), the results given in
§5.7(ii) can be used to sum infinite series of rational
functions.

Example

5.19.1 S =
∞∑
k=0

ak, ak =
k

(3k + 2)(2k + 1)(k + 1)
.

By decomposition into partial fractions (§1.2(iii))

5.19.2

ak =
2

k + 2
3

− 1
k + 1

2

− 1
k + 1

=
(

1
k + 1

− 1
k + 1

2

)
− 2

(
1

k + 1
− 1
k + 2

3

)
.

Hence from (5.7.6), (5.4.13), and (5.4.19)

5.19.3 S = ψ
(

1
2

)
− 2ψ

(
2
3

)
− γ = 3 ln 3− 2 ln 2− 1

3π
√

3.

5.19(ii) Mellin–Barnes Integrals

Many special functions f(z) can be represented as a
Mellin–Barnes integral, that is, an integral of a product
of gamma functions, reciprocals of gamma functions,
and a power of z, the integration contour being doubly-
infinite and eventually parallel to the imaginary axis at
both ends. The left-hand side of (5.13.1) is a typical
example. By translating the contour parallel to itself
and summing the residues of the integrand, asymptotic
expansions of f(z) for large |z|, or small |z|, can be ob-
tained complete with an integral representation of the
error term. For further information and examples see
§2.5 and Paris and Kaminski (2001, Chapters 5, 6, and
8).

5.19(iii) n-Dimensional Sphere

The volume V and surface area S of the n-dimensional
sphere of radius r are given by

5.19.4 V =
π

1
2nrn

Γ( 1
2n+ 1)

, S =
2π

1
2nrn−1

Γ( 1
2n)

=
n

r
V.

5.20 Physical Applications

Rutherford Scattering

In nonrelativistic quantum mechanics, collisions be-
tween two charged particles are described with the aid of
the Coulomb phase shift ph Γ(`+ 1 + iη); see (33.2.10)
and Clark (1979).
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Solvable Models of Statistical Mechanics

Suppose the potential energy of a gas of n point charges
with positions x1, x2, . . . , xn and free to move on the
infinite line −∞ < x <∞, is given by

5.20.1 W =
1
2

n∑
`=1

x2
` −

∑
1≤`<j≤n

ln |x` − xj |.

The probability density of the positions when the gas is
in thermodynamic equilibrium is:

5.20.2 P (x1, . . . , xn) = C exp(−W/(kT )),

where k is the Boltzmann constant, T the temperature
and C a constant. Then the partition function (with
β = 1/(kT )) is given by

5.20.3

ψn(β) =
∫

Rn
e−βW dx

= (2π)n/2β−(n/2)−(βn(n−1)/4)

× (Γ
(
1 + 1

2β
)
)−n

n∏
j=1

Γ
(
1 + 1

2jβ
)
.

See (5.14.6).
For n charges free to move on a circular wire of ra-

dius 1,
5.20.4 W = −

∑
1≤`<j≤n

ln |eiθ` − eiθj |,

and the partition function is given by

5.20.5
ψn(β) =

1
(2π)n

∫
[−π,π]n

e−βW dθ1 · · · dθn

= Γ
(
1 + 1

2nβ
)
(Γ
(
1 + 1

2β
)
)−n.

See (5.14.7).
For further information see Mehta (2004).

Elementary Particles

Veneziano (1968) identifies relationships between par-
ticle scattering amplitudes described by the beta func-
tion, an important early development in string theory.
Carlitz (1972) describes the partition function of dense
hadronic matter in terms of a gamma function.

Computation

5.21 Methods of Computation

An effective way of computing Γ(z) in the right half-
plane is backward recurrence, beginning with a value
generated from the asymptotic expansion (5.11.3). Or
we can use forward recurrence, with an initial value ob-
tained e.g. from (5.7.3). For the left half-plane we can
continue the backward recurrence or make use of the
reflection formula (5.5.3).

Similarly for ln Γ(z), ψ(z), and the polygamma func-
tions.

Another approach is to apply numerical quadrature
(§3.5) to the integral (5.9.2), using paths of steepest
descent for the contour. See Schmelzer and Trefethen
(2007).

For a comprehensive survey see van der Laan and
Temme (1984, Chapter III). See also Borwein and
Zucker (1992).

5.22 Tables

5.22(i) Introduction

For early tables for both real and complex variables see
Fletcher et al. (1962), Lebedev and Fedorova (1960),
and Luke (1975, p. 21).

5.22(ii) Real Variables

Abramowitz and Stegun (1964, Chapter 6) tabulates
Γ(x), ln Γ(x), ψ(x), and ψ′(x) for x = 1(.005)2 to
10D; ψ′′(x) and ψ(3)(x) for x = 1(.01)2 to 10D; Γ(n),
1/Γ(n) , Γ

(
n+ 1

2

)
, ψ(n), log10 Γ(n), log10 Γ

(
n+ 1

3

)
,

log10 Γ
(
n+ 1

2

)
, and log10 Γ

(
n+ 2

3

)
for n = 1(1)101

to 8–11S; Γ(n+ 1) for n = 100(100)1000 to 20S.
Zhang and Jin (1996, pp. 67–69 and 72) tabulates
Γ(x), 1/Γ(x) , Γ(−x), ln Γ(x), ψ(x), ψ(−x), ψ′(x),
and ψ′(−x) for x = 0(.1)5 to 8D or 8S; Γ(n+ 1) for
n = 0(1)100(10)250(50)500(100)3000 to 51S.

5.22(iii) Complex Variables

Abramov (1960) tabulates ln Γ(x+ iy) for x = 1 (.01)
2, y = 0 (.01) 4 to 6D. Abramowitz and Stegun (1964,
Chapter 6) tabulates ln Γ(x+ iy) for x = 1 (.1) 2,
y = 0 (.1) 10 to 12D. This reference also includes
ψ(x+ iy) for the same arguments to 5D. Zhang and Jin
(1996, pp. 70, 71, and 73) tabulates the real and imagi-
nary parts of Γ(x+ iy), ln Γ(x+ iy), and ψ(x+ iy) for
x = 0.5, 1, 5, 10, y = 0(.5)10 to 8S.

5.23 Approximations

5.23(i) Rational Approximations

Cody and Hillstrom (1967) gives minimax rational ap-
proximations for ln Γ(x) for the ranges 0.5 ≤ x ≤ 1.5,
1.5 ≤ x ≤ 4, 4 ≤ x ≤ 12; precision is variable.
Hart et al. (1968) gives minimax polynomial and ratio-
nal approximations to Γ(x) and ln Γ(x) in the intervals
0 ≤ x ≤ 1, 8 ≤ x ≤ 1000, 12 ≤ x ≤ 1000; precision
is variable. Cody et al. (1973) gives minimax rational
approximations for ψ(x) for the ranges 0.5 ≤ x ≤ 3 and
3 ≤ x <∞; precision is variable.

For additional approximations see Hart et al. (1968,
Appendix B), Luke (1975, pp. 22–23), and Weniger
(2003).
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5.23(ii) Expansions in Chebyshev Series

Luke (1969b) gives the coefficients to 20D for the
Chebyshev-series expansions of Γ(1 + x), 1/Γ(1 + x),
Γ(x+ 3), ln Γ(x+ 3), ψ(x+ 3), and the first six deriva-
tives of ψ(x+ 3) for 0 ≤ x ≤ 1. These coefficients are
reproduced in Luke (1975). Clenshaw (1962) also gives
20D Chebyshev-series coefficients for Γ(1 + x) and its
reciprocal for 0 ≤ x ≤ 1. See Luke (1975, pp. 22–23)
for additional expansions.

5.23(iii) Approximations in the Complex Plane

See Schmelzer and Trefethen (2007) for a survey of ra-
tional approximations to various scaled versions of Γ(z).

For rational approximations to ψ(z) + γ see Luke
(1975, pp. 13–16).

5.24 Software

See http://dlmf.nist.gov/5.24.
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Notation

6.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable.
z complex variable.
n nonnegative integer.
δ arbitrary small positive constant.
γ Euler’s constant (§5.2(ii)).

Unless otherwise noted, primes indicate derivatives
with respect to the argument.

The main functions treated in this chapter are the
exponential integrals Ei(x), E1(z), and Ein(z); the log-
arithmic integral li(x); the sine integrals Si(z) and si(z);
the cosine integrals Ci(z) and Cin(z).

Properties

6.2 Definitions and Interrelations

6.2(i) Exponential and Logarithmic Integrals

The principal value of the exponential integral E1(z) is
defined by

6.2.1 E1(z) =
∫ ∞
z

e−t

t
dt, z 6= 0,

where the path does not cross the negative real axis or
pass through the origin. As in the case of the logarithm
(§4.2(i)) there is a cut along the interval (−∞, 0] and
the principal value is two-valued on (−∞, 0).

Unless indicated otherwise, it is assumed throughout
this Handbook that E1(z) assumes its principal value.
This is also true of the functions Ci(z) and Chi(z) de-
fined in §6.2(ii).

6.2.2 E1(z) = e−z
∫ ∞

0

e−t

t+ z
dt, |ph z| < π.

6.2.3 Ein(z) =
∫ z

0

1− e−t

t
dt.

Ein(z) is sometimes called the complementary exponen-
tial integral. It is entire.

6.2.4 E1(z) = Ein(z)− ln z − γ.
In the next three equations x > 0.

6.2.5 Ei(x) = −
∫ ∞
−x

e−t

t
dt =

∫ x

−∞

et

t
dt,

6.2.6 Ei(−x) = −
∫ ∞
x

e−t

t
dt = −E1(x),

6.2.7 Ei(±x) = −Ein(∓x) + lnx+ γ.

(Ei(x) is undefined when x = 0, or when x is not real.)
The logarithmic integral is defined by

6.2.8 li(x) =
∫ x

0

dt

ln t
= Ei(lnx), x > 1.

The generalized exponential integral Ep(z), p ∈ C,
is treated in Chapter 8.

6.2(ii) Sine and Cosine Integrals

6.2.9 Si(z) =
∫ z

0

sin t
t

dt.

Si(z) is an odd entire function.

6.2.10 si(z) = −
∫ ∞
z

sin t
t

dt = Si(z)− 1
2π.

6.2.11 Ci(z) = −
∫ ∞
z

cos t
t

dt,

where the path does not cross the negative real axis or
pass through the origin. This is the principal value;
compare (6.2.1).

6.2.12 Cin(z) =
∫ z

0

1− cos t
t

dt.

Cin(z) is an even entire function.

6.2.13 Ci(z) = −Cin(z) + ln z + γ.

Values at Infinity

6.2.14 lim
x→∞

Si(x) = 1
2π, lim

x→∞
Ci(x) = 0.

Hyperbolic Analogs of the Sine and Cosine Integrals

6.2.15 Shi(z) =
∫ z

0

sinh t
t

dt,

6.2.16 Chi(z) = γ + ln z +
∫ z

0

cosh t− 1
t

dt.

6.2(iii) Auxiliary Functions

6.2.17 f(z) = Ci(z) sin z − si(z) cos z,

6.2.18 g(z) = −Ci(z) cos z − si(z) sin z.

6.2.19 Si(z) = 1
2π − f(z) cos z − g(z) sin z,

6.2.20 Ci(z) = f(z) sin z − g(z) cos z.

6.2.21
df(z)
dz

= − g(z),
dg(z)
dz

= f(z)− 1
z
.
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6.3 Graphics

6.3(i) Real Variable

Figure 6.3.1: The exponential integrals E1(x) and Ei(x),
0 < x ≤ 2.

Figure 6.3.2: The sine and cosine integrals Si(x),Ci(x),
0 ≤ x ≤ 15.

For a graph of li(x) see Figure 6.16.2.

6.3(ii) Complex Variable

Figure 6.3.3: |E1(x+ iy)|, −4 ≤ x ≤ 4, −4 ≤ y ≤ 4.
Principal value. There is a cut along the negative real
axis. Also, |E1(z)| → ∞ logarithmically as z → 0.

6.4 Analytic Continuation

Analytic continuation of the principal value of E1(z)
yields a multi-valued function with branch points at
z = 0 and z = ∞. The general value of E1(z) is given
by

6.4.1 E1(z) = Ein(z)− Ln z − γ;
compare (6.2.4) and (4.2.6). Thus

6.4.2 E1

(
ze2mπi

)
= E1(z)− 2mπi, m ∈ Z,

and
6.4.3

E1

(
ze±πi

)
= Ein(−z)− ln z − γ ∓ πi, |ph z| ≤ π.

The general values of the other functions are defined
in a similar manner, and

6.4.4 Ci
(
ze±πi

)
= ±πi+ Ci(z),

6.4.5 Chi
(
ze±πi

)
= ±πi+ Chi(z),

6.4.6 f
(
ze±πi

)
= πe∓iz − f(z),

6.4.7 g
(
ze±πi

)
= ∓πie∓iz + g(z).

Unless indicated otherwise, in the rest of this chap-
ter and elsewhere in this Handbook the functions E1(z),
Ci(z), Chi(z), f(z), and g(z) assume their principal val-
ues, that is, the branches that are real on the positive
real axis and two-valued on the negative real axis.

6.5 Further Interrelations

When x > 0,

6.5.1 E1(−x± i0) = −Ei(x)∓ iπ,

6.5.2 Ei(x) = − 1
2 (E1(−x+ i0) + E1(−x− i0)),

6.5.3 1
2 (Ei(x) + E1(x)) = Shi(x) = −iSi(ix),

6.5.4 1
2 (Ei(x)− E1(x)) = Chi(x) = Ci(ix)− 1

2πi.

When |ph z| < 1
2π,

6.5.5 Si(z) = 1
2 i(E1(−iz)− E1(iz)) + 1

2π,

6.5.6 Ci(z) = − 1
2 (E1(iz) + E1(−iz)),

6.5.7 g(z)± i f(z) = E1(∓iz)e∓iz.

6.6 Power Series

6.6.1 Ei(x) = γ + lnx+
∞∑
n=1

xn

n!n
, x > 0.

6.6.2 E1(z) = −γ − ln z −
∞∑
n=1

(−1)nzn

n!n
.

6.6.3 E1(z) = − ln z + e−z
∞∑
n=0

zn

n!
ψ(n+ 1),
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where ψ denotes the logarithmic derivative of the
gamma function (§5.2(i)).

6.6.4 Ein(z) =
∞∑
n=1

(−1)n−1zn

n!n
,

6.6.5 Si(z) =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!(2n+ 1)
,

6.6.6 Ci(z) = γ + ln z +
∞∑
n=1

(−1)nz2n

(2n)!(2n)
.

The series in this section converge for all finite values of
x and |z|.

6.7 Integral Representations

6.7(i) Exponential Integrals

6.7.1∫ ∞
0

e−at

t+ b
dt=

∫ ∞
0

eiat

t+ ib
dt= eabE1(ab), a > 0, b > 0,

6.7.2
ex
∫ α

0

e−xt

1− t
dt = Ei(x)− Ei((1− α)x),

0 ≤ α < 1, x > 0.

6.7.3∫ ∞
x

eit

a2 + t2
dt=

i

2a
(
eaE1(a− ix)−e−aE1(−a− ix)

)
,

a > 0, x > 0,

6.7.4∫ ∞
x

teit

a2 + t2
dt = 1

2

(
eaE1(a− ix) + e−aE1(−a− ix)

)
,

a > 0, x > 0.

6.7.5

∫ ∞
x

e−t

a2 + t2
dt = − 1

2ai
(
eiaE1(x+ ia)

− e−iaE1(x− ia)
)

,
a > 0, x ∈ R,

6.7.6∫ ∞
x

te−t

a2 + t2
dt = 1

2

(
eiaE1(x+ ia) + e−iaE1(x− ia)

)
,

a > 0, x ∈ R.

6.7.7

∫ 1

0

e−at sin(bt)
t

dt = =Ein(a+ ib), a, b ∈ R,

6.7.8

∫ 1

0

e−at(1− cos(bt))
t

dt = <Ein(a+ ib)− Ein(a),

a, b ∈ R.
Many integrals with exponentials and rational func-

tions, for example, integrals of the type
∫
ezR(z) dz,

where R(z) is an arbitrary rational function, can be
represented in finite form in terms of the function E1(z)
and elementary functions; see Lebedev (1965, p. 42).

6.7(ii) Sine and Cosine Integrals

When z ∈ C

6.7.9 si(z) = −
∫ π/2

0

e−z cos t cos(z sin t) dt,

6.7.10 Ein(z)− Cin(z) =
∫ π/2

0

e−z cos t sin(z sin t) dt,

6.7.11

∫ 1

0

(1− e−at) cos(bt)
t

dt=<Ein(a+ ib)−Cin(b),

a, b ∈ R.

6.7(iii) Auxiliary Functions

6.7.12 g(z) + i f(z) = e−iz
∫ ∞
z

eit

t
dt, |ph z| ≤ π.

The path of integration does not cross the negative real
axis or pass through the origin.

6.7.13 f(z) =
∫ ∞

0

sin t
t+ z

dt =
∫ ∞

0

e−zt

t2 + 1
dt,

6.7.14 g(z) =
∫ ∞

0

cos t
t+ z

dt =
∫ ∞

0

te−zt

t2 + 1
dt.

The first integrals on the right-hand sides apply when
|ph z| < π; the second ones when <z ≥ 0 and (in the
case of (6.7.14)) z 6= 0.

When |ph z| < π

6.7.15 f(z) = 2
∫ ∞

0

K0

(
2
√
zt
)

cos t dt,

6.7.16 g(z) = 2
∫ ∞

0

K0

(
2
√
zt
)

sin t dt.

For K0 see §10.25(ii).

6.7(iv) Compendia

For collections of integral representations see Bierens de
Haan (1939, pp. 56–59, 72–73, 82–84, 121, 133–136, 155,
179–181, 223, 225–227, 230, 259–260, 374, 377, 397–398,
408, 416, 424, 431, 438–439, 442–444, 488, 496–500,
567–571, 585, 602, 638, 675–677), Corrington (1961),
Erdélyi et al. (1954a, vol. 1, pp. 267–270), Geller and Ng
(1969), Nielsen (1906b), Oberhettinger (1974, pp. 244–
246), Oberhettinger and Badii (1973, pp. 364–371), and
Watrasiewicz (1967).

6.8 Inequalities

In this section x > 0.

6.8.1
1
2

ln
(

1 +
2
x

)
< exE1(x) < ln

(
1 +

1
x

)
,

6.8.2
x

x+ 1
< xexE1(x) <

x+ 1
x+ 2

,

6.8.3
x(x+ 3)

x2 + 4x+ 2
< xexE1(x) <

x2 + 5x+ 2
x2 + 6x+ 6

.
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6.9 Continued Fraction

6.9.1
E1(z) =

e−z

z +
1

1 +
1
z +

2
1 +

2
z +

3
1 +

3
z+
· · · ,

|ph z| < π.

See also Cuyt et al. (2008, pp. 287–290).

6.10 Other Series Expansions

6.10(i) Inverse Factorial Series

6.10.1

E1(z) = e−z
(
c0
z

+
c1

z(z + 1)
+

2!c2
z(z + 1)(z + 2)

+
3!c3

z(z + 1)(z + 2)(z + 3)
+ · · ·

)
,

<z > 0,
where

6.10.2 c0 = 1, c1 = −1, c2 = 1
2 , c3 = − 1

3 , c4 = 1
6 ,

and

6.10.3 ck = −
k−1∑
j=0

cj
k − j

, k ≥ 1.

For a more general result (incomplete gamma func-
tion), and also for a result for the logarithmic integral,
see Nielsen (1906a, p. 283: Formula (3) is incorrect).

6.10(ii) Expansions in Series of Spherical Bessel
Functions

For the notation see §10.47(ii).

6.10.4 Si(z) = z
∞∑
n=0

(
jn
(

1
2z
))2

,

6.10.5 Cin(z) =
∞∑
n=1

an
(
jn
(

1
2z
))2

,

6.10.6
Ei(x) = γ+ln |x|+

∞∑
n=0

(−1)n(x−an)
(

i(1)
n

(
1
2x
))2

,

x 6= 0,
where

6.10.7 an = (2n+ 1) (1− (−1)n + ψ(n+ 1)− ψ(1)) ,
and ψ denotes the logarithmic derivative of the gamma
function (§5.2(i)).
6.10.8

Ein(z) = ze−z/2

(
i
(1)
0

(
1
2z
)

+
∞∑
n=1

2n+ 1
n(n+ 1)

i(1)
n

(
1
2z
))

.

For (6.10.4)–(6.10.8) and further results see Harris
(2000) and Luke (1969b, pp. 56–57). An expansion
for E1(z) can be obtained by combining (6.2.4) and
(6.10.8).

6.11 Relations to Other Functions

For the notation see §§8.2(i) and 13.2(i).

Incomplete Gamma Function

6.11.1 E1(z) = Γ(0, z).

Confluent Hypergeometric Function

6.11.2 E1(z) = e−z U(1, 1, z),

6.11.3 g(z) + i f(z) = U(1, 1,−iz).

6.12 Asymptotic Expansions

6.12(i) Exponential and Logarithmic Integrals

6.12.1
E1(z) ∼ e−z

z

(
1− 1!

z
+

2!
z2
− 3!
z3

+ · · ·
)

,

z →∞, |ph z| ≤ 3
2π − δ(<

3
2π).

When |ph z| ≤ 1
2π the remainder is bounded in magni-

tude by the first neglected term, and has the same sign
when ph z = 0. When 1

2π ≤ | ph z| < π the remainder
term is bounded in magnitude by csc(|ph z|) times the
first neglected term. For these and other error bounds
see Olver (1997b, pp. 109–112) with α = 0.

For re-expansions of the remainder term leading to
larger sectors of validity, exponential improvement, and
a smooth interpretation of the Stokes phenomenon, see
§§2.11(ii)–2.11(iv), with p = 1.
6.12.2

Ei(x) ∼ ex

x

(
1 +

1!
x

+
2!
x2

+
3!
x3

+ · · ·
)

, x→ +∞.

If the expansion is terminated at the nth term, then the
remainder term is bounded by 1 + χ(n + 1) times the
next term. For the function χ see §9.7(i).

The asymptotic expansion of li(x) as x → ∞ is ob-
tainable from (6.2.8) and (6.12.2).

6.12(ii) Sine and Cosine Integrals

The asymptotic expansions of Si(z) and Ci(z) are given
by (6.2.19), (6.2.20), together with

6.12.3 f(z) ∼ 1
z

(
1− 2!

z2
+

4!
z4
− 6!
z6

+ · · ·
)
,

6.12.4 g(z) ∼ 1
z2

(
1− 3!

z2
+

5!
z4
− 7!
z6

+ · · ·
)
,

as z →∞ in |ph z| ≤ π − δ (< π).
The remainder terms are given by

6.12.5 f(z) =
1
z

n−1∑
m=0

(−1)m
(2m)!
z2m

+R(f)
n (z),

6.12.6 g(z) =
1
z2

n−1∑
m=0

(−1)m
(2m+ 1)!
z2m

+R(g)
n (z),
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where, for n = 0, 1, 2, . . . ,

6.12.7 R(f)
n (z) = (−1)n

∫ ∞
0

e−ztt2n

t2 + 1
dt,

6.12.8 R(g)
n (z) = (−1)n

∫ ∞
0

e−ztt2n+1

t2 + 1
dt.

When |ph z| ≤ 1
4π, these remainders are bounded in

magnitude by the first neglected terms in (6.12.3) and
(6.12.4), respectively, and have the same signs as these
terms when ph z = 0. When 1

4π ≤ | ph z| < 1
2π the

remainders are bounded in magnitude by csc(2|ph z|)
times the first neglected terms.

For other phase ranges use (6.4.6) and (6.4.7).
For exponentially-improved asymptotic expansions, use
(6.5.5), (6.5.6), and §6.12(i).

6.13 Zeros

The function Ei(x) has one real zero x0, given by
6.13.1 x0 = 0.37250 74107 81366 63446 19918 66580 . . . .
Ci(x) and si(x) each have an infinite number of pos-
itive real zeros, which are denoted by ck, sk, respec-
tively, arranged in ascending order of absolute value for
k = 0, 1, 2, . . . . Values of c1 and c2 to 30D are given by
MacLeod (1996).

As k →∞,
6.13.2

ck, sk ∼ α+
1
α
− 16

3
1
α3

+
1673
15

1
α5
− 5 07746

105
1
α7

+ · · · ,

where α = kπ for ck, and α = (k + 1
2 )π for sk.

For these results, together with the next three terms
in (6.13.2), see MacLeod (2002a). See also Riekstynš
(1991, pp. 176–177).

6.14 Integrals

6.14(i) Laplace Transforms

6.14.1

∫ ∞
0

e−atE1(t) dt =
1
a

ln(1 + a), <a > −1,

6.14.2

∫ ∞
0

e−at Ci(t) dt = − 1
2a

ln
(
1 + a2

)
, <a > 0,

6.14.3

∫ ∞
0

e−at si(t) dt = −1
a

arctan a, <a > 0.

6.14(ii) Other Integrals

6.14.4

∫ ∞
0

E2
1(t) dt = 2 ln 2,

6.14.5

∫ ∞
0

cos tCi(t) dt =
∫ ∞

0

sin t si(t) dt = − 1
4π,

6.14.6

∫ ∞
0

Ci2(t) dt =
∫ ∞

0

si2(t) dt = 1
2π,

6.14.7

∫ ∞
0

Ci(t) si(t) dt = ln 2.

6.14(iii) Compendia

For collections of integrals, see Apelblat (1983, pp. 110–
123), Bierens de Haan (1939, pp. 373–374, 409, 479,
571–572, 637, 664–673, 680–682, 685–697), Erdélyi et al.
(1954a, vol. 1, pp. 40–42, 96–98, 177–178, 325), Geller
and Ng (1969), Gradshteyn and Ryzhik (2000, §§5.2–5.3
and 6.2–6.27), Marichev (1983, pp. 182–184), Nielsen
(1906b), Oberhettinger (1974, pp. 139–141), Oberhet-
tinger (1990, pp. 53–55 and 158–160), Oberhettinger
and Badii (1973, pp. 172–179), Prudnikov et al. (1986b,
vol. 2, pp. 24–29 and 64–92), Prudnikov et al. (1992a,
§§3.4–3.6), Prudnikov et al. (1992b, §§3.4–3.6), and Wa-
trasiewicz (1967).

6.15 Sums

6.15.1

∞∑
n=1

Ci(πn) = 1
2 (ln 2− γ),

6.15.2

∞∑
n=1

si(πn)
n

= 1
2π(lnπ − 1),

6.15.3

∞∑
n=1

(−1)n Ci(2πn) = 1− ln 2− 1
2γ,

6.15.4

∞∑
n=1

(−1)n
si(2πn)
n

= π( 3
2 ln 2− 1).

For further sums see Fempl (1960), Hansen (1975,
pp. 423–424), Harris (2000), Prudnikov et al. (1986b,
vol. 2, pp. 649–650), and Slavić (1974).

Applications

6.16 Mathematical Applications

6.16(i) The Gibbs Phenomenon

Consider the Fourier series

6.16.1

sinx+ 1
3 sin(3x) + 1

5 sin(5x) + · · ·

=


1
4π, 0 < x < π,

0, x = 0,
− 1

4π, −π < x < 0.

The nth partial sum is given by

6.16.2
Sn(x) =

n−1∑
k=0

sin((2k + 1)x)
2k + 1

=
1
2

∫ x

0

sin(2nt)
sin t

dt

= 1
2 Si(2nx) +Rn(x),
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where

6.16.3 Rn(x) =
1
2

∫ x

0

(
1

sin t
− 1
t

)
sin(2nt) dt.

By integration by parts

6.16.4 Rn(x) = O
(
n−1

)
, n→∞,

uniformly for x ∈ [−π, π]. Hence, if x is fixed and
n → ∞, then Sn(x) → 1

4π, 0, or − 1
4π according as

0 < x < π, x = 0, or −π < x < 0; compare (6.2.14).

These limits are not approached uniformly, however.
The first maximum of 1

2 Si(x) for positive x occurs at
x = π and equals (1.1789 . . . ) × 1

4π; compare Figure
6.3.2. Hence if x = π/(2n) and n → ∞, then the lim-
iting value of Sn(x) overshoots 1

4π by approximately
18%. Similarly if x = π/n, then the limiting value of
Sn(x) undershoots 1

4π by approximately 10%, and so
on. Compare Figure 6.16.1.

This nonuniformity of convergence is an illustration
of the Gibbs phenomenon. It occurs with Fourier-series
expansions of all piecewise continuous functions. See
Carslaw (1930) for additional graphs and information.

Figure 6.16.1: Graph of Sn(x), n = 250, −0.1 ≤ x ≤ 0.1,
illustrating the Gibbs phenomenon.

6.16(ii) Number-Theoretic Significance of li(x)

If we assume Riemann’s hypothesis that all nonreal ze-
ros of ζ(s) have real part of 1

2 (§25.10(i)), then

6.16.5 li(x)− π(x) = O
(√
x lnx

)
, x→∞,

where π(x) is the number of primes less than or equal
to x. Compare §27.12 and Figure 6.16.2. See also Bays
and Hudson (2000).

Figure 6.16.2: The logarithmic integral li(x), together
with vertical bars indicating the value of π(x) for x =
10, 20, . . . , 1000.

6.17 Physical Applications

Geller and Ng (1969) cites work with applications from
diffusion theory, transport problems, the study of the
radiative equilibrium of stellar atmospheres, and the
evaluation of exchange integrals occurring in quantum
mechanics. For applications in astrophysics, see also van
de Hulst (1980). Lebedev (1965) gives an application to
electromagnetic theory (radiation of a linear half-wave
oscillator), in which sine and cosine integrals are used.

Computation

6.18 Methods of Computation

6.18(i) Main Functions

For small or moderate values of x and |z|, the expan-
sion in power series (§6.6) or in series of spherical Bessel
functions (§6.10(ii)) can be used. For large x or |z| these
series suffer from slow convergence or cancellation (or
both). However, this problem is less severe for the se-
ries of spherical Bessel functions because of their more
rapid rate of convergence, and also (except in the case
of (6.10.6)) absence of cancellation when z = x (> 0).

For large x and |z|, expansions in inverse factorial
series (§6.10(i)) or asymptotic expansions (§6.12) are
available. The attainable accuracy of the asymptotic
expansions can be increased considerably by exponen-
tial improvement. Also, other ranges of ph z can be
covered by use of the continuation formulas of §6.4.

Quadrature of the integral representations is another
effective method. For example, the Gauss-Laguerre for-
mula (§3.5(v)) can be applied to (6.2.2); see Todd (1954)
and Tseng and Lee (1998). For an application of the
Gauss-Legendre formula (§3.5(v)) see Tooper and Mark
(1968).
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Lastly, the continued fraction (6.9.1) can be used if
|z| is bounded away from the origin. Convergence be-
comes slow when z is near the negative real axis, how-
ever.

6.18(ii) Auxiliary Functions

Power series, asymptotic expansions, and quadrature
can also be used to compute the functions f(z) and g(z).
In addition, Acton (1974) developed a recurrence pro-
cedure, as follows. For n = 0, 1, 2, . . . , define

6.18.1

An =
∫ ∞

0

te−zt

1 + t2

(
t2

1 + t2

)n
dt,

Bn =
∫ ∞

0

e−zt

1 + t2

(
t2

1 + t2

)n
dt,

Cn =
∫ ∞

0

e−zt
(

t2

1 + t2

)n
dt.

Then f(z) = B0, g(z) = A0, and

6.18.2
An−1 = An +

z

2n
Cn, Bn−1 =

2nBn + zAn−1

2n− 1
,

Cn−1 = Cn +Bn−1, n = 1, 2, 3, . . . .
A0, B0, and C0 can be computed by Miller’s algorithm
(§3.6(iii)), starting with initial values (AN , BN , CN ) =
(1, 0, 0), say, where N is an arbitrary large integer, and
normalizing via C0 = 1/z.

6.18(iii) Zeros

Zeros of Ci(x) and si(x) can be computed to high pre-
cision by Newton’s rule (§3.8(ii)), using values supplied
by the asymptotic expansion (6.13.2) as initial approx-
imations.

6.18(iv) Other References

For a comprehensive survey of computational methods
for the functions treated in this chapter, see van der
Laan and Temme (1984, Ch. IV).

6.19 Tables

6.19(i) Introduction

Lebedev and Fedorova (1960) and Fletcher et al. (1962)
give comprehensive indexes of mathematical tables.
This section lists relevant tables that appeared later.

6.19(ii) Real Variables

• Abramowitz and Stegun (1964, Chapter 5)
includes x−1 Si(x), −x−2 Cin(x), x−1 Ein(x),
−x−1 Ein(−x), x = 0(.01)0.5; Si(x), Ci(x),
Ei(x), E1(x), x = 0.5(.01)2; Si(x), Ci(x),
xe−x Ei(x), xexE1(x), x = 2(.1)10; x f(x),
x2 g(x), xe−x Ei(x), xexE1(x), x−1 = 0(.005)0.1;
Si(πx), Cin(πx), x = 0(.1)10. Accuracy varies but
is within the range 8S–11S.

• Zhang and Jin (1996, pp. 652, 689) includes Si(x),
Ci(x), x = 0(.5)20(2)30, 8D; Ei(x), E1(x), x =
[0, 100], 8S.

6.19(iii) Complex Variables, z = x+ iy

• Abramowitz and Stegun (1964, Chapter 5) in-
cludes the real and imaginary parts of zez E1(z),
x = −19(1)20, y = 0(1)20, 6D; ez E1(z), x =
−4(.5) − 2, y = 0(.2)1, 6D; E1(z) + ln z, x =
−2(.5)2.5, y = 0(.2)1, 6D.

• Zhang and Jin (1996, pp. 690–692) in-
cludes the real and imaginary parts of E1(z),
±x = 0.5, 1, 3, 5, 10, 15, 20, 50, 100, y =
0(.5)1(1)5(5)30, 50, 100, 8S.

6.20 Approximations

6.20(i) Approximations in Terms of Elementary
Functions

• Hastings (1955) gives several minimax polyno-
mial and rational approximations for E1(x)+lnx,
xexE1(x), and the auxiliary functions f(x) and
g(x). These are included in Abramowitz and Ste-
gun (1964, Ch. 5).

• Cody and Thacher (1968) provides minimax ra-
tional approximations for E1(x), with accuracies
up to 20S.

• Cody and Thacher (1969) provides minimax ra-
tional approximations for Ei(x), with accuracies
up to 20S.

• MacLeod (1996) provides rational approximations
for the sine and cosine integrals and for the auxil-
iary functions f and g, with accuracies up to 20S.

6.20(ii) Expansions in Chebyshev Series

• Clenshaw (1962) gives Chebyshev coefficients for
−E1(x) − ln |x| for −4 ≤ x ≤ 4 and exE1(x) for
x ≥ 4 (20D).

• Luke and Wimp (1963) covers Ei(x) for x ≤ −4
(20D), and Si(x) and Ci(x) for x ≥ 4 (20D).

• Luke (1969b, pp. 41–42) gives Chebyshev expan-
sions of Ein(ax), Si(ax), and Cin(ax) for −1 ≤
x ≤ 1, a ∈ C. The coefficients are given in terms
of series of Bessel functions.
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• Luke (1969b, pp. 321–322) covers Ein(x) and
−Ein(−x) for 0 ≤ x ≤ 8 (the Chebyshev coef-
ficients are given to 20D); E1(x) for x ≥ 5 (20D),
and Ei(x) for x ≥ 8 (15D). Coefficients for the sine
and cosine integrals are given on pp. 325–327.

• Luke (1969b, p. 25) gives a Chebyshev expansion
near infinity for the confluent hypergeometric U -
function (§13.2(i)) from which Chebyshev expan-
sions near infinity for E1(z), f(z), and g(z) follow
by using (6.11.2) and (6.11.3). Luke also includes
a recursion scheme for computing the coefficients
in the expansions of the U functions. If |ph z| < π
the scheme can be used in backward direction.

6.20(iii) Padé-Type and Rational Expansions

• Luke (1969b, pp. 402, 410, and 415–421) gives
main diagonal Padé approximations for Ein(z),
Si(z), Cin(z) (valid near the origin), and E1(z)
(valid for large |z|); approximate errors are given
for a selection of z-values.

• Luke (1969b, pp. 411–414) gives rational approx-
imations for Ein(z).

6.21 Software

See http://dlmf.nist.gov/6.21.
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Notation

7.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable.
z complex variable.
n nonnegative integer.
δ arbitrary small positive constant.
γ Euler’s constant (§5.2(ii)).

Unless otherwise noted, primes indicate derivatives
with respect to the argument.

The main functions treated in this chapter are the
error function erf z; the complementary error functions
erfc z and w(z); Dawson’s integral F (z); the Fresnel in-
tegrals F(z), C(z), and S(z); the Goodwin–Staton inte-
gral G(z); the repeated integrals of the complementary
error function inerfc(z); the Voigt functions U(x, t) and
V(x, t).

Alternative notations are P (z) = 1
2 erfc

(
−z/
√

2
)
,

Q(z) = Φ(z) = 1
2 erfc

(
z/
√

2
)
, Erf z = 1

2

√
π erf z,

Erfi z = ez
2
F (z), C1(z) = C

(√
2/πz

)
, S1(z) =

S
(√

2/πz
)

, C2(z) = C
(√

2z/π
)

, S2(z) = S
(√

2z/π
)

.

The notations P (z), Q(z), and Φ(z) are used in
mathematical statistics, where these functions are called
the normal or Gaussian probability functions.

Properties

7.2 Definitions

7.2(i) Error Functions

7.2.1 erf z =
2√
π

∫ z

0

e−t
2
dt,

7.2.2 erfc z =
2√
π

∫ ∞
z

e−t
2
dt = 1− erf z,

7.2.3

w(z) = e−z
2
(

1 +
2i√
π

∫ z

0

et
2
dt

)
= e−z

2
erfc(−iz).

erf z, erfc z, and w(z) are entire functions of z, as is
F (z) in the next subsection.

Values at Infinity

7.2.4
lim
z→∞

erf z = 1, lim
z→∞

erfc z = 0,

|ph z| ≤ 1
4π − δ(<

1
4π).

7.2(ii) Dawson’s Integral

7.2.5 F (z) = e−z
2
∫ z

0

et
2
dt.

7.2(iii) Fresnel Integrals

7.2.6 F(z) =
∫ ∞
z

e
1
2πit

2
dt,

7.2.7 C(z) =
∫ z

0

cos
(

1
2πt

2
)
dt,

7.2.8 S(z) =
∫ z

0

sin
(

1
2πt

2
)
dt,

F(z), C(z), and S(z) are entire functions of z, as are
f(z) and g(z) in the next subsection.

Values at Infinity

7.2.9 lim
x→∞

C(x) = 1
2 , lim

x→∞
S(x) = 1

2 .

7.2(iv) Auxiliary Functions

7.2.10

f(z) =
(

1
2 − S(z)

)
cos
(

1
2πz

2
)
−
(

1
2 − C(z)

)
sin
(

1
2πz

2
)
,

7.2.11

g(z) =
(

1
2 − C(z)

)
cos
(

1
2πz

2
)

+
(

1
2 − S(z)

)
sin
(

1
2πz

2
)
.

7.2(v) Goodwin–Staton Integral

7.2.12 G(z) =
∫ ∞

0

e−t
2

t+ z
dt, |ph z| < π.

7.3 Graphics

7.3(i) Real Variable

Figure 7.3.1: Complementary error functions erfcx and
erfc(10x), −3 ≤ x ≤ 3.
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Figure 7.3.2: Dawson’s integral F (x), −3.5 ≤ x ≤ 3.5.

Figure 7.3.3: Fresnel integrals C(x) and S(x), 0 ≤ x ≤ 4.

Figure 7.3.4: | F(x)|2, −8 ≤ x ≤ 8. Fresnel (1818) intro-
duced the integral F(x) in his study of the interference
pattern at the edge of a shadow. He observed that the
intensity distribution is given by |F(x)|2.

7.3(ii) Complex Variable

Figure 7.3.5: | erf(x+ iy)|, −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.
Compare §7.13(i).

Figure 7.3.6: | erfc(x+ iy)|, −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.
Compare §§7.12(i) and 7.13(ii).

7.4 Symmetry

7.4.1 erf(−z) = − erf(z),

7.4.2 erfc(−z) = 2− erfc(z),

7.4.3 w(−z) = 2e−z
2
− w(z).

7.4.4 F (−z) = −F (z).

7.4.5 C(−z) = −C(z), S(−z) = −S(z),

7.4.6 C(iz) = i C(z), S(iz) = −i S(z).

7.4.7
f(iz) = (1/

√
2)e

1
4πi−

1
2πiz

2
− i f(z),

g(iz) = (1/
√

2)e−
1
4πi−

1
2πiz

2
+ i g(z).



162 Error Functions, Dawson’s and Fresnel Integrals

7.4.8
f(−z) =

√
2 cos

(
1
4π + 1

2πz
2
)
− f(z),

g(−z) =
√

2 sin
(

1
4π + 1

2πz
2
)
− g(z).

7.5 Interrelations

7.5.1 F (z) = 1
2 i
√
π
(
e−z

2
−w(z)

)
=− 1

2 i
√
πe−z

2
erf(iz).

7.5.2 C(z) + i S(z) = 1
2 (1 + i)−F(z).

7.5.3 C(z) = 1
2 + f(z) sin

(
1
2πz

2
)
− g(z) cos

(
1
2πz

2
)
,

7.5.4 S(z) = 1
2 − f(z) cos

(
1
2πz

2
)
− g(z) sin

(
1
2πz

2
)
.

7.5.5 e−
1
2πiz

2
F(z) = g(z) + i f(z).

7.5.6 e±
1
2πiz

2
(g(z)± i f(z)) = 1

2 (1± i)− (C(z)± i S(z)).
In (7.5.8)–(7.5.10)

7.5.7 ζ = 1
2

√
π(1∓ i)z,

and either all upper signs or all lower signs are taken
throughout.

7.5.8 C(z)± i S(z) = 1
2 (1± i) erf ζ.

7.5.9 C(z)± i S(z) = 1
2 (1± i)

(
1− e± 1

2πiz
2
w(iζ)

)
.

7.5.10 g(z)± i f(z) = 1
2 (1± i)eζ

2
erfc ζ.

7.5.11 | F(x)|2 = f2(x) + g2(x), x ≥ 0,

7.5.12

| F(x)|2 = 2 + f2(−x) + g2(−x)
− 2
√

2 cos
(

1
4π + 1

2πx
2
)

f(−x)

− 2
√

2 cos
(

1
4π −

1
2πx

2
)

g(−x),
x ≤ 0.

See Figure 7.3.4.

7.5.13 G(x) =
√
π F (x)− 1

2e
−x2

Ei
(
x2
)
, x > 0.

For Ei(x) see §6.2(i).

7.6 Series Expansions

7.6(i) Power Series

7.6.1 erf z =
2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)
,

7.6.2 erf z =
2√
π
e−z

2
∞∑
n=0

2nz2n+1

1 · 3 · · · (2n+ 1)
,

7.6.3 w(z) =
∞∑
n=0

(iz)n

Γ
(

1
2n+ 1

) .
7.6.4 C(z) =

∞∑
n=0

(−1)n( 1
2π)2n

(2n)!(4n+ 1)
z4n+1,

7.6.5

C(z) = cos
(

1
2πz

2
) ∞∑
n=0

(−1)nπ2n

1 · 3 · · · (4n+ 1)
z4n+1

+ sin
(

1
2πz

2
) ∞∑
n=0

(−1)nπ2n+1

1 · 3 · · · (4n+ 3)
z4n+3.

7.6.6 S(z) =
∞∑
n=0

(−1)n( 1
2π)2n+1

(2n+ 1)!(4n+ 3)
z4n+3,

7.6.7

S(z) = − cos
(

1
2πz

2
) ∞∑
n=0

(−1)nπ2n+1

1 · 3 · · · (4n+ 3)
z4n+3

+ sin
(

1
2πz

2
) ∞∑
n=0

(−1)nπ2n

1 · 3 · · · (4n+ 1)
z4n+1.

The series in this subsection and in §7.6(ii) converge for
all finite values of |z|.

7.6(ii) Expansions in Series of Spherical Bessel
Functions

For the notation see §§10.47(ii) and 18.3.

7.6.8 erf z =
2z√
π

∞∑
n=0

(−1)n
(

i
(1)
2n

(
z2
)
− i

(1)
2n+1

(
z2
))
,

7.6.9
erf(az) =

2z√
π
e( 1

2−a
2)z2

∞∑
n=0

T2n+1(a) i(1)
n

(
1
2z

2
)
,

−1 ≤ a ≤ 1.

7.6.10 C(z) = z
∞∑
n=0

j2n
(

1
2πz

2
)
,

7.6.11 S(z) = z
∞∑
n=0

j2n+1

(
1
2πz

2
)
.

For further results see Luke (1969b, pp. 57–58).

7.7 Integral Representations

7.7(i) Error Functions and Dawson’s Integral

Integrals of the type
∫
e−z

2
R(z) dz, where R(z) is an ar-

bitrary rational function, can be written in closed form
in terms of the error functions and elementary functions.

7.7.1 erfc z =
2
π
e−z

2
∫ ∞

0

e−z
2t2

t2 + 1
dt, |ph z| ≤ 1

4π,

7.7.2

w(z) =
1
πi

∫ ∞
−∞

e−t
2
dt

t− z
=

2z
πi

∫ ∞
0

e−t
2
dt

t2 − z2
, =z > 0.

7.7.3

∫ ∞
0

e−at
2+2izt dt =

1
2

√
π

a
e−z

2/a +
i√
a
F

(
z√
a

)
,

<a > 0.

7.7.4∫ ∞
0

e−at√
t+ z2

dt =
√
π

a
eaz

2
erfc

(√
az
)
, <a > 0, <z > 0.



7.8 Inequalities 163

7.7.5

∫ 1

0

e−at
2

t2 + 1
dt =

π

4
ea
(
1− (erf

√
a)2
)

, <a > 0.

7.7.6

∫ ∞
x

e−(at2+2bt+c) dt

=
1
2

√
π

a
e(b2−ac)/a erfc

(√
ax+

b√
a

)
, <a > 0.

7.7.7∫ ∞
x

e−a
2t2−(b2/t2) dt =

√
π

4a
(
e2ab erfc(ax+ (b/x))

+ e−2ab erfc(ax− (b/x))
)

,
x > 0, |ph a| < 1

4π.

7.7.8

∫ ∞
0

e−a
2t2−(b2/t2) dt =

√
π

2a
e−2ab,

|ph a| < 1
4π, |ph b| < 1

4π.

7.7.9

∫ x

0

erf t dt = x erf x+
1√
π

(
e−x

2
− 1
)
.

7.7(ii) Auxiliary Functions

7.7.10 f(z) =
1

π
√

2

∫ ∞
0

e−πz
2t/2

√
t(t2 + 1)

dt, |ph z| ≤ 1
4π,

7.7.11 g(z) =
1

π
√

2

∫ ∞
0

√
te−πz

2t/2

t2 + 1
dt, |ph z| ≤ 1

4π,

7.7.12 g(z) + i f(z) = e−πiz
2/2

∫ ∞
z

eπit
2/2 dt.

Mellin–Barnes Integrals

7.7.13
f(z) =

(2π)−3/2

2πi

∫ c+i∞

c−i∞
ζ−s Γ(s) Γ

(
s+ 1

2

)
× Γ

(
s+ 3

4

)
Γ
(

1
4 − s

)
ds,

7.7.14
g(z) =

(2π)−3/2

2πi

∫ c+i∞

c−i∞
ζ−s Γ(s) Γ

(
s+ 1

2

)
× Γ

(
s+ 1

4

)
Γ
(

3
4 − s

)
ds.

In (7.7.13) and (7.7.14) the integration paths are
straight lines, ζ = 1

16π
2z4, and c is a constant such

that 0 < c < 1
4 in (7.7.13), and 0 < c < 3

4 in (7.7.14).

7.7.15

∫ ∞
0

e−at cos
(
t2
)
dt =

√
π

2
f
(

a√
2π

)
, <a > 0,

7.7.16

∫ ∞
0

e−at sin
(
t2
)
dt =

√
π

2
g
(

a√
2π

)
, <a > 0.

7.7(iii) Compendia

For other integral representations see Erdélyi et al.
(1954a, vol. 1, pp. 265–267, 270), Ng and Geller (1969),
Oberhettinger (1974, pp. 246–248), and Oberhettinger
and Badii (1973, pp. 371–377).

7.8 Inequalities

Let M(x) denote Mills’ ratio:

7.8.1 M(x) =

∫∞
x
e−t

2
dt

e−x2 = ex
2
∫ ∞
x

e−t
2
dt.

(Other notations are often used.) Then

7.8.2
1

x+
√
x2 + 2

< M(x) ≤ 1
x+

√
x2 + (4/π)

, x ≥ 0,

7.8.3

√
π

2
√
πx+ 2

≤ M(x) <
1

x+ 1
, x ≥ 0,

7.8.4 M(x) <
2

3x+
√
x2 + 4

, x > − 1
2

√
2,

7.8.5

x2

2x2 + 1
≤ x2(2x2 + 5)

4x4 + 12x2 + 3
≤ xM(x)

<
2x4 + 9x2 + 4

4x4 + 20x2 + 15
<

x2 + 1
2x2 + 3

,

x ≥ 0.

Next,

7.8.6

∫ x

0

eat
2
dt <

1
3ax

(
2eax

2
+ ax2 − 2

)
, a, x > 0.

7.8.7

∫ x

0

et
2
dt <

ex
2 − 1
x

, x > 0.

7.9 Continued Fractions

7.9.1

√
πez

2
erfc z =

z

z2 +

1
2

1 +
1

z2 +

3
2

1 +
2

z2 +
· · · ,

<z > 0,

7.9.2

√
πez

2
erfc z =

2z
2z2 + 1−

1 · 2
2z2 + 5−

3 · 4
2z2 + 9−

· · · ,

<z > 0,

7.9.3

w(z) =
i√
π

1
z −

1
2

z −
1
z −

3
2

z −
2
z −

· · · , =z > 0.

See also Cuyt et al. (2008, pp. 255–260, 263–267,
270–273).

7.10 Derivatives

7.10.1

dn+1erf z
dzn+1 = (−1)n

2√
π
Hn(z)e−z

2
, n = 0, 1, 2, . . . .

For the Hermite polynomial Hn(z) see §18.3.

7.10.2 w′(z) = −2z w(z) + (2i/
√
π),
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7.10.3

w(n+2)(z) + 2z w(n+1)(z) + 2(n+ 1)w(n)(z) = 0,
n = 0, 1, 2, . . . .

7.10.4
df(z)
dz

= −πz g(z),
dg(z)
dz

= πz f(z)− 1.

7.11 Relations to Other Functions

Incomplete Gamma Functions and Generalized
Exponential Integral

For the notation see §§8.2(i) and 8.19(i).

7.11.1 erf z =
1√
π
γ
(

1
2 , z

2
)
,

7.11.2 erfc z =
1√
π

Γ
(

1
2 , z

2
)
,

7.11.3 erfc z =
z√
π
E 1

2

(
z2
)
.

Confluent Hypergeometric Functions

For the notation see §13.2(i).

7.11.4 erf z =
2z√
π
M
(

1
2 ,

3
2 ,−z

2
)

=
2z√
π
e−z

2
M
(
1, 3

2 , z
2
)
,

7.11.5

erfc z =
1√
π
e−z

2
U
(

1
2 ,

1
2 , z

2
)

=
z√
π
e−z

2
U
(
1, 3

2 , z
2
)
.

7.11.6
C(z) + i S(z) = zM

(
1
2 ,

3
2 ,

1
2πiz

2
)

= zeπiz
2/2M

(
1, 3

2 ,−
1
2πiz

2
)
.

Generalized Hypergeometric Functions

For the notation see §§16.2(i) and 16.2(ii).

7.11.7 C(z) = z 1F2

(
1
4 ; 5

4 ,
1
2 ;− 1

16π
2z4
)
,

7.11.8 S(z) = 1
6πz

3
1F2

(
3
4 ; 7

4 ,
3
2 ;− 1

16π
2z4
)
.

7.12 Asymptotic Expansions

7.12(i) Complementary Error Function

As z →∞
7.12.1

erfc z ∼ e−z
2

√
πz

∞∑
m=0

(−1)m
1 · 3 · 5 · · · (2m− 1)

(2z2)m
,

erfc(−z) ∼ 2− e−z
2

√
πz

∞∑
m=0

(−1)m
1 · 3 · 5 · · · (2m− 1)

(2z2)m
,

both expansions being valid when |ph z| ≤ 3
4π − δ

(< 3
4π).
When |ph z| ≤ 1

4π the remainder terms are bounded
in magnitude by the first neglected terms, and have
the same sign as these terms when ph z = 0. When
1
4π ≤ |ph z| < 1

2π the remainder terms are bounded
in magnitude by csc(2| ph z|) times the first neglected

terms. For these and other error bounds see Olver
(1997b, pp. 109–112), with α = 1

2 and z replaced by
z2; compare (7.11.2).

For re-expansions of the remainder terms leading to
larger sectors of validity, exponential improvement, and
a smooth interpretation of the Stokes phenomenon, see
§§2.11(ii)–2.11(iv) and use (7.11.3). (Note that some of
these re-expansions themselves involve the complemen-
tary error function.)

7.12(ii) Fresnel Integrals

The asymptotic expansions of C(z) and S(z) are given
by (7.5.3), (7.5.4), and

7.12.2 f(z) ∼ 1
πz

∞∑
m=0

(−1)m
1 · 3 · 5 · · · (4m− 1)

(πz2)2m
,

7.12.3 g(z) ∼ 1
π2z3

∞∑
m=0

(−1)m
1 · 3 · 5 · · · (4m+ 1)

(πz2)2m
,

as z → ∞ in |ph z| ≤ 1
2π − δ(<

1
2π). The remainder

terms are given by

7.12.4 f(z) =
1
πz

n−1∑
m=0

(−1)m
1 · 3 · · · (4m− 1)

(πz2)2m
+R(f)

n (z),

7.12.5

g(z) =
1

π2z3

n−1∑
m=0

(−1)m
1 · 3 · · · (4m+ 1)

(πz2)2m
+R(g)

n (z),

where, for n = 0, 1, 2, . . . and |ph z| < 1
4π,

7.12.6 R(f)
n (z) =

(−1)n

π
√

2

∫ ∞
0

e−πz
2t/2t2n−(1/2)

t2 + 1
dt,

7.12.7 R(g)
n (z) =

(−1)n

π
√

2

∫ ∞
0

e−πz
2t/2t2n+(1/2)

t2 + 1
dt.

When |ph z| ≤ 1
8π, R(f)

n (z) and R
(g)
n (z) are bounded in

magnitude by the first neglected terms in (7.12.2) and
(7.12.3), respectively, and have the same signs as these
terms when ph z = 0. They are bounded by | csc(4 ph z)|
times the first neglected terms when 1

8π ≤ |ph z| < 1
4π.

For other phase ranges use (7.4.7) and (7.4.8). For
exponentially-improved expansions use (7.5.7), (7.5.10),
and §7.12(i).

7.12(iii) Goodwin–Staton Integral

See Olver (1997b, p. 115) for an expansion of G(z) with
bounds for the remainder for real and complex values of
z.
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7.13 Zeros

7.13(i) Zeros of erf z

erf z has a simple zero at z = 0, and in the first quad-
rant of C there is an infinite set of zeros zn = xn + iyn,
n = 1, 2, 3, . . . , arranged in order of increasing absolute
value. The other zeros of erf z are −zn, zn, −zn.

Table 7.13.1 gives 10D values of the first five xn and
yn. For graphical illustration see Figure 7.3.5.

Table 7.13.1: Zeros xn + iyn of erf z.

n xn yn

1 1.45061 61632 1.88094 30002

2 2.24465 92738 2.61657 51407

3 2.83974 10469 3.17562 80996

4 3.33546 07354 3.64617 43764

5 3.76900 55670 4.06069 72339

As n→∞

7.13.1
xn ∼ λ− 1

4µλ
−1 + 1

16 (1− µ+ 1
2µ

2)λ−3 − · · · ,
yn ∼ λ+ 1

4µλ
−1 + 1

16 (1− µ+ 1
2µ

2)λ−3 + · · · ,
where

7.13.2 λ =
√

(n− 1
8 )π, µ = ln

(
λ
√

2π
)
.

7.13(ii) Zeros of erfc z

In the second quadrant of C, erfc z has an infinite set of
zeros zn = xn + iyn, n = 1, 2, 3, . . . , arranged in order
of increasing absolute value. The other zeros of erfc z
are zn. The zeros of w(z) are izn and izn.

Table 7.13.2 gives 10D values of the first five xn and
yn. For graphical illustration see Figure 7.3.6.

Table 7.13.2: Zeros xn + iyn of erfc z.

n xn yn

1 −1.35481 01281 1.99146 68428

2 −2.17704 49061 2.69114 90243

3 −2.78438 76132 3.23533 08684

4 −3.28741 07894 3.69730 97025

5 −3.72594 87194 4.10610 72847

As n→∞

7.13.3
xn ∼ −λ+ 1

4µλ
−1 − 1

16 (1− µ+ 1
2µ

2)λ−3 + · · · ,
yn ∼ λ+ 1

4µλ
−1 + 1

16 (1− µ+ 1
2µ

2)λ−3 + · · · ,
where

7.13.4 λ =
√

(n− 1
8 )π, µ = ln

(
2λ
√

2π
)
.

7.13(iii) Zeros of the Fresnel Integrals

At z = 0, C(z) has a simple zero and S(z) has a triple
zero. In the first quadrant of C C(z) has an infinite set
of zeros zn = xn+ iyn, n = 1, 2, 3, . . . , arranged in order
of increasing absolute value. Similarly for S(z). Let zn
be a zero of one of the Fresnel integrals. Then −zn, zn,
−zn, izn, −izn, izn, −izn are also zeros of the same
integral.

Tables 7.13.3 and 7.13.4 give 10D values of the first
five xn and yn of C(z) and S(z), respectively.

Table 7.13.3: Complex zeros xn + iyn of C(z).

n xn yn

1 1.74366 74862 0.30573 50636

2 2.65145 95973 0.25290 39555

3 3.32035 93363 0.22395 34581

4 3.87573 44884 0.20474 74706

5 4.36106 35170 0.19066 97324

As n→∞ the xn and yn corresponding to the zeros
of C(z) satisfy

7.13.5 xn ∼ λ+
α(απ − 4)

8πλ3
+ · · · , yn ∼

α

2λ
+ · · · ,

with

7.13.6 λ =
√

4n− 1, α = (2/π) ln(πλ).

Table 7.13.4: Complex zeros xn + iyn of S(z).

n xn yn

1 2.00925 70118 0.28854 78973

2 2.83347 72325 0.24428 52408

3 3.46753 30835 0.21849 26805

4 4.00257 82433 0.20085 10251

5 4.47418 92952 0.18768 85891

As n→∞ the xn and yn corresponding to the zeros
of S(z) satisfy (7.13.5) with

7.13.7 λ = 2
√
n, α = (2/π) ln(πλ).

7.13(iv) Zeros of F(z)

In consequence of (7.5.5) and (7.5.10), zeros of F(z) are
related to zeros of erfc z. Thus if zn is a zero of erfc z
(§7.13(ii)), then (1 + i)zn/

√
π is a zero of F(z).

For an asymptotic expansion of the zeros of∫ z
0

exp
(

1
2πit

2
)
dt (= F(0) − F(z) = C(z) + i S(z)) see

Tuẑilin (1971).
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7.14 Integrals

7.14(i) Error Functions

Fourier Transform

7.14.1∫ ∞
0

e2iat erfc(bt) dt =
1

a
√
π
F
(a
b

)
+

i

2a

(
1− e−(a/b)2

)
,

a ∈ C, |ph b| < 1
4π.

When a = 0 the limit is taken.

Laplace Transforms

7.14.2

∫ ∞
0

e−at erf(bt) dt =
1
a
ea

2/(4b2) erfc
( a

2b

)
,

<a > 0, |ph b| < 1
4π,

7.14.3∫ ∞
0

e−at erf
√
bt dt =

1
a

√
b

a+ b
, <a > 0, <b > 0,

7.14.4∫ ∞
0

e(a−b)t erfc
(√

at+
√
c

t

)
dt

=
e−2(

√
ac+
√
bc)

√
b(
√
a+
√
b)

, |ph a| < 1
2π, <b > 0, <c ≥ 0.

7.14(ii) Fresnel Integrals

Laplace Transforms

7.14.5

∫ ∞
0

e−at C(t) dt =
1
a

f
( a
π

)
, <a > 0,

7.14.6

∫ ∞
0

e−at S(t) dt =
1
a

g
( a
π

)
, <a > 0,

7.14.7∫ ∞
0

e−at C

(√
2t
π

)
dt =

(
√
a2 + 1 + a)

1
2

2a
√
a2 + 1

, <a > 0,

7.14.8∫ ∞
0

e−at S

(√
2t
π

)
dt =

(
√
a2 + 1− a)

1
2

2a
√
a2 + 1

, <a > 0.

7.14(iii) Compendia

For collections of integrals see Apelblat (1983, pp. 131–
146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177),
Geller and Ng (1971), Gradshteyn and Ryzhik (2000,
§§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng
and Geller (1969), Oberhettinger (1974, pp. 138–139,
142–143), Oberhettinger (1990, pp. 48–52, 155–158),
Oberhettinger and Badii (1973, pp. 171–172, 179–181),
Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143),
Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al.
(1992b, §§3.7–3.8). In a series of ten papers Hadži (1968,
1969, 1970, 1972, 1973, 1975a,b, 1976a,b, 1978) gives

many integrals containing error functions and Fresnel
integrals, also in combination with the hypergeometric
function, confluent hypergeometric functions, and gen-
eralized hypergeometric functions.

7.15 Sums

For sums involving the error function see Hansen (1975,
p. 423) and Prudnikov et al. (1986b, vol. 2, pp. 650–
651).

7.16 Generalized Error Functions

Generalizations of the error function and Dawson’s in-
tegral are

∫ x
0
e−t

p

dt and
∫ x

0
et
p

dt. These functions can
be expressed in terms of the incomplete gamma function
γ(a, z) (§8.2(i)) by change of integration variable.

7.17 Inverse Error Functions

7.17(i) Notation

The inverses of the functions x = erf y, x = erfc y,
y ∈ R, are denoted by

7.17.1 y = inverf x, y = inverfcx,

respectively.

7.17(ii) Power Series

With t = 1
2

√
πx,

7.17.2 inverf x = t+ 1
3 t

3 + 7
30 t

5 + 127
630 t

7 + · · · , |x| < 1.

For 25S values of the first 200 coefficients see Strecok
(1968).

7.17(iii) Asymptotic Expansion of inverfcx for
Small x

As x→ 0

7.17.3 inverfcx∼ u−1/2 +a2u
3/2 +a3u

5/2 +a4u
7/2 + · · · ,

where

7.17.4
a2 = 1

8v, a3 = − 1
32 (v2 + 6v − 6),

a4 = 1
384 (4v3 + 27v2 + 108v − 300),

7.17.5 u = −2/ ln
(
πx2 ln(1/x)

)
,

and

7.17.6 v = ln(ln(1/x))− 2 + lnπ.
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7.18 Repeated Integrals of the
Complementary Error Function

7.18(i) Definition

7.18.1 i−1erfc(z) =
2√
π
e−z

2
, i0erfc(z) = erfc z,

and for n = 0, 1, 2, . . . ,

7.18.2

inerfc(z)

=
∫ ∞
z

in−1erfc(t) dt =
2√
π

∫ ∞
z

(t− z)n

n!
e−t

2
dt.

7.18(ii) Graphics

Figure 7.18.1: Repeated integrals of the scaled com-
plementary error function 2n Γ

(
1
2n+ 1

)
inerfc(x), n =

0, 1, 2, 4, 8, 16.

7.18(iii) Properties

7.18.3
d

dz
inerfc(z) = − in−1erfc(z), n = 0, 1, 2, . . . ,

7.18.4

dn

dzn

(
ez

2
erfc z

)
= (−1)n2nn!ez

2
inerfc(z),

n = 0, 1, 2, . . . .

7.18.5

d2W

dz2 + 2z
dW

dz
− 2nW = 0,

W (z) = A inerfc(z) +B inerfc(−z),
where n = 1, 2, 3, . . . , and A, B are arbitrary constants.

7.18.6 inerfc(z) =
∞∑
k=0

(−1)kzk

2n−kk! Γ
(
1 + 1

2 (n− k)
) .

7.18.7
inerfc(z) = − z

n
in−1erfc(z) +

1
2n

in−2erfc(z),

n = 1, 2, 3, . . . .

7.18(iv) Relations to Other Functions

For the notation see §§18.3, 13.2(i), and 12.2.

Hermite Polynomials

7.18.8 (−1)n inerfc(z) + inerfc(−z) =
i−n

2n−1n!
Hn(iz).

Confluent Hypergeometric Functions

7.18.9

inerfc(z) = e−z
2

(
1

2n Γ
(

1
2n+ 1

)M( 1
2n+ 1

2 ,
1
2 , z

2
)

− z

2n−1 Γ
(

1
2n+ 1

2

)M( 1
2n+ 1, 3

2 , z
2
))

,

7.18.10 inerfc(z) =
e−z

2

2n
√
π
U
(

1
2n+ 1

2 ,
1
2 , z

2
)
.

Parabolic Cylinder Functions

7.18.11 inerfc(z) =
e−z

2/2

√
2n−1π

U
(
n+ 1

2 , z
√

2
)
.

Probability Functions

7.18.12 inerfc(z) =
1√

2n−1π
Hhn

(√
2z
)
.

See Jeffreys and Jeffreys (1956, §§23.081–23.09).

7.18(v) Continued Fraction

7.18.13

inerfc(z)
in−1erfc(z)

=
1/2
z +

(n+ 1)/2
z +

(n+ 2)/2
z+

· · · , <z > 0.

See also Cuyt et al. (2008, p. 269).

7.18(vi) Asymptotic Expansion

7.18.14
inerfc(z) ∼ 2√

π

e−z
2

(2z)n+1

∞∑
m=0

(−1)m(2m+ n)!
n!m!(2z)2m

,

z →∞, |ph z| ≤ 3
4π − δ(<

3
4π).

7.19 Voigt Functions

7.19(i) Definitions

For x ∈ R and t > 0,

7.19.1 U(x, t) =
1√
4πt

∫ ∞
−∞

e−(x−y)2/(4t)

1 + y2
dy,

7.19.2 V(x, t) =
1√
4πt

∫ ∞
−∞

ye−(x−y)2/(4t)

1 + y2
dy.

7.19.3

U(x, t) + iV(x, t) =
√
π

4t
ez

2
erfc z, z = (1− ix)/(2

√
t).

7.19.4

H(a, u) =
a

π

∫ ∞
−∞

e−t
2
dt

(u− t)2 + a2
=

1
a
√
π

U

(
u

a
,

1
4a2

)
.

H(a, u) is sometimes called the line broadening func-
tion; see, for example, Finn and Mugglestone (1965).
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7.19(ii) Graphics

Figure 7.19.1: Voigt function U(x, t), t = 0.1, 2.5, 5, 10.

Figure 7.19.2: Voigt function V(x, t), t = 0.1, 2.5, 5, 10.

7.19(iii) Properties

7.19.5 lim
t→0

U(x, t) =
1

1 + x2
, lim

t→0
V(x, t) =

x

1 + x2
.

7.19.6 U(−x, t) = U(x, t), V(−x, t) = −V(x, t).

7.19.7 0 < U(x, t) ≤ 1, −1 ≤ V(x, t) ≤ 1.

7.19.8 V(x, t) = xU(x, t) + 2t
∂U(x, t)
∂x

,

7.19.9 U(x, t) = 1− xV(x, t)− 2t
∂V(x, t)
∂x

.

7.19(iv) Other Integral Representations

7.19.10 U

(
u

a
,

1
4a2

)
= a

∫ ∞
0

e−at−
1
4 t

2
cos(ut) dt,

7.19.11 V

(
u

a
,

1
4a2

)
= a

∫ ∞
0

e−at−
1
4 t

2
sin(ut) dt.

Applications

7.20 Mathematical Applications

7.20(i) Asymptotics

For applications of the complementary error function in
uniform asymptotic approximations of integrals—saddle
point coalescing with a pole or saddle point coalescing
with an endpoint—see Wong (1989, Chapter 7), Olver
(1997b, Chapter 9), and van der Waerden (1951).

The complementary error function also plays a
ubiquitous role in constructing exponentially-improved
asymptotic expansions and providing a smooth inter-
pretation of the Stokes phenomenon; see §§2.11(iii) and
2.11(iv).

7.20(ii) Cornu’s Spiral

Let the set {x(t), y(t), t} be defined by x(t) = C(t),
y(t) = S(t), t ≥ 0. Then the set {x(t), y(t)} is called
Cornu’s spiral : it is the projection of the corkscrew
on the {x, y}-plane. See Figure 7.20.1. The spiral has
several special properties (see Temme (1996a, p. 184)).
Let P (t) = P (x(t), y(t)) be any point on the projected
spiral. Then the arc length between the origin and
P (t) equals t, and is directly proportional to the cur-
vature at P (t), which equals πt. Furthermore, because
dy/dx = tan

(
1
2πt

2
)
, the angle between the x-axis and

the tangent to the spiral at P (t) is given by 1
2πt

2.

Figure 7.20.1: Cornu’s spiral, formed from Fresnel inte-
grals, is defined parametrically by x = C(t), y = S(t),
t ∈ [0,∞).
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7.20(iii) Statistics

The normal distribution function with mean m and
standard deviation σ is given by
7.20.1

1
σ
√

2π

∫ x

−∞
e−(t−m)2/(2σ2) dt

=
1
2

erfc
(
m− x
σ
√

2

)
= Q

(
m− x
σ

)
= P

(
x−m
σ

)
.

For applications in statistics and probability theory,
also for the role of the normal distribution functions
(the error functions and probability integrals) in the
asymptotics of arbitrary probability density functions,
see Johnson et al. (1994, Chapter 13) and Patel and
Read (1982, Chapters 2 and 3).

7.21 Physical Applications

The error functions, Fresnel integrals, and related func-
tions occur in a variety of physical applications. Fresnel
integrals and Cornu’s spiral occurred originally in the
analysis of the diffraction of light; see Born and Wolf
(1999, §8.7). More recently, Cornu’s spiral appears in
the design of highways and railroad tracks, robot tra-
jectory planning, and computer-aided design; see Meek
and Walton (1992).

Carslaw and Jaeger (1959) gives many applications
and points out the importance of the repeated integrals
of the complementary error function inerfc(z). Fried
and Conte (1961) mentions the role of w(z) in the theory
of linearized waves or oscillations in a hot plasma; w(z)
is called the plasma dispersion function or Faddeeva
function; see Faddeeva and Terent’ev (1954). Ng and
Geller (1969) cites work with applications from atomic
physics and astrophysics.

Voigt functions can be regarded as the convolution
of a Gaussian and a Lorentzian, and appear when the
analysis of light (or particulate) absorption (or emis-
sion) involves thermal motion effects. These applica-
tions include astrophysics, plasma diagnostics, neutron
diffraction, laser spectroscopy, and surface scattering.
See Mitchell and Zemansky (1961, §IV.2), Armstrong
(1967), and Ahn et al. (2001). Dawson’s integral ap-
pears in de-convolving even more complex motional ef-
fects; see Pratt (2007).

Computation

7.22 Methods of Computation

7.22(i) Main Functions

The methods available for computing the main func-
tions in this chapter are analogous to those described in

§§6.18(i)–6.18(iv) for the exponential integral and sine
and cosine integrals, and similar comments apply. Ad-
ditional references are Matta and Reichel (1971) for the
application of the trapezoidal rule, for example, to the
first of (7.7.2), and Gautschi (1970) and Cuyt et al.
(2008) for continued fractions.

7.22(ii) Goodwin–Staton Integral

See Goodwin and Staton (1948).

7.22(iii) Repeated Integrals of the
Complementary Error Function

The recursion scheme given by (7.18.1) and (7.18.7) can
be used for computing inerfc(x). See Gautschi (1977a),
where forward and backward recursions are used; see
also Gautschi (1961).

7.22(iv) Voigt Functions

The computation of these functions can be based on
algorithms for the complementary error function with
complex argument; compare (7.19.3).

7.22(v) Other References

For a comprehensive survey of computational methods
for the functions treated in this chapter, see van der
Laan and Temme (1984, Ch. V).

7.23 Tables

7.23(i) Introduction

Lebedev and Fedorova (1960) and Fletcher et al. (1962)
give comprehensive indexes of mathematical tables.
This section lists relevant tables that appeared later.

7.23(ii) Real Variables

• Abramowitz and Stegun (1964, Chapter 7) in-
cludes erf x, (2/

√
π)e−x

2
, x ∈ [0, 2], 10D;

(2/
√
π)e−x

2
, x ∈ [2, 10], 8S; xex

2
erfcx,

x−2 ∈ [0, 0.25], 7D; 2n Γ
(

1
2n+ 1

)
inerfc(x), n =

1(1)6, 10, 11, x ∈ [0, 5], 6S; F (x), x ∈ [0, 2], 10D;
xF (x), x−2 ∈ [0, 0.25], 9D; C(x), S(x), x ∈ [0, 5],
7D; f(x), g(x), x ∈ [0, 1], x−1 ∈ [0, 1], 15D.

• Abramowitz and Stegun (1964, Table 27.6) in-
cludes the Goodwin–Staton integral G(x), x =
1(.1)3(.5)8, 4D; also G(x) + lnx, x = 0(.05)1, 4D.

• Finn and Mugglestone (1965) includes the Voigt
function H(a, u), u ∈ [0, 22], a ∈ [0, 1], 6S.

• Zhang and Jin (1996, pp. 637, 639) includes
(2/
√
π)e−x

2
, erf x, x = 0(.02)1(.04)3, 8D; C(x),

S(x), x = 0(.2)10(2)100(100)500, 8D.
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7.23(iii) Complex Variables, z = x+ iy

• Abramowitz and Stegun (1964, Chapter 7) in-
cludes w(z), x = 0(.1)3.9, y = 0(.1)3, 6D.

• Zhang and Jin (1996, pp. 638, 640–641) in-
cludes the real and imaginary parts of erf z,
x ∈ [0, 5], y = 0.5(.5)3, 7D and 8D, re-
spectively; the real and imaginary parts of∫∞
x
e±it

2
dt, (1/

√
π)e∓i(x

2+(π/4))
∫∞
x
e±it

2
dt, x =

0(.5)20(1)25, 8D, together with the correspond-
ing modulus and phase to 8D and 6D (degrees),
respectively.

7.23(iv) Zeros

• Fettis et al. (1973) gives the first 100 zeros of erf z
and w(z) (the table on page 406 of this reference
is for w(z), not for erfc z), 11S.

• Zhang and Jin (1996, p. 642) includes the first 10
zeros of erf z, 9D; the first 25 distinct zeros of C(z)
and S(z), 8S.

7.24 Approximations

7.24(i) Approximations in Terms of Elementary
Functions

• Hastings (1955) gives several minimax polynomial
and rational approximations for erf x, erfcx and
the auxiliary functions f(x) and g(x).

• Cody (1969) provides minimax rational approxi-
mations for erf x and erfcx. The maximum rela-
tive precision is about 20S.

• Cody (1968) gives minimax rational approxima-
tions for the Fresnel integrals (maximum relative
precision 19S); for a Fortran algorithm and com-
ments see Snyder (1993).

• Cody et al. (1970) gives minimax rational approxi-
mations to Dawson’s integral F (x) (maximum rel-
ative precision 20S–22S).

7.24(ii) Expansions in Chebyshev Series

• Luke (1969b, pp. 323–324) covers 1
2

√
π erf x and

ex
2
F (x) for −3 ≤ x ≤ 3 (the Chebyshev co-

efficients are given to 20D);
√
πxex

2
erfcx and

2xF (x) for x ≥ 3 (the Chebyshev coefficients are
given to 20D and 15D, respectively). Coefficients
for the Fresnel integrals are given on pp. 328–330
(20D).

• Bulirsch (1967) provides Chebyshev coefficients
for the auxiliary functions f(x) and g(x) for x ≥ 3
(15D).

• Schonfelder (1978) gives coefficients of Cheby-
shev expansions for x−1 erf x on 0 ≤ x ≤ 2, for
xex

2
erfcx on [2,∞), and for ex

2
erfcx on [0,∞)

(30D).

• Shepherd and Laframboise (1981) gives coeffi-
cients of Chebyshev series for (1 + 2x)ex

2
erfcx

on (0,∞) (22D).

7.24(iii) Padé-Type Expansions

• Luke (1969b, vol. 2, pp. 422–435) gives main di-
agonal Padé approximations for F (z), erf z, erfc z,
C(z), and S(z); approximate errors are given for
a selection of z-values.

7.25 Software

See http://dlmf.nist.gov/7.25.
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Notation

8.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable.
z complex variable.
a, p real or complex parameters.
k, n nonnegative integers.
δ arbitrary small positive constant.
Γ(z) gamma function (§5.2(i)).
ψ(z) Γ′(z)/Γ(z).

Unless otherwise indicated, primes denote deriva-
tives with respect to the argument.

The functions treated in this chapter are the incom-
plete gamma functions γ(a, z), Γ(a, z), γ∗(a, z), P (a, z),
and Q(a, z); the incomplete beta functions Bx(a, b) and
Ix(a, b); the generalized exponential integral Ep(z); the
generalized sine and cosine integrals si(a, z), ci(a, z),
Si(a, z), and Ci(a, z).

Alternative notations include: Prym’s functions
Pz(a) = γ(a, z), Qz(a) = Γ(a, z), Nielsen (1906a,
pp. 25–26), Batchelder (1967, p. 63); (a, z)! =
γ(a+ 1, z), [a, z]! = Γ(a+ 1, z), Dingle (1973);
B(a, b, x) = Bx(a, b), I(a, b, x) = Ix(a, b), Magnus et al.
(1966); Si(a, x) → Si(1− a, x), Ci(a, x) → Ci(1− a, x),
Luke (1975).

Incomplete Gamma Functions

8.2 Definitions and Basic Properties

8.2(i) Definitions

The general values of the incomplete gamma functions
γ(a, z) and Γ(a, z) are defined by

8.2.1 γ(a, z) =
∫ z

0

ta−1e−t dt, <a > 0,

8.2.2 Γ(a, z) =
∫ ∞
z

ta−1e−t dt,

without restrictions on the integration paths. However,
when the integration paths do not cross the negative
real axis, and in the case of (8.2.2) exclude the origin,
γ(a, z) and Γ(a, z) take their principal values; compare

§4.2(i). Except where indicated otherwise in this Hand-
book these principal values are assumed. For example,

8.2.3 γ(a, z) + Γ(a, z) = Γ(a), a 6= 0,−1,−2, . . . .
Normalized functions are:

8.2.4 P (a, z) =
γ(a, z)
Γ(a)

, Q(a, z) =
Γ(a, z)
Γ(a)

,

8.2.5 P (a, z) +Q(a, z) = 1.
In addition,

8.2.6 γ∗(a, z) = z−a P (a, z) =
z−a

Γ(a)
γ(a, z).

8.2.7 γ∗(a, z) =
1

Γ(a)

∫ 1

0

ta−1e−zt dt, <a > 0.

8.2(ii) Analytic Continuation

In this subsection the functions γ and Γ have their gen-
eral values.

The function γ∗(a, z) is entire in z and a. When z 6=
0, Γ(a, z) is an entire function of a, and γ(a, z) is mero-
morphic with simple poles at a = −n, n = 0, 1, 2, . . . ,
with residue (−1)n/n!.

For m ∈ Z,

8.2.8 γ
(
a, ze2πmi

)
= e2πmia γ(a, z), a 6= 0,−1,−2, . . . ,

8.2.9 Γ
(
a, ze2πmi

)
= e2πmia Γ(a, z) + (1− e2πmia) Γ(a).

(8.2.9) also holds when a is zero or a negative integer,
provided that the right-hand side is replaced by its lim-
iting value. For example, in the case m = −1 we have

8.2.10 e−πia Γ
(
a, zeπi

)
− eπia Γ

(
a, ze−πi

)
= − 2πi

Γ(1− a)
,

without restriction on a.
Lastly,

8.2.11 Γ
(
a, ze±πi

)
= Γ(a)(1− zae±πia γ∗(a,−z)).

8.2(iii) Differential Equations

If w = γ(a, z) or Γ(a, z), then

8.2.12
d2w

dz2 +
(

1 +
1− a
z

)
dw

dz
= 0.

If w = ezz1−a Γ(a, z), then

8.2.13
d2w

dz2 −
(

1 +
1− a
z

)
dw

dz
+

1− a
z2

w = 0.

Also,

8.2.14 z
d2γ∗

dz2 + (a+ 1 + z)
dγ∗

dz
+ a γ∗ = 0.



8.3 Graphics 175

8.3 Graphics

8.3(i) Real Variables

Figure 8.3.1: Γ(a, x), a = 0.25, 1, 2, 2.5, 3. Figure 8.3.2: γ(a, x), a = 0.25, 0.5, 0.75, 1.

Figure 8.3.3: γ(a, x), a = 1, 2, 2.5, 3. Figure 8.3.4: γ∗(a, x) (= x−a P (a, x)), a = 0.25, 0.5,
0.75, 1, 2.

Figure 8.3.5: x−a − γ∗(a, x) (= x−aQ(a, x)), a = 0.25,
0.5, 1, 2.

Figure 8.3.6: γ∗(a, x) (= x−a P (a, x)), −4 ≤ x ≤ 4,
−5 ≤ a ≤ 4.
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Some monotonicity properties of γ∗(a, x) and Γ(a, x)
in the four quadrants of the (a, x)-plane in Figure 8.3.6
are given in Erdélyi et al. (1953b, §9.6).

Figure 8.3.7: x−a− γ∗(a, x) (= x−aQ(a, x)), 0 ≤ x ≤ 4,
−5 ≤ a ≤ 5.

8.3(ii) Complex Argument

In the graphics shown in this subsection, height corre-
sponds to the absolute value of the function and color
to the phase. See p. xiv.

Figure 8.3.8: Γ(0.25, x+ iy), −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.
Principal value. There is a cut along the negative real
axis. When x = y = 0, Γ(0.25, 0) = Γ(0.25) = 3.625 . . . .

Figure 8.3.9: γ(0.25, x+ iy), −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.
Principal value. There is a cut along the negative real
axis.

Figure 8.3.10: γ∗(0.25, x+ iy), −3 ≤ x ≤ 3, −3 ≤ y ≤ 3.

For additional graphics see http://dlmf.nist.gov/8.
3.ii.

8.4 Special Values

For erf(z), erfc(z), and F (z), see §§7.2(i), 7.2(ii). For
En(z) see §8.19(i).

8.4.1 γ
(

1
2 , z

2
)

= 2
∫ z

0

e−t
2
dt =

√
π erf(z),

8.4.2 γ∗(a, 0) =
1

Γ(a+ 1)
,

8.4.3 γ∗
(

1
2 ,−z

2
)

=
2ez

2

z
√
π
F (z).

8.4.4 Γ(0, z) =
∫ ∞
z

t−1e−t dt = E1(z),

8.4.5 Γ(1, z) = e−z,
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8.4.6 Γ
(

1
2 , z

2
)

= 2
∫ ∞
z

e−t
2
dt =

√
π erfc(z).

For n = 0, 1, 2, . . . ,

8.4.7 γ(n+ 1, z) = n!(1− e−zen(z)),

8.4.8 Γ(n+ 1, z) = n!e−zen(z),

8.4.9 P (n+ 1, z) = 1− e−zen(z),

8.4.10 Q(n+ 1, z) = e−zen(z),

where

8.4.11 en(z) =
n∑
k=0

zk

k!
.

Also

8.4.12 γ∗(−n, z) = zn,

8.4.13 Γ(1− n, z) = z1−nEn(z),

8.4.14 Q
(
n+ 1

2 , z
2
)

= erfc(z) +
e−z

2

√
π

n∑
k=1

z2k−1(
1
2

)
k

,

8.4.15

Γ(−n, z) =
(−1)n

n!

(
E1(z)− e−z

n−1∑
k=0

(−1)kk!
zk+1

)

=
(−1)n

n!
(ψ(n+ 1)− ln z)−z−n

∞∑
k=0
k 6=n

(−z)k

k!(k − n)
.

8.5 Confluent Hypergeometric
Representations

For the confluent hypergeometric functions M , M,
U , and the Whittaker functions Mκ,µ and Wκ,µ, see
§§13.2(i) and 13.14(i).

8.5.1

γ(a, z) = a−1zae−zM(1, 1 + a, z)

= a−1zaM(a, 1 + a,−z), a 6= 0,−1,−2, . . . .

8.5.2 γ∗(a, z) = e−z M(1, 1 + a, z) = M(a, 1 + a,−z).

8.5.3

Γ(a, z) = e−z U(1− a, 1− a, z) = zae−z U(1, 1 + a, z).

8.5.4 γ(a, z) = a−1z
1
2a−

1
2 e−

1
2 zM 1

2a−
1
2 ,

1
2a

(z).

8.5.5 Γ(a, z) = e−
1
2 zz

1
2a−

1
2 W 1

2a−
1
2 ,

1
2a

(z).

8.6 Integral Representations

8.6(i) Integrals Along the Real Line

For the Bessel function Jν(z) and modified Bessel func-
tion Kν(z), see §§10.2(ii) and 10.25(ii).
8.6.1

γ(a, z) =
za

sin(πa)

∫ π

0

ez cos t cos(at+ z sin t) dt,

a /∈ Z,
8.6.2

γ(a, z) = z
1
2a

∫ ∞
0

e−tt
1
2a−1 Ja

(
2
√
zt
)
dt, <a > 0.

8.6.3

γ(a, z) = za
∫ ∞

0

exp
(
−at− ze−t

)
dt, <a > 0.

8.6.4
Γ(a, z) =

zae−z

Γ(1− a)

∫ ∞
0

t−ae−t

z + t
dt,

|ph z| < π, <a < 1,

8.6.5 Γ(a, z) = zae−z
∫ ∞

0

e−zt

(1 + t)1−a dt, <z > 0,

8.6.6
Γ(a, z) =

2z
1
2ae−z

Γ(1− a)

∫ ∞
0

e−tt−
1
2aKa

(
2
√
zt
)
dt,

<a < 1,

8.6.7 Γ(a, z) = za
∫ ∞

0

exp
(
at− zet

)
dt, <z > 0.

8.6(ii) Contour Integrals

8.6.8

γ(a, z) =
−iza

2 sin(πa)

∫ (0+)

−1

ta−1ezt dt, z 6= 0, a /∈ Z;

ta−1 takes its principal value where the path intersects
the positive real axis, and is continuous elsewhere on
the path.

8.6.9
Γ
(
−a, ze±πi

)
=

eze∓πia

Γ(1 + a)

∫ ∞
0

tae−zt

t− 1
dt,

<z > 0, <a > −1,
where the integration path passes above or below the
pole at t = 1, according as upper or lower signs are
taken.

Mellin–Barnes Integrals

In (8.6.10)–(8.6.12), c is a real constant and the path of
integration is indented (if necessary) so that it separates
the poles of the gamma function from the other pole in
the integrand, in the case of (8.6.10) and (8.6.11), and
from the poles at s = 0, 1, 2, . . . in the case of (8.6.12).

8.6.10
γ(a, z) =

1
2πi

∫ c+i∞

c−i∞

Γ(s)
a− s

za−s ds,

|ph z| < 1
2π, a 6= 0,−1,−2, . . . ,
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8.6.11

Γ(a, z) =
1

2πi

∫ c+i∞

c−i∞
Γ(s+ a)

z−s

s
ds, |ph z| < 1

2π,

8.6.12

Γ(a, z) = − z
a−1e−z

Γ(1− a)

× 1
2πi

∫ c+i∞

c−i∞
Γ(s+ 1− a)

πz−s

sin(πs)
ds,

|ph z| < 3
2π, a 6= 1, 2, 3, . . . .

8.6(iii) Compendia

For collections of integral representations of γ(a, z)
and Γ(a, z) see Erdélyi et al. (1953b, §9.3), Ober-
hettinger (1972, pp. 68–69), Oberhettinger and Badii
(1973, pp. 309–312), Prudnikov et al. (1992b, §3.10),
and Temme (1996a, pp. 282–283).

8.7 Series Expansions

For the functions en(z), i
(1)
n (z), and L(α)

n (x) see (8.4.11),
§§10.47(ii), and 18.3, respectively.
8.7.1

γ∗(a, z) = e−z
∞∑
k=0

zk

Γ(a+ k + 1)
=

1
Γ(a)

∞∑
k=0

(−z)k

k!(a+ k)
.

8.7.2

γ(a, x+ y)− γ(a, x)
= Γ(a, x)− Γ(a, x+ y)

= e−xxa−1
∞∑
n=0

(1− a)n
(−x)n

(1− e−yen(y)),

|y| < |x|.

8.7.3

Γ(a, z) = Γ(a)−
∞∑
k=0

(−1)kza+k

k!(a+ k)

= Γ(a)

(
1− zae−z

∞∑
k=0

zk

Γ(a+ k + 1)

)
,

a 6= 0,−1,−2, . . . .

8.7.4

γ(a, x) = Γ(a)x
1
2ae−x

∞∑
n=0

en(−1)x
1
2n In+a

(
2x1/2

)
,

a 6= 0,−1,−2, . . . .

8.7.5

γ∗(a, z) = e−
1
2 z
∞∑
n=0

(1− a)n
Γ(n+ a+ 1)

(2n+ 1) i(1)
n

(
1
2z
)
.

8.7.6 Γ(a, x) = xae−x
∞∑
n=0

L
(a)
n (x)
n+ 1

, x > 0.

For an expansion for γ(a, ix) in series of Bessel func-
tions Jn(x) that converges rapidly when a > 0 and x
(≥ 0) is small or moderate in magnitude see Barakat
(1961).

8.8 Recurrence Relations and Derivatives

8.8.1 γ(a+ 1, z) = a γ(a, z)− zae−z,

8.8.2 Γ(a+ 1, z) = aΓ(a, z) + zae−z.

If w(a, z) = γ(a, z) or Γ(a, z), then

8.8.3 w(a+2, z)− (a+1+z)w(a+1, z)+azw(a, z) = 0.

8.8.4 z γ∗(a+ 1, z) = γ∗(a, z)− e−z

Γ(a+ 1)
.

8.8.5 P (a+ 1, z) = P (a, z)− zae−z

Γ(a+ 1)
,

8.8.6 Q(a+ 1, z) = Q(a, z) +
zae−z

Γ(a+ 1)
.

For n = 0, 1, 2, . . . ,
8.8.7

γ(a+ n, z) = (a)n γ(a, z)− zae−z
n−1∑
k=0

Γ(a+ n)
Γ(a+ k + 1)

zk,

8.8.8

γ(a, z)

=
Γ(a)

Γ(a− n)
γ(a− n, z)− za−1e−z

n−1∑
k=0

Γ(a)
Γ(a− k)

z−k,

8.8.9

Γ(a+ n, z) = (a)n Γ(a, z) + zae−z
n−1∑
k=0

Γ(a+ n)
Γ(a+ k + 1)

zk,

8.8.10

Γ(a, z)

=
Γ(a)

Γ(a− n)
Γ(a− n, z) + za−1e−z

n−1∑
k=0

Γ(a)
Γ(a− k)

z−k,

8.8.11 P (a+ n, z) = P (a, z)− zae−z
n−1∑
k=0

zk

Γ(a+ k + 1)
,

8.8.12 Q(a+ n, z) = Q(a, z) + zae−z
n−1∑
k=0

zk

Γ(a+ k + 1)
.

8.8.13
d

dz
γ(a, z) = − d

dz
Γ(a, z) = za−1e−z,

8.8.14
∂

∂a
γ∗(a, z)

∣∣∣∣
a=0

= −E1(z)− ln z.

For E1(z) see §8.19(i).
For n = 0, 1, 2, . . . ,

8.8.15
dn

dzn
(z−a γ(a, z)) = (−1)nz−a−n γ(a+ n, z),

8.8.16
dn

dzn
(z−a Γ(a, z)) = (−1)nz−a−n Γ(a+ n, z),

8.8.17
dn

dzn
(ez γ(a, z)) = (−1)n(1− a)ne

z γ(a− n, z),

8.8.18
dn

dzn
(zaez γ∗(a, z)) = za−nez γ∗(a− n, z),

8.8.19
dn

dzn
(ez Γ(a, z)) = (−1)n(1− a)ne

z Γ(a− n, z).
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8.9 Continued Fractions

8.9.1 Γ(a+ 1)ez γ∗(a, z) =
1

1−
z

a+ 1 +
z

a+ 2−
(a+ 1)z
a+ 3 +

2z
a+ 4−

(a+ 2)z
a+ 5 +

3z
a+ 6−

· · · , a 6= −1,−2, . . . ,

8.9.2 z−aez Γ(a, z) =
z−1

1 +
(1− a)z−1

1 +
z−1

1 +
(2− a)z−1

1 +
2z−1

1 +
(3− a)z−1

1 +
3z−1

1 +
· · · , |ph z| < π.

For these expansions and further information see Jones
and Thron (1985). See also Cuyt et al. (2008, pp. 240–
251).

8.10 Inequalities

8.10.1 x1−aex Γ(a, x) ≤ 1, x > 0, 0 < a ≤ 1,

8.10.2 γ(a, x) ≥ xa−1

a
(1− e−x), x > 0, 0 < a ≤ 1.

The inequalities in (8.10.1) and (8.10.2) are reversed
when a ≥ 1. If ϑ is defined by

8.10.3 x1−aex Γ(a, x) = 1 +
a− 1
x

ϑ,

then ϑ→ 1 as x→∞, and

8.10.4 0 < ϑ ≤ 1, x > 0, a ≤ 2.

For further inequalities of these types see Qi and Mei
(1999).

Padé Approximants

For n = 1, 2, . . . ,

8.10.5 An < x1−aex Γ(a, x) < Bn, x > 0, a < 1,

where

8.10.6

A1 =
x

x+ 1− a
, B1 =

x+ 1
x+ 2− a

,

A2 =
x(x+ 3− a)

x2 + 2(2− a)x+ (1− a)(2− a)
,

B2 =
x2 + (5− a)x+ 2

x2 + 2(3− a)x+ (2− a)(3− a)
.

For hypergeometric polynomial representations of An
and Bn, see Luke (1969b, §14.6).

Next, define

8.10.7 I =
∫ x

0

ta−1et dt = Γ(a)xa γ∗(a,−x), <a > 0.

Then

8.10.8

(a+ 1)(a+ 2)− x
(a+ 1)(a+ 2 + x)

< ax−ae−xI <
a+ 1

a+ 1 + x
,

x > 0, a ≥ 0.

Also, define

8.10.9 ca = (Γ(1 + a))1/(a−1), da = (Γ(1 + a))−1/a.

Then

8.10.10

x

2a

((
1 +

2
x

)a
− 1
)
< x1−aex Γ(a, x)

≤ x

aca

((
1 +

ca
x

)a
− 1
)

,

x ≥ 0, 0 < a < 1,

and

8.10.11

(1− e−αax)a ≤ P (a, x) ≤ (1− e−βax)a, x ≥ 0, a > 0,

where

8.10.12

αa =

{
1, 0 < a < 1,
da, a > 1,

βa =

{
da, 0 < a < 1,
1, a > 1.

Equalities in (8.10.11) apply only when a = 1.
Lastly,

8.10.13
Γ(n, n)
Γ(n)

<
1
2
<

Γ(n, n− 1)
Γ(n)

, n = 1, 2, 3, . . . .

8.11 Asymptotic Approximations and
Expansions

8.11(i) Large z, Fixed a

Define

8.11.1 uk = (−1)k(1− a)k = (a− 1)(a− 2) · · · (a− k),

8.11.2

Γ(a, z) = za−1e−z

(
n−1∑
k=0

uk
zk

+Rn(a, z)

)
, n = 1, 2, . . . .

Then as z →∞ with a and n fixed

8.11.3 Rn(a, z) = O
(
z−n

)
, |ph z| ≤ 3

2π − δ,
where δ denotes an arbitrary small positive constant.

If a is real and z (= x) is positive, then Rn(a, x) is
bounded in absolute value by the first neglected term
un/x

n and has the same sign provided that n ≥ a − 1.
For bounds on Rn(a, z) when a is real and z is complex
see Olver (1997b, pp. 109–112). For an exponentially-
improved asymptotic expansion (§2.11(iii)) see Olver
(1991a).
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8.11(ii) Large a, Fixed z

8.11.4 γ(a, z) = zae−z
∞∑
k=0

zk

(a)k+1

, a 6= 0,−1,−2, . . . .

This expansion is absolutely convergent for all finite z,
and it can also be regarded as a generalized asymptotic
expansion (§2.1(v)) of γ(a, z) as a → ∞ in |ph a| ≤
π − δ.

Also,

8.11.5
P (a, z) ∼ zae−z

Γ(1 + a)
∼ (2πa)−

1
2 ea−z(z/a)a,

a→∞, |ph a| ≤ π − δ.

8.11(iii) Large a, Fixed x/a

If x = λa, with λ fixed, then as a→ +∞

8.11.6 γ(a, x) ∼ −xae−x
∞∑
k=0

(−a)kbk(λ)
(x− a)2k+1

, 0 < λ < 1,

8.11.7 Γ(a, x) ∼ xae−x
∞∑
k=0

(−a)kbk(λ)
(x− a)2k+1

, λ > 1,

where

8.11.8 b0(λ) = 1, b1(λ) = λ, b2(λ) = λ(2λ+ 1),

and for k = 1, 2, . . . ,

8.11.9 bk(λ) = λ(1− λ)b′k−1(λ) + (2k − 1)λbk−1(λ).

The expansion (8.11.7) also applies when a → −∞
with λ < 0, and in this case Gautschi (1959a) supplies
numerical bounds for the remainders in the truncated
expansion (8.11.7). For extensions to complex variables
see Temme (1994a, §4), and also Mahler (1930), Tricomi
(1950b), and Paris (2002b).

8.11(iv) Large a, Bounded (x− a)/(2a)
1
2

If x = a+ (2a)
1
2 y and a→ +∞, then

8.11.10

P (a+ 1, x) = 1
2 erfc(−y)− 1

3

√
2
πa

(1+y2)e−y
2
+O

(
a−1

)
,

8.11.11 γ∗(1− a,−x) = xa−1

(
− cos(πa) +

sin(πa)
π

(
2
√
π F (y) +

2
3

√
2π
a

(
1− y2

))
ey

2
+O

(
a−1

))
,

in both cases uniformly with respect to bounded real
values of y. For Dawson’s integral F (y) see §7.2(ii).
See Tricomi (1950b) for these approximations, together
with higher terms and extensions to complex variables.
For related expansions involving Hermite polynomials
see Pagurova (1965).

8.11(v) Other Approximations

As z →∞,
8.11.12

Γ(z, z) ∼ zz−1e−z

(√
π

2
z

1
2 − 1

3
+
√

2π
24z

1
2
− 4

135z

+
√

2π
576z

3
2

+
8

2835z2
+ . . .

)
,

|ph z| ≤ π − δ.
For the function en(z) defined by (8.4.11),

8.11.13 lim
n→∞

en(nx)
enx

=


0, x > 1,
1
2 , x = 1,
1, 0 ≤ x < 1.

With x = 1, an asymptotic expansion of en(nx)/enx

follows from (8.11.14) and (8.11.16).

If Sn(x) is defined by

8.11.14 enx = en(nx) +
(nx)n

n!
Sn(x),

then
8.11.15 Sn(x) =

γ(n+ 1, nx)
(nx)ne−nx

.

As n→∞
8.11.16

Sn(1)− 1
2
n!en

nn
∼− 2

3 + 4
135n

−1− 8
2835n

−2− 16
8505n

−3+. . . ,

8.11.17

Sn(−1)∼−1
2 + 1

8n
−1 + 1

32n
−2− 1

128n
−3− 13

512n
−4 + . . . .

Also,

8.11.18 Sn(x) ∼
∞∑
k=0

dk(x)n−k, n→∞,

uniformly for x ∈ (−∞, 1− δ], with

8.11.19 dk(x) =
(−1)kbk(x)
(1− x)2k+1

, k = 0, 1, 2, . . . ,

and bk(x) as in §8.11(iii).
For (8.11.18) and extensions to complex values of x

see Buckholtz (1963). For a uniformly valid expansion
for n→∞ and x ∈ [δ, 1], see Wong (1973b).
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8.12 Uniform Asymptotic Expansions for
Large Parameter

Define

8.12.1 λ = z/a, η = (2(λ− 1− lnλ))1/2 ,
where the branch of the square root is continuous and
satisfies η(λ) ∼ λ− 1 as λ→ 1. Then

8.12.2 1
2η

2 = λ− 1− lnλ,
dη

dλ
=
λ− 1
λη

.

Also, denote

8.12.3 P (a, z) = 1
2 erfc

(
−η
√
a/2
)
− S(a, η),

8.12.4 Q(a, z) = 1
2 erfc

(
η
√
a/2
)

+ S(a, η),

8.12.5
Γ(a+ 1)

e±πia

2πi
Γ
(
−a, ze±πi

)
= ∓ 1

2 erfc
(
±iη

√
a/2
)

+ iT (a, η),

and
8.12.6

z−a γ∗(−a,−z)

= cos(πa)− 2 sin(πa)

(
e

1
2aη

2

√
π

F
(
η
√
a/2
)

+T (a, η)

)
,

where F (x) is Dawson’s integral; see §7.2(ii). Then as
a→∞ in the sector |ph a| ≤ π − δ(< π),

8.12.7 S(a, η) ∼ e−
1
2aη

2

√
2πa

∞∑
k=0

ck(η)a−k,

8.12.8 T (a, η) ∼ e
1
2aη

2

√
2πa

∞∑
k=0

ck(η)(−a)−k,

in each case uniformly with respect to λ in the sector
|phλ| ≤ 2π − δ (< 2π).

With µ = λ− 1, the coefficients ck(η) are given by

8.12.9 c0(η) =
1
µ
− 1
η
, c1(η) =

1
η3
− 1
µ3
− 1
µ2
− 1

12µ
,

8.12.10 ck(η) =
1
η

d

dη
ck−1(η) + (−1)k

gk
µ

, k = 1, 2, . . . ,

where gk, k = 0, 1, 2, . . . , are the coefficients that ap-
pear in the asymptotic expansion (5.11.3) of Γ(z). The
right-hand sides of equations (8.12.9), (8.12.10) have re-
movable singularities at η = 0, and the Maclaurin series
expansion of ck(η) is given by

8.12.11 ck(η) =
∞∑
n=0

dk,nη
n, |η| < 2

√
π,

where d0,0 = − 1
3 ,

8.12.12

d0,n = (n+ 2)αn+2, n ≥ 1,
dk,n = (−1)kgkd0,n + (n+ 2)dk−1,n+2, n ≥ 0, k ≥ 1,

and α3, α4, . . . are defined by

8.12.13 λ− 1 = η + 1
3η

2 +
∞∑
n=3

αnη
n, |η| < 2

√
π.

In particular,

8.12.14
α3 = 1

36 , α4 = − 1
270 , α5 = 1

4320 ,

α6 = 1
17010 , α7 = − 139

54 43200 , α8 = 1
2 04120 .

For numerical values of dk,n to 30D for k = 0(1)9 and
n = 0(1)Nk, where Nk = 28 − 4 bk/2c, see DiDonato
and Morris (1986).

Special cases are given by
8.12.15

Q(a, a) ∼ 1
2

+
1√
2πa

∞∑
k=0

ck(0)a−k, |ph a| ≤ π − δ,

8.12.16

e±πia

2i sin(πa)
Q
(
−a, ae±πi

)
∼ ±1

2
− i√

2πa

∞∑
k=0

ck(0)(−a)−k, |ph a| ≤ π − δ,

where

8.12.17

c0(0) = − 1
3 , c1(0) = − 1

540 ,

c2(0) = 25
6048 , c3(0) = 101

1 55520 ,

c4(0) = − 31 84811
36951 55200 , c5(0) = − 27 45493

81517 36320 .

For error bounds for (8.12.7) see Paris (2002a). For
the asymptotic behavior of ck(η) as k →∞ see Dunster
et al. (1998) and Olde Daalhuis (1998c). The last ref-
erence also includes an exponentially-improved version
(§2.11(iii)) of the expansions (8.12.4) and (8.12.7) for
Q(a, z).

A different type of uniform expansion with coeffi-
cients that do not possess a removable singularity at
z = a is given by
8.12.18

Q(a, z)
P (a, z)

}
∼ za−

1
2 e−z

Γ(a)

(
d(±χ)

∞∑
k=0

Ak(χ)
zk/2

±
∞∑
k=1

Bk(χ)
zk/2

)
,

for z →∞ in |ph z| < 1
2π, with <(z − a) ≤ 0 for P (a, z)

and <(z − a) ≥ 0 for Q(a, z). Here
8.12.19

χ = (z − a)/
√
z, d(±χ) =

√
1
2πe

χ2/2 erfc
(
±χ/
√

2
)
,

and
8.12.20

A0(χ) = 1, A1(χ) = 1
2χ+ 1

6χ
3, B1(χ) = 1

3 + 1
6χ

2.

Higher coefficients Ak(χ), Bk(χ), up to k = 8, are given
in Paris (2002b).

Lastly, a uniform approximation for Γ(a, ax) for
large a, with error bounds, can be found in Dunster
(1996a).

For other uniform asymptotic approximations of the
incomplete gamma functions in terms of the function
erfc see Paris (2002b) and Dunster (1996a).
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Inverse Function

For asymptotic expansions, as a → ∞, of the inverse
function x = x(a, q) that satisfies the equation

8.12.21 Q(a, x) = q

see Temme (1992a). These expansions involve the in-
verse error function inverfc(x) (§7.17), and are uniform
with respect to q ∈ [0, 1]. As a special case,

8.12.22
x(a, 1

2 )∼ a− 1
3 + 8

405a
−1+ 184

25515a
−2+ 2248

34 44525a
−3

+ · · · , a→∞.

8.13 Zeros

8.13(i) x-Zeros of γ∗(a, x)

The function γ∗(a, x) has no real zeros for a ≥ 0. For
a < 0 and n = 1, 2, 3, . . . , there exist:

(a) one negative zero x−(a) and no positive zeros
when 1− 2n < a < 2− 2n;

(b) one negative zero x−(a) and one positive zero
x+(a) when −2n < a < 1− 2n.

The negative zero x−(a) decreases monotonically in
the interval −1 < a < 0, and satisfies

8.13.1 1 + a−1 < x−(a) < ln |a|, −1 < a < 0.

When −5 ≤ a ≤ 4 the behavior of the x-zeros as
functions of a can be seen by taking the slice γ∗(a, x) =
0 of the surface depicted in Figure 8.3.6. Note that from
(8.4.12) γ∗(−n, 0) = 0, n = 1, 2, 3, . . . .

For asymptotic approximations for x+(a) and x−(a)
as a → −∞ see Tricomi (1950b), with corrections by
Kölbig (1972b).

8.13(ii) λ-Zeros of γ(a, λa) and Γ(a, λa)

For information on the distribution and computation of
zeros of γ(a, λa) and Γ(a, λa) in the complex λ-plane for
large values of the positive real parameter a see Temme
(1995a).

8.13(iii) a-Zeros of γ∗(a, x)

For fixed x and n = 1, 2, 3, . . . , γ∗(a, x) has:

(a) two zeros in each of the intervals −2n < a < 2−2n
when x < 0;

(b) two zeros in each of the intervals −2n < a < 1−2n
when 0 < x ≤ x∗n;

(c) zeros at a = −n when x = 0.

As x increases the positive zeros coalesce to form a dou-
ble zero at (a∗n, x

∗
n). The values of the first six double

zeros are given to 5D in Table 8.13.1. For values up
to n = 10 see Kölbig (1972b). Approximations to a∗n,
x∗n for large n can be found in Kölbig (1970). When
x > x∗n a pair of conjugate trajectories emanate from
the point a = a∗n in the complex a-plane. See Kölbig
(1970, 1972b) for further information.

Table 8.13.1: Double zeros (a∗n, x
∗
n) of γ∗(a, x).

n a∗n x∗n

1 −1.64425 0.30809

2 −3.63887 0.77997

3 −5.63573 1.28634

4 −7.63372 1.80754

5 −9.63230 2.33692

6 −11.63126 2.87150

8.14 Integrals

8.14.1∫ ∞
0

e−ax
γ(b, x)
Γ(b)

dx =
(1 + a)−b

a
, <a > 0, <b > −1,

8.14.2

∫ ∞
0

e−ax Γ(b, x) dx = Γ(b)
1− (1 + a)−b

a
,

<a > −1, <b > −1.
In (8.14.1) and (8.14.2) limiting values are used when
b = 0.

8.14.3

∫ ∞
0

xa−1 γ(b, x) dx = −Γ(a+ b)
a

,

<a < 0, <(a+ b) > 0,

8.14.4∫ ∞
0

xa−1 Γ(b, x) dx =
Γ(a+ b)

a
, <a > 0, <(a+ b) > 0,

8.14.5

∫ ∞
0

xa−1e−sx γ(b, x) dx

=
Γ(a+ b)
b(1 + s)a+b

F (1, a+ b; 1 + b; 1/(1 + s)),

<s > 0, <(a+ b) > 0,

8.14.6

∫ ∞
0

xa−1e−sx Γ(b, x) dx

=
Γ(a+ b)

a(1 + s)a+b
F (1, a+ b; 1 + a; s/(1 + s)),

<s > −1, <(a+ b) > 0, <a > 0.
For the hypergeometric function F (a, b; c; z) see
§15.2(i).
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For additional integrals see Apelblat (1983, §8.2),
Erdélyi et al. (1953b, §9.3), Erdélyi et al. (1954a,b),
Gradshteyn and Ryzhik (2000, §6.45), Marichev (1983,
pp.189–190), Oberhettinger (1972, pp. 68–69), Prud-
nikov et al. (1986b, §§1.2, 2.10), and Prudnikov et al.
(1992a, §3.10).

8.15 Sums

8.15.1 γ(a, λx) = λa
∞∑
k=0

γ(a+ k, x)
(1− λ)k

k!
.

For sums of infinite series whose terms include in-
complete gamma functions, see Prudnikov et al. (1986b,
§5.2).

8.16 Generalizations

For a generalization of the incomplete gamma function,
including asymptotic approximations, see Chaudhry
and Zubair (1994, 2001) and Chaudhry et al. (1996).
Other generalizations are considered in Guthmann
(1991) and Paris (2003).

Related Functions

8.17 Incomplete Beta Functions

8.17(i) Definitions and Basic Properties

Throughout §§8.17 and 8.18 we assume that a > 0,
b > 0, and 0 ≤ x ≤ 1. However, in the case of §8.17 it
is straightforward to continue most results analytically
to other real values of a, b, and x, and also to complex
values.
8.17.1 Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt,

8.17.2 Ix(a, b) = Bx(a, b)/B(a, b),

where, as in §5.12, B(a, b) denotes the Beta function:

8.17.3 B(a, b) =
Γ(a) Γ(b)
Γ(a+ b)

.

8.17.4 Ix(a, b) = 1− I1−x(b, a),

8.17.5 Ix(m,n−m+ 1) =
n∑

j=m

(
n

j

)
xj(1− x)n−j ,

8.17.6 Ix(a, a) = 1
2 I4x(1−x)

(
a, 1

2

)
, 0 ≤ x ≤ 1

2 .

For a historical profile of Bx(a, b) see Dutka (1981).

8.17(ii) Hypergeometric Representations

8.17.7 Bx(a, b) =
xa

a
F (a, 1− b; a+ 1;x),

8.17.8 Bx(a, b) =
xa(1− x)b

a
F (a+ b, 1; a+ 1;x),

8.17.9 Bx(a, b) =
xa(1− x)b−1

a
F

(
1, 1− b
a+ 1

;
x

x− 1

)
.

For the hypergeometric function F (a, b; c; z) see
§15.2(i).

8.17(iii) Integral Representation

With a > 0, b > 0, and 0 < x < 1,

8.17.10 Ix(a, b) =
xa(1− x)b

2πi

∫ c+i∞

c−i∞
s−a(1−s)−b ds

s− x
,

where x < c < 1 and the branches of s−a and (1− s)−b
are continuous on the path and assume their principal
values when s = c.

Further integral representations can be obtained by
combining the results given in §8.17(ii) with §15.6.

8.17(iv) Recurrence Relations

With

8.17.11 x′ = 1− x, c = a+ b− 1,

8.17.12 Ix(a, b) = x Ix(a− 1, b) + x′ Ix(a, b− 1),

8.17.13 (a+ b) Ix(a, b) = a Ix(a+ 1, b) + b Ix(a, b+ 1),

8.17.14

(a+ bx) Ix(a, b) = xb Ix(a− 1, b+ 1) + a Ix(a+ 1, b),

8.17.15

(b+ ax′) Ix(a, b) = ax′ Ix(a+ 1, b− 1) + b Ix(a, b+ 1),

8.17.16

a Ix(a+ 1, b) = (a+ cx) Ix(a, b)− cx Ix(a− 1, b),

8.17.17

b Ix(a, b+ 1) = (b+ cx′) Ix(a, b)− cx′ Ix(a, b− 1),

8.17.18 Ix(a, b) = Ix(a+ 1, b− 1) +
xa(x′)b−1

aB(a, b)
,

8.17.19 Ix(a, b) = Ix(a− 1, b+ 1)− xa−1(x′)b

bB(a, b)
,

8.17.20 Ix(a, b) = Ix(a+ 1, b) +
xa(x′)b

aB(a, b)
,

8.17.21 Ix(a, b) = Ix(a, b+ 1)− xa(x′)b

bB(a, b)
.
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8.17(v) Continued Fraction

8.17.22 Ix(a, b) =
xa(1− x)b

aB(a, b)

(
1

1 +
d1

1 +
d2

1 +
d3

1+
· · ·

)
,

where

8.17.23

d2m =
m(b−m)x

(a+ 2m− 1)(a+ 2m)
,

d2m+1 = − (a+m)(a+ b+m)x
(a+ 2m)(a+ 2m+ 1)

.

The 4m and 4m + 1 convergents are less than Ix(a, b),
and the 4m+2 and 4m+3 convergents are greater than
Ix(a, b).

See also Cuyt et al. (2008, pp. 385–389).
The expansion (8.17.22) converges rapidly for x <

(a + 1)/(a + b + 2). For x > (a + 1)/(a + b + 2) or
1 − x < (b + 1)/(a + b + 2), more rapid convergence is
obtained by computing I1−x(b, a) and using (8.17.4).

8.17(vi) Sums

For sums of infinite series whose terms involve the in-
complete Beta function see Hansen (1975, §62).

8.18 Asymptotic Expansions of Ix(a, b)

8.18(i) Large Parameters, Fixed x

If b and x are fixed, with b > 0 and 0 < x < 1, then as
a→∞
8.18.1

Ix(a, b) = Γ(a+ b)xa(1− x)b−1

×

(
n−1∑
k=0

1
Γ(a+ k + 1) Γ(b− k)

(
x

1− x

)k
+O

(
1

Γ(a+ n+ 1)

))
,

for each n = 0, 1, 2, . . . . If b = 1, 2, 3, . . . and n ≥ b,
then the O-term can be omitted and the result is exact.

If b → ∞ and a and x are fixed, with a > 0 and
0 < x < 1, then (8.18.1), with a and b interchanged and
x replaced by 1− x, can be combined with (8.17.4).

8.18(ii) Large Parameters: Uniform Asymptotic
Expansions

Large a, Fixed b

Let

8.18.2 ξ = − lnx.
Then as a→∞, with b (> 0) fixed,

8.18.3 Ix(a, b) ∼ Γ(a+ b)
Γ(a)

∞∑
k=0

dkFk,

uniformly for x ∈ (0, 1). The functions Fk are defined
by

8.18.4 aFk+1 = (k + b− aξ)Fk + kξFk−1,

with

8.18.5 F0 = a−bQ(b, aξ), F1 =
b− aξ
a

F0 +
ξbe−aξ

aΓ(b)
,

and Q(a, z) as in §8.2(i). The coefficients dk are defined
by the generating function

8.18.6

(
1− e−t

t

)b−1

=
∞∑
k=0

dk(t− ξ)k.

In particular,

8.18.7 d0 =
(

1− x
ξ

)b−1

, d1 =
xξ + x− 1
(1− x)ξ

(b− 1)d0.

Compare also §24.16(i).

Symmetric Case

Let

8.18.8 x0 = a/(a+ b).

Then as a+ b→∞,

8.18.9

Ix(a, b) ∼ 1
2 erfc

(
−η
√
b/2
)

+
1√

2π(a+ b)

×
(
x

x0

)a( 1− x
1− x0

)b ∞∑
k=0

(−1)kck(η)
(a+ b)k

,

uniformly for x ∈ (0, 1) and a/(a + b), b/(a + b) ∈
[δ, 1− δ], where δ again denotes an arbitrary small pos-
itive constant. For erfc see §7.2(i). Also,

8.18.10 − 1
2η

2 = x0 ln
(
x

x0

)
+ (1− x0) ln

(
1− x
1− x0

)
,

with η/(x− x0) > 0, and

8.18.11 c0(η) =
1
η
−
√
x0(1− x0)
x− x0

,

with limiting value

8.18.12 c0(0) =
1− 2x0

3
√
x0(1− x0)

.

For this result, and for higher coefficients ck(η) see
Temme (1996a, §11.3.3.2). All of the ck(η) are analytic
at η = 0.
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General Case

Let Γ̃(z) denote the scaled gamma function

8.18.13 Γ̃(z) = (2π)−1/2ezz(1/2)−z Γ(z),
µ = b/a, and x0 again be as in (8.18.8). Then as a→∞
8.18.14

Ix(a, b) ∼ Q(b, aζ)

− (2πb)−1/2

Γ̃(b)

(
x

x0

)a( 1− x
1− x0

)b ∞∑
k=0

hk(ζ, µ)
ak

,

uniformly for b ∈ (0,∞) and x ∈ (0, 1). Here
8.18.15

µ ln ζ − ζ = lnx+ µ ln(1− x) + (1 + µ) ln(1 + µ)− µ,
with (ζ − µ)/(x0 − x) > 0, and

8.18.16 h0(ζ, µ) = µ

(
1

ζ − µ
− (1 + µ)−3/2

x0 − x

)
,

with limiting value

8.18.17 h0(µ, µ) =
1
3

(
1− µ√
1 + µ

− 1
)
.

For this result and higher coefficients hk(ζ, µ) see
Temme (1996a, §11.3.3.3). All of the hk(ζ, µ) are ana-
lytic at ζ = µ (corresponding to x = x0).

Inverse Function

For asymptotic expansions for large values of a and/or
b of the x-solution of the equation

8.18.18 Ix(a, b) = p, 0 ≤ p ≤ 1,
see Temme (1992b).

8.19 Generalized Exponential Integral

8.19(i) Definition and Integral Representations

For p, z ∈ C
8.19.1 Ep(z) = zp−1 Γ(1− p, z).
Most properties of Ep(z) follow straightforwardly from
those of Γ(a, z). For an extensive treatment of E1(z)
see Chapter 6.

8.19.2 Ep(z) = zp−1

∫ ∞
z

e−t

tp
dt.

When the path of integration excludes the origin and
does not cross the negative real axis (8.19.2) defines the
principal value of Ep(z), and unless indicated otherwise
in this Handbook principal values are assumed.

Other Integral Representations

8.19.3 Ep(z) =
∫ ∞

1

e−zt

tp
dt, |ph z| < 1

2π,

8.19.4
Ep(z) =

zp−1e−z

Γ(p)

∫ ∞
0

tp−1e−zt

1 + t
dt,

|ph z| < 1
2π, <p > 0.

Integral representations of Mellin–Barnes type for
Ep(z) follow immediately from (8.6.11), (8.6.12), and
(8.19.1).

8.19(ii) Graphics

Figure 8.19.1: Ep(x), 0 ≤ x ≤ 3, 0 ≤ p ≤ 8.

In Figures 8.19.2 and 8.19.3, height corresponds to the
absolute value of the function and color to the phase.
See p. xiv.
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Figure 8.19.2: E 1
2
(x+ iy), −4 ≤ x ≤ 4, −4 ≤ y ≤

4. Principal value. There is a branch cut along the
negative real axis.

Figure 8.19.3: E1(x+ iy), −4 ≤ x ≤ 4, −4 ≤ y ≤
4. Principal value. There is a branch cut along the
negative real axis.

For additional graphics see http://dlmf.nist.gov/8.19.ii.

8.19(iii) Special Values

8.19.5 E0(z) = z−1e−z, z 6= 0,

8.19.6 Ep(0) =
1

p− 1
, <p > 1,

8.19.7

En(z) =
(−z)n−1

(n− 1)!
E1(z)+

e−z

(n− 1)!

n−2∑
k=0

(n−k−2)!(−z)k,

n = 2, 3, . . . .

8.19(iv) Series Expansions

For n = 1, 2, 3, . . . ,

8.19.8

En(z) =
(−z)n−1

(n− 1)!
(ψ(n)− ln z)−

∞∑
k=0

k 6=n−1

(−z)k

k!(1− n+ k)
,

and

8.19.9

En(z) =
(−1)nzn−1

(n− 1)!
ln z+

e−z

(n− 1)!

n−1∑
k=1

(−z)k−1 Γ(n− k)

+
e−z(−z)n−1

(n− 1)!

∞∑
k=0

zk

k!
ψ(k + 1),

with |ph z| ≤ π in both equations. For ψ(x) see §5.2(i).
When p ∈ C

8.19.10 Ep(z) = zp−1 Γ(1− p)−
∞∑
k=0

(−z)k

k!(1− p+ k)
,

8.19.11

Ep(z) = Γ(1− p)

(
zp−1 − e−z

∞∑
k=0

zk

Γ(2− p+ k)

)
,

again with |ph z| ≤ π in both equations. The right-
hand sides are replaced by their limiting forms when
p = 1, 2, 3, . . . .

8.19(v) Recurrence Relation and Derivatives

8.19.12 pEp+1(z) + z Ep(z) = e−z.

8.19.13
d

dz
Ep(z) = −Ep−1(z),

8.19.14
d

dz
(ez Ep(z)) = ez Ep(z)

(
1 +

p− 1
z

)
− 1
z
.

p-Derivatives

For j = 1, 2, 3, . . . ,

8.19.15

∂jEp(z)
∂pj

= (−1)j
∫ ∞

1

(ln t)jt−pe−zt dt, <z > 0.

For properties and numerical tables see Milgram (1985),
and also (when p = 1) MacLeod (2002b).

8.19(vi) Relation to Confluent Hypergeometric
Function

8.19.16 Ep(z) = zp−1e−z U(p, p, z).

For U(a, b, z) see §13.2(i).
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8.19(vii) Continued Fraction

8.19.17
Ep(z) = e−z

(
1
z +

p

1 +
1
z +

p+ 1
1 +

2
z +

· · ·

)
,

|ph z| < π.
See also Cuyt et al. (2008, pp. 277–285).

8.19(viii) Analytic Continuation

The general function Ep(z) is attained by extending the
path in (8.19.2) across the negative real axis. Unless p
is a nonpositive integer, Ep(z) has a branch point at
z = 0. For z 6= 0 each branch of Ep(z) is an entire
function of p.

8.19.18
Ep
(
ze2mπi

)
=

2πiempπi

Γ(p)
sin(mpπ)
sin(pπ)

zp−1 +Ep(z),

m ∈ Z, z 6= 0.

8.19(ix) Inequalities

For n = 1, 2, 3, . . . and x > 0,

8.19.19
n− 1
n

En(x) < En+1(x) < En(x),

8.19.20 (En(x))2 < En−1(x)En+1(x),

8.19.21
1

x+ n
< exEn(x) ≤ 1

x+ n− 1
,

8.19.22
d

dx

En(x)
En−1(x)

> 0.

8.19(x) Integrals

8.19.23

∫ ∞
z

Ep−1(t) dt = Ep(z), |ph z| < π,

8.19.24

∫ ∞
0

e−atEn(t) dt

=
(−1)n−1

an

(
ln(1 + a) +

n−1∑
k=1

(−1)kak

k

)
,

n = 1, 2, . . . , <a > −1,

8.19.25∫ ∞
0

e−attb−1Ep(t) dt =
Γ(b)(1 + a)−b

p+ b− 1
× F (1, b; p+ b; a/(1 + a)),

<a > −1, <(p+ b) > 1.

8.19.26

∫ ∞
0

Ep(t)Eq(t) dt =
L(p) + L(q)
p+ q − 1

,

p > 0, q > 0, p+ q > 1,
where
8.19.27

L(p) =
∫ ∞

0

e−tEp(t) dt =
1
2p
F
(
1, 1; 1 + p; 1

2

)
, p > 0.

For the hypergeometric function F (a, b; c; z) see
§15.2(i). When p = 1, 2, 3, . . . , L(p) can also be evalu-
ated via (8.19.24).

For collections of integrals involving Ep(z), espe-
cially for integer p, see Apelblat (1983, §§7.1–7.2) and
LeCaine (1945).

8.19(xi) Further Generalizations

For higher-order generalized exponential integrals see
Meijer and Baken (1987) and Milgram (1985).

8.20 Asymptotic Expansions of Ep(z)

8.20(i) Large z

8.20.1

Ep(z) =
e−z

z

(
n−1∑
k=0

(−1)k
(p)k
zk

+(−1)n
(p)ne

z

zn−1
En+p(z)

)
,

n = 1, 2, 3, . . . .
As z →∞

8.20.2 Ep(z) ∼
e−z

z

∞∑
k=0

(−1)k
(p)k
zk

, |ph z| ≤ 3
2π − δ,

and

8.20.3
Ep(z) ∼ ±

2πi
Γ(p)

e∓pπizp−1 +
e−z

z

∞∑
k=0

(−1)k(p)k
zk

,

1
2π + δ ≤ ± ph z ≤ 7

2π − δ,
δ again denoting an arbitrary small positive constant.
Where the sectors of validity of (8.20.2) and (8.20.3)
overlap the contribution of the first term on the right-
hand side of (8.20.3) is exponentially small compared to
the other contribution; compare §2.11(ii).

For an exponentially-improved asymptotic expan-
sion of Ep(z) see §2.11(iii).

8.20(ii) Large p

For x ≥ 0 and p > 1 let x = λp and define A0(λ) = 1,

8.20.4
Ak+1(λ) = (1− 2kλ)Ak(λ) + λ(λ+ 1)

dAk(λ)
dλ

,

k = 0, 1, 2, . . . ,
so that Ak(λ) is a polynomial in λ of degree k− 1 when
k ≥ 1. In particular,
8.20.5

A1(λ) = 1, A2(λ) = 1− 2λ, A3(λ) = 1− 8λ+ 6λ2.

Then as p→∞

8.20.6 Ep(λp) ∼
e−λp

(λ+ 1)p

∞∑
k=0

Ak(λ)
(λ+ 1)2k

1
pk
,

uniformly for λ ∈ [0,∞).
For further information, including extensions to

complex values of x and p, see Temme (1994a, §4) and
Dunster (1996b, 1997).
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8.21 Generalized Sine and Cosine Integrals

8.21(i) Definitions: General Values

With γ and Γ denoting here the general values of the
incomplete gamma functions (§8.2(i)), we define

8.21.1 ci(a, z)± i si(a, z) = e±
1
2πia Γ

(
a, ze∓

1
2πi
)
,

8.21.2 Ci(a, z)± i Si(a, z) = e±
1
2πia γ

(
a, ze∓

1
2πi
)
.

From §§8.2(i) and 8.2(ii) it follows that each of the
four functions si(a, z), ci(a, z), Si(a, z), and Ci(a, z) is a
multivalued function of z with branch point at z = 0.
Furthermore, si(a, z) and ci(a, z) are entire functions
of a, and Si(a, z) and Ci(a, z) are meromorphic func-
tions of a with simple poles at a = −1,−3,−5, . . . and
a = 0,−2,−4, . . . , respectively.

8.21(ii) Definitions: Principal Values

When ph z = 0 (and when a 6= −1,−3,−5, . . . , in the
case of Si(a, z), or a 6= 0,−2,−4, . . . , in the case of
Ci(a, z)) the principal values of si(a, z), ci(a, z), Si(a, z),
and Ci(a, z) are defined by (8.21.1) and (8.21.2) with
the incomplete gamma functions assuming their princi-
pal values (§8.2(i)). Elsewhere in the sector |ph z| ≤ π
the principal values are defined by analytic continuation
from ph z = 0; compare §4.2(i).

From here on it is assumed that unless indicated
otherwise the functions si(a, z), ci(a, z), Si(a, z), and
Ci(a, z) have their principal values.

Properties of the four functions that are stated be-
low in §§8.21(iii) and 8.21(iv) follow directly from the
definitions given above, together with properties of the
incomplete gamma functions given earlier in this chap-
ter. In the case of §8.21(iv) the equation

8.21.3

∫ ∞
0

ta−1e±it dt = e±
1
2πia Γ(a), 0 < <a < 1,

(obtained from (5.2.1) by rotation of the integration
path) is also needed.

8.21(iii) Integral Representations

8.21.4 si(a, z) =
∫ ∞
z

ta−1 sin t dt, <a < 1,

8.21.5 ci(a, z) =
∫ ∞
z

ta−1 cos t dt, <a < 1,

8.21.6 Si(a, z) =
∫ z

0

ta−1 sin t dt, <a > −1,

8.21.7 Ci(a, z) =
∫ z

0

ta−1 cos t dt, <a > 0.

In these representations the integration paths do not
cross the negative real axis, and in the case of (8.21.4)
and (8.21.5) the paths also exclude the origin.

8.21(iv) Interrelations

8.21.8

Si(a, z) = Γ(a) sin
(

1
2πa

)
− si(a, z), a 6= −1,−3,−5, . . . ,

8.21.9

Ci(a, z) = Γ(a) cos
(

1
2πa

)
− ci(a, z), a 6= 0,−2,−4, . . . .

8.21(v) Special Values

8.21.10 si(0, z) = − si(z), ci(0, z) = −Ci(z),

8.21.11 Si(0, z) = Si(z).

For the functions on the right-hand sides of (8.21.10)
and (8.21.11) see §6.2(ii).

8.21.12 Si(a,∞) = Γ(a) sin
(

1
2πa

)
, a 6= −1,−3,−5, . . . ,

8.21.13 Ci(a,∞) = Γ(a) cos
(

1
2πa

)
, a 6= 0,−2,−4, . . . .

8.21(vi) Series Expansions

Power-Series Expansions

8.21.14
Si(a, z) = za

∞∑
k=0

(−1)kz2k+1

(2k + a+ 1)(2k + 1)!
,

a 6= −1,−3,−5, . . . ,

8.21.15

Ci(a, z) = za
∞∑
k=0

(−1)kz2k

(2k + a)(2k)!
, a 6= 0,−2,−4, . . . .

Spherical-Bessel-Function Expansions

8.21.16
Si(a, z) = za

∞∑
k=0

(
2k + 3

2

) (
1− 1

2a
)
k(

1
2 + 1

2a
)
k+1

j2k+1(z),

a 6= −1,−3,−5, . . . ,

8.21.17
Ci(a, z) = za

∞∑
k=0

(
2k + 1

2

) (
1
2 −

1
2a
)
k(

1
2a
)
k+1

j2k(z),

a 6= 0,−2,−4, . . . .

For jn(z) see §10.47(ii). For (8.21.16), (8.21.17), and
further expansions in series of Bessel functions see Luke
(1969b, pp. 56–57).
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8.21(vii) Auxiliary Functions

8.21.18 f(a, z) = si(a, z) cos z − ci(a, z) sin z,

8.21.19 g(a, z) = si(a, z) sin z + ci(a, z) cos z.

8.21.20 si(a, z) = f(a, z) cos z + g(a, z) sin z,

8.21.21 ci(a, z) = −f(a, z) sin z + g(a, z) cos z.

When |ph z| < π and <a < 1,

8.21.22 f(a, z) =
∫ ∞

0

sin t
(t+ z)1−a dt,

8.21.23 g(a, z) =
∫ ∞

0

cos t
(t+ z)1−a dt.

When |ph z| < 1
2π,

8.21.24

f(a, z) =
za

2

∫ ∞
0

(
(1 + it)a−1 + (1− it)a−1

)
e−zt dt,

8.21.25

g(a, z) =
za

2i

∫ ∞
0

(
(1− it)a−1 − (1 + it)a−1

)
e−zt dt.

8.21(viii) Asymptotic Expansions

When z →∞ with |ph z| ≤ π − δ (< π),

8.21.26 f(a, z) ∼ za−1
∞∑
k=0

(−1)k(1− a)2k

z2k
,

8.21.27 g(a, z) ∼ za−1
∞∑
k=0

(−1)k(1− a)2k+1

z2k+1
.

For the corresponding expansions for si(a, z) and
ci(a, z) apply (8.21.20) and (8.21.21).

Applications

8.22 Mathematical Applications

8.22(i) Terminant Function

The so-called terminant function Fp(z), defined by

8.22.1 Fp(z) =
Γ(p)
2π

z1−pEp(z) =
Γ(p)
2π

Γ(1− p, z),

plays a fundamental role in re-expansions of re-
mainder terms in asymptotic expansions, including
exponentially-improved expansions and a smooth inter-
pretation of the Stokes phenomenon. See §§2.11(ii)–
2.11(v) and the references supplied in these subsections.

8.22(ii) Riemann Zeta Function and Incomplete
Riemann Zeta Function

The function Γ(a, z), with |ph a| ≤ 1
2π and ph z = 1

2π,
has an intimate connection with the Riemann zeta func-
tion ζ(s) (§25.2(i)) on the critical line <s = 1

2 . See Paris
and Cang (1997).

If ζx(s) denotes the incomplete Riemann zeta func-
tion defined by

8.22.2 ζx(s) =
1

Γ(s)

∫ x

0

ts−1

et − 1
dt, <s > 1,

so that limx→∞ ζx(s) = ζ(s), then

8.22.3 ζx(s) =
∞∑
k=1

k−s P (s, kx), <s > 1.

For further information on ζx(s), including zeros and
uniform asymptotic approximations, see Kölbig (1970,
1972a) and Dunster (2006).

8.23 Statistical Applications

The functions P (a, x) and Q(a, x) are used extensively
in statistics as the probability integrals of the gamma
distribution; see Johnson et al. (1994, pp. 337–414).
Particular forms are the chi-square distribution func-
tions; see Johnson et al. (1994, pp. 415–493). The func-
tion Bx(a, b) and its normalization Ix(a, b) play a similar
role in statistics in connection with the beta distribu-
tion; see Johnson et al. (1995, pp. 210–275). In queue-
ing theory the Erlang loss function is used, which can
be expressed in terms of the reciprocal of Q(a, x); see
Jagerman (1974) and Cooper (1981, pp. 80, 316–319).

8.24 Physical Applications

8.24(i) Incomplete Gamma Functions

The function γ(a, x) appears in: discussions of power-
law relaxation times in complex physical systems (Sor-
nette (1998)); logarithmic oscillations in relaxation
times for proteins (Metzler et al. (1999)); Gaussian
orbitals and exponential (Slater) orbitals in quantum
chemistry (Shavitt (1963), Shavitt and Karplus (1965));
population biology and ecological systems (Camacho
et al. (2002)).

8.24(ii) Incomplete Beta Functions

The function Ix(a, b) appears in: Monte Carlo sam-
pling in statistical mechanics (Kofke (2004)); analy-
sis of packings of soft or granular objects (Prellberg
and Owczarek (1995)); growth formulas in cosmology
(Hamilton (2001)).
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8.24(iii) Generalized Exponential Integral

The function Ep(x), with p > 0, appears in theories
of transport and radiative equilibrium (Hopf (1934),
Kourganoff (1952), Altaç (1996)).

With more general values of p, Ep(x) supplies fun-
damental auxiliary functions that are used in the com-
putation of molecular electronic integrals in quantum
chemistry (Harris (2002), Shavitt (1963)), and also wave
acoustics of overlapping sound beams (Ding (2000)).

Computation

8.25 Methods of Computation

8.25(i) Series Expansions

Although the series expansions in §§8.7, 8.19(iv), and
8.21(vi) converge for all finite values of z, they are cum-
bersome to use when |z| is large owing to slowness of
convergence and cancellation. For large |z| the corre-
sponding asymptotic expansions (generally divergent)
are used instead. See also Luke (1975, pp. 101–102)
and Temme (1994a).

8.25(ii) Quadrature

See Allasia and Besenghi (1987a) for the numerical com-
putation of Γ(a, z) from (8.6.4) by means of the trape-
zoidal rule.

8.25(iii) Asymptotic Expansions

DiDonato and Morris (1986) describes an algorithm for
computing P (a, x) and Q(a, x) for a ≥ 0, x ≥ 0, and
a + x 6= 0 from the uniform expansions in §8.12. The
algorithm supplies 14S accuracy. A numerical inver-
sion procedure is also given for calculating the value of
x (with 10S accuracy), when a and P (a, x) are speci-
fied, based on Newton’s rule (§3.8(ii)). See also Temme
(1987, 1994a).

8.25(iv) Continued Fractions

The computation of γ(a, z) and Γ(a, z) by means of con-
tinued fractions is described in Jones and Thron (1985)
and Gautschi (1979a, §§4.3, 5). See also Jacobsen et al.
(1986) and Temme (1996a, p. 280).

8.25(v) Recurrence Relations

Expansions involving incomplete gamma functions of-
ten require the generation of sequences P (a+ n, x),
Q(a+ n, x), or γ∗(a+ n, x) for fixed a and n =
0, 1, 2, . . . . An efficient procedure, based partly on the
recurrence relations (8.8.5) and (8.8.6), is described in
Gautschi (1979a, 1999).

Stable recursive schemes for the computation of
Ep(x) are described in Miller (1960) for x > 0 and inte-
ger p. For x > 0 and real p see Amos (1980) and Chiccoli
et al. (1987, 1988). See also Chiccoli et al. (1990) and
Stegun and Zucker (1974).

8.26 Tables

8.26(i) Introduction

For tables published before 1961 see Fletcher et al.
(1962) and Lebedev and Fedorova (1960).

8.26(ii) Incomplete Gamma Functions

• Khamis (1965) tabulates P (a, x) for a =
0.05(.05)10(.1)20(.25)70, 0.0001 ≤ x ≤ 250 to
10D.

• Pagurova (1963) tabulates P (a, x) and Q(a, x)
(with different notation) for a = 0(.05)3, x =
0(.05)1 to 7D.

• Pearson (1965) tabulates the function I(u, p) (=
P (p+ 1, u)) for p = −1(.05)0(.1)5(.2)50, u =
0(.1)up to 7D, where I(u, up) rounds off to 1 to
7D; also I(u, p) for p = −0.75(.01)− 1, u = 0(.1)6
to 5D.

• Zhang and Jin (1996, Table 3.8) tabulates
γ(a, x) for a = 0.5, 1, 3, 5, 10, 25, 50, 100, x =
0(.1)1(1)3, 5(5)30, 50, 100 to 8D or 8S.

8.26(iii) Incomplete Beta Functions

• Pearson (1968) tabulates Ix(a, b) for x =
0.01(.01)1, a, b = 0.5(.5)11(1)50, with b ≤ a, to
7D.

• Zhang and Jin (1996, Table 3.9) tabulates Ix(a, b)
for x = 0(.05)1, a = 0.5, 1, 3, 5, 10, b = 1, 10 to
8D.

8.26(iv) Generalized Exponential Integral

• Abramowitz and Stegun (1964, pp. 245–248) tab-
ulates En(x) for n = 2, 3, 4, 10, 20, x = 0(.01)2
to 7D; also (x + n)exEn(x) for n = 2, 3, 4, 10, 20,
x−1 = 0(.01)0.1(.05)0.5 to 6S.
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• Chiccoli et al. (1988) presents a short table of
Ep(x) for p = − 9

2 (1)− 1
2 , 0 ≤ x ≤ 200 to 14S.

• Pagurova (1961) tabulates En(x) for n = 0(1)20,
x = 0(.01)2(.1)10 to 4-9S; exEn(x) for n =
2(1)10, x = 10(.1)20 to 7D; exEp(x) for p =
0(.1)1, x = 0.01(.01)7(.05)12(.1)20 to 7S or 7D.

• Stankiewicz (1968) tabulates En(x) for n =
1(1)10, x = 0.01(.01)5 to 7D.

• Zhang and Jin (1996, Table 19.1) tabulates
En(x) for n = 1, 2, 3, 5, 10, 15, 20, x =
0(.1)1, 1.5, 2, 3, 5, 10, 20, 30, 50, 100 to 7D or 8S.

8.27 Approximations

8.27(i) Incomplete Gamma Functions

• DiDonato (1978) gives a simple approximation for
the function F (p, x) = x−pex

2/2
∫∞
x
e−t

2/2tp dt
(which is related to the incomplete gamma func-
tion by a change of variables) for real p and
large positive x. This takes the form F (p, x) =
4x/h(p, x), approximately, where h(p, x) = 3(x2−
p) +

√
(x2 − p)2 + 8(x2 + p) and is shown to pro-

duce an absolute error O
(
x−7

)
as x→∞.

• Luke (1975, §4.3) gives Padé approximation meth-
ods, combined with a detailed analysis of the er-
ror terms, valid for real and complex variables ex-
cept on the negative real z-axis. See also Temme
(1994a, §3).

• Luke (1969b, pp. 25, 40–41) gives Chebyshev-
series expansions for Γ(a, ωz) (by specifying pa-
rameters) with 1 ≤ ω < ∞, and γ(a, ωz) with
0 ≤ ω ≤ 1; see also Temme (1994a, §3).

• Luke (1969b, p. 186) gives hypergeometric poly-
nomial representations that converge uniformly on
compact subsets of the z-plane that exclude z = 0
and are valid for |ph z| < π.

8.27(ii) Generalized Exponential Integral

• Luke (1975, p. 103) gives Chebyshev-series expan-
sions for E1(x) and related functions for x ≥ 5.

• Luke (1975, p. 106) gives rational and Padé ap-
proximations, with remainders, for E1(z) and
z−1

∫ z
0
t−1(1− e−t) dt for complex z with |ph z| ≤

π.

• Verbeeck (1970) gives polynomial and rational ap-
proximations for Ep(x) = (e−x/x)P (z), approxi-
mately, where P (z) denotes a quotient of polyno-
mials of equal degree in z = x−1.

8.28 Software

See http://dlmf.nist.gov/8.28.
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)
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§8.18 Temme (1996a, §§11.3.3.1–11.3.3.3). For (8.18.1)
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§8.19 For (8.19.1)–(8.19.4) see Temme (1996a, p. 180).
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(8.4.15). (8.19.8) follows from (8.4.13) and
(8.4.15). (8.19.9) follows from (6.6.3), (8.19.1),
and (8.4.15). (8.19.10) and (8.19.11) follow from

(8.19.1) and (8.7.3). For (8.19.12)–(8.19.16) com-
bine (8.19.1) with (8.8.2), (8.8.16), (8.8.19), and
(8.5.3). For (8.19.17) combine (8.9.2) and (8.19.1).
For (8.19.18) see Olver (1994b). For (8.19.19)–
(8.19.22) see Hopf (1934, pp. 26–27). For
(8.19.23) use (8.19.13). For (8.19.24)–(8.19.27)
see Kourganoff (1952, Appendix 1). The graph-
ics were produced at NIST.

§8.20 Olver (1991a), Gautschi (1959a).

§8.21 For §8.21(iii) follow the prescription given in the
final paragraph of §8.21(ii). Thus for (8.21.4)
and (8.21.5) replace z by iz with ph z = 0 in
(8.2.2), deform the path of integration to run
along the positive imaginary axis, and replace t
by it. Then extend to the sector |ph z| ≤ π
by analytic continuation. Similarly for (8.21.6)
and (8.21.7). For §8.21(iv) temporarily restrict
0 < <a < 1. Then (8.21.8) and (8.21.9) follow im-
mediately from (8.21.3)–(8.21.7). Subsequently,
ease the restrictions on a by analytic continuation
with respect to a; compare §8.21(i). For (8.21.12)
and (8.21.13) use (8.21.8) and (8.21.9), and also
(8.21.4) and (8.21.5). (8.21.14) and (8.21.15) are
obtained by expansion of the trigonometric func-
tions in (8.21.6), (8.21.7), and termwise integra-
tion. See also Luke (1975, p. 115). (8.21.22) and
(8.21.23) follow from (8.21.4), (8.21.5), (8.21.18),
and (8.21.19). For (8.21.24) and (8.21.25) as-
sume ph z = 0, and in the integrals for ci(a, z) ±
i si(a, z) obtained from (8.21.4) and (8.21.5) set
t = (1 + τ)z, rotate the integration paths in
the τ -plane through ± 1

2π, and apply (8.21.18)
and (8.21.19). The restriction ph z = 0 is eased
to |ph z| < 1

2π by analytic continuation. For
(8.21.26) and (8.21.27) apply Watson’s lemma to
(8.21.24) and (8.21.25), and then extend the sector
of validity from |ph z| ≤ 1

2π− δ to |ph z| ≤ π− δ;
see §2.4(i).
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Notation

9.1 Special Notation

(For other notation see pp. xiv and 873.)

k nonnegative integer, except in §9.9(iii).
x real variable.
z(= x+ iy) complex variable.
δ arbitrary small positive constant.
primes derivatives with respect to argument.

The main functions treated in this chapter are the
Airy functions Ai(z) and Bi(z), and the Scorer func-
tions Gi(z) and Hi(z) (also known as inhomogeneous
Airy functions).

Other notations that have been used are as fol-
lows: Ai(−x) and Bi(−x) for Ai(x) and Bi(x) (Jef-
freys (1928), later changed to Ai(x) and Bi(x)); U(x) =√
πBi(x), V (x) =

√
πAi(x) (Fock (1945)); A(x) =

3− 1/3πAi
(
−3− 1/3x

)
(Szegö (1967, §1.81)); e0(x) =

πHi(−x), ẽ0(x) = −πGi(−x) (Tumarkin (1959)).

Airy Functions

9.2 Differential Equation

9.2(i) Airy’s Equation

9.2.1
d2w

dz2 = zw.

All solutions are entire functions of z.
Standard solutions are:

9.2.2 w = Ai(z), Bi(z), Ai
(
ze∓2πi/3

)
.

9.2(ii) Initial Values

9.2.3 Ai(0) =
1

32/3 Γ
(

2
3

) = 0.35502 80538 . . . ,

9.2.4 Ai′(0) = − 1
31/3 Γ

(
1
3

) = −0.25881 94037 . . . ,

9.2.5 Bi(0) =
1

31/6 Γ
(

2
3

) = 0.61492 66274 . . . ,

9.2.6 Bi′(0) =
31/6

Γ
(

1
3

) = 0.44828 83573 . . . .

9.2(iii) Numerically Satisfactory Pairs of
Solutions

Table 9.2.1 lists numerically satisfactory pairs of solu-
tions of (9.2.1) for the stated regions; compare §2.7(iv).

Table 9.2.1: Numerically satisfactory solutions of Airy’s
equation.

Pair Region

Ai(x),Bi(x) −∞ < x <∞

Ai(z),Bi(z)

{
|ph z| ≤ 1

3π

−∞ < z ≤ 0

Ai(z),Ai
(
ze−2πi/3

)
− 1

3π ≤ ph z ≤ π
Ai(z),Ai

(
ze2πi/3

)
−π ≤ ph z ≤ 1

3π

Ai
(
ze∓2πi/3

)
|ph(−z)| ≤ 2

3π

9.2(iv) Wronskians

9.2.7 W {Ai(z),Bi(z)} =
1
π
,

9.2.8 W
{

Ai(z),Ai
(
ze∓2πi/3

)}
=
e±πi/6

2π
,

9.2.9 W
{

Ai
(
ze−2πi/3

)
,Ai
(
ze2πi/3

)}
=

1
2πi

.

9.2(v) Connection Formulas

9.2.10 Bi(z) = e−πi/6 Ai
(
ze−2πi/3

)
+eπi/6 Ai

(
ze2πi/3

)
.

9.2.11 Ai
(
ze∓2πi/3

)
= 1

2e
∓πi/3 (Ai(z)± iBi(z)) .

9.2.12

Ai(z) + e−2πi/3 Ai
(
ze−2πi/3

)
+ e2πi/3 Ai

(
ze2πi/3

)
= 0,

9.2.13

Bi(z) + e−2πi/3 Bi
(
ze−2πi/3

)
+ e2πi/3 Bi

(
ze2πi/3

)
= 0.

9.2.14 Ai(−z) = eπi/3 Ai
(
zeπi/3

)
+e−πi/3 Ai

(
ze−πi/3

)
,

9.2.15 Bi(−z) = e−πi/6 Ai
(
zeπi/3

)
+eπi/6 Ai

(
ze−πi/3

)
.

9.2(vi) Riccati Form of Differential Equation

9.2.16
dW

dz
+W 2 = z,

W = (1/w) dw/dz , where w is any nontrivial solution
of (9.2.1). See also Smith (1990).
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9.3 Graphics

9.3(i) Real Variable

Figure 9.3.1: Ai(x), Bi(x), M(x). For M(x) see §9.8(i). Figure 9.3.2: Ai′(x), Bi′(x), N(x). For N(x) see §9.8(i).

9.3(ii) Complex Variable

In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the
phase. See also p. xiv.

Figure 9.3.3: Ai(x+ iy). Figure 9.3.4: Bi(x+ iy).

Figure 9.3.5: Ai′(x+ iy). Figure 9.3.6: Bi′(x+ iy).
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9.4 Maclaurin Series

For z ∈ C

9.4.1 Ai(z) = Ai(0)
(

1 +
1
3!
z3 +

1 · 4
6!

z6 +
1 · 4 · 7

9!
z9 + · · ·

)
+ Ai′(0)

(
z +

2
4!
z4 +

2 · 5
7!

z7 +
2 · 5 · 8

10!
z10 + · · ·

)
,

9.4.2 Ai′(z) = Ai′(0)
(

1 +
2
3!
z3 +

2 · 5
6!

z6 +
2 · 5 · 8

9!
z9 + · · ·

)
+ Ai(0)

(
1
2!
z2 +

1 · 4
5!

z5 +
1 · 4 · 7

8!
z8 + · · ·

)
,

9.4.3 Bi(z) = Bi(0)
(

1 +
1
3!
z3 +

1 · 4
6!

z6 +
1 · 4 · 7

9!
z9 + · · ·

)
+ Bi′(0)

(
z +

2
4!
z4 +

2 · 5
7!

z7 +
2 · 5 · 8

10!
z10 + · · ·

)
,

9.4.4 Bi′(z) = Bi′(0)
(

1 +
2
3!
z3 +

2 · 5
6!

z6 +
2 · 5 · 8

9!
z9 + · · ·

)
+ Bi(0)

(
1
2!
z2 +

1 · 4
5!

z5 +
1 · 4 · 7

8!
z8 + · · ·

)
.

9.5 Integral Representations

9.5(i) Real Variable

9.5.1 Ai(x) =
1
π

∫ ∞
0

cos
(

1
3 t

3 + xt
)
dt.

9.5.2

Ai(−x) =
x 1/2

π

∫ ∞
−1

cos
(
x 3/2 ( 1

3 t
3 + t2 − 2

3 )
)
dt, x > 0.

9.5.3

Bi(x)

=
1
π

∫ ∞
0

exp
(
− 1

3 t
3 + xt

)
dt+

1
π

∫ ∞
0

sin
(

1
3 t

3 + xt
)
dt.

See also (9.10.19), (9.11.3), (36.9.2), and Vallée and
Soares (2004, §2.1.3).

9.5(ii) Complex Variable

9.5.4 Ai(z) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

exp
(

1
3 t

3 − zt
)
dt,

9.5.5

Bi(z) =
1

2π

∫ ∞eπi/3
−∞

exp
(

1
3 t

3 − zt
)
dt

+
1

2π

∫ ∞e−πi/3
−∞

exp
(

1
3 t

3 − zt
)
dt.

9.5.6 Ai(z) =
√

3
2π

∫ ∞
0

exp
(
− t

3

3
− z3

3t3

)
dt.

9.5.7

Ai(z) =
e−ζ

π

∫ ∞
0

exp
(
−z 1/2 t2

)
cos
(

1
3 t

3
)
dt, |ph z| < π.

9.5.8

Ai(z) =
e−ζζ −1/6

√
π(48) 1/6 Γ

(
5
6

) ∫ ∞
0

e−tt− 1/6

(
2+

t

ζ

)− 1/6

dt,

|ph z| < 2
3π.

In (9.5.7) and (9.5.8) ζ = 2
3z

3/2 .
See also (9.10.18) and (9.11.4).

9.6 Relations to Other Functions

9.6(i) Airy Functions as Bessel Functions,
Hankel Functions, and Modified Bessel
Functions

For the notation see §§10.2(ii) and 10.25(ii). With

9.6.1 ζ = 2
3z

3/2,

9.6.2

Ai(z) = π−1
√
z/3K±1/3(ζ)

= 1
3

√
z
(
I−1/3(ζ)− I1/3(ζ)

)
= 1

2

√
z/3e2πi/3H

(1)
1/3

(
ζeπi/2

)
= 1

2

√
z/3eπi/3H(1)

−1/3

(
ζeπi/2

)
= 1

2

√
z/3e−2πi/3H

(2)
1/3

(
ζe−πi/2

)
= 1

2

√
z/3e−πi/3H(2)

−1/3

(
ζe−πi/2

)
,

9.6.3

Ai′(z) = −π−1(z/
√

3)K±2/3(ζ)

= (z/3)
(
I2/3(ζ)− I−2/3(ζ)

)
= 1

2 (z/
√

3)e−πi/6H(1)
2/3

(
ζeπi/2

)
= 1

2 (z/
√

3)e−5πi/6H
(1)
−2/3

(
ζeπi/2

)
= 1

2 (z/
√

3)eπi/6H(2)
2/3

(
ζe−πi/2

)
= 1

2 (z/
√

3)e5πi/6H
(2)
−2/3

(
ζe−πi/2

)
,

9.6.4

Bi(z) =
√
z/3

(
I1/3(ζ) + I−1/3(ζ)

)
= 1

2

√
z/3

(
eπi/6H

(1)
1/3

(
ζe−πi/2

)
+ e−πi/6H

(2)
1/3

(
ζeπi/2

))
= 1

2

√
z/3

(
e−πi/6H

(1)
−1/3

(
ζe−πi/2

)
+ eπi/6H

(2)
−1/3

(
ζeπi/2

))
,
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9.6.5

Bi′(z) = (z/
√

3)
(
I2/3(ζ) + I−2/3(ζ)

)
= 1

2 (z/
√

3)
(
eπi/3H

(1)
2/3

(
ζe−πi/2

)
+ e−πi/3H

(2)
2/3

(
ζeπi/2

))
= 1

2 (z/
√

3)
(
e−πi/3H

(1)
−2/3

(
ζe−πi/2

)
+ eπi/3H

(2)
−2/3

(
ζeπi/2

))
,

9.6.6

Ai(−z) = (
√
z/3)

(
J1/3(ζ) + J−1/3(ζ)

)
= 1

2

√
z/3

(
eπi/6H

(1)
1/3(ζ) + e−πi/6H

(2)
1/3(ζ)

)
= 1

2

√
z/3

(
e−πi/6H

(1)
−1/3(ζ) + eπi/6H

(2)
−1/3(ζ)

)
,

9.6.7

Ai′(−z) = (z/3)
(
J2/3(ζ)− J−2/3(ζ)

)
= 1

2 (z/
√

3)
(
e−πi/6H

(1)
2/3(ζ) + eπi/6H

(2)
2/3(ζ)

)
= 1

2 (z/
√

3)
(
e−5πi/6H

(1)
−2/3(ζ)

+ e5πi/6H
(2)
−2/3(ζ)

)
,

9.6.8

Bi(−z) =
√
z/3

(
J−1/3(ζ)− J1/3(ζ)

)
= 1

2

√
z/3

(
e2πi/3H

(1)
1/3(ζ) + e−2πi/3H

(2)
1/3(ζ)

)
= 1

2

√
z/3

(
eπi/3H

(1)
−1/3(ζ) + e−πi/3H

(2)
−1/3(ζ)

)
,

9.6.9

Bi′(−z) = (z/
√

3)
(
J−2/3(ζ) + J2/3(ζ)

)
= 1

2 (z/
√

3)
(
eπi/3H

(1)
2/3(ζ) + e−πi/3H

(2)
2/3(ζ)

)
= 1

2 (z/
√

3)
(
e−πi/3H

(1)
−2/3(ζ)

+ eπi/3H
(2)
−2/3(ζ)

)
.

9.6(ii) Bessel Functions, Hankel Functions, and
Modified Bessel Functions as Airy
Functions

Again, for the notation see §§10.2(ii) and 10.25(ii).
With

9.6.10 z = ( 3
2ζ)2/3,

9.6.11 J±1/3(ζ) = 1
2

√
3/z

(√
3 Ai(−z)∓ Bi(−z)

)
,

9.6.12 J±2/3(ζ) = 1
2 (
√

3/z)
(
±
√

3 Ai′(−z) + Bi′(−z)
)
,

9.6.13 I±1/3(ζ) = 1
2

√
3/z

(
∓
√

3 Ai(z) + Bi(z)
)
,

9.6.14 I±2/3(ζ) = 1
2 (
√

3/z)
(
±
√

3 Ai′(z) + Bi′(z)
)
,

9.6.15 K±1/3(ζ) = π
√

3/zAi(z),

9.6.16 K±2/3(ζ) = −π(
√

3/z) Ai′(z),

9.6.17
H

(1)
1/3(ζ) = e−πi/3H

(1)
−1/3(ζ)

= e−πi/6
√

3/z (Ai(−z)− iBi(−z)) ,

9.6.18
H

(1)
2/3(ζ) = e−2πi/3H

(1)
−2/3(ζ)

= eπi/6(
√

3/z)
(
Ai′(−z)− iBi′(−z)

)
,

9.6.19
H

(2)
1/3(ζ) = eπi/3H

(2)
−1/3(ζ)

= eπi/6
√

3/z (Ai(−z) + iBi(−z)) ,

9.6.20
H

(2)
2/3(ζ) = e2πi/3H

(2)
−2/3(ζ)

= e−πi/6(
√

3/z)
(
Ai′(−z) + iBi′(−z)

)
.

9.6(iii) Airy Functions as Confluent
Hypergeometric Functions

For the notation see §§13.1, 13.2, and 13.14(i). With ζ
as in (9.6.1),

9.6.21
Ai(z) = 1

2π
−1/2z−1/4W0,1/3(2ζ)

= 3−1/6π−1/2ζ2/3e−ζ U
(

5
6 ,

5
3 , 2ζ

)
,

9.6.22
Ai′(z) = − 1

2π
−1/2z1/4W0,2/3(2ζ)

= −31/6π−1/2ζ4/3e−ζ U
(

7
6 ,

7
3 , 2ζ

)
,

9.6.23

Bi(z) =
1

21/3 Γ
(

2
3

)z−1/4M0,−1/3(2ζ)

+
3

25/3 Γ
(

1
3

)z−1/4M0,1/3(2ζ),

9.6.24

Bi′(z) =
21/3

Γ
(

1
3

)z1/4M0,−2/3(2ζ)

+
3

210/3 Γ
(

2
3

)z1/4M0,2/3(2ζ),

9.6.25

Bi(z) =
1

31/6 Γ
(

2
3

)e−ζ 1F1

(
1
6 ; 1

3 ; 2ζ
)

+
35/6

22/3 Γ
(

1
3

)ζ2/3e−ζ 1F1

(
5
6 ; 5

3 ; 2ζ
)
,

9.6.26

Bi′(z) =
31/6

Γ
(

1
3

)e−ζ 1F1

(
− 1

6 ;− 1
3 ; 2ζ

)
+

37/6

27/3 Γ
(

2
3

)ζ4/3e−ζ 1F1

(
7
6 ; 7

3 ; ζ
)
.
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9.7 Asymptotic Expansions

9.7(i) Notation

Here δ denotes an arbitrary small positive constant and

9.7.1 ζ = 2
3z

3/2 .

Also u0 = v0 = 1 and for k = 1, 2, . . . ,

9.7.2
uk =

(2k + 1)(2k + 3)(2k + 5) · · · (6k − 1)
(216)k(k)!

,

vk =
6k + 1
1− 6k

uk.

Lastly,

9.7.3 χ(n) = π 1/2 Γ
(

1
2n+ 1

)
/Γ
(

1
2n+ 1

2

)
.

Numerical values of this function are given in Table 9.7.1
for n = 1(1)20 to 2D. For large n,

9.7.4 χ(n) ∼ ( 1
2πn) 1/2 .

Table 9.7.1: χ(n).

n χ(n) n χ(n) n χ(n) n χ(n)
1 1.57 6 3.20 11 4.25 16 5.09
2 2.00 7 3.44 12 4.43 17 5.24
3 2.36 8 3.66 13 4.61 18 5.39
4 2.67 9 3.87 14 4.77 19 5.54
5 2.95 10 4.06 15 4.94 20 5.68

9.7(ii) Poincaré-Type Expansions

As z →∞ the following asymptotic expansions are valid
uniformly in the stated sectors.

9.7.5 Ai(z) ∼ e−ζ

2
√
πz1/4

∞∑
k=0

(−1)k
uk
ζk

, |ph z| ≤ π − δ,

9.7.6 Ai′(z) ∼ −z
1/4e−ζ

2
√
π

∞∑
k=0

(−1)k
vk
ζk

, |ph z| ≤ π − δ,

9.7.7 Bi(z) ∼ eζ√
πz1/4

∞∑
k=0

uk
ζk

, |ph z| ≤ 1
3π − δ,

9.7.8 Bi′(z) ∼ z1/4eζ√
π

∞∑
k=0

vk
ζk

, |ph z| ≤ 1
3π − δ.

9.7.9 Ai(−z) ∼ 1√
πz1/4

(
cos
(
ζ − 1

4π
) ∞∑
k=0

(−1)k
u2k

ζ2k
+ sin

(
ζ − 1

4π
) ∞∑
k=0

(−1)k
u2k+1

ζ2k+1

)
, |ph z| ≤ 2

3π − δ,

9.7.10 Ai′(−z) ∼ z1/4

√
π

(
sin
(
ζ − 1

4π
) ∞∑
k=0

(−1)k
v2k

ζ2k
− cos

(
ζ − 1

4π
) ∞∑
k=0

(−1)k
v2k+1

ζ2k+1

)
, |ph z| ≤ 2

3π − δ,

9.7.11 Bi(−z) ∼ 1√
πz1/4

(
− sin

(
ζ − 1

4π
) ∞∑
k=0

(−1)k
u2k

ζ2k
+ cos

(
ζ − 1

4π
) ∞∑
k=0

(−1)k
u2k+1

ζ2k+1

)
, |ph z| ≤ 2

3π − δ,

9.7.12 Bi′(−z) ∼ z1/4

√
π

(
cos
(
ζ − 1

4π
) ∞∑
k=0

(−1)k
v2k

ζ2k
+ sin

(
ζ − 1

4π
) ∞∑
k=0

(−1)k
v2k+1

ζ2k+1

)
, |ph z| ≤ 2

3π − δ.

9.7.13
Bi
(
ze±πi/3

)
∼
√

2
π

e±πi/6

z1/4

(
cos
(
ζ − 1

4π ∓
1
2 i ln 2

) ∞∑
k=0

(−1)k
u2k

ζ2k
+ sin

(
ζ − 1

4π ∓
1
2 i ln 2

) ∞∑
k=0

(−1)k
u2k+1

ζ2k+1

)
,

|ph z| ≤ 2
3π − δ,

9.7.14

Bi′
(
ze±πi/3

)
∼
√

2
π
e∓πi/6z1/4

(
− sin

(
ζ − 1

4π ∓
1
2 i ln 2

) ∞∑
k=0

(−1)k
v2k

ζ2k
+ cos

(
ζ − 1

4π ∓
1
2 i ln 2

) ∞∑
k=0

(−1)k
v2k+1

ζ2k+1

)
,

|ph z| ≤ 2
3π − δ.
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9.7(iii) Error Bounds for Real Variables

In (9.7.5) and (9.7.6) the nth error term, that is, the er-
ror on truncating the expansion at n terms, is bounded
in magnitude by the first neglected term and has the
same sign, provided that the following term is of op-
posite sign, that is, if n ≥ 0 for (9.7.5) and n ≥ 1 for
(9.7.6).

In (9.7.7) and (9.7.8) the nth error term is bounded
in magnitude by the first neglected term multiplied by
2χ(n) exp (σπ/(72ζ)) where σ = 5 for (9.7.7) and σ = 7
for (9.7.8), provided that n ≥ 1 in both cases.

In (9.7.9)–(9.7.12) the nth error term in each infinite
series is bounded in magnitude by the first neglected
term and has the same sign, provided that the following
term in the series is of opposite sign.

As special cases, when 0 < x <∞
9.7.15

Ai(x) ≤ e−ξ

2
√
πx1/4

, |Ai′(x)| ≤ x1/4e−ξ

2
√
π

(
1 +

7
72ξ

)
,

9.7.16

Bi(x) ≤ eξ√
πx1/4

(
1 +

5π
72ξ

exp
(

5π
72ξ

))
,

Bi′(x) ≤ x1/4eξ√
π

(
1 +

7π
72ξ

exp
(

7π
72ξ

))
,

where ξ = 2
3x

3/2.

9.7(iv) Error Bounds for Complex Variables

When n ≥ 1 the nth error term in (9.7.5) and (9.7.6) is
bounded in magnitude by the first neglected term mul-
tiplied by

9.7.17

2 exp
(

σ

36|ζ|

)
, 2χ(n) exp

(
σπ

72|ζ|

)
or

4χ(n)
| cos(ph ζ)|n

exp
(

σπ

36|<ζ|

)
,

according as |ph z| ≤ 1
3π, 1

3π ≤ |ph z| ≤ 2
3π, or

2
3π ≤ |ph z| ≤ π. Here σ = 5 for (9.7.5) and σ = 7
for (9.7.6).

Corresponding bounds for the errors in (9.7.7) to
(9.7.14) may be obtained by use of these results and
those of §9.2(v) and their differentiated forms.

For other error bounds see Boyd (1993).

9.7(v) Exponentially-Improved Expansions

In (9.7.5) and (9.7.6) let

9.7.18 Ai(z) =
e−ζ

2
√
πz1/4

(
n−1∑
k=0

(−1)k
uk
ζk

+Rn(z)

)
,

9.7.19 Ai′(z) = −z
1/4e−ζ

2
√
π

(
n−1∑
k=0

(−1)k
vk
ζk

+ Sn(z)

)
,

with n = b2|ζ|c. Then
9.7.20

Rn(z) = (−1)n
m−1∑
k=0

(−1)kuk
Gn−k(2ζ)

ζk
+Rm,n(z),

9.7.21

Sn(z) = (−1)n−1
m−1∑
k=0

(−1)kvk
Gn−k(2ζ)

ζk
+ Sm,n(z),

where
9.7.22 Gp(z) =

ez

2π
Γ(p) Γ(1− p, z).

(For the notation see §8.2(i).) And as z → ∞ with m
fixed
9.7.23

Rm,n(z), Sm,n(z) = O
(
e−2|ζ|ζ−m

)
, |ph z| ≤ 2

3π.

For re-expansions of the remainder terms in (9.7.7)–
(9.7.14) combine the results of this section with those
of §9.2(v) and their differentiated forms, as in §9.7(iv).

For higher re-expansions of the remainder terms see
Olde Daalhuis (1995, 1996), and Olde Daalhuis and
Olver (1995a).

9.8 Modulus and Phase

9.8(i) Definitions

Throughout this section x is real and nonpositive.

9.8.1 Ai(x) = M(x) sin θ(x),

9.8.2 Bi(x) = M(x) cos θ(x),

9.8.3 M(x) =
√

Ai2(x) + Bi2(x),

9.8.4 θ(x) = arctan(Ai(x)/Bi(x)).

9.8.5 Ai′(x) = N(x) sinφ(x),

9.8.6 Bi′(x) = N(x) cosφ(x),

9.8.7 N(x) =
√

Ai′2(x) + Bi′2(x),

9.8.8 φ(x) = arctan
(
Ai′(x)/Bi′(x)

)
.

Graphs of M(x) and N(x) are included in §9.3(i).
The branches of θ(x) and φ(x) are continuous and fixed
by θ(0) = −φ(0) = 1

6π. (These definitions of θ(x) and
φ(x) differ from Abramowitz and Stegun (1964, Chap-
ter 10), and agree more closely with those used in Miller
(1946) and Olver (1997b, Chapter 11).)

In terms of Bessel functions, and with ξ = 2
3 |x|

3/2,

9.8.9 |x|1/2M2(x) = 1
2ξ
(
J2

1/3(ξ) + Y 2
1/3(ξ)

)
,

9.8.10 |x|−1/2N2(x) = 1
2ξ
(
J2

2/3(ξ) + Y 2
2/3(ξ)

)
,

9.8.11 θ(x) = 2
3π + arctan

(
Y1/3(ξ)/ J1/3(ξ)

)
,

9.8.12 φ(x) = 1
3π + arctan

(
Y2/3(ξ)/ J2/3(ξ)

)
.
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9.8(ii) Identities

Primes denote differentiations with respect to x, which
is continued to be assumed real and nonpositive.

9.8.13 M(x)N(x) sin(θ(x)− φ(x)) = π−1,

9.8.14
M2(x) θ′(x) = −π−1 , N2(x)φ′(x) = π−1x ,
N(x)N ′(x) = xM(x)M ′(x) ,

9.8.15
N2(x) = M ′

2(x) +M2(x) θ′2(x)

= M ′
2(x) + π−2M−2(x),

9.8.16
x2M2(x) = N ′

2(x) +N2(x)φ′2(x)

= N ′
2(x) + π−2x2N−2(x),

9.8.17
tan(θ(x)− φ(x)) = 1/(πM(x)M ′(x))

= −M(x) θ′(x)/M ′(x),

9.8.18
M ′′(x) = xM(x) + π−2M−3(x) ,(
M2
)′′′

(x)− 4x
(
M2
)′

(x)− 2M2(x) = 0,

9.8.19 θ′
2(x)+ 1

2 (θ′′′(x)/ θ′(x))− 3
4 (θ′′(x)/ θ′(x))2 =−x.

9.8(iii) Monotonicity

As x increases from−∞ to 0 each of the functionsM(x),
M ′(x), |x|−1/4N(x), M(x)N(x), θ′(x), φ′(x) is increas-
ing, and each of the functions |x|1/4M(x), θ(x), φ(x) is
decreasing.

9.8(iv) Asymptotic Expansions

As x→ −∞
9.8.20

M2(x) ∼ 1
π(−x)1/2

∞∑
k=0

1 · 3 · 5 · · · (6k − 1)
k!(96)k

1
x3k

,

9.8.21

N2(x) ∼ (−x)1/2

π

∞∑
k=0

1 · 3 · 5 · · · (6k − 1)
k!(96)k

1 + 6k
1− 6k

1
x3k

,

9.8.22

θ(x) ∼ π

4
+

2
3

(−x)3/2

(
1 +

5
32

1
x3

+
1105
6144

1
x6

+
82825
65536

1
x9

+
12820 31525
587 20256

1
x12

+ · · ·
)
,

9.8.23

φ(x) ∼ −π
4

+
2
3

(−x)3/2

(
1− 7

32
1
x3
− 1463

6144
1
x6

− 4 95271
3 27680

1
x9
− 2065 30429

83 88608
1
x12
− · · ·

)
.

In (9.8.20) and (9.8.21) the remainder after n terms
does not exceed the (n+1)th term in absolute value and
is of the same sign, provided that n ≥ 0 for (9.8.20) and
n ≥ 1 for (9.8.21).

For higher terms in (9.8.22) and (9.8.23) see Fabi-
jonas et al. (2004). Also, approximate values (25S) of
the coefficients of the powers x−15, x−18, . . . , x−56 are
available in Sherry (1959).

9.9 Zeros

9.9(i) Distribution and Notation

On the real line, Ai(x), Ai′(x), Bi(x), Bi′(x) each have
an infinite number of zeros, all of which are negative.
They are denoted by ak, a′k, bk, b′k, respectively, ar-
ranged in ascending order of absolute value for k =
1, 2, . . . .

Ai(z) and Ai′(z) have no other zeros. However, Bi(z)
and Bi′(z) each have an infinite number of complex ze-
ros. They lie in the sectors 1

3π < ph z < 1
2π and

− 1
2π < ph z < − 1

3π, and are denoted by βk, β′k, re-
spectively, in the former sector, and by β̄k, β̄′k, in the
conjugate sector, again arranged in ascending order of
absolute value (modulus) for k = 1, 2, . . . . See §9.3(ii)
for visualizations.

For the distribution in C of the zeros of Ai′(z) −
σAi(z), where σ is an arbitrary complex constant, see
Muravĕı (1976).

9.9(ii) Relation to Modulus and Phase

9.9.1 θ(ak) = φ
(
a′k+1

)
= kπ,

9.9.2 θ(bk) = φ(b′k) = (k − 1
2 )π.

9.9.3 Ai′(ak) =
(−1)k−1

πM(ak)
, Bi′(bk) =

(−1)k−1

πM(bk)
,

9.9.4 Ai(a′k) =
(−1)k−1

πN(a′k)
, Bi(b′k) =

(−1)k

πN(b′k)
.

9.9(iii) Derivatives With Respect to k

If k is regarded as a continuous variable, then

9.9.5

Ai′(ak) = (−1)k−1

(
−dak
dk

)−1/2

,

Ai(a′k) = (−1)k−1

(
a′k

da′k
dk

)−1/2

.

See Olver (1954, Appendix).
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9.9(iv) Asymptotic Expansions

For large k

9.9.6 ak = −T
(

3
8π(4k − 1)

)
,

9.9.7 Ai′(ak) = (−1)k−1V
(

3
8π(4k − 1)

)
,

9.9.8 a′k = −U
(

3
8π(4k − 3)

)
,

9.9.9 Ai(a′k) = (−1)k−1W
(

3
8π(4k − 3)

)
.

9.9.10 bk = −T
(

3
8π(4k − 3)

)
,

9.9.11 Bi′(bk) = (−1)k−1V
(

3
8π(4k − 3)

)
,

9.9.12 b′k = −U
(

3
8π(4k − 1)

)
,

9.9.13 Bi(b′k) = (−1)kW
(

3
8π(4k − 1)

)
.

9.9.14

βk = eπi/3T
(

3
8π(4k − 1) + 3

4 i ln 2
)
,

9.9.15

Bi′(βk) = (−1)k
√

2e−πi/6V
(

3
8π(4k − 1) + 3

4 i ln 2
)
,

9.9.16

β′k = eπi/3U
(

3
8π(4k − 3) + 3

4 i ln 2
)
,

9.9.17

Bi(β′k) = (−1)k−1
√

2eπi/6W
(

3
8π(4k − 3) + 3

4 i ln 2
)
.

Here

9.9.18 T (t) ∼ t2/3
(

1 +
5
48
t−2 − 5

36
t−4 +

77125
82944

t−6 − 1080 56875
69 67296

t−8 +
16 23755 96875

3344 30208
t−10 − · · ·

)
,

9.9.19 U(t) ∼ t2/3
(

1− 7
48
t−2 +

35
288

t−4 − 1 81223
2 07360

t−6 +
186 83371
12 44160

t−8 − 9 11458 84361
1911 02976

t−10 + · · ·
)
,

9.9.20 V (t) ∼ π−1/2t1/6
(

1 +
5
48
t−2− 1525

4608
t−4 +

23 97875
6 63552

t−6− 7 48989 40625
8918 13888

t−8 +
14419 83037 34375

4 28070 66624
t−10− · · ·

)
,

9.9.21

W (t) ∼ π−1/2t−1/6

(
1− 7

96
t−2 +

1673
6144

t−4 − 843 94709
265 42080

t−6 +
78 02771 35421
1 01921 58720

t−8 − 20444 90510 51945
6 52298 15808

t−10 + · · ·
)
.

For higher terms see Fabijonas and Olver (1999).
For error bounds for the asymptotic expansions of ak, bk, a′k, and b′k see Pittaluga and Sacripante (1991), and a

conjecture given in Fabijonas and Olver (1999).

9.9(v) Tables

Tables 9.9.1 and 9.9.2 give 10D values of the first five real zeros of Ai, Ai′, Bi, Bi′, together with the associated values
of the derivative or the function. Tables 9.9.3 and 9.9.4 give the corresponding results for the first five complex zeros
of Bi and Bi′ in the upper half plane.

For versions of Tables 9.9.1–9.9.4 that cover k = 1(1)10 see http://dlmf.nist.gov/9.9.v.

Table 9.9.1: Zeros of Ai and Ai′.

k ak Ai′(ak) a′k Ai(a′k)
1 −2.33810 74105 0.70121 08227 −1.01879 29716 0.53565 66560
2 −4.08794 94441 −0.80311 13697 −3.24819 75822 −0.41901 54780
3 −5.52055 98281 0.86520 40259 −4.82009 92112 0.38040 64686
4 −6.78670 80901 −0.91085 07370 −6.16330 73556 −0.35790 79437
5 −7.94413 35871 0.94733 57094 −7.37217 72550 0.34230 12444

Table 9.9.2: Real zeros of Bi and Bi′.

k bk Bi′(bk) b′k Bi(b′k)
1 −1.17371 32227 0.60195 78880 −2.29443 96826 −0.45494 43836
2 −3.27109 33028 −0.76031 01415 −4.07315 50891 0.39652 28361
3 −4.83073 78417 0.83699 10126 −5.51239 57297 −0.36796 91615
4 −6.16985 21283 −0.88947 99014 −6.78129 44460 0.34949 91168
5 −7.37676 20794 0.92998 36386 −7.94017 86892 −0.33602 62401
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Table 9.9.3: Complex zeros of Bi.

e−πi/3 βk Bi′(βk)
k modulus phase modulus phase
1 2.35387 33809 0.09533 49591 0.99310 68457 2.64060 02521
2 4.09328 73094 0.04178 55604 1.13612 83345 −0.51328 28720
3 5.52350 35011 0.02668 05442 1.22374 37881 2.62462 83591
4 6.78865 95301 0.01958 69751 1.28822 92493 −0.51871 63829
5 7.94555 90160 0.01547 08228 1.33979 47726 2.62185 44560

Table 9.9.4: Complex zeros of Bi′.

e−πi/3 β′k Bi(β′k)
k modulus phase modulus phase
1 1.12139 32942 0.33072 66208 0.75004 14897 0.46597 78930
2 3.25690 82266 0.05938 99367 0.59221 66315 −2.63235 40329
3 4.82400 26102 0.03278 56423 0.53787 06321 0.51549 32992
4 6.16568 66408 0.02266 24588 0.50611 02160 −2.62362 85920
5 7.37383 79870 0.01731 96481 0.48406 00643 0.51928 28169

9.10 Integrals

9.10(i) Indefinite Integrals

9.10.1

∫ ∞
z

Ai(t) dt = π
(
Ai(z) Gi′(z)−Ai′(z) Gi(z)

)
,

9.10.2

∫ z

−∞
Ai(t) dt = π

(
Ai(z) Hi′(z)−Ai′(z) Hi(z)

)
,

9.10.3

∫ z

−∞
Bi(t) dt =

∫ z

0

Bi(t) dt

= π
(
Bi′(z) Gi(z)− Bi(z) Gi′(z)

)
= π

(
Bi(z) Hi′(z)− Bi′(z) Hi(z)

)
.

For the functions Gi and Hi see §9.12.

9.10(ii) Asymptotic Approximations

9.10.4∫ ∞
x

Ai(t) dt ∼ 1
2π
−1/2x−3/4 exp

(
− 2

3x
3/2
)

, x→∞,

9.10.5∫ x

0

Bi(t) dt ∼ π−1/2x−3/4 exp
(

2
3x

3/2
)

, x→∞.

9.10.6∫ x

−∞
Ai(t) dt = π−1/2(−x)−3/4 cos

(
2
3 (−x)3/2 + 1

4π
)

+O
(
|x|−9/4

)
, x→ −∞,

9.10.7∫ x

−∞
Bi(t) dt = π−1/2(−x)−3/4 sin

(
2
3 (−x)3/2 + 1

4π
)

+O
(
|x|−9/4

)
, x→ −∞.

For higher terms in (9.10.4)–(9.10.7) see Vallée and
Soares (2004, §3.1.3). For error bounds see Boyd (1993).

See also Muldoon (1970).

9.10(iii) Other Indefinite Integrals

Let w(z) be any solution of Airy’s equation (9.2.1).
Then

9.10.8

∫
zw(z) dz = w′(z),

9.10.9

∫
z2w(z) dz = zw′(z)− w(z),

9.10.10∫
zn+3w(z) dz = zn+2w′(z)− (n+ 2)zn+1w(z)

+ (n+ 1)(n+ 2)
∫
znw(z) dz,

n = 0, 1, 2, . . . .
See also §9.11(iv).

9.10(iv) Definite Integrals

9.10.11

∫ ∞
0

Ai(t) dt = 1
3 ,

∫ 0

−∞
Ai(t) dt = 2

3 ,
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9.10.12

∫ 0

−∞
Bi(t) dt = 0.

9.10(v) Laplace Transforms

9.10.13

∫ ∞
−∞

ept Ai(t) dt = ep
3/3, <p > 0.

9.10.14∫ ∞
0

e−pt Ai(t) dt = e−p
3/3

(
1
3
−
p 1F1

(
1
3 ; 4

3 ; 1
3p

3
)

34/3 Γ
(

4
3

)
+
p2

1F1

(
2
3 ; 5

3 ; 1
3p

3
)

35/3 Γ
(

5
3

) )
,

p ∈ C.

9.10.15∫ ∞
0

e−pt Ai(−t) dt

=
1
3
ep

3/3

(
Γ
(

1
3 ,

1
3p

3
)

Γ
(

1
3

) +
Γ
(

2
3 ,

1
3p

3
)

Γ
(

2
3

) )
, <p > 0,

9.10.16

∫ ∞
0

e−pt Bi(−t) dt

=
1√
3
ep

3/3

(
Γ
(

2
3 ,

1
3p

3
)

Γ
(

2
3

) −
Γ
(

1
3 ,

1
3p

3
)

Γ
(

1
3

) )
,

<p > 0.

For the confluent hypergeometric function 1F1 and the
incomplete gamma function Γ see §§13.1, 13.2, and
8.2(i).

For Laplace transforms of products of Airy functions
see Shawagfeh (1992).

9.10(vi) Mellin Transform

9.10.17∫ ∞
0

tα−1 Ai(t) dt =
Γ(α)

3(α+2)/3 Γ
(

1
3α+ 2

3

) , <α > 0.

9.10(vii) Stieltjes Transforms

9.10.18

Ai(z) =
z5/4e−(2/3)z3/2

27/2π

∫ ∞
0

t−1/2e−(2/3)t3/2 Ai(t)
z3/2 + t3/2

dt,

|ph z| < 2
3π.

9.10.19

Bi(x) =
x5/4e(2/3)x3/2

25/2π

∫ ∞
0

t−1/2e−(2/3)t3/2 Ai(t)
x3/2 − t3/2

dt,

x > 0,

where the last integral is a Cauchy principal value
(§1.4(v)).

9.10(viii) Repeated Integrals

9.10.20∫ x

0

∫ v

0

Ai(t) dt dv = x

∫ x

0

Ai(t) dt−Ai′(x) + Ai′(0),

9.10.21∫ x

0

∫ v

0

Bi(t) dt dv = x

∫ x

0

Bi(t) dt− Bi′(x) + Bi′(0),

9.10.22∫ ∞
0

∫ ∞
t

· · ·
∫ ∞
t

Ai(−t)( dt)n =
2 cos

(
1
3 (n− 1)π

)
3(n+2)/3 Γ

(
1
3n+ 2

3

) ,

n = 1, 2, . . . .

9.10(ix) Compendia

For further integrals, including the Airy transform,
see §9.11(iv), Widder (1979), Prudnikov et al. (1990,
§1.8.1), Prudnikov et al. (1992a, pp. 405–413), Prud-
nikov et al. (1992b, §4.3.25), Vallée and Soares (2004,
Chapters 3, 4).

9.11 Products

9.11(i) Differential Equation

9.11.1
d3w

dz3 − 4z
dw

dz
− 2w = 0, w = w1w2,

where w1 and w2 are any solutions of (9.2.1). For
example, w = Ai2(z), Ai(z) Bi(z), Ai(z) Ai

(
ze∓2πi/3

)
,

M2(z). Numerically satisfactory triads of solutions can
be constructed where needed on R or C by inspection
of the asymptotic expansions supplied in §9.7.

9.11(ii) Wronskian

9.11.2 W
{

Ai2(z),Ai(z) Bi(z),Bi2(z)
}

= 2π−3.

9.11(iii) Integral Representations

9.11.3 Ai2(x) =
1

4π
√

3

∫ ∞
0

J0

(
1
12 t

3 + xt
)
t dt, x ≥ 0,

where J0 is the Bessel function (§10.2(ii)).

9.11.4

Ai2(z) + Bi2(z) =
1

π3/2

∫ ∞
0

exp
(
zt− 1

12 t
3
)
t−1/2 dt.

For an integral representation of the Dirac delta in-
volving a product of two Ai functions see §1.17(ii).

For further integral representations see Reid (1995,
1997a,b).
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9.11(iv) Indefinite Integrals

Let w1, w2 be any solutions of (9.2.1), not necessarily
distinct. Then

9.11.5

∫
w1w2 dz = −w′1w′2 + zw1w2,

9.11.6

∫
w1w

′
2 dz = 1

2 (w1w2 + zW {w1, w2}) ,

9.11.7∫
w′1w

′
2 dz = 1

3 (w1w
′
2 + w′1w2 + zw′1w

′
2 − z2w1w2),

9.11.8∫
zw1w2 dz = 1

6 (w1w
′
2 + w′1w2)− 1

3 (zw′1w
′
2 − z2w1w2),

9.11.9

∫
zw1w

′
2 dz = 1

2w
′
1w
′
2 + 1

4z
2 W {w1, w2},

9.11.10

∫
zw′1w

′
2 dz = 3

10 (−w1w2 + zw1w
′
2 + zw′1w2)

+ 1
5 (z2w′1w

′
2 − z3w1w2).

For
∫
znw1w2 dz,

∫
znw1w

′
2 dz,

∫
znw′1w

′
2 dz, where

n is any positive integer, see Albright (1977). For re-
lated integrals see Gordon (1969, Appendix B).

For any continuously-differentiable function f

9.11.11

∫
1
w2

1

f ′
(
w2

w1

)
dz =

1
W {w1, w2}

f

(
w2

w1

)
.

Examples

9.11.12

∫
dz

Ai2(z)
= π

Bi(z)
Ai(z)

,

9.11.13

∫
dz

Ai(z) Bi(z)
= π ln

(
Bi(z)
Ai(z)

)
,

9.11.14

∫
Ai(z) Bi(z)(

Ai2(z) + Bi2(z)
)2 dz =

π

2
Bi2(z)

Ai2(z) + Bi2(z)
.

9.11(v) Definite Integrals

9.11.15∫ ∞
0

tα−1 Ai2(t) dt =
2 Γ(α)

π1/212(2α+5)/6 Γ
(

1
3α+ 5

6

) ,

<α > 0.

9.11.16

∫ ∞
−∞

Ai3(t) dt =
Γ2
(

1
3

)
4π2

,

9.11.17

∫ ∞
−∞

Ai2(t) Bi(t) dt =
Γ2
(

1
3

)
4
√

3π2
.

9.11.18

∫ ∞
0

Ai4(t) dt =
ln 3

24π2
.

9.11.19∫ ∞
0

dt

Ai2(t) + Bi2(t)
=
∫ ∞

0

t dt

Ai′2(t) + Bi′2(t)
=
π2

6
.

For further definite integrals see Prudnikov et al.
(1990, §1.8.2), Laurenzi (1993), Reid (1995, 1997a,b),
and Vallée and Soares (2004, Chapters 3, 4).

Related Functions

9.12 Scorer Functions

9.12(i) Differential Equation

9.12.1
d2w

dz2 − zw =
1
π
.

Solutions of this equation are the Scorer functions and
can be found by the method of variation of parameters
(§1.13(iii)). The general solution is given by

9.12.2 w(z) = Aw1(z) +Bw2(z) + p(z),
where A and B are arbitrary constants, w1(z) and w2(z)
are any two linearly independent solutions of Airy’s
equation (9.2.1), and p(z) is any particular solution of
(9.12.1). Standard particular solutions are

9.12.3 −Gi(z) , Hi(z) , e∓2πi/3 Hi
(
ze∓2πi/3

)
,

where

9.12.4 Gi(z) = Bi(z)
∫ ∞
z

Ai(t) dt+ Ai(z)
∫ z

0

Bi(t) dt,

9.12.5 Hi(z) = Bi(z)
∫ z

−∞
Ai(t) dt−Ai(z)

∫ z

−∞
Bi(t) dt.

Gi(z) and Hi(z) are entire functions of z.

9.12(ii) Graphs

See Figures 9.12.1 and 9.12.2.

9.12(iii) Initial Values

9.12.6

Gi(0) = 1
2 Hi(0) = 1

3 Bi(0)

= 1
/(

37/6 Γ
(

2
3

))
= 0.20497 55424 . . . ,

9.12.7
Gi′(0) = 1

2 Hi′(0) = 1
3 Bi′(0) = 1

/(
35/6 Γ

(
1
3

))
= 0.14942 94524 . . . .

9.12(iv) Numerically Satisfactory Solutions

−Gi(x) is a numerically satisfactory companion to the
complementary functions Ai(x) and Bi(x) on the inter-
val 0 ≤ x <∞. Hi(x) is a numerically satisfactory com-
panion to Ai(x) and Bi(x) on the interval −∞ < x ≤ 0.

In C, numerically satisfactory sets of solutions are
given by

9.12.8 −Gi(z),Ai(z),Bi(z), |ph z| ≤ 1
3π,
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Figure 9.12.1: Gi(x), Gi′(x). Figure 9.12.2: Hi(x), Hi′(x).

9.12.9

Hi(z),Ai
(
ze−2πi/3

)
,Ai
(
ze2πi/3

)
, |ph(−z)| ≤ 2

3π,

and

9.12.10
e∓2πi/3 Hi

(
ze∓2πi/3

)
,Ai(z),Ai

(
ze±2πi/3

)
,

−π ≤ ± ph z ≤ 1
3π.

9.12(v) Connection Formulas

9.12.11 Gi(z) + Hi(z) = Bi(z),

9.12.12

Gi(z) = 1
2e
πi/3 Hi

(
ze−2πi/3

)
+ 1

2e
−πi/3 Hi

(
ze2πi/3

)
,

9.12.13 Gi(z) = e∓πi/3 Hi
(
ze±2πi/3

)
± iAi(z),

9.12.14

Hi(z) = e±2πi/3 Hi
(
ze±2πi/3

)
+ 2e∓πi/6 Ai

(
ze∓2πi/3

)
.

9.12(vi) Maclaurin Series

9.12.15

Gi(z) =
3−2/3

π

∞∑
k=0

cos
(

2k − 1
3

π

)
Γ
(
k + 1

3

)
(31/3z)k

k!
,

9.12.16

Gi′(z) =
3−1/3

π

∞∑
k=0

cos
(

2k + 1
3

π

)
Γ
(
k + 2

3

)
(31/3z)k

k!
.

9.12.17 Hi(z) =
3−2/3

π

∞∑
k=0

Γ
(
k + 1

3

)
(31/3z)k

k!
,

9.12.18 Hi′(z) =
3−1/3

π

∞∑
k=0

Γ
(
k + 2

3

)
(31/3z)k

k!
.

9.12(vii) Integral Representations

9.12.19 Gi(x) =
1
π

∫ ∞
0

sin
(

1
3 t

3 + xt
)
dt, x ∈ R.

9.12.20 Hi(z) =
1
π

∫ ∞
0

exp
(
− 1

3 t
3 + zt

)
dt,

9.12.21

Gi(z) =− 1
π

∫ ∞
0

exp
(
− 1

3 t
3 − 1

2zt
)

cos
(

1
2

√
3zt+ 2

3π
)
dt.

If ζ = 2
3z

3/2 or 2
3x

3/2, and K1/3 is the modified
Bessel function (§10.25(ii)), then

9.12.22 Hi(−z) =
4z2

33/2π2

∫ ∞
0

K1/3(t)
ζ2 + t2

dt, |ph z| < 1
3π,

9.12.23 Gi(x) =
4x2

33/2π2

∫ ∞
0

K1/3(t)
ζ2 − t2

dt, x > 0,

where the last integral is a Cauchy principal value
(§1.4(v)).

Mellin–Barnes Type Integral

9.12.24

Hi(z) =
3−2/3

2π2i

∫ i∞

−i∞
Γ
(

1
3 + 1

3 t
)

Γ(−t)(31/3eπiz)t dt,

where the integration contour separates the poles of
Γ
(

1
3 + 1

3 t
)

from those of Γ(−t).

9.12(viii) Asymptotic Expansions

Functions and Derivatives

As z →∞, and with δ denoting an arbitrary small pos-
itive constant,

9.12.25 Gi(z) ∼ 1
πz

∞∑
k=0

(3k)!
k!(3z3)k

, |ph z| ≤ 1
3π − δ,

9.12.26 Gi′(z) ∼ − 1
πz2

∞∑
k=0

(3k + 1)!
k!(3z3)k

, |ph z| ≤ 1
3π − δ.

9.12.27

Hi(z) ∼ − 1
πz

∞∑
k=0

(3k)!
k!(3z3)k

, |ph(−z)| ≤ 2
3π − δ,
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9.12.28

Hi′(z) ∼ 1
πz2

∞∑
k=0

(3k + 1)!
k!(3z3)k

, |ph(−z)| ≤ 2
3π − δ.

For other phase ranges combine these results with
the connection formulas (9.12.11)–(9.12.14) and the
asymptotic expansions given in §9.7. For example, with
the notation of §9.7(i).

9.12.29
Hi(z) ∼ − 1

πz

∞∑
k=0

(3k)!
k!(3z3)k

+
eζ√
πz1/4

∞∑
k=0

uk
ζk

,

|ph z| ≤ π − δ.

Integrals

9.12.30∫ z

0

Gi(t) dt ∼ 1
π

ln z +
2γ + ln 3

3π
− 1
π

∞∑
k=1

(3k − 1)!
k!(3z3)k

,

|ph z| ≤ 1
3π − δ.

9.12.31

∫ z

0

Hi(−t) dt ∼ 1
π

ln z +
2γ + ln 3

3π

+
1
π

∞∑
k=1

(−1)k−1 (3k − 1)!
k!(3z3)k

,

|ph z| ≤ 2
3π − δ,

where γ is Euler’s constant (§5.2(ii)).

9.12(ix) Zeros

All zeros, real or complex, of Gi(z) and Hi(z) are simple.
Neither Hi(z) nor Hi′(z) has real zeros.
Gi(z) has no nonnegative real zeros and Gi′(z)

has exactly one nonnegative real zero, given by z =
0.60907 54170 7 . . . . Both Gi(z) and Gi′(z) have an
infinity of negative real zeros, and they are interlaced.

For the above properties and further results, includ-
ing the distribution of complex zeros, asymptotic ap-
proximations for the numerically large real or complex
zeros, and numerical tables see Gil et al. (2003c).

For graphical illustration of the real zeros see Fig-
ures 9.12.1 and 9.12.2.

9.13 Generalized Airy Functions

9.13(i) Generalizations from the Differential
Equation

Equations of the form

9.13.1
d2w

dz2 = znw, n = 1, 2, 3, . . . ,

are used in approximating solutions to differential equa-
tions with multiple turning points; see §2.8(v). The
general solution of (9.13.1) is given by

9.13.2 w = z1/2 Zp(ζ),
where

9.13.3 p =
1

n+ 2
, ζ =

2
n+ 2

z(n+2)/2 = 2pz1/(2p) ,

and Zp is any linear combination of the modified Bessel
functions Ip and epπiKp (§10.25(ii)).

Swanson and Headley (1967) define independent so-
lutions An(z) and Bn(z) of (9.13.1) by

9.13.4
An(z) = (2p/π) sin(pπ)z1/2Kp(ζ) ,

Bn(z) = (pz)1/2 (I−p(ζ) + Ip(ζ)) ,
when z is real and positive, and by analytic continuation
elsewhere. (All solutions of (9.13.1) are entire functions
of z.) When n = 1, An(z) and Bn(z) become Ai(z) and
Bi(z), respectively.

Properties of An(z) and Bn(z) follow from the cor-
responding properties of the modified Bessel functions.
They include:

9.13.5

An(0) = p1/2Bn(0) =
p1−p

Γ(1− p)
,

−A′n(0) = p1/2B′n(0) =
pp

Γ(p)
.

9.13.6 An(−z) =

{
pz1/2 (J−p(ζ) + Jp(ζ)) , n odd,
p1/2Bn(z), n even,

9.13.7 Bn(−z) =

{
(pz)1/2 (J−p(ζ)− Jp(ζ)) , n odd,
p−1/2An(z), n even.

9.13.8 W {An(z), Bn(z)} =
2
π
p1/2 sin(pπ).

As z →∞
9.13.9 An(z) =

√
p/π sin(pπ)z−n/4e−ζ

(
1 +O

(
ζ−1

))
, |ph z| ≤ 3pπ − δ,

9.13.10 An(−z) =

{
2
√
p/π cos

(
1
2pπ

)
z−n/4

(
cos
(
ζ − 1

4π
)

+ e|=ζ|O
(
ζ−1

))
, |ph z| ≤ 2pπ − δ, n odd,√

p/πz−n/4eζ
(
1 +O

(
ζ−1

))
, |ph z| ≤ pπ − δ, n even,

9.13.11 Bn(z) = π−1/2z−n/4eζ
(
1 +O

(
ζ−1

))
, |ph z| ≤ pπ − δ,

9.13.12 Bn(−z) =

{
−(2/

√
π ) sin

(
1
2pπ

)
z−n/4

(
sin
(
ζ − 1

4π
)

+ e|=ζ|O
(
ζ−1

))
, |ph z| ≤ 2pπ − δ, n odd,

(1/
√
π ) sin(pπ)z−n/4e−ζ

(
1 +O

(
ζ−1

))
, |ph z| ≤ 3pπ − δ, n even.
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The distribution in C and asymptotic properties of the
zeros of An(z), A′n(z), Bn(z), and B′n(z) are investi-
gated in Swanson and Headley (1967) and Headley and
Barwell (1975).

In Olver (1977a, 1978) a different normalization is
used. In place of (9.13.1) we have

9.13.13
d2w

dt2
= 1

4m
2tm−2w,

where m = 3, 4, 5, . . . . For real variables the solutions
of (9.13.13) are denoted by Um(t), Um(−t) when m is
even, and by Vm(t), V m(t) when m is odd. (The over-
bar has nothing to do with complex conjugates.) Their
relations to the functions An(z) and Bn(z) are given by

9.13.14 m = n+ 2 = 1/p , t = ( 1
2m)−2/mz = ζ2/m ,

9.13.15

√
2π
(

1
2m
)(m−1)/m csc(π/m )An(z)

=

{
Um(t), m even,
Vm(t), m odd,

9.13.16

√
π
(

1
2m
)(m−2)/(2m) csc(π/m )Bn(z)

=

{
Um(−t), m even,
V m(t), m odd.

Properties and graphs of Um(t), Vm(t), V m(t) are
included in Olver (1977a) together with properties and
graphs of real solutions of the equation

9.13.17
d2w

dt2
= − 1

4m
2tm−2w, m even,

which are denoted by Wm(t), Wm(−t).
In C, the solutions of (9.13.13) used in Olver (1978)

are

9.13.18 w = Um(te−2jπi/m), j = 0,±1,±2, . . . .
The function on the right-hand side is recessive in the
sector −(2j−1)π/m ≤ ph z ≤ (2j+1)π/m, and is there-
fore an essential member of any numerically satisfactory
pair of solutions in this region.

Another normalization of (9.13.17) is used in
Smirnov (1960), given by

9.13.19
d2w

dx2 + xαw = 0,

where α > −2 and x > 0. Solutions are w = U1(x, α),
U2(x, α), where
9.13.20

U1(x, α)

=
1

(α+ 2)1/(α+2)

× Γ
(
α+ 1
α+ 2

)
x1/2 J−1/(α+2)

(
2

α+ 2
x(α+2)/2

)
,

9.13.21

U2(x, α) = (α+ 2)1/(α+2)

× Γ
(
α+ 3
α+ 2

)
x1/2 J1/(α+2)

(
2

α+ 2
x(α+2)/2

)
,

and J denotes the Bessel function (§10.2(ii)).
When α is a positive integer the relation of these

functions to Wm(t), Wm(−t) is as follows:

9.13.22 α = m− 2 , x = (m/2)2/mt ,

9.13.23

U1(x, α) =
π1/2

2(m+2)/(2m) Γ(1/m)
(Wm(t) +Wm(−t)) ,

9.13.24

U2(x, α) =
π1/2m2/m

2(m+2)/(2m) Γ(−1/m)
(Wm(t)−Wm(−t)) .

For properties of the zeros of the functions defined
in this subsection see Laforgia and Muldoon (1988) and
references given therein.

9.13(ii) Generalizations from Integral
Representations

Reid (1972) and Drazin and Reid (1981, Appendix) in-
troduce the following contour integrals in constructing
approximate solutions to the Orr–Sommerfeld equation
for fluid flow:

9.13.25
Ak(z, p) =

1
2πi

∫
Lk

t−p exp
(
zt− 1

3 t
3
)
dt,

k = 1, 2, 3, p ∈ C,

9.13.26
B0(z, p) =

1
2πi

∫
L0

t−p exp
(
zt− 1

3 t
3
)
dt,

p = 0,±1,±2, . . . ,

9.13.27
Bk(z, p) =

∫
Ik

t−p exp
(
zt− 1

3 t
3
)
dt,

k = 1, 2, 3, p = 0,±1,±2, . . . ,

with z ∈ C in all cases. The integration paths L0, L1,
L2, L3 are depicted in Figure 9.13.1. I1, I2, I3 are
depicted in Figure 9.13.2. When p is not an integer
the branch of t−p in (9.13.25) is usually chosen to be
exp(−p(ln |t|+ i ph t)) with 0 ≤ ph t < 2π.
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Figure 9.13.1: t-plane. Paths L0, L1, L2, L3. Figure 9.13.2: t-plane. Paths I1, I2, I3.

When p = 0

9.13.28 A1(z, 0) = Ai(z),

9.13.29

A2(z, 0) = e2πi/3 Ai
(
ze2πi/3

)
,

A3(z, 0) = e−2πi/3 Ai
(
ze−2πi/3

)
,

and

9.13.30 B0(z, 0) = 0 , B1(z, 0) = πHi(z) .
Each of the functions Ak(z, p) and Bk(z, p) satisfies

the differential equation

9.13.31
d3w

dz3 − z
dw

dz
+ (p− 1)w = 0,

and the difference equation

9.13.32 f(p− 3)− zf(p− 1) + (p− 1)f(p) = 0.
The Ak(z, p) are related by

9.13.33

A2(z, p) = e−2(p−1)πi/3A1

(
ze2πi/3, p

)
,

A3(z, p) = e2(p−1)πi/3A1

(
ze−2πi/3, p

)
.

Connection formulas for the solutions of (9.13.31) in-
clude

9.13.34 A1(z, p) +A2(z, p) +A3(z, p) +B0(z, p) = 0,

9.13.35 B2(z, p)−B3(z, p) = 2πiA1(z, p),

9.13.36 B3(z, p)−B1(z, p) = 2πiA2(z, p),

9.13.37 B1(z, p)−B2(z, p) = 2πiA3(z, p).
Further properties of these functions, and also of

similar contour integrals containing an additional fac-
tor (ln t)q, q = 1, 2, . . . , in the integrand, are derived

in Reid (1972), Drazin and Reid (1981, Appendix), and
Baldwin (1985). These properties include Wronskians,
asymptotic expansions, and information on zeros.

For further generalizations via integral representa-
tions see Chin and Hedstrom (1978), Janson et al. (1993,
§10), and Kamimoto (1998).

9.14 Incomplete Airy Functions

Incomplete Airy functions are defined by the con-
tour integral (9.5.4) when one of the integration lim-
its is replaced by a variable real or complex param-
eter. For information, including asymptotic approxi-
mations, computation, and applications, see Levey and
Felsen (1969), Constantinides and Marhefka (1993), and
Michaeli (1996).

Applications

9.15 Mathematical Applications

Airy functions play an indispensable role in the con-
struction of uniform asymptotic expansions for contour
integrals with coalescing saddle points, and for solu-
tions of linear second-order ordinary differential equa-
tions with a simple turning point. For descriptions of,
and references to, the underlying theory see §§2.4(v)
and 2.8(iii).
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9.16 Physical Applications

Airy functions are applied in many branches of both
classical and quantum physics. The function Ai(x) first
appears as an integral in two articles by G.B. Airy on
the intensity of light in the neighborhood of a caustic
(Airy (1838, 1849)). Details of the Airy theory are given
in van de Hulst (1957) in the chapter on the optics of a
raindrop. See also Berry (1966, 1969).

The frequent appearances of the Airy functions in
both classical and quantum physics is associated with
wave equations with turning points, for which asymp-
totic (WKBJ) solutions are exponential on one side and
oscillatory on the other. The Airy functions consti-
tute uniform approximations whose region of validity in-
cludes the turning point and its neighborhood. Within
classical physics, they appear prominently in physical
optics, electromagnetism, radiative transfer, fluid me-
chanics, and nonlinear wave propagation. Examples
dealing with the propagation of light and with radiation
of electromagnetic waves are given in Landau and Lif-
shitz (1962). Extensive use is made of Airy functions in
investigations in the theory of electromagnetic diffrac-
tion and radiowave propagation (Fock (1965)). A quite
different application is made in the study of the diffrac-
tion of sound pulses by a circular cylinder (Friedlander
(1958)).

In fluid dynamics, Airy functions enter several
topics. In the study of the stability of a two-
dimensional viscous fluid, the flow is governed by the
Orr–Sommerfeld equation (a fourth-order differential
equation). Again, the quest for asymptotic approxima-
tions that are uniformly valid solutions to this equa-
tion in the neighborhoods of critical points leads (af-
ter choosing solvable equations with similar asymptotic
properties) to Airy functions. Other applications ap-
pear in the study of instability of Couette flow of an in-
viscid fluid. These examples of transitions to turbulence
are presented in detail in Drazin and Reid (1981) with
the problem of hydrodynamic stability. The investiga-
tion of the transition between subsonic and supersonic
of a two-dimensional gas flow leads to the Euler–Tricomi
equation (Landau and Lifshitz (1987)). An application
of Airy functions to the solution of this equation is given
in Gramtcheff (1981).

Airy functions play a prominent role in problems de-
fined by nonlinear wave equations. These first appeared
in connection with the equation governing the evolution
of long shallow water waves of permanent form, gener-
ally called solitons, and are predicted by the Korteweg–
de Vries (KdV) equation (a third-order nonlinear partial
differential equation). The KdV equation and solitons
have applications in many branches of physics, including
plasma physics lattice dynamics, and quantum mechan-

ics. (Ablowitz and Segur (1981), Ablowitz and Clarkson
(1991), and Whitham (1974).)

Reference to many of these applications as well as
to the theory of elasticity and to the heat equation
are given in Vallée and Soares (2004): a book devoted
specifically to the Airy and Scorer functions and their
applications in physics.

An example from quantum mechanics is given in
Landau and Lifshitz (1965), in which the exact solu-
tion of the Schrödinger equation for the motion of a
particle in a homogeneous external field is expressed in
terms of Ai(x). Solutions of the Schrödinger equation
involving the Airy functions are given for other poten-
tials in Vallée and Soares (2004). This reference pro-
vides several examples of applications to problems in
quantum mechanics in which Airy functions give uni-
form asymptotic approximations, valid in the neighbor-
hood of a turning point. A study of the semiclassical
description of quantum-mechanical scattering is given
in Ford and Wheeler (1959a,b). In the case of the rain-
bow, the scattering amplitude is expressed in terms of
Ai(x), the analysis being similar to that given originally
by Airy (1838) for the corresponding problem in optics.

An application of the Scorer functions is to the prob-
lem of the uniform loading of infinite plates (Rothman
(1954a,b)).

Computation

9.17 Methods of Computation

9.17(i) Maclaurin Expansions

Although the Maclaurin-series expansions of §§9.4 and
9.12(vi) converge for all finite values of z, they are cum-
bersome to use when |z| is large owing to slowness of
convergence and cancellation. For large |z| the asymp-
totic expansions of §§9.7 and 9.12(viii) should be used
instead. Since these expansions diverge, the accuracy
they yield is limited by the magnitude of |z|. How-
ever, in the case of Ai(z) and Bi(z) this accuracy can
be increased considerably by use of the exponentially-
improved forms of expansion supplied in §9.7(v).

9.17(ii) Differential Equations

A comprehensive and powerful approach is to integrate
the defining differential equation (9.2.1) by direct nu-
merical methods. As described in §3.7(ii), to ensure sta-
bility the integration path must be chosen in such a way
that as we proceed along it the wanted solution grows
at least as fast as all other solutions of the differential
equation. In the case of Ai(z), for example, this means
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that in the sectors 1
3π < |ph z| < π we may integrate

along outward rays from the origin with initial values
obtained from §9.2(ii). But when |ph z| < 1

3π the inte-
gration has to be towards the origin, with starting values
of Ai(z) and Ai′(z) computed from their asymptotic ex-
pansions. On the remaining rays, given by ph z = ± 1

3π
and π, integration can proceed in either direction.

For further information see Lozier and Olver (1993)
and Fabijonas et al. (2004). The former reference in-
cludes a parallelized version of the method.

In the case of the Scorer functions, integration of
the differential equation (9.12.1) is more difficult than
(9.2.1), because in some regions stable directions of in-
tegration do not exist. An example is provided by Gi(x)
on the positive real axis. In these cases boundary-value
methods need to be used instead; see §3.7(iii).

9.17(iii) Integral Representations

Among the integral representations of the Airy func-
tions the Stieltjes transform (9.10.18) furnishes a way
of computing Ai(z) in the complex plane, once values
of this function can be generated on the positive real
axis. For details, including the application of a gener-
alized form of Gaussian quadrature, see Gordon (1969,
Appendix A) and Schulten et al. (1979).

Gil et al. (2002a) describes two methods for the
computation of Ai(z) and Ai′(z) for z ∈ C. In the
first method the integration path for the contour inte-
gral (9.5.4) is deformed to coincide with paths of steep-
est descent (§2.4(iv)). The trapezoidal rule (§3.5(i)) is
then applied. The second method is to apply general-
ized Gauss–Laguerre quadrature (§3.5(v)) to the inte-
gral (9.5.8). For the second method see also Gautschi
(2002a). The methods for Ai′(z) are similar.

For quadrature methods for Scorer functions see
Gil et al. (2001), Lee (1980), and Gordon (1970, Ap-
pendix A); but see also Gautschi (1983).

9.17(iv) Via Bessel Functions

In consequence of §9.6(i), algorithms for generating
Bessel functions, Hankel functions, and modified Bessel
functions (§10.74) can also be applied to Ai(z), Bi(z),
and their derivatives.

9.17(v) Zeros

Zeros of the Airy functions, and their derivatives, can be
computed to high precision via Newton’s rule (§3.8(ii))
or Halley’s rule (§3.8(v)), using values supplied by the
asymptotic expansions of §9.9(iv) as initial approxima-
tions. This method was used in the computation of the
tables in §9.9(v). See also Fabijonas et al. (2004).

For the computation of the zeros of the Scorer func-
tions and their derivatives see Gil et al. (2003c).

9.18 Tables

9.18(i) Introduction

Additional listings of early tables of the functions
treated in this chapter are given in Fletcher et al. (1962)
and Lebedev and Fedorova (1960).

9.18(ii) Real Variables

• Miller (1946) tabulates Ai(x), Ai′(x) for x =
−20(.01)2; log10 Ai(x), Ai′(x)/Ai(x) for x =
0(.1)25(1)75; Bi(x), Bi′(x) for x = −10(.1)2.5;
log10 Bi(x), Bi′(x)/Bi(x) for x = 0(.1)10; M(x),
N(x), θ(x), φ(x) (respectively F (x), G(x), χ(x),
ψ(x)) for x = −80(1) − 30(.1)0. Precision is gen-
erally 8D; slightly less for some of the auxiliary
functions. Extracts from these tables are included
in Abramowitz and Stegun (1964, Chapter 10),
together with some auxiliary functions for large
arguments.

• Fox (1960, Table 3) tabulates 2π1/2x1/4×
exp( 2

3x
3/2) Ai(x), 2π1/2x−1/4 exp( 2

3x
3/2) Ai′(x),

π1/2x1/4 exp(− 2
3x

3/2) Bi(x), and π1/2x−1/4×
exp(− 2

3x
3/2) Bi′(x) for 3

2x
−3/2 = 0(.001)0.05, to-

gether with similar auxiliary functions for negative
values of x. Precision is 10D.

• Zhang and Jin (1996, p. 337) tabulates Ai(x),
Ai′(x), Bi(x), Bi′(x) for x = 0(1)20 to 8S and
for x = −20(1)0 to 9D.

• Yakovleva (1969) tabulates Fock’s functions
U(x) ≡

√
πBi(x), U ′(x) ≡

√
πBi′(x), V (x) ≡√

πAi(x), V ′(x) ≡
√
πAi′(x) for x = −9(.001)9.

Precision is 7S.

9.18(iii) Complex Variables

• Woodward and Woodward (1946) tabulates the
real and imaginary parts of Ai(z), Ai′(z), Bi(z),
Bi′(z) for <z = −2.4(.2)2.4, =z = −2.4(.2)0. Pre-
cision is 4D.

• Harvard (1945) tabulates the real and imaginary
parts of h1(z), h′1(z), h2(z), h′2(z) for −x0 ≤
<z ≤ x0, 0 ≤ =z ≤ y0, |x0 + iy0| < 6.1,
with interval 0.1 in <z and =z. Precision is 8D.
Here h1(z) = −24/331/6iAi

(
e−πi/3z

)
, h2(z) =

24/331/6iAi
(
eπi/3z

)
.
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9.18(iv) Zeros

• Miller (1946) tabulates ak, Ai′(ak), a′k, Ai(a′k),
k = 1(1)50; bk, Bi′(bk), b′k, Bi(b′k), k = 1(1)20.
Precision is 8D. Entries for k = 1(1)20 are repro-
duced in Abramowitz and Stegun (1964, Chap-
ter 10).

• Sherry (1959) tabulates ak, Ai′(ak), a′k, Ai(a′k),
k = 1(1)50; 20S.

• Zhang and Jin (1996, p. 339) tabulates ak, Ai′(ak),
a′k, Ai(a′k), bk, Bi′(bk), b′k, Bi(b′k), k = 1(1)20; 8D.

• Corless et al. (1992) gives the real and imaginary
parts of βk for k = 1(1)13; 14S.

• See also §9.9(v).

9.18(v) Integrals

• Rothman (1954a) tabulates
∫ x

0
Ai(t) dt and∫ x

0
Bi(t) dt for x = −10(.1)∞ and −10(.1)2, re-

spectively; 7D. The entries in the columns headed∫ x
0

Ai(−x) dx and
∫ x

0
Bi(−x) dx all have the wrong

sign. The tables are reproduced in Abramowitz
and Stegun (1964, Chapter 10), and the sign er-
rors are corrected in later reprintings.

• NBS (1958) tabulates
∫ x

0
Ai(−t) dt and∫ x

0

∫ v
0

Ai(−t) dt dv (see (9.10.20)) for x =
−2(.01)5 to 8D and 7D, respectively.

• Zhang and Jin (1996, p. 338) tabulates
∫ x

0
Ai(t) dt

and
∫ x

0
Bi(t) dt for x = −10(.2)10 to 8D or 8S.

9.18(vi) Scorer Functions

• Scorer (1950) tabulates Gi(x) and Hi(−x) for x =
0(.1)10; 7D.

• Rothman (1954b) tabulates
∫ x

0
Gi(t) dt, Gi′(x),∫ x

0
Hi(−t) dt, −Hi′(−x) for x = 0(.1)10; 7D.

• NBS (1958) tabulates A0(x) ≡ πHi(−x) and
−A′0(x) ≡ πHi′(−x) for x = 0(.01)1(.02)5(.05)11
and 1/x = 0.01(.01)0.1;

∫ x
0
A0(t) dt for x =

0.5, 1(1)11. Precision is 8D.

• Nosova and Tumarkin (1965) tabulates e0(x) ≡
πHi(−x), e′0(x) ≡ −πHi′(−x), ẽ0(−x) ≡
−πGi(x), ẽ ′0(−x) ≡ πGi′(x) for x = −1(.01)10;
7D. Also included are the real and imaginary parts
of e0(z) and ie′0(z), where z = iy and y = 0(.01)9;
6-7D.

• Gil et al. (2003c) tabulates the only positive zero
of Gi′(z), the first 10 negative real zeros of Gi(z)
and Gi′(z), and the first 10 complex zeros of Gi(z),
Gi′(z), Hi(z), and Hi′(z). Precision is 11 or 12S.

9.18(vii) Generalized Airy Functions

• Smirnov (1960) tabulates U1(x, α), U2(x, α),
defined by (9.13.20), (9.13.21), and also
∂U1(x, α)/∂x , ∂U2(x, α)/∂x , for α = 1, x =
−6(.01)10 to 5D or 5S, and also for α = ± 1

4 , ± 1
3 ,

± 1
2 , ± 2

3 , ± 3
4 , 5

4 , 4
3 , 3

2 , 5
3 , 7

4 , 2, x = 0(.01)6; 4D.

9.19 Approximations

9.19(i) Approximations in Terms of Elementary
Functions

• Mart́ın et al. (1992) provides two simple formu-
las for approximating Ai(x) to graphical accuracy,
one for −∞ < x ≤ 0, the other for 0 ≤ x <∞.

• Moshier (1989, §6.14) provides minimax ratio-
nal approximations for calculating Ai(x), Ai′(x),
Bi(x), Bi′(x). They are in terms of the variable ζ,
where ζ = 2

3x
3/2 when x is positive, ζ = 2

3 (−x)3/2

when x is negative, and ζ = 0 when x = 0. The
approximations apply when 2 ≤ ζ < ∞, that is,
when 32/3 ≤ x < ∞ or −∞ < x ≤ −32/3. The
precision in the coefficients is 21S.

9.19(ii) Expansions in Chebyshev Series

These expansions are for real arguments x and are sup-
plied in sets of four for each function, corresponding
to intervals −∞ < x ≤ a, a ≤ x ≤ 0, 0 ≤ x ≤ b,
b ≤ x < ∞. The constants a and b are chosen numer-
ically, with a view to equalizing the effort required for
summing the series.

• Prince (1975) covers Ai(x), Ai′(x), Bi(x), Bi′(x).
The Chebyshev coefficients are given to 10-11D.
Fortran programs are included. See also Razaz
and Schonfelder (1981).

• Németh (1992, Chapter 8) covers Ai(x),
Ai′(x), Bi(x), Bi′(x), and integrals

∫ x
0

Ai(t) dt,∫ x
0

Bi(t) dt,
∫ x

0

∫ v
0

Ai(t) dt dv,
∫ x

0

∫ v
0

Bi(t) dt dv
(see also (9.10.20) and (9.10.21)). The Cheby-
shev coefficients are given to 15D. Chebyshev
coefficients are also given for expansions of the
second and higher (real) zeros of Ai(x), Ai′(x),
Bi(x), Bi′(x), again to 15D.

• Razaz and Schonfelder (1980) covers Ai(x),
Ai′(x), Bi(x), Bi′(x). The Chebyshev coefficients
are given to 30D.
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9.19(iii) Approximations in the Complex Plane

• Corless et al. (1992) describe a method of approx-
imation based on subdividing C into a triangular
mesh, with values of Ai(z), Ai′(z) stored at the
nodes. Ai(z) and Ai′(z) are then computed from
Taylor-series expansions centered at one of the
nearest nodes. The Taylor coefficients are gener-
ated by recursion, starting from the stored values
of Ai(z), Ai′(z) at the node. Similarly for Bi(z),
Bi′(z).

9.19(iv) Scorer Functions

• MacLeod (1994) supplies Chebyshev-series expan-
sions to cover Gi(x) for 0 ≤ x <∞ and Hi(x) for
−∞ < x ≤ 0. The Chebyshev coefficients are
given to 20D.

9.20 Software

See http://dlmf.nist.gov/9.20.
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432). For (9.12.26), (9.12.28) refer to §2.1(ii).
Except for the constant term, (9.12.31) can be

verified by termwise integration of (9.12.27). To
evaluate the constant term replace z by −x (≤
0) in (9.12.20) and integrate (§1.5(v)) to ob-
tain π

∫ x
0

Hi(−t) dt =
∫∞

0
(1 − e−xt)e−

1
3 t

3
t−1 dt.

Next, integrate the right-hand side of this equa-
tion by parts—integrating the factor t−1 and dif-
ferentiating the rest. As x → ∞ the asymp-
totic expansions of

∫∞
0
xe−xte−

1
3 t

3
(ln t) dt and∫∞

0
e−xtt2e−

1
3 t

3
(ln t) dt follow from (2.3.9). Also,∫∞

0
t2e−

1
3 t

3
(ln t) dt can be found by replacing 1

3 t
3

by t and referring to the first of (5.9.18). For
(9.12.30) integrate (9.12.25) and obtain the con-
stant term by combining (9.12.12) and (9.12.31).
(Equations (9.12.30) and (9.12.31) first appeared
in Rothman (1954b). As noted in this reference
these results were derived by the author of the
present DLMF chapter, but the proof was not in-
cluded.) The graphs were produced by NIST.
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Notation

10.1 Special Notation

(For other notation see pp. xiv and 873.)
m,n integers. In §§10.47–10.71 n is nonnegative.
k nonnegative integer (except in §10.73).
x, y real variables.
z complex variable.
ν real or complex parameter (the order).
δ arbitrary small positive constant.
ϑ z(d/dz ).
ψ(x) Γ′(x)/Γ(x): logarithmic derivative of the

gamma function (§5.2(i)).
primes derivatives with respect to argument, except

where indicated otherwise.
The main functions treated in this chapter are the

Bessel functions Jν(z), Yν(z); Hankel functions H(1)
ν (z),

H
(2)
ν (z); modified Bessel functions Iν(z), Kν(z); spher-

ical Bessel functions jn(z), yn(z), h
(1)
n (z), h

(2)
n (z); mod-

ified spherical Bessel functions i
(1)
n (z), i

(2)
n (z), kn(z);

Kelvin functions berν(x), beiν(x), kerν(x), keiν(x). For
the spherical Bessel functions and modified spherical
Bessel functions the order n is a nonnegative integer.
For the other functions when the order ν is replaced by
n, it can be any integer. For the Kelvin functions the
order ν is always assumed to be real.

A common alternative notation for Yν(z) is Nν(z).
Other notations that have been used are as follows.

Abramowitz and Stegun (1964): jn(z), yn(z),
h

(1)
n (z), h(2)

n (z), for jn(z), yn(z), h
(1)
n (z), h

(2)
n (z), respec-

tively, when n ≥ 0.
Jeffreys and Jeffreys (1956): Hsν(z) for H

(1)
ν (z),

Hiν(z) for H(2)
ν (z), Khν(z) for (2/π)Kν(z).

Whittaker and Watson (1927): Kν(z) for
cos(νπ)Kν(z).

For older notations see British Association for the
Advancement of Science (1937, pp. xix–xx) and Watson
(1944, Chapters 1–3).

Bessel and Hankel Functions

10.2 Definitions

10.2(i) Bessel’s Equation

10.2.1 z2 d
2w

dz2 + z
dw

dz
+ (z2 − ν2)w = 0.

This differential equation has a regular singularity at
z = 0 with indices ±ν, and an irregular singularity at
z =∞ of rank 1; compare §§2.7(i) and 2.7(ii).

10.2(ii) Standard Solutions

Bessel Function of the First Kind

10.2.2 Jν(z) = ( 1
2z)

ν
∞∑
k=0

(−1)k
( 1

4z
2)k

k! Γ(ν + k + 1)
.

This solution of (10.2.1) is an analytic function of z ∈ C,
except for a branch point at z = 0 when ν is not an in-
teger. The principal branch of Jν(z) corresponds to the
principal value of ( 1

2z)
ν (§4.2(iv)) and is analytic in the

z-plane cut along the interval (−∞, 0].
When ν = n (∈ Z), Jν(z) is entire in z.
For fixed z (6= 0) each branch of Jν(z) is entire in ν.

Bessel Function of the Second Kind (Weber’s Function)

10.2.3 Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

When ν is an integer the right-hand side is replaced by
its limiting value:

10.2.4
Yn(z) =

1
π

∂Jν(z)
∂ν

∣∣∣∣
ν=n

+
(−1)n

π

∂Jν(z)
∂ν

∣∣∣∣
ν=−n

,

n = 0,±1,±2, . . . .

Whether or not ν is an integer Yν(z) has a branch point
at z = 0. The principal branch corresponds to the prin-
cipal branches of J±ν(z) in (10.2.3) and (10.2.4), with
a cut in the z-plane along the interval (−∞, 0].

Except in the case of J±n(z), the principal branches
of Jν(z) and Yν(z) are two-valued and discontinuous on
the cut ph z = ±π; compare §4.2(i).

Both Jν(z) and Yν(z) are real when ν is real and
ph z = 0.

For fixed z (6= 0) each branch of Yν(z) is entire in ν.

Bessel Functions of the Third Kind (Hankel Functions)

These solutions of (10.2.1) are denoted by H(1)
ν (z) and

H
(2)
ν (z), and their defining properties are given by

10.2.5 H(1)
ν (z) ∼

√
2/(πz)ei(z−

1
2νπ−

1
4π)

as z →∞ in −π + δ ≤ ph z ≤ 2π − δ, and

10.2.6 H(2)
ν (z) ∼

√
2/(πz)e−i(z−

1
2νπ−

1
4π)

as z → ∞ in −2π + δ ≤ ph z ≤ π − δ, where δ is an
arbitrary small positive constant. Each solution has a
branch point at z = 0 for all ν ∈ C. The principal
branches correspond to principal values of the square
roots in (10.2.5) and (10.2.6), again with a cut in the
z-plane along the interval (−∞, 0].

The principal branches of H(1)
ν (z) and H

(2)
ν (z) are

two-valued and discontinuous on the cut ph z = ±π.
For fixed z (6= 0) each branch of H(1)

ν (z) and H(2)
ν (z)

is entire in ν.
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Branch Conventions

Except where indicated otherwise, it is assumed through-
out this Handbook that the symbols Jν(z), Yν(z),
H

(1)
ν (z), andH(2)

ν (z) denote the principal values of these
functions.
Cylinder Functions

The notation Cν(z) denotes Jν(z), Yν(z), H
(1)
ν (z),

H
(2)
ν (z), or any nontrivial linear combination of these

functions, the coefficients in which are independent of z
and ν.

10.2(iii) Numerically Satisfactory Pairs of
Solutions

Table 10.2.1 lists numerically satisfactory pairs of so-
lutions (§2.7(iv)) of (10.2.1) for the stated intervals or

regions in the case <ν ≥ 0. When <ν < 0, ν is replaced
by −ν throughout.

Table 10.2.1: Numerically satisfactory pairs of solutions
of Bessel’s equation.

Pair Interval or Region

Jν(x), Yν(x) 0 < x <∞
Jν(z), Yν(z) neighborhood of 0 in |ph z| ≤ π
Jν(z), H(1)

ν (z) 0 ≤ ph z ≤ π
Jν(z), H(2)

ν (z) −π ≤ ph z ≤ 0

H
(1)
ν (z), H(2)

ν (z) neighborhood of ∞ in |ph z| ≤ π

10.3 Graphics

10.3(i) Real Order and Variable

See Figures 10.3.1–10.3.8. For the modulus and phase functions Mν(x), θν(x), Nν(x), and φν(x) see §10.18.

Figure 10.3.1: J0(x), Y0(x), J1(x), Y1(x), 0 ≤ x ≤ 10. Figure 10.3.2: J5(x), Y5(x),M5(x), 0 ≤ x ≤ 15.

Figure 10.3.3: J ′5(x), Y ′5(x), N5(x), 0 ≤ x ≤ 15. Figure 10.3.4: θ5(x), φ5(x), 0 ≤ x ≤ 15.
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Figure 10.3.5: Jν(x), 0 ≤ x ≤ 10, 0 ≤ ν ≤ 5. Figure 10.3.6: Yν(x), 0 < x ≤ 10, 0 ≤ ν ≤ 5.

Figure 10.3.7: J ′ν(x), 0 ≤ x ≤ 10, 0 ≤ ν ≤ 5. Figure 10.3.8: Y ′ν(x), 0.2 ≤ x ≤ 10, 0 ≤ ν ≤ 5.
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10.3(ii) Real Order, Complex Variable

See Figures 10.3.9–10.3.16. In these graphics, height corresponds to the absolute value of the function and color to
the phase. See also p. xiv.

Figure 10.3.9: J0(x+ iy),−10 ≤ x ≤ 10,−4 ≤ y ≤ 4. Figure 10.3.10: H(1)
0 (x+ iy), −10 ≤ x ≤ 5,−2.8 ≤ y ≤

4. Principal value. There is a cut along the negative
real axis.

Figure 10.3.11: J1(x+ iy),−10 ≤ x ≤ 10,−4 ≤ y ≤ 4. Figure 10.3.12: H(1)
1 (x+ iy), −10 ≤ x ≤ 5,−2.8 ≤ y ≤

4. Principal value. There is a cut along the negative
real axis.
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Figure 10.3.13: J5(x+ iy),−10 ≤ x ≤ 10,−4 ≤ y ≤ 4. Figure 10.3.14: H(1)
5 (x+ iy), −20 ≤ x ≤ 10,−4 ≤ y ≤

4. Principal value. There is a cut along the negative
real axis.

Figure 10.3.15: J5.5(x+ iy), −10 ≤ x ≤ 10,−4 ≤ y ≤ 4.
Principal value. There is a cut along the negative real
axis.

Figure 10.3.16: H(1)
5.5 (x+ iy), −20 ≤ x ≤ 10,−4 ≤ y ≤

4. Principal value. There is a cut along the negative
real axis.

10.3(iii) Imaginary Order, Real Variable

See Figures 10.3.17–10.3.19. For the notation see §10.24.

Figure 10.3.17: J̃1/2(x), Ỹ1/2(x), 0.01 ≤ x ≤ 10. Figure 10.3.18: J̃1(x), Ỹ1(x), 0.01 ≤ x ≤ 10.
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Figure 10.3.19: J̃5(x), Ỹ5(x), 0.01 ≤ x ≤ 10.

10.4 Connection Formulas

Other solutions of (10.2.1) include J−ν(z), Y−ν(z),
H

(1)
−ν (z), and H

(2)
−ν (z).

10.4.1
J−n(z) = (−1)n Jn(z),

Y−n(z) = (−1)n Yn(z),

10.4.2
H

(1)
−n(z) = (−1)nH(1)

n (z),

H
(2)
−n(z) = (−1)nH(2)

n (z).

10.4.3
H(1)
ν (z) = Jν(z) + i Yν(z),

H(2)
ν (z) = Jν(z)− i Yν(z),

10.4.4
Jν(z) =

1
2

(
H(1)
ν (z) +H(2)

ν (z)
)
,

Yν(z) =
1
2i

(
H(1)
ν (z)−H(2)

ν (z)
)
.

10.4.5 Jν(z) = csc(νπ) (Y−ν(z)− Yν(z) cos(νπ)) .

10.4.6
H

(1)
−ν (z) = eνπiH(1)

ν (z),

H
(2)
−ν (z) = e−νπiH(2)

ν (z).

10.4.7
H(1)
ν (z) = i csc(νπ)

(
e−νπi Jν(z)− J−ν(z)

)
= csc(νπ)

(
Y−ν(z)− e−νπi Yν(z)

)
,

10.4.8
H(2)
ν (z) = i csc(νπ)

(
J−ν(z)− eνπi Jν(z)

)
= csc(νπ)

(
Y−ν(z)− eνπi Yν(z)

)
.

In (10.4.5), (10.4.7), and (10.4.8) limiting values are
taken when ν = n; compare (10.2.3) and (10.2.4).

See also §10.11.

10.5 Wronskians and Cross-Products

10.5.1

W {Jν(z), J−ν(z)} = Jν+1(z) J−ν(z) + Jν(z) J−ν−1(z)
= −2 sin(νπ)/(πz),

10.5.2

W {Jν(z), Yν(z)} = Jν+1(z)Yν(z)− Jν(z)Yν+1(z)
= 2/(πz),

10.5.3

W {Jν(z), H(1)
ν (z)} = Jν+1(z)H(1)

ν (z)− Jν(z)H(1)
ν+1(z)

= 2i/(πz),
10.5.4

W {Jν(z), H(2)
ν (z)} = Jν+1(z)H(2)

ν (z)− Jν(z)H(2)
ν+1(z)

= −2i/(πz),

10.5.5

W
{
H(1)
ν (z), H(2)

ν (z)
}

= H
(1)
ν+1(z)H(2)

ν (z)

−H(1)
ν (z)H(2)

ν+1(z)
= −4i/(πz).

10.6 Recurrence Relations and Derivatives

10.6(i) Recurrence Relations

With Cν(z) defined as in §10.2(ii),

10.6.1
Cν−1(z) + Cν+1(z) = (2ν/z) Cν(z),
Cν−1(z)− Cν+1(z) = 2 C ′ν(z).

10.6.2
C ′ν(z) = Cν−1(z)− (ν/z) Cν(z),
C ′ν(z) = −Cν+1(z) + (ν/z) Cν(z).

10.6.3
J ′0(z) = − J1(z), Y ′0(z) = −Y1(z),

H
(1)
0

′
(z) = −H(1)

1 (z), H
(2)
0

′
(z) = −H(2)

1 (z).
If fν(z) = zp Cν(λzq), where p, q, and λ (6= 0) are

real or complex constants, then

10.6.4

fν−1(z) + fν+1(z) = (2ν/λ)z−qfν(z),
(p+ νq)fν−1(z) + (p− νq)fν+1(z)

= (2ν/λ)z1−qf ′ν(z).

10.6.5
zf ′ν(z) = λqzqfν−1(z) + (p− νq)fν(z),
zf ′ν(z) = −λqzqfν+1(z) + (p+ νq)fν(z).

10.6(ii) Derivatives

For k = 0, 1, 2, . . . ,

10.6.6

(
1
z

d

dz

)k
(zν Cν(z)) = zν−k Cν−k(z),(

1
z

d

dz

)k
(z−ν Cν(z)) = (−1)kz−ν−k Cν+k(z).

10.6.7 C (k)
ν (z) =

1
2k

k∑
n=0

(−1)n
(
k

n

)
Cν−k+2n(z).
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10.6(iii) Cross-Products

Let

10.6.8

pν = Jν(a)Yν(b)− Jν(b)Yν(a),
qν = Jν(a)Y ′ν(b)− J ′ν(b)Yν(a),
rν = J ′ν(a)Yν(b)− Jν(b)Y ′ν(a),
sν = J ′ν(a)Y ′ν(b)− J ′ν(b)Y ′ν(a),

where a and b are independent of ν. Then

10.6.9

pν+1 − pν−1 = −2ν
a
qν −

2ν
b
rν ,

qν+1 + rν =
ν

a
pν −

ν + 1
b

pν+1,

rν+1 + qν =
ν

b
pν −

ν + 1
a

pν+1,

sν = 1
2pν+1 + 1

2pν−1 −
ν2

ab
pν ,

and

10.6.10 pνsν − qνrν = 4/(π2ab).

10.7 Limiting Forms

10.7(i) z → 0

When ν is fixed and z → 0,

10.7.1 J0(z)→ 1, Y0(z) ∼ (2/π) ln z,

10.7.2 H
(1)
0 (z) ∼ −H(2)

0 (z) ∼ (2i/π) ln z,

10.7.3 Jν(z) ∼ ( 1
2z)

ν/Γ(ν + 1), ν 6= −1,−2,−3, . . . ,

10.7.4

Yν(z) ∼ −(1/π) Γ(ν)( 1
2z)
−ν ,

<ν > 0 or ν = − 1
2 ,−

3
2 ,−

5
2 , . . . ,

10.7.5
Y−ν(z) ∼ −(1/π) cos(νπ) Γ(ν)( 1

2z)
−ν ,

<ν > 0, ν 6= 1
2 ,

3
2 ,

5
2 , . . . ,

10.7.6
Yiν(z) =

i csch(νπ)
Γ(1− iν)

( 1
2z)
−iν − i coth(νπ)

Γ(1 + iν)
( 1

2z)
iν

+ e|ν ph z| o(1), ν ∈ R and ν 6= 0.

See also §10.24 when z = x (> 0).

10.7.7

H(1)
ν (z) ∼ −H(2)

ν (z) ∼ −(i/π) Γ(ν)( 1
2z)
−ν , <ν > 0.

For H
(1)
−ν (z) and H

(2)
−ν (z) when <ν > 0 combine

(10.4.6) and (10.7.7). For H(1)
iν (z) and H

(2)
iν (z) when

ν ∈ R and ν 6= 0 combine (10.4.3), (10.7.3), and
(10.7.6).

10.7(ii) z →∞
When ν is fixed and z →∞,
10.7.8

Jν(z) =
√

2/(πz)
(

cos
(
z − 1

2νπ −
1
4π
)

+ e|=z| o(1)
)
,

Yν(z) =
√

2/(πz)
(

sin
(
z − 1

2νπ −
1
4π
)

+ e|=z| o(1)
)

,

|ph z| ≤ π − δ(< π).

For the corresponding results for H
(1)
ν (z) and

H
(2)
ν (z) see (10.2.5) and (10.2.6).

10.8 Power Series

For Jν(z) see (10.2.2) and (10.4.1). When ν is not an in-
teger the corresponding expansions for Yν(z), H(1)

ν (z),
and H

(2)
ν (z) are obtained by combining (10.2.2) with

(10.2.3), (10.4.7), and (10.4.8).
When n = 0, 1, 2, . . . ,

10.8.1

Yn(z) = −
( 1

2z)
−n

π

n−1∑
k=0

(n− k − 1)!
k!

(
1
4z

2
)k

+
2
π

ln
(

1
2z
)
Jn(z)−

( 1
2z)

n

π

∞∑
k=0

(ψ(k + 1)

+ ψ(n+ k + 1))
(− 1

4z
2)k

k!(n+ k)!
,

where ψ(x) = Γ′(x)/Γ(x) (§5.2(i)). In particular,
10.8.2

Y0(z) =
2
π

(
ln
(

1
2z
)
+γ
)
J0(z)+

2
π

( 1
4z

2

(1!)2
−(1+ 1

2 )
( 1

4z
2)2

(2!)2

+ (1 + 1
2 + 1

3 )
( 1

4z
2)3

(3!)2
−· · ·

)
,

where γ is Euler’s constant (§5.2(ii)).
For negative values of n use (10.4.1).
The corresponding results for H(1)

n (z) and H
(2)
n (z)

are obtained via (10.4.3) with ν = n.
10.8.3

Jν(z) Jµ(z) = (1
2z)

ν+µ
∞∑
k=0

(ν + µ+ k + 1)k(− 1
4z

2)k

k! Γ(ν + k + 1) Γ(µ+ k + 1)
.

10.9 Integral Representations

10.9(i) Integrals along the Real Line

Bessel’s Integral

10.9.1

J0(z) =
1
π

∫ π

0

cos(z sin θ) dθ =
1
π

∫ π

0

cos(z cos θ) dθ,

10.9.2

Jn(z) =
1
π

∫ π

0

cos(z sin θ − nθ) dθ

=
i−n

π

∫ π

0

eiz cos θ cos(nθ) dθ, n ∈ Z.
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Neumann’s Integral

10.9.3

Y0(z) =
4
π2

∫ 1
2π

0

cos(z cos θ)
(
γ + ln

(
2z sin2 θ

))
dθ,

where γ is Euler’s constant (§5.2(ii)).

Poisson’s and Related Integrals

10.9.4

Jν(z) =
( 1

2z)
ν

π
1
2 Γ
(
ν + 1

2

) ∫ π

0

cos(z cos θ)(sin θ)2ν dθ

=
2( 1

2z)
ν

π
1
2 Γ
(
ν + 1

2

) ∫ 1

0

(1− t2)ν−
1
2 cos(zt) dt,

<ν > − 1
2 .

10.9.5

Yν(z) =
2( 1

2z)
ν

π
1
2 Γ
(
ν + 1

2

) (∫ 1

0

(1− t2)ν−
1
2 sin(zt) dt

−
∫ ∞

0

e−zt(1 + t2)ν−
1
2 dt

)
,

<ν > − 1
2 , |ph z| < 1

2π.

Schläfli’s and Related Integrals

10.9.6

Jν(z) =
1
π

∫ π

0

cos(z sin θ − νθ) dθ

− sin(νπ)
π

∫ ∞
0

e−z sinh t−νt dt, |ph z| < 1
2π,

10.9.7

Yν(z) =
1
π

∫ π

0

sin(z sin θ − νθ) dθ

− 1
π

∫ ∞
0

(
eνt + e−νt cos(νπ)

)
e−z sinh t dt,

|ph z| < 1
2π.

Mehler–Sonine and Related Integrals

10.9.8

Jν(x) =
2
π

∫ ∞
0

sin(x cosh t− 1
2νπ) cosh(νt) dt,

Yν(x) = − 2
π

∫ ∞
0

cos(x cosh t− 1
2νπ) cosh(νt) dt,

|<ν| < 1, x > 0.

In particular,

10.9.9

J0(x) =
2
π

∫ ∞
0

sin(x cosh t) dt, x > 0,

Y0(x) = − 2
π

∫ ∞
0

cos(x cosh t) dt, x > 0.

10.9.10

H(1)
ν (z) =

e−
1
2νπi

πi

∫ ∞
−∞

eiz cosh t−νt dt, 0 < ph z < π,

10.9.11

H(2)
ν (z) =−e

1
2νπi

πi

∫ ∞
−∞

e−iz cosh t−νt dt, −π < ph z < 0.

10.9.12

Jν(x) =
2( 1

2x)−ν

π
1
2 Γ
(

1
2 − ν

) ∫ ∞
1

sin(xt) dt
(t2 − 1)ν+ 1

2
,

Yν(x) = −
2( 1

2x)−ν

π
1
2 Γ
(

1
2 − ν

) ∫ ∞
1

cos(xt) dt
(t2 − 1)ν+ 1

2
,

|<ν| < 1
2 , x > 0.

10.9.13

(
z + ζ

z − ζ

)1
2ν

Jν

(
(z2 − ζ2)

1
2

)
=

1
π

∫ π

0

eζ cos θ cos(z sin θ − νθ) dθ

− sin(νπ)
π

∫ ∞
0

e−ζ cosh t−z sinh t−νt dt,

<(z + ζ) > 0,

10.9.14(
z + ζ

z − ζ

)1
2ν

Yν

(
(z2 − ζ2)

1
2

)
=

1
π

∫ π

0

eζ cos θ sin(z sin θ − νθ) dθ

− 1
π

∫ ∞
0

(
eνt+ζ cosh t + e−νt−ζ cosh t cos(νπ)

)
× e−z sinh t dt, <(z ± ζ) > 0.

10.9.15

(
z + ζ

z − ζ

)1
2ν

H(1)
ν

(
(z2 − ζ2)

1
2

)
=

1
πi
e−

1
2νπi

∫ ∞
−∞

eiz cosh t+iζ sinh t−νt dt,

=(z ± ζ) > 0,

10.9.16

(
z + ζ

z − ζ

)1
2ν

H(2)
ν

(
(z2 − ζ2)

1
2

)
= − 1

πi
e

1
2νπi

∫ ∞
−∞

e−iz cosh t−iζ sinh t−νt dt,

=(z ± ζ) < 0.

10.9(ii) Contour Integrals

Schläfli–Sommerfeld Integrals

When |ph z| < 1
2π,

10.9.17 Jν(z) =
1

2πi

∫ ∞+πi

∞−πi
ez sinh t−νt dt,

and

10.9.18

H(1)
ν (z) =

1
πi

∫ ∞+πi

−∞
ez sinh t−νt dt,

H(2)
ν (z) = − 1

πi

∫ ∞−πi
−∞

ez sinh t−νt dt.
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Schläfli’s Integral

10.9.19 Jν(z) =
( 1

2z)
ν

2πi

∫ (0+)

−∞
exp

(
t− z2

4t

)
dt

tν+1
,

where the integration path is a simple loop contour, and
tν+1 is continuous on the path and takes its principal
value at the intersection with the positive real axis.

Hankel’s Integrals

In (10.9.20) and (10.9.21) the integration paths are sim-
ple loop contours not enclosing t = −1. Also, (t2−1)ν−

1
2

is continuous on the path, and takes its principal value
at the intersection with the interval (1,∞).
10.9.20

Jν(z) =
Γ
(

1
2 − ν

)
( 1

2z)
ν

π
3
2 i

∫ (1+)

0

cos(zt)(t2 − 1)ν−
1
2 dt,

ν 6= 1
2 ,

3
2 , . . . .

10.9.21

H(1)
ν (z) =

Γ
(

1
2 − ν

)
( 1

2z)
ν

π
3
2 i

∫ (1+)

1+i∞
eizt(t2 − 1)ν−

1
2 dt,

H(2)
ν (z) =

Γ
(

1
2 − ν

)
( 1

2z)
ν

π
3
2 i

∫ (1+)

1−i∞
e−izt(t2 − 1)ν−

1
2 dt,

ν 6= 1
2 ,

3
2 , . . . , |ph z| < 1

2π.

Mellin–Barnes Type Integrals

10.9.22

Jν(x) =
1

2πi

∫ i∞

−i∞

Γ(−t)( 1
2x)ν+2t

Γ(ν + t+ 1)
dt, <ν > 0, x > 0,

where the integration path passes to the left of t =
0, 1, 2, . . . .

10.9.23 Jν(z) =
1

2πi

∫ −∞+ic

−∞−ic

Γ(t)
Γ(ν − t+ 1)

( 1
2z)

ν−2t dt,

where c is a positive constant and the integration path
encloses the points t = 0,−1,−2, . . . .

In (10.9.24) and (10.9.25) c is any constant exceed-
ing max(<ν, 0).
10.9.24

H(1)
ν (z) = −e

− 1
2νπi

2π2

∫ c+i∞

c−i∞
Γ(t) Γ(t− ν)(−1

2 iz)
ν−2t dt,

0 < ph z < π,
10.9.25

H(2)
ν (z) =

e
1
2νπi

2π2

∫ c+i∞

c−i∞
Γ(t) Γ(t− ν)( 1

2 iz)
ν−2t dt,

−π < ph z < 0.
For (10.9.22)–(10.9.25) and further integrals of this

type see Paris and Kaminski (2001, pp. 114–116).

10.9(iii) Products

10.9.26 Jµ(z) Jν(z) =
2
π

∫ π/2

0

Jµ+ν(2z cos θ) cos(µ− ν)θ dθ, <(µ+ ν) > −1.

10.9.27 Jν(z) Jν(ζ) =
2
π

∫ π/2

0

J2ν

(
2(zζ)

1
2 sin θ

)
cos ((z − ζ) cos θ) dθ, <ν > − 1

2 ,

where the square root has its principal value.

10.9.28 Jν(z) Jν(ζ) =
1

2πi

∫ c+i∞

c−i∞
exp

(
1
2
t− z2 + ζ2

2t

)
Iν

(
zζ

t

)
dt

t
, <ν > −1,

where c is a positive constant. For the function Iν see §10.25(ii).

Mellin–Barnes Type

10.9.29 Jµ(x)Jν(x) =
1

2πi

∫ i∞

−i∞

Γ(−t) Γ(2t+ µ+ ν + 1)( 1
2x)µ+ν+2t

Γ(t+ µ+ 1) Γ(t+ ν + 1) Γ(t+ µ+ ν + 1)
dt, x > 0,

where the path of integration separates the poles of Γ(−t) from those of Γ(2t+ µ+ ν + 1). See Paris and Kaminski
(2001, p. 116) for related results.

Nicholson’s Integral

10.9.30 J2
ν (z) + Y 2

ν (z) =
8
π2

∫ ∞
0

cosh(2νt)K0(2z sinh t) dt, |ph z| < 1
2π.

For the function K0 see §10.25(ii).
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10.9(iv) Compendia

For collections of integral representations of Bessel and
Hankel functions see Erdélyi et al. (1953b, §§7.3 and
7.12), Erdélyi et al. (1954a, pp. 43–48, 51–60, 99–105,
108–115, 123–124, 272–276, and 356–357), Gröbner and
Hofreiter (1950, pp. 189–192), Marichev (1983, pp. 191–
192 and 196–210), Magnus et al. (1966, §3.6), and Wat-
son (1944, Chapter 6).

10.10 Continued Fractions

Assume Jν−1(z) 6= 0. Then

10.10.1

Jν(z)
Jν−1(z)

=
1

2νz−1 −
1

2(ν + 1)z−1 −
1

2(ν + 2)z−1 −
· · · ,

z 6= 0,

10.10.2

Jν(z)
Jν−1(z)

=
1
2z/ν

1−

1
4z

2/(ν(ν + 1))
1−

1
4z

2/((ν + 1)(ν + 2))
1−

· · · ,

ν 6= 0,−1,−2, . . . .

See also Cuyt et al. (2008, pp. 349–356).

10.11 Analytic Continuation

When m ∈ Z,

10.11.1 Jν
(
zemπi

)
= emνπi Jν(z),

10.11.2

Yν
(
zemπi

)
= e−mνπi Yν(z) + 2i sin(mνπ) cot(νπ) Jν(z).

10.11.3

sin(νπ)H(1)
ν

(
zemπi

)
= − sin((m− 1)νπ)H(1)

ν (z)

− e−νπi sin(mνπ)H(2)
ν (z),

10.11.4

sin(νπ)H(2)
ν

(
zemπi

)
= eνπi sin(mνπ)H(1)

ν (z)

+ sin((m+ 1)νπ)H(2)
ν (z).

10.11.5
H(1)
ν

(
zeπi

)
= −e−νπiH(2)

ν (z),

H(2)
ν

(
ze−πi

)
= −eνπiH(1)

ν (z).

If ν = n (∈ Z), then limiting values are taken in
(10.11.2)–(10.11.4):

10.11.6 Yn
(
zemπi

)
= (−1)mn(Yn(z) + 2imJn(z)),

10.11.7

H(1)
n

(
zemπi

)
= (−1)mn−1((m−1)H(1)

n (z) +mH(2)
n (z)),

10.11.8

H(2)
n

(
zemπi

)
= (−1)mn(mH(1)

n (z) + (m+ 1)H(2)
n (z)).

For real ν,

10.11.9
Jν(z) = Jν(z), Yν(z) = Yν(z),

H(1)
ν (z) = H

(2)
ν (z), H(2)

ν (z) = H
(1)
ν (z).

For complex ν replace ν by ν on the right-hand sides.

10.12 Generating Function and Associated
Series

For z ∈ C and t ∈ C \{0},

10.12.1 e
1
2 z(t−t

−1) =
∞∑

m=−∞
tm Jm(z).

For z, θ ∈ C,

10.12.2

cos(z sin θ) = J0(z) + 2
∞∑
k=1

J2k(z) cos(2kθ),

sin(z sin θ) = 2
∞∑
k=0

J2k+1(z) sin((2k + 1)θ),

10.12.3

cos(z cos θ) = J0(z) + 2
∞∑
k=1

(−1)k J2k(z) cos(2kθ),

sin(z cos θ) = 2
∞∑
k=0

(−1)k J2k+1(z) cos((2k + 1)θ).

10.12.4 1 = J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + · · · ,

10.12.5
cos z = J0(z)− 2J2(z) + 2J4(z)− 2J6(z) + · · · ,
sin z = 2J1(z)− 2J3(z) + 2J5(z)− · · · ,

10.12.6
1
2z cos z = J1(z)− 9J3(z) + 25J5(z)− 49J7(z) + · · · ,
1
2z sin z = 4J2(z)− 16J4(z) + 36J6(z)−· · · .

10.13 Other Differential Equations

In the following equations ν, λ, p, q, and r are real or
complex constants with λ 6= 0, p 6= 0, and q 6= 0.

10.13.1 w′′ +
(
λ2 −

ν2 − 1
4

z2

)
w = 0, w = z

1
2 Cν(λz),

10.13.2 w′′+
(
λ2

4z
− ν2 − 1

4z2

)
w = 0, w = z

1
2 Cν

(
λz

1
2

)
,

10.13.3 w′′ + λ2zp−2w = 0, w = z
1
2 C1/p

(
2λz

1
2p/p

)
,

10.13.4 w′′ − 2ν − 1
z

w′ + λ2w = 0, w = zν Cν(λz),

10.13.5
z2w′′ + (1− 2r)zw′ + (λ2q2z2q + r2 − ν2q2)w

= 0, w = zr Cν(λzq),

10.13.6 w′′ + (λ2e2z − ν2)w = 0, w = Cν(λez),
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10.13.7

z2(z2 − ν2)w′′ + z(z2 − 3ν2)w′

+ ((z2 − ν2)2 − (z2 + ν2))w = 0,
w = C ′ν(z),

10.13.8

w(2n) = (−1)nλ2nz−nw,

w = z
1
2n Cn

(
2λekπi/nz

1
2

)
, k = 0, 1, . . . , 2n− 1.

In (10.13.9)–(10.13.11) Cν(z), Dµ(z) are any cylin-
der functions of orders ν, µ, respectively, and ϑ =
z(d/dz ).
10.13.9

z2w′′′ + 3zw′′ + (4z2 + 1− 4ν2)w′ + 4zw = 0,
w = Cν(z)Dν(z),

10.13.10

z3w′′′ + z(4z2 + 1− 4ν2)w′ + (4ν2 − 1)w = 0,
w = z Cν(z)Dν(z),

10.13.11(
ϑ4 − 2(ν2 + µ2)ϑ2 + (ν2 − µ2)2

)
w

+ 4z2(ϑ+ 1)(ϑ+ 2)w = 0, w = Cν(z)Dµ(z).
For further differential equations see Kamke (1977,

pp. 440–451). See also Watson (1944, pp. 95–100).

10.14 Inequalities; Monotonicity

10.14.1
| Jν(x)| ≤ 1, ν ≥ 0, x ∈ R,
| Jν(x)| ≤ 2−

1
2 , ν ≥ 1, x ∈ R.

10.14.2 0 < Jν(ν) <
2

1
3

3
2
3 Γ
(

2
3

)
ν

1
3

, ν > 0.

For monotonicity properties of Jν(ν) and J ′ν(ν) see
Lorch (1992).

10.14.3 | Jn(z)| ≤ e|=z|, n ∈ Z.

10.14.4 | Jν(z)| ≤
| 12z|

νe|=z|

Γ(ν + 1)
, ν ≥ − 1

2 .

10.14.5

| Jν(νx)| ≤
xν exp

(
ν(1− x2)

1
2

)
(

1 + (1− x2)
1
2

)ν , ν ≥ 0, 0 < x ≤ 1;

see Siegel (1953).

10.14.6
| J ′ν(νx)| ≤ (1 + x2)

1
4

x(2πν)
1
2

xν exp
(
ν(1− x2)

1
2

)
(

1 + (1− x2)
1
2

)ν ,

ν > 0, 0 < x ≤ 1;
see Watson (1944, p. 255). For a related bound for
Yν(νx) see Siegel and Sleator (1954).

10.14.7 1 ≤ Jν(νx)
xν Jν(ν)

≤ eν(1−x), ν ≥ 0, 0 < x ≤ 1;

see Paris (1984). For similar bounds for Cν(x)
(§10.2(ii)) see Laforgia (1986).

Kapteyn’s Inequality

10.14.8

| Jn(nz)| ≤

∣∣∣zn exp
(
n(1− z2)

1
2

)∣∣∣∣∣∣1 + (1− z2)
1
2

∣∣∣n , n = 0, 1, 2, . . . ,

where (1− z2)
1
2 has its principal value.

10.14.9 | Jn(nz)| ≤ 1, n = 0, 1, 2, . . . , z ∈ K,

where K is defined in §10.20(ii).

For inequalities for the function Γ(ν + 1)(2/x)ν Jν(x)
with ν > − 1

2 see Neuman (2004).

For further monotonicity properties see Landau
(1999, 2000).

10.15 Derivatives with Respect to Order

Noninteger Values of ν

10.15.1

∂Jν(z)
∂ν

= Jν(z) ln
(

1
2z
)

− ( 1
2z)

ν
∞∑
k=0

(−1)k
ψ(ν + k + 1)
Γ(ν + k + 1)

( 1
4z

2)k

k!
,

10.15.2

∂Yν(z)
∂ν

= cot(νπ)
(
∂Jν(z)
∂ν

− π Yν(z)
)

− csc(νπ)
∂J−ν(z)
∂ν

− π Jν(z).

Integer Values of ν

10.15.3

∂Jν(z)
∂ν

∣∣∣∣
ν=n

=
π

2
Yn(z) +

n!
2( 1

2z)
n

n−1∑
k=0

( 1
2z)

k Jk(z)
k!(n− k)

,

10.15.4

∂Yν(z)
∂ν

∣∣∣∣
ν=n

= −π
2
Jn(z) +

n!
2( 1

2z)
n

n−1∑
k=0

( 1
2z)

k Yk(z)
k!(n− k)

,

10.15.5

∂Jν(z)
∂ν

∣∣∣∣
ν=0

=
π

2
Y0(z),

∂Yν(z)
∂ν

∣∣∣∣
ν=0

= −π
2
J0(z).
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Half-Integer Values of ν

For the notations Ci and Si see §6.2(ii). When x > 0,
10.15.6

∂Jν(x)
∂ν

∣∣∣∣
ν= 1

2

=

√
2
πx

(Ci(2x) sinx− Si(2x) cosx) ,

10.15.7

∂Jν(x)
∂ν

∣∣∣∣
ν=− 1

2

=

√
2
πx

(Ci(2x) cosx+ Si(2x) sinx) ,

10.15.8

∂Yν(x)
∂ν

∣∣∣∣
ν= 1

2

=

√
2
πx

(Ci(2x) cosx

+ (Si(2x)− π) sinx) ,
10.15.9

∂Yν(x)
∂ν

∣∣∣∣
ν=− 1

2

= −
√

2
πx

(Ci(2x) sinx

− (Si(2x)− π) cosx) .
For further results see Brychkov and Geddes (2005)

and Landau (1999, 2000).

10.16 Relations to Other Functions

Elementary Functions

10.16.1

J 1
2
(z) = Y− 1

2
(z) =

(
2
πz

)1
2

sin z,

J− 1
2
(z) = −Y 1

2
(z) =

(
2
πz

)1
2

cos z,

10.16.2

H
(1)
1
2

(z) = −iH(1)

− 1
2
(z) = −i

(
2
πz

)1
2

eiz,

H
(2)
1
2

(z) = iH
(2)

− 1
2
(z) = i

(
2
πz

)1
2

e−iz.

For these and general results when ν is half an odd
integer see §§10.47(ii) and 10.49(i).

Airy Functions

See §§9.6(i) and 9.6(ii).

Parabolic Cylinder Functions

With the notation of §12.14(i),
10.16.3

J 1
4
(z) = −2−

1
4π−

1
2 z−

1
4

(
W
(

0, 2z
1
2

)
−W

(
0,−2z

1
2

))
,

J− 1
4
(z) = 2−

1
4π−

1
2 z−

1
4

(
W
(

0, 2z
1
2

)
+W

(
0,−2z

1
2

))
.

10.16.4

J 3
4
(z) = −2−

1
4π−

1
2 z−

3
4

(
W ′
(

0, 2z
1
2

)
−W ′

(
0,−2z

1
2

))
,

J− 3
4
(z) =−2−

1
4π−

1
2 z−

3
4

(
W ′
(

0, 2z
1
2

)
+W ′

(
0,−2z

1
2

))
.

Principal values on each side of these equations corre-
spond.

Confluent Hypergeometric Functions

10.16.5 Jν(z) =
( 1

2z)
νe∓iz

Γ(ν + 1)
M
(
ν + 1

2 , 2ν + 1,±2iz
)
,

10.16.6

H
(1)
ν (z)

H
(2)
ν (z)

}
= ∓2π−

1
2 ie∓νπi(2z)ν

× e±iz U(ν + 1
2 , 2ν + 1,∓2iz).

For the functions M and U see §13.2(i).

10.16.7
Jν(z) =

e∓(2ν+1)πi/4

22ν Γ(ν + 1)
(2z)−

1
2 M0,ν(±2iz),

2ν 6= −1,−2− 3, . . . ,

10.16.8
H

(1)
ν (z)

H
(2)
ν (z)

}
= e∓(2ν+1)πi/4

(
2
πz

)1
2

W 0,ν(∓2iz).

For the functions M0,ν and W 0,ν see §13.14(i).
In all cases principal branches correspond at least

when |ph z| ≤ 1
2π.

Generalized Hypergeometric Functions

10.16.9 Jν(z) =
( 1

2z)
ν

Γ(ν + 1) 0F1

(
−; ν + 1;− 1

4z
2
)
.

For 0F1 see (16.2.1).
With F as in §15.2(i), and with z and ν fixed,

10.16.10 Jν(z) = ( 1
2z)

ν lim F
(
λ, µ; ν + 1;−z2/(4λµ)

)
,

as λ and µ→∞ in C. For this result see Watson (1944,
§5.7).

10.17 Asymptotic Expansions for Large
Argument

10.17(i) Hankel’s Expansions

Define a0(ν) = 1,
10.17.1

ak(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

k!8k
,

k ≥ 1,

10.17.2 ω = z − 1
2νπ −

1
4π,

and let δ denote an arbitrary small positive constant.
Then as z →∞, with ν fixed,

10.17.3

Jν(z) ∼
(

2
πz

)1
2
(

cosω
∞∑
k=0

(−1)k
a2k(ν)
z2k

− sinω
∞∑
k=0

(−1)k
a2k+1(ν)
z2k+1

)
,

|ph z| ≤ π − δ,
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10.17.4

Yν(z) ∼
(

2
πz

)1
2
(

sinω
∞∑
k=0

(−1)k
a2k(ν)
z2k

+ cosω
∞∑
k=0

(−1)k
a2k+1(ν)
z2k+1

)
,

|ph z| ≤ π − δ,

10.17.5
H(1)
ν (z) ∼

(
2
πz

)1
2

eiω
∞∑
k=0

ik
ak(ν)
zk

,

−π + δ ≤ ph z ≤ 2π − δ,

10.17.6
H(2)
ν (z) ∼

(
2
πz

)1
2

e−iω
∞∑
k=0

(−i)k ak(ν)
zk

,

−2π + δ ≤ ph z ≤ π − δ,

where the branch of z
1
2 is determined by

10.17.7 z
1
2 = exp

(
1
2 ln |z|+ 1

2 i ph z
)
.

Corresponding expansions for other ranges of ph z
can be obtained by combining (10.17.3), (10.17.5),
(10.17.6) with the continuation formulas (10.11.1),
(10.11.3), (10.11.4) (or (10.11.7), (10.11.8)), and also
the connection formula given by the second of (10.4.4).

10.17(ii) Asymptotic Expansions of Derivatives

We continue to use the notation of §10.17(i). Also,
b0(ν) = 1, b1(ν) = (4ν2 + 3)/8, and for k ≥ 2,

10.17.8 bk(ν) =

(
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k − 3)2)

)
(4ν2 + 4k2 − 1)

k!8k
.

Then as z →∞ with ν fixed,

10.17.9 J ′ν(z) ∼ −
(

2
πz

)1
2
(

sinω
∞∑
k=0

(−1)k
b2k(ν)
z2k

+ cosω
∞∑
k=0

(−1)k
b2k+1(ν)
z2k+1

)
, |ph z| ≤ π − δ,

10.17.10 Y ′ν(z) ∼
(

2
πz

)1
2
(

cosω
∞∑
k=0

(−1)k
b2k(ν)
z2k

− sinω
∞∑
k=0

(−1)k
b2k+1(ν)
z2k+1

)
, |ph z| ≤ π − δ,

10.17.11 H(1)
ν

′
(z) ∼ i

(
2
πz

)1
2

eiω
∞∑
k=0

ik
bk(ν)
zk

, −π + δ ≤ ph z ≤ 2π − δ,

10.17.12 H(2)
ν

′
(z) ∼ −i

(
2
πz

)1
2

e−iω
∞∑
k=0

(−i)k bk(ν)
zk

, −2π + δ ≤ ph z ≤ π − δ.

10.17(iii) Error Bounds for Real Argument and
Order

In the expansions (10.17.3) and (10.17.4) assume that
ν ≥ 0 and z > 0. Then the remainder associated
with the sum

∑`−1
k=0(−1)ka2k(ν)z−2k does not exceed

the first neglected term in absolute value and has the
same sign provided that ` ≥ max( 1

2ν −
1
4 , 1). Simi-

larly for
∑`−1
k=0(−1)ka2k+1(ν)z−2k−1, provided that ` ≥

max( 1
2ν −

3
4 , 1).

In the expansions (10.17.5) and (10.17.6) assume
that ν > − 1

2 and z > 0. If these expansions are ter-
minated when k = ` − 1, then the remainder term is
bounded in absolute value by the first neglected term,
provided that ` ≥ max(ν − 1

2 , 1).

10.17(iv) Error Bounds for Complex Argument
and Order

For (10.17.5) and (10.17.6) write
10.17.13

H
(1)
ν (z)

H
(2)
ν (z)

}
=
(

2
πz

)1
2

e±iω

(
`−1∑
k=0

(±i)k ak(ν)
zk

+R±` (ν, z)

)
,

` = 1, 2, . . . .
Then

10.17.14

∣∣R±` (ν, z)
∣∣ ≤ 2|a`(ν)| Vz,±i∞

(
t−`
)

× exp
(
|ν2 − 1

4 | Vz,±i∞
(
t−`
))
,

where V denotes the variational operator (2.3.6), and
the paths of variation are subject to the condition that
|=t| changes monotonically. Bounds for Vz,i∞

(
t−`
)

are
given by
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10.17.15 Vz,i∞
(
t−`
)
≤


|z|−`, 0 ≤ ph z ≤ π,
χ(`)|z|−`, − 1

2π ≤ ph z ≤ 0 or π ≤ ph z ≤ 3
2π,

2χ(`)|=z|−`, −π < ph z ≤ − 1
2π or 3

2π ≤ ph z < 2π,

where χ(`) = π
1
2 Γ
(

1
2`+ 1

)
/Γ
(

1
2`+ 1

2

)
; see §9.7(i). The

bounds (10.17.15) also apply to Vz,−i∞
(
t−`
)

in the con-
jugate sectors.

Corresponding error bounds for (10.17.3) and
(10.17.4) are obtainable by combining (10.17.13) and
(10.17.14) with (10.4.4).

10.17(v) Exponentially-Improved Expansions

As in §9.7(v) denote

10.17.16 Gp(z) =
ez

2π
Γ(p) Γ(1− p, z),

where Γ(1− p, z) is the incomplete gamma function
(§8.2(i)). Then in (10.17.13) as z → ∞ with |` − 2|z||
bounded and m (≥ 0) fixed,

10.17.17

R±` (ν, z) = (−1)`2 cos(νπ)

×

(
m−1∑
k=0

(±i)k ak(ν)
zk

G`−k(∓2iz)

+R±m,`(ν, z)

)
,

where

10.17.18

R±m,`(ν, z) = O
(
e−2|z|z−m

)
, |ph(ze∓

1
2πi)| ≤ π.

For higher re-expansions of the remainder terms see
Olde Daalhuis and Olver (1995a) and Olde Daalhuis
(1995, 1996).

10.18 Modulus and Phase Functions

10.18(i) Definitions

For ν ≥ 0 and x > 0

10.18.1 Mν(x)eiθν(x) = H(1)
ν (x),

10.18.2 Nν(x)eiφν(x) = H(1)
ν

′
(x),

where Mν(x) (> 0), Nν(x) (> 0), θν(x), and φν(x) are
continuous real functions of ν and x, with the branches
of θν(x) and φν(x) fixed by

10.18.3 θν(x)→ −1
2π, φν(x)→ 1

2π, x→ 0+.

10.18(ii) Basic Properties

10.18.4
Jν(x) = Mν(x) cos θν(x),

Yν(x) = Mν(x) sin θν(x),

10.18.5
J ′ν(x) = Nν(x) cosφν(x),

Y ′ν(x) = Nν(x) sinφν(x),

10.18.6
Mν(x) =

(
J2
ν (x) + Y 2

ν (x)
)1
2 ,

Nν(x) =
(
J ′ν

2(x) + Y ′ν
2(x)

)1
2
,

10.18.7
θν(x) = Arctan(Yν(x)/ Jν(x)),

φν(x) = Arctan(Y ′ν(x)/ J ′ν(x)).

10.18.8

M2
ν (x) θ′ν(x) =

2
πx
, N2

ν (x)φ′ν(x) =
2(x2 − ν2)

πx3
,

10.18.9

N2
ν (x)

= M ′ν
2(x) +M2

ν (x) θ′ν
2(x) = M ′ν

2(x) +
4

(πxMν(x))2
,

10.18.10

(x2−ν2)Mν(x)M ′ν(x) +x2Nν(x)N ′ν(x) +xN2
ν (x) = 0.

10.18.11

tan(φν(x)− θν(x)) =
Mν(x) θ′ν(x)
M ′ν(x)

=
2

πxMν(x)M ′ν(x)
,

10.18.12 Mν(x)Nν(x) sin(φν(x)− θν(x)) =
2
πx
.

10.18.13

x2M ′′ν (x) + xM ′ν(x) + (x2 − ν2)Mν(x) =
4

π2M3
ν (x)

,

10.18.14

w′′ +
(

1 +
1
4 − ν

2

x2

)
w =

4
π2w3

, w = x
1
2 Mν(x),

10.18.15
x3w′′′ + x(4x2 + 1− 4ν2)w′ + (4ν2 − 1)w

= 0, w = xM2
ν (x).

10.18.16 θ′ν
2(x) +

1
2
θ′′′ν (x)
θ′ν(x)

− 3
4

(
θ′′ν (x)
θ′ν(x)

)2
= 1−

ν2 − 1
4

x2
.
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10.18(iii) Asymptotic Expansions for Large Argument

As x→∞, with ν fixed and µ = 4ν2,

10.18.17 M2
ν (x) ∼ 2

πx

(
1 +

1
2
µ− 1
(2x)2

+
1 · 3
2 · 4

(µ− 1)(µ− 9)
(2x)4

+
1 · 3 · 5
2 · 4 · 6

(µ− 1)(µ− 9)(µ− 25)
(2x)6

+ · · ·
)
,

10.18.18

θν(x) ∼ x−
(

1
2
ν +

1
4

)
π +

µ− 1
2(4x)

+
(µ− 1)(µ− 25)

6(4x)3
+

(µ− 1)(µ2 − 114µ+ 1073)
5(4x)5

+
(µ− 1)(5µ3 − 1535µ2 + 54703µ− 3 75733)

14(4x)7
+ · · · .

Also,

10.18.19 N2
ν (x) ∼ 2

πx

(
1− 1

2
µ− 3
(2x)2

− 1
2 · 4

(µ− 1)(µ− 45)
(2x)4

− · · ·
)
,

the general term in this expansion being

10.18.20 − (2k − 3)!!
(2k)!!

(µ− 1)(µ− 9) · · · (µ− (2k − 3)2)(µ− (2k + 1)(2k − 1)2)
(2x)2k

, k ≥ 2,

and
10.18.21 φν(x) ∼ x−

(
1
2
ν − 1

4

)
π +

µ+ 3
2(4x)

+
µ2 + 46µ− 63

6(4x)3
+
µ3 + 185µ2 − 2053µ+ 1899

5(4x)5
+· · · .

The remainder after k terms in (10.18.17) does not exceed the (k+ 1)th term in absolute value and is of the same
sign, provided that k > ν − 1

2 .

10.19 Asymptotic Expansions for Large
Order

10.19(i) Asymptotic Forms

If ν → ∞ through positive real values, with z (6= 0)
fixed, then
10.19.1 Jν(z) ∼ 1√

2πν

( ez
2ν

)ν
,

10.19.2

Yν(z) ∼ −iH(1)
ν (z) ∼ iH(2)

ν (z) ∼ −
√

2
πν

( ez
2ν

)−ν
.

10.19(ii) Debye’s Expansions

If ν → ∞ through positive real values with α (> 0)
fixed, then
10.19.3

Jν(ν sechα) ∼ eν(tanhα−α)

(2πν tanhα)
1
2

∞∑
k=0

Uk(cothα)
νk

,

Yν(ν sechα) ∼ − eν(α−tanhα)

( 1
2πν tanhα)

1
2

∞∑
k=0

(−1)k
Uk(cothα)

νk
,

10.19.4

J ′ν(ν sechα)∼
(

sinh(2α)
4πν

)1
2

eν(tanhα−α)
∞∑
k=0

Vk(cothα)
νk

,

Y ′ν(ν sechα)

∼
(

sinh(2α)
πν

)1
2

eν(α−tanhα)
∞∑
k=0

(−1)k
Vk(cothα)

νk
.

If ν → ∞ through positive real values with β(
∈
(
0, 1

2π
))

fixed, and

10.19.5 ξ = ν(tanβ − β)− 1
4π,

then

10.19.6

Jν(ν secβ) ∼
(

2
πν tanβ

)1
2
(

cos ξ
∞∑
k=0

U2k(i cotβ)
ν2k

− i sin ξ
∞∑
k=0

U2k+1(i cotβ)
ν2k+1

)
,

Yν(ν secβ) ∼
(

2
πν tanβ

)1
2
(

sin ξ
∞∑
k=0

U2k(i cotβ)
ν2k

+ i cos ξ
∞∑
k=0

U2k+1(i cotβ)
ν2k+1

)
,

10.19.7

J ′ν(ν secβ) ∼
(

sin(2β)
πν

)1
2
(
− sin ξ

∞∑
k=0

V2k(i cotβ)
ν2k

− i cos ξ
∞∑
k=0

V2k+1(i cotβ)
ν2k+1

)
,

Y ′ν(ν secβ) ∼
(

sin(2β)
πν

)1
2
(

cos ξ
∞∑
k=0

V2k(i cotβ)
ν2k

− i sin ξ
∞∑
k=0

V2k+1(i cotβ)
ν2k+1

)
.
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In these expansions Uk(p) and Vk(p) are the polynomials
in p of degree 3k defined in §10.41(ii).

For error bounds for the first of (10.19.3) see Olver
(1997b, p. 382).

10.19(iii) Transition Region

As ν →∞, with a(∈ C) fixed,

10.19.8

Jν

(
ν + aν

1
3

)
∼ 2

1
3

ν
1
3

Ai
(
−2

1
3 a
) ∞∑
k=0

Pk(a)
ν2k/3

+
2

2
3

ν
Ai′
(
−2

1
3 a
) ∞∑
k=0

Qk(a)
ν2k/3

, |ph ν| ≤ 1
2π − δ,

Yν

(
ν + aν

1
3

)
∼ −2

1
3

ν
1
3

Bi
(
−2

1
3 a
) ∞∑
k=0

Pk(a)
ν2k/3

− 2
2
3

ν
Bi′
(
−2

1
3 a
) ∞∑
k=0

Qk(a)
ν2k/3

, |ph ν| ≤ 1
2π − δ.

Also,

10.19.9
H

(1)
ν

(
ν + aν

1
3

)
H

(2)
ν

(
ν + aν

1
3

) ∼ 2
4
3

ν
1
3
e∓πi/3 Ai

(
e∓πi/32

1
3 a
) ∞∑
k=0

Pk(a)
ν2k/3

+
2

5
3

ν
e±πi/3 Ai′

(
e∓πi/32

1
3 a
) ∞∑
k=0

Qk(a)
ν2k/3

,

with sectors of validity − 1
2π + δ ≤ ±ph ν ≤ 3

2π − δ.
Here Ai and Bi are the Airy functions (§9.2), and
10.19.10

P0(a) = 1, P1(a) = − 1
5a, P2(a) = − 9

100a
5 + 3

35a
2,

P3(a) = 957
7000a

6 − 173
3150a

3 − 1
225 ,

P4(a) = 27
20000a

10 − 23573
1 47000a

7 + 5903
1 38600a

4 + 947
3 46500a,

10.19.11

Q0(a) = 3
10a

2, Q1(a) = − 17
70a

3 + 1
70 ,

Q2(a) = − 9
1000a

7 + 611
3150a

4 − 37
3150a,

Q3(a) = − 549
28000a

8 − 1 10767
6 93000a

5 + 79
12375a

2.

For corresponding expansions for derivatives see
http://dlmf.nist.gov/10.19.iii.

For proofs and also for the corresponding expansions
for second derivatives see Olver (1952).

For higher coefficients in (10.19.8) in the case a = 0
(that is, in the expansions of Jν(ν) and Yν(ν)), see Wat-
son (1944, §8.21) and Temme (1997).

10.20 Uniform Asymptotic Expansions for
Large Order

10.20(i) Real Variables

Define ζ = ζ(z) to be the solution of the differential
equation

10.20.1

(
dζ

dz

)2
=

1− z2

ζz2

that is infinitely differentiable on the interval 0 < z <
∞, including z = 1. Then
10.20.2

2
3
ζ

3
2 =

∫ 1

z

√
1− t2
t

dt = ln

(
1 +
√

1− z2

z

)
−
√

1− z2,

0 < z ≤ 1,

10.20.3

2
3

(−ζ)
3
2 =

∫ z

1

√
t2 − 1
t

dt =
√
z2 − 1− arcsec z,

1 ≤ z <∞,
all functions taking their principal values, with ζ =
∞, 0,−∞, corresponding to z = 0, 1,∞, respectively.

As ν →∞ through positive real values

10.20.4

Jν(νz) ∼
(

4ζ
1− z2

)1
4

Ai
(
ν

2
3 ζ
)

ν
1
3

∞∑
k=0

Ak(ζ)
ν2k

+
Ai′
(
ν

2
3 ζ
)

ν
5
3

∞∑
k=0

Bk(ζ)
ν2k

 ,

10.20.5

Yν(νz) ∼ −
(

4ζ
1− z2

)1
4

Bi
(
ν

2
3 ζ
)

ν
1
3

∞∑
k=0

Ak(ζ)
ν2k

+
Bi′
(
ν

2
3 ζ
)

ν
5
3

∞∑
k=0

Bk(ζ)
ν2k

 ,

10.20.6
H

(1)
ν (νz)

H
(2)
ν (νz)

}
∼ 2e∓πi/3

(
4ζ

1− z2

)1
4

Ai
(
e±2πi/3ν

2
3 ζ
)

ν
1
3

∞∑
k=0

Ak(ζ)
ν2k

+
e±2πi/3 Ai′

(
e±2πi/3ν

2
3 ζ
)

ν
5
3

∞∑
k=0

Bk(ζ)
ν2k

 ,
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10.20.7 J ′ν(νz) ∼ −2
z

(
1− z2

4ζ

)1
4

Ai
(
ν

2
3 ζ
)

ν
4
3

∞∑
k=0

Ck(ζ)
ν2k

+
Ai′
(
ν

2
3 ζ
)

ν
2
3

∞∑
k=0

Dk(ζ)
ν2k

 ,

10.20.8 Y ′ν(νz) ∼ 2
z

(
1− z2

4ζ

)1
4

Bi
(
ν

2
3 ζ
)

ν
4
3

∞∑
k=0

Ck(ζ)
ν2k

+
Bi′
(
ν

2
3 ζ
)

ν
2
3

∞∑
k=0

Dk(ζ)
ν2k

 ,

10.20.9
H

(1)
ν

′
(νz)

H
(2)
ν

′
(νz)

}
∼ 4e∓2πi/3

z

(
1− z2

4ζ

)1
4

e∓2πi/3 Ai
(
e±2πi/3ν

2
3 ζ
)

ν
4
3

∞∑
k=0

Ck(ζ)
ν2k

+
Ai′
(
e±2πi/3ν

2
3 ζ
)

ν
2
3

∞∑
k=0

Dk(ζ)
ν2k

 ,

uniformly for z ∈ (0,∞) in all cases, where Ai and Bi
are the Airy functions (§9.2).

In the following formulas for the coefficients Ak(ζ),
Bk(ζ), Ck(ζ), and Dk(ζ), uk, vk are the constants de-
fined in §9.7(i), and Uk(p), Vk(p) are the polynomials in
p of degree 3k defined in §10.41(ii).

