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The majority of scientists, mathematicians and engineers must consult reference books containing information
on a variety of functions. This is because all but the most mundane quantitative work involves relationships that are
best described by mathematical functions of various complexities. Of course, the need will depend on the user, but
most will require information about the general behavior of the function in question and its mathematical properties,
as well as its numerical values at a number of arguments.

The first edition of An Atlas of Functions, the product of collaboration between a mathematician and a chemist,
appeared during an era when the programmable calculator was the workhorse for the numerical evaluation of
functions. That role has now been taken over by the omnipresent computer, and therefore the second edition
delegates this duty to Equator, the Atlas function calculator. This is a software program that, as well as carrying
out other tasks, will calculate values of over 200 functions, mostly with 15 digit precision. There are numerous other
improvements throughout this new edition but the objective remains the same: to provide the reader, regardless of
his or her discipline, with a succinct compendium of information about all the common mathematical functions in
use today.

While relying on Equator to generate exact numerical values, the Atlas of Functions describes each function
graphically and gives ready access to the most important definitions, properties, expansions and other formulas that
characterize it, and its relationship to other functions. As well, the utility of the Atlas is enhanced by the inclusion
of sections that briefly discuss important topics related to specific functions; the new edition has many more such
sections. The book is organized into 64 chapters, each of which is devoted to one function or to a family of closely
related functions; these appear roughly in order of increasing complexity. A standard format has been adopted for
each chapter to minimize the effort needed to locate a sought item of information. A description of how the chapters
are sectioned is included as Chapter 0. Several appendices, a bibliography and two comprehensive indices complete
the volume.

In addition to the traditional book format, an electronic version of An Atlas of Functions has also been produced
and may even be available through your library or other information center. The chapter content of the paper and
electronic editions is identical, but Equator, the Atlas function calculator is not included in the latter. The Equator
CD is included with the print version of the book, and a full description of the software will be found in Appendix C.
Because Equator is such a useful adjunct to the Atlas, stand-alone copies of the Equator CD have been made widely
available, through booksellers and elsewhere, primarily for the benefit of users of the electronic version of the Atlas.

Though the formulas in the Atlas and the routines in Equator have been rigorously checked, errors doubtless
remain. If you encounter an obscurity or suspect a mistake in either the Atlas or Equator, please let us know at
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koldham@trentu.ca, jmyland@trentu.ca or jspanier@uci.edu. An Errata of known errors and revisions will be found
on the publisher’s website; please access www.springer.com/978-0-387-48806-6 and follow the links. This will be
updated as and if new errors are detected or clarifications are found to be needed. Use of the Atlas of Functions or
Equator, the Atlas function calculator is at your own risk. The authors and the publisher disclaim liability for any
direct or consequential damage resulting from use of the Atlas or Equator.

It is a pleasure to express our gratitude to Michelle Johnston, Sten Engblom, and Trevor Mace-Brickman for
their help in the creation of the Atlas and Equator. The frank comments of several reviewers who inspected an early
version of the manuscript have also been of great value. We give sincere thanks to Springer, and particularly to Ann
Kostant and Oona Schmid, for their commitment to the lengthy task of carrying the concept of An Atlas of Functions
through to reality with thoroughness, enthusiasm, skill, and even some humor. Their forbearance in dealing with
the authors is particularly appreciated.

We hope you will enjoy using An Atlas of Functions and Equator, and that they will prove helpful in your work
or studies.

January 2008 Keith B. Oldham
Jan C. Myland

Jerome Spanier
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Every chapter has sections devoted to: notation, behavior, definitions, special cases, intrarelationships, expansions,
particular values, numerical values, limits and approximations, operations of the calculus, complex argument,
generalizations, and cognate functions. In addition, each chapter has the special features itemized below its title.
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Functions are operators that accept numbers as input and generate other numbers as output. The simplest kinds
receive one number, usually named the argument, and produce another number, called the value of the function

input outputfunctionargument value0:0:1

Functions that need only one argument to trigger an output are univariate functions. Bivariate functions require
two input numbers; one of these two variables generally retains the name “argument”, whereas the second variable
goes by another name, such as order, index, modulus, coefficient, degree, or parameter. There are also trivariate,
quadrivariate, and even multivariate functions. Likewise certain functions may give multiple outputs; the number
of such output values may be finite or infinite. Such multivalued functions are often conventionally restricted to
deliver a single output, a so-called principal value, and this is the standard used in the Atlas.

In this chapter are collected some considerations that relate to all, or most, functions. The general organization
of the Atlas is also explained here. Thus, this could be a good starting point for the reader. However, the intent of
the authors is that the information in the Atlas be immediately available to an unprepared reader. There are no
special codes that must be mastered in order to use the book, and the only conventions that we adopt are those that
are customary in scientific writing.

Each chapter in the Atlas is devoted to a single function or to a small number of intimately related functions.
The preamble to the chapter exposes any such relationships and introduces special features of the subject function.

0:1 NOTATION

The nomenclature and symbolism of mathematical functions are bedeviled by ambiguities and inconsistencies.
Several names may attach to a single function, and one symbol may be used to denote several functions. In the first
section of each chapter the reader is alerted to such sources of possible confusion.

For the sake of standardization, we have imposed certain conventions relating to symbols. Though this has
meant sometimes adopting unfamiliar notation, each function in the Atlas has its own unique symbol, as listed in
the Symbol Index. We have eschewed boldface and similar typographical niceties for symbolizing functions on the
grounds that they are difficult to reproduce by pencil on paper. We reserve the use of italics to represent numbers
(such as function arguments, x (or y); constants, c; and coefficients, a1, a2, a3, , an) and avoid their use in
symbolizing functions. When a variable is necessarily an integer it is represented by n (or m), rather than x, and

DOI 10.1007/978-0-387-48807-3_1, © Springer Science+Business Media, LLC 2009 
K.B. Oldham et al., An Atlas of Functions, Second Edition,



2 GENERAL CONSIDERATIONS 0:2

often appears subscript following the function’s symbol, instead of within parentheses. Variables that are often
integers, but are not necessarily so, are represented by v (or ). Arguments that are frequently interpreted as angles
may be represented by (or ). Occasionally, as in Chapter 64, some symbol other than x is used unexpectedly to
represent the variable, x being reserved to serve as the argument of a more general function. For the same reason,
we may avoid using “argument” as the name of the variable in such cases. Notice that a roman f symbol is used to
represent an arbitrary function, or as a stand-in for a group of specified function symbols, but the italic f is employed
to signify the numerical value of f(x) corresponding to a specific x. Thus the axes of cartesian graphs may be labeled
x and f, rather than the customary x,y found in texts dealing with analytical geometry.

We generally avoid the use of primes to represent differentiation but, where they have become part of the
established symbolism, as in Section 52:7 and Chapter 56, this usage is followed. Elsewhere a notation such as f
merely connotes “another f ”.

In Sections 46:14 and 46:15, the z symbol serves as a cartesian coordinate. Elsewhere the symbol z is reserved
to denote a complex variable equal to x + iy. All other variables are implicitly real, unless otherwise noted.

The names of most functions end with the word “function” (the error function, the Hurwitz function), but three
other terminal words are commonly encountered. Some univariate functions that accept, exclusively or primarily,
integer arguments are called “numbers” (Fibonacci numbers, lambda numbers); a few bivariate functions are named
similarly (Stirling numbers). Functions defined as power series of finite length generally take the name
“polynomials” (Chebyshev polynomials, exponential polynomial). The word “integral” often ends the name of
functions that are defined as integrals (hyperbolic cosine integral, Dawson’s integral). Yet other functions have
unique names that don’t fit into the general pattern (dilogarithm, binomial coefficient). Adjectives relate some
functions to a parent function (associated Laguerre function, incomplete gamma function, auxiliary Fresnel integral).
An index of function symbols will be found following the appendices, while the names of all our functions are
included in the Subject Index that concludes the Atlas.

0:2 BEHAVIOR

This section reveals how the function changes in value as its variables change, thereby exposing the general
“shape” of the function. This information is conveyed by a verbal description, supplemented by graphics.

There are several styles of figure that amplify the text in Sections 2 and elsewhere. The first is a cartesian line-
graph of the function’s values f plotted straightforwardly versus its argument x. Frequently there are several lines,
representing different functions, plotted in different colors on the same graph. The second style of figure,
particularly suitable for bivariate functions, is a three-dimensional orthographic view of the surface, showing how
the function varies in magnitude as each of the variables changes over a restricted range. Pairs of such graphics are
often used in Sections 11 to represent the real and imaginary parts of complex-valued functions. Not infrequently,
complex-valued functions are inherently multivalued and, to convert such a function into a single-valued counterpart,
it is necessary to “cut” the surface; such a cut appears as a grey “cliff” on the three-dimensional figure. Our three-
dimensional graphics are colored, but the color plays only a subsidiary role. Some bivariate functions have
discontinuities, such as a sudden change in value from + to , and when there are several of these, three-
dimensional figures become so confused as to be unhelpful. In these circumstances, we sometimes resort to a third
style of graphic, that we call a projection graph. In this perspective representation, a three-dimensional image is
combined with a two-dimensional display, the axes of which correspond to two variables, with color being used to
indicate the magnitude of the function at each point in the rectangular space. With trivariate and quadrivariate
functions, graphical representation ceases to be useful and the behaviors of such functions may be described in this
Atlas without the aid of graphics. You will encounter figures of other kinds, too, each designed to be helpful in the
local context.
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Quadrant x f

first + +

second +

third

fourth +

Some functions are defined for all values of their variable(s), from to + .
For other functions there are restrictions, such as 1 < x 1 or n 1,2,3, , on those
values that specify the domain of each variable and thereby the range of the function.
Likewise, the function itself may be restricted in range and may be real valued,
complex valued, or each of these in different domains. Such considerations are
discussed in the second section of each chapter. In this context, the idea of quadrants
is sometimes useful. Borrowed from the graphical representation of the function f,
this concept facilitates separate discussion of the properties of a function f according
to the signs of x and f, as in the table.

0:3 DEFINITIONS

Often there are several formulas relating a function to its variable(s), although they may not all apply over the
entire range of the function. These various interrelationships are listed in the third section of each chapter under the
heading “Definitions” even though, from a strictly logical viewpoint, some might prefer to select one as the unique
definition and cite the others as “equivalences” or “representations”.

Several types of definition are encountered in Sections 3. For example, a function may be defined:
(a) by an equation that explicitly defines the function in terms of simpler functions and algebraic operations;
(b) by a formula relating the function to its variable(s) through a finite or an infinite number of arithmetic or
algebraic operations;
(c) as the derivative or indefinite integral of a simpler function;
(d) as an integral transform of the form

1

0

f ( ) g( , )d
t

t

x x t t0:3:1

where g is a function having one more variable than f, t0 and t1 being specified limits of integration;
(e) through a generating function, G(x,t), that defines a family of functions f j (x) via the expansion

G( , ) f ( ) g ( )j j
j

x t x t0:3:2

where g j (t) is a simpler set of functions such as t j;
(f) as the inverse of another function F(x) so that the implicit equation

F f ( )x x0:3:3

is used to define f(x) [this is graphically equivalent to reflecting the function F(x) in a straight line of unity slope
through the origin, as elaborated in Section 14:15];
(g) as a special case or a limiting case of a more general function;
(h) parametrically through a pair of equations that separately relate the function f(x) and its argument x to a third
variable;
(i) implicitly via a differential equation [Section 24:14], the solution (or one of the solutions) of which is the subject
function;
(j) through concepts borrowed from geometry or trigonometry; and
(k) by synthesis, the application of a sequence of algebraic and differintegration [Section 12:14] operations applied
to a simpler function, as described in Section 43:14.
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0:4 SPECIAL CASES

If the function reduces to a simpler function for special values of the variable(s), this is noted in the fourth
section of each chapter.

0:5 INTRARELATIONSHIPS

An equation linking the two functions f(x) and g(x) is an interrelationship between them. In contrast, one speaks
of an intrarelationship if there is a formula that provides a link between instances of a single function at two or more
values of one of its variables, for example, between f(x1) and f(x2). In this Atlas intrarelationships will be found in
Section 5 of each chapter, interrelationships mainly in Sections 3 and 12.

An equation expressing the relationship between f( x) and f(x) is called a reflection formula. Less commonly
there exist reflection formulas relating f(a x) to f(a+x) for nonzero values of a.

A second class of intrarelationships are translation formulas; these relate f(x+a) to f(x). The most general
translation formula, in which a is free to vary continuously, becomes an argument-addition formula that relates
f(x+y) to f(x) and f(y). However, many translation formulas are restricted to special values of a such as a 1 or
a n ; the relationships are then known as recurrence relations or recursion formulas. Such relationships are
common in bivariate functions; a recursion formula then normally relates f(v , x) to f(v 1, x) or to both f(v 1, x)
and f(v 2 , x). A very general argument-addition formula is provided by the Taylor expansion (Brook Taylor,
English mathematician and physicist, 1685 1731):

2 2 3 3

2 3

d f d f d ff ( ) f ( ) ( ) ( ) ( )
d 2! d 3! d

x xy x y x y y y
x x x

0:5:1

Expressions for the remainder after this series is truncated to a finite number of terms are provided by Abramowitz
and Stegun [Section 3.6], and by Jeffrey [page 79].

A third class of intrarelationships are argument-multiplication formulas that relate f(nx) to f(x). More rarely
there exist function-multiplication formulas or function-addition formulas that provide expressions for f(x) f(y) and
f(x) + f(y), respectively.

Yet other intrarelationships are those provided by finite and infinite series. With bivariate and multivariate
functions there may be a great number of such formulas, and functions other than f may be involved.

0:6 EXPANSIONS

The sixth section of each chapter is devoted to ways in which the function(s) may be expressed as a finite or
infinite array of terms. Such arrays are normally series, products, or continued fractions.

Notation such as

=0
f ( ) g ( )j

j
x x0:6:1

is used to represent a convergent infinite series, where g is a function of j and x. Unless otherwise qualified, 0:6:1
implies that, for values of x in a specified range, the numerical value of the finite sum

0 1 2g ( ) g ( ) g ( ) g ( ) g ( )j Jx x x x x0:6:2

can be brought indefinitely close to f(x) by choosing J to be a large enough integer.
Frequently encountered are convergent series whose successive terms, for sufficiently large j, decrease in
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magnitude and alternate in sign. We shall loosely call such series alternating series. A valuable property of such
alternating series enables the remainder after a finite number of terms are summed to be estimated in terms of the
first omitted term. When ( ) jg j (x) is used to represent an alternating series, this result:

1
0 0
( ) g ( ) ( ) g ( ) g ( )

J
j j

j j J
j j

x x x0:6:3

plays an important role in the design of many algorithms.
In contrast to 0:6:1, the symbolism

f ( ) g ( ) 0,1,2, ,j
j

x x j J x~0:6:4

which is reserved for asymptotic series, implies that, for every J, the numerical value of 0:6:2 can be brought
indefinitely close to f(x) by making x, not J, sufficiently large. It is this restriction on the magnitude of x that makes
an asymptotic expansion, though of great utility in many applications, rather treacherous for the incautious user [see
Hardy].

If the function g j (x) in 0:6:1 or 0:6:4 can be written as the product cj x + j, where cj is independent of x while
and are constants, then the expansions 0:6:1 and 0:6:4 are called Frobenius series (Ferdinand Georg Frobenius,

Prussian mathematician, 1849 1917). In the case of an asymptotic series, is often negative. When 0 and
1, the name power series [Section 10:13] is used if the series is infinite, or polynomial [Chapter 17] if it is finite.

The infinite product notation

0

f ( ) g ( )j
j

x x0:6:5

implies that the numerical value of the finite product

0 1 2g ( )g ( )g ( ) g ( )Jx x x x0:6:6
approaches f(x) indefinitely closely as J takes larger and larger integer values.

The notation

1 2 3 4
0

1 2 3 4
0:6:7

is a standard abbreviation for the continued fraction

1
0

2
1

3
2

4
3

4

0:6:8

in which each j and j may denote constants or variables. A continued fraction may serve as a representation of
some function f(x). Continued fractions may be infinite, as denoted in 0:6:7, or finite (or “terminated”):

1 2 3 1
0

1 2 3 1

J J

J J
0:6:9

though the former are most common in this Atlas. Of great utility in working with continued fractions is the
equivalence

1 2 3 1 1 1 2 2 2 3 3 1
0 0

1 2 3 1 1 2 2 3 3

n n n n

n n n
0:6:10
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In what we shall call the “standard” form of a continued fraction, the variable x appears only in the numerators, that
is, only in the portions of 0:6:9. However, other forms exist in which x is part of , or both and , as in the left-
hand side of the identity

2
0 11 2

0 1 2 3 0 0 1 0 1 2 0 1 2

1 1 n
n

n n

x xx x x x x
x x x x

0:6:11

which demonstrates the interchangeability of continued fractions and polynomials. Lozenge diagrams [Section
10:14] can facilitate such as interchange.

0:7 PARTICULAR VALUES

If certain values of the variable(s) of a function generate noteworthy function values, these are cited in the
seventh section of each chapter, often as a table. The entry “ |+ ” in such a table, or elsewhere in the Atlas, or
in the output of Equator, implies that the function has a discontinuity and, moreover, that at an argument slightly
more negative than the argument in question, the function’s value is large and negative; whereas, at an argument
slightly more positive, the function is large and positive. Entries such as “+ |+ ” similarly provide information
about the sign of the function’s value on either side of a discontinuity.

In Section 7 of many chapters we include information about those arguments that lead to inflections, minima,
maxima, and particularly zeros of the subject function f(x). The term extremum is used to mean either a local
maximum or a local minimum.

An inflection of a function occurs at a value of its argument at which the second derivative of the function is
zero; that is:

2

i i2

d f ( ) 0 f ( ) inflection of f ( )
d

x x x
x

0:7:1

A local minimum and a local maximum of a function are characterized respectively by
2

m m m2

d f d f( ) 0, ( ) 0 f ( ) minimum of f ( )
d d

x x x x
x x

0:7:2

and
2

M M M2

d f d f( ) 0, ( ) 0 f ( ) maximum of f ( )
d d

x x x x
x x

0:7:3

A zero of a function is a value of its argument at which the function vanishes; that is, if
( ) 0 then a zero of f ( )f r r x0:7:4

Equivalent to the phrase “a zero of f(x)” is “a root of the equation f(x) 0.” A double zero or a double root occurs
at a value r of the argument such that

d ff ( ) ( ) 0 a double zero of f ( )
d

r r r x
x

0:7:5

The concept extends to multiple zeros or repeated roots; thus, if
d f d ff ( ) ( ) ( ) 0 a zero of f ( ) of multiplicity 1
d d

n

nr r r r x n
x x

0:7:6

A value r of x that satisfies 0:7:4 but not 0:7:5 corresponds to a simple zero or a simple root. The graphical
significance of a root, a maximum, a minimum, and an inflection, is evident from Figure 0-1.
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0:8 NUMERICAL VALUES

Very few tables of numerical values are found in the Atlas because the compact disk that accompanies the print
edition of this book is designed to obviate that need. As described in Appendix C, the disk provides access to
Equator, the Atlas function calculator. As well as carrying out certain other tasks, Equator is able to calculate the
numerical values of over two hundred mathematical functions.

The computational methods employed by Equator are so diverse and interconnected that it is impractical to
present the code or algorithms. Nevertheless, the mathematical basis of the calculations is explained in Section 8
of the relevant chapter. Generally, Section 8 reveals the domain(s) of the variable(s) within which Equator operates
but the user must appreciate that not all of the variable combinations that lie within these domains will necessarily
generate a function value. For a variety of reasons, including overflow or underflow during a computation, or an
inadequacy of residual precision at some stage of the calculation, no numerical output may be possible. Our goal
is that any answer generated be significant to the number of digits cited in the output. See Appendix C for further
information about Equator.

0:9 LIMITS AND APPROXIMATIONS

Often, as the argument or another variable of the function approaches a particular number, such as zero or
infinity, its behavior comes to approximate that of some simpler function as a limit. Such instances are noted in
Sections 9, either verbally or with the help of an equation. The symbol indicates approximate equality.

Limiting behaviors can often serve as valuable approximations, and these may be presented in Sections 9.
Whenever some approximation, not necessarily arising from a limit, is particularly noteworthy, it is reported in this
section, too. The symbol is used to indicate approach.

0:10 OPERATIONS OF THE CALCULUS

Some of the most important properties of functions are associated with their behavior when subjected to the
various operations of the calculus. Accordingly, the tenth is often one of the largest sections of a chapter.
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For most functions defined for a continuous range of argument x, the derivative
df
dx

0:10:1

exists and is reported in Sections 10. The derivatives of function combinations such as f(x)g(x), f(x)/g(x), or f(g(x))
are seldom reported because they may be readily evaluated via the product rule:

d dg dff ( )g( ) f ( ) g( )
d d d

x x x x
x x x

0:10:2

the quotient rule:

2

d f ( ) 1 d f f ( ) dg
d g( ) g( ) d g ( ) d

x x
x x x x x x0:10:3

or the chain rule:
d d f dgf g( ) g g( )
d dg d

x x
x x0:10:4

Derivatives of multivariate functions are often denoted f/ x to draw attention to the fact that the variables other than
the chosen one, here x, are being kept constant.

If f and g are two functions of the same variable, then, in addition to the elementary rule
1

dg df
df dg

0:10:5

for derivative inversion, the less familiar formulas
32 2

2 2

d g df d f
df dg dg

0:10:6

and
253 2 3

3 2 3

d g df d f df d f3
df dg dg dg dg

0:10:7

are sometimes useful. Similar formulas for higher derivatives may be derived.
If f(x) is differentiated n times, the nth derivative

d f
d

n

nx
0:10:8

is generated, and expressions for this result are sometimes reported. The nth derivative of a product is given by the
Leibniz theorem (Gottfried Wilhelm von Leibniz, German mathematician, 1646 1716):

1 2 2 1

1 2 2 1

0

d d g df d g ( 1) d f d g d f dg d ff ( )g( ) f ( ) g( )
d d 1! d d 2! d d 1! d d d

d f d g
d d

n n n n n n

n n n n n n

n j jn

n j j
j

n n n nx x x x
x x x x x x x x x

n
j x x

0:10:9

where denotes a binomial coefficient [Chapter 6] and n! the factorial function [Chapter 2]. Another useful
n
j

operation bearing the name of Leibniz gives a rule for differentiating an integral:
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x0 x1 g(u)

> 0 0 0
2 fx x

u u

> 1 0 0
2

1 f
(1 ) 1

x u x
u u

< 0 1 1
2 fx x

u u

< 1 1 1
2

1 1f
x x u

u u

2

2 2 2

2 2 1 2 1f
(1 )

u u u
u u u u

1 1

0 0

( ) ( )
1 0

1 0
( ) ( )

d d df ( , )d f , ( ) f , ( ) f ( , )d
d d d

t x t x

t x t x

t tx t t x t x x t x x t t
x x x x

0:10:10

One application of differentiation is in attaching meaning to the quotient f(x)/g(x) of two functions at an
argument value, say x a, at which they are both zero. Then, according to L’Hôpital’s rule (Guillaume François,
Marquis de L’Hôpital, 1661 1705, French aristocrat and mathematician, author of the first textbook on the calculus)

df / df( ) if f( ) g( ) 0
g( ) dg / d

x a

x a x a

xx a a
x x

0:10:11

If both derivatives are themselves zero, the rule can be applied a second time; and so on.
Reference books often express the results of indefinite integration in a form such as

f ( )d F( )x x c x0:10:12

where F(x) is a function that gives f(x) on differentiation (that is, dF/dx f(x)), and c is an arbitrary constant. To
achieve closer unity with the representation

1

0

f ( )d
x

x

t t0:10:13

of a definite integral, the Atlas adopts the formulation

0

0f ( )d F( ) F( )
x

x

t t x x0:10:14

for indefinite integration. In 0:10:13 and 0:10:14, x0 and x1 are specified lower and upper limits, x0 in 0:10:14 usually
being chosen to make F(x0) vanish. Of course, the information contained in 0:10:12 is also present in 0:10:14. An
invaluable tool for integration is the formula for integration by parts:

1 1 1

0 0 0

1 1 0 0
dff( )g( )d f( )dG( ) f G( ) f ( )G( ) ( )G( )d
d

x t x x

x t x x

t t t t t x x x x t t t
t

0:10:15

where g is the derivative of G. See Section 37:14 for further benefits of integration by parts.
Integration, definite or indefinite, can lead to a infinite result;

such integrals are not listed in the Atlas. However, an integral
may be finite even if the integrand encounters an infinity at one
of its limits. Even when the infinity is within the integration
bounds, symmetry of the integrand may allow a finite so-called
principal value or Cauchy limit [Sections 7:10 and 37:3] to be
ascribed to the integral.

Where no analytical formulation is known, it may be
necessary to evaluate an integral numerically. Algorithms for
numerical integration, or quadrature as it is often called, will be
found in Sections 4:14, 24:15, and 62:15. A change in variable,
for example

1

0

1

0

f( )d g( )d
x

x

t t u u0:10:16

may be beneficial prior to quadrature and is usually mandatory if
either of the limits is infinite. The adjacent table gives some
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suggestions for replacement variables. Judicious partitioning of the integrand, as in the example

0 0 0 0

sin sin sin1 1d d d 2 d
t t t t

t t t t
t t tt t

0:10:17

can be a valuable prelude to numerical integration.
Sections 10 sometimes include formulas for the semiderivative or semiintegral of a function. These are the

simplest fractional cases of the generalized differintegral dvf/dxv [Section 12:14]. Other fractional calculus results
may be displayed too.

Some important integral transforms involving a chapter’s function(s) are listed in Section 10, some symbol
being used as the “dummy” variable arising by transformation of a function of the real variable t. The most common
transformation encountered in this Atlas is the Laplace transformation

0

f ( )exp( )d f ( ) f ( )t st t t s0:10:18

discussed in Section 26:15. The dummy variable s of Laplace transformation is often a complex variable, but no
recognition of this appears in Sections 10. Nor are the restrictions that often exist on the domain of s made explicit.
The notations or mean the Laplace transform of f(t).f ( )t f ( )s

0:11 COMPLEX ARGUMENT

Other than in the eleventh section of each chapter, the argument of a function is generally treated as real.
Moreover we usually restrict the range of the function to ensure that function values are real.

In Sections 11, however, the effect of replacing the real argument x by the complex variable z x + iy may be
explored. Often a pair of three-dimensional diagrams shows the real Re[f(z)] and imaginary Im[f(z)] parts, of the
complex-valued function f(z). Not infrequently, complex-valued functions are inherently multivalued and, to convert
such a function into a single-valued counterpart, it is necessary to “cut” the surface that defines its values. Such a
cut appears as a grey “cliff ” on the graphic.

The most general route used to invert a Laplace transform, thereby converting a function of s back into a
function of t, involves contour integration in the complex plane via the Bromwich integral [Section 26:15].
Accordingly, such inversions appear in Section 11 of the chapter devoted to the image function . The notationf ( )s

exp( )f ( ) d f ( ) f( )
2

i

i

tss s s t
i

I0:11:1

is adopted to display the relationship between the image function and its inverse transform f(t). The operation is
known as inverse Laplace transformation.

0:12 GENERALIZATIONS

Functions can be arranged in a hierarchy in which lower members are subsumed by more general higher
members. In the chapter dealing with a particular f(x) function, special cases of f(x) – that is, functions lower in the
hierarchy – are reported in Section 4. Conversely, functions that occur higher than f(x) in some hierarchy are
reported in Section 12; that is, the functions reported here are ones of which f(x) is a special case.
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0:13 COGNATE FUNCTIONS

The thirteenth section of each chapter is devoted to citing functions – other than those reported in Sections 4
and 12 – that are closely related to the subject function, and to exploring the properties of some of them.

0:14 RELATED TOPICS

An application, or some other feature relevant to the function, is elaborated in the final section of many chapters.
Such applications often amount to brief discourses on important topics in science, engineering, and applied
mathematics. For example, certain topics in curve-fitting, integral transforms, geometric properties of various sorts,
and coordinate transformations, are to be found among the many items exposed in Sections 14. Occasionally, two
sections are needed to report related topics; the extra section is then numbered 15. The Table of Contents identifies
these topics along with other special features of each chapter.





Lacking dependence on even a single variable, the constant function is the simplest, and an almost trivial,
function.

1:1 NOTATION

Constants are also known as invariants and are represented by a variety of symbols, mostly letters drawn from
early members of the Latin and Greek alphabets. In this chapter, we mostly employ c to represent an arbitrary
constant.

1:2 BEHAVIOR

Figure 1-1 is a graphical representation of the constant function f(x) c,
a horizontal line extending to x ± , reflecting the fact that f takes the same
value for all x.

1:3 DEFINITIONS

The constant function is defined for all values of its argument x and has the same value, c, irrespective of x.

1:4 SPECIAL CASES

When c is zero, the constant function is sometimes termed the zero function. Likewise, the function f(x) c 1
is sometimes known as the unit function or unity function.

13
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constraint

c 1 c 1 c < 1

1
21 c

c
0 < c2 < 1

c2 + c 1 c ½

1:5 INTRARELATIONSHIPS

Being relations between function values at different values of the argument, intrarelationships are of no
consequence for the constant function.

1:6 EXPANSIONS

A constant may be represented as a finite sum by utilizing the formulas for an arithmetic series:

0
( ) ( 2 ) ( ) ( )

or ( 1)
1 2 2

J

j
c J j

c J Jc J
J

1:6:1

a geometric series:

2

0

1

1

1 1or
1 1

J
J j

j

J

J

c

c c
1:6:2

or an arithmetic-geometric series:

2

0

1
1 1

1

( ) ( 2 ) ( ) ( )

( 1) ( 1) /( 1) or 1 ( ) ( 1)
1

J
J j

j

J J
J J

J

c J j

c J c J
1:6:3

In these formulas and are arbitrary and J may be any positive integer.
Any constant greater than ½ may be expanded as the infinite geometric sum

2 3

1
2

1

1 1 1 11
j

j

c c c cc c
c c c c

1:6:4

or as the infinite product
2 4 2

1
2

0

1 1 1 11 1 1 1
j

j

c c c cc c
c c c c

1:6:5

A constant is expansible as the infinite continued fraction

c1:6:6

in the variety of ways indicated in the table, which lists three alternative
assignments of the terms and , any one of which validates expansion 1:6:6.
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1:7 PARTICULAR VALUES

Certain constants occur frequently in the theory of functions. Four of these – Archimedes’s constant, Catalan’s
constant, the base of natural logarithms and Euler’s constant – are important irrational numbers. There are many
formulations of these four constants other than the ones we present here; see Gradshteyn and Ryzhik [Chapter 0] for
some of these.

Archimedes (Archimedes of Syracuse, Greek philosopher, 287 212 BC) himself was content merely to bracket
his constant by (223/71) < < (22/7). It was the sixteenth-century Frenchman François Viète (“Vieta”) who
discovered the first formula

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

2 3 1415 92653 58979.1:7:1

for Archimedes’s constant, also known simply as pi. It may also be defined by the infinite sum

0

4 4 4 ( 1)4 4 3 1415 92653 58979
3 5 7 2 1

j

j j
.1:7:2

discovered by Gregory (James Gregory, Scottish mathematician, 1638 1675), as the infinite product
2

2 1
1 4

4 16 36 642 2 3 1415 92653 58979
3 15 35 63 j

j
j

.1:7:3

and in numerous other ways. The definition of Catalan’s constant (Eugène Charles Catalan, Belgian mathematician
1814 1894) is similar to 1:7:2

2
0

1 1 1 ( 1)1 0 91596 55941 77219
9 25 49 2 1

j

j
G

j
.1:7:4

The base of natural logarithms may be defined as a sum of all reciprocal factorial functions [Chapter 2]

0

1 1 1 11 2 7182 81828 45905
1 1 2 1 2 3 !j

e
j

.1:7:5

or by the limit operation

1lim 1 2 7182 81828 45905
n

n
e

n
.1:7:6

A limit operation also defines Euler’s constant

1

1 1 1 1lim 1 ln( ) lim ln( ) 0 57721 56649 01533
2 3

n

n n j
n n

n j
.1:7:7

The latter is also known as Mascheroni’s constant (Lorenzo Mascheroni, Italian priest, 1750 1800) and is often
denoted by C. Confusingly, authors who employ C to represent Euler’s constant may use to represent eC.

Also of widespread occurrence throughout the Atlas is the Gauss’s constant
1 0 83462 68416 74073

mc 1, 2
g .1:7:8

where mc denotes the common, or arithmeticogeometric, mean [Section 61:14]. It is related to the ubiquitous
constant U through Ug . Other named constants are Apéry’s constant Z [Section 3:7] and the golden section1/ 2

[Section 23:14].
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A very important family of constants are the integers, , 3, 2, 1,0,1,2,3, and especially the natural numbers,
1,2,3, discussed in Section 1:14. Other families that occur principally in coefficients of series expansions are the
factorials n! [Chapter 2], Bernoulli numbers Bn [Chapter 4], and Euler numbers En [Chapter 5]. Fibonacci numbers
are discussed in Section 23:14.

1:8 NUMERICAL VALUES

Equator provides values of the constants , G, e, , g, Z, and , exact to 15 digits. Simply type the
corresponding keyword, which is pi, catalan, ebase, euler, gauss, apery, or golden. These keywords may be freely
used in “constructing” the variable(s) of any other Equator function, as explained in Appendix C. As well as these
seven mathematical constants, many physical constants are available through Equator: see Appendix A for these.

1:9 LIMITS AND APPROXIMATIONS

Approximations are seldom needed for constants, but approximations as fractions are available through
Equator’s rational approximation routine (keyword rational) [Section 8:13].

1:10 OPERATIONS OF THE CALCULUS

Differentiation gives
d 0
d

c
x

1:10:1

while indefinite and definite integration produce

0

d
x

c t cx1:10:2

and
1

0

1 0d
x

x

c t c x x1:10:3

respectively. The result

0

exp( )d { } cc st t c
s

1:10:4

describes the Laplace transformation of a constant.
The results of semidifferentiation and semiintegration [Section 12:14] with a lower limit of zero are

1
2

1
2

d
d

cc
x x

1:10:5

and
1

2

1
2

d 2
d

xc c
x

1:10:6
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Differintegration [Section 12:14] with a lower limit of zero yields
d
d (1 )

v v

v

cxc
x v

1:10:7

where is the gamma function [Chapter 43]. In fact, equations 1:10:1, 1:10:2, 1:10:5, and 1:10:6 are the v 1, 1,
½ and ½ instances of 1:10:7.

1:11 COMPLEX ARGUMENT

A complex constant can be expressed in terms of two real constants in either rectangular or polar notation

2 2

where cos( ) and sin( )

exp( ) where and arctan( / ) 1 sgn( )]/ 2

i
c

i
1:11:1

with i . The names real part, imaginary part, modulus, and phase are1
accorded to , , , and . Figure 1-2 shows how , , and are related.
The expression c + i is the more useful in formulating the rules for the
addition or subtraction of two complex constants:

1 2 1 1 2 2 1 2 1 2( ) ( ) ( ) ( )c c i i i1:11:2

whereas c exp(i ) is the more convenient to formulate the multiplication

1 2 1 1 2 2 1 2 1 2[ exp( )][ exp( )] exp ( )c c i i i1:11:3

or division

1 1 1 1
1 2

2 2 2 2

exp( ) exp ( )
exp( )

c i i
c i

1:11:4

of two complex numbers, or in the raising of a complex number to a real power
[ exp( )] exp( )v v vc i iv1:11:5

If v is not an integer, this exponentiation operation gives rise to a multivalued complex number [see, for example,
Section 13:14]. The raising of a real number to a complex-valued power is handled by the expression

exp{ ln( )}iv v i v1:11:6

provided that v is positive.
The inverse Laplace transform of the constant c is a Dirac function [Chapter 9], of magnitude c, located at the

origin
exp

d { } ( )
2

i

i

ts
c s c c t

i
I1:11:7

1:12 GENERALIZATIONS

A constant is a member of the polynomial function family, other members of which are discussed in Chapters
19 25. The constant function is the special b 0 case of the linear function discussed in Chapter 7.
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1:13 COGNATE FUNCTIONS

Whereas the constant function has the same value for all x, the related pulse
function is zero at values of the argument outside a “window” of width h, and is
a nonzero constant, c, within this window. The concept of a general “window
function” is discussed in Section 9:13. The pulse function in Figure 1-3 takes
the value c in the range a (h/2) < x < a+(h/2) but equals zero elsewhere. The
value of the a parameter establishes the location of the pulse, while c and h are
termed the pulse height and pulse width respectively. The pulse function may
be represented by

u u
2 2
h hc x a x a1:13:1

in terms of the Heaviside function [Chapter 9].
The addition of a number of pulse functions, having various locations, heights, and widths, produces a function

whose map consists of horizontal straight line segments. Such a function, known as a piecewise-constant function,
may be used to approximate a more complicated or incompletely known function. It is the approximation recorded,
for example, whenever a varying quantity is measured by a digital instrument.

1:14 RELATED TOPIC: the natural numbers

The natural numbers, 1,2,3, are ubiquitous in mathematics and science. We record here several results for
finite sums of their powers:

1

( 1)1 2 3 1,2,3,
2

n

j

n nn j n1:14:1

2 2 2 2 2

1

( 1)(2 1)1 2 3 1,2,3,
6

n

j

n n nn j n1:14:2

2 2
3 3 3 3 3

1

( 1)1 2 3 1,2,3,
4

n

j

n nn j n1:14:3

Similarly, the sums of fourth and fifth powers of the first n natural numbers are n(n+1)(2n+1)(3n2+3n 1)/30 and
n2(n+1)2(2n2+2n 1)/12, respectively. The general case is

1 1

1

B ( 1) B1 2 3 , 1,2,3,
1

n
m m m m m m m

j

nn j n m
m1:14:4

where Bm denotes a Bernoulli number [Chapter 4] and Bm(x) denotes a Bernoulli polynomial [Chapter 19]. If m is
not an integer, summation 1:14:4 may be evaluated generally by equation 12:5:5. The sum of the reciprocals of the
first n natural numbers is

1

1 1 1 1 1 ( 1) 1,2,3,
1 2 3

n

j
n n

n j1:14:5

where is Euler’s constant [Section 1:7] and (x) denotes the digamma function [Chapter 44]. When continued
indefinitely, the sum 1:14:5 defines the divergent harmonic series.

The corresponding expressions when the signs alternate are
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1

( 1) / 2 1,3,5,
1 2 3 4 ( )

/ 2 2,4,6,

n
j

j

n n
n j

n n1:14:6

2 2 2 2 2 2

1

( 1) / 2 1,3,5,
1 2 3 4 ( )

( 1) / 2 2,4,6,

n
j

j

n n n
n j

n n n1:14:7

3 2
3 3 3 3 3 3

2
1

(2 3 1) / 4 1,3,5,
1 2 3 4 ( )

(2 3) / 4 2,4,6,

n
j

j

n n n
n j

n n n
1:14:8

1

E (0) ( ) E ( 1)1 2 3 4 ( ) , 1,2,3,
2 2

nn
m m m m m j m m m

j

nn j n m1:14:9

where Em(x) denotes an Euler polynomial [Chapter 20], and

1

1( 1) 1,3,5,
21 1 1 1 1 ( 1)

1 2 3 4
( 1) 1 2,4,6,

2

jn

j

nn n

n j nn n
1:14:10

Note that, whereas the n version of the harmonic series 1:14:5 does not converge, series 1:14:10 approaches the
limit ln(2) as n .

The numbers 2,4,6, are called the even numbers. Sums of their powers are easily found by using the identity

2 4 6 2 1 2 3 2,4,6,
2

m
m m m m m m m m nn n1:14:11

in conjunction with equations 1:14:1 1:14:5. Likewise, use of these equations, together with the identity

11 3 5 1 2 3 2 1 2 3 1,3,5,
2

m
m m m m m m m m m m m m nn n n1:14:12

permits sums of powers of the odd numbers, 1,3,5, , to be evaluated.
For the infinite sums where j runs from 1 to , see Chapter 3. The same chapter also addresses the relatedvj

infinite sums , , and . For other sums of numerical series, see Sections 44:14( ) j vj (2 1) vj ( ) (2 1)j vj
and 64:6.





The factorial function occurs widely in function theory; especially in the denominators of power series
expansions of many transcendental functions. It also plays an important role in combinatorics [Section 2:14].
Because they too arise in the context of combinatorics, Stirling numbers of the second kind are discussed in Section
2:14 [those of the first kind find a home in Chapter 18].

Double and triple factorial functions are described in Section 2:14.

2:1 NOTATION

The factorial function of n, also spoken of as “n factorial”, is generally given the symbol n!. It is represented
by in older literature. The symbol (n) is occasionally encountered.n

2:2 BEHAVIOR

The factorial function is defined only for nonnegative integer argument and is itself a positive integer. Because
of its explosive increase, a plot of n! versus n is not very informative. Figure 2-1 is a graph of the logarithm (to base
10) of n! versus n. Note that 70! 10100.

2:3 DEFINITIONS

The factorial function of the positive integer n equals the product of all positive integers up to and including n:

1

! 1 2 3 ( 1) 1,2,3,
n

j

n n n j n2:3:1

This definition is supplemented by the value
0! 12:3:2

conventionally accorded to zero factorial.
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The exponential function [Chapter 26] is a generating function [Section 0:3] for the reciprocal of the factorial
function

0

1exp( )
!

n

n
t t

n
2:3:3

2:4 SPECIAL CASES

There are none.

2:5 INTRARELATIONSHIPS

The most important property of the factorial function is its recurrence
( 1)! !( 1) 0,1,2,n n n n2:5:1

which may be iterated to produce the argument-addition formula
( )! !( 1)( 2) ( ) !( 1) , 0,1,2,mn m n n n n m n n n m2:5:2

where (n +1)m is a Pochhammer polynomial [Chapter 18]. Formula 2:5:2 leads to an expression for the ratio of two
factorials. An alternative expression is

! ( 1)( 2) ( 1) ( ) ( )
( )!

m
m

n n n n n m n n m
n m

2:5:3
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Setting m n in equation 2:5:2 provides a duplication formula for the factorial function, enabling (2n)! to be
expressed with the help of a Pochhammer polynomial. Alternative duplication formulas are available from equations
2:12:3 and 2:12:4, which may be rewritten as

11
2 2/ 2

1 11
2 2 2( 1) / 2

2 ! 2,4,6,
!

2 ! 1,3,5,

n
n

n
n

n n
n

n n
2:5:4

There are analogous triplication formulas that can be developed from the equations in 2:12:5.
The frequent occurrence of factorials as coefficients of power series permits the summation of such series as

0

1 1 1 1 exp(1) 2 7182 81828 45905
0! 1! 2! !j j

.2:5:5

and

02 2 2 2
0

1 1 1 1 I (2) 2 2795 85302 33607
0! 1! 2! !j j

.2:5:6

where I0 is the modified Bessel function [Chapter 49]. The corresponding series with alternating signs sum similarly
to exp( 1) and to the particular value J0(2) of the zero-order Bessel function [Chapter 52]. There is even the
intriguing asymptotic result [see equation 37:13:4]

0 0

exp( )0! 1! 2! ( ) ! d 0 59634 73623 23194
1

j

j

tj t
t

.~2:5:7

Moreover, the series ( 1)n/(2n)! sums to cos(1) and there are several analogous summations.

2:6 EXPANSIONS

Stirling’s formula [see also Section 43:6]

2 3

1 1 139! 2 exp( ) 1
12 288 51840

nn n n n n
n n n

~2:6:1

provides an expansion for the factorial function. Though they are technically asymptotic [Section 0:6], this
expansion and a similar one for the logarithm of the factorial function

1

3 5

B 1ln( !) ln 2 ln( ) 1
( 1)

ln(2 ) 1 1 1ln( )
2 12 360 1260

j
j

j
n n n n

j j n

nn n n n
n n n

~
2:6:2

are remarkably accurate, even for small n. Bj is the jth Bernoulli number [Chapter 4].

2:7 PARTICULAR VALUES

0! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10! 11! 12!

1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600
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2:8 NUMERICAL VALUES

The decimal integer representing n! has exactly Int(n/5) + Int(n/25) + Int(n/125) + terminal zeros; for example
31! ends with seven zeros. This rule is useful in calculating exact numerical values of large factorials. Int is the
integer-value function describe in Chapter 8.

Equator’s factorial function routine (keyword !) provides values of n!. For integer input in the range 0 < n
170, a simple algorithm based on recursion 2:5:1, followed by rounding, is used to compute n!. Exact output is
reported up to 20! 2.4329 02008 17664 E+18. For 21 n 170, Equator provides a floating point approximation
of n! precise to 15 digits.

Separately, values of the natural and decadic logarithms, ln(n!) and log10(n!), are provided by the logarithmic
factorial function and logarithm to base 10 of the factorial function routines (ln! and log10!). Such logarithmic
values are useful when n is large because n! itself is then prohibitively huge. For input up to n 170, ln(n!) is
computed by simply taking the logarithm of the output from the routine described above. For integer input in the
range 171 n 1E305, Equator uses Stirling’s formula in the truncated and concatenated form

2 2 2

ln(2 ) 1 1 2ln( !) 1 ln( ) 1 1
2 12 30 7
nn n n

n n n
2:8:1

Division by 2.3025 85092 99405 generates log10(n!).

2:9 LIMITS AND APPROXIMATIONS

For large argument, the limiting formula

! 2
nnn n n

e
2:9:1

applies, e being the base of natural logarithms [Section 1:7]. The related approximation

! Round (1 12 )
72

nnn n
n e

2:9:2

is surprisingly good, and even exact, for small positive integers. Round is the rounding function, described in
Section 8:13.

2:10 OPERATIONS OF THE CALCULUS

No operations of the calculus are possible on a function such as n! that is defined only for discrete arguments.

2:11 COMPLEX ARGUMENT

In view of relation 2:12:1, the gamma function formulas given in Section 43:11 may be used to ascribe meaning
to (n+im)!.
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2:12 GENERALIZATIONS

The factorial function is a special case of the gamma function [Chapter 43]
! ( 1) 0,1,2,n n n2:12:1

and of the Pochhammer polynomial [Chapter 18]
! (1) 0,1,2,nn n2:12:2

The latter identity permits us to write
1

2(2 )! 4 ( ) (1)n
n nn2:12:3

and
3

2(2 1)! 4 (1) ( )n
n nn2:12:4

Similarly
3 3 3 51 2 2 4 4

3 3 3 3 3 3(3 )! 3 (1) , (3 1)! 3 (1) , (3 2)! 3 (1)n n n
n n nn n n n n n

n n n2:12:5

and so on.

2:13 COGNATE FUNCTIONS: multiple factorials

See 6:3:4 for the close relationship between the factorial function and binomial coefficients.
The double factorial or semifactorial function is defined by

1 1,0
!! ( 2) ( 4) 5 3 1 1,3,5,

( 2) ( 4) 6 4 2 2,4,6,

n
n n n n n

n n n n
2:13:1

For even argument it reduces to
2!! 2 / 2 ! 0,2,4,nn n n2:13:2

while for odd n it may be expressed in terms of factorials, or as a gamma function [Chapter 43] or as a Pochhammer
polynomial [Chapter 18]

2 ( 1) / 2

( 1) / 2 ( 1) / 2

! 2 1!! 2 1 2 1,3,5,
1 2 22 !

2

n n

n n

n nn n
n2:13:3

Equivalent to the last equation is
(2 1)!(2 1)!!

2 !n

nn
n

2:13:4

These formulas are used by Equator’s double factorial function routine (keyword !!) to compute values of n!! for
integers in the range 1 n 300. Of course

!!( 1)!! ! 0,1,2,n n n n2:13:5
Some early members of the double-factorial family are listed below.

( 1)!! 0!! 1!! 2!! 3!! 4!! 5!! 6!! 7!! 8!! 9!! 10!! 11!! 12!! 13!! 14!!

1 1 1 2 3 8 15 48 105 384 945 3840 10395 46080 135135 645120
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Note that, apart from 0!! 1, the double factorial n!! shares the parity of n. Also notice that, to accord with the
n 1 instance of the general recursion formula

( 2)!! ( 2) !!n n n2:13:6
( 1)!! is assigned the value of unity. With a similar rationale, one sometimes encounters the values ( 3)!! 1,
( 5)!! , etc.1

3

Of frequent occurrence [for example in Sections 6:4, 32:5, 61:6 and 62:12] is the ratio (n 1)!!/n!! of the double
factorials of consecutive integers. For odd n, the ratio is expressible by the integral

2 / 21

0

( 1)!! 2 1 ! sin ( )d 1,3,5,
!! ! 2

n
nn n t t n

n n
2:13:7

while for even n it is given by Wallis’s formula (John Wallis, English mathematician and cryptographer, 1616 1703)
/ 2

2
0

( 1)!! ! 2 sin ( )d 0,2,4,
!! 2 ( / 2)!

n
n

n n t t n
n n

2:13:8

This important ratio has the asymptotic expansion

2

2

2 1 11 even
4 32( 1)!!

!! 1 11 odd
2 4 32

n
n n nn

n
n

n n n

~2:13:9

Finite sums of some such ratios obey the simple rule

0

1 3 15 (2 1)!! (2 1)!! (2 1)!!1 0,1,2,
2 8 48 (2 )!! (2 )!! (2 )!!

n

j

n j n n
n j n2:13:10

and there is the related infinite summation due to Ross:

1

1 3 15 105 (2 1)!! ln(4)
2 16 144 1536 (2 )!!j

j
j j2:13:11

The triple factorial is defined analogously
1 2, 1,0

( 3) ( 6) 7 4 1 1,4,7,
!!!

( 3) ( 6) 8 5 2 2,5,8,
( 3) ( 6) 9 6 3 3,6 ,9 ,

n
n n n n

n
n n n n
n n n n

2:13:12

and finds application in connections with Airy functions [Chapter 56]. Some early values are:

( 2)!!! ( 1)!!! 0!!! 1!!! 2!!! 3!!! 4!!! 5!!! 6!!! 7!!! 8!!! 9!!! 10!!! 11!!! 12!!!

1 1 1 1 2 3 4 10 18 28 80 162 280 880 1944

The extension to a quadruple factorial n!!!! is obvious; it is useful in Sections 43:4 and 59:7.

2:14 RELATED TOPIC: combinatorics and Stirling numbers of the second kind

The factorial function appears very often in applications involving combinatorics. For example, the number
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of permutations (arrangements) of n objects, all different, is n!. If not all of the n objects are different, the number
of permutations is reduced to

1 2
1 2

!
( )!( )! ( )! J

J

n n n n n
n n n

2:14:1

where there are n1 samples of object 1, n2 samples of object 2, , nJ samples of object J, so that nj n.
If from a group of n objects, all different, one withdraws m objects, one at a time, the number of variations

(possible withdrawal sequences) is
!

( )!
n m n

n m
2:14:2

If one ignores the order of withdrawal, 2:14:2 is reduced to
!

( )! !
n m n

n m m
2:14:3

which then represents the number of ways in which m objects can be chosen from among n, all different, and is
known as the number of combinations. Expression 2:14:3 is, in fact, the binomial coefficient addressed in Chapter 6.

The number of partitions (different ways in which n distinct objects may be placed in m identical boxes so that
each box contains at least one object) is given by a Stirling number of the second kind. There is no standardized
notation for such functions; this Atlas uses the symbol . Clearly, no partitioning is possible if m 0 or if n < m( )m

n

and accordingly the second Stirling number is zero in such circumstances. Otherwise, a general formula is

( )

0

( )
( )! !

m j nm
m

n
j

j
m j j

2:14:4

Non-zero values of Stirling numbers of
the second kind are, of course, positive
integers and some are shown in
Figure 2-2. Others may be calculated
via the recursion formula

( ) ( ) ( 1)
1 1

m m m
n n nm2:14:5

for m 1,2,3, and n 1,2,3, . This
recursion forms the basis of Equator’s
Stirling number of the second kind
routine (keyword sigmanum). First,

and are initialized to zero(1 )
0

m (0)
1 n

while is set equal to 1. Then(0)
0

, , , are calculated(1 )
1

m (1 )
2

m (1 )m
n

via recursion 2:14:5. Because Stirling
numbers are integers, rounding ensures
that the 15 digits that Equator generates
are exact.





As detailed in Section 3:14, the four number families (n), (n), (n), and (n) occur as coefficients in many
power series expansions. In this context it is only positive integer orders, n 1, 2, 3, , that are encountered, and
this chapter therefore emphasizes these cases. However, one is able to extend the definitions of all four functions
to accept noninteger and negative orders, and these possibilities are also addressed here.

The first three functions are interrelated by the simple proportionalities
( ) ( ) ( )
2 2 1 2 2v v v

v v v
3:0:1

and by the consequential identity
( ) ( ) 2 ( )v v v3:0:2

but there are no corresponding relationships involving (v). Because they are so easily related to (v) via 3:0:1, few
formulas for (v) and (v) are exhibited in this chapter.

3:1 NOTATION

The numbers (n), (n), (n), and (n) do not appear to have acquired definitive names; we shall call them zeta
numbers, lambda numbers, eta numbers, and beta numbers. When the order is unrestricted, the symbolism (v),

(v), (v) and (v) and the names zeta function, lambda function, eta function and beta function are commonplace,
though in this Atlas the “number” terminology is employed generally, whether the argument is an integer or not.
The last is also known as Catalan’s beta function, which minimizes the possibility of confusion with the (complete)
beta function of Section 43:13 or the incomplete beta function of Chapter 58, to which it is totally unrelated.
Nevertheless “beta number” is the name used here.

The symbols and L have been used, respectively, in place of and . Riemann’s name (Georg Friedrich
Bernhard Riemann, German mathematician, 1826 1866) is associated with the zeta number, which is often known
as “Riemann’s function” or “Riemann’s zeta function”. We avoid these names to lessen confusion with the bivariate
function of Chapter 64, with which Riemann’s name is also commonly associated. You may also encounter
Dirichlet’s name associated with these functions.

DOI 10.1007/978-0-387-48807-3_4, © Springer Science+Business Media, LLC 2009 
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3:2 BEHAVIOR

Figure 3-1 maps the four functions. The zeta and lambda numbers develop infinite discontinuities of the |+
type at v 1, whereas (v) and (v) are finite for all values of the order v. All four functions approach unity rapidly
as the order v increases. For negative orders, the four functions are oscillatory and quasiperiodic [Section 36:13],
with a constant period of 4 and with ever-increasing amplitudes as v . The zeros of (v), (v) and (v) occur
when v is an even negative integer, whereas (v) 0 at v 1, 3, 5, .

3:3 DEFINITIONS

The four functions may be defined by the definite integrals
1

0

1( ) d 1
( ) exp( ) 1

vtv t v
v t

3:3:1

1

0

1( ) csch( )d 1
2 ( )

vv t t t v
v

3:3:2
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1

0

1( ) d 0
( ) exp( ) 1

vtv t v
v t

3:3:3

and

1

0

1( ) sech( )d 0
2 ( )

vv t t t v
v

3:3:4

involving functions discussed in Chapters 12, 26, 29 and 43.
The most commonly encountered definitions of zeta, lambda, eta, and beta numbers employ the infinite series

3:6:1 3:6:4. These series, which may be reformulated as limits, for example

1

1 1 1 1( ) lim 1 lim 1
2 3 ( 1)

J
v

v v v vJ J j
v j v

J J
3:3:5

apply equally to noninteger orders, provided that v > 1 for (n) and (n), or v > 0 for (n) and (n). Moreover, when
a subsidiary series, involving Pochhammer and Euler polynomials [Chapters 18 and 20], is added into definition
3:3:5, to give

lim
1 1 3

lim 1
1

1 0

1 1 1 1 1 ( 1)( 2)( ) 1
2 3 ( 1) ( 1) 2 12 720

( ) B 1
!

J v v v v v v v

J K
v k k

J k v
j k

v v v vv
J v J J J J

vj v
k J

3:3:6

the limit provides a definition of the zeta number for any order whatsoever (except v 1): positive, zero, or negative,
integer or noninteger. The summand of the k-summation involves functions from Chapters 2, 4, and 18. The upper
limit K of this second summation must be at least Int(1 v), but may be larger with beneficial effect on convergence.
The corresponding definition of the beta number is

lim
1 3

1 1
lim 1

1
1 1

1 1 ( 1) ( ) ( ) ( 1)( 2)( ) 1
3 5 2(2 1) 12 6(2 1)

( 1) 2 (2 1)( ) B
(2 1) !(2 1)

J J J

J v v v v v

j k kJ K
k k

J v k v
j k

v v v vv
J J J

v
j k J

3:3:7

Because Bk 0 for k 2,4,6, , many of the terms in the k-summations in the last two formulas are zero. Equations
3:3:6 and 3:3:7 have their origins in the Euler-Maclaurin formula [Section 4:14], and are therefore technically
asymptotic. Nevertheless, with a suitable choice of K, they converge excellently.

3:4 SPECIAL CASES

When their argument is an integer, the zeta, lambda, eta, and beta numbers often equal rational numbers, or are
related to well-known mathematical constants, as detailed in Section 3:7.

3:5 INTRARELATIONSHIPS

The zeta and beta numbers satisfy the reflection formulas
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2
( ) f ( )n

n
n

2

f ( )( )n

n

n
n 2

1 f ( )
n

n
2
( ) 1 f ( )n

n
n

2

1 f ( )
n

n
n 2

1 f ( )( )n

n

n
n

f 1 1
1

2
1 1 ln(2)

f ln(2)
2ln

2
ln(2) 1

1 ln(2)
2

ln 1
2

41 ln
2

f ln(4) 1
4ln ln(4) 1

3 ln(4)
2

ln( ) 1
81 ln

f ln 2
4

ln 2
4

g ln 2 1
4

1 ln 2
2 4

ln 1
4 2

g
1 ln

4
g

2 ( )cos( / 2)(1 ) ( ) 0, 1, 2,
(2 )v

v vv v v3:5:1

and
( )sin( / 2)(1 ) ( ) 0, 1, 2,

( / 2)v

v vv v v3:5:2

involving the gamma function [Chapter 43] and the functions of Chapter 32. Thereby either function of order less
than ½ may be related to one with order greater than ½.

With f(n) representing any one of the four numbers (n), (n), (n), or (n), one may sum the infinite series
( )nf(n)/n, as well as the series of complements [1 f(n)], ( )n[1 f(n)], [1 f(n)]/n, and ( )n[1 f(n)]. With

the lower summation limit taken as n 2, these sums are tabulated below. The sums involve the logarithmic
function [Chapter 25] of various constants [Section 1:7]. Also listed in the table are the sums ( )nf(n). Strictly,
these particular series do not converge, the tabulated entries being the limits

1lim f (2) f (3) f (4) f ( 1) f ( )
2J

J J3:5:3

which do indeed converge and whose values may be associated with ( )nf(n).

3:6 EXPANSIONS

The series

1

1 1( ) 1 1
2 3

v
v v

j
v j v3:6:1

1

1 1( ) 1 (2 1) 1
3 5

v
v v

j
v j v3:6:2

1

1

1 1( ) 1 ( ) 0
2 3

j v
v v

j
v j v3:6:3
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n 5 n 4 n 3 n 2 n 1 n 0 n 1 n 2 n 3 n 4 n

(n)
1

252
0

1
120

0
1

12
1

2

2

6
Z

4

90
1

(n)
31

252
0

7
120

0
1

12
0

2

8
7
8
Z 4

96
1

(n)
1
4

0
1

8
0

1
4

1
2

ln(2)
2

12
3
8
Z 47

720
1

(n) 0
5
2

0
1

2
0

1
2 4

G
3

32
(4) 1

1

1

1 1( ) 1 ( ) (2 1) 0
3 5

j v
v v

j
v j v3:6:4

are the most useful representations of the four functions and serve as definitions of the zeta and lambda numbers,
(n) and (n), for n 2,3,4, , as well as for the eta and beta numbers, (n) and (n), for n 1,2,3, .

Zeta and lambda numbers are expansible as the infinite products

1

1 1 1 1 1( ) 1
1 2 1 3 1 5 1 7 1v v v v v

j j

v v3:6:5

2

1 1 1 1 1( ) 1
1 3 1 5 1 7 1 11 1v v v v v

j j

v v3:6:6

where j is the jth prime number.
Useful for orders v close to 1 are the expansions

0

( )1( ) ( 1)
1 !

j
j j

j
v v

v j
3:6:7

1 1

1 0

1 2 (1 )( ) ln (2)
1 !

v j j
j k

k
j k

jvv
kv j

3:6:8

where 0 is Euler’s constant and the other j are the so-called Stieltjes constants [Wolfram].

3:7 PARTICULAR VALUES

Below are listed values of the zeta, lambda, eta and beta numbers for n 5, 4, ,3,4 and . In this listing G
is Catalan’s constant [Section 1:7] and Z is Apéry’s constant (Roger Apéry, French mathematician, 1916 1994)
which takes the value

(3) 1 2020 56903 15959Z .3:7:1

For n 2,4,6, all zeta, lambda, and eta numbers equal n multiplied by a proper fraction, the fraction being
related by equation 3:13:1 to the Bernoulli number Bn of Chapter 4. Similarly, for n 1,3,5, , (n) is proportional
to n, the proportionality constant being a proper fraction related to the Euler number En 1 [Chapter 5] by equation
3:13:2. For negative integer orders, the zeta and beta numbers are related much more simply to the Bernoulli and
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Euler numbers; thus:

1B( ) 1,2,3,
1

nn n
n

3:7:2

and
E( ) 0,1,2,
2

nn n3:7:3

3:8 NUMERICAL VALUES

Equator’s zeta number routine (keyword zetanum) calculates (v), using equation 3:6:7 for 0.995 v 1.01,
equation 3:3:6 for other values in excess of 0.5 and up to 169, and formula 3:5:1 for 169 v < 0.5. For the most
part, the lambda number and eta number routines (keywords lambdanum and etanum) use equation 3:0:1, and the
corresponding zeta number, but 3:6:8 is substituted in the immediate vicinity of v 1. Equations 3:3:7 and 3:5:2
form the basis of Equator’s beta number routine (keyword betanum), the latter being employed for 169 v 0.

3:9 LIMITS AND APPROXIMATIONS

All four functions approach unity as the order v approaches infinity, the limiting behaviors being evident from
equations 3:6:1 4.

As v itself approaches unity, from either direction, equation 3:6:7 shows that the zeta number exhibits the
limiting behavior

1( ) 1
1

v v
v

3:9:1

where is Euler’s constant [Section 1:7]. Likewise, the v 1 limit of (v) follows from 3:6:8.
As the order approaches , the following limits are attained by the zeta number

2( ) sin
2

vv e vv v
v

3:9:2

and by the beta number

8( ) cos
2 2

vv e vv v
v

3:9:3

The implications of these limits for the zeta and beta numbers of large negative integer order are:

(1 ) / 2

0 negative, large, and even
( )

( ) 2 / / negative, large, and oddnn

n
n

n e n n
3:9:4

/ 2( ) 8 / ( / 2 ) negative, large, and even( )
0 negative, large, and odd

n nn e n nn
n

3:9:5

Based on truncating definition 3:6:5, the underestimate
1( )

(1 2 )(1 3 )(1 5 )(1 7 )n n n nn3:9:6
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finds application in Section 4:8. Similarly, the overestimate
1 5 7( )

1 3

n n

nn3:9:7

which is in error by less that 0.2% for n 2, is useful in Section 5:8.

3:10 OPERATIONS OF THE CALCULUS

The derivatives and indefinite integrals of the four functions may be expressed as infinite series, for example

2

d ln( )( ) 1
d v

j

jv v
v j3:10:1

and

10

( 1)( )d 1 (2 1) 0
ln(2 1)

v j
v

j
t t v j v

j
3:10:2

but not as established functions. At v 0 the derivative of the zeta number equals .ln 2

3:11 COMPLEX ARGUMENT

In terms of its real and imaginary parts, the zeta number of complex argument is given by

1 2

cos ln( ) sin ln( )
( ) 1v v

k k

k k
v i i v

k k
3:11:1

with similar formulas serving the other three functions. Note that 3:11:1 is restricted to v > 1, but Figure 3-2 depicts
the behavior in a more widespread region of the complex plane. Notice that the discontinuity encountered at v 1
along the real line does not extend beyond that line. Not evident in the figure is that, in accord with Riemann’s
hypothesis, there exists a series of complex zeros (that is, points in the complex plane where both the real and the
imaginary parts are zero) along the line v ½.
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3:12 GENERALIZATIONS

The four functions of this chapter are special cases of the Hurwitz function of Chapter 64. Thus:
( ) ( ,1)v v3:12:1

1
2( ) 2 ,vv v3:12:2

1 1
2( ) 2 , ( ,1) ( ,1)vv v v v3:12:3

31 1
4 4 2( ) 4 , ( , ) 2 ( , )v vv v v v3:12:4

The last pair of equations shows that the bivariate eta function [Section 64:13] is also a generalization of the eta and
beta numbers. See Section 64:12 for the representation of the beta number as a Lerch function.

The zeta, eta, lambda, and beta numbers are also generalized respectively by the functions

1 1 0 0

cos (2 1) ( ) cos (2 1)cos( ) ( ) cos( ), , , and
(2 1) (2 1)

jj

n n n n
j j j j

j x j xjx jx
j j j j

3:12:5

and by similar sums in which sin replaces cos. See Section 32:14 for these functions.

3:13 COGNATE FUNCTIONS

When n is even, (n) is related to the absolute value of the Bernoulli number Bn [Chapter 4] by
(2 ) | B |( ) 2,4,6,

2 !

n
nn n

n
3:13:1

For odd n the zeta number is related to the Bernoulli polynomial [Chapter 19] via the integral
1

0

(2 )( ) B ( )cot( )d 1,3,5,
2 !

n

nn t t t n
n

3:13:2

The beta number of odd argument n is related to the Euler number En 1 [Chapter 5] by

1| E |( ) 1,3,5,
2 2( 1)!

n
nn n

n
3:13:3

while for even n the relationship is to the integral of an Euler polynomial [Chapter 20]
1

1
0

( ) E ( )sec( )d 2,4,6,
4( 1)!

n

nn t t t n
n

3:13:4

3:14 RELATED TOPIC: trigonometric and hyperbolic expansions

The four number families occur as coefficients in power series expansions of certain circular and hyperbolic
functions of argument x or x/2:

2

1

1 2cot( ) (2 ) 1 1n

n
x n x x

x x
3:14:1
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2

1

1 2csc( ) (2 ) 1 1n

n
x n x x

x x
3:14:2

2

1

4tan (2 ) 1 1
2

n

n

x n x x
x

3:14:3

2 1

1

4sec (2 1) 1 1
2

n

n

x n x x
x

3:14:4

2

1

1 2coth( ) ( ) (2 ) 1 1n n

n
x n x x

x x
3:14:5

2

1

1 2csch( ) ( ) (2 ) 1 1n n

n
x n x x

x x
3:14:6

2

1

4tanh ( ) (2 ) 1 1
2

n n

n

x n x x
x

3:14:7

and

2 1

1

4sech ( ) (2 1) 1 1
2

n n

n

x n x x
x

3:14:8

Similar series represent the logarithms of certain trigonometric functions

2

1

(2 )ln csc( ) ln sin( ) ln( ) 1 1n

n

nx x x x x
n

3:14:9

2

1

(2 )ln tan ln cot ln 1 1
2 2 2

n

n

x x x n x x
n

3:14:10

2

1

(2 )ln sec ln cos 1 1
2 2

n

n

x x n x x
n

3:14:11

Notice that it is invariably the zeta, eta, and lambda numbers of even argument, and the beta numbers of odd
argument, that appear in such expansions.

3:15 RELATED TOPIC: Debye functions

When v is the integer n +1, equation 3:3:1 may be rewritten

0

! ( 1) d
exp( ) 1

ntn n t
t

3:15:1

For n 1,2,3, , the incomplete version of this integral

0

d
exp( ) 1

x nt t
t

3:15:2

is important in the theory of heat capacities and is known as the nth Debye function (Peter Joseph William Debye,
Dutch then U.S. physical chemist, 1884 1966). Values of these functions are calculable from the series
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1 2 4

00

B
d 2

exp( ) 1 2( 1) 12( 2) 720( 4) !( )

n jx n n n n n
j

j

xt x x x xt x
t n n n n j n j

3:15:3

where B j is a Bernoulli number [Chapter 4]. For large x it is better to evaluate the sum
1 2

2 3 1
1

1d ! exp 0
exp( ) 1 ! ( 1)! ( 2)!

n n n n

n
jx

t x x xt n jx x
t n j n j n j j

3:15:4

and then subtract this sum from expression 3:15:1. Equator’s Debye function routine (keyword Debye) uses
equation 3:15:3 to provide values of these functions for |x| 5 and 1 n 200. For x > 5 and 1 n 9, equations
3:15:1 and 3:15:4 are employed.



Value Atlas
system

Rival
system

1 B0

1
2 B1

1
6 B2 B1

0 B3

1
30 B4 B2

0 B5

1
42 B6 B3

0 B7

1
30 B8 B4

n

Bernoulli numbers are rational numbers (that is, they are expressible as l/m,
where l and m are integers) that arise as coefficients in the power-series
expansions of certain hyperbolic and trigonometric functions [Sections 6 of
Chapters 28 34, 43, and 44]. They are also important in the context of the Euler-
Maclaurin formula, an important tool that is discussed in Section 4:14.

4:1 NOTATION

There are two systems for indexing and assigning signs to Bernoulli
numbers. Unfortunately, both systems are in widespread use, although the one
we adopt is more generally used than its rival and, importantly, it is the system
that is more compatible with the definition of Bernoulli polynomials [Chapter 19].
The table compares the two systems. Some authors employ both systems, using
Bn for one set of Bernoulli numbers and some modified symbolism such as nB*
or for the other. These latter are sometimes called auxiliary BernoulliBn

numbers. Convert them to the Atlas system via
1

2B ( ) Bn
n n4:1:1

4:2 BEHAVIOR

In our notation, all Bernoulli numbers with odd degree, except B1, are zero. All Bn for which the index n is a
multiple of 4, except B0, are negative rational numbers. All other Bernoulli numbers of even degree are positive
rational numbers.

The magnitudes of the Bernoulli numbers are modest up to about n 15, but beyond this |Bn| burgeons rapidly.
For this reason, we have chosen a logarithmic scale for Figure 4-1, which depicts the magnitudes of all non-zero
Bernoulli numbers up to n 116. Red points correspond to positive Bernoulli numbers and blue to negative. Note
the alternation of positive and negative signs, and that, because their Bernoulli numbers are zero, no points appear
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for odd n, except when n 1.

B0 is the only Bernoulli number that is a nonzero integer. However
2( 1)!!B an odd integer 2,4,6,nn n4:2:1

where n!! is the double factorial function [Section 2:13].

4:3 DEFINITIONS

The Bernoulli numbers are defined through the generating function

0
B

exp( ) 1 !

n

n
n

x x
x n

4:3:1

Moreover, equation 4:5:1 serves as a definition of all Bernoulli numbers beyond n 1.
Integral representations of the nonzero Bernoulli numbers of even degree include

/ 2
2

2
0

1B csch ( )d 2,4,6,
n

n
n t t t n4:3:2

where csch denotes the hyperbolic cosecant function [Chapter 29]. For other integral representations, see Erdélyi
et al. [Higher Transcendental Functions, Volume 1, pages 38 39].
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4:4 SPECIAL CASES

When n is an even integer, the Bernoulli number Bn is expressible as a zeta number [Chapter 3]

( 2) / 2 2 !B ( ) ( ) 2,4,6,
(2 )

n
n n

n n n4:4:1

4:5 INTRARELATIONSHIPS

The formula
1

0

B
B ! 1,2,3,

!( 1 )!

n
j

n
j

n n
j n j

4:5:1

allows any Bernoulli number (except B0, of course) to be calculated from all of its predecessors. Equivalent to this
equation is the more compact expression

0

1 B 0 1,2,3,
n

j
j

n nj4:5:2

where is a binomial coefficient [Chapter 6].
n
j

4:6 EXPANSIONS

Even-indexed Bernoulli numbers are expansible as

( 2) / 2 ( 2) / 2

1

2 ! 1 1B ( ) 1 ( ) 2 ! (2 ) 2,4,6,
(2 ) 2 3

n n n
n n n n

j

n n j n4:6:1

If the multiplier ( 1)(n+2)/2 is replaced by cos(n /2), the expansion is valid for all values of n except 0 and 1.

4:7 PARTICULAR VALUES

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18

1 1
2

1
6 0 1

30 0 1
42 0 1

30 0 5
66 0 691

2730 0 7
6 0 3617

510 0 43867
798

4:8 NUMERICAL VALUES

With keyword Bnum, Equator’s Bernoulli number routine for Bn, directly returns the values 1 or ½ when n
0 or 1; and 0 when n 3,5,7, . Below is described the procedure adopted when n is an even positive integer from

2 through 170. Of course, Equator returns Bernoulli numbers as decimals, not as fractions. If fractions are sought,
then Equator’s rational approximation routine [keyword rational, Section 8:13] may be employed to find the
integers l and m such that Bn l/m.

From 4:2:1, it follows that
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1
2( 1)!!B an integernn4:8:1

Thereby a sufficiently good approximation to the Bernoulli number Bn, permits an exact value to be calculatedB ,n

via the correction formula
1 1
2 2Round ( 1)!!B

B
( 1)!!

n
n

n

n
4:8:2

where Round is the rounding function [Section 8:13]. Equation 3:9:6 provides a close approximation to the zeta
number (n) and it therefore follows from 4:4:1 that the expression

2 / 2 )

2 !B 2,4,6,
( ) (2 1)(1 3 )(1 5 )(1 7 )n n n n n n

n n4:8:3

approximates Bernoulli numbers closely. This is the source of the approximation, , used by Equator in formulaBn

4:8:2.

4:9 LIMITS AND APPROXIMATIONS

As n approaches infinity through even values, the Bernoulli numbers approach the limit

( 2) / 2 2 !B ( ) even
(2 )

n
n n

n n4:9:1

After incorporation of the limiting expression [equation 2:9:1] for the factorial function, this becomes

( 2) / 2B ( ) 8 even
2

n
n

n
n n n

e
4:9:2

From limit 4:9:1 it is evident that the ratio of two Bernoulli numbers, the indices of which are even and differ
by 2, is approximated by the formula

2
2

B ( 1) 2,4,6,
B 4

n

n

n n n4:9:3

which becomes increasingly accurate as n .

4:10 OPERATIONS OF THE CALCULUS

Neither differentiation nor integration may be applied to discretely defined functions such as Bn.

4:11 COMPLEX ARGUMENT

The definition of the Bernoulli number Bn assumes n to be real.

4:12 GENERALIZATIONS

Bernoulli numbers are the values adopted by the corresponding Bernoulli polynomial Bn(x) [Chapter 20] at zero
argument,



4:13 THE BERNOULLI NUMBERS Bn 43

B B (0) 0,1,2,n n n4:12:1

and, with the sole exception of the n 1 instance, also at an argument of unity
B B (1) 0,2,3,4,5,n n n4:12:2

4:13 COGNATE FUNCTIONS

Bernoulli numbers are connected through equation 4:4:1 to zeta numbers [Chapter 3] and have much in common
with Euler numbers [Chapter 5], to which they are related through

2 2 2 4 2 6 0
2

4 (4 1) E E E EB
(2 )! 1!(2 2)! 3!(2 4)! 5!(2 6)! (2 1)!0!

n n
n n n

nn n n n n
4:13:1

4:14 RELATED TOPIC: the Euler-Maclaurin formula

Bernoulli numbers occur as coefficients in the Euler-Maclaurin formula. Let x0, x1, x2, , xJ be uniformly spaced
arguments of the function f(x), with xj+1 xj h and j 0, 1, 2, , J 1. Then

0

2 4 3 31

0 0 03 3
0

6 5 5 -1 -1

0 05 5 -1 -1
1

df df d f d ff ( ) f ( )d f ( ) f ( ) ( ) ( ) ( ) ( )
2 12 d d 720 d d

d f d f B d f d f( ) ( ) ( ) ( )
30240 d d ! d d

JxJ

j J J J
j x

n n n
n

J Jn n
n

h h hh x t t x x x x x x
x x x x

h hx x x x
x x n x x

~

4:14:1

provided that the function f(x) is continuous and sufficiently differentiable. This formula is extremely useful in
calculating (either analytically or numerically, exactly or approximately) an integral from a sum, or vice versa. It
may be written more succinctly as

0 0

1
0

0
1 1,3

f( ) f( ) 1 d ff( ) f( )d
2 d

JJ
xx m mJ

J
j Jm

j m mx x

x x hx t t x x Jh
h D x

~4:14:2

where the divisors Dm, listed below, are equal to (m+1)!/Bm+1; they increase in magnitude so fast that convergence
of the right-hand side of 4:14:2 is often extremely rapid. This speedy convergence means that, though these series
are technically asymptotic, this is seldom of practical concern.

D1 D3 D5 D7 D9 D11 D13 D15

12 720 30240 1209600 479001600 1892437580.31838 74724249600 148387707891953.

There is a second Euler-Maclaurin formula. Again, it describes the relationship between an integral and a sum,
but now the nodes to which the sum relates lie midway between those used in the first formula. In our succinct
notation, the second Euler-Maclaurin formula is

0 0

1
1

02
0 1,3

1 (1 2 ) d ff( ) f( )d
d

JJ
xx m m mJ

j Jm
j m mx x

hx h t t x x Jh
h D x

~4:14:3
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With their right-hand sides approximated by zeros, equations 4:14:2 and 4:14:3 provide means of crudely
approximating an integral by a sum. When used in this way, they are known as the trapezoidal approximation and
the midpoint approximation, respectively. The right-hand members of these equations then represent correction
terms useful in improving the approximations. Notice the difference in signs of the right-hand sides of the two
Euler-Maclaurin formulas, which implies that if the trapezoidal approximation overestimates the integral then the
midpoint formula underestimates it. A compromise between the two should therefore perform better than either.
The familiar Simpson’s Rule for numerical integration arises by just such an argument. See Section 62:15 for further
information on Simpson’s approximation and on Romberg integration, which exploits equation 4:14:2 in a more
refined fashion.
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system
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system

1 E0 E0

0 E1

1 E2 E1

0 E3

5 E4 E2

0 E5

61 E6 E3

0 E7

1385 E8 E4

n

Euler numbers occur as coefficients in the power series expansions of the
secant [Chapter 33], hyperbolic secant [Chapter 29], and gudermannian [Section
33:14] functions.

5:1 NOTATION

As with Bernoulli numbers [Section 4:1], there are two notational systems
in use for indexing Euler numbers. The table exemplifies these two systems.
Some authors use both systems and introduce supplementary notation such as nE*
or to distinguish one from the other. Numbers in the less favored system areEn

sometimes called auxiliary Euler numbers.

5:2 BEHAVIOR

Unlike Bernoulli numbers, the Euler numbers are integers: they may be
positive, negative or zero. En is defined for all nonnegative integer degree n.

Euler numbers of odd index are invariably zero. Euler numbers of even degree are positive integers, or negative
integers, according as n is, or is not, a multiple of 4. In Figure 5-1, either log10(En), red points, or log10( En), blue
points, is plotted versus even values of n. Note the very rapid increase in the absolute value |En| with increasing even
n, which dictated the logarithmic presentation in the figure.

Curiously, the least significant digit of each negative Euler number is a 1, so that
E 1frac 2,6,10,

10 10
n n5:2:1

whereas the least significant digit of each positive Euler number is a “5”, that is
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E 5frac 4,8,12,
10 10

n n5:2:2

where frac denotes the fractional-value function [Chapter 8].

5:3 DEFINITIONS

The generating function

0
sech( ) E

!

n

n
n

tt
n

5:3:1

may be used to define the Euler numbers, though the summation is slow to converge for larger t values. Here sech
is the hyperbolic secant discussed in Chapter 29.

An integral definition for Euler numbers of even degree is

2

1

0

2E ( ) sech( )d 0,2,4,n
n

n
n t t t n5:3:2

With E0 specified as unity, equation 5:5:2 sometimes serves as a definition of other Euler numbers of even
degree.
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5:4 SPECIAL CASES

The Euler number of even degree is related by the formula

2

12E ( ) 2 ! ( 1) 0,2,4,n
n

n n n n5:4:1

to the beta number discussed in Chapter 3.

5:5 INTRARELATIONSHIPS

The compact expression

2
0

2 E 0 1,2,3,2
n

j
j

n nj5:5:1

where is the binomial coefficient treated in Chapter 6, gives rise to the formula
2
2

n
j

( 2) / 2
2

0
0

E
E ! 2,4,6, E 1

( 2 )!(2 )!

n
j

n
j

n n
n j j

5:5:2

by which any Euler number of even degree may be calculated from its predecessors.

5:6 EXPANSIONS

It follows from equations 5:4:1 and 3:6:4 that Euler numbers of even degree may be expanded as

2 2

1

1 1 1 11
0 2

2 1 1 2 ! ( 1)E ( ) 2 ! 1 ( ) 0,2,4,
3 5 ( )

n n
n j

n n n n n
j

nn n
j

5:6:1

5:7 PARTICULAR VALUES

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14

1 0 1 0 5 0 61 0 1385 0 50521 0 2702765 0 199360981

5:8 NUMERICAL VALUES

Equations 5:2:1 and 5:2:2 are equivalent, respectively, to
9 E =a positive integer 2,6,10,

10
n n5:8:1

and
5 E =a positive integer 4,8,12,

10
n n5:8:2

It follows that, if approximates En well enough, then the exact value of the Euler number can be found fromEn
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9 E9 10Round 2,6,10,
10

E
5 E10Round 5 4,8,12,

10

n

n

n

n

n
5:8:3

where Round is the rounding function discussed in Section 8:13. Amply accurate for this purpose is the
approximation

2

1 1 1

1

2 1 5 7E ( ) 2 ! 2,4,6,
1 3

n
n n n

n nn n5:8:4

derived by combining equation 5:4:1 with approximation 3:9:7. Equations 5:8:3 and 5:8:4 form the basis
for Equator’s Euler number routine (keyword Enum) for even degree up to n 170. The output is exact through
E20 370 371 188 237 525. For n 22, a floating point answer rounded to 15 significant digits is provided.

5:9 LIMITS AND APPROXIMATIONS

The limit

2

12E ( ) 2 ! evenn
n

n n n5:9:1

holds as n approaches infinity through even values.

5:10 OPERATIONS OF THE CALCULUS

Neither differentiation nor integration may be applied to discretely defined functions such as En.

5:11 COMPLEX ARGUMENT

Euler numbers are encountered only with real nonnegative integer degrees.

5:12 GENERALIZATIONS

Euler polynomials En(x) [Chapter 20] are a generalization of Euler numbers, to which they are related by
1

2E 2 E 0,1,2,n
n n n5:12:1

5:13 COGNATE FUNCTIONS

Euler numbers have much in common with the beta numbers [Chapter 3] and with Bernoulli numbers [Chapter
4], to which they are related by equations 5:4:1 and 4:13:1, respectively.



v
m

Binomial coefficients occur widely throughout mathematics; for example in the expansions discussed in Section
6:14 and in the Leibniz theorem, equation 0:10:6.

Binomial coefficients are so named because they are the numerical multipliers that arise when a two-term sum
such as (a + b), a so-called binomial, is raised to a power. The corresponding numbers that arise in expansions of
powers of such extended sums as (a + b + c + d) are termed multinomial coefficients and are discussed briefly in
Section 6:12.

6:1 NOTATION

We refer to v and m, respectively, as the upper index and the lower index of the binomial coefficient. The lower
index of the binomial coefficient is invariably a nonnegative integer, whereas the upper index may take any realv

m

value. Positive integer values of the upper index are frequent, however, and in that circumstance the notation n
m

is used. Alternative to are the notations nCm and which have their origins in the role played by binomialn
m

( )C n
m

coefficients in expressing the number of combinations of m objects selected from a group of n different objects
[Section 2.14].

6:2 BEHAVIOR

When it is not zero, the binomial coefficient is invariably a positive integer. The values of such integersn
m

are shown in Figure 6 -1 for small values of the indices. For a given n, the maximal value of occurs when mn
m

n/2 if n is even, or jointly at m (n ± 1)/2 when n is odd.
When v is not restricted to a nonnegative integer, the behavior of the binomial coefficient is illustrated inv

m

Figure 6-2, and (except when m 0) includes positive, negative, and zero values. The magnitude of these values
is modest for 1 < v < m+1 but increases towards ± outside this range.
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v
m

6:3 DEFINITIONS

The binomial coefficient is defined as the m-fold product
1

0

1 2 3
1 2 3

m

j

v m v m v m v v jv
m m m j

6:3:1

As is standard for empty products, this definition includes unity as the definition of . The generating function0
v

[Section 0:3]

0
(1 ) 1 1v m

m

vt t tm6:3:2

also defines the binomial coefficient.
A definition in terms of Pochhammer polynomials [Chapter 18]

( 1) ( ) ( )
! !

m
m mv m vv

m m m
6:3:3

is possible generally, whereas a definition exclusively in terms of the factorial function [Chapter 2]
!

!( )!
nn

m m n m
6:3:4

requires that the upper index be a nonnegative integer.

n
m
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v
m

0
v

1
v

2
v

3
v

4
v

5
v

6
v

6:4 SPECIAL CASES

Reduction to an expression involving the double factorial [Section 2:13] occurs when the upper index is equal
to twice the lower index

2

4 (2 1)!! (2 )!2 0,1,2,
(2 )!! ( !)

m m mm mm m m
6:4:1

or differs by unity from twice the lower index
2 1

2

2 (2 1)!! (2 )!2 1 2 1 1,2,3,1 (2 )!! 2( !)

m m mm m mm m m m
6:4:2

6:5 INTRARELATIONSHIPS

There exist reflection formulas for the upper
1( )mv v m

m m6:5:1

and lower
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v
m

n n
n m m6:5:2

indices, as well as recursion formulas
1

1
v v v

m m m6:5:3

1 1
v mv v

m mm
6:5:4

for each index. The addition formula

0

m

j

v v
m j m j6:5:5

known as Vandermonde’s convolution, applies to the upper index.
There are a number of intrarelationships involving sums of binomial coefficients, including

0

1
1

n m

j

nj m n mm m6:5:6

0

1( ) ( )
m

j m

j

v v
j m6:5:7

and

0

2J

j

n n n n Jj n J j J6:5:8

Formula 6:5:5 provides an expression for a sum of products of binomial coefficients; a second such formula is

0

1J

j

m v J vj j v J mm m m J m6:5:9

When the upper index is an integer, finite, or infinite series of binomial coefficients frequently have simple
expressions; examples include

0
2

J
n

j

n J nj6:5:10

0
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J
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j

n J nj6:5:11

12 2,4,6,0 2 4
nn n n n n JJ6:5:12

12 1,3,5,1 3 5
nn n n n n JJ6:5:13

and

1

0
2

J
n

j

nj n J nj6:5:14
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v
m

Similarly, the sum of squares of binomial coefficients gives
2

0

2J

j

n n J nj n6:5:15

6:6 EXPANSIONS

A binomial coefficient may be expanded as a power series in its upper index by the formula

( )

0

1 S
!

m
j j

m
j

v vm m6:6:1

in which is a Stirling number of the first kind [Section 18:6]. Additionally, definition 6:3:1 constitutes the( )S j
m

expansion of as a finite product.v
m

6:7 PARTICULAR VALUES

1
m

1
2

m
0
m

1
2

m
1
m

2 1m
m

2m
m

2 1m
m

m 0 1 1 1 1 1 1 1 1

m 1 1 1
2 0 1

2 1 1 2 3

m 2 1 3
8 0 1

8 0 3 6 10

m 2,3, ( 1)m ( ) (2 1)!!
(2 )!!

m m
m

0
1( ) (2 3)!!
(2 )!!

m m
m

0
4 (2 1)!!

2(2 )!!

m m
m
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In addition to the cases tabulated above, there are the particular values

1 and0 1
v v v6:7:1

which apply for all values of the upper index.

6:8 NUMERICAL VALUES

Binomial coefficients of integer indices may be arranged in the triangular arrangement shown on the right, in
which each entry is the sum of the two above. This is commonly called Pascal’s triangle (Blaise Pascal, French
physicist and philosopher, 1623 1662), though it was described much earlier by the twelfth century mathematician
Yanghui.

Equator’s binomial coefficient routine (keyword bincoef ) for calculating accurate values of is based onv
m

equation 6:3:1. The largest value of v for which all are calculable is 1029.3.v
m
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6:9 LIMITS AND APPROXIMATIONS

The limits

2

( 1) ( 1)( 2)(3 1)1
! 2 24

mv m m m m m mv vm m v v
6:9:1

and

1 2

( 1) ( 1) ( 1)( 2)(3 1)1
) 2 24

m

v

v v v v v vv mm m v m m
6:9:2

govern the behavior of the binomial coefficient when one index, but not both, is large. Of course limit 6:9:2, though
universally valid, is useful only when v is not a nonnegative integer; otherwise is zero for all m > v.v

m

If both indices are large and positive, and especially
when m lies in the vicinity of v/2, the binomial coefficient
is well approximated by the Laplace-de Moivre formula

22 22 exp large
2

v vv m vm v v
6:9:3

which finds statistical applications [Sokolnikoff and
Redheffer pages 623 626]. Even for v as small as 10, the
approximation leads to small absolute errors, as shown by
Figure 6-3, in which the points are with m 0, 1, 2, ,10

m

11 and the line is based on approximation 6:9:3 with v 10
and m treated as a continuous variable.

6:10 OPERATIONS OF THE CALCULUS

Differentiation with respect to the upper index gives a derivative involving a difference of two digamma
functions [Chapter 44]:

1 1 1 1 ( ) ( )
1 2 1

v v v v m vm m mv v v v v m
6:10:1

6:11 COMPLEX ARGUMENT

The equivalence presented in equation 6:13:1 permits the formulas of Section 43:11 to be used to evaluate a
binomial coefficient when one or both of the indices are imaginary or complex.

6:12 GENERALIZATIONS

The restriction that the lower index of a binomial coefficient be an integer may be relaxed by making use of the
identity
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1 0
B( , 1)

v mm m m v m
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involving the complete beta function B [Section 43:13]. Thus the quantity 1/[ B( ,v +1)] can be regarded as a
generalized binomial coefficient, where , replacing m, is not necessarily an integer.

A generalization in a different direction is provided by multinomial coefficients. These are the coefficients that
arise in such expansions as

5 5 5 5 4 4 4 4 4 4

3 2 3 2 2 3 2 3 3 2 2 3 3 3 3 2 2 2 2 2 2

5

10 20 30

a b c a b c a b a c ab ac b c bc

a b a c a b a c b c b c a bc ab c abc a b c a bc ab c
6:12:2

When only integer powers are considered, all multinomial coefficients are integers. The general expression is
1 2 2 1

1 2 3 1 2 3 1 2 1 2M , , , , , n n
N m mm m m m

n n n na a a a N m m m m a a a a a a6:12:3

where the summation embraces all combinations of the nonnegative integer m parameters that satisfy

1 2 3 nm m m m N6:12:4

These parameters are not necessarily all distinct. In the 6:12:2 example, where n 3 and N 5, there are five
summands because of the five ways (5+0+0 , 4+1+0 , 3+2+0 , 3+1+1 , 2+2+1) in which the number 5 can be
composed by addition of three nonnegative integers. The multinomial coefficients themselves are given by

1 2 3
1 2 3

!M , , , , ,
( )!( )! ! !n

n

NN m m m m
m m m m6:12:5

For example, the second right-hand term in 6:12:2 has the multinomial (specifically a trinomial) coefficient of 5,
equal to 5!/(4!1!0!). See Abramowitz and Stegun (pages 831 832) for a lengthy listing of multinomial coefficients.
N need not be positive; see equation 15:6:1 for a counterexample.

6:13 COGNATE FUNCTIONS

The Pochhammer polynomial [Chapter 18], the factorial function [Chapter 2], and the (complete) beta function
[Section 43:13] are all allied to the binomial coefficient, to which they are related through equations 6:3:3, 6:3:4,
and 6:12:1. Because (v) generalizes (v 1)!, the gamma function [Chapter 43] too is related through

( 1)
( 1) ( 1)

v v
mm v m

6:13:1

to the binomial coefficient.

6:14 RELATED TOPIC: binomial expansions

The binomial theorem, also known as Newton’s formula, permits a binomial to be raised to any power:
2 3

2 3
0

2 3

2 3
0

1 1 2 3
( )

1 1 2 3

v v m m

mv

v m v m

m

a a av v v va a b b a bmb b b
a b

b b bv v v vb a b a b ama a a

6:14:1
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This is a special case of the Taylor expansion, equation 0:5:1. The resulting series, known as a binomial series,
terminates if v is a positive integer (in which case there is no restriction on the a/b ratio), but is infinite otherwise.

This chapter concludes with a catalog of some important binomial series. Frequently, binomials consist of a
variable paired with a constant; the simplest of such pairings, 1± x, serve in this role in the following examples.

12 3

0

( 1) ( 1)( 2) !(1 ) 1
2 6 !( )!

n
n n nn

m

n n n n n nx nx x x n x x x
m m n

6:14:2

4 2 3 4(1 ) 1 4 6 4x x x x x6:14:3
3 2 3(1 ) 1 3 3x x x x6:14:4

2 2(1 ) 1 2x x x6:14:5

3 / 2 2 3 4 5 6 7

0

3 3 1 3 3 7 9 (2 5)!!(1 ) 1 3
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1 1 1 5 7 21 33 (2 3)!!(1 ) 1
2 8 16 128 256 1024 2048 ! 2

m
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m

6:14:7

1/ 2 2 3 4 5 6 7
2

0

1 3 5 35 63 231 429 (2 )!(1 ) 1
2 8 16 128 256 1024 2048 ( !) 4

m

m

m xx x x x x x x x
m

6:14:8
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2 2 3 4 5 6 7 8 9 10

0
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0

( 1)( 2)( 3)(1 ) 1 4 10 20 35 56 84 120 ( )
6

m

m

m m mx x x x x x x x x6:14:13
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1 ( 1)( 2) ( 1)( 2)...( 1)(1 ) 1 ( )
2! 3! ( 1)!
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n n n n n m m m nx nx x x x
n

6:14:14

See Section 2:13 for the double factorial function ( )!!. Series 6:14:6 14 converge if 1 < x < 1; sometimes they
are also convergent if x 1 or if x 1. The general expression, valid for any value of v may be written in terms
of the Pochhammer polynomial as

0

( )(1 ) 1 1
!

mv m

m

vx x x
m

6:14:15

Sometimes useful is the finite series plus remainder
11

1

0 0

( ) ( )
(1 ) ( ) (1 ) (1 ) d 1 1

! ( 1)!

J
jj jv J J v J

j

v v
x x x t xt t x

j J
6:14:16



Many relationships in science and engineering take the form f(x) bx + c, and many others can be cast into this
form by a redefinition of the variables. The analysis of experimental results can thereby often be reduced to the
determination of the coefficients b and c from paired x, f(x) data. The linear regression or least squares method
of performing this analysis is exposed in Section 7:14.

7:1 NOTATION

The linear function bx + c, or its special case 1+ x, is sometimes referred to as a “binomial function” but
confusingly it is also termed a “monomial function”. Neither name is used in this Atlas.

The constant c is termed the intercept, whereas b is known as the slope or
gradient. These names derive, of course, from the observation that, if the linear
function bx + c is plotted versus x, its graph is a straight line that intersects the
vertical axis at altitude c and whose inclination from the horizontal is
characterized by the number b, which measures the rate at which the function’s
value increases with x. The b coefficient is also the tangent [Chapter 34] of
angle shown in Figure 7-1. The term “slope” is occasionally associated with
the angle itself, but it more usually means tan( ), being negative if is an
obtuse angle (90o < < 180o). The letter m often replaces b as a symbol for the
slope. In the figures, but not elsewhere in the chapter, b and c are assumed positive.

The name “inverse linear function” is sometimes given to the function 1/(bx + c). Throughout this Atlas,
however, we reserve the phrase “inverse function” for the relationship described in equation 0:3:3. The
unambiguous name reciprocal linear function is used here.

The name rectangular hyperbola may also be associated with the function 1/(bx + c). However, this name is
also applicable to other functions, described in Section 7:13, that share the same shape as, but possess a different
orientation to, the reciprocal linear function illustrated in Figure 7-2.

DOI 10.1007/978-0-387-48807-3_8, © Springer Science+Business Media, LLC 2009 
57K.B. Oldham et al., An Atlas of Functions, Second Edition,
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7:2 BEHAVIOR

The linear function bx + c is defined for all values of the argument x and
(unless b 0) itself assumes all values. The same is true of the reciprocal linear
function which, however, displays an infinite discontinuity at x c/b, as
illustrated in Figure 7-2. A graph of the reciprocal linear function f(x)
1/(bx + c) has a high degree of symmetry [Section 14:15], being inversion
symmetric about the point x c/b, f 0 and displaying mirror symmetry
towards reflections in the lines xsgn(b) (c/b) and xsgn(b)+(c/b). Here sgn is
the signum function [Chapter 8].

7:3 DEFINITIONS

The arithmetic operations of multiplication by b and addition of c fully define f(x) bx + c. The same
operations, followed by division into unity, define the reciprocal linear function.

The linear function is completely characterized when its values, f1 and f2, are known at two (distinct) arguments,
x1 and x2. The slope and intercept may be found from the formula

2 1 2 1 1 2

2 1 2 1

f f x f x fbx c x
x x x x

7:3:1

7:4 SPECIAL CASES

When b 0, the linear function and its reciprocal reduce to a constant [Chapter 1]. When c 0, the linear
function is proportional to its argument x.

7:5 INTRARELATIONSHIPS

Both the linear function and its reciprocal obey the reflection formula
1f f f ( ) orc cx x x bx c

b b bx c
7:5:1

Two linear functions that share the same b parameter represent straight lines that are parallel; the distance
separating these lines is . If the slopes of two straight lines satisfy the relation b1b2 1, the lines2

2 1 / 1c c b
are mutually perpendicular. intersecting at the point x (c2 c1)/(b1 b2). The inverse of the linear function f(x)
bx + c, defined by F{f(x)} x, is another linear function F(x) (x/b) (c/b); graphically, these two straight lines
usually cross at x c(1+b2)/(1 b2).

The sum or difference of two linear functions is a third linear function (b1±b2)x+c1±c2 and this property extends
to multiple components. The product of two, three, or many linear functions is a quadratic function [Chapter 15],
a cubic function [Chapter 16] or a higher polynomial function [Chapter 17]. Unless b2c1 b1c2, the quotient of two
linear functions is the infinite power series:
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The sum or difference of two reciprocal linear functions is a rational function [Section 17:13] of numeratorial
and denominatorial degrees of 1 and 2 respectively. Finite series of certain reciprocal linear functions may be
summed in terms of the digamma function [Chapter 44]

0

1 1 1 1 1 1 1
2

J

j

c cJ
c x c x c Jx c jx c x x x

7:5:3

or in terms of Bateman’s G function [Section 44:13]

0

1 1 1 1 ( 1) 1 G G 1
2 2

jJ

j

c cJ
c x c x c Jx c jx c x x x

7:5:4

In formula 7:5:4, the upper/lower signs are taken depending on whether J is even or odd. The corresponding infinite
sum is

0

1 1 1 ( 1) 1 G
2 2

j

j

c
c x c x c jx c x x

7:5:5

See Section 44:14 for further information on this topic.

7:6 EXPANSIONS

The linear function may be expanded as a infinite series of Bessel functions [Chapter 52]

1 3 5 2 1
1

2J ( ) 6J ( ) 10J ( ) 2 (2 1)J ( )j
j

bx c c bx bx bx c j bx7:6:1

though this representation is seldom employed.
The reciprocal linear function is expansible as a geometric series in alternative forms
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7:6:2

according to the magnitude of the argument x compared to that of the ratio c/b. Likewise there are two alternatives
when the reciprocal linear function is expanded as an infinite product
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1 1 1
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c bx bx bx
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For example, if |x| < 1

2 4 8 161 1 1 1 1 1
1

x x x x x
x

7:6:4

7:7 PARTICULAR VALUES

As Figure 7-1 shows, the linear function bx + c equals c when x 0 and equals zero when x c/b. The
reciprocal linear function has neither an extremum nor a zero, but it incurs a discontinuity at x c/b [Figure 7-2].

7:8 NUMERICAL VALUES

These are easily calculated by direct substitution. The construction feature of Equator enables a linear function
to be used as the argument of another function.

7:9 LIMITS AND APPROXIMATIONS

The reciprocal linear function approaches zero asymptotically as x ± .

7:10 OPERATIONS OF THE CALCULUS

The rules for differentiation of the linear function and its reciprocal are
d ( )
d

bx c b
x

7:10:1

and

2

d 1
d ( )

b
x bx c bx c

7:10:2

while those for indefinite integration are
2

0

( )d
2

x bxbt c t cx7:10:3

and

0

1 1d ln
x bx ct

bt c b c
7:10:4

If 0 < c/b < x, the integrand in 7:10:4 encounters an infinity; in this event, the integral is to be interpreted as a
Cauchy limit. This means that the ordinary definition of the integral is replaced by

( / )

0
0 ( / )

1 1lim d d
c b x

c b

t t
bt c bt c

7:10:5
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Several other integrals in this section, including those that follow immediately, may also require interpretation as
Cauchy limits, but mention of this will not always be made

0

1 1 ( )d ln
( )( ) ( )

x C bx ct Bc bC
Bt C bt c bC Bc c Bx C

7:10:6
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7:10:7
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Formulas for the semidifferentiation and semiintegration [Section 12:14] of the linear function are
1/ 2

1/ 2

d 2( )
d

bx cbx c
x x

7:10:9

and
1/ 2

1/ 2

d 4( ) 2
d 3

x bxbx c c
x

7:10:10

when the lower limit is zero. The table below shows the semiderivatives and semiintegrals of the reciprocal linear
functions 1/(bx+c) and 1/(bx c), when the lower limit is zero, and when it is . In this table, but not necessarily
elsewhere in the chapter, b and c are positive.
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See Sections 12:14 and 64:14 for the definitions and symbolism of semidifferintegrals with various lower limits.
The Laplace transforms of the linear and reciprocal linear functions are

2
0

( )exp( )d cs bbt c st t bt c
s

7:10:11

and
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0

1 1 1exp( )d exp Eics csst t
bt c bt c b b b

7:10:12

the latter involving an exponential integral [Chapter 37]. A general rule for the Laplace transformation of the
product of any transformable function f(t) and a linear function is

0

d( )f ( )exp( )d ( )f ( ) f ( ) f ( )
d

bt c t st t bt c t c t b t
s

7:10:13

Requiring a Cauchy-limit interpretation, the integral transform

1 df ( ) tt
t y

7:10:14

is called a Hilbert transform (David Hilbert, German mathematician, 1862 1943). The Hilbert transforms of many
functions, mostly piecewise-defined functions [Section 8:4], are tabulated by Erdélyi, Magnus, Oberhettinger and
Tricomi [Tables of Integral Transforms, Volume 2, Chapter 15]. For example, the Hilbert transform of the pulse
function [Section 1:13] is

1 d 2( )ln
2 2 2( )
h h t c a y hc u t a u t a

t y a y h
7:10:15

A valuable feature of Hilbert transformation is that the inverse transform is identical in form to the forward
transformation, apart from a sign change.

7:11 COMPLEX ARGUMENT

The linear function of complex argument, and its reciprocal, split into the real and imaginary parts
( )bz c bx c iby7:11:1

and

2 2 2 2 2 2

1
( ) ( )

bx c byi
bz c bx c b y bx c b y

7:11:2

if b and c are real.
The inverse Laplace transformation of the linear and reciprocal linear functions leads to functions from Chapters

10 and 26
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1 exp( ) 1 1d exp
2

i

i
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I7:11:4

The Laplace inversion of a function of bx + c is related to the inverse Laplace transform of the function itself through
the general formula

exp( ) 1f ( ) d f ( ) exp f ( )
2

i

i

ts ctbs c s bs c s
i b b

II7:11:5
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7:12 GENERALIZATIONS

The linear and reciprocal linear functions are the v ±1 cases of the more general function (bx + c)v, two other
instances of which are addressed in Chapter 11. More broadly, all the functions of Chapters 10 14 are particular
examples of a wide class of algebraic functions generalized by the formula (bxn + c)v.

The linear function is an early member of a hierarchy in which the quadratic and cubic functions [Chapters 15
and 16] are higher members and which generalizes to the polynomial functions discussed Chapter 17. All the
“named” polynomials [Chapters 18 24] have a linear function as one member of their families.

7:13 COGNATE FUNCTIONS

A frequent need in science and engineering is to approximate a function whose values, f0 , f1 , f2 , , fn, are
known only at a limited number of arguments x0, x1, x2, , xn, the so-called data points. The simplest way of
constructing a function that fits all the known data, but one that is adequate in many applications, is by using a
piecewise-linear function. In graphical terms, this implies simply “connecting the dots”. For any argument lying
between two adjacent data points, the interpolation

1 1
1

1

f ( ) j j j j
j j

j j

x x f x x f
x x x x

x x
7:13:1

applies. Usually a piecewise-linear function has discontinuities at all the interior data points. This defect is
overcome by the “sliding cubic” and “cubic spline” interpolations exposed in Section 17:14.

The simplest reciprocal linear functions 1/(1 ± x) serve as prototypes, or basis functions, for all L K
hypergeometric functions [Section 18:14]. All the functions in Tables 18-1 and 18-2, as well as many others, may
be “synthesized” [Section 43:14] from 1/(1+ x) or 1/(1 x).

The reciprocal linear function is related to the function addressed in Section 15:4 because the shape of each is
a rectangular hyperbola. Thus, clockwise rotation [Section 14:15] through an angle of /4 of the curve 1/(bx + c)
about the point x c/b on the x-axis produces a new function,

2 2cx
b b

7:13:2

that is a rectangular hyperbola of the class discussed in Section 15:4.

7:14 RELATED TOPIC: linear regression

Frequently experimenters collect data that are known, or believed, to obey
the equation f f(x) bx + c but which incorporate errors. From the data,
which consists of the n pairs of numbers (x1 , f1), (x2 , f2), (x3 , f3), , (xn , fn), the
scientist needs to find the b and c coefficients of the best straight line through
the data, as in Figure 7-3. If the errors obey, or are assumed to obey, a
Gaussian distribution [Section 27:14] and are entirely associated with the
measurement of f (that is, the x values are exact), then the adjective “best”
implies minimizing the sum of the squared deviations, . The2( )bx c f



64 THE LINEAR FUNCTION bx+c AND ITS RECIPROCAL 7:14

procedure for finding the coefficients that achieve this minimization is known as linear regression or least squares
and leads to the formulas

22 2

6 2 ( 1)
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and
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An abbreviated notation, exemplified by

1

n

j j
j

x f x f7:14:3

is used in the formulas of this section. Evaluation of these formulas simplifies considerably in the common
circumstance in which data are gathered with equal spacing, this is when x2 x1 x3 x2 xn xn 1 h. The
simplified formulas appear in red in equations 7:14:1, 7:14:2, 7:14:4 and 7:14:8.

A measure of how well the data obey the linear relationship is provided by the correlation coefficient, given by

2
22

222 22 2
22

3( 1)
6

n x xn x f x f
r b

n f fn x x n f f

nhb n
n f f

7:14:4

Values close to ±1 imply a good fit of the data to the linear function, whereas r will be close to zero if there is little
or no correlation between f and x. Sometimes r2 is cited instead of r.

Commonly there is a need to know not only what the best values are of the slope b and the intercept c but also
what uncertainties attach to these best values. Quoting their standard errors [Section 40:14] in the format

slope where standard error inb b b b7:14:5
and

intercept where standard error inc c c c7:14:6
is a succinct way of reporting the uncertainties associated with least squares determinations. the significance to be
attached to these statements is that the probability is approximately 68% that the true slope will lie between b b
and b + b. Similarly, there is a 68% probability that the true intercept lies in the range c ± c. The formulas giving
these standard errors are
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b b
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and
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2
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2 ( 1)
2 3n
b n hx x

x
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n
7:14:8

A related, but simpler, problem is the construction of the best straight line through the points (x1 , f1), (x2 , f2),
(x3 , f3), , (xn , fn), with the added constraint that the line must pass through the point (x0, f0). In practical problems
this obligatory point is often the x 0, f 0 origin. Equations 7:14:1 and 7:14:2 should not be used in these
circumstances, though they often are. The appropriate replacements are
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and

0 0c f bx7:14:10
Equations 7:14:1 7:14:8 are based on the assumption that all data points are known with equal reliability, a

condition that is not always valid. Variable reliability can be treated by assigning different weights to the points.
If the value f1 is more reliable than f2, then a larger weight w1 is assigned to the data pair (x1 , f1) than the weight w2

assigned to point (x2 , f2). The weights then appear as multipliers in all summations, leading to the formulas

22

w wx f wx wf
b

w wx wx
7:14:11

and
wf b wx

c
w

7:14:12

for the slope and intercept. Only the relative weights are of import; the absolute values of w1, w2, w3, , wn have no
significance beyond this. In practice, one attempts to assign a weight wj to the jth point that is inversely proportional
to the square of the uncertainty in fj. Notice that formulas 7:14:1 and 7:14:2 are the special cases of 7:14:11 and
7:14:12 in which all w’s are equal. Similarly, the formulas in 7:14:9 and 7:14:10 result from setting the weight of
one point, (x0 , f0), to be overwhelmingly greater than all the other weights, which are uniform.





The functions primarily addressed in this chapter are the signum function sgn(x), the absolute-value function
|x|, the integer-value function Int(x), the fractional-value function frac(x), the integer-part function Ip(x), and the
fractional-part function Fp(x). Only the first four of these find more than occasional use elsewhere in the Atlas.
Section 8:12 is devoted to the modulo function v(mod ), while the rounding function Round(x) is addressed in
Section 8:13.

Most of the functions in this Atlas operate on variable(s) to produce an entirely new value: the output number
bears no obvious resemblance to the input number(s). This is not the case for the six functions of the present chapter;
here the functions of interest leave part of the number, or at least one of its attributes, unchanged. For instance, the
integer-value function, Ip(x), retains all of the content of a number that lies to the left of its decimal point. Because
these functions dismember their arguments, the pieces may be reassembled, as the equations:

sgn( )x x x8:0:1

Int( ) frac( )x x x8:0:2
and

Ip( ) Fp( )x x x8:0:3
demonstrate.

8:1 NOTATION

The signum function sgn(x) is also called the sign function and may be symbolized sign(x) or sg(x).
An alternative name for the absolute value |x| of x is the magnitude of x, or, especially when the argument is

complex, the modulus. There is a danger of confusing modulus with “modulo” [Section 8:12], especially as both
words are commonly abbreviated to “mod”. The symbol ABS(x) or abs(x) sometimes replaces |x|, especially in
computer applications.

Because the values they generate are often identical, the distinction between the integer-value and integer-part
functions is not always recognized; the same confusion applies to the two fractional functions. The terms “ceiling”,
“floor”, “fix”, and “truncation”, are encountered in computer terminology, the last three sometimes being
synonymous with the operation carried out by the Ip function. The ceiling function of x, sometimes denoted ,x
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is the largest integer not exceeding x: the companion notation for the floor function is . The notation [x] findsx
use as an alternative to Int(x).

8:2 BEHAVIOR

When applied to numbers, the effect of each modifying function is immediately evident from its definition or
from the diagrams in Figure 8-1. This figure shows the result of applying each of the modifying functions to the
argument x. However, for the most part, the modifying functions are not encountered in isolation, but associated
with another function, the properties of which are thereby transformed. The modification may be to the argument
of a function, as in f{frac(x)} or to the function value, as in frac{f(x)}. We speak of the first instance as internal
modification of the f function, while the latter is an instance of external modification. Either type of modification
applied to a continuous function generally introduces one or more discontinuities, examples of which will be found
in Section 8:4.

Modifying functions may destroy preexisting symmetries, or may create new symmetries. For example, the
absolute-value function, applied externally to the function x3, destroys the preexisting inversion symmetry [Section
14:15], but creates a new mirror symmetry. Or, stated differently but equivalently, the odd function x3 is turned into
an even function |x3|.
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8:3 DEFINITIONS

As its name implies, the signum function extracts the sign of its argument:
1 0

sgn 0 0
1 0

x
x x

x
8:3:1

An interesting integral also generates the signum function

0

2 sin( )sgn( ) dxtx t
t

8:3:2

The absolute-value function equals its argument, or the negative of its argument, depending on whether the
argument is positive or negative

0
0

x x
x

x x8:3:3

The integer-value function extracts from its argument the largest integer that does not exceed the argument.
The fractional-value function is the difference between its argument and the largest integer that does not exceed its
argument
8:3:4 Int( )

1 0, 1, 2,
8:3:5 frac( )

x n
n x n n

x x n

The integer-part of a decimal number is that part of the number to the left of the decimal point, including the
sign of the number. The fractional-part is the part to the right of the decimal point, again including the number’s
sign. For example

Ip( 2 34) 2 and Fp( 2 34) 0 34. . .8:3:6
so that relationship 8:0:3 holds. For nonnegative arguments, the integer-value function and the integer-part function
yield the same value, as do the fractional-value and fractional-part pair

Ip( ) Int( ) Fp( ) frac( ) 0x x x x x8:3:7
The relationships for negative arguments are, however

Ip( ) Int( ) 1 Fp( ) frac( ) 1 0x x x x x8:3:8

8:4 SPECIAL CASES

Piecewise-defined functions are constructed by specifying different definitions in separate ranges of their
argument. A unitary definition is, however, often possible by employing modifying functions; for example, the
signum function sgn(x) describes a step without the need to separately describe the behavior in two ranges.

Piecewise-defined functions that have a repetitive character are often called waveforms; some are illustrated in
Figure 8-1 and others in Section 36:14. The function ( 1)Int(x) is a square waveform. frac(x) is a sawtooth waveform.
The function |2frac(x/2) 1|, involving two modifying functions, describes a triangular waveform. |sin(x)| is a fully
rectified sinusoidal waveform [Section 36:13]. The function Int(x) is a staircase waveform with unity treads and
unity risers. Ip(x) is a similar staircase, but one of its treads is of double width.
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8:5 INTRARELATIONSHIPS

Many relationships between different members of the modifying function family are given in Sections 8:0, 8:3
and 8:8. The only noteworthy intrarelationships of individual members are their reflection properties. The absolute-
value function is an even function

x x8:5:1

whereas the signum, integer-part and fractional-part functions are odd functions
sgn( ) sgn( ) Ip( ) Ip( ) Fp( ) Fp( )x x x x x x8:5:2

Neither designation applies to the integer-value or fractional-value functions.

8:6 EXPANSIONS

In general, modifying functions cannot be distributed through a sum of arguments, for instance Int(x+y) Int(x)
+ Int(y). A consequence is that, even though a function f(x) may itself be expansible, this expansibility is not
generally preserved by the action of modifying functions, whether they are applied internally or externally; for
example f(|x|) and |f(x)| do not generally have series expansions even if f(x) does.

Functions such as frac(x), Int{sin(x)+1} and ( 1)Int(x) are periodic and are therefore subject to Fourier expansion
as discussed in Chapter 36. Not only is the square wave function expressible as a series of sine waves, but the
converse is also the case, as the equation

Int( )

1,3
sin( ) ( 1)

4
j j t

j

m
t

j
8:6:1

demonstrates. Note that j is restricted to odd natural numbers. Here mj is a Möbius coefficient (August Ferdinand
Möbius, German mathematician and astronomer, 1790 1868), defined as follows

0 if is divisible by the square of any odd integer other than unity (e.g. 9,25,27,45,49,63, )
1 if is unity or the product of an even number of distinct primes (e.g. 1,15,21,33,35,39, )
1 if

j

j
m j

is a prime or the product of an odd number of distinct primes (e.g. 3,5,7,11,13,17, )j
8:6:2

8:7 PARTICULAR VALUES

Whereas each of the modifying functions may receive any real number as an argument, the accessible range of
output values is seriously restricted. At most, only three values, 0, ±1, are available to a signum function. Negative
values are inaccessible to absolute-value functions. Integer-value and integer-part functions can adopt only integer
values. All fractional-value functions lie in the range 0 frac{f(x)}< 1, whereas a somewhat wider range,

1< Fp{f(x)}< 1, is available to the values of fractional-part functions.

8:8 NUMERICAL VALUES

Programming languages incorporate access to at least two of the modifying functions: |x| and Ip(x), and others
may be provided too. If there is an “integer” function, ascertain whether it is Int or Ip if you intend to supply
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negative arguments. By using the formulas in Section 8:0, you can create Fp(x) as x Ip(x) and (except for x 0)
sgn(x) as |x|/x. The integer- and fractional-value functions are also accessible from Ip(x) via the formulas:

Int( ) Ip( ) 0
2

x x
x x x

x
8:8:1

frac( ) Ip( ) 0
2

x x
x x x x

x
8:8:2

Equator’s integer-part function, fractional-part function, integer-value function, and fractional-value function
routines (keywords Ip, Fp, Int, and frac) provide values of Ip(x), Fp(x), Int(x), and frac(x).

8:9 LIMITS AND APPROXIMATIONS

There are none that warrant inclusion.

8:10 OPERATIONS OF THE CALCULUS

Though each instance should be carefully examined in terms of the definition of the modifying function,
discontinuities introduced into functions by internal or external modification need not inhibit the application of
differential or integral operators. When differentiating, the discontinuities should be avoided, as in

d d ff sgn( ) 0
d d

x x x x
x x

8:10:1

No integration should be carried out across a discontinuity. The example
1 0 1 1

1 1 0 0

f d f d f d 2 f dt t t t t t t t8:10:2

illustrates how the prohibition can be circumvented. The Cauchy-limit “trick” [Section 7:10] is sometimes useful.
Modifying functions, despite their inherent discontinuities, are often converted to continuous functions under

the action of the Laplace transform. For example

0

2exp( ) 1sgn( )exp( )d {sgn( )} 0cst c st t t c c
s

8:10:3

0

coth( / 2) 1Int( )exp( )d {Int( )}
2
st st t t

s
8:10:4

2
0

2 coth( / 2)frac( )exp( )d {frac( )}
2

s s st st t t
s

8:10:5

1 1
2 2 2

0

2 tanh( )frac( ) exp( )d frac( )
4

s st st t t
s

8:10:6

Int( ) Int ( )

0

tanh( / 2)1 exp( )d 1t t sst t
s

8:10:7

Chapter 30 is devoted to the tanh and coth functions.
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8:11 COMPLEX ARGUMENT

The concept of “sign” has no meaning for a complex number and therefore neither of definitions 8:3:1 or 8:3:2
can be carried over into the complex plane. Instead, one defines the absolute value (or “modulus”) of a complex
number by

2 2z x iy x y8:11:1

Notice that this definition is little different from that for a real number, because can serve as an alternative2| |x x
to 8:3:3.

Likewise, because the statements z1 < z2 and z1 > z2 are meaningless, functions such as Int and Fp cannot be
applied to complex numbers. Of course these modifying functions can be used in complex algebra with the real or
imaginary parts of complex numbers as their arguments.

8:12 GENERALIZATIONS: including the modulo function

The signum function is a special case of the Heaviside function [Chapter 9]
sgn( ) 2u( ) 1x x8:12:1

except possibly when x 0.
The bivariate modulo function is a generalization of the fractional-value function inasmuch as

(mod 1) frac( )v v8:12:2
The notation v(mod ) is standard for the modulo function but is dangerous, in that, for example, 2v(mod ) does
not necessarily have twice the value of v(mod ). Especially when the variables are positive integers, the modulo
function is also known as the remainder function. “Modulus” and “cycle length” are encountered as names of the

variable. We allow v and to adopt any real value, except that the latter may not be zero.
In words, the modulo function v(mod ) is defined by the operation of starting with v, and then subtracting

repeatedly until the remainder is smaller than the modulus . For example
4 3(mod 2 1) = 0 1. . .8:12:3

Symbolically, this definition is equivalent to

(mod ) frac vv8:12:4

though numerical implementation via
Int( / )(mod ) 1

/
v v8:12:5

preserves precision better. The verbal definition given above applies only if v and are positive, whereas 8:12:4
validly defines the modulo function irrespective of the signs of its two variables. Thus, for example, in contrast to
8:12:3, this Atlas considers

4 3(mod 2 1) 2 0 4 3(mod 2 1) 2 0 and 4 3(mod 2 1) 0 1. . . . . . . . .8:12:6
However, there is no unanimity among authors over the outcome of the modulo operation when either or both of v
and is negative.

Precision loss is a grave problem in evaluating the modulo function, especially when v is much larger than .
Equator’s modulo function routine (keywordmod) for calculating v(mod ) is based on formula 8:12:5 and suffers
no loss of precision until the ratio v/ exceeds 1012 or becomes less than 10 14.
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8:13 COGNATE FUNCTIONS

A trailing digit is a decimal digit that lies to the right of the decimal point. The operation of rounding means
truncating a number by removing one, several, or all of the rightmost trailing digits, while minimizing the difference
between the rounded number and the original. This caveat may require the adjustment of one or more of the residual
digits. For example, 7.140 is the result of rounding 7.13962 to three trailing (four significant) digits.

The so-called rounding function, more descriptively termed the nearest-integer function, removes all trailing
digits. It is simply

1
2Round( ) Int( )x x8:13:1

The symbols , [x], and nint(x) are encountered as synonyms of Round(x). Beware of the symbol “rnd(x)”; it mayx
represent the rounding operation, but it is also used in computer languages to summon a random number.

The motive for rounding a number may be to decrease the space it occupies (in a computer or on a page) or to
make the number more realistically match the quantity it represents. Alternatively, the goal of economy without too
great a loss of precision can often be met by replacing the decimal number by a (proper or improper) fraction. One
might even consider the replacement of a decimal number by an almost-equivalent fraction as a sort of rounding.

The conversion of a fraction into a decimal number is readily accomplished by division, but the converse
conversion is less straightforward. Of course, a decimal number x is rarely replaceable exactly by a fraction, so the
pertinent problem devolves into finding a numeratorial integer n and a denominatorial integer d, along with the
fractional error that accompanies the approximation

1n nx
d xd

8:13:2

Equator has a rational approximation routine (keyword rational) that produces a sequence of increasingly accurate
fractional replacements for a decimal number x, each output being accompanied by the associated fractional error.
All such approximations are listed, provided that each new approximation is at least 10% better than the prior
approximation, up to the smaller of n or d being 106. Output can be halted by pressing the Esc key.

8:14 RELATED TOPIC: base conversion

The integer-value and fractional-value functions lie at the heart of such devices as analog-to-digital convertors
that digitize measured signals of various kinds. They also play roles in the conversion of a number x from one
number system to another; from the decimal system to the binary, for example, or from the hexadecimal to the
decimal.

Any positive number can be represented as

0 1 2 3
nx N N N N.8:14:1

where n is an integer and each Nj takes one of the integer values 0,1,2, ,( 1), where is the base of the number
system and where N0 0. Such a representation is termed floating point or, if 10, scientific notation. An
alternative is the fixed point representation

1 0 1 2n nx N N N N N.8:14:2
where, as before, each Nj is an integer drawn from the set 0,1, 2, ,( 1) except Nn 0. Changing from one base
system to another, say from decimal to binary or from hexadecimal to decimal, is easily accomplished.

A number that is exact in one number system may be incapable of finite representation in another number
system. For example, many decimal numbers, such as 1.7, cannot be expressed in other than an infinite number of
binary digits. This has consequences in the computation of function values by computers, which operate in binary
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arithmetic. For reasons explained in Section C:10, Equator provides a nearest binary approximant routine (keyword
bin) to maximize the precision by which certain function values may be computed. This routine returns the nearest
binary number having no more than 15 decimal digits.



The functions of this chapter occur primarily as multipliers of other functions, which they thereby modulate.
The Dirac function is the derivative of the Heaviside function

d( ) u( )
d

x a x a
x

9:0:1

Strictly speaking, the Dirac function is not a function at all, because it violates conditions that respectable functions
obey; nevertheless the great utility of this “function”, notably in the fields of classical and quantum mechanics,
warrants its inclusion in the Atlas.

9:1 NOTATION

The names of these functions recognize the achievements of two English innovators, Oliver Heaviside (electrical
engineer, 1859 1925) and Paul Adrian Maurice Dirac (nuclear physicist, 1902 1984).

Synonyms of “Heaviside function” include unit-step function, Heaviside theta function, and Heaviside’s step
function; the symbols (x a), H(x a), and Sa(x) are encountered. The Dirac function has the alternative names unit-
impulse function, impulse function, delta function, and Dirac’s delta function. The last variant stresses the distinction
from Kronecker’s delta function [Section 9:13].

The salient property of each of these functions occurs when its argument is zero, and this is the reason for the
unusual representation of the argument of these functions. In truth, these functions are bivariate, but it is only the
difference, x a, between the two variables that affects the functions’ values. This also explains why the notations
u(x) and (x) replace u(x a) and (x a) when a is zero.

9:2 BEHAVIOR

As illustrated in Figure 9-1, the Heaviside function u(x a) adopts the value zero when x is less than a and the
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76 THE HEAVISIDE u(x a) AND DIRAC (x a) FUNCTIONS 9:3

value unity when x > a, so that the alternative name “unit-step function” is,
indeed, appropriate. The value of u(x a), when x a, is usually regarded as ½,
but this is seldom of consequence.

The Dirac function cannot be graphed; (x a) is zero for all x, except at
x a, where it is infinite.

9:3 DEFINITIONS

The Heaviside function is defined by

1
2

0
u( )

1

x a
x a x a

x a
9:3:1

and therefore the effect of multiplying any function f(x) by u(x a) is to nullify the function for arguments less than
a, but to preserve f(x) unchanged for x > a.

Equation 9:0:1 provides one definition of the Dirac function. It may be defined as a limit in several ways,
including

2( ) lim exp ( )
v

vx a v x a9:3:2

and

2

0

1( ) lim sech
2

x ax a9:3:3

in terms of functions discussed in Chapters 27 and 29. The Dirac function may
also be considered as the limiting case of a pulse function [Section 1:13] in
which the pulse width is progressively diminished, while preserving the product
(pulse width)×(pulse height) equal to unity. All these definitions – and many
others – describe a function peaked at x a that, as the limit is approached,
becomes infinitely high and infinitesimally wide but whose area remains
constant and equal to unity. Figure 9-2 illustrates progress towards the limit
in the case of definition 9:3:3.

Yet another representation is as the definite integral

( ) cos 2 ( ) dx a x a t t9:3:4

9:4 SPECIAL CASES

The signum function [Chapter 8] is an adaptation of the Heaviside function
sgn( ) 2u( ) 1x x9:4:1
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9:5 INTRARELATIONSHIPS

The Heaviside function satisfies the reflection formula
u( ) 1 u( )a x x a9:5:1

whereas, for the Dirac function
( ) ( )a x x a9:5:2

Other intrarelationships obeyed by the Dirac function include the multiplication property
( )( ) 0x av x a v

v
9:5:3

and

2 2 1( ) ( ) ( )
2 | |

x a x a x a
a

9:5:4

9:6 EXPANSIONS

There are none.

9:7 PARTICULAR VALUES

x < a x a x > a

u(x a) 0 ½ 1

(x a) 0 0

9:8 NUMERICAL VALUES

Values of these functions require no computation.

9:9 LIMITS AND APPROXIMATIONS

The discontinuous Heaviside and Dirac functions may be approximated by continuous functions in many ways.
For example

1 tanh{ ( )}u( ) very large
2
v x ax a v9:9:1

or
2 2exp ( )

( ) very large
v v x a

x a v9:9:2
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9:10 OPERATIONS OF THE CALCULUS

As equation 9:0:1 states, the derivative of the Heaviside function is the Dirac function. If the Dirac function
is itself differentiated, the unit-moment function (1)(x a), mentioned in Section 9:12, results. Integration of the two
functions yields:

0

0u( )d [ ]u( )
x

x

t a t x a x a x a x9:10:1

0

0

0

1
( )d

0 or

x

x

x a x
t a t

a x a x9:10:2

The integration of the product of an arbitrary function f(x) with the functions of this chapter produces interesting
and useful results:

0

0u( )f ( )d f ( )d
x x

x a

t a t t t t x a x9:10:3

0

0( )f ( )d u( )f ( )
x

x

t a t t x a a x a x9:10:4

A special case of the last equation constitutes what is known as the sifting property

( )f ( )d f ( )t a t t a9:10:5

of the Dirac function: multiplying a function f(x) by (x a) and integrating “sifts out” the value of f at x a.
Another way in which the Dirac function finds use is in being “convolved” with another function. The notation

f(x) g(x) represents the convolution of the f and g functions, defined by

f ( ) g( ) f ( )g( )d f ( )g( )dx x t x t t x t t t9:10:6

The convolution of two Dirac functions obeys the rule
( ) ( ) ( )x a x b x a b9:10:7

Laplace transformation of the Heaviside and Dirac functions leads to an exponentially decaying function
[Chapter 26] of the dummy variable

0

exp{ }u( )exp( )d u( ) 0ast a st t t a a
s

9:10:8

0

( )exp( )d ( ) exp{ } 0t a st t t a as a9:10:9

The latter transform exemplifies the sifting property.

9:11 COMPLEX ARGUMENT

A complex number is zero only if its real and imaginary parts are both zero. Thus the Dirac function of complex
argument (x+iy a bi) is nonzero only when x a and y b. It obeys
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( )d d 1x iy a ib x y9:11:1

as well as other relations that parallel its behavior as a function of a real argument.

9:12 GENERALIZATIONS

The functions u(x a), (x a) and (1)(x a) may be regarded as the v 0, v 1, and v 2 cases of a continuum
of functions defined by the differintegral [Section 12:14]

d u( ) 0
d

v

v x a a
x

9:12:1

which evaluates to
d ( )u( ) u( )
d (1 )

v v

v

x ax a x a
x v

9:12:2

The gamma function, , is addressed in Chapter 43. When v 1,2,3, , the gamma function (1 v) is infinite, so
that formula 9:12:2 evaluates to zero, except at x a.

The v 2 case of 9:12:1, the unit-moment function, may be defined by limiting operations analogous to 9:3:2
and 9:3:3, for example

(1) 2
20

1( ) lim sech tanhx a x ax a9:12:3

Alternatively, it may be considered as the limit of two pulse functions: first a positive-going pulse, immediately
followed by a negative-going replica. As the pulses individually approach Dirac functions, the second on the heels
of the first, the combination becomes (1)(x a). The unit-moment function, which is alternatively symbolized

(x a), has a sifting property too, but it sifts out the derivative of the f(x) function:

(1) df( )f ( )d ( )
d

t a t t a
t

9:12:4

9:13 COGNATE FUNCTIONS

A window function contains a segment of some function f(x), whose definition is preserved within the argument
range x0 < x < x1, but which is zero otherwise. Two Heaviside functions switch the function on and off in the
following formula

0 1 1 0f ( ) u( ) u( )x x x x x x x9:13:1

that implements the windowing. The pulse function [Section 1:13] is the simplest example.
The Dirac function is a bivariate function of two variables, x and a, each of which can adopt any real value; it

is zero unless these two variables are equal. The Kronecker function or Kronecker delta function, n,m, (Leopold
Kronecker, German mathematician, 1823 1891) is an analogous bivariate function but its two variables are
restricted to integer values. It is defined by



80 THE HEAVISIDE u(x a) AND DIRAC (x a) FUNCTIONS 9:14

,

0
1n m

n m
n m9:13:2

The comb function or shah function, comb(x,P), generates a sequence of Dirac functions whenever x is a
multiple of P. For example, comb(x,1) has the property of being zero except for integer x, when it is infinite.

9:14 RELATED TOPIC: Green’s functions

One application of the Dirac function arises in the context of Green’s function, named for the English applied
mathematician George Green (1793 1841). Of course, Green did not use the term “Dirac function”: he died long
before Dirac’s birth.

The concept of a Green function is at once simple, yet profound [see, for example, Morse and Feshbach,
Chapter 7]. These functions are employed in studies of physical situations in which a source of something (radiation,
heat, electric field, diffusing chemicals, etc.) makes its presence felt at some remote site. The source may be of any
shape and it may be of constant or varying intensity. The idea is that the source may be dissected into an infinite
array of Dirac functions, in space and/or time; then, knowing the remote effect of one of these elements, suitable
integrations will lead to knowledge of the effect of the source as a whole. The Green function is the contribution
of one such element. Consider the example of a uniform cartesian plane containing a source, one element of which
is at location (x , y ) emitting diffusant at time t . The effect of that element at some other point (x, y), at some
subsequent time t, is given by a Green function, which takes the form

2 2( , , ) [ ] [ ]exp
4 [ ] 4 [ ]
Q x y t x x y y

t t t t
9:14:1

if the plane is infinite in both spatial dimensions. is a characteristic constant, the diffusivity. The Q term is the
intensity of the source element. The emission from that element is represented by

( , , ) ( ) ( ) ( )d d dQ x y t x x y y t t x y t9:14:2
and involves three Dirac functions.



n n

With n 0, ±1, ±2, this chapter concerns the function (bx + c)n and its special b 1, c 0 case. The powers
1, x, x2, and the reciprocal powers 1, x 1, x 2, are the units from which power series are built. Such expansions
and their applications are addressed in Section 10:13. Section 10:14 provides a brief exposition on the intriguing
and useful lozenge diagrams.

10:1 NOTATION

The two formulas (bx + c) n and 1/(bx + c)n are equivalent in all respects. The powers x2 and x3 are termed the
square and the cube of x respectively, and the special properties of functions containing these units are addressed
in Chapters 15 and 16.

In the general notation , is known as the base and as the power or exponent. In this chapter [and in
Chapter 12] the family of functions in which the base is the primary variable is treated, with the exponent held
constant. In contrast, Chapter 26 is concerned with functions in which the exponent varies and the base is held
constant. The instance in which both the base and the power are the same variable is touched on briefly in Sections
26:2 and 26:13.

10:2 BEHAVIOR

The power function is defined for all values of x and for all integer n except that xn is undefined when both x
and n are zero. Figures 10-1 and 10-2 illustrate the behavior of xn for n 0, ±1, ±2, ±3, ±4, ±7 and ±12. Notice the
contrasting behavior of the positive and negative powers. Note also how the reflection properties depend on whether
n is even or odd.

If n is positive, (bx + c)n has a zero of multiplicity n [Section 0:7] at x c/b. This value of x is the site of an
infinite discontinuity in (bx + c)n when n is negative.

DOI 10.1007/978-0-387-48807-3_11, © Springer Science+Business Media, LLC 2009 
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10:3 DEFINITIONS

The function (bx + c)n is defined by:

1

1

1 1, 2, 3,

( ) 1 0

( ) 1,2,3,

n

j
n

n

j

n
bx c

bx c n

bx c n

10:3:1

10:4 SPECIAL CASES

When n 0
( ) 1 0nbx c n10:4:1

and when n ±1, reduction occurs to the functions treated in Chapter 7. 00 is generally undefined, though it may
be ascribed a value of either 0 or 1 in certain contexts.

When b 0, (bx + c)n reduces to a constant [Chapter 1] for all values of c and n.

10:5 INTRARELATIONSHIPS

The function xn obeys the simple reflection formula

0, 2, 4,
( )

1, 3, 5,

n
n

n

x n
x

x n
10:5:1

For the (bx + c)n functions, reflection occurs about x c/b

( )
n n

nc cb x c b x c
b b

10:5:2

The recurrences
1( ) ( )( )n nbx c bx c bx c10:5:3

and
1( )( )

n
n bx cbx c

bx c
10:5:4

apply, as do the laws of exponents
( ) ( ) ( )n m n mbx c bx c bx c10:5:5

( ) ( )
( )

n
n m

m

bx c bx c
bx c

10:5:6

and

( ) ( )
mn nmbx c bx c10:5:7
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The simplest instances
2 2 ( )( )x y x y x y10:5:8

3 3 2 2( )x y x y x xy y10:5:9

4 4 2 2( )( )x y x y x y x y10:5:10

4 4 2 2 2 22 2x y x xy y x xy y10:5:11

of function-subtraction and function-addition formulas for integer powers generalize to formulas involving the
cosine function [Chapter 32]:

( 1) / 2
2 2

1

2( ) 2 cos 1,3,5,
n

n n

j

jx y x y x xy y n
n

10:5:12

/ 2
2 2

1

22 cos 2,4,6,
n

n n

j

jx y x xy y n
n

10:5:13

( 2) / 2
2 2

1

2( )( ) 2 cos 2,4,6,
n

n n

j

jx y x y x y x xy y n
n

10:5:14

As elaborated in Section 17:7, xn ± yn may always be expressed as the product of n factors, possibly complex; for
example, 10:5:11 becomes the product of four factors, each of which is subsumed in .(1 ) / 2x i y

Finite series of positive or negative integer powers may be summed as geometric series:
1

2 1 11 1,2,3,
1

n
n n xx x x x n

x
10:5:15

1 2 11 1,2,3,
1

n
n n x xx x x x n

x
10:5:16

The corresponding infinite series are summable only for restricted ranges of x, as discussed in Section 10:13.

10:6 EXPANSIONS

If n is positive, (bx + c)n may be expanded binomially as the finite series

1 2 2 2 1 1

0

( 1)( ) 0,1,2,
2!

jn
n n n n n n n n n

j

n n bxnbx c c nc bx c b x ncb x b x c nj c
10:6:1

for all x, where is the binomial coefficient of Chapter 6. If n is negative, the series is infinite and takes the form
n
j

1 2 2 2

0

( 1) 1( ) 1, 2, 3, | |
2!

j
n n n n n

j

n n bx cj nbx c c nc bx c b x c n xj c b
10:6:2

or

1 1

0

1
( ) 1, 2, 3, | |

j
n n n n n n n

j

j n c cbx c b x ncb x b x n x
j bx b

10:6:3

depending on the magnitude of x. Section 6:14 presents some of the specific examples.
Positive integer powers may be expanded in terms of Pochhammer polynomials [Chapter 18]
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( ) ( )

0 0
( 1) ( ) ( ) 0,1,2,

n n
n j j j

n j n j
j j

x x j x n10:6:4

where is a Stirling number of the second kind [Section 2:14], or in terms of Chebyshev polynomials of the first( )j
n

kind [Chapter 22]:
( )
0 0( ) ( ) ( )

2 2 4 4 ( )
1 1

T ( ) 0,2,4,
T ( ) T ( ) T ( )

T ( ) 1,3,5,

n
n n n n

n n n n n n n

x n
x x x x

x n
10:6:5

For example, . The coefficients are zero whenever n and j are of unlike parity5 5 5 1
1 3 58 16 16T ( ) T ( ) T ( )x x x x ( )n

j

or j exceeds n. . Other are positive rational numbers that are calculable by sufficient applications(0) (1)
0 1 1 ( )n

j

of the recursion formulas , , and for j 2, . Expansions( ) ( 1)1
0 12
n n ( ) ( 1) ( 1)1

1 0 22
n n n ( ) ( 1) ( 1)1 1

1 12 2
n n n
j j j

similar to 10:6:5 exist for each orthogonal polynomial family [Chapters 21 24].

10:7 PARTICULAR VALUES

For b not equal to zero, (bx + c)n adopts the particular values:

x (1+c)/b x c/b x (1 c)/b

n < 0 ( 1)n 1

n 0 1 undef 1

n > 0 ( 1)n 0 1

10:8 NUMERICAL VALUES

Equator’s power function routine (keywordpower) can calculate integer (or non-integer) powers. Additionally,
the “variable construction” feature of Equator [Appendix C] allows t p, or wt p + k, to be used as the argument of
another function.

10:9 LIMITS AND APPROXIMATIONS

The limiting behavior of xn is evident from Figures 10-1 and 10-2. Note that the discontinuity suffered by x n

at x 0 is of the + |+ variety when n 2,4,6, but is |+ for n 1,3,5, .

10:10 OPERATIONS OF THE CALCULUS

The rule for differentiation

1d ( ) ( )
d

n nbx c nb bx c
x

10:10:1

is the m 1 case of the multiple-differentiation formula
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( )d ( )
d 0

m n mm
n m

m

n b bx c m n
bx c

x m n
10:10:2

that employs the Pochhammer notation [Chapter 18]. General formulas for indefinite and definite integration are:
1

/

( ) 0,1,2,
( ) d ( 1)

1, 2, 3,

n
x

n

c b

bx c n
bt c t n b

n
10:10:3

1

1,0,1,2,
( ) d ( ) 2, 3, 4,

( 1)

n n

x

n
bt c t bx c n

n b
10:10:4

1

0

1 1
1 0

1

0

( ) ( ) 0,1, 2, 3,
( 1)

( ) d
1 ln 1

n n

x
n

x

bx c bx c n
n b

bt c t
bx c n

b bx c

10:10:5

Differintegrals [Section 12:14] of the nonnegative power xn are given by the formula
d ! 0,1,2, 0
d ( 1)

n xx n x n x
x n

10:10:6

where is the gamma function [Chapter 43].
On Laplace transformation, a nonnegative integer power obeys the simple formula

1
0

!exp( )d 0,1,2,n n
n

nt st t t n
s

10:10:7

Negative integer powers cannot be transformed, but powers of the reciprocal linear function transform as follows,
provided c 0:

1

1
10

( ) exp(- )d {( ) } exp Ei ( 1)!
( 1)!( )

jn n
n n

n
j

b cs cs bbt c st t bt c j
n s b b cs

10:10:8

for n 1, 2, 3, . The transform generates a product of the exponential [Chapter 26] and exponential integral
[Chapter 37] functions.

10:11 COMPLEX ARGUMENT

Via a binomial expansion [Section 6:14], integer powers of the complex variable z, may be expressed as a pair
of power series. For example, if n is positive

2 2Int ( / 2) Int{( 1) / 2}
1

2 2
0 0

( ) 2 2 1

j jn n
n n n n

j j

y yn nz x iy x ix yj jx x
10:11:1

while, for a negative power, one can split the function into real and imaginary components as
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2 1 2Int ( / 2) Int[( 1) / 2]

2 2 2 2 2 2 2 2
=0 0

1 ( )
( ) ( )2 2 1

j jnn nn n

n n n
j j

n nx iy x y ix y y
z x y x y x x y xj j

10:11:2

In these two equations the rectangular representation z x + iy of a complex variable has served as the vehicle for
expressing the properties of the power function when its argument is complex. For this function, however, it is more
rewarding to use the polar representation z exp(i ) of a complex number. With this approach, de Moivre’s
theorem [Section 32:11] leads to

exp cos( ) sin( )n n nz ni n i n10:11:3

irrespective of the sign of n (there is a pole at the origin when n is negative). The real part is
2 2 / 2Re[ ] cos( ) where ( ) and arctan( / ) 1 sgn( ) / 2n n nz n x y y x x10:11:4

with the expression for Im[zn] having sin replace cos, but being otherwise similar. Figure 10-3 is a polar graph
illustrating equation 10:11:4 and its imaginary counterpart for the case n 5. In this representation the parts (real
or imaginary) are zero at the center, with the red and blue “petals” respectively representing positive and negative
excursions. At the edges of their petals, the parts adopt the value n. Equator’s complex number raised to a real
power routine (keyword compower) uses equation 10:11:4, and its congener Im[zn] nsin(n ), to compute the real
and imaginary parts of (x+iy)n.

The reciprocal power s n undergoes Laplace inversion to give t n 1/(n 1)! and this generalizes to
1exp( )( ) d ( ) exp 1, 2, 3,

2 ( 1)!

i n n
n n

i

ts b t ctbs c s bs c n
i n b

I10:11:5

10:12 GENERALIZATIONS

The restriction that the power be an integer is removed in Chapter 12. Quadratic functions [Chapter 15], cubic
functions [Chapter 16], and polynomials [Chapters 17 24] are weighted finite sums of nonnegative integer powers.
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10:13 COGNATE FUNCTIONS: power series

An infinite sum of weighted positive powers of a variable is a power series

2
0 1 2

0

j j
j j

j
a a x a x a x a x10:13:1

The a’s, which are generally functions of j, but not of x, are the coefficients of the series, while a j x j is the typical
term. A similar series in which the general term is is a Frobenius series; by redefining the variable to bej

ja x
x and by withdrawing a factor of x , such a series can be converted to a power series.

Some special cases of power series in which the coefficients are drawn from the set (1,0, 1) include:

2 3 4 11 1 1
1

x x x x x
x

10:13:2

3 5 7 9
2

1 1 1 1 1
2 1 1 1

xx x x x x x
x x x

10:13:3

to which many others could be appended. These are summable series of integer powers whose exponents increase
linearly, but one may also sum similar series in which the exponents increase quadratically, as follows

4 9 16
4 2

1 ln( )1 0, 1 0 1
2

xx x x x x10:13:4

4 9 16
3 2

1 ln( )1 0, 1 0 1
2

xx x x x x10:13:5

9 25 49 81
2 2

1 4ln( )0, 0 1
2

xx x x x x x10:13:6

in terms of exponential theta functions [Section 27:13] of zero parameter. The quantity { ln(x)}/ 2 that appears in
these formulas is closely related to the nome function discussed in Section 61:15.

Addition and subtraction of power series is straightforward. Thus if A, B and C are the power series ,j
ja x

and , then if A ± B C one has cj aj ± bj. The rules for exponentiation and multiplication arej
jb x j

jc x

0 0 1 1
10

where and ( ) for 1,2,3,
j

n n
j j k k

k

nA C c a c j k a c j
ja

10:13:7

and

0
where

j

j k j k
k

AB C c a b10:13:8

but when C A/B, the expression for cj is too elaborate to be generally useful. In an operation known as reversion
of series, a power series A in the variable x is converted into a power series for x, with a normalized A as the variable.

2 2 2
1 2 2 3 2 1 3 4 2 1 3 2 1 4

2 2 2 2 30
1 5 2 2 1 3 1 3 2 4 1 52

1 1 3 2 3 2 2 4
6 2 1 3 2 1 3 4 2 5 1 2 3 2 4 1 6

1, , 2 , 5 ( ) ,
where 7 (2 3 ) 3 ( 2 ) ,

7[6 (2 ) ( ) 4 ( )]

k

k
k

d d a d a a a d a a a a a a
A ax a d d a a a a a a a a a a

a
d a a a a a a a a a a a a a a a a

10:13:9

There is no general formula for the d coefficients. The operations of differentiation and integration may be carried
out term-by-term and generate other power series. Differintegration generally produces a Frobenius series.
Operations on convergent power series do not necessarily preserve convergence.

As Sections 6 of most of the chapters in this Atlas will attest, almost all mathematical functions may be
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expanded via the Maclaurin series (Colin Maclaurin, 1698 1746, a Scottish mathematical prodigy, who defended
his master’s thesis at the age of 14)

2 2 3 3

2 3
0

df d f d f d ff( ) f(0) (0) (0) (0) (0)
d 2 d 6 d ! d

j j

j
j

x x xx x
x x x j x

10:13:10

This is the special y 0 case of the Taylor series 0:5:1. This formula permits most functions that can be repeatedly
differentiated to be expressed as power series. Accordingly, a truncated version of such a power series is commonly
used as a source of the (approximate) numerical value of a function for some specified value of the argument x:

0

1 d ff ( ) (0) large
! d

jJ
j

j j j
j

x a x a J
j x

10:13:11

One may steadily increase J, calculating these partial sums the while. Equator frequently employs this tactic,
ceasing the incrementation when three consecutive partial sums are identical (to the precision of the computation).
Unfortunately, many series are not sufficiently convergent to yield adequate numerical approximations even when
J has the large values accessible with speedy computers. Other numerical problems, in the form of rounding errors
and precision loss, arise from the finite number of significant digits carried by most computer programs. These
difficulties are mostly encountered when the terms in the Maclaurin series alternate in sign. Alternative methods
are then sought, or a careful check is kept of the significance lost, the precision of the final answer being adjusted
accordingly.

One simple remedy that is often effective is to convert the truncated power series into a concatenation (or
“nested sum”) that may be summed “backwards”

1
1 2 2 1 0 12f ( ) 1 1 1 1 1 /J J J j j jx b x b x b x b x b x a b a a10:13:12

Notice that this formula incorporates the ruse, useful only when the series alternates in sign, of halving the final
summed term. A similar, and often helpful, stratagem is to convert the series to the continued fraction [see 0:6:12]

0 1 2 2 1

1 2 2 1

f ( )
1 2

J J J

J J

a b x b x b x b x b xx
b x b x b x b x

10:13:13

but there are no guarantees in this field, which is as much art as science.
There exist more radical techniques for finding numerical values of f(x). Though often classified under the

“summation of series” rubric, these approaches actually abandon the 10:13:11 expansion of f(x) in favor of some
other representation, such as a rational function [Section 14:13], a standard continued fraction [Section 0:6] or a non-
Maclaurin series. In Section 10:14, some of these techniques will be discussed in the context of lozenge diagrams,
but a simpler transformation, due to Euler, will be exposed here.

The Euler transformation replaces the power series f(x) byj
ja x

2 3

1 2 3
1

1 1f ( )
1 1 1 1

k

k
k

x x x xx e e e e
x x x x x x

10:13:14

By equating coefficients, one easily finds that e1 a0, e2 a0+a1, e3 a0 +2a1+a2 , and generally
1

0

1k

k j
j

ke aj10:13:15

The transformed series frequently has much improved convergence, so that a truncated version of 10:13:14 may
provide an acceptable numerical approximation.

For very large values of the argument x, most of these summation strategies fail to deliver useful numerical
values. Fortunately, for most functions, f, there exist power series expansions of f(1/x). These are generally
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asymptotic series, so that increasing the number of summed terms improves the approximation only up to a certain
(x-dependent) point. An asymptotic relationship is indicated by the symbol “~” replacing the usual “ ”. For
example, the asymptotic expansion [see 41:6:6]

2 3

0

1 1 3 15exp erfc 1 (2 1)!!
2 4 8 2

j

j

x x x xj
x x x

~10:13:16

yields a power series, values of early partial sums of which, for
x 0.15, are shown in Figure 10-4 as black dots. These initially
converge towards the correct result (0.937597 ), shown by the
blue line, but then wander away. The ruses and transformations
discussed above and in the next section remain useful, and are
doubly necessary because wantonly increasing the number of
terms is not an option with asymptotic series. Thus, halving the
last term in a partial sum leads to the red points in Figure 10-4.
Clearly these ameliorate the difficulty without overcoming the
asymptoticity.

10:14 RELATED TOPIC: lozenge diagrams

A lozenge diagram is a two-dimensional array of numbers (or symbols representing numbers) arranged in a
fashion that aids the conceptualization of certain useful operations performed on power series. Each element of the
lozenge diagram is characterized by two integer indices, n and m, each index taking nonnegative integer values. The
element itself is denoted , but only those elements in which the indices have like parities appear. Then

m

arrangement of the elements, as shown below, is such that most occupy a vertex of at least one rhombus, and as
many as four.

3 5 7
1 1 1

4 6
2

0 2 4 6 8
0 00 0 0

1
1

2
2

5

4

2

3
3
3

4

The lozenge diagram extends indefinitely to the right and downwards. In most applications, numbers or symbols
are entered into the “northernmost”, m 0, row. A specific propagation rule is then applied to create new entries
in the diagram. The sequencing of propagation may proceed row by row downwards or, often more conveniently,
by creating new entries in the order , and so on. The propagation rules vary according1 3 2 5 4 3 7

1 1 2 1 2 3 1, , , , , ,
to the operation for which the lozenge diagram is being used, but in all cases the element is computed, byn

m

arithmetic operations, from the adjacent elements , and Often, the final output information appears1
2 1,n n

m m
1
1 .n

m

in the “southwestern” diagonal, that is, in the elements in which n and m are equal. Four applications of the lozenge
diagram will be elaborated in this section [see Wimp for details]. In the first, a Padé table [Section 17:12] is created
from a power series. In the second and third, power series are transformed and thereby summed numerically. In
the fourth, a power series is converted into a continued fraction.

Successive partial sums of the standard power series may be fed into the northernmost row of thej
ja x

lozenge diagram, so that
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2 2 3 2 3 41 1 1 1 1 1
2 2 6 2 6 24

2 2 32 1 31 1 1
3 62 4 4 24

1 1 1
2 3 4

21 1
2 12

2

2 3 4

1 1
2

2 3

12

2 3 4

1 1 1 1 1

11 1
1 1

1 2 6 24

2 12 12 6 4
1

1

72

1

8

x x x x

x x x x

x x x x x x x x x x

x xx x x x
x x x

x x
x

x

x

x

2 2
0 0 1 2 0,1,2,n n

na a x a x a x n10:14:1

In this application, the propagation rule used to form successive elements in the lozenge diagram is the Schmidt-
Wynn transformation, or the -algorithm. It is

1 1
1 1

2 1 1
1 1

1 1when 1 first row
or1 1otherwise other rows

n n
m mn

m
n

m n n
m m

m
E WS
N

E W

10:14:2

The second alternative in 10:14:2 provides a convenient mnemonic based on the points of the compass viewed from
the center of each rhombus. A portion of the lozenge diagram derived in this way from the power series for the
exponential function exp(x) follows:

As a comparison with the table in Section 17:12 shows, not all the entries in the lozenge diagram are members of
the Padé table, but those for which m and n are even, shown in red, are. And not all members of the Padé table can
be generated by this propagation rule; the others, however, can be found similarly by starting with the reciprocal of
the power series for the reciprocal of the function, in this case 1/exp( x), as the input. All the expressions shown
in red are valid approximations to exp(x). Among these rational functions, the most useful often are those that lie
on the southwestern diagonal, which are 1, , in this case. For1 1

2 2(1 ) /(1 )x x 2 21 1 1 1
2 12 2 12(1 ) /(1 ),x x x x

most functions these diagonal Padé approximants are better approximations, and in some cases phenomenally better
approximations, to the function, than are the partial sums of the truncated power series.

It is evident from the burgeoning complexity of the scheme that as a means of constructing, algebraically by
hand, diagonal approximants of ever-larger order, the Schmidt-Wynn procedure soon becomes prohibitively tedious.
However, it is simple to program the propagation rule to process numbers rather than symbols. In this way, a
sequence of numerical values of the partial sums of power series may be converted arithmetically into a sequence
of numerical values of the diagonal rational functions. For the case of the exponential function, the diagonal
approximants (equal to 1, 3, 2.71429, 2.71831, when x 1) do not converge to the true value (2.71828 to six
digits) very much faster than do the partial sums (1, 2, 2.5, 2.66667, 2.70833, 2.71667, ) themselves. Consider,
however, the x 1 instance of the function [Section 37:6] that has the asymptotic power series expansion

2 3 4 5

0
f ( ) !( ) 1 2! 3! 4! 5!j

j
x j x x x x x x~10:14:3

The sequence of partial sums is shown in red as the northernmost row in the lozenge diagram below, together with
early results of Schmidt-Wynn transformation
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1 1 1 1 1
2 6 24 120 720

201 4
2 5 7

19 2911 41
2 6 24 120

2
3

8
1

204
73 31

235 593
12 4

4
3

8

4
7

1
0

1 0 2 4 20 100 620

In this application, it is again only every second element in the southwestern diagonal that provides a useful output.
Even though the series 10:14:3 is atrociously divergent when x 1, the red diagonal sequence takes the values
1.0000, 0.6667, 0.6154, 0.6027, that soon converge towards the “correct” value 0.5963 [equation 2:5:7] of f(1).
Equator frequently uses this so-called -transformation to evaluate function values from poorly convergent power
series. Note that, in this particular application of the lozenge diagram, it is advantageous to enter the negative of
successive terms of the original power series directly into the second (m 1) row, rather than calculating them from
the northernmost (m 0) row. By so doing, one avoids the significance loss that comes from subtracting two partial
sums that may be nearly equal.

Another procedure, named the -transformation, is a somewhat similar application of a lozenge diagram. Again
the northernmost row represents power series 10:14:3, but with the difference that each element is now the numerical
value of a term in the series, rather than being its partial sum. Keeping with the x 1 instance of function 10:14:3
as our example, the lozenge diagram for the -algorithm is

3 7202 24
3 2 5 7

3 201 4
6 10 5 7

3 8 20
2

1
2

1
6

2
21 6 35 31

164
91 217

16
51

4
91

6
221

18
12 1

1

4

1 1 2 6 24 120 720
20

In compass-point format, the propagation rule used by the -algorithm is

1

2 4 6

3 5 7

1 when
(1/ ) (1/ )

when , ,
1 when , ,

(1/ ) (1/ ) (1/ )

n

n n n

n n n

S
E W

S N E W S

S
N E W

10:14:4

For the -algorithm, all the elements in the southwestern diagonal are useful: they represent successive terms in a
numerical series corresponding to the x 1 version of 10:14:3. From entries as far as n m 6, one has

6 181 1 2 4 44
2 6 21 91 221 1241 73f (1) 110:14:5

Note the identity of this result with that obtained from the result of the -transformation.6
6

Our final application of lozenge diagrams is that developed by Heinz Rutishauser (Swiss mathematician,
1918 1970). Any power series may be written as a concatenation (or nested sum):

2
0 1 2 0 1 2 3f ( ) 1 1 1 ... 1j

j jx a a x a x a x a b x b x b x b x10:14:6
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where bj aj/aj 1. Note that for an alternating series, all b’s are negative. It is the bjx terms that are fed into the
northernmost row of a lozenge diagram in the Rutishauser transformation [see Acton]. Notice that b1x enters 0

0

b2x enters and generally bj x. The propagation rule for this algorithm is simple but bizarre:2
0

2 2
0
j

1

2 4 6

3 5 7

when
/ when , ,

when , ,

n

n n n

n n n

E +W S
S NE W S

N E W S
10:14:7

Note that the a0 term, that leads the series in 10:14:6, plays no part in the algorithm. The output from the
transformation does not relate directly to the power series that was input, but to an equivalent continued fraction.
If, for the elements on the southwestern diagonal, we adopt the nomenclature c1x b1x, c2x , c3x0

0
1
1

2
2

and generally cjx , then the continued fraction in question is1
1

j
j

0 1 2 3 4 5 6f ( )
1 1 1 1 1 1 1
a c x c x c x c x c x c xx10:14:8

Thus the a coefficients of the original series have been converted, via the concatenation b coefficients, to the
continued fraction c constants. The Rutishauser algorithm fails when applied to the x 1 case of 10:14:3, the
example treated previously. As an alternative, we reconsider the exponential series

0

1f ( ) exp( )
! !

j

j j
j

x xx x a b x
j j j

10:14:9

this time with x unspecified, and construct the following lozenge diagram:

1 1 1 1 1
6 12 20 30 42

3 51 2
6 20

1 1 1 1 1 1
2 3 4 5 6 7

1
2

1
6

1
6

15 42
1 1 1

10 15 21

1 2
10 21

1
2

1
10

0 1
1

1
1

14

x x x x x
x x x x

x x

x x x x x x x
x

x
x

x
x

x
x

x

x
x

It follows that
1 1 1 11 1
6 6 10 102 141exp( )

1 1 1 1 1 1 1 1
x x x xx xxx10:14:10

The occurrence of zeros or infinities in lozenge propagation calculations can disable the procedure. Sometimes
it is possible to proceed without penalty by replacing the infinity or zero, respectively, by a very large or a very small
number, such as the 10±99 used by Equator for this purpose during -transformations.





Functions involving noninteger powers are known as algebraic functions. The square-root function andx
the reciprocal square-root function are the simplest algebraic functions. For the most part, this chapter1/ x
considers these functions with their arguments generalized to bx + c. These functions have the shape of a parabola;
some geometric properties of the parabola are detailed in Section 11:14.

11:1 NOTATION

Especially in computer applications, is sometimes denoted SQRT(x) or SQR(x). The notation is alsox 2 x
encountered.

The notations x½ and are often interpreted as equivalent, as are x ½ and , but this Atlas makes ax 1/ x
distinction. If the argument x is real and positive, x½ has two alternative values, one positive and one negative. The
square-root function , however, is single valued and equal to the positive of the two x½ values. Accordingly,x bx c
is equivalent to |(bx + c)½| and (bx + c) ½ is equivalent to .1/ bx c

Graphing versus x generates a curve known as a parabola and therefore the name semiparabolicbx c
function may be applied appropriately to the function. The word “parabola” refers to the shape of thebx c
curve, irrespective of its orientation or its placement in the cartesian plane. A parabola that has its axis of symmetry
along the x-axis will be identified as a horizontal parabola; in rectangular coordinates, it is described by the formula
f (bx + c)½.

11:2 BEHAVIOR

Figure 11-1 maps the functions and under conditions in which b and c are positive. Ofbx c 1/ bx c
course, the graphical orientation reverses if b is negative and the placement of the semiparabola along the x-axis
depends on the magnitudes of both coefficients, b and c. Neither the square-root function nor its reciprocal is defined
as a real number for arguments less than c/b if b is positive, or greater than c/b if b negative. In other words, the
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1 c
b

1
c

bx c
1

bx c
c

c
b

bx c

bx c

functions occupy a semiinfinite domain. The range of each function extends over all nonnegative values. Both
functions have an infinite slope at x c/b, at which point is zero and its reciprocal is infinite.bx c

11:3 DEFINITIONS

The square-root function is defined as the positive version of the
inverse function [Section 0:3] of the square function; it “undoes” the
operation of squaring:

2bx c bx c11:3:1

A parabola is defined geometrically as constituting all points P
whose distance PF from a point F, called the focus of the parabola, equals
the shortest distance D P from point P to the straight line DD , called the
directrix. Figure 11-2 illustrates this definition. For the horizontal
parabola , the focus lies at the point whose rectangularf bx c
coordinates are and the directrix is the line x, ( / 4) ( / ),0x f b c b

(b/4) (c/b). The apex A of the parabola lies at the midpoint of the
line segment D F.

11:4 SPECIAL CASES

When b 0, both functions reduce to constants.
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11:5 INTRARELATIONSHIPS

If b1 and b2 share the same sign, the two square-root functions and , as well as their1 1b x c 2 2b x c
reciprocals, coexist over a semiinfinite domain, either from the lesser of c1/b1 or c2/b2 to + or from to the
greater of c1/b1 or c2/b2. Within this domain the product of these functions obeys the rule:

2
1 1 2 2 1 2 1 2 2 1 1 2b x c b x c b b x b c b c x c c11:5:1

and produces a root-quadratic function [Section 15:15]. The quotient generates the same root-1 1 2 2/b x c b x c
quadratic function divided by the linear function b2x+c2. If b1 and b2 have opposite signs, and

1 2

1 2

0c c
b b11:5:2

then there is a finite domain of overlap between the two square-root functions; therein their product is a semielliptic
function, akin to those discussed in Chapter 13

2 2

1 2 1 2
1 1 2 2 1 2 1 2

1 2 1 2

0
2 2 2 2
c c c cb x c b x c b b x b b
b b b b

11:5:3

If the inequality 11:5:2 is violated, the two functions have no domain in common.

11:6 EXPANSIONS

Binomial expansion [Section 6:14] leads to the series
12 2 3 3 4 4

2

3 5 7
0

12 3
2

3 3 5 5
0

5
!2 8 16 128

!2 8 16

j
j

j

j
j

j

bx b x b x b x bxc c bx c
j cc c c cbx c

c c c cbx bx bx c
j bxbx b x b x

11:6:1

The binomial expansion of the reciprocal square-root function has a similar dichotomy:
12 2 3 3 4 4

2

3 5 7 9
0

12 3
2

3 3 5 5 7 7
0

1 3 5 35 1
!1 2 8 16 128

1 3 5 1
!2 8 16

j
j

j

j
j

j

bx b x b x b x bx bx c
j cc cc c c c

bx c c c c c bx c
j bxbx bxb x b x b x

11:6:2

The square-root function can also be expanded as a ratio of two exponential series [Section 27:13]:
2

1

2

1

11 4 9 expexp exp exp 22
1 1exp exp 4 exp 9 exp
2 2

j

j

j
xx x xx

x x x j x
11:6:3

both of which converge very rapidly.
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11:7 PARTICULAR VALUES

The tabulated values apply if both b and c are positive.

x c/b x 0 x (1 c)/b x +

bx c 0 1c +

1/ bx c + 1 01/ c

11:8 NUMERICAL VALUES

Equator provides a square-root function routine (keyword sqrt). This is designed to handle the complex number
x + iy but, with the default y 0 retained, the square root (real or imaginary) of any real number x is output.x
The magnitudes of x and y must lie between 10 150 and 10150.

Alternatively, you may find the square root of a positive real number x by using Equator’s power function
routine [Section 12:8, keyword power] and setting v ½. Inputting v ½ gives the reciprocal square root.
Although each of x½ and x ½ has two values, only the positive option is returned by power.

The arithmetic function [Appendix, Section C:10, keyword arith] is yet another way of finding a square root.
Via the “variable construction” feature [Appendix, Section C:4], the quantity wt ±½ + k may serve as a variable

of any Equator function.

11:9 LIMITS AND APPROXIMATIONS

If is an approximate value of , then ( 2+x)/2 is a better approximation. This is the basis of Newton’sx
method for calculating square roots.

11:10 OPERATIONS OF THE CALCULUS

The formulas
d
d 2

bbx c
x bx c

11:10:1

and

3

d 1
d 2 ( )

b
x bx c bx c

11:10:2

describe the differentiation of the square-root and reciprocal square-root functions. The corresponding indefinite
integrals are

3

/

2d ( )
3

x

c b

bt c t bx c
b

11:10:3

and
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/

1 2d
x

c b

t bx c
bbt c

11:10:4

Related indefinite integrals include

3
2

/

6 4d ( )
15

x

c b

bx ct bt c t bx c
b

11:10:5

and

/

1 2d arcsec 0
x

c b

bx ct x
c bt bt c c

11:10:6

These are just two examples drawn from a large class of integrals in which the integrand is ,1 1 2 2( ) ( )n mb t c b t c
at least one of the integers n and m being odd. A long list of such integrals will be found in Gradshteyn and Rhyzik
[Sections 2.21 2.24].

With a lower limit of zero, the semiderivatives and semiintegrals [Section 12:14] of the square-root function
and its reciprocal are given by the following formulas:

1/ 2

1/ 2

1/ 2

1/ 2

1/ 2

1/ 2

1/ 2

1/ 2

d11:10:7
d

d11:10:8
arctan / 0 /d

artanh / 0 /d 1 111:10:9
d

d 1 211:10:10
d

bcbx c
x x

cx bx cbx c
bx c b x c bx b

bx c b x c bc
x bx c xbx c

x bx c b

Among important Laplace transforms involving square roots are

3
0

exp( )d
2

t st t t
s

11:10:11

0

1 1exp( )dst t
st t

11:10:12

2 1 2 1 1
2 2 1

0

exp( )d 0,1,2,n n
nn

t st t t n
s

11:10:13

3
0

exp( )d exp erfc
4

c b cs csbt c st t bt c
s s b b

11:10:14

and

0

1 1exp( )d exp erfccs csst t
bs b bbt c bt c

11:10:15

Functions from Chapters 18 and 41 are generated by these transformations.
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11:11 COMPLEX ARGUMENT

As with a real number, the square root of a complex number z has two values. In rectangular and polar notation
[Section 1:11] these are

2 2 2 2
1/ 2 sgn( ) exp

2 2 2 2
x y x x y x

z i y i11:11:1

when z x + iy exp(i ). However, our definition of is single-valued and equal to the positive option of z½.z
Similarly

2 2 2 2
1/ 2

2 2 2 2

1sgn( ) exp
2( ) 2( ) 2 2
x y x x y x

z i y i
x y x y

11:11:2

It should be noted that the “rule” may be violated, but is always correct.1 2 1 2z z z z 1 2 1 2z z z z
The values of the square root of a complex number, is calculable through Equator’s sqrt routinex iy

[Section 11:8] or via its compower routine [Section 12:11]. The latter routine can also generate values of
. These values have the real and imaginary parts shown in Figures 11-3 and 11-4. Notice that Im[ ]1/( )x iy z

displays a discontinuity, colored gray on the diagram, along the negative x-axis. Poles are present at the origin for
both and , and the latter displays discontinuity as well, again along the x-axis.Re 1/[ ]z Im 1/[ ]z

In addition to 1½ ±1, the following special cases are noteworthy:

1/ 2( 1) exp exp
2 2
i ii11:11:3

1/ 2 (1 ) ( 2 )exp
42

i ii11:11:4

1/ 2 (1 ) ( 2 )( ) exp
42

i ii11:11:5
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The following inverse Laplace transforms involve the square-root function or its reciprocal:

1 exp( ) 1 1d =
2

i

i

ts s
is s t

I11:11:6

2 1

2 1 2 1 1
2

1 exp( ) 1 1d = 0,1,2,
2

i n

n n
i n

ts ts n
is s

I11:11:7

exp( ) d = exp erf
2

i

i

bs c ts bs c b ct cts c
s i s t b b

I11:11:8

0 1
exp( ) d = ( ) exp I I

2 2 2 22

i

i

bs c ts bs c c ct ct cts b t
i b b bs s b

I11:11:9

0 13

exp( ) ( )d exp I I
2 2 2 22

i

i

s ts s t c ct ct cts
i b b bbs c bs c b b

I11:11:10

1 exp( ) 1 1d exp
2

i

i

ts cts
i bbs c bs c bt

I11:11:11

0
1 exp( ) 1 1d exp I

2 2 2

i

i

ts ct cts
i b bs bs c s bs c b

I11:11:12

1 exp( ) 1 1d erf
2

i

i

ts cts
i bs bs c s bs c c

I11:11:13

The functions resulting from these inversions include the error function erf [Chapter 40], the Dirac function
[Chapter 9] and the hyperbolic Bessel functions I0 and I1 [Chapter 49].
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bt c

bt c

11:12 GENERALIZATIONS

The x±½ functions are the simplest fractional powers. Other members of the xv family are addressed in
Chapter 12. The root-quadratic function and its reciprocal [Section 15:13] are generalizations in a different direction.

11:13 COGNATE FUNCTIONS

The functions , , etc. have properties similar to those of the square-root function and3( )bx c 5( )bx c
its reciprocal.

11:14 RELATED TOPIC: geometric properties of the parabola

A useful property of the parabola may be illustrated by reference to Figure 11-2 on an earlier page. If, as shown,
the horizontal line D P is extrapolated to E, then the lines EP and PF make equal angles with the parabolic curve at
point P. Thus, if the parabola represents a mirror and EP is a ray of light, the ray will be reflected and reach the
focus F. The same is true of any ray parallel to EP. Moreover, this
“focusing” property is duplicated in the parabola’s three-dimensional
counterpart, the paraboloid; it lies behind the paraboloidal design of such
devices as searchlights, telescopes and satellite dishes.

Figure 11-5 shows a shaded region bounded by the horizontal
parabola and the ordinate t x. The area of this regionf ( )t bt c
may be found with the aid of integral 11:10:3 as

3

/

4 ( )shaded 2 darea 3

x

c b

bx c
bt c t

b
11:14:1

The curved portion of the perimeter of the shaded region has a length that
may be found by application of formula 39:14:3

2 2

/

d 2 2curved 2 1 d arsinhperimeter d 4 2

x

c b

b b bx cbt c t bx c bx c
t b b

11:14:2

This length is to be incremented by to give the total length of the perimeter of the shaded area in2 bx c
Figure 11-5.



v

Relationships in science and engineering frequently involve fractional exponents. In this chapter we address
the power function xv, where v is real but otherwise unrestricted. As is clarified in Section 12:2, the function xv is
often undefined as a real number when x is negative.

12:1 NOTATION

The symbol xv represents the argument x raised to power v; both these quantities are real except in Section 12:11.
The symbols x v and 1/xv represent identical functions.

When v equals , where n 2, 3, 4, , the symbol sometimes replaces , though this symbolism is1
n

n x 1
nx

seldom used in the Atlas [but see Section 16:4 for the distinction we draw there between and ]. The names1
3x 3 x

square root of x, cube root of x, fourth root of x and nth root of x are given to x½, xa, x¼, and .1
nx

12:2 BEHAVIOR

With both x and v restricted to real values, it is instructive to examine the behavior of the xv function in the
context of quadrants, as defined in Section 0:2. In all quadrants other than the first, radically different behaviors are
exhibited according to the properties of the number v.

The power function xv exists in the first quadrant irrespective of the magnitude and rationality of v. It acquires
the value unity at x 1 for all v. If v is positive, xv is zero at x 0 and increases indefinitely as x takes ever-larger
positive values, as is evident from several of the examples illustrated in Figure 12-1. If v is negative, xv is infinite
at x 0, but adopts finite values that diminish as x increases, approaching zero in the x limit.

If v is irrational (that is incapable, like or /4, of being expressed as a ratio m/n of two integers), then xv

exists only in the first quadrant as illustrated by the black curves in Figure 12-1.
There are three classes of rational numbers, according as the parities of m/n are even/odd, odd/odd, or odd/even.

Of course, there is no even/even class because such fractions can always be reduced to one of the other classes by
sufficient divisions of m and n by 2.
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4
3x

2
3x

2
3x

5
3x

4
3x

5
3x

3
7x

3
7x

3
8x

3
8x

5
2x

5
2x

x

4x

When v is a rational number of the even/odd class, such as v m/n 2/3 or 4/3, the xv function exists in the
first and second quadrants only. The function itself is even in these cases and takes only nonnegative values, as
illustrated by the red curves in Figure 12-1.

It is the first and third quadrants that are occupied by the xv function when v is a rational number, positive or
negative, of the odd/odd class. The power function is then an odd function, conforming to the ( x)v xv rule, as
exemplified by the green curves in the figure.

When v falls in the odd/even class, xv is defined as a real number only for nonnegative x and is two-valued, with
plus-or-minus options (except perhaps at x 0). For example ±1.2968 . The blue curves in Figure 12-1 show3

82
the v and examples, which lie in the first and fourth quadrants only.3

8
5

2

The behavior of the power function xv close to x 0 is of interest. Notice that, though the function itself may
be continuous there, the slope of xv suffers a discontinuity if 0 < v < 1. This is true irrespective of the parities of m
and n, though not all instances are illustrated in Figure 12-1.
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12:3 DEFINITIONS

When v is the reciprocal of a positive integer n greater than zero, the definition of xv relies on the concept of an
inverse function [Section 0:3]. Thus the nth root, is defined as the real number f such that1

nx
1whence 2,3,4,nnf x f x n12:3:1

Thus there is a plus-or-minus option in if n is even, but positivity is mandatory if n is odd. Any other rational,1
nx

noninteger power of x is then defined by raising to the appropriate integer power, positive or negative:1
nx

1 where 1, 2, 3,n
m mx v m

n
12:3:2

The plus-or-minus option is thereby lost if m is even, but not otherwise.
When v is irrational, xv require definition as a limit. Let m1/n1, m2/n2, m3/n3, be progressively better rational

approximations to v. Then
/lim j jm n v

j
x x12:3:3

provides the required definition. For example, x could be defined as the limit of the sequence x3, , ,31
10x 314

100x
, , , or some similar sequence.3142

1000x 31416
10000x

In view of equation 12:10:8, the function xv may be defined as the result of the differintegration operation
[Section 12:14] applied to the function f(x) x

1

1

d(1 ) 0
d

v
v

vx v x x
x

12:3:4

for all v except negative integers. is the (complete) gamma function [Chapter 43].

12:4 SPECIAL CASES

Powers with exponents v ±1 and v ±½ are addressed in Chapters 7 and 11. Cases in which v is an integer
are the subject of Chapter 10.

12:5 INTRARELATIONSHIPS

No reflection formula holds when v is irrational or a member of the odd/even family of rational powers.
Otherwise the power function is either even or odd according to the parity of m:

( ) 1, 2, 3, 1,3,5,
m mn nmx x m n12:5:1

The following laws of exponents apply for all values of and v:

andvxx x x x x x
x

12:5:2

but care is needed to ensure that all quantities remain real.
Useful for large J, the series of powers of the natural numbers has a sum given asymptotically by

3 2 31 1
1
1

1 0

3 2( ) B1 2 ( ) ( )
! 1 2 12 720

vv v vJ
v v v k k

k v
j k

v v v Jv J J vJJ j v v
k J v

~12:5:3

and involves functions from Chapters 2, 3, 4, and 18. The summation is invalid for v 0 or 1, and terminates if
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v is a positive integer. Finite and infinite sums of the related series

0
(1 ) (2 ) (3 ) ( )v v v v v

j
u u u u j u12:5:4

and

2 3

0
(1 ) (2 ) (3 ) ( )v v v v v j

j
u u x u x u x j u x12:5:5

may, in favorable circumstances, be obtained by exploiting the properties of Hurwitz and Lerch functions
[Chapter 64 and Section 64:12].

12:6 EXPANSIONS

The xv function may be expanded as a power series either binomially [Section 6:14] in (x 1)

2 3

0

( 1) ( 1)( 2)1 ( 1) ( 1) ( 1) ( 1)
2! 3!

v j

j

v v v v v vx v x x x xj12:6:1

or via the Euler transformation [Section 10:13], in (x 1)/x
2 1

23 1
2 22 3

1 0

1 1 ( 1) 1 1 1(1 ) 1
1

k k
v

k j

x x x k vx v v v j jx x x x x
12:6:2

Equation 53:14:4 provides an expansion of xv in terms of Bessel functions.

12:7 PARTICULAR VALUES

x x 1 x 0 x 1 x

0
irrational

0

v

v

undef undef + 1 0

undef undef 0 1 +

even 0

0odd

v

v

0 1 + |+ 1 0

+ 1 0 1 +

odd 0

0odd

v

v

0 1 |+ 1 0

1 0 1 +

odd 0

0even

v

v

undef undef ± +1 0

undef undef 0 ±1 ±

In the table, in which the colors are keyed to Figure 12-1, “undef” means that xv is not defined as a real function
for the argument in question. The particular values arising when x e 2.71828 might also be mentioned, for then
xv exp(v) [Chapter 26].



12:8 THE NONINTEGER POWERS xv 107

12:8 NUMERICAL VALUES

Most computer languages provide numerical access to noninteger powers via the coding x^v or, occasionally,
x**v. Alternatively, the simple algorithm

exp{ ln( )}vx v x12:8:1

involving functions from Chapters 26 and 25, may be used when x is positive.
If v is an integer, Equator’s bivariate power function routine (keyword power) returns a correctly signed value

of xv, for either sign of x. Moreover, Equator provides values of xv for any positive values of x, whatever value v
might have. But when v is a rational number of the odd/even class, only the positive option of xv is returned, this
being the principal value [Section 0:0]. When x is negative and v is an noninteger, Equator returns the message
“complex” even though, in some cases, there exists a real number that would be an appropriate answer. The example
( 32)0.2 2 is such an instance. To obtain a real answer, in a case such as this, type the v input in the format
“integer/integer”; a real answer will be provided by Equator whenever one exists.

Equator’s complex number raised to a real power routine (keyword compower) [Section 10:11] allows either
real or complex numbers to be raised to a real power, integer or noninteger, positive or negative. The output is
generally a complex number, unlike that of the power function routine. The significance of the output is described
in Section 12:11.

Equator’s variable construction feature (Appendix, Section C:4) permits the use of a power as the argument of
another function.

12:9 LIMITS AND APPROXIMATIONS

The table in Section 12:7 shows the limits approached by xv as x 0, x + or x .
When x is close to unity and the magnitude of v is not too large, the linear approximation

1vx v vx12:9:1
is good, but

1 ( 1)
1 ( 1)

v x v xx
x v x

12:9:2

is better.
For small v, the approximation

exp ln( ) 1 ln( )vx v x v x12:9:3

is useful.

12:10 OPERATIONS OF THE CALCULUS

Differentiation gives

1d
d

v vx vx
x

12:10:1

Indefinite integration of the power function requires different limits according to the value of v:
1

0

d 1 0
1

x v
v xt t v x

v
12:10:2
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1

d ln( ) 1 all
x

vt t x v x12:10:3

1

d 1 0
1

v
v

x

xt t v x
v

12:10:4

The reflection property [equation 12:5:1] may be used to adapt 12:10:2 or 12:10:4 to negative x. A general
expression for integration of the product of a power function with a linear function raised to a power is

1

1

1
0

1

B 1 , 1 , 0, 0 0
( ) d

B 1 ,1 , 0, 0 1

v

vx
v

v

v

c bxv v b bx c c
b bx c

t bt c t
c bxv b bx c v

cb

12:10:5

the integral being in terms of the trivariate incomplete beta function [Chapter 58].
Formulas for semidifferentiation and semiintegration of the power function, with lower limit zero, involve the

gamma function [Chapter 43]:
1

2
1

2
1

2 1
2

d (1 ) 1, 0
( )d

vv vx x v x
vx

12:10:6

1
2

1
2

1
2 3

2

d (1 ) 1, 0
( )d

vv vx x v x
vx

12:10:7

These are just the ±½ cases of the general rule for differintegration [Section 12:14] of a power function:
d (1 ) 1, 0
d (1 )

v vvx x v x
x v

12:10:8

and equations 12:10:1 and 12:10:2 display the ±1 instances. The corresponding formula for differintegration
with a lower limit of is

d ( ) ( ) , 0
d ( )

v vvx x v x
x v

12:10:9

The transformation

1

0

f ( ) dvt t t12:10:10

creates a possibly-complex-valued function of the v variable, known as the Mellin transform (Robert Hjalmar Mellin,
Finnish mathematician, 1854 1933) of the function f(t). A tabulation of over 250 Mellin transforms is given by
Erdélyi, Magnus, Oberhettinger, and Tricomi [Tables of Integral Transforms, Volume 1, Chapter 6], together with
some general formulas and a listing of inverse Mellin transforms. Thus the following definite integrals may be
regarded as Mellin transforms, as may that in 12:10:16.

1

1
0

d B(1 , 1) 1 1
( )

v v

v

t ct v v v
bt c b

12:10:11

1

2 2
0

d sec 1 1
2 2

v vt a vt v
t a

12:10:12
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2
2 2

0

ln(1 )d csc 2 1
(1 )

v
vt a t t v v

v a
12:10:13

1
0

(1 )sin( )d cos 2 0 1
2

v
v

v vt t t v v12:10:14

0

arctan( )d csc 2 1
2(1 ) 2

v vt t t v
v

12:10:15

The function in 12:10:14 and the B function in 12:10:11 are the complete gamma function [Chapter 43] and the
(bivariate) complete beta function [Section 43:13]. Note that the domain of v required to validate these transforms
is often severely restricted.

The following Laplace transforms involve the complete [Chapter 43] and incomplete [Chapter 45] gamma
functions

1
0

( 1)exp( )d { } 1v v
v

vt st t t v
s

12:10:16

1
0

( ) exp( )d {( ) } exp 1, 1
v

v v
v

b cs csbt c st t bt c v v
s b b

12:10:17

12:11 COMPLEX ARGUMENT

If z is complex and v real, different portions of the chain of equalities
( ) [ exp( )] exp( ) [cos( ) sin( )] [cos( ) sin( )]v v v v v v vx iy z i iv i v i v12:11:1

are identified by different authorities as de Moivre’s theorem (Abraham de Moivre, French mathematician,
1667 1754). Here is the modulus |z| of the complex variable, equal to , and is its phase, equal to2 2x y
arctan(y/x) when x is positive and to + arctan( y/x) when x is negative. In implementing this formula, one must
recognize that may be augmented by 2k , where k is any integer, without changing its import.

If v is real and equal to m/n, the complex power zv may be represented as , that is, as the complex variable1
n

m
z

raised to an integer power, as in Section 10:11. Hence, in the case of a rational v, ascribing significance to zv1
nz

devolves into identifying the properties of , the so-called nth root of the complex z. By de Moivre’s theorem:1
nz

1 1 cos sinn nz i
n n

12:11:2

To illustrate this formula, consider the n 3 case when the complex variable z has real and imaginary parts of 0.94
and 1.29 respectively. Its modulus and phase are 1.60 and arctan(1.29/0.94) 0.9412 2(0 94) (1 29). .

54o. Thus, in Figure 12-2, the point labeled Z represents z. One calculates | a| 1.17 and /3 18o. The
following possibilities must be considered:

1
3 o o o o1 17 cos 18 360 sin 18 360 0, 1, 2,

3 3
k kz i k.12:11:3

but it turns out that, whatever value is chosen for k, there are only three distinct answers, that we may take to arise
from the choices k 0, ±1. They are:
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1
3

o o

o o o o

o o o o

1.17 cos 18 sin 18

1 11 0 36

1.17 cos 18 120 sin 18 120

0 87 0 78

1.17 cos 18 120 sin 18 120

0 24 1 14

i

i

i
z

i

i

i

. .

. .

. .

12:11:4

and they are represented on the diagram by the points R, R , and
R , which are equally spaced around a circle of radius 1.17.

It is generally true that there are n complex roots, not only of
but also of . Two or one of these will be real if z is real,1

nz m
nz

depending on whether n is even or odd. When v is irrational, the
range of k must be restricted so that < +2k /v ; the number
of roots will lie between (2 /v) 1 and (2 /v)+1. Equator’s complex number raised to a real power routine (keyword
compower) may be used to evaluate the real and imaginary parts of ; however, it provides only one such( )vx iy
pair of numbers, the principal value, defined as exp{vln(x)} [Section 25:11]. Note that, when the input to this routine
has y 0, the principal value of xv is returned by Equator. However, this is not always what might be expected. For
example, ( 8)a is not 2, but .1 3 i

Some important inverse Laplace transforms involving the arbitrary power function are

1

exp( ) 1d 0
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i
v v

v
i

tss s s v
i v t

I12:11:5
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v v
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ts ats a s s a v
i v t

I12:11:6

11 2
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i v v
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ts v ats a s s a at v
i t

I12:11:7
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2 ( )( )
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v v
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i v t a
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i tt

I12:11:9
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1
exp( )exp( / ) d exp( / ) J 2 0

2

vi
v v

v
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ts as a s s s a s at v
i t

I12:11:10

( 1) / 2

1
exp( )exp( / ) d exp( / ) I 2 0

2

vi
v v

v
i

ts as a s s s a s at v
i t

I12:11:11

Among the functions appearing in these inverse transforms are the parabolic cylinder function Dv of Chapter 46, the
Bessel function Jv [Chapter 53], and the modified Bessel function Iv [Chapter 50]. Some important special cases of
12:11:5 are summarized in the following panel, in which g represents Gauss’s constant.



12:12 THE NONINTEGER POWERS xv 111

1
4

1
s

1
s 3

4

1
s

1
s 3

1
s 2

1
s 5

2

1
s 3

1
s 7

2

1
s

1
ns 1

2

1
ns

3
4

1
(2 )g t

1
t

1
42g

t
1 2 t t

34
3

t 2

2
t

5
28

15
t 1

( 1)!

nt
n

1
24 !

(2 )!

nn n t
n

12:12 GENERALIZATIONS

The functions (bx+c)v and (ax2+bx+c)v generalize xv and their properties may sometimes be deduced by
appropriate substitutions. The important v ±½ instances of these two generalizations are discussed in Chapter 11
and Section 15:15.

12:13 COGNATE FUNCTIONS

There is a multitude of functions of the forms f(xv) and [f(x)]v, involving arbitrary powers, though the v ±½
instances are the most important noninteger cases. The (a2 x2)±½ and (x2±a2)±½ functions are the subjects of the next
two chapters.

12:14 RELATED TOPIC: the fractional calculus

It is conventional to represent the operations of double, triple, and n-fold differentiation of the function f(x) by
the notation

2 3

2 3

d d df ( ) f ( ) and f ( )
d d d

n

nx x x
x x x

12:14:1

Inasmuch as integration and differentiation are, to an extent, inverse processes, it is not unreasonable to use a
symbolism similar to those in 12:14:1, but with negative superscripts, to represent single and multiple integrations.
Thus one may define

1 2

1 2
0 0 0

d df ( ) f ( )d f ( ) f ( )d d etc.
d d

x x x

x x x x x x x
x x

12:14:2

In this way, we have created a unified notation
d f ( )
d

x
x

12:14:3

that encompasses repeated differentiation when the order is 2, 3, , n, , and single or multiple integration when
1, 2, , n, . Also, of course, the 1 and 0 versions can represent single differentiation and f(x)

itself, so that all integer values are covered. The term differintegration is used to describe the hybrid operation:
differintegral describes the resulting function.

The mission of the fractional calculus is to extend the meaning of 12:14:3 to include noninteger values of and
find utility for the resulting operation. There are several ways to define a differintegral so that reduction occurs to
established definitions of differentiations and integration when is an integer. Probably the most general of these
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is the limit definition
1

0

( )d f ( ) lim f
d !

J
j

J j

J J jx x
x x j J

12:14:4

due to Grünwald and written here in terms of the Pochhammer polynomial [Chapter 18]. Of more utility, however,
is the definition as an integral transform, originating in the work of Riemann and Liouville (Joseph Liouville, French
mathematician, 1809 1882):

1
0

d 1 ( )f ( ) d 0
d ( ) ( )

x f xx x
x x x

12:14:5

which, however, applies only to negative orders of differintegration. Here is the gamma function [Chapter 43].
Extension to positive orders relies on classical differentiation through the formula

d d df ( ) f( ) 0
d d d

n n

n nx x n
x x x

12:14:6

where n is any integer greater than , so that the embraced quantity in 12:14:6 has a negative order and can be
defined by 12:14:5. For other definitions, see Oldham and Spanier [Chapter 3].

In formulating the equations above, a lower limit of zero was assumed and this is the most usual choice. Other
alternatives may be selected, however. It may seem counterintuitive to refer to a lower limit in the context of
differentiation but, in fact, a lower limit must be specified for all instances of differintegration, except when 0,
1, 2, 3, . The most general case has an arbitrary lower limit, say a. An appropriate notation, and the corresponding
Riemann-Liouville definitions are

1

1

1 f ( ) d 0
( ) ( )d f ( )

d 1 d f ( ) d 0
( ) d ( )

x

x
a

xn
a

n n
a

t t
x t

t
t t t n

n x x t

12:14:7

A popular choice of lower limit is and these instances, termed Weyl differintegrals, are the subject of Section
64:14.

There are many practical applications of the fractional calculus [Hilfer]. In some fields, is an adjustable
parameter; in others it is fixed. In the latter case, the most important values of are ±½, these operations being
known as semidifferentiation or semiintegration, and collectively as semidifferintegration. Frequently in the Atlas,
examples of zero-lower-limit semidifferintegrals are included in Section 10 of the chapter devoted to the target
function, and sometime Weyl differintegrals and more general results are listed too [as in Section 10 of the present
chapter]. In Section 43:14, it is explained how the fractional calculus serves to provide a facile method of
“synthesizing” one function from another. The important composition rule

d d df ( ) f ( )
d d d

v v

v vx x
x x x

12:14:8

of which 12:14:6 is an instance, plays the crucial role in these syntheses. There are some exceptions to the
composition “rule” (for example when f(x) x2, 3 and v 2), but it applies in most instances.



2 2

The function is closely associated with the geometry of the ellipse, which is addressed in2 2/b a a x
Section 13:14. The semicircle corresponds to the special b a instance and its geometry is the subject of
Section 13:15. Whenever the b/a multiplier is of no importance, as in Sections 13:6, 13:10, and 13:11, it is omitted.

13:1 NOTATION

With |x| < |a|, a cartesian graph of the function pair versus x is an ellipse and therefore2 2( / )b a a x
semielliptic function is an appropriate name for , with semicircular function being apposite for2 2/b a a x

. Following the convention explained in Section 11:1, the notation is equivalent to2 2a x 1
22 2/ [ ]b a a x

.2 2( / )b a a x
The parameters a and b, both positive, are the semiaxes, the larger being the major semiaxis (or “semimajor

axis”) and the smaller the minor semiaxis. Primarily, concern will be for the case in which a b and the ellipse to
which this relates will be termed a horizontal ellipse, on account of the orientation of its major axis when the
function is graphed. Conversely, when b > a, we speak of a vertical ellipse. The ratio, b/a, of the semiaxes of a
horizontal ellipse is represented by k in discussions of the elliptic family of functions [Chapters 61 63]. The
quantity known as the eccentricity, or sometimes as the ellipticity, is

2 2
21 ( ) a bk k

a
13:1:1

Eccentricities lie in the range 0 k < 1 for horizontal ellipses and for the functions that describe them. Zero
eccentricity corresponds to a semicircle. Eccentricities of unity or more correspond to other functions and the entire
class – the conic sections – is addressed in Section 15:15.

DOI 10.1007/978-0-387-48807-3_14, © Springer Science+Business Media, LLC 2009 
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2 2

a
b a x

2 2b a x
a

1
22 2b a x

a

13:2 BEHAVIOR

The functions and acquire real values2 2( / )b a a x 2 2/( )a b a x
only in the domain a x a of their argument. The range of the semielliptic
function is between zero and b, whereas its reciprocal lies between 1/b and
infinity. Figure 13-1 shows one graph of the reciprocal and2 2/( )a b a x
two graphs of , one of the latter corresponding to a vertical2 2( / )b a a x
semiellipse with b greater than a, and the other to the more canonical
horizontal semiellipse with b less than a.

13:3 DEFINITIONS

The algebraic operations of squaring [Chapter 10] and taking the square
root [Chapter 11], together with arithmetic operations, fully define the
semielliptic function and its reciprocal.

Multiplying two related square-root functions [Chapter 11] is another
route to the definition of a semielliptic function:

2 2b b bx b x b a x
a a a

13:3:1

A parametric definition of the f(x) f function pair is in terms of two trigonometric functions2 2( / )b a a x
[Chapter 32]:

sin( ), cos( )f b t x a t13:3:2
An ellipse may be defined geometrically in two distinct ways. One of

these is explained in Section 15:15; the other is illustrated in Figure 13-2.
The ellipse is defined as the locus of all points P such that the sum of the
distances from P to two fixed points F and F obeys the simple relationship

PF PF a constant13:3:3
Each of the fixed points is termed a focus of the ellipse. The interfocal
separation, the distance FF between the two foci, must, of course, be less
than the constant in 13:3:3. If both foci lie on the x-axis, equidistant from
the origin, then the ellipse is our standard horizontal ellipse, the foci have
the coordinates , the interfocal separation is 2ka, and the2 2 ,0( )a b
constant in equation 13:3:3 is 2a.

13:4 SPECIAL CASES

When b a, the semielliptical function becomes the semicircular function and the common value of2 2a x
the two semiaxes is known as the radius. The geometrical definition of a circle is as the locus of all points lying at
a constant distance a from a fixed point, the center of the circle. Other geometric properties of the semicircle are
described in Section 13:15.

As b 0, the ellipse degenerates towards a straight line segment of length 2a.
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13:5 INTRARELATIONSHIPS

The function is an even function, f( x) f(x), as is its reciprocal. The formula2 2f ( ) ( / )x b a a x
2

2f ( )
( / )

b avx x
v a v

13:5:1

shows that the multiplication of the argument by a constant creates another semielliptic function, one semiaxis being
rescaled, the other remaining unchanged. Multiplying the argument by v a/b creates a semicircle of radius b.

The inverse function [Section 0:3] of the horizontal function is the vertical2 2( / )b a a x 2 2( / )a b b x
function. These two semielliptic functions are sometimes said to be conjugates of each other.

13:6 EXPANSIONS

A binomial expansion of the semicircular function
12 4 6 8 10 2 21

22 2 2
2 4 6 8 10 2 2

0 0

( )5 71
2 8 16 128 256 (1)

j j
j

j j j

x x x x x x xa x a a aja a a a a a a
13:6:1

is valid provided a x a. Each coefficient in the series is expressible either as a binomial coefficient [Chapter
6] or as a ratio of Pochhammer polynomials [Chapter 18], or indeed in several other ways. The similar expansion
of the reciprocal semicircular function

12 4 6 8 8 2 21
22

2 4 6 8 8 2 22 2
0 0

( )1 1 3 5 35 63 1 11
2 8 16 128 256 (1)

j j
j

j j j

x x x x x x x
ja a a a a a a a a aa x

13:6:2

is restricted to a < x < a.
Trigonometric substitution creates the series [see equations 32:6:2 and 33:6:2]

3 5 7
2 2

3 5

2 2

13:6:3 sin( )
3! 5! 7!

arccos
1 csc( ) 1 1 7 3113:6:4

6 360 15120

a x a a
x
a

a aa x

See Section 21:15 for expansion of the semielliptic function and its reciprocal in terms of Legendre polynomials.

13:7 PARTICULAR VALUES

The a and b parameters are positive in the following table:

x = a x = 0 x = 2 2a b x = a

2 2b a x
a

0 b
2b

a
0

2 2

a
b a x

1
b 2

a
b
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13:8 NUMERICAL VALUES

It is straightforward to calculate values of the semielliptic function and its reciprocal. For example, Equator’s
power function routine (keywordpower) may be used with v ±0.5 after first using the variable construction feature
[Appendix, Section C:4] with k b2, w b2/a2, and p 2 to adjust the argument.

13:9 LIMITS AND APPROXIMATIONS

As x approaches a, the semielliptic function comes to approximate a square-root function,

2 2 2( ) 0b a xa x b x a
a a

13:9:1

The limiting form as x approaches a is .2( ) /b a x a

13:10 OPERATIONS OF THE CALCULUS

Throughout this section, the argument x is restricted to a range between a and a, a being positive. The
following formulas describe differentiation and indefinite integration:

2 2

2 2

d
d

xa x
x a x

13:10:1

2 2 32 2

d 1
d

x
x a x a x

13:10:2

2 2 2
2 2

0

d arcsin
2 2

x x a x a xa t t
a

13:10:3

2 2
0

d arcsin
x t x

aa t
13:10:4

3 2 2 3
2 2

0

( )
d

3

x a a x
t a t t13:10:5

and

2 2

1 1d arsech 0
a

x

xt x a
a at a t

13:10:6

The last two integrals are simple examples of a general class of indefinite integral , where n is2 2 d( )n mt a t t
any integer and m is an odd integer. Such integrals evaluate to algebraic expressions, or may contain an arcsin
[Chapter 35] or arsech [Chapter 31] term. Gradshteyn and Ryzhik [Section 2.27] list more than fifty such integrals,
including some general formulas.

Among other important integrals are
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2 2 2 2 2
0

d 1 F , arcsin
x t xk

a aa t a k t
13:10:7

and
2 2 2

2 2
0

d E , arcsin
x a k t xt a k

aa t
13:10:8

which serve as definitions of the incomplete elliptic integrals [Chapter 62] of the first and second kinds.
Semidifferentiation or semiintegration [Section 12:14], with lower limit zero, leads to:
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d
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13:11 COMPLEX ARGUMENT

Figure 13-3 shows the real and imaginary components of the semicircular function of complex argument:
2 2 2 2 2 2

2 2( ) sgn( )
2 2

A a x y A a x ya x iy i xy13:11:1

where and sgn is the signum function [Chapter 8].2 2 2 2 2 2( ) 4A a x y a x
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1
2 2

1
n nxb

a

The corresponding parts of the reciprocal semicircular function are
2 2 2 2 2 2

2 22 2

1 sgn( )
2 2( )

A a x y A a x yi xy
A Aa x iy

13:11:2

as illustrated in Figure 13-4. Note the poles on the real axis at x ±a.

If the argument is purely imaginary, the semielliptic function becomes real
2 2 2 2( / ) ( ) ( / )b a a iy b a y a13:11:3

and corresponds to a vertical semihyperbolic function, as described in the following chapter.

13:12 GENERALIZATIONS

The root-quadratic function is a generalization of the semielliptic function. See Section 15:152ax bx c
for the conditions under which the root-quadratic function becomes semielliptic.

The elliptic function may be regarded as the special n 1 case of the more
general function

1
2 2

1 1,2,3,
n nxb n

a
13:12:1

The curves obtained by plotting these functions, the n 1, 2, and 4 cases of
which are included in Figure 13-5, have been called superellipses. As n
the curve approaches a rectangle.

13:13 COGNATE FUNCTIONS

The functions of Chapter 14 are related to the semielliptic function in essentially the same way that the functions
of Chapters 28 31 are related to those of Chapters 32 35. That is, members of one group of functions can be
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1
22 2b a x

a

obtained from the other by replacement of x by ix, with perhaps a minor adjustment, such as a sign change. The
word “modified” is used when this replacement is applied to Bessel functions [Chapters 52 54] to generate the
functions of Chapters 49 51 and, in that sense, the functions of Chapter 14 are “modified semielliptic functions”.

Like the standard semielliptic function pair the function pair2 2( / ) ,b a a x
2 2 2 2 2

2 2

( ) 2 2 4a b x ab a b x
a b

13:13:1

describes an ellipse, centered at the origin, the major and minor semiaxes being of lengths a and b respectively. This
ellipse, however, is oriented so that its major axis is at 45o to the x-axis. Note that it may be resolved into a linear
function plus a standard horizontal ellipse with semiaxes of lengths and2 2 2 2( ) /( )a b x a b 2 2( ) / 2a b

. A similar resolution is possible for an ellipse located anywhere in the cartesian plane and with any2 22 /( )a b
orientation.

13:14 RELATED TOPIC: geometric properties of the ellipse

The two foci, F and F, of the horizontal ellipse are located on1
22 2( / )[ ]b a a x

the x-axis at x If P is any point on the ellipse, the lines PF and PF2 2 .a b
make equal angles with the ellipse, as Figure 13-6 indicates. This means that any
wave motion radiating from point F will be reflected from the ellipse and arrive at
point F from a variety of directions. The radiation is said to have been “focused” at
F. As explained in Section 13-3, the path lengths via points P, P and P are all
equal (to 2a), and so the journey times are also equal and the radiation arrives in
synchrony. This property of the ellipse is maintained in its three-dimensional
counterpart, the ellipsoid, and is exploited in furnace design and in several acoustic
and optical devices.

With a and b positive, the total area of an ellipse is ab. The area of the
segment of an ellipse defined by the abscissal range a to x, and shown shaded in
Figure 13-7 is

2 2 2 2
2

2green d arcsinarea 2

x

a

b x xa t t ab a x
a a a

13:14:1

The length of the curved portion of the boundary of the shaded region is
2

2 2d2 1 d 2 E( ) E ,arcsin
d

x

a

b xa t t a k k
t a a

13:14:2

where k is the eccentricity of the ellipse, . The entire perimeter21 ( / )b a
of the ellipse has a length of 4aE(k). E(k) denotes the complete elliptic
integral of the second kind of modulus k and E(k, ) denotes the incomplete elliptic integral of the second kind of
modulus k and amplitude . These functions are addressed in Chapters 61 and 62 respectively.

Together with the parabola [Chapter 11] and the hyperbola [Chapter 14], the ellipse and the circle constitute
curves of second degree, also known as conic sections; their shared properties are the subject of Section 15:15.
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2 2a x

13:15 RELATED TOPIC: geometry of the semicircle

Formula 13:10:3 shows that the area, shaded in Figure 13-8, of a segment of a semicircle is
2

2 2arcsin
2 2 2
a x x a x

a
13:15:1

irrespective of the sign of x. The total area of the semicircle is a2/2. The
length of the curved boundary of the shaded region is

arcsin
2

xa
a

13:15:2

the total semicircumference being of length a.
An important property of a semicircle is that the angle APB in Figure 13-8 is a right angle, for any point P on

the perimeter. Hence the triangles APB, AQP and PQB are similar and right-angled, permitting pythagorean and
trigonometric relationships [Chapters 32 34] to be applied.
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The functions of this chapter are closely associated with the geometry of the hyperbola, a topic addressed in
Section 14:14. The graphical representations of the and functions are interconvertible2 2( / )b a x a 2 2( / )b a x a
by scaling and rotation operations; these, and other operations, are the subject of Section 14:15.

14:1 NOTATION

The function, shown in Figure 14-1, corresponds to one-half of a hyperbola, and the2 2( / )b a x a
function, illustrated in Figure 14-2, corresponds to two-quarters of a different hyperbola. For this2 2( / )b a x a

reason, these two functions are called semihyperbolic functions. The constants a and b are the parameters; they are
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2 2

a
b x a

2 2b x a
a

2 2

a
b x a

2 2b x a
a

regarded as positive throughout the chapter. The adjectives “vertical” and “horizontal” will be used to distinguish
between the and functions, in recognition of their graphical orientation. These two2 2( / )b a x a 2 2( / )b a x a
functions are said to be conjugates of each other.

14:2 BEHAVIOR

The red curve in Figure 14-1 depicts a typical vertical semihyperbolic function. It accepts any argument x; its
range lies between b and . The reciprocal vertical semihyperbolic function, shown in green in the same figure, is
also defined for all x; it adopts values between zero and 1/b.

The behaviors of the horizontal semihyperbolic function and its reciprocal are evident in Figure 14-2. Neither
of these functions adopts real values in the a < x < a gap. Outside this forbidden zone, both functions adopt
positive values ranging between zero and infinity.

14:3 DEFINITIONS

The algebraic operations of squaring [Chapter 10] and taking the square root [Chapter 11], together with
arithmetic operations, fully define both varieties of semihyperbolic function and their reciprocals.

One way of defining a horizontal semihyperbolic function is as the product of two closely related square-root
functions [Chapter 11]:

2 2bx bx bb b x a
a a a

14:3:1

but no corresponding definition (from real functions) exists for the vertical version.
The semihyperbolic functions, of both the vertical and horizontal varieties, are expansible hypergeometrically

[Section 18:14], as in equations 14:6:1 and 14:6:3. The same is true of the reciprocal semihyperbolic functions,
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whose expansions are given in 14:16:2 and 14:16:3. These expansions open the way to definition via synthesis
[Section 43:14] from simpler functions.

A parametric definition [Section 0:3] of the vertical semihyperbolic function is in terms of the hyperbolic sine
and cosine functions [Chapter 28]:

2 2f cosh( ), sinh( ): f( ) bb t x a t x x a
a

14:3:2

The roles are reversed for the horizontal version

2 2f sinh( ), cosh( ): f( ) bb t x a t x x a
a

14:3:3

A hyperbola, and hence the semihyperbolic functions, may be defined geometrically in two distinct ways. One
of these is detailed in Section 14:14, the other in Section 15:15.

14:4 SPECIAL CASES

When b a, the horizontal and vertical semihyperbolic
functions become respectively.2 2 2 2andx a x a
Shown in Figure 14-3, they are termed rectangular
semihyperbolic functions. The horizontal rectangular
semihyperbolic function may be transformed into its vertical
cohort on rotation about the origin by an angle of /2. This
can be established by setting /2 in the formulas
[Section 14:15]

n o o

n o o

cos( ) sin( )

cos( ) sin( )

x x f

f f x
14:4:1

for rotation counterclockwise through an angle about the
origin. Here the subscript “o” denotes an old (pre-rotation)
coordinate, whereas “n” signifies the new (post-rotation)
equivalent. More interesting than rotation by a right-angle,
however, is the effect of rotation by an angle of /4 applied
to the horizontal rectangular semihyperbolic function,

. Then, because cos( /4) sin( /4) ,2 2
o of x a 1/ 2

one finds

o o
n 2 2 2 2

o o
n n n

o o n
n

2 whence
2 2 2

2

x fx
x f a ax f f

f x xf
14:4:2

Thus the rotated function, which could be considered a diagonal semihyperbolic function, is a special case of a
reciprocal linear function, as in Chapter 7, or an integer power function [Chapter 10]. A further rotation of a2/2x by

/4 produces . Still more rotations by 45o lead successively to the various functions shown in Figure 14-3,2 2x a
all of which are branches of rectangular semihyperbolic functions.
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14:5 INTRARELATIONSHIPS

Semihyperbolic functions are even functions, as are their reciprocals

2 2

2 2
f ( ) f ( ) f ( ) orb ax x x x a

a b x a
14:5:1

Multiplication of the argument of a semihyperbolic function f(x) by a constant leads to another semihyperbolic
function

2 2 2 2f ( ) ( ) ( / )
( / )

b bvx vx a x a v
a a v

14:5:2

the b parameter being unaffected. In Section 14:15, this is termed an “argument scaling operation”.
Apart from an interchange of the a and b parameters, the inverse function [Section 0:3] of a semihyperbolic

function is its conjugate

2 2 2 2F( ) where F f( ) and f ( )a bx x b x x x x a
b a

14:5:3

with interchanged parameters.

14:6 EXPANSIONS

The horizontal semihyperbolic function may be expanded binomially
13 5 7 2 1 21

22 2 2
3 5 7 2 1 2

0 0

( )5 ( )
2 8 16 128 (1)

jj
jj

j
j j j

b x a a a a a bx xx a b b
ja a x x x x x a a

14:6:1

Of course, this expansion is invalid in the region |x| < a, where the real function does not exist. There are several
alternative ways of expressing the coefficients of such series, in addition to the binomial coefficient [Chapter 6] or
Pochhammer polynomials [Chapter 18] employed here. The similar expansion of the reciprocal horizontal
semihyperbolic function

13 5 7 9 1 2 21
22

3 5 7 9 1 2 22 2
0 0

( )1 3 5 35 1 ( )
2 8 16 128 (1)

jj
jj

j
j j j

a a a a a a a a x
jb x x x x x b x bx ab x a

14:6:2

is again restricted to a < x < a. However, for the vertical semihyperbolic function, and its reciprocal, there are no
restrictions because alternative binomial expansions exist. The first version of each equation below is applicable
when |x| a, the second when |x| > a.

12 4 6 8 10 2 21
22

2 4 6 8 10 2 2
0 02 2
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a x a a a a a a bx xb b
ja x x x x x x a a0 0

j

j j

14:6:3
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More rapidly convergent series may result when hyperbolic functions are substituted
3 5 7

2 2

3 5

2 2

14:6:5
3! 5! 7!
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1 1 7 3114:6:6
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See Chapter 28 and 29 for the bases of these equations.

14:7 PARTICULAR VALUES

x x 2 2a b x a x 0 x a x 2 2a b x

2 2b x a
a

+
2b

a
0 undef 0 +

2b
a

2 2b x a
a +

2 22b a b
a

2 b b 2 b
2 22b a b
a

+

14:8 NUMERICAL VALUES

These are readily calculated, for example by Equator’s xv power function routine (keyword power) with v
±1/2, after the variable construction feature [Appendix, Section C:4] is first used with w b2/a2, p 2, and k ±b2.

14:9 LIMITS AND APPROXIMATIONS

Both semihyperbolic functions approach the linear functions x ±bx/a as x . These lines are known as
the asymptotes of the corresponding hyperbolas. Specifically
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b a x a bx
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14:9:1

and
2 2

2 2

lim ( / )

lim ( / )

x

x

b a x a bx
ab a x a

14:9:2

Figure 14-4 shows these asymptotes and also nicely
illustrates the relationships between the four semihyperbolic
functions diagrammed there.

Correspondingly, as x ± , the reciprocal semi-
hyperbolic functions approach zero as reciprocal linear
functions ±a/bx.

Near its positive apex, x a, the horizontal semihyperbolic function approximates a square-root function:
2

2 2 2 smallb bx a x a x a
a a

14:9:3

14:10 OPERATIONS OF THE CALCULUS

The b/a multiplier will be omitted in this section. Formulas for differentiation and integration are

2 2

2 2

d
d

xx a
x x a

14:10:1

2 2 32 2

d 1
d

x
x x a x a

14:10:2

2
2 2 2 2

0

d arsinh
2 2

x x a xt a t x a
a

14:10:3

2
2 2 2 2d arcosh

2 2

x

a

x a xt a t x a
a

14:10:4

2 2
0

1 d arsinh
x xt

at a
14:10:5

2 2

1 d arcosh
x

a

xt
at a

14:10:6

The last two integrals serve as definitions of the inverse hyperbolic sine and cosine functions [Chapter 31]. A long
list of indefinite integrals of the form , where n and m are integers, will be found in Gradshteyn1

22 2( ) dmnt t a t
and Ryzhik [Section 2.27]; one example, generating a function from Chapter 35, is
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t a xt x a a
t a

14:10:7

Pages 219 284 of the same book are an invaluable source of hundreds of results, such as that required in14:14:6,
for the integration of functions involving several terms of the form .x c

The Laplace transform of the reciprocal vertical semihyperbolic function is given by

0 02 2 2 2
0

1 1exp( )d h ( ) Y ( )
2

st t as as
t a t + a

14:10:8

where the functions appearing in the transform are the Struve function [Chapter 57] and the Neumann function
[Chapter 54] of zero order.

14:11 COMPLEX ARGUMENT

With imaginary argument, a horizontal semihyperbolic function becomes an imaginary vertical semihyperbolic
function

2 2 2 2( / ) ( ) ( / )b a iy a ib a y a14:11:1

The converse is true only in part, because the vertical semihyperbolic function becomes a real semielliptic function
[Chapter 13] only for a range of magnitudes of its imaginary argument

2 2
2 2

2 2

( / )
( / ) ( )

( / )

b a a y y a
b a iy a

ib a y a y a
14:11:2

With z x + iy, the real and imaginary parts of the vertical semihyperbolic function of complex argument are
given by

2 2 2 2 2 2 2 2sgn( )
2 2

b b ib xyz a x y a A B A B x y a
a a a

14:11:3

where ; sgn is the signum function [Chapter 8] equal to ±1 according4 2 2 2 2 2 2( ) and 2 ( )A a x y B a x y
to the sign of its argument, or to zero if its argument is zero. The corresponding formula for the horizontal
semihyperbolic function of complex argument is

2 2 2 2 2 2 2 2sgn( )
2 2

b b ib xyz a A B x y a x y a A B
a a a

14:11:4

14:12 GENERALIZATIONS

Semihyperbolic functions are instances of the root-quadratic function discussed in Section 15:13. They are also
conic sections [Section 15:15].

14:13 COGNATE FUNCTIONS

For n 3, 4, 5, , the functions have shapes very similar to hyperbolas, especially if n is
1

( / ) nn nb a x a
even. The straight line f(x) bx/a is an asymptote for all these functions, as is f(x) bx/a if n is even.
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14:14 RELATED TOPIC: geometry of the hyperbola

There are two distinct geometric definitions of a hyperbola, one of
which is addressed in Section 15:15. The second, illustrated in Figure 14-5,
is based on two points, F and F , each of which is termed a focus of the
hyperbola. A hyperbola is defined as the locus of all points P such that the
distance from P to the more remote focus exceeds that to the nearer focus
by a constant:

PF PF = a constant 2a14:14:1

The eccentricity k of the hyperbola, which necessarily exceeds unity and
equals for a rectangular hyperbola, is defined as2

FF
1

PF PF
k14:14:2

where FF is the interfocal separation, the distance between the two foci, equal to 2ka. The two parameters of the
hyperbola (sometimes called its semiaxes) are a, defined in 14:14:1 and b, given by

2 2
2 1 whence a bb a k k

a
14:14:3

The b parameter may have a magnitude smaller than, equal to, or greater than a. As Figure 14-5 shows, the
hyperbola has two branches, separated from each other (by 2a at their closest approach). The definition in this
paragraph covers both branches equally.

If the two foci are equidistant from the origin and on a line perpendicular to the x-axis through the origin, then
the equations

2 2 2 2f ( ) and f ( )b bx x a x x a
a a

14:14:4

describe the upper and lower branches of the hyperbola respectively. This is the hyperbola that we call a vertical
hyperbola. In view of the distinction [Section 12:1] between the symbols and t ½, the vertical hyperbola in itst
entirety is described by .1

22 2( / )[ ]b a x a
If the two foci lie on the x-axis, equidistant from the origin, then the hyperbola is described as a horizontal

hyperbola and it is described by the formula . The upper half of each branch of this hyperbola is1
22 2( / )[ ]b a x a

described by while the lower half of each branch is covered by the formula .2 2( / )b a x a 2 2( / )b a x a
Conjugate hyperbolas, that is, vertical and horizontal hyperbolas sharing the same a and b parameters, also share

the same asymptotes.
The area enclosed by the rightmost branch of a horizontal hyperbola, and the ordinate f(x) x,2 2( / )b a x a

as illustrated in Figure 14-6, may be evaluated by recourse to integral 14:10:4 and is

2 2 2 2shaded 2 d arcosharea

x

a

b bx xt a t x a ab
a a a

14:14:5

The curved perimeter of the shaded area bounded by graphs of the function f(x) has a length2 2( / )b a x a
given in terms of incomplete elliptic integrals F and E [Chapter 62] by

2 2 2 2

2 2 2

d f ( / ) 1 1 12 1 d 2 d 2 F , E , sin( )
d

x x

a a

t a k k xt k t ka
t t a k k k a

14:14:6

where k and2 2 /a b a 2 2arctan{( / ) }.k b x a
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a

2 2b t a
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Also shown in Figure 14-6 are the asymptotes OS and
OT of the hyperbola and the tangent MN to the hyperbolic
branch at an arbitrary point P (M and N being the points at
which the tangent meets the asymptotes, as depicted in
Figure 14-6). Two remarkable properties of the hyperbola
are that P bisects the line MN, so that MP PN, and that the
area of the triangle MNO equals |ab| independent of the
position of P on the hyperbola.

14:15 RELATED TOPIC: graphical operations

Because two- or three-dimensional graphs are generally
helpful in appreciating the properties of functions, many are
scattered throughout this Atlas.

For a univariate function f(x), the common graphical representation is as a cartesian graph in which the argument
x and the value f of the function at that argument serve as the rectangular coordinates (x, f ); Figures 14-1 and 14-2
are examples. Beyond mere visualization, graphs can be useful in revealing relationships between functions; for
example, in Section 14:4 it is shown how an operation – rotation about the origin in that case – could convert a
rectangular semihyperbolic function into the simpler a2/2x function. In this section we catalog five operations that
change the shape, the location, or the orientation of a graph, and show how this affects the formula of the function.
The original function (xo, fo) transforms to a new function (xn, fn) on subjection to some specified operation. Note
that the axes are treated as fixed; it is the function that changes. Figure 14-7 shows a fragment of a representative
function, in black. In each of five other colors is shown the result of a specified operation.

Perhaps the simplest operation is scaling, of which there are two versions. In function scaling, all function
values are multiplied by a scaling factor, here . The equations describing function scaling are xn xo and fn fo.
The result is a function that has been altered by expansion or contraction of its vertical dimension by a factor of ,
as illustrated in red in Figure 14-7, for the 2 case. There is also argument scaling in which it is x that is
multiplied by a scaling factor v, leading to fn f(vxo). This stretches or compresses the curve horizontally, but is not
illustrated in Figure 14-7.

Translation affects the location of a function without changing its shape, size or orientation. The equation pair

n o P n o Pandx x x f f f14:15:1
describes the operation. Here (xP, f P) are the coordinates of the point P which corresponds, in the new location, to
the old origin, as illustrated in blue in Figure 14-7 for the xP 3, f P 1 case.

By rotation about a point R is meant that every point on the original graph retains its original distance from
point R, but the line joining the two points rotates counterclockwise through an angle . The transformation
equations are

n R R o R o n R R o R o( )cos( ) ( )sin( ) and ( )cos( ) ( )sin( )x x x x f f f f f f x x14:15:2

For the point (xR, f R) ( , ) and 135o, the result of this operation is shown in green. Commonly, point R5
4

5
4

is the origin, in which case xR f R 0 and the equation pair 14:15:3 reduces to equations 14:4:1. The operations
described in this section may be applied sequentially; one application of this concept establishes a relationship
between the vertical semihyperbolic function and the horizontal semihyperbolic function:

scale with rotate about origin scale with2 2 2 2 2 2 2 2
/ with / 2 /a b b a

b bx a x a x a x a
a a

14:15:3
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Reflection in the line bx+c implies that, from each point on the original graph, a perpendicular is dropped onto
the line and then extrapolated to a new point that is as far from the line as was the line from the original point. The
formulas governing this operation, are

2 2
o o o o

n n2 2

(1 ) 2 ( ) ( 1) 2 2and
1 1

b x b f c b f bx cx f
b b

14:15:4

With the line f 2x 3 serving as the “mirror”, the transformation is illustrated in orange. Reflection in the line
x 0 simply alters the sign of the argument, (xn, fn) ( xo, fo); a characteristic of even functions is that reflection in
the line x 0 leaves the function unchanged. The property of being unaffected by reflection is termed mirror
symmetry. Reflection in the line f x causes an interchange of the function’s value with its argument, (xn, fn)
( fo, xo); that is, it generates the inverse function [Section 0:3].

The final operation that will be mentioned is named inversion though, confusingly, this is unconnected with
inverse functions. Inversion through a point I means constructing the straight line that joins each point on the
original graph to I, extrapolating this line and then creating a new point on the extrapolate an equal distance beyond.
The formulas

n I o n I o2 and 2x x x f f f14:15:5

describe the operation of inversion, in the present sense. The result of an inversion through point (xI, fI) ( , )5
4

1
4

is shown in turquoise in Figure 14-7. Inversion through the origin changes the sign of both coordinates (xn, fn)
( xo, fo); a characteristic of odd functions is that they are unchanged by inversion through the origin. Inversion
symmetry is the name given to the property of being unaffected by inversion.
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As a cartesian graph, the shape of is that of a parabola and, in this respect, the quadratic function2ax bx c
resembles the square-root function of Chapter 11. The root-quadratic function, addressed in Section 15:13 and
15:14, may also adopt the shape of a parabola.

15:1 NOTATION

The constants a, b, and c, that, together with the argument x, compose the quadratic function, are called
coefficients. In the graphs of this chapter, a is taken to be positive, though the formulas are valid for either sign.
The sign of the quantity

2 4b ac15:1:1
known as the discriminant of the quadratic function, influences several of the function’s properties. Some authors
define the discriminant as the negative of the quantity specified in
15:1:1, as it was in the first edition of this Atlas.

15:2 BEHAVIOR

Irrespective of the values of its coefficients, the quadratic
function adopts real values for any real argument; however, it has
a limited range, extending (for positive a) only over /4a
ax2 + bx + c . At x b/2a, the function experiences an
extremum: a minimum or a maximum according as a is positive
or negative. It is the sign of the discriminant that determines
whether the quadratic function adopts the value zero. In drawing
Figure 15-1, both a and are treated as positive, so that the
quadratic function crosses the x-axis twice.
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The behavior of the reciprocal quadratic function is even more
affected by the sign of the discriminant. If is negative, the
1/(ax2+bx+c) function is a contiguous function, adopting values
between zero and 4a/ , as illustrated in blue in Figure 15-2.
However, when the discriminant is positive, the reciprocal quadratic
function has the three branches, shown in red in the figure, with
discontinuities at and .( ) / 2x b a ( ) / 2x b a

Both the quadratic function and its reciprocal have mirror
symmetry about the line x b/2a, irrespective of the value of the
discriminant.

15:3 DEFINITIONS

Writing the quadratic functions as c+x(b+ax) shows that the
operations of multiplication and addition suffice to provide a
definition. It may also be defined as the product of two linear
functions:

2

2 2
b bax bx c ax x

a
15:3:1

The cartesian graph of the function is a parabola with its focus at the point (x , f ) ( b/2a ,2f ax bx c
c+(b2 1)/4a) and its directrix as the horizontal line f c (b2 1)/4a. Thus the function may be defined by recourse
to the definition of a parabola given in Section 11:3. Yet another definition is as the inverse function of a translated
[Section 14:15] square-root function [Chapter 11]

2
2F( ) f ( ) F f ( ) f F( )

4 2
x bx ax bx c x x x x
a a a

15:3:2

If the discriminant is positive, the reciprocal quadratic function can be defined as the difference between two
reciprocal linear functions [Chapter 7]:

2

1 1 1 0

2 2
ax bx c b bx x

a a
15:3:3

15:4 SPECIAL CASES

A linear function [Chapter 7] is the special a 0 case of the quadratic function. When b , so that the2 ac
discriminant is zero, the quadratic function reduces to , a square function [Chapter 10].2[ ]a x c

When the discriminant is zero, the reciprocal quadratic function has the unusual property of encountering a
infinite discontinuity of the + |+ type at x ./c a

In the special case when b2 4(ac 2), equation 15:10:4 shows the total area under the 1/(ax2 + bx + c) curve
to be unity. In this circumstance, one can rewrite the normalized formula as
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2 2 2

1 /
{ / } { ( / 2 )}

a
ax bx c a x b a15:4:1

This is the equation that describes a Lorenz distribution [see the table in Section 27:14], which is therefore a special
case of the reciprocal quadratic function.

15:5 INTRARELATIONSHIPS

Both the quadratic function and its reciprocal obey the reflection formula

2
2

1f f f or
2 2
b bx x ax bx c
a a ax bx c

15:5:1

The sum or difference of two quadratic functions is generally another quadratic function, while their product
is invariably a quartic function [Section 16:13]. Provided that the discriminant, , of the denominatorial function
is positive, the quotient of two quadratic functions can be expressed in terms of a constant and two reciprocal linear
functions, as follows:

2 2 2

2 / 2
( ) ( )

a x b x c a a r b r c a r b r c r b a
ax bx c a x r x r

15:5:2

where r+ and r are the zeros [Section 15:7] of the denominatorial quadratic function.

15:6 EXPANSIONS

Trinomial expansions [Section 6:12] for the reciprocal quadratic function exist, though they are of limited
utility:

2 3 4 2 2 2 2
2 3 4

2 3 4 5
0

2 2 3 4 2 2 2

2 2 3 3 4 4 5 5 6 2 2
0

1 2 3 1
1

1 2 3 1

j

j

j

j

b b ac b abc b ab c a c ax bxx x x x
c c c c c c c

ax bx c b b ac b abc b ab c a c bx c
ax a x a x a x a x ax ax

15:6:1

The first expansion is valid for small argument (that is, when |ax2+bx| < |c|), the second for large argument (when
|ax2| > |bx+c|).

15:7 PARTICULAR VALUES

The zeros of the ax2+bx+c function, and the discontinuities of its reciprocal, are given by the well-known
formula

2 4
2

b b acr
a

15:7:1

To preserve significance it is better (if b is positive), to calculate r first and then r+ as c/ar . There is a double zero
at b/2a if the discriminant vanishes, and the zeros are complex if the discriminant is negative. Equator treats the
zeros as the quadrivariate function
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2

2 2 2
4r ( , , , ) Re[r ( , , , )] Im[r ( , , , )] 1, 1

2
b n b aca b c n a b c n i a b c n n

a
15:7:2

and its quadratic zeros routine (keyword r2) outputs both the real and imaginary parts, the latter being 0 unless the
discriminant is negative. By default, Equator generates a short table giving both zeros.

The following table is applicable whether the discriminant is positive or negative, but the a coefficient is
assumed positive.

x x
2

b
a

x
2

b
a

x 0 x
2

b
a

x

2
0

0
ax bx c

0
(minimum)

4a

c 0

/2a c /2a

2

01
0ax bx c

0 + | 4 (maximum)a 1/c |+ 0

0 2a/ 1/c 2a/ 0

15:8 NUMERICAL VALUES

These are easily calculated, for example with Equator’s quadratic function routine (keyword quadratic).

15:9 LIMITS AND APPROXIMATIONS

Limiting expressions for the reciprocal quadratic function could be derived from 15:6:1, but they are seldom
used.

15:10 OPERATIONS OF THE CALCULUS

The following formulas address the differentiation and integration of the quadratic function and its reciprocal

2d ( ) 2
d

ax bx c ax b
x

15:10:1

2 2 2

d 1 2
d ( )

ax b
x ax bx c ax bx c

15:10:2

3 2
2

0

2 3 6( )d
6

x ax bx cxat bt c t15:10:3

2
/ 2

2 2artanh 0
21 d

2 2arctan 0

x

b a

ax b bx
at

at bt c ax b
15:10:4
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The 15:10:4 integral is infinite if 0, but if the lower limit is changed to zero, it equals 2/(2ax+b). Another
important integral is

2

2
0

artanh 0
21d ln

2
arctan 0

2

x

b x
bx cat ax bx ct

at bt c a c b x
bx ca

15:10:5

and many related integrals of the general form , where n and m are integers, will be found listed2( ) dn mt at bt c t
by Gradshteyn and Ryzhik [Section 2.17].

The Laplace transform of the quadratic function is straightforward
2

2 2
3

0

2( )exp( )d a bs csat bt c st t at bt c
s

15:10:6

but that of its reciprocal is elaborate

2

exp( / 2 ) exp Ei exp Ei 0
2 2 2 2

1 2 exp Ei 0
2 2

2 Si cos Ci sin
2 2 2 2

b a b b
a a a a

s bs bs
at bt c b a a a

s s s
a a a

0
2

s
a

15:10:7

and involves functions from Chapters 26, 32, 36, and 37.

15:11 COMPLEX ARGUMENT

The real and imaginary parts of the quadratic function and its reciprocal when the argument is z x+iy are
2 2 2( ) 2az bz c a x y bx c i axy by15:11:1

and
2 2

2 22 2 2 2 2 2 2

1 ( ) 2

( ) ( )

a x y bx c axy byi
az bz c a x y bx c y a x y bx c y

15:11:2

Important inverse Laplace transforms include

2

(2 / )exp( / 2 )sinh( / 2 ) 0
1 exp( ) exp( ) ( / )exp( / 2 ) 0

( )
(2 / )exp( / 2 )sin( / 2 ) 0

bt a t a
r t r t t a bt a

as bs c a r r
bt a t a

I15:11:3

where, r± are given in 15:7:1 and, as before, b2 4ac.
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15:12 GENERALIZATIONS

A quadratic function is a member of all the polynomial families [Chapters 17 24].

15:13 COGNATE FUNCTION: the root-quadratic function

The root-quadratic function and its reciprocal are functions of some importance; they are clearly2ax bx c
generalizations of the functions addressed in Chapters 11, 13, and 14. Some unifying properties of the root-quadratic
function are presented in Section 15:15.

Several valuable integrals involving the reciprocal root-quadratic function are

2
/ 2

1 2arcsin 0 0
2 21 d

1 2arsinh 0 0

x

b a

b ax b ba x
a aat

ax bat bt c a
a

15:13:1

0

02

1 1 2d arcosh 0 0
2

x

x

ax b bt a x
aaat bt c

15:13:2

2
2 /

1 2 2 2arcsin 0 0
1 d

1 2arsinh 0 0

x

c b

bx c c cc x
c x b bt

bx ct at bt c c
c x

15:13:3

and

0

02

1 1 2 2d arcosh 0 0
x

x

bx c ct c x
c x bt at bt c

15:13:4

Others are given by Gradshteyn and Ryzhik [Section 2.26] and by Jeffrey [Section 4.3.4].

15:14 RELATED TOPIC: the trajectory of a projectile

Heavy projectiles journey through the air following a
parabolic course that is best described by a quadratic function.
Neglecting the effect of air resistance, the object travels with a
constant speed in the horizontal direction, while experiencing a
constant acceleration (or force) vertically downwards. If the
projectile is launched from a height h0 with an initial velocity v at
an angle to the horizontal, the equation describing its trajectory
gives its height h, at a distance x downrange, as

2
2

02

sec ( ) tan( )
2

gh x x h
v

15:14:1

where g is the gravitational acceleration [see Appendix, Section A:6]. As Figure 15-3 will confirm, the greatest
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1
2

k

2k

1
2

k

height is attained by launching at /2, but the greatest range requires that /4. The projectile remains
airborne for the time interval

20
2

2sin( ) sin ( )v gh
g v

15:14:2

Multiply this expression by vcos( ) to find the total range.

15:15 RELATED TOPIC: conic sections

Figure 15-4 shows that there is a unity between the geometries of the functions discussed in Chapters 11, 13,
and 14 that is not apparent when these geometries – those of the horizontal parabola, ellipse, and hyperbola – are
described by the canonical formulations used in their respective chapters. However, if the curves are moved along
the x-axis, so that one of the foci falls at x 0, the three horizontal geometries come to be described by the single
root-quadratic equation

1/ 22 2 2
0 0f ( ) 2 ( 1)x f kf x k x15:15:1

Whereas three different equations are normally used to describe the ellipse, the parabola and the hyperbola, this
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equation accommodates all three! If the eccentricity k lies between 0 and 1, equation 15:15:1 describes an ellipse;
if k 1, the equation is that of a parabola; and if k exceeds 1, a hyperbola is represented. The quantity f0 is the value
of the function at x 0, that is, at the focus. Figure 15-4 was drawn using a range of k values, but a single f0. The
circle is the k 0 case and k corresponds to a rectangular hyperbola [Section 14:4]. The k 1 parabola2
separates the elliptical curves from those corresponding to hyperbolas (for clarity only one branch of each hyperbola
is shown, though the equation describes both). For large k, the hyperbola is virtually a pair of straight lines, which
is evident from equation 15:15:1 because, when k is so large that k2 1 k2, the equation becomes f(x) ±(kx + f0).

Collectively, all these curves are called conic sections, or simply conics, because each can be generated by
intersecting a cone with an appropriately oriented plane. More formally, they are known as curves of the second
degree. Equation 15:15:1 can be considered the defining equation of any horizontal conic. Conics possess certain
features in common. With the exception of the parabola, they each have two axes of mirror symmetry: one is the
x-axis, the other being the line x kf0/(1 k2). In general they have two foci, with an interfocal separation of
2kf0/(1 k2), but this is zero for the circle and infinite for the parabola. Both foci lie on the x-axis with one at x 0.
In the context of Figure 15-4, the second focus of the ellipses lies to the right of the origin whereas it lies to the left
for the hyperbolas.

By rewriting equation 15:15:1 as the square root of the product of two linear functions
1

2

0 0f ( ) ( 1) ( 1)x f k x f k x15:15:2

one may identify the domain of the real function as

0 0 when 0 1
1 1

f fx k
k k

15:15:3

0 0and when 1
1 1

f fx x k
k k

15:15:4

This conforms with the property that the ellipse is a contiguous curve, whereas each hyperbola has two branches (the
left-hand branches are not shown in Figure 15-4).

Whereas equation 15:15:1 serves as a definition only of
horizontal conics, there is a geometric definition that applies to a conic
anywhere in the cartesian plane. Let F be a point in Figure 15-5 that
will serve as a focus of the conic, and DD be a straight line, called
the directrix, positioned anywhere in the plane and with any
orientation. The conic is uniquely defined once the locations of the
point and the line are selected, and a nonnegative constant k is chosen.
Then the conic is defined as the locus of all points P such that

PF =
PD

k15:15:5

where D is the nearest point on the directrix to P. The constant k is,
of course, the eccentricity, so that

< 1, the conic is an ellipse
PFIf = 1, the conic is a parabola
PD

> 1, the conic is a hyperbola
15:15:6

So this simple property serves as a definition of all three types of curve. If the conic obeys equation 15:15:1, and
the focus in question is that positioned at the origin, then the equation of the directrix is x f0/k. Since, apart from
the special cases of the circle and the parabola, each conic has two foci, so it has two directrices.



3 2

The cubic function is a polynomial function of degree 3, and accordingly the general properties of polynomials
[Chapter 17] are applicable. Cubic functions find frequent application in data interpolation, a topic addressed in
Section 16:14.

16:1 NOTATION

The most general formulation of a cubic function is , with four coefficients. However,3 2
3 2 1 0a x a x a x a

it is a simple matter to factor out the leading coefficient and accordingly this chapter mostly addresses the function
3 2f ( )x x ax bx c16:1:1

The following quantities, that we term parameters, are important in determining the properties of the cubic
function.

2 3
9

a bP16:1:2

3

6 2 27
ab c aQ16:1:3

and
3 2D P Q16:1:4

The last, or sometimes its negative, is known as the discriminant of the cubic function.

16:2 BEHAVIOR

Irrespective of the values of its coefficients, the range and domain of the cubic function are unrestricted. A
cartesian graph of the cubic function has inversion symmetry [Section 14:15] through3 2f ( )f x x ax bx c
the point with rectangular coordinates

DOI 10.1007/978-0-387-48807-3_17, © Springer Science+Business Media, LLC 2009 
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2Q

32 2Q P

32 2Q P

3
a P

3
a P

3
a

, ,2
3
ax f Q16:2:1

which is also a point of inflection, as Figure 16-1 illustrates. This diagram shows graphs of the cubic function for
representative values of P and demonstrates that the sign of this parameter determines whether the cubic function
possesses extrema. If a2 exceeds 3b, so that P is positive, then there is a maximum at and a( /3)x a P
minimum at . Otherwise the cubic function is a monotonic function; that is, its slope never changes( /3)x a P
sign.

Figure 16-1 does not locate f 0, but it is clear that its location will determine the number of real zeros that the
cubic function possesses. In fact, the existence of three distinct zeros requires that both P and D be positive.

16:3 DEFINITIONS

Writing the cubic functions as the concatenation
f ( )x c x b x a x16:3:1

confirms that the arithmetic operations of addition and multiplication suffice to define the cubic function.
The product of three linear functions creates a cubic function:

3 2
0 1 1 0 1 1 0 1 0 1 1 1 0 1 1( )( )( ) ( ) ( )x r x r x r x r r r x r r r r r r x r r r16:3:2

but not all cubic functions can be defined in this way, unless two of the r’s are sometimes allowed to assume
complex values. The r quantities, the zeros of the cubic function, are addressed in Section 16:7. Every cubic
function may, however, be defined as the product of a linear function and a quadratic function:
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2 3 2( ) ( ) cx r x a r x x ax bx c
r

16:3:3

with r being the real zero, or one of the real zeros.

16:4 SPECIAL CASES

The cubic equation factors straightforwardly when the c coefficient, or both of the3 2f ( )x x ax bx c
other coefficients, or any one of the parameters [Section 16:1] equals zero; thus;

20 f ( )c x x x ax b16:4:1
1 1 2

3 3 320 f ( )a b x x c x c x c16:4:2

3
2 233 30 f ( ) 2 2 4 , 2

3 27
a aP x y Q y Q y Q y x Q c16:4:3

2
2 30 f ( ) 3 , 3

3 9
a a cQ x y y P y x P

a
16:4:4

22 30 f ( ) 2 ,
3 3
a a bD x y P y P y x P16:4:5

By we imply the real cube root of 2Q.3 2Q
If all the coefficients are zero, the cubic reduces to a power function f(x) x3. If all the parameters are zero,

reduction occurs to another power function: f(x) [x + (a/3)]3.

16:5 INTRARELATIONSHIPS

The cubic function obeys the reflection formula3 2f ( )x x ax bx c

f 4 f
3 3
a ax Q x16:5:1

where the parameter Q is defined in 16:1:2.
Setting y x + (a/3) converts one cubic function to another:

3 2 3 3 2x ax bx c y Py Q16:5:2

This transformation represents a simplification because the new argument appears only twice in the new formulation.
A further contraction to a form in which there is a single appearance of the argument is also possible. The form of
the new argument depends on the sign of the P parameter and, if P is positive, also on the magnitude of ./y P
For negative P

3 3f ( ) 2 ( ) sinh( ) where 3arsinh 0
6

x ax P t Q t P
P

16:5:3

When P is positive and larger than [(3x + a)/6]2

2
3 3 (3 )f ( ) 2 cos( ) where 3arccos

366
x a x ax P Q P

P
16:5:4
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whereas if P is positive but smaller than [(3x + a)/6]2

3 3 3f ( ) 2 sgn cosh( ) where 3arcosh
6 6
x a x ax P t Q t

P P
16:5:5

The keys to deriving these formulas lie in equations 28:5:6, 32:5:5, and 28:5:5.
The inverse function of the cubic is multivalued if P > 0, but can be shown from 16:5:3 to be

3

3

1 22 sinh arsinh 0
3 3 2
a x QP P

P
16:5:6

for a cubic with a negative P parameter.

16:6 EXPANSIONS

The expansions discussed in Section 17:6 apply, but they are of little utility for the cubic function.

16:7 PARTICULAR VALUES

The cubic function has an inflection at x a/3, irrespective of the other two coefficients.3 2x ax bx c
As Figure 16-1 shows, a maximum and a minimum are exhibited only if the parameter P is positive.

Equator’s notation for the three zeros of the cubic functions is r3(a,b,c,n), with n 0, ±1. If any one of c, P, Q,
or D are zero, or if both a and b are zero, then the zeros may be found straightforwardly from the special-case
equations in Section 16:4. Otherwise the zeros are calculable by the procedure outlined in the following paragraph.
One of these zeros, r3(a,b,c,0) will be real invariably, but the other two, r3(a,b,c,+1) and r3(a,b,c, 1), will be complex
(or imaginary) unless both P and D are positive. When two complex zeros exist, they always occur as a conjugate
pair; that is, they have identical real parts and their imaginary parts are equal in magnitude but opposite in sign.

One real zero and two complex zeros exist when P < 0, irrespective of the value of D; they are:

3

3

3

r ( , , ,0) 2 sinh( )
13 arsinh
3 ( )r ( , , , 1) sinh( ) 3 cosh( )

3

aa b c P t
Qt

a Pa b c P t i P t
16:7:1

For P > 0 and D > 0, there are three real zeros:
3

3

2 arccos /
r ( , , , ) 2 cos 0, 1

3 3

n Q Paa b c n P n16:7:2

For P > 0 and D < 0, there is one real zero and two complex zeros:

33

3
3

r ( , , ,0)
3

r ( , , , 1) 3
3 2 2

aa b c u v u Q D
a u v u v v Q Da b c i

16:7:3

By we imply the real cube root. These formulas originate from equations 16:5:3 5 and are used by Equator3
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in its cubic zeros routine (keyword r3), though simpler methods are employed for the special cases enumerated in
Section 16:4. Equator treats the zeros as a complex-valued quadrivariate function

3 3 3r ( , , , ) Re r ( , , , ) Im r ( , , , ) 1,0, 1a b c n a b c n i a b c n n16:7:4

and outputs both real and imaginary parts, the latter being 0 whenever the zero is real. By default, Equator generates
a short table giving all three zeros. The algorithm is exact but, because large losses of significance can occasionally
occur, check answers carefully if precision is an issue.

16:8 NUMERICAL VALUES

These are easily calculated, for example through Equator’s cubic function routine (keyword cubic).

16:9 LIMITS AND APPROXIMATIONS

The cubic function is dominated by its x3 term when its argument is of large magnitude.
There is seldom a need to approximate a cubic function; on the contrary, cubic functions are themselves often

used to approximate more complicated functions, as explained in Section 16:14.

16:10 OPERATIONS OF THE CALCULUS

As with all polynomials, the operations of the calculus may be carried out on the cubic function term by term:

3 2 2d ( ) 3 2
d

x ax bx c x ax b
x

16:10:1

4 3 2
3 2

0

3 4 6 12( )d
12

x x ax bx cxt at bt c t16:10:2

3 2
3 2 3 2

4
0

2 6( )exp( )d cs bs ast at bt c st t t at bt c
s

16:10:3

Integrals of can often be evaluated by following the procedure described in Section3 2f ( ) /t t at bt c
17:13. Indefinite integrals of such functions as or are the subject of3 21/ t at bt c 3 2/t t at bt c
Section 62:14.

16:11 COMPLEX ARGUMENT

When the argument is z x + iy, the real and imaginary parts of the cubic function are
3 2 3 2 2 2 2 2( ) 3 3 2z az bz c x a x y bx c xy iy x y axy by16:11:1

The cubic function of complex argument encounters no poles or other discontinuities, other than at infinity.
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16:12 GENERALIZATIONS: including zeros of the quartic function

A cubic function is a polynomial of degree 3. As such, it is the third member in a hierarchy of which the linear
function and quadratic functions are lower members and the quartic, quintic, etc. are higher members. The Atlas
treats these higher members as a general family in the next chapter. However, one aspect of quartic functions is
addressed here because the properties of cubic functions are relevant.

If the coefficients of the quartic
4 3 2

3 2 1 0x a x a x a x a16:12:1

are real, the quartic’s zeros may be calculated by first finding any zero r of the so-called cubic resolvent function

2
3 2

1 3 0
2 2

0 2 1 0 3

where 4
4

a a
x ax bx c b a a a

c a a a a a
16:12:2

using the method of Section 16:7. Then the four zeros of 16:12:1 can usually be found from Ferrari’s solution
[Lodovico Ferrari, Italian mathematician, 1522 1565]

2
2 33

2 3
4 3 2 1 0 3 2 2 3 3 1

2 33 3 2 2 3 3 1

4 4/ 4
r ( , , , ) and where 2 4 4 (8 2 16 ) /

/ 4 2 4 4 (8 2 16 ) /

s r a aa s q
a a a a q a a r a a a a s

a s p p a a r a a a a s

16:12:3

If s should equal zero, the term is to be replaced by .3
2 3 3 1(8 2 16 ) /a a a a s 2

08 4r a
Ferrari’s solution is the basis of Equator’s quartic zeros routine (keyword r4). However, if the chosen cubic

zero leads to a small value of s, serious precision loss may occur. To counter this, Equator selects the cubic zero
that leads to the largest s.

16:13 COGNATE FUNCTIONS

The reciprocal cubic function is of some interest and provides an exemplary model of3 21/( )x ax bx c
reciprocal polynomial functions [Section 17:13] in general.

Partial fractionation is a method of expanding reciprocal polynomials. Equation 16:3:3 may be used to suggest
the splitting of the reciprocal cubic as follows

3 2
22

1 1f ( )
( )( ) ( )

xx ccx ax bx c x r x a r xx r x a r x
rr

16:13:1

where r is a real zero, the constants , , and being initially unknown. They may be determined, however, by first
multiplying 16:13:1 by the cubic to remove the denominators, which leads to

21 ( ) cx a r r x r
r

16:13:2

This is an identity and therefore one may equate coefficients of like terms from each side of equation 16:13:2. The
three simultaneous equations + 0, (a + r) r + 0, and ( c/r) r 1 that emerge may then be solved,
leading eventually to
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x f(x)

x0 f0

x1 f1

xj 1 fj 1

xj fj

xj+1 fj+1

xj+2 fj+2

xJ 1 fJ 1

xJ fJ

2 2 2

1 2 1 2f ( )
2( ) ( )

r x a r r x a rx c c cx r br c x rr ar x a r x x a r x
r r r

16:13:3

The second equality is a consequence of . Further expansion of the final term into the sum of3 2 0r ar br c
two reciprocal linear terms is possible, but these may be complex.

Partial fractionation is often used as a prelude to an operation of the calculus. It permits, for example, the
integral of a reciprocal cubic function to be evaluated, via equation 16:13:3, with the aid of formulas 7:10:4, 15:10:4,
and 15:10:5. It is used abundantly in Laplace inversion [Section 26:15].

16:14 RELATED TOPICS: the sliding cubic and the cubic spline

Technologists and engineers commonly collect extensive lists of values f of a function f(x)
without knowing the form of the relationship between f(x) and its argument x. The table shows
fragments of such a list. A frequent need is to present these data graphically, or use them to
estimate a value of the function at an argument where no measurement was made. Two situations
arise in this setting. In the first, the tabular data are regarded as exact and the problem is one of
interpolation. In this case, the task is the selection of a relationship that is satisfied locally or
globally, that relationship then being assumed to apply equally well between measurement points.
In the second scenario, error is assumed to contaminate the f data and a (usually rather simple)
relationship is sought that does not exactly reproduce the measured fj values, but comes close.
Such a procedure is known as regression; Section 7:14 is devoted to the simplest kind of
regression, in which the function to which the data are fitted is a straight line, and the use of more
complicated fitting functions is explored in Section 17:14.

Polynomials are commonly used for both interpolation and regression. The remainder of this
section addresses two ways in which piecewise-cubic functions are employed in interpolation. The
first, which provides a satisfactory interpolation without undue complexity, is the sliding cubic or
Lagrange four-point interpolate. The idea is that a cubic function is fitted so as to pass through
a quartet of adjacent data pairs: , , ,1 1,j jx f ,j jx f 1 1,j jx f
and , but is used to represent the data only between the2 2,j jx f
middle two points of the quartet. The cubic that has this property
is, for ,1j jx x x

2

1

( )( )
f ( )

( )( )
l m n

j k
k j k l k m k n

x x x x x x
x f

x x x x x x
16:14:1

where l, m, and n are the three integers other than k from the set
( j 1, j , j+1, j+2). In the common case, illustrated in Figure 16-2,
in which the data are evenly spaced so that xj+2 xj+1 xj+1 xj

xj xj 1 h, equation 16:14:1 becomes
1 1 1 1
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3 2 1 1

2 1 12 2
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j j j j j
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a f f f f
a f f fx x x x x x

x a a a a
a f f f fh h h
a f

16:14:2



146 THE CUBIC FUNCTION x3 + ax2 + bx + c 16:14

This is the interpolating cubic fitted over xj 1 x xj+2 but used only for the argument range from xj to xj+1, as shown
at the right-hand side in Figure 16-2. As x reaches and passes xj+1, the cubic “slides” to a next quartet. Of course,
no quartet is available for the end regions x0 x x1 or xJ 1 x xJ; and so the interpolating cubics from the
penultimate internodal zones x1 x x0 and xJ 2 x xJ 1 are taken to apply to the end zones too. This is illustrated
at the left in Figure 16-2.

The curve produced by the sliding cubic interpolation is continuous, but there is a small (and often visually
undetectable) discontinuity in slope at each node. This defect is overcome in the cubic spline which not only has
no discontinuity in the slope (that is, in the first derivative of f ) at the nodal points, but no discontinuity in the
second derivative either! The equation describing the interpolated spline between the nodes xj and xj+1 is the cubic
function

1 1
3 16 6

3 2 1
2 2

3 2 1 0 1 1
1 1 13 6

0

f ( )

j j j

j jj j j
j j j j j

j j j j j

j j

a g g
a gx x x x x x

x a a a a
a f f g gh h h
a f

16:14:3

when the data are separated evenly by h. The g terms are proportional to the second derivatives of the spline at its
nodes; for example

2
2

2

d f
d

j

j

x x

g h
x16:14:4

These terms are unknown a priori; however, the recursion formula

1 1 1 12 4j j j j j jg f f f g g16:14:5

interrelates three consecutive g values. There are J 1 recursions linking the g0, g1, g2, , gJ 1, gJ terms. These
recursion equations may be solved simultaneously if g0 and gJ are taken to be zero. Thereby a natural cubic spline
may be created. A natural spline is one that is linear at its extremities. The description of splines given by Chapra
and Canale [pages 495 505] is very readable and their book provides formulas for unequally spaced data. Hamming
[Section 20.9], another excellent source, discusses “unnatural” splines and shows how to set up a tridiagonal matrix
to solve the simultaneous equations.

There is a heavy computational burden in the creation of a cubic spline but the result is extremely smooth.
Because the fitting is “global”, there is a disconcerting dependence of the shape at one end of the fitted curve upon
data at the other end. Such an effect is, of course, entirely absent in the sliding cubic and other “local” interpolations.



Polynomial functions find application in modeling other functions that are of a more complex, or of unknown,
form. Much attention in this chapter is directed towards the zeros of polynomials because, in applications, these are
often the crucial feature of a polynomial function.

17:1 NOTATION

A polynomial function is often simply called a polynomial; another synonym is integral function.
This Atlas uses the general notation

1
1 1 0

0
p ( ) 0

n
n n j

n n n j n
j

x a x a x a x a a x a17:1:1

to denote a polynomial function of argument x and degree n. The a constants, treated as real in this chapter, are the
coefficients of the polynomial: there are n+1 of them, some of which (but not an) may be zero. Each unit in 17:1:1,
typically ajxj, is described as a term. Special names are given to polynomials of degrees 5, 4, 3, 2, 1, or 0; they are
known as quintic functions, quartic functions, cubic functions, quadratic functions, linear functions, or constant
functions.

The values of the argument x that cause the polynomial pn(x) to become zero are termed the zeros of the
polynomial. There are n such values that will be denoted 1, 2, , j, , n and they may be real or complex. They
are also known as the roots of the equation pn(x) 0.

17:2 BEHAVIOR

A polynomial function is defined for all values, < x < , of its argument. A polynomial of odd degree has
an unrestricted range, whereas the range is semiinfinite if n is even. A semiinfinite range is one that extends to either
+ or , but not to both.

A polynomial may have real zeros and/or minima and/or maxima and/or inflections. The number of these
occurrences, if any, of these features depends in a complicated way on the coefficients. In the general case, all that
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can be said is that the numbers of the various features are bracketed as tabulated here.

n 3, 5, 7, n 2, 4, 6,

an > 0 an < 0

Nr, the number of real zeros 1 Nr n 0 Nr n 0 Nr n

Nm, the number of minima 0 Nm (n 1)/2 1 Nm (n/2) Nm NM 1

NM, the number of maxima NM Nm NM Nm 1 1 NM (n/2)

Ni, the number of inflections 1 Ni n 2 0 Ni n 2 0 Ni n 2

17:3 DEFINITIONS

Writing the polynomial function in the concatenated form

0 1 2 3 2 1p ( ) ( )n n n nx a x a x a x a x a x a xa17:3:1

shows that the arithmetic operations of multiplication and addition suffice to define a polynomial function. A
concatenation is also described as nested sum.

The product of n linear functions produces a polynomial of degree n
1

1

p ( ) ( ) n

n

j n n
j

bx c x b a17:3:2

but, with cj real, not every polynomial function may be defined in this way. However, every polynomial of degree
n may be defined as the n-fold product

1 2
1

p ( ) ( )( ) ( ) ( )
n

n n j n n j
j

x a x r x r x r x r a x r17:3:3

where each r is either a real zero or a complex zero. These zeros are often referred to as roots, because each zero
of the polynomial pn(x) is also a root of the equation pn(x) 0. Complex zeros occur in conjugate pairs that share
the same real part, but have imaginary parts that sum to zero. Thus if rj and rj+1 are such a conjugate pair

2 2 2
1( )( ) ( ) ( ) 2j j j j j j j j jx r x r x i x i x x17:3:4

where j and j denote the real and imaginary parts, of the jth zero. An expansion equivalentRe and Im ,j jr r
to 17:3:3, but avoiding complex or imaginary quantities is

r
2 2 2

r r
1

p ( ) ( 2 ) ( 1),( 3), ,( 1)
N

n j k k k
j k

x x r x x k N N n17:3:5

where Nr is the number of real zeros. This representation shows why there are two classes of factor – “linear zeros”
and “quadratic zeros” – from either or both of which any polynomial may be constructed.

Interest in equation 17:3:3 is predominantly in the direction of finding the zeros from a known polynomial,
rather than in construction a polynomial from known zeros. This matter is taken up in Section 17:7.
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17:4 SPECIAL CASES

The n 0, 1, 2, and 3 instances of the polynomial function pn(x) are addressed in Chapters 1, 7, 15, and 16. The
zeros of n 4 polynomials are the subject of Section 16:12. Power series [Section 10:13] are polynomials of infinite
degree.

If the coefficients aj of a polynomial function obey the relationship
/

0 0,1,2, , 1,
j n

n j

n n

a n a j n n
ja a

17:4:1

then the polynomial aj x j reduces to the power function (bx+c)n of Chapter 11 with and .
1

n
nb a

1

0
nc a

Each of Chapters 18 24 addresses a polynomial family with special coefficients.

17:5 INTRARELATIONSHIPS

Polynomial functions may be added and subtracted term by term. The multiplication of two polynomials pn(x)
and pm(x) gives a polynomial function of degree n+m. The quotient of two polynomials is, in general, a rational
function [Section 17:13].

The argument-multiplication formula

0 0
p ( ) where p ( )

n n
j j j

n j n j
j j

vx v a x x a x17:5:1

shows that multiplying the argument of a polynomial by a constant generates another polynomial of the same degree
but with a revised set of coefficients. Another valuable transformation that produces one polynomial from another
arises if the argument x is replaced by 1/y. One finds that

1
1

1 1 0 0 1 1
1 1 1

n n
n n n

n n n na a a a y a y a y a y a
y y y

17:5:2

so that the order in which the coefficients occur has been reversed. An important consequence of this is that the
zeros of the transformed polynomial are the reciprocals of the zeros of the original polynomial.

A factor of the polynomial pn(x) is any polynomial of degree less than n such that the division of pn(x) by this
factor creates a third polynomial, leaving no remainder, irrespective of x. Thus, if

p ( ) p ( )
p ( )

n
n m

m

x x m n
x

17:5:3

then both pm(x) and pn m(x) are factors of pn(x). The division prescribed in 17:5:3 is a step in the process of finding
the zeros of a polynomial, as addressed in Section 17:7. The procedure is called synthetic division or polynomial
deflation. The most important instances are when m 1 or 2; that is, when the divisor is a linear or a quadratic
function. If the factor is the linear function x r, r being real, then the new (deflated) coefficients resulting from the
operation

1
1 21 1 0

1 2 1 0

n n
n nn n

n n
a x a x a x a a x a x a a

x r
17:5:4

can be found by the recursive algorithm
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1

1 1

0 for
for 1
for 2, 3, ,2,1,0

j j

j j

j n
a a j n

a ra j n n
17:5:5

Notice that this procedure does not involve the argument x; in effect x has been set to unity. Nor is the final
coefficient a0 involved. This coefficient is, however, present in the “remainder” of the division, which is the quantity
that would have been assigned to had algorithm 17:5:5 been executed one step further than necessary; that is:1a

1 0 0remainder a a ra17:5:6
Of course if x r is indeed a factor, this remainder will be zero (or a very small quantity arising from arithmetic
roundoff), providing a valuable check. When the factor is quadratic, say , deflation decreases the degree2x px q
by 2:

1
2 31 1 0

2 3 1 02

n n
n nn n

n n
a x a x a x a a x a x a a

x px q
17:5:7

The algorithm for the new coefficients is again recursive:

2

2 1

2 1 2

0 for , 1
for 2
for 3
for 4, 5, ,2,1,0

j
j

j j

j j j

j n n
a j n

a
a pa j n
a pa qa j n n

17:5:8

but this time there are two “remainders”

1 1 0 1

2 0 0

remainders
a a pa qa
a a qa

17:5:9

both of which should be numerically negligible if is indeed an exact factor.2x px q

17:6 EXPANSIONS

In addition to that shown in 17:3:1, the alternative form

0
0 1 2 3 1

0 1

1 1 1 1
n

jj
j n n j

j j

a a
a x a b x b x b x b x b x b

a17:6:1

is sometimes a more convenient concatenated expansion of the polynomial function. Conversion of this
representation to a continued fraction in the

0 1 2 3 4 2 1

1 1 1 1 1 1 1
n n

n

a c x c x c x c x c c
c

17:6:2

format is possible through the Rutishauser transformation [Section 10:14]. Another style of continued fraction
expansion of the polynomial pn(x), namely

0 1 0 2 1 3 2

0 0 1 1 2 2 3 11

n
j n n

j
j n n

a a x a a x a a x a a xa x
a a x a a x a a x a a x17:6:3

is given in Section 0:6. The important expansions as products are shown as equations 17:3:3 and 17:3:4.
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17:7 PARTICULAR VALUES

The particular values of a polynomial include its zeros, maxima, minima, and inflections. The extrema and the
inflections are the zeros of the polynomials derived, respectively, by differentiating the original polynomial function
once or twice. Therefore, locating zeros lies at the heart of finding all these particular values. It is only for
polynomials of degrees 1, 2, 3, and 4 that analytical expressions for zeros exist in the general case. Formulas for
finding the zeros of polynomials of degree 2, 3, and 4 are reported in Sections 15:7, 16:7, and 16:12.

The polynomial function pn(x) has n zeros and, typically, some will be real and some will be complex. The
mathematical and computational aspects of finding the zeros of an arbitrary polynomial is a problem that has
occupied the attention of scholars for many years, but the definitive solution, if one exists, has yet to be discovered.
Some of the pitfalls are exposed in the excellent commentaries of Acton [Chapter 6] and Hamming [Chapter 7]. The
problem is tricky in that certain zeros may be elusive, and computationally intricate, inasmuch as several different
operations are involved in the overall process. If you need to find the zeros of many polynomials, or if your
particular polynomial is of large degree or is known to be “awkward”, you will probably choose to employ the
services of the purpose-designed software available in such packages as Excel®, Maple®, Mathematica®, or Matlab®,
or you may build your own algorithm using the procedures advocated by IMSL (the International Mathematical and
Statistical Library), by Press et al., or by Chapra and Canale [see Bibliography for details of these sources].
Accordingly, this Atlas provides only the following overview of a pedestrian approach suitable for locating the zeros
of polynomials that lack “awkwardness”. Awkward polynomials are ones with zeros (i) six or more of which are
complex; (ii) that are of high multiplicity [Section 0:7]; (iii) that, while not being identical, are discomfitingly close
together; or (iv) that are evenly spaced.

The problem is to find all the real zeros, the r’s, together with all the (2 , 2 + 2) pairs, these latter being the
quantities defined in 17:3:4. First, inspect for “obvious” zeros. If a0 0, r 0 must be a zero. If n is odd and the
coefficients sum to zero, r 1 will be a zero. You may choose to divide the polynomial by an; this won’t change
the zeros or help you to find them, but it will give you one less number to worry about.

After these preliminaries, compute the values of the polynomial at many (say 51) equally spaced x-values that
embrace the range between 1 and +1 (say at x 1.02, 0.98, , 0.98, 1.02). While doing that, you may as well
let your computer also find values of the polynomial’s first and second derivatives

21 2
n n

n 1 22
0 0 0

d p d pp ( ) ( ) ( 1) ( ) ( 1)( 2)
d d

n n n
j j j

j j j
j j j

x a x x j a x x j j a x
x x

17:7:1

Inspect a table of these data, looking primarily for changes in sign. If the polynomial changes sign between one
value of x and the next, but nothing dramatic happens to its derivatives, it is likely that a single real zero r lies in this
interval. If it is a double zero that occurs within the interval, dp/dx will change sign but pn and d2pn/dx2 will not,
though pn will be small in magnitude. If pn and d2pn/dx2 change sign, but not dpn/dx, this signals the likelihood that
a triple zero lies within, or close to, the interval, though the awkward possibility of one double zero and one single
zero or even three single zeros cannot be excluded. No information concerning the quadratic zeros will be provided
by this sign-change survey. Moreover it will, of course, only locate those real zeros that lie within the 1 x 1
range. To find the r’s lying outside this range, replace the argument of the polynomial by its reciprocal, and survey
the 1 x 1 range as before. In accord with transformation 17:5:2, the reciprocals of the zeros found in this second
survey should be appended to those found in the first.

You now know, crudely, where the real zeros are located. Assess whether your findings are complete: the parity
of Nr, the number of real zeros, should be that of n. Should you suspect the presence of closely spaced zeros, you
may want to calculate additional data at strategic sites.

Choose the real zero r in which you have the most confidence, and refine your knowledge of its location. There
are many standard methods for doing this methodically: the Newton-Raphson procedure [Section 52:15] is probably
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the most popular. Next, use the refined r in algorithm 17:5:5 to deflate the polynomial to degree n 1, checking by
means of 17:5:6 that the remainder is zero or small. Now, use this deflated polynomial as the basis on which to
refine the second real zero, then deflate once more. Proceed in this way until all the real roots are established and
deflation has produced a polynomial of even degree, n Nr.

Then turn to the quadratic zeros. Refining them is trickier because there are two parameters, 2 and ( 2 + 2),
to be optimized each time. Again, details of the techniques used – Bairstow’s method is a favorite – will not be
given here but are available in the sources cited earlier. If you are lucky, n Nr will equal 2 or 4 and no refinement
will be needed. In these cases, exact values of the complex zeros are available by solving the quadratic or quartic
polynomial by the standard methods of Section 15:7 or 16:12.

As a check, confirm that the sum of all your zeros, real plus complex, satisfies the rule

1
0 1 3 1

n
n n

n

a r r r r r r
a

17:7:2

and has no (or only a small) imaginary component. Better still, use equations 17:7:2, 17:7:3, etc. to recreate the
original polynomial. Equation 17:7:2 is the first of a set of so-called elementary symmetric relations that express
the coefficients of the polynomial in terms of its zeros. The second, third, and last (the nth) of these relations are

1
1 2 1 3 1 2 3 2 4 2 3 4 1

n
n n n n

n

a r r r r r r r r r r r r r r r r
a

17:7:3

3
1 2 3 1 2 4 1 2 1 3 4 1 3 2 1

n
n n n n n

n

a r r r r r r r r r r r r r r r r r r
a

17:7:4

0
1 2 3 1

( )n

n n
n

a r r r r r
a

17:7:5

The pattern, with its alternating signs, will be clear. Collectively, these equations are known as Vieta’s theorem.
Equation 16:3:2 is an example.

17:8 NUMERICAL VALUES

Formula 17:3:1 provides a convenient way of computing values of a polynomial. If, instead, you use 17:1:1,
beware of the danger of loss of significance when x is large, especially if an and an 1 have opposite signs.

17:9 LIMITS AND APPROXIMATIONS

A polynomial may be constructed to approximate a polynomial pn(x) of higher degree, over a specifiedp ( )m x
interval, so that

1 1
1 1 0 1 1 0 0 1

m m n n
m m n na x a x a a a x a x a a x x x m n17:9:1

by a process known as economization or telescoping, which sacrifices precision for brevity. Economization is often
used when n , that is to abbreviate a power series, because then one has no option but to curtail the original
expansion when seeking to use it numerically. Often the choice of m is determined by the largest absolute error
that can be tolerated, that is

1 0p ( ) p ( )n mx x x x x17:9:2

The key principle behind economization is that the Chebyshev polynomials Tj(y) [Chapter 22] never exceed
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unity in the range 1 y 1 and therefore, for any collection of c’s

T ( ) T ( ) 1 1j j j j j
j j j

c y c y c y17:9:3

So, if m is the smallest integer that meets the inequality

1

n

j
j m

c17:9:4

for a given n and a given set of c’s, it follows that, to the precision defined by 17:9:2,

0 0
T ( ) T ( )

m n

j j j j
j j

c y c y17:9:5

Now, each Chebyshev polynomial of degree j may be replaced by a sum of power functions up to and including y j.
The equivalence is expressed in formula 22:6:5 and implementing it leads to

( ) ( )

0 0 0 0
where and

m n m n
j j j j

j j j k j j k j
j j k k

b y b y b c b c17:9:6

the terms being those discussed in Section 22:6. Our actual problem occupies the region x0 x xJ not 1 y 1.
However, one can convert between x and y by a simple transformation, whereby it follows from 17:9:6 that

0 0

0 00 0

1 2 1 2
j jm n

j j
j jJ J

x x x xb b
x x x x

17:9:7

Binomial expansion and collection of terms will now allow a final solution matching equation 17:9:1.
The previous paragraph explains the procedure in principle. In practice, the algorithm would be numerical and

it could not proceed as indicated above, because the c terms are not known a priori. Numerical implementation
actually proceeds in the order a’s b’s c’s m b ’s a ’s.

Historically, series economization played a valuable role in approximating infinite series by a small number of
terms that could be summed by hand. With the advent of electronic devices that can sum thousands of terms in
fractions of a second, as well as being able to test the extent of convergence, the procedure is on its way to becoming
obsolete.

17:10 OPERATIONS OF THE CALCULUS

Because operations of the calculus can be distributed through a sum, any such operation that can be performed
on an isolated integer power function may be applied to a polynomial. Thus differentiation, integration, and Laplace
transformation can be carried out through extensions of the formulas in Section 16:10.

17:11 COMPLEX ARGUMENT

With real coefficients, the polynomial function of complex argument z x + iy has real and imaginary parts as
follows:

/ 2Re[p ( )] ( ) 0,2,4, ,( or 1)
n

k j k k
n j

k j k

j
z a x y k n n

k17:11:1
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( 1) / 2Im[p ( )] ( ) 1,3,5, ,( or 1)
n

k j k k
n j

k j k

j
z a x y k n n

k17:11:2

Polynomials have no poles or other discontinuities in the complex plane.

17:12 GENERALIZATIONS: including rational functions

The ratio of two polynomial functions is a rational function, for which this Atlas adopts a special symbol
1

1 1 0
1

1 1 0

p ( )R ( )
p ( )

m m
m m m m
n n n

n n n

x a x a x a x ax
x a x a x a x a

17:12:1

If m n, the rational function is said to be “improper”; synthetic division [Section 17:5] by the factors of the
denominatorial polynomial will reduce such a function to a polynomial plus a proper rational function (for which
m < n) plus a polynomial. In the division, terms representing the polynomial appear in the remainder. For example

5 4 3 2 2 19 1311
2 2 5 5 5

3 2 3 2 2

4 3 2 1 6 2 74 3 4 3
2 2 1 2 2

xx x x x x xx x x x
x x x x x x x

17:12:2

The final step in 17:12:2 provides an example of a proper rational fraction being split into partial fractions.
A standard method of approximating a transcendental function [Section 25:0] f(x) is by truncating its Maclaurin

series [Section 10:13]

1

1 d ff ( ) f ( ) f (0) 1 (0)
f (0) d !

j jJ

j
j

xx x
x j

17:12:3

but an alternative, and usually better, approximation is as a rational function
2

1 2
2

1 2

1f ( ) f ( ) f (0)
1

m
m

n
n

a x a x a xx x
a x a x a x

17:12:4

Such an approximation is known as a Padé approximant (Henri Eugène Padé, French mathematician, 1863 1953)
and is simply a rational function with the leading terms adjusted to be equal. The coefficients may be found by
matching the terms in 17:12:4 with those in 17:12:3, or by the lozenge-diagram procedure discussed in Section
10:14. Of course there are Padé approximants corresponding to each m,n pair and they may be assembled into a so-
called Padé table. A portion of such a table for the exponential function [exp(x), Chapter 26] is shown below.
Notice that the top row contains the partial sums of the Maclaurin expansion, whereas the left-hand column is the
reciprocal of the expansion of exp( x)

0
0R ( ) 1x 0

1R ( ) 1x x 0 21
2 2R ( ) 1x x x 0 2 31 1

3 2 6R ( ) 1x x x x

0
1

1R ( )
1

x
x

1
1 2
1 1

2

1R ( )
1

xx
x

22 1
2 3 6
1 1

3

1R ( )
1

x xx
x

2 33 1
3 4 4
1 1

4

1R ( )
1
x x xx

x

0
2 21

2

1R ( )
1

x
x x

1
1 3
2 22 1

3 6

1R ( )
1

xx
x x

21 1
2 2 12
2 21 1

2 12

1R ( )
1

x xx
x x

2 33 3 1
3 5 20 60
2 22 1

5 20

1R ( )
1

x x xx
x x

0
3 2 31 1

2 6

1R ( )
1

x
x x x

1
1 4
3 2 33 1 1

4 4 24

1R ( )
1

xx
x x x

22 1
2 5 20
3 2 33 3 1

5 20 60

1R ( )
1

x xx
x x x

2 31 1 1
3 2 10 120
3 2 31 1 1

2 10 120

1R ( )
1

x x xx
x x x

All these expressions can be considered as generalizations of the polynomial function.
Sums such as the following may be converted to polynomial functions, or to polynomials of lower degree,
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3 2 1 2
3 2 1 0 1 2a x a x a x a a x a x17:12:5

3 / 2 5 / 2 7 / 2 9 / 2 11/ 22 5x x x x x17:12:6
5 10 15 20

0 1 2 3 4a a x a x a x a x17:12:7
1/ 3 2 3 1/ 3 4 2 / 3 5ax b a x b x a x17:12:8

either by withdrawing a power factor, or redefining the argument, or both.

17:13 COGNATE FUNCTIONS: reciprocal polynomials

The reciprocal polynomial function 1/pn(x) occurs frequently. Because [Section 17:5] factoring the polynomial
into linear and quadratic terms, with real coefficients, is always possible, any reciprocal polynomial function can
be expressed as

2 2 2
1 2 1 1 2 2

1 1
p ( ) ( )( ) ( )( )( ) ( )n n J K Kx a x r x r x r x p q x p q x p q

17:13:1

where J+2K n. Furthermore, such an expression may be split into (J+K) partial fractions [Section 16:13].
Provided that each 1/(x rj) factor is distinct (that is, no other r has the same value as rj), then the partial fraction
arising from the factor is j /(x rj). With a similar proviso, each 1/(x2+pk+qk) gives a partial fraction of
( k+ k)/(x2+px+q). Thus

2
1 1( )

J K
jn k k

j kn j k k

a x
p x x r x p x q17:13:2

If the factors are not distinct, that is if they represent a multiple zero, then expansion 17:13:2 must be modified. If,
for example, r2 r3, then in the first summation

2 3 2 3
2

2 3 2 2

should be replaced by
( )x r x r x r x r

17:13:3

In the case r2 r3 r4, then the replacement would include a term 4/(x r2)3, and likewise for higher multiplicities.
Similarly, if p2 p3 and q2 q3, then in the second summation in 17:13:2

2 2 3 3 2 2 3 3
2 2 2 2 2

2 2 3 3 2 2 2 2

should be
replaced by ( )

x x x x
x p x q x p x q x p x q x p x q

17:13:4

Replacements when quadratic zeros have a multiplicity greater than 2 follow the same pattern as their linear
congeners.

The method of undetermined coefficients is used to find the , , and constants that appear in the partial
fraction expansion. An n 3 example is presented in Section 16:13. The process devolves into solving a set of
simultaneous algebraic equations and seldom causes difficulty, though it may be daunting. Fortunately, when
repeated zeros are absent, or have been removed by deflation, an “automated” method of determining undetermined
coefficient exists. Consider a typical reciprocal polynomial and its partial fractions:

11

1
p ( )

n n
jn

jkn k j

a
x x r x r17:13:5

Notice that we have chosen to distinguish the product index from the summation index. Now multiply by all n of
the x factors. This converts the product into unity. In the summation, however, only one of the terms cancels in
each summand. Hence
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1 1

1
k jn

j k
j k n

x r17:13:6

This is an identity, valid for all x, so let us set x equal to one particular rj; all the summands in 17:13:6 will thereby
vanish, except for the chosen j, so that

1

1
k j

j j k
k j

r r17:13:7

This provides a convenient expression for j, but an even more elegant result is possible. Differentiate the original
polynomial,

11 1

d dp
d d

k jn n

n n k n k
jk k n

x a x r a x r
x x

17:13:8

then set the argument to rj. In this milieu, too, all the summands disappear except for the chosen j:

1

d p
d

k j

n j n j k
k n

r a r r
x

17:13:9

Combination of equations 17:13:7 and 17:13:9 now leads to a succinct expression for j, which can be inserted into
17:13:5, to produce

1

1 1 1
dp ( ) p ( )
d

n

jn j
n j

x x rr
x

17:13:10

The coefficient of the jth partial fraction of a reciprocal polynomial is seen to be the reciprocal of the polynomial’s
derivative, evaluated at the jth zero. This formula applies equally to real and complex zeros, but only when repeated
zeros are absent.

Partial fractionation is frequently performed on reciprocal polynomial functions as a prelude to operations of
the calculus. In this context, the following formulas are useful:

1

1 d ln( )
x

r

t x r
t r

17:13:11

1
1 2

1 2 2 1 2

1 1d ln
( )( )x

x rt r r
t r t r r r x r

17:13:12

2

1 1d
( )x

t
t r x r

17:13:13

2
2 2 2

/ 2

1 2 2d arctan 4
4 4

x

p

x pt q p
t pt q q p q p

17:13:14

0

1 1exp( )d exp( )Ei( )st t rs rs
t r t r

17:13:15

1 exp( ) 1d exp( )
2

i

i

st s rt
s r i s r

I17:13:16
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2 21
421

4

2
2 2

2 21
421

4

exp( / 2) sin 4

1 exp( ) 1ds exp( / 2) 4
2

exp( / 2) sinh 4

i

i

pt q p t q p
q p

st t pt q p
s ps q i s ps q

pt p q t q p
p q

I17:13:17

17:14 RELATED TOPIC: polynomial fitting

Section 7:14 addresses linear regression, the exercise in which a linear function is chosen which “best”
represents a data set resembling that shown as red dots in Figure 7-3. A geometric interpretation is that the data
represent the rectangular coordinates of J+1 points in the cartesian plane and the linear function is the straight line
bx+c that comes closest to the points in the sense that the sum of the squares of the distances between the points and
the line is the least possible. In the present section, the goal is similar but, instead of a straight line, it is the best
polynomial of degree K that is computed. The procedure is named polynomial fitting or polynomial regression or
least-squares regression. Only evenly spaced data are addressed here. Of course K is a positive integer and if it lies
in the range 1 K J, polynomial regression results. If K J, the fitting is exact and the calculated polynomial
passes exactly through all the (J +1) points.

The procedure has similarities to that described in Section 17:9 and, as there, the properties of Chebyshev
polynomials provide the key to polynomial fitting. Here, however, it is the discrete Chebyshev polynomials [Section
22:13] that serve this role. The input data are in the form of (J+1) paired values, (x0, f0), (x1, f1), , (xJ, fJ), and the
sought approximating polynomial will be denoted The first step in the procedure is to scale the independentKp ( ).x
variable, which presently occupies the domain, to fall between 1 and 1 by defining0 Jx x x

0

0

2 j

J

x x x
y

x x
17:14:1

Secondly, after choosing K, the K +1 members of a set of coefficients are calculated by the formula

( )

01

1
[2 1] t ( ) 0,1, ,

1

J
Jk

k j k j
jk

J k
a k f y k K

J
17:14:2

in which Pochhammer polynomials [next chapter] play a role. Here, denotes the appropriate kth discrete( )t ( )J
k y

Chebyshev polynomial of argument y, where “appropriate” means “designed to cater to J+1 equally spaced data”,
as intimated by the (J) superscript. The definitions and properties of these polynomials are addressed in Section
22:13. Do not make the easy mistake of imagining that the ak values are the coefficients of the fitting function p .K

Each a must first be multiplied by the corresponding discrete Chebyshev polynomial. This operation yields a term
in the sought fitting polynomial. Rescaling back to the original x variable gives the fitted polynomial

( ) ( ) 0

0 0 0

2p t ( ) t
K K

J J J
K k k k k

k k J

x x xa y a
x x

17:14:3

As a simple example, refer to Figure 17-1, which shows 5 data points spaced evenly between x0 1 and xJ x4

9. We seek the quadratic function that “best” fits these data. First use formula 17:14:1, which in this case is yj

(xj 5)/4, to change the domain to that embraced by the fourth column of the data table overleaf.
We next seek the three coefficients a0, a1, and a2. From information in Section 22:13, the first three discrete
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j x f y
2p

0 1 0.75 1.0 0.89

1 3 3.00 0.5 2.63

2 5 3.25 0 3.51

3 7 3.5 0.5 3.53

4 J 9 2.75 1.0 2.70

Chebyshev polynomials are and 2 y 2 1. In turn, each of these may be inserted(4)
0t ( ) 1,y (4)

1t ( ) ,y y (4)
2t ( )y

into equation 17:14:2, which in this case reads
4

(4)

01

(5 ) (2 1) t ( ) 0,1,2
(5)

k
k j k j

jk

ka k f y k17:14:4

and used to calculate a0 2.650, a1 0.900 and a2 0.857. The sought polynomial is therefore
2 2

2 0 1 2p ( ) (2 1) 1 714 0 900 3 507y a a y a y y y. . .17:14:5

or
2

2
2 0 1 2

5 5p ( ) 2 1 0 107 1 296 0 296
4 4

x xx a a a x x. . .17:14:6

The green curve in Figure 17-1 shows the fitted quadratic function. The corresponding values at the data points are
listed in the table.

17:15 RELATED TOPIC: polynomial families

Throughout this chapter thus far, the coefficients aj of the polynomial function pn(x) have been treated as
arbitrary constants. However, the next seven chapters address polynomials in which the coefficients, far from being
arbitrary, are fully determinate. These polynomial functions are grouped into “families”, the members of which
differ in their degree. There is a limitless number of family members p0(x), p1(x), p2(x), , pn(x), and generally
each family is known by the name of a famous mathematician. The ordinal and cardinal numbers are used to
sequence members of a named polynomial family and to indicate the degree of each member. For example B6(x)
is the sixth Bernoulli polynomial function and is a polynomial of degree 6, with 7 terms.

There is a specific rule by which the coefficient of x j may be calculated from the integers j and n. One family
differs from another in the nature of this rule. Note the dependence of the coefficient, not only on j, but also on n.

The seven following chapters fall into two groups. The first three are not, but the final four are, orthogonal
polynomials. The meaning and significance of orthogonality is explained in Section 21:14.
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There is little interest in the Pochhammer polynomials in their own right; however, their simple recursion
properties enable these functions to play a valuable role in the algebra of other functions, especially the
hypergeometric functions discussed in Section 18:14.

18:1 NOTATION

These polynomial functions, in which x is the argument and n the degree, were studied in 1730 by Stirling and
later by Appell, who used the symbol (x,n). The name “Pochhammer polynomial” recognizes Leo August
Pochhammer (German mathematician, 1841 1920) who introduced the now conventional (x)n notation. Alternative
names are shifted factorial function, rising factorial, and upper factorial. The alternative overbarred symbol isnx
occasionally encountered.

18:2 BEHAVIOR

The Pochhammer polynomial is defined for all real x and all nonnegative integer n values (though see Section
18:12 for a generalization to negative n). In common with other polynomials, it has an unrestricted range when n
is odd, but a semiinfinite range for n 2, 4, 6, .

Figure 18-1 shows graphs of early members of the Pochhammer polynomial family; note that (x)n has exactly
maxima, minima and n zeros, the latter occurring at x 0, 1, 2, , (1 n).1

2Int n
2In t n

18:3 DEFINITIONS

The Pochhammer polynomial is defined by the n-fold product
1

0

( ) ( 1)( 2) ( 1) ( )
n

n
j

x x x x x n x j18:3:1

DOI 10.1007/978-0-387-48807-3_19, © Springer Science+Business Media, LLC 2009 
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Empty products are generally interpreted as unity and this is the case for the Pochhammer polynomial of zero degree:

0( ) 1x18:3:2
An equivalent definition

1!
n

x nx n n18:3:3

expresses (x)n in terms of a factorial function and a binomial coefficient [Chapters 2 and 6, respectively]. Equation
18:12:1 can also serve as a definition.

A generating function [Section 0:3] for the Pochhammer polynomial is
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0

1 ( )
(1 ) !

n

nv
n

tv
t n

18:3:4

and it is also generated by repeatedly differentiating a power of which v is the exponent:

d 1( )
d

nn
v v

nnx x v
x x

18:3:5

18:4 SPECIAL CASES

0( )x 1( )x 2( )x 3( )x 4( )x 5( )x 6( )x

1 x x2+x x3+3x2+2x x4+6x3+11x2+6x x5+10x4+35x3+50x2+24x x6+15x5+85x4+225x3+274x2+120x

18:5 INTRARELATIONSHIPS

Pochhammer polynomials obey the reflection formula
( ) ( ) ( 1)n

n nx x n18:5:1

Equivalently
1 1( )

2 2
n

n n

n nx x18:5:2

which explains the even or odd symmetry about x (1 n)/2 evident in Figure 18-1.
The argument-duplication formulas

1
2/ 2 / 2

1
2( 1) / 2 ( 1) / 2

2 0,2,4,
2

2 1,3,5,

n
n n

nn
n n

x x n
x

x x n18:5:3

have analogs in expressions for (3x)n, (4x)n, and generally for (mx)n, where m is a positive integer. Equation 18:5:3
may be reformulated into a degree-duplication formula

2
1( ) 4

2 2
n

n
n n

x xx18:5:4

and similarly

2 1
2 1

1

1 14 1 2
2 2 2 2

n n
n

n n n n

x x x xx x18:5:5

Similar formulas for (x)3n, (x)3n+1, (x)3n+2, (x)4n, etc. may be derived readily.
Simple recursion formulas exist for both the argument

1 1
n n

nx x
x

18:5:6

and the degree

1
1

n n n
x n x x x x18:5:7

of Pochhammer polynomial functions. There are many useful formulas expressing the quotient of two Pochhammer
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polynomials:
( )

( )
1

( )
( )

n m
n

m
m n

x m n m
x

n mx
x n

18:5:8

( ) ( ) 0,1,2,
( ) ( )

n m

n m

x m x n m
x x

18:5:9

( ) ( ) (1 ) 0,1,2,
( ) ( ) (1 )

n m m

n m m

x m x m x m
x x m n n x

18:5:10

Addition formulas exist for both the argument and the degree of a Pochhammer polynomial. The expression

0
( ) ( ) ( )

n

n j n j
j

nx y x yj18:5:11

which closely resembles the binomial theorem [equation 6:14:1], is known as Vandermonde’s theorem (Alexandre-
Théophile Vandermonde, French violinist and mathematician, 1735 1795). The rule

n m n m
x x x n18:5:12

is a simple consequence of definition 18:3:1.

18:6 EXPANSIONS: Stirling numbers of the first kind

Of course, the Pochhammer polynomial is expansible as the product 18:3:1. As a sum, its expansion involves
the absolute values of the numbers , known as the Stirling numbers of the first kind.( )S m

n

( ) ( )

1 0
( ) S ( ) S

n n
n m m m m

n nn
m m

x x x18:6:1

These numbers are negative whenever n+m
is odd and 0 < m < n. Figure 18-2 shows
the absolute values of early Stirling
numbers of the first kind and more can be
calculated via the recursion formula

( ) ( 1) ( )
1S S S

0,1,2, 1,2,3,

m m m
n n nn

n m
18:6:2

This formula is the basis of Equator’s
Stirling number of the first kind (keyword
Snum) routine. The numbers satisfy the
following summations

( )

1
S 0 2,3,4,

n
m

n
m

n18:6:3

( )

0
S ! 0,1,2,

n
m

n
m

n n18:6:4

It is sometimes useful to expand a
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reciprocal Pochhammer polynomial as partial fractions [Section 17:13]. The result is
1 1

0 0

1 ( 1) 1 ( 1)1( 1)!
( ) !( 1)!

j jn n

j jn

nn jx j n j x j x j
18:6:5

18:7 PARTICULAR VALUES

n
n 1

2
n

n n
m

m 1,2, ,n 1

1
2 n

0
n

1
2 n

1
n

2
n n

n

n 0 1 1 1 1 1 1 1 1 1

n 1,3,5, n! 0 0
(2 )!

4 (2 1) !n

n
n n

0
(2 )!
4 !n

n
n

n! (n+1)!
(2 )!
2 !

n
n

n 2,4,6, n!
/ 2 2

2
2

( ) ( !)
4 ( !)

n

n n

n
0

(2 )!
4 (2 1) !n

n
n n

0
(2 )!
4 !n

n
n

n! (n+1)!
(2 )!
2 !

n
n

As the table shows, the Pochhammer polynomial of an integer can be expressed as a factorial function or as the
quotient of two factorials

( 2)! ( 1)!1 ! (2) ( 1)! 3 ( )
2 ( 1)!n nn n

n n mn n m
m

18:7:1

Similarly, the Pochhammer polynomial of half an odd integer is related to double-factorials [Section 2:13]

31
2 2 2

(2 1)!! (2 1)!! (2 2)!! 1,3,5,
2 2 2 ( 2)!!

m
n n nn n n

n n n m m
m

18:7:2

18:8 NUMERICAL VALUES

Equator can provide accurate values of (x)n by its Pochhammer polynomial routine (keyword Poch).

18:9 LIMITS AND APPROXIMATIONS

As x + , (x)n approaches + smoothly and rapidly. As x becomes increasingly negative, (x)n passes through
(n 1) extrema before heading rapidly towards + , if n is even, or if n is odd. By use of equation 18:12:1, the
limiting behavior of the Pochhammer polynomial can be deduced from those of the gamma function, as discussed
in Section 43:9. Thus, when n is large, x remaining modest, the asymptotic expansion

1

2

! ( 1) ( 1)( 2)(3 1)( ) 1
( ) 2 24

x

n
n n x x x x x xx n

x n n
~18:9:1

holds and shows, for example, that
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1
2

!
n

n n
n18:9:2

On the other hand, the Stirling approximation [equation 43:6:6], coupled with 18:12:1, leads to

1
2 2

n

n

n n
e

18:9:3

The coexistence of limits 18:9:2 and 18:9:3 provides an interesting link between what are probably the three most
important irrational numbers: , e, and .2

For large n, and x close to n/2, the Pochhammer polynomial approximates a sine function [Chapter 32].

2 sin large positive
2 2

n

n

n nx x x n n
e

18:9:4

The development of this sinusoidal behavior is evident in Figure 18-1, even for n as small as 4.

18:10 OPERATIONS OF THE CALCULUS

Linear operators such as differentiation and indefinite integration may be applied term by term to all
polynomials, including (x)n. Differentiation and integration of the Pochhammer polynomial give

1

0

d 1 ( ) ( )
d

n

n n n
j

x x x n x x
x x j18:10:1

1
( 1)

10

d S
x jn

j
nn

j

xt t
j

18:10:2

The function is the digamma function [Chapter 44] and represents a Stirling number from Section 18:6.( 1)S j
n

18:11 COMPLEX ARGUMENT

If values of the Pochhammer polynomial with complex argument are needed, which they seldom are, they are
available by combining equation 18:6:1 and 17:11:1.

18:12 GENERALIZATIONS

Pochhammer polynomials may be expressed as a ratio of two gamma functions [Chapter 43]
( )

( )n

n xx
x

18:12:1

This representation opens the door to a generalization in which the degree n is not necessarily an integer.
A less profound generalization is to maintain n as an integer, but allow it to adopt negative values. This is

possible by basing the definition of such Pochhammer polynomials on recursion 18:5:7 and leads to the conclusion
that

1

1
1

x
x

18:12:2
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and generally
1 ( )

( 1)( 2) ( ) [ ]

n

n
n

xx
x x x n x n x18:12:3

18:13 COGNATE FUNCTIONS

Factorial functions [Chapter 2], binomial coefficients [Chapter 6], the gamma function [Chapter 43] and the
(complete) beta function [Section 43:13] are all closely related to the Pochhammer polynomial.

A factorial polynomial, as defined by Tuma [Section 1.03] is
( ) ( )( 2 ) ( )n
hx x x h x h x nh h18:13:1

but another function given the same name is
[ ] ( 1)( 2) ( 1)nx x x x x n18:13:2

This latter function also goes by the names falling factorial and lower factorial and may be symbolized xn or,
unfortunately, (x)n. Yet another confusing symbolism, due to Kramp, is

/ ( )( 2 ) ( )n cx x x c x c x nc c18:13:3

None of the notations in this paragraph is employed in the Atlas.

18:14 RELATED TOPIC: hypergeometric functions

Pochhammer polynomials occur in the coefficients of the special kind of power series known as a
hypergeometric function. The most general representation of such a function is as the sum

1 2 3

0 1 2 3

Kj j j j j

j Lj j j j

a a a a
x

c c c c
18:14:1

where x is the argument, a1, a2, , aK are prescribed numeratorial parameters, and c1, c2, , cL are prescribed
denominatorial parameters. Any real number is permissible as a parameter, except that nonpositive integers are
problematic. If such an integer is one of the a parameter, series 18:14:1 will generally terminate, thus representing
a polynomial. The only circumstance in which a nonpositive integer is legitimate as a denominatorial c parameter,
is if another nonpositive integer of smaller magnitude (that is, a less negative integer) occurs in the numerator. In
such cases the series terminates. Of course, the same Pochhammer term may not be in both the numerator and the
denominator: they would cancel.

The argument x may have either sign but its permissible range is determined by the numeratorial order K and
the denominatorial order L. These K and L orders are nonnegative integers, usually small ones. If L > K, the
hypergeometric series necessarily converges for all finite values of x. If L K, convergence is generally limited to
the argument range |x| < 1. If L < K the series diverges (unless it terminates) for all nonzero arguments, but it may
nevertheless usefully represent a function asymptotically for small values of |x| [37:6:5 provides an example].

The name “hypergeometric function” arises because 18:14:1 can be regarded as an extension of the geometric
series (equation 1:6:4 or 6:14:9), to which it reduces when L K 0. Choosing suitable values of the a’s and c’s
often gives rise to well-known functions when L and K are small. As well, a number of generic functions, such as
the Kummer function [Chapter 47] the Gauss hypergeometric function [Chapter 60], and the Claisen functions
[equation 18:14:5] are instances of hypergeometric functions in which the a’s and c’s are largely unrestricted. The
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Table 18-1

0

( )
( )

j j

j j

a
x

c 0

( )
( )

jj

j j

a
x

ca c

v 1 (1 x) v (1+x) v

v 2
11 (1 )

(1 )

vx
v x

1(1 ) 1
(1 )

vx
v x

1+v v 2

(1 )
(1 )

v v x
v x 2

(1 )
(1 )

v v x
v x

1 2
ln(1 )x

x
ln(1 )x

x

1 3 2

2 (1 )ln(1 )x x x
x 2

2 (1 )ln(1 )x x x
x

1 3
2

arcsin

(1 )

x

x x

arsinh

(1 )

x

x x

1 1
2

3

arcsin1
1 (1 )

x x

x x 3

arsinh1
1 (1 )

x x

x x

1
2

1
2 1 artanhx x 1 arctanx x

1
2

3
2

artanh( )x
x

arctan( )x
x

v 1+v v (x,1,v) v ( x,1,v)

a c 1 1

( 1)B( 1, 1, )
(1 )a c c

c c a c x
x x

so-called generalized hypergeometric function, or extended hypergeometric function, often denoted
pFq(a1, ,ap;c1, ,cq;x) is a hypergeometric function in which one of the denominatorial parameters is constrained to
be unity:

1 2 3

1 2 3 1 2 3
0 1 2 3

F , , , , ; , , , , ;
1

pj j j j j
p q p q

j qj j j jj

a a a a
a a a a c c c c x x

c c c c
18:14:2

so that p K but q and L differ by unity. Other notations include

1 2 3 1 2 3

1 2 3 1 2 3

, , , , 1, 1, 1, , 1F and
, , , , 1, 1, 1, , 1

p K
p q

q L

a a a a a a a ax x
c c c c c c c c

18:14:3

Some of these notations imply a phantom
denominatorial (1)j. In this Atlas, we adopt
no special notation for hypergeometric
functions, preferring to spell out the series
explicitly as in 18:14:1. If a (1)j is present
in the denominator, it is shown there.

As the tables in this section attest, a
very large fraction of the functions
discussed in the Atlas may be expressed
hypergeometrically. Moreover, in the
terminology of Section 43:14, almost all of
these functions may be synthesized from a
basis function, such as the ones listed in
equations 43:14:1 4. Do not be misled into
imagining that the only hypergeometric
functions are those in the tables. In fact,
subject to possible limitations on the
argument x, almost any assignment of a’s
and c’s leads to a valid hypergeometric
function. It is just that most such
assignments do not correspond to functions
that have been glorified by special names
and symbols.

Hypergeometric functions in which
L K have the common feature of being
amenable to synthesis, ultimately from one
or other of the 1/(1±x) functions. Table
18-1 lists examples of L K 1
hypergeometric functions, while Table 18-2
similarly lists L K 2 hypergeometrics. There is a plethora of functions that are expressible as L K 2
hypergeometric functions; entries in Table 18-2 have been chosen as representative, rather than exhaustive. See
Section 60:4 for details of the ways in which an associated Legendre function may be represented as a Gauss
hypergeometric function; that is, formulated as an L K 2 hypergeometric. L K 3 cases, include the class of
Claisen functions, important in hydrodynamics and described by
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Table 18-2 1 2

0 1 2

( ) ( )
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a a
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c c
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1
2v v 1 2v

1 2
1 1 / 2

v
x

1 2
1 1 / 2

v
x

v 1
2 v 1

2 1
2 2

1
2 1 1

v v
x x (1 ) cos 2 arctanvx v x
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v x

1 v 1+v 1 3
2

sin 2 arcsin
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Table 18-3

0

1
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j

j j

x
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1
( )

j

j j

x
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1
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31 2 2 exp( )erfx x x x 31 2 4 dawx x x

1
2 1 exp erfx x x 1 2 dawx x
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3
2 exp erf

4
x x

x
1 daw x
x

2
exp( ) 1x

x
1 exp( )x

x

5
2 2

3 exp erf 2
4

x x x x
x

3 11 daw
2

x
x x

3 2

2 exp( ) 1x x
x 2

2 1 exp( )x x
x

n 21

( 1)! exp e ( )nn

n x x
x 2

( 1)! e exp( )
( ) nn

n x x x
x

v ( )exp n 1,v x v x ( )exp n 1,v x v x

Table 18-4

0 1 2

( )
( ) ( )

j j

j j j

a
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c c 0 1 2

( )
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j j

j j j

a
x
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n
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n

n x
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2

1
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n
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x

1
2

3
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1
2
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1
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2
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v 1 v+1 ( , )vv x v x
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1 2 3

0 1 2 1
j j j j

j j j j

a a a
x

c c
18:14:4

of which an example is
1 1

22 2 1
2

0

2 2 2
F( , , ,

2 1 1
j j j j

j j j j

v v
x v x

v v
18:14:5

Please refer to the Symbol Index for the meaning of any unfamiliar symbol. Equation 18:14:6 provides a non-
Claisen example of a L K 3 hypergeometric function.

Table 18-5
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x
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3 3
2 2

5
0 2

arcsin1 12 21 ln 0 1
2 2 1 1

j j j j

j j j j

x
x x

x x x
18:14:6

The exponential function is the prototype L K+1 hypergeometric function

0

1exp
(1)

j

j j

x x18:14:7

All other hypergeometric functions that have one more denominatorial than numeratorial parameter may be
synthesized from it. Tables 18-3 and 18-4 respectively are listings of some examples of L K+1 1 and L
K+1 2 hypergeometric functions. An example of an L K+1 3 hypergeometric is

2
0

2 2 4( ) Ein( ) exp( ) 1
1 3 3

j j j

j j j j

x x x
x

18:14:8

The starting point for the synthesis of L K+2 hypergeometric functions is the zero-order modified Bessel
function or the corresponding (circular) Bessel function . Examples of L K+2 3 hyper-0I 2 x 0J 2 x
geometrics are assembled in Tables 18-5 and 18-6. There are rather few instances of L K+2 4 hypergeometrics,
but one is

1
2

1(2 1) / 2
0

( ) (1 )I I
1 1 2 ( / 4)

j j j
v vv

j j j j j

v v vx x x
v v x

18:14:9

Table 18-6
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( ) ( ) ( )

j j

j j j j

a
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( )
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a
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1
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2
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2
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2
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2
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x

3
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2
7
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1/ 4

3 / 4

3 S 2
4

x
x
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2 2 2
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x
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x

2 1 5
2 3 2

2

sinh 23 sinh
2

x x
x

x
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(4 )v
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1
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4 ( )J
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vv x
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For some obscure reason, hypergeometric functions in which the denominatorial order exceeds the numeratorial
order by 3 seldom correspond to named functions, one a rare exception appearing in equation 53:11:3 and another
being
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1 1 1
3 3 3

1 2
0 3 3

1 1 2exp 3 exp 3/ 2 cos 3 3 / 2
1 3 3

j

j jj j

x x x x18:14:10

which is an example of a Mittag-Leffler function [Section 45:14]. In contrast, named cases of L K+4 4
hypergeometric functions are quite abundant, an instance being the Kelvin function [Chapter 55]

1
4

1 1
0 2 2

1 ber 4
1 1

j

j j j j j

x x18:14:11

Table 18-7

0
( ) j

j
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nn x

x

1
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11 dawx
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x
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1
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1
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3
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v
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Table 18-8 1 2

0
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2
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2
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1
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1
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5
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1/ 6 2 / 33 1 3exp Bi
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2

v
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Examples of hypergeometric functions of the L K 1 0 and L K 1 1 families are listed in Tables 18-7 and
18-8. Of course, these correspond to asymptotic series. With even worse convergence properties are the
L K 2 0 hypergeometrics of which a few are shown in Table 18-9. The series

1 1 1
2 2 2

0

2 1 1I K
1

j j j j
v v

j j

v v
x

x x x
18:14:12

is an example of an L K 2 1 hypergeometric function. Two important L K 2 2 hypergeometric functions
occur in Section 53:6.

Table 18-9
1 2

0
( ) ( ) ( ) j

j j
j

a a x
a1 a2

v 1
2 (1 2 ) / 2 (1 2 ) / 2(1 2 ) / 4

(1 ) 2 2h Yv vv

v
x x x

1
4

3
4 1/ 4 1/ 4

2 2Fres
x x

1
2 1

2 2fi
x x

3
4

5
4 3 / 4 1/ 4

8 2Gres
x x

1 3
2

4 2gi
x x

v 1
2v 4 2 2 2 2cos S 1 2 , sin C 1 2 ,

v

v v
x x x x x

Let Gj denote the following abbreviation

1 2 3

1 2 3

K
j

L

a j a j a j a j
G

c j c j c j c j
18:14:13

then any hypergeometric function is given by
2 3

0 0 1 0 1 2 0 1 2 11 ( )J J
J JG x G G x G G G x G G G G x R18:14:14

where RJ is the remainder if the summation is halted after the Jth term. Ignoring RJ, a convenient method of
calculating the hypergeometric function is via the concatenation

1 2 1 01 1 1 1J JG x G x G x G x18:14:15

In discussing the general properties of hypergeometric functions, use will be made of a collapsed notation
exemplified by the replacement of (a1)j(a2)j (aK)j by . Likewise implies the K-fold product1 K j

a 1 1K ja

(a1+1)j(a2+1)j (aK+1)j.
The recursion relation
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1 11

0 01 1 1

1
( ) 1 ( )

1
K Kj jj jL

j jL K Lj j

a acx x
c a x c

18:14:16

is satisfied by any hypergeometric function. Furthermore, any hypergeometric function can be split into two others
with an inflated parameter set:

1 1 1 1 1 12 2
1 1 1 11 2 2 2 2 2 21

1 1 1 1 1 1
0 0 01 1 1 1 1 12 2 2 2 2 2

11
( )

1 4 1 4

j j
K K K KK j j j j jj K

L K L K
j j jL L L L L Lj j j j j

a a a aa x a x xx
c c c c c c

18:14:17

Of course, this result may become invalid if it creates new denominatorial parameters that are nonnegative integers.
Replacing x in this formula by ix shows that a hypergeometric function of imaginary argument has real and
imaginary parts that are themselves hypergeometric functions.

Embodying the fractional calculus [Section 12:14], a formula of very wide applicability is

1 1

0 01 1

1d ( 1)( ) ( )
d ( 1) 1

v v
K Kj j jj j

v
j jL Lj j j

a axx x x
x c v v c

18:14:18

where v and are not necessarily integers. This formula is invalid if either or v is a negative integer; if they
are both negative integers, it fails if v is negative. Examples of the 0 version include semidifferentiation

1/ 2
1 1

1/ 2 1
0 0 21 1

1d 1( ) ( )
d

K Kj j jj j

j jL Lj j j

a a
x x

x c cx
18:14:19

semiintegration
1/ 2

1 1

1/ 2 3
0 0 21 1

1d ( ) 2 ( )
d

K Kj j jj j

j jL Lj j j

a axx x
x c c

18:14:20

and integration

1 1

0 01 10

1
( ) d ( )

2

x
K Kj j jj j

j jL Lj j j

a a
t t x x

c c
18:14:21

The formula for ordinary differentiation

1 11

0 01 1 1

2d ( ) ( )
d 1

K Kj j jj jK

j jL L Lj j j

a aax x
x c c c

18:14:22

also follows from 18:14:18, but only after a preliminary step based on recursion 18:14:16. Notice that all the
formulas 18:14:16 18:14:22 maintain the L K difference. Laplace transformation, however, decreases this
difference

1 1 1

0 0 01 1 10

11( ) exp d ( ) ( )K K Kj j j jj j j

j j jL L Lj j j

a a a
t st t t s

c c s c
18:14:23

worsening the convergence properties of the hypergeometric function.
Specific to the hypergeometric 1:1 functions, are the reflection formula

1

1
0 0

( ) ( )( ) ( 1) (1 ) 1 (1 )
( ) ( ) 1 ( 2)

c a
j jj j

c
j jj j

a ac a c x cx x
c a x a c a c18:14:24
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and the following rule
1

0 0 0

( ) (1 )( ) 1
( ) ( ) 1 1 ( 1) 1

n jn
j j jj jn

j j jj n jj

a a cc a x xx x
c c x c n x a c x

18:14:25

which permits the denominatorial parameter to be incremented by an integer, at the expense of an additional
polynomial function.



n

Brothers Jacques (or Jakob) Bernoulli (1654 1705) and Jean (or Johann) Bernoulli (1667 1748) were talented
Swiss mathematicians. Brother Jacques was responsible for these polynomials. Jean’s son, Daniel Bernoulli
(1700 1782), is known for his work on fluid dynamics.

19:1 NOTATION

Bn(x) is the usual symbol for a Bernoulli polynomial function of argument x and degree n, though isB ( )n x
sometimes used by authors who adopt the “rival” notation [Section 4:1] for Bernoulli numbers. The name “Bernoulli
polynomial” and the symbol n(x) has been used to represent the quantity that this Atlas represents by Bn(x) Bn,
where Bn is the nth Bernoulli number [Chapter 4].

19:2 BEHAVIOR

Bernoulli polynomials are defined for all nonnegative integer n and all real argument x, though 0 x 1 is the
most important range and the one on which Figure 19-1 concentrates.

The magnitude of Bn(x) for n 2,3, ,10,11 and 0 x 1 is small, never exceeding . Except for the n 01
6

and n 1 cases, the Bernoulli polynomial equals the Bernoulli number Bn at each end of the 0 x 1interval. At
the x center of this interval Bn(x) displays an extremum when n is even, but equals zero when n is odd.1

2

19:3 DEFINITIONS

The Bateman manuscript [Erdélyi et al., Higher Transcendental Functions, pages 38-39] gives several integral
representations of the Bernoulli polynomials but the usual definition is provided by the generating function

0

exp( ) B ( )
exp( ) 1 !

n

n
n

t xt tx
t n

19:3:1
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Another definition,

0
B ( ) B

n
n j

n j
j

nx xj19:3:2

expresses Bernoulli polynomials as a sum with coefficients comprised of Bernoulli numbers [Chapter 4] and
binomial coefficients [Chapter 6].

19:4 SPECIAL CASES

B0(x) B1(x) B2(x) B3(x) B4(x) B5(x) B6(x)

1 1
2x 2 1

6x x 3 23 1
2 2x x x 4 3 2 1

302x x x 5 4 35 5 1
2 3 6x x x x 6 5 4 25 1 1

2 2 423x x x x

The coefficients of all Bernoulli polynomials up to B15(x) are listed by Abramowitz and Stegun [page 509].

19:5 INTRARELATIONSHIPS

According to the parity of their degree, Bernoulli polynomials have even or odd symmetry about x ½
1 1
2 2B ( ) B 0,1,2,n

n nx x n19:5:1

They obey the reflection formula
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1( ) B ( ) B ( ) 0,1,2.n n
n nx x nx n19:5:2

The general argument-addition and argument-multiplication formulas

0
B ( ) B ( )

n
n j

n j
j

nx y x yj19:5:3

and
1

1

0
B ( ) B 0,1,2, 1,2,3,

m
n

n n
j

jmx m x n m
m

19:5:4

have important special cases:

1

0
B ( 1) B ( ) B ( )

n
n

n j n
j

nx x x nxj19:5:5

which represents an argument-recursion formula, and the argument-duplication formula
1 1

2B (2 ) 2 B ( ) Bn
n n nx x x19:5:6

From 19:5:5 one may also derive the summation formula

0

1 B ( ) ( 1)
n

n
j

j

n x n xj19:5:7

19:6 EXPANSIONS

Power series for the Bernoulli polynomial Bn(x) generally involve the Bernoulli numbers Bn [Chapter 4]. In
using these formulas, recognize that all Bernoulli numbers with odd degrees, except B1, are zero. The nth Bernoulli
polynomial may be expanded as a power series in x

1 2
1

0

( 1)B ( ) B B B
2 12

n
n n n n j

n n n j
j

n n n nx x x x nx xj19:6:1

or in (x 1)

1
1

0

B
B ( ) ( 1) ( 1) ( ) ( 1)B ( ) B

2 ( 1)

n
jn n n n

n n n j n
j

n nx x x n x j x
19:6:2

but, because of the symmetry of Bn(x) about x ½, the most concise expansion is in terms of x ½. One finds, for
n 0, 1, 2, , that

1
1 2Int ( / 2)

1 21 1
2 2 2101 2

12

[2 1]B 2 1 B( 1)B ( ) or 224 2 1 B

n
jnnn n j

n j n
jn

n

n n nx x x j xn x
19:6:3

where the form of the term in braces depends on whether n is even (upper alternative) or odd.
For n 3, notice in Figure 19-1 that, in the interval 0 < x < 1, each Bernoulli polynomial closely resembles a

sinusoid [Chapter 32] of unity period. Such a sinusoid is, in fact, the first component in the Fourier expansion
[Section 36:6] of these polynomials:

/ 21
2

( 1) / 2
1 1

( ) cos(2 ) 2,4,6,cos 2 2 !B ( ) 2 ! 0 1
(2 ) (2 ) ( ) sin(2 ) 3,5,7,

n n

n n n n n
j j

j j x nj x n nx n x
j j j x n

19:6:4

The sums in this expansion are closely related to those addressed in Section 32:14.
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19:7 PARTICULAR VALUES

B 1n
1

2Bn B 0n
1

4Bn
1

2Bn
3

4Bn B 1n
3

2Bn

n 2,4, Bnn
1

B B
2

n
nn

n Bn
B 2B
2 4

n n
n n

2B B
2

n
nn

B 2B
2 4

n n
n n

Bn 1

B B
2

n
nn

n

n 3,5, n 12n

n
0 1E

4
n

n

n
0 1E

4
n
n

n
0 12n

n

19:8 NUMERICAL VALUES

Explicit formulas, such as those listed in Section 19:4 are used by Equator’s Bernoulli polynomials routine
(keyword Bpoly) for n = 0,1,2, , 7. For other degrees up to n 170, recursion 19:5:5 is used either to decrease or
increase the argument until it lies in the interval 0 x < 1. Thereafter – apart from the very smallest arguments when
approximation 19:9:1 is adopted – the truncated sum

11
2 8

99,98

cos 22 !B ( ) 10 1
(2 )n n n

j

jx nnx x
j

19:8:1

which is based on formula 19:6:4, is used, implemented via the reperiodized cosine [Section 32:8].
Bernoulli polynomials of large degree have many zeros. With patient searching [for example through the

Newton-Raphson procedure, Section 52:15] these zeros are easily located numerically to 15 digits, but do not expect
to find an argument value (other than 0, ½, or 1 for odd n) at which Bn is exactly zero, because the derivative of a
Bernoulli polynomial of large degree is often huge close to its zeros.

19:9 LIMITS AND APPROXIMATIONS

As x ± , the Bernoulli polynomial Bn(x) becomes dominated by its leading term xn in its expansion and
therefore (unless n 0) tends to if n is odd and x negative, or to + otherwise.

As x approaches zero, the approximation

1B ( ) B B smalln n nx nx x19:9:1

progressively improves.

19:10 OPERATIONS OF THE CALCULUS

1
d B ( ) B ( )
d n nx n x

x
19:10:1

1 1

0

B ( ) BB ( )d
1

x
n n

n
xt t
n

19:10:2
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1

0

1 0
B ( )d
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n
t t

n
19:10:3

1

B ( )d 0
x

n
n

x

t t x n19:10:4

1

0

! ! B , odd
( )!