Interval 0 < z < 1

10.20.10 Ak(ζ) =
2k∑
j=0

( 3
2 )jvjζ−3j/2U2k−j

(
(1− z2)−

1
2

)
,

10.20.11

Bk(ζ) = −ζ− 1
2

2k+1∑
j=0

( 3
2 )jujζ−3j/2U2k−j+1

(
(1− z2)−

1
2

)
,

10.20.12

Ck(ζ) = −ζ 1
2

2k+1∑
j=0

( 3
2 )jvjζ−3j/2V2k−j+1

(
(1− z2)−

1
2

)
,

10.20.13 Dk(ζ) =
2k∑
j=0

( 3
2 )jujζ−3j/2V2k−j

(
(1− z2)−

1
2

)
.

Interval 1 < z <∞
In formulas (10.20.10)–(10.20.13) replace ζ

1
2 , ζ−

1
2 ,

ζ−3j/2, and (1 − z2)−
1
2 by −i(−ζ)

1
2 , i(−ζ)−

1
2 ,

i3j(−ζ)−3j/2, and i(z2 − 1)−
1
2 , respectively.

Note: Another way of arranging the above formu-
las for the coefficients Ak(ζ), Bk(ζ), Ck(ζ), and Dk(ζ)
would be by analogy with (12.10.42) and (12.10.46). In
this way there is less usage of many-valued functions.

Values at ζ = 0

10.20.14

A0(0) = 1, A1(0) = − 1
225 ,

A2(0) = 1 51439
2182 95000 , A3(0) = − 8872 78009

250 49351 25000 ,

B0(0) = 1
702

1
3 , B1(0) = − 1213

10 237502
1
3 ,

B2(0) = 1 65425 37833
3774 32055 000002

1
3 ,

B3(0) = − 430 99056 39368 59253
5 68167 34399 42500 000002

1
3 .

Each of the coefficients Ak(ζ), Bk(ζ), Ck(ζ), and
Dk(ζ), k = 0, 1, 2, . . . , is real and infinitely differen-
tiable on the interval −∞ < ζ < ∞. For (10.20.14)

and further information on the coefficients see Temme
(1997).

For numerical tables of ζ = ζ(z), (4ζ/(1 − z2))
1
4

and Ak(ζ), Bk(ζ), Ck(ζ), and Dk(ζ) see Olver (1962,
pp. 28–42).

10.20(ii) Complex Variables

The function ζ = ζ(z) given by (10.20.2) and (10.20.3)
can be continued analytically to the z-plane cut along
the negative real axis. Corresponding points of the map-
ping are shown in Figures 10.20.1 and 10.20.2.

The equations of the curved boundaries D1E1 and
D2E2 in the ζ-plane are given parametrically by

10.20.15 ζ = ( 3
2 )

2
3 (τ ∓ iπ)

2
3 , 0 ≤ τ <∞,

respectively.
The curves BP1E1 and BP2E2 in the z-plane are

the inverse maps of the line segments

10.20.16 ζ = e∓iπ/3τ , 0 ≤ τ ≤ ( 3
2π)

2
3 ,

respectively. They are given parametrically by
10.20.17

z = ±(τ coth τ − τ2)
1
2 ± i(τ2 − τ tanh τ)

1
2 , 0 ≤ τ ≤ τ0,

where τ0 = 1.19968 . . . is the positive root of the equa-
tion τ = coth τ . The points P1, P2 where these curves
intersect the imaginary axis are ±ic, where

10.20.18 c = (τ2
0 − 1)

1
2 = 0.66274 . . . .

The eye-shaped closed domain in the uncut z-plane
that is bounded by BP1E1 and BP2E2 is denoted by
K; see Figure 10.20.3.

As ν → ∞ through positive real values the expan-
sions (10.20.4)–(10.20.9) apply uniformly for |ph z| ≤
π − δ, the coefficients Ak(ζ), Bk(ζ), Ck(ζ), and Dk(ζ),
being the analytic continuations of the functions defined
in §10.20(i) when ζ is real.

For proofs of the above results and for error bounds
and extensions of the regions of validity see Olver
(1997b, pp. 419–425). For extensions to complex ν see
Olver (1954). For resurgence properties of the coeffi-
cients (§2.7(ii)) see Howls and Olde Daalhuis (1999).
For further results see Dunster (2001a), Wang and Wong
(2002), and Paris (2004).
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Figure 10.20.1: z-plane. P1 and P2 are the points ±ic.
c = 0.66274 . . . .

Figure 10.20.2: ζ-plane. E1 and E2 are the points
e∓πi/3(3π/2)2/3.

Figure 10.20.3: z-plane. Domain K (unshaded). c = 0.66274 . . . .



10.21 Zeros 235

10.20(iii) Double Asymptotic Properties

For asymptotic properties of the expansions (10.20.4)–
(10.20.6) with respect to large values of z see §10.41(v).

10.21 Zeros

10.21(i) Distribution

The zeros of any cylinder function or its derivative are
simple, with the possible exceptions of z = 0 in the
case of the functions, and z = 0,±ν in the case of the
derivatives.

If ν is real, then Jν(z), J ′ν(z), Yν(z), and Y ′ν(z), each
have an infinite number of positive real zeros. All of
these zeros are simple, provided that ν ≥ −1 in the case
of J ′ν(z), and ν ≥ − 1

2 in the case of Y ′ν(z). When all of
their zeros are simple, the mth positive zeros of these
functions are denoted by jν,m, j′ν,m, yν,m, and y′ν,m re-
spectively, except that z = 0 is counted as the first zero
of J ′0(z). Since J ′0(z) = − J1(z) we have

10.21.1 j′0,1 = 0, j′0,m = j1,m−1 , m = 2, 3, . . . .
When ν ≥ 0, the zeros interlace according to the

inequalities

10.21.2
jν,1 < jν+1,1 < jν,2 < jν+1,2 < jν,3 < · · · ,
yν,1 < yν+1,1 < yν,2 < yν+1,2 < yν,3 < · · · ,

10.21.3

ν ≤ j′ν,1 < yν,1 < y′ν,1 < jν,1 < j′ν,2 < yν,2 < · · · .
The positive zeros of any two real distinct cylinder

functions of the same order are interlaced, as are the
positive zeros of any real cylinder function Cν(z) and
the contiguous function Cν+1(z). See also Elbert and
Laforgia (1994).

When ν ≥ −1 the zeros of Jν(z) are all real. If
ν < −1 and ν is not an integer, then the number of
complex zeros of Jν(z) is 2 b−νc. If b−νc is odd, then
two of these zeros lie on the imaginary axis.

If ν ≥ 0, then the zeros of J ′ν(z) are all real.
For information on the real double zeros of J ′ν(z)

and Y ′ν(z) when ν < −1 and ν < − 1
2 , respectively, see

Döring (1971) and Kerimov and Skorokhodov (1986).
The latter reference also has information on double zeros
of the second and third derivatives of Jν(z) and Yν(z).

No two of the functions J0(z), J1(z), J2(z), . . . , have
any common zeros other than z = 0; see Watson (1944,
§15.28).

10.21(ii) Analytic Properties

If ρν is a zero of the cylinder function

10.21.4 Cν(z) = Jν(z) cos(πt) + Yν(z) sin(πt),
where t is a parameter, then

10.21.5 C ′ν(ρν) = Cν−1(ρν) = −Cν+1(ρν).

If σν is a zero of C ′ν(z), then

10.21.6 Cν(σν) =
σν
ν

Cν−1(σν) =
σν
ν

Cν+1(σν).

The parameter t may be regarded as a continuous
variable and ρν , σν as functions ρν(t), σν(t) of t. If
ν ≥ 0 and these functions are fixed by

10.21.7 ρν(0) = 0, σν(0) = j′ν,1,

then

10.21.8

jν,m = ρν(m), yν,m = ρν(m− 1
2 ), m = 1, 2, . . . ,

10.21.9
j′ν,m = σν(m− 1), y′ν,m = σν(m− 1

2 ),
m = 1, 2, . . . .

10.21.10

C ′ν(ρν) =
(
ρν
2
dρν
dt

)− 1
2

, Cν(σν) =
(
σ2
ν − ν2

2σν
dσν
dt

)− 1
2

,

10.21.11

2ρ2
ν

dρν
dt

d3ρν

dt3

− 3ρ2
ν

(
d2ρν

dt2

)2
− 4π2ρ2

ν

(
dρν
dt

)2
+ (4ρ2

ν + 1− 4ν2)
(
dρν
dt

)4
= 0.

The functions ρν(t) and σν(t) are related to the in-
verses of the phase functions θν(x) and φν(x) defined in
§10.18(i): if ν ≥ 0, then

10.21.12
θν(jν,m) = (m− 1

2 )π, θν(yν,m) = (m− 1)π,
m = 1, 2, . . . ,

10.21.13
φν
(
j′ν,m

)
= (m− 1

2 )π, φν
(
y′ν,m

)
= mπ,
m = 1, 2, . . . .

For sign properties of the forward differences that
are defined by

10.21.14
∆ρν(t) = ρν(t+ 1)− ρν(t),

∆2ρν(t) = ∆ρν(t+ 1)− ∆ρν(t), . . . ,

when t = 1, 2, 3, . . . , and similarly for σν(t), see Lorch
and Szego (1963, 1964), Lorch et al. (1970, 1972), and
Muldoon (1977).

10.21(iii) Infinite Products

10.21.15 Jν(z) =
( 1

2z)
ν

Γ(ν + 1)

∞∏
k=1

(
1− z2

j2
ν,k

)
, ν ≥ 0,

10.21.16 J ′ν(z) =
( 1

2z)
ν−1

2 Γ(ν)

∞∏
k=1

(
1− z2

j′ν,k
2

)
, ν > 0.
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10.21(iv) Monotonicity Properties

Any positive zero c of the cylinder function Cν(x) and
any positive zero c′ of C ′ν(x) such that c′ > |ν| are de-
finable as continuous and increasing functions of ν:

10.21.17
dc

dν
= 2c

∫ ∞
0

K0(2c sinh t)e−2νt dt,

10.21.18

dc′

dν
=

2c′

c′2 − ν2

∫ ∞
0

(c′2 cosh(2t)− ν2)

× K0(2c′ sinh t)e−2νt dt,

where K0 is defined in §10.25(ii).
In particular, jν,m, yν,m, j′ν,m, and y′ν,m are increas-

ing functions of ν when ν ≥ 0. It is also true that the
positive zeros j′′ν and j′′′ν of J ′′ν (x) and J ′′′ν (x), respec-
tively, are increasing functions of ν when ν > 0, pro-
vided that in the latter case j′′′ν >

√
3 when 0 < ν < 1.

jν,m /ν and j′ν,m /ν are decreasing functions of ν
when ν > 0 for m = 1, 2, 3, . . . .

For further monotonicity properties see Elbert
(2001), Lorch (1990, 1993, 1995), Lorch and Szego
(1990, 1995), and Muldoon (1981). For inequalities for
zeros arising from monotonicity properties see Laforgia
and Muldoon (1983).

10.21(v) Inequalities

For bounds for the smallest real or purely imaginary
zeros of Jν(x) when ν is real see Ismail and Muldoon
(1995).

10.21(vi) McMahon’s Asymptotic Expansions
for Large Zeros

If ν (≥ 0) is fixed, µ = 4ν2, and m→∞, then

10.21.19

jν,m, yν,m ∼ a−
µ− 1

8a
− 4(µ− 1)(7µ− 31)

3(8a)3
− 32(µ− 1)(83µ2 − 982µ+ 3779)

15(8a)5

− 64(µ− 1)(6949µ3 − 1 53855µ2 + 15 85743µ− 62 77237)
105(8a)7

− · · · ,

where a = (m+ 1
2ν −

1
4 )π for jν,m, a = (m+ 1

2ν −
3
4 )π for yν,m. With a = (t+ 1

2ν −
1
4 )π, the right-hand side is the

asymptotic expansion of ρν(t) for large t.

10.21.20

j′ν,m, y
′
ν,m ∼ b−

µ+ 3
8b
− 4(7µ2 + 82µ− 9)

3(8b)3
− 32(83µ3 + 2075µ2 − 3039µ+ 3537)

15(8b)5

− 64(6949µ4 + 2 96492µ3 − 12 48002µ2 + 74 14380µ− 58 53627)
105(8b)7

− · · · ,

where b = (m + 1
2ν −

3
4 )π for j′ν,m, b = (m + 1

2ν −
1
4 )π

for y′ν,m, and b = (t+ 1
2ν + 1

4 )π for σν(t).
For the next three terms in (10.21.19) and the

next two terms in (10.21.20) see Bickley et al. (1952,
p. xxxvii) or Olver (1960, pp. xvii–xviii).

For error bounds see Wong and Lang (1990), Wong
(1995), and Elbert and Laforgia (2000). See also Lafor-
gia (1979).

For the mth positive zero j′′ν,m of J ′′ν (x) Wong and
Lang (1990) gives the corresponding expansion

10.21.21 j′′ν,m ∼ c−
µ+ 7

8c
− 28µ2 + 424µ+ 1724

3(8c)3
− · · · ,

where c = (m + 1
2ν −

1
4 )π if 0 < ν < 1, and c =

(m + 1
2ν −

5
4 )π if ν > 1. An error bound is included

for the case ν ≥ 3
2 .

10.21(vii) Asymptotic Expansions for Large
Order

Let Cν(x), ρν(t), and σν(t) be defined as in §10.21(ii)
and M(x), θ(x), N(x), and φ(x) denote the modulus

and phase functions for the Airy functions and their
derivatives as in §9.8.

As ν →∞ with t (> 0) fixed,

10.21.22 ρν(t) ∼ ν
∞∑
k=0

αk
ν2k/3

,

10.21.23 C ′ν(ρν(t)) ∼ (2/ν)
2
3

πM
(
−2

1
3α
) ∞∑
k=0

βk
ν2k/3

,

where α is given by

10.21.24 θ
(
−2

1
3α
)

= πt,

and

10.21.25

α0 = 1, α1 = α, α2 = 3
10α

2,

α3 = − 1
350α

3 + 1
70 , α4 = − 479

63000α
4 − 1

3150α,

α5 = 20231
80 85000α

5 − 551
1 61700α

2,

10.21.26

β0 = 1, β1 = − 4
5α, β2 = 18

35α
2,

β3 = − 88
315α

3 − 11
1575 , β4 = 79586

6 06375α
4 + 9824

6 06375α.
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As ν →∞ with t (> − 1
6 ) fixed,

10.21.27 σν(t) ∼ ν
∞∑
k=0

α′k
ν2k/3

,

10.21.28 Cν(σν(t)) ∼ (2/ν)
1
3

πN
(
−2

1
3α′
) ∞∑
k=0

β′k
ν2k/3

,

where α′ is given by

10.21.29 φ
(
−2

1
3α′
)

= πt,

and
10.21.30

α′0 = 1, α′1 = α′, α′2 = 3
10α
′2 − 1

10α
′−1

,

α′3 = − 1
350α

′3 − 1
25 −

1
200α

′−3
,

α′4 = − 479
63000α

′4 + 509
31500α

′ + 1
1500α

′−2 − 1
2000α

′−5
,

10.21.31

β′0 = 1, β′1 = − 1
5α
′, β′2 = 9

350α
′2 + 1

100α
′−1

,

β′3 = 89
15750α

′3 − 47
4500 + 1

3000α
′−3

.

In particular, with the notation as below,

10.21.32 jν,m ∼ ν
∞∑
k=0

αk
ν2k/3

,

10.21.33 yν,m ∼ ν
∞∑
k=0

αk
ν2k/3

,

10.21.34 J ′ν(jν,m) ∼ (−1)m
(2/ν)

2
3

πM(am)

∞∑
k=0

βk
ν2k/3

,

10.21.35 Y ′ν(yν,m) ∼ (−1)m−1 (2/ν)
2
3

πM(bm)

∞∑
k=0

βk
ν2k/3

,

and

10.21.36 j′ν,m ∼ ν
∞∑
k=0

α′k
ν2k/3

,

10.21.37 y′ν,m ∼ ν
∞∑
k=0

α′k
ν2k/3

,

10.21.38 Jν
(
j′ν,m

)
∼ (−1)m−1 (2/ν)

1
3

πN(a′m)

∞∑
k=0

β′k
ν2k/3

,

10.21.39 Yν
(
y′ν,m

)
∼ (−1)m−1 (2/ν)

1
3

πN(b′m)

∞∑
k=0

β′k
ν2k/3

.

Here am, bm, a′m, b′m are the mth negative zeros of
Ai(x), Bi(x), Ai′(x), Bi′(x), respectively (§9.9), αk, βk,
α′k, β′k are given by (10.21.25), (10.21.26), (10.21.30),
and (10.21.31), with α = −2−

1
3 am in the case of

jν,m and J ′ν(jν,m), α = −2−
1
3 bm in the case of yν,m

and Y ′ν(yν,m), α′ = −2−
1
3 a′m in the case of j′ν,m

and Jν
(
j′ν,m

)
, α′ = −2−

1
3 b′m in the case of y′ν,m and

Yν
(
y′ν,m

)
.

For error bounds for (10.21.32) see Qu and Wong
(1999); for (10.21.36) and (10.21.37) see Elbert and
Laforgia (1997). See also Spigler (1980).

For the first zeros rounded numerical values of the
coefficients are given by

10.21.40

jν,1 ∼ ν + 1.85575 71ν
1
3 + 1.03315 0ν−

1
3 − 0.00397ν−1 − 0.0908ν−

5
3 + 0.043ν−

7
3 + · · · ,

yν,1 ∼ ν + 0.93157 68ν
1
3 + 0.26035 1ν−

1
3 + 0.01198ν−1 − 0.0060ν−

5
3 − 0.001ν−

7
3 + · · · ,

J ′ν(jν,1) ∼ −1.11310 28ν−
2
3 ÷ (1 + 1.48460 6ν−

2
3 + 0.43294ν−

4
3 − 0.1943ν−2 + 0.019ν−

8
3 + · · ·),

Y ′ν(yν,1) ∼ 0.95554 86ν−
2
3 ÷ (1 + 0.74526 1ν−

2
3 + 0.10910ν−

4
3 − 0.0185ν−2 − 0.003ν−

8
3 + · · ·),

j′ν,1 ∼ ν + 0.80861 65ν
1
3 + 0.07249 0ν−

1
3 − 0.05097ν−1 + 0.0094ν−

5
3 + · · · ,

y′ν,1 ∼ ν + 1.82109 80ν
1
3 + 0.94000 7ν−

1
3 − 0.05808ν−1 − 0.0540ν−

5
3 +· · · .

Jν
(
j′ν,1
)
∼ 0.67488 51ν−

1
3 (1− 0.16172 3ν−

2
3 + 0.02918ν−

4
3 − 0.0068ν−2 + · · ·),

Yν
(
y′ν,1
)
∼ 0.57319 40ν−

1
3 (1− 0.36422 0ν−

2
3 + 0.09077ν−

4
3 + 0.0237ν−2 + · · ·).

For numerical coefficients for m = 2, 3, 4, 5 see Olver
(1951, Tables 3–6).

The expansions (10.21.32)–(10.21.39) become pro-
gressively weaker as m increases. The approximations
that follow in §10.21(viii) do not suffer from this draw-
back.

10.21(viii) Uniform Asymptotic Approximations
for Large Order

As ν →∞ the following four approximations hold uni-
formly for m = 1, 2, . . . :

10.21.41 jν,m = νz(ζ) +
z(ζ)(h(ζ))2B0(ζ)

2ν
+O

(
1
ν3

)
,

ζ = ν−
2
3 am,
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10.21.42

J ′ν(jν,m) =− 2
ν

2
3

Ai′(am)
z(ζ)h(ζ)

(
1 +O

(
1
ν2

))
, ζ = ν−

2
3 am,

10.21.43

j′ν,m = νz(ζ)+
z(ζ)(h(ζ))2C0(ζ)

2ζν
+O

(
1
ν

)
, ζ = ν−

2
3 a′m,

10.21.44

Jν
(
j′ν,m

)
=
h(ζ) Ai(a′m)

ν
1
3

(
1 +O

(
1
ν

4
3

))
, ζ = ν−

2
3 a′m.

Here am and a′m denote respectively the zeros of the
Airy function Ai(z) and its derivative Ai′(z); see §9.9.
Next, z(ζ) is the inverse of the function ζ = ζ(z) defined
by (10.20.3). B0(ζ) and C0(ζ) are defined by (10.20.11)
and (10.20.12) with k = 0. Lastly,

10.21.45 h(ζ) =
(
4ζ/(1− z2)

)1
4 .

(Note: If the term z(ζ)(h(ζ))2C0(ζ)/(2ζν) in (10.21.43)
is omitted, then the uniform character of the error term
O(1/ν ) is destroyed.)

Corresponding uniform approximations for yν,m,
Y ′ν(yν,m), y′ν,m, and Yν

(
y′ν,m

)
, are obtained from

(10.21.41)–(10.21.44) by changing the symbols j, J, Ai,
Ai′, am, and a′m to y, Y, −Bi, −Bi′, bm, and b′m, re-
spectively.

For derivations and further information, including
extensions to uniform asymptotic expansions, see Olver
(1954, 1960). The latter reference includes numerical
tables of the first few coefficients in the uniform asymp-
totic expansions.

10.21(ix) Complex Zeros

This subsection describes the distribution in C of the
zeros of the principal branches of the Bessel functions
of the second and third kinds, and their derivatives, in
the case when the order is a positive integer n. For fur-
ther information, including uniform asymptotic expan-
sions, extensions to other branches of the functions and
their derivatives, and extensions to half-integer values
of the order, see Olver (1954). (There is an inaccuracy
in Figures 11 and 14 in this reference. Each curve that
represents an infinite string of nonreal zeros should be
located on the opposite side of its straight line asymp-
tote. This inaccuracy was repeated in Abramowitz and
Stegun (1964, Figures 9.5 and 9.6). See Kerimov and
Skorokhodov (1985a,b) and Figures 10.21.3–10.21.6.)

See also Cruz and Sesma (1982); Cruz et al. (1991),
Kerimov and Skorokhodov (1984c, 1987, 1988), Kokolo-
giannaki et al. (1992), and references supplied in
§10.75(iii).

Zeros of Yn(nz) and Y ′
n(nz)

In Figures 10.21.1, 10.21.3, and 10.21.5 the two contin-
uous curves that join the points ±1 are the boundaries

of K, that is, the eye-shaped domain depicted in Figure
10.20.3. These curves therefore intersect the imaginary
axis at the points z = ±ic, where c = 0.66274 . . . .

The first set of zeros of the principal value of Yn(nz)
are the points z = yn,m /n, m = 1, 2, . . . , on the positive
real axis (§10.21(i)). Secondly, there is a conjugate pair
of infinite strings of zeros with asymptotes =z = ±ia/n,
where

10.21.46 a = 1
2 ln 3 = 0.54931 . . . .

Lastly, there are two conjugate sets, with n zeros in each
set, that are asymptotically close to the boundary of K
as n → ∞. Figures 10.21.1, 10.21.3, and 10.21.5 plot
the actual zeros for n = 1, 5, and 10, respectively.

The zeros of Y ′n(nz) have a similar pattern to those
of Yn(nz).

Zeros of H
(1)
n (nz), H

(2)
n (nz), H

(1)
n

′
(nz), H

(2)
n

′
(nz)

In Figures 10.21.2, 10.21.4, and 10.21.6 the continuous
curve that joins the points ±1 is the lower boundary of
K.

The first set of zeros of the principal value of
H

(1)
n (nz) is an infinite string with asymptote =z =
−id/n, where

10.21.47 d = 1
2 ln 2 = 0.34657 . . . .

The only other set comprises n zeros that are asymp-
totically close to the lower boundary of K as n → ∞.
Figures 10.21.2, 10.21.4, and 10.21.6 plot the actual ze-
ros for n = 1, 5, and 10, respectively.

The zeros of H(1)
n

′
(nz) have a similar pattern to

those of H(1)
n (nz). The zeros of H(2)

n (nz) and H(2)
n

′
(nz)

are the complex conjugates of the zeros of H(1)
n (nz) and

H
(1)
n

′
(nz), respectively.

Zeros of J0(z)− i J1(z) and Jn(z)− i Jn+1(z)

For information see Synolakis (1988), MacDonald (1989,
1997), and Ikebe et al. (1993).

10.21(x) Cross-Products

Throughout this subsection we assume ν ≥ 0, x > 0,
λ > 1, and we denote 4ν2 by µ.

The zeros of the functions

10.21.48 Jν(x)Yν(λx)− Yν(x)Jν(λx)

and

10.21.49 J ′ν(x)Y ′ν(λx)− Y ′ν(x)J ′ν(λx)

are simple and the asymptotic expansion of the mth
positive zero as m→∞ is given by

10.21.50 α+
p

α
+
q − p2

α3
+
r − 4pq + 2p3

α5
+ · · · ,
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Figure 10.21.1: Zeros ••• of Yn(nz) in |ph z| ≤ π. Case
n = 1, −1.6 ≤ <z ≤ 2.6.

Figure 10.21.2: Zeros • • • of H(1)
n (nz) in |ph z| ≤ π.

Case n = 1, −2.8 ≤ <z ≤ 1.4.

Figure 10.21.3: Zeros ••• of Yn(nz) in |ph z| ≤ π. Case
n = 5, −2.6 ≤ <z ≤ 1.6.

Figure 10.21.4: Zeros • • • of H(1)
n (nz) in |ph z| ≤ π.

Case n = 5, −2.6 ≤ <z ≤ 1.6.

Figure 10.21.5: Zeros ••• of Yn(nz) in |ph z| ≤ π. Case
n = 10, −2.3 ≤ <z ≤ 1.9.

Figure 10.21.6: Zeros • • • of H(1)
n (nz) in |ph z| ≤ π.

Case n = 10, −2.3 ≤ <z ≤ 1.9.



240 Bessel Functions

where, in the case of (10.21.48),

10.21.51

α =
mπ

λ− 1
, p =

µ− 1
8λ

, q =
(µ− 1)(µ− 25)(λ3 − 1)

6(4λ)3(λ− 1)
,

r =
(µ− 1)(µ2 − 114µ+ 1073)(λ5 − 1)

5(4λ)5(λ− 1)
,

and, in the case of (10.21.49),

10.21.52

α =
(m− 1)π
λ− 1

, p =
µ+ 3

8λ
,

q =
(µ2 + 46µ− 63)(λ3 − 1)

6(4λ)3(λ− 1)
,

r =
(µ3 + 185µ2 − 2053µ+ 1899)(λ5 − 1)

5(4λ)5(λ− 1)
.

The asymptotic expansion of the large positive zeros
(not necessarily the mth) of the function

10.21.53 J ′ν(x)Yν(λx)− Y ′ν(x)Jν(λx)
is given by (10.21.50), where

10.21.54

α =
(m− 1

2 )π
λ− 1

, p =
(µ+ 3)λ− (µ− 1)

8λ(λ− 1)
, q =

(µ2 + 46µ− 63)λ3 − (µ− 1)(µ− 25)
6(4λ)3(λ− 1)

,

r =
(µ3 + 185µ2 − 2053µ+ 1899)λ5 − (µ− 1)(µ2 − 114µ+ 1073)

5(4λ)5(λ− 1)
.

Higher coefficients in the asymptotic expansions in
this subsection can be obtained by expressing the cross-
products in terms of the modulus and phase functions
(§10.18), and then reverting the asymptotic expansion
for the difference of the phase functions.

For further information see Cochran (1963, 1964,
1966a,b), Kalähne (1907), Martinek et al. (1966), Mul-
doon (1979), and Salchev and Popov (1976).

10.21(xi) Riccati–Bessel Functions

The Riccati–Bessel functions are (1
2πx)

1
2 Jν(x) and

( 1
2πx)

1
2 Yν(x). Except possibly for x = 0 their ze-

ros are the same as those of Jν(x) and Yν(x), respec-
tively. For information on the zeros of the derivatives
of Riccati–Bessel functions, and also on zeros of their
cross-products, see Boyer (1969). This information in-
cludes asymptotic approximations analogous to those
given in §§10.21(vi), 10.21(vii), and 10.21(x).

10.21(xii) Zeros of αJν(x) + xJ ′ν(x)

For properties of the positive zeros of the function
αJν(x)+xJ ′ν(x), with α and ν real, see Landau (1999).

10.21(xiii) Rayleigh Function

The Rayleigh function σn(ν) is defined by

10.21.55 σn(ν) =
∞∑
m=1

(jν,m)−2n, n = 1, 2, 3, . . . .

For properties, computation, and generalizations see
Kapitsa (1951a), Kerimov (1999), and Gupta and Mul-
doon (2000). See also Watson (1944, §§15.5, 15.51).

10.21(xiv) ν-Zeros

For information on zeros of Bessel and Hankel functions
as functions of the order, see Cochran (1965), Cochran
and Hoffspiegel (1970), Hethcote (1970), and Conde and
Kalla (1979).

10.22 Integrals

10.22(i) Indefinite Integrals

In this subsection Cν(z) and Dµ(z) denote cylinder functions(§10.2(ii)) of orders ν and µ, respectively, not necessarily
distinct.
10.22.1

∫
zν+1 Cν(z) dz = zν+1 Cν+1(z),

∫
z−ν+1 Cν(z) dz = −z−ν+1 Cν−1(z).

10.22.2

∫
zν Cν(z) dz = π

1
2 2ν−1 Γ

(
ν + 1

2

)
z (Cν(z) Hν−1(z)− Cν−1(z) Hν(z)) , ν 6= − 1

2 .
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For the Struve function Hν(z) see §11.2(i).

10.22.3

∫
eizzν Cν(z) dz =

eizzν+1

2ν + 1
(Cν(z)− iCν+1(z)), ν 6= − 1

2 ,∫
eizz−ν Cν(z) dz =

eizz−ν+1

1− 2ν
(Cν(z) + iCν−1(z)), ν 6= 1

2 .

Products

10.22.4

∫
z Cµ(az)Dµ(bz) dz =

z (aCµ+1(az)Dµ(bz)− bCµ(az)Dµ+1(bz))
a2 − b2

, a2 6= b2,

10.22.5

∫
z Cµ(az)Dµ(az) dz = 1

4z
2 (2 Cµ(az)Dµ(az)− Cµ−1(az)Dµ+1(az)− Cµ+1(az)Dµ−1(az)) ,

10.22.6

∫
Cµ(az)Dν(az)

dz

z
= −az(Cµ+1(az)Dν(az)− Cµ(az)Dν+1(az))

µ2 − ν2
+

Cµ(az)Dν(az)
µ+ ν

, µ2 6= ν2,

10.22.7

∫
zµ+ν+1 Cµ(az)Dν(az) dz =

zµ+ν+2

2(µ+ ν + 1)
(Cµ(az)Dν(az) + Cµ+1(az)Dν+1(az)) , µ+ ν 6= −1,∫

z−µ−ν+1 Cµ(az)Dν(az) dz =
z−µ−ν+2

2(1− µ− ν)
(Cµ(az)Dν(az) + Cµ−1(az)Dν−1(az)) , µ+ ν 6= 1.

10.22(ii) Integrals over Finite Intervals

Throughout this subsection x > 0.

10.22.8

∫ x

0

Jν(t) dt = 2
∞∑
k=0

Jν+2k+1(x), <ν > −1.

10.22.9

∫ x

0

J2n(t) dt =
∫ x

0

J0(t) dt− 2
n−1∑
k=0

J2k+1(x),
∫ x

0

J2n+1(t) dt = 1− J0(x)− 2
n∑
k=1

J2k(x), n = 0, 1, . . . .

10.22.10

∫ x

0

tµ Jν(t) dt = xµ
Γ
(

1
2ν + 1

2µ+ 1
2

)
Γ
(

1
2ν −

1
2µ+ 1

2

) ∞∑
k=0

(ν + 2k + 1) Γ
(

1
2ν −

1
2µ+ 1

2 + k
)

Γ
(

1
2ν + 1

2µ+ 3
2 + k

) Jν+2k+1(x), <(µ+ ν + 1) > 0.

10.22.11

∫ x

0

1− J0(t)
t

dt =
1
2

∞∑
k=1

ψ(k + 1)− ψ(1)
k!

( 1
2x)k Jk(x),

10.22.12

x

∫ x

0

1− J0(t)
t

dt = 2
∞∑
k=0

(2k + 3)(ψ(k + 2)− ψ(1)) J2k+3(x)

= x− 2J1(x) + 2
∞∑
k=0

(2k + 5) (ψ(k + 3)− ψ(1)− 1) J2k+5(x),

where ψ(x) = Γ′(x)/Γ(x) (§5.2(i)). See also (10.22.39).

Trigonometric Arguments

10.22.13

∫ 1
2π

0

J2ν(2z cos θ) cos(2µθ) dθ = 1
2π Jν+µ(z) Jν−µ(z), <ν > − 1

2 ,

10.22.14

∫ π

0

J2ν(2z sin θ) cos(2µθ) dθ = π cos(µπ) Jν+µ(z) Jν−µ(z), <ν > − 1
2 ,

10.22.15

∫ π

0

J2ν(2z sin θ) sin(2µθ) dθ = π sin(µπ) Jν+µ(z) Jν−µ(z), <ν > −1.

10.22.16

∫ 1
2π

0

J0(2z sin θ) cos(2nθ) dθ = 1
2π J

2
n(z), n = 0, 1, 2, . . . .
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10.22.17∫ 1
2π

0

Y2ν(2z cos θ) cos(2µθ) dθ = 1
2π cot(2νπ) Jν+µ(z) Jν−µ(z)− 1

2π csc(2νπ) Jµ−ν(z) J−µ−ν(z), − 1
2 < <ν <

1
2 ,

10.22.18

∫ 1
2π

0

Y0(2z sin θ) cos(2nθ) dθ = 1
2π Jn(z)Yn(z), n = 0, 1, 2, . . . .

10.22.19

∫ 1
2π

0

Jµ(z sin θ)(sin θ)µ+1(cos θ)2ν+1 dθ = 2ν Γ(ν + 1)z−ν−1 Jµ+ν+1(z), <µ > −1, <ν > −1,

10.22.20

∫ 1
2π

0

Jµ(z sin θ)(sin θ)µ(cos θ)2µ dθ = π
1
2 2µ−1z−µ Γ

(
µ+ 1

2

)
J2
µ

(
1
2z
)
, <µ > − 1

2 ,

10.22.21

∫ 1
2π

0

Yµ(z sin θ)(sin θ)µ(cos θ)2µ dθ = π
1
2 2µ−1z−µ Γ

(
µ+ 1

2

)
Jµ
(

1
2z
)
Yµ
(

1
2z
)
, <µ > − 1

2 .

10.22.22∫ 1
2π

0

Jµ
(
z sin2 θ

)
Jν
(
z cos2 θ

)
(sin θ)2µ+1(cos θ)2ν+1 dθ =

Γ
(
µ+ 1

2

)
Γ
(
ν + 1

2

)
Jµ+ν+ 1

2
(z)

(8πz)
1
2 Γ(µ+ ν + 1)

, <µ > − 1
2 ,<ν > −

1
2 .

10.22.23

∫ 1
2π

0

Jµ
(
z sin2 θ

)
Jν
(
z cos2 θ

)
(sin θ)2α−1 sec θ dθ =

(µ+ ν + α) Γ(µ+ α)2α−1

ν Γ(µ+ 1)zα
Jµ+ν+α(z),

<(µ+ α) > 0, <ν > 0.

10.22.24

∫ 1
2π

0

Jµ
(
z sin2 θ

)
Jν
(
z cos2 θ

)
cot θ dθ = 1

2µ
−1 Jµ+ν(z), <µ > 0,<ν > −1.

10.22.25

∫ 1
2π

0

Jµ(z sin θ) Iν(z cos θ)(tan θ)µ+1 dθ =
Γ
(

1
2ν −

1
2µ
)
( 1

2z)
µ

2Γ
(

1
2ν + 1

2µ+ 1
) Jν(z), <ν > <µ > −1.

For Iν see §10.25(ii).

10.22.26

∫ 1
2π

0

Jµ(z sin θ) Jν(ζ cos θ)(sin θ)µ+1(cos θ)ν+1 dθ =
zµζν Jµ+ν+1

(√
ζ2 + z2

)
(ζ2 + z2)

1
2 (µ+ν+1)

, <µ > −1,<ν > −1.

Products

10.22.27

∫ x

0

t J2
ν−1(t) dt = 2

∞∑
k=0

(ν + 2k) J2
ν+2k(x), <ν > 0,

10.22.28

∫ x

0

t
(
J2
ν−1(t)− J2

ν+1(t)
)
dt = 2ν J2

ν (x), <ν > 0,

10.22.29

∫ x

0

t J2
0 (t) dt = 1

2x
2
(
J2

0 (x) + J2
1 (x)

)
.

10.22.30

∫ x

0

Jn(t) Jn+1(t) dt = 1
2

(
1− J2

0 (x)
)
−

n∑
k=1

J2
k (x) =

∞∑
k=n+1

J2
k (x), n = 0, 1, 2, . . . .

Convolutions

10.22.31

∫ x

0

Jµ(t) Jν(x− t) dt = 2
∞∑
k=0

(−1)k Jµ+ν+2k+1(x), <µ > −1,<ν > −1.

10.22.32

∫ x

0

Jν(t) J1−ν(x− t) dt = J0(x)− cosx, −1 < <ν < 2.

10.22.33

∫ x

0

Jν(t) J−ν(x− t) dt = sinx, |<ν| < 1.

10.22.34

∫ x

0

t−1 Jµ(t) Jν(x− t) dt =
Jµ+ν(x)

µ
, <µ > 0,<ν > −1.
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10.22.35

∫ x

0

Jµ(t) Jν(x− t) dt
t(x− t)

=
(µ+ ν) Jµ+ν(x)

µνx
, <µ > 0,<ν > 0.

Fractional Integral

10.22.36
1

Γ(α)

∫ x

0

(x− t)α−1 Jν(t) dt = 2α
∞∑
k=0

(α)k
k!

Jν+α+2k(x), <α > 0,<ν ≥ 0.

When α = m = 1, 2, 3, . . . the left-hand side of (10.22.36) is the mth repeated integral of Jν(x) (§§1.4(v) and 1.15(vi)).

Orthogonality

If ν > −1, then

10.22.37

∫ 1

0

t Jν(jν,`t) Jν(jν,mt) dt = 1
2δ`,m (J ′ν(jν,`))

2
,

where jν,` and jν,m are zeros of Jν(x) (§10.21(i)), and δ`,m is Kronecker’s symbol.
Also, if a, b, ν are real constants with b 6= 0 and ν > −1, then

10.22.38

∫ 1

0

t Jν(α`t) Jν(αmt) dt = δ`,m

(
a2

b2
+ α2

` − ν2

)
(Jν(α`))2

2α2
`

,

where α` and αm are positive zeros of a Jν(x) + bx J ′ν(x). (Compare (10.22.55)).

10.22(iii) Integrals over the Interval (x,∞)

When x > 0

10.22.39

∫ ∞
x

J0(t)
t

dt+ γ + ln
(

1
2x
)

=
∫ x

0

1− J0(t)
t

dt =
∞∑
k=1

(−1)k−1 ( 1
2x)2k

2k(k!)2
,

10.22.40

∫ ∞
x

Y0(t)
t

dt = − 1
π

(
ln
(

1
2x
)

+ γ
)2 +

π

6
+

2
π

∞∑
k=1

(−1)k
(
ψ(k + 1) +

1
2k
− ln

(
1
2x
)) ( 1

2x)2k

2k(k!)2
,

where γ is Euler’s constant (§5.2(ii)).

10.22(iv) Integrals over the Interval (0,∞)

10.22.41

∫ ∞
0

Jν(t) dt = 1, <ν > −1,

10.22.42

∫ ∞
0

Yν(t) dt = − tan
(

1
2νπ

)
, |<ν| < 1.

10.22.43

∫ ∞
0

tµ Jν(t) dt = 2µ
Γ
(

1
2ν + 1

2µ+ 1
2

)
Γ
(

1
2ν −

1
2µ+ 1

2

) , <(µ+ ν) > −1, <µ < 1
2 ,

10.22.44

∫ ∞
0

tµ Yν(t) dt =
2µ

π
Γ
(

1
2µ+ 1

2ν + 1
2

)
Γ
(

1
2µ−

1
2ν + 1

2

)
sin
(

1
2µ−

1
2ν
)
π, <(µ± ν) > −1, <µ < 1

2 .

10.22.45

∫ ∞
0

1− J0(t)
tµ

dt = −
π sec

(
1
2µπ

)
2µ Γ2

(
1
2µ+ 1

2

) , 1 < <µ < 3.

10.22.46

∫ ∞
0

tν+1 Jν(at)
(t2 + b2)µ+1

dt =
aµbν−µ

2µ Γ(µ+ 1)
Kν−µ(ab), a > 0, <b > 0, −1 < <ν < 2<µ+ 3

2 .

10.22.47

∫ ∞
0

tν Yν(at)
t2 + b2

dt = −bν−1Kν(ab), a > 0,<b > 0,− 1
2 < <ν <

5
2 .

For Kν see §10.25(ii).
10.22.48 ∫ ∞

0

Jµ(x coshφ)(coshφ)1−µ(sinhφ)2ν+1 dφ = 2ν Γ(ν + 1)x−ν−1 Jµ−ν−1(x), x > 0,<ν > −1,<µ > 2<ν + 1
2 .
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10.22.49

∫ ∞
0

tµ−1e−at Jν(bt) dt =
( 1

2b)
ν

aµ+ν
Γ(µ+ ν) F

(
µ+ ν

2
,
µ+ ν + 1

2
; ν + 1;− b

2

a2

)
, <(µ+ ν) > 0,<(a± ib) > 0,

10.22.50

∫ ∞
0

tµ−1e−at Yν(bt) dt = cot(νπ)
( 1

2b)
ν Γ(µ+ ν)

(a2 + b2)
1
2 (µ+ν)

F
(
µ+ ν

2
,

1− µ+ ν

2
; ν + 1;

b2

a2 + b2

)
− csc(νπ)

( 1
2b)
−ν Γ(µ− ν)

(a2 + b2)
1
2 (µ−ν)

F
(
µ− ν

2
,

1− µ− ν
2

; 1− ν;
b2

a2 + b2

)
,

<µ > |<ν|,<(a± ib) > 0.

For the hypergeometric function F see §15.2(i).

10.22.51

∫ ∞
0

Jν(bt) exp
(
−p2t2

)
tν+1 dt =

bν

(2p2)ν+1
exp
(
− b2

4p2

)
, <ν > −1, <(p2) > 0,

10.22.52

∫ ∞
0

Jν(bt) exp(−p2t2) dt =
√
π

2p
exp

(
− b2

8p2

)
Iν/2

(
b2

8p2

)
, <ν > −1,<(p2) > 0,

10.22.53∫ ∞
0

Y2ν(bt) exp
(
−p2t2

)
dt = −

√
π

2p
exp
(
− b2

8p2

)(
Iν

(
b2

8p2

)
tan(νπ) +

1
π
Kν

(
b2

8p2

)
sec(νπ)

)
, |<ν| < 1

2 , <(p2) > 0.

For I and K see §10.25(ii).

10.22.54

∫ ∞
0

Jν(bt) exp
(
−p2t2

)
tµ−1 dt =

( 1
2b/p)

ν Γ
(

1
2ν + 1

2µ
)

2pµ
exp
(
− b2

4p2

)
M
(

1
2ν −

1
2µ+ 1, ν + 1,

b2

4p2

)
,

<(µ+ ν) > 0, <(p2) > 0.

For the confluent hypergeometric function M see §13.2(i).

Orthogonality

10.22.55

∫ ∞
0

t−1 Jν+2`+1(t) Jν+2m+1(t) dt =
δ`,m

2(2`+ ν + 1)
, ν + `+m > −1.

Weber–Schafheitlin Discontinuous Integrals, including Special Cases

10.22.56

∫ ∞
0

Jµ(at)Jν(bt)
tλ

dt =
aµ Γ

(
1
2ν + 1

2µ−
1
2λ+ 1

2

)
2λbµ−λ+1 Γ

(
1
2ν −

1
2µ+ 1

2λ+ 1
2

) F
(

1
2 (µ+ ν − λ+ 1), 1

2 (µ− ν − λ+ 1);µ+ 1;
a2

b2

)
,

0 < a < b, <(µ+ ν + 1) > <λ > −1.

If 0 < b < a, then interchange a and b, and also µ and ν. If b = a, then

10.22.57

∫ ∞
0

Jµ(at)Jν(at)
tλ

dt =
( 1

2a)λ−1 Γ
(

1
2µ+ 1

2ν −
1
2λ+ 1

2

)
Γ(λ)

2 Γ
(

1
2λ+ 1

2ν −
1
2µ+ 1

2

)
Γ
(

1
2λ+ 1

2µ−
1
2ν + 1

2

)
Γ
(

1
2λ+ 1

2µ+ 1
2ν + 1

2

) ,

<(µ+ ν + 1) > <λ > 0.

10.22.58

∫ ∞
0

Jν(at)Jν(bt)
tλ

dt =
(ab)ν Γ

(
ν − 1

2λ+ 1
2

)
2λ(a2 + b2)ν−

1
2λ+ 1

2 Γ
(

1
2λ+ 1

2

) F
(

2ν + 1− λ
4

,
2ν + 3− λ

4
; ν + 1;

4a2b2

(a2 + b2)2

)
,

a 6= b, <(2ν + 1) > <λ > −1.

When <µ > −1

10.22.59

∫ ∞
0

eibt Jµ(at) dt =


exp(iµ arcsin(b/a))

(a2 − b2)
1
2

, 0 ≤ b < a,

iaµ exp
(

1
2µπi

)
(b2 − a2)

1
2

(
b+ (b2 − a2)

1
2

)µ , 0 < a < b.

10.22.60

∫ ∞
0

eibt Y0(at) dt =


(2i/π)(a2 − b2)−

1
2 arcsin(b/a), 0 ≤ b < a,

(b2 − a2)−
1
2

(
−1 +

2i
π

ln
(

a

b+ (b2 − a2)
1
2

))
, 0 < a < b.
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When <µ > 0,

10.22.61

∫ ∞
0

t−1eibt Jµ(at) dt =


(1/µ) exp(iµ arcsin(b/a)), 0 ≤ b ≤ a,

aµ exp
(

1
2µπi

)
µ
(
b+ (b2 − a2)

1
2

)µ , 0 < a ≤ b.

When <ν > <µ > −1,

10.22.62

∫ ∞
0

tµ−ν+1 Jµ(at)Jν(bt) dt =

0, 0 < b < a,
2µ−ν+1aµ(b2 − a2)ν−µ−1

bν Γ(ν − µ)
, 0 < a ≤ b.

When <µ > 0,

10.22.63

∫ ∞
0

Jµ(at)Jµ−1(bt) dt =


bµ−1a−µ, 0 < b < a,

(2b)−1, b = a(> 0),
0, 0 < a < b.

When n = 0, 1, 2, . . . and <µ > −n− 1,

10.22.64

∫ ∞
0

Jµ+2n+1(at)Jµ(bt) dt =


bµ Γ(µ+ n+ 1)

aµ+1n!
F
(
−n, µ+ n+ 1;µ+ 1;

b2

a2

)
, 0 < b < a,

(−1)n/(2a), b = a(> 0),
0, 0 < a < b.

10.22.65

∫ ∞
0

J0(at) (J0(bt)− J0(ct))
dt

t
=

{
0, 0 ≤ b < a, 0 < c ≤ a,
ln(c/a), 0 ≤ b < a ≤ c.

Other Double Products

In (10.22.66)–(10.22.70) a, b, c are positive constants.

10.22.66

∫ ∞
0

e−at Jν(bt)Jν(ct) dt =
1

π(bc)
1
2
Qν− 1

2

(
a2 + b2 + c2

2bc

)
, <ν > − 1

2 .

10.22.67

∫ ∞
0

t exp(−p2t2) Jν(at)Jν(bt) dt =
1

2p2
exp

(
−a

2 + b2

4p2

)
Iν

(
ab

2p2

)
, <ν > −1,<(p2) > 0.

10.22.68

∫ ∞
0

t exp(−p2t2) J0(at)Y0(at) dt = − 1
2πp2

exp
(
− a2

2p2

)
K0

(
a2

2p2

)
, <(p2) > 0.

For the associated Legendre function Q see §14.3(ii) with µ = 0. For I and K see §10.25(ii).

10.22.69

∫ ∞
0

Jν(at)Jν(bt)
t dt

t2 − z2
=

{
1
2πi Jν(bz)H(1)

ν (az), a > b
1
2πi Jν(az)H(1)

ν (bz), b > a

}
, <ν > −1,=z > 0.

10.22.70

∫ ∞
0

Yν(at)Jν+1(bt)
t dt

t2 − z2
=

1
2
π Jν+1(bz)H(1)

ν (az), a ≥ b > 0, <ν > − 3
2 ,=z > 0.

Equation (10.22.70) also remains valid if the order ν + 1 of the J functions on both sides is replaced by ν + 2n− 3,
n = 1, 2, . . . , and the constraint <ν > − 3

2 is replaced by <ν > −n+ 1
2 .

See also §1.17(ii) for an integral representation of the Dirac delta in terms of a product of Bessel functions.

Triple Products

In (10.22.71) and (10.22.72) a, b, c are positive constants.

10.22.71

∫ ∞
0

Jµ(at)Jν(bt)Jν(ct)t1−µ dt =
(bc)µ−1(sinφ)µ−

1
2

(2π)
1
2 aµ

P
1
2−µ
ν− 1

2
(cosφ),

<µ > − 1
2 ,<ν > −1, |b− c| < a < b+ c, cosφ = (b2 + c2 − a2)/(2bc).

10.22.72

∫ ∞
0

Jµ(at)Jν(bt)Jν(ct)t1−µ dt =
(bc)µ−1 cos(νπ)(sinhχ)µ−

1
2

( 1
2π

3)
1
2 aµ

Q
1
2−µ
ν− 1

2
(coshχ),

<µ > − 1
2 ,<ν > −1, a > b+ c, coshχ = (a2 − b2 − c2)/(2bc).
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For the Ferrers function P and the associated Legendre function Q, see §§14.3(i) and 14.3(ii), respectively.
In (10.22.74) and (10.22.75), a, b, c are positive constants and

10.22.73 A = s(s− a)(s− b)(s− c), s = 1
2 (a+ b+ c).

(Thus if a, b, c are the sides of a triangle, then A
1
2 is the area of the triangle.)

If <ν > − 1
2 , then

10.22.74

∫ ∞
0

Jν(at)Jν(bt)Jν(ct)t1−ν dt =


2ν−1Aν−

1
2

π
1
2 (abc)ν Γ

(
ν + 1

2

) , A > 0,

0, A ≤ 0.

If |ν| < 1
2 , then

10.22.75

∫ ∞
0

Yν(at)Jν(bt)Jν(ct)t1+ν dt =


− (abc)ν(−A)−ν−

1
2

π
1
2 2ν+1 Γ

(
1
2 − ν

) , 0 < a < |b− c|,

0, |b− c| < a < b+ c,

(abc)ν(−A)−ν−
1
2

π
1
2 2ν+1 Γ

(
1
2 − ν

) , a > b+ c.

Additional infinite integrals over the product of three Bessel functions (including modified Bessel functions) are
given in Gervois and Navelet (1984, 1985a,b, 1986a,b).

10.22(v) Hankel Transform

The Hankel transform (or Bessel transform) of a func-
tion f(x) is defined as

10.22.76 g(y) =
∫ ∞

0

f(x)Jν(xy)(xy)
1
2 dx.

Hankel’s inversion theorem is given by

10.22.77 f(y) =
∫ ∞

0

g(x)Jν(xy)(xy)
1
2 dx.

Sufficient conditions for the validity of (10.22.77) are
that

∫∞
0
|f(x)| dx < ∞ when ν ≥ − 1

2 , or that∫∞
0
|f(x)| dx < ∞ and

∫ 1

0
xν+ 1

2 |f(x)| dx < ∞ when
−1 < ν < − 1

2 ; see Titchmarsh (1986a, Theorem 135,
Chapter 8) and Akhiezer (1988, p. 62).

For asymptotic expansions of Hankel transforms see
Wong (1976, 1977) and Frenzen and Wong (1985).

For collections of Hankel transforms see Erdélyi et al.
(1954b, Chapter 8) and Oberhettinger (1972).

10.22(vi) Compendia

For collections of integrals of the functions Jν(z), Yν(z),
H

(1)
ν (z), and H

(2)
ν (z), including integrals with respect

to the order, see Andrews et al. (1999, pp. 216–225),
Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–
7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a,b), Grad-
shteyn and Ryzhik (2000, §§5.5 and 6.5–6.7), Gröbner
and Hofreiter (1950, pp. 196–204), Luke (1962), Mag-
nus et al. (1966, §3.8), Marichev (1983, pp. 191–216),
Oberhettinger (1974, §§1.10 and 2.7), Oberhettinger
(1990, §§1.13–1.16 and 2.13–2.16), Oberhettinger and
Badii (1973, §§1.14 and 2.12), Okui (1974, 1975), Prud-
nikov et al. (1986b, §§1.8–1.10, 2.12–2.14, 3.2.4–3.2.7,

3.3.2, and 3.4.1), Prudnikov et al. (1992a, §§3.12–3.14),
Prudnikov et al. (1992b, §§3.12–3.14), Watson (1944,
Chapters 5, 12, 13, and 14), and Wheelon (1968).

10.23 Sums

10.23(i) Multiplication Theorem

10.23.1

Cν(λz) = λ±ν
∞∑
k=0

(∓1)k(λ2 − 1)k( 1
2z)

k

k!
Cν±k(z),

|λ2 − 1| < 1.
If C = J and the upper signs are taken, then the restric-
tion on λ is unnecessary.

10.23(ii) Addition Theorems

Neumann’s Addition Theorem

10.23.2 Cν(u± v) =
∞∑

k=−∞

Cν∓k(u) Jk(v), |v| < |u|.

The restriction |v| < |u| is unnecessary when C = J and
ν is an integer. Special cases are:

10.23.3 J2
0 (z) + 2

∞∑
k=1

J2
k (z) = 1,

10.23.4

2n∑
k=0

(−1)k Jk(z) J2n−k(z)

+ 2
∞∑
k=1

Jk(z) J2n+k(z) = 0, n ≥ 1,

10.23.5
n∑
k=0

Jk(z) Jn−k(z) + 2
∞∑
k=1

(−1)k Jk(z) Jn+k(z) = Jn(2z).
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Graf’s and Gegenbauer’s Addition Theorems

Define

10.23.6
w =

√
u2 + v2 − 2uv cosα,

u− v cosα = w cosχ, v sinα = w sinχ,

the branches being continuous and chosen so that w → u
and χ → 0 as v → 0. If u, v are real and positive and
0 ≤ α ≤ π, then w and χ are real and nonnegative, and
the geometrical relationship is shown in Figure 10.23.1.

Figure 10.23.1: Graf’s and Gegenbauer’s addition theo-
rems.

10.23.7
Cν(w)

cos
sin (νχ) =

∞∑
k=−∞

Cν+k(u) Jk(v)
cos
sin (kα),

|ve±iα| < |u|.

10.23.8

Cν(w)
wν

= 2ν Γ(ν)

×
∞∑
k=0

(ν + k)
Cν+k(u)
uν

Jν+k(v)
vν

C
(ν)
k (cosα),

ν 6= 0,−1, . . . , |ve±iα| < |u|,

where C(ν)
k (cosα) is Gegenbauer’s polynomial (§18.3).

The restriction |ve±iα| < |u| is unnecessary in (10.23.7)
when C = J and ν is an integer, and in (10.23.8) when
C = J.

The degenerate form of (10.23.8) when u = ∞ is
given by

10.23.9

eiv cosα =
Γ(ν)
( 1

2v)ν

∞∑
k=0

(ν + k)ik Jν+k(v)C(ν)
k (cosα),

ν 6= 0,−1, . . . .

Partial Fractions

For expansions of products of Bessel functions of the
first kind in partial fractions see Rogers (2005).

10.23(iii) Series Expansions of Arbitrary
Functions

Neumann’s Expansion

10.23.10 f(z) = a0 J0(z) + 2
∞∑
k=1

ak Jk(z), |z| < c,

where c is the distance of the nearest singularity of the
analytic function f(z) from z = 0,

10.23.11 ak =
1

2πi

∫
|z|=c′

f(t)Ok(t) dt, 0 < c′ < c,

and Ok(t) is Neumann’s polynomial, defined by the gen-
erating function:

10.23.12

1
t− z

= J0(z)O0(t) + 2
∞∑
k=1

Jk(z)Ok(t), |z| < |t|.

On(t) is a polynomial of degree n+1 in 1/t : O0(t) =
1/t and

10.23.13

On(t) =
1
4

bn/2c∑
k=0

(n− k − 1)!n
k!

(
2
t

)n−2k+1

, n = 1, 2, . . . .

For the more general form of expansion

10.23.14 zνf(z) = a0 Jν(z) + 2
∞∑
k=1

ak Jν+k(z)

see Watson (1944, §16.13), and for further generaliza-
tions see Watson (1944, Chapter 16) and (Erdélyi et al.,
1953b, §7.10.1).

Examples

10.23.15
( 1

2z)
ν =

∞∑
k=0

(ν + 2k) Γ(ν + k)
k!

Jν+2k(z),

ν 6= 0,−1,−2, . . . ,

10.23.16

Y0(z) =
2
π

(
ln
(

1
2z
)

+ γ
)
J0(z)− 4

π

∞∑
k=1

(−1)k
J2k(z)
k

,

10.23.17

Yn(z) = −
n!( 1

2z)
−n

π

n−1∑
k=0

( 1
2z)

k Jk(z)
k!(n− k)

+
2
π

(
ln
(

1
2z
)
− ψ(n+ 1)

)
Jn(z)

− 2
π

∞∑
k=1

(−1)k
(n+ 2k) Jn+2k(z)

k(n+ k)
,

where γ is Euler’s constant and ψ(n+ 1) =
Γ′(n+ 1)/Γ(n+ 1) (§5.2).

Other examples are provided by (10.12.1)–(10.12.6),
(10.23.2), and (10.23.7).
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Fourier–Bessel Expansion

Assume f(t) satisfies

10.23.18

∫ 1

0

t
1
2 |f(t)| dt <∞,

and define
10.23.19

am =
2

(Jν+1(jν,m))2

∫ 1

0

tf(t) Jν(jν,mt) dt, ν ≥ − 1
2 ,

where jν,m is as in §10.21(i). If 0 < x < 1, then

10.23.20 1
2f(x−) + 1

2f(x+) =
∞∑
m=1

am Jν(jν,mx),

provided that f(t) is of bounded variation (§1.4(v)) on
an interval [a, b] with 0 < a < x < b < 1. This re-
sult is proved in Watson (1944, Chapter 18) and further
information is provided in this reference, including the
behavior of the series near x = 0 and x = 1.

As an example,

10.23.21 xν =
∞∑
m=1

2Jν(jν,mx)
jν,m Jν+1(jν,m)

, ν > 0, 0 ≤ x < 1.

(Note that when x = 1 the left-hand side is 1 and the
right-hand side is 0.)

Other Series Expansions

For other types of expansions of arbitrary functions
in series of Bessel functions, see Watson (1944, Chap-
ters 17–19) and Erdélyi et al. (1953b, §§ 7.10.2–7.10.4).
See also Schäfke (1960, 1961b).

10.23(iv) Compendia

For collections of sums of series involving Bessel or Han-
kel functions see Erdélyi et al. (1953b, §7.15), Grad-
shteyn and Ryzhik (2000, §§8.51–8.53), Hansen (1975),
Luke (1969b, §9.4), Prudnikov et al. (1986b, pp. 651–
691 and 697–700), and Wheelon (1968, pp. 48–51).

10.24 Functions of Imaginary Order

With z = x and ν replaced by iν, Bessel’s equation
(10.2.1) becomes

10.24.1 x2 d
2w

dx2 + x
dw

dx
+ (x2 + ν2)w = 0.

For ν ∈ R and x ∈ (0,∞) define

10.24.2
J̃ν(x) = sech

(
1
2πν

)
<(Jiν(x)),

Ỹν(x) = sech
(

1
2πν

)
<(Yiν(x)),

and

10.24.3 Γ(1 + iν) =
(

πν

sinh(πν)

)1
2

eiγν ,

where γν is real and continuous with γ0 = 0; compare
(5.4.3). Then

10.24.4 J̃−ν(x) = J̃ν(x), Ỹ−ν(x) = Ỹν(x),

and J̃ν(x), Ỹν(x) are linearly independent solutions of
(10.24.1):

10.24.5 W {J̃ν(x), Ỹν(x)} = 2/(πx).
As x→ +∞, with ν fixed,

10.24.6

J̃ν(x) =
√

2/(πx) cos
(
x− 1

4π
)

+O
(
x−

3
2

)
,

Ỹν(x) =
√

2/(πx) sin
(
x− 1

4π
)

+O
(
x−

3
2

)
.

As x→ 0+, with ν fixed,

10.24.7 J̃ν(x) =
(

2 tanh( 1
2πν)

πν

)1
2

cos
(
ν ln( 1

2x)− γν
)

+O(x2),

10.24.8 Ỹν(x) =
(

2 coth(1
2πν)

πν

)1
2

sin
(
ν ln( 1

2x)− γν
)

+O(x2), ν > 0,
and

10.24.9 Ỹ0(x) = Y0(x) =
2
π

(
ln( 1

2x) + γ
)

+O(x2 lnx),

where γ denotes Euler’s constant §5.2(ii).
In consequence of (10.24.6), when x is large J̃ν(x)

and Ỹν(x) comprise a numerically satisfactory pair of
solutions of (10.24.1); compare §2.7(iv). Also, in con-
sequence of (10.24.7)–(10.24.9), when x is small either
J̃ν(x) and tanh( 1

2πν) Ỹν(x) or J̃ν(x) and Ỹν(x) comprise
a numerically satisfactory pair depending whether ν 6= 0
or ν = 0.

For graphs of J̃ν(x) and Ỹν(x) see §10.3(iii).
For mathematical properties and applications of

J̃ν(x) and Ỹν(x), including zeros and uniform asymp-
totic expansions for large ν, see Dunster (1990a). In
this reference J̃ν(x) and Ỹν(x) are denoted respectively
by Fiν(x) and Giν(x).

Modified Bessel Functions

10.25 Definitions

10.25(i) Modified Bessel’s Equation

10.25.1 z2 d
2w

dz2 + z
dw

dz
− (z2 + ν2)w = 0.

This equation is obtained from Bessel’s equation
(10.2.1) on replacing z by ±iz, and it has the same kinds
of singularities. Its solutions are called modified Bessel
functions or Bessel functions of imaginary argument.
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10.25(ii) Standard Solutions

10.25.2 Iν(z) = ( 1
2z)

ν
∞∑
k=0

( 1
4z

2)k

k! Γ(ν + k + 1)
.

This solution has properties analogous to those of Jν(z),
defined in §10.2(ii). In particular, the principal branch
of Iν(z) is defined in a similar way: it corresponds to the
principal value of ( 1

2z)
ν , is analytic in C\(−∞, 0], and

two-valued and discontinuous on the cut ph z = ±π.
The defining property of the second standard solu-

tion Kν(z) of (10.25.1) is

10.25.3 Kν(z) ∼
√
π/(2z)e−z,

as z → ∞ in |ph z| ≤ 3
2π − δ (< 3

2π). It has a branch
point at z = 0 for all ν ∈ C. The principal branch
corresponds to the principal value of the square root in
(10.25.3), is analytic in C\(−∞, 0], and two-valued and
discontinuous on the cut ph z = ±π.

Both Iν(z) and Kν(z) are real when ν is real and
ph z = 0.

For fixed z (6= 0) each branch of Iν(z) and Kν(z) is
entire in ν.

Branch Conventions

Except where indicated otherwise it is assumed through-
out this Handbook that the symbols Iν(z) and Kν(z)
denote the principal values of these functions.

Symbol Zν(z)

Corresponding to the symbol Cν introduced in §10.2(ii),
we sometimes use Zν(z) to denote Iν(z), eνπiKν(z), or
any nontrivial linear combination of these functions, the
coefficients in which are independent of z and ν.

10.25(iii) Numerically Satisfactory Pairs of
Solutions

Table 10.25.1 lists numerically satisfactory pairs of solu-
tions (§2.7(iv)) of (10.25.1). It is assumed that <ν ≥ 0.
When <ν < 0, Iν(z) is replaced by I−ν(z).

Table 10.25.1: Numerically satisfactory pairs of solu-
tions of the modified Bessel’s equation.

Pair Region

Iν(z),Kν(z) |ph z| ≤ 1
2π

Iν(z),Kν

(
ze∓πi

)
1
2π ≤ ± ph z ≤ 3

2π

10.26 Graphics

10.26(i) Real Order and Variable

See Figures 10.26.1–10.26.6.

Figure 10.26.1: I0(x), I1(x), K0(x), K1(x), 0 ≤ x ≤ 3. Figure 10.26.2: e−x I0(x), e−x I1(x), exK0(x), exK1(x),
0 ≤ x ≤ 10.
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Figure 10.26.3: Iν(x), 0 ≤ x ≤ 5, 0 ≤ ν ≤ 4. Figure 10.26.4: Kν(x), 0.1 ≤ x ≤ 5, 0 ≤ ν ≤ 4.

Figure 10.26.5: I ′ν(x), 0 ≤ x ≤ 5, 0 ≤ ν ≤ 4. Figure 10.26.6: K ′ν(x), 0.3 ≤ x ≤ 5, 0 ≤ ν ≤ 4.

10.26(ii) Real Order, Complex Variable

Apply (10.27.6) and (10.27.8) to §10.3(ii).

10.26(iii) Imaginary Order, Real Variable

See Figures 10.26.7–10.26.10. For the notation, see §10.45.

Figure 10.26.7: Ĩ1/2(x), K̃1/2(x), 0.01 ≤ x ≤ 3. Figure 10.26.8: Ĩ1(x), K̃1(x), 0.01 ≤ x ≤ 3.
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Figure 10.26.9: Ĩ5(x), K̃5(x), 0.01 ≤ x ≤ 3. Figure 10.26.10: K̃5(x), 0.01 ≤ x ≤ 3.

10.27 Connection Formulas

Other solutions of (10.25.1) are I−ν(z) and K−ν(z).

10.27.1 I−n(z) = In(z),

10.27.2 I−ν(z) = Iν(z) + (2/π) sin(νπ)Kν(z),

10.27.3 K−ν(z) = Kν(z).

10.27.4 Kν(z) = 1
2π
I−ν(z)− Iν(z)

sin(νπ)
.

When ν is an integer limiting values are taken:

10.27.5

Kn(z) =
(−1)n−1

2

(
∂Iν(z)
∂ν

∣∣∣∣
ν=n

+
∂Iν(z)
∂ν

∣∣∣∣
ν=−n

)
,

n = 0,±1,±2, . . . .

In terms of the solutions of (10.2.1),

10.27.6

Iν(z) = e∓νπi/2 Jν

(
ze±πi/2

)
, −π ≤ ± ph z ≤ 1

2π,

10.27.7

Iν(z) = 1
2e
∓νπi/2

(
H(1)
ν

(
ze±πi/2

)
+H(2)

ν

(
ze±πi/2

))
,

−π ≤ ± ph z ≤ 1
2π.

10.27.8

Kν(z)

=

{
1
2πie

νπi/2H
(1)
ν

(
zeπi/2

)
, −π ≤ ph z ≤ 1

2π,

− 1
2πie

−νπi/2H
(2)
ν

(
ze−πi/2

)
, − 1

2π ≤ ph z ≤ π.

10.27.9

πi Jν(z) = e−νπi/2Kν

(
ze−πi/2

)
− eνπi/2Kν

(
zeπi/2

)
, |ph z| ≤ 1

2π.

10.27.10

−π Yν(z) = e−νπi/2Kν

(
ze−πi/2

)
+ eνπi/2Kν

(
zeπi/2

)
,

|ph z| ≤ 1
2π.

10.27.11

Yν(z) = e±(ν+1)πi/2 Iν

(
ze∓πi/2

)
− (2/π)e∓νπi/2Kν

(
ze∓πi/2

)
,

− 1
2π ≤ ± ph z ≤ π.

See also §10.34.
Many properties of modified Bessel functions follow

immediately from those of ordinary Bessel functions by
application of (10.27.6)–(10.27.8).

10.28 Wronskians and Cross-Products

10.28.1

W {Iν(z), I−ν(z)} = Iν(z) I−ν−1(z)− Iν+1(z) I−ν(z)

= −2 sin(νπ)/(πz),

10.28.2

W {Kν(z), Iν(z)} = Iν(z)Kν+1(z) + Iν+1(z)Kν(z)

= 1/z.

10.29 Recurrence Relations and Derivatives

10.29(i) Recurrence Relations

With Zν(z) defined as in §10.25(ii),

10.29.1
Zν−1(z)−Zν+1(z) = (2ν/z) Zν(z),

Zν−1(z) + Zν+1(z) = 2Z ′ν (z).

10.29.2
Z ′ν (z) = Zν−1(z)− (ν/z) Zν(z),

Z ′ν (z) = Zν+1(z) + (ν/z) Zν(z).

10.29.3 I ′0(z) = I1(z), K ′0(z) = −K1(z).
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10.29(ii) Derivatives

For k = 0, 1, 2, . . . ,

10.29.4

(
1
z

d

dz

)k
(zν Zν(z)) = zν−k Zν−k(z),(

1
z

d

dz

)k
(z−ν Zν(z)) = z−ν−k Zν+k(z).

10.29.5

Z (k)
ν (z) =

1
2k

(
Zν−k(z) +

(
k

1

)
Zν−k+2(z)

+
(
k

2

)
Zν−k+4(z)+ · · ·+Zν+k(z)

)
.

10.30 Limiting Forms

10.30(i) z → 0

When ν is fixed and z → 0,

10.30.1 Iν(z) ∼ ( 1
2z)

ν/Γ(ν + 1), ν 6= −1,−2,−3, . . . ,

10.30.2 Kν(z) ∼ 1
2 Γ(ν)( 1

2z)
−ν , <ν > 0,

10.30.3 K0(z) ∼ − ln z.
For Kν(x), when ν is purely imaginary and x → 0+,
see (10.45.2) and (10.45.7).

10.30(ii) z →∞

When ν is fixed and z →∞,

10.30.4 Iν(z) ∼ ez/
√

2πz, |ph z| ≤ 1
2π − δ,

10.30.5
Iν(z) ∼ e±(ν+ 1

2 )πie−z/
√

2πz,
1
2π + δ ≤ ± ph z ≤ 3

2π − δ.

For Kν(z) see (10.25.3).

10.31 Power Series

For Iν(z) see (10.25.2) and (10.27.1). When ν is not
an integer the corresponding expansion for Kν(z) is ob-
tained from (10.25.2) and (10.27.4).

When n = 0, 1, 2, . . . ,

10.31.1

Kn(z) = 1
2 ( 1

2z)
−n

n−1∑
k=0

(n− k − 1)!
k!

(− 1
4z

2)k

+ (−1)n+1 ln
(

1
2z
)
In(z)

+ (−1)n 1
2 ( 1

2z)
n
∞∑
k=0

(ψ(k + 1)

+ ψ(n+ k + 1))
( 1

4z
2)k

k!(n+ k)!
,

where ψ(x) = Γ′(x)/Γ(x) (§5.2(i)). In particular,
10.31.2

K0(z) = −
(
ln
(

1
2z
)

+ γ
)
I0(z) +

1
4z

2

(1!)2

+ (1 + 1
2 )

( 1
4z

2)2

(2!)2
+ (1 + 1

2 + 1
3 )

( 1
4z

2)3

(3!)2
+· · · .

For negative values of n use (10.27.3).
10.31.3

Iν(z) Iµ(z) = ( 1
2z)

ν+µ
∞∑
k=0

(ν + µ+ k + 1)k( 1
4z

2)k

k! Γ(ν + k + 1) Γ(µ+ k + 1)
.

10.32 Integral Representations

10.32(i) Integrals along the Real Line

10.32.1

I0(z) =
1
π

∫ π

0

e±z cos θ dθ =
1
π

∫ π

0

cosh(z cos θ) dθ.

10.32.2

Iν(z) =
( 1

2z)
ν

π
1
2 Γ
(
ν + 1

2

) ∫ π

0

e±z cos θ(sin θ)2ν dθ

=
( 1

2z)
ν

π
1
2 Γ
(
ν + 1

2

) ∫ 1

−1

(1− t2)ν−
1
2 e±zt dt,

<ν > − 1
2 .

10.32.3 In(z) =
1
π

∫ π

0

ez cos θ cos(nθ) dθ.

10.32.4

Iν(z) =
1
π

∫ π

0

ez cos θ cos(νθ) dθ

− sin(νπ)
π

∫ ∞
0

e−z cosh t−νt dt, |ph z| < 1
2π.

10.32.5

K0(z) = − 1
π

∫ π

0

e±z cos θ
(
γ + ln

(
2z(sin θ)2

))
dθ.

10.32.6

K0(x) =
∫ ∞

0

cos(x sinh t) dt =
∫ ∞

0

cos(xt)√
t2 + 1

dt, x > 0.

10.32.7

Kν(x) = sec
(

1
2νπ

) ∫ ∞
0

cos(x sinh t) cosh(νt) dt

= csc
(

1
2νπ

) ∫ ∞
0

sin(x sinh t) sinh(νt) dt,

|<ν| < 1, x > 0.

10.32.8

Kν(z) =
π

1
2 ( 1

2z)
ν

Γ
(
ν + 1

2

) ∫ ∞
0

e−z cosh t(sinh t)2ν dt

=
π

1
2 ( 1

2z)
ν

Γ
(
ν + 1

2

) ∫ ∞
1

e−zt(t2 − 1)ν−
1
2 dt,

<ν > − 1
2 , |ph z| < 1

2π.

10.32.9

Kν(z) =
∫ ∞

0

e−z cosh t cosh(νt) dt, |ph z| < 1
2π.
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10.32.10

Kν(z) = 1
2 ( 1

2z)
ν

∫ ∞
0

exp
(
−t− z

2

4t

)
dt

tν+1
, |ph z| < 1

4π.

Basset’s Integral

10.32.11
Kν(xz) =

Γ
(
ν + 1

2

)
(2z)ν

π
1
2xν

∫ ∞
0

cos(xt) dt
(t2 + z2)ν+ 1

2
,

<ν > − 1
2 , x > 0, |ph z| < 1

2π.

10.32(ii) Contour Integrals

10.32.12

Iν(z) =
1

2πi

∫ ∞+iπ

∞−iπ
ez cosh t−νt dt, |ph z| < 1

2π.

Mellin–Barnes Type

10.32.13
Kν(z) =

( 1
2z)

ν

4πi

∫ c+i∞

c−i∞
Γ(t) Γ(t− ν)( 1

2z)
−2t dt,

c > max(<ν, 0), |ph z| < π.
10.32.14

Kν(z) =
1

2π2i

( π
2z

)1
2
e−z cos(νπ)

×
∫ i∞

−i∞
Γ(t) Γ

(
1
2 − t− ν

)
Γ
(

1
2 − t+ ν

)
(2z)t dt,

ν − 1
2 /∈ Z, |ph z| < 3

2π.

In (10.32.14) the integration contour separates the poles
of Γ(t) from the poles of Γ

(
1
2 − t− ν

)
Γ
(

1
2 − t+ ν

)
.

10.32(iii) Products

10.32.15

Iµ(z) Iν(z) =
2
π

∫ 1
2π

0

Iµ+ν(2z cos θ) cos((µ− ν)θ) dθ,

<(µ+ ν) > −1.

10.32.16

Iµ(x)Kν(x) =
∫ ∞

0

Jµ±ν(2x sinh t)e(−µ±ν)t dt,

<(µ∓ ν) > − 1
2 , <(µ± ν) > −1, x > 0.

10.32.17

Kµ(z)Kν(z) = 2
∫ ∞

0

Kµ±ν(2z cosh t) cosh((µ∓ ν)t) dt,

|ph z| < 1
2π.

10.32.18

Kν(z)Kν(ζ)

=
1
2

∫ ∞
0

exp
(
− t

2
− z2 + ζ2

2t

)
Kν

(
zζ

t

)
dt

t
,

|ph z| < π, |ph ζ| < π, |ph(z + ζ)| < 1
4π.

Mellin–Barnes Type

10.32.19
Kµ(z)Kν(z) =

1
8πi

∫ c+i∞

c−i∞

Γ
(
t+ 1

2µ+ 1
2ν
)

Γ
(
t+ 1

2µ−
1
2ν
)

Γ
(
t− 1

2µ+ 1
2ν
)

Γ
(
t− 1

2µ−
1
2ν
)

Γ(2t)
( 1

2z)
−2t dt,

c > 1
2 (|<µ|+ |<ν|), |ph z| < 1

2π.

For similar integrals for Jν(z)Kν(z) and Iν(z)Kν(z) see
Paris and Kaminski (2001, p. 116).

10.32(iv) Compendia

For collections of integral representations of modified
Bessel functions, or products of modified Bessel func-
tions, see Erdélyi et al. (1953b, §§7.3, 7.12, and 7.14.2),
Erdélyi et al. (1954a, pp. 48–60, 105–115, 276–285, and
357–359), Gröbner and Hofreiter (1950, pp. 193–194),
Magnus et al. (1966, §3.7), Marichev (1983, pp. 191–
216), and Watson (1944, Chapters 6, 12, and 13).

10.33 Continued Fractions

Assume Iν−1(z) 6= 0. Then

10.33.1

Iν(z)
Iν−1(z)

=
1

2νz−1+
1

2(ν + 1)z−1+
1

2(ν + 2)z−1+
· · · ,

z 6= 0,

10.33.2

Iν(z)
Iν−1(z)

=
1
2z/ν

1+

1
4z

2/(ν(ν + 1))
1+

1
4z

2/((ν + 1)(ν + 2))
1+

· · · ,

ν 6= 0,−1,−2, . . . .
See also Cuyt et al. (2008, pp. 361–367).

10.34 Analytic Continuation

When m ∈ Z,

10.34.1 Iν
(
zemπi

)
= emνπi Iν(z),

10.34.2

Kν

(
zemπi

)
= e−mνπiKν(z)−πi sin(mνπ) csc(νπ) Iν(z).

10.34.3

Iν
(
zemπi

)
= (i/π)

(
±emνπiKν

(
ze±πi

)
∓ e(m∓1)νπiKν(z)

)
,

10.34.4
Kν

(
zemπi

)
= csc(νπ)

(
± sin(mνπ)Kν

(
ze±πi

)
∓ sin((m∓ 1)νπ)Kν(z)

)
.
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If ν = n(∈ Z), then limiting values are taken in
(10.34.2) and (10.34.4):

10.34.5

Kn

(
zemπi

)
= (−1)mnKn(z) + (−1)n(m−1)−1mπi In(z),

10.34.6
Kn

(
zemπi

)
= ±(−1)n(m−1)mKn

(
ze±πi

)
∓ (−1)nm(m∓ 1)Kn(z).

For real ν,

10.34.7 Iν(z) = Iν(z), Kν(z) = Kν(z).

For complex ν replace ν by ν on the right-hand sides.

10.35 Generating Function and Associated
Series

For z ∈ C and t ∈ C \{0},

10.35.1 e
1
2 z(t+t

−1) =
∞∑

m=−∞
tm Im(z).

For z, θ ∈ C,

10.35.2 ez cos θ = I0(z) + 2
∞∑
k=1

Ik(z) cos(kθ),

10.35.3

ez sin θ = I0(z) + 2
∞∑
k=0

(−1)k I2k+1(z) sin((2k + 1)θ)

+ 2
∞∑
k=1

(−1)k I2k(z) cos(2kθ).

10.35.4 1 = I0(z)− 2I2(z) + 2I4(z)− 2I6(z) + · · · ,

10.35.5 e±z = I0(z)± 2I1(z) + 2I2(z)± 2I3(z) + · · · ,

10.35.6
cosh z = I0(z) + 2I2(z) + 2I4(z) + 2I6(z) + . . . ,

sinh z = 2I1(z) + 2I3(z) + 2I5(z) + . . . .

10.36 Other Differential Equations

The quantity λ2 in (10.13.1)–(10.13.6) and (10.13.8) can
be replaced by −λ2 if at the same time the symbol C in
the given solutions is replaced by Z. Also,

10.36.1
z2(z2 + ν2)w′′ + z(z2 + 3ν2)w′

−
(
(z2 + ν2)2 + z2 − ν2

)
w = 0, w = Z ′ν (z),

10.36.2

z2w′′ + z(1± 2z)w′ + (±z − ν2)w = 0,
w = e∓z Zν(z).

Differential equations for products can be obtained
from (10.13.9)–(10.13.11) by replacing z by iz.

10.37 Inequalities; Monotonicity

If ν (≥ 0) is fixed, then throughout the interval 0 <
x < ∞, Iν(x) is positive and increasing, and Kν(x) is
positive and decreasing.

If x (> 0) is fixed, then throughout the interval
0 < ν <∞, Iν(x) is decreasing, and Kν(x) is increasing.

For sharper inequalities when the variables are real
see Paris (1984) and Laforgia (1991).

If 0 ≤ ν < µ and |ph z| < π, then

10.37.1 |Kν(z)| < |Kµ(z)|.
See also Pal′tsev (1999) and Petropoulou (2000).

10.38 Derivatives with Respect to Order

10.38.1

∂Iν(z)
∂ν

= Iν(z) ln
(

1
2z
)
− ( 1

2z)
ν
∞∑
k=0

ψ(ν + k + 1)
Γ(ν + k + 1)

( 1
4z

2)k

k!
,

10.38.2

∂Kν(z)
∂ν

= 1
2π csc(νπ)

(
∂I−ν(z)
∂ν

− ∂Iν(z)
∂ν

)
− π cot(νπ)Kν(z), ν /∈ Z.

Integer Values of ν

10.38.3

(−1)n
∂Iν(z)
∂ν

∣∣∣∣
ν=n

= −Kn(z)

+
n!

2( 1
2z)

n

n−1∑
k=0

(−1)k
( 1

2z)
k Ik(z)

k!(n− k)
,

10.38.4
∂Kν(z)
∂ν

∣∣∣∣
ν=n

=
n!

2( 1
2z)

n

n−1∑
k=0

( 1
2z)

kKk(z)
k!(n− k)

.

10.38.5
∂Iν(z)
∂ν

∣∣∣∣
ν=0

= −K0(z),
∂Kν(z)
∂ν

∣∣∣∣
ν=0

= 0.

Half-Integer Values of ν

For the notations E1 and Ei see §6.2(i). When x > 0,
10.38.6

∂Iν(x)
∂ν

∣∣∣∣
ν=± 1

2

= − 1√
2πx

(
E1(2x)ex ± Ei(2x)e−x

)
,

10.38.7
∂Kν(x)
∂ν

∣∣∣∣
ν=± 1

2

= ±
√

π

2x
E1(2x)ex.

For further results see Brychkov and Geddes (2005).

10.39 Relations to Other Functions

Elementary Functions

10.39.1

I 1
2
(z) =

(
2
πz

)1
2

sinh z, I− 1
2
(z) =

(
2
πz

)1
2

cosh z,

10.39.2 K 1
2
(z) = K− 1

2
(z) =

( π
2z

)1
2
e−z.

For these and general results when ν is half an odd in-
teger see §§10.47(ii) and 10.49(ii).
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Airy Functions

See §§9.6(i) and 9.6(ii).

Parabolic Cylinder Functions

With the notation of §12.2(i),

10.39.3 K 1
4
(z) = π

1
2 z−

1
4 U
(

0, 2z
1
2

)
,

10.39.4

K 3
4
(z) = 1

2π
1
2 z−

3
4

(
1
2 U
(

1, 2z
1
2

)
+ U

(
−1, 2z

1
2

))
.

Principal values on each side of these equations corre-
spond. For these and further results see Miller (1955,
pp. 42–43 and 77–79).

Confluent Hypergeometric Functions

10.39.5 Iν(z) =
( 1

2z)
νe±z

Γ(ν + 1)
M
(
ν + 1

2 , 2ν + 1,∓2z
)
,

10.39.6 Kν(z) = π
1
2 (2z)νe−z U

(
ν + 1

2 , 2ν + 1, 2z
)
,

10.39.7

Iν(z) =
(2z)−

1
2 M0,ν(2z)

22ν Γ(ν + 1)
, 2ν 6= −1,−2,−3, . . . ,

10.39.8 Kν(z) =
( π

2z

)1
2
W0,ν(2z).

For the functions M , U , M0,ν , and W0,ν see §§13.2(i)
and 13.14(i).

Generalized Hypergeometric Functions and
Hypergeometric Function

10.39.9 Iν(z) =
( 1

2z)
ν

Γ(ν + 1) 0F1

(
−; ν + 1; 1

4z
2
)
,

10.39.10 Iν(z) = ( 1
2z)

ν lim F
(
λ, µ; ν + 1; z2/(4λµ)

)
,

as λ and µ → ∞ in C, with z and ν fixed. For the
functions 0F1 and F see (16.2.1) and §15.2(i).

10.40 Asymptotic Expansions for Large
Argument

10.40(i) Hankel’s Expansions

With the notation of §§10.17(i) and 10.17(ii), as z →∞
with ν fixed,
10.40.1

Iν(z) ∼ ez

(2πz)
1
2

∞∑
k=0

(−1)k
ak(ν)
zk

, |ph z| ≤ 1
2π − δ,

10.40.2

Kν(z) ∼
( π

2z

)1
2
e−z

∞∑
k=0

ak(ν)
zk

, |ph z| ≤ 3
2π − δ,

10.40.3

I ′ν(z) ∼ ez

(2πz)
1
2

∞∑
k=0

(−1)k
bk(ν)
zk

, |ph z| ≤ 1
2π − δ,

10.40.4

K ′ν(z) ∼ −
( π

2z

)1
2
e−z

∞∑
k=0

bk(ν)
zk

, |ph z| ≤ 3
2π − δ.

Corresponding expansions for Iν(z), Kν(z), I ′ν(z),
and K ′ν(z) for other ranges of ph z are obtainable by
combining (10.34.3), (10.34.4), (10.34.6), and their dif-
ferentiated forms, with (10.40.2) and (10.40.4). In par-
ticular, use of (10.34.3) with m = 0 yields the following
more general (and more accurate) version of (10.40.1):

10.40.5

Iν(z) ∼ ez

(2πz)
1
2

∞∑
k=0

(−1)k
ak(ν)
zk

± ie±νπi e−z

(2πz)
1
2

∞∑
k=0

ak(ν)
zk

,

− 1
2π + δ ≤ ± ph z ≤ 3

2π − δ.
Products

With µ = 4ν2 and fixed,
10.40.6

Iν(z)Kν(z) ∼ 1
2z

(
1− 1

2
µ− 1
(2z)2

+
1 · 3
2 · 4

(µ− 1)(µ− 9)
(2z)4

− · · ·
)
,

10.40.7

I ′ν(z)K ′ν(z) ∼ − 1
2z

(
1 +

1
2
µ− 3
(2z)2

− 1
2 · 4

(µ− 1)(µ− 45)
(2z)4

+ · · ·
)
,

as z → ∞ in |ph z| ≤ 1
2π − δ. The general terms in

(10.40.6) and (10.40.7) can be written down by analogy
with (10.18.17), (10.18.19), and (10.18.20).

ν-Derivative

For fixed ν,

10.40.8
∂Kν(z)
∂ν

∼
( π

2z

)1
2 νe−z

z

∞∑
k=0

αk(ν)
(8z)k

,

as z →∞ in |ph z| ≤ 3
2π − δ. Here α0(ν) = 1 and

10.40.9

αk(ν) =
(4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2k + 1)2)

(k + 1)!

×
(

1
4ν2 − 12

+
1

4ν2 − 32
+ · · ·

+
1

4ν2 − (2k + 1)2

)
.

10.40(ii) Error Bounds for Real Argument and
Order

In the expansion (10.40.2) assume that z > 0 and the
sum is truncated when k = ` − 1. Then the remain-
der term does not exceed the first neglected term in



256 Bessel Functions

absolute value and has the same sign provided that
` ≥ max(|ν| − 1

2 , 1).
For the error term in (10.40.1) see §10.40(iii).

10.40(iii) Error Bounds for Complex Argument
and Order

For (10.40.2) write

10.40.10
Kν(z) =

( π
2z

)1
2
e−z

(
`−1∑
k=0

ak(ν)
zk

+R`(ν, z)

)
,

` = 1, 2, . . . .
Then
10.40.11

|R`(ν, z)| ≤ 2|a`(ν)| Vz,∞
(
t−`
)

exp
(
|ν2− 1

4 | Vz,∞
(
t−1
))
,

where V denotes the variational operator (§2.3(i)), and
the paths of variation are subject to the condition that
|<t| changes monotonically. Bounds for Vz,∞

(
t−`
)

are
given by
10.40.12

Vz,∞
(
t−`
)
≤


|z|−`, |ph z| ≤ 1

2π,

χ(`)|z|−`, 1
2π ≤ |ph z| ≤ π,

2χ(`)|<z|−`, π ≤ |ph z| ≤ 3
2π,

where χ(`) = π
1
2 Γ
(

1
2`+ 1

)
/Γ
(

1
2`+ 1

2

)
; see §9.7(i).

A similar result for (10.40.1) is obtained by combin-
ing (10.34.3), with m = 0, and (10.40.10)–(10.40.12);
see Olver (1997b, p. 269).

10.40(iv) Exponentially-Improved Expansions

In (10.40.10)
10.40.13

R`(ν, z) = (−1)`2 cos(νπ)

×

(
m−1∑
k=0

ak(ν)
zk

G`−k(2z) +Rm,`(ν, z)

)
,

where Gp(z) is given by (10.17.16). If z → ∞ with
|`− 2|z|| bounded and m (≥ 0) fixed, then

10.40.14 Rm,`(ν, z) = O
(
e−2|z|z−m

)
, |ph z| ≤ π.

For higher re-expansions of the remainder term see
Olde Daalhuis and Olver (1995a), Olde Daalhuis (1995,
1996), and Paris (2001a,b).

10.41 Asymptotic Expansions for Large
Order

10.41(i) Asymptotic Forms

If ν →∞ through positive real values with z(6= 0) fixed,
then
10.41.1 Iν(z) ∼ 1√

2πν

( ez
2ν

)ν
,

10.41.2 Kν(z) ∼
√

π

2ν

( ez
2ν

)−ν
.

10.41(ii) Uniform Expansions for Real Variable

As ν →∞ through positive real values,

10.41.3 Iν(νz) ∼ eνη

(2πν)
1
2 (1 + z2)

1
4

∞∑
k=0

Uk(p)
νk

,

10.41.4 Kν(νz) ∼
( π

2ν

)1
2 e−νη

(1 + z2)
1
4

∞∑
k=0

(−1)k
Uk(p)
νk

,

10.41.5 I ′ν(νz) ∼ (1 + z2)
1
4 eνη

(2πν)
1
2 z

∞∑
k=0

Vk(p)
νk

,

10.41.6

K ′ν(νz) ∼ −
( π

2ν

)1
2 (1 + z2)

1
4 e−νη

z

∞∑
k=0

(−1)k
Vk(p)
νk

,

uniformly for 0 < z <∞. Here

10.41.7 η = (1 + z2)
1
2 + ln

z

1 + (1 + z2)
1
2
,

10.41.8 p = (1 + z2)−
1
2 ,

where the branches assume their principal values. Also,
Uk(p) and Vk(p) are polynomials in p of degree 3k, given
by U0(p) = V0(p) = 1, and

10.41.9
Uk+1(p) = 1

2p
2(1− p2)U ′k(p) +

1
8

∫ p

0

(1− 5t2)Uk(t) dt,

Vk+1(p) = Uk+1(p)− 1
2p(1− p

2)Uk(p)− p2(1− p2)U ′k(p), k = 0, 1, 2, . . . .

For k = 1, 2, 3,

10.41.10
U1(p) = 1

24 (3p− 5p3), U2(p) = 1
1152 (81p2 − 462p4 + 385p6),

U3(p) = 1
4 14720 (30375p3 − 3 69603p5 + 7 65765p7 − 4 25425p9),

10.41.11
V1(p) = 1

24 (−9p+ 7p3), V2(p) = 1
1152 (−135p2 + 594p4 − 455p6),

V3(p) = 1
4 14720 (−42525p3 + 4 51737p5 − 8 83575p7 + 4 75475p9).
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For U4(p), U5(p), U6(p), see Bickley et al. (1952,
p. xxxv).

For numerical tables of η = η(z) and the coefficients
Uk(p), Vk(p), see Olver (1962, pp. 43–51).

10.41(iii) Uniform Expansions for Complex
Variable

The expansions (10.41.3)–(10.41.6) also hold uniformly
in the sector |ph z| ≤ 1

2π− δ (< 1
2π), with the branches

of the fractional powers in (10.41.3)–(10.41.8) extended
by continuity from the positive real z-axis.

Figures 10.41.1 and 10.41.2 show corresponding
points of the mapping of the z-plane and the η-plane.
The curve E1BE2 in the z-plane is the upper boundary
of the domain K depicted in Figure 10.20.3 and rotated
through an angle − 1

2π. Thus B is the point z = c,
where c is given by (10.20.18).

For derivations of the results in this subsection, and
also error bounds, see Olver (1997b, pp. 374–378). For
extensions of the regions of validity in the z-plane and
extensions to complex values of ν see Olver (1997b,
pp. 378–382).

Figure 10.41.1: z-plane. Figure 10.41.2: η-plane.

For expansions in inverse factorial series see Dunster
et al. (1993).

10.41(iv) Double Asymptotic Properties

The series (10.41.3)–(10.41.6) can also be regarded as
generalized asymptotic expansions for large |z|. Thus
as z →∞ with ` (≥ 1) and ν (> 0) both fixed,
10.41.12

Iν(νz) =
eνη

(2πν)
1
2 (1 + z2)

1
4

(
`−1∑
k=0

Uk(p)
νk

+O

(
1
z`

))
,

|ph z| ≤ 1
2π − δ,

10.41.13

Kν(νz) =
( π

2ν

)1
2 e−νη

(1 + z2)
1
4

×

(
`−1∑
k=0

(−1)k
Uk(p)
νk

+O

(
1
z`

))
,

|ph z| ≤ 3
2π − δ.

Similarly for (10.41.5) and (10.41.6).

In the case of (10.41.13) with positive real values of
z the result is a consequence of the error bounds given
in Olver (1997b, pp. 377–378). Then by expanding the
quantities η, (1 + z2)−

1
4 , and Uk(p), k = 0, 1, . . . , `− 1,

and rearranging, we arrive at an expansion of the
right-hand side of (10.41.13) in powers of z−1. More-
over, because of the uniqueness property of asymptotic
expansions (§2.1(iii)) this expansion must agree with
(10.40.2), with z replaced by νz, up to and including
the term in z−(`−1). It also enjoys the same sector of
validity.

To establish (10.41.12) we substitute into (10.34.3),
withm = 0 and z replaced by νz, by means of (10.41.13)
observing that when |z| is large the effect of replacing
z by ze±πi is to replace η, (1 + z2)

1
4 , and p by −η,

±i(1 + z2)
1
4 , and −p, respectively.
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10.41(v) Double Asymptotic Properties
(Continued)

Similar analysis can be developed for the uniform
asymptotic expansions in terms of Airy functions
given in §10.20. We first prove that for the expan-
sions (10.20.6) for the Hankel functions H(1)

ν (νz) and
H

(2)
ν (νz) the z-asymptotic property applies when z →
±i∞, respectively. This is a consequence of the er-
ror bounds associated with these expansions. We then
extend the validity of this property from z → ±i∞
to z → ∞ in the sector −π + δ ≤ ph z ≤ 2π − δ

in the case of H(1)
ν (νz), and to z → ∞ in the sec-

tor −2π + δ ≤ ph z ≤ π − δ in the case of H(2)
ν (νz).

This is done by re-expansion with the aid of (10.20.10),
(10.20.11), and §10.41(ii), followed by comparison with
(10.17.5) and (10.17.6), with z replaced by νz. Lastly,
we substitute into (10.4.4), again with z replaced by νz.
The final results are:
10.41.14

Jν(νz)

=
(

4ζ
1− z2

)1
4

Ai
(
ν

2
3 ζ
)

ν
1
3

(∑̀
k=0

Ak(ζ)
ν2k

+O

(
1

ζ3`+3

))

+
Ai′
(
ν

2
3 ζ
)

ν
5
3

(
`−1∑
k=0

Bk(ζ)
ν2k

+O

(
1

ζ3`+1

)) ,

10.41.15

Yν(νz)

= −
(

4ζ
1− z2

)1
4

Bi
(
ν

2
3 ζ
)

ν
1
3

(∑̀
k=0

Ak(ζ)
ν2k

+O

(
1

ζ3`+3

))

+
Bi′
(
ν

2
3 ζ
)

ν
5
3

(
`−1∑
k=0

Bk(ζ)
ν2k

+O

(
1

ζ3`+1

)) ,

as z →∞ in |ph z| ≤ π−δ, or equivalently as ζ →∞ in
|ph(−ζ)| ≤ 2

3π − δ, for fixed ` (≥ 0) and fixed ν (> 0).
It needs to be noted that the results (10.41.14) and

(10.41.15) do not apply when z → 0+ or equivalently
ζ → +∞. This is because Ak(ζ) and ζ−

1
2Bk(ζ), k =

0, 1, . . . , do not form an asymptotic scale (§2.1(v)) as
ζ → +∞; see Olver (1997b, pp. 422–425).

10.42 Zeros

Properties of the zeros of Iν(z) and Kν(z) may be de-
duced from those of Jν(z) and H

(1)
ν (z), respectively,

by application of the transformations (10.27.6) and
(10.27.8).

For example, if ν is real, then the zeros of Iν(z) are
all complex unless−2` < ν < −(2`−1) for some positive
integer `, in which event Iν(z) has two real zeros.

The distribution of the zeros of Kn(nz) in the sector
− 3

2π ≤ ph z ≤ 1
2π in the cases n = 1, 5, 10 is obtained on

rotating Figures 10.21.2, 10.21.4, 10.21.6, respectively,
through an angle − 1

2π so that in each case the cut lies
along the positive imaginary axis. The zeros in the sec-
tor − 1

2π ≤ ph z ≤ 3
2π are their conjugates.

Kn(z) has no zeros in the sector |ph z| ≤ 1
2π; this

result remains true when n is replaced by any real num-
ber ν. For the number of zeros of Kν(z) in the sector
|ph z| ≤ π, when ν is real, see Watson (1944, pp. 511–
513).

See also Kerimov and Skorokhodov (1984b,a).

10.43 Integrals

10.43(i) Indefinite Integrals

Let Zν(z) be defined as in §10.25(ii). Then

10.43.1

∫
zν+1 Zν(z) dz = zν+1 Zν+1(z),∫
z−ν+1 Zν(z) dz = z−ν+1 Zν−1(z).

10.43.2∫
zν Zν(z) dz = π

1
2 2ν−1 Γ

(
ν + 1

2

)
z

× (Zν(z) Lν−1(z)−Zν−1(z) Lν(z)) ,
ν 6= − 1

2 .
For the modified Struve function Lν(z) see §11.2(i).
10.43.3∫

e±zzν Zν(z) dz =
e±zzν+1

2ν + 1
(Zν(z)∓Zν+1(z)) ,

ν 6= − 1
2 ,∫

e±zz−ν Zν(z) dz =
e±zz−ν+1

1− 2ν
(Zν(z)∓Zν−1(z)) ,

ν 6= 1
2 .

10.43(ii) Integrals over the Intervals (0, x) and
(x,∞)

10.43.4∫ x

0

I0(t)− 1
t

dt

=
1
2

∞∑
k=1

(−1)k−1ψ(k + 1)− ψ(1)
k!

( 1
2x)k Ik(x)

=
2
x

∞∑
k=0

(−1)k(2k + 3)(ψ(k + 2)− ψ(1)) I2k+3(x).

10.43.5∫ ∞
x

K0(t)
t

dt =
1
2
(
ln
(

1
2x
)

+ γ
)2 +

π2

24
−
∞∑
k=1

(
ψ(k + 1)

+
1
2k
− ln

(
1
2x
)) ( 1

2x)2k

2k(k!)2
,
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where ψ = Γ′/Γ and γ is Euler’s constant (§5.2).
10.43.6∫ x

0

e−t In(t) dt= xe−x(I0(x)+I1(x))+n(e−x I0(x)−1)

+ 2e−x
n−1∑
k=1

(n− k) Ik(x),

n = 0, 1, 2, . . . .

10.43.7

∫ x

0

e±ttν Iν(t) dt =
e±xxν+1

2ν + 1
(Iν(x)∓ Iν+1(x)),

<ν > − 1
2 ,

10.43.8∫ x

0

e±tt−ν Iν(t) dt = −e
±xx−ν+1

2ν − 1
(Iν(x)∓ Iν−1(x))

∓ 2−ν+1

(2ν − 1) Γ(ν)
, ν 6= 1

2 .

10.43.9∫ x

0

e±ttν Kν(t) dt =
e±xxν+1

2ν + 1
(Kν(x)±Kν+1(x))

∓ 2ν Γ(ν + 1)
2ν + 1

, <ν > − 1
2 ,

10.43.10∫ ∞
x

ett−ν Kν(t) dt =
exx−ν+1

2ν − 1
(Kν(x) +Kν−1(x)),

<ν > 1
2 .

10.43(iii) Fractional Integrals

The Bickley function Kiα(x) is defined by

10.43.11 Kiα(x) =
1

Γ(α)

∫ ∞
x

(t− x)α−1K0(t) dt,

when <α > 0 and x > 0, and by analytic continuation
elsewhere. Equivalently,

10.43.12 Kiα(x) =
∫ ∞

0

e−x cosh t

(cosh t)α
dt, x > 0.

Properties

10.43.13 Kiα(x) =
∫ ∞
x

Kiα−1(t) dt,

10.43.14 Ki0(x) = K0(x),

10.43.15 Ki−n(x) = (−1)n
dn

dxn
K0(x), n = 1, 2, 3, . . . .

10.43.16 Kiα(0) =
√
π Γ
(

1
2α
)

2 Γ
(

1
2α+ 1

2

) , α 6= 0,−2,−4, . . . .

10.43.17
αKiα+1(x) + xKiα(x)

+ (1− α) Kiα−1(x)− xKiα−2(x) = 0.

For further properties of the Bickley function, in-
cluding asymptotic expansions and generalizations, see
Amos (1983, 1989) and Luke (1962, Chapter 8).

10.43(iv) Integrals over the Interval (0,∞)

10.43.18

∫ ∞
0

Kν(t) dt = 1
2π sec( 1

2πν), |<ν| < 1.

10.43.19∫ ∞
0

tµ−1Kν(t) dt = 2µ−2 Γ
(

1
2µ−

1
2ν
)

Γ
(

1
2µ+ 1

2ν
)
,

|<ν| < <µ.

10.43.20

∫ ∞
0

cos(at)K0(t) dt =
π

2(1 + a2)
1
2

, |=a| < 1,

10.43.21

∫ ∞
0

sin(at)K0(t) dt =
arcsinh a
(1 + a2)

1
2

, |=a| < 1.

When <µ > |<ν|,

10.43.22

∫ ∞
0

tµ−1e−atKν(t) dt =


(

1
2π
) 1

2 Γ(µ− ν) Γ(µ+ ν)(1− a2)−
1
2µ+ 1

4 P
−µ+ 1

2
ν− 1

2
(a), −1 < a < 1,(

1
2π
) 1

2 Γ(µ− ν) Γ(µ+ ν)(a2 − 1)−
1
2µ+ 1

4 P
−µ+ 1

2
ν− 1

2
(a), <a ≥ 0, a 6= 1.

For the second equation there is a cut in the a-plane along the interval [0, 1], and all quantities assume their principal
values (§4.2(i)). For the Ferrers function P and the associated Legendre function P, see §§14.3(i) and 14.21(i).

10.43.23

∫ ∞
0

tν+1 Iν(bt) exp(−p2t2) dt =
bν

(2p2)ν+1
exp

(
b2

4p2

)
, <ν > −1,<(p2) > 0,

10.43.24

∫ ∞
0

Iν(bt) exp
(
−p2t2

)
dt =

√
π

2p
exp
(
b2

8p2

)
I 1

2ν

(
b2

8p2

)
, <ν > −1, <(p2) > 0,

10.43.25

∫ ∞
0

Kν(bt) exp
(
−p2t2

)
dt =

√
π

4p
sec
(

1
2πν

)
exp
(
b2

8p2

)
K 1

2ν

(
b2

8p2

)
, |<ν| < 1, <(p2) > 0.
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10.43.26

∫ ∞
0

Kµ(at)Jν(bt)
tλ

dt =
bν Γ

(
1
2ν −

1
2λ+ 1

2µ+ 1
2

)
Γ
(

1
2ν −

1
2λ−

1
2µ+ 1

2

)
2λ+1aν−λ+1

× F
(
ν − λ+ µ+ 1

2
,
ν − λ− µ+ 1

2
; ν + 1;− b

2

a2

)
,

<(ν + 1− λ) > |<µ|,<a > |=b|.
For the hypergeometric function F see §15.2(i).

10.43.27

∫ ∞
0

tµ+ν+1Kµ(at)Jν(bt) dt =
(2a)µ(2b)ν Γ(µ+ ν + 1)

(a2 + b2)µ+ν+1
, <(ν + 1) > |<µ|,<a > |=b|.

10.43.28

∫ ∞
0

t exp(−p2t2) Iν(at) Iν(bt) dt =
1

2p2
exp

(
a2 + b2

4p2

)
Iν

(
ab

2p2

)
, <ν > −1,<(p2) > 0,

10.43.29

∫ ∞
0

t exp(−p2t2) I0(at)K0(at) dt =
1

4p2
exp

(
a2

2p2

)
K0

(
a2

2p2

)
, <(p2) > 0.

For infinite integrals of triple products of modified and unmodified Bessel functions, see Gervois and Navelet
(1984, 1985a,b, 1986a,b).

10.43(v) Kontorovich–Lebedev Transform

The Kontorovich–Lebedev transform of a function g(x)
is defined as

10.43.30 f(y) =
2y
π2

sinh(πy)
∫ ∞

0

g(x)
x

Kiy(x) dx.

Then
10.43.31 g(x) =

∫ ∞
0

f(y)Kiy(x) dy,

provided that either of the following sets of conditions
is satisfied:

(a) On the interval 0 < x < ∞, x−1g(x) is con-
tinuously differentiable and each of xg(x) and
x d(x−1g(x))

/
dx is absolutely integrable.

(b) g(x) is piecewise continuous and of bounded varia-
tion on every compact interval in (0,∞), and each
of the following integrals

10.43.32

∫ 1
2

0

g(x)
x

ln
(

1
x

)
dx,

∫ ∞
1
2

|g(x)|
x

1
2

dx,

converges.

For asymptotic expansions of the direct transform
(10.43.30) see Wong (1981), and for asymptotic ex-
pansions of the inverse transform (10.43.31) see Naylor
(1990, 1996).

For collections of the Kontorovich–Lebedev trans-
form, see Erdélyi et al. (1954b, Chapter 12), Prudnikov
et al. (1986b, pp. 404–412), and Oberhettinger (1972,
Chapter 5).

10.43(vi) Compendia

For collections of integrals of the functions Iν(z) and
Kν(z), including integrals with respect to the order, see

Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7
and 7.14–7.14.2), Erdélyi et al. (1954a,b), Gradshteyn
and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofre-
iter (1950, pp. 197–203), Luke (1962), Magnus et al.
(1966, §3.8), Marichev (1983, pp. 191–216), Oberhet-
tinger (1972), Oberhettinger (1974, §§1.11 and 2.7),
Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Ober-
hettinger and Badii (1973, §§1.15 and 2.13), Okui (1974,
1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16,
3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15,
3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson
(1944, Chapter 13), and Wheelon (1968).

10.44 Sums

10.44(i) Multiplication Theorem

10.44.1
Zν(λz) = λ±ν

∞∑
k=0

(λ2 − 1)k( 1
2z)

k

k!
Zν±k(z),

|λ2 − 1| < 1.
If Z = I and the upper signs are taken, then the re-
striction on λ is unnecessary.

Examples

10.44.2

Iν(z) =
∞∑
k=0

zk

k!
Jν+k(z), Jν(z) =

∞∑
k=0

(−1)k
zk

k!
Iν+k(z).

10.44(ii) Addition Theorems

Neumann’s Addition Theorem

10.44.3

Zν(u± v) =
∞∑

k=−∞

(±1)k Zν+k(u) Ik(v), |v| < |u|.

The restriction |v| < |u| is unnecessary when Z = I and
ν is an integer.
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Graf’s and Gegenbauer’s Addition Theorems

For results analogous to (10.23.7) and (10.23.8) see Wat-
son (1944, §§11.3 and 11.41).

10.44(iii) Neumann-Type Expansions

10.44.4

(
1
2z
)ν =

∞∑
k=0

(−1)k
(ν + 2k) Γ(ν + k)

k!
Iν+2k(z),

ν 6= 0,−1,−2, . . . .

10.44.5 K0(z) = −
(
ln
(

1
2z
)

+ γ
)
I0(z) + 2

∞∑
k=1

I2k(z)
k

,

10.44.6

Kn(z) =
n!( 1

2z)
−n

2

n−1∑
k=0

(−1)k
( 1

2z)
k Ik(z)

k!(n− k)

+ (−1)n−1
(
ln
(

1
2z
)
− ψ(n+ 1)

)
In(z)

+ (−1)n
∞∑
k=1

(n+ 2k) In+2k(z)
k(n+ k)

,

where γ is Euler’s constant and ψ = Γ′/Γ (§5.2).

10.44(iv) Compendia

For collections of sums and series involving modi-
fied Bessel functions see Erdélyi et al. (1953b, §7.15),
Hansen (1975), and Prudnikov et al. (1986b, pp. 691–
700).

10.45 Functions of Imaginary Order

With z = x, and ν replaced by iν, the modified Bessel’s
equation (10.25.1) becomes

10.45.1 x2 d
2w

dx2 + x
dw

dx
+ (ν2 − x2)w = 0.

For ν ∈ R and x ∈ (0,∞) define

Ĩν(x) = <(Iiν(x)), K̃ν(x) = Kiν(x).10.45.2

Then

Ĩ−ν(x) = Ĩν(x), K̃−ν(x) = K̃ν(x),10.45.3

and Ĩν(x), K̃ν(x) are real and linearly independent so-
lutions of (10.45.1):

10.45.4 W {K̃ν(x), Ĩν(x)} = 1/x.
As x→ +∞

10.45.5
Ĩν(x) = (2πx)−

1
2 ex

(
1 +O(x−1)

)
,

K̃ν(x) = (π/(2x))
1
2 e−x

(
1 +O(x−1)

)
.

As x→ 0+
10.45.6

Ĩν(x) =
(

sinh(πν)
πν

)1
2

cos
(
ν ln
(

1
2x
)
− γν

)
+O

(
x2
)
,

where γν is as in §10.24. The corresponding result for
K̃ν(x) is given by
10.45.7

K̃ν(x) = −
(

π

ν sinh(πν)

)1
2

sin
(
ν ln
(

1
2x
)
− γν

)
+O

(
x2
)
,

when ν > 0, and

10.45.8 K̃0(x) = K0(x) = − ln( 1
2x)− γ +O(x2 lnx),

where γ again denotes Euler’s constant (§5.2(ii)).
In consequence of (10.45.5)–(10.45.7), Ĩν(x) and

K̃ν(x) comprise a numerically satisfactory pair of solu-
tions of (10.45.1) when x is large, and either Ĩν(x) and
(1/π) sinh(πν) K̃ν(x), or Ĩν(x) and K̃ν(x), comprise a
numerically satisfactory pair when x is small, depend-
ing whether ν 6= 0 or ν = 0.

For graphs of Ĩν(x) and K̃ν(x) see §10.26(iii).
For properties of Ĩν(x) and K̃ν(x), including uni-

form asymptotic expansions for large ν and zeros, see
Dunster (1990a). In this reference Ĩν(x) is denoted by
(1/π) sinh(πν)Liν(x). See also Gil et al. (2003a) and
Balogh (1967).

10.46 Generalized and Incomplete Bessel
Functions; Mittag-Leffler Function

The function φ(ρ, β; z) is defined by

10.46.1 φ(ρ, β; z) =
∞∑
k=0

zk

k! Γ(ρk + β)
, ρ > −1.

From (10.25.2)

10.46.2 Iν(z) =
(

1
2z
)ν
φ
(
1, ν + 1; 1

4z
2
)
.

For asymptotic expansions of φ(ρ, β; z) as z → ∞
in various sectors of the complex z-plane for fixed real
values of ρ and fixed real or complex values of β, see
Wright (1935) when ρ > 0, and Wright (1940b) when
−1 < ρ < 0. For exponentially-improved asymp-
totic expansions in the same circumstances, together
with smooth interpretations of the corresponding Stokes
phenomenon (§§2.11(iii)–2.11(v)) see Wong and Zhao
(1999a) when ρ > 0, and Wong and Zhao (1999b) when
−1 < ρ < 0.

The Laplace transform of φ(ρ, β; z) can be expressed
in terms of the Mittag-Leffler function:

10.46.3 Ea,b(z) =
∞∑
k=0

zk

Γ(ak + b)
, a > 0.

See Paris (2002c). This reference includes
exponentially-improved asymptotic expansions for
Ea,b(z) when |z| → ∞, together with a smooth interpre-
tation of Stokes phenomena. See also Wong and Zhao
(2002a), and for further information on the Mittag-
Leffler function see Erdélyi et al. (1955, §18.1) and
Paris and Kaminski (2001, §5.1.4).
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For incomplete modified Bessel functions and Han-
kel functions, including applications, see Cicchetti and
Faraone (2004).

Spherical Bessel Functions

10.47 Definitions and Basic Properties

10.47(i) Differential Equations

10.47.1 z2 d
2w

dz2 + 2z
dw

dz
+
(
z2 − n(n+ 1)

)
w = 0,

10.47.2 z2 d
2w

dz2 + 2z
dw

dz
−
(
z2 + n(n+ 1)

)
w = 0.

Here, and throughout the remainder of §§10.47–10.60,
n is a nonnegative integer. (This is in contrast to
other treatments of spherical Bessel functions, including
Abramowitz and Stegun (1964, Chapter 10), in which
n can be any integer. However, there is a gain in sym-
metry, without any loss of generality in applications, on
restricting n ≥ 0.)

Equations (10.47.1) and (10.47.2) each have a reg-
ular singularity at z = 0 with indices n, −n − 1, and
an irregular singularity at z = ∞ of rank 1; compare
§§2.7(i)–2.7(ii).

10.47(ii) Standard Solutions

Equation (10.47.1)

10.47.3

jn(z) =
√

1
2π/z Jn+ 1

2
(z) = (−1)n

√
1
2π/z Y−n− 1

2
(z),

10.47.4

yn(z) =
√

1
2π/z Yn+ 1

2
(z) = (−1)n+1

√
1
2π/z J−n− 1

2
(z),

10.47.5

h(1)
n (z)

=
√

1
2π/z H

(1)

n+ 1
2
(z) = (−1)n+1i

√
1
2π/z H

(1)

−n− 1
2
(z),

10.47.6

h(2)
n (z) =

√
1
2π/z H

(2)

n+ 1
2
(z) = (−1)ni

√
1
2π/z H

(2)

−n− 1
2
(z).

jn(z) and yn(z) are the spherical Bessel functions of the
first and second kinds, respectively; h

(1)
n (z) and h

(2)
n (z)

are the spherical Bessel functions of the third kind.

Equation (10.47.2)

10.47.7 i(1)
n (z) =

√
1
2π/z In+ 1

2
(z)

10.47.8 i(2)
n (z) =

√
1
2π/z I−n− 1

2
(z)

10.47.9 kn(z) =
√

1
2π/z Kn+ 1

2
(z) =

√
1
2π/z K−n− 1

2
(z).

i
(1)
n (z), i

(2)
n (z), and kn(z) are the modified spherical

Bessel functions.
Many properties of jn(z), yn(z), h

(1)
n (z), h

(2)
n (z),

i
(1)
n (z), i

(2)
n (z), and kn(z) follow straightforwardly

from the above definitions and results given in
preceding sections of this chapter. For exam-
ple, z−n jn(z), zn+1 yn(z), zn+1 h

(1)
n (z), zn+1 h

(2)
n (z),

z−n i
(1)
n (z), zn+1 i

(2)
n (z), and zn+1 kn(z) are all entire

functions of z.

10.47(iii) Numerically Satisfactory Pairs of
Solutions

For (10.47.1) numerically satisfactory pairs of solutions
are given by Table 10.2.1 with the symbols J, Y, H, and
ν replaced by j, y, h, and n, respectively.

For (10.47.2) numerically satisfactory pairs of solu-
tions are i

(1)
n (z) and kn(z) in the right half of the z-plane,

and i
(1)
n (z) and kn(−z) in the left half of the z-plane.

10.47(iv) Interrelations

10.47.10

h(1)
n (z) = jn(z) + i yn(z), h(2)

n (z) = jn(z)− i yn(z).

10.47.11 kn(z) = (−1)n+1 1
2π
(

i(1)
n (z)− i(2)

n (z)
)
.

10.47.12 i(1)
n (z) = i−n jn(iz), i(2)

n (z) = i−n−1 yn(iz).

10.47.13 kn(z) = − 1
2πi

n h(1)
n (iz) = − 1

2πi
−n h(2)

n (−iz).

10.47(v) Reflection Formulas

jn(−z) = (−1)n jn(z), yn(−z) = (−1)n+1 yn(z),
10.47.14

h(1)
n (−z) = (−1)n h(2)

n (z), h(2)
n (−z) = (−1)n h(1)

n (z).
10.47.15

i(1)
n (−z) = (−1)n i(1)

n (z), i(2)
n (−z) = (−1)n+1 i(2)

n (z),
10.47.16

10.47.17 kn(−z) = − 1
2π
(

i(1)
n (z) + i(2)

n (z)
)
.

10.48 Graphs

For unmodified spherical Bessel functions see Fig-
ures 10.48.1–10.48.4. For modified spherical Bessel
functions see Figures 10.48.5–10.48.7.
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Figure 10.48.1: jn(x), n = 0(1)4, 0 ≤ x ≤ 12. Figure 10.48.2: yn(x), n = 0(1)4, 0 < x ≤ 12.

Figure 10.48.3: j5(x), y5(x),
√

j25(x) + y2
5(x), 0 ≤ x ≤ 12. Figure 10.48.4: j′5(x), y′5(x),

√
j′5

2(x) + y′5
2(x), 0 ≤ x ≤

12.

Figure 10.48.5: i
(1)
0 (x), i

(2)
0 (x), k0(x), 0 ≤ x ≤ 4. Figure 10.48.6: i

(1)
1 (x), i(2)

1 (x), k1(x), 0 ≤ x ≤ 4.

Figure 10.48.7: i
(1)
5 (x), i

(2)
5 (x), k5(x), 0 ≤ x ≤ 8.
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10.49 Explicit Formulas

10.49(i) Unmodified Functions

Define ak(ν) as in (10.17.1). Then

10.49.1

ak(n+ 1
2 ) =


(n+ k)!

2kk!(n− k)!
, k = 0, 1, . . . , n,

0, k = n+ 1, n+ 2, . . . .

10.49.2

jn(z) = sin
(
z − 1

2nπ
) bn/2c∑
k=0

(−1)k
a2k(n+ 1

2 )
z2k+1

+ cos
(
z − 1

2nπ
) b(n−1)/2c∑

k=0

(−1)k
a2k+1(n+ 1

2 )
z2k+2

.

10.49.3

j0(z) =
sin z
z

, j1(z) =
sin z
z2
− cos z

z
,

j2(z) =
(
−1
z

+
3
z3

)
sin z − 3

z2
cos z.

10.49.4

yn(z) = − cos
(
z − 1

2nπ
) bn/2c∑
k=0

(−1)k
a2k(n+ 1

2 )
z2k+1

+ sin
(
z − 1

2nπ
) b(n−1)/2c∑

k=0

(−1)k
a2k+1(n+ 1

2 )
z2k+2

.

10.49.5

y0(z) = −cos z
z

, y1(z) = −cos z
z2
− sin z

z
,

y2(z) =
(

1
z
− 3
z3

)
cos z − 3

z2
sin z.

10.49.6 h(1)
n (z) = eiz

n∑
k=0

ik−n−1 ak(n+ 1
2 )

zk+1
,

10.49.7 h(2)
n (z) = e−iz

n∑
k=0

(−i)k−n−1 ak(n+ 1
2 )

zk+1
.

10.49(ii) Modified Functions

Again, with ak(n+ 1
2 ) as in (10.49.1),

10.49.8

i(1)
n (z) = 1

2e
z

n∑
k=0

(−1)k
ak(n+ 1

2 )
zk+1

+ (−1)n+1 1
2e
−z

n∑
k=0

ak(n+ 1
2 )

zk+1
.

10.49.9

i
(1)
0 (z) =

sinh z
z

, i
(1)
1 (z) = − sinh z

z2
+

cosh z
z

,

i
(1)
2 (z) =

(
1
z

+
3
z3

)
sinh z − 3

z2
cosh z.

10.49.10

i(2)
n (z) = 1

2e
z

n∑
k=0

(−1)k
ak(n+ 1

2 )
zk+1

+ (−1)n 1
2e
−z

n∑
k=0

ak(n+ 1
2 )

zk+1
.

10.49.11

i
(2)
0 (z) =

cosh z
z

, i
(2)
1 (z) = −cosh z

z2
+

sinh z
z

,

i
(2)
2 (z) =

(
1
z

+
3
z3

)
cosh z − 3

z2
sinh z.

10.49.12 kn(z) = 1
2πe
−z

n∑
k=0

ak(n+ 1
2 )

zk+1
.

10.49.13

k0(z) = 1
2π
e−z

z
, k1(z) = 1

2πe
−z
(

1
z

+
1
z2

)
,

k2(z) = 1
2πe
−z
(

1
z

+
3
z2

+
3
z3

)
.∑n

k=0 ak(n+ 1
2 )zn−k is sometimes called the Bessel

polynomial of degree n. For a survey of properties of
these polynomials and their generalizations see Gross-
wald (1978). See also §18.34, de Bruin et al. (1981a,b),
and Dunster (2001c).

10.49(iii) Rayleigh’s Formulas

10.49.14

jn(z) = zn
(
−1
z

d

dz

)n sin z
z

,

yn(z) = −zn
(
−1
z

d

dz

)n cos z
z

.

10.49.15

i(1)
n (z) = zn

(
1
z

d

dz

)n sinh z
z

,

i(2)
n (z) = zn

(
1
z

d

dz

)n cosh z
z

.

10.49.16 kn(z) = (−1)n 1
2πz

n

(
1
z

d

dz

)n
e−z

z
.

10.49(iv) Sums or Differences of Squares

Denote

10.49.17 sk(n+ 1
2 ) =

(2k)!(n+ k)!
22k(k!)2(n− k)!

, k = 0, 1, . . . , n.

Then

10.49.18 j2n(z) + y2
n(z) =

n∑
k=0

sk(n+ 1
2 )

z2k+2
.

10.49.19

j20(z) + y2
0(z) = z−2, j21(z) + y2

1(z) = z−2 + z−4,

j22(z) + y2
2(z) = z−2 + 3z−4 + 9z−6.

10.49.20(
i(1)
n (z)

)2
−
(

i(2)
n (z)

)2
= (−1)n+1

n∑
k=0

(−1)k
sk(n+ 1

2 )
z2k+2

.
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10.49.21(
i
(1)
0 (z)

)2

−
(

i
(2)
0 (z)

)2

= −z−2,(
i
(1)
1 (z)

)2

−
(

i
(2)
1 (z)

)2

= z−2 − z−4,(
i
(1)
2 (z)

)2

−
(

i
(2)
2 (z)

)2

= −z−2 + 3z−4 − 9z−6.

10.50 Wronskians and Cross-Products

10.50.1

W {jn(z), yn(z)} = z−2,

W
{

h(1)
n (z), h(2)

n (z)
}

= −2iz−2.

10.50.2

W
{

i(1)
n (z), i(2)

n (z)
}

= (−1)n+1z−2,

W
{

i(1)
n (z), kn(z)

}
= W

{
i(2)
n (z), kn(z)

}
= − 1

2πz
−2.

10.50.3
jn+1(z) yn(z)− jn(z) yn+1(z) = z−2,

jn+2(z) yn(z)− jn(z) yn+2(z) = (2n+ 3)z−3.

10.50.4

j0(z) jn(z) + y0(z) yn(z)

= cos
(

1
2nπ

) bn/2c∑
k=0

(−1)k
a2k(n+ 1

2 )
z2k+2

+ sin
(

1
2nπ

) b(n−1)/2c∑
k=0

(−1)k
a2k+1(n+ 1

2 )
z2k+3

,

where ak(n+ 1
2 ) is given by (10.49.1).

Results corresponding to (10.50.3) and (10.50.4) for
i
(1)
n (z) and i

(2)
n (z) are obtainable via (10.47.12).

10.51 Recurrence Relations and Derivatives

10.51(i) Unmodified Functions

Let fn(z) denote any of jn(z), yn(z), h
(1)
n (z), or h

(2)
n (z).

Then

10.51.1

fn−1(z) + fn+1(z) = ((2n+ 1)/z)fn(z),
nfn−1(z)− (n+ 1)fn+1(z) = (2n+ 1)f ′n(z),

n = 1, 2, . . . ,

10.51.2
f ′n(z) = fn−1(z)−((n+1)/z)fn(z), n = 1, 2, . . . ,
f ′n(z) = −fn+1(z) + (n/z)fn(z), n = 0, 1, . . . .

10.51.3

(
1
z

d

dz

)m
(zn+1fn(z)) = zn−m+1fn−m(z),

m = 0, 1, . . . , n,(
1
z

d

dz

)m
(z−nfn(z)) = (−1)mz−n−mfn+m(z),

m = 0, 1, . . . .

10.51(ii) Modified Functions

Let gn(z) denote i
(1)
n (z), i

(2)
n (z), or (−1)n kn(z). Then

10.51.4

gn−1(z)− gn+1(z) = ((2n+ 1)/z)gn(z)
ngn−1(z) + (n+ 1)gn+1(z) = (2n+ 1)g′n(z),

n = 1, 2, . . . ,

10.51.5
g′n(z) = gn−1(z)−((n+1)/z)gn(z), n = 1, 2, . . . ,
g′n(z) = gn+1(z) + (n/z)gn(z), n = 0, 1, . . . .

10.51.6

(
1
z

d

dz

)m
(zn+1gn(z)) = zn−m+1gn−m(z),

m = 0, 1, . . . , n,(
1
z

d

dz

)m
(z−ngn(z)) = z−n−mgn+m(z),

m = 0, 1, . . . .

10.52 Limiting Forms

10.52(i) z → 0

10.52.1 jn(z), i(1)
n (z) ∼ zn/(2n+ 1)!!,

10.52.2

− yn(z), i h(1)
n (z),−i h(2)

n (z), (−1)n i(2)
n (z), (2/π) kn(z)

∼ (2n− 1)!!/zn+1.

10.52(ii) z →∞

10.52.3
jn(z) = z−1 sin(z − 1

2nπ) + e|=z|O(z−2),

yn(z) = −z−1 cos(z − 1
2nπ) + e|=z|O(z−2),

10.52.4 h(1)
n (z) ∼ i−n−1z−1eiz, h(2)

n (z) ∼ in+1z−1e−iz,

10.52.5

i(1)
n (z) ∼ i(2)

n (z) ∼ 1
2z
−1ez, |ph z| ≤ 1

2π − δ(<
1
2π),

10.52.6 kn(z) ∼ 1
2πz

−1e−z.

10.53 Power Series

10.53.1 jn(z) = zn
∞∑
k=0

(− 1
2z

2)k

k!(2n+ 2k + 1)!!
,

10.53.2

yn(z) = − 1
zn+1

n∑
k=0

(2n− 2k − 1)!!( 1
2z

2)k

k!

+
(−1)n+1

zn+1

∞∑
k=n+1

(− 1
2z

2)k

k!(2k − 2n− 1)!!
.
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10.53.3 i(1)
n (z) = zn

∞∑
k=0

( 1
2z

2)k

k!(2n+ 2k + 1)!!
,

10.53.4

i(2)
n (z) =

(−1)n

zn+1

n∑
k=0

(2n− 2k − 1)!!(− 1
2z

2)k

k!

+
1

zn+1

∞∑
k=n+1

( 1
2z

2)k

k!(2k − 2n− 1)!!
.

For h
(1)
n (z) and h

(2)
n (z) combine (10.47.10), (10.53.1),

and (10.53.2). For kn(z) combine (10.47.11), (10.53.3),
and (10.53.4).

10.54 Integral Representations

10.54.1 jn(z) =
zn

2n+1n!

∫ π

0

cos(z cos θ)(sin θ)2n+1 dθ.

10.54.2 jn(z) =
(−i)n

2

∫ π

0

eiz cos θ Pn(cos θ) sin θ dθ.

10.54.3 kn(z) =
π

2

∫ ∞
1

e−zt Pn(t) dt, |ph z| < 1
2π.

10.54.4
jn(z) =

(−i)n+1

2π

∫ (−1+,1+)

i∞
eiztQn(t) dt,

|ph z| < 1
2π.

10.54.5

h(1)
n (z) =

(−i)n+1

π

∫ (1+)

i∞
eiztQn(t) dt,

h(2)
n (z) =

(−i)n+1

π

∫ (−1+)

i∞
eiztQn(t) dt,

|ph z| < 1
2π.

For the Legendre polynomial Pn and the associated Leg-
endre function Qn see §§18.3 and 14.21(i), with µ = 0
and ν = n.

Additional integral representations can be obtained
by combining the definitions (10.47.3)–(10.47.9) with
the results given in §10.9 and §10.32.

10.55 Continued Fractions

For continued fractions for jn+1(z)/ jn(z) and
i
(1)
n+1(z)/ i

(1)
n (z) see Cuyt et al. (2008, pp. 350, 353,

362, 363, 367–369).

10.56 Generating Functions

When 2|t| < |z|,

10.56.1
cos
√
z2 − 2zt
z

=
cos z
z

+
∞∑
n=1

tn

n!
jn−1(z),

10.56.2
sin
√
z2 − 2zt
z

=
sin z
z

+
∞∑
n=1

tn

n!
yn−1(z).

10.56.3
cosh

√
z2 + 2izt
z

=
cosh z
z

+
∞∑
n=1

(it)n

n!
i
(1)
n−1(z),

10.56.4
sinh
√
z2 + 2izt
z

=
sinh z
z

+
∞∑
n=1

(it)n

n!
i
(2)
n−1(z),

10.56.5

exp
(
−
√
z2 + 2izt

)
z

=
e−z

z
+

2
π

∞∑
n=1

(−it)n

n!
kn−1(z).

10.57 Uniform Asymptotic Expansions for
Large Order

Asymptotic expansions for jn
(
(n+ 1

2 )z
)
, yn

(
(n+ 1

2 )z
)
,

h
(1)
n

(
(n+ 1

2 )z
)
, h

(2)
n

(
(n+ 1

2 )z
)
, i

(1)
n

(
(n+ 1

2 )z
)
, and

kn
(
(n+ 1

2 )z
)

as n → ∞ that are uniform with respect
to z can be obtained from the results given in §§10.20
and 10.41 by use of the definitions (10.47.3)–(10.47.7)
and (10.47.9). Subsequently, for i

(2)
n

(
(n+ 1

2 )z
)

the con-
nection formula (10.47.11) is available.

For the corresponding expansion for j′n
(
(n+ 1

2 )z
)

use
10.57.1

j′n
(
(n+ 1

2 )z
)

=
π

1
2

((2n+ 1)z)
1
2
J ′n+ 1

2

(
(n+ 1

2 )z
)

− π
1
2

((2n+ 1)z)
3
2
Jn+ 1

2

(
(n+ 1

2 )z
)
.

Similarly for the expansions of the derivatives of the
other six functions.

10.58 Zeros

For n ≥ 0 the mth positive zeros of jn(x), j′n(x), yn(x),
and y′n(x) are denoted by an,m, a′n,m, bn,m, and b′n,m,
respectively, except that for n = 0 we count x = 0 as
the first zero of j′0(x).

With the notation of §10.21(i),
10.58.1 an,m = jn+ 1

2 ,m
, bn,m = yn+ 1

2 ,m
,

10.58.2

j′n(an,m) =
√

π

2 jn+ 1
2 ,m

J ′n+ 1
2

(
jn+ 1

2 ,m

)
,

y′n(bn,m) =
√

π

2 yn+ 1
2 ,m

Y ′n+ 1
2

(
yn+ 1

2 ,m

)
.

Hence properties of an,m and bn,m are derivable
straightforwardly from results given in §§10.21(i)–
10.21(iii), 10.21(vi)–10.21(viii), and 10.21(x). However,
there are no simple relations that connect the zeros
of the derivatives. For some properties of a′n,m and
b′n,m, including asymptotic expansions, see Olver (1960,
pp. xix–xxi).

See also Davies (1973), de Bruin et al. (1981a,b),
and Gottlieb (1985).
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10.59 Integrals

10.59.1

∫ ∞
−∞

eibt jn(t) dt =


πin Pn(b), −1 < b < 1,
1
2π(±i)n, b = ±1,
0, ±b > 1,

where Pn is the Legendre polynomial (§18.3).
For an integral representation of the Dirac delta in

terms of a product of spherical Bessel functions of the
first kind see §1.17(ii), and for a generalization see Max-
imon (1991).

Additional integrals can be obtained by combining
the definitions (10.47.3)–(10.47.9) with the results given
in §10.22 and §10.43. For integrals of products see also
Mehrem et al. (1991).

10.60 Sums

10.60(i) Addition Theorems

Define u, v, w, and α as in §10.23(ii). Then with Pn
again denoting the Legendre polynomial of degree n,

10.60.1

cosw
w

= −
∞∑
n=0

(2n+ 1) jn(v) yn(u)Pn(cosα),

|ve±iα| < |u|.

10.60.2
sinw
w

=
∞∑
n=0

(2n+ 1) jn(v) jn(u)Pn(cosα).

10.60.3

e−w

w
=

2
π

∞∑
n=0

(2n+ 1) i(1)
n (v) kn(u)Pn(cosα),

|ve±iα| < |u|.

10.60(ii) Duplication Formulas

10.60.4

jn(2z) = −n!zn+1
n∑
k=0

2n− 2k + 1
k!(2n− k + 1)!

jn−k(z) yn−k(z),

10.60.5

yn(2z)

= n!zn+1
n∑
k=0

n− k + 1
2

k!(2n− k + 1)!
(
j2n−k(z)− y2

n−k(z)
)
,

10.60.6

kn(2z) =
1
π
n!zn+1

n∑
k=0

(−1)k
2n− 2k + 1

k!(2n− k + 1)!
k2
n−k(z).

10.60(iii) Other Series

10.60.7 eiz cosα =
∞∑
n=0

(2n+ 1)in jn(z)Pn(cosα),

10.60.8 ez cosα =
∞∑
n=0

(2n+ 1) i(1)
n (z)Pn(cosα),

10.60.9 e−z cosα =
∞∑
n=0

(−1)n(2n+ 1) i(1)
n (z)Pn(cosα).

10.60.10

J0(z sinα) =
∞∑
n=0

(4n+ 1)
(2n)!

22n(n!)2
j2n(z)P2n(cosα).

10.60.11

∞∑
n=0

j2n(z) =
Si(2z)

2z
.

For Si see §6.2(ii).

10.60.12

∞∑
n=0

(2n+ 1) j2n(z) = 1,

10.60.13

∞∑
n=0

(−1)n(2n+ 1) j2n(z) =
sin(2z)

2z
,

10.60.14

∞∑
n=0

(2n+ 1)(j′n(z))2 = 1
3 .

For further sums of series of spherical Bessel
functions, or modified spherical Bessel functions, see
§6.10(ii), Luke (1969b, pp. 55–58), Vavreck and Thomp-
son (1984), Harris (2000), and Rottbrand (2000).

10.60(iv) Compendia

For collections of sums of series relevant to spherical
Bessel functions or Bessel functions of half odd integer
order see Erdélyi et al. (1953b, pp. 43–45 and 98–105),
Gradshteyn and Ryzhik (2000, §§8.51, 8.53), Hansen
(1975), Magnus et al. (1966, pp. 106–108 and 123–138),
and Prudnikov et al. (1986b, pp. 635–637 and 651–700).
See also Watson (1944, Chapters 11 and 16).

Kelvin Functions

10.61 Definitions and Basic Properties

10.61(i) Definitions

Throughout §§10.61–§10.71 it is assumed that x ≥ 0,
ν ∈ R, and n is a nonnegative integer.
10.61.1

berν x+ i beiν x = Jν

(
xe3πi/4

)
= eνπi Jν

(
xe−πi/4

)
= eνπi/2 Iν

(
xeπi/4

)
= e3νπi/2 Iν

(
xe−3πi/4

)
,
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10.61.2

kerν x+ i keiν x = e−νπi/2Kν

(
xeπi/4

)
= 1

2πiH
(1)
ν

(
xe3πi/4

)
= − 1

2πie
−νπiH(2)

ν

(
xe−πi/4

)
.

When ν = 0 suffices on ber, bei, ker, and kei are usually
suppressed.

Most properties of berν x, beiν x, kerν x, and keiν x
follow straightforwardly from the above definitions and
results given in preceding sections of this chapter.

10.61(ii) Differential Equations

10.61.3

x2 d
2w

dx2 + x
dw

dx
− (ix2 + ν2)w = 0,

w = berν x+ i beiν x, ber−ν x+ i bei−ν x
kerν x+ i keiν x, ker−ν x+ i kei−ν x.

10.61.4

x4 d
4w

dx4 + 2x3 d
3w

dx3 − (1 + 2ν2)
(
x2 d

2w

dx2 − x
dw

dx

)
+ (ν4 − 4ν2 + x4)w = 0,

w = ber±ν x,bei±ν x, ker±ν x, kei±ν x.

10.61(iii) Reflection Formulas for Arguments

In general, Kelvin functions have a branch point at
x = 0 and functions with arguments xe±πi are com-
plex. The branch point is absent, however, in the case
of berν and beiν when ν is an integer. In particular,
10.61.5

bern(−x) = (−1)n bern x, bein(−x) = (−1)n bein x.

10.61(iv) Reflection Formulas for Orders

10.61.6

ber−ν x = cos(νπ) berν x+ sin(νπ) beiν x
+ (2/π) sin(νπ) kerν x,

bei−ν x = − sin(νπ) berν x+ cos(νπ) beiν x
+ (2/π) sin(νπ) keiν x.

10.61.7
ker−ν x = cos(νπ) kerν x− sin(νπ) keiν x,
kei−ν x = sin(νπ) kerν x+ cos(νπ) keiν x.

10.61.8
ber−n x= (−1)n bern x, bei−n x= (−1)n bein x,
ker−n x= (−1)n kern x, kei−n x= (−1)n kein x.

10.61(v) Orders ±1
2

10.61.9

ber 1
2

(
x
√

2
)

=
2−

3
4

√
πx

(
ex cos

(
x+

π

8

)
− e−x cos

(
x− π

8

))
,

bei 1
2

(
x
√

2
)

=
2−

3
4

√
πx

(
ex sin

(
x+

π

8

)
+ e−x sin

(
x− π

8

))
.

10.61.10

ber− 1
2

(
x
√

2
)

=
2−

3
4

√
πx

(
ex sin

(
x+

π

8

)
− e−x sin

(
x− π

8

))
,

bei− 1
2

(
x
√

2
)

= − 2−
3
4

√
πx

(
ex cos

(
x+

π

8

)
+ e−x cos

(
x− π

8

))
.

10.61.11

ker 1
2

(
x
√

2
)

= kei− 1
2

(
x
√

2
)

= −2−
3
4

√
π

x
e−x sin

(
x− π

8

)
,

10.61.12

kei 1
2

(
x
√

2
)

= − ker− 1
2

(
x
√

2
)

= −2−
3
4

√
π

x
e−x cos

(
x− π

8

)
.

10.62 Graphs

See Figures 10.62.1–10.62.4. For the modulus functions M(x) and N(x) see §10.68(i) with ν = 0.

Figure 10.62.1: ber x,bei x,ber′ x,bei′ x, 0 ≤ x ≤ 8. Figure 10.62.2: ker x, kei x, ker′ x, kei′ x, 0 ≤ x ≤ 8.
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Figure 10.62.3: e−x/
√

2 ber x, e−x/
√

2 bei x,
e−x/

√
2M(x), 0 ≤ x ≤ 8.

Figure 10.62.4: ex/
√

2 ker x, ex/
√

2 kei x, ex/
√

2N(x), 0 ≤
x ≤ 8.

10.63 Recurrence Relations and Derivatives

10.63(i) berν x, beiν x, kerν x, keiν x

Let fν(x), gν(x) denote any one of the ordered pairs:

10.63.1
berν x,beiν x; beiν x,−berν x;
kerν x, keiν x; keiν x,− kerν x.

Then
10.63.2

fν−1(x) + fν+1(x) = −(ν
√

2/x) (fν(x)− gν(x)) ,
fν+1(x) + gν+1(x)− fν−1(x)− gν−1(x) = 2

√
2f ′ν(x),

f ′ν(x) = −(1/
√

2) (fν−1(x) + gν−1(x))− (ν/x)fν(x),
f ′ν(x) = (1/

√
2) (fν+1(x) + gν+1(x)) + (ν/x)fν(x).

10.63.3

√
2 ber′ x = ber1 x+ bei1 x,√
2 bei′ x = −ber1 x+ bei1 x.

10.63.4

√
2 ker′ x = ker1 x+ kei1 x,√
2 kei′ x = − ker1 x+ kei1 x.

10.63(ii) Cross-Products

Let
10.63.5

pν = ber2
ν x+ bei2ν x, qν = berν x bei′ν x−ber′ν xbeiν x,

rν = berν x ber′ν x+ beiν x bei′ν x,

sν =
(
ber′ν x

)2 +
(
bei′ν x

)2
.

Then

10.63.6

pν+1 = pν−1 − (4ν/x)rν ,
qν+1 = −(ν/x)pν + rν = −qν−1 + 2rν ,
rν+1 = −((ν + 1)/x)pν+1 + qν ,

sν = 1
2pν+1 + 1

2pν−1 − (ν2/x2)pν ,

and

10.63.7 pνsν = r2
ν + q2

ν .

Equations (10.63.6) and (10.63.7) also hold when the
symbols ber and bei in (10.63.5) are replaced through-
out by ker and kei, respectively.

10.64 Integral Representations

Schläfli-Type Integrals

10.64.1

bern
(
x
√

2
)

=
(−1)n

π

∫ π

0

cos(x sin t−nt) cosh(x sin t) dt,

10.64.2

bein
(
x
√

2
)

=
(−1)n

π

∫ π

0

sin(x sin t−nt) sinh(x sin t) dt.

See Apelblat (1991) for these results, and also for simi-
lar representations for berν

(
x
√

2
)
, beiν

(
x
√

2
)
, and their

ν-derivatives.

10.65 Power Series

10.65(i) berν x and beiν x

10.65.1

berν x = ( 1
2x)ν

∞∑
k=0

cos
(

3
4νπ + 1

2kπ
)

k! Γ(ν + k + 1)
( 1

4x
2)k,

beiν x = ( 1
2x)ν

∞∑
k=0

sin
(

3
4νπ + 1

2kπ
)

k! Γ(ν + k + 1)
( 1

4x
2)k.

10.65.2

ber x = 1−
( 1

4x
2)2

(2!)2
+

( 1
4x

2)4

(4!)2
− · · · ,

bei x = 1
4x

2 −
( 1

4x
2)3

(3!)2
+

( 1
4x

2)5

(5!)2
−· · · .
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10.65(ii) kerν x and keiν x

When ν is not an integer combine (10.65.1) with (10.61.6). Also, with ψ(x) = Γ′(x)/Γ(x),

10.65.3

kern x = 1
2 ( 1

2x)−n
n−1∑
k=0

(n− k − 1)!
k!

cos
(

3
4nπ + 1

2kπ
)
( 1

4x
2)k − ln

(
1
2x
)

bern x

+ 1
4π bein x+ 1

2 ( 1
2x)n

∞∑
k=0

ψ(k + 1) + ψ(n+ k + 1)
k!(n+ k)!

cos
(

3
4nπ + 1

2kπ
)
( 1

4x
2)k,

10.65.4

kein x = − 1
2 ( 1

2x)−n
n−1∑
k=0

(n− k − 1)!
k!

sin
(

3
4nπ + 1

2kπ
)
( 1

4x
2)k − ln

(
1
2x
)

bein x

− 1
4π bern x+ 1

2 ( 1
2x)n

∞∑
k=0

ψ(k + 1) + ψ(n+ k + 1)
k!(n+ k)!

sin
(

3
4nπ + 1

2kπ
)
( 1

4x
2)k.

10.65.5

ker x = − ln
(

1
2x
)

ber x+ 1
4π bei x+

∞∑
k=0

(−1)k
ψ(2k + 1)
((2k)!)2

( 1
4x

2)2k,

kei x = − ln
(

1
2x
)

bei x− 1
4π ber x+

∞∑
k=0

(−1)k
ψ(2k + 2)

((2k + 1)!)2
( 1

4x
2)2k+1.

10.65(iii) Cross-Products and Sums of Squares

10.65.6 ber2
ν x+ bei2ν x = ( 1

2x)2ν
∞∑
k=0

1
Γ(ν + k + 1) Γ(ν + 2k + 1)

( 1
4x

2)2k

k!
,

10.65.7 berν xbei′ν x− ber′ν xbeiν x = ( 1
2x)2ν+1

∞∑
k=0

1
Γ(ν + k + 1) Γ(ν + 2k + 2)

( 1
4x

2)2k

k!
,

10.65.8 berν xber′ν x+ beiν xbei′ν x = 1
2 ( 1

2x)2ν−1
∞∑
k=0

1
Γ(ν + k + 1) Γ(ν + 2k)

( 1
4x

2)2k

k!
,

10.65.9
(
ber′ν x

)2 +
(
bei′ν x

)2 = ( 1
2x)2ν−2

∞∑
k=0

2k2 + 2νk + 1
4ν

2

Γ(ν + k + 1) Γ(ν + 2k + 1)
( 1

4x
2)2k

k!
.

10.65(iv) Compendia

For further power series summable in terms of Kelvin functions and their derivatives see Hansen (1975).

10.66 Expansions in Series of Bessel Functions

10.66.1 berν x+ i beiν x =
∞∑
k=0

e(3ν+k)πi/4xk Jν+k(x)
2k/2k!

=
∞∑
k=0

e(3ν+3k)πi/4xk Iν+k(x)
2k/2k!

.

10.66.2 bern
(
x
√

2
)

=
∞∑

k=−∞

(−1)n+k Jn+2k(x) I2k(x), bein
(
x
√

2
)

=
∞∑

k=−∞

(−1)n+k Jn+2k+1(x) I2k+1(x).
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10.67 Asymptotic Expansions for Large Argument

10.67(i) berν x, beiν x, kerν x, keiν x, and Derivatives

Define ak(ν) and bk(ν) as in §§10.17(i) and 10.17(ii). Then as x→∞ with ν fixed,

10.67.1 kerν x ∼ e−x/
√

2
( π

2x

)1
2
∞∑
k=0

ak(ν)
xk

cos
(
x√
2

+
(
ν

2
+
k

4
+

1
8

)
π

)
,

10.67.2 keiν x ∼ −e−x/
√

2
( π

2x

)1
2
∞∑
k=0

ak(ν)
xk

sin
(
x√
2

+
(
ν

2
+
k

4
+

1
8

)
π

)
.

10.67.3 berν x ∼
ex/
√

2

(2πx)
1
2

∞∑
k=0

ak(ν)
xk

cos
(
x√
2

+
(
ν

2
+

3k
4
− 1

8

)
π

)
− 1
π

(sin(2νπ) kerν x+ cos(2νπ) keiν x),

10.67.4 beiν x ∼
ex/
√

2

(2πx)
1
2

∞∑
k=0

ak(ν)
xk

sin
(
x√
2

+
(
ν

2
+

3k
4
− 1

8

)
π

)
+

1
π

(cos(2νπ) kerν x− sin(2νπ) keiν x).

10.67.5 ker′ν x ∼ −e−x/
√

2
( π

2x

)1
2
∞∑
k=0

bk(ν)
xk

cos
(
x√
2

+
(
ν

2
+
k

4
− 1

8

)
π

)
,

10.67.6 kei′ν x ∼ e−x/
√

2
( π

2x

)1
2
∞∑
k=0

bk(ν)
xk

sin
(
x√
2

+
(
ν

2
+
k

4
− 1

8

)
π

)
.

10.67.7 ber′ν x ∼
ex/
√

2

(2πx)
1
2

∞∑
k=0

bk(ν)
xk

cos
(
x√
2

+
(
ν

2
+

3k
4

+
1
8

)
π

)
− 1
π

(sin(2νπ) ker′ν x+ cos(2νπ) kei′ν x),

10.67.8 bei′ν x ∼
ex/
√

2

(2πx)
1
2

∞∑
k=0

bk(ν)
xk

sin
(
x√
2

+
(
ν

2
+

3k
4

+
1
8

)
π

)
+

1
π

(cos(2νπ) ker′ν x− sin(2νπ) kei′ν x).

The contributions of the terms in kerν x, keiν x, ker′ν x, and kei′ν x on the right-hand sides of (10.67.3), (10.67.4),
(10.67.7), and (10.67.8) are exponentially small compared with the other terms, and hence can be neglected in the
sense of Poincaré asymptotic expansions (§2.1(iii)). However, their inclusion improves numerical accuracy.

10.67(ii) Cross-Products and Sums of Squares in the Case ν = 0

As x→∞

10.67.9 ber2 x+ bei2 x ∼ ex
√

2

2πx

(
1 +

1
4
√

2
1
x

+
1
64

1
x2
− 33

256
√

2
1
x3
− 1797

8192
1
x4

+ · · ·
)
,

10.67.10 ber x bei′ x− ber′ xbei x ∼ ex
√

2

2πx

(
1√
2

+
1
8

1
x

+
9

64
√

2
1
x2

+
39
512

1
x3

+
75

8192
√

2
1
x4

+ · · ·
)
,

10.67.11 ber x ber′ x+ bei x bei′ x ∼ ex
√

2

2πx

(
1√
2
− 3

8
1
x
− 15

64
√

2
1
x2
− 45

512
1
x3

+
315

8192
√

2
1
x4

+ · · ·
)
,

10.67.12
(
ber′ x

)2 +
(
bei′ x

)2 ∼ ex
√

2

2πx

(
1− 3

4
√

2
1
x

+
9
64

1
x2

+
75

256
√

2
1
x3

+
2475
8192

1
x4

+· · ·
)
.

10.67.13 ker2 x+ kei2 x ∼ π

2x
e−x
√

2

(
1− 1

4
√

2
1
x

+
1
64

1
x2

+
33

256
√

2
1
x3
− 1797

8192
1
x4

+ · · ·
)
,

10.67.14 ker x kei′ x− ker′ x kei x ∼ − π

2x
e−x
√

2

(
1√
2
− 1

8
1
x

+
9

64
√

2
1
x2
− 39

512
1
x3

+
75

8192
√

2
1
x4

+ · · ·
)
,

10.67.15 ker x ker′ x+ kei x kei′ x ∼ − π

2x
e−x
√

2

(
1√
2

+
3
8

1
x
− 15

64
√

2
1
x2

+
45
512

1
x3

+
315

8192
√

2
1
x4

+ · · ·
)
,

10.67.16
(
ker′ x

)2 +
(
kei′ x

)2 ∼ π

2x
e−x
√

2

(
1 +

3
4
√

2
1
x

+
9
64

1
x2
− 75

256
√

2
1
x3

+
2475
8192

1
x4

+· · ·
)
.
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10.68 Modulus and Phase Functions

10.68(i) Definitions

10.68.1 Mν(x)eiθν(x) = berν x+ ibeiν x,

10.68.2 Nν(x)eiφν(x) = kerν x+ i keiν x,
where Mν(x) (> 0), Nν(x) (> 0), θν(x), and φν(x) are continuous real functions of x and ν, with the branches of
θν(x) and φν(x) chosen to satisfy (10.68.18) and (10.68.21) as x→∞. (See also §10.68(iv).)

10.68(ii) Basic Properties

10.68.3 berν x = Mν(x) cos θν(x), beiν x = Mν(x) sin θν(x),

10.68.4 kerν x = Nν(x) cosφν(x), keiν x = Nν(x) sinφν(x).

10.68.5 Mν(x) = (ber2
ν x+ bei2ν x) 1/2 , Nν(x) = (ker2

ν x+ kei2ν x) 1/2 ,

10.68.6 θν(x) = Arctan(beiν x/ berν x), φν(x) = Arctan(keiν x/ kerν x).

10.68.7 M−n(x) = Mn(x), θ−n(x) = θn(x)− nπ.
With arguments (x) suppressed,

10.68.8
ber′ν x = 1

2 Mν+1 cos
(
θν+1− 1

4π
)
− 1

2 Mν−1 cos
(
θν−1− 1

4π
)

= (ν/x)Mν cos θν +Mν+1 cos
(
θν+1− 1

4π
)

= −(ν/x)Mν cos θν −Mν−1 cos
(
θν−1− 1

4π
)
,

10.68.9
bei′ν x = 1

2 Mν+1 sin
(
θν+1− 1

4π
)
− 1

2 Mν−1 sin
(
θν−1− 1

4π
)

= (ν/x)Mν sin θν +Mν+1 sin
(
θν+1− 1

4π
)

= −(ν/x)Mν sin θν −Mν−1 sin
(
θν−1− 1

4π
)
.

10.68.10 ber′ x = M1 cos
(
θ1− 1

4π
)
, bei′ x = M1 sin

(
θ1− 1

4π
)
.

10.68.11 M ′ν = (ν/x)Mν +Mν+1 cos
(
θν+1− θν − 1

4π
)

= −(ν/x)Mν −Mν−1 cos
(
θν−1− θν − 1

4π
)
,

10.68.12 θ′ν = (Mν+1 /Mν) sin
(
θν+1− θν − 1

4π
)

= −(Mν−1 /Mν) sin
(
θν−1− θν − 1

4π
)
.

10.68.13 M ′0 = M1 cos
(
θ1− θ0− 1

4π
)
, θ′0 = (M1 /M0) sin

(
θ1− θ0− 1

4π
)
.

10.68.14 d(xM2
ν θ
′
ν)
/
dx = xM2

ν , x2M ′′ν +xM ′ν −ν2Mν = x2Mν θ
′
ν

2
.

Equations (10.68.8)–(10.68.14) also hold with the symbols ber, bei, M, and θ replaced throughout by ker, kei,
N, and φ, respectively. In place of (10.68.7),

10.68.15 N−ν(x) = Nν(x), φ−ν(x) = φν(x) + νπ.

10.68(iii) Asymptotic Expansions for Large Argument

When ν is fixed, µ = 4ν2, and x→∞

10.68.16 Mν(x) =
ex/
√

2

(2πx)
1
2

(
1− µ− 1

8
√

2
1
x

+
(µ− 1)2

256
1
x2
− (µ− 1)(µ2 + 14µ− 399)

6144
√

2
1
x3

+O

(
1
x4

))
,

10.68.17 lnMν(x) =
x√
2
− 1

2
ln(2πx)− µ− 1

8
√

2
1
x
− (µ− 1)(µ− 25)

384
√

2
1
x3
− (µ− 1)(µ− 13)

128
1
x4

+O

(
1
x5

)
,

10.68.18 θν(x) =
x√
2

+
(

1
2
ν − 1

8

)
π +

µ− 1
8
√

2
1
x

+
µ− 1

16
1
x2
− (µ− 1)(µ− 25)

384
√

2
1
x3

+O

(
1
x5

)
.

10.68.19 Nν(x) = e−x/
√

2
( π

2x

)1
2
(

1 +
µ− 1
8
√

2
1
x

+
(µ− 1)2

256
1
x2

+
(µ− 1)(µ2 + 14µ− 399)

6144
√

2
1
x3

+O

(
1
x4

))
,

10.68.20 lnNν(x) = − x√
2

+
1
2

ln
( π

2x

)
+
µ− 1
8
√

2
1
x

+
(µ− 1)(µ− 25)

384
√

2
1
x3
− (µ− 1)(µ− 13)

128
1
x4

+O

(
1
x5

)
,

10.68.21 φν(x) = − x√
2
−
(

1
2
ν +

1
8

)
π − µ− 1

8
√

2
1
x

+
µ− 1

16
1
x2

+
(µ− 1)(µ− 25)

384
√

2
1
x3

+O

(
1
x5

)
.
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10.68(iv) Further Properties

Additional properties of the modulus and phase functions are given in Young and Kirk (1964, pp. xi–xv). However,
care needs to be exercised with the branches of the phases. Thus this reference gives φ1(0) = 5

4π (Eq. (6.10)), and
limx→∞(φ1(x) + (x/

√
2)) = − 5

8π (Eqs. (10.20) and (Eqs. (10.26b)). However, numerical tabulations show that if
the second of these equations applies and φ1(x) is continuous, then φ1(0) = − 3

4π; compare Abramowitz and Stegun
(1964, p. 433).

10.69 Uniform Asymptotic Expansions for Large Order

Let Uk(p) and Vk(p) be the polynomials defined in §10.41(ii), and

10.69.1 ξ = (1 + ix2) 1/2 .

Then as ν → +∞,

10.69.2 berν(νx) + ibeiν(νx) ∼ eνξ

(2πνξ) 1/2

(
xe3πi/4

1 + ξ

)ν ∞∑
k=0

Uk(ξ−1)
νk

,

10.69.3 kerν(νx) + i keiν(νx) ∼ e−νξ
(

π

2νξ

)1/2 (
xe3πi/4

1 + ξ

)−ν ∞∑
k=0

(−1)k
Uk(ξ−1)
νk

,

10.69.4 ber′ν(νx) + ibei′ν(νx) ∼ eνξ

x

(
ξ

2πν

)1/2 (
xe3πi/4

1 + ξ

)ν ∞∑
k=0

Vk(ξ−1)
νk

,

10.69.5 ker′ν(νx) + i kei′ν(νx) ∼ −e
−νξ

x

(
πξ

2ν

)1/2 (
xe3πi/4

1 + ξ

)−ν ∞∑
k=0

(−1)k
Vk(ξ−1)
νk

,

uniformly for x ∈ (0,∞). All fractional powers take their principal values.
All four expansions also enjoy the same kind of double asymptotic property described in §10.41(iv).
Accuracy in (10.69.2) and (10.69.4) can be increased by including exponentially-small contributions as in (10.67.3),

(10.67.4), (10.67.7), and (10.67.8) with x replaced by νx.

10.70 Zeros

Asymptotic approximations for large zeros are as follows. Let µ = 4ν2 and f(t) denote the formal series

10.70.1
µ− 1
16t

+
µ− 1
32t2

+
(µ− 1)(5µ+ 19)

1536t3
+

3(µ− 1)2

512t4
+· · · .

If m is a large positive integer, then

10.70.2

zeros of berν x ∼
√

2(t− f(t)), t = (m− 1
2ν −

3
8 )π,

zeros of beiν x ∼
√

2(t− f(t)), t = (m− 1
2ν + 1

8 )π,

zeros of kerν x ∼
√

2(t+ f(−t)), t = (m− 1
2ν −

5
8 )π,

zeros of keiν x ∼
√

2(t+ f(−t)), t = (m− 1
2ν −

1
8 )π.

In the case ν = 0, numerical tabulations (Abramowitz and Stegun (1964, Table 9.12)) indicate that each of
(10.70.2) corresponds to the mth zero of the function on the left-hand side. For the next six terms in the series
(10.70.1) see MacLeod (2002a).
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10.71 Integrals

10.71(i) Indefinite Integrals

In the following equations fν , gν is any one of the four ordered pairs given in (10.63.1), and f̂ν , ĝν is either the same
ordered pair or any other ordered pair in (10.63.1).

10.71.1

∫
x1+νfν dx = −x

1+ν

√
2

(fν+1 − gν+1) = −x1+ν
(ν
x
gν − g′ν

)
,

10.71.2

∫
x1−νfν dx =

x1−ν
√

2
(fν−1 − gν−1) = x1−ν

(ν
x
gν + g′ν

)
.

10.71.3

∫
x(fν ĝν − gν f̂ν) dx =

x

2
√

2

(
f̂ν(fν+1 + gν+1)− ĝν(fν+1 − gν+1)− fν(f̂ν+1 + ĝν+1) + gν(f̂ν+1 − ĝν+1)

)
= 1

2x(f ′ν f̂ν − fν f̂ ′ν + g′ν ĝν − gν ĝ′ν),

10.71.4

∫
x(fν ĝν + gν f̂ν) dx = 1

4x
2(2fν ĝν − fν−1ĝν+1 − fν+1ĝν−1 + 2gν f̂ν − gν−1f̂ν+1 − gν+1f̂ν−1).

10.71.5

∫
x(f2

ν + g2
ν) dx = x(fνg′ν − f ′νgν) = − x√

2
(fνfν+1 + gνgν+1 − fνgν+1 + fν+1gν),

10.71.6

∫
xfνgν dx = 1

4x
2 (2fνgν − fν−1gν+1 − fν+1gν−1) ,

10.71.7

∫
x(f2

ν − g2
ν) dx = 1

2x
2
(
f2
ν − fν−1fν+1 − g2

ν + gν−1gν+1

)
.

Examples

10.71.8

∫
xM2

ν (x) dx = x(berν xbei′ν x− ber′ν xbeiν x),
∫
xN2

ν (x) dx = x(kerν x kei′ν x− ker′ν x keiν x),

where Mν(x) and Nν(x) are the modulus functions introduced in §10.68(i).

10.71(ii) Definite Integrals

See Kerr (1978) and Glasser (1979).

10.71(iii) Compendia

For infinite double integrals involving Kelvin functions
see Prudnikov et al. (1986b, pp. 630–631).

For direct and inverse Laplace transforms of Kelvin
functions see Prudnikov et al. (1992a, §3.19) and Prud-
nikov et al. (1992b, §3.19).

Applications

10.72 Mathematical Applications

10.72(i) Differential Equations with Turning
Points

Bessel functions and modified Bessel functions are of-
ten used as approximants in the construction of uniform
asymptotic approximations and expansions for solutions
of linear second-order differential equations containing a

parameter. The canonical form of differential equation
for these problems is given by

10.72.1
d2w

dz2 =
(
u2f(z) + g(z)

)
w,

where z is a real or complex variable and u is a large
real or complex parameter.

Simple Turning Points

In regions in which (10.72.1) has a simple turning point
z0, that is, f(z) and g(z) are analytic (or with weaker
conditions if z = x is a real variable) and z0 is a sim-
ple zero of f(z), asymptotic expansions of the solutions
w for large u can be constructed in terms of Airy func-
tions or equivalently Bessel functions or modified Bessel
functions of order 1

3 (§9.6(i)). These expansions are uni-
form with respect to z, including the turning point z0

and its neighborhood, and the region of validity often
includes cut neighborhoods (§1.10(vi)) of other singu-
larities of the differential equation, especially irregular
singularities.

For further information and references see §§2.8(i)
and 2.8(iii).
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Multiple or Fractional Turning Points

If f(z) has a double zero z0, or more generally z0 is a
zero of order m, m = 2, 3, 4, . . . , then uniform asymp-
totic approximations (but not expansions) can be con-
structed in terms of Bessel functions, or modified Bessel
functions, of order 1/(m + 2). The number m can also
be replaced by any real constant λ (> −2) in the sense
that (z − z0)−λ f(z) is analytic and nonvanishing at
z0; moreover, g(z) is permitted to have a single or dou-
ble pole at z0. The order of the approximating Bessel
functions, or modified Bessel functions, is 1/(λ+ 2), ex-
cept in the case when g(z) has a double pole at z0. See
§2.8(v) for references.

10.72(ii) Differential Equations with Poles

In regions in which the function f(z) has a simple pole
at z = z0 and (z − z0)2g(z) is analytic at z = z0 (the
case λ = −1 in §10.72(i)), asymptotic expansions of the
solutions w of (10.72.1) for large u can be constructed
in terms of Bessel functions and modified Bessel func-
tions of order ±

√
1 + 4ρ, where ρ is the limiting value of

(z − z0)2g(z) as z → z0. These asymptotic expansions
are uniform with respect to z, including cut neighbor-
hoods of z0, and again the region of uniformity often
includes cut neighborhoods of other singularities of the
differential equation.

For further information and references see §§2.8(i)
and 2.8(iv).

10.72(iii) Differential Equations with a Double
Pole and a Movable Turning Point

In (10.72.1) assume f(z) = f(z, α) and g(z) = g(z, α)
depend continuously on a real parameter α, f(z, α) has
a simple zero z = z0(α) and a double pole z = 0, ex-
cept for a critical value α = a, where z0(a) = 0. Assume
that whether or not α = a, z2g(z, α) is analytic at z = 0.
Then for large u asymptotic approximations of the solu-
tions w can be constructed in terms of Bessel functions,
or modified Bessel functions, of variable order (in fact
the order depends on u and α). These approximations
are uniform with respect to both z and α, including
z = z0(a), the cut neighborhood of z = 0, and α = a.
See §2.8(vi) for references.

10.73 Physical Applications

10.73(i) Bessel and Modified Bessel Functions

Bessel functions first appear in the investigation of a
physical problem in Daniel Bernoulli’s analysis of the
small oscillations of a uniform heavy flexible chain. For
this problem and its further generalizations, see Ko-
renev (2002, Chapter 4, §37) and Gray et al. (1922,
Chapter I, §1, Chapter XVI, §4).

Bessel functions of the first kind, Jn(x), arise nat-
urally in applications having cylindrical symmetry in
which the physics is described either by Laplace’s equa-
tion ∇2V = 0, or by the Helmholtz equation (∇2 +
k2)ψ = 0.

Laplace’s equation governs problems in heat conduc-
tion, in the distribution of potential in an electrostatic
field, and in hydrodynamics in the irrotational motion of
an incompressible fluid. See Jackson (1999, Chapter 3,
§§3.7, 3.8, 3.11, 3.13), Lamb (1932, Chapter V, §§100–
102; Chapter VIII, §§186, 191–193; Chapter X, §§303,
304), Happel and Brenner (1973, Chapter 3, §3.3; Chap-
ter 7, §7.3), Korenev (2002, Chapter 4, §43), and Gray
et al. (1922, Chapter XI). In cylindrical coordinates r,
φ, z, (§1.5(ii) we have

10.73.1 ∇2V =
1
r

∂

∂r

(
r
∂V

∂r

)
+

1
r2

∂2V

∂φ2 +
∂2V

∂z2 = 0,

and on separation of variables we obtain solutions of the
form e±inφe±κz Jn(κr), from which a solution satisfying
prescribed boundary conditions may be constructed.

The Helmholtz equation, (∇2 + k2)ψ = 0, follows
from the wave equation

10.73.2 ∇2ψ =
1
c2
∂2ψ

∂t2
,

on assuming a time dependence of the form e±ikt. This
equation governs problems in acoustic and electromag-
netic wave propagation. See Jackson (1999, Chap-
ter 9, §9.6), Jones (1986, Chapters 7, 8), and Lord
Rayleigh (1945, Vol. I, Chapter IX, §§200–211, 218, 219,
221a; Vol. II, Chapter XIII, §272a; Chapter XV, §302;
Chapter XVIII; Chapter XIX, §350; Chapter XX, §357;
Chapter XXI, §369). It is fundamental in the study
of electromagnetic wave transmission. Consequently,
Bessel functions Jn(x), and modified Bessel functions
In(x), are central to the analysis of microwave and
optical transmission in waveguides, including coaxial
and fiber. See Krivoshlykov (1994, Chapter 2, §2.2.10;
Chapter 5, §5.2.2), Kapany and Burke (1972, Chap-
ters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4,
§§20, 25).

Bessel functions enter in the study of the scatter-
ing of light and other electromagnetic radiation, not
only from cylindrical surfaces but also in the statisti-
cal analysis involved in scattering from rough surfaces.
See Smith (1997, Chapter 3, §3.7; Chapter 6, §6.4),
Beckmann and Spizzichino (1963, Chapter 4, §§4.2, 4.3;
Chapter 5, §§5.2, 5.3; Chapter 6, §6.1; Chapter 7, §7.1.),
Kerker (1969, Chapter 5, §5.6.4; Chapter 7, §7.5.6), and
Bayvel and Jones (1981, Chapter 1, §§1.6.5, 1.6.6).

More recently, Bessel functions appear in the in-
verse problem in wave propagation, with applications in
medicine, astronomy, and acoustic imaging. See Colton
and Kress (1998, Chapter 2, §§2.4, 2.5; Chapter 3, §3.4).
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In the theory of plates and shells, the oscillations of a
circular plate are determined by the differential equa-
tion
10.73.3 ∇4W + λ2 ∂

2W

∂t2
= 0.

See Korenev (2002). On separation of variables into
cylindrical coordinates, the Bessel functions Jn(x), and
modified Bessel functions In(x) and Kn(x), all appear.

10.73(ii) Spherical Bessel Functions

The functions jn(x), yn(x), h
(1)
n (x), and h

(2)
n (x) arise

in the solution (again by separation of variables) of
the Helmholtz equation in spherical coordinates ρ, θ, φ
(§1.5(ii)):
10.73.4

(∇2 + k2)f =
1
ρ2

∂

∂ρ

(
ρ2 ∂f

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1
ρ2 sin2 θ

∂2f

∂φ2 + k2f.

With the spherical harmonic Y`,m(θ, φ) defined as
in §14.30(i), the solutions are of the form f =
g`(kρ)Y`,m(θ, φ) with g` = j`, y`, h

(1)
` , or h

(2)
` , depending

on the boundary conditions. Accordingly, the spherical
Bessel functions appear in all problems in three dimen-
sions with spherical symmetry involving the scattering
of electromagnetic radiation. See Jackson (1999, Chap-
ter 9, §9.6), Bayvel and Jones (1981, Chapter 1, §1.5.1),
and Konopinski (1981, Chapter 9, §9.1). In quantum
mechanics the spherical Bessel functions arise in the so-
lution of the Schrödinger wave equation for a particle
in a central potential. See Messiah (1961, Chapter IX,
§§7–10).

10.73(iii) Kelvin Functions

The analysis of the current distribution in circular
conductors leads to the Kelvin functions ber x, bei x,
ker x, and kei x. See Relton (1965, Chapter X, §§10.2,
10.3), Bowman (1958, Chapter III, §§51–53), McLach-
lan (1961, Chapters VIII and IX), and Russell (1909).
The McLachlan reference also includes other applica-
tions of Kelvin functions.

10.73(iv) Bickley Functions

See Bickley (1935) and Altaç (1996).

10.73(v) Rayleigh Function

For applications of the Rayleigh function σn(ν)
(§10.21(xiii)) to problems of heat conduction and dif-
fusion in liquids see Kapitsa (1951b).

Computation

10.74 Methods of Computation

10.74(i) Series Expansions

The power-series expansions given in §§10.2 and 10.8,
together with the connection formulas of §10.4, can be
used to compute the Bessel and Hankel functions when
the argument x or z is sufficiently small in absolute
value. In the case of the modified Bessel function Kν(z)
see especially Temme (1975).

In other circumstances the power series are prone to
slow convergence and heavy numerical cancellation.

If x or |z| is large compared with |ν|2, then the
asymptotic expansions of §§10.17(i)–10.17(iv) are avail-
able. Furthermore, the attainable accuracy can be
increased substantially by use of the exponentially-
improved expansions given in §10.17(v), even more so
by application of the hyperasymptotic expansions to be
found in the references in that subsection.

For large positive real values of ν the uniform asymp-
totic expansions of §§10.20(i) and 10.20(ii) can be used.
Moreover, because of their double asymptotic properties
(§10.41(v)) these expansions can also be used for large
x or |z|, whether or not ν is large. It should be noted,
however, that there is a difficulty in evaluating the co-
efficients Ak(ζ), Bk(ζ), Ck(ζ), and Dk(ζ), from the ex-
plicit expressions (10.20.10)–(10.20.13) when z is close
to 1 owing to severe cancellation. Temme (1997) shows
how to overcome this difficulty by use of the Maclaurin
expansions for these coefficients or by use of auxiliary
functions.

Similar observations apply to the computation of
modified Bessel functions, spherical Bessel functions,
and Kelvin functions. In the case of the spherical Bessel
functions the explicit formulas given in §§10.49(i) and
10.49(ii) are terminating cases of the asymptotic expan-
sions given in §§10.17(i) and 10.40(i) for the Bessel func-
tions and modified Bessel functions. And since there are
no error terms they could, in theory, be used for all val-
ues of z; however, there may be severe cancellation when
|z| is not large compared with n2.

10.74(ii) Differential Equations

A comprehensive and powerful approach is to integrate
the differential equations (10.2.1) and (10.25.1) by di-
rect numerical methods. As described in §3.7(ii), to
insure stability the integration path must be chosen in
such a way that as we proceed along it the wanted so-
lution grows in magnitude at least as fast as all other
solutions of the differential equation.
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In the interval 0 < x < ν, Jν(x) needs to be inte-
grated in the forward direction and Yν(x) in the back-
ward direction, with initial values for the former ob-
tained from the power-series expansion (10.2.2) and for
the latter from asymptotic expansions (§§10.17(i) and
10.20(i)). In the interval ν < x <∞ either direction of
integration can be used for both functions.

Similarly, to maintain stability in the interval 0 <
x < ∞ the integration direction has to be forwards in
the case of Iν(x) and backwards in the case of Kν(x),
with initial values obtained in an analogous manner to
those for Jν(x) and Yν(x).

For z ∈ C the function H
(1)
ν (z), for example, can

always be computed in a stable manner in the sector
0 ≤ ph z ≤ π by integrating along rays towards the
origin.

Similar considerations apply to the spherical Bessel
functions and Kelvin functions.

For further information, including parallel methods
for solving the differential equations, see Lozier and
Olver (1993).

10.74(iii) Integral Representations

For evaluation of the Hankel functions H
(1)
ν (z) and

H
(2)
ν (z) for complex values of ν and z based on the in-

tegral representations (10.9.18) see Remenets (1973).
For applications of generalized Gauss–Laguerre

quadrature (§3.5(v)) to the evaluation of the modified
Bessel functions Kν(z) for 0 < ν < 1 and 0 < x < ∞
see Gautschi (2002a). The integral representation used
is based on (10.32.8).

For evaluation of Kν(z) from (10.32.14) with ν = n
and z complex, see Mechel (1966).

10.74(iv) Recurrence Relations

If values of the Bessel functions Jν(z), Yν(z), or the
other functions treated in this chapter, are needed for
integer-spaced ranges of values of the order ν, then a
simple and powerful procedure is provided by recurrence
relations typified by the first of (10.6.1).

Suppose, for example, ν = n ∈ 0, 1, 2, . . . , and
x ∈ (0,∞). Then Jn(x) and Yn(x) can be generated
by either forward or backward recurrence on n when
n < x, but if n > x then to maintain stability Jn(x) has
to be generated by backward recurrence on n, and Yn(x)
has to be generated by forward recurrence on n. In the
case of Jn(x), the need for initial values can be avoided
by application of Olver’s algorithm (§3.6(v)) in conjunc-
tion with Equation (10.12.4) used as a normalizing con-
dition, or in the case of noninteger orders, (10.23.15).

For further information see Gautschi (1967), Olver
and Sookne (1972), Temme (1975), Campbell (1980),
and Kerimov and Skorokhodov (1984a).

10.74(v) Continued Fractions

For applications of the continued-fraction expansions
(10.10.1), (10.10.2), (10.33.1), and (10.33.2) to the com-
putation of Bessel functions and modified Bessel func-
tions see Gargantini and Henrici (1967), Amos (1974),
Gautschi and Slavik (1978), Tretter and Walster (1980),
Thompson and Barnett (1986), and Cuyt et al. (2008).

10.74(vi) Zeros and Associated Values

Newton’s rule (§3.8(i)) or Halley’s rule (§3.8(v)) can be
used to compute to arbitrarily high accuracy the real or
complex zeros of all the functions treated in this chapter.
Necessary values of the first derivatives of the functions
are obtained by the use of (10.6.2), for example. New-
ton’s rule is quadratically convergent and Halley’s rule
is cubically convergent. See also Segura (1998, 2001).

Methods for obtaining initial approximations to
the zeros include asymptotic expansions (§§10.21(vi)-
10.21(ix)), graphical intersection of 2D graphs in R
(e.g., §10.3(i)) with the x-axis, or graphical intersection
of 3D complex-variable surfaces (e.g., §10.3(ii)) with the
plane z = 0.

To ensure that no zeros are overlooked, standard
tools are the phase principle and Rouché’s theorem; see
§1.10(iv).

Real Zeros

See Olver (1960, pp. xvi–xxix), Grad and Zakraǰsek
(1973), Temme (1979a), Ikebe et al. (1991), Zafiropou-
los et al. (1996), Vrahatis et al. (1997a), Ball (2000),
and Gil and Segura (2003).

Complex Zeros

See Leung and Ghaderpanah (1979), Kerimov and
Skorokhodov (1984b,c, 1985a,b), Skorokhodov (1985),
Modenov and Filonov (1986), and Vrahatis et al.
(1997b).

Multiple Zeros

See Kerimov and Skorokhodov (1985c, 1986, 1987,
1988).

10.74(vii) Integrals

Hankel Transform

See Cornille (1972), Johansen and Sørensen (1979),
Gabutti (1979), Gabutti and Minetti (1981), Candel
(1981), Wong (1982), Lund (1985), Piessens and Bran-
ders (1985), Hansen (1985), Bezvoda et al. (1986), Pu-
oskari (1988), Christensen (1990), Campos (1995), Lu-
cas and Stone (1995), Barakat and Parshall (1996), Sidi
(1997), Secada (1999).



278 Bessel Functions

Fourier–Bessel Expansion

For the computation of the integral (10.23.19) see
Piessens and Branders (1983, 1985), Lewanowicz (1991),
and Zhilĕıkin and Kukarkin (1995).

Spherical Bessel Transform

The spherical Bessel transform is the Hankel transform
(10.22.76) in the case when ν is half an odd positive
integer.

See Lehman et al. (1981), Puoskari (1988), and
Sharafeddin et al. (1992).

Kontorovich–Lebedev Transform

See Ehrenmark (1995).

Products

For infinite integrals involving products of two Bessel
functions of the first kind, see Linz and Kropp (1973),
Gabutti (1980), Ikonomou et al. (1995), and Lucas
(1995).

10.74(viii) Functions of Imaginary Order

For the computation of the functions Ĩν(x) and K̃ν(x)
defined by (10.45.2) see Temme (1994b) and Gil et al.
(2002b, 2003a, 2004a).

10.75 Tables

10.75(i) Introduction

Comprehensive listings and descriptions of tables of
the functions treated in this chapter are provided in
Bateman and Archibald (1944), Lebedev and Fedorova
(1960), Fletcher et al. (1962), and Luke (1975, §9.13.2).
Only a few of the more comprehensive of these early ta-
bles are included in the listings in the following subsec-
tions. Also, for additional listings of tables pertaining
to complex arguments see Babushkina et al. (1997).

10.75(ii) Bessel Functions and their Derivatives

• British Association for the Advancement of
Science (1937) tabulates J0(x), J1(x), x =
0(.001)16(.01)25, 10D; Y0(x), Y1(x), x =
0.01(.01)25, 8–9S or 8D. Also included are aux-
iliary functions to facilitate interpolation of the
tables of Y0(x), Y1(x) for small values of x, as well
as auxiliary functions to compute all four func-
tions for large values of x.

• Bickley et al. (1952) tabulates Jn(x), Yn(x) or
xn Yn(x), n = 2(1)20, x = 0(.01 or .1) 10(.1)25,
8D (for Jn(x)), 8S (for Yn(x) or xn Yn(x)); Jn(x),
Yn(x), n = 0(1)20, x = 0 or 0.1(.1)25, 10D (for
Jn(x)), 10S (for Yn(x)).

• Olver (1962) provides tables for the uniform
asymptotic expansions given in §10.20(i), includ-
ing ζ and (4ζ

/
(1− x2) )

1
4 as functions of x (= z)

and the coefficients Ak(ζ), Bk(ζ), Ck(ζ), Dk(ζ)
as functions of ζ. These enable Jν(νx), Yν(νx),
J ′ν(νx), Y ′ν(νx) to be computed to 10S when ν ≥
15, except in the neighborhoods of zeros.

• The main tables in Abramowitz and Stegun (1964,
Chapter 9) give J0(x) to 15D, J1(x), J2(x),
Y0(x), Y1(x) to 10D, Y2(x) to 8D, x = 0(.1)17.5;
Yn(x) − (2/π) Jn(x) lnx, n = 0, 1, x = 0(.1)2,
8D; Jn(x), Yn(x), n = 3(1)9, x = 0(.2)20, 5D
or 5S; Jn(x), Yn(x), n = 0(1)20(10)50, 100, x =
1, 2, 5, 10, 50, 100, 10S; modulus and phase func-
tions

√
xMn(x), θn(x) − x, n = 0, 1, 2, 1/x =

0(.01)0.1, 8D.

• Achenbach (1986) tabulates J0(x), J1(x), Y0(x),
Y1(x), x = 0(.1)8, 20D or 18–20S.

• Zhang and Jin (1996, pp. 185–195) tab-
ulates Jn(x), J ′n(x), Yn(x), Y ′n(x), n =
0(1)10(10)50, 100, x = 1, 5, 10, 25, 50,
100, 9S; Jn+α(x), J ′n+α(x), Yn+α(x), Y ′n+α(x),
n = 0(1)5, 10, 30, 50, 100, α = 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 ,

x = 1, 5, 10, 50, 8S; real and imaginary parts
of Jn+α(z), J ′n+α(z), Yn+α(z), Y ′n+α(z), n =
0(1)15, 20(10)50, 100, α = 0, 1

2 , z = 4+2i, 20+10i,
8S.

10.75(iii) Zeros and Associated Values of the
Bessel Functions, Hankel Functions,
and their Derivatives

Real Zeros

• British Association for the Advancement of
Science (1937) tabulates j0,m, J1(j0,m), j1,m,
J0(j1,m), m = 1(1)150, 10D; y0,m, Y1(y0,m), y1,m,
Y0(y1,m), m = 1(1)50, 8D.

• Olver (1960) tabulates jn,m, J ′n(jn,m), j′n,m,
Jn
(
j′n,m

)
, yn,m, Y ′n(yn,m), y′n,m, Yn

(
y′n,m

)
, n =

0( 1
2 )20 1

2 , m = 1(1)50, 8D. Also included are ta-
bles of the coefficients in the uniform asymptotic
expansions of these zeros and associated values as
n → ∞; see §10.21(viii), and more fully Olver
(1954).

• Morgenthaler and Reismann (1963) tabulates j′n,m
for n = 21(1)51 and j′n,m< 100, 7-10S.

• Abramowitz and Stegun (1964, Chapter 9) tabu-
lates jn,m, J ′n(jn,m), j′n,m, Jn

(
j′n,m

)
, n = 0(1)8,

m = 1(1)20, 5D (10D for n = 0), yn,m, Y ′n(yn,m),
y′n,m, Yn

(
y′n,m

)
, n = 0(1)8, m = 1(1)20, 5D
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(8D for n = 0), J0(j0,m x), m = 1(1)5, x =
0(.02)1, 5D. Also included are the first 5 zeros of
the functions xJ1(x)− λJ0(x), J1(x)− λxJ0(x),
J0(x)Y0(λx) − Y0(x)J0(λx), J1(x)Y1(λx) −
Y1(x)J1(λx), J1(x)Y0(λx)−Y1(x) J0(λx) for vari-
ous values of λ and λ−1 in the interval [0, 1], 4–8D.

• Abramowitz and Stegun (1964, Chapter 10)
tabulates jν,m, J ′ν(jν,m), j′ν,m, Jν

(
j′ν,m

)
, yν,m,

Y ′ν(yν,m), y′ν,m, Yν
(
y′ν,m

)
, ν = 1

2 (1)19 1
2 , m =

1(1)mν , where mν ranges from 8 at ν = 1
2 down

to 1 at ν = 191
2 , 6–7D.

• Makinouchi (1966) tabulates all values of jν,m and
yν,m in the interval (0, 100), with at least 29S.
These are for ν = 0(1)5, 10, 20; ν = 3

2 , 5
2 ;

ν = m/n with m = 1(1)n − 1 and n = 3(1)8,
except for ν = 1

2 .

• Döring (1971) tabulates the first 100 values of ν
(> 1) for which J ′−ν(x) has the double zero x = ν,
10D.

• Heller (1976) tabulates j0,m, J1(j0,m), j1,m,
J0(j1,m), j′1,m, J1

(
j′1,m

)
for m = 1(1)100, 25D.

• Wills et al. (1982) tabulates j0,m, j1,m, y0,m, y1,m

for m = 1(1)30, 35D.

• Kerimov and Skorokhodov (1985c) tabulates 201
double zeros of J ′′−ν(x), 10 double zeros of J ′′′−ν(x),
101 double zeros of Y ′−ν(x), 201 double zeros of
Y ′′−ν(x), and 10 double zeros of Y ′′′−ν(x), all to 8 or
9D.

• Zhang and Jin (1996, pp. 196–198) tabulates jn,m,
j′n,m, yn,m, y′n,m, n = 0(1)3, m = 1(1)10, 8D;
the first five zeros of Jn(x)Yn(λx)−Jn(λx)Yn(x),
J ′n(x)Y ′n(λx) − J ′n(λx)Y ′n(x), n = 0, 1, 2, λ =
1.1(.1)1.6, 1.8, 2(.5)5, 7D.

Complex Zeros

• Abramowitz and Stegun (1964, p. 373) tabulates
the three smallest zeros of Y0(z), Y1(z), Y ′1(z) in
the sector 0 < ph z ≤ π, together with the cor-
responding values of Y1(z), Y0(z), Y1(z), respec-
tively, to 9D. (There is an error in the value of
Y0(z) at the 3rd zero of Y1(z): the last four digits
should be 2533; see Amos (1985).)

• Döring (1966) tabulates all zeros of Y0(z), Y1(z),
H

(1)
0 (z), H(1)

1 (z), that lie in the sector |z| < 158,
|ph z| ≤ π, to 10D. Some of the smaller zeros of
Yn(z) and H

(1)
n (z) for n = 2, 3, 4, 5, 15 are also

included.

• Kerimov and Skorokhodov (1985a) tabulates 5
(nonreal) complex conjugate pairs of zeros of the
principal branches of Yn(z) and Y ′n(z) for n =
0(1)5, 8D.

• Kerimov and Skorokhodov (1985b) tabulates 50
zeros of the principal branches of H(1)

0 (z) and
H

(1)
1 (z), 8D.

• Kerimov and Skorokhodov (1987) tabulates 100
complex double zeros ν of Y ′ν

(
ze−πi

)
and

H
(1)
ν

′(
ze−πi

)
, 8D.

• MacDonald (1989) tabulates the first 30 zeros, in
ascending order of absolute value in the fourth
quadrant, of the function J0(z) − i J1(z), 6D.
(Other zeros of this function can be obtained by
reflection in the imaginary axis).

• Zhang and Jin (1996, p. 199) tabulates the real
and imaginary parts of the first 15 conjugate pairs
of complex zeros of Y0(z), Y1(z), Y ′1(z) and the
corresponding values of Y1(z), Y0(z), Y1(z), re-
spectively, 10D.

10.75(iv) Integrals of Bessel Functions

• Abramowitz and Stegun (1964, Chapter 11) tab-
ulates

∫ x
0
J0(t) dt,

∫ x
0
Y0(t) dt, x = 0(.1)10, 10D;∫ x

0
t−1(1 − J0(t)) dt,

∫∞
x
t−1 Y0(t) dt, x = 0(.1)5,

8D.

• Zhang and Jin (1996, p. 270) tabulates
∫ x

0
J0(t) dt,∫ x

0
t−1(1 − J0(t)) dt,

∫ x
0
Y0(t) dt,

∫∞
x
t−1 Y0(t) dt,

x = 0(.1)1(.5)20, 8D.

10.75(v) Modified Bessel Functions and their
Derivatives

• British Association for the Advancement of Sci-
ence (1937) tabulates I0(x), I1(x), x = 0(.001)5,
7–8D; K0(x), K1(x), x = 0.01(.01)5, 7–10D;
e−x I0(x), e−x I1(x), exK0(x), exK1(x), x =
5(.01)10(.1)20, 8D. Also included are auxiliary
functions to facilitate interpolation of the tables
of K0(x), K1(x) for small values of x.

• Bickley et al. (1952) tabulates x−n In(x) or
e−x In(x), xnKn(x) or exKn(x), n = 2(1)20,
x = 0(.01 or .1) 10(.1) 20, 8S; In(x), Kn(x),
n = 0(1)20, x = 0 or 0.1(.1)20, 10S.

• Olver (1962) provides tables for the uniform
asymptotic expansions given in §10.41(ii), includ-
ing η and the coefficients Uk(p), Vk(p) as func-
tions of p = (1 + x2)−

1
2 . These enable Iν(νx),

Kν(νx), I ′ν(νx), K ′ν(νx) to be computed to 10S
when ν ≥ 16.
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• The main tables in Abramowitz and Stegun (1964,
Chapter 9) give e−x In(x), exKn(x), n = 0, 1, 2,
x = 0(.1)10(.2)20, 8D–10D or 10S;

√
xe−x In(x),

(
√
x/π) exKn(x), n = 0, 1, 2, 1/x = 0(.002)0.05;

K0(x) + I0(x) lnx, x(K1(x) − I1(x) lnx), x =
0(.1)2, 8D; e−x In(x), exKn(x), n = 3(1)9,
x = 0(.2)10(.5)20, 5S; In(x), Kn(x), n =
0(1)20(10)50, 100, x = 1, 2, 5, 10, 50, 100, 9–10S.

• Achenbach (1986) tabulates I0(x), I1(x), K0(x),
K1(x), x = 0(.1)8, 19D or 19–21S.

• Zhang and Jin (1996, pp. 240–250) tabu-
lates In(x), I ′n(x), Kn(x), K ′n(x), n =
0(1)10(10)50, 100, x = 1, 5, 10, 25, 50, 100, 9S;
In+α(x), I ′n+α(x), Kn+α(x), K ′n+α(x), n = 0(1)5,
10, 30, 50, 100, α = 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , x = 1, 5, 10, 50,
8S; real and imaginary parts of In+α(z), I ′n+α(z),
Kn+α(z), K ′n+α(z), n = 0(1)15, 20(10)50, 100,
α = 0, 1

2 , z = 4 + 2i, 20 + 10i, 8S.

10.75(vi) Zeros of Modified Bessel Functions
and their Derivatives

• Parnes (1972) tabulates all zeros of the principal
value of Kn(z), for n = 2(1)10, 9D.

• Leung and Ghaderpanah (1979), tabulates all ze-
ros of the principal value of Kn(z), for n = 2(1)10,
29S.

• Kerimov and Skorokhodov (1984b) tabulates all
zeros of the principal values of Kn(z) and K ′n(z),
for n = 2(1)20, 9S.

• Kerimov and Skorokhodov (1984c) tabulates all
zeros of I−n− 1

2
(z) and I ′−n− 1

2
(z) in the sector

0 ≤ ph z ≤ 1
2π for n = 1(1)20, 9S.

• Kerimov and Skorokhodov (1985b) tabulates all
zeros of Kn(z) and K ′n(z) in the sector − 1

2π <
ph z ≤ 3

2π for n = 0(1)5, 8D.

10.75(vii) Integrals of Modified Bessel
Functions

• Abramowitz and Stegun (1964, Chapter 11) tabu-
lates e−x

∫ x
0
I0(t) dt, ex

∫∞
x
K0(t) dt, x = 0(.1)10,

7D; e−x
∫ x

0
t−1(I0(t) − 1) dt, xex

∫∞
x
t−1K0(t) dt,

x = 0(.1)5, 6D.

• Bickley and Nayler (1935) tabulates Kin(x)
(§10.43(iii)) for n = 1(1)16, x = 0(.05)0.2(.1) 2, 3,
9D.

• Zhang and Jin (1996, p. 271) tabu-
lates e−x

∫ x
0
I0(t) dt, e−x

∫ x
0
t−1(I0(t) − 1) dt,

ex
∫∞
x
K0(t) dt, xex

∫∞
x
t−1K0(t) dt, x =

0(.1)1(.5)20, 8D.

10.75(viii) Modified Bessel Functions of
Imaginary or Complex Order

For the notation see §10.45.

• Žurina and Karmazina (1967) tabulates K̃ν(x) for
ν = 0.01(.01)10, x = 0.1(.1)10.2, 7S.

• Rappoport (1979) tabulates the real and imag-
inary parts of K 1

2 +iτ (x) for τ = 0.01(.01)10,
x = 0.1(.2)9.5, 7S.

10.75(ix) Spherical Bessel Functions, Modified
Spherical Bessel Functions, and their
Derivatives

• The main tables in Abramowitz and Stegun (1964,
Chapter 10) give jn(x), yn(x) n = 0(1)8, x =
0(.1)10, 5–8S; jn(x), yn(x) n = 0(1)20(10)50,
100, x = 1, 2, 5, 10, 50, 100, 10S; i

(1)
n (x), kn(x),

n = 0, 1, 2, x = 0(.1)5, 4–9D; i
(1)
n (x), kn(x),

n = 0(1)20(10)50, 100, x = 1, 2, 5, 10, 50, 100, 10S.
(For the notation see §10.1 and §10.47(ii).)

• Zhang and Jin (1996, pp. 296–305) tabulates

jn(x), j′n(x), yn(x), y′n(x), i
(1)
n (x), i

(1)
n

′
(x), kn(x),

k′n(x), n = 0(1)10(10)30, 50, 100, x = 1, 5, 10, 25,
50, 100, 8S; x jn(x), (x jn(x))′, x yn(x), (x yn(x))′

(Riccati–Bessel functions and their derivatives),
n = 0(1)10(10)30, 50, 100, x = 1, 5, 10, 25,
50, 100, 8S; real and imaginary parts of jn(z),

j′n(z), yn(z), y′n(z), i
(1)
n (z), i

(1)
n

′
(z), kn(z), k′n(z),

n = 0(1)15, 20(10)50, 100, z = 4 + 2i, 20 + 10i,
8S. (For the notation replace j, y, i, k by j, y, i(1),
k, respectively.)

10.75(x) Zeros and Associated Values of
Derivatives of Spherical Bessel
Functions

For the notation see §10.58.

• Olver (1960) tabulates a′n,m, jn
(
a′n,m

)
, b′n,m,

yn
(
b′n,m

)
, n = 1(1)20, m = 1(1)50, 8D. Also in-

cluded are tables of the coefficients in the uniform
asymptotic expansions of these zeros and associ-
ated values as n→∞.
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10.75(xi) Kelvin Functions and their Derivatives

• Young and Kirk (1964) tabulates bern x, bein x,
kern x, kein x, n = 0, 1, x = 0(.1)10, 15D; bern x,
bein x, kern x, kein x, modulus and phase func-
tions Mn(x), θn(x), Nn(x), φn(x), n = 0, 1, 2,
x = 0(.01)2.5, 8S, and n = 0(1)10, x = 0(.1)10,
7S. Also included are auxiliary functions to facili-
tate interpolation of the tables for n = 0(1)10 for
small values of x. (Concerning the phase functions
see §10.68(iv).)

• Abramowitz and Stegun (1964, Chapter 9) tab-
ulates bern x, bein x, kern x, kein x, n = 0, 1,
x = 0(.1)5, 9–10D; xn(kern x + (bern x)(lnx)),
xn(kein x + (bein x)(lnx)), n = 0, 1, x =
0(.1)1, 9D; modulus and phase functions Mn(x),
θn(x), Nn(x), φn(x), n = 0, 1, x =
0(.2)7, 6D;

√
xe−x/

√
2Mn(x), θn(x) − (x/

√
2),√

xex/
√

2Nn(x), φn(x) + (x/
√

2), n = 0, 1, 1/x =
0(.01)0.15, 5D.

• Zhang and Jin (1996, p. 322) tabulates ber x,
ber′x, bei x, bei′x, ker x, ker′x, kei x, kei′x, x =
0(1)20, 7S.

10.75(xii) Zeros of Kelvin Functions and their
Derivatives

• Zhang and Jin (1996, p. 323) tabulates the first 20
real zeros of ber x, ber′x, bei x, bei′x, ker x, ker′x,
kei x, kei′x, 8D.

10.76 Approximations

10.76(i) Introduction

Because of the comprehensive nature of more recent
software packages (§10.77), the following subsections in-
clude only references that give representative examples
of the kind of approximations that can be used to gen-
erate the functions that appear in the present chapter.
For references to other approximations, see for example,
Luke (1975, §9.13.3).

10.76(ii) Bessel Functions, Hankel Functions,
and Modified Bessel Functions

Real Variable and Order : Functions

Luke (1971a,b, 1972), Luke (1975, Tables 9.1, 9.2, 9.5,
9.6, 9.11–9.15, 9.17–9.21), Weniger and Č́ıžek (1990),
Németh (1992, Chapters 4–6).

Real Variable and Order : Zeros

Piessens (1984, 1990), Piessens and Ahmed (1986),
Németh (1992, Chapter 7).

Real Variable and Order : Integrals

Luke (1975, Tables 9.3, 9.4, 9.7–9.9, 9.16, 9.22), Németh
(1992, Chapter 10).

Complex Variable; Real Order

Luke (1975, Tables 9.23–9.28), Coleman and Monaghan
(1983), Coleman (1987), Zhang (1996), Zhang and Bel-
ward (1997).

Real Variable; Imaginary Order

Poquérusse and Alexiou (1999).

10.76(iii) Other Functions

Bickley Functions

Blair et al. (1978).

Spherical Bessel Functions

Delic (1979).

Kelvin Functions

Luke (1975, Table 9.10), Németh (1992, Chapter 9).

10.77 Software

See http://dlmf.nist.gov/10.77.

References

General References

The main references used in writing this chapter are
Watson (1944) and Olver (1997b).

Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§10.2 Olver (1997b, pp. 57, 237–238, 242–243) and
Watson (1944, pp. 38–45, 57–64, 196–198). The
conclusions in §10.2(iii) follow from §2.7(iv) and
the limiting forms of the solutions as z → 0 and
as z →∞; see §10.7.

§10.3 These graphics were produced at NIST.

§10.4 Olver (1997b, pp. 56, 238–239, 242–243) and
Watson (1944, pp. 74–75).

§10.5 For the Wronskians use (1.13.5) and the limiting
forms in §10.7. Then for the cross-products apply
(10.6.2).
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§10.6 For (10.6.1) and (10.6.2) see Olver (1997b,
pp. 58–59, 240–242) or Watson (1944, pp. 45, 66,
73–74). (10.6.3) are special cases, and (10.6.4),
(10.6.5) follow by straightforward substitution.
For (10.6.6) see Watson (1944, pp. 46). For
(10.6.7) use induction combined with the second
of (10.6.1). For (10.6.8)–(10.6.10) see Goodwin
(1949b).

§10.7 For (10.7.1) and (10.7.3) use (10.2.2) and
(10.8.2). For (10.7.2) use (10.4.3) and (10.7.1).
For (10.7.4) and (10.7.5) use (10.2.3) and (10.7.3)
when ν is not an integer; (10.4.1), (10.8.1) other-
wise. For (10.7.6) use (10.2.3) and (10.7.3). For
(10.7.7) use (10.4.3), (10.7.3), and (10.7.4). For
(10.7.8) see (10.17.3) and (10.17.4).

§10.8 Olver (1997b, p. 243) and Watson (1944, p. 147).

§10.9 Watson (1944, pp. 19–21, 47–48, 68–71, 150,
160–170, 174–180, 436, 438, 441–444). For
(10.9.3) see Olver (1997b, p. 244) (with “Exer-
cises 2.2 and 9.5” corrected to “Exercises 2.3 and
9.5”). For (10.9.5), (10.9.10), (10.9.11), (10.9.13),
(10.9.14) see Erdélyi et al. (1953b, pp. 18, 21, 82).
(The condition <(z ± ζ) > 0 in (10.9.14) is weaker
than the corresponding condition in Erdélyi et al.
(1953b, p. 82, Eq. (18)).) (10.9.15), (10.9.16) fol-
low from (10.9.10), (10.9.11) by change of vari-
ables z = ζ coshφ, t → t − ln tanh(1

2φ), φ > 0.
For (10.9.27) see Erdélyi et al. (1953b, p. 47). See
also Olver (1997b, pp. 340–341).

§10.10 Watson (1944, §§5.6, 9.65).

§10.11 For (10.11.1)–(10.11.5) use (10.2.2), (10.2.3),
(10.4.3). For (10.11.6)–(10.11.8) take limits. For
(10.11.9) use the Schwarz Reflection Principle
(§1.10(ii)).

§10.12 For (10.12.1) see Olver (1997b, pp. 55–56). For
(10.12.2)–(10.12.6) set t = eiθ and ieiθ, and ap-
ply other straighforward substitutions, including
differentiations with respect to θ in the case of
(10.12.6). See also Watson (1944, pp. 22–23).

§10.13 These results are obtainable from (10.2.1) by
straightforward substitutions. See also §1.13(v).

§10.14 Watson (1944, pp. 49, 258–259, 268–270, 406)
and Olver (1997b, pp. 59, 426).

§10.15 For (10.15.1) see Watson (1944, pp. 61–62) or
Olver (1997b, p. 243). For (10.15.2) use (10.2.3).
For (10.15.3)–(10.15.5) see Olver (1997b, p. 244).
(10.15.6)–(10.15.9) appear without proof in Mag-
nus et al. (1966, §3.3.3). To derive (10.15.6)

the left-hand side satisfies the differential equa-
tion x2(d2W

/
dx2 ) + x(dW/dx ) + (x2 − 1

4 )W =√
2/(πx) sinx, obtained by differentiating (10.2.1)

with respect to ν, setting ν = 1
2 , and referring

to (10.16.1) for w. This inhomogeneous equation
for W can be solved by variation of parameters
(§1.13(ii)), using the fact that independent so-
lutions of the corresponding homogeneous equa-
tion are J 1

2
(x) and Y 1

2
(x) with Wronskian 2/(πx),

and subsequently referring to (6.2.9) and (6.2.11).
Similarly for (10.15.7). (10.15.8) and (10.15.9)
follow from (10.15.2), (10.15.6), (10.15.7), and
(10.16.1).

§10.16 For (10.16.3), (10.16.4) see Miller (1955, p. 43).
For (10.16.5) and (10.16.6) see Olver (1997b,
pp. 255, 259) and apply (10.27.8). For (10.16.7)
and (10.16.8) apply (13.14.4) and (13.14.5). For
(10.16.9) combine (10.2.2) and (16.2.1).

§10.17 Olver (1997b, pp. 237–242, 266–269), Watson
(1944, pp. 205–206). (10.17.8)–(10.17.12) follow
by differentiation of the corresponding expansions
in §10.17(i); compare §2.1(iii). For (10.17.16)–
(10.17.18) see Olver (1991b, Theorem 1) or Olver
(1993a, Theorem 1.1), and (10.16.6).

§10.18 For (10.18.3) see §10.7(i). (10.18.4)–(10.18.16)
are verifiable by straightforward substitutions.
For (10.18.17), and also the concluding para-
graph of §10.18(iii), see Watson (1944, pp. 448–
449). For (10.18.19) substitute into N2

ν (x) =

H
(1)
ν

′
(x)H(2)

ν

′
(x) by means of (10.17.11),

(10.17.12). The general term in (10.18.20) can
be verified via (10.18.10). For (10.18.18) the first
two terms can be found from (10.18.7), (10.17.3),
(10.17.4), except for an arbitrary integer multiple
of π. Higher terms can be calculated via (10.18.8),
(10.18.17). By continuity, the multiple of π is in-
dependent of ν, hence it may be determined, e.g.
by setting ν = 1

2 and referring to (10.16.1). Sim-
ilar methods can be used for (10.18.21), together
with the interlacing properties of the zeros of
J1/2(z), Y1/2(z), and their derivatives (§10.21(i)).
See also Bickley et al. (1952, p. xxxiv).

§10.19 (10.19.1), (10.19.2) follow from (10.2.2),
(10.2.3), (10.4.3), (10.8.1), (5.5.3), (5.11.3). For
(10.19.3) and (10.19.6) see Watson (1944, pp. 241–
245) and Bickley et al. (1952, p. xxxv). The ex-
pansions for the derivatives are established in a
similar manner, with the coefficients calculated by
term-by-term differentiation; compare §2.1(iii).

§10.20 Olver (1997b, pp. 419–425), Olver (1954).
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§10.21 For §10.21(i) see Watson (1944, pp. 477–487),
Olver (1997b, pp. 244–249), Döring (1971), and
Kerimov and Skorokhodov (1985a). For §10.21(ii)
see Watson (1944, pp. 508 and 510) and Olver
(1950). (In the latter reference t in (10.21.4) is re-
placed by −t.) (10.21.5) and (10.21.6) follow from
(10.6.2). (10.21.12) and (10.21.13) follow from
(10.18.3), (10.21.2), (10.21.3), and the fact that
θν(x) is increasing when x > 0, whereas φν(x)
is decreasing when 0 < x < ν and increasing
when x > ν; compare (10.18.8). For (10.21.15),
(10.21.16) see Watson (1944, pp. 497–498). For
§10.21(iv) see Watson (1944, pp. 508–510), Lorch
(1990, 1995), Wong and Lang (1991), McCann
(1977), Lewis and Muldoon (1977), and Mercer
(1992). For (10.21.19) see Watson (1944, pp. 503–
507) or Olver (1997b, pp. 247–248). Similar meth-
ods can be used for (10.21.20). For (10.21.22)–
(10.21.40) see Olver (1951, 1952). The zeros de-
picted in Figures 10.21.1–10.21.6 were computed
at NIST using methods referred to in §10.74(vi).
For (10.21.48)–(10.21.54) see McMahon (9495),
Gray et al. (1922, p. 261), and Cochran (1964).

§10.22 For (10.22.1)–(10.22.3) differentiate and use
(10.6.2), (11.4.27), (11.4.28). For (10.22.4)–
(10.22.7) see Watson (1944, pp. 132–136). For
(10.22.8)–(10.22.12) see Luke (1962, pp. 51–53).
To verify (10.22.13) construct the expansion of
the left-hand side in powers of z by use of
(10.2.2), followed by term-by-term integration
with the aid of (5.12.5) and (5.12.1). Then com-
pare the result with the corresponding expan-
sion of the right-hand side obtained from (10.8.3).
Next, the result

∫ 2π

0
J2ν(2z sin θ)e±2iµθ dθ =

πe±iµπ Jν+µ(z) Jν−µ(z), <ν > − 1
2 , is proved in

a similar manner with the aid of (5.12.6) in place
of (5.12.5)—from which (10.22.14) and (10.22.15)
both follow. (10.22.17) follows by combining
(10.22.13) and (10.2.3); (10.22.16) is a special
case of (10.22.14). For (10.22.18) replace θ by
1
2π − θ and set µ = n in (10.22.17); then apply
(10.2.3) and let ν → 0. For (10.22.19), (10.22.22),
(10.22.25), (10.22.26) see Watson (1944, Chap-
ter 12). (In the case of (10.22.25), page 374 of this
reference lacks a factor 1

2 on the right-hand side.)
The verification of (10.22.20) is similar to that of
(10.22.13), the role of (5.12.5) now being played
by (5.12.2). For (10.22.21) combine (10.2.3) and
(10.22.20). For (10.22.23) and (10.22.24) see
Luke (1962, p. 302 (36) and p. 303 (39), respec-
tively). For (10.22.27) see Watson (1944, p. 151).
For (10.22.28), (10.22.29) differentiate and use
(10.6.2). For (10.22.30) with n ≥ 1 it follows by

differentiation and use of (10.6.2) that the left-
hand side equals

∫ x
0
t−1 J2

n(t) dt − 1
2 J

2
n(x); appli-

cation of Watson (1944, p. 152) yields the second
result, then for the first result refer to (10.23.3).
Some modifications of the proof of (10.22.30) are
needed when n = 0. For (10.22.31)–(10.22.35) see
Watson (1944, p. 380). For (10.22.36) replace t
by z − t, substitute for tα via (10.23.15) (with z
replaced by t, and ν replaced by α), and then ap-
ply (10.22.34). For (10.22.37) use (10.22.4) and
(10.22.5); a similar proof applies to (10.22.38) af-
ter replacing Cµ±1(az) and Dµ±1(bz) by ∓C ′µ(az)
and ∓D ′µ(bz), respectively, by means of (10.6.2).
For the first result in (10.22.39) use (10.22.43)
with ν = 0 and µ replaced by µ − 1, split the
integration range at t = x and take limits as
µ → 0; for the second result substitute into the
first result by (10.2.2) and integrate term by term.
(10.22.40), is proved in a similar manner, start-
ing from (10.22.44) and substituting by means of
(10.8.2) and (10.2.2) with ν = 0 for the term-
by-term integration. For (10.22.41)–(10.22.45) see
Luke (1962, pp. 56–57). For (10.22.46) see Erdélyi
et al. (1953b, p. 96). (10.22.47) is the special
case of Eq. (6) of Watson (1944, §13.53) obtained
by setting µ = b = 0, ρ = ν + 1, and sub-
sequently replacing k by b. For (10.22.48) see
Sneddon (1966, Eq. (2.1.32)). For (10.22.49)–
(10.22.59) see Watson (1944, pp. 385, 394, 403–
405, 407; there is an error in Eq. (1), p. 407). For
(10.22.60) differentiate (10.22.59) with respect to
µ and use (10.2.4) with n = 0. For (10.22.61) see
Watson (1944, p. 405). (10.22.62) follows from
(10.22.56) with λ = ν − µ − 1 and (15.4.6). For
(10.22.63), (10.22.64) see Watson (1944, p. 404).
For (10.22.65) apply (10.22.56) with µ = ν = 0,
then let λ → 1. For (10.22.66), (10.22.67) see
Watson (1944, pp. 389, 395). For (10.22.68) set
a = b in (10.22.67), differentiate with respect to ν
and apply (10.2.4) and (10.27.5) with n = 0. For
(10.22.69), (10.22.70), see Watson (1944, p. 429,
Eqs. (3),(4), with µ = ν+1 in (3)). For (10.22.71),
(10.22.72) see Watson (1944, pp. 411, 412). For
(10.22.74), (10.22.75) see Watson (1944, pp. 411)
and Askey et al. (1986).

§10.23 Watson (1944, §§5.22, 11.3, 11.4, 16.11 and
pp. 64, 67, 71, 138). (10.23.2) is obtained from
(10.23.7) by taking χ = 0 and α = 0, π. For
(10.23.21) see Temme (1996a, p. 247).

§10.24 (10.24.6)–(10.24.9) follow from (10.24.2)–
(10.24.4) combined with (10.2.2), (10.2.3),
(10.8.2), (10.17.3), and (10.17.4). (10.24.5) can
be verified from (1.13.5) and either (10.24.6) or
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(10.24.7)–(10.24.9) and their differentiated forms.

§10.25 Olver (1997b, pp. 60, 236–237, 250). The con-
clusions in §10.25(iii) follow from §2.7(iv) and the
limiting forms of the solutions as z → 0 and z →
∞; see (10.25.3) and §10.30. See also (10.27.3).

§10.26 These graphics were produced at NIST.

§10.27 For (10.27.1)–(10.27.6) and (10.27.8) see Olver
(1997b, pp. 60–61 and 250–252), Watson (1944,
pp. 77–79), and (10.11.5). For (10.27.7),
(10.27.9),–(10.27.11) combine these results with
(10.4.4), and also use (10.34.2) with m = 1.

§10.28 For the Wronskians use (1.13.5) and the limit-
ing forms in §10.30. For the cross-products apply
(10.29.2).

§10.29 Watson (1944, p. 79). For (10.29.5) use induc-
tion combined with the second of (10.29.1).

§10.30 For (10.30.1) use (10.25.2). For (10.30.2) and
(10.30.3) use (10.27.4) when ν is not an inte-
ger; (10.27.3), (10.31.1) otherwise. For (10.30.4),
(10.30.5) use (10.40.1) and (10.34.1) withm = ±1.

§10.31 Olver (1997b, p. 253) or Watson (1944, p. 80).
For (10.31.3) combine (10.8.3) and (10.27.6).

§10.32 Watson (1944, pp. 79, 80, 172, 181–183, 191,
193, 439–441), Erdélyi et al. (1953b, p. 82, 97–
98), Paris and Kaminski (2001, p. 114). Also
use (10.27.8). For (10.32.16) see Dixon and Fer-
rar (1930). (An error in the conditions has been
corrected.) For (10.32.19) see Titchmarsh (1986a,
Eq. (7.10.2)).

§10.33 Combine (10.10.1), (10.10.2) with (10.27.6).

§10.34 Watson (1944, p. 80) and Olver (1997b, pp. 253,
381). For (10.34.3) take m = ±1 in (10.34.2), and
combine with (10.34.1).

§10.35 For (10.35.1) replace z and t in (10.12.1) by
iz and −it, respectively, and apply (10.27.6).
(10.35.2)–(10.35.6) are obtained by setting t = eiθ,
t = −ieiθ, together with other straightforward
substitutions.

§10.37 Olver (1997b, pp. 251–252). For (10.37.1) see
Everitt and Jones (1977).

§10.38 (10.38.1) is obtained by differentiation of
(10.25.2); compare (10.15.1). For (10.38.2) use
(10.27.4). (10.38.3)–(10.38.5) are proved in a sim-
ilar way to (10.15.3)–(10.15.5). (10.38.6) and
(10.38.7) are stated without proof and in a slightly
different notation in Magnus et al. (1966, §3.3.3).

Both cases of (10.38.6) can be derived by a
method analogous to that used for (10.15.6) and
(10.15.7). (10.38.7) follows from (10.38.2) and
(10.38.6).

§10.39 For (10.39.5)–(10.39.10) combine (10.16.5)–
(10.16.10) with (10.27.6) and (10.27.8).

§10.40 Watson (1944, pp. 202–203, 206–207), Olver
(1997b, pp. 250–251, 266–269, 325). Also use
(10.27.8). (10.40.3) and (10.40.4) are obtained
by differentiation of (10.40.1) and (10.40.2); com-
pare §2.1(iii). (10.40.6) and (10.40.7) are ob-
tained by multiplication of (10.40.1)–(10.40.4):
that the coefficients are the same as in (10.18.17)
and (10.18.19) is a consequence of the fact that
Iν(x)Kν(x) and I ′ν(x)K ′ν(x) satisfy the same dif-
ferential equations as M2

ν (x) = |H(1)
ν (x)|2 =

H
(1)
ν (x)H(2)

ν (x) and N2
ν (x) = |H(1)

ν

′
(x)|2 =

H
(1)
ν

′
(x)H(2)

ν

′
(x), respectively, except for replace-

ment of x by ix. For the statement concerning the
accuracy of (10.40.5) use the error bounds given
by (10.40.10)–(10.40.12). For (10.40.14) see Olver
(1991b) together with (10.39.6).

§10.41 Olver (1997b, pp. 374–378). For (10.41.1),
(10.41.2) combine (10.19.1), (10.19.2) with
(10.27.6), (10.27.8).

§10.42 Watson (1944, pp. 511–513) and Olver (1997b,
p. 254).

§10.43 For (10.43.1)–(10.43.3) differentiate, apply
(10.29.2), and also (11.4.29) and (11.4.30) in the
case of (10.43.2). For (10.43.4) replace x by ix
in (10.22.11), (10.22.12) and use (10.27.6). For
(10.43.5) combine (10.22.39) and (10.22.40) by
means of (10.4.3) to obtain an expansion for∫∞
x

(H(1)
0 (t)/t) dt; then replace x by ix and use

(10.27.8). For (10.43.6)–(10.43.10) differentiate,
apply §10.29(i) and also verify the limiting behav-
ior as x→ 0 or x→∞. For (10.43.12) substitute
into (10.43.11) by means of (10.32.9) with ν = 0,
invert the order of integration and apply (5.2.1).
(10.43.13)–(10.43.16) follow from (10.43.12), and
in the case of (10.43.16), (5.12.1). For (10.43.17)
see Bickley and Nayler (1935). For §10.43(iv) see
Watson (1944, pp. 388, 394–395, 410). For some
results it is necessary to use the connection formu-
las (10.27.6); for example, to obtain (10.43.23) set
a = ib in Watson (1944, p. 394, Eq. (4)). Equa-
tions (10.43.22) follow from Eq. (7) of Watson
(1944, §13.21). For (10.43.25) see Erdélyi et al.
(1953b, p. 51). For (10.43.29) combine (10.22.68),
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(10.27.6), (10.27.10). In §10.43(v), for Condi-
tions (a) see Sneddon (1972, pp. 359–361). For
Conditions (b) see Lebedev et al. (1965, pp. 194–
196).

§10.44 For (10.44.1) combine (10.23.1) with (10.27.6)
or with (10.27.8). Equations (10.44.2) are
special cases of (10.23.1) and (10.44.1) with
λ = i. For (10.44.3) combine (10.23.2) and
(10.27.1) with (10.27.6) or with (10.27.8). For
(10.44.4)–(10.44.6) combine (10.23.15)–(10.23.17)
with (10.27.6), (10.27.8), and (10.4.3).

§10.45 Equations (10.45.5)–(10.45.8) follow from
(10.25.2), (10.27.4), (10.31.2), (10.40.1), and
(10.40.2). The Wronskian (10.45.4) can be verified
from (1.13.5) and either (10.45.5) or (10.45.6)–
(10.45.8) and their differentiated forms.

§10.47 For (10.47.3)–(10.47.9) use (10.2.3), (10.4.6),
(10.27.3). For §10.47(iii) use §10.52. For
(10.47.10)–(10.47.13) use (10.4.3), (10.27.4),
(10.27.6), (10.27.8), and the definitions (10.47.3)–
(10.47.9). For (10.47.14)–(10.47.16) use (10.11.1),
(10.11.2), (10.34.1), with m = 1 in each case, and
the definitions (10.47.3)–(10.47.9). For (10.47.17)
use (10.47.11) and (10.47.16).

§10.48 These graphs were produced at NIST.

§10.49 For (10.49.1)–(10.49.7) observe that when ν =
n + 1

2 the asymptotic expansions (10.17.3)–
(10.17.6) terminate, and as a consequence of the
error bounds of §10.17(iv) they represent the left-
hand sides exactly. For (10.49.8)–(10.49.13) use
the same method as for (10.49.1)–(10.49.7), or
combine the results of §10.49(i) with (10.47.12)
and (10.47.13). For the first of (10.49.14) combine
the second of (10.51.3), with n = 0 and m = n,
and the first of (10.49.3). Similarly for the second
of (10.49.14) and also (10.49.15), (10.49.16). For
(10.49.18) observe that from (10.18.6), (10.47.3),
and (10.47.4), j2n(z) + y2

n(z) = (π/(2z))M2
n+ 1

2
(z).

Then apply (10.18.17). To derive (10.49.20) com-
bine (10.47.12) and (10.49.18).

§10.50 That the Wronskians are constant multiples of
z−2 follows from (1.13.5). The constants can be
found from the limiting forms (and their deriva-
tives) given in §§10.52(i) or 10.52(ii). For (10.50.3)
combine (10.50.1) with (10.51.1) and (10.51.2).
For (10.50.4) use (10.49.2)–(10.49.5).

§10.51 For (10.51.1) and (10.51.2) combine (10.6.1)
and (10.6.2) with the definitions (10.47.3)–
(10.47.5). For (10.51.3) apply induction with the

aid of (10.51.2). For (10.51.4) and (10.51.5) com-
bine (10.29.1) and (10.29.2) with the definitions
(10.47.7) and (10.47.9). For (10.51.6) apply in-
duction with the aid of (10.51.5).

§10.52 For (10.52.1), (10.52.2) use §10.53. For
(10.52.3)–(10.52.6) use (10.49.2), (10.49.4),
(10.49.6)–(10.49.8), (10.49.10), and (10.49.12).

§10.53 Combine (10.2.2) and (10.25.2) with (10.47.3),
(10.47.4), and (10.47.7).

§10.54 Watson (1944, pp. 50 and 174–175). For
(10.54.1) use (10.9.4).

§10.56 To verify (10.56.1) and (10.56.2) show that
each side of both equations satisfies the differen-
tial equation (2t − z)(d2w

/
dt2 ) + (dw/dt ) = zw

via the first of (10.51.1) and (10.49.3), (10.49.5).
Then check the initial conditions at t = 0.
(10.56.3) and (10.56.4) follow from (10.56.1) and
(10.56.2) via (10.47.12); then (10.56.5) follows
from (10.47.11).

§10.57 For (10.57.1) use the differentiated form of the
first of (10.47.3).

§10.59 For (10.59.1) suppose first b 6= 0. The left-hand
side is 2i

∫∞
0

sin(bt) jn(t) dt or 2
∫∞

0
cos(bt) jn(t) dt

according as n is odd or even, see (10.47.14).
Next, apply (10.22.64) with a = 1, µ = 1

2 or
− 1

2 , and subsequently replace 2n + 1 or 2n by n.
For J±( 1/2 )(bt) and Jn+( 1/2 )(t) we have (10.16.1)
and (10.47.3); also the function 2F1 is interpreted
as a Legendre polynomial for both odd and even
n via (14.3.11), (14.3.13), and (14.3.14). When
b = 0, use (10.22.43), (10.47.3), and also Pn(0) =
(−1)

1
2n
(

1
2

)
1
2n

/
( 1

2n)! or 0, according as the non-
negative integer n is even or odd; see (14.5.1) and
§5.5.

§10.60 For (10.60.1)–(10.60.3) use (10.23.8) with ν = 1
2

and C = Y, J,H(1); subsequently apply (10.47.12)
and (10.47.13) in the case of (10.60.3). For
(10.60.4) set Cν = Yν , u = v = z, ν =
−n − 1

2 , and α = π in (10.23.8). Then re-
fer to (10.47.3), (10.47.4), and also apply the
following results obtained from Table 18.6.1:
C

(−n− 1
2 )

k (−1) equals (2n+ 1)!/(k!(2n+ 1− k)!)
when k = 0, 1, . . . , 2n + 1, and equals 0 when
k = 2n+ 2, 2n+ 3, . . . . For (10.60.5) use the same
procedure, but with Cν = Jν . (10.60.6) follows by
combining (10.60.4) and (10.60.5) with §10.47(iv).
For (10.60.7)–(10.60.9) see Watson (1944, pp.368–
369). For (10.60.10) use Watson (1944, p. 370,
Eq. (9)) with ν = 1

2 , φ = α, φ′ = 1
2π; also
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Eq. (18.7.9). For (10.60.11) see Watson (1944,
p. 152). For (10.60.12) and (10.60.13) substitute
u = v = z, with α = 0 and π, into (10.60.2). For
(10.60.14) see Vavreck and Thompson (1984).

§10.61 For (10.61.3) set z = xe3πi/4 in (10.2.1).
(10.61.4) follows by taking real and imagi-
nary parts, and straightforward substitutions.
For (10.61.5)–(10.61.8) see Whitehead (1911).
(10.61.11) and (10.61.12) follow from the termi-
nating forms of (10.67.1) and (10.67.2). Then
(10.61.9) and (10.61.10) follow from these re-
sults and the terminating forms of (10.67.3) and
(10.67.4). (Compare the derivation of the results
given in §10.49(i) from (10.17.3)–(10.17.6).) The
version of (10.61.9)–(10.61.10) given in Apelblat
(1991) contains two sign errors.

§10.62 These graphs were produced at NIST.

§10.63 For (10.63.1)–(10.63.4) set z = xe3πi/4 in
(10.6.1) and (10.6.2). For (10.63.5)–(10.63.7) set
a = xe3πi/4. Then from (10.61.1) and (10.63.5)
Jν(a) Jν(ā) = pν , J ′ν(a) J ′ν(ā) = sν , Jν(a) J ′ν(ā) =
e3πi/4(rν − iqν), Jν(ā) J ′ν(a) = e−3πi/4(rν + iqν).
Combine these results with (10.6.2) and eliminate
the derivatives. See also Petiau (1955, pp. 266–
267) (but this reference contains errors). For
the functions kerν x and keiν x use the second of
(10.61.2).

§10.65 Whitehead (1911). For (10.65.1), (10.65.2)
combine (10.2.2), (10.61.1). For (10.65.3)–
(10.65.5) combine (10.31.1), (10.61.1), and
(10.61.2); see also Young and Kirk (1964, p. x).

§10.66 For (10.66.1) apply (10.23.1) with C = J and
λ = e3πi/4; also (10.44.1) with Z = I and λ =

eπi/4. For (10.66.2) apply (10.23.2) with C = J,
ν = n, u = −x, v = ix, and equate real and
imaginary parts.

§10.67 For (10.67.1)–(10.67.8) combine (10.61.1),
(10.61.2), and their differentiated forms with
(10.40.1)–(10.40.4). To obtain the exponentially-
small terms in (10.67.3), (10.67.4), (10.67.7),
and (10.67.8), use the identity πi Iν

(
xeπi/4

)
=

Kν

(
xe−3πi/4

)
− eνπiKν

(
xeπi/4

)
, obtained from

(10.27.6) and (10.27.9). The final sentence in
§10.67(i) is justified by error bounds obtained as in
§10.40(iii). For (10.67.9)–(10.67.16), first replace
the cos and sin functions in (10.67.1)–(10.67.4)
by exponential functions by constructing the cor-
responding expansions for berν x ± i beiν x and
kerν x± i keiν x and discarding the exponentially-
small terms. Then set ν = 0 and apply straight-
forward manipulations.

§10.68 (10.68.3)–(10.68.15) are derived from the defini-
tions §10.68(i), the differential equation (10.61.3),
the reflection formulas in §10.61(iv), and re-
currence relations in §10.63(i) by straightfor-
ward manipulations. For (10.68.16)–(10.68.21)
combine (10.68.5) and (10.68.6) with (10.67.1)–
(10.67.4), ignoring the exponentially-small terms
in (10.67.3) and (10.67.4). See also Whitehead
(1911) and Young and Kirk (1964, pp. xiv–xv).

§10.69 Combine the results given in §§10.41(ii) and
10.41(iii) with the definitions (10.61.1) and
(10.61.2).

§10.70 Revert (10.68.18) and (10.68.21) (§2.2).

§10.71 Differentiate and use (10.63.2) and (10.68.5).
See also Young and Kirk (1964, pp. xvi–xvii).
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Notation

11.1 Special Notation

(For other notation see pp. xiv and 873.)
x real variable.
z complex variable.
ν real or complex order.
n integer order.
k nonnegative integer.
δ arbitrary small positive constant.

Unless indicated otherwise, primes denote deriva-
tives with respect to the argument. For the functions
Jν(z), Yν(z), H(1)

ν (z), H(2)
ν (z), Iν(z), and Kν(z) see

§§10.2(ii), 10.25(ii).
The functions treated in this chapter are the Struve

functions Hν(z) and Kν(z), the modified Struve func-
tions Lν(z) and Mν(z), the Lommel functions sµ,ν(z)
and Sµ,ν(z), the Anger function Jν(z), the Weber func-
tion Eν(z), and the associated Anger–Weber function
Aν(z).

Struve and Modified Struve
Functions

11.2 Definitions

11.2(i) Power-Series Expansions

11.2.1 Hν(z) = ( 1
2z)

ν+1
∞∑
n=0

(−1)n( 1
2z)

2n

Γ
(
n+ 3

2

)
Γ
(
n+ ν + 3

2

) ,
11.2.2

Lν(z) = −ie− 1
2πiν Hν(iz)

= ( 1
2z)

ν+1
∞∑
n=0

( 1
2z)

2n

Γ
(
n+ 3

2

)
Γ
(
n+ ν + 3

2

) .
Principal values correspond to principal values of
( 1

2z)
ν+1; compare §4.2(i).

The expansions (11.2.1) and (11.2.2) are absolutely
convergent for all finite values of z. The functions
z−ν−1 Hν(z) and z−ν−1 Lν(z) are entire functions of z
and ν.

11.2.3 H0(z) =
2
π

(
z − z3

12 · 32
+

z5

12 · 32 · 52
− · · ·

)
,

11.2.4 L0(z) =
2
π

(
z +

z3

12 · 32
+

z5

12 · 32 · 52
+ · · ·

)
.

11.2.5 Kν(z) = Hν(z)− Yν(z),

11.2.6 Mν(z) = Lν(z)− Iν(z).

Principal values of Kν(z) and Mν(z) correspond to
principal values of the functions on the right-hand sides
of (11.2.5) and (11.2.6).

Unless indicated otherwise, Hν(z), Kν(z), Lν(z),
and Mν(z) assume their principal values throughout
this Handbook.

11.2(ii) Differential Equations

Struve’s Equation

11.2.7
d2w

dz2 +
1
z

dw

dz
+
(

1− ν2

z2

)
w =

( 1
2z)

ν−1

√
π Γ
(
ν + 1

2

) .
Particular solutions:

11.2.8 w = Hν(z),Kν(z).

Modified Struve’s Equation

11.2.9
d2w

dz2 +
1
z

dw

dz
−
(

1 +
ν2

z2

)
w =

( 1
2z)

ν−1

√
π Γ
(
ν + 1

2

) .
Particular solutions:

11.2.10 w = Lν(z),Mν(z).

11.2(iii) Numerically Satisfactory Solutions

In this subsection A and B are arbitrary constants.
When z = x, 0 < x < ∞, and <ν ≥ 0, numerically

satisfactory general solutions of (11.2.7) are given by

11.2.11 w = Hν(x) +AJν(x) +B Yν(x),

11.2.12 w = Kν(x) +AJν(x) +B Yν(x).

(11.2.11) applies when x is bounded, and (11.2.12) ap-
plies when x is bounded away from the origin.

When z ∈ C and <ν ≥ 0, numerically satisfactory
general solutions of (11.2.7) are given by

11.2.13 w = Hν(z) +AJν(z) +BH(1)
ν (z),

11.2.14 w = Hν(z) +AJν(z) +BH(2)
ν (z),

11.2.15 w = Kν(z) +AH(1)
ν (z) +BH(2)

ν (z).

(11.2.13) applies when 0 ≤ ph z ≤ π and |z| is bounded.
(11.2.14) applies when −π ≤ ph z ≤ 0 and |z| is
bounded. (11.2.15) applies when |ph z| ≤ π and z is
bounded away from the origin.

When <ν ≥ 0, numerically satisfactory general so-
lutions of (11.2.9) are given by

11.2.16 w = Lν(z) +AKν(z) +B Iν(z),

11.2.17 w = Mν(z) +AKν(z) +B Iν(z).

(11.2.16) applies when |ph z| ≤ 1
2π with |z| bounded.

(11.2.17) applies when |ph z| ≤ 1
2π with z bounded

away from the origin.
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11.3 Graphics

11.3(i) Struve Functions

Figure 11.3.1: Hν(x) for 0 ≤ x ≤ 12 and ν =
0, 1

2 , 1,
3
2 , 2, 3.

Figure 11.3.2: Kν(x) for 0 < x ≤ 16 and ν =
0, 1

2 , 1,
3
2 , 2, 3.

Figure 11.3.3: Hν(x) for 0 ≤ x ≤ 12 and ν =
−3,−2,− 3

2 ,−1,− 1
2 .

Figure 11.3.4: Kν(x) for 0 < x ≤ 16 and ν =
−4,−3,−2,−1, 0. If ν = − 1

2 ,−
3
2 , . . . , then Kν(x) is

identically zero.

Figure 11.3.5: Hν(x) for 0 ≤ x ≤ 8 and −4 ≤ ν ≤ 4. Figure 11.3.6: Kν(x) for 0 ≤ x ≤ 8 and −4 ≤ ν ≤ 4.
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Figure 11.3.7: |H0(x+ iy)| for −8 ≤ x ≤ 8 and −3 ≤
y ≤ 3.

Figure 11.3.8: |K0(x+ iy)| (principal value) for −8 ≤
x ≤ 8 and −3 ≤ y ≤ 3. There is a cut along the
negative real axis.

For further graphics see http://dlmf.nist.gov/11.3.i.

11.3(ii) Modified Struve Functions

Figure 11.3.13: Lν(x) for 0 ≤ x < 4.38 and ν =
0, 1

2 , 1,
3
2 , 2, 3.

Figure 11.3.14: Mν(x) for 0 ≤ x ≤ 16 and ν =
0, 1

2 , 1,
3
2 , 2, 3.

Figure 11.3.15: Lν(x) for 0 ≤ x < 4.25 and ν =
−3,−2,− 3

2 ,−1,− 1
2 .

�

Figure 11.3.16: Mν(x) for 0 < x ≤ 16 and ν =
−3,−2,− 3

2 ,−1,− 1
2 .
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Figure 11.3.17: Lν(x) for 0 ≤ x ≤ 5.6 and −4 ≤ ν ≤ 4.
Figure 11.3.18: Mν(x) for 0 ≤ x ≤ 8 and −4 ≤ ν ≤ 4.

For further graphics see http://dlmf.nist.gov/11.3.ii.

11.4 Basic Properties

11.4(i) Half-Integer Orders

For n = 0, 1, 2, . . . ,

11.4.1 Kn+ 1
2
(z) =

(
2
πz

)1
2 n∑
m=0

(2m)! 2−2m

m! (n−m)!
( 1

2z)
n−2m,

11.4.2

Ln+ 1
2
(z) = I−n− 1

2
(z)

−
(

2
πz

)1
2 n∑
m=0

(−1)m(2m)! 2−2m

m! (n−m)!
( 1

2z)
n−2m,

11.4.3 H−n− 1
2
(z) = (−1)n Jn+ 1

2
(z),

11.4.4 L−n− 1
2
(z) = In+ 1

2
(z).

11.4.5 H 1
2
(z) =

(
2
πz

)1
2

(1− cos z),

11.4.6 H− 1
2
(z) =

(
2
πz

)1
2

sin z,

11.4.7 L 1
2
(z) =

(
2
πz

)1
2

(cosh z − 1),

11.4.8 L− 1
2
(z) =

(
2
πz

)1
2

sinh z,

11.4.9

H 3
2
(z) =

( z

2π

)1
2
(

1 +
2
z2

)
−
(

2
πz

)1
2 (

sin z +
cos z
z

)
,

11.4.10 H− 3
2
(z) =

(
2
πz

)1
2
(

cos z − sin z
z

)
,

11.4.11

L 3
2
(z) =−

( z

2π

)1
2
(

1− 2
z2

)
+
(

2
πz

)1
2
(

sinh z− cosh z
z

)
,

11.4.12 L− 3
2
(z) =

(
2
πz

)1
2
(

cosh z − sinh z
z

)
.

11.4(ii) Inequalities

11.4.13 Hν(x) ≥ 0, x > 0, ν ≥ 1
2 .

11.4.14

Hν(z) =
2( 1

2z)
ν+1

√
π Γ
(
ν + 3

2

) (1 + ϑ), ν 6= − 3
2 ,−

5
2 ,−

7
2 , . . . ,

where

11.4.15 |ϑ| < 2
3

exp
( 1

4 |z|
2

|ν0 + 3
2 |
− 1
)
,

and |ν0+ 3
2 | is the smallest of the numbers |ν+ 3

2 |, |ν+ 5
2 |,

|ν + 9
2 |, . . . .

11.4(iii) Analytic Continuation

11.4.16 Hν

(
zemπi

)
= emπi(ν+1) Hν(z), m ∈ Z,

11.4.17 Lν
(
zemπi

)
= emπi(ν+1) Lν(z), m ∈ Z.
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11.4(iv) Expansions in Series of Bessel
Functions

11.4.18

Hν(z) =
4

π1/2 Γ
(
ν + 1

2

)
×
∞∑
k=0

(2k + ν + 1) Γ(k + ν + 1)
k!(2k + 1)(2k + 2ν + 1)

J2k+ν+1(z),

ν 6= −1,−2,−3, . . . ,

11.4.19 Hν(z) =
( z

2π

)1/2 ∞∑
k=0

( 1
2z)

k

k!(k + 1
2 )
Jk+ν+ 1

2
(z),

11.4.20 Hν(z) =
( 1

2z)
ν+ 1

2

Γ
(
ν + 1

2

) ∞∑
k=0

( 1
2z)

k

k!(k + ν + 1
2 )
Jk+ 1

2
(z),

11.4.21

H0(z) =
4
π

∞∑
k=0

J2k+1(z)
2k + 1

= 2
∞∑
k=0

(−1)k J2
k+ 1

2

(
1
2z
)
,

11.4.22

H1(z) =
2
π

(1− J0(z)) +
4
π

∞∑
k=1

J2k(z)
4k2 − 1

= 4
∞∑
k=0

J2k+ 1
2

(
1
2z
)
J2k+ 3

2

(
1
2z
)
.

For these and further results see Luke (1969b, §9.4.5),
and §10.23(iii).

11.4(v) Recurrence Relations and Derivatives

11.4.23

Hν−1(z) + Hν+1(z) =
2ν
z

Hν(z) +
( 1

2z)
ν

√
π Γ
(
ν + 3

2

) ,
11.4.24

Hν−1(z)−Hν+1(z) = 2H′ν(z)−
( 1

2z)
ν

√
π Γ
(
ν + 3

2

) ,
11.4.25

Lν−1(z)− Lν+1(z) =
2ν
z

Lν(z) +
( 1

2z)
ν

√
π Γ
(
ν + 3

2

) ,
11.4.26

Lν−1(z) + Lν+1(z) = 2L′ν(z)−
( 1

2z)
ν

√
π Γ
(
ν + 3

2

) .
11.4.27

d

dz
(zν Hν(z)) = zν Hν−1(z),

11.4.28
d

dz

(
z−ν Hν(z)

)
=

2−ν
√
π Γ
(
ν + 3

2

)−z−ν Hν+1(z),

11.4.29
d

dz
(zν Lν(z)) = zν Lν−1(z),

11.4.30
d

dz

(
z−ν Lν(z)

)
=

2−ν
√
π Γ
(
ν + 3

2

) + z−ν Lν+1(z).

11.4.31

Hν−m(z) = zm−ν
(

1
z

d

dz

)m
(zνHν(z)), m = 1, 2, 3, . . . ,

where Hν(z) denotes either Hν(z) or Lν(z).

11.4.32 H′0(z) =
2
π
−H1(z),

d

dz
(zH1(z)) = zH0(z),

11.4.33 L′0(z) =
2
π

+ L1(z),
d

dz
(z L1(z)) = z L0(z).

11.4(vi) Derivatives with Respect to Order

For derivatives with respect to the order ν, see Apelblat
(1989) and Brychkov and Geddes (2005).

11.4(vii) Zeros

For properties of zeros of Hν(x) see Steinig (1970).
For asymptotic expansions of zeros of H0(x) see

MacLeod (2002a).

11.5 Integral Representations

11.5(i) Integrals Along the Real Line

11.5.1

Hν(z) =
2( 1

2z)
ν

√
π Γ
(
ν + 1

2

) ∫ 1

0

(1− t2)ν−
1
2 sin(zt) dt

=
2( 1

2z)
ν

√
π Γ
(
ν + 1

2

) ∫ π/2

0

sin(z cos θ)(sin θ)2ν dθ,

<ν > − 1
2 ,

11.5.2

Kν(z) =
2( 1

2z)
ν

√
π Γ
(
ν + 1

2

) ∫ ∞
0

e−zt(1 + t2)ν−
1
2 dt, <z > 0,

11.5.3 K0(z) =
2
π

∫ ∞
0

e−z sinh t dt, <z > 0,

11.5.4
Mν(z) = −

2( 1
2z)

ν

√
π Γ
(
ν + 1

2

) ∫ 1

0

e−zt(1− t2)ν−
1
2 dt,

<ν > − 1
2 ,

11.5.5 M0(z) = − 2
π

∫ π/2

0

e−z cos θ dθ,

11.5.6

Lν(z) =
2( 1

2z)
ν

√
π Γ
(
ν + 1

2

) ∫ π/2

0

sinh(z cos θ)(sin θ)2ν dθ,

<ν > − 1
2 ,

11.5.7

I−ν(x)− Lν(x)

=
2( 1

2x)ν
√
π Γ
(
ν + 1

2

) ∫ ∞
0

(1 + t2)ν−
1
2 sin(xt) dt,

x > 0, <ν < 1
2 .

11.5(ii) Contour Integrals

For loop-integral versions of (11.5.1), (11.5.2), (11.5.4),
and (11.5.7) see Babister (1967, §§3.3 and 3.14).
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Mellin–Barnes Integrals

11.5.8

( 1
2x)−ν−1 Hν(x)

= − 1
2πi

∫ i∞

−i∞

π csc(πs)
Γ
(

3
2 + s

)
Γ
(

3
2 + ν + s

) ( 1
4x

2)s ds,

x > 0, <ν > −1,

11.5.9

( 1
2z)
−ν−1 Lν(z)

=
1

2πi

∫ (0+)

∞

π csc(πs)
Γ
(

3
2 + s

)
Γ
(

3
2 + ν + s

) (− 1
4z

2)s ds.

In (11.5.8) and (11.5.9) the path of integration separates
the poles of the integrand at s = 0, 1, 2, . . . from those
at s = −1,−2,−3, . . . .

11.5(iii) Compendia

For further integral representations see Babister (1967,
§§3.3, 3.14), Erdélyi et al. (1954a, §§5.17, 15.3), Mag-
nus et al. (1966, p. 114), Oberhettinger (1972), Ober-
hettinger (1974, §2.7), Oberhettinger and Badii (1973,
§2.14), and Watson (1944, pp. 330, 374, and 426).

11.6 Asymptotic Expansions

11.6(i) Large |z|, Fixed ν

11.6.1

Kν(z) ∼ 1
π

∞∑
k=0

Γ
(
k + 1

2

)
( 1

2z)
ν−2k−1

Γ
(
ν + 1

2 − k
) , |ph z| ≤ π − δ,

where δ is an arbitrary small positive constant. If the
series on the right-hand side of (11.6.1) is truncated
after m(≥ 0) terms, then the remainder term Rm(z) is
O
(
zν−2m−1

)
. If ν is real, z is positive, andm+ 1

2−ν ≥ 0,
then Rm(z) is of the same sign and numerically less than
the first neglected term.

11.6.2
Mν(z) ∼ 1

π

∞∑
k=0

(−1)k+1 Γ
(
k + 1

2

)
( 1

2z)
ν−2k−1

Γ
(
ν + 1

2 − k
) ,

|ph z| ≤ 1
2π − δ.

For re-expansions of the remainder terms in (11.6.1)
and (11.6.2), see Dingle (1973, p. 445).

For the corresponding expansions for Hν(z) and
Lν(z) combine (11.6.1), (11.6.2) with (11.2.5), (11.2.6),
(10.17.4), and (10.40.1).

11.6.3∫ z

0

K0(t) dt− 2
π

(ln(2z) + γ)

∼ 2
π

∞∑
k=1

(−1)k+1 (2k)!(2k − 1)!
(k!)2(2z)2k

, |ph z| ≤ π − δ,

11.6.4

∫ z

0

M0(t) dt+
2
π

(ln(2z) + γ)

∼ 2
π

∞∑
k=1

(2k)!(2k − 1)!
(k!)2(2z)2k

, |ph z| ≤ 1
2π − δ,

where γ is Euler’s constant (§5.2(ii)).

11.6(ii) Large |ν|, Fixed z

11.6.5 Hν(z),Lν(z) ∼ z

πν
√

2

( ez
2ν

)ν
, |ph ν| ≤ π − δ.

More fully, the series (11.2.1) and (11.2.2) can be re-
garded as generalized asymptotic expansions (§2.1(v)).

11.6(iii) Large |ν|, Fixed z/ν

For fixed λ(> 1)
11.6.6

Kν(λν) ∼
( 1

2λν)ν−1

√
π Γ
(
ν + 1

2

) ∞∑
k=0

k!ck(λ)
νk

, |ph ν| ≤ 1
2π − δ,

and for fixed λ (> 0)

11.6.7
Mν(λν) ∼ −

( 1
2λν)ν−1

√
π Γ
(
ν + 1

2

) ∞∑
k=0

k!ck(iλ)
νk

,

|ph ν| ≤ 1
2π − δ.

Here

11.6.8

c0(λ) = 1, c1(λ) = 2λ−2,

c2(λ) = 6λ−4 − 1
2λ
−2, c3(λ) = 20λ−6 − 4λ−4,

c4(λ) = 70λ−8 − 45
2 λ
−6 + 3

8λ
−4,

and for higher coefficients ck(λ) see Dingle (1973,
p. 203).

For the corresponding result for Hν(λν) use (11.2.5)
and (10.19.6). See also Watson (1944, p. 336).

For fixed λ (> 0)

11.6.9 Lν(λν) ∼ Iν(λν), |ph ν| ≤ 1
2π − δ,

and for an estimate of the relative error in this approx-
imation see Watson (1944, p. 336).

11.7 Integrals and Sums

11.7(i) Indefinite Integrals

11.7.1

∫
zν Hν−1(z) dz = zν Hν(z),

11.7.2∫
z−ν Hν+1(z) dz = −z−ν Hν(z) +

2−νz
√
π Γ
(
ν + 3

2

) ,
11.7.3

∫
zν Lν−1(z) dz = zν Lν(z),
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11.7.4

∫
z−ν Lν+1(z) dz = z−ν Lν(z)− 2−νz

√
π Γ
(
ν + 3

2

) .
If

11.7.5 fν(z) =
∫ z

0

tν Hν(t) dt,

then

11.7.6

fν+1(z) = (2ν + 1)fν(z)− zν+1 Hν(z)

+
( 1

2z
2)ν+1

(ν + 1)
√
π Γ
(
ν + 3

2

) , <ν > −1.

11.7(ii) Definite Integrals

11.7.7∫ π/2

0

Hν(z sin θ)
(sin θ)ν+1

(cos θ)2ν
dθ

=
2−ν√
π

Γ
(

1
2 − ν

)
zν−1(1− cos z), − 3

2 < <ν <
1
2 ,

11.7.8

∫ ∞
0

H0(t)
dt

t
= 1

2π,

∫ ∞
0

H1(t)
dt

t2
= 1

4π,

11.7.9

∫ ∞
0

Hν(t) dt = − cot
(

1
2πν

)
, −2 < <ν < 0,

11.7.10 ∫ ∞
0

t−ν−1 Hν(t) dt =
π

2ν+1 Γ(ν + 1)
, <ν > − 3

2 ,

11.7.11∫ ∞
0

tµ−ν−1 Hν(t) dt =
Γ
(

1
2µ
)
2µ−ν−1 tan

(
1
2πµ

)
Γ
(
ν − 1

2µ+ 1
) ,

|<µ| < 1, <ν > <µ− 3
2 ,

11.7.12

∫ ∞
0

t−µ−ν Hµ(t) Hν(t) dt

=
√
π Γ(µ+ ν)

2µ+ν Γ
(
µ+ ν + 1

2

)
Γ
(
µ+ 1

2

)
Γ
(
ν + 1

2

) ,

<(µ+ ν) > 0.
For other integrals involving products of Struve func-

tions see Zanovello (1978, 1995). For integrals involving
products of Mν(t) functions, see Paris and Sy (1983,
Appendix).

11.7(iii) Laplace Transforms

The following Laplace transforms of Hν(t) require <a >
0 for convergence, while those of Lν(t) require <a > 1.
11.7.13∫ ∞

0

e−at H0(t) dt =
2

π
√

1 + a2
ln

(
1 +
√

1 + a2

a

)
,

11.7.14∫ ∞
0

e−at H1(t) dt =
2
πa
− 2a
π
√

1 + a2
ln

(
1 +
√

1 + a2

a

)
,

11.7.15

∫ ∞
0

e−at L0(t) dt =
2

π
√
a2−1

arcsin
(

1
a

)
,

11.7.16∫ ∞
0

e−at L1(t) dt =
2a

π
√
a2−1

arctan
(

1√
a2−1

)
− 2
πa
.

11.7(iv) Integrals with Respect to Order

For integrals of Hν(x) and Lν(x) with respect to the
order ν, see Apelblat (1989).

11.7(v) Compendia

For further integrals see Apelblat (1983, §12.16), Babis-
ter (1967, Chapter 3), Erdélyi et al. (1954a, §§4.19,
6.8, 8.15, 9.4, 10.3, 11.3, and 15.3), Luke (1962,
Chapters 9, 11), Gradshteyn and Ryzhik (2000, §6.8),
Marichev (1983, pp. 192–193 and 215–216), Oberhet-
tinger (1972), Oberhettinger (1974, §1.12), Oberhet-
tinger (1990, §§1.21 and 2.21), Oberhettinger and Badii
(1973, §1.16), Prudnikov et al. (1990, §§1.4 and 2.7),
Prudnikov et al. (1992a, §3.17), and Prudnikov et al.
(1992b, §3.17).

For sums of Struve functions see Hansen (1975,
p. 456) and Prudnikov et al. (1990, §6.4.1).

11.8 Analogs to Kelvin Functions

For properties of Struve functions of argument xe±3πi/4

see McLachlan and Meyers (1936).

Related Functions

11.9 Lommel Functions

11.9(i) Definitions

The inhomogeneous Bessel differential equation

11.9.1
d2w

dz2 +
1
z

dw

dz
+
(

1− ν2

z2

)
w = zµ−1

can be regarded as a generalization of (11.2.7). Pro-
vided that µ ± ν 6= −1,−3,−5, . . . , (11.9.1) has the
general solution

11.9.2 w = sµ,ν(z) +AJν(z) +B Yν(z),

where A, B are arbitrary constants, sµ,ν(z) is the Lom-
mel function defined by

11.9.3 sµ,ν(z) = zµ+1
∞∑
k=0

(−1)k
z2k

ak+1(µ, ν)
,

and

11.9.4

ak(µ, ν) =
k∏

m=1

(
(µ+ 2m− 1)2 − ν2

)
, k = 0, 1, 2, . . . .
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Another solution of (11.9.1) that is defined for all values of µ and ν is Sµ,ν(z), where

11.9.5 Sµ,ν(z) = sµ,ν(z) + 2µ−1 Γ
(

1
2µ+ 1

2ν + 1
2

)
Γ
(

1
2µ−

1
2ν + 1

2

) (
sin
(

1
2 (µ− ν)π

)
Jν(z)− cos

(
1
2 (µ− ν)π

)
Yν(z)

)
,

the right-hand side being replaced by its limiting form when µ± ν is an odd negative integer.

Reflection Formulas

11.9.6 sµ,−ν(z) = sµ,ν(z), Sµ,−ν(z) = Sµ,ν(z).
For the foregoing results and further information see Watson (1944, §§10.7–10.73) and Babister (1967, §3.16).

11.9(ii) Expansions in Series of Bessel Functions

When µ± ν 6= −1,−2,−3, . . . ,

11.9.7 sµ,ν(z) = 2µ+1
∞∑
k=0

(2k + µ+ 1) Γ(k + µ+ 1)
k!(2k + µ− ν + 1)(2k + µ+ ν + 1)

J2k+µ+1(z),

11.9.8 sµ,ν(z) = 2(µ+ν−1)/2 Γ
(

1
2µ+ 1

2ν + 1
2

)
z(µ+1−ν)/2

∞∑
k=0

( 1
2z)

k

k!(2k + µ− ν + 1)
Jk+ 1

2 (µ+ν+1)(z).

For these and further results see Luke (1969b, §9.4.5).

11.9(iii) Asymptotic Expansion

For fixed µ and ν,

11.9.9
Sµ,ν(z) ∼ zµ−1

∞∑
k=0

(−1)kak(−µ, ν)z−2k,

z →∞, |ph z| ≤ π − δ(< π).

For ak(µ, ν) see (11.9.4). If either of µ±ν equals an odd
positive integer, then the right-hand side of (11.9.9) ter-
minates and represents Sµ,ν(z) exactly.

For uniform asymptotic expansions, for large ν and
fixed µ = −1, 0, 1, 2, . . . , of solutions of the inhomoge-
neous modified Bessel differential equation that corre-
sponds to (11.9.1) see Olver (1997b, pp. 388–390).

11.9(iv) References

For further information on Lommel functions see Wat-
son (1944, §§10.7–10.75) and Babister (1967, Chap-
ter 3). For descriptive properties of sµ,ν(x) see Steinig
(1972).

For collections of integral representations and inte-
grals see Apelblat (1983, §12.17), Babister (1967, p. 85),
Erdélyi et al. (1954a, §§4.19 and 5.17), Gradshteyn and
Ryzhik (2000, §6.86), Marichev (1983, p. 193), Ober-
hettinger (1972, pp. 127–128, 168–169, and 188–189),
Oberhettinger (1974, §§1.12 and 2.7), Oberhettinger
(1990, pp. 105–106 and 191–192), Oberhettinger and
Badii (1973, §2.14), Prudnikov et al. (1990, §§1.6 and
2.9), Prudnikov et al. (1992a, §3.34), and Prudnikov
et al. (1992b, §3.32).

11.10 Anger–Weber Functions

11.10(i) Definitions

The Anger function Jν(z) and Weber function Eν(z)
are defined by

11.10.1 Jν(z) =
1
π

∫ π

0

cos(νθ − z sin θ) dθ,

11.10.2 Eν(z) =
1
π

∫ π

0

sin(νθ − z sin θ) dθ.

Each is an entire function of z and ν. Also,
11.10.3

1
π

∫ 2π

0

cos(νθ − z sin θ) dθ = (1 + cos(2πν)) Jν(z)

+ sin(2πν) Eν(z).
The associated Anger–Weber function Aν(z) is de-

fined by

11.10.4 Aν(z) =
1
π

∫ ∞
0

e−νt−z sinh t dt, <z > 0.

(11.10.4) also applies when <z = 0 and <ν > 0.

11.10(ii) Differential Equations

The Anger and Weber functions satisfy the inhomoge-
neous Bessel differential equation

11.10.5
d2w

dz2 +
1
z

dw

dz
+
(

1− ν2

z2

)
w = f(ν, z),

where
11.10.6 f(ν, z) =

(z − ν)
πz2

sin(πν), w = Jν(z),
or
11.10.7

f(ν, z) = − 1
πz2

(z + ν + (z − ν) cos(πν)), w = Eν(z).
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11.10(iii) Maclaurin Series

11.10.8 Jν(z) = cos
(

1
2πν

)
S1(ν, z) + sin

(
1
2πν

)
S2(ν, z),

11.10.9 Eν(z) = sin
(

1
2πν

)
S1(ν, z)− cos

(
1
2πν

)
S2(ν, z),

where

11.10.10 S1(ν, z) =
∞∑
k=0

(−1)k( 1
2z)

2k

Γ
(
k+ 1

2ν + 1
)

Γ
(
k− 1

2ν+1
) ,

11.10.11 S2(ν, z) =
∞∑
k=0

(−1)k( 1
2z)

2k+1

Γ
(
k+ 1

2ν+ 3
2

)
Γ
(
k− 1

2ν+ 3
2

) .
These expansions converge absolutely for all finite val-
ues of z.

11.10(iv) Graphics

Figure 11.10.1: Anger function Jν(x) for −8 ≤ x ≤ 8
and ν = 0, 1

2 , 1,
3
2 .

Figure 11.10.2: Weber function Eν(x) for −8 ≤ x ≤ 8
and ν = 0, 1

2 , 1,
3
2 .

Figure 11.10.3: Anger function Jν(x) for −10 ≤ x ≤ 10
and 0 ≤ ν ≤ 5.

Figure 11.10.4: Weber function Eν(x) for −10 ≤ x ≤ 10
and 0 ≤ ν ≤ 5.

11.10(v) Interrelations

11.10.12 Jν(−z) = J−ν(z), Eν(−z) = −E−ν(z).

11.10.13 sin(πν) Jν(z) = cos(πν) Eν(z)−E−ν(z),

11.10.14 sin(πν) Eν(z) = J−ν(z)− cos(πν) Jν(z).

11.10.15 Jν(z) = Jν(z) + sin(πν) Aν(z),

11.10.16 Eν(z) = −Yν(z)− cos(πν) Aν(z)−A−ν(z).

11.10(vi) Relations to Other Functions

11.10.17 Jν(z) =
sin(πν)
π

(s0,ν(z)− ν s−1,ν(z)),

11.10.18
Eν(z) = − 1

π
(1 + cos(πν)) s0,ν(z)

− ν

π
(1− cos(πν)) s−1,ν(z).
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11.10.19
J− 1

2
(z) = E 1

2
(z)

= ( 1
2πz)

− 1
2 (A+(χ) cos z−A−(χ) sin z),

11.10.20
J 1

2
(z) = −E− 1

2
(z)

= ( 1
2πz)

− 1
2 (A+(χ) sin z+A−(χ) cos z),

where

11.10.21 A±(χ) = C(χ)± S(χ), χ = (2z/π)
1
2 .

For the Fresnel integrals C and S see §7.2(iii).
For n = 1, 2, 3, . . . ,

11.10.22

En(z) = −Hn(z) +
1
π

m1∑
k=0

Γ
(
k + 1

2

)
Γ
(
n+ 1

2−k
) ( 1

2z)
n−2k−1,

and
11.10.23

E−n(z) = −H−n(z)

+
(−1)n+1

π

m2∑
k=0

Γ
(
n−k− 1

2

)
Γ
(
k + 3

2

) ( 1
2z)
−n+2k+1,

where

11.10.24 m1 =
⌊

1
2n−

1
2

⌋
, m2 =

⌈
1
2n−

3
2

⌉
.

11.10(vii) Special Values

Jν(0) =
sin(πν)
πν

, Eν(0) =
1− cos(πν)

πν
.11.10.25

E0(z) = −H0(z), E1(z) =
2
π
−H1(z).11.10.26

11.10.27
∂

∂ν
Jν(z)

∣∣∣∣
ν=0

= 1
2πH0(z),

11.10.28
∂

∂ν
Eν(z)

∣∣∣∣
ν=0

= 1
2π J0(z).

11.10.29 Jn(z) = Jn(z), n ∈ Z.

11.10(viii) Expansions in Series of Products of
Bessel Functions

11.10.30

Jν(z) =

2 sin
(

1
2νπ

) ∞∑
k=0

(−1)k Jk− 1
2ν+ 1

2

(
1
2z
)
Jk+ 1

2ν+ 1
2

(
1
2z
)

+ 2 cos
(

1
2νπ

) ∞∑′

k=0

(−1)k Jk− 1
2ν

(
1
2z
)
Jk+ 1

2ν

(
1
2z
)
,

11.10.31

Eν(z) =

−2 cos
(

1
2νπ

) ∞∑
k=0

(−1)k Jk− 1
2ν+ 1

2

(
1
2z
)
Jk+ 1

2ν+ 1
2

(
1
2z
)

+ 2 sin
(

1
2νπ

) ∞∑′

k=0

(−1)k Jk− 1
2ν

(
1
2z
)
Jk+ 1

2ν

(
1
2z
)
,

where the prime on the second summation symbols
means that the first term is to be halved.

11.10(ix) Recurrence Relations and Derivatives

11.10.32 Jν−1(z) + Jν+1(z) =
2ν
z

Jν(z)− 2
πz

sin(πν),

11.10.33

Eν−1(z) + Eν+1(z) =
2ν
z

Eν(z)− 2
πz

(1− cos(πν)).

11.10.34 2 J′ν(z) = Jν−1(z)− Jν+1(z),

11.10.35 2 E′ν(z) = Eν−1(z)−Eν+1(z),

11.10.36 z J′ν(z)± ν Jν(z) = ±z Jν∓1(z)± sin(πν)
π

,

11.10.37

zE′ν(z)± ν Eν(z) = ±zEν∓1(z)± (1− cos(πν))
π

.

11.10(x) Integrals and Sums

For collections of integral representations and integrals
see Erdélyi et al. (1954a, §§4.19 and 5.17), Marichev
(1983, pp. 194–195 and 214–215), Oberhettinger (1972,
p. 128), Oberhettinger (1974, §§1.12 and 2.7), Oberhet-
tinger (1990, pp. 105 and 189–190), Prudnikov et al.
(1990, §§1.5 and 2.8), Prudnikov et al. (1992a, §3.18),
Prudnikov et al. (1992b, §3.18), and Zanovello (1977).

For sums see Hansen (1975, pp. 456–457) and Prud-
nikov et al. (1990, §§6.4.2–6.4.3).

11.11 Asymptotic Expansions of
Anger–Weber Functions

11.11(i) Large |z|, Fixed ν

Let F0(ν) = G0(ν) = 1, and for k = 1, 2, 3, . . . ,

11.11.1

Fk(ν) = (ν2 − 12)(ν2 − 32) · · · (ν2 − (2k − 1)2),

Gk(ν) = (ν2 − 22)(ν2 − 42) · · · (ν2 − (2k)2).

Then as z →∞ in |ph z| ≤ π − δ (< π)

11.11.2

Jν(z) ∼ Jν(z)

+
sin(πν)
πz

( ∞∑
k=0

Fk(ν)
z2k

− ν

z

∞∑
k=0

Gk(ν)
z2k

)
,

11.11.3

Eν(z) ∼ −Yν(z)− 1 + cos(πν)
πz

∞∑
k=0

Fk(ν)
z2k

− ν(1− cos(πν))
πz2

∞∑
k=0

Gk(ν)
z2k

,

11.11.4 Aν(z) ∼ 1
πz

∞∑
k=0

Fk(ν)
z2k

− ν

πz2

∞∑
k=0

Gk(ν)
z2k

.
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11.11(ii) Large |ν|, Fixed z

If z is fixed, and ν → ∞ in |ph ν| ≤ π in such a way
that ν is bounded away from the set of all integers, then

11.11.5 Jν(z) =
sin(πν)
πν

(
1− νz

ν2 − 1
+O

(
1
ν2

))
,

11.11.6

Eν(z) =
2
πν

(
sin2

(
1
2πν

)
+

νz

ν2 − 1
cos2

(
1
2πν

)
+O

(
1
ν2

))
.

If ν = n(∈ Z), then (11.10.29) applies for Jn(z), and

11.11.7

E2n(z) ∼ 2z
(4n2 − 1)π

,

E2n+1(z) ∼ 2
(2n+ 1)π

, n→ ±∞.

11.11(iii) Large ν, Fixed z/ν

For fixed λ (> 0),

11.11.8
Aν(λν) ∼ 1

π

∞∑
k=0

(2k)! ak(λ)
ν2k+1

,

ν →∞, |ph ν| ≤ π − δ (< π),

where

11.11.9

a0 =
1

1 + λ
, a1 = − λ

2(1 + λ)4
,

a2 =
9λ2 − λ

24(1 + λ)7
, a3 = −225λ3 − 54λ2 + λ

720(1 + λ)10
.

For fixed λ(> 1),

11.11.10 A−ν(λν) ∼ − 1
π

∞∑
k=0

(2k)! ak(−λ)
ν2k+1

, ν → +∞.

For fixed λ, 0 < λ < 1,

11.11.11

A−ν(λν) ∼
√

2
πν

e−νµ
∞∑
k=0

( 1
2 )kbk(λ)
νk

, ν → +∞,

where

11.11.12 µ =
√

1− λ2 − ln

(
1 +
√

1− λ2

λ

)
,

and

11.11.13

b0(λ) =
1

(1− λ2)1/4
, b1(λ) =

2 + 3λ2

12(1− λ2)7/4
,

b2(λ) =
4 + 300λ2 + 81λ4

864(1− λ2)13/4
.

In particular, as ν → +∞,

11.11.14 A−ν(λν) ∼ 1
πν(λ− 1)

, λ > 1,

11.11.15

A−ν(λν) ∼
(

2
πν

)1/2(1 +
√

1− λ2

λ

)ν
e−ν
√

1−λ2

(1− λ2)1/4
,

0 < λ < 1.

Also, as ν → +∞,

11.11.16 A−ν(ν) ∼ 24/3

37/6 Γ
(

2
3

)
ν1/3

,

and

11.11.17

A−ν
(
ν + aν1/3

)
= 21/3ν−1/3 Hi

(
−21/3a

)
+O

(
ν−1

)
,

uniformly for bounded real values of a. For the Scorer
function Hi see §9.12(i).

All of (11.11.10)–(11.11.17) can be regarded as spe-
cial cases of two asymptotic expansions given in Olver
(1997b, pp. 352–357) for A−ν(λν) as ν → +∞, one be-
ing uniform for δ ≤ λ ≤ 1, where δ again denotes an
arbitrary small positive constant, and the other being
uniform for 1 ≤ λ < ∞. (Note that Olver’s definition
of Aν(z) omits the factor 1/π in (11.10.4).) See also
Watson (1944, §10.15).

Lastly, corresponding asymptotic approximations
and expansions for Jν(λν) and Eν(λν) follow from
(11.10.15) and (11.10.16) and the corresponding asymp-
totic expansions for the Bessel functions Jν(z) and
Yν(z); see §10.19(ii). In particular,

11.11.18 Jν(ν) ∼ 21/3

32/3 Γ
(

2
3

)
ν1/3

, ν → +∞,

11.11.19 Eν(ν) ∼ 21/3

37/6 Γ
(

2
3

)
ν1/3

, ν → +∞.

Applications

11.12 Physical Applications

Applications of Struve functions occur in water-wave
and surface-wave problems (Hirata (1975) and Ahmadi
and Widnall (1985)), unsteady aerodynamics (Shaw
(1985) and Wehausen and Laitone (1960)), distribu-
tion of fluid pressure over a vibrating disk (McLachlan
(1934)), resistive MHD instability theory (Paris and Sy
(1983)), and optical diffraction (Levine and Schwinger
(1948)). More recently Struve functions have appeared
in many particle quantum dynamical studies of spin
decoherence (Shao and Hänggi (1998)) and nanotubes
(Pedersen (2003)).
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Computation

11.13 Methods of Computation

11.13(i) Introduction

Subsequent subsections treat the computation of Struve
functions. The treatment of Lommel and Anger–Weber
functions is similar. For a review of methods for the
computation of Hν(z) see Zanovello (1975).

11.13(ii) Series Expansions

Although the power-series expansions (11.2.1) and
(11.2.2), and the Bessel-function expansions of §11.4(iv)
converge for all finite values of z, they are cumbersome
to use when |z| is large owing to slowness of convergence
and cancellation. For large |z| and/or |ν| the asymptotic
expansions given in §11.6 should be used instead.

11.13(iii) Quadrature

For numerical purposes the most convenient of the rep-
resentations given in §11.5, at least for real variables,
include the integrals (11.5.2)–(11.5.5) for Kν(z) and
Mν(z). Subsequently Hν(z) and Lν(z) are obtainable
via (11.2.5) and (11.2.6). Other integrals that appear
in §11.5(i) have highly oscillatory integrands unless z is
small.

For complex variables the methods described in
§§3.5(viii) and 3.5(ix) are available.

11.13(iv) Differential Equations

A comprehensive approach is to integrate the defin-
ing inhomogeneous differential equations (11.2.7) and
(11.2.9) numerically, using methods described in §3.7.
To insure stability the integration path must be chosen
so that as we proceed along it the wanted solution grows
in magnitude at least as rapidly as the complementary
solutions.

Suppose ν ≥ 0 and x is real and positive. Then from
the limiting forms for small argument (§§11.2(i), 10.7(i),
10.30(i)), limiting forms for large argument (§§11.6(i),
10.7(ii), 10.30(ii)), and the connection formulas (11.2.5)
and (11.2.6), it is seen that Hν(x) and Lν(x) can be
computed in a stable manner by integrating forwards,
that is, from the origin toward infinity. The solution
Kν(x) needs to be integrated backwards for small x,
and either forwards or backwards for large x depending
whether or not ν exceeds 1

2 . For Mν(x) both forward
and backward integration are unstable, and boundary-
value methods are required (§3.7(iii)).

11.13(v) Difference Equations

Sequences of values of Hν(z) and Lν(z), with z fixed,
can be computed by application of the inhomogeneous
difference equations (11.4.23) and (11.4.25). There are
similar problems to those described in §11.13(iv) con-
cerning stability. In consequence forward recurrence,
backward recurrence, or boundary-value methods may
be necessary. See §3.6 for implementation of these meth-
ods, and with the Weber function En(x) as an example.

11.14 Tables

11.14(i) Introduction

For tables before 1961 see Fletcher et al. (1962) and
Lebedev and Fedorova (1960). Tables listed in these
Indices are omitted from the subsections that follow.

11.14(ii) Struve Functions

• Abramowitz and Stegun (1964, Chapter 12) tab-
ulates Hn(x), Hn(x)− Yn(x), and In(x)− Ln(x)
for n = 0, 1 and x = 0(.1)5, x−1 = 0(.01)0.2 to 6D
or 7D.

• Agrest et al. (1982) tabulates Hn(x)
and e−x Ln(x) for n = 0, 1 and x =
0(.001)5(.005)15(.01)100 to 11D.

• Barrett (1964) tabulates Ln(x) for n = 0, 1 and
x = 0.2(.005)4(.05)10(.1)19.2 to 5 or 6S, x =
6(.25)59.5(.5)100 to 2S.

• Zanovello (1975) tabulates Hn(x) for n = −4(1)15
and x = 0.5(.5)26 to 8D or 9S.

• Zhang and Jin (1996) tabulates Hn(x) and Ln(x)
for n = −4(1)3 and x = 0(1)20 to 8D or 7S.

11.14(iii) Integrals

• Abramowitz and Stegun (1964, Chap-
ter 12) tabulates

∫ x
0

(I0(t) − L0(t)) dt and
(2/π)

∫∞
x
t−1 H0(t) dt for x = 0(.1)5 to 5D or

7D;
∫ x

0
(H0(t) − Y0(t)) dt − (2/π) lnx,

∫ x
0

(I0(t) −
L0(t)) dt−(2/π) lnx, and

∫∞
x
t−1(H0(t)−Y0(t)) dt

for x−1 = 0(.01)0.2 to 6D.

• Agrest et al. (1982) tabulates
∫ x

0
H0(t) dt and

e−x
∫ x

0
L0(t) dt for x = 0(.001)5(.005)15(.01)100

to 11D.

11.14(iv) Anger–Weber Functions

• Bernard and Ishimaru (1962) tabulates Jν(x) and
Eν(x) for ν = −10(.1)10 and x = 0(.1)10 to 5D.

• Jahnke and Emde (1945) tabulates En(x) for n =
1, 2 and x = 0(.01)14.99 to 4D.
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11.14(v) Incomplete Functions

• Agrest and Maksimov (1971, Chapter 11) defines
incomplete Struve, Anger, and Weber functions
and includes tables of an incomplete Struve func-
tion Hn(x, α) for n = 0, 1, x = 0(.2)10, and
α = 0(.2)1.4, 1

2π, together with surface plots.

11.15 Approximations

11.15(i) Expansions in Chebyshev Series

• Luke (1975, pp. 416–421) gives Chebyshev-series
expansions for Hn(x), Ln(x), 0 ≤ |x| ≤ 8,
and Hn(x) − Yn(x), x ≥ 8, for n = 0, 1;∫ x

0
t−m H0(t) dt,

∫ x
0
t−m L0(t) dt, 0 ≤ |x| ≤ 8,

m = 0, 1 and
∫ x

0
(H0(t)−Y0(t)) dt,

∫∞
x
t−1(H0(t)−

Y0(t)) dt, x ≥ 8; the coefficients are to 20D.

• MacLeod (1993) gives Chebyshev-series expan-
sions for L0(x), L1(x), 0 ≤ x ≤ 16, and I0(x) −
L0(x), I1(x) − L1(x), x ≥ 16; the coefficients are
to 20D.

11.15(ii) Rational and Polynomial
Approximations

• Newman (1984) gives polynomial approximations
for Hn(x) for n = 0, 1, 0 ≤ x ≤ 3, and rational-
fraction approximations for Hn(x) − Yn(x) for
n = 0, 1, x ≥ 3. The maximum errors do not
exceed 1.2×10−8 for the former and 2.5×10−8 for
the latter.

11.16 Software

See http://dlmf.nist.gov/11.16.
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(1969b, p. 55).

The graphics were produced at NIST.

§11.11 Watson (1944, §§10.14–10.15). (11.11.2),
(11.11.3) follow from (11.10.15), (11.10.16).
(11.11.5), (11.11.6) follow from (11.10.8)–
(11.10.11). Eqs. (11.11.7) follow from (11.6.5).
For (11.11.11), see Dingle (1973, p. 388). For
(11.11.8)–(11.11.19), see Olver (1997b, pp. 103
and 352).
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Notation

12.1 Special Notation

(For other notation see pp. xiv and 873.)

x, y real variables.
z complex variable.
n, s nonnegative integers.
a, ν real or complex parameters.
δ arbitrary small positive constant.

Unless otherwise noted, primes indicate derivatives
with respect to the variable, and fractional powers take
their principal values.

The main functions treated in this chapter are the
parabolic cylinder functions (PCFs), also known as
Weber parabolic cylinder functions: U(a, z), V (a, z),
U(a, z), and W (a, z). These notations are due to Miller
(1952, 1955). An older notation, due to Whittaker
(1902), for U(a, z) is Dν(z). The notations are related
by U(a, z) = D−a− 1

2
(z). Whittaker’s notation Dν(z) is

useful when ν is a nonnegative integer (Hermite poly-
nomial case).

Properties

12.2 Differential Equations

12.2(i) Introduction

PCFs are solutions of the differential equation

12.2.1
d2w

dz2 +
(
az2 + bz + c

)
w = 0,

with three distinct standard forms

12.2.2
d2w

dz2 −
(

1
4z

2 + a
)
w = 0,

12.2.3
d2w

dz2 +
(

1
4z

2 − a
)
w = 0,

12.2.4
d2w

dz2 +
(
ν + 1

2 −
1
4z

2
)
w = 0.

Each of these equations is transformable into the
others. Standard solutions are U(a,±z), V (a,±z),
U(a,±x) (not complex conjugate), U(−a,±iz) for
(12.2.2); W (a,±x) for (12.2.3); Dν(±z) for (12.2.4),
where

12.2.5 Dν(z) = U
(
− 1

2 − ν, z
)
.

All solutions are entire functions of z and entire func-
tions of a or ν.

For real values of z (= x), numerically satisfactory
pairs of solutions (§2.7(iv)) of (12.2.2) are U(a, x) and

V (a, x) when x is positive, or U(a,−x) and V (a,−x)
when x is negative. For (12.2.3) W (a, x) and W (a,−x)
comprise a numerically satisfactory pair, for all x ∈ R.
The solutions W (a,±x) are treated in §12.14.

In C, for j = 0, 1, 2, 3, U
(
(−1)j−1a, (−i)j−1z

)
and

U
(
(−1)ja, (−i)jz

)
comprise a numerically satisfactory

pair of solutions in the half-plane 1
4 (2j − 3)π ≤ ph z ≤

1
4 (2j + 1)π.

12.2(ii) Values at z = 0

12.2.6 U(a, 0) =
√
π

2
1
2a+ 1

4 Γ
(

3
4 + 1

2a
) ,

12.2.7 U ′(a, 0) = −
√
π

2
1
2a−

1
4 Γ
(

1
4 + 1

2a
) ,

12.2.8 V (a, 0) =
π2

1
2a+ 1

4(
Γ
(

3
4 −

1
2a
))2 Γ

(
1
4 + 1

2a
) ,

12.2.9 V ′(a, 0) =
π2

1
2a+ 3

4(
Γ
(

1
4 −

1
2a
))2 Γ

(
3
4 + 1

2a
) .

12.2(iii) Wronskians

12.2.10 W {U(a, z), V (a, z)} =
√

2/π,

12.2.11 W {U(a, z), U(a,−z)} =
√

2π
Γ
(

1
2 + a

) ,
12.2.12 W {U(a, z), U(−a,±iz)} = ∓ie±iπ( 1

2a+ 1
4 ).

12.2(iv) Reflection Formulas

For n = 0, 1, . . . ,

12.2.13 U
(
−n− 1

2 ,−z
)

= (−1)n U
(
−n− 1

2 , z
)
,

12.2.14 V
(
n+ 1

2 ,−z
)

= (−1)n V
(
n+ 1

2 , z
)
.

12.2(v) Connection Formulas

12.2.15

U(a,−z) = − sin(πa)U(a, z) +
π

Γ( 1
2 + a)

V (a, z),

12.2.16 V (a,−z) =
cos(πa)
Γ( 1

2 − a)
U(a, z) + sin(πa)V (a, z).

12.2.17√
2π U(−a,±iz) = Γ

(
1
2 + a

) (
e∓iπ( 1

2a−
1
4 ) U(a, z)

+ e±iπ( 1
2a−

1
4 ) U(a,−z)

)
.

12.2.18√
2π U(a, z) = Γ

(
1
2 − a

) (
e∓iπ( 1

2a+ 1
4 ) U(−a,±iz)

+ e±iπ( 1
2a+ 1

4 ) U(−a,∓iz)
)
,
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12.2.19

U(a, z) = ±ie±iπa U(a,−z)

+
√

2π
Γ
(

1
2 + a

)e±iπ( 1
2a−

1
4 ) U(−a,±iz).

12.2.20

V (a, z)

=
∓i

Γ( 1
2 − a)

U(a, z) +

√
2
π
e∓iπ( 1

2a−
1
4 ) U(−a,±iz).

12.2(vi) Solution U(a, x); Modulus and Phase
Functions

When z (= x) is real the solution U(a, x) is defined by

12.2.21 U(a, x) = Γ( 1
2 − a)V (a, x),

unless a = 1
2 ,

3
2 , . . . , in which case U(a, x) is undefined.

Its importance is that when a is negative and |a| is large,
U(a, x) and U(a, x) asymptotically have the same enve-
lope (modulus) and are 1

2π out of phase in the oscil-
latory interval −2

√
−a < x < 2

√
−a. Properties of

U(a, x) follow immediately from those of V (a, x) via
(12.2.21).

In the oscillatory interval we define

12.2.22 U(a, x) + i U(a, x) = F (a, x)eiθ(a,x),

12.2.23 U ′(a, x) + i U
′
(a, x) = −G(a, x)eiψ(a,x),

where F (a, x) (>0), θ(a, x), G(a, x) (>0), and ψ(a, x)
are real. F or G is the modulus and θ or ψ is the corre-
sponding phase.

For properties of the modulus and phase func-
tions, including differential equations, see Miller (1955,
pp. 72–73). For graphs of the modulus functions see
§12.3(i).

12.3 Graphics

12.3(i) Real Variables

Figure 12.3.1: U(a, x), a = 0.5, 2, 3.5, 5, 8. Figure 12.3.2: V (a, x), a = 0.5, 2, 3.5, 5, 8.

�

Figure 12.3.3: U(a, x), a = −0.5, −2, −3.5, −5.

�

�

Figure 12.3.4: V (a, x), a = −0.5, −2, −3.5, −5.
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Figure 12.3.5: U(−8, x), U(−8, x), F (−8, x), −4
√

2 ≤
x ≤ 4

√
2.

�

Figure 12.3.6: U ′(−8, x), U
′
(−8, x), G(−8, x), −4

√
2 ≤

x ≤ 4
√

2.

Figure 12.3.7: U(a, x), −2.5 ≤ a ≤ 2.5, −2.5 ≤ x ≤ 2.5. Figure 12.3.8: V (a, x), −2.5 ≤ a ≤ 2.5, −2.5 ≤ x ≤ 2.5.

12.3(ii) Complex Variables

In the graphics shown in this subsection, height corresponds to the absolute value of the function and color to the
phase. See also p. xiv.
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Figure 12.3.9: U(3.5, x+ iy), −3.6 ≤ x ≤ 5, −5 ≤ y ≤
5.

Figure 12.3.10: U(−3.5, x+ iy), −5 ≤ x ≤ 5, −3.5 ≤
y ≤ 3.5.

12.4 Power-Series Expansions

12.4.1 U(a, z) = U(a, 0)u1(a, z) + U ′(a, 0)u2(a, z),

12.4.2 V (a, z) = V (a, 0)u1(a, z) + V ′(a, 0)u2(a, z),
where the initial values are given by (12.2.6)–(12.2.9),
and u1(a, z) and u2(a, z) are the even and odd solutions
of (12.2.2) given by

12.4.3

u1(a, z) = e−
1
4 z

2
(

1 + (a+ 1
2 )
z2

2!

+ (a+ 1
2 )(a+ 5

2 )
z4

4!
+ · · ·

)
,

12.4.4

u2(a, z) = e−
1
4 z

2
(
z + (a+ 3

2 )
z3

3!

+ (a+ 3
2 )(a+ 7

2 )
z5

5!
+ · · ·

)
.

Equivalently,
12.4.5

u1(a, z) = e
1
4 z

2
(

1+(a− 1
2 )
z2

2!
+(a− 1

2 )(a− 5
2 )
z4

4!
+ · · ·

)
,

12.4.6

u2(a, z) = e
1
4 z

2
(
z+(a− 3

2 )
z3

3!
+(a− 3

2 )(a− 7
2 )
z5

5!
+ · · ·

)
.

These series converge for all values of z.