B ( )B ( )d 0 odd , 1,2,3,
! ! B , even

( )!

m n

m n

m n

m n m n
m n

t t t m n m n
m n m n

m n

19:10:5

This last formula establishes that, though Bernoulli polynomials are not generally orthogonal [Section 21:14], they
do possess this property when (m+n) is odd.

19:11 COMPLEX ARGUMENT

Bernoulli polynomials are rarely encountered with complex arguments.

19:12 GENERALIZATIONS

A class of functions defined by the generating function

( )

0

exp( ) B ( )
[exp( ) 1] !

m n
m

nm
n

t xt tx
t n

19:12:1

is termed [Korn and Korn, page 824] the Bernoulli polynomials of order m and degree n. A more general set of
higher order Bernoulli polynomials is described by Erdélyi et al. [Higher Transcendental Functions, page 39].

Yet another generalization [Hilfer, page 60], which removes the restriction that the degree be an integer, stems
from equation 19:6:5. Replacement of n by v, which is not necessarily an integer, leads to the definition

1
2

1

cos 2
B ( ) 2 (1 ) 0 1

(2 )v v
j

j x vx
x v x

j
19:12:2

None of these generalizations will be pursued in the Atlas.

19:13 COGNATE FUNCTIONS

Bernoulli polynomials are closely related to the Euler polynomials of the following chapter. Equations 20:3:3
and 20:3:4 make the connection explicit.

19:14 RELATED TOPIC: sums of powers

From integrals 19:10:2 and 19:10:4, it follows that
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1 1B ( ) B ( )(1 ) 2 ( 1 )
1

nn n n n nm x xx x x m x
n

19:14:1

One important application of this equation is derived by setting x 1, which leads to

1 1B ( 1) B1 2 3 , 1,2,3,
1

n n n n n nmm m n
n

19:14:2

This result, and its special cases when n takes integer values up to 5, are reported in Section 1:14.
Another application of formula 19:14:1 follows from setting x ½, for then one finds

1 1 1B (2 ) 2 B ( ) [2 1]B1 3 5 (2 1) , 1,2,3,
1

n n
n n n n n n nm mm m n

n
19:14:3

A summation with alternating signs can be obtained by subtracting equation 19:14:2 (with m replaced by 2m 1)
from twice 19:14:3. The result is

1 1
1 1 1B (2 ) 2 B ( ) [2 1]B1 2 3 (2 1) , 1,2,3,

1

n n
n n n n n n nm mm m n

n
19:14:4

Note that the finite series in 19:14:2 4 correspond to the infinite series discussed in Chapter 3.



n

Named for gifted Swiss mathematician Leonhard Euler (1707 1783), these polynomial functions have much
in common with Bernoulli polynomials. Both these polynomial families are useful in summing series involving
quantities raised to integer powers, as explained in Sections 19:14 and 20:14.

20:1 NOTATION

An Euler polynomial of degree n and argument x is generally denoted En(x), although the symbol isE ( )n x
encountered occasionally. The symbol En(x) is also used to represent the unrelated Schlömilch function, mentioned
in Section 37:14 but not used elsewhere in the Atlas. The unsubscripted E(x) denotes the unrelated elliptic integral
discussed in Chapter 61.

20:2 BEHAVIOR

Though the Euler polynomials are defined for all nonnegative integer degrees and all real arguments, the domain
embracing 0 x 1, and occupying the center of Figure 20-1, is the most important. All Euler polynomials of even
degree, apart from E0(x), become zero at each end of this interval and exhibit an extremum at x ½. Conversely,
all En(x) of odd degree are zero at x ½ and, apart from E1(x), display extrema at both x 0 and x 1. Some zeros
and extrema lie outside 0 x 1.

20:3 DEFINITIONS

Euler polynomials are defined by the generating function

0

2exp( ) E ( )
1 exp( ) !

n

n
n

xt tx
t n

20:3:1

or, in terms of Euler numbers [Chapter 5],
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0

1E ( ) [2 1] E
2

n
n j

n jn
j

n
x x

j20:3:2

Because all odd Euler numbers E j are zero, the summation in 20:3:2 has only 1+Int(n/2) nonzero terms.
The formulas

1
1 1

2E ( ) B ( ) 2 B
1 2

n
n n n

xx x
n

20:3:3

and
1

1 1
2 1E ( ) B B

1 2 2

n

n n n
x xx

n
20:3:4

among others, define Euler polynomials in terms of Bernoulli polynomials [Chapter 19].

20:4 SPECIAL CASES

E0(x) E1(x) E2(x) E3(x) E4(x) E5(x) E6(x) E7(x)

1 1
2x 2x x 3 23 1

2 4x x 4 32x x x 5 4 25 5 1
2 2 2x x x 6 5 33 5 3x x x x 7 6 4 27 35 1721

2 4 2 8x x x x

The coefficients of all Euler polynomials up to E15 are listed by Abramowitz and Stegun [page 809]. Note that the
coefficients are invariably integers for even degree, but that coefficients are frequently fractional when n is odd. The
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denominator of the fraction is invariably a power of 2. Notice also that, even though many powers are missing (their
coefficients are zero), the terms present always alternate in sign.

20:5 INTRARELATIONSHIPS

According to the parity of their degree, Euler polynomials have even or odd symmetry about x ½
1 1
2 2E ( ) En

n nx x20:5:1

or equivalently
E ( ) E 1n

n nx x20:5:2

and, additionally, they obey the reflection formula
( ) E ( ) 2 E ( )n n

n nx x x20:5:3

about x 0. Combination of the two prior results leads to
E (1 ) 2 E ( )n

n nx x x20:5:4

which serves as an argument-recursion formula and is exploited in Section 20:14.
The general argument-addition formula

0 0
E ( ) E ( ) E ( )

n n
n j n j

n j j
j j

n nx y x y y xj j20:5:5

is the key to deriving a number of important results. Thus, because 2nEn(½) equals the Euler number En, setting
y ½ gives

1
2

0

E
E

(2 )

n
jn

n j
j

nx x j x
20:5:6

while setting y 1 leads to the summation formula

0
E ( ) E (1 )

n

j n
j

n x xj20:5:7

With y 0, and with help from the formula [Section 20:7] that relates the Euler polynomial of zero argument to a
Bernoulli number, one finds

1
1

0 0

B2 1E ( ) E (0) 2
1

jn n
jn j n

n j j
j j

n nx x xj jj x
20:5:8

which provides a power-series expansion for the Euler polynomial. Finally, setting y x generates the argument-
duplication formula

0
E (2 ) E ( )

n
n j

n j
j

nx x xj20:5:9

However, setting m 2 in 20:5:10 provides a simpler expression for En(2x).
The argument-multiplication formula for Euler polynomials adopts alternative forms according to the parity of

the multiplier
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1

0

1

1
0

( ) E 1,3,5,
E

2 ( ) B 2,4,6,
1

m
n j

n
j

n n m
j

n
j

jm x m
m

mx
m jx m

n m

20:5:10

Definition 20:3:4 is a special case of this formula.

20:6 EXPANSIONS

Equation 20:5:7 provides a polynomial expansion, in powers of x, for En(x), of which the early and late terms
are

1 3 2
1 2 1

1 1
( 1)( 2) 2 2E ( ) (2 1) B (2 2)B B

2 24 1

n n n
n n n

n n n n
nx n n n xx x n x x

n
20:6:1

and, via the reflection formulas, this may be restated as a series in (x 1):
1 2

1 2 1
1 1

( 1) 2 2E ( ) ( 1) (2 1) B ( 1) (2 2)B ( 1) B
2 1

n n
n n n

n n n n
n xx x n x x

n
20:6:2

However, the most succinct expansion is in terms of (x ½):
2

2 11 1 1 1
2 2 2 21

E E EE ( )
8 2 2 2

n n n jj n n
n j n n

nn n nx x x x x
j20:6:3

which is equivalent to definition 20:3:2.
A Fourier expansion [Section 36:6] of an Euler polynomial leads to the formula

( 1) / 2

1 1 / 2
1,3,5

( ) cos( ) 1,3,5,4 ! f( )E ( ) f ( ) sin
2 ( ) sin( ) 2,4,6,

n

n n n n
j

j x nn x nx x j x
j j x n

20:6:4

which is valid for 0 x 1. Note that the summation index takes odd values only.

20:7 PARTICULAR VALUES

E 1n
1

2En E 0n
1

6En
1

3En
1

2En
2

3En
5

6En E 1n
3

2En E 2n

n 1,3, 2 2n 1

1
2n

2 n
1 3

3

n

nn
0 3 1

3

n

nn
2 n 1

1
2n

2 2 n

n 2,4, 2
2 E

2
n

n 0
1

3 1 E
2 3

n

nn n

E
2

n
n 1

3 1 E
2 3

n

nn n
0

2 E
2

n
n 2

The abbreviation n (2n+1 1)Bn+1/(n+1) is used in the table.
Notice near the left-hand frame of Figure 20-1 that the argument (about 0.61803) at which E2(x) and E6(x)

equal unity coincides with that at which E4(x) and E5(x) equal zero, as well as that at which E5(x) peaks and E6(x)
inflects. This argument is, in fact, 1/ , where is the golden section cited in Section 23:14. Similar coincidences
occur at argument x 1.6180.
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20:8 NUMERICAL VALUES

For 0 x 1, Equator’s Euler polynomial routine (keyword Epoly) uses whichever of the trio of equations
20:6:1, 20:6:2, or 20:6:3 makes the leading term closest to zero. For x > 1, the formula

Int( )
Int( )

1
E ( ) ( ) E frac( ) 2 ( ) ( ) 1

x
x j n

n n
j

x x x j x20:8:1

is used to bring the argument into the range of one of the trio. The formula
Int( )

Int( )

1
E ( ) ( ) E frac( ) 2 ( ) frac( ) 0

x
nx j

n n
j

x x x j x20:8:2

performs a similar task when x < 0. Each of these formulas is a consequence of 20:5:4.

20:9 LIMITS AND APPROXIMATIONS

Except when n 0, Euler polynomials rapidly approach + (or if n is odd and x is negative) as x ± .
For large n and 0 x 1, En(x) is approximated by a sinusoid [Chapter 36]

1

4 !E ( ) sin large and 0 1
2n n

n nx x n x20:9:1

20:10 OPERATIONS OF THE CALCULUS

1
d E ( ) E ( )
d n nx n x

x
20:10:1

0

1
201

0

0,2,4,E ( )E ( )d
1,3,5, 01

x
n

n
x

n xxt t
n xn

20:10:2

2
1

2

0

4(2 1) B 0,2,4,
E ( )d ( 1)( 2)

0 1,3,5,

n

n
n

n
t t n n

n
20:10:3

2

2
1

0 2

2

4(2 1) ! !B , odd
( 2)!

E ( )E ( )d 0 odd , 0,1,2,
4(2 1) ! !B , even

( 2)!

m n

m n

m n
m n

m n

m n m n
m n

t t t m n m n
m n m n

m n

20:10:4

1
( 1) / 2

0 1

0 0,2,4,
E ( )sec( )d ( ) 4 ! ( ) 1,3,5,

n
n

n

n
t t t n n n

20:10:5

The functions occurring in the final integral are the beta number [Chapter 3] and the secant function [Chapter 33].
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20:11 COMPLEX ARGUMENT

Applications of Euler polynomials are primarily confined to real arguments.

20:12 GENERALIZATIONS

Analogs of the generalizations discussed in Section 19:12 can be constructed for Euler polynomials, but these
are not discussed in the Atlas.

20:13 COGNATE FUNCTIONS

Euler and Bernoulli polynomials are closely allied; they are linked, for example, through equations 20:3:3 and
20:3:4.

20:14 RELATED TOPIC: sums of alternating power series

Iteration of equation 20:5:3 leads to

( 1 ) E ( ) E ( ) / 2 1,3,5,
(1 ) (2 )

( 1 ) E ( ) E ( ) / 2 2,4,6,

n
n nn n n

n
n n

m x x m x m
x x x

m x x m x m
20:14:1

Setting x 1 yields the useful result
1

1
2 1 E ( 1)1 2 3 ( 1) B , 1,2,3

1 2

n
n n n n n n

n
mm m m n

n
20:14:2

which is an alternative to 19:14:4 and equivalent to equation 1:14:9, having the special cases reported as
1:14:6 1:14:9. Setting x ½ in 20:14:1 leads to

1
2E 2 E

1 3 5 (2 3) (2 1)
2

n
n nn n n n n m

m m20:14:3
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Legendre polynomial functions provide solutions to differential equations that govern important physical
phenomena. Named for the prolific French mathematician Adrien Marie Legendre (1752 1833), these polynomials
constitute a family that is one of the simplest that exhibits orthogonality, a property described in Section 21:14.

21:1 NOTATION

The symbol Pn(x) is standard for the Legendre polynomial of degree n and argument x, though the P is often
italicized. The name spherical polynomial is also encountered, zonal surface harmonic function [Section 59:14]
being yet another name. When orthogonality is important, normalized or orthonormal Legendre polynomials are
often specified; this implies multiplication of Pn(x) by , but some authors do not make the presence of this1

2n
factor explicit.

The symbol Pv(x), where v is unrestricted, is given to a class of functions discussed in Chapter 59 and named
Legendre functions of the first kind. The degree of a Legendre polynomial, on the other hand, is usually restricted
to nonnegative integers. The two P functions are identical for integer v of either sign because

1

P ( ) 0,1,2,
P ( )

P ( ) 1, 2, 3 1
n

v
n

x v n v
x

x v n v
21:1:1

Thus the functions of this chapter are just special instances of Legendre functions of the first kind and are sometimes
not regarded as distinct from the more general function.

Provided that it does not exceed unity in magnitude, the argument x of a Legendre polynomial is often replaced
by the cosine of a subsidiary variable

P cos( ) P arccos( ) 1 1n n x x x21:1:2

This reflects the manner in which Legendre polynomials often arise in scientific and engineering applications.
The shifted Legendre polynomials, distinguished by an asterisk, have a changed argument

P ( ) P (2 1)n nx x21:1:3

so that the orthogonality interval [Section 21:14] becomes 0 to 1 instead of 1 to 1. Another modified Legendre
polynomial is
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(2 )!P ( ) P ( )
2

n
nn

nx x21:1:4

Neither of these modifications is used in the Atlas. See Sections 21:12 and 22:12, respectively, for explanations of
the and notations.( )P ( )v x ( , )P ( )n x

21:2 BEHAVIOR

We allow the argument x to adopt any real value in this chapter, though its most important domain is 1 x 1
and restriction to this domain is obligatory when the argument is replaced by cos( ). As Figure 21-1 illustrates, the
range of the Legendre polynomial reflects its argument and degree as follows

1

1 P ( ) 1, 0,1,2,
1 P ( ) 1 1 1, 0,1,2,

P ( ) 1, 0,2,4,
P ( ) 1 1, 1,3,5

n

n

n

n

x x n
x x n

x x n
x x n

21:2:1

The polynomial Pn(x) has exactly n zeros and (n 1) extrema; they all lie within the 1 < x < 1 zone.
Apart from the n 0 case, Pn(x) increases in magnitude without limit outside the |x| < 1 region, as |x| increases,

the rate of increase being greater the larger n is.
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21:3 DEFINITIONS

Legendre polynomials may be defined by the generating function

0

2
1

0

1
P ( ) 1 1

1 1
1 2 P ( ) 1

n
n

n

n
n

n

x
x t t

xt t x t t
21:3:1

or by Rodrigues’s formula (Benjamin Olinde Rodrigues, French mathematician, 1794 1851)

21 dP ( ) 1
2 ! d

n n

n n nx x
n x

21:3:2

One of many integral representations of Legendre polynomials is

2

0

1P ( ) 1cos( ) d 1
n

n x x x t t x21:3:3

known as Laplace’s representation.
Because the Legendre polynomial is a hypergeometric function [Section 18:14]

0

( ) ( 1)
P (1 2 )

(1) (1)
j j j

n
j j j

n n
x x21:3:4

it may be synthesized [Section 43:14] by the two-step process
1 11 P (1 2 )

1 11
n

n
n nx x

x
21:3:5

from the basis function 1/(1 x).
The Legendre polynomial f(x) Pn(x) satisfies Legendre’s differential equation

2
2

2

d f d f(1 ) 2 ( 1)f 0
d d

x x n n
x x

21:3:6

The most general solution of this equation is f(x) w1Pn(x)+w2Qn(x) where the w’s are arbitrary weights and Qn(x)
is the function addressed in Section 21:13. Alternatively, the general solution of 21:3:6 may be written as the
arbitrarily weighted sums of two series, namely those given by equation 21:6:1.

Figure 21-2 illustrates a geometric definition that explains how Legendre
polynomials arise in certain applications. The triangle shown has two sides, one
of unity length and one of length r, enclosing an angle . By the law of cosines
[Section 34:14], the length y of the third side equals . In21 2 cos( )r r
some physical problems, it is necessary to expand 1/y as a power series in
reciprocal powers of r. Definition 21:3:1 shows that the appropriate series is

0 1 2
2 3

P cos( ) P cos( ) P cos( )1
y r r r

21:3:7

if r > 1.
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21:4 SPECIAL CASES

P0(x) P1(x) P2(x) P3(x) P4(x) P5(x) P6(x)

1 x 23 1
2 2x 35 3

2 2x x 4 235 15 3
8 4 8x x 5 363 35 15

8 4 8x x x 6 4 2231 315 105 5
16 16 16 16x x x

When an angular argument is adopted, it is often more convenient to use the cosines of multiple angles, rather than
powers, as the expansion terms; for example

4P cos( ) 9 20cos(2 ) 35cos(4 ) / 6421:4:1

Gradshteyn and Ryzhik [Section 8.91] and Jeffrey [Section 18.2.4.2] list the corresponding expressions for other
degrees.

21:5 INTRARELATIONSHIPS

Legendre polynomials are even or odd
1 1
2 2P ( ) ( ) P ( )n

n nx x21:5:1

according to the parity of n. The recursion formula

1 2
2 1 1P ( ) P ( ) P ( ) 2,3,4,n n n

n nx x x x n
n n

21:5:2

relates three polynomials of consecutive degrees.
Section 21:4 lists expressions for Pn(x) functions as finite series in powers of x. The converse is also possible:

powers may be expressed as finite series of Legendre polynomials. For example
4 81 4

0 2 45 7 35= P ( ) P ( ) P ( )x x x x21:5:3

The general formula, which employs Pochhammer polynomials, is
2/ 2

2
23

0 2

1( 1) / 2
2

2 14
0 2

4 1 P ( ) 0,2,4,
1

4 3 P ( ) 1,3,5,
2

nn
j

jn
j jn

nn
j

jn
j j

jj x n
n

x
jj x n

n

21:5:4

Not only powers, but a large number of functions f(x) of x can be expressed as series of Legendre polynomials by
exploiting the technique described in Section 21:15.

Among summation formulas for Legendre polynomials are

1
0 1 2 1

[P ( ) P ( )]P ( ) 3P ( ) (2 3)P ( ) (2 1)P ( )
1

n n
n n

n x xx x n x n x
x

21:5:5

and

1
0 1 2 1

[P ( ) P ( )]P ( ) 3P ( ) (2 3)P ( ) (2 1)P ( )
1

n n
n n

n x xx x n x n x
x

21:5:6
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Pn( 1) Pn(0) Pn(1)

n 0,2,4, 1
2( ) ( 1)!!

!!

n n
n

1

n 1,3,5, 1 0 1

21:6 EXPANSIONS

There are numerous power-series expansions of Legendre polynomials, all of which terminate; for example
/ 2

2 4

( 1) / 2
3 5

( ) ( 1)!! ( 1) ( 2) ( 1)( 3)1 0,2,4,
!! 2! 4!

P ( )
( ) !! ( 1)( 2) ( 3)( 1)( 2)( 4) 1,3,5,

( 1)!! 3! 5!

n

n n

n n n n n n nx x n
n

x
n n n n n n nx x x n

n

21:6:1

There are many ways in which the Legendre polynomials may be written as Gauss hypergeometric functions
[Chapter 60]; the simplest is known as Murphy’s formula, which leads to a terminating power series in 1 x:

2
2

1 ( 1) ( 1) ( 1)( 2) (2 )! 1P ( ) F ,1 ;1; 1 (1 ) (1 )
2 2 16 ( !) 2

n

n
x n n n n n n n xx n n x x

n
21:6:2

More are listed by Gradshteyn and Ryzhik [Section 8.91], or may be found by specializing formulas from Chapter 59
to integer degree.

The infinite Fourier series

3
0 2

(2 1)!!( 1)4 (2 )!!P cos( ) sin ( 2 1)
(2 1)!! (2 )!!( )

j
n

j j

j nn n j
n j n21:6:3

involves coefficients that are quotients of Pochhammer polynomials [Chapter 18] and double factorials [Section
2:13].

21:7 PARTICULAR VALUES

Legendre polynomials in the n 2,6,10, family display
a minimum at x 0, whereas a maximum is exhibited there if
n is a multiple of 4. Away from x 0, we know of no general
formulas for the zeros or extrema of Pn(x).

21:8 NUMERICAL VALUES

Equator’s Legendre P polynomial routine (keyword Ppoly) uses recursion formula 21:5:2, initialized by
P0(x) = 1 and P1(x) x.

21:9 LIMITS AND APPROXIMATIONS

The approximation [Lebedev]

2 1P cos( ) sin
sin( ) 2 4n n

n
21:9:1

holds for large n when 0 < < .
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21:10 OPERATIONS OF THE CALCULUS

Differentiation and integration of a Legendre polynomial give

12

d P ( ) P ( ) P ( )
d 1n n n

nx x x x
x x

21:10:1

and

1 1

1

P ( ) P ( )P ( )d 1,2,3,
2 1

x
n n

n
x xt t n

n
21:10:2

Equation 21:10:1 is just one of a number of formulas relating the Legendre polynomials to its derivative. Others
include

1
d dP ( ) P ( ) P ( ) 1,2,3,
d dn n nx x x n x n

x x
21:10:3

and

1 1
d P ( ) P ( ) (2 1)P ( ) 1,2,3,
d n n nx x n x n

x
21:10:4

There are many useful definite integrals involving Legendre polynomials. These include
1

1

P ( )d 0 1,2,3,n t t n21:10:5

1

1

P ( ) 8d 0,1,2,
2 11

n t t n
nt

21:10:6

21

2
1

P ( ) ( 1)!!/ !! 0,2,4,d
0 1,3,5,1

n t n n nt
nt

21:10:7

and
1 1 1

32 2 1
2 23 1

0 2 2

( 2)( 4)( 6) ( )
P ( )d

( 1)( 1)( 3) ( )n
n n nt t t
n n n

21:10:8

where, in the final example, the upper/lower signs apply according as n is even/odd. Gradshteyn and Ryzhik devote
several pages [Sections 7.22 7.25] to a listing of further integrals involving Legendre polynomials. The integral,
between 1 and +1, of the product of a Legendre polynomial and some other function may often be evaluated by
recourse to Rodrigues’s definition 21:3:2, with help from parts integration [Section 0:10].

Legendre functions are orthogonal [Section 21:14] on the interval between 1 and +1 with a weight function
of unity:

1

1

0
P ( )P ( )d 2

2 1
n m

m n
t t t

m n
n

21:10:9

Laplace transforms involving the Legendre polynomial include

(2 1) / 2
0

2P (1 )exp( )d P (1 ) exp( )K ( )n n nt st t t s s
s

21:10:10
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00

( ) (1 ) 1 1 1 1P (1 )exp( )d P (1 ) exp i
(1) 2 2 2

jn
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n n n
j j

n n
t st t t

s s s s
21:10:11

and

n
1

0

1 1 !( +1) P exp( )d ( +1) P L ( )
1 1

n
n n nn

t t nt st t t s
t t s

21:10:12

Respectively, functions from Chapter 51, Section 28:13, and Chapter 23 appear in these three transforms. The
Hilbert transform [Section 7:10] of a Legendre polynomial

1

1

1 d 2P ( ) Q ( )n n
tt y

t y
21:10:13

generates a Legendre function of the second kind [Section 21:13] of the same integer degree, a result known as
Neumann’s formula.

21:11 COMPLEX ARGUMENT

Although most applications of Legendre polynomials require a real argument, there is some interest in Pn(z)
where z is a complex variable. One definition, the Schläfli representation (Ludwig Schläfli, Swiss theologian and
mathematician, 1814 1895) employs the contour integral

2

1

11 dP ( )
2 2

n

n nn

t tz
it z

21:11:1

where the contour encloses the point z once.
Two formulas for Laplace inversion are

1

0

( ) (1 )1 exp( ) 1 1P 1 d P 1
2 (1) (1) (1) 2

jn
j j

n n
j j j ji

n na ts a ats
s s i s s a

I21:11:2

and
1

1 1

1 exp( ) 1P 1 d P 1 L
2 2 ! 2

n

n n nn n n
i

a ts a t ats
s s i s s n a

I21:11:3

21:12 GENERALIZATIONS

A modest generalization of the Pn(x) polynomial is to admit negative integer degrees by the degree-reflection
formula

1P ( ) P ( )n nx x21:12:1
which is consistent with 21:1:1. More radical is the generalization of the degree to any real number, thereby creating
the Legendre function of the first kind, Pv(x), discussed in Chapter 59. A still wider generalization is to the
associated Legendre functions of the first kind, , which are the subject of Section 59:13.( )P ( )v x
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21:13 COGNATE FUNCTIONS

The Qn(x) functions are mentioned in the context of equations 21:3:6 and 21:10:13. They are sometimes called
“Legendre polynomials of the second kind ” but this is an unfortunate name because they are not polynomial
functions. They are the integer-degree instances of Legendre functions of the second kind, addressed in more detail
in Chapter 59. Some special cases, applicable when 1 < x < 1, are tabulated

Q0(x) Q1(x) Q2(x) Q3(x)

artanh(x) artanh( ) 1x x 23 31
2 2 2artanh( )x x x 3 25 3 5 2

2 2 2 3artanh( )x x x x

and the general formula is

1,3,5

2 2 1 1Q ( ) P ( )artanh( ) 2 P ( ) 1 2Int
(2 1) 2

J

n n n j
j

n j nx x x x J
j n j

21:13:1

Here, artanh(x) is the inverse hyperbolic tangent function [Chapter 31], being equivalent to .ln (1 ) /(1 )x x
These definitions apply only for |x| < 1; outside this range replace artanh(x) by arcoth(x).

In distinction from Pn(x), Qn(x) has a discontinuity of the + |+ variety at x 1, another discontinuity at x 1,
and, as Figure 21-3 suggests, an approach towards zero as x ± . Moreover, in contrast to Pn(x), Qn(x) is an even
function when n is odd, and vice versa. Nonetheless, the two functions do have much in common: equations 21:5:2
and 21:10:1 4 retain their validity when Q replaces P. Each satisfies Legendre’s differential equation 21:3:7.

Qn(z) is multivalued in the complex plane, unless suitably cut. Usually a branch cut is applied along the real
axis between 1 and +1. The average of the values on either side of the cut is assigned to Qn(x), while the difference
of these values is iPn(x). See Erdélyi et al [Higher Transcendental Functions, Volume 2, Page 181].
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21:14 RELATED TOPIC: orthogonality

The integral, between distinct limits, of the square f × f of a real function f is never zero (unless the function is
the zero function); in fact it must be positive. The definite integral of the product of two functions f × g is rarely zero

1

0

f ( )g( )d 0 f g
x

x

t t t21:14:1

but this unusual property is possessed by any two Legendre polynomials, Pn(x) and Pm(x), if x0 1 and x1 1.
Specifically, to repeat equation 21:10:10

1

1

0
P ( )P ( )d , 0,1,2,2

2 1
n m

m n
t t t m n

m n
n

21:14:2

The two Legendre polynomials are said to be mutually “orthogonal on the interval x0 and x1”.
If a carefully chosen third function, called a weight function w(t) is introduced into the integrand, then the

integral is more likely to vanish. If it does, that is if
1

0

w( )f ( )g( )d 0 f g
x

x

t t t t21:14:3

then one says that “f and g are orthogonal on the interval x0 to x1 with respect to the weight function w”. The weight
function is required to be nonnegative throughout the x0 to x1 interval. Legendre polynomials are orthogonal on the
interval 1 to +1 with a weight function of unity.

Many polynomial functions, including those in Chapters 21 through 24 of this Atlas, constitute orthogonal
families. The accompanying table shows some of the orthogonality properties of the Legendre, Chebyshev, Jacobi,
Gegenbauer, Laguerre, and Hermite polynomials.

n(t) x0 to x1 w(t) 2
n

Pn(t) 1 to 1 1 2/(2n+1)
Tn(t) 1 to 1 21/ 1 t /2 (or if n 0)

Un(t) 1 to 1 21 t /2

Pn(2t 1) 0 to 1 21/ 1 t 1/(2n+1)

Tn(2t 1) 0 to 1 21/ 1 t /2 (or if n 0)

Un(2t 1) 0 to 1 2t t /8

( , )P ( )v
n t 1 to 1

(1 )
(1 )

vt
t

12 ( 1) ( 1)
(2 1) ! ( 1)

v n v n
n v n n v

( )C ( )n t 1 to 1 2 (2 1) / 2(1 )t
1 2

2

2 ( 2 )
( ) ! ( )

n
n n

Ln(x) 0 to exp( t) 1
Hn(x) to exp( t 2) 2 !n n

A general definition is that the family of functions 0(x), 1(x), 2 (x), are orthogonal when, for all choices
of nonnegative integers n and m
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1

0

2

0
w( ) ( ) ( )d

0

x

n m
nx

m n
t t t t

m n21:14:4

where x0, x1, and w are specified. An alternative way of formulating this equation is
1

0

,
( ) ( )w( ) d

x
n m

n m
n mx

t tt t21:14:5

where n,m is the Kronecker delta function [Section 9:13]. The terms are normalizing factors and n(x)/ n is the
normalized or orthonormal version of the nth orthogonal polynomial. The normalized version of the Legendre
polynomial is .1

2 P ( )nn x
Orthogonality is not restricted to polynomials. How the sine and cosine functions group into orthogonal families

is explained in Section 32:10.
From a weighted sum of orthogonal functions one may extract the coefficient of one particular, say the mth,

summand by the integration procedure
1

0

2( ) ( )w( )d
x

n n m m m
nx

a t t t t a21:14:6

This is one of the prime benefits conferred by orthogonality.

21:15 RELATED TOPIC: expansions in Legendre functions

The orthogonality property of the orthogonal polynomials 0(x), 1(x), 2 (x), permits their use as a basis
set for the expansion

0 0 1 1 2 2f ( ) ( ) ( ) ( )x c x c x c x21:15:1
for a wide range of f(x) functions. Such an expansion, which is called a orthogonal series or a generalized Fourier
expansion is an alternative to, and in some circumstances an improvement on, the most usual basis set, the powers
x0, x1, x2, . The c's are the coefficients of the expansion. Multiplying equation 21:15:1 by w(x) n(x) and
integrating shows that the coefficients may be found from the integral

1

0

2

1 f ( )w( ) ( )d
x

n n
n x

c t t t t21:15:2

Any orthogonal family can be used in this context, but the Legendre polynomials are often the most convenient
because their weight function is unity. For this basis set,

1

1

2 1 f ( )P ( )d
2n n

nc t t t21:15:3

Two examples of series constructed in this way are

2 2

2,4

1 ( 3)!!( 1)!!2 1 P
2 2 !!( 1)!! j

j

a j j xa x j
j j a

21:15:4

and
2

2 2
0,2

1 ( 1)!!2 1 P
2 !! j

j

j xj
a j aa x

21:15:5

while a third is provided by equation 35:6:5. In these equations, the coefficients are written as double factorials.



n n

Named for the Russian mathematician Pafnuty Lvovich Chebyshev (1821 1894), these two kinds of polynomial
function are interrelated in the many ways detailed in Section 22:5 and by several of the integrals in Section 22:10.
Tn(x) is extensively used in fitting procedures of various kinds. Gegenbauer and Jacobi polynomials are also briefly
addressed in this chapter, as are discrete Chebyshev polynomials.

22:1 NOTATION

Alternative transliterations from the Cyrillic alphabet lead to spelling variants ranging from Chebyshev to
Tschebischeff.

Unfortunately, mathematicians differ in their definitions of Chebyshev polynomials, and there is not even
unanimity on which of the two kinds constitutes the “first” family and which the “second”. The notations Tn(x) and
Un(x) may be encountered with meanings equivalent to the Tn(x)/2n 1 and nUn(x) of this Atlas. Moreover, the symbol
Un(x) and the name “Chebyshev polynomial of the second kind” is commonly applied to a set of functions defined
by arcsin(x) when n 0, and by our when n 1,2,3, , despite these not being polynomials at all.2

11 U ( )nx x
Several supplementary notations may be encountered, but none of these is employed in the Atlas. Thus *T ( )n x

and are often used to symbolize the shifted Chebyshev polynomials Tn(2x 1) and Un(2x 1), cited in the table*U ( )n x
in Section 21:14. The symbols Cn(x) and Sn(x) have been used for 2Tn(x/2) and Un(x/2), respectively. Under the
name Chebyshev functions, and symbolize functions resembling Tn(x) and Un(x) but in which theT ( )v x U ( )v x
degree is not restricted to integer values.

Here, we shall name Tn(x) the first, and Un(x) the second, Chebyshev polynomial family. The degree n takes
the nonnegative integer values 0,1,2, , though U0(x) is sometimes excluded from the second family when
orthogonality is an issue. The argument x is unrestricted, but interest is concentrated in the 1 x 1 range.

DOI 10.1007/978-0-387-48807-3_23, © Springer Science+Business Media, LLC 2009 
197K.B. Oldham et al., An Atlas of Functions, Second Edition,
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22:2 BEHAVIOR

Figures 22-1 and 22-2 portray Tn(x) and Un(x) respectively. Each kind of Chebyshev polynomial has precisely
n zeros, Int(n/2) minima and Int{(n 1)/2} maxima, all these features lying within 1 < x < 1. The locations of the
zeros are given in Section 22:7. All the maxima of Tn(x) take the value +1, whereas Tn(x) equals 1 at all the
minima; no comparable rules apply to Un(x). For 1 x 1 range, the ranges of the two polynomials are
22:2:1 1 T ( ) 1 1 1

22:2:2 1 U ( ) 1 1,2,3,

n

n

x x

n x n n

22:3 DEFINITIONS

Some, but not all, of these definitions apply outside the 1 x 1 range of interest.
Purely algebraic definitions of the polynomial families are

2 21T ( ) 1 1
2

n n

n x x i x x i x22:3:1

1 1
2 2

2

1U ( ) 1 1
2 1

n n

n x x i x x i x
i x

22:3:2

but the definitions most usually encountered are trigonometrically based:
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22:3:3 T ( ) cos( )
arccos( ) 1 1

22:3:4 U ( ) csc( )sin ( 1)

n

n

x n
x x

x n

The Chebyshev polynomials may be written as Gauss hypergeometric functions [Chapter 60], or equivalently
as the straightforward hypergeometric functions

1
0 2

T (1 2 )
(1)

n
j j j

n
j jj

n n
x x22:3:5

and

3
0 2

2
U (1 2 ) ( 1)

(1)

n
j j j

n
j j j

n n
x n x22:3:6

They may be synthesized by routes analogous to that in 21:3:5.
Chebyshev polynomials may be defined by the generating functions

2
0

1 T ( )
1 2

n
n

n

tx x t
tx t

22:3:7

2
0

1 U ( )
1 2

n
n

n
x t

tx t
22:3:8

or by the Rodrigues’s formulas
2 (2 1) / 22( ) 1 dT ( ) 1

(2 1)!! d

n n n

n n

xx x
n x

22:3:9
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(2 1) / 22

2

( ) ( 1) dU ( ) 1
d(2 1)!! 1

n n n

n n

nx x
xn x

22:3:10

For n 1,2,3, , a general solution to Chebyshev’s differential equation
2

2 2
2

d f d f(1 ) f 0
d d

x x n
x x

22:3:11

is
2

1 2 1f ( ) T ( ) 1 U ( )n nx w x w x x22:3:12

where the w’s are arbitrary. For n 0, the solution is f(x) w1 + w2 arcsin(x).

22:4 SPECIAL CASES

T0(x) T1(x) T2(x) T3(x) T4(x) T5(x) T6(x) T7(x)

1 x 2x2 1 4x3 3x 8x4 8x2 +1 16x5 20x3 +5x 32x6 48x4 +18x2 1 64x7 112x5 +56x3 7x

U0(x) U1(x) U2(x) U3(x) U4(x) U5(x) U6(x) U7(x)

1 2x 4x2 1 8x3 4x 16x4 12x2 +1 32x5 32x3 +6x 64x6 80x4 +24x2 1 128x7 192x5 +80x3 8x

22:5 INTRARELATIONSHIPS

Chebyshev polynomials are even or odd
f ( ) ( ) f ( ) f T or Un

n nx x22:5:1

according to the parity of their degree. The recursion formula

1 2f ( ) 2 f ( ) f ( ) 2,3,4,n n nx x x x n22:5:2
also applies equally to both kinds of Chebyshev polynomial.

The formulas

1T ( ) U ( ) U ( ) 1,2,3,n n nx x x x n22:5:3
and

1
2

T ( ) T ( )U ( ) 0,1,2,
1

n n
n

x x xx n
x

22:5:4

permit one kind of Chebyshev polynomial to be expressed in terms of the other. There are also formulas expressing
the product of two Chebyshev polynomials as the sum of other Chebyshev polynomials:

T ( ) T ( )T ( )T ( )
2

n m n m
n m

x xx x n m22:5:5

2
2

T ( ) T ( )U ( )U ( )
2(1 )

n m n m
n m

x xx x n
x

m22:5:6
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1 1
2 2
1
2
1 1

22 2

U ( ) U ( )
T ( )U ( ) U ( ) 1

U ( ) U ( ) 2

n m n m

n m n m

n m n m

x x n m
x x x n m

x x n m
22:5:7

Series of Chebyshev polynomials of the first kind have the sums
1 1

0 2 4 2 2T ( ) T ( ) T ( ) T ( ) U ( ) 0,2,4,n nx x x x x n22:5:8
and

1
1 3 5 2T ( ) T ( ) T ( ) T ( ) U ( ) 1,3,5,n nx x x x x n22:5:9

Clearly, these two expressions may be combined additively or subtractively to produce other useful sums. The
corresponding series for Chebyshev polynomials of the second kind are

2
0 2 4 2

1 T ( )U ( ) U ( ) U ( ) U ( ) 0,2,4,
2(1 )

n
n

xx x x x n
x

22:5:10

and

2
1 3 5 2

T ( )U ( ) U ( ) U ( ) U ( ) 1,3,5,
2(1 )

n
n

x xx x x x n
x

22:5:11

Positive integer powers of x can be expressed as finite series of Chebyshev polynomials of either kind. For
example

3 3 1 1 1
1 3 1 34 4 4 8T ( ) T ( ) U ( ) U ( )x x x x x22:5:12

Restricting attention to the polynomials of the first kind, one has the general expression
( )
0 0( ) ( ) ( ) ( )

n 2 2 4 4 ( )
0 1 1

T ( ) 0,2,4,
T ( ) T ( ) T ( ) T ( )

T ( ) 1,3,5,

nn
n n n n n

j j n n n n n n
j

x n
x x x x x

x n
22:5:13

Note that if j and n have unlike parities, or if j > n. Values of these coefficients are provided by Equator’s( ) 0n
j

Chebyshev gamma coefficient routine (keyword Chebygamma) which uses the following recursive algorithm,
executed sequentially for n 0, n 1, n 2, n 3, n 4, .

( )

( ) ( 1)1
0 12
( ) ( 1) ( 1)1 1

1 12 2
( ) ( 1)1

12

( ) ( 1) ( 1)1
1 0 22
( ) ( 1) ( 1)1 1

1 12 2

0,1 1

2,4,6, for 2,4,6, ,( 2)

3,5,7, for 3,5,7, ,

n
n

n n

n n n
j j j
n n

n n

n n n

n n n
j j j

n

n j n

n j
( ) ( 1)1

12

( 2)
n n

n n

n

22:5:14

Extensive tables of these, and similar, coefficients can be found in Abramowitz and Stegun [Chapter 22]. Here we
list only coefficients of T0(x), T1(x), T2(x) and T3(x) in the expansions of x0, x1, x2, , x13.
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n 0 n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 n 11 n 12 n 13
( )
0
n 1 0 1

2 0 3
8 0 5

16 0 35
128 0 63

256 0 231
1024 0

( )
1

n 0 1 0 3
4 0 5

8 0 35
64 0 63

128 0 231
512 0 429

1024

( )
2
n 0 0 1

2 0 1
2 0 15

32 0 7
16 0 105

256 0 99
256 0

( )
3
n 0 0 0 1

4 0 5
16 0 21

64 0 21
64 0 165

512 0 1287
4096

22:6 EXPANSIONS

Explicit power-series expressions for the two Chebyshev polynomials are
Int ( / 2)

2

0

( )T ( ) 2 1,2,3,
2

jn
n j

n
j

n n jx x njn j
22:6:1

and
Int ( / 2)

2

0
U ( ) ( ) 2 0,1,2,

n
n jj

n
j

n jx x nj22:6:2

but these may also be written in a binomial-expansion-like format as

2 2 4 2 2T ( ) (1 ) (1 )0 2 4
n n n

n
n n nx x x x x x22:6:3

and

1 3 2 5 2 2
1U ( ) (1 ) (1 )1 2 3

n n n
n

n n nx x x x x x22:6:4

Furthermore, series expansions may be developed from the hypergeometric representations 22:3:5 and 22:3:6.
Equation 22:6:3 may be redrafted as

0 or 1
( )

, 2, 4
T ( ) n k

n k
k n n n

x x22:6:5

Early values of the coefficients are( )n
k

n 0 n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 n 11 n 12 n 13
( )
0
n 1 0 1 0 1 0 1 0 1 0 1 0 1 0

( )
1

n 0 1 0 3 0 5 0 7 0 9 0 11 0 13
( )
2
n 0 0 2 0 8 0 18 0 32 0 50 0 72 0

( )
3
n 0 0 0 4 0 20 0 56 0 120 0 220 0 364

Note that if n and k are of unlike parity, or if k > n, the coefficient is zero. For computational purposes, non-( )n
k

zero values of these coefficients in the power-series expansion of the first kind of Chebyshev polynomial are most
easily found from the formula
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Tn( 1) Tn(0) Tn(1)

n 0,2,4, 1 ( 1)n/2 1

n 1,3,5, 1 0 1

Un( 1) Un(0) Un(1)

n 0,2,4, n + 1 ( 1)n/2 n + 1

n 1,3,5, n 1 0 n + 1

( ) / 2 1 ( ) / 21 1 1 1
( ) 2 2 2 2

1 1
2 2

( ) 2 1 ! ( ) 2
! !

n k k n k k
n

k

n n k n kn
kn k k n k

22:6:6

except that 1. This is the formula used by Equator’s Chebyshev tau coefficient routine (keywordChebytau)(0)
0

to compute the coefficients of xk in the power-series expansion of Tn(x).

22:7 PARTICULAR VALUES

The zeros of the Chebyshev polynomials occur at arguments given by
(2 1)cos 1,2,3, , where T ( ) 0

2j n j
jr j n r

n
22:7:1

and

cos 1,2,3, , where U ( ) 0
1j n j

jr j n r
n

22:7:2

22:8 NUMERICAL VALUES

Equator’s Chebyshev polynomial of the first kind and Chebyshev polynomial of the second kind routines
(keywords Tpoly andUpoly) are both based on recursion relation 22:5:2. The sole difference between the routines
is that the T routine is initialized by f0 1, f1 x, whereas the U routine uses f0 1, f1 2x.

22:9 LIMITS AND APPROXIMATIONS

In the limits as x ±
1T ( ) 2 1,2,3,n n

n x x n22:9:1

and
U ( ) 2 0,1,2,n n

n x x n22:9:2

22:10 OPERATIONS OF THE CALCULUS

Luke [pages 298 302] gives a plethora of information respecting differentiation and indefinite integration of
the Chebyshev polynomials. Some of the simplest results are:
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1
1 2

T ( ) T ( )d T ( ) U ( ) 1,2,3,
d 1

n n
n n

n x x x
x n x n

x x
22:10:1

1
2

d U ( ) ( 1)T ( )U ( ) 1,2,3,
d 1

n n
n

nx x n xx n
x x

22:10:2

12
0

T ( )d T ( ) sin T ( ) 2,3,4,
1 2 1

x

n n n
n n xt t x x n

n n
22:10:3

1

0

T ( ) sin( / 2)U ( )d 0,1,2,
1

x
n

n
x nt t n

n
22:10:4

1
11 T ( )U ( )d 0,1,2,
1

n
n

x

xt t n
n

22:10:5

The definite integrals

1

2
1

0
T ( )T ( ) d 0

1 / 2 1,2,3,

n m

m n
t t t m n

t m n
22:10:6

and
1

2

1

0
1 U ( )U ( )d

/ 2 0,1,2,n m

m n
t t t t

m n
22:10:7

establish the orthogonality of the Chebyshev polynomials [Section 21:14]. Other definite integrals include
1 2

2
2

1

4 2T ( )d 0,1,2,
4 1n
nt t n
n

22:10:8

1 / 2

2
0

cos( )T ( ) ( )d J ( ) 0 0,2,4,
21

n
n

n
bt t t b b n

t
22:10:9

1 ( 1) / 2

2
0

sin( )T ( ) ( )d J ( ) 0 1,3,5,
21

n
n

n
bt t t b b n

t
22:10:10

and others are listed by Gradshteyn and Ryzhik [Sections 7.34 7.36]. In these integrals Jn denotes the Bessel
function of order n [Chapter 51].

Examples of Laplace transforms of Chebyshev polynomials are

00

T (1 2 ) T (1 2 ) 1exp( )d
(1)

j
j jn n

j j

n nt tst t
s st t

22:10:11

and

/ 2
3

00

1 1 1U (1 2 )exp( )d U (1 2 ) ( )
2 (1)

j
j jn

n n
j j

n nnt t st t t t
s s

22:10:12

Though written as L K 1 1 hypergeometric functions, the transforms are themselves polynomials (they are
sometimes called Rainville polynomials). Each kind of Chebyshev polynomial, multiplied by its weight function,
converts, on Hilbert transformation [Section 7:10], to the other kind:
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1

12
1

1 T ( ) d U ( ) 1 1
1
n

n
t t y y

t yt
22:10:13

1
2

1
1

1 dU ( ) 1 T ( ) 1 1n n
tt t y y

t y
22:10:14

These last two integrals must be interpreted as their Cauchy limits [equation 7:10:5].

22:11 COMPLEX ARGUMENT

Chebyshev polynomials of complex argument are sometimes encountered. The real and imaginary parts of early
Tn(x+iy) polynomials are

T0(x+iy) T1(x+iy) T2(x+iy) T3(x+iy) T4(x+iy)

Re 1 x 2 22 2 1x y 3 24 12 3x xy x 4 2 2 4 2 28 48 8 8 8 1x x y y x y

Im 0 y 4xy 2 312 4 3x y y y 3 332 32 16x y xy xy

and the corresponding U polynomials are

U0(x+iy) U1(x+iy) U2(x+iy) U3(x+iy) U4(x+iy)

Re 1 2x 2 24 4 1x y 3 28 24 4x xy x 4 2 2 4 2 216 96 16 12 12 1x x y y x y

Im 0 2y 8xy 2 324 8 4x y y y 3 364 64 24x y xy xy

Applicable when n 2, 3, 4, and to both T and U, the recursion formulas

1 1 2Re f ( ) 2 Re f ( ) 2 Im f ( ) Re f ( )n n n nx iy x x iy y x iy x iy22:11:1

and

1 1 2Im f ( ) 2 Re f ( ) 2 Im f ( ) Im f ( )n n n nx iy y x iy x x iy x iy22:11:2

permit any Chebyshev polynomial of complex argument to be constructed.
Inverse Laplace transformation of Chebyshev polynomials leads to the Hermite polynomials [Chapter 24]

2
1 1 exp( ) 1 1T 1 d T 1 H

2 2(2 1)! 2

ni

n n nn n
i

tts ts
s s i s s n t

I22:11:3

and

2 11 1

1 1 exp( ) 1 1U 1 d U 1 H
2 2(2 1)! 2

i n

n n nn n
i

ts t ts
s s i s s n t

I22:11:4
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22:12 GENERALIZATIONS: Gegenbauer and Jacobi polynomials

The bivariate Chebyshev polynomial generalizes to the trivariate Gegenbauer polynomial (Leopold Bernhard
Gegenbauer, Austrian mathematician, 1849 1903) or ultraspherical polynomial . One of several ways of( )C ( )n x
defining this polynomial family is through their generating function

( )

2 0

1 C ( ) 0
1 2

n
n

n
x t

tx t22:12:1

from which it is follows that the Legendre and Chebyshev polynomials are the special cases
(1/ 2)P ( ) C ( )n nx x22:12:2

( )

0

C ( )T ( ) lim
2

n
n

n xx22:12:3

and
(1)U ( ) C ( )n nx x22:12:4

of the Gegenbauer polynomials. The limiting operation in 22:12:3 is taken as a definition of , which is(0)C ( )n x
thereby seen to equal (2/n)Tn(x), except . The 0 case is not covered by the table.(0)

0C ( ) 1x

( )
0C ( )x ( )

1C ( )x ( )
2C ( )x ( )

3C ( )x ( )
4C ( )x

1 2 x +2 (1+ )x2 32
32 (1 ) (2 )x x 2 41 2

2 3(1 ) 2(2 ) (2 )(3 )x x

More expressions may be added through the recursion formula

( ) ( ) ( )
1 2

2 2 2 2 2C ( ) C ( ) C ( )n n n
n nx x x x

n n
22:12:5

which applies also to the 0 case. This recursion formula is the basis of Equator’s Gegenbauer polynomial routine
(keyword Cpoly).

The trivariate Gegenbauer polynomial family is itself a special case
1 1
2 2( , )( ) 1

21
2

2
C ( ) P ( ) 0n

n n
n

x x22:12:6

of the quadrivariate Jacobi polynomial. The value of a Jacobi polynomial is determined by: the argument x, a real
number with interest concentrated in the 1 x 1 domain; the nonnegative integer degree n; and two distinct real
parameters, v and . The conventional notation for the Jacobi polynomial is and its generating function( , )P ( )v

n x
is

( , )

2 2 2 0

2 P ( )
1 2 1 1 2 1 1 2

v
v n

nv
n

x t
xt t t xt t t xt t

22:12:7

The Jacobi polynomial is the grandparent of many other orthogonal polynomial families, inasmuch as the Legendre,
Chebyshev, Laguerre, associated Laguerre and Hermite polynomials are all special cases:

(0,0)P ( ) P ( )n nx x22:12:8
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( 1/ 2, 1/ 2)

1
2

!T ( ) P ( )n n
n

nx x22:12:9

(1/ 2,1/ 2)

3
2

( 1)!U ( ) P ( )n n
j

nx x22:12:10

(0, ) 2L ( ) lim P 1n n
xx22:12:11

( ) ( , ) 2L ( ) lim P 1v v
n n

xx22:12:12

/ 2 ( 1/ 2) 2
/ 2

( 1) / 2 / 2 (1/ 2) 2
( 1) / 2

!!L ( ) 0,2,4,
H ( )

2 ( 1)!! L ( ) 1,3,5,

n
n

n n n
n

n x n
x

n x x n
22:12:13

For this reason, many authors prefer to concentrate on the Jacobi polynomials, educing the properties of other
orthogonal polynomials therefrom. Applications of orthogonal polynomials, on the other hand, are predominantly
based on the simpler polynomial families.

Jacobi polynomials are sometimes known as hypergeometric polynomials because they may be represented, in
two ways, as the product of a binomial coefficient and a Gauss hypergeometric function [Chapters 6 and 60]:

( , )

0
1

( ) ( 1) 1P ( ) 3
(1) ( 1) 2

j
j jv

n
j j j

x
n n v xn vx n v

22:12:14

( , )

0

( ) ( )1 1P ( ) 0
2 (1) ( 1) 1

n j
j jv

n
j j j

n nx xn vx xn v x
22:12:15

Jacobi polynomials are even/odd according as their degree is even/odd. Equator’s Jacobi polynomial routine
(keyword Jacobipoly) uses and to initialize the recursion formula( , )

0P ( ) 1v x ( , ) 1 1
1 2 2P ( ) ( 2) ( )v x v x v

2 2
( , ) ( , )

1

( , )
2

(2 1) (2 2)(2 )
P ( ) P ( )

2 ( )(2 2)

( 1)( 1)(2 ) P ( )
( )(2 2)

v v
n n

v
n

n v n v n v x v
x x

n n v n v

n v n n v x
n n v n v

22:12:16

This formula breaks down when v + + 1 equals a negative integer but, nevertheless, Equator delivers accurate
values of the Jacobi polynomial when the parameters sum to a value close to 2, 3, etc.

For v > 1 and > 1, the orthogonality of the Jacobi polynomials is manifested by

1
( , ) ( , ) 1

1

0
(1 ) (1 ) P ( )P ( )d 2 ( 1) ( 1)

(2 1) ! ( 1)

v v v v
m n

m n
t t t t t n v n m n

n v n n v
22:12:17
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22:13 COGNATE FUNCTIONS: the discrete Chebyshev polynomials

The orthogonality property, addressed in Section 21:14, may be used to construct continuous functions from
suitable polynomial families, as is demonstrated in Section 21:15. There is, however, another variety of
orthogonality that relates to functions whose values are known only at a set of discrete points, say y0, y1, , yj, , yJ.
These functions, too, are generally polynomials, but the orthogonality relationship that they satisfy is a summation
rather than an integration:

2
0

0
w( ) ( ) ( )

J

n m
j n

m n
y y y

m n
22:13:1

Such functions are known as discrete orthogonal polynomials.
The simplest family of discrete orthogonal polynomial functions are those with a weight function w(y) of unity

and have been named discrete Chebyshev polynomials. The notation is used for the( ) ( ) ( )
0 1t ( ), t ( ), , t ( )J J J

Jy y y
(J+1)-member set. If y is restricted to the 1 y 1 range, and the data are evenly spaced on this interval, then the
orthogonality condition is

( ) ( ) 2 1
2

0

0 ( 1)t ( )t ( ) where
[2 1]( 1)

J
J J n

m j n j n
j n n

m n Jy y
m n n J n

22:13:2

The t polynomials depend on J, as well as on n, and some early members of the family are

( )
0t ( )J y ( )

1t ( )J y ( )
2t ( )J y ( )

3t ( )J y ( )
4t ( )J y

1 y
23 2

2( 1)
Jy J

J

2 3 25 3 6 4
2( 1)( 2)

J y J J y
J J

3 4 2 2 235 10 3 6 10 3( 4)( 4)
8( 1)( 2)( 3)

J y J J J y J J
J J J

Others can be calculated by the recursion formula
( ) ( )

( ) 1 2(2 1) t ( ) ( 1)( )t ( )t ( )
( 1)

J J
J n n

n
n J y y n J n yy

n J n
22:13:3

as employed by Equator’s discrete Chebyshev polynomial routine (keyword discCheby). An application of these
polynomials will be found in Section 17:14.

Despite their name, discrete Chebyshev polynomials have less in common with Chebyshev polynomials than
they have with Legendre functions, with which they share a unity weight function and to which they reduce as J
approaches infinity

( )lim t ( ) P ( )J
n nJ

y y22:13:4
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Laguerre polynomials (Edmond Nicolas Laguerre, French mathematician, 1834 1886) are orthogonal [Section
21:14] on the interval 0 to with a weight function of exp( x). They arise in a number of scientific problems, as
in solutions to the wave equation.

23:1 NOTATION

Though the Ln(x) symbol is used for both, Laguerre polynomials are defined in two distinct ways; many authors
write Ln(x) for what the Atlas represents by n!Ln(x). The name “Laguerre polynomial” may be applied to the general
class of orthogonal polynomials discussed in Section 23:12 under the name associated Laguerre polynomials.

Though this Atlas avoids the ambiguity, Ln(x) is commonly employed to denote the unrelated hyperbolic Struve
function [Section 57:13].

23:2 BEHAVIOR

While interest is concentrated on positive arguments, the Laguerre polynomial is defined for all real argument
x and all nonnegative integer degree n. As Figure 23-1 shows, the first few Laguerre polynomials are quite simple
functions. As n increases, the polynomial displays an oscillatory behavior, the amplitude and period of the
oscillations increasing with x, until, beyond rn, the last zero, the oscillations cease abruptly and the function heads
rapidly towards ( )n . Within its oscillatory ambit, the function displays exactly Int(n/2) minima, Int{(n 1)/2}
maxima and n zeros. All the zeros occur between x 0 and an imperfectly known upper value

2 5
1 2 40 2 1 4 4 L ( ) 0m n n mr r r r n n n r23:2:1

23:3 DEFINITIONS

All orthogonal polynomials, including Laguerre polynomials, can be defined by a generating function

DOI 10.1007/978-0-387-48807-3_24, © Springer Science+Business Media, LLC 2009 
209K.B. Oldham et al., An Atlas of Functions, Second Edition,
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0

1 exp L ( ) 1 1
1 1

n
n

n

xt x t t
t t

23:3:1

and by a Rodrigues’s formula
exp( ) dL ( ) exp( )

! d

n
n

n n

xx x x
n x

23:3:2

It may also be defined in a manner resembling a binomial expansion:

0

( )L ( )
!

jn

n
j

xnx j j
23:3:3

and by formula 22:12:10 as a limiting case of a Jacobi polynomial. An unusual definition, establishing contact with
a Bessel function [Chapter 52] is

0
0

exp( )L ( ) exp( )J 2 d
!

n
n

xx t t xt t
n

23:3:4

Definitions as L K+1 2 hypergeometric functions

0
L ( )

(1) (1)
j j

n
j j j

n
x x23:3:5

0

1
L ( ) exp( )

(1) (1)
jj

n
j j j

n
x x x23:3:6

imply the possibility of synthesis [Section 43:14] from an exponential function, thus:
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exp( ) L ( )
1 n
nx x23:3:7

1exp( ) exp( )L ( )
1 n

nx x x23:3:8

One solution of Laguerre’s differential equation
2

2

d f d f(1 ) f 0
d d

x x n
x x

23:3:9

is
f ( ) L ( )nx w x23:3:10

where the weight w is arbitrary. The second solution is considerably more complicated [see Murphy].

23:4 SPECIAL CASES

L0(x) L1(x) L2(x) L3(x) L4(x) L5(x)

1 1x 21
2 2 1x x 3 231

6 2 3 1x x x 4 3 21 2
24 3 3 4 1x x x x 5 4 3 25 51

120 24 3 5 5 1x x x x x

23:5 INTRARELATIONSHIPS

The recursion

1 2
2 1 1L ( ) L ( ) L ( ) 2,3,4,n n n

n x nx x x n
n n

23:5:1

relates a Laguerre polynomial to two earlier members of the family. The following argument-addition and argument-
multiplication formulas apply to Laguerre polynomial functions:

2 2 2
0

1 1L ( ) H H
! 4

n n

n j n j
j

nx y x yjn
23:5:2

0
L ( ) (1 ) L ( )

1

jn
n

n j
j

bnbx b xj b
23:5:3

whereas function-multiplications play a leading role in the Christoffel-Darboux formula

1 1

0

L ( )L ( ) L ( )L ( )L ( )L ( ) ( 1)
n

n n n n
j j

j

x y x yx y n
x y23:5:4

23:6 EXPANSIONS

An explicit expression of the power-series expansion for the Laguerre polynomials is

1 2( 1)L ( ) ( ) ( ) ( 1)
! 1!( 1)! 2!( 2)!

n
n n n n n

n
x n n nx x x nx
n n n

23:6:1
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This expansion is equivalent to 23:3:3.
It is evident from Section 23:4, that the nth Laguerre polynomial Ln(x) is built from a weighted sum of all the

powers of x up to xn. It follows that the first n such expansions can be solved simultaneously to eliminate all the
powers x0, x1, x2, , xn 1 and produce an expression for xn of the form

0 0 1 1L ( ) L ( ) L ( ) L ( )n
j j n nx a x a x a x a x23:6:2

where the a’s are numerical coefficients that can be found by solving the simultaneous equations, or from the
integrations

0

exp( )L ( )dn
j ja x x x x23:6:3

For example, one finds
4

0 1 2 3 424L ( ) 96L ( ) 144L ( ) 96L ( ) 24L ( )x x x x x x23:6:4

The symmetry seen in this example is general. Abramowitz and Stegun [Table 22.10] list coefficients of all such
expansions up to that of x12.

23:7 PARTICULAR VALUES

Beyond the first few, no formulas for the exact locations of the zeros of the Laguerre polynomials are known,
but see equation 23:9:3. Nor are formulas for the locations or the values of the extrema known to us.

23:8 NUMERICAL VALUES

Equator’s Laguerre polynomial routine (keyword Lpoly) employs recursion 23:5:1, initiated by L0(x) 1 and
L1(x) 1 x.

23:9 LIMITS AND APPROXIMATIONS

For positive argument, the Laguerre polynomials are bounded by

exp L ( ) exp 0
2 2n
x xx x23:9:1

The asymptotic form [Lebedev] adopted by the Laguerre polynomial for large degree is
1L ( ) exp cos 2

2 4n
xx nx

nx
23:9:2

The mth zero of the Laguerre polynomial is bracketed by
2
0, 2 5

4

j 2 1 2 1 4 4
4 2 2 1

m
m

mr m m m
n n

23:9:3

where j0,m is the mth zero of the Bessel J0 function [Section 53:7].
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23:10 OPERATIONS OF THE CALCULUS

Differentiation of a Laguerre polynomial generates a difference of two Laguerre polynomials of like argument
or, more succinctly, an associated Laguerre polynomial [Section 23:12] of unity order

(1)
1 1

d L ( ) L ( ) L ( ) L ( )
d n n n n

nx x x x
x x

23:10:1

and the latter iterates to the multiple-differentiation formula

( )
1

d L ( ) L ( )
d

m
m m

n nm x x
x

23:10:2

An associated Laguerre polynomial of unity order is also generated by integration:

(1)
1 1

0

L ( )d L ( ) L ( ) L ( )
1

x

n n n n
xt t x x x

n
23:10:3

The orthogonality [Section 22:14] of Laguerre polynomials is established by the integral

0

0
exp( )L ( )L ( )d

1n m

m n
t t t t

m n
23:10:4

See Section 24:15 for an application to numerical integration. Other important integrals include

(1)
1 1

exp( )exp( )L ( )d exp( ) L ( ) L ( ) L ( )n n n n
x

n xt t t x x x x
x

23:10:5

and

(1)

0 0

L ( )L ( )d L ( )d L ( )
1

x x

n m n m n m
xt x t t t t x

n m
23:10:6

Many others are listed by Gradshteyn and Ryzhik [Sections 7.41 and 7.42].
Examples of Laplace transforms involving Laguerre polynomials are:

1
0

( 1)L ( )exp( )d L ( )
n

n n n

st st t t
s

23:10:7

( ) ( ) ( , )
1

0

( 1) 2L ( )exp( )d L ( ) P 1 1
!

v m v m m v n m
n n nv

vt t st t t t v
n s s

23:10:8

Transform 23:10:8, which generates a Jacobi polynomial, relates to an associated Laguerre polynomial [Section
23:12]; merely set m 0 to obtain the formula for a simple Laguerre polynomial.

23:11 COMPLEX ARGUMENT

Applications of Laguerre polynomials generally employ real arguments.
Inverse Laplace transformation of an associated Laguerre polynomial generates a Jacobi polynomial.

( ) ( ) 1
( , 1)L ( ) exp( ) L ( ) (1 ) 1d P

2 ( ) 1

i m m v n n
m v nn n

nv v
i

s ts s t t ts
s i s v t

I23:11:1

Set m 0 to obtain the formula for a simple Laguerre polynomial.
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23:12 GENERALIZATIONS: including associated Laguerre polynomials

The Laguerre polynomial is the m 0 case of the associated Laguerre polynomial L m
n x

(0)L ( ) L ( )n nx x23:12:1

Most of the definitions of the Laguerre polynomial, given in Section 23:3, need only minor adjustment to provide
a definition of the associated Laguerre polynomial of degree n and order m. For example
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1 exp L ( ) 1 1
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m n
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23:12:2
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23:12:4

(m) (2 ) / 2
/ 2

0

exp( )L ( ) exp( )J 2 d
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23:12:5
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1
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n
j j j
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23:12:6

and
2

( )
2

d f d f( 1 ) f 0 where f ( ) L ( )
d d

m
nx m x n x w x

x x
23:12:7

Caution is necessary because the associated Laguerre polynomials are sometimes defined as
d! L ( )
d

m

nmn x
x

23:12:8

This definition leads to properties radically different from those of the polynomials defined by equations 23:12:2 7.
The recursion property, 23:5:1, of the Laguerre polynomial generalizes to

( ) ( ) ( )
1 2

2 1 1L ( ) L ( ) L ( )m m m
n n n

n m x n mx x x
n n

23:12:9

which is useful in the construction or extension of the following table, which lists examples of associated Laguerre
polynomials.

( )
0L ( )m x ( )

1L ( )m x ( )
2L ( )m x ( )

3L ( )m x ( )
4L ( )m x

m 0 1 1x 21
2 2 1x x 3 231

6 2 3 1x x x 4 3 21 2
24 3 3 4 1x x x x

m 1 1 2x 21
2 3 3x x 3 21

6 2 6 4x x x 4 3 251
24 6 5 10 5x x x x

m 2 1 3x 21
2 4 6x x 3 251

6 2 10 10x x x 4 3 2151
24 2 20 15x x x x

m 3 1 4x 21
2 5 10x x 3 21

6 3 15 20x x x 4 3 271 21
24 6 2 35 35x x x x

m 4 1 5x 21
2 6 15x x 3 271

6 2 21 35x x x 4 3 21 4
24 3 14 56 70x x x x

The differential and orthogonality properties of associated Laguerre polynomials are revealed in the following:
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( ) ( ) ( ) ( 1)
1 1

d L ( ) L ( ) L ( ) L
d

m m m m
n n n n

n n mx x x
x x x

23:12:10

( ) ( )

0

0
exp( )L ( )L ( )d

( )!/ !
m m m

n n

n n
t t t t t

m n n n n
23:12:11

To this point it has been assumed that the order m of the associated Laguerre polynomials is a nonnegative integer,
and this is frequently the case. However, many of the definitions remain valid when m is a negative integer, or a
noninteger of either sign, and, indeed, Equator’s associated Laguerre polynomial routine (keyword assocLpoly),
which employs 23:12:9, initialized by and , does not require m to be an integer. The( )

0L ( ) 1m x ( )
1L ( ) 1m x m x

name generalized Laguerre polynomial has been used to describe associated Laguerre polynomials that lack the
integer restriction on their order. See equation 45:6:6 for a connection to the incomplete gamma function. Two
simple instances may be considered as Hermite polynomials [Chapter 24]:

1 1
2 2

2 1 2( ) ( )
H H1 1 1L ( ) and L ( )

2 4 4 !!

n n
n n

n n

x x
x x

nn x
23:12:12

The generalized Laguerre polynomial is an instance of the Kummer function [Chapter 47]:

( )L ( ) M( , 1, )n
nx n xn23:12:13

Yet another generalization arises by allowing the degree of the Laguerre polynomial (not the associated version),
to adopt noninteger values. The resulting function is no longer a polynomial, being called a Laguerre function. It,
too, is a simple example of a Kummer function and an L K+1 2 hypergeometric function

0
L ( ) M( ,1, )

1 1
j j

v
j j j

v
x v x x23:12:14

Confusingly, the name “Laguerre function” is also applied to the solution of the radial portion of the Schrödinger
equation [Section 46:14] for the hydrogen atom. A good deal more complicated than 23:12:14, this is

2 1

12 1

d( 1)!exp L ( )
2 d n
xn x x

x
23:12:15

in the terminology of the Atlas, n and being the appropriate quantum numbers.
Perhaps the ultimate generalization of the Laguerre polynomial is when neither the degree nor the order need

be an integer. With suitable replacements for factorial functions and Pochhammer polynomials, equations 23:12:3,
and 23:12:5 7 can provide definitions of such a generalized Laguerre function . It is related to the Kummer( )L ( )v x
function of Chapter 47 and the gamma function of Chapter 43 by

( ) (1 )L ( ) M( ,1 , )
(1 ) (1 )v

vx v x
v

23:12:16

23:13 COGNATE FUNCTIONS

Hermite polynomials, the subject of the next chapter, have many similarities to Laguerre polynomials and there
are several linkages between them, including 23:12:12. Both are orthogonal with an exponential function as the
weight function; they differ in that the orthogonality interval is semiinfinite for the Laguerre polynomial, but
(doubly) infinite for the Hermite version.
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23:14 RELATED TOPIC: Fibonacci numbers

In common with many other named polynomial functions, such as the Chebyshev and Hermite polynomials
[Chapters 22 and 24], Laguerre polynomials obey a simple three-term recursion formula 23:5:1 in the Laguerre
case. Two other named polynomial functions, not addressed elsewhere in this Atlas, obey the similar, but even
simpler, three-term recursion

1 1f ( ) f ( ) f ( )n n nx x x x23:14:1
These are the Lucas polynomials and the Fibonacci polynomials, but only the latter will be considered here.

We adopt the symbol Fibn(x) for Fibonacci polynomials, which are defined by recursion 23:14:1 initialized by
f0(x) 0, f1(x) 1. Early members are

Fib0(x) Fib1(x) Fib2(x) Fib3(x) Fib4(x) Fib5(x) Fib6(x) Fib7(x) Fib8(x)

0 1 x x2 +1 x3 +2x x4 +3x2 +1 x5 +4x3 +3x x6 +5x4 +6x2 +1 x7 +6x5 +10x3 +4x

Initialized by Fib0(x) and Fib1(x), recursion 23:14:1 is used by Equator’s Fibonacci polynomial routine, keyword
Fibpoly.

Fibonacci numbers, are the x 1 values of the eponymous polynomial, each such number being the sum of its
two predecessors. Important in a variety of contexts, these numbers even appear in Dan Brown’s popular novel The
Da Vinci Code. They are named for Leonardo Fibonacci (“Leonardo of Pisa” 1175 1230), but were known to the
ancients in connection with the golden section [Newman, page 98], which is the positive number that exceeds its
reciprocal by unity, that is

1 5 1whence = 1 6180 33988 74989
2

.23:14:2

The “golden” sobriquet has its origin in the claim that a rectangle has the most aesthetically
appealing shape when the ratio /s of the longer to the shorter side equals the ratio of the
semiperimeter to the longer side, so that

s
s

23:14:3

More obscurely, is the radius of the circle that exscribes a regular decagon of unity side.
The ratio Fib(n)/Fib(n 1) of a Fibonacci number to its predecessor is alternately less than and greater than the

golden section and this ratio converges rapidly to . This convergence is incorporated into the exact formula

Fib( ) = Fib (1) Round 0,1,2,
5

n

nn n23:14:4

This is how Equator’s Fibonacci number routine (keyword Fibnum) primarily operates, generating exact integers
for values of n through 73. For 74 n 1476, a 15-digit approximation is provided. The first eighteen Fibonacci
numbers are

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fib(n) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
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Named for the Frenchman, Charles Hermite (1822 1901) these polynomials are orthogonal [Section 21:14] on
the infinite interval < x < with a weight function of exp( x2). They arise in physics, as in the solution of
Schrödinger’s differential equation for a simple harmonic oscillator [Section 24:13]. This differential equation
belongs to a broad class of second-order differential equations, many members of which may be solved by the
approach exposed in Section 24:14.

24:1 NOTATION

The notation Hn(x) is in general use for the Hermite polynomial of degree n and argument x, however it is
occasionally defined with sign opposite to that adopted here. An alternative Hermite function is also in common
use. Unfortunately it, too, is sometimes symbolized Hn(x), but more often Hen(x) is preferred. The Atlas uses the
Hn(x) variant exclusively. The relationship between the two varieties of Hermite function is

/ 2

1He ( ) H
2 2n nn

xx24:1:1

The conventional notation for the unrelated Struve function [Chapter 57] is also Hn(x). To avoid ambiguity, the
Atlas denotes the Struve function by hn(x).

24:2 BEHAVIOR

The Hermite polynomial Hn(x) has exactly n zeros, Int(n/2) minima and Int((n 1)/2) maxima. These features
are symmetrically disposed about x 0, and all occur in the zone . Outside this domain |Hn(x)|2 2n x n
increases monotonically, except for H0(x), remaining bounded globally by

2H ( ) 2 !exp( )n
n x n x24:2:1

The range spanned by the oscillations of Hn(x) increases so dramatically with increasing n that Figure 24-1
portrays the behavior of Hn(x)/n! rather than that of the Hermite polynomials themselves.
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24:3 DEFINITIONS

In common with all orthogonal polynomials, there is a generating function

2

0
exp 2 H ( )

!

n

n
n

txt t x
n

24:3:1

and a Rodrigues’s formula

2 2dH ( ) exp exp
d

n
n

n nx x x
x

24:3:2

that can serve as definitions of the Hermite polynomial. As well, it can be defined as the limiting operation 22:12:12
applied to the associated Laguerre polynomial, or through the integral representation

1
2 2

0

2H ( ) exp( ) exp( )cos 2 d
2

n
n

n
nx x t t xt t24:3:3

There are two formulas that go by the name of Hermite’s differential equation. One is
2

2

d f d f2 2 f 0
d d

x n
x x

24:3:4

and it is solved by f wHn(x), w being an arbitrary constant. The second version lacks both of the 2’s present in
24:3:4, and its solution is the function defined in 24:1:1.

Routes by which a Hermite polynomial may be synthesized [Section 43:14] are
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/ 2

H/ 2exp( ) 0,2,4,
1/ 2 ( 2) ( 1)!!

n

n

xnx n
n

24:3:5

and

( 1) / 2

H(1 ) / 2exp( ) 1,3,5,
3/ 2 ( 2) !!

n

n

xnx n
n x

24:3:6

Expansions 24:6:4 and 24:6:5 lie at the heart of these syntheses.

24:4 SPECIAL CASES

H0(x) H1(x) H2(x) H3(x) H4(x) H5(x) H6(x)

1 2x 4x2 2 8x3 12x 16x4 48x2 +12 32x5 160x3 +120x 64x6 480x4 +720x2 120

24:5 INTRARELATIONSHIPS

The reflection formula

H ( ) H ( )n
n nx x24:5:1

establishes that a Hermite polynomial is even or odd in accordance with the parity of its degree. The recursion
formula

1 2H ( ) 2 H ( ) (2 2)H ( ) 2,3,4,n n nx x x n x n24:5:2
links three consecutive members of the family.

There is an argument-addition formula for Hermite polynomials

/ 2
0

1H H 2 H 2
2

n

n j n jn
j

nx y x yj24:5:3

and also an example of the Christoffel-Darboux formulas

1 1
1

0

H ( )H ( ) H ( )H ( ) H ( )H ( )
2 ! 2 !( )

n
j j n n n n

j n
j

x y x y x y
j n x y

24:5:4

Two infinite series of Hermite polynomials have the following sums:

0 2 4H ( ) H ( ) H ( ) cos(2 )
0! 2! 4!

x x x e x24:5:5

1 3 5H ( ) H ( ) H ( ) sin(2 )
1! 3! 5!

x x x e x24:5:6

where e is the base of natural logarithms [Chapter 1]. Series akin to these in which the signs are uniformly positive
sum to (1/e)cosh(2x) and (1/e)sinh(2x) respectively and consequently

0 1 2H ( ) H ( ) H ( ) exp(2 1)
0! 1! 2!

x x x x24:5:7

which, alternatively, follows directly from the generating function 24:3:1.
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24:6 EXPANSIONS

The power-series expansion of the Hermite polynomials can be written in several equivalent ways:
/ 2

2 4
( 1) / 2

( 2) ( 1)!! 0,2,4,( 1) ( 1)( 2)( 3)H ( ) (2 ) 2 (2 )
1! 2! ( 2) !! 1,3,5,

n
nn n

n n

n nn n n n n nx x x x
n x n

24:6:1

Int ( / 2)
2

0

1
H ( ) ! 2

! 2 !

jn
n j

n
j

x n x
j n j

24:6:2

1Int ( / 2)
2 2

2
0

1H ( ) 2
(1)

n n jn
n j j

n
j j

x x
x

24:6:3

/ 2
2/ 2 2

1
0 2

H ( ) 2 ( 1)!! 0,2,4,
1

nn
n j j

n
j jj

x n x n24:6:4

1( 1) / 2
2( 1) / 2 2 1

3
0 2

H ( ) 2 !! 1,3,5,
1

nn
n j j

n
j j j

x n x n24:6:5

24:7 PARTICULAR VALUES

At x 0, Hermite polynomials of even degree have an integer value, while those of odd degree are zero:
/ 22 ( 1)!! 0,2,4,H (0)

0 1,3,5,

n

n
n n

n
24:7:1

Apart from these, formulas for the zeros are known only for the lowest degrees. The two zeros of H2(x) are ,1/ 2
the three zeros of H3(x) are 0, , and the four zeros of H4(x) are3/ 2

4

0 52464 76232 752903 6H ( ) 0
1 6506 80123 885782

r r
.
.

24:7:2

Because of the simplicity of formula 24:10:1, these zeros of H4 are the locations of extrema of H5 and inflections
of H6.

24:8 NUMERICAL VALUES

Equator’s Hermite polynomial routine (keywordHpoly) uses recursion 24:5:2, initialized by H0(x) 1 and H1(x)
2x, to calculate exact values of Hn(x).

24:9 LIMITS AND APPROXIMATIONS

A Hermite polynomial of large degree is approximated by the oscillatory function
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/ 2 2

( 1) / 2 2

( 2) ( 1)!!exp / 2 cos 2 1 even
H ( )

( 2) !!exp / 2 sin 2 1 odd

n

n n

n x n x n
x

n x n x n
24:9:1

This approximation is best for small |x| and fails hopelessly for |x| > , where the polynomial ceases to oscillate.2n
Approximation 24:9:1 predicts that the zeros of the Hermite polynomial lie at

1, 3, 5, if large and even
where

0, 2, 4, if large and odd2 2 1
j njr
j nn

24:9:2

As expected, this approximation has least error for zeros close to x 0.

24:10 OPERATIONS OF THE CALCULUS

The following simple results hold:

1
d H ( ) 2 H ( ) 1,2,3,
d n nx n x n

x
24:10:1

2 2
1

d exp( )H ( ) exp( )H ( )
d n nx x x x

x
24:10:2

1

( 1) / 2
0 1

H ( ) 0,2,4,
2 2

H d
H ( ) 2 !!

1,3,5,
2 2

n
x

n n
n

x n
n

t t
x n

n
n

24:10:3

and
2

12
( 1) / 2 2

0 1

exp H ( ) 0,2,4,
exp H d

2 2 !! exp H ( ) 1,3,5,

x
n

n n
n

x x n
t t t

n x x n
24:10:4

Among the many listed by Gradshteyn and Ryzhik [Sections 7.37 and 7.38], the following definite integrals are
of particular interest

2 / 2
2 2!( 1) /( )! 0,2,4,exp( )H ( )d

0 1,3,5,

n n

n
n b nt bt t

n
24:10:5

2
2 ( 1) / 2

0 0,2,4,
exp( )H ( )d

!! (2 2) 1,3,5,n n

n
t t bt t

n b b n
24:10:6

2 2 2,4,6,
exp ( ) H ( )d

0 1,3,5,

n

n

x n
t x t t

n
24:10:7

2exp( )H ( )d !P ( )n
n nt t bt t n b24:10:8
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/ 2
1 2

2 / 2

2
0 ( 1) / 2 2 2

( 1) / 2

( 4) 1 1 1 1F , , , 1 2,4,6,
2 2 2 2 2 2

exp H ( )d
1 1 1 3( 4) 2 F ,1 , , 2 1,3,5,
2 2 2 2 2

n
v

nv
n

n v

n

v n v v n
xx x x

v n v v n
24:10:9

The P, , and F functions in the previous two equations are the Legendre polynomial [Chapter 21], the gamma
function [Chapter 43] and the Gauss hypergeometric function [Chapter 60].

The orthogonality of Hermite polynomials is established by

2
0

exp( )H ( )H ( )d
2 !n m n

m n
t t t t

n m n
24:10:10

Term-by term Laplace transformation of formulas 24:6:5 and 24:6:6 leads to
/ 2/ 2 2/ 2

2
/ 22 2 1

0

( 1) / 2( 1) / 2 2( 1) / 2 1
1 2

( 1) / 222 2 1
0

8 ( 1)!! !( 2) ( 1)!! 4 e 0,2,4,
4

H ( )
8 !! !( 2) !! 4 e 1,3,5,

4

j nn n n
n

nnj
j

n j nn n n
n

nnj
j

nn s n
s s s

t
nn s n

s s s

24:10:11

in which en(x) represents the exponential polynomial [Section 26:13].

24:11 COMPLEX ARGUMENT

Applications of Hermite polynomials with complex argument are rare.
An example of an inverse Laplace transform involving a Hermite polynomial is

2 2

(2 1) / 2 (2 1) / 2

H Hexp 4 1d 1 T
2 1

i n
n n n

nn n
i

s sts ts t
s i s tt

I24:11:1

24:12 GENERALIZATIONS

Hermite polynomials are special cases of the parabolic cylinder function [Chapter 46]. Those parabolic cylinder
functions whose order v is a nonnegative integer n are related through

2

/ 2

1D exp H
2 4 2n nn

x xx24:12:1

to the corresponding Hermite polynomial. The parabolic cylinder function itself generalizes to the Kummer and
Tricomi functions [Chapters 47 and 48].

24:13 COGNATE FUNCTIONS: the Hermite functions

By analogy with other orthogonal polynomials, one might expect that the Hermite function would be Hv(x) and
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arise by relaxing the requirement that the degree of the Hermite polynomial be an integer. This is not so. The name
Hermite function of degree n is actually given to the product

2f ( ) ( ) exp / 2 H 0,1,2,n
n nx x x n24:13:1

This function is the Hermite polynomial, multiplied by the square root of its weight function, so that it satisfies an
orthogonality relationship without any further weighting:

0
f f d

2 !n m n

m n
t t t

n m n
24:13:2

The Hermite function may be defined by the repeated derivative
2

2df ( ) exp exp 0,1,2,
2 d

n

n n

xx x n
x

24:13:3

or, in operator notation [Boas, Section 12.22], as
2df ( ) exp 0,1,2,

d 2

n

n
xx x n

x
24:13:4

For the harmonic oscillator, it satisfies the Schrödinger equation
2

2
2

d f (2 1 )f 0
d

n x
x

24:13:5

of atomic physics, and is related to the parabolic cylinder function of Chapter 46 by
2 2f ( ) 2 exp / 2 D 2n

n nx x x24:13:6

24:14 RELATED TOPIC: solving differential equations

Equation 24:3:4 and 24:13:5 are examples drawn from the large and important class of differential equations
that may be written in the general form

2

2

d df ( ) 2B( ) f ( ) C( )f ( ) 0
d d

x x x x x
x x

24:14:1

The algebraic functions B and C may or may not involve the independent variable x and may even be zero. For
reasons that need not detain us, such a differential equation is described as linear, homogeneous, second-order, and
ordinary. It, and its inhomogeneous counterpart, to be considered later, are the only differential equations that will
be addressed in this section. The solution is invariably of the form

1 1 2 2f f ( ) f ( )w x w x24:14:2
where w1 and w2 are arbitrary weighting factors and f1, f2 are functions either of which separately satisfy the
differential equation. To provide a complete solution, f1 and f2 must be “linearly independent”, a condition that will
be identified later.

There are many approaches to solving 24:14:1 [see Murphy for a concise description]. One that has merit
requires that the so-called invariant function, defined by

2 dI( ) C( ) B ( ) B( )
d

x x x x
x

24:14:3

first be determined. Then the solution of the differential equation 24:14:1 is
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1 1 2 2 1 1 2 2f f ( ) f ( ) exp B( )d F ( ) F ( )w x w x x x w x w x24:14:4

where the integration is indefinite and where the identities of the functions F1 and F2 depend solely on the invariant
function I. The table that follows gives the two F functions (or sometimes just one of them) that correspond to the
listed standard forms of the invariant I(x) function.. The numbers in brackets reference the relevant chapter or
section. Do not make the easy mistake of regarding the F’s as the solutions to the differential equation: they require
multiplication by first, which often simplifies the expression.exp B( )dx x

I(x) F1,2(x) Ref.

4a2x p 2
1

/ 2 1/ 2 1/ 2or, if 1/ is
I I , K

the integer ,p

p n n
n n

pax x x anx x anx
np

[50]

4a2x p 2
1

/ 2 1/ 2 1/ 2or, if 1/ is
J J , Y

the integer ,p

p n n
n n

pax x x anx x anx
np

[53]

64a2x2
1
4

2Ix ax [50]

(v+½)a2 (a4x2/4) Dv(±ax) [46]
2 2

4

(2 1)v a x
a

2 2 2 2

2 2 2 2

1 1 3exp M , , , exp M , ,
2 2 2 2 2 2

x v x x v xx
a a a a

[47]

(2n+1)a2 a4x2 exp( a2x2/2)Hn(ax), 2 2 2 21
2 2exp / 2 M , ,na x a x [24]

(2n+1)a2 a4x2 exp(a2x2/2)inerfc(±ax) [40:13]

64a2x2
1
4

2Jx ax [53]

a3x Ai(ax), Bi(ax) [56]
a3x+a2b Ai(ax+b), Bi(ax+b) [56]

a2 exp(±ax) [26]
0 1, x

a2 sin(ax), cos(ax) [32]

a2/4x 1 1J , Yx a x x a x [52,54]

a2/4x 1 1I , Kx a x x a x [49,51]

(¼ a2)/x2 x½ ± a [12]

1/4x2 , lnx x x [25]

(¼+a2)/x2 sin ln , cos lnx a x x a x [32]

a2+(1/4x2) ,0Jx ax 0Yx ax [52,54]

a2+(1/4x2) ,0Ix ax 0Kx ax [49,51]
2 1

2 4
2a

x n nJ or, if is the integer J , Yx ax n x ax x ax [52-54]
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I(x) F1,2(x) Ref.

2 1
2 4

2a
x

I or, if is the integer I , Kn nx ax n x ax x ax [49,51]

2

2

1
4

ax
x

I , Kx ax x ax [50,51]

2 2

2 2

3 (8 4) 4
16

a n ax x
a x

1
4 exp i erfc

2
nx xx

a a
[40:13]

[1+(4n+2)ax a2x2]/4x2 exp( / 2)L ( )nx ax ax [23]
2 2 2

2

1 4 4
4

ax a x
x

, ,M ( ), W ( )v vax ax [48:13]

2/(a2+x2) (a2+x2), ax+(a2+x2)arctan(x/a) [35]

2

2
( )

a
x a x

2, lnx a x x x
a x a a x a

[25]

2 2

2 2 2

3
4 ( )

a x
x a x

2 2 2 2

E , E Kx a x a xx x
a a a

[61]

2 2

22 2 2 2

1v v x
a x a x

2 2 2 2P , Q polynomials ifx xa x a x n
a a

[59]

2 231
2 4

22 2 2 2

( )
0

n x
n

a x a x
31

4 42 2 2 2
1( ) T , ( ) Un n

x xa x a x
a a

[22]

4 2 2 4

2 2 2 2

2 15
4 ( )

a a x x
x a x

2 2
2 2 2 2( ) K , ( ) Kx a xx a x x a x

a a
[61]

2 2 231
2 4

22 2 2 2

2 ( )n n x
a x a x

(1 2 ) / 42 2 ( )Cn
xa x
a

[22:12]

2 2

2 2

( ) 1 (4 1)
4( ) ( ) 4 ( )

a
a x x a x x a x

1
2

( 1) / 2 1 1
2 2F , ;1 2 ; xx a x

a
[60]

a2/x4 x exp(±a/x) [27]
( a2 2x2)/x4 x(x±a)exp( a/x) [27]

(a2 2x2)/x4 x2cos(a/x)+ax sin(a/x), x2sin(a/x) ax cos(a/x) [32]

By setting B(x) equal to zero, one can see that F1 and F2 are nothing but solutions of the differential equation
2

1 1 2 22

d F( ) I F( ) 0 F( ) F ( ) F ( )
d

x x x x w x w x
x

24:14:5

Another common type of differential equation is the inhomogeneous variant of 24:14:1,
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2

2

d df ( ) 2B( ) f ( ) C( )f ( ) R( )
d d

x x x x x x
x x

24:14:6

with a right-hand member, R(x), that is either a constant or a function of x. To solve this equation, first ignore the
right-hand member and solve the corresponding homogeneous equation, 24:14:1. Then, knowing f1 and f2, the
complete solution of 24:14:6 is

0 0

2 1
1 1 2 2

R( )f ( ) R( )f ( )f f ( ) d f ( ) d
W( ) W( )

x x

x x

t t t tx w t x w t
t t

24:14:7

with x0 arbitrary, and where

2 2
1 2 2 1 1

1

d d d f ( )W( ) f ( ) f ( ) f ( ) f ( ) f ( )
d d d f ( )

tt t t t t t
t t t t

24:14:8

Thus, at least in principle, if the solution of 24:14:1 can be found, so can that of 24:14:6. The integrals in 24:14:7
are known as particular integrals. The quantity W(t) is the Wronskian (Josef-Maria Hoëné de Wronski, 1778 1853,
Polish, then French, mathematician and philosopher) of the two functions f1 and f2. These two solutions are linearly
independent only if the Wronskian is nonzero. See Section 26:3 for a simple example.

24:15 RELATED TOPICS: Gauss-Hermite integration and other Gaussian quadratures

Suppose one needs to integrate a function of the form f(t)exp( t2) numerically, between limits of ± . A
powerful way of doing this uses the orthogonality properties [Section 21:14] of Hermite polynomials to generate
the approximation

1
2

2 2
1 1

f( )2 !f( )exp( )d 2,3,4,
H ( )

n n
j

j n j

rnt t t n
n r

24:15:1

where the set r1, r2, , rn includes all the zeros of the Hermite Hn(t) polynomial. Choosing n 4 as a simple example,
and using result 24:7:2, one finds

3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2

2

2 2 2 23 3 3 3 3 3 3 3
3 3 3 32 2 2 2 2 2 2 2

f f f f
f( )exp( )d 12

H H H H
t t t24:15:2

More usually, one would need to precalculate the zeros [by the Newton-Raphson method of Section 52:15, for
example] or use tabulated values [such as those in Chapter 25 of Abramowitz and Stegun].

The Gauss-Hermite integration formula 24:15:2 is just one of a large number of integration schemes known
collectively as Gauss integration, or Gaussian quadrature. They share the characteristic of being weighted sums
of the values of the function f evaluated at the zeros of an orthogonal polynomial, the weights often being inversely
proportional to the square of the polynomial of one order lower. Some other examples are Gauss-Laguerre
integration

2 2
1 10

f( )1f( )exp( )d 2,3,4,
L ( )

n
j j

j n j

r r
t t t n

n r
24:15:3

and Gauss-Legendre integration
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21

2 2
1 11

(1 )f( )2f( )d 2,3,4,
P ( )

n
j j

j n j

r r
t t n

n r
24:15:4

The weights are uniform for Gauss-Chebyshev integration
1

2
11

f( ) d f( ) 2,3,4,
1

n

j
j

t t r n
nt

24:15:5

in which rj is the jth zero of the Chebyshev Tn(t) polynomial.
The derivation of the Gaussian quadrature formulas [Matthews and Walker, Section 13-2] treats the f function

as a polynomial in t. The closer that is to being the truth, and the larger n is, the better the approximation. If f is,
in fact, a polynomial of degree 2n 1 or less, the formulas are exact.





The functions introduced in Chapters 10 24 are algebraic, that is, they may be defined by a finite set of
addition, subtraction, multiplication, division, and exponentiation operations. Transcendental functions, in contrast,
cannot be expressed as a finite combination of algebraic terms. All the functions, from this point onwards in the
Atlas are transcendental. The logarithmic function is among the simplest of these.

Prior to the advent of electronic calculators and computers, logarithms [especially decadic logarithms, Section
25:14] were used extensively as aids to arithmetic computation, in the form of “log tables” and slide rules.

In addition to the logarithmic function itself, this chapter briefly addresses the logarithmic integral function li(x),
the dilogarithm diln(x), and polylogarithms.

25:1 NOTATION

The name logarithm is used synonymously with logarithmic function to describe ln(x). Alternative notations
are log(x) and loge(x), though the former is also used for the decadic logarithm [Section 25:14]. The initial letter of
the symbol is sometimes written in script type, n(x) to avoid possible confusion with the numeral “one”. See
Section 25:11 for the capitalized Ln(x).

To emphasize the distinction from logarithms to other bases [Section 25:14], ln(x) is variously referred to as the
logarithm to base e, the natural logarithm, the hyperbolic logarithm, or the Naperian logarithm [John Napier,
1550 1617, Scottish mathematician].

25:2 BEHAVIOR

As a real-valued function, ln(x) is defined only for positive x; it takes values of , 0, and + when x 0, 1,
and . As Figure 25-1 shows, it is a monotonic function, with a positive slope that decreases steadily as the
argument x increases. Even though the logarithmic function does eventually acquire an infinite value, its approach
to infinity is slower than that of any positive power of x, so that:

ln( ) 0 all 0v

x x v
x

25:2:1

229
DOI 10.1007/978-0-387-48807-3_26, © Springer Science+Business Media, LLC 2009 
K.B. Oldham et al., An Atlas of Functions, Second Edition,



230 THE LOGARITHMIC FUNCTION ln(x) 25:3

Some authors enforce evenness on the logarithmic function by decreeing that ln( x) ln(x), but the Atlas does
not follow this practice.

25:3 DEFINITIONS

The logarithmic function is defined through the integral [Figure 25-2]

1

1ln( ) d 0
x

x t x
t

25:3:1

or by the limiting operation

0

1ln( ) lim 0, 0
v

v

xx x v
v

25:3:2

The logarithm may also be defined as the inverse function of the exponential exp(x) function [Chapter 26]
ln exp( )x x25:3:3

or by synthesis [Section 43:14] from the simplest basis hypergeometric function
1 ln(1 )1

21
x

x x
25:3:4
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25:4 SPECIAL CASES

There are none of great importance. However, there are some formulas, for example 31:5:8 and 31:5:9, that
apply only to logarithms of integer argument.

25:5 INTRARELATIONSHIPS

The logarithmic function of an argument in the interval 0 x 1 is related to one with argument in the 1 x
domain by the simple reciprocation formula

1ln ln( ) 0x x
x

25:5:1

Provided that x and y are both positive, the logarithms of products, quotients and powers are given by
ln( ) ln( ) ln( )xy x y25:5:2

ln ln lnx x y
y

25:5:3

and

ln lnvx v x25:5:4

Thus, on taking logarithms, the operations of multiplication, division, and exponentiation are replaced by addition,
subtraction, and multiplication. It is the simplification afforded by these transformations that was responsible for
the widespread use of logarithms in computation, before calculators became ubiquitous. Operation 25:5:2
generalizes to permit the replacement of a product by a summation:

ln lnj j
jj

x x25:5:5

where the product, and therefore the summation, may be finite or infinite (provided, in the infinite case, that the
series converges).

The difference of two logarithms whose arguments differ by unity, can be expressed as an inverse hyperbolic
cotangent [Chapter 31]

ln( 1) ln( ) 2arcoth(2 1)x x x25:5:6

25:6 EXPANSIONS

The logarithmic function may be expanded as a power series in a variety of ways, of which the following are
representative:

2 3

1

( )ln(1 ) 1 1
2 3

j

j

x x xx x x
j

25:6:1

2 3

2 3
1

1 ( 1) ( 1) ( 1) 1ln( )
2 3 2

j

j
j

x x x xx x
x x x jx

25:6:2
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2 12 2 3 2 5 2

2 2 3 2 5 2
0

1 ( 1) ( 1) 1 1ln( ) 0
1 3( 1) 5( 1) 2 1 1

j

j

x x x xx x
x x x j x

25:6:3

As well, the logarithm is expansible through the continued fractions
1 4 9 16ln(1 ) 1

1 1 2 3 2 4 3 5 4
x x x x xx
x x x x x

25:6:4

and
ln(1 ) 1 4 4 9 9 16

1 2 3 4 5 6 7 8
x x x x x x x x

x
25:6:5

25:7 PARTICULAR VALUES

ln(0) ln(1/e) ln(1) ln(e) ln(en) ln( )

1 0 1 n +

25:8 NUMERICAL VALUES

Equator’s logarithmic function routine (keyword ln) can compute logarithms of any positive number in the
range 10 308 to 10308.

25:9 LIMITS AND APPROXIMATIONS

For arguments close to unity, the approximation
1ln( ) | 1| smallxx x

x
25:9:1

is valid. The limit

1

1ln( ) is a large integer
n

j
n n

j25:9:2

governs the logarithm of a large integer, being Euler’s constant [Section 1:4]. Also see 25:2:1.

25:10 OPERATIONS OF THE CALCULUS

Simple and multiple differentiation give
d ln( )
d

bbx c
x bx c

25:10:1

d ln( ) ( 1)! 1,2,3,
d

nn

n

bbx c n n
x bx c

25:10:2
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while indefinite integration yields the following results:

0

ln( )d ln( ) 1 ln
x xt t x x x

e
25:10:3

(1 ) /

1ln( )d ln( ) 1
x

c b

cbt c t x bx c
b b

25:10:4

01

ln( )
ln ( )d ( ) ! 0,1,2,

!

jx n
n n

j

x
t t n x n

j
25:10:5

1

2
1

1ln( ) 1
1 1ln( )d

ln ( ) 1
2

v

x
v

x x v
v vt t t

x v
25:10:6

/

1 li( )d
ln( )

x

c b

bx ct
bt c b

25:10:7

1

0

li( ) 1
d

ln( ) ln(ln( )) 1

x vv x vt t
t x v

25:10:8

The li function in the last two formulas is the logarithmic integral [Section 25:13].
The following definite integrals are of interest and lead to important constants [Section 1:7]:

1

2
1 0

ln ln( )
d ln ln( ) d

t
t t t

t
25:10:9

1 2

2
1 0

ln ln
d d (3 1)

1 24
t t

t t
t t t

25:10:10

1

2 2
1 0

ln ln
d d

1 1
t t

t t G
t t

25:10:11

1 2

2 2
1 0

ln ln
d d

1 1 8
t t

t t
t t

25:10:12

211
12

21
0 6

2 ln(4)
ln ln 1 d

2
t t t25:10:13

Others are given by Gradshteyn and Ryzhik [Sections 4.2 4.4].
Semidifferentiation and semiintegration [Section 12:14], with a lower limit of zero, yield

1
2

1
2

d ln(4 )ln( )
d

bxbx
x x

25:10:14

1
2

1
2

d ln( ) 2 ln(4 ) 2
d

xbx bx
x

25:10:15
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Euler’s constant [Section 1:7] enters the Laplace transforms [Section 26:15] of the logarithmic function. This
transform, and two others, are:

0

ln
ln exp d ln( )

s
t st t t

s
25:10:16

0

ln 1ln exp d ln( ) exp Ei
c cs csbt c st t bt c

s s b b
25:10:17

1
0

1 ( 1) ln
ln exp d ln( )v v

v

v v s
t t st t t t

s
25:10:18

Here, Ei is the exponential integral function [Chapter 37] and (v+1) is a digamma function [Chapter 44]. Note that,
for positive integer argument, (n+1) equals , the sum of the reciprocals of the first n natural1 1 1

2 31 n
numbers, less Euler’s constant.

25:11 COMPLEX ARGUMENT

When its argument is the complex variable z exp(i ) x+iy, the logarithm is a multi-valued function denoted,
in this Atlas and elsewhere, by Ln(z). In the complex Cartesian plane, it may be expressed in either polar or
rectangular coordinates. In the former it is simply

Ln lnz i25:11:1

which shows immediately that the real part depends only on the radial coordinate whereas the imaginary part is
dependent only on the angle . It is the fact that is unlimited that leads to the multivalued nature of the Ln
function. To establish a principal value, is constrained to lie within and the complex plane is cut along
the real axis between x 0 and x . When this restriction is applied, the Ln( ) function becomes ln( ).

The dependence of the real and imaginary parts of ln(x+iy) on the rectangular coordinates x and y is illustrated
in Figure 25-3. The real part is seen to have perfect rotational symmetry centered on a singularity at the origin,
confirming that only the distance from the origin is significant:

2 2Re ln ln ln( )x iy x y25:11:2

Conversely, the imaginary part, depicted in the second diagram of Figure 25-3, depends only on the angle . In
rectangular coordinates, this imaginary part is best described by

Im ln sgn arccotx iy y x/ y25:11:3

If the argument is purely imaginary

ln ln(| |) sgn( )
2
iiy y y25:11:4

For example ln(i) i /2 and ln( i) i /2. When y 0 and x 1, we are dealing with a point that actually lies
on the cut. If y is very slightly positive, then ln( 1+ i) +i , whereas a slightly negative y leads to ln( 1 i)

i . In such circumstances it is usual to assign a value equal to the average on each side of the cut, in this case zero.
Examples of inverse Laplace transforms involving the logarithmic function are:

1 1

ln( ) exp( ) ln( )d ( 1) ln( ) 0,1,2,
2 !

i n

n n
i

s ts s ts n t n
s i s n

I25:11:5
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2 2 2
2ln ( ) exp( ) ln ( )d ln( )

2 6

i

i

s ts ss t
s i s

I25:11:6

25:12 GENERALIZATIONS: generalized logarithm and polylogarithms

One generalization of the logarithmic function is towards other bases. This avenue is explored in Section 25:14.
Another generalization, reducing to the standard logarithm when v 1, has been termed the generalized

logarithmic function [Oldham and Spanier, Section 10.5] and is related to the incomplete beta function [Chapter 58]
by

0

1 1 1ln ( ) B ,0,
j v

v
j

x xx v
j v x x

25:12:1

In the remainder of the present section we discuss polylogarithms, which represent a generalization of the
logarithm in a third direction. Polylogarithms are themselves special cases of Lerch’s function [Section 64:12]. Also
known as Jonquière’s functions (Ernest Jean Philippe Fauque de Jonquières, 1820 1901, French naval officer and
mathematician), they appear in the Feynman diagrams of particle physics.

Via expansion 25:6:1, the logarithm may be defined, for a limited range of argument, by
32

1

1( 1) (1 )ln 1 0 2
2 3

j

j

xx xx x x
j

25:12:2

A natural extension of this definition is to the dilogarithm

2
1

(1 )diln
j

j

xx
j

25:12:3

the trilogarithm
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x 0 x ½ x 1 x 2

ln(x) ln(2) 0 ln(2)

diln(x)
2

6

2 2ln (2)
12 2

0
2

12

triln(x) Z
2 2 37 ln (2) ln (2)

8 12 6
Z 0

3
4
Z

polylnn(x) (n) 0 (n)

3
1

(1 )triln
j

j

xx
j

25:12:4

and generally, the polylogarithm of order v

1

(1 )polyln
j

v v
j

xx
j

25:12:5

where v is usually, but not necessarily, a positive integer. Be aware, however, that this is not the way in which
dilogarithms, trilogarithms and polylogarithms are customarily defined. Erdélyi et al. [Higher Transcendental
Functions, page 30 31, using the notations F(x,v) and Ln(x)], and Mathematica adopt definitions equivalent to our

polylnv(1 x), as does Thompson [Page 182, using the notation Lin(x)]. These rival definitions do not reduce to the
ordinary logarithmic function when the order is unity and are not, therefore, true generalizations of the logarithm.
Abramowitz and Stegun [Section 27.7, using the notation f(x)] adopt a definition of the dilogarithm similar to ours,
but of the opposite sign. Particular values of important polylogarithms, as we define them, are given in the table that
follows. In this table, and are functions from Chapter 3 and Z is Apéry’s constant given in equation 3:7:1.

Figure 25-1 includes a graph of the dilogarithm, diln(x) which, being a hypergeometric function [Table 18-2],
may be synthesized in the two-step process

1 ln(1 ) diln(1 )1 1
2 21

x x
x x x

25:12:6

As an alternative to the definition as series 25:12:3, the dilogarithm
[Figure 25-4] is also defined by Spence’s integral (William Spence,
Scottish mathematician, 1777 1815)

1

ln
diln d 0

1

x t
x t x

t
25:12:7

The summation 25:12:3 is rapidly convergent for ½ x < 1 and advantage
of this is taken by Equator’s dilogarithm routine (keyword diln). For
arguments in the 0 < x < ½ range, Equator exploits the reflection formula

2

diln ln ln 1 diln 1 0 1
6

x x x x x25:12:8

Those in the range 1 < x 2 are accessed by the reciprocation formula
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2ln 1diln( ) diln 0
2

x
x x

x
25:12:9

and for values of x exceeding 2 this formula is replaced by
21 1diln( ) diln ln( ) ln 0

6
x xx x x

x x
25:12:10

The dilogarithm is relevant to Fermi-Dirac and Bose-Einstein distributions [Section 27:14], as is the
trilogarithm. The latter may be defined, in addition to the series definition 25:12:4, as the integral

1

diln
triln d 0

1

x t
x t x

t
25:12:11

or hypergeometrically [Section 18:14]

0

1 1 1
triln 1 1 0 2

2 2 2
jj j j

j j j j

xx x x25:12:12

A graph of triln(x) is included in Figure 25-1 and Equator’s trilogarithm routine (keyword triln) calculates values
for nonnegative arguments. This routine uses formula 25:12:4 for arguments in the domain ½ < x 2, but exploits
the relation

2
2 31 1 1triln( ) triln(1 ) triln ln( ) ln ( ) ln(1 ) ln ( ) 0

6 2 6
x x Z x x x x x

x
25:12:13

for x values between 0 and ½. Likewise, the formula
2

31triln( ) triln ln( 1) ln ( 1)
1 6 6

xx x x
x

25:12:14

usefully extends the domain of easily accessible values to arguments larger than 2.

25:13 COGNATE FUNCTIONS: inverse hyperbolic functions and the logarithmic integral

The inverse hyperbolic functions [Chapter 31] are logarithms of
modified argument.

The logarithmic integral li(x), a function with importance in number
theory, is defined by the indefinite integral [Figure 25-5]

0

1li d
ln

x

x t
t

25:13:1

Some authorities regard the logarithmic integral as being defined only for
arguments exceeding unity, but, in this Atlas, li(x) exists also in 0 x < 1,
with a Cauchy limit definition

0
1

1li( ) lim li(1 ) d 0 0
ln( )

x

x t x
t

25:13:2

serving to extend the definition across the discontinuity at x 1. The
definite integral
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1

0

li( ) d
ln( ) ln( )

xx t
x t

25:13:3

also provides a definition. The zero of the logarithmic integral occurs at
1 4513 69234 88338 li( ) 0r r.25:13:4

The identity
li( ) Ei ln( )x x25:13:5

where Ei is the exponential integral function [Chapter 37] may be used to reveal many properties of this function
and is the basis of Equator’s logarithmic integral routine (keyword li) to compute numerical values of li(x).

Operations of the calculus yield the following results for the logarithmic integral function:
1d li( ) 0

d ln( )

v
v xx v

x x
25:13:6

2 2

0

1li( )d li( ) li( ) 0
x

bt t x bx b x b
b

25:13:7

1

0

ln(2 )li( )d 2
1

v vt t t v
v

25:13:8

1

ln( 2 )li( )d 2
1

v vt t t v
v

25:13:9

25:14 RELATED TOPICS: logarithms to other bases

Just as ln(x) can be defined as the inverse function of exp(x) or ex where e is the number 2.71828182845905 ,
so can a function be defined as the inverse of x, where is any positive number other than unity. A function so
defined is called the logarithm to base of argument x and it is denoted log (x). Such a logarithm is directly
proportional to the logarithmic function ln(x):

ln
log log ln 0, 0 1

ln
x

x e x x25:14:1

and Equator’s logarithm to any base routine (keyword loganybase) utilizes this relationship.
Logarithms to base 2 are called binary logarithms

2
ln( )log ( ) 1 4426 95040 88896 ln( )

0 69314 71805 59945
xx x.

.
25:14:2

Logarithms to base 10 are called decadic logarithms, common logarithms or Briggsian logarithms (Henry
Briggs, English mathematician, 1561 1630):

10
ln( )log ( ) 0 43429 44819 03252 ln( )

2 3025 85092 99405
xx x.

.
25:14:3

The subscript is often omitted, so that log10(x) may be written log(x) or even lg(x). Equator provides a decadic
logarithm routine (keyword log10) The decadic logarithm of a number in scientific notation [Section 8:14] is easily
found because
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10 0 1 2 3 10 0 1 2 3log 10 lognN N N N n N N N N. .25:14:4

The first right-hand term n, an integer, is the characteristic of the decadic logarithm. The value of the second right-
hand term, which necessarily lies in the range 0.0000 through 0.9999 , is called the mantissa of the logarithm.
Chemists use a “p” notation

10p log ( )x x25:14:5

For example pH log10(H), where H is the activity (or molar concentration) of hydrogen ions. The name
cologarithm of x is sometimes applied to log10(x).





Many natural and manmade assemblies – bacterial populations, investments, radioactivity, and light-bulb arrays
– increase or decrease at a rate proportional to their size. This characteristic leads to exponential growth or
exponential decay, with a functional dependence expressed by t representing time and t1/2 the1 2exp ln(2) / ,t t
half-time, the constant interval that it takes for the assembly to double (or halve) in size.

In this chapter we address the exponential functions exp(±x), and sometimes generalize these to exp(bx) or
exp(bx+c). Consideration of the exponential functions of arguments more complicated than these is deferred to the
next chapter. The self-exponential function, the exponential polynomial function, and some other functions that are
related to the exponential function are briefly addressed in this chapter, as is the important technique of Laplace
transformation.

26:1 NOTATION

The process of raising a constant to a power is known as “exponentiation” and accordingly x is sometimes
called an “exponential function”. The Atlas, however, adopts a more restricted interpretation of this name and
applies it only to cases in which the base is the number e 2.7182 81828 45905 , the base of natural logarithms
[Section 1:7]. Moreover, mainly for typographical convenience, we mostly write exp(x) instead of ex, though the
two notations are equivalent in every respect.

Colloquially, exponential functions are referred to as “exponentials”. Rarely the name natural antilogarithm
and the symbol ln 1(x) are encountered.

26:2 BEHAVIOR

The exponential function accepts real arguments of any magnitude and either sign, but itself adopts only positive
values. As illustrated in Figure 26-1, exp(x) increases monotonically with x, approaching zero as x and
increasing rapidly towards infinity at large positive x. The converse applies to exp( x): it becomes limitlessly large
as x become ever more negative and decays rapidly towards zero at large positive x.

The exponential function exp(x) has two remarkable properties: that it is its own derivative [equation 26:10:1]
and that changing the sign of its argument is equivalent to reciprocation [equation 26:5:1].
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26:3 DEFINITIONS

The exponential function may be defined as the inverse of the logarithmic function:
exp ln( )x x26:3:1

or as the result of exponentiating the number e

exp 2 7182 81828 45905 xxx e .26:3:2

The series
2 3

0
1 exp

1! 2! 3! !

j

j

x x x x x
j

26:3:3

can provide another definition and a fourth, albeit not a very useful one in practice, is as the limit

exp lim 1
v

v

xx
v

26:3:4

One of the simplest first-order differential equations, and its solution, are
df f f exp( )
d

b w bx
x

26:3:5

The solution can also be written exp(bx+c), where w exp(c) and c is arbitrary. The exponential function also solves
a large number of other differential equations; an example, and its solution, are



26:4 THE EXPONENTIAL FUNCTION exp(± x) 243

2
2

1 22

d f f f( ) exp( ) exp( )
d

b x w bx w bx
x

26:3:6

Moreover, if B, C, and R are constants, with B2 > C, the second-order differential equation
2

2

d f d f2 f
d d

B C R
x x

26:3:7

has the solution [Section 24:4]

2
1 2f exp exp whereR w b x w b x b B B C

C
26:3:8

in which the w’s are arbitrary constants.

26:4 SPECIAL CASES

There are none.

26:5 INTRARELATIONSHIPS

The simplicity of the reflection, addition, subtraction, and involution formulas
1exp( )

exp( )
x

x
26:5:1

exp( ) exp( )exp( )x y x y26:5:2

exp( )exp( )
exp( )

xx y
y

26:5:3

exp ( ) exp( )v x vx26:5:4

partly explains the widespread utility of exponential functions. The congruence of these formulas with those for
operations on powers [compare with equations 12:5:2 4] confirms that the argument of an exponential function may
be regarded as an exponent, validating the representation of exp(x) as ex.

Several infinite series of exponential functions may be summed geometrically [equation 6:14:9] and then
rewritten as hyperbolic functions [Chapters 29 and 30]:

1 1 1exp( ) exp( 2 ) exp( 3 ) coth 0
exp( ) 1 2 2 2

xx x x x
x

26:5:5

1 1 1exp( ) exp( 2 ) exp( 3 ) tanh 0
exp( ) 1 2 2 2

xx x x x
x

26:5:6

exp( ) 1exp( ) exp( 3 ) exp( 5 ) csch 0
exp(2 ) 1 2

xx x x x x
x

26:5:7

exp( ) 1exp( ) exp( 3 ) exp( 5 ) sech 0
exp(2 ) 1 2

xx x x x x
x

26:5:8

Similar sums in which the arguments are multiples of the squares of the natural (or the odd) numbers lead to
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exponential theta functions [Section 27:13]

2
3 2

1

1 1exp( ) exp( 4 ) exp( 9 ) exp( ) 0, 0
2 2j

xx x x j x x26:5:9

2
4 2

1

1 1exp( ) exp( 4 ) exp( 9 ) ( ) exp( ) 0, 0
2 2

j

j

xx x x j x x26:5:10

2
2 2

1

1 4exp( ) exp( 9 ) exp( 25 ) exp (2 1) 0, 0
2j

xx x x j x x26:5:11

26:6 EXPANSIONS

The expansion
2 3

0

( )exp 1
1! 2! 3! !

j

j

bx c bx cbx c bx cbx c
j

26:6:1

is valid for all arguments. After factoring out exp(c), it may be rewritten as the concatenation

exp exp 1 1 1 1 1
1 2 3 4
bx bx bx bxbx c c26:6:2

An expansion in terms of modified Bessel functions [Chapter 49] is

0 1 2 3exp I ( ) 2I ( ) 2I ( ) 2I ( )x x x x x26:6:3

There are several ways in which the exponential function may be expanded as a continued fraction:
1exp( )

1 1 2 3 2 5 2 7
x x x x x x xx26:6:4

exp( ) 1
1 2 3 2 5 2 7
x x x x x x xx26:6:5

1 1 1 1 11 1 1
6 6 10 10 182 14 141exp( ) 1

1 1 1 1 1 1 1 1 1
x x x x xx x xx26:6:6

The construction of the third of these continued fractions is discussed in Section 10:14.

26:7 PARTICULAR VALUES

exp( exp( 1) exp(0) exp(1) exp( )

0 1/e 1 e

26:8 NUMERICAL VALUES

Equator’s exponential function routine (keyword exp) can evaluate exp(x) for 710 x 710.
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26:9 LIMITS AND APPROXIMATIONS

For positive integer argument, the limit

exp( ) 2
!

nnn n n
n

26:9:1

exists and the approximation that it represents may be improved by elaboration via Stirling’s formula 2:6:1. For
noninteger argument, replace n by x and n! by (x+1) [Chapter 43]. The limit as the argument approaches is
available through 26:5:1. Close to x = 0 the “compound interest” approximation

exp 1 | | small a large number
Nxx x N

N
26:9:2

based on limit 26:3:4, could be useful.
By setting exp(x) en(x) or exp(x) 1/en( x), with large enough n, the exponential polynomial [Section 26:12]

can provide a good approximation if |x| is not too large, but a rational function [Section 17:12] approximation will
generally be better.

26:10 OPERATIONS OF THE CALCULUS

Because exp(bx+c) exp(c)exp(bx), any calculus operation applied to exp(bx+c) is simply equal to exp(c)
multiplied by the result of that operation applied to exp(bx).

The well-known rules for the differentiation
d exp exp
d

bx b bx
x

26:10:1

multiple differentiation
d exp exp
d

n
n

n bx b bx
x

26:10:2

and integration

1exp( )d exp
x

bt t bx
b

26:10:3

generalize to the formula for Weyl differintegration [that is, differintegration with a lower limit of , Section
12:14]

d exp exp 0
d

v
v

v bx b bx b
x

26:10:4

For example, Weyl semidifferentiation and semiintegration (v ±½) yield andexp( )b bx 1/ exp( )b bx
respectively, though only if b > 0. See Section 64:14 for more information about Weyl differintegration.

Formulas 26:10:1 and 26:10:2 are special cases of the general rule
expd exp n( , )

d
bx

bx bx
x x

26:10:5

for differintegration with lower limit of zero. Here n( , ) is the entire incomplete gamma function described in
Chapter 45. The special 1, ½ and ½ cases of formula 26:10:5 are
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1

1
0

d 1exp exp( )d exp( ) 1
d

x

bx bt t bt
x b

26:10:6

1
2

1
2

1/ exp erf 0d exp( )
d 2 / daw 0

b bx bx b
bx

x b bx b
26:10:7

and

1
2

1
2

exp erf 0d 1exp( )
d 2 / daw 0

b bx bx b
bx

x x b bx b
26:10:8

where erf and daw denote the error function [Chapter 40] and Dawson’s integral [Chapter 42] respectively. Of
course, when 1 or n, equation 26:10:5 reduces to 26:10:1 or 26:10:2.

The following formulas are special cases of the indefinite integration of the product of a power and an
exponential function:

1
0

( ) !exp( )d exp( )e ( ) 1 0,1,2,
x n

n
nn

nt bt t bx bx n
b

26:10:9

3
2

3
0

exp( )daw 0
exp( )d exp( )

/ 4 erf 0

x b bx bx bxt bt t bx
b b bx b

26:10:10

0

2 / exp( )daw 0exp( ) d
/ erf 0

x b bx bx bbt t
t b bx b

26:10:11

0

0
exp( ) d Ei( ) 0 36250 74107 81367

x

x

bt t bx x
t

.26:10:12

0

1 1 1

0
1 1 0

exp( ) ( 1)! ( 1)!d Ei( ) exp( ) exp( ) 1,2,3,
( 1)! ( ) ( )

x n n n

n j j
j jx

bt b j jt bx bx bx n
t n bx bx

26:10:13

In the two preceding integrals, Ei( ) is the exponential integral [Chapter 37] and x0 is its zero. A Cauchy
interpretation of these integrals [Section 0:10] may be needed for some values of b and x. Some important
transcendental functions are defined by indefinite integration of such products; examples are:

1

0

exp( )d M 1, 2, 1
1

x v
v xt bt t v v bx v

v
26:10:14

1

0

exp( )d ( 1, ) 1 0
x

v vt bt t b v bx v b26:10:15

1exp( )d ( 1, ) 1 0v v

x

t bt t b v bx v b26:10:16

In these formulas M( , , ) is the Kummer function [Chapter 47], while ( ) and ( ) are two varieties of incomplete
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gamma function [Chapter 45]. A table in Section 37:14 lists instances of for many commonlyexp( )dvt t t
encountered values of v.

Some other important indefinite integrals include

0

d 1 exp( )ln
exp( ) exp( )

x t x a bx c
a bt c a ab a c

26:10:17

and

2

d 1 exp( )arctan 0
exp( ) exp( )

x t bx a
bt a bt ab a

26:10:18

and

2

d 1 exp( ) ln( )arcoth 0
exp( ) exp( )x

t bx aa x
bt a bt ab a b

26:10:19

The mutually complementary indefinite integrals

0

d and d 1,2,3,
exp( ) 1 exp( ) 1

x n n

x

t tt t n
t t

26:10:20

are addressed in Section 3:15, the former defining the Debye functions. Their sum is contained in the formula

0

! ( 1)
d 0,1,2,

! ( 1)exp( ) 1

n n nt t n
n nt

26:10:21

where the and functions are those of Chapter 3.
The definite integrals

1

1 1 1

exp( ) d exp( )d and exp( )dn n
n

xt t t xt t t xt t
t

26:10:22

are discussed in Section 37:13 and related integrals are tabulated in Section 37:14. Some thirty pages are devoted
by Gradshteyn and Ryzhik [Sections 3.3 and 3.4] to definite integrals of exponential functions.

When a function f(t) is multiplied by exp( st) and integrated over 0 t , the integral, if it exists, is a function
known as the Laplace transform of f(t) and denoted as

0

f ( )exp( )d f ( ) a function oft st t t s26:10:23

Section 26:15 addresses Laplace transformation in some detail. Laplace transforms involving the function f are listed
towards the end of Section 10 of the chapter in this Atlas that is devoted to the function f. Thus, we here present the
Laplace transform of the exponential function itself

0

1exp( )exp( )d exp( ) 0bt st t bt b
s b

26:10:24

and its product with an arbitrary power

1
0

(1 )exp( )exp( )d exp( ) 0 1
( )

v v
v

vt bt st t t bt b v
s b

26:10:25

The gamma function [Chapter 43] appears in the latter transform.
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26:11 COMPLEX ARGUMENT

When its argument is the complex number z x+iy, the exponential function is a simple single-valued function
lacking discontinuities. In fact, exp(z) is an analytic function, which means that it possesses a convergent power
series, akin to 26:6:1, for all values of x and y. Figure 26-2 shows the real and imaginary parts of exp(x+iy), which
are described by the formulas

Re exp( ) exp( )cos( ) and Im exp( ) exp( )sin( )x iy x y x iy x y26:11:1

The real and imaginary parts appear very similar; indeed, the difference is only in phase and could be nullified by
a /2 translation along the imaginary axis. The sinusoidal behavior contributed by the cosine and sine terms is
present throughout the complex plane; in the diagrams it appears more accentuated for positive x because of the
presence of the exp(x) multiplier. The equation

exp( ) exp( ) cos( ) sin( )z x y i y26:11:2

is known as Euler’s formula; it establishes that the exponential function of purely imaginary argument is a periodic
function of period 2 , with the following particular values:

exp i 3
4exp i 1

2exp i 1
4exp i exp 0i 1

4exp i 1
2exp i 3

4exp i exp i

1 ( 1 ) / 2i i (1 ) / 2i 1 (1 ) / 2i i ( 1 ) / 2i 1

Equator uses equation 26:11:2 in its exponential function of complex argument routine (keyword complexp)
to evaluate the exponential function of the complex number x + iy.

Roberts and Kaufman devote many pages to inverse Laplace transforms that involve exponential functions; here
we report only three. Each member of this trio gives rise to a discontinuous function from Chapter 9

exp( ) exp( ) exp( )d u( )
2

i

i

bs ts bss t b
s i s

I26:11:3
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exp( )exp( ) d exp( ) ( )
2

i

i

tsbs s bs t b
i

I26:11:4

exp( ) exp( ) exp( )d u( )exp ( )
2

i

i

bs ts bss t b a t b
s a i s a

I26:11:5

In these formulas, which are special cases of the more general inversion formula in 26:15:11, b is restricted to
nonnegative values.

26:12 GENERALIZATIONS

Inasmuch as they all reduce to exp(x) for certain values of their variables, the antilogarithm x, the exponential
polynomial en(x), the incomplete gamma function (v, x), the Kummer function M(a, c, x), and the Tricomi function
U(a, c, x), may all be regarded as generalizations of the exponential function, as may all hypergeometric functions
[Section 18:14] for which L K+1. The first two of these will be addressed briefly here, discussion of the others
being postponed to Chapters 45, 47, and 48.

The function x, where is a positive constant other than unity, is called an antilogarithm or a generalized
exponential function (though that name is also given to the Mittag-Leffler function, Section 45:14). It is equivalent
to an exponential function with a changed argument:

exp( ) where ln( )x bx b26:12:1

Values of x can be calculated through Equator’s power function routine (keyword power) by placing in the “x”
box. The number 10 is the most commonly encountered base, 10x being known as the common or decadic
antilogarithm of x.

The term “exponential polynomial” is used with two meanings. One is as an alternative name for the Bell
polynomial, important in combinatorics, but not further considered here. In the Atlas, the exponential polynomial
is derived from the power-series expansion, equation 26:3:3, of the exponential function by truncation after the nth
term:

2 3

0
e ( ) 1

1! 2! 3! ! !

n jn

n
j

x x x x xx
n j

26:12:2

e0(x) e1(x) e2(x) e3(x) e4(x) e5(x)

1 1+x 21
21 x x 2 31 1

2 61 x x x 2 3 41 1 1
2 6 241 x x x x 2 3 4 51 1 1 1

2 6 24 1201 x x x x x

Values may be found from Equator’s exponential polynomial routine (keyword epoly), which uses either equation
26:12:2 or a suitably truncated version of the relationship

1
e ( ) exp( )

!

j

n
j n

xx x
j

26:12:3

Table 18-7 reveals a hypergeometric route to the exponential polynomial. For large n, the asymptotic approximation
1( 2)e ( ) exp( ) large

( 1)!( 2 )

n

n
n xx x n

n n x
~26:12:4

is valid.
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xxxx

26:13 COGNATE FUNCTIONS

All the functions mentioned in Tables 18-3 and 18-4, as well as
many others, can be synthesized from the exponential function. Thus
any function with either of the hypergeometric representations shown
may be synthesized as follows:

0 01 21 1 2

( )1exp( )
( ) ( )

j
jj

j j j jj

ax ax x
c cc c c

26:13:1

where the symbolism is explained in Section 43:14.
Those Macdonald functions [Chapter 51] Kv(x) of orders that are

multiples of half an odd positive integer are related in a very simple
way to exp( x). The name spherical Macdonald function and the
symbol kn(x) are given to the function

1
2

k ( ) K ( ) 0,1,2,
2n nx x n

x
26:13:2

The first few members are mapped in Figure 26-3 and tabulated below
and more can be found from the recursion

1 2
2 1k ( ) k ( ) k ( )n n n

nx x x
x

26:13:3

k0(x) k1(x) k2(x) k3(x) k4(x)

exp( )
2

x
x

exp( ) 11
2

x
x x 2

exp( ) 3 31
2

x
x x x 2 3

exp( ) 6 15 151
2

x
x x x x 2 3 4

exp( ) 10 45 105 1051
2

x
x x x x x

The properties of these functions follow from those of the Macdonald function. Their numerical values are
calculable by Equator’s spherical Macdonald function routine (keyword k), which relies on equation 26:13:3.

26:14 RELATED TOPIC: the self-exponential function

An interesting function is the self-exponential function xx. It is
defined as a real function only for positive x and takes the value unity
at x 0, as its graph in Figure 26-1 illustrates. From its derivative

d [1 ln ]
d

x xx x x
x

26:14:1

one learns that its slope is at x = 0 and that xx has a minimum value
of exp( 1/e) at x = 1/e. Its value and its derivative are both unity at x
= 1 and it increases extremely rapidly at large x, being well
approximated by the formula

( )exp( ) large
2

x xx x x x26:14:2

A related function, x1/x is mapped in green in Figure 26-4. It equals
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Laplace
transformation

difficult facile

Laplace
inversion

The original problem Transformed problem
involving the variable involving the variable

The final solution
involving the variable

t s

t
Solution to transformed
problem in the variables

its argument at x 0 and 1 and passes through a gentle maximum of magnitude exp(1/e) at x e before decaying
very slowly towards unity. The inverse function [Section 0:3] of x1/x, mapped in red in Figure 26-4, is the limit of
the sequence

1/, , , , 0
xx xx x x ex x x x x e26:14:3

In implementing this sequence, a new base is added at each step. For the x 0.5 example, one first calculates 0.50.5

0.70710 , then 0.50.70710 0.61254 , then 0.50.61254 0.65404 , and so on until 0.50.64119 0.64119 is reached.
This example resolves the ambiguity that otherwise exists in 26:14:3.

26:15 RELATED TOPIC: Laplace transformation

A foundation laid by French mathematicians Pierre Simon de Laplace (1749 1827) and Augustin Louis Cauchy
(1759 1857) has been built upon, mostly by engineers, to construct one of the most powerful tools for solving
problems of practical importance. The
procedure is especially useful in solving
systems of coupled ordinary differential
equations and in embedding boundary
conditions into the solutions of partial
differential equations. Two distinct
processes, Laplace transformation and
inverse Laplace transformation – that we
shall often abbreviate to “transformation”
and “inversion” in what follows – are
involved in all applications, the motivation for which is evident from the adjacent scheme. The phrase “in Laplace
space” is used to describe manipulations involving the s variable.

If f(t) and g(t) represent two functions of the variable t, then we shall use the notations and to denotef( )s g( )s
their Laplace transforms. Moreover, we adopt the operator symbols and to signify the operations ofI
transformation and inversion; thus:

f( ) f( ) and f( ) f( )t s s tI26:15:1

The s variable goes by the name of transform variable. There is a reciprocity between t and s in the sense that if,
as is often the case in applications, t represents a time (with “second” as its unit) then s resembles a frequency (in
reciprocal seconds or “hertz”).

Not every function is transformable or invertible. For f(t) to have a Laplace transform, it must be defined at all
points on the semiinfinite range 0 t < . To make them submissive to transformation, functions are often
“windowed” [Section 9:13], that is, they are artificially set to zero outside a range in which they have natural
variability. There is no requirement that f(t) be finite throughout 0 t < , but it must not be “too infinite”; thus f(0)
may be infinite provided that tf(t) 0 as 0 t. The one salient requirement for to be invertible is thatf( )s f( )s

0 as s . That a function be Laplace transformable or invertible does not imply that its transform or inverse
can be found in terms of named functions. This is emphatically the case for inversion. When an attempted
application fails to yield to the Laplace approach, it is usually because the inversion step is insurmountable.

Mathematically, the operations of Laplace transformation and inversion are defined by the integral transforms

0

exp( )f( ) f( )exp( )d and f( ) f( ) d
2

i

i

tst t st t s s s
i

I26:15:2
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the latter being known as the Bromwich integral (Thomas John l’Anson Bromwich, English mathematician,
1875 1929). The in the Bromwich integral is arbitrary, provided that the integration path in the complex plane
is chosen to the right of any singularity in the integrand. In practice, these formulas are seldom used to find
transforms or inverse transforms, tables or computer searches being used instead. The book by Roberts and Kaufman
and that by Oberhettinger and Badii each has thousands of entries systematically listed so as to facilitate the location
of both transforms and inverse transforms. In this Atlas, transforms will be found towards the end of Section 10 of
each chapter. To locate look in Section 11 of the chapter dealing with the function f. We have placed these{f( )}sI
latter entries in the sections dealing with complex argument, because the Bromwich formula requires integration in
the complex plane. However, the complex nature of the s variable is seldom of practical concern.

The transformation and inversion operations are linear and homogeneous, which means that

1 2 1 2 1 2 1 2f( ) g( ) f( ) g( ) and f( ) g( ) f( ) g( )w t w t w s w s w s w s w t w tI26:15:3

The scaling properties
1 1f( ) f and f( ) fs tbt bs
b b b b

I26:15:4

generalize to

0

1 1f( ) exp f f( )exp d and f( ) exp f
ccs s st ct tbt c t t bs c

b b b b b b b
I26:15:5

A frequent need is to transform the product g(t)f(t), or to invert the product , of two functions. If theg( ) f( )s s
g function is t itself, or an integer power thereof, the following formulas apply

d f d ff( ) ( ) and f( ) ( ) f(0) ( )
d d

t t s s s t t
s t

I26:15:6

1

0

d f d f d f df( ) ( ) and f( ) ( ) (0) ( )
d d d d

n n j jn
nn n

n n j j
j

t t s s s t t
s t t t

I26:15:7

0

f( ) f( )f( )d and f ( )d
t

x

t ss s t t
t s

I26:15:8

0 0

f( ) f( )f( ) d and f ( ) d
t t

n n
n n

x x

t ss s t t
t sI26:15:9

The quantity (d j /dt j)(t) in 26:15:7 is the jth derivative of the Dirac function [Section 9:12] at t 0. The terms in
which these latter functions occur have influence only at t 0 and may frequently be ignored entirely. When the
multiplicative g function is an exponential function, one has

exp( )f( ) f( ) and, for 0 exp( ) f( ) u( )f( )bt t s b b bs s t b t bI26:15:10

The second of these formulas, in which u( ) is the Heaviside function [Chapter 9] illustrates what is sometimes
known as the delay property of Laplace inversion. Figure 26-5 exemplifies the relationship of u(t b)f(t b) to f(t)
itself. Formulas 26:15:10 can be developed to provide a method of transforming the product g(t)f(t) or inverting the
product when g( ) or is any function, such as sinh, cos, or coth, that can be expressed as a weightedg( ) f( )s s g( )
sum (finite or infinite) of exponentials.

Though it lacks a transformation analog, there exists a formula for the inversion of the product of anyg( ) f( )s s
pair of functions. This is the convolution property of Laplace inversion:
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0 0

g( ) f( ) g( )f( )d g( )f( )d
t t

s s t t t t t t t tI26:15:11

Though an integration remains to be carried out, this is a valuable
means of leaving Laplace space. Each of the integrals in 26:15:11 is
known as a convolution of the g(t) and f(t) functions and is
symbolized g(t) f(t). Each function is said to be “convolved” with
the other.

Equations in 26:15:6 10 may be employed “the other way
around”, to find the Laplace transform or inverse of a function
subjected to an operation of the calculus. For example,
transformation or inversion of an indefinite integral yields

0

f( ) f( )f( )d and f( )d
t

s

s tt t s s
s tI26:15:12

In fact, these formulas may be generalized as follows
Int ( )

1

1

d f d f d f( )d f( ) (0) and ( ) f( )
d d d( )

v v j vv
v j v

v v j v
j

t t s s s s t t
t s sI26:15:13

to any order of differintegration [Section 12:14]. The summation is empty, and therefore equal to zero, if v 0.
The technique of partial fractionation [Section 16:13] is frequently used in Laplace inversion and, in this context,

equations 17:13:14 17 are useful. A powerful inversion tool, known as the Heaviside expansion formula, is a
development of the “automated” partial fractionation discussed in Section 17:13. If is the ratio of twof( )s
polynomial functions pm(s)/pn(s) where the degree m of the numeratorial polynomial is less than that, n, of the
denominatorial polynomial, then

1

p ( )exp( )p ( )f( ) d pp ( ) ( )
d

n
m j jm

njn
j

r r tst
s r

s

I26:15:14

where r1, r2, , rj, , rn are the distinct zeros of the denominatorial polynomial. This rule can be applied if m is as
small as 0 or 1, and n is as large as . If some of the zeros are not distinct, then use

1
1

0

p ( ) d pexp( ) ( )
( ) ( 1)! ! d

j jn
nm m

n j
j

s tt rt r
s r n j j sI26:15:15
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Though the functions in this chapter are just composites of those discussed in Chapters 10, 12, and 26, the
practical importance of exponential functions of powers of the argument x makes it appropriate to devote a chapter
to them. For example, the temperature-dependence of many physical properties obeys an exp{ (constant)/T} law,
while random events, a topic discussed in Section 27:14, frequently involve the function exp( x2). Because of their
applications, this chapter concentrates on cases of exp(± xv) in which v is an integer or half-integer.

27:1 NOTATION

No special notation is needed beyond that introduced in Sections 10:1, 12:1, and 26:1. Note that x v is
interchangeable with 1/xv and that exp{f(x)} is frequently represented as ef(x).

27:2 BEHAVIOR

As with the functions discussed in Chapter 12, the range of exp(± xv) depends in a detailed way on the nature
of the number v when v is not an integer. The complications mostly disappear when x is positive, and this will be
assumed throughout this chapter, except when v is an integer or half-integer.

Figures 27-1 and 27-2 show maps of the functions exp(± 1/x), and exp(± x2). Theexp 1/ ,x exp ,x
important graph of exp( x2), discussed further in Section 27:14, is known as a Gaussian or Gauss curve; it has a
maximum value of unity at x 0 and points of inflection [Section 0:7] at . The exp( 1/x) function1/ 2x
inflects at x ½.

27:3 DEFINITIONS

With x replaced by ± xv, the definitions 26:3:1 to 26:3:4 can serve to define exp(± xv).
Provided p 1, a first-order differential equation and its solution are

255
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exp 1/ x

exp x

exp 1/ x

exp x
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1d f f f exp
d 1

v
v bxbx w

x v
27:3:1

where w is arbitrary.
The Laplace-de Moivre formula 6:9:3 can be used to define the Gaussian function as a limit involving a

binomial coefficient

2
2

exp lim
4vv

vvx
v x v

27:3:2

27:4 SPECIAL CASES

When v 1, the functions exp(±xv) reduce to those of Chapter 26. When v 0, the functions become constant.

27:5 INTRARELATIONSHIPS

If care is taken to respect the attendant restrictions, the x and y arguments in equations 26:5:1 12 may be
replaced by powers of x and y.

There exist interesting relationships between sums of exponentials of /x and similar sums of exponentials of
x. For example, if x is positive

1 4 9 1exp exp exp exp exp 4 exp 9
2 2

x x x x
x x x

27:5:1

This identity arises from the properties of the exponential theta-three function [Section 27:13] of zero parameter.
This and similar relations may be derived from equations 27:13:17 19.

27:6 EXPANSIONS

The series expansion
2 3

0

( 1)exp 1
1! 2! 3! !

v v v j
v jv

j

x x xx x
j

27:6:1

holds whenever xv is well defined.
The continued fraction expansion

22 /3 /15 /35 /(4 1)exp 1
2 2 2 22

x x x x x jx
x

27:6:2

is rapidly convergent.
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27:7 PARTICULAR VALUES

x 0 x 1 x

0
exp

0
v

v
x

v

e 1

1 e

0
exp

0
v

v
x

v

0 1/e 1

1 1/e 0

27:8 NUMERICAL VALUES

By using the variable construction feature [Appendix C:4], Equator’s exponential function routine (keyword
exp) can provide numerical values of the exponentials of powers.

27:9 LIMITS AND APPROXIMATIONS

Though crude, the approximation

2

| |1
exp

0 | |

x x
x

x
27:9:1

is surprisingly good. Moreover, the areas under the Gauss curve and this triangular approximant are identical.

27:10 OPERATIONS OF THE CALCULUS

Differentiation gives

1d exp exp
d

v v vx vx x
x

27:10:1

Indefinite integration of the general expressions exp( tv ) and tw exp( tv ) can be accomplished by making the
substitution tv ± y and utilizing the general formulas contained in equations 26:10:13 16. Moreover, the table
in Section 37:14 can be useful in this regard. Below are listed some important indefinite integrals:

2 2

0

exp d exp daw( )
x

t t x x27:10:2

1

exp d 2 1 exp 0
x

t t x x x27:10:3

0

0 0
00

01 1 1 1exp d exp Ei exp
7 2065 95823 66350

x

x

x
t x x x x

xt x x x .
27:10:4
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0

0
00

01 1 1 1exp d exp Ei exp
2 6845 10350 82071

x

x

x
t x x

xt x x x .
27:10:5

2

0

exp d erf
2

x

t t x27:10:6

exp d 2 1 exp 0
x

t t x x x27:10:7

0

1 1 1exp d exp Ei 0
x

t x x x
t x x

27:10:8

0

1 1 1exp d exp Ei 0
x

t x x
t x x

27:10:9

2
2 1 4 2exp d exp erfc 0

2 4 2x

b ac ax bat bt c t a
a a a

27:10:10

Chapters 42, 37, and 40 are devoted to the daw, Ei, and erfc functions, respectively.
Some important definite integrals include

( 1) /
0

1
1exp d 0 0v

v
vt t t

v v
27:10:11

and

2
2

0

1exp d exp 2 0
2

t t
t

27:10:12

where is the gamma function [Chapter 43].
The Laplace transform

( 1) / 2

1
0

exp d exp 2 K 2
v

v v
vt st t t s

t t s
27:10:13

in which K is the Macdonald function [Chapter 51], adopts the simpler form when v ½./ exp 2s s
Similarly, the general result

2

2 21
0

(2 2)exp d exp exp D
2 8 2

v v
vv v

vt t st t t t
s s s

27:10:14

in which D is the parabolic cylinder function [Chapter 48], simplifies to when2/ exp / 4 erfc / 2s s s
v ½. The multiplier must be positive and the power v must exceed 1 in all these transforms, and also in

2
2 2

1( 1) / 2
0

( 1)exp d exp exp D
8 22

v v
vv

v s st t st t t t27:10:15

This last transform reduces to for the Gaussian case in which v 0. The function2/ 4 exp / 4 erfc / 4s s
erfc is the error function complement [Chapter 40].
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27:11 COMPLEX ARGUMENT

The real and imaginary parts of the Gaussian function of complex argument z x + iy are contained in the
formula

2 2 2exp exp cos(2 ) sin(2 )z y x xy i xy27:11:1

The corresponding formula for the exponential of a reciprocal complex variable is

2 2 2 2 2 2

1exp exp cos sinx y yi y x
z x y x y x y

27:11:2

For v > 0, some inverse Laplace transforms involving exponentials of powers are:
2

2 11

exp /8d 2exp exp D
2 22

i
v v

vv
i

tss s ts s s
i tt
I27:11:3

( 1) / 2
1

exp /dexp / I 2 0
2

i
vv

vv
i

sss ts t t
s i sI27:11:4

where D is a parabolic cylinder function [Chapter 48] and I is a modified Bessel function [Chapter 50]. The inverse
transform 27:11:3 simplifies to when v 0.

3
2 2/ 2 exp / 4t

27:12 GENERALIZATIONS

The exponential function of powers may be generalized “to other bases” in a similar way to that described in
Section 26:12.

With v > 2, the functions
1/

f( ) exp 0
2 (1/ )

v
vvx x

v
27:12:1

have been called supergauss functions. They share with the Gaussian function the properties21/ exp x
of being symmetrically peaked at x 0 and enclosing an area of unity. In 27:12:1, is the gamma function
[Chapter 43]. Though the moniker “supergauss” no longer applies, the v 1 and v 2 cases of function 27:12:1 are
respectively the Laplace and normal probability distribution functions [Section 27:14] of zero mean. With v an
adjustable positive parameter, function 27:12:1 is employed in statistics as the probability function of the Weibull
distribution (Waloddi Weibull, Swedish engineer, 1887 1979).

27:13 COGNATE FUNCTIONS: exponential theta functions

The bivariate exponential theta-one, theta-two, theta-three and theta-four functions are defined by
21

2
1

( )1( , ) ( ) expj

j

v jv x
xx

27:13:1

2
1

2 1 2
1 ( )( , ) ( ) exp ,j

j

v jv x v x
xx

27:13:2
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2

3
1 ( )( , ) exp

j

v jv x
xx

27:13:3

and
21

2 1
4 3 2

( )1( , ) exp ,
j

v jv x v x
xx

27:13:4

but the reader should be alert to the wide variety of theta functions in use, and the confused symbolism. We refer
to v and x as the periodic variable and aperiodic variable, respectively. The subscript n in n(v,x) has no numerical
significance; it merely distinguishes one theta function from the others. Summations which, like those in 27:13:1 4,
run from to + are called Laurent series (Pierre Alphonse Laurent, French mathematician, 1813 1854). The
annotated summation symbol implies that j takes all integer values: negative, zero, and positive. Thus an alternative
representation of each exponential theta function is

1

1
( , ) (0th summand) ( th summand) ( th summand) 1,2,3,4n

j j
x v x j j n27:13:5

There exists another quartet of exponential theta functions, known as modified exponential theta functions, and
distinguished by having the theta symbol “hatted”. The summands in the definitions of these modified functions
are exactly like those in 27:13:5, but there is a sign change when j is negative:

1

1

( , ) (0th summand)

( th summand) ( th summand)

n

j j

x v x

j j
27:13:6

for n 1,2,3, and 4. We will not discuss modified
exponential theta functions elsewhere in this section.
They arise frequently in inverting Laplace transforms; for
example, they are encountered in Section 28:11.

It is clear from definitions 27:13:1 4 that
incrementing v by unity causes no change whatsoever in
the theta-three and theta-four functions, and merely
changes the sign of the theta-one and theta-two functions.
This implies that the exponential theta functions are
periodic functions [Chapter 36] of the variable v, with a
period of 2 for 1 and 2 and of 1 for 3 and 4.
Moreover, because 2(v, x) 1(v +½, x), the theta-one
and theta-two functions differ only in phase, with a
similar kinship between 3 and 4. The theta-two case is
illustrated in Figure 27-3. This periodicity is brought out
more clearly in the following equivalent representations

2 21 1
1 2 2

0
, 2 ( ) exp ( ) sin 2( )j

j
v x j x j v27:13:7

2 21 1
2 2 2

0
, 2 exp ( ) cos 2( )

j
v x j x j v27:13:8
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2 2
3

1
, 1 2 exp cos 2

j
v x j x jv27:13:9

2 2
4

1
, 1 2 ( ) exp cos 2j

j
v x j x jv27:13:10

of the exponential theta functions.
These theta functions satisfy the intriguing quadruplication formulas

1 1
4 41 3 42 (2 ,4 ) , ,v x v x v x27:13:11

2 3 42 (2 ,4 ) , ,v x v x v x27:13:12

3 3 42 (2 ,4 ) , ,v x v x v x27:13:13
1 1

4 44 3 42 (2 ,4 ) , ,v x v x v x27:13:14

that may be redrafted in several alternative ways.
The second derivative with respect to the periodic variable v of, for example, the exponential theta-three function

2
2 2 2 2

32
1

( , ) 8 exp cos 2
j

v x j j x jv
v

27:13:15

is proportional to its first derivative with respect to the aperiodic variable x

2 2 2 2
3

1
( , ) 2 exp cos 2

j
v x j j x jv

x27:13:16

This means that a theta-three function (and the same is true of the others) can provide solutions to partial differential
equations of the form

2

2 f( , ) (constant) f( , )y t y t
y t

27:13:17

which occur frequently in descriptions of such physical phenomena as heat transport and diffusion.
Also of importance are the special cases of the exponential theta-two, theta-three and theta-four functions in

which the v is zero. These exponential theta functions of zero periodic variable may be formulated in two distinct
ways as series of exponential functions

2 2 2

2
1 0

1 (2 1)1 2 ( ) exp (0, ) 2 exp 0
4

j

j j

j j xx x
xx

27:13:18

2
2 2

3
1 1

1 1 2 exp (0, ) 1 2 exp 0
j j

j x j x x
xx

27:13:19

2
2 2

4
0 1

2 (2 1)exp (0, ) 1 2 ( ) exp 0
4

j

j j

j x j x x
xx

27:13:20

Apart from a simple constant, the three theta functions of zero periodic variable coalesce when x 1/ , leading to
the particular values

1
4

2 3 4
1 1 10, 2 0, 0, 0 91357 91381 56117g .27:13:21

where g is Gauss’s constant [Section 1:7].
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Laplace transformation of exponential theta functions generates hyperbolic functions [Chapters 28 30]:

1
1 1 2 2

0

sech
, exp( )d ( , ) ( , ) sinh 2

s
v t st t v t v t v s

s
27:13:22

1
4 4 3 2

0

csch
, exp( )d ( , ) ( , ) cosh 2

s
v t st t v t v t v s

s
27:13:23

The following inverse Laplace transforms yield infinite sums of sine functions [Chapter 32]

1
12 2 2

( ) sin 2( )( , )( , ) exp( ) ( , ) 1d
2

ji

ji

v j tv sv s st v ss
s i s s v jI I27:13:24

1
43 3 2

sin 2( )( , )( , ) exp( ) ( , ) 1d
2

i

ji

v j tv sv s st v ss
s i s s v jI I27:13:25

When the periodic variable v is zero, these sums correspond to interesting discontinuous functions. For example,
the transform (1/s) 4(0,s) inverts to a function that takes the value +1 when 0 < t < 2, 4 2 < t < 9 2, 16 2 < t < 25 2,
and so on, but equals 1 for other positive values of t. See Roberts and Kaufman for many other instances of the
Laplace transformation and inversion of exponential theta functions.

The series in 27:13:1 4 converge so rapidly if x 1/ , that very few terms need be summed to produce accurate
values of these theta functions. Moreover, if x > 1/ , series 27:13:7 10 converge even more rapidly! Summing
these series is the method used by Equator’s exponential theta-one function, exponential theta-two function,
exponential theta-three function, and exponential theta-four function routines. Their keywords are theta1, theta2,
theta3, and theta4.

Though the four theta functions we have discussed thus far – the exponential theta functions – are the most
transparent, they are not the ones most commonly encountered. Another quartet goes by the name Jacobi theta
functions, elliptic theta function or, unfortunately, just theta functions. They occur particularly in connection with
the functions that the Atlas addresses in Chapter 61 63. We shall call them elliptic theta functions. The relationship
between the exponential and elliptic theta functions

2,exp ( , ) 1,2,3,4n nv x v x n27:13:26

involves radical changes in the variables, but otherwise no change in properties. Note our use of changed typography
to distinguish the two kinds of theta function. Almost invariably the aperiodic variable used in connection with
elliptic theta functions is the nome q [Section 61:15]. Thus, with x now representing the periodic variable, we have

2

ln( )( , ) , 1,2,3,4n n
x qx q n27:13:27

Because of the easy interconversion, Equator does not provide a routine for elliptic theta functions. However, the
related Neville’s theta functions, defined and discussed in Section 61:15, are directly accessible through Equator.

27:14 RELATED TOPIC: distributions

When a measurement or observation is repeated a large number N of times, it frequently happens that the values
found are not identical. We say that the measured quantity x has a distribution. Sometimes (as in rolling dice) only
a finite set of discrete values is accessible to x. Here, however, we consider only continuous cases (exemplified by
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the sizes of raindrops) in which possible x values are limited in proximity only by the discrimination of the
measuring device.

Let the measurements be arranged in order of size along the line x0 x x1, where x0 and x1 are the smallest and
largest values open to x. (Usually x1 and x0 0 or ). Then, as N , the density of data along the line
comes to describe a function Pdist(x) characteristic of the particular distribution. Among the names by which this
function goes are probability function (the Atlas choice), distribution function, density function, and frequency
function. Each probability function has a corresponding cumulative function Fdist(x) defined by

0

dist distF ( ) P ( )d
x

x

x x x27:14:1

Clearly Fdist (x0) 0 and, because the totality of the probability must be unity, Fdist(x1) 1. The significance of Fdist(x)
is that this function expresses the probability that an individual measurement will not exceed x. The many diagrams
in this section display examples of probability functions and cumulative functions.

In discussing distributions, statisticians speak of percentiles or percentage points. The pth percentile is the value
of x at which Fdist(x) equals p/100. The fiftieth percentile, at which the cumulative function acquires the value ½,
is also called the median of the distribution.

If one temporarily thinks of x as a function of P, rather than vice versa, then it follows that the average value
of x, known as the mean of the distribution, is given by

1 1

1

0 0

1

0

0

1

P( )d P( )d
P( )d

F( )
P( )d

x x

x
x x
x

x

x

x x x x x x
x x x

x
x x

27:14:2

In addition to the mean, a distribution is also characterized by its moments, the jth of which is defined by the integral
. The second moment, symbolized 2, is particularly important:( ) P( )djx x x

1

0

2 2( ) P( )d
x

x

x x x27:14:3

It is named the variance of the distribution and its square root is the standard deviation .
Mathematical functions from many Atlas chapters serve as the probability and cumulative functions used to

model phenomena in the natural and social sciences. In the tables below we present a few of these. Very many other
distributions cater to specialized tasks in probability theory and in statistics; for these we refer you elsewhere, to the
books by Johnson, for example. Equator provides routines for all the illustrated functions, under such names as
probability function for a normal distribution, or cumulative function for a Maxwell distribution. The keyword for
an Equator distribution has P or F as its initial letter, according to whether the probability or cumulative function
is sought, followed by the distribution’s name, so that PLorentz and Flogistic are typical keywords.

The distributions displayed in the four figures on the facing page all have x0 , x1 . They are all
symmetrical about their means, which implies F( ) ½, so that the mean, the median and the peak (also called the
mode, or most probable value) coincide. As its name suggests, the normal distribution (also known as the Gauss
or Gaussian distribution) is the one in most frequent use, though often inappropriately. Aspects of the normal
distribution are discussed also in Section 40:14. Three distributions are encountered in chemical separatory
techniques: the peaks for chromatography are normal, electrochemical peaks are logistic, while those in nuclear-
resonance-spectroscopy follow a Lorentz distribution (Henrik Antoon Lorentz, Dutch physicist, 1853 1928). For
the Lorentz (also known as the Cauchy distribution), there is no standard deviation, because integral 27:14:3 does
not converge for this P(x) function. Another parameter s has therefore been chosen to play the role of characterizing
the width-to-height ratio of the peak.
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distribution probability function P(x) cumulative function F(x)

normal [Figure 27-4]
2

2

1 ( )exp
22
x 1 1 erf

2 2 2
x

Laplace [Figure 27-5]
1 2exp
2

x
1 sgn( ) 21 exp
2 2

x x

Lorentz [Figure 27-6] 2 2( )
s

s x
1 1 arctan
2

x
s

logistic [Figure 27-7] 2 ( )sech
48 12

x 1 1 ( )tanh
2 2 12

x
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distribution probability function P(x) cumulative function F(x)

Boltzmann [Figure 27-8] 1 exp x 1 exp x

Rayleigh [Figure 27-9]

(4 ) /

2

2 2exp
2 4

x x 2

21 exp
4

x

log-normal [Figure 27-10]
2 2 22ln /

2
3

1exp ln
16

x
x

1 1 1erf ln
2 2 4

x

Maxwell [Figure 27-11]

(3 /8) 1

2 2

2 3 2

32 4expx x 2

2

2 4 4erf expx x x

Fermi-Dirac (upper signs)
Bose-Einstein (lower signs) ln(1 ) exp x

ln exp
1

ln(1 )
x x
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The vertical scale in all eight figures serves both the probability
and the cumulative curves, providing values of both F(x) and
2 P(x). The figures are scaled uniformly to permit intercomparison,
with the areas beneath all the red peaks representing unity in all
cases.

Many semiinfinite distributions (with x0 0, x1 ) that occur
in physics are listed in the table on the facing page and are displayed
in the accompanying graphs. The Boltzmann distribution (Ludwig
Boltzmann, Austrian theoretical physicist, 1844 1906) describes
the falloff in atmospheric pressure with height, as well as many
other phenomena in which a force is opposed by thermal agitation.
The expression for the radial analogue of normal distribution is
attributed to the English chemist/physicist John William Strutt,
1842 1919, who became Lord Rayleigh on his father’s death. Also
related to the normal distribution is the log-normal distribution which is often used to model the size distribution
of granular materials. On analyzing the motion of gas molecules, the Scottish mathematical physicist James Clerk
Maxwell (1831 1879) found their speeds obeyed the distribution that now bears his name. The Fermi-Dirac and
Bose-Einstein distributions govern the behaviors of subatomic particles.

Notice that in the Boltzmann, Rayleigh, and Maxwell distributions there is only one parameter, because the
mean and the standard deviation are proportional to each other. The and parameters are mutually
independent for the log-normal distribution; 2 was arbitrarily chosen for Figure 27-10. The and parameters
in the formulas for the Fermi-Dirac and Bose-Einstein distributions are related implicitly to the mean and variance
through the equations

diln(1 )
ln(1 )

27:14:4

and
2

2
2 2

2ln(1 )triln(1 ) diln (1 )
ln (1 )

27:14:5

which involve functions from Chapter 25.