12.5 Integral Representations

12.5(i) Integrals Along the Real Line

12.5.1

U(a, z) =
e−

1
4 z

2

Γ
(

1
2 + a

) ∫ ∞
0

ta−
1
2 e−

1
2 t

2−zt dt, <a > − 1
2 ,

12.5.2

U(a, z) =
ze−

1
4 z

2

Γ
(

1
4 + 1

2a
) ∫ ∞

0

t
1
2a−

3
4 e−t

(
z2 + 2t

)− 1
2a−

3
4 dt,

|ph z| < 1
2π, <a > − 1

2 ,

12.5.3

U(a, z) =
e−

1
4 z

2

Γ
(

3
4 + 1

2a
) ∫ ∞

0

t
1
2a−

1
4 e−t

(
z2 + 2t

)− 1
2a−

1
4 dt,

|ph z| < 1
2π, <a > − 3

2 ,

12.5.4

U(a, z) =

√
2
π
e

1
4 z

2

×
∫ ∞

0

t−a−
1
2 e−

1
2 t

2
cos
(
zt+

(
1
2a+ 1

4

)
π
)
dt,

<a < 1
2 .

12.5(ii) Contour Integrals

The following integrals correspond to those of §12.5(i).

12.5.5
U(a, z) =

Γ
(

1
2 − a

)
2πi

e−
1
4 z

2
∫ (0+)

−∞
ezt−

1
2 t

2
ta−

1
2 dt,

a 6= 1
2 ,

3
2 ,

5
2 , . . . , −π < ph t < π.

Restrictions on a are not needed in the following two
representations:

12.5.6
U(a, z) =

e
1
4 z

2

i
√

2π

∫ c+i∞

c−i∞
e−zt+

1
2 t

2
t−a−

1
2 dt,

− 1
2π < ph t < 1

2π, c > 0 ,

12.5.7

V (a, z) =
e−

1
4 z

2

2π

(∫ −ic+∞
−ic−∞

+
∫ ic+∞

ic−∞

)
ezt−

1
2 t

2
ta−

1
2 dt,

−π < ph t < π, c > 0.
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For proofs and further results see Miller (1955, §4)
and Whittaker (1902).

12.5(iii) Mellin–Barnes Integrals

12.5.8

U(a, z) =
e−

1
4 z

2
z−a−

1
2

2πiΓ
(

1
2 + a

)
×
∫ i∞

−i∞
Γ(t) Γ

(
1
2 + a− 2t

)
2tz2t dt,

a 6= − 1
2 ,−

3
2 ,−

5
2 , . . . , |ph z| < 3

4π,
where the contour separates the poles of Γ(t) from those
of Γ

(
1
2 + a− 2t

)
.

12.5.9

V (a, z) =

√
2
π

e
1
4 z

2
za−

1
2

2πiΓ
(

1
2 − a

)
×
∫ i∞

−i∞
Γ(t) Γ

(
1
2 − a− 2t

)
2tz2t cos (πt) dt,

a 6= 1
2 ,

3
2 ,

5
2 , . . . , |ph z| < 1

4π,
where the contour separates the poles of Γ(t) from those
of Γ

(
1
2 − a− 2t

)
.

12.5(iv) Compendia

For further collections of integral representations see
Apelblat (1983, pp. 427-436), Erdélyi et al. (1953b,
v. 2, pp. 119–120), Erdélyi et al. (1954a, pp. 289–
291 and 362), Gradshteyn and Ryzhik (2000, §§9.24–
9.25), Magnus et al. (1966, pp. 328–330), Oberhet-
tinger (1974, pp. 251–252), and Oberhettinger and Badii
(1973, pp. 378–384).

12.6 Continued Fraction

For a continued-fraction expansion of the ratio
U(a, x)/U(a− 1, x) see Cuyt et al. (2008, pp. 340–341).

12.7 Relations to Other Functions

12.7(i) Hermite Polynomials

For the notation see §18.3.

12.7.1 U
(
− 1

2 , z
)

= D0(z) = e−
1
4 z

2
,

12.7.2

U
(
−n− 1

2 , z
)

= Dn(z) = e−
1
4 z

2
Hen(z)

= 2−n/2e−
1
4 z

2
Hn

(
z/
√

2
)

,

n = 0, 1, 2, . . . ,

12.7.3

V
(
n+ 1

2 , z
)

=
√

2/πe
1
4 z

2
(−i)n Hen(iz)

=
√

2/πe
1
4 z

2
(−i)n2−

1
2nHn

(
iz/
√

2
)

,

n = 0, 1, 2, . . . .

12.7(ii) Error Functions, Dawson’s Integral, and
Probability Function

For the notation see §§7.2 and 7.18.

12.7.4 V
(
− 1

2 , z
)

= (2
/√

π )e
1
4 z

2
F
(
z/
√

2
)
,

12.7.5 U
(

1
2 , z
)

= D−1(z) =
√

1
2π e

1
4 z

2
erfc

(
z/
√

2
)
,

12.7.6

U
(
n+ 1

2 , z
)

= D−n−1(z)

=
√
π

2
(−1)n

n!
e−

1
4 z

2
dn
(
e

1
2 z

2
erfc

(
z/
√

2
))

dzn
,

n = 0, 1, 2, . . . ,

12.7.7

U
(
n+ 1

2 , z
)

= e
1
4 z

2
Hhn(z)

=
√
π 2

1
2 (n−1)e

1
4 z

2
inerfc

(
z/
√

2
)

,

n = −1, 0, 1, . . . .

12.7(iii) Modified Bessel Functions

For the notation see §10.25(ii).
12.7.8

U(−2, z) =
z5/2

4
√

2π

(
2K 1

4

(
1
4z

2
)
+3K 3

4

(
1
4z

2
)
−K 5

4

(
1
4z

2
))
,

12.7.9 U(−1, z) =
z3/2

2
√

2π

(
K 1

4

(
1
4z

2
)

+K 3
4

(
1
4z

2
))
,

12.7.10 U(0, z) =
√

z

2π
K 1

4

(
1
4z

2
)
,

12.7.11 U(1, z) =
z3/2

√
2π

(
K 3

4

(
1
4z

2
)
−K 1

4

(
1
4z

2
))
.

For these, the corresponding results for U(a, z) with
a = 2, ±3, − 1

2 , − 3
2 , − 5

2 , and the corresponding re-
sults for V (a, z) with a = 0, ±1, ±2, ±3, 1

2 , 3
2 , 5

2 , see
Miller (1955, pp. 42–43 and 77–79).

12.7(iv) Confluent Hypergeometric Functions

For the notation see §§13.2(i) and 13.14(i).
The even and odd solutions of (12.2.2) (see (12.4.3)–

(12.4.6)) are given by

12.7.12
u1(a, z) = e−

1
4 z

2
M
(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

= e
1
4 z

2
M
(
− 1

2a+ 1
4 ,

1
2 ,−

1
2z

2
)
,

12.7.13
u2(a, z) = ze−

1
4 z

2
M
(

1
2a+ 3

4 ,
3
2 ,

1
2z

2
)

= ze
1
4 z

2
M
(
− 1

2a+ 3
4 ,

3
2 ,−

1
2z

2
)
.

Also,

12.7.14

U(a, z) = 2−
1
4−

1
2ae−

1
4 z

2
U
(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

= 2−
3
4−

1
2aze−

1
4 z

2
U
(

1
2a+ 3

4 ,
3
2 ,

1
2z

2
)

= 2−
1
2az−

1
2 W− 1

2a,±
1
4

(
1
2z

2
)
.
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(It should be observed that the functions on the right-
hand sides of (12.7.14) are multivalued; hence, for ex-
ample, z cannot be replaced simply by −z.)

12.8 Recurrence Relations and Derivatives

12.8(i) Recurrence Relations

12.8.1 z U(a, z)−U(a− 1, z) + (a+ 1
2 )U(a+ 1, z) = 0,

12.8.2 U ′(a, z) + 1
2z U(a, z) + (a+ 1

2 )U(a+ 1, z) = 0,

12.8.3 U ′(a, z)− 1
2z U(a, z) +U(a− 1, z) = 0,

12.8.4 2U ′(a, z) +U(a− 1, z) + (a+ 1
2 )U(a+ 1, z) = 0.

(12.8.1)–(12.8.4) are also satisfied by U(a, z).

12.8.5 z V (a, z)−V (a+ 1, z) + (a− 1
2 )V (a− 1, z) = 0,

12.8.6 V ′(a, z)− 1
2z V (a, z)− (a− 1

2 )V (a− 1, z) = 0,

12.8.7 V ′(a, z) + 1
2z V (a, z)−V (a+ 1, z) = 0,

12.8.8 2V ′(a, z)−V (a+ 1, z)− (a− 1
2 )V (a− 1, z) = 0.

12.8(ii) Derivatives

For m = 0, 1, 2, . . . ,
12.8.9
dm

dzm

(
e

1
4 z

2
U(a, z)

)
= (−1)m

(
1
2 + a

)
m
e

1
4 z

2
U(a+m, z),

12.8.10
dm

dzm

(
e−

1
4 z

2
U(a, z)

)
= (−1)me−

1
4 z

2
U(a−m, z),

12.8.11
dm

dzm

(
e

1
4 z

2
V (a, z)

)
= e

1
4 z

2
V (a+m, z),

12.8.12

dm

dzm

(
e−

1
4 z

2
V (a, z)

)
= (−1)m

(
1
2 − a

)
m
e−

1
4 z

2
V (a−m, z).

12.9 Asymptotic Expansions for Large
Variable

12.9(i) Poincaré-Type Expansions

Throughout this subsection δ is an arbitrary small pos-
itive constant.

As z →∞

12.9.1
U(a, z) ∼ e− 1

4 z
2
z−a−

1
2

∞∑
s=0

(−1)s
(

1
2 + a

)
2s

s!(2z2)s
,

|ph z| ≤ 3
4π − δ(<

3
4π) ,

12.9.2
V (a, z) ∼

√
2
π
e

1
4 z

2
za−

1
2

∞∑
s=0

(
1
2 − a

)
2s

s!(2z2)s
,

|ph z| ≤ 1
4π − δ(<

1
4π) .

12.9.3

U(a, z) ∼ e− 1
4 z

2
z−a−

1
2

∞∑
s=0

(−1)s
(

1
2 + a

)
2s

s!(2z2)s

± i
√

2π
Γ
(

1
2 + a

)e∓iπae 1
4 z

2
za−

1
2

∞∑
s=0

(
1
2 − a

)
2s

s!(2z2)s
,

1
4π + δ ≤ ± ph z ≤ 5

4π − δ ,

12.9.4

V (a, z) ∼
√

2
π
e

1
4 z

2
za−

1
2

∞∑
s=0

(
1
2 − a

)
2s

s!(2z2)s

± i

Γ
(

1
2 − a

)e− 1
4 z

2
z−a−

1
2

∞∑
s=0

(−1)s
(

1
2 + a

)
2s

s!(2z2)s
,

− 1
4π + δ ≤ ± ph z ≤ 3

4π − δ.

12.9(ii) Bounds and Re-Expansions for the
Remainder Terms

Bounds and re-expansions for the error term in (12.9.1)
can be obtained by use of (12.7.14) and §§13.7(ii),
13.7(iii). Corresponding results for (12.9.2) can be ob-
tained via (12.2.20).

12.10 Uniform Asymptotic Expansions for
Large Parameter

12.10(i) Introduction

In this section we give asymptotic expansions of PCFs
for large values of the parameter a that are uniform with
respect to the variable z, when both a and z (= x) are
real. These expansions follow from Olver (1959), where
detailed information is also given for complex variables.

With the transformations

12.10.1 a = ± 1
2µ

2, x = µt
√

2,

(12.2.2) becomes

12.10.2
d2w

dt2
= µ4(t2 ± 1)w.

With the upper sign in (12.10.2), expansions can be
constructed for large µ in terms of elementary functions
that are uniform for t ∈ (−∞,∞) (§2.8(ii)). With the
lower sign there are turning points at t = ±1, which
need to be excluded from the regions of validity. These
cases are treated in §§12.10(ii)–12.10(vi).

The turning points can be included if expansions
in terms of Airy functions are used instead of elemen-
tary functions (§2.8(iii)). These cases are treated in
§§12.10(vii)–12.10(viii).

Throughout this section the symbol δ again denotes
an arbitrary small positive constant.
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12.10(ii) Negative a, 2
√
−a < x <∞

As a→ −∞

12.10.3 U
(
− 1

2µ
2, µt
√

2
)
∼ g(µ)e−µ

2ξ

(t2 − 1)
1
4

∞∑
s=0

As(t)
µ2s

,

12.10.4

U ′
(
− 1

2µ
2, µt
√

2
)
∼ − µ√

2
g(µ)(t2 − 1)

1
4 e−µ

2ξ
∞∑
s=0

Bs(t)
µ2s

,

12.10.5

V
(
− 1

2µ
2, µt
√

2
)
∼ 2g(µ)

Γ( 1
2 + 1

2µ
2)

eµ
2ξ

(t2 − 1)
1
4

×
∞∑
s=0

(−1)s
As(t)
µ2s

,

12.10.6

V ′
(
− 1

2µ
2, µt
√

2
)
∼
√

2µg(µ)
Γ( 1

2 + 1
2µ

2)
(t2 − 1)

1
4

× eµ
2ξ
∞∑
s=0

(−1)s
Bs(t)
µ2s

,

uniformly for t ∈ [1 + δ,∞), where

12.10.7 ξ = 1
2 t
√
t2 − 1− 1

2 ln
(
t+
√
t2 − 1

)
.

The coefficients are given by

12.10.8 As(t) =
us(t)

(t2 − 1)
3
2 s
, Bs(t) =

vs(t)
(t2 − 1)

3
2 s
,

where us(t) and vs(t) are polynomials in t of degree 3s,
(s odd), 3s− 2 (s even, s ≥ 2). For s = 0, 1, 2,

12.10.9

u0(t) = 1, u1(t) =
t(t2 − 6)

24
,

u2(t) =
−9t4 + 249t2 + 145

1152
,

12.10.10

v0(t) = 1, v1(t) =
t(t2 + 6)

24
,

v2(t) =
15t4 − 327t2 − 143

1152
.

Higher polynomials us(t) can be calculated from the re-
currence relation

12.10.11 (t2 − 1)u′s(t)− 3stus(t) = rs−1(t),
where

12.10.12
8rs(t) = (3t2 + 2)us(t)− 12(s+ 1)trs−1(t)

+ 4(t2 − 1)r′s−1(t),
and the vs(t) then follow from

12.10.13 vs(t) = us(t) + 1
2 tus−1(t)− rs−2(t).

Lastly, the function g(µ) in (12.10.3) and (12.10.4)
has the asymptotic expansion:

12.10.14 g(µ) ∼ h(µ)

(
1 +

1
2

∞∑
s=1

γs

( 1
2µ

2)s

)
,

where

12.10.15 h(µ) = 2−
1
4µ

2− 1
4 e−

1
4µ

2
µ

1
2µ

2− 1
2 ,

and the coefficients γs are defined by

12.10.16 Γ
(

1
2 + z

)
∼
√

2πe−zzz
∞∑
s=0

γs
zs

;

compare (5.11.8). For s ≤ 4

12.10.17
γ0 = 1, γ1 = − 1

24 , γ2 = 1
1152 ,

γ3 = 1003
4 14720 , γ4 = − 4027

398 13120 .

12.10(iii) Negative a, −∞ < x < −2
√
−a

When µ → ∞, asymptotic expansions for the func-
tions U

(
− 1

2µ
2,−µt

√
2
)

and V
(
− 1

2µ
2,−µt

√
2
)

that are
uniform for t ∈ [1 + δ,∞) are obtainable by substitu-
tion into (12.2.15) and (12.2.16) by means of (12.10.3)
and (12.10.5). Similarly for U ′

(
− 1

2µ
2,−µt

√
2
)

and
V ′
(
− 1

2µ
2,−µt

√
2
)
.

12.10(iv) Negative a, −2
√
−a < x < 2

√
−a

As a→ −∞

12.10.18 U
(
− 1

2µ
2, µt
√

2
)
∼ 2g(µ)

(1− t2)
1
4

(
cosκ

∞∑
s=0

(−1)s
Ã2s(t)
µ4s

− sinκ
∞∑
s=0

(−1)s
Ã2s+1(t)
µ4s+2

)
,

12.10.19 U ′
(
− 1

2µ
2, µt
√

2
)
∼ µ
√

2g(µ)(1− t2)
1
4

(
sinκ

∞∑
s=0

(−1)s
B̃2s(t)
µ4s

+ cosκ
∞∑
s=0

(−1)s
B̃2s+1(t)
µ4s+2

)
,

12.10.20 V
(
− 1

2µ
2, µt
√

2
)
∼ 2g(µ)

Γ
(

1
2 + 1

2µ
2
)
(1− t2)

1
4

(
cosχ

∞∑
s=0

(−1)s
Ã2s(t)
µ4s

− sinχ
∞∑
s=0

(−1)s
Ã2s+1(t)
µ4s+2

)
,

12.10.21 V ′
(
− 1

2µ
2, µt
√

2
)
∼ µ
√

2g(µ)(1− t2)
1
4

Γ
(

1
2 + 1

2µ
2
) (

sinχ
∞∑
s=0

(−1)s
B̃2s(t)
µ4s

+ cosχ
∞∑
s=0

(−1)s
B̃2s+1(t)
µ4s+2

)
,
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uniformly for t ∈ [−1 + δ, 1 − δ]. The quantities κ and
χ are defined by

12.10.22 κ = µ2η − 1
4π, χ = µ2η + 1

4π,

where

12.10.23 η = 1
2 arccos t− 1

2 t
√

1− t2,

and the coefficients Ãs(t) and B̃s(t) are given by

12.10.24 Ãs(t) =
us(t)

(1− t2)
3
2 s
, B̃s(t) =

vs(t)
(1− t2)

3
2 s

;

compare (12.10.8).

12.10(v) Positive a, −∞ < x <∞

As a→∞
12.10.25

U
(

1
2µ

2, µt
√

2
)
∼ g(µ)e−µ

2ξ

(t2 + 1)
1
4

∞∑
s=0

us(t)
(t2 + 1)

3
2 s

1
µ2s

,

uniformly for t ∈ R. Here bars do not denote complex
conjugates; instead

12.10.26 ξ = 1
2 t
√
t2 + 1 + 1

2 ln
(
t+
√
t2 + 1

)
,

12.10.27 us(t) = isus(−it),

and the function g(µ) has the asymptotic expansion

12.10.28 g(µ) ∼ 1
µ
√

2h(µ)

(
1 +

1
2

∞∑
s=1

(−1)s
γs

( 1
2µ

2)s

)
,

where h(µ) and γs are as in §12.10(ii).
With the same conditions

12.10.29

U ′
(

1
2µ

2, µt
√

2
)

∼ − µ√
2
g(µ)(t2 + 1)

1
4 e−µ

2ξ
∞∑
s=0

vs(t)
(t2 + 1)

3
2 s

1
µ2s

,

where

12.10.30 vs(t) = isvs(−it).

12.10(vi) Modifications of Expansions in
Elementary Functions

In Temme (2000) modifications are given of Olver’s ex-
pansions. An example is the following modification of
(12.10.3)

12.10.31 U
(
− 1

2µ
2, µt
√

2
)
∼ h(µ)e−µ

2ξ

(t2 − 1)
1
4

∞∑
s=0

As(τ)
µ2s

,

where ξ and h(µ) are as in (12.10.7) and (12.10.15) ,

12.10.32 τ =
1
2

(
t√

t2 − 1
− 1
)
,

and the coefficients As(τ) are the product of τs and a
polynomial in τ of degree 2s. They satisfy the recursion

12.10.33

As+1(τ) = −4τ2(τ + 1)2 d

dτ
As(τ)

− 1
4

∫ τ

0

(
20u2 + 20u+ 3

)
As(u) du,

s = 0, 1, 2, . . . ,
starting with Ao(τ) = 1. Explicitly,

12.10.34

A1(τ) = − 1
12τ(20τ2 + 30τ + 9),

A2(τ) = 1
288τ

2(6160τ4 + 18480τ3 + 19404τ2

+ 8028τ + 945).

The modified expansion (12.10.31) shares the prop-
erty of (12.10.3) that it applies when µ→∞ uniformly
with respect to t ∈ [1 + δ,∞). In addition, it enjoys a
double asymptotic property: it holds if either or both
µ and t tend to infinity. Observe that if t → ∞, then
As(τ) = O

(
t−2s

)
, whereas As(t) = O(1) or O

(
t−2
)

ac-
cording as s is even or odd. The proof of the double
asymptotic property then follows with the aid of error
bounds; compare §10.41(iv).

For additional information see Temme (2000). See
also Olver (1997b, pp. 206–208) and Jones (2006).

12.10(vii) Negative a, −2
√
−a < x <∞.

Expansions in Terms of Airy
Functions

The following expansions hold for large positive real val-
ues of µ, uniformly for t ∈ [−1 + δ,∞). (For complex
values of µ and t see Olver (1959).)

12.10.35 U

(
−1

2
µ2, µt

√
2
)
∼ 2π

1
2µ

1
3 g(µ)φ(ζ)

Ai
(
µ

4
3 ζ
) ∞∑
s=0

As(ζ)
µ4s

+
Ai′
(
µ

4
3 ζ
)

µ
8
3

∞∑
s=0

Bs(ζ)
µ4s

 ,

12.10.36 U ′
(
−1

2
µ2, µt

√
2
)
∼ (2π)

1
2µ

2
3 g(µ)

φ(ζ)

Ai
(
µ

4
3 ζ
)

µ
4
3

∞∑
s=0

Cs(ζ)
µ4s

+ Ai′
(
µ

4
3 ζ
) ∞∑
s=0

Ds(ζ)
µ4s

 ,
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12.10.37 V
(
− 1

2µ
2, µt
√

2
)
∼ 2π

1
2µ

1
3 g(µ)φ(ζ)

Γ
(

1
2 + 1

2µ
2
)

Bi
(
µ

4
3 ζ
) ∞∑
s=0

As(ζ)
µ4s

+
Bi′
(
µ

4
3 ζ
)

µ
8
3

∞∑
s=0

Bs(ζ)
µ4s

 ,

12.10.38 V ′
(
− 1

2µ
2, µt
√

2
)
∼ (2π)

1
2µ

2
3 g(µ)

φ(ζ) Γ
(

1
2 + 1

2µ
2
)
Bi

(
µ

4
3 ζ
)

µ
4
3

∞∑
s=0

Cs(ζ)
µ4s

+ Bi′
(
µ

4
3 ζ
) ∞∑
s=0

Ds(ζ)
µ4s

 .

The variable ζ is defined by

12.10.39

2
3ζ

3
2 = ξ, 1 ≤ t, (ζ ≥ 0);

2
3 (−ζ)

3
2 = η, −1 < t ≤ 1, (ζ ≤ 0),

where ξ, η are given by (12.10.7), (12.10.23), respec-
tively, and

12.10.40 φ(ζ) =
(

ζ

t2 − 1

)1
4

.

The function ζ = ζ(t) is real for t > −1 and analytic at
t = 1. Inversely, with w = 2−

1
3 ζ,

12.10.41
t = 1 + w − 1

10w
2 + 11

350w
3 − 823

63000w
4

+ 1 50653
242 55000w

5 + · · · , |ζ| <
(

3
4π
) 2

3 .

For g(µ) see (12.10.14). The coefficients As(ζ) and
Bs(ζ) are given by
12.10.42

As(ζ) = ζ−3s
2s∑
m=0

βm(φ(ζ))6(2s−m)u2s−m(t),

ζ2Bs(ζ) = −ζ−3s
2s+1∑
m=0

αm(φ(ζ))6(2s−m+1)u2s−m+1(t),

where φ(ζ) is as in (12.10.40), uk(t) is as in §12.10(ii),
α0 = 1, and

12.10.43

αm =
(2m+ 1)(2m+ 3) · · · (6m− 1)

m!(144)m
,

βm = −6m+ 1
6m− 1

αm.

The coefficients Cs(ζ) and Ds(ζ) in (12.10.36) and
(12.10.38) are given by

12.10.44
Cs(ζ) = χ(ζ)As(ζ) +A′s(ζ) + ζBs(ζ),
Ds(ζ) = As(ζ) + χ(ζ)Bs−1(ζ) +B′s−1(ζ),

where
12.10.45 χ(ζ) =

φ′(ζ)
φ(ζ)

=
1− 2t(φ(ζ))6

4ζ
.

Explicitly,
12.10.46

ζCs(ζ) = −ζ−3s
2s+1∑
m=0

βm(φ(ζ))6(2s−m+1)v2s−m+1(t),

Ds(ζ) = ζ−3s
2s∑
m=0

αm(φ(ζ))6(2s−m)v2s−m(t),

where vk(t) is as in §12.10(ii).

Modified Expansions

The expansions (12.10.35)–(12.10.38) can be modified,
again see Temme (2000), and the new expansions hold if
either or both µ and t tend to infinity. This is provable
by the methods used in §10.41(v).

12.10(viii) Negative a, −∞ < x < 2
√
−a.

Expansions in Terms of Airy
Functions

When µ → ∞, asymptotic expansions for
U
(
− 1

2µ
2,−µt

√
2
)

and V
(
− 1

2µ
2,−µt

√
2
)

that are uni-
form for t ∈ [−1 + δ,∞) are obtained by substitution
into (12.2.15) and (12.2.16) by means of (12.10.35)
and (12.10.37). Similarly for U ′

(
− 1

2µ
2,−µt

√
2
)

and
V ′
(
− 1

2µ
2,−µt

√
2
)
.

12.11 Zeros

12.11(i) Distribution of Real Zeros

If a ≥ − 1
2 , then U(a, x) has no real zeros. If − 3

2 <
a < − 1

2 , then U(a, x) has no positive real zeros. If
−2n − 3

2 < a < −2n + 1
2 , n = 1, 2, . . . , then U(a, x)

has n positive real zeros. Lastly, when a = −n − 1
2 ,

n = 1, 2, . . . (Hermite polynomial case) U(a, x) has n
zeros and they lie in the interval [−2

√
−a, 2

√
−a ]. For

further information on these cases see Dean (1966).
If a > − 1

2 , then V (a, x) has no positive real zeros,
and if a = 3

2 − 2n, n ∈ Z, then V (a, x) has a zero at
x = 0.

12.11(ii) Asymptotic Expansions of Large Zeros

When a > − 1
2 , U(a, z) has a string of complex zeros that

approaches the ray ph z = 3
4π as z → ∞, and a conju-

gate string. When a > − 1
2 the zeros are asymptotically

given by za,s and z̄a,s, where s is a large positive integer
and
12.11.1

za,s = e
3
4πi
√

2τs

(
1− iaλs

2τs
+

2a2λ2
s − 8a2λs + 4a2 + 3

16τ2
s

+O
(
λ3
sτ
−3
s

))
,

with

12.11.2 τs =
(
2s+ 1

2 −a
)
π+ i ln

(
π−

1
2 2−a−

1
2 Γ
(

1
2 + a

))
,
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and

12.11.3 λs = ln τs − 1
2πi.

When a = 1
2 these zeros are the same as the zeros of

the complementary error function erfc(z/
√

2); compare
(12.7.5). Numerical calculations in this case show that
z 1

2 ,s
corresponds to the sth zero on the string; compare

§7.13(ii).

12.11(iii) Asymptotic Expansions for Large
Parameter

For large negative values of a the real zeros of U(a, x),
U ′(a, x), V (a, x), and V ′(a, x) can be approximated
by reversion of the Airy-type asymptotic expansions of
§§12.10(vii) and 12.10(viii). For example, let the sth
real zeros of U(a, x) and U ′(a, x), counted in descend-
ing order away from the point z = 2

√
−a, be denoted

by ua,s and u′a,s, respectively. Then

12.11.4 ua,s ∼ 2
1
2µ

(
p0(α) +

p1(α)
µ4

+
p2(α)
µ8

+ · · ·
)
,

as µ (=
√
−2a) → ∞, s fixed. Here α = µ−

4
3 as, as

denoting the sth negative zero of the function Ai (see
§9.9(i)). The first two coefficients are given by

12.11.5 p0(ζ) = t(ζ),
where t(ζ) is the function inverse to ζ(t), defined by
(12.10.39) (see also (12.10.41)), and

12.11.6 p1(ζ) =
t3 − 6t

24(t2 − 1)2
+

5
48((t2 − 1)ζ3)

1
2
.

Similarly, for the zeros of U ′(a, x) we have

12.11.7 u′a,s ∼ 2
1
2µ

(
q0(β) +

q1(β)
µ4

+
q2(β)
µ8

+ · · ·
)
,

where β = µ−
4
3 a′s, a

′
s denoting the sth negative zero of

the function Ai′ and

12.11.8 q0(ζ) = t(ζ).
For the first zero of U(a, x) we also have

12.11.9

ua,1 ∼ 2
1
2µ
(

1− 1.85575 708µ−4/3 − 0.34438 34µ−8/3

− 0.16871 5µ−4 − 0.11414µ−16/3 − 0.0808µ−20/3

− · · ·
)
,

where the numerical coefficients have been rounded off.
For further information, including associated func-

tions, see Olver (1959).

12.12 Integrals

12.12.1∫ ∞
0

e−
1
4 t

2
tµ−1 U(a, t) dt =

√
π2−

1
2 (µ+a+ 1

2 ) Γ(µ)
Γ
(

1
2 (µ+ a+ 3

2 )
) ,

<µ > 0 ,

12.12.2∫ ∞
0

e−
3
4 t

2
t−a−

3
2 U(a, t) dt

= 2
1
4 + 1

2a Γ
(
−a− 1

2

)
cos
(
( 1

4a+ 1
8 )π
)
, <a < − 1

2 ,

12.12.3

∫ ∞
0

e−
1
4 t

2
t−a−

1
2 (x2 + t2)−1 U(a, t) dt

=
√
π/2 Γ

(
1
2 − a

)
x−a−

3
2 e

1
4x

2
U(−a, x),
<a < 1

2 , x > 0.

Nicholson-type Integral

12.12.4

(U(a, z))2 + (U(a, z))2

=
2

3
2

π
Γ
(

1
2 − a

) ∫ ∞
0

e2at+ 1
2 z

2 tanh t√
sinh (2t)

dt, <a < 1
2 .

When z (= x) is real the left-hand side equals (F (a, x))2;
compare (12.2.22).

For further integrals see §§13.10, 13.23, and use
(12.7.14).

For compendia of integrals see Erdélyi et al. (1953b,
v. 2, pp. 121–122), Erdélyi et al. (1954a,b, v. 1, pp. 60–
61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151,
171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7),
Magnus et al. (1966, pp. 330–331), Marichev (1983,
pp. 190–191), Oberhettinger (1974, pp. 144–145), Ober-
hettinger (1990, pp. 106–108 and 192), Oberhettinger
and Badii (1973, pp. 181–185), Prudnikov et al. (1986b,
pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–
420, and 619), Prudnikov et al. (1992a, §3.11), and
Prudnikov et al. (1992b, §3.11).

See also Barr (1968) and Lowdon (1970).

12.13 Sums

12.13(i) Addition Theorems

12.13.1

U(a, x+ y) = e
1
2xy+ 1

4y
2
∞∑
m=0

(−y)m

m!
U(a−m,x),

12.13.2

U(a, x+ y)

= e−
1
2xy−

1
4y

2
∞∑
m=0

(
−a− 1

2

m

)
ym U(a+m,x),

12.13.3

V (a, x+ y) = e
1
2xy+ 1

4y
2
∞∑
m=0

(
a− 1

2

m

)
ym V (a−m,x),

12.13.4 V (a, x+ y) = e−
1
2xy−

1
4y

2
∞∑
m=0

ym

m!
V (a+m,x).
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12.13.5

U(a, x cos t+ y sin t)

= e
1
4 (x sin t−y cos t)2

×
∞∑
m=0

(
−a− 1

2

m

)
(tan t)m U(m+ a, x)U

(
−m− 1

2 , y
)
,

<a ≤ − 1
2 , 0 ≤ t ≤

1
4π.

12.13.6

n!U
(
n+ 1

2 , z
)

= ine−
1
2 z

2
erfc(z/

√
2)U

(
−n− 1

2 , iz
)

+
b 1

2n+ 1
2c∑

m=1

U
(
2m− n− 1

2 , z
)
,

n = 0, 1, 2, . . . .

For erfc see §7.2(i).

12.13(ii) Other Series

For other series see Dhar (1940), Hansen (1975, pp. 421–
422), Hillion (1997), Miller (1974), Prudnikov et al.
(1986b, p. 651), Shanker (1940b,a,c), and Varma (1941).

12.14 The Function W (a, x)

12.14(i) Introduction

In this section solutions of equation (12.2.3) are consid-
ered. This equation is important when a and z (= x)
are real, and we shall assume this to be the case. In
other cases the general theory of (12.2.2) is available.
W (a, x) and W (a,−x) form a numerically satisfactory
pair of solutions when −∞ < x <∞.

12.14(ii) Values at z = 0 and Wronskian

12.14.1 W (a, 0) = 2−
3
4

∣∣∣∣∣Γ
(

1
4 + 1

2 ia
)

Γ
(

3
4 + 1

2 ia
) ∣∣∣∣∣

1
2

,

12.14.2 W ′(a, 0) = −2−
1
4

∣∣∣∣∣Γ
(

3
4 + 1

2 ia
)

Γ
(

1
4 + 1

2 ia
) ∣∣∣∣∣

1
2

.

12.14.3 W {W (a, x),W (a,−x)} = 1.

12.14(iii) Graphs

For the modulus functions F̃ (a, x) and G̃(a, x) see
§12.14(x).

Figure 12.14.1: k− 1/2 W (3, x), k 1/2 W (3,−x), F̃ (3, x),
0 ≤ x ≤ 8.

Figure 12.14.2: k− 1/2 W ′(3, x), k 1/2 W ′(3,−x), G̃(3, x),
0 ≤ x ≤ 8.

Figure 12.14.3: k− 1/2 W (−3, x), k 1/2 W (−3,−x),
F̃ (−3, x), 0 ≤ x ≤ 8.

Figure 12.14.4: k− 1/2 W ′(−3, x), k 1/2 W ′(−3,−x),
G̃(−3, x), 0 ≤ x ≤ 8.
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12.14(iv) Connection Formula

12.14.4

W (a, x) =
√
k/2 e

1
4πa

(
eiρ U

(
ia, xe−πi/4

)
+ e−iρ U

(
−ia, xeπi/4

))
,

where

12.14.5 k =
√

1 + e2πa − eπa, 1/k =
√

1 + e2πa + eπa,

12.14.6 ρ = 1
8π + 1

2φ2,

12.14.7 φ2 = ph Γ
(

1
2 + ia

)
,

the branch of ph being zero when a = 0 and defined by
continuity elsewhere.

12.14(v) Power-Series Expansions

12.14.8 W (a, x) = W (a, 0)w1(a, x) +W ′(a, 0)w2(a, x).

Here w1(a, x) and w2(a, x) are the even and odd solu-
tions of (12.2.3):

12.14.9 w1(a, x) =
∞∑
n=0

αn(a)
x2n

(2n)!
,

12.14.10 w2(a, x) =
∞∑
n=0

βn(a)
x2n+1

(2n+ 1)!
,

where αn(a) and βn(a) satisfy the recursion relations

12.14.11
αn+2 = aαn+1 − 1

2 (n+ 1)(2n+ 1)αn,

βn+2 = aβn+1 − 1
2 (n+ 1)(2n+ 3)βn,

with
12.14.12

α0(a) = 1, α1(a) = a, β0(a) = 1, β1(a) = a.

Other expansions, involving cos
(

1
4x

2
)

and sin
(

1
4x

2
)
,

can be obtained from (12.4.3) to (12.4.6) by replacing
a by −ia and z by xeπi/4 ; see Miller (1955, p. 80), and
also (12.14.15) and (12.14.16).

12.14(vi) Integral Representations

These follow from the contour integrals of §12.5(ii),
which are valid for general complex values of the ar-
gument z and parameter a. See Miller (1955, p. 26).

12.14(vii) Relations to Other Functions

Bessel Functions

For the notation see §10.2(ii). When x > 0

12.14.13 W (0,±x) = 2−
5
4
√
πx
(
J− 1

4

(
1
4x

2
)
∓J 1

4

(
1
4x

2
))
,

12.14.14
d

dx
W (0,±x) = −2−

9
4x
√
πx
(
J 3

4

(
1
4x

2
)
± J− 3

4

(
1
4x

2
))
.

Confluent Hypergeometric Functions

For the notation see §13.2(i).
The even and odd solutions of (12.2.3) (see

§12.14(v)) are given by

12.14.15
w1(a, x) = e−

1
4 ix

2
M
(

1
4 −

1
2 ia,

1
2 ,

1
2 ix

2
)

= e
1
4 ix

2
M
(

1
4 + 1

2 ia,
1
2 ,−

1
2 ix

2
)
,

12.14.16
w2(a, x) = xe−

1
4 ix

2
M
(

3
4 −

1
2 ia,

3
2 ,

1
2 ix

2
)

= xe
1
4 ix

2
M
(

3
4 + 1

2 ia,
3
2 ,−

1
2 ix

2
)
.

12.14(viii) Asymptotic Expansions for Large
Variable

Write

12.14.17 W (a, x) =

√
2k
x

(s1(a, x) cosω−s2(a, x) sinω) ,

12.14.18

W (a,−x) =

√
2
kx

(s1(a, x) sinω + s2(a, x) cosω) ,

where

12.14.19 ω = 1
4x

2 − a lnx+ 1
4π + 1

2φ2,

with φ2 given by (12.14.7). Then as x→∞
12.14.20

s1(a, x) ∼ 1 +
d2

1!2x2
− c4

2!22x4
− d6

3!23x6
+

c8
4!24x8

+ · · · ,

12.14.21

s2(a, x) ∼ − c2
1!2x2

− d4

2!22x4
+

c6
3!23x6

+
d8

4!24x8
− · · · .

The coefficients c2r and d2r are obtainable by equating
real and imaginary parts in

12.14.22 c2r + id2r =
Γ
(
2r + 1

2 + ia
)

Γ
(

1
2 + ia

) .

Equivalently,

12.14.23 s1(a, x) + is2(a, x) ∼
∞∑
r=0

(−i)r
(

1
2 + ia

)
2r

2rr!x2r
.

12.14(ix) Uniform Asymptotic Expansions for
Large Parameter

The differential equation

12.14.24
d2w

dt2
= µ4(1− t2)w

follows from (12.2.3), and has solutions
W
(

1
2µ

2,±µt
√

2
)
. For real µ and t oscillations occur

outside the t-interval [−1, 1]. Airy-type uniform asymp-
totic expansions can be used to include either one of
the turning points ±1. In the following expansions,
obtained from Olver (1959), µ is large and positive, and
δ is again an arbitrary small positive constant.
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Positive a, 2
√
a < x <∞

12.14.25

W
(

1
2µ

2, µt
√

2
)

∼ 2−
1
2 e−

1
4πµ

2
l(µ)

(t2 − 1)
1
4

(
cosσ

∞∑
s=0

(−1)s
A2s(t)
µ4s

− sinσ
∞∑
s=0

(−1)s
A2s+1(t)
µ4s+2

)
,

12.14.26

W
(

1
2µ

2,−µt
√

2
)
∼ 2

1
2 e

1
4πµ

2
l(µ)

(t2 − 1)
1
4

(
sinσ

∞∑
s=0

(−1)s
A2s(t)
µ4s

+ cosσ
∞∑
s=0

(−1)s
A2s+1(t)
µ4s+2

)
,

uniformly for t ∈ [1 + δ,∞). Here As(t) is as in
§12.10(ii), σ is defined by

12.14.27 σ = µ2ξ + 1
4π,

with ξ given by (12.10.7), and

12.14.28 l(µ) =
√

2e
1
8πµ

2
ei(

1
2φ2− 1

8π)g(µe−
1
4πi),

with g(µ) as in §12.10(ii). The function l(µ) has the
asymptotic expansion

12.14.29 l(µ) ∼ 2
1
4

µ
1
2

∞∑
s=0

ls
µ4s

,

with

12.14.30 l0 = 1, l1 = − 1
1152 , l2 = − 16123

398 13120 .

Positive a, −2
√
a < x < 2

√
a

12.14.31

W
(

1
2µ

2, µt
√

2
)
∼ l(µ)eµ

2η

2
1
2 e

1
4πµ

2(1− t2)
1
4

∞∑
s=0

(−1)s
Ãs(t)
µ2s

,

uniformly for t ∈ [−1 + δ, 1 − δ], with η given by
(12.10.23) and Ãs(t) given by (12.10.24).

The expansions for the derivatives corresponding to
(12.14.25), (12.14.26), and (12.14.31) may be obtained
by formal term-by-term differentiation with respect to
t; compare the analogous results in §§12.10(ii)–12.10(v).

Airy-type Uniform Expansions

12.14.32 W
(

1
2µ

2, µt
√

2
)
∼ π

1
2µ

1
3 l(µ)

2
1
2 e

1
4πµ

2 φ(ζ)

Bi
(
−µ 4

3 ζ
) ∞∑
s=0

(−1)s
As(ζ)
µ4s

+
Bi′
(
−µ 4

3 ζ
)

µ
8
3

∞∑
s=0

(−1)s
Bs(ζ)
µ4s

 ,

12.14.33 W
(

1
2µ

2,−µt
√

2
)
∼ π

1
2µ

1
3 l(µ)

2−
1
2 e−

1
4πµ

2 φ(ζ)

Ai
(
−µ 4

3 ζ
) ∞∑
s=0

(−1)s
As(ζ)
µ4s

+
Ai′
(
−µ 4

3 ζ
)

µ
8
3

∞∑
s=0

(−1)s
Bs(ζ)
µ4s

 ,

uniformly for t ∈ [−1 + δ,∞), with ζ, φ(ζ), As(ζ), and Bs(ζ) as in §12.10(vii). For the corresponding expansions for
the derivatives see Olver (1959).

Negative a, −∞ < x <∞
In this case there are no real turning points, and the solutions of (12.2.3), with z replaced by x, oscillate on the
entire real x-axis.

12.14.34 W
(
− 1

2µ
2, µt
√

2
)
∼ l(µ)

(t2 + 1)
1
4

(
cosσ

∞∑
s=0

(−1)su2s(t)
(t2 + 1)3sµ4s

− sinσ
∞∑
s=0

(−1)su2s+1(t)
(t2 + 1)3s+ 3

2µ4s+2

)
,

12.14.35 W ′
(
− 1

2µ
2, µt
√

2
)
∼ − µ√

2
l(µ)(t2 + 1)

1
4

(
sinσ

∞∑
s=0

(−1)sv2s(t)
(t2 + 1)3sµ4s

+ cosσ
∞∑
s=0

(−1)sv2s+1(t)
(t2 + 1)3s+ 3

2µ4s+2

)
,

uniformly for t ∈ R, where

12.14.36 σ = µ2ξ + 1
4π,

and ξ and the coefficients us(t) and vs(t) as in §12.10(v).

12.14(x) Modulus and Phase Functions

As noted in §12.14(ix), when a is negative the solutions
of (12.2.3), with z replaced by x, are oscillatory on the
whole real line; also, when a is positive there is a cen-
tral interval −2

√
a < x < 2

√
a in which the solutions

are exponential in character. In the oscillatory intervals
we write

12.14.37

k− 1/2 W (a, x) + ik 1/2 W (a,−x) = F̃ (a, x)eieθ(a,x),
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12.14.38

k− 1/2 W ′(a, x) + ik 1/2 W ′(a,−x) = −G̃(a, x)ei eψ(a,x),

where k is defined in (12.14.5), and F̃ (a, x) (>0), θ̃(a, x),
G̃(a, x) (>0), and ψ̃(a, x) are real. F̃ or G̃ is the mod-
ulus and θ̃ or ψ̃ is the corresponding phase. Compare
§12.2(vi).

For properties of the modulus and phase functions,
including differential equations and asymptotic expan-
sions for large x, see Miller (1955, pp. 87–88). For
graphs of the modulus functions see §12.14(iii).

12.14(xi) Zeros of W (a, x), W ′(a, x)

For asymptotic expansions of the zeros of W (a, x) and
W ′(a, x), see Olver (1959).

12.15 Generalized Parabolic Cylinder
Functions

The equation

12.15.1
d2w

dz2 +
(
ν + λ−1 − λ−2zλ

)
w = 0

can be viewed as a generalization of (12.2.4). This
equation arises in the study of non-self-adjoint elliptic
boundary-value problems involving an indefinite weight
function. See Faierman (1992) for power series and
asymptotic expansions of a solution of (12.15.1).

Applications

12.16 Mathematical Applications

PCFs are used as basic approximating functions in
the theory of contour integrals with a coalescing sad-
dle point and an algebraic singularity, and in the the-
ory of differential equations with two coalescing turn-
ing points; see §§2.4(vi) and 2.8(vi). For examples see
§§13.20(iii), 13.20(iv), 14.15(v), and 14.26.

Sleeman (1968b) considers certain orthogonality
properties of the PCFs and corresponding eigenvalues.
In Brazel et al. (1992) exponential asymptotics are con-
sidered in connection with an eigenvalue problem in-
volving PCFs.

PCFs are also used in integral transforms with re-
spect to the parameter, and inversion formulas exist for
kernels containing PCFs. See Erdélyi (1941a), Cherry
(1948), and Lowdon (1970). Integral transforms and
sampling expansions are considered in Jerri (1982).

12.17 Physical Applications

The main applications of PCFs in mathematical physics
arise when solving the Helmholtz equation

12.17.1 ∇2w + k2w = 0,

where k is a constant, and ∇2 is the Laplacian

12.17.2 ∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

in Cartesian coordinates x, y, z of three-dimensional
space (§1.5(ii)). By using instead coordinates of the
parabolic cylinder ξ, η, ζ, defined by

12.17.3 x = ξη, y = 1
2ξ

2 − 1
2η

2, z = ζ,

(12.17.1) becomes

12.17.4
1

ξ2 + η2

(
∂2w

∂ξ2 +
∂2w

∂η2

)
+
∂2w

∂ζ2 + k2w = 0.

Setting w = U(ξ)V (η)W (ζ) and separating variables,
we obtain

12.17.5

d2U

dξ2 +
(
σξ2 + λ

)
U = 0,

d2V

dη2 +
(
ση2 − λ

)
V = 0,

d2W

dζ2 +
(
k2 − σ

)
W = 0,

with arbitrary constants σ, λ. The first two equations
can be transformed into (12.2.2) or (12.2.3).

In a similar manner coordinates of the paraboloid of
revolution transform the Helmholtz equation into equa-
tions related to the differential equations considered in
this chapter. See Buchholz (1969, §4) and Morse and
Feshbach (1953a, pp. 515 and 553).

Buchholz (1969) collects many results on boundary-
value problems involving PCFs. Miller (1974) treats
separation of variables by group theoretic methods.
Dean (1966) describes the role of PCFs in quantum me-
chanical systems closely related to the one-dimensional
harmonic oscillator.

Problems on high-frequency scattering in homoge-
neous media by parabolic cylinders lead to asymptotic
methods for integrals involving PCFs. For this topic and
other boundary-value problems see Boyd (1973), Hillion
(1997), Magnus (1941), Morse and Feshbach (1953a,b),
Müller (1988), Ott (1985), Rice (1954), and Shanmugam
(1978).

Lastly, parabolic cylinder functions arise in the de-
scription of ultra cold atoms in harmonic trapping po-
tentials; see Busch et al. (1998) and Edwards et al.
(1999).
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Computation

12.18 Methods of Computation

Because PCFs are special cases of confluent hypergeo-
metric functions, the methods of computation described
in §13.29 are applicable to PCFs. These include the use
of power-series expansions, recursion, integral represen-
tations, differential equations, asymptotic expansions,
and expansions in series of Bessel functions. See, espe-
cially, Temme (2000) and Gil et al. (2004b, 2006b,c).

12.19 Tables

• Abramowitz and Stegun (1964, Chapter 19) in-
cludes U(a, x) and V (a, x) for ±a = 0(.1)1(.5)5,
x = 0(.1)5, 5S; W (a,±x) for ±a = 0(.1)1(1)5,
x = 0(.1)5, 4-5D or 4-5S.

• Miller (1955) includes W (a, x), W (a,−x), and re-
duced derivatives for a = −10(1)10, x = 0(.1)10,
8D or 8S. Modulus and phase functions, and also
other auxiliary functions are tabulated.

• Fox (1960) includes modulus and phase functions
for W (a, x) and W (a,−x), and several auxiliary
functions for x−1 = 0(.005)0.1, a = −10(1)10, 8S.

• Kireyeva and Karpov (1961) includesDp(x(1 + i))
for ±x = 0(.1)5, p = 0(.1)2, and ±x = 5(.01)10,
p = 0(.5)2, 7D.

• Karpov and Čistova (1964) includes Dp(x) for
p = −2(.1)0, ±x = 0(.01)5; p = −2(.05)0,
±x = 5(.01)10, 6D.

• Karpov and Čistova (1968) includes
e−

1
4x

2
Dp(−x) and e−

1
4x

2
Dp(ix) for x = 0(.01)5

and x−1 = 0(.001 or .0001)5, p = −1(.1)1, 7D or
8S.

• Murzewski and Sowa (1972) includes D−n(x)(
= U

(
n− 1

2 , x
))

for n = 1(1)20, x = 0(.05)3, 7S.

• Zhang and Jin (1996, pp. 455–473) includes
U
(
±n− 1

2 , x
)
, V

(
±n− 1

2 , x
)
, U

(
±ν − 1

2 , x
)
,

V
(
±ν − 1

2 , x
)
, and derivatives, ν = n + 1

2 ,
n = 0(1)10(10)30, x = 0.5, 1, 5, 10, 30, 50, 8S;
W (a,±x), W (−a,±x), and derivatives, a =
h(1)5 + h, x = 0.5, 1 and a = h(1)5 + h, x = 5,
h = 0, 0.5, 8S. Also, first zeros of U(a, x), V (a, x),
and of derivatives, a = −6(.5)−1, 6D; first three
zeros of W (a,−x) and of derivative, a = 0(.5)4,
6D; first three zeros of W (−a,±x) and of deriva-
tive, a = 0.5(.5)5.5, 6D; real and imaginary

parts of U(a, z), a = −1.5(1)1.5, z = x + iy,
x = 0.5, 1, 5, 10, y = 0(.5)10, 8S.

For other tables prior to 1961 see Fletcher et al.
(1962) and Lebedev and Fedorova (1960).

12.20 Approximations

Luke (1969b, pp. 25 and 35) gives Chebyshev-series
expansions for the confluent hypergeometric functions
U(a, b, x) and M(a, b, x) (§13.2(i)) whose regions of va-
lidity include intervals with endpoints x = ∞ and
x = 0, respectively. As special cases of these results
a Chebyshev-series expansion for U(a, x) valid when
λ ≤ x <∞ follows from (12.7.14), and Chebyshev-series
expansions for U(a, x) and V (a, x) valid when 0 ≤ x ≤ λ
follow from (12.4.1), (12.4.2), (12.7.12), and (12.7.13).
Here λ denotes an arbitrary positive constant.

12.21 Software

See http://dlmf.nist.gov/12.21.
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Notation

13.1 Special Notation

(For other notation see pp. xiv and 873.)

m integer.
n, s nonnegative integers.
x, y real variables.
z complex variable.
δ arbitrary small positive constant.
γ Euler’s constant (§5.2(ii)).
Γ(x) Gamma function (§5.2(i)).
ψ(x) Γ′(x)/Γ(x) .

The main functions treated in this chapter are the
Kummer functions M(a, b, z) and U(a, b, z), Olver’s
function M(a, b, z), and the Whittaker functions
Mκ,µ(z) and Wκ,µ(z).

Other notations are: 1F1(a; b; z) (§16.2(i)) and
Φ(a; b; z) (Humbert (1920)) for M(a, b, z); Ψ(a; b; z)
(Erdélyi et al. (1953a, §6.5)) for U(a, b, z); V (b −
a, b, z) (Olver (1997b, p. 256)) for ez U(a, b,−z);
Γ(1 + 2µ)Mκ,µ (Buchholz (1969, p. 12)) for Mκ,µ(z).

For an historical account of notations see Slater
(1960, Chapter 1).

Kummer Functions

13.2 Definitions and Basic Properties

13.2(i) Differential Equation

Kummer’s Equation

13.2.1 z
d2w

dz2 + (b− z)dw
dz
− aw = 0.

This equation has a regular singularity at the origin
with indices 0 and 1 − b, and an irregular singularity
at infinity of rank one. It can be regarded as the lim-
iting form of the hypergeometric differential equation
(§15.10(i)) that is obtained on replacing z by z/b , let-
ting b → ∞, and subsequently replacing the symbol c
by b. In effect, the regular singularities of the hypergeo-
metric differential equation at b and ∞ coalesce into an
irregular singularity at ∞.

Standard Solutions

The first two standard solutions are:
13.2.2

M(a, b, z) =
∞∑
s=0

(a)s
(b)ss!

zs = 1 +
a

b
z+

a(a+ 1)
b(b+ 1)2!

z2 + · · · ,

and

13.2.3 M(a, b, z) =
∞∑
s=0

(a)s
Γ(b+ s)s!

zs,

except that M(a, b, z) does not exist when b is a non-
positive integer. In other cases

13.2.4 M(a, b, z) = Γ(b) M(a, b, z).
The series (13.2.2) and (13.2.3) converge for all

z ∈ C. M(a, b, z) is entire in z and a, and is a mero-
morphic function of b. M(a, b, z) is entire in z, a, and
b.

Although M(a, b, z) does not exist when b = −n,
n = 0, 1, 2, . . . , many formulas containing M(a, b, z)
continue to apply in their limiting form. In particular,
13.2.5

lim
b→−n

M(a, b, z)
Γ(b)

= M(a,−n, z)

=
(a)n+1

(n+ 1)!
zn+1M(a+ n+ 1, n+ 2, z).

When a = −n, n = 0, 1, 2, . . . , M(a, b, z) is a poly-
nomial in z of degree not exceeding n; this is also true of
M(a, b, z) provided that b is not a nonpositive integer.

Another standard solution of (13.2.1) is U(a, b, z),
which is determined uniquely by the property

13.2.6 U(a, b, z) ∼ z−a, z →∞, |ph z| ≤ 3
2π − δ,

where δ is an arbitrary small positive constant. In gen-
eral, U(a, b, z) has a branch point at z = 0. The princi-
pal branch corresponds to the principal value of z−a in
(13.2.6), and has a cut in the z-plane along the interval
(−∞, 0]; compare §4.2(i).

When a = −n, n = 0, 1, 2, . . . , U(a, b, z) is a poly-
nomial in z of degree n:

13.2.7 U(−n, b, z) = (−1)n
n∑
s=0

(
n

s

)
(b+ s)n−s(−z)

s.

Similarly, when a− b+ 1 = −n, n = 0, 1, 2, . . .,

13.2.8 U(a, a+ n+ 1, z) = z−a
n∑
s=0

(
n

s

)
(a)sz

−s.
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When b = n+ 1, n = 0, 1, 2, . . . ,

13.2.9

U(a, n+ 1, z) =
(−1)n+1

n! Γ(a− n)

∞∑
k=0

(a)k
(n+ 1)kk!

zk (ln z + ψ(a+ k)− ψ(1 + k)− ψ(n+ k + 1))

+
1

Γ(a)

n∑
k=1

(k − 1)!(1− a+ k)n−k
(n− k)!

z−k,

if a 6= 0,−1,−2, . . . , or

13.2.10

U(a, n+ 1, z) = (−1)a
−a∑
k=0

(
−a
k

)
(n+ k + 1)−a−k(−z)k,

if a = 0,−1,−2, . . . .
When b = −n, n = 0, 1, 2, . . . , the following equa-

tion can be combined with (13.2.9) and (13.2.10):

13.2.11 U(a,−n, z) = zn+1 U(a+ n+ 1, n+ 2, z).

13.2(ii) Analytic Continuation

When m ∈ Z,

13.2.12

U
(
a, b, ze2πim

)
=

2πie−πibm sin(πbm)
Γ(1 + a− b) sin(πb)

M(a, b, z)

+ e−2πibm U(a, b, z).

Except when z = 0 each branch of U(a, b, z) is en-
tire in a and b. Unless specified otherwise, however,
U(a, b, z) is assumed to have its principal value.

13.2(iii) Limiting Forms as z → 0

13.2.13 M(a, b, z) = 1 +O(z).

Next, in cases when a = −n or −n+ b− 1, where n
is a nonnegative integer,

13.2.14 U(−n, b, z) = (−1)n(b)n +O(z),

13.2.15

U(−n+ b− 1, b, z) = (−1)n(2− b)nz
1−b +O

(
z2−b).

In all other cases
13.2.16

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +O

(
z2−<b), <b ≥ 2, b 6= 2,

13.2.17

U(a, 2, z) =
1

Γ(a)
z−1 +O(ln z),

13.2.18

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +

Γ(1− b)
Γ(a− b+ 1)

+O
(
z2−<b),

1 ≤ <b < 2, b 6= 1,

13.2.19

U(a, 1, z) = − 1
Γ(a)

(ln z + ψ(a) + 2γ) +O(z ln z),

13.2.20

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
+O

(
z1−<b), 0 < <b < 1,

13.2.21

U(a, 0, z) =
1

Γ(a+ 1)
+O(z ln z),

13.2.22

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
+O(z), <b ≤ 0, b 6= 0.

13.2(iv) Limiting Forms as z →∞
Except when a = 0,−1, . . . (polynomial cases),

13.2.23 M(a, b, z) ∼ ezza−b
/

Γ(a) , |ph z| ≤ 1
2π − δ,

where δ is an arbitrary small positive constant.
For U(a, b, z) see (13.2.6).

13.2(v) Numerically Satisfactory Solutions

Fundamental pairs of solutions of (13.2.1) that are nu-
merically satisfactory (§2.7(iv)) in the neighborhood of
infinity are

13.2.24
U(a, b, z) , ez U

(
b− a, b, e−πiz

)
,

− 1
2π ≤ ph z ≤ 3

2π,

13.2.25
U(a, b, z) , ez U

(
b− a, b, eπiz

)
,

− 3
2π ≤ ph z ≤ 1

2π.

A fundamental pair of solutions that is numerically
satisfactory near the origin is
13.2.26

M(a, b, z), z1−bM(a− b+ 1, 2− b, z), b 6∈ Z.
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When b = n+ 1 = 1, 2, 3, . . . , a fundamental pair that is numerically satisfactory near the origin is M(a, n+ 1, z)
and

13.2.27

n∑
k=1

n!(k − 1)!
(n− k)!(1− a)k

z−k −
∞∑
k=0

(a)k
(n+ 1)kk!

zk (ln z + ψ(a+ k)− ψ(1 + k)− ψ(n+ k + 1)) ,

if a− n 6= 0,−1,−2, . . . , or M(a, n+ 1, z) and

13.2.28

n∑
k=1

n!(k − 1)!
(n− k)!(1− a)k

z−k

−
−a∑
k=0

(a)k
(n+ 1)kk!

zk (ln z+ψ(1− a− k)−ψ(1 + k)−ψ(n+ k + 1))+(−1)1−a(−a)!
∞∑

k=1−a

(k − 1 + a)!
(n+ 1)kk!

zk,

if a = 0,−1,−2, . . . , or M(a, n+ 1, z) and

13.2.29

n∑
k=a

(k − 1)!
(n− k)!(k − a)!

z−k,

if a = 1, 2, . . . , n.
When b = −n = 0,−1,−2, . . . , a fundamental pair that is numerically satisfactory near the origin is zn+1×

M(a+ n+ 1, n+ 2, z) and

13.2.30
n+1∑
k=1

(n+ 1)!(k − 1)!
(n− k + 1)!(−a− n)k

zn−k+1 −
∞∑
k=0

(a+ n+ 1)k
(n+ 2)kk!

zn+k+1 (ln z + ψ(a+ n+ k + 1)− ψ(1 + k)− ψ(n+ k + 2)) ,

if a 6= 0,−1,−2, . . . , or zn+1M(a+ n+ 1, n+ 2, z) and

13.2.31

n+1∑
k=1

(n+ 1)!(k − 1)!
(n− k + 1)!(−a− n)k

zn−k+1

−
−a−n−1∑
k=0

(a+ n+ 1)k
(n+ 2)kk!

zn+k+1 (ln z + ψ(−a− n− k)− ψ(1 + k)− ψ(n+ k + 2))

+ (−1)n−a(−a− n− 1)!
∞∑

k=−a−n

(k + a+ n)!
(n+ 2)kk!

zn+k+1,

if a = −n− 1,−n− 2,−n− 3, . . . , or zn+1M(a+ n+ 1, n+ 2, z) and

13.2.32

n+1∑
k=a+n+1

(k − 1)!
(n− k + 1)!(k − a− n− 1)!

zn−k+1,

if a = 0,−1, . . . ,−n.

13.2(vi) Wronskians

13.2.33 W
{
M(a, b, z), z1−b M(a− b+ 1, 2− b, z)

}
= sin(πb)z−bez/π,

13.2.34 W {M(a, b, z), U(a, b, z)} = − z−bez
/

Γ(a) ,

13.2.35 W
{
M(a, b, z), ez U

(
b− a, b, e±πiz

)}
= e∓bπiz−bez

/
Γ(b− a) ,

13.2.36 W
{
z1−b M(a− b+ 1, 2− b, z), U(a, b, z)

}
= − z−bez

/
Γ(a− b+ 1) ,

13.2.37 W
{
z1−b M(a− b+ 1, 2− b, z), ez U

(
b− a, b, e±πiz

)}
= − z−bez

/
Γ(1− a) ,

13.2.38 W
{
U(a, b, z), ez U

(
b− a, b, e±πiz

)}
= e±(a−b)πiz−bez.
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13.2(vii) Connection Formulas

Kummer’s Transformations

13.2.39 M(a, b, z) = ezM(b− a, b,−z),

13.2.40 U(a, b, z) = z1−b U(a− b+ 1, 2− b, z).

13.2.41
1

Γ(b)
M(a, b, z) =

e∓aπi

Γ(b− a)
U(a, b, z) +

e±(b−a)πi

Γ(a)
ez U

(
b− a, b, e±πiz

)
.

Also, when b is not an integer

13.2.42 U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
M(a, b, z) +

Γ(b− 1)
Γ(a)

z1−bM(a− b+ 1, 2− b, z).

13.3 Recurrence Relations and Derivatives

13.3(i) Recurrence Relations

13.3.1 (b− a)M(a− 1, b, z) + (2a− b+ z)M(a, b, z)− aM(a+ 1, b, z) = 0,

13.3.2 b(b− 1)M(a, b− 1, z) + b(1− b− z)M(a, b, z) + z(b− a)M(a, b+ 1, z) = 0,

13.3.3 (a− b+ 1)M(a, b, z)− aM(a+ 1, b, z) + (b− 1)M(a, b− 1, z) = 0,

13.3.4 bM(a, b, z)− bM(a− 1, b, z)− zM(a, b+ 1, z) = 0,

13.3.5 b(a+ z)M(a, b, z) + z(a− b)M(a, b+ 1, z)− abM(a+ 1, b, z) = 0,

13.3.6 (a− 1 + z)M(a, b, z) + (b− a)M(a− 1, b, z) + (1− b)M(a, b− 1, z) = 0.

13.3.7 U(a− 1, b, z) + (b− 2a− z)U(a, b, z) + a(a− b+ 1)U(a+ 1, b, z) = 0,

13.3.8 (b− a− 1)U(a, b− 1, z) + (1− b− z)U(a, b, z) + z U(a, b+ 1, z) = 0,

13.3.9 U(a, b, z)− aU(a+ 1, b, z)− U(a, b− 1, z) = 0,

13.3.10 (b− a)U(a, b, z) + U(a− 1, b, z)− z U(a, b+ 1, z) = 0,

13.3.11 (a+ z)U(a, b, z)− z U(a, b+ 1, z) + a(b− a− 1)U(a+ 1, b, z) = 0,

13.3.12 (a− 1 + z)U(a, b, z)− U(a− 1, b, z) + (a− b+ 1)U(a, b− 1, z) = 0.
Kummer’s differential equation (13.2.1) is equivalent to

13.3.13 (a+ 1)zM(a+ 2, b+ 2, z) + (b+ 1)(b− z)M(a+ 1, b+ 1, z)− b(b+ 1)M(a, b, z) = 0,
and

13.3.14 (a+ 1)z U(a+ 2, b+ 2, z) + (z − b)U(a+ 1, b+ 1, z)− U(a, b, z) = 0.

13.3(ii) Differentiation Formulas

13.3.15
d

dz
M(a, b, z) =

a

b
M(a+ 1, b+ 1, z),

13.3.16
dn

dzn
M(a, b, z) =

(a)n
(b)n

M(a+ n, b+ n, z),

13.3.17(
z
d

dz
z

)n (
za−1M(a, b, z)

)
= (a)nz

a+n−1M(a+ n, b, z),

13.3.18

dn

dzn
(
zb−1M(a, b, z)

)
= (b− n)nz

b−n−1M(a, b− n, z),

13.3.19

(
z
d

dz
z

)n (
zb−a−1e−zM(a, b, z)

)
= (b− a)nz

b−a+n−1e−zM(a− n, b, z),

13.3.20

dn

dzn
(
e−zM(a, b, z)

)
= (−1)n

(b− a)n
(b)n

e−zM(a, b+ n, z),

13.3.21

dn

dzn
(
zb−1e−zM(a, b, z)

)
= (b− n)nz

b−n−1e−zM(a− n, b− n, z).
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13.3.22
d

dz
U(a, b, z) = −aU(a+ 1, b+ 1, z),

13.3.23
dn

dzn
U(a, b, z) = (−1)n(a)n U(a+ n, b+ n, z),

13.3.24

(
z
d

dz
z

)n (
za−1 U(a, b, z)

)
= (a)n(a− b+ 1)nz

a+n−1 U(a+ n, b, z),

13.3.25

dn

dzn
(
zb−1 U(a, b, z)

)
= (−1)n(a− b+ 1)nz

b−n−1 U(a, b− n, z),

13.3.26

(
z
d

dz
z

)n (
zb−a−1e−z U(a, b, z)

)
= (−1)nzb−a+n−1e−z U(a− n, b, z),

13.3.27
dn

dzn
(
e−z U(a, b, z)

)
= (−1)ne−z U(a, b+ n, z),

13.3.28

dn

dzn
(
zb−1e−z U(a, b, z)

)
= (−1)nzb−n−1e−z U(a− n, b− n, z).

Other versions of several of the identities in this sub-
section can be constructed with the aid of the operator
identity

13.3.29

(
z
d

dz
z

)n
= zn

dn

dzn
zn, n = 1, 2, 3, . . . .

13.4 Integral Representations

13.4(i) Integrals Along the Real Line

13.4.1

M(a, b, z) =
1

Γ(a) Γ(b− a)

∫ 1

0

eztta−1(1− t)b−a−1 dt,

<b > <a > 0,

13.4.2

M(a, b, z) =
1

Γ(b− c)

∫ 1

0

M(a, c, zt)tc−1(1− t)b−c−1 dt,

<b > <c > 0,

13.4.3

M(a, b,−z) =
z

1
2−

1
2 b

Γ(a)

∫ ∞
0

e−tta−
1
2 b−

1
2 Jb−1

(
2
√
zt
)
dt,

<a > 0.
For the function Jb−1 see §10.2(ii).

13.4.4
U(a, b, z) =

1
Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1 dt,

<a > 0, |ph z| < 1
2π,

13.4.5

U(a, b, z)

=
z1−a

Γ(a) Γ(1 + a− b)

∫ ∞
0

U(b− a, b, t)e−tta−1

t+ z
dt,

|ph z| < π, <a > max (<b− 1, 0),

13.4.6

U(a, b, z)

=
(−1)nz1−b−n

Γ(1 + a− b)

∫ ∞
0

M(b− a, b, t)e−ttb+n−1

t+ z
dt,

|ph z| < π, n = 0, 1, 2, . . . , −<b < n < 1 + <(a− b),

13.4.7

U(a, b, z) =
2z

1
2−

1
2 b

Γ(a) Γ(a− b+ 1)

×
∫ ∞

0

e−tta−
1
2 b−

1
2 Kb−1

(
2
√
zt
)
dt,

<a > max (<b− 1, 0),

13.4.8

U(a, b, z) = zc−a

×
∫ ∞

0

e−zttc−1
2F1(a, a− b+ 1; c;−t) dt,

|ph z| < 1
2π,

where c is arbitrary, <c > 0. For the functions Kb−1

and 2F1 see §10.25(ii) and §§15.1, 15.2(i).

13.4(ii) Contour Integrals

13.4.9

M(a, b, z) =
Γ(1 + a− b)

2πiΓ(a)

∫ (1+)

0

eztta−1(t− 1)b−a−1 dt,

b− a 6= 1, 2, 3, . . . , <a > 0.

13.4.10

M(a, b, z)

= e−aπi
Γ(1− a)

2πiΓ(b− a)

∫ (0+)

1

eztta−1(1− t)b−a−1 dt,

a 6= 1, 2, 3, . . . , <(b− a) > 0.

Figure 13.4.1: Contour of integration in (13.4.11).
(Compare Figure 5.12.3.)

13.4.11

M(a, b, z)
= e−bπi Γ(1− a) Γ(1 + a− b)

× 1
4π2

∫ (0+,1+,0−,1−)

α

eztta−1(1− t)b−a−1 dt,

a, b− a 6= 1, 2, 3, . . . .
The contour of integration starts and terminates at a
point α on the real axis between 0 and 1. It encircles
t = 0 and t = 1 once in the positive sense, and then
once in the negative sense. See Figure 13.4.1. The frac-
tional powers are continuous and assume their principal
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values at t = α. Similar conventions also apply to the
remaining integrals in this subsection.

13.4.12

M(a, c, z)

=
Γ(b)
2πi

z1−b
∫ (0+,1+)

−∞
eztt−b 2F1(a, b; c; 1/t ) dt,

b 6= 0,−1,−2, . . . , |ph z| < 1
2π.

At the point where the contour crosses the interval
(1,∞), t−b and the 2F1 function assume their princi-
pal values; compare §§15.1 and 15.2(i). A special case

is

13.4.13
M(a, b, z) =

z1−b

2πi

∫ (0+,1+)

−∞
eztt−b

(
1− 1

t

)−a
dt,

|ph z| < 1
2π.

13.4.14

U(a, b, z)

= e−aπi
Γ(1− a)

2πi

∫ (0+)

∞
e−ztta−1(1 + t)b−a−1 dt,

a 6= 1, 2, 3, . . . , |ph z| < 1
2π.

The contour cuts the real axis between−1 and 0. At this
point the fractional powers are determined by ph t = π
and ph(1 + t) = 0.

13.4.15
U(a, b, z)

Γ(c) Γ(c− b+ 1)
=
z1−c

2πi

∫ (0+)

−∞
eztt−c 2F1

(
a, c; a+ c− b+ 1; 1− 1

t

)
dt, |ph z| < 1

2π.

Again, t−c and the 2F1 function assume their princi-
pal values where the contour intersects the positive real
axis.

13.4(iii) Mellin–Barnes Integrals

If a 6= 0,−1,−2, . . . , then
13.4.16

M(a, b,−z) =
1

2πiΓ(a)

∫ i∞

−i∞

Γ(a+ t) Γ(−t)
Γ(b+ t)

zt dt,

|ph z| < 1
2π,

where the contour of integration separates the poles of
Γ(a+ t) from those of Γ(−t).

If a and a− b+ 1 6= 0,−1,−2, . . . , then
13.4.17

U(a, b, z)

=
z−a

2πi

∫ i∞

−i∞

Γ(a+ t) Γ(1 + a− b+ t) Γ(−t)
Γ(a) Γ(1 + a− b)

z−t dt,

|ph z| < 3
2π,

where the contour of integration separates the poles of
Γ(a+ t) Γ(1 + a− b+ t) from those of Γ(−t).
13.4.18

U(a, b, z) =
z1−bez

2πi

∫ i∞

−i∞

Γ(b− 1 + t) Γ(t)
Γ(a+ t)

z−t dt,

|ph z| < 1
2π,

where the contour of integration passes all the poles of
Γ(b− 1 + t) Γ(t) on the right-hand side.

13.5 Continued Fractions

If a, b ∈ C such that a 6= −1,−2,−3, . . . , and a − b 6=
0, 1, 2, . . . , then

13.5.1
M(a, b, z)

M(a+ 1, b+ 1, z)
= 1 +

u1z

1 +
u2z

1 +
· · · ,

where

13.5.2

u2n+1 =
a− b− n

(b+ 2n)(b+ 2n+ 1)
,

u2n =
a+ n

(b+ 2n− 1)(b+ 2n)
.

This continued fraction converges to the meromorphic
function of z on the left-hand side everywhere in C. For
more details on how a continued fraction converges to a
meromorphic function see Jones and Thron (1980).

If a, b ∈ C such that a 6= 0,−1,−2, . . . , and b− a 6=
2, 3, 4, . . . , then

13.5.3
U(a, b, z)

U(a, b− 1, z)
= 1 +

v1/z

1 +
v2/z

1 +
· · · ,

where

13.5.4 v2n+1 = a+ n , v2n = a− b+ n+ 1 .

This continued fraction converges to the meromorphic
function of z on the left-hand side throughout the sector
|ph z| < π.

See also Cuyt et al. (2008, pp. 322–330).

13.6 Relations to Other Functions

13.6(i) Elementary Functions

13.6.1 M(a, a, z) = ez,

13.6.2 M(1, 2, 2z) =
ez

z
sinh z,

13.6.3 M(0, b, z) = U(0, b, z) = 1,

13.6.4 U(a, a+ 1, z) = z−a.
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13.6(ii) Incomplete Gamma Functions

For the notation see §§6.2(i), 7.2(i), 8.2(i), and 8.19(i).
When a − b is an integer or a is a positive integer
the Kummer functions can be expressed as incomplete
gamma functions (or generalized exponential integrals).
For example,
13.6.5

M(a, a+ 1,−z) = e−zM(1, a+ 1, z) = az−a γ(a, z),

13.6.6
U(a, a, z) = z1−a U(1, 2− a, z)

= z1−aez Ea(z) = ez Γ(1− a, z).
Special cases are the error functions

13.6.7 M
(

1
2 ,

3
2 ,−z

2
)

=
√
π

2z
erf(z),

13.6.8 U
(

1
2 ,

1
2 , z

2
)

=
√
πez

2
erfc(z).

13.6(iii) Modified Bessel Functions

When b = 2a the Kummer functions can be expressed
as modified Bessel functions. For the notation see
§§10.25(ii) and 9.2(i).
13.6.9

M
(
ν + 1

2 , 2ν + 1, 2z
)

= Γ(1 + ν)ez (z/2)−ν Iν(z),
13.6.10

U
(
ν + 1

2 , 2ν + 1, 2z
)

=
1√
π
ez (2z)−ν Kν(z),

13.6.11 U
(

5
6 ,

5
3 ,

4
3z

3/2
)

=
√
π

35/6 exp
(

2
3z

3/2
)

22/3z
Ai(z).

13.6(iv) Parabolic Cylinder Functions

For the notation see §12.2.

13.6.12 U
(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

= 2
1
2a+ 1

4 e
1
4 z

2
U(a, z),

13.6.13 U
(

1
2a+ 3

4 ,
3
2 ,

1
2z

2
)

= 2
1
2a+ 3

4
e

1
4 z

2

z
U(a, z).

13.6.14
M
(

1
2a+ 1

4 ,
1
2 ,

1
2z

2
)

=
2

1
2a−

3
4 Γ
(

1
2a+ 3

4

)
e

1
4 z

2

√
π

× (U(a, z) + U(a,−z)) ,

13.6.15
M
(

1
2a+ 3

4 ,
3
2 ,

1
2z

2
)

=
2

1
2a−

5
4 Γ
(

1
2a+ 1

4

)
e

1
4 z

2

z
√
π

× (U(a,−z)− U(a, z)) .

13.6(v) Orthogonal Polynomials

Special cases of §13.6(iv) are as follows. For the nota-
tion see §§18.3, 18.19.

Hermite Polynomials

13.6.16 M
(
−n, 1

2 , z
2
)

= (−1)n
n!

(2n)!
H2n(z),

13.6.17 M
(
−n, 3

2 , z
2
)

= (−1)n
n!

(2n+ 1)!2z
H2n+1(z),

13.6.18 U
(

1
2 −

1
2n,

3
2 , z

2
)

= 2−nz−1Hn(z).

Laguerre Polynomials

13.6.19

U(−n, α+ 1, z) = (−1)n(α+ 1)nM(−n, α+ 1, z)

= (−1)nn!L(α)
n (z).

Charlier Polynomials

13.6.20

U(−n, z − n+ 1, a) = (−z)nM(−n, z − n+ 1, a)
= an Cn(z, a).

13.6(vi) Generalized Hypergeometric Functions

13.6.21 U(a, b, z) = z−a 2F0

(
a, a− b+ 1;−;−z−1

)
.

For the definition of 2F0

(
a, a− b+ 1;−;−z−1

)
when

neither a nor a− b+1 is a nonpositive integer see §16.5.

13.7 Asymptotic Expansions for Large
Argument

13.7(i) Poincaré-Type Expansions

As x→∞

13.7.1 M(a, b, x) ∼ exxa−b

Γ(a)

∞∑
s=0

(1− a)s(b− a)s
s!

x−s,

provided that a 6= 0,−1, . . . .
As z →∞

13.7.2

M(a, b, z) ∼ ezza−b

Γ(a)

∞∑
s=0

(1− a)s(b− a)s
s!

z−s +
e±πiaz−a

Γ(b− a)

∞∑
s=0

(a)s(a− b+ 1)s
s!

(−z)−s, − 1
2π + δ ≤ ± ph z ≤ 3

2π − δ,

unless a = 0,−1, . . . and b− a = 0,−1, . . . . Here δ denotes an arbitrary small positive constant. Also,

13.7.3 U(a, b, z) ∼ z−a
∞∑
s=0

(a)s(a− b+ 1)s
s!

(−z)−s, |ph z| ≤ 3
2π − δ.
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13.7(ii) Error Bounds

Figure 13.7.1: Regions R1, R2, R2, R3, and R3 are
the closures of the indicated unshaded regions bounded
by the straight lines and circular arcs centered at the
origin, with r = |b− 2a|.

13.7.4

U(a, b, z) = z−a
n−1∑
s=0

(a)s(a− b+ 1)s
s!

(−z)−s + εn(z),

where

13.7.5

|εn(z)| , β−1 |ε′n(z)|

≤ 2αCn

∣∣∣∣ (a)n(a− b+ 1)n
n!za+n

∣∣∣∣ exp
(

2αρC1

|z|

)
,

and with the notation of Figure 13.7.1

13.7.6 Cn = 1 , χ(n) ,
(
χ(n) + σν2n

)
νn ,

according as

13.7.7 z ∈ R1 , z ∈ R2 ∪R2 , z ∈ R3 ∪R3 ,
respectively, with
13.7.8

σ = | (b− 2a)/z | , ν =
(

1
2 + 1

2

√
1− 4σ2

)− 1/2

,

χ(n) =
√
π Γ
(

1
2n+ 1

)
/Γ
(

1
2n+ 1

2

)
.

Also, when z ∈ R1 ∪R2 ∪R2

13.7.9

α =
1

1− σ
, β =

1− σ2 + σ|z|−1

2(1− σ)
,

ρ = 1
2

∣∣2a2 − 2ab+ b
∣∣+

σ(1 + 1
4σ)

(1− σ)2
,

and when z ∈ R3 ∪R3 σ is replaced by νσ and |z|−1 is
replaced by ν|z|−1 everywhere in (13.7.9).

For numerical values of χ(n) see Table 9.7.1.
Corresponding error bounds for (13.7.2) can be con-

structed by combining (13.2.41) with (13.7.4)–(13.7.9).

13.7(iii) Exponentially-Improved Expansion

Let

13.7.10 U(a, b, z) = z−a
n−1∑
s=0

(a)s(a− b+ 1)s
s!

(−z)−s +Rn(a, b, z),

and
13.7.11

Rn(a, b, z) =
(−1)n2πza−b

Γ(a) Γ(a− b+ 1)

(
m−1∑
s=0

(1− a)s(b− a)s
s!

(−z)−sGn+2a−b−s(z) + (1− a)m(b− a)mRm,n(a, b, z)

)
,

where m is an arbitrary nonnegative integer, and

13.7.12 Gp(z) =
ez

2π
Γ(p) Γ(1− p, z).

(For the notation see §8.2(i).) Then as z →∞ with ||z| − n| bounded and a, b,m fixed

13.7.13 Rm,n(a, b, z) =

{
O
(
e−|z|z−m

)
, |ph z| ≤ π,

O(ezz−m), π ≤ |ph z| ≤ 5
2π − δ.

For proofs see Olver (1991b, 1993a). For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver
(1995a).
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13.8 Asymptotic Approximations for Large
Parameters

13.8(i) Large |b|, Fixed a and z

If b→∞ in C in such a way that |b+ n| ≥ δ > 0 for all
n = 0, 1, 2, . . . , then

13.8.1 M(a, b, z) =
n−1∑
s=0

(a)s
(b)ss!

zs +O
(
|b|−n

)
.

For fixed a and z in C

13.8.2 M(a, b, z) ∼ Γ(b)
Γ(b− a)

∞∑
s=0

(a)sqs(z, a)b−s−a,

as b→∞ in |ph b| ≤ π − δ, where q0(z, a) = 1 and
13.8.3(
et − 1

)a−1 exp
(
t+ z(1− e−t)

)
=
∞∑
s=0

qs(z, a)ts+a−1.

When the foregoing results are combined with Kum-
mer’s transformation (13.2.39), an approximation is ob-
tained for the case when |b| is large, and |b− a| and |z|
are bounded.

13.8(ii) Large b and z, Fixed a and b/z

Let λ = z/b > 0 and ζ =
√

2(λ− 1− lnλ) with
sign(ζ) = sign(λ− 1). Then

13.8.4 M(a, b, z) ∼ b 1
2ae

1
4 ζ

2b

λ(λ− 1
ζ

)a−1

U
(
a− 1

2 ,−ζ
√
b
)

+

(
λ

(
λ− 1
ζ

)a−1

−
(

ζ

λ− 1

)a) U
(
a− 3

2 ,−ζ
√
b
)

ζ
√
b


and

13.8.5 U(a, b, z) ∼ b− 1
2ae

1
4 ζ

2b

λ(λ− 1
ζ

)a−1

U
(
a− 1

2 , ζ
√
b
)
−

(
λ

(
λ− 1
ζ

)a−1

−
(

ζ

λ− 1

)a) U
(
a− 3

2 , ζ
√
b
)

ζ
√
b


as b → ∞, uniformly in compact λ-intervals of (0,∞) and compact real a-intervals. For the parabolic cylinder
function U see §12.2, and for an extension to an asymptotic expansion see Temme (1978).

Special cases are

13.8.6 M(a, b, b) =
√
π

(
b

2

)1
2a
(

1
Γ
(

1
2 (a+ 1)

) +
(a+ 1)

√
8/b

3 Γ
(

1
2a
) +O

(
1
b

))
,

and

13.8.7 U(a, b, b) =
√
π (2b)−

1
2a

(
1

Γ
(

1
2 (a+ 1)

) − (a+ 1)
√

8/b
3 Γ
(

1
2a
) +O

(
1
b

))
.

To obtain approximations for M(a, b, z) and U(a, b, z) that hold as b → ∞, with a > 1
2 − b and z > 0 combine

(13.14.4), (13.14.5) with §13.20(i).
Also, more complicated—but more powerful—uniform asymptotic approximations can be obtained by combining

(13.14.4), (13.14.5) with §§13.20(iii) and 13.20(iv).

13.8(iii) Large a

For the notation see §§10.2(ii), 10.25(ii), and 2.8(iv).
When a→ +∞ with b (≤ 1) fixed,

13.8.8 U(a, b, x) =
2e

1
2x

Γ(a)

(√
2
β

tanh
(w

2

)(1− e−w

β

)−b
β1−bK1−b(2βa) + a−1

(
a−1 + β

1 + β

)1−b
e−2βaO(1)

)
,

where w = arccosh
(
1 + (2a)−1x

)
, and β = (w + sinhw)/2 . (13.8.8) holds uniformly with respect to x ∈ [0,∞). For

the case b > 1 the transformation (13.2.40) can be used.
For an extension to an asymptotic expansion complete with error bounds see Temme (1990b), and for related

results see §13.21(i).
When a→ −∞ with b (≥ 1) fixed,

13.8.9 M(a, b, x) = Γ(b)e
1
2x
(
( 1

2b− a)x
)1
2−

1
2 b
(
Jb−1

(√
2x(b− 2a)

)
+ envJb−1

(√
2x(b− 2a)

)
O
(
|a|−

1
2

))
,
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and

13.8.10

U(a, b, x) = Γ
(

1
2b− a+ 1

2

)
e

1
2xx

1
2−

1
2 b
(

cos(aπ) Jb−1

(√
2x(b− 2a)

)
− sin(aπ)Yb−1

(√
2x(b− 2a)

)
+ envYb−1

(√
2x(b− 2a)

)
O
(
|a|−

1
2

))
,

uniformly with respect to bounded positive values of x in each case.
For asymptotic approximations to M(a, b, x) and U(a, b, x) as a → −∞ that hold uniformly with respect to

x ∈ (0,∞) and bounded positive values of (b− 1)/ |a|, combine (13.14.4), (13.14.5) with §§13.21(ii), 13.21(iii).

13.9 Zeros

13.9(i) Zeros of M(a, b, z)

If a and b − a 6= 0,−1,−2, . . . , then M(a, b, z) has in-
finitely many z-zeros in C. When a, b ∈ R the number of
real zeros is finite. Let p(a, b) be the number of positive
zeros. Then

13.9.1 p(a, b) = d−ae , a < 0, b ≥ 0,

13.9.2 p(a, b) = 0, a ≥ 0, b ≥ 0,

13.9.3 p(a, b) = 1, a ≥ 0, −1 < b < 0,

13.9.4 p(a, b) =
⌊
− 1

2b
⌋
−
⌊
− 1

2 (b+ 1)
⌋

, a ≥ 0, b ≤ −1.

13.9.5

p(a, b) = d−ae − d−be , d−ae ≥ d−be, a < 0, b < 0,

13.9.6

p(a, b) =
⌊

1
2 (d−be − d−ae+ 1)

⌋
−
⌊

1
2 (d−be − d−ae)

⌋
,

d−be > d−ae > 0.

The number of negative real zeros n(a, b) is given by

13.9.7 n(a, b) = p(b− a, b).
When a < 0 and b > 0 let φr, r = 1, 2, 3, . . . , be the

positive zeros of M(a, b, x) arranged in increasing order
of magnitude, and let jb−1,r be the rth positive zero of
the Bessel function Jb−1(x) (§10.21(i)). Then

13.9.8

φr =
j2
b−1,r

2b− 4a

(
1 +

2b(b− 2) + j2
b−1,r

3(2b− 4a)2

)
+O

(
1
a5

)
,

as a→ −∞ with r fixed.
Inequalities for φr are given in Gatteschi (1990), and

identities involving infinite series of all of the complex
zeros of M(a, b, x) are given in Ahmed and Muldoon
(1980).

For fixed a, b ∈ C the large z-zeros of M(a, b, z) sat-
isfy

13.9.9
z = ±(2n+ a)πi+ ln

(
− Γ(a)

Γ(b− a)
(±2nπi)b−2a

)
+O

(
n−1 lnn

)
,

where n is a large positive integer, and the logarithm
takes its principal value (§4.2(i)).

Let Pα denote the closure of the domain that is
bounded by the parabola y2 = 4α(x + α) and con-
tains the origin. Then M(a, b, z) has no zeros in the
regions P b/a , if 0 < b ≤ a; P1, if 1 ≤ a ≤ b; Pα,
where α = (2a− b+ ab)/(a(a+ 1)) , if 0 < a < 1
and a ≤ b < 2a/(1− a) . The same results apply for
the nth partial sums of the Maclaurin series (13.2.2) of
M(a, b, z).

More information on the location of real zeros can
be found in Zarzo et al. (1995).

For fixed b and z in C the large a-zeros of M(a, b, z)
are given by
13.9.10

a = −π
2

4z
(
n2 + (b− 3

2 )n
)

− 1
16z

(
(b− 3

2 )2π2 + 4
3z

2 − 8b(z − 1)− 4b2 − 3
)

+O
(
n−1

)
,

where n is a large positive integer.
For fixed a and z in C the function M(a, b, z) has

only a finite number of b-zeros.

13.9(ii) Zeros of U(a, b, z)

For fixed a and b in C, U(a, b, z) has a finite number of
z-zeros in the sector |ph z| ≤ 3

2π− δ(<
3
2π). Let T (a, b)

be the total number of zeros in the sector |ph z| < π,
P (a, b) be the corresponding number of positive zeros,
and a, b, and a − b + 1 be nonintegers. For the case
b ≤ 1
13.9.11

T (a, b) = b−ac+ 1, a < 0, Γ(a) Γ(a− b+ 1) > 0,

13.9.12 T (a, b) = b−ac , a < 0, Γ(a) Γ(a− b+ 1) < 0,

13.9.13 T (a, b) = 0, a > 0,
and

13.9.14 P (a, b) = db− a− 1e , a+ 1 < b,

13.9.15 P (a, b) = 0, a+ 1 ≥ b.
For the case b ≥ 1 we can use T (a, b) = T (a−b+1, 2−b)
and P (a, b) = P (a− b+ 1, 2− b).

In Wimp (1965) it is shown that if a, b ∈ R and
2a − b > −1, then U(a, b, z) has no zeros in the sector
|ph z| ≤ 1

2π.
Inequalities for the zeros of U(a, b, x) are given in

Gatteschi (1990).
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For fixed b and z in C the large a-zeros of U(a, b, z)
are given by

13.9.16

a ∼ −n− 2
π

√
zn− 2z

π2
+ 1

2b+ 1
4

+
z2
(

1
3 − 4π−2

)
+ z − (b− 1)2 + 1

4

4π
√
zn

+O

(
1
n

)
,

where n is a large positive integer.
For fixed a and z in C, U(a, b, z) has two infinite

strings of b-zeros that are asymptotic to the imaginary
axis as |b| → ∞.

13.10 Integrals

13.10(i) Indefinite Integrals

When a 6= 1,

13.10.1

∫
M(a, b, z) dz =

1
a− 1

M(a− 1, b− 1, z),

13.10.2

∫
U(a, b, z) dz = − 1

a− 1
U(a− 1, b− 1, z).

Other formulas of this kind can be constructed by in-
version of the differentiation formulas given in §13.3(ii).

13.10(ii) Laplace Transforms

For the notation see §§15.1, 15.2(i), and 10.25(ii).

13.10.3∫ ∞
0

e−zttb−1 M(a, c, kt) dt = Γ(b)z−b 2F1(a, b; c; k/z ),

<b > 0, <z > max (<k, 0),

13.10.4

∫ ∞
0

e−zttb−1 M(a, b, t) dt = z−b
(

1− 1
z

)−a
,

<b > 0, <z > 1,

13.10.5

∫ ∞
0

e−ttb−1 M(a, c, t) dt =
Γ(b) Γ(c− a− b)
Γ(c− a) Γ(c− b)

,

<(c− a) > <b > 0,

13.10.6

∫ ∞
0

e−zt−t
2
t2b−2 M

(
a, b, t2

)
dt

= 1
2π
− 1

2 Γ
(
b− 1

2

)
U
(
b− 1

2 , a+ 1
2 ,

1
4z

2
)
,

<b > 1
2 , <z > 0,

13.10.7

∫ ∞
0

e−zttb−1 U(a, c, t) dt

= Γ(b) Γ(b− c+ 1)

× z−b 2F1

(
a, b; a+ b− c+ 1; 1− 1

z

)
,

<b > max (<c− 1, 0), <z > 0.

Loop Integrals

13.10.8

1
2πi

∫ (0+)

−∞
etzt−a M(a, b, y/t ) dt

=
1

Γ(a)
z

1
2 (2a−b−1)y

1
2 (1−b) Ib−1(2

√
zy),

<z > 0.

13.10.9

1
2πi

∫ (0+)

−∞
etzt−a U(a, b, y/t ) dt

=
2z

1
2 (2a−b−1)y

1
2 (1−b)

Γ(a) Γ(a− b+ 1)
Kb−1(2

√
zy), <z > 0.

For additional Laplace transforms see Erdélyi et al.
(1954a, §§4.22, 5.20), Oberhettinger and Badii (1973,
§1.17), and Prudnikov et al. (1992a, §§3.34, 3.35). In-
verse Laplace transforms are given in Oberhettinger and
Badii (1973, §2.16) and Prudnikov et al. (1992b, §§3.33,
3.34).

13.10(iii) Mellin Transforms

13.10.10∫ ∞
0

tλ−1 M(a, b,−t) dt=
Γ(λ) Γ(a− λ)
Γ(a) Γ(b− λ)

, 0 < <λ < <a,

13.10.11∫ ∞
0

tλ−1 U(a, b, t) dt =
Γ(λ) Γ(a− λ) Γ(λ− b+ 1)

Γ(a) Γ(a− b+ 1)
,

max (<b− 1, 0) < <λ < <a.
For additional Mellin transforms see Erdélyi et al.

(1954a, §§6.9, 7.5), Marichev (1983, pp. 283–287), and
Oberhettinger (1974, §§1.13, 2.8).

13.10(iv) Fourier Transforms

13.10.12

∫ ∞
0

cos(2xt) M
(
a, b,−t2

)
dt

=
√
π

2 Γ(a)
x2a−1e−x

2
U
(
b− 1

2 , a+ 1
2 , x

2
)
,

<a > 0.
For additional Fourier transforms see Erdélyi et al.

(1954a, §§1.14, 2.14, 3.3) and Oberhettinger (1990,
§§1.22, 2.22).

13.10(v) Hankel Transforms

For the notation see §10.2(ii).

13.10.13

∫ ∞
0

e−ttb−1− 1
2ν M(a, b, t) Jν

(
2
√
xt
)
dt

= x−a+ 1
2νe−x M(ν − b+ 1, ν − a+ 1, x),

x > 0, 2<a < <ν + 5
2 , <b > 0,

13.10.14

∫ ∞
0

e−tt
1
2ν M(a, b, t) Jν

(
2
√
xt
)
dt

=
x

1
2νe−x

Γ(b− a)
U(a, a− b+ ν + 2, x),

x > 0, −1 < <ν < 2<(b− a)− 1
2 ,
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13.10.15∫ ∞
0

t
1
2ν U(a, b, t) Jν

(
2
√
xt
)
dt

=
Γ(ν − b+ 2)

Γ(a)
x

1
2ν U(ν − b+ 2, ν − a+ 2, x),

x > 0, max (<b− 2,−1) < <ν < 2<a+ 1
2 ,

13.10.16∫ ∞
0

e−tt
1
2ν U(a, b, t) Jν

(
2
√
xt
)
dt

= Γ(ν − b+ 2)x
1
2νe−x M(a, a− b+ ν + 2, x),
x > 0, max (<b− 2,−1) < <ν.

For additional Hankel transforms and also other
Bessel transforms see Erdélyi et al. (1954b, §8.18) and
Oberhettinger (1972, §§1.16 and 3.4.42–46, 4.4.45–47,
5.94–97).

13.10(vi) Other Integrals

For integral transforms in terms of Whittaker functions
see §13.23(iv). Additional integrals can be found in
Apelblat (1983, pp. 388–392), Erdélyi et al. (1954b),
Gradshteyn and Ryzhik (2000, §7.6), Magnus et al.
(1966, §6.1.2), Prudnikov et al. (1990, §§1.13, 1.14, 2.19,
4.2.2), Prudnikov et al. (1992a, §§3.35, 3.36), and Prud-
nikov et al. (1992b, §§3.33, 3.34). See also (13.4.2),
(13.4.5), (13.4.6).

13.11 Series

For z ∈ C,

13.11.1

M(a, b, z) = Γ
(
a− 1

2

)
e

1
2 z
(

1
4z
)1
2−a

×
∞∑
s=0

(2a− 1)s(2a− b)s
(b)ss!

×
(
a− 1

2 + s
)
Ia− 1

2 +s

(
1
2z
)
,

a+ 1
2 , b 6= 0,−1,−2, . . . .

(13.6.9) is a special case.
For additional expansions combine (13.14.4),

(13.14.5), and §13.24. For other series expansions see
Hansen (1975, §§66 and 87), Prudnikov et al. (1990,
§6.6), and Tricomi (1954, §1.8). See also §13.13.

13.12 Products

13.12.1

M(a, b, z)M(−a,−b,−z)

+
a(a− b)z2

b2(1− b2)
M(1 + a, 2 + b, z)M(1− a, 2− b,−z) = 1.

For generalizations of this quadratic relation see Ma-
jima et al. (2000).

For integral representations, integrals, and series
containing products of M(a, b, z) and U(a, b, z) see
Erdélyi et al. (1953a, §6.15.3).

13.13 Addition and Multiplication
Theorems

13.13(i) Addition Theorems for M(a, b, z)

The function M(a, b, x+ y) has the following expan-
sions:

13.13.1

∞∑
n=0

(a)ny
n

(b)nn!
M(a+ n, b+ n, x),

13.13.2(
x+ y

x

)1−b ∞∑
n=0

(1− b)n(− y/x )n

n!
M(a, b− n, x),

|y| < |x|,
13.13.3(

x

x+ y

)a ∞∑
n=0

(a)ny
n

n!(x+ y)n
M(a+ n, b, x), <(y/x) > − 1

2 ,

13.13.4 ey
∞∑
n=0

(b− a)n(−y)n

(b)nn!
M(a, b+ n, x),

13.13.5

ey
(

x

x+ y

)b−a ∞∑
n=0

(b− a)ny
n

n!(x+ y)n

× M(a− n, b, x), <((y + x)/x) > 1
2 ,

13.13.6

ey
(
x+ y

x

)1−b ∞∑
n=0

(1− b)n(−y)n

n!xn

× M(a− n, b− n, x), |y| < |x|.

13.13(ii) Addition Theorems for U(a, b, z)

The function U(a, b, x+ y) has the following expansions:

13.13.7

∞∑
n=0

(a)n(−y)n

n!
U(a+ n, b+ n, x), |y| < |x|,

13.13.8(
x+ y

x

)1−b ∞∑
n=0

(1 + a− b)n(− y/x )n

n!
U(a, b− n, x),

|y| < |x|,
13.13.9(

x

x+ y

)a ∞∑
n=0

(a)n(1 + a− b)nyn

n!(x+ y)n
U(a+ n, b, x),

<(y/x) > − 1
2 ,

13.13.10 ey
∞∑
n=0

(−y)n

n!
U(a, b+ n, x), |y| < |x|,

13.13.11
ey
(

x

x+ y

)b−a ∞∑
n=0

(−y)n

n!(x+ y)n
U(a− n, b, x),

<(y/x) > − 1
2 ,

13.13.12

ey
(
x+ y

x

)1−b ∞∑
n=0

(−y)n

n!xn
U(a− n, b− n, x), |y| < |x|.



334 Confluent Hypergeometric Functions

13.13(iii) Multiplication Theorems for
M(a, b, z) and U(a, b, z)

To obtain similar expansions for M(a, b, xy) and
U(a, b, xy), replace y in the previous two subsections
by (y − 1)x.

Whittaker Functions

13.14 Definitions and Basic Properties

13.14(i) Differential Equation

Whittaker’s Equation

13.14.1
d2W

dz2 +
(
−1

4
+
κ

z
+

1
4 − µ

2

z2

)
W = 0.

This equation is obtained from Kummer’s equation
(13.2.1) via the substitutions W = e−

1
2 zz

1
2 +µw, κ =

1
2b− a, and µ = 1

2b−
1
2 . It has a regular singularity at

the origin with indices 1
2±µ, and an irregular singularity

at infinity of rank one.

Standard Solutions

Standard solutions are:

13.14.2 Mκ,µ(z) = e−
1
2 zz

1
2 +µM

(
1
2 + µ− κ, 1 + 2µ, z

)
,

13.14.3 Wκ,µ(z) = e−
1
2 zz

1
2 +µ U

(
1
2 + µ− κ, 1 + 2µ, z

)
,

except that Mκ,µ(z) does not exist when 2µ =
−1,−2,−3, . . . .

Conversely,

13.14.4 M(a, b, z) = e
1
2 zz−

1
2 bM 1

2 b−a,
1
2 b−

1
2
(z),

13.14.5 U(a, b, z) = e
1
2 zz−

1
2 bW 1

2 b−a,
1
2 b−

1
2
(z).

The series
13.14.6

Mκ,µ(z) = e−
1
2 zz

1
2 +µ

∞∑
s=0

(
1
2 + µ− κ

)
s

(1 + 2µ)ss!
zs

= z
1
2 +µ

∞∑
n=0

2F1

(
−n, 1

2 + µ− κ
1 + 2µ

; 2
)(− 1

2z
)n

n!
,

2µ 6= −1,−2,−3, . . . ,
converge for all z ∈ C.

In general Mκ,µ(z) and Wκ,µ(z) are many-valued
functions of z with branch points at z = 0 and
z = ∞. The principal branches correspond to
the principal branches of the functions z

1
2 +µ and

U
(

1
2 + µ− κ, 1 + 2µ, z

)
on the right-hand sides of the

equations (13.14.2) and (13.14.3); compare §4.2(i).
Although Mκ,µ(z) does not exist when 2µ =

−1,−2,−3, . . . , many formulas containing Mκ,µ(z) con-
tinue to apply in their limiting form. For example, if
n = 0, 1, 2, . . . , then
13.14.7

lim
2µ→−n−1

Mκ,µ(z)
Γ(2µ+ 1)

=

(
− 1

2n− κ
)
n+1

(n+ 1)!
Mκ, 12 (n+1)(z)

= e−
1
2 zz−

1
2n

∞∑
s=n+1

(
− 1

2n− κ
)
s

Γ(s− n)s!
zs.

If 2µ = ±n, where n = 0, 1, 2, . . . , then

13.14.8

Wκ,± 1
2n

(z) =
(−1)ne−

1
2 zz

1
2n+ 1

2

n! Γ
(

1
2 −

1
2n− κ

) ( n∑
k=1

n!(k − 1)!
(n− k)!

(
κ+ 1

2 −
1
2n
)
k

z−k

−
∞∑
k=0

(
1
2n+ 1

2 − κ
)
k

(n+ 1)kk!
zk
(
ln z + ψ

(
1
2n+ 1

2 − κ+ k
)
− ψ(1 + k)− ψ(n+ 1 + k)

))
,

κ− 1
2n−

1
2 6= 0, 1, 2, . . . ,

or

13.14.9

Wκ,± 1
2n

(z) = (−1)κ−
1
2n−

1
2 e−

1
2 zz

1
2n+ 1

2

κ− 1
2n−

1
2∑

k=0

(
κ− 1

2n−
1
2

k

)
(n+ 1 + k)κ−k− 1

2n−
1
2
(−z)k, κ− 1

2n−
1
2 = 0, 1, 2, . . . .

13.14(ii) Analytic Continuation

13.14.10 Mκ,µ

(
ze±πi

)
= ±ie±µπiM−κ,µ(z).

In (13.14.11)–(13.14.13) m is any integer.

13.14.11 Mκ,µ

(
ze2mπi

)
= (−1)me2mµπiMκ,µ(z).
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13.14.12 Wκ,µ

(
ze2mπi

)
=

(−1)m+12πi sin(2πµm)
Γ
(

1
2 − µ− κ

)
Γ(1 + 2µ) sin(2πµ)

Mκ,µ(z) + (−1)me−2mµπiWκ,µ(z).

13.14.13

(−1)mWκ,µ

(
ze2mπi

)
= −e

2κπi sin(2mµπ) + sin((2m− 2)µπ)
sin(2µπ)

Wκ,µ(z)

− sin(2mµπ)2πieκπi

sin(2µπ) Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) W−κ,µ(zeπi).
Except when z = 0, each branch of the functions

Mκ,µ(z)/Γ(2µ+ 1) and Wκ,µ(z) is entire in κ and µ.
Also, unless specified otherwise Mκ,µ(z) and Wκ,µ(z)
are assumed to have their principal values.

13.14(iii) Limiting Forms as z → 0

13.14.14

Mκ,µ(z) = zµ+ 1
2 (1 +O(z)) , 2µ 6= −1,−2,−3, . . . .

In cases when 1
2 −κ±µ = −n, where n is a nonneg-

ative integer,
13.14.15

W 1
2±µ+n,µ(z) = (−1)n(1± 2µ)nz

1
2±µ +O

(
z

3
2±µ

)
.

In all other cases

13.14.16
Wκ,µ(z) =

Γ(2µ)
Γ
(

1
2 + µ− κ

)z 1
2−µ +O

(
z

3
2−<µ

)
,

<µ ≥ 1
2 , µ 6= 1

2 ,

13.14.17 Wκ, 12
(z) =

1
Γ(1− κ)

+O(z ln z),

13.14.18

Wκ,µ(z) =
Γ(2µ)

Γ
(

1
2 + µ− κ

)z 1
2−µ +

Γ(−2µ)
Γ
(

1
2 − µ− κ

)z 1
2 +µ

+O
(
z

3
2−<µ

)
, 0 ≤ <µ < 1

2 , µ 6= 0,

13.14.19

Wκ,0(z) = −
√
z

Γ
(

1
2 − κ

) (ln z + ψ
(

1
2 − κ

)
+ 2γ

)
+O

(
z 3/2 ln z

)
.

For Wκ,µ(z) with <µ < 0 use (13.14.31).

13.14(iv) Limiting Forms as z →∞
Except when µ− κ = − 1

2 ,−
3
2 , . . . (polynomial cases),

13.14.20
Mκ,µ(z) ∼ Γ(1 + 2µ)e

1
2 zz−κ

/
Γ
(

1
2 + µ− κ

)
,

|ph z| ≤ 1
2π − δ,

where δ is an arbitrary small positive constant. Also,

13.14.21 Wκ,µ(z) ∼ e− 1
2 zzκ, |ph z| ≤ 3

2π − δ.
13.14(v) Numerically Satisfactory Solutions

Fundamental pairs of solutions of (13.14.1) that are nu-
merically satisfactory (§2.7(iv)) in the neighborhood of
infinity are

13.14.22 Wκ,µ(z), W−κ,µ
(
e−πiz

)
, − 1

2π ≤ ph z ≤ 3
2π,

13.14.23 Wκ,µ(z), W−κ,µ
(
eπiz

)
, − 3

2π ≤ ph z ≤ 1
2π.

A fundamental pair of solutions that is numerically
satisfactory in the sector |ph z| ≤ π near the origin is

13.14.24 Mκ,µ(z), Mκ,−µ(z), 2µ 6∈ Z.

When 2µ is an integer we may use the results of
§13.2(v) with the substitutions b = 2µ+1, a = µ−κ+ 1

2 ,
and W = e−

1
2 zz

1
2 +µw, where W is the solution of

(13.14.1) corresponding to the solution w of (13.2.1).

13.14(vi) Wronskians

13.14.25 W {Mκ,µ(z),Mκ,−µ(z)} = −2µ,

13.14.26 W {Mκ,µ(z),Wκ,µ(z)} = − Γ(1 + 2µ)
Γ
(

1
2 + µ− κ

) ,
13.14.27

W
{
Mκ,µ(z),W−κ,µ

(
e±πiz

)}
=

Γ(1 + 2µ)
Γ
(

1
2 + µ+ κ

)e∓( 1
2 +µ)πi,

13.14.28 W {Mκ,−µ(z),Wκ,µ(z)} = − Γ(1− 2µ)
Γ
(

1
2 − µ− κ

) ,
13.14.29

W
{
Mκ,−µ(z),W−κ,µ

(
e±πiz

)}
=

Γ(1− 2µ)
Γ
(

1
2 − µ+ κ

)e∓( 1
2−µ)πi,

13.14.30 W
{
Wκ,µ(z),W−κ,µ

(
e±πiz

)}
= e∓κπi.

13.14(vii) Connection Formulas

13.14.31 Wκ,µ(z) = Wκ,−µ(z).

13.14.32

1
Γ(1 + 2µ)

Mκ,µ(z) =
e±(κ−µ− 1

2 )πi

Γ
(

1
2 + µ+ κ

) Wκ,µ(z)

+
e±κπi

Γ
(

1
2 + µ− κ

) W−κ,µ(e±πiz).
When 2µ is not an integer

13.14.33

Wκ,µ(z) =
Γ(−2µ)

Γ
(

1
2 − µ− κ

)Mκ,µ(z)

+
Γ(2µ)

Γ
(

1
2 + µ− κ

)Mκ,−µ(z).
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13.15 Recurrence Relations and Derivatives

13.15(i) Recurrence Relations

13.15.1 (κ− µ− 1
2 )Mκ−1,µ(z) + (z − 2κ)Mκ,µ(z) + (κ+ µ+ 1

2 )Mκ+1,µ(z) = 0,

13.15.2 2µ(1 + 2µ)
√
zMκ− 1

2 ,µ−
1
2
(z)− (z + 2µ)(1 + 2µ)Mκ,µ(z) + (κ+ µ+ 1

2 )
√
zMκ+ 1

2 ,µ+ 1
2
(z) = 0,

13.15.3 (κ− µ− 1
2 )Mκ− 1

2 ,µ+ 1
2
(z) + (1 + 2µ)

√
zMκ,µ(z)− (κ+ µ+ 1

2 )Mκ+ 1
2 ,µ+ 1

2
(z) = 0,

13.15.4 2µMκ− 1
2 ,µ−

1
2
(z)− 2µMκ+ 1

2 ,µ−
1
2
(z)−

√
zMκ,µ(z) = 0,

13.15.5 2µ(1 + 2µ)Mκ,µ(z)− 2µ(1 + 2µ)
√
zMκ− 1

2 ,µ−
1
2
(z)− (κ− µ− 1

2 )
√
zMκ− 1

2 ,µ+ 1
2
(z) = 0,

13.15.6 2µ(1 + 2µ)
√
zMκ+ 1

2 ,µ−
1
2
(z) + (z − 2µ)(1 + 2µ)Mκ,µ(z) + (κ− µ− 1

2 )
√
zMκ− 1

2 ,µ+ 1
2
(z) = 0,

13.15.7 2µ(1 + 2µ)
√
zMκ+ 1

2 ,µ−
1
2
(z)− 2µ(1 + 2µ)Mκ,µ(z) + (κ+ µ+ 1

2 )
√
zMκ+ 1

2 ,µ+ 1
2
(z) = 0.

13.15.8 Wκ+ 1
2 ,µ+ 1

2
(z)−

√
zWκ,µ(z) + (κ− µ− 1

2 )Wκ− 1
2 ,µ+ 1

2
(z) = 0,

13.15.9 Wκ+ 1
2 ,µ−

1
2
(z)−

√
zWκ,µ(z) + (κ+ µ− 1

2 )Wκ− 1
2 ,µ−

1
2
(z) = 0,

13.15.10 2µWκ,µ(z)−
√
zWκ+ 1

2 ,µ+ 1
2
(z) +

√
zWκ+ 1

2 ,µ−
1
2
(z) = 0,

13.15.11 Wκ+1,µ(z) + (2κ− z)Wκ,µ(z) + (κ− µ− 1
2 )(κ+ µ− 1

2 )Wκ−1,µ(z) = 0,

13.15.12 (κ− µ− 1
2 )
√
zWκ− 1

2 ,µ+ 1
2
(z) + 2µWκ,µ(z)− (κ+ µ− 1

2 )
√
zWκ− 1

2 ,µ−
1
2
(z) = 0,

13.15.13 (κ+ µ− 1
2 )
√
zWκ− 1

2 ,µ−
1
2
(z)− (z + 2µ)Wκ,µ(z) +

√
zWκ+ 1

2 ,µ+ 1
2
(z) = 0,

13.15.14 (κ− µ− 1
2 )
√
zWκ− 1

2 ,µ+ 1
2
(z)− (z − 2µ)Wκ,µ(z) +

√
zWκ+ 1

2 ,µ−
1
2
(z) = 0.

13.15(ii) Differentiation Formulas

13.15.15
dn

dzn

(
e

1
2 zzµ−

1
2 Mκ,µ(z)

)
= (−1)n(−2µ)ne

1
2 zzµ−

1
2 (n+1)Mκ− 1

2n,µ−
1
2n

(z),

13.15.16
dn

dzn

(
e

1
2 zz−µ−

1
2 Mκ,µ(z)

)
=

(
1
2 + µ− κ

)
n

(1 + 2µ)n
e

1
2 zz−µ−

1
2 (n+1)Mκ− 1

2n,µ+ 1
2n

(z),

13.15.17

(
z
d

dz
z

)n (
e

1
2 zz−κ−1Mκ,µ(z)

)
=
(

1
2 + µ− κ

)
n
e

1
2 zzn−κ−1Mκ−n,µ(z),

13.15.18
dn

dzn

(
e−

1
2 zzµ−

1
2 Mκ,µ(z)

)
= (−1)n(−2µ)ne

− 1
2 zzµ−

1
2 (n+1)Mκ+ 1

2n,µ−
1
2n

(z),

13.15.19
dn

dzn

(
e−

1
2 zz−µ−

1
2 Mκ,µ(z)

)
= (−1)n

(
1
2 + µ+ κ

)
n

(1 + 2µ)n
e−

1
2 zz−µ−

1
2 (n+1) Mκ+ 1

2n,µ+ 1
2n

(z),

13.15.20

(
z
d

dz
z

)n (
e−

1
2 zzκ−1Mκ,µ(z)

)
=
(

1
2 + µ+ κ

)
n
e−

1
2 zzκ+n−1 Mκ+n,µ(z).

13.15.21
dn

dzn

(
e

1
2 zz−µ−

1
2 Wκ,µ(z)

)
= (−1)n

(
1
2 + µ− κ

)
n
e

1
2 zz−µ−

1
2 (n+1) Wκ− 1

2n,µ+ 1
2n

(z),

13.15.22
dn

dzn

(
e

1
2 zzµ−

1
2 Wκ,µ(z)

)
= (−1)n

(
1
2 − µ− κ

)
n
e

1
2 zzµ−

1
2 (n+1) Wκ− 1

2n,µ−
1
2n

(z),

13.15.23

(
z
d

dz
z

)n (
e

1
2 zz−κ−1Wκ,µ(z)

)
=
(

1
2 + µ− κ

)
n

(
1
2 − µ− κ

)
n
e

1
2 zzn−κ−1Wκ−n,µ(z),

13.15.24
dn

dzn

(
e−

1
2 zz−µ−

1
2 Wκ,µ(z)

)
= (−1)ne−

1
2 zz−µ−

1
2 (n+1)Wκ+ 1

2n,µ+ 1
2n

(z),

13.15.25
dn

dzn

(
e−

1
2 zzµ−

1
2 Wκ,µ(z)

)
= (−1)ne−

1
2 zzµ−

1
2 (n+1)Wκ+ 1

2n,µ−
1
2n

(z),

13.15.26

(
z
d

dz
z

)n (
e−

1
2 zzκ−1Wκ,µ(z)

)
= (−1)ne−

1
2 zzκ+n−1Wκ+n,µ(z).

Other versions of several of the identities in this subsection can be constructed by use of (13.3.29).
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13.16 Integral Representations

13.16(i) Integrals Along the Real Line

In this subsection see §§10.2(ii), 10.25(ii) for the functions J2µ, I2µ, and K2µ, and §§15.1, 15.2(i) for 2F1.

13.16.1 Mκ,µ(z) =
Γ(1 + 2µ)zµ+ 1

2 2−2µ

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 + µ+ κ

) ∫ 1

−1

e
1
2 zt(1 + t)µ−

1
2−κ(1− t)µ− 1

2 +κ dt, <µ+ 1
2 > |<κ|,

13.16.2 Mκ,µ(z) =
Γ(1 + 2µ)zλ

Γ(1 + 2µ− 2λ) Γ(2λ)

∫ 1

0

Mκ−λ,µ−λ(zt)e
1
2 z(t−1)tµ−λ−

1
2 (1− t)2λ−1 dt, <µ+ 1

2 > <λ > 0,

13.16.3
1

Γ(1 + 2µ)
Mκ,µ(z) =

√
ze

1
2 z

Γ
(

1
2 + µ+ κ

) ∫ ∞
0

e−ttκ−
1
2 J2µ

(
2
√
zt
)
dt, <(κ+ µ) + 1

2 > 0,

13.16.4
1

Γ(1 + 2µ)
Mκ,µ(z) =

√
ze−

1
2 z

Γ
(

1
2 + µ− κ

) ∫ ∞
0

e−tt−κ−
1
2 I2µ

(
2
√
zt
)
dt, <(κ− µ)− 1

2 > 0.

13.16.5 Wκ,µ(z) =
zµ+ 1

2 2−2µ

Γ
(

1
2 + µ− κ

) ∫ ∞
1

e−
1
2 zt(t− 1)µ−

1
2−κ(t+ 1)µ−

1
2 +κ dt, <µ+ 1

2 > <κ, |ph z| < 1
2π,

13.16.6

Wκ,µ(z) =
e−

1
2 zzκ+1

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) ∫ ∞
0

W−κ,µ(t)e−
1
2 tt−κ−1

t+ z
dt, |ph z| < π, <( 1

2 + µ− κ) > max (2<µ, 0),

13.16.7
Wκ,µ(z) =

(−1)ne−
1
2 zz

1
2−µ−n

Γ(1 + 2µ) Γ
(

1
2 − µ− κ

) ∫ ∞
0

M−κ,µ(t)e−
1
2 ttn+µ− 1

2

t+ z
dt,

|ph z| < π, n = 0, 1, 2, . . . , −<(1 + 2µ) < n < |<µ|+ <κ < 1
2 ,

13.16.8 Wκ,µ(z) =
2
√
ze−

1
2 z

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) ∫ ∞
0

e−tt−κ−
1
2 K2µ

(
2
√
zt
)
dt, <(µ− κ) + 1

2 > 0,

13.16.9 Wκ,µ(z) = e−
1
2 zzκ+c

∫ ∞
0

e−zttc−1
2F1

( 1
2 + µ− κ, 1

2 − µ− κ
c

;−t
)
dt, |ph z| < 1

2π,

where c is arbitrary, <c > 0.

13.16(ii) Contour Integrals

For contour integral representations combine (13.14.2) and (13.14.3) with §13.4(ii). See Buchholz (1969, §2.3), Erdélyi
et al. (1953a, §6.11.3), and Slater (1960, Chapter 3). See also §13.16(iii).

13.16(iii) Mellin–Barnes Integrals

If 1
2 + µ− κ 6= 0,−1,−2, . . . , then

13.16.10
1

Γ(1 + 2µ)
Mκ,µ

(
e±πiz

)
=

e
1
2 z±( 1

2 +µ)πi

2πiΓ
(

1
2 + µ− κ

) ∫ i∞

−i∞

Γ(t− κ) Γ
(

1
2 + µ− t

)
Γ
(

1
2 + µ+ t

) zt dt, |ph z| < 1
2π,

where the contour of integration separates the poles of Γ(t− κ) from those of Γ
(

1
2 + µ− t

)
.

If 1
2 ± µ− κ 6= 0,−1,−2, . . . , then

13.16.11 Wκ,µ(z) =
e−

1
2 z

2πi

∫ i∞

−i∞

Γ
(

1
2 + µ+ t

)
Γ
(

1
2 − µ+ t

)
Γ(−κ− t)

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) z−t dt, |ph z| < 3
2π,

where the contour of integration separates the poles of Γ
(

1
2 + µ+ t

)
Γ
(

1
2 − µ+ t

)
from those of Γ(−κ− t).

13.16.12 Wκ,µ(z) =
e

1
2 z

2πi

∫ i∞

−i∞

Γ
(

1
2 + µ+ t

)
Γ
(

1
2 − µ+ t

)
Γ(1− κ+ t)

z−t dt, |ph z| < 1
2π,

where the contour of integration passes all the poles of Γ
(

1
2 + µ+ t

)
Γ
(

1
2 − µ+ t

)
on the right-hand side.
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13.17 Continued Fractions

If κ, µ ∈ C such that µ± (κ− 1
2 ) 6= −1,−2,−3, . . . , then

13.17.1

√
zMκ,µ(z)

Mκ− 1
2 ,µ+ 1

2
(z)

= 1 +
u1z

1 +
u2z

1 +
· · · ,

where

13.17.2

u2n+1 = −
1
2 + µ+ κ+ n

(2µ+ 2n+ 1)(2µ+ 2n+ 2)
,

u2n =
1
2 + µ− κ+ n

(2µ+ 2n)(2µ+ 2n+ 1)
.

This continued fraction converges to the meromorphic
function of z on the left-hand side for all z ∈ C. For
more details on how a continued fraction converges to a
meromorphic function see Jones and Thron (1980).

If κ, µ ∈ C such that µ+ 1
2±(κ+1) 6= −1,−2,−3, . . . ,

then

13.17.3
Wκ,µ(z)√

zWκ− 1
2 ,µ−

1
2
(z)

= 1 +
v1/z

1 +
v2/z

1 +
· · · ,

where

13.17.4 v2n+1 = 1
2 + µ− κ+ n, v2n = 1

2 − µ− κ+ n.

This continued fraction converges to the meromorphic
function of z on the left-hand side throughout the sector
|ph z| < π.

See also Cuyt et al. (2008, pp. 336–337).

13.18 Relations to Other Functions

13.18(i) Elementary Functions

13.18.1 M0, 12
(2z) = 2 sinh z,

13.18.2

Mκ,κ− 1
2
(z) = Wκ,κ− 1

2
(z) = Wκ,−κ+ 1

2
(z) = e−

1
2 zzκ,

13.18.3 Mκ,−κ− 1
2
(z) = e

1
2 zz−κ.

13.18(ii) Incomplete Gamma Functions

For the notation see §§6.2(i), 7.2(i), and 8.2(i). When
1
2−κ±µ is an integer the Whittaker functions can be ex-
pressed as incomplete gamma functions (or generalized
exponential integrals). For example,

13.18.4 Mµ− 1
2 ,µ

(z) = 2µe
1
2 zz

1
2−µ γ(2µ, z),

13.18.5 Wµ− 1
2 ,µ

(z) = e
1
2 zz

1
2−µ Γ(2µ, z).

Special cases are the error functions

13.18.6 M− 1
4 ,

1
4

(
z2
)

= 1
2e

1
2 z

2√
πz erf(z),

13.18.7 W− 1
4 ,−

1
4

(
z2
)

= e
1
2 z

2√
πz erfc(z).

13.18(iii) Modified Bessel Functions

When κ = 0 the Whittaker functions can be expressed
as modified Bessel functions. For the notation see
§§10.25(ii) and 9.2(i).

13.18.8 M0,ν(2z) = 22ν+ 1
2 Γ(1 + ν)

√
z Iν(z),

13.18.9 W0,ν(2z) =
√

2z/π Kν(z),

13.18.10 W0, 13

(
4
3z

3
2

)
= 2
√
πz

1
4 Ai(z).

13.18(iv) Parabolic Cylinder Functions

For the notation see §12.2.

13.18.11 W− 1
2a,±

1
4

(
1
2z

2
)

= 2
1
2a
√
z U(a, z),

13.18.12
M− 1

2a,−
1
4

(
1
2z

2
)

= 2
1
2a−1 Γ

(
1
2a+ 3

4

)√
z/π

× (U(a, z) + U(a,−z)) ,

13.18.13
M− 1

2a,
1
4

(
1
2z

2
)

= 2
1
2a−2 Γ

(
1
2a+ 1

4

)√
z/π

× (U(a,−z)− U(a, z)) .

13.18(v) Orthogonal Polynomials

Special cases of §13.18(iv) are as follows. For the nota-
tion see §18.3.

Hermite Polynomials

13.18.14 M 1
4 +n,− 1

4

(
z2
)

= (−1)n
n!

(2n)!
e−

1
2 z

2√
z H2n(z),

13.18.15

M 3
4 +n, 14

(
z2
)

= (−1)n
n!

(2n+ 1)!
e−

1
2 z

2√
z

2
H2n+1(z),

13.18.16 W 1
4 + 1

2n,
1
4

(
z2
)

= 2−ne−
1
2 z

2√
z Hn(z).

Laguerre Polynomials

13.18.17

W 1
2α+ 1

2 +n, 12α
(z) = (−1)n(α+ 1)nM 1

2α+ 1
2 +n, 12α

(z)

= (−1)nn!e−
1
2 zz

1
2α+ 1

2 L(α)
n (z).
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13.19 Asymptotic Expansions for Large Argument

As x→∞
13.19.1 Mκ,µ(x) ∼ Γ(1 + 2µ)

Γ
(

1
2 + µ− κ

)e 1
2xx−κ

∞∑
s=0

(
1
2 − µ+ κ

)
s

(
1
2 + µ+ κ

)
s

s!
x−s, µ− κ 6= − 1

2 ,−
3
2 , . . . .

As z →∞

13.19.2

Mκ,µ(z) ∼ Γ(1 + 2µ)
Γ
(

1
2 + µ− κ

)e 1
2 zz−κ

∞∑
s=0

(
1
2 − µ+ κ

)
s

(
1
2 + µ+ κ

)
s

s!
z−s

+
Γ(1 + 2µ)

Γ
(

1
2 + µ+ κ

)e− 1
2 z±( 1

2 +µ−κ)πizκ
∞∑
s=0

(
1
2 + µ− κ

)
s

(
1
2 − µ− κ

)
s

s!
(−z)−s,

− 1
2π + δ ≤ ± ph z ≤ 3

2π − δ,
provided that both µ∓ κ 6= − 1

2 ,−
3
2 , . . . . Again, δ denotes an arbitrary small positive constant. Also,

13.19.3 Wκ,µ(z) ∼ e− 1
2 zzκ

∞∑
s=0

(
1
2 + µ− κ

)
s

(
1
2 − µ− κ

)
s

s!
(−z)−s, |ph z| ≤ 3

2π − δ.

Error bounds and exponentially-improved expan-
sions are derivable by combining §§13.7(ii) and 13.7(iii)
with (13.14.2) and (13.14.3). See also Olver (1965).

For an asymptotic expansion of Wκ,µ(z) as z → ∞
that is valid in the sector |ph z| ≤ π − δ and where the
real parameters κ, µ are subject to the growth condi-
tions κ = o(z), µ = o(

√
z), see Wong (1973a).

13.20 Uniform Asymptotic Approximations
for Large µ

13.20(i) Large µ, Fixed κ

When µ→∞ in the sector |phµ| ≤ 1
2π−δ(<

1
2π), with

κ(∈ C) fixed

13.20.1 Mκ,µ(z) = zµ+ 1
2
(
1 +O

(
µ−1

))
,

uniformly for bounded values of |z|; also
13.20.2

Wκ,µ(x) = π−
1
2 Γ(κ+ µ)

(
1
4x
)1
2−µ (1 +O

(
µ−1

))
,

uniformly for bounded positive values of x. For an
extension of (13.20.1) to an asymptotic expansion, to-
gether with error bounds, see Olver (1997b, Chapter 10,
Ex. 3.4).

13.20(ii) Large µ, 0 ≤ κ ≤ (1− δ)µ
Let

13.20.3 X =
√

4µ2 − 4κx+ x2.

Then as µ→∞
13.20.4

Mκ,µ(x) =

√
2µx
X

(
4µ2x

2µ2 − κx+ µX

)µ
×
(

2(µ− κ)
X + x− 2κ

)κ
e

1
2X−µ

(
1 +O

(
1
µ

))
,

13.20.5

Wκ,µ(x) =
√
x

X

(
2µ2 − κx+ µX

(µ− κ)x

)µ (
X + x− 2κ

2

)κ
× e−

1
2X−κ

(
1 +O

(
1
µ

))
,

uniformly with respect to x ∈ (0,∞) and κ ∈ [0, (1 −
δ)µ], where δ again denotes an arbitrary small positive
constant.

13.20(iii) Large µ, −(1− δ)µ ≤ κ ≤ µ
Let

13.20.6 α =
√

2|κ− µ|/µ,

13.20.7 X =
√
|x2 − 4κx+ 4µ2|,

13.20.8 Φ(κ, µ, x) =
(
µ2ζ2 − 2κµ+ 2µ2

x2 − 4κx+ 4µ2

)1
4 √

x,

with the variable ζ defined implicitly as follows:
(a) In the case −µ < κ < µ

13.20.9

ζ
√
ζ2 + α2 + α2 arcsinh

(
ζ

α

)
=
X

µ
− 2κ
µ

ln

(
X + x− 2κ
2
√
µ2 − κ2

)
−2 ln

(
µX + 2µ2 − κx
x
√
µ2 − κ2

)
.

(b) In the case µ = κ

13.20.10 ζ = ±

√
x

µ
− 2− 2 ln

(
x

2µ

)
,

the upper or lower sign being taken according as x ≷ 2µ.
(In both cases (a) and (b) the x-interval (0,∞) is

mapped one-to-one onto the ζ-interval (−∞,∞), with
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x = 0 and ∞ corresponding to ζ = −∞ and ∞, respec-
tively.) Then as µ→∞
13.20.11

Wκ,µ(x) =
(

1
2µ
)− 1

4

(
κ+ µ

e

)1
2 (κ+µ)

Φ(κ, µ, x)

× U
(
µ− κ, ζ

√
2µ
) (

1 +O
(
µ−1 lnµ

))
,

13.20.12

Mκ,µ(x) = (8µ)
1
4

(
2µ
e

)2µ (
e

κ+ µ

)1
2 (κ+µ)

Φ(κ, µ, x)

× U
(
µ− κ,−ζ

√
2µ
) (

1 +O
(
µ−1 lnµ

))
,

uniformly with respect to x ∈ (0,∞) and κ ∈ [−(1 −
δ)µ, µ]. For the parabolic cylinder function U see §12.2.

These results are proved in Olver (1980b). This ref-
erence also supplies error bounds and corresponding ap-
proximations when x, κ, and µ are replaced by ix, iκ,
and iµ, respectively.

13.20(iv) Large µ, µ ≤ κ ≤ µ/δ

Again define α, X, and Φ(κ, µ, x) by (13.20.6)–
(13.20.8), but with ζ now defined by

13.20.13

ζ
√
ζ2 − α2 − α2 arccosh

(
ζ

α

)
=
X

µ
− 2κ

µ
ln

(
X + x− 2κ
2
√
κ2 − µ2

)
− 2 ln

(
κx− µX − 2µ2

x
√
κ2 − µ2

)
, x ≥ 2κ+ 2

√
κ2 − µ2,

13.20.14

ζ
√
α2 − ζ2 + α2 arcsin

(
ζ

α

)
=
X

µ
+

2κ
µ

arctan
(
x− 2κ
X

)
− 2 arctan

(
κx− 2µ2

µX

)
,

2κ− 2
√
κ2 − µ2 ≤ x ≤ 2κ+ 2

√
κ2 − µ2,

13.20.15

−ζ
√
ζ2 − α2 − α2 arccosh

(
− ζ
α

)
= −X

µ
+

2κ
µ

ln

(
2κ−X − x
2
√
κ2 − µ2

)
+ 2 ln

(
µX + 2µ2 − κx
x
√
κ2 − µ2

)
,

0 < x ≤ 2κ− 2
√
κ2 − µ2,

when µ < κ, and by (13.20.10) when µ = κ. (As in §13.20(iii) x = 0 and ∞ correspond to ζ = −∞ and ∞,
respectively). Then as µ→∞

13.20.16 Wκ,µ(x) =
(

1
2µ
)− 1

4

(
κ+ µ

e

)1
2 (κ+µ)

Φ(κ, µ, x)
(
U
(
µ− κ, ζ

√
2µ
)

+ envU
(
µ− κ, ζ

√
2µ
)
O
(
µ−

2
3

))
,

13.20.17 Mκ,µ(x) = (8µ)
1
4

(
2µ
e

)2µ (
e

κ+ µ

)1
2 (κ+µ)

Φ(κ, µ, x)
(
U
(
µ− κ,−ζ

√
2µ
)

+ envU
(
µ− κ, ζ

√
2µ
)
O
(
µ−

2
3

))
,

uniformly with respect to ζ ∈ [0,∞) and κ ∈ [µ, µ/δ].
Also,

13.20.18 Wκ,µ(x) =
(

1
2µ
)− 1

4

(
κ+ µ

e

)1
2 (κ+µ)

Φ(κ, µ, x)
(
U
(
µ− κ, ζ

√
2µ
)

+ envU
(
µ− κ,−ζ

√
2µ
)
O
(
µ−

2
3

))
,

13.20.19

Mκ,µ(x) = (8µ)
1
4

(
2µ
e

)2µ (
e

κ+ µ

)1
2 (κ+µ)

Φ(κ, µ, x)
(
U
(
µ− κ,−ζ

√
2µ
)

+ envU
(
µ− κ,−ζ

√
2µ
)
O
(
µ−

2
3

))
,

uniformly with respect to ζ ∈ (−∞, 0] and κ ∈ [µ, µ/δ].
For the parabolic cylinder functions U and U see

§12.2, and for the env functions associated with U and
U see §14.15(v).

These results are proved in Olver (1980b). Equa-
tions (13.20.17) and (13.20.18) are simpler than (6.10)
and (6.11) in this reference. Olver (1980b) also supplies
error bounds and corresponding approximations when

x, κ, and µ are replaced by ix, iκ, and iµ, respectively.

It should be noted that (13.20.11), (13.20.16), and
(13.20.18) differ only in the common error terms. Hence
without the error terms the approximation holds for
−(1 − δ)µ ≤ κ ≤ µ/δ. Similarly for (13.20.12),
(13.20.17), and (13.20.19).
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13.20(v) Large µ, Other Expansions

For uniform approximations valid when µ is large, x/i ∈
(0,∞), and κ/i ∈ [0, µ/δ], see Olver (1997b, pp. 401–
403). These approximations are in terms of Airy func-
tions.

For uniform approximations of Mκ,iµ(z) and
Wκ,iµ(z), κ and µ real, one or both large, see Dunster
(2003a).

13.21 Uniform Asymptotic Approximations
for Large κ

13.21(i) Large κ, Fixed µ

For the notation see §§10.2(ii), 10.25(ii), and 2.8(iv).
When κ → ∞ through positive real values with µ

(≥ 0) fixed

13.21.1

Mκ,µ(x) =
√
xΓ(2µ+ 1)κ−µ

(
J2µ

(
2
√
xκ
)

+ envJ2µ

(
2
√
xκ
)
O
(
κ−

1
2

))
,

13.21.2

Wκ,µ(x) =
√
xΓ
(
κ+ 1

2

) (
sin(κπ − µπ) J2µ

(
2
√
xκ
)

− cos(κπ − µπ)Y2µ

(
2
√
xκ
)

+ envY2µ

(
2
√
xκ
)
O
(
κ−

1
2

))
,

13.21.3

W−κ,µ
(
xe−πi

)
=

π
√
x

Γ
(
κ+ 1

2

)eµπi (H(1)
2µ

(
2
√
xκ
)

+ envY2µ

(
2
√
xκ
)
O
(
κ−

1
2

))
,

13.21.4

W−κ,µ
(
xeπi

)
=

π
√
x

Γ
(
κ+ 1

2

)e−µπi (H(2)
2µ

(
2
√
xκ
)

+ envY2µ

(
2
√
xκ
)
O
(
κ−

1
2

))
,

uniformly with respect to x ∈ (0, A] in each case, where
A is an arbitrary positive constant.

Other types of approximations when κ → ∞
through positive real values with µ (≥ 0) fixed are as
follows. Define

13.21.5 2
√
ζ =

√
x+ x2 + ln

(√
x+
√

1 + x
)
.

Then
13.21.6

M−κ,µ(4κx)

=
2 Γ(2µ+ 1)
κµ−

1
2

(
xζ

1 + x

)1
4

I2µ

(
4κζ

1
2

)(
1 +O

(
κ−1

))
,

13.21.7

W−κ,µ(4κx)

=

√
8/πeκ

κκ−
1
2

(
xζ

1 + x

)1
4

K2µ

(
4κζ

1
2

)(
1 +O

(
κ−1

))
,

uniformly with respect to x ∈ (0,∞).
For (13.21.6), (13.21.7), and extensions to asymp-

totic expansions and error bounds, see Olver (1997b,
Chapter 12, Exs. 12.4.5, 12.4.6). For extensions to com-
plex values of x see López (1999).

13.21(ii) Large κ, 0 ≤ µ ≤ (1− δ)κ
Let

13.21.8 c(κ, µ) = eµπi
√

1
2π

(
κ− µ
κ+ µ

)1
2µ
(

e2

κ2 − µ2

)1
2κ

,

13.21.9 X =
√
|x2 − 4κx+ 4µ2|,

13.21.10 Ψ(κ, µ, x) =
(

4µ2 − κζ
x2 − 4κx+ 4µ2

)1
4 √

x,

with the variable ζ defined implicitly by

13.21.11

√
4µ2 − κζ − µ ln

(
2µ+

√
4µ2 − κζ

2µ−
√

4µ2 − κζ

)
= 1

2X + µ ln

(
x
√
κ2 − µ2

2µ2 − κx+ µX

)
+ κ ln

(
2
√
κ2 − µ2

2κ− x−X

)
,

0 < x ≤ 2κ− 2
√
κ2 − µ2,

and

13.21.12

√
κζ − 4µ2 − 2µ arctan

(√
κζ − 4µ2

2µ

)
= 1

2 (X − πµ)− µ arctan
(
xκ− 2µ2

µX

)
+ κ arcsin

(
X

2
√
κ2 − µ2

)
,

2κ− 2
√
κ2 − µ2 ≤ x < 2κ+ 2

√
κ2 − µ2.

Then as κ→∞
13.21.13

Mκ,µ(x) = Γ(2µ+ 1)
(

e2

κ2 − µ2

)1
2µ
(
κ− µ
κ+ µ

)1
2κ

Ψ(κ, µ, x)
(
J2µ

(√
ζκ
)

+ envJ2µ

(√
ζκ
)
O
(
κ−1

))
,

13.21.14

Wκ,µ(x) =
e−µπi

π
Γ
(
κ+ µ+ 1

2

)
Γ
(
κ− µ+ 1

2

)
c(κ, µ)Ψ(κ, µ, x)

×
(

sin(κπ − µπ) J2µ

(√
ζκ
)
− cos(κπ − µπ)Y2µ

(√
ζκ
)

+ envY2µ

(√
ζκ
)
O
(
κ−1

))
,
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13.21.15

W−κ,µ
(
xe−πi

)
= c(κ, µ)Ψ(κ, µ, x)

(
H

(1)
2µ

(√
ζκ
)

+ envY2µ

(√
ζκ
)
O
(
κ−1

))
,

13.21.16

W−κ,µ
(
xeπi

)
= e−2µπic(κ, µ)Ψ(κ, µ, x)

(
H

(2)
2µ

(√
ζκ
)

+ envY2µ

(√
ζκ
)
O
(
κ−1

))
,

uniformly with respect to µ ∈ [0, (1 − δ)κ] and x ∈(
0, (1− δ)(2κ+ 2

√
κ2 − µ2)

]
, where δ again denotes an

arbitrary small positive constant. For the functions J2µ,
Y2µ, H(1)

2µ , and H
(2)
2µ see §10.2(ii), and for the env func-

tions associated with J2µ and Y2µ see §2.8(iv).
These approximations are proved in Dunster (1989).

This reference also includes error bounds and extensions
to asymptotic expansions and complex values of x.

13.21(iii) Large κ, 0 ≤ µ ≤ (1− δ)κ
(Continued)

Let

13.21.17 ĉ(κ, µ) =
√

2πκ
1
6

(
κ− µ
κ+ µ

)1
2µ
(

e2

κ2 − µ2

)1
2κ

,

13.21.18 X =
√
|x2 − 4κx+ 4µ2|,

13.21.19 Ψ̂(κ, µ, x) =

(
ζ̂

x2 − 4κx+ 4µ2

)1
4 √

2x,

and define the variable ζ̂ implicitly by

13.21.20
ζ̂ = −

(
3

2κ

(
−1

2
X + 2µ arctan

(
xκ− x

√
κ2 − µ2 − 2µ2

µX

)
+ κ arccos

(
x− 2κ

2
√
κ2 − µ2

)))2/3
,

2κ− 2
√
κ2 − µ2 < x ≤ 2κ+ 2

√
κ2 − µ2,

and

13.21.21 ζ̂ =

(
3

2κ

(
1
2
X + µ ln

(
x
√
κ2 − µ2

κx− 2µ2 − µX

)
+ κ ln

(
2
√
κ2 − µ2

x− 2κ+X

)))2/3
, x ≥ 2κ+ 2

√
κ2 − µ2.

Then as κ→∞

13.21.22
Mκ,µ(x) =

1
2π

Γ(2µ+ 1) Γ
(
κ− µ+ 1

2

)
ĉ(κ, µ) Ψ̂(κ, µ, x)

×
(

sin(κπ − µπ) Ai
(
κ

2
3 ζ̂
)

+ cos(κπ − µπ) Bi
(
κ

2
3 ζ̂
)

+ envBi
(
κ

2
3 ζ̂
)
O
(
κ−1

))
,

13.21.23 Wκ,µ(x) =
√

2πκ
1
6

(
κ+ µ

κ− µ

)1
2µ
(
κ2 − µ2

e2

)1
2κ

Ψ̂(κ, µ, x)
(

Ai
(
κ

2
3 ζ̂
)

+ envAi
(
κ

2
3 ζ̂
)
O
(
κ−1

))
,

13.21.24 W−κ,µ
(
xe−πi

)
= e(κ− 1

6 )πiĉ(κ, µ)Ψ̂(κ, µ, x)
(

Ai
(
κ

2
3 ζ̂e−

2
3πi
)

+ envBi
(
κ

2
3 ζ̂
)
O
(
κ−1

))
,

13.21.25 W−κ,µ
(
xeπi

)
= e−(κ− 1

6 )πiĉ(κ, µ)Ψ̂(κ, µ, x)
(

Ai
(
κ

2
3 ζ̂e

2
3πi
)

+ envBi
(
κ

2
3 ζ̂
)
O
(
κ−1

))
,

uniformly with respect to µ ∈ [0, (1 − δ)κ] and x ∈[
(1 + δ)(2κ− 2

√
κ2 − µ2),∞

)
. For the functions Ai

and Bi see §9.2(i), and for the env functions associated
with Ai and Bi see §2.8(iii).

These approximations are proved in Dunster (1989).
This reference also includes error bounds and extensions
to asymptotic expansions and complex values of x.

13.21(iv) Large κ, Other Expansions

For a uniform asymptotic expansion in terms of Airy
functions for Wκ,µ(4κx) when κ is large and positive,
µ is real with |µ| bounded, and x ∈ [δ,∞) see Olver
(1997b, Chapter 11, Ex. 7.3). This expansion is simpler

in form than the expansions of Dunster (1989) that cor-
respond to the approximations given in §13.21(iii), but
the conditions on µ are more restrictive.

For asymptotic expansions having double asymp-
totic properties see Skovgaard (1966).

See also §13.20(v).

13.22 Zeros

From (13.14.2) and (13.14.3)Mκ,µ(z) has the same zeros
as M

(
1
2 + µ− κ, 1 + 2µ, z

)
and Wκ,µ(z) has the same

zeros as U
(

1
2 + µ− κ, 1 + 2µ, z

)
, hence the results given

in §13.9 can be adopted.
Asymptotic approximations to the zeros when the

parameters κ and/or µ are large can be found by rever-
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sion of the uniform approximations provided in §§13.20
and 13.21. For example, if µ(≥ 0) is fixed and κ(> 0) is
large, then the rth positive zero φr of Mκ,µ(z) is given
by

13.22.1 φr =
j2
2µ,r

4κ
+ j2µ,r O

(
κ−

3
2

)
,

where j2µ,r is the rth positive zero of the Bessel func-
tion J2µ(x) (§10.21(i)). (13.22.1) is a weaker version of
(13.9.8).

13.23 Integrals

13.23(i) Laplace and Mellin Transforms

For the notation see §§15.1, 15.2(i), and 10.25(ii).

13.23.1

∫ ∞
0

e−zttν−1Mκ,µ(t) dt =
Γ
(
µ+ ν + 1

2

)(
z + 1

2

)µ+ν+ 1
2

2F1

( 1
2 + µ− κ, 1

2 + µ+ ν

1 + 2µ
;

1
z + 1

2

)
, <(µ+ ν + 1

2 ) > 0, <z > 1
2 .

13.23.2

∫ ∞
0

e−zttµ−
1
2 Mκ,µ(t) dt = Γ(2µ+ 1)

(
z + 1

2

)−κ−µ− 1
2
(
z − 1

2

)κ−µ− 1
2 , <µ > − 1

2 , <z > 1
2 ,

13.23.3
1

Γ(1 + 2µ)

∫ ∞
0

e−
1
2 ttν−1Mκ,µ(t) dt =

Γ
(
µ+ ν + 1

2

)
Γ(κ− ν)

Γ
(

1
2 + µ+ κ

)
Γ
(

1
2 + µ− ν

) , − 1
2 −<µ < <ν < <κ.

13.23.4

∫ ∞
0

e−zttν−1Wκ,µ(t) dt = Γ
(

1
2 + µ+ ν

)
Γ
(

1
2 − µ+ ν

)
2F1

( 1
2 − µ+ ν, 1

2 + µ+ ν

ν − κ+ 1
; 1

2 − z
)

,

<(ν + 1
2 ) > |<µ|, <z > − 1

2 ,

13.23.5

∫ ∞
0

e
1
2 ttν−1Wκ,µ(t) dt =

Γ
(

1
2 + µ+ ν

)
Γ
(

1
2 − µ+ ν

)
Γ(−κ− ν)

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) , |<µ| − 1
2 < <ν < −<κ.

13.23.6
1

Γ(1 + 2µ)2πi

∫ (0+)

−∞
ezt+

1
2 t
−1
tκMκ,µ

(
t−1
)
dt =

z−κ−
1
2

Γ
(

1
2 + µ− κ

) I2µ(2√z), <z > 0.

13.23.7
1

2πi

∫ (0+)

−∞
ezt+

1
2 t
−1
tκWκ,µ

(
t−1
)
dt =

2z−κ−
1
2

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) K2µ

(
2
√
z
)
, <z > 0.

For additional Laplace and Mellin transforms see Erdélyi et al. (1954a, §§4.22, 5.20, 6.9, 7.5), Marichev (1983,
pp. 283–287), Oberhettinger and Badii (1973, §1.17), Oberhettinger (1974, §§1.13, 2.8), and Prudnikov et al. (1992a,
§§3.34, 3.35). Inverse Laplace transforms are given in Oberhettinger and Badii (1973, §2.16) and Prudnikov et al.
(1992b, §§3.33, 3.34).

13.23(ii) Fourier Transforms

13.23.8
1

Γ(1 + 2µ)

∫ ∞
0

cos(2xt)e−
1
2 t

2
t−2µ−1Mκ,µ

(
t2
)
dt =

√
πe−

1
2x

2
xµ+κ−1

2 Γ
(

1
2 + µ+ κ

) W 1
2κ−

3
2µ,

1
2κ+ 1

2µ

(
x2
)
, <(κ+ µ) > − 1

2 .

For additional Fourier transforms see Erdélyi et al. (1954a, §§1.14, 2.14, 3.3) and Oberhettinger (1990, §§1.22,
2.22).

13.23(iii) Hankel Transforms

For the notation see §10.2(ii).
13.23.9∫ ∞

0

e−
1
2 ttµ−

1
2 (ν+1)Mκ,µ(t) Jν

(
2
√
xt
)
dt =

Γ(1 + 2µ)
Γ
(

1
2 − µ+ κ+ ν

) e− 1
2xx

1
2 (κ−µ− 3

2 ) M 1
2 (κ+3µ−ν+ 1

2 ), 12 (κ−µ+ν− 1
2 )(x),

x > 0, − 1
2 < <µ < <(κ+ 1

2ν) + 3
4 ,
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13.23.10

1
Γ(1 + 2µ)

∫ ∞
0

e−
1
2 tt

1
2 (ν−1)−µMκ,µ(t) Jν

(
2
√
xt
)
dt =

e−
1
2xx

1
2 (κ+µ− 3

2 )

Γ
(

1
2 + µ+ κ

) W 1
2 (κ−3µ+ν+ 1

2 ), 12 (κ+µ−ν− 1
2 )(x),

x > 0, −1 < <ν < 2<(µ+ κ) + 1
2 .

13.23.11

∫ ∞
0

e
1
2 tt

1
2 (ν−1)−µWκ,µ(t) Jν

(
2
√
xt
)
dt =

Γ(ν − 2µ+ 1)
Γ
(

1
2 + µ− κ

) e 1
2xx

1
2 (µ−κ− 3

2 ) W 1
2 (κ+3µ−ν− 1

2 ), 12 (κ−µ+ν+ 1
2 )(x),

x > 0, max(2<µ− 1,−1) < <ν < 2<(µ− κ) + 3
2 ,

13.23.12∫ ∞
0

e−
1
2 tt

1
2 (ν−1)−µWκ,µ(t) Jν

(
2
√
xt
)
dt =

Γ(ν − 2µ+ 1)
Γ
(

3
2 − µ− κ+ ν

) e− 1
2xx

1
2 (µ+κ− 3

2 ) M 1
2 (κ−3µ+ν+ 1

2 ), 12 (ν−µ−κ+ 1
2 )(x),

x > 0, max(2<µ− 1,−1) < <ν.
For additional Hankel transforms and also other Bessel transforms see Erdélyi et al. (1954b, §8.18) and Oberhet-

tinger (1972, §1.16 and 3.4.42–46, 4.4.45–47, 5.94–97).

13.23(iv) Integral Transforms in terms of Whittaker Functions

Let f(x) be absolutely integrable on the interval [r,R] for all positive r < R, f(x) = O(xρ0) as x → 0+, and
f(x) = O(e−ρ1x) as x→ +∞, where ρ1 >

1
2 . Then for µ in the half-plane <µ ≥ µ1 > max

(
−ρ0,<κ− 1

2

)
13.23.13 g(µ) =

1
Γ(1 + 2µ)

∫ ∞
0

f(x)x−
3
2 Mκ,µ(x) dx,

13.23.14 f(x) =
1

πi
√
x

∫ µ1+i∞

µ1−i∞
µg(µ) Γ

(
1
2 + µ− κ

)
Wκ,µ(x) dµ.

For additional integral transforms see Magnus et al. (1966, p. 189), Prudnikov et al. (1992b, §§4.3.39–4.3.42), and
Wimp (1964).

13.23(v) Other Integrals

Additional integrals involving confluent hypergeometric functions can be found in Apelblat (1983, pp. 388–392),
Erdélyi et al. (1954b), Gradshteyn and Ryzhik (2000, §7.6), and Prudnikov et al. (1990, §§1.13, 1.14, 2.19, 4.2.2).
See also (13.16.2), (13.16.6), (13.16.7).

13.24 Series

13.24(i) Expansions in Series of Whittaker Functions

For expansions of arbitrary functions in series of Mκ,µ(z) functions see Schäfke (1961b).

13.24(ii) Expansions in Series of Bessel Functions

For z ∈ C, and again with the notation of §§10.2(ii) and 10.25(ii),
13.24.1

Mκ,µ(z) = Γ(κ+ µ)22κ+2µz
1
2−κ

∞∑
s=0

(−1)s
(2κ+ 2µ)s(2κ)s

(1 + 2µ)ss!
(κ+ µ+ s) Iκ+µ+s

(
1
2z
)
, 2µ, κ+ µ 6= −1,−2,−3, . . . ,

and

13.24.2
1

Γ(1 + 2µ)
Mκ,µ(z) = 22µzµ+ 1

2

∞∑
s=0

p(µ)
s (z)

(
2
√
κz
)−2µ−s

J2µ+s

(
2
√
κz
)
,

where p(µ)
0 (z) = 1, p(µ)

1 (z) = 1
6z

2, and higher polynomials p(µ)
s (z) are defined by

13.24.3 exp
(
− 1

2z

(
coth t− 1

t

))(
t

sinh t

)1−2µ

=
∞∑
s=0

p(µ)
s (z)

(
− t
z

)s
.

(13.18.8) is a special case of (13.24.1).
Additional expansions in terms of Bessel functions are given in Luke (1959). See also López (1999).
For other series expansions see Prudnikov et al. (1990, §6.6). See also §13.26.
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13.25 Products

13.25.1

Mκ,µ(z)Mκ,−µ−1(z)

+
( 1

2 + µ+ κ)(1
2 + µ− κ)

4µ(1 + µ)(1 + 2µ)2
Mκ,µ+1(z)Mκ,−µ(z) = 1.

For integral representations, integrals, and series
containing products of Mκ,µ(z) and Wκ,µ(z) see Erdélyi
et al. (1953a, §6.15.3).

13.26 Addition and Multiplication
Theorems

13.26(i) Addition Theorems for Mκ,µ(z)

The function Mκ,µ(x+ y) has the following expansions:

13.26.1

e−
1
2y

(
x

x+ y

)µ− 1
2 ∞∑
n=0

(−2µ)n
n!

(
−y√
x

)n
× Mκ− 1

2n,µ−
1
2n

(x), |y| < |x|,

13.26.2
e−

1
2y

(
x+ y

x

)µ+ 1
2 ∞∑
n=0

(
1
2 + µ− κ

)
n

(1 + 2µ)nn!

(
y√
x

)n
× Mκ− 1

2n,µ+ 1
2n

(x),

13.26.3
e−

1
2y

(
x+ y

x

)κ ∞∑
n=0

(
1
2 + µ− κ

)
n
yn

n!(x+ y)n
Mκ−n,µ(x),

<(y/x) > − 1
2 ,

13.26.4

e
1
2y

(
x

x+ y

)µ− 1
2 ∞∑
n=0

(−2µ)n
n!

(
−y√
x

)n
× Mκ+ 1

2n,µ−
1
2n

(x), |y| < |x|,

13.26.5
e

1
2y

(
x+ y

x

)µ+ 1
2 ∞∑
n=0

(
1
2 + µ+ κ

)
n

(1 + 2µ)nn!

(
−y√
x

)n
× Mκ+ 1

2n,µ+ 1
2n

(x),

13.26.6
e

1
2y

(
x

x+ y

)κ ∞∑
n=0

(
1
2 + µ+ κ

)
n
yn

n!(x+ y)n
Mκ+n,µ(x),

<((y + x)/x) > 1
2 .

13.26(ii) Addition Theorems for Wκ,µ(z)

The function Wκ,µ(x+ y) has the following expansions:

13.26.7
e−

1
2y

(
x

x+ y

)µ− 1
2 ∞∑
n=0

(
1
2 − µ− κ

)
n

n!

(
−y√
x

)n
× Wκ− 1

2n,µ−
1
2n

(x), |y| < |x|,

13.26.8
e−

1
2y

(
x+ y

x

)µ+ 1
2 ∞∑
n=0

(
1
2 + µ− κ

)
n

n!

(
−y√
x

)n
× Wκ− 1

2n,µ+ 1
2n

(x), |y| < |x|,

13.26.9

e−
1
2y

(
x+ y

x

)κ ∞∑
n=0

(
1
2 + µ− κ

)
n

(
1
2 − µ− κ

)
n

n!

×
(

y

x+ y

)n
Wκ−n,µ(x), <(y/x) > − 1

2 ,

13.26.10

e
1
2y

(
x

x+ y

)µ− 1
2 ∞∑
n=0

1
n!

(
−y√
x

)n
× Wκ+ 1

2n,µ−
1
2n

(x), |y| < |x|,

13.26.11

e
1
2y

(
x+ y

x

)µ+ 1
2 ∞∑
n=0

1
n!

(
−y√
x

)n
× Wκ+ 1

2n,µ+ 1
2n

(x), |y| < |x|,

13.26.12
e

1
2y

(
x

x+ y

)κ ∞∑
n=0

1
n!

(
−y
x+ y

)n
Wκ+n,µ(x),

<(y/x) > − 1
2 .

13.26(iii) Multiplication Theorems for Mκ,µ(z)
and Wκ,µ(z)

To obtain similar expansions for Mκ,µ(xy) and
Wκ,µ(xy), replace y in the previous two subsections by
(y − 1)x.

Applications

13.27 Mathematical Applications

Confluent hypergeometric functions are connected with
representations of the group of third-order triangular
matrices. The elements of this group are of the form

13.27.1 g =

1 α β
0 γ δ
0 0 1

 ,

where α, β, γ, δ are real numbers, and γ > 0. Vilenkin
(1968, Chapter 8) constructs irreducible representations
of this group, in which the diagonal matrices correspond
to operators of multiplication by an exponential func-
tion. The other group elements correspond to integral
operators whose kernels can be expressed in terms of
Whittaker functions. This identification can be used
to obtain various properties of the Whittaker functions,
including recurrence relations and derivatives.

For applications of Whittaker functions to the uni-
form asymptotic theory of differential equations with a
coalescing turning point and simple pole see §§2.8(vi)
and 18.15(i).
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13.28 Physical Applications

13.28(i) Exact Solutions of the Wave Equation

The reduced wave equation ∇2w = k2w in paraboloidal
coordinates, x = 2

√
ξη cosφ, y = 2

√
ξη sinφ, z =

ξ − η, can be solved via separation of variables w =
f1(ξ)f2(η)eipφ, where

13.28.1

f1(ξ) = ξ−
1
2V

(1)

κ, 12p
(2ikξ) , f2(η) = η−

1
2V

(2)

κ, 12p
(−2ikη) ,

and V
(j)
κ,µ(z), j = 1, 2, denotes any pair of solutions of

Whittaker’s equation (13.14.1). See Hochstadt (1971,
Chapter 7).

For potentials in quantum mechanics that are solv-
able in terms of confluent hypergeometric functions see
Negro et al. (2000).

13.28(ii) Coulomb Functions

See Chapter 33.

13.28(iii) Other Applications

For dynamics of many-body systems see Meden and
Schönhammer (1992); for tomography see D’Ariano
et al. (1994); for generalized coherent states see Barut
and Girardello (1971); for relativistic cosmology see
Crisóstomo et al. (2004).

Computation

13.29 Methods of Computation

13.29(i) Series Expansions

Although the Maclaurin series expansion (13.2.2) con-
verges for all finite values of z, it is cumbersome to use
when |z| is large owing to slowness of convergence and
cancellation. For large |z| the asymptotic expansions
of §13.7 should be used instead. Accuracy is limited
by the magnitude of |z|. However, this accuracy can
be increased considerably by use of the exponentially-
improved forms of expansion supplied by the combina-
tion of (13.7.10) and (13.7.11), or by use of the hyper-
asymptotic expansions given in Olde Daalhuis and Olver
(1995a). For large values of the parameters a and b the
approximations in §13.8 are available.

Similarly for the Whittaker functions.

13.29(ii) Differential Equations

A comprehensive and powerful approach is to integrate
the differential equations (13.2.1) and (13.14.1) by di-
rect numerical methods. As described in §3.7(ii), to
insure stability the integration path must be chosen in
such a way that as we proceed along it the wanted so-
lution grows in magnitude at least as fast as all other
solutions of the differential equation.

For M(a, b, z) and Mκ,µ(z) this means that in the
sector |ph z| ≤ π we may integrate along outward rays
from the origin with initial values obtained from (13.2.2)
and (13.14.2).

For U(a, b, z) and Wκ,µ(z) we may integrate along
outward rays from the origin in the sectors 1

2π <
|ph z| < 3

2π, with initial values obtained from connec-
tion formulas in §13.2(vii), §13.14(vii). In the sector
|ph z| < 1

2π the integration has to be towards the ori-
gin, with starting values computed from asymptotic ex-
pansions (§§13.7 and 13.19). On the rays ph z = ± 1

2π,
integration can proceed in either direction.

13.29(iii) Integral Representations

The integral representations (13.4.1) and (13.4.4) can be
used to compute the Kummer functions, and (13.16.1)
and (13.16.5) for the Whittaker functions. In Allasia
and Besenghi (1991) and Allasia and Besenghi (1987b)
the high accuracy of the trapezoidal rule for the compu-
tation of Kummer functions is described. Gauss quadra-
ture methods are discussed in Gautschi (2002b).

13.29(iv) Recurrence Relations

The recurrence relations in §§13.3(i) and 13.15(i) can
be used to compute the confluent hypergeometric func-
tions in an efficient way. In the following two examples
Olver’s algorithm (§3.6(v)) can be used.

Example 1

We assume 2µ 6= −1,−2,−3, . . . . Then we have

13.29.1

z2(n+ µ− 1
2 )
(
(n+ µ+ 1

2 )2 − κ2
)

(n+ µ)(n+ µ+ 1
2 )(n+ µ+ 1)

y(n+ 1)

+ 16
(
(n+ µ)2 − 1

2κz −
1
4

)
y(n)

− 16
(
(n+ µ)2 − 1

4

)
y(n− 1) = 0,

with recessive solution

13.29.2 y(n) = z−n−µ−
1
2 Mκ,n+µ(z),

normalizing relation

13.29.3 e−
1
2 z =

∞∑
s=0

(2µ)s
(

1
2 + µ− κ

)
s

(2µ)2ss!
(−z)sy(s),

and estimate

13.29.4 y(n) = 1 +O
(
n−1

)
, n→∞.
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Example 2

We assume a, a+ 1− b 6= 0,−1,−2, . . . . Then we have

13.29.5
(n+a)w(n)−(2(n+a+1)+z−b)w(n+1)

+ (n+ a− b+ 2)w(n+ 2) = 0,

with recessive solution

13.29.6 w(n) = (a)n U(n+ a, b, z),

normalizing relation

13.29.7 z−a =
∞∑
s=0

(a− b+ 1)s
s!

w(s),

and estimate

13.29.8 w(n) ∼
√
πe

1
2 zz

1
4 (4a−2b+1)

Γ(a) Γ(a+ 1− b)
n

1
4 (4a−2b−3)e−2

√
nz,

as n → ∞. See Temme (1983), and also Wimp (1984,
Chapter 5).

13.30 Tables

• Žurina and Osipova (1964) tabulates M(a, b, x)
and U(a, b, x) for b = 2, a = −0.98(.02)1.10,
x = 0(.01)4, 7D or 7S.

• Slater (1960) tabulates M(a, b, x) for a = −1(.1)1,
b = 0.1(.1)1, and x = 0.1(.1)10, 7–9S; M(a, b, 1)
for a = −11(.2)2 and b = −4(.2)1, 7D; the
smallest positive x-zero of M(a, b, x) for a =
−4(.1)−0.1 and b = 0.1(.1)2.5, 7D.

• Abramowitz and Stegun (1964, Chapter 13) tab-
ulates M(a, b, x) for a = −1(.1)1, b = 0.1(.1)1,
and x = 0.1(.1)1(1)10, 8S. Also the smallest pos-
itive x-zero of M(a, b, x) for a = −1(.1)−0.1 and
b = 0.1(.1)1, 7D.

• Zhang and Jin (1996, pp. 411–423) tabulates
M(a, b, x) and U(a, b, x) for a = −5(.5)5, b =
0.5(.5)5, and x = 0.1, 1, 5, 10, 20, 30, 8S (for
M(a, b, x)) and 7S (for U(a, b, x)).

For other tables prior to 1961 see Fletcher et al.
(1962) and Lebedev and Fedorova (1960).

13.31 Approximations

13.31(i) Chebyshev-Series Expansions

Luke (1969b, pp. 35 and 25) provides Chebyshev-series
expansions of M(a, b, x) and U(a, b, x) that include the
intervals 0 ≤ x ≤ α and α ≤ x <∞, respectively, where
α is an arbitrary positive constant.

13.31(ii) Padé Approximations

For a discussion of the convergence of the Padé approxi-
mants that are related to the continued fraction (13.5.1)
see Wimp (1985).

13.31(iii) Rational Approximations

In Luke (1977a) the following rational approximation is
given, together with its rate of convergence. For the
notation see §16.2(i).

Let a, a+ 1− b 6= 0,−1,−2, . . . , |ph z| < π,
13.31.1

An(z) =
n∑
s=0

(−n)s(n+ 1)s(a)s(b)s
(a+ 1)s(b+ 1)s(n!)2

× 3F3

(
−n+ s, n+ 1 + s, 1

1 + s, a+ 1 + s, b+ 1 + s
;−z

)
,

and
13.31.2 Bn(z) = 2F2

(
−n, n+ 1
a+ 1, b+ 1

;−z
)
.

Then
13.31.3 za U(a, 1 + a− b, z) = lim

n→∞

An(z)
Bn(z)

.

13.32 Software

See http://dlmf.nist.gov/13.32.
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Notation

14.1 Special Notation

(For other notation see pp. xiv and 873.)

x, y, τ real variables.
z = x+ iy complex variable.
m, n nonnegative integers used for order and

degree, respectively.
µ, ν general order and degree, respectively.
− 1

2 + iτ complex degree, τ ∈ R.
γ Euler’s constant (§5.2(ii)).
δ arbitrary small positive constant.
ψ(x) logarithmic derivative of gamma function

(§5.2(i)).
ψ′(x) dψ(x)/dx .
F(a, b; c; z) Olver’s scaled hypergeometric function:

F (a, b; c; z)/Γ(c) .

Multivalued functions take their principal values
(§4.2(i)) unless indicated otherwise.

The main functions treated in this chapter are the
Legendre functions Pν(x), Qν(x), Pν(z), Qν(z); Ferrers
functions Pµν (x), Qµ

ν (x) (also known as the Legendre
functions on the cut); associated Legendre functions
Pµν (z), Qµν (z), Qµ

ν (z); conical functions Pµ− 1
2 +iτ

(x),

Qµ

− 1
2 +iτ

(x), Q̂µ

− 1
2 +iτ

(x), Pµ− 1
2 +iτ

(x), Qµ− 1
2 +iτ

(x) (also
known as Mehler functions).

Among other notations commonly used in the lit-
erature Erdélyi et al. (1953a) and Olver (1997b) de-
note Pµν (x) and Qµ

ν (x) by Pµν (x) and Qµ
ν (x), respectively.

Magnus et al. (1966) denotes Pµν (x), Qµ
ν (x), Pµν (z), and

Qµν (z) by Pµν (x), Qµν (x), Pµ
ν (z), and Qµ

ν (z), respectively.
Hobson (1931) denotes both Pµν (x) and Pµν (x) by Pµν (x);
similarly for Qµ

ν (x) and Qµν (x).

Real Arguments

14.2 Differential Equations

14.2(i) Legendre’s Equation

14.2.1
(
1− x2

) d2w

dx2 − 2x
dw

dx
+ ν(ν + 1)w = 0.

Standard solutions: Pν(±x), Qν(±x), Q−ν−1(±x),
Pν(±x), Qν(±x), Q−ν−1(±x). Pν(x) and Qν(x) are
real when ν ∈ R and x ∈ (−1, 1), and Pν(x) and Qν(x)
are real when ν ∈ R and x ∈ (1,∞).

14.2(ii) Associated Legendre Equation

14.2.2(
1− x2

) d2w

dx2 − 2x
dw

dx
+
(
ν(ν + 1)− µ2

1− x2

)
w = 0.

Standard solutions: Pµν (±x), P−µν (±x), Qµ
ν (±x),

Qµ
−ν−1(±x), Pµν (±x), P−µν (±x), Qµ

ν (±x), Qµ
−ν−1(±x).

(14.2.2) reduces to (14.2.1) when µ = 0. Fer-
rers functions and the associated Legendre functions
are related to the Legendre functions by the equa-
tions P0

ν(x) = Pν(x), Q0
ν(x) = Qν(x), P 0

ν (x) = Pν(x),
Q0
ν(x) = Qν(x), Q0

ν(x) = Qν(x) = Qν(x)/Γ(ν + 1).
Pµν (x), Pµ− 1

2 +iτ
(x), and Qµ

ν (x) are real when ν, µ,
and τ ∈ R, and x ∈ (−1, 1); Pµν (x), Qµν (x), and Qµ

ν (x)
are real when ν and µ ∈ R, and x ∈ (1,∞).

Unless stated otherwise in §§14.2–14.20 it is assumed
that the arguments of the functions Pµν (x) and Qµ

ν (x) lie
in the interval (−1, 1), and the arguments of the func-
tions Pµν (x), Qµν (x), andQµ

ν (x) lie in the interval (1,∞).
For extensions to complex arguments see §§14.21–14.28.

14.2(iii) Numerically Satisfactory Solutions

Equation (14.2.2) has regular singularities at x = 1, −1,
and ∞, with exponent pairs

{
− 1

2µ,
1
2µ
}

,
{
− 1

2µ,
1
2µ
}

,
and {−ν − 1, ν}, respectively; compare §2.7(i).

When µ − ν 6= 0,−1,−2, . . . , and µ + ν 6=
−1,−2,−3, . . . , P−µν (x) and P−µν (−x) are linearly in-
dependent, and when <µ ≥ 0 they are recessive at
x = 1 and x = −1, respectively. Hence they comprise
a numerically satisfactory pair of solutions (§2.7(iv)) of
(14.2.2) in the interval −1 < x < 1. When µ − ν =
0,−1,−2, . . . , or µ + ν = −1,−2,−3, . . . , P−µν (x) and
P−µν (−x) are linearly dependent, and in these cases ei-
ther may be paired with almost any linearly indepen-
dent solution to form a numerically satisfactory pair.

When <µ ≥ 0 and <ν ≥ −1
2 , P−µν (x) and Qµ

ν (x)
are linearly independent, and recessive at x = 1 and
x = ∞, respectively. Hence they comprise a numeri-
cally satisfactory pair of solutions of (14.2.2) in the in-
terval 1 < x <∞. With the same conditions, P−µν (−x)
and Qµ

ν (−x) comprise a numerically satisfactory pair of
solutions in the interval −∞ < x < −1.

14.2(iv) Wronskians and Cross-Products

14.2.3

W
{

P−µν (x),P−µν (−x)
}

=
2

Γ(µ− ν) Γ(ν + µ+ 1) (1− x2)
,

14.2.4 W {Pµν (x),Qµ
ν (x)} =

Γ(ν + µ+ 1)
Γ(ν − µ+ 1) (1− x2)

,

14.2.5 Pµν+1(x) Qµ
ν (x)−Pµν (x) Qµ

ν+1(x) =
Γ(ν + µ+ 1)
Γ(ν − µ+ 2)

,



14.3 Definitions and Hypergeometric Representations 353

14.2.6 W
{

P−µν (x),Qµ
ν (x)

}
=

cos(µπ)
1− x2

,

14.2.7 W
{
P−µν (x), Pµν (x)

}
= − 2 sin(µπ)

π (x2 − 1)
,

14.2.8 W
{
P−µν (x),Qµ

ν (x)
}

= − 1
Γ(ν + µ+ 1) (x2 − 1)

,

14.2.9 W
{
Qµ
ν (x),Qµ

−ν−1(x)
}

=
cos(νπ)
x2 − 1

,

14.2.10

W {Pµν (x), Qµν (x)} = −eµπi Γ(ν + µ+ 1)
Γ(ν − µ+ 1) (x2 − 1)

,

14.2.11

Pµν+1(x)Qµν (x)− Pµν (x)Qµν+1(x) = eµπi
Γ(ν + µ+ 1)
Γ(ν − µ+ 2)

.

14.3 Definitions and Hypergeometric Representations

14.3(i) Interval −1 < x < 1

The following are real-valued solutions of (14.2.2) when µ, ν ∈ R and x ∈ (−1, 1).

Ferrers Function of the First Kind

14.3.1 Pµν (x) =
(

1 + x

1− x

)µ/2
F
(
ν + 1,−ν; 1− µ; 1

2 −
1
2x
)
.

Ferrers Function of the Second Kind

14.3.2

Qµ
ν (x) =

π

2 sin(µπ)

(
cos(µπ)

(
1 + x

1− x

)µ/2
F
(
ν + 1,−ν; 1− µ; 1

2 −
1
2x
)

− Γ(ν + µ+ 1)
Γ(ν − µ+ 1)

(
1− x
1 + x

)µ/2
F
(
ν + 1,−ν; 1 + µ; 1

2 −
1
2x
))

.

Here and elsewhere in this chapter

14.3.3 F(a, b; c;x) =
1

Γ(c)
F (a, b; c;x)

is Olver’s hypergeometric function (§15.1).
Pµν (x) exists for all values of µ and ν. Qµ

ν (x) is undefined when µ+ ν = −1,−2,−3, . . . .
When µ = m = 0, 1, 2, . . . , (14.3.1) reduces to

14.3.4 Pmν (x) = (−1)m
Γ(ν +m+ 1)

2m Γ(ν −m+ 1)
(
1− x2

)m/2
F
(
ν +m+ 1,m− ν;m+ 1; 1

2 −
1
2x
)
;

equivalently,

14.3.5 Pmν (x) = (−1)m
Γ(ν +m+ 1)
Γ(ν −m+ 1)

(
1− x
1 + x

)m/2
F
(
ν + 1,−ν;m+ 1; 1

2 −
1
2x
)
.

When µ = m (∈ Z) (14.3.2) is replaced by its limiting value; see Hobson (1931, §132) for details. See also (14.3.12)–
(14.3.14) for this case.

14.3(ii) Interval 1 < x <∞

Associated Legendre Function of the First Kind

14.3.6 Pµν (x) =
(
x+ 1
x− 1

)µ/2
F
(
ν + 1,−ν; 1− µ; 1

2 −
1
2x
)
.
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Associated Legendre Function of the Second Kind

14.3.7

Qµν (x) = eµπi
π1/2 Γ(ν + µ+ 1)

(
x2 − 1

)µ/2
2ν+1xν+µ+1

F
(

1
2ν + 1

2µ+ 1, 1
2ν + 1

2µ+ 1
2 ; ν + 3

2 ;
1
x2

)
, µ+ ν 6= −1,−2,−3, . . . .

When µ = m = 1, 2, 3, . . . , (14.3.6) reduces to

14.3.8 Pmν (x) =
Γ(ν +m+ 1)

2m Γ(ν −m+ 1)
(
x2 − 1

)m/2
F
(
ν +m+ 1,m− ν;m+ 1; 1

2 −
1
2x
)
.

As standard solutions of (14.2.2) we take the pair P−µν (x) and Qµ
ν (x), where

14.3.9 P−µν (x) =
(
x− 1
x+ 1

)µ/2
F
(
ν + 1,−ν;µ+ 1; 1

2 −
1
2x
)
,

and
14.3.10 Qµ

ν (x) = e−µπi
Qµν (x)

Γ(ν + µ+ 1)
.

Like Pµν (x), but unlike Qµν (x), Qµ
ν (x) is real-valued when ν, µ ∈ R and x ∈ (1,∞), and is defined for all values of ν

and µ. The notation Qµ
ν (x) is due to Olver (1997b, pp. 170 and 178).

14.3(iii) Alternative Hypergeometric Representations

14.3.11 Pµν (x) = cos
(

1
2 (ν + µ)π

)
w1(ν, µ, x) + sin

(
1
2 (ν + µ)π

)
w2(ν, µ, x),

14.3.12 Qµ
ν (x) = − 1

2π sin
(

1
2 (ν + µ)π

)
w1(ν, µ, x) + 1

2π cos
(

1
2 (ν + µ)π

)
w2(ν, µ, x),

where

14.3.13 w1(ν, µ, x) =
2µ Γ

(
1
2ν + 1

2µ+ 1
2

)
Γ
(

1
2ν −

1
2µ+ 1

) (
1− x2

)−µ/2
F
(
− 1

2ν −
1
2µ,

1
2ν −

1
2µ+ 1

2 ; 1
2 ;x2

)
,

14.3.14 w2(ν, µ, x) =
2µ Γ

(
1
2ν + 1

2µ+ 1
)

Γ
(

1
2ν −

1
2µ+ 1

2

) x
(
1− x2

)−µ/2
F
(

1
2 −

1
2ν −

1
2µ,

1
2ν −

1
2µ+ 1; 3

2 ;x2
)
.

14.3.15 P−µν (x) = 2−µ
(
x2 − 1

)µ/2
F
(
µ− ν, ν + µ+ 1;µ+ 1; 1

2 −
1
2x
)
,

14.3.16

cos(νπ)P−µν (x) =
2νπ1/2xν−µ

(
x2 − 1

)µ/2
Γ(ν + µ+ 1)

F
(

1
2µ−

1
2ν,

1
2µ−

1
2ν + 1

2 ; 1
2 − ν;

1
x2

)
−

π1/2
(
x2 − 1

)µ/2
2ν+1 Γ(µ− ν)xν+µ+1

F
(

1
2ν + 1

2µ+ 1, 1
2ν + 1

2µ+ 1
2 ; ν + 3

2 ;
1
x2

)
,

14.3.17 P−µν (x) =
π
(
x2 − 1

)µ/2
2µ

(
F
(

1
2µ−

1
2ν,

1
2ν + 1

2µ+ 1
2 ; 1

2 ;x2
)

Γ
(

1
2µ−

1
2ν + 1

2

)
Γ
(

1
2ν + 1

2µ+ 1
) − xF

(
1
2µ−

1
2ν + 1

2 ,
1
2ν + 1

2µ+ 1; 3
2 ;x2

)
Γ
(

1
2µ−

1
2ν
)

Γ
(

1
2ν + 1

2µ+ 1
2

) )
,

14.3.18 P−µν (x) = 2−µxν−µ
(
x2 − 1

)µ/2
F
(

1
2µ−

1
2ν,

1
2µ−

1
2ν + 1

2 ;µ+ 1; 1− 1
x2

)
,

14.3.19 Qµ
ν (x) =

2ν Γ(ν + 1)(x+ 1)µ/2

(x− 1)(µ/2)+ν+1
F
(
ν + 1, ν + µ+ 1; 2ν + 2;

2
1− x

)
,

14.3.20

2 sin(µπ)
π

Qµ
ν (x) =

(x+ 1)µ/2

Γ(ν + µ+ 1)(x− 1)µ/2
F
(
ν + 1,−ν; 1− µ; 1

2 −
1
2x
)

− (x− 1)µ/2

Γ(ν − µ+ 1)(x+ 1)µ/2
F
(
ν + 1,−ν;µ+ 1; 1

2 −
1
2x
)
.

For further hypergeometric representations of Pµν (x) and Qµν (x) see Erdélyi et al. (1953a, pp. 123–139), Andrews
et al. (1999, §3.1), Magnus et al. (1966, pp. 153–163), and §15.8(iv).
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14.3(iv) Relations to Other Functions

In terms of the Gegenbauer function C
(β)
α (x) and the Jacobi function φ

(α,β)
λ (t) (§§15.9(iii), 15.9(ii)):

14.3.21 Pµν (x) =
2µ Γ(1− 2µ) Γ(ν + µ+ 1)

Γ(ν − µ+ 1) Γ(1− µ) (1− x2)µ/2
C

( 1
2−µ)
ν+µ (x).

14.3.22 Pµν (x) =
2µ Γ(1− 2µ) Γ(ν + µ+ 1)

Γ(ν − µ+ 1) Γ(1− µ) (x2 − 1)µ/2
C

( 1
2−µ)
ν+µ (x).

14.3.23 Pµν (x) =
1

Γ(1− µ)

(
x+ 1
x− 1

)µ/2
φ

(−µ,µ)
−i(2ν+1)

(
arcsinh

(
( 1

2x−
1
2 ) 1/2

))
.

Compare also (18.11.1).

14.4 Graphics

14.4(i) Ferrers Functions: 2D Graphs

Figure 14.4.1: P0
ν(x), ν = 0, 1

2 , 1, 2, 4. Figure 14.4.2: Q0
ν(x), ν = 0, 1

2 , 1, 2, 4.

Figure 14.4.3: P
−1/2
ν (x), ν = 0, 1

2 , 1, 2, 4. Figure 14.4.4: Q
1/2
ν (x), ν = 0, 1

2 , 1, 2, 4.

For additional graphs see http://dlmf.nist.gov/14.4.i.
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Figure 14.4.7: P−µ0 (x), µ = 0, 1
2 , 1, 2, 4. Figure 14.4.8: Qµ

0 (x), µ = 0, 1
2 , 1, 2, 4.

Figure 14.4.9: P−µ1/2(x), µ = 0, 1
2 , 1, 2, 4.

�

Figure 14.4.10: Qµ
1/2(x), µ = 0, 1

2 , 1, 2, 4.

For additional graphs see http://dlmf.nist.gov/14.4.i.

14.4(ii) Ferrers Functions: 3D Surfaces

Figure 14.4.13: P0
ν(x), 0 ≤ ν ≤ 10,−1 < x < 1. Figure 14.4.14: Q0

ν(x), 0 ≤ ν ≤ 10,−1 < x < 1.
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Figure 14.4.15: P−µ0 (x), 0 ≤ µ ≤ 10,−1 < x < 1. Figure 14.4.16: Qµ
0 (x), 0 ≤ µ ≤ 6.2,−1 < x < 1.

14.4(iii) Associated Legendre Functions: 2D Graphs

Figure 14.4.17: P 0
ν (x), ν = 0, 1

2 , 1, 2, 4. Figure 14.4.18: Q0
ν(x), ν = 0, 1

2 , 1, 2, 4.

Figure 14.4.19: P−1/2
ν (x), ν = 0, 1

2 , 1, 2, 4. Figure 14.4.20: Q1/2
ν (x), ν = 0, 1

2 , 1, 2, 4.

For additional graphs see http://dlmf.nist.gov/14.4.iii.
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Figure 14.4.23: P−µ0 (x), µ = 0, 1
2 , 1, 2, 4. Figure 14.4.24: Qµ

0 (x), µ = 0, 2, 4, 8.

Figure 14.4.25: P−µ1/2(x), µ = 0, 1
2 , 1, 2, 4. Figure 14.4.26: Qµ

1/2(x), µ = 0, 2, 4, 8.

For additional graphs see http://dlmf.nist.gov/14.4.iii.

14.4(iv) Associated Legendre Functions: 3D Surfaces

Figure 14.4.29: P 0
ν (x), 0 ≤ ν ≤ 10, 1 < x < 10. Figure 14.4.30: Q0

ν(x), 0 ≤ ν ≤ 10, 1 < x < 10.
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Figure 14.4.31: P−µ0 (x), 0 ≤ µ ≤ 10, 1 < x < 10. Figure 14.4.32: Qµ
0 (x), 0 ≤ µ ≤ 10, 1 < x < 10.

14.5 Special Values

14.5(i) x = 0

14.5.1 Pµν (0) =
2µπ1/2

Γ
(

1
2ν −

1
2µ+ 1

)
Γ
(

1
2 −

1
2ν −

1
2µ
) ,

14.5.2
dPµν (x)
dx

∣∣∣∣
x=0

= − 2µ+1π1/2

Γ
(

1
2ν −

1
2µ+ 1

2

)
Γ
(
− 1

2ν −
1
2µ
) ,

14.5.3

Qµ
ν (0) = −

2µ−1π1/2 sin
(

1
2 (ν + µ)π

)
Γ
(

1
2ν + 1

2µ+ 1
2

)
Γ
(

1
2ν −

1
2µ+ 1

) ,

ν + µ 6= −1,−3,−5, . . . ,

14.5.4

dQµ
ν (x)
dx

∣∣∣∣
x=0

=
2µπ1/2 cos

(
1
2 (ν + µ)π

)
Γ
(

1
2ν + 1

2µ+ 1
)

Γ
(

1
2ν −

1
2µ+ 1

2

) ,

ν + µ 6= −2,−4,−6, . . . .

14.5(ii) µ = 0, ν = 0, 1

14.5.5 P0(x) = P0(x) = 1,

14.5.6 P1(x) = P1(x) = x.

14.5.7 Q0(x) =
1
2

ln
(

1 + x

1− x

)
,

14.5.8 Q1(x) =
x

2
ln
(

1 + x

1− x

)
− 1.

14.5.9 Q0(x) =
1
2

ln
(
x+ 1
x− 1

)
,

14.5.10 Q1(x) =
x

2
ln
(
x+ 1
x− 1

)
− 1.

14.5(iii) µ = ±1
2

In this subsection and the next two, 0 < θ < π and
ξ > 0.

14.5.11 P1/2
ν (cos θ) =

(
2

π sin θ

)1/2
cos
((
ν + 1

2

)
θ
)
,

14.5.12 P−1/2
ν (cos θ) =

(
2

π sin θ

)1/2 sin
((
ν + 1

2

)
θ
)

ν + 1
2

,

14.5.13 Q1/2
ν (cos θ) = −

( π

2 sin θ

)1/2
sin
((
ν + 1

2

)
θ
)
,

14.5.14 Q−1/2
ν (cos θ) = −

( π

2 sin θ

)1/2 cos
((
ν + 1

2

)
θ
)

ν + 1
2

.

14.5.15

P 1/2
ν (cosh ξ) =

(
2

π sinh ξ

)1/2
cosh

((
ν + 1

2

)
ξ
)
,

14.5.16

P−1/2
ν (cosh ξ) =

(
2

π sinh ξ

)1/2 sinh
((
ν + 1

2

)
ξ
)

ν + 1
2

,

14.5.17

Q±1/2
ν (cosh ξ) =

(
π

2 sinh ξ

)1/2 exp
(
−
(
ν + 1

2

)
ξ
)

Γ
(
ν + 3

2

) .

14.5(iv) µ = −ν

14.5.18 P−νν (cos θ) =
(sin θ)ν

2ν Γ(ν + 1)
,

14.5.19 P−νν (cosh ξ) =
(sinh ξ)ν

2ν Γ(ν + 1)
.
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14.5(v) µ = 0, ν = ±1
2

In this subsection K(k) and E(k) denote the com-
plete elliptic integrals of the first and second kinds; see
§19.2(ii).

14.5.20 P 1
2
(cos θ) =

2
π

(
2E
(
sin
(

1
2θ
))
−K

(
sin
(

1
2θ
)))

,

14.5.21 P− 1
2
(cos θ) =

2
π
K
(
sin
(

1
2θ
))
,

14.5.22 Q 1
2
(cos θ) = K

(
cos
(

1
2θ
))
− 2E

(
cos
(

1
2θ
))
,

14.5.23 Q− 1
2
(cos θ) = K

(
cos
(

1
2θ
))
.

14.5.24 P 1
2
(cosh ξ) =

2
π
eξ/2E

((
1− e−2ξ

)1/2)
,

14.5.25 P− 1
2
(cosh ξ) =

2
π cosh

(
1
2ξ
) K(tanh

(
1
2ξ
))
,

14.5.26

Q 1
2
(cosh ξ) = 2π−1/2 cosh ξ sech

(
1
2ξ
)
K
(
sech

(
1
2ξ
))

− 4π−1/2 cosh
(

1
2ξ
)
E
(
sech

(
1
2ξ
))
,

14.5.27 Q− 1
2
(cosh ξ) = 2π−1/2e−ξ/2K

(
e−ξ
)
.

14.6 Integer Order

14.6(i) Nonnegative Integer Orders

For m = 0, 1, 2, . . . ,

14.6.1 Pmν (x) = (−1)m
(
1− x2

)m/2 dmPν(x)
dxm

,

14.6.2 Qm
ν (x) = (−1)m

(
1− x2

)m/2 dmQν(x)
dxm

.

14.6.3 Pmν (x) =
(
x2 − 1

)m/2 dmPν(x)
dxm

,

14.6.4 Qmν (x) =
(
x2 − 1

)m/2 dmQν(x)
dxm

,

14.6.5 (ν + 1)mQ
m
ν (x) = (−1)m

(
x2 − 1

)m/2 dmQν(x)
dxm

.

14.6(ii) Negative Integer Orders

For m = 1, 2, 3, . . . ,

14.6.6 P−mν (x) =
(
1− x2

)−m/2 ∫ 1

x

. . .

∫ 1

x

Pν(x) (dx)m .

14.6.7 P−mν (x) =
(
x2 − 1

)−m/2 ∫ x

1

. . .

∫ x

1

Pν(x) (dx)m ,

14.6.8

Q−mν (x) = (−1)m
(
x2 − 1

)−m/2
×
∫ ∞
x

. . .

∫ ∞
x

Qν(x) (dx)m .

For connections between positive and negative inte-
ger orders see (14.9.3), (14.9.4), and (14.9.13).

14.7 Integer Degree and Order

14.7(i) µ = 0

For n = 0, 1, 2, . . . ,

14.7.1 P0
n(x) = Pn(x) = P 0

n(x) = Pn(x), x ∈ R,
where Pn(x) is the Legendre polynomial of degree n. For
additional properties of Pn(x) see Chapter 18.
14.7.2

Q0
n(x) = Qn(x) =

1
2
Pn(x) ln

(
1 + x

1− x

)
−Wn−1(x),

where W−1(x) = 0, and for n ≥ 1,
14.7.3

Wn−1(x) =
n−1∑
s=0

(n+ s)!(ψ(n+ 1)− ψ(s+ 1))
2s(n− s)!(s!)2

(x− 1)s;

equivalently,

14.7.4 Wn−1(x) =
n∑
k=1

1
k
Pk−1(x)Pn−k(x).

14.7.5 W0(x) = 1, W1(x) = 3
2x, W2(x) = 5

2x
2 − 2

3 .

Next,

14.7.6 Q0
n(x) = Qn(x) = n!Q0

n(x) = n!Qn(x),
where
14.7.7

Qn(x) =
1
2
Pn(x) ln

(
x+ 1
x− 1

)
−Wn−1(x), n = 0, 1, 2, . . . .

14.7(ii) Rodrigues-Type Formulas

For m = 0, 1, 2, . . . , and n = 0, 1, 2, . . . ,

14.7.8 Pmn (x) = (−1)m
(
1− x2

)m/2 dm

dxm
Pn(x),

14.7.9 Qm
n (x) = (−1)m

(
1− x2

)m/2 dm

dxm
Qn(x),

14.7.10

Pmn (x) = (−1)m+n

(
1− x2

)m/2
2nn!

dm+n

dxm+n

(
1− x2

)n
.

14.7.11 Pmn (x) =
(
x2 − 1

)m/2 dm

dxm
Pn(x),

14.7.12 Qmn (x) =
(
x2 − 1

)m/2 dm

dxm
Qn(x),

14.7.13 Pn(x) =
1

2nn!
dn

dxn
(
x2 − 1

)n
,

14.7.14 Pmn (x) =

(
x2 − 1

)m/2
2nn!

dm+n

dxm+n

(
x2 − 1

)n
,

14.7.15 Pmm (x) =
(2m)!
2mm!

(
x2 − 1

)m/2
.

When m is even and m ≤ n, Pmn (x) and Pmn (x) are
polynomials of degree n. Also,

14.7.16 Pmn (x) = Pmn (x) = 0, m > n.
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14.7(iii) Reflection Formulas

14.7.17 Pmn (−x) = (−1)n−m Pmn (x),

14.7.18 Q±mn (−x) = (−1)n−m−1 Q±mn (x).

14.7(iv) Generating Functions

When −1 < x < 1 and |h| < 1,

14.7.19

∞∑
n=0

Pn(x)hn =
(
1− 2xh+ h2

)−1/2
,

14.7.20
∞∑
n=0

Qn(x)hn =
1

(1− 2xh+ h2)1/2

× ln

(
x− h+

(
1− 2xh+ h2

)1/2
(1− x2)1/2

)
.

When −1 < x < 1 and |h| > 1,

14.7.21

∞∑
n=0

Pn(x)h−n−1 =
(
1− 2xh+ h2

)−1/2
.

When x > 1, (14.7.19) applies with |h| < x −(
x2 − 1

)1/2. Also, with the same conditions
14.7.22
∞∑
n=0

Qn(x)hn =
1

(1− 2xh+ h2)1/2

× ln

(
x− h+

(
1− 2xh+ h2

)1/2
(x2 − 1)1/2

)
.

Lastly, when x > 1, (14.7.21) applies with |h| >
x+

(
x2 − 1

)1/2.
For other generating functions see Magnus et al.

(1966, pp. 232–233) and Rainville (1960, pp. 163–165,
168, 170–171, 184).

14.8 Behavior at Singularities

14.8(i) x→ 1− or x→ −1+

As x→ 1−,
14.8.1

Pµν (x) ∼ 1
Γ(1− µ)

(
2

1− x

)µ/2
, µ 6= 1, 2, 3, . . . ,

14.8.2

Pmν (x) ∼ (−1)m
(ν −m+ 1)2m

m!

(
1− x

2

)m/2
,

m = 1, 2, 3, . . . , ν 6= m− 1,m− 2, . . . ,−m,
14.8.3

Qν(x) =
1
2

ln
(

2
1− x

)
− γ − ψ(ν + 1) +O(1− x),

ν 6= −1,−2,−3, . . . ,

where γ is Euler’s constant (§5.2(ii)). In the next three
relations <µ > 0.
14.8.4

Qµ
ν (x) ∼ 1

2
cos(µπ) Γ(µ)

(
2

1− x

)µ/2
, µ 6= 1

2 ,
3
2 ,

5
2 , . . . ,

14.8.5

Qµ
ν (x)

∼ (−1)µ+(1/2) π Γ(ν + µ+ 1)
2 Γ(µ+ 1) Γ(ν − µ+ 1)

(
1− x

2

)µ/2
,

µ = 1
2 ,

3
2 ,

5
2 , . . . , ν ± µ 6= −1,−2,−3, . . . ,

14.8.6 Q−µν (x) ∼ Γ(µ) Γ(ν − µ+ 1)
2 Γ(ν + µ+ 1)

(
2

1− x

)µ/2
,

ν ± µ 6= −1,−2,−3, . . . .

The behavior of Pµν (x) and Qµ
ν (x) as x → −1+ fol-

lows from the above results and the connection formulas
(14.9.8) and (14.9.10).

14.8(ii) x→ 1+

14.8.7

Pµν (x) ∼ 1
Γ(1− µ)

(
2

x− 1

)µ/2
, µ 6= 1, 2, 3, . . . ,

14.8.8

Pmν (x) ∼ Γ(ν +m+ 1)
m! Γ(ν −m+ 1)

(
x− 1

2

)m/2
,

m = 1, 2, 3, . . . , ν ±m 6= −1,−2,−3, . . . ,

14.8.9

Qν(x) = − ln(x− 1)
2 Γ(ν + 1)

+
1
2 ln 2− γ − ψ(ν + 1)

Γ(ν + 1)
+O(x− 1), ν 6= −1,−2,−3, . . . ,

14.8.10 Q−n(x)→ (−1)n+1(n− 1)!, n = 1, 2, 3, . . . ,

14.8.11 Qµ
ν (x) ∼ Γ(µ)

2 Γ(ν + µ+ 1)

(
2

x− 1

)µ/2
,

<µ > 0, ν + µ 6= −1,−2,−3, . . . .

14.8(iii) x→∞

14.8.12
Pµν (x) ∼

Γ
(
ν + 1

2

)
π1/2 Γ(ν − µ+ 1)

(2x)ν ,

<ν > − 1
2 , µ− ν 6= 1, 2, 3, . . . ,

14.8.13
Pµν (x) ∼

Γ
(
−ν − 1

2

)
π1/2 Γ(−µ− ν)(2x)ν+1

,

<ν < − 1
2 , ν + µ 6= 0, 1, 2, . . . ,

14.8.14
Pµ−1/2(x) ∼ 1

Γ
(

1
2 − µ

) ( 2
πx

)1/2
lnx,

µ 6= 1
2 ,

3
2 ,

5
2 , . . . ,
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14.8.15

Qµ
ν (x) ∼ π1/2

Γ
(
ν + 3

2

)
(2x)ν+1

, ν 6= − 3
2 ,−

5
2 ,−

7
2 , . . . ,

14.8.16
Qµ
−n−(1/2)(x) ∼

π1/2 Γ
(
µ+ n+ 1

2

)
n! Γ

(
µ− n+ 1

2

)
(2x)n+(1/2)

,

n = 1, 2, 3, . . . , µ− n+ 1
2 6= 0,−1,−2, . . . .

14.9 Connection Formulas

14.9(i) Connections Between P±µν (x),

P±µ−ν−1(x), Q±µν (x), Qµ−ν−1(x)

14.9.1

π sin(µπ)
2 Γ(ν − µ+ 1)

P−µν (x) = − 1
Γ(ν + µ+ 1)

Qµ
ν (x)

+
cos(µπ)

Γ(ν − µ+ 1)
Q−µν (x).

14.9.2

2 sin(µπ)
π Γ(ν − µ+ 1)

Q−µν (x) =
1

Γ(ν + µ+ 1)
Pµν (x)

− cos(µπ)
Γ(ν − µ+ 1)

P−µν (x),

14.9.3 P−mν (x) = (−1)m
Γ(ν −m+ 1)
Γ(ν +m+ 1)

Pmν (x),

14.9.4
Q−mν (x) = (−1)m

Γ(ν −m+ 1)
Γ(ν +m+ 1)

Qm
ν (x),

ν 6= m− 1,m− 2, . . . .

14.9.5 Pµ−ν−1(x) = Pµν (x), P−µ−ν−1(x) = P−µν (x),

14.9.6

π cos(νπ) cos(µπ) Pµν (x) = sin((ν + µ)π) Qµ
ν (x)

− sin((ν − µ)π) Qµ
−ν−1(x).

14.9(ii) Connections Between P±µν (±x),
Q−µν (±x), Qµν (x)

14.9.7

sin((ν − µ)π)
Γ(ν + µ+ 1)

Pµν (x) =
sin(νπ)

Γ(ν − µ+ 1)
P−µν (x)

− sin(µπ)
Γ(ν − µ+ 1)

P−µν (−x),

14.9.8
1
2π sin((ν − µ)π) P−µν (x) = − cos((ν − µ)π) Q−µν (x)

− Q−µν (−x),

14.9.9

2
Γ(ν + µ+ 1) Γ(µ− ν)

Qµ
ν (x)

= − cos(νπ) P−µν (x) + cos(µπ) P−µν (−x),

14.9.10

(2/π) sin((ν − µ)π) Q−µν (x) = cos((ν − µ)π) P−µν (x)
− P−µν (−x).

14.9(iii) Connections Between P±µν (x),

P±µ−ν−1(x), Q±µν (x), Qµ−ν−1(x)

14.9.11 P−µ−ν−1(x) = P−µν (x), Pµ−ν−1(x) = Pµν (x),

14.9.12 cos(νπ)P−µν (x) = − Qµ
ν (x)

Γ(µ− ν)
+

Qµ
−ν−1(x)

Γ(ν + µ+ 1)
.

14.9.13

P−mν (x) =
Γ(ν −m+ 1)
Γ(ν +m+ 1)

Pmν (x), ν 6= m− 1,m− 2, . . . .

14.9.14 Q−µν (x) = Qµ
ν (x),

14.9.15

2 sin(µπ)
π

Qµ
ν (x) =

Pµν (x)
Γ(ν + µ+ 1)

− P−µν (x)
Γ(ν − µ+ 1)

.

14.9(iv) Whipple’s Formula

14.9.16

Qµ
ν (x)

=
(

1
2π
)1/2 (

x2 − 1
)−1/4

P
−ν−(1/2)
−µ−(1/2)

(
x
(
x2 − 1

)−1/2
)
.

Equivalently,
14.9.17

Pµν (x)

= (2/π)1/2
(
x2 − 1

)−1/4
Q
ν+(1/2)
−µ−(1/2)

(
x
(
x2 − 1

)−1/2
)
.

14.10 Recurrence Relations and Derivatives

14.10.1
Pµ+2
ν (x) + 2(µ+ 1)x

(
1− x2

)−1/2
Pµ+1
ν (x)

+ (ν − µ)(ν + µ+ 1) Pµν (x) = 0,

14.10.2

(
1− x2

)1/2
Pµ+1
ν (x)− (ν − µ+ 1) Pµν+1(x)

+ (ν + µ+ 1)xPµν (x) = 0,

14.10.3
(ν − µ+ 2) Pµν+2(x)− (2ν + 3)xPµν+1(x)

+ (ν + µ+ 1) Pµν (x) = 0,

14.10.4

(
1− x2

) dPµν (x)
dx

= (µ− ν − 1) Pµν+1(x) + (ν + 1)xPµν (x),

14.10.5
(
1− x2

) dPµν (x)
dx

= (ν + µ) Pµν−1(x)− νxPµν (x).

Qµ
ν (x) also satisfies (14.10.1)–(14.10.5).

14.10.6
Pµ+2
ν (x) + 2(µ+ 1)x

(
x2 − 1

)−1/2
Pµ+1
ν (x)

− (ν − µ)(ν + µ+ 1)Pµν (x) = 0,

14.10.7

(
x2 − 1

)1/2
Pµ+1
ν (x)− (ν − µ+ 1)Pµν+1(x)

+ (ν + µ+ 1)xPµν (x) = 0.
Qµν (x) also satisfies (14.10.6) and (14.10.7). In addition,
Pµν (x) and Qµν (x) satisfy (14.10.3)–(14.10.5).
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14.11 Derivatives with Respect to Degree or Order

14.11.1
∂

∂ν
Pµν (x) = π cot(νπ) Pµν (x)− 1

π
Aµν (x),

14.11.2
∂

∂ν
Qµ
ν (x) = − 1

2π
2 Pµν (x) +

π sin(µπ)
sin(νπ) sin((ν + µ)π)

Qµ
ν (x)− 1

2 cot((ν + µ)π)Aµν (x) + 1
2 csc((ν + µ)π)Aµν (−x),

where

14.11.3 Aµν (x) = sin(νπ)
(

1 + x

1− x

)µ/2 ∞∑
k=0

(
1
2 −

1
2x
)k Γ(k − ν) Γ(k + ν + 1)
k! Γ(k − µ+ 1)

(ψ(k + ν + 1)− ψ(k − ν)) .

14.11.4
∂

∂µ
Pµν (x)

∣∣∣∣
µ=0

= (ψ(−ν)− π cot(νπ)) Pν(x) + Qν(x),

14.11.5
∂

∂µ
Qµ
ν (x)

∣∣∣∣
µ=0

= − 1
4π

2 Pν(x) + (ψ(−ν)− π cot(νπ)) Qν(x).

(14.11.1) holds if Pµν (x) is replaced by Pµν (x), provided that the factor ( (1 + x)/(1− x) )µ/2 in (14.11.3) is replaced
by ((x+ 1)/(x− 1))µ/2. (14.11.4) holds if Pµν (x), Pν(x), and Qν(x) are replaced by Pµν (x), Pν(x), and Qν(x),
respectively.

For further results see Magnus et al. (1966, pp. 177–178).

14.12 Integral Representations

14.12(i) −1 < x < 1

Mehler–Dirichlet Formula

14.12.1 Pµν (cos θ) =
21/2(sin θ)µ

π1/2 Γ
(

1
2 − µ

) ∫ θ

0

cos
((
ν + 1

2

)
t
)

(cos t− cos θ)µ+(1/2)
dt, 0 < θ < π, <µ < 1

2 .

14.12.2 P−µν (x) =

(
1− x2

)−µ/2
Γ(µ)

∫ 1

x

Pν(t)(t− x)µ−1 dt, <µ > 0;

compare (14.6.6).
14.12.3

Qµ
ν (cos θ) =

π1/2 Γ(ν + µ+ 1)(sin θ)µ

2µ+1 Γ
(
µ+ 1

2

)
Γ(ν − µ+ 1)

(∫ ∞
0

(sinh t)2µ

(cos θ + i sin θ cosh t)ν+µ+1
dt+

∫ ∞
0

(sinh t)2µ

(cos θ − i sin θ cosh t)ν+µ+1
dt

)
,

0 < θ < π, <µ > − 1
2 , <(ν ± µ) > −1.

14.12(ii) 1 < x <∞

14.12.4 P−µν (x) =
21/2 Γ

(
µ+ 1

2

) (
x2 − 1

)µ/2
π1/2 Γ(ν + µ+ 1) Γ(µ− ν)

∫ ∞
0

cosh
((
ν + 1

2

)
t
)

(x+ cosh t)µ+(1/2)
dt, ν + µ 6= −1,−2,−3, . . . , <(µ− ν) > 0.

14.12.5 P−µν (x) =

(
x2 − 1

)−µ/2
Γ(µ)

∫ x

1

Pν(t)(x− t)µ−1 dt, <µ > 0.

14.12.6 Qµ
ν (x) =

π1/2
(
x2 − 1

)µ/2
2µ Γ

(
µ+ 1

2

)
Γ(ν − µ+ 1)

∫ ∞
0

(sinh t)2µ(
x+ (x2 − 1)1/2 cosh t

)ν+µ+1 dt, <(ν + 1) > <µ > − 1
2 .

14.12.7 Pmν (x) =
(ν + 1)m

π

∫ π

0

(
x+

(
x2 − 1

)1/2
cosφ

)ν
cos(mφ) dφ,

14.12.8 Pmn (x) =
2mm!(n+m)!

(
x2 − 1

)m/2
(2m)!(n−m)!π

∫ π

0

(
x+

(
x2 − 1

)1/2
cosφ

)n−m
(sinφ)2m dφ, n ≥ m.
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14.12.9 Qm
n (x) =

1
n!

∫ u

0

(
x−

(
x2 − 1

)1/2
cosh t

)n
cosh(mt) dt,

where
14.12.10 u =

1
2

ln
(
x+ 1
x− 1

)
.

14.12.11 Qm
n (x) =

(
x2 − 1

)m/2
2n+1n!

∫ 1

−1

(
1− t2

)n
(x− t)n+m+1

dt,

14.12.12 Qm
n (x) =

1
(n−m)!

Pmn (x)
∫ ∞
x

dt

(t2 − 1) (Pmn (t))2 , n ≥ m.

Neumann’s Integral

14.12.13 Qn(x) =
1

2(n!)

∫ 1

−1

Pn(t)
x− t

dt.

Heine’s Integral

14.12.14 Qn(x) =
1
n!

∫ ∞
0

dt(
x+ (x2 − 1)1/2 cosh t

)n+1 .

For further integral representations see Erdélyi et al. (1953a, pp. 158–159) and Magnus et al. (1966, pp. 184–190),
and for contour integrals and other representations see §14.25.

14.13 Trigonometric Expansions

When 0 < θ < π,

14.13.1 Pµν (cos θ) =
2µ+1(sin θ)µ

π1/2

∞∑
k=0

Γ(ν + µ+ k + 1)
Γ
(
ν + k + 3

2

) (
µ+ 1

2

)
k

k!
sin((ν + µ+ 2k + 1)θ),

14.13.2 Qµ
ν (cos θ) = π1/22µ(sin θ)µ

∞∑
k=0

Γ(ν + µ+ k + 1)
Γ
(
ν + k + 3

2

) (
µ+ 1

2

)
k

k!
cos((ν + µ+ 2k + 1)θ),

14.13.3 Pn(cos θ) =
22n+2(n!)2

π(2n+ 1)!

∞∑
k=0

1 · 3 · · · (2k − 1)
k!

(n+ 1)(n+ 2) · · · (n+ k)
(2n+ 3)(2n+ 5) · · · (2n+ 2k + 1)

sin((n+ 2k + 1)θ),

14.13.4 Qn(cos θ) =
22n+1(n!)2

(2n+ 1)!

∞∑
k=0

1 · 3 · · · (2k − 1)
k!

(n+ 1)(n+ 2) · · · (n+ k)
(2n+ 3)(2n+ 5) · · · (2n+ 2k + 1)

cos((n+ 2k + 1)θ).

For these and other trigonometric expansions see Erdélyi et al. (1953a, pp. 146–147).

14.14 Continued Fractions

14.14.1 1
2

(
x2 − 1

)1/2 Pµν (x)
Pµ−1
ν (x)

=
x0

y0 +
x1

y1 +
x2

y2 +
· · · ,

where

14.14.2 xk = 1
4 (ν − µ− k + 1)(ν + µ+ k)

(
x2 − 1

)
, yk = (µ+ k)x,

provided that xk+1 and yk do not vanish simultaneously for any k = 0, 1, 2, . . . .

14.14.3 (ν − µ)
Qµν (x)
Qµν−1(x)

=
x0

y0 −
x1

y1 −
x2

y2 −
· · · , ν 6= µ,

where now

14.14.4 xk = (ν + µ+ k)(ν − µ+ k), yk = (2ν + 2k + 1)x,
again provided xk+1 and yk do not vanish simultaneously for any k = 0, 1, 2, . . . .
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14.15 Uniform Asymptotic Approximations

14.15(i) Large µ, Fixed ν

For the interval −1 < x < 1 with fixed ν, real µ, and arbitrary fixed values of the nonnegative integer J ,

14.15.1 P−µν (±x) =
(

1∓ x
1± x

)µ/2J−1∑
j=0

(ν + 1)j(−ν)j
j! Γ(j + 1 + µ)

(
1∓ x

2

)j
+O

(
1

Γ(J + 1 + µ)

)
as µ→∞, uniformly with respect to x. In other words, the convergent hypergeometric series expansions of P−µν (±x)
are also generalized (and uniform) asymptotic expansions as µ → ∞, with scale 1/Γ(j + 1 + µ) , j = 0, 1, 2, . . . ;
compare §2.1(v).

Provided that µ−ν /∈ Z the corresponding expansions for Pµν (x) and Q∓µν (x) can be obtained from the connection
formulas (14.9.7), (14.9.9), and (14.9.10).

For the interval 1 < x < ∞ the following asymptotic approximations hold when µ → ∞, with ν (≥ − 1
2 ) fixed,

uniformly with respect to x:

14.15.2 P−µν (x) =
1

Γ(µ+ 1)

(
2µu
π

)1/2
Kν+ 1

2
(µu)

(
1 +O

(
1
µ

))
,

14.15.3 Qµ
ν (x) =

1
µν+(1/2)

(πu
2

)1/2
Iν+ 1

2
(µu)

(
1 +O

(
1
µ

))
,

where u is given by (14.12.10). Here I and K are the modified Bessel functions (§10.25(ii)).
For asymptotic expansions and explicit error bounds, see Dunster (2003b) and Gil et al. (2000).

14.15(ii) Large µ, 0 ≤ ν + 1
2
≤ (1− δ)µ

In this and subsequent subsections δ denotes an arbitrary constant such that 0 < δ < 1.
As µ→∞,

14.15.4 P−µν (x) =
1

Γ(µ+ 1)
(
1− α2

)−µ/2(1− α
1 + α

)(ν/2)+(1/4) ( p
x

)1/2
e−µρ

(
1 +O

(
1
µ

))
,

uniformly with respect to x ∈ (−1, 1) and ν + 1
2 ∈ [0, (1− δ)µ], where

14.15.5 α =
ν + 1

2

µ
(< 1),

14.15.6 p =
x

(α2x2 + 1− α2)1/2
,

and
14.15.7 ρ =

1
2

ln
(

1 + p

1− p

)
+

1
2
α ln

(
1− αp
1 + αp

)
.

With the same conditions, the corresponding approximation for P−µν (−x) is obtained by replacing e−µρ by eµρ on
the right-hand side of (14.15.4). Approximations for Pµν (x) and Q∓µν (x) can then be achieved via (14.9.7), (14.9.9),
and (14.9.10).

Next,

14.15.8 P−µν (x) =
(

2µ
π

)1/2 1
Γ(µ+ 1)

(
1− α
1 + α

)(ν/2)+(1/4) (
1−α2

)−µ/2( α2 + η2

α2 (x2 − 1) + 1

)1/4
Kν+ 1

2
(µη)

(
1+O

(
1
µ

))
,

14.15.9 Qµ
ν (x) =

(π
2

)1/2( e
µ

)ν+(1/2)(1− α
1 + α

)µ/2 (
1− α2

)−(ν/2)−(1/4)
(

α2 + η2

α2 (x2 − 1) + 1

)1/4
Iν+ 1

2
(µη)

(
1 +O

(
1
µ

))
,

uniformly with respect to x ∈ (1,∞) and ν + 1
2 ∈ [0, (1− δ)µ]. Here α is again given by (14.15.5), and η is defined

implicitly by

14.15.10

α ln
((
α2 + η2

)1/2
+ α

)
− α ln η −

(
α2 + η2

)1/2
=

1
2

ln

((
1 + α2

)
x2 + 1− α2 − 2x

(
α2x2 − α2 + 1

)1/2
(x2 − 1) (1− α2)

)

+
1
2
α ln

(
α2
(
2x2 − 1

)
+ 1 + 2αx

(
α2x2 − α2 + 1

)1/2
1− α2

)
.



366 Legendre and Related Functions

The interval 1 < x < ∞ is mapped one-to-one to the interval 0 < η < ∞, with the points x = 1 and x = ∞
corresponding to η =∞ and η = 0, respectively. For asymptotic expansions and explicit error bounds, see Dunster
(2003b).

14.15(iii) Large ν, Fixed µ

For ν →∞ and fixed µ (≥ 0),

14.15.11 P−µν (cos θ) =
1
νµ

(
θ

sin θ

)1/2(
Jµ
((
ν + 1

2

)
θ
)

+O

(
1
ν

)
envJµ

((
ν + 1

2

)
θ
))

,

14.15.12 Q−µν (cos θ) = − π

2νµ

(
θ

sin θ

)1/2(
Yµ
((
ν + 1

2

)
θ
)

+O

(
1
ν

)
envYµ

((
ν + 1

2

)
θ
))

,

uniformly for θ ∈ (0, π− δ]. For the Bessel functions J and Y see §10.2(ii), and for the env functions associated with
J and Y see §2.8(iv).

Next,

14.15.13 P−µν (cosh ξ) =
1
νµ

(
ξ

sinh ξ

)1/2
Iµ
((
ν + 1

2

)
ξ
) (

1 +O

(
1
ν

))
,

14.15.14 Qµ
ν (cosh ξ) =

νµ

Γ(ν + µ+ 1)

(
ξ

sinh ξ

)1/2
Kµ

((
ν + 1

2

)
ξ
) (

1 +O

(
1
ν

))
,

uniformly for ξ ∈ (0,∞).
For asymptotic expansions and explicit error bounds, see Olver (1997b, Chapter 12, §§12, 13) and Jones (2001).

For convergent series expansions see Dunster (2004).
See also Olver (1997b, pp. 311–313) and §18.15(iii) for a generalized asymptotic expansion in terms of elementary

functions for Legendre polynomials Pn(cos θ) as n→∞ with θ fixed.

14.15(iv) Large ν, 0 ≤ µ ≤ (1− δ)(ν + 1
2
)

As ν →∞,

14.15.15 P−µν (x) = β

(
y − α2

1− α2 − x2

)1/4 (
Jµ

((
ν + 1

2

)
y1/2

)
+O

(
1
ν

)
envJµ

((
ν + 1

2

)
y1/2

))
,

14.15.16 Q−µν (x) = −πβ
2

(
y − α2

1− α2 − x2

)1/4(
Yµ

((
ν + 1

2

)
y1/2

)
+O

(
1
ν

)
envYµ

((
ν + 1

2

)
y1/2

))
,

uniformly with respect to x ∈ [0, 1) and µ ∈ [0, (1− δ)(ν + 1
2 )]. For α, β, and y see below.

Next,

14.15.17 P−µν (x) = β

(
α2 − y

x2 − 1 + α2

)1/4
Iµ

((
ν + 1

2

)
|y|1/2

) (
1 +O

(
1
ν

))
,

14.15.18 Qµ
ν (x) =

1
β Γ(ν + µ+ 1)

(
α2 − y

x2 − 1 + α2

)1/4
Kµ

((
ν + 1

2

)
|y|1/2

)(
1 +O

(
1
ν

))
,

uniformly with respect to x ∈ (1,∞) and µ ∈ [0, (1− δ)(ν + 1
2 )]. In (14.15.15)–(14.15.18)

14.15.19 α =
µ

ν + 1
2

(< 1),

14.15.20 β = eµ
(
ν − µ+ 1

2

ν + µ+ 1
2

)(ν/2)+(1/4) ((
ν + 1

2

)2 − µ2
)−µ/2

,

and the variable y is defined implicitly by

14.15.21

(
y − α2

)1/2 − α arctan

((
y − α2

)1/2
α

)
= arccos

(
x

(1− α2)1/2

)
− α

2
arccos

((
1 + α2

)
x2 − 1 + α2

(1− α2) (1− x2)

)
,

x ≤
(
1− α2

)1/2, y ≥ α2,
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and

14.15.22

(
α2 − y

)1/2
+ 1

2α ln |y| − α ln
((
α2 − y

)1/2
+ α

)
= ln

(
x+

(
x2 − 1 + α2

)1/2
(1− α2)1/2

)
+
α

2
ln

( (
1− α2

) ∣∣1− x2
∣∣

(1 + α2)x2 − 1 + α2 + 2αx (x2 − 1 + α2)1/2

)
,

x ≥
(
1− α2

)1/2, y ≤ α2,

where the inverse trigonometric functions take their principal values (§4.23(ii)). The points x =
(
1− α2

)1/2, x = 1,
and x =∞ are mapped to y = α2, y = 0, and y = −∞, respectively. The interval 0 ≤ x <∞ is mapped one-to-one
to the interval −∞ < y ≤ y0, where y = y0 is the (positive) solution of (14.15.21) when x = 0.

For asymptotic expansions and explicit error bounds, see Boyd and Dunster (1986).

14.15(v) Large ν, (ν + 1
2
)δ ≤ µ ≤ (ν + 1

2
)/δ

Here we introduce the envelopes of the parabolic cylinder functions U(−c, x), U(−c, x), which are defined in §12.2.
For f(x) = U(−c, x) or U(−c, x), with c and x nonnegative,

14.15.23 env f(x) =

{(
(U(−c, x))2 + (U(−c, x))2

)1/2
, 0 ≤ x ≤ Xc,√

2f(x), Xc ≤ x <∞,

where x = Xc denotes the largest positive root of the equation U(−c, x) = U(−c, x).
As ν →∞,

14.15.24

P−µν (x) =
1(

ν + 1
2

)1/4 2(ν+µ)/2 Γ
(

1
2ν + 1

2µ+ 3
4

) (ζ2 − α2

x2 − a2

)1/4
×
(
U
(
µ− ν − 1

2 , (2ν + 1)1/2
ζ
)

+O
(
ν−2/3

)
envU

(
µ− ν − 1

2 , (2ν + 1)1/2
ζ
))

,

14.15.25

Q−µν (x) =
π(

ν + 1
2

)1/4 2(ν+µ+2)/2 Γ
(

1
2ν + 1

2µ+ 3
4

) (ζ2 − α2

x2 − a2

)1/4
×
(
U
(
µ− ν − 1

2 , (2ν + 1)1/2
ζ
)

+O
(
ν−2/3

)
envU

(
µ− ν − 1

2 , (2ν + 1)1/2
ζ
))

,

uniformly with respect to x ∈ [0, 1) and µ ∈ [δ(ν + 1
2 ), ν + 1

2 ]. Here

14.15.26 a =

((
ν + µ+ 1

2

) ∣∣ν − µ+ 1
2

∣∣)1/2
ν + 1

2

, α =

(
2
∣∣ν − µ+ 1

2

∣∣
ν + 1

2

)1/2
,

and the variable ζ is defined implicitly by
14.15.27

1
2
ζ
(
ζ2−α2

)1/2− 1
2
α2 arccosh

(
ζ

α

)
=
(
1−a2

)1/2
arctanh

(
1
x

(
x2 − a2

1− a2

)1/2
)
− arccosh

(x
a

)
, a ≤ x < 1, α ≤ ζ <∞,

and
14.15.28

1
2
α2 arcsin

(
ζ

α

)
+

1
2
ζ
(
α2 − ζ2

)1/2
= arcsin

(x
a

)
−
(
1− a2

)1/2
arctan

(
x

(
1− a2

a2 − x2

)1/2
)

, −a ≤ x ≤ a, −α ≤ ζ ≤ α,

when a > 0, and

14.15.29 ζ2 = − ln
(
1− x2

)
, −1 < x < 1,

when a = 0. The inverse hyperbolic and trigonometric functions take their principal values (§§4.23(ii), 4.37(ii)).
When a > 0 the interval −a ≤ x < 1 is mapped one-to-one to the interval −α ≤ ζ <∞, with the points x = −a,

x = a, and x = 1 corresponding to ζ = −α, ζ = α, and ζ = ∞, respectively. When a = 0 the interval −1 < x < 1
is mapped one-to-one to the interval −∞ < ζ <∞, with the points x = −1, 0, and 1 corresponding to ζ = −∞, 0,
and ∞, respectively.
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Next, as ν →∞,

14.15.30 P−µν (x) =
1(

ν + 1
2

)1/4 2(ν+µ)/2 Γ
(

1
2ν + 1

2µ+ 3
4

) (ζ2 + α2

x2 + a2

)1/4
U
(
µ− ν − 1

2 , (2ν + 1)1/2
ζ
) (

1+O
(
ν−1 ln ν

))
,

uniformly with respect to x ∈ (−1, 1) and µ ∈ [ν + 1
2 , (1/δ)(ν + 1

2 )]. Here ζ is defined implicitly by

14.15.31

1
2
ζ
(
ζ2 + α2

)1/2
+

1
2
α2 arcsinh

(
ζ

α

)
=
(
1 + a2

)1/2
arctanh

(
x

(
1 + a2

x2 + a2

)1/2
)
− arcsinh

(x
a

)
,

−1 < x < 1, −∞ < ζ <∞,
when a > 0, which maps the interval −1 < x < 1 one-to-one to the interval −∞ < ζ < ∞: the points x = −1 and
x = 1 correspond to ζ = −∞ and ζ =∞, respectively. When a = 0 (14.15.29) again applies. (The inverse hyperbolic
functions again take their principal values.)

Since (14.15.30) holds for negative x, corresponding approximations for Q∓µν (x), uniformly valid in the interval
−1 < x < 1, can be obtained from (14.9.9) and (14.9.10).

For error bounds and other extensions see Olver (1975b).

14.16 Zeros

14.16(i) Notation

Throughout this section we assume that µ and ν are
real, and when they are not integers we write

14.16.1 µ = m+ δµ, ν = n+ δν ,

where m, n ∈ Z and δµ, δν ∈ (0, 1). For all cases con-
cerning Pµν (x) and Pµν (x) we assume that ν ≥ − 1

2 with-
out loss of generality (see (14.9.5) and (14.9.11)).

14.16(ii) Interval −1 < x < 1

The number of zeros of Pµν (x) in the interval (−1, 1) is
max(dν−|µ|e, 0) if any of the following sets of conditions
hold:

(a) µ ≤ 0.

(b) µ > 0, n ≥ m, and δν > δµ.

(c) µ > 0, n < m, and m− n is odd.

(d) ν = 0, 1, 2, 3, . . . .

The number of zeros of Pµν (x) in the interval (−1, 1)
is max(dν − |µ|e, 0) + 1 if either of the following sets of
conditions holds:

(a) µ > 0, n > m, and δν ≤ δµ.

(b) µ > 0, n < m, and m− n is even.

The zeros of Qµ
ν (x) in the interval (−1, 1) interlace

those of Pµν (x). Qµ
ν (x) has max(dν − |µ|e, 0) + k zeros

in the interval (−1, 1), where k can take one of the val-
ues −1, 0, 1, 2, subject to max(dν − |µ|e, 0) + k being

even or odd according as cos(νπ) and cos(µπ) have op-
posite signs or the same sign. In the special case µ = 0
and ν = n = 0, 1, 2, 3, . . . , Qn(x) has n+ 1 zeros in the
interval −1 < x < 1.

For uniform asymptotic approximations for the ze-
ros of P−mn (x) in the interval −1 < x < 1 when n→∞
with m (≥ 0) fixed, see Olver (1997b, p. 469).

14.16(iii) Interval 1 < x <∞
Pµν (x) has exactly one zero in the interval (1,∞) if ei-
ther of the following sets of conditions holds:

(a) µ > 0, µ > ν, µ /∈ Z, and sin((µ− ν)π) and
sin(µπ) have opposite signs.

(b) µ ≤ ν, µ /∈ Z, and bµc is odd.

For all other values of µ and ν (with ν ≥ − 1
2 ) Pµν (x)

has no zeros in the interval (1,∞).
Qµ
ν (x) has no zeros in the interval (1,∞) when

ν > −1, and at most one zero in the interval (1,∞)
when ν < −1.

14.17 Integrals

14.17(i) Indefinite Integrals

14.17.1∫ (
1− x2

)−µ/2
Pµν (x) dx=−

(
1− x2

)−(µ−1)/2
Pµ−1
ν (x).

14.17.2∫ (
1− x2

)µ/2
Pµν (x) dx =

(
1− x2

)(µ+1)/2

(ν − µ)(ν + µ+ 1)
Pµ+1
ν (x),

µ 6= ν or −ν − 1.
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14.17.3∫
xPµν (x) Qµ

ν (x) dx =
1

2ν(ν + 1)
(
(µ2 − (ν + 1)(ν + x2)) Pµν (x) Qµ

ν (x)

+ (ν + 1)(ν − µ+ 1)x(Pµν (x) Qµ
ν+1(x) + Pµν+1(x) Qµ

ν (x))− (ν − µ+ 1)2 Pµν+1(x) Qµ
ν+1(x)

)
,

ν 6= 0,−1.

14.17.4∫
x

(1− x2)3/2
Pµν (x) Qµ

ν (x) dx

=
1

(1− 4µ2) (1− x2)1/2

(
(1− 2µ2 + 2ν(ν + 1)) Pµν (x) Qµ

ν (x) + (2ν + 1)(µ− ν − 1)x(Pµν (x) Qµ
ν+1(x) + Pµν+1(x) Qµ

ν (x))

+ 2(µ− ν − 1)2 Pµν+1(x) Qµ
ν+1(x)

)
,

µ 6= ± 1
2 .

In (14.17.1)–(14.17.4), P may be replaced by Q, and in (14.17.3) and (14.17.4), Q may be replaced by P.
For further results, see Maximon (1955) and Prudnikov et al. (1990, pp. 37–39). See also (14.12.2), (14.12.5), and

(14.12.12).

14.17(ii) Barnes’ Integral

14.17.5

∫ 1

0

xσ
(
1− x2

)µ/2
P−µν (x) dx =

Γ
(

1
2σ + 1

2

)
Γ
(

1
2σ + 1

)
2µ+1 Γ

(
1
2σ −

1
2ν + 1

2µ+ 1
)

Γ
(

1
2σ + 1

2ν + 1
2µ+ 3

2

) , <σ > −1, <µ > −1.

14.17(iii) Orthogonality Properties

For l,m, n = 0, 1, 2, . . . ,

14.17.6

∫ 1

−1

Pml (x) Pmn (x) dx = δl,n
(n+m)!

(n−m)!
(
n+ 1

2

) ,
14.17.7

∫ 1

−1

Pml (x) P−mn (x) dx = (−1)mδl,n
1

l + 1
2

,

14.17.8

∫ 1

−1

Pln(x) Pmn (x)
1− x2

dx = δl,m
(n+m)!

(n−m)!m
, m > 0,

14.17.9

∫ 1

−1

Pln(x) P−mn (x)
1− x2

dx = (−1)lδl,m
1
l
, l > 0.

14.17(iv) Definite Integrals of Products

With ψ(x) = Γ′(x)/Γ(x) (§5.2(i)),

14.17.10

∫ 1

−1

Pν(x) Pλ(x) dx =
2 (2 sin(νπ) sin(λπ) (ψ(ν + 1)− ψ(λ+ 1)) + π sin((λ− ν)π))

π2(λ− ν)(λ+ ν + 1)
, λ 6= ν or −ν − 1.

14.17.11

∫ 1

−1

(Pν(x))2 dx =
π2 − 2 sin2(νπ)ψ′(ν + 1)

π2
(
ν + 1

2

) , ν 6= − 1
2 .

14.17.12

∫ 1

−1

Qν(x) Qλ(x) dx =

(
(ψ(ν + 1)− ψ(λ+ 1))(1 + cos(νπ) cos(λπ)) + 1

2π sin((λ− ν)π)
)

(λ− ν)(λ+ ν + 1)
,

λ 6= ν or −ν − 1, λ and ν 6= −1,−2,−3, . . . .

14.17.13

∫ 1

−1

(Qν(x))2 dx =
π2 − 2

(
1 + cos2(νπ)

)
ψ′(ν + 1)

2(2ν + 1)
, ν 6= − 1

2 or −1,−2,−3, . . . .

14.17.14∫ 1

−1

Pν(x) Qλ(x) dx =
2 sin(νπ) cos(λπ) (ψ(ν + 1)− ψ(λ+ 1)) + π cos((λ− ν)π)− π

π(λ− ν)(λ+ ν + 1)
, <λ > 0, <ν > 0, λ 6= ν.
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14.17.15∫ 1

−1

Pν(x) Qν(x) dx = − sin(2νπ)ψ′(ν + 1)
π(2ν + 1)

, <ν > 0.

14.17.16∫ 1

−1

Pml (x) Qm
n (x) dx =

(
1− (−1)l+n

)
(l +m)!

(l − n)(l + n+ 1)(l −m)!
,

l,m, n = 0, 1, 2, . . . , l 6= n.

14.17.17∫ π

0

Ql(cos θ) Pm(cos θ) Pn(cos θ) sin θ dθ

= 0, l,m, n = 1, 2, 3, . . . , |m− n| < l < m+ n.
(When l + m + n is even the condition |m− n| < l <
m+ n is not needed.) Next,

14.17.18

∫ ∞
1

Pν(x)Qλ(x) dx =
1

(λ− ν)(ν + λ+ 1)
,

<λ > <ν > 0.

14.17.19∫ ∞
1

Qν(x)Qλ(x) dx

=
ψ(λ+ 1)− ψ(ν + 1)
(λ− ν)(λ+ ν + 1)

,

<(λ+ ν) > −1, λ 6= ν, λ and ν 6= −1,−2,−3, . . . .

14.17.20

∫ ∞
1

(Qν(x))2 dx =
ψ′(ν + 1)

2ν + 1
, <ν > − 1

2 .

For further results, see Prudnikov et al. (1990,
pp. 194–240); also (34.3.21).

14.17(v) Laplace Transforms

For Laplace transforms and inverse Laplace transforms
involving associated Legendre functions, see Erdélyi
et al. (1954a, pp. 179–181, 270–272), Oberhettinger and
Badii (1973, pp. 113–118, 317–324), Prudnikov et al.
(1992a, §§3.22, 3.32, and 3.33), and Prudnikov et al.
(1992b, §§3.20, 3.30, and 3.31).

14.17(vi) Mellin Transforms

For Mellin transforms involving associated Legendre
functions see Oberhettinger (1974, pp. 69–82) and
Marichev (1983, pp. 247–283), and for inverse trans-
forms see Oberhettinger (1974, pp. 205–215).

14.18 Sums

14.18(i) Expansion Theorem

For expansions of arbitrary functions in series of Leg-
endre polynomials see §18.18(i), and for expansions of
arbitrary functions in series of associated Legendre func-
tions see Schäfke (1961b).

14.18(ii) Addition Theorems

In (14.18.1) and (14.18.2), θ1, θ2, and θ1 + θ2 all lie in [0, π), and φ is real.

14.18.1 Pν(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) = Pν(cos θ1) Pν(cos θ2) + 2
∞∑
m=1

(−1)m P−mν (cos θ1) Pmν (cos θ2) cos(mφ),

14.18.2 Pn(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) =
n∑

m=−n
(−1)m P−mn (cos θ1) Pmn (cos θ2) cos(mφ).

In (14.18.3), θ1 lies in (0, 1
2π), θ2 and θ1 + θ2 both lie in (0, π), θ1 < θ2, φ is real, and ν 6= −1,−2,−3, . . . .

14.18.3 Qν(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) = Pν(cos θ1) Qν(cos θ2) + 2
∞∑
m=1

(−1)m P−mν (cos θ1) Qm
ν (cos θ2) cos(mφ).

In (14.18.4) and (14.18.5), ξ1 and ξ2 are positive, and φ is real; also in (14.18.5) ξ1 < ξ2 and ν 6= −1,−2,−3, . . . .

14.18.4

Pν(cosh ξ1 cosh ξ2 − sinh ξ1 sinh ξ2 cosφ) = Pν(cosh ξ1)Pν(cosh ξ2) + 2
∞∑
m=1

(−1)m P−mν (cosh ξ1)Pmν (cosh ξ2) cos(mφ),

14.18.5

Qν(cosh ξ1 cosh ξ2 − sinh ξ1 sinh ξ2 cosφ) = Pν(cosh ξ1)Qν(cosh ξ2) + 2
∞∑
m=1

(−1)m P−mν (cosh ξ1)Qmν (cosh ξ2) cos(mφ).
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14.18(iii) Other Sums

14.18.6 (x− y)
n∑
k=0

(2k + 1)Pk(x)Pk(y) = (n+ 1) (Pn+1(x)Pn(y)− Pn(x)Pn+1(y)) ,

14.18.7 (x− y)
n∑
k=0

(2k + 1)Pk(x)Qk(y) = (n+ 1) (Pn+1(x)Qn(y)− Pn(x)Qn+1(y))− 1.

Zonal Harmonic Series

14.18.8 Pν(−x) =
sin(νπ)
π

∞∑
n=0

2n+ 1
(ν − n)(ν + n+ 1)

Pn(x), ν /∈ Z.

Dougall’s Expansion

14.18.9 P−µν (x) =
sin(νπ)
π

∞∑
n=0

(−1)n
2n+ 1

(ν − n)(ν + n+ 1)
P−µn (x), −1 < x ≤ 1, µ ≥ 0, ν /∈ Z.

For a series representation of the Dirac delta in terms of products of Legendre polynomials see (1.17.22).

14.18(iv) Compendia

For collections of sums involving associated Legendre functions, see Hansen (1975, pp. 367–377, 457–460, and 475),
Erdélyi et al. (1953a, §3.10), Gradshteyn and Ryzhik (2000, §8.92), Magnus et al. (1966, pp. 178–184), and Prudnikov
et al. (1990, §§5.2, 6.5). See also §18.18 and (34.3.19).

14.19 Toroidal (or Ring) Functions

14.19(i) Introduction

When ν = n− 1
2 , n = 0, 1, 2, . . . , µ ∈ R, and x ∈ (1,∞) solutions of (14.2.2) are known as toroidal or ring functions.

This form of the differential equation arises when Laplace’s equation is transformed into toroidal coordinates (η, θ, φ),
which are related to Cartesian coordinates (x, y, z) by

14.19.1 x =
c sinh η cosφ
cosh η − cos θ

, y =
c sinh η sinφ

cosh η − cos θ
, z =

c sin θ
cosh η − cos θ

,

where the constant c is a scaling factor. Most required properties of toroidal functions come directly from the results
for Pµν (x) and Qµ

ν (x). In particular, for µ = 0 and ν = ± 1
2 see §14.5(v).

14.19(ii) Hypergeometric Representations

With F as in §14.3 and ξ > 0,

14.19.2 Pµ
ν− 1

2
(cosh ξ) =

Γ(1− 2µ)22µ

Γ(1− µ) (1− e−2ξ)µ e(ν+(1/2))ξ
F
(

1
2 − µ,

1
2 + ν − µ; 1− 2µ; e−2ξ

)
, µ 6= 1

2 .

14.19.3 Qµ

ν− 1
2
(cosh ξ) =

π1/2
(
1− e−2ξ

)µ
e(ν+(1/2))ξ

F
(
µ+ 1

2 , ν + µ+ 1
2 ; ν + 1; e−2ξ

)
.

14.19(iii) Integral Representations

With ξ > 0,

14.19.4 Pmn− 1
2
(cosh ξ) =

Γ
(
n+m+ 1

2

)
(sinh ξ)m

2mπ1/2 Γ
(
n−m+ 1

2

)
Γ
(
m+ 1

2

) ∫ π

0

(sinφ)2m

(cosh ξ + cosφ sinh ξ)n+m+(1/2)
dφ,

14.19.5 Qm
n− 1

2
(cosh ξ) =

Γ
(
n+ 1

2

)
Γ
(
n+m+ 1

2

)
Γ
(
n−m+ 1

2

) ∫ ∞
0

cosh(mt)
(cosh ξ + cosh t sinh ξ)n+(1/2)

dt, m < n+ 1
2 .
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14.19(iv) Sums

With ξ > 0,

14.19.6 Qµ

− 1
2
(cosh ξ) + 2

∞∑
n=1

Γ
(
µ+ n+ 1

2

)
Γ
(
µ+ 1

2

) Qµ

n− 1
2
(cosh ξ) cos(nφ) =

(
1
2π
)1/2 (sinh ξ)µ

(cosh ξ − cosφ)µ+(1/2)
, <µ > − 1

2 .

14.19(v) Whipple’s Formula for Toroidal Functions

With ξ > 0,

14.19.7 Pmn− 1
2
(cosh ξ) =

Γ
(
n+m+ 1

2

)
Γ
(
n−m+ 1

2

) ( 2
π sinh ξ

)1/2
Qn
m− 1

2
(coth ξ),

14.19.8 Qm
n− 1

2
(cosh ξ) =

Γ
(
m− n+ 1

2

)
Γ
(
m+ n+ 1

2

) ( π

2 sinh ξ

)1/2
Pnm− 1

2
(coth ξ).

14.20 Conical (or Mehler) Functions

14.20(i) Definitions and Wronskians

Throughout §14.20 we assume that ν = − 1
2 + iτ , with µ ≥ 0 and τ ≥ 0. (14.2.2) takes the form

14.20.1
(
1− x2

) d2w

dx2 − 2x
dw

dx
−
(
τ2 +

1
4

+
µ2

1− x2

)
w = 0.

Solutions are known as conical or Mehler functions. For −1 < x < 1 and τ > 0, a numerically satisfactory pair of
real conical functions is P−µ− 1

2 +iτ
(x) and P−µ− 1

2 +iτ
(−x).

Another real-valued solution Q̂−µ− 1
2 +iτ

(x) of (14.20.1) was introduced in Dunster (1991). This is defined by

14.20.2 Q̂−µ− 1
2 +iτ

(x) = <
(
eµπi Q−µ− 1

2 +iτ
(x)
)
− 1

2π sin(µπ) P−µ− 1
2 +iτ

(x).

Equivalently,

14.20.3 Q̂−µ− 1
2 +iτ

(x) =
πe−τπ sin(µπ) sinh(τπ)
2(cosh2(τπ)− sin2(µπ))

P−µ− 1
2 +iτ

(x) +
π(e−τπ cos2(µπ) + sinh(τπ))

2(cosh2(τπ)− sin2(µπ))
P−µ− 1

2 +iτ
(−x).

Q̂−µ− 1
2 +iτ

(x) exists except when µ = 1
2 ,

3
2 , . . . and τ = 0; compare §14.3(i). It is an important companion solution to

P−µ− 1
2 +iτ

(x) when τ is large; compare §§14.20(vii), 14.20(viii), and 10.25(iii).

14.20.4 W
{

P−µ− 1
2 +iτ

(x),P−µ− 1
2 +iτ

(−x)
}

=
2

|Γ
(
µ+ 1

2 + iτ
)
|2(1− x2)

.

14.20.5 W
{

P−µ− 1
2 +iτ

(x), Q̂−µ− 1
2 +iτ

(x)
}

=
π(e−τπ cos2(µπ) + sinh(τπ))

|Γ
(
µ+ 1

2 + iτ
)
|2(cosh2(τπ)− sin2(µπ))(1− x2)

,

provided that Q̂−µ− 1
2 +iτ

(x) exists.

Lastly, for the range 1 < x <∞, P−µ− 1
2 +iτ

(x) is a real-valued solution of (14.20.1); in terms of Qµ− 1
2±iτ

(x) (which
are complex-valued in general):

14.20.6 P−µ− 1
2 +iτ

(x) =
ie−µπi

sinh(τπ)
∣∣Γ(µ+ 1

2 + iτ
)∣∣2 (Qµ− 1

2 +iτ
(x)−Qµ− 1

2−iτ
(x)
)

, τ 6= 0.
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14.20(ii) Graphics

Figure 14.20.1: P0
− 1

2 +iτ
(x), τ = 0, 1, 2, 4, 8. Figure 14.20.2: Q̂0

− 1
2 +iτ

(x), τ = 0, 1
2 , 1, 2, 4.

Figure 14.20.3: P
−1/2

− 1
2 +iτ

(x), τ = 0, 1, 2, 4, 8. Figure 14.20.4: Q̂
−1/2

− 1
2 +iτ

(x), τ = 1
2 , 1, 2, 4. (This function

does not exist when τ = 0.)

For additional graphs see http://dlmf.nist.gov/14.20.ii.

14.20(iii) Behavior as x→ 1

The behavior of P−µ− 1
2 +iτ

(±x) as x → 1− is given in
§14.8(i). For µ > 0 and x→ 1−,

14.20.7 Q̂µ

− 1
2 +iτ

(x) ∼ 1
2 Γ(µ)

(
2

1− x

)µ/2
,

14.20.8

Q̂−µ− 1
2 +iτ

(x) ∼ π Γ(µ)(e−τπ cos2(µπ) + sinh(τπ))

2(cosh2(τπ)− sin2(µπ))
∣∣Γ(µ+ 1

2 + iτ
)∣∣2

×
(

2
1− x

)µ/2
.

14.20(iv) Integral Representation

When 0 < θ < π,

14.20.9 P− 1
2 +iτ (cos θ) =

2
π

∫ θ

0

cosh(τφ)√
2(cosφ− cos θ)

dφ.

14.20(v) Trigonometric Expansion

14.20.10

P− 1
2 +iτ (cos θ) = 1 +

4τ2 + 12

22
sin2

(
1
2θ
)

+

(
4τ2 + 12

) (
4τ2 + 32

)
22 · 42

sin4
(

1
2θ
)

+ · · · , 0 ≤ θ ≤ π.

From (14.20.9) or (14.20.10) it is evident that
P− 1

2 +iτ (cos θ) is positive for real θ.

14.20(vi) Generalized Mehler–Fock
Transformation

14.20.11

f(τ) =
τ

π
sinh(τπ) Γ

(
1
2 − µ+ iτ

)
× Γ

(
1
2 − µ− iτ

) ∫ ∞
1

Pµ− 1
2 +iτ

(x)g(x) dx,

where
14.20.12 g(x) =

∫ ∞
0

Pµ− 1
2 +iτ

(x)f(τ) dτ.
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Special cases:

14.20.13 P− 1
2 +iτ (x) =

cosh(τπ)
π

∫ ∞
1

P− 1
2 +iτ (t)

x+ t
dt,

14.20.14

π

∫ ∞
0

τ tanh(τπ)
cosh(τπ)

P− 1
2 +iτ (x)P− 1

2 +iτ (y) dτ =
1

y + x
.

14.20(vii) Asymptotic Approximations: Large
τ , Fixed µ

For τ →∞ and fixed µ,

14.20.15
P−µ− 1

2 +iτ
(cos θ) =

1
τµ

(
θ

sin θ

)1/2
Iµ(τθ)

× (1 +O(1/τ )) ,

14.20.16
Q̂−µ− 1

2 +iτ
(cos θ) =

1
τµ

(
θ

sin θ

)1/2
Kµ(τθ)

× (1 +O(1/τ )) ,
uniformly for θ ∈ (0, π − δ], where I and K are the
modified Bessel functions (§10.25(ii)) and δ is an arbi-
trary constant such that 0 < δ < π. For asymptotic
expansions and explicit error bounds, see Olver (1997b,
pp. 473–474). See also Žurina and Karmazina (1966).

14.20(viii) Asymptotic Approximations: Large
τ , 0 ≤ µ ≤ Aτ

In this subsection and §14.20(ix), A and δ denote arbi-
trary constants such that A > 0 and 0 < δ < 2.

As τ →∞,

14.20.17

P−µ− 1
2 +iτ

(x) = σ(µ, τ)
(

α2 + η

1 + α2 − x2

)1/4
Iµ

(
τη1/2

)
× (1 +O(1/τ )) ,

14.20.18

Q̂−µ− 1
2 +iτ

(x) = σ(µ, τ)
(

α2 + η

1 + α2 − x2

)1/4
Kµ

(
τη1/2

)
× (1 +O(1/τ )) ,

uniformly for x ∈ [−1 + δ, 1) and µ ∈ [0, Aτ ]. Here

14.20.19 α = µ/τ,

14.20.20 σ(µ, τ) =
exp(µ− τ arctanα)

(µ2 + τ2)µ/2
.

The variable η is defined implicitly by

14.20.21

(
α2 + η

)1/2
+ 1

2α ln η − α ln
((
α2 + η

)1/2
+ α

)
= arccos

(
x

(1 + α2)1/2

)
+
α

2
ln

(
1 + α2 +

(
α2 − 1

)
x2 − 2αx

(
1 + α2 − x2

)1/2
(1 + α2) (1− x2)

)
,

where the inverse trigonometric functions take their principal values. The interval −1 < x < 1 is mapped one-to-one
to the interval 0 < η <∞, with the points x = −1 and x = 1 corresponding to η =∞ and η = 0, respectively.

For extensions to complex arguments (including the range 1 < x <∞), asymptotic expansions, and explicit error
bounds, see Dunster (1991).

14.20(ix) Asymptotic Approximations: Large µ, 0 ≤ τ ≤ Aµ
As µ→∞,

14.20.22 P−µ− 1
2 +iτ

(x) =
β exp(µβ arctanβ)

Γ(µ+ 1) (1 + β2)µ/2
e−µρ

(1 + β2 − x2β2)1/4

(
1 +O

(
1
µ

))
,

uniformly for x ∈ (−1, 1) and τ ∈ [0, Aµ]. Here

14.20.23 β = τ/µ,

and the variable ρ is defined by

14.20.24 ρ =
1
2

ln

((
1− β2

)
x2 + 1 + β2 + 2x

(
1 + β2 − β2x2

)1/2
1− x2

)
+ β arctan

(
βx√

1 + β2 − β2x2

)
− 1

2
ln
(
1 + β2

)
,

with the inverse tangent taking its principal value. The
interval −1 < x < 1 is mapped one-to-one to the inter-
val −∞ < ρ < ∞, with the points x = −1, x = 0, and
x = 1 corresponding to ρ = −∞, ρ = 0, and ρ = ∞,

respectively.

With the same conditions, the corresponding ap-
proximation for P−µ− 1

2 +iτ
(−x) is obtainable by replacing

e−µρ by eµρ on the right-hand side of (14.20.22). Ap-
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proximations for Pµ− 1
2 +iτ

(x) and Q̂−µ− 1
2 +iτ

(x) can then be
achieved via (14.9.7) and (14.20.3).

For extensions to complex arguments (including the
range 1 < x <∞), asymptotic expansions, and explicit
error bounds, see Dunster (1991).

14.20(x) Zeros and Integrals

For zeros of P− 1
2 +iτ (x) see Hobson (1931, §237).

For integrals with respect to τ involving P− 1
2 +iτ (x),

see Prudnikov et al. (1990, pp. 218–228).

Complex Arguments

14.21 Definitions and Basic Properties

14.21(i) Associated Legendre Equation

14.21.1(
1− z2

) d2w

dz2 − 2z
dw

dz
+
(
ν(ν + 1)− µ2

1− z2

)
w = 0.

Standard solutions: the associated Legendre functions
Pµν (z), P−µν (z), Qµ

ν (z), and Qµ
−ν−1(z). P±µν (z) and

Qµ
ν (z) exist for all values of ν, µ, and z, except pos-

sibly z = ±1 and ∞, which are branch points (or
poles) of the functions, in general. When z is com-
plex P±µν (z), Qµν (z), and Qµ

ν (z) are defined by (14.3.6)–
(14.3.10) with x replaced by z: the principal branches
are obtained by taking the principal values of all the
multivalued functions appearing in these representa-
tions when z ∈ (1,∞), and by continuity elsewhere

in the z-plane with a cut along the interval (−∞, 1];
compare §4.2(i). The principal branches of P±µν (z) and
Qµ
ν (z) are real when ν, µ ∈ R and z ∈ (1,∞).

14.21(ii) Numerically Satisfactory Solutions

When <ν ≥ − 1
2 and <µ ≥ 0, a numerically satis-

factory pair of solutions of (14.21.1) in the half-plane
|ph z| ≤ 1

2π is given by P−µν (z) and Qµ
ν (z).

14.21(iii) Properties

Many of the properties stated in preceding sections
extend immediately from the x-interval (1,∞) to the
cut z-plane C\(−∞, 1]. This includes, for example,
the Wronskian relations (14.2.7)–(14.2.11); hypergeo-
metric representations (14.3.6)–(14.3.10) and (14.3.15)–
(14.3.20); results for integer orders (14.6.3)–(14.6.5),
(14.6.7), (14.6.8), (14.7.6), (14.7.7), and (14.7.11)–
(14.7.16); behavior at singularities (14.8.7)–(14.8.16);
connection formulas (14.9.11)–(14.9.16); recurrence re-
lations (14.10.3)–(14.10.7). The generating function
expansions (14.7.19) (with P replaced by P) and
(14.7.22) apply when |h| < min

∣∣∣z ± (z2 − 1
)1/2∣∣∣;

(14.7.21) (with P replaced by P) applies when |h| >
max

∣∣∣z ± (z2 − 1
)1/2∣∣∣.

14.22 Graphics

In the graphics shown in this section, height corresponds
to the absolute value of the function and color to the
phase. See also p. xiv.

Figure 14.22.1: P 0
1/2 (x+ iy),−5 ≤ x ≤ 5,−5 ≤ y ≤ 5.

There is a cut along the real axis from −∞ to −1.
Figure 14.22.2: P− 1/2

1/2 (x+ iy),−5 ≤ x ≤ 5,−5 ≤ y ≤ 5.
There is a cut along the real axis from −∞ to 1.
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Figure 14.22.3: P−1
1/2 (x+ iy),−5 ≤ x ≤ 5,−5 ≤ y ≤ 5.

There is a cut along the real axis from −∞ to 1.
Figure 14.22.4: Q0

0(x+ iy),−5 ≤ x ≤ 5,−5 ≤ y ≤ 5.
There is a cut along the real axis from −1 to 1.

14.23 Values on the Cut

When −1 < x < 1,

14.23.1 Pµν (x± i0) = e∓µπi/2 Pµν (x),

14.23.2 Qµ
ν (x± i0) =

e±µπi/2

Γ(ν + µ+ 1)
(
Qµ
ν (x)∓ 1

2πiPµν (x)
)
.

In terms of the hypergeometric function F (§14.3(i))
14.23.3

Qµ
ν (x± i0) =

e∓νπi/2π3/2
(
1− x2

)µ/2
2ν+1

(
xF
(

1
2µ−

1
2ν + 1

2 ,
1
2ν + 1

2µ+ 1; 3
2 ;x2

)
Γ
(

1
2ν −

1
2µ+ 1

2

)
Γ
(

1
2ν + 1

2µ+ 1
2

) ∓i
F
(

1
2µ−

1
2ν,

1
2ν + 1

2µ+ 1
2 ; 1

2 ;x2
)

Γ
(

1
2ν −

1
2µ+ 1

)
Γ
(

1
2ν + 1

2µ+ 1
)) .

Conversely,

14.23.4 Pµν (x) = e±µπi/2 Pµν (x± i0),

14.23.5
Qµ
ν (x) = 1

2 Γ(ν + µ+ 1)
(
e−µπi/2Qµ

ν (x+ i0)

+ eµπi/2Qµ
ν (x− i0)

)
,

or equivalently,

14.23.6
Qµ
ν (x) = e∓µπi/2 Γ(ν + µ+ 1)Qµ

ν (x± i0)
± 1

2πie
±µπi/2 Pµν (x± i0).

If cuts are introduced along the intervals (−∞,−1]
and [1,∞), then (14.23.4) and (14.23.6) could be used
to extend the definitions of Pµν (x) and Qµ

ν (x) to complex
x.

The conical function defined by (14.20.2) can be rep-
resented similarly by

14.23.7
Q̂−µ− 1

2 +iτ
(x) = 1

2e
3µπi/2Q−µ− 1

2 +iτ
(x− i0)

+ 1
2e
−3µπi/2Q−µ− 1

2−iτ
(x+ i0).

14.24 Analytic Continuation

Let s be an arbitrary integer, and P−µν
(
zesπi

)
and

Qµ
ν

(
zesπi

)
denote the branches obtained from the prin-

cipal branches by making 1
2s circuits, in the positive

sense, of the ellipse having ±1 as foci and passing
through z. Then

14.24.1

P−µν
(
zesπi

)
= esνπi P−µν (z)

+
2i sin

((
ν + 1

2

)
sπ
)
e−sπi/2

cos(νπ) Γ(µ− ν)
Qµ
ν (z),

14.24.2 Qµ
ν

(
zesπi

)
= (−1)se−sνπiQµ

ν (z),

the limiting value being taken in (14.24.1) when 2ν is
an odd integer.

Next, let P−µν,s (z) and Qµ
ν,s(z) denote the branches

obtained from the principal branches by encircling the
branch point 1 (but not the branch point −1) s times
in the positive sense. Then

14.24.3 P−µν,s (z) = esµπi P−µν (z),
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14.24.4

Qµ
ν,s(z) = e−sµπiQµ

ν (z)

− πi sin(sµπ)
sin(µπ) Γ(ν − µ+ 1)

P−µν (z),

the limiting value being taken in (14.24.4) when µ ∈ Z.
For fixed z, other than ±1 or ∞, each branch of

P−µν (z) and Qµ
ν (z) is an entire function of each param-

eter ν and µ.
The behavior of P−µν (z) and Qµ

ν (z) as z → −1 from
the left on the upper or lower side of the cut from −∞
to 1 can be deduced from (14.8.7)–(14.8.11), combined
with (14.24.1) and (14.24.2) with s = ±1.

14.25 Integral Representations

The principal values of P−µν (z) and Qµ
ν (z) (§14.21(i))

are given by

14.25.1

P−µν (z)

=

(
z2 − 1

)µ/2
2ν Γ(µ− ν) Γ(ν + 1)

∫ ∞
0

(sinh t)2ν+1

(z + cosh t)ν+µ+1
dt,

<µ > <ν > −1,

14.25.2

Qµ
ν (z) =

π1/2
(
z2 − 1

)µ/2
2µ Γ

(
µ+ 1

2

)
Γ(ν − µ+ 1)

×
∫ ∞

0

(sinh t)2µ(
z + (z2 − 1)1/2 cosh t

)ν+µ+1 dt,

<(ν + 1) > <µ > − 1
2 ,

where the multivalued functions have their principal val-
ues when 1 < z <∞ and are continuous in C \ (−∞, 1].

For corresponding contour integrals, with less re-
strictions on µ and ν, see Olver (1997b, pp. 174–179),
and for further integral representations see Magnus
et al. (1966, §4.6.1).

14.26 Uniform Asymptotic Expansions

The uniform asymptotic approximations given in §14.15
for P−µν (x) and Qµ

ν (x) for 1 < x < ∞ are ex-
tended to domains in the complex plane in the following
references: §§14.15(i) and 14.15(ii), Dunster (2003b);
§14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd
and Dunster (1986). For an extension of §14.15(iv) to
complex argument and imaginary parameters, see Dun-
ster (1990b).

See also Frenzen (1990), Gil et al. (2000), Shivaku-
mar and Wong (1988), Ursell (1984), and Wong (1989)
for uniform asymptotic approximations obtained from
integral representations.

14.27 Zeros

Pµν (x± i0) (either side of the cut) has exactly one zero
in the interval (−∞,−1) if either of the following sets
of conditions holds:

(a) µ < 0, µ /∈ Z, ν ∈ Z, and sin((µ− ν)π) and
sin(µπ) have opposite signs.

(b) µ, ν ∈ Z, µ+ ν < 0, and ν is odd.

For all other values of the parameters Pµν (x± i0) has
no zeros in the interval (−∞,−1).

For complex zeros of Pµν (z) see Hobson (1931, §§233,
234, and 238).

14.28 Sums

14.28(i) Addition Theorem

When <z1 > 0, <z2 > 0, |ph(z1 − 1)| < π, and
|ph(z2 − 1)| < π,

14.28.1

Pν

(
z1z2 −

(
z2

1 − 1
)1/2 (

z2
2 − 1

)1/2
cosφ

)
= Pν(z1)Pν(z2) + 2

∞∑
m=1

(−1)m
Γ(ν −m+ 1)
Γ(ν +m+ 1)

× Pmν (z1)Pmν (z2) cos(mφ),
where the branches of the square roots have their prin-
cipal values when z1, z2 ∈ (1,∞) and are continuous
when z1, z2 ∈ C \ (0, 1]. For this and similar results see
Erdélyi et al. (1953a, §3.11).

14.28(ii) Heine’s Formula

14.28.2
∞∑
n=0

(2n+ 1)Qn(z1)Pn(z2) =
1

z1 − z2
, z1 ∈ E1, z2 ∈ E2,

where E1 and E2 are ellipses with foci at ±1, E2 being
properly interior to E1. The series converges uniformly
for z1 outside or on E1, and z2 within or on E2.

14.28(iii) Other Sums

See §14.18(iv).

14.29 Generalizations

Solutions of the equation

14.29.1

(
1− z2

) d2w

dz2 − 2z
dw

dz

+
(
ν(ν + 1)− µ2

1

2(1− z)
− µ2

2

2(1 + z)

)
w

= 0
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are called Generalized Associated Legendre Functions.
As in the case of (14.21.1), the solutions are hyper-
geometric functions, and (14.29.1) reduces to (14.21.1)
when µ1 = µ2 = µ. For properties see Virchenko and
Fedotova (2001) and Braaksma and Meulenbeld (1967).

For inhomogeneous versions of the associated Leg-
endre equation, and properties of their solutions, see
Babister (1967, pp. 252–264).

Applications

14.30 Spherical and Spheroidal Harmonics

14.30(i) Definitions

With l and m integers such that 0 ≤ m ≤ l, and θ and
φ angles such that 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π,
14.30.1

Yl,m(θ, φ) =
(

(l −m)!(2l + 1)
4π(l +m)!

)1/2
eimφ Pml (cos θ),

14.30.2

Y ml (θ, φ) = cos(mφ) Pml (cos θ) or sin(mφ) Pml (cos θ).

Yl,m(θ, φ) are known as spherical harmonics. Y ml (θ, φ)
are known as surface harmonics of the first kind :
tesseral for m < l and sectorial for m = l. Sometimes
Yl,m(θ, φ) is denoted by i−lDlm(θ, φ); also the definition
of Yl,m(θ, φ) can differ from (14.30.1), for example, by
inclusion of a factor (−1)m.

Pmn (x) and Qmn (x) (x > 1) are often referred to as
the prolate spheroidal harmonics of the first and second
kinds, respectively. Pmn (ix) and Qmn (ix) (x > 0) are
known as oblate spheroidal harmonics of the first and
second kinds, respectively. Segura and Gil (1999) intro-
duced the scaled oblate spheroidal harmonics Rmn (x) =
e−iπn/2 Pmn (ix) and Tmn (x) = ieiπn/2Qmn (ix) which are
real when x > 0 and n = 0, 1, 2, . . . .

14.30(ii) Basic Properties

Most mathematical properties of Yl,m(θ, φ) can be de-
rived directly from (14.30.1) and the properties of the
Ferrers function of the first kind given earlier in this
chapter.

Explicit Representation

14.30.3 Yl,m(θ, φ) =
(−1)l+m

2ll!

(
(l −m)!(2l + 1)

4π(l +m)!

)1/2
eimφ (sin θ)m

(
d

d(cos θ)

)l+m
(sin θ)2l .

Special Values

14.30.4 Yl,m(0, φ) =


(

2l + 1
4π

)1/2

, m = 0,

0, m = 1, 2, 3, . . . ,

14.30.5 Yl,m
(

1
2π, φ

)
=


(−1)(l+m)/2eimφ

2l
(

1
2 l −

1
2m
)

!
(

1
2 l + 1

2m
)

!

(
(l −m)!(l +m)!(2l + 1)

4π

)1/2

, 1
2 l + 1

2m ∈ Z,

0, 1
2 l + 1

2m /∈ Z.

Symmetry

14.30.6 Yl,−m(θ, φ) = (−1)m Y ∗l,m(θ, φ).

Parity Operation

14.30.7 Yl,m(π − θ, φ+ π) = (−1)l Yl,m(θ, φ).

Orthogonality

14.30.8

∫ 2π

0

∫ π

0

Y ∗l1,m1
(θ, φ)Yl2,m2(θ, φ) sin θ dθ dφ = δl1,l2δm1,m2 ;

here and elsewhere in this section the asterisk (*) denotes complex conjugate.
See also (34.3.22), and for further related integrals see Askey et al. (1986).
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14.30(iii) Sums

Distributional Completeness

For a series representation of the product of two Dirac
deltas in terms of products of spherical harmonics see
§1.17(iii).

Addition Theorem

14.30.9

Pl(cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2))

=
4π

2l + 1

l∑
m=−l

Y ∗l,m(θ1, φ1)Yl,m(θ2, φ2).

See also (18.18.9) and (34.3.19).

14.30(iv) Applications

In general, spherical harmonics are defined as the class
of homogeneous harmonic polynomials. See Andrews
et al. (1999, Chapter 9). The special class of spheri-
cal harmonics Yl,m(θ, φ), defined by (14.30.1), appear in
many physical applications. As an example, Laplace’s
equation ∇2W = 0 in spherical coordinates (§1.5(ii)):

14.30.10

1
ρ2

∂

∂ρ

(
ρ2 ∂W

∂ρ

)
+

1
ρ2 sin θ

∂

∂θ

(
sin θ

∂W

∂θ

)
+

1
ρ2 sin2 θ

∂2W

∂φ2 = 0,

has solutions W (ρ, θ, φ) = ρl Yl,m(θ, φ), which are ev-
erywhere one-valued and continuous.

In the quantization of angular momentum the spher-
ical harmonics Yl,m(θ, φ) are normalized solutions of the
eigenvalue equation

14.30.11 L2 Yl,m = h̄2l(l + 1)Yl,m,

where h̄ is the reduced Planck’s constant, and L2 is the
angular momentum operator in spherical coordinates:

14.30.12 L2 = −h̄2

(
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

)
;

see Edmonds (1974, §2.5).
For applications in geophysics see Stacey (1977,

§§4.2, 6.3, and 8.1).

14.31 Other Applications

14.31(i) Toroidal Functions

Applications of toroidal functions include expansion of
vacuum magnetic fields in stellarators and tokamaks
(van Milligen and López Fraguas (1994)), analytic solu-
tions of Poisson’s equation in channel-like geometries
(Hoyles et al. (1998)), and Dirichlet problems with
toroidal symmetry (Gil et al. (2000)).

14.31(ii) Conical Functions

The conical functions Pm− 1
2 +iτ

(x) appear in boundary-
value problems for the Laplace equation in toroidal co-
ordinates (§14.19(i)) for regions bounded by cones, by
two intersecting spheres, or by one or two confocal hy-
perboloids of revolution (Kölbig (1981)). These func-
tions are also used in the Mehler–Fock integral trans-
form (§14.20(vi)) for problems in potential and heat the-
ory, and in elementary particle physics (Sneddon (1972,
Chapter 7) and Braaksma and Meulenbeld (1967)). The
conical functions and Mehler–Fock transform general-
ize to Jacobi functions and the Jacobi transform; see
Koornwinder (1984a) and references therein.

14.31(iii) Miscellaneous

Many additional physical applications of Legendre poly-
nomials and associated Legendre functions include so-
lution of the Helmholtz equation, as well as the
Laplace equation, in spherical coordinates (Temme
(1996a)), quantum mechanics (Edmonds (1974)), and
high-frequency scattering by a sphere (Nussenzveig
(1965)). See also §18.39.

Legendre functions Pν(x) of complex degree ν ap-
pear in the application of complex angular momentum
techniques to atomic and molecular scattering (Connor
and Mackay (1979)).

Computation

14.32 Methods of Computation

Essentially the same comments that are made in §15.19
concerning the computation of hypergeometric func-
tions apply to the functions described in the present
chapter. In particular, for small or moderate values
of the parameters µ and ν the power-series expansions
of the various hypergeometric function representations
given in §§14.3(i)–14.3(iii), 14.19(ii), and 14.20(i) can
be selected in such a way that convergence is stable,
and reasonably rapid, especially when the argument of
the functions is real. In other cases recurrence relations
(§14.10) provide a powerful method when applied in a
stable direction (§3.6); see Olver and Smith (1983) and
Gautschi (1967).

Other methods include:

• Application of the uniform asymptotic expansions
for large values of the parameters given in §§14.15
and 14.20(vii)–14.20(ix).

• Numerical integration (§3.7) of the defining differ-
ential equations (14.2.2), (14.20.1), and (14.21.1).
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• Quadrature (§3.5) of the integral representations
given in §§14.12, 14.19(iii), 14.20(iv), and 14.25;
see Segura and Gil (1999) and Gil et al. (2000).

• Evaluation (§3.10) of the continued fractions given
in §14.14. See Gil and Segura (2000).

14.33 Tables

• Abramowitz and Stegun (1964, Chapter 8) tabu-
lates Pn(x) for n = 0(1)3, 9, 10, x = 0(.01)1, 5–
8D; P′n(x) for n = 1(1)4, 9, 10, x = 0(.01)1, 5–7D;
Qn(x) and Q′n(x) for n = 0(1)3, 9, 10, x = 0(.01)1,
6–8D; Pn(x) and P ′n(x) for n = 0(1)5, 9, 10, x =
1(.2)10, 6S; Qn(x) and Q′n(x) for n = 0(1)3, 9, 10,
x = 1(.2)10, 6S. (Here primes denote derivatives
with respect to x.)

• Zhang and Jin (1996, Chapter 4) tabulates Pn(x)
for n = 2(1)5, 10, x = 0(.1)1, 7D; Pn(cos θ)
for n = 1(1)4, 10, θ = 0(5◦)90◦, 8D; Qn(x) for
n = 0(1)2, 10, x = 0(.1)0.9, 8S; Qn(cos θ) for
n = 0(1)3, 10, θ = 0(5◦)90◦, 8D; Pmn (x) for
m = 1(1)4, n−m = 0(1)2, n = 10, x = 0, 0.5, 8S;
Qm
n (x) for m = 1(1)4, n = 0(1)2, 10, 8S; Pmν (cos θ)

for m = 0(1)3, ν = 0(.25)5, θ = 0(15◦)90◦, 5D;
Pn(x) for n = 2(1)5, 10, x = 1(1)10, 7S; Qn(x)
for n = 0(1)2, 10, x = 2(1)10, 8S. Corresponding
values of the derivative of each function are also
included, as are 6D values of the first 5 ν-zeros
of Pmν (cos θ) and of its derivative for m = 0(1)4,
θ = 10◦, 30◦, 150◦.

• Belousov (1962) tabulates Pmn (cos θ) (normalized)
for m = 0(1)36, n −m = 0(1)56, θ = 0(2.5◦)90◦,
6D.

• Žurina and Karmazina (1964, 1965) tabulate the
conical functions P− 1

2 +iτ (x) for τ = 0(.01)50,
x = −0.9(.1)0.9, 7S; P− 1

2 +iτ (x) for τ = 0(.01)50,
x = 1.1(.1)2(.2)5(.5)10(10)60, 7D. Auxiliary ta-
bles are included to facilitate computation for
larger values of τ when −1 < x < 1.

• Žurina and Karmazina (1963) tabulates the con-
ical functions P1

− 1
2 +iτ

(x) for τ = 0(.01)25, x =

−0.9(.1)0.9, 7S; P 1
− 1

2 +iτ
(x) for τ = 0(.01)25, x =

1.1(.1)2(.2)5(.5)10(10)60, 7S. Auxiliary tables are
included to assist computation for larger values of
τ when −1 < x < 1.

For tables prior to 1961 see Fletcher et al. (1962)
and Lebedev and Fedorova (1960).

14.34 Software

See http://dlmf.nist.gov/14.34.
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Erdélyi et al. (1953a, Chapter III), Hobson (1931), Jef-
freys and Jeffreys (1956), MacRobert (1967), Magnus
et al. (1966), Robin (1957, 1958, 1959), Snow (1952),
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Notation

15.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable.
z = x+ iy complex variable.
a, b, c real or complex parameters.
k, `,m, n integers.
s nonnegative integer.
δ arbitrary small positive constant.
Γ(z) gamma function (§5.2(i)).
ψ(z) Γ′(z)/Γ(z) .

Unless indicated otherwise primes denote derivatives
with respect to the variable.

We use the following notations for the hypergeomet-
ric function:

15.1.1 2F1(a, b; c; z) = F (a, b; c; z) = F

(
a, b

c
; z
)
,

and also
15.1.2

F (a, b; c; z)
Γ(c)

= F(a, b; c; z) = F
(
a, b

c
; z
)

= 2F1(a, b; c; z),

(Olver (1997b, Chapter 5)).

Properties

15.2 Definitions and Analytical Properties

15.2(i) Gauss Series

The hypergeometric function F (a, b; c; z) is defined by
the Gauss series
15.2.1

F (a, b; c; z) =
∞∑
s=0

(a)s(b)s
(c)ss!

zs

= 1 +
ab

c
z +

a(a+ 1)b(b+ 1)
c(c+ 1)2!

z2 + · · ·

=
Γ(c)

Γ(a) Γ(b)

∞∑
s=0

Γ(a+ s) Γ(b+ s)
Γ(c+ s)s!

zs,

on the disk |z| < 1, and by analytic continuation else-
where. In general, F (a, b; c; z) does not exist when

c = 0,−1,−2, . . . . The branch obtained by introduc-
ing a cut from 1 to +∞ on the real z-axis, that is, the
branch in the sector |ph(1− z)| ≤ π, is the principal
branch (or principal value) of F (a, b; c; z).

For all values of c

15.2.2 F(a, b; c; z) =
∞∑
s=0

(a)s(b)s
Γ(c+ s)s!

zs, |z| < 1,

again with analytic continuation for other values of z,
and with the principal branch defined in a similar way.

Except where indicated otherwise principal branches
of F (a, b; c; z) and F(a, b; c; z) are assumed throughout
this Handbook.

The difference between the principal branches on the
two sides of the branch cut (§4.2(i)) is given by

15.2.3

F
(
a, b

c
;x+ i0

)
− F

(
a, b

c
;x− i0

)
=

2πi
Γ(a) Γ(b)

(x− 1)c−a−b F
(
c− a, c− b
c− a− b+ 1

; 1− x
)

,

x > 1.

On the circle of convergence, |z| = 1, the Gauss se-
ries:

(a) Converges absolutely when <(c− a− b) > 0.

(b) Converges conditionally when −1 <
<(c− a− b) ≤ 0 and z = 1 is excluded.

(c) Diverges when <(c− a− b) ≤ −1.

For the case z = 1 see also §15.4(ii).

15.2(ii) Analytic Properties

The principal branch of F(a, b; c; z) is an entire func-
tion of a, b, and c. The same is true of other branches,
provided that z = 0, 1, and∞ are excluded. As a multi-
valued function of z, F(a, b; c; z) is analytic everywhere
except for possible branch points at z = 0, 1, and ∞.
The same properties hold for F (a, b; c; z), except that
as a function of c, F (a, b; c; z) in general has poles at
c = 0,−1,−2, . . . .

Because of the analytic properties with respect to a,
b, and c, it is usually legitimate to take limits in for-
mulas involving functions that are undefined for certain
values of the parameters.
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For example, when a = −m, m = 0, 1, 2, . . . , and
c 6= 0,−1,−2, . . . , F (a, b; c; z) is a polynomial:

15.2.4

F (−m, b; c; z)

=
m∑
n=0

(−m)n(b)n
(c)nn!

zn =
m∑
n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn.

This formula is also valid when c = −m − `, ` =
0, 1, 2, . . . , provided that we use the interpretation

15.2.5 F

(
−m, b
−m− `

; z
)

= lim
c→−m−`

(
lim

a→−m
F

(
a, b

c
; z
))

,

and not

15.2.6 F

(
−m, b
−m− `

; z
)

= lim
a→−m

F

(
a, b

a− `
; z
)
,

which is sometimes used in the literature. (Both in-
terpretations give solutions of the hypergeometric dif-
ferential equation (15.10.1), as does F(a, b; c; z), which
is analytic at c = 0,−1,−2, . . . .) For illustration see
Figures 15.3.6 and 15.3.7.

In the case c = −m the right-hand side of (15.2.4)
becomes the first m + 1 terms of the Maclaurin series
for (1− z)−b.

15.3 Graphics

15.3(i) Graphs

Figure 15.3.1: F
(

4
3 ,

9
16 ; 14

5 ;x
)
,−100 ≤ x ≤ 1. Figure 15.3.2: F (5,−10; 1;x),−0.023 ≤ x ≤ 1.

Figure 15.3.3: F (1,−10; 10;x),−3 ≤ x ≤ 1. Figure 15.3.4: F (5, 10; 1;x),−1 ≤ x ≤ 0.022.
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15.3(ii) Surfaces

In Figures 15.3.5 and 15.3.6, height corresponds to the absolute value of the function and color to the phase. See
also p. xiv.

Figure 15.3.5: F
(

4
3 ,

9
16 ; 14

5 ;x+ iy
)
, 0 ≤ x ≤ 2,−0.5 ≤

y ≤ 0.5. (There is a cut along the real axis from 1 to
∞.)

Figure 15.3.6: F
(
−3, 3

5 ;u+ iv; 1
2

)
,−6 ≤ u ≤ 2,−2 ≤

v ≤ 2. (With c = u + iv the only poles occur at c =
0,−1,−2; compare §15.2(ii).)

Figure 15.3.7: |F
(
−3, 3

5 ;u+ iv; 1
2

)
|,−6 ≤ u ≤ 2,−2 ≤

v ≤ 2.

15.4 Special Cases

15.4(i) Elementary Functions

The following results hold for principal branches when
|z| < 1, and by analytic continuation elsewhere. Excep-
tions are (15.4.8) and (15.4.10), that hold for |z| < π/4 ,
and (15.4.12), (15.4.14), and (15.4.16), that hold for
|z| < π/2 .

15.4.1 F (1, 1; 2; z) = −z−1 ln(1− z),

15.4.2 F
(

1
2 , 1; 3

2 ; z2
)

=
1
2z

ln
(

1 + z

1− z

)
,

15.4.3 F
(

1
2 , 1; 3

2 ;−z2
)

= z−1 arctan z,

15.4.4 F
(

1
2 ,

1
2 ; 3

2 ; z2
)

= z−1 arcsin z,

15.4.5 F
(

1
2 ,

1
2 ; 3

2 ;−z2
)

= z−1 ln
(
z +

√
1 + z2

)
.

15.4.6 F (a, b; b; z) = (1− z)−a;
compare §15.2(ii).

15.4.7 F
(
a, 1

2 + a; 1
2 ; z2

)
= 1

2

(
(1 + z)−2a + (1− z)−2a

)
,

15.4.8 F
(
a, 1

2 + a; 1
2 ;− tan2 z

)
= (cos z)2a cos(2az).

15.4.9

F
(
a, 1

2 + a; 3
2 ; z2

)
=

1
(2− 4a)z

(
(1 + z)1−2a − (1− z)1−2a

)
,

15.4.10

F
(
a, 1

2 + a; 3
2 ;− tan2 z

)
= (cos z)2a sin((1− 2a)z)

(1− 2a) sin z
.

15.4.11

F
(
−a, a; 1

2 ;−z2
)

= 1
2

((√
1 + z2 + z

)2a
+
(√

1 + z2 − z
)2a)

,

15.4.12 F
(
−a, a; 1

2 ; sin2 z
)

= cos(2az).

15.4.13

F
(
a, 1− a; 1

2 ;−z2
)

=
1

2
√

1 + z2

((√
1 + z2 + z

)2a−1

+
(√

1 + z2 − z
)2a−1

)
,

15.4.14 F
(
a, 1− a; 1

2 ; sin2 z
)

=
cos((2a− 1)z)

cos z
.
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15.4.15

F
(
a, 1− a; 3

2 ;−z2
)

=
1

(2− 4a)z

((√
1 + z2 + z

)1−2a

−
(√

1 + z2 − z
)1−2a

)
,

15.4.16 F
(
a, 1− a; 3

2 ; sin2 z
)

=
sin((2a− 1)z)
(2a− 1) sin z

.

15.4.17 F
(
a, 1

2 + a; 1 + 2a; z
)

=
(

1
2 + 1

2

√
1− z

)−2a
,

15.4.18 F
(
a, 1

2 + a; 2a; z
)

=
1√

1− z
(

1
2 + 1

2

√
1− z

)1−2a
.

15.4.19 F (a+ 1, b; a; z) = (1−(1−(b/a ))z) (1−z)−1−b.

For an extensive list of elementary representations
see Prudnikov et al. (1990, pp. 468–488).

15.4(ii) Argument Unity

If <(c− a− b) > 0, then

15.4.20 F (a, b; c; 1) =
Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

.

If c = a+ b, then

15.4.21 lim
z→1−

F (a, b; a+ b; z)
− ln(1− z)

=
Γ(a+ b)
Γ(a) Γ(b)

.

If <(c− a− b) = 0 and c 6= a+ b, then

15.4.22

lim
z→1−

(1− z)a+b−c
(
F (a, b; c; z)

− Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b)

)
=

Γ(c) Γ(a+ b− c)
Γ(a) Γ(b)

.

If <(c− a− b) < 0, then

15.4.23 lim
z→1−

F (a, b; c; z)
(1− z)c−a−b

=
Γ(c) Γ(a+ b− c)

Γ(a) Γ(b)
.

Chu–Vandermonde Identity

15.4.24 F (−n, b; c; 1) =
(c− b)n

(c)n
, n = 0, 1, 2, . . . .

Dougall’s Bilateral Sum

This is a generalization of (15.4.20). If a, b are not in-
tegers and <(c+ d− a− b) > 1, then

15.4.25
∞∑

n=−∞

Γ(a+ n) Γ(b+ n)
Γ(c+ n) Γ(d+ n)

=
π2

sin(πa) sin(πb)
Γ(c+ d− a− b− 1)

Γ(c− a) Γ(d− a) Γ(c− b) Γ(d− b)
.

15.4(iii) Other Arguments

15.4.26 F (a, b; a− b+ 1;−1) =
Γ(a− b+ 1) Γ

(
1
2a+ 1

)
Γ(a+ 1) Γ

(
1
2a− b+ 1

) .
15.4.27 F (1, a; a+ 1;−1) = 1

2a
(
ψ
(

1
2a+ 1

2

)
− ψ

(
1
2a
))
.

15.4.28

F
(
a, b; 1

2a+ 1
2b+ 1

2 ; 1
2

)
=
√
π

Γ
(

1
2a+ 1

2b+ 1
2

)
Γ
(

1
2a+ 1

2

)
Γ
(

1
2b+ 1

2

) .
15.4.29

F
(
a, b; 1

2a+ 1
2b+ 1; 1

2

)
=

2
√
π

a− b
Γ
(

1
2a+ 1

2b+ 1
)

×

(
1

Γ
(

1
2a
)

Γ
(

1
2b+ 1

2

)
− 1

Γ
(

1
2a+ 1

2

)
Γ
(

1
2b
)) .

15.4.30 F
(
a, 1− a; b; 1

2

)
=

21−b√π Γ(b)
Γ
(

1
2a+ 1

2b
)

Γ
(

1
2b−

1
2a+ 1

2

) .
15.4.31

F
(
a, 1

2 + a; 3
2 − 2a;− 1

3

)
=
(

8
9

)−2a Γ
(

4
3

)
Γ
(

3
2 − 2a

)
Γ
(

3
2

)
Γ
(

4
3 − 2a

) .
15.4.32

F
(
a, 1

2 + a; 5
6 + 2

3a; 1
9

)
=
√
π

(
3
4

)a Γ
(

5
6 + 2

3a
)

Γ
(

1
2 + 1

3a
)

Γ
(

5
6 + 1

3a
) .

15.4.33

F
(

3a, 1
3 + a; 2

3 + 2a; e iπ/3
)

=
√
πe iπa/2

(
16
27

)(3a+1)/6 Γ
(

5
6 + a

)
Γ
(

2
3 + a

)
Γ
(

2
3

) .
15.5 Derivatives and Contiguous Functions

15.5(i) Differentiation Formulas

15.5.1
d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z),

15.5.2

dn

dzn
F (a, b; c; z) =

(a)n(b)n
(c)n

F (a+ n, b+ n; c+ n; z).

15.5.3

(
z
d

dz
z

)n (
za−1 F (a, b; c; z)

)
= (a)nz

a+n−1 F (a+ n, b; c; z).

15.5.4

dn

dzn
(
zc−1 F (a, b; c; z)

)
= (c− n)nz

c−n−1 F (a, b; c− n; z).

15.5.5(
z
d

dz
z

)n (
zc−a−1(1− z)a+b−c F (a, b; c; z)

)
= (c− a)nz

c−a+n−1(1− z)a−n+b−c F (a− n, b; c; z).
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15.5.6
dn

dzn
(
(1− z)a+b−c F (a, b; c; z)

)
=

(c− a)n(c− b)n
(c)n

(1− z)a+b−c−n F (a, b; c+ n; z).

15.5.7(
(1− z) d

dz
(1− z)

)n (
(1− z)a−1 F (a, b; c; z)

)
= (−1)n

(a)n(c− b)n
(c)n

(1− z)a+n−1

× F (a+ n, b; c+ n; z).

15.5.8(
(1− z) d

dz
(1− z)

)n (
zc−1(1− z)b−c F (a, b; c; z)

)
= (c− n)nz

c−n−1(1− z)b−c+n F (a− n, b; c− n; z).