This chapter and the next two chapters address the six so-called hyperbolic functions. The present chapter deals
with the two most important of the six: the hyperbolic cosine and the hyperbolic sine. These two functions are
interrelated by

2 2cosh ( ) sinh ( ) 1x x28:0:1

and by each being the derivative of the other [equations 28:10:1 and 28:10:2].

28:1 NOTATION

The names of these functions arise because of their complex algebraic
relationship [Section 32:11] to the cosine and sine functions. Their
association with the hyperbola is explained in Section 28:3.

The notations ch(x) and sh(x) sometimes replace cosh(x) and sinh(x).
Although they cause confusion, the capitalized symbolism Cos(x) and
Sin(x) is occasionally encountered.

28:2 BEHAVIOR

Both functions are defined for all arguments but, whereas the
hyperbolic sine adopts all values, the range of the hyperbolic cosine is
restricted to cosh(x) 1. As Figure 28-1 illustrates, both functions tend
exponentially towards ± as the argument acquires large magnitudes of
either sign.

A curve representing the hyperbolic cosine function f = cosh(x) has
the property that its slope df /dx at any point is equal to the length,
[Section 37:14] measured along the curve, from (x = 0, f = 1) to that point.
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It is this property that is responsible for the fact, established in Section 28:14, that a freely suspended rope or chain
adopts a shape described by a hyperbolic cosine.

28:3 DEFINITIONS

The hyperbolic cosine and sine functions are defined in terms of the exponential function by
exp( ) exp( )cosh( )

2
x xx28:3:1

and
exp( ) exp( )sinh( )

2
x xx28:3:2

Because the two functions may be represented hypergeometrically as the sums
2

1
0 2

1cosh( )
1 4

j

j jj

xx28:3:3

and
2

3
0 2

1sinh( )
1 4

j

j j j

xx x28:3:4

they may be synthesized from the L K+2 2 basis hypergeometric function [Section 43:14], as follows

0 1
2

1I 2 cosh 2x x28:3:5

0 3
2

11I 2 sinh 2
2

x x
x

28:3:6

A second-order differential equation and its solution are
2

2
1 22

d f f( ) f cosh( ) sinh( )
d

b x w bx w bx
x

28:3:7

were b, w1, and w2 are constants.
The (circular) sine and cosine functions [Chapter 32] are closely related to the circle, but it is less

straightforward to demonstrate the relationship of the hyperbolic sine and cosine to the hyperbola. However,
consider the two diagrams in Figure 28-2, which show cartesian graphs of the horizontal rectangular hyperbola
[Section 14:4] and the circle . Imagine the lines shown in blue to have started as2 1y x 21y x
horizontal diameters and pivoted about the origins, these rotating vectors having come to rest in the angled positions
shown. In so doing, each has swept out an area shown in green. Let this area (both segments) be ar in the hyperbolic
case and ar in the case of the circle. Then the points P and P , where the rotors terminate on their respective curves
in the first quadrants, have rectangular coordinates related to the areas, as follows

P POQ cosh( ) and PQ sinh( )x ar ary28:3:8

P PO Q cos( ) and P Q =sin( )x yar ar28:3:9
These relationship serve as geometric definitions of the circular and hyperbolic cosines and sines, and demonstrate
the kinship between the two families of functions.
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2 1x

21 x

2 1x

28:4 SPECIAL CASES

There are none.

28:5 INTRARELATIONSHIPS

The hyperbolic cosine function is even
cosh( ) cosh( )x x28:5:1

whereas the hyperbolic sine is an odd function
sinh( ) sinh( )x x28:5:2

The duplication and triplication formulas
2 2 2 2cosh(2 ) cosh ( ) sinh ( ) 2cosh ( ) 1 1 2sinh ( )x x x x x28:5:3

2sinh(2 ) 2sinh( )cosh( ) 2sinh( ) 1 sinh ( )x x x x x28:5:4
3cosh(3 ) 4cosh ( ) 3cosh( )x x x28:5:5

3 2sinh(3 ) 4sinh ( ) 3sinh( ) sinh( ) 4cosh ( ) 1x x x x x28:5:6

generalize to

( )

0
cosh( ) T cosh( ) cosh ( )

n
n k

n k
k

nx x x28:5:7

and

( ) 1 ( 1)
1

0

1sinh( ) sinh( )U cosh( ) cosh ( ) cosh ( )
sinh( )

n
n k n k

n k k
k

nx x x x x
x

28:5:8

where Tn and Un are Chebyshev polynomials [Chapter 22]. The Chebyshev tau coefficients are discussed in( )n
k

Section 22:6. The hyperbolic version of de Moivre’s theorem [Section 12:11]

cosh( ) sinh( ) cosh( ) sinh( ) exp( )nnx nx x x nx28:5:9

is also useful.
Equations 28:5:3 and 28:5:4 may be regarded as special cases of the argument-addition formulas
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cosh( ) cosh( )cosh( ) sinh( )sinh( )x y x y x y28:5:10
sinh( ) sinh( )cosh( ) cosh( )sinh( )x y x y x y28:5:11

From 28:5:3 one may derive the expressions

cosh( ) 1cosh
2 2
x x

28:5:12

and

cosh( ) 1sinh sgn( )
2 2
x xx28:5:13

for the hyperbolic functions of half argument, as well as the formulas

2 cosh(2 ) 1cosh ( )
2

xx28:5:14

and

2 cosh(2 ) 1sinh ( )
2

xx28:5:15

for the squares. These latter may be generalized to the expressions
( 1) / 2

1
0

( / 2) 1

1
0

1 cosh ( 2 ) 1,3,5,
2

cosh ( )
( 1)!! 1 cosh ( 2 ) 2,4,6,

!! 2

n

n
jn

n

n
j

n
n j x n

j
x

nn n j x n
jn

28:5:16

and
( 1) / 2

1
0

/ 2 ( / 2) 1

1
0

1 ( ) sinh ( 2 ) 1,3,5,
2

sinh ( )
( ) ( 1)!! 1 ( ) cosh ( 2 ) 2,4,6,

!! 2

n
j

n
jn

n n
j

n
j

n
n j x n

j
x

nn n j x n
jn

28:5:17

for any positive integer power of the hyperbolic cosine or sine.
The function-addition formulas

cosh( ) sinh( ) exp( )x x x28:5:18

cosh( ) cosh( ) 2cosh cosh
2 2

x y x yx y28:5:19

cosh( ) cosh( ) 2sinh sinh
2 2

x y x yx y28:5:20

sinh( ) sinh( ) 2sinh cosh
2 2

x y x yx y28:5:21

and the function-multiplication formulas
1 1sinh( )sinh( ) cosh( ) cosh( )
2 2

x y x y x y28:5:22



28:6 THE HYPERBOLIC COSINE cosh(x) AND SINE sinh(x) FUNCTIONS 273

1 1sinh( )cosh( ) sinh( ) sinh( )
2 2

x y x y x y28:5:23

1 1cosh( )cosh( ) cosh( ) cosh( )
2 2

x y x y x y28:5:24

complete our listing of intrarelationships between these most malleable functions.

28:6 EXPANSIONS

The hyperbolic cosine and sine functions may be expanded as infinite series
2 4 2

0
cosh( ) 1

2! 4! (2 )!

j

j

x x xx
j

28:6:1

3 5 2 1

0
sinh( )

3! 5! (2 1)!

j

j

x x xx x
j

28:6:2

or as infinite products
2 2 2 2

2 2 2 2 21
1 2

4 4 4cosh( ) 1 1 1 1
9 25 ( )j

x x x xx
j

28:6:3

2 2 2 2

2 2 2 2 2
1

sinh( ) 1 1 1 1
4 9 j

x x x xx x x
j

28:6:4

Each of these products may be written as where the r’s are the complex zeros of the function. In{1 ( / )}jx r
fact, these zeros are mostly imaginary and equal ±i /2, ±3i /2, ±5i /2, in the case of cosh(x) and 0, ±i , ±2i ,
±3i , for sinh(x).

The hyperbolic cosine and sine may also be expanded as series of modified Bessel functions [Chapter 49]:

0 2 4 6cosh( ) I ( ) 2I ( ) 2I ( ) 2I ( )x x x x x28:6:5

1 3 5sinh( ) 2I ( ) 2I ( ) 2I ( )x x x x28:6:6

28:7 PARTICULAR VALUES

x x 1 x ln 2 1 x 0 x ln 2 1 x 1 x

cosh(x) +
2 1
2

e
e

2 1 2 +
2 1
2

e
e

sinh(x)
21

2
e
e

1 0 1 +
2 1
2

e
e
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28:8 NUMERICAL VALUES

Equator’s hyperbolic cosine function and hyperbolic sine function routines (keywords cosh and sinh) return
accurate values for arguments with magnitudes as large as 710.

28:9 LIMITS AND APPROXIMATIONS

Definitions 28:3:1 and 28:3:2 show that as x , both functions approach [exp(x)]/2. As x , cosh(x)
approaches [exp( x)]/2, whereas sinh(x) approaches [ exp( x)]/2.

28:10 OPERATIONS OF THE CALCULUS

Differentiation and indefinite integration of cosh(bx) and sinh(bx) give
d cosh( ) sinh( )
d

bx b bx
x

28:10:1

d sinh( ) cosh( )
d

bx b bx
x

28:10:2

0

sinh( )cosh( )d
x bxbt t

b
28:10:3

0

cosh( ) 1sinh( )d
x bxbt t

b
28:10:4

The general formulas
( 1) / 2

2

0

( / 2) 1
0 2 1

0

( 1)!!sinh( ) (2 1)!!cosh ( ) 1,3,5,
!! (2 )!!

cosh ( )d
( 1)!! (2 )!!sinh( ) cosh ( ) 2,4,6,

!! (2 1)!!

n
j

x
jn

n
j

j

n x j x n
n j

t t
n jx x x n

n j

28:10:5

( 1) / 2 ( 1) / 2
2

0

/ 2 ( / 2) 1
0 2 1

0

( ) ( 1)!! ( ) (2 1)!!1 cosh( ) sinh ( ) 1,3,5,
!! (2 )!!

sinh ( )d
( ) ( 1)!! ( ) (2 )!!cosh( ) sinh ( ) 2,4,6,

!! (2 1)!!

n jn
j

x
jn

n jn
j

j

n jx x n
n j

t t
n jx x x n

n j

28:10:6

permit indefinite integration of integer powers of the hyperbolic sine and cosine functions. Alternative expressions
may be derived by integration of equations 28:5:16 and 28:5:17. Many integrals, such as those of tncosh(bt) and
tnsinh(bt) may be evaluated by first breaking the hyperbolic functions into their exp(x) and exp( x) components and
using formulas from Sections 26:10, 27:10, or 37:14. Integrals of (1/t)cosh(bt) and (1/t)sinh(bt) are the subject of
Chapter 38. The indefinite integrals of cosh (t) and sinh (t), where is an arbitrary power, are discussed in Section
58:14.

A large number of other indefinite and definite integrals of the hyperbolic cosine and hyperbolic sine functions
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exist; see Sections 2.4 and 3.5 of Gradshteyn and Ryzhik for these.
As with integrals, many quantities involving cosh or sinh terms may be Laplace transformed by first

decomposing the hyperbolic functions into their exponential components. The first three example below may be
established by that route

2 2
0

cosh( )exp( )d cosh( ) sbt st t bt
s b

28:10:7

2 2
0

sinh( )exp( )d sinh( ) bbt st t bt
s b

28:10:8

1 1

0

cosh( ) cosh( ) (1 )exp( )d ( ) ( ) 1
2

v v
v v

bt bt vst t s b s b v
t t

28:10:9

1
0

1sinh ( )exp( )d sinh ( ) B , 1 1
2 2

v v
v

s vbbt st t bt v v
b b

28:10:10

The fourth involves the incomplete beta function from Chapter 58.

28:11 COMPLEX ARGUMENT

Figures 28-3 and 28-4 show, respectively, the behaviors of the hyperbolic cosine and hyperbolic sine of
argument x+iy. The real and imaginary parts of these functions of complex argument are

Re cosh( ) cosh( )cos( ) and Im cosh( ) sinh( )sin( )x iy x y x iy x y28:11:1

Re sinh( ) sinh( )cos( ) and Im sinh( ) cosh( )sin( )x iy x y x iy x y28:11:2

Along the imaginary axis (that is, when x 0) the three-dimensional figures here and overleaf demonstrate the
development of sinusoidal behavior in the real part, for the hyperbolic cosine, and in the imaginary part, for the
hyperbolic sine. This is as expected because the x 0 versions of the above equations are
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cosh( ) cos( )iy y28:11:3
and

sinh( ) sin( )iy i y28:11:4
Inverse Laplace transforms involving the hyperbolic cosine and sine functions can frequently be deduced by

splitting the hyperbolic function into a pair of exponential functions. Others that cannot be treated in that way often
lead to exponential theta function or modified exponential theta functions [Section 27:14], or their derivatives or
integrals. Examples include

4 2

cosh coshexp( ) 1d ,
2 2sinh sinh

i

i

v b
v s v sts v ts b

i b b bs b s s b s
I28:11:5

1 2

cosh coshexp( ) 1d ,
2 2cosh cosh

i

i

v b
v s v sts v ts b

i b b bs b s s b s
I28:11:6

and

1 2

cosh coshexp( ) 1d ,
2 2sinh sinh

i

i

v b
v s v sts v ts b

i b v b bb s b s
I28:11:7

See Roberts and Kaufman for others.

28:12 GENERALIZATIONS

The Jacobian elliptic functions nc(k,x) and nd(k,x) may be regarded as generalizations of cosh(x), to which they
reduce when k 1. Likewise, sc(k,x) and sd(k,x) reduce to sinh(x) when k 1 and therefore generalize the hyperbolic
sine. See Chapter 63 for all these Jacobian elliptic functions.
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28:13 COGNATE FUNCTIONS

The expressions
2

2

2 2

coth( )1 csch ( )1 1cosh( ) 1 sinh ( )
sech( ) csch( ) 1 tanh ( ) coth ( ) 1

xx
x x

x x x x
28:13:1

2
2

2 2

sgn( ) 1 sech ( ) 1 tanh( ) sgn( )sinh( ) sgn( ) cosh ( ) 1
sech( ) csch( ) 1 tanh ( ) coth ( ) 1

x x x xx x x
x x x x

28:13:2

relate the hyperbolic cosine and sine to the other hyperbolic functions [Chapters 29 and 30].
Though they are defined for positive argument as modified Bessel functions [Chapter 50] of half-odd order, the

so-called modified (or hyperbolic) spherical Bessel functions of the first kind

1
2

i ( ) I ( )
2n nx x

x
28:13:3

are closely related to the hyperbolic cosine and hyperbolic sine functions. Early members of the family are

i0(x) i1(x) i2(x) i3(x)

sinh( )x
x 2

cosh( ) sinh( )x x
x x 2 2

sinh( ) 3 3cosh( )1x x
x x x 2 2 2

cosh( ) 15 sinh( ) 151 6x x
x x x x

and are shown in Figure 28-5. Others may be constructed via the recursion
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1 2
1 2i ( ) i ( ) i ( )n n n

nx x x
x

28:13:4

The recursion may be written “backwards”

1 2
3 2i ( ) i ( ) i ( )n n n

nx x x
x

28:13:5

to construct a family of which the initial members are

i 1(x) i 2(x) i 3(x) i 4(x)

cosh( )x
x 2

sinh( ) cosh( )x x
x x 2 2

cosh( ) 3 3sinh( )1x x
x x x 2 2 2

sinh( ) 15 cosh( ) 151 6x x
x x x x

and which is related by to modified Bessel functions. This family goes by the name1
2

i ( ) / 2 I ( )n nx x x
modified (or hyperbolic) spherical Bessel functions of the second kind and examples are also shown in Figure 28-5.
Numerical values from either family may be obtained via Equator’s modified spherical Bessel function routine
(keyword i).

28:14 RELATED TOPIC: the catenary

If a flexible rope of length L and weight W is suspended at
two points of equal height, separated by a chasm of width X, the
rope adopts a characteristic shape known as a catenary and
illustrated by the red curve in Figure 28-6. Here we demonstrate
that, in terms of rectangular coordinates erected as shown in the
figure, the catenary conforms to the equation

0 0

cosh 1Wy Wx
LT LT

28:14:1

where T0 is the tension in the rope at its lowest point. The
parameter W/T0 can be found by solving the implicit equation

0 0

sinh
2 2
W WX
T LT

28:14:2

and this parameter, through the equation
2

0 0
2

1
4

T TY L
W W

28:14:3

also determines the sag in the rope, the vertical distance Y between the suspension points and the rope’s lowest point.
For example, if a rope of 20 m length is suspended over a chasm of 10 m width, equation 28:14:2 is satisfied by W/T0

8.709 and the sag is Y 7.964 m.
Consider a small segment of the rope of length as in the exploded inset of Figure 28-6. There, the rope makes

an angle to the horizontal, so that the segment’s length is dx/cos( ) and its weight is (W/L)sec( )dx. The segment
is acted upon by three forces as represented by the three arrows. In addition to its weight, the other two forces are
the tensions T and T in the rope, below and above the segment.



28:14 THE HYPERBOLIC COSINE cosh(x) AND SINE sinh(x) FUNCTIONS 279

Because the rope is in equilibrium, the horizontal components of the forces must balance; that is
cos( ) cos( ) ( d )cos( d ) ( d ) cos( ) sin( )dT T T T T T28:14:4

where and (equal to +d ) are the angles so marked on the diagram and dT is the increment T T of tension
along the segment’s length. The Tcos( ) term cancels and the term dTd can be ignored. It follows that

d tan( )dT T28:14:5
which integrates to

0 sec( )T T28:14:6
where the constant of integration has been identified as T0, the tension in the rope at its nadir.

Likewise, the vertical components of the forces must balance and therefore,

sec( )d sin( ) sin( ) ( d )sin( d ) ( d ) sin( ) cos( )dW x T T T T T T
L

28:14:7

which, arguing as before, simplifies to (W/L)sec( )dx sin( )dT+Tcos( )d and combines with 28:14:5 into the
remarkably simple result formulated as the first equality in

0 0d d sec( )d d invgd( )W x LT LT LT28:14:8

The second equality in 28:14:8 follows from 28:14:6 and the third is a consequence of the definition [Section 33:15]
of the inverse gudermannian function.

Because W, L and T0 are all constants, integration of equation 28:14:8 yields Wx/LT0 invgd( ), which inverts
to give an expression for the angle and thence for the slope dy/dx of the rope:

0

dgd arctan
d

Wx y
LT x

28:14:9

Here gd is the gudermannian function [Section 33:15], one of the properties of which is that tan{gd(t)} sinh(t).
It follows that

0

d sinh dWxy x
LT

28:14:10

which integrates straightforwardly to 28:14:1, proving that a catenary has a shape matching a hyperbolic cosine.
The total length of the rope can be found by the integration [Section 39:14]

2/ 2 / 2
0

0 0/ 2 / 2

d 21 d cosh d sinh
d 2

X X

X X

y Wx LT WXL x x
x LT W LT

28:14:11

from which equation 28:14:2 follows.





The two functions treated here, which are interrelated by the formulas
2

2
2

sech ( )csch ( )
1 sech ( )

xx
x

29:0:1

and
2

2
2

csch ( )sech ( )
1 csch ( )

xx
x

29:0:2

are perhaps the least frequently encountered members of the six hyperbolic functions.

29:1 NOTATION

The notation cosech(x) is sometimes used for the hyperbolic
cosecant. Some authors admit only four hyperbolic functions, using
1/cosh(x) and 1/sinh(x) to represent the hyperbolic secant and
cosecant.

29:2 BEHAVIOR

Figure 29-1 provides maps of the two functions. The hyperbolic
secant sech(x) accepts any real argument x but its values are confined
to the narrow range 0 sech(x) 1. In contrast, both the domain and
the range of the hyperbolic cosecant are unlimited. The csch(x)
function encounters a discontinuity of the |+ variety at x 0.
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29:3 DEFINITIONS

The hyperbolic secant and hyperbolic cosecant are the reciprocals of the functions of Chapter 28 and this is how
they are usually defined:

1 2sech( )
cosh( ) exp( ) exp( )

x
x x x

29:3:1

1 2csch( )
sinh( ) exp( ) exp( )

x
x x x

29:3:2

Two differential equations and their solutions are

2 2d f cschf f 0 f ( )sechd
b b bx

x
29:3:3

29:4 SPECIAL CASES

There are none.

29:5 INTRARELATIONSHIPS

The hyperbolic secant and cosecant obey the reflection formulas
sech( ) sech( )x x29:5:1

csch( ) csch( )x x29:5:2
and the duplication formulas

2

2

sech ( )sech(2 )
2 sech ( )

xx
x

29:5:3

sech( )csch( )csch(2 )
2

x xx29:5:4

Other relationships may be derived via the equations of Section 28:5, but these are generally more complicated and
less useful than are the intrarelationships of the hyperbolic cosine or hyperbolic sine.

29:6 EXPANSIONS

The functions sech(x) and csch(x) may be expanded as power series
22 4 6 2

2
2

0 0

E5 61 4 4sech( ) 1 (2 1)
2 24 720 (2 )! 2 2

j j
j

j j

xx x x xx j x
j

29:6:1

and
3 5 2

2 1
22

1 0

1 7 31 1 2 (2 4 )csch( ) (2 ) B
6 360 15120 (2 )!

j j
j

j
j j

x x x xx j x x
x x x j

29:6:2
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The and numbers are defined in Chapter 3 and the Euler E and Bernoulli B numbers in Chapters 5 and 4
respectively.

Expansions as exponentials take the forms

0
sech( ) 2exp( ) 2exp( 3 ) 2exp( 5 ) 2 ( ) exp (2 1) 0j

j
x x x x j x x29:6:3

and

1
csch( ) 2sgn( ) exp( ) exp( 3 ) exp( 5 ) 2sgn( ) exp (1 2 ) 0

j
x x x x x x j x x29:6:4

As well, the hyperbolic secant and hyperbolic cosecant can be expanded as the partial fractions

22 2 2 2 2 2 2 210 2

4 12 20 (2 1)sech( ) ( )
4 9 4 25 4

j

j

jx
x x x j x

29:6:5

2 2 2 2 2 2 2 2 2

1 2 2 2csch( ) ( )
4 9

j

j

x x x xx
x x x x j x29:6:6

29:7 PARTICULAR VALUES

x = x 1 x ln 2 1 x 0 x ln 2 1 x 1 x

sech(x) 0 2

2
1

e
e

1
2

1
1
2 2

2
1

e
e

0

csch(x) 0 2

2
1

e
e

1 |+ 1 2

2
1

e
e

0

29:8 NUMERICAL VALUES

Equator’s hyperbolic secant function and hyperbolic cosecant function routines (keywords sech and csch) return
exact values of the sech(x) and csch(x) functions for all arguments of magnitude not greater than 709.

29:9 LIMITS AND APPROXIMATIONS

At large arguments of either sign, both functions decay exponentially in magnitude:
sech( ) 2expx x x29:9:1

csch( ) 2sgn( )expx x x x29:9:2

As its argument declines in magnitude, the hyperbolic cosecant obeys the limiting formula

0
lim csch( ) 1
x

x x29:9:3

irrespective of the sign of x.
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29:10 OPERATIONS OF THE CALCULUS

Differentiation of the hyperbolic secant or hyperbolic cosecant gives

2d sech( ) sech( ) tanh( ) sech( ) 1 sech ( )
d

x x x x x
x

29:10:1

2d csch( ) csch( )coth( ) csch( ) 1 csch ( )
d

x x x x x
x

29:10:2

The indefinite integration of these functions yields rather complicated results:

0

sech( )d arctan sinh( ) gd( )
x

t t x x29:10:3

where gd is the gudermannian function discussed in Section 33:14, and

csch( )d ln coth 0
2x

xt t x29:10:4

but their squares integrate more simply as

2

0

sech ( )d tanh( )
x

t t x29:10:5

and

2csch ( )d coth( ) 1 0
x

t t x x29:10:6

Indefinite integration of the square roots of the hyperbolic secant and cosecant function generates special cases of
the incomplete elliptic integral of the first kind [Chapter 62] in which the modulus equals .1/ 2

0

1sech( ) d 2 F ; sin( ) 1 sech( )
2

x

t t x29:10:7

0

1 csch( ) 1csch( ) d F ; cos( )
csch( ) 12

x xt t
x

29:10:8

For a generalization to arbitrary power, see Section 58:14.
Useful definite integrals include

0

sech( )d 2 ! ( 1) 0,1,2,nt t t n n n29:10:9

and

0

csch( )d 2 ! ( 1) 1,2,3,nt t t n n n29:10:10

where Chapter 3 describes the beta and lambda numbers.
Whereas the definite integral over 0 x of csch(x) diverges, this is not true of sech(x):

0

sech( )d
2

t t29:10:11

Between the same limits, the integrals of the square roots of both functions converge:
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0

sech( ) dt t g29:10:12

and

0

csch( ) d 2t t g29:10:13

where g is Gauss’s constant [Section 1:7]. These three integrals are the “complete” versions of the indefinite
integrals 29:10:3, 29:10:7, and 29:10:8.

The digamma function [Chapter 44] appears in expressions for the Laplace transforms of the hyperbolic secant
and its square:

0

1 3sech( )exp( )d sech( )
2 4 4

s b s bbt st t bt
b b b

29:10:14

2 2
2

0

2 1sech ( )exp( )d sech ( )
2 4 4

s s b sbt st t bt
b b b b

29:10:15

29:11 COMPLEX ARGUMENT

The real and imaginary parts of the hyperbolic secant of complex argument, displayed in Figure 29-2, are
contained in the formula

2cosh( )cos( ) 2 sinh( )sin( )sech( )
cosh(2 ) cos(2 )
x y i x yx iy

x y
29:11:1

Note that despite the discontinuities that occur on the imaginary axis at , the imaginary part3 51
2 2 2, , ,y

of sech(0+iy) is zero elsewhere. For purely imaginary argument
2cos( )sech( )

1 cos(2 )
yiy

y
29:11:2
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csch( )
8

bs
s

I

sech( )bs
s

I

The real and imaginary parts of the hyperbolic cosecant of complex argument, displayed in Figure 29-3, are
contained in the formula

2sinh( )cos( ) 2 cosh( )sin( )csch( )
cosh(2 ) cos(2 )

x y i x yx iy
x y

29:11:3

Discontinuities occur on the imaginary axis at , but the real part of csch(0+iy) is zero0, , 2 , 3 ,y
elsewhere. For purely imaginary argument

2 sin( )csch( )
1 cos(2 )

i yiy
y

29:11:4

Some inverse Laplace transforms relating to the hyperbolic secant and hyperbolic cosecant yield exponential
theta functions [Section 27:14] and variants thereof:

2 2

sech( ) exp( ) sech( ) 1 1d ,
2 2

i

i

v s ts v s ts
i v vs s

I29:11:5

42 2
0

1csch( ) ,
2

tv s
v vI29:11:6

Others lead to piecewise-linear functions of t as exemplified in
Figure 29-4.

29:12 GENERALIZATIONS

The Jacobian elliptic functions cn(k,x) and dn(k,x), discussed in
Chapter 63, are generalizations of sech(x), while cs(k,x) and ds(k,x)
similarly generalize csch(x).
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29:13 COGNATE FUNCTIONS

The following expressions relate the hyperbolic secant and cosecant to the other hyperbolic functions [Chapters
28 and 30]:

2
2

2 2

csch( ) coth ( ) 11 1sech( ) 1 tanh ( )
cosh( ) coth( )1 sinh ( ) 1 csch ( )

x x
x x

x xx x
29:13:1

2
2

2 2

1 tanh ( )1 sgn( ) sgn( )sech( )csch( ) sgn( ) coth ( ) 1
sinh( ) tanh( )cosh ( ) 1 1 sech ( )

xx x xx x x
x xx x

29:13:2

29:14 RELATED TOPIC: representation of hyperbolic functions through triangles

Figure 29-5 depicts three right-angled triangles that are similar to each other; that is, of the same shape but
different sizes. If the sides marked “1” are all of unity length, then the remaining six sides all have lengths
corresponding to the six hyperbolic functions [Chapters 28, 29, 30]. With the aid of this figure, hyperbolic functions
can be interrelated either by similarity arguments or by the well-known theorem of Pythagoras (though it appears
to have been applied a millennium earlier, Pythagoras of Samos, 569 475 B.C., provided the first proof). By
ratioing the green and blue sides of the first two triangles, for example, similarity makes it evident that

sech( )
tanh( ) sinh( )

1
x x
x

29:14:1

By applying Pythagoras’s theorem to the third triangle, one easily arrives at
2 2cothcsch ( 1)) (x x29:14:2

In fact, all the information needed to construct equations 28:13:1, 28:13:2, 29:13:1, 29:13:2, 30:13:1, and 30:13:2
is available by inspection of Figure 29-5.

The figure raises the question “What is x?” In the corresponding diagram [Section 33:14] for circular functions,
the argument x equals the angle marked , but for the sextet of hyperbolic functions there is no triangular feature
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that corresponds directly to the argument x and the angles. There is, however, an indirect relationship to the angle
via the inverse gudermannian function [Section 33:14]; in fact

invgd( )x29:14:3
For example, when /4,

invgd ln 1 2 0 88137
4

x .29:14:4



The two functions of this chapter are the reciprocals of each other
tanh( )coth( ) 1x x30:0:1

and are closely related to the other hyperbolic functions [Chapters 28 and 29].

30:1 NOTATION

The symbolism th(x) sometimes replaces tanh(x) and cth(x) or ctnh(x) sometimes replaces coth(x). The
misleading capitalized notations Tan(x) and Cot(x) are occasionally encountered.

30:2 BEHAVIOR

The hyperbolic tangent and hyperbolic cotangent functions are defined for all real values of their arguments,
but each is restricted in its range. The hyperbolic tangent adopts values only within 1 tanh(x) 1, whereas the
coth(x) function assumes all values 1 and +1.

As shown in Figure 30-1, both functions lie exclusively in the first and third quadrants and both approach sgn(x)
as x ± .

30:3 DEFINITIONS

The most usual definitions of the hyperbolic tangent and hyperbolic cotangent functions are in terms of the
functions of Chapter 28 or their exponential equivalents:

sinh( ) exp(2 ) 1tanh( )
cosh( ) exp(2 ) 1

x xx
x x

30:3:1
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1coth( )x x

and
cosh( ) exp(2 ) 1 1coth( )
sinh( ) exp(2 ) 1 tanh( )

x xx
x x x

30:3:2

The hyperbolic tangent may be defined with respect to the
geometry of a rectangular hyperbola. Refer to Figure 28-2. With the
shaded area ar serving as argument, the hyperbolic tangent is the
length of the straight line connecting points R and A:

RA tanh( )ar30:3:3
In the diagram, point A is the apex of the rectangular hyperbola and
R is the point on the rotating vector vertically above A.

Each of the tanh(x) and coth(x) functions satisfies the differential
equation

2d f 1 f
dx

30:3:4

providing yet another definition.

30:4 SPECIAL CASES

There are none.

30:5 INTRARELATIONSHIPS

Both functions are odd:
f ( ) f ( ) f tanh or cothx x30:5:1

The duplication formulas

2

2 tanh( ) 2tanh(2 )
1 tanh ( ) tanh( ) coth( )

xx
x x x

30:5:2

2coth ( ) 1 coth( ) tanh( )coth(2 )
2coth( ) 2

x x xx
x

30:5:3

are special cases of the argument-addition expressions
tanh( ) tanh( )tanh( )

1 tanh( ) tanh( )
x yx y

x y
30:5:4

and
1 coth( )coth( )coth( )
coth( ) coth( )

x yx y
x y

30:5:5

The equations in this paragraph may be used to build formulas for tanh(3x), coth(4x), etc.
The half-argument formulas

2
21 1 tanh ( )

tanh coth( ) sgn( ) coth ( ) 1 coth( ) csch( )
2 tanh( )

xx x x x x x
x

30:5:6
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and
2

2 1 1 tanh ( )
coth coth( ) sgn( ) coth ( ) 1 coth( ) csch( )

2 tanh( )
xx x x x x x

x
30:5:7

are useful.
The sums and differences of the functions of this chapter may be expressed in terms of hyperbolic sines and

hyperbolic cosines:
sinh( )tanh( ) tanh( )

cosh( )cosh( )
x yx y

x y
30:5:8

cosh( )coth( ) tanh( )
sinh( )cosh( )

x yx y
x y

30:5:9

sinh( )coth( ) coth( )
sinh( )sinh( )

x yx y
x y

30:5:10

30:6 EXPANSIONS

The hyperbolic tangent and hyperbolic cotangent functions may be expanded as power series
3 5 7 2

2 2
2

1 1

(4 1)B2 17 2 4 1tanh( ) (2 ) (4 )
3 15 315 (2 )! 2 2

j j
j j

j j

x x x xx x j x x
x x j

30:6:1

3 5 2
2 2

2
1 0

B1 2 1 2 1coth( ) (2 ) (4 )
3 45 945 (2 )!

j
j j

j j

x x x xx j x x
x x x x j

30:6:2

Here, either the lambda and zeta numbers [Chapter 3] or the Bernoulli numbers [Chapter 4] can serve as coefficients.
The functions may be expanded as rapidly convergent Laurent series of exponentials [Section 27:13]:

1
2tanh( ) 2sgn( ) exp 2 exp 4 exp 6 sgn( ) ( ) exp 2j

j
x x x x x x jx30:6:3

1
2coth( ) 2sgn( ) exp 2 exp 4 exp 6 sgn( ) exp 2

j
x x x x x x jx30:6:4

The following partial-fraction expansions hold:

2 2 2 2 2 2 2 2 2
0

8 8 8 8tanh( )
4 9 4 25 4 (2 1) 4j

x x x xx
x x x j x30:6:5

2 2 2 2 2 2 2 2 2

1 2 2 2coth( )
4 9 j

x x x xx
x x x x j x30:6:6

as well as the continued-fraction expansion
2 2 2

tanh( )
1 3 5 7
x x x xx30:6:7
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30:7 PARTICULAR VALUES

x = x 1 x ln 2 1 x 1
2

x 0 x 1
2

x ln 2 1 x 1 x

tanh(x) 1
2

2

1
1

e
e

2
1
1

e
e

0
1
1

e
e 2

2

2

1
1

e
e

1

coth(x) 1
2

2

1
1

e
e

1
2

1
1

e
e

|+
1
1

e
e

1
2

2

2

1
1

e
e

1

30:8 NUMERICAL VALUES

Equator’s hyperbolic tangent function and hyperbolic cotangent function routines (keywords tanh and coth)
can provide exact values for all arguments that can be input.

The hyperbolic tangent function rapidly approaches unity as its argument increases. Should accurate values of
1 tanh(x) be needed for large x, use the formula

1 tanh( ) 2 exp( 2 ) exp( 4 ) exp( 6 )x x x x30:8:1

30:9 LIMITS AND APPROXIMATIONS

Close to an argument of zero, one or more early terms in expansions 30:6:1 and 30:6:2 provide approximations.
Likewise for arguments of large magnitude, early terms in 30:6:3 and 30:6:4 suffice.

30:10 OPERATIONS OF THE CALCULUS

Differentiation and indefinite integration give

2 2d tanh( ) sech ( ) 1 tanh ( )
d

bx b bx b bx
x

30:10:1

2 2d coth( ) csch ( ) 1 coth ( )
d

bx b bx b bx
x

30:10:2

0

1tanh( )d ln cosh( )
x

bt t bx
b

30:10:3

0

0coth( )d ln sinh( ) 0 ln 1 2 0 88137 35870 19543
x

x

t t x x x30:10:4

coth( ) 1 d ln 1 exp( 2 ) 0
x

t t x x30:10:5
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1 tanh( ) d ln 1 exp( 2 )
x

t t x30:10:6

2

0

tanh ( )d tanh( )
x

t t x x30:10:7

2
2

1

2coth ( )d coth( )
1

x

t t x x
e

30:10:8

Some Laplace transforms of the hyperbolic tangent and hyperbolic cotangent functions include

0

1 2 1tanh( )exp( )d tanh( )
2 4 4

s b sbt st t bt
b b b s

30:10:9

1
2

1
0

(1 , ) 1coth( )exp( )d coth( ) (1 ) 0
2

v v
v v

v st t st t t t v v
s

30:10:10

and involve functions from Chapters 44, 43, and 64.

30:11 COMPLEX ARGUMENT

Figure 30-2 shows the real and imaginary parts of the hyperbolic tangent of a complex argument z, which in
equation form are

2 2

cosh( )sinh( ) sinh(2 )Re tanh( )
sinh ( ) cos ( ) cosh(2 ) cos(2 )

x x xx iy
x y x y

30:11:1

and

2 2

cos( )sin( ) sin(2 )Im tanh( )
sinh ( ) cos ( ) cosh(2 ) cos(2 )

y y yx iy
x y x y

30:11:2
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coth( )
4

bs
s

I

tanh( )bs
s

I

The corresponding formulas for the hyperbolic cotangent, shown in Figure 30-3, follow from

2 2

cosh( )sinh( ) cos( )sin( ) sinh(2 ) sin(2 )coth( )
sinh ( ) sin ( ) cosh(2 ) cos(2 )

x x i y y x i yx iy
x y x y

30:11:3

These equations imply, and the figures confirm, that both functions are periodic in y, with a period of . Moreover,
comparison of Figures 30-2 and 30-3 suggests that tanh(z) and coth(z) differ only by translation along the imaginary
axis and indeed

1
2coth( ) tanh ( )x iy x i y30:11:4

For a purely imaginary argument
sin(2 )tanh( )

1 cos(2 )
i yiy

y
30:11:5

and
sin(2 )coth( )

1 cos(2 )
i yiy

y
30:11:6

Some inverse Laplace transforms of the hyperbolic tangent
function and the hyperbolic cotangent function give discontinuous
functions such as those illustrated in Figure 30-4. Others yield
exponential theta functions of zero period [Section 27:13]

2 2

tanh tanhexp( ) 1d 0,
2

i

i

b s b sts ts
i b bs s

I30:11:7

3 2

coth cothexp( ) 1d 0,
2

i

i

b s b sts ts
i b bs s

I30:11:8
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30:12 GENERALIZATIONS

The Jacobian elliptic functions sn(k,x) and ns(k,x) [Chapter 63] may be regarded as generalizations of tanh(x)
and coth(x) respectively. As k 1, sn(k , x) tanh(x) and ns(k , x) coth(x).

30:13 COGNATE FUNCTIONS

The expressions
2

2

2 2

cosh ( ) 1sinh( ) sgn( ) 1tanh( ) sgn( ) 1 sech ( )
sgn( )cosh( ) coth( )1 sinh ( ) 1 csch ( )

xx xx x x
x x xx x

30:13:1

and
2

2

2 2

1 sinh ( ) sgn( )cosh( ) sgn( ) 1coth( ) sgn( ) 1 csch ( )
sinh( ) tanh( )cosh ( ) 1 1 sech ( )

x x x xx x x
x xx x

30:13:2

relate the tangent and cotangent to other members of the hyperbolic family. Figure 29-5 is useful in expressing these
relationships.

30:14 RELATED TOPIC: the Langevin function

The Langevin function (Paul Langevin, French physicist, 1872 1946)
1coth( )x
x

30:14:1

is important in the theory of dielectrics, where it arises as the averaging procedure

0

0

exp cos( ) sin cos d exp( )d
1coth cos( )

exp cos( ) sin d exp( )d

x

x
x

x

x t t t
x t x

x
x x t t

30:14:2

applied to dipoles in an electric or magnetic field. Equator has a Langevin function routine with keywordLangevin.
Figure 30-1 shows a graph of the Langevin function and equation 30:6:2 can be adapted to express its power

series expansion in two equivalent ways, involving either the zeta or Bernoulli numbers. The continued fraction
expression

2 2 2 21 1 1 1 1
3 15 35 63 991coth( )
1 1 1 1 1

x x x x x
x

x
30:14:3

applies. The Langevin function itself, and its reciprocal, may be expanded as the partial fractions:

2 2 2
1

1 1coth( ) 2
j

x x
x x j30:14:4

2 2
1

1 3 12
coth( ) 1/ r (1)n n

x
x x x x30:14:5
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In the latter expansion rn(1) is the nth root of the equation tan(x) x [Section 34:7].
Formulas for the indefinite integral and Laplace transform of the Langevin function are

0

1 sinh( )coth( ) d ln
x xt t

t x
30:14:6

and

0

1 1 1coth( ) exp( )d coth( ) ln
2 2
s st st t t

t t s
30:14:7

where is the digamma function [Chapter 44].



There are six inverse hyperbolic functions – the inverse hyperbolic sine, the inverse hyperbolic cosine, the
inverse hyperbolic secant, the inverse hyperbolic cosecant, the inverse hyperbolic tangent, and the inverse hyperbolic
cotangent. Each of these functions can be replaced by any one of the other five, provided that the argument is
changed in accord with the table that follows.

f arsinh f arcosh f arsech f arcsch f artanh f arcoth

arsinh(x) f(x) 2f 1 x
2

1f
1 x

1f
x 2

f
1

x
x

21
f

x
x

arcosh(x)
x 1

2f 1x f(x)
1f
x 2

1f
1x

2 1f x
x 2

f
1

x
x

arsech(x)
0 x 1

21
f

x
x

1f
x

f(x)
2

f
1

x
x

2f 1 x
2

1f
1 x

arcsch(x)
0x

1f
x

21
f

x
x 2

f
1

x
x

f(x)
2

1f
1 x

2f 1 x

artanh(x)
1 x 1 2

f
1

x
x 2

1f
1 x

2f 1 x
21

f
x

x
f(x)

1f
x

arcoth(x)
|x| > 1 2

1f
1x 2

f
1

x
x

2 1f x
x

2f 1x 1f
x

f(x)

In this table represents sgn(x).
The inverse hyperbolic sine, cosine, and tangent are the most commonly encountered of the six and, in some

of the sections of this chapter, concentration is on these three to the exclusion of the others.
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31:1 NOTATION

The prefix “ar” connotes “area” and its significance stems from the unity-radius rectangular hyperbola in
Figure 28-2. In the text accompanying that diagram, it is shown that a particular length x could be defined, for
example, as the hyperbolic cosine of an area ar.

cosh( ) cosh( )x area ar31:1:1
By virtue of the meaning of “inverse function” [Section 0:3], the area ar becomes the inverse of hyperbolic cosine
of x and an appropriate notation for this inverse function is therefore “arcosh(x)”, signifying the area associated with
the hyperbolic cosine function:

inverse hyperbolic cosine of arcosh( )ar x x31:1:2
The notations argcosh(x), arccosh(x), arch(x), and cosh 1(x) all find use as alternatives to arcosh(x), with

corresponding usages for the other five inverse hyperbolic functions. Similar notations with a capitalized initial letter
– Arcosh(x), Arch(x), Cosh 1(x), etc. – are sometimes used synonymously with arcosh(x), but more often these
notations refer to the multiple-valued functions addressed in Section 31:11.

31:2 BEHAVIOR

Although the six inverse hyperbolic functions, illustrated in Figure 31-1, have diverse behaviors, they all adopt
real values only in the first and third quadrants [see Section 0:2 for the significance of “quadrant”].

The inverse hyperbolic sine function has the simplest behavior of the six. It is unlimited in its domain of x and
itself adopts all values. The inverse hyperbolic cosecant, arcsch(x), has two branches as mapped in Figure 31:1; it
shares the sign of its argument and has a discontinuity of the |+ variety at x 0.
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2

1
1 t 2

1
1t

2

1
1t t

The inverse hyperbolic cosine is defined here for argument x 1, although some authors extend its domain of
definition to |x| 1 via arcosh( x) arcosh(x). Likewise the inverse hyperbolic secant is treated in this Atlas as
having a domain of only 0 x 1, though you may encounter its extension to 1 x 0 with arsech( x) arsech(x).
Both arcosh and arsech are invariably nonnegative.

The domain of the inverse hyperbolic tangent is 1 x 1 and the value of the function approaches ± as
x ±1. The inverse hyperbolic cotangent has two branches. For 1 x , arcoth(x) is positive, whereas it is
negative when x 1, and undefined as a real function in the 1 < x < 1 gap.

31:3 DEFINITIONS

Definitions based on the geometry of the rectangular hyperbola are mentioned in Section 31:1, but the most
usual definitions fall into three distinct categories: as inverses of the hyperbolic functions, as indefinite integrals of
functions from Chapters 13 15, and as logarithms of modified argument.

Four of the six inverse hyperbolic function are defined straightforwardly as the inverse function of the
corresponding hyperbolic functions:

if sinh( ) then arsinh( )x f f x31:3:1
if csch( ) then arcsch( )x f f x31:3:2
if tanh( ) then artanh( )x f f x31:3:3
if coth( ) then arcoth( )x f f x31:3:4

but, to avoid doubly valued functions, it is necessary to restrict the domain of the inverse hyperbolic cosine and
secant functions:

if cosh( ) and 0 then arcosh( )x f x f x31:3:5
if sech( ) and 0 then arsech( )x f x f x31:3:6

Not all authorities apply such restrictions.
The following indefinite integrals, illustrated in the small figures, define the inverse hyperbolic functions

2
0

darsinh( )
1

x tx
t

31:3:7

2
1

darcosh( ) 1
1

x tx x
t

31:3:8

1

2

darsech( ) 0 1
1x

tx x
t t

31:3:9
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2

1
1t t

2

1
1 t

2

1
1t

2

2

d 0
1arcsch( )

d 0
1

x
x

t x
t tx

t x
t t

31:3:10

2
0

dartanh( ) 1 1
1

x tx x
t

31:3:11

2

2

d 1
1

arcoth( )
d 1

1

x
x

t x
t

x
t x

t

31:3:12

Logarithmic functions of diverse algebraic arguments provide what are probably the most useful definitions of
the inverse hyperbolic functions:

2arsinh( ) ln 1x x x31:3:13

2arcosh( ) ln 1 1x x x x31:3:14

21 1
arsech( ) ln 0 1

x
x x

x
31:3:15

2

1 1arcsch( ) ln 1x
x x

31:3:16

1 1 1artanh( ) ln ln 1 1
1 2 1

x xx x
x x

31:3:17

1 1 1arcoth( ) ln ln 1
1 2 1

x xx x
x x

31:3:18

Those inverse hyperbolic functions that are expansible hypergeometrically can be synthesized [Section 43:14],
provided 0 x 1. Examples include
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1
2

3
2

artanh1
1

x

x x
31:3:19

1 1
2 2

3
2

arsinh1 1
11 1

x

x x x
31:3:20

3
21 ln(1 ) 4 2 11 ln arcosh

2 21
x

x x x x x
31:3:21

31:4 SPECIAL CASES

When its argument is an odd integer, the inverse hyperbolic cotangent reduces to half the difference of the
logarithms of two consecutive integers. This rule, exemplified by , is1

2arcoth(3) ln(2)

1 ln( 1) ln( )arcoth 2 1 ln 1 1,2,3,
2

n nn n
n

31:4:1

In fact, this formula, a consequence of definition 31:3:18, applies when n is replaced by any nonzero real number
whatsoever.

31:5 INTRARELATIONSHIPS

The table in this chapter’s preamble lists the multifarious relationships between different members of the inverse
hyperbolic function family. Here we address instances of relationships between values of a single function at two
dissimilar arguments.

Four of the six inverse hyperbolic functions are odd
f ( ) f ( ) f arsinh, arcsch, artanh, arcothx x31:5:1

but no reflection formula applies to arcosh or arsech.
Several function-addition/subtraction formulas exist for the inverse hyperbolic functions. These include

2 2arsinh( ) arsinh( ) arsinh 1 1x y x y y x31:5:2

2 2arsinh( ) arcosh( ) arsinh 1 1x y xy x y31:5:3

2 2arcosh( ) arcosh( ) arcosh 1 1x y xy x y31:5:4

artanh( ) artanh( ) artanh
1
x yx y

xy
31:5:5

1artanh( ) arcoth( ) artanh xyx y
x y

31:5:6

and
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1arcoth( ) arcoth( ) arcoth xyx y
x y

31:5:7

A great many more intrarelationships can be developed from these by using the equivalences tabulated in Section
31:0. Of course, all arguments must lie in acceptable domains for these formulas to be applicable.

Consequences of formula 31:4:1 are the expressions
1

2 arcoth 2 1 ln( ) ln( ) 1, 2, 3,
m

j n
j m n m n n n31:5:8

and
1 1 12 arcoth 2 1 2 artanh ln( ) , 1,2,3,

2 1

nm nm

j n j n
j m n m

j
31:5:9

for the sums of finite series of inverse hyperbolic cotangents of odd integers.

31:6 EXPANSIONS

The following power series apply:
13 5 7 2 1
2 2
3

0 0 2

artanh( ) 1
3 5 7 2 1

j jj

j j j

x x x xx x x x x
j

31:6:1

1 13 5 7 2 1
2 2 2

3
0 0 2

3 5 ( ) (2 1)!!arsinh( ) 1
6 40 112 (2 )!!(2 1) 1

j j jj j

j j j j

x x x j xx x x x x
j j

31:6:2

3
2

2 4 6 2 2 2
1 0

11 3 5 (2 1)!! 1 1ln(2 ) arcosh( ) 1
4 32 96 2 (2 )!! 4 2 2

j
j j

j
j j j j

jx x x
x x x j j x x x

31:6:3

3
2

2 4 2 2 2
1 0

11 3 ( ) (2 1)!! 1 1ln(2 ) sgn( )arsinh( ) 1
4 32 2 (2 )!! 4 2 2

jj
j j

j
j j j j

jx x x x
x x j j x x x

31:6:4

Notice that the final expressions in 31:6:1 4 confirm that the left-hand members of these four equations are
hypergeometric functions [Section 18:14]. Replacing x by 1/x in these four series provides expansions for arcoth(x),
arcsch(x), ln(2/x) arsech(x), and ln(2/|x|) sgn(x)arcsch(x).

The inverse hyperbolic tangent and inverse hyperbolic sine may be expanded as the continued fractions:
2 2 2 2 24 9 16 25artanh( )

1 3 5 7 9 11
x x x x x xx31:6:5

2 2 2 2 2 2 22 2 12 12 30 30 56arsinh( )
1 3 5 7 9 11 13 15
x x x x x x x xx31:6:6

31:7 PARTICULAR VALUES

The values of certain pairs of inverse hyperbolic functions coalesce when the squares of their arguments equal
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the golden section [given by see Section 23:14] or its reciprocal. Denoted in the table by or , the( 5 1) / 2,
values acquired at these points of coalescence are

ln 1 0 72181 77375 89405.31:7:1

or

ln 1 1 0612 75061 90504.31:7:2

See Section 35:7 for a connection to the “golden triangle”.

x = x x 1 x 1
x 0 x 1

x 1 x x

arsinh(x) ln 2 1 0 ln 2 1

arcosh(x) undef undef undef undef undef undef 0

arsech(x) undef undef undef undef + 0 undef undef

arcsch(x) 0 ln 2 1 |+ ln 2 1 0

artanh(x) undef undef 0 + undef undef

arcoth(x) 0 undef undef undef + 0

The entry “undef” in the table means that the function is not defined as a real quantity at the argument in question.

31:8 NUMERICAL VALUES

Equator’s keywords for the inverse hyperbolic functions are simply the six letters of the function’s symbol. For
example, arsinh is the keyword for Equator’s inverse hyperbolic sine function routine. Generally, an algorithm
based on equations 31:3:13 18 is used in each of these routines, but formulas based on series from Section 31:6 or
31:9 are substituted as the argument approaches the limits of its domain.

31:9 LIMITS AND APPROXIMATIONS

For large positive arguments, arsinh(x) and arcosh(x) both approach ln(2x) as a limit and are well approximated
by

2 4

1 3arsinh( ) sgn( ) ln 2 large
4 32

x x x x
x x

31:9:1

and

2 4

1 1arcosh( ) ln 2 large positive
4 16

x x x
x x

31:9:2

In the same limit, arcoth(x) and arcsch(x) approach 1/x and corresponding approximations are
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3 5

1 1 1arcoth( ) large
3 5

x x
x x x

31:9:3

and

3 5

1 1 3arcsch( ) large
6 40

x x
x x x

31:9:4

These approximations originate by truncating series from Section 31:6.
For small magnitudes of x, the following approximations apply:

2 42 3arcsch( ) sgn( ) ln small
4 32
x xx x x

x31:9:5

and
2 42 3arsech( ) ln small positive

4 32
x xx x

x
31:9:6

Four of the inverse hyperbolic functions approach either zero or infinity as their arguments approach unity from
one directions or the other, as Figure 31-1 makes clear. Similar limits afflict artanh(x) and arcoth(x) as x approaches

1. Useful approximations that hold during these approaches, becoming exact in the limits, are:

1arcosh( ) (13 ) ( 1) small and positive
72
xx x x31:9:7

1arsech( ) (17 5 ) (1 ) small and positive
72

xx x x31:9:8

1 1sgn( )artanh( ) ln 1 small
2 2 2

x xxx x31:9:9

and

1 1sgn( )arcoth( ) ln 1 small
2 2 2

x xxx x31:9:10

31:10 OPERATIONS OF THE CALCULUS

The derivatives of the six inverse hyperbolic functions are

f arsinh f arcosh f arsech f arcsch f artanh f arcoth

d f ( )
d

x
x 2

1
1 x 2

1
1x 2

1
1x x 2

1
1x x 2

1
1 x 2

1
1x

while their indefinite integrals are

2

0

arsinh( )d arsinh( ) 1 1
x

t t x x x31:10:1
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2

1

arcosh( )d arcosh( ) 1 1
x

t t x x x x31:10:2

1

arsech( )d arccos( ) arsech( ) 0 1
x

t t x x x x31:10:3

1

arcsch( )d arcsch( ) arsinh( ) ln 3 8 0
x

t t x x x x31:10:4

2

0

artanh( )d artanh( ) ln 1 1
x

t t x x x x31:10:5

and
2

2

1arcoth( )d arcoth( ) ln 1
27

x xt t x x x31:10:6

The semiderivative [Section 12:14]
1

2

1
2

d 1artanh
2 1d

x
xx

31:10:7

links the inverse hyperbolic tangent to a simple algebraic function.
Some definite integrals and Laplace transforms of the inverse hyperbolic functions include:

1 2

0 1

artanh( ) arcoth( )d d
8

t tt t
t t

31:10:8

0 0
0

arsinh exp d arsinh( ) h Y
2

s sbt st t bt
s b b

31:10:9

and

0
0

1arcosh 1 exp d arcosh(1 ) exp Ks sbt st t bt
s b b

31:10:10

Zero-order instances of functions from Chapters 57, 54 and 51 occur in these transforms.

31:11 COMPLEX ARGUMENT

To indicate that the function is multivalued, the symbol of an inverse hyperbolic function is customarily
capitalized, as in Arsinh(x+iy), when its argument is complex. Expressing such a function as its real and imaginary
values can be accomplished through the logarithmic equivalent [formulas 31:3:13 18], followed by recourse to
equations 25:11:2 and 25:11:3. The results are excessively complicated and no example will be presented here.
However, the principal values of the real and imaginary parts of Arsinh(x+ iy), Arcosh(x+ iy), and Artanh(x+ iy) are
shown graphically in Figures 31-8, 31-9, and 31-10. Observe the discontinuities in the real part of the inverse
hyperbolic sine function and in the imaginary parts of arcosh(x+ iy) and artanh(x+ iy). Note that the initial letter of
the symbol is not capitalized when the principal value is being represented.
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The inverse hyperbolic functions of purely imaginary argument, corresponding to a section through the figures
along the imaginary axis (where x 0), exhibit the behaviors shown in the panel below

arsinh(iy) arcsch(iy) arcosh(iy) arsech(iy) artanh(iy) arcoth(iy)

i arcsin(y) i arccsc(y) 1
2arsinh( )y i 1

2arcsch( )y i i arctan(y) i arccot(y)

In four cases, the result of the operation is an imaginary version of an inverse circular function [Chapter 35].
Inverse Laplace transformation is not commonly applied to inverse hyperbolic functions, but one interesting

instance is

exp( ) sin( / )arcoth( ) d arcoth( ) sinc
2

i

i

ts t b tbs s bs
i t b b

I31:11:1

where sinc( ) is the sampling function [Section 32:13].

31:12 GENERALIZATIONS

The inverse hyperbolic tangent is a special case of the generalized logarithm [Section 25:12] and of the
incomplete beta function [Chapter 58]

1
2

21
22

sgn( ) 1 sgn( )artanh( ) ln B , 0 , 1 1
2 1 2

x xx x x
x

31:12:1

The inverse hyperbolic sine is an instance of the Gauss hypergeometric function [Chapter 60]
231 1

2 2 2arsinh( ) F , , , 1 1x x x x31:12:2

31:13 COGNATE FUNCTIONS

The functions of this chapter have much in common with logarithms and with the inverse circular (or inverse
trigonometric) functions of Chapter 35.





This chapter is one of the longest in the Atlas, befitting the paramount importance of the two functions
addressed. Not only are these functions themselves periodic, but they are the units from which all other periodic
functions [Chapter 36] may be built. The cosine function and sine function are interrelated by

2 2cos ( ) sin ( ) 1x x32:0:1

and by

cos( ) sin
2

x x32:0:2

and, apart from a sign change in one case, by each being the derivative of the other.

32:1 NOTATION

The symbols cos(x) and sin(x) are universal. In some computer codes, Cos and Sin substitute for cos and sin,
but when these capitalized symbols are used in mathematics, they often refer to the functions of Chapter 28, not to
those of the present chapter.

In this chapter, as throughout the Atlas, x is the standard symbol for a real argument. However, the arguments
of the cosine and sine functions [and of the functions addressed in Chapters 33 and 34] are often regarded as angles,
rather than as numbers to which no special significance is to be attached. We shall write cos( ) and sin( ) [as well
as sec( ), tan( ), etc.] when we particularly wish to emphasize the angular interpretation of the argument.

The cosine and sine functions are known collectively as sinusoidal functions or sinusoids, and this name also
applies to any weighted sum, w1cos( ) + w2sin( ) of the two. When such a weighted sum is written, as it always
may be [equation 32:5:25], in the form the angle is known as the phase of the sinusoid and2 2

1 2 cos( ) ,w w
the root-mean-square as its amplitude.2 2

1 2w w
Circular functions describes the functions of Chapters 32, 33, and 34 collectively, to distinguish them from the

corresponding hyperbolic functions. They are also known as trigonometric functions because of their role in
trigonometry [Section 34:14].
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First quadrant
0 /2

Second quadrant
/2

Third quadrant
3 /2

Fourth quadrant
3 /2 2

1 cos( ) 0 0 cos( ) 1 1 cos( ) 0 0 cos( ) 1

0 sin( ) 1 1 sin( ) 0 0 sin( ) 1 1 sin( ) 0

32:2 BEHAVIOR

The sinusoids are periodic functions with a period of 2 ; that is, their
values at an argument of x±2 , x±4 , x±6 , etc. exactly equal their values at
x. This is evident from Figure 32-1. The periodicity of the sine and cosine
functions becomes self evident when the argument is regarded as an angle, as
in Figure 32-2. Because a vector at angle is coincident with those at angles

± 2 , ± 4 , etc, it follows that
cos( 2 ) cos( 4 ) cos( 2 ) cos( ) OQn32:2:1

and similarly for the sine and, indeed, for all the circular functions. This being
so, it suffices to consider angular arguments only in the range 0 < 2 (an
alternative is < ). Within this range, a breakdown into four quadrants
is often useful because of the symmetries exhibited by the circular functions. The first quadrant encompasses values
of between 0 and /2, with the ranges for the other quadrants as tabulated. This usage of the term “quadrant” is
equivalent to that introduced in
Section 0:2. The table also
informs on the behavior of each
function in the four quadrants.

In each period, cos(x) and
sin(x) each display two zeros, one
maximum and one minimum.
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The values at the maxima are invariably +1, while the minimal values of the functions are invariably 1. The
locations of the zeros and extrema are detailed in equations 32:7:1 and 32:7:2.

32:3 DEFINITIONS

The exponential function of imaginary argument [Section 26:11] provides definitions of the cosine and sine
functions:

exp( ) exp( )cos( )
2

ix ixx32:3:1

exp( ) exp( )sin( )
2

ix ixx
i

32:3:2

Several polynomial functions show sinusoidal behavior in the limit of large order and thereby enable definitions as
limits. Equation 18:9:4 is one such example and the Euler polynomials [Chapter 20] provide two others

2

2 1
1 ( )cos( ) lim E
2 (2 )!

n

nn

n xx
n

32:3:3

2

2
( )sin( ) lim E

4 (2 )!

n

nn

xx
n

32:3:4

A geometric definition of the two functions in terms of the area of a sector of the unity-radius circle is given
in Section 28:3. However, the more usual geometric definitions equate the cosine and sine functions respectively
to the lengths of the lines OQ and PQ shown in Figure 32-2. Lying on a circle of unit radius, the point P can be
considered to have reached its present position, from its original location at point A, by rotation of the radial vector
OP through angle . The argument of the cosine and sine functions can be regarded either as the angle or as the
length of the curved arc AP

OQ cos( ) cos( ) and PQ sin( ) sin( )arc arc32:3:5
These definitions apply in all quadrants, and even if exceeds 2 or is negative.

With and c as constants, a second-order differential equation and its solution are
2

2
1 22 2

d f f f sin( ) cos( )
d

cc w x w x
x

32:3:6

and involves an arbitrarily weighted sinusoid. Moreover, with , b, and c as constants, a first order differential
equation and its solution are

2 2
2 2

2 2

df 4f f f sin( ) 1 cos( )
d 2 2

b c bc b w x w x
x

32:3:7

The solution involves a sinusoid in which the weight w may be zero, unity, or any value in between.
Because, as equations 32:6:1 and 32:6:2 confirm, the cosine and sine functions are hypergeometric, they may

be synthesized [Section 43:14] from the corresponding basis function, the zero-order Bessel function:

0 1
2

1J 2 cos 2x x32:3:8

0 3
2

sin 21J 2
2

x
x

x
32:3:9
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32:4 SPECIAL CASES

There are none.

32:5 INTRARELATIONSHIPS

The cosine is an even function, whereas the sine is odd:
cos( ) cos( ) sin( ) sin( )x x x x32:5:1

The duplication and triplication formulas
2 2 2 2cos(2 ) cos ( ) sin ( ) 1 2sin ( ) 2cos ( ) 1x x x x x32:5:2

2 3sin(2 ) 2sin( )cos( ) 2sin( ) 1 sin ( ) csc( ) 2cos( ) 2cos ( )x x x x x x x x32:5:3

3cos(3 ) 4cos ( ) 3cos( )x x x32:5:4

and
3 2 4sin(3 ) 3sin( ) 4sin ( ) csc( ) 1 5cos ( ) 4cos ( )x x x x x x32:5:5

generalize to
1

/ 2

0,2,4
cos( ) cos ( ) ( ) cot ( ) T cos( )

n or n
n n j

n
j

nnx x x xj32:5:6

and
1

( 1) / 2
1

1,3,5
sin( ) cos ( ) ( ) tan ( ) sin( ) U cos( )

n or n
n n j

n
j

nnx x x x xj32:5:7

where Tn and Un are Chebyshev polynomials [Chapter 22]. There are also argument-multiplication formulas as
products:

1
1

0

(1 2 )cos( ) 2 cos 1,2,3,
2

n
n

j

n jnx x n
n

32:5:8

1
1

0

sin( ) 2 sin 1,2,3,
n

n

j

jnx x n
n

32:5:9

Equations 32:5:2 and 32:5:3 may be regarded as special cases of argument-addition formulas. These, and the
corresponding argument-subtraction formulas, are

cos( ) cos( )cos( ) sin( )sin( )x y x y x y32:5:10
and

sin( ) sin( )cos( ) cos( )sin( )x y x y x y32:5:11
which, in turn, have the important special cases tabulated.

0,4,8,n 1, 5, 9,n 2,6,10,n 3, 7, 11,n

sin(x) ±cos(x) sin(x) cos(x)1
2sin x n

cos(x) sin(x) cos(x) ±sin(x)1
2cos x n
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From equation 32:5:2 one may derive the expressions

Int ( ) / 2 1 cos( )cos
2 2

xx x
32:5:12

and

Int / 2 1 cos( )sin
2 2

xx x
32:5:13

for the cosine and sine of half argument, as well as the formulas

2 1 cos(2 )cos ( )
2

xx32:5:14

2 1 cos(2 )sin ( )
2

xx32:5:15

for the squares. Note that the modifying function in formulas 32:5:12 and 32:5:13 is the integer value function, not
the integer part function. The latter may give an erroneous answer when x is negative. Formulas 32:5:14 and
32:5:13 generalize to the following formulas for positive integer powers

( 1) / 2

1
0

( / 2) 1

1
0

1 cos ( 2 ) 1,3,5,
2cos ( ) ( 1)!! 1 cos ( 2 ) 2,4,6,

!! 2

n

n
n j

n

n
j

n n j x nj
x n n n j x njn

32:5:16

and
( 1) / 2 ( 1) / 2

1
0

/ 2 ( / 2) 1

1
0

( 1) ( ) sin ( 2 ) 1,3,5,
2sin ( )

1( 1)!! ( ) cos ( 2 ) 2,4,6,
!! 2

n n
j

n
jn

n n
j

n
j

n n j x nj
x

n n n j x njn

32:5:17

in which there are alternatives according to the parity of the power.
The cosine and sine functions obey the function-addition/subtraction formulas

1 1
4 4cos( ) sin( ) 2 sin 2 cosx x x x32:5:18

cos( ) cos( ) 2cos cos
2 2

x y x yx y32:5:19

cos( ) cos( ) 2sin sin
2 2

x y x yx y32:5:20

sin( ) sin( ) 2sin cos
2 2

x y x yx y32:5:21

as well as the function-multiplication rules
1 1
2 2cos( )cos( ) cos( ) cos( )x y x y x y32:5:22
1 1
2 2cos( )sin( ) sin( ) sin( )x y x y x y32:5:23

1 1
2 2sin( )sin( ) cos( ) cos( )x y x y x y32:5:24

Equation 32:5:18 is a special case of the important formula
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2 2
1 2 1 1 2 2 1

2 2
2 1 2 2 1

sin( ) cos( ) sgn( ) sin arctan /

sgn( ) cos arccot /

w x w x w w w x w w

w w w x w w
32:5:25

whereby any mixed sinusoid may be expressed as a sine or cosine with a nonzero phase. The arctan and arccot
functions appear in Chapter 35. See Section 35:14 for an explanation of the need for the signum modifying
functions.

Infinite series of the form

1 1
0 1 2 3 02 2

1
cos( ) cos(2 ) cos(3 ) cos( )j

j
c c x c x c x c c jx32:5:26

or

1 2 3
1

sin( ) sin(2 ) sin(3 ) sin( )j
j

s x s x s x s jx32:5:27

or sometimes of the combination , with the c’s and s’s being appropriate constants,1
02 cos( ) sin( )j jc c jx s jx

are termed Fourier series and are discussed in Chapter 36. Here we quote two examples with especial relevance to
the present chapter. If v is a noninteger, then

2 2 2 2

2 1 cos( ) cos(2 ) cos(3 )cos( ) sin( )
2 1 4 9

v x x xvx v x
v v v v

32:5:28

and

2 2 2

2 sin( ) 2sin(2 ) 3sin(3 )sin( ) sin( )
1 4 9

x x xvx v x
v v v

32:5:29

32:6 EXPANSIONS

Maclaurin series exist for the two functions and for their logarithms. Those for the cosine
2 4 6 2 2

1
0 0 2

( ) 1cos( ) 1
2 24 720 (2 )! 1 4

jj

j j jj

x x x x xx
j

32:6:1

and the sine
3 5 7 2 2

3
0 0 2

( ) 1sin( )
6 120 5040 (2 1)! 1 4

jj

j j j j

x x x x xx x x x
j

32:6:2

converge for all arguments but the logarithmic series have limited convergence domains:
22 4 6

22

1 1

[1 4 ] B(2 ) 2ln cos( ) 2
2 12 45 2 (2 )! 2

jj
jj

j j

x x x j xx x x
j j j

32:6:3

22 4 6
22

1 1

Bsin( ) (2 )ln 2
6 180 2835 2 (2 )!

j
jj

j j

x x x x j x x x
x j j j

32:6:4

The lambda, zeta, and Bernoulli numbers [Chapters 3 and 4] are involved in these expansions.
The cosine and sine functions are expansible as infinite products:
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2 2 2 2

22 2 2 211 2

4 4 4cos( ) 1 1 1 1
9 25 j

x x x xx
j

32:6:5

2 2 2 2

2 2 2 2 2
1

sin( ) 1 1 1 1
4 9 j

x x x xx x x
j

32:6:6

With rj denoting the jth zero of f, both of the above formulas are embraced by the single infinite product expression

sin( )f( ) 1 f( ) cos( ) or
j j

x xx x x
r x

32:6:7

where the product is over all the zeros, positive and negative. Another infinite product formula is

1

sin( ) cos cos cos cos cos
2 4 8 16 2 j

j

x x x x xx x x32:6:8

The cosine and sine functions may be expressed as infinite sums of Bessel functions [Chapter 52]:

0 2 4 6 0 2
1

cos( ) J ( ) 2J ( ) 2J ( ) 2J ( ) J ( ) 2 ( ) J ( )j
j

j
x x x x x x x32:6:9

1 3 5 7 2 1
0

sin( ) 2J ( ) 2J ( ) 2J ( ) 2J ( ) 2 ( ) J ( )j
j

j
x x x x x x32:6:10

32:7 PARTICULAR VALUES

15° 18° 22½° 30° 36° 45° 54° 60° 67½° 72° 75°

x /12 /10 /8 /6 /5 /4 3 /10 /3 3 /8 2 /5 5 /12

cos
3 1

8
5 5

8

1

4 8
3
2

3 5
8

1
2

5 5
8

1
2

1

4 8
3 5

8
3 1

8

sin
3 1

8
3 5

8

1

4 8
1
2

5 5
8

1
2

3 5
8

3
2

1

4 8
5 5

8
3 1

8

The table shows particular values occurring in the range 0 < x < /2. The table in Section 32:5 can be used to
expand this range. The most important particular values are those that correspond to zeros and extrema, namely:

3 51
2 2 2

1 0, 2, 4,
cos( ) 0 , , ,

1 1, 3, 5,

v
v v

v
32:7:1

3 5 71
2 2 2 2

3 5 71
2 2 2 2

1 , , , ,
sin( ) 0 0, 1, 2,

1 , , , ,

v
v v

v
32:7:2
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32:8 NUMERICAL VALUES

With keywords cos and sin, Equator’s cosine function and sine function routines offer the user a choice of
arguments in radian or degree measure. Preserving significance for arguments of large magnitude is a challenge for
the circular functions, but Equator’s cos(x) and sin(x) routines do not begin to suffer precision degradation until |x|
reaches about 1×1015. Thereafter, fewer than 15 digits are reported.

Very frequently, and possibly more often than not, a user of the sine or cosine function needs to perform a
multiplication by before invoking the function. This poses an additional computational challenge because of the
loss of precision when multiplying by a (necessarily inexact) . To counter this problem, Equator provides a
reperiodized cosine function cos( x) routine and a reperiodized sine function sin( x) routine, into each of which a
very precise value of is incorporated. These functions, for which the keywords are cospi and sinpi, should be used
routinely in preference to premultiplying x by pi. Equator uses these reperiodized routines in calculating the values
of circular functions when the user inputs the argument in degrees.

32:9 LIMITS AND APPROXIMATIONS

Close to a zero r of these functions, a cubic relationship, either
3

f ( ) f sin or cos
6

x r
x x r32:9:1

or the negative of this, provides a good approximation. Similarly, the quadratic approximations
2 2

M mf ( ) 1 and f ( ) 1 f sin or cos
2 2

x x x x
x x32:9:2

hold close to a maximum xM or minimum xm of each function. Approximation 32:9:2 is tantamount to asserting that,
near their maxima and minima, the cosine and sine functions come to lie on a circle of unity radius centered on the
x-axis [Figure 39-2].

32:10 OPERATIONS OF THE CALCULUS

The differentiation formulas

1
2

d sin( ) cos( ) sin
d

bx b bx b bx
x

32:10:1

1
2

d cos( ) sin( ) cos
d

bx b bx b bx
x

32:10:2

may be generalized to
d f( ) f 0,1,2, f cos or sin
d 2

n
n

n

nbx b bx n
x

32:10:3

Indefinite integration gives

0

sin( )cos( )d
x bxbt t

b
32:10:4

and
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0

1 cos( )sin( )d
x bxbt t

b
32:10:5

which are special cases of the more general formulas
( 1) / 2

2

0

( 2) / 2
0 2 1

0

( 1)!! (2 1)!!sin( ) cos ( ) 1,3,5,
!! (2 )!!

cos ( )d
( 1)!! (2 )!!sin( ) cos ( ) 2,4,6,

!! (2 1)!!

n
j

x j
n

n
j

j

n jx x n
n j

t t
n jx x x n

n j

32:10:6

( 1) / 2
2

0

( 2) / 20 2 1

0

( 1)!! (2 1)!!1 cos( ) sin ( ) 1,3,5,
!! (2 )!!

sin ( )d
( 1)!! (2 )!!cos( ) sin ( ) 2,4,6,

!! (2 1)!!

n
j

x j
n

n
j

j

n jx x n
n j

t t
n jx x x n

n j

32:10:7

The technique discussed in the context of equation 34:10:19 is useful for evaluating some integrals of the cosine and
sine functions. Other important indefinite integrals include the following

2

0

2

2 1artanh cot 1
1 21

1 1d tan 1
1 cos( ) 2

2 1arctan tan 1
1 21

x

a bx a
ab a

bxt a
a bt b

a bx a
ab a

32:10:8

and

2 2

0

2 2

2 tanh( / 2)arcosh( ) arcoth 1
1 1

1 1d tan 1 1
1 sin( ) 2 4

2 tan( / 2)arctan arcsin( ) 1
1 1

x

a bxa a
b a a

bxt a
a bt b

a bx a a
b a a

32:10:9

which utilize functions from Chapters 31, 34 and 35. The indefinite integral of the cosine or sine of a quadratic
function may be expressed in terms of a Fresnel integral [Chapter 39]

2 2
2

/ 2

4 2 4 2Scos Cd cos sinsin S C2 4 42 2

x

b a

b ac ax b b ac ax bat bt c t
a a aa a

32:10:10

if a > 0, as may
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0

1 2 Ccos dsin S

x

bt t bx
bt

32:10:11

Moreover, with Ci and Si symbolizing the cosine integral and sine integral from Chapter 38, one has

0

sin
d Si

x bt
t bx

t
32:10:12

and

0

cos
d Ci

bt
t bx

t
32:10:13

Refer to Section 39:12 for the indefinite integrals and where n is a positive integer./ 2sin( )d / nt t t / 2cos( )d / nt t t
Turning to definite integrals, there is the general rule

1/
0

1 (1/ )
f( )d f f sin or cos 0 1

2
v

v

v
at t a v

a v
32:10:14

The integrals
2

2

0

exp( )cos( )d exp
2 4

t t t32:10:15

2

0

exp( )sin( )d daw
2

t t t32:10:16

[see Chapter 42 for daw] exemplify two very general integral transforms known collectively as Fourier transforms.
The cosine transformation is defined by

C
0 0 0

2 1 1f ( ) f( )cos( )d f( )exp( )d f( )exp( )d
2 2

t t t t i t t t i t t32:10:17

while the corresponding sine transformation is

S
0 0 0

2f ( ) f( )sin( )d f( )exp( )d f( )exp( )d
2 2
i it t t t i t t t i t t32:10:18

In the first of their Tables of Integral Transforms volumes [Chapters I and II ], Erdélyi, Magnus, Oberhettinger and
Tricomi list many such transform pairs, although their definitions omit the multiplier that the Atlas, along2 /
with many other authorities, employ. Transforms 32:10:17 and 32:10:18 share the convenient feature that transform
and inversion formulas are almost identical. The final equalities in these equations show that the cosine and sine
transforms are closely related to the Laplace transforms, and this feature is sometimes useful in determining
expressions for . See Section 32:14 for other aspects of Fourier transformation.C Sf or f

With a lower limit of , differintegration [Section 12:14] of the sinusoidal functions maintains their sinusoidal
behavior but (unless v 0, ±4, ±8, ) modifies the phase:

1
2

d f( ) f f cos or sin 0
d

v
v

v bx b bx v b
x

32:10:19

The amplitude of the sinusoid is either attenuated or amplified, depending on the sign of v and whether b is greater
or less than unity. Equations 32:10:1 3 are instances of this rule. Another example is the semiintegration formula
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1
2

1
2

d 1 cos( ) sin( )cos( ) cos
4d 2

bx bxbx bx
x b b

32:10:20

The response of sinusoidal functions to differintegration with a lower limit of zero is similar to that expressed in
32:10:19 but, in addition to producing a modified sinusoid, a supplementary function is also generated; this decays
as x increases, becoming negligible after several periods. For the semidifferentiation and semiintegration cases the
phase shift is always 45° in one direction or the other:

1
2

1
2

1
4

d 1cos( ) cos 2 Fres
d

bx b bx b bx
x x

32:10:21

1
2

1
2

1
4

d sin( ) sin 2 Gres
d

bx b bx b bx
x

32:10:22

1
2

1
2

1
4

d 1 2cos Grescos( ) sinsin Fresd
bx bx bx

bx b
32:10:23

where the supplementary functions include auxiliary Fresnel integrals addressed in Chapter 39.
The definite integrals

2

0

0
0,1,2,

cos( )cos( )d 2 0
0,1,2,

0

m n
n

nt mt t m n
m

m n
32:10:24

2

0

0 1,2,3,
sin( )sin( )d

1,2,3,

m n n
nt mt t

m n m
32:10:25

and
2

0

cos( )sin( )d 0 0,1,2, 1,2,3,nt mt t n m32:10:26

show that the set of cosine functions, cos(nx, n 0,1,2,3, ), form an orthogonal family [Section 21:14] with a weight
function of unity on the interval from 0 to 2 (or from to ). The set of sines, sin(nx, n 1,2,3, ), have the same
property, as do the conjoined set of cosines and sines. The cosines or the sines are orthogonal also on the smaller
interval from 0 to , but the conjoined set is not.

Included among Laplace transforms of functions involving cosines or sines are:

2 2
0

cos( )exp( )d cos( ) st st t t
s

32:10:27

2 2
0

sin( )exp( )d sin( )t st t t
s

32:10:28

2 2

22 2
0

cos( )exp( )d cos( ) st t st t t t
s

32:10:29

22 2
0

2sin( )exp( )d sin( ) st t st t t t
s

32:10:30
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0

sin( ) sin( )exp( )d arctant tst t
t t s

32:10:31

and

0

sin( ) sin( )exp( )d erf
4

t tst t
t t s

32:10:32

the last two involving functions from Chapters 35 and 40.

32:11 COMPLEX ARGUMENT

For a complex argument x + iy, one has
cos( ) cos( )cosh( ) sin( )sinh( )x iy x y i x y32:11:1

and
sin( ) sin( )cosh( ) cos( )sinh( )x iy x y i x y32:11:2

These two relationships are illustrated in the accompanying three-dimensional graphs which show the real and
imaginary parts of cos(x + iy) [Figure 32-3] and sin(x + iy) [Figure 32-4]. For purely imaginary argument the
formulas become

cos( ) cosh( )iy y32:11:3
and

sin( ) sinh( )iy i y32:11:4
Useful relationships are embodied in de Moivre’s theorem

cos( ) sin( ) exp cos( ) sin( )vz i z ivz vz i vz32:11:5

where z itself may be complex. Unless v is an integer, this theorem applies only if the real part of z lies between
and .
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Inverse Laplace transformations include

1 exp( ) 1cos cos rbed 2sin sin ibe2

i

i

b ts bs bt
s s i s s

I32:11:6

in which Kelvin functions [Chapter 55] are generated. Among other inversion formulas is

exp expexp( ) 1cos cos cosdsin sin sin2 2

i

i

bs bsts bbs s bs
i ts s t

I32:11:7

32:12 GENERALIZATIONS

Inasmuch as it may be resolved into a set of cosines and/or sines, any periodic function [Chapter 36] may be
said to be a generalization of the sinusoidal functions.

The Jacobian elliptic functions cn(k,x) and cd(k,x) are generalizations of cos(x) to which they reduce when k 0
cn(0, ) cd(0, ) cos( )x x x32:12:1

Likewise, because
sn(0, ) sd(0, ) sin( )x x x32:12:2

the sn(k , x) and sd(k , x) Jacobian functions generalize the sine function. Jacobian elliptic functions are addressed
in Chapter 63.

The sine function is a special case of the incomplete elliptic function of the second kind [Chapter 62]
sin( ) E( ,1)x x32:12:3

32:13 COGNATE FUNCTIONS

The cosine and sine functions are related to the other circular functions by
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2
2 13 14 12

12 2 2

csc ( ) 11 cot( )cos( ) 1 sin ( )
sec( ) csc( ) 1 tan ( ) cot ( ) 1

x xx x
x x x x

32:13:1

2
2 13 14 12

12 2 2

sec ( ) 1 1 tan( )sin( ) 1 cos ( )
sec( ) csc( ) 1 tan ( ) cot ( ) 1

x xx x
x x x x

32:13:2

where the multipliers take the values +1 or 1 to reflect the quadrant [Section 32:2] in which x (interpreted as an
angle) lies: for example 12 +1 only in the first and second quadrants, 13 is positive in the first and third quadrants,
and so on. The explicit formulas

Int (2 ) / )Int ( / ) Int (2 / )
12 13 14 12 13( 1) ( 1) ( 1) xx x32:13:3

apply. Figure 33-2 provides a geometric interpretation of the interrelationships among circular functions.
The versine function vers(x), coversine function covers(x), and haversine function hav(x), defined by

21 cos( )vers( ) 1 cos( ) covers( ) 1 sin( ) hav( ) sin
2 2

x xx x x x x32:13:4

are archaic functions seldom encountered nowadays. The function sinc(x), sometimes known as the sampling
function, is important in spectral theory. Figure 32-1 includes a graph of sinc(x), which is usually defined by

sin( )sinc( ) xx
x

32:13:5

Be aware, however, that the definition sinc(x) sin(x)/x is occasionally used. Equator’s sampling function routine
(keyword sinc) uses equation 32:13:5. Its power series follows from 32:6:2 and its logarithm has the expansion

2

1

(2 )ln sinc( ) 1j

j

jx x x
j32:13:6

in terms of zeta numbers [Chapter 3]. Equation 31:11:3 shows the Laplace transform of sinc(t) to be arcoth( s).
With n 0,±1,±2, and x 0, the symbols jn(x) and yn(x) and the names spherical Bessel function (of the first

kind) and spherical Neumann function (or spherical Bessel function of the second kind) are given to the functions
defined by

1 1
2 2

2

3
0 2

1j ( ) J ( ) ( ) Y ( ) 0,1,2,
2 2 (2 1)!! (1) 4

jn
n

n n n
j j j

x xx x x n
x x n n

32:13:7

1 1
2 2

2
1

1 1
0 2

(2 1)!! 1y ( ) Y ( ) J ( ) 0,1,2,
2 2 (1) 4

j
n

n n n n
j j j

n xx x x n
x x x n

32:13:8

in terms of Bessel [Chapter 53] and Neumann [Chapter 54] functions of half-odd order. These functions have
acquired the adjective “spherical” because they solve Laplace’s equation [Section 46:15] in spherical coordinates
[Section 46:14]. In fact, jn(r) and yn(r) provide solutions of equation 59:14:2 whenever v is an integer. The series
expansion in the above two equations are valid only for nonnegative integer n but, the interrelationships

1
1 1j ( ) ( ) y ( ) and y ( ) ( ) j ( )n n

n n n nx x x x32:13:9

permit extension to negative orders. The significance of the adjective “spherical” that attaches to these functions
will be evident from Section 59:14. Though defined as cylinder functions, these functions are nevertheless closely
related to the sine and cosine. Explicit polynomial formulas in terms of sinusoids are
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/ 2 1
/ 2 ( ) ( 1) / 2 ( )

0,2 1,3

( 1) / 2 1
/ 2 ( ) ( 1) / 2 ( )

0,2 1,3

( 1) sin( ) ( ) A ( ) cos( ) ( ) A ( ) even

j ( )
( 1) cos( ) ( ) A ( ) sin( ) ( ) A ( ) odd

n n n
k n k n

k k
k k

n
n n n

k n k n
k k

k k

x x x x n
x

x

x x x x n
x

32:13:10

and
1 ( / 2) 1

/ 2 ( ) ( 1) / 2 ( )

0,2 1,3

(1 ) / 2 1
/ 2 ( ) ( 1) / 2 ( )

0,2 1,3

( 1) cos( ) ( ) A ( ) sin( ) ( ) A ( ) even

y ( )
( 1) sin( ) ( ) A ( ) cos( ) ( ) A ( ) odd

n n n
k n k n

k k
k k

n
n n n

k n k n
k k

k k

x x x x n
x

x

x x x x n
x

32:13:11

where and generally(0) (1) (1)
0 0 1A ( ) 1, A ( ) 1, A ( ) 1/ ,x x x x

( ) ( )!A ( )
( )! !( 2 )

n
k k

n kx
n k k x

32:13:12

Early members of the j and y families are graphed in Figure 32-5 and formulated in the table overleaf. Both families
are also accessible from the sine function through formulas involving either repeated differentiation

1

sind2 j ( ) y 0,1,2,
d

nn n
n nn

x
x x x n

x x
32:13:13

or repeated integration
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11
0 0

2 sin d j ( ) y 1,2,3,
2

x x
n n

n nn t t x x n
x

32:13:14

or via the recursion

1 2
2 1f ( ) f ( ) f ( ) f j or yn n n

nx x x
x

32:13:15

n 0 n 1 n 2 n 3

jn(x)
sin( )x

x 2

cos( ) sin( )x x
x x 2 2

sin( ) 3 3cos( )1x x
x x x 2 2 2

cos( ) 15 sin( ) 151 6x x
x x x x

yn(x)
cos( )x

x 2

sin( ) cos( )x x
x x 2 2

cos( ) 3 3sin( )1x x
x x x 2 2 2

sin( ) 15 cos( ) 151 6x x
x x x x

For more discussion of these functions, see Abramowitz and Stegun [Section 10.1].
With the keywords j and y, Equator provides values of these functions through the spherical Bessel function

or spherical Neumann function routines, for n 100. These routines use recursion formula 32:13:15, coupled with
explicit formulas for the n 0 and n 1 cases, or the power series 32:13:7. Both routines rely on 32:13:9 for
negative n. As is usually the case, precision is diminished in the immediate vicinity of the zeros of these functions.

32:14 RELATED TOPIC: Clausen’s integral and related series

With f denoting either cos or sin, and n a positive integer that we term the order, the four families of series

1

f( ) 0 2n
j

jx x
j32:14:1

1

( ) f( )j

n
j

jx x
j

32:14:2

0

f{(2 1) } 0
(2 1)n

j

j x x
j32:14:3

and

1 1
2 2

0

( ) f{(2 1) }
(2 1)

j

n
j

j x x
j

32:14:4

are of interest in a number of contexts. They are examples both of Fourier series [Chapter 36] and of Hurwitz
functions [Chapter 64]. Additionally, they represent generalizations of the functions of Chapter 3. Note that there
is variety in the regions of convergence of these series, but all converge – though sometimes intolerably slowly –
within at least 0 x /2. Here we shall mainly be concerned with the summation of these series and with an
important integral that arises in that operation. Notice that the third sum is just the average of the first and second,
irrespective of f or the order n. It is convenient first to address the n 1 cases and then proceed to higher orders.

Some of the n 1 members of each series may be summed to a constant or simple polynomial in x/ or as the
inverse Gudermannian function [Section 33:14]. Otherwise, as shown in the following table, the sums may be
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expressed as the logarithm of a circular function.

1

f( )
j

jx
j 1

( ) f( )j

j

jx
j 0

f{(2 1) }
2 1j

j x
j 0

( ) f{(2 1) }
2 1

j

j

j x
j

f cos
1ln csc
2 2

x ln 2cos
2
x 1 1ln cot

2 2 2
x

4

f sin
2

x
2
x

4
1 invgd( )
2

x

Progress from a sum of order n to one of order n +1 is accomplished by integration. One may integrate the
cosine case to generate the higher-order sine sum. Taking series 32:14:1 as an example:

1
1 1 10 0

sin( ) cos( ) cos( )d d
x x

n n n
j j j

jx jt jtt t
j j j

32:14:5

whereas the procedure to construct the (n +1)th cosine member is exemplified by
/ 2 / 2

1
1 1 0 10 0 0

cos( ) sin( ) sin( ) sin( )d d ( 1) d
x x

n n n n
j j j jx

jx jt jt jtt t n t
j j j j

32:14:6

Similar integrations cater to the other three series. Formula 32:14:5 shows that to evaluate we need2sin( ) /jx j
to integrate . This integral cannot be expressed in terms of simpler functions and is known as1 1

2 2ln csc x
Clausen’s integral (Thomas Clausen, 1801 1885, Danish mathematician, astronomer, and geophysicist). It is
symbolized Clausen(x) in this Atlas.

2
1 0

sin( ) 1Clausen( ) ln csc d
2 2

x

j

jx tx t
j

32:14:7

As the following table shows, Clausen’s integral also appears in the order-two sums of other series.

2
1

f( )
j

jx
j 2

1

( ) f( )j

j

jx
j 2

0

f{(2 1) }
(2 1)j

j x
j 2

0

( ) f{(2 1) }
(2 1)

j

j

j x
j

f cos
2 2

6 2 4
x x 2 2

12 4
x 2

8 4
x

2 2

0

E1
2 (2 2)!

j
j

j

x
G

j

f sin Clausen(x) Clausen( x)
1
2

1
2

Clausen( )
Clausen( )

x
x 4

x

Constructed with the aid of equation 32:14:5, 32:14:6 and their analogues, some order-three sums are:

3
1

f( )
j

jx
j 3

1

( ) f( )j

j

jx
j 3

0

f{(2 1) }
(2 1)j

j x
j 3

0

( ) f{(2 1) }
(2 1)

j

j

j x
j

f cos
0

Clausen( )d
x

Z t t 3 Clausen( )d
4 x

Z t t average of the two
entries to the left

3 2

32 8
x

f sin
2 2 3

6 4 12
x x x 2 3

12 12
x x 2 2

8 8
x x

2 3

0

E1
2 (2 3)!

j
j

j

x
Gx

j
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Catalan’s and Apéry’s constants, G and Z [Chapters 1 and 3] appear in these tables, as do the Euler numbers Ej

[Chapter 5].
Clausen’s integral is defined in the interval 0 x , though

some authorities extend this definition to 2 with Clausen( +x)
Clausen( x). It obeys the duplication formula

Clausen(2 ) 2 Clausen( ) Clausen( )x x x32:14:8

and, as Figure 32-6 shows, has a maximum value of close to unity at
x /3. By using formulas 25:10:3 and 33:6:4, it may be expanded
as the series

3 5 7

2
2

1

Clausen( ) ln( )
72 14400 1270080

( ) B
1 ln( )

2 (2 1)!

j
j

j

x x xx x x x

x
x x

j j

32:14:9

where the B’s are Bernoulli numbers [Chapter 4]. With keyword Clausen, Equator uses this equation, or
3 5 7

2 2

1

(4 1)B
Clausen( ) ln(2) ln(2) ( )

24 960 20160 2 (2 1)!

j
j j

j

x x xx x x x
j j

32:14:10

in its Clausen’s integral routine.

32:15 RELATED TOPIC: Fourier transformation

As a purely mathematical operation applied to a function f of a (possibly complex) variable z, Fourier
transformation (or exponential Fourier transformation) uses the integral transform

f( )exp( 2 )d F( )z i z z32:15:1

to generate a complex function of the variable . To avoid ambiguity with what follows, F( ) is said to be a
“continuous” Fourier transform. The inversion of the F( ) function back to f(z) is accomplished by an analogous
procedure,

F( )exp(2 )d f ( )i z z32:15:2

that differs in form from the transformation formula only by a sign. In view of definitions 32:3:1 and 32:3:2,
equation 32:15:1 may be rewritten

F( ) R( ) I( ) R( ) f ( )cos(2 )d , I( ) f ( )sin(2 )di z z z z z z32:15:3

Though these adjectives are misleading, the R( ) and I( ) functions are often known as the “real” and “imaginary”
Fourier transforms. The connection of this continuous Fourier transform to the Laplace transforms defined in
equations 32:10:17 and 32:10:18 is apparent.

Few areas of mathematics have spawned as many powerful practical applications as Fourier transformation.
However, the stage on which the majority of these applications is played is quite remote from the transforms defined
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above. In practice, the variables are generally time t and frequency , both real. The domain of the t variable,
instead of being doubly infinite as in 32:15:1, is restricted to a finite range 0 t T. And, most dissimilar of all,
rather than being considered as a function f(t) of a continuous time variable, f is known experimentally only at a
finite number N of equally spaced instants. The input data, a so-called time series, thus consists of a set of data that
can be represented by f0, f1, f2, , fn, , fN 1. The interval between consecutive data is T/N, or equivalently 2 / N.
In this setting, the operation of Fourier transformation devolves into a replacement of the original N numbers, each
representing the amplitude at a particular time, by another set of N numbers, each representing the intensity of the
signal at a particular frequency. With m 0, 1, 2, , N 1, the analogs of equations 32:15:1 and 32:15:3 are
respectively

1

0

1 2exp
N

m n
n

inmF f
N N

32:15:4

and
1 1

0 0

1 2 1 2cos and sin
N N

m n m n
n n

mn mnR f I f
N N N N

32:15:5

Because Fm is complex, equations 32:15:5 are computationally more convenient. The Rm and Im numbers are the
discrete Fourier transforms of the time series, and again the unfortunate “real” and “imaginary” designators are
generally used to distinguish between them. Notice that R0 is simply the average value fave of the f ’s and that I0 is
zero, as is IN/2 if N is even. It might appear as if the information in the original N data has been converted into 2N 1
output numbers, but only N of these are distinct because RN m merely duplicates Rm, while IN m Im. The original
data may be regenerated from the transformed data by the discrete Fourier inversion formula

1

0
1

Int ( / 2)

ave
1

2 2cos sin

2 22 cos sin

N

n m m
m

N

m m
m

nm nmf R R I
N N

nm nmf R I
N N

32:15:6

in which the second formulation takes account of the duplications.
Scientific and technological applications of Fourier transformation fall into two broad categories. In the first

of these, transformation is followed by some type of processing of the transforms, the modified transforms being
then inverted. A simple example is Fourier smoothing, in which the high frequency (large m) components of the
transformed signal are nulled or attenuated prior to inversion back to modified data, which we represent by .f
Demodulation (removal of a high-frequency “carrier” wave) is another. In the second category, interest is in the
transforms themselves, and often in their so-called power spectrum. This is

2 22m m mP R I32:15:7

and is frequently displayed as a series of vertical lines in a graph of Pm versus m.
Even with the advent of computers, calculating discrete Fourier transforms was a lengthy task until the

perfection of the fast Fourier transform by Tukey and Cooley in 1965 [see Weaver’s appendix for a program based
on the FFT algorithm]. The speed of modern computers makes the fast Fourier transform, with its frequently built-in
restriction that N must be a power of 2, unnecessary nowadays, though it has habituated. The view is commonplace
that speedy Fourier transformation is an arcane process, involving binary arithmetic and unsuitable for user-
programming. The Atlas includes the following description to demonstrate that this is not so. There are, at most,
three procedures involved in discrete Fourier transformation: (a) conversion of f data to R data, (b) conversion of
f data to I data, and (c) conversion of R and I data to data. The description here addresses (c) only, but the simplerf
procedures required for (a) and (b) are so similar that a single routine can be written to perform all three.
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The object is to carry out the process indicated in 32:15:6 expeditiously. This equation may be reformulated
as

2,4, 1,3,

2 2 2 2cos sin cos sin
2

n ave
m m m m

m m

f f mn mn mn mnR I R I
N N N N

32:15:8

by simply splitting the summands into even-m and odd-m moieties. Upper limits have been omitted from the
summations, it being understood that all nonzero summands are included. The odd-m moiety is now rewritten and
expanded, via equations 32:5:10 and 32:5:11, as follows

1,3,

1,3,

2 ( 1) 2 2 ( 1) 2cos sin

2 ( 1) 2 ( 1)cos sin

m m
m

m n m n m n m n
m

m n n m n nR I
N N N N

m n m nR c I s R s I c
N N

32:15:9

where cn and sn are being used as abbreviations for cos(2 n/N) and sin(2 n/N) respectively. Next, the m in 32:15:9
is redefined as m 1, so that the summation now runs over 2,4, , allowing the two summations to coalesce, whereby
equation 32:15:8 becomes

1 1 1 1
2,4,

2 2[ ]cos sin
2

n ave
m m n m m m m n m n

m

f f mn mnR R c I s I R s I c
N N

32:15:10

Because only even values of m remain, this summation index may be halved, producing

2 2 1 2 1 2 2 1 2 1
1,2

4 4[ ]cos sin
2

n ave
m m n m n m m n m n

m

f f mn mnR R c I s I R s I c
N N

32:15:11

At this stage, in an actual algorithm, the terms in square brackets would be replaced by their numerical equivalents.
A comparison of equations 32:15:6 and 32:15:11 shows that, at the expense of having to evaluate two new
coefficients, the procedure has condensed the number of summed terms by a factor of (almost or exactly, depending
on the parity of N) two. A careful analysis shows that if the condensation is iterated, for a total of p times, where
p = Int{log2(N 1)}, then the final summation has just one term:

1 1
ave 2 2[ ]cos [ ]sin

2

p p
nf - f n nnumber number

N N
32:15:12

whence is easily calculated. If N is huge, as it often is in technological applications, the procedure just described,f
which is essentially that of Sande and Tukey [see Chapra and Canale], leads to a massive saving in arithmetic.



These functions are the reciprocals of those addressed in Chapter 32. The secant function and cosecant function
are interrelated by

2 2

1 1 1
sec ( ) csc ( )x x

33:0:1

and by

csc sec( )
2

x x33:0:2

33:1 NOTATION

To avoid possible confusion with the functions of Chapter 29, the names circular secant and circular cosecant
may be used. Because of their applicability to triangles [Section 34:14] the functions of Chapters 32 34 are known
collectively as trigonometric functions.

The symbol cosec(x) may be found in place of csc(x). As in Chapters 32 and 34, we replace the x symbol for
the argument by whenever an angular interpretation is pertinent.

33:2 BEHAVIOR

The sec(x) and csc(x) functions are defined for all real values of their argument x and, as Figure 33-1 illustrates,
the functions themselves adopt all values except those between 1 and +1. In accord with equation 33:0:2, the two
functions are seen to differ only by an offset of /2 in their arguments. The figure also shows the functions to be
periodic with periods of 2 .

f( ) f( 2 ) f( 4 ) f( 6 ) f sec or cscx x x x33:2:1
As with the cosine and sine functions, this behavior is self-evident when the argument is regarded as an angle .
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Because of the periodicity, it suffices to consider behaviors only within the 0 2 interval. In this range,
the two functions adopt values as tabulated below:

First quadrant
0 /2

Second quadrant
/2

Third quadrant
3 /2

Fourth quadrant
3 /2 2

1 sec( ) + sec( ) 1 1 sec( ) + sec( ) 1

+ csc( ) 1 1 csc( ) + csc( ) 1 1 csc( )

Discontinuities are encountered by the secant function when its argument is an odd multiple of /2. The cosecant
experiences similar sign-changing discontinuities at every multiple of .

33:3 DEFINITIONS

The secant and cosecant functions may be defined as the reciprocals of the functions of Chapter 32:
1 1sec( ) csc( )

cos( ) sin( )
x x

x x
33:3:1

Equivalently, they may be defined in terms of exponentials of imaginary argument
2exp( ) 2 exp( )sec( ) csc( )

exp(2 ) 1 exp(2 ) 1
ix i ixx x

ix ix
33:3:2

The integral transforms
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2 /

2
0

2sec( ) d
1 2 2

xtx t x
t

33:3:3

and
/

2
0

1csc( ) d 0
xtx t x

t t
33:3:4

provide other definitions of the secant and cosecant functions.
For arguments in the range 0 < x < /2, Section 33:14 describes definitions in terms of triangles, not only of the

secant and cosecant functions, but of all the functions – the trigonometric functions – of Chapters 32 24.

33:4 SPECIAL CASES

There are none.

33:5 INTRARELATIONSHIPS

Whereas the secant is an even function, the cosecant is odd:
sec( ) sec( ) csc( ) csc( )x x x x33:5:1

The recursion formulas
sec( ) 0,4,8,

csc( ) 1,5,9,
sec

2 sec( ) 2,6,10,

csc( ) 3,7,11,

x n

x nnx
x n

x n

33:5:2

and
csc( ) 0,4,8,

sec( ) 1,5,9,
csc

2 csc( ) 2,6,10,

sec( ) 3,7,11,

x n

x nnx
x n

x n

33:5:3

parallel those of the cosine and sine, but there are no simple formulas, akin to the argument-addition formulas
32:5:10 and 32:5:11, to express sec(x±y) or csc(x±y). Such expressions – as well as those for secn(x), csc(x)±csc(y),
etc. – are best constructed from the formulas of Section 32:5 by making use of the identities in 33:3:1.

The secants and cosecants of double-argument and half-argument are given by the formulas
Int[(2 / 2) / ] 2

2

( ) sec ( )sec(2 )
2 sec ( )

x xx
x

33:5:4

Int (2 / ) 2

2

sec( )csc( ) ( ) csc ( )csc(2 )
2 2 csc ( ) 1

xx x xx
x

33:5:5
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Int[(1 | |/ ) / 2] 2sec( )sec
2 1 sec( )

xx x
x

33:5:6

and

Int[ /(2 )] 2sec( )csc
2 sec( ) 1

xx x
x

33:5:7

33:6 EXPANSIONS

The power-series expansion of the secant function
2 4 6 2

2 2
2

0 0

E5 61 4 4sec( ) 1 (2 1)
2 24 720 (2 )! 2

j
j j

j j

x x x xx j x x
j

33:6:1

can be expressed in terms of either the beta numbers from Chapter 3 or the Euler numbers [Chapter 5], whereas it
is the eta numbers or Bernoulli numbers [Chapters 3 and 4] that play analogous roles for the cosecant

3 5 2
2 2 1

2
0 0

(4 - 2)B1 7 61 2csc( ) (2 )
6 360 15120 (2 )!

j j
j j

j j

x x x xx j x x
x x j

33:6:2

Similar alternatives attend the power-series expansions of the logarithms of sec(x) and xcsc(x)
2 4 6 8 2

2 2
2

1 1

(4 1) B17 (2 ) 4ln sec( ) (4 )
2 12 45 2520 2 (2 )! 2

j j
j j

j j

x x x x j xx x x
j j j

33:6:3

and
2 4 6 8 2

2 2
2

1 1

B(2 )ln csc( ) (4 )
6 180 2835 36800 2 (2 )!

j
j j

j j

x x x x j xx x x x
j j j

33:6:4

The secant and cosecant functions may be expanded as partial fractions

2 2 2 2 2 2 2 2 21
0 2

4 12 20 ( ) (2 1)sec( )
4 9 4 25 4 ( )

j

j

jx
x x x j x

33:6:5

and

2 2 2 2 2 2 2 2 2
1

1 2 2 2 1 ( 1)csc( ) 2
4 9

j

j

x x xx x
x x x x x j x

33:6:6

as may their squares

2
2 2 2 2 21

2

4 4 4 4 1sec ( )
[( ) ]2 2 3 2 3 2 j

x
j xx x x x

33:6:7

and

2
2 2 2 22 2

1 1 1 1 1 1csc ( )
[ ]2 2 j

x
x j xx x x x

33:6:8

The last pair of formulas are Laurent series [Section 27:13], in which the summation runs over all integers: positive,
negative and zero.
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33:7 PARTICULAR VALUES

The most important particular values are

3 5 71
2 2 2 2

3 5 71
2 2 2 2

1 0, 2, 4,

, , , ,
sec( )

1 1, 3, 5,

, , , ,

v

v
v

v

v

33:7:1

and

5 91
2 2 2

3 7 11
2 2 2

0, 1, 2, 3,

1 , , ,
csc( )

1, 2, 3, 4,

1 , , ,

v

v
v

v

v

33:7:2

Others in the range 0 < x < /2 are given in the table below. Use equations 33:5:2 or 33:5:3 to develop particular
values outside this range.

15° 18° 22½° 30° 36° 45° 54° 60° 67½° 72° 75°

x /12 /10 /8 /6 /5 /4 3 /10 /3 3 /8 2 /5 5 /12

sec
8

3 1
8

5 5
4 8

2
3

8

3 5
2

8

5 5
2 4 8

8

3 5

8
3 1

csc
8

3 1
8

3 5
4 8 2

8

5 5
2

8

3 5

2
3 4 8

8

5 5

8
3 1

33:8 NUMERICAL VALUES

Equator’s secant function and cosecant function routines (keywords sec and csc) provide exact values of sec(x)
and csc(x). The algorithms simply reciprocate the corresponding values of cos(x) and sin(x).

33:9 LIMITS AND APPROXIMATIONS

Close to an argument value x at which the cosecant function suffers a discontinuity of the |+ variety, the
approximation

1csc( ) 0, 2 , 4 ,
6

x xx x x
x x

33:9:1

holds. Further terms are available from equation 33:6:2. The negative of this approximation is valid for arguments
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close to one of the + | discontinuities at x ± , ±3 , ±5 , etc. Similarly, for the secant function,
1 3 5 7sec( ) , , , ,

6 2 2 2 2
x xx x x

x x
33:9:2

33:10 OPERATIONS OF THE CALCULUS

Differentiation and indefinite integration of the secant and cosecant functions lead to
2d sec ( )sec( ) sec( ) tan( )

d csc( )
xx x x

x x
33:10:1

2d csc ( )csc( ) csc( )cot( )
d sec( )

xx x x
x x

33:10:2

0

sec( )d ln sec( ) tan( ) invgd( )
2 2

x

t t x x x x33:10:3

and

/ 2

csc( )d ln tan ln csc( ) cot( ) 0
2

x xt t x x x33:10:4

The invgd function in 33:10:3 is the inverse Gudermannian function discussed in Section 33:15. The indefinite
integrals of the squares of secant and cosecant functions yield the functions of Chapter 34:

2

0

sec ( )d tan( )
2 2

x

t t x x33:10:5

2

/ 2

csc ( )d cot( )
2

x

t t x x33:10:6

The definite integral
/ 2

0

csc( )d 2x x x G33:10:7

generates twice Catalan’s constant [Chapter 1].

33:11 COMPLEX ARGUMENT

The secant of the complex variable z x + iy takes complex values given by the alternative formulas

2 2

cos( )cosh( ) sin( )sinh( ) 2cos( )cosh( ) 2 sin( )sinh( )sec( )
cos ( ) sinh ( ) cos(2 ) cosh(2 )

x y i x y x y i x yx iy
x y x y

33:11:1

From the denominator of the first expression it is clear that sec(z) is finite unless y 0 and x equals one of the values
(2n+1) /2, where n is an integer. This is confirmed by Figure 33-2, the two diagrams of which depict the real and
imaginary parts of sec(z). The corresponding diagrams for the cosecant of a complex variable are not shown, but
they are very similar to Figure 33-2 except that the poles occur at y 0, x n , as would be expected from the first
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alternative in the expression

2 2

sin( )cosh( ) cos( )sinh( ) 2sin( )cosh( ) 2 cos( )sinh( )csc( )
sin ( ) sinh ( ) cos(2 ) cosh(2 )

x y i x y x y i x yx iy
x y x y

33:11:2

When the argument is purely imaginary, equations 33:11:1 and 33:11:2 reduce respectively to
sec( ) sech( )iy y33:11:3

and
csc( ) csch( )iy i y33:11:4

33:12 GENERALIZATIONS

The Jacobian elliptic functions [Chapter 63] nc(k , x) and dc(k , x) are generalizations of sec(x), to which they
reduce as k 0. Similarly, csc(x) is the k 0 limit of the ns(k , x) and ds(k , x) functions.

33:13 COGNATE FUNCTIONS

The secant and cosecant functions are related to other circular functions through the formulas:
2

2 1214 13
142 2

cot ( ) 11 csc( )sec( ) 1 tan ( )
cos( ) cot( )1 sin ( ) csc ( ) 1

xxx x
x xx x

33:13:1

2
21412 13

122 2

1 tan ( )1 sec( )csc( ) cot ( ) 1
sin( ) tan( )1 cos ( ) sec ( ) 1

xxx x
x xx x

33:13:2

The multiplier 1n is equal to +1 in the first and nth quadrants, but 1 in the other two quadrants.
The secant and cosecant functions are related to hyperbolic functions in two distinct ways: through formulas

33:11:3 and 33:11:4, and via the Gudermannian function of Section 33:15.
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Not appearing elsewhere in the Atlas, and not available through Equator, is the archaic exsecant function
1
2exsec( ) sec( ) 1 tan( ) tanx x x x33:13:3

The identities
1 1
2 2sec( ) and csc( ) ( ) (1 )v v v v v v33:13:4

provide links to the gamma function of Chapter 43.

33:14 RELATED TOPIC: trigonometric interpretation of the circular functions

Figure 33-3 shows three similar right-angled triangles; that is, the triangles have the same shape but different
sizes. If the so-marked side of each triangle is of unity length, then the lengths of the other six sides correspond to
the six circular functions, as shown. The argument of the functions can be interpreted either as the angle marked

or as the arc length x of the unity-radius circle subtended by that angle, as diagrammed. Besides serving to define
the six functions trigonometrically, many interrelations between them may be derived by applying similarity and
Pythagorean relationships to the triangles. For example, by equating the ratios of the green to the red sides in the
first and second triangles, it follows that

sin( ) tan
1 sec )

)
(
(

33:14:1

while
2 21 ccsc ot (( ) )33:14:2

is a consequence of applying the theorem of Pythagoras [Section 34:15] to the third triangle.

Because in trigonometry it is thought of as an angle, we have chosen as the argument of the functions marked
in Figure 33-3 and as the variable in the above equations. With equal validity, may be replaced by x in the figure
and interpreted as the marked arc length. Of course, the equations hold without the need to associate the variable
with any geometric feature whatsoever.
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33:15 RELATED TOPIC: the Gudermannian function and its inverse

Comparison of Figures 29-5 and 33-3 suggests that there should be a relationship between the six hyperbolic
functions and the six circular functions. In fact, there is a one-to-one relationship

cos( ) sech( )

sin( ) tanh( )

sec( ) cosh( )

2 2csc( ) coth( )

tan( ) sinh( )

cot( ) csch( )

x

x

x

x

x

x

33:15:1

between pairs of functions, provided that the arguments are suitably related. That relationship involves the
Gudermannian function (Christoph Gudermann, 1798 1852, German mathematician)

gd( )x33:15:2
or the inverse Gudermannian function

invgd( )x33:15:3
also denoted gd 1( ). These functions are
illustrated in Figure 33-4. Of course, it is not
necessary that the argument of the circular
functions be regarded as angles. See Section 28:14
for an application of these functions.

Respectively, the Gudermannian function and
its inverse may be defined as the indefinite integral
of the hyperbolic and circular secants:

0

gd( ) sech( )d
x

x t t33:15:4

0

invgd( ) sec( )dt t33:15:5

although there are many other relationships,
including

gd( ) arctan sinh( ) 2arctan exp( ) 2arctan tanh
2 2

xx x x33:15:6

and

invgd( ) arsinh tan( ) ln sec( ) tan( ) ln tan F 1,
4 2

33:15:7

that serve as alternative definitions. The final item in 33:15:7 is the incomplete elliptic integral of the first kind
[Chapter 62] of unity modulus and argument . It is the first equality in each of formulas 33:15:6 and 33:15:7 that
is exploited by Equator in its Gudermannian function and inverse Gudermannian function routines (keywords gd
and invgd).
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As the figure illustrates, both functions are odd. The domain of the inverse Gudermannian function is restricted
to while that of the Gudermannian functions is unrestricted. The power series for gd(x) and invgd( )1 1

2 2

involve Euler numbers [Chapter 5] and are remarkably similar:
3 5 7

2 2 1

0

E
gd( ) 1 1

6 24 5040 (2 1)!
j j

j

x x xx x x x
j

33:15:8

3 5 7
2 2 1

0

E
invgd( )

6 24 5040 (2 1)! 2 2
j j

j j
33:15:9

Another simple expansion is
3 5 7 2

0

2 2 2invgd( ) 2 2 tan
3 5 7 2 1 2

j

j j
33:15:10

[Other properties of are discussed in Section 34:14.] Several other expansions exist for the Gudermannian function
and its inverse [Beyer, Handbook of Mathematical Functions, pages 323 325]. The Gudermannian function’s
approach to its limiting value of /2 is described by

2gd( ) 2exp exp( 3 ) large and positive
2 3

x x x x33:15:11

and the approach of its inverse to infinity is described by

invgd( ) ln small and positive
4 2 2

33:15:12



The functions of this chapter are the reciprocals of each other
tan( )cot( ) 1x x34:0:1

and are also interrelated by

cot( ) tan
2

x x34:0:2

Together with the cosine, sine, secant, and cosecant functions, they constitute the family of circular functions. The
six members of this family are also known as trigonometric functions because of the role they play in the
mensuration of triangles, a topic addressed in Section 34:15.

34:1 NOTATION

The alternative notation tg(x) is occasionally encountered for the tangent function, while cotan(x) or ctg(x)
sometimes replaces cot(x). To emphasize the distinction from their hyperbolic counterparts [Chapter 30], the names
circular tangent and circular cotangent may be used. As elsewhere in this Atlas, this chapter often uses a symbol
other than x to represent the argument of the tangent and cotangent functions when the intent is to focus on the
angular interpretation of the argument.

34:2 BEHAVIOR

Like the other four circular functions, the tangent and cotangent are periodic but, unlike the others, the period
is , not 2 . This is clearly brought out in Figure 34:1. Notice that tan(x) encounters a discontinuity of the + |
variety at x ± /2, ±3 /2, ±5 /2, . Conversely, the discontinuities of cot(x) are of the |+ type and occur at
x 0, ± , ±2 , .
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34:3 DEFINITIONS

The tangent and cotangent functions may be defined in terms of other circular functions in a variety of ways:

2 2

0

sin( ) 1tan( ) sec ( ) 1 sec ( )d
cos( ) cot( )

xxx x t t
x x

34:3:1

/ 2
2 2cos( ) 1cot( ) csc ( ) 1 csc ( )d

sin( ) tan( ) x

xx x t t
x x

34:3:2

There are alternative definitions via exponential functions of imaginary argument
1 exp(2 )tan( )
1 exp(2 )

ixx i
ix

34:3:3

exp(2 ) 1cot( )
exp(2 ) 1

ixx i
ix

34:3:4

or through the definite integral transforms
2 /

2
0

2 1tan( ) d
1 2 2

xtx t x
t

34:3:5

2 /

3
0

2cot( ) d 0
xt tx t x
t t

34:3:6
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both of which require a Cauchy limit interpretation [Section 0:10].
Geometrically, a definition of the tangent in terms of an angle is provided by tan( ) = (PQ)/(OQ) in Figure 32-2

or in terms of an area by tan(ar ) (P Q )(O Q ) in Figure 28-2. The cotangent is simply the reciprocal of either
of these ratios.

Another definition is provided by one solution of the following differential equation
2 2

2

2 2

2 2
2

4 4tan 4
2 2 2

df (1 )f f f( ) 4
d 4

4 4tanh 4
2 2 2

ac b x ac b b b ac
a a

bxa b c x b ac
x ax

b ac x b ac b b ac
a a

34:3:7

This solution may be redrafted in terms of the cot and coth functions.

34:4 SPECIAL CASES

There are none.

34:5 INTRARELATIONSHIPS

The tangent and cotangent functions are both odd
f( ) f( ) f tan or cotx x34:5:1

and both obey the reflection formula

1
4 1

4

1f f tan or cot
f

x
x34:5:2

The argument-addition formulas
tan( ) tan( )tan( )

1 tan( ) tan( )
x yx y

x y
34:5:3

and
cot( )cot( ) 1cot( )
cot( ) cot( )

x yx y
y x

34:5:4

have the special cases

2 2

2 tan( ) 2cot( ) 1tan(2 )
1 tan ( ) cot ( ) 1 cot(2 )

x xx
x x x

34:5:5

3 2

2 3

3tan( ) tan ( ) 3cot ( ) 1 1tan(3 )
1 3tan ( ) cot ( ) 3cot( ) cot(3 )

x x xx
x x x x

34:5:6

and generate the entries in the following table.
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n 0,4,8, n 1,5,9, n 2,6,10, n 3,7,11,

tan
4

nx tan(x)
tan( ) 1
1 tan( )

x
x

1
tan( )x

tan( ) 1
1 tan( )

x
x

cot
4

nx cot(x)
cot( ) 1
1 cot( )

x
x

1
cot( )x

cot( ) 1
1 cot( )

x
x

The tangent of half argument

Int ( / ) 1 cos( )tan
2 1 cos( )

xx x
x

34:5:7

is a convenient function in calculations, as discussed in Section 34:14.
The function-addition/subtraction formulas

csccot( ) tan( ) 2 2cotx x x34:5:8

tan( ) tan( ) sin( )sec( )sec( )x y x y x y34:5:9
cot( ) cot( ) sin( )csc( )csc( )x y y x x y34:5:10

and the function-multiplication formulas
cos( ) cos( ) 1tan( ) tan( )
cos( ) cos( ) cot( )cot( )

x y x yx y
x y x y x y

34:5:11

sin( ) sin( ) 1tan( )cot( )
sin( ) sin( ) cot( ) tan( )

x y x yx y
x y x y x y

34:5:12

complete our list of intrarelationships.

34:6 EXPANSIONS

Power series for the tangent and cotangent functions, as well as for their logarithms, may be written with
coefficients that incorporate either Bernoulli numbers [Chapter 4] or functions from Chapter 3:

23 5 7
2 2 1

1 1

4 (4 1) B2 17 2 2tan( ) (2 )
3 15 315 (2 )! 2 2

j j k
j j

j k

x x x xx x x k x
j x

34:6:1

2
3 5

2 2 1

1 1

4 B1 2 1 1 2cot( ) (2 )
3 45 945 (2j)!

kj
j j

j k

x x x xx x k x
x x x x

34:6:2

2 4 6 2
2 2

2
1 1

ln{ cot( )} 4 2 B7 62 (2 ) 4(4 )
3 90 2835 2 (2 )! 2ln [tan( ) /

kj
j j

j k

x x x x x k xx x
j j kx x

34:6:3

Either of the partial fraction expansions

2 2 2 2 2 2

8 8 8tan( )
4 9 4 25 4
x x xx

x x x
34:6:4
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or

2 2 2 2 2 2

1 2 2 2cot( )
4 9

x x xx
x x x x

34:6:5

may be written concisely as
1f( ) f cot or tan
( )j j

x
x x34:6:6

where the terms are the values of the argument that make f(x) infinite. The continued fraction expansion( ) jx
2 2 2

tan( )
1 3 5 7
x x x xx34:6:7

holds for the tangent function, provided that x is not an odd multiple of /2.

34:7 PARTICULAR VALUES

The most important particular values adopted by the tangent and cotangent functions are

3 51
4 4 4

3 51
2 2 2

3 51
4 4 4

0 0, , 2 ,

1 , , ,
tan( )

| , , ,

1 , , ,

x

x
x

x

x

34:7:1

and

3 51
4 4 4

3 51
2 2 2

3 51
4 4 4

| 0, , 2 ,

1 , , ,
cot( )

0 , , ,

1 , , ,

x

x
x

x

x

34:7:2

Others in the range 0 < x < /2 are included in the following table.

15° 18° 22½° 30° 36° 45° 54° 60° 67½° 72° 75°

x /12 /10 /8 /6 /5 /4 3 /10 /3 3 /8 2 /5 5 /12

tan 2 3
21
5

2 1
1
3 5 20 1

21
5

3 2 1 5 20 2 3

cot 2 3 5 20 2 1 3
21
5

1 5 20
1
3 2 1

21
5

2 3

This table may be extended by the use of the reflection formula 34:1 and the table in Section 34:5.
There is an infinite set of values that satisfy the equation

tan( )x bx b34:7:3



344 THE TANGENT tan(x) AND COTANGENT cot(x) FUNCTIONS 34:8

and they arise in solving certain problems. The location of these
values, known as the roots of equation 34:7:3, is illustrated by the
dots in Figure 34-2. One of the roots is x 0, but all the others
depend on b. The positive roots will be denoted rn(b). There are
also negative roots, r n(b) rn(b), occupying the left-hand side of
the figure. The nth positive root lies in the range

1 1
2 2r ( ) 1,2,3,nn b n n34:7:4

irrespective of b. However, if b > 1, there is an additional positive
root, denoted r0(b), lying within 0 < x < /2. Equator’s tangent root
routine (keyword r) provides values of rn(b) for all real b and all
integer n. It operates by inverting equation 34:7:3 to

r ( ) Arctan r ( ) arctan r ( )n n nb b b n b b34:7:5

in which arctan is the inverse tangent function [Chapter 35] and Arctan is the multivalued inverse tangent function
[Section 35:12]. Equation 34:7:5 has the fortunate property that, if an inexact value of rn(b) is inserted into its right-
hand side, evaluation of the left-hand side produces a less inexact result. Equator starts with rn(b) and1

4( )n
exploits this property until successive answers no longer change.

The case b 1 is especially important. Values of rn(1) occur in the expansion of the Langevin function [Section
30:13] and correspond to the zeros of the Bessel functions of moiety order [Section 53:7]. For large n, the sum

1
23 5 7 9

1 2 13 146 781r (1) where
3 15 105 315n N N n

N N N N N
34:7:6

can be useful. Sums of reciprocal powers of rn(1) occur in other problems and, in that context, the results
2 4 6

1 1 1

1 1 1r (1) , r (1) , and r (1)
10 350 7875n n n

n n n
34:7:7

should be noted.
The roots of

cot( )x bx b34:7:8
the positive members of which we denote by n(b), also arise in certain problems. Zero is not a root in this case, nor
are there any 0(b) roots. The nth positive root lies in the range (n 1) < n(b) < n . Equator’s cotangent root
routine (keyword rho) works in a fashion similar to that for the tangent root, with starting values of (n ¼) and
34:7:5 replaced by

( ) Arccot ( ) ( 1) arccot ( )n n nb b b n b b34:7:9

34:8 NUMERICAL VALUES

Equator’s tangent function and cotangent function routines (keywords tan and cot) provide values of tan(x) and
cot(x) by using the first equality in each of expressions 34:3:1 and 34:3:2.

34:9 LIMITS AND APPROXIMATIONS

When its argument is close to one of the values, x , at which tan(x) has a discontinuity, then the limiting
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approximation
1 3 5tan( ) , , ,

3 2 2 2
x xx x x

x x
34:9:1

holds. Similarly, for the cotangent
1cot( ) 0, , 2 ,

3
x xx x x

x x
34:9:2

34:10 OPERATIONS OF THE CALCULUS

Formulas for differentiation and indefinite integration are

2 2d tan( ) sec ( ) 1 tan ( )
d

x x x
x

34:10:1

2 2d cot( ) csc ( ) 1 cot ( )
d

x x x
x

34:10:2

21
2

0

tan( )d ln sec( ) ln 1 tan ( )
x

t t x x34:10:3

/ 2
21

2cot( )d ln csc( ) ln 1 cot ( )
x

t t x x34:10:4

Multiple differentiations of the cotangent function are discussed in Section 44:12.
Integer powers of the tangent and cotangent functions integrate to give:

21
2

1 3 5

21
0 2

tan ( ) ln sec( ) 5,9,13,

tan( ) 2,6,10,tan ( ) tan ( ) tan ( )tan ( )d
1 3 5 tan ( ) ln sec( ) 3,7,11,

tan( ) 4,8,12,

x n n n
n

x x n

x x nx x xt t
n n n x x n

x x n

34:10:5

21
2

/ 2 1 3 5

21
2

cot ( ) ln csc( ) 5,9,13,

cot( ) 2,6,10,cot ( ) cot ( ) cot ( )cot ( )d
1 3 5 cot ( ) ln csc( ) 3,7,11,

cot( ) 4,8,12,

n n n
n

x

x x n

x x nx x xt t
n n n x x n

x x n

34:10:6

Section 58:14 discusses the integration of the tangent or cotangent function raised to an arbitrary power.
Important definite integrals include

/ 2 / 2

0 0

tan ( )d cot ( )d sec 1 1
2 2

v v vt t t t v34:10:7

/ 4 / 2

0 / 4

1 1tan ( )d cot ( )d G 1
4 2

v v vt t t t v34:10:8
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and
/ 4 / 2

0 / 4

ln tan( ) d ln cot( ) dt t t t G34:10:9

leading to the secant function [Chapter 33], the Bateman’s G function from Section 44:13, and Catalan’s constant
G [Section 1:7].

34:11 COMPLEX ARGUMENT

The tangent of the complex variable z x + iy takes complex values given by the formula
sin(2 ) sinh(2 )tan( )
cos(2 ) cosh(2 )

x i yx iy
x y

34:11:1

The denominator of this expression makes it evident that tan(z) is finite unless y 0 and x equals one of the values
(2n+1) /2, where n is an integer. This is confirmed by Figure 34-3, the two diagrams of which depict the real and
imaginary parts of tan(z). The corresponding diagrams for the cotangent of a complex variable are not shown; the
poles in that case occur at y 0, x n , in conformity with the formula

sin(2 ) sinh(2 )cot( )
cos(2 ) cosh(2 )

x i yx iy
x y

34:11:2

When the argument is purely imaginary, equations 34:11:1 and 34:11:2 reduce respectively to
tan( ) tanh( )iy i y34:11:3

and
cot( ) coth( )iy i y34:11:4
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34:12 GENERALIZATIONS

As periodic functions, the tangent and cotangent are special cases of the functions of Chapter 36.
Respectively, tan(x) and cot(x) generalize to the Jacobian elliptic functions sc(k,x) and cs(k,x) that are discussed

in Chapter 63. When k 0, one has
sc(0, ) tan( ) and cs(0, ) cot( )x x x x34:12:1

34:13 COGNATE FUNCTIONS

The tangent and cotangent functions are related to the other circular functions through the equivalences
2

212 14 13
132 2

1 cos ( ) sin( ) 1tan( ) sec ( ) 1
cos( ) cot( )1 sin ( ) csc ( ) 1

x xx x
x xx x

34:13:1

and
2

21412 13
132 2

1 sin ( )cos( ) 1cot( ) csc ( ) 1
sin( ) tan( )1 cos ( ) sec ( ) 1

xxx x
x xx x

34:13:2

where 1n equals +1 in the first and nth quadrants, but is 1 otherwise [also see 32:13:3].
The inverse tangent and cotangent functions are among those addressed in the next chapter.

34:14 RELATED TOPIC: the tangent of half argument

In general, algebraic functions are more easily manipulated than are the circular functions of Chapters 32-34.
Thus methods of converting the circular functions temporarily into algebraic functions can be beneficial. The
tangent of half argument, that we here abbreviate to ,

tan
2
x x34:14:1

is convenient in this regard because all the circular functions are expressible easily in terms of , as are some
commonly encountered combinations of circular functions. Some of the equivalences are:

cos(x) sin(x) sec(x) csc(x) tan(x) cot(x) sec(x)
+ tan(x)

sec(x)
tan(x)

csc(x)
+ cot(x)

csc(x)
cot(x)

2

2

1
1 2

2
1

2

2

1
1

21
2 2

2
1

21
2

1
1

1
1

1

As an elementary illustration of the utility of this approach, consider a need to solve the equation
2cos( ) sin( ) 1x x34:14:2

Substitution from the compendium above leads easily to the quadratic equation 3 2 2 1 0, whence (1±2)/3.
Accordingly, there are two real solutions:

1
32arctan(1) or 2arctan 0.64350

2
x x34:14:3

The tangent of half-argument is also a useful aid to the evaluation of indefinite integrals involving circular
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functions. By using the expressions collected above, together with the differential identity

2

2dd where tan
1 2

tt34:14:4

one can often evaluate integrals that are tricky to decipher otherwise. As a simple example
tan( / 2)tan( / 2) 3

2 3
2

0 0 0

1 1 1 1 1d 1 d tan tan
2 2 3 2 2 6 21 cos( )

xxx x xt
t

34:14:5

34:15 RELATED TOPIC: triangles

Trigonometric (otherwise called “circular”) functions [Chapters 32 34] and their inverses [Chapter 35] play
an indispensable role in the mensuration of triangles. Historically, it was the need to determine the sides and angles
of triangles that led to the invention of these functions.

Figure 34-4 shows a triangle in which angle C is a right angle, C = /2. Note that side a lies opposite to angle
A and similarly for the other sides and angles. The side c opposite the right angle is known as the hypotenuse. Angle
C having been defined, there remain five undefined parameters: the lengths a, b, and c of the sides, and the angles
A and B. If any two of these five parameters are specified, then the other three are calculable via the following table,
provided that at least one of the specified parameters is the length of a side. Checkmarks indicate the given
parameters in the table, which also has a column listing the triangle’s area in terms of the givens.

a b c A B area

2 2a b arctan(a/b) arctan(b/a) ab/2

2 2c a arcsin(a/c) arccos(a/c) 2 21
2 a c a

acot(A) acsc(A)
2

A 21
2 cot( )a A

a tan(B) asec(B)
2

B 21
2 tan( )a B

2 2c b arccos(b/c) arcsin(b/c) 2 21
2 b c b

b tan(A) bsec(A)
2

A 21
2 tan( )b A

bcot(B) bcsc(B)
2

B 21
2 cot( )b B

csin(A) ccos(A)
2

A 21
4 sin(2 )c A

ccos(B) csin(B)
2

B 21
4 sin(2 )c B
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The most important, and well-known, relationship applicable to right-
angled triangles is the theorem of Pythagoras

2 2 2a b c34:15:1
Sets of integers (a,b;c) that satisfy this relationship are known as Pythagorean
trios; a few examples are (3,4;5), (5,12;13), (7,24;25), (8,15;17), (9,40;41),
(13,84;85), (20,99;101), and (119,120;169).

Known parameters Formulas for unknown parameters

The three sides, a, b, and c.
No side may have a length
that exceeds the sum of the
lengths of the other two
sides.

2 2 2 2

2 2 2 2

2 2 2 2

2arctan ( ) / ( )

2arctan ( ) / ( )

2arctan ( ) / ( )

A a b c b c a

B b c a c a b

C c a b a b c

Two sides and the angle
opposite the longer of those
two sides. For example: a,
b, and A, where a b.

2 2 2 2 2

2 2 2

cos(2 ) 2 cos( ) sin ( )

arcsin ( / )sin( )

arccos ( )sin ( ) cos( ) 1 ( / ) sin ( )

c a b A b A a b A

B b a A

C b/a A A b a A

Two sides and the angle
opposite the shorter of those
two sides. For example: a,
b, and B, where a b.

2 2 2 2 2

2 2 2

cos(2 ) 2 cos( ) sin ( )

( / 2) arccos ( / )sin( )

arccos ( )sin ( ) cos( ) 1 ( / ) sin ( )

c a B b a B b a B

A a b B

C a/b A B a b B

Two sides and the angle
between them. For
example: a, b, and C.

2 2

2 2

2 2

2 cos( )

arcsin sin( ) / 2 cos( )

arcsin sin( ) / 2 cos( )

c a b ab C

A a C a b ab C

B b C a b ab C

Two angles and the side
opposite one of them. For
example: a, A, and B.

csc( )sin( )

cot( )sin( ) cos( )

b a A B

c a A B B

C A B

Two angles and the side
between them. For
example: a, B, and C.

csc( ) / cot( ) cot( )

csc( ) / cot( ) cot( )

b a C B C

c a B B C

A B C
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For a triangle that is not necessarily right angled, a number of general laws interrelate the six parameters a, b,
c, A, B, and C. These laws include the law of cosines,

2 2 22 cos( )bc A b c a34:15:8

the law of sines
sin( ) sin( ) sin( )A B C

a b c
34:15:9

and the law of tangents

( ) tan ( ) tan
2 2

A B A Ba b a b34:15:10

Of the six parameters, three (including at least one side) must usually be
specified for the triangle to be fully determined. The table on the previous
page presents all possible scenarios. For example, if the side a is of known
length and the angles B and C are also given, then the other sides have lengths
b and c, as well as angle A given by the appropriate entries in the table.
Notice in this table that prescribing values of a, b and B does not fully
delineate the triangle if a exceeds b. The line of length b has two alternative
positions, in that case, these being illustrated in Figure 34-5 by the full green
line and the dashed green line. In consequence, the values of c, A and C each
have the two alternatives tabulated.

One of the following formulas for the area of an arbitrary triangle

sin( ) ( )( )( )
2 2

bc a b carea A s s a s b s c s34:15:11

involves the semiperimeter of the triangle.
Three constructions that are frequently made to a triangle are

illustrated in Figure 34-6. The altitude AO, that is, the line through A
perpendicular to the side BC, has a length

AO sin( ) sin( ) angle BOA
2

b C c B34:15:12

A line through a vertex of the triangle that bisects the angle there is known
as a bisector; the bisector of the angle BAC in Figure 34-6 has a length

2 cos( / 2) (angleBAC)AN (angle BAN) = (angle NAC)
2

bc A
b c

34:15:13

Line AM, which bisects the line BC, is termed a median of the triangle; its length is

2 21
2AM 2 cos( ) BM MC

2
ab c bc A34:15:14

and it cuts the triangle into two smaller triangles of equal areas.



This chapter’s six functions – the inverse cosine function arccos(x), the inverse sine function arcsin(x), the
inverse secant function arcsec(x), the inverse cosecant function arccsc(x), the inverse tangent function arctan(x) and
the inverse cotangent function arccot(x) – are known collectively as the inverse circular functions or the inverse
trigonometric functions. Only two of these, the arctan(x) and arccot(x) functions, take real values throughout the
entire < x < domain of real arguments.

Four of the six functions – the inverse secant, the inverse cosecant, the inverse tangent and the inverse cotangent
– adopt real values within at least the x 1 domain, where they are linked by the following relationships:

2

2

1arcsec( ) arccsc( ) arctan 1 arccot 1
2 1

x x x x
x

35:0:1

2

2

1arccsc( ) arcsec( ) arctan arccot 1 1
2 1

x x x x
x

35:0:2

2
2 1 1arctan( ) arcsec 1 arccsc arccot 1xx x x

x x
35:0:3

2
21 1arccot( ) arcsec arccsc 1 arctan 1xx x x

x x
35:0:4

The same four functions also coexist for arguments less than 1, but the interrelations there often differ from those
given above, being:

2

2

1arcsec( ) arccsc( ) arctan 1 arccot 1
2 1

x x x x
x

35:0:5

2

2

1arccsc( ) arcsec( ) arctan arccot 1 1
2 1

x x x x
x

35:0:6
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2
2 1arctan( ) arcsec 1 arccsc arccot 1

2
xx x x x

x
35:0:7

2
21arccot( ) arcsec arccsc 1 arctan 1

2
xx x x x

x
35:0:8

The next eight expressions address the 0 x 1 and 1 x < 0 domains within which it is the inverse cosine, the
inverse sine, the inverse tangent and the inverse cotangent functions that coexist. In those ranges, the four functions
are interrelated by

2

2
1

1
arccos( ) arcsin( ) arctan arccot 0

2 1

x xx x x
x x

35:0:9

2

2

1
arcsin( ) arccos( ) arctan arccot 0 1

2 1

xxx x x
xx

35:0:10

2 2

1arctan( ) arccos arcsin arccot( ) 0 1
21 1

xx x x
x x

35:0:11

2 2

1arccot( ) arccos arcsin arctan( ) 0 1
21 1

xx x x
x x

35:0:12

2

2

1
arccos( ) arcsin( ) arctan arccot 1 0

2 1

x xx x x
x x

35:0:13

2

2

1
arcsin( ) arccos( ) arctan arccot 1 0

2 1

xxx x x
xx

35:0:14

2 2

1arctan( ) arccos arcsin arccot( ) 1 0
21 1

xx x x
x x

35:0:15

2 2

1arccot( ) arccos arcsin arctan 1 0
21 1

xx x x
x x

35:0:16

Despite their abundance, by no means are the relationships above the only ones linking the six functions.
The three equations

arcsin( ) arccos( )

arcsec( ) arccsc( )
2

arctan( ) arccot( )

x x

x x

x x

35:0:17

hold wherever the function pair in question is defined. With x replaced by the complex variable z, they hold
globally.
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35:1 NOTATION

The symbolism cos 1(x), tan 1(x), etc. frequently replaces arccos(x), arctan(x), etc. Variants such as arccosec(x),
arctg(x), argsin(x), and arcctg(x) are encountered occasionally. The origin of the prefix “arc” is evident from
Figure 32-2 and equation 32:3:5; because, for example, the length OQ is defined as the cosine of arc, it is natural
to regard the arc itself as the arc of the cosine, or arccos. More usually, however, the arccosine is thought of as being
associated with the angle (POQ in the figure), rather than the arc length.

The notation arccot(x) is sometimes used to denote a function defined, for negative x, somewhat differently than
here, being equal to our arccot(x) . You may encounter similar discrepancies for other inverse circular functions.

The multivalued functions Arctan(x), Arcsin(x), etc., are discussed in Section 35:12 but, confusingly, these
functions are often denoted by the uncapitalized arctan(x), arcsin(x), etc.
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35:2 BEHAVIOR

Figure 35-1 shows the varied behaviors of the six functions. Notice that the inverse secant and inverse cosecant
functions each have two branches. The following table details the real arguments that the six functions will accept
and the values they themselves adopt, but appreciate that not all authorities agree on the definitions for negative
arguments.

f(x) Domain of x Range of f

arctan(x) x 1 1
2 2arctan( )x

arcsin(x) 1 x 1 1 1
2 2arcsin( )x

arccsc(x) x 1 and 1 x 1 1
2 2arccsc( ) 1 and 1 arccsc( )x x

arccot(x) x 0 arccot( )x

arccos(x) 1 x 1 0 arccos( )x

arcsec(x) x 1 and 1 x 1 1
2 2arcsec( ) and 0 arcsec( )x x

35:3 DEFINITIONS

As their names imply, the inverse circular functions are the inverses of the circular functions of Chapters 32 34.
However, because the circular functions are periodic, it is necessary to restrict the range of their arguments so that,
on inversion, single-valued functions are created. The restrictions customarily selected for this purpose are
35:3:1 arctan( ) where tan( )

35:3:2 arcsin( ) where sin( )
2 2

35:3:3 arccsc( ) where csc( )

f x x f

f x x f f

f x x f

35:3:4 arccot( ) where cot( )

35:3:5 arccos( ) where cos( ) 0

35:3:6 arcsec( ) where sec( )

f x x f

f x x f f

f x x f

There are three definite integrals of algebraic functions, all of which evaluate to /2:
1

22 2
0 1 0

1 1 1d d d
1 21 1

t t t
tt t t

35:3:7

“Incomplete” versions of these integrals can serve as definitions of the six inverse circular functions, as illustrated
in Figures 35-2 through 35-4:

1

2 2
0

1 1d arcsin( ) and d arccos( ) 0 1
1 1

x

x

t x t x x
t t

35:3:8
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2

1
1 t

2

1
1t t

2

1
1 t

2 2
1

1 1d arcsec( ) and d arccsc( ) 1
1 1

x

x

t x t x x
t t t t

35:3:9

2 2
0

1 1d arctan( ) and d arccot( ) 0
1 1

x

x

t x t x x
t t

35:3:10
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Similar definitions serve to define the functions for negative x. Of course, formulas 35:0:17 are direct consequences
of the complementarity of these definitions.

Figure 32-2 may be adapted easily to provide geometric definitions of the inverse circular functions.
As evident from equations 35:6:1 and 35:6:2, the inverse tangent and inverse sine are hypergeometric functions

and, as such, they may be synthesized [Section 43:14] as follows

1
2

3
2

arctan1
1

x

x x
35:3:11

1 1
2 2

3
2

arcsin1 1
11 1

x

x x x
35:3:12

35:4 SPECIAL CASES

There are none.

35:5 INTRARELATIONSHIPS

The inverse tangent, sine and cosecant are odd functions:
f( ) f( ) f arctan, arcsin, or arccscx x35:5:1

whereas the other three inverse circular functions obey the reflection formula
f( ) f( ) f arccot, arccos, or arcsecx x35:5:2

Argument-reciprocation formulas for each inverse circular function are:
1arccos arcsec 1x x
x

35:5:3

1arcsin arccsc( ) 1x x
x

35:5:4

1arcsec arccos( ) 1x x
x

35:5:5

1arccsc arcsin( ) 1x x
x

35:5:6

1arctan sgn( ) arctan( ) arccot( ) 1 sgn( ) 0
2 2

x x x x x
x

35:5:7

1arccot sgn( ) arccot( ) arctan( ) 1 sgn( ) 0
2 2

x x x x x
x

35:5:8

If f is an inverse circular function, then the value of f(x) ± f(x) will not necessarily lie within the range of values
of f itself. This range diversity is catered to in the following formulas, in which k takes one of the values 1, 0, or
+1
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2 2

2 2

35:5:9 arctan( ) arctan( ) arctan
1

1 f( ) f( )35:5:10 arcsin( ) arcsin( ) arcsin 1 1 Int
2

35:5:11 arccsc( ) arccsc( ) arccsc
1 1

x yx y k
xy

x yx y k x y y x k

xyx y k
y x

2 2

2 2

35:5:12 arccot( ) arccot( ) arccot
1

1 f( ) f( )35:5:13 arccos( ) arccos( ) arccos 1 1 Int
2

35:5:14 arcsec( ) arcsec( ) arccsc
1 1 1

x yx y k
xy

x yx y k xy y x k

xyx y k
y x

A plethora of other formulas may be constructed by combining the formulas of this section with those of Section
35:0. Moreover, in this exercise, formulas from Chapters 32 35 may be invoked. For example, because sin( /2)

, then1 cos( ) / 2

1arccos( ) 2arcsin 1 1
2

xx x35:5:15

35:6 EXPANSIONS

The two fundamental series expansions of the inverse circular functions are
2 13 5 7

2 2

3
0 0 2

arctan( ) 1
3 5 7 2 1

j
jj

j j j

xx x xx x x x x x
j

35:6:1

1 13 5 7 2 1
2 2 2

3
0 0 2

3 5 (2 1)!!arcsin( ) 1
6 40 112 (2 )!! 2 1 1

j jj j

j j j j

x x x j xx x x x x
j j

35:6:2

It is the hypergeometric nature of these series that validates the syntheses portrayed in 35:3:11 and 35:3:12. These
two basic formulas are easily adapted to provide expansions of the other inverse circular functions through their
multifarious interrelationships. For example, in light of equation 35:5:15, replacement of x in equation 35:6:2 by

leads to the expansion/ 2x
1 12 3
2 2

3
0 2

3 5arccos(1 ) 2 1 2 0 2
12 160 896 1 2

j
j j

j j j

x x x xx x x x35:6:3

As a second example, whereas expansion 35:6:1 of the inverse tangent requires that the argument be less than unity,
an alternative expansion, exploiting the first equality in 35:5:7, leads to
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12 1
2

3 5 23
0 0 2

1 1 1 ( ) 1 1arctan( )
2 3 5 2 1

1
jj j

j

j j j

xx x
x x x j x x

35:6:4

an expansion valid in the domain complementary to that covered by 35:6:1.
Continued fraction expansions of the inverse circular functions include

2 2 2 24 9 16arctan( )
1 3 5 7 9
x x x x xx35:6:5

and

2

arcsin( ) 2 2 12 12 30 30 56
1 3 5 7 9 11 13 151

x x x x x x x x x
x

35:6:6

35:7 PARTICULAR VALUES

The entry “undef” in the table below means that this Atlas regards the function to be undefined, as a real
quantity, at the argument in question. A blank space indicates that the function has a value that is not noteworthy.

x x 2 x 1 x 1
2

x 0 x 1
2

x 1 x 2 x

arccos(x) undef undef
3
4 2 4

0 undef undef

arcsin(x) undef undef
2 4

0
4 2

undef undef

arcsec(x)
2

3
4

undef undef undef 0
4 2

arccsc(x) 0
4 2

undef undef undef
2 4

0

arctan(x)
2 4

0
4 2

arccot(x)
3
4 2 4

0

In Section 31:7 it is demonstrated that arguments of where is the “golden section” [Sectionor 1/ ,
23:14], lead to coalescence of certain inverse hyperbolic functions. The same phenomenon occurs with the inverse
circular functions. One has, for example:

arctan arccos arccot 1/ arcsec 1/ 0 66623 94324 92515A .35:7:1

arccot arcsin arctan 1/ arccsc 1/ 0 90455 68943 02381B .35:7:2
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A and B, which sum to /2, are the angles in the right-angled triangle shown in Figure 35-5.
They are, in fact, the Gudermannians [Section 33:14] of the quantities and cited in
equations 31:7:1 and 31:7:2

gd( ) and gd( )A B35:7:3

35:8 NUMERICAL VALUES

In its roster of inverse circular function routines, Equator offers a degree option in addition to the default radian
output. A standard algorithm is used in the inverse tangent function routine. The inverse sine function and inverse
cosecant function routines then exploit the relationships

2
arcsin( ) arctan 1

1
xx x

x
35:8:1

and

2

sgn( )arccsc( ) arctan 1
1

xx x
x

35:8:2

The routines that calculate the inverse cotangent function, inverse cosine function, and inverse secant function invoke
equations 35:0:17. Special measures are taken when the argument is in the immediate vicinity of 0 or ±1. Equator’s
keywords are simply the six-lettered symbols, for example arcsin.

35:9 LIMITS AND APPROXIMATIONS

As the argument tends towards infinity, the approach of four of the inverse circular functions to their ultimate
value is as the reciprocal of the argument:

135:9:1 f ( ) f arctan or arcsec
2
135:9:2 f ( ) f arccsc or arccot

x
x

x
x

x

As the argument approaches unity from one direction or the other, the behavior of four inverse circular functions
is governed by the expressions

arcsin( ) 2(1 ) 1
2

x x x35:9:3

arccos( ) 2(1 ) 1x x x35:9:4

arccsc( ) 2( 1) 1
2

x x x35:9:5

arcsec( ) 2( 1) 1x x x35:9:6

Similar formulas describe the limiting behaviors as x approaches or 1.
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35:10 OPERATIONS OF THE CALCULUS

For positive x, derivatives and indefinite integrals of the six inverse circular functions are

f arccos f arcsin f arcsec f arccsc f arctan f arccot

d f ( )
d

x
x 2

1
1 x 2

1
1 x 2

1
| | 1x x 2

1
| | 1x x 2

1
1 x 2

1
1 x

0

f( )d
x

t t 2

arccos( )

1 1

x x

x 2

arccos( )

1 1

x x

x
arcsec( )

arcosh( )
x x

x
arccsc( )

arcosh( )
x x

x 2

arctan( )

ln 1

x x

x 2

arccot( )

ln 1

x x

x

Notice that each of the indefinite integrals is of the form

0

f( )d f( ) g( ) f arccos, arcsin, arcsec, arccsc, arctan, or arccot
x

t t x x x35:10:1

and thereby it is straightforward to demonstrate that integration by parts [Formula 0:10:11] results in

0 0

1f( )d f( ) g( ) g( )d
2 2

x xxt t t x x x t t35:10:2

On the other hand, indefinite integrals of f(t)/t are unknown other than as infinite series. See Spiegel [pages 82 84]
for a long list of indefinite integrals of t ±nf(t), where n 2,3,4, and f is an inverse circular function. Gradshteyn
and Ryzhik [Section 2.8] list similar integrals, as well as some indefinite integrals of the powers f n(t).

Among definite integrals and Laplace transforms are
1 1

2

0

2G(1 )
arctan( )d 1 2

4(1 )
v vt t t v

v
35:10:3

3 / 2
0

arctan( ) d 2t t
t

35:10:4

1

2
0 1 0

arctan( ) arccot( ) arctan( )d d d
1

t t tt t t G
t t t

35:10:5

1

0

arcsin( ) d ln(2)
2

t t
t

35:10:6

1

0 0
0

arcsin( )exp( )d I ( ) ( ) exp( )
2

t bt t b b b
b

l35:10:7

1
2

0

sin( )Ci( ) cos( ) Si( )
arctan( )exp( )d arctan( )

s s s s
t st t t

s
35:10:8

0

arctan exp( )d arctan exp( )erfc
2

t st t t s s
s

35:10:9
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Bateman’s G function from Section 44:14, Catalan’s constant G from Section 1:7, the zero-order modified Bessel
and modified Struve functions I0 and l0 from Chapters 49 and 57, the cosine and sine integrals Ci and Si from
Chapter 38, and the error function complement from Chapter 40 are included in the functions generated by these
integrals. In their Section 4.5, Gradshteyn and Ryzhik list over 100 additional definite integrals involving the inverse
circular functions.

35:11 COMPLEX ARGUMENT

Figures 35-6, 35-7 and 35-8 show the real and imaginary parts of the inverse circular cosine, sine and tangent
functions. When the argument is purely imaginary, three of the inverse circular functions devolve into their inverse
hyperbolic analogues [Chapter 31]:

arcsin( ) arsinh( )iy i y35:11:1
arccot( ) arcoth( )iy i y35:11:2
arccsc( ) arcsch( )iy i y35:11:3

whereas the other three have a real component of /2 and can be formulated by applying equation 35:0:17.
Inverse Laplace transforms include

exp( ) 1arccot( ) d arccot( ) sin
2

i

i

st tbs s bs
i t b

I35:11:4

and

1 exp( ) arccot( )arccot( ) d Si
2

i

i

st bs tbs s
s i s b

I35:11:5

the latter yielding a sine integral [Chapter 38].
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35:12 GENERALIZATIONS

If the restrictions are removed from equations 35:3:1 6, the multivalued inverse circular functions are thereby
defined. These are distinguished by having a capitalized initial letter in their symbols. For example, the multivalued
inverse cosine is defined by

cos(f ) implies f Arccos( )x x35:12:1
and similarly for the other five. The relationship to the single-valued function is

Arccos( ) arccos( ) 0, 2, 4,x x k k35:12:2
and a similar relation holds for the Arcsin, Arcsec, and Arccsc functions; however, any integer value of k, even or
odd, is applicable in the Arctan and Arccot analogs of 35:12:2.
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The inverse cosine and inverse sine functions are special cases of the incomplete beta function [Chapter 58],
while the inverse sine and tangent functions similarly specialize the Gauss hypergeometric function of Chapter 60:

21 1 1
2 2 2arccos( ) B , ,1x x35:12:3

2 231 1 1 1 1
2 2 2 2 2 2arcsin( ) B , , F , , ,x x x x35:12:4

231
2 2arctan( ) F ,1, ,x x x35:12:5

35:13 COGNATE FUNCTIONS

The inverse circular functions play a role in the algebra of the Jacobian elliptic functions [Chapter 63] and they
are related through equations 35:11:1 3 to the inverse hyperbolic functions of Chapter 30.

35:14 RELATED TOPIC: two-dimensional coordinate systems

The location of any point P in a plane (the cartesian plane) may be specified by citing the values of two suitably
chosen parameters, called coordinates. In addition, some means of “anchoring” the coordinates to the plane is
needed. This latter requirement is usually satisfied by specifying a reference point (the origin O) and a reference
direction (the major axis) from that point.

The simplest and most familiar coordinate system employs the rectangular coordinates, x and y. The x
coordinate measures the shortest distance to point P from a line (the minor axis, the y-axis) that is perpendicular to
the major axis (the x-axis) through the origin. See Figure 35-9. The y coordinate measures the perpendicular
distance from the x-axis to the point P. Lines of constant x ( < x < ) are straight and parallel to the minor axis;
lines of constant y ( < y < ) are straight and parallel to the major axis.

Also familiar is the polar system, with coordinates r and , illustrated in Figure 35-10. The r coordinate
measures the distance from the origin to P. The coordinate is an angle, measured counterclockwise from the
reference direction. Lines of constant r ( 0 r < ) are concentric circles; lines of constant (0 < 2 ) are straight
and radiate from the origin. The interrelations
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2 2 arctan yr x y
x

35:14:1

and
cos( ) sinx r y r35:14:2

between the two systems are also in widespread use. However, whereas each system uniquely specifies the location
of point P, blunders may occur in using these interrelation formulas. Ambiguities arise because the inverse tangent
of a ratio takes no cognizance of the individual signs of the components of the ratio, so the points marked P and P
in Figure 35-9 yield erroneously identical polar coordinates when the formulas in 35:14:1 are invoked. The second
member of this formula should be modified to

0sgn( )arccot y
xy
y

35:14:3

or

arctan 2 sgn( ) sgn( ) 0 2 , 0
2

y y xy x y
x

35:14:4

to avoid the problem.

System Primary coordinate Secondary coordinate

rectangular x (parallel straight lines) y (parallel straight lines)

polar r (concentric circles) (radial straight lines)

parabolic p (confocal parabolas) q (confocal parabolas)

elliptical (horizontal ellipses) (horizontal hyperbolas)

bipolar (circles centered on major axis) (circles centered on minor axis)

The rectangular and polar systems are in common use but three less familiar two-dimensional coordinate
systems, included in the table above, are valuable alternatives in appropriate situations. The table names, and the
figures illustrate, the shapes of the lines (the grid lines), which may be straight or curved, mapped out when either
the primary or the secondary coordinate takes a constant value, the other being allowed to vary. Although each
coordinate system may be defined and utilized without reference to any rival system, it is often more convenient to
introduce new systems through their relationship to the rectangular system. Note that the symbols used for the
coordinates are not standardized. Moreover, quite different forms may be encountered; for example, the coordinates
adopted for the elliptical system are sometimes the equivalent of our sinh( ) and sin( ).

The parabolic coordinate system, illustrated in Figure 35-11, is related to the rectangular system through( , )p q
the equations

2 21
2 ( )x p q y pq35:14:5

Both sets of grid lines are parabolas [Section 11:14], their common focus being at the origin. In rectangular
coordinates, the equations of the lines of constant p ( < p < ) and the lines of constant q (q 0) are

2 4 24 and 22 yy xp x qp q35:14:6
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The reference elements of the elliptic and bipolar
coordinate systems are two points, rather than the
standard origin point and major axis direction. The two
points are separated by a distance 2a. For the purpose of
comparison with the rectangular system, we place the
origin of the latter midway between the paired points and
place the major axis on the line joining them.