15.5.9

dn

dzn
(
zc−1(1− z)a+b−c F (a, b; c; z)

)
= (c− n)nz

c−n−1(1− z)a+b−c−n

× F (a− n, b− n; c− n; z).
Other versions of several of the identities in this sub-

section can be constructed with the aid of the operator
identity

15.5.10

(
z
d

dz
z

)n
= zn

dn

dzn
zn, n = 1, 2, 3, . . . .

See Erdélyi et al. (1953a, pp. 102–103).

15.5(ii) Contiguous Functions

The six functions F (a± 1, b; c; z), F (a, b± 1; c; z),
F (a, b; c± 1; z) are said to be contiguous to F (a, b; c; z).

15.5.11

(c− a)F (a− 1, b; c; z)
+ (2a− c+ (b− a)z)F (a, b; c; z)
+ a(z − 1)F (a+ 1, b; c; z) = 0,

15.5.12
(b− a)F (a, b; c; z) + aF (a+ 1, b; c; z)
− b F (a, b+ 1; c; z) = 0,

15.5.13

(c− a− b)F (a, b; c; z)
+ a(1− z)F (a+ 1, b; c; z)
− (c− b)F (a, b− 1; c; z) = 0,

15.5.14

c (a+ (b− c)z)F (a, b; c; z)
− ac(1− z)F (a+ 1, b; c; z)
+ (c− a)(c− b)z F (a, b; c+ 1; z) = 0,

15.5.15
(c− a− 1)F (a, b; c; z) + aF (a+ 1, b; c; z)
− (c− 1)F (a, b; c− 1; z) = 0,

15.5.16
c(1− z)F (a, b; c; z)− c F (a− 1, b; c; z)

+ (c− b)z F (a, b; c+ 1; z) = 0,

15.5.17

(a− 1 + (b+ 1− c)z)F (a, b; c; z)
+ (c− a)F (a− 1, b; c; z)
− (c− 1)(1− z)F (a, b; c− 1; z) = 0,

15.5.18

c(c− 1)(z − 1)F (a, b; c− 1; z)
+ c (c− 1− (2c− a− b− 1)z)F (a, b; c; z)
+ (c− a)(c− b)z F (a, b; c+ 1; z) = 0.

By repeated applications of (15.5.11)–(15.5.18) any
function F (a+ k, b+ `; c+m; z), in which k, `,m are
integers, can be expressed as a linear combination of
F (a, b; c; z) and any one of its contiguous functions, with
coefficients that are rational functions of a, b, c, and z.

An equivalent equation to the hypergeometric differ-
ential equation (15.10.1) is
15.5.19

z(1− z)(a+ 1)(b+ 1)F (a+ 2, b+ 2; c+ 2; z)
+ (c− (a+ b+ 1)z)(c+ 1)F (a+ 1, b+ 1; c+ 1; z)
− c(c+ 1)F (a, b; c; z) = 0.

Further contiguous relations include:
15.5.20

z(1− z) (dF (a, b; c; z)/dz )
= (c− a)F (a− 1, b; c; z) + (a− c+ bz)F (a, b; c; z)
= (c− b)F (a, b− 1; c; z) + (b− c+ az)F (a, b; c; z),

15.5.21

c(1− z) (dF (a, b; c; z)/dz )
= (c−a)(c−b)F (a, b; c+ 1; z)+c(a+b−c)F (a, b; c; z).

15.6 Integral Representations

The function F(a, b; c; z) (not F (a, b; c; z)) has the fol-
lowing integral representations:
15.6.1

1
Γ(b) Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a
dt, <c > <b > 0.

15.6.2

Γ(1 + b− c)
2πiΓ(b)

∫ (1+)

0

tb−1(t− 1)c−b−1

(1− zt)a
dt,

c− b 6= 1, 2, 3, . . . , <b > 0.

15.6.3
e−bπi

Γ(1− b)
2πiΓ(c− b)

∫ (0+)

∞

tb−1(t+ 1)a−c

(t− zt+ 1)a
dt,

b 6= 1, 2, 3, . . . , <(c− b) > 0.

15.6.4
e−bπi

Γ(1− b)
2πiΓ(c− b)

∫ (0+)

1

tb−1(1− t)c−b−1

(1− zt)a
dt,

b 6= 1, 2, 3, . . . , <(c− b) > 0.

15.6.5

e−cπi Γ(1− b) Γ(1 + b− c)

× 1
4π2

∫ (0+,1+,0−,1−)

A

tb−1(1− t)c−b−1

(1− zt)a
dt,

b, c− b 6= 1, 2, 3, . . . .

15.6.6

1
2πiΓ(a) Γ(b)

∫ i∞

−i∞

Γ(a+ t) Γ(b+ t) Γ(−t)
Γ(c+ t)

(−z)t dt,

a, b 6= 0,−1,−2, . . . .
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15.6.7

1
2πiΓ(a) Γ(b) Γ(c− a) Γ(c− b)

∫ i∞

−i∞
Γ(a+ t) Γ(b+ t) Γ(c− a− b− t) Γ(−t)(1− z)t dt,

a, b, c− a, c− b 6= 0,−1,−2, . . . .

15.6.8
1

Γ(c− d)

∫ 1

0

F(a, b; d; zt)td−1(1− t)c−d−1 dt, <c > <d > 0.

15.6.9

∫ 1

0

td−1(1− t)c−d−1

(1− zt)a+b−λ F
(
λ− a, λ− b

d
; zt
)

F
(
a+ b− λ, λ− d

c− d
;

(1− t)z
1− zt

)
dt, <c > <d > 0.

These representations are valid when |ph(1− z)| < π,
except (15.6.6) which holds for |ph(−z)| < π. In all
cases the integrands are continuous functions of t on
the integration paths, except possibly at the endpoints.
In addition:

In (15.6.1) all functions in the integrand assume
their principal values.

In (15.6.2) the point 1/z lies outside the integration
contour, tb−1 and (t − 1)c−b−1 assume their principal
values where the contour cuts the interval (1,∞), and
(1− zt)a = 1 at t = 0.

In (15.6.3) the point 1/(z − 1) lies outside the in-
tegration contour, the contour cuts the real axis be-
tween t = −1 and 0, at which point ph t = π and
ph(1 + t) = 0.

In (15.6.4) the point 1/z lies outside the integration
contour, and at the point where the contour cuts the
negative real axis ph t = π and ph(1− t) = 0.

In (15.6.5) the integration contour starts and termi-
nates at a point A on the real axis between 0 and 1.
It encircles t = 0 and t = 1 once in the positive di-
rection, and then once in the negative direction. See
Figure 15.6.1. At the starting point ph t and ph(1− t)
are zero. Compare Figure 5.12.3.

In (15.6.6) the integration contour separates the
poles of Γ(a+ t) and Γ(b+ t) from those of Γ(−t), and
(−z)t has its principal value.

In (15.6.7) the integration contour separates
the poles of Γ(a+ t) and Γ(b+ t) from those of
Γ(c− a− b− t) and Γ(−t), and (1 − z)t has its prin-
cipal value.

In each of (15.6.8) and (15.6.9) all functions in the
integrand assume their principal values.

Figure 15.6.1: t-plane. Contour of integration in
(15.6.5).

15.7 Continued Fractions

If |ph(1− z)| < π, then

15.7.1
F(a, b; c; z)

F(a, b+ 1; c+ 1; z)
= t0 −

u1z

t1 −
u2z

t2 −
u3z

t3 −
· · · ,

where

15.7.2
tn = c+ n, u2n+1 = (a+ n)(c− b+ n),
u2n = (b+ n)(c− a+ n).

If |z| < 1, then

15.7.3
F(a, b; c; z)

F(a, b+ 1; c+ 1; z)
= v0−

w1

v1 −
w2

v2 −
w3

v3 −
· · · ,

where

15.7.4
vn = c+ n+ (b− a+ n+ 1)z,
wn = (b+ n)(c− a+ n)z.

If <z < 1
2 , then

15.7.5

F(a, b; c; z)
F(a+ 1, b+ 1; c+ 1; z)

= x0 +
y1

x1 +
y2

x2 +
y3

x3 +
· · ·,

where

15.7.6
xn = c+ n− (a+ b+ 2n+ 1)z,
yn = (a+ n)(b+ n)z(1− z).

See also Cuyt et al. (2008, pp. 295–309).
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15.8 Transformations of Variable

15.8(i) Linear Transformations

All functions in this subsection and §15.8(ii) assume their principal values.

15.8.1
F
(
a, b

c
; z
)

= (1− z)−a F
(
a, c− b

c
;

z

z − 1

)
= (1− z)−b F

(
c− a, b

c
;

z

z − 1

)
= (1− z)c−a−b F

(
c− a, c− b

c
; z
)

,

|ph(1− z)| < π.

15.8.2

sin(π(b− a))
π

F
(
a, b

c
; z
)

=
(−z)−a

Γ(b) Γ(c− a)
F
(
a, a− c+ 1
a− b+ 1

;
1
z

)
− (−z)−b

Γ(a) Γ(c− b)
F
(
b, b− c+ 1
b− a+ 1

;
1
z

)
, |ph(−z)| < π.

15.8.3

sin(π(b− a))
π

F
(
a, b

c
; z
)

=
(1− z)−a

Γ(b) Γ(c− a)
F
(
a, c− b
a− b+ 1

;
1

1− z

)
− (1− z)−b

Γ(a) Γ(c− b)
F
(
b, c− a
b− a+ 1

;
1

1− z

)
,

|ph(−z)| < π.
15.8.4

sin(π(c− a− b))
π

F
(
a, b

c
; z
)

=
1

Γ(c− a) Γ(c− b)
F
(

a, b

a+ b− c+ 1
; 1− z

)
− (1− z)c−a−b

Γ(a) Γ(b)
F
(
c− a, c− b
c− a− b+ 1

; 1− z
)

,

|ph z| < π, |ph(1− z)| < π.
15.8.5

sin(π(c− a− b))
π

F
(
a, b

c
; z
)

=
z−a

Γ(c− a) Γ(c− b)
F
(
a, a− c+ 1
a+ b− c+ 1

; 1− 1
z

)
− (1− z)c−a−bza−c

Γ(a) Γ(b)
F
(
c− a, 1− a
c− a− b+ 1

; 1− 1
z

)
, |ph z| < π, |ph(1− z)| < π.

15.8(ii) Linear Transformations: Limiting Cases

With m = 0, 1, 2, . . . , polynomial cases of (15.8.2)–(15.8.5) are given by

15.8.6 F

(
−m, b
c

; z
)

=
(b)m
(c)m

(−z)m F
(
−m, 1− c−m

1− b−m
;

1
z

)
=

(b)m
(c)m

(1− z)m F
(
−m, c− b
1− b−m

;
1

1− z

)
,

15.8.7 F

(
−m, b
c

; z
)

=
(c− b)m

(c)m
F

(
−m, b

b− c−m+ 1
; 1− z

)
=

(c− b)m
(c)m

zm F

(
−m, 1− c−m
b− c−m+ 1

; 1− 1
z

)
,

with the understanding that if b = −`, ` = 0, 1, 2, . . . , then m ≤ `.
When b− a is an integer limits are taken in (15.8.2) and (15.8.3) as follows.
If b− a is a nonnegative integer, then

15.8.8

F
(
a, a+m

c
; z
)

=
(−z)−a

Γ(a+m)

m−1∑
k=0

(a)k(m− k − 1)!
k! Γ(c− a− k)

z−k +
(−z)−a

Γ(a)

∞∑
k=0

(a+m)k
k!(k +m)! Γ(c− a− k −m)

(−1)kz−k−m

× (ln(−z) + ψ(k + 1) + ψ(k +m+ 1)− ψ(a+ k +m)− ψ(c− a− k −m)) ,
|z| > 1, |ph(−z)| < π,

15.8.9

F
(
a, a+m

c
; z
)

=
(1− z)−a

Γ(a+m) Γ(c− a)

m−1∑
k=0

(a)k(c− a−m)k(m− k − 1)!
k!

(z − 1)−k

+
(−1)m(1− z)−a−m

Γ(a) Γ(c− a−m)

∞∑
k=0

(a+m)k(c− a)k
k!(k +m)!

(1− z)−k

× (ln(1− z) + ψ(k + 1) + ψ(k +m+ 1)− ψ(a+ k +m)− ψ(c− a+ k)),
|z − 1| > 1, |ph(1− z)| < π.

In (15.8.8) when c − a − k − m is a nonpositive integer ψ(c− a− k −m)/Γ(c− a− k −m) is interpreted as
(−1)m+k+a−c+1(m+ k + a− c)!. Also, if a is a nonpositive integer, then (15.8.6) applies.
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Alternatively, if b− a is a negative integer, then we interchange a and b in F(a, b; c; z).
In a similar way, when c− a− b is an integer limits are taken in (15.8.4) and (15.8.5) as follows.
If c− a− b is a nonnegative integer, then

15.8.10

F
(

a, b

a+ b+m
; z
)

=
1

Γ(a+m) Γ(b+m)

m−1∑
k=0

(a)k(b)k(m− k − 1)!
k!

(z − 1)k − (z − 1)m

Γ(a) Γ(b)

∞∑
k=0

(a+m)k(b+m)k
k!(k +m)!

(1− z)k

× (ln(1− z)− ψ(k + 1)− ψ(k +m+ 1) + ψ(a+ k +m) + ψ(b+ k +m)) ,
|z − 1| < 1, |ph(1− z)| < π,

15.8.11

F
(

a, b

a+ b+m
; z
)

=
z−a

Γ(a+m)

m−1∑
k=0

(a)k(m− k − 1)!
k! Γ(b+m− k)

(
1− 1

z

)k
− z−a

Γ(a)

∞∑
k=0

(a+m)k
k!(k +m)! Γ(b− k)

(−1)k
(

1− 1
z

)k+m

×
(

ln
(

1− z
z

)
− ψ(k + 1)− ψ(k +m+ 1) + ψ(a+ k +m) + ψ(b− k)

)
,

<z > 1
2 , |ph z| < π, |ph(1− z)| < π.

In (15.8.11) when b − k is a nonpositive integer,
ψ(b− k)/Γ(b− k) is interpreted as (−1)k−b+1(k − b)!.
Also, if a or b or both are nonpositive integers, then
(15.8.7) applies.

Lastly, if c−a− b is a negative integer, then we first
apply the transformation
15.8.12

F(a, b; a+ b−m; z) = (1− z)−m F
(
ã, b̃; ã+ b̃+m; z

)
,

ã = a−m, b̃ = b−m.

15.8(iii) Quadratic Transformations

A quadratic transformation relates two hypergeometric
functions, with the variable in one a quadratic function
of the variable in the other, possibly combined with a
fractional linear transformation.

A necessary and sufficient condition that there ex-
ists a quadratic transformation is that at least one of
the equations shown in Table 15.8.1 is satisfied.

Table 15.8.1: Quadratic transformations of the hyper-
geometric function.

Group 1 Group 2 Group 3 Group 4

c = a− b+ 1 a = b+ 1
2

c = 2a c = b− a+ 1 b = a+ 1
2 c = 1

2

c = 2b c = 1
2 (a+ b+ 1) c = a+ b+ 1

2 c = 3
2

a+ b = 1 c = a+ b− 1
2

The hypergeometric functions that correspond to
Groups 1 and 2 have z as variable. The hypergeomet-
ric functions that correspond to Groups 3 and 4 have
a nonlinear function of z as variable. The transforma-
tion formulas between two hypergeometric functions in
Group 2, or two hypergeometric functions in Group 3,
are the linear transformations (15.8.1).

In the equations that follow in this subsection all
functions take their principal values.

Group 1 −→ Group 3

15.8.13 F

(
a, b

2b
; z
)

=
(
1− 1

2z
)−a

F

(
1
2a,

1
2a+ 1

2

b+ 1
2

;
(

z

2− z

)2
)

, |ph(1− z)| < π,

15.8.14 F

(
a, b

2b
; z
)

= (1− z)−a/2
F

(
1
2a, b−

1
2a

b+ 1
2

;
z2

4z − 4

)
, |ph(1− z)| < π.

Group 2 −→ Group 3

15.8.15 F

(
a, b

a− b+ 1
; z
)

= (1 + z)−a F
( 1

2a,
1
2a+ 1

2

a− b+ 1
;

4z
(1 + z)2

)
, |z| < 1,

15.8.16 F

(
a, b

a− b+ 1
; z
)

= (1− z)−a F
( 1

2a,
1
2a− b+ 1

2

a− b+ 1
;
−4z

(1− z)2

)
, |z| < 1.
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15.8.17 F

(
a, b

1
2 (a+ b+ 1)

; z
)

= (1− 2z)−a F

(
1
2a,

1
2a+ 1

2
1
2 (a+ b+ 1)

;
4z(z − 1)
(1− 2z)2

)
, <z < 1

2 ,

15.8.18 F

(
a, b

1
2 (a+ b+ 1)

; z
)

= F

(
1
2a,

1
2b

1
2 (a+ b+ 1)

; 4z(1− z)

)
, <z < 1

2 .

15.8.19 F

(
a, 1− a

c
; z
)

= (1− 2z)1−a−c(1− z)c−1 F

( 1
2 (a+ c), 1

2 (a+ c− 1)
c

;
4z(z − 1)
(1− 2z)2

)
, <z < 1

2 ,

15.8.20 F

(
a, 1− a

c
; z
)

= (1− z)c−1 F

( 1
2 (c− a), 1

2 (a+ c− 1)
c

; 4z(1− z)
)

, <z < 1
2 .

Group 2 −→ Group 1

15.8.21 F

(
a, b

a− b+ 1
; z
)

=
(
1 +
√
z
)−2a

F

(
a, a− b+ 1

2

2a− 2b+ 1
;

4
√
z

(1 +
√
z)2

)
, |ph z| < π, |z| < 1.

15.8.22 F

(
a, b

1
2 (a+ b+ 1)

; z
)

=

(√
1− z−1 − 1√
1− z−1 + 1

)a
F

(
a, 1

2 (a+ b)
a+ b

;
4
√

1− z−1(√
1− z−1 + 1

)2
)

, |ph(−z)| < π, <z < 1
2 .

15.8.23

F

(
a, 1− a

c
; z
)

=
(√

1− z−1 − 1
)1−a (√

1− z−1 + 1
)a−2c+1 (

1− z−1
)c−1

F

(
c− a, c− 1

2

2c− 1
;

4
√

1− z−1(√
1− z−1 + 1

)2
)

,

|ph(−z)| < π, <z < 1
2 .

Group 2 −→ Group 4

15.8.24

F

(
a, b

a− b+ 1
; z
)

= (1− z)−a
Γ(a− b+ 1) Γ

(
1
2

)
Γ
(

1
2a+ 1

2

)
Γ
(

1
2a− b+ 1

) F( 1
2a,

1
2a− b+ 1

2
1
2

;
(
z + 1
z − 1

)2
)

+ (1 + z)(1− z)−a−1 Γ(a− b+ 1) Γ
(
− 1

2

)
Γ
(

1
2a
)

Γ
(

1
2a− b+ 1

2

) F( 1
2a+ 1

2 ,
1
2a− b+ 1
3
2

;
(
z + 1
z − 1

)2
)

,

|ph(−z)| < π.

15.8.25

F

(
a, b

1
2 (a+ b+ 1)

; z
)

=
Γ
(

1
2 (a+ b+ 1)

)
Γ
(

1
2

)
Γ
(

1
2a+ 1

2

)
Γ
(

1
2b+ 1

2

) F( 1
2a,

1
2b

1
2

; (1− 2z)2

)

+ (1− 2z)
Γ
(

1
2 (a+ b+ 1)

)
Γ
(
− 1

2

)
Γ
(

1
2a
)

Γ
(

1
2b
) F

(
1
2a+ 1

2 ,
1
2b+ 1

2
3
2

; (1− 2z)2

)
,

|ph z| < π, |ph(1− z)| < π.

15.8.26

F

(
a, 1− a

c
; z
)

= (1− z)c−1 Γ(c) Γ
(

1
2

)
Γ
(

1
2 (c− a+ 1)

)
Γ
(

1
2c+ 1

2a
) F( 1

2c−
1
2a,

1
2c+ 1

2a−
1
2

1
2

; (1− 2z)2

)

+ (1− 2z)(1− z)c−1 Γ(c) Γ
(
− 1

2

)
Γ
(

1
2c−

1
2a
)

Γ
(

1
2 (c+ a− 1)

) F( 1
2c−

1
2a+ 1

2 ,
1
2c+ 1

2a
3
2

; (1− 2z)2

)
,

|ph z| < π, |ph(1− z)| < π.

Group 4 −→ Group 2

15.8.27

2 Γ
(

1
2

)
Γ
(
a+ b+ 1

2

)
Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

) F
(
a, b; 1

2 ; z
)

= F
(
2a, 2b; a+ b+ 1

2 ; 1
2 −

1
2

√
z
)

+ F
(
2a, 2b; a+ b+ 1

2 ; 1
2 + 1

2

√
z
)
,

|ph z| < π, |ph(1− z)| < π.
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15.8.28

2
√
z Γ
(
− 1

2

)
Γ
(
a+ b− 1

2

)
Γ
(
a− 1

2

)
Γ
(
b− 1

2

) F
(
a, b; 3

2 ; z
)

= F
(
2a− 1, 2b− 1; a+ b− 1

2 ; 1
2 −

1
2

√
z
)

− F
(
2a− 1, 2b− 1; a+ b− 1

2 ; 1
2 + 1

2

√
z
)
, |ph z| < π, |ph(1− z)| < π.

15.8(iv) Quadratic Transformations (Continued)

When the intersection of two groups in Table 15.8.1 is not empty there exist special quadratic transformations, with
only one free parameter, between two hypergeometric functions in the same group.

Examples

b = 1
3a+ 1

3 , c = 2b = a− b+ 1 in Groups 1 and 2.
(15.8.21) becomes

15.8.29 F

(
a, 1

3a+ 1
3

2
3a+ 2

3

; z

)
=
(
1 +
√
z
)−2a

F

(
a, 2

3a+ 1
6

4
3a+ 1

3

;
4
√
z

(1 +
√
z)2

)
.

This is a quadratic transformation between two cases in Group 1.
We can also use (15.8.13), followed by the inverse of (15.8.15), and obtain

15.8.30
(
1− 1

2z
)−a

F

(
1
2a,

1
2a+ 1

2
1
3a+ 5

6

;
(

z

2− z

)2
)

= F

(
a, 1

3a+ 1
3

2
3a+ 2

3

; z

)
= (1 + z)−a F

(
1
2a,

1
2a+ 1

2
2
3a+ 2

3

;
4z

(1 + z)2

)
,

which is a quadratic transformation between two cases in Group 3.
For further examples see Andrews et al. (1999, pp. 130–132 and 176–177).

15.8(v) Cubic Transformations

Examples

15.8.31 F

(
3a, 3a+ 1

2

4a+ 2
3

; z

)
=
(
1− 9

8z
)−2a

F

(
a, a+ 1

2

2a+ 5
6

;
27z2(z − 1)
(9z − 8)2

)
, <z < 8

9 .

With ζ = e 2πi/3 (1− z)/
(
z − e 4πi/3

)

15.8.32

(
1− z3

)a
(−z)3a

(
1

Γ
(
a+ 2

3

)
Γ
(

2
3

) F(a, a+ 1
3

2
3

; z−3

)
+

e
1
3πi

z Γ(a) Γ
(

4
3

) F(a+ 1
3 , a+ 2

3
4
3

; z−3

))

=
3

3
2a+ 1

2 e
1
2aπi Γ

(
a+ 1

3

)
(1− ζ)a

2π Γ
(
2a+ 2

3

)
(−ζ)2a

F

(
a+ 1

3 , 3a
2a+ 2

3

; ζ−1

)
, |z| > 1, |ph(−z)| < 1

3π.

Ramanujan’s Cubic Transformation

15.8.33

F

(
1
3 ,

2
3

1
; 1−

(
1− z
1 + 2z

)3
)

= (1 + 2z)F
( 1

3 ,
2
3

1
; z3

)
,

provided that z lies in the intersection of the
open disks

∣∣z − 1
4 ±

1
4

√
3i
∣∣ < 1

2

√
3, or equivalently,

|ph((1− z)/(1 + 2z) )| < π/3. This is used in a cubic
analog of the arithmetic-geometric mean. See Borwein
and Borwein (1991), and also Berndt et al. (1995).

For further examples and higher-order transforma-
tions see Goursat (1881), Watson (1910), and Vidūnas
(2005); see also Erdélyi et al. (1953a, pp. 67 and 113–
114).

15.9 Relations to Other Functions

15.9(i) Orthogonal Polynomials

For the notation see §§18.3 and 18.19.

Jacobi

15.9.1

P (α,β)
n (x) =

(α+ 1)n
n!

F

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
.

Gegenbauer (or Ultraspherical)

15.9.2 C(λ)
n (x) =

(2λ)n
n!

F

(
−n, n+ 2λ
λ+ 1

2

;
1− x

2

)
.

15.9.3 C(λ)
n (x) = (2x)n

(λ)n
n!

F

(
− 1

2n,
1
2 (1− n)

1− λ− n
;

1
x2

)
.
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15.9.4 C(λ)
n (cos θ) = eniθ

(λ)n
n!

F

(
−n, λ

1− λ− n
; e−2iθ

)
.

Chebyshev

15.9.5 Tn(x) = F

(
−n, n

1
2

;
1− x

2

)
.

15.9.6 Un(x) = (n+ 1)F
(
−n, n+ 2

3
2

;
1− x

2

)
.

Legendre

15.9.7 Pn(x) = F

(
−n, n+ 1

1
;

1− x
2

)
.

Krawtchouk

15.9.8

Kn(x; p,N) = F

(
−n,−x
−N

;
1
p

)
, n = 0, 1, 2, . . . , N ;

compare also §15.2(ii).

Meixner

15.9.9 Mn(x;β, c) = F

(
−n,−x
β

; 1− 1
c

)
.

Meixner–Pollaczek

15.9.10

P (λ)
n (x;φ) =

(2λ)n
n!

eniφ F

(
−n, λ+ ix

2λ
; 1− e−2iφ

)
.

15.9(ii) Jacobi Function

This is a generalization of Jacobi polynomials (§18.3) and has the representation

15.9.11 φ
(α,β)
λ (t) = F

( 1
2 (α+ β + 1− iλ), 1

2 (α+ β + 1 + iλ)
α+ 1

;− sinh2 t

)
.

The Jacobi transform is defined as

15.9.12 f̃(λ) =
∫ ∞

0

f(t)φ(α,β)
λ (t)(2 sinh t)2α+1(2 cosh t)2β+1 dt,

with inverse

15.9.13 f(t) =
1

2πi

∫ i∞

−i∞
f̃(iλ) Φ(α,β)

iλ (t)
Γ
(

1
2 (α+ β + 1 + λ)

)
Γ
(

1
2 (α− β + 1 + λ)

)
Γ(α+ 1) Γ(λ)2α+β+1−λ dλ,

where the contour of integration is located to the right of the poles of the gamma functions in the integrand, and

15.9.14 Φ(α,β)
λ (t) = (2 cosh t)iλ−α−β−1 F

( 1
2 (α+ β + 1− iλ), 1

2 (α− β + 1− iλ)
1− iλ

; sech2 t

)
.

For this result, together with restrictions on the functions f(t) and f̃(λ), see Koornwinder (1984a).

15.9(iii) Gegenbauer Function

This is a generalization of Gegenbauer (or ultraspheri-
cal) polynomials (§18.3). It is defined by:

15.9.15

C(λ)
α (z) =

Γ(α+ 2λ)
Γ(2λ) Γ(α+ 1)

F

(
−α, α+ 2λ
λ+ 1

2

;
1− z

2

)
.

15.9(iv) Associated Legendre Functions; Ferrers
Functions

Any hypergeometric function for which a quadratic
transformation exists can be expressed in terms of as-
sociated Legendre functions or Ferrers functions. For
examples see §§14.3(i)–14.3(iii) and 14.21(iii).

For further examples see http://dlmf.nist.gov/
15.9.iv.

15.10 Hypergeometric Differential Equation

15.10(i) Fundamental Solutions

15.10.1 z(1− z)d
2w

dz2 + (c− (a+ b+ 1)z)
dw

dz
− abw = 0.

This is the hypergeometric differential equation. It has
regular singularities at z = 0, 1,∞, with corresponding
exponent pairs {0, 1 − c}, {0, c − a − b}, {a, b}, respec-
tively. When none of the exponent pairs differ by an
integer, that is, when none of c, c − a − b, a − b is an
integer, we have the following pairs f1(z), f2(z) of fun-
damental solutions. They are also numerically satisfac-
tory (§2.7(iv)) in the neighborhood of the corresponding
singularity.
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Singularity z = 0

15.10.2

f1(z) = F

(
a, b

c
; z
)
,

f2(z) = z1−c F

(
a− c+ 1, b− c+ 1

2− c
; z
)
,

15.10.3 W {f1(z), f2(z)} = (1− c)z−c(1− z)c−a−b−1.

Singularity z = 1

15.10.4

f1(z) = F

(
a, b

a+ b+ 1− c
; 1− z

)
,

f2(z) = (1− z)c−a−b F
(
c− a, c− b
c− a− b+ 1

; 1− z
)
,

15.10.5 W {f1(z), f2(z)}= (a+b−c)z−c(1−z)c−a−b−1.

Singularity z =∞

15.10.6

f1(z) = z−a F

(
a, a− c+ 1
a− b+ 1

;
1
z

)
,

f2(z) = z−b F

(
b, b− c+ 1
b− a+ 1

;
1
z

)
,

15.10.7 W {f1(z), f2(z)} = (a− b)z−c(z − 1)c−a−b−1.

(a) If c equals n = 1, 2, 3, . . . , and a = 1, 2, . . . , n−1,
then fundamental solutions in the neighborhood of z =
0 are given by (15.10.2) with the interpretation (15.2.5)
for f2(z).

(b) If c equals n = 1, 2, 3, . . . , and a 6= 1, 2, . . . , n−1,
then fundamental solutions in the neighborhood of z =
0 are given by F (a, b;n; z) and

15.10.8

F

(
a, b

n
; z
)

ln z −
n−1∑
k=1

(n− 1)!(k − 1)!
(n− k − 1)!(1− a)k(1− b)k

(−z)−k

+
∞∑
k=0

(a)k(b)k
(n)kk!

zk (ψ(a+ k) + ψ(b+ k)− ψ(1 + k)− ψ(n+ k)) , a, b 6= n− 1, n− 2, . . . , 0,−1,−2, . . . ,

or

15.10.9

F

(
−m, b
n

; z
)

ln z −
n−1∑
k=1

(n− 1)!(k − 1)!
(n− k − 1)!(m+ 1)k(1− b)k

(−z)−k

+
m∑
k=0

(−m)k(b)k
(n)kk!

zk (ψ(1 +m− k) + ψ(b+ k)− ψ(1 + k)− ψ(n+ k))

+ (−1)mm!
∞∑

k=m+1

(k − 1−m)!(b)k
(n)kk!

zk, a = −m, m = 0, 1, 2, . . . ; b 6= n− 1, n− 2, . . . , 0,−1,−2, . . . ,

or

15.10.10

F

(
−m,−`

n
; z
)

ln z −
n−1∑
k=1

(n− 1)!(k − 1)!
(n− k − 1)!(m+ 1)k(`+ 1)k

(−z)−k

+
∑̀
k=0

(−m)k(−`)k
(n)kk!

zk (ψ(1 +m− k) + ψ(1 + `− k)− ψ(1 + k)− ψ(n+ k))

+ (−1)`` !
m∑

k=`+1

(k − 1− `)!(−m)k
(n)kk!

zk, a = −m, m = 0, 1, 2, . . . ; b = −`, ` = 0, 1, 2, . . . ,m.

Moreover, in (15.10.9) and (15.10.10) the symbols a and
b are interchangeable.

(c) If c equals 2−n = 0,−1,−2, . . . , then fundamen-
tal solutions in the neighborhood of z = 0 are given by
zn−1 times those in (a) and (b) with a and b replaced
by a+ n− 1 and b+ n− 1, respectively.

(d) If a + b + 1 − c equals n = 1, 2, 3, . . . , or
2 − n = 0,−1,−2, . . . , then fundamental solutions in
the neighborhood of z = 1 are given by those in (a),
(b), and (c) with z replaced by 1− z.

(e) Finally, if a − b + 1 equals n = 1, 2, 3, . . . , or
2−n = 0,−1,−2, . . . , then fundamental solutions in the

neighborhood of z =∞ are given by z−a times those in
(a), (b), and (c) with b and z replaced by a− c+ 1 and
1/z , respectively.

15.10(ii) Kummer’s 24 Solutions and
Connection Formulas

The three pairs of fundamental solutions given by
(15.10.2), (15.10.4), and (15.10.6) can be transformed
into 18 other solutions by means of (15.8.1), leading to a
total of 24 solutions known as Kummer’s solutions. See
http://dlmf.nist.gov/15.10.ii for Kummer’s solu-
tions and their connection formulas.
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15.11 Riemann’s Differential Equation

15.11(i) Equations with Three Singularities

The importance of (15.10.1) is that any homogeneous linear differential equation of the second order with at most
three distinct singularities, all regular, in the extended plane can be transformed into (15.10.1). The most general
form is given by

15.11.1

d2w

dz2 +
(

1− a1 − a2

z − α
+

1− b1 − b2
z − β

+
1− c1 − c2
z − γ

)
dw

dz

+
(

(α− β)(α− γ)a1a2

z − α
+

(β − α)(β − γ)b1b2
z − β

+
(γ − α)(γ − β)c1c2

z − γ

)
w

(z − α)(z − β)(z − γ)
= 0,

with
15.11.2 a1 + a2 + b1 + b2 + c1 + c2 = 1.
Here {a1, a2}, {b1, b2}, {c1, c2} are the exponent pairs
at the points α, β, γ, respectively. Cases in which there
are fewer than three singularities are included automat-
ically by allowing the choice {0, 1} for exponent pairs.
Also, if any of α, β, γ, is at infinity, then we take the
corresponding limit in (15.11.1).

The complete set of solutions of (15.11.1) is denoted
by Riemann’s P -symbol :

15.11.3 w = P

α β γ
a1 b1 c1 z
a2 b2 c2

.
In particular,

15.11.4 w = P

 0 1 ∞
0 0 a z

1− c c− a− b b


denotes the set of solutions of (15.10.1).

15.11(ii) Transformation Formulas

A conformal mapping of the extended complex plane
onto itself has the form

15.11.5 t = (κz + λ)/(µz + ν) ,

where κ, λ, µ, ν are real or complex constants such that
κν−λµ = 1. These constants can be chosen to map any
two sets of three distinct points {α, β, γ} and {α̃, β̃, γ̃}
onto each other. Symbolically:

15.11.6 P

α β γ
a1 b1 c1 z
a2 b2 c2

 = P

 α̃ β̃ γ̃
a1 b1 c1 t
a2 b2 c2

.
The reduction of a general homogeneous linear differ-
ential equation of the second order with at most three
regular singularities to the hypergeometric differential
equation is given by

15.11.7 P

α β γ
a1 b1 c1 z
a2 b2 c2

 =
(
z − α
z − γ

)a1
(
z − β
z − γ

)b1
P


0 1 ∞

0 0 a1 + b1 + c1
(z − α)(β − γ)
(z − γ)(β − α)

a2 − a1 b2 − b1 a1 + b1 + c2

.
We also have

15.11.8 zλ(1− z)µ P

 0 1 ∞
a1 b1 c1 z
a2 b2 c2

 = P

 0 1 ∞
a1 + λ b1 + µ c1 − λ− µ z
a2 + λ b2 + µ c2 − λ− µ

,
for arbitrary λ and µ.

15.12 Asymptotic Approximations

15.12(i) Large Variable

For the asymptotic behavior of F(a, b; c; z) as z → ∞
with a, b, c fixed, combine (15.2.2) with (15.8.2) or
(15.8.8).

15.12(ii) Large c

Let δ denote an arbitrary small positive constant. Also
let a, b, z be real or complex and fixed, and at least one
of the following conditions be satisfied:

(a) a and/or b ∈ {0,−1,−2, . . . }.

(b) <z < 1
2 and |c+ n| ≥ δ for all n ∈ {0, 1, 2, . . . }.
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(c) <z = 1
2 and |ph c| ≤ π − δ.

(d) <z > 1
2 and α− − 1

2π + δ ≤ ph c ≤ α+ + 1
2π − δ,

where

15.12.1 α± = arctan
(

ph z − ph(1− z)∓ π
ln |1− z−1|

)
,

with z restricted so that ±α± ∈ [0, 1
2π).

Then for fixed m ∈ {0, 1, 2, . . . },
15.12.2

F (a, b; c; z) =
m−1∑
s=0

(a)s(b)s
(c)ss!

zs +O
(
c−m

)
, |c| → ∞.

Similar results for other sectors are given in Wagner
(1988). For the more general case in which a2 = o(c)
and b2 = o(c) see Wagner (1990).

15.12(iii) Other Large Parameters

Again, throughout this subsection δ denotes an arbi-
trary small positive constant, and a, b, c, z are real or

complex and fixed.

As λ→∞,

15.12.3

F

(
a, b

c+ λ
; z
)
∼ Γ(c+ λ)

Γ(c− b+ λ)

∞∑
s=0

qs(z)(b)sλ
−s−b,

where q0(z) = 1 and qs(z), s = 1, 2, . . . , are defined by
the generating function

15.12.4(
et − 1
t

)b−1

et(1−c)
(
1− z + ze−t

)−a =
∞∑
s=0

qs(z)ts.

If |ph(1− z)| < π, then (15.12.3) applies when |phλ| ≤
1
2π − δ. If <z ≤ 1

2 , then (15.12.3) applies when
|phλ| ≤ π − δ.

If |ph(z − 1)| < π, then as λ → ∞ with |phλ| ≤
π − δ,

15.12.5

F
(
a+ λ, b− λ

c
; 1

2 −
1
2z

)
= 2(a+b−1)/2 (z + 1)(c−a−b−1)/2

(z − 1)c/2
√
ζ sinh ζ

(
λ+ 1

2a−
1
2b
)1−c(

Ic−1

(
(λ+ 1

2a−
1
2b)ζ

)
(1 +O(λ−2))

+
Ic−2

(
(λ+ 1

2a−
1
2b)ζ

)
2λ+ a− b

((
c− 1

2

) (
c− 3

2

)(1
ζ
− coth ζ

)
+ 1

2 (2c− a− b− 1)(a+ b− 1) tanh
(

1
2ζ
)

+O(λ−2)
))

,

where

15.12.6 ζ = arccosh z.

For Iν(z) see §10.25(ii). For this result and an extension to an asymptotic expansion with error bounds see Jones
(2001).

See also Dunster (1999) where the asymptotics of Jacobi polynomials is described; compare (15.9.1).
If |ph z| < π, then as λ→∞ with |phλ| ≤ π − δ,

15.12.7

F

(
a, b− λ
c+ λ

;−z
)

= 2b−c+(1/2)

(
z + 1
2
√
z

)λ(
λa/2 U

(
a− 1

2 ,−α
√
λ
)(

(1 + z)c−a−bz1−c
(

α

z − 1

)1−a
+O(λ−1)

)

+
λ (a−1)/2

α
U
(
a− 3

2 ,−α
√
λ
)(

(1 + z)c−a−bz1−c
(

α

z − 1

)1−a
− 2c−b−( 1/2 )

(
α

z − 1

)a
+O(λ−1)

))
,

where

15.12.8 α =

(
−2 ln

(
1−

(
z − 1
z + 1

)2
))1/2

,

with the branch chosen to be continuous and <α > 0 when <( (z − 1)/(z + 1)) > 0. For U(a, z) see §12.2, and for
an extension to an asymptotic expansion see Olde Daalhuis (2003a).
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If |ph z| < π, then as λ→∞ with |phλ| ≤ 1
2π − δ,

15.12.9

(z + 1)3λ/2(2λ)c−1 F
(
a+ λ, b+ 2λ

c
;−z

)
= λ−1/3

(
eπi(a−c+λ+(1/3)) Ai

(
e− 2πi/3λ 2/3 β2

)
+ eπi(c−a−λ−(1/3)) Ai

(
e 2πi/3λ 2/3 β2

)) (
a0(ζ) +O(λ−1)

)
+ λ−2/3

(
eπi(a−c+λ+(2/3)) Ai′

(
e− 2πi/3λ 2/3 β2

)
+ eπi(c−a−λ−(2/3)) Ai′

(
e 2πi/3λ 2/3 β2

)) (
a1(ζ) +O(λ−1)

)
,

where
15.12.10 ζ = arccosh

(
1
4z − 1

)
,

15.12.11 β =
(
−3

2
ζ +

9
4

ln
(

2 + eζ

2 + e−ζ

))1/3
,

with the branch chosen to be continuous and β > 0 when ζ > 0. Also,

15.12.12 a0(ζ) = 1
2G0(β) + 1

2G0(−β), a1(ζ) =
(

1
2G0(β)− 1

2G0(−β)
)
/β,

where

15.12.13 G0(±β) =
(
2 + e±ζ

)c−b−( 1/2 ) (
1 + e±ζ

)a−c+( 1/2 ) (
z − 1− e±ζ

)−a+( 1/2 )

√
β

eζ − e−ζ
.

For Ai(z) see §9.2, and for further information and an extension to an asymptotic expansion see Olde Daalhuis
(2003b). (Two errors in this reference are corrected in (15.12.9).)

By combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the con-
nection formulas of §15.10(ii), similar asymptotic approximations for F (a+ e1λ, b+ e2λ; c+ e3λ; z) can be obtained
with ej = ±1 or 0, j = 1, 2, 3. For more details see Olde Daalhuis (2010). For other extensions, see Wagner (1986)
and Temme (2003).

15.13 Zeros

Let N(a, b, c) denote the number of zeros of F (a, b; c; z) in the sector |ph(1− z)| < π. If a, b, c are real, a, b, c, c−a,
c− b 6= 0,−1,−2, . . . , and, without loss of generality, b ≥ a, c ≥ a+ b (compare (15.8.1)), then

15.13.1 N(a, b, c) =


0, a > 0,
b−ac+ 1

2 (1 + S), a < 0, c− a > 0,
b−ac+ 1

2 (1 + S) + ba− c+ 1cS, a < 0, c− a < 0,

where S = sign(Γ(a) Γ(b) Γ(c− a) Γ(c− b)).
If a, b, c, c − a, or c − b ∈ {0,−1,−2, . . . }, then

F (a, b; c; z) is not defined, or reduces to a polynomial,
or reduces to (1− z)c−a−b times a polynomial.

For further information on the location of real zeros
see Zarzo et al. (1995). A small table of zeros is given
in Conde and Kalla (1981).

15.14 Integrals

The Mellin transform of the hypergeometric function of
negative argument is given by
15.14.1∫ ∞

0

xs−1 F
(
a, b

c
;−x

)
dx =

Γ(s) Γ(a− s) Γ(b− s)
Γ(a) Γ(b) Γ(c− s)

,

min(<a,<b) > <s > 0.
Integrals of the form

∫
xα(x+ t)β F (a, b; c;x) dx and

more complicated forms are given in Apelblat (1983,

pp. 370–387), Prudnikov et al. (1990, §§1.15 and 2.21),
and Gradshteyn and Ryzhik (2000, §7.5).

Fourier transforms of hypergeometric functions are
given in Erdélyi et al. (1954a, §§1.14 and 2.14). Laplace
transforms of hypergeometric functions are given in
Erdélyi et al. (1954a, §4.21), Oberhettinger and Badii
(1973, §1.19), and Prudnikov et al. (1992a, §3.37). In-
verse Laplace transforms of hypergeometric functions
are given in Erdélyi et al. (1954a, §5.19), Oberhet-
tinger and Badii (1973, §2.18), and Prudnikov et al.
(1992b, §3.35). Mellin transforms of hypergeometric
functions are given in Erdélyi et al. (1954a, §6.9), Ober-
hettinger (1974, §1.15), and Marichev (1983, pp. 288–
299). Inverse Mellin transforms are given in Erdélyi
et al. (1954a, §7.5). Hankel transforms of hypergeomet-
ric functions are given in Oberhettinger (1972, §1.17)
and Erdélyi et al. (1954b, §8.17).
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For other integral transforms see Erdélyi et al.
(1954b), Prudnikov et al. (1992b, §4.3.43), and also
§15.9(ii).

15.15 Sums

15.15.1

F
(
a, b

c
;

1
z

)
=
(

1− z0

z

)−a ∞∑
s=0

(a)s
s!

× F
(
−s, b
c

;
1
z0

)(
1− z

z0

)−s
.

Here z0 (6= 0) is an arbitrary complex constant and the
expansion converges when |z− z0| > max(|z0|, |z0 − 1|).
For further information see Bühring (1987a) and Kalla
(1992).

For compendia of finite sums and infinite series in-
volving hypergeometric functions see Prudnikov et al.
(1990, §§5.3 and 6.7) and Hansen (1975).

15.16 Products

15.16.1

F

(
a, b

c− 1
2

; z
)
F

(
c− a, c− b
c+ 1

2

; z
)

=
∞∑
s=0

(c)s(
c+ 1

2

)
s

Asz
s, |z| < 1,

where A0 = 1 and As, s = 1, 2, . . . , are defined by the
generating function
15.16.2

(1− z)a+b−c F (2a, 2b; 2c− 1; z) =
∞∑
s=0

Asz
s, |z| < 1.

Also,

15.16.3
F

(
a, b

c
; z
)
F

(
a, b

c
; ζ
)

=
∞∑
s=0

(a)s(b)s(c− a)s(c− b)s
(c)s(c)2ss!

(zζ)s F
(
a+ s, b+ s

c+ 2s
; z + ζ − zζ

)
,

|z| < 1, |ζ| < 1, |z + ζ − zζ| < 1.

15.16.4 F

(
a, b

c
; z
)
F

(
−a,−b
−c

; z
)

+
ab(a− c)(b− c)
c2(1− c2)

z2 F

(
1 + a, 1 + b

2 + c
; z
)
F

(
1− a, 1− b

2− c
; z
)

= 1.

Generalized Legendre’s Relation

15.16.5

F

( 1
2 + λ,− 1

2 − ν
1 + λ+ µ

; z
)
F

( 1
2 − λ,

1
2 + ν

1 + ν + µ
; 1− z

)
+ F

( 1
2 + λ, 1

2 − ν
1 + λ+ µ

; z
)
F

(
− 1

2 − λ,
1
2 + ν

1 + ν + µ
; 1− z

)
− F

( 1
2 + λ, 1

2 − ν
1 + λ+ µ

; z
)
F

( 1
2 − λ,

1
2 + ν

1 + ν + µ
; 1− z

)
=

Γ(1 + λ+ µ) Γ(1 + ν + µ)
Γ
(
λ+ µ+ ν + 3

2

)
Γ
(

1
2 + ν

) ,

|ph z| < π, |ph(1− z)| < π.

For further results of this kind, and also series of
products of hypergeometric functions, see Erdélyi et al.
(1953a, §2.5.2).

Applications

15.17 Mathematical Applications

15.17(i) Differential Equations

This topic is treated in §§15.10 and 15.11.
The logarithmic derivatives of some hypergeomet-

ric functions for which quadratic transformations ex-
ist (§15.8(iii)) are solutions of Painlevé equations. See
§32.10(vi).

15.17(ii) Conformal Mappings

The quotient of two solutions of (15.10.1) maps the
closed upper half-plane =z ≥ 0 conformally onto a
curvilinear triangle. See Klein (1894) and Hochstadt
(1971). Hypergeometric functions, especially complete
elliptic integrals, also play an important role in quasi-
conformal mapping. See Anderson et al. (1997).

15.17(iii) Group Representations

For harmonic analysis it is more natural to represent hy-
pergeometric functions as a Jacobi function (§15.9(ii)).
For special values of α and β there are many group-
theoretic interpretations. First, as spherical functions
on noncompact Riemannian symmetric spaces of rank
one, but also as associated spherical functions, inter-
twining functions, matrix elements of SL(2,R), and
spherical functions on certain nonsymmetric Gelfand
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pairs. Harmonic analysis can be developed for the Ja-
cobi transform either as a generalization of the Fourier-
cosine transform (§1.14(ii)) or as a specialization of a
group Fourier transform. For further information see
Koornwinder (1984a).

15.17(iv) Combinatorics

In combinatorics, hypergeometric identities classify sin-
gle sums of products of binomial coefficients. See Ego-
rychev (1984, §2.3).

Quadratic transformations give insight into the re-
lation of elliptic integrals to the arithmetic-geometric
mean (§19.22(ii)). See Andrews et al. (1999, §3.2).

15.17(v) Monodromy Groups

The three singular points in Riemann’s differential equa-
tion (15.11.1) lead to an interesting Riemann sheet
structure. By considering, as a group, all analytic trans-
formations of a basis of solutions under analytic continu-
ation around all paths on the Riemann sheet, we obtain
the monodromy group. These monodromy groups are
finite iff the solutions of Riemann’s differential equation
are all algebraic. For a survey of this topic see Gray
(2000).

15.18 Physical Applications

The hypergeometric function has allowed the develop-
ment of “solvable” models for one-dimensional quantum
scattering through and over barriers (Eckart (1930),
Bhattacharjie and Sudarshan (1962)), and generalized
to include position-dependent effective masses (Dekar
et al. (1999)).

More varied applications include photon scattering
from atoms (Gavrila (1967)), energy distributions of
particles in plasmas (Mace and Hellberg (1995)), con-
formal field theory of critical phenomena (Burkhardt
and Xue (1991)), quantum chromo-dynamics (Atkinson
and Johnson (1988)), and general parametrization of
the effective potentials of interaction between atoms in
diatomic molecules (Herrick and O’Connor (1998)).

Computation

15.19 Methods of Computation

15.19(i) Maclaurin Expansions

The Gauss series (15.2.1) converges for |z| < 1. For
z ∈ R it is always possible to apply one of the linear

transformations in §15.8(i) in such a way that the hy-
pergeometric function is expressed in terms of hyper-
geometric functions with an argument in the interval
[0, 1

2 ].
For z ∈ C it is possible to use the linear transforma-

tions in such a way that the new arguments lie within
the unit circle, except when z = e±πi/3. This is because
the linear transformations map the pair {eπi/3, e−πi/3}
onto itself. However, by appropriate choice of the con-
stant z0 in (15.15.1) we can obtain an infinite series that
converges on a disk containing z = e±πi/3. Moreover, it
is also possible to accelerate convergence by appropriate
choice of z0.

Large values of |a| or |b|, for example, delay conver-
gence of the Gauss series, and may also lead to severe
cancellation.

For further information see Bühring (1987a), Forrey
(1997), and Kalla (1992).

15.19(ii) Differential Equation

A comprehensive and powerful approach is to integrate
the hypergeometric differential equation (15.10.1) by di-
rect numerical methods. As noted in §3.7(ii), the inte-
gration path should be chosen so that the wanted so-
lution grows in magnitude at least as fast as all other
solutions. However, since the growth near the singular-
ities of the differential equation is algebraic rather than
exponential, the resulting instabilities in the numerical
integration might be tolerable in some cases.

15.19(iii) Integral Representations

The representation (15.6.1) can be used to compute
the hypergeometric function in the sector |ph(1− z)| <
π. Gauss quadrature approximations are discussed in
Gautschi (2002b).

15.19(iv) Recurrence Relations

The relations in §15.5(ii) can be used to compute
F (a, b; c; z), provided that care is taken to apply these
relations in a stable manner; see §3.6(ii). Initial values
for moderate values of |a| and |b| can be obtained by
the methods of §15.19(i), and for large values of |a|, |b|,
or |c| via the asymptotic expansions of §§15.12(ii) and
15.12(iii).

For example, in the half-plane <z ≤ 1
2 we can use

(15.12.2) or (15.12.3) to compute F (a, b; c+N + 1; z)
and F (a, b; c+N ; z), where N is a large positive inte-
ger, and then apply (15.5.18) in the backward direction.
When <z > 1

2 it is better to begin with one of the lin-
ear transformations (15.8.4), (15.8.7), or (15.8.8). For
further information see Gil et al. (2006a, 2007b).
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15.20 Software

See http://dlmf.nist.gov/15.20.
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(1953a, p. 114 (40)) contains a typographical er-
ror. For (15.8.33) see Chan (1998).

§15.9 For (15.9.1)–(15.9.10) see §§18.5(ii) and 18.20(ii).
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Notation

16.1 Special Notation

(For other notation see pp. xiv and 873.)

p, q nonnegative integers.
k, n nonnegative integers, unless

stated otherwise.
z complex variable.
a1, a2, . . . , ap
b1, b2, . . . , bq

}
real or complex parameters.

δ arbitrary small positive constant.
a vector (a1, a2, . . . , ap).
b vector (b1, b2, . . . , bq).
(a)k (a1)k(a2)k · · · (ap)k.
(b)k (b1)k(b2)k · · · (bq)k.
D d/dz .
ϑ z d/dz .

The main functions treated in this chap-
ter are the generalized hypergeometric function

pFq

(
a1,...,ap
b1,...,bq

; z
)

, the Appell (two-variable hypergeomet-
ric) functions F1(α;β, β′; γ;x, y), F2(α;β, β′; γ, γ′;x, y),
F3(α, α′;β, β′; γ;x, y), F4(α;β; γ, γ′;x, y), and the Mei-
jer G-function Gm,np,q

(
z; a1,...,ap

b1,...,bq

)
. Alternative no-

tations are pFq
(

a
b ; z
)
, pFq(a1, . . . , ap; b1, . . . , bq; z),

and pFq(a; b; z) for the generalized hypergeometric
function, F1(α, β, β′; γ;x, y), F2(α, β, β′; γ, γ′;x, y),
F3(α, α′, β, β′; γ;x, y), F4(α, β; γ, γ′;x, y), for the Ap-
pell functions, and Gm,np,q (z; a; b) for the Meijer G-
function.

Generalized Hypergeometric
Functions

16.2 Definition and Analytic Properties

16.2(i) Generalized Hypergeometric Series

Throughout this chapter it is assumed that none of the
bottom parameters b1, b2, . . . , bq is a nonpositive inte-
ger, unless stated otherwise. Then formally

16.2.1 pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!
.

Equivalently, the function is denoted by pFq
(

a
b ; z
)

or
pFq(a; b; z), and sometimes, for brevity, by pFq(z).

16.2(ii) Case p ≤ q
When p ≤ q the series (16.2.1) converges for all finite
values of z and defines an entire function.

16.2(iii) Case p = q + 1

Suppose first one or more of the top parameters aj is
a nonpositive integer. Then the series (16.2.1) termi-
nates and the generalized hypergeometric function is a
polynomial in z.

If none of the aj is a nonpositive integer, then the
radius of convergence of the series (16.2.1) is 1, and
outside the open disk |z| < 1 the generalized hyper-
geometric function is defined by analytic continuation
with respect to z. The branch obtained by introducing
a cut from 1 to +∞ on the real axis, that is, the branch
in the sector |ph(1− z)| ≤ π, is the principal branch
(or principal value) of q+1Fq(a; b; z); compare §4.2(i).
Elsewhere the generalized hypergeometric function is a
multivalued function that is analytic except for possible
branch points at z = 0, 1, and ∞. Unless indicated oth-
erwise it is assumed that in this Handbook generalized
hypergeometric functions assume their principal values.

On the circle |z| = 1 the series (16.2.1) is absolutely
convergent if <γq > 0, convergent except at z = 1 if
−1 < <γq ≤ 0, and divergent if <γq ≤ −1, where
16.2.2 γq = (b1 + · · ·+ bq)− (a1 + · · ·+ aq+1).

16.2(iv) Case p > q + 1

Polynomials

In general the series (16.2.1) diverges for all nonzero
values of z. However, when one or more of the top
parameters aj is a nonpositive integer the series termi-
nates and the generalized hypergeometric function is a
polynomial in z. Note that if −m is the value of the nu-
merically largest aj that is a nonpositive integer, then
the identity
16.2.3

p+1Fq

(
−m,a

b
; z
)

=
(a)m(−z)m

(b)m
q+1Fp

(
−m, 1−m− b

1−m− a
;

(−1)p+q

z

)
can be used to interchange p and q.

Note also that any partial sum of the generalized hy-
pergeometric series can be represented as a generalized
hypergeometric function via
16.2.4
m∑
k=0

(a)k
(b)k

zk

k!

=
(a)mz

m

(b)mm! q+2Fp

(
−m, 1, 1−m− b

1−m− a
;

(−1)p+q+1

z

)
.

Non-Polynomials

See §16.5 for the definition of pFq(a; b; z) as a contour
integral when p > q+1 and none of the ak is a nonposi-
tive integer. (However, except where indicated otherwise
in this Handbook we assume that when p > q+1 at least
one of the ak is a nonpositive integer.)
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16.2(v) Behavior with Respect to Parameters

Let

16.2.5 pFq(a; b; z) = pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)/

(Γ(b1) · · ·Γ(bq)) =
∞∑
k=0

(a1)k · · · (ap)k
Γ(b1 + k) · · ·Γ(bq + k)

zk

k!
;

compare (15.2.2) in the case p = 2, q = 1. When p ≤ q + 1 and z is fixed and not a branch point, any branch of
pFq(a; b; z) is an entire function of each of the parameters a1, . . . , ap, b1, . . . , bq.

16.3 Derivatives and Contiguous Functions

16.3(i) Differentiation Formulas

16.3.1
dn

dzn
pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
(a)n
(b)n

pFq

(
a1 + n, . . . , ap + n

b1 + n, . . . , bq + n
; z
)
,

16.3.2
dn

dzn

(
zγ pFq

(
a1, . . . , ap
b1, . . . , bq

; z
))

= (γ − n+ 1)nz
γ−n

p+1Fq+1

(
γ + 1, a1, . . . , ap

γ + 1− n, b1, . . . , bq
; z
)
,

16.3.3

(
z
d

dz
z

)n(
zγ−1

p+1Fq

(
γ, a1, . . . , ap
b1, . . . , bq

; z
))

= (γ)nz
γ+n−1

p+1Fq

(
γ + n, a1, . . . , ap

b1, . . . , bq
; z
)
,

16.3.4
dn

dzn

(
zγ−1

pFq+1

(
a1, . . . , ap
γ, b1, . . . , bq

; z
))

= (γ − n)nz
γ−n−1

pFq+1

(
a1, . . . , ap

γ − n, b1, . . . , bq
; z
)
.

Other versions of these identities can be constructed with the aid of the operator identity

16.3.5

(
z
d

dz
z

)n
= zn

dn

dzn
zn, n = 1, 2, . . . .

16.3(ii) Contiguous Functions

Two generalized hypergeometric functions pFq(a; b; z) are (generalized) contiguous if they have the same pair of
values of p and q, and corresponding parameters differ by integers. If p ≤ q + 1, then any q + 2 distinct contiguous
functions are linearly related. Examples are provided by the following recurrence relations:

16.3.6 z 0F1(−; b+ 1; z) + b(b− 1) 0F1(−; b; z)− b(b− 1) 0F1(−; b− 1; z) = 0,

16.3.7

3F2

(
a1 + 2, a2, a3

b1, b2
; z
)
a1(a1+1)(1−z)+3F2

(
a1 + 1, a2, a3

b1, b2
; z
)
a1 (b1+b2−3a1−2+z(2a1−a2−a3+1))

+ 3F2

(
a1, a2, a3

b1, b2
; z
)(

(2a1 − b1)(2a1 − b2) + a1 − a2
1 − z(a1 − a2)(a1 − a3)

)
− 3F2

(
a1 − 1, a2, a3

b1, b2
; z
)

(a1 − b1)(a1 − b2) = 0.

For further examples see §§13.3(i), 15.5(ii), and the following references: Rainville (1960, §48), Wimp (1968), and
Luke (1975, §5.13).

16.4 Argument Unity

16.4(i) Classification

The function q+1Fq(a; b; z) is well-poised if

16.4.1 a1 + b1 = · · · = aq + bq = aq+1 + 1.

It is very well-poised if it is well-poised and a1 = b1 + 1.
The special case q+1Fq(a; b; 1) is k-balanced if aq+1 is a nonpositive integer and

16.4.2 a1 + · · ·+ aq+1 + k = b1 + · · ·+ bq.

When k = 1 the function is said to be balanced or Saalschützian.
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16.4(ii) Examples

The function q+1Fq with argument unity and general values of the parameters is discussed in Bühring (1992). Special
cases are as follows:

Pfaff–Saalschütz Balanced Sum

16.4.3 3F2

(
−n, a, b
c, d

; 1
)

=
(c− a)n(c− b)n
(c)n(c− a− b)n

,

when c+ d = a+ b+ 1− n, n = 0, 1, . . . . See Erdélyi et al. (1953a, §4.4(4)) for a non-terminating balanced identity.

Dixon’s Well-Poised Sum

16.4.4 3F2

(
a, b, c

a− b+ 1, a− c+ 1
; 1
)

=
Γ
(

1
2a+ 1

)
Γ(a− b+ 1) Γ(a− c+ 1) Γ

(
1
2a− b− c+ 1

)
Γ(a+ 1) Γ

(
1
2a− b+ 1

)
Γ
(

1
2a− c+ 1

)
Γ(a− b− c+ 1)

,

when <(a− 2b− 2c) > −2, or when the series terminates with a = −n:

16.4.5 3F2

(
−n, b, c

1− b− n, 1− c− n
; 1
)

=

0, n = 2k + 1,
(2k)! Γ(b+ k) Γ(c+ k) Γ(b+ c+ 2k)
k! Γ(b+ 2k) Γ(c+ 2k) Γ(b+ c+ k)

, n = 2k,

where k = 0, 1, . . . .

Watson’s Sum

16.4.6 3F2

(
a, b, c

1
2 (a+ b+ 1), 2c

; 1
)

=
Γ
(

1
2

)
Γ
(
c+ 1

2

)
Γ
(

1
2 (a+ b+ 1)

)
Γ
(
c+ 1

2 (1− a− b)
)

Γ
(

1
2 (a+ 1)

)
Γ
(

1
2 (b+ 1)

)
Γ
(
c+ 1

2 (1− a)
)

Γ
(
c+ 1

2 (1− b)
) ,

when <(2c− a− b) > −1, or when the series terminates with a = −n.

Whipple’s Sum

16.4.7 3F2

(
a, 1− a, c
d, 2c− d+ 1

; 1
)

=
π Γ(d) Γ(2c− d+ 1)21−2c

Γ
(
c+ 1

2 (a− d+ 1)
)

Γ
(
c+ 1− 1

2 (a+ d)
)

Γ
(

1
2 (a+ d)

)
Γ
(

1
2 (d− a+ 1)

) ,
when <c > 0 or when a is an integer.

Džrbasjan’s Sum

This is (16.4.7) in the case c = −n:

16.4.8 3F2

(
−n, a, 1− a
d, 1− d− 2n

; 1
)

=

(
1
2 (a+ d)

)
n

(
1
2 (d− a+ 1)

)
n(

1
2d
)
n

(
1
2 (d+ 1)

)
n

, n = 0, 1, . . . .

Rogers–Dougall Very Well-Poised Sum

16.4.9 5F4

(
a, 1

2a+ 1, b, c, d
1
2a, a− b+ 1, a− c+ 1, a− d+ 1

; 1

)
=

Γ(a− b+ 1) Γ(a− c+ 1) Γ(a− d+ 1) Γ(a− b− c− d+ 1)
Γ(a+ 1) Γ(a− b− c+ 1) Γ(a− b− d+ 1) Γ(a− c− d+ 1)

,

when <(b+ c+ d− a) < 1, or when the series terminates with d = −n.

Dougall’s Very Well-Poised Sum

16.4.10

7F6

(
a, 1

2a+ 1, b, c, d, f,−n
1
2a, a− b+ 1, a− c+ 1, a− d+ 1, a− f + 1, a+ n+ 1

; 1

)

=
(a+ 1)n(a− b− c+ 1)n(a− b− d+ 1)n(a− c− d+ 1)n
(a− b+ 1)n(a− c+ 1)n(a− d+ 1)n(a− b− c− d+ 1)n

, n = 0, 1, . . . ,

when 2a+ 1 = b+ c+ d+ f − n. The last condition is equivalent to the sum of the top parameters plus 2 equals the
sum of the bottom parameters, that is, the series is 2-balanced.
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16.4(iii) Identities

16.4.11 3F2

(
a, b, c

d, e
; 1
)

=
Γ(e) Γ(d+ e− a− b− c)
Γ(e− a) Γ(d+ e− b− c) 3F2

(
a, d− b, d− c
d, d+ e− b− c

; 1
)
,

when <(d+ e− a− b− c) > 0 and <(e− a) > 0. The function 3F2(a, b, c; d, e; 1) is analytic in the parameters
a, b, c, d, e when its series expansion converges and the bottom parameters are not negative integers or zero. (16.4.11)
provides a partial analytic continuation to the region when the only restrictions on the parameters are <(e− a) > 0,
and d, e, and d + e − b − c 6= 0,−1, . . . . A detailed treatment of analytic continuation in (16.4.11) and asymptotic
approximations as the variables a, b, c, d, e approach infinity is given by Aomoto (1987).

There are two types of three-term identities for 3F2’s. The first are recurrence relations that extend those for
2F1’s; see §15.5(ii). Examples are (16.3.7) with z = 1. Also,

16.4.12

(a− d)(b− d)(c− d)
(

3F2

(
a, b, c

d+ 1, e
; 1
)
− 3F2

(
a, b, c

d, e
; 1
))

+ abc 3F2

(
a, b, c

d, e
; 1
)

= d(d− 1)(a+ b+ c− d− e+ 1)
(

3F2

(
a, b, c

d, e
; 1
)
− 3F2

(
a, b, c

d− 1, e
; 1
))

,

and
16.4.13 3F2

(
a, b, c

d, e
; 1
)

=
c(e− a)
de

3F2

(
a, b+ 1, c+ 1
d+ 1, e+ 1

; 1
)

+
d− c
d

3F2

(
a, b+ 1, c
d+ 1, e

; 1
)
.

Methods of deriving such identities are given by Bailey (1964), Rainville (1960), Raynal (1979), and Wilson (1978).
Lists are given by Raynal (1979) and Wilson (1978). See Raynal (1979) for a statement in terms of 3j symbols
(Chapter 34). Also see Wilf and Zeilberger (1992a,b) for information on the Wilf–Zeilberger algorithm which can be
used to find such relations.

The other three-term relations are extensions of Kummer’s relations for 2F1’s given in §15.10(ii). See Bailey
(1964, pp. 19–22).

Balanced 4F3(1) series have transformation formulas and three-term relations. The basic transformation is given
by

16.4.14 4F3

(
−n, a, b, c
d, e, f

; 1
)

=
(e− a)n(f − a)n

(e)n(f)n
4F3

(
−n, a, d− b, d− c

d, a− e− n+ 1, a− f − n+ 1
; 1
)
,

when a+ b+ c−n+ 1 = d+ e+f . These series contain 6j symbols as special cases when the parameters are integers;
compare §34.4.

The characterizing properties (18.22.2), (18.22.10), (18.22.19), (18.22.20), and (18.26.14) of the Hahn and Wilson
class polynomials are examples of the contiguous relations mentioned in the previous three paragraphs.

Contiguous balanced series have parameters shifted by an integer but still balanced. One example of such a
three-term relation is the recurrence relation (18.26.16) for Racah polynomials. See Raynal (1979), Wilson (1978),
and Bailey (1964).

A different type of transformation is that of Whipple:

16.4.15

7F6

(
a, 1

2a+ 1, b, c, d, e, f
1
2a, a− b+ 1, a− c+ 1, a− d+ 1, a− e+ 1, a− f + 1

; 1

)

=
Γ(a− d+ 1) Γ(a− e+ 1) Γ(a− f + 1) Γ(a− d− e− f + 1)
Γ(a+ 1) Γ(a− d− e+ 1) Γ(a− d− f + 1) Γ(a− e− f + 1) 4F3

(
a− b− c+ 1, d, e, f

a− b+ 1, a− c+ 1, d+ e+ f − a
; 1
)
,

when the series on the right terminates and the series on the left converges. When the series on the right does not
terminate, a second term appears. See Bailey (1964, §4.4(4)).

Transformations for both balanced 4F3(1) and very well-poised 7F6(1) are included in Bailey (1964, pp. 56–63). A
similar theory is available for very well-poised 9F8(1)’s which are 2-balanced. See Bailey (1964, §§4.3(7) and 7.6(1))
for the transformation formulas and Wilson (1978) for contiguous relations.

Relations between three solutions of three-term recurrence relations are given by Masson (1991). See also
Lewanowicz (1985) (with corrections in Lewanowicz (1987)) for further examples of recurrence relations.

16.4(iv) Continued Fractions

For continued fractions for ratios of 3F2 functions with argument unity, see Cuyt et al. (2008, pp. 315–317).
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16.4(v) Bilateral Series

Denote, formally, the bilateral hypergeometric function

16.4.16 pHq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
∞∑

k=−∞

(a1)k . . . (ap)k
(b1)k . . . (bq)k

zk.

Then
16.4.17 2H2

(
a, b

c, d
; 1
)

=
Γ(c) Γ(d) Γ(1− a) Γ(1− b) Γ(c+ d− a− b− 1)

Γ(c− a) Γ(d− a) Γ(c− b) Γ(d− b)
, <(c+ d− a− b) > 1.

This is Dougall’s bilateral sum; see Andrews et al. (1999, §2.8).

16.5 Integral Representations and Integrals

When z 6= 0 and ak 6= 0,−1,−2, . . . , k = 1, 2, . . . , p,

16.5.1

(
p∏
k=1

Γ(ak)
/

q∏
k=1

Γ(bk)
)
pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
1

2πi

∫
L

(
p∏
k=1

Γ(ak + s)
/

q∏
k=1

Γ(bk + s)
)

Γ(−s)(−z)s ds,

where the contour of integration separates the poles of Γ(ak + s), k = 1, . . . , p, from those of Γ(−s).
Suppose first that L is a contour that starts at infinity on a line parallel to the positive real axis, encircles the

nonnegative integers in the negative sense, and ends at infinity on another line parallel to the positive real axis. Then
the integral converges when p < q+ 1 provided that z 6= 0, or when p = q+ 1 provided that 0 < |z| < 1, and provides
an integral representation of the left-hand side with these conditions.

Secondly, suppose that L is a contour from −i∞ to i∞. Then the integral converges when q < p + 1 and
|ph(−z)| < (p+ 1− q)π/2. In the case p = q the left-hand side of (16.5.1) is an entire function, and the right-hand
side supplies an integral representation valid when |ph(−z)| < π/2. In the case p = q + 1 the right-hand side of
(16.5.1) supplies the analytic continuation of the left-hand side from the open unit disk to the sector |ph(1− z)| < π;
compare §16.2(iii). Lastly, when p > q + 1 the right-hand side of (16.5.1) can be regarded as the definition of the
(customarily undefined) left-hand side. In this event, the formal power-series expansion of the left-hand side (obtained
from (16.2.1)) is the asymptotic expansion of the right-hand side as z → 0 in the sector |ph(−z)| ≤ (p+1−q−δ)π/2,
where δ is an arbitrary small positive constant.

Next, when p ≤ q,

16.5.2 p+1Fq+1

(
a0, . . . , ap
b0, . . . , bq

; z
)

=
Γ(b0)

Γ(a0) Γ(b0 − a0)

∫ 1

0

ta0−1(1− t)b0−a0−1
pFq

(
a1, . . . , ap
b1, . . . , bq

; zt
)
dt, <b0 > <a0 > 0,

16.5.3 p+1Fq

(
a0, . . . , ap
b1, . . . , bq

; z
)

=
1

Γ(a0)

∫ ∞
0

e−tta0−1
pFq

(
a1, . . . , ap
b1, · · · , bq

; zt
)
dt, <z < 1, <a0 > 0,

16.5.4 pFq+1

(
a1, . . . , ap
b0, . . . , bq

; z
)

=
Γ(b0)
2πi

∫ c+i∞

c−i∞
ett−b0 pFq

(
a1, . . . , ap
b1, . . . , bq

;
z

t

)
dt, c > 0, <b0 > 0.

In (16.5.2)–(16.5.4) all many-valued functions in the integrands assume their principal values, and all integration
paths are straight lines.

(16.5.2) also holds when p = q + 1, provided that |ph(1− z)| < π. In (16.5.3) the restriction <z < 1 can be
removed when p < q. (16.5.4) also holds when p = q + 1, provided that max(0,<z) < c. Lastly, the restrictions on
the parameters can be eased by replacing the integration paths with loop contours; see Luke (1969a, §3.6).

Laplace transforms and inverse Laplace transforms of generalized hypergeometric functions are given in Prudnikov
et al. (1992a, §3.38) and Prudnikov et al. (1992b, §3.36). For further integral representations and integrals see
Apelblat (1983, §16), Erdélyi et al. (1953a, §4.6), Erdélyi et al. (1954a, §§6.9 and 7.5), Luke (1969a, §3.6), and
Prudnikov et al. (1990, §§2.22, 4.2.4, and 4.3.1).

16.6 Transformations of Variable

Quadratic

16.6.1 3F2

(
a, b, c

a− b+ 1, a− c+ 1
; z
)

= (1− z)−a 3F2

(
a− b− c+ 1, 1

2a,
1
2 (a+ 1)

a− b+ 1, a− c+ 1
;
−4z

(1− z)2

)
.
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Cubic

16.6.2 3F2

(
a, 2b− a− 1, 2− 2b+ a

b, a− b+ 3
2

;
z

4

)
= (1− z)−a 3F2

(
1
3a,

1
3a+ 1

3 ,
1
3a+ 2

3

b, a− b+ 3
2

;
−27z

4(1− z)3

)
.

For Kummer-type transformations of 2F2 functions see Miller (2003) and Paris (2005a), and for further transfor-
mations see Erdélyi et al. (1953a, §4.5).

16.7 Relations to Other Functions

For orthogonal polynomials see Chapter 18. For 3j, 6j, 9j symbols see Chapter 34. Further representations of special
functions in terms of pFq functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of q+1Fq functions
with rational numbers as parameters is given in Krupnikov and Kölbig (1997).

16.8 Differential Equations

16.8(i) Classification of Singularities

An ordinary point of the differential equation

16.8.1
dnw

dzn
+ fn−1(z)

dn−1w

dzn−1 + fn−2(z)
dn−2w

dzn−2 + · · ·+ f1(z)
dw

dz
+ f0(z)w = 0

is a value z0 of z at which all the coefficients fj(z), j = 0, 1, . . . , n−1, are analytic. If z0 is not an ordinary point but
(z − z0)n−jfj(z), j = 0, 1, . . . , n − 1, are analytic at z = z0, then z0 is a regular singularity. All other singularities
are irregular. Compare §2.7(i) in the case n = 2. Similar definitions apply in the case z0 =∞: we transform ∞ into
the origin by replacing z in (16.8.1) by 1/z; again compare §2.7(i).

For further information see Hille (1976, pp. 360–370).

16.8(ii) The Generalized Hypergeometric Differential Equation

With the notation
16.8.2 D =

d

dz
, ϑ = z

d

dz
,

the function w = pFq(a; b; z) satisfies the differential equation

16.8.3 (ϑ(ϑ+ b1 − 1) · · · (ϑ+ bq − 1)− z(ϑ+ a1) · · · (ϑ+ ap))w = 0.
Equivalently,

16.8.4 zqDq+1w +
q∑

j =1

zj−1(αjz + βj)Djw + α0w = 0, p ≤ q,

or

16.8.5 zq(1− z)Dq+1w +
q∑

j =1

zj−1(αjz + βj)Djw + α0w = 0, p = q + 1,

where αj and βj are constants. Equation (16.8.4) has a regular singularity at z = 0, and an irregular singularity at
z = ∞, whereas (16.8.5) has regular singularities at z = 0, 1, and ∞. In each case there are no other singularities.
Equation (16.8.3) is of order max(p, q+ 1). In Letessier et al. (1994) examples are discussed in which the generalized
hypergeometric function satisfies a differential equation that is of order 1 or even 2 less than might be expected.

When no bj is an integer, and no two bj differ by an integer, a fundamental set of solutions of (16.8.3) is given
by

16.8.6 w0(z) = pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)
, wj(z) = z1−bj

pFq

(
1 + a1 − bj , . . . , 1 + ap − bj

2− bj , 1 + b1 − bj , . . . ∗ . . . , 1 + bq − bj
; z
)

, j = 1, . . . , q,

where ∗ indicates that the entry 1 + bj − bj is omitted. For other values of the bj , series solutions in powers of z
(possibly involving also ln z) can be constructed via a limiting process; compare §2.7(i) in the case of second-order
differential equations. For details see Smith (1939a,b), and Nørlund (1955).

When p = q + 1, and no two aj differ by an integer, another fundamental set of solutions of (16.8.3) is given by

16.8.7 w̃j(z) = (−z)−aj q+1Fq

(
aj , 1− b1 + aj , . . . , 1− bq + aj

1− a1 + aj , . . . ∗ . . . , 1− aq+1 + aj
;

1
z

)
, j = 1, . . . , q + 1,
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where ∗ indicates that the entry 1− aj + aj is omitted. We have the connection formula

16.8.8 q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; z
)

=
q+1∑
j=1

 q+1∏
k=1
k 6=j

Γ(ak−aj)
Γ(ak)

/
q∏

k=1

Γ(bk−aj)
Γ(bk)

 w̃j(z), |ph(−z)| ≤ π.

More generally if z0 (∈ C) is an arbitrary constant, |z − z0| > max (|z0|, |z0 − 1|), and |ph(z0 − z)| < π, then

16.8.9

(
q+1∏
k=1

Γ(ak)
/

q∏
k=1

Γ(bk)
)
q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; z
)

=
q+1∑
j=1

(z0 − z)−aj
∞∑
n=0

Γ(aj + n)
n!

 q+1∏
k=1
k 6=j

Γ(ak − aj − n)

/
q∏

k=1

Γ(bk − aj − n)


× q+1Fq

(
a1 − aj − n, . . . , aq+1 − aj − n
b1 − aj − n, . . . , bq − aj − n

; z0

)
(z − z0)−n .

(Note that the generalized hypergeometric functions on the right-hand side are polynomials in z0.)
When p = q + 1 and some of the aj differ by an integer a limiting process can again be applied. For details see

Nørlund (1955). In this reference it is also explained that in general when q > 1 no simple representations in terms of
generalized hypergeometric functions are available for the fundamental solutions near z = 1. Analytical continuation
formulas for q+1Fq(a; b; z) near z = 1 are given in Bühring (1987b) for the case q = 2, and in Bühring (1992) for the
general case.

16.8(iii) Confluence of Singularities

If p ≤ q, then

16.8.10 lim
|α| →∞

p+1Fq

(
a1, . . . , ap, α

b1, . . . , bq
;
z

α

)
= pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)
.

Thus in the case p = q the regular singularities of the function on the left-hand side at α and ∞ coalesce into an
irregular singularity at ∞.

Next, if p ≤ q + 1 and |phβ| ≤ π − δ (< π), then

16.8.11 lim
|β| →∞

pFq+1

(
a1, . . . , ap
b1, . . . , bq, β

;βz
)

= pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)
,

provided that in the case p = q+1 we have |z| < 1 when |phβ| ≤ 1
2π, and |z| < | sin(phβ)| when 1

2π ≤ |phβ| ≤ π−δ
(< π).

16.9 Zeros

Assume that p = q and none of the aj is a nonpositive integer. Then pFp(a; b; z) has at most finitely many zeros if
and only if the aj can be re-indexed for j = 1, . . . , p in such a way that aj − bj is a nonnegative integer.

Next, assume that p = q and that the aj and the quotients (a)j/(b)j are all real. Then pFp(a; b; z) has at most
finitely many real zeros.

These results are proved in Ki and Kim (2000). For further information on zeros see Hille (1929).

16.10 Expansions in Series of pFq Functions

The following expansion, with appropriate conditions and together with similar results, is given in Fields and Wimp
(1961):

16.10.1

p+rFq+s

(
a1, . . . , ap, c1, . . . , cr
b1, . . . , bq, d1, . . . , ds

; zζ
)

=
∞∑
k=0

(a)k(α)k(β)k(−z)k

(b)k(γ + k)kk! p+2Fq+1

(
α+ k, β + k, a1 + k, . . . , ap + k

γ + 2k + 1, b1 + k, . . . , bq + k
; z
)
r+2Fs+2

(
−k, γ + k, c1, . . . , cr
α, β, d1, . . . , ds

; ζ
)
.

Here α, β, and γ are free real or complex parameters.
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The next expansion is given in Nørlund (1955, equation (1.21)):

16.10.2 p+1Fp

(
a1, . . . , ap+1

b1, . . . , bp
; zζ
)

= (1− z)−a1

∞∑
k=0

(a1)k
k! p+1Fp

(
−k, a2, . . . , ap+1

b1, . . . , bp
; ζ
)(

z

z − 1

)k
.

When |ζ − 1| < 1 the series on the right-hand side converges in the half-plane <z < 1
2 .

Expansions of the form
∑∞
n=1(±1)n pFp+1

(
a; b;−n2z2

)
are discussed in Miller (1997), and further series of gener-

alized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov
et al. (1990, §§5.3, 6.8–6.9).

16.11 Asymptotic Expansions

16.11(i) Formal Series

For subsequent use we define two formal infinite series, Ep,q(z) and Hp,q(z), as follows:

16.11.1 Ep,q(z) = (2π) (p−q)/2κ−ν−( 1/2 )eκz
1/κ

∞∑
k=0

ck

(
κz 1/κ

)ν−k
, p < q + 1,

16.11.2 Hp,q(z) =
p∑

m=1

∞∑
k=0

(−1)k

k!
Γ(am + k)

 p∏
`=1
`6=m

Γ(a` − am − k)

/
q∏
`=1

Γ(b` − am − k)

 z−am−k.

In (16.11.1)

16.11.3 κ = q − p+ 1, ν = a1 + · · ·+ ap − b1 − · · · − bq + 1
2 (q − p),

and

16.11.4 c0 = 1, ck = − 1
kκκ

k−1∑
m=0

cmek,m, k ≥ 1,

where

16.11.5 ek,m =
q+1∑
j=1

(1− ν − κbj +m)κ+k−m

 p∏
`=1

(a` − bj)

/
q+1∏
`=1
`6=j

(b` − bj)

 ,

and bq+1 = 1.
It may be observed that Hp,q(z) represents the sum of the residues of the poles of the integrand in (16.5.1) at

s = −aj ,−aj − 1, . . . , j = 1, . . . , p, provided that these poles are all simple, that is, no two of the aj differ by an
integer. (If this condition is violated, then the definition of Hp,q(z) has to be modified so that the residues are those
associated with the multiple poles. In consequence, logarithmic terms may appear. See (15.8.8) for an example.)

16.11(ii) Expansions for Large Variable

In this subsection we assume that none of a1, a2, . . . , ap is a nonpositive integer.

Case p = q + 1

The formal series (16.11.2) for Hq+1,q(z) converges if |z| > 1, and

16.11.6

(
q+1∏
`=1

Γ(a`)
/

q∏
`=1

Γ(b`)
)
q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; z
)

= Hq+1,q(−z), |ph(−z)| ≤ π;

compare (16.8.8).

Case p = q

As z →∞ in |ph z| ≤ π,

16.11.7

(
q∏
`=1

Γ(a`)
/

q∏
`=1

Γ(b`)
)
qFq

(
a1, . . . , aq
b1, . . . , bq

; z
)
∼ Hq,q(ze∓πi) + Eq,q(z),

where upper or lower signs are chosen according as z lies in the upper or lower half-plane. (Either sign may be used
when ph z = 0 since the first term on the right-hand side becomes exponentially small compared with the second
term.)

For the special case a1 = 1, p = q = 2 explicit representations for the right-hand side of (16.11.7) in terms of
generalized hypergeometric functions are given in Kim (1972).
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Case p = q − 1

As z →∞ in |ph z| ≤ π,

16.11.8

(
q−1∏
`=1

Γ(a`)
/

q∏
`=1

Γ(b`)
)
q−1Fq

(
a1, . . . , aq−1

b1, . . . , bq
;−z

)
∼ Hq−1,q(z) + Eq−1,q(ze−πi) + Eq−1,q(zeπi).

Case p ≤ q − 2

As z →∞ in |ph z| ≤ π,

16.11.9

(
p∏
`=1

Γ(a`)
/

q∏
`=1

Γ(b`)
)
pFq

(
a1, . . . , ap
b1, . . . , bq

;−z
)
∼ Ep,q(ze−πi) + Ep,q(zeπi).

16.11(iii) Expansions for Large Parameters

If z is fixed and |ph(1− z)| < π, then for each nonnegative integer m

16.11.10

p+1Fp

(
a1 + r, . . . , ak−1 + r, ak, . . . , ap+1

b1 + r, . . . , bk + r, bk+1, . . . , bp
; z
)

=
m−1∑
n=0

(a1 + r)n · · · (ak−1 + r)n(ak)n · · · (ap+1)n
(b1 + r)n · · · (bk + r)n(bk+1)n · · · (bp)n

zn

n!
+O

(
1
rm

)
,

as r → +∞. Here k can have any integer value from 1 to p. Also if p < q, then

16.11.11 pFq

(
a1 + r, . . . , ap + r

b1 + r, . . . , bq + r
; z
)

=
m−1∑
n=0

(a1 + r)n · · · (ap + r)n
(b1 + r)n · · · (bq + r)n

zn

n!
+O

(
1

r(q−p)m

)
,

again as r → +∞. For these and other results see Knottnerus (1960). See also Luke (1969a, §7.3).
Asymptotic expansions for the polynomials p+2Fq(−r, r + a0,a; b; z) as r →∞ through integer values are given

in Fields and Luke (1963a,b) and Fields (1965).

16.12 Products

16.12.1 0F1(−; a; z) 0F1(−; b; z) = 2F3

( 1
2 (a+ b), 1

2 (a+ b− 1)
a, b, a+ b− 1

; 4z
)
.

16.12.2

(
2F1

(
a, b

a+ b+ 1
2

; z
))2

= 3F2

(
2a, 2b, a+ b

a+ b+ 1
2 , 2a+ 2b

; z
)
.

More generally,

16.12.3

(
2F1

(
a, b

c
; z
))2

=
∞∑
k=0

(2a)k(2b)k
(
c− 1

2

)
k

(c)k(2c− 1)kk! 4F3

(
− 1

2k,
1
2 (1− k), a+ b− c+ 1

2 ,
1
2

a+ 1
2 , b+ 1

2 ,
3
2 − k − c

; 1

)
zk, |z| < 1.

For further identities see Goursat (1883) and Erdélyi et al. (1953a, §4.3).

Two-Variable Hypergeometric Functions

16.13 Appell Functions

The following four functions of two real or complex variables x and y cannot be expressed as a product of two 2F1

functions, in general, but they satisfy partial differential equations that resemble the hypergeometric differential
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equation (15.10.1):

16.13.1 F1(α;β, β′; γ;x, y) =
∞∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m+nm!n!

xmyn, max (|x|, |y|) < 1,

16.13.2 F2(α;β, β′; γ, γ′;x, y) =
∞∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m(γ′)nm!n!

xmyn, |x|+ |y| < 1,

16.13.3 F3(α, α′;β, β′; γ;x, y) =
∞∑

m,n=0

(α)m(α′)n(β)m(β′)n
(γ)m+nm!n!

xmyn, max (|x|, |y|) < 1,

16.13.4 F4(α;β; γ, γ′;x, y) =
∞∑

m,n=0

(α)m+n(β)m+n

(γ)m(γ′)nm!n!
xmyn,

√
|x|+

√
|y| < 1.

Here and elsewhere it is assumed that neither of the bottom parameters γ and γ′ is a nonpositive integer.

16.14 Partial Differential Equations

16.14(i) Appell Functions

16.14.1

x(1− x)
∂2F1

∂x2 + y(1− x)
∂2F1

∂x ∂y
+ (γ − (α+ β + 1)x)

∂F1

∂x
− βy∂F1

∂y
− αβ F1 = 0,

y(1− y)
∂2F1

∂y2 + x(1− y)
∂2F1

∂x ∂y
+ (γ − (α+ β′ + 1)y)

∂F1

∂y
− β′x∂F1

∂x
− αβ′ F1 = 0,

16.14.2

x(1− x)
∂2F2

∂x2 − xy
∂2F2

∂x ∂y
+ (γ − (α+ β + 1)x)

∂F2

∂x
− βy∂F2

∂y
− αβ F2 = 0,

y(1− y)
∂2F2

∂y2 − xy
∂2F2

∂x ∂y
+ (γ′ − (α+ β′ + 1)y)

∂F2

∂y
− β′x∂F2

∂x
− αβ′ F2 = 0,

16.14.3

x(1− x)
∂2F3

∂x2 + y
∂2F3

∂x ∂y
+ (γ − (α+ β + 1)x)

∂F3

∂x
− αβ F3 = 0,

y(1− y)
∂2F3

∂y2 + x
∂2F3

∂x ∂y
+ (γ − (α′ + β′ + 1)y)

∂F3

∂y
− α′β′ F3 = 0,

16.14.4

x(1− x)
∂2F4

∂x2 − 2xy
∂2F4

∂x ∂y
− y2 ∂

2F4

∂y2 + (γ − (α+ β + 1)x)
∂F4

∂x
− (α+ β + 1)y

∂F4

∂y
− αβ F4 = 0,

y(1− y)
∂2F4

∂y2 − 2xy
∂2F4

∂x ∂y
− x2 ∂

2F4

∂x2 + (γ′ − (α+ β + 1)y)
∂F4

∂y
− (α+ β + 1)x

∂F4

∂x
− αβ F4 = 0.

16.14(ii) Other Functions

In addition to the four Appell functions there are 24 other sums of double series that cannot be expressed as a
product of two 2F1 functions, and which satisfy pairs of linear partial differential equations of the second order. Two
examples are provided by

16.14.5 G2(α, α′;β, β′;x, y) =
∞∑

m,n=0

Γ(α+m) Γ(α′ + n) Γ(β + n−m) Γ(β′ +m− n)
Γ(α) Γ(α′) Γ(β) Γ(β′)

xmyn

m!n!
, |x| < 1, |y| < 1,

16.14.6 G3(α, α′;x, y) =
∞∑

m,n=0

Γ(α+ 2n−m) Γ(α′ + 2m− n)
Γ(α) Γ(α′)

xmyn

m!n!
, |x|+ |y| < 1

4 .

(The region of convergence |x| + |y| < 1
4 is not quite maximal.) See Erdélyi et al. (1953a, §§5.7.1–5.7.2) for further

information.
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16.15 Integral Representations and Integrals

16.15.1 F1(α;β, β′; γ;x, y) =
Γ(γ)

Γ(α) Γ(γ − α)

∫ 1

0

uα−1(1− u)γ−α−1

(1− ux)β(1− uy)β′
du, <α > 0, <(γ − α) > 0,

16.15.2
F2(α;β, β′; γ, γ′;x, y) =

Γ(γ) Γ(γ′)
Γ(β) Γ(β′) Γ(γ − β) Γ(γ′ − β′)

∫ 1

0

∫ 1

0

uβ−1vβ
′−1(1− u)γ−β−1(1− v)γ

′−β′−1

(1− ux− vy)α
du dv,

<γ > <β > 0, <γ′ > <β′ > 0,

16.15.3
F3(α, α′;β, β′; γ;x, y) =

Γ(γ)
Γ(β) Γ(β′) Γ(γ − β − β′)

∫∫
∆

uβ−1vβ
′−1(1− u− v)γ−β−β

′−1

(1− ux)α(1− vy)α′
du dv,

<(γ − β − β′) > 0, <β > 0, <β′ > 0,
where ∆ is the triangle defined by u ≥ 0, v ≥ 0, u+ v ≤ 1.

16.15.4

F4(α;β; γ, γ′;x(1− y), y(1− x))

=
Γ(γ) Γ(γ′)

Γ(α) Γ(β) Γ(γ − α) Γ(γ′ − β)

∫ 1

0

∫ 1

0

uα−1vβ−1(1− u)γ−α−1(1− v)γ
′−β−1

(1− ux)γ+γ′−α−1(1− vy)γ+γ′−β−1(1− ux− vy)α+β−γ−γ′+1
du dv,

<γ > <α > 0, <γ′ > <β > 0.
For these and other formulas, including double Mellin–Barnes integrals, see Erdélyi et al. (1953a, §5.8). These
representations can be used to derive analytic continuations of the Appell functions, including convergent series
expansions for large x, large y, or both. For inverse Laplace transforms of Appell functions see Prudnikov et al.
(1992b, §3.40).

16.16 Transformations of Variables

16.16(i) Reduction Formulas

16.16.1 F1(α;β, β′;β + β′;x, y) = (1− y)−α 2F1

(
α, β

β + β′
;
x− y
1− y

)
,

16.16.2 F2(α;β, β′; γ, β′;x, y) = (1− y)−α 2F1

(
α, β

γ
;

x

1− y

)
,

16.16.3 F2(α;β, β′; γ, α;x, y) = (1− y)−β
′
F1

(
β;α− β′, β′; γ;x,

x

1− y

)
,

16.16.4 F3(α, γ − α;β, β′; γ;x, y) = (1− y)−β
′
F1

(
α;β, β′; γ;x,

y

y − 1

)
,

16.16.5 F3(α, γ − α;β, γ − β; γ;x, y) = (1− y)α+β−γ
2F1

(
α, β

γ
;x+ y − xy

)
,

16.16.6 F4(α;β; γ, α+ β − γ + 1;x(1− y), y(1− x)) = 2F1

(
α, β

γ
;x
)

2F1

(
α, β

α+ β − γ + 1
; y
)
.

See Erdélyi et al. (1953a, §5.10) for these and further reduction formulas. An extension of (16.16.6) is given by

16.16.7

F4(α;β; γ, γ′;x(1− y), y(1− x))

=
∞∑
k=0

(α)k(β)k(α+ β − γ − γ′ + 1)k
(γ)k(γ′)kk!

xkyk 2F1

(
α+ k, β + k

γ + k
;x
)

2F1

(
α+ k, β + k

γ′ + k
; y
)

;

see Burchnall and Chaundy (1940, 1941).

16.16(ii) Other Transformations

16.16.8

F1(α;β, β′; γ;x, y) = (1− x)−β(1− y)−β
′
F1

(
γ − α;β, β′; γ;

x

x− 1
,

y

y − 1

)
= (1− x)−α F1

(
α; γ − β − β′, β′; γ;

x

x− 1
,
y − x
1− x

)
,
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16.16.9 F2(α;β, β′; γ, γ′;x, y) = (1− x)−α F2

(
α; γ − β, β′; γ, γ′; x

x− 1
,

y

1− x

)
,

16.16.10

F4(α;β; γ, γ′;x, y) =
Γ(γ′) Γ(β − α)
Γ(γ′ − α) Γ(β)

(−y)−α F4

(
α;α− γ′ + 1; γ, α− β + 1;

x

y
,

1
y

)
+

Γ(γ′) Γ(α− β)
Γ(γ′ − β) Γ(α)

(−y)−β F4

(
β;β − γ′ + 1; γ, β − α+ 1;

x

y
,

1
y

)
.

For quadratic transformations of Appell functions see Carlson (1976).

Meijer G-Function

16.17 Definition

Again assume a1, a2, . . . , ap and b1, b2, . . . , bq are real or complex parameters. Assume also that m and n are integers
such that 0 ≤ m ≤ q and 0 ≤ n ≤ p, and none of ak − bj is a positive integer when 1 ≤ k ≤ n and 1 ≤ j ≤ m. Then
the Meijer G-function is defined via the Mellin–Barnes integral representation:

16.17.1

Gm,np,q (z; a; b) = Gm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
=

1
2πi

∫
L

(
m∏
`=1

Γ(b` − s)
n∏
`=1

Γ(1− a` + s)
/(

q−1∏
`=m

Γ(1− b`+1 + s)
p−1∏
`=n

Γ(a`+1 − s)
))

zs ds,

where the integration path L separates the poles of the factors Γ(b` − s) from those of the factors Γ(1− a` + s).
There are three possible choices for L, illustrated in Figure 16.17.1 in the case m = 1, n = 2:

(i) L goes from −i∞ to i∞. The integral converges if p+ q < 2(m+ n) and |ph z| < (m+ n− 1
2 (p+ q))π.

(ii) L is a loop that starts at infinity on a line parallel to the positive real axis, encircles the poles of the Γ(b` − s)
once in the negative sense and returns to infinity on another line parallel to the positive real axis. The integral
converges for all z (6= 0) if p < q, and for 0 < |z| < 1 if p = q ≥ 1.

(iii) L is a loop that starts at infinity on a line parallel to the negative real axis, encircles the poles of the Γ(1− a` + s)
once in the positive sense and returns to infinity on another line parallel to the negative real axis. The integral
converges for all z if p > q, and for |z| > 1 if p = q ≥ 1.

Case (i) Case (ii) Case (iii)
Figure 16.17.1: s-plane. Path L for the integral representation (16.17.1) of the Meijer G-function.

When more than one of Cases (i), (ii), and (iii) is applicable the same value is obtained for the Meijer G-function.
Assume p ≤ q, no two of the bottom parameters bj , j = 1, . . . ,m, differ by an integer, and aj−bk is not a positive

integer when j = 1, 2, . . . , n and k = 1, 2, . . . ,m. Then

16.17.2 Gm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
=

m∑
k=1

Am,np,q,k(z) pFq−1

(
1 + bk − a1, . . . , 1 + bk − ap

1 + bk − b1, . . . ∗ . . . , 1 + bk − bq
; (−1)p−m−nz

)
,
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where ∗ indicates that the entry 1 + bk − bk is omitted. Also,

16.17.3 Am,np,q,k(z) =
m∏
`=1
`6=k

Γ(b` − bk)
n∏
`=1

Γ(1 + bk − a`)zbk
/(

q−1∏
`=m

Γ(1 + bk − b`+1)
p−1∏
`=n

Γ(a`+1 − bk)

)
.

16.18 Special Cases

The 1F1 and 2F1 functions introduced in Chapters 13 and 15, as well as the more general pFq functions introduced
in the present chapter, are all special cases of the Meijer G-function. This is a consequence of the following relations:

16.18.1

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)

=
(

q∏
k=1

Γ(bk)
/

p∏
k=1

Γ(ak)
)
G1,p
p,q+1

(
−z; 1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

)
=
(

q∏
k=1

Γ(bk)
/

p∏
k=1

Γ(ak)
)
Gp,1q+1,p

(
−1
z

;
1, b1, . . . , bq
a1, . . . , ap

)
.

As a corollary, special cases of the 1F1 and 2F1 functions, including Airy functions, Bessel functions, parabolic cylinder
functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases
of the Meijer G-function. Representations of special functions in terms of the Meijer G-function are given in Erdélyi
et al. (1953a, §5.6), Luke (1969a, §§6.4–6.5), and Mathai (1993, §3.10).

16.19 Identities

16.19.1 Gm,np,q

(
1
z

;
a1, . . . , ap
b1, . . . , bq

)
= Gn,mq,p

(
z;

1− b1, . . . , 1− bq
1− a1, . . . , 1− ap

)
,

16.19.2 zµGm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
= Gm,np,q

(
z;
a1 + µ, . . . , ap + µ

b1 + µ, . . . , bq + µ

)
,

16.19.3 Gm,n+1
p+1,q+1

(
z;

a0, . . . , ap
b1, . . . , bq, a0

)
= Gm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
,

16.19.4 Gm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
=

2p+1+b1+···+bq−m−n−a1−···−ap

πm+n− 1
2 (p+q)

G2m,2n
2p,2q

(
22p−2qz2;

1
2a1,

1
2a1 + 1

2 , . . . ,
1
2ap,

1
2ap + 1

2
1
2b1,

1
2b1 + 1

2 , . . . ,
1
2bq,

1
2bq + 1

2

)
,

16.19.5 ϑGm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
= Gm,np,q

(
z;
a1 − 1, a2, . . . , ap

b1, . . . , bq

)
+ (a1 − 1)Gm,np,q

(
z;
a1, . . . , ap
b1, . . . , bq

)
,

16.19.6

∫ 1

0

t−a0(1− t)a0−bq+1−1Gm,np,q

(
zt;

a1, . . . , ap
b1, . . . , bq

)
dt = Γ(a0 − bq+1)Gm,n+1

p+1,q+1

(
z;

a0, . . . , ap
b1, . . . , bq+1

)
,

where again ϑ = z d/dz . For conditions for (16.19.6) see Luke (1969a, Chapter 5). This reference and Mathai (1993,
§§2.2 and 2.4) also supply additional identities.

16.20 Integrals and Series

Integrals of the Meijer G-function are given in Apelblat (1983, §19), Erdélyi et al. (1953a, §5.5.2), Erdélyi et al.
(1954a, §§6.9 and 7.5), Luke (1969a, §3.6), Luke (1975, §5.6), Mathai (1993, §3.10), and Prudnikov et al. (1990,
§2.24). Extensive lists of Laplace transforms and inverse Laplace transforms of the Meijer G-function are given in
Prudnikov et al. (1992a, §3.40) and Prudnikov et al. (1992b, §3.38).

Series of the Meijer G-function are given in Erdélyi et al. (1953a, §5.5.1), Luke (1975, §5.8), and Prudnikov et al.
(1990, §6.11).
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16.21 Differential Equation

w = Gm,np,q (z; a; b) satisfies the differential equation

16.21.1
(
(−1)p−m−nz(ϑ− a1 + 1) · · · (ϑ− ap + 1)− (ϑ− b1) · · · (ϑ− bq)

)
w = 0,

where again ϑ = z d/dz . This equation is of order max(p, q). In consequence of (16.19.1) we may assume, without
loss of generality, that p ≤ q. With the classification of §16.8(i), when p < q the only singularities of (16.21.1) are a
regular singularity at z = 0 and an irregular singularity at z = ∞. When p = q the only singularities of (16.21.1)
are regular singularities at z = 0, (−1)p−m−n, and ∞.

A fundamental set of solutions of (16.21.1) is given by

16.21.2 G1,p
p,q

(
ze(p−m−n−1)πi;

a1, . . . , ap
bj , b1, . . . , bj−1, bj+1, . . . , bq

)
, j = 1, . . . , q.

For other fundamental sets see Erdélyi et al. (1953a, §5.4) and Marichev (1984).

16.22 Asymptotic Expansions

Asymptotic expansions of Gm,np,q (z; a; b) for large z are given in Luke (1969a, §§5.7 and 5.10) and Luke (1975, §5.9).
For asymptotic expansions of Meijer G-functions with large parameters see Fields (1973, 1983).

Applications

16.23 Mathematical Applications

16.23(i) Differential Equations

A variety of problems in classical mechanics and math-
ematical physics lead to Picard–Fuchs equations. These
equations are frequently solvable in terms of generalized
hypergeometric functions, and the monodromy of gen-
eralized hypergeometric functions plays an important
role in describing properties of the solutions. See, for
example, Berglund et al. (1994).

16.23(ii) Random Graphs

A substantial transition occurs in a random graph of
n vertices when the number of edges becomes approx-
imately 1

2n. In Janson et al. (1993) limiting distribu-
tions are discussed for the sparse connected components
of these graphs, and the asymptotics of three 2F2 func-
tions are applied to compute the expected value of the
excess.

16.23(iii) Conformal Mapping

The Bieberbach conjecture states that if
∑∞
n=0 anz

n is
a conformal map of the unit disk to any complex do-
main, then |an| ≤ n|a1|. In the proof of this conjecture
de Branges (1985) uses the inequality

16.23.1 3F2

(
−n, n+ α+ 2, 1

2 (α+ 1)
α+ 1, 1

2 (α+ 3)
;x

)
> 0,

when 0 ≤ x < 1, α > −2, and n = 0, 1, 2, . . . . The proof
of this inequality is given in Askey and Gasper (1976).
See also Kazarinoff (1988).

16.23(iv) Combinatorics and Number Theory

Many combinatorial identities, especially ones involving
binomial and related coefficients, are special cases of hy-
pergeometric identities. In Petkovšek et al. (1996) tools
are given for automated proofs of these identities.

16.24 Physical Applications

16.24(i) Random Walks

Generalized hypergeometric functions and Appell func-
tions appear in the evaluation of the so-called Watson
integrals which characterize the simplest possible lattice
walks. They are also potentially useful for the solution
of more complicated restricted lattice walk problems,
and the 3D Ising model; see Barber and Ninham (1970,
pp. 147–148).

16.24(ii) Loop Integrals in Feynman Diagrams

Appell functions are used for the evaluation of one-loop
integrals in Feynman diagrams. See Cabral-Rosetti and
Sanchis-Lozano (2000).

For an extension to two-loop integrals see Moch et al.
(2002).
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16.24(iii) 3j, 6j, and 9j Symbols

The 3j symbols, or Clebsch–Gordan coefficients, play
an important role in the decomposition of reducible rep-
resentations of the rotation group into irreducible rep-
resentations. They can be expressed as 3F2 functions
with unit argument. The coefficients of transformations
between different coupling schemes of three angular mo-
menta are related to the Wigner 6j symbols. These are
balanced 4F3 functions with unit argument. Lastly, spe-
cial cases of the 9j symbols are 5F4 functions with unit
argument. For further information see Chapter 34 and
Varshalovich et al. (1988, §§8.2.5, 8.8, and 9.2.3).

Computation

16.25 Methods of Computation

Methods for computing the functions of the present
chapter include power series, asymptotic expansions, in-
tegral representations, differential equations, and recur-
rence relations. They are similar to those described for
confluent hypergeometric functions, and hypergeomet-
ric functions in §§13.29 and 15.19. There is, however,
an added feature in the numerical solution of differen-
tial equations and difference equations (recurrence re-
lations). This occurs when the wanted solution is in-
termediate in asymptotic growth compared with other
solutions. In these cases integration, or recurrence, in
either a forward or a backward direction is unstable. In-
stead a boundary-value problem needs to be formulated
and solved. See §§3.6(vii), 3.7(iii), Olde Daalhuis and
Olver (1998), Lozier (1980), and Wimp (1984, Chap-
ters 7, 8).

16.26 Approximations

For discussions of the approximation of generalized hy-
pergeometric functions and the Meijer G-function in
terms of polynomials, rational functions, and Cheby-
shev polynomials see Luke (1975, §§5.12 - 5.13) and
Luke (1977b, Chapters 1 and 9).

16.27 Software

See http://dlmf.nist.gov/16.27.
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Notation

17.1 Special Notation

(For other notation see pp. xiv and 873.)

k, j,m, n, r, s nonnegative integers.
z complex variable.
x real variable.
q (∈ C) base: unless stated otherwise |q| < 1.
(a; q)n q-shifted factorial:

(1− a)(1− aq) · · ·
(
1− aqn−1

)
.

The main functions treated in this chapter are
the basic hypergeometric (or q-hypergeometric) func-
tion rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z), the bilateral
basic hypergeometric (or bilateral q-hypergeometric)
function rψs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z), and the
q-analogs of the Appell functions Φ(1)(a; b, b′; c;x, y),
Φ(2)(a; b, b′; c, c′;x, y), Φ(3)(a, a′; b, b′; c;x, y), and
Φ(4)(a; b; c, c′;x, y).

Another function notation used is the “idem” func-
tion:

f(χ1;χ2, . . . , χn) + idem(χ1;χ2, . . . , χn)

=
n∑
j=1

f(χj ;χ1, χ2, . . . , χj−1, χj+1, . . . , χn).

These notations agree with Gasper and Rahman
(2004) (except for the q-Appell functions which are not
considered in this reference). A slightly different no-
tation is that in Bailey (1935) and Slater (1966); see
§17.4(i). Fine (1988) uses F (a, b; t : q) for a particular
specialization of a 2φ1 function.

Properties

17.2 Calculus

17.2(i) q-Calculus

For n = 0, 1, 2, . . . ,

17.2.1 (a; q)n = (1− a)(1− aq) · · · (1− aqn−1),

17.2.2 (a; q)−n =
1

(aq−n; q)n
=

(−q/a)nq(
n
2)

(q/a; q)n
.

For ν ∈ C

17.2.3 (a; q)ν =
∞∏
j=0

(
1− aqj

1− aqν+j

)
,

when this product converges.

17.2.4 (a; q)∞ =
∞∏
j=0

(1− aqj),

17.2.5 (a1, a2, . . . , ar; q)n =
r∏
j=1

(aj ; q)n ,

17.2.6 (a1, a2, . . . , ar; q)∞ =
r∏
j=1

(aj ; q)∞ .

17.2.7
(
a; q−1

)
n

=
(
a−1; q

)
n

(−a)nq−(n2),

17.2.8

(
a; q−1

)
n

(b; q−1)n
=

(
a−1; q

)
n

(b−1; q)n

(a
b

)n
,

17.2.9 (a; q)n =
(
q1−n/a; q

)
n

(−a)nq(
n
2),

17.2.10
(a; q)n
(b; q)n

=

(
q1−n/a; q

)
n

(q1−n/b; q)n

(a
b

)n
,

17.2.11
(
aq−n; q

)
n

= (q/a; q)n

(
−a
q

)n
q−(n2),

17.2.12
(aq−n; q)n
(bq−n; q)n

=
(q/a; q)n
(q/b; q)n

(a
b

)n
.

17.2.13 (a; q)n−k =
(a; q)n

(q1−n/a; q)k

(
− q
a

)k
q(
k
2)−nk,

17.2.14
(a; q)n−k
(b; q)n−k

=
(a; q)n
(b; q)n

(
q1−n/b; q

)
k

(q1−n/a; q)k

(
b

a

)k
,

17.2.15
(
aq−n; q

)
k

=
(a; q)k (q/a; q)n

(q1−k/a; q)n
q−nk,

17.2.16
(
aq−n; q

)
n−k =

(q/a; q)n
(q/a; q)k

(
−a
q

)n−k
q(
k
2)−(n2),

17.2.17 (aqn; q)k =
(a; q)k

(
aqk; q

)
n

(a; q)n
,

17.2.18
(
aqk; q

)
n−k =

(a; q)n
(a; q)k

.

17.2.19 (a; q)2n =
(
a, aq; q2

)
n
,

more generally,

17.2.20 (a; q)kn =
(
a, aq, . . . , aqk−1; qk

)
n
.

17.2.21
(
a2; q2

)
n

= (a; q)n (−a; q)n ,

17.2.22

(
qa

1
2 ,−aq 1

2 ; q
)
n(

a
1
2 ,−a 1

2 ; q
)
n

=

(
aq2; q2

)
n

(a; q2)n
=

1− aq2n

1− a
,

more generally,

17.2.23

(
aq

1
k , qωka

1
k , . . . , qωk−1

k a
1
k ; q
)
n(

a
1
k , ωka

1
k , . . . , ωk−1

k a
1
k ; q
)
n

=

(
aqk; qk

)
n

(a; qk)n
=

1− aqkn

1− a
,
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where ωk = e2πi/k.

17.2.24

lim
τ→0

(a/τ ; q)n τ
n = lim

σ→∞
(aσ; q)n σ

−n = (−a)nq(
n
2),

17.2.25 lim
τ→0

(a/τ ; q)n
(b/τ ; q)n

= lim
σ→∞

(aσ; q)n
(bσ; q)n

=
(a
b

)n
,

17.2.26 lim
τ→0

(a/τ ; q)n (b/τ ; q)n
(c/τ2; q)n

= (−1)n
(
ab

c

)n
q(
n
2).

17.2(ii) Binomial Coefficients

17.2.27

[
n

m

]
q

=
(q; q)n

(q; q)m (q; q)n−m

=
(q−n; q)m (−1)mqnm−(m2 )

(q; q)m
,

17.2.28 lim
q→1

[
n

m

]
q

=
(
n

m

)
=

n!
m!(n−m)!

,

17.2.29

[
m+ n

m

]
q

=

(
qn+1; q

)
m

(q; q)m
,

17.2.30

[
−n
m

]
q

=
[
m+ n− 1

m

]
q

(−1)mq−mn−(m2 ),

17.2.31

[
n

m

]
q

=
[
n− 1
m− 1

]
q

+ qm
[
n− 1
m

]
q

,

17.2.32

[
n

m

]
q

=
[
n− 1
m

]
q

+ qn−m
[
n− 1
m− 1

]
q

,

17.2.33

lim
n→∞

[
n

m

]
q

=
1

(q; q)m
=

1
(1− q)(1− q2) · · · (1− qm)

,

17.2.34 lim
n→∞

[
rn+ u

sn+ t

]
q

=
1

(q; q)∞
=
∞∏
j=1

1
(1− qj)

,

provided that r > s.

17.2(iii) Binomial Theorem

17.2.35
n∑
j=0

[
n

j

]
q

(−z)jq(
j
2) = (z; q)n

= (1− z)(1− zq) · · · (1− zqn−1).
In the limit as q → 1, (17.2.35) reduces to the stan-

dard binomial theorem

17.2.36

n∑
j=0

(
n

j

)
(−z)j = (1− z)n.

Also,

17.2.37

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

,

provided that |z| < 1. When a = qm+1, where m is a
nonnegative integer, (17.2.37) reduces to the q-binomial
series

17.2.38

∞∑
n=0

[
n+m

n

]
q

zn =
1

(z; q)m+1

.

17.2.39

n∑
j=0

[
n

j

]
q2
qj = (−q; q)n ,

17.2.40

2n∑
j=0

(−1)j
[
2n
j

]
q

=
(
q; q2

)
n
.

When n → ∞ in (17.2.35), and when m → ∞ in
(17.2.38), the results become convergent infinite series
and infinite products (see (17.5.1) and (17.5.4)).

17.2(iv) Derivatives

The q-derivatives of f(z) are defined by

17.2.41 Dqf(z) =


f(z)− f(zq)

(1− q)z
, z 6= 0,

f ′(0), z = 0,

and

17.2.42 f [n](z) = Dnq f(z) =


z−n(1− q)−n

∑n
j=0 q

−nj+(j+1
2 )(−1)j

[
n
j

]
q
f(zqj), z 6= 0,

f (n)(0) (q; q)n
n!(1− q)n

, z = 0.

When q → 1 the q-derivatives converge to the corre-
sponding ordinary derivatives.

Product Rule

17.2.43 Dq(f(z)g(z)) = g(z)f [1](z) + f(zq)g[1](z).

Leibniz Rule

17.2.44 Dnq (f(z)g(z)) =
n∑
j=0

[
n

j

]
q

f [n−j](zqj)g[j](z).

q-differential equations are considered in §17.6(iv).



422 q-Hypergeometric and Related Functions

17.2(v) Integrals

If f(x) is continuous at x = 0, then

17.2.45

∫ 1

0

f(x) dqx = (1− q)
∞∑
j=0

f(qj)qj ,

and more generally,

17.2.46

∫ a

0

f(x) dqx = a(1− q)
∞∑
j=0

f(aqj)qj .

If f(x) is continuous on [0, a], then

17.2.47 lim
q→1−

∫ a

0

f(x) dqx =
∫ a

0

f(x) dx.

Infinite Range

17.2.48

∫ ∞
0

f(x) dqx

= lim
n→∞

∫ q−n

0

f(x) dqx= (1− q)
∞∑

j=−∞
f(qj)qj ,

provided that
∑∞
j=−∞ f(qj)qj converges.

17.2(vi) Rogers–Ramanujan Identities

17.2.49

1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)

=
∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

,

17.2.50

1 +
∞∑
n=1

qn
2+n

(1− q)(1− q2) · · · (1− qn)

=
∞∏
n=0

1
(1− q5n+2)(1− q5n+3)

.

These identities are the first in a large collection of
similar results. See §17.14.

17.3 q-Elementary and q-Special Functions

17.3(i) Elementary Functions

q-Exponential Functions

17.3.1 eq(x) =
∞∑
n=0

(1− q)nxn

(q; q)n
=

1
((1− q)x; q)∞

,

17.3.2 Eq(x) =
∞∑
n=0

(1− q)nq(
n
2)xn

(q; q)n
= (−(1− q)x; q)∞ .

q-Sine Functions

17.3.3

sinq(x) =
1
2i

(eq(ix)− eq(−ix))

=
∞∑
n=0

(1− q)2n+1(−1)nx2n+1

(q; q)2n+1

,

17.3.4

Sinq(x) =
1
2i

(Eq(ix)− Eq(−ix))

=
∞∑
n=0

(1− q)2n+1qn(2n+1)(−1)nx2n+1

(q; q)2n+1

.

q-Cosine Functions

17.3.5

cosq(x) =
1
2

(eq(ix)+eq(−ix)) =
∞∑
n=0

(1− q)2n(−1)nx2n

(q; q)2n

,

17.3.6

Cosq(x) =
1
2

(Eq(ix) + Eq(−ix))

=
∞∑
n=0

(1− q)2nqn(2n−1)(−1)nx2n

(q; q)2n

.

See also Suslov (2003).

17.3(ii) Gamma and Beta Functions

See §5.18.

17.3(iii) Bernoulli Polynomials; Euler and
Stirling Numbers

q-Bernoulli Polynomials

17.3.7

βn(x, q) = (1− q)1−n
n∑
r=0

(−1)r
(
n

r

)
r + 1

(1− qr+1)
qrx.

q-Euler Numbers

17.3.8

Am,s(q)

= q(
s−m

2 )+(s2)
s∑
j=0

(−1)jq(
j
2)
[
m+ 1
j

]
q

(1− qs−j)m

(1− q)m
.

q-Stirling Numbers

17.3.9

am,s(q) =
q−(s2)(1− q)s

(q; q)s

s∑
j=0

(−1)jq(
j
2)
[
s

j

]
q

(1− qs−j)m

(1− q)m
.

These were introduced in Carlitz (1954b, 1958). The
βn(x, q) are, in fact, rational functions of q, and not
necessarily polynomials. The Am,s(q) are always poly-
nomials in q, and the am,s(q) are polynomials in q for
0 ≤ s ≤ m.

17.3(iv) Theta Functions

See §§17.8 and 20.5.

17.3(v) Orthogonal Polynomials

See §§18.27–18.29.
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17.4 Basic Hypergeometric Functions

17.4(i) rφs Functions

17.4.1

r+1φs

(
a0, a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)

= r+1φs(a0, a1, . . . , ar; b1, b2, . . . , bs; q, z)

=
∞∑
n=0

(a0; q)n (a1; q)n · · · (ar; q)n
(q; q)n (b1; q)n · · · (bs; q)n

(
(−1)nq(

n
2)
)s−r

zn.

Here and elsewhere it is assumed that the bj do not take
any of the values q−n. The infinite series converges for
all z when s > r, and for |z| < 1 when s = r.

17.4.2

lim
q→1− r+1φr

(
qa0 , qa1 , . . . , qar

qb1 , . . . , qbr
; q, z

)
= r+1Fr

(
a0, a1, . . . , ar
b1, . . . , br

; z
)
.

For the function on the right-hand side see §16.2(i).
This notation is from Gasper and Rahman (2004).

It is slightly at variance with the notation in Bailey
(1935) and Slater (1966). In these references the factor(

(−1)nq(
n
2)
)s−r

is not included in the sum. In practice
this discrepancy does not usually cause serious problems
because the case most often considered is r = s.

17.4(ii) rψs Functions

17.4.3

rψs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z
)

= rψs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z)

=
∞∑

n=−∞

(a1, a2, . . . , ar; q)n (−1)(s−r)nq(s−r)(n2)zn

(b1, b2, . . . , bs; q)n

=
∞∑
n=0

(a1, a2, . . . , ar; q)n (−1)(s−r)nq(s−r)(n2)zn

(b1, b2, . . . , bs; q)n

+
∞∑
n=1

(q/b1, q/b2, . . . , q/bs; q)n
(q/a1, q/a2, . . . , q/ar; q)n

(
b1b2 · · · bs
a1a2 · · · arz

)n
.

Here and elsewhere the bj must not take any of the
values q−n, and the aj must not take any of the values
qn+1. The infinite series converge when s ≥ r provided
that |(b1 · · · bs)/(a1 · · · arz)| < 1 and also, in the case
s = r, |z| < 1.

17.4.4

lim
q→1− r

ψr

(
qa1 , qa2 , . . . , qar

qb1 , qb2 , . . . , qbr
; q, z

)
= rHr

(
a1, a2, . . . , ar
b1, b2, . . . , br

; z
)
.

For the function rHr see §16.4(v).

17.4(iii) Appell Functions

The following definitions apply when |x| < 1 and |y| <
1:

17.4.5

Φ(1)(a; b, b′; c;x, y)

=
∑
m,n≥0

(a; q)m+n (b; q)m (b′; q)n x
myn

(q; q)m (q; q)n (c; q)m+n

,

17.4.6

Φ(2)(a; b, b′; c, c′;x, y)

=
∑
m,n≥0

(a; q)m+n (b; q)m (b′; q)n x
myn

(q; q)m (q; q)n (c; q)m (c′; q)n
,

17.4.7

Φ(3)(a, a′; b, b′; c;x, y)

=
∑
m,n≥0

(a, b; q)m (a′, b′; q)n x
myn

(q; q)m (q; q)n (c; q)m+n

,

17.4.8 Φ(4)(a; b; c, c′;x, y) =
∑
m,n≥0

(a, b; q)m+n x
myn

(q, c; q)m (q, c′; q)n
.

17.4(iv) Classification

The series (17.4.1) is said to be balanced or
Saalschützian when it terminates, r = s, z = q, and

17.4.9 qa0a1 · · · as = b1b2 · · · bs.
The series (17.4.1) is said to be k-balanced when

r = s and

17.4.10 qka0a1 · · · as = b1b2 · · · bs.
The series (17.4.1) is said to be well-poised when

r = s and

17.4.11 a0q = a1b1 = a2b2 = · · · = asbs.

The series (17.4.1) is said to be very-well-poised
when r = s, (17.4.11) is satisfied, and

17.4.12 b1 = −b2 =
√
a0.

The series (17.4.1) is said to be nearly-poised when
r = s and

17.4.13 a0q = a1b1 = a2b2 = · · · = as−1bs−1.

17.5 0φ0, 1φ0, 1φ1 Functions

Euler’s Second Sum

17.5.1

0φ0(−;−; q, z) =
∞∑
n=0

(−1)nq(
n
2)zn

(q; q)n
= (z; q)∞ , |z| < 1;

compare (17.3.2).

q-Binomial Series

17.5.2 1φ0(a;−; q, z) =
(az; q)∞
(z; q)∞

, |z| < 1;

compare (17.2.37).
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q-Binomial Theorem

17.5.3 1φ0

(
q−n;−; q, z

)
=
(
zq−n; q

)
n
.

This is (17.2.35) reformulated.

Euler’s First Sum

17.5.4 1φ0(0;−; q, z) =
∞∑
n=0

zn

(q; q)n
=

1
(z; q)∞

, |z| < 1;

compare (17.3.1).

Cauchy’s Sum

17.5.5 1φ1

(a
c

; q, c/a
)

=
(c/a; q)∞
(c; q)∞

, |c| < |a|.

17.6 2φ1 Function

17.6(i) Special Values

q-Gauss Sum

17.6.1 2φ1

(
a, b

c
; q, c/(ab)

)
=

(c/a, c/b; q)∞
(c, c/(ab); q)∞

.

First q-Chu–Vandermonde Sum

17.6.2 2φ1

(
a, q−n

c
; q, cqn/a

)
=

(c/a; q)n
(c; q)n

.

Second q-Chu–Vandermonde Sum

This reverses the order of summation in (17.6.2):

17.6.3 2φ1

(
a, q−n

c
; q, q

)
=
an (c/a; q)n

(c; q)n
.

Andrews–Askey Sum

17.6.4

2φ1

(
b2, b2

/
c

c
; q2, cq

/
b2
)

=
1
2

(
b2, q; q2

)
∞

(c, cq/b2; q2)∞

(
(c/b; q)∞
(b; q)∞

+
(−c/b; q)∞
(−b; q)∞

)
,

|cq| < |b2|.
Bailey–Daum q-Kummer Sum

17.6.5

2φ1

(
a, b

aq/b
; q,−q/b

)
=

(−q; q)∞
(
aq, aq2

/
b2 ; q2

)
∞

(−q/b, aq/b; q)∞
,

|b| > |q|.

17.6(ii) 2φ1 Transformations

Heine’s First Transformation

17.6.6
2φ1

(
a, b

c
; q, z

)
=

(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z

az
; q, b

)
,

|z| < 1, |b| < 1.

Heine’s Second Tranformation

17.6.7

2φ1

(
a, b

c
; q, z

)
=

(c/b, bz; q)∞
(c, z; q)∞

2φ1

(
abz/c , b
bz

; q, c/b
)

,

|z| < 1, |c| < |b|.
Heine’s Third Transformation

17.6.8

2φ1

(
a, b

c
; q, z

)
=

(abz/c ; q)∞
(z; q)∞

2φ1

(
c/a, c/b

c
; q, abz/c

)
,

|z| < 1, |abz| < |c|.

Fine’s First Transformation

17.6.9 2φ1

(
q, aq

bq
; q, z

)
= − (1− b)(aq/b)

(1− (aq/b ))

∞∑
n=0

(aq, azq/b; q)n q
n

(azq2/b; q)n
+

(aq, azq/b; q)∞
(aq/b; q)∞

2φ1

(
q, 0
bq

; q, z
)

, |z| < 1.

Fine’s Second Transformation

17.6.10 (1− z) 2φ1

(
q, aq

bq
; q, z

)
=
∞∑
n=0

(b/a; q)n (−az)nq(n2+n)/2

(bq, zq; q)n
, |z| < 1.

Fine’s Third Transformation

17.6.11
1− z
1− b 2φ1

(
q, aq

bq
; q, z

)
=
∞∑
n=0

(aq; q)n (azq/b; q)2n b
n

(zq, aq/b; q)n
− aq

∞∑
n=0

(aq; q)n (azq/b; q)2n+1 (bq)n

(zq; q)n (aq/b; q)n+1

, |z| < 1, |b| < 1.

Rogers–Fine Identity

17.6.12 (1− z) 2φ1

(
q, aq

bq
; q, z

)
=
∞∑
n=0

(aq, azq/b; q)n
(bq, zq; q)n

(1− azq2n+1)(bz)nqn
2
, |z| < 1.
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Nonterminating Form of the q-Vandermonde Sum

17.6.13 2φ1(a, b; c; q, q) +
(q/c, a, b; q)∞

(c/q, aq/c, bq/c; q)∞
2φ1

(
aq/c, bq/c; q2/c; q, q

)
=

(q/c, abq/c; q)∞
(aq/c, bq/c; q)∞

,

17.6.14

∞∑
n=0

(a; q)n
(
b; q2

)
n
zn

(q; q)n (azb; q2)n
=

(
az, bz; q2

)
∞

(z, azb; q2)∞
2φ1

(
a, b

bz
; q2, zq

)
.

Three-Term 2φ1 Transformations

17.6.15

2φ1

(
a, b

c
; q, z

)
=

(abz/c, q/c; q)∞
(az/c, q/a; q)∞

2φ1

(
c/a, cq/(abz)
cq/(az)

; q, bq/c
)

−
(
b, q/c, c/a, az/q, q2/(az); q

)
∞

(c/q, bq/c, q/a, az/c, cq/(az); q)∞
2φ1

(
aq/c, bq/c

q2/c
; q, z

)
, |z| < 1, |bq| < |c|.

17.6.16

2φ1

(
a, b

c
; q, z

)
=

(b, c/a, az, q/(az); q)∞
(c, b/a, z, q/z; q)∞

2φ1

(
a, aq/c

aq/b
; q, cq/(abz)

)
+

(a, c/b, bz, q/(bz); q)∞
(c, a/b, z, q/z; q)∞

2φ1

(
b, bq/c

bq/a
; q, cq/(abz)

)
, |z| < 1, |abz| < |cq|.

17.6(iii) Contiguous Relations

Heine’s Contiguous Relations

17.6.17 2φ1

(
a, b

c/q
; q, z

)
− 2φ1

(
a, b

c
; q, z

)
= cz

(1− a)(1− b)
(q − c)(1− c) 2φ1

(
aq, bq

cq
; q, z

)
,

17.6.18 2φ1

(
aq, b

c
; q, z

)
− 2φ1

(
a, b

c
; q, z

)
= az

1− b
1− c 2φ1

(
aq, bq

cq
; q, z

)
,

17.6.19 2φ1

(
aq, b

cq
; q, z

)
− 2φ1

(
a, b

c
; q, z

)
= az

(1− b)(1− (c/a))
(1− c)(1− cq) 2φ1

(
aq, bq

cq2
; q, z

)
,

17.6.20 2φ1

(
aq, b/q

c
; q, z

)
− 2φ1

(
a, b

c
; q, z

)
= az

(1− b/(aq))
1− c 2φ1

(
aq, b

cq
; q, z

)
,

17.6.21 b(1− a) 2φ1

(
aq, b

c
; q, z

)
− a(1− b) 2φ1

(
a, bq

c
; q, z

)
= (b− a) 2φ1

(
a, b

c
; q, z

)
,

17.6.22 a

(
1− b

c

)
2φ1

(
a, b/q

c
; q, z

)
− b

(
1− a

c

)
2φ1

(
a/q, b

c
; q, z

)
= (a− b)

(
1− abz

cq

)
2φ1

(
a, b

c
; q, z

)
,

17.6.23

q
(

1− a

c

)
2φ1

(
a/q, b

c
; q, z

)
+ (1− a)

(
1− abz

c

)
2φ1

(
aq, b

c
; q, z

)
=
(

1 + q − a− aq

c
+
a2z

c
− abz

c

)
2φ1

(
a, b

c
; q, z

)
,

17.6.24

(1− c)(q − c)(abz − c) 2φ1

(
a, b

c/q
; q, z

)
+ z(c− a)(c− b) 2φ1

(
a, b

cq
; q, z

)
= (c− 1)(c(q − c) + z(ca+ cb− ab− abq)) 2φ1

(
a, b

c
; q, z

)
.

17.6(iv) Differential Equations

Iterations of D

17.6.25 Dnq 2φ1

(
a, b

c
; q, zd

)
=

(a, b; q)n d
n

(c; q)n (1− q)n 2φ1

(
aqn, bqn

cqn
; q, dz

)
,

17.6.26 Dnq
(

(z; q)∞
(abz/c; q)∞

2φ1

(
a, b

c
; q, z

))
=

(c/a, c/b; q)n
(c; q)n (1− q)n

(
ab

c

)n (zqn; q)∞
(abz/c; q)∞

2φ1

(
a, b

cqn
; q, zqn

)
.
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q-Differential Equation

17.6.27

z(c− abqz)D2
q 2φ1

(
a, b

c
; q, z

)
+
(

1− c
1− q

+
(1− a)(1− b)− (1− abq)

1− q
z

)
Dq 2φ1

(
a, b

c
; q, z

)
− (1− a)(1− b)

(1− q)2 2φ1

(
a, b

c
; q, z

)
= 0.

(17.6.27) reduces to the hypergeometric equation (15.10.1) with the substitutions a→ qa, b→ qb, c→ qc, followed
by limq→1−.

17.6(v) Integral Representations

17.6.28 2φ1

(
qα, qβ

qγ
; q, z

)
=

Γq(γ)
Γq(β) Γq(γ − β)

∫ 1

0

tβ−1 (tq; q)γ−β−1

(xt; q)α
dqt.

17.6.29 2φ1

(
a, b

c
; q, z

)
=
(
−1
2πi

)
(a, b; q)∞
(q, c; q)∞

∫ i∞

−i∞

(
q1+ζ , cqζ ; q

)
∞

(aqζ , bqζ ; q)∞

π(−z)ζ

sin(πζ)
dζ,

where |z| < 1, |ph(−z)| < π, and the contour of integration separates the poles of
(
q1+ζ , cqζ ; q

)
∞ / sin(πζ) from

those of 1/
(
aqζ , bqζ ; q

)
∞, and the infimum of the distances of the poles from the contour is positive.

17.6(vi) Continued Fractions

For continued-fraction representations of the 2φ1 func-
tion, see Cuyt et al. (2008, pp. 395–399).

17.7 Special Cases of Higher rφs Functions

17.7(i) 2φ2 Functions

q-Analog of Bailey’s 2F1(−1) Sum

17.7.1 2φ2

(
a, q/a

−q, b
; q,−b

)
=

(
ab, bq/a; q2

)
∞

(b; q)∞
, |b| < 1.

q-Analog of Gauss’s 2F1(−1) Sum

17.7.2 2φ2

(
a2, b2

abq
1
2 ,−abq 1

2
; q,−q

)
=

(
a2q, b2q; q2

)
∞

(q, a2b2q; q2)∞
.

Sum Related to (17.6.4)

17.7.3

2φ2

(
c2
/
b2 , b2

c, cq
; q2, q

)
=

1
2

(
b2, q; q2

)
∞

(c, cq; q2)∞

(
(c/b; q)∞
(b; q)∞

+
(−c/b; q)∞
(−b; q)∞

)
.

17.7(ii) 3φ2 Functions

q-Pfaff–Saalschütz Sum

17.7.4 3φ2

(
a, b, q−n

c, abq1−n/c
; q, q

)
=

(c/a, c/b; q)n
(c, c/(ab); q)n

.

Nonterminating Form of the q-Saalschütz Sum

17.7.5

3φ2

(
a, b, c

e, f
; q, q

)
+

(q/e, a, b, c, qf/e; q)∞
(e/q, aq/e, bq/e, cq/e, f ; q)∞

× 3φ2

(
aq/e, bq/e, cq/e

q2/e, qf/e
; q, q

)
=

(q/e, f/a, f/b, f/c; q)∞
(aq/e, bq/e, cq/e, f ; q)∞

,

where ef = abcq.

F. H. Jackson’s Terminating q-Analog of Dixon’s Sum

17.7.6

3φ2

(
q−2n, b, c

q1−2n/b, q1−2n/c
; q,

q2−n

bc

)
=

(b, c; q)n (q, bc; q)2n

(q, bc; q)n (b, c; q)2n

.

Continued Fractions

For continued-fraction representations of a ratio of 3φ2

functions, see Cuyt et al. (2008, pp. 399–400).

17.7(iii) Other rφs Functions

q-Analog of Dixon’s 3F2(1) Sum

17.7.7

4φ3

(
a,−qa 1

2 , b, c

−a 1
2 , aq/b, aq/c

; q,
qa

1
2

bc

)

=

(
aq, qa

1
2 /b, qa

1
2 /c, aq/(bc); q

)
∞(

aq/b, aq/c, qa
1
2 , qa

1
2 /(bc); q

)
∞

.

Gasper–Rahman q-Analog of Watson’s 3F2 Sum

17.7.8

8φ7

(
λ, qλ

1
2 ,−qλ 1

2 , a, b, c,−c, λq/c2

λ
1
2 ,−λ 1

2 , λq/a, λq/b, λq/c,−λq/c, c2
; q,−λq

ab

)

=

(
λq, c2/λ; q

)
∞

(
aq, bq, c2q/a, c2q/b; q2

)
∞

(λq/a, λq/b; q)∞ (q, abq, c2q, c2q/(ab); q2)∞
,
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where λ = −c(ab/q) 1
2 .

Andrews’ Terminating q-Analog of (17.7.8)

17.7.9

4φ3

(
q−n, aqn, c,−c

(aq)
1
2 ,−(aq)

1
2 , c2

; q, q
)

=


0, n odd,
cn
(
q, aq/c2; q2

)
n/2

(aq, c2q; q2)n/2
, n even.

Gasper–Rahman q-Analog of Whipple’s 3F2 Sum

17.7.10

8φ7

(
−c, q(−c) 1

2 ,−q(−c) 1
2 , a, q/a, c,−d,−q/d

(−c) 1
2 ,−(−c) 1

2 ,−cq/a,−ac,−q, cq/d, cd
; q, c

)

=
(−c,−cq; q)∞

(
acd, acq/d, cdq/a, cq2/(ad); q2

)
∞

(cd, cq/d,−ac,−cq/a; q)∞
.

Andrews’ Terminating q-Analog

17.7.11

4φ3

(
q−n, qn+1, c,−c
e, c2q/e,−q

; q, q
)

=

(
eq−n, eqn+1, c2q1−n/e, c2qn+2/e; q2

)
∞

(e, c2q/e; q)∞
.

First q-Analog of Bailey’s 4F3(1) Sum

17.7.12

4φ3

(
a, aq, b2q2n, q−2n

b, bq, a2q2
; q2, q2

)
=
an (−q, b/a; q)n

(−aq, b; q)n
.

Second q-Analog of Bailey’s 4F3(1) Sum

17.7.13

4φ3

(
a, aq, b2q2n−2, q−2n

b, bq, a2
; q2, q2

)
=
an (−q, b/a; q)n (1− bqn−1)

(−a, b; q)n (1− bq2n−1)
.

F. H. Jackson’s q-Analog of Dougall’s 7F6(1) Sum

17.7.14

8φ7

(
a, qa

1
2 ,−qa 1

2 , b, c, d, e, q−n

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e, aqn+1
; q, q

)

=
(aq, aq/(bc), aq/(bd), aq/(cd); q)n
(aq/b, aq/c, aq/d, aq/(bcd); q)n

,

where a2q = bcdeq−n.

Limiting Cases of (17.7.14)

17.7.15

6φ5

(
a, qa

1
2 ,−qa 1

2 , b, c, d

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d
; q,

aq

bcd

)

=
(aq, aq/(bc), aq/(bd), aq/(cd); q)∞
(aq/b, aq/c, aq/d, aq/(bcd); q)∞

,

and when d = q−n,

17.7.16

6φ5

(
a, qa

1
2 ,−qa 1

2 , b, c, q−n

a
1
2 ,−a 1

2 , aq/b, aq/c, aqn+1
; q,

aqn+1

bc

)

=
(aq, aq/(bc); q)n
(aq/b, aq/c; q)n

.

See http://dlmf.nist.gov/17.7.iii for additional
results.

17.8 Special Cases of rψr Functions

Jacobi’s Triple Product

17.8.1

∞∑
n=−∞

(−z)nqn(n−1)/2 = (q, z, q/z; q)∞ ;

compare (20.5.9).

Ramanujan’s 1ψ1 Summation

17.8.2 1ψ1

(a
b

; q, z
)

=
(q, b/a, az, q/(az); q)∞
(b, q/a, z, b/(az); q)∞

.

Quintuple Product Identity

17.8.3

∞∑
n=−∞

(−1)nqn(3n−1)/2z3n(1 + zqn)

= (q,−z,−q/z; q)∞
(
qz2, q/z2; q2

)
∞ .

Bailey’s Bilateral Summations

17.8.4 2ψ2(b, c; aq/b, aq/c; q,−aq/(bc)) =
(aq/(bc); q)∞

(
aq2/b2, aq2/c2, q2, aq, q/a; q2

)
∞

(aq/b, aq/c, q/b, q/c,−aq/(bc); q)∞
,

17.8.5 3ψ3

(
b, c, d

q/b, q/c, q/d
; q,

q

bcd

)
=

(q, q/(bc), q/(bd), q/(cd); q)∞
(q/b, q/c, q/d, q/(bcd); q)∞

,

17.8.6 4ψ4

(
−qa 1

2 , b, c, d

−a 1
2 , aq/b, aq/c, aq/d

; q,
qa

3
2

bcd

)
=

(
aq, aq/(bc), aq/(bd), aq/(cd), qa

1
2 /b, qa

1
2 /c, qa

1
2 /d, q, q/a; q

)
∞(

aq/b, aq/c, aq/d, q/b, q/c, q/d, qa
1
2 , qa−

1
2 , qa

3
2 /(bcd); q

)
∞

,
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17.8.7

6ψ6

(
qa

1
2 ,−qa 1

2 , b, c, d, e

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e
; q,

qa2

bcde

)
=

(aq, aq/(bc), aq/(bd), aq/(be), aq/(cd), aq/(ce), aq/(de), q, q/a; q)∞
(aq/b, aq/c, aq/d, aq/e, q/b, q/c, q/d, q/e, qa2/(bcde); q)∞

.

17.9 Transformations of Higher rφr Functions

17.9(i) 2φ1 → 2φ2, 3φ1, or 3φ2

F. H. Jackson’s Transformations

17.9.1 2φ1

(
a, b

c
; q, z

)
=

(za; q)∞
(z; q)∞

2φ2

(
a, c/b

c, az
; q, bz

)
,

17.9.2 2φ1

(
q−n, b

c
; q, z

)
=

(c/b; q)n
(c; q)n

bn 3φ1

(
q−n, b, q/c

bq1−n/c
; q, z/c

)
,

17.9.3 2φ1

(
a, b

c
; q, z

)
=

(abz/c; q)∞
(bz/c; q)∞

3φ2

(
a, c/b, 0
c, cq/bz

; q, q
)
,

17.9.4 2φ1

(
q−n, b

c
; q, z

)
=

(c/b; q)n
(c; q)n

(
bz

q

)n
3φ2

(
q−n, q/z, q1−n/c

bq1−n/c, 0
; q, q

)
,

17.9.5 2φ1

(
q−n, b

c
; q, z

)
=

(c/b; q)n
(c; q)n

3φ2

(
q−n, b, bzq−n/c

bq1−n/c, 0
; q, q

)
.

17.9(ii) 3φ2 → 3φ2

Transformations of 3φ2-Series

17.9.6 3φ2

(
a, b, c

d, e
; q, de/(abc)

)
=

(e/a, de/(bc); q)∞
(e, de/(abc); q)∞

3φ2

(
a, d/b, d/c

d, de/(bc)
; q, e/a

)
,

17.9.7 3φ2

(
a, b, c

d, e
; q, de/(abc)

)
=

(b, de/(ab), de/(bc); q)∞
(d, e, de/(abc); q)∞

3φ2

(
d/b, e/b, de/(abc)
de/(ab), de/(bc)

; q, b
)
,

17.9.8 3φ2

(
q−n, b, c

d, e
; q, q

)
=

(de/(bc); q)n
(e; q)n

(
bc

d

)n
3φ2

(
q−n, d/b, d/c

d, de/(bc)
; q, q

)
,

17.9.9 3φ2

(
q−n, b, c

d, e
; q, q

)
=

(e/c; q)n
(e; q)n

cn 3φ2

(
q−n, c, d/b

d, cq1−n/e
; q,

bq

e

)
,

17.9.10 3φ2

(
q−n, b, c

d, e
; q,

deqn

bc

)
=

(e/c; q)n
(e; q)n

3φ2

(
q−n, c, d/b

d, cq1−n/e
; q, q

)
.

q-Sheppard Identity

17.9.11 3φ2

(
q−n, b, c

d, e
; q, q

)
=

(e/c, d/c; q)n
(e, d; q)n

cn 3φ2

(
q−n, c, cbq1−n/(de)
cq1−n/e , cq1−n/d

; q, q
)
,

For further results see http://dlmf.nist.gov/17.9.ii.

17.9(iii) Further rφs Functions

Sears’ Balanced 4φ3 Transformations

With def = abcq1−n

17.9.14

4φ3

(
q−n, a, b, c

d, e, f
; q, q

)
=

(e/a, f/a; q)n
(e, f ; q)n

an 4φ3

(
q−n, a, d/b, d/c

d, aq1−n/e, aq1−n/f
; q, q

)
=

(a, ef/(ab), ef/(ac); q)n
(e, f, ef/(abc); q)n

4φ3

(
q−n, e/a, f/a, ef/(abc)
ef/(ab), ef/(ac), q1−n/a

; q, q
)
.
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Watson’s q-Analog of Whipple’s Theorem

With n a nonnegative integer

17.9.15
(aq, aq/(de); q)n
(aq/d, aq/e; q)n

4φ3

(
aq/(bc), d, e, q−n

aq/b, aq/c, deq−n/a
; q, q

)
= 8φ7

(
a, qa

1
2 ,−qa 1

2 , b, c, d, e, q−n

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e, aqn+1
; q,

a2q2+n

bcde

)
.

Bailey’s Transformation of Very-Well-Poised 8φ7

17.9.16

8φ7

(
a, qa

1
2 ,−qa 1

2 , b, c, d, e, f

a
1
2 ,−a 1

2 , aq/b, aq/c, aq/d, aq/e, aq/f
; q,

a2q2

bcdef

)

=
(aq, aq/(de), aq/(df), aq/(ef); q)∞
(aq/d, aq/e, aq/f, aq/(def); q)∞

4φ3

(
aq/(bc), d, e, f

aq/b, aq/c, def/a
; q, q

)
+

(
aq, aq/(bc), d, e, f, a2q2/(bdef), a2q2/(cdef); q

)
∞

(aq/b, aq/c, aq/d, aq/e, aq/f, a2q2/(bcdef), def/(aq); q)∞
4φ3

(
aq/(de), aq/(df), aq/(ef), a2q2/(bcdef)
a2q2/(bdef), a2q2/(cdef), aq2/(def)

; q, q
)
.

For additional results see http://dlmf.nist.gov/17.9.iii and Gasper and Rahman (2004, Appendix III and
Chapter 2).

17.9(iv) Bibasic Series

Mixed-Base Heine-Type Transformations

17.9.19

∞∑
n=0

(
a; q2

)
n

(b; q)n
(q2; q2)n (c; q)n

zn =
(b; q)∞

(
az; q2

)
∞

(c; q)∞ (z; q2)∞

∞∑
n=0

(c/b; q)2n

(
z; q2

)
n
b2n

(q; q)2n (az; q2)n

+
(b; q)∞

(
azq; q2

)
∞

(c; q)∞ (zq; q2)∞

∞∑
n=0

(c/b; q)2n+1

(
zq; q2

)
n
b2n+1

(q; q)2n+1 (azq; q2)n
.

17.9.20

∞∑
n=0

(
a; qk

)
n

(b; q)kn z
n

(qk; qk)n (c; q)kn
=

(b; q)∞
(
az; qk

)
∞

(c; q)∞ (z; qk)∞

∞∑
n=0

(c/b; q)n
(
z; qk

)
n
bn

(q; q)n (az; qk)n
, k = 1, 2, 3, . . . .

17.10 Transformations of rψr Functions

Bailey’s 2ψ2 Transformations

17.10.1 2ψ2

(
a, b

c, d
; q, z

)
=

(az, d/a, c/b, dq/(abz); q)∞
(z, d, q/b, cd/(abz); q)∞

2ψ2

(
a, abz/d

az, c
; q,

d

a

)
,

17.10.2 2ψ2

(
a, b

c, d
; q, z

)
=

(az, bz, cq/(abz), dq/(abz); q)∞
(q/a, q/b, c, d; q)∞

2ψ2

(
abz/c, abz/d

az, bz
; q,

cd

abz

)
.

Other Transformations

17.10.3

8ψ8

(
qa

1
2 ,−qa 1

2 , c, d, e, f, aq−n, q−n

a
1
2 ,−a 1

2 , aq/c, aq/d, aq/e, aq/f, qn+1, aqn+1
; q,

a2q2n+2

cdef

)

=
(aq, q/a, aq/(cd), aq/(ef); q)n

(q/c, q/d, aq/e, aq/f ; q)n
4ψ4

(
e, f, aqn+1/(cd), q−n

aq/c, aq/d, qn+1, ef/(aqn)
; q, q

)
,

17.10.4

2ψ2

(
e, f

aq/c, aq/d
; q,

aq

ef

)
=

(q/c, q/d, aq/e, aq/f ; q)∞
(aq, q/a, aq/(cd), aq/(ef); q)∞

∞∑
n=−∞

(1− aq2n) (c, d, e, f ; q)n
(1− a) (aq/c, aq/d, aq/e, aq/f ; q)n

(
qa3

cdef

)n
qn

2
.

17.10.5

(aq/b, aq/c, aq/d, aq/e, q/(ab), q/(ac), q/(ad), q/(ae); q)∞
(fa, ga, f/a, g/a, qa2, q/a2; q)∞

8ψ8

(
qa,−qa, ba, ca, da, ea, fa, ga

a,−a, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g
; q,

q2

bcdefg

)
=

(q, q/(bf), q/(cf), q/(df), q/(ef), qf/b, qf/c, qf/d, qf/e; q)∞
(fa, q/(fa), aq/f, f/a, g/f, fg, qf2; q)∞

× 8φ7

(
f2, qf,−qf, fb, fc, fd, fe, fg

f,−f, fq/b, fq/c, fq/d, fq/e, fq/g
; q,

q2

bcdefg

)
+ idem(f ; g).
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17.10.6

(aq/b, aq/c, aq/d, aq/e, aq/f, q/(ab), q/(ac), q/(ad), q/(ae), q/(af); q)∞
(ag, ah, ak, g/a, h/a, k/a, qa2, q/a2; q)∞

× 10ψ10

(
qa,−qa, ba, ca, da, ea, fa, ga, ha, ka

a,−a, aq/b, aq/c, aq/d, aq/e, aq/f, aq/g, aq/h, aq/k
; q,

q2

bcdefghk

)
=

(q, q/(bg), q/(cg), q/(dg), q/(eg), q/(fg), qg/b, qg/c, qg/d, qg/e, qg/f ; q)∞
(gh, gk, h/g, ag, q/(ag), g/a, aq/g, qg2; q)∞

× 10φ9

(
g2, qg,−qg, gb, gc, gd, ge, gf, gh, gk

g,−g, qg/b, qg/c, qg/d, qg/e, qg/f, qg/h, qg/k
; q,

q2

bcdefghk

)
+ idem(g;h, k).

17.11 Transformations of q-Appell Functions

17.11.1 Φ(1)(a; b, b′; c;x, y) =
(a, bx, b′y; q)∞

(c, x, y; q)∞
3φ2

(
c/a, x, y

bx, b′y
; q, a

)
,

17.11.2 Φ(2)(a; b, b′; c, c′;x, y) =
(b, ax; q)∞
(c, x; q)∞

∑
n,r=0

(a, b′; q)n (c/b, x; q)r b
ryn

(q, c′; q)n (q)r (ax; q)n+r

,

17.11.3 Φ(3)(a, a′; b, b′; c;x, y) =
(a, bx; q)∞
(c, x; q)∞

∑
n,r=0

(a′, b′; q)n (x; q)r (c/a; q)n+r a
ryn

(q, c/a; q)n (q, bx; q)r
.

Of (17.11.1)–(17.11.3) only (17.11.1) has a natural generalization: the following sum reduces to (17.11.1) when
n = 2.

17.11.4

∑
m1,...,mn=0

(a; q)m1+m2+···+mn (b1; q)m1
(b2; q)m2

· · · (bn; q)mn x
m1
1 xm2

2 · · ·xmnn
(q; q)m1

(q; q)m2
· · · (q; q)mn (c; q)m1+m2+···+mn

=
(a, b1x1, b2x2, . . . , bnxn; q)∞

(c, x1, x2, . . . , xn; q)∞
n+1φn

(
c/a, x1, x2, . . . , xn
b1x1, b2x2, . . . , bnxn

; q, a
)
.

17.12 Bailey Pairs

Bailey Transform

17.12.1

∞∑
n=0

αnγn =
∞∑
n=0

βnδn,

where

17.12.2 βn =
n∑
j=0

αjun−jvn+j , γn =
∞∑
j=n

δjuj−nvj+n.

Bailey Pairs

A sequence of pairs of rational functions of several vari-
ables (αn, βn), n = 0, 1, 2, . . . , is called a Bailey pair
provided that for each n = 0

17.12.3 βn =
n∑
j=0

αj
(q; q)n−j (aq; q)n+j

.

Weak Bailey Lemma

If (αn, βn) is a Bailey pair, then

17.12.4

∞∑
n=0

qn
2
anβn =

1
(aq; q)∞

∞∑
n=0

qn
2
anαn.

Strong Bailey Lemma

If (αn, βn) is a Bailey pair, then so is (α′n, β
′
n), where

17.12.5(
aq

ρ1
,
aq

ρ2
; q
)
n

α′n = (ρ1, ρ2; q)n

(
aq

ρ1ρ2

)n
αn(

aq

ρ1
,
aq

ρ2
; q
)
n

β′n

=
n∑
j=0

(ρ1, ρ2; q)j

(
aq

ρ1ρ2
; q
)
n−j

(
aq

ρ1ρ2

)j
βj

(q; q)n−j

When (17.12.5) is iterated the resulting infinite se-
quence of Bailey pairs is called a Bailey Chain.

The Bailey pair that implies the Rogers–Ramanujan
identities §17.2(vi) is:

17.12.6

αn =
(a; q)n (1− aq2n)(−1)nqn(3n−1)/2an

(q; q)n (1− a)
,

βn =
1

(q; q)n
.

The Bailey pair and Bailey chain concepts have been
extended considerably. See Andrews (2000, 2001), An-
drews and Berkovich (1998), Andrews et al. (1999),
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Milne and Lilly (1992), Spiridonov (2002), and Warnaar
(1998).

17.13 Integrals

In this section, for the function Γq see §5.18(ii).
17.13.1∫ d

−c

(−qx/c; q)∞ (qx/d; q)∞
(−ax/c; q)∞ (bx/d; q)∞

dqx

=
(1− q) (q; q)∞ (ab; q)∞ cd (−c/d; q)∞ (−d/c; q)∞
(a; q)∞ (b; q)∞ (c+ d) (−bc/d; q)∞ (−ad/c; q)∞

,

or, when 0 < q < 1,
17.13.2∫ d

−c

(−qx/c; q)∞ (qx/d; q)∞
(−xqα/c; q)∞ (xqβ/d; q)∞

dqx

=
Γq(α) Γq(β)
Γq(α+ β)

cd

c+ d

(−c/d; q)∞ (−d/c; q)∞
(−qβc/d; q)∞ (−qαd/c; q)∞

.

Ramanujan’s Integrals

17.13.3∫ ∞
0

tα−1

(
−tqα+β ; q

)
∞

(−t; q)∞
dqt =

Γ(α) Γ(1− α) Γq(β)
Γq(1− α) Γq(α+ β)

,

17.13.4

∫ ∞
0

tα−1

(
−ctqα+β ; q

)
∞

(−ct; q)∞
dqt

=
Γq(α) Γq(β) (−cqα; q)∞

(
−q1−α/c; q

)
∞

Γq(α+ β) (−c; q)∞ (−q/c; q)∞
.

Askey (1980) conjectured extensions of the foregoing
integrals that are closely related to Macdonald (1982).
These conjectures are proved independently in Hab-
sieger (1988) and Kadell (1988).

17.14 Constant Term Identities

Zeilberger–Bressoud Theorem (Andrews’ q-Dyson Conjecture)

17.14.1
(q; q)a1+a2+···+an

(q; q)a1
(q; q)a2

· · · (q; q)an
= coeff. of x0

1x
0
2 · · ·x0

n in
∏

1≤j<k≤n

(
xj
xk

; q
)
aj

(
qxk
xj

; q
)
ak

.

Rogers–Ramanujan Constant Term Identities

In the following, G(q) and H(q) denote the left-hand sides of (17.2.49) and (17.2.50), respectively.

17.14.2

∞∑
n=0

qn(n+1)

(q2; q2)n (−q; q2)n+1

= coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(z−1q2; q2)∞ (−q; q2)∞ (z−1q; q2)∞

=
1

(−q; q2)∞
coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(z−1q; q)∞
=

H(q)
(−q; q2)∞

,

17.14.3

∞∑
n=0

qn(n+1)

(q2; q2)n (−q; q2)n+1

= coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(z−1; q2)∞ (−q; q2)∞ (z−1q; q2)∞

=
1

(−q; q2)∞
coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(z−1; q)∞
=

G(q)
(−q; q2)∞

,

17.14.4

∞∑
n=0

qn
2

(q2; q2)n (q; q2)n
= coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(−z−1; q2)∞ (q; q2)∞ (z−1; q2)∞

=
1

(q; q2)∞
coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(z−2; q4)∞
=

G(q4)
(q; q2)∞

,

17.14.5

∞∑
n=0

qn
2+2n

(q2; q2)n (q; q2)n+1

= coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(−q2z−1; q2)∞ (q; q2)∞ (z−1q2; q2)∞

=
1

(q; q2)∞
coeff. of z0 in

(
−zq; q2

)
∞

(
−z−1q; q2

)
∞

(
q2; q2

)
∞

(q4z−2; q4)∞
=

H(q4)
(q; q2)∞

.
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Macdonald (1982) includes extensive conjectures on
generalizations of (17.14.1) to root systems. These con-
jectures were proved in Cherednik (1995), Habsieger
(1986), and Kadell (1994); see also Macdonald (1998).
For additional results of the type (17.14.2)–(17.14.5) see
Andrews (1986, Chapter 4).

17.15 Generalizations

For higher-dimensional basic hypergometric functions,
see Milne (1985b,c,d,a, 1988, 1994, 1997) and Gustafson
(1987).

Applications

17.16 Mathematical Applications

Many special cases of q-series arise in the theory of
partitions, a topic treated in §§27.14(i) and 26.9. In
Lie algebras Lepowsky and Milne (1978) and Lepowsky
and Wilson (1982) laid foundations for extensive inter-
action with q-series. These and other applications are
described in the surveys Andrews (1974, 1986). More
recent applications are given in Gasper and Rahman
(2004, Chapter 8) and Fine (1988, Chapters 1 and 2).

17.17 Physical Applications

In exactly solved models in statistical mechanics (Bax-
ter (1981, 1982)) the methods and identities of §17.12
play a substantial role. See Berkovich and McCoy
(1998) and Bethuel (1998) for recent surveys.

Quantum groups also apply q-series extensively.
Quantum groups are really not groups at all but certain
Hopf algebras. They were given this name because they
play a role in quantum physics analogous to the role of
Lie groups and special functions in classical mechanics.
See Kassel (1995).

A substantial literature on q-deformed quantum-
mechanical Schrödinger equations has developed re-
cently. It involves q-generalizations of exponentials and
Laguerre polynomials, and has been applied to the prob-
lems of the harmonic oscillator and Coulomb potentials.
See Micu and Papp (2005), where many earlier refer-
ences are cited.

Computation

17.18 Methods of Computation

The two main methods for computing basic hypergeo-
metric functions are: (1) numerical summation of the
defining series given in §§17.4(i) and 17.4(ii); (2) modu-
lar transformations. Method (1) is applicable within the
circles of convergence of the defining series, although it
is often cumbersome owing to slowness of convergence
and/or severe cancellation. Method (2) is very powerful
when applicable (Andrews (1976, Chapter 5)); however,
it is applicable only rarely. Lehner (1941) uses Method
(2) in connection with the Rogers–Ramanujan identi-
ties.

Method (1) can sometimes be improved by appli-
cation of convergence acceleration procedures; see §3.9.
Shanks (1955) applies such methods in several q-series
problems; see Andrews et al. (1986).

17.19 Software

See http://dlmf.nist.gov/17.19.
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Notation

18.1 Notation

18.1(i) Special Notation

(For other notation see pp. xiv and 873.)

x, y real variables.
z(= x+ iy) complex variable.
q real variable such that 0 < q < 1, unless

stated otherwise.
`,m nonnegative integers.
n nonnegative integer, except in §18.30.
N positive integer.
δ(x− a) Dirac delta (§1.17).
δ arbitrary small positive constant.
pn(x) polynomial in x of degree n.
p−1(x) 0.
w(x) weight function (≥ 0) on an open

interval (a, b).
wx weights (> 0) at points x ∈ X of a finite

or countably infinite subset of R.
OP’s orthogonal polynomials.

x-Differences

Forward differences:

∆x (f(x)) = f(x+ 1)− f(x),

∆n+1
x (f(x)) = ∆x ( ∆n

x(f(x))) .

Backward differences:

∇x (f(x)) = f(x)− f(x− 1),

∇n+1
x (f(x)) = ∇x (∇nx(f(x))) .

Central differences in imaginary direction:

δx (f(x)) =
(
f(x+ 1

2 i)− f(x− 1
2 i)
)
/i,

δn+1
x (f(x)) = δx ( δnx (f(x))) .

q-Pochhammer Symbol

(z; q)0 = 1, (z; q)n = (1− z)(1− zq) · · · (1− zqn−1),

(z1, . . . , zk; q)n = (z1; q)n · · · (zk; q)n .

Infinite q-Product

(z; q)∞ =
∞∏
j=0

(1− zqj),

(z1, . . . , zk; q)∞ = (z1; q)∞ · · · (zk; q)∞ .

18.1(ii) Main Functions

The main functions treated in this chapter are:

Classical OP’s

Jacobi: P (α,β)
n (x).

Ultraspherical (or Gegenbauer): C(λ)
n (x).

Chebyshev of first, second, third, and fourth kinds:
Tn(x), Un(x), Vn(x), Wn(x).

Shifted Chebyshev of first and second kinds: T ∗n(x),
U∗n(x).

Legendre: Pn(x).

Shifted Legendre: P ∗n(x).

Laguerre: L(α)
n (x) and Ln(x) = L

(0)
n (x). (L(α)

n (x) with
α 6= 0 is also called Generalized Laguerre.)

Hermite: Hn(x), Hen(x).

Hahn Class OP’s

Hahn: Qn(x;α, β,N).

Krawtchouk: Kn(x; p,N).

Meixner: Mn(x;β, c).

Charlier: Cn(x, a).

Continuous Hahn: pn
(
x; a, b, a, b

)
.

Meixner–Pollaczek: P (λ)
n (x;φ).

Wilson Class OP’s

Wilson: Wn(x; a, b, c, d).

Racah: Rn(x;α, β, γ, δ).

Continuous Dual Hahn: Sn(x; a, b, c).

Dual Hahn: Rn(x; γ, δ,N).

q-Hahn Class OP’s

q-Hahn: Qn(x;α, β,N ; q).

Big q-Jacobi: Pn(x; a, b, c; q).

Little q-Jacobi: pn(x; a, b; q).

q-Laguerre: L(α)
n (x; q).

Stieltjes–Wigert: Sn(x; q).

Discrete q-Hermite I: hn(x; q).

Discrete q-Hermite II: h̃n(x; q).

Askey–Wilson Class OP’s

Askey–Wilson: pn(x; a, b, c, d | q).
Al-Salam–Chihara: Qn(x; a, b | q).
Continuous q-Ultraspherical: Cn(x;β | q).
Continuous q-Hermite: Hn(x | q).
Continuous q−1-Hermite: hn(x | q)
q-Racah: Rn(x;α, β, γ, δ | q).
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Other OP’s

Bessel: yn(x; a).

Pollaczek: P (λ)
n (x; a, b).

Classical OP’s in Two Variables

Disk: R(α)
m,n(z).

Triangle: Pα,β,γm,n (x, y).

18.1(iii) Other Notations

In Szegö (1975, §4.7) the ultraspherical polynomials
C

(λ)
n (x) are denoted by P

(λ)
n (x). The ultraspherical

polynomials will not be considered for λ = 0. They
are defined in the literature by C(0)

0 (x) = 1 and

18.1.1
C(0)
n (x) =

2
n
Tn(x) =

2(n− 1)!(
1
2

)
n

P
(− 1

2 ,−
1
2 )

n (x),

n = 1, 2, 3, . . . .
Nor do we consider the shifted Jacobi polynomials:

18.1.2 Gn(p, q, x) =
n!

(n+ p)n
P (p−q,q−1)
n (2x− 1),

or the dilated Chebyshev polynomials of the first and
second kinds:

18.1.3 Cn(x) = 2Tn
(

1
2x
)
, Sn(x) = Un

(
1
2x
)
.

In Koekoek and Swarttouw (1998) δx denotes the
operator iδx.

General Orthogonal Polynomials

18.2 General Orthogonal Polynomials

18.2(i) Definition

Orthogonality on Intervals

Let (a, b) be a finite or infinite open interval in R. A sys-
tem (or set) of polynomials {pn(x)}, n = 0, 1, 2, . . . , is
said to be orthogonal on (a, b) with respect to the weight
function w(x) (≥ 0) if

18.2.1

∫ b

a

pn(x)pm(x)w(x) dx = 0, n 6= m.

Here w(x) is continuous or piecewise continuous or in-
tegrable, and such that 0 <

∫ b
a
x2nw(x) dx < ∞ for all

n.
It is assumed throughout this chapter that for each

polynomial pn(x) that is orthogonal on an open interval
(a, b) the variable x is confined to the closure of (a, b)
unless indicated otherwise. (However, under appropri-
ate conditions almost all equations given in the chapter
can be continued analytically to various complex values
of the variables.)

Orthogonality on Finite Point Sets

Let X be a finite set of distinct points on R, or a count-
able infinite set of distinct points on R, and wx, x ∈ X,
be a set of positive constants. Then a system of polyno-
mials {pn(x)}, n = 0, 1, 2, . . . , is said to be orthogonal
on X with respect to the weights wx if

18.2.2
∑
x∈X

pn(x)pm(x)wx = 0, n 6= m,

when X is infinite, or

18.2.3∑
x∈X

pn(x)pm(x)wx = 0, n,m = 0, 1, . . . , N ;n 6= m,

when X is a finite set of N + 1 distinct points. In the
former case we also require

18.2.4
∑
x∈X

x2nwx <∞, n = 0, 1, . . . ,

whereas in the latter case the system {pn(x)} is finite:
n = 0, 1, . . . , N .

More generally than (18.2.1)–(18.2.3), w(x) dx may
be replaced in (18.2.1) by a positive measure dα(x),
where α(x) is a bounded nondecreasing function on the
closure of (a, b) with an infinite number of points of in-
crease, and such that 0 <

∫ b
a
x2n dα(x) < ∞ for all

n. See McDonald and Weiss (1999, Chapters 3, 4) and
Szegö (1975, §1.4).

18.2(ii) x-Difference Operators

If the orthogonality discrete set X is {0, 1, . . . , N} or
{0, 1, 2, . . . }, then the role of the differentiation op-
erator d/dx in the case of classical OP’s (§18.3) is
played by ∆x, the forward-difference operator, or by
∇x, the backward-difference operator; compare §18.1(i).
This happens, for example, with the Hahn class OP’s
(§18.20(i)).

If the orthogonality interval is (−∞,∞) or (0,∞),
then the role of d/dx can be played by δx, the
central-difference operator in the imaginary direction
(§18.1(i)). This happens, for example, with the contin-
uous Hahn polynomials and Meixner–Pollaczek polyno-
mials (§18.20(i)).

18.2(iii) Normalization

The orthogonality relations (18.2.1)–(18.2.3) each de-
termine the polynomials pn(x) uniquely up to constant
factors, which may be fixed by suitable normalization.

If we define

18.2.5 hn =
∫ b

a

(pn(x))2 w(x) dx or
∑
x∈X

(pn(x))2 wx,
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18.2.6

h̃n =
∫ b

a

x (pn(x))2 w(x) dx or
∑
x∈X

x (pn(x))2 wx,

and

18.2.7 pn(x) = knx
n + k̃nx

n−1 + ˜̃
knx

n−2 + · · · ,
then two special normalizations are: (i) orthonormal
OP’s: hn = 1, kn > 0; (ii) monic OP’s: kn = 1.

18.2(iv) Recurrence Relations

As in §18.1(i) we assume that p−1(x) ≡ 0.

First Form

18.2.8

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n ≥ 0.
Here An, Bn (n ≥ 0), and Cn (n ≥ 1) are real constants,
and An−1AnCn > 0 for n ≥ 1. Then
18.2.9

An =
kn+1

kn
, Bn =

(
k̃n+1

kn+1
− k̃n
kn

)
An = − h̃n

hn
An,

Cn =
An

˜̃
kn +Bnk̃n − ˜̃

kn+1

kn−1
=

An
An−1

hn
hn−1

.

Second Form

18.2.10

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), n ≥ 0.
Here an, bn (n ≥ 0), cn (n ≥ 1) are real constants, and
an−1cn > 0 (n ≥ 1). Then

18.2.11

an =
kn
kn+1

, bn =
k̃n
kn
− k̃n+1

kn+1
=
h̃n
hn
,

cn =
˜̃
kn − an ˜̃

kn+1 − bnk̃n
kn−1

= an−1
hn
hn−1

.

If the OP’s are orthonormal, then cn = an−1 (n ≥ 1).
If the OP’s are monic, then an = 1 (n ≥ 0).

Conversely, if a system of polynomials {pn(x)} sat-
isfies (18.2.10) with an−1cn > 0 (n ≥ 1), then {pn(x)}

is orthogonal with respect to some positive measure on
R (Favard’s theorem). The measure is not necessarily
of the form w(x) dx nor is it necessarily unique.

18.2(v) Christoffel–Darboux Formula

18.2.12
n∑
`=0

p`(x)p`(y)
h`

=
kn

hnkn+1

pn+1(x)pn(y)− pn(x)pn+1(y)
x− y

,

x 6= y.

Confluent Form

18.2.13
n∑
`=0

(p`(x))2

h`
=

kn
hnkn+1

(
p′n+1(x)pn(x)− p′n(x)pn+1(x)

)
.

18.2(vi) Zeros

All n zeros of an OP pn(x) are simple, and they are
located in the interval of orthogonality (a, b). The zeros
of pn(x) and pn+1(x) separate each other, and if m < n
then between any two zeros of pm(x) there is at least
one zero of pn(x).

For illustrations of these properties see Figures
18.4.1–18.4.7.

Classical Orthogonal Polynomials

18.3 Definitions

Table 18.3.1 provides the definitions of Jacobi, Laguerre,
and Hermite polynomials via orthogonality and normal-
ization (§§18.2(i) and 18.2(iii)). This table also includes
the following special cases of Jacobi polynomials: ultra-
spherical, Chebyshev, and Legendre.
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For exact values of the coefficients of the Jacobi
polynomials P (α,β)

n (x), the ultraspherical polynomials
C

(λ)
n (x), the Chebyshev polynomials Tn(x) and Un(x),

the Legendre polynomials Pn(x), the Laguerre poly-
nomials Ln(x), and the Hermite polynomials Hn(x),
see Abramowitz and Stegun (1964, pp. 793–801). The
Jacobi polynomials are in powers of x − 1 for n =
0, 1, . . . , 6. The ultraspherical polynomials are in pow-
ers of x for n = 0, 1, . . . , 6. The other polynomials are
in powers of x for n = 0, 1, . . . , 12. See also §18.5(iv).
Chebyshev

In this chapter, formulas for the Chebyshev polynomials
of the second, third, and fourth kinds will not be given
as extensively as those of the first kind. However, most
of these formulas can be obtained by specialization of
formulas for Jacobi polynomials, via (18.7.4)–(18.7.6).

In addition to the orthogonal property given by
Table 18.3.1, the Chebyshev polynomials Tn(x), n =
0, 1, . . . , N , are orthogonal on the discrete point set com-
prising the zeros xN+1,n, n = 1, 2, . . . , N+1, of TN+1(x):

18.3.1

N+1∑
n=1

Tj(xN+1,n)Tk(xN+1,n) = 0,

0 ≤ j ≤ N , 0 ≤ k ≤ N , j 6= k,
where

18.3.2 xN+1,n = cos
(
(n− 1

2 )π/(N + 1)
)
.

When j = k 6= 0 the sum in (18.3.1) is 1
2 (N + 1). When

j = k = 0 the sum in (18.3.1) is N + 1.

For proofs of these results and for similar properties
of the Chebyshev polynomials of the second, third, and
fourth kinds see Mason and Handscomb (2003, §4.6).

For another version of the discrete orthogonality
property of the polynomials Tn(x) see (3.11.9).

Legendre

Legendre polynomials are special cases of Legendre
functions, Ferrers functions, and associated Legendre
functions (§14.7(i)). In consequence, additional proper-
ties are included in Chapter 14.

18.4 Graphics

18.4(i) Graphs

Figure 18.4.1: Jacobi polynomials P (1.5,−0.5)
n (x), n =

1, 2, 3, 4, 5.

Figure 18.4.2: Jacobi polynomials P (1.25,0.75)
n (x), n =

7, 8. This illustrates inequalities for extrema of a Jacobi
polynomial; see (18.14.16). See also Askey (1990).

Figure 18.4.3: Chebyshev polynomials Tn(x), n =
1, 2, 3, 4, 5.
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Figure 18.4.4: Legendre polynomials Pn(x), n =
1, 2, 3, 4, 5.

Figure 18.4.5: Laguerre polynomials Ln(x), n =
1, 2, 3, 4, 5.

Figure 18.4.6: Laguerre polynomials L
(α)
3 (x), α =

0, 1, 2, 3, 4.
Figure 18.4.7: Monic Hermite polynomials hn(x) =
2−nHn(x), n = 1, 2, 3, 4, 5.

18.4(ii) Surfaces

Figure 18.4.8: Laguerre polynomials L(α)
3 (x), 0 ≤ α ≤ 3,

0 ≤ x ≤ 10.
Figure 18.4.9: Laguerre polynomials L(α)

4 (x), 0 ≤ α ≤ 3,
0 ≤ x ≤ 10.
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18.5 Explicit Representations

18.5(i) Trigonometric Functions

Chebyshev

With x = cos θ,

18.5.1 Tn(x) = cos(nθ),

18.5.2 Un(x) = (sin (n+ 1)θ)/sin θ ,

18.5.3 Vn(x) = (sin (n+ 1
2 )θ)

/
sin
(

1
2θ
)
,

18.5.4 Wn(x) = (cos (n+ 1
2 )θ)

/
cos
(

1
2θ
)
.

18.5(ii) Rodrigues Formulas

18.5.5 pn(x) =
1

κnw(x)
dn

dxn
(w(x)(F (x))n) .

In this equation w(x) is as in Table 18.3.1, and F (x),
κn are as in Table 18.5.1.

Table 18.5.1: Classical OP’s: Rodrigues formulas
(18.5.5).

pn(x) F (x) κn

P
(α,β)
n (x) 1− x2 (−2)nn!

C
(λ)
n (x) 1− x2

(−2)n
(
λ+ 1

2

)
n
n!

(2λ)n
Tn(x) 1− x2 (−2)n

(
1
2

)
n

Un(x) 1− x2
(−2)n

(
3
2

)
n

n+ 1

Vn(x) 1− x2
(−2)n

(
3
2

)
n

2n+ 1
Wn(x) 1− x2 (−2)n

(
1
2

)
n

Pn(x) 1− x2 (−2)nn!

L
(α)
n (x) x n!

Hn(x) 1 (−1)n

Hen(x) 1 (−1)n

Related formula:
18.5.6

L(α)
n

(
1
x

)
=

(−1)n

n!
xn+α+1e 1/x dn

dxn

(
x−α−1e− 1/x

)
.

18.5(iii) Finite Power Series, the
Hypergeometric Function, and
Generalized Hypergeometric Functions

For the definitions of 2F1, 1F1, and 2F0 see §16.2.

Jacobi

18.5.7

P (α,β)
n (x)

=
n∑
`=0

(n+ α+ β + 1)`(α+ `+ 1)n−`
`! (n− `)!

(
x− 1

2

)̀
=

(α+ 1)n
n! 2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
,

18.5.8

P (α,β)
n (x)

= 2−n
n∑
`=0

(
n+ α

`

)(
n+ β

n− `

)
(x− 1)n−`(x+ 1)`

=
(α+ 1)n

n!

(
x+ 1

2

)n
2F1

(
−n,−n− β

α+ 1
;
x− 1
x+ 1

)
,

and two similar formulas by symmetry; compare the
second row in Table 18.6.1.

Ultraspherical

18.5.9 C(λ)
n (x) =

(2λ)n
n! 2F1

(
−n, n+ 2λ
λ+ 1

2

;
1− x

2

)
,

18.5.10

C(λ)
n (x) =

bn/2c∑
`=0

(−1)`(λ)n−`
`! (n− 2`)!

(2x)n−2`

= (2x)n
(λ)n
n! 2F1

(
− 1

2n,−
1
2n+ 1

2

1− λ− n
;

1
x2

)
,

18.5.11

C(λ)
n (cos θ) =

n∑
`=0

(λ)`(λ)n−`
`! (n− `)!

cos((n− 2`)θ)

= einθ
(λ)n
n! 2F1

(
−n, λ

1− λ− n
; e−2iθ

)
.
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Laguerre

18.5.12

L(α)
n (x) =

n∑
`=0

(α+ `+ 1)n−`
(n− `)! `!

(−x)`

=
(α+ 1)n

n! 1F1

(
−n
α+ 1

;x
)
.

Hermite

18.5.13

Hn(x) = n!
bn/2c∑
`=0

(−1)`(2x)n−2`

`! (n− 2`)!

= (2x)n 2F0

(
− 1

2n,−
1
2n+ 1

2

−
;− 1

x2

)
.

For corresponding formulas for Chebyshev, Legen-
dre, and the Hermite Hen polynomials apply (18.7.3)–
(18.7.6), (18.7.9), and (18.7.11).

Note. The first of each of equations (18.5.7) and
(18.5.8) can be regarded as definitions of P (α,β)

n (x) when
the conditions α > −1 and β > −1 are not satisfied.
However, in these circumstances the orthogonality prop-
erty (18.2.1) disappears. For this reason, and also in the
interest of simplicity, in the case of the Jacobi polyno-
mials P (α,β)

n (x) we assume throughout this chapter that
α > −1 and β > −1, unless stated otherwise. Similarly
in the cases of the ultraspherical polynomials C(λ)

n (x)
and the Laguerre polynomials L(α)

n (x) we assume that
λ > − 1

2 , λ 6= 0, and α > −1, unless stated otherwise.

18.5(iv) Numerical Coefficients

Chebyshev

18.5.14

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,
T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1,
T5(x) = 16x5 − 20x3 + 5x,
T6(x) = 32x6 − 48x4 + 18x2 − 1.

18.5.15

U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1,
U3(x) = 8x3 − 4x, U4(x) = 16x4 − 12x2 + 1,
U5(x) = 32x5 − 32x3 + 6x,
U6(x) = 64x6 − 80x4 + 24x2 − 1.

Legendre

18.5.16

P0(x) = 1, P1(x) = x, P2(x) = 3
2x

2 − 1
2 ,

P3(x) = 5
2x

3 − 3
2x, P4(x) = 35

8 x
4 − 15

4 x
2 + 3

8 ,

P5(x) = 63
8 x

5 − 35
4 x

3 + 15
8 x,

P6(x) = 231
16 x

6 − 315
16 x

4 + 105
16 x

2 − 5
16 .

Laguerre

18.5.17

L0(x) = 1, L1(x) = −x+ 1, L2(x) = 1
2x

2 − 2x+ 1,
L3(x) = − 1

6x
3 + 3

2x
2 − 3x+ 1,

L4(x) = 1
24x

4 − 2
3x

3 + 3x2 − 4x+ 1,
L5(x) = − 1

120x
5 + 5

24x
4 − 5

3x
3 + 5x2 − 5x+ 1,

L6(x) = 1
720x

6 − 1
20x

5 + 5
8x

4 − 10
3 x

3 + 15
2 x

2 − 6x+ 1.

Hermite

18.5.18

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2,
H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2 + 12,
H5(x) = 32x5 − 160x3 + 120x,
H6(x) = 64x6 − 480x4 + 720x2 − 120.

18.5.19

He0(x) = 1, He1(x) = x, He2(x) = x2 − 1,
He3(x) = x3 − 3x, He4(x) = x4 − 6x2 + 3,
He5(x) = x5 − 10x3 + 15x,
He6(x) = x6 − 15x4 + 45x2 − 15.

For the corresponding polynomials of degrees 7
through 12 see Abramowitz and Stegun (1964, Ta-
bles 22.3, 22.5, 22.9, 22.10, 22.12).

18.6 Symmetry, Special Values, and Limits
to Monomials

18.6(i) Symmetry and Special Values

For Jacobi, ultraspherical, Chebyshev, Legendre, and
Hermite polynomials, see Table 18.6.1.

Laguerre

18.6.1 L(α)
n (0) =

(α+ 1)n
n!

.
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Table 18.6.1: Classical OP’s: symmetry and special values.

pn(x) pn(−x) pn(1) p2n(0) p′2n+1(0)

P
(α,β)
n (x) (−1)n P (β,α)

n (x) (α+ 1)n/n!

P
(α,α)
n (x) (−1)n P (α,α)

n (x) (α+ 1)n/n! (−1
4 )n(n+ α+ 1)n

/
n! (− 1

4 )n(n+ α+ 1)n+1

/
n!

C
(λ)
n (x) (−1)n C(λ)

n (x) (2λ)n/n! (−1)n(λ)n/n! 2(−1)n(λ)n+1

/
n!

Tn(x) (−1)n Tn(x) 1 (−1)n (−1)n(2n+ 1)

Un(x) (−1)n Un(x) n+ 1 (−1)n (−1)n(2n+ 2)

Vn(x) (−1)nWn(x) 2n+ 1 (−1)n (−1)n(2n+ 2)

Wn(x) (−1)n Vn(x) 1 (−1)n (−1)n(2n+ 2)

Pn(x) (−1)n Pn(x) 1 (−1)n
(

1
2

)
n

/
n! 2(−1)n

(
1
2

)
n+1

/
n!

Hn(x) (−1)nHn(x) (−1)n(n+ 1)n 2(−1)n(n+ 1)n+1

Hen(x) (−1)n Hen(x) (− 1
2 )n(n+ 1)n (− 1

2 )n(n+ 1)n+1

18.6(ii) Limits to Monomials

18.6.2 lim
α→∞

P
(α,β)
n (x)

P
(α,β)
n (1)

=
(

1 + x

2

)n
,

18.6.3 lim
β →∞

P
(α,β)
n (x)

P
(α,β)
n (−1)

=
(

1− x
2

)n
,

18.6.4 lim
λ→∞

C
(λ)
n (x)

C
(λ)
n (1)

= xn,

18.6.5 lim
α→∞

L
(α)
n (αx)

L
(α)
n (0)

= (1− x)n.

18.7 Interrelations and Limit Relations

18.7(i) Linear Transformations

Ultraspherical and Jacobi

18.7.1 C(λ)
n (x) =

(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2 ,λ−
1
2 )

n (x),

18.7.2 P (α,α)
n (x) =

(α+ 1)n
(2α+ 1)n

C
(α+ 1

2 )
n (x).

Chebyshev, Ultraspherical, and Jacobi

18.7.3 Tn(x) = P
(− 1

2 ,−
1
2 )

n (x)
/
P

(− 1
2 ,−

1
2 )

n (1) ,

18.7.4

Un(x) = C(1)
n (x) = (n+ 1)P ( 1

2 ,
1
2 )

n (x)
/
P

( 1
2 ,

1
2 )

n (1) ,

18.7.5 Vn(x) = (2n+ 1)P ( 1
2 ,−

1
2 )

n (x)
/
P

( 1
2 ,−

1
2 )

n (1) ,

18.7.6 Wn(x) = P
(− 1

2 ,
1
2 )

n (x)
/
P

(− 1
2 ,

1
2 )

n (1) .

18.7.7 T ∗n(x) = Tn(2x− 1),

18.7.8 U∗n(x) = Un(2x− 1).
See also (18.9.9)–(18.9.12).

Legendre, Ultraspherical, and Jacobi

18.7.9 Pn(x) = C
( 1
2 )
n (x) = P (0,0)

n (x).

18.7.10 P ∗n(x) = Pn(2x− 1).

Hermite

18.7.11 Hen(x) = 2−
1
2nHn

(
2−

1
2x
)
,

18.7.12 Hn(x) = 2
1
2n Hen

(
2

1
2x
)
.
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18.7(ii) Quadratic Transformations

18.7.13
P

(α,α)
2n (x)

P
(α,α)
2n (1)

=
P

(α,− 1
2 )

n

(
2x2 − 1

)
P

(α,− 1
2 )

n (1)
,

18.7.14
P

(α,α)
2n+1 (x)

P
(α,α)
2n+1 (1)

=
xP

(α, 12 )
n

(
2x2 − 1

)
P

(α, 12 )
n (1)

.

18.7.15 C
(λ)
2n (x) =

(λ)n(
1
2

)
n

P
(λ− 1

2 ,−
1
2 )

n

(
2x2 − 1

)
,

18.7.16 C
(λ)
2n+1(x) =

(λ)n+1(
1
2

)
n+1

xP
(λ− 1

2 ,
1
2 )

n

(
2x2 − 1

)
.

18.7.17 U2n(x) = Vn
(
2x2 − 1

)
,

18.7.18 T2n+1(x) = xWn

(
2x2 − 1

)
.

18.7.19 H2n(x) = (−1)n22nn!L(− 1
2 )

n

(
x2
)
,

18.7.20 H2n+1(x) = (−1)n22n+1n!xL( 1
2 )
n

(
x2
)
.

18.7(iii) Limit Relations

Jacobi → Laguerre

18.7.21 lim
β→∞

P (α,β)
n (1− (2x/β )) = L(α)

n (x).

18.7.22 lim
α→∞

P (α,β)
n ((2x/α)− 1) = (−1)n L(β)

n (x).

Jacobi → Hermite

18.7.23 lim
α→∞

α−
1
2n P (α,α)

n

(
α−

1
2x
)

=
Hn(x)
2nn!

.

Ultraspherical → Hermite

18.7.24 lim
λ→∞

λ−
1
2n C(λ)

n

(
λ−

1
2x
)

=
Hn(x)
n!

.

18.7.25 lim
λ→0

1
λ
C(λ)
n (x) =

2
n
Tn(x), n ≥ 1.

Laguerre → Hermite

18.7.26

lim
α→∞

(
2
α

)1
2n

L(α)
n

(
(2α)

1
2x+ α

)
=

(−1)n

n!
Hn(x).

See Figure 18.21.1 for the Askey schematic represen-
tation of most of these limits.

18.8 Differential Equations

See Table 18.8.1 and also Table 22.6 of Abramowitz and
Stegun (1964).

Table 18.8.1: Classical OP’s: differential equations A(x)f ′′(x) +B(x)f ′(x) + C(x)f(x) + λnf(x) = 0.

f(x) A(x) B(x) C(x) λn

P
(α,β)
n (x) 1− x2 β − α− (α+ β + 2)x 0 n(n+ α+ β + 1)(

sin 1
2x
)α+ 1

2
(
cos 1

2x
)β+ 1

2

×P (α,β)
n (cosx)

1 0
1
4 − α

2

4 sin2 1
2x

+
1
4 − β

2

4 cos2 1
2x

(
n+ 1

2 (α+ β + 1)
)2

(sinx)α+ 1
2 P

(α,α)
n (cosx) 1 0 ( 1

4 − α
2)/ sin2 x (n+ α+ 1

2 )2

C
(λ)
n (x) 1− x2 −(2λ+ 1)x 0 n(n+ 2λ)

Tn(x) 1− x2 −x 0 n2

Un(x) 1− x2 −3x 0 n(n+ 2)

Pn(x) 1− x2 −2x 0 n(n+ 1)

L
(α)
n (x) x α+ 1− x 0 n

e−
1
2x

2
xα+ 1

2 L
(α)
n

(
x2
)

1 0 −x2 + ( 1
4 − α

2)x−2 4n+ 2α+ 2

Hn(x) 1 −2x 0 2n

e−
1
2x

2
Hn(x) 1 0 −x2 2n+ 1

Hen(x) 1 −x 0 n
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18.9 Recurrence Relations and Derivatives

18.9(i) Recurrence Relations

18.9.1 pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x).

For pn(x) = P
(α,β)
n (x),

18.9.2

An =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
,

Bn =
(α2 − β2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
,

Cn =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
.

For the other classical OP’s see Table 18.9.1; compare
also §18.2(iv).

Table 18.9.1: Classical OP’s: recurrence relations
(18.9.1).

pn(x) An Bn Cn

C
(λ)
n (x) 2n+λ

n+1 0 n+2λ−1
n+1

Tn(x) 2− δn,0 0 1

Un(x) 2 0 1

T ∗n(x) 4− 2δn,0 −2 + δn,0 1

U∗n(x) 4 −2 1

Pn(x) 2n+1
n+1 0 n

n+1

P ∗n(x) 4n+2
n+1 − 2n+1

n+1
n
n+1

L
(α)
n (x) − 1

n+1
2n+α+1
n+1

n+α
n+1

Hn(x) 2 0 2n

Hen(x) 1 0 n

18.9(ii) Contiguous Relations in the Parameters
and the Degree

Jacobi

18.9.3 P (α,β−1)
n (x)− P (α−1,β)

n (x) = P
(α,β)
n−1 (x),

18.9.4

(1− x)P (α+1,β)
n (x) + (1 + x)P (α,β+1)

n (x) = 2P (α,β)
n (x).

18.9.5

(2n+ α+ β + 1)P (α,β)
n (x)

= (n+ α+ β + 1)P (α,β+1)
n (x) + (n+ α)P (α,β+1)

n−1 (x),

18.9.6
(n+ 1

2α+ 1
2β + 1)(1 + x)P (α,β+1)

n (x)

= (n+ 1)P (α,β)
n+1 (x) + (n+ β + 1)P (α,β)

n (x),
and a similar pair to (18.9.5) and (18.9.6) by symmetry;
compare the second row in Table 18.6.1.

Ultraspherical

18.9.7 (n+ λ)C(λ)
n (x) = λ

(
C(λ+1)
n (x)− C(λ+1)

n−2 (x)
)
,

18.9.8

4λ(n+ λ+ 1)(1− x2)C(λ+1)
n (x)

= −(n+ 1)(n+ 2)C(λ)
n+2(x)

+ (n+ 2λ)(n+ 2λ+ 1)C(λ)
n (x).

Chebyshev

18.9.9 Tn(x) = 1
2 (Un(x)− Un−2(x)) ,

18.9.10 (1− x2)Un(x) = − 1
2 (Tn+2(x)− Tn(x)) .

18.9.11 Wn(x) +Wn−1(x) = 2Tn(x),

18.9.12 Tn+1(x) + Tn(x) = (1 + x)Wn(x).

Laguerre

18.9.13 L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x),

18.9.14
xL(α+1)

n (x) = −(n+ 1)L(α)
n+1(x)

+ (n+ α+ 1)L(α)
n (x).

18.9(iii) Derivatives

Jacobi

18.9.15
d

dx
P (α,β)
n (x) = 1

2 (n+α+ β + 1)P (α+1,β+1)
n−1 (x),

18.9.16

d

dx

(
(1− x)α(1 + x)β P (α,β)

n (x)
)

= −2(n+ 1)(1− x)α−1(1 + x)β−1 P
(α−1,β−1)
n+1 (x).

18.9.17

(2n+ α+ β)(1− x2)
d

dx
P (α,β)
n (x)

= n (α− β − (2n+ α+ β)x)P (α,β)
n (x)

+ 2(n+ α)(n+ β)P (α,β)
n−1 (x),

18.9.18

(2n+ α+ β + 2)(1− x2)
d

dx
P (α,β)
n (x)

= (n+α+β+ 1) (α−β+ (2n+α+β+ 2)x)P (α,β)
n (x)

− 2(n+ 1)(n+ α+ β + 1)P (α,β)
n+1 (x).

Ultraspherical

18.9.19
d

dx
C(λ)
n (x) = 2λC(λ+1)

n−1 (x),

18.9.20

d

dx

(
(1− x2)λ−

1
2 C(λ)

n (x)
)

= − (n+ 1)(n+ 2λ− 1)
2(λ− 1)

(1− x2)λ−
3
2 C

(λ−1)
n+1 (x).
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Chebyshev

18.9.21
d

dx
Tn(x) = nUn−1(x),

18.9.22
d

dx

(
(1− x2)

1
2 Un(x)

)
= −(n+ 1)(1− x2)−

1
2 Tn+1(x).

Laguerre

18.9.23
d

dx
L(α)
n (x) = −L(α+1)

n−1 (x),

18.9.24
d

dx

(
e−xxα L(α)

n (x)
)

= (n+ 1)e−xxα−1 L
(α−1)
n+1 (x).

Hermite

18.9.25
d

dx
Hn(x) = 2nHn−1(x),

18.9.26
d

dx

(
e−x

2
Hn(x)

)
= −e−x

2
Hn+1(x).

18.9.27
d

dx
Hen(x) = nHen−1(x),

18.9.28
d

dx

(
e−

1
2x

2
Hen(x)

)
= −e− 1

2x
2

Hen+1(x).

18.10 Integral Representations

18.10(i) Dirichlet-Mehler-Type Integral Representations

Ultraspherical

18.10.1
P

(α,α)
n (cos θ)

P
(α,α)
n (1)

=
C

(α+ 1
2 )

n (cos θ)

C
(α+ 1

2 )
n (1)

=
2α+ 1

2 Γ(α+ 1)
π

1
2 Γ
(
α+ 1

2

) (sin θ)−2α

∫ θ

0

cos
(
(n+ α+ 1

2 )φ
)

(cosφ− cos θ)−α+ 1
2
dφ, 0 < θ < π, α > − 1

2 .

Legendre

18.10.2 Pn(cos θ) =
2

1
2

π

∫ θ

0

cos
(
(n+ 1

2 )φ
)

(cosφ− cos θ)
1
2
dφ, 0 < θ < π.

Generalizations of (18.10.1) are given in Gasper (1975, (6),(8)) and Koornwinder (1975b, (5.7),(5.8)).

18.10(ii) Laplace-Type Integral Representations

Jacobi

18.10.3

P
(α,β)
n (cos θ)

P
(α,β)
n (1)

=
2 Γ(α+ 1)

π
1
2 Γ(α− β) Γ

(
β + 1

2

)
×
∫ 1

0

∫ π

0

(
(cos 1

2θ)
2 − r2(sin 1

2θ)
2 + ir sin θ cosφ

)n
(1− r2)α−β−1r2β+1(sinφ)2β dφ dr,

α > β > − 1
2 .

Ultraspherical

18.10.4
P

(α,α)
n (cos θ)

P
(α,α)
n (1)

=
C

(α+ 1
2 )

n (cos θ)

C
(α+ 1

2 )
n (1)

=
Γ(α+ 1)

π
1
2 Γ (α+ 1

2 )

∫ π

0

(cos θ + i sin θ cosφ)n (sinφ)2α dφ, α > − 1
2 .

Legendre

18.10.5 Pn(cos θ) =
1
π

∫ π

0

(cos θ + i sin θ cosφ)n dφ.

Laguerre

18.10.6 L(α)
n

(
x2
)

=
2(−1)n

π
1
2 Γ
(
α+ 1

2

)
n!

∫ ∞
0

∫ π

0

(x2 − r2 + 2ixr cosφ)n e−r
2
r2α+1(sinφ)2α dφ dr, α > − 1

2 .

Hermite

18.10.7 Hn(x) =
2n

π
1
2

∫ ∞
−∞

(x+ it)ne−t
2
dt.
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18.10(iii) Contour Integral Representations

Table 18.10.1 gives contour integral representations of the form

18.10.8 pn(x) =
g0(x)
2πi

∫
C

(g1(z, x))n g2(z, x)(z − c)−1 dz

for the Jacobi, Laguerre, and Hermite polynomials. Here C is a simple closed contour encircling z = c once in the
positive sense.

Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).

pn(x) g0(x) g1(z, x) g2(z, x) c Conditions

P
(α,β)
n (x) (1− x)−α(1 + x)−β

z2 − 1
2(z − x)

(1− z)α(1 + z)β x ±1 outside C.

C
(λ)
n (x) 1 z−1 (1− 2xz + z2)−λ 0

e±iθ outside C
(where x = cos θ).

Tn(x) 1 z−1 1− xz
1− 2xz + z2

0

Un(x) 1 z−1 (1− 2xz + z2)−1 0

Pn(x) 1 z−1 (1− 2xz + z2)−
1
2 0

Pn(x) 1
z2 − 1

2(z − x)
1 x

L
(α)
n (x) exx−α z(z − x)−1 zαe−z x 0 outside C.

Hn(x)/n! 1 z−1 e2xz−z2 0

Hen(x)/n! 1 z−1 exz−
1
2 z

2
0

18.10(iv) Other Integral Representations

Laguerre

18.10.9 L(α)
n (x) =

exx−
1
2α

n!

∫ ∞
0

e−ttn+ 1
2α Jα

(
2
√
xt
)
dt,

α > −1.

For the Bessel function Jν(z) see §10.2(ii).

Hermite

18.10.10

Hn(x) =
(−2i)nex

2

π
1
2

∫ ∞
−∞

e−t
2
tne2ixt dt

=
2n+1

π
1
2
ex

2
∫ ∞

0

e−t
2
tn cos

(
2xt− 1

2nπ
)
dt.

See also §18.17.

18.11 Relations to Other Functions

18.11(i) Explicit Formulas

See §§18.5(i) and 18.5(iii) for relations to trigonometric
functions, the hypergeometric function, and generalized
hypergeometric functions.

Ultraspherical

18.11.1

Pmn (x) =
(

1
2

)
m

(−2)m(1− x2)
1
2m C

(m+ 1
2 )

n−m (x)

= (n+ 1)m(−2)−m(1− x2)
1
2m P

(m,m)
n−m (x),

0 ≤ m ≤ n.

For the Ferrers function Pmn (x), see §14.3(i).
Compare also (14.3.21) and (14.3.22).

Laguerre

18.11.2

L(α)
n (x) =

(α+ 1)n
n!

M(−n, α+ 1, x)

=
(−1)n

n!
U(−n, α+ 1, x)

=
(α+ 1)n

n!
z−

1
2 (α+1)e

1
2 zMn+ 1

2 (α+1), 12α
(z)

=
(−1)n

n!
z−

1
2 (α+1)e

1
2 zWn+ 1

2 (α+1), 12α
(z).

For the confluent hypergeometric functions M(a, b, z)
and U(a, b, z), see §13.2(i), and for the Whittaker func-
tions Mκ,µ(z) and Wκ,µ(z) see §13.14(i).
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Hermite

18.11.3

Hn(x) = 2n U
(
− 1

2n,
1
2 , x

2
)

= 2nxU
(
− 1

2n+ 1
2 ,

3
2 , x

2
)

= 2
1
2ne

1
2x

2
U
(
−n− 1

2 , 2
1
2x
)
.

18.11.4

Hen(x) = 2
1
2n U

(
− 1

2n,
1
2 ,

1
2x

2
)

= 2
1
2 (n−1)xU

(
− 1

2n+ 1
2 ,

3
2 ,

1
2x

2
)

= e
1
4x

2
U
(
−n− 1

2 , x
)
.

For the parabolic cylinder function U(a, z), see §12.2.

18.11(ii) Formulas of Mehler–Heine Type

Jacobi

18.11.5

lim
n→∞

1
nα

P (α,β)
n

(
1− z2

2n2

)
= lim
n→∞

1
nα

P (α,β)
n

(
cos

z

n

)
=

2α

zα
Jα(z).

Laguerre

18.11.6 lim
n→∞

1
nα

L(α)
n

( z
n

)
=

1
z

1
2α

Jα

(
2z

1
2

)
.

Hermite

18.11.7 lim
n→∞

(−1)nn
1
2

22nn!
H2n

(
z

2n
1
2

)
=

1
π

1
2

cos z,

18.11.8 lim
n→∞

(−1)n

22nn!
H2n+1

(
z

2n
1
2

)
=

2
π

1
2

sin z.

For the Bessel function Jν(z), see §10.2(ii). The
limits (18.11.5)–(18.11.8) hold uniformly for z in any
bounded subset of C.

18.12 Generating Functions

With the notation of §§10.2(ii), 10.25(ii), and 15.2,

Jacobi

18.12.1

2α+β

R(1 +R− z)α(1 +R+ z)β

=
∞∑
n=0

P (α,β)
n (x)zn, R =

√
1− 2xz + z2, |z| < 1.

18.12.2

(
1
2 (1− x)z

)− 1
2α Jα

(√
2(1− x)z

)
×
(

1
2 (1 + x)z

)− 1
2β Iβ

(√
2(1 + x)z

)
=
∞∑
n=0

P
(α,β)
n (x)

Γ(n+ α+ 1) Γ(n+ β + 1)
zn.

18.12.3

(1 + z)−α−β−1

× 2F1

( 1
2 (α+ β + 1), 1

2 (α+ β + 2)
β + 1

;
2(x+ 1)z
(1 + z)2

)
=
∞∑
n=0

(α+ β + 1)n
(β + 1)n

P (α,β)
n (x)zn, |z| < 1,

and a similar formula by symmetry; compare the second
row in Table 18.6.1. For the hypergeometric function
2F1 see §§15.1, 15.2(i).
Ultraspherical

18.12.4

(1− 2xz + z2)−λ =
∞∑
n=0

C(λ)
n (x)zn

=
∞∑
n=0

(2λ)n(
λ+ 1

2

)
n

P
(λ− 1

2 ,λ−
1
2 )

n (x)zn,

|z| < 1.
18.12.5

1− xz
(1− 2xz + z2)λ+1

=
∞∑
n=0

n+ 2λ
2λ

C(λ)
n (x)zn, |z| < 1.

18.12.6

Γ
(
λ+ 1

2

)
ez cos θ( 1

2z sin θ)
1
2−λ Jλ− 1

2
(z sin θ)

=
∞∑
n=0

C
(λ)
n (cos θ)
(2λ)n

zn, 0 ≤ θ ≤ π.

Chebyshev

18.12.7
1− z2

1− 2xz + z2
= 1 + 2

∞∑
n=1

Tn(x)zn, |z| < 1.

18.12.8
1− xz

1− 2xz + z2
=
∞∑
n=0

Tn(x)zn, |z| < 1.

18.12.9 − ln
(
1− 2xz + z2

)
= 2

∞∑
n=1

Tn(x)
n

zn, |z| < 1.

18.12.10
1

1− 2xz + z2
=
∞∑
n=0

Un(x)zn, |z| < 1.

Legendre

18.12.11
1√

1− 2xz + z2
=
∞∑
n=0

Pn(x)zn, |z| < 1.

18.12.12 exz J0

(
z
√

1− x2
)

=
∞∑
n=0

Pn(x)
n!

zn.

Laguerre

18.12.13

(1− z)−α−1 exp
(

xz

z − 1

)
=
∞∑
n=0

L(α)
n (x)zn, |z| < 1.

18.12.14

Γ(α+ 1)(xz)−
1
2αez Jα

(
2
√
xz
)

=
∞∑
n=0

L
(α)
n (x)

(α+ 1)n
zn.
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Hermite

18.12.15 e2xz−z2 =
∞∑
n=0

Hn(x)
n!

zn,

18.12.16 exz−
1
2 z

2
=
∞∑
n=0

Hen(x)
n!

zn.

18.13 Continued Fractions

We use the terminology of §1.12(ii).
Chebyshev

Tn(x) is the denominator of the nth approximant to:

18.13.1
− 1
x+

− 1
2x+

− 1
2x+

· · · ,

and Un(x) is the denominator of the nth approximant
to:

18.13.2
− 1

2x+
− 1

2x+
− 1

2x+
· · · .

Legendre

Pn(x) is the denominator of the nth approximant to:

18.13.3
a1

x+
− 1

2
3
2x+

− 2
3

5
3x+

− 3
4

7
4x+

· · · ,

where a1 is an arbitrary nonzero constant.
Laguerre

Ln(x) is the denominator of the nth approximant to:
18.13.4

a1

1− x+
− 1

2
1
2 (3− x) +

− 2
3

1
3 (5− x) +

− 3
4

1
4 (7− x)+

· · · ,

where a1 is again an arbitrary nonzero constant.
Hermite

Hn(x) is the denominator of the nth approximant to:

18.13.5
1

2x+
− 2

2x+
− 4

2x+
− 6

2x+
· · · .

See also Cuyt et al. (2008, pp. 91–99).

18.14 Inequalities

18.14(i) Upper Bounds

Jacobi

18.14.1
|P (α,β)

n (x)| ≤ P (α,β)
n (1) =

(α+ 1)n
n!

,

−1 ≤ x ≤ 1, α ≥ β > −1, α ≥ − 1
2 ,

18.14.2
|P (α,β)

n (x)| ≤ |P (α,β)
n (−1)| =

(β + 1)n
n!

,

−1 ≤ x ≤ 1, β ≥ α > −1, β ≥ − 1
2 .

18.14.3

(
1
2 (1− x)

)1
2α+ 1

4
(

1
2 (1 + x)

)1
2β+ 1

4 |P (α,β)
n (x)|

≤ Γ(max(α, β) + n+ 1)

π
1
2n!
(
n+ 1

2 (α+ β + 1)
)max(α,β)+ 1

2
,

−1 ≤ x ≤ 1, − 1
2 ≤ α ≤

1
2 , − 1

2 ≤ β ≤
1
2 .

Ultraspherical

18.14.4

|C(λ)
n (x)| ≤ C(λ)

n (1) =
(2λ)n
n!

, −1 ≤ x ≤ 1, λ > 0.

18.14.5
|C(λ)

2m(x)| ≤ |C(λ)
2m(0)| =

∣∣∣∣ (λ)m
m!

∣∣∣∣ ,
−1 ≤ x ≤ 1, − 1

2 < λ < 0,

18.14.6
|C(λ)

2m+1(x)| <
−2(λ)m+1

((2m+ 1)(2λ+ 2m+ 1))
1
2 m!

,

−1 ≤ x ≤ 1, − 1
2 < λ < 0.

18.14.7
(n+ λ)1−λ(1− x2)

1
2λ|C(λ)

n (x)| < 21−λ

Γ(λ)
,

−1 ≤ x ≤ 1, 0 < λ < 1.

Laguerre

18.14.8 e−
1
2x
∣∣∣L(α)
n (x)

∣∣∣ ≤ L(α)
n (0) =

(α+ 1)n
n!

,

0 ≤ x <∞, α ≥ 0.

Hermite

18.14.9
1

(2nn!)
1
2
e−

1
2x

2
|Hn(x)| ≤ 1, −∞ < x <∞.

For further inequalities see Abramowitz and Stegun
(1964, §22.14).

18.14(ii) Turan-Type Inequalities

Legendre

18.14.10 (Pn(x))2 ≥ Pn−1(x)Pn+1(x), −1 ≤ x ≤ 1.

Jacobi

Let Rn(x) = P
(α,β)
n (x)/P (α,β)

n (1). Then
18.14.11

(Rn(x))2≥Rn−1(x)Rn+1(x), −1 ≤ x ≤ 1, β ≥ α > −1.

Laguerre

18.14.12

(L(α)
n (x))2 ≥ L(α)

n−1(x)L(α)
n+1(x), 0 ≤ x <∞, α ≥ 0.

Hermite

18.14.13 (Hn(x))2 ≥ Hn−1(x)Hn+1(x), −∞ < x <∞.

18.14(iii) Local Maxima and Minima

Jacobi

Let the maxima xn,m, m = 0, 1, . . . , n, of |P (α,β)
n (x)| in

[−1, 1] be arranged so that

18.14.14 −1 = xn,0 < xn,1 < · · · < xn,n−1 < xn,n = 1.
When (α+ 1

2 )(β + 1
2 ) > 0 choose m so that

18.14.15 xn,m ≤ (β − α)/(α+ β + 1) ≤ xn,m+1.

Then
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18.14.16
|P (α,β)

n (xn,0)| > |P (α,β)
n (xn,1)| > · · · > |P (α,β)

n (xn,m)|,
|P (α,β)

n (xn,n)| > |P (α,β)
n (xn,n−1)| > · · · > |P (α,β)

n (xn,m+1)|, α > − 1
2 , β > −

1
2 .

18.14.17
|P (α,β)

n (xn,0)| < |P (α,β)
n (xn,1)| < · · · < |P (α,β)

n (xn,m)|,
|P (α,β)

n (xn,n)| < |P (α,β)
n (xn,n−1)| < · · · < |P (α,β)

n (xn,m+1)|, −1 < α < − 1
2 ,−1 < β < − 1

2 .

Also,
18.14.18

|P (α,β)
n (xn,0)| < |P (α,β)

n (xn,1)| < · · · < |P (α,β)
n (xn,n)|,

α ≥ − 1
2 , −1 < β ≤ − 1

2 ,

18.14.19

|P (α,β)
n (xn,0)| > |P (α,β)

n (xn,1)| > · · · > |P (α,β)
n (xn,n)|,

β ≥ − 1
2 , −1 < α ≤ − 1

2 ,
except that when α = β = − 1

2 (Chebyshev case)
|P (α,β)

n (xn,m)| is constant.

Szegö–Szász Inequality

18.14.20∣∣∣∣∣P (α,β)
n (xn,n−m)

P
(α,β)
n (1)

∣∣∣∣∣ >
∣∣∣∣∣P

(α,β)
n+1 (xn+1,n−m+1)

P
(α,β)
n+1 (1)

∣∣∣∣∣ ,
α = β > − 1

2 , m = 1, 2, . . . , n.
For extensions of (18.14.20) see Askey (1990) and Wong
and Zhang (1994a,b).

Laguerre

Let the maxima xn,m, m = 0, 1, . . . , n − 1, of |L(α)
n (x)|

in [0,∞) be arranged so that

18.14.21 0 = xn,0 < xn,1 < · · · < xn,n−1 < xn,n =∞.
When α > − 1

2 choose m so that

18.14.22 xn,m ≤ α+ 1
2 ≤ xn,m+1.

Then
18.14.23

|L(α)
n (xn,0)| > |L(α)

n (xn,1)| > · · · > |L(α)
n (xn,m)|,

|L(α)
n (xn,n−1)|> |L(α)

n (xn,n−2)|> · · ·> |L(α)
n (xn,m+1)|.

Also, when α ≤ − 1
2

18.14.24

|L(α)
n (xn,0)| < |L(α)

n (xn,1)| < · · · < |L(α)
n (xn,n−1)|.

Hermite

The successive maxima of |Hn(x)| form a decreasing se-
quence for x ≤ 0, and an increasing sequence for x ≥ 0.

18.15 Asymptotic Approximations

18.15(i) Jacobi

With the exception of the penultimate paragraph, we
assume throughout this subsection that α, β, and M

(= 0, 1, 2, . . .) are all fixed.
18.15.1(

sin 1
2θ
)α+ 1

2
(
cos 1

2θ
)β+ 1

2 P (α,β)
n (cos θ)

= π−122n+α+β+1 B(n+ α+ 1, n+ β + 1)

×

(
M−1∑
m=0

fm(θ)
2m(2n+ α+ β + 2)m

+O
(
n−M

))
,

as n→∞, uniformly with respect to θ ∈ [δ, π−δ]. Here,
and elsewhere in §18.15, δ is an arbitrary small positive
constant. Also, B(a, b) is the beta function (§5.12) and

18.15.2 fm(θ) =
m∑
`=0

Cm,`(α, β)
`!(m− `)!

cos θn,m,`(
sin 1

2θ
)` (cos 1

2θ
)m−` ,

where
18.15.3

Cm,`(α, β) =
(

1
2 + α

)
`

(
1
2 − α

)
`

(
1
2 + β

)
m−`

(
1
2 − β

)
m−`,

and

18.15.4 θn,m,` = 1
2 (2n+α+β+m+1)θ− 1

2 (α+ `+ 1
2 )π.

When α, β ∈ (− 1
2 ,

1
2 ), the error term in (18.15.1) is less

than twice the first neglected term in absolute value.
See Hahn (1980), where corresponding results are given
when x is replaced by a complex variable z that is
bounded away from the orthogonality interval [−1, 1].

Next, let

18.15.5 ρ = n+ 1
2 (α+ β + 1).

Then as n→∞,

18.15.6

(sin 1
2θ)

α+ 1
2 (cos 1

2θ)
β+ 1

2 P (α,β)
n (cos θ)

=
Γ(n+ α+ 1)

2
1
2 ραn!

(
θ

1
2 Jα(ρθ)

M∑
m=0

Am(θ)
ρ2m

+ θ
3
2 Jα+1(ρθ)

M−1∑
m=0

Bm(θ)
ρ2m+1

+ εM (ρ, θ)

)
,

where Jν(z) is the Bessel function (§10.2(ii)), and
18.15.7

εM (ρ, θ) =

{
θ O
(
ρ−2M−(3/2)

)
, cρ−1 ≤ θ ≤ π − δ,

θα+(5/2)O
(
ρ−2M+α

)
, 0 ≤ θ ≤ cρ−1,

with c denoting an arbitrary positive constant. Also,

18.15.8

A0(θ) = 1, θB0(θ) =
1
4
g(θ),

A1(θ) =
1
8
g′(θ)− 1 + 2α

8
g(θ)
θ
− 1

32
(g(θ))2,
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where
18.15.9

g(θ) =
(

1
4 −α

2
) (

cot
(

1
2θ
)
−
(

1
2θ
)−1
)
−
(

1
4 −β

2
)

tan
(

1
2θ
)
.

For higher coefficients see Baratella and Gatteschi
(1988), and for another estimate of the error term see
Wong and Zhao (2003).

For large β, fixed α, and 0 ≤ n/β ≤ c, Dunster
(1999) gives asymptotic expansions of P (α,β)

n (z) that
are uniform in unbounded complex z-domains contain-
ing z = ±1. These expansions are in terms of Whittaker
functions (§13.14). This reference also supplies asymp-
totic expansions of P (α,β)

n (z) for large n, fixed α, and
0 ≤ β/n ≤ c. The latter expansions are in terms of
Bessel functions, and are uniform in complex z-domains
not containing neighborhoods of 1. For a complemen-
tary result, see Wong and Zhao (2004). By using the
symmetry property given in the second row of Table
18.6.1, the roles of α and β can be interchanged.

For an asymptotic expansion of P (α,β)
n (z) as n→∞

that holds uniformly for complex z bounded away from
[−1, 1], see Elliott (1971). The first term of this expan-
sion also appears in Szegö (1975, Theorem 8.21.7).

18.15(ii) Ultraspherical

For fixed λ ∈ (0, 1) and fixed M = 0, 1, 2, . . . ,
18.15.10

C(λ)
n (cos θ) =

22λ Γ
(
λ+ 1

2

)
π

1
2 Γ(λ+ 1)

(2λ)n
(λ+ 1)n

×

(
M−1∑
m=0

(λ)m(1− λ)m
m! (n+ λ+ 1)m

cos θn,m
(2 sin θ)m+λ

+O

(
1
nM

))
,

as n→∞ uniformly with respect to θ ∈ [δ, π−δ], where

18.15.11 θn,m = (n+m+ λ)θ − 1
2 (m+ λ)π.

For a bound on the error term in (18.15.10) see Szegö
(1975, Theorem 8.21.11).

Asymptotic expansions for C
(λ)
n (cos θ) can be ob-

tained from the results given in §18.15(i) by setting
α = β = λ− 1

2 and referring to (18.7.1). See also Szegö
(1933) and Szegö (1975, Eq. (8.21.14)).

18.15(iii) Legendre

For fixed M = 0, 1, 2, . . . ,
18.15.12

Pn(cos θ) =
(

2
sin θ

)1
2 M−1∑
m=0

(
− 1

2

m

)(
m− 1

2

n

)
cosαn,m
(2 sin θ)m

+O

(
1

nM+ 1
2

)
,

as n → ∞, uniformly with respect to θ ∈ [δ, π − δ],
where

18.15.13 αn,m = (n−m+ 1
2 )θ + (n− 1

2m−
1
4 )π.

Also, when 1
6π < θ < 5

6π, the right-hand side of
(18.15.12) with M = ∞ converges; paradoxically, how-
ever, the sum is 2Pn(cos θ) and not Pn(cos θ) as stated
erroneously in Szegö (1975, §8.4(3)).

For these results and further information see Olver
(1997b, pp. 311–313). For another form of the asymp-
totic expansion, complete with error bound, see Szegö
(1975, Theorem 8.21.5).

For asymptotic expansions of Pn(cos θ) and
Pn(cosh ξ) that are uniformly valid when 0 ≤ θ ≤ π− δ
and 0 ≤ ξ < ∞ see §14.15(iii) with µ = 0 and ν = n.
These expansions are in terms of Bessel functions and
modified Bessel functions, respectively.

18.15(iv) Laguerre

In Terms of Elementary Functions

For fixed M = 0, 1, 2, . . . , and fixed α,

18.15.14 L(α)
n (x) =

n
1
2α−

1
4 e

1
2x

π
1
2x

1
2α+ 1

4

(
cos θ(α)

n (x)

(
M−1∑
m=0

am(x)
n

1
2m

+O

(
1

n
1
2M

))
+ sin θ(α)

n (x)

(
M−1∑
m=1

bm(x)
n

1
2m

+O

(
1

n
1
2M

)))
,

as n→∞, uniformly on compact x-intervals in (0,∞), where

18.15.15 θ(α)
n (x) = 2(nx)

1
2 −

(
1
2α+ 1

4

)
π.

The leading coefficients are given by

18.15.16 a0(x) = 1, a1(x) = 0, b1(x) =
1

48x
1
2

(
4x2 − 12α2 − 24αx− 24x+ 3

)
.

In Terms of Bessel Functions

Define

18.15.17 ν = 4n+ 2α+ 2,
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18.15.18 ξ = 1
2

(√
x− x2 + arcsin (

√
x)
)

, 0 ≤ x ≤ 1.

Then for fixed M = 0, 1, 2, . . . , and fixed α,
18.15.19

L(α)
n (νx) =

e
1
2νx

2αx
1
2α+ 1

4 (1− x)
1
4

(
ξ

1
2 Jα(νξ)

M−1∑
m=0

Am(ξ)
ν2m

+ ξ−
1
2 Jα+1(νξ)

M−1∑
m=0

Bm(ξ)
ν2m+1

+ ξ
1
2 envJα(νξ)O

(
1

ν2M−1

))
,

as n → ∞ uniformly for 0 ≤ x ≤ 1 − δ. Here Jν(z) denotes the Bessel function (§10.2(ii)), envJν(z) denotes
its envelope (§2.8(iv)), and δ is again an arbitrary small positive constant. The leading coefficients are given by
A0(ξ) = 1 and

18.15.20 B0(ξ) = −1
2

(
1− 4α2

8
+ ξ

(
1− x
x

)1
2
(

4α2 − 1
8

+
1
4

x

1− x
+

5
24

(
x

1− x

)2))
.

In Terms of Airy Functions

Again define ν as in (18.15.17); also,

18.15.21

ζ = −
(

3
4

(
arccos

(√
x
)
−
√
x− x2

))2
3

, 0 ≤ x ≤ 1,

ζ =
(

3
4

(√
x2 − x− arccosh

(√
x
)))2

3
, x ≥ 1.

Then for fixed M = 0, 1, 2, . . . , and fixed α,

18.15.22

L(α)
n (νx) ∼ (−1)n

e
1
2νx

2α−
1
2x

1
2α+ 1

4

×
(

ζ

x− 1

)1
4

Ai
(
ν

2
3 ζ
)

ν
1
3

M−1∑
m=0

Em(ζ)
ν2m

+
Ai′
(
ν

2
3 ζ
)

ν
5
3

M−1∑
m=0

Fm(ζ)
ν2m

+ envAi
(
ν

2
3 ζ
)
O

(
1

ν2M− 2
3

) ,

as n→∞ uniformly for δ ≤ x <∞. Here Ai denotes the Airy function (§9.2), Ai′ denotes its derivative, and envAi
denotes its envelope (§2.8(iii)). The leading coefficients are given by E0(ζ) = 1 and

18.15.23 F0(ζ) = − 5
48ζ2

+
(
x− 1
xζ

)1
2
(

1
2
α2 − 1

8
− 1

4
x

x− 1
+

5
24

(
x

x− 1

)2)
, 0 ≤ x <∞.

18.15(v) Hermite

Define
18.15.24 µ = 2n+ 1,

18.15.25 λn =

{
Γ(n+ 1)

/
Γ
(

1
2n+ 1

)
, n even,

Γ(n+ 2)
/(

µ
1
2 Γ
(

1
2n+ 3

2

))
, n odd,

and

18.15.26 ωn,m(x) = µ
1
2x− 1

2 (m+ n)π.
Then for fixed M = 0, 1, 2, . . . ,

18.15.27

Hn(x) = λne
1
2x

2

(
M−1∑
m=0

um(x) cosωn,m(x)
µ

1
2m

+O

(
1

µ
1
2M

))
,

as n→∞, uniformly on compact x-intervals on R. The
coefficients um(x) are polynomials in x, and u0(x) = 1,

u1(x) = 1
6x

3.
For more powerful asymptotic expansions as n→∞

in terms of elementary functions that apply uniformly
when 1 + δ ≤ t < ∞, −1 + δ ≤ t ≤ 1 − δ, or
−∞ < t ≤ −1− δ, where t = x

/√
2n+ 1 and δ is again

an arbitrary small positive constant, see §§12.10(i)–
12.10(iv) and 12.10(vi). And for asymptotic expansions
as n → ∞ in terms of Airy functions that apply uni-
formly when −1 + δ ≤ t < ∞ or −∞ < t ≤ 1 − δ,
see §§12.10(vii) and 12.10(viii). With µ =

√
2n+ 1 the

expansions in Chapter 12 are for the parabolic cylinder
function U

(
− 1

2µ
2, µt
√

2
)
, which is related to the Her-

mite polynomials via

18.15.28 Hn(x) = 2
1
4 (µ2−1)e

1
2µ

2t2 U
(
− 1

2µ
2, µt
√

2
)

;

compare (18.11.3).
For an error bound for the first term in the Airy-

function expansions see Olver (1997b, p. 403).
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18.15(vi) Other Approximations

The asymptotic behavior of the classical OP’s as x →
±∞ with the degree and parameters fixed is evident
from their explicit polynomial forms; see, for example,
(18.2.7) and the last two columns of Table 18.3.1.

For asymptotic approximations of Jacobi, ultras-
pherical, and Laguerre polynomials in terms of Hermite
polynomials, see López and Temme (1999a). These
approximations apply when the parameters are large,
namely α and β (subject to restrictions) in the case
of Jacobi polynomials, λ in the case of ultraspherical
polynomials, and |α|+ |x| in the case of Laguerre poly-
nomials. See also Dunster (1999).

18.16 Zeros

18.16(i) Distribution

See §18.2(vi).

18.16(ii) Jacobi

Let θn,m, m = 1, 2, . . . , n, denote the zeros of
P

(α,β)
n (cos θ) with

18.16.1 0 < θn,1 < θn,2 < · · · < θn,n < π.

Then θn,m is strictly increasing in α and strictly de-
creasing in β; furthermore, if α = β, then θn,m is strictly
increasing in α.
Inequalities

18.16.2
(m− 1

2 )π
n+ 1

2

≤ θn,m ≤
mπ

n+ 1
2

, α, β ∈ [− 1
2 ,

1
2 ],

18.16.3

(m− 1
2 )π

n
≤ θn,m ≤

mπ

n+ 1
,

α = β, α ∈ [− 1
2 ,

1
2 ], m = 1, 2, . . . ,

⌊
1
2n
⌋
.

Also, with ρ defined as in (18.15.5)
18.16.4(
m+ 1

2 (α+ β − 1)
)
π

ρ
< θn,m <

mπ

ρ
, α, β ∈ [− 1

2 ,
1
2 ],

except when α2 = β2 = 1
4 .

18.16.5
θn,m >

(
m+ 1

2α−
1
4

)
π

n+ α+ 1
2

,

α = β, α ∈ (− 1
2 ,

1
2 ), m = 1, 2, . . . ,

⌊
1
2n
⌋
.

Let jα,m be the mth positive zero of the Bessel func-
tion Jα(x) (§10.21(i)). Then
18.16.6

θn,m ≤
jα,m(

ρ2 + 1
12 (1− α2 − 3β2)

) 1
2

, α, β ∈ [− 1
2 ,

1
2 ],

18.16.7

θn,m ≥
jα,m(

ρ2 + 1
4 −

1
2 (α2 + β2)− π−2(1− 4α2)

) 1
2

,

α, β ∈ [− 1
2 ,

1
2 ], m = 1, 2, . . . ,

⌊
1
2n
⌋
.

Asymptotic Behavior

Let φm = jα,m/ρ . Then as n→∞, with α (> − 1
2 ) and

β (≥ −1− α) fixed,

18.16.8

θn,m = φm +
((
α2 − 1

4

) 1− φm cotφm
2φm

− 1
4 (α2 − β2) tan

(
1
2φm

)) 1
ρ2

+ φ2
mO

(
1
ρ3

)
,

uniformly for m = 1, 2, . . . , bcnc, where c is an arbitrary
constant such that 0 < c < 1.

18.16(iii) Ultraspherical and Legendre

For ultraspherical and Legendre polynomials, set α = β
and α = β = 0, respectively, in the results given in
§18.16(ii).

18.16(iv) Laguerre

The zeros of L
(α)
n (x) are denoted by xn,m, m =

1, 2, . . . , n, with

18.16.9 0 < xn,1 < xn,2 < · · · < xn,n.

Also, ν is again defined by (18.15.17).

Inequalities

For n = 1, 2, . . . ,m, and with jα,m as in §18.16(ii),

18.16.10 xn,m > j2
α,m

/
ν ,

18.16.11

xn,m < (4m+ 2α+ 2)
(

2m+ α+ 1

+
(
(2m+ α+ 1)2 + 1

4 − α
2
)1
2
)/

ν.

The constant j2
α,m in (18.16.10) is the best possible since

the ratio of the two sides of this inequality tends to 1 as
n→∞.

For the smallest and largest zeros we have

18.16.12 xn,1 > 2n+α− 2− (1 + 4(n− 1)(n+α− 1))
1
2 ,

18.16.13 xn,n < 2n+α− 2 + (1 + 4(n− 1)(n+α− 1))
1
2 .

Asymptotic Behavior

As n→∞, with α and m fixed,

18.16.14

xn,n−m+1 = ν + 2
2
3 am ν

1
3 + 1

52
4
3 a2

m ν
− 1

3 +O
(
n−1

)
,

where am is themth negative zero of Ai(x) (§9.9(i)). For
three additional terms in this expansion see Gatteschi
(2002). Also,

18.16.15 xn,m < ν + 2
2
3 am ν

1
3 + 2−

2
3 a2

m ν
− 1

3 ,

when α /∈ (− 1
2 ,

1
2 ).
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18.16(v) Hermite

All zeros of Hn(x) lie in the open interval
(−
√

2n+ 1,
√

2n+ 1). In view of the reflection for-
mula, given in Table 18.6.1, we may consider just the
positive zeros xn,m, m = 1, 2, . . . ,

⌊
1
2n
⌋
. Arrange them

in decreasing order:

18.16.16 (2n+ 1)
1
2 > xn,1 > xn,2 > · · · > xn,bn/2c > 0.

Then

18.16.17 xn,m = (2n+ 1)
1
2 + 2−

1
3 (2n+ 1)−

1
6 am +εn,m,

where am is the mth negative zero of Ai(x) (§9.9(i)),
εn,m < 0, and as n→∞ with m fixed

18.16.18 εn,m = O
(
n−

5
6

)
.

For an asymptotic expansion of xn,m as n → ∞
that applies uniformly for m = 1, 2, . . . ,

⌊
1
2n
⌋
, see Olver

(1959, §14(i)). In the notation of this reference xn,m =
ua,m, µ =

√
2n+ 1, and α = µ−

4
3 am. For an error

bound for the first approximation yielded by this ex-
pansion see Olver (1997b, p. 408).

Lastly, in view of (18.7.19) and (18.7.20), results for

the zeros of L(± 1
2 )

n (x) lead immediately to results for the
zeros of Hn(x).

18.16(vi) Additional References

For further information on the zeros of the classical or-
thogonal polynomials, see Szegö (1975, Chapter VI),

Erdélyi et al. (1953b, §§10.16 and 10.17), Gatteschi
(1987, 2002), López and Temme (1999a), and Temme
(1990a).

18.17 Integrals

18.17(i) Indefinite Integrals

Jacobi

18.17.1

2n
∫ x

0

(1− y)α(1 + y)β P (α,β)
n (y) dy

= P
(α+1,β+1)
n−1 (0)−(1−x)α+1(1+x)β+1 P

(α+1,β+1)
n−1 (x).

Laguerre

18.17.2∫ x

0

Lm(y)Ln(x− y) dy =
∫ x

0

Lm+n(y) dy

= Lm+n(x)− Lm+n+1(x).

Hermite

18.17.3

∫ x

0

Hn(y) dy =
1

2(n+ 1)
(Hn+1(x)−Hn+1(0)),

18.17.4

∫ x

0

e−y
2
Hn(y) dy = Hn−1(0)− e−x

2
Hn−1(x).

18.17(ii) Integral Representations for Products

Ultraspherical

18.17.5
C

(λ)
n (cos θ1)

C
(λ)
n (1)

C
(λ)
n (cos θ2)

C
(λ)
n (1)

=
Γ
(
λ+ 1

2

)
π

1
2 Γ(λ)

∫ π

0

C
(λ)
n (cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)

C
(λ)
n (1)

(sinφ)2λ−1 dφ, λ > 0.

Legendre

18.17.6 Pn(cos θ1)Pn(cos θ2) =
1
π

∫ π

0

Pn(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ) dφ.

For formulas for Jacobi and Laguerre polynomials analogous to (18.17.5) and (18.17.6), see Koornwinder (1974,
1977).

18.17(iii) Nicholson-Type Integrals

Legendre

18.17.7 (Pn(x))2 + 4π−2 (Qn(x))2 = 4π−2

∫ ∞
1

Qn
(
x2 + (1− x2)t

)
(t2 − 1)−

1
2 dt, −1 < x < 1.

For the Ferrers function Qn(x) and Legendre function Qn(x) see §§14.3(i) and 14.3(ii), with µ = 0 and ν = n.

Hermite

18.17.8 (Hn(x))2 + 2n(n!)2ex
2
(
V
(
−n− 1

2 , 2
1
2x
))2

=
2n+ 3

2n! ex
2

π

∫ ∞
0

e−(2n+1)t+x2 tanh t

(sinh 2t)
1
2

dt.

For the parabolic cylinder function V (a, z) see §12.2. For similar formulas for ultraspherical polynomials see Durand
(1975), and for Jacobi and Laguerre polynomials see Durand (1978).
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18.17(iv) Fractional Integrals

Jacobi

18.17.9
(1− x)α+µ P

(α+µ,β−µ)
n (x)

Γ(α+ µ+ n+ 1)
=
∫ 1

x

(1− y)α P (α,β)
n (y)

Γ(α+ n+ 1)
(y − x)µ−1

Γ(µ)
dy, µ > 0, −1 < x < 1,

18.17.10
xβ+µ(x+ 1)n

Γ(β + µ+ n+ 1)
P (α,β+µ)
n

(
x− 1
x+ 1

)
=
∫ x

0

yβ(y + 1)n

Γ(β + n+ 1)
P (α,β)
n

(
y − 1
y + 1

)
(x− y)µ−1

Γ(µ)
dy, µ > 0, x > 0,

18.17.11

Γ(n+ α+ β − µ+ 1)
xn+α+β−µ+1

P (α,β−µ)
n

(
1− 2x−1

)
=
∫ ∞
x

Γ(n+ α+ β + 1)
yn+α+β+1

P (α,β)
n

(
1− 2y−1

) (y − x)µ−1

Γ(µ)
dy,

α+ β + 1 > µ > 0, x > 1,
and three formulas similar to (18.17.9)–(18.17.11) by symmetry; compare the second row in Table 18.6.1.

Ultraspherical

18.17.12

Γ(λ− µ)C(λ−µ)
n

(
x−

1
2

)
xλ−µ+ 1

2n
=
∫ ∞
x

Γ(λ)C(λ)
n

(
y−

1
2

)
yλ+ 1

2n

(y − x)µ−1

Γ(µ)
dy, λ > µ > 0, x > 0,

18.17.13
x

1
2n(x− 1)λ+µ− 1

2

Γ
(
λ+ µ+ 1

2

) C
(λ+µ)
n

(
x−

1
2

)
C

(λ+µ)
n (1)

=
∫ x

1

y
1
2n(y − 1)λ−

1
2

Γ
(
λ+ 1

2

) C
(λ)
n

(
y−

1
2

)
C

(λ)
n (1)

(x− y)µ−1

Γ(µ)
dy, µ > 0, x > 1.

Laguerre

18.17.14
xα+µ L

(α+µ)
n (x)

Γ(α+ µ+ n+ 1)
=
∫ x

0

yα L
(α)
n (y)

Γ(α+ n+ 1)
(x− y)µ−1

Γ(µ)
dy, µ > 0, x > 0.

18.17.15 e−x L(α)
n (x) =

∫ ∞
x

e−y L(α+µ)
n (y)

(y − x)µ−1

Γ(µ)
dy, µ > 0.

18.17(v) Fourier Transforms

Throughout this subsection we assume y > 0; sometimes however, this restriction can be eased by analytic continu-
ation.

Jacobi

18.17.16

∫ 1

−1

(1− x)α(1 + x)β P (α,β)
n (x)eixy dx

=
(iy)neiy

n!
2n+α+β+1 B(n+ α+ 1, n+ β + 1) 1F1(n+ α+ 1; 2n+ α+ β + 2;−2iy).

For the beta function B(a, b) see §5.12, and for the confluent hypergeometric function 1F1 see (16.2.1) and Chapter
13.

Ultraspherical

18.17.17

∫ 1

0

(1− x2)λ−
1
2 C

(λ)
2n (x) cos(xy) dx =

(−1)nπ Γ(2n+ 2λ) Jλ+2n(y)
(2n)! Γ(λ)(2y)λ

,

18.17.18

∫ 1

0

(1− x2)λ−
1
2 C

(λ)
2n+1(x) sin(xy) dx =

(−1)nπ Γ(2n+ 2λ+ 1) J2n+λ+1(y)
(2n+ 1)! Γ(λ)(2y)λ

.

For the Bessel function Jν see §10.2(ii).

Legendre

18.17.19

∫ 1

−1

Pn(x)eixy dx = in
√

2π
y
Jn+ 1

2
(y),

18.17.20

∫ 1

0

Pn
(
1− 2x2

)
cos(xy) dx = (−1)n 1

2π Jn+ 1
2

(
1
2y
)
J−n− 1

2

(
1
2y
)
,

18.17.21

∫ 1

0

Pn
(
1− 2x2

)
sin(xy) dx = 1

2π
(
Jn+ 1

2

(
1
2y
))2

.
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Hermite

18.17.22
1

2
√
π

∫ ∞
−∞

e−
1
4x

2
Hen(x)e

1
2 ixy dx = ine−

1
4y

2
Hen(y),

18.17.23

∫ ∞
0

e−
1
2x

2
He2n(x) cos(xy) dx = (−1)n

√
1
2πy

2ne−
1
2y

2
,

18.17.24

∫ ∞
0

e−x
2

He2n(2x) cos(xy) dx = (−1)n 1
2

√
πe−

1
4y

2
He2n(y).

18.17.25

∫ ∞
0

e−
1
2x

2
Hen(x) Hen+2m(x) cos(xy) dx = (−1)m

√
1
2πn! y2me−

1
2y

2
L(2m)
n

(
y2
)
,

18.17.26

∫ ∞
0

e−
1
2x

2
Hen(x) Hen+2m+1(x) sin(xy) dx = (−1)m

√
1
2πn! y2m+1e−

1
2y

2
L(2m+1)
n

(
y2
)
.

18.17.27

∫ ∞
0

e−
1
2x

2
He2n+1(x) sin(xy) dx = (−1)n

√
1
2πy

2n+1e−
1
2y

2
,

18.17.28

∫ ∞
0

e−x
2

He2n+1(2x) sin(xy) dx = (−1)n 1
2

√
πe−

1
4y

2
He2n+1(y).

Laguerre

18.17.29

∫ ∞
0

x2me−
1
2x

2
L(2m)
n

(
x2
)

cos(xy) dx = (−1)m
√

1
2π

1
n!
e−

1
2y

2
Hen(y) Hen+2m(y).

18.17.30

∫ ∞
0

x2ne−
1
2x

2
L

(n− 1
2 )

n

(
1
2x

2
)

cos(xy) dx =
√

1
2πy

2ne−
1
2y

2
L

(n− 1
2 )

n

(
1
2y

2
)
.

18.17.31

∫ ∞
0

e−axxν−2n L
(ν−2n)
2n−1 (ax) cos(xy) dx = i

(−1)n Γ(ν)
2(2n− 1)!

y2n−1
(
(a+ iy)−ν − (a− iy)−ν

)
, ν > 2n− 1, a > 0,

18.17.32

∫ ∞
0

e−axxν−1−2n L
(ν−1−2n)
2n (ax) cos(xy) dx =

(−1)n Γ(ν)
2(2n)!

y2n
(
(a+ iy)−ν + (a− iy)−ν

)
, ν > 2n, a > 0.

18.17(vi) Laplace Transforms

Jacobi

18.17.33

∫ 1

−1

e−(x+1)z P (α,β)
n (x)(1− x)α(1 + x)β dx

=
(−1)n2α+β+n+1 Γ(α+ n+ 1) Γ(β + n+ 1)

Γ(α+ β + 2n+ 2)n!
zn 1F1

(
β + n+ 1

α+ β + 2n+ 2
;−2z

)
, z ∈ C.

For the confluent hypergeometric function 1F1 see (16.2.1) and Chapter 13.

Laguerre

18.17.34

∫ ∞
0

e−xz L(α)
n (x)e−xxα dx =

Γ(α+ n+ 1)zn

n!(z + 1)α+n+1
, <z > −1.

Hermite

18.17.35

∫ ∞
−∞

e−xzHn(x)e−x
2
dx = π

1
2 (−z)ne 1

4 z
2
, z ∈ C.

18.17(vii) Mellin Transforms

Jacobi

18.17.36

∫ 1

−1

(1− x)z−1(1 + x)β P (α,β)
n (x) dx =

2β+z Γ(z) Γ(1 + β + n)(1 + α− z)n
n! Γ(1 + β + z + n)

, <z > 0.
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Ultraspherical

18.17.37

∫ 1

0

(1− x2)λ−
1
2 C(λ)

n (x)xz−1 dx =
π 21−2λ−z Γ(n+ 2λ) Γ(z)

n! Γ(λ) Γ
(

1
2 + 1

2n+ λ+ 1
2z
)

Γ
(

1
2 + 1

2z −
1
2n
) , <z > 0.

Legendre

18.17.38

∫ 1

0

P2n(x)xz−1 dx =
(−1)n

(
1
2 −

1
2z
)
n

2
(

1
2z
)
n+1

, <z > 0,

18.17.39

∫ 1

0

P2n+1(x)xz−1 dx =
(−1)n

(
1− 1

2z
)
n

2
(

1
2 + 1

2z
)
n+1

, <z > −1.

Laguerre

18.17.40

∫ ∞
0

e−ax L(α)
n (bx)xz−1 dx =

Γ(z + n)
n!

(a− b)na−n−z 2F1

(
−n, 1 + α− z

1− n− z
;

a

a− b

)
, <a > 0, <z > 0.

For the hypergeometric function 2F1 see §§15.1 and 15.2(i).

Hermite

18.17.41

∫ ∞
0

e−ax Hen(x)xz−1 dx = Γ(z + n)a−n−2
2F2

(
− 1

2n,−
1
2n+ 1

2

− 1
2z −

1
2n,−

1
2z −

1
2n+ 1

2

;− 1
2a

2

)
,

<a > 0. Also, <z > 0, n even; <z > −1, n odd.
For the generalized hypergeometric function 2F2 see (16.2.1).

18.17(viii) Other Integrals

Chebyshev

18.17.42

∫ 1

−1

Tn(y)
(1− y2)−

1
2

y − x
dy = π Un−1(x),

18.17.43

∫ 1

−1

Un−1(y)
(1− y2)

1
2

y − x
dy = −π Tn(x).

These integrals are Cauchy principal values (§1.4(v)).

Legendre

18.17.44

∫ 1

−1

Pn(x)− Pn(t)
|x− t|

dt = 2
(
1 + 1

2 + · · ·+ 1
n

)
Pn(x), −1 ≤ x ≤ 1.

The case x = 1 is a limit case of an integral for Jacobi polynomials; see Askey and Razban (1972).

18.17.45 (n+ 1
2 )(1 + x)

1
2

∫ x

−1

(x− t)− 1
2 Pn(t) dt = Tn(x) + Tn+1(x),

18.17.46 (n+ 1
2 )(1− x)

1
2

∫ 1

x

(t− x)−
1
2 Pn(t) dt = Tn(x)− Tn+1(x).

Laguerre

18.17.47

∫ x

0

tα
L

(α)
m (t)

L
(α)
m (0)

(x− t)β L
(β)
n (x− t)
L

(β)
n (0)

dt =
Γ(α+ 1) Γ(β + 1)

Γ(α+ β + 2)
xα+β+1L

(α+β+1)
m+n (x)

L
(α+β+1)
m+n (0)

.

Hermite

18.17.48

∫ ∞
−∞

Hm(y)e−y
2
Hn(x− y)e−(x−y)2 dy = π

1
2 2−

1
2 (m+n+1)Hm+n

(
2−

1
2x
)
e−

1
2x

2
.

18.17.49

∫ ∞
−∞

H`(x)Hm(x)Hn(x)e−x
2
dx =

2
1
2 (`+m+n)` !m !n !

√
π

( 1
2`+ 1

2m−
1
2n) ! ( 1

2m+ 1
2n−

1
2` ) ! ( 1

2n+ 1
2`−

1
2m ) !

,

provided that `+m+ n is even and the sum of any two of `,m, n is not less than the third; otherwise the integral is
zero.
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18.17(ix) Compendia

For further integrals, see Apelblat (1983, pp. 189–
204), Erdélyi et al. (1954a, pp. 38–39, 94–95, 170–
176, 259–261, 324), Erdélyi et al. (1954b, pp. 42–44,
271–294), Gradshteyn and Ryzhik (2000, pp. 788–806),
Gröbner and Hofreiter (1950, pp. 23–30), Marichev
(1983, pp. 216–247), Oberhettinger (1972, pp. 64–67),
Oberhettinger (1974, pp. 83–92), Oberhettinger (1990,
pp. 44–47 and 152–154), Oberhettinger and Badii (1973,
pp. 103–112), Prudnikov et al. (1986b, pp. 420–617),
Prudnikov et al. (1992a, pp. 419–476), and Prudnikov
et al. (1992b, pp. 280–308).

18.18 Sums

18.18(i) Series Expansions of Arbitrary
Functions

Jacobi

Let f(z) be analytic within an ellipse E with foci
z = ±1, and

18.18.1

an =
n!(2n+ α+ β + 1) Γ(n+ α+ β + 1)
2α+β+1 Γ(n+ α+ 1) Γ(n+ β + 1)

×
∫ 1

−1

f(x)P (α,β)
n (x)(1− x)α(1 + x)β dx.

Then

18.18.2 f(z) =
∞∑
n=0

an P
(α,β)
n (z),

when z lies in the interior of E. Moreover, the series
(18.18.2) converges uniformly on any compact domain
within E.

Alternatively, assume f(x) is real and continuous
and f ′(x) is piecewise continuous on (−1, 1). Assume
also the integrals

∫ 1

−1
(f(x))2(1 − x)α(1 + x)β dx and∫ 1

−1
(f ′(x))2(1 − x)α+1(1 + x)β+1 dx converge. Then

(18.18.2), with z replaced by x, applies when −1 < x <
1; moreover, the convergence is uniform on any compact
interval within (−1, 1).

Chebyshev

See §3.11(ii), or set α = β = ± 1
2 in the above results for

Jacobi and refer to (18.7.3)–(18.7.6).

Legendre

This is the case α = β = 0 of Jacobi. Equation (18.18.1)
becomes

18.18.3 an =
(
n+ 1

2

) ∫ 1

−1

f(x)Pn(x) dx.

Laguerre

Assume f(x) is real and continuous and f ′(x)
is piecewise continuous on (0,∞). Assume also∫∞

0
(f(x))2e−xxα dx converges. Then

18.18.4 f(x) =
∞∑
n=0

bn L
(α)
n (x), 0 < x <∞,

where

18.18.5 bn =
n!

Γ(n+ α+ 1)

∫ ∞
0

f(x)L(α)
n (x)e−xxα dx.

The convergence of the series (18.18.4) is uniform on
any compact interval in (0,∞).

Hermite

Assume f(x) is real and continuous and f ′(x) is
piecewise continuous on (−∞,∞). Assume also∫∞
−∞(f(x))2e−x

2
dx converges. Then

18.18.6 f(x) =
∞∑
n=0

dnHn(x), −∞ < x <∞,

where

18.18.7 dn =
1√
π2nn!

∫ ∞
−∞

f(x)Hn(x)e−x
2
dx.

The convergence of the series (18.18.6) is uniform on
any compact interval in (−∞,∞).

18.18(ii) Addition Theorems

Ultraspherical

18.18.8

C(λ)
n (cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)

=
n∑
`=0

22`(n− `)!2λ+ 2`− 1
2λ− 1

((λ)`)
2

(2λ)n+`

(sin θ1)` C(λ+`)
n−` (cos θ1)(sin θ2)` C(λ+`)

n−` (cos θ2)C(λ− 1
2 )

` (cosφ),

λ > 0, λ 6= 1
2 .

For the case λ = 1
2 use (18.18.9); compare (18.7.9).

Legendre

18.18.9

Pn(cos θ1 cos θ2 + sin θ1 sin θ2 cosφ)

= Pn(cos θ1)Pn(cos θ2) + 2
n∑
`=1

(n− `)! (n+ `)!
22`(n!)2

(sin θ1)` P (`,`)
n−` (cos θ1)(sin θ2)` P (`,`)

n−` (cos θ2) cos(`φ).
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For (18.18.8), (18.18.9), and the corresponding formula for Jacobi polynomials see Koornwinder (1975a). See also
(14.30.9).

Laguerre

18.18.10 L(α1+···+αr+r−1)
n (x1 + · · ·+ xr) =

∑
m1+···+mr=n

L(α1)
m1

(x1) · · ·L(αr)
mr (xr).

Hermite

18.18.11
(a2

1 + · · ·+ a2
r)

1
2n

n!
Hn

(
a1x1 + · · ·+ arxr

(a2
1 + · · ·+ a2

r)
1
2

)
=

∑
m1+···+mr=n

am1
1 · · · amrr
m1! · · ·mr!

Hm1(x1) · · ·Hmr (xr).

18.18(iii) Multiplication Theorems

Laguerre

18.18.12
L

(α)
n (λx)

L
(α)
n (0)

=
n∑
`=0

(
n

`

)
λ`(1− λ)n−`

L
(α)
` (x)

L
(α)
` (0)

.

Hermite

18.18.13 Hn(λx) = λn
bn/2c∑
`=0

(−n)2`

`!
(1− λ−2)`Hn−2`(x).

18.18(iv) Connection Formulas

Jacobi

18.18.14 P (γ,β)
n (x) =

(β + 1)n
(α+ β + 2)n

n∑
`=0

α+ β + 2`+ 1
α+ β + 1

(α+ β + 1)`(n+ β + γ + 1)`
(β + 1)`(n+ α+ β + 2)`

(γ − α)n−`
(n− `)!

P
(α,β)
` (x),

18.18.15

(
1 + x

2

)n
=

(β + 1)n
(α+ β + 2)n

n∑
`=0

α+ β + 2`+ 1
α+ β + 1

(α+ β + 1)`(n− `+ 1)`
(β + 1)`(n+ α+ β + 2)`

P
(α,β)
` (x),

and a similar pair of equations by symmetry; compare
the second row in Table 18.6.1.

Ultraspherical

18.18.16

C(µ)
n (x)

=
bn/2c∑
`=0

λ+ n− 2`
λ

(µ)n−`
(λ+ 1)n−`

(µ− λ)`
`!

C
(λ)
n−2`(x),

18.18.17

(2x)n = n!
bn/2c∑
`=0

λ+ n− 2`
λ

1
(λ+ 1)n−` `!

C
(λ)
n−2`(x).

Laguerre

18.18.18 L(β)
n (x) =

n∑
`=0

(β − α)n−`
(n− `)!

L
(α)
` (x),

18.18.19 xn = (α+ 1)n

n∑
`=0

(−n)`
(α+ 1)`

L
(α)
` (x).

Hermite

18.18.20 (2x)n =
bn/2c∑
`=0

(−n)2`

`!
Hn−2`(x).

18.18(v) Linearization Formulas

Chebyshev

18.18.21 Tm(x)Tn(x) = 1
2 (Tm+n(x) + Tm−n(x)).

Ultraspherical

18.18.22

C(λ)
m (x)C(λ)

n (x)

=
min(m,n)∑
`=0

(m+ n+ λ− 2`)(m+ n− 2`)!
(m+ n+ λ− `)`! (m− `)! (n− `)!

×
(λ)`(λ)m−`(λ)n−`(2λ)m+n−`

(λ)m+n−`(2λ)m+n−2`

C
(λ)
m+n−2`(x).
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Hermite

18.18.23

Hm(x)Hn(x) =
min(m,n)∑
`=0

(
m

`

)(
n

`

)
2``!Hm+n−2`(x).

The coefficients in the expansions (18.18.22) and
(18.18.23) are positive, provided that in the former case
λ > 0.

18.18(vi) Bateman-Type Sums

Jacobi

With

18.18.24 bn,` =
(
n

`

)
(n+ α+ β + 1)`(−β − n)n−`

2`(α+ 1)n
,

18.18.25

P
(α,β)
n (x)

P
(α,β)
n (1)

P
(α,β)
n (y)

P
(α,β)
n (1)

=
n∑
`=0

bn,`(x+ y)`

×
P

(α,β)
` ( (1 + xy)/(x+ y) )

P
(α,β)
` (1)

,

18.18.26
P

(α,β)
n (x)

P
(α,β)
n (1)

=
n∑
`=0

bn,`(x+ 1)`.

18.18(vii) Poisson Kernels

Laguerre

18.18.27

∞∑
n=0

n! L(α)
n (x)L(α)

n (y)
(α+ 1)n

zn

=
Γ(α+ 1)(xyz)−

1
2α

1− z

× exp
(
−(x+ y)z

1− z

)
Iα

(
2(xyz)

1
2

1− z

)
,

|z| < 1.

For the modified Bessel function Iν(z) see §10.25(ii).

Hermite

18.18.28

∞∑
n=0

Hn(x)Hn(y)
2nn!

zn

= (1− z2)−
1
2 exp

(
2xyz − (x2 + y2)z2

1− z2

)
,

|z| < 1.

These Poisson kernels are positive, provided that
x, y are real, 0 ≤ z < 1, and in the case of (18.18.27)
x, y ≥ 0.

18.18(viii) Other Sums

In this subsection the variables x and y are not confined
to the closures of the intervals of orthogonality; compare
§18.2(i).

Ultraspherical

18.18.29

n∑
`=0

C
(λ)
` (x)C(µ)

n−`(x) = C(λ+µ)
n (x).

18.18.30

n∑
`=0

`+ 2λ
2λ

C
(λ)
` (x)xn−` = C(λ+1)

n (x).

Chebyshev

18.18.31

n∑
`=0

T`(x)xn−` = Un(x).

18.18.32 2
n∑
`=0

T2`(x) = 1 + U2n(x),

18.18.33 2
n∑
`=0

T2`+1(x) = U2n+1(x).

18.18.34 2(1− x2)
n∑
`=0

U2`(x) = 1− T2n+2(x),

18.18.35 2(1− x2)
n∑
`=0

U2`+1(x) = x− T2n+3(x).

Legendre and Chebyshev

18.18.36

n∑
`=0

P`(x)Pn−`(x) = Un(x).

Laguerre

18.18.37

n∑
`=0

L
(α)
` (x) = L(α+1)

n (x),

18.18.38

n∑
`=0

L
(α)
` (x)L(β)

n−`(y) = L(α+β+1)
n (x+ y).

Hermite and Laguerre

18.18.39
n∑
`=0

(
n

`

)
H`

(
2

1
2x
)
Hn−`

(
2

1
2 y
)

= 2
1
2nHn(x+ y),

18.18.40
n∑
`=0

(
n

`

)
H2`(x)H2n−2`(y) = (−1)n22nn!Ln

(
x2 + y2

)
.

18.18(ix) Compendia

For further sums see Hansen (1975, pp. 292-330), Grad-
shteyn and Ryzhik (2000, pp. 978–993), and Prudnikov
et al. (1986b, pp. 637-644 and 700-718).
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Askey Scheme

18.19 Hahn Class: Definitions

Hahn, Krawtchouk, Meixner, and Charlier

Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and normalization (§§18.2(i), 18.2(iii)) for the Hahn
polynomials Qn(x;α, β,N), Krawtchouk polynomials Kn(x; p,N), Meixner polynomials Mn(x;β, c), and Charlier
polynomials Cn(x, a).

Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight
functions, normalizations, and parameter constraints.

pn(x) X wx hn

Qn(x;α, β,N),
n = 0, 1, . . . , N

{0, 1, . . . , N}
(α+ 1)x(β + 1)N−x

x!(N − x)!
,

α, β > −1 or α, β < −N

(−1)n(n+ α+ β + 1)N+1(β + 1)nn!
(2n+ α+ β + 1)(α+ 1)n(−N)nN !

If α, β < −N , then (−1)Nwx > 0 and
(−1)Nhn > 0.

Kn(x; p,N),
n = 0, 1, . . . , N

{0, 1, . . . , N}

(
N

x

)
px(1− p)N−x,

0 < p < 1

(
1− p
p

)n/(
N

n

)

Mn(x;β, c) {0, 1, 2, . . . } (β)xc
x/x! ,

β > 0, 0 < c < 1
c−nn!

(β)n(1− c)β

Cn(x, a) {0, 1, 2, . . . } ax/x! , a > 0 a−nean!

Table 18.19.2: Hahn, Krawtchouk, Meixner, and Char-
lier OP’s: leading coefficients.

pn(x) kn

Qn(x;α, β,N)
(n+ α+ β + 1)n
(α+ 1)n(−N)n

Kn(x; p,N) p−n/(−N)n

Mn(x;β, c) (1− c−1)n
/

(β)n

Cn(x, a) (−a)−n

Continuous Hahn

These polynomials are orthogonal on (−∞,∞), and
with <a > 0, <b > 0 are defined as follows.

18.19.1 pn(x) = pn
(
x; a, b, a, b

)
,

18.19.2

w(z; a, b, a, b) = Γ(a+ iz) Γ(b+ iz) Γ(a− iz) Γ
(
b− iz

)
,

18.19.3 w(x) = w(x; a, b, a, b) = |Γ(a+ ix) Γ(b+ ix)|2,

18.19.4

hn =
2π Γ(n+ a+ a) Γ

(
n+ b+ b

)
|Γ
(
n+ a+ b

)
|2

(2n+ 2<(a+ b)− 1) Γ(n+ 2<(a+ b)− 1)n!
,

18.19.5 kn =
(n+ 2<(a+ b)− 1)n

n!
.

Meixner–Pollaczek

These polynomials are orthogonal on (−∞,∞), and are
defined as follows.

18.19.6 pn(x) = P (λ)
n (x;φ),

18.19.7 w(λ)(z;φ) = Γ(λ+ iz) Γ(λ− iz)e(2φ−π)z,

18.19.8
w(x) = w(λ)(x;φ) = |Γ(λ+ ix)|2 e(2φ−π)x,

λ > 0, 0 < φ < π,

18.19.9 hn =
2π Γ(n+ 2λ)
(2 sinφ)2λn!

, kn =
(2 sinφ)n

n!
.

18.20 Hahn Class: Explicit Representations

18.20(i) Rodrigues Formulas

For comments on the use of the forward-difference op-
erator ∆x, the backward-difference operator ∇x, and
the central-difference operator δx, see §18.2(ii).
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Hahn, Krawtchouk, Meixner, and Charlier

18.20.1

pn(x) =
1

κnwx
∇nx

(
wx

n−1∏
`=0

F (x+ `)

)
, x ∈ X.

In (18.20.1) X and wx are as in Table 18.19.1. For the
Hahn polynomials pn(x) = Qn(x;α, β,N) and
18.20.2

F (x) = (x+ α+ 1)(x−N), κn = (−N)n(α+ 1)n.
For the Krawtchouk, Meixner, and Charlier polynomi-
als, F (x) and κn are as in Table 18.20.1.

Table 18.20.1: Krawtchouk, Meixner, and Charlier
OP’s: Rodrigues formulas (18.20.1).

pn(x) F (x) κn

Kn(x; p,N) x−N (−N)n

Mn(x;β, c) x+ β (β)n

Cn(x, a) 1 1

Continuous Hahn

18.20.3

w(x; a, b, a, b) pn
(
x; a, b, a, b

)
=

1
n!
δnx
(
w(x; a+ 1

2n, b+ 1
2n, a+ 1

2n, b+ 1
2n)
)
.

Meixner–Pollaczek

18.20.4 w(λ)(x;φ)P (λ)
n (x;φ) =

1
n!
δnx

(
w(λ+ 1

2n)(x;φ)
)
.

18.20(ii) Hypergeometric Function and
Generalized Hypergeometric Functions

For the definition of hypergeometric and generalized hy-
pergeometric functions see §16.2.
18.20.5

Qn(x;α, β,N) = 3F2

(
−n, n+ α+ β + 1,−x

α+ 1,−N
; 1
)

,

n = 0, 1, . . . , N .

18.20.6
Kn(x; p,N) = 2F1

(
−n,−x
−N

; p−1

)
,

n = 0, 1, . . . , N .

18.20.7 Mn(x;β, c) = 2F1

(
−n,−x
β

; 1− c−1

)
.

18.20.8 Cn(x, a) = 2F0

(
−n,−x
−

;−a−1

)
.

18.20.9

pn
(
x; a, b, a, b

)
=
in(a+ a)n

(
a+ b

)
n

n!

× 3F2

(
−n, n+ 2<(a+ b)− 1, a+ ix

a+ a, a+ b
; 1
)
.

(For symmetry properties of pn
(
x; a, b, a, b

)
with respect

to a, b, a, b see Andrews et al. (1999, Corollary 3.3.4).)
18.20.10

P (λ)
n (x;φ) =

(2λ)n
n!

einφ 2F1

(
−n, λ+ ix

2λ
; 1− e−2iφ

)
.

18.21 Hahn Class: Interrelations

18.21(i) Dualities

Duality of Hahn and Dual Hahn

18.21.1
Qn(x;α, β,N) =Rx(n(n+ α+ β + 1);α, β,N),

n, x = 0, 1, . . . , N .
For the dual Hahn polynomial Rn(x; γ, δ,N) see §18.25.

Self-Dualities

18.21.2

Kn(x; p,N) = Kx(n; p,N), n, x = 0, 1, . . . , N .
Mn(x;β, c) = Mx(n;β, c), n, x = 0, 1, 2, . . . .
Cn(x, a) = Cx(n, a), n, x = 0, 1, 2, . . . .

18.21(ii) Limit Relations and Special Cases

Hahn → Krawtchouk

18.21.3 lim
t→∞

Qn(x; pt, (1− p)t,N) = Kn(x; p,N).

Hahn → Meixner

18.21.4

lim
N→∞

Qn
(
x; b− 1, N(c−1 − 1), N

)
= Mn(x; b, c).

Hahn → Jacobi

18.21.5 lim
N→∞

Qn(Nx;α, β,N) =
P

(α,β)
n (1− 2x)

P
(α,β)
n (1)

.

Krawtchouk → Charlier

18.21.6 lim
N→∞

Kn

(
x;N−1a,N

)
= Cn(x, a).

Meixner → Charlier

18.21.7 lim
β→∞

Mn

(
x;β, a(a+ β)−1

)
= Cn(x, a).

Meixner → Laguerre

18.21.8 lim
c→1

Mn

(
(1− c)−1x;α+ 1, c

)
=
L

(α)
n (x)

L
(α)
n (0)

.

Charlier → Hermite

18.21.9 lim
a→∞

(2a)
1
2n Cn

(
(2a)

1
2x+ a, a

)
= (−1)nHn(x).

Continuous Hahn → Meixner–Pollaczek

18.21.10

lim
t→∞

t−n pn(x− t;λ+ it,−t tanφ, λ− it,−t tanφ)

=
(−1)n

(cosφ)n
P (λ)
n (x;φ).

18.21.11

pn
(
x; a, a+ 1

2 , a, a+ 1
2

)
= 2−2n(4a+ n)n P

(2a)
n

(
2x; 1

2π
)
.
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Meixner–Pollaczek → Laguerre

18.21.12 lim
φ→0

P
( 1
2α+ 1

2 )
n

(
−(2φ)−1x;φ

)
= L(α)

n (x).

A graphical representation of limits in §§18.7(iii),
18.21(ii), and 18.26(ii) is provided by the Askey scheme
depicted in Figure 18.21.1.

Figure 18.21.1: Askey scheme. The number of free real parameters is zero for Hermite polynomials. It increases
by one for each row ascended in the scheme, culminating with four free real parameters for the Wilson and Racah
polynomials. (This is with the convention that the real and imaginary parts of the parameters are counted separately
in the case of the continuous Hahn polynomials.)

18.22 Hahn Class: Recurrence Relations
and Differences

18.22(i) Recurrence Relations in n

Hahn

With

18.22.1 pn(x) = Qn(x;α, β,N),

18.22.2

−xpn(x) = Anpn+1(x)− (An +Cn) pn(x) +Cnpn−1(x),
where

18.22.3

An =
(n+ α+ β + 1)(n+ α+ 1)(N − n)
(2n+ α+ β + 1)(2n+ α+ β + 2)

,

Cn =
n(n+ α+ β +N + 1)(n+ β)
(2n+ α+ β)(2n+ α+ β + 1)

.

Krawtchouk, Meixner, and Charlier

These polynomials satisfy (18.22.2) with pn(x), An, and
Cn as in Table 18.22.1.

Table 18.22.1: Recurrence relations (18.22.2) for
Krawtchouk, Meixner, and Charlier polynomials.

pn(x) An Cn

Kn(x; p,N) p(N − n) n(1− p)

Mn(x;β, c)
c(n+ β)

1− c
n

1− c
Cn(x, a) a n
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Continuous Hahn

With

18.22.4 qn(x) = pn
(
x; a, b, a, b

)/
pn
(
ia; a, b, a, b

)
,

18.22.5
(a+ ix)qn(x)

= Ãnqn+1(x)− (Ãn + C̃n)qn(x) + C̃nqn−1(x),

where

18.22.6

Ãn = − (n+ 2<(a+ b)− 1)(n+ a+ a)(n+ a+ b)
(2n+ 2<(a+ b)− 1)(2n+ 2<(a+ b))

,

C̃n =
n(n+ b+ a− 1)(n+ b+ b− 1)

(2n+ 2<(a+ b)− 2)(2n+ 2<(a+ b)− 1)
.

Meixner–Pollaczek

With

18.22.7 pn(x) = P (λ)
n (x;φ),

18.22.8
(n+ 1)pn+1(x) = 2 (x sinφ+(n+λ) cosφ) pn(x)

− (n+ 2λ− 1)pn−1(x).

18.22(ii) Difference Equations in x

Hahn

With

18.22.9 pn(x) = Qn(x;α, β,N),

18.22.10

A(x)pn(x+ 1)− (A(x) + C(x)) pn(x)
+ C(x)pn(x− 1)
− n(n+ α+ β + 1)pn(x) = 0,

where

18.22.11
A(x) = (x+ α+ 1)(x−N),
C(x) = x(x− β −N − 1).

Krawtchouk, Meixner, and Charlier

18.22.12
A(x)pn(x+ 1)− (A(x) + C(x)) pn(x)

+ C(x)pn(x− 1) + λnpn(x) = 0.

For A(x), C(x), and λn in (18.22.12) see Table 18.22.2.

Table 18.22.2: Difference equations (18.22.12) for
Krawtchouk, Meixner, and Charlier polynomials.

pn(x) A(x) C(x) λn

Kn(x; p,N) p(x−N) (p− 1)x −n

Mn(x;β, c) c(x+ β) x n(1− c)

Cn(x, a) a x n

Continuous Hahn

With

18.22.13 pn(x) = pn
(
x; a, b, a, b

)
,

18.22.14

A(x)pn(x+ i)− (A(x) + C(x)) pn(x)
+ C(x)pn(x− i)
+ n(n+ 2<(a+ b)− 1)pn(x) = 0,

where
18.22.15

A(x) = (x+ ia)(x+ ib), C(x) = (x− ia)(x− ib).
Meixner–Pollaczek

With

18.22.16 pn(x) = P (λ)
n (x;φ),

18.22.17
A(x)pn(x+ i)− (A(x) + C(x)) pn(x)

+ C(x)pn(x− i) + 2n sinφ pn(x) = 0,
where

18.22.18 A(x) = eiφ(x+ iλ), C(x) = e−iφ(x− iλ).

18.22(iii) x-Differences

Hahn

18.22.19

∆xQn(x;α, β,N)

= −n(n+ α+ β + 1)
(α+ 1)N

Qn−1(x;α+ 1, β + 1, N − 1),

18.22.20

∇x
(

(α+ 1)x(β + 1)N−x
x! (N − x)!

Qn(x;α, β,N)
)

=
N + 1
β

(α)x(β)N+1−x
x! (N + 1− x)!

× Qn+1(x;α− 1, β − 1, N + 1).

Krawtchouk

18.22.21 ∆xKn(x; p,N) = − n

pN
Kn−1(x; p,N − 1),

18.22.22

∇x
((

N

x

)
px(1− p)N−xKn(x; p,N)

)
=
(
N + 1
x

)
px(1− p)N−xKn+1(x; p,N + 1).

Meixner

18.22.23 ∆xMn(x;β, c) =−n(1− c)
βc

Mn−1(x;β + 1, c),

18.22.24

∇x
(

(β)xc
x

x!
Mn(x;β, c)

)
=

(β − 1)xc
x

x!
Mn+1(x;β − 1, c).

Charlier

18.22.25 ∆x Cn(x, a) = −n
a
Cn−1(x, a),

18.22.26 ∇x
(
ax

x!
Cn(x, a)

)
=
ax

x!
Cn+1(x, a).
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Continuous Hahn

18.22.27 δx
(
pn
(
x; a, b, a, b

))
= (n+ 2<(a+ b)− 1) pn−1

(
x; a+ 1

2 , b+ 1
2 , a+ 1

2 , b+ 1
2

)
,

18.22.28 δx
(
w(x; a+ 1

2 , b+ 1
2 , a+ 1

2 , b+ 1
2 )pn(x; a+ 1

2 , b+ 1
2 , a+ 1

2 , b+ 1
2 )
)

= −(n+ 1)w(x; a, b, a, b)pn+1(x; a, b, a, b).

Meixner–Pollaczek

18.22.29 δx

(
P (λ)
n (x;φ)

)
= 2 sinφP (λ+ 1

2 )
n−1 (x;φ),

18.22.30
δx

(
w(λ+ 1

2 )(x;φ)P (λ+ 1
2 )

n (x;φ)
)

= −(n+ 1)w(λ)(x;φ)P (λ)
n+1(x;φ).

18.23 Hahn Class: Generating Functions

For the definition of generalized hypergeometric func-
tions see §16.2.

Hahn

18.23.1

1F1

(
−x
α+ 1

;−z
)

1F1

(
x−N
β + 1

; z
)

=
N∑
n=0

(−N)n
(β + 1)nn!

Qn(x;α, β,N)zn, x = 0, 1, . . . , N .

18.23.2

2F0

(
−x,−x+ β +N + 1

−
;−z

)
× 2F0

(
x−N, x+ α+ 1

−
; z
)

=
N∑
n=0

(−N)n(α+ 1)n
n!

Qn(x;α, β,N)zn,

x = 0, 1, . . . , N .

Krawtchouk

18.23.3(
1− 1− p

p
z

)x
(1 + z)N−x =

N∑
n=0

(
N

n

)
Kn(x; p,N)zn,

x = 0, 1, . . . , N .

Meixner

18.23.4

(
1− z

c

)x
(1− z)−x−β =

∞∑
n=0

(β)n
n!

Mn(x;β, c)zn,

x = 0, 1, 2, . . . , |z| < 1.

Charlier

18.23.5 ez
(

1− z

a

)x
=
∞∑
n=0

Cn(x, a)
n!

zn, x = 0, 1, 2, . . . .

Continuous Hahn

18.23.6

1F1

(
a+ ix

2<a
;−iz

)
1F1

(
b− ix
2<b

; iz
)

=
∞∑
n=0

pn
(
x; a, b, a, b

)
(2<a)n(2<b)n

zn.

Meixner–Pollaczek

18.23.7

(1− eiφz)−λ+ix(1− e−iφz)−λ−ix

=
∞∑
n=0

P (λ)
n (x;φ)zn, |z| < 1.

18.24 Hahn Class: Asymptotic
Approximations

Krawtchouk

With x = λN and ν = n/N , Li and Wong (2000) gives
an asymptotic expansion for Kn(x; p,N) as n → ∞,
that holds uniformly for λ and ν in compact subinter-
vals of (0, 1). This expansion is in terms of the parabolic
cylinder function and its derivative.

With µ = N/n and x fixed, Qiu and Wong (2004)
gives an asymptotic expansion for Kn(x; p,N) as n →
∞, that holds uniformly for µ ∈ [1,∞). This expan-
sion is in terms of confluent hypergeometric functions.
Asymptotic approximations are also provided for the
zeros of Kn(x; p,N) in various cases depending on the
values of p and µ.

Meixner

For two asymptotic expansions of Mn(nx;β, c) as n →
∞, with β and c fixed, see Jin and Wong (1998). The
first expansion holds uniformly for δ ≤ x ≤ 1 + δ, and
the second for 1− δ ≤ x ≤ 1 + δ−1, δ being an arbitrary
small positive constant. Both expansions are in terms
of parabolic cylinder functions.

For asymptotic approximations for the zeros of
Mn(nx;β, c) in terms of zeros of Ai(x) (§9.9(i)), see Jin
and Wong (1999).

Charlier

Dunster (2001b) provides various asymptotic expan-
sions for Cn(x, a) as n → ∞, in terms of elementary
functions or in terms of Bessel functions. Taken to-
gether, these expansions are uniformly valid for −∞ <
x <∞ and for a in unbounded intervals—each of which
contains [0, (1−δ)n], where δ again denotes an arbitrary
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small positive constant. See also Bo and Wong (1994)
and Goh (1998).

Meixner–Pollaczek

For an asymptotic expansion of P (λ)
n (nx;φ) as n→∞,

with φ fixed, see Li and Wong (2001). This expansion
is uniformly valid in any compact x-interval on the real
line and is in terms of parabolic cylinder functions. Cor-
responding approximations are included for the zeros of
P

(λ)
n (nx;φ).

Approximations in Terms of Laguerre Polynomials

For asymptotic approximations to P
(λ)
n (x;φ) as |x +

iλ| → ∞, with n fixed, see Temme and López (2001).
These approximations are in terms of Laguerre polyno-
mials and hold uniformly for ph(x+ iλ) ∈ [0, π]. Com-
pare also (18.21.12). Similar approximations are in-
cluded for Jacobi, Krawtchouk, and Meixner polyno-
mials.

18.25 Wilson Class: Definitions

18.25(i) Preliminaries

For the Wilson class OP’s pn(x) with x = λ(y): if the
y-orthogonality set is {0, 1, . . . , N}, then the role of the
differentiation operator d/dx in the Jacobi, Laguerre,
and Hermite cases is played by the operator ∆y fol-
lowed by division by ∆y(λ(y)), or by the operator ∇y
followed by division by ∇y(λ(y)). Alternatively if the
y-orthogonality interval is (0,∞), then the role of d/dx
is played by the operator δy followed by division by
δy(λ(y)).

Table 18.25.1 lists the transformations of vari-
able, orthogonality ranges, and parameter constraints
that are needed in §18.2(i) for the Wilson polynomi-
als Wn(x; a, b, c, d), continuous dual Hahn polynomials
Sn(x; a, b, c), Racah polynomials Rn(x;α, β, γ, δ), and
dual Hahn polynomials Rn(x; γ, δ,N).

Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.

pn(x) x = λ(y) Orthogonality
range for y Constraints

Wn(x; a, b, c, d) y2 (0,∞) <(a, b, c, d) > 0;
nonreal parameters in conjugate pairs

Sn(x; a, b, c) y2 (0,∞) <(a, b, c) > 0;
nonreal parameters in conjugate pairs

Rn(x;α, β, γ, δ) y(y + γ + δ + 1) {0, 1, . . . , N} α+ 1 or β + δ + 1 or γ + 1 = −N ;
for further constraints see (18.25.1)

Rn(x; γ, δ,N) y(y + γ + δ + 1) {0, 1, . . . , N} γ, δ > −1 or < −N

Further Constraints for Racah Polynomials

If α+ 1 = −N , then the weights will be positive iff one
of the following eight sets of inequalities holds:

18.25.1

−δ − 1 < β < γ + 1 < −N + 1.

N − 1 < −δ − 1 < β < γ + 1.

γ, δ > −1, β > N + γ.

γ, δ > −1, β < −N − δ.
N − 1 < N + γ < β < −N − δ.
N + γ < β < −N − δ < −N − 1.

γ, δ < −N, β > −1− δ.
γ, δ < −N, β < γ + 1.

The first four sets imply γ + δ > −2, and the last four
imply γ + δ < −2N .

18.25(ii) Weights and Normalizations:
Continuous Cases

18.25.2

∫ ∞
0

pn(x)pm(x)w(x) dx = hnδn,m.

Wilson

18.25.3 pn(x) = Wn(x; a1, a2, a3, a4),

18.25.4 w(y2) =
1
2y

∣∣∣∣
∏
j Γ(aj + iy)

Γ(2iy)

∣∣∣∣2 ,
18.25.5 hn =

n! 2π
∏
j<` Γ(n+ aj + a`)

(2n− 1 +
∑
j aj) Γ

(
n− 1 +

∑
j aj

) .
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Continuous Dual Hahn

18.25.6 pn(x) = Sn(x; a1, a2, a3),

18.25.7 w(y2) =
1
2y

∣∣∣∣
∏
j Γ(aj + iy)

Γ(2iy)

∣∣∣∣2 ,
18.25.8 hn = n! 2π

∏
j<`

Γ(n+ aj + a`).

18.25(iii) Weights and Normalizations: Discrete
Cases

18.25.9

N∑
y=0

pn(y(y+γ+δ+1))pm(y(y+γ+δ+1))

× γ + δ + 1 + 2y
γ + δ + 1 + y

ωy = hnδn,m.

Racah

18.25.10 pn(x) = Rn(x;α, β, γ, δ), α+ 1 = −N ,

18.25.11

ωy =
(α+ 1)y(β + δ + 1)y(γ + 1)y(γ + δ + 2)y

(−α+ γ + δ + 1)y(−β + γ + 1)y(δ + 1)yy!
,

18.25.12

hn =
(−β)N (γ + δ + 2)N

(−β + γ + 1)N (δ + 1)N

(n+ α+ β + 1)nn!
(α+ β + 2)2n

×
(α+ β − γ + 1)n(α− δ + 1)n(β + 1)n

(α+ 1)n(β + δ + 1)n(γ + 1)n
.

Dual Hahn

18.25.13 pn(x) = Rn(x; γ, δ,N),

18.25.14 ωy =
(−1)y(−N)y(γ + 1)y(γ + δ + 1)2

(N + γ + δ + 2)y(δ + 1)yy!
,

18.25.15 hn =
n! (N − n)! (γ + δ + 2)N
N ! (γ + 1)n(δ + 1)N−n

.

18.25(iv) Leading Coefficients

Table 18.25.2 provides the leading coefficients kn
(§18.2(iii)) for the Wilson, continuous dual Hahn,
Racah, and dual Hahn polynomials.

Table 18.25.2: Wilson class OP’s: leading coefficients.

pn(x) kn

Wn(x; a, b, c, d) (−1)n(n+ a+ b+ c+ d− 1)n

Sn(x; a, b, c) (−1)n

Rn(x;α, β, γ, δ)
(n+ α+ β + 1)n

(α+ 1)n(β + δ + 1)n(γ + 1)n
Rn(x; γ, δ,N)

1
(γ + 1)n(−N)n

18.26 Wilson Class: Continued

18.26(i) Representations as Generalized
Hypergeometric Functions

For the definition of generalized hypergeometric func-
tions see §16.2.

18.26.1 Wn

(
y2; a, b, c, d

)
= (a+ b)n(a+ c)n(a+ d)n 4F3

(
−n, n+ a+ b+ c+ d− 1, a+ iy, a− iy

a+ b, a+ c, a+ d
; 1
)
.

18.26.2
Sn
(
y2; a, b, c

)
(a+ b)n(a+ c)n

= 3F2

(
−n, a+ iy, a− iy

a+ b, a+ c
; 1
)
.

18.26.3
Rn(y(y + γ + δ + 1);α, β, γ, δ) = 4F3

(
−n, n+ α+ β + 1,−y, y + γ + δ + 1

α+ 1, β + δ + 1, γ + 1
; 1
)

,

α+ 1 or β + δ + 1 or γ + 1 = −N ; n = 0, 1, . . . , N .

18.26.4 Rn(y(y + γ + δ + 1); γ, δ,N) = 3F2

(
−n,−y, y + γ + δ + 1

γ + 1,−N
; 1
)

, n = 0, 1, . . . , N .

18.26(ii) Limit Relations

Wilson → Continuous Dual Hahn

18.26.5 lim
d→∞

Wn(x; a, b, c, d)
(a+ d)n

= Sn(x; a, b, c).
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Wilson → Continuous Hahn

18.26.6 lim
t→∞

Wn

(
(x+ t)2; a− it, b− it, a+ it, b+ it

)
(−2t)nn!

= pn
(
x; a, b, a, b

)
.

Wilson → Jacobi

18.26.7 lim
t→∞

Wn

(
1
2 (1− x)t2; 1

2α+ 1
2 ,

1
2α+ 1

2 ,
1
2β + 1

2 + it, 1
2β + 1

2 − it
)

t2nn!
= P (α,β)

n (x).

Continuous Dual Hahn → Meixner–Pollaczek

18.26.8 lim
t→∞

Sn
(
(x− t)2;λ+ it, λ− it, t cotφ

)/
tn = n!(cscφ)n P (λ)

n (x;φ).

Racah → Dual Hahn

18.26.9 lim
β→∞

Rn(x;−N − 1, β, γ, δ) = Rn(x; γ, δ,N).

Racah → Hahn

18.26.10 lim
δ→∞

Rn(x(x+ γ + δ + 1);α, β,−N − 1, δ) = Qn(x;α, β,N).

Dual Hahn → Krawtchouk

18.26.11 lim
t→∞

Rn(x(x+ t+ 1); pt, (1− p)t,N) = Kn(x; p,N).

Dual Hahn → Meixner

With

18.26.12 r(x;β, c,N) = x(x+ β + c−1(1− c)N),

18.26.13 lim
N→∞

Rn
(
r(x;β, c,N);β − 1, c−1(1− c)N,N

)
= Mn(x;β, c).

See also Figure 18.21.1.

18.26(iii) Difference Relations

For comments on the use of the forward-difference operator ∆x, the backward-difference operator ∇x, and the
central-difference operator δx, see §18.2(ii).

For each family only the y-difference that lowers n is given. See Koekoek and Swarttouw (1998, Chapter 1) for
further formulas.

18.26.14 δy
(
Wn

(
y2; a, b, c, d

))/
δy(y2) = −n(n+ a+ b+ c+ d− 1) Wn−1

(
y2; a+ 1

2 , b+ 1
2 , c+ 1

2 , d+ 1
2

)
.

18.26.15 δy
(
Sn
(
y2; a, b, c

))/
δy(y2) = −nSn−1

(
y2; a+ 1

2 , b+ 1
2 , c+ 1

2

)
.

18.26.16

∆y (Rn(y(y + γ + δ + 1);α, β, γ, δ))
∆y (y(y + γ + δ + 1))

=
n(n+ α+ β + 1)

(α+ 1)(β + δ + 1)(γ + 1)
Rn−1(y(y + γ + δ + 2);α+ 1, β + 1, γ + 1, δ).

18.26.17
∆y (Rn(y(y + γ + δ + 1); γ, δ,N))

∆y (y(y + γ + δ + 1))
= − n

(γ + 1)N
Rn−1(y(y + γ + δ + 2); γ + 1, δ,N − 1).

18.26(iv) Generating Functions

For the hypergeometric function 2F1 see §§15.1 and 15.2(i).

Wilson

18.26.18 2F1

(
a+ iy, d+ iy

a+ d
; z
)

2F1

(
b− iy, c− iy

b+ c
; z
)

=
∞∑
n=0

Wn

(
y2; a, b, c, d

)
(a+ d)n(b+ c)nn!

zn, |z| < 1.



470 Orthogonal Polynomials

Continuous Dual Hahn

18.26.19 (1− z)−c+iy 2F1

(
a+ iy, b+ iy

a+ b
; z
)

=
∞∑
n=0

Sn
(
y2; a, b, c

)
(a+ b)nn!

zn, |z| < 1.

Racah

18.26.20

2F1

(
−y,−y + β − γ

β + δ + 1
; z
)

2F1

(
y −N, y + γ + 1
−δ −N

; z
)

=
N∑
n=0

(−N)n(γ + 1)n
(−δ −N)nn!

Rn(y(y + γ + δ + 1);−N − 1, β, γ, δ)zn.

Dual Hahn

18.26.21 (1− z)y 2F1

(
y −N, y + γ + 1
−δ −N

; z
)

=
N∑
n=0

(γ + 1)n(−N)n
(−δ −N)nn!

Rn(y(y + γ + δ + 1); γ, δ,N)zn.

18.26(v) Asymptotic Approximations

For asymptotic expansions of Wilson polynomials of
large degree see Wilson (1991), and for asymptotic ap-
proximations to their largest zeros see Chen and Ismail
(1998).

Other Orthogonal Polynomials

18.27 q-Hahn Class

18.27(i) Introduction

The q-hypergeometric OP’s comprise the q-Hahn class
OP’s and the Askey–Wilson class OP’s (§18.28). For
the notation of q-hypergeometric functions see §§17.2
and 17.4(i).