In the elliptic coordinate system, illustrated in( , )
Figure 35-12, the two reference points are the foci of
curves of the second degree [Section 15:15]. If a
rectangular coordinate system is superimposed on the
elliptic system, the equations

cosh( )cos( ) sinh( )sin( )x a y a35:14:7
interrelate the coordinates of the two systems. Lines of
constant ( < < ) are horizontal ellipses [Section
13:14, but note that the a of Chapter 13 differs in
meaning from that used here], whereas lines of constant

(0 < 2 ) are horizontal hyperbolas [Section 14:14,
again with the caveat that a has changed its meaning]. These lines of constant and obey the equations

2 2 2 22 2 a tan( ) cos (nd )tanh( ) cosh ( )y y xa x a35:14:8

respectively, in rectangular coordinates.
In the bipolar coordinate system, all the grid lines pass through the two reference points, as in Figure 35-( , )

13, which are separated by 2a. The equations interrelating the bipolar and rectangular coordinates are
sinh( ) sin( )

cosh( ) cos( ) cosh( ) cos( )
a ax y35:14:9

Lines of constant ( ) and lines of constant (0 < 2 ) are all circles. Their equations, in rectangular
coordinates, are respectively
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2 2 2 2 2cot( ) cscand2 coth ) ( )( yy ax a a xx a35:14:10

It is evident from the figures that all five of these coordinate systems display reflection symmetry across the
major and minor axes although, in the case of the parabolic system, reflection requires an interchange between the
primary and secondary coordinates. These five systems are orthogonal; this means that the grid lines cross each
other at right angles. Thus, if and are any pair of orthogonal coordinates, then the slope of the constant- grid
line is related to that of the constant- grid line by their product being 1. This is true at any point in the plane.
Taking the parabolic coordinate system as an example, the slope of the constant-p gridline is p/q, while that of the
constant-q gridline is q/p. Two functions which are interrelated in this way are said to be conjugate harmonic
functions.

Consider two points in a plane, infinitesimally separated from each other. The distance between them, in
rectangular coordinates, is

2 2d d dx y35:14:11

What is the corresponding distance in polar coordinates? One finds via equations 35:14:2 that it is
2 22 2 2 2 2 2d d d cos( )d sin( )d sin( )d cos( )d [1] d [ ] dx y r r r r r r35:14:12

The quantities that appear in square-brackets in the final expression of 35:14:12 are the so-called scale factors (or
metric coefficients) of the corresponding coordinate. They are usually represented by the symbol h subscripted by
the coordinate’s symbol. Thus, for polar coordinates

1 andrh h r35:14:13
The corresponding scale factors for the parabolic, elliptical, and bipolar coordinate systems are

2 2
p qh h p q35:14:14

2 2sinh ( ) sin ( )h h a35:14:15

and
sinh( ) sin( )and

cosh( ) cos( ) cosh( ) cos( )
a ah h35:14:16

Except for the rectangular system (wherein both scale factors are unity), the scale factors enter most problems in
which the geometry or other property of a system is being examined in orthogonal coordinates. For example the area
bounded by the four lines = 0, = 0, = 1, and = 1, in the coordinate system is( , )

1 1

0 0

d dh h35:14:17

Scale factors may be defined for three-dimensional coordinate systems in a strictly analogous fashion; such scale
factors are encountered in Section 46:14.

Conjugate harmonic functions, with their right-angular linkage are important in many realms of physics, because
motion generally occurs, or fields of influence exist, perpendicularly to regions in which there is a uniform density
of the agent causing the motion or field. Consider, for example, a hot elliptical disk inlaid into a planar medium of
uniform thermal conductivity. Such a system is best described in elliptical coordinates. Heat flows away from the
disk along routes shaped as hyperbolas, while isothermal lines (on which the temperature is uniform) are ellipses
confocal with the disk and orthogonal to the hyperbolas. We have described a two-dimensional problem but, to
match the space of our universe, systems of interest generally occupy three spatial dimensions. Much of the material
in this section generalizes to three dimensions, as discussed in Section 46:14.



As sound and electromagnetic radiation of various frequencies, periodic functions, or nearly periodic functions,
provide the medium by which most telecommunications take place. Series of periodic function also play an
important role in solving many problems in applied mathematics that do not overtly have periodic properties.

36:1 NOTATION

We shall use per(x) to represent any periodic function, and occasionally qer(x) to represent a second periodic
function.

Throughout the chapter, P will denote the period of per(x). The quantity 2 /P is known as the frequency or
angular frequency of the function and is often denoted by .

36:2 BEHAVIOR

Apart from their repetitive characteristic, periodic functions share no common behavior. They may be simple
or complicated, continuous or discontinuous. Examples of periodic functions are graphed later in the chapter.

36:3 DEFINITIONS

A function that satisfies the condition
f ( ) f ( ) 1, 2, 3,x x kP k36:3:1

for all argument x is a periodic function. Its period is the smallest positive value of P that satisfies relation 36:3:1.
An aperiodic function may be converted, for example by the action of the fractional-value or modulo functions

of Chapter 8, into a periodic function by having a segment replicated at regular intervals. Thus Figure 36-1 shows
a graph of x2 (mod 2), a periodic function of period 2.
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36:4 SPECIAL CASES

Several of the functions addressed elsewhere in this
Atlas are periodic. The functions of Chapters 32 and 33
are periodic with periods of 2 , while the tangent and
cotangent functions of Chapter 34 have periods of . The
comb function of Section 8:13, exponential theta functions
of Section 27:13, and the multivalued inverse circular
functions of Section 35:12, are also periodic. The
Jacobian elliptic functions [Chapter 63] have periods
determined by their modulus. Some common periodic
waveforms are the subject of Section 34:14.

36:5 INTRARELATIONSHIPS

The fundamental property of periodicity
per( ) per( )x P x36:5:1

constitutes a recurrence formula for periodic functions. Periodic functions may be even, odd, or neither.
If two periodic functions, per(x) and qer(x) with periods P and Q, are added, subtracted, multiplied, or divided,

the resultant function will be periodic only if the quotient P/Q is a rational number. Generally, per(x)±qer(x),
per(x)qer(x) or per(x)/qer(x) will have a period equal to the least common multiple of P and Q. There are, however,
exceptions to this rule. For example sin(x) and cos(x), each of period 2 , have products and quotients of period ,
not 2 as predicted by the rule. The sum and difference, sin(x) ± cos(x) do, however, obey the rule.

If the argument x of the periodic function per(x) is replaced by a linear function of x, the resulting per(bx+c)
function will be periodic, but with a period altered to P/b. Replacement of the argument by any other aperiodic
function of x destroys the periodicity; the functions per(ax2+bx+c) or per(1/x), for example, are not periodic.
Multiplication or division by, or addition or subtraction of, any aperiodic function other than a constant likewise
destroys the periodicity.

A function of a periodic function is itself periodic. It generally has the same period P as per(x) or occasionally
a submultiple such as P/2.

36:6 EXPANSIONS

In a process known as harmonic analysis, any periodic function of period P may be represented, exactly or
approximately, as the Fourier series (Jean Baptiste Joseph Fourier, 1768 1830, French mathematician)

0

1

2 2per( ) cos sin
2 j j

j

c j x j xx c s
P P

36:6:1

Whether the = or the sign is appropriate in this equation depends on the convergence properties of Fourier series,
the details of which are of some complexity [Hamming, Chapter 32] and will not be explored here. Suffice it to state
that if the per(x) function is continuous, the series converges; if the function has discontinuities, the series converges
except at the points of discontinuity. An example occurs later in this section.

The cj and sj coefficients in series 36:6:1 are known as Fourier coefficients; they may be calculated by the so-
called Euler formulas
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0

2 2per( )cos d 0,1,2,
P

j
j tc t t j

P P
36:6:2

and

0

2 2per( )sin d 1,2,3
P

j
j ts t t j

P P
36:6:3

The Fourier coefficients satisfy Parseval’s relation (Marc-Antoine Parseval des Chênes, French nobleman,
1788 1829)

0

0

2
2 2 20

1

2 per ( )d
2

x P

j j
j x

c c s t t
P

36:6:4

provided that per(x) is finite everywhere.
The Fourier series 36:6:1 may be written in the alternative form

2 20

1

2per( ) cos arctan
2

j
j j

j j

sc j xx c s
P c

36:6:5

or in terms of exponential functions of imaginary argument
2per( ) expj

j

ji xx a
P

36:6:6

In the latter representation, the Fourier coefficients aj are complex numbers calculable by the unitary Euler formula

| | | |

0

sgn( )1 2per( )exp d 0, 1, 2,
2

P
j j

j

c j isij ta t t j
P P

36:6:7

All the formulas in this section condense somewhat when the period parameter P is replaced by 2 / , being the
frequency. It is in this condensed format that harmonic analysis is commonly conducted, especially when the
variable x represents time, as it often does.

Over a limited range of argument, Euler’s formulas may be applied to functions that are not periodic. For
example, choosing the square function f(x) x2 over the interval 0 < x < 2, one finds from equations 36:6:2 and
36:6:3 that

2
2

2 2
0

8 /3 0
cos d

4/ 1,2,3,j

j
c t j t t

j j
36:6:8

2
2

0

4sin d 1,2,3,js t j t t j
j

36:6:9

and therefore

2
2

1

4 4 cos( ) sin( ) 0 2
3 j

j x j xx x
j j36:6:10

If a similar replacement in 2 < x < 4, 2 < x < 0, etc., the periodic function illustrated in Figure 36-1 is generated.
This periodic function has one discontinuity per period and it is interesting to see how well formula 36:6:10, absent
the restriction, handles this. One finds that at x 0 (or x ±2, ±4, ), the formulas gives (4/3)+4 (2)/ 2 2, the
properties of a zeta number [Chapter 3] having assisted. Note that this answer is the mean of the values, 0 and 4,
at each side of the discontinuity. This is generally true: at a discontinuity the Fourier series representation gives the



370 PERIODIC FUNCTIONS 36:7

“best answer that it can”, the average of the values on either side of the discontinuity.
Though they are the usual, and normally the best, units into which periodic functions may be resolved, the

cosine and sine are not the only candidates for this task. For example, as mentioned in Section 8:6, the sine function
can be built from square-waves [Section 36:14], and so can the cosine. It follows that any periodic function may
be resolved into a (usually infinite) set of square waves.

36:7 PARTICULAR VALUES

Of course the particular values of a periodic function depend on the identity of the function. In terms of the
Fourier coefficients, however, one can cite the four special values

1
0 1 2 3 4 5 62per(0) per( )P c c c c c c c36:7:1

1 1
0 1 2 3 4 5 64 2per P c s c s c s c36:7:2

1 1
0 1 2 3 4 5 62 2per P c c c c c c c36:7:3

3 1
0 1 2 3 4 5 64 2per P c s c s c s c36:7:4

Notice that at the end points of the period, and in its center, the Fourier sine coefficients play no role whatsoever.

36:8 NUMERICAL VALUES

If necessary, the numerical value of a periodic function may be calculated via its Fourier expansion.

36:9 LIMITS AND APPROXIMATIONS

A periodic function may be approximated by a truncated version of its Fourier expansion.
Moreover, a so-called Fourier approximation to an aperiodic function f(x) over a specified argument range

x0 x x1, may be created for most functions. First change the variable to x x0 and replace P in Euler’s formulas
by x1 x0. The resulting definitions,

1

0

0
0

1 0 1 0

2 2 ( )f( )cos d 0,1,2, ,
x

j
x

j x xc x x x j J
x x x x

36:9:1

and
1

0

0
0

1 0 1 0

2 2 ( )f( )sin d 1,2,3, ,
x

j
x

j x xs x x x j J
x x x x

36:9:2

may be used to create a limited set of Fourier coefficients with 2J+1 members. The Fourier approximation is then

0 0 0
0 1

1 1 0 1 0

2 ( ) 2 ( )f( ) cos sin
2

J

j j
j

c j x x j x xx c s x x x
x x x x

36:9:3

When any function, periodic or not, is approximated over a specified range by a truncated Fourier expansion,
such an approximation is best in the least-squares sense. The meaning of the italicized phrase is that if is anf( )x
approximation to f(x) based on 36:9:3, then
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1 1

0 0

2 2[f( ) f( )] d [f ( ) f( )] d
x x

x x

x x x x x x36:9:4

where is any other (2J +1)-term approximation to f(x).f ( )x

36:10 OPERATIONS OF THE CALCULUS

Differentiation of the periodic function 36:6:1 gives another periodic function of the same period. If per(x) is
continuous, the derivative is

1

d 2 2 2per( ) cos sin
d j j

j

j x j xx js jc
x P P P

36:10:1

in terms of its Fourier coefficients. Discontinuities in per(x) will generate Dirac functions [Chapter 9] in
d{per(x)}/dx.

The Fourier coefficient represents the average value of per(x) over the period:1
02 c

0

0

0
0

1 per( )d arbitrary
2

x P

x

ct t x
P

36:10:2

Only if this coefficient is zero will indefinite integration of per(x) give rise to another periodic function, in which
case the integral has the following Fourier expansion

0
10

2 2per( )d sin 1 cos 0
2

x
j j

j

c sP j x j xt t c
j P j P

36:10:3

After subtraction of differintegration [Section 12:14] with a lower limit of converts per(x) into another1
02 ,c

periodic function of period P. In terms of the original Fourier coefficients, the differintegrated function is

1
02

1

1 1 1 1
2 2 2 2

1

d 2 2 2[per( ) ] cos sin
d 2 2

2 2 2cos sin cos cos sin sin

vv

j jv
j

v

j j j j
j

j j x v j x vx c c s
x P P P

j j x j xc v s v s v c v
P P P

36:10:4

See Section 64:14 for further discussion of this topic.
Laplace transforms of periodic functions obey the rule

0 0

1per( )exp( )d per( ) per( )exp( )d
1 exp( )

P

t st t t t st t
Ps

36:10:5

Specific instances of this formula will be found in Section 36:14 for a variety of periodic functions.

36:11 COMPLEX ARGUMENT

For constant y, the periodic function per(x + iy) remains periodic in x. The Fourier coefficients of such functions
are complex numbers that may be further resolved with the help of equations 32:11:1 and 32:11:2.
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36:12 GENERALIZATIONS

A number of functions. such as the logarithmic function and the hyperbolic sine functions, ln and sinh, that are
aperiodic when their arguments are real, are periodic functions in the complex plane.

The Jacobian elliptic functions [Chapter 63] exhibit double periodicity when their argument is complex. That
is, they satisfy the recurrence relations

per( ) per( ) per( ) per( )x iy x P iy x iy iQ x P iy iQ36:12:1
where P and Q are respectively the real and imaginary periods.

36:13 COGNATE FUNCTIONS

Periodic, and especially sinusoidal, functions are used as “carriers” of lower frequency signals. That is, the
signal is imposed on the carrier, which is said to be modulated thereby. The ensemble is no longer periodic, but is
described as quasiperiodic. Usually the signal is merely added to the carrier, so that the resulting quasiperiodic
waveform resembles a periodic signal in its frequency attribute but lacks a constant amplitude: it is amplitude
modulated (AM). Alternatively, the amplitude may be constant but the frequency may be perturbed slightly by the
signal (frequency modulation, FM). Quasiperiodicity is a property used for conveying information in such transfers
as light, sound, radio-waves and diagnostic signals of various kinds. Filtering or Fourier transformation [Section
32:15] is used to demodulate the wave and recover the signal.

36:14 RELATED TOPIC: waveforms

Certain commonly encountered periodic functions, often incorporating one or two discontinuities per period,
are known as waveforms. The diagrams in Figure 36-2 give the names and display the shapes of some of the most
important waveforms. Notice that these waveforms come in variants, as exemplified in diagrams (a) and (b), that
differ only in phase.

The names of waveforms (g) and (h) have their origins in electrical technology. When alternating current (a.c.),
which has a sinusoidal waveform (f), is converted to direct current (d.c.) the first step is to rectify it (“make it right”)
by converting it into one or other of waveforms (g) or (h).

Periodic functions may be Laplace transformed and often the result is quite simple. Listed below are the
transforms of the eight functions depicted in Figure 36-2.

( )
1per ( ) tanh

4a
Pst

s
36:14:1

(b)
1per ( ) 1 sech

4
Pst

s
36:14:2

(c)
1 2per ( ) csch

2
Pst

s Ps
36:14:3

(d) 2

4per ( ) tanh
4

Pst
Ps

36:14:4
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(e)
2 2sinh( / 2)per ( ) 1 exp

2 1 exp( )
hs hst

s Ps
36:14:5

(f ) 2 2 2

2per ( )
4

Pt
P s

36:14:6

(g) 2 2 2

2per ( ) coth
4 4

P Pst
P s

36:14:7

(h) 2 2 2

2per ( )
4 1 exp( / 2)

Pt
P s Ps36:14:8

Of course, the subscript attaching to the per symbol in the above transforms relates to the items so identified in
Figure 36-2 and in the following table, which lists each waveform’s formula and its Fourier coefficients.

Fig per(x) 0

2
c cj s1

sj

j 1,3, j 2,4, j 3,5, j 2,4,

(a) ( 1)Int(2x/P) 0 0 0
4 4

j
0

(b) ( 1)Int(4x+P)/2P 0
( 1) / 2( ) 4j

j
0 0 0 0

(c)
12frac 1
2

x
P

0 0 0
2 2

j
2

j

(d) Int (2 / ) 1( ) 4frac 2
2

x P x
P

1 2 2

8
j

0 0 0 0

(e)
22u frac 1

2
x h h

P P
h
P

2 sin j h
j P

2 sin j h
j P

0 0 0

(f)
2sin x
P

0 0 0 1 0 0

(g)
2sin x
P

2
0 2

4
( 1)j

0 0 0

(h)
1 2 1 2sin sin
2 2

x x
P P

1
0 2

2
( 1)j

1
2

0 0

Apart from the last two, the formulas above apply to a periodic function that ranges by 2 from minimum to
maximum, thereby matching the figures in scale. The functions (a), (b), (c), and (f) are said to have an amplitude
of unity: this term is not clearly defined for other periodic functions. Another measure of the intensity of a waveform
is its root-mean-square amplitude,

0

0

2
rms

1 per ( )d
2

x P

x

per x x36:14:9



For n 1,2,3, , indefinite integrals of the form cannot be expressed as elementary functions.exp( )dnt t t
The exponential integral function Ei(x) fills this deficiency, but has an inconvenient discontinuity at x 0. The
entire exponential integral Ein(x) lacks discontinuities, being related by

Ein( ) ln Ei( ) 0 57721 56649 01533x x x .37:0:1

to the exponential integral function. Here ln is the logarithmic function [Chapter 25] and is Euler’s constant
[Section 1:7].

37:1 NOTATION

Notations abound for the exponential integral
function. Ei*(x), E*(x), E+(x), and E (x)Ei( ),x Ei( ),x
have all been used to denote Ei(x) or some closely
related function. The definition of these symbols in
other sources may not exactly match that used in this
Atlas. Thompson [Chapter 5] recognizes three kinds of
exponential integral, of which the “exponential integral
of the second kind” is our Ei. His first and third kinds of
“exponential integral” are the Schlömilch functions
[Section 37:13] and the logarithmic integral [Section
25:13], respectively.

For negative argument, Ei(x) is often written
E1( x) for reasons that will be clear from Section

37:13. Adding to the confusion, ei(x) sometimes
replaces Ei( x). This Atlas uses only Ei and Ein,
defined as in Section 37:3 below.
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exp( )t
t

exp( )t
t

1 exp( )t
t

37:2 BEHAVIOR

Both functions accept any real argument and have unlimited ranges. As Figure 37-1 suggests, the Ei function
tends towards as its argument approaches zero from either direction, whereas Ein passes smoothly through zero.
As their arguments increase, both functions approach ever larger values, the increase being dramatic in the case of
Ei. The exponential integral function approaches zero at large negative arguments, whereas its entire congener
acquires increasingly negative values indefinitely.

37:3 DEFINITIONS

The two functions are defined by the indefinite integrals:

exp( )Ei( ) d
x tx t

t
37:3:1

and

0

1 exp( )Ein( ) d
x tx t

t
37:3:2

these definitions being illustrated in Figures 37-2 and 37-3. Because the
integrand in 37:3:1 passes through a discontinuity, that integral is to be
interpreted as a Cauchy limit:

0

exp( )Ei( ) lim Ei( ) d 0
x tx t x

t
37:3:3

whenever x is positive.
The exponential integral function may be defined as a definite

integral in many ways. One such definition is
1

0

1Ei( ) exp( ) d 0
ln( )

x x t x
t x

37:3:4

and several others are listed by Gradshteyn and Rhyzik [Section 8.212].
As well, the logarithmic integral [Section 25:13] can serve to define the
exponential integral through the equivalence

Ei( ) li exp( )x x37:3:5

In addition to 37:3:2, equation 37:0:1 provides a definition of the
entire exponential function. Being hypergeometric, this function may
be synthesized [Section 43:14]; two steps are needed:

1 exp( ) Ein( )1 1exp( )
2 2

x xx
x x

37:3:6

37:4 SPECIAL CASES

There are none.
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37:5 INTRARELATIONSHIPS

We know of no simple reflection, recurrence, addition, or multiplication formulas, though the following apply:
Ei( ) Ein( ) Ei( ) Ein( )x x x x37:5:1

13 5 2 1
2 2

3 31
0 02 2 2

Ei( ) Ein( ) 2 2 4
9 300 (2 1)! 1

j jj

j j j j j

x x xx x x x x
j j

37:5:2

1

1
1 0

( ) !Ei( ) Ei( ) exp( ) 0
!

j j

k
j k

y kx y x x y xy x y
j x

37:5:3

In the last of these formulas, interchange x and y if |y| > |x|.

37:6 EXPANSIONS

Two alternative power series:
2 3 4

1 0

(1)( )Ein( ) ( )
4 18 96 ! (2) (2)

j
j j

j j j j

x x x xx x x x
j j37:6:1

and
2 3

1 1

3 11 1 1 1exp( )Ein( ) 1 ( 1)
4 36 2 3 ! !

j j

j j

x x x xx x x j
j j j

37:6:2

are available to express the entire exponential integral. The former demonstrates this function’s hypergeometricity.
In the latter, is the digamma function [Chapter 44].

One may combine equation 37:0:1 and 37:6:1 to produce
2 3 4

1
Ei( ) ln ln

4 18 96 !

j

j

x x x xx x x x
j j

37:6:3

The product of exp( x) and the exponential integral is expansible as the continued fraction
1 1 1 2 2 3 3 4exp( )Ei( )

1 1 1 1
x x

x x x x
37:6:4

or as the asymptotic series

2 3 4 5 1
0

1 1 2 6 24 !exp( )Ei( ) j
j

jx x x
x x x x x x

~37:6:5

the last being useful only for large, and preferably negative, argument.

37:7 PARTICULAR VALUES

The zeros of the two functions are
Ei(0 37250 74107 81367) 0 and Ein(0) 0.37:7:1

The Ei(x) function displays a discontinuity of the | variety at x 0; it inflects at x 1.
See 44:5:10 for the special significances of Ei(1) and Ei( 1).
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37:8 NUMERICAL VALUES

With keywords Ei and Ein, Equator provides an exponential integral routine and a distinct entire exponential
integral routine. For arguments in the domain 2 x 75, Equator uses many terms of expansion 37:6:1 to calculate
Ein( x). Ei(x) is then computed via 37:0:1. For other arguments in the domain |x| 705, the continued fraction
37:6:5 is invoked, the entire exponential integral Ein(x) being then computed via 37:0:1. Though the relative
accuracy in Ei(x) is compromised close to its zero [equation 37:7:1], both routines give numerical values that are
precise to the number of digits reported.

37:9 LIMITS AND APPROXIMATIONS

Limiting expressions as the argument approaches infinity are
exp( )Ei( ) xx x

x
37:9:1

Ein( ) ln( )x x x37:9:2
and

exp( )Ein( ) xx x
x

37:9:3

while, close to x 0, the following approximations hold
Ei( ) ln smallx x x x37:9:4

and
21

4Ein( ) smallx x x x37:9:5

37:10 OPERATIONS OF THE CALCULUS

The following rules apply for differentiation and indefinite integration:
d exp( )Ei( )
d

bxbx
x x

37:10:1

d 1 exp( )Ein( )
d

bxbx
x x

37:10:2

0

exp( ) 1Ei( )d Ei( )
x bxbt t x bx

b
37:10:3

2

00

(1)1 exp( )Ein( )d Ein( ) ( )
2 (2) (3)

x
j j

j j j

bx bxbt t x bx x bx
b

37:10:4

1

1
0

! exp( )e ( ) 1Ei( )Ei( )d 0,1,2,
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n

n bx bxx bxt bt t n
n n b

37:10:5
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0

1 exp( )Ei( ) Ei( ) ln 0
exp( )Ei( )d

1 ln( ) exp( )Ei( ) 0

x

bx bx x bx b
b

t bt t

bx bx bx b
b

37:10:6

The en function appearing in 37:10:5 above, and in 37:10:8 below, is the exponential polynomial [Section 26:12].
Among indefinite and definite integrals are

/

1 exp exp Ei( ) Ei ( ) ln
exp( )Ei( )d

1or, if , exp( ) ln exp( )Ei( )

x

c b

c c c bx bx c b x
b b b b

t bt c t

b c bx c bx c bx c
b

37:10:7

2

0

exp( )Ei( ) d csc( ) (1 ) ( ) (1 ) 1 0v

t t t v v v v v
t

37:10:8

and others may be found in Gradshteyn and Ryzhik [Sections 6.21 6.23]. The function in 37:10:8 is the
(complete) gamma function [Chapter 43].

The following Laplace transforms generate functions from Chapters 25, 31, 51, 43, and 60:

0

1Ei( )exp( )d Ei( ) ln 1 sbt st t bt
s b

37:10:9

0

Ei( ) Ei( )exp( )d 2 arsinhbt bt sst t
s bt t

37:10:10

0

0

2K 2
Ei exp( )d Ei 0

asa ast t a
t t s

37:10:11

1 1

0

( )F 1, , 1, /( )
Ei exp( )d Ei 0

( )
v v

v

v v v s s b
t bt st t t bt v

v s b
37:10:12

37:11 COMPLEX ARGUMENT

The real and imaginary parts of Ei(x + iy) are illustrated in Figure 37-4 overleaf. Apart from the negative pole
at the origin, the real part has unexceptional behavior. The imaginary part is cut along the negative real axis, as it
would otherwise be multivalued. Some authors cut the complex plane along the positive real axis.

For purely imaginary argument, one has

Ei( ) Ci( ) Si( ) sgn( )
2

iy y i y y37:11:1

and
Ein( ) Cin( ) Si( )iy y i y37:11:2

The Si, Ci and Cin functions are discussed in Chapter 38.
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37:12 GENERALIZATIONS

The exponential integral generalizes to two important functions: the upper incomplete gamma function
[Chapter 45]

Ei( ) (0, )x x37:12:1
and the Tricomi function [Chapter 48]

Ei( ) exp( ) U(1,1, )x x x37:12:2
When x is positive, it is only the real part of exp(x)U(1,1, x), that equals the exponential integral.

37:13 COGNATE FUNCTIONS

As established in equation 37:6:1, the entire exponential integral is an example of an L K+1 2
hypergeometric function [Section 18:14]. As such, Ein has kinship with all the functions in Tables 18-3 and 18-4.

A family of functions, each defined by either a definite, or an equivalent indefinite, integral

1

1

exp( ) exp( )d d 0,1,2,n
n n

x

xt tt x t n
t t

37:13:1

was investigated by Oscar Xavier Schlömilch (1823 1901, French-born, though his mathematical career was in
Germany). These Schlömilch functions are generally denoted En(x) but the Atlas avoids this notation to prevent
confusion with Euler polynomials [Chapter 20] that are symbolized identically. Early members of the family are

n 0 n 1 n 2 n 3

1

exp( ) dn

xt t
t

exp( )x
x

Ei( )x exp( ) Ei( )x x x
21 exp( ) Ei( )

2 2
x xx x
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and others may be found either from the simple recursion relationship

1
1 1

exp( ) exp( )( 1) d exp( ) d 2,3,4,n n

xt xtn t x x t n
t t

37:13:2

or by the general formulation
2

1 2

01

exp( ) 1d ( ) Ei( ) exp( ) !( ) 2,3,4
( 1)!

n
n n n j

n
j

xt t x x x j x n
t n

37:13:3

The derivative of the nth Schlömilch function is the negative of its (n 1)th congener. Having the following
asymptotic expansion, useful only for large x,

2 3
01

exp( ) exp( ) ( 1) ( 1)( 2) exp( ) 1d 1 ( )
j

jn
j

xt x n n n n n n xt n
t x x x x x x

~37:13:4

the Schlömilch function is a special case of the upper incomplete gamma function,

1

1

exp( ) d ( 1, )n
n

xt t x n x
t

37:13:5

Its numerical values are calculable by using the preceding formula in conjunction with Equator’s upper incomplete
gamma function routine (keyword gamupper) [Section 45:8].

Two other relatives of the Ei function are the alpha exponential integrals and the beta exponential integrals,
defined in the equations

1 1
1

!exp( )e ( ) ( 1, )( ) exp( )d 0,1,2,n n
n n n

n x x n xx t xt t n
x x

37:13:6

1

1
1

!( ) exp( )d exp( )e ( ) exp( )e ( ) 0,1,2,n
n n nn

nx t xt t x x x x n
x

37:13:7

However, because these may be written explicitly – as shown – in terms of well-known functions, they are not
further discussed in the Atlas. The en(x) function in these equations is the exponential polynomial of Section 26:13.

The asymptotic representation of the function

2 3

0

1 1 1exp Ei 1 2 6 1 ( ) smallj
j

j
x x x x x

x x x
~37:13:8

often known as Euler’s function, together with its non-alternating counterpart

2 3

0

1 1 1exp Ei 1 2 6 1 very smallj
j

j
x x x x x

x x x
~37:13:9

are the L K 1 0 prototypes or basis functions for a family of hypergeometric functions [Section 18:14]. From
one or other of these prototypes, all the functions listed in Tables 18-7 and 18-8, as well as others, may be
synthesized via the method explained in Section 43:14.

37:14 RELATED TOPIC: functions defined as an indefinite integral

Ein is one of a number of functions that are defined by an integral of the form
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0

f( ) g( )d
x

x t t37:14:1

where g is a more elementary function. The functions of Chapters 38, 39, 40, and 62 are also in this class. Such
functions may be integrated indefinitely in a standard way, because

0 0

f( )d f( ) g( )d
x x

t t x x t t t37:14:2

as is easily established by parts integration [Section 0:10]. Equation 37:10:4 is an example of this general rule.
Moreover, it is not difficult to demonstrate that

2

0 0 0 0

1f( )d f( ) g( )d g( )d d
2

x tx x

t t t x x x t t t t t t t37:14:3

and that

2

0 0 0 0 0

1f( )d d f( ) g( )d g( )d d
2

x t x tx

t t t x x x t t t t t t t37:14:4

Hence, if the xg(x) function is susceptible to facile integration, various integrals involving the f(x) function may be
derived easily.

If the lower limit in definition 37:14:1 is other than zero, the same principles hold, though the formulas are
somewhat more elaborate.

37:15 RELATED TOPIC: popular integrals

Indefinite integrals of the general form

exp( )dvt t t37:15:1

are incomplete gamma functions and are discussed in detail in Chapter 45. Nevertheless, certain special instances
of integral 37:15:1 occur so frequently in scientific applications, that it is worthwhile to assemble them into the
convenient table opposite. Though some apply more widely, the tabulated formulas are applicable generally to real
positive x values. The erfc and ierfc functions occurring in this tabulation are discussed in Chapter 40. The daw
function is Dawson’s integral [Chapter 42] and the lower limits identified as xM and xi are the arguments at which

acquires its maximum value and where it inflects [Figure 42-1]:daw x

M 0 85403 26565 98197x .37:15:2

i 1 8436 50900 13325x .37:15:3
Specifically, the integrals tabulated are

0

3 51
2 2 2exp d and exp d for 0, , 1, , 2, and 3

x
v v

x x

t t t t t t v37:15:4

where x0 has been selected to nullify any “constant of integration”. However, Table 37-1 may also be used to
evaluate two other families of indefinite integrals, members of which arise frequently. Thus, one may use it to
evaluate

3 5 7 91
2 2 2 2 2

1exp d for 0, , 1, , 2, , 3, , 4, and 537:15:5
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by changing the integration variable from to 1/t, and the power to (v/2). Similarly, changes from to andt
from n to 2v 1, permit use of the table to evaluate the integrals

2exp d for 0, 1, 2, 3, 4, 5, 6 and 7n n37:15:6

Of course, the limits of integration change accordingly when the variable is altered. As with all indefinite integrals,
it is a good idea to check the veracity of the result by differentiation.

Table 37-1

v x0
0

exp( )d
x

v

x

t t t exp( )dv

x

t t t

3 2

1 1Ei( ) exp( )
2 2

xx x
x 2

1 1exp( ) Ei( )
2 2

x x x
x

5
2 xi 3

2 1 2exp( ) daw
3

xx x
x 3

2(1 2 ) 4exp( ) erfc
33

x x x
x

2
exp( )Ei( ) xx

x
exp( )Ei( ) xx

x

3
2 xM

12exp( ) 2dawx x
x

2 ierfc x
x

1 Ei(x) Ei( x)

1
2 0 2exp( )dawx x erfc x

0 exp(x) exp( x)

1
2 0 exp( ) dawx x x erfc exp( )

2
x x x

1 1 exp( )x x 1 exp( )x x

3
2 0

daw3exp( ) 1
2

x
x x x

x
3
2

3 erfc exp( )
4

x x x x

2 2 2 2 exp( )x x x 2 2 2 exp( )x x x

5
2 0 2

daw5 15exp( ) 1
2 4

xxx x x
x

215 5 15erfc exp( )
8 2 4

xx x x x

3 3 23 6 6 exp( )x x x x 3 23 6 6 exp( )x x x x





This chapter addresses functions defined as indefinite integrals of sin(x)/x, cos(x)/x, and their hyperbolic
counterparts. These functions are named sine integral, cosine integral, hyperbolic sine integral, and hyperbolic
cosine integral and are given the symbols Si(x), Ci(x), Shi(x), and Chi(x). Because the Ci(x) and Chi(x) functions
have discontinuities at x 0, and are complex for negative argument, it is convenient to supplement this pair by an
entire cosine integral defined by

Cin( ) = +ln Ci( ) 0 57721 56649 01533x x x .38:0:1

and an entire hyperbolic cosine integral
Chin( ) = Chi( ) lnx x x38:0:2

these definitions involving the logarithmic function and Euler’s constant. In addition, there are two useful auxiliary
functions, introduced in Section 38:13.

Because their hyperbolic analogues find fewer applications, this chapter concentrates on the Si, Ci, and Cin
functions. Moreover, the close relationship [equations 38:3:4 6] of the Shi, Chi, and Chin functions to the
exponential integral functions of the previous chapter, makes the properties of the hyperbolic trio readily accessible
by that route.

38:1 NOTATION

The initial letters of Shi and Chi are not always capitalized. The “h” that identifies the hyperbolic integrals may
occur elsewhere in the function’s symbol. Thus Sih sometimes replaces Shi and the anagram Cinh may substitute
for Chin.

Some authors use ci(x) synonymously with Ci(x) but others employ it to denote the negative, Ci(x). The
notation si(x) is usually encountered with the meaning

1
2si( ) Si( )x x38:1:1

Neither ci nor si finds use in this Atlas.
We adopt the symbolism fi(x) and gi(x) for the auxiliary sine and cosine integrals because there appears to be

no standard notation. Abramowitz and Stegun [Section 5.2] use the generic f(x) and g(x), whereas Lebedev [page
37] employs P(x) and Q(x).

DOI 10.1007/978-0-387-48807-3_39, © Springer Science+Business Media, LLC 2009 
385K.B. Oldham et al., An Atlas of Functions, Second Edition,
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38:2 BEHAVIOR

The damped oscillatory behavior of the Ci and Si functions
is evident in Figure 38-1. Respectively, these functions tend
towards zero and ± /2 as their arguments approach ± . Ci
suffers a discontinuity at an argument of zero. Having a value
of zero at x 0, Cin proceeds logarithmically towards infinity
as the argument increases, through a series of plateaus.

Figure 38-2 maps the hyperbolic integrals Shi, Chi, and
Chin. Both Shi(x) and Chi(x) converge to as x increases1

2 Ei( )x
[Ei is the exponential integral of Chapter 37]. Chi(x) resembles
Ci(x) in having a discontinuity at x 0, whereas Chin(x)
displays a null minimum at this argument.

For x < 0, the Ci and Chi functions are complex, with an
argument-independent imaginary component of i. It is for this
reason that the negative-x branches of these functions are
shown as dashed lines in the figures. The dashed lines
represent the real parts of the complex-valued functions.

For positive arguments, the difference crops up1
2 Si( )x

in relationships more frequently than does Si(x) itself. For
example, when the square of this difference is added to Ci2(x),
the oscillatory nature of the two functions suffers mutual
annihilation, as equation 38:13:9 demonstrates.
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38:3 DEFINITIONS

Any of the following integrals define the sine integral function

0 0

sin( ) sin( ) 1Si( ) d d sinc( )d
2

x x

x

t tx t t t t
t t

38:3:1

Note the negative sign in the following definition of the cosine integral function

cos( )Ci( ) d
x

tx t
t

38:3:2

The entire cosine integral is defined by equation 38:0:1 or by the integral

0

1 cos( )Cin( ) d
x tx t

t
38:3:3

The condition x 0 must be attached to definition 38:3:2 (and also to the integral definition in 38:3:5) to ensure that
the function thereby defined is real.

In addition to integral definitions analogous to those of their circular counterparts, the hyperbolic Shi, Chi, and
Chin functions may be defined through the exponential integral function of Chapter 37:

0

sinh( ) Ei( ) Ei( )Shi( ) d
2

x t x xx t
t

38:3:4

0

0
cosh( ) Ei( ) Ei( )Chi( ) d 0 52382 25713 89864

2

x

x

t x xx t x
t

.38:3:5

0

Ein( ) Ein( )cosh( ) 1Chin( ) d
2

x x xtx t
t

38:3:6

The x0 in integral 38:3:5 is the zero of the Chi function. Analogous to the final terms in equations 38:3:4 6,
exponential integrals of imaginary argument serve to define the three circular functions through the formulas

Ei( ) Ei( )Si( ) sgn( ) Shi( )
2 2

ix ixx x i ix
i

38:3:7

Ei( ) Ei( )Ci( ) Chi( ) 0
2 2

ix ix ix ix x38:3:8

and
Ein( ) Ein( )Cin( ) Chin( ) 0

2 2
ix ix ix ix x38:3:9

The last three equations also provide representations of the circular functions in terms of their hyperbolic congeners
of imaginary argument.

Being L K + 2 3 hypergeometric functions [see equation 38:6:1,2], the Si, Shi, Cin, and Chin functions may
be synthesized [Section 43:14] by the multistep processes

1
2

0 3 3
2 2

1 11I 2 sinh 2 Shi 2
2 2

x x x
x x

38:3:10

1
2

0 3 3
2 2

1 11J 2 sin 2 Si 2
2 2

x x x
x x

38:3:11
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1
2

0 1 0 3
2

1 1 11 1I 2 I 2 I 2 1 Chin 2
2 2 2

x x x x
xx x38:3:12

1
2

0 1 0 3
2

1 1 11 1J 2 J 2 1 J 2 Chi 2
2 2 2

x x x x
xx x38:3:13

from the prototypical cylinder functions J0 and I0.

38:4 SPECIAL CASES

There are none.

38:5 INTRARELATIONSHIPS

Like the sine function itself, the sine integrals, circular and hyperbolic, are odd
f( ) f( ) f Si or Shix x38:5:1

whereas, emulating cos(x), the two entire cosine integrals are even
f( ) f( ) f Cin or Chinx x38:5:2

Expressions linking the Ci and Si functions to the auxiliary functions detailed in Section 38:13 are:
Ci( ) sin( ) fi( ) cos( )gi( ) 0x x x x x x38:5:3

1
2Si( ) cos( )fi( ) sin( )gi( ) 0x x x x x x38:5:4

38:6 EXPANSIONS

The sine integrals, circular and hyperbolic, have the following power series expansions
2 13 5 7 2

2

3 3
0 0 2 2

Shi
Si 18 600 35280 (2 1)!(2 1) 1 4

j j
j

j j j j j

xx x x xx x x x
j j

38:6:1

Likewise the power series expansions for the two entire cosine integrals are
2 4 6 8 2 2 2

3
1 0 2

1( )Chin
Cin 4 96 4320 322560 (2 )!2 4 2 2 4

jj
j

j j j j j

x x x x x x xx
j j

38:6:2

but series 38:8:1 and 38:8:2 will generally converge more rapidly.
The Ci and Chi functions do not have simple power series, but equations 38:0:1 and 38:0:2 may be combined

with 38:6:2 to construct the expansions
2 4 6 8Chi

( ) ln 0Ci 4 96 4320 322560
x x x xx x x38:6:3

The sine integral function is also expansible in terms of spherical Bessel functions [Section 32:13]

1
2

2 21 1
2 2

0 0
Si( ) j Jn n

n n
x x x x38:6:4
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The asymptotic expansions

2 2
0

sin( ) cos( ) (2 )!Ci( ) 2 1 large positive
( ) j

j

x x jx j x
x x x

~38:6:5

and

2 2
0

cos( ) sin( ) (2 )!Si( ) 2 1 large positive
2 ( ) j

j

x x jx j x
x x x

~38:6:6

arise from combining equations 38:5:3,4 with expansions 38:13:5,6 of the auxiliary sine and cosine integral
functions.

38:7 PARTICULAR VALUES

The Si, Cin, Shi, and Chin functions are zero at x 0, which is where, as x diminishes, Ci and Chi encounter
discontinuities and become complex. The positive zero of the Chi(x) function lies at x 0.52382 25713 89864.
Ci(x) has an infinite number of zeros, the earliest being at x 0.61650 54856 20716; these are not evenly spaced
but later instances do lie close to the inflections of this function, which are located as specified in equation 38:7: 3.

The sine and cosine integrals have extrema, as well as points of inflection, at the following argument values

1 2 3

local maxima at + , 2 , +3 , 4 ,

Si( ) has inflections at 0, (1), (1), (1),

local minima at ,+2 , 3 ,+4 ,

x

x x r r r

x

38:7:1

5 9 131
2 2 2 2

1 2 3 4

3 7 1511
2 2 2 2

local maxima at , , , ,

Ci( ) has inflections at ( 1), ( 1), ( 1), ( 1),

local minima at , , , ,

x

x x

x

38:7:2

In these equations rj(1) is the jth positive root of the equation tan(x) x and j( 1) is the jth positive root of
cot(x) x [Section 34:7].

In addition to its minimum at x 0, the Cin(x) function has an infinite number of horizontal inflections. These
are regularly spaced, thus:

2

2

d dCin( ) Cin( ) 0 2 , 4 , 6 ,
d d

x x x
x x

38:7:3

38:8 NUMERICAL VALUES

Equator provides routines (keywords Shi, Chi and Chin) for the hyperbolic sine integral, hyperbolic cosine
integral and entire hyperbolic cosine integral. The algorithms are based on equations 38:3:4 6, with 38:6:1 and
38:6:2 being used close to x 0.

Equator’s routine (keyword Ci) for calculating the cosine integral utilizes series 38:6:3 for arguments not
exceeding 16. The entire cosine integral (keyword Cin) is based on 38:6:2 for small arguments, but a truncated
version of the series
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2
2

0

sin( ) ( )Cin( )
(2 3)!(2 2)

j

j

x x xx x
x j j

38:8:1

is used for 0.25 x 16. Similarly, the routine (keyword Si) adopted by Equator for calculating the sine integral
uses 38:6:1 for small arguments, and the series

2

2
0

2 cos( ) sin( ) ( )Si( ) 2
(2 3)!(2 1)

j

j

x x xx x
x x j j

38:8:2

when 0.15 x 16. For arguments in excess of 16, the Ci, Cin, and Si routines rely on formulas 38:5:3, 38:0:1, and
38:5:4, and on the algorithms described in Section 38:13.

38:9 LIMITS AND APPROXIMATIONS

As the argument approaches zero (from either direction in the first and third cases), similar limits are attained
by both the circular and the hyperbolic functions. These lead to the approximations

Shi ( ) smallSi x x x38:9:1

Chi( ) ln small positiveCi x x x38:9:2

21
4

Chin ( ) small positiveCin x x x38:9:3

For large arguments, the approximations

3 2 4

1 2 1 6Si( ) cos( ) sin( ) large positive
2

x x x x
x x x x

38:9:4

and

3 2 4

1 2 1 6Ci( ) sin( ) cos( ) large positivex x x x
x x x x

38:9:5

are surprisingly accurate.

38:10 OPERATIONS OF THE CALCULUS

The derivatives and indefinite integrals of the six functions are listed below:

f(x) Si(x) Ci(x) Cin(x) Shi(x) Chi(x) Chin(x)

d f ( )
d

x
x

sin( )x
x

cos( )x
x

1 cos( )x
x

sinh( )x
x

cosh( )x
x

cosh( ) 1x
x

0

f ( )d
x

t t
Si( ) 1

cos( )
x x

x
Ci( )

sin( )
x x

x
Cin( )

sin( )
x x x

x
Shi( ) 1

cosh( )
x x

x
Chi( )

sinh( )
x x

x
Chin( )

sinh( )
x x x

x
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Entries in the final row are accessible through the standard formula 37:14:2. The six functions of this chapter are
ideal candidates for the procedures exposed in Section 37:14, which may be used to generate expressions for

0 0 0

f( )d and f( )d d f Si,Ci,Cin,Shi,Chi,or Chin
x tx

t t t t t t38:10:1

The following indefinite integrals,

1 1
2 2

0

sin( )Si( )d cos( )Si( ) Si (1 ) Si (1 )
x

t bt t x bx b x b x38:10:2

1 1 1
2 2 2

0

1cos( )Si( )d sin( )Si( ) Ci 1 Ci 1 ln
1

x bt bt t x bx b x b x
b

38:10:3

1 1
2 2sin( )Ci( )d cos( )Ci( ) Ci (1 ) Ci 1 0, 0

x

t bt t x bx b x b x x b38:10:4

and

1 1
2 2cos( )Ci( )d sin( )Ci( ) Si (1 ) Si (1 ) 1 sgn(1 ) 0, 0

4x

t bt t x bx b x b x b x b38:10:5

may be by supplemented by others listed by Gradsheyn and Ryzhik [Section 5.3]. As well, these authors present
[Sections 6.26 and 6.27] many definite integrals of the Si and Ci functions, as well as their hyperbolic analogues.

An intriguing definite integral is

0

/ 2
Ci( )Ci( )d

/ 2

b b
bt t t

b
38:10:6

The following Laplace transforms provide links to functions from Chapters 25 and 34:
2

2
0

1Ci( )exp( )d Ci( ) ln 1
2

sbt st t bt
s b

38:10:7

0

1Si( )exp( )d Si( ) arccot sbt st t bt
s b

38:10:8

38:11 COMPLEX ARGUMENT

Figures 38-3 and 38-4 show the real and imaginary parts of the functions Si(x+iy) and Ci(x+iy). The most
noteworthy aspects of these three-dimensional graphics are the pole evident in Re{Ci(x+iy)} and the cut along the
negative real axis in Im{Ci(x+iy)}.

When the argument of the sine and cosine integrals is complex, these functions are described by the formulas
2

0

( )
Si( ) ( )

(2 1)!(2 1)

j

j

x iy
x iy x iy

j j
38:11:1

2

1

( )
Ci( ) ln( )

(2 )!(2 )

j

j

x iy
x iy x iy

j j
38:11:2
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where ln(x+iy) is to be interpreted as . The other four functions of this chapter2 21
2 ln( ) sgn( ) arccot( / | |)x y y i x y

are similarly constructed by replacing the x in the equations of Section 38:6 by x+ iy. The expressions do not readily
separate into real and imaginary parts.

Formulas for purely imaginary argument are:

f Si Ci Cin Shi Chi Chin

f(iy) i Shi( y) Chi( )
2
iy Chin( )

2
iy i Si( y) Ci( )

2
iy Cin( )

2
i y
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4

2

38:12 GENERALIZATIONS

Erdélyi et al. [Higher Transcendental Functions, Volume 2, page 147] cite the function
2 22 2

2 2 2 2
0

sin sin( )d d
x a x

a

a t tt t
a t t a

38:12:1

of which Si(x) is the a 0 special case.
A generalization in a different direction is provided by Böhmer integrals. These bivariate functions, which are

the subject of Section 39:12, devolve into sine and cosine integrals when their parameter is zero. One has
1
2Si( ) S(0, ) and Ci( ) C(0, )x x x x38:12:2

38:13 COGNATE FUNCTIONS: the auxiliary sine and cosine integrals

The so-called auxiliary sine integral is defined, for
nonnegative real argument x, by the alternative definite integrals

2
0 0

sin( ) exp( )fi( ) d d
1

t xtx t t
t x t

38:13:1

of which the latter may be regarded as a Laplace transform.
Similarly, the auxiliary cosine integral function has the
definitions

2
0 0

cos( ) exp( )gi( ) d d
1

t t xtx t t
t x t

38:13:2

Figure 38-5 maps these auxiliary functions. Note that fi(x) takes
a finite value, /2, at x = 0, whereas gi(0) is infinite. Despite
this, the integral

0

gi( )d
2

t t38:13:3

is finite, whereas the corresponding fi integral fails to converge.
The differential identities

d d 1fi( ) gi( ) and gi( ) fi( )
d d

x x x x
x x x

38:13:4

show that the two auxiliary functions provide the particular integrals [Section 24:14] in the solution of the following
inhomogeneous differential equations:

2

1 22

d 1f( ) f( ) f( ) cos( ) sin( ) fi( )
d

x x x w x w x x
x x

38:13:5

2

1 22 2

d 1f( ) f( ) f( ) cos( ) sin( ) gi( )
d

x x x w x w x x
x x

38:13:6

The auxiliary nature of these functions, and hence their names, arises from the relationships to the Si and Ci
functions:
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1
2fi( ) sin( )Ci( ) cos( ) Si( ) 0x x x x x x38:13:7

1
2gi( ) sin( ) Si( ) cos( )Ci( ) 0x x x x x x38:13:8

and thereby
2

2 2 2fi ( ) gi ( ) Si( ) Ci ( )
2

x x x x38:13:9

Relations 38:13:7 and 38:13:8, together with equations 32:6:1,2 and 38:6:1,3, enable convergent series to be
constructed for the fi and gi functions. More important than these, however, are the asymptotic series

1
23 5 7 2 2

0

1 2 24 720 (2 )! 1 4fi( ) ( ) (1)
( )

j

j jj
j

jx x
x x x x x x x x

~38:13:10

and

3
22 4 6 8 2 2 2 2

0

1 6 120 5040 (2 1)! 1 4gi( ) (1) ( )
( )

j

j jj
j

jx x
x x x x x x x x

~38:13:11

into which the auxiliary sine and cosine functions may be developed.
Series 38:13:10 and 38:13:11 are asymptotic but, nevertheless, employment of the -transformation [Section

10:14] enables their summation to be used by Equator for x > 16. This is the approach used by the auxiliary sine
integral and auxiliary cosine integral routines, under the keywords fi and gi. For x 16 equations 38:13:7 and
38:13:8 are utilized.



Named for the French physicist Augustin Jean Fresnel (1788 1829), the Fresnel cosine integral C(x) and the
Fresnel sine integral S(x) play important roles in physical optics. The so-called auxiliary Fresnel integrals [Section
39:13] are also of some importance.

39:1 NOTATION

Though the names Fresnel cosine integral and Fresnel sine integral and the corresponding symbols C(x) and
S(x) are general, there is a wide variation in the meaning to be associated with them. Thus, in addition to the
definition, equation 39:3:1, given to C(x) in this Atlas, each of the following integrals is cited as the “Fresnel cosine
integral” by at least one authority

2

0

cos( )d C( )
2

x

t t x39:1:1

0

cos( ) d C
2

0
x t t x x

t
39:1:2

2

0

cos d C
2 2

x t t x39:1:3

0

cos( ) d C
22

0
x t t x x

xxt
39:1:4

The left-hand side of each of the four equations above are the four alternative definitions of the “Fresnel cosine
integral C(x)”; the right-hand side shows how this would be represented in our notation. In all cases, the definition
adopted for the Fresnel sine integral involves straightforward replacement of cos in the integrand by sin.

Some authors adopt multiple definitions of these functions and use subscripts – as in C1(x), S2(x), etc. – to
distinguish the options. There is, however, no greater unanimity in this secondary notation than in the primary.
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39:2 BEHAVIOR

Figure 39-1 maps the behaviors of the two functions. Outside a central zone, both C(x) and S(x) display damped
oscillations that decrease in both period and amplitude as x ± , approaching the values ±½ in these limits.

Being odd functions, the Fresnel integrals lie solely within the first and third quadrants. In the first quadrant,
the functions

1 1upperlower Fres( ) Gres( ) and Fres( ) Gres( )bound bound2 2
x x x x39:2:1

delineate an envelope within which both the C(x) and S(x) functions exist. The oscillations of the Fresnel integrals
are nullified by the operation

2 22 2 2 2 2 21 1
2 2sin C( ) cos S( ) Fres ( ) Gres ( ) 0x x x x x x x39:2:2

Fres and Gres are auxiliary functions portrayed in Figure 39-1 and discussed in Section 39:13.

39:3 DEFINITIONS

As their names imply, the Fresnel integrals are primarily defined as indefinite integrals:
2

2

0 0

2 sgn( ) cos( )C( ) cos d d
2

x xx tx t t t
t

39:3:1
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and
2

2

0 0

2 sgn( ) sin( )S( ) sin d d
2

x xx tx t t t
t

39:3:2

Equations 39:6:1 and 39:6:2 demonstrate that the Fresnel integrals may be represented hypergeometrically,
which implies that they are amenable to synthesis. The synthetic routes are

1
4

0 51
2 4

1J 2 cos 2 C 2
4

x x x
x

39:3:3

3
4

0 3 7 3
2 4

1 31J 2 sin 2 S 2
42

x x x
x x

39:3:4

See Sections 39:11 and 42:14 for definitions based on an exponential function of complex argument.

39:4 SPECIAL CASES

There are none.

39:5 INTRARELATIONSHIPS

Both Fresnel integrals are odd functions
f( ) f( ) f C or Sx x39:5:1

Their relation to the auxiliary Fresnel integrals [Section 39:13] is given by:
2 21

2C( ) sgn( ) sin( )Fres(| |) cos( )Gres(| |)x x x x x x39:5:2

2 21
2S( ) sgn( ) cos( )Fres(| |) sin( )Gres(| |)x x x x x x39:5:3

39:6 EXPANSIONS

Power series expansions of the Fresnel integrals are
15 9 4 4
4

51
0 0 2 4

2 2 ( ) 2C( )
10 216 (4 1)(2 )! 1 4

jj
j

j j jj j

x x x xx x x x
j j

39:6:1

33 7 11 4 3 4
43
3 7

0 0 2 4

2 2 ( ) 2S( )
3 42 1320 (4 3)(2 1)! 3 1 4

jj
j

j j j j j

x x x x x xx x
j j

39:6:2

Through relationships 39:5:2 and 39:5:3, the auxiliary functions from Section 39:13 permit the Fresnel integrals
to be expanded as the power series

4 4
2 3 2

0 0

2 ( 4 ) ( 4 )C( ) cos( ) 2 sin( )
(4 1)!! (4 3)!!

j j

j j

x xx x x x x
j j

39:6:3
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4 4
2 3 2

0 0

2 ( 4 ) ( 4 )S( ) sin( ) 2 cos( )
(4 1)!! (4 3)!!

j j

j j

x xx x x x x
j j

39:6:4

or alternatively as the asymptotic expansions
2 2

4 43
0 0

sgn( ) sin( ) (4 1)!! cos( ) (4 1)!!C( ) large
2 ( 4 ) ( 4 )2 8j j

j j

x x j x jx x
x xx x

~39:6:5

2 2

4 43
0 0

sgn( ) cos( ) (4 1)!! sin( ) (4 1)!!S( ) large
2 ( 4 ) ( 4 )2 8j j

j j

x x j x jx x
x xx x

~39:6:6

Fresnel integrals are expansible in terms of Bessel functions of half-odd order or, equivalently, spherical Bessel
functions [Section 32:13]:

1 3
2 2

2 2
2 2

0 0
C( ) sgn( ) J ( ) and S( ) sgn( ) J ( )j j

j j
x x x x x x39:6:7

39:7 PARTICULAR VALUES

The Fresnel integrals have local maxima and minima, as well as points of inflection, at the argument values that
follow

3 5 7 91
2 2 2 2 2

3 5 7 91
2 2 2 2 2

maxima at , , , , ,

C( ) has inflections at 0, , 2 , 3 , 4 ,

minima at , , , , ,

x

x x

x x

39:7:1

3 5 71
2 2 2 2

maxima at , 2 , 3 , 4 , 5 ,

S( ) has inflections at 0, , , , ,

minima at , 2 , 3 , 4 , 5 ,

x

x x

x

39:7:2

Some values of the extrema themselves are listed by Abramowitz and Stegun [Table 7.12, though recognize that
these authors define Fresnel integrals differently than here]. As the argument increases towards + , the values
acquired by S(x) and C(x) at their extrema, and particularly at their inflections, move ever closer to ½.

39:8 NUMERICAL VALUES

With keywords C and S, Equator provides Fresnel cosine integral and Fresnel sine integral routines. For
|x| 0.5, Equator uses equations 39:6:1 and 39:6:2. When the argument is in the range 0.5 < |x| 4, algorithms
based on the equations

4
2 2 2

3
0

1C( ) cos 2 sin 3
(2 )!(4 3)8

j

j

x
x x x x

j jx
39:8:1

and
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4
2 2 2 2

3
0

1S( ) sin 2 cos 3
(2 1)!(4 1)8

j

j

x
x x x x x

j jx
39:8:2

are employed. Formulas 39:5:2 and 39:5:3 are used when |x| > 4.

39:9 LIMITS AND APPROXIMATIONS

Close to x 0, the Fresnel integrals follow linear or cubic approximations:

2C( ) smallx x x39:9:1

32S( ) small
9

x x x39:9:2

Their limiting behaviors at large arguments of either sign are given by
2 2

3

sgn( ) sin( ) cos( )C( )
2 2 8

x x xx x
x x

39:9:3

2 2

3

sgn( ) cos( ) sin( )S( )
2 2 8

x x xx x
x x

39:9:4

The approximate relationship
2 21 1

2 2 2

1S( ) C( ) large
2

x x x
x

39:9:5

is a consequence of equations 39:9:3 and 39:9:4 and has relevance to Cornu’s spiral [Section 39:13].

39:10 OPERATIONS OF THE CALCULUS

Differentiation and indefinite integration of the Fresnel integrals lead to

2 2d 2C cos( ) sinSd
bx b b x

x
39:10:1

2 2 2 2

0 0

sin( ) 1 cos( )C( )d C( ) and S( )d S( )
2 2

x xb x b xbt t x bx bt t x bx
b b

39:10:2

The results in 39:10:2 above and 39:10:3 below stem from the procedures outlined in Section 37:14.
2 2 2 2

0 0

2 C( ) S( ) sin( ) 2 S( ) C( ) cos( )C( )d and S( )d
4 48 8

x xx x x x x x x x x xt t t t t t39:10:3

Among the definite integrals listed by Gradshteyn and Ryzhik [Section 6.32] are
1 1

1 2 4
2 1

0

(1 )cos( )
S( ) d 0 1 2

2 (1 )
v

v

v vt bt t b v
v b

39:10:4
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1 1
1 2 4
2 1

0

(1 )sin( )
C( ) d 0 1 2

2 (1 )
v

v

v vt bt t b v
v b

39:10:5

and the surprising results
2

2 2 2

0 0 2

/(32 ) 0

S( )sin d C( )cos d /(128 )

0

b

bt t t bt t t b

b

39:10:6

The following Laplace transforms apply
2 2

2 2
0

1 1 1S( )exp( )d S( ) C cos S sin
2 2 4 2 2 4

s s s sbt st t bt
s b b b b

39:10:7

2 2

2 2
0

1 1 1C( )exp( )d C( ) S cos C sin
2 2 4 2 2 4

s s s sbt st t bt
s b b b b

39:10:8

2 2

2 2
0

S exp( )d S
2

b s b sbt st t bt
s s b

39:10:9

2 2

2 2
0

C exp( )d C
2

b s b sbt st t bt
s s b

39:10:10

39:11 COMPLEX ARGUMENT

The Fresnel integrals may be regarded as arising from the integral of the Gaussian function exp( z2) of complex
argument when the real and imaginary parts of the argument are of equal magnitude , with t real. For then/ 2t

2
2 2 2exp exp cos sin

2 2
t ti it t i t39:11:1

and accordingly
2

2 2

0 0

exp d cos sin d C( ) S( )
22 2

z zt ti t t i t t z i z39:11:2

No simple formulas express the real and imaginary parts of the Fresnel integrals when their arguments are
complex. Each Fresnel integral has a zero at the origin of the complex plane and an infinite number of other
complex zeros in the first and third quadrants [Abramowitz and Stegun, Table 7.11, but note the different definitions
employed there].

39:12 GENERALIZATIONS: Böhmer integrals

Fresnel integrals generalize to Böhmer (or Boehmer) integrals, also known as generalized Fresnel integrals and
defined, for x 0 and v < 1, by
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1 1S( , ) sin( )d C( , ) cos( )d 1v v

x x

v x t t t v x t t t v39:12:1

Alternative definitions are provided by the real and imaginary parts of the incomplete gamma function of complex
argument as described in Section 45:11. Sometimes the order of citation of the variables in Böhmer integrals is
reversed; thus you may encounter S(x,v) and C(x,v).

Böhmer integrals provide a bridge between Fresnel integrals, to which they reduce when the v parameter is one-
half:

1 1 1 1
2 2 2 2S , 2 S C , 2 Cx x x x39:12:2

and the sine or cosine integrals [Chapter 38], to which reduction occurs when v 0:

S 0, Si C 0, Ci
2

x x x x39:12:3

The recurrence relations of Böhmer integrals
S( , ) C( 1, ) sin( ) C( , ) S( 1, ) cos( )v vv v x v x x x v v x v x x x39:12:4

coupled with equations 39:12:1 3, permit any indefinite integral of the form

/ 2 / 2

sin( ) cos( )d or d 1,2,3,n n
x x

t tt t n
t t

39:12:5

to be expressed in terms of Si(x), Ci(x), .S or Cx x
For zero argument, the Böhmer integrals adopt the values

1 1
2 2S( ,0) ( )sin C( ,0) ( )cosv v v v v v39:12:6

and these expressions, in which is the (complete) gamma function [Chapter 43], provide the subtractive terms in
the expansions

2 11 2
21

3 3
0 0 2 2

S( , ) S( ,0)
(2 1)!(2 1) 1 1 4

j jvv
jv
v

j j j j j

x x xv x v x
j j v v

39:12:7

2 2
2

21
0 0 2 2

C( , ) C( ,0)
(2 )!(2 ) 1 4

j jvv
jv

v
j j jj j

x x xv x v x
j j v v

39:12:8

These series are hypergeometric [Section 18:14], as are those that occur in the asymptotic series

1 2 2 3
2 2 2 21 2 2 2

0 0

cos( ) 4 sin( ) 4S( , ) (1 ) large
j j

v v v v
v vj j j j

j j

x xv x v x
x x x x

~39:12:9

and

1 2 2 3
2 2 2 21 2 2 2

0 0

sin( ) 4 cos( ) 4C( , ) (1 ) large
j j

v v v v
v vj j j j

j j

x xv x v x
x x x x

~39:12:10

39:13 COGNATE FUNCTIONS: auxiliary Fresnel integrals

There appears to be no definitive symbolism for the auxiliary Fresnel cosine integral or the auxiliary Fresnel
sine integral, to which this Atlas assigns the notations Fres(x) and Gres(x) respectively; their maps are included in
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Figure 39-1. Abramowitz and Stegun [Chapter 7] use the symbols and for these functions.2f x 2g x
The auxiliary Fresnel integrals may be defined as Laplace transforms:

2 2 1
2

0

cos( )exp( )d cos( ) Fres
2

t st t t s39:13:1

2 2 1
2

0

sin( )exp( )d sin( ) Gres
2

t st t t s39:13:2

or as the aperiodic components of the semiintegral and semiderivative [Section 12:14] of the sine function:
1/ 2

1
41/ 2

d sin( ) sin 2 Fres
d

x x x
x

39:13:3

1/ 2
1
41/ 2

d sin( ) sin 2 Gres
d

x x x
x

39:13:4

Their relationships to the Fresnel integrals themselves
2 21 1

2 2Fres( ) S( ) cos( ) C( ) sin( )x x x x x39:13:5
2 21 1

2 2Gres( ) S( ) sin( ) C( ) cos( )x x x x x39:13:6

may also serve as definitions.
For large arguments, auxiliary Fresnel integrals may be expanded asymptotically

31
4 45 9 4 4

0 0

1 1 3 105 1 (4 1)!! 1 4Fres( )
4 16 ( 4 )2 2 2

j

j j j
j j

jx
x x x x xx x

~39:13:7

3 5
4 43 5 9 4 43 3

0 0

1 1 15 945 1 (4 1)!! 1 4Gres( )
2 8 32 ( 4 )2 8 8

j

j j j
j j

jx
x x x x xx x

~39:13:8

or, in combination with sinusoids, as the rapidly convergent power series
2 413 7 11 4

4 43 3
5 7

0 0 4 4

cos 2 2 8 32 8 ( 4 ) 8Fres( )
3 105 10395 4 3 !!2

j
j

j j j j

x xx x x xx x x
j

39:13:9

and
2 415 9 4

4 4

3 5
0 0 4 4

sin 2 4 16 2 ( 4 ) 2Gres( )
15 945 4 1 !!2

j
j

j j j j

x xx x xx x x x
j

39:13:10

All four of these series are hypergeometric [Section 18:14].
Equator’s auxiliary Fresnel cosine integral and auxiliary Fresnel sine integral routines (keywords Fres and

Gres) are based on equations 39:13:5 and 39:13:6 when x 4 and, with the -transformation [Section 10:14], on
equations 39:13:7 and 39:13:8 otherwise.

39:14 RELATED TOPIC: the curvature and length of a plane curve

A plane curve lies in a two-dimensional space, the cartesian plane, and can be characterized by the equation
y f(x), where x and y are rectangular coordinates. Familiar properties of plane curves are their slopes, maxima,
minima, inflections and zeros, as discussed in Section 0:7. Less familiar properties are the curvature of a plane curve
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2
1 2x

and its length (or arc length) between two points.
The curvature of a curve obeying the function y f(x) is given by the formula

2 2

32

d f/ d( )
1 (df/ d )

xx
x

39:14:1

In general, the curvature varies from point to point. For example, the curvature of the sine function y sin(x) is

32

sin( )( )
1 cos ( )

xx
x

39:14:2

at point x, being zero when x 0 or , and 1 when x /2. A negative implies that the curve is concave when
viewed from below. The so-called radius of curvature is the reciprocal 1/| | of the curvature: it is the radius of the
circle that osculates (kisses) the curve at the point in question. Figure 39-2 shows a segment of the sine function and
its osculating circle at the point x = /2.

The length of the y f(x) curve between the points x0 and x1 is given by the integral
1 1

0 0

22 2
0 1( ) (d ) (d ) 1 df/ d d

x x

x x

x x x y x x39:14:3

For example, the length of the segment of the sine curve that is shown in red in Figure 39-2 can be found by recourse
to equation 61:3:5 and Section 61:7 as

/ 2
21

2
0

1 10 1 cos ( ) d 2 E 1 9100 98894 51385
2 22
gx x

g
.39:14:4

Here E is the complete elliptic integral of the second kind [Chapter 61] and g is Gauss’s constant [Section 1:7]. See
equation 28:14:11 for another application of formula 39:14:3.

The curve f(t) shown in Figure 39-3 has the property that its curvature is proportional to its length measured
from the origin; specifically:

( ) (0 )t t39:14:5
The f(t) curve is called a clotoid curve or Cornu’s spiral (Marie Alfred Cornu, French physicist, 1841 1902) and
plays an important role in the theory of diffraction. The ever-tightening spirals converge towards the points x ±½,
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y ±½, in the cartesian plane. The ordinate and
abscissa of any point on the curve are, in fact, the
Fresnel integrals

C( ) S( )x t y t39:14:6
so that Cornu’s spiral can be, and usually is, defined
parametrically [Section 0:3] by this pair of equations
as t journeys from to + .



The functions of this chapter are interrelated by
erf( ) erfc( ) 1x x40:0:1

The inverse error function inverf(x) is briefly discussed, too. All three functions occur widely in statistics and in the
solutions to problems in heat conduction and similar instances of the diffusion of matter or energy. The “error” in
the name of erf(x) arises from its importance in probability theory, a subject touched on in Section 40:14.

40:1 NOTATION

The error function is sometimes given the symbol H(x) or (x). The related notations 1(x), 2(x), etc. then
refer to successive derivatives:

d( ) erf( ) 0,1,2,
d

n

n nx x n
x

40:1:1

These notations are avoided in the Atlas.
Sometimes the initial letter of the symbol is capitalized without change of meaning, but more often this implies

multiplication by a factor,/ 2

Erf ( ) erf( ) Erfc( ) erfc( )
2 2

x x x x40:1:2

and the appropriate name probability integral is then given to the Erf function. Sadly, the same name is sometimes
given to erf itself, though “error function” is more common. Beware of changed arguments: authors often attach the
names probability function or Gauss probability integral to such functions as or .erf / 2x 1/ 2 erf / 2x

The notation “erf”, defined as in Section 40:3, and the name “error function” are used exclusively in the Atlas.
Alternative names for erfc(x) are complementary error function and error function complement, the latter being our
choice.

See Section 42:1 for the significance of the erfi and Erfi symbols.
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40:2 BEHAVIOR

Figure 40-1 includes maps of the error function and its complement. Both are sigmoidally shaped and rapidly
approach horizontal limits as x ± . The ranges of the two functions are 1 erf(x) 1 and 2 erfc(x) 0.

40:3 DEFINITIONS

The standard definitions,

2

0

2erf( ) exp( )d
x

x t t40:3:1

and

22erfc( ) exp( )d
x

x t t40:3:2

are illustrated in Figure 40-2, in which the colored zones,
combined, have an area of unity. Other integral definitions of
the error function include

2

0

sgn( ) exp( )erf( ) d
xx tx t

t
40:3:3

2

22
exp t
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1
2 2

0

2erf( ) exp( )dxx x t t40:3:4

and
2

0

2 exp( )sin(2 )erf( ) dt xtx t
t

40:3:5

Equation 40:6:1 shows the error function to be an L K+1 2 hypergeometric function. It may be synthesized
[Section 43:14] from the exponential function by two alternative routes:

1
2

3
2

1exp( ) erf
2

x x
x

40:3:6

3
2

11exp( ) exp( )erf
2

x x x
x

40:3:7

A synthetic route to the complementary error function is shown in equation 41:3:7.
The error function is generated by semiintegration or semidifferentiation [Section 12:14] of the exponential

function
1

2

1
2

d exp( ) exp( )erf
d

x x x
x

40:3:8

1
2

1
2

d 1exp( ) exp( )erf
d

x x x
x x

40:3:9

Other definitions based on semiintegration are inherent in equations 40:10:9 and 40:10:10.
The inverse error function is defined implicitly by

inverf erf( )x x40:3:10

and takes arguments only in the domain 1 x 1. It is illustrated in Figure 40-1.

40:4 SPECIAL CASES

There are none.

40:5 INTRARELATIONSHIPS

The error function and its inverse are odd functions
erf( ) erf( )x x40:5:1

and
inverf ( ) inverf ( )x x40:5:2

whereas its complement obeys the reflection formula
erfc( ) 2 erfc( )x x40:5:3
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40:6 EXPANSIONS

The error function may be expanded as a power series in the following two ways
13 5 2
2 2

31
0 02 2

2 ( ) 2erf( )
3 10 !( ) 1

j jj

j j j j

x x x x xx x x
j j

40:6:1

2 3 5 2 1 2 2
2

3 3
0 02 2

2exp( ) 2 4 2 exp( )erf( ) exp( )
3 15

j j

j j j

x x x x x x xx x x
j40:6:2

while its complement has the asymptotic expansion, valid for large arguments
2 2 2

1
22 4 2 2

0 0

exp( ) 1 3 exp( ) (2 1)!! exp( ) 1erfc( ) 1
2 4 ( 2 )

j

j j
j j

x x j xx
x x x xx x x

~40:6:3

A less familiar expansion of the error function is in terms of modified Bessel functions of half-integer order
[Chapter 50], or equivalently the modified spherical Bessel functions i j introduced in Section 28:13.

2 2 2 2 Int[( +1)/2] 2
1/ 2 3 / 2 5 / 2 7 / 2

0

2erf( ) 2 I ( ) I ( ) I ( ) I ( ) ( ) i ( )j
j

j

xx x x x x x40:6:4

Note the unusual + + + + sign sequence.
The inverse error function has a power series in , namely/ 2x

3 5
12 1

0
0 1

7 1inverf ( ) where 1, and
3 30 2 1 (2 1)

j
k j kj

j j
j k

a a
x a a a

j k k
40:6:5

40:7 PARTICULAR VALUES

Included in the following tabulation are values with relevance to probability theory [Section 40:14].

x x 0 x 0.47693 62762 04470 x x1/ 2 2 x

erf(x) 1 0 0.5 0.68268 94921 37086 0.95449 97361 03642 1

erfc(x) 2 1 0.5 0.31731 05078 62914 0.045500 26389 63584 0

40:8 NUMERICAL VALUES

With keywords erf and erfc, Equator offers accurate values through its error function and error function
complement routines. When |x| 1.9, the erf algorithm is based on formula 40:6:1. The erfc routine, for |x| 1.66,
also uses 40:6:1 with 40:0:1. For larger x, algorithms are based on the continued fraction 41:6:5 of the next chapter.
For x values exceeding about 5.5, erf(x) is not significantly different from unity, but erfc values significantly
different from zero are calculable provided x does not exceed about 26.5.

Equator also provides an inverse error function routine (keyword inverf). The algorithm mostly employs
expansion 40:6:5, but for x > 0.95 relies on the recursion
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2

1

exp inverf ( ) erfc inverf ( )
inverf ( ) ln 0

1
m m

m

x x
x x

x
40:8:1

to improve the mth estimate of inverf(x) repeatedly. A starting estimate [inverf(x)]0 5 is employed with
exp{[ ]2}erfc{[ ]} being calculated via the continued fraction 41:6:5.

These algorithms rely on reflection formula 40:5:1 or 40:5:3 when x is negative.

40:9 LIMITS AND APPROXIMATIONS

The approaches of the error function and its complement to their limits are governed by:
2exp( )erf( ) sgn( ) 1 xx x x

x
40:9:1

and
2exp( )erfc( ) xx x

x
40:9:2

2exp( )erfc( ) 2 xx x
x

40:9:3

For small arguments of either sign the linear approximations
2erf( ) smallxx x40:9:4

and
2erfc( ) 1 smallxx x40:9:5

hold.
The approximation

2

2 /inverf ( ) sgn( ) ln 1
1ln( )

x x x
x

40:9:6

becomes useful as the magnitude of the argument approaches unity.

40:10 OPERATIONS OF THE CALCULUS

Because of the simplicity of relationship 40:0:1, it suffices to present formulas for either erf(x) or erfc(x), rather
than for both.

Single and multiple differentiations give

2 2d 2erf( ) exp
d

bbx b x
x

40:10:1

and
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2 2

1
d 2exp( )erfc( ) H ( ) 1,2,3,
d

n
n

nn

b xbx b bx n
x

40:10:2

while single and multiple indefinite integrations yield
2 2

0

1 exp( )erf( )d erf( )
x b xbt t x bx

b
40:10:3

and

i erfc( )erfc( ) d
n

n
n

x t t

bxbt t
b

40:10:4

The H and inerfc functions are addressed in Chapter 24 and Section 40:13 respectively. Other useful indefinite
integrals include

0

1erf d exp erf
2

x xbt t bx x bx
b b

40:10:5

and
2

2 2
2

1erfc( )d erfc( ) exp
4 2 2x

x xt bt t bx b x
b b

40:10:6

Among definite integrals are
1
2

1
0

1
erfc( )d 0 1

(1 )
v

v

v
t bt t b v

v b
40:10:7

and

2
0

1sin( )erfc( )d 1 exp 0
4

t bt t b
b

40:10:8

Section 41:10 lists many examples of integrals, indefinite and definite, in which the integrand is a product of an
exponential function with the error function or its complement; others may be inferred from the Laplace transforms
below.

Two noteworthy semiderivatives [Section 12:14] are
1

2

1
2 0

d erf exp I
2 2d
x xx

x
40:10:9

in which I0 is a modified Bessel function [Chapter 49], and
1

2

1
2

d 1 1 1erfc exp
d xx x x

40:10:10

Among Laplace transforms are the examples
2

2
0

1erf( )exp( )d erf( ) exp erfc
4 2
s sbt st t bt

s b b
40:10:11

0

1erf exp( )d erf bbt st t bt
s s b

40:10:12

and



40:11 THE ERROR FUNCTION erf(x) AND ITS COMPLEMENT erfc(x) 411

0

1erfc exp( )d erfc exp 2a ast t as
t t s

40:10:13

40:11 COMPLEX ARGUMENT

Confusingly, the function that has been called the “error function for complex argument” is not erf(x + iy), as
might be expected. Instead, it is the function discussed in Section 41:11.

Figure 40-3 shows the behaviors, close to the origin, of the real and imaginary parts of the erf(x + iy) function.
Farther from the origin, much more complicated behavior develops. Not apparent in the figure are the zeros, of
which there is an infinite number; the coordinates of early examples are listed by Abramowitz and Stegun [page
327]. Though they are complicated, double-sum expansions for the real and imaginary parts of erf(x + iy) can be
constructed by combination of equations 40:6:1 and 10:11:1. An approximate expansion for erf(x+ iy) erf(x) that
has a relative error of only 10 16 has been reported [Abramowitz and Stegun, equation 7.1.29].

When x 0, so that the argument is purely imaginary, the real part of erf(x + iy) vanishes, leaving the purely
imaginary result

2 2

0

2 2erf( ) exp( )d exp daw( )
yi iiy t t y y40:11:1

that involves Dawson’s integral [Chapter 42]. Also see Section 42:14.
Inverse Laplace transforms of the error function and its complement include

0
exp( )erfc d erfc 12

i

i

t b
tsbs s bs bi t b

t t b

I40:11:2
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1
erf( ) exp( ) erf( )d

2
0

i

i

t bbs ts bs ts
is s

t b
I40:11:3

sin 2exp( )erf d erf
2

i

i

a ta ts as
i ts s

I40:11:4

40:12 GENERALIZATIONS

The error function and its complement generalize to the incomplete gamma function of Chapter 45, of which
they are the v ½ cases

21
2erf ( ) sgn( ) ,x x x40:12:1

21
2erfc( ) , 0x x x40:12:2

The complementary error function may also be regarded as a special case of the parabolic cylinder function of
Chapter 46

2

1erfc( ) exp D 2
2 2

xx x40:12:3

Because, as detailed in Sections 45:12 and 46:12, the incomplete gamma and parabolic cylinder functions are
themselves special cases of the Kummer or Tricomi functions [Chapters 47 and 48], we have the further
generalizations

2 2 23 31
2 2 2erf ( ) M , , exp( )M 1, ,

2
x x x x

x
40:12:4

2 2 2 231 1
2 2 2erfc( ) exp( ) U , , exp( ) U 1, , 0x x x x x x x40:12:5

40:13 COGNATE FUNCTIONS: repeated integrals of erfc

The integral of the error function complement ierfc(x) is defined by

ierfc( ) erfc( )d
x

x t t40:13:1

The “i” in the symbol for this function should not be confused with the imaginary i; here it stands for “integral”.
A second integration

2i erfc( ) ierfc( )d
x

x t t40:13:2

creates a two-fold integral of the error function complement and the process may be repeated indefinitely

1i erfc( ) i erfc( )dn n

x

x t t40:13:3
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to produce a family of n-fold integrals of the error function complement. The notation is extended “backwards”,
so that one encounters

1i erfc( ) ierfc( )x x40:13:4
0i erfc( ) erfc( )x x40:13:5

and even

1 22i erfc( ) expx x40:13:6

Apart from this last, all family members may be defined through the integral

22i erfc( ) ( ) exp( )d 0,1,2,
!

n n

x

x t x t t n
n

40:13:7

Their values at x 0 are:

n 1 n 0 n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 all n 1

inerfc(0)
2

1
1 1

4
1

6
1

32
1

60
1

384
1

840
1

6144 1
2

1
2 (1 )n n

The n 1, 2, and 3 cases are illustrated in Figure 40-1; note that, unlike erfc itself, its repeated integrals are not
sigmoidal.

The n-fold integral of the error function complement may be expanded as the power series

1
0 2

1 ( 2 )i erfc( )
2 ! 1 ( )

j
n

n
j

xx
j n j

40:13:8

or asymptotically
12 2

2 2 2

21 120 0

1exp( ) ( 2 )! exp( ) 1i erfc( ) large
(1)2 ! 2! 4

n n j
j jn

jn n n n
j j j

x n j xx x
xn x xj x

~40:13:9

The recurrence relation

1 21i erfc( ) i erfc( ) i erfc( ) 1,2,3,
2

n n nxx x x n
n n

40:13:10

applies. By sufficient applications of this formula, one may express any repeated integral of the complementary error
function in terms of erfc(x) and exp( x2). Early examples are

i1erfc(x) i2erfc(x) i3erfc(x)
2exp( ) erfc( )x x x

2
21 2 erfc( ) exp( )

4 2
x xx x

2 3
21 3 2exp( ) erfc( )

126
x x xx x

Equator’s n-fold integral of the error function complement routine (keyword inerfc), adopts this principle.
Differentiation and indefinite integration obey the rules

1d i erfc( ) i erfc( )
d

n nx x
x

40:13:11

and
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1i erfc( )d i erfc( )n n

x

t t x40:13:12

The definite integral
1

100

exp( )exp( )i erfc( )d 0,1,2,
12
2

n jn
n

n jj

b bx bbx x x n
n j40:13:13

arises from applying parts integration [Section 0:10] a sufficient number of times.
An important differential equation and its solution are

2

1 22

d f d f f 0 f i erfc i erfc 0
d d 2 2

n nx xa x n w w a
x x a a

40:13:14

w1 and w2 being arbitrary constants.
The equation

2
2exp( ) 1 1i erfc( ) U , ,

2 22
n

n

x nx x40:13:15

relates the n-fold integral of the error function complement to the Tricomi function [Chapter48].

40:14 RELATED TOPIC: normal probability

As introduced in Section 27:14, the so-called normal or
Gaussian distribution has a probability function given by

2

normal 2

1 ( )P ( ) exp
22
xx40:14:1

in terms of the mean and variance 2 of the distribution.
This equation fits the curve in Figure 40-4 that is often,
though inaccurately, described as “bell shaped”. The
corresponding cumulative function is

normal normal
1 1 1F ( ) P ( )d erf 1 erfc
2 2 22 2

x x xx t t40:14:2

Random events often obey, or are assumed to obey, this “normal” distribution. In some contexts, x represents
a “correct” outcome; the quantity |x | is therefore termed the error of any outcome x, and is known as the
standard error or standard deviation. The functions described by equations 40:14:1 and 40:14:2 are available from
Equator under the keywords Pnormal and Fnormal and are discussed in Section 27:14..

According to equation 40:14:2, there is about a 68% probability of a single random event lying within one
standard error of the mean; that is:

normal normal normal
1 1 1P ( )d F F erf 0 68268
2 2 2

t t .40:14:3

Correspondingly, the green area in Figure 40-4 represents 68% of the total area enclosed between the curve and the
x-axis. In a similar way, about 95% of random events lie within two standard errors of the correct value:
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2

normal normal normal
2

P ( )d F 2 F 2 erf 2 0 95450t t .40:14:4

This “nineteen times out of twenty” range of probability is often cited in presenting statistical data. The quantity
0.67449 is known as the probable error; it is the error that leads to a probability of 50%:

0 67449

normal
0 67449

0 67449P ( )d erf 0 50000
2

t t
.

.

.
.40:14:5

A frequent need in simulation studies by techniques known as Monte Carlo methods is to generate a set of
numbers that mimic Gaussian-random occurrences. Before describing this topic, it is pertinent to discuss standard
random numbers (more precisely standard pseudorandom numbers) . A standard random number, v, is one that is
equally likely to have any value in the range 0 v < 1. Equator uses a modified linear congruential method based
on the formula

[4561Int(243000 ) 51349] mod 243000
1,2,3, ,

243000
j

j

v
v j J40:14:6

to generate a standard random number, rounded to six digits. The large integers in this formula are among those
recommended in Press et al. That book [Chapter 7] gives a very readable description of the hazards inherent in
generating “random” numbers. The v in formula 40:14:6 is a random number generated by a second, independent,
random number generator. Equator treats its random number generator as the random(J,s) function. A user of the
random number routine (keyword random) must supply a seed, s, as well as the number J of random numbers
required. The seed can be any number, 1 being the default value. Reusing the seed, generates a set of identical
numbers; different seeds produce sequences of different numbers.

Random numbers are uniformly distributed. Such numbers may be converted into others that have a normal
or Gaussian distribution, with mean and standard error , by the Box-Muller method. The jth member of such
a set of so-called normally distributed random variates is given by the formula

normal 2
2 1

2

12 ln cos 2 1,2,3, ,j j
j

x v j J
v

40:14:7

where each v is a standard random number. Equator uses this formula, and the vj algorithm discussed above, in its
normally distributed random variate routine (keyword normal). The user is asked to supply variables for the
normal( , ,J,s) function. A very large set of values accords almost perfectly with the distribution specifiednormal

jx
by equations 40:14:1 and 40:14:2.





Although it is merely a composite of the functions discussed in Chapters 11, 26, and 40, the function

f ( ) exp erfcx x x41:0:1

has sufficient importance to warrant separate treatment. This function is our prime concern in the present chapter,
but several closely related functions, including

exp erfc 2exp( ) f( )x x x x41:0:2

exp erf exp( ) f( )x x x x41:0:3

exp erfc f( )x x x x x41:0:4

1 1exp erfc 2exp f( )x x x x
x x41:0:5

2 2exp erfc fx x x41:0:6

and
2 2 2exp erf exp fx x x x41:0:7

also receive mention. All these functions arise in solutions to practical problems in physics and engineering.

41:1 NOTATION

Symbol variants identified in Sections 1 of Chapters 11, 26, and 40 may lead to the replacement of our
notation by such alternatives as and . Unitary notationsexp erfcx x 1/ 2 1/ 22 / Erfcxe x [1 ( )]xe x

have frequently been employed in place of the exp(x2)erfc(x) product; these include erc(x), eerfc(x) and experfc(x).
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2exp erfcx x

exp erfcx x

exp erfcx x x

The Atlas avoids such abbreviations, though experfc serves as
Equator’s keyword for its routine.exp erfc( )x x

The function has been represented by2( / 2)exp erfx x
the symbol D+(x). Its twin, D (x), is mentioned in Section 42:1.

41:2 BEHAVIOR

Apart from 41:0:6 and 41:0:6, all of the functions cited in the
preamble to this chapter are defined as real quantities only for
nonnegative real values of x. Moreover, these functions themselves
are all positive and therefore Figures 41-1 and 41-2, which map the
functions addressed in this chapter, portray the first quadrant
predominantly.

As x increases, so does the exponential function exp(x), whereas
the error function complement decreases. Theseerfc x
conflicting effects mold the behavior of the three functions depicted
in Figure 41-1. The function graduallyexp erfcx x x
approaches unity as x , whereas the other two functions decay
slowly towards zero.

No similar compensation influences three of the four functions
displayed in Figure 41-2, which increase dramatically as the
argument becomes large. The func-1/ exp erfcx x x
tion initially decreases and displays a minimum at an argument
close to 0.20405. This is the argument at which an inflection occurs
in the function.exp erfcx x
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41:3 DEFINITIONS

Inasmuch as the functions of this chapter are composites of functions defined in earlier chapters, they need no
definitions. Nevertheless, this chapter’s primary function, 41:0:1, may be defined in two equivalent ways as an
indefinite integral

21 exp( ) 2exp erfc d exp( )d
x x

x tx x t x t t
t

41:3:1

and in three ways as a definite integral
2

2
2

0 0 0

1 exp( ) 2 exp( ) 2exp erfc d d exp 2 dt x tx x t t t t x t
t xt x

41:3:2

There are also two definitions as Laplace transforms

0 0

exp( ) 1 exp( )exp erfc d d
1 ( 1)

x xt xtx x t t
t t t

41:3:3

The function is the semiintegral [Section 12:14] of the exponential function:exp erfcx x
1

2

1
2

d exp exp erf
d

x x x
x

41:3:4

Closely related is the syntheses [Section 43:14]

3
2

11exp( ) exp erf
2

x x x
x

41:3:5

Another synthetic route is
1

21 1 1 1 1exp Ei exp erfc
1x x x x x x

41:3:6

A number of differential equations are satisfied by the functions of this chapter. These include the first-order
examples

d f 1f f exp erfc constant
d

x x
x x

41:3:7

and
2d f f 1 f exp erfc constant

d 2 4 2
x x x

x
41:3:8

as well as the fractional differential equation
1

2

1
2

d f 1f 1 f exp erfc
d

x x
x x

41:3:9

41:4 SPECIAL CASES

There are none.
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41:5 INTRARELATIONSHIPS

Equation 41:0:2 may be looked on as a reflection formula:

exp erfc exp exp erfc expx x x x x x41:5:1

There exists the addition formula

0

exp (2 1)!! ( 1, )exp erfc exp erfc
(2 )!! ( ) j

j

y j j yx y x y x y x
j xx

41:5:2

involving the lower incomplete gamma function [Chapter 45] and double factorials [Section 2:13].

41:6 EXPANSIONS

Power series are
2

3
0 0 2

2 4 (2 ) 1exp erf 2 1 2 2
3 15 (2 1)!!

j
j

j j j

x x x x x xx x x
j41:6:1

and

3 2

1
0 2

4exp erfc 1 2
3 2 1

j

j

xx x xx x x
j

41:6:2

The latter series, which involves the gamma function of Chapter 43, may have its alternate terms summed separately,
thereby regenerating equation 41:0:3

2 22 4exp erfc 1 2 1 exp exp erf
2 3 15
x x x xx x x x x x41:6:3

Moreover, if the summation index in expansion 41:6:2 is allowed to adopt the additional value j 1, then the
function 41:0:5 is formed from the lower sign option:

/ 2 / 2

1 1 1
1 02 2 2

1 1exp erfc
1

j j

j j

x xx x
j jx x

41:6:4

The function may be expanded as the continued fractionexp erfcx x
2/ 1 2 3 4exp erfc
2 2 2 2 2

x x
x x x x x

41:6:5

An important asymptotic series is

1
22

0 0

1 3 (2 1)!! 1exp erfc 1
2 4 ( 2 )

j

j j
j j

jx x x
x x x x

~41:6:6

Though it is computationally useful only for large x, users of truncated versions of this summation have the
advantage of knowing that the error is less than the magnitude of the first neglected term. Halving the last retained
term [Section 10:13] is valuable numerically.
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41:7 PARTICULAR VALUES

Apart from zero and ±infinity, the only noteworthy argument is that at which is1/ exp erfcx x x
minimal.

x x 0 x 0.20405 39388 07199 x

exp erfcx x undef 1 0

exp erfx x undef 0

exp erfcx x undef 1 inflection

exp erfcx x undef 0 1

1/ exp erfcx x x undef minimum

2exp erfcx x 1 0

2exp erfx x 0

41:8 NUMERICAL VALUES

Under the name exponential error function complement product, Equator provides a routine (keyword experfc)
for calculating . All the other functions of this chapter are then readily accessible throughexp erfcx x
equations 41:0:2 6. For arguments smaller than 3, the output of the erfc algorithm from Section 40:8 is multiplied
by exp(x). For larger arguments, the routine uses the continued fraction 41:6:5.

41:9 LIMITS AND APPROXIMATIONS

Equation 41:6:6, suitably rearranged where necessary, is useful in providing limiting x expressions for the
various functions of this chapter. Equations 41:6:1 and 41:6:2 can perform a similar service for the x 0 limit.

Surprisingly, the empirical approximation
2exp( )erfc

( 2) (2 4)exp( 5 / 7)
x x

x x x
41:9:1

is accurate to within 0.1% over the entire 0 x range. It is based on the inequality

4 2
2exp erfc

x x x x
x x41:9:2
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41:10 OPERATIONS OF THE CALCULUS

Differentiation formulas include:

d exp erfc exp erfc
d

bbx bx b bx bx
x x

41:10:1

d exp erf exp erf
d

bbx bx b bx bx
x x

41:10:2

d 1exp erfc exp erfc
d 2

x bx bx bx bx bx b
x x

41:10:3

d 1 1exp erfc exp erfc 1
d 2

bbx bx b bx bx
x x bxbx

41:10:4

and

2 2 2 2 2 2 2d exp erfc 2exp erfc exp
d

bx bx x x bx b x
x

41:10:5

Repeated differentiation of regenerates the original function together with an n-term series thatexp erfcx x
is proportional to the first n terms in expansion 41:6:6, that is:

1

0

d 1 (2 1)!!exp erfc exp erfc
d ( 2 )

n n

n j
j

jx x x x
x xx

41:10:6

Indefinite integrals include:

0

1exp erfc d exp erfc 1 2
x bxbt bt t bx bx

b
41:10:7

0

exp erfc d exp erfc 1 erfc 1
1

x bt bt t x bt bx x b
b

41:10:8

2

2
0

1 1exp erfc d exp erfc( ) 1 exp erfc erfc
4 2 2

x

t bt t x bx bx
b b b

41:10:9

0

1exp( )erfc d exp( )erfc exp( 2 )erfc
2

x a a at t x a x
t x x

41:10:10

and
21exp erfc d exp erfc exp erfc

4 2x

t t t x x x41:10:11

Representing the error function by , Gradshteyn and Ryzhik [Sections 6.28 6.31] list over thirty definite
integrals relevant to this chapter. Some of the more interesting, leading to functions from Chapters 60, 30, and 35,
are

1
2 22

21
0

1 1 2 3exp erfc d F , , , , 1
2 2 2(1 )

v
v

v v v v at at bt t b a v
bv b

41:10:12
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2

0

1 artanh / 0

exp erfc d 1/( ) 0 0

1 arctan / 0

a b a
a

at bt t b a b

a b a
a

41:10:13

and

2

0

1 0

exp erfc d

0

b
b b b

t bt t
b b b

b

41:10:14

The operations of semidifferentiation and semiintegration give
1

2

1
2

d 1exp erfc exp erfc
d

bx bx b bx bx
x x

41:10:15

and
1

2

1
2

d 1exp erfc 1 exp erfc
d

bx bx bx bx
x b

41:10:16

The semiintegration formula
1

2

1
2

d 1 1exp erfc exp erfc 1
d

x x x x
x x x

41:10:17

is analogous to
1

1
0

d exp exp( )d exp 1
d

x

x t t x
x

41:10:18

illustrating the fact that the function plays the same role in the fractional calculus that(1/ ) exp( )erfc( )x x x
the exponential function plays in the traditional calculus.

Examples of Laplace transforms involving the functions of this chapter are listed below

0

1exp erfc exp d exp erfcbt bt st t bt bt
s s b41:10:19

0

exp erf exp d exp erf bbt bt st t bt bt
s s b

41:10:20

0

exp erf exp d exp erf
( )

bt bt st t t bt
s s b

41:10:21

0

exp 2
exp erfc exp d exp erfc

a s ba abt bt st t bt bt
t t s s b

41:10:22
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41:11 COMPLEX ARGUMENT

The function here symbolized W(x), and sometimes inappropriately called “the error function for complex
argument” is with x replaced by z2. That is,exp erfcx x

2W( ) exp erfcz z iz41:11:1

This is an important complex-valued function, the real and imaginary parts of which arise in practical problems.
These parts, themselves real and bivariate, are described by the integrals

2

2 2

exp
Re W( ) d

( )
tyx iy t

x t y
41:11:2

and
2

2 2

( )exp1Im W( ) d
( )

x t t
x iy t

x t y
41:11:3

and are mapped in Figure 41-3.

Expression 41:11:2 is known as the Voigt function [Thompson, Section 19.7, who uses V( x , y) as equivalent
to our Re{W(x + iy)} notation and discusses computational procedures]. When the argument of the W function is
real (y 0), the real and imaginary parts or the W function are respectively an exponential function and a Dawson’s
integral [next chapter]:

2 2W( ) exp( ) daw( )x x i x41:11:4

but when the argument is imaginary (x 0), the function is purely real, without any imaginary component:
2W( ) exp erfciy y y41:11:5

Abramowitz and Stegun [Table 7.8] provide an extensive list of W(x + iy) values for x and y between 0 and 3.
The functions of this chapter occur frequently in problems that are tackled in Laplace space. Some valuable
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inverse Laplace transforms are
exp 1 1exp erfc d exp erfc

2

i

i

ts bbs bs s bs bs
i t t b

I41:11:6

exp1 1 1exp erfc d exp erfc
2 ( )

i

i

ts
bs bs s bs bs

is s t b
I41:11:7

exp1 1 2exp erfc d exp erfc arctan
2

i

i

ts tbs bs s bs bs
s i s b

I41:11:8

2
2 2 2 2

2

exp 1exp erfc d exp erfc exp
2 4

i

i

ts tb s bs s b s bs
i bb

I41:11:9

2 2 2 2exp1 1exp erfc d exp erfc erf
2 2

i

i

ts tb s bs s b s bs
s i s b

I41:11:10

exp1 1 1 1 1 1 1exp erfc d exp erfc sinh 2
2

i

i

ts ts
bs i bs bs bs s bs t

I41:11:11

and many more are given by Roberts and Kaufman [pages 317 320].

41:12 GENERALIZATIONS

Respectively, the functions are special cases of the Kummer functionexp erf and exp erfcx x x x
[Chapter 47]

3
2exp erf 2 M 1, ,xx x x41:12:1

and the Tricomi function [Chapter 48]

31 1
2 2 2

1exp erfc U , , U 1, ,xx x x x41:12:2

The asymptotic representation 41:6:6 of is an example of an L K 1 0 hypergeometricexp erfcx x x
function

1
2

0

1exp erfc large
j

j
j

x x x x
x

~41:12:3

and therefore this function has kinship with those listed in Table 18-7.

41:13 COGNATE FUNCTIONS

Dawson’s integral [Chapter 42] is closely allied to the functions of this chapter through the relationship

2daw exp erf
2

ix x ix41:13:1
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Products of exponential and complementary error functions crop up in discussions of parabolic cylinder
functions [Chapter 46]. For example, the parabolic cylinder function of order 1 and argument is2 x

1D 2 exp erfc 2
2

x x x41:13:2

However, there is a crucial distinction between the functions of the present chapter and those of Chapter 46, which
prevents simple connectivity between the two function families. Both involve functions of the form

exp erfcax bx41:13:3

but differ in the magnitude of the a/b ratio. This ratio usually equals unity in the present chapter, but is in1/ 2
the algebra of parabolic cylinder functions.

The exp(x2)erfc( x) function is an instance of the Mittag-Leffler function [Section 45:14].



Among other practical applications, Dawson’s integral arises during studies of the propagation of
electromagnetic radiation along the earth’s surface. As well as daw(x) itself, and occurdaw x dawx x
frequently and this is recognized in the text.

There are close connections between Dawson’s integral and the functions of Chapter 41; thus the relationship
2 daw exp erfi x i x x42:0:1

resembles that between a circular function and its hyperbolic counterpart.

42:1 NOTATION

Because no standard exists, the Atlas uses the symbol daw(x) to denote Dawson’s integral of argument x.
Abramowitz and Stegun [Chapter 7] use a generic F(x), while Gradshteyn and Ryzhik adopt a symbolism equivalent
to .2/ 2 exp erfi x ix

Unfortunately, the name “Dawson’s integral” is also given to the product exp(x2)daw(x). Such products are
generally defined via the error function of imaginary argument and the symbolism used reflects this approach. Thus
the following notations

2erf( ) 2erfi( ) ( ) exp daw( )ixx i ix x x
i

42:1:1

and

2Erfi( ) erfi( ) exp daw( )
2

x x x x42:1:2

are commonly encountered, though Erfi(x) is sometimes regarded as synonymous with erfi(x). This Atlas employs
daw(x) exclusively, though erfi is mentioned in Sections 42:11 and 42:14.

In certain applications, a rescaling of the argument leads to notational economies. The function
has been symbolized D(x), but D is used with many other meanings, not all of which relate to2 daw / 2x x

Dawson’s integral. D (x) is a notation sometimes used for daw(x).
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daw x

42:2 BEHAVIOR

Dawson’s integral daw(x) and two of its modifications are mapped in Figure 42-1. Each of these functions is
zero at x 0, displays a maximum in the vicinity of x 1, and then slowly declines, approaching ½ in the case of
xdaw(x) and zero in the other cases.

42:3 DEFINITIONS

The indefinite integrals,
22

2 2

0 0

sgn( )exp exp( )daw( ) exp d d
2

x xx x tx t x t t
t

42:3:1

define Dawson’s integral. It may also be defined, via 42:1:1, in terms of the error function of imaginary argument,
or as the semiintegral of an exponential function

1
2

1
2

ddaw exp( )
2 d

x x
x

42:3:2

The hypergeometric formulations of Dawson’s integral, given in expansions 42:6:2 and 42:6:4, open routes by
which daw(x) may be synthesized [Section 43:14]

3
2

11exp( ) dawx x
x

42:3:3

1
21 1 1 2 1exp Ei daw

1x x x x x
42:3:4

As the particular integral [Section 24:14] accompanying the exponential function, Dawson’s integral appears
as a solution to a simple differential equation:
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2d f 2 f 1 f daw( ) (constant)exp
d

x x x
x

42:3:5

42:4 SPECIAL CASES

There are none.

42:5 INTRARELATIONSHIPS

Dawson’s integral is an odd function
daw( ) daw( )x x42:5:1

but xdaw(x) is even.

42:6 EXPANSIONS

There are two power-series expansions, each sum of which may be written in several ways:
23 5 7 2

2
3 3

0 0 02 2

22 4 8 ( ) 1daw( )
3 15 105 (2 1)!! 2

j
j j

j j j j

xx x x x xx x x x x
j j

42:6:1

13 5 7 2
22 2

30 0 2

exp( )daw( )
3 10 42 (2 1) ! 1

j jj

j j j j

x x x xx x x x x x
j j

42:6:2

The latter may be developed into
21

2 2 20 0

1 (2 1)!! (2 1)!!daw( ) 1,2,3,
2 (2 ) (2 2 1) !2 exp

jn

nj
j j

j n x xx n
x x j n jx x

42:6:3

and, if x and n are large enough, the second term becomes negligible and there remains the asymptotic series

1
22 3 4 220 0

1 1 3 15 1 (2 1)!! 1 1daw( )
2 4 8 16 2 22

j

j j
j j

jx
x x x x x x xx

~42:6:4

A useful continued fraction expansion is

2 1 3 5 7daw
2 1 3 5 7 9
x x x x x

x x x x x
42:6:5

42:7 PARTICULAR VALUES

For unity argument, Dawson’s integral evaluates to
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1 1
2

1/ 2
0 0 1

1 exp( ) 1 ddaw(1) exp( 1)d d 0 53807 95069 12768
2 2 ln ( )

et tt t t
e e tt

.42:7:1

and this value appears frequently below.

x x 1 x 0 x 1 x

daw(x) 0 daw(1) 0 daw(1) 0

daw x undef undef 0 daw(1) 0

xdaw(x) ½ daw(1) 0 daw(1) ½

Each of the curves shown in Figure 42-1 has a maximum and at least one inflection point. The maximum, at
argument xM , and the inflection point xi , of are important because they appear in the table in Sectiondaw x
37:15. At these particular locations there are simple relationships, namely

M M
M

1maximum : daw 0 85403 26565 98197
2

x x
x

.42:7:2

i
i i3

i

2 1inflection: daw 1 8436 50900 13325
4
xx x

x
.42:7:3

between the values of the function and its argument.

42:8 NUMERICAL VALUES

With keyword daw, Equator’s Dawson’s integral routine returns precise values of daw(x). The algorithm
utilizes expansion 42:6:2 when |x| < 6.5, but for arguments of larger magnitude, series 42:6:4 is preferred, with
implemention via the -transformation [Section 10:14]. For the very largest arguments, daw(x) 1/(2x) suffices.

42:9 LIMITS AND APPROXIMATIONS

For arguments close to zero and infinity, the following limiting approximations apply

daw(x) daw x xdaw(x)

x 0 32
3x x 2

31x x 2 42
3x x

x
2

3

2 1
4
x

x 3

2 1
4

x
x 2

1 1
2 4x

42:10 OPERATIONS OF THE CALCULUS

Differentiation of Dawson’s integral yields
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d daw( ) 2 daw( ) 1
d

bx b bx bx
x

42:10:1

Repeated derivatives obey the following general formula
d daw( ) [f ( ) g ( )daw( )]
d

n
n

n nn bx b bx bx bx
x

42:10:2

where fn and gn are polynomials in bx of which early members are

n 1 n 2 n 3 n 4 n 5

fn(bx) 1 2bx 4+4b2x2 20bx 8b3x3 32 72b2x2+16b4x4

gn(bx) 2bx 2+4b2x2 12bx 8b3x3 12 48b2x2+16b4x4 120bx+160b3x3 32b5x5

The indefinite integral of daw(x) is not expressible in terms of named functions, but nonetheless it is quite a
simple hypergeometric function [Section 18:14]:

2
2

3
00 2

(1)
daw( )d

2 (2)

x
jj

j jj

xt t x42:10:3

Formulas for the integrals and derivatives of are simpler than those of daw(x). Indeed, even thedaw x
semiintegral, semiderivative and sesquiderivative expressions are surprisingly simple for this function. The
following panel

1

1

d daw
d

x
x

1
2

1
2

d daw
d

x
x

1
2

1
2

d daw
d

x
x

d daw
d

x
x

3
2

3
2

d daw
d

x
x

dawx x 1 exp( )
2

x exp( )
2

x
1 daw

2
x

x
exp( )

2
x

demonstrates how closely the function is associated with the exponential exp( x) function:2 / daw x
differentiation converts to , the halfway house along that route being1 exp( )x exp( )x 2 / daw x

1
2

1
2

d 21 exp( ) daw
d

x x
x

42:10:4

Some definite integrals and Laplace transforms include:

2

2
0

arcsch /
exp( )daw( )d , 0

2

a b
at bt t a b

a b
42:10:4

2

2
0

sin( )daw( )d exp 0
4 4

t bt t
b b

42:10:5

2 2

2 2
0

1daw( )exp( )d daw( ) exp Ei 0
4 4 4

s sbt st t bt b
b b b

42:10:6

2

3 2
0

1daw( )exp( )d daw( ) Ei 0
2 8 4

s st bt st t t bt b
bs b b

42:10:7

0

1daw( )exp( )d daw 0
2( )

bbt st t bt b
s s b

42:10:8
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42:11 COMPLEX ARGUMENT

Figure 42-2 shows the real and imaginary parts of Dawson’s integral of complex variable, daw(x + iy). It is
related by

2daw( )= W( ) exp( )
2

iz z z42:11:1

to the complex W function discussed in Section 41:11. For purely imaginary argument:

2daw( ) exp( )erf( )
2

iiy y y42:11:2

Inverse Laplace transformations involving Dawson’s integral include

daw / sin 21 exp( )daw d
2 2

i

i

a s a ta ts s
is s s t

I42:11:3

42:12 GENERALIZATIONS

Dawson’s integral is a special case of the entire incomplete gamma function [Chapter 45]

2 21
2daw( ) exp

2
x x x x42:12:1

and the Kummer function [Chapter 47]
23

2daw( ) M 1, ,x x x42:12:2
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2

0

2 exp d

42:13 COGNATE FUNCTIONS

Dawson’s integral is the v 2 instance of a set of peaked functions defined by

0

exp d 0
x

v vt x t v42:13:1

and expressible as in terms of the Kummer function.1M 1, , vv
vx x

42:14 RELATED TOPIC: gaussian integrals of complex argument

The functions of Chapters 39, 40 and 42 have a kinship that is not immediately apparent, but which becomes
evident on considering the integration of the Gaussian function of complex argument. This latter function may be
written in rectangular or polar notation [Section 1:11] as

2 2 2 2 22 2 2exp exp 2 exp [cos( ) sin( )]z y x ixy i42:14:1

The integral of this function with respect to z is simply the error function of complex argument of that is discussed
in Section 40:10 and portrayed in Figure 40-3. For our present purpose, however, consider integrating the complex
Gaussian function along a radial line in the complex plane, from the origin to some point ( , ). With z constrained
by the constancy of , then

,
22 2

constant
0 0

2 cos( ) sin( )2 exp d exp cos( ) sin( ) d
i

z z z i z42:14:2

For certain values of the angle , the integral is easily evaluated. Thus for /2, then by equation 42:3:1
,

2 2 2

/ 2
0 0

2 2 2exp d exp d exp( )daw( )i iz z z z42:14:3

Likewise, when /4, with help from formula 39:11:2, it can be shown that
,

2 2

/ 4
0 0

2 2exp d (1 ) exp d (1 ) C( ) S( )z z i iz z i i42:14:4

There are eight angles for which similar calculations can be
carried out and the results are displayed in Figure 42-3 as
labels on the “spokes” that radiate from the origin at the
appropriate angles. In this diagram, erfi( ) is used as a
succinct alternative to The labels2(2 / )exp( )daw( ).
displayed are nothing but the complex expressions for erf(z)
at the appropriate phase angles expressed in terms of the
modulus , but they do serve to demonstrate the sought
linkage between the error function, Dawson’s integral and
the Fresnel integrals.





The gamma function is unusual in the simplicity of its recurrence properties. It is because of this that the gamma
function (and its special case, the factorial) plays such an important role in the theory of other functions. The
reciprocal 1/ (v) and the logarithm ln{ (v)} are also important and are discussed in this chapter, as is the related
complete beta function B(v , ), which is addressed in Section 43:13.

Formulas involving the gamma function often become simpler when written for argument 1+v rather than v, and
we have sometimes taken advantage of this fact. Because v (v) (1+v), such a change of argument is readily
achieved.

43:1 NOTATION

The gamma function is also known as Euler’s integral of the second kind. (1+v) is sometimes symbolized v!
or (v) and termed the factorial function or pi function, respectively. To avoid possible confusion with the functions
of Chapter 45, is sometimes distinguished as the complete gamma function.

43:2 BEHAVIOR

The behavior of (v) for 5 < v < 6 is shown on the accompanying map, Figure 43-1; it is complicated. For
positive argument, the gamma function passes through a shallow minimum between v 1 and v 2 and increases
steeply as v 0 or v is approached. On the negative side, (v) is segmented: it has positive values for

2 < v < 1, 4 < v < 3, 6 < v < 5, but negative values for 1 < v < 0, 3 < v < 2, 5 < v < 4, , with
discontinuities at v 0, 1, 2, . The gamma function never takes the value zero, but it comes very close between
consecutive large negative integers.

The reciprocal 1/ (v) has no discontinuities. It rapidly approaches zero as v and equals zero at v 0, 1,
2, . As shown on the map, its oscillations become increasingly violent as the argument becomes more negative.

The logarithm ln{ (v)} is usually only considered for v > 0. This is the convention adopted in drawing the map,
which shows that ln{ (v)} is a positive function except between v 1 and v 2, where it is briefly and slightly
negative.
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43:3 DEFINITIONS

Although it is restricted to positive arguments, the most useful definition of the (complete) gamma function is
the Euler integral

1

0

( ) exp( ) d 0vv t t t v43:3:1

More comprehensive are the Gauss limit definition

( ) lim
1 1 1 1

2 1

v

n

nv
v v vv v

n n

43:3:2

and the infinite product definition of Weierstrass

1

1 exp 1 exp
( ) j

v vv v
v j j

43:3:3

where is Euler’s constant [Chapter 1].
The (complete) gamma function may be expressed as a definite integral in many ways apart from the one given

above. Gradshteyn and Ryzhik [Section 8.31] give a long list of which the following are representative:
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1

0

1(1 ) ln d 1vv t v
t

43:3:4

1

0

( ) exp( )d 0 0v vv s t st t v s43:3:5

1

0

( ) sec cos( ) d 0 1 0
2

v vvv t t t v43:3:6

The last two definitions may be regarded as Laplace and Fourier transforms, respectively.
Likewise, there are several ways of representing the logarithm of the gamma function by means of integrals.

One is
1

0

1 dln (1 ) 1
1 ln( )

vt tv v v
t t

43:3:7

and others may be found in Gradshteyn and Ryzhik [Section 8.34].

43:4 SPECIAL CASES

The (complete) gamma function reduces to the factorial function [Chapter 2] when its argument is a positive
integer:

( ) ( 1)! 1,2,3,n n n43:4:1
The (complete) gamma function of odd multiples, positive or negative, of are all proportional to :1

2

1
2 1 7724 53805 99052.43:4:2

1 1
2 2

(2 1)!! (2 )! 0,1, 2,
2 4 !n n n

n nn n
n

43:4:3

1
2 1

2

( 2) ( 4) ( 1) 0,1, 2,
(2 1)!! (2 )! ( )

n n n

n

n n
n n

43:4:4

the constant of proportionality being a rational number (an integer or a fraction) involving double factorial
[Section 2:13] or factorial [Chapter 2] functions or Pochhammer polynomials [Chapter 18].

In a similar fashion, the (complete) gamma functions of certain multiples of may be expressed in terms of1
3

( ) or ( ):1
3

2
3

1
3 2 6789 38534 70775.43:4:5

2
3

1
3

2 1 3541 17939 42640
3

.43:4:6

The proportionality constants in these cases involve triple factorials [Section 2:13] or Pochhammer polynomials
[Chapter 18]:

1
31 1 1

3 3 3
(3 2)!!!

0,1, 2,
3n n

n
n n43:4:7
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2 2 2 2
3 3 3 3

(3 1)!!! 0,1, 2,
3n n

nn n43:4:8

1
31 1

3 3 1
3

( 3) 0,1, 2,
(3 1)!!!

n

n

n n
n n

43:4:9

2
32 2

3 3 2
3

( 3) 0,1, 2,
(3 2)!!! ( )

n

n

n n
n n

43:4:10

The (complete) gamma functions of one quarter and three quarters are related to Gauss’s constant, g [Section
1:7]:

3
21

4 2 3 6256 09908 22191g .43:4:11

3
4 1

4

2 1 1 2254 16702 46518
2g

.43:4:12

Thence, using expressions 43:5:5 or 43:5:6, the (complete) gamma functions of such arguments as n+ or n1
4

3
4

may be formulated.

43:5 INTRARELATIONSHIPS

The (complete) gamma function obeys the reflection formulas
csc( ) csc( )( )

( ) (1 )
v vv

v v v
43:5:1

and

1
2 1

2

sec( )
( )

vv
v

43:5:2

The recurrence formulas
1 ( )v v v43:5:3

and
( )1

1
vv

v
43:5:4

generalize to the formulas
(1 )(2 ) ( 1 ) ( ) ( ) ( ) 0,1, 2,nn v v v v n v v v v n43:5:5

and

( ) ( ) ( ) 0,1, 2,
( 1)( 2)( 3) ( ) (1 )

n

n

v vv n n
v v v v n v

43:5:6

involving the Pochhammer polynomial [Chapter 18].
The duplication and triplication formulas
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1
2

42
2

v

v v v43:5:7

and

1 2
3 3

273
2 3

v

v v v v43:5:8

are the n 2 and 3 cases of the general Gauss-Legendre formula

2

1

0

2 2,3, 4,
(2 )n

nv n

j

n jnv v n
n n

43:5:9

which applies for any positive integer multiplier n.
From 43:5:5 and 43:5:6, one may derive the expressions

( ) 1, 2,3,
( ) n

n v
v n

v
43:5:10

and

( 1) 1, 2,3,
( ) (1 )

n

n

v n
n

v v
43:5:11

for the ratio of the (complete) gamma functions of two arguments that differ by an integer. These formulas may be
used even when the individual gamma functions are infinite; for example, (v 3)/ (v) as v 0.1

6

Because of the frequent occurrence of the reciprocal gamma function in power series expansions of
transcendental functions, particular values of the latter functions often serve as sums of infinite series of reciprocal
gamma functions. For example, on account of expansion 41:6:4, we have

31
12 2 2

1 1 1 1 1 erfc( 1) 5 5731 69664 31004
1 j

j
e .43:5:12

while

1

1 1 1 ( 1) n( 1, 1)
1 2

j

j

v
v v v v j e

43:5:13

follows from the expansion in Section 45:5, n being the entire incomplete gamma function [Chapter 45].

43:6 EXPANSIONS

Early coefficients in the power series expansion of the (complete) gamma function

1
( ) 0, 1, 2,j

j
j

v b v v43:6:1

are b1 1, b2 , b3 (6 2+ 2)/12 and subsequent coefficients may be found from the recursion formula
1

1
1

1 ( ) ( ) ( 1 ) 1,2,3,
j

j k
j j k

k
b b j k b j

j
43:6:2

Here denotes Euler’s constant [Section 1:7] and (n) is the nth zeta number [Chapter 3]. A very similar expansion
holds for the reciprocal of the gamma function
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1

1
( )

j
j

j
c v

v43:6:3

and in this case c1 1, c2 , and c3 (6 2 2)/12, with a recursion formula,
1

1
1

1 ( ) ( ) ( 1 ) 1,2,3,
j

j k
j j k

k
c c j k c j

j
43:6:4

that differs only in a sign from formula 43:6:2. Numerical values of cj for j 1,2,3, ,26 are listed by Abramowitz
and Stegun [page 256].

The power series expansion of the logarithm of the (complete) gamma function is less complicated:
2

2

2

( )ln (1 ) ( ) 1 1
12

j

j

jv v v v v v
j

43:6:5

More rapidly convergent is the similar series

1 (1 ) ( ) 1ln (1 ) (1 ) ln 3,5,7, 1 1
2 (1 )sin( )

j

j

v v jv v v j v
v v j

43:6:6

The gamma function may also be expanded as the infinite product

1
1

( 1)(1 )
( )

v

v
j

jv
j v j

43:6:7

An asymptotic expansion of the gamma function is provided by Stirling’s formula (James Stirling, 1692 1770,
Scottish mathematician):

2 3

2 1 1 139( ) exp( ) 1
12 288 51840

vv v v v
v v v v

~43:6:8

The corresponding asymptotic expansion for the gamma function’s logarithm is

21
2 3 2 1

B1 1ln ( ) ln 2 ( )ln( )
12 360 2 (2 1)

j
jv v v v v

v v j j v
~43:6:9

where B2 j denotes a Bernoulli number [Chapter 4]. The series that is part of 43:6:9 is the asymptotic expansion of
an integral that defines the Binet function (Jacques Phillipe Marie Binet, French physicist and astronomer,
1786 1856)

2
2 2 3 5 2 1

10

Bln 1 exp( 2 ) 1 1 1d
12 360 1260 2 (2 1)

j
j

j

tv t
v t v v v j j v

~43:6:10

Though exact only in the j or v limit, truncated versions of expansions 43:6:3 9 are remarkably accurate
for modest values of the argument [see 43:9:1, for example]. Relationship 43:6:9 is a special case of Barnes’s
asymptotic expansion (Ernest William Barnes, English mathematician and bishop, 1874 1953)

2

3 2
1

2

1 2 6 6 1ln ( ) ( ) ln ln
2 12

B ( )2 3
12 ( 1)( )

j
j

c cv c v c v v
v v

cc c c v
v j j v

~

43:6:11

where Bj+1(c) denotes a Bernoulli polynomial [Chapter 20]. From this expansion one may also derive the useful
expansion
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2 2

2 3

( ) ( 1) ( 1)( 2)(3 1) ( 1) ( 2)( 3)1
( ) 2 24 48

cv c c c c c c c c c c cv v
v v v v
~43:6:12

for the ratio of two gamma functions of large, but not very different, arguments.

43:7 PARTICULAR VALUES

In addition to those reported in 43:4:5,6 and 43:4:11,12, there are the following:

v 5
2 2 3

2 1 1
2 0 1

2 1 3
2 2 5

2 3 7
2

(v) 8
15

4
3

+ | 2 1
2

1 3
4

2 15
8

Local maxima or minima of (v) correspond to the zeros of the digamma function [Section 44:7].

43:8 NUMERICAL VALUES

Except at v 0, 1, 2, , (where discontinuities occur) and in the immediate vicinity of these values, Equator’s
gamma function routine (keywordGamma) returns values of (v) precise to 15 decimal digits for inputs in the range

170 v 170. Relation 43:4:1 is exploited if v is a positive integer. Otherwise, Equator calculates the integer
value I Int(v) and the fractional value f frac(v) of the input argument, and then employs the algorithm

28
1

2
1

1
2

28
1

2
1

(1 ) 0
sin( )

( )

1

j
j

j

j
j

j

P c f f
f

v P f

P c f f

43:8:1

where cj is the jth coefficient in equation 43:6:3. Pochhammer polynomials [Chapter 18] are used as follows
1/( ) 0

1 0
1

I

I

v I

P I
f I

43:8:2

in the calculation of P. This strategy is based on equations 43:5:5 and 43:5:1.
Equator also has the facility, especially useful when v exceeds 170, to generate values of the logarithm of the

gamma function via its ln- or log10-gamma function routines (keywords lnGamma and log10Gamma). For
arguments in the range 0 < v 170, it suffices to take the logarithm of the value generated by the algorithm outlined
above. For v > 170, Equator uses the formula

3 5

ln(2 / ) 1 1 1ln ( ) ln( )
2 12 360 1260

vv v v v
v v v

43:8:3

which is a truncated version of 43:6:9, to produce ample precision. No values of ln{ (v)} are reported for negative
v because (v) is itself frequently negative (and hence its logarithm is complex) in this range of argument.



442 THE GAMMA FUNCTION (v) 43:9

43:9 LIMITS AND APPROXIMATIONS

In the limit of large argument,

2( ) exp{ } vv v v v
v

43:9:1

this being the leading term in Stirling’s approximation 43:6:8.
Close to its zeros, the reciprocal gamma function is approximated by

1 ( ) !( ) 1 ( ) ( 1) 0, 1, 2,
( )

n n v n v n n v n
v

43:9:2

where denotes the digamma function [Chapter 44]. For example, close to the origin, 1/ (v) is well approximated
by v + v2.

The approximation
1

2
2 3

( ) 1 1 51 large positive
( ) 8 128 1024

v v v
v v v v

43:9:3

is sometimes useful because of its rapid convergence. See the discussion surrounding equation 51:13:5 for another
aspect of this ratio of gamma functions.

43:10 OPERATIONS OF THE CALCULUS

Differentiation of the (complete) gamma function and its logarithm yield
d ( ) ( ) ( )
d

v v v
v

43:10:1

( 1)d ln ( ) ( ) 1,2,3,
d

n
n

n v v n
v

43:10:2

where and (n) are the digamma and polygamma functions [Chapter 44].
Few simple integrals involving the gamma function have been established, although there are numerous integrals

of products and quotients of gamma functions [see Gradshteyn and Ryzhik, Sections 6.41 and 6.42]. A number of
integrals involving the logarithm of the gamma function, and including

1

ln ( ) d ln 2 ln( ) 0
v

v

t t v v v v43:10:3

are also listed by Gradshteyn and Ryzhik [Section 6.44]. The latter formula leads to
1

21

1ln ( ) d ln 2 ln( ) 2,3,4,
2

n n

j

nt t n j j n43:10:4

43:11 COMPLEX ARGUMENT

Figure 43-2 portrays the (complete) gamma function of complex variable v+i . Note that all the poles of
(v+i ) lie along the nonpositive reaches of the real axis, 0. The real and imaginary components of the complex-

valued function are contained in the formulation
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2 2
0

| |( ) cos( ) sin( ) | ( ) |
( )j

j vv i i v
j v

43:11:1

where

0
( ) arctan

j
v

j v j v
43:11:2

Here is the digamma function [Chapter 44]. Tables from which (v+i ) may be evaluated are given by
Abramowitz and Stegun [pages 277 287]. It follows from 43:11:1 that the product (v+i ) (v i ) is real; special
cases are

(1 ) (1 ) csch( )i i43:11:3
and

1 1
2 2( ) ( ) sech( )i i43:11:4

For purely imaginary argument

1
( ) csch( ) sin( ) cos( ) arctan

j
i i

j j
43:11:5

where is Euler’s constant [Section 1:7].

43:12 GENERALIZATIONS

The (complete) gamma function is a special case of the incomplete gamma function (v , x) and of its
complement (v , x)

( ) ( , ) and ( ) ( ,0)v v v v43:12:1
both of which are discussed in Chapter 45. These two incomplete functions sum to the complete gamma function

( , ) ( , ) ( )v x v x v43:12:2
for all values of x.



444 THE GAMMA FUNCTION (v) 43:13

43:13 COGNATE FUNCTION: the complete beta function

Though it is also related to the functions in Chapters 2,
6, 18, 44 and 45, the closest relative of the (complete)
gamma function is the complete beta function B(v , ), also
known as Euler’s integral of the first kind or simply as the
beta function. Not to be confused with the beta numbers
[Chapter 3], it is defined by the Euler integral

1
1 1

0

B( , ) (1 ) d 0 0vv t t t v43:13:1

and is related to the gamma function through
( ) ( )B( , )
( )
vv
v

43:13:2

The interchangeability B( , v) B(v , ) is implicit in both
these definitions and is evident in the symmetry of Figure
43-3. This is a diagram illustrating the “shape” of the
function in a region close to the origin.

As with the gamma function, the complete beta function
may be expressed as a definite integral in many ways other
than 43:13:1. These include

1 1 1 1 1

0 1

B( , ) d d 0 0
(1 ) (1 )

v v

v v

t t t tv t t v
t t

43:13:3

and
21

12 1 2 2 1 2 1

0 0

B( , ) 2 1 d 2 sin ( )cos ( )d 0 0v vv t t t t t t v43:13:4

and extensive lists may be found in Gradshteyn and Ryzhik [Section 8.38] and in Magnus, Oberhettinger and Soni
[page 7]. The integral representations of B(v , ) apply only when both arguments are positive, but relationship
43:13:2 is valid for any pair of real arguments, as is the infinite-product expression

0

( 1)( )B( , )
( )( )j

j v jv
v j j43:13:5

There are numerous special cases of the beta function that apply when the two arguments have a particular
relationship to each other. If v and sum to zero, then

( 1) / | | 1, 2, 3,
B( , ) 0

0 otherwise

v v v
v v v43:13:6

or if they sum to a negative integer n, then
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0 not an integer
( ) ( 1)! 1, 2, 3,

( 1)
B( , ) 1,2,3,

0, 1, 2, ,
( ) ( 1)! 1,2,3,

( 1)

n v

n v

v

v

v
v n v n n n

n
v v n n

v n
v v

n

43:13:7

The uppermost diagonal mostly yellow/green line in Figure 43-3 illustrates the formulas in 47:13:6, while the lines
parallel to this are where 47:13:7 hold sway. If one of the arguments is a moiety, if the arguments sum to moiety,
or if the two arguments are identical, then the following set of equalities applies to the beta function

1 1
2 2

0

4 (2 1)!!B( , ) cos( )B , B ,
2 (2 )!!( )

v

j

jv v v v v v
j j v

43:13:8

Some important particular values of the beta function are tabulated below

5
2B , B 2, 3

2B , B 1, 1
2B , B 0, 1

2B , B 1, 3
2B , B 2, 5

2B ,

5
2 0 ± 3

2 ± 3
8

2
15

3
16

4
35

3
128

2 4
3

1
2

4
3 ± 4 ± 4

3
1

2
4

15
1

6
4

35

3
2 0 ± 0 ± ± 3

4
3

8 8
4

15
3

16

1 2 1
2

2
3 1 2 ± 2 1 3

8
1

2
2

15

1
2 0 ± 0 ± 0 ± 2 3

4
4

3
3

8

0 ± ± ± ± ± ± ± ± ± ± ±

1
2 0 ± 0 ± 0 ± 0 2 4 3

2

and some others are B( , ) , B( , ) and B( , ) , where g is Gauss’s constant1
4

1
4 8 g 1

4
3

4 2 3
4

3
4 2 / g

[Section 1:7]. Yet other particular values of the beta function may be found by combining definition 43:13:2 with
the findings of Section 43:4. In carrying out this exercise, recognize that the quotient of two gamma functions, both
of which are infinite, is generally finite. For example, in view of formula 43:5:6, ( 5)/ (0) 1/120.

Though there are exceptions to the rule, it is generally true that the beta function is infinite if one (or both) of
its arguments is a nonpositive integer. Likewise, it is generally true that if one (or both) of the arguments is a
positive integer n, then the beta function reduces to an expression involving a binomial coefficient

1
1

1B( , )
n v

n

v n
v43:13:9

though again, there are exceptions to this rule.
Intrarelationships of complete beta functions, such as

B( 1, ) B( , ) B( , 1)v vv v v
v

43:13:10
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as well as expansions, such as

0

(1 )1 1 (1 )(2 )B( , ) 0
1 2(2 ) !( )

j

j
v

v v v j v j
43:13:11

and infinite sums, such as

0
B( , ) B( 1, ) B( 2, ) B( , ) B( , 1)

j
v v v v j v43:13:12

may be established via the equation 43:13:2.
Equator’s complete beta function routine (keywordBeta) first checks for the special cases outlined in equations

43:13:6 and 43:13:7 and sets the value of the function appropriately. If none of those conditions is met, and one or
both of the arguments is a nonpositive integer, then Equator returns ± . For all other values of the arguments,
Equator relies on the identity 43:13:2 to generate numerical values of the beta function.

43:14 RELATED TOPIC: function synthesis

The (complete) gamma function (or its special case, the factorial) is preeminent as a component of coefficients
of power series expansions of the functions of this Atlas. The majority of these functions may be regarded as derived
from one of four fundamental functions, namely those whose power-series expansions are

2
0 0 0 0

, , , or ( 1)
( 1) ( 1)

j j
j j

j j j j

x x x j x
j j

43:14:1

Because j here is a nonnegative integer, the gamma function ( j +1) is equal to j! or (1)j and it is the latter
Pochhammer notation [Chapter 18] that is most convenient for our present purpose. The four fundamental functions,
or prototypes, are:

0

2
0 0 0

I 2 01
( 1) (1) (1) J 2 0

j
j

j j j j

x xx x
j x x

43:14:2

0 0

1 exp( )
( 1) (1)

j
j

j j j

x x x
j43:14:3

0

1 | | 1
1

j

j
x x

x43:14:4

and the asymptotic Euler function,

0 0

1 1 1( 1) (1) exp Ei smallj j
j

j j
j x x x

x x x
~43:14:5

The zero-order Bessel and modified Bessel functions, J0 and I0, are treated in Chapters 52 and 49 respectively; the
exponential integral function Ei is the subject of Chapter 37.

The four prototype functions specified in equations 43:14:2 5 have been termed basis hypergeometric functions,
or prototype hypergeometric functions. This is because, in the terminology introduced in Section 18:14, they are
the simplest members of four families characterized by the difference L K. These latter numbers, L and K, are the
integers that specify the numbers of Pochhammer polynomials present in the denominator and numerator,
respectively, of the hypergeometric representation. Thus, for example, exp(x), with one denominatorial Pochhammer
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term and none in its numerator, is the simplest member of the L K+1 family of hypergeometric functions. It is the
task of the present section to demonstrate that any two hypergeometric that share the same value of L K can be
interconverted, one to the other. In particular, any hypergeometric function may be formed from its own basis
function. For example, any of the functions in Table 18-3 or 18-4 can be formed from the exponential function. This
process, which is termed “synthesis”, was first described in the literature of the fractional calculus [Oldham and
Spanier, Chapter 9].

We represent the overall synthetic process by the symbol where and are unequal real numbers each
of which may be a positive integer or any fractional number, positive or negative. The net effect of this operation
is to introduce the Pochhammer polynomial ( )j into the function’s list of numeratorial factors and ( )j into its
denominatorial roster; for example:

0 01 2 1 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

j j jj j

j jj j j j j

a a
x x

c c c c43:14:6

This is accomplished by three operations applied sequentially to any hypergeometric function:
(i) multiply the input function by x 1/ ( );
(ii) apply the differintegration [Section 12:14] operator d /dx , and;
(iii) divide by x 1/ ( ).
These three steps conspire to achieve the sought goal:

1 1

0 0 0 01 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( )1 1(i) (ii) (iii)
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j j j j
j j j j j j

j j j jj j j j j j j j j j

a x a x a x a x
c c c c c c c c

43:14:7

Equation 18:14:18 is the key to understanding step (ii). A straightforward example is the synthesis of Dawson’s
integral [Chapter 42] from the exponential function.

3 3
20 0 2

1 1 exp( )1exp( ) daw
(1) ( )

j j

j jj j

xx x x x
x43:14:8

Notice that we refer to this process as a synthesis “of Dawson’s integral” even though there is a multiplier, here
, also present and even though the product is , not daw(x).exp( ) /x x daw( )x

At first sight, synthesis appears to increase the complement of denominatorial and numeratorial parameters, each
by unity, but this is not invariable so because and/or may be chosen to match a preexisting parameter, resulting
in cancellation. An example is provided by the synthesis

0

33 3 3
20 02 2 2

sin 2 h 21 11( ) ( )
(1) ( ) ( ) ( )2 4

j j

j jj j j j

x x
x x

x x
43:14:9

of a Struve function [Chapter 57]. The difference L K always remains constant in a synthetic procedure, though
the individual L and K integers may increase, remain the same, or even decrease.

It is necessary to ensure that the hypergeometric variable matches that used in the synthetic process, which is
x in all our examples throughout the Atlas, before invoking synthesis. Therefore function arguments may need
adjustment. For example, in synthesizing the cosine function from the zero-order Bessel function, the synthetic
operation acts on a function of argument 2 x

0 1
2

1J 2 cos 2x x43:14:10

Alternatively, of course, one can synthesize cos(x) from J0(x) by adopting x2/4 as the synthetic variable.
Sometimes more than one synthetic step is needed to create the sought function from the prototypical basis

function, as in the example
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1 1
2 21 21 E

1 11
x x

x
43:14:11

which leads to a complete elliptic integral of the second kind [Chapter 61]. This example will serve to illustrate that
two or more synthetic routes may lead to the same destination:

31 1
2 2 2

3
2

1 artanh( ) 1 2 E
1 11 1

x x
x x x

43:14:12

Notice in equations 43:14:2 5 that a limitation sometimes exists on the magnitude of the variable. Thus, in the
L K family of hypergeometric functions, x must have a magnitude of less than unity, and this restriction therefore
transfers to the corresponding syntheses, such as those in the two previous equations. The restriction is most telling
in the L K 1 family for here the hypergeometric series are asymptotic and the corresponding syntheses, such as
that generating the error function complement

1
2

1 1 1 1 11exp Ei exp erfc
xx x x x x

43:14:13

are valid only in the limit of small x.
There exist several differintegration algorithms for zero lower limit [Oldham and Spanier, Chapter 8], though

most are restricted to limited ranges of the differintegration order . One that is more versatile than most, and
without undue complexity, is the Grünwald algorithm

1

0

( )d f( ) f
d !

J
j

j

J J jx x
x x j J

43:14:14

that uses a large number, J, of evenly spaced data points in the range x/J to x. Such an algorithm permits
differintegration to be carried out numerically. This algorithm may be incorporated into a scheme that implements
function synthesis, permitting the synthetic operation

f( ) g( )x x43:14:15

to be carried out numerically, too, as well as algebraically When the three steps specified in 43:14:7 are combined
into a single operation, with the differintegration step implemented through the 43:14:14 algorithm, one arrives at

1
1

1

( )( )g( ) f
( ) ( )!

J
J j

j

jxx j
J J j J

43:14:16

This last expression is exact in the J limit. Though it often delivers a close approximation when J is a
sufficiently large positive integer, the formula is unsuitable for calculating precise numerical values of g(x).
Moreover, this algorithm may occasionally fail totally. A case in point is provided in Section 61:3. Whereas
synthesis 61:3:6 may be implemented through algorithm 43:14:16, synthesis 61:3:7 cannot be. The failure stems
from the lack of differintegrability of an intermediate function.



The digamma function arises on differentiation of the logarithm of the previous chapter’s gamma function.
Multiple differentiations generate the polygamma functions, addressed in Section 44:12. The related Bateman’s G
function is the subject of Section 44:13. All these functions are useful in summing certain algebraic and numerical
series, an application discussed in Section 44:14.

44:1 NOTATION

The digamma function of argument v, sometimes known as the psi function, has the symbol (v). It occurs often
as its sum with Euler’s constant. This pair is frequently represented by (v) that, especially when v is an( )v
integer n, is known as the nth harmonic number, being the sum of the reciprocals of the first n natural numbers:

1 1 1 1( ) ( )
1 2 3

n n
n

44:1:1

Occasionally the name “harmonic number” is used, less appropriately, with non-integer arguments; in these cases
it means (v)+ .

A few authors use a translated argument for the digamma function, with their (v 1) being our (v). Some
authorities do not accord the function any name or special symbol, regarding it as merely the zeroth-order instance

(0)(v) of the polygamma function [Section 44:12].
In this Atlas the polygamma functions are denoted (1)(v), (2)(v), (3)(v), etc., the Greek prefixes in their names

being offset by 2 from the numerals in their symbols. Thus (1)(v) is the trigamma function and (3)(v) is the
pentagamma function. Commonly, the symbols and replace (1) and (2) in recognition of the role played by
differentiation in their definitions.

44:2 BEHAVIOR

The red curve in Figure 44-1 shows the digamma function to be a monotonically increasing function for v > 0.
It is segmented for negative v, with discontinuities of the + | variety at each nonpositive integer value of the
argument. The shapes within each of these segments are similar, but not identical.
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44:3 DEFINITIONS

In terms of the gamma function, the digamma function is defined by
d 1 d( ) ln ( ) ( )
d ( ) d

v v v
v v v

44:3:1

It may also be defined as the limit

0

1( ) lim ln( )
n

n j
v n

j v
44:3:2

Representations as definite integrals are numerous and include
1 1

0 0

1 exp( ) exp( )( ) (1) d d 0
1 1 exp( )

vt t vtv t t v
t t

44:3:3

The integral definition

0

exp( ) exp( )( ) d 0
1 exp( )

t vtv t v
t t

44:3:4

is due to Gauss, while

2 2
0

1( ) ln( ) 2 d 0
2 ( )[exp(2 ) 1]

tv v t v
v t v t

44:3:5

and

0

exp( ) (1 )( ) d 0
vt tv t v

t
44:3:6

are attributed respectively to Binet and Dirichlet (of Belgian extraction, Johann Peter Gustav Lejeune Dirichlet,
1805 1859, pursued mathematical studies in neighboring France and Germany). Other representations of the
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digamma function as a definite integral are given by Erdélyi et al. [Higher Transcendental Functions, Volume 1,
Section 1.7.2].

44:4 SPECIAL CASES

In a sense, every rational value of the argument – that is, whenever v equals the ratio m/n of two integers – is
a special case, for then the digamma function (v) is given by a formula that is inapplicable when v is irrational.
This formula will be found in Section 44:7.

44:5 INTRARELATIONSHIPS

The digamma function satisfies the reflection formulas
(1 ) ( ) cot( )v v v44:5:1

and
1 1
2 2 tan( )v v v44:5:2

The recurrence relationship
1(1 ) ( )v v
v

44:5:3

may be generalized to
1

0

1( ) ( ) 1,2,3,
n

j
n v v n

j v44:5:4

or

1

1( ) ( ) 1,2,3,
n

j
v n v n

v j44:5:5

though the latter may be invalid for certain values of n if v is an integer.
The duplication formula

1 1 1
2 2 2(2 ) ln(2) ( )v v v44:5:6

generalizes to
1

0

1( ) ln( ) 2,3,4,
n

j

jnv n v n
n n

44:5:7

The difference of two digamma functions may be expressed as a simple infinite sum, or as a hypergeometric
function [Section 18:14] of unity argument:

0 0

(1) ( 1)1( ) ( ) ( )
( )( ) (2) ( 1)

j j

j j j j

vvv v
j v j v v44:5:8

An alternating finite series of digamma functions with increasing positive integer arguments has a sum that
depends on the parity of the argument of the final term:
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11 1
2 2 21

1 1
1 2 2 2

1,3,5,
(1) (2) (3) ( ) ( ) ( ) ( )

2,4,6,

nn
n j

n
j

n
n j

n n
44:5:9

Certain infinite series involving quotients of integer-argument digamma functions by the corresponding gamma
function may be summed as follows

1

Ei( 1) 0 59634 73623 23194(1) (2) (3) ( ) ( )
(1) (2) (3) ( ) Ei(1) / 0 69717 48832 35066

j

j

ej
j e

.

.
44:5:10

0

2 2 2 2 1
1 02

K (2) 0 11389 38727 49533(1) (2) (3) ( ) ( )
(1) (2) (3) ( ) Y (2) 0 80169 62318 83694

j

j

j
j

.

.
44:5:11

The Ei, K0, and Y0 functions will be found in Chapter 37, 51, and 54.

44:6 EXPANSIONS

In the Taylor series expansion
2 4 3

2

2

1 1 1( ) ( ) 0 1
6 90

j

j

v vv Zv j v v
v v v

44:6:1

( j) is the jth zeta number [Chapter 3] and Z is (3), Apéry’s constant [Section 3:7]. This expansion is valid only
in two narrow domains of the argument but one of wider applicability can be written in the three equivalent forms:

0 0 1

1 1 1 1 1( ) 0, 1, 2,
1 ( 1)( ) ( )j j j

vv v v
j j v j j v v j j v44:6:2

Two other expansions are

0

1 1( ) ln( ) ln 1 0
j

v v v
j v j v

44:6:3

and
2

2
3,5,7,

1 1( ) cot ( ) 1 2 0,1
1 2 2

k

k

vv v k v v
v v

44:6:4

An asymptotic expansion involving the Bernoulli numbers [Chapter 4]

2 4 6
1

B1 1 1 1( ) ln( ) ln( ) large
2 12 120 252

j
j

j
v v v v

v v v v jv
~ =44:6:5

becomes exact as v .

44:7 PARTICULAR VALUES

The negative of Euler’s number
0 57721 56649 01533.44:7:1

is an inescapable presence in almost all of the formulas for the digamma function. It appears in each particular value
of the digamma function of positive integer argument
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(0), ( 1), ( 2), (1) (2) (3) (4) (5) (6) (7) (8) (n)

+ | 1 3
2

11
6

25
12

137
60

49
20

363
140

1

1

1n

j j

and also, along with the logarithm of 4, when the argument is one-half of an odd integer of either sign:

1
2

31
2 2or 3 5

2 2or 5 7
2 2or 7 9

2 2or 1
2 n

ln(4) 2 ln(4) 8
3 ln(4) 46

15 ln(4) 352
105 ln(4)

1

2ln(4)
2 1

n

j j

where
ln(4) 1 9635 10026 02142.44:7:2

The general formulas are included in the above panels. Other general formulas include

1
3

1

ln(27) 6 0,1,2,
2 6 3 112

n

j
n n

j44:7:3

1
4

1

4ln(8) 0,1,2,
2 4 2 1

n

j
n n

j44:7:4

2
3

1

ln(27) 6 0,1,2,
2 6 3 112

n

j
n n

j44:7:5

and

3
4

1

4ln(8) 0,1,2,
2 4 2 1

n

j
n n

j44:7:6

In fact, though its formulation is too complicated to be generally useful, the theorem of Gauss states that the
digamma function of any rational number is able to be expressed in terms of constants and simple functions
(logarithms and circular functions). For any rational argument in the domain 0 < m/n < 1, the Gauss formula is

Int[( 1) / 2]
2

1

2,3,4,2ln(2 ) cot cos ln sin
2 2 1,2,3, , 1

n

j

nm m jm jn
n n n m n

44:7:7

This relationship may be extended to encompass any fractional argument whatsoever by use of equation 44:5:4 or
44:5:5.

The digamma function has a single positive zero at v = +1.4616 32144 96836 and an infinite number of negative
zeros, the first two being r 1 0.50408 30082 64455 and r 2 1.5734 98473 16239. The approximation

1 arctan 1,2,3,
ln( )jr j j

j
44:7:8

becomes increasingly accurate as j increases. This approximation may be used as the starting point of a Raphson
rule procedure [Section 52:15] to progressively improve the estimate.

The digamma function has no extremum, reflecting the fact that the trigamma function lacks zeros, other than
at infinity.
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44:8 NUMERICAL VALUES

With keyword digamma, Equator provides a digamma function routine. For x 10 the asymptotic expansion
44:6:5 is used. For positive x < 10, the recursion 44:5:4 is used to increase the argument until the asymptotic
expansion is valid. When x is negative, the reflection formula 44:5:1 is employed.

44:9 LIMITS AND APPROXIMATIONS

The limiting approximation
1
2( ) ln large positivev v v44:9:1

can be improved with help from equation 44:6:5. The corresponding approximation for large negative argument
is

1
2( ) ln cot( ) large negativev v v v44:9:2

Close to the discontinuity at v n, the digamma function is well approximated by
( ) (1 ) cot ( ) 0,1,2,v n v n v n44:9:3

44:10 OPERATIONS OF THE CALCULUS

Single and double differentiation generates the trigamma and higher polygamma functions [Section 44:12]:

(1)d ( ) ( )
d

v v
v

44:10:1

( )d ( ) ( ) 1,2,3,
d

n
n

n v v n
v

44:10:2

Important indefinite integrals lead to logarithms

1

( )d ln ( ) 0
v

t t v v44:10:3

and
1

( )d ln( ) 0
v

v
t t v v44:10:4

either of which shows the integral of the digamma function between arguments 1 and 2 to be zero.
Many definite integrals, including

1

0

( )d ln( )t t44:10:5

and
1

0

( )sin d / 2 2,4,6,t n t t n44:10:6

are listed by Gradshteyn and Ryzhik [Sections 6.46 and 6.47].
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44:11 COMPLEX ARGUMENT

Notice the poles that occur along the real axis for v 0, 1, 2, in Figure 44-2, a three-dimensional graphic
of the real and imaginary parts of the digamma function of v + i . Formulas for these parts are contained in

2 2

2 2 2 22 2
1 0

( )
( )( )j j

v jv vv i i
v j vj j v44:11:1

Six pages [288 293] of numerical values are listed by Abramowitz and Stegun. The formula
2

2 2
1

1( ) coth( )
( ) 2 2j

i i
j j

44:11:2

applies when the argument is purely imaginary.

Inverse Laplace transforms of the digamma function include

exp( ) 1( ) d ( )
2 1 exp( / )

i

i

tsbs s bs
i b t b

I44:11:3

( ) exp( ) ( )d ln exp 1
2

i

i

bs ts bs ts i
s i s b

I44:11:4

and
exp / exp /exp( )( ) ( ) d ( ) ( )

2 1 exp /

i

i

c t b ct btsbs c bs c s bs c bs c
i b t b

I44:11:5

21 1
2 2

1 exp( ) 12 ( ) ( ) d 2 ( ) ( ) sech
2 2 2 4

i

i

ts ts s s s s s s
s i s

=I44:11:6
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44:12 GENERALIZATIONS: polygamma functions

The trigamma function (1)(v) is the derivative of the digamma function

(1) d( ) ( )
d

v v
v

44:12:1

Some particular values of this function are

(1) n (1) 3
2

(1) 1
2

(1) 0 (1) 1
2

(1) 1 (1) 3
2

(1) 2 (1) n (1)

+ |+ + |+
2 40

2 9

2

4
2

2

2

2

6

2

4
2

2

1
6

2 1

2
1

1
6

n

j j
0

The tetragamma function (2)(v) is the derivative of the trigamma function, the pentagamma function is the derivative
of the tetragamma function, and so on; generally

( ) ( 1)d( ) ( )
d

n nv v
v

44:12:2

The trigamma, tetragamma and pentagamma instances are illustrated in Figure 44-3. As do all polygamma
functions, they resemble the digamma function in being monotonic for positive argument and segmented for negative
v, with discontinuities at all nonpositive integer arguments. The cause of the repetitive behavior at negative
argument can be understood by making an n-fold differentiation of the reflection formula 44:5:2 of the digamma
function, to produce the reflection formula

( ) ( )1 1
2 2

d( ) ( ) ( ) tan( )
d

n
n n n

nv v v
v

44:12:3

for polygamma functions. Because of the periodic nature of the tangent function [Chapter 34], the second right-hand
term, which generally has a large magnitude, responds only to the fractional value of v. In contrast, the aperiodic
first right-hand term is of relatively small magnitude. So the second right-hand term in 44:12:4 swamps the first,
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leading to the quasiperiodic behavior for v < 0 .
The recursion formula

( ) ( )
1

( ) !( 1) ( )
n

n n
n

nv v
v

44:12:4

may be combined with the particular values
( ) 1(1) ( ) ! ( 1)n n n n44:12:5

and
( ) 11

2 ( 2) ! ( 1)n n n n44:12:6

to give the formulas
1

( ) 1 1
1 1

1

1,2,3,1 1( ) ( ) ! ( 1) ( ) !
1,2,3,

m
n n n

n n
j j m

n
m n n n

j j m
44:12:7

and

( ) 1 11
2 1

1

1,2,3,12 ! ( ) ( 1) ( )
(2 1) 0,1,2,

m
n n n n

n
j

n
m n n

j m
44:12:8

The and functions are those from Chapter 3.
The behavior of (n)(v) close to v 0 is dominated by an n!( v) n 1 term. After this dominant term has been

subtracted, the residue may be expanded as a power series:

( ) 1
1

0

! ( )! ( 1)( ) ( ) ( ) 1 1
( ) !

n n j
n

j

n n j n jv v v
v j44:12:9

The poor convergence and limited domain of this series can be remedied by rewriting it as

( ) 1
1 1

0

! ! ( )![ ( 1) 1]( ) ( ) ( ) 1 1
(1 ) !

n n j
n n

j

n n n j n jv v v
v v j

44:12:10

Another expansion shares its first two terms with those of 44:12:11
1

( ) 1
1 1 1

1

1 1 1 1( ) ( ) ! !
(1 ) (2 )

n
n n

n n n
j

v n n
v v v j v

44:12:11

The asymptotic expansion provided by

( ) 1
2 4

0

( 1)!B1 ! ( 1)! ( 3)!( ) ( 1)! ( )
( ) 2 12 720 !

jn n
n n j

j

j nn n nv n
v v v v j v

~ =44:12:12

establishes (n 1)!/( v)n as a limiting expression for (n)(v) as v .1
2

Be aware that, though in many respects the polygamma functions do generalize the digamma function, setting
n 0 in the formulas of this section does not necessarily give valid expressions for the digamma function. This
caveat also applies to Equator’s polygamma function routine (keyword polygamma), which cannot be used to
generate values of (v). This routine utilizes equations 44:12:12, with 44:12:3 if v is negative. Equator also has
dedicated trigamma function and tetragamma function routines (keywords trigamma and tetragamma), which
operate similarly.

The inverse Laplace transformation of the polygamma function is

( ) ( )
1

exp( )( ) d ( )
2 ( ) 1 exp /

i n
n n

n
i

ts tas s as
i a t a

=I44:12:13
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44:13 COGNATE FUNCTION: Bateman’s G function

Harry Bateman (a prolific English mathematician, 1882 1946, who emigrated to the United States in 1910)
made use of a function derived from the digamma function and defined by

1G( )
2 2

v vv44:13:1

It is denoted 2 (v) by Gradshteyn and Ryzhik and is generalized by the bivariate eta function [Section 64:13] as
G( ) 2 (1, )v v44:13:2

Bateman’s G function, which is mapped in Figure 44-1, may be represented by the integral

0

exp( )G( ) 2 d 0
1 exp( )

vtv t v
t

44:13:3

It is also an L K 1 hypergeometric function [Section 18:14] of argument ½:

0

(1)1 1G( )
( 1) 2

j
j

j j

v
v v

44:13:4

A further definition is provided by formula 44:14:5.
The properties of Bateman’s G function, including the reflection

G(1 ) 2 csc( ) G( )v v v44:13:5
and recursion

2G(1 ) G( )v v
v

44:13:6

formulas, may be deduced from those of the digamma function. The eta number of Chapter 3 is a component of two
of the following expansions

0

G( ) 1 1 1 1
2 (1 ) (2 )(3 ) (4 )(5 ) (2 )(2 1 )j

v
v v v v v v j v j v44:13:7

2 4
2 3

0

3 7G( ) ln(4) (1 ) (1 ) (1 ) 2 ( 1)[1 ]
6 4 360

j

j

Zv v v v j v44:13:8

2
2

0

1 2G( ) csc( ) 2 1 (2 1)
1

j

j
v v j v

v v44:13:9

each of which is limited in its domain of applicability.
Like the digamma function, Bateman’s G function is unusually fecund in its particular values, a sampling of

which is listed in the following panel

1
2G G 0 1

4G 1
3G 1

2G 2
3G 3

4G G 1 3
2G G 2

4 |+
2

8 ln 2 1
2 ln(4)

3
2 ln(4)

3

2

8 ln 2 1
ln(4) 4 2 ln(4)

Innumerable additions may be made via equations 44:7:6, 44:13:1, 44:13:4, and 44:13:5. Equator’s Bateman’s G
function routine (keyword G) utilizes definition 44:13:1.
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44:14 RELATED TOPIC: summation of series of reciprocals

The digamma function, polygamma functions, and Bateman’s G function are all tools useful in summing certain
infinite (and finite) algebraic (and numerical) series.

Though the infinite series

0

1 1 1 1 1 1 0, , 2 ,
2 3 j

c c b b
c b c b c b c jb c b b

44:14:1

does not converge, rendering the formula invalid, it is nevertheless useful in permitting the construction of the finite
summation

0

1 1 1 1 1 1 1 0, , 2 ,
2

n

j

c c n c b b
c b c b c nb c jb c b b b

44:14:2

which does converge. The corresponding alternating series converges in both the infinite

0

1 1 1 1 ( 1) 1 G 0, , 2 ,
2 3 2

j

j

c c b b
c b c b c b c jb c b b

44:14:3

and the finite

0

1 1 1 ( 1) ( 1) 1 G ( ) G 1 0, , 2 ,
2 2

n jn
n

j

c c n c b b
c b c b c nb c jb c b b b

44:14:4

formats. Equations 1:14:5 and 1:14:10 are examples of finite numerical series summed in these ways. An example
of an infinite algebraic series is

0

G1 1 1 1 ( 1) 0, 1, 2,
1 2 3 2

j

j

x
x

x x x x j x
44:14:5

which can serve as an additional definition of Bateman’s G function.
From equation 44:6:2 one may derive

1

1 1 1 1 1
2(2 ) 3(3 ) ( )j

b c
b c b c b c j jb c c b

44:14:6

An example of a numerical series summed by this route is

1

1 1 1 1 (2) 1
1 2 2 3 3 4 ( 1)j j j44:14:7

Other similar examples develop from setting v 1 or ½ in equation 44:13:7; one thereby derives

1

1 1 1 1 G(1) ln(2)
1 2 3 4 5 6 2 (2 1) 2j j j44:14:8

or
1
2

0

G( )1 1 1 1
1 3 5 7 9 11 (4 1)(4 3) 8 8j j j44:14:9

while combination of equations 44:14:6 and 44:14:7 yields
1

1

1 1 1 ( 1) ln(4) 1
1 2 2 3 3 4 ( 1)

j

j j j
44:14:10

Similarly, sums of infinite series of reciprocal powers greater than unity can often be summed in terms of
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polygamma functions. Thus, for n 2,3,4,

( 1)

0

1 1 1 1 1 ( 1/ )
( ) (2 ) (3 ) ( ) ( 1)!

n
n

n n n n n
j

b c
c b c b c b c jb c n b

44:14:11

which converges irrespective of the sign of b provided c/b is not a nonpositive integer. The corresponding
alternating series may be constructed as follows:

( 1) ( 1)

0

1 1 1 ( 1) ( 1/ 2 )
( ) (2 ) ( ) ( 1)! 2 2

j n
n n

n n n n
j

b c b c
c b c b c jb c n b b

44:14:12

Again, finite series can be summed as a difference between two infinite series.
With the aid of partial fractionation [Sections 16:13 and 17:13], quite complicated algebraic series may be

summed. For example, the partial fractionation

2 3 2

1 3 1 6f( )
4 4 7 2 25(2 ) 5(2 ) 25(1 2 )

jj
j j j j j j

44:14:13

permits the summation
(1) 1

2
2

0 0 0 0

3 ( )1 3 5 6 3 (2) (2)f( )
25 2 (2 ) 1 2 25 5 25j j j j

j
j j j

44:14:14

which evaluates to (8/25) ( 2/30) (3/25)ln(4). The derivation of integral 35:10:3 provides yet another example.