The q-Hahn class OP’s comprise systems of OP’s
{pn(x)}, n = 0, 1, . . . , N , or n = 0, 1, 2, . . . , that are
eigenfunctions of a second-order q-difference operator.
Thus

18.27.1

A(x)pn(qx) +B(x)pn(x) + C(x)pn(q−1x) = λnpn(x),

where A(x), B(x), and C(x) are independent of n, and
where the λn are the eigenvalues. In the q-Hahn class
OP’s the role of the operator d/dx in the Jacobi, La-
guerre, and Hermite cases is played by the q-derivative
Dq, as defined in (17.2.41). A (nonexhaustive) classifica-
tion of such systems of OP’s was made by Hahn (1949).
There are 18 families of OP’s of q-Hahn class. These
families depend on further parameters, in addition to
q. The generic (top level) cases are the q-Hahn polyno-
mials and the big q-Jacobi polynomials, each of which
depends on three further parameters.

All these systems of OP’s have orthogonality prop-
erties of the form

18.27.2
∑
x∈X

pn(x)pm(x) |x| vx = hnδn,m,

where X is given by X = {aqy}y∈I+ or X = {aqy}y∈I+∪
{−bqy}y∈I− . Here a, b are fixed positive real numbers,
and I+ and I− are sequences of successive integers, finite
or unbounded in one direction, or unbounded in both
directions. If I+ and I− are both nonempty, then they
are both unbounded to the right. Some of the systems
of OP’s that occur in the classification do not have a
unique orthogonality property. Thus in addition to a
relation of the form (18.27.2), such systems may also
satisfy orthogonality relations with respect to a contin-
uous weight function on some interval.

Here only a few families are mentioned. They are
defined by their q-hypergeometric representations, fol-
lowed by their orthogonality properties. For other for-
mulas, including q-difference equations, recurrence re-
lations, duality formulas, special cases, and limit rela-
tions, see Koekoek and Swarttouw (1998, Chapter 3).
See also Gasper and Rahman (2004, pp. 195–199, 228–
230) and Ismail (2005, Chapters 13, 18, 21).

18.27(ii) q-Hahn Polynomials

18.27.3

Qn(x) = Qn(x;α, β,N ; q) = 3φ2

(
q−n, αβqn+1, x

αq, q−N
; q, q

)
,

n = 0, 1, . . . , N .

18.27.4

N∑
y=0

Qn(q−y)Qm(q−y)
(αq, q−N ; q)y(αβq)−y

(q, β−1q−N ; q)y

= hnδn,m, n,m = 0, 1, . . . , N.

For hn see Koekoek and Swarttouw (1998, Eq. (3.6.2)).



18.27 q-Hahn Class 471

18.27(iii) Big q-Jacobi Polynomials

18.27.5 Pn(x; a, b, c; q) = 3φ2

(
q−n, abqn+1, x

aq, cq
; q, q

)
,

and

18.27.6

P (α,β)
n (x; c, d; q)

=
cnq−(α+1)n

(
qα+1,−qα+1c−1d; q

)
n

(q,−q; q)n
× Pn

(
qα+1c−1dx; qα, qβ ,−qαc−1d; q

)
.

The orthogonality relations are given by (18.27.2), with

18.27.7 pn(x) = Pn(x; a, b, c; q),

18.27.8 X = {aq`+1}`=0,1,2,... ∪ {cq`+1}`=0,1,2,...,

18.27.9
vx =

(a−1x, c−1x; q)∞
(x, bc−1x; q)∞

,

0 < a < q−1, 0 < b < q−1, c < 0,
and

18.27.10 pn(x) = P (α,β)
n (x; c, d; q)

18.27.11 X = {cq`}`=0,1,2,... ∪ {−dq`}`=0,1,2,...,

18.27.12

vx =
(qx/c,−qx/d; q)∞

(qα+1x/c,−qβ+1x/d; q)∞
, α, β > −1, c, d > 0.

For hn see Koekoek and Swarttouw (1998, Eq. (3.5.2)).

18.27(iv) Little q-Jacobi Polynomials

18.27.13

pn(x) = pn(x; a, b; q) = 2φ1

(
q−n, abqn+1

aq
; q, qx

)
.

18.27.14

∞∑
y=0

pn(qy)pm(qy)
(bq; q)y (aq)y

(q; q)y

= hnδn,m, 0 < a < q−1, b < q−1 .
For hn see Koekoek and Swarttouw (1998, Eq. (3.12.2)).

18.27(v) q-Laguerre Polynomials

18.27.15

L(α)
n (x; q) =

(
qα+1; q

)
n

(q; q)n
1φ1

(
q−n

qα+1
; q,−xqn+α+1

)
.

The measure is not uniquely determined:

18.27.16

∫ ∞
0

L(α)
n (x; q)L(α)

m (x; q)
xα

(−x; q)∞
dx

=

(
qα+1; q

)
n

(q; q)n qn
h

(1)
0 δn,m, α > −1,

where h(1)
0 is given in Koekoek and Swarttouw (1998,

Eq. (3.21.2), and

18.27.17

∞∑
y=−∞

L(α)
n (cqy; q)L(α)

m (cqy; q)
qy(α+1)

(−cqy; q)∞

=

(
qα+1; q

)
n

(q; q)n qn
h

(2)
0 δn,m, α > −1, c > 0,

where h(2)
0 is given in Koekoek and Swarttouw (1998,

Eq. (3.21.3).

18.27(vi) Stieltjes–Wigert Polynomials

18.27.18

Sn(x; q) =
n∑
`=0

q`
2
(−x)`

(q; q)` (q; q)n−`

=
1

(q; q)n
1φ1

(
q−n

0
; q,−qn+1x

)
.

(Sometimes in the literature x is replaced by q
1
2x.)

The measure is not uniquely determined:

18.27.19∫ ∞
0

Sn(x; q)Sm(x; q)
(−x,−qx−1; q)∞

dx =
ln
(
q−1
)

qn
(q; q)∞
(q; q)n

δn,m,

and

18.27.20∫ ∞
0

Sn

(
q

1
2x; q

)
Sm

(
q

1
2x; q

)
exp
(
− (lnx)2

2 ln(q−1)

)
dx

=

√
2πq−1 ln(q−1)
qn (q; q)n

δn,m.

18.27(vii) Discrete q-Hermite I and II
Polynomials

Discrete q-Hermite I

18.27.21

hn(x; q) = (q; q)n

bn/2c∑
`=0

(−1)`q`(`−1)xn−2`

(q2; q2)` (q; q)n−2`

= xn 2φ0

(
q−n, q−n+1

−
; q2, x−2q2n−1

)
.

18.27.22
∞∑
`=0

(
hn
(
q`; q

)
hm
(
q`; q

)
+ hn

(
−q`; q

)
hm
(
−q`; q

))
×
(
q`+1,−q`+1; q

)
∞ q`

= (q; q)n (q,−1,−q; q)∞ qn(n−1)/2δn,m.
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Discrete q-Hermite II

18.27.23

h̃n(x; q) = (q; q)n

bn/2c∑
`=0

(−1)`q−2n`q`(2`+1)xn−2`

(q2; q2)` (q; q)n−2`

= xn 2φ1

(
q−n, q−n+1

0
; q2,−x−2q2

)
.

18.27.24
∞∑

`=−∞

(
h̃n
(
cq`; q

)
h̃m
(
cq`; q

)
+ h̃n

(
−cq`; q

)
h̃m
(
−cq`; q

)) q`

(−c2q2`; q2)∞

= 2

(
q2,−c2q,−c−2q; q2

)
∞

(q,−c2,−c−2q2; q2)∞

(q; q)n
qn2 δn,m,

c > 0.
(For discrete q-Hermite II polynomials the measure is
not uniquely determined.)

18.28 Askey–Wilson Class

18.28(i) Introduction

The Askey–Wilson class OP’s comprise the four-
parameter families of Askey–Wilson polynomials and of
q-Racah polynomials, and cases of these families ob-
tained by specialization of parameters. The Askey–
Wilson polynomials form a system of OP’s {pn(x)},
n = 0, 1, 2, . . . , that are orthogonal with respect to a
weight function on a bounded interval, possibly sup-
plemented with discrete weights on a finite set. The
q-Racah polynomials form a system of OP’s {pn(x)},
n = 0, 1, 2, . . . , N , that are orthogonal with respect
to a weight function on a sequence {q−y + cqy+1},
y = 0, 1, . . . , N , with c a constant. Both the Askey–
Wilson polynomials and the q-Racah polynomials can
best be described as functions of z (resp. y) such that
Pn(z) = pn( 1

2 (z + z−1)) in the Askey–Wilson case, and
Pn(y) = pn(q−y + cqy+1) in the q-Racah case, and both
are eigenfunctions of a second-order q-difference opera-
tor similar to (18.27.1).

In the remainder of this section the Askey–Wilson
class OP’s are defined by their q-hypergeometric repre-
sentations, followed by their orthogonal properties. For
further properties see Koekoek and Swarttouw (1998,
Chapter 3). See also Gasper and Rahman (2004,

pp. 180–199) and Ismail (2005, Chapter 15). For the
notation of q-hypergeometric functions see §§17.2 and
17.4(i).

18.28(ii) Askey–Wilson Polynomials

18.28.1

pn(cos θ)
= pn(cos θ; a, b, c, d | q)

= a−n
n∑
`=0

q`
(
abq`, acq`, adq`; q

)
n−`

×
(
q−n, abcdqn−1; q

)
`

(q; q)`

`−1∏
j=0

(1− 2aqj cos θ + a2q2j)

= a−n (ab, ac, ad; q)n

× 4φ3

(
q−n, abcdqn−1, aeiθ, ae−iθ

ab, ac, ad
; q, q

)
.

Assume a, b, c, d are all real, or two of them are real
and two form a conjugate pair, or none of them are real
but they form two conjugate pairs. Furthermore, |ab|,
|ac|, |ad|, |bc|, |bd|, |cd| < 1. Then
18.28.2∫ 1

−1

pn(x)pm(x)w(x) dx = hnδn,m, |a|, |b|, |c|, |d| ≤ 1,

where

18.28.3 2π sin θ w(cos θ) =

∣∣∣∣∣
(
e2iθ; q

)
∞

(aeiθ, beiθ, ceiθ, deiθ; q)∞

∣∣∣∣∣
2

,

18.28.4 h0 =
(abcd; q)∞

(q, ab, ac, ad, bc, bd, cd; q)∞
,

18.28.5

hn = h0
(1− abcdqn−1) (q, ab, ac, ad, bc, bd, cd; q)n

(1− abcdq2n−1) (abcd; q)n
,

n = 1, 2, . . . .
More generally, without the constraints in (18.28.2),

18.28.6∫ 1

−1

pn(x)pm(x)w(x) dx+
∑
`

pn(x`)pm(x`)ω` = hnδn,m,

with w(x) and hn as above. Also, x` are the points
1
2 (αq` + α−1q−`) with α any of the a, b, c, d whose ab-
solute value exceeds 1, and the sum is over the ` =
0, 1, 2, . . . with |αq`| > 1. See Koekoek and Swarttouw
(1998, Eq. (3.1.3)) for the value of ω` when α = a.
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18.28(iii) Al-Salam–Chihara Polynomials

18.28.7

Qn(cos θ; a, b | q)
= pn(cos θ; a, b, 0, 0 | q)

= a−n
n∑
`=0

q`

(
abq`; q

)
n−` (q−n; q)`

(q; q)`

×
`−1∏
j=0

(1− 2aqj cos θ + a2q2j)

=
(ab; q)n
an

3φ2

(
q−n, aeiθ, ae−iθ

ab, 0
; q, q

)
=
(
be−iθ; q

)
n
einθ 2φ1

(
q−n, aeiθ

b−1q1−neiθ
; q, b−1qe−iθ

)
.

18.28.8

1
2π

∫ π

0

Qn(cos θ; a, b | q)Qm(cos θ; a, b | q)

×

∣∣∣∣∣
(
e2iθ; q

)
∞

(aeiθ, beiθ; q)∞

∣∣∣∣∣
2

dθ =
δn,m

(qn+1, abqn; q)∞
,

a, b ∈ R or a = b; |ab| < 1; |a|, |b| ≤ 1.
More generally, without the constraints |a|, |b| ≤ 1
discrete terms need to be added to the right-hand
side of (18.28.8); see Koekoek and Swarttouw (1998,
Eq. (3.8.3)).

18.28(iv) q−1-Al-Salam–Chihara Polynomials

18.28.9

Qn
(

1
2 (aq−y + a−1qy); a, b | q−1

)
= (−1)nbnq−

1
2n(n−1)

×
(
(ab)−1; q

)
n 3φ1

(
q−n, q−y, a−2qy

(ab)−1
; q, qnab−1

)
.

18.28.10
∞∑
y=0

(1− q2ya−2)
(
a−2, (ab)−1; q

)
y

(1− a−2) (q, bqa−1; q)y
(ba−1)yqy

2

× Qn
(

1
2 (aq−y + a−1qy); a, b | q−1

)
× Qm

(
1
2 (aq−y + a−1qy); a, b | q−1

)
=

(
qa−2; q

)
∞

(ba−1q; q)∞

(
q, (ab)−1; q

)
n

(ab)nq−n
2
δn,m.

Eq. (18.28.10) is valid when either

18.28.11 0 < q < 1, a, b ∈ R, ab > 1, a−1b < q−1,

or
18.28.12

0 < q < 1, a/i , b/i ∈ R, (=a)(=b) > 0, a−1b < q−1.

If, in addition to (18.28.11) or (18.28.12), we have
a−1b ≤ q, then the measure in (18.28.10) is uniquely
determined. Also, if q < a−1b < q−1, then (18.28.10)

holds with a, b interchanged. For further nondegenerate
cases see Chihara and Ismail (1993) and Christiansen
and Ismail (2006).

18.28(v) Continuous q-Ultraspherical
Polynomials

18.28.13

Cn(cos θ;β | q)

=
n∑
`=0

(β; q)` (β; q)n−`
(q; q)` (q; q)n−`

ei(n−2`)θ

=
(β; q)n
(q; q)n

einθ 2φ1

(
q−n, β

β−1q1−n ; q, β−1qe−2iθ

)
.

18.28.14

Cn(cos θ;β | q)

=

(
β2; q

)
n

(q; q)n β
1
2n

4φ3

(
q−n, β2qn, β

1
2 eiθ, β

1
2 e−iθ

βq
1
2 ,−β,−βq 1

2
; q, q

)
.

18.28.15

1
2π

∫ π

0

Cn(cos θ;β | q)Cm(cos θ;β | q)

∣∣∣∣∣
(
e2iθ; q

)
∞

(βe2iθ; q)∞

∣∣∣∣∣
2

dθ

=
(β, βq; q)∞
(β2, q; q)∞

(1− β)
(
β2; q

)
n

(1− βqn) (q; q)n
δn,m, −1 < β < 1.

These polynomials are also called Rogers polynomi-
als.

18.28(vi) Continuous q-Hermite Polynomials

18.28.16

Hn(cos θ | q) =
n∑
`=0

(q; q)n e
i(n−2`)θ

(q; q)` (q; q)n−`

= einθ 2φ0

(
q−n, 0
−

; q, qne−2iθ

)
.

18.28.17

1
2π

∫ π

0

Hn(cos θ | q)Hm(cos θ | q)
∣∣(e2iθ; q

)
∞

∣∣2 dθ
=

δn,m
(qn+1; q)∞

.

18.28(vii) Continuous q−1-Hermite Polynomials

18.28.18

hn(sinh t | q) =
n∑
`=0

q
1
2 `(`+1) (q−n; q)`

(q; q)`
e(n−2`)t

= ent 1φ1

(
q−n

0
; q,−qe−2t

)
= i−nHn

(
i sinh t | q−1

)
.

For continuous q−1-Hermite polynomials the orthog-
onality measure is not unique. See Askey (1989) and
Ismail and Masson (1994) for examples.
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18.28(viii) q-Racah Polynomials

With x = q−y + γδqy+1,
18.28.19

Rn(x) = Rn(x;α, β, γ, δ | q)

=
n∑
`=0

q`
(
q−n, αβqn+1; q

)
`

(αq, βδq, γq, q; q)`

`−1∏
j=0

(1−qjx+γδq2j+1)

= 4φ3

(
q−n, αβqn+1, q−y, γδqy+1

αq, βδq, γq
; q, q

)
,

αq, βδq, or γq = q−N ; n = 0, 1, . . . , N.

18.28.20

N∑
y=0

Rn(q−y + γδqy+1)Rm(q−y + γδqy+1)ωy

= hnδn,m, n,m = 0, 1, . . . , N .
For ωy and hn see Koekoek and Swarttouw (1998,
Eq. (3.2.2)).

18.29 Asymptotic Approximations for
q-Hahn and Askey–Wilson Classes

Ismail (1986) gives asymptotic expansions as n → ∞,
with x and other parameters fixed, for continuous
q-ultraspherical, big and little q-Jacobi, and Askey–
Wilson polynomials. These asymptotic expansions
are in fact convergent expansions. For Askey–Wilson
pn(cos θ; a, b, c, d | q) the leading term is given by

18.29.1
(bc, bd, cd; q)n

(
Qn(eiθ; a, b, c, d | q)

+Qn(e−iθ; a, b, c, d | q)
)
,

where with z = e±iθ,
18.29.2

Qn(z; a, b, c, d | q) ∼
zn
(
az−1, bz−1, cz−1, dz−1; q

)
∞

(z−2, bc, bd, cd; q)∞
,

n→∞; z, a, b, c, d, q fixed.
For a uniform asymptotic expansion of the Stieltjes–

Wigert polynomials, see Wang and Wong (2006).
For asymptotic approximations to the largest zeros

of the q-Laguerre and continuous q−1-Hermite polyno-
mials see Chen and Ismail (1998).

18.30 Associated OP’s

In the recurrence relation (18.2.8) assume that the co-
efficients An, Bn, and Cn+1 are defined when n is a
continuous nonnegative real variable, and let c be an
arbitrary positive constant. Assume also

18.30.1 AnAn+1Cn+1 > 0, n ≥ 0.
Then the associated orthogonal polynomials pn(x; c) are
defined by

18.30.2 p−1(x; c) = 0, p0(x; c) = 1,

and

18.30.3
pn+1(x; c) = (An+cx+Bn+c)pn(x; c)

− Cn+cpn−1(x; c), n = 0, 1, . . . .
Assume also that Eq. (18.30.3) continues to hold,

except that when n = 0, Bc is replaced by an arbitrary
real constant. Then the polynomials pn(x, c) generated
in this manner are called corecursive associated OP’s.
Associated Jacobi Polynomials

These are defined by

18.30.4 P (α,β)
n (x; c) = pn(x; c), n = 0, 1, . . . ,

where pn(x; c) is given by (18.30.2) and (18.30.3), with
An, Bn, and Cn as in (18.9.2). Explicitly,
18.30.5

(−1)n(α+ β + c+ 1)nn! P (α,β)
n (x; c)

(α+ β + 2c+ 1)n(β + c+ 1)n

=
n∑
`=0

(−n)`(n+ α+ β + 2c+ 1)`
(c+ 1)`(β + c+ 1)`

(
1
2x+ 1

2

)̀
× 4F3

(
`− n, n+ `+ α+ β + 2c+ 1, β + c, c

β + `+ c+ 1, `+ c+ 1, α+ β + 2c
; 1
)
,

where the generalized hypergeometric function 4F3 is
defined by (16.2.1).

For corresponding corecursive associated Jacobi
polynomials see Letessier (1995).
Associated Legendre Polynomials

These are defined by

18.30.6 Pn(x; c) = P (0,0)
n (x; c), n = 0, 1, . . . .

Explicitly,

18.30.7 Pn(x; c) =
n∑
`=0

c

`+ c
P`(x)Pn−`(x).

(These polynomials are not to be confused with associ-
ated Legendre functions §14.3(ii).)

For further results on associated Legendre polyno-
mials see Chihara (1978, Chapter VI, §12); on associ-
ated Jacobi polynomials, see Wimp (1987) and Ismail
and Masson (1991). For associated Pollaczek polynomi-
als (compare §18.35) see Erdélyi et al. (1953b, §10.21).
For associated Askey–Wilson polynomials see Rahman
(2001).

18.31 Bernstein–Szegö Polynomials

Let ρ(x) be a polynomial of degree ` and positive when
−1 ≤ x ≤ 1. The Bernstein–Szegö polynomials {pn(x)},
n = 0, 1, . . . , are orthogonal on (−1, 1) with respect
to three types of weight function: (1 − x2)−

1
2 (ρ(x))−1,

(1− x2)
1
2 (ρ(x))−1, (1− x)

1
2 (1 + x)−

1
2 (ρ(x))−1. In con-

sequence, pn(cos θ) can be given explicitly in terms of
ρ(cos θ) and sines and cosines, provided that ` < 2n
in the first case, ` < 2n + 2 in the second case, and
` < 2n+ 1 in the third case. See Szegö (1975, §2.6).
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18.32 OP’s with Respect to Freud Weights

A Freud weight is a weight function of the form

18.32.1 w(x) = exp(−Q(x)), −∞ < x <∞,

where Q(x) is real, even, nonnegative, and continu-
ously differentiable. Of special interest are the cases
Q(x) = x2m, m = 1, 2, . . . . No explicit expressions
for the corresponding OP’s are available. However, for
asymptotic approximations in terms of elementary func-
tions for the OP’s, and also for their largest zeros, see
Levin and Lubinsky (2001) and Nevai (1986). For a
uniform asymptotic expansion in terms of Airy func-
tions (§9.2) for the OP’s in the case Q(x) = x4 see Bo
and Wong (1999).

18.33 Polynomials Orthogonal on the Unit
Circle

18.33(i) Definition

A system of polynomials {φn(z)}, n = 0, 1, . . . , where
φn(z) is of proper degree n, is orthonormal on the unit
circle with respect to the weight function w(z) (≥ 0) if

18.33.1
1

2πi

∫
|z| =1

φn(z)φm(z)w(z)
dz

z
= δn,m,

where the bar signifies complex conjugate. See Simon
(2005a,b) for general theory.

18.33(ii) Recurrence Relations

Denote

18.33.2 φn(z) = κnz
n +

n∑
`=1

κn,n−`z
n−`,

where κn(> 0), and κn,n−`(∈ C) are constants. Also
denote

18.33.3 φ∗n(z) = κnz
n +

n∑
`=1

κn,n−`z
n−`,

where the bar again signifies compex conjugate. Then

18.33.4 κnzφn(z) = κn+1φn+1(z)− φn+1(0)φ∗n+1(z),

18.33.5 κnφn+1(z) = κn+1zφn(z) + φn+1(0)φ∗n(z),

18.33.6
κnφn(0)φn+1(z) + κn−1φn+1(0)zφn−1(z)

= (κnφn+1(0) + κn+1φn(0)z)φn(z).

18.33(iii) Connection with OP’s on the Line

Assume that w(eiφ) = w(e−iφ). Set

18.33.7

w1(x) = (1− x2)−
1
2w
(
x+ i(1− x2)

1
2

)
,

w2(x) = (1− x2)
1
2w
(
x+ i(1− x2)

1
2

)
.

Let {pn(x)} and {qn(x)}, n = 0, 1, . . . , be OP’s with
weight functions w1(x) and w2(x), respectively, on
(−1, 1). Then
18.33.8

pn
(

1
2 (z + z−1)

)
= (const.)×

(
z−nφ2n(z) + znφ2n(z−1)

)
= (const.)×

(
z−n+1φ2n−1(z) + zn−1φ2n−1(z−1)

)
,

18.33.9

qn
(

1
2 (z + z−1)

)
= (const.)× z−n−1φ2n+2(z)− zn+1φ2n+2(z−1)

z − z−1

= (const.)× z−nφ2n+1(z)− znφ2n+1(z−1)
z − z−1

.

Conversely,
18.33.10

z−nφ2n(z)
= Anpn

(
1
2 (z + z−1)

)
+Bn(z − z−1)qn−1

(
1
2 (z + z−1)

)
,

18.33.11

z−n+1φ2n−1(z)
= Cnpn

(
1
2 (z + z−1)

)
+Dn(z − z−1)qn−1

(
1
2 (z + z−1)

)
,

where An, Bn, Cn, and Dn are independent of z.

18.33(iv) Special Cases

Trivial

18.33.12 φn(z) = zn, w(z) = 1.
Szegö–Askey

18.33.13

φn(z)

=
n∑
`=0

(λ+ 1)`(λ)n−`
`! (n− `)!

z` =
(λ)n
n! 2F1

(
−n, λ+ 1
−λ− n+ 1

; z
)
,

with

18.33.14

w(z) =
(
1− 1

2 (z + z−1)
)λ
,

w1(x) = (1− x)λ−
1
2 (1 + x)−

1
2 ,

w2(x) = (1− x)λ+ 1
2 (1 + x)

1
2 , λ > − 1

2 .

For the hypergeometric function 2F1 see §§15.1 and
15.2(i).
Askey

18.33.15

φn(z) =
n∑
`=0

(
aq2; q2

)
`

(
a; q2

)
n−`

(q2; q2)` (q2; q2)n−`
(q−1z)`

=

(
a; q2

)
n

(q2; q2)n
2φ1

(
aq2, q−2n

a−1q2−2n
; q2,

qz

a

)
,

with
18.33.16 w(z) =

∣∣∣(qz; q2
)
∞

/ (
aqz; q2

)
∞

∣∣∣2 , a2q2 < 1.

For the notation, including the basic hypergeometric
function 2φ1, see §§17.2 and 17.4(i).

When a = 0 the Askey case is also known as the
Rogers–Szegö case.
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18.33(v) Biorthogonal Polynomials on the Unit
Circle

See Baxter (1961) for general theory. See Askey
(1982) and Pastro (1985) for special cases extending
(18.33.13)–(18.33.14) and (18.33.15)–(18.33.16), respec-
tively. See Gasper (1981) and Hendriksen and van
Rossum (1986) for relations with Laurent polynomials
orthogonal on the unit circle. See Al-Salam and Ismail
(1994) for special biorthogonal rational functions on the
unit circle.

18.34 Bessel Polynomials

18.34(i) Definitions and Recurrence Relation

For the confluent hypergeometric function 1F1 and the
generalized hypergeometric function 2F0 see §16.2(ii)
and §16.2(iv).
18.34.1

yn(x; a) = 2F0

(
−n, n+ a− 1

−
;−x

2

)
= (n+ a− 1)n

(x
2

)n
1F1

(
−n

−2n− a+ 2
;

2
x

)
.

Other notations in use are given by

18.34.2 yn(x) = yn(x; 2), θn(x) = xnyn(x−1),
and
18.34.3

yn(x; a, b) = yn(2x/b; a), θn(x; a, b) = xnyn(x−1; a, b).
Often only the polynomials (18.34.2) are called Bessel
polynomials, while the polynomials (18.34.1) and
(18.34.3) are called generalized Bessel polynomials. See
also §10.49(ii).
18.34.4

yn+1(x; a) = (Anx+Bn) yn(x; a)− Cn yn−1(x; a),
where

18.34.5

An =
(2n+ a)(2n+ a− 1)

2(n+ a− 1)
,

Bn =
(a− 2)(2n+ a− 1)

(n+ a− 1)(2n+ a− 2)
,

Cn =
−n(2n+ a)

(n+ a− 1)(2n+ a− 2)
.

18.34(ii) Orthogonality

Because the coefficients Cn in (18.34.4) are not all pos-
itive, the polynomials yn(x; a) cannot be orthogonal
on the line with respect to a positive weight function.
There is orthogonality on the unit circle, however:
18.34.6

1
2πi

∫
|z| =1

za−2 yn(z; a) ym(z; a)e−2/z dz

=
(−1)n+a−1n! 2a−1

(n+ a− 2)!(2n+ a− 1)
δn,m, a = 1, 2, . . . ,

the integration path being taken in the positive rota-
tional sense.

Orthogonality can also be expressed in terms of mo-
ment functionals; see Durán (1993), Evans et al. (1993),
and Maroni (1995).

18.34(iii) Other Properties

18.34.7

x2 y′′n(x; a)+(ax+2) y′n(x; a)−n(n+a−1) yn(x; a) = 0,

where primes denote derivatives with respect to x.

18.34.8 lim
α→∞

P
(α,a−α−2)
n (1 + αx)

P
(α,a−α−2)
n (1)

= yn(x; a).

For uniform asymptotic expansions of yn(x; a) as
n → ∞ in terms of Airy functions (§9.2) see Wong
and Zhang (1997) and Dunster (2001c). For uniform
asymptotic expansions in terms of Hermite polynomials
see López and Temme (1999b).

For further information on Bessel polynomials see
§10.49(ii).

18.35 Pollaczek Polynomials

18.35(i) Definition and Hypergeometric
Representation

18.35.1 P
(λ)
−1 (x; a, b) = 0, P

(λ)
0 (x; a, b) = 1,

and

18.35.2

(n+ 1)P (λ)
n+1(x; a, b) = 2((n+ λ+ a)x+ b)P (λ)

n (x; a, b)

− (n+ 2λ− 1)P (λ)
n−1(x; a, b),
n = 0, 1, . . . .

Next, let

18.35.3 τa,b(θ) =
a cos θ + b

sin θ
, 0 < θ < π.

Then

18.35.4

P (λ)
n (cos θ; a, b)

=
(λ− iτa,b(θ))n

n!
einθ

× 2F1

(
−n, λ+ iτa,b(θ)

−n− λ+ 1 + iτa,b(θ)
; e−2iθ

)
=

n∑
`=0

(λ+ iτa,b(θ))`
`!

(λ− iτa,b(θ))n−`
(n− `)!

ei(n−2`)θ.

For the hypergeometric function 2F1 see §§15.1, 15.2(i).
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18.35(ii) Orthogonality

18.35.5∫ 1

−1

P (λ)
n (x; a, b)P (λ)

m (x; a, b)w(λ)(x; a, b) dx = 0,

n 6= m,

where

18.35.6

w(λ)(cos θ; a, b) = π−1 22λ−1 e(2θ−π) τa,b(θ)

× (sin θ)2λ−1 |Γ(λ+ iτa,b(θ))|2 ,
a ≥ b ≥ −a, λ > − 1

2 , 0 < θ < π.

18.35(iii) Other Properties

18.35.7

(1− zeiθ)−λ+iτa,b(θ)(1− ze−iθ)−λ−iτa,b(θ)

=
∞∑
n=0

P (λ)
n (cos θ; a, b)zn, |z| < 1, 0 < θ < π.

18.35.8 P (λ)
n (x; 0, 0) = C(λ)

n (x),

18.35.9 P (λ)
n (cosφ; 0, x sinφ) = P (λ)

n (x;φ).

For the polynomials C(λ)
n (x) and P

(λ)
n (x;φ) see §§18.3

and 18.19, respectively.
See Bo and Wong (1996) for an asymptotic ex-

pansion of P ( 1
2 )

n

(
cos (n−

1
2 θ); a, b

)
as n → ∞, with a

and b fixed. This expansion is in terms of the Airy
function Ai(x) and its derivative (§9.2), and is uni-
form in any compact θ-interval in (0,∞). Also in-
cluded is an asymptotic approximation for the zeros of
P

( 1
2 )

n

(
cos (n−

1
2 θ); a, b

)
.

18.36 Miscellaneous Polynomials

18.36(i) Jacobi-Type Polynomials

These are OP’s on the interval (−1, 1) with respect to
an orthogonality measure obtained by adding constant
multiples of “Dirac delta weights” at −1 and 1 to the
weight function for the Jacobi polynomials. For further
information see Koornwinder (1984a) and Kwon et al.
(2006).

Similar OP’s can also be constructed for the La-
guerre polynomials; see Koornwinder (1984b, (4.8)).

18.36(ii) Sobolev OP’s

Sobolev OP’s are orthogonal with respect to an in-
ner product involving derivatives. For an introduc-
tory survey to this subject, see Marcellán et al. (1993).
Other relevant references include Iserles et al. (1991)
and Koekoek et al. (1998).

18.36(iii) Multiple OP’s

These are polynomials in one variable that are orthog-
onal with respect to a number of different measures.
They are related to Hermite-Padé approximation and
can be used for proofs of irrationality or transcendence
of interesting numbers. For further information see Is-
mail (2005, Chapter 23).

18.36(iv) Orthogonal Matrix Polynomials

These are matrix-valued polynomials that are orthogo-
nal with respect to a square matrix of measures on the
real line. Classes of such polynomials have been found
that generalize the classical OP’s in the sense that they
satisfy second-order matrix differential equations with
coefficients independent of the degree. For further in-
formation see Durán and Grünbaum (2005).

18.37 Classical OP’s in Two or More
Variables

18.37(i) Disk Polynomials

Definition in Terms of Jacobi Polynomials

18.37.1

R(α)
m,n

(
reiθ

)
= ei(m−n)θr|m−n|

P
(α,|m−n|)
min(m,n)

(
2r2 − 1

)
P

(α,|m−n|)
min(m,n) (1)

,

r ≥ 0, θ ∈ R, α > −1.

Orthogonality

18.37.2∫∫
x2+y2<1

R(α)
m,n(x+ iy)R(α)

j,` (x− iy) (1− x2 − y2)α dx dy

= 0, m 6= j and/or n 6= `.

Equivalent Definition

The following three conditions, taken together, deter-
mine R(α)

m,n(z) uniquely:

18.37.3 R(α)
m,n(z) =

min(m,n)∑
j=0

cjz
m−jzn−j ,

where cj are real or complex constants, with c0 6= 0;

18.37.4

∫∫
x2+y2<1

R(α)
m,n(x+ iy)(x− iy)m−j(x+ iy)n−j

× (1− x2 − y2)α dx dy = 0,
j = 1, 2, . . . ,min(m,n);

18.37.5 R(α)
m,n(1) = 1.
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Explicit Representation

18.37.6

R(α)
m,n(z) =

min(m,n)∑
j=0

(−1)j(α+ 1)m+n−j(−m)j(−n)j
(α+ 1)m(α+ 1)nj!

× zm−j zn−j .

18.37(ii) OP’s on the Triangle

Definition in Terms of Jacobi Polynomials

18.37.7

Pα,β,γm,n (x, y) = P
(α,β+γ+2n+1)
m−n (2x− 1)

×xn P (β,γ)
n

(
2x−1y − 1

)
,

m ≥ n ≥ 0, α, β, γ > −1.

Orthogonality

18.37.8

∫∫
0<y<x<1

Pα,β,γm,n (x, y)Pα,β,γj,` (x, y)

× (1− x)α(x− y)βyγ dx dy = 0,
m 6= j and/or n 6= `.

See Dunkl and Xu (2001, §2.3.3) for analogs of
(18.37.1) and (18.37.7) on a d-dimensional simplex.

18.37(iii) OP’s Associated with Root Systems

Orthogonal polynomials associated with root systems
are certain systems of trigonometric polynomials in sev-
eral variables, symmetric under a certain finite group
(Weyl group), and orthogonal on a torus. In one vari-
able they are essentially ultraspherical, Jacobi, continu-
ous q-ultraspherical, or Askey–Wilson polynomials. In
several variables they occur, for q = 1, as Jack polyno-
mials and also as Jacobi polynomials associated with root
systems; see Macdonald (1995, Chapter VI, §10), Stan-
ley (1989), Kuznetsov and Sahi (2006, Part 1), Heckman
(1991). For general q they occur as Macdonald polyno-
mials for root system An, as Macdonald polynomials for
general root systems, and as Macdonald-Koornwinder
polynomials; see Macdonald (1995, Chapter VI), Mac-
donald (2000, 2003), Koornwinder (1992).

Applications

18.38 Mathematical Applications

18.38(i) Classical OP’s: Numerical Analysis

Approximation Theory

The scaled Chebyshev polynomial 21−n Tn(x), n ≥ 1,
enjoys the “minimax” property on the interval [−1, 1],
that is, |21−n Tn(x)| has the least maximum value

among all monic polynomials of degree n. In conse-
quence, expansions of functions that are infinitely dif-
ferentiable on [−1, 1] in series of Chebyshev polynomi-
als usually converge extremely rapidly. For these results
and applications in approximation theory see §3.11(ii)
and Mason and Handscomb (2003, Chapter 3), Cheney
(1982, p. 108), and Rivlin (1969, p. 31).

Quadrature

Classical OP’s play a fundamental role in Gaussian
quadrature. If the nodes in a quadrature formula with
a positive weight function are chosen to be the zeros of
the nth degree OP with the same weight function, and
the interval of orthogonality is the same as the integra-
tion range, then the weights in the quadrature formula
can be chosen in such a way that the formula is exact
for all polynomials of degree not exceeding 2n− 1. See
§3.5(v).

Differential Equations

Linear ordinary differential equations can be solved di-
rectly in series of Chebyshev polynomials (or other
OP’s) by a method originated by Clenshaw (1957). This
process has been generalized to spectral methods for
solving partial differential equations. For further infor-
mation see Mason and Handscomb (2003, Chapters 10
and 11), Gottlieb and Orszag (1977, pp. 7–19), and Guo
(1998, pp. 120–151).

18.38(ii) Classical OP’s: Other Applications

Integrable Systems

The Toda equation provides an important model of a
completely integrable system. It has elegant structures,
including N -soliton solutions, Lax pairs, and Bäcklund
transformations. While the Toda equation is an impor-
tant model of nonlinear systems, the special functions
of mathematical physics are usually regarded as solu-
tions to linear equations. However, by using Hirota’s
technique of bilinear formalism of soliton theory, Naka-
mura (1996) shows that a wide class of exact solutions
of the Toda equation can be expressed in terms of var-
ious special functions, and in particular classical OP’s.
For instance,

18.38.1 Vn(x) = 2nHn+1(x)Hn−1(x)
/

(Hn(x))2 ,

with Hn(x) as in §18.3, satisfies the Toda equation

18.38.2
(d2
/
dx2 ) lnVn(x) = Vn+1(x) + Vn−1(x)

− 2Vn(x), n = 1, 2, . . . .

Complex Function Theory

The Askey–Gasper inequality
18.38.3
n∑

m=0

P (α,0)
m (x) ≥ 0, −1 ≤ x ≤ 1, α > −1, n = 0, 1, . . . ,
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was used in de Branges’ proof of the long-standing
Bieberbach conjecture concerning univalent functions
on the unit disk in the complex plane. See de Branges
(1985).

Zonal Spherical Harmonics

Ultraspherical polynomials are zonal spherical harmon-
ics. As such they have many applications. See, for
example, Andrews et al. (1999, Chapter 9). See also
§14.30.

Random Matrix Theory

Hermite polynomials (and their Freud-weight analogs
(§18.32)) play an important role in random matrix the-
ory. See Fyodorov (2005) and Deift (1998, Chapter 5).

Riemann–Hilbert Problems

See Deift (1998, Chapter 7) and Ismail (2005, Chap-
ter 22).

Radon Transform

See Deans (1983, Chapters 4, 7).

18.38(iii) Other OP’s

Group Representations

For group-theoretic interpretations of OP’s see Vilenkin
and Klimyk (1991, 1992, 1993).

Coding Theory

For applications of Krawtchouk polynomi-
als Kn(x; p,N) and q-Racah polynomials
Rn(x;α, β, γ, δ | q) to coding theory see Bannai (1990,
pp. 38–43), Leonard (1982), and Chihara (1987).

18.39 Physical Applications

18.39(i) Quantum Mechanics

Classical OP’s appear when the time-dependent
Schrödinger equation is solved by separation of vari-
ables. Consider, for example, the one-dimensional form
of this equation for a particle of mass m with potential
energy V (x):

18.39.1

(
−h̄2

2m
∂2

∂x2 + V (x)
)
ψ(x, t) = ih̄

∂

∂t
ψ(x, t),

where h̄ is the reduced Planck’s constant. On substitut-
ing ψ(x, t) = η(x)ζ(t), we obtain two ordinary differen-
tial equations, each of which involve the same constant
E. The equation for η(x) is

18.39.2
d2η

dx2 +
2m
h̄2 (E − V (x)) η = 0.

For a harmonic oscillator, the potential energy is given
by

18.39.3 V (x) = 1
2mω

2x2,

where ω is the angular frequency. For (18.39.2) to have a
nontrivial bounded solution in the interval −∞ < x <
∞, the constant E (the total energy of the particle)
must satisfy

18.39.4 E = En =
(
n+ 1

2

)
h̄ω, n = 0, 1, 2, . . . .

The corresponding eigenfunctions are

18.39.5 ηn(x) = π−
1
4 2−

1
2n(n! b)−

1
2 Hn(x/b)e−x

2/2b2 ,

where b = (h̄/mω)1/2, and Hn is the Hermite polyno-
mial. For further details, see Seaborn (1991, p. 224) or
Nikiforov and Uvarov (1988, pp. 71-72).

A second example is provided by the three-
dimensional time-independent Schrödinger equation

18.39.6 ∇2ψ +
2m
h̄2 (E − V (x))ψ = 0,

when this is solved by separation of variables in spher-
ical coordinates (§1.5(ii)). The eigenfunctions of one of
the separated ordinary differential equations are Legen-
dre polynomials. See Seaborn (1991, pp. 69-75).

For a third example, one in which the eigenfunctions
are Laguerre polynomials, see Seaborn (1991, pp. 87-93)
and Nikiforov and Uvarov (1988, pp. 76-80 and 320-
323).

18.39(ii) Other Applications

For applications of Legendre polynomials in fluid dy-
namics to study the flow around the outside of a puff of
hot gas rising through the air, see Paterson (1983).

For applications and an extension of the Szegö–
Szász inequality (18.14.20) for Legendre polynomials
(α = β = 0) to obtain global bounds on the varia-
tion of the phase of an elastic scattering amplitude, see
Cornille and Martin (1972, 1974).

For physical applications of q-Laguerre polynomials
see §17.17.

For interpretations of zeros of classical OP’s as
equilibrium positions of charges in electrostatic prob-
lems (assuming logarithmic interaction), see Ismail
(2000a,b).

Computation

18.40 Methods of Computation

Orthogonal polynomials can be computed from their ex-
plicit polynomial form by Horner’s scheme (§1.11(i)).
Usually, however, other methods are more efficient, es-
pecially the numerical solution of difference equations
(§3.6) and the application of uniform asymptotic ex-
pansions (when available) for OP’s of large degree.
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However, for applications in which the OP’s appear
only as terms in series expansions (compare §18.18(i))
the need to compute them can be avoided altogether
by use instead of Clenshaw’s algorithm (§3.11(ii)) and
its straightforward generalization to OP’s other than
Chebyshev. For further information see Clenshaw
(1955), Gautschi (2004, §§2.1, 8.1), and Mason and
Handscomb (2003, §2.4).

18.41 Tables

18.41(i) Polynomials

For Pn(x) (= Pn(x)) see §14.33.
Abramowitz and Stegun (1964, Tables 22.4, 22.6,

22.11, and 22.13) tabulates Tn(x), Un(x), Ln(x), and
Hn(x) for n = 0(1)12. The ranges of x are 0.2(.2)1
for Tn(x) and Un(x), and 0.5, 1, 3, 5, 10 for Ln(x) and
Hn(x). The precision is 10D, except for Hn(x) which is
6-11S.

18.41(ii) Zeros

For Pn(x), Ln(x), and Hn(x) see §3.5(v). See also
Abramowitz and Stegun (1964, Tables 25.4, 25.9, and
25.10).

18.41(iii) Other Tables

For tables prior to 1961 see Fletcher et al. (1962) and
Lebedev and Fedorova (1960).

18.42 Software

See http://dlmf.nist.gov/18.42.
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§10.8(38)). For the first equation in (18.17.2) ap-
ply the convolution property of the Laplace trans-
form (§1.14(iii)) to (18.17.34) with α = 0. For
the second equation combine (18.9.23), (18.9.13),
and (18.6.1). For (18.17.3) and (18.17.4) use
(18.9.25) and (18.9.26). For (18.17.5) see Ismail
(2005, (9.6.2)). (18.17.6) is the case α = 0 of
(18.17.5). For (18.17.7), (18.17.8) see Durand
(1975). For (18.17.9) and (18.17.10) see Andrews
et al. (1999, Theorem 6.7.2). For (18.17.11)–
(18.17.15) see Askey and Fitch (1969). For
(18.17.16) use (18.5.5), integrate by parts n times,
expand e−iy(1−x) in a Maclaurin series, and inte-
grate term by term. For (18.17.17) use (18.5.5),
integrate repeatedly by parts, expand cos(xy) in
a Maclaurin series, and integrate term by term;
the proofs of (18.17.18) and (18.17.19) are simi-
lar. For (18.17.20) expand cos(xy) in a Maclau-
rin series, make the change of integration vari-
able 1 − 2x2 = t, apply (18.5.5), integrate by
parts n times, and use (10.8.3); the proof of
(18.17.21) is similar. For (18.17.22) see Strichartz
(1994, §7.6). For (18.17.23) use (18.12.16) and
the fact that the Fourier transform of e−

1
2x
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is

e−
1
2y
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(18.17.28) are similar, except that in the case
of (18.17.24), (18.12.15) replaces (18.12.16). For
(18.17.25) use (18.18.23); similarly for (18.17.26).
For (18.17.29) take the inverse Fourier transform
and apply (18.17.25). For (18.17.30) consider the
Fourier transform of this function instead of the
cosine transform, and replace L(n− 1

2 )
n

(
1
2x

2
)

by its
explicit form (18.5.12); then integrate term by
term and rearrange the the consequential finite
double sum into a single sum. For (18.17.31)
use (18.5.5) and then integrate by parts; simi-
larly for (18.17.32). For (18.17.33) expand the
exponential in the integral as a power series in z
and interchange integration and summation. The
resulting integral can be evaluated by consider-
ing the term ` = 0 in(18.18.14). (18.17.33) may
also be verified by applying Kummer’s transfor-

mation (13.2.39) to (18.17.16). (18.17.34) follows
by substituting (18.5.12) into the integrand and
performing termwise integration. (18.17.35) fol-
lows by use of (18.5.5) and integration by parts.
For (18.17.36) use (18.5.7) and apply (16.4.3). For
(18.17.37) use (18.5.5) and integrate by parts n
times. For (18.17.38) use the first equality in
(18.5.10), with λ = 1

2 and n replaced by 2n, in-
tegrate term by term, then apply (16.4.3); the
proof of (18.17.39) is similar. For (18.17.40) use
(18.5.12), integrate term by term, then apply
(15.8.6). For (18.17.41) use (18.5.13) and inte-
grate term by term. (18.17.42) and (18.17.43)
follow from the case α = β = ± 1

2 of Szegö
(1975, Theorem 4.61.2), where the hypergeomet-
ric function on the right-hand side is rewritten as
in Erdélyi et al. (1953b, 19.8(19)). For (18.17.44)
see Tuck (1964). (18.17.46) is obtained from
(18.17.9) for α = β = 0, µ = 1

2 , together with
(18.7.5), (18.7.3), and the second row of Table
18.6.1. (18.17.45) is obtained from (18.17.46)
by symmetry; compare Rows 5 and 9 of Table
18.6.1. (18.17.47) and (18.17.48) follow by use
of (18.17.34) and (18.17.35). For (18.17.49) see
Andrews et al. (1999, p. 328).

§18.18 For (18.18.2) see Szegö (1975, Theorem 9.1.2
and the Remarks on p. 248). For (18.18.3)–
(18.18.7) see Lebedev (1965, pp. 68–71 and 88–
89) and Nikiforov and Uvarov (1988, pp. 21 and
59). For (18.18.8) see Carlson (1971). (18.18.9)
is the case α = 0 of (18.18.8). (18.18.10) fol-
lows from (18.12.13). (18.18.11) follows from
(18.12.15). (18.18.12) follows by computing∫∞

0
L

(α)
n (λx)L(α)

` (x)e−xxα dx with use of the Ro-
drigues formula (Table 18.5.1), integration by
parts, and (18.5.12). (18.18.13) follows from
(18.18.12) for α = ± 1

2 by (18.7.19), (18.7.20).
For (18.18.14) see Andrews et al. (1999, The-
orem 7.1.3). For (18.18.15) see Askey (1974).
For (18.18.16) see Andrews et al. (1999, Theo-
rem 7.1.4′). (18.18.17) follows from (18.18.16),
(18.6.4), and the fourth row of Table 18.6.1.
(18.18.18) follows from (18.12.13). (18.18.19) fol-
lows from (18.18.12) by dividing both sides by λn

and letting λ→∞. (18.18.20) is the case β = ± 1
2

of (18.18.19) in view of (18.7.19), (18.7.20). For
(18.18.21)–(18.18.23) see Andrews et al. (1999,
(5.1.6), Theorems 6.8.2 and 6.8.1 and Remarks
6.8.2 and 6.8.1). For (18.18.25), (18.18.26) see
Koornwinder (1974). For (18.18.27), (18.18.28)
see Andrews et al. (1999, (6.2.25), (6.1.13)). For
the positivity of the Poisson kernels see Askey
(1975, p. 16). (18.18.29) follows from (18.12.4).
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(18.18.30) follows from (18.12.4) and (18.12.5).
(18.18.31) is the limiting case of (18.18.30) as
λ→ 0. Each of the formulas (18.18.32)–(18.18.35)
is equivalent to a difference formula together with
a trivial n = 0 case, and each difference for-
mula can be rewritten via (18.5.1), (18.5.2) as a
well-known trigonometric identity. (18.18.36) is
the special case λ = µ = 1

2 of (18.18.29). For
(18.18.37) see Szegö (1975, (5.1.13)). (18.18.38)
follows from (18.12.13), and is the special case
r = 2 of (18.18.10). For (18.18.39) see Szegö
(1975, (5.5.11)). (18.18.40) is the special case
α = − 1

2 of (18.18.38) in view of (18.7.19).

§18.19 For Table 18.19.1 see Ismail (2005, (6.2.4),
(6.2.35), (6.1.4), (6.1.21)). For Table 18.19.2,
Rows 2, 4, see Ismail (2005, (6.2.7), (6.1.7));
Row 3 follows from (18.20.6); Row 5 follows
from (18.20.8). For (18.19.1)–(18.19.4) see Askey
(1985, (4), (5)). (18.19.5) follows from (18.20.9).
For (18.19.6)–(18.19.9) see Ismail (2005, (5.9.8),
(5.9.9)). The formula for kn in (18.19.9) follows
from (18.20.10).

§18.20 For (18.20.2) see Karlin and McGregor (1961,
(1.8)). For Table 18.20.1, Rows 2, 3, see Is-
mail (2005, (6.2.42), (6.1.17)); for Row 4 see Chi-
hara (1978, Chapter V, (3.2)). (18.20.3) follows
by iteration of (18.22.28). (18.20.4) follows by
iteration of (18.22.30). For (18.20.5)–(18.20.8)
and (18.20.10) see Ismail (2005, (6.2.3), (6.2.34),
(6.1.3), (6.1.20), (5.9.5)). For (18.20.9) see Askey
(1985).

§18.21 For (18.21.3), (18.21.5), (18.21.7), (18.21.8)
see Ismail (2005, §6.2, unnumbered formula af-
ter (6.2.34), also (6.2.17), (6.1.19), (6.1.18)). For
(18.21.1) see Karlin and McGregor (1961, (1.19)).
The three identities in (18.21.2) follow from
(18.20.6), (18.20.7), (18.20.8). (18.21.4) follows
from (18.20.5) and (18.20.7). (18.21.6) follows
from (18.20.6) and (18.20.8). (18.21.9) follows
from (18.22.2), Row 4 in Table 18.22.1, (18.9.1),
and Row 10 in Table 18.9.1. (18.21.10) follows
from (18.20.9) and (18.20.10). For (18.21.11)
see Koornwinder (1989, (2.6)). (18.21.12) follows
from (18.20.10) and (18.5.12). For Figure 18.21.1
see Askey and Wilson (1985, p. 46), together with
correction in Askey (1985).

§18.22 For (18.22.1)–(18.22.3) see Ismail (2005, (6.2.8)
and (6.2.9)). For Table 18.22.1 see Ismail
(2005, (6.2.36), (6.1.5), and (6.1.25)). (18.22.4)–
(18.22.6) is a limiting case of Andrews et al.
(1999, (3.8.2)), in view of (18.26.6). For (18.22.7)–
(18.22.8) see Ismail (2005, (5.9.1)). For (18.22.9)–

(18.22.11) see Ismail (2005, (6.2.16)). For Ta-
ble 18.22.2, Rows 2 and 3, see Ismail (2005,
(6.2.38), (6.1.15)); Row 4 follows from Ta-
ble 18.22.1, Row 4, and the third identity in
(18.21.2). (18.22.13)–(18.22.15) is a limiting case
of Koekoek and Swarttouw (1998, (1.1.6)) in view
of (18.26.6). Koekoek and Swarttouw (1998,
(1.1.6)) is a limiting case of Askey and Wil-
son (1985, (5.7)) in view of Koekoek and Swart-
touw (1998, (5.1.1)). (18.22.16)–(18.22.17) fol-
low from (18.22.14) in view of (18.21.10). For
(18.22.19)–(18.22.25) see Ismail (2005, (6.2.5),
(6.2.13), (6.2.39), (6.2.40), (6.1.13), §6.1, unnum-
bered formula following (6.1.15), also (6.1.23)).
(18.22.26) follows from (18.22.24) and (18.21.7).
(18.22.27) follows from (18.20.9). (18.22.28) fol-
lows from (18.22.14) and (18.22.27). (18.22.29)
follows from (18.20.10). (18.22.30) follows from
(18.22.28) in view of (18.21.10).

§18.23 For (18.23.3)–(18.23.5), (18.23.7) see Is-
mail (2005, (6.2.43), (6.1.8), (6.1.22), (5.9.3)).
(18.23.1) and (18.23.2) follow by expanding the
factors on the left as power series in z, and sub-
stituting (18.20.5) on the right. (18.23.6) is a lim-
iting case of (18.26.18) via (18.26.6).

§18.25 For Table 18.25.1, Rows 2, 3, 4, see Wilson
(1980); for Row 5 see Ismail (2005, (6.2.20)).
(18.25.1) follows from (18.25.11). For (18.25.3)–
(18.25.5) see Wilson (1980) and Andrews et al.
(1999, (3.8.3)). For (18.25.6)–(18.25.8) see Wil-
son (1980). For (18.25.10)–(18.25.12) see Wilson
(1980). For (18.25.13)–(18.25.15) see Ismail (2005,
(6.2.20)). Table 18.25.2 follows from §18.26(i).

§18.26 For (18.26.1) see Andrews et al. (1999, Def-
inition 3.8.1). For (18.26.2) and (18.26.3) see
Wilson (1980). For (18.26.4) see Ismail (2005,
(6.2.19)). For (18.26.5) and (18.26.7) see Wil-
son (1980). (18.26.6) follows from (18.26.1) and
(18.20.9). (18.26.8) follows from (18.26.2) and
(18.20.10). (18.26.9) follows from (18.26.3) and
(18.26.4). (18.26.10) follows from (18.26.3) and
(18.20.5). For (18.26.11) see Karlin and McGregor
(1961, (1.21)). (18.26.12), (18.26.13) follow from
(18.26.4) and (18.20.7). (18.26.14)–(18.26.17) fol-
low from §18.26(i). For (18.26.18) see Ismail et al.
(1990, (6.1)). (18.26.19) follows by expanding
both factors on the left as power series in z, and
substituting (18.26.2) on the right. (18.26.20) fol-
lows from (18.26.18), (18.26.1), (18.26.3). For
(18.26.21) see Ismail (2005, (6.2.31)).

§18.27 For (18.27.3), (18.27.4) see Gasper and Rah-
man (2004, (7.2.21), (7.2.22)) and Ismail (2005,
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(18.5.1), (18.5.2)). For (18.27.8)–(18.27.11) see
Gasper and Rahman (2004, (7.3.10), (7.3.12))
and Ismail (2005, (18.4.7), (18.4.14)). For
(18.27.14) see Gasper and Rahman (2004, (7.3.1),
(7.3.3)). For (18.27.16), (18.27.17) see Ismail
(2005, (21.8.2), (21.8.4)) and Moak (1981, Theo-
rem 2). For (18.27.18)–(18.27.20) see Ismail (2005,
(21.8.3), (21.8.46)). For (18.27.21)–(18.27.24) see
Al-Salam and Carlitz (1965).

§18.28 For (18.28.1)–(18.28.6) see Askey and Wil-
son (1985), Gasper and Rahman (2004, (7.5.2),
(7.5.15), (7.5.21)), Ismail (2005, (15.2.4),
(15.2.5)). For (18.28.7), (18.28.8) see Ismail
(2005, (15.1.5), (15.1.6), (15.1.11)). For (18.28.9)–
(18.28.12) see Askey and Ismail (1984, Chapter 3).
For (18.28.13)–(18.28.15) see Gasper and Rahman
(2004, (7.4.2), (7.4.14)–(7.4.16)) and Ismail (2005,
(13.2.3)–(13.2.5), (13.2.11)). For (18.28.16)–
(18.28.18) see Ismail (2005, (13.1.7), (13.1.11),

(21.2.1), (21.2.5)). For (18.28.19), (18.28.20) see
Gasper and Rahman (2004, (7.2.11)) and Ismail
(2005, (15.6.1), (15.6.7)).

§18.30 For (18.30.5) see Wimp (1987, Theorem 1).
(18.30.7) is mentioned in Chihara (1978, Chap-
ter VI, (12.6)), and proved in Barrucand and Dick-
inson (1968).

§18.33 For (18.33.1), (18.33.4), (18.33.8), and (18.33.9)
see Szegö (1975, (11.1.8), (11.4.6), (11.4.7),
(11.5.2)). (18.33.6) follows from (18.33.4),
(18.33.5). (18.33.10), (18.33.11) follow from
(18.33.8), (18.33.9). For (18.33.13)–(18.33.16) see
Askey (1982) and Pastro (1985).

§18.34 Ismail (2005, Chapter 4).

§18.35 Ismail (2005, Chapter 5).

§18.37 Dunkl and Xu (2001, §2.4.3), Koornwinder
(1975c).
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Notation

19.1 Special Notation

(For other notation see pp. xiv and 873.)

l,m, n nonnegative integers.
φ real or complex argument (or amplitude).
k real or complex modulus.
k′ complementary real or complex modulus,

k2 + k′
2 = 1.

α2 real or complex parameter.
B(a, b) beta function (§5.12).

All square roots have their principal values. All
derivatives are denoted by differentials, not by primes.

The first set of main functions treated in this chapter
are Legendre’s complete integrals

19.1.1 K(k), E(k), Π
(
α2, k

)
,

of the first, second, and third kinds, respectively, and
Legendre’s incomplete integrals

19.1.2 F (φ, k), E(φ, k), Π
(
φ, α2, k

)
,

of the first, second, and third kinds, respectively. This
notation follows Byrd and Friedman (1971, 110). We
use also the function D(φ, k), introduced by Jahnke
et al. (1966, p. 43). The functions (19.1.1) and (19.1.2)
are used in Erdélyi et al. (1953b, Chapter 13), except
that Π

(
α2, k

)
and Π

(
φ, α2, k

)
are denoted by Π1(ν, k)

and Π(φ, ν, k), respectively, where ν = −α2.
In Abramowitz and Stegun (1964, Chapter 17) the

functions (19.1.1) and (19.1.2) are denoted, in order, by
K(α), E(α), Π(n\α), F (φ\α), E(φ\α), and Π(n;φ\α),
where α = arcsin k and n is the α2 (not related to k) in
(19.1.1) and (19.1.2). Also, frequently in this reference α
is replaced by m and \α by |m, where m = k2. However,
it should be noted that in Chapter 8 of Abramowitz and
Stegun (1964) the notation used for elliptic integrals dif-
fers from Chapter 17 and is consistent with that used in
the present chapter and the rest of the NIST Handbook
and DLMF.

The second set of main functions treated in this
chapter is

19.1.3

RC(x, y) , RF (x, y, z) , RG(x, y, z) ,
RJ(x, y, z, p) , RD(x, y, z) ,
R−a(b1, b2, . . . , bn; z1, z2, . . . , zn).

RF (x, y, z), RG(x, y, z), and RJ(x, y, z, p) are the sym-
metric (in x, y, and z) integrals of the first, second, and
third kinds; they are complete if exactly one of x, y, and
z is identically 0.

R−a(b1, b2, . . . , bn; z1, z2, . . . , zn) is a multivariate
hypergeometric function that includes all the functions
in (19.1.3).

A third set of functions, introduced by Bulirsch
(1965a,b, 1969a), is

19.1.4
el1(x, kc), el2(x, kc, a, b),
el3(x, kc, p), cel(kc, p, a, b).

The first three functions are incomplete integrals of the
first, second, and third kinds, and the cel function in-
cludes complete integrals of all three kinds.

Legendre’s Integrals

19.2 Definitions

19.2(i) General Elliptic Integrals

Let s2(t) be a cubic or quartic polynomial in t with sim-
ple zeros, and let r(s, t) be a rational function of s and
t containing at least one odd power of s. Then

19.2.1

∫
r(s, t) dt

is called an elliptic integral. Because s2 is a polynomial,
we have

19.2.2 r(s, t) =
(p1 + p2s)(p3 − p4s)s
(p3 + p4s)(p3 − p4s)s

=
ρ

s
+ σ,

where pj is a polynomial in t while ρ and σ are rational
functions of t. Thus the elliptic part of (19.2.1) is

19.2.3

∫
ρ(t)
s(t)

dt.

19.2(ii) Legendre’s Integrals

Assume 1 − sin2 φ ∈ C\(−∞, 0] and 1 − k2 sin2 φ ∈
C\(−∞, 0], except that one of them may be 0, and
1− α2 sin2 φ ∈ C\{0}. Then

19.2.4

F (φ, k) =
∫ φ

0

dθ√
1− k2 sin2 θ

=
∫ sinφ

0

dt√
1− t2

√
1− k2t2

,

19.2.5

E(φ, k) =
∫ φ

0

√
1− k2 sin2 θ dθ

=
∫ sinφ

0

√
1− k2t2√
1− t2

dt.

19.2.6

D(φ, k) =
∫ φ

0

sin2 θ dθ√
1− k2 sin2 θ

=
∫ sinφ

0

t2 dt√
1− t2

√
1− k2t2

= (F (φ, k)− E(φ, k))/k2.
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19.2.7

Π
(
φ, α2, k

)
=
∫ φ

0

dθ√
1− k2 sin2 θ(1− α2 sin2 θ)

=
∫ sinφ

0

dt√
1− t2

√
1− k2t2(1− α2t2)

.

The paths of integration are the line segments connect-
ing the limits of integration. The integral for E(φ, k) is
well defined if k2 = sin2 φ = 1, and the Cauchy principal
value (§1.4(v)) of Π

(
φ, α2, k

)
is taken if 1−α2 sin2 φ van-

ishes at an interior point of the integration path. Also,
if k2 and α2 are real, then Π

(
φ, α2, k

)
is called a circular

or hyperbolic case according as α2(α2 − k2)(α2 − 1) is
negative or positive. The circular and hyperbolic cases
alternate in the four intervals of the real line separated
by the points α2 = 0, k2, 1.

The cases with φ = π/2 are the complete integrals:

19.2.8

K(k) = F (π/2, k), E(k) = E(π/2, k),
D(k) = D(π/2, k) = (K(k)− E(k))/k2,

Π
(
α2, k

)
= Π

(
π/2, α2, k

)
,

19.2.9 K ′(k) = K(k′), E′(k) = E(k′), k′ =
√

1− k2.

If m is an integer, then

19.2.10

F (mπ ± φ, k) = 2mK(k)± F (φ, k),
E(mπ ± φ, k) = 2mE(k)± E(φ, k),
D(mπ ± φ, k) = 2mD(k)±D(φ, k).

19.2(iii) Bulirsch’s Integrals

Bulirsch’s integrals are linear combinations of Legen-
dre’s integrals that are chosen to facilitate computa-
tional application of Bartky’s transformation (Bartky
(1938)). Two are defined by

19.2.11

cel(kc, p, a, b)

=
∫ π/2

0

a cos2 θ + b sin2 θ

cos2 θ + p sin2 θ

dθ√
cos2 θ + k2

c sin2 θ
,

19.2.12

el2(x, kc, a, b)

=
∫ arctan x

0

a+ b tan2 θ√
(1 + tan2 θ)(1 + k2

c tan2 θ)
dθ.

Here a, b, p are real parameters, and kc and x are real or
complex variables, with p 6= 0, kc 6= 0. If −∞ < p < 0,
then the integral in (19.2.11) is a Cauchy principal value.

With

19.2.13 kc = k′, p = 1− α2, x = tanφ,
special cases include
19.2.14

K(k) = cel(kc, 1, 1, 1),
E(k) = cel

(
kc, 1, 1, k2

c

)
, D(k) = cel(kc, 1, 0, 1),

(E(k)− k′2K(k))/k2 = cel(kc, 1, 1, 0),
Π
(
α2, k

)
= cel(kc, p, 1, 1),

and

19.2.15

F (φ, k) = el1(x, kc) = el2(x, kc, 1, 1),

E(φ, k) = el2
(
x, kc, 1, k2

c

)
,

D(φ, k) = el2(x, kc, 0, 1).

The integrals are complete if x =∞. If 1 < k ≤ 1/ sinφ,
then kc is pure imaginary.

Lastly, corresponding to Legendre’s incomplete inte-
gral of the third kind we have

19.2.16

el3(x, kc, p)

=
∫ arctan x

0

dθ

(cos2 θ + p sin2 θ)
√

cos2 θ + k2
c sin2 θ

= Π(arctanx, 1− p, k), x2 6= −1/p.

19.2(iv) RC(x, y)

Let x ∈ C\(−∞, 0) and y ∈ C\{0}. We define

19.2.17 RC(x, y) =
1
2

∫ ∞
0

dt√
t+ x(t+ y)

,

where the Cauchy principal value is taken if y < 0. For-
mulas involving Π

(
φ, α2, k

)
that are customarily differ-

ent for circular cases, ordinary hyperbolic cases, and
(hyperbolic) Cauchy principal values, are united in a
single formula by using RC(x, y).

In (19.2.18)–(19.2.22) the inverse trigonometric and
hyperbolic functions assume their principal values
(§§4.23(ii) and 4.37(ii)). When x and y are positive,
RC(x, y) is an inverse circular function if x < y and an
inverse hyperbolic function (or logarithm) if x > y:

19.2.18

RC(x, y) =
1√
y − x

arctan

√
y − x
x

=
1√
y − x

arccos
√
x/y, 0 ≤ x < y,

19.2.19

RC(x, y) =
1√
x− y

arctanh

√
x− y
x

=
1√
x− y

ln
√
x+
√
x− y

√
y

, 0 < y < x.

The Cauchy principal value is hyperbolic:

19.2.20

RC(x, y) =
√

x

x− y
RC(x− y,−y)

=
1√
x− y

arctanh
√

x

x− y

=
1√
x− y

ln
√
x+
√
x− y√
−y

, y < 0 ≤ x.
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If the line segment with endpoints x and y lies in
C\(−∞, 0], then

19.2.21 RC(x, y) =
∫ 1

0

(v2x+ (1− v2)y)−1/2 dv,

19.2.22

RC(x, y) =
2
π

∫ π/2

0

RC
(
y, x cos2 θ + y sin2 θ

)
dθ.

19.3 Graphics

19.3(i) Real Variables

See Figures 19.3.1–19.3.6 for complete and incomplete
Legendre’s elliptic integrals.

Figure 19.3.1: K(k) and E(k) as functions of k2 for
−2 ≤ k2 ≤ 1. Graphs of K ′(k) and E′(k) are the mirror
images in the vertical line k2 = 1

2 .

Figure 19.3.2: RC(x, 1) and the Cauchy principal value
of RC(x,−1) for 0 ≤ x ≤ 5. Both functions are
asymptotic to ln(4x)/

√
4x as x→∞; see (19.2.19) and

(19.2.20). Note that RC(x,±y) = y−1/2RC(x/y,±1),
y > 0.

Figure 19.3.3: F (φ, k) as a function of k2 and sin2 φ for
−1 ≤ k2 ≤ 2, 0 ≤ sin2 φ ≤ 1. If sin2 φ = 1 (≥ k2), then
the function reduces to K(k), becoming infinite when
k2 = 1. If sin2 φ = 1/k2 (< 1), then it has the value
K(1/k)/k: put c = k2 in (19.25.5) and use (19.25.1).

Figure 19.3.4: E(φ, k) as a function of k2 and sin2 φ
for −1 ≤ k2 ≤ 2, 0 ≤ sin2 φ ≤ 1. If sin2 φ = 1
(≥ k2), then the function reduces to E(k), with value 1
at k2 = 1. If sin2 φ = 1/k2 (< 1), then it has the value
k E(1/k) + (k′2/k)K(1/k), with limit 1 as k2 → 1+:
put c = k2 in (19.25.7) and use (19.25.1).



19.4 Derivatives and Differential Equations 489

Figure 19.3.5: Π
(
α2, k

)
as a function of k2 and α2 for

−2 ≤ k2 < 1, −2 ≤ α2 ≤ 2. Cauchy principal val-
ues are shown when α2 > 1. The function is un-
bounded as α2 → 1−, and also (with the same sign
as 1 − α2) as k2 → 1−. As α2 → 1+ it has the limit
K(k)−(E(k)/k′2). If α2 = 0, then it reduces to K(k). If
k2 = 0, then it has the value 1

2π/
√

1− α2 when α2 < 1,
and 0 when α2 > 1. See §19.6(i).

Figure 19.3.6: Π(φ, 2, k) as a function of k2 and sin2 φ
for −1 ≤ k2 ≤ 3, 0 ≤ sin2 φ < 1. Cauchy princi-
pal values are shown when sin2 φ > 1

2 . The function
tends to +∞ as sin2 φ → 1

2 , except in the last case be-
low. If sin2 φ = 1 (> k2), then the function reduces to
Π(2, k) with Cauchy principal value K(k)− Π

(
1
2k

2, k
)
,

which tends to −∞ as k2 → 1−. See (19.6.5) and
(19.6.6). If sin2 φ = 1/k2 (< 1), then by (19.7.4) it
reduces to Π

(
2/k2, 1/k

)
/k, k2 6= 2, with Cauchy prin-

cipal value (K(1/k) − Π
(

1
2 , 1/k

)
)/k, 1 < k2 < 2, by

(19.6.5). Its value tends to −∞ as k2 → 1+ by (19.6.6),
and to the negative of the second lemniscate constant
(see (19.20.22)) as k2(= csc2 φ)→ 2−.

19.3(ii) Complex Variables

In Figures 19.3.7 and 19.3.8 for complete Legendre’s el-
liptic integrals with complex arguments, height corre-
sponds to the absolute value of the function and color
to the phase. See also p. xiv.

Figure 19.3.7: K(k) as a function of complex k2 for
−2 ≤ <(k2) ≤ 2, −2 ≤ =(k2) ≤ 2. There is a branch
cut where 1 < k2 <∞.

Figure 19.3.8: E(k) as a function of complex k2 for
−2 ≤ <(k2) ≤ 2, −2 ≤ =(k2) ≤ 2. There is a branch
cut where 1 < k2 <∞.

For further graphics, see http://dlmf.nist.gov/
19.3.ii.
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19.4 Derivatives and Differential Equations

19.4(i) Derivatives

19.4.1

dK(k)
dk

=
E(k)− k′2K(k)

kk′2
,

d(E(k)− k′2K(k))
dk

= kK(k),

19.4.2

dE(k)
dk

=
E(k)−K(k)

k
,

d(E(k)−K(k))
dk

= −k E(k)
k′2

,

19.4.3
d2E(k)
dk2 = −1

k

dK(k)
dk

=
k′

2
K(k)− E(k)
k2k′2

,

19.4.4
∂Π
(
α2, k

)
∂k

=
k

k′2(k2 − α2)
(E(k)− k′2 Π

(
α2, k

)
).

19.4.5

∂F (φ, k)
∂k

=
E(φ, k)− k′2 F (φ, k)

kk′2
− k sinφ cosφ

k′2
√

1− k2 sin2 φ
,

19.4.6
∂E(φ, k)

∂k
=
E(φ, k)− F (φ, k)

k
,

19.4.7

∂Π
(
φ, α2, k

)
∂k

=
k

k′2(k2 − α2)

(
E(φ, k)− k′2 Π

(
φ, α2, k

)
− k2 sinφ cosφ√

1− k2 sin2 φ

)
.

19.4(ii) Differential Equations

Let Dk = ∂/∂k . Then
19.4.8

(kk′2D2
k+(1−3k2)Dk−k)F (φ, k) =

−k sinφ cosφ
(1− k2 sin2 φ)3/2

,

19.4.9 (kk′2D2
k + k′

2
Dk + k)E(φ, k) =

k sinφ cosφ√
1− k2 sin2 φ

.

If φ = π/2, then these two equations become hyper-
geometric differential equations (15.10.1) for K(k) and
E(k). An analogous differential equation of third order
for Π

(
φ, α2, k

)
is given in Byrd and Friedman (1971,

118.03).

19.5 Maclaurin and Related Expansions

If |k| < 1 and |α| < 1, then
19.5.1

K(k) =
π

2

∞∑
m=0

(
1
2

)
m

(
1
2

)
m

m! m!
k2m =

π

2 2F1

(
1
2 ,

1
2 ; 1; k2

)
,

where 2F1 is the Gauss hypergeometric function (§§15.1
and 15.2(i)).
19.5.2

E(k) =
π

2

∞∑
m=0

(
− 1

2

)
m

(
1
2

)
m

m! m!
k2m =

π

2 2F1

(
− 1

2 ,
1
2 ; 1; k2

)
,

19.5.3

D(k) =
π

4

∞∑
m=0

(
3
2

)
m

(
1
2

)
m

(m+ 1)! m!
k2m =

π

4 2F1

(
3
2 ,

1
2 ; 2; k2

)
,

19.5.4
Π
(
α2, k

)
=
π

2

∞∑
n=0

(
1
2

)
n

n!

n∑
m=0

(
1
2

)
m

m!
k2mα2n−2m

=
π

2
F1

(
1
2 ; 1

2 , 1; 1; k2, α2
)
,

where F1(α;β, β′; γ;x, y) is an Appell function (§16.13).

For Jacobi’s nome q:

19.5.5

q = exp(−πK ′(k)/K(k)) = r+8r2 +84r3 +992r4 + · · · ,
r = 1

16k
2, 0 ≤ k ≤ 1.

Also,

19.5.6

q = λ+2λ5 +15λ9 +150λ13 +1707λ17 + · · · , 0 ≤ k ≤ 1,

where

19.5.7 λ = (1−
√
k′)/(2(1 +

√
k′)).

Coefficients of terms up to λ49 are given in Lee (1990),
along with tables of fractional errors in K(k) and E(k),
0.1 ≤ k2 ≤ 0.9999, obtained by using 12 different trun-
cations of (19.5.6) in (19.5.8) and (19.5.9).

19.5.8 K(k) =
π

2

(
1 + 2

∞∑
n=1

qn
2

)2
, |q| < 1,

19.5.9

E(k) = K(k) +
2π2

K(k)

∑∞
n=1(−1)nn2qn

2

1 + 2
∑∞
n=1(−1)nqn2 , |q| < 1.

An infinite series for lnK(k) is equivalent to the in-
finite product

19.5.10 K(k) =
π

2

∞∏
m=1

(1 + km),

where k0 = k and

19.5.11 km+1 =
1−

√
1− k2

m

1 +
√

1− k2
m

, m = 0, 1, . . . .

Series expansions of F (φ, k) and E(φ, k) are sur-
veyed and improved in Van de Vel (1969), and the case
of F (φ, k) is summarized in Gautschi (1975, §1.3.2).
For series expansions of Π

(
φ, α2, k

)
when |α2| < 1 see

Erdélyi et al. (1953b, §13.6(9)). See also Karp et al.
(2007).
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19.6 Special Cases

19.6(i) Complete Elliptic Integrals

19.6.1
K(0) = E(0) = K ′(1) = E′(1) = 1

2π,

K(1) = K ′(0) =∞, E(1) = E′(0) = 1.

19.6.2
Π
(
k2, k

)
= E(k)/k′2, k2 < 1,

Π(−k, k) = 1
4π(1 + k)−1 + 1

2 K(k), 0 ≤ k2 < 1.

19.6.3 Π
(
α2, 0

)
= π/(2

√
1− α2), Π(0, k) = K(k),

−∞ < α2 < 1.

19.6.4
Π
(
α2, k

)
→ +∞, α2 → 1−,

Π
(
α2, k

)
→∞ sign

(
1− α2

)
, k2 → 1−.

If 1 < α2 < ∞, then the Cauchy principal value
satisfies

19.6.5 Π
(
α2, k

)
= K(k)−Π

(
k2/α2, k

)
,

and

19.6.6

Π
(
α2, 0

)
= 0,

Π
(
α2, k

)
→ K(k)−

(
E(k)/k′2

)
, α2 → 1+,

Π
(
α2, k

)
→ −∞, k2 → 1−.

Exact values of K(k) and E(k) for various special
values of k are given in Byrd and Friedman (1971, 111.10
and 111.11) and Cooper et al. (2006).

19.6(ii) F (φ, k)

19.6.7
F (0, k) = 0, F (φ, 0) = φ, F

(
1
2π, 1

)
=∞,

F
(

1
2π, k

)
= K(k), lim

φ→0
F (φ, k)/φ = 1.

19.6.8 F (φ, 1) = (sinφ)RC
(
1, cos2 φ

)
= gd−1(φ).

For the inverse Gudermannian function gd−1(φ) see
§4.23(viii). Compare also (19.10.2).

19.6(iii) E(φ, k)

19.6.9
E(0, k) = 0, E(φ, 0) = φ, E

(
1
2π, 1

)
= 1,

E(φ, 1) = sinφ, E
(

1
2π, k

)
= E(k).

19.6.10 lim
φ→0

E(φ, k)/φ = 1.

19.6(iv) Π
(
φ, α2, k

)
Circular and hyperbolic cases, including Cauchy prin-
cipal values, are unified by using RC(x, y). Let c =
csc2 φ 6= α2 and ∆ =

√
1− k2 sin2 φ. Then

19.6.11

Π
(
0, α2, k

)
= 0, Π(φ, 0, 0) = φ, Π(φ, 1, 0) = tanφ.

19.6.12

Π
(
φ, α2, 0

)
= RC

(
c− 1, c− α2

)
,

Π
(
φ, α2, 1

)
=

1
1− α2

(
RC(c, c− 1)−α2RC

(
c, c− α2

))
,

Π(φ, 1, 1) = 1
2 (RC(c, c− 1) +

√
c(c− 1)−1).

19.6.13

Π(φ, 0, k) = F (φ, k),

Π
(
φ, k2, k

)
=

1
k′2

(
E(φ, k)− k2

∆
sinφ cosφ

)
,

Π(φ, 1, k) = F (φ, k)− 1
k′2

(E(φ, k)−∆ tanφ).

19.6.14

Π
(

1
2π, α

2, k
)

= Π
(
α2, k

)
, lim

φ→0
Π
(
φ, α2, k

)/
φ = 1.

For the Cauchy principal value of Π
(
φ, α2, k

)
when

α2 > c, see §19.7(iii).

19.6(v) RC(x, y)

19.6.15

RC(x, x) = x−1/2, RC(λx, λy) = λ−1/2RC(x, y),
RC(x, y)→ +∞, y → 0+ or y → 0−, x > 0,
RC(0, y) = 1

2πy
−1/2, |ph y| < π,

RC(0, y) = 0, y < 0.

19.7 Connection Formulas

19.7(i) Complete Integrals of the First and
Second Kinds

Legendre’s Relation

19.7.1 E(k)K ′(k) + E′(k)K(k)−K(k)K ′(k) = 1
2π.

Also,
19.7.2

K(ik/k′) = k′K(k), K(k′/ik) = kK(k′),
E(ik/k′) = (1/k′)E(k), E(k′/ik) = (1/k)E(k′).

19.7.3

K(1/k) = k(K(k)∓ iK(k′)),
K(1/k′) = k′(K(k′)± iK(k)),

E(1/k) = (1/k)
(
E(k)±i E(k′)−k′2K(k)∓ik2K(k′)

)
,

E(1/k′) = (1/k′)
(
E(k′)∓ i E(k)− k2K(k′)

± ik′2K(k)
)
,
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where upper signs apply if =k2 > 0 and lower signs if
=k2 < 0. This dichotomy of signs (missing in several
references) is due to Fettis (1970).

19.7(ii) Change of Modulus and Amplitude

Reciprocal-Modulus Transformation

19.7.4

F (φ, k1) = k F (β, k),

E(φ, k1) = (E(β, k)− k′2 F (β, k))/k,
Π
(
φ, α2, k1

)
= kΠ

(
β, k2α2, k

)
,

k1 = 1/k, sinβ = k1 sinφ ≤ 1.

Imaginary-Modulus Transformation

19.7.5

F (φ, ik) = κ′ F (θ, κ),

E(φ, ik) = (1/κ′)
(
E(θ, κ)− κ2 (sin θ cos θ)

× (1− κ2 sin2 θ)− 1/2
)
,

Π
(
φ, α2, ik

)
= (κ′/α2

1)
(
κ2 F (θ, κ) +κ′

2
α2 Π

(
θ, α2

1, κ
))
,

where

19.7.6

κ =
k√

1 + k2
, κ′ =

1√
1 + k2

,

sin θ =
√

1 + k2 sinφ√
1 + k2 sin2 φ

, α2
1 =

α2 + k2

1 + k2
.

Imaginary-Argument Transformation

With sinhφ = tanψ,

19.7.7

F (iφ, k) = i F (ψ, k′),

E(iφ, k) = i

(
F (ψ, k′)− E(ψ, k′)

+ (tanψ)
√

1− k′2 sin2 ψ

)
,

Π
(
iφ, α2, k

)
= i
(
F (ψ, k′)

− α2 Π
(
ψ, 1− α2, k′

))
/(1− α2).

For two further transformations of this type see
Erdélyi et al. (1953b, p. 316).

19.7(iii) Change of Parameter of Π
(
φ, α2, k

)
There are three relations connecting Π

(
φ, α2, k

)
and

Π
(
φ, ω2, k

)
, where ω2 is a rational function of α2. If k2

and α2 are real, then both integrals are circular cases
or both are hyperbolic cases (see §19.2(ii)).

The first of the three relations maps each circular
region onto itself and each hyperbolic region onto the
other; in particular, it gives the Cauchy principal value

of Π
(
φ, α2, k

)
when α2 > csc2 φ (see (19.6.5) for the

complete case). Let c = csc2 φ 6= α2. Then
19.7.8

Π
(
φ, α2, k

)
+ Π

(
φ, ω2, k

)
= F (φ, k) +

√
cRC

(
(c− 1)(c− k2), (c− α2)(c− ω2)

)
,

α2ω2 = k2.
Since k2 ≤ c we have α2ω2 ≤ c; hence α2 > c implies
ω2 < 1 ≤ c.

The second relation maps each hyperbolic region
onto itself and each circular region onto the other:
19.7.9

(k2 − α2) Π
(
φ, α2, k

)
+ (k2 − ω2) Π

(
φ, ω2, k

)
= k2 F (φ, k)
− α2ω2

√
c− 1RC

(
c(c− k2), (c− α2)(c− ω2)

)
,

(1− α2)(1− ω2) = 1− k2.
The third relation (missing from the literature of

Legendre’s integrals) maps each circular region onto the
other and each hyperbolic region onto the other:

19.7.10

(1− α2) Π
(
φ, α2, k

)
+ (1− ω2) Π

(
φ, ω2, k

)
= F (φ, k) + (1− α2 − ω2)

√
c− k2

× RC
(
c(c− 1), (c− α2)(c− ω2)

)
,

(k2 − α2)(k2 − ω2) = k2(k2 − 1).

19.8 Quadratic Transformations

19.8(i) Gauss’s Arithmetic-Geometric Mean
(AGM)

When a0 and g0 are positive numbers, define
19.8.1

an+1 =
an + gn

2
, gn+1 =

√
angn, n = 0, 1, 2, . . . .

As n → ∞, an and gn converge to a common
limit M(a0, g0) called the AGM (Arithmetic-Geometric
Mean) of a0 and g0. By symmetry in a0 and g0 we may
assume a0 ≥ g0 and define

19.8.2 cn =
√
a2
n − g2

n.

Then
19.8.3 cn+1 =

an − gn
2

=
c2n

4an+1
,

showing that the convergence of cn to 0 and of an and
gn to M(a0, g0) is quadratic in each case.

The AGM has the integral representations

19.8.4

1
M(a0, g0)

=
2
π

∫ π/2

0

dθ√
a2

0 cos2 θ + g2
0 sin2 θ

=
1
π

∫ ∞
0

dt√
t(t+ a2

0)(t+ g2
0)
.

The first of these shows that

19.8.5 K(k) =
π

2M(1, k′)
, −∞ < k2 < 1.
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The AGM appears in

19.8.6

E(k) =
π

2M(1, k′)

(
a2

0 −
∞∑
n=0

2n−1c2n

)

= K(k)

(
a2

1 −
∞∑
n=2

2n−1c2n

)
,

−∞ < k2 < 1, a0 = 1, g0 = k′,

and in

19.8.7
Π
(
α2, k

)
=

π

4M(1, k′)

(
2 +

α2

1− α2

∞∑
n=0

Qn

)
,

−∞ < k2 < 1, −∞ < α2 < 1,

where a0 = 1, g0 = k′, p2
0 = 1− α2, Q0 = 1, and

19.8.8
pn+1 =

p2
n + angn

2pn
, εn =

p2
n − angn
p2
n + angn

,

Qn+1 = 1
2Qnεn, n = 0, 1, . . . .

Again, pn and εn converge quadratically to M(a0, g0)
and 0, respectively, and Qn converges to 0 faster than
quadratically. If α2 > 1, then the Cauchy principal
value is

19.8.9
Π
(
α2, k

)
=

π

4M(1, k′)
k2

k2 − α2

∞∑
n=0

Qn,

−∞ < k2 < 1, 1 < α2 <∞,

where (19.8.8) still applies, but with

19.8.10 p2
0 = 1− (k2/α2).

19.8(ii) Landen Transformations

Descending Landen Transformation

Let

19.8.11

k1 =
1− k′

1 + k′
,

φ1 = φ+ arctan(k′ tanφ)

= arcsin

(
(1 + k′)

sinφ cosφ√
1− k2 sin2 φ

)
.

(Note that 0 < k < 1 and 0 < φ < π/2 imply k1 < k and
φ < φ1 < 2φ, and also that φ = π/2 implies φ1 = π.)
Then

19.8.12
K(k) = (1 + k1)K(k1),
E(k) = (1 + k′)E(k1)− k′K(k).

19.8.13

F (φ, k) = 1
2 (1 + k1)F (φ1, k1),

E(φ, k) = 1
2 (1 + k′)E(φ1, k1)− k′ F (φ, k)
+ 1

2 (1− k′) sinφ1.

19.8.14

2(k2 − α2) Π
(
φ, α2, k

)
=
ω2 − α2

1 + k′
Π
(
φ1, α

2
1, k1

)
+ k2 F (φ, k)

− (1 + k′)α2
1 RC

(
c1, c1 − α2

1

)
,

where

19.8.15 ω2 =
k2 − α2

1− α2
, α2

1 =
α2ω2

(1 + k′)2
, c1 = csc2 φ1.

Ascending Landen Transformation

Let

19.8.16 k2 = 2
√
k/(1 + k),

2φ2 = φ+ arcsin(k sinφ).

(Note that 0 < k < 1 and 0 < φ ≤ π/2 imply k < k2 < 1
and φ2 < φ.) Then

19.8.17

F (φ, k) =
2

1 + k
F (φ2, k2),

E(φ, k) = (1 + k)E(φ2, k2) + (1− k)F (φ2, k2)− k sinφ.

19.8(iii) Gauss Transformation

We consider only the descending Gauss transformation
because its (ascending) inverse moves F (φ, k) closer to
the singularity at k = sinφ = 1. Let

19.8.18

k1 = (1− k′)/(1 + k′),

sinψ1 =
(1 + k′) sinφ

1 + ∆
, ∆ =

√
1− k2 sin2 φ.

(Note that 0 < k < 1 and 0 < φ < π/2 imply k1 < k
and ψ1 < φ, and also that φ = π/2 implies ψ1 = π/2,
thus preserving completeness.) Then

19.8.19

F (φ, k) = (1 + k1)F (ψ1, k1),

E(φ, k) = (1 + k′)E(ψ1, k1)− k′ F (φ, k) + (1−∆) cotφ,

19.8.20

ρΠ
(
φ, α2, k

)
=

4
1 + k′

Π
(
ψ1, α

2
1, k1

)
+ (ρ− 1)F (φ, k)−RC

(
c− 1, c− α2

)
,

where

19.8.21
ρ =

√
1− (k2/α2),

α2
1 = α2(1 + ρ)2/(1 + k′)2, c = csc2 φ.

If 0 < α2 < k2, then ρ is pure imaginary.



494 Elliptic Integrals

19.9 Inequalities

19.9(i) Complete Integrals

Throughout this subsection 0 < k < 1, except in
(19.9.4).

19.9.1
ln 4 ≤ K(k) + ln k′ ≤ π/2, 1 ≤ E(k) ≤ π/2.
1 ≤ (2/π)

√
1− α2 Π

(
α2, k

)
≤ 1/k′, α2 < 1.

19.9.2 1 +
k′

2

8
<

K(k)
ln(4/k′)

< 1 +
k′

2

4
,

19.9.3 9 +
k2k′

2

8
<

(8 + k2)K(k)
ln(4/k′)

< 9.096.

The left-hand inequalities in (19.9.2) and (19.9.3) are
equivalent, but the right-hand inequality of (19.9.3) is
sharper than that of (19.9.2) when 0 < k2 ≤ 0.922.

19.9.4

(
1 + k′

3/2

2

)2/3
≤ 2
π
E(k) ≤

(
1 + k′

2

2

)1/2
for 0 ≤ k ≤ 1. The lower bound in (19.9.4) is sharper
than 2/π when 0 ≤ k2 ≤ 0.9960.

19.9.5 ln
(1 +

√
k′)2

k
<
πK ′(k)
2K(k)

< ln
2(1 + k′)

k
.

For a sharper, but more complicated, version of (19.9.5)
see Anderson et al. (1990).

Other inequalities are:

19.9.6 (1− 3
4k

2)−1/2 <
4
πk2

(K(k)− E(k)) < (k′)−3/4,

19.9.7
(1− 1

4k
2)−1/2 <

4
πk2

(E(k)− k′2K(k))

< min((k′)−1/4, 4/π),

19.9.8 k′ <
E(k)
K(k)

<

(
1 + k′

2

)2
.

Further inequalities for K(k) and E(k) can be found in
Alzer and Qiu (2004), Anderson et al. (1992a,b, 1997),
and Qiu and Vamanamurthy (1996).

The perimeter L(a, b) of an ellipse with semiaxes a, b
is given by

19.9.9 L(a, b) = 4aE(k), k2 = 1− (b2/a2), a > b.
Almkvist and Berndt (1988) list thirteen approxima-
tions to L(a, b) that have been proposed by various au-
thors. The earliest is due to Kepler and the most ac-
curate to Ramanujan. Ramanujan’s approximation and
its leading error term yield the following approximation
to L(a, b)/(π(a+ b)):

19.9.10 1 +
3λ2

10 +
√

4− 3λ2
+

3λ10

217
, λ =

a− b
a+ b

.

Even for the extremely eccentric ellipse with a = 99
and b = 1, this is correct within 0.023%. Barnard et al.
(2000) shows that nine of the thirteen approximations,
including Ramanujan’s, are from below and four are
from above. See also Barnard et al. (2001).

19.9(ii) Incomplete Integrals

Throughout this subsection we assume that 0 < k < 1,
0 ≤ φ ≤ π/2, and ∆ =

√
1− k2 sin2 φ > 0.

Simple inequalities for incomplete integrals follow
directly from the defining integrals (§19.2(ii)) together
with (19.6.12):

19.9.11 φ ≤ F (φ, k) ≤ min(φ/∆, gd−1(φ)),

where gd−1(φ) is given by (4.23.41) and (4.23.42). Also,

19.9.12 max(sinφ, φ∆) ≤ E(φ, k) ≤ φ,

19.9.13
Π
(
φ, α2, 0

)
≤ Π

(
φ, α2, k

)
≤ min(Π

(
φ, α2, 0

)
/∆,Π

(
φ, α2, 1

)
).

Sharper inequalities for F (φ, k) are:

19.9.14
3

1 + ∆ + cosφ
<
F (φ, k)

sinφ
<

1
(∆ cosφ)1/3

,

19.9.15

1 < F (φ, k)
/(

(sinφ) ln
(

4
∆ + cosφ

))
<

4
2 + (1 + k2) sin2 φ

.

19.9.16
F (φ, k) =

2
π
K(k′) ln

(
4

∆ + cosφ

)
− θ∆2,

(sinφ)/8 < θ < (ln 2)/(k2 sinφ).

(19.9.15) is useful when k2 and sin2 φ are both close
to 1, since the bounds are then nearly equal; otherwise
(19.9.14) is preferable.

Inequalities for both F (φ, k) and E(φ, k) involving
inverse circular or inverse hyperbolic functions are given
in Carlson (1961b, §4). For example,

19.9.17 L ≤ F (φ, k) ≤
√
UL ≤ 1

2 (U + L) ≤ U,

where

19.9.18
L = (1/σ) arctanh(σ sinφ), σ =

√
(1 + k2)/2,

U = 1
2 arctanh(sinφ) + 1

2k
−1 arctanh(k sinφ).

Other inequalities for F (φ, k) can be obtained from
inequalities for RF (x, y, z) given in Carlson (1966,
(2.15)) and Carlson (1970) via (19.25.5).

19.10 Relations to Other Functions

19.10(i) Theta and Elliptic Functions

For relations of Legendre’s integrals to theta func-
tions, Jacobian functions, and Weierstrass functions, see
§§20.9(i), 22.15(ii), and 23.6(iv), respectively. See also
Erdélyi et al. (1953b, Chapter 13).
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19.10(ii) Elementary Functions

If y > 0 is assumed (without loss of generality), then

19.10.1

ln(x/y) = (x− y)RC
(

1
4 (x+ y)2, xy

)
,

arctan(x/y) = xRC
(
y2, y2 + x2

)
,

arctanh(x/y) = xRC
(
y2, y2 − x2

)
,

arcsin(x/y) = xRC
(
y2 − x2, y2

)
,

arcsinh(x/y) = xRC
(
y2 + x2, y2

)
,

arccos(x/y) = (y2 − x2)1/2RC
(
x2, y2

)
,

arccosh(x/y) = (x2 − y2)1/2RC
(
x2, y2

)
.

In each case when y = 1, the quantity multiplying RC
supplies the asymptotic behavior of the left-hand side
as the left-hand side tends to 0.

For relations to the Gudermannian function gd(x)
and its inverse gd−1(x) (§4.23(viii)), see (19.6.8) and

19.10.2 (sinhφ)RC
(
1, cosh2 φ

)
= gd(φ).

19.11 Addition Theorems

19.11(i) General Formulas

19.11.1 F (θ, k) + F (φ, k) = F (ψ, k),

19.11.2 E(θ, k) +E(φ, k) = E(ψ, k) +k2 sin θ sinφ sinψ.

Here

19.11.3
sinψ =

(sin θ cosφ)∆(φ) + (sinφ cos θ)∆(θ)
1− k2 sin2 θ sin2 φ

,

∆(θ) =
√

1− k2 sin2 θ.

Also,

19.11.4

cosψ =
cos θ cosφ− (sin θ sinφ)∆(θ)∆(φ)

1− k2 sin2 θ sin2 φ
,

tan
(

1
2ψ
)

=
(sin θ)∆(φ) + (sinφ)∆(θ)

cos θ + cosφ
.

Lastly,

19.11.5
Π
(
θ, α2, k

)
+ Π

(
φ, α2, k

)
= Π

(
ψ, α2, k

)
− α2RC(γ − δ, γ),

where

19.11.6
γ = ((csc2 θ)−α2)((csc2 φ)−α2)((csc2 ψ)−α2),

δ = α2(1− α2)(α2 − k2).

19.11(ii) Case ψ = π/2

19.11.7 F (φ, k) = K(k)− F (θ, k),

19.11.8 E(φ, k) = E(k)− E(θ, k) + k2 sin θ sinφ,

where

19.11.9 tan θ = 1/(k′ tanφ).

19.11.10

Π
(
φ, α2, k

)
= Π

(
α2, k

)
−Π

(
θ, α2, k

)
− α2RC(γ − δ, γ),

where

19.11.11
γ = (1− α2)((csc2 θ)− α2)((csc2 φ)− α2),

δ = α2(1− α2)(α2 − k2).

19.11(iii) Duplication Formulas

If φ = θ in §19.11(i) and ∆(θ) is again defined by
(19.11.3), then

19.11.12 F (ψ, k) = 2F (θ, k),

19.11.13 E(ψ, k) = 2E(θ, k)− k2 sin2 θ sinψ,

19.11.14 sinψ = (sin 2θ)∆(θ)/(1− k2 sin4 θ),

19.11.15

cosψ = (cos (2θ) +k2 sin4 θ)/(1−k2 sin4 θ),

tan
(

1
2ψ
)

= (tan θ)∆(θ),

sin θ = (sinψ)/
√

(1 + cosψ)(1 + ∆(ψ)),

cos θ =

√
(cosψ) + ∆(ψ)

1 + ∆(ψ)
,

tan θ = tan
(

1
2ψ
)√ 1 + cosψ

(cosψ) + ∆(ψ)
,

19.11.16 Π
(
ψ, α2, k

)
= 2 Π

(
θ, α2, k

)
+ α2RC(γ − δ, γ),

19.11.17
γ = ((csc2 θ)− α2)2((csc2 ψ)− α2),

δ = α2(1− α2)(α2 − k2).

19.12 Asymptotic Approximations

With ψ(x) denoting the digamma function (§5.2(i)) in
this subsection, the asymptotic behavior of K(k) and
E(k) near the singularity at k = 1 is given by the fol-
lowing convergent series:

19.12.1

K(k) =
∞∑
m=0

(
1
2

)
m

(
1
2

)
m

m! m!
k′

2m
(

ln
(

1
k′

)
+ d(m)

)
,

0 < |k′| < 1,
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19.12.2

E(k) = 1 +
1
2

∞∑
m=0

(
1
2

)
m

(
3
2

)
m

(2)mm!
k′

2m+2

×
(

ln
(

1
k′

)
+ d(m)− 1

(2m+ 1)(2m+ 2)

)
,

|k′| < 1,
where
19.12.3

d(m) = ψ(1 +m)− ψ
(

1
2 +m

)
,

d(m+ 1) = d(m)− 2
(2m+ 1)(2m+ 2)

, m = 0, 1, . . . .

For the asymptotic behavior of F (φ, k) and E(φ, k)
as φ→ 1

2π− and k → 1− see Kaplan (1948, §2), Van de
Vel (1969), and Karp and Sitnik (2007).

As k2 → 1−
19.12.4

(1− α2) Π
(
α2, k

)
=
(

ln
4
k′

)(
1 +O

(
k′

2
))
− α2RC

(
1, 1− α2

)
,

−∞ < α2 < 1,

19.12.5

(1− α2) Π
(
α2, k

)
=
(

ln
(

4
k′

)
−RC

(
1, 1− α−2

)) (
1 +O

(
k′

2
))

,

1 < α2 <∞.
Asymptotic approximations for Π

(
φ, α2, k

)
, with

different variables, are given in Karp et al. (2007). They
are useful primarily when (1− k)/(1− sinφ) is either
small or large compared with 1.

If x ≥ 0 and y > 0, then
19.12.6

RC(x, y) =
π

2
√
y
−
√
x

y

(
1 +O

(√
x

y

))
, x/y → 0,

19.12.7

RC(x, y) =
1

2
√
x

((
1 +

y

2x

)
ln
(

4x
y

)
− y

2x

)
× (1 +O

(
y2/x2

)
), y/x→ 0.

19.13 Integrals of Elliptic Integrals

19.13(i) Integration with Respect to the
Modulus

For definite and indefinite integrals of complete ellip-
tic integrals see Byrd and Friedman (1971, pp. 610–
612, 615), Prudnikov et al. (1990, §§1.11, 2.16), Glasser
(1976), Bushell (1987), and Cvijović and Klinowski
(1999).

For definite and indefinite integrals of incomplete el-
liptic integrals see Byrd and Friedman (1971, pp. 613,
616), Prudnikov et al. (1990, §§1.10.2, 2.15.2), and Cvi-
jović and Klinowski (1994).

19.13(ii) Integration with Respect to the
Amplitude

Various integrals are listed by Byrd and Friedman (1971,
p. 630) and Prudnikov et al. (1990, §§1.10.1, 2.15.1).
Cvijović and Klinowski (1994) contains fractional in-
tegrals (with free parameters) for F (φ, k) and E(φ, k),
together with special cases.

19.13(iii) Laplace Transforms

For direct and inverse Laplace transforms for the com-
plete elliptic integrals K(k), E(k), and D(k) see Prud-
nikov et al. (1992a, §3.31) and Prudnikov et al. (1992b,
§§3.29 and 4.3.33), respectively.

19.14 Reduction of General Elliptic
Integrals

19.14(i) Examples

In (19.14.1)–(19.14.3) both the integrand and cosφ are
assumed to be nonnegative. Cases in which cosφ < 0
can be included by application of (19.2.10).
19.14.1∫ x

1

dt√
t3 − 1

= 3−1/4 F (φ, k),

cosφ =
√

3 + 1− x√
3− 1 + x

, k2 =
2−
√

3
4

.

19.14.2∫ 1

x

dt√
1− t3

= 3−1/4 F (φ, k),

cosφ =
√

3− 1 + x√
3 + 1− x

, k2 =
2 +
√

3
4

.

19.14.3∫ x

0

dt√
1 + t4

=
sign(x)

2
F (φ, k),

cosφ =
1− x2

1 + x2
, k2 =

1
2
.

19.14.4∫ x

y

dt√
(a1 + b1t2)(a2 + b2t2)

=
1√
γ − α

F (φ, k),

k2 = (γ − β)/(γ − α) .
In (19.14.4) 0 ≤ y < x, each quadratic polynomial is
positive on the interval (y, x), and α, β, γ is a permuta-
tion of 0, a1b2, a2b1 (not all 0 by assumption) such that
α ≤ β ≤ γ. More generally in (19.14.4),

19.14.5 sin2 φ =
γ − α
U2 + γ

,

where

19.14.6
(x2 − y2)U = x

√
(a1 + b1y2)(a2 + b2y2)

+ y
√

(a1 + b1x2)(a2 + b2x2).
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There are four important special cases of (19.14.4)–
(19.14.6), as follows. If y = 0, then

19.14.7 sin2 φ =
(γ − α)x2

a1a2 + γx2
.

If x =∞, then

19.14.8 sin2 φ =
γ − α

b1b2y2 + γ
.

If a1 + b1y
2 = 0, then

19.14.9 sin2 φ =
(γ − α)(x2 − y2)

γ(x2 − y2)− a1(a2 + b2x2)
.

If a1 + b1x
2 = 0, then

19.14.10 sin2 φ =
(γ − α)(y2 − x2)

γ(y2 − x2)− a1(a2 + b2y2)
.

(These four cases include 12 integrals in Abramowitz
and Stegun (1964, p. 596).)

19.14(ii) General Case

Legendre (1825–1832) showed that every elliptic in-
tegral can be expressed in terms of the three in-
tegrals in (19.1.2) supplemented by algebraic, loga-
rithmic, and trigonometric functions. The classical
method of reducing (19.2.3) to Legendre’s integrals
is described in many places, especially Erdélyi et al.
(1953b, §13.5), Abramowitz and Stegun (1964, Chapter
17), and Labahn and Mutrie (1997, §3). The last refer-
ence gives a clear summary of the various steps involving
linear fractional transformations, partial-fraction de-
composition, and recurrence relations. It then improves
the classical method by first applying Hermite reduction
to (19.2.3) to arrive at integrands without multiple poles
and uses implicit full partial-fraction decomposition and
implicit root finding to minimize computing with alge-
braic extensions. The choice among 21 transformations
for final reduction to Legendre’s normal form depends
on inequalities involving the limits of integration and
the zeros of the cubic or quartic polynomial. A similar
remark applies to the transformations given in Erdélyi
et al. (1953b, §13.5) and to the choice among explicit
reductions in the extensive table of Byrd and Friedman
(1971), in which one limit of integration is assumed to
be a branch point of the integrand at which the integral
converges. If no such branch point is accessible from the
interval of integration (for example, if the integrand is
(t(3 − t)(4 − t))−3/2 and the interval is [1,2]), then no
method using this assumption succeeds.

Symmetric Integrals

19.15 Advantages of Symmetry

Elliptic integrals are special cases of a particu-
lar multivariate hypergeometric function called Lau-
ricella’s FD (Carlson (1961b)). The function
R−a(b1, b2, . . . , bn; z1, z2, . . . , zn) (Carlson (1963)) re-
veals the full permutation symmetry that is partially
hidden in FD, and leads to symmetric standard inte-
grals that simplify many aspects of theory, applications,
and numerical computation.

Symmetry in x, y, z of RF (x, y, z), RG(x, y, z),
and RJ(x, y, z, p) replaces the five transformations
(19.7.2), (19.7.4)–(19.7.7) of Legendre’s integrals; com-
pare (19.25.17). Symmetry unifies the Landen trans-
formations of §19.8(ii) with the Gauss transforma-
tions of §19.8(iii), as indicated following (19.22.22) and
(19.36.9). (19.21.12) unifies the three transformations
in §19.7(iii) that change the parameter of Legendre’s
third integral.

Symmetry allows the expansion (19.19.7) in a series
of elementary symmetric functions that gives high pre-
cision with relatively few terms and provides the most
efficient method of computing the incomplete integral
of the third kind (§19.36(i)).

Symmetry makes possible the reduction theorems of
§19.29(i), permitting remarkable compression of tables
of integrals while generalizing the interval of integration.
(Compare (19.14.4)–(19.14.10) with (19.29.19), and see
the last paragraph of §19.29(i) and the text following
(19.29.15).) These reduction theorems, unknown in the
Legendre theory, allow symbolic integration without im-
posing conditions on the parameters and the limits of
integration (see §19.29(ii)).

For the many properties of ellipses and triaxial el-
lipsoids that can be represented by elliptic integrals,
any symmetry in the semiaxes remains obvious when
symmetric integrals are used (see (19.30.5) and §19.33).
For example, the computation of depolarization factors
for solid ellipsoids is simplified considerably; compare
(19.33.7) with Cronemeyer (1991).

19.16 Definitions

19.16(i) Symmetric Integrals

19.16.1 RF (x, y, z) =
1
2

∫ ∞
0

dt

s(t)
,

19.16.2 RJ(x, y, z, p) =
3
2

∫ ∞
0

dt

s(t)(t+ p)
,
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19.16.3

RG(x, y, z) =
1

4π

∫ 2π

0

∫ π

0

(
x sin2 θ cos2 φ+ y sin2 θ sin2 φ

+ z cos2 θ
)1
2 sin θ dθ dφ,

where p (6= 0) is a real or complex constant, and

19.16.4 s(t) =
√
t+ x

√
t+ y

√
t+ z.

In (19.16.1) and (19.16.2), x, y, z ∈ C\(−∞, 0] except
that one or more of x, y, z may be 0 when the corre-
sponding integral converges. In (19.16.2) the Cauchy
principal value is taken when p is real and negative.
In (19.16.3) <x, <y, <z ≥ 0. It should be noted that
the integrals (19.16.1)–(19.16.3) have been normalized
so that RF (1, 1, 1) = RJ(1, 1, 1, 1) = RG(1, 1, 1) = 1.

A fourth integral that is symmetric in only two vari-
ables is defined by

19.16.5 RD(x, y, z) =RJ(x, y, z, z) =
3
2

∫ ∞
0

dt

s(t)(t+ z)
,

with the same conditions on x, y, z as for (19.16.1), but
now z 6= 0.

Just as the elementary function RC(x, y) (§19.2(iv))
is the degenerate case

19.16.6 RC(x, y) = RF (x, y, y),

and RD is a degenerate case of RJ , so is RJ a degenerate
case of the hyperelliptic integral,

19.16.7
3
2

∫ ∞
0

dt∏5
j=1

√
t+ xj

.

19.16(ii) R−a(b; z)

All elliptic integrals of the form (19.2.3) and many mul-
tiple integrals, including (19.16.3), are special cases of
a multivariate hypergeometric function

19.16.8 R−a(b; z) = R−a(b1, . . . , bn; z1, . . . , zn),

which is homogeneous and of degree −a in the z’s, and
symmetric when the same permutation is applied to
both sets of subscripts 1, . . . , n. Thus R−a(b; z) is sym-
metric in the variables zj and z` if the parameters bj
and b` are equal. The R-function is often used to make
a unified statement of a property of several elliptic inte-
grals. Before 1969 R−a(b; z) was denoted by R(a; b; z).

19.16.9

R−a(b; z) =
1

B(a, a′)

∫ ∞
0

ta
′−1

n∏
j=1

(t+ zj)−bj dt

=
1

B(a, a′)

∫ ∞
0

ta−1
n∏
j=1

(1 + tzj)−bj dt,

a, a′ > 0, zj ∈ C\(−∞, 0],

where B(x, y) is the beta function (§5.12) and

19.16.10 a′ = −a+
n∑
j=1

bj .

19.16.11
R−a(b;λz) = λ−aR−a(b; z),
R−a(b;x1) = x−a, 1 = (1, . . . , 1).

When n = 4 a useful version of (19.16.9) is given by

19.16.12

R−a
(
b1, . . . , b4; c− 1, c− k2, c, c− α2

)
=

2(sin2 φ)1−a′

B(a, a′)

∫ φ

0

(sin θ)2a−1(sin2 φ− sin2 θ)
a′−1

× (cos θ)1−2b1(1− k2 sin2 θ)
−b2(1− α2 sin2 θ)

−b4
dθ,

where

19.16.13

c = csc2 φ; a, a′ > 0; b3 = a+ a′ − b1 − b2 − b4.

For further information, especially representation
of the R-function as a Dirichlet average, see Carlson
(1977b).

19.16(iii) Elliptic Cases of R−a(b; z)

R−a(b; z) is an elliptic integral if the z’s are distinct
and exactly four of the parameters a, a′, b1, . . . , bn are
half-odd-integers, the rest are integers, and none of a,
a′, a + a′ is zero or a negative integer. The only cases
that are integrals of the first kind are the four in which
each of a and a′ is either 1

2 or 1 and each bj is 1
2 . The

only cases that are integrals of the third kind are those
in which at least one bj is a positive integer. All other
elliptic cases are integrals of the second kind.

19.16.14 RF (x, y, z) = R− 1
2

(
1
2 ,

1
2 ,

1
2 ;x, y, z

)
,

19.16.15 RD(x, y, z) = R− 3
2

(
1
2 ,

1
2 ,

3
2 ;x, y, z

)
,

19.16.16 RJ(x, y, z, p) = R− 3
2

(
1
2 ,

1
2 ,

1
2 , 1;x, y, z, p

)
,

19.16.17 RG(x, y, z) = R 1
2

(
1
2 ,

1
2 ,

1
2 ;x, y, z

)
,

19.16.18 RC(x, y) = R− 1
2

(
1
2 , 1;x, y

)
.

When one variable is 0 without destroying convergence,
any one of (19.16.14)–(19.16.17) is said to be complete
and can be written as an R-function with one less vari-
able:

19.16.19

R−a(b1, . . . , bn; 0, z2, . . . , zn)

=
B(a, a′ − b1)

B(a, a′)
R−a(b2, . . . , bn; z2, . . . , zn),

a+ a′ > 0, a′ > b1.
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Thus
19.16.20 RF (0, y, z) = 1

2π R− 1
2

(
1
2 ,

1
2 ; y, z

)
,

19.16.21 RD(0, y, z) = 3
4π R− 3

2

(
1
2 ,

3
2 ; y, z

)
,

19.16.22 RJ(0, y, z, p) = 3
4π R− 3

2

(
1
2 ,

1
2 , 1; y, z, p

)
,

19.16.23
RG(0, y, z) = 1

4π R 1
2

(
1
2 ,

1
2 ; y, z

)
= 1

4πz R− 1
2

(
− 1

2 ,
3
2 ; y, z

)
.

The last R-function has a = a′ = 1
2 .

Each of the four complete integrals (19.16.20)–
(19.16.23) can be integrated to recover the incomplete
integral:
19.16.24

R−a(b; z) =
za
′−b1

1

B(b1, a′ − b1)

∫ ∞
0

tb1−1(t+ z1)−a
′

× R−a(b; 0, t+ z2, . . . , t+ zn) dt,
a′ > b1, a+ a′ > b1 > 0.

19.17 Graphics

See Figures 19.17.1–19.17.8 for symmetric elliptic inte-
grals with real arguments.

Because the R-function is homogeneous, there is no
loss of generality in giving one variable the value 1 or
−1 (as in Figure 19.3.2). For RF , RG, and RJ , which
are symmetric in x, y, z, we may further assume that z is
the largest of x, y, z if the variables are real, then choose
z = 1, and consider only 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
The cases x = 0 or y = 0 correspond to the complete
integrals. The case y = 1 corresponds to elementary
functions.

To view RF (0, y, 1) and 2RG(0, y, 1) for complex y,
put y = 1 − k2, use (19.25.1), and see Figures 19.3.7–
19.3.8.

Figure 19.17.1: RF (x, y, 1) for 0 ≤ x ≤ 1, y =
0, 0.1, 0.5, 1. y = 1 corresponds to RC(x, 1).

Figure 19.17.2: RG(x, y, 1) for 0 ≤ x ≤ 1, y =
0, 0.1, 0.5, 1. y = 1 corresponds to 1

2 (RC(x, 1) +
√
x).

Figure 19.17.3: RD(x, y, 1) for 0 ≤ x ≤ 2, y =
0, 0.1, 1, 5, 25. y = 1 corresponds to 3

2 (RC(x, 1) −√
x)/(1− x), x 6= 1.

Figure 19.17.4: RJ(x, y, 1, 2) for 0 ≤ x ≤ 1, y =
0, 0.1, 0.5, 1. y = 1 corresponds to 3(RC(x, 1) −
RC(x, 2)).
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Figure 19.17.5: RJ(x, y, 1, 0.5) for 0 ≤ x ≤ 1, y =
0, 0.1, 0.5, 1. y = 1 corresponds to 6(RC(x, 0.5) −
RC(x, 1)).

x

-4

-8

-12

0.1

.5
1

0 1.5

Figure 19.17.6: Cauchy principal value of
RJ(x, y, 1,−0.5) for 0 ≤ x ≤ 1, y = 0, 0.1, 0.5, 1.
y = 1 corresponds to 2(RC(x,−0.5)−RC(x, 1)).

Figure 19.17.7: Cauchy principal value of RJ(0.5, y, 1, p)
for y = 0, 0.01, 0.05, 0.2, 1, −1 ≤ p < 0. y = 1 corre-
sponds to 3(RC(0.5, p) − (π/

√
8))/(1 − p). As p → 0

the curve for y = 0 has the finite limit −8.10386 . . . ; see
(19.20.10).

Figure 19.17.8: RJ(0, y, 1, p), 0 ≤ y ≤ 1, −1 ≤ p ≤ 2.
Cauchy principal values are shown when p < 0. The
function is asymptotic to 3

2π/
√
yp as p → 0+, and

to (3
2/p) ln(16/y) as y → 0+. As p → 0− it has the

limit (−6/y)RG(0, y, 1). When p = 1, it reduces to
RD(0, y, 1). If y = 1, then it has the value 3

2π/(p+
√
p)

when p > 0, and 3
2π/(p−1) when p < 0. See (19.20.10),

(19.20.11), and (19.20.8) for the cases p→ 0±, y → 0+,
and y = 1, respectively.

19.18 Derivatives and Differential
Equations

19.18(i) Derivatives

19.18.1
∂RF (x, y, z)

∂z
= − 1

6 RD(x, y, z),

19.18.2
d

dx
RG(x+ a, x+ b, x+ c) = 1

2 RF (x+ a, x+ b, x+ c).

Let ∂j = ∂/∂zj , and ej be an n-tuple with 1 in the jth
place and 0’s elsewhere. Also define

19.18.3 wj = bj

/ n∑
j=1

bj , a′ = −a+
n∑
j=1

bj .

The next two equations apply to (19.16.14)–(19.16.18)
and (19.16.20)–(19.16.23).

19.18.4 ∂j R−a(b; z) = −awj R−a−1(b + ej ; z),
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19.18.5 (zj∂j + bj)R−a(b; z) = wja
′R−a(b + ej ; z).

19.18(ii) Differential Equations

19.18.6

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
RF (x, y, z) =

−1
2
√
xyz

,

19.18.7

(
∂

∂x
+

∂

∂y
+

∂

∂z

)
RG(x, y, z) = 1

2 RF (x, y, z).

19.18.8

n∑
j=1

∂j R−a(b; z) = −aR−a−1(b; z).

19.18.9(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
RF (x, y, z) = − 1

2 RF (x, y, z),

19.18.10(
(x− y)

∂2

∂x ∂y
+

1
2

(
∂

∂y
− ∂

∂x

))
RF (x, y, z) = 0,

and two similar equations obtained by permuting x, y, z
in (19.18.10).

More concisely, if v = R−a(b; z), then each of
(19.16.14)–(19.16.18) and (19.16.20)–(19.16.23) satisfies
Euler’s homogeneity relation:

19.18.11

n∑
j=1

zj∂jv = −av,

and also a system of n(n−1)/2 Euler–Poisson differen-
tial equations (of which only n− 1 are independent):

19.18.12 (zj∂j + bj)∂lv = (zl∂l + bl)∂jv,

or equivalently,

19.18.13 ((zj − zl)∂j∂l + bj∂l − bl∂j)v = 0.

Here j, l = 1, 2, . . . , n and j 6= l. For group-theoretical
aspects of this system see Carlson (1963, §VI). If
n = 2, then elimination of ∂2v between (19.18.11) and
(19.18.12), followed by the substitution (b1, b2, z1, z2) =
(b, c − b, 1 − z, 1), produces the Gauss hypergeometric
equation (15.10.1).

The next four differential equations apply to
the complete case of RF and RG in the form
R−a

(
1
2 ,

1
2 ; z1, z2

)
(see (19.16.20) and (19.16.23)).

The function w = R−a
(

1
2 ,

1
2 ;x+ y, x− y

)
satisfies

an Euler–Poisson–Darboux equation:

19.18.14
∂2w

∂x2 =
∂2w

∂y2 +
1
y

∂w

∂y
.

Also W = R−a
(

1
2 ,

1
2 ; t+ r, t− r

)
, with r =

√
x2 + y2,

satisfies a wave equation:

19.18.15
∂2W

∂t2
=
∂2W

∂x2 +
∂2W

∂y2 .

Similarly, the function u = R−a
(

1
2 ,

1
2 ;x+ iy, x− iy

)
satisfies an equation of axially symmetric potential the-
ory :

19.18.16
∂2u

∂x2 +
∂2u

∂y2 +
1
y

∂u

∂y
= 0,

and U = R−a
(

1
2 ,

1
2 ; z + iρ, z − iρ

)
, with ρ =

√
x2 + y2,

satisfies Laplace’s equation:

19.18.17
∂2U

∂x2 +
∂2U

∂y2 +
∂2U

∂z2 = 0.

19.19 Taylor and Related Series

For N = 0, 1, 2, . . . define the homogeneous hypergeo-
metric polynomial

19.19.1 TN (b, z) =
∑ (b1)m1

· · · (bn)mn
m1! · · ·mn!

zm1
1 · · · zmnn ,

where the summation extends over all nonnegative in-
tegers m1, . . . ,mn whose sum is N . The following
two multivariate hypergeometric series apply to each
of the integrals (19.16.14)–(19.16.18) and (19.16.20)–
(19.16.23):

19.19.2
R−a(b; z) =

∞∑
N=0

(a)N
(c)N

TN (b,1− z),

c =
∑n
j=1 bj , |1− zj | < 1,

19.19.3 R−a(b; z) = z−an

∞∑
N=0

(a)N
(c)N

TN (b1, . . . , bn−1; 1− (z1/zn), . . . , 1− (zn−1/zn)), c =
∑n
j=1 bj , |1− (zj/zn)| < 1.

If n = 2, then (19.19.3) is a Gauss hypergeometric series
(see (19.25.43) and (15.2.1)).

Define the elementary symmetric function Es(z) by

19.19.4
n∏
j=1

(1 + tzj) =
n∑
s=0

tsEs(z),

and define the n-tuple 1
2 = ( 1

2 , . . . ,
1
2 ). Then

19.19.5

TN (1
2 , z) =

∑
(−1)M+N

(
1
2

)
M

Em1
1 (z) · · ·Emnn (z)
m1! · · ·mn!

,

where M =
∑n
j=1mj and the summation extends

over all nonnegative integers m1, . . . ,mn such that∑n
j=1 jmj = N .
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This form of TN can be applied to (19.16.14)–
(19.16.18) and (19.16.20)–(19.16.23) if we use

19.19.6 RJ(x, y, z, p) = R− 3
2

(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ;x, y, z, p, p

)
as well as (19.16.5) and (19.16.6). The number of
terms in TN can be greatly reduced by using variables
Z = 1− (z/A) with A chosen to make E1(Z) = 0. Then
TN has at most one term if N ≤ 5 in the series for RF .
For RJ and RD, TN has at most one term if N ≤ 3, and
two terms if N = 4 or 5.

19.19.7 R−a
(

1
2

; z
)

= A−a
∞∑
N=0

(a)N(
1
2n
)
N

TN (1
2
,Z),

where

19.19.8
A =

1
n

n∑
j=1

zj , Zj = 1− (zj/A),

E1(Z) = 0, |Zj | < 1.

A special case is given in (19.36.1).

19.20 Special Cases

19.20(i) RF (x, y, z)

In this subsection, and also §§19.20(ii)–19.20(v), the
variables of all R-functions satisfy the constraints spec-
ified in §19.16(i) unless other conditions are stated.

19.20.1

RF (x, x, x) = x−1/2,

RF (λx, λy, λz) = λ−1/2RF (x, y, z),
RF (x, y, y) = RC(x, y),

RF (0, y, y) = 1
2πy

−1/2,

RF (0, 0, z) =∞.

The first lemniscate constant is given by

19.20.2

∫ 1

0

dt√
1− t4

= RF (0, 1, 2) =

(
Γ
(

1
4

))2
4(2π)1/2

= 1.31102 87771 46059 90523 . . . .

Todd (1975) refers to a proof by T. Schneider that this is
a transcendental number. The general lemniscatic case
is

19.20.3 RF (x, a, y) = R− 1
4

(
3
4 ,

1
2 ; a2, xy

)
, a = 1

2 (x+ y).

19.20(ii) RG(x, y, z)

19.20.4

RG(x, x, x) = x1/2,

RG(λx, λy, λz) = λ1/2RG(x, y, z),

RG(0, y, y) = 1
4πy

1/2,

RG(0, 0, z) = 1
2z

1/2,

19.20.5 2RG(x, y, y) = y RC(x, y) +
√
x.

19.20(iii) RJ(x, y, z, p)

19.20.6

RJ(x, x, x, x) = x−3/2,

RJ(λx, λy, λz, λp) = λ−3/2RJ(x, y, z, p),

RJ(x, y, z, z) = RD(x, y, z),

RJ(0, 0, z, p) =∞,

RJ(x, x, x, p) = RD(p, p, x) =
3

x− p

(
RC(x, p)− 1√

x

)
,

x 6= p, xp 6= 0.

19.20.7

RJ(x, y, z, p)→ +∞, p→ 0+ or 0−; x, y, z > 0.

19.20.8

RJ(0, y, y, p) =
3π

2(y
√
p+ p

√
y)

, p > 0,

RJ(0, y, y,−q) =
−3π

2
√
y(y + q)

, q > 0,

RJ(x, y, y, p) =
3

p− y
(RC(x, y)−RC(x, p)), p 6= y,

RJ(x, y, y, y) = RD(x, y, y).

19.20.9 RJ(0, y, z,±√yz) = ± 3
2
√
yz

RF (0, y, z).

19.20.10

lim
p→0+

√
pRJ(0, y, z, p) =

3π
2
√
yz
,

lim
p→0−

RJ(0, y, z, p) = −RD(0, y, z)−RD(0, z, y)

=
−6
yz

RG(0, y, z).

19.20.11

RJ(0, y, z, p) ∼ 3
2p
√
z

ln
(

16z
y

)
, y → 0+; p (6= 0) real.

19.20.12 lim
p→±∞

pRJ(x, y, z, p) = 3RF (x, y, z).

19.20.13

2(p− x)RJ(x, y, z, p) = 3RF (x, y, z)− 3
√
xRC

(
yz, p2

)
,

p = x±
√

(y − x)(z − x),

where x, y, z may be permuted.
When the variables are real and distinct, the vari-

ous cases of RJ(x, y, z, p) are called circular (hyperbolic)
cases if (p−x)(p−y)(p−z) is positive (negative), because
they typically occur in conjunction with inverse circular
(hyperbolic) functions. Cases encountered in dynamical
problems are usually circular; hyperbolic cases include
Cauchy principal values. If x, y, z are permuted so that
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0 ≤ x < y < z, then the Cauchy principal value of RJ
is given by

19.20.14

(q + z)RJ(x, y, z,−q)
= (p− z)RJ(x, y, z, p)− 3RF (x, y, z)

+ 3
(

xyz

xy + pq

)1/2
RC(xy + pq, pq),

valid when

19.20.15 q > 0, p =
z(x+ y + q)− xy

z + q
,

or
19.20.16 p = wy + (1−w)z, w =

z − x
z + q

, 0 < w < 1.

Since x < y < p < z, p is in a hyperbolic region. In the
complete case (x = 0) (19.20.14) reduces to

19.20.17

(q + z)RJ(0, y, z,−q)
= (p− z)RJ(0, y, z, p)− 3RF (0, y, z),

p = z(y + q)/(z + q), w = z/(z + q).

19.20(iv) RD(x, y, z)

19.20.18

RD(x, x, x) = x−3/2,

RD(λx, λy, λz) = λ−3/2RD(x, y, z),

RD(0, y, y) = 3
4π y

−3/2,

RD(0, 0, z) =∞.

19.20.19 RD(x, y, z) ∼ 3(xyz)−1/2, z/
√
xy → 0.

19.20.20
RD(x, y, y) =

3
2(y − x)

(
RC(x, y)−

√
x

y

)
,

x 6= y, y 6= 0,

19.20.21

RD(x, x, z) =
3

z − x

(
RC(z, x)− 1√

z

)
, x 6= z, xz 6= 0.

The second lemniscate constant is given by

19.20.22

∫ 1

0

t2 dt√
1− t4

= 1
3 RD(0, 2, 1) =

(
Γ
(

3
4

))2
(2π)1/2

= 0.59907 01173 67796 10371 . . . .

Todd (1975) refers to a proof by T. Schneider that this
is a transcendental number. Compare (19.20.2). The
general lemniscatic case is

19.20.23

RD(x, y, a) = R− 3
4

(
5
4 ,

1
2 ; a2, xy

)
, a = 1

2x+ 1
2y.

19.20(v) R−a(b; z)

Define c =
∑n
j=1 bj . Then

19.20.24
R0(b; z) = 1, RN (b; z) =

N !
(c)N

TN (b, z),

N = 0, 1, 2, . . . ,
where TN is defined by (19.19.1). Also,

19.20.25 R−c(b; z) =
n∏
j=1

z
−bj
j ,

19.20.26
R−a(b; z) =

n∏
j=1

z
−bj
j R−a′

(
b;z−1

)
,

a+ a′ = c, z−1 = (z−1
1 , . . . , z−1

n ).
See also (19.16.11) and (19.16.19).

19.21 Connection Formulas

19.21(i) Complete Integrals

Legendre’s relation (19.7.1) can be written

19.21.1

RF (0, z + 1, z)RD(0, z + 1, 1)
+RD(0, z + 1, z)RF (0, z + 1, 1) = 3π/(2z),

z ∈ C\(−∞, 0].
The case z = 1 shows that the product of the two lem-
niscate constants, (19.20.2) and (19.20.22), is π/4.

19.21.2 3RF (0, y, z) = z RD(0, y, z) + y RD(0, z, y).

19.21.3

6RG(0, y, z) = yz(RD(0, y, z) +RD(0, z, y))
= 3z RF (0, y, z) + z(y − z)RD(0, y, z).

The complete cases of RF and RG have connection
formulas resulting from those for the Gauss hyperge-
ometric function (Erdélyi et al. (1953a, §2.9)). Up-
per signs apply if 0 < ph z < π, and lower signs if
−π < ph z < 0:

19.21.4 RF (0, z − 1, z) = RF (0, 1− z, 1)∓ iRF (0, z, 1),

19.21.5

2RG(0, z − 1, z) = 2RG(0, 1− z, 1)± i2RG(0, z, 1)
+ (z − 1)RF (0, 1− z, 1)
∓ izRF (0, z, 1).

Let y, z, and p be positive and distinct, and permute
y and z to ensure that y does not lie between z and p.
The complete case of RJ can be expressed in terms of
RF and RD:
19.21.6

(
√
rp/z)RJ(0, y, z, p) = (r − 1)RF (0, y, z)RD(p, rz, z)

+RD(0, y, z)RF (p, rz, z),
r = (y − p)/(y − z) > 0.

If 0 < p < z and y = z + 1, then as p → 0 (19.21.6)
reduces to Legendre’s relation (19.21.1).
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19.21(ii) Incomplete Integrals

RD(x, y, z) is symmetric only in x and y, but either
(nonzero) x or (nonzero) y can be moved to the third
position by using

19.21.7
(x− y)RD(y, z, x) + (z − y)RD(x, y, z)

= 3RF (x, y, z)− 3
√
y/(xz),

or the corresponding equation with x and y inter-
changed.

19.21.8
RD(y, z, x) +RD(z, x, y) +RD(x, y, z)

= 3(xyz)−1/2,

19.21.9
xRD(y, z, x) + y RD(z, x, y) + z RD(x, y, z)

= 3RF (x, y, z).

19.21.10

2RG(x, y, z) = z RF (x, y, z)

− 1
3 (x− z)(y − z)RD(x, y, z) +

√
xy/z,
z 6= 0.

Because RG is completely symmetric, x, y, z can be
permuted on the right-hand side of (19.21.10) so that
(x − z)(y − z) ≤ 0 if the variables are real, thereby
avoiding cancellations when RG is calculated from RF
and RD (see §19.36(i)).

19.21.11

6RG(x, y, z) = 3(x+ y + z)RF (x, y, z)

−
∑

x2RD(y, z, x)

=
∑

x(y + z)RD(y, z, x),

where both summations extend over the three cyclic
permutations of x, y, z.

Connection formulas for R−a(b; z) are given in Carl-
son (1977b, pp. 99, 101, and 123–124).

19.21(iii) Change of Parameter of RJ

Let x, y, z be real and nonnegative, with at most one of
them 0. Change-of-parameter relations can be used to
shift the parameter p of RJ from either circular region
to the other, or from either hyperbolic region to the
other (§19.20(iii)). The latter case allows evaluation of
Cauchy principal values (see (19.20.14)).

19.21.12
(p− x)RJ(x, y, z, p) + (q − x)RJ(x, y, z, q)

= 3RF (x, y, z)− 3RC(ξ, η),
where
19.21.13

(p− x)(q− x) = (y− x)(z− x), ξ = yz/x, η = pq/x,

and x, y, z may be permuted. Also,
19.21.14

η − ξ = p+ q− y− z =
(p− y)(p− z)

p− x
=

(q − y)(q − z)
q − x

=
(p− y)(q − y)

x− y
=

(p− z)(q − z)
x− z

.

For each value of p, permutation of x, y, z produces
three values of q, one of which lies in the same region as
p and two lie in the other region of the same type. In
(19.21.12), if x is the largest (smallest) of x, y, and z,
then p and q lie in the same region if it is circular (hy-
perbolic); otherwise p and q lie in different regions, both
circular or both hyperbolic. If x = 0, then ξ = η = ∞
and RC(ξ, η) = 0; hence

19.21.15

pRJ(0, y, z, p) + q RJ(0, y, z, q) = 3RF (0, y, z), pq = yz.

19.22 Quadratic Transformations

19.22(i) Complete Integrals

Let <x > 0, <y > 0, a = (x+ y)/2, and p 6= 0. Then

19.22.1

RF
(
0, x2, y2

)
= RF

(
0, xy, a2

)
,

19.22.2

2RG
(
0, x2, y2

)
= 4RG

(
0, xy, a2

)
− xy RF

(
0, xy, a2

)
,

19.22.3

2y2RD
(
0, x2, y2

)
= 1

4 (y2 − x2)RD
(
0, xy, a2

)
+ 3RF

(
0, xy, a2

)
.

19.22.4

(p2
± − p2

∓)RJ
(
0, x2, y2, p2

)
= 2(p2

± − a2)RJ
(
0, xy, a2, p2

±
)

− 3RF
(
0, xy, a2

)
+ 3π/(2p),

where

19.22.5 2p± =
√

(p+ x)(p+ y)±
√

(p− x)(p− y),

and hence

19.22.6

p+p− = pa, p2
+ + p2

− = p2 + xy,

p2
+ − p2

− =
√

(p2 − x2)(p2 − y2),

4(p2
± − a2) = (

√
p2 − x2 ±

√
p2 − y2)2.

Bartky’s Transformation

19.22.7

2p2RJ
(
0, x2, y2, p2

)
= v+v−RJ

(
0, xy, a2, v2

+

)
+ 3RF

(
0, xy, a2

)
,

v± = (p2 ± xy)/(2p).

If p = y, then (19.22.7) reduces to (19.22.3), but if p = x
or p = y, then both sides of (19.22.4) are 0 by (19.20.9).
If x < p < y or y < p < x, then p+ and p− are complex
conjugates.
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19.22(ii) Gauss’s Arithmetic-Geometric Mean
(AGM)

The AGM, M(a0, g0), of two positive numbers a0 and
g0 is defined in §19.8(i). Again, we assume that a0 ≥ g0

(except in (19.22.10)), and define cn =
√
a2
n − g2

n. Then

19.22.8
2
π
RF
(
0, a2

0, g
2
0

)
=

1
M(a0, g0)

,

19.22.9

4
π
RG
(
0, a2

0, g
2
0

)
=

1
M(a0, g0)

(
a2

0 −
∞∑
n=0

2n−1c2n

)

=
1

M(a0, g0)

(
a2

1 −
∞∑
n=2

2n−1c2n

)
,

and

19.22.10 RD
(
0, g2

0 , a
2
0

)
=

3π
4M(a0, g0)a2

0

∞∑
n=0

Qn,

where
19.22.11 Q0 = 1, Qn+1 = 1

2Qn
an − gn
an + gn

.

Qn has the same sign as a0 − g0 for n ≥ 1.

19.22.12 RJ
(
0, g2

0 , a
2
0, p

2
0

)
=

3π
4M(a0, g0)p2

0

∞∑
n=0

Qn,

where p0 > 0 and

19.22.13
pn+1 =

p2
n + angn

2pn
, εn =

p2
n − angn
p2
n + angn

,

Q0 = 1, Qn+1 = 1
2Qnεn.

(If p0 = a0, then pn = an and (19.22.13) reduces to
(19.22.11).) As n → ∞, pn and εn converge quadrati-
cally to M(a0, g0) and 0, respectively, and Qn converges
to 0 faster than quadratically. If the last variable of RJ
is negative, then the Cauchy principal value is

19.22.14

RJ
(
0, g2

0 , a
2
0,−q2

0

)
=

−3π
4M(a0, g0)(q2

0 + a2
0)

×

(
2 +

a2
0 − g2

0

q2
0 + g2

0

∞∑
n=0

Qn

)
,

and (19.22.13) still applies, provided that

19.22.15 p2
0 = a2

0(q2
0 + g2

0)/(q2
0 + a2

0).

19.22(iii) Incomplete Integrals

Let x, y, and z have positive real parts, assume p 6= 0,
and retain (19.22.5) and (19.22.6). Define

19.22.16
a = (x+ y)/2,

2z± =
√

(z + x)(z + y)±
√

(z − x)(z − y),
so that

19.22.17

z+z− = za, z2
+ + z2

− = z2 + xy,

z2
+ − z2

− =
√

(z2 − x2)(z2 − y2),

4(z2
± − a2) = (

√
z2 − x2 ±

√
z2 − y2)2.

Then

19.22.18 RF
(
x2, y2, z2

)
= RF

(
a2, z2

−, z
2
+

)
,

19.22.19

(z2
± − z2

∓)RD
(
x2, y2, z2

)
= 2(z2

± − a2)RD
(
a2, z2

∓, z
2
±
)

− 3RF
(
x2, y2, z2

)
+ (3/z),

19.22.20

(p2
± − p2

∓)RJ
(
x2, y2, z2, p2

)
= 2(p2

± − a2)RJ
(
a2, z2

+, z
2
−, p

2
±
)

− 3RF
(
x2, y2, z2

)
+ 3RC

(
z2, p2

)
,

19.22.21
2RG

(
x2, y2, z2

)
= 4RG

(
a2, z2

+, z
2
−
)

− xy RF
(
x2, y2, z2

)
− z,

19.22.22 RC
(
x2, y2

)
= RC

(
a2, ay

)
.

If x, y, z are real and positive, then (19.22.18)–
(19.22.21) are ascending Landen transformations when
x, y < z (implying a < z− < z+), and descending Gauss
transformations when z < x, y (implying z+ < z− < a).
Ascent and descent correspond respectively to increase
and decrease of k in Legendre’s notation. Descending
Gauss transformations include, as special cases, trans-
formations of complete integrals into complete integrals;
ascending Landen transformations do not.

If p = x or p = y, then (19.22.20) reduces to 0 = 0
by (19.20.13), and if z = x or z = y then (19.22.19)
reduces to 0 = 0 by (19.20.20) and (19.22.22). If
x < z < y or y < z < x, then z+ and z− are com-
plex conjugates. However, if x and y are complex con-
jugates and z and p are real, then the right-hand sides of
all transformations in §§19.22(i) and 19.22(iii)—except
(19.22.3) and (19.22.22)—are free of complex numbers
and p2

± − p2
∓ = ±|p2 − x2| 6= 0.

The transformations inverse to the ones just de-
scribed are the descending Landen transformations and
the ascending Gauss transformations. The equations
inverse to (19.22.5) and (19.22.16) are given by

19.22.23

x+ y = 2a, x− y = (2/a )
√

(a2 − z2
+)(a2 − z2

−),

z = z+z−/a ,

and the corresponding equations with z, z+, and z− re-
placed by p, p+, and p−, respectively. These relations
need to be used with caution because y is negative when
0 < a < z+z−

(
z2

+ + z2
−
)−1/2.
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19.23 Integral Representations

In (19.23.1)–(19.23.3) we assume <y > 0 and <z > 0.

19.23.1 RF (0, y, z) =
∫ π/2

0

(y cos2 θ + z sin2 θ)−1/2 dθ,

19.23.2 RG(0, y, z) =
1
2

∫ π/2

0

(y cos2 θ + z sin2 θ)1/2 dθ,

19.23.3

RD(0, y, z) = 3
∫ π/2

0

(y cos2 θ + z sin2 θ)−3/2 sin2 θ dθ.

19.23.4

RF (0, y, z) =
2
π

∫ π/2

0

RC
(
y, z cos2 θ

)
dθ

=
2
π

∫ ∞
0

RC
(
y cosh2 t, z

)
dt.

19.23.5

RF (x, y, z) =
2
π

∫ π/2

0

RC
(
x, y cos2 θ + z sin2 θ

)
dθ,

<y > 0, <z > 0,

19.23.6

4π RF (x, y, z)

=
∫ 2π

0

∫ π

0

sin θ dθ dφ
(x sin2 θ cos2 φ+ y sin2 θ sin2 φ+ z cos2 θ)1/2

,

where x, y, and z have positive real parts—except that
at most one of them may be 0.

In (19.23.7)–(19.23.10) one or more of the variables
may be 0 if the integral converges. In (19.23.8) n = 2,
and in (19.23.9) n = 3. Also, in (19.23.8) and (19.23.10)
B denotes the beta function (§5.12).

19.23.7 RG(x, y, z) =
1
4

∫ ∞
0

1√
t+ x

√
t+ y

√
t+ z

(
x

t+ x
+

y

t+ y
+

z

t+ z

)
t dt, x, y, z ∈ C\(−∞, 0].

19.23.8 R−a(b; z) =
2

B(b1, b2)

∫ π/2

0

(z1 cos2 θ + z2 sin2 θ)
−a

(cos θ)2b1−1(sin θ)2b2−1 dθ, b1, b2 > 0; <z1,<z2 > 0.

With l1, l2, l3 denoting any permutation of sin θ cosφ, sin θ sinφ, cos θ,

19.23.9 R−a(b; z) =
4 Γ(b1 + b2 + b3)
Γ(b1) Γ(b2) Γ(b3)

∫ π/2

0

∫ π/2

0

 3∑
j=1

zj l
2
j

−a 3∏
j=1

l
2bj−1
j sin θ dθ dφ, bj > 0, <zj > 0.

19.23.10

R−a(b; z) =
1

B(a, a′)

∫ 1

0

ua−1(1− u)a
′−1

n∏
j=1

(1− u+ uzj)−bj du, a, a′ > 0; a+ a′ =
∑n
j=1 bj ; zj ∈ C\(−∞, 0].

For generalizations of (19.16.3) and (19.23.8) see
Carlson (1964, (6.2), (6.12), and (6.1)).

19.24 Inequalities

19.24(i) Complete Integrals

The condition y ≤ z for (19.24.1) and (19.24.2) serves
only to identify y as the smaller of the two nonzero
variables of a symmetric function; it does not restrict
validity.

19.24.1

ln 4 ≤
√
z RF (0, y, z) + ln

√
y/z ≤ 1

2π, 0 < y ≤ z,

19.24.2 1
2 ≤ z

−1/2RG(0, y, z) ≤ 1
4π, 0 ≤ y ≤ z,

19.24.3(
y3/2 + z3/2

2

)2/3
≤ 4
π
RG
(
0, y2, z2

)
≤
(
y2 + z2

2

)1/2
,

y > 0, z > 0.

If y, z, and p are positive, then

19.24.4
2
√
p

(2yz+yp+zp)−1/2 ≤ 4
3π

RJ(0, y, z, p)≤ (yzp2)−3/8.

Inequalities for RD(0, y, z) are included as the case
p = z.

A series of successively sharper inequalities is ob-
tained from the AGM process (§19.8(i)) with a0 ≥ g0 >
0:
19.24.5

1
an
≤ 2
π
RF
(
0, a2

0, g
2
0

)
≤ 1
gn

, n = 0, 1, 2, . . . ,

where

19.24.6 an+1 = (an + gn)/2, gn+1 =
√
angn.

Other inequalities can be obtained by applying
Carlson (1966, Theorems 2 and 3) to (19.16.20)–
(19.16.23). Approximations and one-sided inequalities
for RG(0, y, z) follow from those given in §19.9(i) for the
length L(a, b) of an ellipse with semiaxes a and b, since

19.24.7 L(a, b) = 8RG
(
0, a2, b2

)
.
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For x > 0, y > 0, and x 6= y, the complete cases of
RF and RG satisfy

19.24.8
RF (x, y, 0)RG(x, y, 0) > 1

8π
2,

RF (x, y, 0) + 2RG(x, y, 0) > π.

Also, with the notation of (19.24.6),

19.24.9
1
2
g2

1 ≤
RG
(
a2

0, g
2
0 , 0
)

RF (a2
0, g

2
0 , 0)

≤ 1
2
a2

1,

with equality iff a0 = g0.

19.24(ii) Incomplete Integrals

Inequalities for R−a(b; z) in Carlson (1966, Theorems
2 and 3) can be applied to (19.16.14)–(19.16.17). All
variables are positive, and equality occurs iff all vari-
ables are equal.

Examples

19.24.10
3√

x+
√
y +
√
z
≤ RF (x, y, z) ≤ 1

(xyz)1/6
,

19.24.11

(
5√

x+
√
y +
√
z + 2

√
p

)3
≤ RJ(x, y, z, p)

≤ (xyzp2)−3/10,

19.24.12
1
3 (
√
x+
√
y +
√
z)

≤ RG(x, y, z) ≤ min

(√
x+ y + z

3
,
x2 + y2 + z2

3
√
xyz

)
.

Inequalities for RC(x, y) and RD(x, y, z) are included as
special cases (see (19.16.6) and (19.16.5)).

Other inequalities for RF (x, y, z) are given in Carl-
son (1970).

If a (6= 0) is real, all components of b and z are pos-
itive, and the components of z are not all equal, then

19.24.13

Ra(b; z)R−a(b; z) > 1, Ra(b; z) +R−a(b; z) > 2;

see Neuman (2003, (2.13)). Special cases with a = ± 1
2

are (19.24.8) (because of (19.16.20), (19.16.23)), and

19.24.14
RF (x, y, z)RG(x, y, z) > 1,

RF (x, y, z) +RG(x, y, z) > 2.

The same reference also gives upper and lower bounds
for symmetric integrals in terms of their elementary de-
generate cases. These bounds include a sharper but
more complicated lower bound than that supplied in
the next result:

19.24.15

RC
(
x, 1

2 (y + z)
)
≤ RF (x, y, z) ≤ RC(x,

√
yz), x ≥ 0,

with equality iff y = z.

19.25 Relations to Other Functions

19.25(i) Legendre’s Integrals as Symmetric
Integrals

Let k′2 = 1− k2 and c = csc2 φ. Then
19.25.1

K(k) = RF

(
0, k′2, 1

)
, E(k) = 2RG

(
0, k′2, 1

)
,

E(k) = 1
3k
′2
(
RD

(
0, k′2, 1

)
+RD

(
0, 1, k′2

))
,

K(k)− E(k) = k2D(k) = 1
3k

2RD

(
0, k′2, 1

)
,

E(k)− k′2K(k) = 1
3k

2k′
2
RD

(
0, 1, k′2

)
.

19.25.2 Π
(
α2, k

)
−K(k) = 1

3α
2RJ

(
0, k′2, 1, 1− α2

)
.

19.25.3 Π
(
α2, k

)
= 1

2π R− 1
2

(
1
2 ,−

1
2 , 1; k′2, 1, 1− α2

)
,

with Cauchy principal value
19.25.4

Π
(
α2, k

)
= − 1

3 (k2/α2)RJ
(
0, 1− k2, 1, 1− (k2/α2)

)
,

−∞ < k2 < 1 < α2.

19.25.5 F (φ, k) = RF
(
c− 1, c− k2, c

)
,

19.25.6
∂F (φ, k)
∂k

= 1
3k RD

(
c− 1, c, c− k2

)
.

19.25.7

E(φ, k) = 2RG
(
c− 1, c− k2, c

)
− (c− 1)RF

(
c− 1, c− k2, c

)
−
√

(c− 1)(c− k2)/c,

19.25.8 E(φ, k) = R− 1
2

(
1
2 ,−

1
2 ,

3
2 ; c− 1, c− k2, c

)
,

19.25.9

E(φ, k)
= RF

(
c− 1, c− k2, c

)
− 1

3k
2RD

(
c− 1, c− k2, c

)
,

19.25.10

E(φ, k) = k′
2
RF
(
c− 1, c− k2, c

)
+ 1

3k
2k′

2
RD
(
c− 1, c, c− k2

)
+ k2

√
(c− 1)/(c(c− k2)), c > k2,

19.25.11
E(φ, k) = − 1

3k
′2RD

(
c− k2, c, c− 1

)
+
√

(c− k2)/(c(c− 1)), φ 6= 1
2π.

Equations (19.25.9)–(19.25.11) correspond to three
(nonzero) choices for the last variable of RD; see
(19.21.7). All terms on the right-hand sides are non-
negative when k2 ≤ 0, 0 ≤ k2 ≤ 1, or 1 ≤ k2 ≤ c,
respectively.

19.25.12
∂E(φ, k)

∂k
= − 1

3k RD
(
c− 1, c− k2, c

)
.

19.25.13 D(φ, k) = 1
3 RD

(
c− 1, c− k2, c

)
.

19.25.14

Π
(
φ, α2, k

)
−F (φ, k) = 1

3α
2RJ

(
c− 1, c− k2, c, c− α2

)
,

19.25.15

Π
(
φ, α2, k

)
= R− 1

2

(
1
2 ,

1
2 ,−

1
2 , 1; c− 1, c− k2, c, c− α2

)
.
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If α2 > c, then the Cauchy principal value is
19.25.16

Π
(
φ, α2, k

)
= − 1

3ω
2RJ

(
c− 1, c− k2, c, c− ω2

)
+

√
(c− 1)(c− k2)

(α2 − 1)(1− ω2)

× RC
(
c(α2 − 1)(1− ω2), (α2 − c)(c− ω2)

)
,

ω2 = k2/α2.

The transformations in §19.7(ii) result from the sym-
metry and homogeneity of functions on the right-hand
sides of (19.25.5), (19.25.7), and (19.25.14). For exam-
ple, if we write (19.25.5) as

19.25.17 F (φ, k) = RF (x, y, z),

with

19.25.18 (x, y, z) = (c− 1, c− k2, c),

then the five nontrivial permutations of x, y, z that leave
RF invariant change k2 (= (z−y)/(z−x)) into 1/k2, k′2,
1/k′2, −k2/k′

2, −k′2/k2, and sinφ (=
√

(z − x)/z) into
k sinφ, −i tanφ, −ik′ tanφ, (k′ sinφ)/

√
1− k2 sin2 φ,

−ik sinφ/
√

1− k2 sin2 φ. Thus the five permutations
induce five transformations of Legendre’s integrals (and
also of the Jacobian elliptic functions).

The three changes of parameter of Π
(
φ, α2, k

)
in

§19.7(iii) are unified in (19.21.12) by way of (19.25.14).

19.25(ii) Bulirsch’s Integrals as Symmetric
Integrals

Let r = 1/x2. Then
19.25.19

cel(kc, p, a, b) = aRF
(
0, k2

c , 1
)

+ 1
3 (b− pa)RJ

(
0, k2

c , 1, p
)
,

19.25.20

el1(x, kc) = RF
(
r, r + k2

c , r + 1
)
,

19.25.21

el2(x, kc, a, b) = a el1(x, kc)
+ 1

3 (b− a)RD
(
r, r + k2

c , r + 1
)
,

19.25.22

el3(x, kc, p) = el1(x, kc)
+ 1

3 (1− p)RJ
(
r, r + k2

c , r + 1, r + p
)
.

19.25(iii) Symmetric Integrals as Legendre’s
Integrals

Assume 0 ≤ x ≤ y ≤ z, x < z, and p > 0. Let

19.25.23

φ = arccos
√
x/z = arcsin

√
(z − x)/z ,

k =
√
z − y
z − x

, α2 =
z − p
z − x

,

with α 6= 0. Then

19.25.24 (z − x)1/2RF (x, y, z) = F (φ, k),

19.25.25

(z − x)3/2RD(x, y, z) = (3/k2)(F (φ, k)− E(φ, k)),

19.25.26

(z−x)3/2RJ(x, y, z, p) = (3/α2)(Π
(
φ, α2, k

)
− F (φ, k)),

19.25.27

2(z − x)−1/2RG(x, y, z) = E(φ, k) + (cotφ)2 F (φ, k)

+ (cotφ)
√

1− k2 sin2 φ.

19.25(iv) Theta Functions

For relations of symmetric integrals to theta functions,
see §20.9(i).

19.25(v) Jacobian Elliptic Functions

For the notation see §§22.2, 22.15, and 22.16(i).
With 0 ≤ k2 ≤ 1 and p, q, r any permutation of the

letters c, d,n, define

19.25.28 ∆(p, q) = ps2 (u, k)− qs2 (u, k) = −∆(q,p),
which implies

19.25.29 ∆(n,d) = k2, ∆(d, c) = k′
2
, ∆(n, c) = 1.

If cs2 (u, k) ≥ 0, then

19.25.30 am (u, k) = RC
(
cs2 (u, k), ns2 (u, k)

)
,

19.25.31 u = RF
(
ps2 (u, k), qs2 (u, k), rs2 (u, k)

)
;

compare (19.25.35) and (20.9.3).
19.25.32

arcps (x, k) = RF
(
x2, x2 + ∆(q,p), x2 + ∆(r, p)

)
,

19.25.33

arcsp (x, k) = xRF
(
1, 1 + ∆(q, p)x2, 1 + ∆(r,p)x2

)
,

19.25.34
arcpq (x, k) =

√
wRF

(
x2, 1, 1 + ∆(r, q)w

)
,

w = (1− x2)
/

∆(q,p) ,
where we assume 0 ≤ x2 ≤ 1 if x = sn, cn, or cd; x2 ≥ 1
if x = ns, nc, or dc; x real if x = cs or sc; k′ ≤ x ≤ 1
if x = dn; 1 ≤ x ≤ 1/k′ if x = nd; x2 ≥ k′

2 if x = ds;
0 ≤ x2 ≤ 1/k′2 if x = sd.

For the use of R-functions with ∆(p, q) in unifying
other properties of Jacobian elliptic functions, see Carl-
son (2004, 2006a,b, 2008).

Inversions of 12 elliptic integrals of the first
kind, producing the 12 Jacobian elliptic functions,
are combined and simplified by using the properties
of RF (x, y, z). See (19.29.19), Carlson (2005), and
(22.15.11), and compare with Abramowitz and Ste-
gun (1964, Eqs. (17.4.41)–(17.4.52)). For analogous
integrals of the second kind, which are not invertible
in terms of single-valued functions, see (19.29.20) and
(19.29.21) and compare with Gradshteyn and Ryzhik
(2000, §3.153,1–10 and §3.156,1–9).



19.26 Addition Theorems 509

19.25(vi) Weierstrass Elliptic Functions

For the notation see §23.2.

19.25.35 z = RF (℘(z)− e1, ℘(z)− e2, ℘(z)− e3),

provided that

19.25.36 ℘(z)− ej ∈ C\(−∞, 0], j = 1, 2, 3,

and the left-hand side does not vanish for more than
one value of j. Also,
19.25.37

ζ(z) + z ℘(z) = 2RG(℘(z)− e1, ℘(z)− e2, ℘(z)− e3).

In (19.25.38) and (19.25.39) j, k, ` is any permuta-
tion of the numbers 1, 2, 3.

19.25.38 ωj = RF (0, ej − ek, ej − e`),

19.25.39 ηj + ωjej = 2RG(0, ej − ek, ej − e`).
Lastly,

19.25.40 z = σ(z)RF
(
σ2

1(z), σ2
2(z), σ2

3(z)
)
,

where
19.25.41

σj(z) = exp(−ηjz)σ(z + ωj)/ σ(ωj), j = 1, 2, 3.

19.25(vii) Hypergeometric Function

19.25.42 2F1(a, b; c; z) = R−a(b, c− b; 1− z, 1),

19.25.43

R−a(b1, b2; z1, z2) = z−a2 2F1(a, b1; b1 + b2; 1− (z1/z2)).

For these results and extensions to the Appell function
F1 (§16.13) and Lauricella’s function FD see Carlson
(1963). (F1 and FD are equivalent to the R-function of
3 and n variables, respectively, but lack full symmetry.)

19.26 Addition Theorems

19.26(i) General Formulas

In this subsection, and also §§19.26(ii) and 19.26(iii), we
assume that λ, x, y, z are positive, except that at most
one of x, y, z can be 0.

19.26.1
RF (x+ λ, y + λ, z + λ)

+RF (x+ µ, y + µ, z + µ) = RF (x, y, z),

where µ > 0 and
19.26.2

x+ µ = λ−2
(√

(x+ λ)yz +
√
x(y + λ)(z + λ)

)2
,

with corresponding equations for y + µ and z + µ ob-
tained by permuting x, y, z. Also,

19.26.3
√
z =

ξζ ′ + η′ζ − ξη′√
ξηζ ′ +

√
ξ′η′ζ

,

where

19.26.4
(ξ, η, ζ) = (x+ λ, y + λ, z + λ),

(ξ′, η′, ζ ′) = (x+ µ, y + µ, z + µ),

with
√
x and

√
y obtained by permuting x, y, and z.

(Note that ξζ ′+ η′ζ− ξη′ = ξ′ζ+ ηζ ′− ξ′η.) Equivalent
forms of (19.26.2) are given by

19.26.5
µ = λ−2

(√
xyz +

√
(x+ λ)(y + λ)(z + λ)

)2
− λ− x− y − z,

and

19.26.6 (λµ−xy−xz− yz)2 = 4xyz(λ+µ+x+ y+ z).

Also,

19.26.7

RD(x+ λ, y + λ, z + λ) +RD(x+ µ, y + µ, z + µ)

= RD(x, y, z)− 3√
z(z + λ)(z + µ)

,

19.26.8

2RG(x+ λ, y + λ, z + λ) + 2RG(x+ µ, y + µ, z + µ)
= 2RG(x, y, z) + λRF (x+ λ, y + λ, z + λ)

+ µRF (x+ µ, y + µ, z + µ) +
√
λ+ µ+ x+ y + z.

19.26.9

RJ(x+ λ, y + λ, z + λ, p+ λ)
+RJ(x+ µ, y + µ, z + µ, p+ µ)

= RJ(x, y, z, p)− 3RC(γ − δ, γ),

where

19.26.10

γ = p(p+ λ)(p+ µ), δ = (p− x)(p− y)(p− z).
Lastly,

19.26.11

RC(x+ λ, y + λ) +RC(x+ µ, y + µ) = RC(x, y),

where λ > 0, y > 0, x ≥ 0, and

19.26.12
x+ µ = λ−2(

√
x+ λy +

√
x(y + λ))2,

y + µ = (y(y + λ)/λ2)(
√
x+
√
x+ λ)2.

Equivalent forms of (19.26.11) are given by

19.26.13
RC
(
α2, α2 − θ

)
+RC

(
β2, β2 − θ

)
= RC

(
σ2, σ2 − θ

)
, σ = (αβ + θ)/(α+ β),

where 0 < γ2−θ < γ2 for γ = α, β, σ, except that σ2−θ
can be 0, and

19.26.14

(p− y)RC(x, p) + (q − y)RC(x, q)
= (η − ξ)RC(ξ, η), x ≥ 0, y ≥ 0; p, q ∈ R\{0},

where

19.26.15
(p− x)(q − x) = (y − x)2, ξ = y2/x,

η = pq/x, η − ξ = p+ q − 2y.
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19.26(ii) Case x = 0

If x = 0, then λµ = yz. For example,
19.26.16

RF (λ, y + λ, z + λ)
= RF (0, y, z)−RF (µ, y + µ, z + µ), λµ = yz.

An equivalent version for RC is

19.26.17

√
αRC(β, α+ β) +

√
β RC(α, α+ β)

= π/2, α, β ∈ C\(−∞, 0), α+ β > 0.

19.26(iii) Duplication Formulas

19.26.18

RF (x, y, z) = 2RF (x+ λ, y + λ, z + λ)

= RF

(
x+ λ

4
,
y + λ

4
,
z + λ

4

)
,

where

19.26.19 λ =
√
x
√
y +
√
y
√
z +
√
z
√
x.

19.26.20

RD(x, y, z) = 2RD(x+ λ, y + λ, z + λ) +
3√

z(z + λ)
.

19.26.21
2RG(x, y, z) = 4RG(x+ λ, y + λ, z + λ)

−λRF (x, y, z)−
√
x−√y−

√
z.

19.26.22
RJ(x, y, z, p) = 2RJ(x+ λ, y + λ, z + λ, p+ λ)

+ 3RC
(
α2, β2

)
,

where
19.26.23

α = p(
√
x+
√
y +
√
z) +

√
x
√
y
√
z, β =

√
p(p+ λ),

β ± α = (
√
p±
√
x)(
√
p±√y)(

√
p±
√
z),

β2 − α2 = (p− x)(p− y)(p− z),
either upper or lower signs being taken throughout.

The equations inverse to z+λ = (
√
z+
√
x)(
√
z+
√
y)

and the two other equations obtained by permuting
x, y, z (see (19.26.19)) are

19.26.24
z = (ξζ + ηζ − ξη)2/(4ξηζ),

(ξ, η, ζ) = (x+ λ, y + λ, z + λ),
and two similar equations obtained by exchanging z
with x (and ζ with ξ), or z with y (and ζ with η).

Next,
19.26.25

RC(x, y) = 2RC(x+ λ, y + λ), λ = y + 2
√
x
√
y.

Equivalent forms are given by (19.22.22). Also,

19.26.26
RC
(
x2, y2

)
= RC

(
a2, ay

)
,

a = (x+ y)/2, <x ≥ 0, <y > 0,
and
19.26.27

RC
(
x2, x2 − θ

)
= 2RC

(
s2, s2 − θ

)
,

s = x+
√
x2 − θ, θ 6= x2 or s2.

19.27 Asymptotic Approximations and
Expansions

19.27(i) Notation

Throughout this section
19.27.1

a = 1
2 (x+ y), b = 1

2 (y + z), c = 1
3 (x+ y + z),

f = (xyz)1/3, g = (xy)1/2, h = (yz)1/2.

19.27(ii) RF (x, y, z)

Assume x, y, and z are real and nonnegative and at
most one of them is 0. Then
19.27.2

RF (x, y, z) =
1

2
√
z

(
ln

8z
a+ g

)(
1 +O

(a
z

))
, a/z → 0.

19.27.3

RF (x, y, z) = RF (0, y, z)− 1√
h

(√
x

h
+O

(x
h

))
,

x/h→ 0.

19.27(iii) RG(x, y, z)

Assume x, y, and z are real and nonnegative and at
most one of them is 0. Then

19.27.4 RG(x, y, z) =
√
z

2

(
1 +O

(a
z

ln
z

a

))
, a/z → 0.

19.27.5

RG(x, y, z) = RG(0, y, z) +
√
xO
(√

x/h
)

, x/h→ 0.

19.27.6

RG(0, y, z)

=
√
z

2
+

y

8
√
z

(
ln
(

16z
y

)
− 1
) (

1 +O
(y
z

))
,

y/z → 0.

19.27(iv) RD(x, y, z)

Assume x and y are real and nonnegative, at most one
of them is 0, and z > 0. Then
19.27.7

RD(x, y, z) =
3

2z3/2

(
ln
(

8z
a+ g

)
− 2
)(

1 +O
(a
z

))
,

a/z → 0.
19.27.8

RD(x, y, z) =
3
√
xyz
− 6
xy

RG(x, y, 0)
(

1 +O

(
z

g

))
,

z/g → 0.
19.27.9

RD(x, y, z) =
3√

xz(
√
y +
√
z)

(
1 +O

(
b

x
ln
x

b

))
,

b/x→ 0.
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19.27.10

RD(x, y, z) = RD(0, y, z)− 3
√
x

hz

(
1 +O

(√
x

h

))
,

x/h→ 0.

19.27(v) RJ(x, y, z, p)

Assume x, y, and z are real and nonnegative, at most
one of them is 0, and p > 0. Then
19.27.11

RJ(x, y, z, p) =
3
p
RF (x, y, z)− 3π

2p3/2

(
1 +O

(√
c

p

))
,

c/p→ 0.
19.27.12

RJ(x, y, z, p) =
3

2
√
xyz

(
ln
(

4f
p

)
− 2
)(

1 +O

(
p

f

))
,

p/f → 0.
19.27.13

RJ(x, y, z, p) =
3

2
√
zp

(
ln
(

8z
a+ g

)
− 2RC

(
1,
p

z

)
+O

((
a

z
+
a

p

)
ln
p

a

))
,

max(x, y)/min(z, p)→ 0.
19.27.14

RJ(x, y, z, p) =
3
√
yz

RC(x, p)− 6
yz

RG(0, y, z)

+O

(√
x+ 2p
yz

)
,

max(x, p)/min(y, z)→ 0.
19.27.15

RJ(x, y, z, p) = RJ(0, y, z, p)

− 3
√
x

hp

(
1 +O

((
b

h
+
h

p

)√
x

h

))
,

x/min(y, z, p)→ 0.
19.27.16

RJ(x, y, z, p) = (3/
√
x)RC

(
(h+ p)2, 2(b+ h)p

)
+O

(
1

x3/2
ln

x

b+ h

)
,

max(y, z, p)/x→ 0.

19.27(vi) Asymptotic Expansions

The approximations in §§19.27(i)–19.27(v) are furnished
with upper and lower bounds by Carlson and Gustafson
(1994), sometimes with two or three approximations of
differing accuracies. Although they are obtained (with
some exceptions) by approximating uniformly the in-
tegrand of each elliptic integral, some occur also as
the leading terms of known asymptotic series with er-
ror bounds (Wong (1983, §4), Carlson and Gustafson
(1985), López (2000, 2001)). These series converge but

not fast enough, given the complicated nature of their
terms, to be very useful in practice.

A similar (but more general) situation prevails for
R−a(b; z) when some of the variables z1, . . . , zn are
smaller in magnitude than the rest; see Carlson (1985,
(4.16)–(4.19) and (2.26)–(2.29)).

19.28 Integrals of Elliptic Integrals

In (19.28.1)–(19.28.3) we assume <σ > 0. Also, B again
denotes the beta function (§5.12).

19.28.1

∫ 1

0

tσ−1RF (0, t, 1) dt = 1
2

(
B
(
σ, 1

2

))2
,

19.28.2

∫ 1

0

tσ−1RG(0, t, 1) dt =
σ

4σ + 2
(
B
(
σ, 1

2

))2
,

19.28.3∫ 1

0

tσ−1(1− t)RD(0, t, 1) dt =
3

4σ + 2
(
B
(
σ, 1

2

))2
.

19.28.4

∫ 1

0

tσ−1(1− t)c−1R−a(b1, b2; t, 1) dt

=
Γ(c) Γ(σ) Γ(σ + b2 − a)
Γ(σ + c− a) Γ(σ + b2)

,

c = b1 + b2 > 0, <σ > max(0, a− b2).

In (19.28.5)–(19.28.9) we assume x, y, z, and p are
real and positive.

19.28.5

∫ ∞
z

RD(x, y, t) dt = 6RF (x, y, z),

19.28.6∫ 1

0

RD
(
x, y, v2z + (1− v2)p

)
dv = RJ(x, y, z, p).

19.28.7

∫ ∞
0

RJ
(
x, y, z, r2

)
dr = 3

2π RF (xy, xz, yz),

19.28.8∫ ∞
0

RJ(tx, y, z, tp) dt =
6
√
p
RC(p, x)RF (0, y, z).

19.28.9∫ π/2

0

RF
(
sin2 θ cos2(x+ y), sin2 θ cos2(x− y), 1

)
dθ

= RF
(
0, cos2 x, 1

)
RF
(
0, cos2 y, 1

)
,

19.28.10∫ ∞
0

RF
(
(ac+ bd)2, (ad+ bc)2, 4abcd cosh2 z

)
dz

= 1
2 RF

(
0, a2, b2

)
RF
(
0, c2, d2

)
, a, b, c, d > 0.

See also (19.16.24). To replace a single component
of z in R−a(b; z) by several different variables (as in
(19.28.6)), see Carlson (1963, (7.9)).
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19.29 Reduction of General Elliptic
Integrals

19.29(i) Reduction Theorems

These theorems reduce integrals over a real interval
(y, x) of certain integrands containing the square root
of a quartic or cubic polynomial to symmetric integrals
over (0,∞) containing the square root of a cubic poly-
nomial (compare §19.16(i)). Let

19.29.1
Xα =

√
aα + bαx, Yα =

√
aα + bαy,
x > y, 1 ≤ α ≤ 5,

19.29.2 dαβ = aαbβ − aβbα, dαβ 6= 0 if α 6= β,
and assume that the line segment with endpoints aα +
bαx and aα + bαy lies in C\(−∞, 0) for 1 ≤ α ≤ 4. If

19.29.3 s(t) =
4∏

α=1

√
aα + bαt

and α, β, γ, δ is any permutation of the numbers
1, 2, 3, 4, then

19.29.4

∫ x

y

dt

s(t)
= 2RF

(
U2

12, U
2
13, U

2
23

)
,

where
19.29.5

Uαβ = (XαXβYγYδ + YαYβXγXδ)/(x− y),
Uαβ = Uβα = Uγδ = Uδγ , U2

αβ − U2
αγ = dαδdβγ .

There are only three distinct U ’s with subscripts ≤ 4,
and at most one of them can be 0 because the d’s are
nonzero. Then
19.29.6

Uαβ =
√
bα
√
bβYγYδ + YαYβ

√
bγ
√
bδ, x =∞,

Uαβ = XαXβ

√
−bγ

√
−bδ +

√
−bα

√
−bβXγXδ,

y = −∞.
19.29.7∫ x

y

aα + bαt

aδ + bδt

dt

s(t)
= 2

3dαβdαγ RD
(
U2
αβ , U

2
αγ , U

2
αδ

)
+

2XαYα
XδYδUαδ

, Uαδ 6= 0.

19.29.8

∫ x

y

aα + bαt

a5 + b5t

dt

s(t)

=
2
3
dαβdαγdαδ

dα5
RJ
(
U2

12, U
2
13, U

2
23, U

2
α5

)
+ 2RC

(
S2
α5, Q

2
α5

)
, S2

α5 ∈ C\(−∞, 0),
where
19.29.9

U2
α5 = U2

αβ −
dαγdαδdβ5

dα5
= U2

βγ −
dαβdαγdδ5

dα5
6= 0,

Sα5 =
1

x− y

(
XβXγXδ

Xα
Y 2

5 +
YβYγYδ
Yα

X2
5

)
,

Qα5 =
X5Y5

XαYα
Uα5 6= 0, S2

α5 −Q2
α5 =

dβ5dγ5dδ5
dα5

.

The Cauchy principal value is taken when U2
α5 or Q2

α5

is real and negative. Cubic cases of these formulas are
obtained by setting one of the factors in (19.29.3) equal
to 1.

The advantages of symmetric integrals for tables
of integrals and symbolic integration are illustrated by
(19.29.4) and its cubic case, which replace the 8 + 8 +
12 = 28 formulas in Gradshteyn and Ryzhik (2000,
3.147, 3.131, 3.152) after taking x2 as the variable of in-
tegration in 3.152. Moreover, the requirement that one
limit of integration be a branch point of the integrand
is eliminated without doubling the number of standard
integrals in the result. (19.29.7) subsumes all 72 for-
mulas in Gradshteyn and Ryzhik (2000, 3.168), and its
cubic cases similarly replace the 18 + 36 + 18 = 72 for-
mulas in Gradshteyn and Ryzhik (2000, 3.133, 3.142,
and 3.141(1-18)). For example, 3.142(2) is included as
19.29.10∫ b

u

√
a− t

(b− t)(t− c)3
dt = − 2

3 (a− b)(b− u)3/2
RD

+
2

b− c

√
(a− u)(b− u)

u− c
,

a > b > u > c,
where the arguments of the RD function are, in order,
(a− b)(u− c), (b− c)(a− u), (a− b)(b− c).

19.29(ii) Reduction to Basic Integrals

(19.2.3) can be written
19.29.11

I(m) =
∫ x

y

h∏
α=1

(aα + bαt)−1/2
n∏
j=1

(aj + bjt)mj dt,

where x > y, h = 3 or 4, n ≥ h, and mj is an integer.
Define

19.29.12 m = (m1, . . . ,mn) =
n∑
j=1

mjej ,

where ej is an n-tuple with 1 in the jth position and
0’s elsewhere. Define also 0 = (0, . . . , 0) and retain
the notation and conditions associated with (19.29.1)
and (19.29.2). The integrals in (19.29.4), (19.29.7), and
(19.29.8) are I(0), I(eα − eδ), and I(eα − e5), respec-
tively.

The only cases of I(m) that are integrals of the first
kind are the two (h = 3 or 4) with m = 0. The only
cases that are integrals of the third kind are those in
which at least one mj with j > h is a negative integer
and those in which h = 4 and

∑n
j=1mj is a positive

integer. All other cases are integrals of the second kind.
I(m) can be reduced to a linear combination of ba-

sic integrals and algebraic functions. In the cubic case
(h = 3) the basic integrals are

19.29.13 I(0); I(−ej), 1 ≤ j ≤ n.
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In the quartic case (h = 4) the basic integrals are

19.29.14
I(0); I(−ej), 1 ≤ j ≤ n;
I(eα), 1 ≤ α ≤ 4.

Basic integrals of type I(−ej), 1 ≤ j ≤ h, are not lin-
early independent, nor are those of type I(ej), 1 ≤ j ≤
4.

The reduction of I(m) is carried out by a relation de-
rived from partial fractions and by use of two recurrence
relations. These are given in Carlson (1999, (2.19),
(3.5), (3.11)) and simplified in Carlson (2002, (1.10),
(1.7), (1.8)) by means of modified definitions. Partial
fractions provide a reduction to integrals in which m
has at most one nonzero component, and these are then
reduced to basic integrals by the recurrence relations.
A special case of Carlson (1999, (2.19)) is given by

19.29.15

bjI(el − ej) = dljI(−ej) + blI(0), j, l = 1, 2, . . . , n,

which shows how to express the basic integral I(−ej)
in terms of symmetric integrals by using (19.29.4) and
either (19.29.7) or (19.29.8). The first choice gives a
formula that includes the 18+9+18 = 45 formulas in
Gradshteyn and Ryzhik (2000, 3.133, 3.156, 3.158), and
the second choice includes the 8+8+8+12 = 36 formu-
las in Gradshteyn and Ryzhik (2000, 3.151, 3.149, 3.137,
3.157) (after setting x2 = t in some cases).

If h = 3, then the recurrence relation (Carlson (1999,
(3.5))) has the special case

19.29.16

bβbγI(eα) = dαβdαγI(−eα)

+ 2bα

(
s(x)

aα + bαx
− s(y)
aα + bαy

)
,

where α, β, γ is any permutation of the numbers 1, 2, 3,
and

19.29.17 s(t) =
3∏

α=1

√
aα + bαt.

(This shows why I(eα) is not needed as a basic integral
in the cubic case.) In the quartic case this recurrence
relation has an extra term in I(2eα), and hence I(eα),
1 ≤ α ≤ 4, is a basic integral. It can be expressed
in terms of symmetric integrals by setting a5 = 1 and
b5 = 0 in (19.29.8).

The other recurrence relation is

19.29.18

bqjI(qel) =
q∑
r=0

(
q

r

)
brl d

q−r
lj I(rej), j, l = 1, 2, . . . , n;

see Carlson (1999, (3.11)). An example that uses
(19.29.15)–(19.29.18) is given in §19.34.

For an implementation by James FitzSimons of the
method for reducing I(m) to basic integrals and exten-
sive tables of such reductions, see Carlson (1999) and
Carlson and FitzSimons (2000).

Another method of reduction is given in Gray
(2002). It depends primarily on multivariate recurrence
relations that replace one integral by two or more.

19.29(iii) Examples

The first formula replaces (19.14.4)–(19.14.10). Define
Qj(t) = aj + bjt

2, j = 1, 2, and assume both Q’s are
positive for 0 ≤ y < t < x. Then
19.29.19∫ x

y

dt√
Q1(t)Q2(t)

= RF
(
U2 + a1b2, U

2 + a2b1, U
2
)
,

19.29.20∫ x

y

t2 dt√
Q1(t)Q2(t)

= 1
3a1a2RD

(
U2 + a1b2, U

2 + a2b1, U
2
)

+ (xy/U),
and
19.29.21∫ x

y

dt

t2
√
Q1(t)Q2(t)

= 1
3b1b2RD

(
U2 + a1b2, U

2 + a2b1, U
2
)

+ (xyU)−1,

where
19.29.22

(x2 − y2)U = x
√
Q1(y)Q2(y) + y

√
Q1(x)Q2(x).

If both square roots in (19.29.22) are 0, then the inde-
terminacy in the two preceding equations can be re-
moved by using (19.27.8) to evaluate the integral as
RG(a1b2, a2b1, 0) multiplied either by −2/(b1b2) or by
−2/(a1a2) in the cases of (19.29.20) or (19.29.21), re-
spectively. If x = ∞, then U is found by taking the
limit. For example,
19.29.23∫ ∞

y

dt√
(t2 + a2)(t2 − b2)

= RF
(
y2 + a2, y2 − b2, y2

)
.

Next, for j = 1, 2, define Qj(t) = fj + gjt + hjt
2,

and assume both Q’s are positive for y < t < x. If each
has real zeros, then (19.29.4) may be simpler than

19.29.24

∫ x

y

dt√
Q1(t)Q2(t)

= 4RF (U,U +D12 + V,U +D12 − V ),
where
19.29.25

(x− y)2U = S1S2,

Sj =
(√

Qj(x) +
√
Qj(y)

)2
− hj(x− y)2,

Djl = 2fjhl + 2hjfl − gjgl, V =
√
D2

12 −D11D22.

(The variables of RF are real and nonnegative unless
both Q’s have real zeros and those of Q1 interlace
those of Q2.) If Q1(t) = (a1 + b1t)(a2 + b2t), where
both linear factors are positive for y < t < x, and
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Q2(t) = f2 + g2t + h2t
2, then (19.29.25) is modified

so that

19.29.26

S1 = (X1Y2 + Y1X2)2,

Xj =
√
aj + bjx, Yj =

√
aj + bjy,

D12 = 2a1a2h2 + 2b1b2f2 − (a1b2 + a2b1)g2,

D11 = −(a1b2 − a2b1)2 = −d2
12,

with other quantities remaining as in (19.29.25). In the
cubic case, in which a2 = 1, b2 = 0, (19.29.26) reduces
further to
19.29.27

S1 = (X1 + Y1)2, D12 = 2a1h2 − b1g2, D11 = −b21.
For example, because t3− a3 = (t− a)(t2 + at+ a2),

we find that when 0 ≤ a ≤ y < x

19.29.28

∫ x

y

dt√
t3 − a3

= 4RF
(
U,U − 3a+ 2

√
3a, U − 3a− 2

√
3a
)
,

where
19.29.29

(x− y)2U = (
√
x− a+

√
y − a)2

(
(ξ + η)2 − (x− y)2

)
,

ξ =
√
x2 + ax+ a2, η =

√
y2 + ay + a2.

Lastly, define Q(t2) = f+gt2+ht4 and assume Q(t2)
is positive and monotonic for y < t < x. Then

19.29.30

∫ x

y

dt√
Q(t2)

= 2RF
(
U,U − g + 2

√
fh, U − g − 2

√
fh
)
,

where
19.29.31

(x− y)2U =
(√

Q(x2) +
√
Q(y2)

)2
− h(x2 − y2)2.

For example, if 0 ≤ y ≤ x and a4 ≥ 0, then

19.29.32

∫ x

y

dt√
t4 + a4

= 2RF
(
U,U + 2a2, U − 2a2

)
,

where
19.29.33

(x− y)2U =
(√

x4 + a4 +
√
y4 + a4

)2
− (x2 − y2)2.

Applications

19.30 Lengths of Plane Curves

19.30(i) Ellipse

The arclength s of the ellipse

19.30.1 x = a sinφ, y = b cosφ, 0 ≤ φ ≤ 2π,

with a > b, is given by

19.30.2 s = a

∫ φ

0

√
1− k2 sin2 θ dθ.

When 0 ≤ φ ≤ 1
2π,

19.30.3

s/a = E(φ, k)

= RF
(
c− 1, c− k2, c

)
− 1

3k
2RD

(
c− 1, c− k2, c

)
,

where

19.30.4 k2 = 1− (b2/a2), c = csc2 φ.

Cancellation on the second right-hand side of (19.30.3)
can be avoided by use of (19.25.10).

The length of the ellipse is

19.30.5
L(a, b) = 4aE(k) = 8aRG

(
0, b2/a2, 1

)
= 8RG

(
0, a2, b2

)
= 8abRG

(
0, a−2, b−2

)
,

showing the symmetry in a and b. Approximations and
inequalities for L(a, b) are given in §19.9(i).

Let a2 and b2 be replaced respectively by a2 +λ and
b2+λ, where λ ∈ (−b2,∞), to produce a family of confo-
cal ellipses. As λ increases, the eccentricity k decreases
and the rate of change of arclength for a fixed value of
φ is given by

19.30.6

∂s

∂(1/k)
=
√
a2 − b2 F (φ, k)

=
√
a2 − b2RF

(
c− 1, c− k2, c

)
,

k2 = (a2 − b2)/(a2 + λ), c = csc2 φ.

19.30(ii) Hyperbola

The arclength s of the hyperbola

19.30.7 x = a
√
t+ 1, y = b

√
t, 0 ≤ t <∞,

is given by

19.30.8 s =
1
2

∫ y2/b2

0

√
(a2 + b2)t+ b2

t(t+ 1)
dt.

From (19.29.7), with aδ = 1 and bδ = 0,

19.30.9

s = 1
2I(e1) = − 1

3a
2b2RD

(
r, r + b2 + a2, r + b2

)
+ y

√
r + b2 + a2

r + b2
, r = b4/y2.

For s in terms of E(φ, k), F (φ, k), and an algebraic
term, see Byrd and Friedman (1971, p. 3). See Carlson
(1977b, Ex. 9.4-1 and (9.4-4)) for arclengths of hyper-
bolas and ellipses in terms of R−a that differ only in the
sign of b2.
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19.30(iii) Bernoulli’s Lemniscate

For 0 ≤ θ ≤ 1
4π, the arclength s of Bernoulli’s lemnis-

cate

19.30.10 r2 = 2a2 cos (2θ), 0 ≤ θ ≤ 2π,

is given by

19.30.11

s = 2a2

∫ r

0

dt√
4a4 − t4

=
√

2a2RF (q − 1, q, q + 1),

q = 2a2/r2 = sec(2θ),

or equivalently,

19.30.12
s = aF

(
φ, 1/

√
2
)

,

φ = arcsin
√

2/(q + 1) = arccos(tan θ).

The perimeter length P of the lemniscate is given by

19.30.13
P = 4

√
2a2RF (0, 1, 2) =

√
2a2× 5.24411 51 . . .

= 4aK
(

1/
√

2
)

= a× 7.41629 87 . . . .

For other plane curves with arclength representable
by an elliptic integral see Greenhill (1892, p. 190) and
Bowman (1953, pp. 32–33).

19.31 Probability Distributions

RG(x, y, z) and RF (x, y, z) occur as the expectation val-
ues, relative to a normal probability distribution in R2

or R3, of the square root or reciprocal square root of
a quadratic form. More generally, let A (= [ar,s]) and
B (= [br,s]) be real positive-definite matrices with n
rows and n columns, and let λ1, . . . , λn be the eigen-
values of AB−1. If x is a column vector with elements
x1, x2, . . . , xn and transpose xT, then

19.31.1 xTAx =
n∑
r=1

n∑
s=1

ar,sxrxs,

and

19.31.2

∫
Rn

(xTAx)µ exp
(
−xTBx

)
dx1 · · · dxn

=
πn/2 Γ

(
µ+ 1

2n
)

√
det B Γ

(
1
2n
) Rµ

(
1
2 , . . . ,

1
2 ;λ1, . . . , λn

)
,

µ > − 1
2n.

§19.16(iii) shows that for n = 3 the incomplete cases of
RF and RG occur when µ = −1/2 and µ = 1/2, respec-
tively, while their complete cases occur when n = 2.

For (19.31.2) and generalizations see Carlson
(1972b).

19.32 Conformal Map onto a Rectangle

The function

19.32.1 z(p) = RF (p− x1, p− x2, p− x3),

with x1, x2, x3 real constants, has differential

19.32.2
dz = −1

2

 3∏
j=1

(p− xj)−1/2

 dp,

=p > 0; 0 < ph(p− xj) < π, j = 1, 2, 3.

If

19.32.3 x1 > x2 > x3,

then z(p) is a Schwartz–Christoffel mapping of the open
upper-half p-plane onto the interior of the rectangle in
the z-plane with vertices

19.32.4

z(∞) = 0,

z(x1) = RF (0, x1 − x2, x1 − x3) (> 0),

z(x2) = z(x1) + z(x3),

z(x3) = RF (x3 − x1, x3 − x2, 0)
= −i RF (0, x1 − x3, x2 − x3).

As p proceeds along the entire real axis with the upper
half-plane on the right, z describes the rectangle in the
clockwise direction; hence z(x3) is negative imaginary.

For further connections between elliptic integrals
and conformal maps, see Bowman (1953, pp. 44–85).

19.33 Triaxial Ellipsoids

19.33(i) Surface Area

The surface area of an ellipsoid with semiaxes a, b, c,
and volume V = 4πabc/3 is given by

19.33.1 S = 3V RG
(
a−2, b−2, c−2

)
,

or equivalently,

19.33.2

S

2π
= c2 +

ab

sinφ
(
E(φ, k) sin2 φ+ F (φ, k) cos2 φ

)
,

a ≥ b ≥ c,

where

19.33.3 cosφ =
c

a
, k2 =

a2(b2 − c2)
b2(a2 − c2)

.

Application of (19.16.23) transforms the last quan-
tity in (19.30.5) into a two-dimensional analog of
(19.33.1).

For additional geometrical properties of ellipsoids
(and ellipses), see Carlson (1964, p. 417).
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19.33(ii) Potential of a Charged Conducting
Ellipsoid

If a conducting ellipsoid with semiaxes a, b, c bears an
electric charge Q, then the equipotential surfaces in the
exterior region are confocal ellipsoids:

19.33.4
x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1, λ ≥ 0.

The potential is

19.33.5 V (λ) = QRF
(
a2 + λ, b2 + λ, c2 + λ

)
,

and the electric capacity C = Q/V (0) is given by

19.33.6 1/C = RF
(
a2, b2, c2

)
.

A conducting elliptic disk is included as the case
c = 0.

19.33(iii) Depolarization Factors

Let a homogeneous magnetic ellipsoid with semiaxes
a, b, c, volume V = 4πabc/3, and susceptibility χ be
placed in a previously uniform magnetic field H parallel
to the principal axis with semiaxis c. The external field
and the induced magnetization together produce a uni-
form field inside the ellipsoid with strength H/(1+Lcχ),
where Lc is the demagnetizing factor, given in cgs units
by

19.33.7
Lc = 2πabc

∫ ∞
0

dλ√
(a2 + λ)(b2 + λ)(c2 + λ)3

= V RD
(
a2, b2, c2

)
.

The same result holds for a homogeneous dielectric
ellipsoid in an electric field. By (19.21.8),

19.33.8 La + Lb + Lc = 4π,
where La and Lb are obtained from Lc by permutation
of a, b, and c. Expressions in terms of Legendre’s inte-
grals, numerical tables, and further references are given
by Cronemeyer (1991).

19.33(iv) Self-Energy of an Ellipsoidal
Distribution

Ellipsoidal distributions of charge or mass are used to
model certain atomic nuclei and some elliptical galaxies.
Let the density of charge or mass be
19.33.9

ρ(x, y, z) = f
(√

(x2/α2) + (y2/β2) + (z2/γ2)
)
,

where α, β, γ are dimensionless positive constants. The
contours of constant density are a family of similar,
rather than confocal, ellipsoids. In suitable units the
self-energy of the distribution is given by
19.33.10

U =
1
2

∫
R6

ρ(x, y, z)ρ(x′, y′, z′) dx dy dz dx′ dy′ dz′√
(x− x′)2 + (y − y′)2 + (z − z′)2

.

Subject to mild conditions on f this becomes

19.33.11 U = 1
2 (αβγ)2RF

(
α2, β2, γ2

) ∫ ∞
0

(g(r))2 dr,

where
19.33.12 g(r) = 4π

∫ ∞
r

f(t)t dt.

19.34 Mutual Inductance of Coaxial Circles

The mutual inductance M of two coaxial circles of ra-
dius a and b with centers at a distance h apart is given
in cgs units by
19.34.1

c2M

2π
= ab

∫ 2π

0

(h2 + a2 + b2 − 2ab cos θ)−1/2 cos θ dθ

= 2ab
∫ 1

−1

t dt√
(1 + t)(1− t)(a3 − 2abt)

= 2abI(e5),

where c is the speed of light, and in (19.29.11),

19.34.2 a3 = h2 + a2 + b2, a5 = 0, b5 = 1.
The method of §19.29(ii) uses (19.29.18), (19.29.16),
and (19.29.15) to produce
19.34.3

2abI(e5) = a3I(0)− I(e3) = a3I(0)− r2
+r

2
−I(−e3)

= 2ab(I(0)− r2
−I(e1 − e3)),

where a1 + b1t = 1 + t and

19.34.4 r2
± = a3 ± 2ab = h2 + (a± b)2

is the square of the maximum (upper signs) or minimum
(lower signs) distance between the circles. Application
of (19.29.4) and (19.29.7) with α = 1, aβ + bβt = 1− t,
δ = 3, and aγ + bγt = 1 yields

19.34.5
3c2

8πab
M = 3RF

(
0, r2

+, r
2
−
)
− 2r2

−RD
(
0, r2

+, r
2
−
)
,

or, by (19.21.3),
19.34.6

c2

2π
M = (r2

+ + r2
−)RF

(
0, r2

+, r
2
−
)
− 4RG

(
0, r2

+, r
2
−
)
.

A simpler form of the result is

19.34.7 M = (2/c2)(πa2)(πb2)R− 3
2

(
3
2 ,

3
2 ; r2

+, r
2
−
)
.

References for other inductance problems solvable
in terms of elliptic integrals are given in Grover (1946,
pp. 8 and 283).

19.35 Other Applications

19.35(i) Mathematical

Generalizations of elliptic integrals appear in analysis
of modular theorems of Ramanujan (Anderson et al.
(2000)); analysis of Selberg integrals (Van Diejen and
Spiridonov (2001)); use of Legendre’s relation (19.7.1)
to compute π to high precision (Borwein and Borwein
(1987, p. 26)).
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19.35(ii) Physical

Elliptic integrals appear in lattice models of critical
phenomena (Guttmann and Prellberg (1993)); theories
of layered materials (Parkinson (1969)); fluid dynam-
ics (Kida (1981)); string theory (Arutyunov and Stau-
dacher (2004)); astrophysics (Dexter and Agol (2009)).

Computation

19.36 Methods of Computation

19.36(i) Duplication Method

Numerical differences between the variables of a sym-
metric integral can be reduced in magnitude by succes-
sive factors of 4 by repeated applications of the duplica-
tion theorem, as shown by (19.26.18). When the differ-
ences are moderately small, the iteration is stopped, the
elementary symmetric functions of certain differences
are calculated, and a polynomial consisting of a fixed
number of terms of the sum in (19.19.7) is evaluated.
For RF the polynomial of degree 7, for example, is

19.36.1
1− 1

10E2 + 1
14E3 + 1

24E
2
2 − 3

44E2E3

− 5
208E

3
2 + 3

104E
2
3 + 1

16E
2
2E3,

where the elementary symmetric functions Es are de-
fined by (19.19.4). If (19.36.1) is used instead of its first
five terms, then the factor (3r)−1/6 in Carlson (1995,
(2.2)) is changed to (3r)−1/8.

For a polynomial for both RD and RJ see http:
//dlmf.nist.gov/19.36.i.

Example

Three applications of (19.26.18) yield

19.36.3 RF (1, 2, 4) = RF (z1, z2, z3),
where, in the notation of (19.19.7) with a = − 1

2 and
n = 3,
19.36.4

z1 = 2.10985 99098 8,
z3 = 2.15673 49098 8,
Z1 = 0.00977 77253 5,

z2 = 2.12548 49098 8,
A = 2.13069 32432 1,
Z2 = 0.00244 44313 4,

Z3 = −Z1 − Z2 = −0.01222 21566 9,
E2 = −1.25480 14× 10−4, E3 = −2.9212× 10−7.

The first five terms of (19.36.1) suffice for

19.36.5 RF (1, 2, 4) = 0.68508 58166 . . . .
All cases of RF , RC , RJ , and RD are computed

by essentially the same procedure (after transforming
Cauchy principal values by means of (19.20.14) and
(19.2.20)). Complex values of the variables are allowed,

with some restrictions in the case of RJ that are suf-
ficient but not always necessary. The computation is
slowest for complete cases. For details see Carlson
(1995, 2002) and Carlson and FitzSimons (2000). In
the Appendix of the last reference it is shown how to
compute RJ without computing RC more than once.
Because of cancellations in (19.26.21) it is advisable to
compute RG from RF and RD by (19.21.10) or else to
use §19.36(ii).

Legendre’s integrals can be computed from symmet-
ric integrals by using the relations in §19.25(i). Note the
remark following (19.25.11). If (19.25.9) is used when
0 ≤ k2 ≤ 1, cancellations may lead to loss of significant
figures when k2 is close to 1 and φ > π/4, as shown
by Reinsch and Raab (2000). The cancellations can be
eliminated, however, by using (19.25.10).

Accurate values of F (φ, k) − E(φ, k) for k2 near 0
can be obtained from RD by (19.2.6) and (19.25.13).

19.36(ii) Quadratic Transformations

Complete cases of Legendre’s integrals and symmet-
ric integrals can be computed with quadratic conver-
gence by the AGM method (including Bartky transfor-
mations), using the equations in §19.8(i) and §19.22(ii),
respectively.

The incomplete integrals RF (x, y, z) and RG(x, y, z)
can be computed by successive transformations in which
two of the three variables converge quadratically to a
common value and the integrals reduce to RC , accom-
panied by two quadratically convergent series in the case
of RG; compare Carlson (1965, §§5,6). (In Legendre’s
notation the modulus k approaches 0 or 1.) Let

19.36.6

2an+1 = an +
√
a2
n − c2n,

2cn+1 = an −
√
a2
n − c2n = c2n/(2an+1),

2tn+1 = tn +
√
t2n + θc2n,

where n = 0, 1, 2, . . . , and

19.36.7 0 < c0 < a0, t0 ≥ 0, t20 + θa2
0 ≥ 0, θ = ±1.

Then (19.22.18) implies that

19.36.8 RF
(
t2n, t

2
n + θc2n, t

2
n + θa2

n

)
is independent of n. As n→∞, cn, an, and tn converge
quadratically to limits 0, M , and T , respectively; hence
19.36.9

RF
(
t20, t

2
0 + θc20, t

2
0 + θa2

0

)
= RF

(
T 2, T 2, T 2 + θM2

)
= RC

(
T 2 + θM2, T 2

)
.

If t0 = a0 and θ = −1, so that tn = an, then this pro-
cedure reduces to the AGM method for the complete
integral.

The step from n to n + 1 is an ascending Landen
transformation if θ = 1 (leading ultimately to a hyper-
bolic case of RC) or a descending Gauss transformation
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if θ = −1 (leading to a circular case of RC). If x, y, and
z are permuted so that 0 ≤ x < y < z, then the com-
putation of RF (x, y, z) is fastest if we make c20 ≤ a2

0/2
by choosing θ = 1 when y < (x+ z)/2 or θ = −1 when
y ≥ (x+ z)/2.

Example

We compute RF (1, 2, 4) by setting θ = 1, t0 = c0 = 1,
and a0 =

√
3. Then

19.36.10

c23 = 6.65× 10−12, a2
3 = 2.46209 30206 0 = M2,

t23 = 1.46971 53173 1 = T 2.

Hence
19.36.11

RF (1, 2, 4) = RC
(
T 2 +M2, T 2

)
= 0.68508 58166,

in agreement with (19.36.5). Here RC is computed ei-
ther by the duplication algorithm in Carlson (1995) or
via (19.2.19).

For an error estimate and the corresponding pro-
cedure for RG(x, y, z), see http://dlmf.nist.gov/19.
36.ii.

F (φ, k) can be evaluated by using (19.25.5). E(φ, k)
can be evaluated by using (19.25.7), and RD by using
(19.21.10), but cancellations may become significant.
Thompson (1997, pp. 499, 504) uses descending Lan-
den transformations for both F (φ, k) and E(φ, k). A
summary for F (φ, k) is given in Gautschi (1975, §3).
For computation of K(k) and E(k) with complex k see
Fettis and Caslin (1969) and Morita (1978).

(19.22.20) reduces to 0 = 0 if p = x or p = y, and
(19.22.19) reduces to 0 = 0 if z = x or z = y. Near
these points there will be loss of significant figures in
the computation of RJ or RD.

Descending Gauss transformations of Π
(
φ, α2, k

)
(see (19.8.20)) are used in Fettis (1965) to compute a
large table (see §19.37(iii)). This method loses signif-
icant figures in ρ if α2 and k2 are nearly equal unless
they are given exact values—as they can be for tables.
If α2 = k2, then the method fails, but the function can
be expressed by (19.6.13) in terms of E(φ, k), for which
Neuman (1969) uses ascending Landen transformations.

Computation of Legendre’s integrals of all three
kinds by quadratic transformation is described by
Cazenave (1969, pp. 128–159, 208–230).

Quadratic transformations can be applied to com-
pute Bulirsch’s integrals (§19.2(iii)). The func-
tion cel(kc, p, a, b) is computed by successive Bartky
transformations (Bulirsch and Stoer (1968), Bulirsch
(1969b)). The function el2(x, kc, a, b) is computed by
descending Landen transformations if x is real, or by
descending Gauss transformations if x is complex (Bu-
lirsch (1965a)). Remedies for cancellation when x is
real and near 0 are supplied in Midy (1975). See also
Bulirsch (1969a) and Reinsch and Raab (2000).

Bulirsch (1969a,b) extend Bartky’s transformation
to el3(x, kc, p) by expressing it in terms of the first
incomplete integral, a complete integral of the third
kind, and a more complicated integral to which Bartky’s
method can be applied. The cases k2

c/2 ≤ p < ∞ and
−∞ < p < k2

c/2 require different treatment for numeri-
cal purposes, and again precautions are needed to avoid
cancellations.

19.36(iii) Via Theta Functions

Lee (1990) compares the use of theta functions for com-
putation of K(k), E(k), and K(k)− E(k), 0 ≤ k2 ≤ 1,
with four other methods. Also, see Todd (1975) for a
special case of K(k). For computation of Legendre’s
integral of the third kind, see Abramowitz and Stegun
(1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20).
For integrals of the second and third kinds see Lawden
(1989, §§3.4–3.7).

19.36(iv) Other Methods

Numerical quadrature is slower than most methods for
the standard integrals but can be useful for elliptic in-
tegrals that have complicated representations in terms
of standard integrals. See §3.5.

For series expansions of Legendre’s integrals see
§19.5. Faster convergence of power series for K(k) and
E(k) can be achieved by using (19.5.1) and (19.5.2) in
the right-hand sides of (19.8.12). A three-part computa-
tional procedure for Π

(
φ, α2, k

)
is described by Franke

(1965) for α2 < 1.
When the values of complete integrals are known,

addition theorems with ψ = π/2 (§19.11(ii)) ease the
computation of functions such as F (φ, k) when 1

2π − φ
is small and positive. Similarly, §19.26(ii) eases the com-
putation of functions such as RF (x, y, z) when x (> 0) is
small compared with min(y, z). These special theorems
are also useful for checking computer codes.

19.37 Tables

19.37(i) Introduction

Only tables published since 1960 are included. For ear-
lier tables see Fletcher (1948), Lebedev and Fedorova
(1960), and Fletcher et al. (1962).

19.37(ii) Legendre’s Complete Integrals

Functions K(k) and E(k)

Tabulated for k2 = 0(.01)1 to 6D by Byrd and Friedman
(1971), to 15D for K(k) and 9D for E(k) by Abramowitz
and Stegun (1964, Chapter 17), and to 10D by Fettis
and Caslin (1964).
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Tabulated for k = 0(.01)1 to 10D by Fettis and
Caslin (1964), and for k = 0(.02)1 to 7D by Zhang and
Jin (1996, p. 673).

Tabulated for arcsin k = 0(1◦)90◦ to 6D by Byrd
and Friedman (1971) and to 15D by Abramowitz and
Stegun (1964, Chapter 17).
Functions K(k), K′(k), and iK′(k)/K(k)

Tabulated with k = Reiθ for R = 0(.01)1 and θ =
0(1◦)90◦ to 11D by Fettis and Caslin (1969).
Function exp(−πK′(k)/K(k))(= q(k))

Tabulated for k2 = 0(.01)1 to 6D by Byrd and Friedman
(1971) and to 15D by Abramowitz and Stegun (1964,
Chapter 17).

Tabulated for arcsin k = 0(1◦)90◦ to 6D by Byrd
and Friedman (1971) and to 15D by Abramowitz and
Stegun (1964, Chapter 17).

Tabulated for k2 = 0(.001)1 to 8D by Bel�ıakov et al.
(1962).

19.37(iii) Legendre’s Incomplete Integrals

Functions F (φ, k) and E(φ, k)

Tabulated for φ = 0(5◦)90◦, k2 = 0(.01)1 to 10D by
Fettis and Caslin (1964).

Tabulated for φ = 0(1◦)90◦, k2 = 0(.01)1 to 7S
by Bel�ıakov et al. (1962). (F (φ, k) is presented as
Π(φ, 0, k).)

Tabulated for φ = 0(5◦)90◦, k = 0(.01)1 to 10D by
Fettis and Caslin (1964).

Tabulated for φ = 0(5◦)90◦, arcsin k = 0(1◦)90◦

to 6D by Byrd and Friedman (1971), for φ =
0(5◦)90◦, arcsin k = 0(2◦)90◦ and 5◦(10◦)85◦ to 8D by
Abramowitz and Stegun (1964, Chapter 17), and for
φ = 0(10◦)90◦, arcsin k = 0(5◦)90◦ to 9D by Zhang and
Jin (1996, pp. 674–675).
Function Π

`
φ,α2, k

´
Tabulated (with different notation) for φ = 0(15◦)90◦,
α2 = 0(.1)1, arcsin k = 0(15◦)90◦ to 5D by Abramowitz
and Stegun (1964, Chapter 17), and for φ = 0(15◦)90◦,
α2 = 0(.1)1, arcsin k = 0(15◦)90◦ to 7D by Zhang and
Jin (1996, pp. 676–677).

Tabulated for φ = 5◦(5◦)80◦(2.5◦)90◦, α2 =
−1(.1) − 0.1, 0.1(.1)1, k2 = 0(.05)0.9(.02)1 to 10D by
Fettis and Caslin (1964) (and warns of inaccuracies in
Selfridge and Maxfield (1958) and Paxton and Rollin
(1959)).

Tabulated for φ = 0(1◦)90◦, α2 =
0(.05)0.85, 0.88(.02)0.94(.01)0.98(.005)1, k2 = 0(.01)1
to 7S by Bel�ıakov et al. (1962).

19.37(iv) Symmetric Integrals

Functions RF
`
x2, 1, y2

´
and RG

`
x2, 1, y2

´
Tabulated for x = 0(.1)1, y = 1(.2)6 to 3D by Nellis
and Carlson (1966).

Function RF
`
a2, b2, c2

´
with abc = 1

Tabulated for σ = 0(.05)0.5(.1)1(.2)2(.5)5, cos(3γ) =
−1(.2)1 to 5D by Carlson (1961a). Here
σ2 = 2

3 ((ln a)2 + (ln b)2 + (ln c)2), cos(3γ) =
(4/σ3)(ln a)(ln b)(ln c), and a, b, c are semiaxes of an
ellipsoid with the same volume as the unit sphere.

Check Values

For check values of symmetric integrals with real or com-
plex variables to 14S see Carlson (1995).

19.38 Approximations

Minimax polynomial approximations (§3.11(i)) forK(k)
and E(k) in terms of m = k2 with 0 ≤ m < 1
can be found in Abramowitz and Stegun (1964, §17.3)
with maximum absolute errors ranging from 4×10−5 to
2×10−8. Approximations of the same type for K(k)
and E(k) for 0 < k ≤ 1 are given in Cody (1965a)
with maximum absolute errors ranging from 4×10−5 to
4×10−18. Cody (1965b) gives Chebyshev-series expan-
sions (§3.11(ii)) with maximum precision 25D.

Approximations for Legendre’s complete or incom-
plete integrals of all three kinds, derived by Padé ap-
proximation of the square root in the integrand, are
given in Luke (1968, 1970). They are valid over parts
of the complex k and φ planes. The accuracy is con-
trolled by the number of terms retained in the approxi-
mation; for real variables the number of significant fig-
ures appears to be roughly twice the number of terms
retained, perhaps even for φ near π/2 with the improve-
ments made in the 1970 reference.

19.39 Software

See http://dlmf.nist.gov/19.39.
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Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§19.2 Bulirsch (1965a, 1969a,b), Bulirsch and Stoer
(1968). To prove (19.2.20) evaluate the two parts
of the Cauchy principal value (intervals (0,−y−δ)
and (−y + δ,∞)) using Carlson (1977b, (8.2-2)),
and reduce the first part to RC by Carlson (1977b,
(9.8-4)) with B = C. Apply (19.12.7) to both
parts as δ → 0 and combine the two logarithms.
For (19.2.21) see (19.16.18) and put cos θ = v in
(19.23.8). For (19.2.22) put z = x in (19.23.5) and
interchange x and y.

§19.3 The graphics were produced at NIST.

§19.4 Cazenave (1969, p. 175). (19.4.1)–(19.4.7) follow
by differentiation of the definitions in §19.2(ii).
(19.4.8) agrees also with Edwards (1954, vol. 1,
p. 402) and with expansion to first order in k.
The term on the right side in Byrd and Friedman
(1971, 118.01) has the wrong sign.

§19.5 For (19.5.1)–(19.5.4) put sinφ = 1 and t =√
x in (19.2.4)–(19.2.7). Then compare with

Erdélyi et al. (1953a, 2.1.3(10) and 2.1.1(2)) in the
first three cases, and with Erdélyi et al. (1953a,
5.8.2(5) and 5.7.1(6)) in the fourth case. For
(19.5.5) and (19.5.6) see Kneser (1927, (12) and
p. 218); Byrd and Friedman (1971, 901.00) is in-
correct. (19.5.8) and (19.5.9) follow from Borwein
and Borwein (1987, (2.1.13) and (2.3.17), respec-
tively). For (19.5.10) iterate (19.8.12).

§19.6 For the first line of (19.6.2) put α = k in the
first line of (19.25.2) and use the last line of
(19.25.1). For the second line of (19.6.2), and also
for (19.6.5), use (19.7.8) and (19.6.15). For the
first line of (19.6.6) use (19.6.5) and (19.6.2). For
more detail as k2 → 1− see §19.12. For (19.6.7),
(19.6.8) use (19.2.4), (19.16.6), and (19.25.5). For
(19.6.9), (19.6.10) use (19.2.5). For (19.6.11)–
(19.6.14) Byrd and Friedman (1971, 111.01 and
111.04, p. 10) also needs α sinφ < 1. Start with
(19.25.14). For the second equation of (19.6.12)
use (19.20.8). For (19.6.13) use (19.16.5) with
(19.25.10) and (19.25.11).

§19.7 Three proofs of (19.7.1) are given in Duren
(1991). To prove it from (19.21.1) put z +
1 = 1/k2, use homogeneity, and apply the
penultimate equation in (19.25.1) twice. For

(19.7.4)–(19.7.7) see the penultimate paragraph
in §19.25(i). (19.7.8)–(19.7.10) follow from the
change of parameter for the symmetric integral
of the third kind; see §19.21(iii) and (19.25.14).

§19.8 Cox (1984, 1985), Borwein and Borwein (1987,
Chapter 1), Cazenave (1969, pp. 114–127). To
prove the second equality in (19.8.4), put tan θ =√
t/g0. (19.8.7) is derived from (19.22.12) and

(19.25.14), and (19.8.9) is derived from (19.6.5)
and (19.8.7); see also Carlson (2002). For
(19.8.16) and (19.8.17) replace (φ, k) by (φ2, k2),
and then (φ1, k1) by (φ, k) in (19.8.11) and
(19.8.13). See also Hancock (1958, pp. 74–77) for
proof of (19.8.13) and (19.8.17).

§19.9 For (19.9.1) see Erdélyi et al. (1953b,
§13.8(9),(11)), (19.9.13), (19.6.12), and (19.6.15).
For (19.9.2) and (19.9.3) see Qiu and Vamana-
murthy (1996). For (19.9.4) see Barnard et al.
(2000, (6)); the first inequality was given earlier
by Qiu and Shen (1997, Theorem 2). For (19.9.5)
see Lehto and Virtanen (1973, p. 62). For (19.9.6)
and (19.9.7) see (19.25.1) and (19.16.21) and then
apply Carlson (1966, (2.15)), in which H < H ′

for 0 < k ≤ 1 in both cases. In (19.9.7) the up-
per bound 4/π, which is the smaller of the two
when k2 ≥ 0.855 . . . , is given by Anderson and
Vamanamurthy (1985). For (19.9.8) see (19.25.1),
Neuman (2003, (4.2)), and (19.24.9). For (19.9.9)
see (19.30.5). For (19.9.14) see (19.24.10) and
(19.25.5). For (19.9.15) and (19.9.16) see Carlson
and Gustafson (1985, (1.2), (1.22)).

§19.10 For (19.10.1) see (19.2.17). For (19.10.2) use
(19.6.8).

§19.11 Byerly (1888, pp. 243–245, 256–258), Edwards
(1954, v. 2, pp. 511–513), Cazenave (1969, pp. 83–
85). (19.11.5) can be derived from (19.26.9),
(19.25.26), and (19.11.1).

§19.12 For (19.12.1) and (19.12.2) see Cayley (1895,
p. 54) and Cazenave (1969, pp. 165–169). For
(19.12.4) and (19.12.5) use (19.25.2), (19.27.13),
and (19.6.5). For (19.12.6) and (19.12.7) see Carl-
son and Gustafson (1994, (22),(24)).

§19.14 For (19.14.1)–(19.14.3) see Cazenave (1969,
pp. 286,276). For (19.14.4) use (19.29.19) and
(19.25.24).

§19.16 See Carlson (1977b, (6.8-6), Ex. 6.8-8, and (5.9-
1)). To prove (19.16.12) put t = csc2 θ − csc2 φ in
the first integral in (19.16.9). For (19.16.19) and
(19.16.23) see Carlson (1977b, (5.9-19) and (8.3-
4)). To derive (19.16.24) exchange subscripts 1
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and n in Carlson (1963, (7.4)), put t = s/z1, and
use (19.16.19).

§19.17 The graphics were produced at NIST.

§19.18 (19.18.1) is derived from (19.16.1), (19.16.5),
and (19.18.4). (19.18.2) follows from (19.18.8).
For (19.18.4) and (19.18.5) put t = −a and
c = a + a′ in Carlson (1977b, (5.9-9),(5.9-10)).
(19.18.6) comes from (19.18.8) and (19.20.25). For
(19.18.8) and (19.18.11) see Carlson (1977b, (5.9-
2)). For (19.18.12)–(19.18.17) see Carlson (1977b,
§5.4).

§19.19 To prove (19.19.2) expand the product in
(19.23.10) in powers of u. (19.19.3) is derived from
(19.16.11) and (19.19.2). For (19.19.5) see Carlson
(1979, (A.12)). For (19.19.6) compare (19.16.2)
and (19.16.9).

§19.20 In (19.20.2) put t = 1/
√
s+ 1; alternatively

use (19.29.19). For the second equality replace
t4 by t and apply (5.12.1). For (19.20.3) use Carl-
son (1977b, Ex. 6.9-5 and p. 309) and (19.25.42).
For (19.20.4) use (19.20.5) and (19.16.3). For
(19.20.5) put z = y in (19.21.10). For (19.20.6)
substitute in (19.16.2) and (19.16.5). In (19.20.7)
see (19.27.12) for p → 0+; for p → 0−
use (19.20.17) and (19.6.15). In (19.20.8) the
third equation is proved by partial fractions, and
also implies the first two equations by (19.6.15).
For (19.20.9) put x = 0 in (19.20.13). For
(19.20.10) interchange x and z in (19.27.14) and
use (19.6.15). For (19.20.11) use (19.27.13),
(19.20.17), and (19.27.2). For (19.20.12) see
(19.27.11) and (19.21.12). For (19.20.13) let q = p
in (19.21.12). For (19.20.14) exchange x and z in
(19.21.12) and use (19.2.20). For the third equa-
tion in (19.20.18) put t = y tan2 θ in (19.16.5); for
the fourth equation see (19.27.7). For (19.20.19)
see (19.27.8). For (19.20.20) and (19.20.21) use
(19.16.15), (19.16.9), and Carlson (1977b, Table
8.5-1). In (19.20.22) put t = 1/

√
s+ 1; alterna-

tively use (19.29.20). For the second equality re-
place t4 by t and apply (5.12.1). For (19.20.23)
use Carlson (1977b, Ex. 6.9-5 and p. 309) and
(19.25.42). For (19.20.24)–(19.20.26) see Carlson
(1977b, (6.2-1),(6.8-15)).

§19.21 To prove (19.21.1) see the text following
(19.21.6), use (19.20.10), and analytic continua-
tion. For (19.21.2) put x = 0 in (19.21.9). For
(19.21.3) put x = 0 in (19.21.11) and (19.21.10).
(19.21.6) is equivalent to Zill and Carlson (1970,
(7.15)). For (19.21.8) and (19.21.9) see Carlson
(1977b, (5.9-5),(5.9-6)) and (19.20.25). To obtain

(19.21.7) eliminate RD(z, x, y) between (19.21.8)
and (19.21.9), which follow from Carlson (1977b,
(5.9-5, (6.6-5), and (5.9-6)). For (19.21.10) see
Carlson (1977b, Table 9.3-1). To prove (19.21.11)
write xt/(t + x) = x − (x2/(t + x)) in (19.23.7)
and similarly for y and z. Then use (19.21.9). For
(19.21.12)–(19.21.15) see Zill and Carlson (1970,
(4.6)).

§19.22 In (19.22.18), (19.22.21), and (19.22.20), put
z = 0 to obtain (19.22.1), (19.22.2), and (19.22.4),
respectively. (19.22.3) is derivable from (19.22.2)
and (19.21.3), or more directly by putting p =
y in (19.22.7). For (19.22.7) see Carlson
(1976, (4.14),(4.13)), where (π/4)RL(y, z, p) =
RF (0, y, z) − (p/3)RJ(0, y, z, p). For (19.22.8)–
(19.22.15) iterate the results given in §19.22(i);
see also (19.16.20), (19.16.23), and Carlson (2002,
Section 2). For (19.22.18) see Carlson (1964,
(5.13)). For (19.22.19) put p = z in (19.22.20).
For (19.22.20) see Zill and Carlson (1970, (5.7))
and Carlson (1990, (8.5)). For (19.22.21) see Carl-
son (1964, (5.16)). For (19.22.22) put z = y in
(19.22.18). In the ascending Landen case let k2 =
(z2

+ − z2
−)/(z2

+ − a2) and k2
1 = (z2 − y2)/(z2 − x2)

to get the second equation in (19.8.11). In the de-
scending Gauss case let k2

1 = (a2 − z2
−)/(a2 − z2

+)
and k2 = (z2− y2)/(z2−x2) to get the first equa-
tion in (19.8.11).

§19.23 For (19.23.8) and (19.23.9) see Carlson (1977b,
Exercises 5.9-19, 5.9-20, and p. 306). By
§19.16(iii), (19.23.8) implies (19.23.1)–(19.23.3),
and (19.23.9) implies (19.23.6). Use (19.23.8) to
integrate over θ in (19.23.6) and then permute
variables to prove (19.23.5). To prove (19.23.4)
put z = 0 in (19.23.5), relabel variables, and sub-
stitute cos θ = sech t. For (19.23.7) and (19.23.10)
see Carlson (1977b, (9.1-9) and (6.8-2), respec-
tively).

§19.24 For (19.24.1)–(19.24.3) use (19.9.1) and
(19.9.4). For (19.24.4) see (19.16.22) and Carl-
son (1966, (2.15)). For (19.24.3) see (19.30.5).
(19.24.8) is a special case of (19.24.13). For
(19.24.9) see Neuman (2003, (4.2)).

§19.25 (19.25.1), (19.25.2), and (19.25.3) are derived
from the incomplete cases. For (19.25.4) put c = 1
in (19.25.16). (19.25.5) and (19.25.7) come from
Carlson (1977b, (9.3-2) and (9.3-3)). For (19.25.6)
and (19.25.12) apply (19.18.4) to (19.25.5) and
(19.25.8), respectively. (19.25.8) and (19.25.15)
are special cases of (19.16.12). To get (19.25.9),
(19.25.10), and (19.25.11), let (c − 1, c − k2, c) =
(x, y, z) and eliminate RG between (19.25.7) and
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each of the three forms of (19.25.10) obtained
by permuting x, y and z. For (19.25.13) com-
bine (19.2.6) and (19.25.9). For (19.25.14) see Zill
and Carlson (1970, (2.5)). For (19.25.16) sub-
stitute (19.25.14) in (19.7.8) and use (19.2.20).
For (19.25.19)–(19.25.22) rewrite Bulirsch’s inte-
grals (§19.2(iii)) in terms of Legendre’s integrals,
then use §19.25(i) to convert them to R-functions.
For (19.25.24)–(19.25.27) define c = csc2 φ, write
(x, y, z, p)/(z − x) = (c− 1, c−k2, c, c−α2), then
use (19.25.5), (19.25.9), (19.25.14), and (19.25.7)
to prove (19.25.24), (19.25.25), (19.25.26), and
(19.25.27), respectively. To prove (19.25.29) use
(cs, ds,ns) = (cn, dn, 1)/ sn (suppressing vari-
ables (u,k)). For (19.25.30) see Carlson (2006a,
Comments following proof of Proposition 4.1).
For (19.25.31) see Carlson (2004, (1.8)). In
(19.25.32), (19.25.33), and (19.25.34), substitute
x = ps (u, k), sp (u, k), and pq (u, k), respec-
tively, to recover (19.25.31). To prove (19.25.35)
use (23.6.36), with z = ℘(w) as prescribed in
the text that follows (23.6.36), substitute u =
t + ℘(w) and compare with (19.16.1). Then put
z = ωj to obtain (19.25.38). For (19.25.37) and
(19.25.39) see Carlson (1964, (3.10) and (3.2)).
For (19.25.40) combine Erdélyi et al. (1953b,
§§13.12(22), 13.13(22)) and (19.25.35).

§19.26 Addition theorems (and therefore duplication
theorems) for the symmetric integrals are proved
by Zill and Carlson (1970, §8). For other proofs
of (19.26.1) see Carlson (1977b, §9.7) and Carl-
son (1978, Theorem 3). To prove (19.26.13)
use (19.2.9) to show that 2

√
θ RC

(
σ2, σ2 − θ

)
=

ln
(

(σ +
√
θ)/(σ −

√
θ)
)

, then apply this to all
three terms. To prove (19.26.14) put z = y in
(19.21.12) and use (19.20.8). For (19.26.17) put
θ = −αβ in (19.26.13) and use homogeneity. For
(19.26.18)–(19.26.27) put µ = λ in the formulas
of §19.26(i). For proofs of (19.26.18) not invoking
the addition theorem, see Carlson (1977b, §9.6)
and Carlson (1998, §2). Equations (19.26.25) and
(19.26.20) are degenerate cases of (19.26.18) and
(19.26.22), respectively.

§19.27 Carlson and Gustafson (1994). For (19.27.2)
see Carlson and Gustafson (1985).

§19.28 To prove (19.28.1)–(19.28.3) from (19.28.4) use
§19.16(iii). To prove (19.28.4) expand the R-
function in powers of 1 − t by (19.19.3), inte-
grate term by term, and use Erdélyi et al. (1953a,
2.8(46)). (19.28.5) is equivalent to (19.18.1). In
(19.28.6) let v =

√
u and use Carlson (1963,

(7.9)). In (19.28.7) substitute (19.16.2), change
the order of integration, and use (19.29.4). Use
Carlson (1963, (7.11)) and (19.16.20) to prove
(19.28.8) and (19.28.10). In the first case Carl-
son (1977b, (5.9-21)) is needed; in the sec-
ond case put (z1, z2, ζ1, ζ2) = (a2, b2, c2, d2),
use Carlson (1977b, (9.8-4)), and substitute
t = (ab/cd) exp(2z). To prove (19.28.9) from
(19.28.10), put a = exp (ix) = 1/b, c = exp (iy) =
1/d, cosh z = 1/ sin θ, and on the right-hand side
use (19.22.1).

§19.29 For (19.29.4) see Carlson (1998, (3.6)). For
(19.29.7), a special case of (19.29.8), see also
Carlson (1987, (4.14)). For (19.29.8) see Carl-
son (1999, (4.10)) and Carlson (1988, (5.6)). For
(19.29.10) see Byrd and Friedman (1971, p. 76,
Eq. (234.13), and p. 74) for notation. Then use
Carlson (2006b, (3.2)) with (p, q, r) = (n, d, c) for
reduction to RD. For (19.29.19)–(19.29.33) take
t2 as a new variable where appropriate. Then fac-
tor quadratic polynomials, use (19.29.4), and ap-
ply (19.22.18) to remove any complex quantities.
For (19.29.20) use (19.29.7) with aα+ bαt = t and
aδ + bδt = 1. For (19.29.21) use (19.29.7) with
aα + bαt = 1 and aδ + bδt = t. With regard to
(19.29.28) see Carlson (1977a, p. 238).

§19.30 Carlson (1977b, §9.4 and Ex. 8.3-7, with solu-
tion on p. 312). For (19.30.5) see (19.25.1). For
(19.30.6) use (19.4.6).

§19.32 Carlson (1977b, pp. 234–235). For (19.32.2) use
(19.18.6).

§19.33 Carlson (1977b, pp. 271, 313, (9.4-10), and
Ex. 9.4-3) and Carlson (1961a). For other proofs
of (19.33.1) and (19.33.2) see Watson (1935b),
Bowman (1953, pp. 31–32), and Carlson (1964,
p. 417). For the first equality in (19.33.7) see
Becker and Sauter (1964, p. 106).

§19.34 For (19.34.1) see Becker and Sauter (1964,
p. 194). For (19.34.7) see Carlson (1977b, Ex. 9.3-
2 and p. 313); alternatively, substitute Carlson
(1977b, (9.2-3) and (9.2-2)) in (19.34.6) and use
Carlson (1977b, Table 9.3-2).

§19.36 For the quadratic transformations see Carl-
son (1965, (3.1), (3.2), Sections 5, 6). To
obtain (19.36.6) and (19.36.8) from (19.22.18),
let (x2, y2, z2) = (t2n, t

2
n + θc2n, t

2
n + θa2

n) and
(a2, z2

−, z
2
+) = (t2n+1, t

2
n+1 + θc2n+1, t

2
n+1 + θa2

n+1).
Then use the expression for z2

±−a2 from (19.22.17)
and the definition of a from (19.22.16).
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Notation

20.1 Special Notation

(For other notation see pp. xiv and 873.)
m, n integers.
z (∈ C) the argument.
τ (∈ C) the lattice parameter, =τ > 0.
q (∈ C) the nome, q = eiπτ , 0 < |q| < 1. Since τ is

not a single-valued function of q, it is
assumed that τ is known, even when q is
specified. Most applications concern the
rectangular case <τ = 0, =τ > 0, so that
0 < q < 1 and τ and q are uniquely related.

qα eiαπτ for α ∈ R (resolving issues of choice of
branch).

S1/S2 set of all elements of S1, modulo elements of
S2. Thus two elements of S1/S2 are
equivalent if they are both in S1 and their
difference is in S2. (For an example see
§20.12(ii).)

The main functions treated in this chapter are the
theta functions θj(z|τ) = θj(z, q) where j = 1, 2, 3, 4
and q = eiπτ . When τ is fixed the notation is often ab-
breviated in the literature as θj(z), or even as simply θj ,
it being then understood that the argument is the pri-
mary variable. Sometimes the theta functions are called
the Jacobian or classical theta functions to distinguish
them from generalizations; compare Chapter 21.

Primes on the θ symbols indicate derivatives with
respect to the argument of the θ function.
Other Notations

Jacobi’s original notation: Θ(z|τ), Θ1(z|τ), H(z|τ),
H1(z|τ), respectively, for θ4(u|τ), θ3(u|τ), θ1(u|τ),
θ2(u|τ), where u = z/ θ2

3(0|τ). Here the symbol H de-
notes capital eta. See, for example, Whittaker and Wat-
son (1927, p. 479) and Copson (1935, pp. 405, 411).

Neville’s notation: θs(z|τ), θc(z|τ), θd(z|τ),
θn(z|τ), respectively, for θ2

3(0|τ) θ1(u|τ)/θ′1(0|τ) ,
θ2(u|τ)/θ2(0|τ) , θ3(u|τ)/θ3(0|τ) , θ4(u|τ)/θ4(0|τ) ,
where again u = z/ θ2

3(0|τ). This notation simplifies
the relationship of the theta functions to Jacobian el-
liptic functions (§22.2); see Neville (1951).

McKean and Moll’s notation: ϑj(z|τ) = θj(πz|τ),
j = 1, 2, 3, 4. See McKean and Moll (1999, p. 125).

Additional notations that have been used in the
literature are summarized in Whittaker and Watson
(1927, p. 487).

Properties

20.2 Definitions and Periodic Properties

20.2(i) Fourier Series

20.2.1

θ1(z|τ) = θ1(z, q)

= 2
∞∑
n=0

(−1)nq(n+ 1
2 )2 sin((2n+ 1)z),

20.2.2 θ2(z|τ) = θ2(z, q) = 2
∞∑
n=0

q(n+ 1
2 )2 cos((2n+ 1)z),

20.2.3 θ3(z|τ) = θ3(z, q) = 1 + 2
∞∑
n=1

qn
2

cos(2nz),

20.2.4 θ4(z|τ) = θ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos(2nz).

Corresponding expansions for θ′j(z|τ), j = 1, 2, 3, 4,
can be found by differentiating (20.2.1)–(20.2.4) with
respect to z.

20.2(ii) Periodicity and Quasi-Periodicity

For fixed τ , each θj(z|τ) is an entire function of z with
period 2π; θ1(z|τ) is odd in z and the others are even.
For fixed z, each of θ1(z|τ)/sin z , θ2(z|τ)/cos z , θ3(z|τ),
and θ4(z|τ) is an analytic function of τ for =τ > 0, with
a natural boundary =τ = 0, and correspondingly, an an-
alytic function of q for |q| < 1 with a natural boundary
|q| = 1.

The four points (0, π, π + τπ, τπ) are the vertices of
the fundamental parallelogram in the z-plane; see Figure
20.2.1. The points

20.2.5 zm,n = (m+ nτ)π, m,n ∈ Z,

are the lattice points. The theta functions are quasi-
periodic on the lattice:
20.2.6

θ1(z + (m+ nτ)π|τ) = (−1)m+nq−n
2
e−2inz θ1(z|τ),

20.2.7

θ2(z + (m+ nτ)π|τ) = (−1)mq−n
2
e−2inz θ2(z|τ),

20.2.8

θ3(z + (m+ nτ)π|τ) = q−n
2
e−2inz θ3(z|τ),

20.2.9

θ4(z + (m+ nτ)π|τ) = (−1)nq−n
2
e−2inz θ4(z|τ).
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Figure 20.2.1: z-plane. Fundamental parallelogram. Left-hand diagram is the rectangular case (τ purely imaginary);
right-hand diagram is the general case. • zeros of θ1(z|τ), � zeros of θ2(z|τ), N zeros of θ3(z|τ), � zeros of θ4(z|τ).

20.2(iii) Translation of the Argument by
Half-Periods

With

20.2.10 M ≡M(z|τ) = eiz+(iπτ/4),

20.2.11
θ1(z|τ) =− θ2

(
z + 1

2π
∣∣τ)=−iM θ4

(
z + 1

2πτ
∣∣τ)

= −iM θ3

(
z + 1

2π + 1
2πτ

∣∣τ),
20.2.12

θ2(z|τ) = θ1

(
z + 1

2π
∣∣τ) = M θ3

(
z + 1

2πτ
∣∣τ)

= M θ4

(
z + 1

2π + 1
2πτ

∣∣τ),
20.2.13

θ3(z|τ) = θ4

(
z + 1

2π
∣∣τ) = M θ2

(
z + 1

2πτ
∣∣τ)

= M θ1

(
z + 1

2π + 1
2πτ

∣∣τ),
20.2.14

θ4(z|τ) = θ3

(
z + 1

2π
∣∣τ) = −iM θ1

(
z + 1

2πτ
∣∣τ)

= iM θ2

(
z + 1

2π + 1
2πτ

∣∣τ).
20.2(iv) z-Zeros

For m,n ∈ Z, the z-zeros of θj(z|τ), j = 1, 2, 3, 4,
are (m + nτ)π, (m + 1

2 + nτ)π, (m + 1
2 + (n + 1

2 )τ)π,
(m+ (n+ 1

2 )τ)π respectively.

20.3 Graphics

20.3(i) θ-Functions: Real Variable and Real
Nome

See Figures 20.3.1–20.3.13.

Figure 20.3.1: θj(πx, 0.15), 0 ≤ x ≤ 2, j = 1, 2, 3, 4.

Figure 20.3.2: θ1(πx, q), 0 ≤ x ≤ 2, q = 0.05, 0.5, 0.7,
0.9. For q ≤ qDedekind, θ1(πx, q) is convex in x for
0 < x < 1. Here qDedekind = e−πy0 = 0.19 approx-
imately, where y = y0 corresponds to the maximum
value of Dedekind’s eta function η(iy) as depicted in
Figure 23.16.1.

Figure 20.3.3: θ2(πx, q), 0 ≤ x ≤ 2, q = 0.05, 0.5, 0.7,
0.9.
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Figure 20.3.4: θ3(πx, q), 0 ≤ x ≤ 2, q = 0.05, 0.5, 0.7,
0.9.

Figure 20.3.5: θ4(πx, q), 0 ≤ x ≤ 2, q = 0.05, 0.5, 0.7,
0.9.

�

�

�

Figure 20.3.6: θ1(x, q), 0 ≤ q ≤ 1, x = 0, 0.4, 5, 10, 40.

�

�

Figure 20.3.7: θ2(x, q), 0 ≤ q ≤ 1, x = 0, 0.4, 5, 10, 40.

Figure 20.3.8: θ3(x, q), 0 ≤ q ≤ 1, x = 0, 0.4, 5, 10, 40. Figure 20.3.9: θ4(x, q), 0 ≤ q ≤ 1, x = 0, 0.4, 5, 10, 40.
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Figure 20.3.10: θ1(πx, q), 0 ≤ x ≤ 2, 0 ≤ q ≤ 0.99. Figure 20.3.11: θ2(πx, q), 0 ≤ x ≤ 2, 0 ≤ q ≤ 0.99.

Figure 20.3.12: θ3(πx, q), 0 ≤ x ≤ 2, 0 ≤ q ≤ 0.99. Figure 20.3.13: θ4(πx, q), 0 ≤ x ≤ 2, 0 ≤ q ≤ 0.99.

20.3(ii) θ-Functions: Complex Variable and Real Nome

See Figures 20.3.14–20.3.17. In these graphics, height corresponds to the absolute value of the function and color to
the phase. See also p. xiv.

Figure 20.3.14: θ1(πx+ iy, 0.12), −1 ≤ x ≤ 1, −1 ≤
y ≤ 2.3.

Figure 20.3.15: θ2(πx+ iy, 0.12), −1 ≤ x ≤ 1, −1 ≤
y ≤ 2.3.
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Figure 20.3.16: θ3(πx+ iy, 0.12), −1 ≤ x ≤ 1, −1 ≤
y ≤ 1.5.

Figure 20.3.17: θ4(πx+ iy, 0.12), −1 ≤ x ≤ 1, −1 ≤
y ≤ 1.5.

20.3(iii) θ-Functions: Real Variable and Complex Lattice Parameter

See Figures 20.3.18–20.3.21. In these graphics this subsection, height corresponds to the absolute value of the function
and color to the phase. See also p. xiv.

Figure 20.3.18: θ1(0.1|u+ iv), −1 ≤ u ≤ 1, 0.005 ≤ v ≤
0.5. The value 0.1 of z is chosen arbitrarily since θ1

vanishes identically when z = 0.

Figure 20.3.19: θ2(0|u+ iv), −1 ≤ u ≤ 1, 0.005 ≤ v ≤
0.1.

Figure 20.3.20: θ3(0|u+ iv), −1 ≤ u ≤ 1, 0.005 ≤ v ≤
0.1.

Figure 20.3.21: θ4(0|u+ iv), −1 ≤ u ≤ 1, 0.005 ≤ v ≤
0.1.
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20.4 Values at z = 0

20.4(i) Functions and First Derivatives

20.4.1 θ1(0, q) = θ′2(0, q) = θ′3(0, q) = θ′4(0, q) = 0,

20.4.2 θ′1(0, q) = 2q1/4
∞∏
n=1

(
1− q2n

)3
,

20.4.3 θ2(0, q) = 2q1/4
∞∏
n=1

(
1− q2n

) (
1 + q2n

)2
,

20.4.4 θ3(0, q) =
∞∏
n=1

(
1− q2n

) (
1 + q2n−1

)2
,

20.4.5 θ4(0, q) =
∞∏
n=1

(
1− q2n

) (
1− q2n−1

)2
.

Jacobi’s Identity

20.4.6 θ′1(0, q) = θ2(0, q) θ3(0, q) θ4(0, q).

20.4(ii) Higher Derivatives

20.4.7 θ′′1 (0, q) = θ′′′2 (0, q) = θ′′′3 (0, q) = θ′′′4 (0, q) = 0.

20.4.8
θ′′′1 (0, q)
θ′1(0, q)

= −1 + 24
∞∑
n=1

q2n

(1− q2n)2
.

20.4.9
θ′′2 (0, q)
θ2(0, q)

= −1− 8
∞∑
n=1

q2n

(1 + q2n)2
,

20.4.10
θ′′3 (0, q)
θ3(0, q)

= −8
∞∑
n=1

q2n−1

(1 + q2n−1)2
,

20.4.11
θ′′4 (0, q)
θ4(0, q)

= 8
∞∑
n=1

q2n−1

(1− q2n−1)2
.

20.4.12
θ′′′1 (0, q)
θ′1(0, q)

=
θ′′2 (0, q)
θ2(0, q)

+
θ′′3 (0, q)
θ3(0, q)

+
θ′′4 (0, q)
θ4(0, q)

.

20.5 Infinite Products and Related Results

20.5(i) Single Products

20.5.1

θ1(z, q)

= 2q1/4 sin z
∞∏
n=1

(
1− q2n

)(
1− 2q2n cos(2z) + q4n

)
,

20.5.2

θ2(z, q)

= 2q1/4 cos z
∞∏
n=1

(
1− q2n

)(
1 + 2q2n cos(2z) + q4n

)
,

20.5.3

θ3(z, q) =
∞∏
n=1

(
1− q2n

) (
1 + 2q2n−1 cos(2z) + q4n−2

)
,

20.5.4

θ4(z, q) =
∞∏
n=1

(
1− q2n

) (
1− 2q2n−1 cos(2z) + q4n−2

)
.

20.5.5

θ1(z|τ) = θ′1(0|τ) sin z
∞∏
n=1

sin(nπτ + z) sin(nπτ − z)
sin2(nπτ)

,

20.5.6

θ2(z|τ) = θ2(0|τ) cos z
∞∏
n=1

cos(nπτ + z) cos(nπτ − z)
cos2(nπτ)

,

20.5.7

θ3(z|τ)

= θ3(0|τ)
∞∏
n=1

cos
(
(n− 1

2 )πτ + z
)

cos
(
(n− 1

2 )πτ − z
)

cos2
(
(n− 1

2 )πτ
) ,

20.5.8

θ4(z|τ)

= θ4(0|τ)
∞∏
n=1

sin
(
(n− 1

2 )πτ + z
)

sin
(
(n− 1

2 )πτ − z
)

sin2
(
(n− 1

2 )πτ
) .

Jacobi’s Triple Product

20.5.9

θ3(πz|τ) =
∞∑

n=−∞
p2nqn

2

=
∞∏
n=1

(
1− q2n

) (
1 + q2n−1p2

) (
1 + q2n−1p−2

)
,

where p = eiπz, q = eiπτ .

20.5(ii) Logarithmic Derivatives

When |=z| < π=τ ,
20.5.10

θ′1(z, q)
θ1(z, q)

− cot z = 4 sin(2z)
∞∑
n=1

q2n

1− 2q2n cos(2z) + q4n

= 4
∞∑
n=1

q2n

1− q2n
sin(2nz),

20.5.11

θ′2(z, q)
θ2(z, q)

+ tan z = −4 sin(2z)
∞∑
n=1

q2n

1 + 2q2n cos(2z) + q4n

= 4
∞∑
n=1

(−1)n
q2n

1− q2n
sin(2nz).

The left-hand sides of (20.5.10) and (20.5.11) are re-
placed by their limiting values when cot z or tan z are
undefined.

When |=z| < 1
2π=τ ,

20.5.12

θ′3(z, q)
θ3(z, q)

= −4 sin(2z)
∞∑
n=1

q2n−1

1 + 2q2n−1 cos(2z) + q4n−2

= 4
∞∑
n=1

(−1)n
qn

1− q2n
sin(2nz),



530 Theta Functions

20.5.13

θ′4(z, q)
θ4(z, q)

= 4 sin(2z)
∞∑
n=1

q2n−1

1− 2q2n−1 cos(2z) + q4n−2

= 4
∞∑
n=1

qn

1− q2n
sin(2nz).

With the given conditions the infinite series in
(20.5.10)–(20.5.13) converge absolutely and uniformly
in compact sets in the z-plane.

20.5(iii) Double Products

20.5.14 θ1(z|τ) = z θ′1(0|τ) lim
N→∞

N∏
n=−N

lim
M→∞

M∏
m=−M
|m|+|n|6=0

(
1 +

z

(m+ nτ)π

)
,

20.5.15 θ2(z|τ) = θ2(0|τ) lim
N→∞

N∏
n=−N

lim
M→∞

M∏
m=1−M

(
1 +

z

(m− 1
2 + nτ)π

)
,

20.5.16 θ3(z|τ) = θ3(0|τ) lim
N→∞

N∏
n=1−N

lim
M→∞

M∏
m=1−M

(
1 +

z

(m− 1
2 + (n− 1

2 )τ)π

)
,

20.5.17 θ4(z|τ) = θ4(0|τ) lim
N→∞

N∏
n=1−N

lim
M→∞

M∏
m=−M

(
1 +

z

(m+ (n− 1
2 )τ)π

)
.

These double products are not absolutely convergent;
hence the order of the limits is important. The order
shown is in accordance with the Eisenstein convention
(Walker (1996, §0.3)).

20.6 Power Series

Assume

20.6.1 |πz| < min |zm,n| ,
where zm,n is given by (20.2.5) and the minimum is for
m,n ∈ Z, except m = n = 0. Then

20.6.2 θ1(πz|τ) = πz θ′1(0|τ) exp

− ∞∑
j=1

1
2j
δ2j(τ)z2j

,
20.6.3 θ2(πz|τ) = θ2(0|τ) exp

− ∞∑
j=1

1
2j
α2j(τ)z2j

,
20.6.4 θ3(πz|τ) = θ3(0|τ) exp

− ∞∑
j=1

1
2j
β2j(τ)z2j

,
20.6.5 θ4(πz|τ) = θ4(0|τ) exp

− ∞∑
j=1

1
2j
γ2j(τ)z2j

.
Here the coefficients are given by

20.6.6
δ2j(τ) =

∞∑
n=−∞

∞∑
m=−∞
|m|+|n|6=0

(m+ nτ)−2j ,

20.6.7 α2j(τ) =
∞∑

n=−∞

∞∑
m=−∞

(m− 1
2 + nτ)−2j ,

20.6.8 β2j(τ) =
∞∑

n=−∞

∞∑
m=−∞

(m− 1
2 + (n− 1

2 )τ)−2j ,

20.6.9 γ2j(τ) =
∞∑

n=−∞

∞∑
m=−∞

(m+ (n− 1
2 )τ)−2j ,

and satisfy

20.6.10
α2j(τ) = 22jδ2j(2τ)− δ2j(τ),
β2j(τ) = 22jγ2j(2τ)− γ2j(τ).

In the double series the order of summation is impor-
tant only when j = 1. For further information on δ2j
see §23.9: since the double sums in (20.6.6) and (23.9.1)
are the same, we have δ2n = cn/(2n− 1) when n ≥ 2.

20.7 Identities

20.7(i) Sums of Squares

20.7.1

θ2
3(0, q) θ2

3(z, q) = θ2
4(0, q) θ2

4(z, q) + θ2
2(0, q) θ2

2(z, q),

20.7.2

θ2
3(0, q) θ2

4(z, q) = θ2
2(0, q) θ2

1(z, q) + θ2
4(0, q) θ2

3(z, q),

20.7.3

θ2
2(0, q) θ2

4(z, q) = θ2
3(0, q) θ2

1(z, q) + θ2
4(0, q) θ2

2(z, q),

20.7.4

θ2
2(0, q) θ2

3(z, q) = θ2
4(0, q) θ2

1(z, q) + θ2
3(0, q) θ2

2(z, q).
Also

20.7.5 θ4
3(0, q) = θ4

2(0, q) + θ4
4(0, q).
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20.7(ii) Addition Formulas

20.7.6
θ2

4(0, q) θ1(w + z, q) θ1(w − z, q)
= θ2

3(w, q) θ2
2(z, q)− θ2

2(w, q) θ2
3(z, q),

20.7.7
θ2

4(0, q) θ2(w + z, q) θ2(w − z, q)
= θ2

4(w, q) θ2
2(z, q)− θ2

1(w, q) θ2
3(z, q),

20.7.8
θ2

4(0, q) θ3(w + z, q) θ3(w − z, q)
= θ2

4(w, q) θ2
3(z, q)− θ2

1(w, q) θ2
2(z, q),

20.7.9
θ2

4(0, q) θ4(w + z, q) θ4(w − z, q)
= θ2

3(w, q) θ2
3(z, q)− θ2

2(w, q) θ2
2(z, q).

For these and similar formulas see Lawden (1989, §1.4)
and Whittaker and Watson (1927, pp. 487–488).

20.7(iii) Duplication Formula

20.7.10 θ1(2z, q) = 2
θ1(z, q) θ2(z, q) θ3(z, q) θ4(z, q)

θ2(0, q) θ3(0, q) θ4(0, q)
.

20.7(iv) Transformations of Nome

20.7.11
θ1(z, q) θ2(z, q)
θ1(2z, q2)

=
θ3(z, q) θ4(z, q)
θ4(2z, q2)

= θ4

(
0, q2

)
,

20.7.12

θ1

(
z, q2

)
θ4

(
z, q2

)
θ1(z, q)

=
θ2

(
z, q2

)
θ3

(
z, q2

)
θ2(z, q)

= 1
2 θ2(0, q).

20.7(v) Watson’s Identities

20.7.13

θ1(z, q) θ1(w, q) = θ3

(
z + w, q2

)
θ2

(
z − w, q2

)
− θ2

(
z + w, q2

)
θ3

(
z − w, q2

)
,

20.7.14

θ3(z, q) θ3(w, q) = θ3

(
z + w, q2

)
θ3

(
z − w, q2

)
+ θ2

(
z + w, q2

)
θ2

(
z − w, q2

)
.

20.7(vi) Landen Transformations

With

20.7.15 A ≡ A(τ) = 1/θ4(0|2τ) ,

20.7.16 θ1(2z|2τ) = Aθ1(z|τ) θ2(z|τ),

20.7.17 θ2(2z|2τ) = Aθ1

(
1
4π − z

∣∣τ) θ1

(
1
4π + z

∣∣τ),
20.7.18 θ3(2z|2τ) = Aθ3

(
1
4π − z

∣∣τ) θ3

(
1
4π + z

∣∣τ),
20.7.19 θ4(2z|2τ) = Aθ3(z|τ) θ4(z|τ).

Next, with

20.7.20 B ≡ B(τ) = 1
/(
θ3(0|τ) θ4(0|τ) θ3

(
1
4π
∣∣τ)) ,

20.7.21 θ1(4z|4τ) = B θ1(z|τ) θ1

(
1
4π − z

∣∣τ) θ1

(
1
4π + z

∣∣τ) θ2(z|τ),

20.7.22 θ2(4z|4τ) = B θ2

(
1
8π − z

∣∣τ) θ2

(
1
8π + z

∣∣τ) θ2

(
3
8π − z

∣∣τ) θ2

(
3
8π + z

∣∣τ),
20.7.23 θ3(4z|4τ) = B θ3

(
1
8π − z

∣∣τ) θ3

(
1
8π + z

∣∣τ) θ3

(
3
8π − z

∣∣τ) θ3

(
3
8π + z

∣∣τ),
20.7.24 θ4(4z|4τ) = B θ4(z|τ) θ4

(
1
4π − z

∣∣τ) θ4

(
1
4π + z

∣∣τ) θ3(z|τ).

20.7(vii) Derivatives of Ratios of Theta
Functions

20.7.25
d

dz

(
θ2(z|τ)
θ4(z|τ)

)
= −θ

2
3(0|τ) θ1(z|τ) θ3(z|τ)

θ2
4(z|τ)

.

See Lawden (1989, pp. 19–20). This reference also gives
ten additional identities involving permutations of the
four theta functions.

20.7(viii) Transformations of Lattice Parameter

20.7.26 θ1(z|τ + 1) = eiπ/4 θ1(z|τ),

20.7.27 θ2(z|τ + 1) = eiπ/4 θ2(z|τ),

20.7.28 θ3(z|τ + 1) = θ4(z|τ),

20.7.29 θ4(z|τ + 1) = θ3(z|τ).

In the following equations τ ′ = −1/τ , and all square
roots assume their principal values.

20.7.30 (−iτ)1/2 θ1(z|τ) = −i exp
(
iτ ′z2/π

)
θ1(zτ ′|τ ′),

20.7.31 (−iτ)1/2 θ2(z|τ) = exp
(
iτ ′z2/π

)
θ4(zτ ′|τ ′),

20.7.32 (−iτ)1/2 θ3(z|τ) = exp
(
iτ ′z2/π

)
θ3(zτ ′|τ ′),

20.7.33 (−iτ)1/2 θ4(z|τ) = exp
(
iτ ′z2/π

)
θ2(zτ ′|τ ′).

These are examples of modular transformations; see
§23.15.

20.8 Watson’s Expansions

20.8.1

θ2(0, q) θ3(z, q) θ4(z, q)
θ2(z, q)

= 2
∞∑

n=−∞

(−1)nqn
2
ei2nz

q−ne−iz + qneiz
.

See Watson (1935a). This reference and Bellman (1961,
pp. 46–47) include other expansions of this type.
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20.9 Relations to Other Functions

20.9(i) Elliptic Integrals

With k defined by

20.9.1 k = θ2
2(0|τ)/ θ2

3(0|τ)
and the notation of §19.2(ii), the complete Legendre in-
tegrals of the first kind may be expressed as theta func-
tions:

20.9.2 K(k) = 1
2π θ

2
3(0|τ), K ′(k) = −iτ K(k),

together with (22.2.1).
In the case of the symetric integrals, with the nota-

tion of §19.16(i) we have

20.9.3 RF

(
θ2

2(z, q)
θ2

2(0, q)
,
θ2

3(z, q)
θ2

3(0, q)
,
θ2

4(z, q)
θ2

4(0, q)

)
=
θ′1(0, q)
θ1(z, q)

z,

20.9.4 RF
(
0, θ4

3(0, q), θ4
4(0, q)

)
= 1

2π,

20.9.5 exp

(
−
π RF

(
0, k2, 1

)
RF
(
0, k′2, 1

) ) = q.

20.9(ii) Elliptic Functions and Modular
Functions

See §§22.2 and 23.6(i) for the relations of Jacobian and
Weierstrass elliptic functions to theta functions.

The relations (20.9.1) and (20.9.2) between k and
τ (or q) are solutions of Jacobi’s inversion problem;
see Baker (1995) and Whittaker and Watson (1927,
pp. 480–485).

As a function of τ , k2 is the elliptic modular func-
tion; see Walker (1996, Chapter 7) and (23.15.2),
(23.15.6).

20.9(iii) Riemann Zeta Function

See Koblitz (1993, Ch. 2, §4) and Titchmarsh (1986b,
pp. 21–22). See also §§20.10(i) and 25.2.

20.10 Integrals

20.10(i) Mellin Transforms with respect to the
Lattice Parameter

Let s be a constant such that <s > 2. Then
20.10.1∫ ∞

0

xs−1 θ2

(
0
∣∣ix2

)
dx = 2s(1− 2−s)π−s/2 Γ

(
1
2s
)
ζ(s),

20.10.2

∫ ∞
0

xs−1(θ3

(
0
∣∣ix2

)
− 1) dx = π−s/2 Γ

(
1
2s
)
ζ(s),

20.10.3

∫ ∞
0

xs−1(1− θ4

(
0
∣∣ix2

)
) dx

= (1− 21−s)π−s/2 Γ
(

1
2s
)
ζ(s).

Here ζ(s) again denotes the Riemann zeta function
(§25.2).

For further results see Oberhettinger (1974, pp. 157–
159).

20.10(ii) Laplace Transforms with respect to
the Lattice Parameter

Let s, `, and β be constants such that <s > 0, ` > 0,
and sinh |β| ≤ `. Then

20.10.4

∫ ∞
0

e−st θ1

(
βπ

2`

∣∣∣∣ iπt`2
)
dt

=
∫ ∞

0

e−st θ2

(
(1 + β)π

2`

∣∣∣∣ iπt`2
)
dt

= − `√
s

sinh
(
β
√
s
)

sech
(
`
√
s
)
,

20.10.5

∫ ∞
0

e−st θ3

(
(1 + β)π

2`

∣∣∣∣ iπt`2
)
dt

=
∫ ∞

0

e−st θ4

(
βπ

2`

∣∣∣∣ iπt`2
)
dt

=
`√
s

cosh
(
β
√
s
)

csch
(
`
√
s
)
.

For corresponding results for argument derivatives of
the theta functions see Erdélyi et al. (1954a, pp. 224–
225) or Oberhettinger and Badii (1973, p. 193).

20.10(iii) Compendia

For further integrals of theta functions see Erdélyi et al.
(1954a, pp. 61–62 and 339), Prudnikov et al. (1990,
pp. 356–358), Prudnikov et al. (1992a, §3.41), and Grad-
shteyn and Ryzhik (2000, pp. 627–628).

20.11 Generalizations and Analogs

20.11(i) Gauss Sum

For relatively prime integers m,n with n > 0 and mn
even, the Gauss sum G(m,n) is defined by

20.11.1 G(m,n) =
n−1∑
k=0

e−πik
2m/n;

see Lerch (1903). It is a discrete analog of theta func-
tions. If both m,n are positive, then G(m,n) allows
inversion of its arguments as a modular transformation
(compare (23.15.3) and (23.15.4)):

20.11.2

1√
n
G(m,n) =

1√
n

n−1∑
k=0

e−πik
2m/n

=
e−πi/4√

m

m−1∑
j=0

eπij
2n/m =

e−πi/4√
m

G(−n,m).

This is the discrete analog of the Poisson identity
(§1.8(iv)).
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20.11(ii) Ramanujan’s Theta Function and
q-Series

Ramanujan’s theta function f(a, b) is defined by

20.11.3 f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2,

where a, b ∈ C and |ab| < 1. With the substitutions
a = qe2iz, b = qe−2iz, with q = eiπτ , we have

20.11.4 f(a, b) = θ3(z|τ).

In the case z = 0 identities for theta functions be-
come identities in the complex variable q, with |q| < 1,
that involve rational functions, power series, and contin-
ued fractions; see Adiga et al. (1985), McKean and Moll
(1999, pp. 156–158), and Andrews et al. (1988, §10.7).

20.11(iii) Ramanujan’s Change of Base

As in §20.11(ii), the modulus k of elliptic integrals
(§19.2(ii)), Jacobian elliptic functions (§22.2), and
Weierstrass elliptic functions (§23.6(ii)) can be ex-
panded in q-series via (20.9.1). However, in this case
q is no longer regarded as an independent complex vari-
able within the unit circle, because k is related to the
variable τ = τ(k) of the theta functions via (20.9.2).
This is Jacobi’s inversion problem of §20.9(ii).

The first of equations (20.9.2) can also be written

20.11.5 2F1

(
1
2 ,

1
2 ; 1; k2

)
= θ2

3(0|τ);

see §19.5. Similar identities can be constructed for
2F1

(
1
3 ,

2
3 ; 1; k2

)
, 2F1

(
1
4 ,

3
4 ; 1; k2

)
, and 2F1

(
1
6 ,

5
6 ; 1; k2

)
.

These results are called Ramanujan’s changes of base.
Each provides an extension of Jacobi’s inversion prob-
lem. See Berndt et al. (1995) and Shen (1998). For
applications to rapidly convergent expansions for π see
Chudnovsky and Chudnovsky (1988), and for applica-
tions in the construction of elliptic-hypergeometric se-
ries see Rosengren (2004).

20.11(iv) Theta Functions with Characteristics

Multidimensional theta functions with characteristics
are defined in §21.2(ii) and their properties are described
in §§21.3(ii), 21.5(ii), and 21.6. For specialization to the
one-dimensional theta functions treated in the present
chapter, see Rauch and Lebowitz (1973) and §21.7(iii).

Applications

20.12 Mathematical Applications

20.12(i) Number Theory

For applications of θ3(0, q) to problems involving sums
of squares of integers see §27.13(iv), and for exten-
sions see Estermann (1959), Serre (1973, pp. 106–109),
Koblitz (1993, pp. 176–177), and McKean and Moll
(1999, pp. 142–143).

For applications of Jacobi’s triple product (20.5.9)
to Ramanujan’s τ(n) function and Euler’s pentagonal
numbers see Hardy and Wright (1979, pp. 132–160) and
McKean and Moll (1999, pp. 143–145). For an applica-
tion of a generalization in affine root systems see Mac-
donald (1972).

20.12(ii) Uniformization and Embedding of
Complex Tori

For the terminology and notation see McKean and Moll
(1999, pp. 48–53).

The space of complex tori C/(Z + τZ) (that is,
the set of complex numbers z in which two of these
numbers z1 and z2 are regarded as equivalent if there
exist integers m,n such that z1 − z2 = m + τn) is
mapped into the projective space P 3 via the identifica-
tion z → (θ1(2z|τ), θ2(2z|τ), θ3(2z|τ), θ4(2z|τ)). Thus
theta functions “uniformize” the complex torus. This
ability to uniformize multiply-connected spaces (mani-
folds), or multi-sheeted functions of a complex variable
(Riemann (1899), Rauch and Lebowitz (1973), Siegel
(1988)) has led to applications in string theory (Green
et al. (1988a,b), Krichever and Novikov (1989)), and
also in statistical mechanics (Baxter (1982)).

20.13 Physical Applications

The functions θj(z|τ), j = 1, 2, 3, 4, provide periodic
solutions of the partial differential equation

20.13.1 ∂θ(z|τ)/∂τ = κ ∂2θ(z|τ)
/
∂z2 ,

with κ = −iπ/4.
For τ = it, with α, t, z real, (20.13.1) takes the form

of a real-time t diffusion equation

20.13.2 ∂θ/∂t = α ∂2θ
/
∂z2 ,

with diffusion constant α = π/4. Let z, α, t ∈ R. Then
the nonperiodic Gaussian

20.13.3 g(z, t) =
√

π

4αt
exp
(
− z2

4αt

)
is also a solution of (20.13.2), and it approaches a Dirac
delta (§1.17) at t = 0. These two apparently different
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solutions differ only in their normalization and bound-
ary conditions. From (20.2.3), (20.2.4), (20.7.32), and
(20.7.33),

20.13.4

√
π

4αt

∞∑
n=−∞

e−(nπ+z)2/(4αt) = θ3(z|i4αt/π),

and

20.13.5√
π

4αt

∞∑
n=−∞

(−1)ne−(nπ+z)2/(4αt) = θ4(z|i4αt/π).

Thus the classical theta functions are “periodized”, or
“anti-periodized”, Gaussians; see Bellman (1961, pp. 18,
19). Theta-function solutions to the heat diffusion equa-
tion with simple boundary conditions are discussed in
Lawden (1989, pp. 1–3), and with more general bound-
ary conditions in Körner (1989, pp. 274–281).

In the singular limit =τ → 0+, the functions θj(z|τ),
j = 1, 2, 3, 4, become integral kernels of Feynman path
integrals (distribution-valued Green’s functions); see
Schulman (1981, pp. 194–195). This allows analytic
time propagation of quantum wave-packets in a box, or
on a ring, as closed-form solutions of the time-dependent
Schrödinger equation.

Computation

20.14 Methods of Computation

The Fourier series of §20.2(i) usually converge rapidly
because of the factors q(n+ 1

2 )2 or qn
2
, and provide a

convenient way of calculating values of θj(z|τ). Simi-
larly, their z-differentiated forms provide a convenient
way of calculating the corresponding derivatives. For
instance, the first three terms of (20.2.1) give the value
of θ1(2− i|i) (= θ1(2− i, e−π)) to 12 decimal places.

For values of |q| near 1 the transformations of
§20.7(viii) can be used to replace τ with a value that
has a larger imaginary part and hence a smaller value of
|q|. For instance, to find θ3(z, 0.9) we use (20.7.32) with
q = 0.9 = eiπτ , τ = −i ln(0.9)/π. Then τ ′ = −1/τ =
−iπ/ ln(0.9) and q′ = eiπτ

′
= exp

(
π2/ ln(0.9)

)
=

(2.07 . . . ) × 10−41. Hence the first term of the series
(20.2.3) for θ3(zτ ′|τ ′) suffices for most purposes. In
theory, starting from any value of τ , a finite number
of applications of the transformations τ → τ + 1 and
τ → −1/τ will result in a value of τ with =τ ≥

√
3/2;

see §23.18. In practice a value with, say, =τ ≥ 1/2,
|q| ≤ 0.2, is found quickly and is satisfactory for numer-
ical evaluation.

20.15 Tables

Theta functions are tabulated in Jahnke and Emde
(1945, p. 45). This reference gives θj(x, q), j = 1, 2, 3, 4,
and their logarithmic x-derivatives to 4D for x/π =
0(.1)1, α = 0(9◦)90◦, where α is the modular angle
given by

20.15.1 sinα = θ2
2(0, q)/ θ2

3(0, q) = k.

Spenceley and Spenceley (1947) tabulates
θ1(x, q)/ θ2(0, q), θ2(x, q)/ θ2(0, q), θ3(x, q)/ θ4(0, q),
θ4(x, q)/ θ4(0, q) to 12D for u = 0(1◦)90◦, α = 0(1◦)89◦,
where u = 2x/(π θ2

3(0, q)) and α is defined by (20.15.1),
together with the corresponding values of θ2(0, q) and
θ4(0, q).

Lawden (1989, pp. 270–279) tabulates θj(x, q), j =
1, 2, 3, 4, to 5D for x = 0(1◦)90◦, q = 0.1(.1)0.9, and
also q to 5D for k2 = 0(.01)1.

Tables of Neville’s theta functions θs(x, q), θc(x, q),
θd(x, q), θn(x, q) (see §20.1) and their logarithmic x-
derivatives are given in Abramowitz and Stegun (1964,
pp. 582–585) to 9D for ε, α = 0(5◦)90◦, where (in ra-
dian measure) ε = x/ θ2

3(0, q) = πx/(2K(k)), and α is
defined by (20.15.1).

For other tables prior to 1961 see Fletcher et al.
(1962, pp. 508–514) and Lebedev and Fedorova (1960,
pp. 227–230).

20.16 Software

See http://dlmf.nist.gov/20.16.
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2π as in (20.2.11)–(20.2.14). The
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∏∞
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son (1927, pp. 480–485), Serre (1973, p. 109),
and McKean and Moll (1999, §§3.3, 3.9). For
(20.9.3) combination of (20.4.6) and (23.6.5) –

(23.6.7) yields ℘(z) − ej =
(
v θ′1(0,q) θj+1(v,q)
z θ1(v,q) θj+1(0,q)

)2

,

j = 1, 2, 3, where v = πz/(2ω1). Then by ap-
plication of (19.25.35) and use of the proper-
ties that RF is homogenous and of degree − 1

2
in its three variables (§§19.16(ii), 19.16(iii)), we
derive z = z θ1(v,q)

v θ′1(0,q) RF

(
θ22(v,q)

θ22(0,q)
,
θ23(v,q)

θ23(0,q)
,
θ24(v,q)

θ24(0,q)

)
.

This equation becomes (20.9.3) when the z’s
are cancelled and v is renamed z. For
(20.9.4), from (19.25.1) and Erdélyi et al. (1953b,
13.20(11)) we have K(k) = RF

(
0, θ

4
4(0,q)

θ43(0,q)
, 1
)

=

θ2
3(0, q)RF

(
0, θ4

3(0, q), θ4
4(0, q)

)
, where the sec-

ond equality uses the homogeneity and symme-
try of RF . Comparison with (20.9.2) proves
(20.9.4). For (20.9.5), by (19.25.1) the left side is
exp(−πK(k′)/K(k)), which equals q by Erdélyi
et al. (1953b, 13.19(4)).

§20.10 Bellman (1961, pp. 20–24). For (20.10.1) and
(20.10.3) use §20.7(viii) with appropriate changes
of integration variable. For (20.10.2) use (20.2.3)
with z = 0, τ = it, Bellman (1961, pp. 28–
32), Koblitz (1993, pp. 70–75), and/or Titchmarsh
(1986b, §2.6).

§20.11 Bellman (1961, pp. 38–39), Walker (1996,
pp. 181–182), and McKean and Moll (1999,
pp. 140–147 and 151–152).

§20.13 Whittaker and Watson (1927, p. 470).
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Notation

21.1 Special Notation

(For other notation see pp. xiv and 873.)

g, h positive integers.
Zg Z× Z× · · · × Z (g times).
Rg R× R× · · · × R (g times).
Zg×h set of all g × h matrices with integer

elements.
Ω g × g complex, symmetric matrix with =Ω

strictly positive definite, i.e., a Riemann
matrix.

α,β g-dimensional vectors, with all elements in
[0, 1), unless stated otherwise.

aj jth element of vector a.
Ajk (j, k)th element of matrix A.
a · b scalar product of the vectors a and b.
a ·Ω · b [Ωa] · b = [Ωb] · a.
0g g × g zero matrix.
Ig g × g identity matrix.

J2g

[
0g Ig
−Ig 0g

]
.

Sg set of g-dimensional vectors with elements
in S.

|S| number of elements of the set S.
S1S2 set of all elements of the form

“element of S1 × element of S2”.
S1/S2 set of all elements of S1, modulo elements of

S2. Thus two elements of S1/S2 are
equivalent if they are both in S1 and their
difference is in S2. (For an example see
§20.12(ii).)

a ◦ b intersection index of a and b, two cycles
lying on a closed surface. a ◦ b = 0 if a and b
do not intersect. Otherwise a ◦ b gets an
additive contribution from every intersection
point. This contribution is 1 if the basis of
the tangent vectors of the a and b cycles
(§21.7(i)) at the point of intersection is
positively oriented; otherwise it is −1.∮

a
ω line integral of the differential ω over the

cycle a.

Lowercase boldface letters or numbers are g-
dimensional real or complex vectors, either row or col-
umn depending on the context. Uppercase boldface let-

ters are g × g real or complex matrices.
The main functions treated in this chapter are the

Riemann theta functions θ(z|Ω), and the Riemann theta
functions with characteristics θ

[
α
β

]
(z|Ω).

The function Θ(φ|B) = θ(φ/(2πi)|B/(2πi)) is also
commonly used; see, for example, Belokolos et al. (1994,
§2.5), Dubrovin (1981), and Fay (1973, Chapter 1).

Properties

21.2 Definitions

21.2(i) Riemann Theta Functions

21.2.1 θ(z|Ω) =
∑
n∈Zg

e2πi( 1
2n·Ω·n+n·z).

This g-tuple Fourier series converges absolutely and uni-
formly on compact sets of the z and Ω spaces; hence
θ(z|Ω) is an analytic function of (each element of) z
and (each element of) Ω. θ(z|Ω) is also referred to as
a theta function with g components, a g-dimensional
theta function or as a genus g theta function.

For numerical purposes we use the scaled Riemann
theta function θ̂(z|Ω), defined by (Deconinck et al.
(2004)),

21.2.2 θ̂(z|Ω) = e−π[=z]·[=Ω]−1·[=z] θ(z|Ω).

θ̂(z|Ω) is a bounded nonanalytic function of z. Many
applications involve quotients of Riemann theta func-
tions: the exponential factor then disappears.

Example

21.2.3

θ

(
z1, z2

∣∣∣∣[ i − 1
2

− 1
2 i

])
=

∞∑
n1=−∞

∞∑
n2=−∞

e−π(n2
1+n2

2)e−iπn1n2e2πi(n1z1+n2z2).

With z1 = x1 + iy1, z2 = x2 + iy2,

21.2.4

θ̂

(
x1 + iy1, x2 + iy2

∣∣∣∣[ i − 1
2

− 1
2 i

])
=

∞∑
n1=−∞

∞∑
n2=−∞

e−π(n1+y1)2−π(n2+y2)2

× eπi(2n1x1+2n2x2−n1n2).
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21.2(ii) Riemann Theta Functions with
Characteristics

Let α,β ∈ Rg. Define
21.2.5

θ

[
α

β

]
(z|Ω) =

∑
n∈Zg

e2πi( 1
2 [n+α]·Ω·[n+α]+[n+α]·[z+β]).

This function is referred to as a Riemann theta func-

tion with characteristics
[
α
β

]
. It is a translation of the

Riemann theta function (21.2.1), multiplied by an ex-
ponential factor:
21.2.6

θ

[
α

β

]
(z|Ω) = e2πi( 1

2α·Ω·α+α·[z+β]) θ(z + Ωα+ β|Ω),

and
21.2.7 θ

[
0
0

]
(z|Ω) = θ(z|Ω).

Characteristics whose elements are either 0 or 1
2 are

called half-period characteristics. For given Ω, there are
22g g-dimensional Riemann theta functions with half-
period characteristics.

21.2(iii) Relation to Classical Theta Functions

For g = 1, and with the notation of §20.2(i),

21.2.8 θ(z|Ω) = θ3(πz|Ω),

21.2.9 θ1(πz|Ω) = − θ
[ 1

2
1
2

]
(z|Ω),

21.2.10 θ2(πz|Ω) = θ

[ 1
2

0

]
(z|Ω),

21.2.11 θ3(πz|Ω) = θ

[
0
0

]
(z|Ω),

21.2.12 θ4(πz|Ω) = θ

[
0
1
2

]
(z|Ω).

21.3 Symmetry and Quasi-Periodicity

21.3(i) Riemann Theta Functions

21.3.1 θ(−z|Ω) = θ(z|Ω),

21.3.2 θ(z + m1|Ω) = θ(z|Ω),

when m1 ∈ Zg. Thus θ(z|Ω) is periodic, with period 1,
in each element of z. More generally,
21.3.3

θ(z + m1 + Ωm2|Ω) = e−2πi( 1
2m2·Ω·m2+m2·z) θ(z|Ω),

with m1, m2 ∈ Zg. This is the quasi-periodicity prop-
erty of the Riemann theta function. It determines the
Riemann theta function up to a constant factor. The
set of points m1 + Ωm2 form a g-dimensional lattice,
the period lattice of the Riemann theta function.

21.3(ii) Riemann Theta Functions with
Characteristics

Again, with m1, m2 ∈ Zg

21.3.4 θ

[
α+ m1

β + m2

]
(z|Ω) = e2πiα·m1 θ

[
α

β

]
(z|Ω).

Because of this property, the elements of α and β are
usually restricted to [0, 1), without loss of generality.

21.3.5

θ

[
α

β

]
(z + m1 + Ωm2|Ω)

= e2πi(α·m1−β·m2− 1
2m2·Ω·m2−m2·z) θ

[
α

β

]
(z|Ω).

For Riemann theta functions with half-period charac-
teristics,

21.3.6 θ

[
α

β

]
(−z|Ω) = (−1)4α·β θ

[
α

β

]
(z|Ω).

See also §20.2(iii) for the case g = 1 and classical theta
functions.

21.4 Graphics

Figure 21.4.1 provides surfaces of the scaled Riemann theta function θ̂(z|Ω), with

21.4.1 Ω =
[
1.69098 3006 + 0.95105 6516 i 1.5 + 0.36327 1264 i

1.5 + 0.36327 1264 i 1.30901 6994 + 0.95105 6516 i

]
.

This Riemann matrix originates from the Riemann surface represented by the algebraic curve µ3 − λ7 + 2λ3µ = 0;
compare §21.7(i).
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 21.4.1: θ̂(z|Ω) parametrized by (21.4.1). The surface plots are of θ̂(x+ iy, 0|Ω), 0 ≤ x ≤ 1, 0 ≤ y ≤ 5 (suffix
1); θ̂(x, y|Ω), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (suffix 2); θ̂(ix, iy|Ω), 0 ≤ x ≤ 5, 0 ≤ y ≤ 5 (suffix 3). Shown are the real part
(a), the imaginary part (b), and the modulus (c).

For the scaled Riemann theta functions depicted in Figures 21.4.2–21.4.5

21.4.2 Ω1 =
[
i − 1

2
− 1

2 i

]
,

and

21.4.3 Ω2 =

 − 1
2 + i 1

2 −
1
2 i −

1
2 −

1
2 i

1
2 −

1
2 i i 0

− 1
2 −

1
2 i 0 i

 .
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Figure 21.4.2: <θ̂(x+ iy, 0|Ω1), 0 ≤ x ≤ 1, 0 ≤ y ≤ 5.
(The imaginary part looks very similar.)

Figure 21.4.3:
∣∣∣θ̂(x+ iy, 0|Ω1)

∣∣∣, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

Figure 21.4.4: A real-valued scaled Riemann theta func-
tion: θ̂(ix, iy|Ω1), 0 ≤ x ≤ 4, 0 ≤ y ≤ 4. In this
case, the quasi-periods are commensurable, resulting in
a doubly-periodic configuration.

Figure 21.4.5: The real part of a genus 3 scaled Riemann
theta function: <θ̂(x+ iy, 0, 0|Ω2), 0 ≤ x ≤ 1, 0 ≤
y ≤ 3. This Riemann matrix originates from the genus
3 Riemann surface represented by the algebraic curve
µ3 + 2µ− λ4 = 0; compare §21.7(i).

21.5 Modular Transformations

21.5(i) Riemann Theta Functions

Let A, B, C, and D be g × g matrices with integer
elements such that

21.5.1 Γ =
[
A B
C D

]
is a symplectic matrix, that is,

21.5.2 ΓJ2gΓT = J2g.

Then

21.5.3 det Γ = 1,

and

21.5.4

θ
([

[CΩ + D]−1
]T

z
∣∣∣[AΩ + B][CΩ + D]−1

)
= ξ(Γ)

√
det[CΩ + D]eπiz·[[CΩ+D]−1C]·z θ(z|Ω).

Here ξ(Γ) is an eighth root of unity, that is, (ξ(Γ))8 = 1.
For general Γ, it is difficult to decide which root needs to
be used. The choice depends on Γ, but is independent
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of z and Ω. Equation (21.5.4) is the modular transfor-
mation property for Riemann theta functions.

The modular transformations form a group under
the composition of such transformations, the modular
group, which is generated by simpler transformations,
for which ξ(Γ) is determinate:

21.5.5 Γ =
[
A 0g
0g [A−1]T

]
⇒ θ

(
Az
∣∣AΩAT

)
= θ(z|Ω).

(A invertible with integer elements.)

21.5.6 Γ =
[
Ig B
0g Ig

]
⇒ θ(z|Ω + B) = θ(z|Ω).

(B symmetric with integer elements and even diagonal
elements.)
21.5.7

Γ =
[
Ig B
0g Ig

]
⇒ θ(z|Ω + B) = θ

(
z + 1

2 diag B
∣∣Ω).

(B symmetric with integer elements.) See Heil (1995,
p. 24).
21.5.8

Γ =
[
0g −Ig
Ig 0g

]
⇒ θ

(
Ω−1z

∣∣−Ω−1
)

=
√

det [−iΩ]eπiz·Ω
−1·z θ(z|Ω),

where the square root assumes its principal value.

21.5(ii) Riemann Theta Functions with Characteristics

21.5.9

θ

[
Dα−Cβ + 1

2 diag[CDT]
−Bα+ Aβ + 1

2 diag[ABT]

]([
[CΩ + D]−1

]T
z
∣∣∣[AΩ + B][CΩ + D]−1

)
= κ(α,β,Γ)

√
det[CΩ + D]eπiz·[[CΩ+D]−1C]·z θ

[
α

β

]
(z|Ω),

where κ(α,β,Γ) is a complex number that depends on
α, β, and Γ. However, κ(α,β,Γ) is independent of
z and Ω. For explicit results in the case g = 1, see
§20.7(viii).

21.6 Products

21.6(i) Riemann Identity

Let T = [Tjk] be an arbitrary h× h orthogonal matrix
(that is, TTT = I) with rational elements. Also, let Z
be an arbitrary g × h matrix. Define

21.6.1 K = Zg×hT/(Zg×hT ∩ Zg×h),

that is, K is the set of all g×h matrices that are obtained
by premultiplying T by any g × h matrix with integer
elements; two such matrices in K are considered equiva-
lent if their difference is a matrix with integer elements.
Also, let

21.6.2 D = |TTZh/(TTZh ∩ Zh)|,

that is, D is the number of elements in the set contain-
ing all h-dimensional vectors obtained by multiplying
TT on the right by a vector with integer elements. Two
such vectors are considered equivalent if their difference

is a vector with integer elements. Then

21.6.3

h∏
j=1

θ

(
h∑
k=1

Tjkzk

∣∣∣∣∣Ω
)

=
1
Dg

∑
A∈K

∑
B∈K

e2πi tr[ 1
2ATΩA+AT[Z+B]]

×
h∏
j=1

θ(zj + Ωaj + bj |Ω),

where zj , aj , bj denote respectively the jth columns of
Z, A, B. This is the Riemann identity. On using theta
functions with characteristics, it becomes
21.6.4
h∏
j=1

θ

[∑h
k =1 Tjkck∑h
k =1 Tjkdk

]( h∑
k=1

Tjkzk

∣∣∣∣∣Ω
)

=
1
Dg

∑
A∈K

∑
B∈K

e−2πi
Ph
j=1 bj ·cj

h∏
j=1

θ

[
aj + cj
bj + dj

]
(zj |Ω),

where cj and dj are arbitrary h-dimensional vectors.
Many identities involving products of theta functions
can be established using these formulas.

Example

Let h = 4 and

21.6.5 T =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
Then
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21.6.6

θ

(
x + y + u + v

2

∣∣∣∣Ω) θ(x + y − u− v
2

∣∣∣∣Ω) θ(x− y + u− v
2

∣∣∣∣Ω) θ(x− y − u + v
2

∣∣∣∣Ω)
=

1
2g

∑
α∈ 1

2 Zg/Zg

∑
β∈ 1

2 Zg/Zg
e2πi(2α·Ω·α+α·[x+y+u+v])

× θ(x + Ωα+ β|Ω) θ(y + Ωα+ β|Ω) θ(u + Ωα+ β|Ω) θ(v + Ωα+ β|Ω),
and
21.6.7

θ

[ 1
2 [c1 + c2 + c3 + c4]

1
2 [d1 + d2 + d3 + d4]

](
x + y + u + v

2

∣∣∣∣Ω) θ[ 1
2 [c1 + c2 − c3 − c4]

1
2 [d1 + d2 − d3 − d4]

](
x + y − u− v

2

∣∣∣∣Ω)
× θ

[ 1
2 [c1 − c2 + c3 − c4]

1
2 [d1 − d2 + d3 − d4]

](
x− y + u− v

2

∣∣∣∣Ω) θ[ 1
2 [c1 − c2 − c3 + c4]

1
2 [d1 − d2 − d3 + d4]

](
x− y − u + v

2

∣∣∣∣Ω)
=

1
2g

∑
α∈ 1

2 Zg/Zg

∑
β∈ 1

2 Zg/Zg
e−2πiβ·[c1+c2+c3+c4] θ

[
c1 +α
d1 + β

]
(x|Ω) θ

[
c2 +α
d2 + β

]
(y|Ω) θ

[
c3 +α
d3 + β

]
(u|Ω) θ

[
c4 +α
d4 + β

]
(v|Ω).

21.6(ii) Addition Formulas

Let α, β, γ, δ ∈ Rg. Then

21.6.8

θ

[
α

γ

]
(z1|Ω) θ

[
β

δ

]
(z2|Ω)

=
∑

ν∈Zg/(2Zg)

θ

[ 1
2 [α+ β + ν]

γ + δ

]
(z1 + z2|2Ω)

× θ

[ 1
2 [α− β + ν]

γ − δ

]
(z1 − z2|2Ω).

Thus ν is a g-dimensional vector whose entries are ei-
ther 0 or 1. For this result and a generalization see
Koizumi (1976) and Belokolos et al. (1994, pp. 38–41).
For addition formulas for classical theta functions see
§20.7(ii).

Applications

21.7 Riemann Surfaces

21.7(i) Connection of Riemann Theta
Functions to Riemann Surfaces

In almost all applications, a Riemann theta function is
associated with a compact Riemann surface. Although
there are other ways to represent Riemann surfaces (see
e.g. Belokolos et al. (1994, §2.1)), they are obtainable
from plane algebraic curves (Springer (1957), or Rie-
mann (1851)). Consider the set of points in C2 that
satisfy the equation

21.7.1 P (λ, µ) = 0,
where P (λ, µ) is a polynomial in λ and µ that does
not factor over C2. Equation (21.7.1) determines a

plane algebraic curve in C2, which is made compact by
adding its points at infinity. To accomplish this we write
(21.7.1) in terms of homogeneous coordinates:

21.7.2 P̃ (λ̃, µ̃, η̃) = 0,
by setting λ = λ̃/η̃, µ = µ̃/η̃, and then clearing frac-
tions. This compact curve may have singular points,
that is, points at which the gradient of P̃ vanishes.
Removing the singularities of this curve gives rise to
a two-dimensional connected manifold with a complex-
analytic structure, that is, a Riemann surface. All com-
pact Riemann surfaces can be obtained this way.

Since a Riemann surface Γ is a two-dimensional man-
ifold that is orientable (owing to its analytic structure),
its only topological invariant is its genus g (the number
of handles in the surface). On this surface, we choose 2g
cycles (that is, closed oriented curves, each with at most
a finite number of singular points) aj , bj , j = 1, 2, . . . , g,
such that their intersection indices satisfy

21.7.3 aj ◦ ak = 0, bj ◦ bk = 0, aj ◦ bk = δj,k.

For example, Figure 21.7.1 depicts a genus 2 surface.

1 a2

2b1b

a

Figure 21.7.1: A basis of cycles for a genus 2 surface.

On a Riemann surface of genus g, there are g lin-
early independent holomorphic differentials ωj , j =
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1, 2, . . . , g. If a local coordinate z is chosen on the Rie-
mann surface, then the local coordinate representation
of these holomorphic differentials is given by

21.7.4 ωj = fj(z) dz, j = 1, 2, . . . , g,
where fj(z), j = 1, 2, . . . , g are analytic functions. Thus
the differentials ωj , j = 1, 2, . . . , g have no singularities
on Γ. Note that for the purposes of integrating these
holomorphic differentials, all cycles on the surface are a
linear combination of the cycles aj , bj , j = 1, 2, . . . , g.
The ωj are normalized so that

21.7.5

∮
ak

ωj = δj,k, j, k = 1, 2, . . . , g.

Then the matrix defined by

21.7.6 Ωjk =
∮
bk

ωj , j, k = 1, 2, . . . , g,

is a Riemann matrix and it is used to define the cor-
responding Riemann theta function. In this way, we
associate a Riemann theta function with every compact
Riemann surface Γ.

Riemann theta functions originating from Riemann
surfaces are special in the sense that a general g-
dimensional Riemann theta function depends on g(g +
1)/2 complex parameters. In contrast, a g-dimensional
Riemann theta function arising from a compact Rie-
mann surface of genus g (> 1) depends on at most
3g− 3 complex parameters (one complex parameter for
the case g = 1). These special Riemann theta functions
satisfy many special identities, two of which appear in

the following subsections. For more information, see
Dubrovin (1981), Brieskorn and Knörrer (1986, §9.3),
Belokolos et al. (1994, Chapter 2), and Mumford (1984,
§2.2–2.3).

21.7(ii) Fay’s Trisecant Identity

Let α, β be such that

21.7.7(
∂

∂z1
θ

[
α

β

]
(z|Ω)

∣∣∣
z=0

, . . . ,
∂

∂zg
θ

[
α

β

]
(z|Ω)

∣∣∣
z=0

)
6= 0.

Define the holomorphic differential

21.7.8 ζ =
g∑
j=1

ωj
∂

∂zj
θ

[
α

β

]
(z|Ω)

∣∣∣
z=0

.

Then the prime form on the corresponding compact
Riemann surface Γ is defined by

21.7.9

E(P1, P2) = θ

[
α

β

](∫ P2

P1

ω

∣∣∣∣∣Ω
)/(√

ζ(P1)
√
ζ(P2)

)
,

where P1 and P2 are points on Γ, ω = (ω1, ω2, . . . , ωg),
and the path of integration on Γ from P1 to P2 is
identical for all components. Here

√
ζ(P ) is such that√

ζ(P )
2

= ζ(P ), P ∈ Γ. Either branch of the square
roots may be chosen, as long as the branch is consistent
across Γ. For all z ∈ Cg, and all P1, P2, P3, P4 on Γ,
Fay’s identity is given by

21.7.10

θ

(
z +

∫ P3

P1

ω

∣∣∣∣∣Ω
)
θ

(
z +

∫ P4

P2

ω

∣∣∣∣∣Ω
)
E(P3, P2)E(P1, P4) + θ

(
z +

∫ P3

P2

ω

∣∣∣∣∣Ω
)
θ

(
z +

∫ P4

P1

ω

∣∣∣∣∣Ω
)
E(P3, P1)E(P4, P2)

= θ(z|Ω) θ

(
z +

∫ P3

P1

ω +
∫ P4

P2

ω

∣∣∣∣∣Ω
)
E(P1, P2)E(P3, P4),

where again all integration paths are identical for all
components. Generalizations of this identity are given
in Fay (1973, Chapter 2). Fay derives (21.7.10) as a spe-
cial case of a more general class of addition theorems for
Riemann theta functions on Riemann surfaces.

21.7(iii) Frobenius’ Identity

Let Γ be a hyperelliptic Riemann surface. These are
Riemann surfaces that may be obtained from algebraic
curves of the form

21.7.11 µ2 = Q(λ),
where Q(λ) is a polynomial in λ of odd degree 2g + 1
(≥ 5). The genus of this surface is g. The zeros λj ,

j = 1, 2, . . . , 2g + 1 of Q(λ) specify the finite branch
points Pj , that is, points at which µj = 0, on the Rie-
mann surface. Denote the set of all branch points by
B = {P1, P2, . . . , P2g+1, P∞}. Consider a fixed subset
U of B, such that the number of elements |U | in the set
U is g+1, and P∞ /∈ U . Next, define an isomorphism η
which maps every subset T of B with an even number of
elements to a 2g-dimensional vector η(T ) with elements
either 0 or 1

2 . Define the operation

21.7.12 T1 	 T2 = (T1 ∪ T2)\(T1 ∩ T2).

Also, T c = B\T , η1(T ) = (η1(T ), η2(T ), . . . , ηg(T )),
and η2(T ) = (ηg+1(T ), ηg+2(T ), . . . , η2g(T )). Then the
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isomorphism is determined completely by:

21.7.13 η(T ) = η(T c),

21.7.14 η(T1 	 T2) = η(T1) + η(T2),

21.7.15 4η1(T ) ·η2(T ) = 1
2 (|T 	U | − g− 1) (mod 2),

21.7.16

4(η1(T1)·η2(T2)−η2(T1)·η1(T2)) = |T1∩T2| (mod 2).
Furthermore, let η(P∞) = 0 and η(Pj) =

η({Pj , P∞}). Then for all zj ∈ Cg, j = 1, 2, 3, 4, such
that z1 +z2 +z3 +z4 = 0, and for all αj , βj ∈ Rg, such
that α1 +α2 +α3 +α4 = 0 and β1 +β2 +β3 +β4 = 0,
we have Frobenius’ identity :

21.7.17

∑
Pj∈U

4∏
k=1

θ

[
αk + η1(Pj)
βk + η2(Pj)

]
(zk|Ω)

=
∑
Pj∈Uc

4∏
k=1

θ

[
αk + η1(Pj)
βk + η2(Pj)

]
(zk|Ω).

21.8 Abelian Functions

An Abelian function is a 2g-fold periodic, meromor-
phic function of g complex variables. In consequence,
Abelian functions are generalizations of elliptic func-
tions (§23.2(iii)) to more than one complex variable.
For every Abelian function, there is a positive integer n,
such that the Abelian function can be expressed as a ra-
tio of linear combinations of products with n factors of
Riemann theta functions with characteristics that share
a common period lattice. For further information see
Igusa (1972, pp. 132–135) and Markushevich (1992).

21.9 Integrable Equations

Riemann theta functions arise in the study of integrable
differential equations that have applications in many
areas, including fluid mechanics (Ablowitz and Segur
(1981, Chapter 4)), magnetic monopoles (Ercolani and
Sinha (1989)), and string theory (Deligne et al. (1999,
Part 3)). Typical examples of such equations are the
Korteweg–de Vries equation
21.9.1 4ut = 6uux + uxxx,

and the nonlinear Schrödinger equations

21.9.2 iut = − 1
2uxx ± |u|

2u.

Here, and in what follows, x, y, and t suffixes indicate
partial derivatives.

Particularly important for the use of Riemann
theta functions is the Kadomtsev–Petviashvili (KP)
equation, which describes the propagation of two-
dimensional, long-wave length surface waves in shallow
water (Ablowitz and Segur (1981, Chapter 4)):

21.9.3 (−4ut + 6uux + uxxx)x + 3uyy = 0.

Here x and y are spatial variables, t is time, and
u(x, y, t) is the elevation of the surface wave. All quanti-
ties are made dimensionless by a suitable scaling trans-
formation. The KP equation has a class of quasi-
periodic solutions described by Riemann theta func-
tions, given by

21.9.4 u(x, y, t) = c+ 2
∂2

∂x2 ln(θ(kx+ ly + ωt+ φ|Ω)),

where c is a complex constant and k, l, ω, and φ are
g-dimensional complex vectors; see Krichever (1976).
These parameters, including Ω, are not free: they are
determined by a compact, connected Riemann surface
(Krichever (1976)), or alternatively by an appropri-
ate initial condition u(x, y, 0) (Deconinck and Segur
(1998)). These solutions have been compared success-
fully with physical experiments for g = 1, 2 (Wiegel
(1960), Hammack et al. (1989), and Hammack et al.
(1995)). See Figures 21.9.1 and 21.9.2.

Figure 21.9.1: Two-dimensional periodic waves in a shal-
low water wave tank, taken from Hammack et al. (1995,
p. 97) by permission of Cambridge University Press.
The original caption reads “Mosaic of two overhead pho-
tographs, showing surface patterns of waves in shallow
water.”

Figure 21.9.2: Contour plot of a two-phase solution of
Equation (21.9.3). Such a solution is given in terms of a
Riemann theta function with two phases; see Krichever
(1976), Dubrovin (1981), and Hammack et al. (1995).
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Furthermore, the solutions of the KP equation solve
the Schottky problem: this is the question concerning
conditions that a Riemann matrix needs to satisfy in
order to be associated with a Riemann surface (Schot-
tky (1903)). Following the work of Krichever (1976),
Novikov conjectured that the Riemann theta function
in (21.9.4) gives rise to a solution of the KP equation
(21.9.3) if, and only if, the theta function originates from
a Riemann surface; see Dubrovin (1981, §IV.4). The
first part of this conjecture was established in Krichever
(1976); the second part was proved in Shiota (1986).

Computation

21.10 Methods of Computation

21.10(i) General Riemann Theta Functions

Although the defining Fourier series (21.2.1) is uni-
formly convergent on compact sets, its evaluation is
cumbersome when one or more of the eigenvalues of
=(Ω) is near zero. Furthermore, for fixed Ω different
terms of the Fourier series dominate for different values
of z.

To overcome these obstacles, we compute instead the
scaled function θ̂(z|Ω) (§21.2(i)) from the expansion

21.10.1

θ̂(z|Ω) =
∑

n∈S(ε)

eπi[n−[Y−1y]]·X·[n−[Y−1y]]

× e2πi[n−[Y−1y]]·x e−π[n+[Y−1y]]·Y·[n+[Y−1y]],

where ε is the tolerated maximum absolute error for
θ̂(z|Ω). Here X = <(Ω), Y = =(Ω), x = <(z),
y = =(z), and

21.10.2

S(ε) =
{

m ∈ Zg
∣∣∣π [m + [Y−1y]

]
·Y

·
[
m + [Y−1y]

]
≤ R(ε)

}
.

Thus S(ε) is the set of all integer vectors that are con-
tained in an ellipsoid centered at the fractional part of
Y−1y, and whose size is determined by the allowed ab-
solute error. The value of R(ε) is determined as follows.
Let r be the length of the shortest vector of the lattice
Λ = {

√
πTm|m ∈ Zg}, and TTT = Y be the Cholesky

decomposition of Y (Atkinson (1989, p. 254)). Then
R(ε) is the greater of

√
g/2 + r and the smallest posi-

tive root of the equation

21.10.3 Γ
(

1
2g,R

2
)
/(2grg) = ε.

For the incomplete gamma function Γ(a, z), see §8.2(i).
The construction (21.10.2) amounts to determining

all integer vectors in a g-dimensional ellipsoid. For this

purpose it is convenient to have the ellipsoid as spherical
as possible (Siegel (1973, pp. 144–159), Heil (1995)).

Usually, (21.10.1) can also be used for the efficient
evaluation of θ̂(z|Ω) for fixed Ω and varying z, by ad-
dition of a few vectors to the set S(ε).

21.10(ii) Riemann Theta Functions Associated
with a Riemann Surface

In addition to evaluating the Fourier series, the main
problem here is to compute a Riemann matrix originat-
ing from a Riemann surface. Various approaches are
considered in the following references:

• Belokolos et al. (1994, Chapter 5) and references
therein. Here the Riemann surface is represented
by the action of a Schottky group on a region of
the complex plane. The same representation is
used in Gianni et al. (1998).

• Tretkoff and Tretkoff (1984). Here a Hurwitz sys-
tem is chosen to represent the Riemann surface.

• Deconinck and van Hoeij (2001). Here a plane al-
gebraic curve representation of the Riemann sur-
face is used.

21.11 Software

See http://dlmf.nist.gov/21.11.
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Notation

22.1 Special Notation

(For other notation see pp. xiv and 873.)

x, y real variables.
z complex variable.
k modulus. Except in §§22.3(iv), 22.17, and

22.19, 0 ≤ k ≤ 1.
k′ complementary modulus, k2 + k′

2 = 1. If
k ∈ [0, 1], then k′ ∈ [0, 1].

K, K ′ K(k), K ′(k) = K(k′) (complete elliptic
integrals of the first kind (§19.2(ii))).

q nome. 0 ≤ q < 1 except in §22.17; see also
§20.1.

τ iK ′ /K.

All derivatives are denoted by differentials, not
primes.

The functions treated in this chapter are the three
principal Jacobian elliptic functions sn (z, k), cn (z, k),
dn (z, k); the nine subsidiary Jacobian elliptic functions
cd (z, k), sd (z, k), nd (z, k), dc (z, k), nc (z, k), sc (z, k),
ns (z, k), ds (z, k), cs (z, k); the amplitude function
am (x, k); Jacobi’s epsilon and zeta functions E(x, k)
and Z(x|k).

The notation sn (z, k), cn (z, k), dn (z, k) is due to
Gudermann (1838), following Jacobi (1827); that for the
subsidiary functions is due to Glaisher (1882). Other
notations for sn (z, k) are sn(z|m) and sn(z,m) with
m = k2; see Abramowitz and Stegun (1964) and Walker
(1996). Similarly for the other functions.

Properties

22.2 Definitions

The nome q is given in terms of the modulus k by

22.2.1 q = exp(−πK ′(k)/K(k)),

where K(k), K ′(k) are defined in §19.2(ii). Inversely,

22.2.2 k =
θ2

2(0, q)
θ2

3(0, q)
, k′ =

θ2
4(0, q)
θ2

3(0, q)
, K(k) =

π

2
θ2

3(0, q),

where k′ =
√

1− k2 and the theta functions are defined
in §20.2(i).

With
22.2.3 ζ =

πz

2K(k)
,

22.2.4 sn (z, k) =
θ3(0, q)
θ2(0, q)

θ1(ζ, q)
θ4(ζ, q)

=
1

ns (z, k)
,

22.2.5 cn (z, k) =
θ4(0, q)
θ2(0, q)

θ2(ζ, q)
θ4(ζ, q)

=
1

nc (z, k)
,

22.2.6 dn (z, k) =
θ4(0, q)
θ3(0, q)

θ3(ζ, q)
θ4(ζ, q)

=
1

nd (z, k)
,

22.2.7 sd (z, k) =
θ2

3(0, q)
θ2(0, q) θ4(0, q)

θ1(ζ, q)
θ3(ζ, q)

=
1

ds (z, k)
,

22.2.8 cd (z, k) =
θ3(0, q)
θ2(0, q)

θ2(ζ, q)
θ3(ζ, q)

=
1

dc (z, k)
,

22.2.9 sc (z, k) =
θ3(0, q)
θ4(0, q)

θ1(ζ, q)
θ2(ζ, q)

=
1

cs (z, k)
.

As a function of z, with fixed k, each of the 12 Ja-
cobian elliptic functions is doubly periodic, having two
periods whose ratio is not real. Each is meromorphic in
z for fixed k, with simple poles and simple zeros, and
each is meromorphic in k for fixed z. For k ∈ [0, 1], all
functions are real for z ∈ R.

Glaisher’s Notation

The Jacobian functions are related in the following way.
Let p, q, r be any three of the letters s, c, d, n. Then

22.2.10 pq (z, k) =
pr (z, k)
qr (z, k)

=
1

qp (z, k)
,

with the convention that functions with the same two
letters are replaced by unity; e.g. ss (z, k) = 1.

The six functions containing the letter s in their two-
letter name are odd in z; the other six are even in z.

In terms of Neville’s theta functions (§20.1)

22.2.11 pq (z, k) = θp(z|τ)/θq(z|τ) ,
where

22.2.12 τ = iK ′(k)/K(k) ,
and p, q are any pair of the letters s, c, d, n.

22.3 Graphics

22.3(i) Real Variables: Line Graphs

See Figures 22.3.1–22.3.4 for line graphs of the functions
sn (x, k), cn (x, k), dn (x, k), and nd (x, k) for represen-
tative values of real x and real k illustrating the near
trigonometric (k = 0), and near hyperbolic (k = 1) lim-
its. For corresponding graphs for the other 8 Jacobian
elliptic functions see http://dlmf.nist.gov/22.3.i.
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Figure 22.3.1: k = 0.4, −3K ≤ x ≤ 3K, K = 1.6399 . . . . Figure 22.3.2: k = 0.7, −3K ≤ x ≤ 3K, K = 1.8456 . . . .
For cn (x, k) the curve for k = 1/

√
2 = 0.70710 . . . is a

boundary between the curves that have an inflection
point in the interval 0 ≤ x ≤ 2K(k), and its translates,
and those that do not; see Walker (1996, p. 146).

Figure 22.3.3: k = 0.99, −3K ≤ x ≤ 3K, K =
3.3566 . . . .

�

Figure 22.3.4: k = 0.999999, −3K ≤ x ≤ 3K, K =
7.9474 . . . .

22.3(ii) Real Variables: Surfaces

See Figure 22.3.13 for sn (x, k) as a function of real arguments x and k. The period diverges logarithmically as
k → 1−; see §19.12. For the corresponding surfaces for cn (x, k) and dn (x, k) see http://dlmf.nist.gov/22.3.ii.

Figure 22.3.13: sn (x, k) for k = 1− e−n, n = 0 to 20, −5π ≤ x ≤ 5π.
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22.3(iii) Complex z; Real k

In Figure 22.3.16 height corresponds to the absolute
value of the function and color to the phase. See p. xiv.

Figure 22.3.16: sn (x+ iy, k) for k = 0.99, −3K ≤ x ≤
3K, 0 ≤ y ≤ 4K ′. K = 3.3566 . . . , K ′ = 1.5786 . . . .

For the corresponding surfaces for the copolar func-
tions cn (z, k) and dn (z, k) and the coperiodic functions
cd (z, k), dc (z, k), and ns (z, k) with z = x + iy see
http://dlmf.nist.gov/22.3.iii.

22.3(iv) Complex k

Figure 22.3.22: <sn (x, k), x = 120, as a function of
k2 = iκ, 0 ≤ κ ≤ 4.

Figure 22.3.23: =sn (x, k), x = 120, as a function of
k2 = iκ, 0 ≤ κ ≤ 4.

In Figures 22.3.24 and 22.3.25, height corresponds to the absolute value of the function and color to the phase.
See p. xiv.

Figure 22.3.24: sn (x+ iy, k) for −4 ≤ x ≤ 4, 0 ≤ y ≤
8, k = 1 + 1

2 i. K = 1.5149 . . . + i0.5235 . . . , K ′ =
1.4620 . . .− i0.3552 . . . .

Figure 22.3.25: sn (5, k) as a function of complex k2,
−1 ≤ <(k2) ≤ 3.5, −1 ≤ =(k2) ≤ 1. Compare
§22.17(ii).
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Figure 22.3.26: Density plot of | sn (5, k)| as a function
of complex k2, −10 ≤ <(k2) ≤ 20, −10 ≤ =(k2) ≤
10. Grayscale, running from 0 (black) to 10 (white),
with |(sn (5, k))| > 10 truncated to 10. White spots
correspond to poles.

Figure 22.3.27: Density plot of | sn (10, k)| as a function
of complex k2, −10 ≤ <(k2) ≤ 20, −10 ≤ =(k2) ≤
10. Grayscale, running from 0 (black) to 10 (white),
with | sn (10, k)| > 10 truncated to 10. White spots
correspond to poles.

For corresponding density plots with arguments 20 and 30 see http://dlmf.nist.gov/22.3.iv.

22.4 Periods, Poles, and Zeros

22.4(i) Distribution

For each Jacobian function, Table 22.4.1 gives its peri-
ods in the z-plane in the left column, and the position of
one of its poles in the second row. The other poles are at
congruent points, which is the set of points obtained by
making translations by 2mK + 2niK ′, where m,n ∈ Z.
For example, the poles of sn (z, k), abbreviated as sn in
the following tables, are at z = 2mK + (2n+ 1)iK ′.

Table 22.4.1: Periods and poles of Jacobian elliptic func-
tions.

Periods
z-Poles

iK ′ K + iK ′ K 0

4K, 2iK ′ sn cd dc ns

4K, 2K + 2iK ′ cn sd nc ds

2K, 4iK ′ dn nd sc cs

Three functions in the same column of Table 22.4.1
are copolar, and four functions in the same row are cope-

riodic.
Table 22.4.2 displays the periods and zeros of the

functions in the z-plane in a similar manner to Table
22.4.1. Again, one member of each congruent set of
zeros appears in the second row; all others are gener-
ated by translations of the form 2mK + 2niK ′, where
m,n ∈ Z.

Table 22.4.2: Periods and zeros of Jacobian elliptic func-
tions.

Periods
z-Zeros

0 K K + iK ′ iK ′

4K, 2iK ′ sn cd dc ns

4K, 2K + 2iK ′ sd cn ds nc

2K, 4iK ′ sc cs dn nd

Figure 22.4.1 illustrates the locations in the z-plane
of the poles and zeros of the three principal Jaco-
bian functions in the rectangle with vertices 0, 2K,
2K + 2iK ′, 2iK ′. The other poles and zeros are at
the congruent points.
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(a) sn (z, k) (b) cn (z, k) (c) dn (z, k)
Figure 22.4.1: z-plane. Poles ××× and zeros ◦ ◦ ◦ of the principal Jacobian elliptic functions.

22.4(ii) Graphical Interpretation via Glaisher’s
Notation

Figure 22.4.2 depicts the fundamental unit cell in the
z-plane, with vertices s = 0, c = K, d = K + iK ′,
n = iK ′. The set of points z = mK + niK ′, m,n ∈ Z,
comprise the lattice for the 12 Jacobian functions; all
other lattice unit cells are generated by translation of
the fundamental unit cell by mK + niK ′, where again
m,n ∈ Z.

Figure 22.4.2: z-plane. Fundamental unit cell.

Using the p,q notation of (22.2.10), Figure 22.4.2
serves as a mnemonic for the poles, zeros, periods, and
half-periods of the 12 Jacobian elliptic functions as fol-
lows. Let p,q be any two distinct letters from the set
s,c,d,n which appear in counterclockwise orientation at
the corners of all lattice unit cells. Then: (a) In any
lattice unit cell pq (z, k) has a simple zero at z = p
and a simple pole at z = q. (b) The difference between
p and the nearest q is a half-period of pq (z, k). This
half-period will be plus or minus a member of the triple
K, iK ′,K + iK ′; the other two members of this triple
are quarter periods of pq (z, k).

22.4(iii) Translation by Half or Quarter Periods

See Table 22.4.3.
For example, sn (z +K, k) = cd (z, k). (The modu-

lus k is suppressed throughout the table.)
For the other nine functions see http://dlmf.nist.

gov/22.4.iii.

Table 22.4.3: Half- or quarter-period shifts of variable for the Jacobian elliptic functions.

u

z +K z +K + iK ′ z + iK ′ z + 2K z + 2K + 2iK ′ z + 2iK ′

snu cd z k−1 dc z k−1 ns z − sn z − sn z sn z

cnu −k′ sd z −ik′k−1 nc z −ik−1 ds z − cn z cn z − cn z

dnu k′ nd z ik′ sc z −i cs z dn z −dn z −dn z

22.5 Special Values

22.5(i) Special Values of z

Table 22.5.1 gives the value of each of the functions sn (z, k), cn (z, k), dn (z, k), together with its z-derivative (or at a
pole, the residue), for values of z that are integer multiples of K, iK ′. For example, at z = K + iK ′, sn (z, k) = 1/k,
dsn (z, k)/dz = 0. (The modulus k is suppressed throughout the table.)

For the other nine functions see http://dlmf.nist.gov/22.5.i.
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Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.

z

0 K K + iK ′ iK ′ 2K 2K + 2iK ′ 2iK ′

sn z 0, 1 1, 0 1/k, 0 ∞, 1/k 0,−1 0,−1 0, 1

cn z 1, 0 0,−k′ −ik′/k, 0 ∞, −i/k −1, 0 1, 0 −1, 0

dn z 1, 0 k′, 0 0, ik′ ∞, −i 1, 0 −1, 0 −1, 0

Table 22.5.2 gives sn (z, k), cn (z, k), dn (z, k) for other special values of z. For example, sn
(

1
2K, k

)
= (1+k′)−1/2.

For the other nine functions ratios can be taken; compare (22.2.10).

Table 22.5.2: Other special values of Jacobian elliptic functions.

z

1
2K

1
2 (K + iK ′) 1

2 iK
′

sn z (1 + k′)−1/2
(
(1 + k)1/2 + i(1− k)1/2

)
/(2k)1/2 ik−1/2

cn z (k′/(1 + k′))1/2 (1− i)k′1/2/(2k)1/2 (1 + k)1/2k−1/2

dn z k′
1/2

k′
1/2((1 + k′)1/2 − i(1− k′)1/2)/21/2 (1 + k)1/2

z

3
2K

3
2 (K + iK ′) 3

2 iK
′

sn z (1 + k′)−1/2 (1 + i)((1 + k)1/2 − i(1− k)1/2)/(2k1/2) −ik−1/2

cn z −(k′/(1 + k′))1/2 (1− i)k′1/2/(2k)1/2 −(1 + k)1/2k−1/2

dn z k′
1/2 (−1 + i)k′1/2((1 + k′)1/2 + i(1− k′)1/2)/2 −(1 + k)1/2

22.5(ii) Limiting Values of k

If k → 0+, then K → π/2 and K ′ →∞; if k → 1−, then K →∞ and K ′ → π/2. In these cases the elliptic functions
degenerate into elementary trigonometric and hyperbolic functions, respectively. See Tables 22.5.3 and 22.5.4.

Table 22.5.3: Limiting forms of Jacobian elliptic functions as k → 0.

sn (z, k)→ sin z cd (z, k)→ cos z dc (z, k)→ sec z ns (z, k)→ csc z

cn (z, k)→ cos z sd (z, k)→ sin z nc (z, k)→ sec z ds (z, k)→ csc z

dn (z, k)→ 1 nd (z, k)→ 1 sc (z, k)→ tan z cs (z, k)→ cot z

Table 22.5.4: Limiting forms of Jacobian elliptic functions as k → 1.

sn (z, k)→ tanh z cd (z, k)→ 1 dc (z, k)→ 1 ns (z, k)→ coth z

cn (z, k)→ sech z sd (z, k)→ sinh z nc (z, k)→ cosh z ds (z, k)→ csch z

dn (z, k)→ sech z nd (z, k)→ cosh z sc (z, k)→ cosh z cs (z, k)→ csch z

Expansions for K,K ′ as k → 0 or 1 are given in §§19.5, 19.12.
For values of K,K ′ when k2 = 1

2 (lemniscatic case) see §23.5(iii), and for k2 = eiπ/3 (equianharmonic case) see
§23.5(v).
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22.6 Elementary Identities

22.6(i) Sums of Squares

22.6.1

sn2 (z, k) + cn2 (z, k) = k2 sn2 (z, k) + dn2 (z, k) = 1,

22.6.2 1 + cs2 (z, k) = k2 + ds2 (z, k) = ns2 (z, k),

22.6.3 k′
2 sc2 (z, k) + 1 = dc2 (z, k) = k′

2 nc2 (z, k) + k2,

22.6.4

−k2k′
2 sd2 (z, k) = k2(cd2 (z, k)−1) = k′

2(1−nd2 (z, k)).

22.6(ii) Double Argument

22.6.5 sn (2z, k) =
2 sn (z, k) cn (z, k) dn (z, k)

1− k2 sn4 (z, k)
,

22.6.6

cn (2z, k) =
cn2 (z, k)− sn2 (z, k) dn2 (z, k)

1− k2 sn4 (z, k)

=
cn4 (z, k)− k′2 sn4 (z, k)

1− k2 sn4 (z, k)
,

22.6.7

dn (2z, k) =
dn2 (z, k)− k2 sn2 (z, k) dn2 (z, k)

1− k2 sn4 (z, k)

=
dn4 (z, k) + k2k′

2 sn4 (z, k)
1− k2 sn4 (z, k)

.

For corresponding results for the other nine func-
tions see http://dlmf.nist.gov/22.6.ii. See also
Carlson (2004).

22.6.17
1− cn (2z, k)
1 + cn (2z, k)

=
sn2 (z, k) dn2 (z, k)

cn2 (z, k)
,

22.6.18
1− dn (2z, k)
1 + dn (2z, k)

=
k2 sn2 (z, k) cn2 (z, k)

dn2 (z, k)
.

22.6(iii) Half Argument

22.6.19

sn2
(

1
2z, k

)
=

1− cn (z, k)
1 + dn (z, k)

=
1− dn (z, k)

k2(1 + cn (z, k))

=
dn (z, k)− k2 cn (z, k)− k′2

k2(dn (z, k)− cn (z, k))
,

22.6.20

cn2
(

1
2z, k

)
=
−k′2 + dn (z, k) + k2 cn (z, k)

k2(1 + cn (z, k))

=
k′

2(1− dn (z, k))
k2(dn (z, k)− cn (z, k))

=
k′

2(1 + cn (z, k))
k′2 + dn (z, k)− k2 cn (z, k)

,

22.6.21

dn2
(

1
2z, k

)
=
k2 cn (z, k) + dn (z, k) + k′

2

1 + dn (z, k)

=
k′

2(1− cn (z, k))
dn (z, k)− cn (z, k)

=
k′

2(1 + dn (z, k))
k′2 + dn (z, k)− k2 cn (z, k)

.

If {p,q,r} is any permutation of {c,d,n}, then

22.6.22

pq2
(

1
2z, k

)
=

ps (z, k) + rs (z, k)
qs (z, k) + rs (z, k)

=
pq (z, k) + rq (z, k)

1 + rq (z, k)
=

pr (z, k) + 1
qr (z, k) + 1

.

For (22.6.22) and similar results, see Carlson (2004).

22.6(iv) Rotation of Argument (Jacobi’s
Imaginary Transformation)

Table 22.6.1: Jacobi’s imaginary transformation of Ja-
cobian elliptic functions.

sn (iz, k) = i sc (z, k′) dc (iz, k) = dn (z, k′)

cn (iz, k) = nc (z, k′) nc (iz, k) = cn (z, k′)

dn (iz, k) = dc (z, k′) sc (iz, k) = i sn (z, k′)

cd (iz, k) = nd (z, k′) ns (iz, k) = −i cs (z, k′)

sd (iz, k) = i sd (z, k′) ds (iz, k) = −ids (z, k′)

nd (iz, k) = cd (z, k′) cs (iz, k) = −ins (z, k′)

22.6(v) Change of Modulus

See §22.17.

22.7 Landen Transformations

22.7(i) Descending Landen Transformation

With
22.7.1 k1 =

1− k′

1 + k′
,

22.7.2 sn (z, k) =
(1 + k1) sn (z/(1 + k1), k1)
1 + k1 sn2 (z/(1 + k1), k1)

,

22.7.3

cn (z, k) =
cn (z/(1 + k1), k1) dn (z/(1 + k1), k1)

1 + k1 sn2 (z/(1 + k1), k1)
,

22.7.4 dn (z, k) =
dn2 (z/(1 + k1), k1)− (1− k1)
1 + k1 − dn2 (z/(1 + k1), k1)

.
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22.7(ii) Ascending Landen Transformation

With

22.7.5 k2 =
2
√
k

1 + k
, k′2 =

1− k
1 + k

,

22.7.6

sn (z, k)

=
(1 + k′2) sn (z/(1 + k′2), k2) cn (z/(1 + k′2), k2)

dn (z/(1 + k′2), k2)
,

22.7.7 cn (z, k) =
(1 + k′2)(dn2 (z/(1 + k′2), k2)− k′2)

k2
2 dn (z/(1 + k′2), k2)

,

22.7.8 dn (z, k) =
(1− k′2)(dn2 (z/(1 + k′2), k2) + k′2)

k2
2 dn (z/(1 + k′2), k2)

.

22.7(iii) Generalized Landen Transformations

See Khare and Sukhatme (2004).

22.8 Addition Theorems

22.8(i) Sum of Two Arguments

For u, v ∈ C, and with the common modulus k sup-
pressed:

22.8.1 sn (u+ v) =
snu cn v dn v + sn v cnudnu

1− k2 sn2 u sn2 v
,

22.8.2 cn (u+ v) =
cnu cn v − snudnu sn v dn v

1− k2 sn2 u sn2 v
,

22.8.3 dn (u+ v) =
dnudn v − k2 snu cnu sn v cn v

1− k2 sn2 u sn2 v
.

See also Carlson (2004).
For the other nine functions see http://dlmf.nist.

gov/22.8.i.

22.8(ii) Alternative Forms for Sum of Two
Arguments

For u, v ∈ C, and with the common modulus k sup-
pressed:

22.8.13 sn (u+ v) =
sn2 u− sn2 v

snu cn v dn v − sn v cnudnu
,

22.8.14 sn (u+ v) =
snu cnudn v + sn v cn v dnu
cnu cn v + snudnu sn v dn v

,

22.8.15 cn (u+ v) =
snu cnudn v − sn v cn v dnu
snu cn v dn v − sn v cnudnu

,

22.8.16 cn (u+ v) =
1− sn2 u− sn2 v + k2 sn2 u sn2 v

cnu cn v + snudnu sn v dn v
,

22.8.17 dn (u+ v) =
snu cn v dnu− sn v cnudn v
snu cn v dn v − sn v cnudnu

,

22.8.18 dn (u+ v) =
cnudnu cn v dn v + k′

2 snu sn v
cnu cn v + snudnu sn v dn v

.

See also Carlson (2004).

22.8(iii) Special Relations Between Arguments

In the following equations the common modulus k is
again suppressed.

Let

22.8.19 z1 + z2 + z3 + z4 = 0.

Then

22.8.20

∣∣∣∣∣∣∣∣
sn z1 cn z1 dn z1 1
sn z2 cn z2 dn z2 1
sn z3 cn z3 dn z3 1
sn z4 cn z4 dn z4 1

∣∣∣∣∣∣∣∣ = 0,

and

22.8.21
k′

2 − k′2k2 sn z1 sn z2 sn z3 sn z4

+ k2 cn z1 cn z2 cn z3 cn z4

− dn z1 dn z2 dn z3 dn z4 = 0.

A geometric interpretation of (22.8.20) analogous
to that of (23.10.5) is given in Whittaker and Watson
(1927, p. 530).

Next, let

22.8.22 z1 + z2 + z3 + z4 = 2K(k).

Then

22.8.23

∣∣∣∣∣∣∣∣
sn z1 cn z1 cn z1 dn z1 cn z1 dn z1

sn z2 cn z2 cn z2 dn z2 cn z2 dn z2

sn z3 cn z3 cn z3 dn z3 cn z3 dn z3

sn z4 cn z4 cn z4 dn z4 cn z4 dn z4

∣∣∣∣∣∣∣∣ = 0.

For these and related identities see Copson (1935,
pp. 415–416).

If sums/differences of the zj ’s are rational multiples
of K(k), then further relations follow. For instance, if

22.8.24 z1 − z2 = z2 − z3 = 2
3K(k),

then

22.8.25
(dn z2 + dn z3)(dn z3 + dn z1)(dn z1 + dn z2)

dn z1 + dn z2 + dn z3

is independent of z1, z2, z3. Similarly, if

22.8.26 z1 − z2 = z2 − z3 = z3 − z4 = 1
2K(k),

then

22.8.27 dn z1 dn z3 = dn z2 dn z4 = k′.

Greenhill (1959, pp. 121–130) reviews these results in
terms of the geometric poristic polygon constructions of
Poncelet. Generalizations are given in §22.9.
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22.9 Cyclic Identities

22.9(i) Notation

The following notation is a generalization of that of
Khare and Sukhatme (2002).

Throughout this subsection m and p are positive in-
tegers with 1 ≤ m ≤ p.

22.9.1 s(2)
m,p = sn

(
z + 2p−1(m− 1)K(k), k

)
,

22.9.2 c(2)
m,p = cn

(
z + 2p−1(m− 1)K(k), k

)
,

22.9.3 d(2)
m,p = dn

(
z + 2p−1(m− 1)K(k), k

)
,

22.9.4 s(4)
m,p = sn

(
z + 4p−1(m− 1)K(k), k

)
,

22.9.5 c(4)
m,p = cn

(
z + 4p−1(m− 1)K(k), k

)
,

22.9.6 d(4)
m,p = dn

(
z + 4p−1(m− 1)K(k), k

)
.

In the remainder of this section the rank of an iden-
tity is the maximum number of elliptic function factors
in each term in the identity. The value of p determines
the number of points in the identity. The argument z is
suppressed in the above notation, as all cyclic identities
are independent of z.

22.9(ii) Typical Identities of Rank 2

In this subsection 1 ≤ m ≤ p and 1 ≤ n ≤ p.
Three Points

With

22.9.7 κ = dn (2K(k)/3, k),

22.9.8 s
(4)
1,2s

(4)
2,2 + s

(4)
2,2s

(4)
3,2 + s

(4)
3,2s

(4)
1,2 =

κ2 − 1
k2

,

22.9.9 c
(4)
1,2c

(4)
2,2 + c

(4)
2,2c

(4)
3,2 + c

(4)
3,2c

(4)
1,2 = −κ(κ+ 2)

(1 + κ)2
,

22.9.10
d

(2)
1,2d

(2)
2,2 + d

(2)
2,2d

(2)
3,2 + d

(2)
3,2d

(2)
1,2

= d
(4)
1,2d

(4)
2,2 + d

(4)
2,2d

(4)
3,2 + d

(4)
3,2d

(4)
1,2 = κ(κ+ 2).

These identities are cyclic in the sense that each of
the indices m,n in the first product of, for example, the
form s

(4)
m,2s

(4)
n,2 are simultaneously permuted in the cyclic

order: m→ m+1→ m+2→ · · · p→ 1→ 2→ · · ·m−1;
n→ n+ 1→ n+ 2→ · · · p→ 1→ 2→ · · ·n− 1. Many
of the identities that follow also have this property.

22.9(iii) Typical Identities of Rank 3

Two Points

22.9.11

(
d

(2)
1,2

)2
d

(2)
2,2 ±

(
d

(2)
2,2

)2
d

(2)
1,2 = k′

(
d

(2)
1,2 ± d

(2)
2,2

)
,

22.9.12 c
(2)
1,2s

(2)
1,2d

(2)
2,2 + c

(2)
2,2s

(2)
2,2d

(2)
1,2 = 0.

Three Points

With κ defined as in (22.9.7),

22.9.13 s
(4)
1,3s

(4)
2,3s

(4)
3,3 = − 1

1− κ2

(
s

(4)
1,3 + s

(4)
2,3 + s

(4)
3,3

)
,

22.9.14 c
(4)
1,3c

(4)
2,3c

(4)
3,3 =

κ2

1− κ2

(
c
(4)
1,3 + c

(4)
2,3 + c

(4)
3,3

)
,

22.9.15

d
(2)
1,3d

(2)
2,3d

(2)
3,3

=
κ2 + k2 − 1

1− κ2

(
d

(2)
1,3 + d

(2)
2,3 + d

(2)
3,3

)
,

22.9.16

s
(4)
1,3c

(4)
2,3c

(4)
3,3 + s

(4)
2,3c

(4)
3,3c

(4)
1,3 + s

(4)
3,3c

(4)
1,3c

(4)
2,3

=
κ(κ+ 2)
1− κ2

(
s

(4)
1,3 + s

(4)
2,3 + s

(4)
3,3

)
.

Four Points

22.9.17

d
(2)
1,4d

(2)
2,4d

(2)
3,4 ± d

(2)
2,4d

(2)
3,4d

(2)
4,4 + d

(2)
3,4d

(2)
4,4d

(2)
1,4 ± d

(2)
4,4d

(2)
1,4d

(2)
2,4

= k′
(
±d(2)

1,4 + d
(2)
2,4 ± d

(2)
3,4 + d

(2)
4,4

)
,

22.9.18

(
d

(2)
1,4

)2
d

(2)
3,4 ±

(
d

(2)
2,4

)2
d

(2)
4,4 +

(
d

(2)
3,4

)2
d

(2)
1,4

±
(
d

(2)
4,4

)2
d

(2)
2,4 = k′

(
d

(2)
1,4 ± d

(2)
2,4 + d

(2)
3,4 ± d

(2)
4,4

)
,

22.9.19
c
(2)
1,4s

(2)
1,4d

(2)
3,4 + c

(2)
3,4s

(2)
3,4d

(2)
1,4

= c
(2)
2,4s

(2)
2,4d

(2)
4,4 + c

(2)
4,4s

(2)
4,4d

(2)
2,4 = 0.

For identities of rank 4 and higher see http://dlmf.
nist.gov/22.9.iv.

22.10 Maclaurin Series

22.10(i) Maclaurin Series in z

Initial terms are given by

22.10.1

sn (z, k) = z −
(
1 + k2

) z3

3!
+
(
1 + 14k2 + k4

) z5

5!

−
(
1 + 135k2 + 135k4 + k6

) z7

7!
+O

(
z9
)
,

22.10.2

cn (z, k) = 1− z2

2!
+
(
1 + 4k2

) z4

4!

−
(
1 + 44k2 + 16k4

) z6

6!
+O

(
z8
)
,

22.10.3

dn (z, k) = 1− k2 z
2

2!
+ k2

(
4 + k2

) z4

4!

− k2
(
16 + 44k2 + k4

) z6

6!
+O

(
z8
)
.

Further terms may be derived by substituting
in the differential equations (22.13.13), (22.13.14),
(22.13.15). The full expansions converge when |z| <
min (K(k),K ′(k)).
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22.10(ii) Maclaurin Series in k and k′

Initial terms are given by
22.10.4

sn (z, k) = sin z − k2

4
(z − sin z cos z) cos z +O

(
k4
)
,

22.10.5

cn (z, k) = cos z +
k2

4
(z − sin z cos z) sin z +O

(
k4
)
,

22.10.6 dn (z, k) = 1− k2

2
sin2 z +O

(
k4
)
,

22.10.7
sn (z, k) = tanh z− k

′2

4
(z− sinh z cosh z) sech2 z

+O
(
k′

4
)
,

22.10.8

cn (z, k) = sech z +
k′

2

4
(z − sinh z cosh z) tanh z sech z

+O
(
k′

4
)
,

22.10.9

dn (z, k) = sech z +
k′

2

4
(z + sinh z cosh z) tanh z sech z

+O
(
k′

4
)
.

Further terms may be derived from the differen-
tial equations (22.13.13), (22.13.14), (22.13.15), or from
the integral representations of the inverse functions in
§22.15(ii). The radius of convergence is the distance to
the origin from the nearest pole in the complex k-plane
in the case of (22.10.4)–(22.10.6), or complex k′-plane
in the case of (22.10.7)–(22.10.9); see §22.17.

22.11 Fourier and Hyperbolic Series

Throughout this section q and ζ are defined as in §22.2.
If q exp(2|=ζ|) < 1, then

22.11.1 sn (z, k) =
2π
Kk

∞∑
n=0

qn+ 1
2 sin((2n+ 1)ζ)
1− q2n+1

,

22.11.2 cn (z, k) =
2π
Kk

∞∑
n=0

qn+ 1
2 cos((2n+ 1)ζ)
1 + q2n+1

,

22.11.3 dn (z, k) =
π

2K
+

2π
K

∞∑
n=1

qn cos(2nζ)
1 + q2n

.

For the other nine functions see http://dlmf.nist.
gov/22.11.

Next, with E = E(k) denoting the complete
elliptic integral of the second kind (§19.2(ii)) and
q exp(2|=ζ|) < 1,
22.11.13

sn2 (z, k) =
1
k2

(
1− E

K

)
− 2π2

k2K2

∞∑
n=1

nqn

1− q2n
cos(2nζ).

Similar expansions for cn2 (z, k) and dn2 (z, k) follow im-
mediately from (22.6.1).

For further Fourier series see Oberhettinger (1973,
pp. 23–27).

A related hyperbolic series is

22.11.14

k2 sn2 (z, k)

=
E′

K ′
−
( π

2K ′
)2 ∞∑
n=−∞

(
sech2

( π

2K ′
(z − 2nK )

))
,

where E′ = E′(k) is defined by §19.2.9. Again, similar
expansions for cn2 (z, k) and dn2 (z, k) may be derived
via (22.6.1). See Dunne and Rao (2000).

22.12 Expansions in Other Trigonometric
Series and Doubly-Infinite Partial
Fractions: Eisenstein Series

With t ∈ C and

22.12.1 τ = iK ′(k)/K(k),

22.12.2

2Kk sn (2Kt, k) =
∞∑

n=−∞

π

sin
(
π(t− (n+ 1

2 )τ)
)

=
∞∑

n=−∞

( ∞∑
m=−∞

(−1)m

t−m− (n+ 1
2 )τ

)
,

22.12.3

2iKk cn (2Kt, k) =
∞∑

n=−∞

(−1)nπ
sin
(
π(t− (n+ 1

2 )τ)
)

=
∞∑

n=−∞

( ∞∑
m=−∞

(−1)m+n

t−m− (n+ 1
2 )τ

)
,

22.12.4

2iK dn (2Kt, k)

= lim
N→∞

N∑
n=−N

(−1)n
π

tan
(
π(t− (n+ 1

2 )τ)
)

= lim
N→∞

N∑
n=−N

(−1)n
(

lim
M→∞

M∑
m=−M

1
t−m− (n+ 1

2 )τ

)
.

The double sums in (22.12.2)–(22.12.4) are convergent
but not absolutely convergent, hence the order of the
summations is important. Compare §20.5(iii).

For corresponding expansions for the subsidiary
functions see http://dlmf.nist.gov/22.12.
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22.13 Derivatives and Differential
Equations

22.13(i) Derivatives

Table 22.13.1: Derivatives of Jacobian elliptic functions
with respect to variable.

d
dz (sn z) = cn z dn z d

dz (dc z) = k′
2 sc z nc z

d
dz (cn z) = − sn z dn z d

dz (nc z) = sc z dc z
d
dz (dn z) = −k2 sn z cn z d

dz (sc z) = dc z nc z
d
dz (cd z) = −k′2 sd z nd z d

dz (ns z) = −ds z cs z
d
dz (sd z) = cd z nd z d

dz (ds z) = − cs z ns z
d
dz (nd z) = k2 sd z cd z d

dz (cs z) = −ns z ds z

Note that each derivative in Table 22.13.1 is a constant
multiple of the product of the corresponding copolar
functions. (The modulus k is suppressed throughout
the table.)

For alternative, and symmetric, formulations of
these results see Carlson (2004, 2006a).

22.13(ii) First-Order Differential Equations

22.13.1(
d

dz
sn (z, k)

)2
=
(
1− sn2 (z, k)

) (
1− k2 sn2 (z, k)

)
,

22.13.2(
d

dz
cn (z, k)

)2
=
(
1− cn2 (z, k)

)(
k′

2 + k2 cn2 (z, k)
)
,

22.13.3(
d

dz
dn (z, k)

)2
=
(
1− dn2 (z, k)

) (
dn2 (z, k)− k′2

)
.

For corresponding equations for the subsidiary functions
see http://dlmf.nist.gov/22.13.ii.

For alternative, and symmetric, formulations of
these results see Carlson (2006a).

22.13(iii) Second-Order Differential Equations

22.13.13

d2

dz2 sn (z, k) = −(1 + k2) sn (z, k) + 2k2 sn3 (z, k),

22.13.14

d2

dz2 cn (z, k) = −(k′2 − k2) cn (z, k)− 2k2 cn3 (z, k),

22.13.15

d2

dz2 dn (z, k) = (1 + k′
2) dn (z, k)− 2 dn3 (z, k).

For corresponding equations for the subsidiary func-
tions see http://dlmf.nist.gov/22.13.iii.

For alternative, and symmetric, formulations of
these results see Carlson (2006a).

22.14 Integrals

22.14(i) Indefinite Integrals of Jacobian Elliptic
Functions

With x ∈ R,

22.14.1

∫
sn (x, k) dx = k−1 ln(dn (x, k)− k cn (x, k)),

22.14.2

∫
cn (x, k) dx = k−1 Arccos(dn (x, k)),

22.14.3

∫
dn (x, k) dx = Arcsin(sn (x, k)) = am (x, k).

The branches of the inverse trigonometric functions are
chosen so that they are continuous. See §22.16(i) for
am (z, k).

For alternative, and symmetric, formulations of
these results see Carlson (2006a).

For the corresponding results for the subsidiary func-
tions see http://dlmf.nist.gov/22.14.i.

22.14(ii) Indefinite Integrals of Powers of
Jacobian Elliptic Functions

See §22.16(ii). The indefinite integral of the 3rd power
of a Jacobian function can be expressed as an elemen-
tary function of Jacobian functions and a product of
Jacobian functions. The indefinite integral of a 4th
power can be expressed as a complete elliptic integral,
a polynomial in Jacobian functions, and the integra-
tion variable. See Lawden (1989, pp. 87–88). See also
Gradshteyn and Ryzhik (2000, pp. 618–619) and Carl-
son (2006a).

For indefinite integrals of squares and products of
even powers of Jacobian functions in terms of symmet-
ric elliptic integrals, see Carlson (2006b).

22.14(iii) Other Indefinite Integrals

In (22.14.13)–(22.14.15), 0 < x < 2K.

22.14.13

∫
dx

sn (x, k)
= ln

(
sn (x, k)

cn (x, k) + dn (x, k)

)
,

22.14.14

∫
cn (x, k) dx

sn (x, k)
=

1
2

ln
(

1− dn (x, k)
1 + dn (x, k)

)
,

22.14.15

∫
cn (x, k) dx
sn2 (x, k)

= −dn (x, k)
sn (x, k)

.

For additional results see Gradshteyn and Ryzhik (2000,
pp. 619–622) and Lawden (1989, Chapter 3).
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22.14(iv) Definite Integrals

22.14.16

∫ K(k)

0

ln(sn (t, k)) dt = − 1
4K
′(k)− 1

2K(k) ln k,

22.14.17∫ K(k)

0

ln(cn (t, k)) dt = − 1
4K
′(k) + 1

2K(k) ln(k′/k),

22.14.18

∫ K(k)

0

ln(dn (t, k)) dt = 1
2K(k) ln k′.

Corresponding results for the subsidiary functions
follow by subtraction; compare (22.2.10).

22.15 Inverse Functions

22.15(i) Definitions

The inverse Jacobian elliptic functions can be defined in
an analogous manner to the inverse trigonometric func-
tions (§4.23). With real variables, the solutions of the
equations

22.15.1 sn (ξ, k) = x, −1 ≤ x ≤ 1,

22.15.2 cn (η, k) = x, −1 ≤ x ≤ 1,

22.15.3 dn (ζ, k) = x, k′ ≤ x ≤ 1,

are denoted respectively by
22.15.4

ξ = arcsn(x, k), η = arccn(x, k), ζ = arcdn(x, k).

Each of these inverse functions is multivalued. The prin-
cipal values satisfy

22.15.5 −K ≤ arcsn(x, k) ≤ K,

22.15.6 0 ≤ arccn(x, k) ≤ 2K,

22.15.7 0 ≤ arcdn(x, k) ≤ K,
and unless stated otherwise it is assumed that the in-
verse functions assume their principal values. The gen-
eral solutions of (22.15.1), (22.15.2), (22.15.3) are, re-
spectively,

22.15.8 ξ = (−1)m arcsn(x, k) + 2mK,

22.15.9 η = ± arccn(x, k) + 4mK,

22.15.10 ζ = ± arcdn(x, k) + 2mK,

where m ∈ Z.
Equations (22.15.1) and (22.15.4), for arcsn(x, k),

are equivalent to (22.15.12) and also to

22.15.11
x =

∫ sn (x,k)

0

dt√
(1− t2)(1− k2t2)

,

−1 ≤ x ≤ 1, 0 ≤ k ≤ 1.

Similarly with (22.15.13)–(22.15.14) and also the other
nine Jacobian elliptic functions.

22.15(ii) Representations as Elliptic Integrals

22.15.12

arcsn(x, k) =
∫ x

0

dt√
(1− t2)(1− k2t2)

, −1 ≤ x ≤ 1,

22.15.13

arccn(x, k) =
∫ 1

x

dt√
(1− t2)(k′2 + k2t2)

, −1 ≤ x ≤ 1,

22.15.14

arcdn(x, k) =
∫ 1

x

dt√
(1− t2)(t2 − k′2)

, k′ ≤ x ≤ 1 .

For the corresponding results for the subsidiary func-
tions see http://dlmf.nist.gov/22.15.ii.

The integrals (22.15.12)–(22.15.14) can be regarded
as normal forms for representing the inverse functions.
Other integrals, for example,∫ b

x

dt√
(a2 + t2)(b2 − t2)

can be transformed into normal form by elementary
change of variables. Comprehensive treatments are
given by Carlson (2005), Lawden (1989, pp. 52–55),
Bowman (1953, Chapter IX), and Erdélyi et al. (1953b,
pp. 296–301). See also Abramowitz and Stegun (1964,
p. 596).

For representations of the inverse functions as sym-
metric elliptic integrals see §19.25(v). For power-series
expansions see Carlson (2008).

22.16 Related Functions

22.16(i) Jacobi’s Amplitude (am) Function

Definition

22.16.1 am (x, k) = Arcsin(sn (x, k)), x ∈ R,
where the inverse sine has its principal value when
−K ≤ x ≤ K and is defined by continuity elsewhere.
See Figure 22.16.1. am (x, k) is an infinitely differen-
tiable function of x.
Quasi-Periodicity

22.16.2 am (x+ 2K, k) = am (x, k) + π.

Integral Representation

22.16.3 am (x, k) =
∫ x

0

dn (t, k) dt.

Special Values

22.16.4 am (x, 0) = x,

22.16.5 am (x, 1) = gd(x).
For the Gudermannian function gd(x) see §4.23(viii).
Approximation for Small x

22.16.6 am (x, k) = x− k2x
3

3!
+ k2

(
4 + k2

) x5

5!
+O

(
x7
)
.
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Approximations for Small k, k′

22.16.7 am (x, k) = x− 1
4k

2(x− sinx cosx) +O
(
k4
)
,

22.16.8
am (x, k) = gdx− 1

4k
′2(x− sinhx coshx) sechx

+O
(
k′

4
)
.

Fourier Series

With q as in (22.2.1) and ζ = πx/(2K),

22.16.9 am (x, k) =
π

2K
x+ 2

∞∑
n=1

qn sin(2nζ)
n(1 + q2n)

.

Relation to Elliptic Integrals

If −K ≤ x ≤ K, then the following four equations are
equivalent:

22.16.10 x = F (φ, k),

22.16.11 am (x, k) = φ,

22.16.12 sn (x, k) = sinφ = sin(am (x, k)),

22.16.13 cn (x, k) = cosφ = cos(am (x, k)).

For F (φ, k) see §19.2(ii).

22.16(ii) Jacobi’s Epsilon Function

Definition

For x ∈ R

22.16.14 E(x, k) =
∫ x

0

√
1− k2t2

1− t2
dt;

compare (19.2.5). See Figure 22.16.2.

Other Integral Representations

22.16.15 E(x, k) = x− k2

∫ x

0

sn2 (t, k) dt,

22.16.16 E(x, k) = k′
2
x+ k2

∫ x

0

cn2 (t, k) dt,

22.16.17 E(x, k) =
∫ x

0

dn2 (t, k) dt.

For corresponding formulas for the subsidiary func-
tions see http://dlmf.nist.gov/22.16.ii.

Quasi-Addition and Quasi-Periodic Formulas

22.16.27

E(x1 + x2, k) = E(x1, k) + E(x2, k)
− k2 sn (x1, k) sn (x2, k) sn (x1 + x2, k),

22.16.28

E(x+K, k) = E(x, k) + E(k)− k2 sn (x, k) cd (x, k),

22.16.29 E(x+ 2K, k) = E(x, k) + 2E(k).

For E(k) see §19.2(ii).

Relation to Theta Functions

22.16.30 E(x, k) =
1

θ2
3(0, q) θ4(ξ, q)

d

dξ
θ4(ξ, q) +

E(k)
K(k)

x,

where ξ = x/ θ2
3(0, q). For θj see §20.2(i). For E(k) see

§19.2(ii).

Relation to the Elliptic Integral E(φ, k)

22.16.31 E(am (x, k), k) = E(x, k), −K ≤ x ≤ K.

For E(φ, k) see §19.2(ii). See also (22.16.14).

22.16(iii) Jacobi’s Zeta Function

Definition

With E(k) and K(k) as in §19.2(ii) and x ∈ R,

22.16.32 Z(x|k) = E(x, k)− (E(k)/K(k))x.

See Figure 22.16.3. (Sometimes in the literature Z(x|k)
is denoted by Z(am (x, k), k2).)

Properties

Z(x|k) satisfies the same quasi-addition formula as the
function E(x, k), given by (22.16.27). Also,

22.16.33 Z(x+K|k) = Z(x|k)− k2 sn (x, k) cd (x, k),

22.16.34 Z(x+ 2K|k) = Z(x|k).

22.16(iv) Graphs

Figure 22.16.1: Jacobi’s amplitude function am (x, k) for
0 ≤ x ≤ 10π and k = 0.4, 0.7, 0.99, 0.999999. Values of
k greater than 1 are illustrated in Figure 22.19.1.
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�

Figure 22.16.2: Jacobi’s epsilon function E(x, k) for
0 ≤ x ≤ 10π and k = 0.4, 0.7, 0.99, 0.999999. (These
graphs are similar to those in Figure 22.16.1; com-
pare (22.16.3), (22.16.17), and the graphs of dn (x, k)
in §22.3(i).)

Figure 22.16.3: Jacobi’s zeta function Z(x|k) for 0 ≤ x ≤
10π and k = 0.4, 0.7, 0.99, 0.999999.

22.17 Moduli Outside the Interval [0,1]

22.17(i) Real or Purely Imaginary Moduli

Jacobian elliptic functions with real moduli in the in-
tervals (−∞, 0) and (1,∞), or with purely imaginary
moduli are related to functions with moduli in the in-
terval [0, 1] by the following formulas.

First

22.17.1 pq (z, k) = pq (z,−k),

for all twelve functions.
Secondly,

22.17.2 sn (z, 1/k) = k sn (z/k, k),

22.17.3 cn (z, 1/k) = dn (z/k, k),

22.17.4 dn (z, 1/k) = cn (z/k, k).

Thirdly, with

22.17.5 k1 =
k√

1 + k2
, k1k

′
1 =

k

1 + k2
,

22.17.6 sn (z, ik) = k′1 sd (z/k′1, k1),

22.17.7 cn (z, ik) = cd (z/k′1, k1),

22.17.8 dn (z, ik) = nd (z/k′1, k1).
In terms of the coefficients of the power series of

§22.10(i), the above equations are polynomial identities
in k. In (22.17.5) either value of the square root can be
chosen.

22.17(ii) Complex Moduli

When z is fixed each of the twelve Jacobian elliptic
functions is a meromorphic function of k2. For illus-
trations see Figures 22.3.25–22.3.27. In consequence,
the formulas in this chapter remain valid when k is
complex. In particular, the Landen transformations
in §§22.7(i) and 22.7(ii) are valid for all complex val-
ues of k, irrespective of which values of

√
k and k′ =√

1− k2 are chosen—as long as they are used consis-
tently. For proofs of these results and further informa-
tion see Walker (2003).

Applications

22.18 Mathematical Applications

22.18(i) Lengths and Parametrization of Plane
Curves

Ellipse

22.18.1
(
x2/a2

)
+
(
y2/b2

)
= 1,

with a ≥ b > 0, is parametrized by

22.18.2 x = a sn (u, k), y = b cn (u, k),
where k =

√
1− (b2/a2) is the eccentricity, and 0 ≤

u ≤ 4K(k). The arc length l(u) in the first quadrant,
measured from u = 0, is

22.18.3 l(u) = a E(u, k),
where E(u, k) is Jacobi’s epsilon function (§22.16(ii)).

Lemniscate

In polar coordinates, x = r cosφ, y = r sinφ, the lem-
niscate is given by r2 = cos(2φ), 0 ≤ φ ≤ 2π. The arc
length l(r), measured from φ = 0, is

22.18.4 l(r) = (1/
√

2) arccn
(
r, 1/
√

2
)
.

Inversely:
22.18.5 r = cn

(√
2l, 1/

√
2
)
,

and

22.18.6

x = cn
(√

2l, 1/
√

2
)

dn
(√

2l, 1/
√

2
)
,

y = cn
(√

2l, 1/
√

2
)

sn
(√

2l, 1/
√

2
)/√

2.
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For these and other examples see Lawden (1989,
Chapter 4), Whittaker and Watson (1927, §22.8), and
Siegel (1988, pp. 1–7).

22.18(ii) Conformal Mapping

With k ∈ [0, 1] the mapping z → w = sn (z, k) gives a
conformal map of the closed rectangle [−K,K]× [0,K ′]
onto the half-plane =w ≥ 0, with 0,±K,±K + iK ′, iK ′

mapping to 0,±1,±k−2,∞ respectively. The half-open
rectangle (−K,K) × [−K ′,K ′] maps onto C cut along
the intervals (−∞,−1] and [1,∞). See Akhiezer (1990,
Chapter 8) and McKean and Moll (1999, Chapter 2)
for discussions of the inverse mapping. Bowman (1953,
Chapters V–VI) gives an overview of the use of Jacobian
elliptic functions in conformal maps for engineering ap-
plications.

22.18(iii) Uniformization and Other
Parametrizations

By use of the functions sn and cn, parametrizations of
algebraic equations, such as

22.18.7
ax2y2 + b(x2y + xy2) + c(x2 + y2)

+ 2dxy + e(x+ y) + f = 0,
in which a, b, c, d, e, f are real constants, can be achieved
in terms of single-valued functions. This circumvents
the cumbersome branch structure of the multivalued
functions x(y) or y(x), and constitutes the process of
uniformization; see Siegel (1988, Chapter II). See Bax-
ter (1982, p. 471) for an example from statistical me-
chanics. Discussion of parametrization of the angles
of spherical trigonometry in terms of Jacobian elliptic
functions is given in Greenhill (1959, p. 131) and Law-
den (1989, §4.4).

22.18(iv) Elliptic Curves and the Jacobi–Abel
Addition Theorem

Algebraic curves of the form y2 = P (x), where P is
a nonsingular polynomial of degree 3 or 4 (see McK-
ean and Moll (1999, §1.10)), are elliptic curves, which
are also considered in §23.20(ii). The special case
y2 = (1 − x2)(1 − k2x2) is in Jacobian normal form.
For any two points (x1, y1) and (x2, y2) on this curve,
their sum (x3, y3), always a third point on the curve, is
defined by the Jacobi–Abel addition law
22.18.8

x3 =
x1y2 + x2y1

1− k2x2
1x

2
2

,

y3 =
y1y2 + x2(−(1 + k2)x1 + 2k2x3

1)
1− k2x2

1x
2
2

+ x3
2k2x1y1x

2
2

1− k2x2
1x

2
2

,

a construction due to Abel; see Whittaker and Wat-
son (1927, pp. 442, 496–497). This provides an abelian

group structure, and leads to important results in num-
ber theory, discussed in an elementary manner by Sil-
verman and Tate (1992), and more fully by Koblitz
(1993, Chapter 1, especially §1.7) and McKean and Moll
(1999, Chapter 3). The existence of this group struc-
ture is connected to the Jacobian elliptic functions via
the differential equation (22.13.1). With the identifi-
cation x = sn (z, k), y = d(sn (z, k))/dz , the addition
law (22.18.8) is transformed into the addition theorem
(22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and
McKean and Moll (1999, §§2.14, 2.16). The theory
of elliptic functions brings together complex analysis,
algebraic curves, number theory, and geometry: Lang
(1987), Siegel (1988), and Serre (1973).

22.19 Physical Applications

22.19(i) Classical Dynamics: The Pendulum

With appropriate scalings, Newton’s equation of motion
for a pendulum with a mass in a gravitational field con-
strained to move in a vertical plane at a fixed distance
from a fulcrum is

22.19.1
d2θ(t)
dt2

= − sin θ(t),

θ being the angular displacement from the point of sta-
ble equilibrium, θ = 0. The bounded (−π ≤ θ ≤ π)
oscillatory solution of (22.19.1) is traditionally written

22.19.2 sin
(

1
2θ(t)

)
= sin

(
1
2α
)

sn
(
t, sin

(
1
2α
))
,

for an initial angular displacement α, with dθ/dt = 0 at
time 0; see Lawden (1989, pp. 114–117). The period is
4K
(
sin
(

1
2α
))

. The angle α = π is a separatrix, separat-
ing oscillatory and unbounded motion. With the same
initial conditions, if the sign of gravity is reversed then
the new period is 4K ′

(
sin
(

1
2α
))

; see Whittaker (1964,
§44).

Alternatively, Sala (1989) writes:

22.19.3 θ(t) = 2 am
(
t,
√

2/E
)
,

for the initial conditions θ(0) = 0, the point of stable
equilibrium for E = 0, and dθ(t)/dt =

√
2E. Here

E = 1
2 (dθ(t)/dt )2 +1− cos θ(t) is the energy, which is a

first integral of the motion. This formulation gives the
bounded and unbounded solutions from the same for-
mula (22.19.3), for k ≥ 1 and k ≤ 1, respectively. Also,
θ(t) is not restricted to the principal range −π ≤ θ ≤ π.
Figure 22.19.1 shows the nature of the solutions θ(t) of
(22.19.3) by graphing am (x, k) for both 0 ≤ k ≤ 1, as
in Figure 22.16.1, and k ≥ 1, where it is periodic.
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Figure 22.19.1: Jacobi’s amplitude function am (x, k) for
0 ≤ x ≤ 10π and k = 0.5, 0.9999, 1.0001, 2. When
k < 1, am (x, k) increases monotonically indicating that
the motion of the pendulum is unbounded in θ, cor-
responding to free rotation about the fulcrum; com-
pare Figure 22.16.1. As k → 1−, plateaus are seen
as the motion approaches the separatrix where θ = nπ,
n = ±1,±2, ..., at which points the motion is time inde-
pendent for k = 1. This corresponds to the pendulum
being “upside down” at a point of unstable equilibrium.
For k > 1, the motion is periodic in x, corresponding to
bounded oscillatory motion.

22.19(ii) Classical Dynamics: The Quartic
Oscillator

Classical motion in one dimension is described by New-
ton’s equation

22.19.4
d2x(t)
dt2

= −dV (x)
dx

,

where V (x) is the potential energy, and x(t) is the co-
ordinate as a function of time t. The potential

22.19.5 V (x) = ± 1
2x

2 ± 1
4βx

4

plays a prototypal role in classical mechanics (Law-
den (1989, §5.2)), quantum mechanics (Schulman (1981,
Chapter 29)), and quantum field theory (Pokorski
(1987, p. 203), Parisi (1988, §14.6)). Its dynamics for
purely imaginary time is connected to the theory of in-
stantons (Itzykson and Zuber (1980, p. 572), Schäfer
and Shuryak (1998)), to WKB theory, and to large-
order perturbation theory (Bender and Wu (1973), Si-
mon (1982)).

For β real and positive, three of the four possible
combinations of signs give rise to bounded oscillatory
motions. We consider the case of a particle of mass 1,
initially held at rest at displacement a from the origin
and then released at time t = 0. The subsequent po-
sition as a function of time, x(t), for the three cases
is given with results expressed in terms of a and the
dimensionless parameter η = 1

2βa
2.

Case I: V (x) = 1
2
x2 + 1

4
βx4

This is an example of Duffing’s equation; see Ablowitz
and Clarkson (1991, pp. 150–152) and Lawden (1989,
pp. 117–119). The subsequent time evolution is always
oscillatory with period 4K(k)/

√
1 + η:

22.19.6 x(t) = a cn
(√

1 + ηt, 1/
√

2 + η−1
)
.

Case II: V (x) = 1
2
x2 − 1

4
βx4

There is bounded oscillatory motion near x = 0, with
period 4K(k)/

√
1− η, for initial displacements with

|a| ≤
√

1/β:

22.19.7 x(t) = a sn
(√

1− ηt, 1/
√
η−1 − 1

)
.

As a →
√

1/β from below the period diverges since
a = ±

√
1/β are points of unstable equilibrium.

Case III: V (x) = −1
2
x2 + 1

4
βx4

Two types of oscillatory motion are possible. For an ini-
tial displacement with

√
1/β ≤ |a| ≤

√
2/β, bounded

oscillations take place near one of the two points of sta-
ble equilibrium x = ±

√
1/β. Such oscillations, of pe-

riod 4K(k)/
√
η, are given by:

22.19.8 x(t) = adn
(√

ηt,
√

2− η−1
)
.

As a →
√

2/β from below the period diverges since
x = 0 is a point of unstable equlilibrium. For initial
displacement with |a| ≥

√
2/β the motion extends over

the full range −a ≤ x ≤ a:

22.19.9 x(t) = a cn
(√

2η − 1t, 1/
√

2− η−1
)
,

with period 4K(k)/
√

2η − 1. As |a| →
√

2/β from
above the period again diverges. Both the dn and cn
solutions approach a sech t as a →

√
2/β from the ap-

propriate directions.

22.19(iii) Nonlinear ODEs and PDEs

Many nonlinear ordinary and partial differential equa-
tions have solutions that may be expressed in terms of
Jacobian elliptic functions. These include the time de-
pendent, and time independent, nonlinear Schrödinger
equations (NLSE) (Drazin and Johnson (1993, Chap-
ter 2), Ablowitz and Clarkson (1991, pp. 42, 99)), the
Korteweg–de Vries (KdV) equation (Kruskal (1974), Li
and Olver (2000)), the sine-Gordon equation, and oth-
ers; see Drazin and Johnson (1993, Chapter 2) for an
overview. Such solutions include standing or station-
ary waves, periodic cnoidal waves, and single and multi-
solitons occurring in diverse physical situations such as
water waves, optical pulses, quantum fluids, and elec-
trical impulses (Hasegawa (1989), Carr et al. (2000),
Kivshar and Luther-Davies (1998), and Boyd (1998, Ap-
pendix D2.2)).
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22.19(iv) Tops

The classical rotation of rigid bodies in free space or
about a fixed point may be described in terms of ellip-
tic, or hyperelliptic, functions if the motion is integrable
(Audin (1999, Chapter 1)). Hyperelliptic functions u(z)
are solutions of the equation z =

∫ u
0

(f(x))−1/2 dx,
where f(x) is a polynomial of degree higher than 4.
Elementary discussions of this topic appear in Lawden
(1989, §5.7), Greenhill (1959, pp. 101–103), and Whit-
taker (1964, Chapter VI). A more abstract overview is
Audin (1999, Chapters III and IV), and a complete dis-
cussion of analytical solutions in the elliptic and hyper-
elliptic cases appears in Golubev (1960, Chapters V and
VII), the original hyperelliptic investigation being due
to Kowalevski (1889).

22.19(v) Other Applications

Numerous other physical or engineering applications in-
volving Jacobian elliptic functions, and their inverses, to
problems of classical dynamics, electrostatics, and hy-
drodynamics appear in Bowman (1953, Chapters VII
and VIII) and Lawden (1989, Chapter 5). Whittaker
(1964, Chapter IV) enumerates the complete class of
one-body classical mechanical problems that are solv-
able this way.

Computation

22.20 Methods of Computation

22.20(i) Via Theta Functions

A powerful way of computing the twelve Jacobian el-
liptic functions for real or complex values of both the
argument z and the modulus k is to use the definitions
in terms of theta functions given in §22.2, obtaining the
theta functions via methods described in §20.14.

22.20(ii) Arithmetic-Geometric Mean

Given real or complex numbers a0, b0, with b0/a0 not
real and negative, define

22.20.1
an = 1

2 (an−1 + bn−1) , bn = (an−1bn−1)1/2 ,
cn = 1

2 (an−1 − bn−1) ,
for n ≥ 1, where the square root is chosen so that
ph bn = 1

2 (ph an−1 + ph bn−1), where ph an−1 and
ph bn−1 are chosen so that their difference is numeri-
cally less than π. Then as n → ∞ sequences {an},
{bn} converge to a common limit M = M(a0, b0), the
arithmetic-geometric mean of a0, b0. And since

22.20.2 max (|an−M | , |bn−M | , |cn|)≤ (const.)×2−2n ,

convergence is very rapid.
For x real and k ∈ (0, 1), use (22.20.1) with a0 =

1, b0 = k′ ∈ (0, 1), c0 = k, and continue until
cN is zero to the required accuracy. Next, compute
φN , φN−1, . . . , φ0, where

22.20.3 φN = 2NaNx,

22.20.4 φn−1 =
1
2

(
φn + arcsin

(
cn
an

sinφn

))
,

and the inverse sine has its principal value (§4.23(ii)).
Then

22.20.5

sn (x, k) = sinφ0, cn (x, k) = cosφ0,

dn (x, k) =
cosφ0

cos(φ1 − φ0)
,

and the subsidiary functions can be found using
(22.2.10).

See also Wachspress (2000).

Example

To compute sn, cn, dn to 10D when x = 0.8, k = 0.65.
Four iterations of (22.20.1) lead to c4 = 6.5 ×

10−12. From (22.20.3) and (22.20.4) we obtain
φ1 = 1.40213 91827 and φ0 = 0.76850 92170.
Then from (22.20.5), sn (0.8, 0.65) = 0.69506 42165,
cn (0.8, 0.65) = 0.71894 76580, dn (0.8, 0.65) =
0.89212 34349.

22.20(iii) Landen Transformations

By application of the transformations given in §§22.7(i)
and 22.7(ii), k or k′ can always be made sufficently small
to enable the approximations given in §22.10(ii) to be
applied. The rate of convergence is similar to that for
the arithmetic-geometric mean.

Example

To compute dn (x, k) to 6D for x = 0.2, k2 = 0.19,
k′ = 0.9.

From (22.7.1), k1 = 1
19 and x/(1 + k1) =

0.19. From the first two terms in (22.10.6) we find
dn
(
0.19, 1

19

)
= 0.999951. Then by using (22.7.4) we

have dn
(
0.2,
√

0.19
)

= 0.996253.
If needed, the corresponding values of sn and cn

can be found subsequently by applying (22.10.4) and
(22.7.2), followed by (22.10.5) and (22.7.3).

22.20(iv) Lattice Calculations

If either τ or q = eiπτ is given, then we use
k = θ2

2(0, q)/ θ2
3(0, q), k′ = θ2

4(0, q)/ θ2
3(0, q), K =

1
2π θ

2
3(0, q), and K ′ = −iτK, obtaining the values of

the theta functions as in §20.14.
If k, k′ are given with k2 + k′

2 = 1 and =k′/=k < 0,
then K,K ′ can be found from

22.20.6 K =
π

2M(1, k′)
, K ′ =

π

2M(1, k)
,

using the arithmetic-geometric mean.
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Example 1

If k = k′ = 1/
√

2, then three iterations of (22.20.1)
give M = 0.84721 30848, and from (22.20.6) K =
π/(2M) = 1.85407 46773 —in agreement with the value
of
(
Γ
(

1
4

))2
/ (4
√
π); compare (23.17.3) and (23.22.2).

Example 2

If k′ = 1 − i, then four iterations of (22.20.1) give
K = 1.23969 74481 + i0.56499 30988.

22.20(v) Inverse Functions

See Wachspress (2000).

22.20(vi) Related Functions

am (x, k) can be computed from its definition (22.16.1)
or from its Fourier series (22.16.9). Alternatively, Sala
(1989) shows how to apply the arithmetic-geometric
mean to compute am (x, k).

Jacobi’s epsilon function can be computed from its
representation (22.16.30) in terms of theta functions and
complete elliptic integrals; compare §20.14. Jacobi’s
zeta function can then be found by use of (22.16.32).

22.20(vii) Further References

For additional information on methods of computation
for the Jacobi and related functions, see the introduc-
tory sections in the following books: Lawden (1989),
Curtis (1964b), Milne-Thomson (1950), and Spenceley
and Spenceley (1947).

22.21 Tables

Spenceley and Spenceley (1947) tabulates sn (Kx, k),
cn (Kx, k), dn (Kx, k), am (Kx, k), E(Kx, k) for
arcsin k = 1◦(1◦)89◦ and x = 0

(
1
90

)
1 to 12D, or 12

decimals of a radian in the case of am (Kx, k).
Curtis (1964b) tabulates sn (mK/n, k),

cn (mK/n, k), dn (mK/n, k) for n = 2(1)15, m =
1(1)n− 1, and q (not k) = 0(.005)0.35 to 20D.

Lawden (1989, pp. 280–284 and 293–297) tabulates
sn (x, k), cn (x, k), dn (x, k), E(x, k), Z(x|k) to 5D for
k = 0.1(.1)0.9, x = 0(.1)X, where X ranges from 1.5 to
2.2.

Zhang and Jin (1996, p. 678) tabulates sn (Kx, k),
cn (Kx, k), dn (Kx, k) for k = 1

4 ,
1
2 and x = 0(.1)4 to

7D.
For other tables prior to 1961 see Fletcher et al.

(1962, pp. 500–503) and Lebedev and Fedorova (1960,
pp. 221–223).

Tables of theta functions (§20.15) can also be used
to compute the twelve Jacobian elliptic functions by ap-
plication of the quotient formulas given in §22.2.

22.22 Software

See http://dlmf.nist.gov/22.22.
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Notation

23.1 Special Notation

(For other notation see pp. xiv and 873.)

L lattice in C.
`, n integers.
m integer, except in §23.20(ii).
z = x+ iy complex variable, except in §§23.20(ii),

23.21(iii).
[a, b] or (a, b) closed, or open, straight-line segment

joining a and b, whether or not a and b
are real.

primes derivatives with respect to the variable,
except where indicated otherwise.

K(k), K ′(k) complete elliptic integrals (§19.2(i)).
2ω1, 2ω3 lattice generators (=(ω3/ω1) > 0).
ω2 −ω1 − ω3.
τ = ω3/ω1 lattice parameter (=τ > 0).
q = eiπω3/ω1

= eiπτ nome.
g2, g3 lattice invariants.
e1, e2, e3 zeros of Weierstrass normal cubic

4z3 − g2z − g3.
∆ discriminant g3

2 − 27g2
3 .

nZ set of all integer multiples of n.
S1/S2 set of all elements of S1, modulo

elements of S2. Thus two elements of
S1/S2 are equivalent if they are both
in S1 and their difference is in S2. (For
an example see §20.12(ii).)

G×H Cartesian product of groups G and H,
that is, the set of all pairs of elements
(g, h) with group operation
(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2).

The main functions treated in this chapter are the
Weierstrass ℘-function ℘(z) = ℘(z|L) = ℘(z; g2, g3); the
Weierstrass zeta function ζ(z) = ζ(z|L) = ζ(z; g2, g3);
the Weierstrass sigma function σ(z) = σ(z|L) =
σ(z; g2, g3); the elliptic modular function λ(τ); Klein’s
complete invariant J(τ); Dedekind’s eta function η(τ).

Other Notations

Whittaker and Watson (1927) requires only =(ω3/ω1) 6=
0, instead of =(ω3/ω1) > 0. Abramowitz and Ste-
gun (1964, Chapter 18) considers only rectangular and
rhombic lattices (§23.5); ω1, ω3 are replaced by ω, ω′ for
the former and by ω2, ω′ for the latter. Silverman and
Tate (1992) and Koblitz (1993) replace 2ω1 and 2ω3

by ω1 and ω3, respectively. Walker (1996) normalizes
2ω1 = 1, 2ω3 = τ , and uses homogeneity (§23.10(iv)).
McKean and Moll (1999) replaces 2ω1 and 2ω3 by ω1

and ω2, respectively.

Weierstrass Elliptic Functions

23.2 Definitions and Periodic Properties

23.2(i) Lattices

If ω1 and ω3 are nonzero real or complex numbers such
that =(ω3/ω1) > 0, then the set of points 2mω1 +2nω3,
with m,n ∈ Z, constitutes a lattice L with 2ω1 and 2ω3

lattice generators.
The generators of a given lattice L are not unique.

For example, if

23.2.1 ω1 + ω2 + ω3 = 0,

then 2ω2, 2ω3 are generators, as are 2ω2, 2ω1. In gen-
eral, if

23.2.2 χ1 = aω1 + bω3, χ3 = cω1 + dω3,

where a, b, c, d are integers, then 2χ1, 2χ3 are generators
of L iff

23.2.3 ad− bc = 1.

23.2(ii) Weierstrass Elliptic Functions

23.2.4 ℘(z) =
1
z2

+
∑

w∈L\{0}

(
1

(z − w2)
− 1
w2

)
,

23.2.5 ζ(z) =
1
z

+
∑

w∈L\{0}

(
1

z − w
+

1
w

+
z

w2

)
,

23.2.6 σ(z) = z
∏

w∈L\{0}

((
1− z

w

)
exp
(
z

w
+

z2

2w2

))
.

The double series and double product are absolutely and
uniformly convergent in compact sets in C that do not
include lattice points. Hence the order of the terms or
factors is immaterial.

When z /∈ L the functions are related by

23.2.7 ℘(z) = − ζ ′(z),

23.2.8 ζ(z) = σ′(z)/σ(z) .

℘(z) and ζ(z) are meromorphic functions with poles
at the lattice points. ℘(z) is even and ζ(z) is odd. The
poles of ℘(z) are double with residue 0; the poles of ζ(z)
are simple with residue 1. The function σ(z) is entire
and odd, with simple zeros at the lattice points. When
it is important to display the lattice with the functions
they are denoted by ℘(z|L), ζ(z|L), and σ(z|L), respec-
tively.
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23.2(iii) Periodicity

If 2ω1, 2ω3 is any pair of generators of L, and ω2 is
defined by (23.2.1), then

23.2.9 ℘(z + 2ωj) = ℘(z), j = 1, 2, 3.
Hence ℘(z) is an elliptic function, that is, ℘(z) is mero-
morphic and periodic on a lattice; equivalently, ℘(z) is
meromorphic and has two periods whose ratio is not
real. We also have

23.2.10 ℘′(ωj) = 0, j = 1, 2, 3.
The function ζ(z) is quasi-periodic: for j = 1, 2, 3,

23.2.11 ζ(z + 2ωj) = ζ(z) + 2ηj ,
where

23.2.12 ηj = ζ(ωj).
Also,

23.2.13 η1 + η2 + η3 = 0,

23.2.14 η3ω2−η2ω3 = η2ω1−η1ω2 = η1ω3−η3ω1 = 1
2πi.

For j = 1, 2, 3, the function σ(z) satisfies

23.2.15 σ(z + 2ωj) = −e2ηj(z+ωj) σ(z),

23.2.16 σ′(2ωj) = −e2ηjωj .

More generally, if j = 1, 2, 3, k = 1, 2, 3, j 6= k, and
m,n ∈ Z, then
23.2.17

σ(z + 2mωj + 2nωk)/σ(z)
= (−1)m+n+mn exp((2mηj + 2nηk)(mωj + nωk + z)).

For further quasi-periodic properties of the σ-
function see Lawden (1989, §6.2).

23.3 Differential Equations

23.3(i) Invariants, Roots, and Discriminant

The lattice invariants are defined by

23.3.1
g2 = 60

∑
w∈L\{0}

w−4,

23.3.2
g3 = 140

∑
w∈L\{0}

w−6.

The lattice roots satisfy the cubic equation

23.3.3 4z3 − g2z − g3 = 0,
and are denoted by e1, e2, e3. The discriminant
(§1.11(ii)) is given by

23.3.4 ∆ = g3
2 − 27g2

3 = 16(e2− e3)2(e3− e1)2(e1− e2)2.

In consequence,

23.3.5 e1 + e2 + e3 = 0,

23.3.6 g2 = 2(e2
1 + e2

2 + e2
3) = −4(e2e3 + e3e1 + e1e2),

23.3.7 g3 = 4e1e2e3 = 4
3 (e3

1 + e3
2 + e3

3).
Let g3

2 6= 27g2
3 , or equivalently ∆ be nonzero, or

e1, e2, e3 be distinct. Given g2 and g3 there is a unique
lattice L such that (23.3.1) and (23.3.2) are satisfied.
We may therefore define

23.3.8 ℘(z; g2, g3) = ℘(z|L).
Similarly for ζ(z; g2, g3) and σ(z; g2, g3). As functions of
g2 and g3, ℘(z; g2, g3) and ζ(z; g2, g3) are meromorphic
and σ(z; g2, g3) is entire.

Conversely, g2, g3, and the set {e1, e2, e3} are deter-
mined uniquely by the lattice L independently of the
choice of generators. However, given any pair of gener-
ators 2ω1, 2ω3 of L, and with ω2 defined by (23.2.1), we
can identify the ej individually, via

23.3.9 ej = ℘(ωj |L), j = 1, 2, 3.
In what follows, it will be assumed that (23.3.9) al-

ways applies.

23.3(ii) Differential Equations and Derivatives

23.3.10 ℘′
2(z) = 4℘3(z)− g2 ℘(z)− g3,

23.3.11 ℘′
2(z) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3),

23.3.12 ℘′′(z) = 6℘2(z)− 1
2g2,

23.3.13 ℘′′′(z) = 12℘(z)℘′(z).
See also (23.2.7) and (23.2.8).

23.4 Graphics

23.4(i) Real Variables

See Figures 23.4.1–23.4.7 for line graphs of the Weier-
strass functions ℘(x), ζ(x), and σ(x), illustrating the
lemniscatic and equianharmonic cases. (The figures in
this subsection may be compared with the figures in
§22.3(i).)

Figure 23.4.1: ℘(x; g2, 0) for 0 ≤ x ≤ 9, g2 = 0.1, 0.2,
0.5, 0.8. (Lemniscatic case.)
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Figure 23.4.2: ℘(x; 0, g3) for 0 ≤ x ≤ 9, g3 = 0.1, 0.2,
0.5, 0.8. (Equianharmonic case.)

Figure 23.4.3: ζ(x; g2, 0) for 0 ≤ x ≤ 8, g2 = 0.1, 0.2,
0.5, 0.8. (Lemniscatic case.)

Figure 23.4.4: ζ(x; 0, g3) for 0 ≤ x ≤ 8, g3 = 0.1, 0.2,
0.5, 0.8. (Equianharmonic case.)

Figure 23.4.5: σ(x; g2, 0) for −5 ≤ x ≤ 5, g2 = 0.1, 0.2,
0.5, 0.8. (Lemniscatic case.)

Figure 23.4.6: σ(x; 0, g3) for −5 ≤ x ≤ 5, g3 = 0.1, 0.2,
0.5, 0.8. (Equianharmonic case.)

Figure 23.4.7: ℘(x) with ω1 = K(k), ω3 = iK ′(k) for
0 ≤ x ≤ 9, k2 = 0.2, 0.8, 0.95, 0.99. (Lemniscatic case.)



23.4 Graphics 573

23.4(ii) Complex Variables

See Figures 23.4.8–23.4.12 for surfaces for the Weierstrass functions ℘(z), ζ(z), and σ(z). Height corresponds to
the absolute value of the function and color to the phase. See also p. xiv. (The figures in this subsection may be
compared with the figures in §22.3(iii).)

Figure 23.4.8: ℘(x+ iy) with ω1 = K(k), ω3 = iK ′(k)
for −2K(k) ≤ x ≤ 2K(k), 0 ≤ y ≤ 6K ′(k), k2 = 0.9.
(The scaling makes the lattice appear to be square.)

Figure 23.4.9: ℘(x+ iy; 1, 4i) for −3.8 ≤ x ≤ 3.8,
−3.8 ≤ y ≤ 3.8. (The variables are unscaled and the
lattice is skew.)

Figure 23.4.10: ζ(x+ iy; 1, 0) for −5 ≤ x ≤ 5, −5 ≤ y ≤
5.

Figure 23.4.11: σ(x+ iy; 1, i) for −2.5 ≤ x ≤ 2.5,
−2.5 ≤ y ≤ 2.5.
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Figure 23.4.12: ℘(3.7; a+ ib, 0) for −5 ≤ a ≤ 3, −4 ≤
b ≤ 4. There is a double zero at a = b = 0 and double
poles on the real axis.

23.5 Special Lattices

23.5(i) Real-Valued Functions

The Weierstrass functions take real values on the real
axis iff the lattice is fixed under complex conjugation:
L = L; equivalently, when g2, g3 ∈ R. This happens in
the cases treated in the following four subsections.

23.5(ii) Rectangular Lattice

This occurs when both ω1 and ω3/i are real and posi-
tive. Then ∆ > 0 and the parallelogram with vertices
at 0, 2ω1, 2ω1 + 2ω3, 2ω3 is a rectangle.

In this case the lattice roots e1, e2, and e3 are real
and distinct. When they are identified as in (23.3.9)

23.5.1 e1 > e2 > e3, e1 > 0 > e3.

Also, e2 and g3 have opposite signs unless ω3 = iω1, in
which event both are zero.

As functions of =ω3, e1 and e2 are decreasing and
e3 is increasing.

23.5(iii) Lemniscatic Lattice

This occurs when ω1 is real and positive and ω3 = iω1.
The parallelogram 0, 2ω1, 2ω1 + 2ω3, 2ω3 is a square,
and

23.5.2 η1 = iη3 = π/(4ω1),

23.5.3 e1 = −e3 =
(
Γ
(

1
4

))4
/(32πω2

1), e2 = 0,

23.5.4 g2 =
(
Γ
(

1
4

))8
/(256π2ω4

1), g3 = 0.
Note also that in this case τ = i. In consequence,

23.5.5 k2 = 1
2 , K(k) = K ′(k) =

(
Γ
(

1
4

))2/(4√π) .

23.5(iv) Rhombic Lattice

This occurs when ω1 is real and positive, =ω3 > 0,
<ω3 = 1

2ω1, and ∆ < 0. The parallelogram 0, 2ω1−2ω3,
2ω1, 2ω3, is a rhombus: see Figure 23.5.1.

The lattice root e1 is real, and e3 = ē2, with =e2 > 0.
e1 and g3 have the same sign unless 2ω3 = (1 + i)ω1

when both are zero: the pseudo-lemniscatic case. As a
function of =e3 the root e1 is increasing. For the case
ω3 = eπi/3ω1 see §23.5(v).

23.5(v) Equianharmonic Lattice

This occurs when ω1 is real and positive and ω3 =
eπi/3ω1. The rhombus 0, 2ω1 − 2ω3, 2ω1, 2ω3 can be
regarded as the union of two equilateral triangles: see
Figure 23.5.2.

23.5.6 η1 = eπi/3η3 =
π

2
√

3ω1

,

and the lattice roots and invariants are given by

23.5.7 e1 = e2πi/3e3 = e−2πi/3e2 =

(
Γ
(

1
3

))6
214/3π2ω2

1

,

23.5.8 g2 = 0, g3 =

(
Γ
(

1
3

))18

(4πω1)6
.

Note also that in this case τ = eiπ/3. In consequence,
23.5.9

k2 = eiπ/3, K(k) = eiπ/6K ′(k) = eiπ/12 31/4
(
Γ
(

1
3

))3
27/3π

.

23.6 Relations to Other Functions

23.6(i) Theta Functions

In this subsection 2ω1, 2ω3 are any pair of generators of
the lattice L, and the lattice roots e1, e2, e3 are given
by (23.3.9).

23.6.1 q = eiπτ , τ = ω3/ω1.

23.6.2 e1 =
π2

12ω2
1

(
θ4

2(0, q) + 2θ4
4(0, q)

)
,

23.6.3 e2 =
π2

12ω2
1

(
θ4

2(0, q)− θ4
4(0, q)

)
,

23.6.4 e3 = − π2

12ω2
1

(
2θ4

2(0, q) + θ4
4(0, q)

)
.

23.6.5

℘(z)− e1 =
(
π θ3(0, q) θ4(0, q) θ2(πz/(2ω1), q)

2ω1 θ1(πz/(2ω1), q)

)2
,

23.6.6

℘(z)− e2 =
(
π θ2(0, q) θ4(0, q) θ3(πz/(2ω1), q)

2ω1 θ1(πz/(2ω1), q)

)2
,

23.6.7

℘(z)− e3 =
(
π θ2(0, q) θ3(0, q) θ4(πz/(2ω1), q)

2ω1 θ1(πz/(2ω1), q)

)2
.
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Figure 23.5.1: Rhombic lattice. <(2ω3) = ω1. Figure 23.5.2: Equianharmonic lattice. 2ω3 = eπi/32ω1,
2ω1 − 2ω3 = e−πi/32ω1.

23.6.8 η1 = − π2

12ω1

θ′′′1 (0, q)
θ′1(0, q)

.

23.6.9 σ(z) = 2ω1 exp
(
η1z

2

2ω1

)
θ1(πz/(2ω1), q)

π θ′1(0, q)
,

23.6.10 σ(ω1) = 2ω1

exp
(

1
2η1ω1

)
θ2(0, q)

π θ′1(0, q)
,

23.6.11 σ(ω2) = 2ω1i
exp
(

1
2η1ω1τ

2
)
θ3(0, q)

πq1/4 θ′1(0, q)
,

23.6.12 σ(ω3) = −2ω1

exp
(

1
2η1ω1

)
θ4(0, q)

πq1/4 θ′1(0, q)
.

With z = πu/(2ω1) ,

23.6.13 ζ(u) =
η1

ω1
u+

π

2ω1

d

dz
ln θ1(z, q),

23.6.14 ℘(u) =
(

π

2ω1

)2(
θ′′′1 (0, q)
3θ′1(0, q)

− d2

dz2 ln θ1(z, q)
)
,

23.6.15

σ(u+ ωj)
σ(ωj)

= exp
(
ηju+

ηju
2

2ω1

)
θj+1(z, q)
θj+1(0, q)

, j = 1, 2, 3.

For further results for the σ-function see Lawden
(1989, §6.2).

23.6(ii) Jacobian Elliptic Functions

Again, in Equations (23.6.16)–(23.6.26), 2ω1, 2ω3 are
any pair of generators of the lattice L and e1, e2, e3 are
given by (23.3.9).

23.6.16 k2 =
e2 − e3

e1 − e3
, k′

2 =
e1 − e2

e1 − e3
,

23.6.17
K2 = (K(k))2 = ω2

1(e1 − e3),

K ′
2 = (K(k′))2 = ω2

3(e3 − e1).

23.6.18 e1 =
K2

3ω2
1

(1 + k′
2),

23.6.19 e2 =
K2

3ω2
1

(k2 − k′2),

23.6.20 e3 = −K
2

3ω2
1

(1 + k2).

23.6.21 ℘(z)− e1 =
K2

ω2
1

cs2

(
Kz

ω1
, k

)
,

23.6.22 ℘(z)− e2 =
K2

ω2
1

ds2

(
Kz

ω1
, k

)
,

23.6.23 ℘(z)− e3 =
K2

ω2
1

ns2

(
Kz

ω1
, k

)
.

23.6.24 ℘(z + ω1)− e1 =
(
Kk′

ω1

)2
sc2

(
Kz

ω1
, k

)
,

23.6.25 ℘(z + ω2)− e2 = −
(
Kkk′

ω1

)2
sd2

(
Kz

ω1
, k

)
,

23.6.26 ℘(z + ω3)− e3 =
(
Kk

ω1

)2
sn2

(
Kz

ω1
, k

)
.

In (23.6.27)–(23.6.29) the modulus k is given and
K = K(k), K ′ = K(k′) are the corresponding complete
elliptic integrals (§19.2(ii)). Also, L1, L2, L3 are the lat-
tices with generators (4K , 2iK ′ ), (2K − 2iK ′ , 2K +
2iK ′ ), (2K , 4iK ′ ), respectively.

23.6.27 ζ(z|L1)− ζ(z + 2K |L1)+ ζ(2K |L1) = ns (z, k),
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23.6.28 ζ(z|L2)− ζ(z + 2K |L2)+ ζ(2K |L2) = ds (z, k),

23.6.29

ζ(z|L3)− ζ(z + 2iK ′ |L3)− ζ(2iK ′ |L3) = cs (z, k).

Similar results for some of the other nine Jacobi
functions can be constructed with the aid of the trans-
formations given by Table 22.4.3, or for all nine by
referring to the augmented version of Table 22.4.3 at
http://dlmf.nist.gov/22.4.t3.

For representations of the Jacobi functions sn, cn,
and dn as quotients of σ-functions see Lawden (1989,
§§6.2, 6.3).

23.6(iii) General Elliptic Functions

For representations of general elliptic functions
(§23.2(iii)) in terms of σ(z) and ℘(z) see Lawden (1989,
§§8.9, 8.10), and for expansions in terms of ζ(z) see
Lawden (1989, §8.11).

23.6(iv) Elliptic Integrals

Rectangular Lattice

Let z be on the perimeter of the rectangle with vertices
0, 2ω1, 2ω1 + 2ω3, 2ω3. Then t = ℘(z) is real (§§23.5(i)–
23.5(ii)), and

23.6.30
z =

1
2

∫ ∞
t

du√
(u− e1)(u− e2)(u− e3)

,

t ≥ e1, z ∈ (0, ω1],

23.6.31
z − ω1 =

i

2

∫ e1

t

du√
(e1 − u)(u− e2)(u− e3)

,

e2 ≤ t ≤ e1, z ∈ [ω1, ω1 + ω3],

23.6.32
z − ω3 =

1
2

∫ t

e3

du√
(e1 − u)(e2 − u)(u− e3)

,

e3 ≤ t ≤ e2, z ∈ [ω3, ω1 + ω3],

23.6.33
z =

i

2

∫ t

−∞

du√
(e1 − u)(e2 − u)(e3 − u)

,

t ≤ e3, z ∈ (0, ω3].

23.6.34

2ω1 =
∫ ∞
e1

du√
(u− e1)(u− e2)(u− e3)

=
∫ e2

e3

du√
(e1 − u)(e2 − u)(u− e3)

,

23.6.35

2ω3 = i

∫ e1

e2

du√
(e1 − u)(u− e2)(u− e3)

= i

∫ e3

−∞

du√
(e1 − u)(e2 − u)(e3 − u)

.

For (23.6.30)–(23.6.35) and further identities see Law-
den (1989, §6.12).

See also §§19.2(i), 19.14, and Erdélyi et al. (1953b,
§13.14).

For relations to symmetric elliptic integrals see
§19.25(vi).

General Lattice

Let z be a point of C different from e1, e2, e3, and define
w by

23.6.36

w =
∫ ∞
z

du√
4u3 − g2u− g3

=
1
2

∫ ∞
z

du√
(u− e1)(u− e2)(u− e3)

,

where the integral is taken along any path from z to
∞ that does not pass through any of e1, e2, e3. Then
z = ℘(w), where the value of w depends on the choice
of path and determination of the square root; see McK-
ean and Moll (1999, pp. 87–88 and §2.5).

23.7 Quarter Periods

23.7.1
℘
(

1
2ω1

)
= e1 +

√
(e1 − e3)(e1 − e2)

= e1 + ω−2
1 (K(k))2k′,

23.7.2
℘
(

1
2ω2

)
= e2 − i

√
(e1 − e2)(e2 − e3)

= e2 − iω−2
1 (K(k))2kk′,

23.7.3
℘
(

1
2ω3

)
= e3 −

√
(e1 − e3)(e2 − e3)

= e3 − ω−2
1 (K(k))2k,

where k, k′ and the square roots are real and positive
when the lattice is rectangular; otherwise they are de-
termined by continuity from the rectangular case.

23.8 Trigonometric Series and Products

23.8(i) Fourier Series

If q = eiπω3/ω1 , =(z/ω1) < 2=(ω3/ω1), and z /∈ L, then

23.8.1

℘(z) +
η1

ω1
− π2

4ω2
1

csc2

(
πz

2ω1

)
= −2π2

ω2
1

∞∑
n=1

nq2n

1− q2n
cos
(
nπz

ω1

)
,

23.8.2

ζ(z)− η1z

ω1
− π

2ω1
cot
(
πz

2ω1

)
=

2π
ω1

∞∑
n=1

q2n

1− q2n
sin
(
nπz

ω1

)
.
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23.8(ii) Series of Cosecants and Cotangents

When z /∈ L,

23.8.3 ℘(z) = − η1

ω1
+

π2

4ω2
1

∞∑
n=−∞

csc2

(
π(z + 2nω3)

2ω1

)
,

23.8.4 ζ(z) =
η1z

ω1
+

π

2ω1

∞∑
n=−∞

cot
(
π(z + 2nω3)

2ω1

)
,

where in (23.8.4) the terms in n and −n are to be brack-
eted together (the Eisenstein convention or principal
value: see Weil (1999, p. 6) or Walker (1996, p. 3)).

23.8.5 η1 =
π2

2ω1

(
1
6

+
∞∑
n=1

csc2

(
nπω3

ω1

))
,

with similar results for η2 and η3 obtainable by use of
(23.2.14).

23.8(iii) Infinite Products

23.8.6 σ(z) =
2ω1

π
exp
(
η1z

2

2ω1

)
sin
(
πz

2ω1

) ∞∏
n=1

1− 2q2n cos(πz/ω1) + q4n

(1− q2n)2
,

23.8.7 σ(z) =
2ω1

π
exp
(
η1z

2

2ω1

)
sin
(
πz

2ω1

) ∞∏
n=1

sin(π(2nω3 + z)/(2ω1)) sin(π(2nω3 − z)/(2ω1))
sin2(πnω3/ω1)

.

23.9 Laurent and Other Power Series

Let z0(6= 0) be the nearest lattice point to the origin,
and define

23.9.1
cn = (2n− 1)

∑
w∈L\{0}

w−2n, n = 2, 3, 4, . . . .

Then

23.9.2 ℘(z) =
1
z2

+
∞∑
n=2

cnz
2n−2, 0 < |z| < |z0|,

23.9.3 ζ(z) =
1
z
−
∞∑
n=2

cn
2n− 1

z2n−1, 0 < |z| < |z0|.

Here
23.9.4 c2 =

1
20
g2, c3 =

1
28
g3,

23.9.5 cn =
3

(2n+ 1)(n− 3)

n−2∑
m=2

cmcn−m, n ≥ 4.

Explicit coefficients cn in terms of c2 and c3 are given
up to c19 in Abramowitz and Stegun (1964, p. 636).

For j = 1, 2, 3, and with ej as in §23.3(i),

23.9.6
℘(ωj + t) = ej + (3e2

j −5c2)t2 + (10c2ej + 21c3)t4

+ (7c2e2
j + 21c3ej + 5c22)t6 +O

(
t8
)
,

as t → 0. For the next four terms see Abramowitz and
Stegun (1964, (18.5.56)). Also, Abramowitz and Ste-
gun (1964, (18.5.25)) supplies the first 22 terms in the
reverted form of (23.9.2) as 1/℘(z)→ 0.

For z ∈ C
23.9.7

σ(z) =
∞∑

m,n=0

am,n(10c2)m(56c3)n
z4m+6n+1

(4m+ 6n+ 1)!
,

where a0,0 = 1, am,n = 0 if either m or n < 0, and

23.9.8
am,n = 3(m+ 1)am+1,n−1 + 16

3 (n+ 1)am−2,n+1

− 1
3 (2m+ 3n− 1)(4m+ 6n− 1)am−1,n.

For am,n with m = 0, 1, . . . , 12 and n = 0, 1, . . . , 8, see
Abramowitz and Stegun (1964, p. 637).

23.10 Addition Theorems and Other
Identities

23.10(i) Addition Theorems

23.10.1 ℘(u+ v) =
1
4

(
℘′(u)− ℘′(v)
℘(u)− ℘(v)

)2
− ℘(u)− ℘(v),

23.10.2 ζ(u+ v) = ζ(u) + ζ(v) +
1
2
ζ ′′(u)− ζ ′′(v)
ζ ′(u)− ζ ′(v)

,

23.10.3
σ(u+ v)σ(u− v)

σ2(u)σ2(v)
= ℘(v)− ℘(u),

23.10.4

σ(u+ v)σ(u− v)σ(x+ y)σ(x− y)
+ σ(v + x)σ(v − x)σ(u+ y)σ(u− y)
+ σ(x+ u)σ(x− u)σ(v + y)σ(v − y) = 0.

For further addition-type identities for the σ-function
see Lawden (1989, §6.4).

If u+ v + w = 0, then

23.10.5

∣∣∣∣∣∣
1 ℘(u) ℘′(u)
1 ℘(v) ℘′(v)
1 ℘(w) ℘′(w)

∣∣∣∣∣∣ = 0,

and

23.10.6 (ζ(u)+ ζ(v)+ ζ(w))2 + ζ ′(u)+ ζ ′(v)+ ζ ′(w) = 0.
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23.10(ii) Duplication Formulas

23.10.7 ℘(2z) = −2℘(z) +
1
4

(
℘′′(z)
℘′(z)

)2
,

23.10.8

(℘(2z)−e1)℘′2(z) =
(
(℘(z)−e1)2− (e1−e2)(e1−e3)

)2
.

(23.10.8) continues to hold when e1, e2, e3 are permuted
cyclically.

23.10.9 ζ(2z) = 2 ζ(z) +
1
2
ζ ′′′(z)
ζ ′′(z)

,

23.10.10 σ(2z) = −℘′(z)σ4(z).

23.10(iii) n-Tuple Formulas

For n = 2, 3, . . . ,

23.10.11 n2 ℘(nz) =
n−1∑
j=0

n−1∑
`=0

℘

(
z +

2j
n
ω1 +

2`
n
ω3

)
,

23.10.12

n ζ(nz) = −n(n− 1)(η1 + η3)

+
n−1∑
j=0

n−1∑
`=0

ζ

(
z +

2j
n
ω1 +

2`
n
ω3

)
,

23.10.13

σ(nz)

= Ane
−n(n−1)(η1+η3)z

n−1∏
j=0

n−1∏
`=0

σ

(
z +

2j
n
ω1 +

2`
n
ω3

)
,

where

23.10.14 An = n
n−1∏
j=0

n−1∏
`=0
`6=j

1
σ((2jω1 + 2`ω3)/n)

.

Equivalently,

23.10.15 An =
(
π2G2

ω1

)n2−1
qn(n−1)/2

in−1
exp
(
− (n− 1)η1

3ω1

(
(2n− 1)(ω2

1 + ω2
3) + 3(n− 1)ω1ω3

))
,

where

23.10.16 q = eπiω3/ω1 , G =
∞∏
n=1

(1− q2n).

23.10(iv) Homogeneity

For any nonzero real or complex constant c

23.10.17 ℘(cz|cL) = c−2 ℘(z|L),

23.10.18 ζ(cz|cL) = c−1 ζ(z|L),

23.10.19 σ(cz|cL) = c σ(z|L).

Also, when L is replaced by cL the lattice invariants g2

and g3 are divided by c4 and c6, respectively.
For these results and further identities see Lawden

(1989, §6.6) and Apostol (1990, p. 14).

23.11 Integral Representations

Let τ = ω3/ω1 and

23.11.1

f1(s, τ) =
cosh2

(
1
2τs
)

1− 2e−s cosh(τs) + e−2s
,

f2(s, τ) =
cos2

(
1
2s
)

1− 2eiτs cos s+ e2iτs
.

Then

23.11.2
℘(z) =

1
z2

+ 8
∫ ∞

0

s
(
e−s sinh2

(
1
2zs
)
f1(s, τ)

+ eiτs sin2
(

1
2zs
)
f2(s, τ)

)
ds,

and

23.11.3
ζ(z) =

1
z

+
∫ ∞

0

(
e−s (zs− sinh(zs)) f1(s, τ)

− eiτs (zs− sin(zs)) f2(s, τ)
)
ds,

provided that −1 < <(z + τ) < 1 and |=z| < =τ .

23.12 Asymptotic Approximations

If q (= eπiω3/ω1)→ 0 with ω1 and z fixed, then

23.12.1

℘(z) =
π2

4ω2
1

(
−1

3
+ csc2

(
πz

2ω1

)
+ 8

(
1− cos

(
πz

ω1

))
q2 +O

(
q4
))

,

23.12.2

ζ(z) =
π2

4ω2
1

(
z

3
+

2ω1

π
cot
(
πz

ω1

)
− 8

(
z − ω1

π
sin
(
πz

ω1

))
q2 +O

(
q4
))

,

23.12.3

σ(z) =
2ω1

π
exp
(
π2z2

24ω2
1

)
sin
(
πz

2ω1

)
×
(

1−
(
π2z2

ω2
1

− 4 sin2

(
πz

2ω1

))
q2 +O

(
q4
))

,

provided that z /∈ L in the case of (23.12.1) and
(23.12.2). Also,

23.12.4 η1 =
π2

4ω1

(
1
3
− 8q2 +O

(
q4
))

,

with similar results for η2 and η3 obtainable by use of
(23.2.14).
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23.13 Zeros

For information on the zeros of ℘(z) see Eichler and
Zagier (1982).

23.14 Integrals

23.14.1

∫
℘(z) dz = − ζ(z),

23.14.2

∫
℘2(z) dz =

1
6
℘′(z) +

1
12
g2z,

23.14.3

∫
℘3(z) dz =

1
120

℘′′′(z)− 3
20
g2 ζ(z) +

1
10
g3z.

For further integrals see Gröbner and Hofreiter
(1949, Vol. 1, pp. 161–162), Gradshteyn and Ryzhik
(2000, p. 622), and Prudnikov et al. (1990, pp. 51–52).

Modular Functions

23.15 Definitions

23.15(i) General Modular Functions

In §§23.15–23.19, k and k′ (∈ C) denote the Jacobi
modulus and complementary modulus, respectively, and
q = eiπτ (=τ > 0) denotes the nome; compare §§20.1
and 22.1. Thus

23.15.1 q = exp
(
−πK

′(k)
K(k)

)
,

23.15.2 k =
θ2

2(0, q)
θ2

3(0, q)
, k′ =

θ2
4(0, q)
θ2

3(0, q)
.

Also A denotes a bilinear transformation on τ , given
by

23.15.3 Aτ =
aτ + b

cτ + d
,

in which a, b, c, d are integers, with

23.15.4 ad− bc = 1.

The set of all bilinear transformations of this form is
denoted by SL(2,Z) (Serre (1973, p. 77)).

A modular function f(τ) is a function of τ that is
meromorphic in the half-plane =τ > 0, and has the
property that for all A ∈ SL(2,Z), or for all A belong-
ing to a subgroup of SL(2,Z),

23.15.5 f(Aτ) = cA(cτ + d)`f(τ), =τ > 0,

where cA is a constant depending only on A, and ` (the
level) is an integer or half an odd integer. (Some ref-
erences refer to 2` as the level). If, as a function of q,
f(τ) is analytic at q = 0, then f(τ) is called a modular
form. If, in addition, f(τ) → 0 as q → 0, then f(τ) is
called a cusp form.

23.15(ii) Functions λ(τ ), J(τ ), η(τ )

Elliptic Modular Function

23.15.6 λ(τ) =
θ4

2(0, q)
θ4

3(0, q)
;

compare also (23.15.2).

Klein’s Complete Invariant

23.15.7 J(τ) =

(
θ8

2(0, q) + θ8
3(0, q) + θ8

4(0, q)
)3

54 (θ′1(0, q))8 ,

where (as in §20.2(i))

23.15.8 θ′1(0, q) = ∂θ1(z, q)/∂z |z=0.

Dedekind’s Eta Function (or Dedekind Modular Function)

23.15.9

η(τ) =
(

1
2 θ
′
1(0, q)

)1/3 = eiπτ/12 θ3

(
1
2π(1 + τ)

∣∣3τ).
In (23.15.9) the branch of the cube root is chosen to
agree with the second equality; in particular, when τ
lies on the positive imaginary axis the cube root is real
and positive.

23.16 Graphics

See Figures 23.16.1–23.16.3 for the modular functions
λ, J , and η. In Figures 23.16.2 and 23.16.3, height cor-
responds to the absolute value of the function and color
to the phase. See also p. xiv.

Figure 23.16.1: Modular functions λ(iy), J(iy), η(iy) for
0 ≤ y ≤ 3. See also Figure 20.3.2.
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Figure 23.16.2: Elliptic modular function λ(x+ iy) for
−0.25 ≤ x ≤ 0.25, 0.005 ≤ y ≤ 0.1.

Figure 23.16.3: Dedekind’s eta function η(x+ iy) for
−0.0625 ≤ x ≤ 0.0625, 0.0001 ≤ y ≤ 0.07.

23.17 Elementary Properties

23.17(i) Special Values

23.17.1 λ(i) = 1
2 , λ

(
eπi/3

)
= eπi/3,

23.17.2 J(i) = 1, J
(
eπi/3

)
= 0,

23.17.3

η(i) =
Γ
(

1
4

)
2π3/4

, η
(
eπi/3

)
=

31/8
(
Γ
(

1
3

))3/2
2π

eπi/24.

For further results for J(τ) see Cohen (1993, p. 376).

23.17(ii) Power and Laurent Series

When |q| < 1

23.17.4 λ(τ) = 16q(1− 8q + 44q2 + · · ·),
23.17.5

1728J(τ) = q−2 + 744 + 1 96884q2 + 214 93760q4 + · · · ,

23.17.6 η(τ) =
∞∑

n=−∞
(−1)nq(6n+1)2/12.

In (23.17.5) for terms up to q48 see Zuckerman
(1939), and for terms up to q100 see van Wijngaarden
(1953). See also Apostol (1990, p. 22).

23.17(iii) Infinite Products

23.17.7 λ(τ) = 16q
∞∏
n=1

(
1 + q2n

1 + q2n−1

)8
,

23.17.8 η(τ) = q1/12
∞∏
n=1

(1− q2n),

with q1/12 = eiπτ/12.

23.18 Modular Transformations

Elliptic Modular Function

λ(Aτ) equals

23.18.1

λ(τ), 1− λ(τ),
1

λ(τ)
,

1
1− λ(τ)

,
λ(τ)

λ(τ)− 1
, 1− 1

λ(τ)
,

according as the elements
[
a b
c d

]
of A in (23.15.3) have

the respective forms

23.18.2

[
o e
e o

]
,

[
e o
o e

]
,

[
o e
o o

]
,[

e o
o o

]
,

[
o o
e o

]
,

[
o o
o e

]
.

Here e and o are generic symbols for even and odd inte-
gers, respectively. In particular, if a− 1, b, c, and d− 1
are all even, then

23.18.3 λ(Aτ) = λ(τ),

and λ(τ) is a cusp form of level zero for the correspond-
ing subgroup of SL(2,Z).

Klein’s Complete Invariant

23.18.4 J(Aτ) = J(τ).

J(τ) is a modular form of level zero for SL(2,Z).
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Dedekind’s Eta Function

23.18.5 η(Aτ) = ε(A) (−i(cτ + d))1/2 η(τ),

where the square root has its principal value and

23.18.6 ε(A) = exp
(
πi

(
a+ d

12c
+ s(−d, c)

))
,

23.18.7 s(d, c) =
c−1∑
r=1

(r,c)=1

r

c

(
dr

c
−
⌊
dr

c

⌋
− 1

2

)
, c > 0.

Here the notation (r, c) = 1 means that the sum is con-
fined to those values of r that are relatively prime to c.
See §27.14(iii) and Apostol (1990, pp. 48 and 51–53).
Note that η(τ) is of level 1

2 .

23.19 Interrelations

23.19.1 λ(τ) = 16

(
η2(2τ) η

(
1
2τ
)

η3(τ)

)8
,

23.19.2 J(τ) =
4
27

(
1− λ(τ) + λ2(τ)

)3
(λ(τ) (1− λ(τ)))2 ,

23.19.3 J(τ) =
g3

2

g3
2 − 27g2

3

,

where g2, g3 are the invariants of the lattice L with gen-
erators 1 and τ ; see §23.3(i).

Also, with ∆ defined as in (23.3.4),

23.19.4 ∆ = (2π)12 η24(τ).

Applications

23.20 Mathematical Applications

23.20(i) Conformal Mappings

Rectangular Lattice

The boundary of the rectangle R, with vertices 0, ω1,
ω1 +ω3, ω3, is mapped strictly monotonically by ℘ onto
the real line with 0 → ∞, ω1 → e1, ω1 + ω3 → e2,
ω3 → e3, 0 → −∞. There is a unique point z0 ∈
[ω1, ω1 + ω3] ∪ [ω1 + ω3, ω3] such that ℘(z0) = 0. The
interior of R is mapped one-to-one onto the lower half-
plane.

Rhombic Lattice

The two pairs of edges [0, ω1]∪ [ω1, 2ω3] and [2ω3, 2ω3−
ω1]∪ [2ω3 − ω1, 0] of R are each mapped strictly mono-
tonically by ℘ onto the real line, with 0→∞, ω1 → e1,
2ω3 → −∞; similarly for the other pair of edges. For
each pair of edges there is a unique point z0 such that
℘(z0) = 0.

The interior of the rectangle with vertices 0, ω1, 2ω3,
2ω3 − ω1 is mapped two-to-one onto the lower half-
plane. The interior of the rectangle with vertices 0,
ω1, 1

2ω1 + ω3, 1
2ω1 − ω3 is mapped one-to-one onto the

lower half-plane with a cut from e3 to ℘
(

1
2ω1 + ω3

)
(=

℘
(

1
2ω1 − ω3

)
). The cut is the image of the edge from

1
2ω1 + ω3 to 1

2ω1 − ω3 and is not a line segment.
For examples of conformal mappings of the function

℘(z), see Abramowitz and Stegun (1964, pp. 642–648,
654–655, and 659–60).

For conformal mappings via modular functions see
Apostol (1990, §2.7).

23.20(ii) Elliptic Curves

An algebraic curve that can be put either into the form

23.20.1 C : y2 = x3 + ax+ b,

or equivalently, on replacing x by x/z and y by y/z
(projective coordinates), into the form

23.20.2 C : y2z = x3 + axz2 + bz3,

is an example of an elliptic curve (§22.18(iv)). Here a
and b are real or complex constants.

Points P = (x, y) on the curve can be parametrized
by x = ℘(z; g2, g3), 2y = ℘′(z; g2, g3), where g2 = −4a
and g3 = −4b: in this case we write P = P (z).
The curve C is made into an abelian group (Mac-
donald (1968, Chapter 5)) by defining the zero ele-
ment o = (0, 1, 0) as the point at infinity, the nega-
tive of P = (x, y) by −P = (x,−y), and generally
P1 + P2 + P3 = 0 on the curve iff the points P1, P2,
P3 are collinear. It follows from the addition formula
(23.10.1) that the points Pj = P (zj), j = 1, 2, 3, have
zero sum iff z1 + z2 + z3 ∈ L, so that addition of points
on the curve C corresponds to addition of parameters zj
on the torus C/L; see McKean and Moll (1999, §§2.11,
2.14).

In terms of (x, y) the addition law can be expressed
(x, y) + o = (x, y), (x, y) + (x,−y) = o; otherwise
(x1, y1) + (x2, y2) = (x3, y3), where

23.20.3 x3 = m2 − x1 − x2, y3 = −m(x3 − x1)− y1,

and

23.20.4 m =

{
(3x2

1 + a)/(2y1), P1 = P2,

(y2 − y1)/(x2 − x1), P1 6= P2.

If a, b ∈ R, then C intersects the plane R2 in a curve
that is connected if ∆ ≡ 4a3 + 27b2 > 0; if ∆ < 0,
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then the intersection has two components, one of which
is a closed loop. These cases correspond to rhombic
and rectangular lattices, respectively. The addition law
states that to find the sum of two points, take the third
intersection with C of the chord joining them (or the
tangent if they coincide); then its reflection in the x-axis
gives the required sum. The geometric nature of this
construction is illustrated in McKean and Moll (1999,
§2.14), Koblitz (1993, §§6, 7), and Silverman and Tate
(1992, Chapter 1, §§3, 4): each of these references makes
a connection with the addition theorem (23.10.1).

If a, b ∈ Q, then by rescaling we may assume a, b ∈
Z. Let T denote the set of points on C that are of finite
order (that is, those points P for which there exists a
positive integer n with nP = o), and let I,K be the
sets of points with integer and rational coordinates, re-
spectively. Then ∅ ⊆ T ⊆ I ⊆ K ⊆ C. Both T,K are
subgroups of C, though I may not be. K always has the
form T × Zr (Mordell’s Theorem: Silverman and Tate
(1992, Chapter 3, §5)); the determination of r, the rank
of K, raises questions of great difficulty, many of which
are still open. Both T and I are finite sets. T must
have one of the forms Z/(nZ), 1 ≤ n ≤ 10 or n = 12, or
(Z/(2Z)) × (Z/(2nZ)), 1 ≤ n ≤ 4. To determine T , we
make use of the fact that if (x, y) ∈ T then y2 must be
a divisor of ∆; hence there are only a finite number of
possibilities for y. Values of x are then found as integer
solutions of x3 +ax+b−y2 = 0 (in particular x must be
a divisor of b−y2). The resulting points are then tested
for finite order as follows. Given P , calculate 2P , 4P ,
8P by doubling as above. If any of these quantities is
zero, then the point has finite order. If any of 2P , 4P ,
8P is not an integer, then the point has infinite order.
Otherwise observe any equalities between P , 2P , 4P ,
8P , and their negatives. The order of a point (if finite
and not already determined) can have only the values 3,
5, 6, 7, 9, 10, or 12, and so can be found from 2P = −P ,
4P = −P , 4P = −2P , 8P = P , 8P = −P , 8P = −2P ,
or 8P = −4P . If none of these equalities hold, then P
has infinite order.

For extensive tables of elliptic curves see Cremona
(1997, pp. 84–340).

23.20(iii) Factorization

§27.16 describes the use of primality testing and factor-
ization in cryptography. For applications of the Weier-
strass function and the elliptic curve method to these
problems see Bressoud (1989) and Koblitz (1999).

23.20(iv) Modular and Quintic Equations

The modular equation of degree p, p prime, is an al-
gebraic equation in α = λ(pτ) and β = λ(τ). For

p = 2, 3, 5, 7 and with u = α1/4, v = β1/4, the mod-
ular equation is as follows:

23.20.5 v8(1 + u8) = 4u4, p = 2,

23.20.6 u4 − v4 + 2uv(1− u2v2) = 0, p = 3,

23.20.7

u6 − v6 + 5u2v2(u2 − v2) + 4uv(1− u4v4) = 0, p = 5,

23.20.8 (1− u8)(1− v8) = (1− uv)8, p = 7.

For further information, including the application of
(23.20.7) to the solution of the general quintic equation,
see Borwein and Borwein (1987, Chapter 4).

23.20(v) Modular Functions and Number
Theory

For applications of modular functions to number theory
see §27.14(iv) and Apostol (1990). See also Silverman
and Tate (1992), Serre (1973, Part 2, Chapters 6, 7),
Koblitz (1993), and Cornell et al. (1997).

23.21 Physical Applications

23.21(i) Classical Dynamics

In §22.19(ii) it is noted that Jacobian elliptic functions
provide a natural basis of solutions for problems in
Newtonian classical dynamics with quartic potentials
in canonical form (1 − x2)(1 − k2x2). The Weierstrass
function ℘ plays a similar role for cubic potentials in
canonical form g3 + g2x − 4x3. See, for example, Law-
den (1989, Chapter 7) and Whittaker (1964, Chapters
4–6).

23.21(ii) Nonlinear Evolution Equations

Airault et al. (1977) applies the function ℘ to an in-
tegrable classical many-body problem, and relates the
solutions to nonlinear partial differential equations. For
applications to soliton solutions of the Korteweg–de
Vries (KdV) equation see McKean and Moll (1999,
p. 91), Deconinck and Segur (2000), and Walker (1996,
§8.1).

23.21(iii) Ellipsoidal Coordinates

Ellipsoidal coordinates (ξ, η, ζ) may be defined as the
three roots ρ of the equation

23.21.1
x2

ρ− e1
+

y2

ρ− e2
+

z2

ρ− e3
= 1,
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where x, y, z are the corresponding Cartesian coordi-
nates and e1, e2, e3 are constants. The Laplacian oper-
ator ∇2 (§1.5(ii)) is given by
23.21.2

(η − ζ)(ζ − ξ)(ξ − η)∇2 = (ζ − η)f(ξ)f ′(ξ)
∂

∂ξ

+ (ξ − ζ)f(η)f ′(η)
∂

∂η

+ (η − ξ)f(ζ)f ′(ζ)
∂

∂ζ
,

where

23.21.3 f(ρ) = 2 ((ρ− e1)(ρ− e2)(ρ− e3))1/2 .
Another form is obtained by identifying e1, e2, e3 as

lattice roots (§23.3(i)), and setting

23.21.4 ξ = ℘(u), η = ℘(v), ζ = ℘(w).
Then

23.21.5

(℘(v)− ℘(w)) (℘(w)− ℘(u)) (℘(u)− ℘(v))∇2

= (℘(w)− ℘(v))
∂2

∂u2 + (℘(u)− ℘(w))
∂2

∂v2

+ (℘(v)− ℘(u))
∂2

∂w2 .

See also §29.18(ii).

23.21(iv) Modular Functions

Physical applications of modular functions include:

• Quantum field theory. See Witten (1987).

• Statistical mechanics. See Baxter (1982, p. 434)
and Itzykson and Drouffe (1989, §9.3).

• String theory. See Green et al. (1988a, §8.2) and
Polchinski (1998, §7.2).

Computation

23.22 Methods of Computation

23.22(i) Function Values

Given ω1 and ω3, with =(ω3/ω1) > 0, the nome q is
computed from q = eiπω3/ω1 . For ℘(z) we apply (23.6.2)
and (23.6.5), generating all needed values of the theta
functions by the methods described in §20.14.

The functions ζ(z) and σ(z) are computed in a simi-
lar manner: the former by replacing u and z in (23.6.13)
by z and πz/(2ω1), respectively, and also referring to
(23.6.8); the latter by applying (23.6.9).

The modular functions λ(τ), J(τ), and η(τ) are also
obtainable in a similar manner from their definitions in
§23.15(ii).

23.22(ii) Lattice Calculations

Starting from Lattice

Suppose that the lattice L is given. Then a pair of gen-
erators 2ω1 and 2ω3 can be chosen in an almost canon-
ical way as follows. For 2ω1 choose a nonzero point of
L of smallest absolute value. (There will be 2, 4, or 6
possible choices.) For 2ω3 choose a nonzero point that
is not a multiple of 2ω1 and is such that =τ > 0 and
|τ | is as small as possible, where τ = ω3/ω1. (There
will be either 1 or 2 possible choices.) This yields a pair
of generators that satisfy =τ > 0, |<τ | ≤ 1

2 , |τ | > 1.
In consequence, q = eiπω3/ω1 satisfies |q| ≤ e−π

√
3/2 =

0.0658 . . . . The corresponding values of e1, e2, e3 are
calculated from (23.6.2)–(23.6.4), then g2 and g3 are ob-
tained from (23.3.6) and (23.3.7).

Starting from Invariants

Suppose that the invariants g2 = c, g3 = d, are given,
for example in the differential equation (23.3.10) or
via coefficients of an elliptic curve (§23.20(ii)). The
determination of suitable generators 2ω1 and 2ω3 is
the classical inversion problem (Whittaker and Wat-
son (1927, §21.73), McKean and Moll (1999, §2.12); see
also §20.9(i) and McKean and Moll (1999, §2.16)). This
problem is solvable as follows:

(a) In the general case, given by cd 6= 0, we com-
pute the roots α, β, γ, say, of the cubic equation
4t3−ct−d = 0; see §1.11(iii). These roots are nec-
essarily distinct and represent e1, e2, e3 in some
order.

If c and d are real, then e1, e2, e3 can be identified
via (23.5.1), and k2, k′2 obtained from (23.6.16).

If c and d are not both real, then we label α, β, γ so
that the triangle with vertices α, β, γ is positively
oriented and [α, γ] is its longest side (chosen arbi-
trarily if there is more than one). In particular, if
α, β, γ are collinear, then we label them so that
β is on the line segment (α, γ). In consequence,
k2 = (β−γ)/(α−γ), k′2 = (α−β)/(α−γ) satisfy
=k2 ≥ 0 ≥ =k′2 (with strict inequality unless α,
β, γ are collinear); also |k2|, |k′2| ≤ 1.

Finally, on taking the principal square roots of k2

and k′
2 we obtain values for k and k′ that lie in

the 1st and 4th quadrants, respectively, and 2ω1,
2ω3 are given by

23.22.1

2ω1M(1, k′) = −2iω3M(1, k)

=
π

3

√
c(2 + k2k′2)(k′2 − k2)

d(1− k2k′2)
,

where M denotes the arithmetic-geometric mean
(see §§19.8(i) and 22.20(ii)). This process yields 2
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possible pairs (2ω1, 2ω3), corresponding to the 2
possible choices of the square root.

(b) If d = 0, then

23.22.2 2ω1 = −2iω3 =

(
Γ
(

1
4

))2
2
√
πc1/4

.

There are 4 possible pairs (2ω1, 2ω3), correspond-
ing to the 4 rotations of a square lattice. The
lemniscatic case occurs when c > 0 and ω1 > 0.

(c) If c = 0, then

23.22.3 2ω1 = 2e−πi/3ω3 =

(
Γ
(

1
3

))3
2πd1/6

.

There are 6 possible pairs (2ω1, 2ω3), correspond-
ing to the 6 rotations of a lattice of equilateral
triangles. The equianharmonic case occurs when
d > 0 and ω1 > 0.

Example

Assume c = g2 = −4(3 − 2i) and d = g3 = 4(4 − 2i).
Then α = −1 − 2i, β = 1, γ = 2i; k2 = (7 + 6i)/17 ,
and k′

2 = (10− 6i)/17 . Working to 6 decimal places
we obtain

23.22.4

2ω1 = 0.867568 + i1.466607,
2ω3 = −1.223741 + i1.328694,
τ = 0.305480 + i1.015109.

23.23 Tables

Table 18.2 in Abramowitz and Stegun (1964) gives val-
ues of ℘(z), ℘′(z), and ζ(z) to 7 or 8D in the rectangu-
lar and rhombic cases, normalized so that ω1 = 1 and
ω3 = ia (rectangular case), or ω1 = 1 and ω3 = 1

2 + ia
(rhombic case), for a = 1.00, 1.05, 1.1, 1.2, 1.4, 2, 4.
The values are tabulated on the real and imaginary z-
axes, mostly ranging from 0 to 1 or i in steps of length
0.05, and in the case of ℘(z) the user may deduce val-
ues for complex z by application of the addition theorem
(23.10.1).

Abramowitz and Stegun (1964) also includes other
tables to assist the computation of the Weierstrass func-
tions, for example, the generators as functions of the
lattice invariants g2 and g3.

For earlier tables related to Weierstrass functions see
Fletcher et al. (1962, pp. 503–505) and Lebedev and Fe-
dorova (1960, pp. 223–226).

23.24 Software

See http://dlmf.nist.gov/23.24.
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Notation

24.1 Special Notation

(For other notation see pp. xiv and 873.)

j, k, `,m, n integers, nonnegative unless stated
otherwise.

t, x real or complex variables.
p prime.
p |m p divides m.
(k,m) greatest common divisor of m,n.
(k,m) = 1 k and m relatively prime.

Unless otherwise noted, the formulas in this chapter
hold for all values of the variables x and t, and for all
nonnegative integers n.

Bernoulli Numbers and Polynomials

The origin of the notation Bn, Bn(x), is not clear. The
present notation, as defined in §24.2(i), was used in Lu-
cas (1891) and Nörlund (1924), and has become the
prevailing notation; see Table 24.2.1. Among various
older notations, the most common one is

B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , . . . .

It was used in Saalschütz (1893), Nielsen (1923),
Schwatt (1962), and Whittaker and Watson (1927).

Euler Numbers and Polynomials

The secant series ((4.19.5)) first occurs in the work of
Gregory in 1671. Its coefficients were first studied in Eu-
ler (1755); they were called Euler numbers by Raabe in
1851. The notations En, En(x), as defined in §24.2(ii),
were used in Lucas (1891) and Nörlund (1924).

Other historical remarks on notations can be found
in Cajori (1929, pp. 42–44). Various systems of notation
are summarized in Adrian (1959) and D’Ocagne (1904).

Properties

24.2 Definitions and Generating Functions

24.2(i) Bernoulli Numbers and Polynomials

24.2.1
t

et − 1
=
∞∑
n=0

Bn
tn

n!
, |t| < 2π.

24.2.2 B2n+1 = 0 , (−1)n+1B2n > 0, n = 1, 2, . . . .

24.2.3
text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π.

24.2.4 Bn = Bn(0),

24.2.5 Bn(x) =
n∑
k=0

(
n

k

)
Bk x

n−k.

See also §§4.19 and 4.33.

24.2(ii) Euler Numbers and Polynomials

24.2.6
2et

e2t + 1
=
∞∑
n=0

En
tn

n!
, |t| < 1

2π,

24.2.7 E2n+1 = 0 , (−1)nE2n > 0 .

24.2.8
2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
, |t| < π,

24.2.9 En = 2nEn
(

1
2

)
= integer,

24.2.10 En(x) =
n∑
k=0

(
n

k

)
Ek
2k

(x− 1
2 )n−k.

See also (4.19.5).

24.2(iii) Periodic Bernoulli and Euler Functions

24.2.11 B̃n(x) = Bn(x) , Ẽn(x) = En(x), 0 ≤ x < 1,

24.2.12
B̃n(x+ 1) = B̃n(x), Ẽn(x+ 1) = − Ẽn(x),

x ∈ R.
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24.2(iv) Tables

Table 24.2.1: Bernoulli and Euler numbers.

n Bn En

0 1 1

1 − 1
2 0

2 1
6 −1

4 − 1
30 5

6 1
42 −61

8 − 1
30 1385

10 5
66 −50521

12 − 691
2730 27 02765

14 7
6 −1993 60981

16 − 3617
510 1 93915 12145

Table 24.2.2: Bernoulli and Euler polynomials.

n Bn(x) En(x)

0 1 1

1 x− 1
2 x− 1

2

2 x2 − x+ 1
6 x2 − x

3 x3 − 3
2x

2 + 1
2x x3 − 3

2x
2 + 1

4

4 x4 − 2x3 + x2 − 1
30 x4 − 2x3 + x

5 x5 − 5
2x

4 + 5
3x

3 − 1
6x x5 − 5

2x
4 + 5

2x
2 − 1

2

For extensions of Tables 24.2.1 and 24.2.2 see http://dlmf.nist.gov/24.2.iv.

24.3 Graphs

Figure 24.3.1: Bernoulli polynomials Bn(x), n =
2, 3, . . . , 6.

Figure 24.3.2: Euler polynomials En(x), n = 2, 3, . . . , 6.

24.4 Basic Properties

24.4(i) Difference Equations

24.4.1 Bn(x+ 1)−Bn(x) = nxn−1,

24.4.2 En(x+ 1) + En(x) = 2xn.

24.4(ii) Symmetry

24.4.3 Bn(1− x) = (−1)nBn(x),

24.4.4 En(1− x) = (−1)nEn(x).

24.4.5 (−1)nBn(−x) = Bn(x) + nxn−1,

24.4.6 (−1)n+1En(−x) = En(x)− 2xn.

24.4(iii) Sums of Powers

24.4.7

m∑
k=1

kn =
Bn+1(m+ 1)−Bn+1

n+ 1
,

24.4.8

m∑
k=1

(−1)m−kkn =
En(m+ 1) + (−1)mEn(0)

2
.
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24.4.9
m−1∑
k=0

(a+ dk)n =
dn

n+ 1

(
Bn+1

(
m+

a

d

)
−Bn+1

(a
d

))
,

24.4.10
m−1∑
k=0

(−1)k(a+ dk)n

=
dn

2

(
(−1)m−1En

(
m+

a

d

)
+ En

(a
d

))
.

24.4.11
m∑
k=1

(k,m)=1

kn =
1

n+ 1

n+1∑
j=1

(
n+ 1
j

)

×

∏
p|m

(1− pn−j)Bn+1−j

mj .

24.4(iv) Finite Expansions

24.4.12 Bn(x+ h) =
n∑
k=0

(
n

k

)
Bk(x)hn−k,

24.4.13 En(x+ h) =
n∑
k=0

(
n

k

)
Ek(x)hn−k,

24.4.14 En−1(x) =
2
n

n∑
k=0

(
n

k

)
(1− 2k)Bk xn−k,

24.4.15

B2n =
2n

22n(22n − 1)

n−1∑
k=0

(
2n− 1

2k

)
E2k,

24.4.16

E2n =
1

2n+ 1
−

n∑
k=1

(
2n

2k − 1

)
22k(22k−1 − 1)B2k

k
,

24.4.17

E2n = 1−
n∑
k=1

(
2n

2k − 1

)
22k(22k − 1)B2k

2k
.

24.4(v) Multiplication Formulas

Raabe’s Theorem

24.4.18 Bn(mx) = mn−1
m−1∑
k=0

Bn

(
x+

k

m

)
.

Next,

24.4.19
En(mx) = − 2mn

n+ 1

m−1∑
k=0

(−1)k Bn+1

(
x+

k

m

)
,

m = 2, 4, 6, . . . ,

24.4.20

En(mx) = mn
m−1∑
k=0

(−1)k En

(
x+

k

m

)
, m = 1, 3, 5, . . . .

24.4.21 Bn(x) = 2n−1
(
Bn
(

1
2x
)

+Bn
(

1
2x+ 1

2

))
,

24.4.22 En−1(x) =
2
n

(
Bn(x)− 2nBn

(
1
2x
))
,

24.4.23 En−1(x) =
2n

n

(
Bn
(

1
2x+ 1

2

)
−Bn

(
1
2x
))
,

24.4.24

Bn(mx) = mnBn(x) + n
n∑
k=1

k−1∑
j=0

(−1)j
(
n

k

)

×

(
m−1∑
r=1

e2πi(k−j)r/m

(1− e2πir/m)n

)
(j +mx)n−1,

n = 1, 2, . . . , m = 2, 3, . . . .

24.4(vi) Special Values

24.4.25 Bn(0) = (−1)nBn(1) = Bn,

24.4.26 En(0) = −En(1) = − 2
n+ 1

(2n+1 − 1)Bn+1 .

24.4.27 Bn
(

1
2

)
= −(1− 21−n)Bn,

24.4.28 En
(

1
2

)
= 2−nEn .

24.4.29 B2n

(
1
3

)
= B2n

(
2
3

)
= − 1

2 (1− 31−2n)B2n .

24.4.30

E2n−1

(
1
3

)
=−E2n−1

(
2
3

)
=− (1− 31−2n)(22n − 1)

2n
B2n ,

n = 1, 2, . . . .
24.4.31

Bn
(

1
4

)
= (−1)nBn

(
3
4

)
= −1− 21−n

2n
Bn−

n

4n
En−1 ,

n = 1, 2, . . . .
24.4.32

B2n

(
1
6

)
= B2n

(
5
6

)
= 1

2 (1− 21−2n)(1− 31−2n)B2n,

24.4.33 E2n

(
1
6

)
= E2n

(
5
6

)
=

1 + 3−2n

22n+1
E2n .

24.4(vii) Derivatives

24.4.34
d

dx
Bn(x) = nBn−1(x), n = 1, 2, . . . ,

24.4.35
d

dx
En(x) = nEn−1(x), n = 1, 2, . . . .

24.4(viii) Symbolic Operations

Let P (x) denote any polynomial in x, and after expand-
ing set (B(x))n = Bn(x) and (E(x))n = En(x). Then

24.4.36 P (B(x) + 1)− P (B(x)) = P ′(x),

24.4.37 Bn(x+ h) = (B(x) + h)n,

24.4.38 P (E(x) + 1) + P (E(x)) = 2P (x),

24.4.39 En(x+ h) = (E(x) + h)n.
For these results and also connections with the umbral
calculus see Gessel (2003).
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24.4(ix) Relations to Other Functions

For the relation of Bernoulli numbers to the Riemann
zeta function see §25.6, and to the Eulerian numbers see
(26.14.11).

24.5 Recurrence Relations

24.5(i) Basic Relations

24.5.1

n−1∑
k=0

(
n

k

)
Bk(x) = nxn−1, n = 2, 3, . . . ,

24.5.2

n∑
k=0

(
n

k

)
Ek(x) + En(x) = 2xn, n = 1, 2, . . . .

24.5.3

n−1∑
k=0

(
n

k

)
Bk = 0, n = 2, 3, . . . ,

24.5.4

n∑
k=0

(
2n
2k

)
E2k = 0, n = 1, 2, . . . ,

24.5.5

n∑
k=0

(
n

k

)
2k En−k +En = 2.

24.5(ii) Other Identities

24.5.6
n∑
k=2

(
n

k − 2

)
Bk
k

=
1

(n+ 1)(n+ 2)
−Bn+1 , n = 2, 3, . . . ,

24.5.7

n∑
k=0

(
n

k

)
Bk

n+ 2− k
=
Bn+1

n+ 1
, n = 1, 2, . . . ,

24.5.8

n∑
k=0

22k B2k

(2k)!(2n+ 1− 2k)!
=

1
(2n)!

, n = 1, 2, . . . .

24.5(iii) Inversion Formulas

In each of (24.5.9) and (24.5.10) the first identity im-
plies the second one and vice-versa.

24.5.9 an =
n∑
k=0

(
n

k

)
bn−k
k + 1

, bn =
n∑
k=0

(
n

k

)
Bk an−k.

24.5.10

an =
bn/2 c∑
k=0

(
n

2k

)
bn−2k,

bn =
bn/2 c∑
k=0

(
n

2k

)
E2k an−2k.

24.6 Explicit Formulas

The identities in this section hold for n = 1, 2, . . . .
(24.6.7), (24.6.8), (24.6.10), and (24.6.12) are valid also
for n = 0.

24.6.1 B2n =
2n+1∑
k=2

(−1)k−1

k

(
2n+ 1
k

) k−1∑
j=1

j2n,

24.6.2 Bn =
1

n+ 1

n∑
k=1

k∑
j=1

(−1)jjn
(
n+ 1
k − j

)/(
n

k

)
,

24.6.3 B2n =
n∑
k=1

(k − 1)!k!
(2k + 1)!

k∑
j=1

(−1)j−1

(
2k
k + j

)
j2n.

24.6.4 E2n =
n∑
k=1

1
2k−1

k∑
j=1

(−1)j
(

2k
k − j

)
j2n,

24.6.5

E2n =
1

2n−1

n−1∑
k=0

(−1)n−k(n− k)2n
k∑
j=0

(
2n− 2j
k − j

)
2j ,

24.6.6

E2n =
2n∑
k=1

(−1)k

2k−1

(
2n+ 1
k + 1

) j
1
2k−

1
2

k∑
j=0

(
k

j

)
(k − 2j)2n.

24.6.7 Bn(x) =
n∑
k=0

1
k + 1

k∑
j=0

(−1)j
(
k

j

)
(x+ j)n,

24.6.8 En(x) =
1
2n

n+1∑
k=1

k−1∑
j=0

(−1)j
(
n+ 1
k

)
(x+ j)n.

24.6.9 Bn =
n∑
k=0

1
k + 1

k∑
j=0

(−1)j
(
k

j

)
jn,

24.6.10 En =
1
2n

n+1∑
k=1

(
n+ 1
k

) k−1∑
j=0

(−1)j(2j + 1)n.

24.6.11 Bn =
n

2n(2n − 1)

n∑
k=1

k−1∑
j=0

(−1)j+1

(
n

k

)
jn−1,

24.6.12 E2n =
2n∑
k=0

1
2k

k∑
j=0

(−1)j
(
k

j

)
(1 + 2j)2n.
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24.7 Integral Representations

24.7(i) Bernoulli and Euler Numbers

The identities in this subsection hold for n = 1, 2, . . . .
(24.7.6) also holds for n = 0.
24.7.1

B2n = (−1)n+1 4n
1− 21−2n

∫ ∞
0

t2n−1

e2πt + 1
dt

= (−1)n+1 2n
1− 21−2n

∫ ∞
0

t2n−1e−πt sech(πt) dt,

24.7.2

B2n = (−1)n+14n
∫ ∞

0

t2n−1

e2πt − 1
dt

= (−1)n+12n
∫ ∞

0

t2n−1e−πt csch(πt) dt,

24.7.3

B2n = (−1)n+1 π

1− 21−2n

∫ ∞
0

t2n sech2(πt) dt,

24.7.4

B2n = (−1)n+1π

∫ ∞
0

t2n csch2(πt) dt,

24.7.5

B2n = (−1)n
2n(2n− 1)

π

∫ ∞
0

t2n−2 ln
(
1− e−2πt

)
dt.

24.7.6

E2n = (−1)n22n+1

∫ ∞
0

t2n sech(πt) dt.

24.7(ii) Bernoulli and Euler Polynomials

The following four equations hold for 0 < <x < 1.
24.7.7

B2n(x) = (−1)n+12n

×
∫ ∞

0

cos(2πx)− e−2πt

cosh(2πt)− cos(2πx)
t2n−1 dt,

n = 1, 2, . . . ,
24.7.8

B2n+1(x) = (−1)n+1(2n+ 1)

×
∫ ∞

0

sin(2πx)
cosh(2πt)− cos(2πx)

t2n dt.

24.7.9

E2n(x) = (−1)n4
∫ ∞

0

sin(πx) cosh(πt)
cosh(2πt)− cos(2πx)

t2n dt,

24.7.10

E2n+1(x) = (−1)n+14

×
∫ ∞

0

cos(πx) sinh(πt)
cosh(2πt)− cos(2πx)

t2n+1 dt.

Mellin–Barnes Integral

24.7.11

Bn(x) =
1

2πi

∫ −c+i∞
−c−i∞

(x+ t)n
(

π

sin(πt)

)2
dt, 0 < c < 1.

24.7(iii) Compendia

For further integral representations see Prudnikov et al.
(1986a, §§2.3–2.6) and Gradshteyn and Ryzhik (2000,
Chapters 3 and 4).

24.8 Series Expansions

24.8(i) Fourier Series

If n = 1, 2, . . . and 0 ≤ x ≤ 1, then

24.8.1 B2n(x) = (−1)n+1 2(2n)!
(2π)2n

∞∑
k=1

cos(2πkx)
k2n

,

24.8.2 B2n+1(x) = (−1)n+1 2(2n+ 1)!
(2π)2n+1

∞∑
k=1

sin(2πkx)
k2n+1

.

The second expansion holds also for n = 0 and 0 < x <
1.

If n = 1 with 0 < x < 1, or n = 2, 3, . . . with
0 ≤ x ≤ 1, then

24.8.3
Bn(x) = − n!

(2πi)n

∞∑
k=−∞
k 6=0

e2πikx

kn
.

If n = 1, 2, . . . and 0 ≤ x ≤ 1, then
24.8.4

E2n(x) = (−1)n
4(2n)!
π2n+1

∞∑
k=0

sin((2k + 1)πx)
(2k + 1)2n+1

,

24.8.5

E2n−1(x) = (−1)n
4(2n− 1)!

π2n

∞∑
k=0

cos((2k + 1)πx)
(2k + 1)2n

.

24.8(ii) Other Series

24.8.6

B4n+2 = (8n+ 4)
∞∑
k=1

k4n+1

e2πk − 1
, n = 1, 2, . . . ,

24.8.7

B2n =
(−1)n+14n

22n − 1

∞∑
k=1

k2n−1

eπk + (−1)k+n
, n = 2, 3, . . . .

Let αβ = π2. Then

24.8.8

B2n

4n
(αn − (−β)n) = αn

∞∑
k=1

k2n−1

e2αk − 1

− (−β)n
∞∑
k=1

k2n−1

e2βk − 1
,

n = 2, 3, . . . .

24.8.9

E2n = (−1)n
∞∑
k=1

k2n

cosh
(

1
2πk

)
− 4

∞∑
k=0

(−1)k(2k + 1)2n

e2π(2k+1) − 1
, n = 1, 2, . . . .
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24.9 Inequalities

Except where otherwise noted, the inequalities in this
section hold for n = 1, 2, . . . .

24.9.1 |B2n | > |B2n(x)|, 1 > x > 0,

24.9.2

(2− 21−2n)|B2n | ≥ |B2n(x)−B2n |, 1 ≥ x ≥ 0.

(24.9.3)–(24.9.5) hold for 1
2 > x > 0.

24.9.3 4−n|E2n | > (−1)nE2n(x) > 0,

24.9.4

2(2n+ 1)!
(2π)2n+1

> (−1)n+1B2n+1(x) > 0, n = 2, 3, . . . ,

24.9.5

4(2n− 1)!
π2n

22n − 1
22n − 2

> (−1)nE2n−1(x) > 0.

(24.9.6)–(24.9.7) hold for n = 2, 3, . . . .

24.9.6 5
√
πn
( n
πe

)2n
> (−1)n+1B2n > 4

√
πn
( n
πe

)2n
,

24.9.7

8
√
n

π

(
4n
πe

)2n(
1+

1
12n

)
> (−1)nE2n > 8

√
n

π

(
4n
πe

)2n
.

Lastly,

24.9.8

2(2n)!
(2π)2n

1
1− 2β−2n

≥ (−1)n+1B2n ≥
2(2n)!
(2π)2n

1
1− 2−2n

with

24.9.9 β = 2 +
ln
(
1− 6π−2

)
ln 2

= 0.6491 . . . .

24.9.10

4n+1(2n)!
π2n+1

> (−1)nE2n >
4n+1(2n)!
π2n+1

1
1 + 3−1−2n

.

24.10 Arithmetic Properties

24.10(i) Von Staudt–Clausen Theorem

Here and elsewhere in §24.10 the symbol p denotes a
prime number.

24.10.1 B2n +
∑

(p−1)|2n

1
p

= integer,

where the summation is over all p such that p−1 divides
2n. The denominator of B2n is the product of all these
primes p.

24.10.2 pB2n ≡ p− 1 (mod p`+1),

where n ≥ 2, and `(≥ 1) is an arbitrary integer such that
(p− 1)p` | 2n. Here and elsewhere two rational numbers
are congruent if the modulus divides the numerator of
their difference.

24.10(ii) Kummer Congruences

24.10.3
Bm
m
≡ Bn

n
(mod p),

where m ≡ n 6≡ 0 (mod p− 1).

24.10.4 (1− pm−1)
Bm
m
≡ (1− pn−1)

Bn
n

(mod p`+1),

valid when m ≡ n (mod (p−1)p`) and n 6≡ 0 (mod p−
1), where `(≥ 0) is a fixed integer.

24.10.5 En ≡ En+p−1 (mod p),
where p(> 2) is a prime and n ≥ 2.

24.10.6 E2n ≡ E2n+w (mod 2`),
valid for fixed integers `(≥ 0), and for all n(≥ 0) and
w(≥ 0) such that 2` | w.

24.10(iii) Voronoi’s Congruence

Let B2n = N2n/D2n , with N2n and D2n relatively
prime and D2n > 0. Then

24.10.7

(b2n − 1)N2n

≡ 2nb2n−1D2n

M−1∑
k=1

k2n−1

⌊
kb

M

⌋
(mod M),

where M(≥ 2) and b are integers, with b relatively prime
to M .

For historical notes, generalizations, and applica-
tions, see Porubský (1998).

24.10(iv) Factors

With N2n as in §24.10(iii)

24.10.8 N2n ≡ 0 (mod p`),
valid for fixed integers `(≥ 1), and for all n(≥ 1) such
that 2n 6≡ 0 (mod p− 1) and p` | 2n.

24.10.9 E2n ≡

{
0 (mod p`) if p ≡ 1 (mod 4),
2 (mod p`) if p ≡ 3 (mod 4),

valid for fixed integers `(≥ 1) and for all n(≥ 1) such
that (p− 1)p`−1 | 2n.

24.11 Asymptotic Approximations

As n→∞

24.11.1 (−1)n+1B2n ∼
2(2n)!
(2π)2n

,

24.11.2 (−1)n+1B2n ∼ 4
√
πn
( n
πe

)2n
,

24.11.3 (−1)nE2n ∼
22n+2(2n)!
π2n+1

,

24.11.4 (−1)nE2n ∼ 8
√
n

π

(
4n
πe

)2n
.
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Also,
24.11.5

(−1)bn/2c−1 (2π)n

2(n!)
Bn(x)→

{
cos(2πx), n even,
sin(2πx), n odd,

24.11.6

(−1)b(n+1)/2cπ
n+1

4(n!)
En(x)→

{
sin(πx), n even,
cos(πx), n odd,

uniformly for x on compact subsets of C.
For further results see Temme (1995b) and López

and Temme (1999b).

24.12 Zeros

24.12(i) Bernoulli Polynomials: Real Zeros

In the interval 0 ≤ x ≤ 1 the only zeros ofB2n+1(x), n =
1, 2, . . . , are 0, 1

2 , 1, and the only zeros of B2n(x)−B2n,
n = 1, 2, . . . , are 0, 1.

For the interval 1
2 ≤ x < ∞ denote the zeros of

Bn(x) by x(n)
j , j = 1, 2, . . . , with

24.12.1 1
2 ≤ x

(n)
1 ≤ x(n)

2 ≤ · · · .

Then the zeros in the interval −∞ < x ≤ 1
2 are 1−x(n)

j .
When n(≥ 2) is even

24.12.2
3
4

+
1

2n+2π
< x

(n)
1 <

3
4

+
1

2n+1π
,

24.12.3 x
(n)
1 − 3

4
∼ 1

2n+1π
, n→∞,

and as n→∞ with m(≥ 1) fixed,

24.12.4 x
(n)
2m−1 → m− 1

4 , x
(n)
2m → m+ 1

4 .

When n is odd x
(n)
1 = 1

2 , x(n)
2 = 1 (n ≥ 3), and as

n→∞ with m(≥ 1) fixed,

24.12.5 x
(n)
2m−1 → m− 1

2 , x
(n)
2m → m.

Let R(n) be the total number of real zeros of Bn(x).
Then R(n) = n when 1 ≤ n ≤ 5, and

24.12.6 R(n) ∼ 2n/(πe), n→∞.

24.12(ii) Euler Polynomials: Real Zeros

For the interval 1
2 ≤ x < ∞ denote the zeros of En(x)

by y(n)
j , j = 1, 2, . . . , with

24.12.7 1
2 ≤ y

(n)
1 ≤ y(n)

2 ≤ · · · .

Then the zeros in the interval −∞ < x ≤ 1
2 are 1−y(n)

j .

When n(≥ 2) is even y
(n)
1 = 1, and as n → ∞ with

m(≥ 1) fixed,

24.12.8 y(n)
m → m.

When n is odd y
(n)
1 = 1

2 ,

24.12.9
3
2
− πn+1

3(n!)
< y

(n)
2 <

3
2

, n = 3, 7, 11, . . . ,

24.12.10
3
2
< y

(n)
2 <

3
2

+
πn+1

3(n!)
, n = 5, 9, 13, . . . ,

and as n→∞ with m(≥ 1) fixed,

24.12.11 y
(n)
2m → m− 1

2 .

24.12(iii) Complex Zeros

For complex zeros of Bernoulli and Euler polynomials,
see Delange (1987) and Dilcher (1988). A related topic
is the irreducibility of Bernoulli and Euler polynomials.
For details and references, see Dilcher (1987b), Kimura
(1988), or Adelberg (1992).

24.12(iv) Multiple Zeros

Bn(x), n = 1, 2, . . . , has no multiple zeros. The only
polynomial En(x) with multiple zeros is E5(x) = (x −
1
2 )(x2 − x− 1)2.

24.13 Integrals

24.13(i) Bernoulli Polynomials

24.13.1

∫
Bn(t) dt =

Bn+1(t)
n+ 1

+ const.,

24.13.2

∫ x+1

x

Bn(t) dt = xn, n = 1, 2, . . . ,

24.13.3

∫ x+(1/2)

x

Bn(t) dt =
En(2x)
2n+1

,

24.13.4

∫ 1/2

0

Bn(t) dt =
1− 2n+1

2n
Bn+1

n+ 1
,

24.13.5

∫ 3/4

1/4

Bn(t) dt =
En

22n+1
.

For m,n = 1, 2, . . . ,

24.13.6

∫ 1

0

Bn(t)Bm(t) dt =
(−1)n−1m!n!

(m+ n)!
Bm+n .

24.13(ii) Euler Polynomials

24.13.7

∫
En(t) dt =

En+1(t)
n+ 1

+ const.,

24.13.8∫ 1

0

En(t) dt = −2
En+1(0)
n+ 1

=
4(2n+2 − 1)

(n+ 1)(n+ 2)
Bn+2,

24.13.9∫ 1/2

0

E2n(t) dt = −E2n+1(0)
2n+ 1

=
2(22n+2 − 1)B2n+2

(2n+ 1)(2n+ 2)
,
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24.13.10

∫ 1/2

0

E2n−1(t) dt =
E2n

n22n+1
, n = 1, 2, . . . .

For m,n = 1, 2, . . . ,

24.13.11

∫ 1

0

En(t)Em(t) dt

= (−1)n4
(2m+n+2 − 1)m!n!

(m+ n+ 2)!
Bm+n+2 .

24.13(iii) Compendia

For Laplace and inverse Laplace transforms see Prud-
nikov et al. (1992a, §§3.28.1–3.28.2) and Prudnikov
et al. (1992b, §§3.26.1–3.26.2). For other integrals see
Prudnikov et al. (1990, pp. 55–57).

24.14 Sums

24.14(i) Quadratic Recurrence Relations

24.14.1
n∑
k=0

(
n

k

)
Bk(x)Bn−k(y) = n(x+ y − 1)Bn−1(x+ y)

− (n− 1)Bn(x+ y),

24.14.2
n∑
k=0

(
n

k

)
Bk Bn−k = (1− n)Bn−nBn−1 .

24.14.3
n∑
k=0

(
n

k

)
Ek(h)En−k(x) = 2(En+1(x+ h)

− (x+ h− 1)En(x+ h)),

24.14.4
n∑
k=0

(
n

k

)
Ek En−k = −2n+1En+1(0)

= −2n+2(1− 2n+2)
Bn+2

n+ 2
.

24.14.5
n∑
k=0

(
n

k

)
Ek(h)Bn−k(x) = 2nBn

(
1
2 (x+ h)

)
,

24.14.6
n∑
k=0

(
n

k

)
2k Bk En−k = 2(1− 2n−1)Bn−nEn−1 .

Let m+ n be even with m and n nonzero. Then

24.14.7

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
Bj Bk

m+ n− j − k + 1

= (−1)m−1 m!n!
(m+ n)!

Bm+n .

24.14(ii) Higher-Order Recurrence Relations

In the following two identities, valid for n ≥ 2, the
sums are taken over all nonnegative integers j, k, ` with
j + k + ` = n.

24.14.8∑ (2n)!
(2j)!(2k)!(2`)!

B2j B2k B2`

= (n− 1)(2n− 1)B2n +n(n− 1
2 )B2n−2,

24.14.9∑ (2n)!
(2j)!(2k)!(2`)!

E2j E2k E2` = 1
2 (E2n−E2n+2) .

In the next identity, valid for n ≥ 4, the sum is taken
over all positive integers j, k, `,m with j+k+`+m = n.

24.14.10

∑ (2n)!
(2j)!(2k)!(2`)!(2m)!

B2j B2k B2`B2m

= −
(

2n+ 3
3

)
B2n−

4
3
n2(2n− 1)B2n−2 .

For (24.14.11) and (24.14.12), see Al-Salam and Car-
litz (1959). These identities can be regarded as higher-
order recurrences. Let det[ar+s] denote a Hankel (or
persymmetric) determinant, that is, an (n+ 1)× (n+ 1)
determinant with element ar+s in row r and column s
for r, s = 0, 1, . . . , n. Then

24.14.11

det[Br+s] = (−1)n(n+1)/2

(
n∏
k=1

k!

)6/(
2n+1∏
k=1

k!

)
,

24.14.12

det[Er+s] = (−1)n(n+1)/2

(
n∏
k=1

k!

)2
.

See also Sachse (1882).

24.14(iii) Compendia

For other sums involving Bernoulli and Euler numbers
and polynomials see Hansen (1975, pp. 331–347) and
Prudnikov et al. (1990, pp. 383–386).

24.15 Related Sequences of Numbers

24.15(i) Genocchi Numbers

24.15.1
2t

et + 1
=
∞∑
n=1

Gn
tn

n!
,

24.15.2 Gn = 2(1− 2n)Bn .

See Table 24.15.1.
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24.15(ii) Tangent Numbers

24.15.3 tan t =
∞∑
n=0

Tn
tn

n!
,

24.15.4

T2n−1 = (−1)n−1 22n(22n − 1)
2n

B2n , n = 1, 2, . . . ,

24.15.5 T2n = 0, n = 0, 1, . . . .

Table 24.15.1: Genocchi and Tangent numbers.

n 0 1 2 3 4 5 6 7 8

Gn 0 1 −1 0 1 0 −3 0 17

Tn 0 1 0 2 0 16 0 272 0

24.15(iii) Stirling Numbers

The Stirling numbers of the first kind s(n,m), and the
second kind S(n,m), are as defined in §26.8(i).

24.15.6 Bn =
n∑
k=0

(−1)k
k!S(n, k)
k + 1

,

24.15.7 Bn =
n∑
k=0

(−1)k
(
n+ 1
k + 1

)
S(n+ k, k)

/(
n+ k

k

)
,

24.15.8

n∑
k=0

(−1)n+k s(n+ 1, k + 1)Bk =
n!

n+ 1
.

In (24.15.9) and (24.15.10) p denotes a prime. See
Horata (1991).
24.15.9

p
Bn
n
≡ S(p− 1 + n, p− 1) (mod p2), 1 ≤ n ≤ p− 2,

24.15.10

2n− 1
4n

p2B2n ≡ S(p+ 2n, p− 1) (mod p3),

2 ≤ 2n ≤ p− 3.

24.15(iv) Fibonacci and Lucas Numbers

The Fibonacci numbers are defined by u0 = 0, u1 = 1,
and un+1 = un + un−1, n ≥ 1. The Lucas numbers are
defined by v0 = 2, v1 = 1, and vn+1 = vn+vn−1, n ≥ 1.
24.15.11
bn/2 c∑
k=0

(
n

2k

)(
5
9

)k
B2k un−2k =

n

6
vn−1 +

n

3n
v2n−2,

24.15.12
bn/2 c∑
k=0

(
n

2k

)(
5
4

)k
E2k vn−2k =

1
2n−1

.

For further information on the Fibonacci numbers
see §26.11.

24.16 Generalizations

24.16(i) Higher-Order Analogs

Polynomials and Numbers of Integer Order

For ` = 0, 1, 2, . . . , Bernoulli and Euler polynomials of
order ` are defined respectively by

24.16.1

(
t

et − 1

)̀
ext =

∞∑
n=0

B(`)
n (x)

tn

n!
, |t| < 2π,

24.16.2

(
2

et + 1

)̀
ext =

∞∑
n=0

E(`)
n (x)

tn

n!
, |t| < π.

When x = 0 they reduce to the Bernoulli and Euler
numbers of order `:

24.16.3 B(`)
n = B(`)

n (0), E(`)
n = E(`)

n (0).

Also for ` = 1, 2, 3, . . . ,

24.16.4

(
ln(1 + t)

t

)̀
= `

∞∑
n=0

B
(`+n)
n

`+ n

tn

n!
, |t| < 1.

For this and other properties see Milne-Thomson (1933,
pp. 126–153) or Nörlund (1924, pp. 144–162).

For extensions of B(`)
n (x) to complex values of x, n,

and `, and also for uniform asymptotic expansions for
large x and large n, see Temme (1995b).

Bernoulli Numbers of the Second Kind

24.16.5
t

ln(1 + t)
=
∞∑
n=0

bnt
n, |t| < 1,

24.16.6 n!bn = − 1
n− 1

B(n−1)
n , n = 2, 3, . . . .

Degenerate Bernoulli Numbers

For sufficiently small |t|,

24.16.7
t

(1 + λt) 1/λ − 1
=
∞∑
n=0

βn(λ)
tn

n!
,

24.16.8

βn(λ) = n!bnλn +
bn/2 c∑
k=1

n

2k
B2k s(n− 1, 2k − 1)λn−2k,

n = 2, 3, . . . .

Here s(n,m) again denotes the Stirling number of the
first kind.

Nörlund Polynomials

24.16.9

(
t

et − 1

)x
=
∞∑
n=0

B(x)
n

tn

n!
, |t| < 2π.

B
(x)
n is a polynomial in x of degree n. (This notation is

consistent with (24.16.3) when x = `.)
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24.16(ii) Character Analogs

Let χ be a primitive Dirichlet character mod f (see
§27.8). Then f is called the conductor of χ. General-
ized Bernoulli numbers and polynomials belonging to χ
are defined by

24.16.10

f∑
a=1

χ(a)teat

eft − 1
=
∞∑
n=0

Bn,χ
tn

n!
,

24.16.11 Bn,χ(x) =
n∑
k=0

(
n

k

)
Bk,χx

n−k.

Let χ0 be the trivial character and χ4 the unique (non-
trivial) character with f = 4; that is, χ4(1) = 1,
χ4(3) = −1, χ4(2) = χ4(4) = 0. Then

24.16.12 Bn(x) = Bn,χ0(x− 1),

24.16.13 En(x) = − 21−n

n+ 1
Bn+1,χ4(2x− 1).

For further properties see Berndt (1975a).

24.16(iii) Other Generalizations

In no particular order, other generalizations include:
Bernoulli numbers and polynomials with arbitrary com-
plex index (Butzer et al. (1992)); Euler numbers and
polynomials with arbitrary complex index (Butzer et al.
(1994)); q-analogs (Carlitz (1954b), Andrews and Foata
(1980)); conjugate Bernoulli and Euler polynomials
(Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz
(1975)); poly-Bernoulli numbers (Kaneko (1997)); Uni-
versal Bernoulli numbers (Clarke (1989)); p-adic in-
teger order Bernoulli numbers (Adelberg (1996)); p-
adic q-Bernoulli numbers (Kim and Kim (1999)); pe-
riodic Bernoulli numbers (Berndt (1975b)); cotangent
numbers (Girstmair (1990a)); Bernoulli–Carlitz num-
bers (Goss (1978)); Bernoulli-Padé numbers (Dilcher
(2002)); Bernoulli numbers belonging to periodic func-
tions (Urbanowicz (1988)); cyclotomic Bernoulli num-
bers (Girstmair (1990b)); modified Bernoulli numbers
(Zagier (1998)); higher-order Bernoulli and Euler poly-
nomials with multiple parameters (Erdélyi et al. (1953a,
§§1.13.1, 1.14.1)).

Applications

24.17 Mathematical Applications

24.17(i) Summation

Euler–Maclaurin Summation Formula

See §2.10(i). For a generalization see Olver (1997b,
p. 284).

Boole Summation Formula

Let 0 ≤ h ≤ 1 and a,m, and n be integers such that
n > a, m > 0, and f (m)(x) is absolutely integrable over
[a, n]. Then with the notation of §24.2(iii)
24.17.1
n−1∑
j=a

(−1)jf(j + h) =
1
2

m−1∑
k=0

Ek(h)
k!

(
(−1)n−1f (k)(n)

+ (−1)af (k)(a)
)

+Rm(n),

where
24.17.2

Rm(n) =
1

2(m− 1)!

∫ n

a

f (m)(x) Ẽm−1(h− x) dx.

Calculus of Finite Differences

See Milne-Thomson (1933), Nörlund (1924), or Jordan
(1965). For a more modern perspective see Graham
et al. (1994).

24.17(ii) Spline Functions

Euler Splines

Let Sn denote the class of functions that have n − 1
continuous derivatives on R and are polynomials of de-
gree at most n in each interval (k, k + 1), k ∈ Z. The
members of Sn are called cardinal spline functions. The
functions

24.17.3 Sn(x) =
Ẽn
(
x+ 1

2n+ 1
2

)
Ẽn
(

1
2n+ 1

2

) , n = 0, 1, . . . ,

are called Euler splines of degree n. For each n, Sn(x)
is the unique bounded function such that Sn(x) ∈ Sn
and

24.17.4 Sn(k) = (−1)k, k ∈ Z.

The function Sn(x) is also optimal in a certain sense;
see Schoenberg (1971).

Bernoulli Monosplines

A function of the form xn − S(x), with S(x) ∈ Sn−1

is called a cardinal monospline of degree n. Again with
the notation of §24.2(iii) define

24.17.5 Mn(x) =

{
B̃n(x)−Bn, n even,
B̃n
(
x+ 1

2

)
, n odd.

Mn(x) is a monospline of degree n, and it follows from
(24.4.25) and (24.4.27) that

24.17.6 Mn(k) = 0, k ∈ Z.

For each n = 1, 2, . . . the function Mn(x) is also
the unique cardinal monospline of degree n satisfying
(24.17.6), provided that

24.17.7 Mn(x) = O(|x|γ), x→ ±∞,

for some positive constant γ.
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For any n ≥ 2 the function

24.17.8 F (x) = B̃n(x)− 2−nBn
is the unique cardinal monospline of degree n having
the least supremum norm ‖F‖∞ on R (minimality prop-
erty).

24.17(iii) Number Theory

Bernoulli and Euler numbers and polynomials occur in:
number theory via (24.4.7), (24.4.8), and other identi-
ties involving sums of powers; the Riemann zeta func-
tion and L-series (§25.15, Apostol (1976), and Ireland
and Rosen (1990)); arithmetic of cyclotomic fields and
the classical theory of Fermat’s last theorem (Riben-
boim (1979) and Washington (1997)); p-adic analysis
(Koblitz (1984, Chapter 2)).

24.18 Physical Applications

Bernoulli polynomials appear in statistical physics
(Ordóñez and Driebe (1996)), in discussions of Casimir
forces (Li et al. (1991)), and in a study of quark-gluon
plasma (Meisinger et al. (2002)).

Euler polynomials also appear in statistical physics
as well as in semi-classical approximations to quan-
tum probability distributions (Ballentine and McRae
(1998)).

Computation

24.19 Methods of Computation

24.19(i) Bernoulli and Euler Numbers and
Polynomials

Equations (24.5.3) and (24.5.4) enable Bn and En to be
computed by recurrence. For higher values of n more ef-
ficient methods are available. For example, the tangent
numbers Tn can be generated by simple recurrence rela-
tions obtained from (24.15.3), then (24.15.4) is applied.
A similar method can be used for the Euler numbers
based on (4.19.5). For details see Knuth and Buckholtz
(1967).

Another method is based on the identities

24.19.1 N2n =
2(2n)!
(2π)2n

 ∏
p−1|2n

p

(∏
p

p2n

p2n − 1

)
,

24.19.2 D2n =
∏

p−1|2n

p, B2n =
N2n

D2n
.

If Ñ2n denotes the right-hand side of (24.19.1) but with
the second product taken only for p ≤

⌊
(πe)−12n

⌋
+ 1,

then N2n =
⌈
Ñ2n

⌉
for n ≥ 2. For proofs and further

information see Fillebrown (1992).
For other information see Chellali (1988) and Zhang

and Jin (1996, pp. 1–11). For algorithms for comput-
ing Bn, En, Bn(x), and En(x) see Spanier and Oldham
(1987, pp. 37, 41, 171, and 179–180).

24.19(ii) Values of Bn Modulo p

For number-theoretic applications it is important to
compute B2n (mod p) for 2n ≤ p − 3; in particular
to find the irregular pairs (2n, p) for which B2n ≡ 0
(mod p). We list here three methods, arranged in in-
creasing order of efficiency.

• Tanner and Wagstaff (1987) derives a congruence
(mod p) for Bernoulli numbers in terms of sums
of powers. See also §24.10(iii).

• Buhler et al. (1992) uses the expansion

24.19.3 t2

cosh t− 1
= −2

∞∑
n=0

(2n− 1)B2n
t2n

(2n)!
,

and computes inverses modulo p of the left-hand
side. Multisectioning techniques are applied in im-
plementations. See also Crandall (1996, pp. 116–
120).

• A method related to “Stickelberger codes” is ap-
plied in Buhler et al. (2001); in particular, it
allows for an efficient search for the irregular
pairs (2n, p). Discrete Fourier transforms are used
in the computations. See also Crandall (1996,
pp. 120–124).

24.20 Tables

Abramowitz and Stegun (1964, Chapter 23) includes
exact values of

∑m
k=1 k

n, m = 1(1)100, n = 1(1)10;∑∞
k=1 k

−n,
∑∞
k=1(−1)k−1k−n,

∑∞
k=0(2k + 1)−n, n =

1, 2, . . . , 20D;
∑∞
k=0(−1)k(2k+1)−n, n = 1, 2, . . . , 18D.

Wagstaff (1978) gives complete prime factorizations
of Nn and En for n = 20(2)60 and n = 8(2)42, respec-
tively. In Wagstaff (2002) these results are extended
to n = 60(2)152 and n = 40(2)88, respectively, with
further complete and partial factorizations listed up to
n = 300 and n = 200, respectively.

For information on tables published before 1961 see
Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova
(1960, Chapters 11 and 14).

24.21 Software

See http://dlmf.nist.gov/24.21.
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Notation

25.1 Special Notation

(For other notation see pp. xiv and 873.)

k,m, n nonnegative integers.
p prime number.
x real variable.
a real or complex parameter.
s = σ + it complex variable.
z = x+ iy complex variable.
γ Euler’s constant (§5.2(ii)).
ψ(x) digamma function Γ′(x)/Γ(x) except in

§25.16. See §5.2(i).
Bn, Bn(x) Bernoulli number and polynomial

(§24.2(i)).
B̃n(x) periodic Bernoulli function Bn(x− bxc).
m | n m divides n.
primes on function symbols: derivatives with

respect to argument.

The main function treated in this chapter is the Rie-
mann zeta function ζ(s). This notation was introduced
in Riemann (1859).

The main related functions are the Hurwitz zeta
function ζ(s, a), the dilogarithm Li2(z), the polylog-
arithm Lis(z) (also known as Jonquière’s function
φ(z, s)), Lerch’s transcendent Φ(z, s, a), and the Dirich-
let L-functions L(s, χ).

Riemann Zeta Function

25.2 Definition and Expansions

25.2(i) Definition

When <s > 1,

25.2.1 ζ(s) =
∞∑
n=1

1
ns
.

Elsewhere ζ(s) is defined by analytic continuation. It is
a meromorphic function whose only singularity in C is
a simple pole at s = 1, with residue 1.

25.2(ii) Other Infinite Series

25.2.2 ζ(s) =
1

1− 2−s

∞∑
n=0

1
(2n+ 1)s

, <s > 1.

25.2.3 ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1

ns
, <s > 0.

25.2.4 ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)n

n!
γn(s− 1)n, <s > 0,

where

25.2.5 γn = lim
m→∞

(
m∑
k=1

(ln k)n

k
− (lnm)n+1

n+ 1

)
.

25.2.6 ζ ′(s) = −
∞∑
n=2

(lnn)n−s, <s > 1.

25.2.7

ζ(k)(s) = (−1)k
∞∑
n=2

(lnn)kn−s, <s > 1, k = 1, 2, 3, . . . .

For further expansions of functions similar to
(25.2.1) (Dirichlet series) see §27.4. This includes, for
example, 1/ ζ(s).

25.2(iii) Representations by the
Euler–Maclaurin Formula

25.2.8
ζ(s) =

N∑
k=1

1
ks

+
N1−s

s− 1
− s

∫ ∞
N

x− bxc
xs+1

dx,

<s > 0, N = 1, 2, 3, . . . .

25.2.9

ζ(s) =
N∑
k=1

1
ks

+
N1−s

s− 1
− 1

2
N−s

+
n∑
k=1

(
s+ 2k − 2

2k − 1

)
B2k

2k
N1−s−2k

−
(
s+ 2n
2n+ 1

)∫ ∞
N

B̃2n+1(x)
xs+2n+1

dx,

<s > −2n; n,N = 1, 2, 3, . . . .

25.2.10

ζ(s) =
1

s− 1
+

1
2

+
n∑
k=1

(
s+ 2k − 2

2k − 1

)
B2k

2k

−
(
s+ 2n
2n+ 1

)∫ ∞
1

B̃2n+1(x)
xs+2n+1

dx,

<s > −2n, n = 1, 2, 3, . . . .

For B2k see §24.2(i), and for B̃n(x) see §24.2(iii).

25.2(iv) Infinite Products

25.2.11 ζ(s) =
∏
p

(1− p−s)−1, <s > 1,

product over all primes p.

25.2.12 ζ(s) =
(2π)se−s−(γs/2)

2(s− 1) Γ
(

1
2s+ 1

) ∏
ρ

(
1− s

ρ

)
es/ρ,

product over zeros ρ of ζ with <ρ > 0 (see §25.10(i)); γ
is Euler’s constant (§5.2(ii)).
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25.3 Graphics

Figure 25.3.1: Riemann zeta function ζ(x) and its
derivative ζ ′(x), −20 ≤ x ≤ 10.

�

Figure 25.3.2: Riemann zeta function ζ(x) and its
derivative ζ ′(x), −12 ≤ x ≤ −2.

Figure 25.3.3: Modulus of the Riemann zeta function
| ζ(x+ iy)|, −4 ≤ x ≤ 4, −10 ≤ y ≤ 40.

Figure 25.3.4: Z(t), 0 ≤ t ≤ 50. Z(t) and ζ
(

1
2 + it

)
have

the same zeros. See §25.10(i).

Figure 25.3.5: Z(t), 1000 ≤ t ≤ 1050.

Figure 25.3.6: Z(t), 10000 ≤ t ≤ 10050.

25.4 Reflection Formulas

For s 6= 0, 1,

25.4.1 ζ(1− s) = 2(2π)−s cos
(

1
2πs

)
Γ(s) ζ(s),

25.4.2 ζ(s) = 2(2π)s−1 sin
(

1
2πs

)
Γ(1− s) ζ(1− s).

Equivalently,

25.4.3 ξ(s) = ξ(1− s),
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where ξ(s) is Riemann’s ξ-function, defined by:

25.4.4 ξ(s) = 1
2s(s− 1) Γ

(
1
2s
)
π−s/2 ζ(s).

For s 6= 0, 1 and k = 1, 2, 3, . . . ,
25.4.5

(−1)k ζ(k)(1− s)

=
2

(2π)s

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)(
<(ck−m) cos

(
1
2πs

)
+ =(ck−m) sin

(
1
2πs

))
Γ(r)(s) ζ(m−r)(s),

where

25.4.6 c = − ln(2π)− 1
2πi.

25.5 Integral Representations

25.5(i) In Terms of Elementary Functions

Throughout this subsection s 6= 1.

25.5.1 ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx, <s > 1.

25.5.2 ζ(s) =
1

Γ(s+ 1)

∫ ∞
0

exxs

(ex − 1)2
dx, <s > 1.

25.5.3 ζ(s) =
1

(1− 21−s) Γ(s)

∫ ∞
0

xs−1

ex + 1
dx, <s > 0.

25.5.4
ζ(s) =

1
(1− 21−s) Γ(s+ 1)

∫ ∞
0

exxs

(ex + 1)2
dx,

<s > 0.

25.5.5 ζ(s) = −s
∫ ∞

0

x− bxc − 1
2

xs+1
dx, −1 < <s < 0.

25.5.6

ζ(s) =
1
2

+
1

s− 1
+

1
Γ(s)

∫ ∞
0

(
1

ex − 1
− 1
x

+
1
2

)
xs−1

ex
dx,

<s > −1.

25.5.7
ζ(s) =

1
2

+
1

s− 1
+

n∑
m=1

B2m

(2m)!
Γ(s+ 2m− 1)

Γ(s)
+

1
Γ(s)

∫ ∞
0

(
1

ex − 1
− 1
x

+
1
2
−

n∑
m=1

B2m

(2m)!
x2m−1

)
xs−1

ex
dx,

<s > −(2n+ 1), n = 1, 2, 3, . . . .

25.5.8 ζ(s) =
1

2(1− 2−s) Γ(s)

∫ ∞
0

xs−1

sinhx
dx, <s > 1.

25.5.9 ζ(s) =
2s−1

Γ(s+ 1)

∫ ∞
0

xs

(sinhx)2
dx, <s > 1.

25.5.10 ζ(s) =
2s−1

1− 21−s

∫ ∞
0

cos(s arctanx)
(1 + x2)s/2 cosh

(
1
2πx

) dx.
25.5.11

ζ(s) =
1
2

+
1

s− 1
+ 2

∫ ∞
0

sin(s arctanx)
(1 + x2)s/2(e2πx − 1)

dx.

25.5.12 ζ(s) =
2s−1

s− 1
− 2s

∫ ∞
0

sin(s arctanx)
(1 + x2)s/2(eπx + 1)

dx.

25.5(ii) In Terms of Other Functions

25.5.13

ζ(s) =
πs/2

s(s− 1) Γ
(

1
2s
)

+
πs/2

Γ
(

1
2s
) ∫ ∞

1

(
xs/2 + x(1−s)/2

) ω(x)
x

dx,

s 6= 1,
where

25.5.14 ω(x) =
∞∑
n=1

e−n
2πx =

1
2

(θ3(0|ix)− 1) .

For θ3 see §20.2(i). For similar representations involving
other theta functions see Erdélyi et al. (1954a, p. 339).

In (25.5.15)–(25.5.19), 0 < <s < 1, ψ(x) is the
digamma function, and γ is Euler’s constant (§5.2).
(25.5.16) is also valid for 0 < <s < 2, s 6= 1.

25.5.15
ζ(s) =

1
s− 1

+
sin(πs)
π

×
∫ ∞

0

(ln(1 + x)− ψ(1 + x))x−s dx,

25.5.16

ζ(s) =
1

s− 1
+

sin(πs)
π(s− 1)

×
∫ ∞

0

(
1

1 + x
−ψ′(1 + x)

)
x1−s dx,

25.5.17 ζ(1 + s) =
sin(πs)
π

∫ ∞
0

(γ+ψ(1 + x))x−s−1 dx,

25.5.18 ζ(1 + s) =
sin(πs)
πs

∫ ∞
0

ψ′(1 + x)x−s dx,

25.5.19

ζ(m+ s) = (−1)m−1 Γ(s) sin(πs)
π Γ(m+ s)

×
∫ ∞

0

ψ(m)(1 + x)x−s dx,

m = 1, 2, 3, . . . .
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25.5(iii) Contour Integrals

25.5.20

ζ(s) =
Γ(1− s)

2πi

∫ (0+)

−∞

zs−1

e−z − 1
dz, s 6= 1, 2, . . . ,

where the integration contour is a loop around the neg-
ative real axis; it starts at −∞, encircles the origin once
in the positive direction without enclosing any of the
points z = ±2πi, ±4πi, . . . , and returns to −∞. Equiv-
alently,
25.5.21

ζ(s) =
Γ(1− s)

2πi(1− 21−s)

∫ (0+)

−∞

zs−1

e−z + 1
dz, s 6= 1, 2, . . . .

The contour here is any loop that encircles the origin
in the positive direction not enclosing any of the points
±πi, ±3πi, . . . .

25.6 Integer Arguments

25.6(i) Function Values

25.6.1

ζ(0) = −1
2
, ζ(2) =

π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

25.6.2 ζ(2n) =
(2π)2n

2(2n)!
|B2n| , n = 1, 2, 3, . . . .

25.6.3 ζ(−n) = −Bn+1

n+ 1
, n = 1, 2, 3, . . . .

25.6.4 ζ(−2n) = 0, n = 1, 2, 3, . . . .

25.6.5

ζ(k + 1) =
1
k!

∞∑
n1=1

. . .
∞∑

nk=1

1
n1 · · ·nk(n1 + · · ·+ nk)

,

k = 1, 2, 3, . . . .

25.6.6

ζ(2k + 1) =
(−1)k+1(2π)2k+1

2(2k + 1)!

∫ 1

0

B2k+1(t) cot(πt) dt,

k = 1, 2, 3, . . . .

25.6.7 ζ(2) =
∫ 1

0

∫ 1

0

1
1− xy

dx dy.

25.6.8 ζ(2) = 3
∞∑
k=1

1
k2
(

2k
k

) .
25.6.9 ζ(3) =

5
2

∞∑
k=1

(−1)k−1

k3
(

2k
k

) .
25.6.10 ζ(4) =

36
17

∞∑
k=1

1
k4
(

2k
k

) .
25.6(ii) Derivative Values

25.6.11 ζ ′(0) = − 1
2 ln(2π).

25.6.12 ζ ′′(0) = − 1
2 (ln(2π))2 + 1

2γ
2 − 1

24π
2 + γ1,

where γ1 is given by (25.2.5).

With c defined by (25.4.6) and n = 1, 2, 3, . . . ,

25.6.13 (−1)k ζ(k)(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
=(ck−m) Γ(r)(2n+ 1) ζ(m−r)(2n+ 1),

25.6.14 (−1)k ζ(k)(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
<(ck−m) Γ(r)(2n) ζ(m−r)(2n),

25.6.15 ζ ′(2n) =
(−1)n+1(2π)2n

2(2n)!
(2n ζ ′(1− 2n)− (ψ(2n)− ln(2π))B2n) .

25.6(iii) Recursion Formulas

25.6.16 (
n+ 1

2

)
ζ(2n) =

n−1∑
k=1

ζ(2k) ζ(2n− 2k), n ≥ 2.

25.6.17(
n+ 3

4

)
ζ(4n+ 2) =

n∑
k=1

ζ(2k) ζ(4n+ 2− 2k), n ≥ 1.

25.6.18(
n+ 1

4

)
ζ(4n) + 1

2 (ζ(2n))2 =
n∑
k=1

ζ(2k) ζ(4n− 2k),

n ≥ 1.

25.6.19

(
m+ n+ 3

2

)
ζ(2m+ 2n+ 2)

=

(
m∑
k=1

+
n∑
k=1

)
ζ(2k) ζ(2m+ 2n+ 2− 2k),

m ≥ 0, n ≥ 0, m+ n ≥ 1.



606 Zeta and Related Functions

25.6.20

1
2 (22n − 1) ζ(2n) =

n−1∑
k=1

(22n−2k − 1) ζ(2n− 2k) ζ(2k),

n ≥ 2.

For related results see Basu and Apostol (2000).

25.7 Integrals

For definite integrals of the Riemann zeta function see
Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a,
§3.2), and Prudnikov et al. (1992b, §3.2).

25.8 Sums

25.8.1

∞∑
k=2

(ζ(k)− 1) = 1.

25.8.2

∞∑
k=0

Γ(s+ k)
(k + 1)!

(ζ(s+ k)− 1)

= Γ(s− 1), s 6= 1, 0,−1,−2, . . . .

25.8.3

∞∑
k=0

Γ(s+ k) ζ(s+ k)
k! Γ(s)2s+k

= (1− 2−s) ζ(s), s 6= 1.

25.8.4

∞∑
k=1

(−1)k

k
(ζ(nk)− 1) = ln

n−1∏
j=0

Γ
(

2− e(2j+1)πi/n
),

n = 2, 3, 4, . . . .

25.8.5

∞∑
k=2

ζ(k)zk = −γz − z ψ(1− z), |z| < 1.

25.8.6

∞∑
k=0

ζ(2k)z2k = − 1
2πz cot(πz), |z| < 1.

25.8.7

∞∑
k=2

ζ(k)
k

zk = −γz + ln Γ(1− z), |z| < 1.

25.8.8

∞∑
k=1

ζ(2k)
k

z2k = ln
(

πz

sin(πz)

)
, |z| < 1.

25.8.9

∞∑
k=1

ζ(2k)
(2k + 1)22k

=
1
2
− 1

2
ln 2.

25.8.10

∞∑
k=1

ζ(2k)
(2k + 1)(2k + 2)22k

=
1
4
− 7

4π2
ζ(3).

For other sums see Prudnikov et al. (1986b, pp. 648–
649), Hansen (1975, pp. 355–357), Ogreid and Osland
(1998), and Srivastava and Choi (2001, Chapter 3).

25.9 Asymptotic Approximations

If x ≥ 1, y ≥ 1, 2πxy = t, and 0 ≤ σ ≤ 1, then as
t→∞ with σ fixed,

25.9.1

ζ(σ + it) =
∑

1≤n≤x

1
ns

+ χ(s)
∑

1≤n≤y

1
n1−s

+O
(
x−σ

)
+O

(
yσ−1t

1
2−σ

)
,

where s = σ + it and

25.9.2 χ(s) = πs−
1
2 Γ
(

1
2 −

1
2s
)
/Γ
(

1
2s
)
.

If σ = 1
2 , x = y =

√
t/(2π), and m = bxc, then

(25.9.1) becomes

25.9.3

ζ
(

1
2 + it

)
=

m∑
n=1

1
n

1
2 +it

+ χ
(

1
2 + it

) m∑
n=1

1
n

1
2−it

+O
(
t−1/4

)
.

For other asymptotic approximations see Berry and
Keating (1992), Paris and Cang (1997); see also Paris
and Kaminski (2001, pp. 380–389).

25.10 Zeros

25.10(i) Distribution

The product representation (25.2.11) implies ζ(s) 6= 0
for <s > 1. Also, ζ(s) 6= 0 for <s = 1, a prop-
erty first established in Hadamard (1896) and de la
Vallée Poussin (1896a,b) in the proof of the prime num-
ber theorem (25.16.3). The functional equation (25.4.1)
implies ζ(−2n) = 0 for n = 1, 2, 3, . . . . These are called
the trivial zeros. Except for the trivial zeros, ζ(s) 6= 0
for <s ≤ 0. In the region 0 < <s < 1, called the
critical strip, ζ(s) has infinitely many zeros, distributed
symmetrically about the real axis and about the critical
line <s = 1

2 . The Riemann hypothesis states that all
nontrivial zeros lie on this line.

Calculations relating to the zeros on the critical line
make use of the real-valued function

25.10.1 Z(t) = exp(iϑ(t)) ζ
(

1
2 + it

)
,

where

25.10.2 ϑ(t) ≡ ph Γ
(

1
4 + 1

2 it
)
− 1

2 t lnπ

is chosen to make Z(t) real, and ph Γ
(

1
4 + 1

2 it
)

assumes
its principal value. Because |Z(t)| = | ζ

(
1
2 + it

)
|, Z(t)

vanishes at the zeros of ζ
(

1
2 + it

)
, which can be sepa-

rated by observing sign changes of Z(t). Because Z(t)
changes sign infinitely often, ζ

(
1
2 + it

)
has infinitely

many zeros with t real.
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25.10(ii) Riemann–Siegel Formula

Riemann developed a method for counting the total
number N(T ) of zeros of ζ(s) in that portion of the
critical strip with 0 < t < T . By comparing N(T )
with the number of sign changes of Z(t) we can de-
cide whether ζ(s) has any zeros off the line in this re-
gion. Sign changes of Z(t) are determined by multiply-
ing (25.9.3) by exp(iϑ(t)) to obtain the Riemann–Siegel
formula:

25.10.3 Z(t) = 2
m∑
n=1

cos(ϑ(t)− t lnn)
n1/2

+R(t),

where R(t) = O
(
t−1/4

)
as t→∞.

The error term R(t) can be expressed as an asymp-
totic series that begins
25.10.4

R(t) = (−1)m−1

(
2π
t

)1/4 cos
(
t− (2m+ 1)

√
2πt− 1

8π
)

cos
(√

2πt
)

+O
(
t−3/4

)
.

Riemann also developed a technique for determin-
ing further terms. Calculations based on the Riemann–
Siegel formula reveal that the first ten billion zeros of
ζ(s) in the critical strip are on the critical line (van de
Lune et al. (1986)). More than one-third of all the ze-
ros in the critical strip lie on the critical line (Levinson
(1974)).

For further information on the Riemann–Siegel ex-
pansion see Berry (1995).

Related Functions

25.11 Hurwitz Zeta Function

25.11(i) Definition

The function ζ(s, a) was introduced in Hurwitz (1882)
and defined by the series expansion

25.11.1

ζ(s, a) =
∞∑
n=0

1
(n+ a)s

, <s > 1, a 6= 0,−1,−2, . . . .

ζ(s, a) has a meromorphic continuation in the s-
plane, its only singularity in C being a simple pole at
s = 1 with residue 1. As a function of a, with s (6= 1)
fixed, ζ(s, a) is analytic in the half-plane <a > 0. The
Riemann zeta function is a special case:

25.11.2 ζ(s, 1) = ζ(s).

For most purposes it suffices to restrict 0 < <a ≤ 1
because of the following straightforward consequences
of (25.11.1):

25.11.3 ζ(s, a) = ζ(s, a+ 1) + a−s,

25.11.4

ζ(s, a) = ζ(s, a+m) +
m−1∑
n=0

1
(n+ a)s

, m = 1, 2, 3, . . . .

Most references treat real a with 0 < a ≤ 1.

25.11(ii) Graphics

Figure 25.11.1: Hurwitz zeta function ζ(x, a), a = 0.3,
0.5, 0.8, 1, −20 ≤ x ≤ 10. The curves are almost indis-
tinguishable for −14 < x < −1, approximately.

Figure 25.11.2: Hurwitz zeta function ζ(x, a), −19.5 ≤
x ≤ 10, 0.02 ≤ a ≤ 1.
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25.11(iii) Representations by the Euler–Maclaurin Formula

25.11.5 ζ(s, a) =
N∑
n=0

1
(n+ a)s

+
(N + a)1−s

s− 1
− s

∫ ∞
N

x− bxc
(x+ a)s+1

dx, s 6= 1, <s > 0, a > 0, N = 0, 1, 2, 3, . . . .

25.11.6 ζ(s, a) =
1
as

(
1
2

+
a

s− 1

)
− s(s+ 1)

∫ ∞
0

B̃2(x)
(x+ a)s+2

dx, s 6= 1, <s > −1, a > 0.

25.11.7

ζ(s, a) =
1
as

+
1

(1 + a)s

(
1
2

+
1 + a

s− 1

)
+

n∑
k=1

(
s+ 2k − 2

2k − 1

)
B2k

2k
1

(1 + a)s+2k−1
−
(
s+ 2n
2n+ 1

)∫ ∞
1

B̃2n+1(x)
(x+ a)s+2n+1

dx,

s 6= 1, a > 0, n = 1, 2, 3, . . . , <s > −2n.

For B̃n(x) see §24.2(iii).

25.11(iv) Series Representations

25.11.8
ζ
(
s, 1

2a
)

= ζ
(
s, 1

2a+ 1
2

)
+ 2s

∞∑
n=0

(−1)n

(n+ a)s
,

<s > 0, s 6= 1, 0 < a ≤ 1.

25.11.9
ζ(1− s, a) =

2 Γ(s)
(2π)s

∞∑
n=1

1
ns

cos
(

1
2πs− 2nπa

)
,

<s > 1, 0 < a ≤ 1.

25.11.10
ζ(s, a) =

∞∑
n=0

Γ(n+ s)
n! Γ(s)

ζ(n+ s)(1− a)n,

s 6= 1, |a− 1| < 1.

When a = 1
2 , (25.11.10) reduces to (25.8.3); compare

(25.11.11).

25.11(v) Special Values

Throughout this subsection <a > 0.

25.11.11 ζ
(
s, 1

2

)
= (2s − 1) ζ(s), s 6= 1.

25.11.12

ζ(n+ 1, a) =
(−1)n+1 ψ(n)(a)

n!
, n = 1, 2, 3, . . . .

25.11.13 ζ(0, a) = 1
2 − a.

25.11.14 ζ(−n, a) = −Bn+1(a)
n+ 1

, n = 0, 1, 2, . . . .

25.11.15

ζ(s, ka) = k−s
k−1∑
n=0

ζ
(
s, a+

n

k

)
, s 6= 1, k = 1, 2, 3, . . . .

25.11.16

ζ

(
1− s, h

k

)
=

2 Γ(s)
(2πk)s

k∑
r=1

cos
(
πs

2
− 2πrh

k

)
ζ
(
s,
r

k

)
,

s 6= 0, 1; h, k integers, 1 ≤ h ≤ k.

25.11(vi) Derivatives

a-Derivative

25.11.17
∂

∂a
ζ(s, a) = −s ζ(s+ 1, a), s 6= 0, 1; <a > 0.

s-Derivatives

In (25.11.18)–(25.11.24) primes on ζ denote deriva-
tives with respect to s. Similarly in §§25.11(viii) and
25.11(xii).

25.11.18 ζ ′(0, a) = ln Γ(a)− 1
2 ln(2π), a > 0.

25.11.19 ζ ′(s, a) = − ln a
as

(
1
2

+
a

s− 1

)
− a1−s

(s− 1)2
+ s(s+ 1)

∫ ∞
0

B̃2(x) ln(x+ a)
(x+ a)s+2

dx− (2s+ 1)
∫ ∞

0

B̃2(x)
(x+ a)s+2

dx,

<s > −1, s 6= 1, a > 0.

25.11.20

(−1)k ζ(k)(s, a) =
(ln a)k

as

(
1
2

+
a

s− 1

)
+ k!a1−s

k−1∑
r=0

(ln a)r

r!(s− 1)k−r+1
− s(s+ 1)

∫ ∞
0

B̃2(x)(ln(x+ a))k

(x+ a)s+2
dx

+ k(2s+ 1)
∫ ∞

0

B̃2(x)(ln(x+ a))k−1

(x+ a)s+2
dx− k(k − 1)

∫ ∞
0

B̃2(x)(ln(x+ a))k−2

(x+ a)s+2
dx,

<s > −1, s 6= 1, a > 0.



25.11 Hurwitz Zeta Function 609

25.11.21

ζ ′
(

1− 2n,
h

k

)
=

(ψ(2n)− ln(2πk))B2n(h/k)
2n

− (ψ(2n)− ln(2π))B2n

2nk2n
+

(−1)n+1π

(2πk)2n

k−1∑
r=1

sin
(

2πrh
k

)
ψ(2n−1)

( r
k

)
+

(−1)n+12 · (2n− 1)!
(2πk)2n

k−1∑
r=1

cos
(

2πrh
k

)
ζ ′
(

2n,
r

k

)
+
ζ ′(1− 2n)

k2n
,

where h, k are integers with 1 ≤ h ≤ k and n = 1, 2, 3, . . . .

25.11.22 ζ ′
(
1− 2n, 1

2

)
= −B2n ln 2

n · 4n
− (22n−1 − 1) ζ ′(1− 2n)

22n−1
, n = 1, 2, 3, . . . .

25.11.23

ζ ′
(
1− 2n, 1

3

)
= − π(9n − 1)B2n

8n
√

3(32n−1 − 1)
− B2n ln 3

4n · 32n−1
−

(−1)n ψ(2n−1)
(

1
3

)
2
√

3(6π)2n−1
−
(
32n−1 − 1

)
ζ ′(1− 2n)

2 · 32n−1
, n = 1, 2, 3, . . . .

25.11.24

k−1∑
r=1

ζ ′
(
s,
r

k

)
= (ks − 1) ζ ′(s) + ks ζ(s) ln k, s 6= 1, k = 1, 2, 3, . . . .

25.11(vii) Integral Representations

25.11.25 ζ(s, a) =
1

Γ(s)

∫ ∞
0

xs−1e−ax

1− e−x
dx, <s > 1, <a > 0.

25.11.26 ζ(s, a) = −s
∫ ∞
−a

x− bxc − 1
2

(x+ a)s+1
dx, −1 < <s < 0, 0 < a ≤ 1.

25.11.27 ζ(s, a) =
1
2
a−s +

a1−s

s− 1
+

1
Γ(s)

∫ ∞
0

(
1

ex − 1
− 1
x

+
1
2

)
xs−1

eax
dx, <s > −1, s 6= 1, <a > 0.

25.11.28

ζ(s, a) =
1
2
a−s +

a1−s

s− 1
+

n∑
k=1

Γ(s+ 2k − 1)
Γ(s)

B2k

(2k)!
a−2k−s+1

+
1

Γ(s)

∫ ∞
0

(
1

ex − 1
− 1
x

+
1
2
−

n∑
k=1

B2k

(2k)!
x2k−1

)
xs−1e−ax dx, <s > −(2n+ 1), s 6= 1, <a > 0.

25.11.29 ζ(s, a) =
1
2
a−s +

a1−s

s− 1
+ 2

∫ ∞
0

sin(s arctan(x/a))
(a2 + x2)s/2(e2πx − 1)

dx, s 6= 1, <a > 0.

25.11.30 ζ(s, a) =
Γ(1− s)

2πi

∫ (0+)

−∞

eazzs−1

1− ez
dz, s 6= 1, <a > 0,

where the integration contour is a loop around the negative real axis as described for (25.5.20).

25.11(viii) Further Integral Representations

25.11.31
1

Γ(s)

∫ ∞
0

xs−1e−ax

2 coshx
dx = 4−s

(
ζ
(
s, 1

4 + 1
4a
)
− ζ
(
s, 3

4 + 1
4a
))

, <s > 0, <a > −1.

25.11.32

∫ a

0

xn ψ(x) dx = (−1)n−1 ζ ′(−n) + (−1)nh(n)
Bn+1

n+ 1
−

n∑
k=0

(−1)k
(
n

k

)
h(k)

Bk+1(a)
k + 1

an−k

+
n∑
k=0

(−1)k
(
n

k

)
ζ ′(−k, a)an−k, n = 1, 2, . . . , <a > 0,

where

25.11.33 h(n) =
n∑
k=1

k−1.

25.11.34 n

∫ a

0

ζ ′(1− n, x) dx = ζ ′(−n, a)− ζ ′(−n) +
Bn+1−Bn+1(a)

n(n+ 1)
, n = 1, 2, . . . , <a > 0.
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25.11(ix) Integrals

See Prudnikov et al. (1990, §2.3), Prudnikov et al.
(1992a, §3.2), and Prudnikov et al. (1992b, §3.2).

25.11(x) Further Series Representations

25.11.35
∞∑
n=0

(−1)n

(n+ a)s

=
1

Γ(s)

∫ ∞
0

xs−1e−ax

1 + e−x
dx

= 2−s
(
ζ
(
s, 1

2a
)
− ζ
(
s, 1

2 (1 + a)
))

,
<a > 0, <s > 0; or <a = 0, =a 6= 0, 0 < <s < 1.

When a = 1, (25.11.35) reduces to (25.2.3).

25.11.36

∞∑
n=1

χ(n)
ns

= k−s
k∑
r=1

χ(r) ζ
(
s,
r

k

)
, <s > 1,

where χ(n) is a Dirichlet character (mod k) (§27.8).
See also Srivastava and Choi (2001).

25.11(xi) Sums

25.11.37
∞∑
k=1

(−1)k

k
ζ(nk, a) = −n ln Γ(a)

+ ln

n−1∏
j=0

Γ
(
a− e(2j+1)πi/n

),

n = 2, 3, 4, . . . , <a ≥ 1.

25.11.38

∞∑
k=1

(
n+ k

k

)
ζ(n+ k + 1, a)zk

=
(−1)n

n!

(
ψ(n)(a)− ψ(n)(a− z)

)
,

n = 1, 2, 3, . . . , <a > 0, |z| < |a|.

25.11.39

∞∑
k=2

k

2k
ζ
(
k + 1, 3

4

)
= 8G,

where G is Catalan’s constant :

25.11.40 G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596 55941 772 . . . .

For further sums see Prudnikov et al. (1990, pp. 396–
397) and Hansen (1975, pp. 358–360).

25.11(xii) a-Asymptotic Behavior

As a→ 0 with s (6= 1) fixed,

25.11.41 ζ(s, a+ 1) = ζ(s)− s ζ(s+ 1)a+O
(
a2
)
.

As β → ±∞ with s fixed, <s > 1,

25.11.42 ζ(s, α+ iβ)→ 0,

uniformly with respect to bounded nonnegative values
of α.

As a → ∞ in the sector |ph a| ≤ π − δ(< π), with
s(6= 1) and δ fixed, we have the asymptotic expansion
25.11.43

ζ(s, a)− a
1−s

s− 1
− 1

2
a−s∼

∞∑
k=1

B2k

(2k)!
Γ(s+ 2k − 1)

Γ(s)
a1−s−2k.

Similarly, as a→∞ in the sector |ph a| ≤ 1
2π− δ(<

1
2π),

25.11.44

ζ ′(−1, a)− 1
12

+
1
4
a2 −

(
1
12
− 1

2
a+

1
2
a2

)
ln a

∼ −
∞∑
k=1

B2k+2

(2k + 2)(2k + 1)2k
a−2k,

and

25.11.45

ζ ′(−2, a)− 1
12
a+

1
9
a3−

(
1
6
a− 1

2
a2 +

1
3
a3

)
ln a

∼
∞∑
k=1

2B2k+2

(2k + 2)(2k + 1)2k(2k − 1)
a−(2k−1).

For the more general case ζ ′(−m, a), m = 1, 2, . . . , see
Elizalde (1986).

For an exponentially-improved form of (25.11.43) see
Paris (2005b).

25.12 Polylogarithms

25.12(i) Dilogarithms

The notation Li2(z) was introduced in Lewin (1981) for
a function discussed in Euler (1768) and called the dilog-
arithm in Hill (1828):

25.12.1 Li2(z) =
∞∑
n=1

zn

n2
, |z| ≤ 1.

25.12.2 Li2(z) = −
∫ z

0

t−1 ln(1− t) dt, z ∈ C\(1,∞).

Other notations and names for Li2(z) include S2(z)
(Kölbig et al. (1970)), Spence function Sp(z) (’t Hooft
and Veltman (1979)), and L2(z) (Maximon (2003)).

In the complex plane Li2(z) has a branch point at
z = 1. The principal branch has a cut along the in-
terval [1,∞) and agrees with (25.12.1) when |z| ≤ 1;
see also §4.2(i). The remainder of the equations in this
subsection apply to principal branches.
25.12.3

Li2(z) + Li2

(
z

z − 1

)
= −1

2
(ln(1− z))2, z ∈ C\[1,∞).

25.12.4

Li2(z) + Li2

(
1
z

)
= −1

6
π2 − 1

2
(ln(−z))2, z ∈ C\[0,∞).

25.12.5
Li2(zm) = m

m−1∑
k=0

Li2
(
ze2πik/m

)
,

m = 1, 2, 3, . . . , |z| < 1.
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25.12.6

Li2(x) + Li2(1− x) =
1
6
π2− (lnx) ln(1− x), 0 < x < 1.

When z = eiθ, 0 ≤ θ ≤ 2π, (25.12.1) becomes

25.12.7 Li2
(
eiθ
)

=
∞∑
n=1

cos(nθ)
n2

+ i
∞∑
n=1

sin(nθ)
n2

.

The cosine series in (25.12.7) has the elementary sum

25.12.8

∞∑
n=1

cos(nθ)
n2

=
π2

6
− πθ

2
+
θ2

4
.

By (25.12.2)

25.12.9
∞∑
n=1

sin(nθ)
n2

= −
∫ θ

0

ln
(
2 sin

(
1
2x
))
dx.

The right-hand side is called Clausen’s integral.

For graphics see Figures 25.12.1 and 25.12.2, and for
further properties see Maximon (2003), Kirillov (1995),
Lewin (1981), Nielsen (1909), and Zagier (1989).
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Figure 25.12.1: Dilogarithm function Li2(x), −20 ≤ x <
1.

Figure 25.12.2: Absolute value of the dilogarithm func-
tion |Li2(x+ iy)|, −20 ≤ x ≤ 20, −20 ≤ y ≤ 20. Prin-
cipal value. There is a cut along the real axis from 1 to
∞.

25.12(ii) Polylogarithms

For real or complex s and z the polylogarithm Lis(z) is
defined by

25.12.10 Lis(z) =
∞∑
n=1

zn

ns
.

For each fixed complex s the series defines an ana-
lytic function of z for |z| < 1. The series also converges
when |z| = 1, provided that <s > 1. For other values of
z, Lis(z) is defined by analytic continuation.

The notation φ(z, s) was used for Lis(z) in Truesdell
(1945) for a series treated in Jonquière (1889), hence
the alternative name Jonquière’s function. The special
case z = 1 is the Riemann zeta function: ζ(s) = Lis(1).

Integral Representation

25.12.11 Lis(z) =
z

Γ(s)

∫ ∞
0

xs−1

ex − z
dx,

valid when <s > 0 and |ph(1− z)| < π, or <s > 1 and
z = 1. (In the latter case (25.12.11) becomes (25.5.1)).

Further properties include
25.12.12

Lis(z) = Γ(1− s)
(

ln
1
z

)s−1

+
∞∑
n=0

ζ(s− n)
(ln z)n

n!
,

s 6= 1, 2, 3, . . . , | ln z| < 2π,
and
25.12.13

Lis
(
e2πia

)
+ eπis Lis

(
e−2πia

)
=

(2π)seπis/2

Γ(s)
ζ(1− s, a),

valid when <s > 0, =a > 0 or <s > 1, =a = 0. When
s = 2 and e2πia = z, (25.12.13) becomes (25.12.4).

See also Lewin (1981), Kölbig (1986), Maximon
(2003), Prudnikov et al. (1990, §§1.2 and 2.5), Prud-
nikov et al. (1992a, §3.3), and Prudnikov et al. (1992b,
§3.3).

25.12(iii) Fermi–Dirac and Bose–Einstein
Integrals

The Fermi–Dirac and Bose–Einstein integrals are de-
fined by
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25.12.14 Fs(x) =
1

Γ(s+ 1)

∫ ∞
0

ts

et−x + 1
dt, s > −1,

25.12.15
Gs(x) =

1
Γ(s+ 1)

∫ ∞
0

ts

et−x − 1
dt,

s > −1, x < 0; or s > 0, x ≤ 0,

respectively. Sometimes the factor 1/Γ(s+ 1) is omit-
ted. See Cloutman (1989) and Gautschi (1993).

In terms of polylogarithms

25.12.16 Fs(x) = −Lis+1(−ex), Gs(x) = Lis+1(ex).

For a uniform asymptotic approximation for Fs(x)
see Temme and Olde Daalhuis (1990).

25.13 Periodic Zeta Function

The notation F (x, s) is used for the polylogarithm
Lis
(
e2πix

)
with x real:

25.13.1 F (x, s) =
∞∑
n=1

e2πinx

ns
,

where <s > 1 if x is an integer, <s > 0 otherwise.
F (x, s) is periodic in x with period 1, and equals

ζ(s) when x is an integer. Also,

25.13.2

F (x, s) =
Γ(1− s)
(2π)1−s

(
eπi(1−s)/2 ζ(1− s, x)

+ eπi(s−1)/2 ζ(1− s, 1− x)
)

,

0 < x < 1, <s > 1,

25.13.3

ζ(1− s, x) =
Γ(s)
(2π)s

(
e−πis/2 F (x, s) + eπis/2 F (−x, s)

)
,

0 < x < 1, <s > 0.

25.14 Lerch’s Transcendent

25.14(i) Definition

25.14.1
Φ(z, s, a) =

∞∑
n=0

zn

(a+ n)s
,

a 6= 0,−1,−2, . . . , |z| < 1; <s > 1, |z| = 1.

For other values of z, Φ(z, s, a) is defined by analytic
continuation. This is the notation used in Erdélyi
et al. (1953a, p. 27). Lerch (1887) used K(a, x, s) =
Φ
(
e2πix, s, a

)
.

The Hurwitz zeta function ζ(s, a) (§25.11) and the
polylogarithm Lis(z) (§25.12(ii)) are special cases:

25.14.2 ζ(s, a) = Φ(1, s, a), <s > 1, a 6= 0,−1,−2, . . . ,

25.14.3 Lis(z) = zΦ(z, s, 1), <s > 1, |z| ≤ 1.

25.14(ii) Properties

With the conditions of (25.14.1) and m = 1, 2, 3, . . . ,

25.14.4 Φ(z, s, a) = zm Φ(z, s, a+m) +
m−1∑
n=0

zn

(a+ n)s
.

25.14.5
Φ(z, s, a) =

1
Γ(s)

∫ ∞
0

xs−1e−ax

1− ze−x
dx,

<s > 0, <a > 0, z ∈ C\[1,∞).

25.14.6

Φ(z, s, a) =
1
2
a−s +

∫ ∞
0

zx

(a+ x)s
dx

− 2
∫ ∞

0

sin(x ln z − s arctan(x/a))
(a2 + x2)s/2(e2πx − 1)

dx,

<s > 0 if |z| < 1; <s > 1 if |z| = 1,<a > 0.
For these and further properties see Erdélyi et al.
(1953a, pp. 27–31).

25.15 Dirichlet L-functions

25.15(i) Definitions and Basic Properties

The notation L(s, χ) was introduced by Dirichlet (1837)
for the meromorphic continuation of the function de-
fined by the series

25.15.1 L(s, χ) =
∞∑
n=1

χ(n)
ns

, <s > 1,

where χ(n) is a Dirichlet character (mod k) (§27.8).
For the principal character χ1 (mod k), L(s, χ1) is an-
alytic everywhere except for a simple pole at s = 1 with
residue φ(k)/k, where φ(k) is Euler’s totient function
(§27.2). If χ 6= χ1, then L(s, χ) is an entire function of
s.

25.15.2 L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1

, <s > 1,

with the product taken over all primes p, beginning with
p = 2. This implies that L(s, χ) 6= 0 if <s > 1.

Equations (25.15.3) and (25.15.4) hold for all s if
χ 6= χ1, and for all s (6= 1) if χ = χ1:

25.15.3 L(s, χ) = k−s
k−1∑
r=1

χ(r) ζ
(
s,
r

k

)
,

25.15.4 L(s, χ) = L(s, χ0)
∏
p|k

(
1− χ0(p)

ps

)
,

where χ0 is a primitive character (mod d) for some pos-
itive divisor d of k (§27.8).

When χ is a primitive character (mod k) the L-
functions satisfy the functional equation:
25.15.5

L(1− s, χ) =
ks−1 Γ(s)

(2π)s
(
e−πis/2 + χ(−1)eπis/2

)
×G(χ)L(s, χ),
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where χ is the complex conjugate of χ, and

25.15.6 G(χ) =
k∑
r=1

χ(r)e2πir/k.

25.15(ii) Zeros

Since L(s, χ) 6= 0 if <s > 1, (25.15.5) shows that for a
primitive character χ the only zeros of L(s, χ) for <s < 0
(the so-called trivial zeros) are as follows:

25.15.7 L(−2n, χ) = 0 if χ(−1) = 1, n = 0, 1, 2, . . . ,
25.15.8

L(−2n− 1, χ) = 0 if χ(−1) = −1, n = 0, 1, 2, . . . .
There are also infinitely many zeros in the critical

strip 0 ≤ <s ≤ 1, located symmetrically about the criti-
cal line <s = 1

2 , but not necessarily symmetrically about
the real axis.

25.15.9 L(1, χ) 6= 0 if χ 6= χ1,

where χ1 is the principal character (mod k). This re-
sult plays an important role in the proof of Dirichlet’s
theorem on primes in arithmetic progressions (§27.11).
Related results are:

25.15.10 L(0, χ) =

−
1
k

k∑
r=1

rχ(r), χ 6= χ1,

0, χ = χ1.

Applications

25.16 Mathematical Applications

25.16(i) Distribution of Primes

In studying the distribution of primes p ≤ x, Chebyshev
(1851) introduced a function ψ(x) (not to be confused

with the digamma function used elsewhere in this chap-
ter), given by

25.16.1 ψ(x) =
∞∑
m=1

∑
pm≤x

ln p,

which is related to the Riemann zeta function by

25.16.2 ψ(x) = x− ζ ′(0)
ζ(0)

−
∑
ρ

xρ

ρ
+ o(1), x→∞,

where the sum is taken over the nontrivial zeros ρ of
ζ(s).

The prime number theorem (27.2.3) is equivalent to
the statement

25.16.3 ψ(x) = x+ o(x), x→∞.

The Riemann hypothesis is equivalent to the state-
ment
25.16.4 ψ(x) = x+O

(
x

1
2 +ε
)

, x→∞,

for every ε > 0.

25.16(ii) Euler Sums

Euler sums have the form

25.16.5 H(s) =
∞∑
n=1

h(n)
ns

,

where h(n) is given by (25.11.33).
H(s) is analytic for <s > 1, and can be extended

meromorphically into the half-plane <s > −2k for ev-
ery positive integer k by use of the relations

25.16.6 H(s) = − ζ ′(s) + γ ζ(s) +
1
2
ζ(s+ 1) +

k∑
r=1

ζ(1− 2r) ζ(s+ 2r) +
∞∑
n=1

1
ns

∫ ∞
n

B̃2k+1(x)
x2k+2

dx,

25.16.7 H(s) =
1
2
ζ(s+ 1) +

ζ(s)
s− 1

−
k∑
r=1

(
s+ 2r − 2

2r − 1

)
ζ(1− 2r) ζ(s+ 2r)−

(
s+ 2k
2k + 1

) ∞∑
n=1

1
n

∫ ∞
n

B̃2k+1(x)
xs+2k+1

dx.

For integer s (≥ 2), H(s) can be evaluated in terms
of the zeta function:

25.16.8 H(2) = 2 ζ(3), H(3) = 5
4 ζ(4),

25.16.9 H(a) =
a+ 2

2
ζ(a+ 1)− 1

2

a−2∑
r=1

ζ(r + 1) ζ(a− r),

a = 2, 3, 4, . . . .

Also,

25.16.10

H(−2a) =
1
2
ζ(1− 2a) = −B2a

4a
, a = 1, 2, 3, . . . .

H(s) has a simple pole with residue ζ(1− 2r) (=
−B2r /(2r)) at each odd negative integer s = 1 − 2r,
r = 1, 2, 3, . . . .
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H(s) is the special case H(s, 1) of the function

25.16.11 H(s, z) =
∞∑
n=1

1
ns

n∑
m=1

1
mz

, <(s+ z) > 1,

which satisfies the reciprocity law

25.16.12 H(s, z) +H(z, s) = ζ(s) ζ(z) + ζ(s+ z),
when both H(s, z) and H(z, s) are finite.

For further properties of H(s, z) see Apostol and Vu
(1984). Related results are:

25.16.13

∞∑
n=1

(
h(n)
n

)2
=

17
4
ζ(4),

25.16.14

∞∑
r=1

r∑
k=1

1
rk(r + k)

=
5
4
ζ(3),

25.16.15

∞∑
r=1

r∑
k=1

1
r2(r + k)

=
3
4
ζ(3).

For further generalizations, see Flajolet and Salvy
(1998).

25.17 Physical Applications

Analogies exist between the distribution of the zeros of
ζ(s) on the critical line and of semiclassical quantum
eigenvalues. This relates to a suggestion of Hilbert and
Pólya that the zeros are eigenvalues of some operator,
and the Riemann hypothesis is true if that operator is
Hermitian. See Armitage (1989), Berry and Keating
(1998, 1999), Keating (1993, 1999), and Sarnak (1999).

The zeta function arises in the calculation of the
partition function of ideal quantum gases (both Bose–
Einstein and Fermi–Dirac cases), and it determines
the critical gas temperature and density for the Bose–
Einstein condensation phase transition in a dilute gas
(Lifshitz and Pitaevskĭı (1980)). Quantum field theory
often encounters formally divergent sums that need to
be evaluated by a process of regularization: for example,
the energy of the electromagnetic vacuum in a confined
space (Casimir–Polder effect). It has been found pos-
sible to perform such regularizations by equating the
divergent sums to zeta functions and associated func-
tions (Elizalde (1995)).

Computation

25.18 Methods of Computation

25.18(i) Function Values and Derivatives

The principal tools for computing ζ(s) are the expan-
sion (25.2.9) for general values of s, and the Riemann–
Siegel formula (25.10.3) (extended to higher terms) for

ζ
(

1
2 + it

)
. Details are provided in Haselgrove and Miller

(1960). See also Allasia and Besenghi (1989), Butzer
and Hauss (1992), Kerimov (1980), and Yeremin et al.
(1985). Calculations relating to derivatives of ζ(s)
and/or ζ(s, a) can be found in Apostol (1985a), Choud-
hury (1995), Miller and Adamchik (1998), and Yeremin
et al. (1988).

For the Hurwitz zeta function ζ(s, a) see Spanier and
Oldham (1987, p. 653).

For dilogarithms and polylogarithms see Jacobs and
Lambert (1972), Osácar et al. (1995), and Spanier and
Oldham (1987, pp. 231–232).

For Fermi–Dirac and Bose–Einstein integrals see
Cloutman (1989), Gautschi (1993), Mohankumar and
Natarajan (1997), Natarajan and Mohankumar (1993),
Paszkowski (1988, 1991), Pichon (1989), and Sagar
(1991a,b).

25.18(ii) Zeros

Most numerical calculations of the Riemann zeta func-
tion are concerned with locating zeros of ζ

(
1
2 + it

)
in

an effort to prove or disprove the Riemann hypothesis,
which states that all nontrivial zeros of ζ(s) lie on the
critical line <s = 1

2 . Calculations to date (2008) have
found no nontrivial zeros off the critical line. For re-
cent investigations see, for example, van de Lune et al.
(1986) and Odlyzko (1987). For earlier work see Hasel-
grove and Miller (1960).

25.19 Tables

• Abramowitz and Stegun (1964) tabulates: ζ(n),
n = 2, 3, 4, . . . , 20D (p. 811); Li2(1− x),
x = 0(.01)0.5, 9D (p. 1005); f(θ), θ =
15◦(1◦)30◦(2◦)90◦(5◦)180◦, f(θ) + θ ln θ, θ =
0(1◦)15◦, 6D (p. 1006). Here f(θ) denotes
Clausen’s integral, given by the right-hand side
of (25.12.9).

• Morris (1979) tabulates Li2(x) (§25.12(i)) for
±x = 0.02(.02)1(.1)6 to 30D.

• Cloutman (1989) tabulates Γ(s+ 1)Fs(x), where
Fs(x) is the Fermi–Dirac integral (25.12.14), for
s = − 1

2 ,
1
2 ,

3
2 ,

5
2 , x = −5(.05)25, to 12S.

• Fletcher et al. (1962, §22.1) lists many sources for
earlier tables of ζ(s) for both real and complex s.
§22.133 gives sources for numerical values of coef-
ficients in the Riemann–Siegel formula, §22.15 de-
scribes tables of values of ζ(s, a), and §22.17 lists
tables for some Dirichlet L-functions for real char-
acters. For tables of dilogarithms, polylogarithms,
and Clausen’s integral see §§22.84–22.858.
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25.20 Approximations

• Cody et al. (1971) gives rational approximations
for ζ(s) in the form of quotients of polynomials
or quotients of Chebyshev series. The ranges cov-
ered are 0.5 ≤ s ≤ 5, 5 ≤ s ≤ 11, 11 ≤ s ≤ 25,
25 ≤ s ≤ 55. Precision is varied, with a maximum
of 20S.

• Piessens and Branders (1972) gives the coefficients
of the Chebyshev-series expansions of s ζ(s+ 1)
and ζ(s+ k), k = 2, 3, 4, 5, 8, for 0 ≤ s ≤ 1 (23D).

• Luke (1969b, p. 306) gives coefficients in
Chebyshev-series expansions that cover ζ(s) for
0 ≤ s ≤ 1 (15D), ζ(s+ 1) for 0 ≤ s ≤ 1 (20D),
and ln ξ

(
1
2 + ix

)
(§25.4) for −1 ≤ x ≤ 1 (20D).

For errata see Piessens and Branders (1972).

• Morris (1979) gives rational approximations for
Li2(x) (§25.12(i)) for 0.5 ≤ x ≤ 1. Precision is
varied with a maximum of 24S.

• Antia (1993) gives minimax rational approxima-
tions for Γ(s+ 1)Fs(x), where Fs(x) is the Fermi–
Dirac integral (25.12.14), for the intervals −∞ <
x ≤ 2 and 2 ≤ x < ∞, with s = − 1

2 ,
1
2 ,

3
2 ,

5
2 . For

each s there are three sets of approximations, with
relative maximum errors 10−4, 10−8, 10−12.

25.21 Software

See http://dlmf.nist.gov/25.21.
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(1953a, p. 26). For (25.11.19)–(25.11.23) see
Apostol (1985a, p. 231) and Miller and Adam-
chik (1998). For (25.11.24) use (25.11.15) with
a = 1/k, multiply by ks and differentiate.
For (25.11.25) see Srivastava and Choi (2001,
p. 89) For (25.11.26) see Berndt (1972). For
(25.11.27) and (25.11.28) argue as indicated above
for (25.5.6) and (25.5.7). For (25.11.29) see Lin-
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Notation

26.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable.
h, j, k, `,m, n nonnegative integers.
λ integer partition.
π plane partition.
|A| number of elements of a finite set A.
j | k j divides k.
(h, k) greatest common divisor of positive

integers h and k.

The main functions treated in this chapter are:(
m
n

)
binomial coefficient.(

m
n1,n2,...,nk

)
multinomial coefficient.〈

m
n

〉
Eulerian number.[

m
n

]
q

Gaussian polynomial.

B(n) Bell number.
C(n) Catalan number.
p(n) number of partitions of n.
pk(n) number of partitions of n into at most k

parts.
pp(n) number of plane partitions of n.
s(n, k) Stirling numbers of the first kind.
S(n, k) Stirling numbers of the second kind.

Alternative Notations

Many combinatorics references use the rising and falling
factorials:

26.1.1
xn = x(x+ 1)(x+ 2) · · · (x+ n− 1),
xn = x(x− 1)(x− 2) · · · (x− n+ 1).

Other notations for s(n, k), the Stirling numbers
of the first kind, include S

(k)
n (Abramowitz and Ste-

gun (1964, Chapter 24), Fort (1948)), Skn (Jordan
(1939), Moser and Wyman (1958a)),

(
n−1
k−1

)
B

(n)
n−k (Milne-

Thomson (1933)), (−1)n−kS1(n − 1, n − k) (Carlitz
(1960), Gould (1960)), (−1)n−k

[
n
k

]
(Knuth (1992),

Graham et al. (1994), Rosen et al. (2000)).
Other notations for S(n, k), the Stirling numbers of

the second kind, include S
(k)
n (Fort (1948)), Sk

n (Jor-
dan (1939)), σkn (Moser and Wyman (1958b)),

(
n
k

)
B

(−k)
n−k

(Milne-Thomson (1933)), S2(k, n − k) (Carlitz (1960),
Gould (1960)),

{
n
k

}
(Knuth (1992), Graham et al.

(1994), Rosen et al. (2000)), and also an unconventional
symbol in Abramowitz and Stegun (1964, Chapter 24).

Properties

26.2 Basic Definitions

Permutation

A permutation is a one-to-one and onto function from
a non-empty set to itself. If the set consists of the in-
tegers 1 through n, a permutation σ can be thought
of as a rearrangement of these integers where the inte-
ger in position j is σ(j). Thus 231 is the permutation
σ(1) = 2, σ(2) = 3, σ(3) = 1.

Cycle

Given a finite set S with permutation σ, a cycle is an
ordered equivalence class of elements of S where j is
equivalent to k if there exists an ` = `(j, k) such that
j = σ`(k), where σ1 = σ and σ` is the composition of
σ with σ`−1. It is ordered so that σ(j) follows j. If, for
example, a permutation of the integers 1 through 6 is
denoted by 256413, then the cycles are (1, 2, 5), (3, 6),
and (4). Here σ(1) = 2, σ(2) = 5, and σ(5) = 1. The
function σ also interchanges 3 and 6, and sends 4 to
itself.

Lattice Path

A lattice path is a directed path on the plane integer lat-
tice {0, 1, 2, . . .} × {0, 1, 2. . . .}. Unless otherwise speci-
fied, it consists of horizontal segments corresponding to
the vector (1, 0) and vertical segments corresponding to
the vector (0, 1). For an example see Figure 26.9.2.

A k-dimensional lattice path is a directed path com-
posed of segments that connect vertices in {0, 1, 2, . . . }k
so that each segment increases one coordinate by exactly
one unit.

Partition

A partition of a set S is an unordered collection of
pairwise disjoint nonempty sets whose union is S. As
an example, {1, 3, 4}, {2, 6}, {5} is a partition of
{1, 2, 3, 4, 5, 6}.

A partition of a nonnegative integer n is an un-
ordered collection of positive integers whose sum is n.
As an example, {1, 1, 1, 2, 4, 4} is a partition of 13. The
total number of partitions of n is denoted by p(n). See
Table 26.2.1 for n = 0(1)50. For the actual partitions
(π) for n = 1(1)5 see Table 26.4.1.

The integers whose sum is n are referred to as the
parts in the partition. The example {1, 1, 1, 2, 4, 4} has
six parts, three of which equal 1.
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Table 26.2.1: Partitions p(n).

n p(n) n p(n) n p(n)
0 1 17 297 34 12310
1 1 18 385 35 14883
2 2 19 490 36 17977
3 3 20 627 37 21637
4 5 21 792 38 26015
5 7 22 1002 39 31185
6 11 23 1255 40 37338
7 15 24 1575 41 44583
8 22 25 1958 42 53174
9 30 26 2436 43 63261

10 42 27 3010 44 75175
11 56 28 3718 45 89134
12 77 29 4565 46 1 05558
13 101 30 5604 47 1 24754
14 135 31 6842 48 1 47273
15 176 32 8349 49 1 73525
16 231 33 10143 50 2 04226

26.3 Lattice Paths: Binomial Coefficients

26.3(i) Definitions(
m
n

)
is the number of ways of choosing n objects from

a collection of m distinct objects without regard to or-
der.

(
m+n
n

)
is the number of lattice paths from (0, 0)

to (m,n). The number of lattice paths from (0, 0) to
(m,n), m ≤ n, that stay on or above the line y = x is(
m+n
m

)
−
(
m+n
m−1

)
.

26.3.1

(
m

n

)
=
(

m

m− n

)
=

m!
(m− n)!n!

, m ≥ n,

26.3.2

(
m

n

)
= 0, n > m.

For numerical values of
(
m
n

)
and

(
m+n
n

)
see Tables

26.3.1 and 26.3.2.

Table 26.3.1: Binomial coefficients
(
m
n

)
.

m
n

0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

Table 26.3.2: Binomial coefficients
(
m+n
m

)
for lattice

paths.

m
n

0 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 6 10 15 21 28 36 45
3 1 4 10 20 35 56 84 120 165
4 1 5 15 35 70 126 210 330 495
5 1 6 21 56 126 252 462 792 1287
6 1 7 28 84 210 462 924 1716 3003
7 1 8 36 120 330 792 1716 3432 6435
8 1 9 45 165 495 1287 3003 6435 12870

26.3(ii) Generating Functions

26.3.3

m∑
n=0

(
m

n

)
xn = (1 + x)m, m = 0, 1, . . . ,

26.3.4

∞∑
m=0

(
m+ n

m

)
xm =

1
(1− x)n+1

, |x| < 1.

26.3(iii) Recurrence Relations

26.3.5

(
m

n

)
=
(
m− 1
n

)
+
(
m− 1
n− 1

)
, m ≥ n ≥ 1,

26.3.6

(
m

n

)
=
m

n

(
m− 1
n− 1

)
=
m− n+ 1

n

(
m

n− 1

)
,

m ≥ n ≥ 1,

26.3.7

(
m+ 1
n+ 1

)
=

m∑
k=n

(
k

n

)
, m ≥ n ≥ 0,

26.3.8

(
m

n

)
=

n∑
k=0

(
m− n− 1 + k

k

)
, m ≥ n ≥ 0.

26.3(iv) Identities

26.3.9

(
n

0

)
=
(
n

n

)
= 1,

26.3.10

(
m

n

)
=

n∑
k=0

(−1)n−k
(
m+ 1
k

)
, m ≥ n ≥ 0,

26.3.11

(
2n
n

)
=

2n(2n− 1)(2n− 3) · · · 3 · 1
n!

.

See also §1.2(i).

26.3(v) Limiting Form

26.3.12

(
2n
n

)
∼ 4n√

πn
, n→∞.
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26.4 Lattice Paths: Multinomial
Coefficients and Set Partitions

26.4(i) Definitions(
n

n1,n2,...,nk

)
is the number of ways of placing n =

n1 + n2 + · · ·+ nk distinct objects into k labeled boxes
so that there are nj objects in the jth box. It is also the
number of k-dimensional lattice paths from (0, 0, . . . , 0)
to (n1, n2, . . . , nk). For k = 0, 1, the multinomial coeffi-
cient is defined to be 1. For k = 2

26.4.1

(
n1 + n2

n1, n2

)
=
(
n1 + n2

n1

)
=
(
n1 + n2

n2

)
,

and in general,

26.4.2(
n1 + n2 + · · ·+ nk
n1, n2, . . . , nk

)
=

(n1 + n2 + · · ·+ nk)!
n1!n2! · · · nk!

=
k−1∏
j=1

(
nj + nj+1 + · · ·+ nk

nj

)
.

Table 26.4.1 gives numerical values of multinomi-
als and partitions λ,M1,M2,M3 for 1 ≤ m ≤ n ≤ 5.
These are given by the following equations in which
a1, a2, . . . , an are nonnegative integers such that

26.4.3 n = a1 + 2a2 + · · ·+ nan,

26.4.4 m = a1 + a2 + · · ·+ an.

λ is a partition of n:

26.4.5 λ = 1a1 , 2a2 , . . . , nan .

M1 is the multinominal coefficient (26.4.2):

26.4.6

M1 =

 n
a1︷ ︸︸ ︷

1, . . . , 1, . . . ,
an︷ ︸︸ ︷

n, . . . , n


=

n!
(1!)a1(2!)a2 · · · (n!)an

.

M2 is the number of permutations of {1, 2, . . . , n} with
a1 cycles of length 1, a2 cycles of length 2, . . . , and an
cycles of length n:

26.4.7 M2 =
n!

1a1(a1!) 2a2(a2!) · · · nan(an!)
.

(The empty set is considered to have one permutation
consisting of no cycles.) M3 is the number of set parti-
tions of {1, 2, . . . , n} with a1 subsets of size 1, a2 subsets
of size 2, . . . , and an subsets of size n:

26.4.8 M3 =
n!

(1!)a1(a1!) (2!)a2(a2!) · · · (n!)an(an!)
.

For each n all possible values of a1, a2, . . . , an are cov-
ered.

Table 26.4.1: Multinomials and partitions.

n m λ M1 M2 M3

1 1 11 1 1 1
2 1 21 1 1 1
2 2 12 2 1 1
3 1 31 1 2 1
3 2 11, 21 3 3 3
3 3 13 6 1 1
4 1 41 1 6 1
4 2 11, 31 4 8 4
4 2 22 6 3 3
4 3 12, 21 12 6 6
4 4 14 24 1 1
5 1 51 1 24 1
5 2 11, 41 5 30 5
5 2 21, 31 10 20 10
5 3 12, 31 20 20 10
5 3 11, 22 30 15 15
5 4 13, 21 60 10 10
5 5 15 120 1 1

26.4(ii) Generating Function

26.4.9

(x1 + x2 + · · ·+ xk)n

=
∑(

n

n1, n2, . . . , nk

)
xn1

1 xn2
2 · · ·x

nk
k ,

where the summation is over all nonnegative integers
n1, n2, . . . , nk such that n1 + n2 + · · ·+ nk = n.

26.4(iii) Recurrence Relation

26.4.10(
n1 + n2 + · · ·+ nm
n1, n2, . . . , nm

)
=

m∑
k=1

(
n1 + n2 + · · ·+ nm − 1

n1, n2, . . . , nk−1, nk − 1, nk+1, . . . , nm

)
,

n1, n2, . . . , nm ≥ 1.

26.5 Lattice Paths: Catalan Numbers

26.5(i) Definitions

C(n) is the Catalan number. It counts the number of
lattice paths from (0, 0) to (n, n) that stay on or above
the line y = x.
26.5.1

C(n) =
1

n+ 1

(
2n
n

)
=

1
2n+ 1

(
2n+ 1
n

)
=
(

2n
n

)
−
(

2n
n− 1

)
=
(

2n− 1
n

)
−
(

2n− 1
n+ 1

)
.

(Sixty-six equivalent definitions of C(n) are given in
Stanley (1999, pp. 219–229).)

See Table 26.5.1.
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Table 26.5.1: Catalan numbers.

n C(n) n C(n) n C(n)
0 1 7 429 14 26 74440
1 1 8 1430 15 96 94845
2 2 9 4862 16 353 57670
3 5 10 16796 17 1296 44790
4 14 11 58786 18 4776 38700
5 42 12 2 08012 19 17672 63190
6 132 13 7 42900 20 65641 20420

26.5(ii) Generating Function

26.5.2

∞∑
n=0

C(n)xn =
1−
√

1− 4x
2x

, |x| < 1
4 .

26.5(iii) Recurrence Relations

26.5.3 C(n+ 1) =
n∑
k=0

C(k)C(n− k),

26.5.4 C(n+ 1) =
2(2n+ 1)
n+ 2

C(n),

26.5.5 C(n+ 1) =
bn/2c∑
k=0

(
n

2k

)
2n−2k C(k).

26.5(iv) Limiting Forms

26.5.6 C(n) ∼ 4n√
πn3

, n→∞,

26.5.7 lim
n→∞

C(n+ 1)
C(n)

= 4.

26.6 Other Lattice Path Numbers

26.6(i) Definitions

Dellanoy Number D(m,n)

D(m,n) is the number of paths from (0, 0) to (m,n)
that are composed of directed line segments of the form
(1, 0), (0, 1), or (1, 1).
26.6.1

D(m,n) =
n∑
k=0

(
n

k

)(
m+ n− k

n

)
=

n∑
k=0

2k
(
m

k

)(
n

k

)
.

See Table 26.6.1.

Table 26.6.1: Dellanoy numbers D(m,n).

m
n

0 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1 1
1 1 3 5 7 9 11 13 15 17 19 21
2 1 5 13 25 41 61 85 113 145 181 221
3 1 7 25 63 129 231 377 575 833 1159 1561
4 1 9 41 129 321 681 1289 2241 3649 5641 8361
5 1 11 61 231 681 1683 3653 7183 13073 22363 36365
6 1 13 85 377 1289 3653 8989 19825 40081 75517 1 34245
7 1 15 113 575 2241 7183 19825 48639 1 08545 2 24143 4 33905
8 1 17 145 833 3649 13073 40081 1 08545 2 65729 5 98417 12 56465
9 1 19 181 1159 5641 22363 75517 2 24143 5 98417 14 62563 33 17445

10 1 21 221 1561 8361 36365 1 34245 4 33905 12 56465 33 17445 80 97453

Motzkin Number M(n)

M(n) is the number of lattice paths from (0, 0) to (n, n) that stay on or above the line y = x and are composed of
directed line segments of the form (2, 0), (0, 2), or (1, 1).

26.6.2 M(n) =
n∑
k=0

(−1)k

n+ 2− k

(
n

k

)(
2n+ 2− 2k
n+ 1− k

)
.

See Table 26.6.2.
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Table 26.6.2: Motzkin numbers M(n).

n M(n) n M(n) n M(n) n M(n) n M(n)
0 1 4 9 8 323 12 15511 16 8 53467
1 1 5 21 9 835 13 41835 17 23 56779
2 2 6 51 10 2188 14 1 13634 18 65 36382
3 4 7 127 11 5798 15 3 10572 19 181 99284

Narayana Number N(n, k)

N(n, k) is the number of lattice paths from (0, 0) to (n, n) that stay on or above the line y = x, are composed of
directed line segments of the form (1, 0) or (0, 1), and for which there are exactly k occurrences at which a segment
of the form (0, 1) is followed by a segment of the form (1, 0).

26.6.3 N(n, k) =
1
n

(
n

k

)(
n

k − 1

)
.

See Table 26.6.3.

Table 26.6.3: Narayana numbers N(n, k).

n
k

0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 6 6 1
5 0 1 10 20 10 1
6 0 1 15 50 50 15 1
7 0 1 21 105 175 105 21 1
8 0 1 28 196 490 490 196 28 1
9 0 1 36 336 1176 1764 1176 336 36 1

10 0 1 45 540 2520 5292 5292 2520 540 45 1

Schröder Number r(n)

r(n) is the number of paths from (0, 0) to (n, n) that stay on or above the diagonal y = x and are composed of
directed line segments of the form (1, 0), (0, 1), or (1, 1).

26.6.4 r(n) = D(n, n)−D(n+ 1, n− 1), n ≥ 1.
See Table 26.6.4.

Table 26.6.4: Schröder numbers r(n).

n r(n) n r(n) n r(n) n r(n) n r(n)
0 1 4 90 8 41586 12 272 97738 16 2 09271 56706
1 2 5 394 9 2 06098 13 1420 78746 17 11 18180 26018
2 6 6 1806 10 10 37718 14 7453 87038 18 60 03188 53926
3 22 7 8558 11 52 93446 15 39376 03038 19 323 67243 17174
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26.6(ii) Generating Functions

For sufficiently small |x| and |y|,

26.6.5

∞∑
m,n=0

D(m,n)xmyn =
1

1− x− y − xy
,

26.6.6

∞∑
n=0

D(n, n)xn =
1√

1− 6x+ x2
,

26.6.7

∞∑
n=0

M(n)xn =
1− x−

√
1− 2x− 3x2

2x2
,

26.6.8

∞∑
n,k=1

N(n, k)xnyk

=
1− x− xy −

√
(1− x− xy)2 − 4x2y

2x
,

26.6.9

∞∑
n=0

r(n)xn =
1− x−

√
1− 6x+ x2

2x
.

26.6(iii) Recurrence Relations

26.6.10
D(m,n) = D(m,n− 1) +D(m− 1, n)

+D(m− 1, n− 1), m,n ≥ 1,

26.6.11
M(n) = M(n− 1) +

n∑
k=2

M(k − 2)M(n− k),

n ≥ 2.

26.6(iv) Identities

26.6.12 C(n) =
n∑
k=1

N(n, k),

26.6.13 M(n) =
n∑
k=0

(−1)k
(
n

k

)
C(n+ 1− k),

26.6.14 C(n) =
2n∑
k=0

(−1)k
(

2n
k

)
M(2n− k).

26.7 Set Partitions: Bell Numbers

26.7(i) Definitions

B(n) is the number of partitions of {1, 2, . . . , n}. For
S(n, k) see §26.8(i).

26.7.1 B(0) = 1,

26.7.2 B(n) =
n∑
k=0

S(n, k),

26.7.3 B(n) =
m∑
k=1

kn

k!

m−k∑
j=0

(−1)j

j!
, m ≥ n,

26.7.4 B(n) = e−1
∞∑
k=1

kn

k!
= 1 +

⌊
e−1

2n∑
k=1

kn

k!

⌋
.

See Table 26.7.1.

Table 26.7.1: Bell numbers.

n B(n) n B(n)
0 1 10 1 15975
1 1 11 6 78570
2 2 12 42 13597
3 5 13 276 44437
4 15 14 1908 99322
5 52 15 13829 58545
6 203 16 1 04801 42147
7 877 17 8 28648 69804
8 4140 18 68 20768 06159
9 21147 19 583 27422 05057

26.7(ii) Generating Function

26.7.5
∞∑
n=0

B(n)
xn

n!
= exp(ex − 1).

26.7(iii) Recurrence Relation

26.7.6 B(n+ 1) =
n∑
k=0

(
n

k

)
B(n).

26.7(iv) Asymptotic Approximation

26.7.7

B(n) =
NneN−n−1

(1 + lnN)1/2

(
1 +O

(
(lnn)1/2

n1/2

))
, n→∞,

where

26.7.8 N lnN = n,

or, equivalently, N = eWm(n), with properties of the
Lambert function Wm(n) given in §4.13. For higher
approximations to B(n) as n→∞ see de Bruijn (1961,
pp. 104–108).
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26.8 Set Partitions: Stirling Numbers

26.8(i) Definitions

s(n, k) denotes the Stirling number of the first
kind : (−1)n−k times the number of permutations of
{1, 2, . . . , n} with exactly k cycles. See Table 26.8.1.

26.8.1 s(n, n) = 1, n ≥ 0,

26.8.2 s(1, k) = δ1,k,

26.8.3

(−1)n−k s(n, k) =
∑

1≤b1<···<bn−k≤n−1

b1b2 · · · bn−k,

n > k ≥ 1.

S(n, k) denotes the Stirling number of the second
kind : the number of partitions of {1, 2, . . . , n} into ex-
actly k nonempty subsets. See Table 26.8.2.

26.8.4 S(n, n) = 1, n ≥ 0,

26.8.5 S(n, k) =
∑

1c12c2 · · · kck ,

where the summation is over all nonnegative integers
c1, c2, . . . , ck such that c1 + c2 + · · ·+ ck = n− k.

26.8.6 S(n, k) =
1
k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.

Table 26.8.1: Stirling numbers of the first kind s(n, k).

n
k

0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 −1 1
3 0 2 −3 1
4 0 −6 11 −6 1
5 0 24 −50 35 −10 1
6 0 −120 274 −225 85 −15 1
7 0 720 −1764 1624 −735 175 −21 1
8 0 −5040 13068 −13132 6769 −1960 322 −28 1
9 0 40320 −1 09584 1 18124 −67284 22449 −4536 546 −36 1

10 0 −3 62880 10 26576 −11 72700 7 23680 −2 69325 6327 −9450 870 −45 1

Table 26.8.2: Stirling numbers of the second kind S(n, k).

n
k

0 1 2 3 4 5 6 7 8 9 10
0 1
1 0 1
2 0 1 1
3 0 1 3 1
4 0 1 7 6 1
5 0 1 15 25 10 1
6 0 1 31 90 65 15 1
7 0 1 63 301 350 140 21 1
8 0 1 127 966 1701 1050 266 28 1
9 0 1 255 3025 7770 6951 2646 462 36 1

10 0 1 511 9330 34105 42525 22827 5880 750 45 1

26.8(ii) Generating Functions

26.8.7
n∑
k=0

s(n, k)xk = (x− n+ 1)n,

where (x)n is the Pochhammer symbol: x(x+1) · · · (x+
n− 1).

26.8.8
∞∑
n=0

s(n, k)
xn

n!
=

(ln(1 + x))k

k!
, |x| < 1,
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26.8.9

∞∑
n,k=0

s(n, k)
xn

n!
yk = (1 + x)y, |x| < 1.

26.8.10

n∑
k=1

S(n, k)(x− k + 1)k = xn,

26.8.11
∞∑
n=0

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, |x| < 1/k,

26.8.12

∞∑
n=0

S(n, k)
xn

n!
=

(ex − 1)k

k!
,

26.8.13

∞∑
n,k=0

S(n, k)
xn

n!
yk = exp (y(ex − 1)) .

26.8(iii) Special Values

For n ≥ 1,

26.8.14 s(n, 0) = 0, s(n, 1) = (−1)n−1(n− 1)!,

26.8.15 s(n, 2) = (−1)n(n− 1)!
(

1 +
1
2

+ · · ·+ 1
n− 1

)
,

26.8.16 − s(n, n− 1) = S(n, n− 1) =
(
n

2

)
,

26.8.17 S(n, 0) = 0, S(n, 1) = 1, S(n, 2) = 2n−1 − 1.

26.8(iv) Recurrence Relations

26.8.18 s(n, k) = s(n− 1, k − 1)− (n− 1) s(n− 1, k),

26.8.19

(
k

h

)
s(n, k) =

n−h∑
j=k−h

(
n

j

)
s(n− j, h) s(j, k − h),

n ≥ k ≥ h,

26.8.20 s(n+ 1, k + 1) = n!
n∑
j=k

(−1)n−j

j!
s(j, k),

26.8.21 s(n+ k + 1, k) = −
k∑
j=0

(n+ j) s(n+ j, j).

26.8.22 S(n, k) = k S(n− 1, k) + S(n− 1, k − 1),
26.8.23(

k

h

)
S(n, k) =

n−h∑
j=k−h

(
n

j

)
S(n− j, h)S(j, k − h),

n ≥ k ≥ h,

26.8.24 S(n, k) =
n∑
j=k

S(j − 1, k − 1)kn−j ,

26.8.25 S(n+ 1, k + 1) =
n∑
j=k

(
n

j

)
S(j, k),

26.8.26 S(n+ k + 1, k) =
k∑
j=0

j S(n+ j, j).

26.8(v) Identities

26.8.27

s(n, n− k)

=
k∑
j=0

(−1)j
(
n− 1 + j

k + j

)(
n+ k

k − j

)
S(k + j, j),

26.8.28

n∑
k=1

s(n, k) = 0, n > 1,

26.8.29

n∑
k=1

(−1)n−k s(n, k) = n!,

26.8.30

n∑
j=k

s(n+ 1, j + 1)nj−k = s(n, k).

26.8.31
1
k!

dk

dxk
f(x) =

∞∑
n=k

s(n, k)
n!

∆nf(x),

when f(x) is analytic for all x, and the series converges,
where

26.8.32 ∆f(x) = f(x+ 1)− f(x);

compare §3.6(i).

26.8.33

S(n, n− k)

=
k∑
j=0

(−1)j
(
n− 1 + j

k + j

)(
n+ k

k − j

)
s(k + j, j),

26.8.34

n∑
j=0

jkxj =
k∑
j=0

S(k, j)xj
dj

dxj

(
1− xn+1

1− x

)
,

26.8.35

n∑
j=0

jk =
k∑
j=0

j!S(k, j)
(
n+ 1
j + 1

)
,

26.8.36

n∑
k=0

(−1)n−kk!S(n, k) = 1.

26.8.37
1
k!

∆kf(x) =
∞∑
n=k

S(n, k)
n!

dn

dxn
f(x),

when f(x) is analytic for all x, and the series converges.
Let A and B be the n × n matrices with (j, k)th

elements s(j, k), and S(j, k), respectively. Then

26.8.38 A−1 = B.

26.8.39

n∑
j=k

s(j, k)S(n, j) =
n∑
j=k

s(n, j)S(j, k) = δn,k.

26.8(vi) Relations to Bernoulli Numbers

See §24.15(iii).
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26.8(vii) Asymptotic Approximations

26.8.40

s(n+ 1, k + 1) ∼ (−1)n−k
n!
k!

(γ + lnn)k, n→∞,

uniformly for k = o(lnn), where γ is Euler’s constant
(§5.2(ii)).

26.8.41 s(n+ k, k) ∼ (−1)n

2nn!
k2n, k →∞,

n fixed.

26.8.42 S(n, k) ∼ kn

k!
, n→∞,

k fixed.
26.8.43 S(n+ k, k) ∼ k2n

2nn!
, k →∞,

uniformly for n = o
(
k1/2

)
.

For asymptotic approximations for s(n+ 1, k + 1)
and S(n, k) that apply uniformly for 1 ≤ k ≤ n as
n→∞ see Temme (1993).

For other asymptotic approximations and also ex-
pansions see Moser and Wyman (1958a) for Stirling
numbers of the first kind, and Moser and Wyman
(1958b), Bleick and Wang (1974) for Stirling numbers
of the second kind.

For asymptotic estimates for generalized Stirling
numbers see Chelluri et al. (2000).

26.9 Integer Partitions: Restricted Number
and Part Size

26.9(i) Definitions

pk(n) denotes the number of partitions of n into at most
k parts. See Table 26.9.1.

26.9.1 pk(n) = p(n), k ≥ n.
Unrestricted partitions are covered in §27.14.

Table 26.9.1: Partitions pk(n).

n
k

0 1 2 3 4 5 6 7 8 9 10
0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1
2 0 1 2 2 2 2 2 2 2 2 2
3 0 1 2 3 3 3 3 3 3 3 3
4 0 1 3 4 5 5 5 5 5 5 5
5 0 1 3 5 6 7 7 7 7 7 7
6 0 1 4 7 9 10 11 11 11 11 11
7 0 1 4 8 11 13 14 15 15 15 15
8 0 1 5 10 15 18 20 21 22 22 22
9 0 1 5 12 18 23 26 28 29 30 30

10 0 1 6 14 23 30 35 38 40 41 42

A useful representation for a partition is the Ferrers
graph in which the integers in the partition are each

represented by a row of dots. An example is provided
in Figure 26.9.1.

• • • • • • •
• • • •
• • •
• • •
• •
•

Figure 26.9.1: Ferrers graph of the partition 7 + 4 + 3 +
3 + 2 + 1.

The conjugate partition is obtained by reflecting
the Ferrers graph across the main diagonal or, equiv-
alently, by representing each integer by a column of
dots. The conjugate to the example in Figure 26.9.1 is
6 + 5 + 4 + 2 + 1 + 1 + 1. Conjugation establishes a one-
to-one correspondence between partitions of n into at
most k parts and partitions of n into parts with largest
part less than or equal to k. It follows that pk(n) also
equals the number of partitions of n into parts that are
less than or equal to k.

pk(≤ m,n) is the number of partitions of n into
at most k parts, each less than or equal to m. It is
also equal to the number of lattice paths from (0, 0) to
(m, k) that have exactly n vertices (h, j), 1 ≤ h ≤ m,
1 ≤ j ≤ k, above and to the left of the lattice path. See
Figure 26.9.2.

(0, 0)

(6, 5)

Figure 26.9.2: The partition 5 + 5 + 3 + 2 represented as
a lattice path.

Equations (26.9.2)–(26.9.3) are examples of closed
forms that can be computed explicitly for any positive
integer k. See Andrews (1976, p. 81).

26.9.2 p0(n) = 0, n > 0,

26.9.3

p1(n) = 1, p2(n) = 1 + bn/2c ,

p3(n) = 1 +
⌊
n2 + 6n

12

⌋
.
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26.9(ii) Generating Functions

In what follows

26.9.4

[
m

n

]
q

=
n∏
j=1

1− qm−n+j

1− qj
, n ≥ 0,

is the Gaussian polynomial (or q-binomial coefficient);
compare §§17.2(i)–17.2(ii). In the present chapter m ≥
n ≥ 0 in all cases. It is also assumed everywhere that
|q| < 1.
26.9.5
∞∑
n=0

pk(n)qn =
k∏
j=1

1
1− qj

= 1 +
∞∑
m=1

[
k +m− 1

m

]
q

qm,

26.9.6

∞∑
n=0

pk(≤ m,n)qn =
[
m+ k

k

]
q

.

Also, when |xq| < 1

26.9.7

∞∑
m,n=0

pk(≤ m,n)xkqn = 1 +
∞∑
k=1

[
m+ k

k

]
q

xk

=
m∏
j=0

1
1− x qj

.

26.9(iii) Recurrence Relations

26.9.8 pk(n) = pk(n− k) + pk−1(n);
equivalently, partitions into at most k parts either have
exactly k parts, in which case we can subtract one from
each part, or they have strictly fewer than k parts.

26.9.9
pk(n) =

1
n

n∑
t=1

pk(n− t)
∑
j|t
j≤k

j,

where the inner sum is taken over all positive divisors
of t that are less than or equal to k.

26.9(iv) Limiting Form

As n→∞ with k fixed,

26.9.10 pk(n) ∼ nk−1

k!(k − 1)!
.

26.10 Integer Partitions: Other Restrictions

26.10(i) Definitions

p(D, n) denotes the number of partitions of n into dis-
tinct parts. pm(D, n) denotes the number of partitions
of n into at most m distinct parts. p(Dk, n) denotes
the number of partitions of n into parts with difference
at least k. p(D′3, n) denotes the number of partitions
of n into parts with difference at least 3, except that
multiples of 3 must differ by at least 6. p(O, n) denotes

the number of partitions of n into odd parts. p(∈S, n)
denotes the number of partitions of n into parts taken
from the set S. The set {n ≥ 1|n ≡ ±j (mod k)} is de-
noted by Aj,k. The set {2, 3, 4, . . .} is denoted by T . If
more than one restriction applies, then the restrictions
are separated by commas, for example, p(D2,∈T, n).
See Table 26.10.1.

26.10.1 p(D, 0) = p(Dk, 0) = p(∈S, 0) = 1.

Table 26.10.1: Partitions restricted by difference condi-
tions, or equivalently with parts from Aj,k.

p(D, n) p(D2, n) p(D2,∈T, n) p(D′3, n)
n and and and and

p(O, n) p(∈A1,5, n) p(∈A2,5, n) p(∈A1,6, n)
0 1 1 1 1
1 1 1 0 1
2 1 1 1 1
3 2 1 1 1
4 2 2 1 1
5 3 2 1 2
6 4 3 2 2
7 5 3 2 3
8 6 4 3 3
9 8 5 3 3

10 10 6 4 4
11 12 7 4 5
12 15 9 6 6
13 18 10 6 7
14 22 12 8 8
15 27 14 9 9
16 32 17 11 10
17 38 19 12 12
18 46 23 15 14
19 54 26 16 16
20 64 31 20 18

26.10(ii) Generating Functions

Throughout this subsection it is assumed that |q| < 1.

26.10.2

∞∑
n=0

p(D, n)qn

=
∞∏
j=1

(1 + qj) =
∞∏
j=1

1
1− q2j−1

= 1 +
∞∑
m=1

qm(m+1)/2

(1− q)(1− q2) · · · (1− qm)

= 1 +
∞∑
m=1

qm(1 + q)(1 + q2) · · · (1 + qm−1),

where the last right-hand side is the sum over m ≥ 0
of the generating functions for partitions into distinct
parts with largest part equal to m.
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26.10.3

(1− x)
∞∑

m,n=0

pm(≤ k,D, n)xmqn

=
k∑

m=0

[
k

m

]
q

qm(m+1)/2xm =
k∏
j=1

(1 + x qj),

|x| < 1,

26.10.4
∞∑
n=0

p(Dk, n)qn = 1 +
∞∑
m=1

q(km2+(2−k)m)/2

(1− q)(1− q2) · · · (1− qm)
,

26.10.5

∞∑
n=0

p(∈S, n)qn =
∏
j∈S

1
1− qj

.

26.10(iii) Recurrence Relations

26.10.6
p(D, n) =

1
n

n∑
t=1

p(D, n− t)
∑
j|t
j odd

j,

where the inner sum is the sum of all positive odd divi-
sors of t.

26.10.7

∑
(−1)k p

(
D, n− 1

2 (3k2 ± k)
)

=

{
(−1)r, n = 3r2 ± r,
0, otherwise,

where the sum is over nonnegative integer values of k
for which n− 1

2 (3k2 ± k) ≥ 0.
26.10.8∑

(−1)k p
(
D, n− (3k2 ± k)

)
=

{
1, n = 1

2 (r2 ± r),
0, otherwise,

where the sum is over nonnegative integer values of k
for which n− (3k2 ± k) ≥ 0.

In exact analogy with (26.9.8), we have

26.10.9 pm(D, n) = pm(D, n−m) + pm−1(D, n),

26.10.10 p(Dk, n) =
∑

pm
(
n− 1

2km
2 −m+ 1

2km
)
,

where the sum is over nonnegative integer values of m
for which n− 1

2km
2 −m+ 1

2km ≥ 0.

26.10.11
p(∈S, n) =

1
n

n∑
t=1

p(∈S, n− t)
∑
j|t
j∈S

j,

where the inner sum is the sum of all positive divisors
of t that are in S.

26.10(iv) Identities

Equations (26.10.13) and (26.10.14) are the Rogers–
Ramanujan identities. See also §17.2(vi).

26.10.12 p(D, n) = p(O, n),

26.10.13 p(D2, n) = p(∈ A1,5, n),

26.10.14 p(D2,∈ T, n) = p(∈A2,5, n), T = {2, 3, 4, . . .},

26.10.15 p(D′3, n) = p(∈ A1,6, n).
Note that p(D′3, n) ≤ p(D3, n), with strict inequal-

ity for n ≥ 9. It is known that for k > 3, p(Dk, n) ≥
p(∈A1,k+3, n), with strict inequality for n sufficiently
large, provided that k = 2m − 1,m = 3, 4, 5, or k ≥ 32;
see Yee (2004).

26.10(v) Limiting Form

26.10.16 p(D, n) ∼ eπ
√
n/3

(768n3)1/4
, n→∞.

26.10(vi) Bessel-Function Expansion

26.10.17

p(D, n)

= π
∞∑
k=1

A2k−1(n)
(2k − 1)

√
24n+ 1

I1

(
π

2k − 1

√
24n+ 1

72

)
,

where I1(x) is the modified Bessel function (§10.25(ii)),
and

26.10.18
Ak(n) =

∑
1<h≤k
(h,k)=1

eπif(h,k)−(2πinh/k),

with

26.10.19 f(h, k) =
k∑
j=1

[[
2j − 1

2k

]] [[
h(2j − 1)

k

]]
,

and

26.10.20 [[x]] =

{
x− bxc − 1

2 , x /∈ Z,
0, x ∈ Z.

The quantity Ak(n) is real-valued.

26.11 Integer Partitions: Compositions

A composition is an integer partition in which order is
taken into account. For example, there are eight compo-
sitions of 4: 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+1, 1+1+2,
and 1 + 1 + 1 + 1. c(n) denotes the number of composi-
tions of n, and cm(n) is the number of compositions into
exactly m parts. c(∈T, n) is the number of compositions
of n with no 1’s, where again T = {2, 3, 4, . . .}. The in-
teger 0 is considered to have one composition consisting
of no parts:

26.11.1 c(0) = c(∈T, 0) = 1.
Also,

26.11.2 cm(0) = δ0,m,

26.11.3 cm(n) =
(
n− 1
m− 1

)
,

26.11.4

∞∑
n=0

cm(n)qn =
qm

(1− q)m
.



26.12 Plane Partitions 629

The Fibonacci numbers are determined recursively
by

26.11.5
F0 = 0 , F1 = 1 , Fn = Fn−1 + Fn−2,

n ≥ 2.

26.11.6 c(∈T, n) = Fn−1, n ≥ 1.

Explicitly,

26.11.7 Fn =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
.

Additional information on Fibonacci numbers can
be found in Rosen et al. (2000, pp. 140–145).

26.12 Plane Partitions

26.12(i) Definitions

A plane partition, π, of a positive integer n, is a par-
tition of n in which the parts have been arranged in
a 2-dimensional array that is weakly decreasing (non-
increasing) across rows and down columns. Different
configurations are counted as different plane partitions.
As an example, there are six plane partitions of 3:

26.12.1

3 , 2 1 ,
2
1 , 1 1 1 ,

1 1
1 ,

1
1
1

.

An equivalent definition is that a plane partition is
a finite subset of N × N × N with the property that
if (r, s, t) ∈ π and (1, 1, 1) ≤ (h, j, k) ≤ (r, s, t), then
(h, j, k) must be an element of π. Here (h, j, k) ≤ (r, s, t)
means h ≤ r, j ≤ s, and k ≤ t. It is useful to be able
to visualize a plane partition as a pile of blocks, one
block at each lattice point (h, j, k) ∈ π. For example,
Figure 26.12.1 depicts the pile of blocks that represents
the plane partition of 75 given by (26.12.2).

Figure 26.12.1: A plane partition of 75.

26.12.2

6 5 5 4 3 3
6 4 3 3 1
6 4 3 1 1
4 2 2 1
3 1 1
1 1 1

The number of plane partitions of n is denoted by
pp(n), with pp(0) = 1. See Table 26.12.1.

Table 26.12.1: Plane partitions.

n pp(n) n pp(n) n pp(n)
0 1 17 18334 34 281 75955
1 1 18 29601 35 416 91046
2 3 19 47330 36 614 84961
3 6 20 75278 37 903 79784
4 13 21 1 18794 38 1324 41995
5 24 22 1 86475 39 1934 87501
6 48 23 2 90783 40 2818 46923
7 86 24 4 51194 41 4093 83981
8 160 25 6 96033 42 5930 01267
9 282 26 10 68745 43 8566 67495

10 500 27 16 32658 44 12343 63833
11 859 28 24 83234 45 17740 79109
12 1479 29 37 59612 46 25435 35902
13 2485 30 56 68963 47 36379 93036
14 4167 31 85 12309 48 51913 04973
15 6879 32 127 33429 49 73910 26522
16 11297 33 189 74973 50 1 04996 40707

We define the r × s× t box B(r, s, t) as

26.12.3

B(r, s, t) = {(h, j, k) | 1 ≤ h ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t}.
Then the number of plane partitions in B(r, s, t) is

26.12.4 ∏
(h,j,k)∈B(r,s,t)

h+ j + k − 1
h+ j + k − 2

=
r∏

h=1

s∏
j=1

h+ j + t− 1
h+ j − 1

.

A plane partition is symmetric if (h, j, k) ∈ π im-
plies that (j, h, k) ∈ π. The number of symmetric plane
partitions in B(r, r, t) is

26.12.5

r∏
h=1

2h+ t− 1
2h− 1

∏
1 ≤h<j≤r

h+ j + t− 1
h+ j − 1

.

A plane partition is cyclically symmetric if (h, j, k) ∈
π implies (j, k, h) ∈ π. The plane partition in Fig-
ure 26.12.1 is an example of a cyclically symmetric plane
partition. The number of cyclically symmetric plane
partitions in B(r, r, r) is

26.12.6

r∏
h=1

3h− 1
3h− 2

∏
1 ≤h<j≤r

h+ 2j − 1
h+ j − 1

,
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or equivalently,

26.12.7

r∏
h=1

3h− 1
3h− 2

r∏
j=h

r + h+ j − 1
2h+ j − 1

 .

A plane partition is totally symmetric if it is both
symmetric and cyclically symmetric. The number of
totally symmetric plane partitions in B(r, r, r) is

26.12.8
∏

1≤h≤j≤r

h+ j + r − 1
h+ 2j − 2

.

The complement of π ⊆ B(r, s, t) is πc =
{(h, j, k) | (r − h + 1, s − j + 1, t − k + 1) /∈ π}. A
plane partition is self-complementary if it is equal to its
complement. The number of self-complementary plane
partitions in B(2r, 2s, 2t) is

26.12.9

 r∏
h=1

s∏
j=1

h+ j + t− 1
h+ j − 1

2

;

in B(2r + 1, 2s, 2t) it is

26.12.10 r∏
h=1

s∏
j=1

h+ j + t− 1
h+ j − 1

 r+1∏
h=1

s∏
j=1

h+ j + t− 1
h+ j − 1

 ;

in B(2r + 1, 2s+ 1, 2t) it is

26.12.11r+1∏
h=1

s∏
j=1

h+ j + t− 1
h+ j − 1

  r∏
h=1

s+1∏
j=1

h+ j + t− 1
h+ j − 1

 .

A plane partition is transpose complement if it is
equal to the reflection through the (x, y)-plane of its
complement. The number of transpose complement
plane partitions in B(r, r, 2t) is

26.12.12

(
t+ r − 1
r − 1

) ∏
1≤h≤j≤r−2

h+ j + 2t+ 1
h+ j + 1

.

The number of symmetric self-complementary plane
partitions in B(2r, 2r, 2t) is

26.12.13

r∏
h=1

r∏
j=1

h+ j + t− 1
h+ j − 1

;

in B(2r + 1, 2r + 1, 2t) it is

26.12.14

r∏
h=1

r+1∏
j=1

h+ j + t− 1
h+ j − 1

.

The number of cyclically symmetric transpose com-
plement plane partitions in B(2r, 2r, 2r) is

26.12.15

r−1∏
h=0

(3h+ 1) (6h)! (2h)!
(4h+ 1)! (4h)!

.

The number of cyclically symmetric self-
complementary plane partitions in B(2r, 2r, 2r) is

26.12.16

(
r−1∏
h=0

(3h+ 1)!
(r + h)!

)2
.

The number of totally symmetric self-
complementary plane partitions in B(2r, 2r, 2r) is

26.12.17

r−1∏
h=0

(3h+ 1)!
(r + h)!

.

A strict shifted plane partition is an arrangement of
the parts in a partition so that each row is indented one
space from the previous row and there is weak decrease
across rows and strict decrease down columns. An ex-
ample is given by:

26.12.18

6 6 6 4 3
3 3

2

A descending plane partition is a strict shifted plane
partition in which the number of parts in each row is
strictly less than the largest part in that row and is
greater than or equal to the largest part in the next
row. The example of a strict shifted plane partition
also satisfies the conditions of a descending plane par-
tition. The number of descending plane partitions in
B(r, r, r) is

26.12.19

r−1∏
h=0

(3h+ 1)!
(r + h)!

.

26.12(ii) Generating Functions

The notation
∑
π⊆B(r,s,t) denotes the sum over all plane

partitions contained in B(r, s, t), and |π| denotes the
number of elements in π.

26.12.20
∑

π⊆N×N×N
q|π| =

∞∏
k=1

1
(1− qk)k

,

26.12.21

∑
π⊆B(r,s,t)

q|π| =
∏

(h,j,k)∈B(r,s,t)

1− qh+j+k−1

1− qh+j+k−2

=
r∏

h=1

s∏
j=1

1− qh+j+t−1

1− qh+j−1
,

26.12.22

∑
π⊆B(r,r,t)
π symmetric

q|π|

=
r∏

h=1

1− q2h+t−1

1− q2h−1

∏
1≤h<j≤r

1− q2(h+j+t−1)

1− q2(h+j−1)
.
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26.12.23

∑
π⊆B(r,r,r)

π cyclically symmetric

q|π|

=
r∏

h=1

1− q3h−1

1− q3h−2

∏
1≤h<j≤r

1− q3(h+2j−1)

1− q3(h+j−1)

=
r∏

h=1

1− q3h−1

1− q3h−2

r∏
j=h

1− q3(r+h+j−1)

1− q3(2h+j−1)

 .

26.12.24 ∑
π⊆B(r,r,r)

π descending plane partition

q|π| =
∏

1≤h<j≤r

1− qr+h+j−1

1− q2h+j−1
.

26.12(iii) Recurrence Relation

26.12.25 pp(n) =
1
n

n∑
j=1

pp(n− j)σ2(j),

where σ2(j) is the sum of the squares of the divisors of
j.

26.12(iv) Limiting Form

As n→∞
26.12.26

pp(n) ∼
(

ζ(3)
211n25

)1/36

exp

(
3
(
ζ(3)n2

4

)1/3
+ ζ ′(−1)

)
,

where ζ is the Riemann ζ-function (§25.2(i)).

26.13 Permutations: Cycle Notation

Sn denotes the set of permutations of {1, 2, . . . , n}. σ ∈
Sn is a one-to-one and onto mapping from {1, 2, . . . , n}
to itself. An explicit representation of σ can be given
by the 2× n matrix:

26.13.1

[
1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

]
.

In cycle notation, the elements in each cycle are put
inside parentheses, ordered so that σ(j) immediately fol-
lows j or, if j is the last listed element of the cycle, then
σ(j) is the first element of the cycle. The permutation

26.13.2

[
1 2 3 4 5 6 7 8
3 5 2 4 7 8 1 6

]
is (1, 3, 2, 5, 7)(4)(6, 8) in cycle notation. Cycles of
length one are fixed points. They are often dropped
from the cycle notation. In consequence, (26.13.2) can
also be written as (1, 3, 2, 5, 7)(6, 8).

An element of Sn with a1 fixed points, a2 cy-
cles of length 2, . . . , an cycles of length n, where
n = a1 + 2a2 + · · · + nan, is said to have cycle type

(a1, a2, . . . , an). The number of elements of Sn with
cycle type (a1, a2, . . . , an) is given by (26.4.7).

The Stirling cycle numbers of the first kind, de-
noted by

[
n
k

]
, count the number of permutations of

{1, 2, . . . , n} with exactly k cycles. They are related
to Stirling numbers of the first kind by

26.13.3
[n
k

]
= |s(n, k)| .

See §26.8 for generating functions, recurrence relations,
identities, and asymptotic approximations.

A derangement is a permutation with no fixed
points. The derangement number, d(n), is the number
of elements of Sn with no fixed points:

26.13.4 d(n) = n!
n∑
j=0

(−1)j
1
j!

=
⌊
n! + e− 2

e

⌋
.

A transposition is a permutation that consists of a
single cycle of length two. An adjacent transposition
is a transposition of two consecutive integers. A per-
mutation that consists of a single cycle of length k can
be written as the composition of k − 1 two-cycles (read
from right to left):

26.13.5

(j1, j2, . . . , jk) = (j1, j2)(j2, j3) · · · (jk−2, jk−1)(jk−1, jk).

Every permutation is a product of transpositions. A
permutation with cycle type (a1, a2, . . . , an) can be writ-
ten as a product of a2 + 2a3 + · · · + (n − 1)an =
n − (a1 + a2 + · · · + an) transpositions, and no fewer.
For the example (26.13.2), this decomposition is given
by (1, 3, 2, 5, 7)(6, 8) = (1, 3)(2, 3)(2, 5)(5, 7)(6, 8).

A permutation is even or odd according to the parity
of the number of transpositions. The sign of a permu-
tation is + if the permutation is even, − if it is odd.

Every transposition is the product of adjacent trans-
positions. If j < k, then (j, k) is a product of 2k−2j−1
adjacent transpositions:

26.13.6 (j, k) = (k − 1, k)(k − 2, k − 1) · · · (j + 1, j + 2)

× (j, j + 1)(j + 1, j + 2) · · · (k − 1, k).

Every permutation is a product of adjacent transpo-
sitions. Given a permutation σ ∈ Sn, the inversion
number of σ, denoted inv(σ), is the least number of
adjacent transpositions required to represent σ. Again,
for the example (26.13.2) a minimal decomposition into
adjacent transpositions is given by (1, 3, 2, 5, 7)(6, 8) =
(2, 3)(1, 2)(4, 5)(3, 4)(2, 3)(3, 4)(4, 5)(6, 7)(5, 6)(7, 8)×
(6, 7): inv((1, 3, 2, 5, 7)(6, 8)) = 11.
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26.14 Permutations: Order Notation

26.14(i) Definitions

The set Sn (§26.13) can be viewed as the collec-
tion of all ordered lists of elements of {1, 2, . . . , n}:
{σ(1)σ(2) · · ·σ(n)}. As an example, 35247816 is an el-
ement of S8 . The inversion number is the number of
pairs of elements for which the larger element precedes
the smaller:

26.14.1
inv(σ) =

∑
1≤j<k≤n
σ(j)>σ(k)

1.

Equivalently, this is the sum over 1 ≤ j < n of
the number of integers less than σ(j) that lie in po-
sitions to the right of the jth position: inv(35247816) =
2 + 3 + 1 + 1 + 2 + 2 + 0 = 11.

A descent of a permutation is a pair of adjacent ele-
ments for which the first is larger than the second. The

permutation 35247816 has two descents: 52 and 81. The
major index is the sum of all positions that mark the
first element of a descent:

26.14.2
maj(σ) =

∑
1≤j<n

σ(j)>σ(j+1)

j.

For example, maj(35247816) = 2 + 6 = 8. The major
index is also called the greater index of the permutation.

The Eulerian number, denoted
〈
n
k

〉
, is the number

of permutations in Sn with exactly k descents. An ex-
cedance in σ ∈ Sn is a position j for which σ(j) > j. A
weak excedance is a position j for which σ(j) ≥ j. The
Eulerian number

〈
n
k

〉
is equal to the number of permu-

tations in Sn with exactly k excedances. It is also equal
to the number of permutations in Sn with exactly k+1
weak excedances. See Table 26.14.1.

Table 26.14.1: Eulerian numbers
〈
n
k

〉
.

n
k

0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 120 1191 2416 1191 120 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 1 56190 88234 14608 502 1

10 1 1013 47840 4 55192 13 10354 13 10354 4 55192 47840 1013 1

26.14(ii) Generating Functions

26.14.3
∑
σ∈Sn

qinv(σ) =
∑
σ∈Sn

qmaj(σ) =
n∏
j=1

1− qj

1− q
.

26.14.4
∞∑

n,k=0

〈
n

k

〉
xk

tn

n!
=

1− x
exp((x− 1)t)− x

, |x| < 1, |t| < 1.

26.14.5

n−1∑
k=0

〈
n

k

〉(
x+ k

n

)
= xn.

26.14(iii) Identities

In this subsection S(n, k) is again the Stirling number
of the second kind (§26.8), and Bm is the mth Bernoulli

number (§24.2(i)).

26.14.6

〈
n

k

〉
=

k∑
j=0

(−1)j
(
n+ 1
j

)
(k + 1− j)n, n ≥ 1,

26.14.7

〈
n

k

〉
=
n−k∑
j=0

(−1)n−k−jj!
(
n− j
k

)
S(n, j),

26.14.8〈
n

k

〉
= (k + 1)

〈
n− 1
k

〉
+(n− k)

〈
n− 1
k − 1

〉
, n ≥ 2,

26.14.9

〈
n

k

〉
=
〈

n

n− 1− k

〉
, n ≥ 1,

26.14.10

n−1∑
k=0

〈
n

k

〉
= n!, n ≥ 1.
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26.14.11

Bm =
m

2m(2m − 1)

m−2∑
k=0

(−1)k
〈
m− 1
k

〉
, m ≥ 2.

26.14.12

S(n,m) =
1
m!

n−1∑
k=0

〈
n

k

〉(
k

n−m

)
, n ≥ m, n ≥ 1.

26.14(iv) Special Values

26.14.13

〈
0
k

〉
= δ0,k,

26.14.14

〈
n

0

〉
= 1,

26.14.15

〈
n

1

〉
= 2n − n− 1, n ≥ 1,

26.14.16

〈
n

2

〉
= 3n − (n+ 1)2n +

(
n+ 1

2

)
, n ≥ 1.

26.15 Permutations: Matrix Notation

The set Sn (§26.13) can be identified with the set of
n× n matrices of 0’s and 1’s with exactly one 1 in each
row and column. The permutation σ corresponds to the
matrix in which there is a 1 at the intersection of row
j with column σ(j), and 0’s in all other positions. The
permutation 35247816 corresponds to the matrix

26.15.1



0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


The sign of the permutation σ is the sign of the de-
terminant of its matrix representation. The inversion
number of σ is a sum of products of pairs of entries in
the matrix representation of σ:

26.15.2 inv(σ) =
∑

aghak`,

where the sum is over 1 ≤ g < k ≤ n and n ≥ h > ` ≥ 1.
The matrix represents the placement of n nonat-

tacking rooks on an n × n chessboard, that is, rooks
that share neither a row nor a column with any other
rook. A permutation with restricted position specifies a
subset B ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}. If (j, k) ∈ B,
then σ(j) 6= k. The number of derangements of n is
the number of permutations with forbidden positions
B = {(1, 1), (2, 2), . . . , (n, n)}.

Let rj(B) be the number of ways of placing j nonat-
tacking rooks on the squares of B. Define r0(B) = 1.

For the problem of derangements, rj(B) =
(
n
j

)
. The

rook polynomial is the generating function for rj(B):

26.15.3 R(x,B) =
n∑
j=0

rj(B)xj .

If B = B1 ∪ B2, where no element of B1 is in the
same row or column as any element of B2, then

26.15.4 R(x,B) = R(x,B1)R(x,B2).
For (j, k) ∈ B, B\[j, k] denotes B after removal of
all elements of the form (j, t) or (t, k), t = 1, 2, . . . , n.
B\(j, k) denotes B with the element (j, k) removed.

26.15.5 R(x,B) = xR(x,B\[j, k]) +R(x,B\(j, k)).
Nk(B) is the number of permutations in Sn for

which exactly k of the pairs (j, σ(j)) are elements of
B. N(x,B) is the generating function:

26.15.6 N(x,B) =
n∑
k=0

Nk(B)xk,

and

26.15.7 N(x,B) =
n∑
k=0

rk(B)(n− k)!(x− 1)k.

The number of permutations that avoid B is

26.15.8 N0(B) ≡ N(0, B) =
n∑
k=0

(−1)krk(B)(n− k)!.

Example 1

The problème des ménages asks for the number of ways
of seating n married couples around a circular table
with labeled seats so that no men are adjacent, no
women are adjacent, and no husband and wife are ad-
jacent. There are 2(n!) ways to place the wives. Let
B = {(j, j), (j, j+1) |1 ≤ j < n}∪{(n, n), (n, 1)}. Then

26.15.9 rk(B) =
2n

2n− k

(
2n− k
k

)
.

The solution is
26.15.10

2(n!)N0(B) = 2(n!)
n∑
k=0

(−1)k
2n

2n− k

(
2n− k
k

)
(n− k)!.

Example 2

The Ferrers board of shape (b1, b2, . . . , bn), 0 ≤ b1 ≤
b2 ≤ · · · ≤ bn, is the set B = {(j, k) | 1 ≤ j ≤ n, 1 ≤ k ≤
bj}. For this set,

26.15.11

n∑
k=0

rn−k(B)(x− k+ 1)k =
n∏
j=1

(x+ bj − j + 1).

If B is the Ferrers board of shape (0, 1, 2, . . . , n − 1),
then

26.15.12

n∑
k=0

rn−k(B)(x− k + 1)k = xn,

and therefore by (26.8.10),

26.15.13 rn−k(B) = S(n, k).
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26.16 Multiset Permutations

Let S = {1a1 , 2a2 , . . . , nan} be the multiset that has aj
copies of j, 1 ≤ j ≤ n. SS denotes the set of permuta-
tions of S for all distinct orderings of the a1+a2+· · ·+an
integers. The number of elements in SS is the multi-
nomial coefficient (§26.4)

(
a1+a2+···+an
a1,a2,...,an

)
. Additional in-

formation can be found in Andrews (1976, pp. 39–45).
The definitions of inversion number and major in-

dex can be extended to permutations of a multi-
set such as 351322453154 ∈ S{12,22,33,42,53}. Thus
inv(351322453154) = 4+8+0+3+1+1+2+3+1+0+1 =
24, and maj(351322453154) = 2 + 4 + 8 + 9 + 11 = 34.

The q-multinomial coefficient is defined in terms of
Gaussian polynomials (§26.9(ii)) by
26.16.1[
a1 + a2 + · · ·+ an
a1, a2, . . . , an

]
q

=
n−1∏
k=1

[
ak + ak+1 + · · ·+ an

ak

]
q

,

and again with S = {1a1 , 2a2 , . . . , nan} we have

26.16.2
∑
σ∈SS

qinv(σ) =
[
a1 + a2 + · · ·+ an
a1, a2, . . . , an

]
q

,

26.16.3
∑
σ∈SS

qmaj(σ) =
[
a1 + a2 + · · ·+ an
a1, a2, . . . , an

]
q

.

26.17 The Twelvefold Way

The twelvefold way gives the number of mappings f
from set N of n objects to set K of k objects (putting
balls from set N into boxes in set K). See Table 26.17.1.
In this table (k)n is Pochhammer’s symbol, and S(n, k)
and pk(n) are defined in §§26.8(i) and 26.9(i).

Table 26.17.1 is reproduced (in modified form) from
Stanley (1997, p. 33). See also Example 3 in §26.18.

Table 26.17.1: The twelvefold way.

elements of N elements of K f unrestricted f one-to-one f onto

labeled labeled kn (k − n+ 1)n k!S(n, k)

unlabeled labeled
(
k + n− 1

n

) (
k

n

) (
n− 1
n− k

)

labeled unlabeled
S(n, 1) + S(n, 2)

+ · · ·+ S(n, k)

{
1 n ≤ k
0 n > k

S(n, k)

unlabeled unlabeled pk(n)

{
1 n ≤ k
0 n > k

pk(n)− pk−1(n)

26.18 Counting Techniques

Let A1, A2, . . . , An be subsets of a set S that are not necessarily disjoint. Then the number of elements in the set
S\(A1 ∪A2 ∪ · · · ∪An) is

26.18.1 |S\(A1 ∪A2 ∪ · · · ∪An)| = |S|+
n∑
t=1

(−1)t
∑

1≤j1<j2<···<jt≤n

|Aj1 ∩Aj2 ∩ · · · ∩Ajt | .

Example 1

The number of positive integers ≤ N that are not divisible by any of the primes p1, p2, . . . , pn (§27.2(i)) is

26.18.2 N +
n∑
t=1

(−1)t
∑

1≤j1<j2<···<jt ≤n

⌊
N

pj1pj2 · · · pjt

⌋
.
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Example 2

With the notation of §26.15, the number of placements
of n nonattacking rooks on an n × n chessboard that
avoid the squares in a specified subset B is

26.18.3 n! +
n∑
t=1

(−1)trt(B)(n− t)!.

Example 3

The number of ways of placing n labeled objects into k
labeled boxes so that at least one object is in each box
is

26.18.4 kn +
n∑
t=1

(−1)t
(
k

t

)
(k − t)n.