When one speaks of “the incomplete gamma function”, without further qualification, one usually means (v,x),
but a less ambiguous name for this is the lower incomplete gamma function. Two other varieties of incomplete
gamma functions, the upper incomplete gamma function (v,x), and the entire incomplete gamma function n(v,x),
are also addressed in this chapter. The three are linked through the relationships

( ) ( , ) ( , ) ( ) n( , )vv v x v x x v v x45:0:1

where (v) is the (complete) gamma function of Chapter 43. The related Mittag-Leffler function is the subject of
Section 45:14.

45:1 NOTATION

The v and x variables are respectively the parameter and the argument of these bivariate functions. We treat both
as real.

The “incomplete” in the names of these functions reflects the restricted ranges of integration in definitions
45:3:1 and 45:3:2 contrasted with that in the integral, 43:3:1, that defines the (complete) gamma function:

1 1 1

0 0

( ) exp( )d exp( )d exp( )d ( , ) ( , )
x

v v v

x

v t t t t t t t t t v x v x45:1:2

Of course, the adjectives “lower” and “upper” refer to the ranges of the integration variable in the equations defining
(v , x) and (v , x). Incidentally, these adjectives also denote the case in which the Greek letter gamma is printed,

a useful mnemonic. Note that the incompleteness of these functions relates to the v variable, not x: they are
incomplete versions of (v), not (x).

The (v,x) function is complementary to (v,x) in the sense that the addition of the two functions creates (v);
it is for this reason that an alternative name for the upper incomplete gamma function (v,x) is the complementary
incomplete gamma function.

Entire functions are ones that lack singularities (except perhaps at infinity) throughout the complex plane; the
n(v , x) function possesses this property and hence has taken “entire” into its name.

Within this chapter, we shall often refer to (v , x), (v , x), and n(v , x), for the sake of brevity, as “the lower
function”, “the upper function”, and “the entire function”.

DOI 10.1007/978-0-387-48807-3_46, © Springer Science+Business Media, LLC 2009 
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1
2 , x

3
2 , x

3
2 , x

1
2 , x

5
2 , x

7
2 , x

Alternative symbolisms abound. x(v) has been used for (v , x). The notations P(v , x) and Q(v , x) are often
used, respectively for the quotients (v,x)/ (v) and (v,x)/ (v). These quotients, which find statistical applications,
are said to be regularized incomplete gamma functions; they sum to unity. The symbol *(v , x) often replaces

n(v,x) and did so in the first edition of the Atlas. You may encounter Ev(x) or Kv(x) as a symbol for xv 1 (1 v,x).

45:2 BEHAVIOR

For negative argument x, the lower and upper
incomplete gamma functions are generally complex and
this domain is therefore excluded from consideration within
this chapter, except in discussions of the entire incomplete
gamma function.

The lower function has no discontinuities when the
parameter v exceeds zero, but these are present when v 0,

1, 2, . At any fixed value of v, (v , x) increases with
x, as shown in Figure 45-1, ultimately approaching (v) as
x . The lower function is always positive for v > 0 and
always negative when v lies in one of the ranges 1 < v <
0, 3 < v < 2, etc. Otherwise, a single zero is displayed.

The upper incomplete gamma function has a simpler
behavior that can be appreciated from Figure 45-2. It is
invariably positive. At x 0, (v , x) (v) when the v
parameter is positive, but it equals + when the v is
negative. As x increases from 0 to , v remaining fixed, the
upper function invariably decreases monotonically, but at
an ever-slower rate, to approach zero at x .
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1 expvt t

The discontinuities and infinities that complicate the behavior of the (v,x) and (v,x) functions are absent from
the n(v , x) function, which is real and finite whenever its variables are real and finite. Nonetheless, its behavior
is far from simple, as Figure 45-3 will attest. The entire incomplete gamma function lacks zeros if v > 0, has a single
zero if 0 > v > 1, two zeros if 1 > v > 2, three zeros if 2 > v > 3, and so on.

45:3 DEFINITIONS

Figure 45-4 illustrates the definition of the lower and upper
incomplete gamma functions as the integrals

1

0

( , ) exp( )d
x

vv x t t t45:3:1

and

1( , ) exp( )dv

x

v x t t t45:3:2

The total area (both colored zones with the blue extended to
infinity) in the diagram is (v). The first of these integrals
diverges for nonpositive v but the recursion formula 45:5:1 can
serve to extend the definition to encompass most negative
parameters, though not for v 0, 1, 2, . The corresponding definition of the entire incomplete gamma function
is

1

0

( , )n( , ) exp( )d 0
( ) ( )

xv
v

v

x v xv x t t t x
v x v

45:3:3

There are many definitions of the three functions as definite integrals. Some are:

/ 2 ( 2) / 2

0

( , ) exp( )J 2 d 0v v
vv x x t t xt t v45:3:4

/ 2
/ 2

0

2( , ) exp( ) exp( )K 2 d 1
(1 )

v
v

v
xv x x t t xt t v

v
45:3:5

0

exp( )( , ) exp( ) d 1
(1 )

v vx t tv x x t v
v t x

45:3:6

1
0

exp( )( , ) d 1 0
( ) v

x tv x t v x
x t

45:3:7

1
1

0

1n( , ) exp( )d 0
( )

vv x t xt t v
v

45:3:8

The J and K functions are the Bessel and Macdonald functions of Chapters 53 and 51.
There are several hypergeometric representations of the function trio, as identified in equations 45:6:1 4. It

follows that synthesis [Section 43:14] can construct the functions from the corresponding basis function. For
example, the entire incomplete gamma function is an L K+1 2 hypergeometric function [Section 18:14] and, as
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such, it may be synthesized [Section 43:14] from the exponential function

0

( )
exp( ) (1 ) n( , )

1 (1) (1 )
jj

j j j

vvx x v v x
v v45:3:9

Related to this is the observation that one of the regularized incomplete gamma functions arises by differintegration
[Section 12:14] of the exponential function:

d ( , )exp( ) exp( )
d ( )

v

v

v xx x
x v

45:3:10

45:4 SPECIAL CASES

When v equals zero or ±1, the three incomplete gamma functions take the following values

( 1, x) (0, x) (1, x) ( 1, x) (0, x) (1, x) n( 1, x) n(0, x) n(1, x)

+ | |+ 1 exp( x) Ei( x)+
exp( x)/x Ei( x) exp( x) x 1

1 exp( )x
x

More generally, we have for positive integer parameters

1

1

1

45:4:1 ( , ) ( 1)! 1 e ( )exp( )
0

1,2,3,45:4:2 ( , ) ( 1)!e ( )exp( )

45:4:3 n( , ) [1 e ( )exp( )]

n

n

n
n

n x n x x
x

nn x n x x

n x x x x

en 1(x) being the exponential polynomial [Section 26:12], while for negative integer parameter
1

1 1

0

45:4:4 ( , ) ( ) | ( )

( ) exp( ) !45:4:5 ( , ) Ei( ) 0,1,2,
! ( )

45:4:6 n( , )

n n

n n

j
j

n

n x

x jn x x n
n x x

n x x

where Ei is the exponential integral of Chapter 37.
Incomplete gamma functions of moiety parameter reduce to the functions of Chapters 40 and 42:

1
2 , x 1

2 , x 1
2n , x 1

2n , x

x 0
erf x erfc x erf ( )x

x
2 exp dawx x

x

and thereby the cases in which the parameter is an odd multiple of ½ are accessible through the recursion formulas
45:5:1 3.

A table in Section 37:15 lists the integrals

exp( )d ( 1, )v

x

t t t v x45:4:7

for 13 values of v and hence provides access to 13 special cases of the upper incomplete gamma function.
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45:5 INTRARELATIONSHIPS

Recursion formulas for the three varieties of the incomplete gamma function are
( 1, ) ( , ) exp( )vv x v v x x x45:5:1

( 1, ) ( , ) exp( )vv x v v x x x45:5:2

and
n( , ) exp( )n( 1, ) 0

(1 )
v x xv x x
x x v

45:5:3

By iteration, the first of these may be generalized to
1

0 1

( , ) ( , ) exp( )
( )

j vn

n
j j

xv n x v v x x
v

45:5:4

and similar formulas may be derived for the other two.
Nielsen’s expansion (Niels Nielsen, Danish mathematician, 1865 1931)

1

0

(1 )
( , ) ( , ) exp( ) 1 exp( )e ( )

!( )
jv

jj
j

v
v x y v x x x y y y x

j x
45:5:5

provides an argument-addition formula for the lower incomplete gamma function.

45:6 EXPANSIONS

Two hypergeometric-style power-series expansions exist for the lower incomplete gamma function; one for the
function itself:

1 2 3

0 0

( )( )( , )
1 2(2 ) 6(3 ) !( ) (1) ( 1)

v v v v j v j v
jj

j j j j

vx x x x x xv x x
v v v v j j v v v45:6:1

and one for its product with the exponential function:
1 2

0 0

1exp( ) ( , )
(1 ) (1 )(2 ) ( ) ( 1)

v v v v j v
j

j jj j

x x x x xx v x x
v v v v v v v v v45:6:2

Corresponding to these, there are two expansions,
2 3

0

( )1 1 1n( , )
( ) 1!(1 ) 2!(2 ) 3!(3 ) (1 ) (1) (1 )

jj

j j j

vx x xv x x
v v v v v v v

45:6:3

and
2

0 0

1 1 1exp( ) n( , )
(1 ) (2 ) (3 ) ( 1 ) (1 ) (1 )

j
j

j j j

x x xx v x x
v v v j v v v45:6:4

for the entire incomplete gamma function. Another expansion is

/ 2
/ 2

0

exp( )n( , ) e ( 1) I 2j
j v jv

j

xv x x x
x45:6:5

involving functions from Section 26:12 and Chapter 50.
The upper incomplete gamma function has the power-series expansion
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1
1 2 3

0

1 1 (1 )(2 ) 1exp( ) ( , ) (1 )
j

v
jv v v

j

v v vx v x x v
x x x x

~45:6:6

This is an asymptotic hypergeometric series, useful for large x. This upper function is expansible as the continued
fraction

exp( ) 1 2 3 4( , )
1 1

vx x v v v vv x
x x x

45:6:7

which is surprisingly convergent, even for quite small values of the argument.

45:7 PARTICULAR VALUES

x 0 x

v < 0 v > 0 v < 0 v > 0

(v , x) 0 (v) (v)

(v , x) + (v) 0 0

n(v , x) 1/ (1+v) 1/ (1+v) + 0

45:8 NUMERICAL VALUES

Equator’s lower incomplete gamma function routine (keyword gamlower) is based on formula 45:6:2. Of
course, no useful value is returned if x is negative or v is a nonpositive integer.

Several different approaches are adopted by Equator in executing its upper incomplete gamma function routine,
which uses the keyword gamupper. If v is a negative integer or zero, equation 45:4:5 is employed. If x is smaller
than either v or 0.04, then the algorithm calculates (v , x) by subtracting (v , x) from (v); if this leads to loss of
precision, as it sometimes does, Equator returns only those digits that are significant. Otherwise, the continued
fraction, formula 45:6:6 is used.

With keyword gamentire, Equator’s entire incomplete gamma function routine employs equation 45:6:3 when
the argument is negative, but equation 45:6:4 when x is positive.

45:9 LIMITS AND APPROXIMATIONS

Some limiting expressions are:

( , 0)
vxv x

v
45:9:1

1

exp( )( , ) ( ) v

xv x v
x

45:9:2

1( 0, ) Ei( ) 0 57721 56649 01533v x x
v

.45:9:3



45:10 THE INCOMPLETE GAMMA FUNCTIONS 467

1

( 1) 1( , ) Ein( ) 1,2,3,
!

n n v n

k

xv n x x n
n n v k

45:9:4

1

exp( )( , ) v

xv x
x

45:9:5

ln( ) 0
( , 0)

( ) / 0, 1, 2,v

x x v
v x

v x v v
45:9:6

( 0, ) Ei( )vv x x x45:9:7

All seven of the formulas above hold for x > 0, but this restriction does not apply to
1n( , 0) 1

(1 ) 1
vxv x

v v
45:9:8

The formula
n( , ) vv x x45:9:9

provides a useful approximation when x is large and positive. It becomes exact when v is a nonpositive integer and
then it is applicable for x of any magnitude whatsoever, in accord with 45:4:6.

45:10 OPERATIONS OF THE CALCULUS

The derivative with respect to its argument of the lower and upper incomplete gamma functions may be
expressed in alternative ways:

1

d ( 1) 1, ,( , )
d

exp( )
d ( , ) , ( 1) 1,d

v

v v x v xv x
x

x x
v x v x v v xx

45:10:1

while that of the entire function gives
d n( , ) n( 1, )
d

v x v v x
x

45:10:2

The interesting differintegration [Section 12:14] formula,
d ( )exp( ) , exp( ) ( , )
d ( )

vx v x x v x
x v

45:10:3

is a consequence of equations 45:6:2 and 18:14:18; it holds provided neither v nor v is a nonpositive integer.
Examples of definite integrals and Laplace transforms are

1

0

( )( , )d 0, 0vt v bt t v
b

45:10:4

0

( )( , )exp( )d ( , ) 0 0
vv bv bt st t v bt v b

s b s
45:10:5
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1 1

00

( )( , )exp( )d ( , ) 0
( ) 1

jv
j

v
j j

vb v st v bt st t t v bt v
s b s b

45:10:6

1 1

00

( )( , )exp( )d ( , ) 0
( ) 1

jv
j

v
j j

vb v bt v bt st t t v bt v b
v s b v s b

45:10:7

Notice that equation 45:10:4 is the special s 0 case of 45:10:6 and likewise 45:10:5 is a special instance of 45:10:7.
The transform that appears in formula 45:10:7 may be written as in terms( / ) ( )B , ,( / )v vv b s v v b s b
of the incomplete beta function of Chapter 58. A similar depiction is available for the right-hand member of 45:10:6.

45:11 COMPLEX ARGUMENT

The functions of this chapter are seldom encountered with complex argument and the Atlas excludes this
possibility. With purely imaginary argument, the upper incomplete gamma function has real and imaginary parts
that may be expressed as Böhmer integrals [Section 39:12]

1 1 1 1
2 2 2 2( , ) sin S , cos C , sin C , cos S ,v iy v v y v v y i v v y v v y45:11:1

45:12 GENERALIZATIONS

The three incomplete gamma functions are special cases of either the Kummer function [Chapter 47] or the
Tricomi function [Chapter 48]. In each case, there are two ways in which the incomplete gamma function is related
to its parent:

exp( )( , ) M(1,1 , ) M( ,1 , )
v vx x xv x v x v v x

v v
45:12:1

( , ) exp( )U(1,1 , ) exp( )U(1 ,1 , )vv x x x v x x v v x45:12:2

exp( ) 1n( , ) M(1,1 , ) M( ,1 , )
(1 ) (1 )

xv x v x v v x
v v

45:12:3

45:13 COGNATE FUNCTIONS

The lower incomplete gamma function (v,x) derives from Euler’s function of the second kind [the (complete)
gamma function, (v), Chapter 43] by allowing the upper limit to become indefinite. In a strictly analogous fashion,
the incomplete beta function B(v, , x) [Chapter 58] derives from Euler’s function of the first kind [the (complete)
beta function, B(v , ), Section 43:13] by allowing the upper limit to become indefinite.

A trivariate function that might appropriately be called the doubly incomplete gamma function but has actually
been named simply gamma is

1 exp( )d ( , ) ( , ) ( , ) ( , )
u

v

x

t t t v u v x v x v u45:13:1

It has statistical applications, but is not further addressed in this Atlas.
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45:14 RELATED TOPIC: the Mittag-Leffler function

From equations 45:6:3 and 43:5:5, one may construct

0 0

1exp( ) n( 1, )
( ) ( ) ( )

j j

j jj

x xx v x
v v j v45:14:1

This is a bivariate function with an argument x and a single parameter v. A generalization of this innominate
function is the trivariate Mittag-Leffler function, sometimes called the generalized exponential function, for which
the symbol E ,v(x) is in use. It has two parameters, and v, additional to its argument x, and is defined by

2 3

,
0

1E ( )
( ) ( ) ( ) (2 ) (3 )

j

v
j

x x x xx
j v v v v v

45:14:2

The Mittag-Leffler function satisfies the recursion formula

, ,
1 1E ( ) E ( )

( )v vx x
x

45:14:3

and often arises in solving problems through the Laplace inversion [Section 26:15]

1
,

exp( ) d E
2

i v v
v

v
i

s ts ss t at
s a i s a

I45:14:4

Early terms are absent from series 45:14:2 when the quotient v/ is a nonpositive integer. The presence of the
multiplier prevents the Mittag-Leffler function from being a hypergeometric function, but it is closely related

thereto. It becomes a true hypergeometric function [Section 18:14, with L K+m m] whenever is a positive
integer m, for then the Gauss-Legendre formula 43:5:9 allows a rewriting of the definition as

, 1 1
0 0

1 1E ( )
( ) ( )

jj

m v mv v v m
j j m m mj j j

x xx
jm v v m45:14:5

On the other hand, if is the reciprocal, say 1/n, of a positive integer, the Mittag-Leffler function reduces to a sum
of n hypergeometric functions of the L K+1 1 variety:

1
1

, 11
0 0 0 0

( ) ( ) ( )E ( )
( )n

j n j n j n j
n

jv n
j j j jn n n

x x x xx x x
v j v j v j v

45:14:6

each of which may be seen via 45:14:1 to be an entire incomplete gamma function. The two techniques may be
combined if equals the quotient m/n.

Equator’s Mittag-Leffler function routine (keyword Mittag) calculates values of the function by simply
summing sufficient terms in series 45:14:2. Discussion of the Mittag-Leffler function is often limited to cases in
which all three variables, , v, and x, are positive, and, in this circumstance, the algorithm returns accurate values
of the function provided that neither x j nor (j +v) causes numerical overflow by exceeding 10308. The largest term
in this series occurs close to j (x1/ v)/ and many more terms than this must be summed before the partial sum
approximates the infinite sum to our prescribed accuracy of 15 places. Accordingly, the routine is sometimes rather
slow. If your patience becomes exhausted, press the “Esc” key. Negative values of any, or all, of the variables are
accepted by Equator, but the detailed progress of the summation is then rather unpredictable. Nevertheless Equator
strives never to return an inappropriate answer.

The Swedish mathematician Magnus Gösta Mittag-Leffler (1847 1927) originally introduced a bivariate
version of the function 45:14:2, with v fixed at unity, and this remains the most important subclass of the function
that bears his name. Some of its special cases are
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0,1E ( )x 1
2 ,1E ( )x 1,1E ( )x 2,1E ( )x 3,1E ( )x 4,1E ( )x

1
1 x

2exp erfcx x exp( )x cosh x
11 33

1
3

exp2 1 3exp cos
3 2 32

xx
x

1 1
4 4cosh cos

2

x x

Two results for differentiation of this bivariate Mittag-Leffler function are

,1 ,
d 1E ( ) E ( )
d

x x
x

45:14:7

and
1

,1 ,
d E ( ) E ( )
d

xx x
x

45:14:8

The fractional calculus [Section 12:14] also benefits from the Mittag-Leffler function. If
1

1
,

0
f( ) E ( )

j j

j

a xx x ax
j

45:14:9

where a is a constant, then with the aid of 12:10:8, one may derive straightforwardly that
( 1) 1 1 1 1 1

0 0

d f( ) f( )
d ( 1) ( ) ( )

j j v v j j v v

j j

a x x a x xx a x
x j v v j v v

[see also Hilfer, Chapter II]. It follows that the solution to the important fractional differential equation

1
,

d f ( ) f( ) is f( ) E ( )
d

x a x x ax ax
x

45:14:11

or equivalently in the light of 45:14:8

,1
df( ) E ( )
d

x ax
x

45:14:12



v

This well-behaved bivariate function arises in the solution of many practical problems, including those that are
conveniently formulated in parabolic cylindrical coordinates. The latter coordinate system, as well as others, is
addressed in Section 46:14.

46:1 NOTATION

The parabolic cylinder function is also known as the Weber function (Heinrich Martin Weber, German
mathematician, 1842 1913) or the Weber-Hermite function. The name Whittaker function is also encountered but
confusion should be avoided with the identically named functions discussed in Section 48:14.

A parabolic cylinder is the three-dimensional shell formed by translating a two-dimensional parabola [Section
11:14] perpendicularly to the plane of that parabola. The function Dv(x) has adopted the name of this body because
it arises in the solution to physical problems dealing with spaces bounded by parabolic cylinders.

Apart from often being italicized, the symbol Dv(x) is standard for the function defined in Section 46:3, the
variables v and x being known as the function’s order and argument respectively. Expressions involving the
parabolic cylinder function are often simpler when or rather than x itself, is regarded as the argument2 x 2x
and the Atlas sometimes makes use of this simplifying property.

Some authors recognize two distinct parabolic cylinder functions. These are termed “the parabolic cylinder
functions of the first and second kinds” and are functions of variables a and x that, in our symbolism, would be
represented by

1 1 1
2 2 2

1
2( )

D ( ) and D ( ) sin( )D ( )a a a
ax x a x46:1:1

respectively. The Atlas makes no reference to these functions, to which the notations U(a,x) and V(a,x) have been
applied.

Other writers prefer to use as the canonical form and refer to this as the Hermite2 22 exp / 2 D 2v

vx x
function, Hv(x) [Section 24:13].

DOI 10.1007/978-0-387-48807-3_47, © Springer Science+Business Media, LLC 2009 
471K.B. Oldham et al., An Atlas of Functions, Second Edition,
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Number
of zeros

Number
of maxima

Number
of minima

v 0.205 0 0 0

0.205 < v 0 0 1 0

0 < v 1 1 1 0

1 < v 2 2 1 1

2 < v 3 3 2 1

n 1 < v n n n Int(v/2) Int(n/2)

46:2 BEHAVIOR

The Dv(x) function is defined for all real values of
v and x, but there is a decided difference in properties
between positive orders and negative orders. This
dichotomy is evident in Figure 46-1. For negative
orders less than about v 0.205, the parabolic
cylinder function is a positive, monotonically
decreasing, function of x, lacking zeros or
discontinuities. For positive orders, however, Dv(x)
develops zeros and extrema, the numbers of which are
given in the accompanying table.
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46:3 DEFINITIONS

Three definite integrals that may be used to define the parabolic cylinder function are
2 2

0

2D ( ) exp exp cos d 1
4 2 2

v
v

x t vx t xt t v46:3:1

2 2
1

0

1D ( ) exp exp d 0
( ) 4 2

v
v

x tx t xt t v
v

46:3:2

and
2

1
2 20

1 exp( )D ( ) exp d 0
( ) 4 2 2

v v
x tx t v x

v x t x t x
46:3:3

many others being listed by Erdélyi et al. [Higher Transcendental Functions, Volume 2, Section 8.3].
A generating function for parabolic cylinder functions of integer order is

2 2

0
exp D ( )

4 2 !

n

n
n

x t txt x
n

46:3:4

which closely resembles the generating function 24:3:1 for Hermite polynomials. Such parabolic cylinder functions
are also defined by

2 2dexp exp ( ) D ( )
4 d 2

n
n

nn

x x x
x

46:3:5

The differential equation known as Weber’s equation and its solution are
2 2

1 22

d f 1 f 0 f( ) D ( ) D ( )
d 2 4 v v

xv x w x w x
x

46:3:6

unless v is an integer n, in which case provides a solution. An application of Weber’s1 2 1D ( ) Dn nw x w ix
equation will be found in Section 46:15.

Not being a hypergeometric function (other than asymptotically as in 46:6:5), the parabolic cylinder function
is not open to straightforward synthesis [Section 43:14]. Dv(x) may, however, be expressed as the difference of two
L K+1 2 hypergeometric functions,

12 2 2
2 2

1 31
0 02 2 2 2

1 2D ( ) 2 exp
4 1 2 1 2

j jv v
j jv

v v v
j jj jj j

x x x xx46:3:7

which is synthesizable. This formula applies for arguments of either sign.

46:4 SPECIAL CASES

When the order is the nonnegative integer n, one or other of the bracketed terms in 46:3:7 vanishes and the
parabolic cylinder function reduces to the product of an exponential function and a Hermite polynomial [Chapter 24]:

/ 2 21
2D 2 2 exp H ( ) 0,1,2,n

n nx x x n46:4:1

The first few of these functions are:
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D0(x) D1(x) D2(x) D3(x) D4(x)
21

4exp x 21
4expx x 2 21

4[ 1]expx x 3 21
4[ 3 ]expx x x 4 2 21

4[ 6 3]expx x x

A generating function for parabolic cylinder functions of nonnegative integer order is given in equation 46:3:4.
Another rule applicable to parabolic cylinder functions only when the order is a nonnegative integer is the argument-
reflection formula

D ( ) D ( ) 0,1,2,n
n nx x n46:4:2

Parabolic cylinder functions of negative integer order reduce to products of an exponential function and a
repeated integral of the error function complement [Section 40:13]

1 21
1 2D 2 2 exp i erfc( ) 0,1,2,n n

n x x x n46:4:3

but, as explained in Section 41:13, these products differ substantively from those encountered in Chapter 41.
When the order of Dv(x) is an odd multiple, positive or negative, of ½, reduction occurs to a Macdonald function

[Chapter 51] of an order that is an odd multiple of ¼. The simplest cases are

1 1
2 4

2

D ( ) K
2 4
x xx46:4:4

and

1 1 3
2 4 4

3 2 2

D ( ) K K
8 4 4
x x xx46:4:5

Starting from this pair, other instances are accessible through the recursion 46:5:1.

46:5 INTRARELATIONSHIPS

The parabolic cylinder function satisfies the recursion formula

1 1D ( ) D ( ) D ( )v v vx x x v x46:5:1
and an argument-addition formula that can be written in two alternative ways:

2 2

0 0

D ( )2 2D ( ) exp ( ) exp D ( )
4 ! 4

j v j j
v v j

j j

xxy y xy y vx y y y xjj
46:5:2

The sum or difference Dv( x) ± Dv(x) can be expressed in terms of the Kummer function [Chapter 47], each in
two alternative ways:

2 2 2 2
2 211 1 1 1

2 2 2 2 2 21 1
2 2

2 2D ( ) D ( ) exp M , , exp M , ,
4 4

v v
v v

v v v v

x xx x x x46:5:3

3 2 3 2
2 21 3 2 31 1

2 2 2 2 2 2
2 2

2 2D ( ) D ( ) exp M , , exp M , ,
4 4

v v
v v

v v v v

x xx x x x x x46:5:4

Subtraction of these two formulas leads to equation 46:3:6 when the Kummer functions are represented
hypergeometrically.

An interesting property is that any parabolic cylinder function may be expressed as an infinite sum of its fellow
functions of nonnegative integer order. In most cases there are two alternatives, involving sums of either even
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1( 2) / 2
22
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( ) D ( )2D ( ) 0,2,4,
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jv
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v v
j

x
x v

j j v
46:5:5

or odd
1( 1) / 2

2 12
1

02

( ) D ( )2D ( ) 1,3,5,
!(2 1 )

jv
j

v v
j

x
x v

j j v
46:5:6

orders. Notice that, as v approaches an even integer 2n, the j n term in the 46:5:5 sum becomes dominant.
Moreover, in this circumstance, equation 43:9:2 shows that 1/ ( v/2) ( )nn!(n v). The net result is that, in1

2

the limit, 46:5:5 becomes the D2n(x) D2n(x) identity. In this sense, the prohibition accompanying equation 46:5:5
does not exist. The same is true for 46:5:6.

46:6 EXPANSIONS

The power series 46:3:7 may be written more concisely as
2 / 2

2

0

2exp D 2 ( 2 )
2 2 ( ) !

j vv
j

v
j

x x x
v j

46:6:1

or in the computationally felicitous form

21
0 1 22 1

0 2 2

1 2 2( 2)D 2 2 exp , ,
( 1)

v j
v j j jv v

j

j vx x c x c c c c
j j46:6:2

An expansion involving the cosine function is
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1
2
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22 1D ( ) exp cos ( )
4 2 !
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v
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xx j vx j v
j

46:6:3

while expansion as Hermite polynomials is possible in two distinct ways:
1 12 ( 2) / 2 / 2

2 2 14 4
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( ) H ( ) ( ) H ( )2 2exp D 2 0
2 !(2 ) !(2 1 )

j jv v
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46:6:4

The similarity of these expansions to the equation pair 45:5:5 and 45:5:6 is evident.
Though limited to large positive values of the argument, the asymptotic expansion

2
2

2 4 2
0

( )D ( ) ( 1) ( 1)( 2)( 3) 1exp 1
4 2 8 (1) 2

j
jv

v
j j

vx x v v v v v v
x x x x
~46:6:5

is a valuable property of the parabolic cylinder function.

46:7 PARTICULAR VALUES

The values acquired by the parabolic cylinder function at x 0 and ± are as follows
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1
2

0, 1 2, 3 4,
2D ( ) 0 D (0) D ( ) 0 0,1,2,
( )

0 1, 2 3,

v

v v vv

v v v

v

v v

46:7:1

For certain specific orders, the values at zero argument are

D 3(0) D 2(0) D 3/2(0) D 1(0) D 1/2(0) D0(0) D1/2(0) D1(0) D3/2(0) D2(0) D3(0)

8
1

2
g 2

g 1
1

2 g
0

2
g 1 0

Here g is Gauss’s constant [Section 1.7] with 1.2162 80214 25752g
As 46:7:1 requires, all parabolic cylinder functions of nonnegative integer order have a zero at x . For this

subclass, some other zeros occur at arguments of:

n 1 n 2 n 3 n 4 n 5 n 6

0 ±1 0, 3 3 6 0, 5 10 1 2
3 3 55 40 cos arccos 0, 2m m

46:8 NUMERICAL VALUES

Exploiting the power series 46:3:6 as a means of calculating numerical values of the parabolic cylinder function
is challenging because additive terms are sometimes of very similar magnitude and opposite sign. Nevertheless, by
using special precision-conserving procedures, Equator’s parabolic cylinder function routine (keywordD) is mostly
based on this equation, in its 46:6:2 guise. For certain positive values of x, however, Equator substitutes an -
transformed [Section 10:14] implementation of equation 46:6:5, or a Gauss-Legendre [Section 24:15] numerical
integration of equation 46:3:3. When v is a nonnegative integer, equation 46:4:1 is used. By combining the four
procedures, Equator is able to provide accurate values of Dv(x) for the domains 35 v 35, 35 x 35.

46:9 LIMITS AND APPROXIMATIONS

When x is small and of either sign, the approach of the parabolic cylinder function to its zero-argument value,
given in 46:7:1, follows the approximation

2

1
2 2

4 (2 1) 2D ( ) 2 small
4

v
v v v

v x xx x46:9:1

For large argument, an appropriate approximation is
2 2 21 1

2 4D ( ) [ ( ) ]exp large positivev v
v x x v v x x x46:9:2

which arises by truncation of expansion 46:6:5.
The parabolic cylinder function becomes a decaying exponential function of its argument as the order becomes

increasingly negative. When the argument is constant and modest in magnitude, this behavior is described by the
limit
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v vx x v v46:9:3

46:10 OPERATIONS OF THE CALCULUS

Single and double differentiations obey the formulas
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and
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The very general definite integral
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2 ( 1) 1 2 4 1exp( )D ( )d F , , ,
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in which F is a Gauss hypergeometric function [Chapter 60], has a plethora of special cases. Some of these, as well
as many other definite integrals involving parabolic cylinder functions, are listed by Gradshteyn and Ryzhik
[Section 7.7].

Most Laplace transform formulas for parabolic cylinder functions require that the function’s argument be
proportional to . Examples includet

1 212 2 2
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and
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st t v

t t s a b
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See Roberts and Kaufman for others.

46:11 COMPLEX ARGUMENT

The Atlas does not address the case of complex arguments. For purely imaginary argument, one has

1 1 1 1
(1 )D ( ) cos D ( ) D ( ) sin D ( ) D ( )

2 22v v v v v
v v viy y y i y y46:11:1

Note the change in the sign of the function’s order that accompanies this imaginary transformation.
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46:12 GENERALIZATIONS

The Kummer function [Chapter 47] and the Tricomi function [Chapter 48] may each be regarded as generalizing
the parabolic cylinder function. In either case, there are two ways in which the parabolic cylinder function may be
expressed as a special instance of the more general function:

2 21 312
2 2 2 2 2 2
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4

v x v x
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v v v

xx x x46:12:1

2 21 2 312
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M , , 2 M , ,
D ( ) 2 exp 0

4

v x v x
v

v v v

xx x x46:12:2

2 21D ( ) 2 exp U , ,
4 2 2 2

v
v

x v xx46:12:3

and
2 2

1 1 3D ( ) 2 exp U , ,
4 2 2 2

v
v

x v xx x46:12:4

46:13 COGNATE FUNCTIONS

Whittaker’s notation [Section 48:13] may be adapted to express Dv(x).
The so-called “parabolic cylinder functions of the first and second kinds” are mentioned in Section 46:1.

46:14 RELATED TOPIC: three-dimensional coordinate systems

Section 35:14 addresses two-dimensional coordinate systems and much of the current section represents a
straightforward extension of the material discussed there.

In three-dimensional coordinate systems, the values of three suitably chosen parameters – the three coordinates,
for which we use the generic symbols , , and – are used to locate any point in space uniquely. Specifying a
value of one of these coordinates, but allowing the other two to adopt all values within their domains, generates a
coordinate surface, of finite or infinite extent. Here we consider only orthogonal coordinate systems, in which the

-, -, and - coordinate surfaces are mutually perpendicular at all points in space (except, perhaps, at one or two
so-called concentration points, such as at 0, in the elliptic cylinder case). Apart from the cartesian (x,y,z)
system – in which all three coordinate surfaces are planes – the name curvilinear coordinates is applied to triplets
of orthogonal coordinates. The figures in this section show examples of each of the three coordinate surfaces (the
first in red, the second in green, the third in blue), to aid visualization of the shapes involved in the particular
curvilinear coordinate system being illustrated.
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Most of the important curvilinear coordinate
systems arise by adding a third coordinate to one of
the two-dimensional geometries addressed in
Section 35:14. In the five cases listed in the first
table, the three-dimensional system is generated
simply by translating the two-dimensional
counterpart in a direction perpendicular to the
original plane. The distance moved (positive or
negative) from that plane becomes the third
coordinate, which is usually given the symbol z. In
other cases, discussed below, the three-dimensional
system is formed from a two-dimensional
progenitor by rotation about an axis, the angle of
rotation serving as the new coordinate.

Of course, all three-dimensional coordinate
systems require three scale factors [Section 35:14].
These, and other important properties, are detailed
in the panels that accompany the present section.
Included in these panels are equations expressing
the relationship of the curvilinear coordinates
to cartesian (x , y , z) coordinates. As well, the
expression for the Laplacian [Section 46:15] is
given.

The case of parabolic cylinder coordinates is illustrated in Figure 46-2 which shows examples of constant-p,
constant-q and constant-z coordinate surfaces. The first two are parabolic cylinders; the third is a plane.

Two-dimensional system Three-dimensional system

rectangular (x , y) cartesian (x , y , z)

polar (r , ) cylindrical (r , , z)

parabolic (p , q) parabolic cylinder (p , q , z)

elliptical ( , ) elliptic cylinder ( , , z)

bipolar ( , ) bipolar cylinder ( , , z)

Cylindrical coordinate system (r , , z)

0 r < hr 1 x r cos( )

0 < 2 h r y r sin( )

z < hz 1 z z

2 2 2
2

2 2 2 2

F 1 F 1 F FF=
r r r r z

Parabolic cylinder coordinate system (p, q, z)

< p <
2 2

p

q

h
p q

h

2 21
2x p q

0 q < y pq

z < hz 1 z z

2 2 2
2

2 2 2 2

1 F F FF=
ph p q z
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The choice of symbols for the
cartesian, cylindrical and spherical
coordinates has become standardized but,
beyond this, there is no unanimity in the
notation of other curvilinear systems.
Moreover, recognize that a cartesian mesh
may be overlaid onto another curvilinear
system in several ways, so that the
equations relating ( , , ) to (x , y , z) are
not unique. Adding to the confusion is the
fact that coordinates of different forms are
in use; for example, elliptic cylinder
coordinates equivalent to our sinh( ) and
sin( ) may be encountered.

The prolate spheroidal coordinate
system is obtained by rotating the two-
dimensional elliptical system [Figure 35-
12] about its major axis, whereas the
oblate spheroidal coordinate system is
generated by rotation about the minor axis.
Figures 46-3 and 46-4 show typical
coordinate surfaces for the prolate and
oblate cases respectively.

Bipolar cylinder coordinate system ( , , z)

< <

cosh( ) cos( )

h a

h

x h sinh( )

0 < 2 y h sin( )

< z < hz 1 z z

2 2 2
2

2 2 2 2

1 F F FF=
h z

Elliptic cylinder coordinate system ( , , z)

< <
2 2sinh ( ) sin ( )

h
a

h

x a cosh( )cos( )

0 < 2 y a sinh( )sin( )

z < hz 1 z z

2 2 2
2

2 2 2 2

1 F F FF=
h z

Prolate spheroidal coordinate system ( , , )

0 <
2 2sinh ( ) sin ( )

h
a

h

x h cos( )

0 < y h sin( )

0 < 2 h a sinh( )sin( ) z a cosh( )cos( )

2 2 2
2

2 2 2 2 2

1 F F F F 1 FF= coth( ) cot( )
h h
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Two rotations are required in the creation of the spherical coordinate system. The two angles thereby
introduced, and , are familiar in planetary cartography as longitude and latitude. The r, , and coordinate
surfaces, exemplified in Figure 46-5, are respectively spheres, half-planes and cones. Note the inconsistent, but
standard (though not universal) use of in spherical coordinate notation to denote the same angle that is
conventionally denoted in cylindrical coordinates.

The three-dimensional paraboloidal coordinate system shown in Figure 46-6 arises by rotating the two-
dimensional parabolic system about its major axis. The p and q coordinate surfaces are paraboloids of revolution;
the surfaces are half-planes.

Spherical coordinate system (r , , )

0 r < hr 1 x h cos( )

0 < h r y h sin( )

1
2

1
2 h r sin( ) z r cos( )

2 2 2
2

2 2 2 2 2 2

F 2 F 1 F cot( ) F 1 FF=
r r r r r h

Oblate spheroidal coordinate system ( , , )

0 <
2 2sinh ( ) sin ( )

h
a

h

x h cos( )

< <1
2

1
2 y h sin( )

0 < 2 h a cosh( )cos( )
z

a sinh( )sin( )

2 2 2
2

2 2 2 2 2

1 F F F F 1 FF= tanh( ) tan( )
h h



482 THE PARABOLIC CYLINDER FUNCTION Dv(x) 46:14

The three-dimensional toroidal coordinate system arises by rotating the two-dimensional bipolar system about
its minor axis. Figure 46-7 illustrates the shapes of the coordinate surfaces, which are doughnut-shaped tori,
spherical bowls, and half-planes.

We have addressed nine curvilinear coordinate systems, but there are others. See Spiegel [pages 129,130] for
the conical coordinate system, the confocal paraboloidal coordinate system and the confocal ellipsoidal coordinate
system. The last-mentioned system is regarded by Morse and Feshbach [Chapter 5] as the most general orthogonal
coordinate system, of which all others are degenerate instances.

Paraboloidal coordinate system (p , q , )

0 p <
2 2

p

q

h
p q

h

x pq cos( )

0 q < y pq sin( )

0 < 2 h pq 2 21
2z p q

2 2 2
2

2 2 2 2 2

1 F 1 F F 1 F 1 FF=
ph p p p q q q h

Toroidal coordinate system ( , , )

0 <

cosh( ) cos( )

h a

h

x h cos( )

0 < 2 y h sin( )

0 < 2 h h sinh( ) z h sin( )

2
2

3 3 2 2

1 F 1 F 1 FF= h h
h h h
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46:15 RELATED TOPIC: the Laplacian

Among the most important equations in physics are Laplace’s equation
2 F 046:15:1

describing static electric fields, the diffusion equation (Fick’s second law)

2 FF k
t

46:15:2

(which, as Fourier’s equation, also governs the conduction of heat), the wave equation
2

2
2

FF k
t

46:15:3

for the propagation of vibrations, Schrödinger’s equation of quantum mechanics
2 F V Fk46:15:4

(this is the time-independent version), Poisson’s equation of electrostatics
2 F Vk46:15:5

and Helmholtz’s equation which describes the spatial aspects of harmonic motion
2 F Fk46:15:6

In these equations k represents a physical constant, V is a position-dependent quantity, and t is time. All six
equations describe the spatial (and temporal in two cases) distribution of F, which is some scalar property (an
“intensity” of something), such as pressure, electric potential, density, concentration, temperature, or probability.

The operator 2, found in all these equations, is called the Laplacian; it performs double differentiation with
respect to the spatial coordinates. In cartesian coordinates, the formulation of the Laplacian is simply

2 2 2
2

2 2 2

F F FF
x y z

46:15:7

but in curvilinear coordinates [Section 46:14], the more complicated result is

2 1 F F FF
h h h h h h

h h h h h h
46:15:8

where , , and are the three coordinates and the h’s are the corresponding scale factors [Section 35:14]. The
forms adopted by the Laplacian for most of the three-dimensional orthogonal coordinate systems are listed in the
panels of the preceding section, where the scale factors are also presented. The remainder of this section is an outline
of how one might go about solving Helmholtz’s equation in parabolic cylinder coordinates. This involves the
important concept of separability, whereby the Laplacian is dismembered into three parts.

Helmholtz’s equation in parabolic cylinder coordinates is
2 2 2

2
2 2 2 2 2

1 F F FF Fk
p q p q z

46:15:9

To proceed, the separability assumption is made. That is, it is assumed that F, a function of p, q, and z, can be
expressed as a threefold product of functions, each of which depends on one coordinate only; that is

F( , , ) P( )Q( )Z( )p q z p q z46:15:10
Such an assumption turns out to be widely, although not universally, valid. In the present example, substitution of
46:15:10 into 46:15:9 leads to
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2 2 2

2 2 2 2 2

1 d P d Q d ZQ Z P Z PQ PQ Z
d d d

k
p q p q z

46:15:11

which may be rearranged into
2 2 2

2 2 2 2 2

1 1 d P 1 d Q 1 d Z
P d Q d Z d

k
p q p q z

46:15:12

Now, the left-hand side of equation 46:15:12 is independent of z, whereas the right-hand side depends only on z.
The only way in which this is possible is for each side to equal the same constant, that we take to be positive and
represent by . Thus 46:15:12 devolves into two equations, namely41

4
2 2 4 2 4

2 2
2 2 2

1 d P 1 d Q d Zand Z
P d Q d 4 d 4

p q k
p q z

46:15:13

The second equation in 46:15:13 solves in terms of exponential functions [see 26:3:6] to
41

1 2 4exp exp whereZ w Kz w Kz K k46:15:14

if 4k > 4, or according to 32:3:6 otherwise.
The first equation in 46:15:13 may be rearranged to

2 4 2 4 2 2

2 2

1 d P 1 d Q
P d 4 4 Q d

p q
p q

46:15:15

Once again it can be argued that each side of this equation must equal the same constant, because the left-hand is
independent of q, whereas the right-hand is independent of p. Such constants are termed separation constants. In
this case it is convenient to choose 2 [v+½] to represent the separation constant, v being yet another constant.
Thereby one finds

2 2 2 2 2 2

2 2 2 2

1 d P 1 1 d Q 1P and Q
d 4 2 d 4 2

p qv v
p q

46:15:16

These are instances of Weber’s equation 46:3:4, and the solutions are in terms of parabolic cylinder functions:

3 4 5 1 6 1P D ( ) D ( ) and Q D ( ) D ( )v v v vw p w p w q w q46:15:17
Having been broken asunder, the solution may now be reassembled into

1 2 3 4 5 1 6 1F exp exp D ( ) D ( ) D ( ) D ( )v v v vw Kz w Kz w p w p w q w q46:15:18

This result contains several arbitrary constants: the three separation constants and the weights w1 to 6. In principle
at least, these constants (many are often zero and others coalesce) may be selected to match the boundary conditions
of a wide range of problems in physics. Remember, however, that any values of the separation constants will satisfy
the mathematics. It is often necessary to employ a weighted sum of solutions with different separation constants (or
an integral in which the separation constant becomes the integration variable) in order to match certain boundary
conditions and physical realities. A large number of the functions in the Atlas arose historically to satisfy fragments
of equations 46:15:1 6 separated by procedures analogous to those just illustrated.



Named for the short-lived German mathematician, Ernst Eduard Kummer (1860 1893), this trivariate function
is one of the most important hypergeometric functions.

47:1 NOTATION

The symbol M(a,c,x) is often replaced by (a,c,x) or 1F1(a,c,x). The subscript 1's in the latter notation reflect
the presence of one adjustable parameter in each of the numerator and denominator in definition 47:3:1. The location
of the a and c in this definition is responsible for their names: “numeratorial parameter” and “denominatorial
parameter”. As usual, x is the argument.

Collectively, the Kummer function and the Tricomi function [Chapter 48] are known as the confluent
hypergeometric functions or degenerate hypergeometric functions. These puzzling names originate in the limiting
operations described by definitions 47:3:4 and 48:3:5.

47:2 BEHAVIOR

Though the parameters and the argument may be complex, our interest is restricted here to real values of a, c,
and x. Unless a is also a nonpositive integer of smaller magnitude [see Section 47:14], the Kummer function is
undefined when c 0, 1, 2, . Away from these forbidden values of the denominatorial parameter, M(a , c , x)
suffers no discontinuities and is real.

Because of its trivariate nature, it is unrewarding to attempt to depict the global behavior of the Kummer
function graphically. Thus Figure 47-1 is designed to show only examples of the variety of the complicated
behaviors that M(a,c,x) exhibits even when the denominatorial parameter is kept constant. The value c ½ is used
in the left-hand diagram, with c ½ in the right.

For any pair of parameter values, a and c, a qualitative picture of how M(a , c , x) depends on x can be gleaned
from knowledge of the properties of the Kummer function. The crucial information needed to construct such a
picture may be acquired through the following considerations:

(a) M(a , c , x) is a single-valued function over the < x < domain and lacks discontinuities.

DOI 10.1007/978-0-387-48807-3_48, © Springer Science+Business Media, LLC 2009 
485K.B. Oldham et al., An Atlas of Functions, Second Edition,
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(b) The Kummer function invariably equals unity at x 0 and its slope there is a/c.
(c) The graph of M versus x crosses the positive x-axis a number of times given in the left-hand diagram of
Figure 47-2; the second diagram in the same figure gives the number of zero crossings in < x < 0.
(d) The total number of extrema exhibited by the Kummer function is revealed in Figure 47-3.
(e) As x , M usually approaches either + or , the sign of the limit being evident from the first diagram
in Figure 47-4; the second diagram reveals which limiting value is acquired as x + .

Of course, with the chosen a and c entered, Equator will provide quantitative information on ranging x through
values between 500 and +500.

47:3 DEFINITIONS

Kummer’s series is the prime definition of the eponymous function
2 3

0

( )( 1) ( 1)( 2)M( , , ) 1
1! ( 1) 2! ( 1)( 2) 3! ( ) (1)

j j

j j j

aa x a a x a a a xa c x x
c c c c c c c47:3:1

Being hypergeometric, this series demonstrates the possibility of synthesis [Section 43:14] from the exponential
function

exp( ) M( , , )ax a c x
c

47:3:2

The Kummer function is equivalent to a generalized Laguerre function [Section 23:12]

( 1)(1 ) ( )M( , , ) L
( )

c
a

a ca c x x
c a

47:3:3

The Kummer function may also be defined by a limiting operation applied to the Gauss hypergeometric function
[Chapter 60] in which the b parameter progresses towards infinity, its product with the argument remaining constant;
that is
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M( , , ) lim F , , ,
b

xa c x a b c b47:3:4

Provided that both parameters are positive, with c exceeding a, the Kummer function may be represented as the
indefinite integral

1 1

1
0

( ) exp( )M( , , ) d 0
( ) ( ) ( )

xc a

a c

c x t ta c x t a c
c a a x t

47:3:5

or as either of the following definite integrals:
1 1

1
0

( )M( , , ) exp( )d 0
( ) ( ) (1 )

a

a c

c ta c x xt t a c
c a a t

47:3:6

1 1 11
2

1
1

2 ( )exp (1 )M( , , ) exp d 0
( ) ( ) (1 ) 2

c a

a c

c x t xta c x t a c
c a a t

47:3:7

The confluent hypergeometric differential equation and its solution are
2

1
1 22

d f d f( ) f 0 M( , , ) M(1 ,2 , )
d d

cx c x a w a c x w x a c c x
x x

47:3:8

provided that c is not an integer. The weights w1 and w2 are arbitrary. The restriction on c does not apply if the
alternative solution w1M(a , c , x) + w2U(a , c , x) is adopted. Here U is the Tricomi function [Chapter 48].

47:4 SPECIAL CASES

The entries in Table 18-4 are all instances of the Kummer function.
When the two parameters are equal to each other, the Kummer function reduces to an exponential function:

M( , , ) exp( )a a x x47:4:1
Whenever the denominatorial parameter exceeds the numeratorial by unity, reduction occurs to an entire incomplete
gamma function [Chapter 45]

M( , 1, ) (1 ) n( , )a a x a a x47:4:2
Setting c a + 1 in recursion 47:5:3 permits a weighted sum of the two equations above to serve as an expression
for M(a , a+2, x); the procedure may be extended indefinitely to express M(a , a+n , x) for n 3,4,5, .

A Kummer function in which the denominatorial parameter is twice the numeratorial parameter is equivalent
to an expression involving a modified Bessel function [Chapter 50]:

(1 2 ) / 21 1 1 1
(2 1) / 22 4 2 2M( ,2 , ) exp Ia

aa a x a x x x47:4:3

The instance M(1, 2, x) [exp(x) 1]/x is noteworthy.
When a is a negative integer, the Kummer function becomes a polynomial – in the most general case, a

generalized Laguerre polynomial [Section 23:12] – divided by a binomial coefficient [Chapter 6]
( 1)

1

L
M( , , )

c
n
n c

n

x
n c x47:4:4

If its numeratorial parameter is zero, the Kummer function equals unity
M(0, , ) 1 0, 1, 2,c x c47:4:5

and if a equals unity, then reduction occurs to an incomplete gamma function
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1M(1, , ) 1 exp( ) ( , )cc x x x c x47:4:6

Use of the recursive weights listed in the first row of the table on the facing page leads to
1M(2, , ) 2 1 exp( ) ( , ) 1cc x c x x x c x c47:4:7

and further applications of this recursion permit expressions for M(n,c,x) to be constructed, where n is any positive
integer.

Except when a is a negative integer of equal or smaller magnitude [for which cases see Section 47:14], the
Kummer function is undefined for c 0, 1, 2, [but see Section 47:12]. When c 1, reduction occurs to a
Laguerre function [Chapter 23]

2 3
2 2

( 1) ( 1)( 2)M( ,1, ) L ( ) 1
(2!) (3!)a

a a a a aa x x ax x x47:4:8

and use of recursion 47:5:4 shows that M(a , 2 , x) [L a(x) L1 a(x)]/x. Multiple applications of this recursion
formula lead to expressions for M(a , m , x) for any positive integer m.

When c the Kummer function is expressible as the sum or difference of two parabolic cylinder function31
2 2or

[Chapter 46]:
1
2 1

2 221
1
2

1
2 1 2 12

( )
exp D 2 D 2 0

2
M , ,

(1 ) exp D 2 D 2 0
2 2

a aa

a aa

a x x x x

a x
a x x x x

47:4:9

1
2 1

1 2 1 222
3
2

1
2 2 2 221

( )
exp D 2 D 2 0

2 2
M , ,

(1 ) exp D 2 D 2 0
2

a aa

a aa

a x x x x
x

a x
a x x x x

x

47:4:10

These same values of the denominatorial parameter lead to Hermite polynomials [Chapter 24]:

1
22

3
2 12

( ) !47:4:11 M , , H
(2 )!

0,1,2,
( ) !47:4:12 M , , H

2(2 1)!

n

n

n

n

nn x x
n

n
nn x x

n x

if the numeratorial parameter is a nonpositive integer. Recursion 47:5:3 may be used to increment or decrement the
denominatorial parameter in any of formulas 47:4:8 12.

When both parameters are integers, rather dramatic changes occur to the Kummer function. These are addressed
in Section 47:14.

47:5 INTRARELATIONSHIPS

Known as Kummer’s transformation, the important identity
M( , , ) exp( )M( , , )a c x x c a c x47:5:1

constitutes an argument-reflection formula for the Kummer function. One of a number of argument-addition
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formulas is

0

( )
M( , , ) M( , , )

( ) !
j j

j j

a
a c x y y a j c j x

c j47:5:2

By setting y (v 1)x, equation 47:5:2 becomes an argument-multiplication formula: others will be found in Erdélyi
et al.[Higher Transcendental Functions I, Section 6.14].

There is no recursion formula applicable to the argument of a Kummer function, but six that apply to the
parameters. An example is

( ) 1M( , , ) M( , 1, ) M( , 1, )
( 1 ) ( 1 )
c a x ca c x a c x a c x

c c x c c x
47:5:3

Each of the six enables M(a , c , x) to be expressed as a weighted sum of two members of its so-called contiguous
function family, the members of which are and TheM( 1, , ) ,a c x M( 1, , ),a c x M( , 1, ),a c x M( , 1, ).a c x
corresponding weights are tabulated below.

M( 1, , )a c x M( 1, , )a c x M( , 1, )a c x M( , 1, )a c x

2
a

a c x 2
a c

a c x
a

a x
( )
( )
c a x

c a x

1
a

a c
1

1
c

a c

1
x
c

1
a c

a x
1

1
c

a x
( )
( 1 )
c a x

c c x
1

( 1 )
c

c c x

The final row corresponds to the example cited in 47:5:3, illustrating how the table is to be used. By employing such
recursions more than once, very many relationships, such as

1M( , , ) M( , 1, ) M( 1, 1, )ca c x a c x a c x
x

47:5:4

linking M(a ,c,x) to noncontiguous Kummer functions, may be constructed. One relationship derived by iterating
the fourth entry J times is

1

0
M( , , ) M( , , ) M( , , )

J

j

xa c x a J c x a j c x
c47:5:5

Among summable infinite series of Kummer function is

0

1M( , , ) M( 1, , ) M( 2, , ) M( , , ) M( , 1, )
j

ca c x a c x a c x a j c x a c x
x47:5:6

though this formula is applicable only if c > 5/2.
Synthetic operations [Section 43:14] can convert one Kummer function into another:
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M( , , ) M( , , ) M( , , )c aa c x a c x a c xac
47:5:7

47:6 EXPANSIONS

Kummer’s series, equation 47:3:1, is convergent for all values of the three variables, provided that c is not a
nonpositive integer. It may be written as the concatenation

( 1) ( 2) ( )M( , , ) 1 1 1 1 1
2( 1) 3( 2) ( 1)( )

ax a x a x a j xa c x
c c c j c j

47:6:1

which is convenient computationally when the truncated series is being summed. The series terminates if a is a
nonpositive integer. Series expansions involving cylinder functions [Section 49:14] are listed by Abramowitz and
Stegun [Section 13.3].

Useful for large arguments of either sign are the asymptotic expansions

0

0

( ) (1 )( ) exp( ) 1 0, 1, 2, large positive
( ) (1)

M( , , )
( ) (1 )( ) 1 0, 1, 2, large negative

1( )

ja c
j j

j j

j
j j

a
j j

c a ac x x a x
a x

a c x
a a cc c a x

xc a x

~47:6:2

The summations in these formulas are Tricomi functions [Chapter 48].

47:7 PARTICULAR VALUES

The Kummer function takes the value unity if either x or a is zero, irrespective of the values of the other
variables.

Depending on the signs and magnitudes of the parameters, the Kummer function, considered as a function of
its argument, may or may not have zeros. If it has zeros, they may be “positive zeros” (that is, they represent
crossings of the x-axis for positive x values), or “negative zeros” (when negative values of x causes M to be zero),
or both. We know of no general formulas giving the values of these zeros, but there are rules giving their number.
Figure 47-2 is color-coded to reveal the numbers of negative zeros (left-hand diagram) and positive zeros (right).
Here our interest is confined to real zeros. The patterns established in these figures are readily extended to the entire
a,c plane.

The number of extrema (local minima or maxima) of the Kummer function is calculable from Figure 47-2
because extrema and zeros are linked by the relationship

location of location ofM( , , ) M( 1, 1, )extremum of zero ofa c x a c x47:7:1

which is a consequence of equation 47:10:1. It is this calculation that leads to Figure 47-3 which reports the total
number of extrema possessed by the M(a,c,x) function. The white strips in these figures serve as a reminder of the
absence of a definition for the Kummer function when the denominatorial c parameter is a nonpositive integer.
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47:8 NUMERICAL VALUES

Abramowitz and Stegun [Chapter 13] devote twenty
pages to tabulating numerical values of the Kummer
function.

Equator’s Kummer function routine (keyword M) is
mostly based on equation 47:3:1 and can return values for
the domains |a| 15, |c| 15 and |x| 500. The algorithm
employs equation 47:5:1 when x is negative and adopts
47:4:1 for the special a c case.

47:9 LIMITS AND APPROXIMATIONS

As the denominatorial parameter approaches one of its
forbidden values (0, 1, 2, etc.) from either direction, the
Kummer function becomes a “beheaded” Kummer series
that is approximately proportional to another Kummer
function:

1
1

1

( )( )
M( , , ) M( 1, 2, ) 0, 1, 2,

( ) (1) ( ) !( 1)!

n n
j j n

j n j j

a xa
a c x x a n n x c n

c n c n n
47:9:1

As the limit is attained, the denominatorial term (n+c) vanishes, forcing M(a , c , x) towards either + or , and
generating a + | or |+ discontinuity.

The approach of the argument to results in the Kummer function acquiring one of four values, and these are
illustrated in the left-hand diagram of Figure 47-4. The unity value is at a 0 only. The limit is M(a , c , x )
0 in the yellow regions of figure, which includes the diagonal lines on which a c is a nonnegative integer. In the
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red regions of the figure, M(a , c , x ) while the limit M(a , c , x ) is characteristic of the blue
regions.

With fixed values of a and c, M(a , c , x) approaches one of three values as x . These values are , + ,
and 1, the last being applicable only if a 0, as shown by the green strip in the right-hand diagram of Figure 47-4.
For nonzero values of a, the limit is either + at the locations colored red in the diagram or in the blue regions
of the a,c plane. Note the exclusion from both diagrams of c 0, 1, 2, , where the Kummer function is undefined.

When one of a, c, or x is large, the other two remaining modest in magnitude, the following approximations
hold:

(1 ) / 2

1M( , , ) ( ) (2 ) exp I (4 2 ) large and positive
2 2

c

c
x xa c x c a c a c x a47:9:2

(1 2 ) / 4( )M( , , ) ( 2 ) exp cos (1 2 ) (2 4 ) large and negative
2 2 4

cc x xa c x c a c c a x a47:9:3

M( , , ) large and of either sign 0, 1, 2,
aca c x c c

c x
47:9:4

( )M( , , ) exp large and positive 0, 1, 2,
( )

a cca c x x x x a
a

47:9:5

( )M( , , ) ( ) large and negative 0, 1, 2,
( )

aca c x x x c a
c a

47:9:6

47:10 OPERATIONS OF THE CALCULUS

The rules for differentiation and indefinite integration follow a pleasingly regular pattern:
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d M( , , ) M( 1, 1, )
d

aa c x a c x
x c

47:10:1

d M( , , ) M( , , )
d

n
n

n
n

a
a c x a n c n x

x c
47:10:2

0

1M( , , )d M( 1, 1, ) 1 1 1
1

x ca c t t a c x a c
a

47:10:3

Other indefinite integrals, definite integrals and Laplace transforms include
1

1
0

M( , , ) ( ) ( )d M( , , ) 0 0
( ) ( )

x ct a c t ct a c x c c
x t c

47:10:4

1

0

( ) ( ) ( )M( , , )d 0
( ) ( )

v v c a vt a c t t v a
a c v

47:10:5

0

1M( , , )exp( )d M( , , ) F ,1, , ba c bt st t a c bt a c
s s

47:10:6

and

1 1

0

( )( )exp( )M( , , )exp( )d exp( )M( , , )
( )

a c
c c

a

c s vt vt a c bt st t t vt a c bt
s v b

47:10:7

Integration 47:10:4 is equivalent to the first step of synthesis 47:5:7 with c c . The function generated by the
transformation in 47:10:6 is the Gauss hypergeometric function [Chapter 60].

In the language of the fractional calculus [Section 12:14], equation 47:10:4 may be rewritten
1

1d ( )M( , , ) M( , , )
d ( )

c
c c xx a c x a c x

x c
47:10:8

Another differintegration formula, generating a generic L K+1 2 hypergeometric function, is

0

( )d M( , , )
d (1 ) ( ) (1 )

j j

j j j

axa c x x
x c47:10:9

Equations 47:10:1 3 are all special cases of the previous equation.

47:11 COMPLEX ARGUMENT

We shall not pursue the properties of the quadrivariate function generated on replacement of the argument of
the M(a , c , x) function by x+iy, though the formulas applicable to real argument generally carry over. When the
argument is purely imaginary, the Kummer function has real and imaginary parts given by the L K + 2 4
hypergeometric functions

1 2
2 2

1 1
0 2 2 2

Re M( , , )
1 4

ja a
j j

c c
j jj j j

ya c iy47:11:1

and
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1 2 2
2 2

1 2 3
0 2 2 2

Im M( , , )
1 4

ja a
j j

c c
j jj j j

ay ya c iy
c

47:11:2

The first of the inverse Laplace transforms listed below generates a window function [Section 9:13], one that
is nonzero only in the interval 0 < t < 1

1

1

u( ) u( 1) ( )exp( )M , , d M , , 0
2 ( ) ( ) 1

ai

a c
i

t t c tsta c s s a c s c a
i a c a t

I47:11:3

2 1 / 2

1

M , , 1/ M , , 1/exp( ) ( )d J 4
2 ( )

i a c

ca a
i

a c s a c sst c ts t
s i s a

I47:11:4

A Bessel function [Chapter 53] is generated by the second.

47:12 GENERALIZATIONS

All hypergeometric functions [Section 18:14] with L K + 1 2 may be regarded as generalizations of the
Kummer function, from which they may be synthesized [Section 43:14].

Modest generalization is provided by the regularized Kummer function or entire Kummer function defined by

0

( )M( , , )
( ) ( ) !

j
j

j

aa c x x
c j c j

47:12:1

and symbolized (a , c , x) by Lebedev [Section 9.9]. This function has the advantage of embracing those values
(0, 1, 2, etc.) of the denominatorial parameter c that are excluded from the definition of the unmodified Kummer
function because of the discontinuities that they cause. When c has one of these values, say n, the regularized
function remains finite and is given by

1
1M( , , ) M( 1, 2, ) 0,1,2,

( ) ( 1)!

n
n

a xa n x a n n x n
n n

47:12:2

It is unfortunate that the regularized Kummer function is not widely used because its properties are significantly
simpler than those of M(a , c , x).

47:13 COGNATE FUNCTIONS

The Kummer function is closely linked to the Tricomi function [next chapter] through the definition

1

(1 ) ( 1)M( , , ) M(1 ,2 , ) U( , , )
(1 ) ( ) c

c ca c x a c c x a c x
a c a x

47:13:1

The first Whittaker function [Section 48:13] is an even closer relative.

47:14 RELATED TOPIC: the Kummer function with integer parameters

In terms of (complete) gamma functions, definition 47:3:1 may be rewritten as
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0

( ) ( )M( , , )
( ) ( ) !

j

j

c j a xa c x
a j c j

47:14:1

When both a and c are integers, say n and m respectively, each gamma function may be replaced by a corresponding
factorial

0

( 1)! ( 1)!M( , , )
( 1)! ( 1)! !

j

j

m j n xn m x
n j m j

47:14:2

Cancellations will now commonly occur between the numerator and denominator of the summands, opening up the
possibility of representing M(n , m ,x) in different, and usually simpler, ways. However, authorities differ as to the
appropriate interpretation of the Kummer function when a and c adopt certain integer values.

When both parameters are positive, with m not exceeding n, it is evident that all factors in (m 1)! will be
cancelled by those in (n 1)!, leaving only (n m) denominatorial factors. Similarly only (n m) factors remain in the
numerator of the quotient after cancellations. One therefore finds( 1)!/( 1)!j n j m

0

1M( , , ) ( ) 0
( ) !

j

n m
jn m

xn m x j m m n
m j

47:14:3

A simple instance is when n m 1, for then

0 1 0

1 1M( +1, , ) ( ) 1 exp( ) 1 0
! ( 1)! !

j j j

j j j

x x x xm m x j m x n m
m j m j j m

47:14:4

and all other cases likewise reduce to the product of a polynomial with exp(x). Similar cancellations occur in the
Kummer function when n does not exceed m, both being positive integers; in this event

0
M( , , ) ( ) 0

( ) !

j

m n
j m n

xn m x n n m
j n j

47:14:5

When m exceeds n by unity, reduction occurs to the expression n! n(n, x) as predicted by 47:4:2 and when the
difference is 2, a formula with a pair of entire incomplete gamma functions results:

M( , 2, ) = ( 1)![ n( , ) n( 1, )] 2 0n n x n n x n n x m n47:14:6
and so on. Note that, as expected from 47:4:1, both 47:14:3 and 47:14:5 reduce to M(n , n , x) exp(x) when the
parameters are equal positive integers.

Next, cases in which the parameters are integers of opposite sign will be addressed. As an example of those
instances in which n is negative and m positive, consider the case M( 4, 3 , x). Using the fundamental definition
47:3:1, we see that the leading terms in the expansion are

2 3 44 ( 4)( 3) ( 4)( 3)( 2) ( 4)( 3)( 2)( 1)M( 4,3, ) 1
3 1! (3)(4) 2! (3)(4)(5) 3! (3)(4)(5)(6) 4!

x x x xx47:14:7

The x5 and all subsequent terms will have a zero as a numeratorial factor. Hence the series terminates after the x4,
or in general after the x n, term. The early nonzero terms alternate in sign and their sum obeys the formula

0

( ) ( )M( , , ) 0
( ) !

jn
j

j j

j n xn m x n m
m j47:14:8

However, when it is n that is positive and m negative, zeros invariably appear in most denominators and lead to the
Kummer function being infinite; thus:

M( , , ) 0n m x m n47:14:9
When both parameters are negative and n is the more negative of the pair, zeros again appear in denominators
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and cause the Kummer function to become infinite:
M( , , ) 0n m x n m47:14:10

Two schools of thought apply to the case of two negative parameters with m being the more negative. Early terms
in the n 1, n 2 example are

2 3 41 ( 1)(0) ( 1)(0)(1) ( 1)(0)(1)(2)M( 1, 2, ) 1
2 1! ( 2)( 1) 2! ( 2)( 1)(0) 3! ( 2)( 1)(0)(1) 4!

x x x xx47:14:11

If one considers that the two zeros in the x3 and subsequent terms cancel, then the series terminates after the zeroth
and first terms but, restarts with the x3 term. In general, the missing terms are those that would have involved the
x1 n, x2 n, , x m powers. The formula

0 1

( ) ( ) ( )M( , , ) 0
( ) ! ( ) ( )!

j m kn
j n m

j kj n m

n x x k xn m x m n
m j m k m47:14:12

applies. However, an alternative interpretation is that the presence of a zero in the denominator of a term renders
that term infinite, notwithstanding that a compensatory zero exists in the numerator. On this basis M(n , m , x) is
infinite whenever m < n < 0. Equator sits on the fence and returns no definite answer. The present authors favor
the interpretation embodied in 47:14:12 because it alone provides continuity with the Kummer functions of nearby
noninteger parameters. When n and m are negative and equal, the “cancellation approach” equates the Kummer
function to exp(x), whereas Mathematica returns the polynomial e n(x) [Section 26:12].

It remains to consider values of the Kummer function when one is, or both of the parameters are, zero.
Definition 47:3:1 shows unequivocally that M(n , 0 , x) ± , unless n is also zero, in which case the cancellation
approach finds M(0, 0, x) exp(x). This approach applied to n 0, m < 0 cases generates the series expansion

1

( ) ( )M(0, , ) 1 0
( )! ( )!

m k
m

k

x k xm x m
m k m

47:14:13

which is simply 47:14:12 extended to embrace n 0. If cancellation of denominatorial zeros is denied, the result
is M(0, m , x) 1.



Named for the Italian mathematician Francesco Giacomo Tricomi (1897 1978), this function, together with
the Kummer function of the previous chapter, constitute the duo known as the confluent hypergeometric functions.
The Whittaker functions and Bateman’s confluent function, addressed in Section 48:13, are closely related.

48:1 NOTATION

Alternative names are confluent hypergeometric function of the second kind, degenerate hypergeometric function
of the second kind, Kummer function of the second kind, and Gordon function. The notation (a,c,x) is a common
alternative to the U(a , c , x) that we use. Tricomi himself used the G symbol. On account of the asymptotic
expansion 48:6:2, the equivalences

2 0
0

( ) (1 ) 1 1U( , , ) F ,1 ,
(1)

j
j ja

j j

a a c
x a c x a a c

x x
~48:1:1

exist and therefore the hypergeometric function 2F0 plays a role in some writing equivalent to that played by the
Tricomi function here.

The Tricomi function is trivariate, with an argument x and two parameters, a and c. In contrast to their status
in the Kummer and Gauss hypergeometric functions, the parameters cannot be separately assigned to numeratorial
and denominatorial roles; we call a and c the first and second parameters. The composite variable 1+a c that
appears in equation 48:1:1, and elsewhere in this chapter, is often more important than c itself in determining the
properties of the Tricomi function; accordingly it is sometimes accorded its own symbol, b in this Atlas.

1b a c48:1:2
Here, you will sometimes find formulas written in terms of a and the auxiliary parameter b rather than a and c.

48:2 BEHAVIOR

The Tricomi function is defined for all real values of its three variables. We exclude complex variables here,
though most of the formulas carry over into the complex plane. Also excluded from discussion in this Atlas is the
x < 0 domain, because U(a , c , x) is generally complex when its argument is negative.

DOI 10.1007/978-0-387-48807-3_49, © Springer Science+Business Media, LLC 2009 
497K.B. Oldham et al., An Atlas of Functions, Second Edition,
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1
4U ,1, x

3
2U 2, , x

3 1
2 3U , ,x

7 3
4 2U , , x

4
3U 3, ,x

Even three-dimensional graphs are inadequate to convey the global behavior of a trivariate function, such as
U(a,c,x). However, some information can be gleaned from Figure 48-1, which shows instances of the function for
two fixed values of the c parameter: c ½, left; and c +½, right. The behavior of the Tricomi function is not
straightforward even at x 0, as evidenced by Figure 48-1. Nevertheless, a qualitative picture of the behavior of
U(a , c , x) for 0 < x < can be assembled from the following considerations:

(a) Contrary to what a casual inspection of definition 48:3:1 might suggest, U(a,c,x) develops no discontinuities
away from x 0, being real and finite for all values of the parameters and all positive arguments.
(b) Figure 48-3, later in this chapter, may be used to
assess the behavior of the Tricomi function at zero
argument. As well, the table in Section 48:9 describes the
Tricomi function’s behavior close to x 0.
(c) The number of positive zeros of the Tricomi function
can be found from Figure 48-4 for any pair of a,c values.
(d) Originating in formula 48:10:1, the rule

number of number ofU( , , ) U( 1, 1, )extrema of zeros ofa c x a c x48:2:1

enables one to use the same figure to determine the
number of local maxima or minima. Most often, there are
equal numbers of zeros and extrema.
(e) Behavior at large arguments is primarily determined
by the sign of the a parameter. If this is negative, the
Tricomi function heads towards + as x increases. For
positive a, the function asymptotically approaches zero
with increasing argument.

To illustrate the behavioral diversity, Figure 48-2 shows a
few graphs of U(a , c , x) for rather small arguments.
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48:3 DEFINITIONS

The Tricomi function may be defined as a suitably weighted sum of two Kummer functions [previous chapter]

1

(1 ) ( 1)U( , , ) M( , , ) M(1 ,2 , )
(1 ) ( ) c

c ca c x a c x a c c x
a c a x

48:3:1

One or other of the weights becomes infinite if c is an integer. Nevertheless, as Lebedev [Section 9.10] shows, this
definition may be developed into a finite-valued expression when c is an integer m of either sign. When this integer
is nonpositive, the transformation 48:5:1 provides the replacement formula

1U( , , ) U(1 ,2 , ) 0, 1, 2,ma m x x a m m x c m48:3:2

in which the second parameter is now positive. Positive integer c parameters can be accommodated through the
complicated formula

2

1
0

0

( 2)! (1 )U( , , )
( ) (2 ) (1) = 1,2,3,

0, 1, 2,( 1) ( ) ( 1) ( ) ln( )
( 1)! (1 ) (1) ( )

km
k

m
k k k

jm
j

j j j

m a m xa m x
a x m c m

a x a
j a j j m x

m a m m

48:3:3

involving the digamma function [Chapter 44]. The second right-hand term vanishes when m 1, and it contributes
merely 1/[x (a)] when m 2. However, 48:3:3 is invalid when a is a nonpositive integer, in which case the
definition becomes

0

0, 1, 2,( )( 1)!
U( , , ) M( , , ) ( ) ( )

( 1)! ( ) (1) 1,2,3,

n n
jn j

n
j j j

a nnm n
n m x n m x m x

m m c m
48:3:4

The Tricomi function may be defined by the limiting operation
1U( , , ) lim F ,1 , ,a

xa c x a a c
x x

48:3:5

applied to the Gauss hypergeometric function [Chapter 60] and it is this definition that is responsible for the name
confluent hypergeometric function or degenerate hypergeometric function being applied to U(a , c , x).

The integral definition
1

0

1U( , , ) exp( )d 1 0 0
( ) (1 )

a

b

ta c x xt t b a c a x
a t

48:3:6

shows the Tricomi function to be the Laplace transform of a simple algebraic expression. Equivalent to this are
1 1

0

1U( , , ) exp d 0 0
( ) (1 ) 1

a

c

t xta c x t a x
a t t

48:3:7

and the integrals shown in 48:8:1 and 48:8:2.
An arbitrarily weighted sum of two Tricomi functions, one of which has an exponential multiplier, solves the

confluent hypergeometric differential equation
2

1 22

d f d f( ) f 0 f U( , , ) exp( ) U( , , )
d d

x c x a w a c x w x c a c x
x x

48:3:8

Other solutions to this equation are mentioned in Section 47:3.
A two-step synthesis [Section 43:14] can generate the Tricomi function from the prototypical L K 1 0
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hypergeometric Euler function
1 1 1 1 1 1 1 1exp Ei exp 1 , U , , large

1 1a a
a ba a c x

x x x x x x x x
48:3:9

where, as elsewhere in this chapter, b 1 + a c.

48:4 SPECIAL CASES

Certain relationships between the a and c parameters simplify the Tricomi function. When the two parameters
are equal, reduction occurs to a function involving an upper incomplete gamma function [Chapter 45]:

U( , , ) exp( ) (1 , )a a x x a x48:4:1
A simple power function results when the c parameter exceeds a by unity (that is, when b 0):

U( , 1, ) aa a x x48:4:2

The two preceding formulas, coupled with one or more applications of recursion 48:5:3, permit expressions to be
deduced for U(a , a ± m , x). When the c parameter is twice the a parameter, the Tricomi function reduces to a
Macdonald function [Chapter 51]

(1 2 ) / 2

(2 1) / 2U( ,2 , ) exp K
2 2

a

a
x x xa a x48:4:3

and, if a is an integer, further simplification to exponentials is possible via the spherical Macdonald functions
discussed in Section 26:13.

When the a parameter is a negative integer n, the Tricomi function becomes a polynomial, specifically a
generalized Laguerre polynomial [Section 23:12]:

( -1)U( , , ) ( ) !L ( ) 1, 2, 3,n c
nn c x n x a n48:4:4

This carries over to the case in which a 0, whereby
U(0, , ) 1c x48:4:5

An expression similar to 48:4:1 results from setting a equal to unity:

1

0

1 1U(1, , ) exp( ) ( 1, ) (2 )
j

c
j

j
c x x x c x c

x x
~48:4:6

The asymptotic hypergeometric representation of this result has been included to establish contact with Table 18-7,
from which instances corresponding to specific c values can be found. Sufficient recursions based on the final row
in the table on the facing page permit equations 48:4:5 and 48:4:6 to serve as building blocks from which expressions
for U(n , c , x) may be constructed.

Cases in which the c parameter is an integer are discussed in the context of definitions 48:3:2 and 48:3:3. In
particular, note that when c 1, the latter equation may be written in the more concise form

2
0

( )U( ,1, ) 2 ( 1) ( ) ln( ) 0, 1, 2,
[ ( ) !]

j

j

j a xa x j j a x a
a j

48:4:7

A simple relationship, namely
U( ,0, ) U( 1,2, )a x x a x48:4:8

exists between Tricomi functions whose c parameters are 0 and 2; these are related to the Bateman confluent
function, addressed in Section 48:13.



48:5 THE TRICOMI FUNCTION U(a, c, x) 501

The following special cases, arising when the c parameter is half an odd integer, are noteworthy:
31 1 1

22 2 2 2U , , U , , 2 exp D 2a
aa x x a x x x48:4:9

31 1
2 2 2U , , U 1, , exp erfcx x x x x48:4:10

1 31
2 2 2 2U , , U , , 2 Hnn n

nx x x x48:4:11

Functions from Chapters 46, 41, and 24 are involved.

48:5 INTRARELATIONSHIPS

The important transformation
1U( , , ) U(1 ,2 , )ca c x x a c c x48:5:1

constitutes a reflection formula for the c parameter. This becomes an identity when c 1, while equation 48:4:8 is
the c 0 example. The transformation exhibits a pleasing symmetry when written as

U( ,1 , ) U( ,1 , ) 1a bx a a b x x b b a x b a c48:5:2

in terms of the auxiliary parameter.
Recursion relations may be written expressing U(a,c,x) as the weighted sum of any two of its four contiguous

functions; that is, in terms of any two of the functions in the heading of the table below. The body of the table lists
the weights, which usually involve the argument as well as the parameters

U( 1, , )a c x U( 1, , )a c x U( , 1, )a c x U( , 1, )a c x

(1 )
2

a a c
a c x

1
2a c x

(1 )a a c
a x

x
a x

a 1

1
a c

x
c a

1
1a x

1
1

c a
a x

1
x

c x
1

1
c a
c x

Such relations, of which
(2 ) U( , , ) = (1 ) U( 1, , ) U( 1, , )a c x a c x a a c a c x a c x48:5:3

is an example coming from the first row of the table, are known as contiguity relationships.
Numerically useful only for y not grossly exceeding unity, the argument-addition formula

0

( ) ( )
U( , , ) U( , , )

(1)

j
j

j j

a y
a c x y a j c j x48:5:4

converts to an argument-multiplication formula on replacement of y by (v 1)x.
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48:6 EXPANSIONS

Utilizing the convergent power series expansion of the Kummer function, and the abbreviation b 1+a c,
definition 48:3:1 leads to

2 2

1

(1 ) ( 1) ( 1) ( 1)U( , , ) 1 1
( ) ( 1)2! ( ) 2 (2 )(3 )2!c

c ax a a x c bx b b xa c x
b c c c a x c c c

48:6:1

As its stands, this formula is inapplicable when the c parameter is an integer of either sign.
Again employing the b 1+a c abbreviation, the important asymptotic series

2
=0

( 1) ( 1) 1 1U( , , ) 1 = large
2! 1

j
j ja

a
j j

a bab a a b ba c x x x
x x x x

~48:6:2

demonstrates the hypergeometric nature of the Tricomi function, establishes a connection with the functions in
Table 18-8, and validates synthesis 48:3:9.

48:7 PARTICULAR VALUES

Whereas U(a , c , x) is everywhere finite for 0 < x < ,
this is not always true at x 0 or x . See Section 48:9
for the latter circumstance.

Infinite values of U(a , c , 0) are the rule when c 1,
unless a is a nonpositive integer. The situation is clarified
in Figure 48-3. Red zones in the diagram correspond to
positive values of U(a , c , 0); the color is bright red where
the value is + , pale red where the positive value is finite.
Likewise, blue signifies U(a,c,0) , whereas pale blue
connotes a finite negative value. The Tricomi function of
zero argument is zero on the yellow diagonal lines
separating the red and blue zones:

U( , ,0) 0 1, 2, 3, 1a c a c c48:7:1
whereas values on the vertical separators are nonzero and
various. A variety of values are acquired at zero argument:

1 0 all

0, 1 2, 3 4,
U( , ,0) 1

0 1, 2 3,

(1 ) / (1 ) 1

a c

a a a
a c c

a a

c a c c

48:7:2

The frameworks of Figures 48-3 and 48-4 are similar. The purpose of the latter figure is to show the number
of zeros exhibited by U(a,c,x) in the range 0 < x < . This diagram is ambiguous if the point corresponding to the
pair of a,c values lies on one of the diagonal lines, as at the point marked by the leftmost dot on Figure 48-4. This
corresponds to . Does have one zero? Or two? The answer is satisfying: there is one7 3

2 2,a c 7 3
2 2U , , x

zero in 0 < x < , but an extra zero on the domain boundary at x 0.
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Figure 48-4 can be used in conjunction with rule
48:2:1 to predict the number of extrema displayed by
U(a , c , x). It shows, for example, that has3 3

4 4U , , x
none. This conclusion is reached by consideration of the
two dots on Figure 48-4 which show the location in a,c
space of the Tricomi functions linked by relation 48:2:1
when 3 3

4 4and .a c

48:8 NUMERICAL VALUES

The calculation of accurate values of the Tricomi
function for wide domains of the three variables is a severe
challenge. Equator’s Tricomi function routine (keyword
U) treats the cases of integer a, c or b separately.
Otherwise, depending on the values of a, c and x, one of
four methods is used. Two of the quartet of methods are
Gauss-Laguerre numerical integrations [Section 24:15] based on alternative definite integrals, namely

1 1

0

exp( )U( , , ) d
( ) ( )

c a

b

x t ta c x t
a x t

48:8:1

and
1

0

1 exp( )U( , , ) d 1 0
( ) ( )

b

a

t ta c x t a c b
b x t

48:8:2

The third method, suitable only for large arguments, is based on expansion 48:6:2 and employs the -transformation
[Section10:14] to combat the asymptoticity. The fourth method utilizes the twin series formula 48:6:1. This formula
is deceptively innocuous, from a computational standpoint, because the two moieties are frequently of comparable
magnitude and opposite sign. To combat this problem, Equator adopts special precision optimization techniques
in summing the twin series, reformulated as

1

0

(1 ) ( )( ) ( ) ( 1)U( , , ) sgn( )
( ) (2 ) ! ( ) (1 )( )

j
jj c

j jj

c ba x b ca c x x
b c j a cc

48:8:3

Equator’s algorithm is designed to provide values, accurate to the number of digits displayed, over the domains
15 a 15, 15 c 15, and 10 6 x 500 or the variables. It has been tested copiously but, because of the

unusually refractory numerical properties of the Tricomi function, the user is cautioned to be on guard against
algorithmic malfunction.

48:9 LIMITS AND APPROXIMATIONS

For small positive values of its argument, the value of U(a , c , x) is affected remarkably by the value of the c
parameter. The formulas in the table below are composed of the two major terms contributing to the value of the
Tricomi function when x is small.
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c < 0 c 0 0 < c < 1 c 1 1 < c < 2 c 2 c > 2

[ ] ( )
( )

c ax c
b

1 ln( )
( 1)
ax x
a

1(1 ) ( 1)
( ) ( )

cc c x
b a

2 ( ) ln
( )

a x
a 1

( 1) (1 )
( ) ( )c

c c
a x b

1 ln( )
( ) ( 1)

x
a x a 1

[ 2 ] ( 2)
( ) c

c bx c
a x

For large x, U(a , c , x) is approximated by x a and the x limit therefore takes one of three values:
0 0

U( , , ) 1 0

0

a

a

a c x x a x

a

48:9:1

48:10 OPERATIONS OF THE CALCULUS

Single or multiple differentiation of a particular Tricomi function yields another Tricomi function
d U( , , ) U( 1, 1, )
d

a c x a a c x
x

48:10:1

d U( , , ) ( ) U( , , )
d

n
n

n n
a c x a a n c n x

x
48:10:2

as does indefinite integration

0

1 ( 2)U( , , )d U( 1, 1, ) 2
1 (1 )

x ca c t t a c x c
a a c

48:10:3

Among the many formulas listed by Gradshteyn and Ryzhik [Section 7.6] for definite integrals and Laplace
transforms of the Tricomi function (or the equivalent Whittaker W function) are:

1

0

( ) ( ) (1 )U( , , )d 0 1
( ) (1 )

v v a v v ct a c t t v a c v
a a c

48:10:4

and

1

0

( ) ( 1)U( , , )exp( )d F , 1, 1,1 0 1 0 1
( 1)

v v v ct a c t st t v v c v a c s v c s
v a c

48:10:5

The F function in 48:10:5 is the Gauss hypergeometric function of Chapter 60.

48:11 COMPLEX ARGUMENT

The Tricomi function adopts complex values not only when its argument is complex, but also when the
argument is real and negative. Neither situation is addressed in this Atlas.

Laplace inversion of the Tricomi function generates an algebraic function
1

1
exp( ) 1U( , , ) d U( , , ) 0

2 ( ) 1

i a

a c
i

st ta c s s a c s a
i a t

I48:11:1

hinting at a common way in which the Tricomi function enters practical problems.
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48:12 GENERALIZATIONS

Inasmuch as it “degenerates” into U(a , c , x) via 48:3:5, the Gauss hypergeometric function [Chapter 60] may
be regarded as a generalization of the Tricomi function.

48:13 COGNATE FUNCTIONS: Whittaker and Bateman confluent functions

The functions Mv, (x) and Wv, (x) are normalized versions of the Kummer and Tricomi functions, respectively.
Named for Edmund Taylor Whittaker (English mathematician and astronomer, 1873 1956), these functions use
parameters related to the familiar a and c (and b) through the equations

1
21

2

1 1
2 2 1

2

or 2 1

( )

a v
v c a

c
c

b v

48:13:1

Whittaker functions are also regarded as confluent hypergeometric functions. The relationships
/ 2 / 21 1

, ,2 2exp M ( ) M , , exp W ( ) U , ,c c
v vx x x a c x x x x a c x48:13:2

permit easy transition between the two notations. Certain relationships are more symmetrical in Whittaker’s
notation, for example the transformations 47:5:1 and 48:5:1 simplify to

(2 1) / 2 (2 1) / 2
, ,M ( ) ( 1) M ( ) ( 1) sin( ) cos( )v vx x i48:13:3

and

, ,W ( ) W ( )v vx x48:13:4

Moreover, the Whittaker functions display their kinship to cylinder functions [Section 49:14] more evidently than
do the Kummer and Tricomi functions; thus when the v parameter is zero, there is equivalence to modified Bessel
I functions and Macdonald K functions:

1
0, 2M ( ) 4 (1 ) Ix x x48:13:5

1
0, 2W ( ) / Kx x x48:13:6

On the other hand, some other formulas from Chapters 47 and 48 become more complicated in Whittaker’s notation,
so advantages and disadvantages are evenly balanced.

Arbitrarily weighted Whittaker functions are solutions to Whittaker’s differential equation
2

2 2 21 1
1 , 2 ,4 42

d f f 0 f M ( ) W ( )
d v vx vx x w x w x

x
48:13:7

Equator’s Whittaker M function and Whittaker W function routines (keywordsWhittakerM andWhittakerW)
calculate values through the equivalences contained in equations 48:13:1 and 48:13:2. Values are provided only for
variables in the domains |v| 7, | | 7, and 10 6 x 500.

A function introduced by Bateman corresponds to the case of a Whittaker W function whose second parameter
is ½, or to a Tricomi function for which c 0. He defined

1
2 2, 1

21 1
2 2

W (2 ) exp
( ) U ,0,2

1 1
v

v

x x
x v x

v v
48:13:8

To avoid confusion with the function discussed in Section 44:13, which is attributed to the same mathematician, the
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Atlas adopts the name Bateman confluent function. We use the symbol v(x) to denote the Bateman confluent
function of order v and argument x, though kv(x) is more usual. On account of transformation 48:5:1, the Tricomi
functions with c parameters of 0 or 2 are both equivalent to Bateman confluent functions

1 1
2 21 1

2 2

exp( ) 2 exp( )( ) U ,0,2 U 1 ,2,2
(1 ) (1 )v

x x xx v x v x
v v48:13:9

The integral representation
/ 2

0

2( ) cos tan( ) dv x x v48:13:10

also applies. Through its Bateman confluent function routine (keyword kappa) Equator provides accurate v(x)
values. The routine is restricted to |v| 28 and 10 6 x 250.



n

These functions are the simplest of the cylinder functions, a large group of important functions, the tortured
nomenclature of which is explained in Section 49:14. In the present chapter we address only those modified Bessel
functions that have orders of 0,1,2, , whereas the next chapter considers all orders, positive and negative, integer
and noninteger. The present functions are, therefore, just special cases of the function to which Chapter 50 is
devoted and they obey the same general rules. Nevertheless, it is appropriate to devote a separate chapter to I0(x),
I1(x), I2(x), etc., because of their prime importance in applications. Moreover, this chapter will concentrate on I0(x)
and I1(x) because, as detailed in Section 49:5, all other In(x) functions can be expressed in terms of the first two
family members.

49:1 NOTATION

The symbol In(x) is standard for a modified Bessel function of order n and argument x. The name hyperbolic
Bessel function is a common alternative, with Basset function occasionally encountered.

49:2 BEHAVIOR

Figure 49-1 shows that modified Bessel functions of positive integer order increase rapidly with their argument
x, but decrease steadily with order n.

In accord with 49:5:2, modified Bessel functions of negative integer order are identical with their positive-
ordered counterparts and hence the former are not specifically mentioned in this chapter.

49:3 DEFINITIONS

All the definitions cited in Section 50:3 apply when v is a positive integer or zero. In addition, there are several
definitions unique to integer orders of modified Bessel functions and especially to I0(x) and I1(x). Because of 49:5:2,
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the solutions given in 50:3:4 6 do not provide a complete solution to the differential equations reported there. For
a complete solution when v n, each I v term in those solutions is to be replaced by the corresponding Kn, as in
equations 51:3:7 9.

Modified Bessel functions of integer order may be defined through a number of generating functions, including
2 2 4

0 0 1 2 2
1

1 1 1exp I ( ) I ( ) I ( ) I ( ) I ( ) I ( )
2

j j j
j j

j j

t t tx x t x x t t x x x
t t t

49:3:1

and

0 1 2exp cos( ) I ( )cos( ) I ( ) 2I ( )cos( ) 2I ( )cos(2 )j
j

x x j x x x49:3:2

The integral definitions

2

0 0

1I ( ) cos( )exp cos( ) d sin ( )exp cos( ) d
(2 1)!!

n
n

n
xx n x x

n
49:3:3

apply for all integer orders and, in addition, there are several, such as
2

0
0 0 0

1 1 1I ( ) exp sin( ) d cosh sin( ) d cosh cos( ) d
2

x x x x49:3:4

and
2

1 2
0

1 ( )exp( )I ( ) d
2

x x t x tx t
x xt t

49:3:5

that apply solely to the n 0 or 1 cases. Definite integrals involving an angular integration variable, such as those
in 49:3:4, may be adapted, as in

1

0 2
0

2 cosh( )I ( ) d
1

xtx t
t

49:3:6
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and
1

2
1

0

2I ( ) 1 cosh( )dxx t xt t49:3:7

to a hyperbolic integrand.
Any modified Bessel function of positive integer order may be generated from its predecessor by a definite

integration such as
1 1 1

2 3
1 0 2 1 3 2

0 0 0

I ( ) I ( )d , I ( ) I ( )d , I ( ) I ( )d , etc.x x t xt t x x t xt t x x t xt t49:3:8

Modified Bessel functions of orders 0 and 1 are generated by the operations of semiintegration or
semidifferentiation [Section 12:14] applied to functions involving exponentials [Chapter 26]

1
2

1
20

exp( ) d exp(2 )I ( )
d

x xx
x x

49:3:9

1
2

1
21 0

exp( ) d exp(2 )I ( ) I ( )
d

x xx x
x x

49:3:10

hyperbolic functions [Chapter 28]
1 1

2 2

1 1
2 20

cosh2 d 1 dI sinh
d d

x
x x

x x x
49:3:11

1 1
2 2

1 1
2 21

cosh1 d dI sinh 2
d d

xxx x
x xx x

49:3:12

or error functions [Chapter 40]
1

2

1
20

exp( ) dI ( ) erf 2
d2

xx x
x

49:3:13

1
2

1
21

erf 2exp( ) d exp( 2 )I ( )
d 8

xx x xx
x x

49:3:14

Modified Bessel functions of positive integer orders may be synthesized [Section 43:14] from the zero-order
instance by

0 / 2

!1I 2 I 2
1 nn

nx x
n x

49:3:15

49:4 SPECIAL CASES

There are none. Be aware that, despite their integer subscripts, the modified spherical Bessel functions in(x)
[Section 28:13] do not correspond to modified Bessel functions of integer order, but to those having an order equal
to half an odd integer.
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49:5 INTRARELATIONSHIPS

The argument-reflection formula

I ( ) I ( ) 0, 1, 2,n
n nx x n49:5:1

shows that the modified Bessel functions are even or odd according to the parity of their integer orders, as is also
evident in Figure 49-1. The order-reflection formula

I ( ) I ( ) 0, 1, 2,n nx x n49:5:2
asserts that modified Bessel functions of negative order merely duplicate their positive-ordered brethren, provided
that the order is an integer.

Sufficient applications of the recursion formula

1 1
2I ( ) I ( ) I ( ) 0, 1, 2,n n n

nx x x n
x

49:5:3

permit any modified Bessel function of integer order to be expressed in terms of I0(x) and I1(x). The general formula
may be written

(0) (1)
0 1I ( ) Wi ( ) I ( ) Wi ( ) I ( ) 2,3,4,n n nx x x x x n49:5:4

where the Wi weighting functions are the polynomials are listed below that differ from the Lommel polynomials,
discussed in Section 52:5 only by having different sign patterns.

n 2 n 3 n 4 n 5 n 6 n 7

(0)Wi ( )n x 1
4

x 2

241
x 3

12 192
x x 2 4

144 19201
x x 3 5

24 1920 23040
x x x

(1)Wi ( )n x 2
x 2

81
x 3

8 48
x x 2 4

72 3841
x x 3 5

18 768 3840
x x x 2 4 6

288 9600 460801
x x x

The right-hand side of the argument-multiplication formula
2

0

1I ( ) I ( ) 0,1,2,
2 !

j j
n

n j n
j

b xbx b x n
j

49:5:5

is an infinite series. The multiplier b is unrestricted but setting gives series that are particularly3 or 5b
simple. Other sums of modified Bessel functions of integer orders are

1 1
0 2 4 62 2I ( ) I ( ) I ( ) I ( ) cosh( )x x x x x49:5:6

1
1 3 5 2I ( ) I ( ) I ( ) sinh( )x x x x49:5:7

and
1

0 022 4 6
K ( ) ln I ( )I ( ) I ( ) I ( )

2 4 6 4
x x xx x x49:5:8

and yet others arise by setting t 1 or t 1 in 49:3:1 or /2 or in 49:3:2. Euler’s number [Chapter 1]
occurs in formula 49:5:8, as does the zero-order case K0 of the Macdonald function [Chapter 51].

49:6 EXPANSIONS

The power series, which may be written in terms of factorials or hypergeometrically,
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2 21
2

0 0

/ 4 1I ( ) 0,1,2,
2 !( )! ! (1) ( 1) 4

j jnn

n
j j j j

x xx xx n
j j n n n

49:6:1

converges with alacrity. For n 0, 1, 2, and 3 the first few terms in the series are

I0(x) I1(x) I2(x) I3(x)
2 4 6

1
4 64 2304
x x x 3 5 7

2 16 384 18432
x x x x 2 4 6 8

8 96 3072 184320
x x x x 3 5 7

48 768 30720
x x x

Asymptotic expansions for In(x) follow by replacement of v in 50:6:2 by n. Each can be written as a
hypergeometric function [Section 18:14] or in terms of factorials. The n 0 and n 1 cases are

21 1
2 2

0 32
0 0

(2 )!exp( ) 1 9 exp( ) 1 exp( ) 1I ( ) 1
8 128 (1) 2 322 2 2 !

j j
j j

j jj

jx x xx
x x x xx x x j

~49:6:2

and
231

2 2
1 2 2

0 0

(2 1)!!exp( ) 3 15 exp( ) 1 exp( ) 1I ( ) 1
8 128 (1) 2 !(1 4 ) 82 2 2

j j
j j

j jj

jx x xx
x x x j j xx x x

~49:6:3

being valid as x .

49:7 PARTICULAR VALUES

All modified Bessel functions of integer order, except I0(x), take the value zero at x 0 and have no other zeros.
I0(x) equals unity at x 0 and, when its argument is 2, equals the special number

2

0
0

1I (2) 2 2795 85302 33607
!j j

.49:7:1

49:8 NUMERICAL VALUES

An elegant method of calculating values of modified Bessel functions of integer order is based on the property
that, for a given argument x, the ratio Rj of the values of two modified Bessel functions of successive orders and
identical arguments obeys the very simple recursion

1
1

I ( )1 where
(2 / ) I ( )

j
j j

j j

x
R R

R j x x49:8:1

This is a consequence of formula 49:5:3. Starting from the crude estimate RJ 2(J+1)/x of this ratio for a sufficiently
large J, and employing 49:8:1 repeatedly, one may then develop the formula

1 2 1 0

1 2 2 1 0

exp( )I ( )
( 1) 1 1 1 1 2 1

n n
n

J J J

R R R R xx
R R R R R R49:8:2

to calculate In(x). This formula, which is an adaptation of Miller’s method [Section 52:8], has its basis in the t 1
version of equation 49:3:1.
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The Miller method is not employed by Equator. The modified Bessel function routine (keyword I) described
in Section 50:8, which caters to both noninteger and integer orders, is used. The Iv and In routines are identical.

49:9 LIMITS AND APPROXIMATIONS

All modified Bessel functions approach the same limit at large positive arguments
exp( )I ( )

2n
xx
x

49:9:1

irrespective of their order, whereas they behave as power functions at small arguments

1I ( 0)
! 2

n

n
xx

n
49:9:2

49:10 OPERATIONS OF THE CALCULUS

Although all the formulas of Section 50:10 apply when v n, the following differentiation and integration
formulas are simpler than the general cases:

0 1
d I ( ) I ( )
d

x x
x

49:10:1

1
1 0

d I ( )I ( ) I ( )
d

xx x
x x

49:10:2

0 0 1 1 0
0

I ( )d I ( ) ( ) I ( ) ( )
2

x xt t x x x xl l49:10:3

1 0
0

I ( )d I ( ) 1
x

t t x49:10:4

0 1
0

I ( )d I ( )
x

t t t x x49:10:5

1 1 0 0 1
0

I ( )d I ( ) ( ) I ( ) ( )
2

x xt t t x x x xl l49:10:6

In these equations 1n represents a modified Struve function [Section 57:13].
An indefinite integral, specific to integer orders, is

1

0 1
10

exp( ) I ( )d exp( ) ( ) I ( ) I ( ) 2 ( ) I ( )
x n

n j
j

t t t x n x x x x n j x n49:10:7

Because the sum is empty if n < 2, the n 0 and n 1 cases of 49:10:7 are particularly simple.
The definite integrals listed in Section 50:10 apply when v n, as do the differintegration formulas listed there.

Special instances of the latter are the semioperations



49:11 THE MODIFIED BESSEL FUNCTIONS In(x) OF INTEGER ORDER 513

1 1
2 2

1 1
2 20 0

coshd d 2I and I sinh
d d

x
x x x

x xx
49:10:8

Among Laplace transforms of modified Bessel functions of integer order are:

0 0 2 2
0

1I ( )exp( )d I ( )bt st t bt
s b

49:10:9

(2 1) / 22 2
0

(2 1)!!I ( )exp( )d I ( )
n

n n
n n n

n bt bt st t t bt
s b

49:10:10

49:11 COMPLEX ARGUMENT

Figure 49-2 shows the real and imaginary parts of I0(z), where z x + iy. Of course, taking sections through
these three-dimensional graphs along the x-axis, where y 0, gives the modified Bessel function of real argument.
This implies

0 0 0Re I ( 0 ) I ( ) and Im I ( 0 ) 0x i x x i49:11:1

It is instructive, however, also to cut along the y-axis, where x 0, because the resulting profile is that of the
(unmodified) Bessel function [Chapter 52]

0 0 0Re I (0 ) J ( ) and Im I (0 ) 0iy y iy49:11:2

There is also interest in sectioning this figure diagonally, because this gives rise to Kelvin functions [Chapter 55].
Cutting along the y +x diagonal generates the following profiles

0 0 0 0Re I ( ) ber 2 and Im I ( ) bei 2x ix x x ix x49:11:3

whereas along the other diagonal, the imaginary component has the opposite sign:

0 0 0 0Re I ( ) ber 2 and Im I ( ) bei 2x ix x x ix x49:11:4
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The relationship between the various I, J, ber and bei cylinder functions,
revealed for the zero order case in the equations above, may be further
clarified by expressing the complex variable in polar z exp(i ), rather
than in rectangular z x + iy, coordinates. As illustrated diagrammatically
in Figure 49-3, one then has

0

31
0 0 4 4

0 0 1
0 2

3 1
0 0 4 4

I ( ) 0 or

ber ( ) bei ( ) or
I ( ) I exp( )

J ( )

ber ( ) bei ( ) or

i
z i

i

49:11:5

Figure 49-4 shows the real and imaginary parts of I1(x). Again,
sectioning at right angles to the real axis gives rise to Bessel J functions, whereas scission at angles of 45o or 135o

produces Kelvin ber0 and bei0 functions, though the relationships are somewhat different from the n 0 case. The
analogue of Figure 49-3 for the modified Bessel function of unity order is shown in the polar diagram Figure 49-5.

Properties of the general In function of complex argument may be
deduced from equation 49:5:4 or from information in Section 50:11.

Interesting window functions [Section 9:13] arise from the inverse
Laplace transformation of exponentially weighted modified Bessel functions
of integer order. Two examples of these inverse transforms, which are
nonzero for 0 < t < 2b but zero for t > 2b, are

0 0
exp( )exp( ) I ( ) d exp( ) I ( )

2
u( ) u( 2 )

(2 )

i

i

tsbs bs s bs bs
i

t t b
t b t

I
49:11:6

and
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1 1
exp( ) [u( ) u( 2 )]( )exp( ) I ( ) d exp( ) I ( )

2 (2 )

i

i

ts t t b b tbs bs s bs bs
i b t b t

I49:11:7

49:12 GENERALIZATIONS

The next chapter addresses modified Bessel functions Iv(x) of unrestricted order.

49:13 COGNATE FUNCTIONS

The modified Bessel functions of integer order are among the simplest of cylinder functions [Section 49:14],
to all of which In(x) is closely related.

The modified Bessel function of zero order and argument 2 x

0
0

1I 2
1 1

j

j j j

x x49:13:1

is one of the hypergeometric basis functions [Section 43:14]. As such, it is the progenitor of a large number of
named, and an infinite number of unnamed, functions. The functions listed in Table 18-5 and 18-6 are examples
of the functions that may be synthesized from or its counterpart0I 2 x 0J 2 .x

49:14 RELATED TOPIC: cylinder functions generally

Functions that satisfy either the differential equation known as Bessel’s equation
2 2

2 2

d f 1 df 1 f 0
d d

v
x x x x

49:14:1

or that named Bessel’s modified equation
2 2

2 2

d f 1 df 1 f 0
d d

v
x x x x

49:14:2

or certain very similar equations, are known collectively as cylinder functions, because they arise in the solution of
problems involving cylindrical (and other) geometries. The name Bessel functions is also sometimes applied
generically to this collection of functions, though not in this Atlas. All cylinder functions are bivariate, with an order
v and an argument x. Interest focuses on positive values of v and x, though the definitions of some cylinder functions
remain valid for negative arguments or orders. Rational orders, such as v 1, , or are of especial interest3

2
1

3

because of their frequent occurrence in practical applications.
The relationship between the functions that satisfy 49:14:1 and those that satisfy 49:14:2 is exactly like that

between, say, cos(x) and cosh(x) and it would therefore be appropriate to use the adjectives “circular” and
“hyperbolic” to distinguish the two groups of functions. In practice the term “circular” is seldom employed, whereas
“hyperbolic” is in frequent use to designate solutions of 49:14:2 and was so used in the first edition of this Atlas.
Another name is Bessel functions of imaginary argument. Most usually, however, the adjective “modified” is
employed, and this is the preferred descriptor in this second edition of the Atlas and for Equator. Thus a certain
solution of equation 49:14:1 is known generally as the Bessel function; whereas the modified Bessel function or
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hyperbolic Bessel function is the corresponding solution of 49:14:2.
Two solutions of the Bessel equation 49:14:1 are given the symbols Jv(x) and Yv(x) and the names Bessel

function of the first kind and Bessel function of the second kind. However, it is cumbersome to use such long names,
so the unqualified name Bessel function is usually applied to the important Jv(x) function, while Yv(x) is called the
Neumann function (Weber’s function is an alternative name and Nv(x) is an alternative symbol). These two solutions
have radically different properties near x 0 and, on this basis, the Bessel function is described as “regular” and
Neumann function as “irregular”. For the most part, regular functions adopt the value zero when their argument
is zero, whereas irregular functions often approach ± in the x 0 limit.

As discussed in Section 24:14, second order differential equations can have only two “linearly independent”
solutions. However, linear combinations of such solutions are also solutions of the differential equation and, in
solving Bessel’s equation, it is often convenient to use such combinations in preference to Jv(x) and Yv(x). One such
combination,

cos( )J ( ) sin( )Y ( ) J ( )v v vv x v x x49:14:3
provides a solution which corresponds to a J function of negative order, but which is inapplicable (because J v(x) then
merely duplicates Jv(x) or its negative) when v is an integer. Two other combinations, useful in certain applications,
are the Bessel function of the third kind or the Hankel function

(1) (2)J ( ) Y ( ) H ( ) and J ( ) Y ( ) H ( )v v v v v vx i x x x i x x49:14:4

being known individually as Hankel functions of the first and second kinds.
The storyline is similar for the modified (or hyperbolic) family of functions. There is a regular solution Iv(x),

known as the modified Bessel function of the first kind or more simply as the modified Bessel function, as in earlier
sections of this chapter. There is an irregular solution Kv(x) described variously as the modified Bessel function of
the third kind, Bessel’s function of the second kind of imaginary argument, the modified Hankel function, the Basset
function and the Macdonald function, the last being the name used exclusively in this edition of the Atlas. In the
modified family, the combination that yields functions of negative order is

2I ( ) sin( )K ( ) I ( )v v vx v x x49:14:5

but is not the precise analogue of 49:14:3 because of the substantially different definitions of the Macdonald and
Neumann functions.

In summary, the symbols and colloquial names adopted by this Atlas for the major cylinder functions are:

differential equation 49:14:1 differential equation 49:14:2

regular solution irregular solution regular solution irregular solution

Jv(x) Yv(x) Iv(x) Kv(x)

Bessel function Neumann function modified Bessel function Macdonald function

[Chapters 52 and 53] [Chapter 54] [Chapters 49 and 50] [Chapter 51]

Only when v is half of an odd integer can solutions of equations 49:14:1 and 49:14:2 be expressed as functions
simpler than cylinder functions. The names of such unusually simple functions incorporate the adjective “spherical”
and use a lower case symbolism. Thus

1
2

j ( ) J ( ) [see Section 32:13]
2n nx x

x
49:14:6

1
2

y ( ) Y ( ) [see Section 32:13]
2n nx x

x
49:14:7
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1
2

i ( ) I ( ) [see Section 28:13]
2n nx x

x
49:14:8

and

1
2

k ( ) K ( ) [see Section 26:13]
2n nx x

x
49:14:9

and these spherical cylinder functions are addressed in earlier chapters. As well, many of these spherical cylinder
functions represent special cases of the Struve function [Chapter 57] and its modified counterpart. There are also
spherical Hankel functions, defined similarly but not discussed in this Atlas.(1) (2)h and h ,n n

Cylinder functions of order are termed Airy functions and are addressed in Chapter 56. Besides providing1
3

solutions of instances of equation 49:14:1, these functions also solve the simpler differential equation
2

2

d f f 0
d

x
x

49:14:10

known as Airy’s equation.
Close cousins of the Bessel differential equations 49:14:1 and 49:14:2 are the two differential equations

2 2

2 2

d f 1 df f 0
d d

v i
x x x x

49:14:11

which incorporate the imaginary i in place of unity. Solutions of these equations are known as Kelvin functions and
are the subject of Chapter 55.

Not usually classified as cylinder functions, but closely related to them, are the Struve functions of Chapter 57.
These participate in the solutions of inhomogeneous versions of equations 49:14:1 and 49:14:2; that is, analogues
of these differential equations with nonzero right-hand sides.





v

Because applications of the
(unmodified) Bessel function
predated and outnumber those
of this chapter’s function, the
standard nomenclature treats the I
function as subordinate to the J
function, being designated as a
“modified” version thereof. With
equal, if not greater, validity one
could regard the J function as a
modification of the I function.

50:1 NOTATION

The names hyperbolic Bessel
function, Bessel function of
imaginary argument, and Basset
function are alternative names.
Sometimes the moniker modified
Bessel function of the first kind is
used.

The symbol Iv(x) is standard, v
and x being termed the order and
argument of the function. See
Section 28:13 for the iv(x) symbol.
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11
3

I x

7
3

I x

2I x

50:2 BEHAVIOR

Unless v is an integer, the modified Bessel function Iv(x)
is complex when its argument is negative. Accordingly, x is
treated as positive in most of this chapter and that is the only
region depicted in Figures 50-1 and 50-2.

Irrespective of the order v, the modified Bessel function
rises steeply as x increases through more positive values.
Closer to x 0, the behavior of Iv(x) falls into several
categories as detailed in Section 50:7. One example from
each of the three main categories is shown in Figure 50-2.
For v > 0, such as the v 2 case graphed, the function
increases monotonically with x from Iv(0) 0. For orders in
the ranges 1 < v < 0, 3 < v < 2, 5 < v < 4, etc., such
as the v 7/3 case graphed, Iv(0) + , which implies that
the modified Bessel function must display a minimum when
viewed as a function of x; such minimal values are positive
and often occur not far from x 1. For 2 < v < 1, 4 < v
< 3, 6 < v < 5, etc., such as the v 11/3 case graphed,
Iv(0) , and the modified Bessel function is once again a
monotonic function of x, stretching in value from to , with a single zero but without an extremum.

Unless v is an integer, Iv(x) is complex for negative x, whereas this is not the case for the composite function
Iv(x)/xv . This function equals 2 v/ (1+v) at x 0, and remains real for all real arguments. Being even, its properties
for negative x are available through the reflection formula

I ( ) I ( )
( )
v v

v v

x x
x x

50:2:1

50:3 DEFINITIONS

The following integrals define the modified Bessel function, though only for v > ½:
1 11

2 2 (2 1) / 2 2 (2 1) / 2

1 1

( ) I ( ) (1 ) exp( )d (1 ) cosh( )d
/ 2

v v
vv

v x t xt t t xt t
x

50:3:1

1
2 2 2

0 0

( ) I ( ) sin ( )exp cos( ) d sin ( )cosh cos( ) d
/ 2

v v
vv

v x x x
x

50:3:2

A Kummer function [Chapter 47] reduces to a modified Bessel function whenever the former function’s
parameters are in a one-to-two ratio:

1
2

/ 2 exp( )
M ,1 2 , 2 I ( )

(1 )

v

v

x x
v v x x

v
50:3:3

As well, a modified Bessel function may be defined through its complex algebraic relationship to an (unmodified)
Bessel function as explained in Section 50:11, or via its series expansion 50:6:1.

Below are listed three differential equations and their solutions:
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2
2 2 2

1 22

d f d f ( )f 0 f I ( ) I ( )
d d v vx x x v w x w x

x x
50:3:4

2
1 2

2

d f d f(2 1) f 0 f I ( ) I ( )
d d v vv v

w wx v x x x
x x x x

50:3:5

2
1 2

2

d f d f( 1) f 0 f I 2 I 2
d d 2 2

v vv v
w wx v x x

x x x x
50:3:6

These differential equations, and several others, serve to define the modified Bessel function, but the listed solutions
are incomplete when v is an integer. See Section 49:3 for those cases.

The synthetic operations discussed in Section 43:14 can generate any modified Bessel function from the zero-
order prototype:

0
(1 )1I 2 I 2

1 ( / 2) vv

vx x
v x

50:3:7

50:4 SPECIAL CASES

Modified Bessel functions of integer order are the subject of Chapter 49.
When the order is an odd multiple of ±½, modified Bessel functions are termed spherical and they reduce to

hyperbolic cosines or sines, as discussed in Section 28:13.
Modified Bessel functions of order are closely related to the Airy functions of Chapter 56. The relationship1

3
2 / 3

1/ 3
1 3 3I ( ) Bi( ) 3 Ai( )
2 2

xx x x x
x

50:4:1

is obeyed. When the order is , the corresponding formula involves the derivatives of the Airy functions2
3

2 / 3

2 / 3
3 d d 3I ( ) Bi( ) 3 Ai( )

2 d d 2
xx x x x

x x x
50:4:2

These formulas involve a radical change in argument.
A similar change in argument is sometimes helpful in expressing a modified Bessel function as a weighted sum

of two or more parabolic cylinder functions [Chapter 46]. Such expressions exist whenever the order is a positive
or negative odd multiple of ¼. The simplest cases are

1/ 2 1/ 2
1/ 4

1/ 2 1/ 2 1/ 2 1/ 2
3 / 4 3

D ( ) D ( )50:4:3 I ( )

2
2D ( ) 2D ( ) D ( ) D ( )50:4:4 I ( )

( )

x xx
x

x x
x x x x x xx

x

and others may be constructed via recursion 50:5:2.

50:5 INTRARELATIONSHIPS

A modified Bessel function of one order may be converted to another order by the synthetic process
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( 1) ( 1)I 2 I 2
( / 2) ( / 2)v vv v

v vvx x
vx x

50:5:1

as prescribed in Section 43:14. As well, the recursion formula

1 1
2I ( ) I ( ) I ( )v v v

vx x x
x

50:5:2

may be applied to change the order of a modified Bessel function by an integer increment of decrement.
The two functions Iv(x) and I v(x) are identical if v is an integer; otherwise

2sin( )I ( ) I ( ) K ( )v v v
vx x x50:5:3

where Kv(x) is the Macdonald function of Chapter 51. This equation may be regarded as an order-reflection formula.
There are similar order-reflection formulas, namely

1 1/ 1 1
2 2 22

2cos( )I ( ) I ( ) I ( ) I ( )v v vv
vx x x x

x
50:5:4

and

1 1
2sin( )I ( ) I ( ) I ( ) I ( )v v v v

vx x x x
x

50:5:5

for the product of two modified Bessel functions whose orders sum to ±1.
On setting , the argument-multiplication formula1b i

2

0

I ( )I ( ) ( 1)
! 2

j
j vv

v
j

xbx b x
b j

50:5:6

generates the summation
2

1 2
0

( ) I ( )I ( ) I ( ) I ( ) I ( ) J ( )
1! 2! !

j
v

v v v j v vv
j

x x x ixx x x x x
j i

50:5:7

whereas setting leads to a similar series, but lacking the alternating signs.3b
2

1 2 / 2
0

I 3
I ( ) I ( ) I ( ) I ( )

1! 2! ! 3

j
v

v v v j v v
j

xx x xx x x x
j

50:5:8

Replacing b in 50:5:6 by 1+(y/x) converts that equation into an argument-addition formula, though not a very useful
one.

50:6 EXPANSIONS

The convergent power series expansion for the modified Bessel function
2 4 2 2

0 0

( / 2) ( / 2) ( / 2) ( / 2) ( / 2) 1I ( )
(1 ) 1! (2 ) 2! (3 ) ! ( 1 ) (1 ) (1 ) (1) 4

jv v v j v v

v
j j j j

x x x x x xx
v v v j j v v v

50:6:1

has a hypergeometric formulation. There is also the asymptotic series, valid for large x
2 2 2 2 2 1 19 25 91 121

2 24 4 4 4 44
2 3

0

exp( ) exp( )I ( ) 1
2 8 48 !(2 )2 2

j j
v j

j

v vv v v v vvx xx
x x x j xx x

~50:6:2
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This series terminates when but the expansion is not exact even then. See Section 54:14 for3 51
2 2 2, , ,v

more information about this series and its relation to the auxiliary cylinder functions fcv(x) and gcv(x).
Equation 50:5:7 shows how a J Bessel function may be expressed as a series of I’s; the converse is also possible:

2

1 2
0

I ( ) J ( ) J J J ( )
1! 2! !

j

v v v v j v
j

x x xx x x
j

50:6:3

50:7 PARTICULAR VALUES

The panel below, in which m 1, 2, 3, , shows the varied values adopted by Iv(x) at x 0:

v > 0 v 0 2m+1 < v < 2m+2 v ±m 2m < v < 2m+1

Iv(0) 0 1 + 0

When 2 < v < 1, the modified Bessel function encounters a zero somewhere in the range 0 < x < 1.4, but we
know of no simple formula expressing the location of such a zero, except for the zero of I 3/2(x), which occurs at the
value, close to 1.1997, of x such that coth(x) x. Similar zeros occur whenever v lies between any two consecutive
negative integers, the more negative being even.

On the other hand, when v lies between two consecutive nonpositive integers, the more negative of which is odd,
the modified Bessel function encounters no zero but rather a minimum. The minimum of I ½(x) occurs where
coth(x) = 2x.

50:8 NUMERICAL VALUES

With keyword I, Equator’s modified Bessel function routine relies exclusively on equation 50:6:1. Negative
arguments are not accepted unless v is an integer.

50:9 LIMITS AND APPROXIMATIONS

Irrespective of its order, the modified Bessel function approaches the same limit
exp( )I ( )

2v
xx x
x

50:9:1

for large positive argument. For small positive arguments, however, the order has a dominant influence on the
function’s magnitude, as the limiting operation

( / 2)I ( ) 0
(1 )

v

v
xx x

v
50:9:2

demonstrates.
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50:10 OPERATIONS OF THE CALCULUS

The derivative of the modified Bessel function may be expressed in several ways:

1 1
1 1

d I ( ) I ( )I ( ) I ( ) I ( ) I ( ) I ( )
d 2

v v
v v v v v

x x v vx x x x x
x x x

50:10:1

Other differentiation formulas include the pleasingly symmetrical result

1
d I ( ) I ( )
d

v v
v vx x x x

x
50:10:2

and Rayleigh’s formula

1 d I ( ) I ( ) 1,2,3,
d

n
v v n

v v nx x x x n
x x

50:10:3

Changing the argument x in Rayleigh’s formula to leads to an expression for multiple differentiation of2 x
that can be generalized to/ 2 I 2v

vx x

/ 2 ( ) / 2d I 2 I 2
d

v v
vx x x x

x
50:10:4

where is not necessarily a positive integer.
Formulas for indefinite integrals of the modified Bessel function include

1 3 5 1 2
00

I ( )d 2 I ( ) I ( ) I ( ) 2 ( ) I ( ) 1
x

j
v v v v v j

j
t t x x x x v50:10:5

1 1 1
21 12

0

I ( )d 2 I ( ) ( ) I ( ) ( )
x

v v
v v v v vt t t v x x x x x vl l50:10:6

1 1
1

0

I ( )d I ( ) 1
x

v v
v vt t t x x v50:10:7

1
1 1

1
0

2I ( )d I ( )
( )

x v
v v

v vt t t x x
v

50:10:8

and
1 1

1
21

0

exp( ) 2exp( ) I ( )d I ( ) I ( )
2 1 (2 1) ( )

x v v
v

v v v
x xt t t t x x v

v v v
50:10:9

Formula 50:10:6 involves the modified Struve function from Chapter 57.
Among definite integrals and Laplace transforms are

1
1 1

0

I ( )I ( )d 1v v
v

xt xt t v
x

50:10:10

2 2
2

/ 2
0

exp( ) I ( )d exp I
4 8 8v v

b bat bt t
a a a

50:10:11

2 2

2 2
0

I ( )exp( )d I ( )

v

v v v

s s b
bt st t bt

b s b
50:10:12
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2

2 2
0

exp( ) I ( )exp( )d exp( ) I ( ) 1
(2 ) ( )

v

v v v

s a b s a b
at bt st t at bt v

b s a b
50:10:13

The derivative of the modified Bessel function Iv(x) with respect to its order is a function of both v and x:
22

0 0

( 1) ln( / 2) ( 1)I ( ) ln I ( )
2 2 ! ( 1) 4 ! ( 1) 2

jv j v

v v
j j

x x v j x x v j xx x
v j v j j v j

50:10:14

This formula plays an important role in the definition of the Macdonald function [Section 51:3]. The form adopted
by this v-derivative when v 0, namely

0
0

I ( ) K ( )v
v

x x
v

50:10:15

is of special interest.

50:11 COMPLEX ARGUMENT

Not only is the modified Bessel function generally complex-valued when its argument is complex but also,
unless the order is an integer, when it is negative. This is discussed in the context of equation 50:2:1, from which
it follows that

I ( ) ( ) I ( ) [cos( ) sin( )]I ( )v
v v vx x v i v x50:11:1

The second equality is a consequence of de Moivre’s theorem, equation 12:11:1. The same theorem permits the
modified Bessel function of complex argument to be defined by replacing the x in definition 50:6:1 by z and making
the development [see Section 12:11]

2 2
2 2 2 2

2 2

cos (2 )
( ) exp (2 )

sin (2 ) arctan / sgn( )
j v j v j v j v

j v x y
z x iy i j v

i j v y x x
50:11:2

whereby the definitions of the real and imaginary parts are found to be
2 2

0 0

cos{(2 ) } sin{(2 ) }Re I ( ) Im I ( )
! ( 1 ) 2 ! ( 1 ) 2

j v j v

v v
j j

j v j vz z
j j v j j v

50:11:3

To prevent these parts having multiple values, the complex plane is cut along the negative branch of the real axis.
The name “Bessel function of imaginary argument” often given to Iv(x) is a misnomer, being literally correct

only when v is a multiple of 4. For real arguments, the relationships between the I and J functions are
I ( ) J ( ) or J I ( )v v

v v v vx i ix x i ix50:11:4

When their arguments are complex, the relationship between the two functions may be thought of as a rotation in
the complex plane, as exemplified in Section 49:11 for the v 0 and 1 cases. To ensure that the functions have
single values only, restrictions need to be made that lead to the following relationships between the Bessel function
and the modified Bessel function of complex argument

1
2

1
2

( ) J ( )
I ( )

J ( )

v
v

v v
v

i iz
z

i iz
50:11:5

where is the phase of z defined as in 50:11:2.
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The real and imaginary parts of the modified Bessel function of a complex argument that has equal real and
imaginary components serve to define two of the Kelvin functions [Chapter 55]

ber ( ) bei ( )I
2 2

v v
v v

x ix x i x
i

50:11:6

where i v is interpretable as cos(v /2) + isin(v /2).
An example of an inverse Laplace transform involving a modified Bessel function of arbitrary order is

2exp( / ) I ( / ) exp( ) exp( / ) I ( / )d J 2
2

i
v v

v
i

b s b s ts b s b ss bt
s i s

I50:11:7

50:12 GENERALIZATIONS

Inasmuch as they solve a differential equation that differs from Bessel’s modified equation 50:3:4 only in having
a nonzero right-hand side, the modified Struve functions [Section 57:13] may be regarded as a generalization of the
modified Bessel function.

50:13 COGNATE FUNCTIONS

There are familial relationships between Iv(x) and all the cylinder functions [Chapters 49 57]. Note in
particular,

[I ( ) I ( )]K ( ) 0, 1, 2,
2sin( )
v v

v
x xx v

v
50:13:1

J ( ) I ( )v
v vx i ix50:13:2

and

3 / 2 3 / 2
1/ 3 1/ 3

2 2Ai( ) I I 0
3 3 3
xx x x x50:13:3

as well as 50:11:6.
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The Macdonald function (Hector Munro Macdonald, Scottish mathematician, 1865 1935) provides a distinct
solution to Bessel’s modified differential equation, 51:3:7, applicable for all orders. Because a Macdonald function
of noninteger order is related so simply, via the equation

I ( ) I ( )
K ( ) 0, 1, 2,

2sin( )
v v

v

x x
x v

v
51:0:1

to the functions of the preceding chapter, this chapter concentrates on the Macdonald functions of integer order, and
particularly on the most important of these, K0(x) and K1(x).

51:1 NOTATION

In addition to the golden arches, the symbol associated with a Macdonald function is Kv(x), where v is the order
and x the argument. Alternative names include the modified Bessel function of the second kind, the hyperbolic Bessel
function of the third kind, the Bessel function of the second kind of imaginary argument, the Basset function, and the
modified Hankel function. The first edition of this Atlas used the “Basset function” name.

Avoid confusion with the unsubscripted K( ) symbol, which is used for the complete elliptic integral
[Chapter 61]. See Section 51:13 for Kiv(x). The kn(x) notation for spherical Macdonald functions is explained in
Section 51:4 below.

51:2 BEHAVIOR

The Macdonald function is infinite when x 0, and generally complex for x < 0. Accordingly, we restrict
attention here and throughout most of the chapter to x > 0.

For positive argument x and positive order v, Kv(x) is a monotonically decreasing function of x and a
monotonically increasing function of v. The dependence on v, however, slackens as x increases and disappears in
the x limit. Some integer-ordered examples are portrayed in Figure 51-1; curves for noninteger orders
interpolate smoothly between those shown. In accord with equation 51:5:1, Macdonald functions of negative order
duplicate their positive-ordered counterparts exactly, and therefore will seldom be addressed specifically.
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51:3 DEFINITIONS

A Tricomi function [Chapter 48] in which the a parameter is a moiety of the c parameter provides one definition
of a Macdonald function

1
2

2
K ( ) U ,1 2 ,2 0

exp( )

v

v

x
x v v x v

x
51:3:1

and another is provided by the approach to infinity of the a parameter of a Tricomi function with a suitable argument:
21K ( ) lim ( ) U ,1 , 0

2 2 4

v

v a

x xx a v a v v
a

51:3:2

Among the many integral representations of the Macdonald function assembled by Bateman and listed by
Erdélyi et al. [Higher Transcendental Functions, Vol 2, pages 82 83] are

1
2(1 2 ) / 21 2

12

exp( )K ( ) d
2 1

v

v v
x xtx t v

v t
51:3:3

and
1
2 1

2(2 1) / 22 2
0

cos( )K ( ) 2 dv
v v

v tx x t v
t x

51:3:4
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Although each of definitions 51:3:1 4 imposes a lower limit on the order v, this is of no practical consequence
because of relation 51:5:1. In each definition v could be replaced by |v|, effectively removing the restriction.

A Macdonald function is related to two modified Bessel functions through the equation

K ( ) csc( ) I ( ) I ( ) 0, 1, 2,
2v v vx v x x v51:3:5

but because the right-hand member of this definition becomes indeterminate when v is an integer, a limit must be
introduced in those cases:

K ( ) lim csc( ) I ( ) I ( ) 0, 1, 2,
2n v vv n

x v x x n51:3:6

An arbitrarily weighted Macdonald function is part of the general solution of each of the differential equations
listed below, the first of which is Bessel’s modified differential equation.

2
2 2 2

1 22

d f d f ( )f 0 f I ( ) K ( )
d d v vx x x v w x w x

x x
51:3:7

2
1 2

2

d f d f(2 1) f 0 f I ( ) K ( )
d d v vv v

w wx v x x x
x x x x

51:3:8

2
1 2

2

d f d f( 1) f 0 f I 2 K 2
d d 2 2

v vv v
w wx v x x

x x x x
51:3:9

These solutions are valid for all values of v.
Semiintegration [Section 12:14] is a powerful method of generating Macdonald functions from exponentials:

1
2

1
20

1 1 d 1 1K exp exp
2 2 d

x
x x x xx

51:3:10

1
2

1
21 3

1 d 1 1K exp
2 d

x
xx xx

51:3:11

1
2

1 14 22 2 23

1 1 d 1 1K 2 exp exp
2 2 d

x
x x xx x

51:3:12

51:4 SPECIAL CASES

Macdonald functions of orders that are odd multiples of ½ are related to the spherical Macdonald functions

1
2

2K ( ) k ( )nn

xx x51:4:1

which are themselves proportional to exp( x) in ways detailed in Section 26:13.
When its order v is or ¼ respectively, the Macdonald function becomes an Airy function [Chapter 56] or a1

3

parabolic cylinder function [Chapter 46]:

1
3

2
3

3 9K ( ) Ai( )
4
xx x x

x
51:4:2
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1 1
4 2

K ( ) D 2x x
x

51:4:3

51:5 INTRARELATIONSHIPS

With respect to its order, the Macdonald function is even, so the order-reflection formula is simply
K ( ) K ( )v vx x51:5:1

The corresponding argument-reflection formula is given in Section 51:11, because Kv( x) is generally complex.
The Macdonald function obeys the recursion formula

1 1
2K ( ) K ( ) K ( )v v v

vx x x
x

51:5:2

Thereby it becomes possible to express any integer-ordered Macdonald function, of order 2 or more, via the formula
(0) (1)

0 1K ( ) Wk K ( ) Wk K ( ) 2,3,4,n n nx x x x x n51:5:3

where the Wk weighting functions differ from the Lommel Wj polynomials discussed in Section 52:5 only in that
all the polynomial terms in have uniformly positive signs; for example(0) (1)Wk and Wkn nx x

4 0 12 3

24 8 48K ( ) 1 K ( ) K ( )x x x
x x x

51:5:4

Formulas involving both the Macdonald and modified Bessel functions include

1 1
1K ( ) I ( ) K ( ) I ( )v v v vx x x x
x

51:5:5

51:6 EXPANSIONS

Based on equations 51:3:5, 43:5:1 and 50:6:1, the average of two convergent power series, namely
2

1 0

1 ( / 4)K ( ) ( ) 0, 1, 2,
2 2 !(1 )

v j

v
j j

x xx v v
j v

51:6:1

represents the Macdonald function of noninteger order. The two series, which differ only in the sign of v, may be
coalesced only if v is an odd multiple of ½. To obtain an expansion for integer orders, one must apply L’Hôpital’s
rule [Section 0:10] to definition 51:0:1. Digamma functions [Chapter 44] appear in the results which, for the zero-
order and first-order cases, are

2

0
0

( / 2)K ( ) ( 1) ln
2 ! !

j

j

x xx j
j j

51:6:2

and
2 1

1
0

1 ( 1) ( 2) ( / 2)K ( ) ln
2 2 !( 1)!

j

j

j j x xx
x j j

51:6:3

The general formula is quite complicated; using Pochhammer polynomials [Chapter 18] it is
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2 21

0 0

( 1)! ( / 2) 1 ( 1) ( 1) ( / 4)K ( ) ln
2 (1) (1 ) ! 2 2 2 (1) ( 1)

nk n jn

n
k jk k j j

n x x j n j x xx
n n n

51:6:4

Alternatively, Kn(x) for n 2, 3, 4, is accessible via equation 51:5:3.
Macdonald functions of integer order may also be expanded as the Neumann series:

2
0 0

1

I ( )
K ( ) ln I ( ) 2

2
j

j

xxx x
j

51:6:5

1 0 1 2 12
1

1 2 1K ( ) I ( ) 1 ln I ( ) I ( )
2 j

j

x jx x x x
x j j

51:6:6

in which is Euler’s constant [Section 1:7]. Higher-ordered functions may be accessed through equation 51:5:3.
The series

2 2 2 2 2 2 1 19 9 251 1 1
2 24 4 4 4 4 4

2 3
0

( ) ( )( )( ) ( )( )( )2 1exp( )K ( ) 1
2 8 48 (1) 2

j
j j

v
j j

v vv v v v v vx x x
x x x x

~51:6:7

is generally asymptotic, but it terminates when |v| is an odd multiple of ½ and under these circumstances it is exact.
If x is positive and v is an integer, series 51:6:7 alternates in sign once j > n, and under these conditions the true value
lies between the last two partial sums of the truncated series. See Section 54:14 for further discussion of this series
and for its relation to the auxiliary cylinder functions fcv(x) and gcv(x).

Series 51:6:7 establishes as an L K 1 1 hypergeometric function [Section 18:14],1/ exp(1/ 2 )K (1/ 2 )vx x x
the simplest instance being

1 1
2 2

0
0

( ) ( )1 1 1exp K
2 2 (1)

jj j

j j

x
x xx

51:6:8

51:7 PARTICULAR VALUES

With real variables, the Macdonald function is supremely bland, lacking any zeros or extrema. For all orders,
the function approaches + as x approaches zero from positive values, monotonically declines as the argument
increases, and asymptotically approaches zero as x . Thus there are no noteworthy particular values, though
the special significance of K0(2) is evident in 44:5:11.

51:8 NUMERICAL VALUES

Equator’s Macdonald function routine (keywordK) provides accurate values of Kv(x) for wide domains of the
variables x and v. Series 51:6:7, aided by the -transformation, is the chosen procedure for larger arguments.
Otherwise, expansion 51:6:1 provides the basis of the algorithm, replaced by 51:6:4 when v is an integer. Of course
51:5:1 caters to negative orders.

51:9 LIMITS AND APPROXIMATIONS

The following two-term approximations apply to the Macdonald function when its argument is close to zero
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v 0 0 < v < 1 v 1 v > 1

Kv(x)
small x

2ln
x

1 1
2 2( ) ( )
( / 2) (2 / )v v

v v
x x

1 ln
2 2
x x

x

21
2 ( )

1
( / 2) 4 4v

v x
x v

As the argument approaches infinity, the Macdonald function approaches zero in an order-independent fashion
such that

lim K ( ) exp( )
2vx

x x
x

51:9:1

51:10 OPERATIONS OF THE CALCULUS

The general differentiation formulas

1 1
1 1 1

d K ( ) K ( )K ( ) K ( ) K ( ) K ( ) K ( )
d 2

v v
v v v v v

x x v vx x x x x
x x x

51:10:1

have the special cases

0 1
d K ( ) K ( )
d

x x
x

51:10:2

and

0 2 1
1 0

d K ( ) K ( ) K ( )K ( ) K ( )
d 2

x x xx x
x x

51:10:3

The formulas

1
d K ( ) K ( )
d

v v
v vx x x x

x
51:10:4

are easily derived.
Arising as special cases of formulas 51:10:8 and 51:10:6 respectively are the indefinite integrals

0 0 1 1 0 1 0
0

K ( )d K ( ) ( ) K ( ) ( ) and K ( )d K ( )
2

x

x

xt t x x x x t t xl l51:10:5

in which ln(x) is the modified Struve function of Section 57:13. Closed form expressions are available for the
integrals of the following products of the Macdonald function and powers

1 1
1K ( )d K ( )v v

v v
x

t t t x x51:10:6

1 1
1

0

K ( )d 2 ( 1) K ( ) 1
x

v v v
v vt t t v x x v51:10:7

and

1 1 1
21 12

0

K ( )d 2 ( ) K ( ) ( ) K ( ) ( )
x

v v
v v v v vt t t v x x x x x vl l51:10:8

The identity K v(x) Kv(x) is useful in extending the above integrals, as well as those that follow. King’s integral
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0 0 1
0

exp( )K ( )d exp( ) K ( ) K ( ) 1
x

t t t x x x x51:10:9

is an important special case of the first formula below

1 1
21

0

1exp( )K ( )d exp( )[K ( ) K ( )] 2 ( 1)
2 1

x
v v v

v v vt t t t x x x x v v
v

51:10:10

1
1

21
exp( )exp( )K ( )d K ( ) K ( )

2 1

v
v

v v v
x

x xt t t t x x v
v

51:10:11

The definite integral of the zero-order Macdonald function over 0 t is /2, this being the v 0 instance
of

0

K ( )d sec 1 1
2 2v

vt t v51:10:12

but for |v| 1 the integral diverges. Definite integrals and Laplace transforms include

1

0

1 1K ( )d 2 0 1
2 2v
v vt t t v51:10:13

0 0 2 2
0

arcosh( / )K ( )exp( )d K ( ) s bbt st t bt
s b

51:10:14

0 0
0

1K exp( )d K exp Ei
2 4 4

b bbt st t bt
s s s

51:10:15

1 1 2 2 2 2 3
0

arcosh( / )K exp( )d K
( ) ( )

s b s bt bt st t t bt
b s b s b

51:10:16

1
2

/ 2
0

sec( )K ( ) K ( )exp( )d exp K 1
2 8 8

v v
v

vbt bt b bst t v
s s st t

51:10:17

and others are accessible via definition 51:3:5 or 51:3:6. See Section 51:13 for multiple integrals of K0(t) and for
the indefinite integral of Kv(t)/t.

51:11 COMPLEX ARGUMENT

Generally, the Macdonald function adopts complex values not only when its argument is complex, but also when
it is merely negative. Expansions 51:6:1 and 51:6:4 remain valid when x is replaced by x+ iy. The complex-plane
relationship of the Macdonald function to regular cylinder functions [Section 49:14] is summarized by

1 (1) 11 1
2 2K ( ) H ( ) J ( ) Y ( )v v

v v v vz i iz i iz i iz51:11:1

It is this relation that explains the modified Hankel function name sometimes given to the K function. In this section,
detailed discussion will be confined to the K0(x + iy) and K1(x + iy) cases.

Figure 51-2 depicts the real and imaginary parts of K0(x + iy). The singularity at the origin is the dominant
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feature of the real part. To avoid multiple values in the imaginary part, it
is necessary to cut the complex plane and, as with the logarithm, the
scission is made conventionally along the negative real axis (x < 0 y).
Figure 51-3 is a polar diagram annotated by the formulas of the functions
obtained by slicing the three-dimensional surface along the two axes and
along certain diagonals. The alternative values listed for K0( x + 0i),
reflect the values on either side of the cut.

This figure illustrates the fact that the functions of Chapters 53 and 54
represent the imaginary and real parts of the Macdonald function of
imaginary argument or, equivalently, after it is rotated by 90o in the
complex plane. Rotation by ±45o generates Kelvin functions [Chapter 55].

Figure 51-4 shows the real and imaginary parts of K1(x + iy) and
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Figure 51-5 is a polar map showing the locations of other functions that
share the same complex landscape. Notice, in contrast to the zero-order
Macdonald function, that it is the real part of K1(iy) that corresponds to the
J Bessel function.

There is a huge number of Laplace inversion formulas involving the
Macdonald functions. Among those listed by Roberts and Kaufman (pages
303 312) are:

0 0 2 2
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i t t
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I51:11:4
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exp( ) u( )K ( ) d K ( ) cosh arcosh( )
2

i

v v
i
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I51:11:5

and

2 2

/ 2

K Kexp( ) 1d exp K
2 8 82

i
v v

v
i

a s a sts a as
i t ts s t

I51:11:6

51:12 GENERALIZATIONS

The Macdonald function may be generalized to the Tricomi function or, more concisely, to the equivalent
Whittaker function [Section 48:12]

1
0,2K exp U ,2 1, W ( )

2 2
v

v v
x xx v v x x

x
51:12:1

51:13 COGNATE FUNCTIONS

The symbol Kiv(x) is used sometimes to indicate the indefinite integral of the Kv(t)/t quotient:

K ( ) dv

x

t t
t

51:13:1

which lacks a closed-form expression. Its zero-order version may be evaluated as the asymptotic series
32 1

0 2
1 23

0

( )K ( ) 1 12 1d exp( ) where
2 8 2

j

j j j j
jx

jt jt x a a a a
t x x j j

~51:13:2

with a0 1 and a1 13/8. Moreover, it has the interesting Laplace transform
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2 2
0K ( ) +4arcosh ( )d

8sx

t st
t

51:13:3

Confusingly, however, a similar symbol Kin(x) also finds use to denote the repeated integrals of the zero-order
Macdonald function

0K ( )[d ]n

x t t

t t51:13:4

The latter construct may be generalized to Kiv(x), where v is positive, but not necessarily an integer, via the
convolution formula

1
0

1 ( ) K ( )d
( )

v

x

t x t t
v

51:13:5

The quantity defined by 51:13:5, or by 51:13:4 if v is the positive integer n, is unrelated to that defined by 51:13:1.
It takes the value when x 0.1 1

2 2/ 2v v



n

The great German astronomer and mathematician, Friedrich Wilhelm Bessel (1784 1846), encountered these
functions in his studies of planetary motion and they have since found very widespread applications. This chapter
addresses those Bessel functions that have integer orders, emphasizing the most important members, J0(x) and J1(x).
Properties that are common to all Bessel functions, irrespective of order, are the subject of the next chapter.

52:1 NOTATION

The symbol Jv(x) is universal for a Bessel function of order v and argument x. This chapter is devoted to Bessel
functions, Jn, of integer order n, a class to which the term Bessel coefficient is sometimes applied. The symbol Rn(x)
will be used to denote the ratio of two successive integer-order Bessel functions

1J ( )R ( ) 0,1,2,
J ( )
n

n
n

xx n
x

52:1:1

Do not confuse the symbol jn(x) that we use for spherical Bessel functions [Section 32:13] with the symbols
introduced in Section 52:7 of this chapter to denote the kth zero and the kth extremum, respectively,( ) ( )j and jk k

n n

of the Bessel function Jn(x). See that section too for the significance of .Jn

52:2 BEHAVIOR

Defined for all real [and complex – see Section 52:11] argument x, Bessel functions of integer order are
oscillatory, with oscillations that become increasingly damped as x approaches large values of either sign. Apart
from the damping, J0(x) somewhat resembles the cosine function [Chapter 32] in taking unity value at x 0 and
acquiring values of zero not far from arguments of ± /2 and ±3 /2. Likewise J1(x) bears some resemblance to sin(x)
in having zeros at x 0 and close to ± and ±2 . Similarities to sinusoids become less pronounced as the order
increases. After the first few orders, Jn(x) retains near-zero values over a range of arguments around x 0 before
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breaking into oscillation. This near-zero hiatus increases in width as n increases. For example, as Figure 52-1
illustrates, J6(x) never exceeds 0.01 in magnitude in the range 2.9 < x < 2.9.

Some regularities are apparent in Figure 52-1. Each local maximum or minimum of J0(x) corresponds to a zero
of J1(x), though this rule has no parallel for higher orders. Notice that for n 1, the argument of each extremum of
Jn(x) corresponds to a point of intersection of the Jn 1(x) and Jn+1(x) curves. Moreover observe that, at each zero of
Jn(x), its contiguous congeners Jn 1(x) and Jn+1(x) have equal magnitudes but opposite signs. Of course, these rules
have their foundations in the systematic differentiation and recursion properties detailed later in this chapter.

For positive x, each Bessel function of integer order n encounters its first (and largest) local maximum at an
argument that is close to n /2. This rule breaks down for larger n, however, and for very large orders the first
maximum of Jn(x) occurs closer to x n. Subsequent to the first maximum, there is a sequence of ever-smaller local
maxima, with interspersed local minima; zeros occur almost midway between each minimum and its adjacent
maxima.

52:3 DEFINITIONS

With f representing either the cosine or sine function, the functions serve as generating functions forf f ( )x t
the Bessel functions of integer order. Thus, even-ordered Bessel functions are generated by



52:3 THE BESSEL FUNCTIONS Jn(x) OF INTEGER ORDER 539

0 2 4 0 2
1

coscos ( ) J ( ) 2J ( )cos(2 ) 2J ( )cos(4 ) J ( ) 2 ( ) cos(2 ) J ( )sin
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j
j

x t x x t x t x jt x52:3:1

while generating functions for those of odd order comprise

1 3 2 1
0

cos cos coscossin ( ) 2J ( ) ( ) 2J ( ) (3 ) 2 ( ) (2 1) J ( )sin sin sin sin
j

j
j

x t x t x t j t x52:3:2

An exponential function generates integer-order Bessel functions of both parities:
2

2 3
0 1 2 32 3

1 1 1 1exp J ( ) J ( ) J ( ) J ( ) sgn( ) J ( )
2

j
j

j

t x x t x t x t x t j x
t t t t

52:3:3

Representations of integer-order Bessel functions as definite integrals include

0

1J ( ) cos sin( ) d 0,1,2,n x x t nt t n52:3:4

/ 2

0

2J ( ) cos cos sin( ) d 0,2,4,n x nt x t t n52:3:5

/ 2

0

2J ( ) sin sin sin( ) d 1,3,5,n x nt x t t n52:3:6

and others arise from specializing those listed in Section 53:3.
One reason for the especial importance of Bessel functions of orders 0 and 1 is that they arise in many practical

contexts as solutions of some of the simplest second-order differential equations, including the following:
2

1 0 2 02

d f d f f 0 f J ( ) Y ( )
d d

x x w x w x
x x

52:3:7
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d f d f f 0 f J 2 Y 2
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x x
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1 1 2 12

d f d f f 0 f J ( ) Y ( )
d d

x x w x x w x x
x x

52:3:9

2

1 1 2 12

d f f 0 f J 2 Y 2
d

x w x x w x x
x

52:3:10

Here the w’s are arbitrary weights and the Y’s are Neumann functions [Chapter 54] of zero and unity orders.
The close relationship of the J0(x) and J1(x) functions to the sinusoids is borne out by the following formulas

for semidifferentiation
1

2

1
20

2 dJ sin
d

x x
x

52:3:11

and semiintegration
1

2

1
21

1 dJ sin
d

x x
xx

52:3:12

1 1
2 2

1 1
2 20

sec( ) d cos(2 ) csc( ) d sin(2 )J ( )
d d

x x x xx
x xx x

52:3:13
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The hypergeometric nature of the composite function, evident in equation 52:6:1, allows the/ 2J 2n
nx x

synthetic conversion [Chapter 43:14] of one Bessel function into another. To convert between integer orders, one
uses

/ 2 / 2

! !1J 2 J 2
1n nn n

n nnx x
nx x

52:3:14

though the procedure applies equally to noninteger orders.

52:4 SPECIAL CASES

There are none. Despite their integer subscript, the functions jn(x) [spherical Bessel functions, Section 32:13]
do not correspond to Bessel functions of integer order.

52:5 INTRARELATIONSHIPS

The formulas from Section 53:5 apply equally whether or not v is an integer. Here, emphasis is on those
relationships that apply only when the order of the Bessel function is an integer of either sign.

The behavior implied by the argument-reflection formula
J ( ) ( ) J ( )n

n nx x52:5:1

is evident in Figure 52-1. Thus a Bessel function of integer order is even or odd, according to the parity of its order.
Moreover, this behavior is echoed by the order-reflection formula:

J ( ) ( ) J ( )n
n nx x52:5:2

These reflection rules, which imply that Jn( x) = J n(x) and that J n( x) = Jn(x), apply only when n is an integer.
Sufficient applications of the recursion formula

1 1
2J ( ) J ( ) J ( ) 0, 1, 2,n n n

nx x x n
x

52:5:3

permit Bessel functions of any integer order to be expressed in terms of J0(x) and J1(x). The general formula, for
Bessel functions of positive integer order, may be written

(0) (1)
0 1J ( ) Wj ( ) J ( ) Wj ( ) J ( ) 2,3,4,n n nx x x x x n52:5:4

where the Wj multipliers are polynomials in 1/x, early members of which are

n 2 n 3 n 4 n 5 n 6 n 7
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4
x 2
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x 3

12 192
x x 2 4
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x x 3 5
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x x x

(1)Wj ( )n x 2
x 2

81
x 3

8 48
x x 2 4

72 3841
x x 3 5

18 768 3840
x x x 2 4 6

288 9600 460801
x x x

These weighting polynomials are given by the explicit formulation
2 2Int[( 2)/2]

( ) 1

0

0 or 12 ( 2 )!( 1)!Wj ( ) ( )
( 2 2 )! !(1 )! 4 2,3,4,

jn k n k
k n

n
j

kn k j n j xx
x n k j j k j n

52:5:5

They are instances of Lommel polynomials [Erdélyi et al. Higher Transcendental Functions, Section 7.5.2. These
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authors use a notation to which ours is related through ].(0) (1)
2,2 1,1Wj ( ) ( ) and Wj ( ) ( )n n n nx R x x R x

The recursion formula 52:5:3 interrelates three Bessel functions, but when written for the quotient defined in
52:1:1, one finds a formula

1

2 1R ( )
R ( )n

n

nx
x x

52:5:6

that relates only two Bessel function ratios, enhancing computational utility as explained in Section 52:8.
There is a plethora of summable series of integer-order Bessel functions. Some of these, such as the trio

1 1
20 2 4 62 J ( ) J ( ) J ( ) J ( )x x x x52:5:7

1 1
0 2 4 62 2J ( ) J ( ) J ( ) J ( ) cos( )x x x x x52:5:8

and
1

1 3 5 7 2J ( ) J ( ) J ( ) J ( ) sin( )x x x x x52:5:9
may be derived by recourse to the generating functions 52:3:1 3. Others, for example the infinite series

1
1 3 5 7 2J ( ) 3J ( ) 5J ( ) 7 J ( )x x x x x52:5:10

1
2 4 6 8 122J ( ) 4J ( ) 6J ( ) 8J ( ) J ( )x x x x x x52:5:11

and
21

2 4 6 8 24J ( ) 16J ( ) 36J ( ) 64J ( )x x x x x52:5:12

follow from the properties of Neumann series [Section 53:14]. Still others, including
2 2 2 2 21
1 2 3 4 2J ( ) J (2 ) J (3 ) J (4 ) 1/ 1 1 1x x x x x x52:5:13

are examples of Kapteyn series [[Erdélyi et al. Higher Transcendental Functions, Volume 2, pages 66 68] The
unexpected sum of the series

2 3

1 2 3 / 2

J 3
J ( ) J ( ) J ( ) J

2! 3! 3
n

n n n n n

xx xx x x x52:5:14

is a consequence of the argument-multiplication formula
2

0

1J ( ) J ( )
2 !

j j
n

n j n
j

b xbx b x
j

52:5:15

A number of general formulas provide sums for infinite series of products of two Bessel functions. The simplest
of these is Neumann’s addition formula

J ( ) J ( ) J ( )n n j j
j

x y x y52:5:16

and it is the source of the duplication formulas
2 2 2 2

0 0 1 2 3J (2 ) J ( ) 2 J ( ) J ( ) J ( )x x x x x52:5:17

1 0 1 1 2 2 3 3 4J (2 ) 2J ( ) J ( ) 2J ( ) J ( ) 2J ( ) J ( ) 2J ( ) J ( )x x x x x x x x x52:5:18
as well as

2 2 2 21 1
20 1 2 32 J ( ) J ( ) J ( ) J ( )x x x x52:5:19

There is another addition formula, going by the name of the Gegenbauer’s addition theorem,
but the addition in this instance is a vector addition. The length in Figure 52-2 is the vector
sum of and . This addition theorem applied to the zero-order Bessel functions states that
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0 0 0
1

J ( ) J ( ) J ( ) 2 J ( ) J ( )cos( )n n
n

n52:5:20

where the figure identifies the angle , equal to arccos{( 2+ 2 2)/2 } by the law of cosines [Section 34:15]. From
the x version of this formula, one obtains 52:5:17 when , 52:5:18 when 0, and

2 2 2 2 2
0 0 2 4 6 8J 2 J ( ) 2J ( ) 2J ( ) 2J ( ) 2J ( )x x x x x x52:5:21

when /2. Lebedev [page 125] discusses generalizations of this theorem.
Series of Bessel coefficients whose arguments are multiples of the zeros, or the extrema, of Bessel functions

arise from the procedure discussed in Section 52:14.

52:6 EXPANSIONS

The power series expansion of Bessel functions of integer order may be written in terms of either factorials or
Pochhammer polynomials:

222 2 2

0 0

/ 4 / 21 / 4 ( ) ( / 2) 1J ( )
2 ! ( 1)! 2!( 2)! !( )! ! (1) ( 1) 4

jnn j n j

n
j j j j

x xx x x xx
n n n j n j n n

52:6:1

The final expression in the equation above exhibits the hypergeometric nature of the Bessel functions. The two most
important instances are

2 4 6 8 2 2

0 2
0 0

( ) ( / 2) 1J ( ) 1
4 64 2306 147456 ( !) (1) (1) 4

jj j

j j j j

x x x x x xx
j
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and
3 5 7 2 1 2

1
0 0

( ) ( / 2) 1J ( )
2 16 384 18432 !( 1)! 2 (1) (2) 4

jj j

j j j j

x x x x x x xx
j j

52:6:3

The simplicity of the hypergeometric representation of the function is responsible for its serving as a basis0J 2 x
function of L K+2 2 hypergeometric functions [Sections 43:14 and 18:14].

With denoting the kth positive zero of Jn(x), as discussed in the next section, expansions as infinite products( )j k
n

are as follows
2 2 2 2

0 (1) (2) (3) ( )
10 0 0 0

J ( ) 1 1 1 1
j j j j k

k

x x x xx52:6:4

2 2 2 2

1 (1) (2) (3) ( )
11 1 1 1

J ( ) 1 1 1 1
2 j j j 2 j k

k

x x x x x xx52:6:5

for the first two integer-ordered Bessel functions.
The Bessel ratio defined in equation 52:1:1 may be expanded in partial fractions

1
2 2 2(1) 2 (2) 2 (3) 2

J ( ) 2 2 2R ( )
J ( ) j j j
n

n
n n n n

x x x xx
x x x x52:6:6

or as a continued fraction of either infinite extent
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2 2 2 21 1 1 1 1
2 4 4 4 4R ( )

1 2 3 4 5n
x x x x xx
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52:6:7

or finite extent
2 2 2 21 1 1 1 1

2 4 4 4 4
1
2

R ( )
1 2 3 1 R ( )n

m n

x x x x xx
n n n m n m n x x

52:6:8

Valid for large argument, the asymptotic expansions of integer-ordered Bessel functions are exemplified by

0 2 3 2 3

cos( ) 1 9 225 sin( ) 1 9 225J ( ) 1 1
8 128 3072 8 128 3072

x xx
x x x x x xx x

~52:6:9

and

1 2 3 2 3

sin( ) 3 15 315 cos( ) 3 15 315J ( ) 1 1
8 128 3072 8 128 3072

x xx
x x x x x xx x

~52:6:10

Note the unusual sequencing of signs. See Sections 53:6 and 54:14 for the general formulations.