Note that this is also one of the counting problems for
which a formula is given in Table 26.17.1. Elements of
N are labeled, elements of K are labeled, and f is onto.

For further examples in the use of generating func-
tions, see Stanley (1997, 1999) and Wilf (1994). See also
Pólya et al. (1983).

Applications

26.19 Mathematical Applications

Combinatorics has applications to analysis, algebra,
and geometry. Examples can be found in Beckenbach
(1981), Billera et al. (1996), and Lovász et al. (1995).
Partitions and plane partitions have applications to rep-
resentation theory (Bressoud (1999), Macdonald (1995),
and Sagan (2001)) and to special functions (Andrews
et al. (1999) and Gasper and Rahman (2004)).

Other areas of combinatorial analysis include graph
theory, coding theory, and combinatorial designs. These
have applications in operations research, probability
theory, and statistics. See Graham et al. (1995) and
Rosen et al. (2000).

26.20 Physical Applications

An English translation of Pólya (1937) on applications
of combinatorics to chemistry has been published as
Pólya and Read (1987). Other articles on this subject
are de Bruijn (1981) and Rouvray (1995). The latter
reference also describes chemical applications of other
combinatorial techniques.

Applications of combinatorics, especially integer and
plane partitions, to counting lattice structures and other
problems of statistical mechanics, of which the Ising
model is the principal example, can be found in Mon-
troll (1964), Godsil et al. (1995), Baxter (1982), and

Korepin et al. (1993). For an application of statistical
mechanics to combinatorics, see Bressoud (1999).

Other applications to problems in engineering, crys-
tallography, biology, and computer science can be found
in Beckenbach (1981) and Graham et al. (1995).

Computation

26.21 Tables

Abramowitz and Stegun (1964, Chapter 24) tabulates
binomial coefficients

(
m
n

)
for m up to 50 and n up to 25;

extends Table 26.4.1 to n = 10; tabulates Stirling num-
bers of the first and second kinds, s(n, k) and S(n, k),
for n up to 25 and k up to n; tabulates partitions p(n)
and partitions into distinct parts p(D, n) for n up to
500.

Andrews (1976) contains tables of the number of
unrestricted partitions, partitions into odd parts, par-
titions into parts 6≡ ±2 (mod 5), partitions into parts
6≡ ±1 (mod 5), and unrestricted plane partitions up to
100. It also contains a table of Gaussian polynomials
up to

[
12
6

]
q
.

Goldberg et al. (1976) contains tables of binomial
coefficients to n = 100 and Stirling numbers to n = 40.

26.22 Software

See http://dlmf.nist.gov/26.22.

References

General References

Comprehensive references include Graham et al. (1995)
and Rosen et al. (2000). Most of this chapter is treated
in detail in Comtet (1974), Riordan (1958), and Stanley
(1997, 1999).

Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§26.2 Table 26.2.1 is from Abramowitz and Stegun
(1964, Table 24.5).

§26.3 Comtet (1974, pp. 8–10, 22–23, 292), Riordan
(1958, pp. 4–11), and (5.11.7). Tables 26.3.1 and
26.3.2 are from Abramowitz and Stegun (1964, Ta-
ble 24.1).



636 Combinatorial Analysis

§26.4 Comtet (1974, pp. 28–29). Table 26.4.1 is from
Abramowitz and Stegun (1964, Table 24.2).

§26.5 Comtet (1974, pp. 52–54), Riordan (1979,
p. 157). For (26.5.6) and (26.5.7) use (26.3.12)
and (26.5.1). Table 26.5.1 was computed by the
author.

§26.6 Comtet (1974, pp. 80–81), Stanley (1999,
pp. 237–241). (26.6.4) is a consequence of André’s
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Notation

27.1 Special Notation

(For other notation see pp. xiv and 873.)

d, k,m, n positive integers (unless otherwise
indicated).

d | n d divides n.
(m,n) greatest common divisor of m,n. If

(m,n) = 1, m and n are called relatively
prime, or coprime.

(d1, . . . , dn) greatest common divisor of d1, . . . , dn.∑
d|n,

∏
d|n sum, product taken over divisors of n.∑

(m,n)=1 sum taken over m, 1 ≤ m ≤ n and m
relatively prime to n.

p, p1, p2, . . . prime numbers (or primes): integers
(> 1) with only two positive integer
divisors, 1 and the number itself.∑

p,
∏
p sum, product extended over all primes.

x, y real numbers.∑
n≤x

∑bxc
n=1.

log x natural logarithm of x, written as lnx in
other chapters.

ζ(s) Riemann zeta function; see §25.2(i).
(n|P ) Jacobi symbol; see §27.9.
(n|p) Legendre symbol; see §27.9.

Multiplicative Number Theory

27.2 Functions

27.2(i) Definitions

Functions in this section derive their properties from the
fundamental theorem of arithmetic, which states that
every integer n > 1 can be represented uniquely as a
product of prime powers,

27.2.1 n =
ν(n)∏
r=1

parr ,

where p1, p2, . . . , pν(n) are the distinct prime factors of
n, each exponent ar is positive, and ν(n) is the number
of distinct primes dividing n. (ν(1) is defined to be 0.)
Euclid’s Elements (Euclid (1908, Book IX, Proposition
20)) gives an elegant proof that there are infinitely many
primes. Tables of primes (§27.21) reveal great irregular-
ity in their distribution. They tend to thin out among
the large integers, but this thinning out is not com-
pletely regular. There is great interest in the function

π(x) that counts the number of primes not exceeding x.
It can be expressed as a sum over all primes p ≤ x:

27.2.2 π(x) =
∑
p≤x

1.

Gauss and Legendre conjectured that π(x) is asymp-
totic to x/ log x as x→∞:

27.2.3 π(x) ∼ x

log x
.

(See Gauss (1863, Band II, pp. 437–477) and Legendre
(1808, p. 394).)

This result, first proved in Hadamard (1896) and
de la Vallée Poussin (1896a,b), is known as the prime
number theorem. An equivalent form states that the
nth prime pn (when the primes are listed in increasing
order) is asymptotic to n log n as n→∞:

27.2.4 pn ∼ n log n.
(See also §27.12.) Other examples of number-theoretic
functions treated in this chapter are as follows.

27.2.5

⌊
1
n

⌋
=

{
1, n = 1,
0, n > 1.

27.2.6
φk(n) =

∑
(m,n)=1

mk,

the sum of the kth powers of the positive integers m ≤ n
that are relatively prime to n.

27.2.7 φ(n) = φ0(n).
This is the number of positive integers ≤ n that are
relatively prime to n; φ(n) is Euler’s totient.

If (a, n) = 1, then the Euler–Fermat theorem states
that

27.2.8 aφ(n) ≡ 1 (mod n),
and if φ(n) is the smallest positive integer f such that
af ≡ 1 (mod n), then a is a primitive root mod n. The
φ(n) numbers a, a2, . . . , aφ(n) are relatively prime to n
and distinct (mod n). Such a set is a reduced residue
system modulo n.

27.2.9
d(n) =

∑
d|n

1

is the number of divisors of n and is the divisor func-
tion. It is the special case k = 2 of the function dk(n)
that counts the number of ways of expressing n as the
product of k factors, with the order of factors taken into
account.

27.2.10
σα(n) =

∑
d|n

dα,

is the sum of the αth powers of the divisors of n, where
the exponent α can be real or complex. Note that
σ0(n) = d(n).

27.2.11
Jk(n) =

∑
((d1,...,dk),n)=1

1,
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is the number of k-tuples of integers ≤ n whose greatest
common divisor is relatively prime to n. This is Jordan’s
function. Note that J1(n) = φ(n).

In the following examples, a1, . . . , aν(n) are the ex-
ponents in the factorization of n in (27.2.1).

27.2.12 µ(n) =


1, n = 1,
(−1)ν(n), a1 = a2 = · · · = aν(n) = 1,
0, otherwise.

This is the Möbius function.

27.2.13 λ(n) =

{
1, n = 1,
(−1)a1+···+aν(n) , n > 1.

This is Liouville’s function.

27.2.14 Λ(n) = log p, n = pa,

where pa is a prime power with a ≥ 1; otherwise
Λ(n) = 0. This is Mangoldt’s function.

27.2(ii) Tables

Table 27.2.1 lists the first 100 prime numbers pn. Ta-
ble 27.2.2 tabulates the Euler totient function φ(n), the
divisor function d(n) (= σ0(n)), and the sum of the
divisors σ(n) (= σ1(n)), for n = 1(1)52.

Table 27.2.1: Primes.

n pn pn+10 pn+20 pn+30 pn+40 pn+50 pn+60 pn+70 pn+80 pn+90

1 2 31 73 127 179 233 283 353 419 467
2 3 37 79 131 181 239 293 359 421 479
3 5 41 83 137 191 241 307 367 431 487
4 7 43 89 139 193 251 311 373 433 491
5 11 47 97 149 197 257 313 379 439 499
6 13 53 101 151 199 263 317 383 443 503
7 17 59 103 157 211 269 331 389 449 509
8 19 61 107 163 223 271 337 397 457 521
9 23 67 109 167 227 277 347 401 461 523

10 29 71 113 173 229 281 349 409 463 541

Table 27.2.2: Functions related to division.

n φ(n) d(n) σ(n) n φ(n) d(n) σ(n) n φ(n) d(n) σ(n) n φ(n) d(n) σ(n)
1 1 1 1 14 6 4 24 27 18 4 40 40 16 8 90
2 1 2 3 15 8 4 24 28 12 6 56 41 40 2 42
3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
4 2 3 7 17 16 2 18 30 8 8 72 43 42 2 44
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
8 4 4 15 21 12 4 32 34 16 4 54 47 46 2 48
9 6 3 13 22 10 4 36 35 24 4 48 48 16 10 124

10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
13 12 2 14 26 12 4 42 39 24 4 56 52 24 6 98
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27.3 Multiplicative Properties

Except for ν(n), Λ(n), pn, and π(x), the functions in
§27.2 are multiplicative, which means f(1) = 1 and

27.3.1 f(mn) = f(m)f(n), (m,n) = 1.

If f is multiplicative, then the values f(n) for n > 1
are determined by the values at the prime powers.
Specifically, if n is factored as in (27.2.1), then

27.3.2 f(n) =
ν(n)∏
r=1

f(parr ).

In particular,

27.3.3
φ(n) = n

∏
p|n

(1− p−1),

27.3.4
Jk(n) = nk

∏
p|n

(1− p−k),

27.3.5 d(n) =
ν(n)∏
r=1

(1 + ar),

27.3.6 σα(n) =
ν(n)∏
r=1

p
α(1+ar)
r − 1
pαr − 1

, α 6= 0.

Related multiplicative properties are

27.3.7 σα(m)σα(n) =
∑

d|(m,n)

dα σα

(mn
d2

)
,

27.3.8 φ(m)φ(n) = φ(mn)φ((m,n))/ (m,n) .

A function f is completely multiplicative if f(1) = 1
and

27.3.9 f(mn) = f(m)f(n), m,n = 1, 2, . . . .

Examples are b1/nc and λ(n), and the Dirichlet char-
acters, defined in §27.8.

If f is completely multiplicative, then (27.3.2) be-
comes

27.3.10 f(n) =
ν(n)∏
r=1

(f(pr))
ar .

27.4 Euler Products and Dirichlet Series

The fundamental theorem of arithmetic is linked to
analysis through the concept of the Euler product. Ev-
ery multiplicative f satisfies the identity

27.4.1

∞∑
n=1

f(n) =
∏
p

(
1 +

∞∑
r=1

f(pr)

)
,

if the series on the left is absolutely convergent. In this
case the infinite product on the right (extended over all
primes p) is also absolutely convergent and is called the

Euler product of the series. If f(n) is completely multi-
plicative, then each factor in the product is a geometric
series and the Euler product becomes

27.4.2

∞∑
n=1

f(n) =
∏
p

(1− f(p))−1.

Euler products are used to find series that generate
many functions of multiplicative number theory. The
completely multiplicative function f(n) = n−s gives the
Euler product representation of the Riemann zeta func-
tion ζ(s) (§25.2(i)):

27.4.3 ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1, <s > 1.

The Riemann zeta function is the prototype of series
of the form

27.4.4 F (s) =
∞∑
n=1

f(n)n−s,

called Dirichlet series with coefficients f(n). The func-
tion F (s) is a generating function, or more precisely, a
Dirichlet generating function, for the coefficients. The
following examples have generating functions related to
the zeta function:

27.4.5

∞∑
n=1

µ(n)n−s =
1
ζ(s)

, <s > 1,

27.4.6

∞∑
n=1

φ(n)n−s =
ζ(s− 1)
ζ(s)

, <s > 2,

27.4.7

∞∑
n=1

λ(n)n−s =
ζ(2s)
ζ(s)

, <s > 1,

27.4.8

∞∑
n=1

|µ(n)|n−s =
ζ(s)
ζ(2s)

, <s > 1,

27.4.9

∞∑
n=1

2ν(n)n−s =
(ζ(s))2

ζ(2s)
, <s > 1,

27.4.10

∞∑
n=1

dk(n)n−s = (ζ(s))k, <s > 1,

27.4.11
∞∑
n=1

σα(n)n−s = ζ(s) ζ(s− α), <s > max(1, 1 + <α),

27.4.12

∞∑
n=1

Λ(n)n−s = −ζ
′(s)
ζ(s)

, <s > 1,

27.4.13

∞∑
n=2

(log n)n−s = − ζ ′(s), <s > 1.

In (27.4.12) and (27.4.13) ζ ′(s) is the derivative of ζ(s).
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27.5 Inversion Formulas

If a Dirichlet series F (s) generates f(n), and G(s) gen-
erates g(n), then the product F (s)G(s) generates

27.5.1 h(n) =
∑
d|n

f(d)g
(n
d

)
,

called the Dirichlet product (or convolution) of f and
g. The set of all number-theoretic functions f with
f(1) 6= 0 forms an abelian group under Dirichlet multi-
plication, with the function b1/nc in (27.2.5) as identity
element; see Apostol (1976, p. 129). The multiplicative
functions are a subgroup of this group. Generating func-
tions yield many relations connecting number-theoretic
functions. For example, the equation ζ(s) ·(1/ζ(s) ) = 1
is equivalent to the identity

27.5.2
∑
d|n

µ(d) =
⌊

1
n

⌋
,

which, in turn, is the basis for the Möbius inversion
formula relating sums over divisors:

27.5.3 g(n) =
∑
d|n

f(d)⇐⇒ f(n) =
∑
d|n

g(d)µ
(n
d

)
.

Special cases of Möbius inversion pairs are:

27.5.4 n =
∑
d|n

φ(d)⇐⇒ φ(n) =
∑
d|n

dµ
(n
d

)
,

27.5.5 log n =
∑
d|n

Λ(d)⇐⇒ Λ(n) =
∑
d|n

(log d)µ
(n
d

)
.

Other types of Möbius inversion formulas include:

27.5.6 G(x) =
∑
n≤x

F
(x
n

)
⇐⇒ F (x) =

∑
n≤x

µ(n)G
(x
n

)
,

27.5.7

G(x) =
∞∑
m=1

F (mx)
ms

⇐⇒ F (x) =
∞∑
m=1

µ(m)
G(mx)
ms

,

27.5.8 g(n) =
∏
d|n

f(d)⇐⇒ f(n) =
∏
d|n

(
g
(n
d

))µ(d)

.

For a general theory of Möbius inversion with appli-
cations to combinatorial theory see Rota (1964).

27.6 Divisor Sums

Sums of number-theoretic functions extended over divi-
sors are of special interest. For example,

27.6.1
∑
d|n

λ(d) =

{
1, n is a square,
0, otherwise.

If f is multiplicative, then

27.6.2

∑
d|n

µ(d)f(d) =
∏
p|n

(1− f(p)), n > 1.

Generating functions, Euler products, and Möbius
inversion are used to evaluate many sums extended over
divisors. Examples include:

27.6.3

∑
d|n

|µ(d)| = 2ν(n),

27.6.4

∑
d2|n

µ(d) = |µ(n)|,

27.6.5
∑
d|n

|µ(d)|
φ(d)

=
n

φ(n)
,

27.6.6
∑
d|n

φk(d)
(n
d

)k
= 1k + 2k + · · ·+ nk,

27.6.7
∑
d|n

µ(d)
(n
d

)k
= Jk(n),

27.6.8

∑
d|n

Jk(d) = nk.

27.7 Lambert Series as Generating
Functions

Lambert series have the form

27.7.1

∞∑
n=1

f(n)
xn

1− xn
.

If |x| < 1, then the quotient xn/(1−xn) is the sum of a
geometric series, and when the series (27.7.1) converges
absolutely it can be rearranged as a power series:

27.7.2

∞∑
n=1

f(n)
xn

1− xn
=
∞∑
n=1

∑
d|n

f(d)xn.

Again with |x| < 1, special cases of (27.7.2) include:

27.7.3

∞∑
n=1

µ(n)
xn

1− xn
= x,

27.7.4

∞∑
n=1

φ(n)
xn

1− xn
=

x

(1− x)2
,

27.7.5

∞∑
n=1

nα
xn

1− xn
=
∞∑
n=1

σα(n)xn,

27.7.6

∞∑
n=1

λ(n)
xn

1− xn
=
∞∑
n=1

xn
2
.
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27.8 Dirichlet Characters

If k (> 1) is a given integer, then a function χ(n) is
called a Dirichlet character (mod k) if it is completely
multiplicative, periodic with period k, and vanishes
when (n, k) > 1. In other words, Dirichlet characters
(mod k) satisfy the four conditions:

27.8.1 χ(1) = 1,

27.8.2 χ(mn) = χ(m)χ(n), m,n = 1, 2, . . . ,

27.8.3 χ(n+ k) = χ(n), n = 1, 2, . . . ,

27.8.4 χ(n) = 0, (n, k) > 1.

An example is the principal character (mod k):

27.8.5 χ1(n) =

{
1, (n, k) = 1,
0, (n, k) > 1.

For any character χ (mod k), χ(n) 6= 0 if and only
if (n, k) = 1, in which case the Euler–Fermat theorem
(27.2.8) implies (χ(n))φ(k) = 1. There are exactly φ(k)
different characters (mod k), which can be labeled as
χ1, . . . , χφ(k). If χ is a character (mod k), so is its com-
plex conjugate χ. If (n, k) = 1, then the characters
satisfy the orthogonality relation

27.8.6

φ(k)∑
r=1

χr(m)χr(n) =

{
φ(k), m ≡ n (mod k),
0, otherwise.

A Dirichlet character χ (mod k) is called primitive
(mod k) if for every proper divisor d of k (that is, a
divisor d < k), there exists an integer a ≡ 1 (mod d),
with (a, k) = 1 and χ(a) 6= 1. If k is prime, then ev-
ery nonprincipal character χ (mod k) is primitive. A
divisor d of k is called an induced modulus for χ if

27.8.7 χ(a) = 1 for all a ≡ 1 (mod d), (a, k) = 1.

Every Dirichlet character χ (mod k) is a product

27.8.8 χ(n) = χ0(n)χ1(n),

where χ0 is a character (mod d) for some induced mod-
ulus d for χ, and χ1 is the principal character (mod k).
A character is real if all its values are real. If k is odd,
then the real characters (mod k) are the principal char-
acter and the quadratic characters described in the next
section.

27.9 Quadratic Characters

For an odd prime p, the Legendre symbol (n|p) is de-
fined as follows. If p divides n, then the value of (n|p)
is 0. If p does not divide n, then (n|p) has the value
1 when the quadratic congruence x2 ≡ n (mod p) has
a solution, and the value −1 when this congruence has
no solution. The Legendre symbol (n|p), as a function

of n, is a Dirichlet character (mod p). It is sometimes
written as (np ). Special values include:

27.9.1 (−1|p) = (−1)(p−1)/2,

27.9.2 (2|p) = (−1)(p2−1)/8.

If p, q are distinct odd primes, then the quadratic
reciprocity law states that

27.9.3 (p|q) (q|p) = (−1)(p−1)(q−1)/4.

If an odd integer P has prime factorization P =∏ν(n)
r=1 p

ar
r , then the Jacobi symbol (n|P ) is defined by

(n|P ) =
∏ν(n)
r=1 (n|pr)ar , with (n|1) = 1. The Jacobi

symbol (n|P ) is a Dirichlet character (mod P ). Both
(27.9.1) and (27.9.2) are valid with p replaced by P ; the
reciprocity law (27.9.3) holds if p, q are replaced by any
two relatively prime odd integers P,Q.

27.10 Periodic Number-Theoretic
Functions

If k is a fixed positive integer, then a number-theoretic
function f is periodic (mod k) if

27.10.1 f(n+ k) = f(n), n = 1, 2, . . . .

Examples are the Dirichlet characters (mod k) and the
greatest common divisor (n, k) regarded as a function
of n.

Every function periodic (mod k) can be expressed as
a finite Fourier series of the form

27.10.2 f(n) =
k∑

m=1

g(m)e2πimn/k,

where g(m) is also periodic (mod k), and is given by

27.10.3 g(m) =
1
k

k∑
n=1

f(n)e−2πimn/k.

An example is Ramanujan’s sum:

27.10.4 ck(n) =
k∑

m=1

χ1(m)e2πimn/k,

where χ1 is the principal character (mod k). This is
the sum of the nth powers of the primitive kth roots of
unity. It can also be expressed in terms of the Möbius
function as a divisor sum:

27.10.5 ck(n) =
∑
d|(n,k)

dµ

(
k

d

)
.

More generally, if f and g are arbitrary, then the
sum
27.10.6 sk(n) =

∑
d|(n,k)

f(d)g
(
k

d

)
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is a periodic function of n (mod k) and has the finite
Fourier-series expansion

27.10.7 sk(n) =
k∑

m=1

ak(m)e2πimn/k,

where
27.10.8 ak(m) =

∑
d|(m,k)

g(d)f
(
k

d

)
d

k
.

Another generalization of Ramanujan’s sum is the
Gauss sum G(n, χ) associated with a Dirichlet charac-
ter χ (mod k). It is defined by the relation

27.10.9 G(n, χ) =
k∑

m=1

χ(m)e2πimn/k.

In particular, G(n, χ1) = ck(n).
G(n, χ) is separable for some n if

27.10.10 G(n, χ) = χ(n)G(1, χ).
For any Dirichlet character χ (mod k), G(n, χ) is

separable for n if (n, k) = 1, and is separable for every
n if and only if G(n, χ) = 0 whenever (n, k) > 1. For a
primitive character χ (mod k), G(n, χ) is separable for
every n, and

27.10.11 |G(1, χ)|2 = k.

Conversely, if G(n, χ) is separable for every n, then
χ is primitive (mod k).

The finite Fourier expansion of a primitive Dirichlet
character χ (mod k) has the form

27.10.12 χ(n) =
G(1, χ)
k

k∑
m=1

χ(m)e−2πimn/k.

27.11 Asymptotic Formulas: Partial Sums

The behavior of a number-theoretic function f(n) for
large n is often difficult to determine because the func-
tion values can fluctuate considerably as n increases. It
is more fruitful to study partial sums and seek asymp-
totic formulas of the form

27.11.1
∑
n≤x

f(n) = F (x) +O(g(x)),

where F (x) is a known function of x, and O(g(x)) repre-
sents the error, a function of smaller order than F (x) for
all x in some prescribed range. For example, Dirichlet
(1849) proves that for all x ≥ 1,

27.11.2
∑
n≤x

d(n) = x log x+ (2γ − 1)x+O
(√
x
)
,

where γ is Euler’s constant (§5.2(ii)). Dirichlet’s divi-
sor problem (unsolved in 2009) is to determine the least
number θ0 such that the error term in (27.11.2) is O

(
xθ
)

for all θ > θ0. Kolesnik (1969) proves that θ0 ≤ 12
37 .

Equations (27.11.3)–(27.11.11) list further asymp-
totic formulas related to some of the functions listed
in §27.2. They are valid for all x ≥ 2. The error terms
given here are not necessarily the best known.

27.11.3
∑
n≤x

d(n)
n

=
1
2

(log x)2 + 2γ log x+O(1),

where γ again is Euler’s constant.

27.11.4
∑
n≤x

σ1(n) =
π2

12
x2 +O(x log x).

27.11.5

∑
n≤x

σα(n) =
ζ(α+ 1)
α+ 1

xα+1 +O
(
xβ
)
,

α > 0, α 6= 1, β = max(1, α).

27.11.6
∑
n≤x

φ(n) =
3
π2
x2 +O(x log x).

27.11.7
∑
n≤x

φ(n)
n

=
6
π2
x+O(log x).

27.11.8
∑
p≤x

1
p

= log log x+A+O

(
1

log x

)
,

where A is a constant.

27.11.9

∑
p≤x

p≡h (mod k)

1
p

=
1

φ(k)
log log x+B+O

(
1

log x

)
,

where (h, k) = 1, k > 0, and B is a constant depending
on h and k.

27.11.10
∑
p≤x

log p
p

= log x+O(1).

27.11.11

∑
p≤x

p≡h (mod k)

log p
p

=
1

φ(k)
log x+O(1),

where (h, k) = 1, k > 0.
Letting x → ∞ in (27.11.9) or in (27.11.11) we see

that there are infinitely many primes p ≡ h (mod k) if
h, k are coprime; this is Dirichlet’s theorem on primes
in arithmetic progressions.

27.11.12
∑
n≤x

µ(n) = O
(
xe−C

√
log x

)
, x→∞,

for some positive constant C,

27.11.13 lim
x→∞

1
x

∑
n≤x

µ(n) = 0,

27.11.14 lim
x→∞

∑
n≤x

µ(n)
n

= 0,

27.11.15 lim
x→∞

∑
n≤x

µ(n) log n
n

= −1.
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Each of (27.11.13)–(27.11.15) is equivalent to the
prime number theorem (27.2.3). The prime num-
ber theorem for arithmetic progressions—an extension
of (27.2.3) and first proved in de la Vallée Poussin
(1896a,b)—states that if (h, k) = 1, then the number
of primes p ≤ x with p ≡ h (mod k) is asymptotic to
x/(φ(k) log x) as x→∞.

27.12 Asymptotic Formulas: Primes

pn is the nth prime, beginning with p1 = 2. π(x) is the
number of primes less than or equal to x.

27.12.1 lim
n→∞

pn
n log n

= 1,

27.12.2 pn > n log n, n = 1, 2, . . . .

27.12.3

π(x) = bxc − 1−
∑

pj≤
√
x

⌊
x

pj

⌋

+
∑
r≥2

(−1)r
∑

pj1<pj2<···<pjr≤
√
x

⌊
x

pj1pj2 · · · pjr

⌋
,

x ≥ 1,
where the series terminates when the product of the first
r primes exceeds x.

As x→∞

27.12.4 π(x) ∼
∞∑
k=1

(k − 1)!x
(log x)k

.

Prime Number Theorem

There exists a positive constant c such that
27.12.5

|π(x)− li(x)| = O
(
x exp

(
−c
√

log x
))

, x→∞.

For the logarithmic integral li(x) see (6.2.8). The best
available asymptotic error estimate (2009) appears in
Korobov (1958) and Vinogradov (1958): there exists a
positive constant d such that

27.12.6

|π(x)− li(x)|
= O

(
x exp

(
−d(log x)3/5 (log log x)−1/5

))
.

π(x)− li(x) changes sign infinitely often as x→∞;
see Littlewood (1914), Bays and Hudson (2000).

The Riemann hypothesis (§25.10(i)) is equivalent to
the statement that for every x ≥ 2657,

27.12.7 |π(x)− li(x)| < 1
8π
√
x log x.

If a is relatively prime to the modulus m, then there
are infinitely many primes congruent to a (mod m).

The number of such primes not exceeding x is

27.12.8

x

φ(m)
+O

(
x exp

(
−λ(α)(log x)1/2

))
,

m ≤ (log x)α, α > 0,

where λ(α) depends only on α, and φ(m) is the Euler
totient function (§27.2).

A Mersenne prime is a prime of the form 2p − 1.
The largest known prime (2009) is the Mersenne prime
243,112,609 − 1. For current records online, see http:
//dlmf.nist.gov/27.12.

A pseudoprime test is a test that correctly identi-
fies most composite numbers. For example, if 2n 6≡ 2
(mod n), then n is composite. Descriptions and com-
parisons of pseudoprime tests are given in Bressoud and
Wagon (2000, §§2.4, 4.2, and 8.2) and Crandall and
Pomerance (2005, §§3.4–3.6).

A Carmichael number is a composite number n for
which bn ≡ b (mod n) for all b ∈ N. There are infinitely
many Carmichael numbers.

Additive Number Theory

27.13 Functions

27.13(i) Introduction

Whereas multiplicative number theory is concerned
with functions arising from prime factorization, addi-
tive number theory treats functions related to addition
of integers. The basic problem is that of expressing a
given positive integer n as a sum of integers from some
prescribed set S whose members are primes, squares,
cubes, or other special integers. Each representation of
n as a sum of elements of S is called a partition of n,
and the number S(n) of such partitions is often of great
interest. The subsections that follow describe problems
from additive number theory. See also Apostol (1976,
Chapter 14) and Apostol and Niven (1994, pp. 33–34).

27.13(ii) Goldbach Conjecture

Every even integer n > 4 is the sum of two odd primes.
In this case, S(n) is the number of solutions of the equa-
tion n = p + q, where p and q are odd primes. Gold-
bach’s assertion is that S(n) ≥ 1 for all even n > 4.
This conjecture dates back to 1742 and was undecided
in 2009, although it has been confirmed numerically up
to very large numbers. Vinogradov (1937) proves that
every sufficiently large odd integer is the sum of three
odd primes, and Chen (1966) shows that every suffi-
ciently large even integer is the sum of a prime and a
number with no more than two prime factors.

For an online account of the current status of Gold-
bach’s conjecture see http://dlmf.nist.gov/27.13.
ii.
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27.13(iii) Waring’s Problem

This problem is named after Edward Waring who, in
1770, stated without proof and with limited numerical
evidence, that every positive integer n is the sum of four
squares, of nine cubes, of nineteen fourth powers, and
so on. Waring’s problem is to find, for each positive in-
teger k, whether there is an integer m (depending only
on k) such that the equation

27.13.1 n = xk1 + xk2 + · · ·+ xkm

has nonnegative integer solutions for all n ≥ 1. The
smallest m that exists for a given k is denoted by
g(k). Similarly, G(k) denotes the smallest m for which
(27.13.1) has nonnegative integer solutions for all suffi-
ciently large n.

Lagrange (1770) proves that g(2) = 4, and during
the next 139 years the existence of g(k) was shown for
k = 3, 4, 5, 6, 7, 8, 10. Hilbert (1909) proves the exis-
tence of g(k) for every k but does not determine its
corresponding numerical value. The exact value of g(k)
is now known for every k ≤ 200, 000. For example,
g(3) = 9, g(4) = 19, g(5) = 37, g(6) = 73, g(7) = 143,
and g(8) = 279. A general formula states that

27.13.2 g(k) ≥ 2k +
⌊

3k

2k

⌋
− 2,

for all k ≥ 2, with equality if 4 ≤ k ≤ 200, 000. If
3k = q2k + r with 0 < r < 2k, then equality holds
in (27.13.2) provided r + q ≤ 2k, a condition that is
satisfied with at most a finite number of exceptions.

The existence of G(k) follows from that of g(k) be-
cause G(k) ≤ g(k), but only the values G(2) = 4 and
G(4) = 16 are known exactly. Some upper bounds
smaller than g(k) are known. For example, G(3) ≤ 7,
G(5) ≤ 23, G(6) ≤ 36, G(7) ≤ 53, and G(8) ≤ 73.
Hardy and Littlewood (1925) conjectures that G(k) <
2k + 1 when k is not a power of 2, and that G(k) ≤ 4k
when k is a power of 2, but the most that is known (in
2009) is G(k) < ck log k for some constant c. A survey
is given in Ellison (1971).

27.13(iv) Representation by Squares

For a given integer k ≥ 2 the function rk(n) is defined
as the number of solutions of the equation

27.13.3 n = x2
1 + x2

2 + · · ·+ x2
k,

where the xj are integers, positive, negative, or zero,
and the order of the summands is taken into account.

Jacobi (1829) notes that r2(n) is the coefficient of
xn in the square of the theta function ϑ(x):

27.13.4 ϑ(x) = 1 + 2
∞∑
m=1

xm
2
, |x| < 1.

(In §20.2(i), ϑ(x) is denoted by θ3(0, x).) Thus,

27.13.5 (ϑ(x))2 = 1 +
∞∑
n=1

r2(n)xn.

One of Jacobi’s identities implies that

27.13.6 (ϑ(x))2 = 1 + 4
∞∑
n=1

(δ1(n)− δ3(n))xn,

where δ1(n) and δ3(n) are the number of divisors of
n congruent respectively to 1 and 3 (mod 4), and by
equating coefficients in (27.13.5) and (27.13.6) Jacobi
deduced that

27.13.7 r2(n) = 4 (δ1(n)− δ3(n)) .

Hence r2(5) = 8 because both divisors, 1 and 5, are
congruent to 1 (mod 4). In fact, there are four rep-
resentations, given by 5 = 22 + 12 = 22 + (−1)2 =
(−2)2 + 12 = (−2)2 + (−1)2, and four more with the
order of summands reversed.

By similar methods Jacobi proved that r4(n) =
8σ1(n) if n is odd, whereas, if n is even, r4(n) = 24
times the sum of the odd divisors of n. Mordell (1917)
notes that rk(n) is the coefficient of xn in the power-
series expansion of the kth power of the series for ϑ(x).
Explicit formulas for rk(n) have been obtained by sim-
ilar methods for k = 6, 8, 10, and 12, but they are more
complicated. Exact formulas for rk(n) have also been
found for k = 3, 5, and 7, and for all even k ≤ 24.
For values of k > 24 the analysis of rk(n) is consider-
ably more complicated (see Hardy (1940)). Also, Milne
(1996, 2002) announce new infinite families of explicit
formulas extending Jacobi’s identities. For more than
8 squares, Milne’s identities are not the same as those
obtained earlier by Mordell and others.

27.14 Unrestricted Partitions

27.14(i) Partition Functions

A fundamental problem studies the number of ways n
can be written as a sum of positive integers ≤ n, that
is, the number of solutions of

27.14.1 n = a1 + a2 + · · · , a1 ≥ a2 ≥ · · · ≥ 1.

The number of summands is unrestricted, repetition is
allowed, and the order of the summands is not taken into
account. The corresponding unrestricted partition func-
tion is denoted by p(n), and the summands are called
parts; see §26.9(i). For example, p(5) = 7 because there
are exactly seven partitions of 5: 5 = 4 + 1 = 3 + 2 =
3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

The number of partitions of n into at most k parts
is denoted by pk(n); again see §26.9(i).
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27.14(ii) Generating Functions and Recursions

Euler introduced the reciprocal of the infinite product

27.14.2 f (x) =
∞∏
m=1

(1− xm), |x| < 1,

as a generating function for the function p(n) defined in
§27.14(i):

27.14.3
1

f (x)
=
∞∑
n=0

p(n)xn,

with p(0) = 1. Euler’s pentagonal number theorem
states that

27.14.4

f (x) = 1− x− x2 + x5 + x7 − x12 − x15 + · · ·

= 1 +
∞∑
k=1

(−1)k
(
xω(k) + xω(−k)

)
,

where the exponents 1, 2, 5, 7, 12, 15, . . . are the pen-
tagonal numbers, defined by

27.14.5 ω(±k) = (3k2 ∓ k)/2, k = 1, 2, 3, . . . .
Multiplying the power series for f (x) with that for

1/ f (x) and equating coefficients, we obtain the recur-
sion formula
27.14.6

p(n) =
∞∑
k=1

(−1)k+1 (p(n− ω(k)) + p(n− ω(−k)))

= p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + · · · ,
where p(k) is defined to be 0 if k < 0. Logarithmic dif-
ferentiation of the generating function 1/ f (x) leads to
another recursion:

27.14.7 n p(n) =
n∑
k=1

σ1(n) p(n− k),

where σ1(n) is defined by (27.2.10) with α = 1.

27.14(iii) Asymptotic Formulas

These recursions can be used to calculate p(n), which
grows very rapidly. For example, p(10) = 42, p(100) =
1905 69292, and p(200) = 397 29990 29388. For large n

27.14.8 p(n) ∼ eK
√
n/(4n

√
3),

where K = π
√

2/3 (Hardy and Ramanujan (1918)).
Rademacher (1938) derives a convergent series that also
provides an asymptotic expansion for p(n):
27.14.9

p(n)

=
1

π
√

2

∞∑
k=1

√
kAk(n)

[
d

dt

sinh
(
K
√
t
/
k
)

√
t

]
t=n−(1/24)

,

where

27.14.10 Ak(n) =
k∑
h=1

(h,k)=1

exp
(
πis(h, k)− 2πin

h

k

)
,

and s(h, k) is a Dedekind sum given by

27.14.11 s(h, k) =
k−1∑
r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
.

27.14(iv) Relation to Modular Functions

Dedekind sums occur in the transformation theory of
the Dedekind modular function η(τ), defined by

27.14.12 η(τ) = eπiτ/12
∞∏
n=1

(1− e2πinτ ), =τ > 0.

This is related to the function f (x) in (27.14.2) by

27.14.13 η(τ) = eπiτ/12 f
(
e2πiτ

)
.

η(τ) satisfies the following functional equation: if
a, b, c, d are integers with ad− bc = 1 and c > 0, then

27.14.14 η

(
aτ + b

cτ + d

)
= ε(−i(cτ + d))

1
2 η(τ),

where ε = exp(πi(((a+ d)/(12c))− s(d, c))) and s(d, c)
is given by (27.14.11).

For further properties of the function η(τ) see
§§23.15–23.19.

27.14(v) Divisibility Properties

Ramanujan (1921) gives identities that imply divisibil-
ity properties of the partition function. For example,
the Ramanujan identity

27.14.15 5
(f
(
x5
)
)5

(f (x))6
=
∞∑
n=0

p(5n+ 4)xn

implies p(5n+ 4) ≡ 0 (mod 5). Ramanujan also found
that p(7n+ 5) ≡ 0 (mod 7) and p(11n+ 6) ≡ 0
(mod 11) for all n. After decades of nearly fruitless
searching for further congruences of this type, it was
believed that no others existed, until it was shown in
Ono (2000) that there are infinitely many. Ono proved
that for every prime q > 3 there are integers a and b
such that p(an+ b) ≡ 0 (mod q) for all n. For example,
p(1575 25693n+ 1 11247) ≡ 0 (mod 13).

27.14(vi) Ramanujan’s Tau Function

The discriminant function ∆(τ) is defined by

27.14.16 ∆(τ) = (2π)12(η(τ))24, =τ > 0,

and satisfies the functional equation

27.14.17 ∆
(
aτ + b

cτ + d

)
= (cτ + d)12 ∆(τ),

if a, b, c, d are integers with ad− bc = 1 and c > 0.
The 24th power of η(τ) in (27.14.12) with e2πiτ = x

is an infinite product that generates a power series in
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x with integer coefficients called Ramanujan’s tau func-
tion τ(n):

27.14.18 x
∞∏
n=1

(1− xn)24 =
∞∑
n=1

τ(n)xn, |x| < 1.

The tau function is multiplicative and satisfies the more
general relation:
27.14.19

τ(m) τ(n) =
∑

d|(m,n)

d11 τ
(mn
d2

)
, m,n = 1, 2, . . . .

Lehmer (1947) conjectures that τ(n) is never 0 and ver-
ifies this for all n < 21 49286 39999 by studying various
congruences satisfied by τ(n), for example:

27.14.20 τ(n) ≡ σ11(n) (mod 691).
For further information on partitions and generating

functions see Andrews (1976); also §§17.2–17.14, and
§§26.9–26.10.

Applications

27.15 Chinese Remainder Theorem

The Chinese remainder theorem states that a system of
congruences x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk),
always has a solution if the moduli are relatively prime
in pairs; the solution is unique (mod m), where m is the
product of the moduli.

This theorem is employed to increase efficiency in
calculating with large numbers by making use of smaller
numbers in most of the calculation. For example, sup-
pose a lengthy calculation involves many 10-digit inte-
gers. Most of the calculation can be done with five-digit
integers as follows. Choose four relatively prime mod-
uli m1,m2,m3, and m4 of five digits each, for example
216 − 3, 216 − 1, 216 + 1, and 216 + 3. Their prod-
uct m has 20 digits, twice the number of digits in the
data. By the Chinese remainder theorem each integer
in the data can be uniquely represented by its residues
(mod m1), (mod m2), (mod m3), and (mod m4), re-
spectively. Because each residue has no more than five
digits, the arithmetic can be performed efficiently on
these residues with respect to each of the moduli, yield-
ing answers a1 (mod m1), a2 (mod m2), a3 (mod m3),
and a4 (mod m4), where each aj has no more than five
digits. These numbers, in turn, are combined by the
Chinese remainder theorem to obtain the final result
(mod m), which is correct to 20 digits.

Even though the lengthy calculation is repeated four
times, once for each modulus, most of it only uses five-
digit integers and is accomplished quickly without over-
whelming the machine’s memory. Details of a machine

program describing the method together with typical
numerical results can be found in Newman (1967). See
also Apostol and Niven (1994, pp. 18–19).

27.16 Cryptography

Applications to cryptography rely on the disparity in
computer time required to find large primes and to fac-
tor large integers.

For example, a code maker chooses two large primes
p and q of about 100 decimal digits each. Procedures
for finding such primes require very little computer time.
The primes are kept secret but their product n = pq, a
200-digit number, is made public. For this reason, these
are often called public key codes. Messages are coded
by a method (described below) that requires only the
knowledge of n. But to decode, both factors p and q
must be known. With the most efficient computer tech-
niques devised to date (2009), factoring a 200-digit num-
ber may require billions of years on a single computer.
For this reason, the codes are considered unbreakable,
at least with the current state of knowledge on factoring
large numbers.

To code a message by this method, we replace each
letter by two digits, say A = 01, B = 02, . . . , Z = 26,
and divide the message into pieces of convenient length
smaller than the public value n = pq. Choose a prime
r that does not divide either p− 1 or q − 1. Like n, the
prime r is made public. To code a piece x, raise x to the
power r and reduce xr modulo n to obtain an integer y
(the coded form of x) between 1 and n. Thus, y ≡ xr

(mod n) and 1 ≤ y < n.
To decode, we must recover x from y. To do this,

let s denote the reciprocal of r modulo φ(n), so that
rs = 1 + t φ(n) for some integer t. (Here φ(n) is Euler’s
totient (§27.2).) By the Euler–Fermat theorem (27.2.8),
xφ(n) ≡ 1 (mod n); hence xt φ(n) ≡ 1 (mod n). But
ys ≡ xrs ≡ x1+t φ(n) ≡ x (mod n), so ys is the same
as x modulo n. In other words, to recover x from y we
simply raise y to the power s and reduce modulo n. If p
and q are known, s and ys can be determined (mod n)
by straightforward calculations that require only a few
minutes of machine time. But if p and q are not known,
the problem of recovering x from y seems insurmount-
able.

For further information see Apostol and Niven
(1994, p. 24), and for other applications to cryptography
see Menezes et al. (1997) and Schroeder (2006).

27.17 Other Applications

Reed et al. (1990, pp. 458–470) describes a number-
theoretic approach to Fourier analysis (called the arith-
metic Fourier transform) that uses the Möbius inversion
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(27.5.7) to increase efficiency in computing coefficients
of Fourier series.

Congruences are used in constructing perpetual cal-
endars, splicing telephone cables, scheduling round-
robin tournaments, devising systematic methods for
storing computer files, and generating pseudorandom
numbers. Rosen (2004, Chapters 5 and 10) describes
many of these applications. Apostol and Zuckerman
(1951) uses congruences to construct magic squares.

There are also applications of number theory in
many diverse areas, including physics, biology, chem-
istry, communications, and art. Schroeder (2006) de-
scribes many of these applications, including the de-
sign of concert hall ceilings to scatter sound into broad
lateral patterns for improved acoustic quality, precise
measurements of delays of radar echoes from Venus and
Mercury to confirm one of the relativistic effects pre-
dicted by Einstein’s theory of general relativity, and the
use of primes in creating artistic graphical designs.

Computation

27.18 Methods of Computation: Primes

An overview of methods for precise counting of the
number of primes not exceeding an arbitrary integer
x is given in Crandall and Pomerance (2005, §3.7).
T. Oliveira e Silva has calculated π(x) for x = 1023, us-
ing the combinatorial methods of Lagarias et al. (1985)
and Deléglise and Rivat (1996); see Oliveira e Silva
(2006). An analytic approach using a contour integral
of the Riemann zeta function (§25.2(i)) is discussed in
Borwein et al. (2000).

The Sieve of Eratosthenes (Crandall and Pomerance
(2005, §3.2)) generates a list of all primes below a given
bound. An alternative procedure is the binary quadratic
sieve of Atkin and Bernstein (Crandall and Pomerance
(2005, p. 170)).

For small values of n, primality is proven by showing
that n is not divisible by any prime not exceeding

√
n.

Two simple algorithms for proving primality re-
quire a knowledge of all or part of the factorization
of n − 1, n + 1, or both; see Crandall and Pomerance
(2005, §§4.1–4.2). These algorithms are used for test-
ing primality of Mersenne numbers, 2n− 1, and Fermat
numbers, 22n + 1.

The APR (Adleman–Pomerance–Rumely) algorithm
for primality testing is based on Jacobi sums. It runs in
time O

(
(log n)c log log log n

)
. Explanations are given in

Cohen (1993, §9.1) and Crandall and Pomerance (2005,
§4.4). A practical version is described in Bosma and
van der Hulst (1990).

The AKS (Agrawal–Kayal–Saxena) algorithm is the
first deterministic, polynomial-time, primality test.
That is to say, it runs in time O((log n)c) for some
constant c. An explanation is given in Crandall and
Pomerance (2005, §4.5).

The ECPP (Elliptic Curve Primality Proving) algo-
rithm handles primes with over 20,000 digits. Explana-
tions are given in Cohen (1993, §9.2) and Crandall and
Pomerance (2005, §7.6).

27.19 Methods of Computation:
Factorization

Techniques for factorization of integers fall into three
general classes: Deterministic algorithms, Type I prob-
abilistic algorithms whose expected running time de-
pends on the size of the smallest prime factor, and
Type II probabilistic algorithms whose expected running
time depends on the size of the number to be factored.

Deterministic algorithms are slow but are guaran-
teed to find the factorization within a known period of
time. Trial division is one example. Fermat’s algorithm
is another; see Bressoud (1989, §5.1).

Type I probabilistic algorithms include the Brent–
Pollard rho algorithm (also called Monte Carlo method),
the Pollard p − 1 algorithm, and the Elliptic Curve
Method (ecm). Descriptions of these algorithms are
given in Crandall and Pomerance (2005, §§5.2, 5.4, and
7.4). As of January 2009 the largest prime factors found
by these methods are a 19-digit prime for Brent–Pollard
rho, a 58-digit prime for Pollard p − 1, and a 67-digit
prime for ecm.

Type II probabilistic algorithms for factoring n rely
on finding a pseudo-random pair of integers (x, y) that
satisfy x2 ≡ y2 (mod n). These algorithms include the
Continued Fraction Algorithm (cfrac), the Multiple
Polynomial Quadratic Sieve (mpqs), the General Num-
ber Field Sieve (gnfs), and the Special Number Field
Sieve (snfs). A description of cfrac is given in Bres-
soud and Wagon (2000). Descriptions of mpqs, gnfs,
and snfs are given in Crandall and Pomerance (2005,
§§6.1 and 6.2). As of January 2009 the snfs holds the
record for the largest integer that has been factored by
a Type II probabilistic algorithm, a 307-digit compos-
ite integer. The snfs can be applied only to numbers
that are very close to a power of a very small base.
The largest composite numbers that have been factored
by other Type II probabilistic algorithms are a 63-digit
integer by cfrac, a 135-digit integer by mpqs, and a
182-digit integer by gnfs.

For further information see Crandall and Pomerance
(2005) and §26.22.

For current records online, see http://dlmf.nist.
gov/27.19.
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27.20 Methods of Computation: Other
Number-Theoretic Functions

To calculate a multiplicative function it suffices to de-
termine its values at the prime powers and then use
(27.3.2). For a completely multiplicative function we
use the values at the primes together with (27.3.10).
The recursion formulas (27.14.6) and (27.14.7) can be
used to calculate the partition function p(n). A similar
recursion formula obtained by differentiating (27.14.18)
can be used to calculate Ramanujan’s function τ(n), and
the values can be checked by the congruence (27.14.20).

For further information see Lehmer (1941, pp. 5–83)
and Lehmer (1943, pp. 483–492).

27.21 Tables

Lehmer (1914) lists all primes up to 100 06721. Bres-
soud and Wagon (2000, pp. 103–104) supplies tables and
graphs that compare π(x), x/log x , and li(x). Glaisher
(1940) contains four tables: Table I tabulates, for all
n ≤ 104: (a) the canonical factorization of n into pow-
ers of primes; (b) the Euler totient φ(n); (c) the divisor
function d(n); (d) the sum σ(n) of these divisors. Ta-
ble II lists all solutions n of the equation f (n) = m
for all m ≤ 2500, where f (n) is defined by (27.14.2).
Table III lists all solutions n ≤ 104 of the equation
d(n) = m, and Table IV lists all solutions n of the
equation σ(n) = m for all m ≤ 104. Table 24.7 of
Abramowitz and Stegun (1964) also lists the factoriza-
tions in Glaisher’s Table I(a); Table 24.6 lists φ(n), d(n),
and σ(n) for n ≤ 1000; Table 24.8 gives examples of
primitive roots of all primes ≤ 9973; Table 24.9 lists all
primes that are less than 1 00000.

The partition function p(n) is tabulated in Gupta
(1935, 1937), Watson (1937), and Gupta et al. (1958).
Tables of the Ramanujan function τ(n) are published
in Lehmer (1943) and Watson (1949). Lehmer (1941)
gives a comprehensive account of tables in the theory of
numbers, including virtually every table published from
1918 to 1941. Those published prior to 1918 are men-
tioned in Dickson (1919). The bibliography in Lehmer
(1941) gives references to the places in Dickson’s His-
tory where the older tables are cited. Lehmer (1941)
also has a section that supplies errata and corrections
to all tables cited.

No sequel to Lehmer (1941) exists to date, but many
tables of functions of number theory are included in Un-
published Mathematical Tables (1944).

27.22 Software

See http://dlmf.nist.gov/27.22.
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Notation

28.1 Special Notation

(For other notation see pp. xiv and 873.)

m,n integers.
x, y real variables.
z = x+ iy complex variable.
ν order of the Mathieu function or modified

Mathieu function. (When ν is an integer
it is often replaced by n.)

δ arbitrary small positive number.
a, q, h real or complex parameters of Mathieu’s

equation with q = h2.
primes unless indicated otherwise, derivatives

with respect to the argument

The main functions treated in this chapter are the
Mathieu functions

ceν(z, q), seν(z, q), fen(z, q), gen(z, q), meν(z, q),

and the modified Mathieu functions

Ceν(z, q), Seν(z, q), Fen(z, q), Gen(z, q),
Meν(z, q), M(j)

ν (z, h), Mc(j)
n (z, h), Ms(j)

n (z, h),
Ien(z, h), Ion(z, h), Ken(z, h), Kon(z, h).

The functions Mc(j)
n (z, h) and Ms(j)

n (z, h) are also known
as the radial Mathieu functions.

The eigenvalues of Mathieu’s equation are denoted
by

an(q), bn(q), λν(q).

The notation for the joining factors is

ge,n(h), go,n(h), fe,n(h), fo,n(h).

Alternative notations for the parameters a and q are
shown in Table 28.1.1.

Table 28.1.1: Notations for parameters in Mathieu’s
equation.

Reference a q

Erdélyi et al. (1955) h θ

Meixner and Schäfke (1954) λ h2

Moon and Spencer (1971) λ q

Strutt (1932) λ h2

Whittaker and Watson (1927) a 8q

Alternative notations for the functions are as follows.

Arscott (1964b) and McLachlan (1947)

Feyn(z, q) =
√

1
2πge,n(h) cen(0, q) Mc(2)

n (z, h),

Me(1,2)
n (z, q) =

√
1
2πge,n(h) cen(0, q) Mc(3,4)

n (z, h),

Geyn(z, q) =
√

1
2πgo,n(h) se′n(0, q) Ms(2)

n (z, h),

Ne(1,2)
n (z, q) =

√
1
2πgo,n(h) se′n(0, q) Ms(3,4)

n (z, h).

Arscott (1964b) also uses −iµ for ν.

Campbell (1955)

inn = fen, cehn = Cen, inhn = Fen,
jnn = gen, sehn = Sen, jnhn = Gen .

Abramowitz and Stegun (1964, Chapter 20)

Fν(z) = Meν(z, q).

NBS (1967)

With s = 4q,

Sen(s, z) =
cen(z, q)
cen(0, q)

, Son(s, z) =
sen(z, q)
se′n(0, q)

.

Stratton et al. (1941)

With c = 2
√
q,

Sen(c, z) =
cen(z, q)
cen(0, q)

, Son(c, z) =
sen(z, q)
se′n(0, q)

.

Zhang and Jin (1996)

The radial functions Mc(j)
n (z, h) and Ms(j)

n (z, h) are de-
noted by Mc(j)

n (z, q) and Ms(j)
n (z, q), respectively.

Mathieu Functions of Integer Order

28.2 Definitions and Basic Properties

28.2(i) Mathieu’s Equation

The standard form of Mathieu’s equation with param-
eters (a, q) is

28.2.1 w′′ + (a− 2q cos(2z))w = 0.

With ζ = sin2 z we obtain the algebraic form of Math-
ieu’s equation

28.2.2

ζ(1− ζ)w′′ + 1
2

(
1− 2ζ)w′ + 1

4 (a− 2q(1− 2ζ)
)
w = 0.

This equation has regular singularities at 0 and 1, both
with exponents 0 and 1

2 , and an irregular singular point
at∞. With ζ = cos z we obtain another algebraic form:

28.2.3 (1− ζ2)w′′ − ζw′ +
(
a+ 2q − 4qζ2

)
w = 0.
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28.2(ii) Basic Solutions wI, wII

Since (28.2.1) has no finite singularities its solutions are
entire functions of z. Furthermore, a solution w with
given initial constant values of w and w′ at a point z0

is an entire function of the three variables z, a, and q.
The following three transformations

28.2.4 z → −z; z → z ± π; z → z ± 1
2π, q → −q;

each leave (28.2.1) unchanged. (28.2.1) possesses a fun-
damental pair of solutions wI(z; a, q), wII(z; a, q) called
basic solutions with

28.2.5

[
wI(0; a, q) wII(0; a, q)
w′I(0; a, q) w′II(0; a, q)

]
=
[
1 0
0 1

]
.

wI(z; a, q) is even and wII(z; a, q) is odd. Other proper-
ties are as follows.

28.2.6 W {wI, wII} = 1,

28.2.7
wI(z ± π; a, q) = wI(π; a, q)wI(z; a, q)

± w′I(π; a, q)wII(z; a, q),

28.2.8
wII(z ± π; a, q) = ±wII(π; a, q)wI(z; a, q)

+ w′II(π; a, q)wII(z; a, q),

28.2.9 wI(π; a, q) = w′II(π; a, q),

28.2.10 wI(π; a, q)− 1 = 2w′I(
1
2π; a, q)wII( 1

2π; a, q),

28.2.11 wI(π; a, q) + 1 = 2wI( 1
2π; a, q)w′II(

1
2π; a, q),

28.2.12 w′I(π; a, q) = 2wI( 1
2π; a, q)w′I(

1
2π; a, q),

28.2.13 wII(π; a, q) = 2wII( 1
2π; a, q)w′II(

1
2π; a, q).

28.2(iii) Floquet’s Theorem and the
Characteristic Exponents

Let ν be any real or complex constant. Then Mathieu’s
equation (28.2.1) has a nontrivial solution w(z) such
that

28.2.14 w(z + π) = eπiνw(z),
iff eπiν is an eigenvalue of the matrix

28.2.15

[
wI(π; a, q) wII(π; a, q)
w′I(π; a, q) w′II(π; a, q)

]
.

Equivalently,

28.2.16 cos(πν) = wI(π; a, q) = wI(π; a,−q).
This is the characteristic equation of Mathieu’s equa-
tion (28.2.1). cos(πν) is an entire function of
a, q2. The solutions of (28.2.16) are given by ν =
π−1 arccos(wI(π; a, q)). If the inverse cosine takes its
principal value (§4.23(ii)), then ν = ν̂, where 0 ≤ <ν̂ ≤
1. The general solution of (28.2.16) is ν = ±ν̂ + 2n,
where n ∈ Z. Either ν̂ or ν is called a characteristic ex-
ponent of (28.2.1). If ν̂ = 0 or 1, or equivalently, ν = n,
then ν is a double root of the characteristic equation,
otherwise it is a simple root.

28.2(iv) Floquet Solutions

A solution with the pseudoperiodic property (28.2.14)
is called a Floquet solution with respect to ν. (28.2.9),
(28.2.16), and (28.2.7) give for each solution w(z) of
(28.2.1) the connection formula

28.2.17 w(z + π) + w(z − π) = 2 cos(πν)w(z).

Therefore a nontrivial solution w(z) is either a Floquet
solution with respect to ν, or w(z + π) − eiνπw(z) is a
Floquet solution with respect to −ν.

If q 6= 0, then for a given value of ν the correspond-
ing Floquet solution is unique, except for an arbitrary
constant factor (Theorem of Ince; see also 28.5(i)).

The Fourier series of a Floquet solution

28.2.18 w(z) =
∞∑

n=−∞
c2ne

i(ν+2n)z

converges absolutely and uniformly in compact subsets
of C. The coefficients c2n satisfy

28.2.19

qc2n+2 −
(
a− (ν + 2n)2

)
c2n + qc2n−2 = 0, n ∈ Z.

Conversely, a nontrivial solution c2n of (28.2.19) that
satisfies
28.2.20 lim

n→±∞
|c2n|1/|n| = 0

leads to a Floquet solution.

28.2(v) Eigenvalues an, bn

For given ν and q, equation (28.2.16) determines an in-
finite discrete set of values of a, the eigenvalues or char-
acteristic values, of Mathieu’s equation. When ν̂ = 0
or 1, the notation for the two sets of eigenvalues corre-
sponding to each ν̂ is shown in Table 28.2.1, together
with the boundary conditions of the associated eigen-
value problem. In Table 28.2.1 n = 0, 1, 2, . . . .

Table 28.2.1: Eigenvalues of Mathieu’s equation.

ν̂ Boundary Conditions Eigenvalues

0 w′(0) = w′( 1
2π) = 0 a2n(q)

1 w′(0) = w( 1
2π) = 0 a2n+1(q)

1 w(0) = w′( 1
2π) = 0 b2n+1(q)

0 w(0) = w( 1
2π) = 0 b2n+2(q)

An equivalent formulation is given by

28.2.21
w′I(

1
2π; a, q) = 0, a = a2n(q),

wI( 1
2π; a, q) = 0, a = a2n+1(q),

and

28.2.22
w′II(

1
2π; a, q) = 0, a = b2n+1(q),

wII( 1
2π; a, q) = 0, a = b2n+2(q),
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where n = 0, 1, 2, . . . . When q = 0,

28.2.23 an(0) = n2, n = 0, 1, 2, . . . ,

28.2.24 bn(0) = n2, n = 1, 2, 3, . . . .

Near q = 0, an(q) and bn(q) can be expanded in power
series in q (see §28.6(i)); elsewhere they are determined
by analytic continuation (see §28.7). For nonnegative
real values of q, see Figure 28.2.1.

Figure 28.2.1: Eigenvalues an(q), bn(q) of Mathieu’s
equation as functions of q for 0 ≤ q ≤ 10, n = 0, 1, 2, 3, 4
(a’s), n = 1, 2, 3, 4 (b’s).

Distribution

28.2.25

for q > 0: a0 < b1 < a1 < b2 < a2 < b3 < · · · ,
for q < 0: a0 < a1 < b1 < b2 < a2 < a3 < · · · .

Change of Sign of q

28.2.26 a2n(−q) = a2n(q),

28.2.27 a2n+1(−q) = b2n+1(q),

28.2.28 b2n+2(−q) = b2n+2(q).

28.2(vi) Eigenfunctions

Table 28.2.2 gives the notation for the eigenfunctions
corresponding to the eigenvalues in Table 28.2.1. Pe-
riod π means that the eigenfunction has the property
w(z + π) = w(z), whereas antiperiod π means that
w(z + π) = −w(z). Even parity means w(−z) = w(z),
and odd parity means w(−z) = −w(z).

Table 28.2.2: Eigenfunctions of Mathieu’s equation.

Eigenvalues Eigenfunctions Periodicity Parity

a2n(q) ce2n(z, q) Period π Even

a2n+1(q) ce2n+1(z, q) Antiperiod π Even

b2n+1(q) se2n+1(z, q) Antiperiod π Odd

b2n+2(q) se2n+2(z, q) Period π Odd

When q = 0,

28.2.29
ce0(z, 0) = 1/

√
2, cen(z, 0) = cos(nz),

sen(z, 0) = sin(nz), n = 1, 2, 3, . . . .
For simple roots q of the corresponding equations

(28.2.21) and (28.2.22), the functions are made unique
by the normalizations
28.2.30∫ 2π

0

(cen(x, q))2 dx = π,

∫ 2π

0

(sen(x, q))2 dx = π,

the ambiguity of sign being resolved by (28.2.29) when
q = 0 and by continuity for the other values of q.

The functions are orthogonal, that is,

28.2.31

∫ 2π

0

cem(x, q) cen(x, q) dx = 0, n 6= m,

28.2.32

∫ 2π

0

sem(x, q) sen(x, q) dx = 0, n 6= m,

28.2.33

∫ 2π

0

cem(x, q) sen(x, q) dx = 0.

For change of sign of q (compare (28.2.4))

28.2.34 ce2n(z,−q) = (−1)n ce2n

(
1
2π − z, q

)
,

28.2.35 ce2n+1(z,−q) = (−1)n se2n+1

(
1
2π − z, q

)
,

28.2.36 se2n+1(z,−q) = (−1)n ce2n+1

(
1
2π − z, q

)
,

28.2.37 se2n+2(z,−q) = (−1)n se2n+2

(
1
2π − z, q

)
.

For the connection with the basic solutions in
§28.2(ii),

28.2.38
cen(z, q)
cen(0, q)

= wI(z; an(q), q), n = 0, 1, . . . ,

28.2.39
sen(z, q)
se′n(0, q)

= wII(z; bn(q), q), n = 1, 2, . . . .
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28.3 Graphics

28.3(i) Line Graphs: Mathieu Functions with Fixed q and Variable x

Even π-Periodic Solutions

Figure 28.3.1: ce2n(x, 1) for 0 ≤ x ≤ π/2, n = 0, 1, 2, 3. Figure 28.3.2: ce2n(x, 10) for 0 ≤ x ≤ π/2, n = 0, 1, 2, 3.

Even π-Antiperiodic Solutions

Figure 28.3.3: ce2n+1(x, 1) for 0 ≤ x ≤ π/2, n =
0, 1, 2, 3.

Figure 28.3.4: ce2n+1(x, 10) for 0 ≤ x ≤ π/2, n =
0, 1, 2, 3.

Odd π-Antiperiodic Solutions

Figure 28.3.5: se2n+1(x, 1) for 0 ≤ x ≤ π/2, n =
0, 1, 2, 3.

Figure 28.3.6: se2n+1(x, 10) for 0 ≤ x ≤ π/2, n =
0, 1, 2, 3.
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Odd π-Periodic Solutions

Figure 28.3.7: se2n(x, 1) for 0 ≤ x ≤ π/2, n = 1, 2, 3, 4.

�

Figure 28.3.8: se2n(x, 10) for 0 ≤ x ≤ π/2, n = 1, 2, 3, 4.

For further graphs see Jahnke et al. (1966, pp. 264–265 and 268–275).

28.3(ii) Surfaces: Mathieu Functions with Variable x and q

Figure 28.3.9: ce0(x, q) for 0 ≤ x ≤ 2π, 0 ≤ q ≤ 10. Figure 28.3.10: se1(x, q) for 0 ≤ x ≤ 2π, 0 ≤ q ≤ 10.

For further graphics see http://dlmf.nist.gov/28.3.ii.

28.4 Fourier Series

28.4(i) Definitions

The Fourier series of the periodic Mathieu functions
converge absolutely and uniformly on all compact sets
in the z-plane. For n = 0, 1, 2, 3, . . . ,

28.4.1 ce2n(z, q) =
∞∑
m=0

A2n
2m(q) cos 2mz,

28.4.2 ce2n+1(z, q) =
∞∑
m=0

A2n+1
2m+1(q) cos (2m+ 1)z,

28.4.3 se2n+1(z, q) =
∞∑
m=0

B2n+1
2m+1(q) sin (2m+ 1)z,

28.4.4 se2n+2(z, q) =
∞∑
m=0

B2n+2
2m+2(q) sin (2m+ 2)z.

28.4(ii) Recurrence Relations

28.4.5

aA0 − qA2 = 0, (a− 4)A2 − q(2A0 +A4) = 0,

(a− 4m2)A2m − q(A2m−2 +A2m+2) = 0,

m = 2, 3, 4, . . . , a = a2n(q), A2m = A2n
2m(q).

28.4.6

(a− 1− q)A1 − qA3 = 0,(
a− (2m+ 1)2

)
A2m+1 − q(A2m−1 +A2m+3) = 0,

m = 1, 2, 3, . . . , a = a2n+1(q), A2m+1 = A2n+1
2m+1(q).

28.4.7

(a− 1 + q)B1 − qB3 = 0,(
a− (2m+ 1)2

)
B2m+1 − q(B2m−1 +B2m+3) = 0,

m = 1, 2, 3, . . . , a = b2n+1(q), B2m+1 = B2n+1
2m+1(q).
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28.4.8

(a− 4)B2 − qB4 = 0,
(a− 4m2)B2m − q(B2m−2 +B2m+2) = 0,

m = 2, 3, 4, . . . , a = b2n+2(q), B2m+2 = B2n+2
2m+2(q).

28.4(iii) Normalization

28.4.9 2
(
A2n

0 (q)
)2

+
∞∑
m=1

(
A2n

2m(q)
)2

= 1,

28.4.10

∞∑
m=0

(
A2n+1

2m+1(q)
)2

= 1,

28.4.11

∞∑
m=0

(
B2n+1

2m+1(q)
)2

= 1,

28.4.12

∞∑
m=0

(
B2n+2

2m+2(q)
)2

= 1.

Ambiguities in sign are resolved by (28.4.13)–(28.4.16)
when q = 0, and by continuity for the other values of q.

28.4(iv) Case q = 0

28.4.13
A0

0(0) = 1/
√

2, A2n
2n(0) = 1, n > 0,

A2n
2m(0) = 0, n 6= m,

28.4.14 A2n+1
2n+1(0) = 1, A2n+1

2m+1(0) = 0, n 6= m,

28.4.15 B2n+1
2n+1(0) = 1, B2n+1

2m+1(0) = 0, n 6= m,

28.4.16 B2n+2
2n+2(0) = 1, B2n+2

2m+2(0) = 0, n 6= m.

28.4(v) Change of Sign of q

28.4.17 A2n
2m(−q) = (−1)n−mA2n

2m(q),

28.4.18 B2n+2
2m+2(−q) = (−1)n−mB2n+2

2m+2(q),

28.4.19 A2n+1
2m+1(−q) = (−1)n−mB2n+1

2m+1(q),

28.4.20 B2n+1
2m+1(−q) = (−1)n−mA2n+1

2m+1(q).

28.4(vi) Behavior for Small q

For fixed s = 1, 2, 3, . . . and fixed m = 1, 2, 3, . . . ,

28.4.21 A0
2s(q) =

(
(−1)s2
(s!)2

(q
4

)s
+O

(
qs+2

))
A0

0(q),

28.4.22

Amm+2s(q)
Bmm+2s(q)

}
=
(

(−1)sm!
s!(m+ s)!

(q
4

)s
+O

(
qs+1

)){Amm(q),
Bmm(q),

28.4.23

Amm−2s(q)
Bmm−2s(q)

}
=
(

(m− s− 1)!
s!(m− 1)!

(q
4

)s
+O

(
qs+1

)){Amm(q),
Bmm(q).

For further terms and expansions see Meixner and
Schäfke (1954, p. 122) and McLachlan (1947, §3.33).

28.4(vii) Asymptotic Forms for Large m

As m→∞, with fixed q (6= 0) and fixed n,

28.4.24

A2n
2m(q)
A2n

0 (q)
=

(−1)m

(m!)2

(q
4

)m π
(
1 +O

(
m−1

))
wII( 1

2π; a2n(q), q)
,

28.4.25

A2n+1
2m+1(q)
A2n+1

1 (q)
=

(−1)m+1((
1
2

)
m+1

)2

(q
4

)m+1 2
(
1 +O

(
m−1

))
w′II(

1
2π; a2n+1(q), q)

,

28.4.26

B2n+1
2m+1(q)

B2n+1
1 (q)

=
(−1)m((
1
2

)
m+1

)2

(q
4

)m+1 2
(
1 +O

(
m−1

))
wI( 1

2π; b2n+1(q), q)
,

28.4.27

B2n+2
2m (q)

B2n+2
2 (q)

=
(−1)m

(m!)2

(q
4

)m qπ
(
1 +O

(
m−1

))
w′I(

1
2π; b2n+2(q), q)

.

For the basic solutions wI and wII see §28.2(ii).

28.5 Second Solutions fen, gen

28.5(i) Definitions

Theorem of Ince (1922)

If a nontrivial solution of Mathieu’s equation with q 6= 0
has period π or 2π, then any linearly independent solu-
tion cannot have either period.

Second solutions of (28.2.1) are given by

28.5.1 fen(z, q) = Cn(q) (z cen(z, q) + fn(z, q)) ,

when a = an(q), n = 0, 1, 2, . . . , and by

28.5.2 gen(z, q) = Sn(q) (z sen(z, q) + gn(z, q)) ,

when a = bn(q), n = 1, 2, 3, . . . . For m = 0, 1, 2, . . . , we
have
28.5.3

f2m(z, q) π-periodic, odd,
f2m+1(z, q) π-antiperiodic, odd,

and
28.5.4

g2m+1(z, q) π-antiperiodic, even,
g2m+2(z, q) π-periodic, even;

compare §28.2(vi). The functions fn(z, q), gn(z, q) are
unique.

The factors Cn(q) and Sn(q) in (28.5.1) and (28.5.2)
are normalized so that

28.5.5

(Cn(q))2

∫ 2π

0

(fn(x, q))2 dx

= (Sn(q))2

∫ 2π

0

(gn(x, q))2 dx = π.

As q → 0 with n 6= 0, Cn(q) → 0, Sn(q) → 0,
Cn(q)fn(z, q) → sinnz, and Sn(q)gn(z, q) → cosnz.
This determines the signs of Cn(q) and Sn(q). (Other
normalizations for Cn(q) and Sn(q) can be found in
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the literature, but most formulas—including connec-
tion formulas—are unaffected since fen(z, q)/Cn(q) and
gen(z, q)/Sn(q) are invariant.)

28.5.6

C2m(−q) = C2m(q),
C2m+1(−q) = S2m+1(q),
S2m+2(−q) = S2m+2(q).

For q = 0,

28.5.7
fe0(z, 0) = z, fen(z, 0) = sinnz,
gen(z, 0) = cosnz, n = 1, 2, 3, . . . ;

compare (28.2.29).
As a consequence of the factor z on the right-hand

sides of (28.5.1), (28.5.2), all solutions of Mathieu’s

equation that are linearly independent of the periodic
solutions are unbounded as z → ±∞ on R.

Wronskians

28.5.8 W {cen, fen} = cen(0, q) fe′n(0, q),

28.5.9 W {sen, gen} = − se′n(0, q) gen(0, q).

See (28.22.12) for fe′n(0, q) and gen(0, q).
For further information on Cn(q), Sn(q), and expan-

sions of fn(z, q), gn(z, q) in Fourier series or in series of
cen, sen functions, see McLachlan (1947, Chapter VII)
or Meixner and Schäfke (1954, §2.72).

28.5(ii) Graphics: Line Graphs of Second Solutions of Mathieu’s Equation

Odd Second Solutions

Figure 28.5.1: fe0(x, 0.5) for 0 ≤ x ≤ 2π and (for com-
parison) ce0(x, 0.5).

Figure 28.5.2: fe0(x, 1) for 0 ≤ x ≤ 2π and (for compar-
ison) ce0(x, 1).

Figure 28.5.3: fe1(x, 0.5) for 0 ≤ x ≤ 2π and (for com-
parison) ce1(x, 0.5).

Figure 28.5.4: fe1(x, 1) for 0 ≤ x ≤ 2π and (for compar-
ison) ce1(x, 1).
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Even Second Solutions

�

Figure 28.5.5: ge1(x, 0.5) for 0 ≤ x ≤ 2π and (for com-
parison) se1(x, 0.5).

Figure 28.5.6: ge1(x, 1) for 0 ≤ x ≤ 2π and (for compar-
ison) se1(x, 1).

28.6 Expansions for Small q

28.6(i) Eigenvalues

Leading terms of the power series for am(q) and bm(q) for m ≤ 6 are:

28.6.1 a0(q) = − 1
2q

2 + 7
128q

4 − 29
2304q

6 + 68687
188 74368q

8 + · · · ,

28.6.2 a1(q) = 1 + q − 1
8q

2 − 1
64q

3 − 1
1536q

4 + 11
36864q

5 + 49
5 89824q

6 + 55
94 37184q

7 − 83
353 89440q

8 + · · · ,

28.6.3 b1(q) = 1− q − 1
8q

2 + 1
64q

3 − 1
1536q

4 − 11
36864q

5 + 49
5 89824q

6 − 55
94 37184q

7 − 83
353 89440q

8 + · · · ,

28.6.4 a2(q) = 4 + 5
12q

2 − 763
13824q

4 + 10 02401
796 26240q

6 − 16690 68401
45 86471 42400q

8 + · · · ,

28.6.5 b2(q) = 4− 1
12q

2 + 5
13824q

4 − 289
796 26240q

6 + 21391
45 86471 42400q

8 + · · · ,

28.6.6 a3(q) = 9 + 1
16q

2 + 1
64q

3 + 13
20480q

4 − 5
16384q

5 − 1961
235 92960q

6 − 609
1048 57600q

7 + · · · ,

28.6.7 b3(q) = 9 + 1
16q

2 − 1
64q

3 + 13
20480q

4 + 5
16384q

5 − 1961
235 92960q

6 + 609
1048 57600q

7 + · · · ,

28.6.8 a4(q) = 16 + 1
30q

2 + 433
8 64000q

4 − 5701
27216 00000q

6 + · · · ,

28.6.9 b4(q) = 16 + 1
30q

2 − 317
8 64000q

4 + 10049
27216 00000q

6 + · · · ,

28.6.10 a5(q) = 25 + 1
48q

2 + 11
7 74144q

4 + 1
1 47456q

5 + 37
8918 13888q

6 + · · · ,

28.6.11 b5(q) = 25 + 1
48q

2 + 11
7 74144q

4 − 1
1 47456q

5 + 37
8918 13888q

6 + · · · ,

28.6.12 a6(q) = 36 + 1
70q

2 + 187
439 04000q

4 + 67 43617
9293 59872 00000q

6 + · · · ,

28.6.13 b6(q) = 36 + 1
70q

2 + 187
439 04000q

4 − 58 61633
9293 59872 00000q

6 + · · · .
Leading terms of the of the power series for m = 7, 8, 9, . . . are:

28.6.14
am(q)
bm(q)

}
= m2 +

1
2(m2 − 1)

q2 +
5m2 + 7

32(m2 − 1)3(m2 − 4)
q4 +

9m4 + 58m2 + 29
64(m2 − 1)5(m2 − 4)(m2 − 9)

q6 + · · · .

The coefficients of the power series of a2n(q), b2n(q) and also a2n+1(q), b2n+1(q) are the same until the terms in
q2n−2 and q2n, respectively. Then

28.6.15 am(q)− bm(q) =
2qm

(2m−1(m− 1)!)2

(
1 +O

(
q2
))
.

Higher coefficients in the foregoing series can be found by equating coefficients in the following continued-fraction
equations:
28.6.16

a−(2n)2−
q2

a− (2n− 2)2 −
q2

a− (2n− 4)2−
· · ·

q2

a− 22 −
2q2

a
=−

q2

(2n+ 2)2 − a−
q2

(2n+ 4)2 − a−
· · · , a = a2n(q),
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28.6.17

a− (2n+ 1)2 −
q2

a− (2n− 1)2−
· · ·

q2

a− 32 −
q2

a− 12 − q
= −

q2

(2n+ 3)2 − a−
q2

(2n+ 5)2 − a−
· · · , a = a2n+1(q),

28.6.18

a− (2n+ 1)2 −
q2

a− (2n− 1)2−
· · ·

q2

a− 32 −
q2

a− 12 + q
= −

q2

(2n+ 3)2 − a−
q2

(2n+ 5)2 − a−
· · · , a = b2n+1(q),

28.6.19

a− (2n+ 2)2 −
q2

a− (2n)2 −
q2

a− (2n− 2)2−
· · ·

q2

a− 22
= −

q2

(2n+ 4)2 − a−
q2

(2n+ 6)2 − a−
· · · , a = b2n+2(q).

Numerical values of the radii of convergence ρ(j)
n of the power series (28.6.1)–(28.6.14) for n = 0, 1, . . . , 9 are given

in Table 28.6.1. Here j = 1 for a2n(q), j = 2 for b2n+2(q), and j = 3 for a2n+1(q) and b2n+1(q). (Table 28.6.1 is
reproduced from Meixner et al. (1980, §2.4).)

Table 28.6.1: Radii of convergence for power-series expansions of eigenvalues of Mathieu’s equation.

n ρ
(1)
n ρ

(2)
n ρ

(3)
n

0 or 1 1.46876 86138 6.92895 47588 3.76995 74940

2 7.26814 68935 16.80308 98254 11.27098 52655

3 16.47116 58923 30.09677 28376 22.85524 71216

4 30.42738 20960 48.13638 18593 38.52292 50099

5 47.80596 57026 69.59879 32769 58.27413 84472

6 69.92930 51764 95.80595 67052 82.10894 36067

7 95.47527 27072 125.43541 1314 110.02736 9210

8 125.76627 89677 159.81025 4642 142.02943 1279

9 159.47921 26694 197.60667 8692 178.11513 940

It is conjectured that for large n, the radii increase in proportion to the square of the eigenvalue number n; see
Meixner et al. (1980, §2.4). It is known that

28.6.20 lim inf
n→∞

ρ
(j)
n

n2
≥ kk′(K(k))2 = 2.04183 4 . . . ,

where k is the unique root of the equation 2E(k) = K(k) in the interval (0, 1), and k′ =
√

1− k2. For E(k) and
K(k) see §19.2(ii).

28.6(ii) Functions cen and sen

Leading terms of the power series for the normalized functions are:

28.6.21 2 1/2 ce0(z, q) = 1− 1
2q cos 2z + 1

32q
2 (cos 4z − 2)− 1

128q
3
(

1
9 cos 6z − 11 cos 2z

)
+ · · · ,

28.6.22
ce1(z, q) = cos z − 1

8q cos 3z
+ 1

128q
2
(

2
3 cos 5z − 2 cos 3z − cos z

)
− 1

1024q
3
(

1
9 cos 7z − 8

9 cos 5z − 1
3 cos 3z + 2 cos z

)
+ · · · ,

28.6.23
se1(z, q) = sin z − 1

8q sin 3z
+ 1

128q
2
(

2
3 sin 5z + 2 sin 3z − sin z

)
− 1

1024q
3
(

1
9 sin 7z + 8

9 sin 5z − 1
3 sin 3z − 2 sin z

)
+ · · · ,

28.6.24 ce2(z, q) = cos 2z − 1
4q
(

1
3 cos 4z − 1

)
+ 1

128q
2
(

1
3 cos 6z − 76

9 cos 2z
)

+ · · · ,

28.6.25 se2(z, q) = sin 2z − 1
12q sin 4z + 1

128q
2
(

1
3 sin 6z − 4

9 sin 2z
)

+ · · · .
For m = 3, 4, 5, . . . ,

28.6.26

cem(z, q) = cosmz − q

4

(
1

m+ 1
cos (m+ 2)z − 1

m− 1
cos (m− 2)z

)
+
q2

32

(
1

(m+ 1)(m+ 2)
cos (m+ 4)z +

1
(m− 1)(m− 2)

cos (m− 4)z − 2(m2 + 1)
(m2 − 1)2

cosmz
)

+ · · · .
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For the corresponding expansions of sem(z, q) for
m = 3, 4, 5, . . . change cos to sin everywhere in
(28.6.26).

The radii of convergence of the series (28.6.21)–
(28.6.26) are the same as the radii of the corresponding
series for an(q) and bn(q); compare Table 28.6.1 and
(28.6.20).

28.7 Analytic Continuation of Eigenvalues

As functions of q, an(q) and bn(q) can be continued
analytically in the complex q-plane. The only singu-
larities are algebraic branch points, with an(q) and
bn(q) finite at these points. The number of branch
points is infinite, but countable, and there are no fi-
nite limit points. In consequence, the functions can be
defined uniquely by introducing suitable cuts in the q-
plane. See Meixner and Schäfke (1954, §2.22). The
branch points are called the exceptional values, and the
other points normal values. The normal values are sim-
ple roots of the corresponding equations (28.2.21) and
(28.2.22). All real values of q are normal values. To
4D the first branch points between a0(q) and a2(q) are
at q0 = ±i1.4688 with a0(q0) = a2(q0) = 2.0886, and
between b2(q) and b4(q) they are at q1 = ±i6.9289 with
b2(q1) = b4(q1) = 11.1904. For real q with |q| < |q0|,
a0(iq) and a2(iq) are real-valued, whereas for real q with
|q| > |q0|, a0(iq) and a2(iq) are complex conjugates.
See also Mulholland and Goldstein (1929), Bouwkamp
(1948), Meixner et al. (1980), Hunter and Guerrieri
(1981), Hunter (1981), and Shivakumar and Xue (1999).

For a visualization of the first branch point of a0(iq̂)
and a2(iq̂) see Figure 28.7.1.

Figure 28.7.1: Branch point of the eigenvalues a0(iq̂)
and a2(iq̂): 0 ≤ q̂ ≤ 2.5.

All the a2n(q), n = 0, 1, 2, . . . , can be regarded as be-
longing to a complete analytic function (in the large).
Therefore w′I(

1
2π; a, q) is irreducible, in the sense that it

cannot be decomposed into a product of entire functions

that contain its zeros; see Meixner et al. (1980, p. 88).
Analogous statements hold for a2n+1(q), b2n+1(q), and
b2n+2(q), also for n = 0, 1, 2, . . . . Closely connected
with the preceding statements, we have

28.7.1

∞∑
n=0

(
a2n(q)− (2n)2

)
= 0,

28.7.2

∞∑
n=0

(
a2n+1(q)− (2n+ 1)2

)
= q,

28.7.3

∞∑
n=0

(
b2n+1(q)− (2n+ 1)2

)
= −q,

28.7.4

∞∑
n=0

(
b2n+2(q)− (2n+ 2)2

)
= 0.

28.8 Asymptotic Expansions for Large q

28.8(i) Eigenvalues

Denote h =
√
q and s = 2m+1. Then as h→ +∞ with

m = 0, 1, 2, . . . ,
28.8.1

am
(
h2
)

bm+1

(
h2
)} ∼ −2h2 + 2sh− 1

8
(s2 + 1)− 1

27h
(s3 + 3s)

− 1
212h2

(5s4 + 34s2 + 9)

− 1
217h3

(33s5 + 410s3 + 405s)

− 1
220h4

(63s6 + 1260s4 + 2943s2 + 486)

− 1
225h5

(527s7 + 15617s5 + 69001s3

+ 41607s) + · · · .
For error estimates see Kurz (1979), and for graphical
interpretation see Figure 28.2.1. Also,

28.8.2

bm+1

(
h2
)
− am

(
h2
)

=
24m+5

m!

(
2
π

)1/2

hm+( 3/2 )e−4h

×
(

1− 6m2 + 14m+ 7
32h

+O

(
1
h2

))
.

28.8(ii) Sips’ Expansions

Let x = 1
2π + λh− 1/4 , where λ is a real constant

such that |λ| < 2 1/4 . Also let ξ = 2
√
h cosx and

Dm(ξ) = e− ξ
2/4 Hem(ξ) (§18.3). Then as h→ +∞

28.8.3

cem
(
x, h2

)
= Ĉm (Um(ξ) + Vm(ξ)) ,

sem+1

(
x, h2

)
sinx

= Ŝm (Um(ξ)− Vm(ξ)) ,

where
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28.8.4

Um(ξ) ∼ Dm(ξ)− 1
26h

(
Dm+4(ξ)− 4!

(
m

4

)
Dm−4(ξ)

)
+

1
213h2

(
Dm+8(ξ)− 25(m+ 2)Dm+4(ξ) + 4! 25(m− 1)

(
m

4

)
Dm−4(ξ) + 8!

(
m

8

)
Dm−8(ξ)

)
+ · · · ,

28.8.5

Vm(ξ) ∼ 1
24h

(
−Dm+2(ξ)−m(m− 1)Dm−2(ξ)

)
+

1
210h2

(
Dm+6(ξ) + (m2 − 25m− 36)Dm+2(ξ)

−m(m− 1)(m2 + 27m− 10)Dm−2(ξ) + 6!
(
m

6

)
Dm−6(ξ)

)
+ · · · ,

and

28.8.6 Ĉm ∼
(

πh

2(m!)2

)1/4 (
1 +

2m+ 1
8h

+
m4 + 2m3 + 263m2 + 262m+ 108

2048h2
+ · · ·

)− 1/2

,

28.8.7 Ŝm ∼
(

πh

2(m!)2

)1/4 (
1− 2m+ 1

8h
+
m4 + 2m3 − 121m2 − 122m− 84

2048h2
+ · · ·

)− 1/2

.

These results are derived formally in Sips (1949, 1959, 1965). See also Meixner and Schäfke (1954, §2.84).

28.8(iii) Goldstein’s Expansions

Let x = 1
2π − µh

− 1/4 , where µ is a constant such that µ ≥ 1, and s = 2m+ 1. Then as h→ +∞

28.8.8

cem
(
x, h2

)
cem(0, h2)

=
2m−( 1/2 )

σm

(
W+
m(x)(Pm(x)−Qm(x)) +W−m(x)(Pm(x) +Qm(x))

)
,

sem+1

(
x, h2

)
se′m+1(0, h2)

=
2m−( 1/2 )

τm+1

(
W+
m(x)(Pm(x)−Qm(x))−W−m(x)(Pm(x) +Qm(x))

)
,

where

28.8.9 W±m(x) =
e±2h sin x

(cosx)m+1

{(
cos
(

1
2x+ 1

4π
))2m+1

,(
sin
(

1
2x+ 1

4π
))2m+1

,

and
28.8.10 σm ∼ 1 +

s

23h
+

4s2 + 3
27h2

+
19s3 + 59s

211h3
+ · · · , τm+1 ∼ 2h− 1

4
s− 2s2 + 3

26h
− 7s3 + 47s

210h2
− · · · ,

28.8.11 Pm(x) ∼ 1 +
s

23h cos2 x
+

1
h2

(
s4 + 86s2 + 105

211 cos4 x
− s4 + 22s2 + 57

211 cos2 x

)
+ · · · ,

28.8.12 Qm(x) ∼ sinx
cos2 x

(
1

25h
(s2 + 3) +

1
29h2

(
s3 + 3s+

4s3 + 44s
cos2 x

))
+ · · · .

28.8(iv) Uniform Approximations

Barrett’s Expansions

Barrett (1981) supplies asymptotic approximations for
numerically satisfactory pairs of solutions of both Math-
ieu’s equation (28.2.1) and the modified Mathieu equa-
tion (28.20.1). The approximations apply when the pa-
rameters a and q are real and large, and are uniform
with respect to various regions in the z-plane. The
approximants are elementary functions, Airy functions,
Bessel functions, and parabolic cylinder functions; com-
pare §2.8. It is stated that corresponding uniform ap-
proximations can be obtained for other solutions, in-
cluding the eigensolutions, of the differential equations

by application of the results, but these approximations
are not included.

Dunster’s Approximations

Dunster (1994a) supplies uniform asymptotic approxi-
mations for numerically satisfactory pairs of solutions
of Mathieu’s equation (28.2.1). These approximations
apply when q and a are real and q →∞. They are uni-
form with respect to a when −2q ≤ a ≤ (2− δ)q, where
δ is an arbitrary constant such that 0 < δ < 4, and
also with respect to z in the semi-infinite strip given by
0 ≤ <z ≤ π and =z ≥ 0.

The approximations are expressed in terms of Whit-
taker functions Wκ,µ(z) and Mκ,µ(z) with µ = 1

4 ; com-
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pare §2.8(vi). They are derived by rigorous analysis
and accompanied by strict and realistic error bounds.
With additional restrictions on z, uniform asymptotic
approximations for solutions of (28.2.1) and (28.20.1)
are also obtained in terms of elementary functions by re-
expansions of the Whittaker functions; compare §2.8(ii).

Subsequently the asymptotic solutions involving ei-
ther elementary or Whittaker functions are identified in
terms of the Floquet solutions meν(z, q) (§28.12(ii)) and
modified Mathieu functions M(j)

ν (z, h) (§28.20(iii)).
For related results see Langer (1934) and Sharples

(1967, 1971).

28.9 Zeros

For real q each of the functions ce2n(z, q), se2n+1(z, q),
ce2n+1(z, q), and se2n+2(z, q) has exactly n zeros in
0 < z < 1

2π. They are continuous in q. For q → ∞
the zeros of ce2n(z, q) and se2n+1(z, q) approach asymp-
totically the zeros of He2n

(
q1/4(π − 2z)

)
, and the zeros

of ce2n+1(z, q) and se2n+2(z, q) approach asymptotically
the zeros of He2n+1

(
q1/4(π − 2z)

)
. Here Hen(z) de-

notes the Hermite polynomial of degree n (§18.3). Fur-
thermore, for q > 0 cem(z, q) and sem(z, q) also have
purely imaginary zeros that correspond uniquely to the
purely imaginary z-zeros of Jm

(
2
√
q cos z

)
(§10.21(i)),

and they are asymptotically equal as q → 0 and |=z| →
∞. There are no zeros within the strip |<z| < 1

2π other
than those on the real and imaginary axes.

For further details see McLachlan (1947, pp. 234–
239) and Meixner and Schäfke (1954, §§2.331, 2.8, 2.81,
and 2.85).

28.10 Integral Equations

28.10(i) Equations with Elementary Kernels

With the notation of §28.4 for Fourier coefficients,

28.10.1

2
π

∫ π/2

0

cos(2h cos z cos t) ce2n

(
t, h2

)
dt

=
A2n

0 (h2)
ce2n

(
1
2π, h

2
) ce2n

(
z, h2

)
,

28.10.2

2
π

∫ π/2

0

cosh(2h sin z sin t) ce2n

(
t, h2

)
dt

=
A2n

0 (h2)
ce2n(0, h2)

ce2n

(
z, h2

)
,

28.10.3

2
π

∫ π/2

0

sin(2h cos z cos t) ce2n+1

(
t, h2

)
dt

= − hA2n+1
1 (h2)

ce′2n+1

(
1
2π, h

2
) ce2n+1

(
z, h2

)
,

28.10.4

2
π

∫ π/2

0

cos z cos t cosh(2h sin z sin t) ce2n+1

(
t, h2

)
dt

=
A2n+1

1 (h2)
2 ce2n+1(0, h2)

ce2n+1

(
z, h2

)
,

28.10.5

2
π

∫ π/2

0

sinh(2h sin z sin t) se2n+1

(
t, h2

)
dt

=
hB2n+1

1 (h2)
se′2n+1(0, h2)

se2n+1

(
z, h2

)
,

28.10.6

2
π

∫ π/2

0

sin z sin t cos(2h cos z cos t) se2n+1

(
t, h2

)
dt

=
B2n+1

1 (h2)
2 se2n+1

(
1
2π, h

2
) se2n+1

(
z, h2

)
,

28.10.7

2
π

∫ π/2

0

sin z sin t sin(2h cos z cos t) se2n+2

(
t, h2

)
dt

= − hB2n+2
2 (h2)

2 se′2n+2

(
1
2π, h

2
) se2n+2

(
z, h2

)
,

28.10.8

2
π

∫ π/2

0

cos z cos t sinh(2h sin z sin t) se2n+2

(
t, h2

)
dt

=
hB2n+2

2 (h2)
2 se′2n+2(0, h2)

se2n+2

(
z, h2

)
.

28.10(ii) Equations with Bessel-Function
Kernels

28.10.9

∫ π/2

0

J0

(
2
√
q(cos2 τ − sin2 ζ)

)
ce2n(τ, q) dτ

= wII( 1
2π; a2n(q), q) ce2n(ζ, q),

28.10.10

∫ π

0

J0(2
√
q(cos τ + cos ζ)) cen(τ, q) dτ

= wII(π; an(q), q) cen(ζ, q).

28.10(iii) Further Equations

See §28.28. See also Prudnikov et al. (1990, pp. 359–
368), Erdélyi et al. (1955, p. 115), and Gradshteyn and
Ryzhik (2000, pp. 755–759). For relations with variable
boundaries see Volkmer (1983).
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28.11 Expansions in Series of Mathieu
Functions

Let f(z) be a 2π-periodic function that is analytic in an
open doubly-infinite strip S that contains the real axis,
and q be a normal value (§28.7). Then
28.11.1

f(z) = α0 ce0(z, q) +
∞∑
n=1

(αn cen(z, q) + βn sen(z, q)) ,

where

28.11.2

αn =
1
π

∫ 2π

0

f(x) cen(x, q) dx,

βn =
1
π

∫ 2π

0

f(x) sen(x, q) dx.

The series (28.11.1) converges absolutely and uniformly
on any compact subset of the strip S. See Meixner and
Schäfke (1954, §2.28), and for expansions in the case
of the exceptional values of q see Meixner et al. (1980,
p. 33).

Examples

With the notation of §28.4,

28.11.3 1 = 2
∞∑
n=0

A2n
0 (q) ce2n(z, q),

28.11.4 cos 2mz =
∞∑
n=0

A2n
2m(q) ce2n(z, q), m 6= 0,

28.11.5 cos (2m+ 1)z =
∞∑
n=0

A2n+1
2m+1(q) ce2n+1(z, q),

28.11.6 sin (2m+ 1)z =
∞∑
n=0

B2n+1
2m+1(q) se2n+1(z, q),

28.11.7 sin (2m+ 2)z =
∞∑
n=0

B2n+2
2m+2(q) se2n+2(z, q).

Mathieu Functions of Noninteger
Order

28.12 Definitions and Basic Properties

28.12(i) Eigenvalues λν+2n(q)

The introduction to the eigenvalues and the functions
of general order proceeds as in §§28.2(i), 28.2(ii), and
28.2(iii), except that we now restrict ν̂ 6= 0, 1; equiva-
lently ν 6= n. In consequence, for the Floquet solutions
w(z) the factor eπiν in (28.2.14) is no longer ±1.

For given ν (or cos(νπ)) and q, equation (28.2.16)
determines an infinite discrete set of values of a, de-
noted by λν+2n(q), n = 0,±1,±2, . . . . When q = 0
Equation (28.2.16) has simple roots, given by

28.12.1 λν+2n(0) = (ν + 2n)2.

For other values of q, λν+2n(q) is determined by ana-
lytic continuation. Without loss of generality, from now
on we replace ν + 2n by ν.

For change of signs of ν and q,

28.12.2 λν(−q) = λν(q) = λ−ν(q).

As in §28.7 values of q for which (28.2.16) has simple
roots λ are called normal values with respect to ν. For
real values of ν and q all the λν(q) are real, and q is
normal. For graphical interpretation see Figure 28.13.1.
To complete the definition we require

28.12.3 λm(q) =

{
am(q), m = 0, 1, . . . ,
b−m(q), m = −1,−2, . . . .

As a function of ν with fixed q (6= 0), λν(q) is discon-
tinuous at ν = ±1,±2, . . . . See Figure 28.13.2.

28.12(ii) Eigenfunctions meν(z, q)

Two eigenfunctions correspond to each eigenvalue a =
λν(q). The Floquet solution with respect to ν is denoted
by meν(z, q). For q = 0,

28.12.4 meν(z, 0) = eiνz.

The other eigenfunction is meν(−z, q), a Floquet so-
lution with respect to −ν with a = λν(q). If q is a
normal value of the corresponding equation (28.2.16),
then these functions are uniquely determined as ana-
lytic functions of z and q by the normalization

28.12.5

∫ π

0

meν(x, q) meν(−x, q) dx = π.

They have the following pseudoperiodic and orthogonal-
ity properties:

28.12.6 meν(z + π, q) = eπiν meν(z, q),

28.12.7∫ π

0

meν+2m(x, q) meν+2n(−x, q) dx = 0, m 6= n.

For changes of sign of ν, q, and z,

28.12.8 me−ν(z, q) = meν(−z, q),

28.12.9 meν(z,−q) = eiνπ/2 meν
(
z − 1

2π, q
)
,

28.12.10 meν(z, q) = meν̄(−z̄, q̄).
(28.12.10) is not valid for cuts on the real axis in the
q-plane for special complex values of ν; but it remains
valid for small q; compare §28.7.
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To complete the definitions of the meν functions we
set

28.12.11
men(z, q) =

√
2 cen(z, q), n = 0, 1, 2, . . . ,

me−n(z, q) = −
√

2i sen(z, q), n = 1, 2, . . . ;

compare (28.12.3). However, these functions are not the
limiting values of me±ν(z, q) as ν → n (6= 0).

28.12(iii) Functions ceν(z, q), seν(z, q), when
ν /∈ Z

28.12.12 ceν(z, q) = 1
2 (meν(z, q) + meν(−z, q)) ,

28.12.13 seν(z, q) = − 1
2 i (meν(z, q)−meν(−z, q)) .

These functions are real-valued for real ν, real q, and
z = x, whereas meν(x, q) is complex. When ν = s/m is
a rational number, but not an integer, all solutions of
Mathieu’s equation are periodic with period 2mπ.

For change of signs of ν and z,

28.12.14 ceν(z, q) = ceν(−z, q) = ce−ν(z, q),

28.12.15 seν(z, q) = − seν(−z, q) = − se−ν(z, q).

Again, the limiting values of ceν(z, q) and seν(z, q) as
ν → n (6= 0) are not the functions cen(z, q) and sen(z, q)
defined in §28.2(vi). Compare e.g. Figure 28.13.3.

28.13 Graphics

28.13(i) Eigenvalues λν(q) for General ν



Figure 28.13.1: λν(q) as a function of q for ν = 0.5(1)3.5
and an(q), bn(q) for n = 0, 1, 2, 3, 4 (a’s), n = 1, 2, 3, 4
(b’s). (Compare Figure 28.2.1.)

Figure 28.13.2: λν(q) for −2 < ν < 2, 0 ≤ q ≤ 10.

28.13(ii) Solutions ceν(x, q), seν(x, q), and meν(x, q) for General ν

Figure 28.13.3: ceν(x, 1) for −1 < ν < 1, 0 ≤ x ≤ 2π. Figure 28.13.4: seν(x, 1) for 0 < ν < 1, 0 ≤ x ≤ 2π.
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Figure 28.13.5: meiµ(x, 1) for 0.1 ≤ µ ≤ 0.4, −π ≤ x ≤
π.

28.14 Fourier Series

The Fourier series

28.14.1 meν(z, q) =
∞∑

m=−∞
cν2m(q)ei(ν+2m)z,

28.14.2 ceν(z, q) =
∞∑

m=−∞
cν2m(q) cos (ν + 2m)z,

28.14.3 seν(z, q) =
∞∑

m=−∞
cν2m(q) sin (ν + 2m)z,

converge absolutely and uniformly on all compact sets
in the z-plane. The coefficients satisfy

28.14.4
qc2m+2 −

(
a− (ν + 2m)2

)
c2m + qc2m−2 = 0,

a = λν(q), c2m = cν2m(q),

and the normalization relation

28.14.5

∞∑
m=−∞

(cν2m(q))2 = 1;

compare (28.12.5). Ambiguities in sign are resolved by
(28.14.9) when q = 0, and by continuity for other values
of q.

The rate of convergence is indicated by

28.14.6
cν2m(q)
cν2m∓2(q)

=
−q

4m2

(
1 +O

(
1
m

))
, m→ ±∞.

For changes of sign of ν, q, and m,

28.14.7 c−ν−2m(q) = cν2m(q),

28.14.8 cν2m(−q) = (−1)mcν2m(q).

When q = 0,

28.14.9 cν0(0) = 1, cν2m(0) = 0, m 6= 0.

When q → 0 with m (≥ 1) and ν fixed,

28.14.10

cν2m(q) =
(

(−1)mqm Γ(ν + 1)
m! 22m Γ(ν +m+ 1)

+O
(
qm+2

))
cν0(q).

28.15 Expansions for Small q

28.15(i) Eigenvalues λν(q)

28.15.1

λν(q) = ν2 +
1

2(ν2 − 1)
q2 +

5ν2 + 7
32(ν2 − 1)3(ν2 − 4)

q4

+
9ν4 + 58ν2 + 29

64(ν2 − 1)5(ν2 − 4)(ν2 − 9)
q6 + · · · .

Higher coefficients can be found by equating powers
of q in the following continued-fraction equation, with
a = λν(q):

28.15.2

a− ν2 −
q2

a− (ν + 2)2 −
q2

a− (ν + 4)2 −
· · ·

=
q2

a− (ν − 2)2 −
q2

a− (ν − 4)2 −
· · · .

28.15(ii) Solutions meν(z, q)

28.15.3

meν(z, q)

= eiνz − q

4

(
1

ν + 1
ei(ν+2)z − 1

ν − 1
ei(ν−2)z

)
+
q2

32

(
1

(ν + 1)(ν + 2)
ei(ν+4)z

+
1

(ν − 1)(ν − 2)
ei(ν−4)z − 2(ν2 + 1)

(ν2 − 1)2
eiνz

)
+ · · · ;

compare §28.6(ii).

28.16 Asymptotic Expansions for Large q

Let s = 2m + 1, m = 0, 1, 2, . . . , and ν be fixed with
m < ν < m+ 1. Then as h(=

√
q)→ +∞

28.16.1

λν
(
h2
)
∼ −2h2 + 2sh− 1

8
(s2 + 1)− 1

27h
(s3 + 3s)

− 1
212h2

(5s4 + 34s2 + 9)

− 1
217h3

(33s5 + 410s3 + 405s)

− 1
220h4

(63s6 + 1260s4 + 2943s2 + 486)

− 1
225h5

(527s7 + 15617s5 + 69001s3 + 41607s)

+ · · · .
For graphical interpretation, see Figures 28.13.1 and
28.13.2.

See also §28.8(iv).
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28.17 Stability as x→ ±∞

If all solutions of (28.2.1) are bounded when x → ±∞
along the real axis, then the corresponding pair of pa-
rameters (a, q) is called stable. All other pairs are un-
stable.

For example, positive real values of a with q = 0
comprise stable pairs, as do values of a and q that cor-
respond to real, but noninteger, values of ν.

However, if =ν 6= 0, then (a, q) always comprises an
unstable pair. For example, as x → +∞ one of the
solutions meν(x, q) and meν(−x, q) tends to 0 and the
other is unbounded (compare Figure 28.13.5). Also, all
nontrivial solutions of (28.2.1) are unbounded on R.

For real a and q (6= 0) the stable regions are the open
regions indicated in color in Figure 28.17.1. The bound-
ary of each region comprises the characteristic curves
a = an(q) and a = bn(q); compare Figure 28.2.1.

�

Figure 28.17.1: Stability chart for eigenvalues of Math-
ieu’s equation (28.2.1).

28.18 Integrals and Integral Equations

See §28.28.

28.19 Expansions in Series of meν+2n

Functions

Let q be a normal value (§28.12(i)) with respect to ν,
and f(z) be a function that is analytic on a doubly-
infinite open strip S that contains the real axis. Assume
also

28.19.1 f(z + π) = eiνπf(z).
Then

28.19.2 f(z) =
∞∑

n=−∞
fn meν+2n(z, q),

where
28.19.3 fn =

1
π

∫ π

0

f(z) meν+2n(−z, q) dz.

The series (28.19.2) converges absolutely and uniformly
on compact subsets within S.

Example

28.19.4 eiνz =
∞∑

n=−∞
cν+2n
−2n (q) meν+2n(z, q),

where the coefficients are as in §28.14.

Modified Mathieu Functions

28.20 Definitions and Basic Properties

28.20(i) Modified Mathieu’s Equation

When z is replaced by ±iz, (28.2.1) becomes the modi-
fied Mathieu’s equation:

28.20.1 w′′ − (a− 2q cosh(2z))w = 0,
with its algebraic form
28.20.2

(ζ2 − 1)w′′ + ζw′ +
(
4qζ2 − 2q − a

)
w = 0, ζ = cosh z.

28.20(ii) Solutions Ceν , Seν , Meν , Fen, Gen

28.20.3 Ceν(z, q) = ceν(±iz, q), ν 6= −1,−2, . . . ,

28.20.4 Seν(z, q) = ∓i seν(±iz, q), ν 6= 0,−1, . . . ,

28.20.5 Meν(z, q) = meν(−iz, q),
28.20.6 Fen(z, q) = ∓i fen(±iz, q), n = 0, 1, . . . ,

28.20.7 Gen(z, q) = gen(±iz, q), n = 1, 2, . . . .

28.20(iii) Solutions M(j)
ν

Assume first that ν is real, q is positive, and a = λν(q);
see §28.12(i). Write

28.20.8 h =
√
q (> 0).

Then from §2.7(ii) it is seen that equation (28.20.2)
has independent and unique solutions that are asymp-
totic to ζ 1/2 e±2ihζ as ζ → ∞ in the respective sectors
|ph(∓iζ)| ≤ 3

2π− δ, δ being an arbitrary small positive
constant. It follows that (28.20.1) has independent and
unique solutions M(3)

ν (z, h), M(4)
ν (z, h) such that

28.20.9 M(3)
ν (z, h) = H(1)

ν (2h cosh z) (1 +O(sech z)) ,
as <z → +∞ with −π + δ ≤ =z ≤ 2π − δ, and

28.20.10 M(4)
ν (z, h) = H(2)

ν (2h cosh z) (1 +O(sech z)) ,
as <z → +∞ with −2π+ δ ≤ =z ≤ π− δ. See §10.2(ii)
for the notation. In addition, there are unique solutions
M(1)
ν (z, h), M(2)

ν (z, h) that are real when z is real and
have the properties
28.20.11

M(1)
ν (z, h) =Jν(2h cosh z)+e|=(2h cosh z)|O

(
(sech z)3/2

)
,
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28.20.12

M(2)
ν (z, h) =Yν(2h cosh z)+e|=(2h cosh z)|O

(
(sech z)3/2

)
,

as <z → +∞ with |=z| ≤ π − δ.
For other values of z, h, and ν the functions

M(j)
ν (z, h), j = 1, 2, 3, 4, are determined by analytic con-

tinuation. Furthermore,

28.20.13 M(3)
ν (z, h) = M(1)

ν (z, h) + iM(2)
ν (z, h),

28.20.14 M(4)
ν (z, h) = M(1)

ν (z, h)− iM(2)
ν (z, h).

28.20(iv) Radial Mathieu Functions Mc(j)
n ,

Ms(j)
n

For j = 1, 2, 3, 4,

28.20.15 Mc(j)
n (z, h) = M(j)

n (z, h), n = 0, 1, . . . ,

28.20.16 Ms(j)
n (z, h) = (−1)n M(j)

−n(z, h), n = 1, 2, . . . .

28.20(v) Solutions Ien, Ion, Ken, Kon

28.20.17 Ien(z, h) = i−n Mc(1)
n (z, ih),

28.20.18 Ion(z, h) = i−n Ms(1)
n (z, ih),

28.20.19

Ke2m(z, h) = (−1)m 1
2πiMc(3)

2m(z, ih),

Ke2m+1(z, h) = (−1)m+1 1
2πMc(3)

2m+1(z, ih),

28.20.20

Ko2m(z, h) = (−1)m 1
2πiMs(3)

2m(z, ih),

Ko2m+1(z, h) = (−1)m+1 1
2πMs(3)

2m+1(z, ih).

28.20(vi) Wronskians

28.20.21

W
{

M(1)
ν ,M(2)

ν

}
= −W

{
M(2)
ν ,M(3)

ν

}
= −W

{
M(2)
ν ,M(4)

ν

}
= 2/π ,

W
{

M(1)
ν ,M(3)

ν

}
= −W

{
M(1)
ν ,M(4)

ν

}
= − 1

2 W
{

M(3)
ν ,M(4)

ν

}
= 2i/π .

28.20(vii) Shift of Variable

28.20.22 M(j)
ν

(
z ± 1

2πi, h
)

= M(j)
ν (z,±ih), ν /∈ Z.

For n = 0, 1, 2, . . . ,

28.20.23 Mc(j)
2n

(
z ± 1

2πi, h
)

= Mc(j)
2n (z,±ih),

Ms(j)
2n+1

(
z ± 1

2πi, h
)

= Mc(j)
2n+1(z,±ih),

28.20.24 Mc(j)
2n+1

(
z ± 1

2πi, h
)

= Ms(j)
2n+1(z,±ih),

Ms(j)
2n+2

(
z ± 1

2πi, h
)

= Ms(j)
2n+2(z,±ih).

For s ∈ Z,

28.20.25

M(1)
ν (z + sπi, h) = eisπν M(1)

ν (z, h),

M(2)
ν (z + sπi, h) = e−isπν M(2)

ν (z, h)

+ 2i cot(πν) sin(sπν) M(1)
ν (z, h),

M(3)
ν (z + sπi, h) = − sin((s− 1)πν)

sin(πν)
M(3)
ν (z, h)

− e−iπν sin(sπν)
sin(πν)

M(4)
ν (z, h),

M(4)
ν (z + sπi, h) = eiπν

sin(sπν)
sin(πν)

M(3)
ν (z, h)

+
sin((s+ 1)πν)

sin(πν)
M(4)
ν (z, h).

When ν is an integer the right-hand sides of (28.20.25)
are replaced by the their limiting values. And for
the corresponding identities for the radial functions use
(28.20.15) and (28.20.16).
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28.21 Graphics

Radial Mathieu Functions: Surfaces

Figure 28.21.1: Mc(1)
0 (x, h) for 0 ≤ h ≤ 3, 0 ≤ x ≤ 2. Figure 28.21.2: Mc(1)

1 (x, h) for 0 ≤ h ≤ 3, 0 ≤ x ≤ 2.

For further graphics see http://dlmf.nist.gov/28.21.

28.22 Connection Formulas

28.22(i) Integer ν

28.22.1

Mc(1)
m (z, h) =

√
2
π

1
ge,m(h) cem(0, h2)

Cem
(
z, h2

)
,

28.22.2

Ms(1)
m (z, h) =

√
2
π

1
go,m(h) se′m(0, h2)

Sem
(
z, h2

)
,

28.22.3

Mc(2)
m (z, h) =

√
2
π

1
ge,m(h) cem(0, h2)

×
(
−fe,m(h) Cem

(
z, h2

)
+

2
πCm(h2)

Fem
(
z, h2

))
,

28.22.4

Ms(2)
m (z, h) =

√
2
π

1
go,m(h) se′m(0, h2)

×
(
−fo,m(h) Sem

(
z, h2

)
− 2
πSm(h2)

Gem
(
z, h2

))
.

The joining factors in the above formulas are given by

28.22.5 ge,2m(h) = (−1)m
√

2
π

ce2m

(
1
2π, h

2
)

A2m
0 (h2)

,

28.22.6 ge,2m+1(h) = (−1)m+1

√
2
π

ce′2m+1

(
1
2π, h

2
)

hA2m+1
1 (h2)

,

28.22.7 go,2m+1(h) = (−1)m
√

2
π

se2m+1

(
1
2π, h

2
)

hB2m+1
1 (h2)

,

28.22.8 go,2m+2(h) = (−1)m+1

√
2
π

se′2m+2

(
1
2π, h

2
)

h2B2m+2
2 (h2)

,

28.22.9 fe,m(h) = −
√
π/2ge,m(h) Mc(2)

m (0, h),

28.22.10 fo,m(h) = −
√
π/2go,m(h) Ms(2)

m

′
(0, h),

where Amn (h2), Bmn (h2) are as in §28.4(i), and Cm(h2),
Sm(h2) are as in §28.5(i). Furthermore,

28.22.11
Mc(2)

m

′
(0, h) =

√
2/πge,m(h),

Ms(2)
m (0, h) = −

√
2/πgo,m(h),

28.22.12

fe′m
(
0, h2

)
= 1

2πCm(h2) (ge,m(h))2 cem
(
0, h2

)
,

gem
(
0, h2

)
= 1

2πSm(h2) (go,m(h))2 se′m
(
0, h2

)
.

28.22(ii) Noninteger ν

28.22.13 M(1)
ν (z, h) =

M(1)
ν (0, h)

meν(0, h2)
Meν

(
z, h2

)
.

Here meν
(
0, h2

)
(6= 0) is given by (28.14.1) with z = 0,

and M(1)
ν (0, h) is given by (28.24.1) with j = 1, z = 0,

and n chosen so that |cν2n(h2)| = max(|cν2`(h2)|), where
the maximum is taken over all integers `.
28.22.14

M(2)
ν (z, h) = cot(νπ) M(1)

ν (z, h)− 1
sin(νπ)

M(1)
−ν(z, h).

See also (28.20.13) and (28.20.14).
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28.23 Expansions in Series of Bessel Functions

We use the following notations:

28.23.1 C(1)
µ = Jµ, C(2)

µ = Yµ, C(3)
µ = H(1)

µ , C(4)
µ = H(2)

µ ;

compare §10.2(ii). For the coefficients cνn(q) see §28.14. For Amn (q) and Bmn (q) see §28.4.

28.23.2 meν
(
0, h2

)
M(j)
ν (z, h) =

∞∑
n=−∞

(−1)ncν2n(h2)C(j)
ν+2n(2h cosh z),

28.23.3 me′ν
(
0, h2

)
M(j)
ν (z, h) = i tanh z

∞∑
n=−∞

(−1)n(ν + 2n)cν2n(h2)C(j)
ν+2n(2h cosh z),

valid for all z when j = 1, and for <z > 0 and | cosh z| > 1 when j = 2, 3, 4.

28.23.4 meν
(

1
2π, h

2
)

M(j)
ν (z, h) = eiν π/2

∞∑
n=−∞

cν2n(h2)C(j)
ν+2n(2h sinh z),

28.23.5 me′ν
(

1
2π, h

2
)

M(j)
ν (z, h) = ieiν π/2 coth z

∞∑
n=−∞

(ν + 2n)cν2n(h2)C(j)
ν+2n(2h sinh z),

valid for all z when j = 1, and for <z > 0 and | sinh z| > 1 when j = 2, 3, 4.
In the case when ν is an integer

28.23.6 Mc(j)
2m(z, h) = (−1)m

(
ce2m

(
0, h2

))−1
∞∑
`=0

(−1)`A2m
2` (h2)C(j)

2` (2h cosh z),

28.23.7 Mc(j)
2m(z, h) = (−1)m

(
ce2m

(
1
2π, h

2
))−1

∞∑
`=0

A2m
2` (h2)C(j)

2` (2h sinh z),

28.23.8 Mc(j)
2m+1(z, h) = (−1)m

(
ce2m+1

(
0, h2

))−1
∞∑
`=0

(−1)`A2m+1
2`+1 (h2)C(j)

2`+1(2h cosh z),

28.23.9 Mc(j)
2m+1(z, h) = (−1)m+1

(
ce′2m+1

(
1
2π, h

2
))−1

coth z
∞∑
`=0

(2`+ 1)A2m+1
2`+1 (h2)C(j)

2`+1(2h sinh z),

28.23.10 Ms(j)
2m+1(z, h) = (−1)m

(
se′2m+1

(
0, h2

))−1
tanh z

∞∑
`=0

(−1)`(2`+ 1)B2m+1
2`+1 (h2)C(j)

2`+1(2h cosh z),

28.23.11 Ms(j)
2m+1(z, h) = (−1)m

(
se2m+1

(
1
2π, h

2
))−1

∞∑
`=0

B2m+1
2`+1 (h2)C(j)

2`+1(2h sinh z),

28.23.12 Ms(j)
2m+2(z, h) = (−1)m

(
se′2m+2

(
0, h2

))−1
tanh z

∞∑
`=0

(−1)`(2`+ 2)B2m+2
2`+2 (h2)C(j)

2`+2(2h cosh z),

28.23.13 Ms(j)
2m+2(z, h) = (−1)m+1

(
se′2m+2

(
1
2π, h

2
))−1

coth z
∞∑
`=0

(2`+ 2)B2m+2
2`+2 (h2)C(j)

2`+2(2h sinh z).

When j = 1, each of the series (28.23.6)–(28.23.13) converges for all z. When j = 2, 3, 4 the series in the even-
numbered equations converge for <z > 0 and | cosh z| > 1, and the series in the odd-numbered equations converge
for <z > 0 and | sinh z| > 1.

For proofs and generalizations, see Meixner and Schäfke (1954, §§2.62 and 2.64).
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28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel
Functions

Throughout this section ε0 = 2 and εs = 1, s = 1, 2, 3, . . . .
With C(j)

µ , cνn(q), Amn (q), and Bmn (q) as in §28.23,

28.24.1 cν2n(h2) M(j)
ν (z, h) =

∞∑
`=−∞

(−1)`cν2`(h
2) J`−n

(
he−z

)
C(j)
ν+n+`(he

z),

where j = 1, 2, 3, 4 and n ∈ Z.
In the case when ν is an integer,

28.24.2 εs Mc(j)
2m(z, h) = (−1)m

∞∑
`=0

(−1)`
A2m

2` (h2)
A2m

2s (h2)

(
J`−s

(
he−z

)
C(j)
`+s(he

z) + J`+s
(
he−z

)
C(j)
`−s(he

z)
)
,

28.24.3 Mc(j)
2m+1(z, h) = (−1)m

∞∑
`=0

(−1)`
A2m+1

2`+1 (h2)

A2m+1
2s+1 (h2)

(
J`−s

(
he−z

)
C(j)
`+s+1(hez) + J`+s+1

(
he−z

)
C(j)
`−s(he

z)
)
,

28.24.4 Ms(j)
2m+1(z, h) = (−1)m

∞∑
`=0

(−1)`
B2m+1

2`+1 (h2)

B2m+1
2s+1 (h2)

(
J`−s

(
he−z

)
C(j)
`+s+1(hez)− J`+s+1

(
he−z

)
C(j)
`−s(he

z)
)
,

28.24.5 Ms(j)
2m+2(z, h) = (−1)m

∞∑
`=0

(−1)`
B2m+2

2`+2 (h2)

B2m+2
2s+2 (h2)

(
J`−s

(
he−z

)
C(j)
`+s+2(hez)− J`+s+2

(
he−z

)
C(j)
`−s(he

z)
)
,

where j = 1, 2, 3, 4, and s = 0, 1, 2, . . . .
Also, with In and Kn denoting the modified Bessel functions (§10.25(ii)), and again with s = 0, 1, 2, . . . ,

28.24.6 εs Ie2m(z, h) = (−1)s
∞∑
`=0

(−1)`
A2m

2` (h2)
A2m

2s (h2)
(
I`−s

(
he−z

)
I`+s(hez) + I`+s

(
he−z

)
I`−s(hez)

)
,

28.24.7 Io2m+2(z, h) = (−1)s
∞∑
`=0

(−1)`
B2m+2

2`+2 (h2)

B2m+2
2s+2 (h2)

(
I`−s

(
he−z

)
I`+s+2(hez)− I`+s+2

(
he−z

)
I`−s(hez)

)
,

28.24.8 Ie2m+1(z, h) = (−1)s
∞∑
`=0

(−1)`
B2m+1

2`+1 (h2)

B2m+1
2s+1 (h2)

(
I`−s

(
he−z

)
I`+s+1(hez) + I`+s+1

(
he−z

)
I`−s(hez)

)
,

28.24.9 Io2m+1(z, h) = (−1)s
∞∑
`=0

(−1)`
A2m+1

2`+1 (h2)

A2m+1
2s+1 (h2)

(
I`−s

(
he−z

)
I`+s+1(hez)− I`+s+1

(
he−z

)
I`−s(hez)

)
,

28.24.10 εs Ke2m(z, h) =
∞∑
`=0

A2m
2` (h2)

A2m
2s (h2)

(
I`−s

(
he−z

)
K`+s(hez) + I`+s

(
he−z

)
K`−s(hez)

)
,

28.24.11 Ko2m+2(z, h) =
∞∑
`=0

B2m+2
2`+2 (h2)

B2m+2
2s+2 (h2)

(
I`−s

(
he−z

)
K`+s+2(hez)− I`+s+2

(
he−z

)
K`−s(hez)

)
,

28.24.12 Ke2m+1(z, h) =
∞∑
`=0

B2m+1
2`+1 (h2)

B2m+1
2s+1 (h2)

(
I`−s

(
he−z

)
K`+s+1(hez)− I`+s+1

(
he−z

)
K`−s(hez)

)
,

28.24.13 Ko2m+1(z, h) =
∞∑
`=0

A2m+1
2`+1 (h2)

A2m+1
2s+1 (h2)

(
I`−s

(
he−z

)
K`+s+1(hez) + I`+s+1

(
he−z

)
K`−s(hez)

)
.

The expansions (28.24.1)–(28.24.13) converge absolutely and uniformly on compact sets of the z-plane.
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28.25 Asymptotic Expansions for Large <z

For fixed h(6= 0) and fixed ν,

28.25.1

M(3,4)
ν (z, h) ∼ e±i(2h cosh z−( 1

2ν+ 1
4 )π)

(πh(cosh z + 1))
1
2

×
∞∑
m=0

D±m
(∓4ih(cosh z + 1))m

,

where the coefficients are given by

28.25.2 D±−1 = 0, D±0 = 1,
and
28.25.3

(m+ 1)D±m+1

+
(
(m+ 1

2 )2 ± (m+ 1
4 )8ih+ 2h2 − a

)
D±m

± (m− 1
2 ) (8ihm)D±m−1 = 0, m ≥ 0.

The upper signs correspond to M(3)
ν (z, h) and the lower

signs to M(4)
ν (z, h). The expansion (28.25.1) is valid for

M(3)
ν (z, h) when

28.25.4 <z → +∞, −π + δ ≤ phh+ =z ≤ 2π − δ,
and for M(4)

ν (z, h) when
28.25.5 <z → +∞, −2π + δ ≤ phh+ =z ≤ π − δ,

where δ again denotes an arbitrary small positive con-
stant.

For proofs and generalizations see Meixner and
Schäfke (1954, §2.63).

28.26 Asymptotic Approximations for Large
q

28.26(i) Goldstein’s Expansions

Denote

28.26.1
Mc(3)

m (z, h) =
eiφ

(πh cosh z) 1/2

× (Fcm(z, h)− iGcm(z, h)) ,

28.26.2
iMs(3)

m+1(z, h) =
eiφ

(πh cosh z) 1/2

× (Fsm(z, h)− iGsm(z, h)),

where

28.26.3 φ = 2h sinh z −
(
m+ 1

2

)
arctan(sinh z).

Then as h → +∞ with fixed z in <z > 0 and fixed
s = 2m+ 1,

28.26.4

Fcm(z, h) ∼ 1 +
s

8h cosh2 z
+

1
211h2

(
s4 + 86s2 + 105

cosh4 z
− s4 + 22s2 + 57

cosh2 z

)
+

1
214h3

(
−s

5 + 14s3 + 33s
cosh2 z

− 2s5 + 124s3 + 1122s
cosh4 z

+
3s5 + 290s3 + 1627s

cosh6 z

)
+ · · · ,

28.26.5

Gcm(z, h) ∼ sinh z
cosh2 z

(
s2 + 3

25h
+

1
29h2

(
s3 + 3s+

4s3 + 44s
cosh2 z

)
+

1
214h3

(
5s4 + 34s2 + 9− s6 − 47s4 + 667s2 + 2835

12 cosh2 z
+
s6 + 505s4 + 12139s2 + 10395

12 cosh4 z

))
+ · · · .

The asymptotic expansions of Fsm(z, h) and Gsm(z, h)
in the same circumstances are also given by the right-
hand sides of (28.26.4) and (28.26.5), respectively.

For additional terms see Goldstein (1927).

28.26(ii) Uniform Approximations

See §28.8(iv). For asymptotic approximations for
M(3,4)
ν (z, h) see also Naylor (1984, 1987, 1989).

28.27 Addition Theorems

Addition theorems provide important connections be-
tween Mathieu functions with different parameters and
in different coordinate systems. They are analogous to
the addition theorems for Bessel functions (§10.23(ii))
and modified Bessel functions (§10.44(ii)). For a com-
prehensive treatment see Meixner et al. (1980, §2.2).

28.28 Integrals, Integral Representations,
and Integral Equations

28.28(i) Equations with Elementary Kernels

Let

28.28.1 w = cosh z cos t cosα+ sinh z sin t sinα.

Then

28.28.2

1
2π

∫ 2π

0

e2ihw cen
(
t, h2

)
dt = in cen

(
α, h2

)
Mc(1)

n (z, h),

28.28.3

1
2π

∫ 2π

0

e2ihw sen
(
t, h2

)
dt = in sen

(
α, h2

)
Ms(1)

n (z, h),
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28.28.4

ih

π

∫ 2π

0

∂w

∂α
e2ihw cen

(
t, h2

)
dt

= in ce′n
(
α, h2

)
Mc(1)

n (z, h),

28.28.5

ih

π

∫ 2π

0

∂w

∂α
e2ihw sen

(
t, h2

)
dt

= in se′n
(
α, h2

)
Ms(1)

n (z, h).
In (28.28.7)–(28.28.9) the paths of integration Lj are

given by

28.28.6

L1 : from − η1 + i∞ to 2π − η1 + i∞,
L3 : from − η1 + i∞ to η2 − i∞,
L4 : from η2 − i∞ to 2π − η1 + i∞,

where η1 and η2 are real constants.

28.28.7

1
π

∫
Lj
e2ihw meν

(
t, h2

)
dt

= eiνπ/2 meν
(
α, h2

)
M(j)
ν (z, h), j = 3, 4,

28.28.8

1
π

∫
Lj

2ih
∂w

∂α
e2ihw meν

(
t, h2

)
dt

= eiνπ/2 me′ν
(
α, h2

)
M(j)
ν (z, h), j = 3, 4,

28.28.9

1
2π

∫
L1

e2ihw meν
(
t, h2

)
dt

= eiνπ/2 meν
(
α, h2

)
M(1)
ν (z, h).

In (28.28.11)–(28.28.14)

28.28.10 0 < ph(h(cosh z ± 1)) < π.

28.28.11

∫ ∞
0

e2ih cosh z cosh t Ceν
(
t, h2

)
dt

= 1
2πie

iνπ ceν
(
0, h2

)
M(3)
ν (z, h),

28.28.12

∫ ∞
0

e2ih cosh z cosh t sinh z sinh tSeν
(
t, h2

)
dt

= − π

4h
eiνπ/2 se′ν

(
0, h2

)
M(3)
ν (z, h),

28.28.13

∫ ∞
0

e2ih cosh z cosh t sinh z sinh tFem
(
t, h2

)
dt

= − π

4h
im fe′m

(
0, h2

)
Mc(3)

m (z, h),

28.28.14

∫ ∞
0

e2ih cosh z cosh t Gem
(
t, h2

)
dt

= 1
2πi

m+1 gem
(
0, h2

)
Ms(3)

m (z, h).

In particular, when h > 0 the integrals (28.28.11),
(28.28.14) converge absolutely and uniformly in the half
strip <z ≥ 0, 0 ≤ =z ≤ π.

28.28.15

∫ ∞
0

cos(2h cos y cosh t) Ce2n

(
t, h2

)
dt = (−1)n+1 1

2πMc(2)
2n (0, h) ce2n

(
y, h2

)
,

28.28.16

∫ ∞
0

sin(2h cos y cosh t) Ce2n

(
t, h2

)
dt = − πA2n

0 (h2)
2 ce2n

(
1
2π, h

2
) (ce2n

(
y, h2

)
∓ 2
πC2n(h2)

fe2n

(
y, h2

))
,

where the upper or lower sign is taken according as
0 ≤ y ≤ π or π ≤ y ≤ 2π. For A2n

0 (q) and C2n(q)
see §§28.4 and 28.5(i).

For details and further equations see Meixner et al.
(1980, §2.1.1) and Sips (1970).

28.28(ii) Integrals of Products with Bessel
Functions

With the notations of §28.4 for Anm(q) and Bnm(q),
§28.14 for cνn(q), and (28.23.1) for C(j)

µ , j = 1, 2, 3, 4,

28.28.17

1
π

∫ π

0

C(j)
ν+2s(2hR)e−i(ν+2s)φ meν

(
t, h2

)
dt

= (−1)scν2s(h
2) M(j)

ν (z, h), s ∈ Z,
where R = R(z, t) and φ = φ(z, t) are analytic functions
for <z > 0 and real t with

28.28.18
R(z, t) =

(
1
2 (cosh(2z) + cos(2t))

)1/2
,

R(z, 0) = cosh z,

and

28.28.19
e2iφ =

cosh(z + it)
cosh(z − it)

,

φ(z, 0) = 0.

In particular, for integer ν and ` = 0, 1, 2, . . . ,

28.28.20

2
π

∫ π

0

C(j)
2` (2hR) cos(2`φ) ce2m

(
t, h2

)
dt

= ε`(−1)`+mA2m
2` (h2) Mc(j)

2m(z, h),
where again ε0 = 2 and ε` = 1, ` = 1, 2, 3, . . . .
28.28.21

2
π

∫ π

0

C(j)
2`+1(2hR) cos((2`+ 1)φ) ce2m+1

(
t, h2

)
dt

= (−1)`+mA2m+1
2`+1 (h2) Mc(j)

2m+1(z, h),
28.28.22

2
π

∫ π

0

C(j)
2`+1(2hR) sin((2`+ 1)φ) se2m+1

(
t, h2

)
dt

= (−1)`+mB2m+1
2`+1 (h2) Ms(j)

2m+1(z, h),
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28.28.23

2
π

∫ π

0

C(j)
2`+2(2hR) sin((2`+ 2)φ) se2m+2

(
t, h2

)
dt

= (−1)`+mB2m+2
2`+2 (h2) Ms(j)

2m+2(z, h).

28.28(iii) Integrals of Products of Mathieu
Functions of Noninteger Order

With the parameter h suppressed we use the notation
28.28.24

D0(ν, µ, z) = M(3)
ν (z) M(4)

µ (z)−M(4)
ν (z) M(3)

µ (z),

D1(ν, µ, z) = M(3)
ν

′
(z) M(4)

µ (z)−M(4)
ν

′
(z) M(3)

µ (z),
and assume ν /∈ Z and m ∈ Z. Then
28.28.25

sinh z
π2

∫ 2π

0

cos tmeν
(
t, h2

)
me−ν−2m−1

(
t, h2

)
sinh2 z + sin2 t

dt

= (−1)m+1ihα(0)
ν,m D0(ν, ν + 2m+ 1, z),

28.28.26

cosh z
π2

∫ 2π

0

sin tmeν
(
t, h2

)
me−ν−2m−1

(
t, h2

)
sinh2 z + sin2 t

dt

= (−1)m+1ihα(1)
ν,m D0(ν, ν + 2m+ 1, z),

where
28.28.27

α(0)
ν,m =

1
2π

∫ 2π

0

cos tmeν
(
t, h2

)
me−ν−2m−1

(
t, h2

)
dt

= (−1)m
2i
π

meν
(
0, h2

)
me−ν−2m−1

(
0, h2

)
hD0(ν, ν + 2m+ 1, 0)

,

28.28.28

α(1)
ν,m =

1
2π

∫ 2π

0

sin tmeν
(
t, h2

)
me−ν−2m−1

(
t, h2

)
dt

= (−1)m+1 2i
π

me′ν
(
0, h2

)
me−ν−2m−1

(
0, h2

)
hD1(ν, ν + 2m+ 1, 0)

.

For further integrals see http://dlmf.nist.gov/
28.28.iii.

28.28(iv) Integrals of Products of Mathieu
Functions of Integer Order

Again with the parameter h suppressed, let
28.28.35

Ds0(n,m, z) = Ms(3)
n (z) Ms(4)

m (z)−Ms(4)
n (z) Ms(3)

m (z),

Ds1(n,m, z) = Ms(3)
n

′
(z) Ms(4)

m (z)−Ms(4)
n

′
(z) Ms(3)

m (z),

Ds2(n,m, z) = Ms(3)
n

′
(z) Ms(4)

m

′
(z)−Ms(4)

n

′
(z) Ms(3)

m

′
(z).

Then

28.28.36

sinh z
π2

∫ 2π

0

cos t sen
(
t, h2

)
sem

(
t, h2

)
sinh2 z + sin2 t

dt

= (−1)p+1ihα̂(s)
n,m Ds0(n,m, z),

28.28.37

cosh z
π2

∫ 2π

0

sin t se′n
(
t, h2

)
sem

(
t, h2

)
sinh2 z + sin2 t

dt

= (−1)p+1ihα̂(s)
n,m Ds1(n,m, z),

where m− n = 2p+ 1, p ∈ Z; m,n = 1, 2, 3, . . . . Also,

28.28.38

α̂(s)
n,m =

1
2π

∫ 2π

0

cos t sen
(
t, h2

)
sem

(
t, h2

)
dt

= (−1)p
2
iπ

se′n
(
0, h2

)
se′m

(
0, h2

)
hDs2(n,m, 0)

.

For further integrals see http://dlmf.nist.gov/
28.28.iv and Schäfke (1983).

28.28(v) Compendia

See Prudnikov et al. (1990, pp. 359–368), Gradshteyn
and Ryzhik (2000, pp. 755–759), Sips (1970), and
Meixner et al. (1980, §2.1.1).

Hill’s Equation

28.29 Definitions and Basic Properties

28.29(i) Hill’s Equation

A generalization of Mathieu’s equation (28.2.1) is Hill’s
equation

28.29.1 w′′(z) + (λ+Q(z))w = 0,
with
28.29.2 Q(z + π) = Q(z),
and
28.29.3

∫ π

0

Q(z) dz = 0.

Q(z) is either a continuous and real-valued function for
z ∈ R or an analytic function of z in a doubly-infinite
open strip that contains the real axis. π is the minimum
period of Q.

28.29(ii) Floquet’s Theorem and the
Characteristic Exponent

The basic solutions wI(z, λ), wII(z, λ) are defined in the
same way as in §28.2(ii) (compare (28.2.5), (28.2.6)).
Then
28.29.4

wI(z + π, λ) = wI(π, λ)wI(z, λ) + w′I(π, λ)wII(z, λ),
28.29.5

wII(z + π, λ) = wII(π, λ)wI(z, λ) + w′II(π, λ)wII(z, λ).

Let ν be a real or complex constant satisfying (with-
out loss of generality)
28.29.6 −1 < <ν ≤ 1
throughout this section. Then (28.29.1) has a nontrivial
solution w(z) with the pseudoperiodic property

28.29.7 w(z + π) = eπiνw(z),
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iff eπiν is an eigenvalue of the matrix

28.29.8

[
wI(π, λ) wII(π, λ)
w′I(π, λ) w′II(π, λ)

]
.

Equivalently,

28.29.9 2 cos(πν) = wI(π, λ) + w′II(π, λ).

This is the characteristic equation of (28.29.1), and
cos(πν) is an entire function of λ. Given λ together with
the condition (28.29.6), the solutions ±ν of (28.29.9)
are the characteristic exponents of (28.29.1). A solu-
tion satisfying (28.29.7) is called a Floquet solution with
respect to ν (or Floquet solution). It has the form

28.29.10 Fν(z) = eiνzPν(z),

where the function Pν(z) is π-periodic.
If ν (6= 0, 1) is a solution of (28.29.9), then Fν(z),

F−ν(z) comprise a fundamental pair of solutions of Hill’s
equation.

If ν = 0 or 1, then (28.29.1) has a nontrivial solu-
tion P (z) which is periodic with period π (when ν = 0)
or 2π (when ν = 1). Let w(z) be a solution linearly
independent of P (z). Then

28.29.11 w(z + π) = (−1)νw(z) + cP (z),

where c is a constant. The case c = 0 is equivalent to

28.29.12

[
wI(π, λ) wII(π, λ)
w′I(π, λ) w′II(π, λ)

]
=
[
(−1)ν 0

0 (−1)ν

]
.

The solutions of period π or 2π are exceptional in the
following sense. If (28.29.1) has a periodic solution with
minimum period nπ, n = 3, 4, . . . , then all solutions are
periodic with period nπ.

Furthermore, for each solution w(z) of (28.29.1)

28.29.13 w(z + π) + w(z − π) = 2 cos(πν)w(z).

A nontrivial solution w(z) is either a Floquet solution
with respect to ν, or w(z + π) − eiνπw(z) is a Floquet
solution with respect to −ν.

In the symmetric case Q(z) = Q(−z), wI(z, λ) is an
even solution and wII(z, λ) is an odd solution; compare
§28.2(ii). (28.29.9) reduces to

28.29.14 cos(πν) = wI(π, λ).

The cases ν = 0 and ν = 1 split into four subcases
as in (28.2.21) and (28.2.22). The π-periodic or π-
antiperiodic solutions are multiples of wI(z, λ), wII(z, λ),
respectively.

For details and proofs see Magnus and Winkler
(1966, §1.3).

28.29(iii) Discriminant and Eigenvalues in the
Real Case

Q(x) is assumed to be real-valued throughout this sub-
section.

The function

28.29.15 4(λ) = wI(π, λ) + w′II(π, λ)

is called the discriminant of (28.29.1). It is an entire
function of λ. Its order of growth for |λ| → ∞ is exactly
1
2 ; see Magnus and Winkler (1966, Chapter II, pp. 19–
28).

For a given ν, the characteristic equation 4(λ) −
2 cos(πν) = 0 has infinitely many roots λ. Conversely,
for a given λ, the value of 4(λ) is needed for the com-
putation of ν. For this purpose the discriminant can
be expressed as an infinite determinant involving the
Fourier coefficients of Q(x); see Magnus and Winkler
(1966, §2.3, pp. 28–36).

To every equation (28.29.1), there belong two in-
creasing infinite sequences of real eigenvalues:

28.29.16 λn, n = 0, 1, 2, . . . , with 4(λn) = 2,

28.29.17 µn, n = 1, 2, 3, . . . , with 4(µn) = −2.

In consequence, (28.29.1) has a solution of period π iff
λ = λn, and a solution of period 2π iff λ = µn. Both
λn and µn → ∞ as n → ∞, and interlace according to
the inequalities

28.29.18

λ0 < µ1 ≤ µ2 < λ1 ≤ λ2 < µ3 ≤ µ4 < λ3 ≤ λ4 < · · · .

Assume that the second derivative of Q(x) in
(28.29.1) exists and is continuous. Then with

28.29.19 N =
1
π

∫ π

0

(Q(x))2 dx,

we have for m→∞

28.29.20

µ2m−1 − (2m− 1)2 − N

(4m)2
= o
(
m−2

)
,

µ2m − (2m− 1)2 − N

(4m)2
= o
(
m−2

)
,

28.29.21

λ2m−1 − (2m)2 − N

(4m)2
= o
(
m−2

)
,

λ2m − (2m)2 − N

(4m)2
= o
(
m−2

)
.

If Q(x) has k continuous derivatives, then as m→∞

28.29.22
λ2m − λ2m−1 = o

(
1
/
mk
)
,

µ2m − µ2m−1 = o
(

1
/
mk
)
;

see Hochstadt (1963).
For further results, especially when Q(z) is analytic

in a strip, see Weinstein and Keller (1987).
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28.30 Expansions in Series of
Eigenfunctions

28.30(i) Real Variable

Let λ̂m, m = 0, 1, 2, . . . , be the set of characteristic val-
ues (28.29.16) and (28.29.17), arranged in their natural
order (see (28.29.18)), and let wm(x), m = 0, 1, 2, . . . ,
be the eigenfunctions, that is, an orthonormal set of
2π-periodic solutions; thus

28.30.1 w′′m + (λ̂m +Q(x))wm = 0,

28.30.2
1

2π

∫ 2π

0

wm(x)wn(x) dx = δm,n.

Then every continuous 2π-periodic function f(x) whose
second derivative is square-integrable over the interval
[0, 2π] can be expanded in a uniformly and absolutely
convergent series

28.30.3 f(x) =
∞∑
m=0

fmwm(x),

where

28.30.4 fm =
1

2π

∫ 2π

0

f(x)wm(x) dx.

28.30(ii) Complex Variable

For analogous results to those of §28.19, see Schäfke
(1960, 1961b), and Meixner et al. (1980, §1.1.11).

28.31 Equations of Whittaker–Hill and Ince

28.31(i) Whittaker–Hill Equation

Hill’s equation with three terms

28.31.1 W ′′ +
(
A+B cos(2z)− 1

2 (kc)2 cos(4z)
)
W = 0

and constant values of A,B, k, and c, is called the Equa-
tion of Whittaker–Hill. It has been discussed in detail
by Arscott (1967) for k2 < 0, and by Urwin and Arscott
(1970) for k2 > 0.

28.31(ii) Equation of Ince; Ince Polynomials

When k2 < 0, we substitute

28.31.2
ξ2 = −4k2c2, A = η − 1

8ξ
2, B = −(p+ 1)ξ,

W (z) = w(z) exp
(
− 1

4ξ cos(2z)
)
,

in (28.31.1). The result is the Equation of Ince:

28.31.3 w′′ + ξ sin(2z)w′ + (η − pξ cos(2z))w = 0.
Formal 2π-periodic solutions can be constructed as

Fourier series; compare §28.4:

28.31.4 we,s(z) =
∞∑
`=0

A2`+s cos (2`+ s)z, s = 0, 1,

28.31.5 wo,s(z) =
∞∑
`=0

B2`+s sin (2`+ s)z, s = 1, 2,

where the coefficients satisfy

28.31.6
−2ηA0 + (2 + p)ξA2 = 0, pξA0 + (4− η)A2 +

(
1
2p+ 2

)
ξA4 = 0,

( 1
2p− `+ 1)ξA2`−2 +

(
4`2 − η

)
A2` + ( 1

2p+ `+ 1)ξA2`+2 = 0, ` ≥ 2,

28.31.7

(
1− η +

(
1
2p+ 1

2

)
ξ
)
A1 +

(
1
2p+ 3

2

)
ξA3 = 0,

( 1
2p− `+ 1

2 )ξA2`−1 +
(
(2`+ 1)2 − η

)
A2`+1 + ( 1

2p+ `+ 3
2 )ξA2`+3 = 0, ` ≥ 1,

28.31.8

(
1− η −

(
1
2p+ 1

2

)
ξ
)
B1 +

(
1
2p+ 3

2

)
ξB3 = 0,

( 1
2p− `+ 1

2 )ξB2`−1 +
(
(2`+ 1)2 − η

)
B2`+1 + ( 1

2p+ `+ 3
2 )ξB2`+3 = 0, ` ≥ 1,

28.31.9
(4− η)B2 +

(
1
2p+ 2

)
ξB4 = 0,

( 1
2p− `+ 1)ξB2`−2 + (4`2 − η)B2` + ( 1

2p+ `+ 1)ξB2`+2 = 0, ` ≥ 2.

When p is a nonnegative integer, the parameter η
can be chosen so that solutions of (28.31.3) are trigono-
metric polynomials, called Ince polynomials. They are
denoted by

28.31.10
C2m

2n (z, ξ) with p = 2n,
C2m+1

2n+1 (z, ξ) with p = 2n+ 1,

28.31.11
S2m+1

2n+1 (z, ξ) with p = 2n+ 1,
S2m+2

2n+2 (z, ξ) with p = 2n+ 2,

and m = 0, 1, . . . , n in all cases.
The values of η corresponding to Cmp (z, ξ), Smp (z, ξ)

are denoted by amp (ξ), bmp (ξ), respectively. They are real
and distinct, and can be ordered so that Cmp (z, ξ) and
Smp (z, ξ) have preciselym zeros, all simple, in 0 ≤ z < π.
The normalization is given by
28.31.12

1
π

∫ 2π

0

(
Cmp (x, ξ)

)2
dx =

1
π

∫ 2π

0

(
Smp (x, ξ)

)2
dx = 1,
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ambiguities in sign being resolved by requiring Cmp (x, ξ)
and Smp

′(x, ξ) to be continuous functions of x and posi-
tive when x = 0.

For ξ → 0, with x fixed,

28.31.13

C0
p(x, ξ)→ 1/

√
2, Cmp (x, ξ)→ cos(mx),

Smp (x, ξ)→ sin(mx), m 6= 0; amp (ξ), bmp (ξ)→ m2.

If p → ∞ and ξ → 0 in such a way that pξ → 2q,
then in the notation of §§28.2(v) and 28.2(vi)

28.31.14 Cmp (x, ξ)→ cem(x, q), Smp (x, ξ)→ sem(x, q),

28.31.15 amp (ξ)→ am(q), bmp (ξ)→ bm(q).

For proofs and further information, including con-
vergence of the series (28.31.4), (28.31.5), see Arscott
(1967).

28.31(iii) Paraboloidal Wave Functions

With (28.31.10) and (28.31.11),

28.31.16 hcmp (z, ξ) = e−
1
4 ξ cos(2z)Cmp (z, ξ),

28.31.17 hsmp (z, ξ) = e−
1
4 ξ cos(2z)Smp (z, ξ),

are called paraboloidal wave functions. They satisfy the
differential equation

28.31.18

w′′ +
(
η − 1

8ξ
2 − (p+ 1)ξ cos(2z) + 1

8ξ
2 cos(4z)

)
w = 0,

with η = amp (ξ), η = bmp (ξ), respectively.
For change of sign of ξ,

28.31.19

hc2m
2n (z,−ξ) = (−1)mhc2m

2n ( 1
2π − z, ξ),

hc2m+1
2n+1 (z,−ξ) = (−1)mhs2m+1

2n+1 ( 1
2π − z, ξ),

and

28.31.20

hs2m+1
2n+1 (z,−ξ) = (−1)mhc2m+1

2n+1 ( 1
2π − z, ξ),

hs2m+2
2n+2 (z,−ξ) = (−1)mhs2m+2

2n+2 ( 1
2π − z, ξ).

For m1 6= m2,

28.31.21

∫ 2π

0

hcm1
p (x, ξ)hcm2

p (x, ξ) dx

=
∫ 2π

0

hsm1
p (x, ξ)hsm2

p (x, ξ) dx = 0.

More important are the double orthogonality relations
for p1 6= p2 or m1 6= m2 or both, given by

28.31.22∫ u∞

u0

∫ 2π

0

hcm1
p1 (u, ξ)hcm1

p1 (v, ξ)hcm2
p2 (u, ξ)hcm2

p2 (v, ξ)

× (cos(2u)− cos(2v)) dv du = 0,

and
28.31.23∫ u∞

u0

∫ 2π

0

hsm1
p1 (u, ξ)hsm1

p1 (v, ξ)hsm2
p2 (u, ξ)hsm2

p2 (v, ξ)

× (cos(2u)− cos(2v)) dv du = 0,
and also for all p1, p2,m1,m2, given by
28.31.24∫ u∞

u0

∫ 2π

0

hcm1
p1 (u, ξ)hcm1

p1 (v, ξ)hsm2
p2 (u, ξ)hsm2

p2 (v, ξ)

× (cos(2u)− cos(2v)) dv du = 0,
where (u0, u∞) = (0, i∞) when ξ > 0, and (u0, u∞) =
( 1

2π,
1
2π + i∞) when ξ < 0.

For proofs and further integral equations see Urwin
(1964, 1965).

Asymptotic Behavior

For ξ > 0, the functions hcmp (z, ξ), hsmp (z, ξ) behave
asymptotically as multiples of exp

(
− 1

4ξ cos(2z)
)

(cos z)p

as z → ±i∞. All other periodic solutions behave as
multiples of exp

(
1
4ξ cos(2z)

)
(cos z)−p−2.

For ξ > 0, the functions hcmp (z,−ξ),
hsmp (z,−ξ) behave asymptotically as multiples of
exp
(

1
4ξ cos(2z)

)
(cos z)−p−2 as z → 1

2π ± i∞. All
other periodic solutions behave as multiples of
exp
(
− 1

4ξ cos(2z)
)

(cos z)p.

Applications

28.32 Mathematical Applications

28.32(i) Elliptical Coordinates and an Integral
Relationship

If the boundary conditions in a physical problem relate
to the perimeter of an ellipse, then elliptical coordinates
are convenient. These are given by

28.32.1 x = c cosh ξ cos η, y = c sinh ξ sin η.
The two-dimensional wave equation

28.32.2
∂2V

∂x2 +
∂2V

∂y2 + k2V = 0

then becomes

28.32.3
∂2V

∂ξ2 +
∂2V

∂η2 +
1
2
c2k2(cosh(2ξ)− cos(2η))V = 0.

The separated solutions V (ξ, η) = v(ξ)w(η) can be ob-
tained from the modified Mathieu’s equation (28.20.1)
for v and from Mathieu’s equation (28.2.1) for w, where
a is the separation constant and q = 1

4c
2k2.

This leads to integral equations and an integral re-
lation between the solutions of Mathieu’s equation (set-
ting ζ = iξ, z = η in (28.32.3)).
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Let u(ζ) be a solution of Mathieu’s equation (28.2.1)
and K(z, ζ) be a solution of

28.32.4
∂2K

∂z2 −
∂2K

∂ζ2 = 2q (cos(2z)− cos(2ζ))K.

Also let L be a curve (possibly improper) such that the
quantity

28.32.5 K(z, ζ)
du(ζ)
dζ

− u(ζ)
∂K(z, ζ)

∂ζ
approaches the same value when ζ tends to the end-
points of L. Then

28.32.6 w(z) =
∫
L
K(z, ζ)u(ζ) dζ

defines a solution of Mathieu’s equation, provided that
(in the case of an improper curve) the integral converges
with respect to z uniformly on compact subsets of C.

Kernels K can be found, for example, by separat-
ing solutions of the wave equation in other systems of
orthogonal coordinates. See Schmidt and Wolf (1979).

28.32(ii) Paraboloidal Coordinates

The general paraboloidal coordinate system is linked
with Cartesian coordinates via
28.32.7

x1 = 1
2c (cosh(2α) + cos(2β)− cosh(2γ)) ,

x2 = 2c coshα cosβ sinh γ, x3 = 2c sinhα sinβ cosh γ,
where c is a parameter, 0 ≤ α < ∞, −π < β ≤ π, and
0 ≤ γ <∞. When the Helmholtz equation

28.32.8 ∇2V + k2V = 0
is separated in this system, each of the separated equa-
tions can be reduced to the Whittaker–Hill equation
(28.31.1), in which A,B are separation constants. Two
conditions are used to determine A,B. The first is the
2π-periodicity of the solutions; the second can be their
asymptotic form. For further information see Arscott
(1967) for k2 < 0, and Urwin and Arscott (1970) for
k2 > 0.

28.33 Physical Applications

28.33(i) Introduction

Mathieu functions occur in practical applications in two
main categories:

• Boundary-values problems arising from solution
of the two-dimensional wave equation in elliptical
coordinates. This yields a pair of equations of the
form (28.2.1) and (28.20.1), and the appropriate
solution of (28.2.1) is usually a periodic solution
of integer order. See §28.33(ii).

• Initial-value problems, in which only one equation
(28.2.1) or (28.20.1) is involved. See §28.33(iii).

28.33(ii) Boundary-Value Problems

Physical problems involving Mathieu functions in-
clude vibrational problems in elliptical coordinates; see
(28.32.1). We shall derive solutions to the uniform, ho-
mogeneous, loss-free, and stretched elliptical ring mem-
brane with mass ρ per unit area, and radial tension τ
per unit arc length. The wave equation

28.33.1
∂2W

∂x2 +
∂2W

∂y2 −
ρ

τ

∂2W

∂t2
= 0,

with W (x, y, t) = eiωtV (x, y), reduces to (28.32.2) with
k2 = ω2ρ/τ . In elliptical coordinates (28.32.2) becomes
(28.32.3). The separated solutions Vn(ξ, η) must be 2π-
periodic in η, and have the form
28.33.2

Vn(ξ, η) =
(
cn M(1)

n (ξ,
√
q) + dn M(2)

n (ξ,
√
q)
)

men(η, q),

where q = 1
4c

2k2 and an(q) or bn(q) is the sepa-
ration constant; compare (28.12.11), (28.20.11), and
(28.20.12). Here cn and dn are constants. The boundary
conditions for ξ = ξ0 (outer clamp) and ξ = ξ1 (inner
clamp) yield the following equation for q:

28.33.3
M(1)
n (ξ0,

√
q) M(2)

n (ξ1,
√
q)

−M(1)
n (ξ1,

√
q) M(2)

n (ξ0,
√
q) = 0.

If we denote the positive solutions q of (28.33.3) by
qn,m, then the vibration of the membrane is given by
ω2
n,m = 4qn,mτ

/
(c2ρ) . The general solution of the prob-

lem is a superposition of the separated solutions.
For a visualization see Gutiérrez-Vega et al. (2003),

and for references to other boundary-value problems see:

• McLachlan (1947, Chapters XVI–XIX) for appli-
cations of the wave equation to vibrational sys-
tems, electrical and thermal diffusion, electromag-
netic wave guides, elliptical cylinders in viscous
fluids, and diffraction of sound and electromag-
netic waves.

• Meixner and Schäfke (1954, §§4.3, 4.4) for elliptic
membranes and electromagnetic waves.

• Daymond (1955) for vibrating systems.

• Troesch and Troesch (1973) for elliptic mem-
branes.

• Alhargan and Judah (1995), Bhattacharyya and
Shafai (1988), and Shen (1981) for ring antennas.

• Alhargan and Judah (1992), Germey (1964),
Ragheb et al. (1991), and Sips (1967) for electro-
magnetic waves.

More complete bibliographies will be found in
McLachlan (1947) and Meixner and Schäfke (1954).



Computation 679

28.33(iii) Stability and Initial-Value Problems

If the parameters of a physical system vary periodically
with time, then the question of stability arises, for ex-
ample, a mathematical pendulum whose length varies
as cos(2ωt). The equation of motion is given by

28.33.4 w′′(t) + (b− f cos(2ωt))w(t) = 0,

with b, f , and ω positive constants. Substituting z = ωt,
a = b

/
ω2 , and 2q = f

/
ω2 , we obtain Mathieu’s stan-

dard form (28.2.1).
As ω runs from 0 to +∞, with b and f fixed, the

point (q, a) moves from ∞ to 0 along the ray L given
by the part of the line a = (2b/f)q that lies in the
first quadrant of the (q, a)-plane. Hence from §28.17
the corresponding Mathieu equation is stable or unsta-
ble according as (q, a) is in the intersection of L with
the colored or the uncolored open regions depicted in
Figure 28.17.1. In particular, the equation is stable for
all sufficiently large values of ω.

For points (q, a) that are at intersections of L with
the characteristic curves a = an(q) or a = bn(q), a pe-
riodic solution is possible. However, in response to a
small perturbation at least one solution may become
unbounded.

References for other initial-value problems include:

• McLachlan (1947, Chapter XV) for amplitude dis-
tortion in moving-coil loud-speakers, frequency
modulation, dynamical systems, and vibration of
stretched strings.

• Vedeler (1950) for ships rolling among waves.

• Meixner and Schäfke (1954, §§4.1, 4.2, and 4.7)
for quantum mechanical problems and rotation of
molecules.

• Aly et al. (1975) for scattering theory.

• Hunter and Kuriyan (1976) and Rushchitsky and
Rushchitska (2000) for wave mechanics.

• Fukui and Horiguchi (1992) for quantum theory.

• Jager (1997, 1998) for relativistic oscillators.

• Torres-Vega et al. (1998) for Mathieu functions in
phase space.

Computation

28.34 Methods of Computation

28.34(i) Characteristic Exponents

Methods available for computing the values of
wI(π; a,±q) needed in (28.2.16) include:

(a) Direct numerical integration of the differential
equation (28.2.1), with initial values given by
(28.2.5) (§§3.7(ii), 3.7(v)).

(b) Representations for wI(π; a,±q) with limit formu-
las for special solutions of the recurrence relations
§28.4(ii) for fixed a and q; see Schäfke (1961a).

28.34(ii) Eigenvalues

Methods for computing the eigenvalues an(q), bn(q),
and λν(q), defined in §§28.2(v) and 28.12(i), include:

(a) Summation of the power series in §§28.6(i) and
28.15(i) when |q| is small.

(b) Use of asymptotic expansions and approximations
for large q (§§28.8(i), 28.16). See also Zhang and
Jin (1996, pp. 482–485).

(c) Methods described in §3.7(iv) applied to the dif-
ferential equation (28.2.1) with the conditions
(28.2.5) and (28.2.16).

(d) Solution of the matrix eigenvalue problem for each
of the five infinite matrices that correspond to the
linear algebraic equations (28.4.5)–(28.4.8) and
(28.14.4). See Zhang and Jin (1996, pp. 479–482)
and §3.2(iv).

(e) Solution of the continued-fraction equations
(28.6.16)–(28.6.19) and (28.15.2) by successive ap-
proximation. See Blanch (1966), Shirts (1993),
and Meixner and Schäfke (1954, §2.87).

28.34(iii) Floquet Solutions

(a) Summation of the power series in §§28.6(ii) and
28.15(ii) when |q| is small.

(b) Use of asymptotic expansions and approximations
for large q (§§28.8(ii)–28.8(iv)).

Also, once the eigenvalues an(q), bn(q), and λν(q)
have been computed the following methods are applica-
ble:
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(c) Solution of (28.2.1) by boundary-value meth-
ods; see §3.7(iii). This can be combined with
§28.34(ii)(c).

(d) Solution of the systems of linear algebraic equa-
tions (28.4.5)–(28.4.8) and (28.14.4), with the
conditions (28.4.9)–(28.4.12) and (28.14.5), by
boundary-value methods (§3.6) to determine the
Fourier coefficients. Subsequently, the Fourier se-
ries can be summed with the aid of Clenshaw’s
algorithm (§3.11(ii)). See Meixner and Schäfke
(1954, §2.87). This procedure can be combined
with §28.34(ii)(d).

28.34(iv) Modified Mathieu Functions

For the modified functions we have:

(a) Numerical summation of the expansions in series
of Bessel functions (28.24.1)–(28.24.13). These se-
ries converge quite rapidly for a wide range of val-
ues of q and z.

(b) Direct numerical integration (§3.7) of the differen-
tial equation (28.20.1) for moderate values of the
parameters.

(c) Use of asymptotic expansions for large z or large
q. See §§28.25 and 28.26.

28.35 Tables

28.35(i) Real Variables

• Blanch and Clemm (1962) includes values of
Mc(1)

n

(
x,
√
q
)

and Mc(1)
n

′(
x,
√
q
)

for n = 0(1)15
with q = 0(.05)1, x = 0(.02)1. Also Ms(1)

n

(
x,
√
q
)

and Ms(1)
n

′(
x,
√
q
)

for n = 1(1)15 with q =
0(.05)1, x = 0(.02)1. Precision is generally 7D.

• Blanch and Clemm (1965) includes values of
Mc(2)

n

(
x,
√
q
)
, Mc(2)

n

′(
x,
√
q
)

for n = 0(1)7, x =
0(.02)1; n = 8(1)15, x = 0(.01)1. Also
Ms(2)

n

(
x,
√
q
)
, Ms(2)

n

′(
x,
√
q
)

for n = 1(1)7, x =
0(.02)1; n = 8(1)15, x = 0(.01)1. In all cases
q = 0(.05)1. Precision is generally 7D. Approxi-
mate formulas and graphs are also included.

• Blanch and Rhodes (1955) includes Ben(t),
Bon(t), t = 1

2

√
q, n = 0(1)15; 8D. The range of t

is 0 to 0.1, with step sizes ranging from 0.002 down
to 0.00025. Notation: Ben(t) = an(q)+2q−(4n+
2)
√
q, Bon(t) = bn(q) + 2q − (4n− 2)

√
q.

• Ince (1932) includes eigenvalues an, bn, and
Fourier coefficients for n = 0 or 1(1)6, q =
0(1)10(2)20(4)40; 7D. Also cen(x, q), sen(x, q) for
q = 0(1)10, x = 1(1)90, corresponding to the
eigenvalues in the tables; 5D. Notation: an =
ben − 2q, bn = bon − 2q.

• Kirkpatrick (1960) contains tables of the modi-
fied functions Cen(x, q), Sen+1(x, q) for n = 0(1)5,
q = 1(1)20, x = 0.1(.1)1; 4D or 5D.

• NBS (1967) includes the eigenvalues an(q), bn(q)
for n = 0(1)3 with q = 0(.2)20(.5)37(1)100, and
n = 4(1)15 with q = 0(2)100; Fourier coeffi-
cients for cen(x, q) and sen(x, q) for n = 0(1)15,
n = 1(1)15, respectively, and various values of q
in the interval [0, 100]; joining factors ge,n(

√
q),

fe,n(
√
q) for n = 0(1)15 with q = 0(.5 to 10)100

(but in a different notation). Also, eigenvalues for
large values of q. Precision is generally 8D.

• Stratton et al. (1941) includes bn, b′n, and the cor-
responding Fourier coefficients for Sen(c, x) and
Son(c, x) for n = 0 or 1(1)4, c = 0(.1 or .2)4.5.
Precision is mostly 5S. Notation: c = 2

√
q, bn =

an + 2q, b′n = bn + 2q, and for Sen(c, x), Son(c, x)
see §28.1.

• Zhang and Jin (1996, pp. 521–532) includes
the eigenvalues an(q), bn+1(q) for n = 0(1)4,
q = 0(1)50; n = 0(1)20 (a’s) or 19 (b’s),
q = 1, 3, 5, 10, 15, 25, 50(50)200. Fourier co-
efficients for cen(x, 10), sen+1(x, 10), n =
0(1)7. Mathieu functions cen(x, 10), sen+1(x, 10),
and their first x-derivatives for n = 0(1)4,
x = 0(5◦)90◦. Modified Mathieu functions
Mc(j)

n

(
x,
√

10
)
, Ms(j)

n+1

(
x,
√

10
)
, and their first x-

derivatives for n = 0(1)4, j = 1, 2, x = 0(.2)4.
Precision is mostly 9S.

28.35(ii) Complex Variables

• Blanch and Clemm (1969) includes eigenvalues
an(q), bn(q) for q = ρeiφ, ρ = 0(.5)25, φ =
5◦(5◦)90◦, n = 0(1)15; 4D. Also an(q) and bn(q)
for q = iρ, ρ = 0(.5)100, n = 0(2)14 and
n = 2(2)16, respectively; 8D. Double points for
n = 0(1)15; 8D. Graphs are included.

28.35(iii) Zeros

• Blanch and Clemm (1965) includes the first and
second zeros of Mc(2)

n

(
x,
√
q
)
, Mc(2)

n

′(
x,
√
q
)

for

n = 0, 1, and Ms(2)
n

(
x,
√
q
)
, Ms(2)

n

′(
x,
√
q
)

for
n = 1, 2, with q = 0(.05)1; 7D.
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• Ince (1932) includes the first zero for cen, sen for
n = 2(1)5 or 6, q = 0(1)10(2)40; 4D. This ref-
erence also gives zeros of the first derivatives, to-
gether with expansions for small q.

• Zhang and Jin (1996, pp. 533–535) includes the
zeros (in degrees) of cen(x, 10), sen(x, 10) for n =
1(1)10, and the first 5 zeros of Mc(j)

n

(
x,
√

10
)
,

Ms(j)
n

(
x,
√

10
)

for n = 0 or 1(1)8, j = 1, 2. Preci-
sion is mostly 9S.

28.35(iv) Further Tables

For other tables prior to 1961 see Fletcher et al. (1962,
§2.2) and Lebedev and Fedorova (1960, Chapter 11).

28.36 Software

See http://dlmf.nist.gov/28.36.
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§§2.33, 2.84).

§28.10 Arscott (1964b, Chapter IV), Meixner and
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§28.15 Meixner and Schäfke (1954, §2.2).
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ter III), Meixner and Schäfke (1954, §2.3). Figure
28.17.1 was recomputed by the author.

§28.19 Meixner and Schäfke (1954, §2.28).
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684 Lamé Functions

Notation

29.1 Special Notation

(For other notation see pp. xiv and 873.)

m,n, p nonnegative integers.
x real variable.
z complex variable.
h, k, ν real parameters, 0 < k < 1, ν ≥ − 1

2 .
k′

√
1− k2, 0 < k′ < 1.

K,K ′ complete elliptic integrals of the first kind
with moduli k, k′, respectively (see §19.2(ii)).

All derivatives are denoted by differentials, not by
primes.

The main functions treated in this chapter are
the eigenvalues a2m

ν

(
k2
)
, a2m+1

ν

(
k2
)
, b2m+1

ν

(
k2
)
,

b2m+2
ν

(
k2
)
, the Lamé functions Ec2m

ν

(
z, k2

)
,

Ec2m+1
ν

(
z, k2

)
, Es2m+1

ν

(
z, k2

)
, Es2m+2

ν

(
z, k2

)
, and

the Lamé polynomials uEm
2n

(
z, k2

)
, sEm

2n+1

(
z, k2

)
,

cEm
2n+1

(
z, k2

)
, dEm

2n+1

(
z, k2

)
, scEm

2n+2

(
z, k2

)
,

sdEm
2n+2

(
z, k2

)
, cdEm

2n+2

(
z, k2

)
, scdEm

2n+3

(
z, k2

)
. The

notation for the eigenvalues and functions is due to
Erdélyi et al. (1955, §15.5.1) and that for the polynomi-
als is due to Arscott (1964b, §9.3.2). The normalization
is that of Jansen (1977, §3.1).

Other notations that have been used are as follows:
Ince (1940a) interchanges a2m+1

ν

(
k2
)

with b2m+1
ν

(
k2
)
.

The relation to the Lamé functions L(m)
cν , L(m)

sν of Jansen
(1977) is given by

Ec2m
ν

(
z, k2

)
= (−1)mL(2m)

cν (ψ, k′2),

Ec2m+1
ν

(
z, k2

)
= (−1)mL(2m+1)

sν (ψ, k′2),

Es2m+1
ν

(
z, k2

)
= (−1)mL(2m+1)

cν (ψ, k′2),

Es2m+2
ν

(
z, k2

)
= (−1)mL(2m+2)

sν (ψ, k′2),

where ψ = am (z, k); see §22.16(i). The relation to the
Lamé functions Ecmν , Esmν of Ince (1940b) is given by

Ec2m
ν

(
z, k2

)
= c2mν (k2)Ec2m

ν (z, k2),

Ec2m+1
ν

(
z, k2

)
= c2m+1

ν (k2)Es2m+1
ν (z, k2),

Es2m+1
ν

(
z, k2

)
= s2m+1

ν (k2)Ec2m+1
ν (z, k2),

Es2m+2
ν

(
z, k2

)
= s2m+2

ν (k2)Es2m+2
ν (z, k2),

where the positive factors cmν (k2) and smν (k2) are deter-
mined by

(cmν (k2))2 =
4
π

∫ K

0

(
Ecmν

(
x, k2

))2
dx,

(smν (k2))2 =
4
π

∫ K

0

(
Esmν

(
x, k2

))2
dx.

Lamé Functions

29.2 Differential Equations

29.2(i) Lamé’s Equation

29.2.1
d2w

dz2 + (h− ν(ν + 1)k2 sn2 (z, k))w = 0,

where k and ν are real parameters such that 0 < k < 1
and ν ≥ − 1

2 . For sn (z, k) see §22.2. This equation has
regular singularities at the points 2pK + (2q + 1)iK ′,
where p, q ∈ Z, andK,K ′ are the complete elliptic inte-
grals of the first kind with moduli k, k′(= (1− k2)1/2),
respectively; see §19.2(ii). In general, at each singular-
ity each solution of (29.2.1) has a branch point (§2.7(i)).
See Figure 29.2.1.

× × × × ×

× × × × ×

× × × × ×

× × × × ×

0

−3iK ′

−2iK ′

−iK ′

iK ′

2iK ′

3iK ′

−4K −2K 2K 4K

Figure 29.2.1: z-plane: singularities ××× of Lamé’s
equation.

29.2(ii) Other Forms

29.2.2

d2w

dξ2 +
1
2

(
1
ξ

+
1

ξ − 1
+

1
ξ − k−2

)
dw

dξ

+
hk−2 − ν(ν + 1)ξ
4ξ(ξ − 1)(ξ − k−2)

w = 0,

where

29.2.3 ξ = sn2 (z, k).

29.2.4
(1− k2 cos2 φ)

d2w

dφ2 + k2 cosφ sinφ
dw

dφ

+ (h− ν(ν + 1)k2 cos2 φ)w = 0,

where

29.2.5 φ = 1
2π − am (z, k).

For am (z, k) see §22.16(i).
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Next, let e1, e2, e3 be any real constants that satisfy
e1 > e2 > e3 and

29.2.6 e1 + e2 + e3 = 0, (e2 − e3)/(e1 − e3) = k2.

(These constants are not unique.) Then with

29.2.7 g = (e1 − e3)h+ ν(ν + 1)e3,

29.2.8 η = (e1 − e3)−1/2(z − iK ′),
we have

29.2.9
d2w

dη2 + (g − ν(ν + 1)℘(η))w = 0,

and

29.2.10

d2w

dζ2 +
1
2

(
1

ζ − e1
+

1
ζ − e2

+
1

ζ − e3

)
dw

dζ

+
g − ν(ν + 1)ζ

4(ζ − e1)(ζ − e2)(ζ − e3)
w = 0,

where

29.2.11 ζ = ℘(η; g2, g3) = ℘(η),
with

29.2.12 g2 = −4(e2e3 + e3e1 + e1e2), g3 = 4e1e2e3.

For the Weierstrass function ℘ see §23.2(ii).
Equation (29.2.10) is a special case of Heun’s equa-

tion (31.2.1).

29.3 Definitions and Basic Properties

29.3(i) Eigenvalues

For each pair of values of ν and k there are four in-
finite unbounded sets of real eigenvalues h for which
equation (29.2.1) has even or odd solutions with periods
2K or 4K. They are denoted by a2m

ν

(
k2
)
, a2m+1

ν

(
k2
)
,

b2m+1
ν

(
k2
)
, b2m+2

ν

(
k2
)
, where m = 0, 1, 2, . . .; see Ta-

ble 29.3.1.
Table 29.3.1: Eigenvalues of Lamé’s equation.

eigenvalue h parity period

a2m
ν

(
k2
)

even 2K

a2m+1
ν

(
k2
)

odd 4K

b2m+1
ν

(
k2
)

even 4K

b2m+2
ν

(
k2
)

odd 2K

29.3(ii) Distribution

The eigenvalues interlace according to

29.3.1 amν
(
k2
)
< am+1

ν

(
k2
)
,

29.3.2 amν
(
k2
)
< bm+1

ν

(
k2
)
,

29.3.3 bmν
(
k2
)
< bm+1

ν

(
k2
)
,

29.3.4 bmν
(
k2
)
< am+1

ν

(
k2
)
.

The eigenvalues coalesce according to

29.3.5 amν
(
k2
)

= bmν
(
k2
)
, ν = 0, 1, . . . ,m− 1.

If ν is distinct from 0, 1, . . . ,m− 1, then

29.3.6
(
amν
(
k2
)
− bmν

(
k2
))
ν(ν − 1) · · · (ν −m+ 1) > 0.

If ν is a nonnegative integer, then
29.3.7

amν
(
k2
)

+ aν−mν

(
1− k2

)
= ν(ν + 1), m = 0, 1, . . . , ν,

29.3.8

bmν
(
k2
)

+ bν−m+1
ν

(
1− k2

)
= ν(ν + 1), m = 1, 2, . . . , ν.

For the special case k = k′ = 1
/√

2 see Erdélyi et al.
(1955, §15.5.2).

29.3(iii) Continued Fractions

The quantity

29.3.9 H = 2a2m
ν

(
k2
)
− ν(ν + 1)k2

satisfies the continued-fraction equation

29.3.10

βp −H −
αp−1γp

βp−1 −H −
αp−2γp−1

βp−2 −H−
· · ·

=
αpγp+1

βp+1 −H −
αp+1γp+2

βp+2 −H−
· · · ,

where p is any nonnegative integer, and

29.3.11 αp =

{
(ν − 1)(ν + 2)k2, p = 0,
1
2 (ν − 2p− 1)(ν + 2p+ 2)k2, p ≥ 1,

29.3.12
βp = 4p2(2− k2),
γp = 1

2 (ν − 2p+ 2)(ν + 2p− 1)k2.

The continued fraction following the second negative
sign on the left-hand side of (29.3.10) is finite: it equals
0 if p = 0, and if p > 0, then the last denominator
is β0 − H. If ν is a nonnegative integer and 2p ≤ ν,
then the continued fraction on the right-hand side of
(29.3.10) terminates, and (29.3.10) has only the solu-
tions (29.3.9) with 2m ≤ ν. If ν is a nonnegative inte-
ger and 2p > ν, then (29.3.10) has only the solutions
(29.3.9) with 2m > ν.

For the corresponding continued-fraction equations
for a2m+1

ν

(
k2
)
, b2m+1

ν

(
k2
)
, and b2m+2

ν

(
k2
)

see http:
//dlmf.nist.gov/29.3.iii.

29.3(iv) Lamé Functions

The eigenfunctions corresponding to the eigenvalues of
§29.3(i) are denoted by Ec2m

ν

(
z, k2

)
, Ec2m+1

ν

(
z, k2

)
,

Es2m+1
ν

(
z, k2

)
, Es2m+2

ν

(
z, k2

)
. They are called Lamé

functions with real periods and of order ν, or more sim-
ply, Lamé functions. See Table 29.3.2. In this table
the nonnegative integer m corresponds to the number
of zeros of each Lamé function in (0,K), whereas the
superscripts 2m, 2m + 1, or 2m + 2 correspond to the
number of zeros in [0, 2K).
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Table 29.3.2: Lamé functions.

boundary conditions
eigenvalue

h
eigenfunction

w(z)
parity of
w(z)

parity of
w(z −K)

period of
w(z)

dw/dz |z=0 = dw/dz |z=K = 0 a2m
ν

(
k2
)

Ec2m
ν

(
z, k2

)
even even 2K

w(0) = dw/dz |z=K = 0 a2m+1
ν

(
k2
)

Ec2m+1
ν

(
z, k2

)
odd even 4K

dw/dz |z=0 = w(K) = 0 b2m+1
ν

(
k2
)

Es2m+1
ν

(
z, k2

)
even odd 4K

w(0) = w(K) = 0 b2m+2
ν

(
k2
)

Es2m+2
ν

(
z, k2

)
odd odd 2K

29.3(v) Normalization

29.3.18

∫ K

0

dn (x, k)
(
Ec2m

ν

(
x, k2

))2
dx =

1
4
π,∫ K

0

dn (x, k)
(
Ec2m+1

ν

(
x, k2

))2
dx =

1
4
π,∫ K

0

dn (x, k)
(
Es2m+1

ν

(
x, k2

))2
dx =

1
4
π,∫ K

0

dn (x, k)
(
Es2m+2

ν

(
x, k2

))2
dx =

1
4
π.

For dn (z, k) see §22.2.
To complete the definitions, Ecmν

(
K, k2

)
is positive

and dEsmν
(
z, k2

)/
dz
∣∣
z=K

is negative.

29.3(vi) Orthogonality

For m 6= p,

29.3.19

∫ K

0

Ec2m
ν

(
x, k2

)
Ec2p

ν

(
x, k2

)
dx = 0,∫ K

0

Ec2m+1
ν

(
x, k2

)
Ec2p+1

ν

(
x, k2

)
dx = 0,∫ K

0

Es2m+1
ν

(
x, k2

)
Es2p+1

ν

(
x, k2

)
dx = 0,∫ K

0

Es2m+2
ν

(
x, k2

)
Es2p+2

ν

(
x, k2

)
dx = 0.

For the values of these integrals when m = p see §29.6.

29.3(vii) Power Series

For power-series expansions of the eigenvalues see Volk-
mer (2004b).

29.4 Graphics

29.4(i) Eigenvalues of Lamé’s Equation: Line
Graphs

Figure 29.4.1: amν (0.5), bm+1
ν (0.5) as functions of ν for

m = 0, 1, 2, 3.
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Figure 29.4.2: a3
ν(0.5)− b3ν(0.5) as a function of ν. Figure 29.4.3: am1.5

(
k2
)
, bm+1

1.5

(
k2
)

as functions of k2 for
m = 0, 1, 2.

For additional graphs see http://dlmf.nist.gov/29.4.i.

29.4(ii) Eigenvalues of Lamé’s Equation: Surfaces

Figure 29.4.9: a0
ν

(
k2
)

as a function of ν and k2. Figure 29.4.10: b1ν
(
k2
)

as a function of ν and k2.

For additional surfaces see http://dlmf.nist.gov/29.4.ii.

29.4(iii) Lamé Functions: Line Graphs

Figure 29.4.13: Ecm1.5(x, 0.5) for −2K ≤ x ≤ 2K, m =
0, 1, 2. K = 1.85407 . . . .

Figure 29.4.14: Esm1.5(x, 0.5) for −2K ≤ x ≤ 2K, m =
1, 2, 3. K = 1.85407 . . . .

For additional graphs see http://dlmf.nist.gov/29.4.iii.
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29.4(iv) Lamé Functions: Surfaces

Figure 29.4.25: Ec0
1.5

(
x, k2

)
as a function of x and k2. Figure 29.4.26: Es1

1.5

(
x, k2

)
as a function of x and k2.

For additional surfaces see http://dlmf.nist.gov/29.4.iv.

29.5 Special Cases and Limiting Forms

29.5.1 amν (0) = bmν (0) = m2,

29.5.2 Ec0
ν(z, 0) = 2−

1
2 ,

29.5.3
Ecmν (z, 0) = cos

(
m( 1

2π − z)
)
, m ≥ 1,

Esmν (z, 0) = sin
(
m( 1

2π − z)
)
, m ≥ 1.

Let µ = max (ν −m, 0). Then

29.5.4 lim
k→1−

amν
(
k2
)

= lim
k→1−

bm+1
ν

(
k2
)

= ν(ν + 1)− µ2,

29.5.5

lim
k→1−

Ecmν
(
z, k2

)
Ecmν (0, k2)

= lim
k→1−

Esm+1
ν

(
z, k2

)
Esm+1

ν (0, k2)

=
1

(cosh z)µ
F

(
1
2µ−

1
2ν,

1
2µ+ 1

2ν + 1
2

1
2

; tanh2 z

)
,

m even,

29.5.6

lim
k→1−

Ecmν
(
z, k2

)
dEcmν (z, k2)/dz |z=0

= lim
k→1−

Esm+1
ν

(
z, k2

)
dEsm+1

ν (z, k2)
/
dz
∣∣
z=0

=
tanh z

(cosh z)µ
F

(
1
2µ−

1
2ν + 1

2 ,
1
2µ+ 1

2ν + 1
3
2

; tanh2 z

)
,

m odd,

where F is the hypergeometric function; see §15.2(i).

If k → 0+ and ν → ∞ in such a way that
k2ν(ν + 1) = 4θ (a positive constant), then

29.5.7
lim Ecmν

(
z, k2

)
= cem

(
1
2π − z, θ

)
,

lim Esmν
(
z, k2

)
= sem

(
1
2π − z, θ

)
,

where cem(z, θ) and sem(z, θ) are Mathieu functions; see
§28.2(vi).

29.6 Fourier Series

29.6(i) Function Ec2m
ν

(
z, k2

)
With φ = 1

2π − am (z, k), as in (29.2.5), we have

29.6.1 Ec2m
ν

(
z, k2

)
= 1

2A0 +
∞∑
p=1

A2p cos(2pφ).

Here

29.6.2 H = 2a2m
ν

(
k2
)
− ν(ν + 1)k2,

29.6.3 (β0 −H)A0 + α0A2 = 0,

29.6.4

γpA2p−2 + (βp −H)A2p + αpA2p+2 = 0, p ≥ 1,

with αp, βp, and γp as in (29.3.11) and (29.3.12), and

29.6.5 1
2A

2
0 +

∞∑
p=1

A2
2p = 1,

29.6.6 1
2A0 +

∞∑
p=1

A2p > 0.
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When ν 6= 2n, where n is a nonnegative integer, it
follows from §2.9(i) that for any value of H the sys-
tem (29.6.4)–(29.6.6) has a unique recessive solution
A0, A2, A4, . . . ; furthermore
29.6.7

lim
p→∞

A2p+2

A2p
=

k2

(1 + k′)2
, ν 6= 2n, or ν = 2n and m > n.

In addition, if H satisfies (29.6.2), then (29.6.3) applies.
In the special case ν = 2n, m = 0, 1, . . . , n, there is

a unique nontrivial solution with the property A2p = 0,
p = n + 1, n + 2, . . . . This solution can be con-
structed from (29.6.4) by backward recursion, start-
ing with A2n+2 = 0 and an arbitrary nonzero value of
A2n, followed by normalization via (29.6.5) and (29.6.6).
Consequently, Ec2m

ν

(
z, k2

)
reduces to a Lamé polyno-

mial; compare §§29.12(i) and 29.15(i).
An alternative version of the Fourier series expan-

sion (29.6.1) is given by
29.6.8

Ec2m
ν

(
z, k2

)
= dn (z, k)

(
1
2C0 +

∞∑
p=1

C2p cos(2pφ)

)
.

Here dn (z, k) is as in §22.2, and

29.6.9 (β0 −H)C0 + α0C2 = 0,

29.6.10

γpC2p−2 + (βp −H)C2p + αpC2p+2 = 0, p ≥ 1,
with αp, βp, and γp now defined by

29.6.11

αp =

{
ν(ν + 1)k2, p = 0,
1
2 (ν − 2p)(ν + 2p+ 1)k2, p ≥ 1,

βp = 4p2(2− k2),
γp = 1

2 (ν − 2p+ 1)(ν + 2p)k2,

and
29.6.12(

1− 1
2k

2
)(

1
2C

2
0 +

∞∑
p=1

C2
2p

)
− 1

2k
2
∞∑
p =0

C2pC2p+2 = 1,

29.6.13 1
2C0 +

∞∑
p =1

C2p > 0,

29.6.14

lim
p→∞

C2p+2

C2p
=

k2

(1 + k′)2
,

ν 6= 2n+ 1, or ν = 2n+ 1 and m > n,

29.6.15

1
2A0C0 +

∞∑
p =1

A2pC2p =
4
π

∫ K

0

(
Ec2m

ν

(
x, k2

))2
dx.

For the corresponding expansions for Ec2m+1
ν

(
z, k2

)
,

Es2m+1
ν

(
z, k2

)
, and Es2m+2

ν

(
z, k2

)
see http://dlmf.

nist.gov/29.6.ii.

29.7 Asymptotic Expansions

29.7(i) Eigenvalues

As ν →∞,

29.7.1 amν
(
k2
)
∼ pκ− τ0 − τ1κ−1 − τ2κ−2 − · · · ,

where

29.7.2 κ = k(ν(ν + 1))1/2, p = 2m+ 1,

29.7.3 τ0 =
1
23

(1 + k2)(1 + p2),

29.7.4 τ1 =
p

26
((1 + k2)2(p2 + 3)− 4k2(p2 + 5)).

The same Poincaré expansion holds for bm+1
ν

(
k2
)
, since

29.7.5

bm+1
ν

(
k2
)
− amν

(
k2
)

= O

(
νm+ 3

2

(
1− k
1 + k

)ν)
, ν →∞.

See also Volkmer (2004b).
For higher terms in (29.7.1) see http://dlmf.nist.

gov/29.7.i.

29.7(ii) Lamé Functions

Müller (1966a,b) found three formal asymptotic expan-
sions for a fundamental system of solutions of (29.2.1)
(and (29.11.1)) as ν → ∞, one in terms of Jacobian
elliptic functions and two in terms of Hermite polyno-
mials. In Müller (1966c) it is shown how these expan-
sions lead to asymptotic expansions for the Lamé func-
tions Ecmν

(
z, k2

)
and Esmν

(
z, k2

)
. Weinstein and Keller

(1985) give asymptotics for solutions of Hill’s equation
(§28.29(i)) that are applicable to the Lamé equation.

29.8 Integral Equations

Let w(z) be any solution of (29.2.1) of period 4K, w2(z)
be a linearly independent solution, and W {w,w2} de-
note their Wronskian. Also let x be defined by

29.8.1

x = k2 sn (z, k) sn (z1, k) sn (z2, k) sn (z3, k)

− k2

k′2
cn (z, k) cn (z1, k) cn (z2, k) cn (z3, k)

+
1
k′2

dn (z, k) dn (z1, k) dn (z2, k) dn (z3, k),

where z, z1, z2, z3 are real, and sn, cn, dn are the Jaco-
bian elliptic functions (§22.2). Then

29.8.2 µw(z1)w(z2)w(z3) =
∫ 2K

−2K

Pν(x)w(z) dz,

where Pν(x) is the Ferrers function of the first kind
(§14.3(i)),

29.8.3 µ =
2στ

W {w,w2}
,
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and σ (= ±1) and τ are determined by

29.8.4
w(z + 2K) = σw(z),
w2(z + 2K) = τw(z) + σw2(z).

A special case of (29.8.2) is

29.8.5

Ec2m
ν

(
z1, k

2
)w2(K)− w2(−K)
dw2(z)/dz |z=0

=
∫ K

−K
Pν(y) Ec2m

ν

(
z, k2

)
dz,

where
29.8.6 y =

1
k′

dn (z, k) dn (z1, k).

For results corresponding to (29.8.5) for Ec2m+1
ν ,

Es2m+1
ν , Es2m+2

ν see http://dlmf.nist.gov/29.8.
For further integral equations see Arscott (1964a),

Erdélyi et al. (1955, §15.5.3), Shail (1980), Sleeman
(1968a), and Volkmer (1982, 1983, 1984).

29.9 Stability

The Lamé equation (29.2.1) with specified values of
k, h, ν is called stable if all of its solutions are bounded
on R; otherwise the equation is called unstable. If ν is
not an integer, then (29.2.1) is unstable iff h ≤ a0

ν

(
k2
)

or h lies in one of the closed intervals with endpoints
amν
(
k2
)

and bmν
(
k2
)
, m = 1, 2, . . . . If ν is a nonnega-

tive integer, then (29.2.1) is unstable iff h ≤ a0
ν

(
k2
)

or
h ∈ [bmν

(
k2
)
, amν

(
k2
)
] for some m = 1, 2, . . . , ν.

29.10 Lamé Functions with Imaginary
Periods

The substitutions

29.10.1 h = ν(ν + 1)− h′,

29.10.2 z′ = i(z −K − iK ′),
transform (29.2.1) into

29.10.3
d2w

dz′2
+ (h′ − ν(ν + 1)k′2 sn2 (z′, k′))w = 0.

In consequence, the functions

29.10.4

Ec2m
ν

(
i(z −K − iK ′), k′2

)
,

Ec2m+1
ν

(
i(z −K − iK ′), k′2

)
,

Es2m+1
ν

(
i(z −K − iK ′), k′2

)
,

Es2m+2
ν

(
i(z −K − iK ′), k′2

)
,

are solutions of (29.2.1). The first and the fourth func-
tions have period 2iK ′; the second and the third have
period 4iK ′.

For these results and further information see Erdélyi
et al. (1955, §15.5.2).

29.11 Lamé Wave Equation

The Lamé (or ellipsoidal) wave equation is given by
29.11.1

d2w

dz2 + (h− ν(ν + 1)k2 sn2 (z, k) + k2ω2 sn4 (z, k))w = 0,

in which ω is another parameter. In the case ω = 0,
(29.11.1) reduces to Lamé’s equation (29.2.1).

For properties of the solutions of (29.11.1) see Ar-
scott (1956, 1959), Arscott (1964b, Chapter X), Erdélyi
et al. (1955, §16.14), Fedoryuk (1989), and Müller
(1966a,b,c).

Lamé Polynomials

29.12 Definitions

29.12(i) Elliptic-Function Form

Throughout §§29.12–29.16 the order ν in the differential
equation (29.2.1) is assumed to be a nonnegative integer.

The Lamé functions Ecmν
(
z, k2

)
, m = 0, 1, . . . , ν,

and Esmν
(
z, k2

)
, m = 1, 2, . . . , ν, are called the Lamé

polynomials. There are eight types of Lamé polynomi-
als, defined as follows:

29.12.1 uEm
2n

(
z, k2

)
= Ec2m

2n

(
z, k2

)
,

29.12.2 sEm
2n+1

(
z, k2

)
= Ec2m+1

2n+1

(
z, k2

)
,

29.12.3 cEm
2n+1

(
z, k2

)
= Es2m+1

2n+1

(
z, k2

)
,

29.12.4 dEm
2n+1

(
z, k2

)
= Ec2m

2n+1

(
z, k2

)
,

29.12.5 scEm
2n+2

(
z, k2

)
= Es2m+2

2n+2

(
z, k2

)
,

29.12.6 sdEm
2n+2

(
z, k2

)
= Ec2m+1

2n+2

(
z, k2

)
,

29.12.7 cdEm
2n+2

(
z, k2

)
= Es2m+1

2n+2

(
z, k2

)
,

29.12.8 scdEm
2n+3

(
z, k2

)
= Es2m+2

2n+3

(
z, k2

)
,

where n = 0, 1, 2, . . . , m = 0, 1, 2, . . . , n. These func-
tions are polynomials in sn (z, k), cn (z, k), and dn (z, k).
In consequence they are doubly-periodic meromorphic
functions of z.

The superscript m on the left-hand sides of
(29.12.1)–(29.12.8) agrees with the number of z-zeros
of each Lamé polynomial in the interval (0,K), while
n−m is the number of z-zeros in the open line segment
fromK toK + iK ′.

The prefixes u, s, c, d , sc, sd , cd , scd indicate the
type of the polynomial form of the Lamé polynomial;
compare the 3rd and 4th columns in Table 29.12.1. In
the fourth column the variable z and modulus k of the
Jacobian elliptic functions have been suppressed, and
P (sn2) denotes a polynomial of degree n in sn2 (z, k)
(different for each type). For the determination of the
coefficients of the P ’s see §29.15(ii).
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Table 29.12.1: Lamé polynomials.

ν
eigenvalue

h
eigenfunction

w(z)
polynomial

form
real

period
imag.
period

parity of
w(z)

parity of
w(z −K)

parity of
w(z −K − iK ′)

2n a2m
ν

(
k2
)

uEm
ν

(
z, k2

)
P (sn2) 2K 2iK ′ even even even

2n+ 1 a2m+1
ν

(
k2
)

sEm
ν

(
z, k2

)
snP (sn2) 4K 2iK ′ odd even even

2n+ 1 b2m+1
ν

(
k2
)

cEm
ν

(
z, k2

)
cnP (sn2) 4K 4iK ′ even odd even

2n+ 1 a2m
ν

(
k2
)

dEm
ν

(
z, k2

)
dnP (sn2) 2K 4iK ′ even even odd

2n+ 2 b2m+2
ν

(
k2
)

scEm
ν

(
z, k2

)
sn cnP (sn2) 2K 4iK ′ odd odd even

2n+ 2 a2m+1
ν

(
k2
)

sdEm
ν

(
z, k2

)
sn dnP (sn2) 4K 4iK ′ odd even odd

2n+ 2 b2m+1
ν

(
k2
)

cdEm
ν

(
z, k2

)
cn dnP (sn2) 4K 2iK ′ even odd odd

2n+ 3 b2m+2
ν

(
k2
)

scdEm
ν

(
z, k2

)
sn cn dnP (sn2) 2K 2iK ′ odd odd odd

29.12(ii) Algebraic Form

With the substitution ξ = sn2 (z, k) every Lamé poly-
nomial in Table 29.12.1 can be written in the form

29.12.9 ξρ(ξ − 1)σ(ξ − k−2)τP (ξ),
where ρ, σ, τ are either 0 or 1

2 . The polynomial P (ξ)
is of degree n and has m zeros (all simple) in (0, 1)
and n−m zeros (all simple) in (1, k−2). The functions
(29.12.9) satisfy (29.2.2).

29.12(iii) Zeros

Let ξ1, ξ2, . . . , ξn denote the zeros of the polynomial P
in (29.12.9) arranged according to

29.12.10 0< ξ1 < · · ·< ξm < 1< ξm+1 < · · ·< ξn < k−2.

Then the function
29.12.11

g(t1, t2, . . . , tn)

=

(
n∏
p=1

t
ρ+ 1

4
p |tp − 1|σ+ 1

4 (k−2 − tp)τ+ 1
4

)∏
q<r

(tr − tq),

defined for (t1, t2, . . . , tn) with

29.12.12 0 ≤ t1 ≤ · · · ≤ tm ≤ 1 ≤ tm+1 ≤ · · · ≤ tn ≤ k−2,

attains its absolute maximum iff tj = ξj , j = 1, 2, . . . , n.
Moreover,
29.12.13

ρ+ 1
4

ξp
+
σ + 1

4

ξp − 1
+

τ + 1
4

ξp − k−2
+

n∑
q=1
q 6=p

1
ξp − ξq

= 0,

p = 1, 2, . . . , n.
This result admits the following electrostatic inter-

pretation: Given three point masses fixed at t = 0,
t = 1, and t = k−2 with positive charges ρ + 1

4 , σ + 1
4 ,

and τ + 1
4 , respectively, and n movable point masses at

t1, t2, . . . , tn arranged according to (29.12.12) with unit
positive charges, the equilibrium position is attained
when tj = ξj for j = 1, 2, . . . , n.

29.13 Graphics

29.13(i) Eigenvalues for Lamé Polynomials

Figure 29.13.1: am2
(
k2
)
, bm2

(
k2
)

as functions of k2 for
m = 0, 1, 2 (a’s), m = 1, 2 (b’s).

For additional graphs see http://dlmf.nist.gov/
29.13.i.
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29.13(ii) Lamé Polynomials: Real Variable

Figure 29.13.5: uEm
4 (x, 0.1) for −2K ≤ x ≤ 2K,

m = 0, 1, 2. K = 1.61244 . . . .

For additional graphs see http://dlmf.nist.gov/
29.13.ii.

29.13(iii) Lamé Polynomials: Complex Variable

Figure 29.13.21: | uE 1
4(x+ iy, 0.1)| for −3K ≤ x ≤ 3K,

0 ≤ y ≤ 2K ′. K = 1.61244 . . . ,K ′ = 2.57809 . . . .

For additional graphics see http://dlmf.nist.
gov/29.13.iii.

29.14 Orthogonality

Lamé polynomials are orthogonal in two ways.
First, the orthogonality relations (29.3.19) apply; see
§29.12(i). Secondly, the system of functions

29.14.1
fmn (s, t) = uEm

2n

(
s, k2

)
uEm

2n

(
K + it, k2

)
,

n = 0, 1, 2, . . . , m = 0, 1, . . . , n,
is orthogonal and complete with respect to the inner
product

29.14.2 〈g, h〉 =
∫ K

0

∫ K′

0

w(s, t)g(s, t)h(s, t) dt ds,

where

29.14.3 w(s, t) = sn2 (K + it, k)− sn2 (s, k).

For the corresponding results for the other seven
types of Lamé polynomials see http://dlmf.nist.
gov/29.14.

29.15 Fourier Series and Chebyshev Series

29.15(i) Fourier Coefficients

Polynomial uEm2n
`
z, k2

´
When ν = 2n, m = 0, 1, . . . , n, the Fourier series
(29.6.1) terminates:

29.15.1 uEm
2n

(
z, k2

)
= 1

2A0 +
n∑
p=1

A2p cos(2pφ).

A convenient way of constructing the coefficients, to-
gether with the eigenvalues, is as follows. Equations
(29.6.4), with p = 1, 2, . . . , n, (29.6.3), and A2n+2 = 0
can be cast as an algebraic eigenvalue problem in the
following way. Let

29.15.2 M =



β0 α0 0 · · · 0

γ1 β1 α1
. . .

...

0
. . . . . . . . . 0

...
. . . γn−1 βn−1 αn−1

0 · · · 0 γn βn


be the tridiagonal matrix with αp, βp, γp as in (29.3.11),
(29.3.12). Let the eigenvalues of M be Hp with

29.15.3 H0 < H1 < · · · < Hn,

and also let

29.15.4 [A0, A2, . . . , A2n]T

be the eigenvector corresponding to Hm and normalized
so that

29.15.5 1
2A

2
0 +

n∑
p=1

A2
2p = 1

and

29.15.6 1
2A0 +

n∑
p=1

A2p > 0.

Then

29.15.7 a2m
ν

(
k2
)

= 1
2 (Hm + ν(ν + 1)k2),

and (29.15.1) applies, with φ again defined as in (29.2.5).
For the corresponding formulations for the other

seven types of Lamé polynomials see http://dlmf.
nist.gov/29.15.i.
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29.15(ii) Chebyshev Series

The Chebyshev polynomial T of the first kind (§18.3)
satisfies cos(pφ) = Tp(cosφ). Since (29.2.5) implies that
cosφ = sn (z, k), (29.15.1) can be rewritten in the form

29.15.43 uEm
2n

(
z, k2

)
= 1

2A0 +
n∑
p=1

A2p T2p(sn (z, k)).

This determines the polynomial P of degree n for which
uEm

2n

(
z, k2

)
= P (sn2 (z, k)); compare Table 29.12.1.

The set of coefficients of this polynomial (without nor-
malization) can also be found directly as an eigenvector
of an (n + 1) × (n + 1) tridiagonal matrix; see Arscott
and Khabaza (1962).

For the corresponding expansions of the other seven
types of Lamé polynomials see http://dlmf.nist.
gov/29.15.ii.

For explicit formulas for Lamé polynomials of low
degree, see Arscott (1964b, p. 205).

29.16 Asymptotic Expansions

Hargrave and Sleeman (1977) give asymptotic approx-
imations for Lamé polynomials and their eigenvalues,
including error bounds. The approximations for Lamé
polynomials hold uniformly on the rectangle 0 ≤ <z ≤
K, 0 ≤ =z ≤K ′, when nk and nk′ assume large real
values. The approximating functions are exponential,
trigonometric, and parabolic cylinder functions.

29.17 Other Solutions

29.17(i) Second Solution

If (29.2.1) admits a Lamé polynomial solution E, then
a second linearly independent solution F is given by

29.17.1 F (z) = E(z)
∫ z

iK′

du

(E(u))2
.

For properties of these solutions see Arscott (1964b,
§9.7), Erdélyi et al. (1955, §15.5.1), Shail (1980), and
Sleeman (1966a).

29.17(ii) Algebraic Lamé Functions

Algebraic Lamé functions are solutions of (29.2.1) when
ν is half an odd integer. They are algebraic functions of
sn (z, k), cn (z, k), and dn (z, k), and have primitive pe-
riod 8K. See Erdélyi (1941c), Ince (1940b), and Lambe
(1952).

29.17(iii) Lamé–Wangerin Functions

Lamé–Wangerin functions are solutions of (29.2.1) with
the property that (sn (z, k))1/2w(z) is bounded on the
line segment from iK ′ to 2K + iK ′. See Erdélyi et al.
(1955, §15.6).

Applications

29.18 Mathematical Applications

29.18(i) Sphero-Conal Coordinates

The wave equation

29.18.1 ∇2u+ ω2u = 0,

when transformed to sphero-conal coordinates r, β, γ:
29.18.2

x = kr sn (β, k) sn (γ, k), y = i
k

k′
r cn (β, k) cn (γ, k),

z =
1
k′
r dn (β, k) dn (γ, k),

with
29.18.3

r ≥ 0, β =K + iβ′, 0 ≤ β′ ≤ 2K ′, 0 ≤ γ ≤ 4K,

admits solutions

29.18.4 u(r, β, γ) = u1(r)u2(β)u3(γ),

where u1, u2, u3 satisfy the differential equations

29.18.5
d

dr

(
r2 du1

dr

)
+ (ω2r2 − ν(ν + 1))u1 = 0,

29.18.6
d2u2

dβ2 + (h− ν(ν + 1)k2 sn2 (β, k))u2 = 0,

29.18.7
d2u3

dγ2 + (h− ν(ν + 1)k2 sn2 (γ, k))u3 = 0,

with separation constants h and ν. (29.18.5) is
the differential equation of spherical Bessel functions
(§10.47(i)), and (29.18.6), (29.18.7) agree with the Lamé
equation (29.2.1).

29.18(ii) Ellipsoidal Coordinates

The wave equation (29.18.1), when transformed to el-
lipsoidal coordinates α, β, γ:

29.18.8

x = k sn (α, k) sn (β, k) sn (γ, k),

y = − k
k′

cn (α, k) cn (β, k) cn (γ, k),

z =
i

kk′
dn (α, k) dn (β, k) dn (γ, k),

with
29.18.9

α =K + iK ′ − α′, 0 ≤ α′ <K,
β =K + iβ′, 0 ≤ β′ ≤ 2K ′, 0 ≤ γ ≤ 4K,

admits solutions

29.18.10 u(α, β, γ) = u1(α)u2(β)u3(γ),

where u1, u2, u3 each satisfy the Lamé wave equation
(29.11.1).
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29.18(iii) Spherical and Ellipsoidal Harmonics

See Erdélyi et al. (1955, §15.7).

29.18(iv) Other Applications

Triebel (1965) gives applications of Lamé functions to
the theory of conformal mappings. Patera and Winter-
nitz (1973) finds bases for the rotation group.

29.19 Physical Applications

29.19(i) Lamé Functions

Simply-periodic Lamé functions (ν noninteger) can be
used to solve boundary-value problems for Laplace’s
equation in elliptical cones. For applications in antenna
research see Jansen (1977). Brack et al. (2001) shows
that Lamé functions occur at bifurcations in chaotic
Hamiltonian systems. Bronski et al. (2001) uses Lamé
functions in the theory of Bose–Einstein condensates.

29.19(ii) Lamé Polynomials

Ward (1987) computes finite-gap potentials associated
with the periodic Korteweg–de Vries equation. Shail
(1978) treats applications to solutions of elliptic crack
and punch problems. Hargrave (1978) studies high fre-
quency solutions of the delta wing equation. Macfadyen
and Winternitz (1971) finds expansions for the two-
body relativistic scattering amplitudes. Roper (1951)
solves the linearized supersonic flow equations. Clark-
son (1991) solves nonlinear evolution equations. Strutt
(1932) describes various applications and provides an
extensive list of references.

See also §29.12(iii).

Computation

29.20 Methods of Computation

29.20(i) Lamé Functions

The eigenvalues amν
(
k2
)
, bmν

(
k2
)
, and the Lamé func-

tions Ecmν
(
z, k2

)
, Esmν

(
z, k2

)
, can be calculated by di-

rect numerical methods applied to the differential equa-
tion (29.2.1); see §3.7. The normalization of Lamé func-
tions given in §29.3(v) can be carried out by quadrature
(§3.5).

A second approach is to solve the continued-fraction
equations typified by (29.3.10) by Newton’s rule or
other iterative methods; see §3.8. Initial approxima-
tions to the eigenvalues can be found, for example, from

the asymptotic expansions supplied in §29.7(i). Sub-
sequently, formulas typified by (29.6.4) can be applied
to compute the coefficients of the Fourier expansions
of the corresponding Lamé functions by backward re-
cursion followed by application of formulas typified by
(29.6.5) and (29.6.6) to achieve normalization; compare
§3.6. (Equation (29.6.3) serves as a check.) The Fourier
series may be summed using Clenshaw’s algorithm; see
§3.11(ii). For further information see Jansen (1977).

A third method is to approximate eigenvalues and
Fourier coefficients of Lamé functions by eigenvalues
and eigenvectors of finite matrices using the methods
of §§3.2(vi) and 3.8(iv). These matrices are the same as
those provided in §29.15(i) for the computation of Lamé
polynomials with the difference that n has to be cho-
sen sufficiently large. The approximations converge ge-
ometrically (§3.8(i)) to the eigenvalues and coefficients
of Lamé functions as n→∞. The numerical computa-
tions described in Jansen (1977) are based in part upon
this method.

29.20(ii) Lamé Polynomials

The eigenvalues corresponding to Lamé polynomials are
computed from eigenvalues of the finite tridiagonal ma-
trices M given in §29.15(i), using methods described in
§3.2(vi) and Ritter (1998). The corresponding eigen-
vectors yield the coefficients in the finite Fourier series
for Lamé polynomials. §29.15(i) includes formulas for
normalizing the eigenvectors.

29.20(iii) Zeros

Zeros of Lamé polynomials can be computed by solv-
ing the system of equations (29.12.13) by employing
Newton’s method; see §3.8(ii). Alternatively, the ze-
ros can be found by locating the maximum of function
g in (29.12.11).

29.21 Tables

• Ince (1940a) tabulates the eigenvalues amν
(
k2
)
,

bm+1
ν

(
k2
)

(with a2m+1
ν and b2m+1

ν interchanged)
for k2 = 0.1, 0.5, 0.9, ν = − 1

2 , 0(1)25, and m =
0, 1, 2, 3. Precision is 4D.

• Arscott and Khabaza (1962) tabulates the co-
efficients of the polynomials P in Table 29.12.1
(normalized so that the numerically largest coef-
ficient is unity, i.e. monic polynomials), and the
corresponding eigenvalues h for k2 = 0.1(.1)0.9,
n = 1(1)30. Equations from §29.6 can be used
to transform to the normalization adopted in this
chapter. Precision is 6S.
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29.22 Software

See http://dlmf.nist.gov/29.22.
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Notation

30.1 Special Notation

(For other notation see pp. xiv and 873.)

x real variable. Except in §§30.7(iv), 30.11(ii),
30.13, and 30.14, −1 < x < 1.

γ2 real parameter (positive, zero, or negative).
m order, a nonnegative integer.
n degree, an integer n = m,m+ 1,m+ 2, . . . .
k integer.
δ arbitrary small positive constant.

The main functions treated in this chapter are the
eigenvalues λmn

(
γ2
)

and the spheroidal wave functions
Psmn

(
x, γ2

)
, Qsmn

(
x, γ2

)
, Psmn

(
z, γ2

)
, Qsmn

(
z, γ2

)
, and

S
m(j)
n (z, γ), j = 1, 2, 3, 4. These notations are similar to

those used in Arscott (1964b) and Erdélyi et al. (1955).
Meixner and Schäfke (1954) use ps, qs, Ps, Qs for Ps,
Qs, Ps , Qs , respectively.

Other Notations

Flammer (1957) and Abramowitz and Stegun (1964) use
λmn(γ) for λmn

(
γ2
)

+ γ2, R(j)
mn(γ, z) for Sm(j)

n (z, γ), and

30.1.1
S(1)
mn(γ, x) = dmn(γ) Psmn

(
x, γ2

)
,

S(2)
mn(γ, x) = dmn(γ) Qsmn

(
x, γ2

)
,

where dmn(γ) is a normalization constant determined
by

30.1.2

S(1)
mn(γ, 0) = (−1)m Pmn (0), n−m even,
d

dx
S(1)
mn(γ, x)

∣∣∣∣
x=0

= (−1)m
d

dx
Pmn (x)

∣∣∣∣
x=0

,

n−m odd.
For older notations see Abramowitz and Stegun (1964,
§21.11) and Flammer (1957, pp. 14,15).

Properties

30.2 Differential Equations

30.2(i) Spheroidal Differential Equation

30.2.1

d

dz

(
(1− z2)

dw

dz

)
+
(
λ+ γ2(1− z2)− µ2

1− z2

)
w = 0.

This equation has regular singularities at z = ±1 with
exponents ± 1

2µ and an irregular singularity of rank 1 at
z =∞ (if γ 6= 0). The equation contains three real pa-
rameters λ, γ2, and µ. In applications involving prolate

spheroidal coordinates γ2 is positive, in applications in-
volving oblate spheroidal coordinates γ2 is negative; see
§§30.13, 30.14.

30.2(ii) Other Forms

The Liouville normal form of equation (30.2.1) is

30.2.2
d2g

dt2
+
(
λ+

1
4

+ γ2 sin2 t−
µ2 − 1

4

sin2 t

)
g = 0,

30.2.3 z = cos t, w(z) = (1− z2)−
1
4 g(t).

With ζ = γz Equation (30.2.1) changes to

30.2.4

(ζ2−γ2)
d2w

dζ2 + 2ζ
dw

dζ
+
(
ζ2−λ−γ2− γ2µ2

ζ2 − γ2

)
w = 0.

30.2(iii) Special Cases

If γ = 0, Equation (30.2.1) is the associated Legendre
differential equation; see (14.2.2). If µ2 = 1

4 , Equation
(30.2.2) reduces to the Mathieu equation; see (28.2.1). If
γ = 0, Equation (30.2.4) is satisfied by spherical Bessel
functions; see (10.47.1).

30.3 Eigenvalues

30.3(i) Definition

With µ = m = 0, 1, 2, . . . , the spheroidal wave functions
Psmn

(
x, γ2

)
are solutions of Equation (30.2.1) which are

bounded on (−1, 1), or equivalently, which are of the
form (1 − x2)

1
2mg(x) where g(z) is an entire function

of z. These solutions exist only for eigenvalues λmn
(
γ2
)
,

n = m,m+ 1,m+ 2, . . . , of the parameter λ.

30.3(ii) Properties

The eigenvalues λmn
(
γ2
)

are analytic functions of the
real variable γ2 and satisfy

30.3.1 λmm
(
γ2
)
< λmm+1

(
γ2
)
< λmm+2

(
γ2
)
< · · · ,

30.3.2 λmn
(
γ2
)

= n(n+ 1)− 1
2γ

2 +O
(
n−2

)
, n→∞,

30.3.3 λmn (0) = n(n+ 1),

30.3.4 −1 <
dλmn

(
γ2
)

d(γ2)
< 0.
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30.3(iii) Transcendental Equation

If p is an even nonnegative integer, then the continued-
fraction equation

30.3.5

βp − λ−
αp−2γp

βp−2 − λ−
αp−4γp−2

βp−4 − λ−
· · ·

=
αpγp+2

βp+2 − λ−
αp+2γp+4

βp+4 − λ−
· · · ,

where αk, βk, γk are defined by

30.3.6
αk = −(k + 1)(k + 2),

βk = (m+ k)(m+ k + 1)− γ2, γk = γ2,

has the solutions λ = λmm+2j

(
γ2
)
, j = 0, 1, 2, . . . . If p

is an odd positive integer, then Equation (30.3.5) has

the solutions λ = λmm+2j+1

(
γ2
)
, j = 0, 1, 2, . . . . If p = 0

or p = 1, the finite continued-fraction on the left-hand
side of (30.3.5) equals 0; if p > 1 its last denominator is
β0 − λ or β1 − λ.

For a different choice of αp, βp, γp in (30.3.5) see
http://dlmf.nist.gov/30.3.iii.

30.3(iv) Power-Series Expansion

30.3.8 λmn
(
γ2
)

=
∞∑
k=0

`2kγ
2k, |γ2| < rmn .

For values of rmn see Meixner et al. (1980, p. 109).

30.3.9

`0 = n(n+ 1), 2`2 = −1− (2m− 1)(2m+ 1)
(2n− 1)(2n+ 3)

,

2`4 =
(n−m− 1)(n−m)(n+m− 1)(n+m)

(2n− 3)(2n− 1)3(2n+ 1)
− (n−m+ 1)(n−m+ 2)(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)3(2n+ 5)
.

For additional coefficients see http://dlmf.nist.gov/30.3.iv.

30.4 Functions of the First Kind

30.4(i) Definitions

The eigenfunctions of (30.2.1) that correspond to the
eigenvalues λmn

(
γ2
)

are denoted by Psmn
(
x, γ2

)
, n =

m,m + 1,m + 2, . . . . They are normalized by the con-
dition

30.4.1

∫ 1

−1

(
Psmn

(
x, γ2

))2
dx =

2
2n+ 1

(n+m)!
(n−m)!

,

the sign of Psmn
(
0, γ2

)
being (−1)(n+m)/2 when n −m

is even, and the sign of dPsmn
(
x, γ2

)/
dx |x=0 being

(−1)(n+m−1)/2 when n−m is odd.
When γ2 > 0 Psmn

(
x, γ2

)
is the prolate angular

spheroidal wave function, and when γ2 < 0 Psmn
(
x, γ2

)
is the oblate angular spheroidal wave function. If γ = 0,
Psmn (x, 0) reduces to the Ferrers function Pmn (x):

30.4.2 Psmn (x, 0) = Pmn (x);
compare §14.3(i).

30.4(ii) Elementary Properties

30.4.3 Psmn
(
−x, γ2

)
= (−1)n−m Psmn

(
x, γ2

)
.

Psmn
(
x, γ2

)
has exactly n − m zeros in the interval

−1 < x < 1.

30.4(iii) Power-Series Expansion

30.4.4

Psmn
(
x, γ2

)
= (1− x2)

1
2m

∞∑
k=0

gkx
k, −1 ≤ x ≤ 1,

where

30.4.5 αkgk+2 + (βk − λmn
(
γ2
)
)gk + γkgk−2 = 0

with αk, βk, γk from (30.3.6), and g−1 = g−2 = 0,
gk = 0 for even k if n−m is odd and gk = 0 for odd k
if n−m is even. Normalization of the coefficients gk is
effected by application of (30.4.1).

30.4(iv) Orthogonality

30.4.6∫ 1

−1

Psmk
(
x, γ2

)
Psmn

(
x, γ2

)
dx =

2
2n+ 1

(n+m)!
(n−m)!

δk,n.

If f(x) is mean-square integrable on [−1, 1], then for-
mally

30.4.7 f(x) =
∞∑
n=m

cn Psmn
(
x, γ2

)
,

where

30.4.8 cn = (n+ 1
2 )

(n−m)!
(n+m)!

∫ 1

−1

f(t) Psmn
(
t, γ2

)
dt.

The expansion (30.4.7) converges in the norm of
L2(−1, 1), that is,

30.4.9 lim
N→∞

∫ 1

−1

∣∣∣∣∣f(x)−
N∑

n=m

cn Psmn
(
x, γ2

)∣∣∣∣∣
2

dx = 0.

It is also equiconvergent with its expansion in Ferrers
functions (as in (30.4.2)), that is, the difference of cor-
responding partial sums converges to 0 uniformly for
−1 ≤ x ≤ 1.
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30.5 Functions of the Second Kind

Other solutions of (30.2.1) with µ = m, λ = λmn
(
γ2
)
,

and z = x are

30.5.1 Qsmn
(
x, γ2

)
, n = m,m+ 1,m+ 2, . . . .

They satisfy

30.5.2 Qsmn
(
−x, γ2

)
= (−1)n−m+1 Qsmn

(
x, γ2

)
,

and

30.5.3 Qsmn (x, 0) = Qm
n (x);

compare §14.3(i). Also,

30.5.4

W
{

Psmn
(
x, γ2

)
,Qsmn

(
x, γ2

)}
=

(n+m)!
(1− x2)(n−m)!

Amn (γ2)A−mn (γ2) (6= 0),

with A±mn (γ2) as in (30.11.4).
For further properties see Meixner and Schäfke

(1954) and §30.8(ii).

30.6 Functions of Complex Argument

The solutions

30.6.1 Psmn
(
z, γ2

)
, Qsmn

(
z, γ2

)
,

of (30.2.1) with µ = m and λ = λmn
(
γ2
)

are real when
z ∈ (1,∞), and their principal values (§4.2(i)) are ob-
tained by analytic continuation to C \ (−∞, 1].

Relations to Associated Legendre Functions

30.6.2 Psmn (z, 0) = Pmn (z), Qsmn (z, 0) = Qmn (z);

compare §14.3(ii).

Wronskian

30.6.3

W
{

Psmn
(
z, γ2

)
,Qsmn

(
z, γ2

)}
=

(−1)m(n+m)!
(1− z2)(n−m)!

Amn (γ2)A−mn (γ2),

with A±mn (γ2) as in (30.11.4).

Values on (−1, 1)

30.6.4 Psmn
(
x± i0, γ2

)
= (∓i)m Psmn

(
x, γ2

)
,

30.6.5
Qsmn

(
x± i0, γ2

)
= (∓i)m

(
Qsmn

(
x, γ2

)
∓ 1

2 iπ Psmn
(
x, γ2

))
.

For further properties see Arscott (1964b).
For results for Equation (30.2.1) with complex pa-

rameters see Meixner and Schäfke (1954).

30.7 Graphics

30.7(i) Eigenvalues

Figure 30.7.1: Eigenvalues λ0
n

(
γ2
)
, n = 0, 1, 2, 3, −10 ≤

γ2 ≤ 10.

For additional graphs see http://dlmf.nist.gov/30.
7.i.

30.7(ii) Functions of the First Kind

Figure 30.7.5: Ps0
n(x, 4), n = 0, 1, 2, 3, −1 ≤ x ≤ 1.

For additional graphs see http://dlmf.nist.gov/30.
7.ii.

Figure 30.7.9: Ps0
2

(
x, γ2

)
, −1 ≤ x ≤ 1, −50 ≤ γ2 ≤ 50.



30.7 Graphics 701

For an additional surface see http://dlmf.nist.
gov/30.7.ii.

30.7(iii) Functions of the Second Kind

Figure 30.7.11: Qs0
n(x, 4), n = 0, 1, 2, 3, −1 < x < 1.

For additional graphs see http://dlmf.nist.gov/30.
7.iii.

Figure 30.7.15: Qs0
1

(
x, γ2

)
,−1 < x < 1,−10 ≤ γ2 ≤ 10.

30.7(iv) Functions of Complex Argument

Figure 30.7.16: |Ps0
0(x+ iy, 4)|, −2 ≤ x ≤ 2, −2 ≤ y ≤

2.

For additional surfaces see http://dlmf.nist.gov/30.
7.iv.

Figure 30.7.20: |Qs0
0(x+ iy, 4)|, −2 ≤ x ≤ 2, −2 ≤ y ≤

2.

For an additional surface see http://dlmf.nist.
gov/30.7.iv.
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30.8 Expansions in Series of Ferrers
Functions

30.8(i) Functions of the First Kind

30.8.1 Psmn
(
x, γ2

)
=

∞∑
k=−R

(−1)kamn,k(γ2) Pmn+2k(x),

where Pmn+2k(x) is the Ferrers function of the first
kind (§14.3(i)), R =

⌊
1
2 (n−m)

⌋
, and the coefficients

amn,k(γ2) are given by

30.8.2

amn,k(γ2) = (−1)k
(
n+ 2k + 1

2

) (n−m+ 2k)!
(n+m+ 2k)!

×
∫ 1

−1

Psmn
(
x, γ2

)
Pmn+2k(x) dx.

Let

30.8.3

Ak = −γ2 (n−m+ 2k − 1)(n−m+ 2k)
(2n+ 4k − 3)(2n+ 4k − 1)

,

Bk = (n+ 2k)(n+ 2k + 1)

− 2γ2 (n+ 2k)(n+ 2k + 1)− 1 +m2

(2n+ 4k − 1)(2n+ 4k + 3)
,

Ck = −γ2 (n+m+ 2k + 1)(n+m+ 2k + 2)
(2n+ 4k + 3)(2n+ 4k + 5)

.

Then the set of coefficients amn,k(γ2), k = −R,−R +
1,−R+ 2, . . . is the solution of the difference equation

30.8.4 Akfk−1 +
(
Bk − λmn

(
γ2
))
fk + Ckfk+1 = 0,

(note that A−R = 0) that satisfies the normalizing con-
dition

30.8.5

∞∑
k=−R

amn,k(γ2)a−mn,k (γ2)
1

2n+ 4k + 1
=

1
2n+ 1

,

with

30.8.6 a−mn,k (γ2) =
(n−m)!(n+m+ 2k)!
(n+m)!(n−m+ 2k)!

amn,k(γ2).

Also, as k →∞,

30.8.7
k2amn,k(γ2)
amn,k−1(γ2)

=
γ2

16
+O

(
1
k

)
,

and

30.8.8
λmn
(
γ2
)
−Bk

Ak

amn,k(γ2)
amn,k−1(γ2)

= 1 +O

(
1
k4

)
.

30.8(ii) Functions of the Second Kind

30.8.9

Qsmn
(
x, γ2

)
=
−N−1∑
k=−∞

(−1)ka′mn,k(γ2) Pmn+2k(x)

+
∞∑

k=−N

(−1)kamn,k(γ2) Qm
n+2k(x),

where Pmn and Qm
n are again the Ferrers functions and

N =
⌊

1
2 (n+m)

⌋
. The coefficients amn,k(γ2) satisfy

(30.8.4) for all k when we set amn,k(γ2) = 0 for k < −N .
For k ≥ −R they agree with the coefficients defined
in §30.8(i). For k = −N,−N + 1, . . . ,−R − 1 they
are determined from (30.8.4) by forward recursion us-
ing amn,−N−1(γ2) = 0. The set of coefficients a′mn,k(γ2),
k = −N − 1,−N − 2, . . . , is the recessive solution of
(30.8.4) as k → −∞ that is normalized by

30.8.10

A−N−1a
′m
n,−N−2(γ2)

+
(
B−N−1 − λmn

(
γ2
))
a′
m
n,−N−1(γ2)

+ C ′amn,−N (γ2) = 0,

with

30.8.11 C ′ =


γ2

4m2 − 1
, n−m even,

− γ2

(2m− 1)(2m− 3)
, n−m odd.

It should be noted that if the forward recursion (30.8.4)
beginning with f−N−1 = 0, f−N = 1 leads to f−R = 0,
then amn,k(γ2) is undefined for n < −R and Qsmn

(
x, γ2

)
does not exist.

30.9 Asymptotic Approximations and
Expansions

30.9(i) Prolate Spheroidal Wave Functions

As γ2 → +∞, with q = 2(n−m) + 1,

30.9.1 λmn
(
γ2
)
∼ −γ2 + γq+ β0 + β1γ

−1 + β2γ
−2 + · · · ,

where

30.9.2

8β0 = 8m2− q2− 5, 26β1 =−q3− 11q+ 32m2q,

210β2 = −5(q4 + 26q2 + 21) + 384m2(q2 + 1),

214β3 = −33q5 − 1594q3 − 5621q

+ 128m2(37q3 + 167q)− 2048m4q.

For additional coefficients see http://dlmf.nist.
gov/30.9.i.

For the eigenfunctions see Meixner and Schäfke
(1954, §3.251) and Müller (1963).

For uniform asymptotic expansions in terms of Airy
or Bessel functions for real values of the parameters,
complex values of the variable, and with explicit error
bounds see Dunster (1986). See also Miles (1975).
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30.9(ii) Oblate Spheroidal Wave Functions

As γ2 → −∞, with q = n+ 1 if n−m is even, or q = n
if n−m is odd, we have

30.9.4 λmn
(
γ2
)
∼ 2q|γ|+ c0 + c1|γ|−1 + c2|γ|−2 + · · · ,

where

30.9.5

2c0 = −q2 − 1 +m2, 8c1 = −q3 − q +m2q,

26c2 = −5q4 − 10q2 − 1 + 2m2(3q2 + 1)−m4,

29c3 =−33q5−114q3−37q+ 2m2(23q3 + 25q)−13m4q.

For additional coefficients see http://dlmf.nist.
gov/30.9.ii.

For the eigenfunctions see Meixner and Schäfke
(1954, §3.252) and Müller (1962).

For uniform asymptotic expansions in terms of ele-
mentary, Airy, or Bessel functions for real values of the
parameters, complex values of the variable, and with
explicit error bounds see Dunster (1992, 1995). See also
Jorna and Springer (1971).

30.9(iii) Other Approximations and Expansions

The asymptotic behavior of λmn
(
γ2
)

and amn,k(γ2) as
n → ∞ in descending powers of 2n + 1 is derived in
Meixner (1944). The cases of large m, and of large m
and large |γ|, are studied in Abramowitz (1949). The
asymptotic behavior of Psmn

(
x, γ2

)
and Qsmn

(
x, γ2

)
as

x → ±1 is given in Erdélyi et al. (1955, p. 151). The
behavior of λmn

(
γ2
)

for complex γ2 and large |λmn
(
γ2
)
|

is investigated in Hunter and Guerrieri (1982).

30.10 Series and Integrals

Integrals and integral equations for Psmn
(
x, γ2

)
are given

in Arscott (1964b, §8.6), Erdélyi et al. (1955, §16.13),
Flammer (1957, Chapter 5), and Meixner (1951). For
product formulas and convolutions see Connett et al.
(1993). For an addition theorem, see Meixner and
Schäfke (1954, p. 300) and King and Van Buren (1973).
For expansions in products of spherical Bessel functions,
see Flammer (1957, Chapter 6).

30.11 Radial Spheroidal Wave Functions

30.11(i) Definitions

Denote

30.11.1 ψ
(j)
k (z) =

( π
2z

)1
2 C(j)

k+ 1
2
(z), j = 1, 2, 3, 4,

where

30.11.2

C(1)
ν = Jν , C(2)

ν = Yν , C(3)
ν = H(1)

ν , C(4)
ν = H(2)

ν ,

with Jν , Yν , H(1)
ν , and H

(2)
ν as in §10.2(ii). Then solu-

tions of (30.2.1) with µ = m and λ = λmn
(
γ2
)

are given
by

30.11.3

Sm(j)
n (z, γ) =

(1− z−2)
1
2m

A−mn (γ2)

∑
2k≥m−n

a−mn,k (γ2)ψ(j)
n+2k(γz).

Here a−mn,k (γ2) is defined by (30.8.2) and (30.8.6), and

30.11.4 A±mn (γ2) =
∑

2k≥∓m−n

(−1)ka±mn,k (γ2) (6= 0).

In (30.11.3) z 6= 0 when j = 1, and |z| > 1 when
j = 2, 3, 4.

Connection Formulas

30.11.5
Sm(3)
n (z, γ) = Sm(1)

n (z, γ) + i Sm(2)
n (z, γ),

Sm(4)
n (z, γ) = Sm(1)

n (z, γ)− i Sm(2)
n (z, γ).

30.11(ii) Graphics

Figure 30.11.1: S0(1)
n (x, 2), n = 0, 1, 1 ≤ x ≤ 10.

For additional graphs see http://dlmf.nist.gov/30.
11.ii.

30.11(iii) Asymptotic Behavior

For fixed γ, as z →∞ in the sector |ph z| ≤ π−δ (< π),

30.11.6

Sm(j)
n (z, γ) =

{
ψ

(j)
n (γz) +O

(
z−2e|=z|

)
, j = 1, 2,

ψ
(j)
n (γz)

(
1 +O

(
z−1
))
, j = 3, 4.

For asymptotic expansions in negative powers of z
see Meixner and Schäfke (1954, p. 293).

30.11(iv) Wronskian

30.11.7 W
{
Sm(1)
n (z, γ), Sm(2)

n (z, γ)
}

=
1

γ(z2 − 1)
.
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30.11(v) Connection with the Ps and Qs
Functions

30.11.8 Sm(1)
n (z, γ) = Km

n (γ) Psmn
(
z, γ2

)
,

30.11.9

Sm(2)
n (z, γ) =

(n−m)!
(n+m)!

(−1)m+1 Qsmn
(
z, γ2

)
γKm

n (γ)Amn (γ2)A−mn (γ2)
,

where

30.11.10

Km
n (γ) =

√
π

2

(γ
2

)m (−1)ma−m
n, 12 (m−n)

(γ2)

Γ
(

3
2 +m

)
A−mn (γ2) Psmn (0, γ2)

,

n−m even,

or

30.11.11

Km
n (γ) =

√
π

2

(γ
2

)m+1

×
(−1)ma−m

n, 12 (m−n+1)
(γ2)

Γ
(

5
2 +m

)
A−mn (γ2)( dPsmn (z, γ2)/dz |z=0)

,

n−m odd.

30.11(vi) Integral Representations

When z ∈ C \ (−∞, 1]

30.11.12

A−mn (γ2)Sm(1)
n (z, γ)

=
1
2
im+nγm

(n−m)!
(n+m)!

zm(1− z−2)
1
2m

×
∫ 1

−1

e−iγzt(1− t2)
1
2m Psmn

(
t, γ2

)
dt.

For further relations see Arscott (1964b, §8.6), Con-
nett et al. (1993), Erdélyi et al. (1955, §16.13), Meixner
and Schäfke (1954), and Meixner et al. (1980, §3.1).

30.12 Generalized and Coulomb Spheroidal
Functions

Generalized spheroidal wave functions and Coulomb
spheroidal functions are solutions of the differential
equation

30.12.1

d

dz

(
(1− z2)

dw

dz

)
+
(
λ+ αz + γ2(1− z2)− µ2

1− z2

)
w = 0,

which reduces to (30.2.1) if α = 0. Equation (30.12.1)
appears in astrophysics and molecular physics. For the
theory and computation of solutions of (30.12.1) see Fal-
loon (2001), Judd (1975), Leaver (1986), and Komarov
et al. (1976).

Another generalization is provided by the differential
equation

30.12.2

d

dz

(
(1− z2)

dw

dz

)
+
(
λ+ γ2(1− z2)

− α(α+ 1)
z2

− µ2

1− z2

)
w = 0,

which also reduces to (30.2.1) when α = 0. See Leitner
and Meixner (1960), Slepian (1964) with µ = 0, and
Meixner et al. (1980).

Applications

30.13 Wave Equation in Prolate Spheroidal
Coordinates

30.13(i) Prolate Spheroidal Coordinates

Prolate spheroidal coordinates ξ, η, φ are related to
Cartesian coordinates x, y, z by

30.13.1
x = c

√
(ξ2 − 1)(1− η2) cosφ,

y = c
√

(ξ2 − 1)(1− η2) sinφ, z = cξη,

where c is a positive constant. The (x, y, z)-space with-
out the z-axis corresponds to

30.13.2 1 < ξ <∞, −1 < η < 1, 0 ≤ φ < 2π.

The coordinate surfaces ξ = const. are prolate ellipsoids
of revolution with foci at x = y = 0, z = ±c. The co-
ordinate surfaces η = const. are sheets of two-sheeted
hyperboloids of revolution with the same foci. The focal
line is given by ξ = 1, −1 ≤ η ≤ 1, and the rays ±z ≥ c,
x = y = 0 are given by η = ±1, ξ ≥ 1.

30.13(ii) Metric Coefficients

30.13.3 h2
ξ =

(
∂x

∂ξ

)2
+
(
∂y

∂ξ

)2
+
(
∂z

∂ξ

)2
=
c2(ξ2 − η2)
ξ2 − 1

,

30.13.4 h2
η =

(
∂x

∂η

)2
+
(
∂y

∂η

)2
+
(
∂z

∂η

)2
=
c2(ξ2 − η2)

1− η2
,

30.13.5
h2
φ =

(
∂x

∂φ

)2
+
(
∂y

∂φ

)2
+
(
∂z

∂φ

)2
= c2(ξ2 − 1)(1− η2).
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30.13(iii) Laplacian

30.13.6

∇2 =
1

hξhηhφ

(
∂

∂ξ

(
hηhφ
hξ

∂

∂ξ

)
+

∂

∂η

(
hξhφ
hη

∂

∂η

)
+

∂

∂φ

(
hξhη
hφ

∂

∂φ

))
=

1
c2(ξ2 − η2)

(
∂

∂ξ

(
(ξ2 − 1)

∂

∂ξ

)
+

∂

∂η

(
(1− η2)

∂

∂η

)
+

ξ2 − η2

(ξ2 − 1)(1− η2)
∂2

∂φ2

)
.

30.13(iv) Separation of Variables

The wave equation

30.13.7 ∇2w + κ2w = 0,

transformed to prolate spheroidal coordinates (ξ, η, φ),
admits solutions

30.13.8 w(ξ, η, φ) = w1(ξ)w2(η)w3(φ),

where w1, w2, w3 satisfy the differential equations

30.13.9

d

dξ

(
(1− ξ2)

dw1

dξ

)
+
(
λ+ γ2(1− ξ2)− µ2

1− ξ2

)
w1 = 0,

30.13.10

d

dη

(
(1−η2)

dw2

dη

)
+
(
λ+γ2(1−η2)− µ2

1− η2

)
w2 = 0,

30.13.11
d2w3

dφ2 + µ2w3 = 0,

with γ2 = κ2c2 ≥ 0 and separation constants λ and µ2.
Equations (30.13.9) and (30.13.10) agree with (30.2.1).

In most applications the solution w has to be a
single-valued function of (x, y, z), which requires µ = m
(a nonnegative integer) and

30.13.12 w3(φ) = a3 cos(mφ) + b3 sin(mφ).

Moreover, w has to be bounded along the z-axis away
from the focal line: this requires w2(η) to be bounded
when −1 < η < 1. Then λ = λmn

(
γ2
)

for some
n = m,m + 1,m + 2, . . . , and the general solution of
(30.13.10) is

30.13.13 w2(η) = a2 Psmn
(
η, γ2

)
+ b2 Qsmn

(
η, γ2

)
.

The solution of (30.13.9) with µ = m is

30.13.14 w1(ξ) = a1 S
m(1)
n (ξ, γ) + b1 S

m(2)
n (ξ, γ).

If b1 = b2 = 0, then the function (30.13.8) is a twice-
continuously differentiable solution of (30.13.7) in the
entire (x, y, z)-space. If b2 = 0, then this property holds
outside the focal line.

30.13(v) The Interior Dirichlet Problem for
Prolate Ellipsoids

Equation (30.13.7) for ξ ≤ ξ0, and subject to the bound-
ary condition w = 0 on the ellipsoid given by ξ = ξ0,
poses an eigenvalue problem with κ2 as spectral param-
eter. The eigenvalues are given by c2κ2 = γ2, where γ
is determined from the condition

30.13.15 Sm(1)
n (ξ0, γ) = 0.

The corresponding eigenfunctions are given by
(30.13.8), (30.13.14), (30.13.13), (30.13.12), with b1 =
b2 = 0. For the Dirichlet boundary-value problem of
the region ξ1 ≤ ξ ≤ ξ2 between two ellipsoids, the
eigenvalues are determined from

30.13.16 w1(ξ1) = w1(ξ2) = 0,
with w1 as in (30.13.14). The corresponding eigenfunc-
tions are given as before with b2 = 0.

For further applications see Meixner and Schäfke
(1954), Meixner et al. (1980) and the references cited
therein; also Ong (1986), Müller et al. (1994), and Xiao
et al. (2001).

30.14 Wave Equation in Oblate Spheroidal
Coordinates

30.14(i) Oblate Spheroidal Coordinates

Oblate spheroidal coordinates ξ, η, φ are related to
Cartesian coordinates x, y, z by

30.14.1
x = c

√
(ξ2 + 1)(1− η2) cosφ,

y = c
√

(ξ2 + 1)(1− η2) sinφ, z = cξη,

where c is a positive constant. The (x, y, z)-space with-
out the z-axis and the disk z = 0, x2 + y2 ≤ c2 corre-
sponds to

30.14.2 0 < ξ <∞, −1 < η < 1, 0 ≤ φ < 2π.
The coordinate surfaces ξ = const. are oblate ellipsoids
of revolution with focal circle z = 0, x2 + y2 = c2.
The coordinate surfaces η = const. are halves of one-
sheeted hyperboloids of revolution with the same focal
circle. The disk z = 0, x2 + y2 ≤ c2 is given by ξ = 0,
−1 ≤ η ≤ 1, and the rays ±z ≥ 0, x = y = 0 are given
by η = ±1, ξ ≥ 0.

30.14(ii) Metric Coefficients

30.14.3 h2
ξ =

c2(ξ2 + η2)
1 + ξ2

,

30.14.4 h2
η =

c2(ξ2 + η2)
1− η2

,

30.14.5 h2
φ = c2(ξ2 + 1)(1− η2).
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30.14(iii) Laplacian

30.14.6

∇2 =
1

c2(ξ2 + η2)

(
∂

∂ξ

(
(ξ2 + 1)

∂

∂ξ

)
+

∂

∂η

(
(1− η2)

∂

∂η

)
+

ξ2 + η2

(ξ2 + 1)(1− η2)
∂2

∂φ2

)
.

30.14(iv) Separation of Variables

The wave equation (30.13.7), transformed to oblate
spheroidal coordinates (ξ, η, φ), admits solutions of the
form (30.13.8), where w1 satisfies the differential equa-
tion

30.14.7

d

dξ

(
(1 + ξ2)

dw1

dξ

)
−
(
λ+ γ2(1 + ξ2)− µ2

1 + ξ2

)
w1 = 0,

and w2, w3 satisfy (30.13.10) and (30.13.11), respec-
tively, with γ2 = −κ2c2 ≤ 0 and separation constants
λ and µ2. Equation (30.14.7) can be transformed to
equation (30.2.1) by the substitution z = ±iξ.

In most applications the solution w has to be a
single-valued function of (x, y, z), which requires µ = m
(a nonnegative integer). Moreover, the solution w has to
be bounded along the z-axis: this requires w2(η) to be
bounded when −1 < η < 1. Then λ = λmn

(
γ2
)

for some
n = m,m+ 1,m+ 2, . . . , and the solution of (30.13.10)
is given by (30.13.13). The solution of (30.14.7) is given
by

30.14.8 w1(ξ) = a1 S
m(1)
n (iξ, γ) + b1 S

m(2)
n (iξ, γ).

If b1 = b2 = 0, then the function (30.13.8) is a twice-
continuously differentiable solution of (30.13.7) in the
entire (x, y, z)-space. If b2 = 0, then this property holds
outside the focal disk.

30.14(v) The Interior Dirichlet Problem for
Oblate Ellipsoids

Equation (30.13.7) for ξ ≤ ξ0 together with the bound-
ary condition w = 0 on the ellipsoid given by ξ = ξ0,
poses an eigenvalue problem with κ2 as spectral param-
eter. The eigenvalues are given by c2κ2 = −γ2, where
γ2 is determined from the condition

30.14.9 Sm(1)
n (iξ0, γ) = 0.

The corresponding eigenfunctions are then given by
(30.13.8), (30.14.8), (30.13.13), (30.13.12), with b1 =
b2 = 0.

For further applications see Meixner and Schäfke
(1954), Meixner et al. (1980) and the references cited
therein; also Kokkorakis and Roumeliotis (1998) and Li
et al. (1998).

30.15 Signal Analysis

30.15(i) Scaled Spheroidal Wave Functions

Let τ (> 0) and σ (> 0) be given. Set γ = τσ and define

30.15.1

φn(t) =

√
2n+ 1

2τ

√
Λn Ps0

n

(
t

τ
, γ2

)
, n = 0, 1, 2, . . . ,

30.15.2 Λn =
2γ
π

(
K0
n(γ)A0

n(γ2)
)2

;

see §30.11(v).

30.15(ii) Integral Equation

30.15.3

∫ τ

−τ

sinσ(t− s)
π(t− s)

φn(s) ds = Λnφn(t).

30.15(iii) Fourier Transform

30.15.4∫ ∞
−∞

e−itωφn(t) dt = (−i)n
√

2πτ
σΛn

φn

( τ
σ
ω
)
χσ(ω),

30.15.5

∫ τ

−τ
e−itωφn(t) dt = (−i)n

√
2πτΛn
σ

φn

( τ
σ
ω
)
,

where

30.15.6 χσ(ω) =

{
1, |ω| ≤ σ,
0, |ω| > σ.

Equations (30.15.4) and (30.15.6) show that the func-
tions φn are σ-bandlimited, that is, their Fourier trans-
form vanishes outside the interval [−σ, σ].

30.15(iv) Orthogonality

30.15.7

∫ τ

−τ
φk(t)φn(t) dt = Λnδk,n,

30.15.8

∫ ∞
−∞

φk(t)φn(t) dt = δk,n.

The sequence φn, n = 0, 1, 2, . . . forms an orthonormal
basis in the space of σ-bandlimited functions, and, after
normalization, an orthonormal basis in L2(−τ, τ).
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30.15(v) Extremal Properties

The maximum (or least upper bound) B of all numbers

30.15.9 β =
1

2π

∫ σ

−σ

∣∣∣∣∫ ∞
−∞

e−itωf(t) dt
∣∣∣∣2 dω

taken over all f ∈ L2(−∞,∞) subject to

30.15.10

∫ ∞
−∞
|f(t)|2 dt = 1,

∫ τ

−τ
|f(t)|2 dt = α,

for (fixed) Λ0 < α ≤ 1, is given by

30.15.11 arccos
√

B + arccos
√
α = arccos

√
Λ0,

or equivalently,

30.15.12 B =
(√

Λ0α+
√

1− Λ0

√
1− α

)2
.

The corresponding function f is given by

30.15.13

f(t) = aφ0(t)χτ (t) + bφ0(t)(1− χτ (t)),

a =
√

α

Λ0
, b =

√
1− α
1− Λ0

.

If 0 < α ≤ Λ0, then B = 1.
For further information see Frieden (1971), Lyman

and Edmonson (2001), Papoulis (1977, Chapter 6),
Slepian (1983), and Slepian and Pollak (1961).

Computation

30.16 Methods of Computation

30.16(i) Eigenvalues

For small |γ2| we can use the power-series expansion
(30.3.8). Schäfke and Groh (1962) gives corresponding
error bounds. If |γ2| is large we can use the asymptotic
expansions in §30.9. Approximations to eigenvalues can
be improved by using the continued-fraction equations
from §30.3(iii) and §30.8; see Bouwkamp (1947) and
Meixner and Schäfke (1954, §3.93).

Another method is as follows. Let n − m be even.
For d sufficiently large, construct the d × d tridiagonal
matrix A = [Aj,k] with nonzero elements

30.16.1

Aj,j = (m+ 2j − 2)(m+ 2j − 1)

− 2γ2 (m+ 2j − 2)(m+ 2j − 1)− 1 +m2

(2m+ 4j − 5)(2m+ 4j − 1)
,

Aj,j+1 = −γ2 (2m+ 2j − 1)(2m+ 2j)
(2m+ 4j − 1)(2m+ 4j + 1)

,

Aj,j−1 = −γ2 (2j − 3)(2j − 2)
(2m+ 4j − 7)(2m+ 4j − 5)

,

and real eigenvalues α1,d, α2,d, . . . , αd,d, arranged in
ascending order of magnitude. Then
30.16.2 αj,d+1 ≤ αj,d,
and

30.16.3 λmn
(
γ2
)

= lim
d→∞

αp,d, p =
⌊

1
2 (n−m)

⌋
+ 1.

The eigenvalues of A can be computed by methods in-
dicated in §§3.2(vi), 3.2(vii). The error satisfies

30.16.4

αp,d − λmn
(
γ2
)

= O

(
γ4d

42d+1((m+ 2d− 1)!(m+ 2d+ 1)!)2

)
,

d→∞.
Example

For m = 2, n = 4, γ2 = 10,

30.16.5

α2,2 = 14.18833 246, α2,3 = 13.98002 013,
α2,4 = 13.97907 459, α2,5 = 13.97907 345,
α2,6 = 13.97907 345,

which yields λ2
4(10) = 13.97907 345. If n − m is odd,

then (30.16.1) is replaced by

30.16.6

Aj,j = (m+ 2j − 1)(m+ 2j)

− 2γ2 (m+ 2j − 1)(m+ 2j)− 1 +m2

(2m+ 4j − 3)(2m+ 4j + 1)
,

Aj,j+1 = −γ2 (2m+ 2j)(2m+ 2j + 1)
(2m+ 4j + 1)(2m+ 4j + 3)

,

Aj,j−1 = −γ2 (2j − 2)(2j − 1)
(2m+ 4j − 5)(2m+ 4j − 3)

.

30.16(ii) Spheroidal Wave Functions of the
First Kind

If |γ2| is large, then we can use the asymptotic expan-
sions referred to in §30.9 to approximate Psmn

(
x, γ2

)
.

If λmn
(
γ2
)

is known, then we can compute Psmn
(
x, γ2

)
(not normalized) by solving the differential equation
(30.2.1) numerically with initial conditions w(0) = 1,
w′(0) = 0 if n − m is even, or w(0) = 0, w′(0) = 1 if
n−m is odd.

If λmn
(
γ2
)

is known, then Psmn
(
x, γ2

)
can be found

by summing (30.8.1). The coefficients amn,r(γ
2) are com-

puted as the recessive solution of (30.8.4) (§3.6), and
normalized via (30.8.5).

A fourth method, based on the expansion (30.8.1), is
as follows. Let A be the d×d matrix given by (30.16.1)
if n−m is even, or by (30.16.6) if n−m is odd. Form the
eigenvector [e1,d, e2,d, . . . , ed,d]T of A associated with
the eigenvalue αp,d, p =

⌊
1
2 (n−m)

⌋
+ 1, normalized

according to

30.16.7

d∑
j=1

e2
j,d

(n+m+ 2j − 2p)!
(n−m+ 2j − 2p)!

1
2n+ 4j − 4p+ 1

=
(n+m)!
(n−m)!

1
2n+ 1

.
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Then

30.16.8 amn,k(γ2) = lim
d→∞

ek+p,d,

30.16.9 Psmn
(
x, γ2

)
= lim
d→∞

d∑
j=1

(−1)j−pej,d Pmn+2(j−p)(x).

For error estimates see Volkmer (2004a).

30.16(iii) Radial Spheroidal Wave Functions

The coefficients amn,k(γ2) calculated in §30.16(ii) can

be used to compute S
m(j)
n (z, γ), j = 1, 2, 3, 4 from

(30.11.3) as well as the connection coefficients Km
n (γ)

from (30.11.10) and (30.11.11).
For another method see Van Buren and Boisvert

(2002).

30.17 Tables

• Stratton et al. (1956) tabulates quantities closely
related to λmn

(
γ2
)

and amn,k(γ2) for 0 ≤ m ≤ 8,
m ≤ n ≤ 8, −64 ≤ γ2 ≤ 64. Precision is 7S.

• Flammer (1957) includes 18 tables of eigenvalues,
expansion coefficients, spheroidal wave functions,
and other related quantities. Precision varies be-
tween 4S and 10S.

• Hanish et al. (1970) gives λmn
(
γ2
)

and Sm(j)
n (z, γ),

j = 1, 2, and their first derivatives, for 0 ≤ m ≤ 2,
m ≤ n ≤ m+ 49, −1600 ≤ γ2 ≤ 1600. The range
of z is given by 1 ≤ z ≤ 10 if γ2 > 0, or z = −iξ,
0 ≤ ξ ≤ 2 if γ2 < 0. Precision is 18S.

• EraŠevskaja et al. (1973, 1976) gives
Sm(j)(iy,−ic), Sm(j)(z, γ) and their first deriva-
tives for j = 1, 2, 0.5 ≤ c ≤ 8, y = 0, 0.5, 1, 1.5,
0.5 ≤ γ ≤ 8, z = 1.01, 1.1, 1.4, 1.8. Precision is
15S.

• Van Buren et al. (1975) gives λ0
n

(
γ2
)
, Ps0

n

(
x, γ2

)
for 0 ≤ n ≤ 49, −1600 ≤ γ2 ≤ 1600, −1 ≤ x ≤ 1.
Precision is 8S.

• Zhang and Jin (1996) includes 24 tables of eigen-
values, spheroidal wave functions and their deriva-
tives. Precision varies between 6S and 8S.

Fletcher et al. (1962, §22.28) provides additional infor-
mation on tables prior to 1961.

30.18 Software

See http://dlmf.nist.gov/30.18.
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Notation

31.1 Special Notation

(For other notation see pp. xiv and 873.)

x, y real variables.
z, ζ, w, W complex variables.
j, k, `, m, n nonnegative integers.
a complex parameter, |a| ≥ 1, a 6= 1.
q, α, β, γ, δ, ε, ν complex parameters.

The main functions treated in this chapter
are H`(a, q;α, β, γ, δ; z), (s1, s2)Hf m(a, qm;α, β, γ, δ; z),
(s1, s2)Hf νm(a, qm;α, β, γ, δ; z), and the polynomial
Hpn,m(a, qn,m;−n, β, γ, δ; z). These notations were in-
troduced by Arscott in Ronveaux (1995, pp. 34–44).
Sometimes the parameters are suppressed.

Properties

31.2 Differential Equations

31.2(i) Heun’s Equation

31.2.1

d2w

dz2 +
(
γ

z
+

δ

z − 1
+

ε

z − a

)
dw

dz
+

αβz − q
z(z − 1)(z − a)

w

= 0, α+ β + 1 = γ + δ + ε.

This equation has regular singularities at 0, 1, a,∞, with
corresponding exponents {0, 1−γ}, {0, 1−δ}, {0, 1−ε},
{α, β}, respectively (§2.7(i)). All other homogeneous
linear differential equations of the second order having
four regular singularities in the extended complex plane,
C ∪ {∞}, can be transformed into (31.2.1).

The parameters play different roles: a is the singu-
larity parameter ; α, β, γ, δ, ε are exponent parameters; q
is the accessory parameter. The total number of free
parameters is six.

31.2(ii) Normal Form of Heun’s Equation

31.2.2 w(z) = z−γ/2(z − 1)−δ/2(z − a)−ε/2W (z),

31.2.3

d2W

dz2 =
(
A

z
+

B

z − 1
+

C

z − a
+
D

z2
+

E

(z − 1)2

+
F

(z − a)2

)
W ,

A+B + C = 0,

31.2.4

A = −γδ
2
− γε

2a
+
q

a
, B =

γδ

2
− δε

2(a− 1)
− q − αβ

a− 1
,

C =
γε

2a
+

δε

2(a− 1)
− aαβ − q
a(a− 1)

, D = 1
2γ
(

1
2γ − 1

)
,

E = 1
2δ
(

1
2δ − 1

)
, F = 1

2ε
(

1
2ε− 1

)
.

31.2(iii) Trigonometric Form

31.2.5 z = sin2 θ,

31.2.6

d2w

dθ2 +
(

(2γ − 1) cot θ − (2δ − 1) tan θ

− ε sin(2θ)
a− sin2 θ

)
dw

dθ
+ 4

αβ sin2 θ − q
a− sin2 θ

w = 0.

31.2(iv) Doubly-Periodic Forms

Jacobi’s Elliptic Form

With the notation of §22.2 let

31.2.7 a = k−2, z = sn2 (ζ, k).

Then (suppressing the parameter k)

31.2.8

d2w

dζ2 +
(

(2γ−1)
cn ζ dn ζ

sn ζ
−(2δ−1)

sn ζ dn ζ
cn ζ

− (2ε− 1)k2 sn ζ cn ζ
dn ζ

)
dw

dζ

+ 4k2(αβ sn2 ζ − q)w = 0.

Weierstrass’s Form

With the notation of §§19.2(ii) and 23.2 let

31.2.9

k2 = (e2 − e3)/(e1 − e3),
ζ = iK ′ + ξ(e1 − e3)1/2, e1 = ℘(ω1),
e2 = ℘(ω2), e3 = ℘(ω3), e1 + e2 + e3 = 0,

where 2ω1 and 2ω3 with =(ω3/ω1) > 0 are generators
of the lattice L for ℘(z|L). Then

31.2.10
w(ξ) = (℘(ξ)− e3)(1−2γ)/4 (℘(ξ)− e2)(1−2δ)/4

× (℘(ξ)− e1)(1−2ε)/4
W (ξ),

where W (ξ) satisfies

31.2.11
d2W

/
dξ2 + (H + b0 ℘(ξ) + b1 ℘(ξ + ω1)

+ b2 ℘(ξ + ω2) + b3 ℘(ξ + ω3))W = 0,

with

31.2.12

b0 = 4αβ − (γ + δ + ε− 1
2 )(γ + δ + ε− 3

2 ),

b1 = −(ε− 1
2 )(ε− 3

2 ), b2 = −(δ − 1
2 )(δ − 3

2 ),

b3 = −(γ − 1
2 )(γ − 3

2 ),

H = e1(γ + δ − 1)2 + e2(γ + ε− 1)2

+ e3(δ + ε− 1)2 − 4αβe3 − 4q(e2 − e3).
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31.2(v) Heun’s Equation Automorphisms

F -Homotopic Transformations

w(z) = z1−γw1(z) satisfies (31.2.1) if w1 is a solution
of (31.2.1) with transformed parameters q1 = q+ (aδ+
ε)(1 − γ); α1 = α + 1 − γ, β1 = β + 1 − γ, γ1 = 2 − γ.
Next, w(z) = (z − 1)1−δw2(z) satisfies (31.2.1) if w2

is a solution of (31.2.1) with transformed parameters
q2 = q + aγ(1 − δ); α2 = α + 1 − δ, β2 = β + 1 − δ,
δ2 = 2 − δ. Lastly, w(z) = (z − a)1−εw3(z) satisfies
(31.2.1) if w3 is a solution of (31.2.1) with transformed
parameters q3 = q+γ(1−ε); α3 = α+1−ε, β3 = β+1−ε,
ε3 = 2− ε. By composing these three steps, there result
23 = 8 possible transformations of the dependent vari-
able (including the identity transformation) that pre-
serve the form of (31.2.1).

Homographic Transformations

There are 4! = 24 homographies z̃(z) = (Az +
B)/(Cz + D) that take 0, 1, a,∞ to some permutation
of 0, 1, a′,∞, where a′ may differ from a. If z̃ = z̃(z)
is one of the 3! = 6 homographies that map ∞ to ∞,
then w(z) = w̃(z̃) satisfies (31.2.1) if w̃(z̃) is a solu-
tion of (31.2.1) with z replaced by z̃ and appropriately
transformed parameters. For example, if z̃ = z/a, then
the parameters are ã = 1/a, q̃ = q/a; δ̃ = ε, ε̃ = δ.
If z̃ = z̃(z) is one of the 4! − 3! = 18 homographies
that do not map ∞ to ∞, then an appropriate prefac-
tor must be included on the right-hand side. For exam-
ple, w(z) = (1 − z)−αw̃(z/(z − 1)), which arises from
z̃ = z/(z − 1), satisfies (31.2.1) if w̃(z̃) is a solution of
(31.2.1) with z replaced by z̃ and transformed parame-
ters ã = a/(a−1), q̃ = −(q−aαγ)/(a−1); β̃ = α+1−δ,

δ̃ = α+ 1− β.

Composite Transformations

There are 8 · 24 = 192 automorphisms of equation
(31.2.1) by compositions of F -homotopic and homo-
graphic transformations. Each is a substitution of de-
pendent and/or independent variables that preserves
the form of (31.2.1). Except for the identity automor-
phism, each alters the parameters.

31.3 Basic Solutions

31.3(i) Fuchs–Frobenius Solutions at z = 0

H`(a, q;α, β, γ, δ; z) denotes the solution of (31.2.1) that
corresponds to the exponent 0 at z = 0 and assumes the
value 1 there. If the other exponent is not a positive in-
teger, that is, if γ 6= 0,−1,−2, . . . , then from §2.7(i)
it follows that H`(a, q;α, β, γ, δ; z) exists, is analytic in
the disk |z| < 1, and has the Maclaurin expansion

31.3.1 H`(a, q;α, β, γ, δ; z) =
∞∑
j=0

cjz
j , |z| < 1,

where c0 = 1,

31.3.2 aγc1 − qc0 = 0,

31.3.3 Rjcj+1 − (Qj + q)cj + Pjcj−1 = 0, j ≥ 1,

with

31.3.4

Pj = (j − 1 + α)(j − 1 + β),
Qj = j ((j − 1 + γ)(1 + a) + aδ + ε) ,
Rj = a(j + 1)(j + γ).

Similarly, if γ 6= 1, 2, 3, . . . , then the solution of (31.2.1) that corresponds to the exponent 1− γ at z = 0 is

31.3.5 z1−γ H`(a, (aδ + ε)(1− γ) + q;α+ 1− γ, β + 1− γ, 2− γ, δ; z).
When γ ∈ Z, linearly independent solutions can be constructed as in §2.7(i). In general, one of them has a

logarithmic singularity at z = 0.

31.3(ii) Fuchs–Frobenius Solutions at Other Singularities

With similar restrictions to those given in §31.3(i), the following results apply. Solutions of (31.2.1) corresponding
to the exponents 0 and 1− δ at z = 1 are respectively,

31.3.6 H`(1− a, αβ − q;α, β, δ, γ; 1− z),

31.3.7 (1− z)1−δ H`(1− a, ((1− a)γ + ε)(1− δ) + αβ − q;α+ 1− δ, β + 1− δ, 2− δ, γ; 1− z).
Solutions of (31.2.1) corresponding to the exponents 0 and 1− ε at z = a are respectively,

31.3.8 H`
(

a

a− 1
,
αβa− q
a− 1

;α, β, ε, δ;
a− z
a− 1

)
,

31.3.9

(
a− z
a− 1

)1−ε
H`
(

a

a− 1
,

(a(δ + γ)− γ)(1− ε)
a− 1

+
αβa− q
a− 1

;α+ 1− ε, β + 1− ε, 2− ε, δ; a− z
a− 1

)
.
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Solutions of (31.2.1) corresponding to the exponents α and β at z =∞ are respectively,

31.3.10 z−α H`
(

1
a
, α (β − ε) +

α

a
(β − δ)− q

a
;α, α− γ + 1, α− β + 1, δ;

1
z

)
,

31.3.11 z−β H`
(

1
a
, β (α− ε) +

β

a
(α− δ)− q

a
;β, β − γ + 1, β − α+ 1, δ;

1
z

)
.

31.3(iii) Equivalent Expressions

Solutions (31.3.1) and (31.3.5)–(31.3.11) comprise a set of 8 local solutions of (31.2.1): 2 per singular point. Each
is related to the solution (31.3.1) by one of the automorphisms of §31.2(v). There are 192 automorphisms in all, so
there are 192/8 = 24 equivalent expressions for each of the 8. For example, H`(a, q;α, β, γ, δ; z) is equal to

31.3.12 H`(1/a, q/a;α, β, γ, α+ β + 1− γ − δ; z/a),
which arises from the homography z̃ = z/a, and to

31.3.13 (1− z)−α H`
(

a

a− 1
,−q − aαγ

a− 1
;α, α+ 1− δ, γ, α+ 1− β;

z

z − 1

)
,

which arises from z̃ = z/(z − 1), and also to 21 fur-
ther expressions. The full set of 192 local solutions of
(31.2.1), equivalent in 8 sets of 24, resembles Kummer’s
set of 24 local solutions of the hypergeometric equation,
which are equivalent in 4 sets of 6 solutions (§15.10(ii));
see Maier (2007).

31.4 Solutions Analytic at Two
Singularities: Heun Functions

For an infinite set of discrete values qm, m =
0, 1, 2, . . . , of the accessory parameter q, the function
H`(a, q;α, β, γ, δ; z) is analytic at z = 1, and hence also
throughout the disk |z| < a. To emphasize this property
this set of functions is denoted by

31.4.1 (0, 1)Hf m(a, qm;α, β, γ, δ; z), m = 0, 1, 2, . . . .

The eigenvalues qm satisfy the continued-fraction
equation

31.4.2 q =
aγP1

Q1 + q −
R1P2

Q2 + q −
R2P3

Q3 + q −
· · · ,

in which Pj , Qj , Rj are as in §31.3(i).
More generally,

31.4.3 (s1, s2)Hf m(a, qm;α, β, γ, δ; z), m = 0, 1, 2, . . . ,

with (s1, s2) ∈ {0, 1, a,∞}, denotes a set of solutions of
(31.2.1), each of which is analytic at s1 and s2. The set
qm depends on the choice of s1 and s2.

The solutions (31.4.3) are called the Heun functions.
See Ronveaux (1995, pp. 39–41).

31.5 Solutions Analytic at Three
Singularities: Heun Polynomials

Let α = −n, n = 0, 1, 2, . . . , and qn,m, m = 0, 1, . . . , n,
be the eigenvalues of the tridiagonal matrix

31.5.1



0 aγ 0 . . . 0
P1 −Q1 R1 . . . 0

0 P2 −Q2

...
...

...
. . . Rn−1

0 0 . . . Pn −Qn

 ,
where Pj , Qj , Rj are again defined as in §31.3(i). Then
31.5.2

Hpn,m(a, qn,m;−n, β, γ, δ; z) = H`(a, qn,m;−n, β, γ, δ; z)
is a polynomial of degree n, and hence a solution of
(31.2.1) that is analytic at all three finite singularities
0, 1, a. These solutions are the Heun polynomials. Some
properties are included as special cases of properties
given in §31.15 below.

31.6 Path-Multiplicative Solutions

A further extension of the notation (31.4.1) and (31.4.3)
is given by

31.6.1 (s1, s2)Hf νm(a, qm;α, β, γ, δ; z), m = 0, 1, 2, . . . ,
with (s1, s2) ∈ {0, 1, a}, but with another set of {qm}.
This denotes a set of solutions of (31.2.1) with the prop-
erty that if we pass around a simple closed contour in
the z-plane that encircles s1 and s2 once in the positive
sense, but not the remaining finite singularity, then the
solution is multiplied by a constant factor e2νπi. These
solutions are called path-multiplicative. See Schmidt
(1979).
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31.7 Relations to Other Functions

31.7(i) Reductions to the Gauss
Hypergeometric Function

31.7.1

2F1(α, β; γ; z) = H`(1, αβ;α, β, γ, δ; z)
= H`(0, 0;α, β, γ, α+ β + 1− γ; z)
= H`(a, aαβ;α, β, γ, α+ β + 1− γ; z).

Other reductions of H` to a 2F1, with at least one free
parameter, exist iff the pair (a, p) takes one of a finite

number of values, where q = αβp. Below are three
such reductions with three and two parameters. They
are analogous to quadratic and cubic hypergeometric
transformations (§§15.8(iii)–15.8(v)).

31.7.2
H`(2, αβ;α, β, γ, α+ β − 2γ + 1; z)

= 2F1

(
1
2α,

1
2β; γ; 1− (1− z)2

)
,

31.7.3
H`
(
4, αβ;α, β, 1

2 ,
2
3 (α+ β); z

)
= 2F1

(
1
3α,

1
3β; 1

2 ; 1− (1− z)2(1− 1
4z)
)
,

31.7.4

H`
(

1
2 + i

√
3

2 , αβ( 1
2 + i

√
3

6 );α, β, 1
3 (α+ β + 1), 1

3 (α+ β + 1); z
)

= 2F1

(
1
3α,

1
3β; 1

3 (α+ β + 1); 1−
(

1−
(

3
2 − i

√
3

2

)
z
)3
)
.

For additional reductions, see Maier (2005). Joyce
(1994) gives a reduction in which the independent vari-
able is transformed not polynomially or rationally, but
algebraically.

31.7(ii) Relations to Lamé Functions

With z = sn2 (ζ, k) and

31.7.5
a = k−2, q = − 1

4ah, α = − 1
2ν,

β = 1
2 (ν + 1), γ = δ = ε = 1

2 ,

equation (31.2.1) becomes Lamé’s equation with inde-
pendent variable ζ; compare (29.2.1) and (31.2.8). The
solutions (31.3.1) and (31.3.5) transform into even and
odd solutions of Lamé’s equation, respectively. Sim-
ilar specializations of formulas in §31.3(ii) yield solu-
tions in the neighborhoods of the singularities ζ = K ,
K + iK ′ , and iK ′ , where K and K ′ are related to k
as in §19.2(ii).

31.8 Solutions via Quadratures

For half-odd-integer values of the exponent parameters:
31.8.1

β − α = m0 + 1
2 , γ = −m1 + 1

2 , δ = −m2 + 1
2 ,

ε = −m3 + 1
2 , m0,m1,m2,m3 = 0, 1, 2, . . . ,

the Hermite–Darboux method (see Whittaker and Wat-
son (1927, pp. 570–572)) can be applied to construct so-
lutions of (31.2.1) expressed in quadratures, as follows.

Denote m = (m0,m1,m2,m3) and λ = −4q. Then
31.8.2

w±(m;λ; z)

=
√

Ψg,N (λ, z)

× exp

(
± iν(λ)

2

∫ z

z0

tm1(t− 1)m2(t− a)m3 dt

Ψg,N (λ, t)
√
t(t− 1)(t− a)

)

are two independent solutions of (31.2.1). Here
Ψg,N (λ, z) is a polynomial of degree g in λ and of degree
N = m0 +m1 +m2 +m3 in z, that is a solution of the
third-order differential equation satisfied by a product
of any two solutions of Heun’s equation. The degree g
is given by

31.8.3

g = 1
2 max

(
2 max

0≤k≤3
mk, 1 +N

− (1 + (−1)N )
(

1
2 + min

0≤k≤3
mk

))
.

The variables λ and ν are two coordinates of the associ-
ated hyperelliptic (spectral) curve Γ : ν2 =

∏2g+1
j=1 (λ −

λj). (This ν is unrelated to the ν in §31.6.) Lastly, λj ,
j = 1, 2, . . . , 2g + 1, are the zeros of the Wronskian of
w+(m;λ; z) and w−(m;λ; z).

By automorphisms from §31.2(v), similar solutions
also exist for m0,m1,m2,m3 ∈ Z, and Ψg,N (λ, z) may
become a rational function in z. For instance,
31.8.4

Ψ1,2 = z2 + λz + a, ν2 = (λ+ a+ 1)(λ2 − 4a),
m = (1, 1, 0, 0),

and

31.8.5

Ψ1,−1 =
(
z3 + (λ+ 3a+ 3)z + a

)
/z3,

ν2 = (λ+ 4a+ 4)
(
(λ+ 3a+ 3)2 − 4a

)
,

m = (1,−2, 0, 0).
For m = (m0, 0, 0, 0), these solutions reduce to Her-
mite’s solutions (Whittaker and Watson (1927, §23.7))
of the Lamé equation in its algebraic form. The curve
Γ reflects the finite-gap property of Equation (31.2.1)
when the exponent parameters satisfy (31.8.1) for mj ∈
Z. When λ = −4q approaches the ends of the gaps,
the solution (31.8.2) becomes the corresponding Heun
polynomial. For more details see Smirnov (2002).



714 Heun Functions

The solutions in this section are finite-term Liouvil-
lean solutions which can be constructed via Kovacic’s
algorithm; see §31.14(ii).

31.9 Orthogonality

31.9(i) Single Orthogonality

With

31.9.1 wm(z) = (0, 1)Hf m(a, qm;α, β, γ, δ; z),
we have

31.9.2

∫ (1+,0+,1−,0−)

ζ

tγ−1(1− t)δ−1(t− a)ε−1

×wm(t)wk(t) dt = δm,kθm.

Here ζ is an arbitrary point in the interval (0, 1). The
integration path begins at z = ζ, encircles z = 1 once
in the positive sense, followed by z = 0 once in the
positive sense, and so on, returning finally to z = ζ.
The integration path is called a Pochhammer double-
loop contour (compare Figure 5.12.3). The branches of
the many-valued functions are continuous on the path,
and assume their principal values at the beginning.

The normalization constant θm is given by

31.9.3

θm = (1− e2πiγ)(1− e2πiδ)ζγ(1− ζ)δ(ζ − a)ε

× f0(q, ζ)
f1(q, ζ)

∂

∂q
W {f0(q, ζ), f1(q, ζ)}

∣∣∣∣
q=qm

,

where
31.9.4

f0(qm, z) = H`(a, qm;α, β, γ, δ; z),
f1(qm, z) = H`(1− a, αβ − qm;α, β, δ, γ; 1− z),

and W denotes the Wronskian (§1.13(i)). The right-
hand side may be evaluated at any convenient value, or
limiting value, of ζ in (0, 1) since it is independent of ζ.

For corresponding orthogonality relations for Heun
functions (§31.4) and Heun polynomials (§31.5), see
Lambe and Ward (1934), Erdélyi (1944), Sleeman
(1966b), and Ronveaux (1995, Part A, pp. 59–64).

31.9(ii) Double Orthogonality

Heun polynomials wj = Hpnj ,mj , j = 1, 2, satisfy

31.9.5

∫
L1

∫
L2

ρ(s, t)w1(s)w1(t)w2(s)w2(t) ds dt

= 0, |n1 − n2|+ |m1 −m2| 6= 0,

where

31.9.6
ρ(s, t) = (s− t)(st)γ−1 ((s− 1)(t− 1))δ−1

× ((s− a)(t− a))ε−1
,

and the integration paths L1, L2 are Pochhammer
double-loop contours encircling distinct pairs of singu-
larities {0, 1}, {0, a}, {1, a}.

For further information, including normalization
constants, see Sleeman (1966b). For bi-orthogonal re-
lations for path-multiplicative solutions see Schmidt
(1979, §2.2). For other generalizations see Arscott
(1964b, pp. 206–207 and 241).

31.10 Integral Equations and
Representations

31.10(i) Type I

If w(z) is a solution of Heun’s equation, then another
solution W (z) (possibly a multiple of w(z)) can be rep-
resented as

31.10.1 W (z) =
∫
C

K(z, t)w(t)ρ(t) dt

for a suitable contour C. The weight function is given
by

31.10.2 ρ(t) = tγ−1(t− 1)δ−1(t− a)ε−1,

and the kernel K(z, t) is a solution of the partial differ-
ential equation

31.10.3 (Dz −Dt)K = 0,

where Dz is Heun’s operator in the variable z:

31.10.4
Dz = z(z−1)(z−a)(∂2

/
∂z2 ) + (γ(z−1)(z−a)

+ δz(z − a) + εz(z − 1)) (∂/∂z ) + αβz.

The contour C must be such that

31.10.5 p(t)
(
∂K
∂t
w(t)−Kdw(t)

dt

)∣∣∣∣
C

= 0,

where

31.10.6 p(t) = tγ(t− 1)δ(t− a)ε.

Kernel Functions

Set

31.10.7 cos θ =
(
zt

a

)1/2
, sin θ cosφ = i

(
(z − a)(t− a)
a(1− a)

)1/2
, sin θ sinφ =

(
(z − 1)(t− 1)

1− a

)1/2
.
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The kernel K must satisfy

31.10.8 sin2 θ

(
∂2K
∂θ2 +

(
(1−2γ) tan θ+2(δ+ε− 1

2 ) cot θ
) ∂K
∂θ
−4αβK

)
+
∂2K
∂φ2 +((1−2δ) cotφ−(1−2ε) tanφ)

∂K
∂φ

= 0.

The solutions of (31.10.8) are given in terms of the Riemann P -symbol (see §15.11(i)) as

31.10.9 K(θ, φ) = P


0 1 ∞
0 1

2 − δ − σ α cos2 θ

1− γ 1
2 − ε+ σ β

 P


0 1 ∞
0 0 − 1

2 + δ + σ cos2 φ

1− ε 1− δ − 1
2 + ε− σ

,
where σ is a separation constant. For integral equations satisfied by the Heun polynomial Hpn,m(z) we have σ =
1
2 − δ − j, j = 0, 1, . . . , n.

For suitable choices of the branches of the P -symbols in (31.10.9) and the contour C, we can obtain both integral
equations satisfied by Heun functions, as well as the integral representations of a distinct solution of Heun’s equation
in terms of a Heun function (polynomial, path-multiplicative solution).

Example 1

Let
31.10.10

K(z, t)

= (zt− a)
1
2−δ−σ 2F1

( 1
2 − δ − σ + α, 1

2 − δ − σ + β

γ
;
zt

a

)
2F1

(
− 1

2 + δ + σ,− 1
2 + ε− σ

δ
;
a(z − 1)(t− 1)
(a− 1)(zt− a)

)
,

where <γ > 0, <δ > 0, and C be the Pochhammer double-loop contour about 0 and 1 (as in §31.9(i)). Then the inte-
gral equation (31.10.1) is satisfied by w(z) = wm(z) andW (z) = κmwm(z), where wm(z) = (0, 1)Hf m(a, qm;α, β, γ, δ; z)
and κm is the corresponding eigenvalue.

Example 2

Fuchs–Frobenius solutions Wm(z) = κ̃mz
−α H`(1/a, qm;α, α− γ + 1, α− β + 1, δ; 1/z) are represented in terms of

Heun functions wm(z) = (0, 1)Hf m(a, qm;α, β, γ, δ; z) by (31.10.1) with W (z) = Wm(z), w(z) = wm(z), and with
kernel chosen from

31.10.11

K(z, t) = (zt− a)
1
2−δ−σ (zt/a )−

1
2 +δ+σ−α

2F1

( 1
2 − δ − σ + α, 3

2 − δ − σ + α− γ
α− β + 1

;
a

zt

)

× P


0 1 ∞

0 0 − 1
2 + δ + σ

(z − a)(t− a)
(1− a)(zt− a)

1− ε 1− δ − 1
2 + ε− σ

.
Here κ̃m is a normalization constant and C is the contour of Example 1.

31.10(ii) Type II

If w(z) is a solution of Heun’s equation, then another
solution W (z) (possibly a multiple of w(z)) can be rep-
resented as

31.10.12 W (z) =
∫
C1

∫
C2

K(z; s, t)w(s)w(t)ρ(s, t) ds dt

for suitable contours C1, C2. The weight function is

31.10.13
ρ(s, t) = (s− t)(st)γ−1 ((1− s)(1− t))δ−1

× ((1− (s/a))(1− (t/a)))ε−1
,

and the kernel K(z; s, t) is a solution of the partial dif-
ferential equation

31.10.14 ((t− z)Ds + (z − s)Dt + (s− t)Dz)K = 0,

where Dz is given by (31.10.4). The contours C1, C2

must be chosen so that

31.10.15
p(t)

(
∂K
∂t
w(t)−Kdw(t)

dt

)∣∣∣∣
C1

= 0,

and

31.10.16
p(s)

(
∂K
∂s

w(s)−Kdw(s)
ds

)∣∣∣∣
C2

= 0,

where p(t) is given by (31.10.6).
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Kernel Functions

Set

31.10.17

u =
(stz)1/2

a
, v =

(
(s− 1)(t− 1)(z − 1)

1− a

)1/2
,

w = i

(
(s− a)(t− a)(z − a)

a(1− a)

)1/2
.

The kernel K must satisfy

31.10.18

∂2K
∂u2 +

∂2K
∂v2 +

∂2K
∂w2 +

2γ − 1
u

∂K
∂u

+
2δ − 1
v

∂K
∂v

+
2ε− 1
w

∂K
∂w

= 0.

This equation can be solved in terms of cylinder func-
tions Cν(z) (§10.2(ii)):

31.10.19

K(u, v, w) = u1−γv1−δw1−ε C1−γ(u
√
σ1)

× C1−δ(v
√
σ2) C1−ε

(
iw
√
σ1 + σ2

)
,

where σ1 and σ2 are separation constants.

Transformation of Independent Variable

A further change of variables, to spherical coordinates,

31.10.20

u = r cos θ, v = r sin θ sinφ, w = r sin θ cosφ,

leads to the kernel equation

31.10.21

∂2K
∂r2 +

2(γ + δ + ε)− 1
r

∂K
∂r

+
1
r2

∂2K
∂θ2

+
(2(δ + ε)− 1) cot θ − (2γ − 1) tan θ

r2

∂K
∂θ

+
1

r2 sin2 θ

∂2K
∂φ2 +

(2δ − 1) cotφ− (2ε− 1) tanφ
r2 sin2 θ

∂K
∂φ

= 0.

This equation can be solved in terms of hypergeometric
functions (§15.11(i)):

31.10.22

K(r, θ, φ) = rm sin2p θ P

 0 1 ∞
0 0 a cos2 θ

1
2 (3− γ) c b


× P

 0 1 ∞
0 0 a′ cos2 φ

1− ε 1− δ b′

,

with

31.10.23

m2 + 2(α+ β)m− σ1 = 0,
p2 + (α+ β − γ − 1

2 )p− 1
4σ2 = 0,

a+ b = 2(α+ β + p)− 1,
ab = p2 − p(1− α− β)− 1

4σ1,

c = γ − 1
2 − 2(α+ β + p),

a′ + b′ = δ + ε− 1, a′b′ = − 1
4σ2,

and σ1 and σ2 are separation constants.
For integral equations for special confluent Heun

functions (§31.12) see Kazakov and Slavyanov (1996).

31.11 Expansions in Series of
Hypergeometric Functions

31.11(i) Introduction

The formulas in this section are given in Svartholm
(1939) and Erdélyi (1942a, 1944).

The series of Type I (§31.11(iii)) are useful since
they represent the functions in large domains. Series of
Type II (§31.11(iv)) are expansions in orthogonal poly-
nomials, which are useful in calculations of normaliza-
tion integrals for Heun functions; see Erdélyi (1944) and
§31.9(i).

For other expansions see §31.16(ii).

31.11(ii) General Form

Let w(z) be any Fuchs–Frobenius solution of Heun’s
equation. Expand

31.11.1 w(z) =
∞∑
j=0

cjPj ,

where (§15.11(i))

31.11.2 Pj = P

 0 1 ∞
0 0 λ+ j z

1− γ 1− δ µ− j

,
with

31.11.3 λ+ µ = γ + δ − 1 = α+ β − ε.
The coefficients cj satisfy the equations

31.11.4 L0c0 +M0c1 = 0,

31.11.5 Kjcj−1 + Ljcj +Mjcj+1 = 0, j = 1, 2, . . . ,
where

31.11.6 Kj = − (j + α− µ− 1)(j + β − µ− 1)(j + γ − µ− 1)(j + λ− 1)
(2j + λ− µ− 1)(2j + λ− µ− 2)

,
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31.11.7

Lj = a(λ+ j)(µ− j)− q +
(j + α− µ)(j + β − µ)(j + γ − µ)(j + λ)

(2j + λ− µ)(2j + λ− µ+ 1)

+
(j − α+ λ)(j − β + λ)(j − γ + λ)(j − µ)

(2j + λ− µ)(2j + λ− µ− 1)
,

31.11.8 Mj = − (j − α+ λ+ 1)(j − β + λ+ 1)(j − γ + λ+ 1)(j − µ+ 1)
(2j + λ− µ+ 1)(2j + λ− µ+ 2)

.

λ, µ must also satisfy the condition

31.11.9 M−1P−1 = 0.

31.11(iii) Type I

Here

31.11.10 λ = α, µ = β − ε,
or

31.11.11 λ = β, µ = α− ε.
Then condition (31.11.9) is satisfied.

Every Fuchs–Frobenius solution of Heun’s equation
(31.2.1) can be represented by a series of Type I. For
instance, choose (31.11.10). Then the Fuchs–Frobenius
solution at ∞ belonging to the exponent α has the ex-
pansion (31.11.1) with

31.11.12

Pj =
Γ(α+ j) Γ(1− γ + α+ j)

Γ(1 + α− β + ε+ 2j)
z−α−j

× 2F1

(
α+ j, 1− γ + α+ j

1 + α− β + ε+ 2j
;

1
z

)
,

and (31.11.1) converges outside the ellipse E in the z-
plane with foci at 0, 1, and passing through the third
finite singularity at z = a.

Every Heun function (§31.4) can be represented by a
series of Type I convergent in the whole plane cut along
a line joining the two singularities of the Heun function.

For example, consider the Heun function which is
analytic at z = a and has exponent α at ∞. The ex-
pansion (31.11.1) with (31.11.12) is convergent in the
plane cut along the line joining the two singularities
z = 0 and z = 1. In this case the accessory parameter
q is a root of the continued-fraction equation

31.11.13 (L0/M0)−
K1/M1

L1/M1 −
K2/M2

L2/M2 −
· · · = 0.

The case α = −n for nonnegative integer n corresponds
to the Heun polynomial Hpn,m(z).

The expansion (31.11.1) for a Heun function that is
associated with any branch of (31.11.2)—other than a
multiple of the right-hand side of (31.11.12)—is conver-
gent inside the ellipse E .

31.11(iv) Type II

Here one of the following four pairs of conditions is sat-
isfied:
31.11.14 λ = γ + δ − 1, µ = 0,

31.11.15 λ = γ, µ = δ − 1,

31.11.16 λ = δ, µ = γ − 1,

31.11.17 λ = 1, µ = γ + δ − 2.

In each case Pj can be expressed in terms of a Ja-
cobi polynomial (§18.3). Such series diverge for Fuchs–
Frobenius solutions. For Heun functions they are con-
vergent inside the ellipse E . Every Heun function can
be represented by a series of Type II.

31.11(v) Doubly-Infinite Series

Schmidt (1979) gives expansions of path-multiplicative
solutions (§31.6) in terms of doubly-infinite series of hy-
pergeometric functions.

31.12 Confluent Forms of Heun’s Equation

Confluent forms of Heun’s differential equation (31.2.1)
arise when two or more of the regular singularities merge
to form an irregular singularity. This is analogous to
the derivation of the confluent hypergeometric equation
from the hypergeometric equation in §13.2(i). There are
four standard forms, as follows:

Confluent Heun Equation

31.12.1
d2w

dz2 +
(
γ

z
+

δ

z − 1
+ ε

)
dw

dz
+

αz − q
z(z − 1)

w = 0.

This has regular singularities at z = 0 and 1, and an
irregular singularity of rank 1 at z =∞.

Mathieu functions (Chapter 28), spheroidal wave
functions (Chapter 30), and Coulomb spheroidal func-
tions (§30.12) are special cases of solutions of the con-
fluent Heun equation.

Doubly-Confluent Heun Equation

31.12.2
d2w

dz2 +
(
δ

z2
+
γ

z
+ 1
)
dw

dz
+
αz − q
z2

w = 0.

This has irregular singularities at z = 0 and ∞, each of
rank 1.
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Biconfluent Heun Equation

31.12.3
d2w

dz2 +
(γ
z

+ δ + z
) dw
dz

+
αz − q
z

w = 0.

This has a regular singularity at z = 0, and an irregular
singularity at ∞ of rank 2.

Triconfluent Heun Equation

31.12.4
d2w

dz2 + (γ + z) z
dw

dz
+ (αz − q)w = 0.

This has one singularity, an irregular singularity of rank
3 at z =∞.

For properties of the solutions of (31.12.1)–(31.12.4),
including connection formulas, see Bühring (1994), Ron-
veaux (1995, Parts B,C,D,E), Wolf (1998), Lay and
Slavyanov (1998), and Slavyanov and Lay (2000).

31.13 Asymptotic Approximations

For asymptotic approximations for the accessory param-
eter eigenvalues qm, see Fedoryuk (1991) and Slavyanov
(1996).

For asymptotic approximations of the solutions of
Heun’s equation (31.2.1) when two singularities are close
together, see Lay and Slavyanov (1999).

For asymptotic approximations of the solutions of
confluent forms of Heun’s equation in the neighborhood
of irregular singularities, see Komarov et al. (1976),
Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik
(1997), Slavyanov and Veshev (1997), and Lay et al.
(1998).

31.14 General Fuchsian Equation

31.14(i) Definitions

The general second-order Fuchsian equation with N +1
regular singularities at z = aj , j = 1, 2, . . . , N , and at
∞, is given by
31.14.1

d2w

dz2 +

 N∑
j=1

γj
z − aj

 dw

dz
+

 N∑
j=1

qj
z − aj

w = 0,

∑N
j=1 qj = 0.

The exponents at the finite singularities aj are
{0, 1− γj} and those at ∞ are {α, β}, where

31.14.2 α+ β + 1 =
N∑
j=1

γj , αβ =
N∑
j=1

ajqj .

The three sets of parameters comprise the singularity
parameters aj , the exponent parameters α, β, γj , and
the N − 2 free accessory parameters qj . With a1 = 0
and a2 = 1 the total number of free parameters is 3N−3.
Heun’s equation (31.2.1) corresponds to N = 3.

Normal Form

31.14.3 w(z) =

 N∏
j=1

(z − aj)−γj/2
W (z),

31.14.4

d2W

dz2 =
N∑
j=1

(
γ̃j

(z − aj)2
+

q̃j
z − aj

)
W ,

∑N
j=1 q̃j = 0,

31.14.5 q̃j =
1
2

N∑
k=1
k 6=j

γjγk
aj − ak

− qj , γ̃j =
γj
2

(γj
2
− 1
)
.

31.14(ii) Kovacic’s Algorithm

An algorithm given in Kovacic (1986) determines if a
given (not necessarily Fuchsian) second-order homoge-
neous linear differential equation with rational coeffi-
cients has solutions expressible in finite terms (Liouvil-
lean solutions). The algorithm returns a list of solutions
if they exist.

For applications of Kovacic’s algorithm in spatio-
temporal dynamics see Rod and Sleeman (1995).

31.15 Stieltjes Polynomials

31.15(i) Definitions

Stieltjes polynomials are polynomial solutions of the
Fuchsian equation (31.14.1). Rewrite (31.14.1) in the
form
31.15.1

d2w

dz2 +

 N∑
j=1

γj
z − aj

 dw

dz
+

Φ(z)∏N
j =1(z − aj)

w = 0,

where Φ(z) is a polynomial of degree not exceeding
N − 2. There exist at most

(
n+N−2
N−2

)
polynomials V (z)

of degree not exceeding N−2 such that for Φ(z) = V (z),
(31.15.1) has a polynomial solution w = S(z) of degree
n. The V (z) are called Van Vleck polynomials and the
corresponding S(z) Stieltjes polynomials.

31.15(ii) Zeros

If z1, z2, . . . , zn are the zeros of an nth degree Stieltjes
polynomial S(z), then every zero zk is either one of the
parameters aj or a solution of the system of equations

31.15.2

N∑
j=1

γj/2
zk − aj

+
n∑
j=1
j 6=k

1
zk − zj

= 0, k = 1, 2, . . . , n.

If tk is a zero of the Van Vleck polynomial V (z), cor-
responding to an nth degree Stieltjes polynomial S(z),
and z′1, z

′
2, . . . , z

′
n−1 are the zeros of S′(z) (the derivative
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of S(z)), then tk is either a zero of S′(z) or a solution
of the equation

31.15.3

N∑
j=1

γj
tk − aj

+
n−1∑
j=1

1
tk − z′j

= 0.

The system (31.15.2) determines the zk as the points
of equilibrium of n movable (interacting) particles with
unit charges in a field of N particles with the charges
γj/2 fixed at aj . This is the Stieltjes electrostatic inter-
pretation.

The zeros zk, k = 1, 2, . . . , n, of the Stieltjes polyno-
mial S(z) are the critical points of the function G, that
is, points at which ∂G/∂ζk = 0, k = 1, 2, . . . , n, where

31.15.4

G(ζ1, ζ2, . . . , ζn)

=
n∏
k=1

N∏
`=1

(ζk − a`)γ`/2
n∏

j=k+1

(ζk − ζj).

If the following conditions are satisfied:

31.15.5 γj > 0, aj ∈ R, j = 1, 2, . . . , N ,
and

31.15.6 aj < aj+1, j = 1, 2, . . . , N − 1,

then there are exactly
(
n+N−2
N−2

)
polynomials S(z), each

of which corresponds to each of the
(
n+N−2
N−2

)
ways of dis-

tributing its n zeros among N − 1 intervals (aj , aj+1),
j = 1, 2, . . . , N − 1. In this case the accessory parame-
ters qj are given by

31.15.7 qj = γj

n∑
k=1

1
zk − aj

, j = 1, 2, . . . , N .

See Marden (1966), Alam (1979), and Al-Rashed
and Zaheer (1985) for further results on the location
of the zeros of Stieltjes and Van Vleck polynomials.

31.15(iii) Products of Stieltjes Polynomials

If the exponent and singularity parameters satisfy
(31.15.5)–(31.15.6), then for every multi-index m =
(m1,m2, . . . ,mN−1), where each mj is a nonnegative
integer, there is a unique Stieltjes polynomial with
mj zeros in the open interval (aj , aj+1) for each j =
1, 2, . . . , N − 1. We denote this Stieltjes polynomial by
Sm(z).

Let Sm(z) and Sl(z) be Stieltjes polynomials
corresponding to two distinct multi-indices m =
(m1,m2, . . . ,mN−1) and l = (`1, `2, . . . , `N−1). The
products

31.15.8 Sm(z1)Sm(z2) · · ·Sm(zN−1), zj ∈ (aj , aj+1),

31.15.9 Sl(z1)Sl(z2) · · ·Sl(zN−1), zj ∈ (aj , aj+1),
are mutually orthogonal over the set Q:

31.15.10 Q = (a1, a2)× (a2, a3)× · · · × (aN−1, aN ),

with respect to the inner product

31.15.11 (f, g)ρ =
∫
Q

f(z)ḡ(z)ρ(z) dz,

with weight function

31.15.12

ρ(z) =

N−1∏
j=1

N∏
k=1

|zj − ak|γk−1

N−1∏
j<k

(zk − zj)

 .

The normalized system of products (31.15.8) forms an
orthonormal basis in the Hilbert space L2

ρ(Q). For fur-
ther details and for the expansions of analytic functions
in this basis see Volkmer (1999).

Applications

31.16 Mathematical Applications

31.16(i) Uniformization Problem for Heun’s
Equation

The main part of Smirnov (1996) consists of
V. I. Smirnov’s 1918 M. Sc. thesis “Inversion problem
for a second-order linear differential equation with four
singular points”. It describes the monodromy group of
Heun’s equation for specific values of the accessory pa-
rameter.

31.16(ii) Heun Polynomial Products

Expansions of Heun polynomial products in terms of Ja-
cobi polynomial (§18.3) products are derived in Kalnins
and Miller (1991a,b, 1993) from the viewpoint of inter-
relation between two bases in a Hilbert space:

31.16.1

Hpn,m(x) Hpn,m(y)

=
n∑
j=0

Aj sin2j θ

×P (γ+δ+2j−1,ε−1)
n−j (cos 2θ)P (δ−1,γ−1)

j (cos 2φ),

where n = 0, 1, . . . , m = 0, 1, . . . , n, and

31.16.2 x = sin2 θ cos2 φ, y = sin2 θ sin2 φ.

The coefficients Aj satisfy the relations:

31.16.3 Q0A0 +R0A1 = 0,

31.16.4 PjAj−1 +QjAj +RjAj+1 = 0, j = 1, 2, . . . , n,

where
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31.16.5 Pj =
(ε− j + n)j(β + j − 1)(γ + δ + j − 2)

(γ + δ + 2j − 3)(γ + δ + 2j − 2)
,

31.16.6

Qj = −aj(j + γ + δ − 1)− q +
(j − n)(j + β)(j + γ)(j + γ + δ − 1)

(2j + γ + δ)(2j + γ + δ − 1)

+
(j + n+ γ + δ − 1)j(j + δ − 1)(j − β + γ + δ − 1)

(2j + γ + δ − 1)(2j + γ + δ − 2)
,

31.16.7 Rj =
(n− j)(j + n+ γ + δ)(j + γ)(j + δ)

(γ + δ + 2j)(γ + δ + 2j + 1)
.

By specifying either θ or φ in (31.16.1) and (31.16.2)
we obtain expansions in terms of one variable.

31.17 Physical Applications

31.17(i) Addition of Three Quantum Spins

The problem of adding three quantum spins s, t, and
u can be solved by the method of separation of vari-
ables, and the solution is given in terms of a product
of two Heun functions. We use vector notation [s, t,u]
(respective scalar (s, t, u)) for any one of the three spin
operators (respective spin values).

Consider the following spectral problem on the
sphere S2: x2 = x2

s + x2
t + x2

u = R2.
31.17.1

J2Ψ(x) ≡ (s + t + u)2Ψ(x) = j(j + 1)Ψ(x),
HsΨ(x) ≡ (−2s · t− (2/a )s · u)Ψ(x) = hsΨ(x),

for the common eigenfunction Ψ(x) = Ψ(xs, xt, xu),
where a is the coupling parameter of interacting spins.
Introduce elliptic coordinates z1 and z2 on S2. Then

31.17.2
x2
s

zk
+

x2
t

zk − 1
+

x2
u

zk − a
= 0, k = 1, 2,

with

31.17.3

x2
s = R2 z1z2

a
, x2

t = R2 (z1 − 1)(z2 − 1)
1− a

,

x2
u = R2 (z1 − a)(z2 − a)

a(a− 1)
.

The operators J2 and Hs admit separation of variables
in z1, z2, leading to the following factorization of the
eigenfunction Ψ(x):

31.17.4
Ψ(x) = (z1z2)−s−

1
4 ((z1 − 1)(z2 − 1))−t−

1
4

× ((z1 − a)(z2 − a))−u−
1
4w(z1)w(z2),

where w(z) satisfies Heun’s equation (31.2.1) with a as
in (31.17.1) and the other parameters given by
31.17.5
α = −s− t− u− j − 1, β = j − s− t− u, γ = −2s,
δ = −2t, ε = −2u; q = ahs + 2s(at+ u).

For more details about the method of separation of
variables and relation to special functions see Olevskĭı
(1950), Kalnins et al. (1976), Miller (1977), and Kalnins
(1986).

31.17(ii) Other Applications

Heun functions appear in the theory of black holes
(Kerr (1963), Teukolsky (1972), Chandrasekhar (1984),
Suzuki et al. (1998), Kalnins et al. (2000)), lattice sys-
tems in statistical mechanics (Joyce (1973, 1994)), dislo-
cation theory (Lay and Slavyanov (1999)), and quantum
systems (Bay et al. (1997), Tolstikhin and Matsuzawa
(2001)).

For applications of Heun’s equation and functions
in astrophysics see Debosscher (1998) where different
spectral problems for Heun’s equation are also consid-
ered. More applications—including those of generalized
spheroidal wave functions and confluent Heun functions
in mathematical physics, astrophysics, and the two-
center problem in molecular quantum mechanics—can
be found in Leaver (1986) and Slavyanov and Lay (2000,
Chapter 4). For application of biconfluent Heun func-
tions in a model of an equatorially trapped Rossby wave
in a shear flow in the ocean or atmosphere see Boyd and
Natarov (1998).

Computation

31.18 Methods of Computation

Independent solutions of (31.2.1) can be computed in
the neighborhoods of singularities from their Fuchs–
Frobenius expansions (§31.3), and elsewhere by numer-
ical integration of (31.2.1). Subsequently, the coeffi-
cients in the necessary connection formulas can be cal-
culated numerically by matching the values of solutions
and their derivatives at suitably chosen values of z; see
Lăı (1994) and Lay et al. (1998). Care needs to be
taken to choose integration paths in such a way that the
wanted solution is growing in magnitude along the path
at least as rapidly as all other solutions (§3.7(ii)). The
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computation of the accessory parameter for the Heun
functions is carried out via the continued-fraction equa-
tions (31.4.2) and (31.11.13) in the same way as for the
Mathieu, Lamé, and spheroidal wave functions in Chap-
ters 28–30.
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Notation

32.1 Special Notation

(For other notation see pp. xiv and 873.)

m,n integers.
x real variable.
z complex variable.
k real parameter.

Unless otherwise noted, primes indicate derivatives
with respect to the argument.

The functions treated in this chapter are the solu-
tions of the Painlevé equations PI–PVI.

Properties

32.2 Differential Equations

32.2(i) Introduction

The six Painlevé equations PI–PVI are as follows:

32.2.1
d2w

dz2 = 6w2 + z,

32.2.2
d2w

dz2 = 2w3 + zw + α,

32.2.3
d2w

dz2 =
1
w

(
dw

dz

)2
− 1
z

dw

dz
+
αw2 + β

z
+ γw3 +

δ

w
,

32.2.4
d2w

dz2 =
1

2w

(
dw

dz

)2
+

3
2
w3 + 4zw2 + 2(z2 − α)w +

β

w
,

32.2.5
d2w

dz2 =
(

1
2w

+
1

w − 1

)(
dw

dz

)2
− 1
z

dw

dz
+

(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)
w − 1

,

32.2.6

d2w

dz2 =
1
2

(
1
w

+
1

w − 1
+

1
w − z

)(
dw

dz

)2
−
(

1
z

+
1

z − 1
+

1
w − z

)
dw

dz

+
w(w − 1)(w − z)

z2(z − 1)2

(
α+

βz

w2
+
γ(z − 1)
(w − 1)2

+
δz(z − 1)
(w − z)2

)
,

with α, β, γ, and δ arbitrary constants. The solutions
of PI–PVI are called the Painlevé transcendents. The
six equations are sometimes referred to as the Painlevé
transcendents, but in this chapter this term will be used
only for their solutions.

Let

32.2.7
d2w

dz2 = F

(
z, w,

dw

dz

)
,

be a nonlinear second-order differential equation in
which F is a rational function of w and dw/dz , and
is locally analytic in z, that is, analytic except for iso-
lated singularities in C. In general the singularities of
the solutions are movable in the sense that their loca-
tion depends on the constants of integration associated
with the initial or boundary conditions. An equation is
said to have the Painlevé property if all its solutions are
free from movable branch points; the solutions may have
movable poles or movable isolated essential singularities
(§1.10(iii)), however.

There are fifty equations with the Painlevé property.
They are distinct modulo Möbius (bilinear) transforma-
tions
32.2.8 W (ζ) =

a(z)w + b(z)
c(z)w + d(z)

, ζ = φ(z),

in which a(z), b(z), c(z), d(z), and φ(z) are locally an-

alytic functions. The fifty equations can be reduced
to linear equations, solved in terms of elliptic functions
(Chapters 22 and 23), or reduced to one of PI–PVI.

For arbitrary values of the parameters α, β, γ, and
δ, the general solutions of PI–PVI are transcendental,
that is, they cannot be expressed in closed-form ele-
mentary functions. However, for special values of the
parameters, equations PII–PVI have special solutions in
terms of elementary functions, or special functions de-
fined elsewhere in this Handbook.

32.2(ii) Renormalizations

If γδ 6= 0 in PIII, then set γ = 1 and δ = −1, without
loss of generality, by rescaling w and z if necessary. If
γ = 0 and αδ 6= 0 in PIII, then set α = 1 and δ = −1,
without loss of generality. Lastly, if δ = 0 and βγ 6= 0,
then set β = −1 and γ = 1, without loss of generality.

If δ 6= 0 in PV, then set δ = − 1
2 , without loss of

generality.

32.2(iii) Alternative Forms

In PIII, if w(z) = ζ−1/2u(ζ) with ζ = z2, then

32.2.9
d2u

dζ2 =
1
u

(
du

dζ

)2
− 1
ζ

du

dζ
+
u2(α+ γu)

4ζ2
+
β

4ζ
+

δ

4u
,
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which is known as P′III.
In PIII, if w(z) = exp(−iu(z)), β = −α, and δ = −γ,

then
32.2.10

d2u

dz2 +
1
z

du

dz
=

2α
z

sinu+ 2γ sin(2u).

In PIV, if w(z) = 2
√

2(u(ζ))2 with ζ =
√

2z and
α = 2ν + 1, then

32.2.11
d2u

dζ2 = 3u5 + 2ζu3 +
(

1
4ζ

2 − ν − 1
2

)
u+

β

32u3
.

When β = 0 this is a nonlinear harmonic oscillator.
In PV, if w(z) = (cothu(ζ))2 with ζ = ln z, then

32.2.12

d2u

dζ2 = − α coshu
2(sinhu)3

− β sinhu
2(coshu)3

− 1
4γe

ζ sinh(2u)− 1
8δe

2ζ sinh(4u).
See also Okamoto (1987c), McCoy et al. (1977), Bas-

som et al. (1992), Bassom et al. (1995), and Takasaki
(2001).

32.2(iv) Elliptic Form

PVI can be written in the form
32.2.13

z(1− z)I

(∫ w

∞

dt√
t(t− 1)(t− z)

)
=
√
w(w − 1)(w − z)

×
(
α+

βz

w2
+
γ(z − 1)
(w − 1)2

+ (δ − 1
2 )
z(z − 1)
(w − z)2

)
,

where

32.2.14 I = z(1− z) d
2

dz2 + (1− 2z)
d

dz
− 1

4
.

See Fuchs (1907), Painlevé (1906), Gromak et al. (2002,
§42); also Manin (1998).

32.2(v) Symmetric Forms

Let

32.2.15

df1

dz
+ f1(f2 − f3) + 2µ1 = 0,

df2

dz
+ f2(f3 − f1) + 2µ2 = 0,

df3

dz
+ f3(f1 − f2) + 2µ3 = 0,

where µ1, µ2, µ3 are constants, f1, f2, f3 are functions
of z, with

32.2.16 µ1 + µ2 + µ3 = 1,

32.2.17 f1(z) + f2(z) + f3(z) + 2z = 0.
Then w(z) = f1(z) satisfies PIV with

32.2.18 (α, β) = (µ3 − µ2,−2µ2
1).

See Noumi and Yamada (1998).

Next, let

32.2.19

z
df1

dz
= f1f3(f2 − f4) + ( 1

2 − µ3)f1 + µ1f3,

z
df2

dz
= f2f4(f3 − f1) + ( 1

2 − µ4)f2 + µ2f4,

z
df3

dz
= f3f1(f4 − f2) + ( 1

2 − µ1)f3 + µ3f1,

z
df4

dz
= f4f2(f1 − f3) + ( 1

2 − µ2)f4 + µ4f2,

where µ1, µ2, µ3, µ4 are constants, f1, f2, f3, f4 are
functions of z, with
32.2.20 µ1 + µ2 + µ3 + µ4 = 1,

32.2.21 f1(z) + f3(z) =
√
z,

32.2.22 f2(z) + f4(z) =
√
z.

Then w(z) = 1− (
√
z/f1(z)) satisfies PV with

32.2.23 (α, β, γ, δ) = ( 1
2µ

2
1,− 1

2µ
2
3, µ4 − µ2,− 1

2 ).

32.2(vi) Coalescence Cascade

PI–PV are obtained from PVI by a coalescence cascade:

32.2.24

PVI −→ PV −→ PIV

↓ ↓
PIII −→ PII −→ PI

For example, if in PII

32.2.25 w(z;α) = εW (ζ) +
1
ε5
,

32.2.26 z = ε2ζ − 6
ε10

, α =
4
ε15

,

then
32.2.27

d2W

dζ2 = 6W 2 + ζ + ε6(2W 3 + ζW );

thus in the limit as ε→ 0, W (ζ) satisfies PI with z = ζ.
If in PIII

32.2.28 w(z;α, β, γ, δ) = 1 + 2εW (ζ; a),

32.2.29
z = 1 + ε2ζ, α = − 1

2ε
−6,

β = 1
2ε
−6 + 2aε−3, γ = −δ = 1

4ε
−6,

then as ε→ 0, W (ζ; a) satisfies PII with z = ζ, α = a.
If in PIV

32.2.30 w(z;α, β) = 22/3ε−1W (ζ; a) + ε−3,

32.2.31

z = 2−2/3εζ − ε−3, α = −2a− 1
2ε
−6, β = − 1

2ε
−12,

then as ε→ 0, W (ζ; a) satisfies PII with z = ζ, α = a.
If in PV

32.2.32 w(z;α, β, γ, δ) = 1 + εζW (ζ; a, b, c, d),

32.2.33
z = ζ2, α = 1

4aε
−1 + 1

8cε
−2,

β = − 1
8cε
−2, γ = 1

4εb, δ = 1
8ε

2d,

then as ε → 0, W (ζ; a, b, c, d) satisfies PIII with z = ζ,
α = a, β = b, γ = c, δ = d.

If in PV

32.2.34 w(z;α, β, γ, δ) = 1
2

√
2εW (ζ; a, b),



726 Painlevé Transcendents

32.2.35
z = 1 +

√
2εζ, α = 1

2ε
−4, β = 1

4b,

γ = −ε−4, δ = aε−2 − 1
2ε
−4,

then as ε→ 0, W (ζ; a, b) satisfies PIV with z = ζ, α = a,
β = b.

Lastly, if in PVI

32.2.36 w(z;α, β, γ, δ) = W (ζ; a, b, c, d),

32.2.37 z = 1 + εζ, γ = cε−1 − dε−2, δ = dε−2,

then as ε → 0, W (ζ; a, b, c, d) satisfies PV with z = ζ,
α = a, β = b, γ = c, δ = d.

32.3 Graphics

32.3(i) First Painlevé Equation

Plots of solutions wk(x) of PI with wk(0) = 0 and w′k(0) = k for various values of k, and the parabola 6w2 + x = 0.
For analytical explanation see §32.11(i).

Figure 32.3.1: wk(x) for −12 ≤ x ≤ 1.33 and k = 0.5,
0.75, 1, 1.25, and the parabola 6w2 + x = 0, shown in
black.

Figure 32.3.2: wk(x) for −12 ≤ x ≤ 2.43 and k = −0.5,
−0.25, 0, 1, 2, and the parabola 6w2 + x = 0, shown in
black.

Figure 32.3.3: wk(x) for −12 ≤ x ≤ 0.73 and k =
1.85185 3, 1.85185 5. The two graphs are indistinguish-
able when x exceeds −5.2, approximately. The parabola
6w2 + x = 0 is shown in black.

Figure 32.3.4: wk(x) for −12 ≤ x ≤ 2.3 and k =
−0.45142 7, −0.45142 8. The two graphs are indis-
tinguishable when x exceeds −4.8, approximately. The
parabola 6w2 + x = 0 is shown in black.
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32.3(ii) Second Painlevé Equation with α = 0

Here wk(x) is the solution of PII with α = 0 and such that

32.3.1 wk(x) ∼ kAi(x), x→ +∞;
compare §32.11(ii).

Figure 32.3.5: wk(x) and kAi(x) for −10 ≤ x ≤ 4 with
k = 0.5. The two graphs are indistinguishable when x
exceeds −0.4, approximately.

Figure 32.3.6: wk(x) for −10 ≤ x ≤ 4 with k = 0.999,
1.001. The two graphs are indistinguishable when x
exceeds −2.8, approximately. The parabola 2w2 +x = 0
is shown in black.

32.3(iii) Fourth Painlevé Equation with β = 0

Here u = uk(x; ν) is the solution of

32.3.2
d2u

dx2 = 3u5 + 2xu3 +
(

1
4x

2 − ν − 1
2

)
u,

such that

32.3.3 u ∼ k U
(
−ν − 1

2 , x
)
, x→ +∞.

The corresponding solution of PIV is given by

32.3.4 w(x) = 2
√

2u2
k(
√

2x, ν),
with β = 0, α = 2ν + 1, and
32.3.5 w(x) ∼ 2

√
2k2 U2

(
−ν − 1

2 ,
√

2x
)

, x→ +∞;

compare (32.2.11) and §32.11(v). If we set d2u
/
dx2 = 0 in (32.3.2) and solve for u, then

32.3.6 u2 = − 1
3x±

1
6

√
x2 + 12ν + 6.

Figure 32.3.7: uk(x;− 1
2 ) for −12 ≤ x ≤ 4 with k =

0.33554 691, 0.33554 692. The two graphs are indis-
tinguishable when x exceeds −5.0, approximately. The
parabolas u2 + 1

2x = 0, u2 + 1
6x = 0 are shown in black

and green, respectively.

Figure 32.3.8: uk(x; 1
2 ) for −12 ≤ x ≤ 4 with k =

0.47442, 0.47443. The two graphs are indistinguish-
able when x exceeds −2.2, approximately. The curves
u2 + 1

3x±
1
6

√
x2 + 12 = 0 are shown in green and black,

respectively.
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Figure 32.3.9: uk(x; 3
2 ) for −12 ≤ x ≤ 4 with k =

0.38736, 0.38737. The two graphs are indistinguish-
able when x exceeds −1.0, approximately. The curves
u2 + 1

3x±
1
6

√
x2 + 24 = 0 are shown in green and black,

respectively.

Figure 32.3.10: uk(x; 5
2 ) for −12 ≤ x ≤ 4 with k =

0.24499 2, 0.24499 3. The two graphs are indistinguish-
able when x exceeds −0.6, approximately. The curves
u2 + 1

3x±
1
6

√
x2 + 36 = 0 are shown in green and black,

respectively.

32.4 Isomonodromy Problems

32.4(i) Definition

PI–PVI can be expressed as the compatibility condition
of a linear system, called an isomonodromy problem or
Lax pair. Suppose

32.4.1
∂Ψ
∂λ

= A(z, λ)Ψ,
∂Ψ
∂z

= B(z, λ)Ψ,

is a linear system in which A and B are matrices and λ
is independent of z. Then the equation

32.4.2
∂2Ψ
∂z ∂λ

=
∂2Ψ
∂λ ∂z

,

is satisfied provided that

32.4.3
∂A
∂z
− ∂B
∂λ

+ AB−BA = 0.

(32.4.3) is the compatibility condition of (32.4.1).
Isomonodromy problems for Painlevé equations are not
unique.

32.4(ii) First Painlevé Equation

PI is the compatibility condition of (32.4.1) with

32.4.4

A(z, λ) = (4λ4 + 2w2 + z)
[
1 0
0 −1

]
− i(4λ2w + 2w2 + z)

[
0 −i
i 0

]
−
(

2λw′ +
1

2λ

)[
0 1
1 0

]
,

32.4.5 B(z, λ) =
(
λ+

w

λ

)[1 0
0 −1

]
− iw

λ

[
0 −i
i 0

]
.

32.4(iii) Second Painlevé Equation

PII is the compatibility condition of (32.4.1) with

32.4.6

A(z, λ) = −i(4λ2 + 2w2 + z)
[
1 0
0 −1

]
− 2w′

[
0 −i
i 0

]
+
(

4λw − α

λ

)[0 1
1 0

]
,

32.4.7 B(z, λ) =
[
−iλ w
w iλ

]
.

See Flaschka and Newell (1980).

32.4(iv) Third Painlevé Equation

The compatibility condition of (32.4.1) with

32.4.8

A(z, λ) =
[

1
4z 0
0 − 1

4z

]
+
[
− 1

2θ∞ u0

u1
1
2θ∞

]
1
λ

+
[

v0 − 1
4z −v1v0

(v0 − 1
2z)
/
v1

1
4z − v0

]
1
λ2
,

32.4.9

B(z, λ) =
[

1
4 0
0 − 1

4

]
λ+

[
0 u0

u1 0

]
1
z

−
[

v0 − 1
4z −v1v0

(v0 − 1
2z)
/
v1

1
4z − v0

]
1
zλ
,

where θ∞ is an arbitrary constant, is

32.4.10 zu′0 = θ∞u0 − zv0v1,

32.4.11 zu′1 = −θ∞u1 − (z(2v0 − z)/(2v1) ),

32.4.12 zv′0 = 2v0u1v1 + v0 + (u0(2v0 − z)/v1),

32.4.13 zv′1 = 2u0 − 2u1v
2
1 − θ∞v1.

If w = −u0/(v0v1), then

32.4.14 zw′ = (4v0 − z)w2 + (2θ∞ − 1)w + z,
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and w satisfies PIII with
32.4.15 (α, β, γ, δ) = (2θ0, 2(1− θ∞), 1,−1) ,
where

32.4.16 θ0 =
4v0

z

(
θ∞

(
1− z

4v0

)
+
z − 2v0

2v0v1
u0 +u1v1

)
.

Note that the right-hand side of the last equation is a
first integral of the system (32.4.10)–(32.4.13).

32.4(v) Other Painlevé Equations

For isomonodromy problems for PIV, PV, and PVI see
Jimbo and Miwa (1981).

32.5 Integral Equations

Let K(z, ζ) be the solution of
32.5.1

K(z, ζ)

= kAi
(
z + ζ

2

)
+
k2

4

∫ ∞
z

∫ ∞
z

K(z, s) Ai
(
s+ t

2

)
Ai
(
t+ ζ

2

)
ds dt,

where k is a real constant, and Ai(z) is defined in §9.2.
Then
32.5.2 w(z) = K(z, z),
satisfies PII with α = 0 and the boundary condition
32.5.3 w(z) ∼ kAi(z), z → +∞.

32.6 Hamiltonian Structure

32.6(i) Introduction

PI–PVI can be written as a Hamiltonian system

32.6.1
dq

dz
=
∂H
∂p

,
dp

dz
= −∂H

∂q
,

for suitable (non-autonomous) Hamiltonian functions
H(q, p, z).

32.6(ii) First Painlevé Equation

The Hamiltonian for PI is

32.6.2 HI(q, p, z) = 1
2p

2 − 2q3 − zq,
and so

32.6.3 q′ = p,

32.6.4 p′ = 6q2 + z.

Then q = w satisfies PI. The function
32.6.5 σ = HI(q, p, z),
defined by (32.6.2) satisfies

32.6.6 (σ′′)2 + 4 (σ′)3 + 2zσ′ − 2σ = 0.
Conversely, if σ is a solution of (32.6.6), then

32.6.7 q = −σ′,
32.6.8 p = −σ′′,
are solutions of (32.6.3) and (32.6.4).

32.6(iii) Second Painlevé Equation

The Hamiltonian for PII is

32.6.9 HII(q, p, z) = 1
2p

2 − (q2 + 1
2z)p− (α+ 1

2 )q,

and so

32.6.10 q′ = p− q2 − 1
2z,

32.6.11 p′ = 2qp+ α+ 1
2 .

Then q = w satisfies PII and p satisfies

32.6.12 pp′′ = 1
2 (p′)2 + 2p3 − zp2 − 1

2 (α+ 1
2 )2.

The function σ(z) = HII(q, p, z) defined by (32.6.9) sat-
isfies

32.6.13 (σ′′)2 + 4 (σ′)3 + 2σ′ (zσ′ − σ) = 1
4 (α+ 1

2 )2.

Conversely, if σ(z) is a solution of (32.6.13), then

32.6.14 q = (4σ′′ + 2α+ 1)/(8σ′) ,

32.6.15 p = −2σ′,

are solutions of (32.6.10) and (32.6.11).

32.6(iv) Third Painlevé Equation

The Hamiltonian for PIII is

32.6.16

zHIII(q, p, z) = q2p2 −
(
κ∞zq

2 + (2θ0 + 1)q − κ0z
)
p

+ κ∞(θ0 + θ∞)zq,

and so

32.6.17 zq′ = 2q2p− κ∞zq2 − (2θ0 + 1)q + κ0z,

32.6.18
zp′ = −2qp2 + 2κ∞zqp

+ (2θ0 + 1)p− κ∞(θ0 + θ∞)z.

Then q = w satisfies PIII with

32.6.19 (α, β, γ, δ) =
(
−2κ∞θ∞, 2κ0(θ0 + 1), κ2

∞,−κ2
0

)
.

The function

32.6.20 σ = zHIII(q, p, z) + pq + θ2
0 − 1

2κ0κ∞z
2

defined by (32.6.16) satisfies

32.6.21
(zσ′′ − σ′)2 + 2

(
(σ′)2 − κ2

0κ
2
∞z

2
)

(zσ′ − 2σ)

+ 8κ0κ∞θ0θ∞zσ
′ = 4κ2

0κ
2
∞(θ2

0 + θ2
∞)z2.

Conversely, if σ is a solution of (32.6.21), then

32.6.22 q =
κ0 (zσ′′ − (2θ0 + 1)σ′ + 2κ0κ∞θ∞z)

κ2
0κ

2
∞z

2 − (σ′)2
,

32.6.23 p = (σ′ + κ0κ∞z)/(2κ0) ,

are solutions of (32.6.17) and (32.6.18).
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The Hamiltonian for P′III (§32.2(iii)) is

32.6.24
ζHIII(q, p, ζ) = q2p2 −

(
η∞q

2 + θ0q − η0ζ
)
p

+ 1
2η∞(θ0 + θ∞)q,

and so

32.6.25 ζq′ = 2q2p− η∞q2 − θ0q + η0ζ,

32.6.26 ζp′ = −2qp2 + 2η∞qp+ θ0p− 1
2η∞(θ0 + θ1).

Then q = u satisfies P′III with
32.6.27

(α, β, γ, δ) =
(
−4η∞θ∞, 4η0(θ0 + 1), 4η2

∞,−4η2
0

)
.

The function

32.6.28 σ = ζHIII(q, p, ζ) + 1
4θ

2
0 − 1

2η0η∞ζ

defined by (32.6.24) satisfies

32.6.29
ζ2(σ′′)2 +

(
4(σ′)2 − η2

0η
2
∞
)

(ζσ′ − σ)
+ η0η∞θ0θ∞σ

′ = 1
4η

2
0η

2
∞(θ2

0 + θ2
∞).

Conversely, if σ is a solution of (32.6.29), then

32.6.30 q =
η0 (ζσ′′ − 2θ0σ

′ + η0η∞θ∞)
η2

0η
2
∞ − 4(σ′)2

,

32.6.31 p = (2σ′ + η0η∞ζ)/(2η0) ,
are solutions of (32.6.25) and (32.6.26).

The Hamiltonian for PIII with γ = 0 is

32.6.32 zHIII(q, p, z) = q2p2 + (θq − κ0z)p− κ∞zq,
and so

32.6.33 zq′ = 2q2p+ θq − κ0z,

32.6.34 zp′ = −2qp2 − θp+ κ∞z.

Then q = w satisfies PIII with

32.6.35 (α, β, γ, δ) =
(
2κ∞, κ0(θ − 1), 0,−κ2

0

)
.

The function

32.6.36 σ = zHIII(q, p, z) + pq + 1
4 (θ + 1)2

defined by (32.6.32) satisfies

32.6.37
(zσ′′ − σ′)2 + 2(σ′)2(zσ′ − 2σ)
− 4κ0κ∞(θ + 1)θ∞zσ′ = 4κ2

0κ
2
∞z

2.

Conversely, if σ is a solution of (32.6.37), then

32.6.38 q = κ0 (zσ′′ − θσ′ + 2κ0κ∞z)
/

(σ′)2 ,

32.6.39 p = σ′/(2κ0) ,
are solutions of (32.6.33) and (32.6.34).

32.6(v) Other Painlevé Equations

For Hamiltonian structure for PIV see Jimbo and Miwa
(1981), Okamoto (1986); also Forrester and Witte
(2001).

For Hamiltonian structure for PV see Jimbo and
Miwa (1981), Okamoto (1987b); also Forrester and
Witte (2002).

For Hamiltonian structure for PVI see Jimbo and
Miwa (1981) and Okamoto (1987a); also Forrester and
Witte (2004).

32.7 Bäcklund Transformations

32.7(i) Definition

With the exception of PI, a Bäcklund transformation
relates a Painlevé transcendent of one type either to
another of the same type but with different values of
the parameters, or to another type.

32.7(ii) Second Painlevé Equation

Let w = w(z;α) be a solution of PII. Then the trans-
formations

32.7.1 S : w(z;−α) = −w,
and

32.7.2 T ± : w(z;α± 1) = −w − 2α± 1
2w2 ± 2w′ + z

,

furnish solutions of PII, provided that α 6= ∓ 1
2 . PII also

has the special transformation

32.7.3 W (ζ; 1
2ε) =

2−1/3ε

w(z; 0)
d

dz
w(z; 0),

or equivalently,
32.7.4

w2(z; 0) = 2−1/3

(
W 2(ζ; 1

2ε)− ε
d

dζ
W (ζ; 1

2ε) + 1
2ζ

)
,

with ζ = −21/3z and ε = ±1, where W (ζ; 1
2ε) satisfies

PII with z = ζ, α = 1
2ε, and w(z; 0) satisfies PII with

α = 0.
The solutions wα = w(z;α), wα±1 = w(z;α ± 1),

satisfy the nonlinear recurrence relation

32.7.5
α+ 1

2

wα+1 + wα
+

α− 1
2

wα + wα−1
+ 2w2

α + z = 0.

See Fokas et al. (1993).
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32.7(iii) Third Painlevé Equation

Let wj = w(z;αj , βj , γj , δj), j = 0, 1, 2, be solutions of
PIII with

32.7.6 (α1, β1, γ1, δ1) = (−α0,−β0, γ0, δ0),

32.7.7 (α2, β2, γ2, δ2) = (−β0,−α0,−δ0,−γ0).

Then

32.7.8 S1 : w1 = −w0,

32.7.9 S2 : w2 = 1/w0 .

Next, let Wj = W (z;αj , βj , 1,−1), j = 0, 1, 2, 3, 4,
be solutions of PIII with

32.7.10
α1 = α3 = α0 + 2, α2 = α4 = α0 − 2,

β1 = β2 = β0 + 2, β3 = β4 = β0 − 2.

Then

32.7.11

T1 : W1 =
zW ′0 + zW 2

0 − βW0 −W0 + z

W0(zW ′0 + zW 2
0 + αW0 +W0 + z)

,

32.7.12

T2 : W2 = − zW ′0 − zW 2
0 − βW0 −W0 + z

W0(zW ′0 − zW 2
0 − αW0 +W0 + z)

,

32.7.13

T3 : W3 = − zW ′0 + zW 2
0 + βW0 −W0 − z

W0(zW ′0 + zW 2
0 + αW0 +W0 − z)

,

32.7.14

T4 : W4 =
zW ′0 − zW 2

0 + βW0 −W0 − z
W0(zW ′0 − zW 2

0 − αW0 +W0 − z)
.

See Milne et al. (1997).
If γ = 0 and αδ 6= 0, then set α = 1 and δ = −1,

without loss of generality. Let uj = w(z; 1, βj , 0,−1),
j = 0, 5, 6, be solutions of PIII with

32.7.15 β5 = β0 + 2, β6 = β0 − 2.

Then

32.7.16 T5 : u5 = (zu′0 + z − (β0 + 1)u0)
/
u2

0 ,

32.7.17 T6 : u6 = − (zu′0 − z + (β0 − 1)u0)
/
u2

0 .

Similar results hold for PIII with δ = 0 and βγ 6= 0.
Furthermore,

32.7.18 w(z; a, b, 0, 0) = W 2(ζ; 0, 0, a, b), z = 1
2ζ

2.

32.7(iv) Fourth Painlevé Equation

Let w0 = w(z;α0, β0) and w±j = w(z;α±j , β
±
j ), j =

1, 2, 3, 4, be solutions of PIV with

32.7.19

α±1 = 1
4

(
2− 2α0 ± 3

√
−2β0

)
,

β±1 = − 1
2

(
1 + α0 ± 1

2

√
−2β0

)2
,

α±2 = − 1
4

(
2 + 2α0 ± 3

√
−2β0

)
,

β±2 = − 1
2

(
1− α0 ± 1

2

√
−2β0

)2
,

α±3 = 3
2 −

1
2α0 ∓ 3

4

√
−2β0,

β±3 = − 1
2

(
1− α0 ± 1

2

√
−2β0

)2
,

α±4 = − 3
2 −

1
2α0 ∓ 3

4

√
−2β0,

β±4 = − 1
2

(
−1− α0 ± 1

2

√
−2β0

)2
.

Then

32.7.20 T ±1 : w±1 =
w′0 − w2

0 − 2zw0 ∓
√
−2β0

2w0
,

32.7.21 T ±2 : w±2 = −w
′
0 + w2

0 + 2zw0 ∓
√
−2β0

2w0
,

32.7.22 T ±3 : w±3 = w0 +
2
(
1− α0 ∓ 1

2

√
−2β0

)
w0

w′0 ±
√
−2β0 + 2zw0 + w2

0

,

32.7.23 T ±4 : w±4 = w0 +
2
(
1 + α0 ± 1

2

√
−2β0

)
w0

w′0 ∓
√
−2β0 − 2zw0 − w2

0

,

valid when the denominators are nonzero, and where
the upper signs or the lower signs are taken throughout
each transformation. See Bassom et al. (1995).

32.7(v) Fifth Painlevé Equation

Let wj(zj) = w(zj ;αj , βj , γj , δj), j = 0, 1, 2, be solu-
tions of PV with

32.7.24

z1 = −z0, z2 = z0, (α1, β1, γ1, δ1) = (α0, β0,−γ0, δ0),
(α2, β2, γ2, δ2) = (−β0,−α0,−γ0, δ0).

Then
32.7.25 S1 : w1(z1) = w(z0),

32.7.26 S2 : w2(z2) = 1/w(z0) .

Let W0 = W (z;α0, β0, γ0,− 1
2 ) and W1 =

W (z;α1, β1, γ1,− 1
2 ) be solutions of PV, where

32.7.27

α1 = 1
8

(
γ0 + ε1

(
1− ε3

√
−2β0 − ε2

√
2α0

))2
,

β1 = − 1
8

(
γ0 − ε1

(
1− ε3

√
−2β0 − ε2

√
2α0

))2
,

γ1 = ε1

(
ε3

√
−2β0 − ε2

√
2α0

)
,
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and εj = ±1, j = 1, 2, 3, independently. Also let

32.7.28
Φ = zW ′0 − ε2

√
2α0W

2
0 + ε3

√
−2β0

+
(
ε2

√
2α0 − ε3

√
−2β0 + ε1z

)
W0,

and assume Φ 6= 0. Then

32.7.29 Tε1,ε2,ε3 : W1 = (Φ− 2ε1zW0)/Φ ,

provided that the numerator on the right-hand side does
not vanish. Again, since εj = ±1, j = 1, 2, 3, indepen-
dently, there are eight distinct transformations of type
Tε1,ε2,ε3 .

32.7(vi) Relationship Between the Third and
Fifth Painlevé Equations

Let w = w(z;α, β, 1,−1) be a solution of PIII and

32.7.30 v = w′ − εw2 + ((1− εα)w/z ),
with ε = ±1. Then

32.7.31 W (ζ;α0, β0, γ0, δ0) =
v − 1
v + 1

, z =
√

2ζ,

satisfies PV with
32.7.32

(α0, β0, γ0, δ0)
=
(
(β − εα+ 2)2/32,−(β + εα− 2)2/32,−ε, 0

)
.

32.7(vii) Sixth Painlevé Equation

Let wj(zj) = wj(zj ;αj , βj , γj , δj), j = 0, 1, 2, 3, be solu-
tions of PVI with
32.7.33 z1 = 1/z0,

32.7.34 z2 = 1− z0,

32.7.35 z3 = 1/z0,

32.7.36 (α1, β1, γ1, δ1) = (α0, β0,−δ0 + 1
2 ,−γ0 + 1

2 ),

32.7.37 (α2, β2, γ2, δ2) = (α0,−γ0,−β0, δ0),

32.7.38 (α3, β3, γ3, δ3) = (−β0,−α0, γ0, δ0).
Then
32.7.39 S1 : w1(z1) = w0(z0)/z0,

32.7.40 S2 : w2(z2) = 1− w0(z0),

32.7.41 S3 : w3(z3) = 1/w0(z0).

The transformations Sj , for j = 1, 2, 3, generate a group
of order 24. See Iwasaki et al. (1991, p. 127).

Let w(z;α, β, γ, δ) and W (z;A,B,C,D) be solutions
of PVI with

32.7.42 (α, β, γ, δ) =
(

1
2 (θ∞−1)2,− 1

2θ
2
0,

1
2θ

2
1,

1
2 (1−θ2

2)
)
,

32.7.43

(A,B,C,D) =
(

1
2 (Θ∞ − 1)2,− 1

2Θ2
0,

1
2Θ2

1,
1
2 (1−Θ2

2)
)
,

and

32.7.44 θj = Θj + 1
2σ,

for j = 0, 1, 2,∞, where
32.7.45

σ = θ0 + θ1 + θ2 + θ∞ − 1 = 1− (Θ0 + Θ1 + Θ2 + Θ∞).
Then
32.7.46

σ

w −W
=

z(z − 1)W ′

W (W − 1)(W − z)
+

Θ0

W
+

Θ1

W − 1
+

Θ2 − 1
W − z

=
z(z − 1)w′

w(w − 1)(w − z)
+
θ0

w
+

θ1

w − 1
+
θ2 − 1
w − z

.

PVI also has quadratic and quartic transformations.
Let w = w(z;α, β, γ, δ) be a solution of PVI. The
quadratic transformation

32.7.47 u1(ζ1) =
(1− w)(w − z)

(1 +
√
z)2w

, ζ1 =
(

1−
√
z

1 +
√
z

)2
,

transforms PVI with α = −β and γ = 1
2 − δ to PVI with

(α1, β1, γ1, δ1) = (4α,−4γ, 0, 1
2 ). The quartic transfor-

mation

32.7.48 u2(ζ2) =
(w2 − z)2

4w(w − 1)(w − z)
, ζ2 = z,

transforms PVI with α = −β = γ = 1
2 − δ to PVI with

(α2, β2, γ2, δ2) = (16α, 0, 0, 1
2 ). Also,

32.7.49 u3(ζ3) =
(

1− z1/4

1 + z1/4

)2(√
w + z1/4

√
w − z1/4

)2
,

32.7.50 ζ3 =
(

1− z1/4

1 + z1/4

)4
,

transforms PVI with α = β = 0 and γ = 1
2 − δ to PVI

with α3 = β3 and γ3 = 1
2 − δ3.

32.7(viii) Affine Weyl Groups

See Okamoto (1986, 1987a,b,c), Sakai (2001), Umemura
(2000).

32.8 Rational Solutions

32.8(i) Introduction

PII–PVI possess hierarchies of rational solutions for spe-
cial values of the parameters which are generated from
“seed solutions” using the Bäcklund transformations
and often can be expressed in the form of determinants.
See Airault (1979).
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32.8(ii) Second Painlevé Equation

Rational solutions of PII exist for α = n(∈ Z) and are
generated using the seed solution w(z; 0) = 0 and the
Bäcklund transformations (32.7.1) and (32.7.2). The
first four are

32.8.1 w(z; 1) = − 1/z ,

32.8.2 w(z; 2) =
1
z
− 3z2

z3 + 4
,

32.8.3 w(z; 3) =
3z2

z3 + 4
− 6z2(z3 + 10)
z6 + 20z3 − 80

,

32.8.4

w(z; 4) = −1
z

+
6z2(z3 + 10)
z6 + 20z3 − 80

− 9z5(z3 + 40)
z9 + 60z6 + 11200

.

More generally,

32.8.5 w(z;n) =
d

dz

(
ln
(
Qn−1(z)
Qn(z)

))
,

where the Qn(z) are monic polynomials (coefficient of
highest power of z is 1) satisfying

32.8.6
Qn+1(z)Qn−1(z)

= zQ2
n(z) + 4 (Q′n(z))2 − 4Qn(z)Q′′n(z),

with Q0(z) = 1, Q1(z) = z. Thus

32.8.7

Q2(z) = z3 + 4,
Q3(z) = z6 + 20z3 − 80,
Q4(z) = z10 + 60z7 + 11200z,
Q5(z) = z15 + 140z12 + 2800z9 + 78400z6

− 3 13600z3 − 62 72000,
Q6(z) = z21 + 280z18 + 18480z15 + 6 27200z12

− 172 48000z9 + 14488 32000z6

+ 1 93177 60000z3 − 3 86355 20000.

Next, let pm(z) be the polynomials defined by
pm(z) = 0 for m < 0, and

32.8.8

∞∑
m=0

pm(z)λm = exp
(
zλ− 4

3λ
3
)
.

Then for n ≥ 2

32.8.9 w(z;n) =
d

dz

(
ln
(
τn−1(z)
τn(z)

))
,

where τn(z) is the n× n determinant

32.8.10

τn(z) =

∣∣∣∣∣∣∣∣∣
p1(z) p3(z) · · · p2n−1(z)
p′1(z) p′3(z) · · · p′2n−1(z)

...
...

. . .
...

p
(n−1)
1 (z) p

(n−1)
3 (z) · · · p

(n−1)
2n−1 (z)

∣∣∣∣∣∣∣∣∣ .
For plots of the zeros of Qn(z) see Clarkson and

Mansfield (2003).

32.8(iii) Third Painlevé Equation

Special rational solutions of PIII are

32.8.11 w(z;µ,−µκ2, λ,−λκ4) = κ,

32.8.12 w(z; 0,−µ, 0, µκ) = κz,

32.8.13 w(z; 2κ+ 3,−2κ+ 1, 1,−1) =
z + κ

z + κ+ 1
,

with κ, λ, and µ arbitrary constants.
In the general case assume γδ 6= 0, so that as in

§32.2(ii) we may set γ = 1 and δ = −1. Then PIII has
rational solutions iff

32.8.14 α± β = 4n,

with n ∈ Z. These solutions have the form

32.8.15 w(z) = Pm(z)/Qm(z) ,

where Pm(z) and Qm(z) are polynomials of degree m,
with no common zeros.

For examples and plots see Milne et al. (1997); also
Clarkson (2003a). For determinantal representations
see Kajiwara and Masuda (1999).

32.8(iv) Fourth Painlevé Equation

Special rational solutions of PIV are

32.8.16 w1(z;±2,−2) = ± 1/z ,

32.8.17 w2(z; 0,−2) = −2z,

32.8.18 w3(z; 0,− 2
9 ) = − 2

3z.

There are also three families of solutions of PIV of
the form

32.8.19 w1(z;α1, β1) = P1,n−1(z)/Q1,n(z) ,

32.8.20 w2(z;α2, β2) = −2z + (P2,n−1(z)/Q2,n(z) ),

32.8.21 w3(z;α3, β3) = − 2
3z + (P3,n−1(z)/Q3,n(z) ),

where Pj,n−1(z) and Qj,n(z) are polynomials of degrees
n− 1 and n, respectively, with no common zeros.

In general, PIV has rational solutions iff either

32.8.22 α = m, β = −2(1 + 2n−m)2,

or

32.8.23 α = m, β = −2( 1
3 + 2n−m)2,

with m,n ∈ Z. The rational solutions when the param-
eters satisfy (32.8.22) are special cases of §32.10(iv).

For examples and plots see Bassom et al. (1995);
also Clarkson (2003b). For determinantal representa-
tions see Kajiwara and Ohta (1998) and Noumi and
Yamada (1999).
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32.8(v) Fifth Painlevé Equation

Special rational solutions of PV are

32.8.24 w(z; 1
2 ,−

1
2µ

2, κ(2− µ),− 1
2κ

2) = κz + µ,

32.8.25 w(z; 1
2 , κ

2µ, 2κµ, µ) = κ/(z + κ),

32.8.26 w(z; 1
8 ,−

1
8 ,−κµ, µ) = (κ+ z)/(κ− z),

with κ and µ arbitrary constants.
In the general case assume δ 6= 0, so that as in

§32.2(ii) we may set δ = − 1
2 . Then PV has a ratio-

nal solution iff one of the following holds with m,n ∈ Z
and ε = ±1:

(a) α = 1
2 (m + εγ)2 and β = − 1

2n
2, where n > 0,

m+ n is odd, and α 6= 0 when |m| < n.

(b) α = 1
2n

2 and β = − 1
2 (m + εγ)2, where n > 0,

m+ n is odd, and β 6= 0 when |m| < n.

(c) α = 1
2a

2, β = − 1
2 (a+n)2, and γ = m, with m+n

even.

(d) α = 1
2 (b+n)2, β = − 1

2b
2, and γ = m, with m+n

even.

(e) α = 1
8 (2m+ 1)2, β = − 1

8 (2n+ 1)2, and γ /∈ Z.

These rational solutions have the form

32.8.27 w(z) = λz + µ+ (Pn−1(z)/Qn(z) ),
where λ, µ are constants, and Pn−1(z), Qn(z) are poly-
nomials of degrees n − 1 and n, respectively, with no
common zeros. Cases (a) and (b) are special cases of
§32.10(v).

For examples and plots see Clarkson (2005). For de-
terminantal representations see Masuda et al. (2002).
For the case δ = 0 see Airault (1979) and Lukaševič
(1968).

32.8(vi) Sixth Painlevé Equation

Special rational solutions of PVI are

32.8.28 w(z;µ,−µκ2, 1
2 ,

1
2 − µ(κ− 1)2) = κz,

32.8.29 w(z; 0, 0, 2, 0) = κz2,

32.8.30 w(z; 0, 0, 1
2 ,−

3
2 ) = κ/z ,

32.8.31 w(z; 0, 0, 2,−4) = κ
/
z2 ,

32.8.32

w(z; 1
2 (κ+ µ)2,− 1

2 ,
1
2 (µ− 1)2, 1

2κ(2− κ)) =
z

κ+ µz
,

with κ and µ arbitrary constants.
In the general case, PVI has rational solutions if

32.8.33 a+ b+ c+ d = 2n+ 1,
where n ∈ Z, a = ε1

√
2α, b = ε2

√
−2β, c = ε3

√
2γ,

and d = ε4

√
1− 2δ, with εj = ±1, j = 1, 2, 3, 4, inde-

pendently, and at least one of a, b, c or d is an integer.
These are special cases of §32.10(vi).

32.9 Other Elementary Solutions

32.9(i) Third Painlevé Equation

Elementary nonrational solutions of PIII are

32.9.1 w(z;µ, 0, 0,−µκ3) = κz1/3,

32.9.2

w(z; 0,−2κ, 0, 4κµ− λ2) = z(κ(ln z)2 + λ ln z + µ),

32.9.3 w(z;−ν2λ, 0, ν2(λ2−4κµ), 0) =
zν−1

κz2ν + λzν + µ
,

with κ, λ, µ, and ν arbitrary constants.
In the case γ = 0 and αδ 6= 0 we assume, as in

§32.2(ii), α = 1 and δ = −1. Then PIII has algebraic
solutions iff

32.9.4 β = 2n,
with n ∈ Z. These are rational solutions in ζ = z1/3 of
the form

32.9.5 w(z) = Pn2+1(ζ)/Qn2(ζ) ,
where Pn2+1(ζ) and Qn2(ζ) are polynomials of degrees
n2 + 1 and n2, respectively, with no common zeros.
For examples and plots see Clarkson (2003a) and Milne
et al. (1997). Similar results hold when δ = 0 and
βγ 6= 0.

PIII with β = δ = 0 has a first integral

32.9.6 z2(w′)2 + 2zww′ = (C + 2αzw + γz2w2)w2,

with C an arbitrary constant, which is solvable by
quadrature. A similar result holds when α = γ = 0.
PIII with α = β = γ = δ = 0, has the general solution
w(z) = Czµ, with C and µ arbitrary constants.

32.9(ii) Fifth Painlevé Equation

Elementary nonrational solutions of PV are

32.9.7 w(z;µ,− 1
8 ,−µκ

2, 0) = 1 + κz1/2,

32.9.8 w(z; 0, 0, µ,− 1
2µ

2) = κ exp(µz),
with κ and µ arbitrary constants.

PV, with δ = 0, has algebraic solutions if either

32.9.9 (α, β, γ) = ( 1
2µ

2,− 1
8 (2n− 1)2,−1),

or

32.9.10 (α, β, γ) = ( 1
8 (2n− 1)2,− 1

2µ
2, 1),

with n ∈ Z and µ arbitrary. These are rational solutions
in ζ = z1/2 of the form

32.9.11 w(z) = Pn2−n+1(ζ)/Qn2−n(ζ) ,
where Pn2−n+1(ζ) and Qn2−n(ζ) are polynomials of de-
grees n2−n+1 and n2−n, respectively, with no common
zeros.

PV, with γ = δ = 0, has a first integral

32.9.12 z2(w′)2 = (w − 1)2(2αw2 + Cw − 2β),
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with C an arbitrary constant, which is solvable by
quadrature. For examples and plots see Clarkson
(2005). PV, with α = β = 0 and γ2 + 2δ = 0, has
solutions w(z) = C exp

(
±
√
−2δz

)
, with C an arbitrary

constant.

32.9(iii) Sixth Painlevé Equation

An elementary algebraic solution of PVI is

32.9.13 w(z; 1
2κ

2,− 1
2κ

2, 1
2µ

2, 1
2 (1− µ2)) = z1/2,

with κ and µ arbitrary constants.
Dubrovin and Mazzocco (2000) classifies all alge-

braic solutions for the special case of PVI with β = γ =
0, δ = 1

2 . For further examples of algebraic solutions see
Andreev and Kitaev (2002), Boalch (2005, 2006), Gro-
mak et al. (2002, §48), Hitchin (2003), Masuda (2003),
and Mazzocco (2001b).

32.10 Special Function Solutions

32.10(i) Introduction

For certain combinations of the parameters, PII–PVI

have particular solutions expressible in terms of the so-
lution of a Riccati differential equation, which can be
solved in terms of special functions defined in other
chapters. All solutions of PII–PVI that are expressible in
terms of special functions satisfy a first-order equation
of the form

32.10.1 (w′)n +
n−1∑
j =0

Fj(w, z)(w′)j = 0,

where Fj(w, z) is polynomial in w with coefficients that
are rational functions of z.

32.10(ii) Second Painlevé Equation

PII has solutions expressible in terms of Airy functions
(§9.2) iff

32.10.2 α = n+ 1
2 ,

with n ∈ Z. For example, if α = 1
2ε, with ε = ±1, then

the Riccati equation is

32.10.3 εw′ = w2 + 1
2z,

with solution

32.10.4 w(z; 1
2ε) = −εφ′(z)/φ(z),

where

32.10.5 φ(z) = C1 Ai
(
−2−1/3z

)
+ C2 Bi

(
−2−1/3z

)
,

with C1, C2 arbitrary constants.

Solutions for other values of α are derived from
w(z;± 1

2 ) by application of the Bäcklund transforma-
tions (32.7.1) and (32.7.2). For example,

32.10.6 w(z; 3
2 ) = Φ− 1

2Φ2 + z
,

32.10.7 w(z; 5
2 ) =

1
2Φ2 + z

+
2zΦ2 + Φ + z2

4Φ3 + 2zΦ− 1
,

where Φ = φ′(z)/φ(z), with φ(z) given by (32.10.5).
More generally, if n = 1, 2, 3, . . . , then

32.10.8 w(z;n+ 1
2 ) =

d

dz

(
ln
(

τn(z)
τn+1(z)

))
,

where τn(z) is the n× n determinant

32.10.9 τn(z) =

∣∣∣∣∣∣∣∣∣
φ(z) φ′(z) · · · φ(n−1)(z)
φ′(z) φ′′(z) · · · φ(n)(z)

...
...

. . .
...

φ(n−1)(z) φ(n)(z) · · · φ(2n−2)(z)

∣∣∣∣∣∣∣∣∣ ,
and

32.10.10 w(z;−n− 1
2 ) = −w(z;n+ 1

2 ).

32.10(iii) Third Painlevé Equation

If γδ 6= 0, then as in §32.2(ii) we may set γ = 1 and
δ = −1. PIII then has solutions expressible in terms of
Bessel functions (§10.2) iff
32.10.11 ε1α+ ε2β = 4n+ 2,
with n ∈ Z, and ε1 = ±1, ε2 = ±1, independently. In
the case ε1α+ ε2β = 2, the Riccati equation is

32.10.12 zw′ = ε1zw
2 + (αε1 − 1)w + ε2z.

If α 6= ε1, then (32.10.12) has the solution

32.10.13 w(z) = −ε1φ
′(z)/φ(z),

where

32.10.14 φ(z) = zν (C1 Jν(ζ) + C2 Yν(ζ)) ,
with ζ =

√
ε1ε2z, ν = 1

2αε1, and C1, C2 arbitrary con-
stants.

For examples and plots see Milne et al. (1997). For
determinantal representations see Forrester and Witte
(2002) and Okamoto (1987c).

32.10(iv) Fourth Painlevé Equation

PIV has solutions expressible in terms of parabolic cylin-
der functions (§12.2) iff either

32.10.15 β = −2(2n+ 1 + εα)2,

or

32.10.16 β = −2n2,

with n ∈ Z and ε = ±1. In the case when n = 0 in
(32.10.15), the Riccati equation is

32.10.17 w′ = ε(w2 + 2zw)− 2(1 + εα),
which has the solution

32.10.18 w(z) = −εφ′(z)/φ(z),



736 Painlevé Transcendents

where

32.10.19

φ(z) =
(
C1 U

(
a,
√

2z
)

+ C2 V
(
a,
√

2z
))

exp
(

1
2εz

2
)
,

with a = α+ 1
2ε, and C1, C2 arbitrary constants. When

a+ 1
2 is zero or a negative integer the U parabolic cylin-

der functions reduce to Hermite polynomials (§18.3)
times an exponential function; thus

32.10.20

w(z;−m,−2(m− 1)2) = −
H ′m−1(z)
Hm−1(z)

, m = 1, 2, 3, . . . ,

and

32.10.21

w(z;−m,−2(m+1)2) =−2z+
H ′m(z)
Hm(z)

, m = 0, 1, 2, . . . .

If 1 + εα = 0, then (32.10.17) has solutions

32.10.22 w(z) =


2 exp

(
z2
)

√
π (C − i erfc(iz))

, ε = 1,

2 exp
(
−z2

)
√
π (C − erfc(z))

, ε = −1,

where C is an arbitrary constant and erfc is the com-
plementary error function (§7.2(i)).

For examples and plots see Bassom et al. (1995). For
determinantal representations see Forrester and Witte
(2001) and Okamoto (1986).

32.10(v) Fifth Painlevé Equation

If δ 6= 0, then as in §32.2(ii) we may set δ = − 1
2 . PV

then has solutions expressible in terms of Whittaker
functions (§13.14(i)), iff

32.10.23 a+ b+ ε3γ = 2n+ 1,

or

32.10.24 (a− n)(b− n) = 0,

where n ∈ Z, a = ε1

√
2α, and b = ε2

√
−2β, with

εj = ±1, j = 1, 2, 3, independently. In the case when
n = 0 in (32.10.23), the Riccati equation is

32.10.25 zw′ = aw2 + (b− a+ ε3z)w − b.
If a 6= 0, then (32.10.25) has the solution

32.10.26 w(z) = −zφ′(z)/(aφ(z)),

where

32.10.27 φ(z) =
C1Mκ,µ(ζ) + C2Wκ,µ(ζ)

ζ(a−b+1)/2
exp
(

1
2ζ
)
,

with ζ = ε3z, κ = 1
2 (a − b + 1), µ = 1

2 (a + b), and C1,
C2 arbitrary constants.

For determinantal representations see Forrester and
Witte (2002), Masuda (2004), and Okamoto (1987b).

32.10(vi) Sixth Painlevé Equation

PVI has solutions expressible in terms of hypergeometric
functions (§15.2(i)) iff
32.10.28 a+ b+ c+ d = 2n+ 1,
where n ∈ Z, a = ε1

√
2α, b = ε2

√
−2β, c = ε3

√
2γ, and

d = ε4

√
1− 2δ, with εj = ±1, j = 1, 2, 3, 4, indepen-

dently. If n = 1, then the Riccati equation is

32.10.29 w′ =
aw2

z(z − 1)
+

(b+ c)z − a− c
z(z − 1)

w − b

z − 1
.

If a 6= 0, then (32.10.29) has the solution

32.10.30 w(z) =
ζ − 1
aφ(ζ)

dφ

dζ
, ζ =

1
1− z

,

where
32.10.31

φ(ζ) = C1 F (b,−a; b+ c; ζ) + C2ζ
−b+1−c

× F (−a− b− c+ 1,−c+ 1; 2− b− c; ζ),
with C1, C2 arbitrary constants.

Next, let Λ = Λ(u, z) be the elliptic function
(§§22.15(ii), 23.2(iii)) defined by

32.10.32 u =
∫ Λ

0

dt√
t(t− 1)(t− z)

,

where the fundamental periods 2φ1 and 2φ2 are lin-
early independent functions satisfying the hypergeomet-
ric equation

32.10.33 z(1− z)d
2φ

dz2 + (1− 2z)
dφ

dz
− 1

4φ = 0.

Then PVI, with α = β = γ = 0 and δ = 1
2 , has the

general solution

32.10.34 w(z; 0, 0, 0, 1
2 ) = Λ(C1φ1 + C2φ2, z),

with C1, C2 arbitrary constants. The solution
(32.10.34) is an essentially transcendental function of
both constants of integration since PVI with α = β =
γ = 0 and δ = 1

2 does not admit an algebraic first inte-
gral of the form P (z, w,w′, C) = 0, with C a constant.

For determinantal representations see Forrester and
Witte (2004) and Masuda (2004).

32.11 Asymptotic Approximations for Real
Variables

32.11(i) First Painlevé Equation

There are solutions of (32.2.1) such that

32.11.1
w(x) = −

√
1
6 |x|+ d|x|−1/8 sin(φ(x)− θ0)

+ o
(
|x|−1/8

)
, x→ −∞,

where

32.11.2 φ(x) = (24)1/4
(

4
5 |x|

5/4 − 5
8d

2 ln |x|
)
,

and d and θ0 are constants.
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There are also solutions of (32.2.1) such that

32.11.3 w(x) ∼
√

1
6 |x|, x→ −∞.

Next, for given initial conditions w(0) = 0 and
w′(0) = k, with k real, w(x) has at least one pole on
the real axis. There are two special values of k, k1 and
k2, with the properties −0.45142 8 < k1 < −0.45142 7,
1.85185 3 < k2 < 1.85185 5, and such that:

(a) If k < k1, then w(x) > 0 for x0 < x < 0, where x0

is the first pole on the negative real axis.

(b) If k1 < k < k2, then w(x) oscillates about, and is

asymptotic to, −
√

1
6 |x| as x→ −∞.

(c) If k2 < k, then w(x) changes sign once, from pos-
itive to negative, as x passes from x0 to 0.

For illustration see Figures 32.3.1 to 32.3.4, and for
further information see Joshi and Kitaev (2005), Joshi
and Kruskal (1992), Kapaev (1988), Kapaev and Kitaev
(1993), and Kitaev (1994).

32.11(ii) Second Painlevé Equation

Consider the special case of PII with α = 0:

32.11.4 w′′ = 2w3 + xw,

with boundary condition

32.11.5 w(x)→ 0, x→ +∞.

Any nontrivial real solution of (32.11.4) that satisfies
(32.11.5) is asymptotic to kAi(x), for some nonzero
real k, where Ai denotes the Airy function (§9.2). Con-
versely, for any nonzero real k, there is a unique solu-
tion wk(x) of (32.11.4) that is asymptotic to kAi(x) as
x→ +∞.

If |k| < 1, then wk(x) exists for all sufficiently large
|x| as x→ −∞, and

32.11.6 wk(x) = d|x|−1/4 sin(φ(x)− θ0) + o
(
|x|−1/4

)
,

where

32.11.7 φ(x) = 2
3 |x|

3/2 − 3
4d

2 ln |x|,
and d (6= 0), θ0 are real constants. Connection formulas
for d and θ0 are given by

32.11.8 d2 = −π−1 ln
(
1− k2

)
,

32.11.9

θ0 = 3
2d

2 ln 2 + ph Γ
(
1− 1

2 id
2
)

+ 1
4π(1− 2 sign(k)),

where Γ is the gamma function (§5.2(i)), and the branch
of the ph function is immaterial.

If |k| = 1, then

32.11.10 wk(x) ∼ sign(k)
√

1
2 |x|, x→ −∞.

If |k| > 1, then wk(x) has a pole at a finite point
x = c0, dependent on k, and

32.11.11 wk(x) ∼ sign(k)(x− c0)−1, x→ c0+.
For illustration see Figures 32.3.5 and 32.3.6, and for

further information see Ablowitz and Clarkson (1991),
Bassom et al. (1998), Clarkson and McLeod (1988), De-
ift and Zhou (1995), Segur and Ablowitz (1981), and
Sulĕımanov (1987). For numerical studies see Miles
(1978, 1980) and Rosales (1978).

32.11(iii) Modified Second Painlevé Equation

Replacement of w by iw in (32.11.4) gives

32.11.12 w′′ = −2w3 + xw.

Any nontrivial real solution of (32.11.12) satisfies

32.11.13
w(x) = d|x|−1/4 sin(φ(x)− χ)

+O
(
|x|−5/4 ln |x|

)
, x→ −∞,

where

32.11.14 φ(x) = 2
3 |x|

3/2 + 3
4d

2 ln |x|,
with d (6= 0) and χ arbitrary real constants.

In the case when

32.11.15 χ+ 3
2d

2 ln 2− 1
4π − ph Γ

(
1
2 id

2
)

= nπ,

with n ∈ Z, we have

32.11.16 w(x) ∼ kAi(x), x→ +∞,
where k is a nonzero real constant. The connection for-
mulas for k are

32.11.17 d2 = π−1 ln
(
1 + k2

)
, sign(k) = (−1)n.

In the generic case

32.11.18 χ+ 3
2d

2 ln 2− 1
4π − ph Γ

(
1
2 id

2
)
6= nπ,

we have

32.11.19
w(x) = σ

√
1
2x+ σρ(2x)−1/4 cos(ψ(x) + θ)

+O
(
x−1

)
, x→ +∞,

where σ, ρ (> 0), and θ are real constants, and

32.11.20 ψ(x) = 2
3

√
2x3/2 − 3

2ρ
2 lnx.

The connection formulas for σ, ρ, and θ are

32.11.21 σ = − sign(=s),

32.11.22 ρ2 = π−1 ln
(
(1 + |s|2)/|2=s|

)
,

32.11.23 θ = − 3
4π −

7
2ρ

2 ln 2 + ph
(
1 + s2

)
+ ph Γ

(
iρ2
)
,

where
32.11.24

s =
(
exp
(
πd2
)
− 1
)1/2

× exp
(
i
(

3
2d

2 ln 2− 1
4π + χ− ph Γ

(
1
2 id

2
)))

.
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32.11(iv) Third Painlevé Equation

For PIII, with α = −β = 2ν (∈ R) and γ = −δ = 1,
32.11.25

w(x)− 1 ∼ −λΓ
(
ν + 1

2

)
2−2νx−ν−(1/2)e−2x, x→ +∞,

where λ is an arbitrary constant such that −1/π < λ <
1/π, and

32.11.26 w(x) ∼ Bxσ, x→ 0,
where B and σ are arbitrary constants such that B 6=
0 and |<σ| < 1. The connection formulas relating
(32.11.25) and (32.11.26) are

32.11.27 σ = (2/π) arcsin(πλ),

32.11.28 B = 2−2σ Γ2
(

1
2 (1− σ)

)
Γ
(

1
2 (1 + σ) + ν

)
Γ2
(

1
2 (1 + σ)

)
Γ
(

1
2 (1− σ) + ν

) .
See also Abdullaev (1985), Novokshënov (1985),

Its and Novokshënov (1986), Kitaev (1987), Bobenko
(1991), Bobenko and Its (1995), Tracy and Widom
(1997), and Kitaev and Vartanian (2004).

32.11(v) Fourth Painlevé Equation

Consider PIV with α = 2ν + 1 (∈ R) and β = 0, that is,

32.11.29 w′′ =
(w′)2

2w
+

3
2
w3 + 4xw2 + 2(x2 − 2ν − 1)w,

and with boundary condition

32.11.30 w(x)→ 0, x→ +∞.
Any nontrivial solution of (32.11.29) that satisfies
(32.11.30) is asymptotic to hU2

(
−ν − 1

2 ,
√

2x
)

as x →
+∞, where h (6= 0) is a constant. Conversely, for any
h (6= 0) there is a unique solution wh(x) of (32.11.29)
that is asymptotic to hU2

(
−ν − 1

2 ,
√

2x
)

as x → +∞.
Here U denotes the parabolic cylinder function (§12.2).

Now suppose x→ −∞. If 0 ≤ h < h∗, where

32.11.31 h∗ = 1
/(

π1/2 Γ(ν + 1)
)
,

then wh(x) has no poles on the real axis. Furthermore,
if ν = n = 0, 1, 2, . . . , then

32.11.32 wh(x) ∼ h2nx2n exp
(
−x2

)
, x→ −∞.

Alternatively, if ν is not zero or a positive integer, then

32.11.33
wh(x) =− 2

3x+ 4
3d
√

3 sin(φ(x)− θ0)+O
(
x−1

)
,

x→ −∞,
where

32.11.34 φ(x) = 1
3

√
3x2 − 4

3d
2
√

3 ln
(√

2|x|
)
,

and d (> 0) and θ0 are real constants. Connection for-
mulas for d and θ0 are given by

32.11.35 d2 = − 1
4

√
3π−1 ln

(
1− |µ|2

)
,

32.11.36
θ0 = 1

3d
2
√

3 ln 3 + 2
3πν + 7

12π

+ phµ+ ph Γ
(
− 2

3 i
√

3d2
)
,

where

32.11.37 µ = 1 +
(

2ihπ3/2 exp(−iπν)
/

Γ(−ν)
)
,

and the branch of the ph function is immaterial.
Next if h = h∗, then

32.11.38 wh∗(x) ∼ −2x, x→ −∞,
and wh∗(x) has no poles on the real axis.

Lastly if h > h∗, then wh(x) has a simple pole on
the real axis, whose location is dependent on h.

For illustration see Figures 32.3.7–32.3.10. In terms
of the parameter k that is used in these figures h =
23/2k2.

32.12 Asymptotic Approximations for
Complex Variables

32.12(i) First Painlevé Equation

See Boutroux (1913), Kapaev and Kitaev (1993), Takei
(1995), Costin (1999), Joshi and Kitaev (2001), Kapaev
(2004), and Olde Daalhuis (2005b).

32.12(ii) Second Painlevé Equation

See Boutroux (1913), Novokshënov (1990), Kapaev
(1991), Joshi and Kruskal (1992), Kitaev (1994), Its and
Kapaev (2003), and Fokas et al. (2006, Chapter 7).

32.12(iii) Third Painlevé Equation

See Fokas et al. (2006, Chapter 16).

Applications

32.13 Reductions of Partial Differential
Equations

32.13(i) Korteweg–de Vries and Modified
Korteweg–de Vries Equations

The modified Korteweg–de Vries (mKdV) equation

32.13.1 vt − 6v2vx + vxxx = 0,
has the scaling reduction

32.13.2 z = x(3t)−1/3, v(x, t) = (3t)−1/3w(z),
where w(z) satisfies PII with α a constant of integration.

The Korteweg–de Vries (KdV) equation

32.13.3 ut + 6uux + uxxx = 0,
has the scaling reduction

32.13.4 z = x(3t)−1/3, u(x, t) = −(3t)−2/3(w′ + w2),
where w(z) satisfies PII.
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Equation (32.13.3) also has the similarity reduction

32.13.5 z = x+ 3λt2, u(x, t) = W (z)− λt,
where λ is an arbitrary constant and W (z) is express-
ible in terms of solutions of PI. See Fokas and Ablowitz
(1982) and P. J. Olver (1993b, p. 194).

32.13(ii) Sine-Gordon Equation

The sine-Gordon equation

32.13.6 uxt = sinu,
has the scaling reduction

32.13.7 z = xt, u(x, t) = v(z),
where v(z) satisfies (32.2.10) with α = 1

2 and γ = 0. In
consequence if w = exp(−iv), then w(z) satisfies PIII

with α = −β = 1
2 and γ = δ = 0.

32.13(iii) Boussinesq Equation

The Boussinesq equation

32.13.8 utt = uxx − 6(u2)xx + uxxxx,

has the traveling wave solution

32.13.9 z = x− ct, u(x, t) = v(z),
where c is an arbitrary constant and v(z) satisfies

32.13.10 v′′ = 6v2 + (c2 − 1)v +Az +B,

with A and B constants of integration. Depending
whether A = 0 or A 6= 0, v(z) is expressible in terms of
the Weierstrass elliptic function (§23.2) or solutions of
PI, respectively.

32.14 Combinatorics

Let SN be the group of permutations π of the numbers
1, 2, . . . , N (§26.2). With 1 ≤ m1 < · · · < mn ≤ N ,
π(m1),π(m2), . . . ,π(mn) is said to be an increasing
subsequence of π of length n when π(m1) < π(m2) <
· · · < π(mn). Let `N (π) be the length of the longest
increasing subsequence of π. Then

32.14.1 lim
N→∞

Prob

(
`N (π)− 2

√
N

N1/6
≤ s

)
= F (s),

where the distribution function F (s) is defined here by

32.14.2 F (s) = exp
(
−
∫ ∞
s

(x− s)w2(x) dx
)
,

and w(x) satisfies PII with α = 0 and boundary condi-
tions
32.14.3 w(x) ∼ Ai(x), x→ +∞,

32.14.4 w(x) ∼
√
− 1

2x, x→ −∞,

where Ai denotes the Airy function (§9.2).

The distribution function F (s) given by (32.14.2)
arises in random matrix theory where it gives the lim-
iting distribution for the normalized largest eigenvalue
in the Gaussian Unitary Ensemble of n × n Hermitian
matrices; see Tracy and Widom (1994).

See Forrester and Witte (2001, 2002) for other in-
stances of Painlevé equations in random matrix theory.

32.15 Orthogonal Polynomials

Let pn(ξ), n = 0, 1, . . . , be the orthonormal set of poly-
nomials defined by

32.15.1

∫ ∞
−∞

exp
(
− 1

4ξ
4 − zξ2

)
pm(ξ)pn(ξ) dξ = δm,n,

with recurrence relation

32.15.2 an+1(z)pn+1(ξ) = ξpn(ξ)− an(z)pn−1(ξ),

for n = 1, 2, . . . ; compare §18.2. Then un(z) = (an(z))2

satisfies the nonlinear recurrence relation

32.15.3 (un+1 + un + un−1)un = n− 2zun,

for n = 1, 2, . . . , and also PIV with α = − 1
2n and

β = − 1
2n

2.
For this result and applications see Fokas et al.

(1991): in this reference, on the right-hand side of
Eq. (1.10), (n + γ)2 should be replaced by n + γ at
its first appearance. See also Freud (1976), Brézin et al.
(1978), Fokas et al. (1992), and Magnus (1995).

32.16 Physical

Statistical Physics

Statistical physics, especially classical and quantum
spin models, has proved to be a major area for research
problems in the modern theory of Painlevé transcen-
dents. For a survey see McCoy (1992). See also McCoy
et al. (1977), Jimbo et al. (1980), Essler et al. (1996),
and Kanzieper (2002).

Integrable Continuous Dynamical Systems

See Bountis et al. (1982) and Grammaticos et al. (1991).

Other Applications

For the Ising model see Barouch et al. (1973).
For applications in 2D quantum gravity and related

aspects of the enumerative topology see Di Francesco
et al. (1995). For applications in string theory see
Seiberg and Shih (2005).
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Computation

32.17 Methods of Computation

The Painlevé equations can be integrated by Runge–
Kutta methods for ordinary differential equations; see
§3.7(v), Butcher (2003), and Hairer et al. (2000). For
numerical studies of PI see Holmes and Spence (1984)
and Noonburg (1995). For numerical studies of PII see
Kashevarov (1998, 2004), Miles (1978, 1980), and Ros-
ales (1978). For numerical studies of PIV see Bassom
et al. (1993).
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§32.5 Ablowitz and Clarkson (1991), Ablowitz and Se-
gur (1977, 1981).

§32.6 Forrester and Witte (2002), Jimbo and Miwa
(1981), Okamoto (1981, 1986, 1987c).

§32.7 Cosgrove (2006), Fokas and Ablowitz (1982),
Gambier (1910), Gromak (1975, 1976, 1978,
1987), Gromak et al. (2002, §§25,34,39,42,47),
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(1965, 1967b).

§32.10 Airault (1979), Albrecht et al. (1996), Flaschka
and Newell (1980), Fokas and Yortsos (1981),
Gambier (1910), Gromak (1978, 1987), Gro-
mak et al. (2002, Chapter 6, §§35,40,44), Gro-
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742 Coulomb Functions

Notation

33.1 Special Notation

(For other notation see pp. xiv and 873.)

k, ` nonnegative integers.
r, x real variables.
ρ nonnegative real variable.
ε, η real parameters.
ψ(x) logarithmic derivative of Γ(x); see §5.2(i).
δ(x) Dirac delta; see §1.17.
primes derivatives with respect to the variable.

The main functions treated in this chapter are
first the Coulomb radial functions F`(η, ρ), G`(η, ρ),
H±` (η, ρ) (Sommerfeld (1928)), which are used in the
case of repulsive Coulomb interactions, and secondly the
functions f(ε, `; r), h(ε, `; r), s(ε, `; r), c(ε, `; r) (Seaton
(1982, 2002)), which are used in the case of attractive
Coulomb interactions.

Alternative Notations

Curtis (1964a): P`(ε, r) = (2` + 1)! f(ε, `; r)/2`+1,
Q`(ε, r) = −(2`+ 1)!h(ε, `; r)/(2`+1A(ε, `)).

Greene et al. (1979): f (0)(ε, `; r) = f(ε, `; r),
f(ε, `; r) = s(ε, `; r), g(ε, `; r) = c(ε, `; r).

Variables ρ, η

33.2 Definitions and Basic Properties

33.2(i) Coulomb Wave Equation

33.2.1

d2w

dρ2 +
(

1− 2η
ρ
− `(`+ 1)

ρ2

)
w = 0, ` = 0, 1, 2, . . . .

This differential equation has a regular singularity at
ρ = 0 with indices ` + 1 and −`, and an irregu-
lar singularity of rank 1 at ρ = ∞ (§§2.7(i), 2.7(ii)).
There are two turning points, that is, points at which
d2w

/
dρ2 = 0 (§2.8(i)). The outer one is given by

33.2.2 ρtp(η, `) = η + (η2 + `(`+ 1))1/2.

33.2(ii) Regular Solution F`(η, ρ)

The function F`(η, ρ) is recessive (§2.7(iii)) at ρ = 0,
and is defined by

33.2.3 F`(η, ρ) = C`(η)2−`−1(∓i)`+1M±iη,`+ 1
2
(±2iρ),

or equivalently
33.2.4

F`(η, ρ) = C`(η)ρ`+1e∓iρM(`+ 1∓ iη, 2`+ 2,±2iρ),

where Mκ,µ(z) and M(a, b, z) are defined in §§13.14(i)
and 13.2(i), and

33.2.5 C`(η) =
2`e−πη/2|Γ(`+ 1 + iη)|

(2`+ 1)!
.

The choice of ambiguous signs in (33.2.3) and (33.2.4)
is immaterial, provided that either all upper signs are
taken, or all lower signs are taken. This is a consequence
of Kummer’s transformation (§13.2(vii)).

F`(η, ρ) is a real and analytic function of ρ on the
open interval 0 < ρ <∞, and also an analytic function
of η when −∞ < η <∞.

The normalizing constant C`(η) is always positive,
and has the alternative form
33.2.6

C`(η) =
2`
(

(2πη/(e2πη − 1))
∏`
k=1(η2 + k2)

) 1/2

(2`+ 1)!
.

33.2(iii) Irregular Solutions G`(η, ρ),H±` (η, ρ)

The functions H±` (η, ρ) are defined by

33.2.7 H±` (η, ρ) = (∓i)`e(πη/2)±i σ`(η)W∓iη,`+ 1
2
(∓2iρ),

or equivalently
33.2.8

H±` (η, ρ)

= e±i θ`(η,ρ)(∓2iρ)`+1±iη U(`+ 1± iη, 2`+ 2,∓2iρ),
where Wκ,µ(z), U(a, b, z) are defined in §§13.14(i) and
13.2(i),

33.2.9 θ`(η, ρ) = ρ− η ln(2ρ)− 1
2`π + σ`(η),

and

33.2.10 σ`(η) = ph Γ(`+ 1 + iη),
the branch of the phase in (33.2.10) being zero when
η = 0 and continuous elsewhere. σ`(η) is the Coulomb
phase shift.

H+
` (η, ρ) and H−` (η, ρ) are complex conjugates, and

their real and imaginary parts are given by

33.2.11
H+
` (η, ρ) = G`(η, ρ) + i F`(η, ρ),

H−` (η, ρ) = G`(η, ρ)− i F`(η, ρ).
As in the case of F`(η, ρ), the solutions H±` (η, ρ) and

G`(η, ρ) are analytic functions of ρ when 0 < ρ < ∞.
Also, e∓i σ`(η)H±` (η, ρ) are analytic functions of η when
−∞ < η <∞.

33.2(iv) Wronskians and Cross-Product

With arguments η, ρ suppressed,

33.2.12 W {G`, F`} = W
{
H±` , F`

}
= 1.

33.2.13 F`−1G`−F`G`−1 = `/(`2 + η2)1/2, ` ≥ 1.
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33.3 Graphics

33.3(i) Line Graphs of the Coulomb Radial Functions F`(η, ρ) and G`(η, ρ)

Figure 33.3.1: F`(η, ρ), G`(η, ρ) with ` = 0, η = −2. Figure 33.3.2: F`(η, ρ), G`(η, ρ) with ` = 0, η = 0.

Figure 33.3.3: F`(η, ρ), G`(η, ρ) with ` = 0, η = 2. The
turning point is at ρtp(2, 0) = 4.

Figure 33.3.4: F`(η, ρ), G`(η, ρ) with ` = 0, η = 10. The
turning point is at ρtp(10, 0) = 20.

In Figures 33.3.5 and 33.3.6

33.3.1 M`(η, ρ) = (F 2
` (η, ρ) +G2

`(η, ρ))1/2 =
∣∣H±` (η, ρ)

∣∣ .

Figure 33.3.5: F`(η, ρ), G`(η, ρ), and M`(η, ρ) with ` =
0, η =

√
15/2. The turning point is at ρtp

(√
15/2, 0

)
=

√
30 = 5.47 . . . .

Figure 33.3.6: F`(η, ρ), G`(η, ρ), and M`(η, ρ) with ` =
5, η = 0. The turning point is at ρtp(0, 5) =

√
30 (as in

Figure 33.3.5).
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33.3(ii) Surfaces of the Coulomb Radial Functions F0(η, ρ) and G0(η, ρ)

Figure 33.3.7: F0(η, ρ), −2 ≤ η ≤ 2, 0 ≤ ρ ≤ 5. Figure 33.3.8: G0(η, ρ), −2 ≤ η ≤ 2, 0 < ρ ≤ 5.

33.4 Recurrence Relations and Derivatives

For ` = 1, 2, 3, . . . , let

33.4.1 R` =

√
1 +

η2

`2
, S` =

`

ρ
+
η

`
, T` = S` + S`+1.

Then, with X` denoting any of F`(η, ρ), G`(η, ρ), or
H±` (η, ρ),

33.4.2 R`X`−1 − T`X` +R`+1X`+1 = 0, ` ≥ 1,

33.4.3 X ′` = R`X`−1 − S`X`, ` ≥ 1,

33.4.4 X ′` = S`+1X` −R`+1X`+1, ` ≥ 0.

33.5 Limiting Forms for Small ρ, Small |η|,
or Large `

33.5(i) Small ρ

As ρ→ 0 with η fixed,
33.5.1

F`(η, ρ) ∼ C`(η)ρ`+1, F ′`(η, ρ) ∼ (`+ 1)C`(η)ρ`.

33.5.2

G`(η, ρ) ∼ ρ−`

(2`+ 1)C`(η)
, ` = 0, 1, 2, . . . ,

G′`(η, ρ) ∼ − `ρ−`−1

(2`+ 1)C`(η)
, ` = 1, 2, 3, . . . .

33.5(ii) η = 0

33.5.3 F`(0, ρ) = ρ j`(ρ), G`(0, ρ) = −ρ y`(ρ).

Equivalently,

33.5.4
F`(0, ρ) = (πρ/2)1/2 J`+ 1

2
(ρ),

G`(0, ρ) = −(πρ/2)1/2 Y`+ 1
2
(ρ).

For the functions j, y, J, Y see §§10.47(ii), 10.2(ii).

33.5.5

F0(0, ρ) = sin ρ, G0(0, ρ) = cos ρ, H±0 (0, ρ) = e±iρ.

33.5.6 C`(0) =
2``!

(2`+ 1)!
=

1
(2`+ 1)!!

.

33.5(iii) Small |η|

33.5.7 σ0(η) ∼ −γη, η → 0,

where γ is Euler’s constant (§5.2(ii)).

33.5(iv) Large `

As `→∞ with η and ρ (6= 0) fixed,

33.5.8

F`(η, ρ) ∼ C`(η)ρ`+1, G`(η, ρ) ∼ ρ−`

(2`+ 1)C`(η)
,

33.5.9 C`(η) ∼ e−πη/2

(2`+ 1)!!
∼ e−πη/2 e`√

2(2`)`+1
.
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33.6 Power-Series Expansions in ρ

33.6.1 F`(η, ρ) = C`(η)
∞∑

k=`+1

A`k(η)ρk,

33.6.2 F ′`(η, ρ) = C`(η)
∞∑

k=`+1

kA`k(η)ρk−1,

where A``+1 = 1, A``+2 = η/(`+ 1), and

33.6.3
(k + `)(k − `− 1)A`k = 2ηA`k−1 −A`k−2,

k = `+ 3, `+ 4, . . . ,
or in terms of the hypergeometric function (§§15.1,
15.2(i)),
33.6.4

A`k(η)

=
(−i)k−`−1

(k − `− 1)! 2F1(`+ 1− k, `+ 1− iη; 2`+ 2; 2).

33.6.5

H±` (η, ρ) =
e±i θ`(η,ρ)

(2`+ 1)! Γ(−`+ iη)

( ∞∑
k=0

(a)k
(2`+ 2)kk!

(∓2iρ)a+k (ln(∓2iρ) +ψ(a+ k)−ψ(1 + k)−ψ(2`+ 2 + k))

−
2`+1∑
k=1

(2`+ 1)!(k − 1)!
(2`+ 1− k)!(1− a)k

(∓2iρ)a−k
)
,

where a = 1 + `± iη and ψ(x) = Γ′(x)/Γ(x) (§5.2(i)).
The series (33.6.1), (33.6.2), and (33.6.5) converge

for all finite values of ρ. Corresponding expansions for
H±`
′
(η, ρ) can be obtained by combining (33.6.5) with

(33.4.3) or (33.4.4).

33.7 Integral Representations

33.7.1

F`(η, ρ) =
ρ`+12`eiρ−(πη/2)

|Γ(`+ 1 + iη)|

∫ 1

0

e−2iρtt`+iη(1− t)`−iη dt,

33.7.2

H−` (η, ρ) =
e−iρρ−`

(2`+ 1)!C`(η)

∫ ∞
0

e−tt`−iη(t+ 2iρ)`+iη dt,

33.7.3

H−` (η, ρ)

=
−ie−πηρ`+1

(2`+ 1)!C`(η)

∫ ∞
0

(
exp(−i(ρ tanh t− 2ηt))

(cosh t)2`+2

+ i(1 + t2)` exp(−ρt+ 2η arctan t)
)
dt,

33.7.4

H+
` (η, ρ)

=
ie−πηρ`+1

(2`+ 1)!C`(η)

∫ −i∞
−1

e−iρt(1− t)`−iη(1 + t)`+iη dt.

Noninteger powers in (33.7.1)–(33.7.4) and the arc-
tangent assume their principal values (§§4.2(i), 4.2(iv),
4.23(ii)).

33.8 Continued Fractions

With arguments η, ρ suppressed,

33.8.1
F ′`
F`

= S`+1 −
R2
`+1

T`+1 −
R2
`+2

T`+2 −
· · · .

For R, S, and T see (33.4.1).
33.8.2

H±`
′

H±`
= c± i

ρ

ab

2(ρ− η ± i) +
(a+ 1)(b+ 1)

2(ρ− η ± 2i) +
· · · ,

where

33.8.3 a = 1 + `± iη, b = −`± iη, c = ±i(1− (η/ρ)).
The continued fraction (33.8.1) converges for all finite
values of ρ, and (33.8.2) converges for all ρ 6= 0.

If we denote u = F ′`/F` and p + iq = H+
`

′
/
H+
` ,

then

33.8.4 F` = ±(q−1(u− p)2 + q)−1/2, F ′` = uF`,

33.8.5 G` = q−1(u− p)F`, G′` = q−1(up− p2− q2)F` .
The ambiguous sign in (33.8.4) has to agree with that
of the final denominator in (33.8.1) when the continued
fraction has converged to the required precision. For
proofs and further information see Barnett et al. (1974)
and Barnett (1996).

33.9 Expansions in Series of Bessel
Functions

33.9(i) Spherical Bessel Functions

33.9.1 F`(η, ρ) = ρ
∞∑
k=0

ak j`+k(ρ),
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where the function j is as in §10.47(ii), a−1 = 0,
a0 = (2`+ 1)!!C`(η), and

33.9.2

k(k + 2`+ 1)
2k + 2`+ 1

ak − 2ηak−1

+
(k − 2)(k + 2`− 1)

2k + 2`− 3
ak−2 = 0, k = 1, 2, . . . .

The series (33.9.1) converges for all finite values of η
and ρ.

33.9(ii) Bessel Functions and Modified Bessel
Functions

In this subsection the functions J, I, and K are as in
§§10.2(ii) and 10.25(ii).

With t = 2 |η| ρ,
33.9.3

F`(η, ρ) = C`(η)
(2`+ 1)!
(2η)2`+1

ρ−`
∞∑

k=2`+1

bkt
k/2 Ik

(
2
√
t
)
,

η > 0,

33.9.4

F`(η, ρ) = C`(η)
(2`+ 1)!

(2 |η|)2`+1
ρ−`

∞∑
k=2`+1

bkt
k/2 Jk

(
2
√
t
)
,

η < 0.
Here b2` = b2`+2 = 0, b2`+1 = 1, and

33.9.5
4η2(k − 2`)bk+1 + kbk−1 + bk−2 = 0,

k = 2`+ 2, 2`+ 3, . . . .
The series (33.9.3) and (33.9.4) converge for all finite
positive values of |η| and ρ.

Next, as η → +∞ with ρ (> 0) fixed,
33.9.6

G`(η, ρ)

∼ ρ−`

(`+ 1
2 )λ`(η)C`(η)

∞∑
k=2`+1

(−1)kbktk/2Kk

(
2
√
t
)
,

where

33.9.7 λ`(η) ∼
∞∑

k=2`+1

(−1)k(k − 1)!bk.

For other asymptotic expansions of G`(η, ρ) see
Fröberg (1955, §8) and Humblet (1985).

33.10 Limiting Forms for Large ρ or Large
|η|

33.10(i) Large ρ

As ρ→∞ with η fixed,

33.10.1
F`(η, ρ) = sin(θ`(η, ρ)) + o(1),
G`(η, ρ) = cos(θ`(η, ρ)) + o(1),

33.10.2 H±` (η, ρ) ∼ exp(±i θ`(η, ρ)),
where θ`(η, ρ) is defined by (33.2.9).

33.10(ii) Large Positive η

As η →∞ with ρ fixed,

33.10.3

F`(η, ρ) ∼ (2`+ 1)!C`(η)
(2η)`+1

(2ηρ) 1/2 I2`+1

(
(8ηρ) 1/2

)
,

G`(η, ρ) ∼ 2(2η)`

(2`+ 1)!C`(η)
(2ηρ) 1/2 K2`+1

(
(8ηρ) 1/2

)
.

In particular, for ` = 0,

33.10.4
F0(η, ρ) ∼ e−πη(πρ) 1/2 I1

(
(8ηρ) 1/2

)
,

G0(η, ρ) ∼ 2eπη (ρ/π )1/2
K1

(
(8ηρ) 1/2

)
,

33.10.5
F ′0(η, ρ) ∼ e−πη(2πη) 1/2 I0

(
(8ηρ) 1/2

)
,

G′0(η, ρ) ∼ −2eπη (2η/π )1/2
K0

(
(8ηρ) 1/2

)
.

Also,

33.10.6
σ0(η) = η(ln η − 1) + 1

4π + o(1),

C0(η) ∼ (2πη)1/2e−πη.

33.10(iii) Large Negative η

As η → −∞ with ρ fixed,

33.10.7

F`(η, ρ) =
(2`+ 1)!C`(η)

(−2η)`+1

(
(−2ηρ) 1/2

× J2`+1

(
(−8ηρ) 1/2

)
+ o
(
|η| 1/4

))
,

G`(η, ρ) = − π(−2η)`

(2`+ 1)!C`(η)

(
(−2ηρ) 1/2

× Y2`+1

(
(−8ηρ) 1/2

)
+ o
(
|η| 1/4

))
.

In particular, for ` = 0,

33.10.8

F0(η, ρ) = (πρ) 1/2 J1

(
(−8ηρ) 1/2

)
+ o
(
|η|− 1/4

)
,

G0(η, ρ) = −(πρ) 1/2 Y1

(
(−8ηρ) 1/2

)
+ o
(
|η|− 1/4

)
.

33.10.9

F ′0(η, ρ) = (−2πη) 1/2 J0

(
(−8ηρ) 1/2

)
+ o
(
|η| 1/4

)
,

G′0(η, ρ) = −(−2πη) 1/2 Y0

(
(−8ηρ) 1/2

)
+ o
(
|η| 1/4

)
.

Also,

33.10.10

σ0(η) = η(ln(−η)−1)− 1
4π+o(1), C0(η)∼ (−2πη)1/2.
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33.11 Asymptotic Expansions for Large ρ

For large ρ, with ` and η fixed,

33.11.1 H±` (η, ρ) = e±i θ`(η,ρ)
∞∑
k=0

(a)k(b)k
k!(∓2iρ)k

,

where θ`(η, ρ) is defined by (33.2.9), and a and b are
defined by (33.8.3).

With arguments (η, ρ) suppressed, an equivalent for-
mulation is given by

33.11.2 F` = g cos θ` + f sin θ`, G` = f cos θ`− g sin θ`,

33.11.3 F ′` = ĝ cos θ` + f̂ sin θ`, G′` = f̂ cos θ`− ĝ sin θ`,

33.11.4 H±` = e±i θ`(f ± ig),
where

33.11.5 f ∼
∞∑
k=0

fk, g ∼
∞∑
k=0

gk,

33.11.6 f̂ ∼
∞∑
k=0

f̂k, ĝ ∼
∞∑
k=0

ĝk,

33.11.7 gf̂ − fĝ = 1.

Here f0 = 1, g0 = 0, f̂0 = 0, ĝ0 = 1 − (η/ρ), and for
k = 0, 1, 2, . . . ,

33.11.8

fk+1 = λkfk − µkgk,
gk+1 = λkgk + µkfk,

f̂k+1 = λkf̂k − µkĝk − (fk+1/ρ),

ĝk+1 = λkĝk + µkf̂k − (gk+1/ρ),

where

33.11.9

λk =
(2k + 1)η
(2k + 2)ρ

, µk =
`(`+ 1)− k(k + 1) + η2

(2k + 2)ρ
.

33.12 Asymptotic Expansions for Large η

33.12(i) Transition Region

When ` = 0 and η > 0, the outer turning point is given
by ρtp(η, 0) = 2η; compare (33.2.2). Define

33.12.1 x = (2η − ρ)/(2η)1/3, µ = (2η)2/3.

Then as η →∞,

33.12.2
F0(η, ρ)
G0(η, ρ)

∼ π1/2(2η)1/6

{
Ai(x)
Bi(x)

(
1 +

B1

µ
+
B2

µ2
+ · · ·

)
+

Ai′(x)
Bi′(x)

(
A1

µ
+
A2

µ2
+ · · ·

)}
,

33.12.3
F ′0(η, ρ)
G′0(η, ρ)

∼ −π1/2(2η)−1/6

{
Ai(x)
Bi(x)

(
B′1 + xA1

µ
+
B′2 + xA2

µ2
+ · · ·

)
+

Ai′(x)
Bi′(x)

(
B1 +A′1

µ
+
B2 +A′2
µ2

+ · · ·
)}

,

uniformly for bounded values of
∣∣(ρ− 2η)/η1/3

∣∣. Here Ai and Bi are the Airy functions (§9.2), and

33.12.4 A1 = 1
5x

2, A2 = 1
35 (2x3 + 6), A3 = 1

15750 (21x7 + 370x4 + 580x),

33.12.5 B1 = − 1
5x, B2 = 1

350 (7x5 − 30x2), B3 = 1
15750 (264x6 − 290x3 − 560).

In particular,

33.12.6
F0(η, 2η)

3− 1/2 G0(η, 2η)
∼

Γ
(

1
3

)
ω1/2

2
√
π

(
1∓ 2

35
Γ
(

2
3

)
Γ
(

1
3

) 1
ω4
− 8

2025
1
ω6
∓ 5792

46 06875
Γ
(

2
3

)
Γ
(

1
3

) 1
ω10
− · · ·

)
,

33.12.7
F ′0(η, 2η)

3− 1/2 G′0(η, 2η)
∼

Γ
(

2
3

)
2
√
πω1/2

(
±1 +

1
15

Γ
(

1
3

)
Γ
(

2
3

) 1
ω2
± 2

14175
1
ω6

+
1436

23 38875
Γ
(

1
3

)
Γ
(

2
3

) 1
ω8
± · · ·

)
,

where ω = ( 2
3η)1/3.

For derivations and additional terms in the expan-
sions in this subsection see Abramowitz and Rabinowitz
(1954) and Fröberg (1955).

33.12(ii) Uniform Expansions

With the substitution ρ = 2ηz, Equation (33.2.1) be-
comes

33.12.8
d2w

dz2 =
(

4η2

(
1− z
z

)
+
`(`+ 1)
z2

)
w.

Then, by application of the results given in §§2.8(iii)
and 2.8(iv), two sets of asymptotic expansions can be
constructed for F`(η, ρ) and G`(η, ρ) when η →∞.

The first set is in terms of Airy functions and the ex-
pansions are uniform for fixed ` and δ ≤ z <∞, where
δ is an arbitrary small positive constant. They would
include the results of §33.12(i) as a special case.

The second set is in terms of Bessel functions of or-
ders 2`+ 1 and 2`+ 2, and they are uniform for fixed `
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and 0 ≤ z ≤ 1 − δ, where δ again denotes an arbitrary
small positive constant.

Compare also §33.20(iv).

33.13 Complex Variable and Parameters

The functions F`(η, ρ), G`(η, ρ), and H±` (η, ρ) may
be extended to noninteger values of ` by generalizing
(2` + 1)! = Γ(2`+ 2), and supplementing (33.6.5) by a
formula derived from (33.2.8) with U(a, b, z) expanded
via (13.2.42).

These functions may also be continued analytically
to complex values of ρ, η, and `. The quantities C`(η),
σ`(η), and R`, given by (33.2.6), (33.2.10), and (33.4.1),
respectively, must be defined consistently so that
33.13.1

C`(η) = 2`ei σ`(η)−(πη/2) Γ(`+ 1− iη)/Γ(2`+ 2),
and

33.13.2 R` = (2`+ 1)C`(η)/C`−1(η).
For further information see Dzieciol et al. (1999),

Thompson and Barnett (1986), and Humblet (1984).

Variables r, ε

33.14 Definitions and Basic Properties

33.14(i) Coulomb Wave Equation

Another parametrization of (33.2.1) is given by

33.14.1
d2w

dr2 +
(
ε+

2
r
− `(`+ 1)

r2

)
w = 0,

where

33.14.2 r = −ηρ, ε = 1/η2.

Again, there is a regular singularity at r = 0 with
indices `+1 and −`, and an irregular singularity of rank
1 at r =∞. When ε > 0 the outer turning point is given
by
33.14.3 rtp(ε, `) =

(√
1 + ε`(`+ 1)− 1

) /
ε;

compare (33.2.2).

33.14(ii) Regular Solution f(ε, `; r)

The function f(ε, `; r) is recessive (§2.7(iii)) at r = 0,
and is defined by

33.14.4 f(ε, `; r) = κ`+1Mκ,`+ 1
2
(2r/κ)/(2`+ 1)!,

or equivalently
33.14.5

f(ε, `; r)
= (2r)`+1e−r/κM(`+ 1− κ, 2`+ 2, 2r/κ)/(2`+ 1)!,

where Mκ,µ(z) and M(a, b, z) are defined in §§13.14(i)
and 13.2(i), and

33.14.6 κ =


(−ε)−1/2, ε < 0, r > 0,
−(−ε)−1/2, ε < 0, r < 0,
±iε−1/2, ε > 0.

The choice of sign in the last line of (33.14.6) is imma-
terial: the same function f(ε, `; r) is obtained. This is a
consequence of Kummer’s transformation (§13.2(vii)).

f(ε, `; r) is real and an analytic function of r in the
interval −∞ < r < ∞, and it is also an analytic func-
tion of ε when −∞ < ε <∞. This includes ε = 0, hence
f(ε, `; r) can be expanded in a convergent power series
in ε in a neighborhood of ε = 0 (§33.20(ii)).

33.14(iii) Irregular Solution h(ε, `; r)

For nonzero values of ε and r the function h(ε, `; r) is
defined by
33.14.7

h(ε, `; r) =
Γ(`+ 1− κ)

πκ`

(
Wκ,`+ 1

2
(2r/κ)

+(−1)`S(ε, r)
Γ(`+ 1 + κ)

2(2`+ 1)!
Mκ,`+ 1

2
(2r/κ)

)
,

where κ is given by (33.14.6) and

33.14.8 S(ε, r) =


2 cos

(
π|ε|−1/2

)
, ε < 0, r > 0,

0, ε < 0, r < 0,
eπε
−1/2

, ε > 0, r > 0,
e−πε

−1/2
, ε > 0, r < 0.

(Again, the choice of the ambiguous sign in the last line
of (33.14.6) is immaterial.)

h(ε, `; r) is real and an analytic function of each of r
and ε in the intervals −∞ < r <∞ and −∞ < ε <∞,
except when r = 0 or ε = 0.

33.14(iv) Solutions s(ε, `; r) and c(ε, `; r)

The functions s(ε, `; r) and c(ε, `; r) are defined by

33.14.9
s(ε, `; r) = (B(ε, `)/2)1/2 f(ε, `; r),
c(ε, `; r) = (2B(ε, `))−1/2 h(ε, `; r),

provided that ` < (−ε)−1/2 when ε < 0, where
33.14.10

B(ε, `) =

{
A(ε, `)

(
1− exp

(
−2π/ε1/2

))−1
, ε > 0,

A(ε, `), ε ≤ 0,
and

33.14.11 A(ε, `) =
∏̀
k=0

(1 + εk2).

An alternative formula for A(ε, `) is

33.14.12 A(ε, `) =
Γ(1 + `+ κ)

Γ(κ− `)
κ−2`−1,
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the choice of sign in the last line of (33.14.6) again being
immaterial.

When ε < 0 and ` > (−ε)−1/2 the quantity A(ε, `)
may be negative, causing s(ε, `; r) and c(ε, `; r) to be-
come imaginary.

The function s(ε, `; r) has the following properties:

33.14.13

∫ ∞
0

s(ε1, `; r) s(ε2, `; r) dr = δ(ε1 − ε2),

where the right-hand side is the Dirac delta (§1.17).
When ε = −1/n2, n = ` + 1, ` + 2, . . . , s(ε, `; r) is
exp(−r/n) times a polynomial in r, and

33.14.14 φn,`(r) = (−1)`+1+n(2/n3)1/2 s
(
−1/n2, `; r

)
satisfies
33.14.15

∫ ∞
0

φ2
n,`(r) dr = 1.

33.14(v) Wronskians

With arguments ε, `, r suppressed,
33.14.16 W {h, f} = 2/π, W {c, s} = 1/π.

33.15 Graphics

33.15(i) Line Graphs of the Coulomb Functions
f(ε, `; r) and h(ε, `; r)

Figure 33.15.1: f(ε, `; r), h(ε, `; r) with ` = 0, ε = 4.

Figure 33.15.2: f(ε, `; r), h(ε, `; r) with ` = 1, ε = 4. Figure 33.15.3: f(ε, `; r), h(ε, `; r) with ` = 0, ε =
−1/ν2, ν = 1.5.

Figure 33.15.4: f(ε, `; r), h(ε, `; r) with ` = 0, ε =
−1/ν2, ν = 2.

Figure 33.15.5: f(ε, `; r), h(ε, `; r) with ` = 0, ε =
−1/ν2, ν = 2.5.
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33.15(ii) Surfaces of the Coulomb Functions f(ε, `; r), h(ε, `; r), s(ε, `; r), and c(ε, `; r)

Figure 33.15.6: f(ε, `; r) with ` = 0,−2 < ε < 2,−15 <
r < 15.

Figure 33.15.7: h(ε, `; r) with ` = 0,−2 < ε < 2,−15 <
r < 15.

Figure 33.15.8: f(ε, `; r) with ` = 1,−2 < ε < 2,−15 <
r < 15.

Figure 33.15.9: h(ε, `; r) with ` = 1,−2 < ε < 2,−15 <
r < 15.

Figure 33.15.10: s(ε, `; r) with ` = 0,−0.15 < ε <
0.10, 0 < r < 65.

Figure 33.15.11: c(ε, `; r) with ` = 0,−0.15 < ε <
0.10, 0 < r < 65.
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33.16 Connection Formulas

33.16(i) F` and G` in Terms of f and h

33.16.1 F`(η, ρ) =
(2`+ 1)!C`(η)

(−2η)`+1
f
(
1/η2, `;−ηρ

)
,

33.16.2 G`(η, ρ) =
π(−2η)`

(2`+ 1)!C`(η)
h
(
1/η2, `;−ηρ

)
,

where C`(η) is given by (33.2.5) or (33.2.6).

33.16(ii) f and h in Terms of F` and G` when
ε > 0

When ε > 0 denote

33.16.3 τ = ε1/2(> 0),
and again define A(ε, `) by (33.14.11) or (33.14.12).
Then for r > 0

33.16.4 f(ε, `; r) =
(

2
πτ

1− e−2π/τ

A(ε, `)

)1/2

F`(−1/τ, τr),

33.16.5 h(ε, `; r) =
(

2
πτ

A(ε, `)
1− e−2π/τ

)1/2

G`(−1/τ, τr).

Alternatively, for r < 0
33.16.6

f(ε, `; r) = (−1)`+1

(
2
πτ

e2π/τ − 1
A(ε, `)

)1/2

F`(1/τ,−τr),

33.16.7

h(ε, `; r) = (−1)`
(

2
πτ

A(ε, `)
e2π/τ − 1

)1/2

G`(1/τ,−τr).

33.16(iii) f and h in Terms of Wκ,µ(z) when
ε < 0

When ε < 0 denote

33.16.8 ν = 1/(−ε)1/2(> 0),

33.16.9

ζ`(ν, r) = Wν,`+ 1
2
(2r/ν),

ξ`(ν, r) = <
(
eiπνW−ν,`+ 1

2

(
eiπ2r/ν

))
,

and again define A(ε, `) by (33.14.11) or (33.14.12).
Then for r > 0

33.16.10

f(ε, `; r) = (−1)`ν`+1

(
−cos(πν)ζ`(ν, r)

Γ(`+ 1 + ν)

+
sin(πν) Γ(ν − `)ξ`(ν, r)

π

)
,

33.16.11

h(ε, `; r) = (−1)`ν`+1A(ε, `)
(

sin(πν)ζ`(ν, r)
Γ(`+ 1 + ν)

+
cos(πν) Γ(ν − `)ξ`(ν, r)

π

)
.

Alternatively, for r < 0

33.16.12

f(ε, `; r) =
(−1)`ν`+1

π

(
− πξ`(−ν, r)

Γ(`+ 1 + ν)

+ sin(πν) cos(πν) Γ(ν − `)ζ`(−ν, r)
)
,

33.16.13

h(ε, `; r) = (−1)`ν`+1A(ε, `) Γ(ν − `)ζ`(−ν, r)/π.

33.16(iv) s and c in Terms of F` and G` when
ε > 0

When ε > 0, again denote τ by (33.16.3). Then for
r > 0

33.16.14
s(ε, `; r) = (πτ)−1/2 F`(−1/τ, τr),
c(ε, `; r) = (πτ)−1/2G`(−1/τ, τr).

Alternatively, for r < 0

33.16.15
s(ε, `; r) = (πτ)−1/2 F`(1/τ,−τr),
c(ε, `; r) = (πτ)−1/2G`(1/τ,−τr).

33.16(v) s and c in Terms of Wκ,µ(z) when
ε < 0

When ε < 0 denote ν, ζ`(ν, r), and ξ`(ν, r) by (33.16.8)
and (33.16.9). Also denote

33.16.16 K(ν, `) =
(
ν2 Γ(ν + `+ 1) Γ(ν − `)

)−1/2
.

Then for r > 0

33.16.17

s(ε, `; r) =
(−1)`

2ν1/2

(
sin(πν)
πK(ν, `)

ξ`(ν, r)

− cos(πν)ν2K(ν, `)ζ`(ν, r)
)
,

c(ε, `; r) =
(−1)`

2ν1/2

(
cos(πν)
πK(ν, `)

ξ`(ν, r)

+ sin(πν)ν2K(ν, `)ζ`(ν, r)
)
.

Alternatively, for r < 0

33.16.18

s(ε, `; r) =
(−1)`+1

21/2

(
ν3/2

K(ν, `)
ξ`(−ν, r)

− sin(πν) cos(πν)
πν1/2

K(ν, `)ζ`(−ν, r)
)
,

c(ε, `; r) =
(−1)`

π(2ν)1/2
K(ν, `)ζ`(−ν, r).
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33.17 Recurrence Relations and Derivatives

33.17.1 (`+ 1)r f(ε, `− 1; r)− (2`+ 1) (`(`+ 1)− r) f(ε, `; r) + `
(
1 + (`+ 1)2ε

)
r f(ε, `+ 1; r) = 0,

33.17.2 (`+ 1)
(
1 + `2ε

)
r h(ε, `− 1; r)− (2`+ 1) (`(`+ 1)− r)h(ε, `; r) + `r h(ε, `+ 1; r) = 0,

33.17.3 (`+ 1)r f ′(ε, `; r) =
(
(`+ 1)2 − r

)
f(ε, `; r)−

(
1 + (`+ 1)2ε

)
r f(ε, `+ 1; r),

33.17.4 (`+ 1)r h′(ε, `; r) =
(
(`+ 1)2 − r

)
h(ε, `; r)− r h(ε, `+ 1; r).

33.18 Limiting Forms for Large `

As `→∞ with ε and r (6= 0) fixed,

33.18.1 f(ε, `; r) ∼ (2r)`+1

(2`+ 1)!
, h(ε, `; r) ∼ (2`)!

π(2r)`
.

33.19 Power-Series Expansions in r

33.19.1 f(ε, `; r) = r`+1
∞∑
k=0

αkr
k,

where

33.19.2

α0 = 2`+1/(2`+ 1)!, α1 = −α0/(`+ 1),
k(k + 2`+ 1)αk + 2αk−1 + εαk−2 = 0, k = 2, 3, . . . .

33.19.3

2π h(ε, `; r) =
2∑̀
k=0

(2`− k)!γk
k!

(2r)k−` −
∞∑
k=0

δkr
k+`+1

−A(ε, `) (2 ln |2r/κ|+ <ψ(`+ 1 + κ)
+ <ψ(−`+ κ)) f(ε, `; r), r 6= 0.

Here κ is defined by (33.14.6), A(ε, `) is defined by
(33.14.11) or (33.14.12), γ0 = 1, γ1 = 1, and

33.19.4

γk−γk−1 + 1
4 (k− 1)(k− 2`− 2)εγk−2 = 0, k = 2, 3, . . . .

Also,

33.19.5
δ0 = (β2`+1 − 2(ψ(2`+ 2) + ψ(1))A(ε, `))α0,

δ1 = (β2`+2 − 2(ψ(2`+ 3) + ψ(2))A(ε, `))α1,

33.19.6
k(k + 2`+ 1)δk + 2δk−1 + εδk−2

+ 2(2k + 2`+ 1)A(ε, `)αk = 0, k = 2, 3, . . . ,

with β0 = β1 = 0, and

33.19.7

βk − βk−1

+ 1
4 (k−1)(k−2`−2)εβk−2+ 1

2 (k−1)εγk−2 = 0,
k = 2, 3, . . . .

The expansions (33.19.1) and (33.19.3) converge for all
finite values of r, except r = 0 in the case of (33.19.3).

33.20 Expansions for Small |ε|

33.20(i) Case ε = 0

33.20.1
f(0, `; r) = (2r)1/2 J2`+1

(√
8r
)
,

h(0, `; r) = −(2r)1/2 Y2`+1

(√
8r
)

, r > 0,

33.20.2

f(0, `; r) = (−1)`+1(2|r|)1/2 I2`+1

(√
8|r|
)
,

h(0, `; r) = (−1)`(2/π)(2|r|)1/2K2`+1

(√
8|r|
)

,

r < 0.

For the functions J, Y, I, and K see §§10.2(ii), 10.25(ii).

33.20(ii) Power-Series in ε for the Regular
Solution

33.20.3 f(ε, `; r) =
∞∑
k=0

εkFk(`; r),

where

33.20.4

Fk(`; r) =
3k∑
p=2k

(2r)(p+1)/2Ck,p J2`+1+p

(√
8r
)

, r > 0,

33.20.5

Fk(`; r)

=
3k∑
p=2k

(−1)`+1+p(2|r|)(p+1)/2Ck,p I2`+1+p

(√
8|r|
)

,

r < 0.

The functions J and I are as in §§10.2(ii), 10.25(ii), and
the coefficients Ck,p are given by C0,0 = 1, C1,0 = 0,
and

33.20.6

Ck,p = 0, p < 2k or p > 3k,
Ck,p = (−(2`+ p)Ck−1,p−2 + Ck−1,p−3) /(4p),

k > 0, 2k ≤ p ≤ 3k.

The series (33.20.3) converges for all r and ε.
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33.20(iii) Asymptotic Expansion for the
Irregular Solution

As ε→ 0 with ` and r fixed,

33.20.7 h(ε, `; r) ∼ −A(ε, `)
∞∑
k=0

εkHk(`; r),

where A(ε, `) is given by (33.14.11), (33.14.12), and
33.20.8

Hk(`; r) =
3k∑
p=2k

(2r)(p+1)/2Ck,p Y2`+1+p

(√
8r
)

, r > 0,

33.20.9

Hk(`; r)

= (−1)`+1 2
π

3k∑
p=2k

(2|r|)(p+1)/2Ck,pK2`+1+p

(√
8|r|
)

,

r < 0.
The functions Y and K are as in §§10.2(ii), 10.25(ii),
and the coefficients Ck,p are given by (33.20.6).

33.20(iv) Uniform Asymptotic Expansions

For a comprehensive collection of asymptotic expansions
that cover f(ε, `; r) and h(ε, `; r) as ε → 0± and are
uniform in r, including unbounded values, see Curtis
(1964a, §7). These expansions are in terms of elemen-
tary functions, Airy functions, and Bessel functions of
orders 2`+ 1 and 2`+ 2.

33.21 Asymptotic Approximations for Large
|r|

33.21(i) Limiting Forms

We indicate here how to obtain the limiting forms of
f(ε, `; r), h(ε, `; r), s(ε, `; r), and c(ε, `; r) as r → ±∞,
with ε and ` fixed, in the following cases:

(a) When r → ±∞ with ε > 0, Equations (33.16.4)–
(33.16.7) are combined with (33.10.1).

(b) When r → ±∞ with ε < 0, Equations
(33.16.10)–(33.16.13) are combined with

33.21.1
ζ`(ν, r) ∼ e−r/ν(2r/ν)ν ,
ξ`(ν, r) ∼ er/ν(2r/ν)−ν , r →∞,

33.21.2
ζ`(−ν, r) ∼ er/ν(−2r/ν)−ν ,
ξ`(−ν, r) ∼ e−r/ν(−2r/ν)ν , r → −∞.

Corresponding approximations for s(ε, `; r) and c(ε, `; r)
as r → ∞ can be obtained via (33.16.17), and as
r → −∞ via (33.16.18).

(c) When r → ±∞ with ε = 0, combine (33.20.1),
(33.20.2) with §§10.7(ii), 10.30(ii).

33.21(ii) Asymptotic Expansions

For asymptotic expansions of f(ε, `; r) and h(ε, `; r) as
r → ±∞ with ε and ` fixed, see Curtis (1964a, §6).

Physical Applications

33.22 Particle Scattering and Atomic and
Molecular Spectra

33.22(i) Schrödinger Equation

With e denoting here the elementary charge, the
Coulomb potential between two point particles with
charges Z1e, Z2e and masses m1,m2 separated by a
distance s is V (s) = Z1Z2e

2/(4πε0s) = Z1Z2αh̄c/s,
where Zj are atomic numbers, ε0 is the electric con-
stant, α is the fine structure constant, and h̄ is the re-
duced Planck’s constant. The reduced mass is m =
m1m2/(m1 + m2), and at energy of relative motion
E with relative orbital angular momentum `h̄, the
Schrödinger equation for the radial wave function w(s)
is given by

33.22.1(
− h̄2

2m

(
d2

ds2 −
`(`+ 1)
s2

)
+
Z1Z2αh̄c

s

)
w = Ew,

With the substitutions

33.22.2 k = (2mE/h̄2)1/2, Z = mZ1Z2αc/h̄, x = s,

(33.22.1) becomes

33.22.3
d2w

dx2 +
(

k2 − 2Z
x
− `(`+ 1)

x2

)
w = 0.

33.22(ii) Definitions of Variables

k Scaling

The k-scaled variables ρ and η of §33.2 are given by

33.22.4 ρ = s(2mE/h̄2)1/2, η = Z1Z2αc(m/(2E))1/2.

At positive energies E > 0, ρ ≥ 0, and:

Attractive potentials: Z1Z2 < 0, η < 0.
Zero potential (V = 0): Z1Z2 = 0, η = 0.
Repulsive potentials: Z1Z2 > 0, η > 0.

Positive-energy functions correspond to processes
such as Rutherford scattering and Coulomb exci-
tation of nuclei (Alder et al. (1956)), and atomic
photo-ionization and electron-ion collisions (Bethe and
Salpeter (1977)).

At negative energies E < 0 and both ρ and η are
purely imaginary. The negative-energy functions are
widely used in the description of atomic and molecular
spectra; see Bethe and Salpeter (1977), Seaton (1983),
and Aymar et al. (1996). In these applications, the Z-
scaled variables r and ε are more convenient.
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Z Scaling

The Z-scaled variables r and ε of §33.14 are given by

33.22.5 r = −Z1Z2(mcα/h̄)s, ε = E/(Z2
1Z

2
2mc

2α2/2).
For Z1Z2 = −1 and m = me, the electron mass,

the scaling factors in (33.22.5) reduce to the Bohr ra-
dius, a0 = h̄/(mecα), and to a multiple of the Rydberg
constant,

R∞ = mecα
2/(2h̄).

Attractive potentials: Z1Z2 < 0, r > 0.
Zero potential (V = 0): Z1Z2 = 0, r = 0.
Repulsive potentials: Z1Z2 > 0, r < 0.

ik Scaling

The ik-scaled variables z and κ of §13.2 are given by
33.22.6

z = 2is(2mE/h̄2)1/2, κ = iZ1Z2αc(m/(2E))1/2.

Attractive potentials: Z1Z2 < 0, =κ < 0.
Zero potential (V = 0): Z1Z2 = 0, κ = 0.
Repulsive potentials: Z1Z2 > 0, =κ > 0.

Customary variables are (ε, r) in atomic physics and
(η, ρ) in atomic and nuclear physics. Both variable sets
may be used for attractive and repulsive potentials: the
(ε, r) set cannot be used for a zero potential because this
would imply r = 0 for all s, and the (η, ρ) set cannot be
used for zero energy E because this would imply ρ = 0
always.

33.22(iii) Conversions Between Variables

33.22.7 r = −ηρ, ε = 1/η2, Z from k.

33.22.8 z = 2iρ, κ = iη, ik from k.

33.22.9 ρ = z/(2i), η = κ/i, k from ik.

33.22.10 r = κz/2, ε = −1/κ2, Z from ik.

33.22.11 η = ±ε−1/2, ρ = −r/η, k from Z.

33.22.12 κ = ±(−ε)−1/2, z = 2r/κ, ik from Z.
Resolution of the ambiguous signs in (33.22.11),
(33.22.12) depends on the sign of Z/k in (33.22.3). See
also §§33.14(ii), 33.14(iii), 33.22(i), and 33.22(ii).

33.22(iv) Klein–Gordon and Dirac Equations

The relativistic motion of spinless particles in a
Coulomb field, as encountered in pionic atoms and pion-
nucleon scattering (Backenstoss (1970)) is described by
a Klein–Gordon equation equivalent to (33.2.1); see
Barnett (1981a). The motion of a relativistic electron in
a Coulomb field, which arises in the theory of the elec-
tronic structure of heavy elements (Johnson (2007)), is
described by a Dirac equation. The solutions to this
equation are closely related to the Coulomb functions;
see Greiner et al. (1985).

33.22(v) Asymptotic Solutions

The Coulomb solutions of the Schrödinger and Klein–
Gordon equations are almost always used in the external
region, outside the range of any non-Coulomb forces or
couplings.

For scattering problems, the interior solution is
then matched to a linear combination of a pair of
Coulomb functions, F`(η, ρ) and G`(η, ρ), or f(ε, `; r)
and h(ε, `; r), to determine the scattering S-matrix and
also the correct normalization of the interior wave solu-
tions; see Bloch et al. (1951).

For bound-state problems only the exponentially de-
caying solution is required, usually taken to be the
Whittaker function W−η,`+ 1

2
(2ρ). The functions φn,`(r)

defined by (33.14.14) are the hydrogenic bound states
in attractive Coulomb potentials; their polynomial com-
ponents are often called associated Laguerre functions;
see Christy and Duck (1961) and Bethe and Salpeter
(1977).

33.22(vi) Solutions Inside the Turning Point

The penetrability of repulsive Coulomb potential bar-
riers is normally expressed in terms of the quantity
ρ/(F 2

` (η, ρ)+G2
`(η, ρ)) (Mott and Massey (1956, pp. 63–

65)). The WKBJ approximations of §33.23(vii) may
also be used to estimate the penetrability.

33.22(vii) Complex Variables and Parameters

The Coulomb functions given in this chapter are most
commonly evaluated for real values of ρ, r, η, ε and
nonnegative integer values of `, but they may be con-
tinued analytically to complex arguments and order `
as indicated in §33.13.

Examples of applications to noninteger and/or com-
plex variables are as follows.

• Scattering at complex energies. See for example
McDonald and Nuttall (1969).

• Searches for resonances as poles of the S-matrix in
the complex half-plane =k < 0. See for example
Csótó and Hale (1997).

• Regge poles at complex values of `. See for exam-
ple Takemasa et al. (1979).

• Eigenstates using complex-rotated coordinates
r → reiθ, so that resonances have square-
integrable eigenfunctions. See for example Halley
et al. (1993).

• Solution of relativistic Coulomb equations. See for
example Cooper et al. (1979) and Barnett (1981b).
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• Gravitational radiation. See for example Berti
and Cardoso (2006).

For further examples see Humblet (1984).

Computation

33.23 Methods of Computation

33.23(i) Methods for the Confluent
Hypergeometric Functions

The methods used for computing the Coulomb functions
described below are similar to those in §13.29.

33.23(ii) Series Solutions

The power-series expansions of §§33.6 and 33.19 con-
verge for all finite values of the radii ρ and r, respec-
tively, and may be used to compute the regular and
irregular solutions. Cancellation errors increase with
increases in ρ and |r|, and may be estimated by com-
paring the final sum of the series with the largest par-
tial sum. Use of extended-precision arithmetic increases
the radial range that yields accurate results, but even-
tually other methods must be employed, for example,
the asymptotic expansions of §§33.11 and 33.21.

33.23(iii) Integration of Defining Differential
Equations

When numerical values of the Coulomb functions are
available for some radii, their values for other radii may
be obtained by direct numerical integration of equations
(33.2.1) or (33.14.1), provided that the integration is
carried out in a stable direction (§3.7). Thus the reg-
ular solutions can be computed from the power-series
expansions (§§33.6, 33.19) for small values of the radii
and then integrated in the direction of increasing val-
ues of the radii. On the other hand, the irregular solu-
tions of §§33.2(iii) and 33.14(iii) need to be integrated
in the direction of decreasing radii beginning, for exam-
ple, with values obtained from asymptotic expansions
(§§33.11 and 33.21).

33.23(iv) Recurrence Relations

In a similar manner to §33.23(iii) the recurrence rela-
tions of §§33.4 or 33.17 can be used for a range of values
of the integer `, provided that the recurrence is carried
out in a stable direction (§3.6). This implies decreas-
ing ` for the regular solutions and increasing ` for the
irregular solutions of §§33.2(iii) and 33.14(iii).

33.23(v) Continued Fractions

§33.8 supplies continued fractions for F ′` /F` and
H±`
′
/H±` . Combined with the Wronskians (33.2.12),

the values of F`, G`, and their derivatives can be ex-
tracted. Inside the turning points, that is, when ρ <
ρtp(η, `), there can be a loss of precision by a factor of
approximately |G` |2.

33.23(vi) Other Numerical Methods

Curtis (1964a, §10) describes the use of series, radial
integration, and other methods to generate the tables
listed in §33.24.

Bardin et al. (1972) describes ten different methods
for the calculation of F` and G`, valid in different re-
gions of the (η, ρ)-plane.

Thompson and Barnett (1985, 1986) and Thompson
(2004) use combinations of series, continued fractions,
and Padé-accelerated asymptotic expansions (§3.11(iv))
for the analytic continuations of Coulomb functions.

Noble (2004) obtains double-precision accuracy for
W−η,µ(2ρ) for a wide range of parameters using a com-
bination of recurrence techniques, power-series expan-
sions, and numerical quadrature; compare (33.2.7).

33.23(vii) WKBJ Approximations

WKBJ approximations (§2.7(iii)) for ρ > ρtp(η, `) are
presented in Hull and Breit (1959) and Seaton and
Peach (1962: in Eq. (12) (ρ−c)/c should be (ρ−c)/ρ). A
set of consistent second-order WKBJ formulas is given
by Burgess (1963: in Eq. (16) 3κ2+2 should be 3κ2c+2).
Seaton (1984) estimates the accuracies of these approx-
imations.

Hull and Breit (1959) and Barnett (1981b) give
WKBJ approximations for F0 and G0 in the region in-
side the turning point: ρ < ρtp(η, `).

33.24 Tables

• Abramowitz and Stegun (1964, Chapter 14) tab-
ulates F0(η, ρ), G0(η, ρ), F ′0(η, ρ), and G′0(η, ρ)
for η = 0.5(.5)20 and ρ = 1(1)20, 5S; C0(η) for
η = 0(.05)3, 6S.

• Curtis (1964a) tabulates P`(ε, r), Q`(ε, r) (§33.1),
and related functions for ` = 0, 1, 2 and ε =
−2(.2)2, with x = 0(.1)4 for ε < 0 and x = 0(.1)10
for ε ≥ 0; 6D.

For earlier tables see Hull and Breit (1959) and
Fletcher et al. (1962, §22.59).
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33.25 Approximations

Cody and Hillstrom (1970) provides rational approxi-
mations of the phase shift σ0(η) = ph Γ(1 + iη) (see
(33.2.10)) for the ranges 0 ≤ η ≤ 2, 2 ≤ η ≤ 4, and
4 ≤ η ≤ ∞. Maximum relative errors range from
1.09×10−20 to 4.24×10−19.

33.26 Software

See http://dlmf.nist.gov/33.26.
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Notation

34.1 Special Notation

(For other notation see pp. xiv and 873.)

2j1, 2j2, 2j3, 2l1, 2l2, 2l3 nonnegative integers.
r, s, t nonnegative integers.

The main functions treated in this chapter are the
Wigner 3j, 6j, 9j symbols, respectively,(
j1 j2 j3
m1 m2 m3

)
,

{
j1 j2 j3
l1 l2 l3

}
,

j11 j12 j13

j21 j22 j23

j31 j32 j33

.
The most commonly used alternative notation for

the 3j symbol is the Clebsch–Gordan coefficient
(j1 m1 j2 m2|j1 j2 j3 −m3)

= (−1)j1−j2−m3(2j3 + 1)
1
2

(
j1 j2 j3
m1 m2 m3

)
;

see Condon and Shortley (1935). For other notations see
Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich
et al. (1988, §§8.11, 9.10, 10.10).

Properties

34.2 Definition: 3j Symbol

The quantities j1, j2, j3 in the 3j symbol are called an-
gular momenta. Either all of them are nonnegative in-
tegers, or one is a nonnegative integer and the other

two are half-odd positive integers. They must form the
sides of a triangle (possibly degenerate). They therefore
satisfy the triangle conditions

34.2.1 |jr − js| ≤ jt ≤ jr + js,

where r, s, t is any permutation of 1, 2, 3. The corre-
sponding projective quantum numbers m1,m2,m3 are
given by

34.2.2 mr = −jr,−jr + 1, . . . , jr − 1, jr, r = 1, 2, 3,

and satisfy

34.2.3 m1 +m2 +m3 = 0.

See Figure 34.2.1 for a schematic representation.

Figure 34.2.1: Angular momenta jr and projective
quantum numbers mr, r = 1, 2, 3.

If either of the conditions (34.2.1) or (34.2.3) is not satisfied, then the 3j symbol is zero. When both conditions
are satisfied the 3j symbol can be expressed as the finite sum
34.2.4(

j1 j2 j3
m1 m2 m3

)
= (−1)j1−j2−m3∆(j1j2j3) ((j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!(j3 −m3)!)

1
2

×
∑
s

(−1)s

s!(j1 + j2 − j3 − s)!(j1 −m1 − s)!(j2 +m2 − s)!(j3 − j2 +m1 + s)!(j3 − j1 −m2 + s)!
,

where

34.2.5 ∆(j1j2j3) =
(

(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!
(j1 + j2 + j3 + 1)!

)1
2

,

and the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative.
Equivalently,

34.2.6(
j1 j2 j3
m1 m2 m3

)
= (−1)j2−m1+m3

(j1 + j2 +m3)!(j2 + j3 −m1)!
∆(j1j2j3)(j1 + j2 + j3 + 1)!

(
(j1 +m1)!(j3 −m3)!

(j1 −m1)!(j2 +m2)!(j2 −m2)!(j3 +m3)!

)1
2

× 3F2(−j1 − j2 − j3 − 1,−j1 +m1,−j3 −m3;−j1 − j2 −m3,−j2 − j3 +m1; 1),
where 3F2 is defined as in §16.2.
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For alternative expressions for the 3j symbol, written either as a finite sum or as other terminating generalized
hypergeometric series 3F2 of unit argument, see Varshalovich et al. (1988, §§8.21, 8.24–8.26).

34.3 Basic Properties: 3j Symbol

34.3(i) Special Cases

When any one of j1, j2, j3 is equal to 0, 1
2 , or 1, the 3j symbol has a simple algebraic form. Examples are provided

by

34.3.1

(
j j 0
m −m 0

)
=

(−1)j−m

(2j + 1)
1
2
,

34.3.2

(
j j 1
m −m 0

)
= (−1)j−m

2m

(2j(2j + 1)(2j + 2))
1
2

, j ≥ 1
2 ,

34.3.3

(
j j 1
m −m− 1 1

)
= (−1)j−m

(
2(j −m)(j +m+ 1)
2j(2j + 1)(2j + 2)

)1
2

, j ≥ 1
2 .

For these and other results, and also cases in which any one of j1, j2, j3 is 3
2 or 2, see Edmonds (1974, pp. 125–127).

Next define
34.3.4 J = j1 + j2 + j3.

Then assuming the triangle conditions are satisfied

34.3.5

(
j1 j2 j3
0 0 0

)
=


0, J odd,

(−1)
1
2J

(
(J − 2j1)!(J − 2j2)!(J − 2j3)!

(J + 1)!

) 1
2 ( 1

2J)!
( 1

2J − j1)!( 1
2J − j2)!( 1

2J − j3)!
, J even.

Lastly,

34.3.6

(
j1 j2 j1 + j2
m1 m2 −m1 −m2

)
= (−1)j1−j2+m1+m2

(
(2j1)!(2j2)!(j1 + j2 +m1 +m2)!(j1 + j2 −m1 −m2)!

(2j1 + 2j2 + 1)!(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

)1
2

,

34.3.7

(
j1 j2 j3
j1 −j1 −m3 m3

)
= (−1)−j2+j3+m3

(
(2j1)!(−j1 + j2 + j3)!(j1 + j2 +m3)!(j3 −m3)!

(j1 + j2 + j3 + 1)!(j1 − j2 + j3)!(j1 + j2 − j3)!(−j1 + j2 −m3)!(j3 +m3)!

)1
2

.

Again it is assumed that in (34.3.7) the triangle conditions are satisfied.

34.3(ii) Symmetry

Even permutations of columns of a 3j symbol leave it unchanged; odd permutations of columns produce a phase
factor (−1)j1+j2+j3 , for example,

34.3.8

(
j1 j2 j3
m1 m2 m3

)
=
(
j2 j3 j1
m2 m3 m1

)
=
(
j3 j1 j2
m3 m1 m2

)
,

34.3.9

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
.

Next,

34.3.10

(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
−m1 −m2 −m3

)
,

34.3.11

(
j1 j2 j3
m1 m2 m3

)
=
(

j1
1
2 (j2 + j3 +m1) 1

2 (j2 + j3 −m1)
j2 − j3 1

2 (j3 − j2 +m1) +m2
1
2 (j3 − j2 +m1) +m3

)
,

34.3.12

(
j1 j2 j3
m1 m2 m3

)
=
(

1
2 (j1 + j2 −m3) 1

2 (j2 + j3 −m1) 1
2 (j1 + j3 −m2)

j3 − 1
2 (j1 + j2 +m3) j1 − 1

2 (j2 + j3 +m1) j2 − 1
2 (j1 + j3 +m2)

)
.

Equations (34.3.11) and (34.3.12) are called Regge symmetries. Additional symmetries are obtained by applying
(34.3.8)–(34.3.10) to (34.3.11)) and (34.3.12). See Srinivasa Rao and Rajeswari (1993, pp. 44–47) and references
given there.
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34.3(iii) Recursion Relations

In the following three equations it is assumed that the triangle conditions are satisfied by each 3j symbol.

34.3.13

((j1 + j2 + j3 + 1)(−j1 + j2 + j3))
1
2

(
j1 j2 j3
m1 m2 m3

)
= ((j2 +m2)(j3 −m3))

1
2

(
j1 j2 − 1

2 j3 − 1
2

m1 m2 − 1
2 m3 + 1

2

)
− ((j2 −m2)(j3 +m3))

1
2

(
j1 j2 − 1

2 j3 − 1
2

m1 m2 + 1
2 m3 − 1

2

)
,

34.3.14

(j1(j1 + 1)− j2(j2 + 1)− j3(j3 + 1)− 2m2m3)
(
j1 j2 j3
m1 m2 m3

)
= ((j2 −m2)(j2 +m2 + 1)(j3 −m3 + 1)(j3 +m3))

1
2

(
j1 j2 j3
m1 m2 + 1 m3 − 1

)
+ ((j2 −m2 + 1)(j2 +m2)(j3 −m3)(j3 +m3 + 1))

1
2

(
j1 j2 j3
m1 m2 − 1 m3 + 1

)
,

34.3.15

(2j1 + 1) ((j2(j2 + 1)− j3(j3 + 1))m1 − j1(j1 + 1)(m3 −m2))
(
j1 j2 j3
m1 m2 m3

)
= (j1 + 1)

(
j2
1 − (j2 − j3)2

)1
2
(
(j2 + j3 + 1)2 − j2

1

)1
2
(
j2
1 −m2

1

)1
2

(
j1 − 1 j2 j3
m1 m2 m3

)
+ j1

(
(j1 + 1)2 − (j2 − j3)2

)1
2
(
(j2 + j3 + 1)2 − (j1 + 1)2

)1
2
(
(j1 + 1)2 −m2

1

)1
2

(
j1 + 1 j2 j3
m1 m2 m3

)
.

For these and other recursion relations see Varshalovich et al. (1988, §8.6). See also Micu (1968), Louck (1958),
Schulten and Gordon (1975a), Srinivasa Rao and Rajeswari (1993, pp. 220–225), and Luscombe and Luban (1998).

34.3(iv) Orthogonality

34.3.16
∑
m1m2

(2j3 + 1)
(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′3
m1 m2 m′3

)
= δj3,j′3δm3,m′3

,

34.3.17
∑
j3m3

(2j3 + 1)
(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′1 m′2 m3

)
= δm1,m′1

δm2,m′2
,

34.3.18
∑

m1m2m3

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m1 m2 m3

)
= 1.

In the summations (34.3.16)–(34.3.18) the summation variables range over all values that satisfy the conditions given
in (34.2.1)–(34.2.3). Similar conventions apply to all subsequent summations in this chapter.

34.3(v) Generating Functions

For generating functions for the 3j symbol see Biedenharn and van Dam (1965, p. 245, Eq. (3.42) and p. 247,
Eq. (3.55)).

34.3(vi) Sums

For sums of products of 3j symbols, see Varshalovich et al. (1988, pp. 259–262).

34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics

For the polynomials Pl see §18.3, and for the functions Yl,m and Y ∗l,m see §14.30.

34.3.19 Pl1(cos θ)Pl2(cos θ) =
∑
l

(2l + 1)
(
l1 l2 l
0 0 0

)2

Pl(cos θ),

34.3.20 Yl1,m1(θ, φ)Yl2,m2(θ, φ) =
∑
l,m

(
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

)1
2
(
l1 l2 l
m1 m2 m

)
Y ∗l,m(θ, φ)

(
l1 l2 l
0 0 0

)
,
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34.3.21

∫ π

0

Pl1(cos θ)Pl2(cos θ)Pl3(cos θ) sin θ dθ = 2
(
l1 l2 l3
0 0 0

)2

,

34.3.22

∫ 2π

0

∫ π

0

Yl1,m1(θ, φ)Yl2,m2(θ, φ)Yl3,m3(θ, φ) sin θ dθ dφ

=
(

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

)1
2
(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
.

Equations (34.3.19)–(34.3.22) are particular cases of more general results that relate rotation matrices to 3j symbols,
for which see Edmonds (1974, Chapter 4). The left- and right-hand sides of (34.3.22) are known, respectively, as
Gaunt’s integral and the Gaunt coefficient (Gaunt (1929)).

34.4 Definition: 6j Symbol

The 6j symbol is defined by the following double sum of products of 3j symbols:

34.4.1

{
j1 j2 j3
l1 l2 l3

}
=
∑
mrm′s

(−1)l1+m′1+l2+m′2+l3+m′3

×
(
j1 j2 j3
m1 m2 m3

)(
j1 l2 l3
m1 m′2 −m′3

)(
l1 j2 l3
−m′1 m2 m′3

)(
l1 l2 j3
m′1 −m′2 m3

)
,

where the summation is taken over all admissible values of the m’s and m′’s for each of the four 3j symbols; compare
(34.2.2) and (34.2.3).

Except in degenerate cases the combination of the triangle inequalities for the four 3j symbols in (34.4.1) is equiv-
alent to the existence of a tetrahedron (possibly degenerate) with edges of lengths j1, j2, j3, l1, l2, l3; see Figure 34.4.1.

Figure 34.4.1: Tetrahedron corresponding to 6j symbol.

The 6j symbol can be expressed as the finite sum

34.4.2

{
j1 j2 j3
l1 l2 l3

}
=
∑
s

(−1)s(s+ 1)!
(s− j1 − j2 − j3)!(s− j1 − l2 − l3)!(s− l1 − j2 − l3)!(s− l1 − l2 − j3)!

× 1
(j1 + j2 + l1 + l2 − s)!(j2 + j3 + l2 + l3 − s)!(j3 + j1 + l3 + l1 − s)!

,

where the summation is over all nonnegative integers s such that the arguments in the factorials are nonnegative.
Equivalently,

34.4.3{
j1 j2 j3
l1 l2 l3

}
= (−1)j1+j3+l1+l3

∆(j1j2j3)∆(j2l1l3)(j1 − j2 + l1 + l2)!(−j2 + j3 + l2 + l3)!(j1 + j3 + l1 + l3 + 1)!
∆(j1l2l3)∆(j3l1l2)(j1 − j2 + j3)!(−j2 + l1 + l3)!(j1 + l2 + l3 + 1)!(j3 + l1 + l2 + 1)!

× 4F3

(
−j1 + j2 − j3, j2 − l1 − l3,−j1 − l2 − l3 − 1,−j3 − l1 − l2 − 1
−j1 + j2 − l1 − l2, j2 − j3 − l2 − l3,−j1 − j3 − l1 − l3 − 1

; 1
)
,

where 4F3 is defined as in §16.2.
For alternative expressions for the 6j symbol, written either as a finite sum or as other terminating generalized

hypergeometric series 4F3 of unit argument, see Varshalovich et al. (1988, §§9.2.1, 9.2.3).
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34.5 Basic Properties: 6j Symbol

34.5(i) Special Cases

In the following equations it is assumed that the triangle inequalities are satisfied and that J is again defined by
(34.3.4).

If any lower argument in a 6j symbol is 0, 1
2 , or 1, then the 6j symbol has a simple algebraic form. Examples are

provided by:

34.5.1

{
j1 j2 j3
0 j3 j2

}
=

(−1)J

((2j2 + 1)(2j3 + 1))
1
2
,

34.5.2

{
j1 j2 j3
1
2 j3 − 1

2 j2 + 1
2

}
= (−1)J

(
(j1 + j3 − j2)(j1 + j2 − j3 + 1)
(2j2 + 1)(2j2 + 2)2j3(2j3 + 1)

)1
2

,

34.5.3

{
j1 j2 j3
1
2 j3 − 1

2 j2 − 1
2

}
= (−1)J

(
(j2 + j3 − j1)(j1 + j2 + j3 + 1)

2j2(2j2 + 1)2j3(2j3 + 1)

)1
2

,

34.5.4

{
j1 j2 j3
1 j3 − 1 j2 − 1

}
= (−1)J

(
J(J + 1)(J − 2j1)(J − 2j1 − 1)

(2j2 − 1)2j2(2j2 + 1)(2j3 − 1)2j3(2j3 + 1)

)1
2

,

34.5.5

{
j1 j2 j3
1 j3 − 1 j2

}
= (−1)J

(
2(J + 1)(J − 2j1)(J − 2j2)(J − 2j3 + 1)

2j2(2j2 + 1)(2j2 + 2)(2j3 − 1)2j3(2j3 + 1)

)1
2

,

34.5.6

{
j1 j2 j3
1 j3 − 1 j2 + 1

}
= (−1)J

(
(J − 2j2 − 1)(J − 2j2)(J − 2j3 + 1)(J − 2j3 + 2)
(2j2 + 1)(2j2 + 2)(2j2 + 3)(2j3 − 1)2j3(2j3 + 1)

)1
2

,

34.5.7

{
j1 j2 j3
1 j3 j2

}
= (−1)J+1 2(j2(j2 + 1) + j3(j3 + 1)− j1(j1 + 1))

(2j2(2j2 + 1)(2j2 + 2)2j3(2j3 + 1)(2j3 + 2))
1
2
.

34.5(ii) Symmetry

The 6j symbol is invariant under interchange of any two columns and also under interchange of the upper and lower
arguments in each of any two columns, for example,

34.5.8

{
j1 j2 j3
l1 l2 l3

}
=
{
j2 j1 j3
l2 l1 l3

}
=
{
j1 l2 l3
l1 j2 j3

}
.

Next,

34.5.9

{
j1 j2 j3
l1 l2 l3

}
=
{
j1

1
2 (j2 + l2 + j3 − l3) 1

2 (j2 − l2 + j3 + l3)
l1

1
2 (j2 + l2 − j3 + l3) 1

2 (−j2 + l2 + j3 + l3)

}
,

34.5.10

{
j1 j2 j3
l1 l2 l3

}
=
{

1
2 (j2 + l2 + j3 − l3) 1

2 (j1 − l1 + j3 + l3) 1
2 (j1 + l1 + j2 − l2)

1
2 (j2 + l2 − j3 + l3) 1

2 (−j1 + l1 + j3 + l3) 1
2 (j1 + l1 − j2 + l2)

}
.

Equations (34.5.9) and (34.5.10) are called Regge symmetries. Additional symmetries are obtained by applying
(34.5.8) to (34.5.9) and (34.5.10). See Srinivasa Rao and Rajeswari (1993, pp. 102–103) and references given there.

34.5(iii) Recursion Relations

In the following equation it is assumed that the triangle conditions are satisfied.

34.5.11

(2j1 + 1) ((J3 + J2 − J1)(L3 + L2 − J1)− 2(J3L3 + J2L2 − J1L1))
{
j1 j2 j3
l1 l2 l3

}
= j1E(j1 + 1)

{
j1 + 1 j2 j3
l1 l2 l3

}
+ (j1 + 1)E(j1)

{
j1 − 1 j2 j3
l1 l2 l3

}
,

where

34.5.12 Jr = jr(jr + 1), Lr = lr(lr + 1),

34.5.13 E(j) =
(
(j2 − (j2 − j3)2)((j2 + j3 + 1)2 − j2)(j2 − (l2 − l3)2)((l2 + l3 + 1)2 − j2)

)1
2 .

For further recursion relations see Varshalovich et al. (1988, §9.6) and Edmonds (1974, pp. 98–99).
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34.5(iv) Orthogonality

34.5.14
∑
j3

(2j3 + 1)(2l3 + 1)
{
j1 j2 j3
l1 l2 l3

}{
j1 j2 j3
l1 l2 l′3

}
= δl3,l′3 .

34.5(v) Generating Functions

For generating functions for the 6j symbol see Biedenharn and van Dam (1965, p. 255, eq. (4.18)).

34.5(vi) Sums

34.5.15
∑
j

(−1)j+j
′+j′′(2j + 1)

{
j1 j2 j
j3 j4 j′

}{
j1 j2 j
j4 j3 j′′

}
=
{
j1 j4 j′

j2 j3 j′′

}
,

34.5.16

(−1)j1+j2+j3+j′1+j′2+l1+l2

{
j1 j2 j3
l1 l2 l3

}{
j′1 j′2 j3
l1 l2 l′3

}
=
∑
j

(−1)l3+l′3+j(2j + 1)
{
j1 j′1 j
j′2 j2 j3

}{
l3 l′3 j
j′1 j1 l2

}{
l3 l′3 j
j′2 j2 l1

}
.

Equations (34.5.15) and (34.5.16) are the sum rules. They constitute addition theorems for the 6j symbol.

34.5.17
∑
j

(2j + 1)
{
j1 j2 j
j1 j2 j′

}
= (−1)2(j1+j2),

34.5.18
∑
j

(−1)j1+j2+j(2j + 1)
{
j1 j2 j
j2 j1 j′

}
=
√

(2j1 + 1)(2j2 + 1) δj′,0 ,

34.5.19
∑
l

{
j1 j2 l
j2 j1 j

}
= 0, 2µ− j odd, µ = min(j1, j2),

34.5.20
∑
l

(−1)l+j
{
j1 j2 l
j1 j2 j

}
=

(−1)2µ

2j + 1
, µ = min(j1, j2),

34.5.21
∑
l

(−1)l+j+j1+j2

{
j1 j2 l
j2 j1 j

}
=

1
2j + 1

(
(2j1 − j)!(2j2 + j + 1)!
(2j2 − j)!(2j1 + j + 1)!

)1
2

, j2 ≤ j1,

34.5.22
∑
l

(−1)l+j+j1+j2
1

l(l + 1)

{
j1 j2 l
j2 j1 j

}
=

1
j1(j1 + 1)− j2(j2 + 1)

(
(2j1 − j)!(2j2 + j + 1)!
(2j2 − j)!(2j1 + j + 1)!

)1
2

, j2 < j1.

34.5.23

(
j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}
=

∑
m′1m

′
2m
′
3

(−1)l1+l2+l3+m′1+m′2+m′3

(
j1 l2 l3
m1 m′2 −m′3

)(
l1 j2 l3
−m′1 m2 m′3

)(
l1 l2 j3
m′1 −m′2 m3

)
.

Equation (34.5.23) can be regarded as an alternative definition of the 6j symbol.
For other sums see Ginocchio (1991).

34.6 Definition: 9j Symbol

The 9j symbol may be defined either in terms of 3j symbols or equivalently in terms of 6j symbols:

34.6.1

j11 j12 j13

j21 j22 j23

j31 j32 j33

 =
∑

all mrs

(
j11 j12 j13

m11 m12 m13

)(
j21 j22 j23

m21 m22 m23

)(
j31 j32 j33

m31 m32 m33

)

×
(
j11 j21 j31

m11 m21 m31

)(
j12 j22 j32

m12 m22 m32

)(
j13 j23 j33

m13 m23 m33

)
,

34.6.2

j11 j12 j13

j21 j22 j23

j31 j32 j33

 =
∑
j

(−1)2j(2j + 1)
{
j11 j21 j31

j32 j33 j

}{
j12 j22 j32

j21 j j23

}{
j13 j23 j33

j j11 j12

}
.
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The 9j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric
series of three variables with unit arguments. See Srinivasa Rao and Rajeswari (1993, pp. 7 and 125–132) and
Rosengren (1999).

34.7 Basic Properties: 9j Symbol

34.7(i) Special Case

34.7.1

j11 j12 j13

j21 j22 j13

j31 j31 0

 =
(−1)j12+j21+j13+j31

((2j13 + 1)(2j31 + 1))
1
2

{
j11 j12 j13

j22 j21 j31

}
.

34.7(ii) Symmetry

The 9j symbol has symmetry properties with respect to permutation of columns, permutation of rows, and transpo-
sition of rows and columns; these relate 72 independent 9j symbols. Even (cyclic) permutations of either columns
or rows, as well as transpositions, leave the 9j symbol unchanged. Odd permutations of columns or rows introduce
a phase factor (−1)R, where R is the sum of all arguments of the 9j symbol.

For further symmetry properties of the 9j symbol see Edmonds (1974, pp. 102–103) and Varshalovich et al. (1988,
§10.4.1).

34.7(iii) Recursion Relations

For recursion relations see Varshalovich et al. (1988, §10.5).

34.7(iv) Orthogonality

34.7.2
∑
j12 j34

(2j12 + 1)(2j34 + 1)(2j13 + 1)(2j24 + 1)

 j1 j2 j12

j3 j4 j34

j13 j24 j


 j1 j2 j12

j3 j4 j34

j′13 j′24 j

 = δj13,j′13δj24,j′24 .

34.7(v) Generating Functions

For generating functions for the 9j symbol see Biedenharn and van Dam (1965, p. 258, eq. (4.37)).

34.7(vi) Sums

34.7.3
∑
j13 j24

(−1)2j2+j24+j23−j34(2j13 + 1)(2j24 + 1)

 j1 j2 j12

j3 j4 j34

j13 j24 j


 j1 j3 j13

j4 j2 j24

j14 j23 j

 =

 j1 j2 j12

j4 j3 j34

j14 j23 j

.
This equation is the sum rule. It constitutes an addition theorem for the 9j symbol.

34.7.4

(
j13 j23 j33

m13 m23 m33

)j11 j12 j13

j21 j22 j23

j31 j32 j33

 =
∑

mr1,mr2,r=1,2,3

(
j11 j12 j13

m11 m12 m13

)(
j21 j22 j23

m21 m22 m23

)

×
(
j31 j32 j33

m13 m23 m33

)(
j11 j21 j31

m11 m21 m31

)(
j12 j22 j32

m12 m22 m32

)
.

34.7.5
∑
j′

(2j′ + 1)

j11 j12 j′

j21 j22 j23

j31 j32 j33


{
j11 j12 j′

j23 j33 j

}
= (−1)2j

{
j21 j22 j23

j12 j j32

}{
j31 j32 j33

j j11 j21

}
.

34.8 Approximations for Large Parameters

For large values of the parameters in the 3j, 6j, and 9j symbols, different asymptotic forms are obtained depending
on which parameters are large. For example,

34.8.1

{
j1 j2 j3
j2 j1 l3

}
= (−1)j1+j2+j3+l3

(
4

π(2j1 + 1)(2j2 + 1)(2l3 + 1) sin θ

)1
2 (

cos
(
(l3 + 1

2 )θ − 1
4π
)

+ o(1)
)

,

j1, j2, j3 � l3 � 1,
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where

34.8.2 cos θ =
j1(j1 + 1) + j2(j2 + 1)− j3(j3 + 1)

2
√
j1(j1 + 1)j2(j2 + 1)

,

and the symbol o(1) denotes a quantity that tends to
zero as the parameters tend to infinity, as in §2.1(i).

Semiclassical (WKBJ) approximations in terms of
trigonometric or exponential functions are given in Var-
shalovich et al. (1988, §§8.9, 9.9, 10.7). Uniform ap-
proximations in terms of Airy functions for the 3j and
6j symbols are given in Schulten and Gordon (1975b).
For approximations for the 3j, 6j, and 9j symbols with
error bounds see Flude (1998), Chen et al. (1999), and
Watson (1999): these references also cite earlier work.

34.9 Graphical Method

The graphical method establishes a one-to-one corre-
spondence between an analytic expression and a dia-
gram by assigning a graphical symbol to each function
and operation of the analytic expression. Thus, any an-
alytic expression in the theory, for example equations
(34.3.16), (34.4.1), (34.5.15), and (34.7.3), may be rep-
resented by a diagram; conversely, any diagram rep-
resents an analytic equation. For an account of this
method see Brink and Satchler (1993, Chapter VII).
For specific examples of the graphical method of repre-
senting sums involving the 3j, 6j, and 9j symbols, see
Varshalovich et al. (1988, Chapters 11, 12) and Lehman
and O’Connell (1973, §3.3).

34.10 Zeros

In a 3j symbol, if the three angular momenta j1, j2, j3 do
not satisfy the triangle conditions (34.2.1), or if the pro-
jective quantum numbers do not satisfy (34.2.3), then
the 3j symbol is zero. Similarly the 6j symbol (34.4.1)
vanishes when the triangle conditions are not satisfied
by any of the four 3j symbols in the summation. Such
zeros are called trivial zeros. However, the 3j and 6j
symbols may vanish for certain combinations of the an-
gular momenta and projective quantum numbers even
when the triangle conditions are fulfilled. Such zeros
are called nontrivial zeros.

For further information, including examples of non-
trivial zeros and extensions to 9j symbols, see Srini-
vasa Rao and Rajeswari (1993, pp. 133–215, 294–295,
299–310).

34.11 Higher-Order 3nj Symbols

For information on 12j, 15j,..., symbols, see Var-
shalovich et al. (1988, §10.12) and Yutsis et al. (1962,
pp. 62–65 and 122–153).

Applications

34.12 Physical Applications

The angular momentum coupling coefficients (3j, 6j,
and 9j symbols) are essential in the fields of nuclear,
atomic, and molecular physics. For applications in
nuclear structure, see de Shalit and Talmi (1963); in
atomic spectroscopy, see Biedenharn and van Dam
(1965, pp. 134–200), Judd (1998), Sobelman (1992,
Chapter 4), Shore and Menzel (1968, pp. 268–303), and
Wigner (1959); in molecular spectroscopy and chemi-
cal reactions, see Burshtein and Temkin (1994, Chap-
ter 5), and Judd (1975). 3j, 6j, and 9j symbols are also
found in multipole expansions of solutions of the Laplace
and Helmholtz equations; see Carlson and Rushbrooke
(1950) and Judd (1976).

Computation

34.13 Methods of Computation

Methods of computation for 3j and 6j symbols include
recursion relations, see Schulten and Gordon (1975a),
Luscombe and Luban (1998), and Edmonds (1974, pp.
42–45, 48–51, 97–99); summation of single-sum expres-
sions for these symbols, see Varshalovich et al. (1988,
§§8.2.6, 9.2.1) and Fang and Shriner (1992); evaluation
of the generalized hypergeometric functions of unit ar-
gument that represent these symbols, see Srinivasa Rao
and Venkatesh (1978) and Srinivasa Rao (1981).

For 9j symbols, methods include evaluation of the
single-sum series (34.6.2), see Fang and Shriner (1992);
evaluation of triple-sum series, see Varshalovich et al.
(1988, §10.2.1) and Srinivasa Rao et al. (1989). A review
of methods of computation is given in Srinivasa Rao and
Rajeswari (1993, Chapter VII, pp. 235–265). See also
Roothaan and Lai (1997) and references given there.

34.14 Tables

Tables of exact values of the squares of the 3j and 6j
symbols in which all parameters are ≤ 8 are given in
Rotenberg et al. (1959), together with a bibliography of
earlier tables of 3j, 6j, and 9j symbols on pp. 33–36.

Tables of 3j and 6j symbols in which all parameters
are ≤ 17/2 are given in Appel (1968) to 6D. Some se-
lected 9j symbols are also given. Other tabulations for
3j symbols are listed on pp. 11-12; for 6j symbols on
pp. 16-17; for 9j symbols on p. 21.
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Biedenharn and Louck (1981) give tables of algebraic
expressions for Clebsch–Gordan coefficients and 6j sym-
bols, together with a bibliography of tables produced
prior to 1975. In Varshalovich et al. (1988) algebraic
expressions for the Clebsch–Gordan coefficients with all
parameters ≤ 5 and numerical values for all parameters
≤ 3 are given on pp. 270–289; similar tables for the 6j
symbols are given on pp. 310–332, and for the 9j sym-
bols on pp. 359, 360, 372–411. Earlier tables are listed
on p. 513.

34.15 Software

See http://dlmf.nist.gov/34.15.
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Notation

35.1 Special Notation

(For other notation see pp. xiv and 873.)
All matrices are of order m×m, unless specified oth-

erwise. All fractional or complex powers are principal
values.

a, b complex variables.
j, k nonnegative integers.
m positive integer.
[a]κ partitional shifted factorial (§35.4(i)).
0 zero matrix.
I identity matrix.
S space of all real symmetric matrices.
S,T,X real symmetric matrices.
tr X trace of X.
etr(X) exp(tr X).
|X| determinant of X (except when m = 1

where it means either determinant or
absolute value, depending on the context).

|(X)j | jth principal minor of X.
xj,k (j, k)th element of X.
dX

∏
1≤j≤k≤m dxj,k.

Ω space of positive-definite real symmetric
matrices.

t1, . . . , tm eigenvalues of T.
||T|| spectral norm of T.
X > T X−T is positive definite.
Z complex symmetric matrix.
U,V real and complex parts of Z.
f(X) complex-valued function with X ∈ Ω.
O(m) space of orthogonal matrices.
H orthogonal matrix.
dH normalized Haar measure on O(m).
Zκ(T) zonal polynomials.

The main functions treated in this chapter are
the multivariate gamma and beta functions, respec-
tively Γm(a) and Bm(a, b), and the special functions
of matrix argument: Bessel (of the first kind) Aν(T)
and (of the second kind) Bν(T); confluent hyperge-
ometric (of the first kind) 1F1(a; b; T) or 1F1

(a
b

; T
)

and (of the second kind) Ψ(a; b; T); Gaussian hyper-
geometric 2F1(a1, a2; b; T) or 2F1

(a1, a2

b
; T
)

; gener-

alized hypergeometric pFq(a1, . . . , ap; b1, . . . , bq; T) or

pFq

(
a1, . . . , ap
b1, . . . , bq

; T
)

.

An alternative notation for the multivariate gamma
function is Πm(a) = Γm

(
a+ 1

2 (m+ 1)
)

(Herz (1955,
p. 480)). Related notations for the Bessel func-
tions are Jν+ 1

2 (m+1)(T) = Aν(T)/Aν(0) (Faraut and

Korányi (1994, pp. 320–329)), Km(0, . . . , 0, ν|S,T) =
|T|ν Bν(ST) (Terras (1988, pp. 49–64)), and Kν(T) =
|T|ν Bν(ST) (Faraut and Korányi (1994, pp. 357–358)).

Properties

35.2 Laplace Transform

Definition

For any complex symmetric matrix Z,

35.2.1 g(Z) =
∫

Ω

etr(−ZX)f(X) dX,

where the integration variable X ranges over the space
Ω.

Suppose there exists a constant X0 ∈ Ω such that
|f(X)| < etr(−X0X) for all X ∈ Ω. Then (35.2.1) con-
verges absolutely on the region <(Z) > X0, and g(Z) is
a complex analytic function of all elements zj,k of Z.

Inversion Formula

Assume that
∫
S |g(Z)| dV converges, and also that

limU→∞
∫
S |g(Z)| dV = 0. Then

35.2.2 f(X) =
1

(2πi)m(m+1)/2

∫
etr(ZX)g(Z) dZ,

where the integral is taken over all Z = U + iV such
that U > X0 and V ranges over S.

Convolution Theorem

If gj is the Laplace transform of fj , j = 1, 2, then g1g2 is
the Laplace transform of the convolution f1 ∗ f2, where

35.2.3 f1 ∗ f2(T) =
∫

0<X<T

f1(T−X)f2(X) dX.

35.3 Multivariate Gamma and Beta
Functions

35.3(i) Definitions

35.3.1
Γm(a) =

∫
Ω

etr(−X)|X|a− 1
2 (m+1) dX,

<(a) > 1
2 (m− 1).

35.3.2

Γm(s1, . . . , sm)

=
∫

Ω

etr(−X)|X|sm− 1
2 (m+1)

m−1∏
j=1

|(X)j |sj−sj+1 dX,

sj ∈ C, <(sj) > 1
2 (j − 1), j = 1, . . . ,m.

35.3.3

Bm(a, b) =
∫

0<X<I

|X|a− 1
2 (m+1)|I−X|b− 1

2 (m+1) dX,

<(a),<(b) > 1
2 (m− 1).
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35.3(ii) Properties

35.3.4 Γm(a) = πm(m−1)/4
m∏
j=1

Γ
(
a− 1

2 (j − 1)
)
.

35.3.5

Γm(s1, . . . , sm) = πm(m−1)/4
m∏
j=1

Γ
(
sj − 1

2 (j − 1)
)
.

35.3.6 Γm(a, . . . , a) = Γm(a).

35.3.7 Bm(a, b) =
Γm(a) Γm(b)
Γm(a+ b)

.

35.3.8
Bm(a, b) =

∫
Ω

|X|a− 1
2 (m+1)|I + X|−(a+b) dX,

<(a),<(b) > 1
2 (m− 1).

35.4 Partitions and Zonal Polynomials

35.4(i) Definitions

A partition κ = (k1, . . . , km) is a vector of nonnegative
integers, listed in nonincreasing order. Also, |κ| denotes
k1+· · ·+km, the weight of κ; `(κ) denotes the number of
nonzero kj ; a+κ denotes the vector (a+k1, . . . , a+km).

The partitional shifted factorial is given by

35.4.1 [a]κ =
Γm(a+ κ)

Γm(a)
=

m∏
j=1

(
a− 1

2 (j − 1)
)
kj
,

where (a)k = a(a+ 1) · · · (a+ k − 1).
For any partition κ, the zonal polynomial Zκ : S →

R is defined by the properties

35.4.2

Zκ(I) = |κ|! 22|κ| [m/2]κ

∏
1≤j<l≤`(κ)

(2kj − 2kl − j + l)

`(κ)∏
j=1

(2kj + `(κ)− j)!

and

35.4.3

Zκ(T) = Zκ(I) |T|km
∫

O(m)

m−1∏
j=1

|(HTH−1)j |kj−kj+1 dH,

T ∈ S.

See Muirhead (1982, pp. 68–72) for the definition
and properties of the Haar measure dH. See Hua
(1963, p. 30), Constantine (1963), James (1964), and
Macdonald (1995, pp. 425–431) for further information
on (35.4.2) and (35.4.3). Alternative notations for the
zonal polynomials are Cκ(T) (Muirhead (1982, pp. 227–
239)), Yκ(T) (Takemura (1984, p. 22)), and Φκ(T) (Fa-
raut and Korányi (1994, pp. 228–236)).

35.4(ii) Properties

Normalization

35.4.4 Zκ(0) =

{
1, κ = (0, . . . , 0),
0, κ 6= (0, . . . , 0).

Orthogonal Invariance

35.4.5 Zκ
(
HTH−1

)
= Zκ(T), H ∈ O(m).

Therefore Zκ(T) is a symmetric polynomial in the eigen-
values of T.

Summation

For k = 0, 1, 2, . . . ,

35.4.6

∑
|κ|=k

Zκ(T) = (tr T)k.

Mean-Value

35.4.7

∫
O(m)

Zκ
(
SHTH−1

)
dH =

Zκ(S)Zκ(T)
Zκ(I)

.

Laplace and Beta Integrals

For T ∈ Ω and <(a),<(b) > 1
2 (m− 1),

35.4.8

∫
Ω

etr(−TX) |X|a− 1
2 (m+1) Zκ(X) dX

= Γm(a+ κ) |T|−a Zκ
(
T−1

)
,

35.4.9

∫
0<X<I

|X|a− 1
2 (m+1) |I−X|b− 1

2 (m+1) Zκ(TX) dX

=
[a]κ

[a+ b]κ
Bm(a, b)Zκ(T).

35.5 Bessel Functions of Matrix Argument

35.5(i) Definitions

35.5.1 Aν(0) =
1

Γm
(
ν + 1

2 (m+ 1)
) , ν ∈ C.

35.5.2

Aν(T) =Aν(0)
∞∑
k=0

(−1)k

k!

∑
|κ|=k

1[
ν + 1

2 (m+ 1)
]
κ

Zκ(T),

ν ∈ C, T ∈ S.

35.5.3

Bν(T) =
∫

Ω

etr
(
−(TX + X−1)

)
|X|ν− 1

2 (m+1) dX,

ν ∈ C, T ∈ Ω.

35.5(ii) Properties

35.5.4

∫
Ω

etr(−TX)|X|ν Aν(SX) dX

= etr
(
−ST−1

)
|T|−ν− 1

2 (m+1),
S ∈ S, T ∈ Ω; <(ν) > −1.
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35.5.5

∫
0<X<T

Aν1(S1X)|X|ν1 Aν2(S2(T−X))|T−X|ν2 dX = |T|ν1+ν2+ 1
2 (m+1)Aν1+ν2+ 1

2 (m+1)((S1 + S2)T),

νj ∈ C, <(νj) > −1, j = 1, 2; S1,S2 ∈ S; T ∈ Ω.

35.5.6 Bν(T) = |T|−ν B−ν(T), ν ∈ C, T ∈ Ω.

35.5.7

∫
Ω

Aν1(TX)B−ν2(SX)|X|ν1 dX =
1

Aν1+ν2(0)
|S|ν2 |T + S|−(ν1+ν2+ 1

2 (m+1)), <(ν1 + ν2) > −1; S,T ∈ Ω.

35.5.8

∫
O(m)

etr(SH) dH =
A−1/2

(
− 1

4SST
)

A−1/2(0)
, S arbitrary.

35.5(iii) Asymptotic Approximations

For asymptotic approximations for Bessel functions of matrix argument, see Herz (1955) and Butler and Wood
(2003).

35.6 Confluent Hypergeometric Functions of Matrix Argument

35.6(i) Definitions

35.6.1 1F1

(a
b

; T
)

=
∞∑
k=0

1
k!

∑
|κ|=k

[a]κ
[b]κ

Zκ(T).

35.6.2 Ψ(a; b; T) =
1

Γm(a)

∫
Ω

etr(−TX)|X|a− 1
2 (m+1) |I + X|b−a−

1
2 (m+1)

dX, <(a) > 1
2 (m− 1), T ∈ Ω.

Laguerre Form

35.6.3 L(γ)
ν (T) =

Γm
(
γ + ν + 1

2 (m+ 1)
)

Γm
(
γ + 1

2 (m+ 1)
) 1F1

(
−ν

γ + 1
2 (m+ 1)

; T
)

, <(γ),<(γ + ν) > −1.

35.6(ii) Properties

35.6.4 1F1

(a
b

; T
)

=
1

Bm(a, b− a)

∫
0<X<I

etr(TX)|X|a− 1
2 (m+1)|I−X|b−a− 1

2 (m+1) dX, <(a),<(b− a) > 1
2 (m− 1).

35.6.5

∫
Ω

etr(−TX)|X|b− 1
2 (m+1)

1F1

(a
b

; SX
)
dX = Γm(b)|I− ST−1|−a|T|−b, T > S, <(b) > 1

2 (m− 1).

35.6.6

Bm(b1, b2)|T|b1+b2− 1
2 (m+1)

1F1

(
a1 + a2

b1 + b2
; T
)

=
∫

0<X<T

|X|b1− 1
2 (m+1)

1F1

(
a1

b1
; X
)
|T−X|b2−

1
2 (m+1)

1F1

(
a2

b2
; T−X

)
dX, <(b1),<(b2) > 1

2 (m− 1).

35.6.7 1F1

(a
b

; T
)

= etr(T) 1F1

(
b− a
b

;−T
)
.

35.6.8

∫
Ω

|T|c− 1
2 (m+1) Ψ(a; b; T) dT =

Γm(c) Γm(a− c) Γm
(
c− b+ 1

2 (m+ 1)
)

Γm(a) Γm
(
a− b+ 1

2 (m+ 1)
) ,

<(a) > <(c) + 1
2 (m− 1) > m− 1, <(c− b) > −1.

35.6(iii) Relations to Bessel Functions of Matrix Argument

35.6.9 lim
a→∞ 1F1

(
a

ν + 1
2 (m+ 1)

;−a−1T
)

=
Aν(T)
Aν(0)

.

35.6.10 lim
a→∞

Γm(a) Ψ
(
a+ ν; ν + 1

2 (m+ 1); a−1T
)

= Bν(T).
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35.6(iv) Asymptotic Approximations

For asymptotic approximations for confluent hypergeometric functions of matrix argument, see Herz (1955) and
Butler and Wood (2002).

35.7 Gaussian Hypergeometric Function of Matrix Argument

35.7(i) Definition

35.7.1 2F1

(
a, b

c
; T
)

=
∞∑
k=0

1
k!

∑
|κ|=k

[a]κ[b]κ
[c]κ

Zκ(T), −c+ 1
2 (j + 1) /∈ N, 1 ≤ j ≤ m; ||T|| < 1.

Jacobi Form

35.7.2 P (γ,δ)
ν (T) =

Γm
(
γ + ν + 1

2 (m+ 1)
)

Γm
(
γ + 1

2 (m+ 1)
) 2F1

(
−ν, γ + δ + ν + 1

2 (m+ 1)
γ + 1

2 (m+ 1)
; T

)
, 0 < T < I; γ, δ, ν ∈ C; <(γ) > −1.

35.7(ii) Basic Properties

Case m = 2

35.7.3 2F1

(
a, b

c
;
(
t1 0
0 t2

))
=
∞∑
k=0

(a)k(c− a)k(b)k(c− b)k
k! (c)2k

(
c− 1

2

)
k

(t1t2)k 2F1

(
a+ k, b+ k

c+ 2k
; t1 + t2 − t1t2

)
.

Confluent Form

35.7.4 lim
c→∞ 2F1

(
a, b

c
; I− cT−1

)
= |T|b Ψ

(
b; b− a+ 1

2 (m+ 1); T
)
.

Integral Representation

35.7.5
2F1

(
a, b

c
; T
)

=
1

Bm(a, c− a)

∫
0<X<I

|X|a− 1
2 (m+1) |I−X|c−a−

1
2 (m+1)|I−TX|−b dX,

<(a),<(c− a) > 1
2 (m− 1), 0 < T < I.

Transformations of Parameters

35.7.6

2F1

(
a, b

c
; T
)

= |I−T|c−a−b 2F1

(
c− a, c− b

c
; T
)

= |I−T|−a 2F1

(
a, c− b

c
;−T(I−T)−1

)
= |I−T|−b 2F1

(
c− a, b

c
;−T(I−T)−1

)
.

Gauss Formula

35.7.7 2F1

(
a, b

c
; I
)

=
Γm(c) Γm(c− a− b)
Γm(c− a) Γm(c− b)

, <(c),<(c− a− b) > 1
2 (m− 1).

Reflection Formula

35.7.8 2F1

(
a, b

c
; T
)

=
Γm(c) Γm(c− a− b)
Γm(c− a) Γm(c− b) 2F1

(
a, b

a+ b− c+ 1
2 (m+ 1)

; I−T
)

, <(c),<(c− a− b) > 1
2 (m− 1).

35.7(iii) Partial Differential Equations

Let f : Ω→ C (a) be orthogonally invariant, so that f(T) is a symmetric function of t1, . . . , tm, the eigenvalues of the
matrix argument T ∈ Ω; (b) be analytic in t1, . . . , tm in a neighborhood of T = 0; (c) satisfy f(0) = 1. Subject to
the conditions (a)–(c), the function f(T) = 2F1(a, b; c; T) is the unique solution of each partial differential equation
35.7.9

tj(1− tj)
∂2F

∂tj
2 −

1
2

m∑
k=1
k 6=j

tk(1− tk)
tj − tk

∂F

∂tk
+

c− 1
2 (m− 1)−

(
a+ b− 1

2 (m− 3)
)
tj +

1
2

m∑
k=1
k 6=j

tj(1− tj)
tj − tk

 ∂F

∂tj
= abF,

for j = 1, . . . ,m.
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Systems of partial differential equations for the 0F1

(defined in §35.8) and 1F1 functions of matrix argument
can be obtained by applying (35.8.9) and (35.8.10) to
(35.7.9).

35.7(iv) Asymptotic Approximations

Butler and Wood (2002) applies Laplace’s method
(§2.3(iii)) to (35.7.5) to derive uniform asymptotic ap-
proximations for the functions

35.7.10 2F1

(
αa, αb

αc
; T
)

and
35.7.11 2F1

(
a, b

c
; I− α−1T

)
as α → ∞. These approximations are in terms of ele-
mentary functions.

For other asymptotic approximations for Gaussian
hypergeometric functions of matrix argument, see Herz
(1955), Muirhead (1982, pp. 264–281, 290, 472, 563),
and Butler and Wood (2002).

35.8 Generalized Hypergeometric Functions
of Matrix Argument

35.8(i) Definition

Let p and q be nonnegative integers; a1, . . . , ap ∈ C;
b1, . . . , bq ∈ C; −bj+ 1

2 (k+1) /∈ N, 1 ≤ j ≤ q, 1 ≤ k ≤ m.
The generalized hypergeometric function pFq with ma-
trix argument T ∈ S, numerator parameters a1, . . . , ap,
and denominator parameters b1, . . . , bq is
35.8.1

pFq

(
a1, . . . , ap
b1, . . . , bq

; T
)

=
∞∑
k=0

1
k!

∑
|κ|=k

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

Zκ(T).

Convergence Properties

If −aj + 1
2 (k+ 1) ∈ N for some j, k satisfying 1 ≤ j ≤ p,

1 ≤ k ≤ m, then the series expansion (35.8.1) termi-
nates.

If p ≤ q, then (35.8.1) converges for all T.
If p = q + 1, then (35.8.1) converges absolutely for

||T|| < 1 and diverges for ||T|| > 1.
If p > q + 1, then (35.8.1) diverges unless it termi-

nates.

35.8(ii) Relations to Other Functions

35.8.2 0F0

(
−
−

; T
)

= etr(T), T ∈ S.

35.8.3

2F1

(
a, b

b
; T
)

= 1F0

(
a

−
; T
)

= |I−T|−a, 0 < T < I.

35.8.4

Aν(T) =
1

Γm
(
ν + 1

2 (m+ 1)
) 0F1

(
−

ν + 1
2 (m+ 1)

;−T
)

,

T ∈ S.

35.8(iii) 3F2 Case

Kummer Transformation

Let c = b1 + b2 − a1 − a2 − a3. Then

35.8.5

3F2

(
a1, a2, a3

b1, b2
; I
)

=
Γm(b2) Γm(c)

Γm(b2 − a3) Γm(c+ a3)

× 3F2

(
b1 − a1, b1 − a2, a3

b1, c+ a3
; I
)

,

<(b2),<(c) > 1
2 (m− 1).

Pfaff–Saalschutz Formula

Let a1 + a2 + a3 + 1
2 (m+ 1) = b1 + b2; one of the aj be

a negative integer; <(b1 − a1), <(b1 − a2), <(b1 − a3),
<(b1 − a1 − a2 − a3) > 1

2 (m− 1). Then

35.8.6

3F2

(
a1, a2, a3

b1, b2
; I
)

=
Γm(b1 − a1) Γm(b1 − a2)
Γm(b1) Γm(b1 − a1 − a2)

× Γm(b1 − a3) Γm(b1 − a1 − a2 − a3)
Γm(b1 − a1 − a3) Γm(b1 − a2 − a3)

.

Thomae Transformation

Again, let c = b1 + b2 − a1 − a2 − a3. Then

35.8.7

3F2

(
a1, a2, a3

b1, b2
; I
)

=
Γm(b1) Γm(b2) Γ(c)

Γm(a1) Γm(c+ a2) Γ(c+ a3)

× 3F2

(
b1 − a1, b2 − a2, c

c+ a2, c+ a3
; I
)

,

<(b1), <(b2), <(c) > 1
2 (m− 1).

35.8(iv) General Properties

Value at T = 0

35.8.8 pFq

(
a1, . . . , ap
b1, . . . , bq

; 0
)

= 1.

Confluence

35.8.9

lim
γ→∞ p+1Fq

(
a1, . . . , ap, γ

b1, . . . , bq
; γ−1T

)
= pFq

(
a1, . . . , ap
b1, . . . , bq

; T
)
,

35.8.10

lim
γ→∞ pFq+1

(
a1, . . . , ap
b1, . . . , bq, γ

; γT
)

= pFq

(
a1, . . . , ap
b1, . . . , bq

; T
)
.
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Invariance

35.8.11

pFq

(
a1, . . . , ap
b1, . . . , bq

; HTH−1

)
= pFq

(
a1, . . . , ap
b1, . . . , bq

; T
)

,

H ∈ O(m).

Laplace Transform

35.8.12∫
Ω

etr(−TX)|X|γ− 1
2 (m+1)

pFq

(
a1, . . . , ap
b1, . . . , bq

;−X
)
dX

= Γm(γ)|T|−γ p+1Fq

(
a1, . . . , ap, γ

b1, . . . , bq
;−T−1

)
,

<(γ) > 1
2 (m− 1).

Euler Integral

35.8.13∫
0<X<I

|X|a1− 1
2 (m+1)|I−X|b1−a1− 1

2 (m+1)

× pFq

(
a2, . . . , ap+1

b2, . . . , bq+1
; TX

)
dX

=
1

Bm(b1 − a1, a1) p+1Fq+1

(
a1, . . . , ap+1

b1, . . . , bq+1
; T
)

,

<(b1 − a1),<(a1) > 1
2 (m− 1).

35.8(v) Mellin–Barnes Integrals

Multidimensional Mellin–Barnes integrals are estab-
lished in Ding et al. (1996) for the functions pFq and
p+1Fp of matrix argument. A similar result for the
0F1 function of matrix argument is given in Faraut and
Korányi (1994, p. 346). These multidimensional in-
tegrals reduce to the classical Mellin–Barnes integrals
(§5.19(ii)) in the special case m = 1.

See also Faraut and Korányi (1994, pp. 318–340).

Applications

35.9 Applications

In multivariate statistical analysis based on the mul-
tivariate normal distribution, the probability density
functions of many random matrices are expressible in
terms of generalized hypergeometric functions of matrix
argument pFq, with p ≤ 2 and q ≤ 1. See James (1964),
Muirhead (1982), Takemura (1984), Farrell (1985), and
Chikuse (2003) for extensive treatments.

For other statistical applications of pFq functions
of matrix argument see Perlman and Olkin (1980),
Groeneboom and Truax (2000), Bhaumik and Sarkar
(2002), Richards (2004) (monotonicity of power func-
tions of multivariate statistical test criteria), Bingham

et al. (1992) (Procrustes analysis), and Phillips (1986)
(exact distributions of statistical test criteria). These
references all use results related to the integral formu-
las (35.4.7) and (35.5.8).

For applications of the integral representation
(35.5.3) see McFarland and Richards (2001, 2002) (sta-
tistical estimation of misclassification probabilities for
discriminating between multivariate normal popula-
tions). The asymptotic approximations of §35.7(iv) are
applied in numerous statistical contexts in Butler and
Wood (2002).

In chemistry, Wei and Eichinger (1993) expresses
the probability density functions of macromolecules in
terms of generalized hypergeometric functions of matrix
argument, and develop asymptotic approximations for
these density functions.

In the nascent area of applications of zonal polyno-
mials to the limiting probability distributions of sym-
metric random matrices, one of the most comprehensive
accounts is Rains (1998).

Computation

35.10 Methods of Computation

For small values of ||T|| the zonal polynomial expan-
sion given by (35.8.1) can be summed numerically. For
large ||T|| the asymptotic approximations referred to in
§35.7(iv) are available.

Other methods include numerical quadrature ap-
plied to double and multiple integral representations.
See Yan (1992) for the 1F1 and 2F1 functions of ma-
trix argument in the case m = 2, and Bingham et al.
(1992) for Monte Carlo simulation on O(m) applied to
a generalization of the integral (35.5.8).

Koev and Edelman (2006) utilizes combinatorial
identities for the zonal polynomials to develop compu-
tational algorithms for approximating the series expan-
sion (35.8.1). These algorithms are extremely efficient,
converge rapidly even for large values of m, and have
complexity linear in m.

35.11 Tables

Tables of zonal polynomials are given in James (1964)
for |κ| ≤ 6, Parkhurst and James (1974) for |κ| ≤ 12,
and Muirhead (1982, p. 238) for |κ| ≤ 5. Each table
expresses the zonal polynomials as linear combinations
of monomial symmetric functions.

35.12 Software

See http://dlmf.nist.gov/35.12.
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Notation

36.1 Special Notation

(For other notation see pp. xiv and 873.)

l,m, n integers.
k, t, s real or complex variables.
K codimension.
x {x1, x2, . . . , xK}, where x1, x2, . . . , xK are real

parameters; also x1 = x, x2 = y, x3 = z when
K ≤ 3.

Ai, Bi Airy functions (§9.2).
∗ complex conjugate.

The main functions covered in this chapter are cus-
poid catastrophes ΦK(t; x); umbilic catastrophes with
codimension three Φ(E)(s, t; x), Φ(H)(s, t; x); canonical
integrals ΨK(x), Ψ(E)(x), Ψ(H)(x); diffraction catastro-
phes ΨK(x; k), Ψ(E)(x; k), Ψ(H)(x; k) generated by the
catastrophes. (There is no standard nomenclature for
these functions.)

Properties

36.2 Catastrophes and Canonical Integrals

36.2(i) Definitions

Normal Forms Associated with Canonical Integrals:
Cuspoid Catastrophe with Codimension K

36.2.1 ΦK(t; x) = tK+2 +
K∑
m=1

xmt
m.

Special cases: K = 1, fold catastrophe; K = 2, cusp
catastrophe; K = 3, swallowtail catastrophe.

Normal Forms for Umbilic Catastrophes with Codimension
K = 3

36.2.2
Φ(E)(s, t; x) = s3 − 3st2 + z(s2 + t2) + yt+ xs,

x = {x, y, z},
(elliptic umbilic).

36.2.3
Φ(H)(s, t; x) = s3 + t3 + zst+ yt+ xs,

x = {x, y, z},
(hyperbolic umbilic).

Canonical Integrals

36.2.4 ΨK(x) =
∫ ∞
−∞

exp(iΦK(t; x)) dt.

36.2.5 Ψ(U)(x) =
∫ ∞
−∞

∫ ∞
−∞

exp
(
iΦ(U)(s, t; x)

)
ds dt, U = E,H.

36.2.6 Ψ(E)(x) = 2
√
π/3 exp

(
i
(

4
27z

3 + 1
3xz −

1
4π
)) ∫ ∞ exp(πi/12)

∞ exp(−7πi/12)

exp
(
i

(
u6 + 2zu4 + (z2 + x)u2 +

y2

12u2

))
du,

with the contour passing to the lower right of u = 0.

36.2.7

Ψ(E)(x) =
4π

31/3
exp
(
i
(

2
27z

3 − 1
3xz

)) (
exp
(
−iπ

6

)
F+(x) + exp

(
i
π

6

)
F−(x)

)
,

F±(x) =
∫ ∞

0

cos
(
ry exp

(
±iπ

6

))
exp
(

2ir2z exp
(
±iπ

3

))
Ai
(

32/3r2 + 3−1/3 exp
(
∓iπ

3

) (
1
3z

2 − x
))
dr.

36.2.8

Ψ(H)(x) = 4
√
π/6 exp

(
i
(

1
27z

3 + 1
6z(y + x) + 1

4π
))

×
∫ ∞ exp(πi/12)

∞ exp(5πi/12)

exp
(
i

(
2u6 + 2zu4 +

(
1
2z

2 + x+ y
)
u2 − (y − x)2

24u2

))
du,

with the contour passing to the upper right of u = 0.

36.2.9 Ψ(H)(x) =
2π

31/3

∫ ∞ exp(πi/6)

∞ exp(5πi/6)

exp
(
i(s3 + xs)

)
Ai
(
zs+ y

31/3

)
ds.
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Diffraction Catastrophes

36.2.10

ΨK(x; k) =
√
k

∫ ∞
−∞

exp(ikΦK(t; x)) dt, k > 0.

36.2.11

Ψ(U)(x; k) = k

∫ ∞
−∞

∫ ∞
−∞

exp
(
ikΦ(U)(s, t; x)

)
ds dt,

U = E,H; k > 0.
For more extensive lists of normal forms of catas-

trophes (umbilic and beyond) involving two variables
(“corank two”) see Arnol’d (1972, 1974, 1975).

36.2(ii) Special Cases

36.2.12 Ψ0 =
√
π exp

(
i
π

4

)
.

Ψ1 is related to the Airy function (§9.2):

36.2.13 Ψ1(x) =
2π

31/3
Ai
( x

31/3

)
.

Ψ2 is the Pearcey integral (Pearcey (1946)):

36.2.14

Ψ2(x) = P (x2, x1) =
∫ ∞
−∞

exp
(
i(t4 + x2t

2 + x1t)
)
dt.

(Other notations also appear in the literature.)

36.2.15

ΨK(0)

=
2

K + 2
Γ
(

1
K + 2

) 
exp
(
i

π

2(K + 2)

)
, K even,

cos
(

π

2(K + 2)

)
, K odd.

36.2.16

Ψ1(0) = 1.54669, Ψ2(0) = 1.67481 + i 0.69373

Ψ3(0) = 1.74646, Ψ4(0) = 1.79222 + i 0.48022.

36.2.17

∂p

∂x1
p ΨK(0) =

2
K + 2

Γ
(
p+ 1
K + 2

)
cos
(
π

2

(
p+ 1
K + 2

+ p

))
, K odd,

∂2q+1

∂x1
2q+1 ΨK(0) = 0, K even,

∂2q

∂x1
2q ΨK(0) =

2
K + 2

Γ
(

2q + 1
K + 2

)
exp
(
i
π

2

(
2q + 1
K + 2

+ 2q
))

, K even.

36.2.18
Ψ(E)(0) = 1

3

√
π Γ
(

1
6

)
= 3.28868,

Ψ(H)(0) = 1
3 Γ2

(
1
3

)
= 2.39224.

36.2.19

Ψ2(0, y) =
π

2

√
|y|
2

exp
(
−iy

2

8

)(
exp
(
i
π

8

)
J− 1/4

(
y2

8

)
− sign(y) exp

(
−iπ

8

)
J 1/4

(
y2

8

))
.

For the Bessel function J see §10.2(ii).
36.2.20

Ψ(E)(x, y, 0) = 2π2( 2
3 )2/3<

(
Ai
(
x+ iy

121/3

)
Bi
(
x− iy
121/3

))
,

36.2.21 Ψ(H)(x, y, 0) =
4π2

32/3
Ai
( x

31/3

)
Ai
( y

31/3

)
.

36.2(iii) Symmetries

36.2.22

Ψ2K(x′) = Ψ2K(x), x′2m+1 = −x2m+1, x′2m = x2m.

36.2.23

Ψ2K+1(x′) = Ψ∗2K+1(x), x′2m+1 = x2m+1, x′2m = −x2m.

36.2.24 Ψ(U)(x, y, z) = Ψ∗(U)(x, y,−z), U = E,H.

36.2.25 Ψ(E)(x,−y, z) = Ψ(E)(x, y, z).

36.2.26

Ψ(E)
(
− 1

2x∓
√

3
2 y,±

√
3

2 x−
1
2y, z

)
= Ψ(E)(x, y, z),

(rotation by ± 2
3π in x, y plane).

36.2.27 Ψ(H)(x, y, z) = Ψ(H)(y, x, z).
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36.3 Visualizations of Canonical Integrals

36.3(i) Canonical Integrals: Modulus

(a) Density plot. (b) 3D plot.
Figure 36.3.1: Modulus of Pearcey integral |Ψ2(x, y)|.

For additional figures see http://dlmf.nist.gov/36.3.i.

(a) Density plot. (b) 3D plot.
Figure 36.3.5: Modulus of swallowtail canonical integral function |Ψ3(x, y,−7.5)|.

For additional figures see http://dlmf.nist.gov/36.3.i.
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(a) Density plot. (b) 3D plot.

Figure 36.3.8: Modulus of elliptic umbilic canonical integral function |Ψ(E)(x, y, 4)|.

For additional figures see http://dlmf.nist.gov/36.3.i.

(a) Density plot. (b) 3D plot.

Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function |Ψ(H)(x, y, 3)|.
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36.3(ii) Canonical Integrals: Phase

In Figure 36.3.13(a) points of confluence of phase contours are zeros of Ψ2(x, y); similarly for other contour plots in
this subsection. In Figure 36.3.13(b) points of confluence of all colors are zeros of Ψ2(x, y); similarly for other density
plots in this subsection.

(a) Contour plot, at intervals of π/4. (b) Density plot.
Figure 36.3.13: Phase of Pearcey integral ph Ψ2(x, y).

For additional figures see http://dlmf.nist.gov/36.3.ii.

(a) Contour plot. (b) Density plot.

Figure 36.3.17: Phase of elliptic umbilic canonical integral ph Ψ(E)(x, y, 4).

For additional figures see http://dlmf.nist.gov/36.3.ii.
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(a) Contour plot. (b) Density plot.

Figure 36.3.21: Phase of hyperbolic umbilic canonical integral ph Ψ(H)(x, y, 3).

36.4 Bifurcation Sets

36.4(i) Formulas

Critical Points for Cuspoids

These are real solutions tj(x), 1 ≤ j ≤ jmax(x) ≤ K+1,
of
36.4.1

∂

∂t
ΦK(tj(x); x) = 0.

Critical Points for Umbilics

These are real solutions {sj(x), tj(x)}, 1 ≤ j ≤
jmax(x) ≤ 4, of

36.4.2

∂

∂s
Φ(U)(sj(x), tj(x); x) = 0,

∂

∂t
Φ(U)(sj(x), tj(x); x) = 0.

Bifurcation (Catastrophe) Set for Cuspoids

This is the codimension-one surface in x space where
critical points coalesce, satisfying (36.4.1) and

36.4.3
∂2

∂t2
ΦK(t; x) = 0.

Bifurcation (Catastrophe) Set for Umbilics

This is the codimension-one surface in x space where
critical points coalesce, satisfying (36.4.2) and

36.4.4

∂2

∂s2 Φ(U)(s, t; x)
∂2

∂t2
Φ(U)(s, t; x)

−
(

∂2

∂s ∂t
Φ(U)(s, t; x)

)2
= 0.

Special Cases

K = 1, fold bifurcation set:

36.4.5 x = 0.

K = 2, cusp bifurcation set:

36.4.6 27x2 = −8y3.

K = 3, swallowtail bifurcation set:

36.4.7

x = 3t2(z + 5t2), y = −t(3z + 10t2), −∞ < t <∞.

Swallowtail self-intersection line:

36.4.8 y = 0, z ≤ 0, x = 9
20z

2.

Swallowtail cusp lines (ribs):

36.4.9 z ≤ 0, x = − 3
20z

2, 10y2 = −4z3.

Elliptic umbilic bifurcation set (codimension three):
for fixed z, the section of the bifurcation set is a three-
cusped astroid

36.4.10
x = 1

3z
2(− cos(2φ)− 2 cosφ),

y = 1
3z

2(sin(2φ)− 2 sinφ), 0 ≤ φ ≤ 2π.

Elliptic umbilic cusp lines (ribs):

36.4.11 x+ iy = −z2 exp
(

2
3 iπm

)
, m = 0, 1, 2.

Hyperbolic umbilic bifurcation set (codimension
three):

36.4.12

x = − 1
12z

2(exp(2τ)± 2 exp(−τ)),

y = − 1
12z

2(exp(−2τ)± 2 exp(τ)), −∞ ≤ τ <∞.
The + sign labels the cusped sheet; the − sign labels
the sheet that is smooth for z 6= 0 (see Figure 36.4.4).

Hyperbolic umbilic cusp line (rib):

36.4.13 x = y = − 1
4z

2.

For derivations of the results in this subsection see
Poston and Stewart (1978, Chapter 9).
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36.4(ii) Visualizations

Figure 36.4.1: Bifurcation set of cusp catastrophe. Figure 36.4.2: Bifurcation set of swallowtail catastrophe.

Figure 36.4.3: Bifurcation set of elliptic umbilic catas-
trophe.

Figure 36.4.4: Bifurcation set of hyperbolic umbilic
catastrophe.

36.5 Stokes Sets

36.5(i) Definitions

Stokes sets are surfaces (codimension one) in x
space, across which ΨK(x; k) or Ψ(U)(x; k) acquires an
exponentially-small asymptotic contribution (in k), as-
sociated with a complex critical point of ΦK or Φ(U).
The Stokes sets are defined by the exponential domi-

nance condition:
36.5.1

<(ΦK(tj(x); x)− ΦK(tµ(x); x)) = 0,

<
(

Φ(U)(sj(x), tj(x); x)− Φ(U)(sµ(x), tµ(x); x)
)

= 0,

where j denotes a real critical point (36.4.1) or (36.4.2),
and µ denotes a critical point with complex t or s, t,
connected with j by a steepest-descent path (that is, a
path where <Φ = constant) in complex t or (s, t) space.
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In the following subsections, only Stokes sets involv-
ing at least one real saddle are included unless stated
otherwise.

36.5(ii) Cuspoids

K = 1. Airy Function

The Stokes set consists of the rays phx = ±2π/3 in the
complex x-plane.

K = 2. Cusp

The Stokes set is itself a cusped curve, connected to the
cusp of the bifurcation set:

36.5.2 y3 = 27
4

(√
27− 5

)
x2 = 1.32403x2.

K = 3. Swallowtail

The Stokes set takes different forms for z = 0, z < 0,
and z > 0.

For z = 0, the set consists of the two curves

36.5.3 x = B±|y|4/3, B± = 10−1/3
(

2x4/3
± − 1

2x
−2/3
±

)
,

where x± are the two smallest positive roots of the equa-
tion

36.5.4 80x5 − 40x4 − 55x3 + 5x2 + 20x− 1 = 0,
and
36.5.5 B− = −1.69916, B+ = 0.33912.

For z 6= 0, the Stokes set is expressed in terms of
scaled coordinates

36.5.6 X = x/z2, Y = y/|z|3/2,
by

36.5.7 X =
9
20

+ 20u4 − Y 2

20u2
+ 6u2 sign(z),

where u satisfies the equation

36.5.8
16u5 − Y 2

10u
+ 4u3 sign(z)− 3

10
|Y | sign(z)

+ 4t5 + 2t3 sign(z) + |Y |t2 = 0,
in which

36.5.9 t = −u+
(
|Y |
10u
− u2 − 3

10
sign(z)

)1/2
.

For z < 0, there are two solutions u, provided that
|Y | > ( 2

5 )1/2. They generate a pair of cusp-edged sheets
connected to the cusped sheets of the swallowtail bifur-
cation set (§36.4).

For z > 0 the Stokes set has two sheets. The first
sheet corresponds to x < 0 and is generated as a solu-
tion of Equations (36.5.6)–(36.5.9). The second sheet
corresponds to x > 0 and it intersects the bifurca-
tion set (§36.4) smoothly along the line generated by
X = X1 = 6.95643, |Y | = |Y1| = 6.81337. For |Y | > Y1

the second sheet is generated by a second solution of
(36.5.6)–(36.5.9), and for |Y | < Y1 it is generated by
the roots of the polynomial equation

36.5.10 160u6 + 40u4 = Y 2.

36.5(iii) Umbilics

Elliptic Umbilic Stokes Set (Codimension three)

This consists of three separate cusp-edged sheets con-
nected to the cusp-edged sheets of the bifurcation set,
and related by rotation about the z-axis by 2π/3. One
of the sheets is symmetrical under reflection in the plane
y = 0, and is given by

36.5.11
x

z2
= −1− 12u2 + 8u−

∣∣∣ y
z2

∣∣∣ 1
3 − u(

u
(

2
3 − u

))1/2 .
Here u is the root of the equation
36.5.12

8u3 − 4u2 −
∣∣∣ y
3z2

∣∣∣ ( u
2
3 − u

)1/2
=

y2

6wz4
− 2w3 − 2w2,

with

36.5.13 w = u− 2
3 +

((
2
3 −u

)2 +
∣∣∣ y
6z2

∣∣∣ ( 2
3 − u
u

)1/2)1/2
,

and such that

36.5.14 0 < u < 1
6 .

Hyperbolic Umbilic Stokes Set (Codimension three)

This consists of a cusp-edged sheet connected to the
cusp-edged sheet of the bifurcation set and intersecting
the smooth sheet of the bifurcation set. With coordi-
nates

36.5.15 X = (x− y)/z2, Y = 1
2 +

(
(x+ y)/z2

)
,

the intersection lines with the bifurcation set are gen-
erated by |X| = X2 = 0.45148, Y = Y2 = 0.59693.
Define

36.5.16

Y (u,X) = 8u− 24u2 +X
u− 1

6(
u
(
u− 1

3

))1/2 ,
f(u,X) = 16u3 − 4u2 − 1

6 |X|
(

u

u− 1
3

)1/2
.

When |X| > X2 the Stokes set YS(X) is given by

36.5.17 YS(X) = Y (u, |X|),
where u is the root of the equation

36.5.18 f(u,X) = f(−u+ 1
3 , X),

such that u > 1
3 . This part of the Stokes set connects

two complex saddles.
Alternatively, when |X| < X2

36.5.19 YS(X) = Y (−u,−|X|),
where u is the positive root of the equation

36.5.20 f(−u,X) =
X2

12w
+ 4w3 − 2w2,

in which

36.5.21 w = ( 1
3 + u)

(
1−

(
1− |X|

12u1/2( 1
3 + u)3/2

)1/2)
.
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36.5(iv) Visualizations

In Figures 36.5.1–36.5.6 the plane is divided into regions by the dashed curves (Stokes sets) and the continuous curves
(bifurcation sets). Red and blue numbers in each region correspond, respectively, to the numbers of real and complex
critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. In Figure
36.5.4 the part of the Stokes surface inside the bifurcation set connects two complex saddles. The distribution of
real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact
that there are four real saddles in the inner regions.

Figure 36.5.1: Cusp catastrophe. Figure 36.5.2: Swallowtail catastrophe with z < 0.

Figure 36.5.3: Swallowtail catastrophe with z = 0. Figure 36.5.4: Swallowtail catastrophe with z > 0.
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Figure 36.5.5: Elliptic umbilic catastrophe with z =
constant.

Figure 36.5.6: Hyperbolic umbilic catastrophe with z =
constant.

For additional figures see http://dlmf.nist.gov/36.5.iv.

36.6 Scaling Relations

Diffraction Catastrophe Scaling

36.6.1
ΨK(x; k) = kβK ΨK(y(k)),

Ψ(U)(x; k) = kβ
(U)

Ψ(U)
(
y(U)(k)

)
,

where

36.6.2

cuspoids: y(k) = (x1k
γ1K , x2k

γ2K , . . . , xKk
γKK ) ,

umbilics: y(U)(k) =
(
xk2/3, yk2/3, zk1/3

)
.

Indices for k-Scaling of Magnitude of ΨK or Ψ(U)

(Singularity Index)

36.6.3 cuspoids: βK =
K

2(K + 2)
, umbilics: β(U) =

1
3
.

Indices for k-Scaling of Coordinates xm

36.6.4
cuspoids: γmK = 1− m

K + 2
,

umbilics: γ(U)
x = 2

3 , γ(U)
y = 2

3 , γ(U)
z = 1

3 .

Indices for k-Scaling of x Hypervolume

36.6.5

cuspoids: γK =
K∑
m=1

γmK =
K(K + 3)
2(K + 2)

,

umbilics: γ(U) =
3∑

m=1

γ(U)
m = 5

3 .

Table 36.6.1: Special cases of scaling exponents for cus-
poids.

singularity K βK γ1K γ2K γ3K γK

fold 1 1
6

2
3 − − 2

3

cusp 2 1
4

3
4

1
2 − 5

4

swallowtail 3 3
10

4
5

3
5

2
5

9
5

For the results in this section and more extensive
lists of exponents see Berry (1977) and Varčenko (1976).

36.7 Zeros

36.7(i) Fold Canonical Integral

This is the Airy function Ai (§9.2).

36.7(ii) Cusp Canonical Integral

This is (36.2.4) and (36.2.1) with K = 2.
The zeros in Table 36.7.1 are points in the x = (x, y)

plane, where ph Ψ2(x) is undetermined. All zeros have
y < 0, and fall into two classes. Inside the cusp, that is,
for x2 < 8|y|3/27, the zeros form pairs lying in curved
rows. Close to the y-axis the approximate location of
these zeros is given by

36.7.1

ym = −
√

2π(2m+ 1), m = 1, 2, 3, . . . ,

x±m,n =
√

2
−ym

(
2n+ 1

2 + (−1)m 1
2 ±

1
4

)
π,

m = 1, 2, 3, . . . , n = 0,±1,±2, . . . .
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Table 36.7.1: Zeros of cusp diffraction catastrophe to 5D.

Zeros
{
x
y

}
inside, and zeros

[
x
y

]
outside, the cusp x2 = 8

27 |y|
3.

{
±0.52768
−4.37804

} [
±2.35218
−1.74360

]
{
±1.41101
−5.55470

} {
±2.36094
−5.52321

} [
±4.42707
−3.05791

]
{
±0.43039
−6.64285

} {
±3.06389
−6.44624

} {
±3.95806
−6.40312

} [
±6.16185
−4.03551

]
{
±1.21605
−7.49906

} {
±2.02922
−7.48629

} {
±4.56537
−7.19629

} {
±5.42206
−7.14718

} [
±7.72352
−4.84817

]
{
±0.38488
−8.31916

} {
±2.71193
−8.22315

} {
±3.49286
−8.20326

} {
±5.96669
−7.85723

} {
±6.79538
−7.80456

} [
±9.17308
−5.55831

]

More general asymptotic formulas are given in
Kaminski and Paris (1999). Just outside the cusp, that
is, for x2 > 8|y|3/27, there is a single row of zeros on
each side. With n = 0, 1, 2, . . . , they are located ap-
proximately at

36.7.2

xn = ±
(

8
27

)1/2
|yn|3/2(1 + ξn),

yn = −
(

3π(8n+ 5)
9 + 8ξn

)1/2
,

where ξn is the real solution of
36.7.3

3π(8n+ 5)
9 + 8ξn

ξ3/2
n =

27
16

(
3
2

)1/2(
ln
(

1
ξn

)
+ 3 ln

(
3
2

))
.

For a more extensive asymptotic analysis and further
tabulations, see Kaminski and Paris (1999).

36.7(iii) Elliptic Umbilic Canonical Integral

This is (36.2.5) with (36.2.2). The zeros are lines in
x = (x, y, z) space where ph Ψ(E)(x) is undetermined.
Deep inside the bifurcation set, that is, inside the three-
cusped astroid (36.4.10) and close to the part of the z-
axis that is far from the origin, the zero contours form
an array of rings close to the planes

36.7.4
zn = ±3( 1

4π(2n− 1
2 ))1/3

= 3.48734(n− 1
4 )1/3, n = 1, 2, 3, . . . .

Near z = zn, and for small x and y, the modulus
|Ψ(E)(x)| has the symmetry of a lattice with a rhombo-
hedral unit cell that has a mirror plane and an inverse

threefold axis whose z and x repeat distances are given
by
36.7.5 ∆z =

9π
2z2
n

, ∆x =
6π
zn
.

The zeros are approximated by solutions of the equation

36.7.6

exp
(
−2πi

(
z − zn

∆z
+

2x
∆x

))
×

(
2 exp

(
−6πix

∆x

)
cos

(
2
√

3πy
∆x

)
+ 1

)
=
√

3.
The rings are almost circular (radii close to (∆x)/9
and varying by less than 1%), and almost flat (devi-
ating from the planes zn by at most (∆z)/36). Away
from the z-axis and approaching the cusp lines (ribs)
(36.4.11), the lattice becomes distorted and the rings are
deformed, eventually joining to form “hairpins” whose
arms become the pairs of zeros (36.7.1) of the cusp
canonical integral. In the symmetry planes (e.g., y = 0),
the number of rings in the mth row, measured from the
origin and before the transition to hairpins, is given by

36.7.7 nmax(m) =
⌊

256
13 m−

269
52

⌋
.

Outside the bifurcation set (36.4.10), each rib is flanked
by a series of zero lines in the form of curly “antelope
horns” related to the “outside” zeros (36.7.2) of the cusp
canonical integral. There are also three sets of zero lines
in the plane z = 0 related by 2π/3 rotation; these are
zeros of (36.2.20), whose asymptotic form in polar co-
ordinates (x = r cos θ, y = r sin θ) is given by

36.7.8 r = 3

(
(2n− 1)π
4| sin

(
3
2θ
)
|

)2/3
(1 +O

(
n−1

)
), n→∞.
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36.7(iv) Swallowtail and Hyperbolic Umbilic Canonical Integrals

The zeros of these functions are curves in x = (x, y, z) space; see Nye (2007) for Φ3 and Nye (2006) for Φ(H).

36.8 Convergent Series Expansions

36.8.1

ΨK(x) =
2

K + 2

∞∑
n=0

exp
(
i
π(2n+ 1)
2(K + 2)

)
Γ
(

2n+ 1
K + 2

)
a2n(x), K even,

ΨK(x) =
2

K + 2

∞∑
n=0

in cos
(
π(n(K + 1)− 1)

2(K + 2)

)
Γ
(
n+ 1
K + 2

)
an(x), K odd,

where

36.8.2 a0(x) = 1, an+1(x) =
i

n+ 1

min(n,K−1)∑
p=0

(p+ 1)xp+1an−p(x), n = 0, 1, 2, . . . .

For multinomial power series for ΨK(x), see Connor and Curtis (1982).

36.8.3

32/3

4π2
Ψ(H)

(
31/3x

)
= Ai(x) Ai(y)

∞∑
n=0

(−3−1/3iz)n
cn(x)cn(y)

n!
+ Ai(x) Ai′(y)

∞∑
n=2

(−3−1/3iz)n
cn(x)dn(y)

n!

+ Ai′(x) Ai(y)
∞∑
n=2

(−3−1/3iz)n
dn(x)cn(y)

n!
+ Ai′(x) Ai′(y)

∞∑
n=1

(−3−1/3iz)n
dn(x)dn(y)

n!
,

and

36.8.4 Ψ(E)(x) = 2π2

(
2
3

)2/3 ∞∑
n=0

(
−i(2/3)2/3z

)n
n!

<
(
fn

(
x+ iy

121/3
,
x− iy
121/3

))
,

where
36.8.5

fn(ζ, ζ∗)
= cn(ζ)cn(ζ∗) Ai(ζ) Bi(ζ∗) + cn(ζ)dn(ζ∗) Ai(ζ) Bi′(ζ∗) + dn(ζ)cn(ζ∗) Ai′(ζ) Bi(ζ∗) + dn(ζ)dn(ζ∗) Ai′(ζ) Bi′(ζ∗),

with asterisks denoting complex conjugates, and

36.8.6 c0(t) = 1, d0(t) = 0, cn+1(t) = c′n(t) + tdn(t), dn+1(t) = cn(t) + d′n(t).

36.9 Integral Identities

36.9.1 |Ψ1(x)|2 = 25/3

∫ ∞
0

Ψ1

(
22/3(3u2 + x)

)
du;

equivalently,

36.9.2 (Ai(x))2 =
22/3

π

∫ ∞
0

Ai
(

22/3(u2 + x)
)
du.

36.9.3 |Ψ1(x)|2 =

√
8π
3

∫ ∞
0

u−1/2 cos
(
2u(x+ u2) + 1

4π
)
du.

36.9.4 |Ψ2(x, y)|2 =
∫ ∞

0

(
Ψ1

(
4u3 + 2uy + x

u1/3

)
+ Ψ1

(
4u3 + 2uy − x

u1/3

))
du

u1/3
.

36.9.5 |Ψ2(x, y)|2 = 2
∫ ∞

0

cos(2xu) Ψ1

(
2u2/3(y + 2u2)

) du

u1/3
.

36.9.6 |Ψ3(x, y, z)|2 = 24/5

∫ ∞
−∞

Ψ3

(
24/5(x+ 2uy + 3u2z + 5u4), 0, 22/5(z + 10u2)

)
du.

36.9.7 |Ψ3(x, y, z)|2 =
27/4

51/4

∫ ∞
0

<

(
e2iu(u4+zu2+x) Ψ2

(
27/4

51/4
yu3/4,

√
2u
5

(3z + 10u2)

))
du

u1/4
.
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36.9.8

∣∣∣Ψ(H)(x, y, z)
∣∣∣2 = 8π2

(
2
9

)1/3 ∫ ∞
−∞

∫ ∞
−∞

Ai

((
4
3

)1/3

(x+ zv + 3u2)

)
Ai

((
4
3

)1/3

(y + zu+ 3v2)

)
du dv.

36.9.9

∣∣∣Ψ(E)(x, y, z)
∣∣∣2 =

8π2

32/3

∫ ∞
0

∫ 2π

0

<
(

Ai
(

1
31/3

(
x+ iy + 2zu exp(iθ) + 3u2 exp(−2iθ)

))
× Bi

(
1

31/3

(
x− iy + 2zu exp(−iθ) + 3u2 exp(2iθ)

)))
u du dθ.

For these results and also integrals over doubly-infinite intervals see Berry and Wright (1980). This reference also
provides a physical interpretation in terms of Lagrangian manifolds and Wigner functions in phase space.

36.10 Differential Equations

36.10(i) Equations for ΨK(x)

In terms of the normal form (36.2.1) the ΨK(x) satisfy
the operator equation

36.10.1 Φ′K

(
−i ∂
∂x1

; x
)

ΨK(x) = 0,

or explicitly,

36.10.2

∂K+1ΨK(x)
∂x1

K+1
+

K∑
m =1

(−i)m−K−2

(
mxm
K + 2

)
∂m−1ΨK(x)
∂x1

m−1

= 0.

Special Cases

K = 1, fold: (36.10.1) becomes Airy’s equation (§9.2(i))

36.10.3
∂2Ψ1

∂x2 −
x

3
Ψ1 = 0.

K = 2, cusp:

36.10.4
∂3Ψ2

∂x3 −
1
2
y
∂Ψ2

∂x
− i

4
xΨ2 = 0.

K = 3, swallowtail:

36.10.5
∂4Ψ3

∂x4 −
3
5
z
∂2Ψ3

∂x2 −
2i
5
y
∂Ψ3

∂x
+

1
5
xΨ3 = 0.

36.10(ii) Partial Derivatives with Respect to
the xn

36.10.6

∂lnΨK

∂xm
ln

= in(l−m) ∂
mnΨK

∂xl
mn , 1 ≤ m ≤ K, 1 ≤ l ≤ K.

Special Cases

K = 1, fold: (36.10.6) is an identity.
K = 2, cusp:

36.10.7
∂2nΨ2

∂x2n = in
∂nΨ2

∂yn
.

K = 3, swallowtail:

36.10.8
∂2nΨ3

∂x2n = in
∂nΨ3

∂yn
,

36.10.9
∂3nΨ3

∂x3n = (−1)n
∂nΨ3

∂zn
,

36.10.10
∂3nΨ3

∂y3n = in
∂2nΨ3

∂z2n .

36.10(iii) Operator Equations

In terms of the normal forms (36.2.2) and (36.2.3), the
Ψ(U)(x) satisfy the following operator equations

36.10.11

Φ(U)
s

(
−i ∂
∂x
,−i ∂

∂y
; x
)

Ψ(U)(x) = 0,

Φ(U)
t

(
−i ∂
∂x
,−i ∂

∂y
; x
)

Ψ(U)(x) = 0,

where

36.10.12

Φ(U)
s (s, t; x) =

∂

∂s
Φ(U)(s, t; x),

Φ(U)
t (s, t; x) =

∂

∂t
Φ(U)(s, t; x).

Explicitly,

36.10.13 6
∂2Ψ(E)

∂x ∂y
− 2iz

∂Ψ(E)

∂y
+ yΨ(E) = 0,

36.10.14

3
(
∂2Ψ(E)

∂x2 − ∂2Ψ(E)

∂y2

)
+ 2iz

∂Ψ(H)

∂x
− xΨ(E) = 0.

36.10.15 3
∂2Ψ(H)

∂x2 + iz
∂Ψ(H)

∂y
− xΨ(H) = 0,

36.10.16 3
∂2Ψ(H)

∂y2 + iz
∂Ψ(H)

∂x
− yΨ(H) = 0.

36.10(iv) Partial z-Derivatives

36.10.17 i
∂Ψ(E)

∂z
=
∂2Ψ(E)

∂x2 +
∂2Ψ(E)

∂y2 ,

36.10.18 i
∂Ψ(H)

∂z
=

∂2Ψ(H)

∂x ∂y
.

Equation (36.10.17) is the paraxial wave equation.
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36.11 Leading-Order Asymptotics

With real critical points (36.4.1) ordered so that

36.11.1 t1(x) < t2(x) < · · · < tjmax(x),
and far from the bifurcation set, the cuspoid canonical integrals are approximated by

36.11.2 ΨK(x) =
√

2π
jmax(x)∑
j=1

exp
(
i
(
ΦK(tj(x); x) + 1

4π(−1)j+K+1
)) ∣∣∣∣∂2ΦK(tj(x); x)

∂t2

∣∣∣∣−1/2

(1 + o(1)).

Asymptotics along Symmetry Lines

36.11.3 Ψ2(0, y) =

{√
π/y

(
exp
(

1
4 iπ
)

+ o(1)
)
, y → +∞,√

π/|y| exp
(
− 1

4 iπ
) (

1 + i
√

2 exp
(
− 1

4 iy
2
)

+ o(1)
)
, y → −∞.

36.11.4 Ψ3(x, 0, 0) =
√

2π
(5|x|3)1/8

{
exp
(
−2
√

2(x/5)5/4
) (

cos
(
2
√

2(x/5)5/4 − 1
8π
)

+ o(1)
)
, x→ +∞,

cos
(
4( |x|/5)5/4 − 1

4π
)

+ o(1), x→ −∞.

36.11.5 Ψ3(0, y, 0) = Ψ∗3(0,−y, 0) = exp
(

1
4 iπ
)√

π/y
(

1− (i/
√

3) exp
(

3
2 i(2y/5)5/3

)
+ o(1)

)
, y → +∞.

36.11.6 Ψ3(0, 0, z) =
Γ
(

1
3

)
|z|1/3

√
3

+


o(1), z → +∞,
2
√
π51/4

(3|z|)3/4

(
cos

(
2
3

(
3|z|
5

)5/2

− 1
4
π

)
+ o(1)

)
, z → −∞.

36.11.7 Ψ(E)(0, 0, z) =
π

z

(
i+
√

3 exp
(

4
27
iz3

)
+ o(1)

)
, z → ±∞,

36.11.8 Ψ(H)(0, 0, z) =
2π
z

(
1− i√

3
exp
(

1
27
iz3

)
+ o(1)

)
, z → ±∞.

Applications

36.12 Uniform Approximation of Integrals

36.12(i) General Theory for Cuspoids

The canonical integrals (36.2.4) provide a basis for uni-
form asymptotic approximations of oscillatory integrals.
In the cuspoid case (one integration variable)

36.12.1 I(y, k) =
∫ ∞
−∞

exp(ikf(u; y))g(u,y) du,

where k is a large real parameter and y = {y1, y2, . . . }
is a set of additional (nonasymptotic) parameters. As y

varies as many as K+1 (real or complex) critical points
of the smooth phase function f can coalesce in clusters
of two or more. The function g has a smooth ampli-
tude. Also, f is real analytic, and ∂K+2f

/
∂uK+2 > 0

for all y such that all K + 1 critical points coincide. If
∂K+2f

/
∂uK+2 < 0, then we may evaluate the complex

conjugate of I for real values of y and g, and obtain I
by conjugation and analytic continuation. The critical
points uj(y), 1 ≤ j ≤ K + 1, are defined by

36.12.2
∂

∂u
f(uj(y); y) = 0.

The leading-order uniform asymptotic approxima-
tion is given by

36.12.3 I(y, k) =
exp(ikA(y))
k1/(K+2)

K∑
m=0

am(y)
km/(K+2)

(
δm,0 − (1− δm,0) i

∂

∂zm

)
ΨK(z(y; k))

(
1 +O

(
1
k

))
,
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where A(y), z(y, k), am(y) are as follows. Define a
mapping u(t; y) by relating f(u; y) to the normal form
(36.2.1) of ΦK(t; x) in the following way:
36.12.4 f(u(t,y); y) = A(y) + ΦK(t; x(y)),
with the K + 1 functions A(y) and x(y) determined by
correspondence of the K+1 critical points of f and ΦK .
Then
36.12.5 f(uj(y); y) = A(y) + ΦK(tj(x(y)); x(y)),
where tj(x), 1 ≤ j ≤ K + 1, are the critical points of
ΦK , that is, the solutions (real and complex) of (36.4.1).
Correspondence between the uj(y) and the tj(x) is es-
tablished by the order of critical points along the real
axis when y and x are such that these critical points
are all real, and by continuation when some or all of the
critical points are complex. The branch for x(y) is such
that x is real when y is real. In consequence,
36.12.6 A(y) = f(u(0,y); y),

36.12.7
z(y; k) = {z1(y; k), z2(y; k), . . . , zK(y; k)},
zm(y; k) = xm(y)k1−(m/(K+2)),

36.12.8

am(y) =
K+1∑
n=1

Pmn(y)Gn(y)

(tn(x(y)))m+1
K+1∏
l=1
l 6=n

(tn(x(y))− tl(x(y)))
,

where

36.12.9

Pmn(y) = (tn(x(y)))K+1

+
K∑

l=m+2

l

K + 2
xl(y)(tn(x(y)))l−1,

and

36.12.10

Gn(y) = g(tn(y),y)

√
∂2ΦK(tn(x(y)); x(y))

/
∂t2

∂2f(un(y))
/
∂u2 .

In (36.12.10), both second derivatives vanish when crit-
ical points coalesce, but their ratio remains finite. The
square roots are real and positive when y is such that all
the critical points are real, and are defined by analytic
continuation elsewhere. The quantities am(y) are real
for real y when g is real analytic.

This technique can be applied to generate a hierar-
chy of approximations for the diffraction catastrophes
ΨK(x; k) in (36.2.10) away from x = 0, in terms of
canonical integrals ΨJ(ξ(x; k)) for J < K. For exam-
ple, the diffraction catastrophe Ψ2(x, y; k) defined by
(36.2.10), and corresponding to the Pearcey integral
(36.2.14), can be approximated by the Airy function
Ψ1(ξ(x, y; k)) when k is large, provided that x and y
are not small. For details of this example, see Paris
(1991).

For further information see Berry and Howls (1993).

36.12(ii) Special Case

For K = 1, with a single parameter y, let the two criti-
cal points of f(u; y) be denoted by u±(y), with u+ > u−
for those values of y for which these critical points are
real. Then

36.12.11

I(y, k) =
∆1/4π

√
2

k1/3
exp
(
ikf̃
)(( g+√

f ′′+
+

g−√
−f ′′−

)
Ai
(
−k2/3∆

)(
1 +O

(
1
k

))

− i

(
g+√
f ′′+
− g−√

−f ′′−

)
Ai′
(
−k2/3∆

)
k1/3∆1/2

(
1 +O

(
1
k

)))
,

where

36.12.12

f̃ = 1
2 (f(u+(y), y) + f(u−(y), y)),

g± = g(u±(y), y), f ′′± =
∂2

∂u2 f(u±(y), y),

∆ =
(

3
4 (f(u−(y), y)− f(u+(y), y))

)2/3
.

For Ai and Ai′ see §9.2. Branches are chosen so that ∆
is real and positive if the critical points are real, or real
and negative if they are complex. The coefficients of Ai
and Ai′ are real if y is real and g is real analytic. Also,
∆1/4/

√
f ′′+ and ∆1/4/

√
−f ′′− are chosen to be positive

real when y is such that both critical points are real,

and by analytic continuation otherwise.

36.12(iii) Additional References

For further information concerning integrals with sev-
eral coalescing saddle points see Arnol’d et al. (1988),
Berry and Howls (1993, 1994), Bleistein (1967), Duis-
termaat (1974), Ludwig (1966), Olde Daalhuis (2000),
and Ursell (1972, 1980).

36.13 Kelvin’s Ship-Wave Pattern

A ship moving with constant speed V on deep water
generates a surface gravity wave. In a reference frame
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where the ship is at rest we use polar coordinates r and
φ with φ = 0 in the direction of the velocity of the water
relative to the ship. Then with g denoting the acceler-
ation due to gravity, the wave height is approximately
given by

36.13.1 z(φ, ρ) =
∫ π/2

−π/2
cos
(
ρ

cos(θ + φ)
cos2 θ

)
dθ,

where

36.13.2 ρ = gr
/
V 2 .

The integral is of the form of the real part of (36.12.1)
with y = φ, u = θ, g = 1, k = ρ, and

36.13.3 f(θ, φ) = −cos(θ + φ)
cos2 θ

.

When ρ > 1, that is, everywhere except close to
the ship, the integrand oscillates rapidly. There are two
stationary points, given by

36.13.4
θ+(φ) = 1

2 (arcsin(3 sinφ)− φ),
θ−(φ) = 1

2 (π − φ− arcsin(3 sinφ)).

These coalesce when

36.13.5 |φ| = φc = arcsin
(

1
3

)
= 19◦.47122.

This is the angle of the familiar V-shaped wake. The
wake is a caustic of the “rays” defined by the disper-
sion relation (“Hamiltonian”) giving the frequency ω as
a function of wavevector k:

36.13.6 ω(k) =
√
gk + V · k.

Here k = |k|, and V is the ship velocity (so that
V = |V|).

The disturbance z(ρ, φ) can be approximated by the
method of uniform asymptotic approximation for the
case of two coalescing stationary points (36.12.11), us-
ing the fact that θ±(φ) are real for |φ| < φc and complex
for |φ| > φc. (See also §2.4(v).) Then with the defini-
tions (36.12.12), and the real functions

36.13.7

u(φ) =

√
∆1/2(φ)

2

(
1√
f ′′+(φ)

+
1√
−f ′′−(φ)

)
,

v(φ) =

√
1

2∆1/2(φ)

(
1√
f ′′+(φ)

− 1√
−f ′′−(φ)

)
,

the disturbance is

36.13.8

z(ρ, φ) = 2π
(
ρ−1/3u(φ) cos

(
ρf̃(φ)

)
Ai
(
−ρ2/3∆(φ)

)
× (1 +O(1/ρ))

+ ρ−2/3v(φ) sin
(
ρf̃(φ)

)
Ai′
(
−ρ2/3∆(φ)

)
× (1 +O(1/ρ))

)
, ρ→∞.

See Figure 36.13.1.

Figure 36.13.1: Kelvin’s ship wave pattern, computed
from the uniform asymptotic approximation (36.13.8),
as a function of x = ρ cosφ, y = ρ sinφ.

For further information see Lord Kelvin (1891, 1905)
and Ursell (1960, 1994).

36.14 Other Physical Applications

36.14(i) Caustics

The physical manifestations of bifurcation sets are caus-
tics. These are the structurally stable focal singularities
(envelopes) of families of rays, on which the intensi-
ties of the geometrical (ray) theory diverge. Diffraction
catastrophes describe the (linear) wave amplitudes that
smooth the geometrical caustic singularities and deco-
rate them with interference patterns. See Berry (1969,
1976, 1980, 1981), Kravtsov (1964, 1988), and Ludwig
(1966).

36.14(ii) Optics

Diffraction catastrophes describe the connection be-
tween ray optics and wave optics. Applications include
twinkling starlight, focusing of sunlight by rippling wa-
ter (e.g., swimming-pool patterns), and water-droplet
“lenses” (e.g., rainbows). See Adler et al. (1997), Berry
and Upstill (1980), Marston (1992, 1999), Nye (1999),
Walker (1983, 1988, 1989).

36.14(iii) Quantum Mechanics

Diffraction catastrophes describe the “semiclassical”
connections between classical orbits and quantum wave-
functions, for integrable (non-chaotic) systems. Appli-
cations include scattering of elementary particles, atoms
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and molecules from particles and surfaces, and chemi-
cal reactions. See Berry (1966, 1975), Connor (1974,
1976), Connor and Farrelly (1981), Trinkaus and Drep-
per (1977), and Uzer et al. (1983).

36.14(iv) Acoustics

Applications include the reflection of ultrasound pulses,
and acoustical waveguides. See Chapman (1999),
Frederickson and Marston (1992, 1994), and Kravtsov
(1968).

Computation

36.15 Methods of Computation

36.15(i) Convergent Series

Close to the origin x = 0 of parameter space, the series
in §36.8 can be used.

36.15(ii) Asymptotics

Far from the bifurcation set, the leading-order asymp-
totic formulas of §36.11 reproduce accurately the form
of the function, including the geometry of the zeros de-
scribed in §36.7. Close to the bifurcation set but far
from x = 0, the uniform asymptotic approximations of
§36.12 can be used.

36.15(iii) Integration along Deformed Contour

Direct numerical evaluation can be carried out along
a contour that runs along the segment of the real t-
axis containing all real critical points of Φ and is de-
formed outside this range so as to reach infinity along
the asymptotic valleys of exp(iΦ). (For the umbilics,
representations as one-dimensional integrals (§36.2) are
used.) For details, see Connor and Curtis (1982) and
Kirk et al. (2000). There is considerable freedom in the
choice of deformations.

36.15(iv) Integration along Finite Contour

This can be carried out by direct numerical evaluation
of canonical integrals along a finite segment of the real
axis including all real critical points of Φ, with contribu-
tions from the contour outside this range approximated
by the first terms of an asymptotic series associated with
the endpoints. See Berry et al. (1979).

36.15(v) Differential Equations

For numerical solution of partial differential equations
satisfied by the canonical integrals see Connor et al.
(1983).
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Berry and Upstill (1980).

Sources

The following list gives the references or other indica-
tions of proofs that were used in constructing the various
sections of this chapter. These sources supplement the
references that are quoted in the text.

§36.2 The convergence of the oscillatory integrals
(36.2.4)–(36.2.11) can be confirmed by rotating
the integration paths in the complex plane. For
(36.2.6) see Berry et al. (1979). For (36.2.7)
shift the s variable in (36.2.5) (with (36.2.2)) to
remove the quadratic term, integrate, and then
deform the contour of the remaining t integra-
tion. For (36.2.8) see Berry and Howls (1990).
For (36.2.9) integrate (36.2.5) (with (36.2.3)) with
respect to t. For (36.2.12) and (36.2.13) use
(4.10.11) and (9.5.4), respectively. For (36.2.15)
and (36.2.17) use (5.9.1). For (36.2.18) combine
(36.2.6), (36.2.8), and (5.9.1) For (36.2.19) use
(12.5.1) and (12.14.13). For (36.2.20) see Trinkaus
and Drepper (1977). For (36.2.21) use (36.2.9).
Eqs. (36.2.22)–(36.2.27) follow from the defini-
tions given in §36.2(i).

§§36.3, 36.4 The graphics were generated by the au-
thors.

§36.5 Wright (1980) and Berry and Howls (1990). The
common strategy employed in deriving the for-
mulas in this section involves using the critical-
point condition (36.4.1) to reduce the order of the
catastrophe polynomials in (36.2.1), then solving
(36.5.1) for the imaginary part of the complex crit-
ical point in terms of the value of the real criti-
cal point, which is itself determined by (36.4.1)
and then used to generate the Stokes sets para-
metrically. For (36.5.11)–(36.5.21) we also use
the exponents in the representations (36.2.6) and
(36.2.8). The graphics were generated by the au-
thors. For Figures 36.5.2–36.5.6, Eqs. (36.5.11)–
(36.5.21) were used in parametric form x = x(y),
and checked against the numerical computations
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in Berry and Howls (1990) (which were based di-
rectly on the definitions given in §36.5(i)).

§36.7 Berry et al. (1979). (36.7.2) and (36.7.3) may
be derived by setting to zero the stationary-phase
approximation (§2.3(iv)) of the Pearcey integral
Ψ2(x, y) just outside the caustic; this involves one
real saddle and one complex saddle. Table 36.7.1
was computed by the authors.

§36.8 Connor (1973) and Connor et al. (1983). For
(36.8.1), in the integral (36.2.4) retain the high-
est power of t in (36.2.1) in the exponent, expand
the rest of the exponential as a power series in
t, and evaluate the resulting integrals in terms
of gamma functions. For (36.8.3), in the integral
(36.2.5) with the polynomial (36.2.3) expand the
z-dependent part of the exponential in powers of z,
and then repeatedly use the differential equation
(9.2.1) to express higher derivatives of the Airy
function in terms of Ai and Ai′. For (36.8.4), in

the integral (36.2.5) with the polynomial (36.2.2)
expand the z-dependent part of the exponential in
powers of z, and then repeatedly use (9.2.1), and
(36.2.20).

§36.10 For (36.10.1) to (36.10.10) see Connor et al.
(1983). (36.10.11) to (36.10.18) are derived by
repeated differentiations with respect to x, y, or
z, in combinations that generate exact derivatives
of the exponents in (36.2.5).

§36.11 The formulas in this section are derived by the
method of stationary phase, applied to the real
critical points of the integral representations in
§36.2. See §2.3(iv) and also Berry and Howls
(1991). For (36.11.4) the integral is exponentially
small when x > 0 and the dominant contribution
is from a critical point off the real axis.

§36.12 Berry and Howls (1993).

§36.13 The figure was generated by the authors.
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pp. 3–25. In Russian. English translation: Functional
Anal. Appl., 6(1973), pp. 254–272.

V. I. Arnol’d (1974). Normal forms of functions in the
neighborhood of degenerate critical points. Uspehi Mat.
Nauk 29(2(176)), pp. 11–49. Collection of articles dedi-
cated to the memory of Ivan Georgievič Petrovskĭı (1901–
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M. Deléglise and J. Rivat (1996). Computing π(x):
The Meissel, Lehmer, Lagarias, Miller, Odlyzko method.
Math. Comp. 65(213), pp. 235–245.

G. Delic (1979). Chebyshev series for the spherical Bessel
function jl(r). Comput. Phys. Comm. 18(1), pp. 73–86.

P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Mor-
gan, and D. R. Morrison (Eds.) (1999). Quantum Fields
and Strings: A Course for Mathematicians. Vol. 1, 2.
Providence, RI: American Mathematical Society. Mate-
rial from the Special Year on Quantum Field Theory held
at the Institute for Advanced Study, Princeton, NJ, 1996–
1997.

J. B. Dence and T. P. Dence (1999). Elements of the Theory
of Numbers. San Diego, CA: Harcourt/Academic Press.

R. L. Devaney (1986). An Introduction to Chaotic Dynami-
cal Systems. Menlo Park, CA: The Benjamin/Cummings
Publishing Co. Inc.

J. Dexter and E. Agol (2009). A fast new public code for
computing photon orbits in a Kerr spacetime. The Astro-
physical Journal 696, pp. 1616–1629.

S. C. Dhar (1940). Note on the addition theorem of parabolic
cylinder functions. J. Indian Math. Soc. (N. S.) 4, pp. 29–
30.

P. Di Francesco, P. Ginsparg, and J. Zinn-Justin (1995). 2D
gravity and random matrices. Phys. Rep. 254(1-2), pp.
1–133.

L. E. Dickson (1919). History of the Theory of Numbers (3
volumes). Washington, DC: Carnegie Institution of Wash-
ington. Reprinted by Chelsea Publishing Co., New York,
1966.

A. R. DiDonato (1978). An approximation for ∫∞χ e−t
2/2tpdt,

χ > 0, p real. Math. Comp. 32(141), pp. 271–275.

A. R. DiDonato and A. H. Morris (1986). Computation of
the incomplete gamma function ratios and their inverses.
ACM Trans. Math. Software 12(4), pp. 377–393.

P. Dienes (1931). The Taylor Series. Oxford: Oxford Uni-
versity Press. Reprinted by Dover Publications Inc., New
York, 1957.

A. Dienstfrey and J. Huang (2006). Integral representations
for elliptic functions. J. Math. Anal. Appl. 316(1), pp.
142–160.

K. Dilcher (1987a). Asymptotic behaviour of Bernoulli, Eu-
ler, and generalized Bernoulli polynomials. J. Approx.
Theory 49(4), pp. 321–330.

K. Dilcher (1987b). Irreducibility of certain generalized
Bernoulli polynomials belonging to quadratic residue class
characters. J. Number Theory 25(1), pp. 72–80.

K. Dilcher (1988). Zeros of Bernoulli, generalized Bernoulli
and Euler polynomials. Mem. Amer. Math. Soc. 73(386),
pp. iv+94.

K. Dilcher (1996). Sums of products of Bernoulli numbers.
J. Number Theory 60(1), pp. 23–41.

K. Dilcher (2002). Bernoulli Numbers and Confluent Hyper-
geometric Functions. In Number Theory for the Millen-
nium, I (Urbana, IL, 2000), pp. 343–363. Natick, MA: A.
K. Peters.

K. Dilcher (2008). On multiple zeros of Bernoulli polynomi-
als. Acta Arith. 134(2), pp. 149–155.

K. Dilcher, L. Skula, and I. Sh. Slavutskǐı (1991).
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J. High Energy Phys. (electronic only, article id.
JHEP01(2000)019, 8 pp.).

T. M. Dunster (1986). Uniform asymptotic expansions for
prolate spheroidal functions with large parameters. SIAM
J. Math. Anal. 17(6), pp. 1495–1524.

T. M. Dunster (1989). Uniform asymptotic expansions for
Whittaker’s confluent hypergeometric functions. SIAM J.
Math. Anal. 20(3), pp. 744–760. (This reference has sev-
eral typographical errors.).

T. M. Dunster (1990a). Bessel functions of purely imaginary
order, with an application to second-order linear differen-
tial equations having a large parameter. SIAM J. Math.
Anal. 21(4), pp. 995–1018. Errata: In eq. (2.8) replace
(x2/4)2 by (x2/4)s. In the second line of eq. (4.7) insert
an external factor e−2πij/3 and change the upper limit of
the sum to n− 1.

T. M. Dunster (1990b). Uniform asymptotic solutions of
second-order linear differential equations having a double
pole with complex exponent and a coalescing turning point.
SIAM J. Math. Anal. 21(6), pp. 1594–1618.

T. M. Dunster (1991). Conical functions with one or both pa-
rameters large. Proc. Roy. Soc. Edinburgh Sect. A 119(3-
4), pp. 311–327.

T. M. Dunster (1992). Uniform asymptotic expansions for
oblate spheroidal functions I: Positive separation parame-
ter λ. Proc. Roy. Soc. Edinburgh Sect. A 121(3-4), pp.
303–320.

T. M. Dunster (1994a). Uniform asymptotic approximation
of Mathieu functions. Methods Appl. Anal. 1(2), pp. 143–
168.

T. M. Dunster (1994b). Uniform asymptotic solutions of
second-order linear differential equations having a simple
pole and a coalescing turning point in the complex plane.
SIAM J. Math. Anal. 25(2), pp. 322–353.

T. M. Dunster (1995). Uniform asymptotic expansions for
oblate spheroidal functions II: Negative separation param-
eter λ. Proc. Roy. Soc. Edinburgh Sect. A 125(4), pp.
719–737.



816 Bibliography

T. M. Dunster (1996a). Asymptotic solutions of second-order
linear differential equations having almost coalescent turn-
ing points, with an application to the incomplete gamma
function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–
1349.

T. M. Dunster (1996b). Asymptotics of the generalized expo-
nential integral, and error bounds in the uniform asymp-
totic smoothing of its Stokes discontinuities. Proc. Roy.
Soc. London Ser. A 452, pp. 1351–1367.

T. M. Dunster (1996c). Error bounds for exponentially im-
proved asymptotic solutions of ordinary differential equa-
tions having irregular singularities of rank one. Methods
Appl. Anal. 3(1), pp. 109–134.

T. M. Dunster (1997). Error analysis in a uniform asymp-
totic expansion for the generalised exponential integral. J.
Comput. Appl. Math. 80(1), pp. 127–161.

T. M. Dunster (1999). Asymptotic approximations for the
Jacobi and ultraspherical polynomials, and related func-
tions. Methods Appl. Anal. 6(3), pp. 21–56.

T. M. Dunster (2001a). Convergent expansions for solutions
of linear ordinary differential equations having a simple
turning point, with an application to Bessel functions.
Stud. Appl. Math. 107(3), pp. 293–323.

T. M. Dunster (2001b). Uniform asymptotic expansions for
Charlier polynomials. J. Approx. Theory 112(1), pp. 93–
133.

T. M. Dunster (2001c). Uniform asymptotic expansions
for the reverse generalized Bessel polynomials, and related
functions. SIAM J. Math. Anal. 32(5), pp. 987–1013.

T. M. Dunster (2003a). Uniform asymptotic approximations
for the Whittaker functions Mκ,iµ(z) and Wκ,iµ(z). Anal.
Appl. (Singap.) 1(2), pp. 199–212.

T. M. Dunster (2003b). Uniform asymptotic expansions for
associated Legendre functions of large order. Proc. Roy.
Soc. Edinburgh Sect. A 133(4), pp. 807–827.

T. M. Dunster (2004). Convergent expansions for solutions
of linear ordinary differential equations having a simple
pole, with an application to associated Legendre functions.
Stud. Appl. Math. 113(3), pp. 245–270.

T. M. Dunster (2006). Uniform asymptotic approximations
for incomplete Riemann zeta functions. J. Comput. Appl.
Math. 190(1-2), pp. 339–353.

T. M. Dunster, D. A. Lutz, and R. Schäfke (1993). Con-
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É. Goursat (1881). Sur l’équation différentielle linéaire, qui
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W. Gröbner and N. Hofreiter (1950). Integraltafel. Zweiter
Teil. Bestimmte Integrale. Vienna and Innsbruck:
Springer-Verlag. Reprintings with corrections appeared
in 1958 and 1961.

P. Groeneboom and D. R. Truax (2000). A monotonicity
property of the power function of multivariate tests. Indag.
Math. (N.S.) 11(2), pp. 209–218.

V. I. Gromak (1975). Theory of Painlevé’s equations. Differ.
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tion ζ(s) et ses conséquences arithmétiques. Bull. Soc.
Math. France 24, pp. 199–220. Reprinted in Oeuvres de
Jacques Hadamard. Tomes I, pp. 189–210, Éditions du
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RSS Moldoven 1970(1), pp. 49–62.
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P. I. Hadži (1976a). Expansions for the probability func-
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W. Hahn (1949). Über Orthogonalpolynome, die q-Differ-
enzengleichungen genügen. Math. Nachr. 2, pp. 4–34.

E. Hairer, S. P. Nørsett, and G. Wanner (1993). Solving Or-
dinary Differential Equations. I. Nonstiff Problems (2nd
ed.), Volume 8 of Springer Series in Computational Math-
ematics. Berlin: Springer-Verlag. A reprinting with cor-
rections appeared in 2000.

E. Hairer, S. P. Nørsett, and G. Wanner (2000). Solving Or-
dinary Differential Equations. I. Nonstiff Problems (2nd
ed.). Berlin: Springer-Verlag.

E. Hairer and G. Wanner (1996). Solving Ordinary Differ-
ential Equations. II. Stiff and Differential-Algebraic Prob-
lems (2nd ed.), Volume 14 of Springer Series in Compu-
tational Mathematics. Berlin: Springer-Verlag.

M. H. Halley, D. Delande, and K. T. Taylor (1993). The
combination of R-matrix and complex coordinate methods:
Application to the diamagnetic Rydberg spectra of Ba and
Sr. J. Phys. B 26(12), pp. 1775–1790.

A. J. S. Hamilton (2001). Formulae for growth factors in
expanding universes containing matter and a cosmological
constant. Monthly Notices Roy. Astronom. Soc. 322(2),
pp. 419–425.

J. Hammack, D. McCallister, N. Scheffner, and H. Segur
(1995). Two-dimensional periodic waves in shallow water.
II. Asymmetric waves. J. Fluid Mech. 285, pp. 95–122.

J. Hammack, N. Scheffner, and H. Segur (1989). Two-
dimensional periodic waves in shallow water. J. Fluid
Mech. 209, pp. 567–589.

H. Hancock (1958). Elliptic Integrals. New York: Dover
Publications Inc. Unaltered reprint of original edition
published by Wiley, New York, 1917.

R. A. Handelsman and J. S. Lew (1970). Asymptotic ex-
pansion of Laplace transforms near the origin. SIAM J.
Math. Anal. 1(1), pp. 118–130.

R. A. Handelsman and J. S. Lew (1971). Asymptotic ex-
pansion of a class of integral transforms with algebraically
dominated kernels. J. Math. Anal. Appl. 35(2), pp. 405–
433.

S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King
(1970). Tables of Radial Spheroidal Wave Functions, Vols.
1-3, Prolate, m = 0, 1, 2; Vols. 4-6, Oblate, m = 0, 1, 2.
Technical report, Naval Research Laboratory, Washing-
ton, D.C. NRL Reports 7088-7093.

E. R. Hansen (1975). A Table of Series and Products. En-
glewood Cliffs, NJ: Prentice-Hall. Table erratum: Math.
Comp. v.47 (1986), no. 176, p. 767.

E. W. Hansen (1985). Fast Hankel transform algorithm.
IEEE Trans. Acoust. Speech Signal Process. 32(3), pp.
666–671.

J. Happel and H. Brenner (1973). Low Reynolds Number Hy-
drodynamics with Special Applications to Particulate Me-
dia (2nd ed.). Leyden: Noordhoff International Publish-
ing. The first edition was published in 1965 by Prentice-
Hall. The 2nd edition was reissued in 1983 by Springer,
and in 1986 by Martinus Nijhoff Publishers (Kluwer Aca-
demic Publishers Group).

G. H. Hardy (1912). Note on Dr. Vacca’s series for γ. Quart.
J. Math. 43, pp. 215–216.

G. H. Hardy (1940). Ramanujan. Twelve Lectures on Sub-
jects Suggested by His Life and Work. Cambridge, Eng-
land: Cambridge University Press. Reprinted by Chelsea
Publishing Company, New York, 1959.

G. H. Hardy (1949). Divergent Series. Oxford: Clarendon
Press. Reprinted by the American Mathematical Society
in 2000.

G. H. Hardy (1952). A Course of Pure Mathematics (10th
ed.). Cambridge University Press. Numerous reprintings
exist, including the Centenary Edition with Foreword by
T. W. Körner (Cambridge Univerity Press, 2008).

G. H. Hardy and J. E. Littlewood (1925). Some problems of
“Partitio Numerorum” (VI): Further researches in War-
ing’s Problem. Math. Z. 23, pp. 1–37. Reprinted in Col-
lected Papers of G. H. Hardy (Including Joint papers with
J. E. Littlewood and others), Vol. I, pp. 469–505, Claren-
don Press, Oxford, 1966.

G. H. Hardy, J. E. Littlewood, and G. Pólya (1967). In-
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Math. Phys. 37(9), pp. 4693–4704.

K. Kajiwara and Y. Ohta (1998). Determinant structure
of the rational solutions for the Painlevé IV equation. J.
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electric probe theory. Some numerical solutions. Zh. Vy-
chisl. Mat. Mat. Fiz. 38(6), pp. 992–1000. In Russian. En-
glish translation: Comput. Math. Math. Phys. 38(1998),
no. 6, pp. 950–958.

A. V. Kashevarov (2004). The second Painlevé equation
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N. A. Lukaševič (1967b). On the theory of Painlevé’s third
equation. Differ. Uravn. 3(11), pp. 1913–1923. In Rus-
sian. English translation: Differential Equations 3(11),
pp. 994–999.
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fer. Uravn. 7(6), pp. 1124–1125. In Russian. English trans-
lation: Differential Equations 7(6), pp. 853–854.
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Gammafunktionen. Rend. del Circ. Matem. Palermo 54,
pp. 1–41.

R. S. Maier (2005). On reducing the Heun equation to the
hypergeometric equation. J. Differential Equations 213(1),
pp. 171–203.

R. S. Maier (2007). The 192 solutions of the Heun equation.
Math. Comp. 76(258), pp. 811–843.

H. Majima, K. Matsumoto, and N. Takayama (2000).
Quadratic relations for confluent hypergeometric func-
tions. Tohoku Math. J. (2) 52(4), pp. 489–513.

S. Makinouchi (1966). Zeros of Bessel functions Jν (x) and
Yν (x) accurate to twenty-nine significant digits. Technol-
ogy Reports of the Osaka University 16(685), pp. 1–44.

Yu. I. Manin (1998). Sixth Painlevé Equation, Univer-
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J. Meixner and F. W. Schäfke (1954). Mathieusche Funk-
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Third Painlevé equation PIII. Funkcial. Ekvac. 30(2-3),
pp. 305–332.

S. Okui (1974). Complete elliptic integrals resulting from
infinite integrals of Bessel functions. J. Res. Nat. Bur.
Standards Sect. B 78B(3), pp. 113–135.

S. Okui (1975). Complete elliptic integrals resulting from in-
finite integrals of Bessel functions. II. J. Res. Nat. Bur.
Standards Sect. B 79B(3-4), pp. 137–170.

A. B. Olde Daalhuis (1994). Asymptotic expansions for q-
gamma, q-exponential, and q-Bessel functions. J. Math.
Anal. Appl. 186(3), pp. 896–913.

A. B. Olde Daalhuis (1995). Hyperasymptotic solutions of
second-order linear differential equations. II. Methods
Appl. Anal. 2(2), pp. 198–211.



Bibliography 849

A. B. Olde Daalhuis (1996). Hyperterminants. I. J. Comput.
Appl. Math. 76(1-2), pp. 255–264.

A. B. Olde Daalhuis (1998a). Hyperasymptotic solutions of
higher order linear differential equations with a singular-
ity of rank one. Proc. Roy. Soc. London Ser. A 454, pp.
1–29.

A. B. Olde Daalhuis (1998b). Hyperterminants. II. J. Com-
put. Appl. Math. 89(1), pp. 87–95.

A. B. Olde Daalhuis (1998c). On the resurgence proper-
ties of the uniform asymptotic expansion of the incomplete
gamma function. Methods Appl. Anal. 5(4), pp. 425–438.

A. B. Olde Daalhuis (2000). On the asymptotics for late
coefficients in uniform asymptotic expansions of integrals
with coalescing saddles. Methods Appl. Anal. 7(4), pp.
727–745.

A. B. Olde Daalhuis (2003a). Uniform asymptotic expan-
sions for hypergeometric functions with large parameters.
I. Analysis and Applications (Singapore) 1(1), pp. 111–
120.

A. B. Olde Daalhuis (2003b). Uniform asymptotic expan-
sions for hypergeometric functions with large parameters.
II. Analysis and Applications (Singapore) 1(1), pp. 121–
128.

A. B. Olde Daalhuis (2004a). Inverse factorial-series so-
lutions of difference equations. Proc. Edinb. Math. Soc.
(2) 47(2), pp. 421–448.

A. B. Olde Daalhuis (2004b). On higher-order Stokes phe-
nomena of an inhomogeneous linear ordinary differential
equation. J. Comput. Appl. Math. 169(1), pp. 235–246.

A. B. Olde Daalhuis (2005a). Hyperasymptotics for nonlin-
ear ODEs. I. A Riccati equation. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 461(2060), pp. 2503–2520.

A. B. Olde Daalhuis (2005b). Hyperasymptotics for nonlin-
ear ODEs. II. The first Painlevé equation and a second-
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ordre à points critiques fixès. C.R. Acad. Sc. Paris 143,
pp. 1111–1117.

E. Pairman (1919). Tables of Digamma and Trigamma Func-
tions. In K. Pearson (Ed.), Tracts for Computers, No. 1.
Cambridge Univ. Press.

B. V. Pal′tsev (1999). On two-sided estimates, uniform with
respect to the real argument and index, for modified Bessel
functions. Mat. Zametki 65(5), pp. 681–692. English
translation in Math. Notes 65 (1999) pp. 571-581.

D. J. Panow (1955). Formelsammlung zur numerischen Be-
handlung partieller Differentialgleichungen nach dem Dif-
ferenzenverfahren. Berlin: Akademie-Verlag.

A. Papoulis (1977). Signal Analysis. New York: McGraw-
Hill.

R. B. Paris (1984). An inequality for the Bessel function
Jν(νx). SIAM J. Math. Anal. 15(1), pp. 203–205.

R. B. Paris (1991). The asymptotic behaviour of Pearcey’s
integral for complex variables. Proc. Roy. Soc. London
Ser. A 432, pp. 391–426.

R. B. Paris (1992a). Smoothing of the Stokes phenomenon
for high-order differential equations. Proc. Roy. Soc. Lon-
don Ser. A 436, pp. 165–186.

R. B. Paris (1992b). Smoothing of the Stokes phe-
nomenon using Mellin-Barnes integrals. J. Comput. Appl.
Math. 41(1-2), pp. 117–133.

R. B. Paris (2001a). On the use of Hadamard expansions in
hyperasymptotic evaluation. I. Real variables. Proc. Roy.
Soc. London Ser. A 457(2016), pp. 2835–2853.

R. B. Paris (2001b). On the use of Hadamard expansions in
hyperasymptotic evaluation. II. Complex variables. Proc.
Roy. Soc. London Ser. A 457, pp. 2855–2869.

R. B. Paris (2002a). Error bounds for the uniform asymptotic
expansion of the incomplete gamma function. J. Comput.
Appl. Math. 147(1), pp. 215–231.

R. B. Paris (2002b). A uniform asymptotic expansion
for the incomplete gamma function. J. Comput. Appl.
Math. 148(2), pp. 323–339.

R. B. Paris (2002c). Exponential asymptotics of the Mittag-
Leffler function. Proc. Roy. Soc. London Ser. A 458, pp.
3041–3052.

R. B. Paris (2003). The asymptotic expansion of a gen-
eralised incomplete gamma function. J. Comput. Appl.
Math. 151(2), pp. 297–306.

R. B. Paris (2004). Exactification of the method of steepest
descents: The Bessel functions of large order and argu-
ment. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.

R. B. Paris (2005a). A Kummer-type transformation
for a 2F2 hypergeometric function. J. Comput. Appl.
Math. 173(2), pp. 379–382.

R. B. Paris (2005b). The Stokes phenomenon associated with
the Hurwitz zeta function ζ(s, a). Proc. Roy. Soc. London
Ser. A 461, pp. 297–304.

R. B. Paris and S. Cang (1997). An asymptotic representa-
tion for ζ( 1

2
+it). Methods Appl. Anal. 4(4), pp. 449–470.

R. B. Paris and D. Kaminski (2001). Asymptotics and
Mellin-Barnes Integrals. Cambridge: Cambridge Univer-
sity Press.

R. B. Paris and W. N.-C. Sy (1983). Influence of equilibrium
shear flow along the magnetic field on the resistive tearing
instability. Phys. Fluids 26(10), pp. 2966–2975.

R. B. Paris and A. D. Wood (1995). Stokes phenomenon
demystified. Bull. Inst. Math. Appl. 31(1-2), pp. 21–28.

G. Parisi (1988). Statistical Field Theory. Reading, MA:
Addison-Wesley.



852 Bibliography

A. M. Parkhurst and A. T. James (1974). Zonal Polyno-
mials of Order 1 Through 12. In H. L. Harter and D. B.
Owen (Eds.), Selected Tables in Mathematical Statistics,
Volume 2, pp. 199–388. Providence, RI: Amer. Math. Soc.

J. B. Parkinson (1969). Optical properties of layer antifer-
romagnets with K2NiF4 structure. J. Phys. C: Solid State
Physics 2(11), pp. 2012–2021.

R. Parnes (1972). Complex zeros of the modified Bessel func-
tion Kn(Z). Math. Comp. 26(120), pp. 949–953.

P. I. Pastro (1985). Orthogonal polynomials and some q-beta
integrals of Ramanujan. J. Math. Anal. Appl. 112(2), pp.
517–540.

S. Paszkowski (1988). Evaluation of Fermi-Dirac Integral. In
A. Cuyt (Ed.), Nonlinear Numerical Methods and Ratio-
nal Approximation (Wilrijk, 1987), Volume 43 of Mathe-
matics and Its Applications, pp. 435–444. Dordrecht: Rei-
del.

S. Paszkowski (1991). Evaluation of the Fermi-Dirac integral
of half-integer order. Zastos. Mat. 21(2), pp. 289–301.

J. K. Patel and C. B. Read (1982). Handbook of the Nor-
mal Distribution, Volume 40 of Statistics: Textbooks and
Monographs. New York: Marcel Dekker Inc. A revised
and expanded 2nd edition was published in 1996.

J. Patera and P. Winternitz (1973). A new basis for the rep-
resentation of the rotation group. Lamé and Heun polyno-
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G. Petiau (1955). La Théorie des Fonctions de Bessel
Exposée en vue de ses Applications à la Physique
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(N.S.) 31, pp. 117–122.

R. Piessens and S. Ahmed (1986). Approximation for
the turning points of Bessel functions. J. Comput.
Phys. 64(1), pp. 253–257.

R. Piessens and M. Branders (1972). Chebyshev polyno-
mial expansions of the Riemann zeta function. Math.
Comp. 26(120), pp. G1–G5.

R. Piessens and M. Branders (1983). Modified Clenshaw-
Curtis method for the computation of Bessel function in-
tegrals. BIT 23(3), pp. 370–381.

R. Piessens and M. Branders (1985). A survey of numerical
methods for the computation of Bessel function integrals.
Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp.
249–265. International conference on special functions:
theory and computation (Turin, 1984).

A. Pinkus and S. Zafrany (1997). Fourier Series and Integral
Transforms. Cambridge: Cambridge University Press.

G. Pittaluga and L. Sacripante (1991). Inequalities for the
zeros of the Airy functions. SIAM J. Math. Anal. 22(1),
pp. 260–267.

S. Pokorski (1987). Gauge Field Theories. Cambridge Mono-
graphs on Mathematical Physics. Cambridge: Cambridge
University Press.

J. Polchinski (1998). String Theory: An Introduction to
the Bosonic String, Vol. I. Cambridge Monographs on
Mathematical Physics. Cambridge: Cambridge University
Press.



Bibliography 853
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York: Springer-Verlag. Pólya’s contribution translated
from the German by Dorothee Aeppli.
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A. Poquérusse and S. Alexiou (1999). Fast analytic formu-
las for the modified Bessel functions of imaginary order
for spectral line broadening calculations. J. Quantit. Spec.
and Rad. Trans. 62(4), pp. 389–395.
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Math. Phys. 220(1), pp. 165–229.

K. L. Sala (1989). Transformations of the Jacobian am-
plitude function and its calculation via the arithmetic-
geometric mean. SIAM J. Math. Anal. 20(6), pp. 1514–
1528.

L. Z. Salchev and V. B. Popov (1976). A property of the
zeros of cross-product Bessel functions of different orders.
Z. Angew. Math. Mech. 56(2), pp. 120–121.

H. E. Salzer (1955). Orthogonal polynomials arising in
the numerical evaluation of inverse Laplace transforms.
Math. Tables Aids Comput. 9(52), pp. 164–177.

P. Sarnak (1999). Quantum Chaos, Symmetry and Zeta
Functions. Lecture I, Quantum Chaos. In R. Bott (Ed.),
Current Developments in Mathematics, 1997 (Cambridge,
MA), pp. 127–144. Boston, MA: International Press.
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der Eigenwerte der Sphäroiddifferentialgleichung. Numer.
Math. 4, pp. 310–312.

C. W. Schelin (1983). Calculator function approximation.
Amer. Math. Monthly 90(5), pp. 317–325.

J. L. Schiff (1999). The Laplace Transform: Theory and
Applications. Undergraduate Texts in Mathematics. New
York: Springer-Verlag.

T. Schmelzer and L. N. Trefethen (2007). Computing the
gamma function using contour integrals and rational ap-
proximations. SIAM J. Numer. Anal. 45(2), pp. 558–571.

D. Schmidt (1979). Die Lösung der linearen Differentialgle-
ichung 2. Ordnung um zwei einfache Singularitäten durch
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che Lösungen Hill’scher Differentialgleichungen. Analy-
sis 3(1-4), pp. 189–203.

H. Volkmer (1984). Integral representations for products of
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Painlevé equation. Vesti Akad. Navuk. BSSR Ser. Fiz.
Tkh. Nauk. 3, pp. 30–35.

G. D. Yakovleva (1969). Tables of Airy Functions and Their
Derivatives. Moscow: Izdat. Nauka.

Z. M. Yan (1992). Generalized Hypergeometric Functions
and Laguerre Polynomials in Two Variables. In Hyperge-
ometric Functions on Domains of Positivity, Jack Polyno-
mials, and Applications (Tampa, FL, 1991), Volume 138
of Contemporary Mathematics, pp. 239–259. Providence,
RI: Amer. Math. Soc.

A. J. Yee (2004). Partitions with difference conditions and
Alder’s conjecture. Proc. Natl. Acad. Sci. USA 101(47),
pp. 16417–16418.

A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1985).
The calculation of the Riemann zeta function in the
complex domain. USSR Comput. Math. and Math.
Phys. 25(2), pp. 111–119.

A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988).
Computation of the derivatives of the Riemann zeta-
function in the complex domain. USSR Comput. Math.
and Math. Phys. 28(4), pp. 115–124. Includes Fortran
programs.

F. L. Yost, J. A. Wheeler, and G. Breit (1936). Coulomb
wave functions in repulsive fields. Phys. Rev. 49(2), pp.
174–189.

A. Young and A. Kirk (1964). Bessel Functions. Part IV:
Kelvin Functions. Royal Society Mathematical Tables,
Volume 10. Cambridge-New York: Cambridge University
Press.

D. M. Young and R. T. Gregory (1988). A Survey of Numer-
ical Mathematics. Vol. II. New York: Dover Publications
Inc. Corrected reprint of the 1973 original, published by
Addison-Wesley.

A. P. Yutsis, I. B. Levinson, and V. V. Vanagas (1962).
Mathematical Apparatus of the Theory of Angular Mo-
mentum. Jerusalem: Israel Program for Scientific Trans-
lations for National Science Foundation and the National
Aeronautics and Space Administration. Translated from
the Russian by A. Sen and R. N. Sen.

F. A. Zafiropoulos, T. N. Grapsa, O. Ragos, and M. N. Vra-
hatis (1996). On the Computation of Zeros of Bessel and
Bessel-related Functions. In D. Bainov (Ed.), Proceed-
ings of the Sixth International Colloquium on Differential
Equations (Plovdiv, Bulgaria, 1995), Utrecht, pp. 409–
416. VSP.

D. Zagier (1989). The Dilogarithm Function in Geometry
and Number Theory. In R. Askey et al. (Eds.), Number
Theory and Related Topics (Bombay, 1988), Volume 12 of
Tata Inst. Fund. Res. Stud. Math., pp. 231–249. Bom-
bay/Oxford: Tata Inst. Fund. Res./Oxford University
Press.



Bibliography 871

D. Zagier (1998). A modified Bernoulli number. Nieuw Arch.
Wisk. (4) 16(1-2), pp. 63–72.

R. Zanovello (1975). Sul calcolo numerico della funzione di
Struve Hν(z). Rend. Sem. Mat. Univ. e Politec. Torino 32,
pp. 251–269.

R. Zanovello (1977). Integrali di funzioni di Anger, Weber
ed Airy-Hardy. Rend. Sem. Mat. Univ. Padova 58, pp.
275–285.

R. Zanovello (1978). Su un integrale definito del prodotto di
due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci.
Fis. Mat. Natur. 112(1-2), pp. 63–81.

R. Zanovello (1995). Numerical analysis of Struve functions
with applications to other special functions. Ann. Numer.
Math. 2(1-4), pp. 199–208.

A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995). Distribution
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Akad. Nauk SSSR. Translated title: Tables of the conflu-
ent hypergeometric function.





Notations

!
n!q: q-factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
·

a · b: vector dot (or scalar) product . . . . . . . . . . . . . . . 9
∗
f ∗ g: convolution for Fourier transforms . . . . . . . . . 27
f ∗ g: convolution for Laplace transforms . . . . . . . . . 28
f ∗ g: convolution for Mellin transforms . . . . . . . . . . 29
f ∗ g: convolution product . . . . . . . . . . . . . . . . . . . . . . . 53
×
G×H: Cartesian product of groups G and H . . .570

×
a× b: vector cross product. . . . . . . . . . . . . . . . . . . . . . . .9

/

S1/S2: set of all elements of S1 modulo elements of
S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

∼
asymptotic equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
∇

del operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
∇2

Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Laplacian for cylindrical coordinates . . . . . . . . . . . . . . .7
Laplacian for polar coordinates . . . . . . . . . . . . . . . . . . . . 7
Laplacian for spherical coordinates . . . . . . . . . . . . . . . . 8

∇f
gradient of differentiable scalar function f . . . . . . . . 10

∇× F
curl of vector-valued function F . . . . . . . . . . . . . . . . . . 10
∇ · F

divergence of vector-valued function F. . . . . . . . . . . .10∫ b
a

Cauchy principal value . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6∫ (b+)

a

loop integral in C: path begins at a, encircles b once
in the positive sense, and returns to a. . . . . . . . . 139∫ (1+,0+,1−,0−)

P

Pochhammer’s loop integral . . . . . . . . . . . . . . . . . . . . . 142∫
· · · dqx
q-integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

z

complex conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
|z|

modulus (or absolute value) . . . . . . . . . . . . . . . . . . . . . . 15
‖a‖

magnitude of vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
‖A‖p
p-norm of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

‖x‖2
Euclidean norm of a vector . . . . . . . . . . . . . . . . . . . . . . . 74
‖x‖p
p-norm of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
‖x‖∞

infinity (or maximum) norm of a vector . . . . . . . . . . 74
f(c+)

limit on right (or from above) . . . . . . . . . . . . . . . . . . . . . 4
f(c−)

limit on left (or from below) . . . . . . . . . . . . . . . . . . . . . . . 4
f [n](z)
nth q-derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

xn

falling factorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .618
xn

rising factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618

b0+
a1
b1+

a2
b2+ ···

continued fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
(n|P )

Jacobi symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
(n|p)

Legendre symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
(a; q)n
q-factorial (or q-shifted factorial) . . . . . . . . . . . 145, 420

(a; q)ν
q-shifted factorial (generalized) . . . . . . . . . . . . . . . . . . 420

(a; q)∞
q-shifted factorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

(a1, a2, . . . , ar; q)n
multiple q-shifted factorial . . . . . . . . . . . . . . . . . . . . . . 420

(a1, a2, . . . , ar; q)∞
multiple q-shifted factorial . . . . . . . . . . . . . . . . . . . . . . 420

873



874 Notations

(j1 m1 j2 m2|j1 j2 j3 −m3)
Clebsch–Gordan coefficient . . . . . . . . . . . . . . . . . . . . . . 758(

m
n

)
binomial coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 619(

n1+n2+···+nk
n1,n2,...,nk

)
multinomial coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 620(
j1 j2 j3
m1 m2 m3

)
3j symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .758
〈Λ, φ〉

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
〈f, φ〉

tempered distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
〈δ, φ〉

Dirac delta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 36〈
n
k

〉
Eulerian number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

[z0, z1, . . . , zn]
divided difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

[a]κ
partitional shifted factorial . . . . . . . . . . . . . . . . . . . . . . 769

[p/q]f
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Möbius function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

N
winding number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

N(n, k)
Narayana number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

nc (z, k)
Jacobian elliptic function . . . . . . . . . . . . . . . . . . . . . . . 550

nd (z, k)
Jacobian elliptic function . . . . . . . . . . . . . . . . . . . . . . . 550

ns (z, k)
Jacobian elliptic function . . . . . . . . . . . . . . . . . . . . . . . 550

ν(n)
number of distinct primes dividing n . . . . . . . . . . . . 638

O(x)
order not exceeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

o(x)
order less than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

On(x)
Neumann’s polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 247

PI, PII, PIII, P′III, PIV, PV, PVI
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Lamé polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

sd (z, k)
Jacobian elliptic function . . . . . . . . . . . . . . . . . . . . . . . 550

sdEm
2n+2

(
z, k2

)
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Painlevé transcendents . . . . . . . . . . . . . . . . . . . . . . . . . . 739

continuous function
at a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 7, 15
notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
of two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7, 15
on a point set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
on a region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
on an interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



898 Index

on the left (or right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
piecewise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 7
removable discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
sectionally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
simple discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

continuous Hahn polynomials
. . . . . . . . . . . . . see Hahn class orthogonal polynomials.

continuous q-Hermite polynomials . . . . . . . . . . . . . . . . . 473
continuous q−1-Hermite polynomials. . . . . . . . . . . . . . .473

asymptotic approximations to zeros . . . . . . . . . . . . . 474
continuous q-ultraspherical polynomials . . . . . . . . . . . 473
contour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
simple closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

convergence
acceleration . . . . . . . . . see acceleration of convergence.
cubic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
of the pth order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
quadratic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
coordinate systems

cylindrical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
ellipsoidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582, 693
elliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
elliptical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .677–678
oblate spheroidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
parabolic cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
paraboloid of revolution . . . . . . . . . . . . . . . . . . . . . . . . . 317
paraboloidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346, 678
polar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
projective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
prolate spheroidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
spherical (or spherical polar) . . . . . . . . . . . . . . . . . . . . . . 8
sphero-conal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
toroidal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371, 379

Cornu’s spiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
connection with Fresnel integrals . . . . . . . . . . . . . . . . 168

cosecant function . . . . . . . . . see trigonometric functions.
cosine function . . . . . . . . . . . . see trigonometric functions.
cosine integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

analytic continuation. . . . . . . . . . . . . . . . . . . . . . . . . . . .151
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
asymptotic expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 153

exponentially-improved . . . . . . . . . . . . . . . . . . . . . . . 154
auxiliary functions . . . see auxiliary functions for sine

and cosine integrals.
Chebyshev-series expansions . . . . . . . . . . . . . . . . 156–157
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

expansion in spherical Bessel functions . . . . . . . . . . 153
generalized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188–189
graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
hyperbolic analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

analytic continuation . . . . . . . . . . . . . . . . . . . . . . . . . 151
integral representations . . . . . . . . . . . . . . . . . . . . . . . . . 152
integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Laplace transform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
principal value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
relations to exponential integrals . . . . . . . . . . . . . . . . 151
sums. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
value at infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

asymptotic expansion . . . . . . . . . . . . . . . . . . . . . . . . . 154
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

cosmology
confluent hypergeometric functions . . . . . . . . . . . . . . 346
incomplete beta functions . . . . . . . . . . . . . . . . . . . . . . . 189

cotangent function . . . . . . . . see trigonometric functions.
Coulomb excitation of nuclei . . . . . . . . . . . . . . . . . . . . . . 753
Coulomb field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
Coulomb functions

Dirac delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Coulomb functions: variables ρ, η . . . . . . . . . . . . . . . . . 742

analytic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753–755
asymptotic expansions

large η . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .747
large ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .747
uniform expansions. . . . . . . . . . . . . . . . . . . . . . .747–748

case η = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
complex variable and parameters . . . . . . . . . . . 748, 754
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
conversions between variables and parameters . . . 754
cross-product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
expansions in Airy functions . . . . . . . . . . . . . . . . . . . . 747
expansions in Bessel functions. . . . . . . . . . . . . . . . . . .746
expansions in modified Bessel functions . . . . . . . . . 746
expansions in spherical Bessel functions . . . . . . . . . 745
functions F`(η, ρ), G`(η, ρ), H±` (η, ρ) . . . . . . . . . . . . . 742
graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743–744
integral representations . . . . . . . . . . . . . . . . . . . . . . . . . 745
limiting forms

large ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
large |η| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
large ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746, 747
small |η| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
small ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744



Index 899

normalizing constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
phase shift (or phase) . . . . . . . . . . . . . . . . . . . . . . 742, 756
power-series expansions in ρ . . . . . . . . . . . . . . . . . . . . .745
recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
relations to other functions

confluent hypergeometric functions . . . . . . . . . . . 742
Coulomb functions with variables r, ε . . . . . . . . . 751
Whittaker functions . . . . . . . . . . . . . . . . . . . . . . . . . . 742

scaling of variables and parameters . . . . . . . . . 753, 754
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
transition region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
WKBJ approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 755
Wronskians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

Coulomb functions: variables r, ε . . . . . . . . . . . . . . . . . .748
analytic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753–755
asymptotic approximations and expansions for large
|r| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

asymptotic expansions as ε→ 0 . . . . . . . . . . . . . . . . . 753
uniform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .753

case ε = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
complex variables and parameters . . . . . . . . . . . . . . . 754
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
conversions between variables and parameters . . . 754
definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 748
derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
expansions in Airy functions . . . . . . . . . . . . . . . . . . . . 753
expansions in Bessel functions . . . . . . . . . . . . . . 752, 753
expansions in modified Bessel functions. . . . .752, 753
functions f(ε, `; r), h(ε, `; r) . . . . . . . . . . . . . . . . . . . . . .748
functions s(ε, `; r), c(ε, `; r) . . . . . . . . . . . . . . . . . . . . . . 748
graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749–750
integral representations for Dirac delta . . . . . . . . . . 749
limiting forms for large ` . . . . . . . . . . . . . . . . . . . . . . . . 752
power-series expansions in ε . . . . . . . . . . . . . . . . . . . . . 752
power-series expansions in r . . . . . . . . . . . . . . . . . . . . . 752
recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
relations to other functions

confluent hypergeometric functions . . . . . . . . . . . 748
Coulomb functions with variables ρ, η . . . . . . . . . 751
Whittaker functions. . . . . . . . . . . . . . . . . . . . . .748, 751

scaling of variables and parameters . . . . . . . . . 753, 754
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
Wronskians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749

Coulomb phase shift . . . . . . . . . . . . . . . . 145, 742, 755, 756
Coulomb potential barriers . . . . . . . . . . . . . . . . . . . . . . . . 754
Coulomb potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 753–754
q-hypergeometric function. . . . . . . . . . . . . . . . . . . . . . .432

Coulomb radial functions
. . . . . . . . . . . . see Coulomb functions: variables ρ, η.

Coulomb spheroidal functions . . . . . . . . . . . . . . . . . . . . . 704
as confluent Heun functions . . . . . . . . . . . . . . . . . . . . . 717

Coulomb wave equation
irregular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 742, 748

regular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 742, 748
singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742, 748
turning points . . . . . . . . . . . . . . . . . . . . . . . . . 742, 748, 754

Coulomb wave functions . . see Coulomb functions: vari-
ables ρ, η and Coulomb functions: variables r, ε.

counting techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
critical phenomena

elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
hypergeometric function . . . . . . . . . . . . . . . . . . . . . . . . 400

critical points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .781
coalescing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789–790

cross ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
cryptography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Weierstrass elliptic functions . . . . . . . . . . . . . . . . . . . . 582
cubature

for disks and squares . . . . . . . . . . . . . . . . . . . . . . . . . 84–85
cubic equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
cubic equations

solutions as trigonometric and hyperbolic functions
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

curve
piecewise differentiable . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
simple closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

cusp bifurcation set
formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .782

cusp canonical integral . . . . . . . . . . . . . . . . . . . . . . . 776, 785
zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .785

table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
cusp catastophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .776, 784
cuspoids

normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
Riemann surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

cyclic identities
Jacobian elliptic functions. . . . . . . . . . . . . . . . . . . . . . .558

cyclotomic fields
Bernoulli and Euler polynomials . . . . . . . . . . . . . . . . 598

cylinder functions
addition theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
differential equations . . . . . . . . . . . . . . . . . . . . . . . 217, 226
integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240–241
multiplication theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 246
recurrence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
zeros. . . . . . . . . . . . . . . . .see zeros of cylinder functions.

cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
cylindrical polar coordinates

. . . . . . . . . . . . . . . . . . . . . . . see cylindrical coordinates.



900 Index

Darboux’s method
asymptotic approximations of sums and sequences

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65–66
Dawson’s integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
generalized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
integral representation . . . . . . . . . . . . . . . . . . . . . . . . . . 162
notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
relation to error functions . . . . . . . . . . . . . . . . . . . . . . . 162
relation to parabolic cylinder functions . . . . . . . . . . 308
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

de Branges–Wilson beta integral . . . . . . . . . . . . . . . . . . 143
De Moivre’s theorem

trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . . 118
Dedekind modular function. . . . . . . . . . . . . . . . . . . . . . . .646

functional equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
Dedekind sums

number theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
Dedekind’s eta function . . . . . . . . see modular functions.
Dedekind’s modular function . . . see modular functions.
del operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Dellanoy numbers

definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
recurrence relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
relation to lattice paths . . . . . . . . . . . . . . . . . . . . . . . . . 621
table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

delta sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
delta wing equation
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Rouché’s theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 92
round-robin tournaments . . . . . . . . . . . . . . . . . . . . . . . . . . 648
Runge–Kutta methods

ordinary differential equations . . . . . . . . . . . . . . . . 89–90
Rutherford scattering

Coulomb functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Rydberg constant
Coulomb functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

S-matrix scattering
Coulomb functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754

saddle points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
coalescing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48, 789–790

sampling expansions
parabolic cylinder functions . . . . . . . . . . . . . . . . . . . . . 317

scaled gamma function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
scaled Riemann theta functions

computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

scaled spheroidal wave functions . . . . . . . . . . . . . . 706–707
bandlimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
extremal properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
integral equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706



Index 941

orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706
scaling laws

for diffraction catastrophes . . . . . . . . . . . . . . . . . . . . . . 785
scattering problems

associated Legendre functions . . . . . . . . . . . . . . . . . . . 379
Coulomb functions . . . . . . . . . . . . . . . . . . . . . . . . . 753–755

scattering theory
Mathieu functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .679
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Bézier curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

square-integrable function . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
stability problems

Mathieu functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .679
stable polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Hurwitz criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
statistical analysis

multivariate
functions of matrix argument . . . . . . . . . . . . . . . . . 773

statistical applications
functions of matrix argument . . . . . . . . . . . . . . . . . . . 773

statistical mechanics
application to combinatorics . . . . . . . . . . . . . . . . . . . . 635
Heun functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .720
incomplete beta functions . . . . . . . . . . . . . . . . . . . . . . . 189
Jacobian elliptic functions. . . . . . . . . . . . . . . . . . . . . . .564
modular functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .582
q-hypergeometric function. . . . . . . . . . . . . . . . . . . . . . .432
solvable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
theta functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533

statistical physics
Bernoulli and Euler polynomials . . . . . . . . . . . . . . . . 598
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