52:7 PARTICULAR VALUES

With the sole exception of J0(x), which adopts the value unity at x 0, all Bessel functions of integer order are
zero at x 0, x + , and x . The zero at x 0 has a multiplicity [Section 0:7] of n. That is,

2 1

2 1

d J d J d J d JJ (0) (0) (0) (0) 0 whereas (0) 2
d d d d

n n
nn n n n

n n nx x x x
52:7:1

( )
0j
k ( )

0 0J j k ( )
1j

k ( )
1 1J j k ( )

0j
k ( )

0 0J j k ( )
1j

k ( )
1 1J j k

0.77 0.5191 1.22 0.4028 k 1 0.00 +1.0000 0.59 +0.5819

1.76 +0.3403 2.23 +0.3001 k 2 1.22 0.4028 1.70 0.3461

2.75 0.2715 3.24 0.2497 k 3 2.23 +0.3001 2.72 +0.2733

3.75 +0.2325 4.24 +0.2184 k 4 3.24 0.2497 3.73 0.2333

4.75 0.2065 5.24 0.1965 k 5 4.24 +0.2184 4.73 +0.2070

5.75 +0.1877 6.24 +0.1801 k 6 5.24 0.1965 5.73 0.1880

6.73 0.1733 7.24 0.1672 k 7 6.24 +0.1801 6.74 +0.1735

In addition to any zero at x 0, each Bessel function has an infinite number of other zeros. The distribution of
early positive zeros in a few integer-ordered Bessel functions can be examined in Figure 52-1. Some approximate
numerical values for the zeros of J0 and J1 will be found in the first and third columns of the table above. Notice that
the spacing between consecutive zeros is very close to . We denote the location of the kth positive zero of the
Bessel function of order n by (the notation jn,k is a common alternative). Of course is also a zero, all zeros( )j k

n
( )j k
n

being defined implicitly by
( )J j 0 1,2,3,k

n n k52:7:2

As Figure 52-1 shows, the occurrence of the first zero is increasingly delayed at n increases. For small values of n
and k the crude approximation
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1
( )jJn
k

n

( )
1j k

n
( 1)

1j k
n

( )
1j k

n
( )

1j k
n

( )j k
n

1
( )jJn
k

n

( 1)j k
n

( )j k
n

( 1)
1j k

n

( 1)
1J j k

nn

( 1)
1 1J j k

n n

( ) (
1

)J j J jk k
n n n n

( 1)
1J j k

nn

( 1)J j k
n n

( )J j k
n n

( ( )
1

) JJ j j k
n

k
n n n

( ) 1
2j 2 and smallk

n n k n k52:7:3

holds. To refine this approximation, the Newton-Raphson technique [Section 52:15] may be used.
Equator provides a routine for finding the zeros of Bessel functions of integer order. This procedure makes

repeated use of the Newton-Raphson root-finding method [Section 52:15], in the convenient formulation
( )

( ) ( ) ( )
( ) ( )1 ( )

J j 1j j j 1d j R jJ j
d

k
n nk k km

n n n k km m mk n n nm mn n m
n

x
52:7:4

to improve the mth estimate of the zero in creating the (m +1)th. The elaborate notation represents( )j k
n m

( )j k
n m

the mth estimate of the kth zero of the nth order Bessel function and, of course, means the Bessel function( )J j k
n n m

of order n at that argument. The development of the final expression in 52:7:4 employs equations 52:15:2 and
52:10:1, with definition 52:1:1.

Values of the Bessel function zeros, especially those of J0 and J1, are needed in a number of practical problems.
Often the application requires, in addition to the zero itself, values of a so-called associated value of a zero of the
Bessel function for specified values of n and k. This is the value of the derivative of the nth Bessel function at its
kth zero. The usual notation is , though formula 52:10:1 leads to two equivalent representations:( )J j k

n n

( ) ( ) ( ) ( )
1 1

d J j J j J j J j
d

k k k k
n n n n n n n nx

52:7:5

The intricate notation in 52:7:5 can be confusing. Figure 52-3 may help. It shows features of a typical integer-order
Bessel function Jn in the vicinity of its kth zero, together with its two contiguous congeners Jn 1 and Jn+1.

With the single keyword JZeros, Equator’s zeros and their associated values of the Bessel function routine
sequentially generates the first 9 positive zeros of Jn(x) and their associated values, but the user may replace the “9”
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by any number up to 250. Any positive integer up to n 980 may be input, but no jn exceeding 998 is available.
This routine uses formulas 52:9:3 to provide the initial estimate of the first positive zero of the Bessel(1)

0
j ,n

function of interest. This estimate of is then refined repeatedly via recursion 52:7:4 until no change occurs. The(1)jn

R ratio required by each recursion is computed by Miller’s method, as explained in the next section. Miller’s method
is used also to calculate the associated value of the first zero as , in consequence of equation 52:7:5. After(1)

1J jn n

the first zero and its associated value have been output, the routine moves on to the second zero and its associated
value, then to the third, and so on. The initial estimate of each new zero is provided by the empirical equation

( 1) ( ) 0 191

0
j j 1 0 114 3/ 2k k p
n n k n p n ..52:7:6

The zeros of the Bessel functions are important in some applications but, in certain others, it is the nonnegative
arguments that lead to local maxima or minima of the integer-order Bessel functions that are important. The right-
hand columns of the table shown earlier in this section detail the approximate locations and values of early extrema
of J0 and J1. The argument that generates the kth extremum of the nth Bessel function is denoted here by Thus( )j .k

n

( )d J j 0 1,2,3,
d

k
n n k

x
52:7:7

When n is positive, odd-k extrema are maxima, even-k extrema are minima. Several examples of a Bessel function
extremum, either a local maximum or a local minimum, can be identified in Figure 52-3. The value of the function
itself at a Bessel extremum is commonly known as its “associated value”, though the adjective “associated” in this
name is redundant. Each extremum’s value, for example the kth, , is related through the following relations( )J ( j )k

n n

to the values of its contiguous Bessel functions of the same argument. The general relationship
( ) ( )

( ) ( ) ( )
1 1

1,2,3,j jJ j J j J j
1,2,3,

k k
k k kn n

n n n n n n

n

n n k
52:7:8

is replaced by
( ) ( ) ( 1) (1)

0 0 1 0 1 0 0 0J j J j J j 2,3,4 and J j 1k k k k52:7:9

when n 0. Again, Figure 52-3 may help you to decipher the elaborate notation.
Equator provides an extrema and their associated values of the Bessel function routine with the keyword

Jextrema. The principles on which this operates are analogous to those for the zero-finding routine described earlier
in this section. The same options and restrictions apply. The salient differences are that equation 52:9:4 is used to
find the first extremum and that the equation

( ) ( )
( ) ( )

1 2 ( ) ( ) ( )

j R j
j j 1

j R j j

k k
n n nk k m m

n nm m k k k
n n n nm m m

n

n n
52:7:10

replace 52:7:4 as the means of estimate improvement. The extrema of the Bessel function of zero order are the zeros
of the first-order Bessel function

( ) ( 1)
0 1j jk k52:7:11

and that is how they are calculated by Equator.

52:8 NUMERICAL VALUES

In view of definition 52:1:1, expansion 52:5:7 may be reformulated as the infinite concatenation
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2
0 1 2 3 4 5 6 7

10 0

1 J ( )1 2 1 2R ( )R ( ) 1 R ( )R ( ) 1 R ( )R ( ) 1 R ( )R ( ) 1
J ( ) J ( )

k

k

x x x x x x x x x
x x

52:8:1

Now, recursion 52:5:5 may be rewritten as

1
1R ( )

(2 / ) R ( )n
n

x
n x x

52:8:2

and this formula has the useful property that, provided n exceeds x, an error in Rn induces a smaller error in Rn 1.
This means that including sufficient terms in a curtailed version of concatenation 52:8:1, by setting RK(x) 1, where
K is a large enough even number, provides a formula for calculating J0(x) to any desired accuracy. This, then, leads
to the formula

1 2 3 2 1 0

1 2 3 4 3 2 1 0

R ( )R ( )R ( ) R ( )R ( )R ( )J ( )
R ( )R ( ) 1 R ( )R ( ) 1 R ( )R ( ) 1 2R ( )R ( ) 1

n n n
n

K K K K

x x x x x xx
x x x x x x x x52:8:3

for any Bessel function of integer order. The algorithm is known as Miller’s method [Jeffery Charles Percy Miller,
English mathematician, 1906 1981] and is the procedure adopted by Equator’s Bessel function routine (keyword
J) whenever v is an integer n lying within 999 n 999. The argument x can take any value in the domain |x|
999. Relationships 52:5:1 and 52:5:2 are exploited when x and/or n is negative.

Miller’s method is used by Equator also for refining initial estimates of via equations 52:7:4 and( ) ( )j and jk k
n n

52:7:10.

52:9 LIMITS AND APPROXIMATIONS

Apart from the first few members of the family, Jn(x) adopts increasingly positive values, as the argument
increases from zero, as long as x remains sufficiently less than n. In this region, the Bessel function behaves as a
power function, pursuing the approximation

1J ( ) 2 1 5
! 2

n

n
xx x n n

n
52:9:1

Based on McMahon’s expansion (Percy Alexander McMahon, 1854 1929, English mathematician born in
Malta), the approximation

2 2
( )

2 2

8 2 28 31j 1 1 (4 2 1) large
4 3

k
n

n n k n k52:9:2

to the Bessel zeros is excellent when k >> n, but even for k 1, n 10, it gives an answer that is adequate to serve
as the initial estimate for a sequence of Raphson rule [Section 52:15] improvements. For large orders, the location
of the first zero is well approximated by the empirical formula

(1) 1/ 3 1/ 3j 1.8558 1.055 large positiven n n n n52:9:3

Clearly, this approximation fails for n 0, but even for n 1 it is good enough to initiate an improvement sequence.
Though approximation 52:9:2 is designed to find zeros, it provides good estimates of the kth Bessel extremum if the
definition of is changed to (4k + 2n 3). Likewise, modification of 52:9:3 to

(1) 1/ 3 1/ 3j 0.8086 0.072 large positiven n n n n52:9:4

provides an excellent approximation of the first Bessel extremum (always a maximum). Abramowitz and Stegun
[Section 9.5] list additional terms for formulas 52:9:2 4.

For very large arguments the oscillations of the Bessel functions become sinusoidal. For example
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1
0 4

1
1 4

52:9:5 J ( ) 2 / sin( )

52:9:6 J ( ) 2 / sin( )

x x x
n

x x x

52:10 OPERATIONS OF THE CALCULUS

Beyond those listed here, other formulas for differentiation and integration come from specializing results from
Section 53:10 to integer orders.

The formulas

0 1
d J ( ) J ( )
d

x x
x

52:10:1

and

1 0 2
1 0

d J ( ) J ( ) J ( )J ( ) J ( )
d 2

x x xx x
x x

52:10:2

are important special cases of the differentiation formula

1 1
1 1

d J ( ) J ( )J ( ) J ( ) J ( ) J J ( )
d 2

n n
n n n n n

x x n nx x x x
x x x

52:10:3

The coefficients occurring in the numerators of the formulas
2

2 2
2 2

d J ( ) 2J ( ) J ( )J ( )
d 2

n n n
n

x x xx
x

52:10:4

and
3

3 1 1 3
3 3

d J ( ) 3J ( ) 3J J ( )J ( )
d 2

n n n n
n

x x xx
x

52:10:5

for multiple differentiation will be recognized as binomial coefficients [Chapter 6] of alternating sign, and this
property generalizes.

Struve functions [Chapter 57] occur in the formula for integration of even-ordered Bessel functions

1 0 0 1 0 1 3 1
0

J ( )d J ( )h ( ) J ( )h ( ) J ( ) 2 J ( ) J ( ) J ( ) 0,2,4,
2

x

n n
xt t x x x x x x x x x n52:10:6

but not in those for odd integer orders

0 2 4 1
0

J ( )d 1 J ( ) 2 J ( ) J ( ) J ( ) 1,3,5,
x

n nt t x x x x n52:10:7

These integration formulas are simpler when n 0 or 1, for then the terms in braces are zero. Other useful indefinite
integrals include

2
0

2
1

J ( ) 2 1 1d ln
2 ( !) 4

j

jx

t xt
t x j j

52:10:8

1
0 1 1 0 0 1

J ( ) d 1 J ( ) J ( ) J ( )h ( ) J ( )h ( )
2x

t xt x x x x x x x
t

52:10:9
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and

0 1 0
0

J ( ) J ( )d J ( ) cos( )
x

t x t t x x52:10:10

The operations of semidifferentiation and semiintegration [Section 12:14] generate sinusoids when applied to
Bessel functions of appropriate argument, as in the examples

1
2

1
2 0

cosd J
d

x
x

x x
52:10:11

and
1 1

2 2

1 1
2 20 1

sin1 d dJ J
2 d d

x
x x x

x x x
52:10:12

Definite integrals and Laplace transforms include

0

J ( )d 1 0,1,2,n x x n52:10:13

0

J ( ) 1d 1,2,3,n bt t n
t n

52:10:14

1
2

0 2 2
0

0
cos( ) J ( )d

( )

b
t bt t

b b
52:10:15

0 0

0

0 01 J ( ) J ( )
d

ln( / ) 0

bt bt
t

t b b
52:10:16

0
2 2

0

J ( ) exp( )dt bt abt
bt a

52:10:17

(2 1) / 22 2
0

(2 1)!!J ( )exp( )d J ( )
n

n n
n n n

n bt bt st t t bt
s b

52:10:18

and

1 1

0

J J 2exp( )d 1 exp
4

bt bt bst t
st t b

52:10:19

With n 0 or 1, Erdélyi et al. [Tables of Integral Transforms, Volume 2, Pages 9 21 ] list 79 transforms of the
form

0

J ( )f( )dnyt yt t t52:10:20

These (or sometimes the corresponding integrals without the factor) are known as Hankel transforms of f(t).yt
Some examples in which the order is arbitrary will be found in Section 53:10.
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52:11 COMPLEX ARGUMENT

There are no discontinuities or singularities in the complex plane for
any integer-ordered Bessel function, which means that they are classified
as entire functions. Figure 52-4 shows the magnitudes of the real and
imaginary parts of the function for values of the real and0J ( )x iy
complex variables in the domain to + . A careful comparison of
Figure 52-4 with Figure 49-2, shows that, for both the real and the
imaginary parts, the Bessel and modified Bessel functions, each of order
zero, may be interconverted merely by rotation through an angle of 90o.
The reason is clear on study of the polar diagrams Figures 52-5 and 49-3:
they are identical apart from orientation. Figure 52-5 shows how several
functions arise as specializations of J0(z) in the complex plane because

0

31
0 0 4 4

0 0 1
0 2

3 1
0 0 4 4

J ( ) 0 or

ber ( ) bei ( ) or
J ( ) J exp( )

I ( )

ber ( ) bei ( ) or

i
z i

i

52:11:1

The ber and bei functions are addressed in Chapter 55.
Figures 52-6 and 52-7 are the analogues of Figures 52-4 and 52-5 for the first-order Bessel function. Again

there is rotational correspondence between the three-dimensional diagrams and those of Chapter 49 but now a 90o

rotation brings coincidence between the real moiety of Figure 52-6 and the imaginary moiety of Figure 49-4, and
vice versa. The functions sharing a complex plane with J1( ) are indicated in the polar Figure 52-7. Again, a single
three-dimensional landscape incorporates the two-dimensional terrain of several functions.

For general integer order, Bessel functions of complex argument and integer order are related to other cylinder
functions through the equations
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(1)

(2)

I ( )

H ( ) Y ( )
J ( ) H ( ) Y ( )

1 1ber bei
2 2

n
n

n n

n n n

n n

i iz

z i z
z z i z

i iz i z

52:11:2

The and Yn are Hankel [Section 49:14] and Neumann [Chapter 54]( )Hn

functions, respectively.
The three-dimensional diagrams in this section focus on the region

near the origin. For a more global viewpoint, see Section 53:11.
Likewise, see Section 53:11 for inverse Laplace transforms, which apply
equally to integer and non-integer values of the order v.

52:12 GENERALIZATIONS

The next chapter addresses the generalization of the order of Bessel functions to arbitrary real values. The
general Jv(x) specializes to Jn(x) when v becomes an integer, but another function also specializes to Jn(x) when its
order v becomes an integer. This is the Anger function. For arbitrary order, this function is defined by the integral

0

1 cos sin( ) dx t vt t52:12:1

which becomes identical with definition 52:3:4 when v is an integer. Closely related is the Weber function

0

1 sin sin( ) dx t vt t52:12:2
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See Erdélyi et al. [Higher Transcendental Functions, Section 7.5.3] or Thompson [Section 15.2] for further
information on the Anger and Weber functions, neither of which is addressed further in this Atlas.

The function is the prototype, or basis function [Section 43:14] of the L K+2 2 family of0J 2 x
hypergeometric functions and, from this viewpoint, all the functions in the right-hand column of Table 18-5 represent
generalizations of the zero-order Bessel function.

52:13 COGNATE FUNCTIONS

The Struve functions [Chapter 57] have much in common with Bessel functions.
In common with many other functions in this Atlas, Bessel functions are complemented by a pair of auxiliary

functions. These describe the properties of Bessel functions at large arguments more efficiently than do the formulas
for the J functions themselves. They are symbolized fcv(x) and gcv(x) and are named auxiliary cylinder functions,
because they serve all the functions in Chapters 49 56, and not solely the Bessel functions. Read about these
functions in Section 54:14.

52:14 RELATED TOPIC: the orthogonality of Bessel functions

An important definite integral involving the product of two Bessel functions is

2 2
1

2
0 22 2

2

1 d J d JJ ( ) ( ) J ( ) ( )
d d

J J d
1 d J ( ) ( ) J ( )

2 d

n n
n n

n n

n
n

t t
t t t t

n
t

52:14:1

On choosing and to be any two of the zeros of the nth-order Bessel function, say and , the upper and( )j k
n

( )j l
n

lower right-hand options of 52:14:1 become, respectively, zero and half the square of the associated value of the
zero. Thus

1
( ) ( )

2( )1
0 2

0
J j J j d

J j
k

n n n n k
n

k
t t t t

k
52:14:2

In the terminology discussed in Section 21:14, the functions , which we now(1) (2) (3)J j , J j , J j ,n n n n n nt t t
abbreviate to 1(t), 2(t), 3(t), , are seen to be orthogonal on the interval 0 t 1 with a weight function of
w(t) t.

Hence, by a development that parallels the one in Section 21:15, many functions f(x) defined in the 0 x 1
domain may be expanded in the orthogonal series

( )
1 1 2 2 3 3

1 1
f( ) ( ) ( ) ( ) ( ) J j k

k k k n n
k k

x c x c x c x c x c x52:14:3

where
1

( )
2( )

0

2 f( ) J j d
J j

k
k n n

k
n

c t t t t52:14:4
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While this orthogonality expansion may be based on any integer-order Bessel function, J0 is often the most
convenient.

Instead of choosing the and in 52:14:1to be the zeros of a Bessel function, one may opt to make them
extrema. Then the analogue of 52:14:2 becomes

1
( ) ( )

22( ) ( )1
0 2

0
J j J j d

1 / j J j
k

n n n n k k
n n

k
t t t t

n k
52:14:5

Accordingly, orthogonal expansions may be developed from this basis too. In fact, as Spiegel [pages 144 145]
shows, the orthogonality of Bessel functions may be generalized more widely still.

52:15 RELATED TOPIC: root-finding by the Newton-Raphson method

Frequently a need exists for numerical inversion; that is, to find the numerical value of a function’s argument
at which the function equals a known number, c. The sought value, denoted r in this section, is called a root of the
equation g(x) c or, if c 0, a zero of the function f. When no analytical method of finding r exists, iterative
methods must be used and there follows a description of one of the commonest numerical methods, attributed to Sir
Isaac Newton (1643 1727) and Joseph Raphson (1648 1715), contemporary English mathematicians who
discovered the method independently.

The root of g(x) c is, of course, the zero of the difference function f(x) g(x) c, so it suffices to couch our
description as one of finding a number r such that f(r) 0, to whatever degree of accuracy is desired. To carry out
the Newton-Raphson method requires three items:

(a) a method of calculating f accurately,
(b) a method of calculating the derivative df/dx accurately, and
(c) a preliminary estimate r0 of the zero.

How close to r the estimate r0 needs to be depends on the shape of the function f. The estimate should certainly be
closer than it is to any other zero, or to any extremum, that f(x) may possess.

The method is iterative: one first uses r0 to find a better approximation r1, then improves this to r2, and so on.
The Newton-Raphson method is based on the reasonable premise that the third and subsequent right-hand terms in
the Taylor expansion [Section 0:5]

2 2

2

d f ( ) d ff( ) f( ) ( ) ( ) ( ) 0,1,2,
d 2 d

m
m m m m

r rr r r r r r m
x x

52:15:1

will be small if rm is sufficiently close to r. Moreover, by definition, the left-hand term is zero. It follows that
f( )

(d f/ d )( )
m

m
m

rr r
x r

52:15:2

This approximation to r is assigned to be the next estimate rm+1:

1
f( ) 0,1,2,

(d f/ d )( )
m

m m
m

rr r m
x r

52:15:3

and the procedure is repeated. Convergence is generally very rapid. Formula 52:15:3 is named the Raphson rule
and it finds widespread application in the location of such zeros as those of the Bessel function.

There are pitfalls in blindly using the Newton-Raphson method. Press et al. [Chapter 9] give a very readable
description of these and of alternative root-finding procedures.
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The Bessel family of functions are among the most fructuous. The classic assemblage of information on the
many valuable properties of these functions, as well as other cylinder functions, is contained in the copious treatise
of the English mathematician George Neville Watson (1886 1965). The preceding chapter deals with the special
properties of those Bessel functions for which the order v is an integer; here v is any real number.

53:1 NOTATION

The symbol Jv(x) is universal for a Bessel function of order v and argument x. As explained in Section 49:14,
the name “Bessel function” is often taken to apply generally to all or many of the cylinder functions [those of
Chapters 49 56]. When that broadened nomenclature is espoused, the J function is said to be a Bessel function of
the first kind. In this Atlas, however, “of the first kind” is redundant because, in the absence of a “modified”
qualifier, Bessel’s name is attached here only to those cylinder functions that are denoted by the letter J; that is, to
the functions addressed in this chapter and the preceding one.

A change of argument to often simplifies formulas. Accordingly, the adoption of Clifford’s notation2 x
/ 2C ( ) J 2v

v vx x x53:1:1

(William Kingdon Clifford, 1845 1879, English philosopher, mathematician, and writer of fairytales) frequently
abbreviates the algebra. One advantage of Clifford’s notation is that, whereas Jv(x) is generally defined as a real
function only for x 0, Cv(x) is real for all values of its argument. Nevertheless this notation is not used in the Atlas,
because J is traditional.

53:2 BEHAVIOR

Except when v is an integer, the Bessel function Jv(x) is complex for negative argument. Therefore, other than
in Section 11, x 0 is the only argument range considered in this chapter, and the only range depicted in Figure 53-1.
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As this diagram suggests, there is an infinite number of alternating zones of positive and negative values crossing
the x,v plane diagonally. This implies that Jv(x), viewed as a function of either x or v, displays an infinite number
of zeros, separated by local maxima and minima. The only discontinuities occur on the x 0 boundary and even
there, only when v encounters a nonpositive integer.

At zero argument, the Bessel function is zero when v > 0. In this range of orders, and with x positive, there is
no conspicuous distinction between integer-ordered and noninteger-ordered behavior. Thus the general pattern
discussed in Section 52:2 carries over to noninteger v’s. The Bessel function is confined in value to the narrow range

0.403 < Jv(x) 1 whenever v is positive. The same range of magnitude applies when the order has one of the values
0, 1, 2 . Bessel functions of these nonpositive integer orders merely duplicate those of the corresponding
positive order, though with a sign change if v is odd. In contrast, however, when v is a negative noninteger, Jv(x)
comes to acquire a limitlessly large magnitude, positive or negative, as x 0 is approached.

At constant small v, Jv(x) is oscillatory throughout the whole x > 0 domain. As v takes larger values, of either
sign, there develops a zone, extending approximately over 0 < x < |v|, in which the Bessel function behaves
monotonically, prior to breaking into oscillations. Once they are established, the oscillations steadily attenuate,
remaining centered about a magnitude of zero.
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53:3 DEFINITIONS

The function is a generating function for the Jv(x), Jv+1(x), Jv+2(x), set of Bessel functions:1
2( ) / (1 )vx v

1 1
2 2

0
J ( )

(1 ) !

v j

v j
j

x x
x

v j
53:3:1

The related expansion 53:6:1 often serves as a definition.
Bessel functions may be defined by a number of definite integrals, including

1
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1
02

J ( ) cos cos( ) sin ( )d
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x
x x t t t

v
53:3:2

1
2

11
22

1
02

2
J ( ) [1 ] cos( )d

v
v

v

x
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and

1
221

12

2 2 / sin( )J ( ) d
[ 1]

v

v v

x xtx t
v t

53:3:4

These do not necessarily converge for all orders. Over a dozen additional integral representations are given by
Gradshteyn and Ryzhik [Section 8.41].

The solution to an important differential equation, called Bessel’s equation:
/ 22

22 2 2 / 2
12 / 2

2

Y ( )d df d f d f ( )f f J ( )
d d d d J ( )

v
vv

v v
v

w x x
x x x x v x w x x

x x x x w x x
53:3:5

is another way of defining the Bessel function and this is how the function often arises in practice. A second
differential equation, the Bessel-Clifford equation, has a similar solution

/ 2
2 2/ 2

12 / 2
2

Y 2d f df(1 ) f 0 f J ( )
d d J 2

v
vv

v v
v

w x x
x v w x x

x x w x x
53:3:6

In these solutions the w’s are arbitrary weights. Very many other second-order differential equations are solved by
the Bessel function. In fact any differential equation that can be manipulated into the form

2 2 22 2 2 2
12

2

Y ( )d f d f(1 2 ) f 0 f J ( )
d d J ( )

a p
vp a p

v a p
v

w x bx
x a x a v p bpx w x bx

x x w x bx
53:3:7

for any real values of a, b, v and p, is solved by the arbitrarily weighted combination of cylinder functions shown.
A Bessel function also solves another very general differential equation

1/ 22
22 (1/ ) 2 1/ 2

12 1/ 2
2

Y 2d f f 0 f J 2
d J 2

v
vv v

v v
v

w x vax
a x w x vax

x w x vax
53:3:8

Two alternatives are shown for the second solution in the four previous equations. The first, incorporating a
Neumann function [Chapter 54], is valid unreservedly. The second alternative applies only if v is not an integer.

The differintegration [Section 12:14] formula
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1
2

1
2

1

d sin J
2d

v v

vvv
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which is valid for all v, illustrates the close relationship of the Bessel function to the sine function. Any Bessel
function may be synthesized [Section 43:14] from the zero-order case:

0 / 2

(1 )1J 2 J 2
1 vv

vx x
v x

53:3:10

Both these formulas benefit from being redrafted in Clifford’s notation [Section 53:1].

53:4 SPECIAL CASES

The special properties of Bessel functions of integer order are addressed in Chapter 52.
Bessel functions of an order that is one-half of an odd integer, positive or negative, are known as spherical

Bessel functions. They are represented by a lower-case symbol

1
2

J ( ) j ( ) 0, 1, 2,
2 nn x x n

x
53:4:1

and are the subject of Section 32:13. As well, such Bessel functions are coincident in magnitude with Neumann
functions [Chapter 54] of the same argument but of an order of opposite sign

1 1
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J ( ) ( ) Y ( ) 0, 1, 2,n
n nx x n53:4:2

When the order is or , the Bessel function is related, somewhat tortuously, to the Airy functions Ai and1
3

1
3

Bi of Chapter 56:
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Similarly, the Bessel functions of order or are expressible through derivatives of the Airy functions:2
3

2
3

2
3

3 d Bi d AiJ ( ) ( ) 3 ( )
2 d d

x x x
x x x

53:4:4

The recursion formula 53:5:3 allows expressions for such Bessel functions as and to be constructed4
3

J ( )x 5
3

J ( )x
from 53:4:3 and 53:4:4.

53:5 INTRARELATIONSHIPS

The reflection-about-zero property, applicable to both argument and order, that is such a simplifying feature
when the order of a Bessel function is an integer, does not extend to noninteger orders. Order-reflection generalizes
to the relationship

J ( ) cos( ) J ( ) sin( )Y ( )v v vx v x v x53:5:1

that applies for all v, reducing to J v(x) ( )v Jv(x) when v is an integer. The similar formula

1 1
2sin( )J ( ) J ( ) J ( ) J ( )v v v v

vx x x x
x

53:5:2

likewise simplifies when v is an integer.
Bessel functions of all orders obey the recursion formula
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53:5:3

and Neumann’s addition theorem
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n
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The argument-multiplication formula
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may be reformulated as
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and setting a 1 reveals that
2 3
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A summation formula is
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When v 0 or 1, this reduces to 52:5:7 or 52:5:10.

53:6 EXPANSIONS

Bessel functions are expansible as the power series
2 4 2
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that is convergent for all orders, though some leading terms vanish if v is a negative integer. That this is an L K+2
2 hypergeometric series [Section 18:14] is evident by rewriting the sum as in
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As is often the case, this last expression may be written more economically in Clifford’s notation [equation 53:1:1].
The product of two Bessel functions may also be expanded hypergeometrically

1 1 1 1 1
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in this case with L K+2 4.
Any Bessel function of positive order may be expanded as an infinite product
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where is the kth positive zero of the function.( )j k
v

Though they are more useful for integer orders, equations 52:6:6 8 remain valid when n is replaced by v.
When x, but not |v|, is large, Hankel’s asymptotic expansion

1 1 1 1
2 4 2 4

2J ( ) fc ( )cos gc ( )sinv v vx x x v x x v
x

53:6:5

is useful, where the auxiliary cylinder functions fcv and gcv are defined and discussed in Section 54:14.

53:7 PARTICULAR VALUES

At zero argument, the Bessel function acquires one of four values
2 1, 4 3, 6 5,

1 0, 3 2, 5 4,

1 0J (0)

1, 2, 3,
0

0

v

v v v

v v v

v

v

v

53:7:1

with discontinuities at each nonpositive integer. All Bessel functions approach zero as x .
The argument values that cause Jv(x) to adopt a magnitude of zero are known as the zeros of the Bessel function.

The kth such value is denoted in this Atlas.( )j k
v

( )J ( j ) 0 1,2,3,k
v v k53:7:2

There is an infinite number of such zeros. The allocation of the number k may easily mislead. As 53:7:1 shows, the
Bessel function is often zero at x 0, but this is not counted in numbering the zeros (or you could consider it the (0)jv

member). Thus is the “first” positive value of x for which Jv(x) 0. This is an appropriate designation for v(1)jv

1 but may be confusing for v < 1 because not all zeros exist (as real values) in this range of orders. As an
example, for 4 < v < 3 the zeros exist, but there is no real . For nonnegative(4) (5) (6)j , j , j ,v v v

(1) (2) (3)j , j , j ,v v v

integer order the numbering of zeros is straightforward; such zeros and their associated values are discussed at some
length in Section 52:7. The same principles apply to noninteger orders, but the Equator routines are not applicable
unless v is a positive integer. Explicit formulas exist for all zeros when the order has one of the four values listed
below. See the table in Section 32:13 for the origin of these formulas.

3
2v 1

2v 1
2v 3

2v

( )j k
v [Section 34:7]1( 1)k

1
2k k [Section 34:7]r 1k

The symbol denotes the kth extremum of Jv(x). Such extrema are discussed in Section 52:7 for the cases( )j k
v

of nonnegative integer v and the same principles carry over to noninteger orders, with the caveat that small-k extrema
may not exist when v is a negative noninteger.

53:8 NUMERICAL VALUES

Equator provides a Bessel function routine (keyword J) that caters to both integer and noninteger values of the
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order v. See Section 52:8 for the algorithm adopted in the former case.
Equator uses three distinct procedures when the order is not an integer. For negative noninteger orders, either

series 53:6:2 is summed over a sufficient number of terms, or equation 53:6:5 is used to calculate Jv(x) from the
auxiliary cylinder functions fcv(x) and gcv(x), aided by an -transformation [Section 10:14].

Analogous to Miller’s method [Section 52:8], but based on equation 53:5:8, the formula

1
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1 2 ( 2) / 2 3 4 2 3 2 1 1 0
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x

x v
x x x x x x x x

53:8:1

is used by Equator for positive noninteger orders. Here and, starting with Rv+K(x) 1, each( 2 )( ) /( ! )k kv k v k v
Rv+k(x) is calculated from Rv+k+1(x) by recursion 52:8:2 which applies equally to integer and noninteger orders.

53:9 LIMITS AND APPROXIMATIONS

As its argument approaches zero, the value of the Bessel function of order v is dominated generally by the first
term in expansion 52:6:1

1J ( ) 0 1, 3, 5,
(1 ) 2

v

v
xx x v

v
53:9:1

However, when v is a negative integer, the first v terms are nullified by the presence of the denominatorial gamma
function. The (1 v)th term is therefore dominant and this leads to the limit

1J ( ) 0 1, 2, 3,
( )! 2

v

v
xx x v

v
53:9:2

which duplicates 53:9:1 if v is even, but is its negative if v is odd.
For very large arguments the Bessel functions become sinusoidal with a period of 2

2J ( ) cos
2 4v

vx x x
x

53:9:3

This formula applies as the argument x becomes large, the order remaining modest. Conversely, if the order v
increases, with the argument remaining modest

1J ( )
22

v

v
exx v
vv

53:9:4

where e is the base of natural logarithms.

53:10 OPERATIONS OF THE CALCULUS

The derivative of the Bessel function may be expressed in three equivalent ways:

1 1
1 1

d J ( ) J ( )J ( ) J ( ) J ( ) J ( ) J ( )
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v v
v v v v v

x x v vx x x x x
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53:10:1

Moreover
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Apart from integer order cases [for which see 52:10:5 and 52:10:6] indefinite integrals of Jv(x) cannot be
expressed in terms of a finite number of named functions. One has, however
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Over 100 pages of Gradshteyn and Ryzhik’s classic compendium are devoted to definite integrals of Bessel and
other cylinder functions. A few representative Bessel function entries are

0

1J ( )d 1v bx x v
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Definite integrals of the form

0 0

f( ) J ( )d or f( ) J ( ) dv vt yt t t yt yt t53:10:10

are known as Hankel transforms and copious tables are given by Erdélyi et al. [Tables of Integral Transforms,
Volume 2, Chapter 8]. Two illustrative examples are
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Laplace transforms involving Bessel function are also plentiful and include
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and
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The definite integral
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may be regarded as a Hankel transform, a Fourier transform, a Laplace transform, or merely as a definite integral.
The formula describing the operation of differintegration [Section 12:14]

/ 2 ( ) / 2d J 2 J 2
d

v v
v vx x x x

x
53:10:18

is another that benefits from being expressed in Clifford’s notation, 53:1:1.

53:11 COMPLEX ARGUMENT

The Jv(x+iy) function has an infinity of zeros and they are all real if v 1. This reality extends to all negative
integer orders. However, a few of the zeros, in fact 2Int( v) of them, are complex when v is negative and noninteger.
These zeros are conjugate; that is, if one lies at the point a + bi in the complex plane, there is another zero at z
a bi. Two of those zeros are purely imaginary if Int( v) is odd.

Unless v is an integer, the Jv(x+ iy) surface in the complex plane must be cut to avoid multiple values. The cut
is customarily made along the negative reach of the real axis. The depth of the cut is not constant, being given by

J ( 0) J ( 0) 2 sin( ) J ( ) 0v v vx i x i i v x x53:11:1
Two inverse Laplace transforms are:
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53:12 GENERALIZATIONS

Bessel functions are the simplest L K+2 2 hypergeometric functions. Each of the functions in the right-hand
column of Table 18-5 could therefore claim to be a generalized Bessel function.
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53:13 COGNATE FUNCTIONS

Other cylinder functions are related to Bessel functions through the complex-argument formulas that follow.
Some of these relationships require that v not be an integer
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Y ( ) cot( ) J ( ) csc( ) J ( )v v vz v z v z53:13:3
(1)H ( ) [1 cot( )]J ( ) csc( ) J ( )v v vz i v z i v z53:13:4
(2)H ( ) [1 cot( )]J ( ) csc( ) J ( )v v vz i v z i v z53:13:5

1 1 1ber J +J Re( ) Im( )
2 2 2v v v

i iz z z z z53:13:6

1 1 1bei J J Re( ) Im( )
2 2 2v v v

i iz z z z z
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When v is an integer, the subtractions in equations 53:13:2 4, and the addition in 53:13:5, must be replaced by
limiting operations; for example

J ( ) J ( )K ( ) ( ) lim
2

n v v
n v n

n iz izx i
v

53:13:8

The auxiliary cylinder functions fcv(x) and gcv(x), discussed in Section 54:14, are useful cognate functions.

53:14 RELATED TOPIC: Neumann series

If, for some restricted or unrestricted range of its argument x, a function f(x) is expansible as a Maclaurin series
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1 d ff( ) where (0)
! d

j
j

j j j
j

x a x a
j x

53:14:1

then it may also be expanded as the so-called Neumann series

0

2f( ) J ( )
v

k v k
k

x b x
x

53:14:2

The choice of v is arbitrary, except that negative integers are forbidden. The relationship between the b coefficients
in the Neumann series and the a coefficients in the Maclaurin series is

2

2

0,2,4, , even2
( )

! 1,3,5, , odd

k jj

k jk j
j

j k kv
b v k a

j k k
53:14:3

Equations 32:6:9, 32:6:10, 39:6:7, and 52:5:10 are examples of Neumann series.
Setting f(x) to unity in 53:14:2, leads to the formula
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for the expansion of an arbitrary power. Equations 52:5:7, 52:5:10 and 52:5:12 are simple examples.
An alternative means of converting a power series into a series of Bessel functions employs the modified

Neumann series. The replacement series is

1
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0
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k k v

k k v
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x c x x v53:14:5

The c coefficients are related to those of the power series through
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k j
j

j vc a
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53:14:6

Formulas 53:5:5 and 53:5:7, as well as 52:5:15, originate in this way.
In mathematical physics it is often useful to expand pertinent functions in terms of cylinder functions. The

expansions discussed in this section provide ways of doing this. Another avenue relies on the orthogonality of Bessel
functions, as outlined in Section 52:14.

53:15 RELATED TOPIC: discontinuous Bessel integrals

By and large, integration is a “smoothing” operation. Thus, if a function has discontinuities, these are often
ameliorated when the function is integrated. It is, therefore, surprising to find that certain integrals may actually
generate discontinuities. Such is the case for the definite integral on the left-hand side of equation 53:15:1, which
evaluates to two quite different Gauss hypergeometric functions [Chapter 60] according to the value of the
parameter x.
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53:15:1

In this formula, which involves gamma functions galore, we are using the convenient abbreviation
1

2
v

53:15:2

Inasmuch as equation 52:10:13 is a special case of 53:15:1, as are the formulas1/ 2cos( ) / 2 J ( ),t t t
2

2 2
0

cos arcsin( ) / 1 0 1
cos( ) J ( )d 1

sin( / 2) / 1 1 1
vv

v b b b
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v b b b b
53:15:3

and
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Figure 53-2 is a cross-sectional diagram of a system that will furnish an example of
the application of such discontinuous integrals to a physical problem. Consider the steady
state (the ultimate condition when changes no longer occur at finite distances) for a
medium of thermal conductivity k in contact with the circular end of a heated conductive
rod (of radius a) and with the coplanar end of the insulator that encases the cylindrical
rod. The whole system was originally at a lower temperature T0, but the end of the rod
has maintained a constant temperature T1 for so long that the temperature distribution in
the vicinity of the rod is virtually unchanging.

The thermal conditions within the conducting medium obey the steady-state version of Fourier’s law [Section
46:15] which, in cylindrical coordinates [Section 46:14], is the differential equation

2 2
2

2 2

T 1 T T TT 0k
r r r z t

53:15:5

because symmetry allows the -coordinate to be ignored. T(r,z) is the temperature of the medium, a function of the
r and z coordinates. Of the three boundary conditions, two reflect the fact that, remote from the rod, the medium
will have retained its original temperature

0

T( , )

T( , )

z
T

r
53:15:6

while the third asserts that the medium in contact with the hot rod will acquire its temperature

1T( ,0)r a T53:15:7
It is straightforward to demonstrate that the differential equation and the boundary conditions in 53:15:6 are satisfied
by the formula

0 0
0

T( , ) w( )J exp dr zr z T u u u u
a a

53:15:8

w being an arbitrary weighting function of the dummy
variable u. This weighting function needs to be elucidated to
discover the temperature distribution.

A discontinuity in the expression describing temperature
is expected at r a on the z 0 surface. With formula
53:15:1 in mind, one can fathom from the properties of
Gauss hypergeometric functions [Chapter 60] that both v and

need to equal ½ if T is to be constant in 0 r < a.
Furthermore, the choice 1 0 1/ 2w( ) ( ) 2 / J ( )u T T u u
provides satisfaction for the third boundary condition and
converts the z 0 version of equation 53:15:8 to

2 21
0 1 0 12

2 231 1
0 1 0 0 1 02 2 2

( )F ,0,1, /
T( ,0) 2 2( ) F , , , / ( )arcsin

T T T r a T r a
r a aT T T a r T T T r a

r r

53:15:9
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This surface result is diagrammed in Figure 53-3. With w(u) now known, the integral in 53:15:8 may be evaluated
leading, via 53:10:15, to the complete solution

0 1 0 2 2 2 2

2 2T( , ) ( )arcsin
( ) ( )

ar z T T T
z a r z a r

53:15:10

This equation describes the three-dimensional temperature distribution, illustrated colorfully in Figure 53-4.

The temperature distribution along the z axis, r 0, is
seen to be the simple

0 1 0
2T(0, ) arctan zz T T T

a
53:15:11

as depicted in Figure 53-5. Notice that at a distance equal to
the radius of the rod, the temperature has adopted a value
midway between the rod’s temperature and that at infinity.





v

Named for the redoubtable German mathematician Franz Ernst Neumann (1798 1895), this function appears
in the solution to many physical problems, especially those involving cylindrical symmetry. In the terminology
introduced in Section 49:14, the Neumann function is the “irregular” counterpart of the Bessel function. Through
formula 54:3:1, the properties of Neumann functions of noninteger order can be deduced easily from those of the
Bessel functions, and therefore this chapter concentrates on Neumann functions Yn(x) of integer order and
particularly on the n 0 and n 1 cases.

54:1 NOTATION

The symbolism Nv(x) is a common replacement for Yv(x) in denoting the Neumann function of order v and
argument x. The alternative names Bessel function of the second kind and Weber’s function are encountered.

54:2 BEHAVIOR

Because the Neumann function is complex when its argument is negative, our attention in most of this chapter
is restricted to the range x 0. In this range Yv(x) is real and well defined for all real orders, though there are
discontinuities at x 0.

Superficially, the three-dimensional map of Yv(x) shown in Figure 54-1 closely resembles that of Jv(x) in Figure
53-1. The most noteworthy distinction lies in the 0 < x < v region where the Neumann function acquires values
which are negative and large, in contrast to the small and positive values of Bessel function in the same zone. Away
from this region, bands of alternating positive and negative sign are seen to cross the x,v plane diagonally, indicative
of an infinite number of zeros and extrema. In this behavior the Neumann and Bessel functions are similar, though
the ripples are out of phase by about /2.

Figure 54-2 shows graphs of several Neumann functions of small integer order. Away from small arguments,
the close similarity to Bessel functions is again evident (compare to Figure 52-1). Notice that Neumann functions
of order 2, 4, 6, are exact duplicates of Y2(x), Y4(x), Y6(x), , whereas those of odd negative integer order differ
from their positive counterparts only in sign, as reiterated in 54:5:2.
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54:3 DEFINITIONS

For noninteger order, the Neumann function is defined in terms of Bessel functions:
Y ( ) cot( ) J ( ) csc( ) J ( ) 0, 1, 2,v v vx v x v x v54:3:1

For integer orders, this definition must be replaced by an equivalent limiting operation:

cos( ) J ( ) J ( )Y ( ) lim 0, 1, 2,
sin( )

v v
n v n

v x xx n
v

54:3:2

Two integral definitions ascribed to the Neumann function of zero order are

0 2
0 1

2 2 cos( )Y ( ) cos cosh( ) d d
1

xtx x t t t
t

54:3:3

but the former does not converge acceptably. The latter generalizes to
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2 (1 2 ) / 21
12

2(2 / ) cos( )Y ( ) d
( 1)

v

v v

x xtx t
tv

54:3:4

but this is valid only for |v| < 1. Other integral representations of the Neumann function will be found in Gradshteyn
and Ryzhik [Section 8.41].

The Yv(x) function is one of the solutions to each of the differential equations 53:3:5 8. It is in this way that
the Neumann function most often arises in practice.

The semiintegration [Section12:14] formula
1

2

1
2 0

d 1 1 1cos Y
d x xx x x

54:3:5

indicates a close relationship between the Neumann function of zero order and the cosine function.

54:4 SPECIAL CASES

In a sense, all Neumann functions of noninteger order are “special”, inasmuch as they alone are linearly related,
through equation 54:3:1, to Bessel functions.

A Neumann function of an order that is one-half of an odd integer, positive or negative, is known as a spherical
Neumann function. It is represented by a lower-case symbol
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1
2

Y ( ) y ( ) 0, 1, 2,
2 nn x x n

x
54:4:1

and is the subject of Section 32:13. Such Neumann functions are coincident in magnitude with Bessel functions
[Chapter 54] of the same argument but of an order of opposite sign:

1 1
2 2

Y ( ) ( ) J ( ) 0, 1, 2,n
n nx x n54:4:2

A Neumann function of order or is related, as is the corresponding Bessel function, to the Airy functions1
3

1
3

Ai and Bi of Chapter 56:

1
3

2
3

1 3 9Y ( ) 3Bi( ) Ai( )
2 4

xx x x x
x

54:4:3

A Neumann function of order or is similarly related to the derivatives of the Airy functions.2
3

2
3

54:5 INTRARELATIONSHIPS

The general order-reflection property of the Neumann function
Y ( ) cos( )Y ( ) sin( ) J ( )v v vx v x v x54:5:1

reduces to
Y ( ) ( ) Y ( ) 1,2,3,n

n nx x n54:5:2

when the order is an integer.
A Neumann function of any order obeys the recursion formula

1 1
2Y ( ) Y ( ) Y ( )v v v

vx x x
x

54:5:3

and accordingly, any Neumann function of integer (only!) order may be expressed in terms of Y0(x) and Y1(x):
(0) (1)

0 1Y ( ) Wj ( )Y ( ) Wj ( )Y ( ) 2,3,4,n n nx x x x x n54:5:4

Because the form of recursion 54:5:3 is identical to that for Bessel functions, the weighting multipliers are likewise
identical to the Lommel polynomials given in the table in Section 52:5.

In addition to 54:3:1 and 54:5:1, several other relationships, including

cotY ( ) Y ( ) J ( ) J ( )tan 2v v v v
vx x x x54:5:5

2 2 2 2Y ( ) J ( ) Y ( ) J ( )v v v vx x x x54:5:6

and

1 1
2Y ( )J ( ) Y ( )J ( )v v v vx x x x
x

54:5:7

interconnect Neumann and Bessel functions.

54:6 EXPANSIONS

Simple power series do not exist for a Neumann function of positive integer order. However, an expansion
incorporating logarithmic and power components can be developed through L’Hôpital’s rule [Section 0:10] from
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definition 54:3:2. For nonnegative integer n, the expansion is
2 21

0 0

2 1 ( 1) ( 1) 1 2 ( 1)!Y ( ) ln J ( )
2 2 !( )! 4 ! 4

j jn n n

n n
j j

x x j j n x n j xx x
j j n x j

54:6:1

where is the digamma function of Chapter 44. The final sum makes no contribution to the n 0 version of this
expansion. For the zeroth- and first-order cases, the leading terms of this complicated series are

2 4

0
2 3Y ( ) ln ln 1 ln

2 2 4 2 2 64
x x x x xx54:6:2

and
3 5

1
2 1 1 3 19Y ( ) ln ln ln

2 2 2 2 4 64 2 12 384
x x x x x xx

x
54:6:3

The term is Euler’s constant [Section 1:7].
A Neumann function of positive integer order may also be expressed largely in terms of Bessel functions:

1

2
1 0

2 ( ) ( 2 ) ! 2 ( / 2)Y ( ) ln ( 1) J ( ) J ( ) J ( )
2 ( ) !( )

nj jn

n n n j j
j j

x n j n xx n x x x
j n j x j n j

54:6:4

The final term equals zero when n 0 and 2/ x when n 1.
The expression in terms of auxiliary cylinder functions [Section 54:14]

2Y ( ) fc ( )sin +gc ( )cos
2 4 2 4v v v

v vx x x x x
x

54:6:5

holds irrespective of whether v is integer or not. Useful when x is large, asymptotic expansions for the auxiliary
functions fcv and gcv are reported in the cited section.

54:7 PARTICULAR VALUES

At zero argument, the Neumann function acquires one of three values:
3 51

2 2 2

1
2

5 3 9 7 13 11
2 2 2 2 2 2

3 7 5 91 11
2 2 2 2 2 2

0 , , ,

Y (0)
, , ,

, , ,

v

v

v

v v v

v v v

54:7:1

All Neumann functions are zero when x . Equation 44:5:11 gives a special significance to Y0(2).
For each order, integer or noninteger, positive or negative, the Neumann function has an infinite number of

zeros, separated by local maxima and minima. The disposition of these particular values is very reminiscent of those
of the corresponding Bessel function [Sections 52:7 and 53:7], but their locations, values, and associated values are
distinct. If denotes the kth zero of the Neumann function of nonnegative order v, then( )y k

v
(1) (1) (2) (2) (3)y j y j yv v v v vv54:7:2

where is the corresponding Bessel zero. Similar nested sequencing is followed by the extrema of the Neumann( )j k
v

and Bessel functions. Zeros and extrema of the Neumann function are less important than those of the Bessel
function and are not further addressed in the Atlas: nor does Equator provide their values.



572 THE NEUMANN FUNCTION Yv(x) 54:8

54:8 NUMERICAL VALUES

Designed for all orders and arguments in the domains |v| 22 and 0 300, Equator provides a Neumann
function routine (keyword Y). In fact, the routine often performs far beyond those bounds, and the reported digits
are always significant. Formula 54:3:1 is used exclusively for noninteger orders, but equations 54:6:2, 54:6:5,
54:5:2, and 54:8:1 are all called upon, in different regions, when v is an integer. The last mentioned formula is the
quintic interpolation

150 25 3
2 2 3 3256 256 256Y ( ) Y ( ) Y ( ) Y ( ) Y ( ) Y ( ) Y ( )n n h n h n h n h n h n hx x x x x x x54:8:1

which, with h 1/500, enables an integer-ordered Neumann function to be calculated from values of six nearby
noninteger-ordered Neumann functions.

54:9 LIMITS AND APPROXIMATIONS

As its argument approaches zero from positive values, the limiting expression for the Yv(x) function is
determined by one or other of the following formulas:

3 51
2 2 2

0

1 1
2 2

0( ) 2
, , ,

limY ( ) (2 / ) ln( / 2) 0

( ) otherwise
( ) ( ) 2

v

vx
v

vv
x v

x x v

v x
v v

54:9:1

Reduction to simpler equivalents occurs if v is an integer or half an odd integer – see formulas 43:4:1 4.
As Figure 54-1 suggests, at any constant value of its argument greater than its order, the Neumann function

Yv (x) is an oscillatory function of its order, as well as of x. As v becomes large and negative, this oscillation
becomes sinusoidal and obedient to the formula

2Y ( ) cos( )
2

v

v
exx v v

v v
54:9:2

where e is the base of natural logarithms.
For very large arguments the Neumann functions become sinusoidal in x with a period of 2 :

1 1
2 4

2Y ( ) sinv x x v x
x

54:9:3

This formula applies as x becomes large, the order remaining modest. Conversely, the relationship

2 2Y ( )
v

v
vx v

v ex
54:9:4

comes to be obeyed as the order v increases, with the argument remaining modest.

54:10 OPERATIONS OF THE CALCULUS

The derivative of the Neumann function may be expressed in three equivalent ways:
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1 1
1 1

d Y ( ) Y ( )Y ( ) Y ( ) Y ( ) Y ( ) Y ( )
d 2

v v
v v v v v

x x v vx x x x x
x x x

54:10:1

Notice that these formulas are exact analogues of those in 53:10:1 for the Bessel function. Likewise the expressions
for the derivatives of x±vYv(x) strictly resemble 53:10:2.

Integrals include

1
0

2 ( )Y ( )d Y ( ) 0
x v

v v
v v

vt t t x x v54:10:2

1
2

0

Y ( )d tan 1 1v t t v v54:10:3

and

1 1 1 1 1 1 1 1
22 2 2 2 2 2 2

0

2Y ( )d sin ( ) 1vt t t v v v v54:10:4

Other definite integrals will be found in Sections 6.5 6.7 or Gradshteyn and Ryzhik.

54:11 COMPLEX ARGUMENT

With z x+iy, Figures 54-3 and 54-4 show the real and imaginary parts of the most important of the Neumann
functions, Y0(z) and Y1(z), in the vicinity of the origin. In each case, the Riemann surface is cut along the negative
real axis. The complex values on each side of the cut are given by

0 0 0Y ( 0 ) Y ( ) 2 J ( ) 0x i x i x x54:11:1
and

1 1 1Y ( 0 ) Y ( ) 2 J ( ) 0x i x i x x54:11:2
illustrating (a) an argument-reflection principle for the real part of integer-ordered Neuman functions and (b) that
the average value of the imaginary parts on either side of the cut is zero. The latter rule holds for complex-valued



574 THE NEUMANN FUNCTION Yv(x) 54:12

Neumann functions of all orders.
For purely imaginary argument

0 0 0
2Y ( ) I ( ) K ( )iy i y y54:11:3

and

1 1 1
2Y ( ) I ( ) K ( )iiy y y54:11:4

54:12 GENERALIZATIONS

By virtue of the limiting process

1
2

( )

0
lim Q cos( ) Y ( )

2
v v

vx x54:12:1

the second Legendre function [Chapter 59] might be considered as a generalization of the Neumann function.

54:13 COGNATE FUNCTIONS: Hankel functions

In his short life, the German mathematician Hermann Hankel (1839 1873) made several noteworthy
contributions. Named in his honor are the two Hankel functions defined by

(1)H ( ) J ( ) Y ( )v v vz z i z54:13:1

and
(2)H ( ) J ( ) Y ( )v v vz z i z54:13:2

They are also known as Bessel functions of the third kind. In some engineering applications, this pair of complex
solutions to Bessel’s equation are more felicitous than are the real J,Y pair. Asymptotic expansions of the Hankel
functions are given in the next section.
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cylinder
function Wf( ) Wg( )

Jv(x) cos( ) sin( )

Yv(x) sin( ) cos( )
(1)H ( )v x exp(i ) i exp(i )

(2)H ( )v x exp( i ) i exp( i )

54:14 RELATED TOPIC: asymptotic representation of cylinder functions

Two auxiliary functions fcv(x) and gcv(x) may be defined in terms of the Neumann and Bessel functions:
1 1 1 1 1
2 2 4 2 4fc ( ) Y ( )sin J ( )cosv v vx x x x v x x v54:14:1

and
1 1 1 1 1
2 2 4 2 4gc ( ) Y ( )cos J ( )sinv v vx x x x v x x v54:14:2

Figure 54-5 shows the behavior of the functions for a
typical order, v 3. Notice that, though definitions 54:14:1
and 54:14:2 show the auxiliary functions to be composed of
four functions, all of which are oscillatory, the combination
is such that no oscillations remain. The argument of the
cosine and sine in the two equations above occurs so
frequently in this section that the adoption of the
abbreviation

1 1
2 4x v54:14:3

is a worthwhile convenience.
Under the names auxiliary cylinder fc function and

auxiliary cylinder gc function (keywords fc and gc).
Equator provides routines for the functions defined in
equation 54:14:1 and 54:14:2. Because applications of fc
and gc are limited to large arguments, the algorithms are
operative only in the domain 40 |x| 450 for |v| 24,
though arguments as small as 8 are served for more restricted orders. Aided by -transformation [Section 10:14],
the routines utilize the following two asymptotic representations

1 1
2 22 2

2
0 2

2 4 2 4 6 8

2 4

1fc ( )
(1) 4

9 40 16 11025 51664 31584 5376 2561
128 98304

j
j j

v
j j

v v
x

x

v v v v v v
x x

~
54:14:4

and
1 1 2 2 4 6
2 22 1 2 1

2 3
0 2 1

1 1 1 4 225 1036 560 64gc ( )
2 (1) 4 8 3072

j
j j

v
j j

v v v v v vx
x x x x

~54:14:5

Although the utility of these series is generally limited to sufficiently
large values of x, they terminate for orders that are odd multiples of one-
half and in these circumstances the formulas are exact for all arguments.

Four important cylinder functions can be expressed as weighted
sums of the auxiliary functions:

2cylinder Wf ( )fc ( ) Wg( )gc ( )function v vx x
x

54:14:6

where the weighting functions are given in the accompanying table,
providing a useful large-argument representation of these cylinder
functions.
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If a set of terms, dependent on the cylinder function variables v and x, are defined by
1 1
2 2 0,1,2,
! 2 (2 )

j j
j j

v v
j

j x x
54:14:7

they are easily calculated through the recursion
2 21

2
1 0

( ) 1
2 2j j

j v
jx x

54:14:8

Series of these terms provide asymptotic expansions for as many as twelve cylinder functions through the formulas:

0 2 4 6fc ( ) / 2v x x ~54:14:9

1 3 5 7gc ( ) / 2v x x ~54:14:10

0 1 2 3 4exp( ) I ( )vx x ~54:14:11

0 1 2 3 4exp( )K ( ) /vx x ~54:14:12
1

0 2 4 1 3 52 J ( ) cos( )[ ] sin( )[ ]v x ~54:14:13
1

0 2 4 1 3 52 Y ( ) sin( )[ ] cos( )[ ]v x ~54:14:14
(1)1

0 1 2 3 42 H ( ) exp( )[ ]v x i i i~54:14:15
(2)1

0 1 2 3 42 H ( ) exp( )[ ]v x i i i~54:14:16

0
exp ber ( ) cos

2 4 82 2v j
j

x x v jx ~54:14:17

0
exp bei ( ) sin

2 4 82 2v j
j

x x v jx ~54:14:18

0

ker ( )exp ( ) cos
2 4 82 2

jv
j

j

x x x v j
~54:14:19

0

kei ( )exp ( ) sin
2 4 82 2

jv
j

j

x x x v j
~54:14:20

The ber, bei, ker, and kei functions in the last four equations are Kelvin functions from Chapter 55.



Four families of bivariate functions, berv(x), beiv(x), kerv(x), and keiv(x), are grouped under the heading of Kelvin
functions. Those of zero order, v 0, are of prime importance and are emphasized in this chapter. They arise in such
problems as the electrical “skin effect” in cylindrical conductors.

55:1 NOTATION

These functions are named for the Scottish physicist and applied mathematician William Thomson
(1824 1907), who took the title Baron Kelvin of Largs on his elevation to the peerage in 1866. The alternative
name Thomson functions is preferred by some with antipathy to the aristocracy.

The initial letter of the symbol is often capitalized. The symbols originate from the names of Bessel orKelvin
coupled with the qualifiers real and imaginary. In the terminology introduced in Section 49:14, ber and bei are
regular functions; ker and kei are irregular. When the symbols are encountered without a subscript, an order of zero
is implied:

0 0ber( ) ber ( ), kei( ) kei ( ), etc.x x x x55:1:1

55:2 BEHAVIOR

Only Kelvin functions of real positive argument are addressed in this Atlas. All four functions are oscillatory
at sufficiently large positive arguments but, like Bessel functions, the onset of the oscillations is increasingly delayed
as v increases. Figure 55-1 shows the overall behaviors of the four functions.

Once established, the oscillations of the ber and bei functions increase in amplitude exponentially, while those
of the ker and kei functions decrease exponentially. Stated more precisely, the berv(x) and beiv(x) functions increase
with x as whereas kerv(x) and keiv(x) decrease as . If one corrects for(1/ 2 )exp( / 2 )x x / 2 exp( / 2 )x x
these amplitude-perturbing factors, as was done in constructing Figure 55-2, the four Kelvin functions soon become
quasiperiodic, and eventually sinusoidal with a period of .8

When the order is zero, the amplitude-adjusted Kelvin functions settle into a repetitive pattern very rapidly, as
Figure 55-2 attests. The color-coded curves in this diagram relate to the composite functions shown beside the
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figure. It is evident that, as x increases, the four amplitude-adjusted Kelvin functions come to differ among
themselves, and from only in the phase of their oscillations. All five curves rapidly evolve to satisfysin / 2 ,x

amplitude 3 /8 for ber
adjusted /8 for beisin

zero order 5 /8 for ker2
Kelvin function 7 /8 for keix

x
55:2:1

The same general behavior is exhibited by amplitude-adjusted Kelvin functions of all orders. The amplitude-
adjustment factors are independent of the order v and, after adjustment, each function is an approximate sinusoid
which approaches a perfect sinusoid with increasing argument. The order v of the function affects only the phase
of the oscillations and the alacrity with which the aperiodic component of the function dies away.
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2 exp bei( )
2
xx x

sin
2

x

2 exp ber( )
2
xx x

2 exp ker( )
2

x x x

2 exp kei( )
2

x x x

55:3 DEFINITIONS

Kelvin functions of real order and positive real argument are themselves
invariably real. Despite this, the most common definitions of ber, bei, ker,
and kei involve a complex variable. The complex variable in question is one
that has real and imaginary parts of equal magnitude, namely one of the four
values These values are represented in Figure 55-3 by the( ) / 2 .z x ix
points labeled A, B, C, and D, all lying on a circle of radius x, in the complex
plane illustrated.

The regular Kelvin functions ber and bei are most simply defined
through the corresponding Bessel functions. One pair of definitions, based
on two of the points in Figure 55-3, is

B CJ ( ) J ( ) 1 1ber ( ) J J
2 2 22 2 2 2

v v
v v v

z z x ix x ixx55:3:1

B CJ ( ) J ( )bei ( ) J J
2 2 22 2 2 2

v v
v v v

z z i x ix i x ixx
i

55:3:2

Equivalently the ber and bei functions may be considered the real and imaginary parts of the Bessel function of
point B
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BJ ( ) Re J Im J ber ( ) bei ( )
2 2 2 2v v v v v
x ix x ixz i x i x55:3:3

and it is this definition that is responsible for the ber and bei notation. See Section 49:11 and equation 50:11:6 for
analogous definitions based on the modified Bessel function.

In a fashion similar to 55:3:3, the irregular Kelvin functions may be defined with reference to the Macdonald
function of a complex variable at point A but, unless v 0, with a complicating multiplicative factor equal to
cos(v /2) isin(v /2).

A2 2
ker Re Re( ) exp K exp K / 2 / 2kei Im Im

v vv
v v

v
x i z i x ix55:3:4

The irregular Kelvin functions of zero order may be represented by a number of integrals, including:
2 2 3

40
14

0 0 0

1 J ( )ker( ) Ci exp d d ln(1 )J ( )d
8 4 1 4
x x t t xt xx t t t xt t

t t
55:3:5

2 2
20

14
0 0 0

1 J ( )kei( ) Si exp d d arctan( )J ( )d
8 2 4 1 2
x x t t xt xx t t t xt t

t t
55:3:6

These integrals, which involve functions from Chapters 35, 38, and 52, provide alternative definitions.
The solution to the following differential equation involves arbitrarily weighted pairs of Kelvin functions

2
2 2 2

1 22

d f d f ( )f 0 f ber ( ) bei ( ) ker ( ) kei ( )
d d v v v vx x v ix w x i x w x i x

x x
55:3:7

55:4 SPECIAL CASES

In general, simple power series do not exist for Kelvin functions. Special exceptions are the regular berv(x) and
beiv(x) functions for which the order is a multiple of a, including v 0. The zero-order series are reported in
equations 55:6:1 and 55:6:2; the others may be deduced easily from equation 55:6:9.

Kelvin functions of order ½ reduce to products of exponential and sinusoidal functions:

1
2

1
2

ber 1 cos cos( ) exp expsin sinbei 8 82 2 2 2 2
x x x xx

x
55:4:1

1
2

1
2

ker sin( ) exp coskei 2 82 2
x xx

x
55:4:2

55:5 INTRARELATIONSHIPS

The order-reflection formulas
2ber ber bei ker( ) cos( ) ( ) sin( ) ( ) sin( ) ( )bei bei ber kei

v v v v

v v v v
x v x v x v x55:5:1

ker ker kei( ) cos( ) ( ) sin( ) ( )kei kei ker
v v v

v v v
x v x v x55:5:2
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all reduce to
f ( ) ( ) f ( ) f ber, bei, ker, or kei 0, 1, 2,n

n nx x n55:5:3

when the order is an integer. Negative arguments generally make the Kelvin functions complex. Exceptions are the
integer-ordered regular functions, for which the following argument-reflection formula applies:

f ( ) ( ) f ( ) f ber or bei 0, 1, 2,n
n nx x n55:5:4

The recurrence relations of the Kelvin functions are

1 1

1 1

fer ( ) fei ( )55:5:5 fer ( ) 2 fer ( ) fer ber or ker

fer ( ) fei ( ) fei bei or kei55:5:6 fei ( ) 2 fei ( )

v v
v v

v v
v v

x xx v xx

x xx v xx

55:6 EXPANSIONS

Because of their salient importance, we first report the convergent expansions for the functions of zero order.
The regular pair are L K+4 4 hypergeometric functions:

44 8 4

2 1 1
0 0 2 2

/16 1ber( ) 1
64 147546 (1) (1) 256(2 )!

j j

j j j jj j

xx x xx
j

55:6:1

1
242 6 10 2 4

2 3 3
0 0 2 2

( ) /16 1bei( )
4 2304 14754600 4 (1) (1) 256(2 1)!

j jj

j j j j j j

xx x x x xx
j

55:6:2

These regular functions appear in the following series describing the irregular functions of zero order:
4 2

2
0 1

2 ( /16) 1ker( ) ln ber( ) bei( )
4 [(2 )!]

j j

j k

xx x x
x j k

55:6:3

2 4 2 1

2
0 1

2 ( /16) 1kei( ) ln bei( ) ber( )
4 4 [(2 1)!]

j j

j k

x xx x x
x j k

55:6:4

Asymptotic series, valid for large x, are

2

3
0

exp / 2 [(2 )!] 1 keiber cos( ) ( )kerbei sin[ !] [32 ] 4 82 2j
j

x j x jx x
j xx

~55:6:5

2

3
0

[(2 )!] 3ker cos( ) expk ei sin2 [ !] [32 ] 4 82 2j
j

x j x jx
x j x

~55:6:6

For arbitrary order the regular Kelvin functions may be expanded as the series
2

31
2 4

0

( / 2)ber cos( )bei sin! (1 )

j v
v

v j

xx j v
j j v

55:6:7

but the irregular functions are most easily calculated via their regular cohorts, through the equations
ker ber ber bei( ) csc( ) ( ) cot( ) ( ) ( ) 0, 1, 2,kei bei bei ber2

v v v v

v v v v
x v x v x x v55:6:8



582 THE KELVIN FUNCTIONS 55:7

which involve orders of v as well as v. However, this last formula fails for integer orders and must be replaced by
the lengthy alternative

21
3 1
4 2

0

2
3 1
4 2

0

2 1 2 ( 1)!ber bei cosker ( ) ln ( ) ( )4kei bei ber sin2 ! 4
0,1,2,

1 (1 ) (1 ) cos
sin2 2 !( )! 4

n jn
n nn

n n n j

n j

j

n j xx x x n j
x x j

n
x j n j x n j

j n j

55:6:9

To handle negative integers, first apply the reflection 55:5:3.
Valid for large values of the argument are the asymptotic expansions

1 1
2 2

0

( ) ( )ker cos( ) expkei sin2 !( 2 ) 2 4 82 2
j jv

j
v j

v vx x v jx
x j x

~55:6:10

1 1
2 2

0

exp / 2 ( ) ( ) ker ( ) kei ( )ber cos sin cos( ) (2 ) (2 )cos sinbei sin!(2 ) 2 4 82 2
j j v vv

j
v j

x v v x v j x xx v v
j xx

~55:6:11

The last two terms in expansion 55:6:11 are optional; the series converges to berv(x) or beiv(x) without them, but
convergence is accelerated by their presence.

55:7 PARTICULAR VALUES

Kelvin functions display diverse behavior at x 0 but are mostly zero or infinite there. Noteworthy values are

ber(0) 1 bei(0) 0 ker(0) + kei(0) /4 ker±2(0) ½

The damped oscillations of the kerv(x) and keiv(x) functions lead rapidly towards a value of zero as x , whereas
berv(x) and beiv(x) oscillate around zero with ever increasing amplitude as this limit is approached.

All Kelvin functions have an infinite number of positive real zeros. Some of these, for the zero-order cases, are
listed below. The values are listed in a format that demonstrates the almost-uniform spacing of the zeros, with the
kth and (k 1)th members separated by a gap very close to .2

k zeros of ber zeros of bei zeros of ker zeros of kei

1 0.6412 2 1.1313 0.3868 0.88112 2 2

2 1.6293 2 2.1282 1.3791 1.87812 2 2

3 2.6276 2 3.1271 2.3775 2.87712 2 2

4 3.6268 2 4.1266 3.3768 3.87662 2 2

99 98.625 2 99.125 98.375 98.8752 2 2

100 99.625 2 100.125 99.375 99.8752 2 2

This regularity carries over to Kelvin functions of other orders. If denotes the kth zero of a Kelvin function of( )k
vr

order v then, especially when k is large, a good approximation is
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( )

2 82

k
vr vk55:7:1

where 3 for berv, +1 for beiv, 5 for kerv, and 1 for keiv.

55:8 NUMERICAL VALUES

For zero order only, Equator provides a routine for each of the four Kelvin functions, each keyword being
identical with the symbol. For example, the Kelvin ber function routine has the keyword ber.

The ber and bei routines use equations 55:6:1 and 55:6:2 for arguments up to 26. For 26 x 1000, the
formulas in 55:6:5 are employed without, however, the contributions from the irregular functions, these being
insignificant for this range of arguments.

For the ker and kei functions, Equator uses equations 55:6:3 and 55:6:4 for arguments less than 4. In the
domain 4 x 990, the asymptotic formulation 55:6:6 is utilized, with assistance from the -transformation [Section
10:16] for arguments up to 20.

55:9 LIMITS AND APPROXIMATIONS

The panel below shows the limiting forms generally adopted by the Kelvin functions for small arguments

ber (0 )v x bei (0 )v x ker (0 )v x kei (0 )v x

3
4( / 2) cos

(1 )

vx v
v

3
4( / 2) sin

(1 )

vx v
v

3
4( )cos

2( / 2)v

v v
x

3
4( )sin

2( / 2)v

v v
x

These limits may be inapplicable when v is a multiple of 1/3 and for the irregular functions when v is a small integer.
With abbreviating the corresponding limits for large arguments are/ 2 / 2,x v

ber ( )v x bei ( )v x ker ( )v x kei ( )v x

exp / 2
cos

82

x

x

exp / 2
sin

82

x

x

exp / 2
cos

82 /

x

x

exp / 2
sin

82 /

x

x

From these, the simpler limits acquired by such combinations as berv(x)beiv(x), and2 2ker ( ) kei ( ),v vx x
berv(x)keiv(x) beiv(x)kerv(x) are readily derived.

55:10 OPERATIONS OF THE CALCULUS

The differentiation formulas

1 1 1 1

1 1 1 1

d55:10:1 fer ( ) fer ( ) fei ( ) fer ( ) fei ( ) / 8 fer ber or kerd
d fei bei or kei55:10:2 fei ( ) fei ( ) fer ( ) fei ( ) fer ( ) 8
d

v v v v v

v v v v v

x x x x x
x

x x x x x
x
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may be combined with recursions 55:5:5 and 55:5:6 to produce a number of alternative versions. An example of
an indefinite integral is

1
1

1 1
0

ber ( )d ber ( ) bei ( )
2

x v
v

v v v
xt t t x x55:10:3

Section 9.9 of Abramowitz and Stegun contains several other indefinite integrals of Kelvin functions.
Definite integrals and Laplace transforms of zero-order Kelvin functions include

0

ber cos2 exp d ( )sinbei
tt t x x

x
55:10:4

1
2

0

ker cos sin2 exp d ( )Ci( ) ( ) Si( )kei sin cos2
t xt t x x x x

x
55:10:5

2

4 44 4
0

1ber ber( )exp( )d ( )bei bei 2( )2
sbt st t bt

s bs b
55:10:6

0

1 cosber berexp( )dbei bei sin 4
bbt st t bt s s

55:10:7

Other definite integrals of Kelvin functions will be found in Section 6.8 of Gradshteyn and Ryzhik.

55:11 COMPLEX ARGUMENT

Kelvin functions of complex argument are seldom encountered and the Atlas ignores this possibility.

55:12 GENERALIZATIONS

The function
2 21

2
0 2

0 0

{ [cos( ) sin( )]} exp(2 )f ( , )
! ( !) 4

jj

j j

x i ji xx
j j

55:12:1

may be considered the progenitor of all regular zero-order cylinder functions because it has the special cases

f0(0,x) 0 4f , x 0 2f , x 3
0 4f , x f0( ,x)

I0(x) 0 0ber ( ) bei ( )x i x J0(x) 0 0ber ( ) bei ( )x i x I0(x)

Kelvin functions are those instances of this function that have equal magnitudes of “realness” and “imaginaryness”.

55:13 COGNATE FUNCTIONS

Just as equation 55:3:3 may be said to define the berv(x) and beiv(x) functions in terms of the Bessel function
, so may the functions herv(x) and heiv(x) be defined as the real and imaginary parts of the HankelJ / 2v x ix

function [Section 54:13]. These are sometimes described as Kelvin functions of the third kind.(1)H / 2v x ix



George Biddell Airy, 1801 1892, was an English astronomer and mathematician. The functions that carry his
name find use in electromagnetic theory and elsewhere. The derivatives of the two Airy functions and a pair of
auxiliary functions also receive brief mention in this chapter.

56:1 NOTATION

The symbols Ai(x) and Bi(x) are used universally for the Airy functions. The primed notations Ai (x) and Bi (x)
denote the derivatives. Sometimes the designations “of the first kind” and “of the second kind” are applied,
respectively, to distinguish Ai and Bi.

This Atlas use fai(x) and gai(x) to symbolize the functions that Abramowitz and Stegun [Section 10.4] denote
by f (x) and g(x). These are named auxiliary Airy functions, but they are not “auxiliary” in the sense usually
attributed to that designation; they are simply weighted sums of Ai(x) and Bi(x). Other functions, related but
innominate, are hai(x), Gi(x) and Hi(x).

In formulas involving Airy functions, it is often more convenient to use the auxiliary argument
3 292 3

3 4| |x x x x56:1:1

We avoid writing this definition as 2x3/2/3 to emphasize that is invariably real and positive. When x 0 or x 9/4,x
the two arguments coincide.

56:2 BEHAVIOR

In the study of mathematical functions, it is common to find function pairs, such as sin(x) and sinh(x), that are
distinguished as “circular” and “hyperbolic” and that have distinctive properties. The most striking distinction is
that circular functions are oscillatory, whereas hyperbolic functions are generally monotonic. Airy functions possess
both these properties at once: they are “hyperbolic” for positive argument and “circular” when x < 0. This
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586 THE AIRY FUNCTIONS Ai(x) AND Bi(x) 56:3

hermaphroditic behavior is evident in Figure 56-1. Notice that in their negative realm, both the amplitude and the
period of the Ai(x) and Bi(x) functions shrink as x becomes more negative.

The behavior of the auxiliary Airy functions is generally similar to that of Ai(x) and Bi(x). These too are plotted
on Figure 56-1. Like Bi(x), fai(x) and gai(x) increase exponentially on the positive side, whereas Ai(x) declines
exponentially.

56:3 DEFINITIONS

Airy functions and their auxiliaries are cylinder functions of order a. They may be defined through the major
cylinder functions as follows:

1 1
3 3

1
3

1 1
3 3

1 1
3 3

1
3

1
3

I ( ) I ( )
0

(1/ ) /3 K ( )
Ai( )

J ( ) J ( )
0

/3 Y ( ) Y ( )

x x x
x

x x
x

x x x
x

x x x

56:3:1
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1 1
3 3

1 1
3 3

1 1
3 3

1
3

/ 3 I ( ) I ( ) 0

Bi( ) /3 J ( ) J ( )
0

Y ( ) Y ( )

x x x x

x x x x
x

x x x

56:3:2

1
3

1
3

323 2 33

32
3

/ 3 I ( ) 09 Bi( )fai( ) Ai( )
2 3 / 3 J ( ) 0

x x xxx x
x x x

56:3:3

1
3

1
3

313 1 33

31
3

/ 9 I ( ) 03 Bi( )gai( ) Ai( )
2 3 / 9 J ( ) 0

x x xxx x
x x x

56:3:4

The Airy integral serves to define the Ai function
3

0

1Ai( ) cos d
3
tx xt t56:3:5

but the corresponding representation of the Bi function is more circuitous. First one defines two other functions
3 3

0 0

1 1Gi( ) sin d and Hi( ) exp d
3 3
t tx xt t x xt t56:3:6

that are encountered again in Section 56:10; then
Bi( ) Gi( ) Hi( )x x x56:3:7

The auxiliary Airy functions are hypergeometric [Section 18:14] and may be synthesized [Section 43:14] from the
zero-order modified Bessel function:

3
3

0 32 4
3 3

gai 91 1fai 9 I 2 0
9

x
x x x

x
56:3:8

Similar synthetic routes from the J0 function create auxiliary Airy functions of negative argument. Airy’s differential
equation and its solutions are

2

1 2 3 42

d f f 0 f Ai( ) Bi( ) or f fai( ) gai( )
d

x w x w x w x w x
x

56:3:9

It is in solving this differential equation that Airy functions generally arise in applications.

56:4 SPECIAL CASES

There are none.

56:5 INTRARELATIONSHIPS

The relationship between the auxiliary and the definitive Airy functions is reported in definitions 56:3:3 and
56:3:4. These may be rephrased to show that Ai is a weighted sum of fai and gai, as is Bi:
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Ai( ) Ai(0)fai( ) Ai (0)gai( ) 0 35503 fai( ) 0 25882 gai( )x x x x x. .56:5:1
and

Bi( ) Bi(0)fai( ) Bi (0)gai( ) 0 61493 fai( ) 0 44829 gai( )x x x x x. .56:5:2
More precise numerical values of the weighting constants are reported in Section 56:7.

56:6 EXPANSIONS

The power series expansion of the auxiliary Airy functions may be expressed with coefficients in terms of either
triple factorials [Section 2:13] or Pochhammer polynomials [Chapter 19]:

3 6 9 3 3

2
0 0 3

(3 1)!!! 1fai( ) 1
6 180 12960 (3 1)! 1 9

jj

j j jj

x x x j x xx
j

56:6:1

4 7 10 3 1 3

4
0 0 3

(3 2)!!! 1gai( )
12 504 45360 (3 2)! 1 9

jj

j j j j

x x x j x xx x x
j

56:6:2

The powers x2, x5, x8, , are absent from both these series but these powers alone are present in a third series
2 5 8 11 3 2 2 3

54
0 0 3 3

(3 3)!!! 1hai( )
2 40 2240 246400 (3 3)! 2 9

jj

j j j j

x x x x j x x xx
j

56:6:3

which complements the other two. A weighted sum of the first two of these equations can generate power series for
each of Ai and Bi, the weights being given by the equations in Section 56:5. The sum of the three functions
expanded in formulas 56:6:1 3 is proportional to the Hi function, defined in 56:3:6:

7
6 2 3 4

2
3

0

3 ( 2)!!!Hi( ) fai( ) gai( ) hai( ) 1
2 2 6 12 !

j

j

x x x jx x x x x x
j

56:6:4

Coefficients defined by
(6 1)!! 0,1,2,

!(2 1)!!(216)j j

ja j
j j

56:6:5

and obeying the recursion formula

1 0
1 5 1,2,3, with 1

2 72j j
ja a j a

j
56:6:6

appear in asymptotic series for Ai(x) and Bi(x) for both positive and negative arguments of large magnitude. These
series are

1 2 33 1
04 4 2 3

largeexpAi( ) andBi positive

xx a a ax a
x x xx

~56:6:7

and

2 4 1 3 51 1
04 42 4 3 5

large1Ai sin cos( ) andBi cos sin negative

xa a a a ax x a x
x x x x xx

~56:6:8

Note that both the original argument x and the hatted auxiliary argument [56:1:1] appear in these formulas.x
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56:7 PARTICULAR VALUES

The values attained by the various Airy functions at zero argument are

Ai(0) Bi(0) fai(0) gai(0) Ai (0) Bi (0)
2

3

2
3

3 0 35502 80538 87817. 3 Ai(0) 1 0
Bi (0)

3

1
6

1
3

3 0 44828 83573 53826.

Note that Ai(0)Bi (0) Ai (0)Bi(0) 1/(2 ) and that this is in concurrence with 56:13:1.
Each of the Airy functions, as well as their auxiliaries, has an infinite number of zeros, all of which are at

negative arguments. No simple formulas describe these zeros.

56:8 NUMERICAL VALUES

Equator has Airy Ai function, Airy Bi function, auxiliary Airy fai function, and auxiliary Airy gai function
routines, with keywords Ai, Bi, fai, and gai. Equations 56:6:8, 56:3:3, and 56:3:4 are used for arguments in the
domain 100 x 4.85; equations 56:5:1, 56:6:1, and 56:6:2 cover the domain 4.65 < x < 3; and equations
56:5:7, 56:5:1, 56:6:1, and 56:6:2 are called upon for the domain 3 x 100.

56:9 LIMITS AND APPROXIMATIONS

For small arguments of either sign, the approximations
3Ai Ai Ai( ) 1 (0) (0) smallBi Bi Bi6

xx x x56:9:1

are valid.
For large positive and large negative arguments, the following limits are approached

3 3exp 4 /9 exp 4 /9
Ai( ) Bi( )

2

x x
x x x

x x
56:9:2

3 31 1
4 4cos 4 /9 sin 4 /9

Ai( ) Bi( )
x x

x x x
x x

56:9:3

56:10 OPERATIONS OF THE CALCULUS

The derivatives of the definitive and auxiliary variables are linked by
3 2

33 3 3
2

d d 9
d d 4

x x x x
x x x x

56:10:1

The form adopted by the derivative of the Airy function depends on the sign of the argument:
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2 2
3 3

2
3

2 2
3 3

1
3

1
3

I ( ) I ( )
0d ( / 3 )K ( )Ai ( ) Ai( )

d
J ( ) J ( ) 0

x x x
x

x xx x
x

x x x x

56:10:2

2 2
3 3

2 2
3 3

/ 3 I ( ) I ( ) 0dBi ( ) Bi( )
d / 3 J ( ) J ( ) 0

x x x x
x x

x x x x x
56:10:3

These formulas serve as the definitions of the primed quantities Ai and Bi . Two differentiations lead to
2

2

d f f f Ai,Bi,fai, or gai
d

x
x

56:10:4

which is a consequence of Airy’s differential equation 56:3:10.
The definite integrals

0

0

2 1Ai( )d and Ai( )d
3 3

t t t t56:10:5

may be combined with each other and with the indefinite integral

Ai( )d Ai( )Hi ( ) Hi( )Ai ( )
x

t t x x x x56:10:6

to produce expressions for integrals over the ranges Integrals with an upper limit of + do not
0

, , and .
x

x
converge for Bi, but

0

Bi( )d Bi( )d Bi( )Hi ( ) Hi( )Bi ( ) Gi( )Hi ( ) Hi( )Gi ( )
x x

t t t t x x x x x x x x56:10:7

Hi and Gi are the functions defined in 56:3:6 and 56:3:7; Hi and Gi are their derivatives, namely
3

0

1Hi ( ) exp d
3
tx t xt t56:10:8

3

0

1Gi ( ) cos d
3
tx t xt t56:10:9

56:11 COMPLEX ARGUMENT

The Airy functions are well defined for complex argument z x+iy. Figures 56-2 and 56-3 show the real and
imaginary parts of Ai and Bi close to the origin.

56:12 GENERALIZATIONS

In as much as equations 56:3:1 and 56:3:2 show Ai and Bi to be special cases of the I, K, J and Y cylinder
functions, these latter may be said to generalize the Airy functions.
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56:13 COGNATE FUNCTIONS: Airy derivatives

Some authorities treat the derivatives Ai and Bi as Airy functions in their own right, on a par with Ai and Bi.
These functions are mapped in Figure 56-4 and are seen to have rather similar behaviors to their parents. One
distinction, however, is that whereas the amplitude of the oscillations of Ai and Bi decrease as the argument becomes
more negative, those of Ai and Bi increase. Another is that Ai is negative for x 0.

Equations 56:10:2 and 56:10:3 constitute definitions of the Airy derivatives and show them to be cylinder
functions of order . The interrelation2

3

1Ai( )Bi ( ) Bi( )Ai ( )x x x x56:13:1
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which is the Wronskian [Section 24:14] of Ai and Bi, links all four functions.

The Airy derivatives are straightforwardly related to the Bessel, and modified Bessel, functions of two-thirds
order by the expressions

2 2
3 3

2 2
3 3

( / 3) I ( ) I ( ) 0
Ai ( )

( /3) J ( ) J ( ) 0

x x x x
x

x x x x
56:13:2

and

2 2
3 3

2 2
3 3

/ 3 I ( ) I ( ) 0
Bi ( )

/ 3 J ( ) J ( ) 0

x x x x
x

x x x x
56:13:3



v

This bivariate function is closely related to cylinder functions, and especially to the Neumann function. The
Struve function has a variety of applications, such as describing the vibrations of thin disks and in the theory of
electromagnetism. There is also a hyperbolic analogue that, having fewer applications, has been relegated to Section
57:13.

57:1 NOTATION

The standard notation for the Struve function is Hv(x), the “H” often being rendered in bold type. To avoid
confusion with Hermite polynomials and functions, this Atlas adopts the hv(x) symbol. Likewise lv(x) is used here,
as an unambiguous alternative to the usual Lv(x), for representing the modified Struve function.

In preference to hv, we employ hn as the symbol for the Struve function whenever the order is restricted to
integer values.

57:2 BEHAVIOR

For negative argument x, the Struve function is defined as a real function only when the order is an integer.
Accordingly, Figure 57-1 is restricted to x 0. It shows hv(x) to be an oscillatory function of both its argument and
its order, except when v > x > 0. For any given order, the oscillations are of a period close to 2 and have a declining
amplitude as x increases.

For negative orders less than 1 and other than the Struve function approaches either or3 5 7
2 2 2, , , ,

+ at small arguments, but soon becomes oscillatory as x increases. These oscillations are centered on zero.
However, the corresponding oscillations for positive order are not centered on zero. Figure 57-2 illustrates this
asymmetry clearly and demonstrates that for v > ½, x > 0, the Struve function is invariably positive.

Away from x 0, the Struve function hv(x) has no zeros if the order exceeds one-half, but an infinite number
of zeros if v ½. The interesting case of v ½ is among those graphed in Figure 57-2; this function has both a zero
and a minimum at each nonnegative multiple of 2 .
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57:3 DEFINITIONS

Differing from definition 53:3:3 of the Bessel function only in the replacement of cos by sin, the definite
integral

1
2

11
22 1

2
1

2 0

2
h ( ) 1 sin( )d

( )

v
v

v

x
x t xt t v

v
57:3:1

represents the Struve function for a wide domain of orders. For v ½, this definition may be supplemented by
recursion 57:5:1. Alternative integral representations result from replacement of t in 57:3:1 by sin( ) or cos( ). A
similar integral

1
2

1
22 1

2
1

2 0

2
h ( ) Y ( ) 1 exp( )d

( )

v
v

v v

x
x x t xt t v

v
57:3:2

represents the difference between the Struve and Neumann functions of common order and argument. In this case,
it is the replacement of t by tan( ) or sinh( ) that provides an equivalent integral representation.
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Because hv(x) is an L K+2 2 hypergeometric function, it may be synthesized [Section 43:14] from the zero-
order Bessel function, two synthetic steps being needed:

3
2

0 ( 1) / 23 3
2 2

sin 2 ( )1 1J 2 h 2
22 vv

x vx x
v xx

57:3:3

The Struve function is the particular integral [Section 24:14] in the solution of the inhomogeneous Bessel’s
differential equation

12 1
2 2 2 2

1 22 1
2

4d f d f f f J ( ) Y ( ) h ( )
d d ( )

v

v v v

x
x x x v w x w x x

x x v
57:3:4

It is because hv(x) Yv(x) also solves his equation that this function difference crops up frequently in the mathematics
of the Struve function.

57:4 SPECIAL CASES

The integer order instances of the Struve function are special inasmuch as they alone exist as real functions in
the x < 0 domain. These functions are even if their order is odd, and vice versa

h ( ) ( ) h ( ) 0, 1, 2,n
n nx x n57:4:1

There is also an order-reflection formula, specific to integer orders
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1
2

1
0

2 (2 2 3)!!h ( ) ( ) h ( ) 1,2,3,
(2 1)!!

n
n j

n n n
j

n jx x x n
x j

57:4:2

for example h 1(x) (2/ ) h1(x). Integer orders are also “special” as regards their importance in applications.
When the order v is half of an odd negative integer, the Struve and Neumann functions coalesce, being each then

expressible as a spherical Bessel function [Section 32:13]

1 1
2 2

2h ( ) Y ( ) ( ) j ( ) 0,1,2,n
nn n

xx x x n57:4:3

and thence in terms of sinusoids, for example

1
2

2h ( ) sin( )x x
x

57:4:4

A similar reduction to elementary functions occurs when the order is a moiety of an odd positive integer. The
simplest case is depicted in Figure 57-2

1
2

2h ( ) 1 cos( )x x
x

57:4:5

and another is

3
2

2 1 cos( )h ( ) sin( )
2

x xx x
x x

57:4:6

Others may be constructed through the recursion

1 1 3
2 2 2

2 1 1 2h ( ) h ( ) h ( ) 2,3,4,
! 2

n

n n n
n xx x x n
x n x

57:4:7

this being a special case of equation 57:5:1.

57:5 INTRARELATIONSHIPS

The recursion formula for the Struve function
1
2

1 1 3
2

2h ( ) h ( ) h ( )
v

v v v

xvx x x
x v

57:5:1

is more complicated than that for many other functions, because of the third right-hand term. This term equals
when n is zero or a positive integer, and when n is a negative integer.2 /[(2 1)!! ]nx n 2( 2 3)!!( ) /nn x

57:6 EXPANSIONS

The power series expansion of the Struve function is
2 1 1 21 1

2 2
3 3 3 330 02 2 2 22

( ) 2( ) 1h ( )
( ) ( ) ( ) ( ) 4

jj vj v

v
j j j j

x x xx
j j v vv

57:6:1

of which the most important cases are
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1h ( )
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2

x

2 4 6

1
3 45 1575
x x x 3 5 7

9 225 11025
x x xx

2 4 6 8

3 45 1575 99225
x x x x

The most important asymptotic series generates the difference between the Neumann and Struve functions
111

2 2 11
22 1 2 21 110 022 2

1 4h ( ) Y ( )
v j

v v j v j j
j j

xj
x x v

xvv j x
~57:6:2

with the examples shown below

1 1h ( ) Y ( )
2

x x ~ 0 0h ( ) Y ( )
2

x x ~ 1 1h ( ) Y ( )
2

x x ~

2 4 6 8

1 3 45 1575
x x x x 3 5 7

1 1 9 225
x x x x 2 4 6

1 3 451
x x x

Integer-order Struve functions expand simply in terms of Bessel functions, for example

2 13 5 7 9
0 1

J ( )J ( ) J ( ) J ( ) J ( )h ( ) J ( )
4 3 5 7 9 2 1

j xx x x xx x
j

57:6:3

and

20 2 4 6 8
1 2

J ( )1 J ( ) J ( ) J ( ) J ( ) J ( )h ( )
4 2 3 15 35 63 4 1

j xx x x x xx
j

57:6:4

57:7 PARTICULAR VALUES

The value adopted by the Struve function at x 0 (or, more precisely, in the limit as x approaches zero from real
positive values) depends on the order:

3 5 7
2 2 2

3 7 5 911
2 2 2 2 2

5 3 9 7 13 11
2 2 2 2 2 2

1
0

, , ,

h (0) 2 / 1

1, , ,

, , ,

v

v

v

v

v v v

v v v

57:7:1

Similarly, there is an order-dependence at infinity:
1

h ( ) 2 / 1

0 1
v

v

v

v

57:7:2

Apart from a zero value that might exist at x 0, the Struve function has no zeros for v > ½. There are, however,
an infinite number of zeros for v ½. For large arguments, these occur at the roots of the equation
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1
21

231 1
22 4 1

2

sin h ( ) 0, large ,
v

v

r
r v r r v

v
57:7:3

and therefore, for very large arguments, the zeros are found at where k is a large integer.1 1
2 4 ,k v

57:8 NUMERICAL VALUES

Equator’s Struve function routine (keyword h) evaluates hv(x) throughout the domains |v| 168 and |x| 300.
Equation 57:6:1 is employed for arguments up to a magnitude of 20, but beyond this Equator utilizes formula 57:6:2
with an -transformation [Section 10:16].

57:9 LIMITS AND APPROXIMATIONS

Close to x 0, the Struve function behaves as a simple power:
1

3
2

h (0 )
2

v

v v

xx
v

57:9:1

As the argument approaches infinity, the Struve function generally behaves either as a power or as a damped
sinusoid

11 1 1
2 22

1 1 1
22 4

1 1 1
22 4

/

h ( ) 2 / 1 sin

2 / sin

v

v

x v v

x x x v v

x x v v

57:9:2

57:10 OPERATIONS OF THE CALCULUS

The differentiation formula
1
21 1

3
2

d h ( ) h ( )h ( )
d 2 2

v

v v
v

xx xx
x v

57:10:1

has the simple special case (d/dx)h0(x) h 1(x). The formula

1
d h ( ) h ( )
d

v v
v vx x x x

x
57:10:2

is also noteworthy.
Indefinite integrals include

0 1
0

h ( )d h ( )
x

t t t x x 1 0
0

2h ( )d h ( )
x xt t x 1 0

0

h ( )d h ( )
x

t t x
1

1 1
11

20

2 h ( )h ( )d
( )

x v
v v

v v

x xt t t
xv

and a particularly simple definite integral is
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There are many Laplace transforms [Section 26:15] involving the Struve function, of which some are
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2 /b
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b
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57:11 COMPLEX ARGUMENT

This Atlas does not address Struve functions of complex arguments. For purely imaginary argument, one finds
1 1 1

2 2h ( ) ( ) sin cos ( )v
v v viy i y v i v yl l57:11:1

where lv is the modified, or hyperbolic, Struve function addressed in Section 57:13.
Simple functions often result from inverse Laplace transformation of hv Yv differences; the simplest case is

0 0 0 0 2

d 2h ( ) Y ( ) exp( ) h ( ) Y ( )
2 1

i

i

ss s ts s s
i t
I57:11:2

57:12 GENERALIZATIONS

Inasmuch as its integer-order cases differ from the corresponding Struve function only by sign and an additive
polynomial [Abramowitz and Stegun, formulas 12.3.6,7], Weber’s function may be regarded as a generalization of
the hn(x) function. Weber’s function is not addressed in this Atlas, though it is mentioned briefly in Section 52:12.

57:13 COGNATE FUNCTIONS: the modified Struve function

Just as the modified Bessel function, Iv(x) is the hyperbolic counterpart of the Bessel function Jv(x), so the
modified Struve function lv(x) is the hyperbolic counterpart of the Struve function hv(x). The relationship between
the two functions

1( ) h ( )v
v vx i ixl57:13:1

involves operations in the complex plane. The modified Struve function is real whenever its argument x is real and
positive but, for negative arguments, lv(x) is complex unless the order v is an integer. In common with other
cylinder functions in the “modified” category, the modified Struve function is not oscillatory,

As a comparison of Figures 57-3 and 49-1 will confirm, there are strong qualitative similarities between the
modified Struve functions l0(x), l1(x),l2(x), and the corresponding modified Bessel functions I1(x), I2(x), I3(x),
… . Figure 57-3 also includes examples of modified Struve functions of negative integer order. These have less
similarity to their Bessel counterparts, but there is an identity between an lv(x) function of negative half-odd-integer
order and the corresponding Iv(x) function of positive half-odd-integer order
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1/ 2 1/ 2( ) I ( ) 0,1,2,n nx x nl57:13:2
[see also Section 28:12].

Many definitions of lv(x) are analogous to those of hv(x). Thus the defining equation

1
2

11
22 1

2
1

2 0

2
( ) 1 sinh( )d

( )

v
v

v

x
x t xt t v

v
l57:13:3

is a close parallel of the definition 57:3:1 of the Struve function. There are other integral representations, but some
of those integrals have problematic convergence properties. Some formulas, of which

1
1 1 2

0

2 h ( )( ) I ( ) d
1

xtx x t
t

l57:13:4

is a particularly simple instance, relate modified Struve functions to other cylinder functions of the same order.
Likewise the properties of modified Struve functions mostly mirror those of their unmodified counterparts. The

order-reflection formula
1

2

0

2 (2 2 3)!!( ) ( ) ( ) 1,2,3,
( ) (2 1)!!

n
j

n n n
j

x n jx x x n
x j

l l57:13:5

is similar to 57:4:2, while the order-recursion formula
1
2

1 1 3
2

2( ) ( ) ( )
( )

v

v v v

xvx x x
x v

l l l57:13:6
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fails to identify with 57:5:1 only by a sign change. The expansion of lv(x) in powers of x,
2 1 1 21 1

2 2

3 3 3 330 02 2 2 22

2 1( )
4

jj v v

v
j j j j

x x xx
j j v vv

l57:13:7

matches 57:6:1 except that the alternating signs are now absent. It is a similar story with asymptotic expansions
57:6:2, from which the right-hand side of

111
2 2 1 1

2 1 2 2 21110 022 2

( )1 4I ( ) ( ) large
v jj

v v j v j j
j j

xj
x x v x

v xv j x
l ~57:13:8

differs only in lacking alternating signs. Accordingly, the panels in Section 57:6 are easily adapted to provide
expansions for special cases of the modified Struve function. Expansion 57:13:7 forms the basis of Equator’s
modified Struve function routine (keyword l), which delivers exact values of lv(x) for all 125 v 125 and
0 x 500 and also for negative x if v is an integer.

As the argument x increases, the increasing value of lv(x) soon ceases to be significantly dependent on the sign
of v, and ultimately even becomes independent of the magnitude of v, approaching exp(x) asymptotically.

The derivative of the modified Struve function is given by
1
21 1

1
2

d ( ) ( )( )
d 2 2

v

v v
v

xx xx
x v

l ll57:13:9

a formula that may be combined with equation 57:13:6 to produce alternatives. Interesting links to other functions
are encountered on Laplace transformation of the modified Struve function; for example, the transforms
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/ 2 / 2 1
211

0 2

exp(1/ ) 12 exp( )d 2 ,v v
v v v

st t st t t t v
v s s

l l57:13:13

generate functions from Chapter 35, Chapter 40 and 45.





This trivariate function subsumes a number of simpler functions. As demonstrated in Section 58:14, the
indefinite integral of any circular or hyperbolic function, raised to an arbitrary power, is one-half of an incomplete
beta function.

58:1 NOTATION

The adjective “incomplete” reflects the less-than-unity upper limit in the definition 58:3:1 of the incomplete beta
function B(v, ,x) contrasted with that in the definition

1
1 1

0

( ) ( )B( , ) (1 ) d
( )

v vv t t t
v

58:1:1

of the (complete) beta function of Section 43:13. The incompleteness destroys the symmetry of this beta function:
the v and parameters are not interchangeable in this chapter.

You may encounter the variables ordered in the sequence B(x,v, ). An alternative notation is Bx(v, ). Also in
common use is the regularized incomplete beta function, defined by

B( , , )I ( , )
B( , )x

v xv
v

58:1:2

that is important in statistics, but is not further addressed here.

58:2 BEHAVIOR

The incomplete beta function is generally defined as a real-valued function only for arguments in the range
0 x 1, being zero at x 0 and becoming the (complete) beta function at x 1. However, extension to negative
arguments of magnitude exceeding unity is possible through the formula

DOI 10.1007/978-0-387-48807-3_59, © Springer Science+Business Media, LLC 2009 
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B( , , ) B , 1 , 1, 1,2,3,
1

n xn x n n x v n
x

58:2:1

when the v parameter is a positive integer. Likewise, extension to arguments exceeding unity is enabled whenever
the parameter is a positive integer, via the formula

( 1)! 1B( , , ) B , 1 , 1, 1,2,3,
( )

m

m

m xv m x m v m x m
v x

58:2:2

in which (v)m is a Pochhammer polynomial [Chapter 18]. Beyond noting these extensions, the Atlas does not discuss
the behavior of the incomplete beta function outside the 0 < x < 1 domain, other than in some special cases discussed
in Section 58:4. We treat all three variables as real but, apart from this, the parameter is unrestricted, whereas v
must be positive.

The behavior of the incomplete beta function is quite bland: when the other two variables are held constant, the
function decreases monotonically with v and with , but increases monotonically with x. These properties are
illustrated in Figure 58-1, in which the argument is fixed at either (left) or (right).1

3
2

3

58:3 DEFINITIONS

The fundamental definition as an indefinite integral

1 1

0

B( , , ) (1 ) d 0 1
x

vv x t t t x58:3:1

may be recast in several useful ways, including
1

0

B , , d 0
1 (1 )

x v

v

x tv t x
x t

58:3:2
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2 2 1 2 1 1
2

0

B , ,sin ( ) 2 sin ( )cos ( )d 0
x

vv x t t t x58:3:3

and

2 2 1 2

0

B , , tanh ( ) 2 tanh ( )sech ( )d 0
x

vv x t t t x58:3:4

As well, the incomplete beta function may be expressed as a number of definite integrals, the simplest being
1

1 1

0

B( , , ) (1 ) d 0 1v vv x x t xt t x58:3:5

Using the notation introduced in Section 43:14, the incomplete beta function may be synthesized by the route
1 B( , , )

11 (1 )v

vv v x
vx x x

58:3:6

This illustrates the hypergeometricity of the function, which leads to its being definable as the infinite series 58:6:1.

58:4 SPECIAL CASES

To ensure that the incomplete beta function is not complex, we require that its argument lie between zero and
unity in other sections of this chapter. This requirement can often be relaxed in the special cases treated in this
section, being replaced by a stipulation that xv or (1 x) be real. Section 12:2 addresses the conditions under which
a noninteger power is real.

When v is the positive integer n, but is not an integer, the incomplete beta function reduces to an algebraic
function:

1
1

1 1 1B( , , ) ( 1)! 1,2,3,
( ) (1 ) ( )!( )

jn n

jn j

x xn x n n
x n j x

58:4:1

The simplest case is
1 (1 )B(1, , ) xx58:4:2

Formula 58:2:1 may also be useful in these cases.
When is the positive integer m, the incomplete beta function is the product of xv and a polynomial of degree

m 1in x. There is no restriction on the values of v and x in these cases, provided that xv is real and well defined
[Section 12:2]. The formula

1

0

( )1B( , , ) 1,2,3, 0
jm

v

j

xmv m x x m xj j v
58:4:3

applies, the simplest instance being B(v,1,x) xv/v. Formula 58:2:2 also applies in this case. When is zero, the
incomplete beta function becomes a simple infinite series

0

1B( ,0, ) ln ( ,1, ) 0 0 1
1

j v
v

v
j

xv x x x v v x
j v x

58:4:4

equivalent to a generalized logarithm [Section 25:12] or a Lerch function [Section 64:12]. Negative integer values
of lead to
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j

x j m xv m x m
m j j v

58:4:5

of which 58:4:4 is the m 0 version. Convergence of this series requires 1 < x < 1, but nonetheless may be very
slow. Moreover xv must be well defined and v cannot be a nonpositive integer.

When both parameters are positive integers, the incomplete beta function reduces to a polynomial:
1

0

( )1B( , , ) , 1,2,3, 0 1
jm

n

j

xmn m x x n m xj j n
58:4:6

Other finite series result when one or other of the parameters is an odd positive multiple of ½, the other being a
positive integer:

1
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1
2 1

0 2

1
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Other results in which each parameter is a fraction or zero include

1 1
2 2B , , x 3 3

2 2B , , x 1
2B ,0, x 2 1

4B ,0, x

2arcsin x 2arccos(1 2 ) 1 2
8 4

x x x x 2artanh x 1 1
4 42artanh 2arctanx x

When the two parameters differ only in sign, there is a simple result

1B( , , ) 0 0 1
1

vxv v x v x
v x

58:4:9

but we know of no comparable general formula for B(v,v,x).

58:5 INTRARELATIONSHIPS

The important formula
( ) ( )B( , , ) B( , ,1 )
( )
vv x v x
v

58:5:1

constitutes a reflection formula for the argument of the incomplete beta function, but also shows the effect of
interchanging the parameters.

The reflection formula
B( 1, , ) B( , 1, ) (1 )vv x v v x x x58:5:2

increases one parameter at the expense of the other, so that the sum of the parameters remains constant. There is
a large number of intrarelationships connecting three incomplete beta functions, of which

B( , , ) B( 1, , ) B( , 1, )v x v x v x58:5:3
is the simplest.
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58:6 EXPANSIONS

The power series

2

0

( )(1 ) ( )( 1) (1 )B( , , ) 1 0 1
1 ( 1)( 2) ( 1)

v
j j v

j j

vx x v v v xv x x x x x
v v v v v v

58:6:1

shows the incomplete beta function to be an L K 1 hypergeometric function [Section 18:14]. Though technically
convergent for all parameter values, this series often converges at glacial speed if x is close to unity. In these
circumstances the alternative series

0

( )( ) ( ) (1 )B( , , ) (1 ) 0 1
( ) ( 1)

v
j j

j j

vv x xv x x x
v58:6:2

will converge more rapidly.

58:7 PARTICULAR VALUES

An argument of one-half is the most fructuous for particular values, some of which are:

1
2B , ,v v 1

2B , ,v v 1
2B ,1 ,v v 1 1 1

4 4 2B , , 1 1 1
2 2 2B , , 3 3 1

4 4 2B , , 3 3 1
2 2 2B , ,

1
2

( )
4 ( )v

v
v

1
v

G( )
2
v

2 g
2

1
2 g 16

Here g is Gauss’s constant [Section 1:8] and G(v) is the Bateman G function [Section 44:13].

58:8 NUMERICAL VALUES

In its incomplete beta function routine (keyword incompBeta), Equator generally relies upon series 58:4:5,
58:6:1, and 58:6:2. Values of the argument outside the 0 x 1 range are not accepted.

58:9 LIMITS AND APPROXIMATIONS

The incomplete beta function approaches the limit zero as its argument declines towards zero. The
approximation

1 1B( , , ) small
1

vv x x x x
v v

58:9:1

holds excellently during this approach. The corresponding approximation
1 1B( , , ) B( , ) (1 ) (1 ) 1

1
vv x v x x x58:9:2

covers the approach of the argument to unity, in which limit the incomplete beta function becomes complete.
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58:10 OPERATIONS OF THE CALCULUS

Differentiation and indefinite integration of the incomplete beta function with respect to its argument give

1 1d B( , , ) (1 )
d

vv x x x
x

58:10:1

and

0

B( , , )d B( , , ) B( 1, , )
x

v t t x v x v x58:10:2

Equation 58:10:2 is an instance of one of the general rules elaborated in Section 37:14.

58:11 COMPLEX ARGUMENT

The incomplete beta function is seldom encountered with complex argument and that possibility is not addressed
in this Atlas.

58:12 GENERALIZATIONS

The Gauss hypergeometric function of Chapter 60 represents a generalization of the incomplete beta functions.
Two ways in which a connection may be made between a Gauss function and the incomplete beta function are

B( , , ) F( ,1 ,1 , )vv x v x v v x58:12:1

and
B( , , ) F(1, ,1 , )

(1 )v

v v x v v x
x x

58:12:2

58:13 COGNATE FUNCTIONS

The incomplete beta function has some similarities to the incomplete gamma function [Chapter 45] and to the
Legendre functions of Chapter 59. As an L K 1 hypergeometric function, it also has liaison with all the functions
in Table 18-1. In fact, the incomplete beta function may be regarded as the prototype L K 1 hypergeometric
function

1

0

( ) 1 B 1, 1 , 1 1,2,3,
( ) 1

a c
j j

a
j j

a c xx c a c x c
c x x

58:13:1

58:14 RELATED TOPIC: integrals of powered circular and hyperbolic functions

If f is any one of the circular functions of Chapters 33, 34 or 35, then the indefinite integral of that function,
raised to an arbitrary power , is expressible as one-half of an incomplete beta function:
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The relationships between the power and the parameters of the incomplete beta function are:
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In some cases, a limit is imposed on the magnitude of the power by the requirement that v be positive; thus, unless
is less than unity, the integral of csc (t) diverges. The same assignment of parameters also allows the

complementary integrals to be expressed as incomplete beta functions:
/ 2

2f ( )d B , ,cos ( ) 0
x

t t v x58:14:3

Note the inversion of the parameters on passing from formula 58:14:1 to 58:14:3; of course any prohibition on
nonpositive values now transfers to .

Similar formulas exists for the hyperbolic functions of Chapters 28 30:
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The relationships between the power and the parameters of the incomplete beta function are
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for these hyperbolic functions. For example,

3
2 21 3 1

4 22
1

sech ( )d B , ,sech (1)t t58:14:6

As before, the range of the power may be restricted by the condition placed on the parameter. Thus, the condition
attaching to 58:14:5 cannot be met for the tanh and coth functions, but 58:14:4 can be applied, leading to

2 21 1
(1 ) / 22 2

0

1tanh ( )d B ,0, tanh ( ) ln cosh ( )
2

x

t t x x58:14:7

for the hyperbolic tangent case.
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The two bivariate functions of this chapter arise in several physical contexts, most notably in describing
phenomena within, or on the surface of, a sphere. Applications of these functions concentrate on real arguments of
magnitudes less than unity and accordingly the domain 1 < x < 1 receives emphasis in this chapter. Associated
Legendre functions, which are trivariate extensions of Pv(x) and Qv(x), are discussed briefly in Section 59:12. The
final section of this chapter illustrates how these functions arise in physical applications.

59:1 NOTATION

Pv(x) and Qv(x) are known respectively as the Legendre function of the first kind and the Legendre function of
the second kind, of degree v. Not infrequently the argument x is replaced by a hyperbolic or circular cosine; the Atlas
uses notations such as Pv(cosh( )) and Qv(cos( )) when these replacements are made.

The term spherical harmonic is used collectively to embrace both the Legendre functions and the associated
Legendre functions [Section 59:12].

Regrettably, the definitions of Pv(x) and Qv(x) are by no means uniform from one author to the next, and varying
symbolism are in use. Abramowitz and Stegun [Page 332] list several of these alternatives. Sometimes different
symbols are adopted according as the argument is real or complex. As elsewhere in this Atlas, our emphasis here
is on real variables. Accordingly, an equation in this chapter will sometimes imply only that the real parts of each
side are equal.

59:2 BEHAVIOR

Apart from the isolated instances addressed in Sections 59:4 and 59:5, both Legendre functions adopt complex
values when x 1. This domain receives no further attention here. The Q Legendre function is mostly complex
also when its argument exceeds 1, but the definition discussed in Section 59:11 accords it the real values discussed
in most of this chapter. Qv(x) is unequivocally real only for 1 < x < 1.

611
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Each Legendre function exhibits such different properties on either side of x 1 that effectively it behaves as
a distinct function in each region. Accordingly, we display their landscapes as the four graphs shown opposite.

The values acquired by the two Legendre functions at arguments of 1, 0, and +1 are reported in detail in
Section 59:7 and their general behavior within 1 < x < 1 is evident from Figures 59-1 and 59-2. Because of the
degree-reflection formulas 59:5:3 and 59:5:4, it suffices to consider only degrees of v ½, and the two figures are
so restricted. The landscape is rippled for both functions, with multiple zeros and local extrema.

Figures 59-3 and 59-4 are three-dimensional graphs of the Legendre functions in the x > 1 domain. Pv(x)
exhibits a rather bland landscape; notice the reflection symmetry that exists across the plane v ½, in consequence
of formula 59:5:3. The repetitive |+ discontinuities that occur in Figure 59-4 whenever the degree of Qv(x)
encounters a negative integer value may be attributed to the cotangent term in formula 59:5:4.

59:3 DEFINITIONS

Several definite integrals, including the following, represent the Legendre functions:

2

0

1P 1 cos( ) d 1 all
v

v x x x x v59:3:1

1
2

0

Q 1cosh( ) d 1 1
v

v x x x t t x v59:3:2

There are also several definitions of the Legendre functions as indefinite integrals:
1

2

0

cos ( )2P cos( ) d 0
cos( ) cos( )v

v
59:3:3

1
21

2
sinh ( )2P cosh( ) cot ( ) d 0 1 0
cosh( ) cosh( )v

v t
v t v

t
59:3:4

1
2exp ( )1Q cosh( ) d 0 1

2 cosh( ) cosh( )v

v t
t v

t
59:3:5

Despite appearances to the contrary, the integrands in the definitions
1 1

2 2

2
1

1 dP ( ) 1 1 1 1 1
1

v v

v
tx i x it x x it x x v

t
59:3:6

and
1 1

2 2

2
1

1 dQ ( ) 1 1 1 1 1
2 1

v v

v
tx x it x x it x x v

t
59:3:7

are wholly real because all imaginary terms cancel after binomial expansions.
On account of formula 59:5:3, the degree v in any definition of Pv(x) may be replaced by v 1. A similar

replacement for Qv(x) is valid only if v is an odd multiple of ½.
The traditional definition of the Legendre functions is as solutions of Legendre’s differential equation

2
2

1 22

d f d f(1 ) 2 ( 1)f 0 f P ( ) Q ( )
d d v vx x v v w x w x

x x
59:3:8

the w’s being arbitrary constants.
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The hypergeometric formulation, equation 59:6:1, of the Legendre function of the first kind opens the way to
its synthesis [Section 43:14] from a power function:

1(1 ) P (1 2 )
1

v
v

vx x59:3:9

Synthesis of the second Legendre function is more elaborate:
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2

2

1
2

-11
2

2 1( 1) / 21 Q
( )

v

v

v

v

vvx
v v x x

59:3:10

The Legendre function of the first kind can be expressed in many ways as special cases of the Gauss hypergeometric
function [Section 59:13] and occasionally Pv(x) is defined by this route.

59:4 SPECIAL CASES

When v is an integer of either sign, Pv(x) reduces to one of the Legendre polynomials discussed in Chapter 21

1

P ( ) 0,1,2,
P ( ) polynomial

P ( ) 1 1, 2, 3,
v

n
v

x v n
x

x v n
59:4:1

Legendre functions of the second kind are not defined for negative integer degree, but when v is a nonnegative
integer, Qv(x) reduces to one of the functions Qn(x) described in Section 21:13, many of which are graphed in
Figure 21-3. Some examples are

v 2 v 1 v 0 v 1 v 2 v 3

Pv(x) x 1 1 x 23 1
2 2x 35 3

2 2x x

Qv(x) undef undef Q0(x) 0Q ( ) 1x x 3
2 0 2P ( )Q ( )x x x 25 2

3 0 2 3P ( )Q ( )x x x

where the zero-degree instance of the Legendre function of the second kind is an inverse hyperbolic function
[Chapter 31]

0

artanh( ) 1 1
Q ( )

arcoth( ) 1

x x
x

x x
59:4:2

When the degree v is an odd multiple of ½, each of the Legendre functions reduces to an expression involving
complete elliptic integrals [Chapter 61] with square-root moduli. The prime examples are for v ½:

1
2

2 1P ( ) K
2

xx59:4:3

1
2

1Q ( ) K
2

xx59:4:4

The modulus of the elliptic integral in these formulas is imaginary for x > 1 in the case of P, or x < 1 for Q.
Nevertheless, these formulas define real Legendre functions in these x domains because [see 61:11:4] complete
elliptic integrals are real when their moduli are imaginary. However, for x < 1 in the case of P, or x > 1 for Q, the
modulus of the elliptic integral exceeds unity whereupon its value, and hence that of the Legendre function, becomes
complex. Because the reflection formula f v 1(x) fv(x) applies to both Legendre functions in these special cases,
each expression for a Legendre function of a degree that is an odd multiple of ½ applies to two degrees that average

½. For example

3 1
22

4 1 2 1P ( ) P ( ) E K
2 2

x xx x59:4:5

and
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3 1
22

1 1Q ( ) Q ( ) K 2E
2 2

x xx x59:4:6

By employing two equations from 59:4:3-6 as the starting point, recursion formula 59:5:5 may be used to develop
formulas expressing the Legendre function of any other degree that is an odd multiple of ½.

59:5 INTRARELATIONSHIPS

The argument-reflection formulas
1 1

2 2P ( ) P 0, 1, 2,n
n nx x n59:5:1

Q ( ) Q 0,1,2,n
n nx x n59:5:2

apply only when the degree is an integer, whereas the degree-reflection formulas

1P Pv vx x59:5:3

1Q ( ) Q ( ) cot( )P ( )v v vx x v x59:5:4
are of general applicability.

The same degree-recursion formula

1 1( 1)f ( ) (2 1) f ( ) f ( ) f P or Qv v vv x v x x v x59:5:5
applies to both kinds of Legendre function.

The following equations link the two kinds of Legendre function but apply only when the degree is not an
integer and when 1< x < 1

Q ( ) cot( )P ( ) csc( )P ( )
2v v vx v x v x59:5:6

2P ( ) cot( )Q ( ) csc( )Q ( )v v vx v x v x59:5:7

59:6 EXPANSIONS

As detailed in Section 59:13, Legendre functions may be expressed as Gauss hypergeometric functions
[Chapter 60] in a multitude of ways. Because each of these latter functions may be expanded as the (usually infinite)
power series 60:6:1, the number of expansions of Pv(x) and Qv(x) is huge. The listing presented here is not
exhaustive. In all cases the strategy is to express the Legendre function as a Gauss hypergeometric function, or as
a weighted sum of two such functions, and then expand the latter function(s) as power series.

For reasons explained in Section 59:13, the expansion

0

( ) (1 )1 1 (1 )P ( ) F ,1 ,1, 1 (1 )
2 (1) (1) 2 2

j
j j

v
j j j

v vx x v vx v v x59:6:1

valid in the range 1 < x < 3 range of argument, and the more complicated expansion
2

31 1 1
2 2 2 21 2 1 23 3

2 2

(1 ) 1 (1 ) 3 2Q ( ) F ,1 , , 1
[2 ] [2 ] (8 12)v v v

v v v vx v v v
v x x v x v x

59:6:2
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which has validity for x > 1, are seen as fundamental. Should v equal one of the values the first3 5 7
2 2 2, , , ,

( v ½) terms in 59:6:2 are zero. If you wish to avoid this, replace each v on the right-hand side by v 1.
To illustrate the twin-Gauss approach to expanding Legendre functions, first consider the two expansions

1 1 1 2 4 3 2
2 2 22 2 2 41 1 1 1

2 2 2 2 1
0 2

2 5 6F , , , 1
(1) 2 24

j j j

j jj

v v v v v v v vv v x x x x59:6:3

and
1 1 1 2 4 3 2
2 2 22 2 2 431 1 1

2 2 2 2 3
0 2

1 1 2 12 13 12F ,1 , , 1 +
(1) 6 120

j j j

j jj

v v v v v v v vv v x x x x59:6:4

both applicable for 1 < x < 1. The Legendre functions are weighted sums of these two Gauss hypergeometric
functions of argument x2:

2 231 1 1 1 1 1 1
2 2 2 2 2 2 2 21 1 1 1 1

2 2 2 2 2 2

2P ( ) F , , , F ,1 , ,
1v v

x v v x x v v x
v v v

59:6:5

3 31 1 1
2 22 2 231 1 1 1 1 1 1

2 2 2 2 2 2 2 22 21 1 1 1 1 1
2 2 2 2 2 2

1
Q ( ) F ,1 , , F , , ,

2 1v

v v
x x v v x v v x

v v v v
59:6:6

Notice that, in each of these formulas, there is an x multiplier in one or other of the weights, ensuring that all
nonnegative integer powers of x appear in the ultimate expansions.

There are also expansions as trigonometric functions:
1
2

33
0 22

(1 )2 (1 )P cos( ) sin (1 2 ) 0
(1)

j j
v

j jj

vv v j
vv

59:6:7

and
1
2

3 3
02 2

(1 )(1 )Q cos( ) cos (1 2 ) 0
(1)

j j
v

j jj

vv v j
v v

59:6:8

though these sums are often slow to converge.

59:7 PARTICULAR VALUES

In this section we look into the values acquired by Pv(x) and Qv(x) at the arguments x 1, 0, 1 and . The first
and second tables below apply to Legendre function of the first and second kinds respectively. Observe that a
plethora of formulas is needed to cover particular values at zero argument; mostly, these are special cases of the
formulas

1 1 1 1 1 1
2 2 2 2 2 2

11
22

cos sin
P (0) and Q (0)

2 11v v

v v v v
vv

59:7:1

Gauss’s constant g [Section 1:7] occurs frequently in these tables, as do the double and quadruple factorial functions
that are addressed in Section 2:3. Note the example (15)!!!! = 15×11×7×3, and that quadruple factorials of 1, 1 and

3 all equal unity.
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v Pv( 1) Pv(0) Pv(1) Pv( )

3, 5, 7, 9, 1
( 1) / 2( ) ( 2)!!

( 1)!!

v v
v

1 +

5 9 13 17
2 2 2 2, , , , + (1 2 ) / 4 2( 2 4)!!!!

( 2 2)!!!!
v v g

v
1 +

1, 2,3, 4, 1 0 1 +

3 7 1511
2 2 2 2, , , , (3 2 ) / 4 2( 2 4)!!!!

( 2 2)!!!!
v v

v g
1 +

1,0 1 1 1 1

3 71 11
2 2 2 2, , , , + (2 1) / 4 2(2 2)!!!!

(2 )!!!!
v v g

v
1 +

5 9 131
2 2 2 2, , , , (2 1) / 4 2(2 2)!!!!

(2 )!!!!
v v

v g
1 +

2,4,6,8, 1
/ 2( ) ( 1)!!

!!

v v
v

1 +

v Qv( 1) Qv(0) Qv(1) Qv( )

5 9 13 17
2 2 2 2, , , ,

2
(1 2 ) / 4 ( 2 4)!!!!

2( 2 2)!!!!
v v g

v + |+ 0

3 7 1511
2 2 2 2, , , ,

2
(1 2 ) / 4 ( 2 4)!!!!

2( 2 2)!!!!
v v

v g + |+ 0

1, 2, 3, 4, undef undef undef undef

3 71 11
2 2 2 2, , , ,

2
(2 1) / 4 (2 2)!!!!

2(2 )!!!!
v v g

v + |+ 0

0,2,4,6, 0 + |+ 0

5 9 131
2 2 2 2, , , ,

2
(2 3) / 4 (2 2)!!!!

2(2 )!!!!
v v

v g + |+ 0

1,3,5,7, + ( 1) / 2 ( 1)!!
!!

v v
v

+ |+ 0

59:8 NUMERICAL VALUES

Equator’s routines for the Legendre function of the first kind and Legendre function of the second kind
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(keywords P and Q) employ equations 59:6:1 or 59:6:5 and 59:6:2 or 59:6:6 to evaluate Pv(x) and Qv(x) in the
domains |v| 100 and x 1. Where functions are complex, only the real part is returned. For integer v values of
the Legendre function of the first kind are also provided for the x < 1 region.

59:9 LIMITS AND APPROXIMATIONS

Close to x 1, the Legendre function of the first kind becomes linear
2

P ( ) 1 ( 1) 1 small
2v

v vx x x59:9:1

whereas that of the second kind approaches infinity in accord with the relationship

2Q ( ) ln (1 ) 1 small
1v x v x

x
59:9:2

The corresponding limiting behaviors as are described by1 x
(1+ ) smallsin( ) 1P ( ) cos( ) 2 (1 ) ln

2 and positivev

xv xx v v59:9:3

and
(1+ ) smallsin( ) cos( ) 1Q ( ) 2 (1 ) ln

2 2 2 and positivev

xv v xx v59:9:4

The and ( ) terms in these formulas are Euler’s constant [Section 1:7] and the digamma function [Chapter 44].
When the argument is large and positive, the limiting expressions are

v 1
2 v 1

2 v 0

P ( )v x
1

12 (2 )
( )

vv
x

v
2 ln(8 )x

x

1
2 (2 )

( 1)
vv

x
v

v 3 5 71
2 2 2 2but , , , v 3 5 7

2 2 2, , , v 3, v 1, 2, 3,

Q ( )v x
1

12 cot( )
(2 )

( )
vv v

x
v 1

2

( 2 2)!! 2 (4 )
!

vv x
v 13

2

1
2 v

v
v x

59:10 OPERATIONS OF THE CALCULUS

Either differentiation or indefinite integration of a Legendre function yields an associated Legendre function
[Section 59:12]

(1) 2

(1) 2

f ( ) / 1 1 1d f ( ) f P or Q
d f ( ) / 1 1

v
v

v

x x x
x

x x x x
59:10:1
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1
2 ( 1)P ( )d 1 P ( ) 1 1v v

x

t t x x x59:10:2

2 ( 1)

1

P ( )d 1P ( ) 1
x

v vt t x x x59:10:3

As an alternative to 59:10:1, the derivatives of Legendre functions may be expressed, without recourse to associated
functions, as

1 12 2

d 1f ( ) f ( ) f ( ) f ( ) f ( ) 1 f P or Q
d 1 1v v v v v

v vx x x x x x x x
x x x

59:10:4

or by many other formulas discovered by incorporating the recursion 59:5:5.
Noteworthy integrals and Laplace transforms of the first kind of Legendre function include

2 2 (1)1 1 P ( ) 1 P ( )
P ( )d 1 1

(1 )(2 )
v v

v
x

x x x x x
t t t x

v v
59:10:5

1

1 31 1 1 1
0 2 2 2 2 2

(1 )P ( )d 1
2 1vt t t

v v
59:10:6

1 1 2

1

2 (1 )(1 ) P ( )d 1
2 1vt t t

v v
59:10:7

1
2

0

2P (1 )exp( )d P (1 ) exp Kv v v
s sbt st t bt

bs b b
59:10:8

and many others are given by Gradshteyn and Ryzhik [Section 7.1].
Formulas for integrals of products of Legendre functions include

1

2
1

2 sin ( ) 4sin( )sin( )[ (1 ) (1 )]
P ( )P ( )d 1

( )(1 )v

v v v
t t t v

v v
59:10:9

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1
0 2 2 2 2 2 2

2 1 sin cos 2 1 sin cos
P ( )P ( )d

1 ( )(1 ) (1 )( )(1 )v

v v v v
t t t

v v v v v v
59:10:10

1

1

[1 cos ( ) ] 2sin( )cos( )[ (1 ) (1 )]
P ( )Q ( )d 0

( )(1 )v

v v v
t t t v

v v
59:10:11

and
1 1

2

1

( 1) ( 1) 1 cos( )cos( ) sin( )
Q ( )Q ( )d

( )(1 )

1, 1, 2, 3,

v

v v v
t t t

v v

v

59:10:12

where ( ) and ( ) are the gamma and digamma functions [Chapters 43 and 44]. Other integrals of this sort are
listed in Section 3.12 of Erdélyi et al. [Higher Transcendental Functions, Volume 1], though not all of them appear
to be correct. One cannot set v in any of these formulas without carefully investigating the behavior as v.
Some consequences are as follows; they mostly involve the trigamma function [Section 44:12],
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1
2

1

P ( )dv t t
1

1

P ( )Q ( )dv vt t t
1

2

1

Q ( )dv t t
1

P ( )Q ( )dv vt t t

2 2 (1)

2

2 4sin ( ) (1 )
(1 2 )

v v
v

(1)sin(2 ) (1 )
(1 2 )
v v

v

2 2 (1)1
2 [1 cos ( )] (1 )

1 2
v v
v

The formulas 59:10:9 12 are useful, not only in their own right, but also as the source of other definite integrals by
taking advantage of such identities as P0(t) 1, P1(t) t, and . The orthogonality properties of22 1

2 03 3P ( ) P ( )t t t
Legendre functions of the first kind are revealed by setting m 0 in equation 59:12:11.

59:11 COMPLEX ARGUMENT

To avoid the Legendre functions of complex argument being multivalued, the complex plane must be cut. For
the Pv(z) function, it is conventional to make the cut along the line x 1, y 0, whereas a longer cut

x +1, y 0 is needed for Qv(z). Resulting from the cut are ambiguities in the values of Legendre functions
when the argument is real. To resolve the ambiguity, it is conventional, but not universal, to assign the average of
the values on either side of the cut. That is

0

f ( ) f ( )f ( ) lim f P or Q
2

v v
v

x i x ix59:11:1

When their arguments or degrees are complex, the Legendre functions are generally complex, too, but the Atlas
does not pursue this topic except for some comments on conical functions. These are Legendre functions of complex
degree, of which the real part is ½. They arise in solving differential equations such as those listed in Section 46:15
for a space shaped as a cone or possessing certain other geometries [Lebedev, Sections 8.5, 8.9 and 8.12].
Notwithstanding its complex degree, the conical function of the first kind is real

1
2

1
221 1 1

22 2 2
0 0

1 [(1 ) / 2]P ( ) F , ,1,
2 ( !)

j j

i
j k

x xx i i k
j

59:11:2

Inverse Laplace transformation of Legendre functions generates a spherical instance of the Macdonald [Section
26:13] or the modified Bessel [Section 28:13] functions

2

exp( ) 2P d P sin( )k
2

i

v v v
i

ts tbs s bs v
i b b

I59:11:3

exp( ) 1Q d Q i
2

i

v v v
i

ts tbs s bs
i b b

I59:11:4

59:12 GENERALIZATIONS: the associated Legendre functions

The trivariate associated Legendre functions are generalizations of the functions that are( ) ( )P ( ) and Q ( )v vx x
the main subject of this chapter, inasmuch as

(0) (0)P ( ) P ( ) and Q ( ) Q ( )v v v vx x x x59:12:1

The third variable is the order of the function. Some authors describe as “Legendre( ) ( )P ( ) and Q ( )v vx x
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functions” and consider Pv(x) and Qv(x) as merely the zero-order instances. Associated Legendre functions having
a degree that is an odd multiple of ½ are sometimes known as toroidal functions.

Linear combinations of satisfy the associated Legendre differential equation( ) ( )P ( ) and Q ( )v vx x
2 2

2 ( ) ( )
1 22 2

d f d f(1 ) 2 (1 ) f 0 f P ( ) Q ( )
d d 1 v vx x v v w x w x

x x x
59:12:2

This commonly arises as the trigonometric equivalent
2

2 2 ( ) ( )
1 22

d f d fcot( ) (1 ) csc ( ) f 0 f P cos( ) Q cos( )
d d v vv v w w59:12:3

The latter is valid only for | | < , which is the primary domain of interest for associated Legendre functions,
corresponding to 1 < x < 1. For reasons made evident in Section 59:14, applications almost invariably require that
the order be a nonnegative integer and henceforth we mostly impose this restriction and replace by m.

The differential equation 59:12:2 might suggest that associated Legendre functions of orders m and m would
be defined identically, but this is not so. Instead one has the order-reflection formulas

( )
( ) f ( )f ( ) f P or Q 0,1,2,

( ) (1 )

m
m v

v
m m

xx m
v v

59:12:4

For example The degree-reflection formulas are( 1) (1) 2f ( ) f ( ) /( ).v vx x v v
( ) ( ) ( ) ( ) ( )

1 1 1P ( ) P ( ) and Q ( ) Q ( ) cot( )P ( ) 0,1,2,m m m m m
v v v v vx x x x v x m59:12:5

Integral representations of the associated Legendre functions that are extensions of those listed in Section 59:3
exist, but are not reported here. The multiple differentiation formulas

2( ) 2 dP ( ) ( ) 1 P ( )
d

m m
m m

v vmx x x
x

59:12:6

and

2( ) 2 dQ ( ) ( ) 1 Q ( ) 1, 2, 3,
d

m m
m m

v vmx x x v
x

59:12:7

provide the simplest definitions for integer orders and lead to most of the formulas reported here. Be aware that the
( )m multiplier in these formulas is omitted by some authorities, so that odd-ordered associated Legendre functions
may be encountered with signs that differ from those here. The full story around associated Legendre functions is
quite complicated, especially when the argument is complex; see Gradshteyn and Ryzhik [Section 8.70] for
enlightenment.

The associated Legendre function may be expressed as a weighted sum of any two of its contiguous( )P ( )v x
functions, that is, of any two of . The appropriate weights are contained in( ) ( ) ( 1) ( 1)

1 1P ( ), P ( ), P ( ), and P ( )v v v vx x x x
the table overleaf, which applies equally to associated Legendre functions of either kind. To illustrate the use of this
table, note that the final row implies

2
( ) ( 1) ( 1)1

f ( ) f ( 1)( )f f P or Q
2v v v

x
x v v

x
59:12:8

a result that may be reorganized into an order-recursion relationship. Likewise the top row of the table provides a
degree-recursion formula, generalizing equation 59:5:5.

There are many formulas that connect associated Legendre functions with Gauss hypergeometric functions and
thus facilitate expansion. In particular,

2( ) 22
1 1P ( ) 1 F , 1, 1,

( 2) ! 2

m
m m

v m

v m xx x m v v m m
m

59:12:9
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( )
1f ( ) f P or Qv x ( )

1f ( ) f P or Qv x ( 1)f ( ) f P or Qv x ( 1)f ( ) f P or Qv x

(2 1)
v
v x

1
(2 1)
v

v x

1
x

2( 1) 1v x
x

( )
v

v x

21
( )

x
v x

1
x

2( ) 1v x
x

1
( 1)

v
v x

21
( 1)

x
v x

2( 1)( ) 1
2

v v x
x

21
2

x
x

and
/ 22

( ) 31 1 1 1 1 1
2 2 2 2 2 2 21 1 23

2

1( ) 1 1Q ( ) F ,1 , ,
2

m
m

m
v v v m

xv m
x v m v m m

v x x
59:12:10

are the analogues of equations 59:6:1 and 59:6:2, to which they reduce when m 0.
Some examples of associated Legendre functions in which both the degree and the order are positive integers

are

(1) (1) 2
1 2P ( ) P ( ) 1x x x

(1) 2
1 2

Q ( ) 1 artanh( )
1

xx x x
x

(1) (1) 2
2 3P ( ) P ( ) 3 1x x x x

2
(1) 2
2 2

2 3Q ( ) 3 1 artanh( )
1

xx x x x
x

(2) (2) 2
2 3P ( ) P ( ) 3 1x x x

3
(2) 2
2 2

5 3Q ( ) 3 1 artanh( )
1
x xx x x

x

Note that these are rarely polynomials, though they sometimes go by the misnomer “associated Legendre
polynomials”. whenever |m| exceeds the larger of n and n 1, a result that has consequence in Section( )P ( ) 0m

n x
59:14.

The associated Legendre function of the first kind satisfies the orthogonality relationship [Section 21:14]

1
( ) ( )

1

0
P ( )P ( )d 2 ( )!

2 1 ( )!

m m
n N

N n
t t t n m N n

n n m
59:12:11



59:13 THE LEGENDRE FUNCTIONS Pv(x) AND Qv(x) 623

Operative for arguments between 1 and 1, for |v| 150, and for integer m not exceeding 150 in magnitude,
Equator provides an associated Legrendre function of the first kind routine and an associated Legendre function of
the second kind routine (keywords assocP and assocQ). For v not less than ½ and positive m, these algorithms
generally utilize the following double series

1
22

2
2( )

2 / 2 2
22

1
2

( ) 1 1cos F , , ,
2 2 2 22P ( )

( ) 1 2 3(1 ) 2 sin F , , ,
2 2 2 2

v m

v mm
m

v m v m

v m

v m v m v m x

x
v m v m v mx x x

59:12:12

and
1

22
21

2( )
2 / 2 2

22
1

2

( ) 1 1sin F , , ,
2 2 2 22Q ( )

(1 ) ( ) 1 2 32 cos F , , ,
2 2 2 2

v m

v mm
m

v m v m

v m

v m v m v m x

x
x v m v m v mx x

59:12:13

but, whenever equation 59:12:9 proves to provide answers with more precision, it is substituted. Formula 59:12:4
or 59:12:5 is employed, where necessary, if the order or degree is negative.

59:13 COGNATE FUNCTIONS: certain Gauss hypergeometric functions

When the variable x in Legendre’s differential equation 59:3:18 is replaced by X (1 x)/2, the result may be
written as

2

2

d f d f(1 ) [1 {( ) (1 ) 1} ] ( )(1 )f 0
d d

X X v v X v v
X X

59:13:1

Compare this with Gauss’s differential equation 60:3:7: the two are identical if a v, b 1+v, and c 1. It follows
that a solution to Legendre’s differential equation is

1f F ,1 ,1,
2

xv v59:13:2

This is the result that is identified with Pv(x) in 59:6:1. Evidently the first kind of Legendre function is a particular
Gauss hypergeometric function. This latter function is addressed in some detail in the next chapter; here the focus
is on how the Legendre functions are expressible as Gauss functions.

Now set g x1+vf, where f is the dependent variable in Legendre’s differential equation 59:3:8. Thereby that
equation becomes

2
4 2 2

2

d g dg2 1 (1 )(2 )g 0
d d

x x x v vx v v
x x

59:13:3

and if the independent variable is now replaced by x 2, the differential equation adopts a form that can be
rewritten

2
3 1 1 1 1 1 1
2 2 2 2 2 2 22

d g dg(1 ) 1 1 1 g 0
d d

v v v v v59:13:4

This equation again identifies with the Gauss hypergeometric differential equation 60:3:7, this time if the choices
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a (1+v)/2, b (2+v)/2, and c (3+2v)/2 are made. We therefore have
1 1 231 1 1

2 2 2 2f g F ,1 , ,v vx x v v v x59:13:5

as a second solution to the Legendre differential equation. This is the expression ascribed to Qv(x) in equation
59:6:2, apart from a constant factor of .1 3

2(1 ) /[2 ( )]vv v
In summary, particular Gauss hypergeometric functions solve Legendre’s differential equation:

2
2 22 31 1 1 1 1

1 2 2 2 2 2 22 1

d f d f1 2 ( 1)f 0 f F ,1+ ,1, F 1 , , ,
d d v

wx x v v w v v x v v v x
x x x

59:13:6

Legendre functions are nothing but these Gauss functions “in disguise”, with suitable weighting factors, as prescribed
in equations 59:6:1 and 59:6:2. Gauss hypergeometric functions are unusually flexible, with the great number of
intrarelationships described in Section 60:5. This flexibility passes on to Legendre functions, as the tabulation below
amply demonstrates. This lists examples of hypergeometric representations of each kind of Legendre function.

Pv(x) Qv(x)

1 1
2 2F ,1 ,1,v v x 231 1 1

1 2 2 2 23
2

(1 ) F ,1 , ,
2 v

v v v v x
v x

1 1F , ,1,
2 1

vx xv v
x

1

13
2

2 (1 ) 2F 1 ,1 ,2 2 ,
11

v

v
v v v v

xv x

21 1 1
2 2 2F , ,1,1v v x

1 2
2

2
31 1

2 2 23 2 2
2

1(1 ) 1F , , ,
2 1 2 1

v
x xv x xv

v x x

2
2 1

2 2

2 11 F , ,1,
1

v xx x v
x x

2
31

1 2 2 223
2

1(1 ) F ,1 , ,
11

v

x xv v v
x xv x x

2
1 1 1

2 2 2 2

1F , ,1,v xx v v
x

1 2
3

(1 ) / 2 2 223
2

2 (1 ) 1F 1 ,1 , ,
2 11

v

v
v x xv v v

xv x

In consequence of the reflection formula 59:5:5, additional entries may be added to the first (only!) column by
replacing each v by v 1. The domains of the tabulated Gauss hypergeometric functions are restricted, because the
argument of an F(a,b,c,x) function is limited to < x < 1 (sometimes x 1 is admissible). Note, however, that
though the Gauss hypergeometric function is defined for < x < 1, the corresponding series, equation 60:3:1,
requires 1 < x < 1 for convergence.

The table above shows ways in which a Legendre function may be expressed as a single Gauss hypergeometric
function. There are very many other representations as sums of two or more such functions; Section 60:5 provides
routes for creating these.

59:14 RELATED TOPIC: solving Laplace’s equation in spherical coordinates

Functions that satisfy Laplace’s equation [Section 46:15] are known as harmonic functions. Legendre functions
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satisfy this equation when spherical coordinates [Section 46:14] are employed, explaining why “spherical harmonic”
is often considered synonymous with “Legendre function”.

In Section 46:14, the Laplacian operator was presented in several coordinate systems. Of course, the spherical
coordinates are the preferred means of indexing three-dimensional space for studies involving the interior or exterior
of spheres, or portions thereof. Laplace’s equation in these coordinates is

2 2 2 2

2 2 2 2 2 2

F 2 F 1 F cot( ) F csc ( ) F 0
r r r r r r

59:14:1

where F is the pertinent scalar quantity (temperature, potential, or the like). If coordinate separability is asserted,
so that F(r, , ) R(r) ( ) ( ), then we may trisect equation 59:14:1 in a manner strictly analogous to that used
in Section 46:15, arriving at three separated equations. The first of these, addressing the dependence of F on the
radial coordinate, is

2

2 2

d R 2 d R ( 1) R 0
d d

v v
r r r r

59:14:2

where v(v+1) is a conveniently formulated separation constant. The solution of this equation is mentioned in Section
32:13 but will not concern us here. The second separated equation, expressing how F is affected by the longitude
is

2
2

2

d
d

59:14:3

with 2 being the new separation constant. The third separated equation, which incorporates both separation
constants, conveys the dependence of F on the latitudinal angle and is

2
2 2

2

d dcot( ) ( 1) csc ( ) 0
d d

v v59:14:4

Each of the three separated equations is a typical second-order ordinary differential equation, solutions of which are
available through the procedures described in Section 24:14. Our prime interest here is in the solution of 59:14:4.
Because this equation is identical, apart from notation, with 59:12:3, its solution is a weighted sum of associated
Legendre functions:

( ) ( )
1 2( ) P cos( ) Q cos( )v vw w59:14:5

When the region of interest is the surface of a sphere, equation 59:14:2 is not pertinent and the overall solution is
a composite of solutions of the latitudinal and longitudinal separated equations, 59:14:4 and 59:14:3, with arbitrary
weighting factors

( ) ( )
5 6 3 4F( , ) ( ) ( ) P cos( ) Q cos( ) sin( ) cos( )v vw w w w59:14:6

One can argue from the geometry of a sphere that must be an integer (as otherwise sin{ ( +2 )} would not equal
sin{ }, as it must). In most physical situations, w6 must be zero (as otherwise, F would be infinite at 0, the
“north pole”). Because corresponds to another point on the sphere’s surface (the “south pole”, in fact) and ( )P ( 1)m

v

is infinite for all noninteger values of v, we are forced to conclude that v must also be an integer (which we can treat
as nonnegative because P n merely duplicates Pn 1). As noted in the preceding section, the associated Legendre
functions vanish for |m| > n. These various considerations permit us to simplify 59:14:6 to( )P m

n
( )

1 2F , P cos( ) sin( ) cos( ) 0,1,2, , 1, ,m
n w m w m n m n n n59:14:7

Depending on the application, the n and m numbers may be referred to as eigenvalues or quantum numbers. The
remaining weighting factors, w1 and w2, are independent of and but will generally depend on n and m, so that
w1(n,m) and w2(n,m) is a more informative symbolism. A large, possibly an infinite, number of weights might be
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needed in a complete solution that matches the boundary conditions of a physical problem, but we shall not pursue
any particular application.

To summarize, the equation

( )
1 2

0
F , P cos( ) ( , )sin( ) ( , )cos( )

n
m

n
n m n

w n m m w n m m59:14:8

provides a general solution to Laplace’s equation on the surface of a sphere. The components of this solution, that
is the terms and possibly with normalizing multipliers, are known as( )sin( )P cos( )m

nm ( )cos( )P cos( ) ,m
nm

surface harmonics or sometimes “spherical harmonics”.



In Section 18:14 a hypergeometric function is defined as any function that is expansible as the (usually infinite)
series

1 2 321 2 3 1 2 2 2 3 2 2

1 2 3 1 2 2 2 3 2 2 1 2 3

( ) ( ) ( ) ( )( ) ( ) ( ) ( )1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j j j K j jK K

L L j j j L j

a a a aa a a a a a a ax x x
c c c c c c c c c c c c60:0:1

where K and L are nonnegative integers. The jth term of this series incorporates (K + L) Pochhammer polynomials
[Chapter 18] of degree j. Name for the renowned German physicist and mathematician Carl Friedrich Gauss
(1777 1855), the Gauss hypergeometric function is the special case of series 60:0:1 in which K and L each equal
2, with one of the c parameters being constrained to be unity. Thus the Gauss hypergeometric function is
quadrivariate. Though it shares the properties of the general hypergeometric function [Section 18:14], the Gauss
version has additional unique features.

60:1 NOTATION

Although a1 and a2 occasionally replace them, symbols a and b are general for the numeratorial parameters of
the Gauss hypergeometric function, with c being used to denote the single unconstrained denominatorial parameter;
x is the argument. The immutable denominatorial parameter is understood to be unity and does not appear explicitly
in the usual F(a,b,c,x) notation.

The doubly subscripted symbolism 2F1(a,b,c,x) is often encountered, the “2” and “1” serving as reminders of
the numbers of adjustable parameters appearing as Pochhammer polynomials in the numerator and denominator of
each term in the power series expansion. A varied punctuation, F(a,b;c;x) or F(a;b|c|x), may be employed as a means
of emphasizing the interchangeability only of the a and b variables. Other notations for the Gauss function are

2 1
( ) 1, 1, ;F and

( ) ( ) 0, 1
c a ba b x xc a b c

60:1:1
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60:2 BEHAVIOR

Generally the Gauss hypergeometric function is defined only for those real values of the argument that lie in
the < x < 1 domain ; x 1 is included if c > (a+b). However, if one of the four quantities a, b, c a, or c b is a
nonpositive integer, F(a,b,c,x) may be reduced to a polynomial, in which event one of equations 60:4:10 or 60:4:11
(or their analogues with a and b interchanged) applies and x is unrestricted. Nonpositive integer values of the c
parameter are generally forbidden [though see Section 60:4], but otherwise these variables may adopt any real value.

Apart from equaling unity when its argument is zero, the behavior of the Gauss hypergeometric function is so
dependent on its three parameters that no useful general description can be given. Nor is any graphical depiction
feasible for a quadrivariate function.

60:3 DEFINITIONS

The most commonly encountered definition is as a summation that may be written in terms of the gamma
function or, more economically, through Pochhammer polynomials

0 0

1( ) ( )( ) ( ) ( )F( , , , )
( ) ( ) ( ) ! ( ) (1) 1

j
j j j

j j j j

c a ba bc j a j b xa b c x x x
a b c j c c a b

60:3:1

The restriction on the magnitude of x may be discarded if the series terminates, as it does if a or b is a nonpositive
integer. Transformation 60:5:3 permits a more extensive domain of definition

1
2

0

( ) ( )
F( , , , ) (1 )

( ) (1) 1

j
j ja

j j j

a c b xa b c x x x
c x

60:3:2

As always, the roles of a and b in 60:3:2 may be interchanged.
Several definite integrals can serve as definitions of the Gauss hypergeometric function. These include

1 1

1
0

( )F( , , , ) d 0 1
( ) ( ) (1 ) (1 )

b

b c a

c ta b c x t c b x
b c b t xt

60:3:3

1

1

( ) ( 1)F( , , , ) d (1 ) 1
( ) ( ) ( )

c b a c

a

c t ta b c x t a c b x
b c b t x

60:3:4

and
1

0

( )F( , , , ) d 0 1
( ) ( ) (1 ) (1 )

b

c a a

c ta b c x t c b x
b c b t t xt

60:3:5

A Gauss hypergeometric function may be synthesized from a binomial function [Section 6:14]:

(1 ) F( , , , ) 1 1a bx a b c x x
c

60:3:6

The notation is described in Section 43:14. An arbitrarily weighted sum of two Gauss hypergeometric functions
solves the hypergeometric differential equation

2

1 22

d f d f(1 ) (1 ) f 0 f F( , , , ) F( 1, 1,2 , )
d d

x x c a b x ab w a b c x w a c b c c x
x x

60:3:7

The a and b parameters may be interchanged in all the formulas in this section and, indeed, throughout the
chapter.
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60:4 SPECIAL CASES

A substantial fraction of the functions treated in this Atlas are instances of the Gauss hypergeometric function;
a random selection of these, including functions from Chapters 22, 32, 35, 61, and 58, is:

1
2F , , ,n n x 31 1

2 2 2F , , , x 21 1
2 2F , ,1,k F ,1, ,v x 1 1

2 2F , , ,v v x

T (1 2 )n x 1 arcsin x
x

2 K( )k 1 1

[ 1]B( 1, 1, )
(1 ) v v

v v v x
x x

1 cos 2 arctanvx v x

There are many circumstances in which a Gauss hypergeometric function simplifies to an algebraic function. A case
in point is

1 11 2F , 1, 1,
2 2 1

v
v xv v v x

x x
60:4:1

and many others will be found in Table 18-2. Because

0

( )
F( ,1, , )

( )
j j

j j

a
a c x x

c60:4:2

all the functions in Table 18-1 are also Gauss hypergeometric functions.
Certain relationships between the numeratorial parameters, namely

1 1
2 2or or 1b a a a60:4:3

or among the denominatorial parameter and the numeratorial parameters:

1 1
2 2

12 or 2 or or or or 1 or 1
2

a bc a b a b a b a b b a60:4:4

cause the quadrivariate Gauss hypergeometric function to reduce to the trivariate associated Legendre function
[Section 59:13]. The equivalences are all of the form

( )F( , , , ) f( )P ( )va b c x x X60:4:5

where v and reflect two of the three parameters a, b and c, while X depends only on the argument x. The function
f(x) incorporates parameters as well as powers of x and (1 x). Of the ten possibilities specified in 60:4:3 and 60:4:4,
seven are disclosed in Table 60-1 as the first seven entries; the three omissions are readily derived by interchanging
a and b in the asterisked entries. Further reduction of the associated Legendre function may occur, as detailed in
Section 59:12.

The final two entries in Table 60-1 provide details of formulas that apply when the denominatorial parameter
equals or , in which event1

2
3

2

( ) ( )1
2F , ,1 , f( ) P ( ) P ( )v va b x x X X60:4:6

Of course, the validity of the formulas embodied in Table 60-1 requires that both the Gauss hypergeometric function
and the associated Legendre function(s) be well defined. This generally means x < 1 and X > 1.

The incomplete beta function [Chapter 58] is another trivariate function that is a common special case of the
Gauss hypergeometric function. If either of the numeratorial parameters, say b, equals unity, then there is
cancellation with the phantom denominatorial (1) j , leading to

1 1
0 0)

( ) (1) ( ) 1F( ,1, , ) B 1,1 ,
( ) (1) ( ) (1 )

j j jj j
c a c

j jj j j

a a ca c x x x c a c x
c c x x60:4:7
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Table 60-1
Relation f(x) v X

1
2b a 1 2

1

( ) (1 )
2

c c a
c

c x x 2 1a c 1 c
1

1 x

1b a
1

( )
1

c
x

c
x

a 1 c 1 2x

2c a
1

2

1 2
2 1 1

22
(1 )

a
a

b a

xa
x

1
2b a 1

2 a
2

2 1
x

x

1
2c a b

3
2

3
2 1

22
1

a b
a b x

a b
x

1
2b a 3

2 a b 1 x

1
2c a b 11 22 1

22 a ba b a b x 1
2a b 1

2 a b 1 x

1
2

a bc
(1 ) / 221

2
a ba b x x 1

2
a b 1

2
a b 1 2x

1c a b
2( 1)

(1 )

b a

b

x
a b

x
b b a 1

1
x
x

1
2c 13

22

1 1
2 2 1

2 1 a ba b

a b
x

1
2a b 1

2 a b x

3
2c 37

2 2

1 1
2 2 1

2 1a b a b

a b
x x

1
2a b 3

2 a b x

If one of the numeratorial parameters is less by unity than the denominatorial c parameter, then, for example

1

1F( , 1, , ) B 1,1 ,c

ca c c x c a x
x

60:4:8

Powers, polynomials, inverse hyperbolic functions or inverse trigonometric functions may arise by further
specialization of the incomplete beta functions as detailed in Chapter 58.

If either of the numeratorial parameters, say b, equals the denominatorial parameter, then there is cancellation
resulting in

0 0)

( ) ( ) ( ) 1F( , , , )
( ) (1) (1) (1 )

j j jj j
a

j jj j j

a c a
a c c x x x

c x60:4:9

If either of the numeratorial parameters exceeds c by a positive integer, for example if b c n 1,2,3, , then the
Gauss hypergeometric function reduces to a binomial function multiplied by a polynomial, specifically a Jacobi
polynomial [Section 22:12] of degree n:
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( 1, )

0

( )1 !P (1 2 )F , , ,
(1 ) ( ) ( ) (1 )

c a nn
jj n

a n a n
j j n

c a n xna c n c x xjx c c x60:4:10

A similar reduction occurs if either of the numeratorial parameters is a nonpositive integer. If, for example, b n
where n 0,1,2,3, , then

( 1, )

0 0

( ) ( ) ( ) !P (1 2 )F , , ,
( ) (1) ( ) ( )

c a n cn
jj j jj n

j jj j j n

a n a n xna n c x x xjc c c60:4:11

The specialization to an nth degree polynomial that is manifested in equation 60:4:11 can be attributed to the
property

1 0

( ) ( )( 1)( 2) ( 1) 1 2,3,4,

0 1
j

j

n n n n n j j n

j n

60:4:12

of the numeratorial Pochhammer polynomial. This introduces a zero multiplier into all terms in the expansion of
the Gauss hypergeometric function for which j exceeds n. If c were to equal a nonpositive integer, a similarly arising
zero would eventually occur as a divisor in the F(a,b,c,x) series and it is this consideration that leads to the exclusion
of nonpositive integer c values from the domain of the Gauss hypergeometric function prescribed in Section 60:2.
Nevertheless, negative integer values are open to c, provided that either (or both) a or b is zero or a less negative
integer, in which cases equation 60:4:10 holds.

60:5 INTRARELATIONSHIPS

The Gauss hypergeometric function is symmetrical with respect to the interchange of its two numeratorial
parameters:

F , , , ) F( , , ,b a c x a b c x60:5:1

There are two important transformations. The first
F , , , (1 ) F( , , , )c a ba b c x x c a c b c x60:5:2

relates two Gauss hypergeometric functions of common argument, whereas the second

F , , , (1 ) F , , , (1 ) F , , ,
1 1

a bx xa b c x x a c b c x c a b c
x x

60:5:3

links a Gauss function with argument in the domain 1 x < 1 to one with an argument between ½ and .
Each Gauss hypergeometric functions has six so-called contiguous functions; the contiguous functions of

F(a,b,c,x) are those shown in the header line of Table 60-2. F(a,b,c,x) may be expressed as the weighted sum of any
two of its contiguous functions: thus there are fifteen contiguity relationships. The weighting functions appropriate
for nine of these fifteen are listed in the body of Table 60-2. The absent six would appear in the pair of columns
marked by asterisks and they can be found by interchanging a and b in the entries that share the row with those
asterisks. An example of how to use this table is provided by the fifth row, after an interchange; thusa b

1F( , , , ) F , 1, , F( , , 1, )
1 1

b ca b c x a b c x a b c x
b c b c

60:5:4

Three of the contiguity relations in the table engender recursion formulas for the individual parameters. For
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Table 60-2
F(a+1,b,c,x) F(a 1,b,c,x) F(a,b+1,c,x) F(a,b 1,c,x) F(a,b,c+1,x) F(a,b,c 1,x)

(1 )
2 ( )

a x
a c b a x 2 ( )

a c
a c b a x

* *

a
a b

b
a b

(1 )a x
a b c

* *
b c

a b c

(1 )
( )

a x
a c b x

*
( )( ) *
[( ) ]
c a c b x

c c b x a

1
a
a c

*
1

1
c

a c

( )(1 )
c a

b a x ( )(1 )
b c

b a x

1
1 x

*
( ) *

(1 )
b c x
c x

1 (1 )
a c

a b c x
*

( 1)(1 ) *
1 (1 )
c x

a b c x

2

( )( )
(1 2 )

c a c b x
c c a b c cx

(1 )(1 )
1 (1 2 )

c x
c a b c x

example, the first tabular entry leads to
2 ( )F 1, , , F , , , F 1, , ,

(1 ) (1 )
a c b a x a ca b c x a b c x a b c x

a x a x
60:5:5

The fifteen contiguity relations provide relationships between three Gauss hypergeometric functions of common
argument. In addition, a great number of relationships exist that link trios of these functions of dissimilar arguments.
Three typical formulas of this sort are:

,

F( , , , ) ( 2 )( ) 1F , 1, 2 1, 0
( ) ( ) ( )

b

a

a b c x a b x c a b x
c a b c x

60:5:6

,

F( , , , ) ( 2 )(1 ) 1F , , 2 1, 1
( ) ( ) ( ) 1

b

a

a b c x a b x c a b a b x
c a b c x

60:5:7

,

F( , , , ) ( 2 )(1 ) F , , 2 1,1 1
( ) ( ) ( )

a ba b

c

a b c x a b c x a b a b c x x
c a c b c

60:5:8

The notation in these three equations indicates that their right-hand members consist of two terms that differ only
by adopting either of the two indicated values. These formulas may fail if the argument of one of the numeratorial
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gamma functions equals a nonpositive integer; see Abramowitz and Stegun [equations 15.3.10 14] for expansions
that apply in these special circumstances.

With rare exceptions, such as those just noted, the formulas exhibited in this section are valid for all values of
the a, b and c parameters. They are said to be linear transformations. There also exist quadratic transformations,
which are applicable only when the parameters satisfy 60:4:3 or 60:4:4. For these, the interested reader is referred
to the Bateman manuscript [Erdélyi et al., Higher Transcendental Functions, Section 2.9 and 2.11], where a
comprehensive listing will be found and where cubic transformations are also addressed.

60:6 EXPANSIONS

The Gauss series

2 3( 1) ( 1) ( 1)( 3) ( 1)( 2)F( , , , ) 1
2 ( 1) 3! ( 1)( 2)

ab a a b b a a a b b ba b c x x x x
c c c c c c

60:6:1

is the prototype expansion and follow directly from definition 60:3:1. It may be rewritten as a concatenation

( 1)( 1) ( 2)( 2)F( , , , ) 1 1 1 1
2( 1) 3( 2)

abx a b x a b xa b c x
c c c

60:6:2

Moreover, each of the transformations detailed in Section 60:5, except for the first, leads to a different series
expansion, often with a different domain of convergence. Thus, for example, whereas expansion 60:6:1 generally
requires |x| < 1, the series

2F( , , , ) ( ) ( 1)( )( 1)1
(1 ) 1 2 ( 1) 1a

a b c x a c b x a a c b c b x
x c x c c x

60:6:3

converges for any argument less than ½. Likewise, the double series developed from transformation 60:5:7 is
convergent for all x < 1.

60:7 PARTICULAR VALUES

F(a,b,c, ) F(a,b,c,0) F(a,b,c,1)

0 0 and 0

1 or 0, theother 0

or 0

a b

a b

a b

undefined if c 0 and ab 0

otherwise 1

( ) ( )
( ) ( )

otherwise undefined

c c a b c a b
c a c b

In addition to those noted in the panel above, which apply generally, the following particular values apply when the
parameters are interrelated in specific ways:

1
2

1
1 2F , , , 1, 3, 5,

1 12
2 2

a b
a ba b a b

a b60:7:1
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1
1

2
2

F ,1 , , 0, 1, 2,
1

2 2

c c
a a c c

a c a c60:7:2

1 1 1
2 2 2

2 (1 )F , ,1 , 1 1, 2, 3,
1

a a ba b a b a b
a b a

60:7:3

60:8 NUMERICAL VALUES

Equator’s Gauss hypergeometric function routine (keyword F) returns values for wide domains of the
parameters a, b, and c, and for most values of x not exceeding unity. Truncated versions of four series or double
series are used according to the magnitude of the argument: 60:5:8 for 0.8 x < 1, 63:3:1 for 0.25 x 0.8, 60:3:2
for 5 < x < 0.25, and 60:5:6 for x 5. Where appropriate, advantage is taken of the truncation corrections 60:9:5
and 60:9:6. In all cases, a and b are first interchanged if a > b.

60:9 LIMITS AND APPROXIMATIONS

As any one of its parameters approaches infinity, the Gauss hypergeometric function becomes one of the
confluent hypergeometric functions discussed in Chapters 47 and 48:

lim F( , , , M( , , )
a

a b c x b c ax60:9:1

lim F( , , , M( , , )
b

a b c x a c bx60:9:2

lim F( , , , U ,1 , U 1 , ,
1 1 1 1

a b

c

c c c ca b c x a a b a b b
x x x x

60:9:3

Limits 60:9:1 and 60:9:2 are quantitatively useful only if x is negative, while 60:9:3 is of dubious quantitative utility.
When the argument x is close to unity, the summation in 60:3:1 is notoriously slow to converge. In this

circumstance, the approximation
( ) ( ) 11 large
( ) (1)

j j

j j

a b a b c j
c j60:9:4

is useful in providing an estimate of the truncation error. It lead from definition 60:3:1 to the formula
1

0

( ) ( ) ( ) ( ) ( 1) ( 1)F( , , , ) 1
( ) (1) ( ) (1) (1 ) (1 ) 1

JJ
j j j J J

j j j J J

a b a b x a b c x a b c xa b c x x J
c c x J x x

60:9:5

A similar truncation approximation, applied to series 60:3:2 leads to
1

1
0

( ) ( )F( , , , ) ( ) ( ) ( ) 11 ( 1)
(1 ) ( ) (1) 1 ( ) (1) (1 )

j JJ
j j J J

a J
j j j J J

a b ca b c x x a b c x a b x J a b x
x c x c x J

60:9:6
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60:10 OPERATIONS OF THE CALCULUS

The operations of differentiation
d F , , , F 1, 1, 1,
d

aba b c x a b c x
x c

60:10:1

multiple differentiation
( ) ( )d F , , , F , , ,

d ( )

n
j j

n
j

a b
a b c x a n b n c n x

x c60:10:2

and integration

0

1F , , , d F 1, 1, 1, 1 , , 1
( 1)( 1)

x ca b c t t a b c x a b c
a b

60:10:3

modify the parameters equally. Other operations, exemplified in the four equations that follow, allow selective
modification of single parameters of the Gauss hypergeometric function.

1 1d F , , , ( ) F , , ,
d

n
b n b

nnx x a b c x b a b n c x
x

60:10:4

1 1d F , , , ( ) F , , ,
(1 ) d (1 )

c b n n b c

na b c n n c a b

x x a b c x c b a b n c x
x x x

60:10:5

1 d 1 ( ) ( )F , , , F , , ,
(1 ) d (1 ) ( )

n
n n

a b c n n c a b
n

c a c ba b c x a b c n x
x x x c

60:10:6

1 1d F , , , ( ) F , , ,
d

n
n c c

nnx x a b c x c n a b c n x
x

60:10:7

Some of the operations in this paragraph may be disallowed, such as when they create a nonpositive integer
denominatorial parameter. The need to avoid complex algebra may restrict validity to 0 < x < 1, but extension to

< x < 1 is often possible.
Differintegration [Section 12:14] of the product of a Gauss hypergeometric function and a power obeys the rule

0

( ) ( ) (1 )d (1 )F , , ,
d (1+ ) ( ) (1) (1 )

v
j j jv j

v
j j j j

a b
x a b c x x x

x v c v60:10:8

and generally yields a L K 3 hypergeometric function [Section 18:14]. Certain choices of v and will, however,
lead to parameter cancellation, resulting in a hypergeometric function with L K 2, or even L K 1, as
exemplified in equations 60:10:11 and 60:10:12 below. In the notation introduced in Section 43:14, the process
described by equation 60:10:8 would be written

0

( ) ( ) (1 )1F , , ,
1 ( ) (1) (1 )

j j j j

j j j j

a b
a b c x x

v c v60:10:9

and described as a “synthesis”. Examples of syntheses starting from a Gauss hypergeometric function are
1 11 22 221 1 1 1

2 2 2 2
0

( ) (2 ) ( )
F ,2 , , F , , ,

2 1 ( ) (2 1) (1)
j j j j

j j j j

a c a cca c a c x x a c a c x
c c c60:10:10
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1 1
2 2

31 1
2 2 2 3

0 2

21F , , , arcsin 1 1
2 (2)

j j j

j jj

x x x x x
x

60:10:11

and

0

( ) 1F , , ,
(1) (1 )

j j
b

j j

bca b c x x
a x60:10:12

The Laplace transform of a Gauss hypergeometric function is an L K 1 1 hypergeometric function:

00

( ) ( )1 1F( , , , )exp( )d F( , , , )
( )

j
j j

j j

a b
a b c t st t a b c t

s c s
60:10:13

60:11 COMPLEX ARGUMENT

Generally F(a,b,c, x+ iy) is complex valued, but the Atlas does not pursue this topic.
The inverse Laplace transformation formula

1exp( )F( , , , ) d F( , , , ) exp( ) U( , 1, )
2

i
a

i

sta b c s s a b c s t t c b a b t
i

I60:11:1

which is generally valid for for s > ½, yields a Tricomi function [Chapter 48]. Other formulas may be derived from
48:10:5.

60:12 GENERALIZATIONS

The (generalized) hypergeometric function detailed in Section 18:14 may be regarded as a generalization of the
Gauss version.

There are several more profound generalizations of the Gauss hypergeometric function. These are discussed
in Chapter 4 of Higher Transcendental Functions [Erdélyi et al.].

60:13 COGNATE FUNCTIONS

The rationalized Gauss hypergeometric function or regularized Gauss hypergeometric function is defined as

0

( ) ( )F( , , , )
( ) ! ( )

j j j

j

a ba b c x x
c j c j

60:13:1

It has the advantage of displaying no discontinuities as the denominatorial parameter c moves through negative
values.



The complete elliptic integrals of the first and second kinds are rather simple univariate functions. These
functions, together with their incomplete analogues addressed in Chapter 62 and the complete elliptic integrals of
the third kind [Section 61:12], comprise the main members of the elliptic integral family. The family members were
devised, primarily by Legendre, to allow the canonical representation of certain important integrals, a topic explored
in Section 62:12. The intriguing and useful “elliptic nome” is addressed in Section 61:15, as are the four Neville
theta functions.

61:1 NOTATION

With few exceptions, this Atlas uses “argument” to describe the sole variable of a univariate function. To
achieve unity with the functions of Chapters 62 and 63, we violate this rule here and use the name modulus (module
is also encountered), and the symbol k (p is also in use) to denote the variable of K(k), the complete elliptic integral
of the first kind, and E(k), the complete elliptic integral of the second kind. Similarly, the bivariate complete elliptic
integral of the third kind [Section 61:12] is denoted (v,k).

As their names imply, the functions discussed in Chapters 61, 62 and 63 are ultimately related to an ellipse. The
modulus k is, in fact, the eccentricity of this ellipse, equal to where b and a are the lengths of the21 ( / ) ,b a
minor and major semiaxes [Section 13:14]. When the eccentricity is zero, k 0 and the ellipse becomes a circle.
As k 1, the ellipse degenerates into a straight-line segment.

Not all authors use the modulus as the variable of K and E. There is a surprisingly large number of alternative
related variables that are encountered in discussions of complete elliptic integrals and elliptic functions.
Replacements for k include the complementary modulus

21 bk k
a

61:1:1

(the symbol q has sometimes been used, as in the first edition of this Atlas), the modular angle,
arcsin( )k61:1:2
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3
4

2

4

arccos( )k61:1:3
the parameter,

2m k61:1:4
the complementary parameter,

2 2
1 1 ( ) 1m m k k61:1:5

and the elliptic nome q [Section 61:14]. Figure 61-1
illustrates geometric relations between k, k , and in terms of
an ellipse and its circumscribed circle. See the table in
Section 61:7 for special values acquired by many of these
various “modulus substitutes”. Beware of confusion because
other authors often use such substitutions as K(k2) and
E(arcsin(k)) where we would use K(k) and E(k).

Another source of confusion is that E is the conventional
symbol not only for the complete elliptic integral of the
second kind, but also for the incomplete elliptic integral of
the second kind, as discussed in Chapter 62.

In addressing bivariate and trivariate elliptic functions,
it is sometimes convenient to use K(k) or K(k ) as a
variable, replacing or supplementing k itself. In this
circumstance the abbreviations

K( )K k61:1:6
and

2K( ) K 1K k k61:1:7

are often adopted. In a similar way, E and E are
frequently used to abbreviate E(k) and E(k ). Notice our
adherence to the Atlas rule that roman characters from the
Latin alphabet denote functions, whereas italic characters
signify numbers.

61:2 BEHAVIOR

Though they may be defined outside this domain, as in
Section 61:11, by far the most important values of the
modulus lie within 0 k 1. This is the range covered by
Figure 61-2, which maps the behavior, not only of K(k) and
E(k), but also k , K(k ), E(k ), and q(k). Note that the
ranges of the first and second kinds of complete elliptic
integral are and , provided1

2 K( )k 1
21 E( )k

that 0 k 1.

the complementary modular angle,
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61:3 DEFINITIONS

The geometry of an ellipse of semiaxes a and b can serve to define the two complete elliptic integrals, though
in very different ways. Thus, the perimeter of this ellipse [Section 13:14] equals or 4aE(k),24 E 1 ( / )a b a
while the common mean [mc, Section 61:14] of the two semiaxes provides a definition of K(k) through the
relationship.

2
mc( , )

2K( )2K 1 ( / )

a ab a
kb a61:3:1

The complete elliptic integrals are generated from elementary functions by the operations of semidifferentiation
or semiintegration with respect to the parameter k2:

1
2

1
22

d 1arcsin K
d( )

k k
k

61:3:2

1
2

1
2

2

2

d 1 2 E
d( )

k k
kk

61:3:3

Each of the two complete elliptic integrals may be defined by any one of three definite integrals:
/ 2 1

2 2 2 2 2 2 2 2
0 0 0

1 1 1K( ) d d d
1 sin ( ) (1 )(1 ) (1 )[1 (1 ) ]

k t t
k t k t t k t

61:3:4

and
/ 2 1 2 2 2 2

2 2
2 2 3

0 0 0

1 1 (1 )E( ) 1 sin ( ) d d d
1 (1 )

k t k tk k t t
t t

61:3:5

The two definitions that involve the angle are illustrated in Figures 62-2 and 62-3 of the next chapter. Section
61:13 lists other integrals that may be expressed in terms of K(k) and E(k).

In the notation described in Section 43:14, the two complete elliptic integrals may be synthesized as follows:
1

21 2 K
11

k
k61:3:6

1
21 2 E

11
k

k61:3:7

Related to these syntheses are the representations of the K and E functions as Gauss hypergeometric functions
[Chapter 60]:

21 1
2 2K( ) F , ,1,

2
k k61:3:8

21 1
2 2E( ) F , ,1,

2
k k61:3:9

61:4 SPECIAL CASES

There are none.
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61:5 INTRARELATIONSHIPS

Both elliptic functions are even:
f ( ) f ( ) f K or Ek k61:5:1

The four elliptic integrals K(k), E(k), K(k ), and E(k ) are linked by the remarkable Legendre relation
1
2K( )E( ) K( )E( ) K( )K( )k k k k k k61:5:2

Complete elliptic integrals of modulus are related to those of modulus k through the transformations2 /(1 )k k

2K (1 )K( )
1

k k k
k

61:5:3

2 2E( )E (1 )K( )
1 1

k k k k
k k

61:5:4

A similar transformation links complete elliptic integrals of modulus (1 k )/(1+k ) to those of modulus k:

21 1K K( ) 1
1 2

k k k k k
k

61:5:5

1 E( ) K( )E
1 1

k k k k
k k

61:5:6

The domain of definition, from 0 to 1, is preserved by these transformations.

61:6 EXPANSIONS

Alternative ways of formulating the power series
22 2 2 1 1

2 22 4 6 2

0 0

( ) ( )2 1 1 3 1 3 5 (2 1)!!K( ) 1
2 2 4 2 4 6 (2 )!! (1) (1)

j jj j

j j j j

jk k k k k k
j

61:6:1

22 2 22 4 6 1 1
2 2 2

0 0

( ) ( )2 1 1 3 1 3 5 1 (2 1)!!E( ) 1
2 1 2 4 3 2 4 6 5 1 2 (2 )!! (1) (1)

j jj j

j j j j

k k k jk k k
j j

61:6:2

are available via equations 61:3:8 and 61:3:9 coupled with the expansions reported in Section 60:6. The final
expressions in 61:6:1 and 61:6:2 demonstrate that the complete elliptic integrals are hypergeometric functions. More
useful than 61:6:1 when k is close to unity is the elaborate expansion

2 2

1 1

2 4 (2 1)!! ( 1)K( ) ln 2 ( )
(2 )!!

nj
j

j n

K jk k
k j n

61:6:3

the analogue of which is
2 2

2
2

1 1

2 4 (2 3)!!(2 1)!! 1 ( 1)E( ) 1 ln 2 ( )
(2 2)!!(2 )!! 4 8

nj
j

j n

K E j jk k
k j j j j n

61:6:4

The infinite product expansion
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2

1 1 2
1

1 11K( ) 1
2 1 1 1

j
j j

j j

kkk k k k
k k

61:6:5

converges to the first kind of complete elliptic integral.
An expansion in terms of sines of multiples of the modular angle is provided by

2
91

4 64 4
0

(2 )!
K( ) sin( ) sin(5 ) sin(9 ) sin (4 1) arcsin( )

2 !jj

j
k j k

j
61:6:6

See Section 61:15 for expansions involving the nome.

61:7 PARTICULAR VALUES

The table shows that many variables and functions coalesce with their complements when the modulus equals
.1/ 2

k 0 k 1/ 2 k 1

k 1 1/ 2 0

m 0 ½ 1
m 1 ½ 0

0 1
4

1
2

1 1
4 0

q(k) q 0 exp( ) 1

K(k) K 1
2 / 2g

E(k) E 1
2

2 1 / 8g g 1

K(k ) K / 2g 1
2

E(k ) E 1 2 1 / 8g g 1
2

In this table, g is Gauss’s constant [Section 1:8]. The transformations in Section 61:5 may be used to develop other
particular values.

61:8 NUMERICAL VALUES

A popular method of computing values of complete elliptic integrals of the first and second kinds relies on the
common-mean procedure described in Section 61:14. In the terminology developed in that section

2K( ) 1
2mc( ,1)

k k k
k

61:8:1

and
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2

1
E( ) K( ) 1 ma( , ,1) mg( , ,1)

2 j

kk k j k j k61:8:2

and this is the route followed by Equator in its complete elliptic integral of the first kind routine (keyword
EllipticE). However, for its complete elliptic integral of the second kind routine (keyword EllipticK), Equator
relies on equation 61:3:9 and the algorithm described in Section 60:8, unless the modulus lies in the domain
0.99 k < 1 in which case the procedure is replaced by series 61:6:4.

61:9 LIMITS AND APPROXIMATIONS

The earliest terms in expansions 61:6:1 4 provide limiting expressions for the complete elliptic integrals of the
first and second kinds:

2

K( 0) 1
2 4

kk61:9:1

2K( 1) ln 4 / 1k k k k61:9:2

2

E( 0) 1
2 4

kk61:9:3

2
2( ) 4 1E( 1) 1 ln 1

2 2
kk k k

k
61:9:4

61:10 OPERATIONS OF THE CALCULUS

Formulas for differentiation are:

2

d E( ) K( )K( )
d (1 )

k kk
k k k k

61:10:1

d E( ) K( )E( )
d

k kk
k k

61:10:2

The indefinite integrals of the complete elliptic integrals cannot be written as established functions, though they
are simple L K 3 hypergeometric functions:

1 1 1
2 2 2 2

3
0 20

( ) ( ) ( )
K( )d

2 (1) (1) ( )

k
jj j j

j j j j

kt t k61:10:3

1 1 1
2 2 2 2

3
0 20

( ) ( ) ( )
E( )d

2 (1) (1) ( )

k
jj j j

j j j j

kt t k61:10:4

However, the related indefinite integrals

2

0

K( )d E( ) (1 )K( )
k

t t t k k k61:10:5
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and
2 2

0

(1 )E( ) (1 )K( )E( )d
3

k k k k kt t t61:10:6

do have straightforward representations.
Catalan’s and Gauss’s constants , G and g, [Section 1:7] appear in the formulas for certain definite integrals of

complete elliptic integrals:

1

0

f( )dk k
1

0

f( )dk k
1

0

f( ) dk k
k

1

0

f( ) d
1

k k
k

1 1
2

0

f( )
d

k k
k

1

0

f( ) 1dk k
k

f K 2G 21
4

2 21
2 g 21

8
ln(2) 2G

f E G + ½ 21
8

2 2

2

1
4 4
g

g
1 ln(4)

4
ln(4) 1

61:11 COMPLEX ARGUMENT

Figures 61-3 and 61-4 respectively show the behavior of the first and second kinds of complete elliptic integral
when the modulus equals x+ iy. Each left-hand diagram shows the real part, while the right-hand diagram depicts
the imaginary part.

The complete elliptic integrals of the first and second kinds are complex, even for real moduli, if k exceeds
unity. In that case, the formulas that apply are

21 1 1K( ) K K 1i kk k
k k k k

61:11:1

and
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2 2 21 1 1 1 1 1E( ) E K E K 1k k kk k i k k
k k k k k k

61:11:2

The complete elliptic integrals are generally complex when their modulus is complex. For purely imaginary
argument, these functions are real:

2

2 2 2

1K( ) K and E( ) 1 E
1 1 1

k kik ik k
k k k

61:11:3

For example K(i) and E(i) ( g2 +1)/2g, g being Gauss’s constant [Section 1:7].1
2 g

Modified Bessel functions [Chapter 49] arise from the Laplace inversion of complete elliptic integrals:

0 1
exp( )K d K I I

2 2 2 2 2 2

i

i

b ts b b bt bts
s i s

I61:11:4

0 1
exp( )E d E I I

2 2 2 2 2 2

i

i

b ts b b bt bts s s
s i s t

I61:11:5

Other examples will be found in Roberts and Kaufman (page 312).

61:12 GENERALIZATIONS: mostly the complete elliptic integral of the third kind

The most important generalizations of the complete elliptic integrals arise by allowing the upper limit to become
a variable in definitions 61:3:1 and 61:3:2. These are the incomplete elliptic integrals and are the subject of the next
chapter. The remainder of this section is concerned with the complete elliptic integral of the third kind (v,k), which
is a generalization of that of the first kind inasmuch as (0,k) K(k).

The complete elliptic integral of the third kind is defined by
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1 / 2

2 2 2 2 2 2 2
0 0

1 1( , ) d d
(1 ) (1 )(1 ) 1 sin ( ) 1 sin ( )

v k t
vt t k t v k

61:12:1

where v is a number, treated as real here, known as the characteristic. Be aware of the wide variety of definitions
and notations. Thus the integrals in 61:12:1 would be denoted ,1( , ),v k \ arcsin( )v k , ,v k 1

2, , ,k v
or even by different authors. In the first edition of this Atlas, the sign of v differed1

2 , , ,v k 1 1 1
2, ,v v k

from that adopted here.
Interest concentrates on the domain 0 k < 1 of the modulus. Figure 61-5 shows the behavior of (v,k) in this

modular domain. When all the variables in the defining integral in 16:12:1 are real, the elliptic integral of the third
kind is also real, though some authorities regard (v,k) as complex when v > 1.

The complete elliptic integral of the third kind suffers a discontinuity at v 1and adopts special values when
the characteristic equals zero or k2, as tabulated overleaf.
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v 0 v k2 v 1

0, K( )k k 2
2

E( ),
1

kk k
k

1, |k

For other values of v, the third kind of elliptic integral can always be expressed in terms of incomplete elliptic
integrals of the first and second kinds [Chapter 62], but the formula allowing this is quadripartite, depending on the
magnitude of the characteristic v. In the formulation below, we use K and E to represent the complete integrals K(k)
and E(k):

2

2
2

2
2

2

( )F( , ) E( , ) 0
1 (1 )( ) 2

F( , ) E( , ) 0
(1 )( )

,

( )F( , ) E( , ) 1
(1 )( ) 2

F( , ) E( , ) 1
( 1)( )

K v K E k K k v
v v k v

vK E k K k v k
v k v

v k
vK K E k K k k v

v v k

v E k K k v
v v k

61:12:2

The angles that appear in these formulas are defined by

11 1arcsin arcsin arcsin arcsin
1

vv
k kv v

61:12:3

The formulas in expression 61:12:2 are used by Equator to calculate values of the complete elliptic integral of the
third kind, with keyword EllipticPi. The values required for the F(k, ), E(k, ), F(k , ), and E(k , ) functions are
obtained by the methods explained in Section 62:8.

61:13 COGNATE FUNCTIONS

In addition to those of the first, second, and third kinds, the following complete elliptic integrals
/ 2 2

22 2
0

sin ( ) K( ) E( )D( ) d
1 sin ( )

k kk
kk

61:13:1

/ 2 2 2

22 2
0

cos ( ) E( ) (1 )K( )B( ) d
1 sin ( )

k k kk
kk

61:13:2

and

3
2

/ 2 2 2 2

4 42 2
0

sin ( )cos ( ) 2 2C( ) G( ) d K( ) E( )
1 sin ( )

kk k k k
k kk

61:13:3

may be encountered in some works, though not in the Atlas.
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61:14 RELATED TOPIC: means

A mean of two positive numbers, x and y, is a third positive number that represents some sort of compromise
between the two. It invariably has a value intermediate between x and y.

Familiar means are the arithmetic mean

ma( , )
2

x yx y61:14:1

also known as the average, the geometric mean

mg( , )x y xy61:14:2

the harmonic mean
22 2 mg ( , )mh( , )

(1/ ) (1/ ) ma( , )
xy x yx y

x y x y x y
61:14:3

and the root-mean-square
2 2

mr( , )
2

x yx y61:14:4

If y exceeds x, the sequence of inequalities
mh( , ) mg( , ) ma( , ) mr( , )x x y x y x y x y y61:14:5

applies. These four means are special cases of a generalized mean defined by
1

m( , , )
2

nn nx yn x y61:14:6

The harmonic mean, arithmetic mean, and root-mean-square are the n 1, n 1 and n 2 cases of this general
formula, while the geometric mean corresponds to the n 0 limit. Equator’s generalized mean routine (keyword
m) delivers m(n,x, y) for most combinations of positive values of x and y and any real value of n.

The means discussed above can be broadened in obvious ways to encompass more than two arguments, but this
is not true of the common mean, the topic to which attention now turns. Also called the arithmeticogeometric mean,
this mean, mc(x,y), lies between mg(x,y) and ma(x,y) in the hierarchy cited in 61:14:5.

A procedure may be implemented in which, starting from two positive numbers x and y, geometric and
arithmetic means are formed repeatedly. The symbols mg( j, x, y) and ma( j, x, y), defined by the iterations
61:14:7 mg( , , ) mg mg( 1, , ),ma( 1, , ) mg(0, , )

1,2,3,
61:14:8 ma( , , ) ma mg( 1, , ),ma( 1, , ) ma(0, , )

j x y j x y j x y x y x
j

j x y j x y j x y x y y

establish this arithmeticogeometric procedure. As j increases, mg( j,x,y) and ma( j,x,y) rapidly approach a common
value known as the common mean of x and y and here denoted mc(x, y):

mc( , ) lim mg( , , ) lim ma( , , )
j j

x y j x y j x y61:14:9

Based on this procedure, Equator generates values of mc(x, y) through its common mean routine (keyword mc),
fewer than 5 iterations generally being adequate.

The common mean provides definitions of Gauss’s constant g [Section 1:7], the first kind of complete elliptic
integral K(k) [Section 61:3], and the elliptic nome q(k) [Section 61:15]. Arithmeticogeometric procedures are also
used, in the context of Landen’s transformation, in computing values of the incomplete elliptic integrals [Section
62:8].
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61:15 RELATED TOPIC: the elliptic nome

Associated with the functions of Chapters 61 63 is a univariate function known as the nome or the elliptic nome.
When considered as a function of the modulus k, we use the symbol q(k) [the alternative N(p) was adopted in the
first edition of the Atlas], but when other functions employ the nome as a variable, the more usual symbol q will be
employed. This function receives modular values in the domain 0 k 1 and its range is likewise 0 q(k) 1.
As Figure 61-1 illustrates, its approach to the upper limit is at first gentle but ultimately it becomes incredibly steep,
as confirmed by a comparison of the values q(0.999995) ½ and q(1) 1.

The definition of the nome is in terms of the complete elliptic integral of the first kind and its complement:

K
q( ) exp exp

K
k Kk

k K
61:15:1

This definition, combined with equation 61:8:1 into

2mc( ,1)q( ) exp 1
mc ,1

kk k k
k

61:15:2

provides a direct method of relating the nome to k. See the preceding section for the significance of mc( , ). The
reflection formula

2

q( ) exp
ln q( )

k
k

61:15:3

relates a nome of modulus less than value to one with a modulus greater than this value. Two expansions of1/ 2
the nome, in terms of the modulus are

5 9 13 17 1q( ) 2 15 150 1707
2 2

kk
k

61:15:4

and

2 3 4 5 6 7 8 9 2

1 2 21 62 6257 10293 279025 483127 435506703 8q( )
2 2 16 4 16 4 512

k
k

61:15:5

This last formula is used by Equator’s elliptic nome routine (keyword q) when 0 k 0.2; otherwise equation
61:15:1 is used to compute q(k).

The utility of the nome arises from the large number of elliptic functions that can be expressed as rapidly
convergent series or products of terms involving q. These functions include the modulus itself

9 251
4 4 4

2 4 4 42 4 6

4 9 3 51
2

1 1 14
1 1 1

q q q q q qk q
q q q q q q

61:15:6

the complementary modulus
2 4 444 9 3 51

2
4 9 3 51

2

1 1 1
1 1 1

q q q q q qk
q q q q q q

61:15:7

the complete elliptic integrals of the first
2 2 22 4 624 91

2 3 5

K( ) 1 1 1
2 4 1 1 1

qk q q qq q q
k q q q

61:15:8

and second
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2 4 9

4 91
2

4 9E( ) K( )
K( )

q q qk k
k q q q

61:15:9

kinds, the incomplete elliptic function E(k, ) of the second kind [Chapter 62] expressed in terms of its cohort F(k, )
of the first kind

2 3

2 4 6

E( )F( , ) 2 sin( F( , ) / ) sin(2 F( , ) / ) sin(3 F( , ) / )E( , )
1 1 1

k k q k K q k K q k Kk
K K q q q

61:15:10

the elliptic amplitude [Section 62:3]
2 3

2 4 6

F( , ) sin( F( , ) / ) sin(2 F( , ) / ) sin(3 F( , ) / )2
4 1 2[1 ] 3[1 ]

k q k K q k K q k K
K q q q

61:15:11

and all twelve of the Jacobian elliptic functions. Some of the latter expansions will be found in Section 63:6.
An important role for the nome is to serve as one of the variables in theta functions. A first encounter with theta

functions can be bewildering! Be alert to the existence of many different kinds of theta function in the literature,
in addition to such modified versions as that discussed in Section 27:13. Three kinds are described in this Atlas.
Not only are these three kinds named and sometimes defined differently by different authorities, but the symbols
used to represent their variables may be permuted mercilessly. All three kinds of theta function are bivariate with
one of those variables being a periodic variable, by which is meant that incrementing this variable by a constant (the
“period” of the function is the smallest such increment) leaves the theta function’s value unchanged. The other
variable is aperiodic but there is no unanimity on whether the periodic or the aperiodic symbol is cited first in the
function’s notation. Indeed, the aperiodic variable may not even appear in the notations adopted by some authors.

In Section 27:13 a four-member family of so-called exponential theta functions is encountered. Each of the four
is defined there in two ways, one of which is exemplified by

2 21
21

0
( , ) 2 ( ) exp ( ) sin (2 1)j

j
v t j t j v61:15:12

This is the definition of the exponential theta-one function given in equation 27:13:7; the three other exponential
theta functions, are defined similarly. Notice in 61:15:12 that v is the periodic variable2 3 4( , ), ( , ), and ( , ),v t v t v t
and that its period is 2. This is the case also for the exponential theta-two function, but have3 4( , ), and ( , )v t v t
periods of unity.

Members of a second quartet of theta functions are called elliptic theta functions or Jacobi theta functions. Their
notations and series definitions are

1/ 4 9 / 4 25 / 4
1( , ) 2 sin( ) sin(3 ) sin(5 )q x q x q x q x61:15:13

1/4 9 / 4 25 / 4
2 ( , ) 2 cos( ) cos(3 ) cos(5 )q x q x q x q x61:15:14

4 9
3( , ) 1 2 cos(2 ) cos(4 ) cos(6 )q x q x q x q x61:15:15

4 9
4 ( , ) 1 2 cos(2 ) cos(4 ) cos(6 )q x q x q x q x61:15:16

Alternative symbols for are H and these being Jacobi’s choices, but the variables serving these symbols1 4and ,
are not always q and x. Compare the four expansions with equations 27:13:7-10 and observe that each elliptic
theta function is identical to the corresponding exponential theta function, apart from a radical change in the
variables, the order of which is switched. The connections are

2
2

ln( )( , ) , or ( , ) exp( ), 1,2,3,4j j j j
x qq x v t t v j61:15:17
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so that the nome q replaces exp( 2t) as the aperiodic variable, while x replaces v as the periodic variable. Thereby
the period becomes 2 for but for Particular values of the elliptic theta functions are as1 2and 3 4and .
tabulated here:

1( , )q x 2 ( , )q x 3( , )q x 4 ( , )q x

x 0 0 2 /kK 2 /K 2 /k K

x /2 2 /kK 0 2 /k K 2 /K

These identities permit a number of power series to be summed through equations 61:15:13 16:

1 1
4 4

1
12 6 12 20 ( 1) 2 2

0

, ( ,0)1
2 2 2

j j

j

q q kKq q q q q
q q q

61:15:18

24 9 16 3

0

1 ( ,0) 11
2 2 2

j

j

q Kq q q q q61:15:19

and
24 9 16 4

0

1 ( ,0) 11 ( )
2 2 2

j j

j

q k Kq q q q q61:15:20

Equator does not provide a dedicated means of calculating values of the elliptic theta functions because these are
so easily found from the exponential theta function routines described in Section 27:13, via the variables changes
specified in the equivalence 61:15:17.

To add more elaboration, a third quartet of theta functions will now be broached. These were introduced by the
English mathematician Eric Harold Neville (1889 1961) and bear his name. Again, one of the two variables is
periodic, but the periods are 4K or 2K, in contrast to the 2 or of the elliptic theta functions. There are several
other ways in which Neville’s theta functions, which play an important role in Chapter 63, differ from elliptic theta
functions. The aperiodic variable is taken as the nome q for elliptic theta functions but the modulus k fills that role
here for the Neville theta functions. Whereas the distinguishing subscripts are the numbers 1, 2, 3, and 4, for elliptic
theta functions, these are replaced by the letters s, c, d, and n in Neville’s foursome. And, finally, a normalizing
multiplier is introduced. Notwithstanding these differences, there remains a close liaison between the two kinds of
theta function, the connections being

s 1

c 2

2

d 3

n 4

61:15:21 ( , ) ,
2 2

K( )61:15:22 ( , ) ,
2 2

1

61:15:23 ( , ) , K( )2 2 exp
K( )

61:15:24 ( , ) ,
2 2

xk x q
kk K K

x K kk x q
kK K

k k
xk x q kK K q

k
xk x q

k K K

The normalizing factors in these formulas serve to ensure that all equal unity atc n d( , ), ( , ), and ( , )k x k x k x
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x 0, whereas – which equals zero when its argument is zero – is normalized to equate ands ( , )k x s( , )k K
.n ( , )k K

The Neville theta functions are defined as real-valued functions for 0 k 1, though and becomes n

unbounded at x ± K as k 1. The x domain is unlimited because all four functions are periodic in x, the periods
of the s- and c-varieties being 4K, while the d- and n-versions have periods of 2K. The theta-s function is odd with
respect to the periodic argument x; the other three are even. Values of range between 1 and +1; those ofc s

occupy a wider range, symmetrical around zero, with the extrema depending on k. Values of range between 1d

and a smaller positive k-dependent minimum, while those of range upwards from 1 to a k-dependent maximum.n

These behaviors conform to the special cases to which the Neville theta functions reduce at extreme values of k:

s ( , )q x c ( , )q x d ( , )q x e ( , )q x

k 0 sin(x) cos(x) 1 1

k 1 sinh(x) 1 1 1

and to the following values that these functions acquire at particular values of x:

s ( , )q x c ( , )q x d ( , )q x e ( , )q x

x 0, ±4K, ±8K, 0 1 1 1

x K, 3K, 5K, 7K, 1/ k 0 k 1/ k

x ±2K, ±6K, ±10K, 0 1 1 1

x K, 3K, 5K, 7K, 1/ k 0 k 1/ k

The four Neville functions are interrelated through
2 2 2 2 2
n s c d s( , ) ( , ) ( , ) ( , ) [ ( , )]k x k x k x k x k k x61:15:25

s c( , ) ( , )k k x k K x61:15:26

n d( , ) ( , )k k x k K x61:15:27

and by other relationships that can be deduced from information in Chapter 63.
Equations 61:15:21 24, the equivalences 61:15:17, and ultimately the routines from Chapter 27, allow Equator

to compute Neville’s theta-s, theta-c, theta-d, and theta-n functions (keywords theta-s, theta-c, theta-d, and
theta-n). However, formula 61:15:26 is invoked in calculating for moduli k 0.16. Moreover, whens ( , )k x
|x| 0.001 and k 0.9, Equator resorts to the formula

2
2

s n
1( , ) ( , ) tanh( ) sinh(2 ) 2 sech ( )

8
kk x k x x x x x61:15:28

as a means of calculating theta-s. Though the formulas of this section apply for all values of the periodic variable
x, computational precision suffers if x strays too far from zero. This is because of the subtractive loss of significance
inherent in such operations as x(mod 4K). Accordingly, the argument is restricted to the domain 8K x 8K when
Neville’s theta functions are calculated by Equator.

Note that, because approaches unity as k 1, expression 61:15:28 correctly predicts that( , )n k x s ( , )k x
approaches tanh(x) as k 1. Yet, paradoxically, equals sinh(x) at k 1. A similar discontinuity afflictss ( , )k x

, which approaches k 1 as sech (x) but equals unity at k 1.c ( , )k x





These two bivariate functions and a third, mentioned briefly in Section 62:12 arise in many practical
problems, including the motions of particles, pendulums and planets. Analysis of these motions often leads to the
indefinite integrals cited in Section 62:14 and it was in formalizing these integrals that the incomplete elliptic
integrals arose historically.

Numerical quadrature may be used to calculate values of these integrals and an efficient method of performing
this task accurately is described in Section 62:15.

There is a strong kinship between the functions of Chapters 61, 62, and 63. We refer to them collectively as
members of the “elliptic family of functions”.

62:1 NOTATION

The incomplete elliptic integrals are sometimes named Legendre’s elliptic integrals. The F and E varieties are
distinguished as being of the “first kind” and “second kind” respectively. The adjective “incomplete” is appropriate
because the upper integration bound in definitions 62:3:1 and 62:3:2 is generally less than the value /2 required
to “complete” the integrals that define the functions of Chapter 61.

It is unfortunate that the character “E” is the symbol for the complete, as well as the incomplete, elliptic integral
of the second kind. Both usages are deeply entrenched.

The variable is termed the amplitude of the incomplete elliptic integral, k being its modulus. However, as in
Chapter 61, there are several “modulus substitutes”. When these are used, the comma in F(k, ) and E(k, ) is
frequently replaced by some other separator, and the amplitude then receives first mention. Thus, for example,
F( |m) and E( \ ) are commonly employed when the parameter or the modular angle [equation 61:1:4 or 61:1:2]
replaces the modulus. One may even find the modulus to be merely implied, as in F( ). It is usual for the amplitude
to be treated as an angle and denoted but you may encounter F(k,x) where x is sin( ). The Atlas invariably
indicates the presence of the modulus k, and avoids modulus substitutes. In this chapter we never adopt K or E as
an abbreviation for K(k) or E(k), though they are often so used elsewhere.
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62:2 BEHAVIOR

By far the most important modular domain for the incomplete elliptic integrals is 0 k 1. This is the only
domain addressed in this section and the one illustrated in Figures 62-1 and 62-2. Observe that the rather bland
terrain of these functions is dominated by a ramp-like steady increase in value with increasing amplitude . As k
increases, the ramp becomes mildly rippled and, in the F(k, ) case, the oscillations become prominent as the
modulus approaches unity. The figures suggest the possibility of resolving the incomplete elliptic integrals into two
components and, indeed, each incomplete elliptic function may be decomposed into a linear function of its amplitude
and a periodic function:

a periodic f F or E
2f( , ) f , function of

f , K( ) or E( )2
period 2

k k
k k k

62:2:1

Each component is an odd function of the amplitude . Except for E(1, ) which obeys equation 62:4:3, the periodic
component is not sinusoidal. The periodicity property is not shared by F(1, ), which is undefined outside /2

/2.
One consequence of formula 62:2:1, and the properties of the functions vis-à-vis the modulus, is that it suffices

to examine the behavior of F(k, ) and E(k, ) only in the intervals 0 k 1 and 0 < . Felicitous reflection,
recursion, and transformation properties then permit extension to other values of the variables.

62:3 DEFINITIONS

As their names imply, the most common definitions of the incomplete elliptic integrals are as integrals, typically
the indefinite integrals in equations 62:3:1 and 62:3:2. The restriction 1 k 1 is general. Moreover, of these six
integrals, all but the primary definitions (those that have as their upper bound) are limited in domain to | | < /2.
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2 2b a x
a

sin( ) tan( )

2 2 2 2 2 2 2 2
0 0 0

sin( ) tan( )2 2 2 2 2
2 2

2 320 0 0

1 1 162:3:1 F( , ) d d d
1 sin ( ) 1 1 1 1 ( )

1 1 ( ) 162:3:2 E( , ) 1 sin ( ) d d d
1 1

k t t
k t k t t k t k

k t k t kk k t t
t t

Figures 62-3 and 62-4 illustrate the primary definitions and the corresponding definitions of the complete elliptic
integrals [Chapter 61].

As suggested by their names, the incomplete elliptic integrals are related to the geometry of the ellipse and
geometric definitions of F(k, ) and E(k, ) exist. Inspect the ellipse shown in Figure 62-5. By exploiting the formula
in Section 39:14, the red segment of its perimeter is found to have a length which is related to the angle through

2 2
2 2 2 2

0

length of the
( )sin ( ) d E( , )

segmer d te n
a ba a b a k k

a
62:3:2

Thus the second kind of incomplete elliptic integral is defined geometrically. The
endpoint of that red segment can be considered to have reached its present
position by traveling along the red elliptic path from the zenith of the ellipse.
During this journey, the length of the blue line joining the origin to the moving
point will have steadily increased as the angle opened from zero to . Then,
because the instantaneous length of the line is the2 2 2 2/ ( )sin ( ) ,ab a a b

2 2 2 2
0

average length 1 d F( , )
of the line ( )siblue n ( )

ab b k
a a b

62:3:3

This provides a geometric definition of the first kind of incomplete elliptic integral.
The incomplete elliptic functions are closely related to the integrals of reciprocal square-roots of the cubic

function, in ways explained in Section 62:14. This is how the F(k, ), E(k, ) and (v,k, ) functions were discovered
and these integrals can serve as definitions.
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62:4 SPECIAL CASES

The incomplete elliptic integrals become equal to their amplitudes when their moduli are zero,
F(0, ) E(0, )62:4:1

to the inverse gudermannian [Section 33:14] or sine [Chapter 32] functions when their moduli are unity
1 1 1
4 2 2F(1, ) invgd( ) ln tan( )62:4:2

1E(1, ) 2 ( ) sin( ) all , = Int
2

nn n62:4:3

and to various instances of the incomplete beta function [Chapter 58] when k equals 2±½

21 1 1 1
4 2 4 4F 2, B , ,sin (2 ) 062:4:4

231 1 1
4 2 4 4E 2, B , ,sin (2 ) 062:4:5

41 1 1
2 4 2

1 1F , B , ,1 cos ( ) 0
2 8

62:4:6

431 1
2 4 2

1 1 1 1E , F , B , ,1 cos ( ) 0
22 2 32

62:4:7

When the modulus and amplitude are interrelated such that k (1+x)/2 where x ksin( ),
the first kind of incomplete elliptic integral is a simple semiintegral [Section 12:14]:

1
2

1
2 2

2 d 1F ,
d 1

k
x x

62:4:8

62:5 INTRARELATIONSHIPS

The reflection formulas
f( , ) f( , ) f F or Ek k62:5:1

and
f( , ) f( , ) f F or Ek k62:5:2

show the incomplete elliptic integrals to be even with respect to their modulus but odd with respect to amplitude.
Equation 62:5:2 is subsumed in the more general reflection formulas

1 1
2 2F , 2 K( ) F , 0, 1, 2,k n n k k n n62:5:3

and
1 1
2 2E , 2 E( ) E , 0, 1, 2,k n n k k n n62:5:4

Figures 62-3 and 62-4 help to illustrate the recursion formulas
F , 2 K( ) F , 0, 1, 2,k n n k k n62:5:5

and
E , 2 E( ) E , 0, 1, 2,k n n k k n62:5:6
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which are responsible for the periodicity noted in equation 62:2:1. Valuable formulas express the difference between
a complete and an incomplete elliptic integral in terms of functions of an auxiliary amplitude :

2 2 2

62:5:7 K( ) F( , ) F( , ) cos( )sin( )= <
262:5:8 E( ) E( , ) E( , ) sin( )sin( ) 1 sin ( )

k k k

k k k k - k

Two important transformations are attributed to Englishman John Landen (a surveyor and amateur
mathematician, 1719 1790). The idea behind these transformations is that two incomplete elliptic integrals will
be related to each other if their moduli and amplitudes are themselves suitably interrelated. Here we let two colors
distinguish between the members of an interrelated pair. The required link between the two moduli is

1 2or equivalently
1 1

k k
k

k
k

k62:5:9

where, as always, k means The paired amplitudes need to obey21 .k
arcsin sin( )

arctan tan( ) or equivalently
2

k
k

62:5:10

For example, amplitude k is paired with k and 1.0000 with 0.60598. If these relationships exist,1
4

4
5

then it can be demonstrated that the incomplete elliptic integrals of the first kind are interrelated by
1(1 ) or equivalentF( , ) FF( , ) F( , )

2
,ly ( )k k kkk k62:5:11

Continuing with our example, one finds F(k, ) 1.0087 and F(k, ) 0.63045. There is a similar, but more
elaborate, relation between E(k, ) and E(k, ), namely

2 2

2[ ] (1 )sin( )cosE( , ) F (( , ) )
1 1 sin

E )
)

( ,
(

k k k k
k

k
k

62:5:12

and the equivalent inverse transformation is more complicated still. Geometrically, the different colors correspond
to a pair of ellipses of differing eccentricity. Calculating red functions from blue corresponds to decreasing the
eccentricity of the ellipse and is called descending Landen transformation. Conversely going from red to blue
constitutes an ascending Landen transformation.

Of course, sequences of transformations are possible and such recurrent Landen transformation is
computationally useful. As one proceeds through a sequence, the modulus rapidly approaches either zero (for the
descending option, corresponding to the ellipse having progressed towards a circle) or unity (for the ascending
option, corresponding to the ellipse approaching a straight line segment). Eventually, one of formulas 62:9:5 8 may
be used to provide an accurate value for the final, and thence the original, incomplete elliptic integral.

Thus far in this section, as in most of the chapter and in most applications, it has been implicitly assumed that
0 k 1. However, the properties of incomplete elliptic integrals of moduli greater than unity are accessible through
the formulas

2

162:5:13 F , F ,
sin( )0 1 arcsin

1 1 162:5:14 E , E , F ,

k k
k

k
kkk k

k k k

Some authorities regard the incomplete elliptic functions as complex-valued when their moduli exceed unity, with
an imaginary component in addition to the real component given by 62:5:13 and 62:5:14.
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62:6 EXPANSIONS

With coefficients defined by the recursions
2

1 0
(2 1)!! 2K( ) 1

(2 )!!
j

j j
j ka a k a

j
62:6:1

and
2

1 0
1 (2 1)!! 2E( )1

2 1 (2 )!!
j

j j
j kb b k b

j j
62:6:2

the expansions

2
0

0

(2 )!!F( , ) (1 ) sin( )cos( ) sin ( )
(2 1)!!

j
j

j

jk a a
j62:6:3

and

2
0

0

(2 )!!E( , ) (1 ) sin( )cos( ) sin ( )
(2 1)!!

j
j

j

jk b b
j62:6:4

are particularly useful for small moduli, for which convergence is rapid.
Conversely, the expansions

2
0

0

tan( ) (2 )!!F( , ) (1 )invgd( ) [ tan ( )]
cos( ) (2 1)!!

j
j

j

jk
j62:6:5

and
2 2

2
0 1

0

1 cos( ) 1 sin ( ) tan( ) (2 )!!E( , ) invgd( ) [ tan ( )]
sin( ) cos( ) (2 1)!!

j
j

j

k jk
j

62:6:6

are useful when the modulus is close to unity and the amplitude does not exceed /4. Here the coefficients obey the
recursions:

2
2 2

1 0
(2 1)!! 2(1 ) K 1 1

(2 )!!
j

j j
j k k

j
62:6:7

2
2 2 2

1 0
2 1 (2 3)!! 2(1 ) K 1 E 1

2 (2 2)!!
j

j j
j j k k k

j j
62:6:8

The formulas in this section involve the double factorial and inverse gudermannian functions [Sections 2:13 and
33:15].

62:7 PARTICULAR VALUES

When their amplitudes are zero, so also are the incomplete elliptic integrals.
F( ,0) E( ,0) 0k k62:7:1

These functions acquire their “complete” status when the amplitude equals /2:
1 1
2 2F( , ) K( ) and E( , ) E( )k k k k62:7:2

and these relationships may be generalized to
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1
2

1
2

62:7:3 F , K( ) 1 1
0, 1, 2,

62:7:4 E , E( ) 1 1

k n n k k
n

k n n k k

62:8 NUMERICAL VALUES

A popular numerical procedure for calculating values of incomplete elliptic integrals relies on Landen’s
descending transformation [Section 62:5] implemented through procedures described in Section 61:14]. In that latter
section, we define the means mg( , , ) and ma( , , ), values of both of which are used to compute a succession of j

values through the formula

1 1 2

0

ma(0, ,1) 1
ma( , ,1) mg( , ,1) tan(2 )1 arctan mg(0, ,1)

2 ma( , ,1) mg( , ,1) tan (2 )

j
j

j j j j
j

k
j k j k

k k
j k j k

62:8:1

This recursion generates values that rapidly approach a limit from which the first kind of incomplete integral is
calculable

2K( )F( , ) lim jj

kk62:8:2

To compute the incomplete elliptic integral of the second kind, the formula

1
1

0

2E( ) 1E( , ) lim ma( , ,1) mg( , ,1) sin 2
2

j
j jj j

kk j k j k62:8:3

is used.
This Landen approach is adopted, when 0.9 k < 1, by Equator’s routines for the incomplete elliptic integral

functions of the first and second kinds. The keywords ellipF and ellipEwere designed to provide the trite mnemonic
that, because the integrals are incomplete, so are the keywords. In contrast, the keywords for the complete elliptic
integrals include the complete word “Elliptic”. For k < 0.9, straightforward numerical integration of the leftmost
integrals in formulas 62:3:1 and 62:3:2 is employed, the Romberg procedure described in Section 62:15 being
implemented. However, in computing F(k, ) for < 0.0004, the two-term expansion 62:9:1 replaces the Romberg
method. For | | > /2, recursion 62:5:5 or 62:5:6 is adopted.

62:9 LIMITS AND APPROXIMATIONS

For values of the amplitude close to 0 or , the following limiting approximations are applicable1
2

2 31
6

2 31
6

62:9:1 F( , )
small

62:9:2 E( , )

k k

k k

32 3 11 1
22 2

3 221 1
2 2

( ) small62:9:3 F( , ) K( ) 1/ / 6( )

162:9:4 E( , ) E( ) / 6

k k k k k

k kk k k k k

As the modulus of the incomplete elliptic integrals approaches zero, the limiting approximations
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21
4

21
4

62:9:5 F( , ) sin( )cos( )
small

62:9:6 E( , ) sin( )cos( )

k k
k

k k

hold. The approaches of the incomplete elliptic integrals to their limiting values as the modulus approaches unity
are governed by

1
2F( 1, ) invgd( ) [invgd( ) sec( )tan( )](1 )k k62:9:7

and
E( 1, ) sin( ) invgd( ) sin( ) (1 )k k62:9:8

62:10 OPERATIONS OF THE CALCULUS

The formulas

2 2

d 1F( , )
d 1 sin ( )

k
k

62:10:1

and

2 2d E( , ) 1 sin ( )
d

k k62:10:2

describe the differentiation of the incomplete elliptic integrals with respect to their amplitudes. With respect to the
modulus, the derivatives are

3 2 2 2

E( , ) F( , ) sin( )cos( )F( , )
1 1 sin ( )

k k kk
k k k k k k62:10:3

and
E( , ) F( , )E( , ) k kk

k k
62:10:4

Formulas for indefinite integration of F(k, ) or E(k, ) themselves do not exist, but related indefinite integrals
include

0

arcsin sin( )
sin( )F( , )d cos( )F( , )

k
k k

k
62:10:5

2 2

0

arcsin sin( ) sin( )sin( )E( , )d cos( )E( , ) 1 sin ( )
2 2
k

k k k
k

62:10:6

2

2 2
0

F( , ) 1d F ( , )
21 sin ( )

k k
k

62:10:7

The integrals above are with respect to amplitude; those following are with respect to modulus,

2 2 2

0

F( , )d E( , ) (1 )F( , ) 1 1 sin ( ) cot( )
k

t t t k k k k62:10:8

and
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2

0

3E( , ) F( , ) d E( , )
k

t t t t k k62:10:9

See Gradshteyn & Ryzhik [Sections 5.12 and 6.111 113] for several other indefinite integrals and many definite
integrals.

62:11 COMPLEX ARGUMENT

Incomplete elliptic integrals of complex argument are rather complicated quadrivariate functions. Here we
confine attention to cases of imaginary amplitudes or imaginary moduli.

For imaginary amplitude, the incomplete elliptic functions are themselves imaginary:
2F( , ) F( ,gd( )) 1k i i k k k62:11:1

2 2E( , ) F ,gd( ) E ,gd( ) tanh( ) 1 sinh ( )k i i k k k62:11:2

Hyperbolic functions and the gudermannian function [Section 33:15] appear in 62:11:2.
When it is the modulus that is imaginary, the incomplete elliptic functions are real:

2F( , ) K F , F , 1
2

k k kk ik k k
k k k

62:11:3

2

2 2

E( , ) sin( )cos( )E E , E ,
2 1 cos ( )

ik k k k k
k k k k k k

62:11:4

The auxiliary amplitude that provides an alternative formulation in these equations is arctan{k tan( )}.
There are several other imaginary transformations. See Gradshteyn & Ryzhik [Table 8.127] for these.

62:12 GENERALIZATIONS: the incomplete elliptic integral of the third kind

The trivariate function defined by
sin( )

2 2 2 2 2 2 2
0 0

1 1( , , ) d d
[1 sin ( )] 1 sin ( ) 1 1 1

v k t
v k vt t k t

62:12:1

is named the incomplete elliptic integral of the third kind. The second equality requires | | < /2. Inasmuch as
1
2(0, , ) F , and , , ( , )k k v k v k62:12:2

this function may be regarded as a generalization of either the first kind of incomplete elliptic function or the third
kind of complete elliptic integral [Section 61:12]. Beware of notational inconsistency among different authors. In
particular, note that the sign attributed to the characteristic v may be the opposite of that used here. Moreover, it
may be the reciprocal of our v, or its square root, that is regarded as the variable of record.

For v > 1, the integral in 62:12:1 converges only if . In this section of the Atlas, and inarcsin 1/ v
Equator, attention is confined to the following domains

1
21,

0 1,
1, arcsin 1/

v
k

v v
62:12:3
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within which the third kind of incomplete elliptic integral is invariably real. When the variables acquire certain
special values (other than those already cited in 62:12:2) the third kind of incomplete elliptic integral is expressible
as in the panels below, though unstated restrictions may apply.

2( , , )k k (1, , )k

2

2 2 2 2

E( , ) sin( )cos( )
1 (1 ) 1 sin ( )

k k
k k k

2 2
2 2

E( , ) tan( )F( , ) 1 sin ( )
1 1

kk k
k k

( ,0, )v ( ,1, ), 1v v

arctan 1 tan( )
1

1

artanh 1 tan( )
1

1

v
v

v

v
v

v

invgd( ) arctan sin( ) 0
1 1

invgd( ) artanh sin( ) 0
1 1

v v v
v v

v v v
v v

Involving the complete elliptic integral of the third kind and the incomplete elliptic integral of the first kind, the
formula

2 2 2

2 2 2 2

(1 ) cos( )( , , ) ( , ) F( , ) , , sin( )
(1 )( ) 1 1 sin ( )

k v k k vv k v k k k
k v v k v v k

62:12:4

interrelates two incomplete elliptic integrals that differ in characteristic and amplitude. Abramowitz and Stegun
[pages 599 and 600] present formulas by which the incomplete elliptic integrals of the third kind may be expressed
via the elliptic nome [Section 61:15].

Though it is complicated, the series
1 1 1

2 22 2

3
0 0 1 2

1sin(2 )( , , ) sin ( )
1 1 2

j nj mj j n n m

j n mj j n m

v k k v62:12:5

has computational utility.
Numerical values are accessible via Equator’s incomplete elliptic integral of the third kind routine (keyword

ellipPi). The algorithm generally employs segmented Romberg integration [Section 62:15] of the first integral in
formula 62:12:1 at an approximation order of 8. Equator accepts inputs that conform to the restriction in 62:12:3.

62:13 COGNATE FUNCTIONS

The inverse Jacobian elliptic functions [Section 63:13] provide examples of incomplete elliptic integrals of the
first kind.

Two functions that are closely related to the incomplete elliptic integrals are Jacobi’s zeta function
E( )F( , )E( , )

K( )
k kk

k
62:13:1
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and Heumann’s lambda function

22 K( )E( , ) K( ) E( ) F( , ) 1k k k k k k k62:13:2

Respectively, these are customarily symbolized Z(k, ) and 0(k, ) but neither finds use in this Atlas. Nor does
Equator cater to either function. However, their values are easily calculated “by hand” from the elliptic integrals
that are components of formulas 62:13:1 and 62:13:2.

62:14 RELATED TOPIC: codifying Abelian integrals

Historically, incomplete elliptic integrals arose as the outcome of a successful attempt by mathematicians to
codify the indefinite integrals of rational functions [Section 17:12] of two variables, t and u, where u2 is either a cubic
or quartic function of t. Such integrals are now known as Abelian integrals (Niels Henrik Abel, Norwegian
mathematician, 1802 1829). A typical Abelian integral might be

p( ) p ( ) d
p ( ) p ( )

x t u t t
t u t

62:14:1

where the p’s are arbitrary polynomials. In a taxing piece of algebra [summarized in Erdélyi et al., Higher
Transcendental Functions, Chapter 13], Legendre proved that any Abelian integral could be reduced to elementary
functions together with one or more standard integrals of the following three forms

3 2
32

4 3 2
4 3 2 1 0

p ( ) ord d d, , where
( Constant) p ( )

t t at bt ct t t t u
u u t u t t a t a t a t a

62:14:2

Addressing only the cubic option, here we shall illustrate how these three standard forms are expressible as
incomplete elliptic integrals of the first, second, and third kinds. The treatment is not exhaustive, though possibly
exhausting.

Consider the first standard integral, If, as we assume, the coefficients a, b, and c are3 2d / [ ] .t t at bt c
real, then the cubic function in the integrand’s denominator has five special cases as enumerated in Section 16:4.
We ignore these simpler possibilities and concentrate on the general cases. The properties of cubic functions
[Chapter 16] then ensure that the function develops either one or three singularities. The triple31/ p ( )t
singularity possibility will be addressed first.

The locations of these singularities will be symbolized t x 1, x0, and x1, where x 1 < x0 < x1; they are the zeros
of the cubic function and are calculable via the formulas in Section 16:7. The three singularities appear in Figure
62-7 overleaf, which is a typical graph of the function The function is imaginary in the figure’s3 21/ .t at bt c
vacant zones, and the three singularities are therefore of the real|imaginary variety. It is convenient to choose bounds
for the indefinite integrals at the singularities. There are then four appropriate integrals3d / p ( )t t

0

1 1

3 4 7 8
3 3 3 3

d d d dI , I , I , and I
p ( ) p ( ) p ( ) p ( )

xx x

x x x x

t t t t
t t t t

62:14:3

In the first two of these integrals x 1 < x < x0; in the second pair, x1 < x < . Had we addressed the integrand
a different set of indefinite integrals, namely3 21/ [ ] ,t at bt c

1 1

0

1 2 5 6
3 3 3 3

d d d dI , I , I , and I
p ( ) p ( ) p ( ) p ( )

x xx x

x x x

t t t t
t t t t

62:14:4

would have eventuated and the corresponding curve would have occupied the zones presently vacant in Figure 62-7.
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1 0 1

1
( )( )( )t x x t x t

The colored area in this diagram represents the I3 integral, which will serve as our exemplar. The final equality in

1 1 1

3 3 2
3 1 0 1

d d dI
p ( ) ( )( )( )

x x x

x x x

t t t
t t x x t x tt at bt c

62:14:5

follows from a fundamental property [equation 17:3:3] of polynomials. Now define , , k, and w such that

2 2 2 21 1 0 1

1 1 1 1 1 1 1 1

4sin ( ), sin ( ), , andt x x x x x k w
x x x x x x x x

62:14:6

Then it is straightforward to demonstrate that

1 1

2 2
03 1 0 1

d d d F ,
p ( ) ( )( )( ) 1 sin ( )

x x

x x

t t w w k
t t x x t x t k

62:14:7

By these changes in variable, it has been established that, apart from the multiplier w, I3 is simply an elliptic integral
of the first kind. Similarly all the other seven indefinite integrals may be expressed as elliptic integrals of the first
kind, with the same multiplier w, but different amplitudes. In all cases, the modulus is either k or its complement

thus1 0 1 1( ) /( ) ,k x x x x
I F or , 1,2, ,7,8j jw k k j62:14:8

The first eight rows of the table opposite summarize the final outcome of the integrations in 62:14:3 and 62:14:4.
Next, we need to consider the standard form when the cubic p3(t) has a single singularity, say3d / p ( )t t

at t x0. In this case, there are only four pertinent indefinite integrals
0

0

9 10 11 12
3 3 3 3

d d d dI , I , I , and I
p ( ) p ( ) p ( ) p ( )

xx x

x x x

t t t t
t t t t

62:14:9

Taking integral I10 as our example, the factoring this time is

0 0 0

10 3 2 2 2
3 0

d d dI
p ( )

x x x

x x x

t t t
t t at bt c t x t

62:14:10

where and ± are the real and imaginary parts of the complex zero [Section 17:3] of p3(t), again calculable from
the formulas in Section 16:7. Now if one defines
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Integral I j Modulus Amplitude j

I1 k 1 1 1arcsin ( ) /( )x x x x

I2 k 0 1 0arccos ( ) /( )x x x x

I3 k 1 0 1arcsin ( ) /( )x x x x

I4 k 1 1arccos ( ) / ( )k x x k x x

I5 k 0 1arcsin ( ) / ( )x x k x x

I6 k 0 1 0arccos ( ) /( )x x x x

I7 k 1 0arcsin ( ) /( )x x x x

I8 k 1 1arccos ( ) / ( )x x k x x

I9 k 2 2
0 02arccot ( ) / ( )x x x

I10 k 2 2
0 02arctan ( ) / ( )x x x

I11 k 2 2
0 02arctan ( ) / ( )x x x

I12 k 2 2
0 02arccot ( ) / ( )x x x

2 2 21 1
2 22 2 0

0 02 22 2
0

tan tan1 1 ( ), , , and
2( )

x ww t x x x k
w wx

62:14:11

then it may be demonstrated that

0 0

10 2 2 22
03 0

d d dI F ,
p ( ) 1 sin ( )

x x

x x

t t w w k
t kt x t

62:14:12

The I10 integral is seen to be expressible, as before, as an incomplete elliptic integral of the first kind, though the
multiplier, modulus and amplitude are formulated somewhat differently than for the triple-singularity case. The I9,
I11, and I12 integrals may be expressed as analogues of 62:14:12, as included in the table. A general equation
analogous to 62:14:8 applies in these four cases too, but w, k, and k require different interpretation.

To this point, only the first of the standard integral forms in 62:14:2 has been addressed. A less thorough
description will be given of the reduction of the other two forms. Rather than attempting to be comprehensive, a
single example of each will suffice.
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To illustrate an integral of the form we choose an example that differs from I3 only by the3d / p ( ) ,t t t
presence of a numeratorial t. This integral may first be split into two

1 1 1

1
1

1 0 1 1 0 1 1 0

dd d
( )( )( ) ( )( )( ) ( )( )

x x x

x x x

x t tt t tx
t x x t x t t x x t x t t x x t

62:14:13

The first right-hand moiety will now be recognized as an incomplete elliptic integral of the first kind, in fact x1I3.
The substitutions

2 2 2 21 1 0 1
1 1

0 1 0 1 1 1

sin ( ), sin ( ), , and 4t x x x x x k x x w
x x x x x x

62:14:14

then transform the second moiety as follows

1

1 2 2

01 0

d
1 sin ( ) d E( , )

( )( )

x

x

x t t
w k w k

t x x t
62:14:15

generating an incomplete elliptic integral of the second kind. Thus the original integral turns out to be a weighted
sum of incomplete elliptic integrals of the first and second kinds.

Again with a close resemblance to I3, we shall choose

1 1 0 1

d
( )( )( )

x

x

t
t C t x x t x t

62:14:16

as an example of an integral that conforms to the third of the standard forms in 62:14:2. The substitutions

2 2 21 1 0 1 0 1
3 / 2

0 1 0 1 1 1 1 1 1

2sin ( ), sin ( ), ' , ,t x r x x x x x vkk v w
x x x x x x x C x x

62:14:17

followed by considerable algebra, lead to

1

2 2 2
01 0 1

d d ( , , )
( )( )( ) [1 sin ( )] 1 sin ( )

x

x

t w w v k
t C t x x t x t v k

62:14:18

and so convert the exemplary integral into the canonical form of the third kind of incomplete elliptic integral, with
a multiplier.

62:15 RELATED TOPIC: Simpson’s approximation and Romberg integration

Functions defined as integrals, such as the complete and incomplete elliptic integrals, can be evaluated by
numerical integration, an approximation in which the integral is replaced by a weighted sum of function values.
In rather special circumstances, the Gauss quadrature technique [Section 24:15] is useful. Otherwise, one or other
of the two general approaches mentioned in Section 4:14 may be adopted. Each of these latter relies on summing
values of the function at equally-spaced instances of the integration variable. Here we discuss refinements to that
approach in which the function values, again at equally spaced nodes, are judiciously weighted prior to summation,
so that

1 2 2
( ) ( )

0 00

f( )d f where 1
2

k k

j

k k
j k

j j

jt t w w62:15:1

For simplicity, we have chosen the integration limits to be zero and unity and made the number of segments into
which the integration domain is subdivided equal to an integer power of 2, namely 2k. Here k is named the
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approximation order. In 62:15:1, the function is sampled at the junctions of the segments but, alternatively, the
sampling may be made at the center of each segment. The number of sampled function values, or “points” as they
are often called, is then either 2k + 1 or 2k.

The trapezoidal approximation is described in Section 4:14 and its inherent error can be assessed from the
Euler-Maclaurin formula, equation 4:14:1. For x0 0 and xJ 1, this formula involves terms,1 1 1

0(B / !)d f / d |n n
n n x

the origins of which are explained in the cited section. However, the form of these terms has little significance here
and the nth such term will be abbreviated to n throughout this section. Moreover, the replacement h 2 k is adopted
to cater to the present needs, whereby rearrangement of equation 4:14:1 leads to

1 2 1
( ,0) 2 4 6
t 1

1 2,40

f(0) f(1) f(2 )f( )d
2 2 2 4 16 64

k k
k n

k k kn k k k
j n

jt t ~62:15:2

The leftmost symbol represents the error made in replacing the integral by a trapezoidal approximation of order k.
Notice that the weight asigned to each point is 2 k except for the end points, which have halved weights.( )k

jw
Section 4:14 also reports the second Euler-Maclaurin formula, which enables the error in the midpoint

approximation to be expressed as
11 1 7 312 1 1
2( ,0) 4 62 8 322

m
0 2,40

f ( )2 1 2f( )d
2 2 4 16 64

k k n
k

nk kn k k k
j n

j
t t ~62:15:3

Generally, the magnitudes of the terms are in the sequence | 2| > | 4| > | 6| > and so it follows that, despite
employing one less point, the midpoint approximation appears as about twice as good as the trapezoidal
approximation of the same order, the error being of opposite sign.

We can do better still, however, with a mixture of the two options. Add one-third of equation 62:15:2 to two-
thirds of equation 62:15:3, after adjusting k. The motive for this mixing is that thereby the 2 term (usually the
largest of the ’s) disappears:

1 2
( ,1) ( 1) ( 1) ( ) 4 6
s t m

=0 =2,40

1 2 2 4 4 20= f( )d f
3 3 2 3 2 16 64

k n
k k k k

j nk kn k k
j n

jt t w ~62:15:4

This is Simpson’s approximation (for Thomas Simpson, English mathematician, 1710 1761, although he was not
the first to apply it) and, for order k, it carries the following weights

( ) 2

1

2 /3 0,2

2 /3 1,3,5, ,2 1

2 /3 2,4,6, ,2 2

k k

k k k
j

k k

j

w j

j

62:15:5

Examples of the weights for the k 2 cases of the trapezoidal, midpoint, and Simpson approximations are listed in
the following table.

0x 1
8x 1

4x 3
8x 1

2x 5
8x 3

4x 7
8x 1x

trapezoidal 1
8

1
4

1
4

1
4

1
8

midpoint 1
4

1
4

1
4

1
4

Simpson’s 1
12

1
3

1
6

1
3

1
12

Simpson’s approximation is generally more accurate than the midpoint scheme, which is a marginal improvement
over the trapezoidal. The midpoint method alone is useable if the integrand is infinite at either or both of the
integral’s limits.
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1
3

4
3

1
3

4
3

1
3

4
3

1
3

1
15

16
15

1
15

16
15

1
15

1
63

64
63

1
63

1
255

The same procedure that serves to create the superior Simpson approximation from the prototypal trapezoidal
and midpoint methods can be used to further improve any one of these three still further. When fully developed,
the technique is called Romberg integration [Werner Romberg, Norwegian mathematician, 1909 2003] and, though
it may also be applied to the midpoint family, we shall address only its origin from the trapezoidal method. The
k 1, and k 2 orders of trapezoidal approximation, and their corresponding errors, are respectively

1 1
(1,0) 2 4 6 82
t

0

f( )f(0) f(1)f( )d
4 2 4 16 64 256

t t62:15:6

and
1 31 1

(2,0)4 2 4 2 4 6
t

0

f( ) f( ) ff(0) f(1)f( )d
8 4 16 256 4096

t t62:15:7

A valuable tactic, termed a Richardson extrapolation, is to weight these equations and add them so that the leading
term vanishes. Here, we must multiply 62:15:7 by and 62:15:6 by . The subsequent addition of the4

3
1

3

weighted equations leads to
1 311

(2,1)4 4 4 6 82
t

0

f( ) ff( )f(0) f(1) 5 21f( )d
12 6 3 64 1024 16384

t t62:15:8

This exactly matches the k 2 version of Simpson’s approximation. Generally, in fact, the k th-order Simpson
approximation arises from applying the Richardson extrapolation to the k th-order and (k 1)th-order trapezoidal
approximations. The first digit of the two-digit
superscript attaching to t in expressions 62:15:2,
and 62:15:6 8 is k, the approximation order; the
second signifies r the number of Richardson
extrapolations that have been performed. The
way in which the procedure subsequently
develops is illustrated in Figure 62-8. Each box
in the leftmost column of that figure represents a
simple k-order trapezoidal approximation; the
second column contains k-order Simpson
approximations. The boxes outlined in red
represent the ultimate Romberg approximations,
the errors in which contain no n term for n < 2k.
Notice that each stage in the propagation scheme for the Richardson extrapolation shown in Figure 62-8 obeys the
rule

14 1
1 14 1 4 1

r

r r

k k k
r r r

62:15:9

Of course, one need not pursue the entire scheme of Figure 62-8 to implement Romberg integration; you may
go directly to the ultimate approximation for any k of your choice. The following table lists the weights appropriate
to those ultimate approximations (the red boxes) for approximation orders k of 1 through 8. The header row lists
values of x to which the weights in the column below it apply. To conserve tabular space and to assist in preserving
computational precision, the numerators have sometimes been factored, and the factors A 24613875 and
B 1143068355 have been withdrawn from some denominators.
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1 1
2

31
4 4, 3 5 71

8 8 8 8, , , 1,3,5, ,15
16

1,3,5, ,31
32

1,3,5, ,63
64

1,3,5, ,127
128

1.3,5. ,255
256

1
4

1
2

1
12

1
6

1
3

7
180

7
90

1
15

8
45

31
1620

31
810

109
2835

88
2835

256
2835

3937
413100

3937
206550

1531
80325

13864
722925

11008
722925

32768
722925

64897
13632300

64897
6816150

281653
29582091

7040984
739552275

202496
21130065

622592
82172475

16777216
739552275

18977737
324A

18977737
162A

177945571
1519A

4804530872
41013A

82 18766729
41013A

14509309952
123039A

11458838528
123039A

352
123039A

8191 149431
900 B

8191 149431
450B

34651
3407166487
43405425B

1336
29456518447
14468475B

597053
878848

192913B

32768
3602769179
43405425B

242 7083941
43405425B

352 2731
43405425B

482
43405425B

If, rather than 0 to 1, the integration bounds are from x0 to x, the kth order Romberg approximation becomes

0

2
( ) 0

0 0
0

f( )d ( ) f
2

kx
k

j k
jx

x xt t x x w x j62:15:10

where the weights are drawn from the kth row of the table above, and the column corresponding to the value( )k
jw

of j/2k in the header row. The Romberg method generates excellent numerical estimates of most integrals, provided
that the integrand is free of discontinuities. In calculating complete and incomplete elliptic integrals, Equator adopts
the Romberg procedure at an approximation order of 8.

If, between x0 and x, the integrand has one or more particularly “difficult” regions, such as where f has an
unusually large magnitude, steepness, or curvature, it may be prudent to increase the accuracy of numerical
quadrature by partitioning the integration range into several unequal segments. The choice of the intersegmental
points, x1, x2, x3, , is made such that narrower segments encompass the more difficult regions, thereby packing
points more closely together. For a three-segment Romberg integration, the quadrature formula would be

2
( ) 1 0 2 1 2

1 0 0 2 1 1 2 2
0

( )f ( )f ( )f
2 2 2

k

k
j k k k

j

x x x x x xw x x x j x x x j x x x j62:15:11

For example, to counter the possibly steep rise as the argument approaches , Equator’s incomplete elliptic integral
of the third kind routine applies a six-segment Romberg quadrature to integral 62:12:1, with the five intersegmental
points being 3 15 63 255 1023

4 16 64 256 1024, , , , and .





The bivariate functions of this chapter have several interesting properties. One is their ability to bridge the gap
between circular functions and hyperbolic functions. Another, discussed in Section 63:11, is their double periodicity.
Three of these twelve functions – cn(k,x), sn(k,x), and dn(k,x) – were described by the prolific Prussian
mathematician Karl Gustav Jacob Jacobi (1804 1851), and these receive emphasis here. The other nine, introduced
by the Englishman James Whitbread Lee Glaisher (1848 1928), are often regarded as subordinate, because they
can be constructed so easily from Jacobi’s trio.

Unlike most other functions, the symbols of the Jacobian elliptic function have, in themselves, mathematical
significance. These symbols consist of two letters. The first is drawn from the set (c,s,d,n); the second is a different
letter from the same set, for a total of 4×3 12. It is useful to think of an elliptic function as a quotient of two
functions, for example

ccs( , )
s

a functionk x
an function
A @

A @
63:0:1

As described in Section 63:8, these single-letter “c”, “s”, “n” and “d” functions are, in fact, Neville theta functions,
but this is unimportant here. The value of representation 63:0:1 is that the important rules for multiplying or dividing
two or more Jacobian elliptic functions, exemplified by the following:

sc( , )cs( , ) 1k x k x63:0:2
cn( , )nd( , ) cd( , )k x k x k x63:0:3

dn( , ) ds( , )
sn( , )

k x k x
k x

63:0:4

ns( , )dc( , ) ds( , )nc( , )k x k x k x k x63:0:5
become self-evident on the basis of such partitioning. Other interrelations among elliptic functions, not evident from
the symbolism, are:

2 2 2 2 21 cn ( , ) sn ( , ) dn ( , ) sn ( , )k x k x k x k k x63:0:6
2 2 2 2 2nd ( , ) cd ( , ) sd ( , ) 1 sd ( , )k x k x k x k k x63:0:7

2 2 2 2ns ( , ) cs ( , ) 1 ds ( , )k x k x k x k63:0:8
2 2 2 2 2nc ( , ) 1 sc ( , ) dc ( , ) sc ( , )k x k x k x k k x63:0:9
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Having a pythagorean flavor, these latter formulas, and others, follow easily from their geometric interpretation, as
explored in Section 63:3.

63:1 NOTATION

The “Jacobian” (sometimes “Jacobi”) adjective is not always attached to these elliptic functions. Alternatively,
only the sn, cn, and dn functions may be associated with Jacobi, the others being called Glaisher functions. The
name cosine-amplitude is given to cn, sine-amplitude to sn, and delta-amplitude to dn; the others have not been
individually named.

The Jacobian elliptic functions are bivariate, with modulus k and argument x as the standard variables. You may
encounter notations such as cn(x), suggesting a single variable only; the second variable is then implied, being treated
as a constant unworthy of mention. The symbol p has been used for the modulus and u commonly replaces x. As
well, the order of citation of the variables may be reversed, as in sn(u,k). Rarely, tn is used for sc, because of its
tangent-like properties. In common with the functions of Chapters 61 and 62, Jacobian elliptic functions are often
symbolized with “modulus substitutes”; their use may be signaled by replacement of the comma by some other
separator, as in dn(x|m) or cs(x\ ) where m k2 and arcsin(k).

The twelve Jacobian elliptic functions form four groups, according to the second letter of the function’s name.
Thus sc, dc, and nc are said to be copolar: they all possess poles of type c.

Several supplementary univariate and bivariate functions arise in discussions of Jacobian elliptic functions.
These are the complementary modulus , the complete elliptic integrals [Chapter 61] K(k) or K, and E(k)21k k
or E, the incomplete elliptic integrals [Chapter 62] F(k, ) and E(k, ), and the amplitude. The symbol is
appropriate for the last, but am(k,x) often replaces it, to emphasize that it shares variables with the elliptic functions,
to which it is related through the identities

2am( , ) arcsin{sn( , )} arccos{cn( , )} arcsin 1 dn ( , ) /k x k x k x k x k x K63:1:1

The function that is denoted dn(k,x) in the Atlas may be symbolized (k, ) elsewhere.
Capitalizing the initial letter of the symbol for a Jacobian elliptic function has been used to indicate the indefinite

integral of the square of the function [Section 63:10]

2

0

Ef ( , ) ef ( , )d ef cn, sn, dn, cd, sd, nd, cs, ds, ns, sc, dc, nc
x

k x k t t63:1:2

but this convention is not adopted here. Note our usage, in 63:1:2 and elsewhere, of “ef” as a stand-in for certain
– or, as here, all – elliptic functions.

63:2 BEHAVIOR

The Jacobian elliptic functions display interesting properties when the modulus and/or the argument are
imaginary or complex. However, except in Sections 63:11, this chapter treats k and x as real. Moreover, we
generally assume 0 k 1, which covers the most important values of the modulus, though equations 63:5:1 and
63:5:16 19 show how this domain may be extended to all real values.

Figure 63-1, is a three dimensional representation of the cn(k,x), sn(k,x) and dn(k,x) functions; that is, the three
Jabobian elliptic functions that belong to the copolar group n. Likewise, Figures 63-2, 63-3 and 63-4 each depict
a trio of functions belonging to the other copolar groups. Many of the properties of the twelve functions are evident
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from these graphs. For the most part, the functions coincide with circular functions [those of Chapter 32, 33, and 34]
when k = 0 but evolve as k increases to become hyperbolic functions [from Chapters 28 30] when k 1. For
example, sc(0,x) tan(x), whereas sc(1,x) sinh(x). See Section 63:4 for a complete listing.

Except when k 1, all elliptic functions ef(k,x) are periodic in their argument x, with a period of either 4K or
2K; specifically:

ef ( , 4 ) ef ( , ) ef = sn, cn, ds, ns, dc, nc, sd, cd
1, 2,

ef ( , 2 ) ef ( , ) ef = dn, cs, sc, nd

k x nK k x
n

k x nK k x
63:2:1

In this behavior, the elliptic functions are analogous to the circular functions, which have periods of 2 or . This
reflects the fact that, in elliptic algebra, the complete elliptic integral K plays the role that the right-angle, /2, fills
in circular trigonometry. Likewise, the concept of quadrants, familiar in the context of circular functions, can
usefully be extended to elliptic functions. The table opposite reports the ranges of values adopted by the twelve
elliptic functions in each of the four “quadrants”. Information about the ranges, zeros, extrema and discontinuities
of the functions can also be gleaned from a careful inspection of this tabulation.

The lengthening period as k increases is brought
out particularly clearly in Figure 63-4. These three
diagrams illustrate that when k reaches unity, the period
becomes infinite, as appropriate for the hyperbolic
functions that most elliptic functions become in that
limit. The argument x is used as one of the variables in
Figures 63-1 through 63-4, but it is the ratio x/K, where
K denotes the complete elliptic integral K(k), that is
more significant in many respects and that was chosen
in drawing Figures 63-5, 63-6 and 63-7. These
diagrams show how the behavior of Jacobi’s three
functions – cn(k,x), sn(k,x), and dn(k,x) – is affected by
the value of the modulus. Notice that the dependence
on k is weak when k is small, but becomes dramatic as
k approaches unity.
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0 x K K x 2K 2K x 3K 3K x 4K

cn 1 cn(k,x) 0 0 cn(k,x) 1 1 cn(k,x) 0 0 cn(k,x) 1

sn 0 sn(k,x) 1 1 sn(k,x) 0 0 sn(k,x) 1 1 sn(k,x) 0

dn 1 dn(k,x) k k dn(k,x) 1 1 dn(k,x) k k dn(k,x) 1

cd 1 cd(k,x) 0 0 cd(k,x) 1 1 cd(k,x) 0 0 cd(k,x) 1

sd 0 sd(k,x) 1/k 1/k sd(k,x) 0 0 sd(k,x) 1/k 1/k sn(k,x) 0

nd 1 nd(k,x) 1/k 1/k nd(k,x) 1 1 nd(k,x) 1/k 1/k nd(k,x) 1

cs + cs(k,x) 0 0 cs(k,x) + cs(k,x) 0 0 cs(k,x)

ds + ds(k,x) k k ds(k,x) + ds(k,x) k k ds(k,x)

ns + ns(k,x) 1 1 ns(k,x) + ns(k,x) 1 1 ns(k,x)

sc 0 sc(k,x) + sc(k,x) 0 0 sc(k,x) + sc(k,x) 0

dc 1 dc(k,x) + dc(k,x) 1 1 dc(k,x) + dc(k,x) 1

nc 1 nc(k,x) + nc(k,x) 1 1 nc(k,x) + nc(k,x) 1

am 0 am(k,x) /2 /2 am(k,x) am(k,x) 3 /2 3 /2 am(k,x) 2

63:3 DEFINITIONS

Let the symbol x be assigned to the incomplete elliptic integral of the first kind, of modulus k and amplitude .
Then the expression

2 2
0

1F( , ) d
1 sin ( )

x k
k

63:3:1

gives x as a function of k and . Equally well, one may regard the amplitude as a function of k and x. The six
circular functions of then serve to define six of the Jacobian elliptic functions, as follows:
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cos( ) sin( ) sec( ) csc( ) tan( ) cot( )

cn(k,x) sn(k,x) nc(k,x) ns(k,x) sc(k,x) cs(k,x)

These definitions raise the pertinent question of how is to be found from known values of k and x. There is no
straightforward way of doing this, but that does not undermine the validity of the definition. One may think of
elliptic functions as being inverse functions [Section 0:3] of incomplete elliptic integrals; for example, treating k as
a constant, cn(k,x) is the inverse function of F(k,arccos(x)), as detailed in Section 63:13.

The delta-amplitude is defined by

2 2dn( , ) 1 sin ( )k x k
x

63:3:2

and the remaining five Jacobian elliptic functions may be defined from this, either by the definitions shown in the
panel below

nd(k,x) cd(k,x) sd(k,x) dc(k,x) ds(k,x)

1/dn(k,x) cn(k,x)/dn(k,x) sn(k,x)/dn(k,x) dn(k,x)nc(k,x) dn(k,x)ns(k,x)

or in numerous other ways allowed by the partitioning rules exemplified in equations 63:0:1 4.
In Section 33:3, a set of three similar triangles is described by means of which the six circular functions may

be defined. A similar exercise is undertaken in Section 29:3 of the Atlas for the six hyperbolic functions. In much
the same way, there exists a trigonometric construct that permits the defining of the twelve elliptic functions in an
appealing way.

First construct the triangle OAC, right-angled at C, with
the hypotenuse OA of unit length and with the angle AOC
equal to the elliptic amplitude . Then cn(k,x) and sn(k,x)
are defined as the lengths OC and CA. The OAC triangle,
and the ensuing construction, are illustrated in Figure 63-8.
In this diagram, dotted lines are all of unity length. Now
extend the line OC to point I, such that OI is of unity length,
and erect a perpendicular at that point to meet an extension
of line OA at point G. Then OG and GI have lengths equal
to nc(k,x) and sc(k,x) respectively. The next construction is
to further extend lines OI and OG, to points L and J
respectively, until the perpendicular distance JL between
them becomes equal to unity. Then the lengths OL and OJ
equal cs(k,x) and ns(k,x). Six of the elliptic functions have
now been defined; the other six require further construction.
Construct a line at an angle

2arctan tan( ) 1k k k63:3:3

to line OL, as shown in the figure. This line will cut lines AC, GI and JL at points B, H and K. The length KL is
thereby equal to the complementary modulus k . The lengths of lines OB, OH and OK now define the elliptic
functions dn(k,x), dc(k,x), and ds(k,x). The final construction is to measure unity length along line OK to a point
E and erect the vertical line FED through that point. Lengths OD, OF and DF then define the remaining elliptic
functions nd(k,x), cd(k,x), and sd(k,x).

Figure 63-9 is an exploded view of the Figure 63-8, marked with the length elements assigned to the various
functions. Note that each of the four diagrams in this figure corresponds to a copolar group, and that the first
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vindicates the early equalities in equation 63:1:1. Pythagorean arguments applied to various triangles lead directly
to formulas 63:0:4 7. The four diagrams are “similar” in the geometric sense; that is, they differ in size but not in
shape. This similarity enables one to assert, for example, that the ratio of the lengths of two red lines must equal the
ratio of the lengths of two blue lines and therefore

cd( ,nd )
cn( , )

( , )
1
k k x

k
x

x
63:3:4

This relation leads directly to 63:0:3. In fact, all the “partitioning” rules discussed in Section 63:0 are validated by
similarity arguments arising from Figure 63-9.

63:4 SPECIAL CASES

As reported in Section 63:2, each Jacobian elliptic function ef(k,x) reduces, when k 0, to a circular function
of x, or to unity, whereas it reduces to a hyperbolic function or unity, when k 1.

cn sn dn cd sd nd cs ds ns sc dc nc am

k 0 cos sin 1 cos sin 1 cot csc csc tan sec sec x

k 1 sech tanh sech 1 sinh cosh csch csch coth sinh 1 cosh gd

The table identifies the particular circular or hyperbolic function for each ef(0,x) and ef(1,x). The tabulation includes
the elliptic amplitude am(k,x), which is seen to equal its argument when k 0 and the gudermannian function
[Section 33:14] of x when k 1.
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63:5 INTRARELATIONSHIPS

Every elliptic function is even with respect to its modulus
ef ( , ) ef ( , ) all efk x k x63:5:1

and either even or odd with respect to its argument
ef ( , ) ef dn, cn, nc, dc, nd, cd

ef ( , )
ef ( , ) ef = sn, ns, cs, ds, sc, sd

k x
k x

k x
63:5:2

Note that the presence of an “s” in the symbol of the elliptic function ensures its oddness with respect to its
argument.

Jacobi’s trio of elliptic functions satisfies the following addition formulas:

2 2 2

cn( , )cn( , ) sn( , )sn( , )dn( , )dn( , )cn( , )
1 sn ( , )sn ( , )

k x k y k x k y k x k yk x y
k k x k y

63:5:3

2 2 2

sn( , )cn( , )dn( , ) cn( , )dn( , )sn( , )sn( , )
1 sn ( , )sn ( , )

k x k y k y k x k x k yk x y
k k x k y

63:5:4

2

2 2 2

dn( , )dn( , ) sn( , )cn( , )sn( , )cn( , )dn( , )
1 sn ( , )sn ( , )

k x k y k k x k x k y k yk x y
k k x k y

63:5:5

These equations are easily converted to argument-duplication formulas that give values of ef(k,2x). Other important
special cases are listed in the following table, which also includes expressions for the three prime elliptic functions
of half-argument.

ef cn ef sn ef dn

ef(k,x±K) sd( , )k k x ±cd(k,x) nd( , )k k x

ef(k,x±2K) cn(k,x) sn(k,x) dn(k,x)

1
2ef ,k x cn( , ) dn( , )

1 dn( , )
k x k x

k x
1 cn( , )
1 dn( , )

k x
k x

cn( , ) dn( , )
1 cn( , )
k x k x

k x

The principle of Landen transformation is explained in Section 62:5. When employed to transform the delta-
amplitude in the ascending mode, the procedure is

2 2dn ( , ) dn2 1(1 )
1

( , )
dn(

1
, )

2
k k x k k

k x k x
xk x

k k
63:5:6

and serves to increase the modulus at the expense of a decrease in the argument. The corresponding formulation for
the descending Landen transformation is

2dn ( , )
dn(

dn(1 1
1 ,1 )

, )k k x kk x
k k k

k
x

x k x63:5:7

and similar – though generally more complicated – formulas apply to other elliptic functions.
What is called the Jacobi real transformation establishes a relationship between a Jacobian elliptic functions

with modulus in the domain 1 k and one in the standard domain 0 k 1. All these transformations are of
the form
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1ef , ef , xx w k
k k

63:5:8

where the multiplier w is either 1, k, or 1/k, and ef is another – or sometimes the same – elliptic function. The panel
below lists the correspondences between ef and wef

ef cn sn dn cd sd nd cs ds ns sc dc nc

wef dn ksn cn dc ksc nc
1 ds
k

1 cs
k

1 ns
k

ksd cd nd

63:6 EXPANSIONS

The first five terms in the power series for the sine-amplitude, cosine-amplitude and delta-amplitude functions,
as well as for the elliptic amplitude itself, are

2 2 4 2 4 6
2 4 6 81 1 4 1 44 16 1 408 912 64cn( , ) 1

2! 4! 6! 8!
k k k k k kk x x x x x63:6:1

2 2 4 2 4 6 2 6 4 8
3 5 7 91 1 14 1 135( ) 1 1228( ) 5478sn( , )

3! 5! 7! 9!
k k k k k k k k k kk x x x x x x63:6:2

2 2 4 2 4 6 2 4 6 8
2 4 6 84 16 44 64 912 408dn( , ) 1

2! 4! 6! 8!
k k k k k k k k k kk x x x x x63:6:3

2 2 4 2 4 6 2 4 6 8
3 5 7 94 16 44 64 912 408am( , )

3! 5! 7! 9!
k k k k k k k k k kk x x x x x x63:6:4

General formulas for the coefficients in these series are unknown. These four expansions are computationally useful
whenever x is close to zero.

Gradshteyn and Ryzhik [Section 8.146] give a comprehensive listing of expansions of the Jacobian elliptic
functions, as well as some of their logarithms and squares, in terms of the nome q [Section 61:15]. The most
important are:

1/ 2 3 / 2 5 / 2

3 5

2 3 5sn , sin sin sin
1 2 1 2 1 2
q x q x q xk x

kK q K q K q K
63:6:5

1/ 2 3 / 2 5 / 2

3 5

2 3 5cn , cos cos cos
1 2 1 2 1 2
q x q x q xk x

kK q K q K q K
63:6:6

2 3

2 4 6

2 1 2 3dn , cos cos cos
4 1 1 1

q x q x q xk x
K q K q K q K

63:6:7

2 3

2 4 6

/ 2 2 /3 3am , 2 sin sin sin
2 1 1 1

x q x q x q xk x
K q K q K q K

63:6:8

In these equations we are using K to represent K(k).
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63:7 PARTICULAR VALUES

Simple expressions arise for each Jacobian elliptic function when the argument is K/2, corresponding to an
argument that bisects the first “quadrant”. Moreover, each elliptic function often coincides in value there with
another of its eleven congeners. The pairings, and the values acquired, are listed below. Note that .21k k

ds cn1
2,k K 1

2,k K
sn dn1

2,k K 1
2,k K

nc 1
2,k K

ns sc1
2,k K 1

2,k K
sd 1

2,k K
cd cs dc nd1

2,k K 1
2,k K 1

2,k K 1
2,k K

(1 )k k
1

k
k

1
1 k k

1 k
k

1 k
1
k

1
(1 )k k

The same values reoccur, possibly with a change of sign, at the midpoints of all quadrants.
The particular values when x is a multiple of K (that is, where adjacent quadrants meet) is evident from the table

in Section 63:2. All such values are drawn from the nine-member set 0, ±k , ±1, ±1/k , and ± | .

63:8 NUMERICAL VALUES

Using dn(k0,x0) as illustrative, one popular technique for evaluating Jacobian elliptic functions is to use the
Landen transformation in either its descending mode [equation 63:5:7] or ascending mode [equation 63:5:6], to
progressively decrease or increase the modulus of the delta-amplitude until it has reached (after, say, n
transformations) a value so close to unity or zero that the approximation

2 21
2dn( , ) 1 sin ( ) smallk x k x k63:8:1

or
2 21

4dn( , ) sech( ) 1 1 sinh ( ) tanh( ) (1 ) smallk x x k x x x k63:8:2

may be applied validly. These approximations arise from limits 63:9:3.
Another route to calculating Jacobian elliptic functions exploits the partitioning principle described in Section

63:0. The single-letter functions are, in fact, the Neville’s theta functions and accordingly any of the twelve elliptic
can be calculated as

e

f

( , )ef ( , ) all ef functions
( , )
k xk x
k x

63:8:3

Applying the routines described in Section 61:15, this is the procedure used by Equator’s Jacobian elliptic cn
function routine and eleven other similarly named functions (keywords cn, sn, dn, sd, cd, nd, sc, dc, nc, cs, ds, and
ns). Values of all twelve elliptic functions are available for variables in the domains 0 k 1 and 8K(k)
x 8K(k).

Equator also has a routine (keyword am) which calculates the elliptic amplitude by the algorithm
arcsin{sn( ,2 )} 0 0.1

frac( / 2 )
am( , ) Int arccos{cn( ,2 )} 0.1 0.9

2 K( )
arcsin{sn( ,2 )} 0.9 1

k yK y
y x Kxk x k yK y

K K k
k yK y

63:8:4
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63:9 LIMITS AND APPROXIMATIONS

The following limiting approximations apply as the modulus of certain elliptic functions approaches the value
zero or unity:

21
4

21
4

sin( ) sin( )cos( ) cos( ) 0
sn( , )

tanh( ) ( ) sinh( ) sech( ) sech( ) 1

x k x x x x k
k x

x k x x x x k
63:9:1

21
4

21
4

cos( ) sin( )cos( ) sin( ) 0
cn( , )

sech( ) ( ) sinh( ) sech( ) tanh( ) 1

x k x x x x k
k x

x k x x x x k
63:9:2

2 21
2

21
4

1 sin ( ) 0
dn( , )

sech( ) ( ) sinh( ) sech( ) tanh( ) 1

k x k
k x

x k x x x x k
63:9:3

21
4

21
4

sin( )cos( ) 0
am( , )

gd( ) ( ) sinh( ) sech( ) 1

x k x x x k
k x

x k x x x k
63:9:4

Limiting expressions as x 0 are available by curtailing expansions 63:6:1 4.

63:10 OPERATIONS OF THE CALCULUS

The derivative of an arbitrary elliptic function ef(k,x) with respect to its argument is proportional to the product
of the two other elliptic functions (e f and e f) that, with ef, constitute a copolar group. The constant of
proportionality may, or may not, depend on k, as follows

2 2

2 2

=1 for ef = sc, sn, sd, nc

= 1 for ef = cn, cs, ds, ns
ef( ) = e f( ) e f( )

for ef = nd or for ef = dn

for ef = dc or for ef = cd

k,x k,x k,x
x k k

k k

63:10:1

The derivatives with respect to the modulus again involve the proportionality constant but another term ,
reflecting the individuality of the ef elliptic function, is also involved

2 2

0 for ef = cd,dc
ef( ) =

cd( , ) for ef = cn,nc,sc,sn,cs,ns

sn( , ) ( , ) dc( ) for ef = sd,dse f( ) e f( )
[dc( )]/ for ef = dn,nd

k,x
k k k x

x k x E k k k,xk,x k,x
k k k k k,x k

63:10:2

Expressions for indefinite integrals of the forms

2
1 2

0 0

ef ( , )d and ef ( , )d f s
x x

I k t t I k t t63:10:3

exist for nine of the elliptic functions as listed below. Although those of pole type s diverge, their complements
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* * 2
1 2es( , )d and es ( , )d e = n, c, d

K K

x x

I k t t I k t t63:10:4

remain finite and are tabulated instead. For brevity in this table, each elliptic function ef(k,x) is denoted simply
by the symbol ef.

*
1 1orI I *

2 2orI I

sn [ln{(dn cn)/(1 )}]/k k k 2[ E( , )]/x k k

cn [arccos(dn)]/ k 2 2[E( , ) ( ) ]/k k x k

dn E(k, )

nc [ln(dc sc)]/k k 2[sn dc E( , )]/x k k

sc [ln{(dc nc) /(1 )}]/k k k 2[sn dc E( , )]/k k

dc ln(nc sc) sn dc E( , )x k

nd [arccos(cd)]/ k 2 2[E( , ) sn cd]/k k k

sd [arcsin{ (nd cd)}]kk kk 2 2 2[E( , ) ( ) sn cd]/( )k k x k k k

cd [ln(nd sd)]/k k 2 2[ sn cd E( , )]/x k k k

ns ln{ /(ds cs)}k E( , ) cn ds E( )k k K x

cs ln{(1 ) /(ns ds)}k E( , ) cn ds E( )k k

ds ln(ns cs) 2E( , ) cn ds E( ) ( )k k k K x

Equation 63:10:1 is helpful in evaluating the integrals of many products and quotients of elliptic functions; some
of these are listed by Gradshteyn and Ryzhik [Sections 5.131 139].

63:11 COMPLEX ARGUMENT

The real and imaginary parts of Jacobi’s three functions are:

2

cs( , )ns( , ) dn( , )dc( , )cn( , )
ns( , )cs( , ) sn( , )sc( , )

k x k y i k x k yk x iy
k x k y k k x k y63:11:1

2

ds( , )nc( , ) ds( , )cn( , )sn( , )
ns( , )cs( , ) sn( , )sc( , )

k y k y i k x k xk x iy
k x k y k k x k y

63:11:2

2

2

ds( , )ds( , ) cn( , )nc( , )dn( , )
ns( , )cs( , ) sn( , )sc( , )

k x k y ik k x k yk x iy
k x k y k k x k y

63:11:3

When the argument is imaginary, these formulas, and their nine other cohorts, reduce to Jacobi imaginary
transformations, each of which establishes a relationship between a Jacobian elliptic functions of imaginary argument
and one with real argument. All these transformations are of the form
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2ef , ef , 1k iy w k y k k63:11:4

where the multiplier w is either 1, i, or i, and is another – or sometimes the same – elliptic function. The panelef
below lists the correspondences between ef and efw

ef cn sn dn cd sd nd cs ds ns sc dc nc

efw nc i sc dc nd i sd cd i ns i ds i cs i sn dn cn

Notice that whether this transformation produces an imaginary or a real result depends on whether or not an “s”
appears in the symbol for the elliptic function.

As elaborated in Section 63:2, an elliptic function of real argument
is periodic in x with a period that is either 4K(k) or 2K(k). This
periodicity is retained when the argument becomes complex but, as the
previous paragraph demonstrates, an elliptic function of complex
argument is periodic along the imaginary axis, too, with a period that
is either 4iK(k ) or 2iK(k ). The assignment of real and imaginary
periods is made in the table to the right.

This double periodicity is clearly exemplified in Figure 63-10,
which depicts the real and imaginary parts of cn(k,z) cn(k,x+iy) with
k . Note that, because there are two poles per period, the spacing4

5

of poles is 3.9906 along the real dimension and1 4
2 5[4K( )]
3.5015 along the imaginary axis.31

2 5[4K( )]

63:12 GENERALIZATIONS

We are aware of no direct generalizations of the Jacobian elliptic functions having been made.

Period

real imaginary

cn,ds,nc,sd 4K(k) 4iK(k )

dn,cs,sc,nd 2K(k) 4iK(k )

sn,ns,dc,cd 4K(k) 2iK(k )
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63:13 COGNATE FUNCTIONS: inverse elliptic functions

Among a number of functions that are related to Jacobian elliptic functions, we here mention only their inverses.
As with other inverses of periodic functions, ambiguities arise in assigning the principal values of the inverse elliptic
functions. Beware of differing conventions.

With k invariant, the inverse elliptic functions are various incomplete elliptic integrals of the first kind [Chapter
62]. From the prototype

2 2
0

1invam( , ) d F ,
1 sin ( )

y

k y k y
k

63:13:1

it follows that
1

2 2 2 2

1invcn( , ) d F ,arccos( )
1 1y

k y t k y
t k t k

63:13:2

2 2 2
0

1invsn( ) = d F ,arcsin( )
1 1

y

k, y t k y
t k t

63:13:3

1 2

2 2 2

11invdn( , ) d F ,arcsin 1
1 1y

y
k y t k k y

kt t k
63:13:4

with similar results for the other nine inverse Jacobian elliptic functions. Of course, when k equals zero or unity,
they generally reduce to the functions of Chapters 35 or 31. Jeffrey [Chapter 12] lists a few other properties of these
inverse functions.

63:14 RELATED TOPIC: Weierstrassian elliptic functions

The elliptic family of functions addressed in Chapters 61 63 are largely the creation of Legendre and Jacobi,
but there is a parallel formalism due to the German Karl Theodor Wilhelm Weierstrass (teacher and mathematical
innovator, 1815 1897). Of course, the two rival systems are related. Here we shall point out some of those
relationships, but stop well short of a comprehensive description of the Weierstrass system.

There are three interrelated parameters in the Weierstrass system that play a role equivalent to that played by
Legendre’s modulus k and complementary modulus k . The equivalences are

2 1 1 2
1 2 3

1 3 1 3

where 0e e e ek k e e e
e e e e

63:14:1

Likewise, the role of determining the real and imaginary periods of the Weierstrass’s elliptic functions, played in
the Legendre system by K(k) and K(k ), is taken by two new variables

1 2
1 2 1 2

2K( ) 2 K( )andk i k
e e e e63:14:2

The principal Weierstrassian elliptic function, usually symbolized P(z) with some fancy typographic rendering of
the “P”, is expressible in terms of particular Jacobian elliptic functions as the alternatives

2 2 2
1 1 3 1 3 2 1 3 1 3 3 1 3 1 3( )cs , ( )ds , ( )sn ,e e e k z e e e e e k z e e e e e k z e e63:14:3



Together with the bivariate eta function and the Lerch function, both of which are also addressed in this chapter,
the Hurwitz function provides a means of summing the interesting series listed in formulas 64:3:3, 64:13:1, and
64:12:3. These functions can all be characterized as “logarithm-like”. The Hurwitz function plays an invaluable
role in the Weyl differintegration of periodic functions, a topic discussed in Section 64:14.

64:1 NOTATION

The symbol ( , ) is standard for this function, but a variety of names generalized zeta function, Riemann’s
zeta function, Riemann’s function, generalized Riemann zeta function, bivariate zeta function, Hurwitz zeta
function, and Hurwitz function are commonly applied to it. We adopt the last of these names to avoid confusion
with the function of Chapter 3 and to recognize the contributions of the German mathematician Adolf Hurwitz
(1859 1919).

The variables v and u will be respectively termed the order and parameter of the Hurwitz function (v,u). It is
to achieve unity with the notation for the Lerch function [Section 64:12] that we resist the temptation to call u the
argument of the function.

64:2 BEHAVIOR

We generally treat only real values of v and u, and exclude v 1, where a |+ discontinuity occurs. There
is no unanimity in the definition of the Hurwitz function for negative parameter and accordingly the u < 0 domain
is generally omitted from consideration in this Atlas, as it is in Figure 64-1. The status of (v,0) is also questionable;
here we regard it as infinite when v is greater then zero, but elsewhere it is considered to equal (v,1).

The discontinuity in the Hurwitz function at v 1 is the dominant feature in the landscape of the Hurwitz
function shown in the figure. The function is invariably positive for v > 1, but it may have either sign for v < 1. In
the latter domain, the Hurwitz function has a number of zeros, concentrated in the region of small u.
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64:3 DEFINITIONS

The difference between two digamma functions [Chapter 44] provides a generating function for Hurwitz
functions of integer orders of 2 and greater

2 3 4

2
( ) ( ) (2, ) (3, ) (4, ) ( , ) n

n
t u u t t u t u t u n u t64:3:1

The Hurwitz function may be defined through the integral
1

0

exp( )( ) ( , ) d 1, 0
1 exp( )

vt utv v u t v u
t

64:3:2

which may be regarded as a Laplace transform [Section 26:15]. More complicated is Hermite’s integral
1

/ 22 2
0

sin arctan( )
( , ) 2 d

2 1 [exp(2 ) 1]

v v

v

v t/uu uv u t
v u t t

64:3:3

and
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111

0

ln( )1( , ) d 1, 0
( ) (1 )

vut t
v u t v u

v t
64:3:4

The most transparent definition is as the series

0

1 1 1 1( , ) ( ) 1
(1 ) (2 ) (3 )

v
v v v v

j
v u j u v

u u u u64:3:5

but this converges only when the order exceeds unity, and then often very slowly. To extend this definition to cover
nonpositive integer u, some authorities, but not this Atlas, exclude from the defining series any term that generates
an infinity. With a similar objective, other authors replace the summand in 64:3:3 by but this2 / 2[( ) ] ,vj u
modification is not adopted here either. A definition, valid only in the narrow domain of the parameter, is provided
by Hurwitz’s formula

1
2

1
1

sin(2 )( , ) 2 0, 0 1
(1 ) (2 ) v

k

k u vv u v u
v k

64:3:6

Ways to mitigate the restrictions imposed by these series definitions are discussed in Section 64:6.
The Hurwitz function may be defined also by Weyl differintegration [Section 64:14] of a simple algebraic

function with respect to the logarithm of the differintegration variable:
0

d( , )
[d ln( )] 1

v u

v

tv u
t t

64:3:7

Some of the definitions in this section may be extended to noninteger negative parameters, u < 0, but neither
the Atlas nor Equator caters to this domain.

64:4 SPECIAL CASES

When the order is unity, the Hurwitz function suffers a discontinuity but, for any other positive integer order
n, (v,u) is equivalent to a polygamma function [Section 44:12]

( 1)( ) ( )( , ) 2,3,4,
( 1)!

n n un u n
n

64:4:1

When the order is a nonpositive integer n, the Hurwitz function can be expressed as a Bernoulli polynomial
[Chapter 19]

1B ( )( , ) 0,1,2,
1

n un u n
n

64:4:2

The first few cases are

(0,u) ( 1,u) ( 2,u) ( 3,u) ( 4,u)
1
2 u 21 1 1

12 2 2u u 2 31 1 1
6 2 3u u u 2 3 41 1 1 1

120 4 2 4u u u 3 4 51 1 1 1
30 3 2 5u u u u

64:5 INTRARELATIONSHIPS

An obvious consequence of definition 64:3:5 is the recursion formula
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( , 1) ( , ) vv u v u u64:5:1

and this may be iterated to
1

0

1( , ) ( , )
( )

J

v
j

v J u v u
j u64:5:2

The duplication formula
1

2( ,2 ) 2 ( , ) ( , )vv u v u v u64:5:3

may be generalized to
1

0
( , ) , 2,3,4,

m
v

j

jv mu m v u m
m

64:5:4

which leads to such relationships as
31

4 4( , ) ( , ) 4 ( ,4 ) 2 ( ,2 )v vv u v u v u v u64:5:5

Certain series of Hurwitz functions of positive integer order, with monotone or alternating signs, may be
summed:

1/( 1) 1
(2, ) (3, ) (4, ) (5, )

1/ 0

u u
u u u u

u u
64:5:6

( ) ln( 1) 1(2, ) (3, ) (4, ) (5, )
2 3 4 5 ln( ) ( ) 0

u u uu u u u
u u u

64:5:7

The latter sums involve the digamma function and logarithms [Chapters 44 and 25].

64:6 EXPANSIONS

The seminal expansion of the Hurwitz function is series 64:3:3. When this is incorporated into the
Euler-Maclaurin formula 4:14:1, with h set to unity and the discrete j variable treated as a continuous variable t, the
result

1

1 0
0 00

B d( , ) ( ) ( ) d ( )
! d

n tv v vn
n t

j n
v u j u t u t t u

n t
~64:6:1

emerges. After carrying out the indicated integration and differentiations, one discovers the formula
1

2 2
2

0

( 1) B1 1( , ) 2
2 1 (2 )!

jv
j j

v
j

vuv u
u v j u

~64:6:2

in which a Pochhammer polynomial [Chapter 18] occurs. Though technically asymptotic, this series converges well.
For computational purposes, it may sometimes be preferable to apply the Euler-Maclaurin transformation, not

to the seminal series 64:3:3 itself, but to formula 64:5:2. This leads to
11

1 3
0

1 ( ) 1 ( 1)( 2)( , )
( ) 1 2( ) 12( ) 720( )

vJ

v v v v
j

J u v v v vv u
j u v J u J u J u

~64:6:3

where J is an arbitrary positive integer. The right-hand terms in this formula, other than the first, may be regarded
as an expression for the remainder when the seminal series is truncated after the J th term. Another expression for
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the same remainder is

1

1 1 1
1 ( ) ( 1) ( )v v v

j J

J u v j u v
v J u j u j u

64:6:4

Hurwitz’s formula, equation 6:3:5, is valid over a narrow domain, but by invoking recursion 63:5:2 to derive
Int( ) 11

2
1

1 0

sin(2 )( ) 2 (1 ) frac( ) 1, 0
(2 )

u
v

v
k j

k u vv,u v j u v u
k

64:6:5

its validity may be broadened.

64:7 PARTICULAR VALUES

Although the Hurwitz function is often known as the “generalized zeta function”, there is an important mismatch
between the definition of the Hurwitz function (v,u) and the definition of the zeta number (v)( ) vj u vj
[Chapter 3] in that the former definition starts at j 0, whereas the latter starts at j 1. Hence when u 0, the
Hurwitz function reduces to the zeta number only when the order is nonpositive. Particular values of the Hurwitz
function for instances of positive integer parameters, and in the general case, are

(v,0) (v,1) (v,2) (v,3) (v,4) (v,m)

0

( ) 0

v

v v
(v) (v) 1 (v) 1 2 v (v) 1 2 v 3 v

1

1

1( )
m

v
j

v
j

For parameters that equal an odd multiple of ½, the Hurwitz function may be expressed in terms of the lambda
number of Chapter 3

1
2( , )v 3

2( , )v 5
2( , )v 1

2( , )v m

2 ( )v v 2 ( ) 1v v 2 ( ) 1 3v vv
1

2 ( ) (2 1)
m

v v

j
v j

When the parameter is an odd multiple of ¼ , the Hurwitz function involves also the beta number from the same
chapter. The prototypes are

31
4 4

( ) ( ) ( ) ( )( , ) 4 and ( , ) 4
2 2

v vv v v vv v64:7:1

Notice that these formulas concur with the general rule 64:5:4, when 64:5:3 is taken into account.

64:8 NUMERICAL VALUES

Equator provides accurate values of (v,u) for all |v| 100 and 0 u 100. With keyword Hurwitz, the
Hurwitz function routine uses formula 64:4:2 for negative integer orders and equation 64:6:5 for negative noninteger
v not greater than 3.5. For all other orders, the expansion 64:6:2 is exploited via the -transformation [Section
10:14].
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64:9 LIMITS AND APPROXIMATIONS

When the order is unity, the Hurwitz function suffers a discontinuity, but certain modifications of the Hurwitz
function remain finite as v 1 is approached. Thus

1

( , )lim 1
(1 )v

v u
v

64:9:1

and

1

1lim ( , ) ( )
1v

v u u
v

64:9:2

These results apply irrespective of whether unity is approached from smaller or larger values.
When u is small, the approximation

( , ) ( ) ( 1) smallvv u u v vu v u64:9:3

involving the digamma function [Chapter 44], holds. Adding terms with progressively( )jv u v jj 2,3,j
improves the approximation.

64:10 OPERATIONS OF THE CALCULUS

Differentiation with respect to the order yields

0

ln( )( . ) 0
( )v

j

j uv u v
v j u64:10:1

of which the special case
( )(0, ) ln
2
uu

v
64:10:2

is noteworthy. Single and multiple differentiations with respect to the parameter yield

( , ) 1, and ( , ) ( ) ,
n

n
n n

v u v v u v u v v n u
u u

64:10:3

and these formulas may be generalized to the differintegration [Section 12:14] result
(1 )( , ) ,

(1 )
vv u v u

u v
64:10:4

where is not necessarily an integer. In these formulas (v)n denotes a Pochhammer polynomial [Chapter 18] and
symbolizes the gamma function [Chapter 43]. Note that both formulas in 64:10:3 accord with 64:10:4, as does

64:10:5.
Formulas for indefinite integration with respect to the parameter include:

( 1, )( , )d 2
1u

v uv t t v
v

64:10:5

1

( 1, ) ( 1)( , )d 2
1

u v u vv t t v
v

64:10:6
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0

( 1, ) ( 1)( , )d 1
1

u v u vv t t v
v

64:10:7

and lead to the following interesting definite integrals
1

0

( , )d 0 1v t t v64:10:8

2

1

1( , )d
1

v t t
v

64:10:9

The parts-integration procedure [Section 0:10] that produces the result

1

( 1, ) ( 1) ( 2, ) ( 2)( , )d
1 (1 )(2 )

u u v u v v u vt v t t
v v v

64:10:10

may be iterated to generate expressions for integrals of where( , )nt v t 2,3,4, .n
The Böhmer integrals that are the subject of Section 39:12 appear in the integration formulas

1
1 Ssin 2 ( , )d 2 2 ,1 1, 0cos C

x
v

x

t v t t x v v x64:10:11

There is a close connection between these results and the discussion in Section 64:14.

64:11 COMPLEX ARGUMENT

There is interest in the function in the context of Riemann’s hypothesis [Section 3:11] but this topic1
2 ,iy u

will not be pursued here.
Inverse Laplace transformation leads to hyperbolic functions [Chapters 29 and 30]:

1exp( )( , ) d ( , ) coth 1
2 2 ( ) 2

i v

i

st t tv s s v s
i v

I64:11:1

1
1 1

2 2
exp( ) csch( /2)( , ) d ( , )

2 2 ( )

i v

i

st t tv s s v s
i v

I64:11:2

64:12 GENERALIZATION: the Lerch function

Named for the Czech mathematician Mathias Lerch (1860 1922), the trivariate function (x,v,u) generalizes
the Hurwitz function because

(1, , ) ( , )v u v u64:12:1
However, inasmuch as, for appropriate of the nonunity variables,

1 1 1( ,1, ) ln and ( , ,1) polyln (1 )
1u vux u x v x

x x x
64:12:2

it may equally well be regarded as a generalization of either of the functions mentioned in Section 25:12 the
generalized logarithmic function, or the polylogarithm.
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Note that, though the Atlas prefers that the terminal character in the symbol of a multivariate function be the
argument, we defer to the convention that the three variables of the Lerch function are cited in the order: argument
x, order v, and parameter u. Though extensions may be possible, we generally impose the restrictions |x| 1, v 1,
and u > 0 throughout this section. Analogous to equations 64:3:2 and 64:3:5, are the definitions of the Lerch
function as an integral

1

0

1 exp( )( , , ) d
( ) 1 exp( )

vt utx v u t
v x t

64:12:3

or as an infinite series
2 3

0

1( , , )
(1 ) (2 ) (3 ) ( )

j

v v v v v
j

x x x xx v u
u u u u j u

64:12:4

Yet another definition of the Lerch function is as a Weyl differintegral [Section 64:14] with respect to the logarithm
of the argument:

ln( )
d( , , ) 0

[d ln( )] 1

xv u
u

v

tx v u x x
t t

64:12:5

Many of the properties of the Lerch function, such as its recursion
1 1( , ,1 ) ( , , ) vx v u x v u
x u

64:12:6

echo those of the Hurwitz function. The following limit governs the approach of the argument to unity

11

( , , )lim (1 ) 1
(1 )vx

x v u v v
x

64:12:7

A surprisingly large number of familiar functions arise by specializing one or more of the variables of the Lerch
function. Specializations of the order to integer values lead to the following special cases:

( ,1, )x u ( ,0, )x u ( , 1, )x u ( , , )x n u 1
2( ,1, )x

B( ,0, )
u

u x
x

1
1 x 2(1 )

u x xu
x

( ,1 , ) ( ,1 , )u x n u x x n u
x

2 arctan x
x

in which an incomplete beta function [Chapter 58] is found. When the parameter is specialized, polylogarithms
[Section 25:12] often appear:

( ,1,1)x ( ,2,1)x 1
2( ,1, )x ( , ,0)x v 1

2( , , )x v

ln(1 )x
x

diln(1 )x
x

2 arctanh x
x

polyln (1 )v x polyln 1polyln (1 )
2

vv
v

xx
x x

Other special cases include

(1, , )v u (0, , )v u ( 1, , )v u (1, ,2 )v u 1
2( ,1, )x 1 1

2 2( ,1, )

( , )v u u v ( , )v u
1

2( , ) ( , )
2v

v u v u 2 arctan x
x 2
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Equator’s Lerch function routine (keyword Lerch) relies on expansion 64:12: 4. Because, when x approaches
unity, this series is slow to converge, a more convergent series representing the remainder is appended following
curtailment of the original expansion. The formula used by Equator is

1

0 0

polyln ( )( , , )
( ) ( )

jJ M
J m

v m v
j m

x xvx u v x mj u J u
64:12:8

This expression for the remainder has its origin in equation 25:12:5. J is chosen large enough that only a few terms
of the m-series are needed.

64:13 COGNATE FUNCTION: the bivariate eta function

The definition of this function as a series

0

1 1 1 1 ( 1)( , )
(1 ) (2 ) (3 ) ( )

j

v v v v v
j

v u
u u u u j u

64:13:1

differs from the corresponding definition of the Hurwitz function only by the presence of alternating signs. Other
similarities to are its recurrence and duplication formulas:( , )v u

( , 1) ( , )vv u u v u64:13:2

1
2( ,2 ) 2 ( , ) ( , )vv u v u v u64:13:3

which likewise differ from their Hurwitz analogues only by signs. Equation 64:13:3 provides a route to calculate
the bivariate eta function from the Hurwitz function; another way is

1 1
2( , ) 2 ( , ) ( , )vv u v u v u64:13:4

This latter equation is the one used by Equator's bivariate eta function routine, which uses the keyword eta.
Some special cases of the bivariate eta function are

(v,0) (v,1) (v,2) (v,½) (1,u) (1,1) (1,½)

0

( ) 0

v

v v
(v) 1 (v) 2v (v)

G( )
2
u

ln(2)
2

Here (v) and (v) are eta and beta numbers from Chapter 3; G(u) is Bateman's G function [Section 44:13].

64:14 RELATED TOPIC: Weyl differintegration

The Hurwitz and Lerch functions of this chapter have strong connections with the fractional calculus [Section
12:14], as does the bivariate eta function. For example, equations 64:3:6 and 64:12:4 show how the first two of these
functions can be generated from simple algebraic expressions by the operations of the fractional calculus.

Differintegration is the operation that unifies differentiation and integration and extends the concept to fractional
orders. Except when the order of differintegration is a nonnegative integer, a lower limit must be specified for the
differintegral of a function f(x) to be fully characterized. Any number will serve as this lower limit but the most
common are 0 and .

Differintegration with a lower limit of is called Weyl differintegration (Hermann Klaus Hugo Weyl, German
mathematician, 1885 1955). Notations vary greatly, but our symbolism for a Weyl differintegral, and a definition
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applicable when < 0, is through the Riemann-Liouville integral transform

1

d 1 f( )f( ) d 0
d ( ) ( )

x x tt t
t x t

64:14:1

When is positive, the definition still relies on this transform but subsequently differentiates it a sufficient number
of times

1

d d 1 f( )f( ) d 0
d d ( ) ( )

x xn

n n

tt t n
t x n x t

64:14:2

Consider, for example, the function f(x) exp( bx) where b is a positive constant. Then a change of the integration
variable in 64:14:1 to b(x t) easily establishes that

d exp( ) exp( ) 0
d

x

bt b bt b
t

64:14:3

and the same result is also given by 64:14:2. As a second example, the Randles-Sev ik function, important in
electrochemistry, may be defined, for negative x, as the Weyl semiderivative of the function 1/[1+exp( x)]

1 1
2 2

1 1
2 2

1 1

1 1

d 1 d ( ) exp( ) ( ) exp( ) 0
1 exp( )d d

x x

j j

j j
jt j jx x

tt t
64:14:4

Other representations of this functions are

2 2 21
2 3

1

2
exp( ) exp( ), ,1 and (2 1)

2
j j

j
j j

X x X x
x x X j x

X
64:14:5

the latter not being restricted to negative x.
Of course, as with regular differentiation and integration, one may differintegrate with respect to a function,

instead of with respect to a variable. For example, replacing t in equation 64:14:3 by a logarithm leads to
ln( )

0

d 0
[d ln( )]

x
b bt b x b

t
64:14:6

This formula lies at the heart of definitions 64:3:6 and 64:12:4.
The Hurwitz and bivariate eta functions play vital roles in the Weyl differintegration of periodic functions. Let

per(x) be such a function and its period be P. With definition 64:14:1 applied to this periodic function [Chapter 36],

1 1 1 1
0 0 0

d per( ) per( ) 1 per( )( ) per( ) d d d
d ( ) ( ) [ ( / )]

x x jPx P

j jx P jP

t t x jPt t t
t x t x t P j P

64:14:7

where, in the final step, the integration variable was changed to x t jP. The final integrand is seen to involve
the Hurwitz summands from equation 64:3:3, whence

1

0

d per( ) per( ) 1 , d 0
d ( )

x PPt x
t P

64:14:8

For 1 < < 0, this result requires that the integrals in 64:14:7 converge which, in turn, requires that the mean value
of the periodic function be zero over its period. This requirement can be discarded when is positive, in which case
the formula for Weyl differintegration of a periodic function, derived from 64:14:2, is
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1

0

d per( ) [per( ) per( )] 1 , d 0
d ( )

x PPt x x
t P

64:14:9

Because increasing x by P leaves the right-hand members of 64:14:8 and 64:14:9 unchanged, it is evident that the
Weyl differintegral of a periodic function is itself periodic and of unchanged period.

Though the rather complicated formulas of the previous paragraph apply to all periodic functions, Weyl
differintegration of the cosine function merely scales the function and shifts its phase

d cos( ) cos
d 2

x

t x
t

64:14:10

and a similar result holds for the sine. As a final example, consider the square-wave function ( 1)Int(2x/P) [Section
36:14]. The result of differintegrating this periodic function to order can be expressed succinctly in terms of the
bivariate eta function:

Int(2 /d (2 / ) 2( 1) ,
d (1 )

x
x P P x

t P
64:14:11

The waveforms produced for the cases of orders are illustrated1
6
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in Figure 64-2. They demonstrate a transition from square-wave to triangular-wave behavior as the order moves
from 0 to 1, corresponding to increasingly robust integration. Increasing the order of differentiation, as
transitions from 0 to 1, leads ultimately to a set of Dirac functions [Chapter 9], spiking alternately in the positive and
negative directions. In the figure, the curves have been normalized to accentuate the familial pattern.





Information generally useful to scientists and engineers of all stripes is collected in this appendix.
Since 1960 Le Système International d’Unités has been the only system of measurement recognized globally.

The SI, as it is usually abbreviated, is used universally in science and increasingly in engineering, architecture and
medicine. The system specifies primary units, derived units, and prefixes.

The values (in primary SI units) of selected constants, conversion factors, and standards are available in Equator.
This facility is indicated by the presence of keywords in the tables of this appendix.

A:1 NOTATION

There are seven base units, precisely defined by international agreement. Also there are two supplementary
units, geometrically based. These primary units are:

Property Name of unit Symbol of unit

length metre or meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

plane angle radian rad

solid angle steradian sr

All other units in SI are derived from these nine.
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A:2 DERIVED SI UNITS

Other than the primary units themselves, all units in SI are constructed by multiplying and/or dividing primary
units. The symbols of these derived units use superscripts to indicate the exponent of each primary unit. The
number of derived units is legion and only a few representative examples are included in the following listing:

Property Name of unit Symbol of unit

volume cubic meter m3

acceleration meter per square second m s 2

temperature gradient kelvin per meter K m 1

luminance candela per square meter cd m 2

reaction rate mole per cubic meter per second mol m 3 s 1

etc.

Some derived units are given special names, which mostly honor a founding scientist. These named units are
also given symbols, which usefully abbreviate the full list of primary unit symbols. A comprehensive listing of the
named units that are part of SI is

Property Named unit Symbol Equivalent primary-unit symbol

frequency hertz Hz s 1

force, weight newton N kg m s 2

pressure, stress pascal Pa kg m 1 s 2

energy, work joule J kg m2 s 2

power watt W kg m2 s 3

electric charge coulomb C s A

electric potential volt V kg m2 s 1 A 1

electric resistance ohm kg m2 s 1 A 2

electric conductance siemens S s3 A2 kg 1 m 2

electric capacitance farad F s4 A2 kg 1 m 2

electric inductance henry H kg m2 s 2 A 2

magnetic flux density tesla T kg s 2 A 1

magnetic flux weber Wb kg s 2 A 2

luminous flux lumen lm cd sr 1

illuminance lux lx cd m 2 sr 1

radioactivity becquerel Bq s 1

absorbed dose gray Gy m2 s 2

dose equivalent sievert Sv m2 s 2

catalytic activity katal kat mol s 1
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Of course, derived units may combine named and primary units. A few examples of such composite SI units are

Property Unit Symbol Equivalent primary-unit symbol
entropy, heat capacity joule per kelvin J K 1 kg m2 s 2 K 1

surface tension newton per meter N m 1 kg s 2

dynamic viscosity pascal second Pa s kg m 1 s 1

permittivity farad per meter F m 1 s4 A2 kg 1 m 3

thermal conductivity watt per meter per kelvin W m 1 K 1 kg m 1 s 3 K 1

Instead of negative superscripts, the solidus may be used; for example the unit of thermal conductivity may be
symbolized kg/(m s3 K). Unit symbols are not pluralized or punctuated.

A:3 NON-SI UNITS

Though not part of SI, there are several units that are officially condoned, or that are used frequently in
conjunction with SI units. These include

Property Non-SI Unit Symbol Equivalent SI quantity Keyword
length ångström Å 10 10 m
area hectare ha 104 m2

volume litre or liter L 10 3 m3

mass tonne or metric ton t 103 kg
mass atomic mass unit u 1.6605 3878 × 10 27 kg amu
mass dalton Da 1.6605 3878 × 10 27 kg amu
temperature degree Celsius oC T oC = (T + 273.15) K
pressure bar bar 105 Pa
energy electron volt eV 1.6021 7649 × 10 19 J eV

etc.

Here and elsewhere, uncertain digits are shown in a smaller font.
A major advantage of SI is that it eliminates the conversion factors that so often arise when such traditional units

as inches, pounds and gallons are used. The first edition of this Atlas listed some conversion factors, but several
websites offer much more comprehensive unit-interconversion facilities. Three that are free of advertisements
[Philips, Public literature, and Wikipedia] are listed in Appendix B.

A:4 SI PREFIXES

Twenty prefixes are employed optionally in SI to form decimal submultiples

Factor: 10 1 10 2 10 3 10 6 10 9 10 12 10 15 10 18 10 21 10 24

Prefix: deci centi milli micro nano pico femto atto zepto yocto
Symbol: d c m n p f a z y
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or multiples

Factor: 101 102 103 106 109 1012 1015 1018 1021 1024

Prefix: deka hecto kilo mega giga tera peta exa zetta yotta

Symbol: da h k M G T P E Z Y

of SI units. These prefixes may be applied to any primary or named unit, except to the kilogram. For mass units,
the prefix is applied to the gram (10 3 kg) instead. Thus

7174 10 kg = 17 4 mg 17 4 kgnot. .A:4:1

A superscript applied to a prefixed unit exponentiates the unit and its prefix, not just to the unit. For example:
3 2 3 30 013534 kg cm 0 013534 kg (10 m) 13534 kg m. .A:4:2

A:5 UNIVERSAL CONSTANTS

Among the fundamental constants that the U.S. National Institute for Standards and Technology [see “National
Institute for Standards and Technology” in Appendix B] recognizes as in frequent use are

Name and symbol Value Keyword

velocity of light, c 299 792 458 m s 1 lightc

Planck’s constant, h 6.6260 690 × 10 34 J s Planckh

Boltzmann’s constant, k 1.3806 50 × 10 23 J K 1 Boltzmannk

Avogadro’s (Löschmidt’s) constant, L 6.0221 418 × 1023 mol 1 AvogadroL

Faraday’s constant, F 96485.340 C mol 1 FaradayF

gas constant, R 8.31447 J K 1 mol 1 gasR

permittivity of space (electric constant), 0 8.8541 87817 62039 × 10 12 F m 1 epsilon0

permeability of space (magnetic constant), 0 1.2566 37061 43592 × 10 6 N A 2 mu0

electron charge, qe 1.6021 7649 × 10 19 C electronq

electron mass, me 9.1093 822 × 10 31 kg electronm

proton mass, mp 1.6726 2164 × 10 27 kg protonm

neutron mass, mn 1.6749 2721 × 10 27 kg neutronm

gravitational constant, G 6.6743 × 10 11 N m2 kg 2 gravityG

Rydberg constant, R 1.0973 73156 853 × 107 m 1 RydbergR

fine-structure constant, 7.2973 52538 × 10 3 alpha

The most recent values [Mohr, Taylor and Newell] of physical constants are listed here.
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A:6 TERRESTRIAL CONSTANTS AND STANDARDS

Quantity Value Keyword

earth’s mean radius 6.3710 × 106 m

earth’s mass 5.9736 × 1024 kg

earth’s angular velocity 7.2921 159 × 10 5 rad s 1

siderial year 3.1558 1500 × 107 s

standard gravitational acceleration (sea level, 45o latitude), g 9.8066 5 m s 2 earthg

escape velocity 11 186 m s 1

standard laboratory temperature, Tstd 298.15 K standardT

standard atmospheric pressure (older), Pstd 101 325 Pa standardP

standard atmospheric pressure (newer), 1 bar 105 Pa

A:7 THE GREEK ALPHABET

alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mu

A, B, , , E, Z, , H, , , I, K, , M,

nu xi omicron pi rho sigma tau upsilon phi chi psi omega

N, v , O, o , P, , T, , , , X, , ,

Some Greek prefixes:

Quantitative: hemi- half, mono- one, bi- or di- two, tri- three, tetra- four, penta- five, hexa- six, hepta-, seven,
octa- or octo- eight, nona- nine, deca- ten, dodeca- twelve, icosa- twenty, oligo- several, poly- many.

Qualitative: a- or an- without, anti- against, hetero- different, homo- same, hyper- less or below, hypo- more or
beyond, iso- equal, ortho- straight, macro- long, mega- great or large, meta- between or among, micro- small,
para- alongside, pseudo- false, quasi- almost.
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Equator, designed to be an integral part of the Atlas, is a software package that generates numerical values of
more than 200 mathematical functions, including most of those that are the subjects of the preceding chapters. It
resides on the CD that will be found within the back cover of the print version of the book. Users of the electronic
version may purchase the Equator CD from booksellers. Consult Section C:12 for a comprehensive listing of the
functions to which Equator caters, together with the corresponding keywords recognized by Equator.

In addition to its primary goal of providing function values, Equator will perform a number of subsidiary tasks,
as described in Sections C:6, C:9, and C:10.

C:1 GETTING STARTED

The software must be first be installed from the CD onto the hard drive of a personal computer running at least
Windows XP. The present version is not designed to operate on Macintosh computers or on Unix/Linux systems.

You may need “administrator privileges” in order to install Equator, the Atlas function calculator. Memory and
processor requirements adequate for running Windows XP will satisfy Equator's needs. During its installation,
Equator will check if Microsoft’s .Net Framework 2.0 is already installed on your computer. If not, Equator will
automatically download and install .Net Framework 2.0 for you.

The following simple steps will enable you to install Equator:
! Insert the CD into your computer’s disk drive. If the installation program does not immediately start, the
“autorun” feature may be disabled on your computer. If so, double-click the CD drive icon underMyComputer; then
double-click the setup.exe file.
! If it is absent from your computer, you will be asked to install .Net Framework 2.0 and you will need to be
connected to the internet to do so. Click Accept when the license agreement appears. The required files will be
downloaded and installed. This may take several minutes.
! An Application Install - Security Warning screen may appear. Just click the Install button.
! Follow the prompts to complete the installation of Equator. You will be required to accept a licensing agreement.
! A shortcut to Equator will have been placed in the Start menu and an Equator icon will have appeared on your
desktop.
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! The first time you run Equator you will be prompted to input your name, address, and licensing code. The code
will be found on the CD pouch in the printed book or with the CD that you purchased.

Should you ever need to uninstall Equator, double-click Add or Remove Programs on the Windows Control
Panel. Select Equator from the list and click Remove.

C:2 BASIC EQUATOR OPERATION

Double-click the Equator icon on your desktop. If your computer monitor is not set to 1024 × 768, you will
see the following screen

C:2:1

You may, or may not, wish to adjust the resolution. Click the smallQ checkbox to avoid being reminded of this next
time.

Every function calculable by Equator has a name and a keyword [Section C:12]. Equator’s opening screen,

C:2:2

invites you to type either the name or the keyword into the header box. Alternatively, you may scroll down through
the comprehensive alphabetized list to locate the sought name or keyword, then select and click it. The experienced
user will use the typing option and will type the keyword, once familiar with it. As you type, Equator will try to
anticipate your choice and will also display the corresponding mathematical symbol. For example, if wanting a
binomial coefficient you type the keyword “bincoef”, the screen will show:

C:2:3

Once the sought function’s name or keyword appears, click the button. In the binomial coefficient
example, this brings up the following starting screen:

C:2:4
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Because the binomial coefficient is bivariate, there are two input boxes but, depending on the function, there can be
as many as four or as few as zero input boxes. For now, ignore the small square checkboxes. Recognize that you
are being asked to type numbers into the and boxes. You might, for
example, enter “17.5” and “13” for these variables. Then, on clicking the button, you will find that Equator
responds immediately with the answer screen:

C:2:5

At any time prior to clicking , you can return to the start screen by pressing the Esc key.
With the calculation complete, there are now three buttons that you might click. One of these allows you to

proceed to calculate the value of a different binomial coefficient. Another permits the choice of a new function. The
third exits Equator.

The basics of Equator have now been covered, but there are several additional optional features.

C:3 MEMORIES AND CONSTANTS

Notice the “ #” message following the answer in screenshot C:2:5. This indicates that the answer has been
stored by Equator in a #-memory, in case you might need to use it in some subsequent “chain” calculation. If, to
continue with the previous example, you wished to find the logarithm of the binomial coefficient , you need17.5

13
only summon the logarithm routine and type “#” into the argument box. Clicking then generates the logarithm
of the binomial coefficient.

The #-memory is ephemeral. Numbers so stored are retained only until the next time is clicked.
Sometimes, however, you may want to use a calculated answer more than once. To preserve an answer, type ctrl-M.
This stores the answer into a more permanent M-memory. To reuse it, simply type “M” or “m” wherever the stored
value is needed. It will remain stored until you overwrite it, or end the Equator session.

The values of seven mathematical constants (exact to 15 digits) and many of the most widely used physical
constants are encoded in Equator and you may use them freely by typing in the keyword instead of a numerical
value. See Appendix A for a listing of available physical constants, with their keywords. These constants are in
primary SI units [Section A:3] and are the 2007 internationally recognized standard values.
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C:4 VARIABLE CONSTRUCTION

Knowing the value of some input quantity t, one often needs to find the value, not of the function f(t) of t itself,
but of some modified variable, such as f( t) or f(1+ t 2). Equator caters to this need by providing a facility to
construct a desired input variable in accordance with the formula

px wt kC:4:1
The default values of the multiplier w, power p, and the constant k are 1, 1, and 0, but these parameters may be
altered at will by the user.

For example, you might want to compute log2(3 ). Click and then choose the function logarithm
to any base (or the keyword loganybase), which computes log (x). Enter 2 into the box. Next click the checkbox

and also, to signify that it is argument x that is being constructed rather than the base ,
click the " button to the left of . The screen now appears as:

C:4:2

Enter “3” into the t box and “ pi” into the p box, leaving k and w with their default values. Then, on clicking ,
the screen appears as:

C:4:3

Notice that, as well as the answer being generated, the calculated value of the argument x is shown, “grayed out”
in the appropriate variable box.

No more than one variable may be constructed in this way.
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C:5 VARIABLE RANGING

You might wish to determine, not just a single value of, say, a binomial coefficient, but a whole range of values.
Equator provides for this need with its “variable ranging” feature. Test this out by again choosing the binomial
coefficient function (keyword bincoef) and then clicking the checkbox . The screen

C:5:1

appears. Notice that the " button opposite the first variable, v, is already selected, on the assumption that it is this
variable, rather than m, that you wish to range. If this is not your wish, click the button opposite m, converting it
from to and allowing you to insert values into the appropriate boxes. If you choose v 17.5 and decide to
range m from 1 to 17 in steps of 2 then, after clicking , the screen will be

C:5:2

Equator will always evaluate the function at the value of the variable shown in the “to” box, even if this value
is not in the chosen sequence. For example, if you ask for output from 1 to 10 in steps of 2, you will be given f(1),
f(3), f(5), f(9) and f(10) values.

You can combine the construction and ranging features of Equator by ranging on any one of the w, t, p, or k
construction tools. Simply click both Q checkboxes and the " button alongside whichever one of the tools you
choose to range. Imagine, for example, that you wish to find the cosine of several submultiples of ; perhaps
cos( /2), cos( /3), cos( /4), , cos( /8). Screenshot C:5:3 shows how this may be accomplished and what the
answers are.
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You cannot construct one variable and range another.

C:5:3

C:6 OTHER USES OF RANGING

Equator has no plotting capability, but should you wish to graph the output of a ranged calculation, you can
easily transfer the data to graphing software, such as Excel or SigmaPlot ®. Equator’s Edit menu provides a Copy
results to clipboard facility which is useful for data transfer, not only for graphing, but also for creating hard copy
or for another purpose.

Every time you use the ranging feature, Equator maintains a running sum of all the values it enters into the
rightmost data column. Normally no use is made of this sequential addition and the user is unaware of its
occurrence. However, if you wish to see the sum, type ctrl-S and the sum will appear as an additional final entry in
the rightmost column. This sum is simply

1 2 3sum = f( ) f( ) f( ) f( )Nx x x xC:6:1
where x1 is the first argument, and f(xN) is the last. This facility can be used, for instance, as a means of summing
certain finite series. Alternatively, if you type ctrl-A, the average, sum/N, appears. Equator computes N as 2+Int{(xN

x1)/h} where x1, xN, and h are the contents of the three ranging boxes.
Likewise, Equator automatically compiles another kind of sum each time a ranging calculation is performed.

The sum in this case is called the trapezoidal area and it is

11 1
1 2 3 1 12 2

trapezoidal f( ) f( ) f( ) f( ) f( ) f( )area 2
N N

N N N
x xh x x x x x xC:6:2

where h is the interval. To access this value, type ctrl-T. The trapezoidal area is output at the bottom of the
rightmost column. It provides an approximation [Section 4:14] to the definite integral

1

trapezoidal
f( )d area

Nx

x

t tC:6:3

How good this approximation is depends on the properties of the function, as well as on N, the number of data you
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have specified.
These three facilities are inoperative if the ranged data consists of more than one column, or if any of the data

are unavailable or out of range. The value of the sum, average or trapezoidal area is computed by unsophisticated
summation; no steps are taken to ensure that all reported digits are significant.

C:7 DATA INPUT

You may enter a numerical value into Equator as an integer or a decimal number in either fixed or floating point
(scientific) notation. Thus 765, 0.00573, and 12.987E 78 are all acceptable inputs, but not E 78 without a
preceding number. E may be replaced by e, but not by 10. The minus sign, , must precede a negative input, but
+ is optional for a positive number. Up to 15 digits may be input; any extra will be ignored. With decimal notation,
Equator assumes that all digits beyond those input are zeros; thus 17.666 is treated as 17.666 00000 00000. The
magnitude of input numbers may range between E 308 and E307.

As alternatives to numbers, the following “number substitutes” may be input:
! the # symbol, representing the value last
calculated by Equator. If the calculation
involved ranging, it is the result of the final
calculation that is stored in #.
! the M or m symbol, representing a
number previously placed in the M-
memory.
! any one of the seven keywords listed
here, representing a mathematical constant.
! any one of the twenty keywords listed in
Appendix A, representing a fundamental
physical constant, a conversion factor or an
accepted standard. For the most part, these
constants are known to less than 15-digit
precision, but Equator takes no cognizance
of this limited precision in calculations
involving these constants.
! fractions, such as 17/369 or pi/8.4E 7. The format must be two numbers (or number substitutes) separated by
a solidus, “/”. Equator converts the fraction to a decimal number before utilizing it in calculations, but it does
remember that a fraction was input, because this is important in some computations.

Equator makes no general provision for the input of complex or imaginary numbers, but the complex number
raised to a real power, the square-root function, and the exponential function of complex argument routines do accept
real and/or imaginary input.

As elsewhere in the Atlas, this appendix uses the period as the decimal separator. This is the standard in many
geographical regions. If, however, you are working in a country where the comma customarily fills the separator
role, then (unless that setting in your computer has been changed), you must use a comma when inputting decimal
numbers and Equator will respond in that system. Otherwise, Equator will use the period as the decimal separator
and you should too. If you use commas for any purpose, when the decimal separator is the period, they are ignored.
Conversely, periods will be ignored whenever the decimal separator is the comma. For visual convenience, you may
wish to insert spaces within a number; that’s okay: Equator will ignore them.

Symbol and name Keyword Value

, Archimedes’s constant pi 3.1415 92653 58979

G, Catalan’s constant catalan 0.91596 55941 77219

e, base of natural logarithms ebase 2.7182 81828 45905

, Euler’s constant euler 0.57721 56649 01533

g, Gauss’s constant gauss 0.83462 68416 74073

Z, Apéry’s constant apery 1.2020 56903 15959

, golden section golden 1.6180 33988 74990
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C:8 DATA OUTPUT

Answers that are integers smaller in magnitude than 1E16 are reported as integers. Function values f that lie
in the range are output in fixed-point decimal format. Otherwise a standard floating point notation,0 1 1000f.
exemplified by

1 2345 67890 12345E+123.C:8:1
is adopted. Equator can rarely output nonzero numbers outside the ranges 1E307 f 1E 308 and 1E 308

f 1E307.
A few of Equator’s routines (the power function, cubic zeros, etc.) provide dual outputs: the real and imaginary

parts of the complex answer. Some other routines (for example, the zeros, and associated values, of the Bessel
functions) provide two real answers. In these cases, it is the penultimate output (often the real part) that is retained
in the #-memory.

Equator strives to generate answers with “15-digit precision”, by which we mean 14 exact digits, with the
fifteenth having some uncertainty. This is not always possible. Generally, however, Equator is able to detect when
precision is likely to have been lost during its calculations and it then curtails the output, such that all the reported
digits (of which there may be as few as 3) are significant; that is, only the final reported digit is ever uncertain. If,
for any reason, you wish to know what the original 15-digit answer was, just type “#”: the uncurtailed answer will
usually be displayed.

If Equator cannot confidently provide a function value, even one with only three significant digits, it will report
“unavailable” or give some explanation of its failure. Such failures may occasionally occur even in regions where
the Atlas text suggests that function values are accessible.

C:9 OTHER EQUATOR FEATURES

As do many computer programs, Equator allows mouse-less operation. Thus, instead of clicking on the
button, you can type alt-C. Likewise, you may navigate between the various input boxes by use of the keyboard
Tab key. The or buttons may be similarly replaced by the Enter key.

Equator allows you to input arguments to the trigonometric and Gudermannian functions in radians (the default)
or degree measure. Simply click the appropriate " button. Likewise you have the choice of radian or degree output
from the inverse trigonometric and inverse Gudermannian functions and the elliptic amplitude routines.

Read about the rational approximation routine (keyword rational) in Section 8:13 of the Atlas. This provides
a means of approximating a decimal number by a quotient of two integers. Thus it finds the numerator and
denominator in such relationships as

355
113

C:9:1

The nearest binary approximant routine (keyword bin), described in the following section is another approximation
feature of Equator.

Equator usually gives an answer almost immediately. Rarely, however, the operation may be slow. The
message at the top of the screen will confirm that calculation is proceeding. If you wish to

abort a computation, simply press the Esc key.
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C:10 ARITHMETIC PROCESSING

So that you will have little need to supplement your Equator calculations by using a regular calculator, Equator
has routines that carry out simple arithmetic operations. Routines for addition, subtraction, multiplication, division,
square root and exponentiation exist and have the keywords +, , *, /, sqrt, and power. As well, the construction
feature may be used for these purposes. However, Equator has another powerful tool to supplement function
computation.

The “construction” feature, described in Section C:4 is a valuable way of tailoring your data prior to using them
in evaluating the function of interest. There is often a requirement to tailor Equator’s output similarly, to suit your
particular need. For example, you might have just calculated arctan(2x/ ), when what you actually need is

. To aid in such a supplementary task, Equator provides an arithmetic function (keywordarctan 2 /x x
arith). This is a quadrivariate function defined by

arith( , , , ) PW T P K WT KC:10:1

where each of W, T, P, and K may be any number or number substitute. To use the arithmetic function in the
example cited, one may choose the four parameters as follows

1
2arith(#, , , pi) arctan 2 /x x xC:10:2

However the arithmetic function is more powerful than that example suggests because any one of the four
parameters may itself be constructed, opening the possibility of using as many as seven parameters in formulating
the output. Any one of those seven may be ranged in the normal way.

Though the arithmetic function is used most often as a sequel to a prior calculation (via the # or M memories),
that is not its only application. For instance the quantity ( g + 1)/2g, which occurs in Section 61:11, may be
calculated as arith(pi/2,1,1,0.5/gauss), or in other ways. It may also be used to construct more elaborate input
variables than the unaided “construction feature” can handle. As you become familiar with Equator, the Atlas
function calculator, you will find the arithmetic function invaluable.

C:11 ACCURACY

A whole book could be, and perhaps one day will be, written about the measures that Equator adopts to preserve
accuracy in calculating function values. Here we merely mention three sources of inaccuracy and methods by which
some of these hazards may be mitigated. First note that there are two ways in which inaccuracies may be
characterized. One is in terms of the absolute error

absolute f( ) f( )error x xC:11:1

where f(x) is the true value of the function at the argument x and is the calculated value. The second is thef( )x
relative error

f( ) f( ) f( ) f( )relative
error f( ) f( )

x x x x
x x

C:11:2

A “good” algorithm is one that generates a small absolute error. However, it is the latter measure, the relative error,
that determines how many digits can legitimately be reported as a function value. To report 15 digits requires that
the relative error be on the order of 1E 15. It is the relative error that is usually thought of as reflecting “how
accurate” an answer is.

Unless some special procedure can be exploited, there is inevitably a large inaccuracy associated with
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computing the value of a function at an argument close to one of its zeros. The truth of that statement is clear on
inspection of equation C:11:2. Whenever x is close to a zero [Section 0:7 of the Atlas] of the function, the
denominator in C:11:2 will be very small, which places extremely severe demands on the accuracy of computation
of if the relative error is to be acceptably small. Of course, you may not even know that your input variable(s)f( )x
correspond to a function value close to a zero. A small numerical value of the answer will provide a clue that this
is the case and explain why Equator returns an answer with severely curtailed precision. An “inadequate
significance” message may be returned if your argument is extremely close to a zero.

A second issue relates to number systems [Section 8:14]. Like most computer programs, Equator operates with
binary numbers. On the other hand, the user inputs a decimal number. Hence, an early step in the operation of
Equator is the conversion of the user’s decimal number into a binary number. Now, some decimal numbers, such
as 73.244 16503 90625, are also exact binary numbers (in this example 1010110.110000000001), whereas another
decimal number, such as 73.244 39024 39025, which is superficially similar, is not. The first number converts
exactly to a binary number, whereas the second number will be converted by Equator into the nearest binary number.
This obligatory approximation that Equator makes may or may not engender a serious error in the output. It depends
on how “steep” the function is at the argument in question; that is, the inaccuracy depends on the magnitude of
f / x. Sometimes this derivative can be very large indeed (especially close to a discontinuity). If the input variable

is not an exactly binary number, inevitable inaccuracies may be present in the output, especially if the function is
steep. These inaccuracies will arise, of course, even if Equator returns an exact answer – it is the exact answer for
a different argument. If you suspect that your answers may risk contamination from this cause, and if your particular
problem allows, it will generally help if you use only inputs that are exactly binary. For this purpose, Equator has
a nearest binary approximant routine (keyword bin), described in Section 8:14. This algorithm outputs, in decimal,
the nearest exactly binary number, of no more than 15 decimal digits, to the input number. Of course, an alternative
is to restrict yourself to input numbers, such as 73, 73.75, or 73.03125, that you recognize on sight as exactly binary.

Precision is lost whenever two numbers of like sign are subtracted, and Equator takes cognizance of this loss
by outputting only digits that are significant. Numerous such subtractions are especially destructive of precision and
hence there is the danger of severe loss of precision whenever a computation incorporates the modulo operation
[Section 8:12], or its special case, extraction of the fractional-part, as a necessary part of the routine. A case in point
that arises frequently is the calculation of such functions as sin( x) when x is large. To evade this problem, Equator
provides a reperiodized sine function routine and a reperiodized cosine function (keywords sinpi and cospi) that
internally multiply the x by and provide accurate sin( x) and cos( x) values, no matter how large x might be.

C:12 EQUATOR KEYWORDS

In addition to recognizing the full names of functions and sometimes their synonyms, Equator recognizes the
following keywords, which are sequences of up to ten characters, mnemonically mirroring either the symbol or the
name of the function. There follows a comprehensive listing of all Equator’s routines and the corresponding
keywords. The final column lists the relevant chapter (or appendix) and often the section too.

Name and symbol Keyword Chap/Secn

addition, + + C:10

Airy Ai function, Ai(x) Ai 56

Airy Bi function, Bi(x) Bi 56

Apery’s constant, Z apery 1:7
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Name and symbol Keyword Chap/Secn

Archimedes’s constant, pi 1:7

arithmetic function, arith(W,T, P, K) arith C:10

associated Laguerre polynomial, assocLpoly 23:12( )L ( )m
n x

associated Legendre function of the first kind, assocP 59:12( )P ( )m
v x

associated Legendre function of the second kind, assocQ 59:12( )Q ( )m
v x

associated value of extremum of Bessel function, extremeJ 52:7( )J k
nj

atomic mass unit, u amu A:3

auxiliary Airy fai function, fai(x) fai 56:6

auxiliary Airy gai function, gai(x) gai 56:6

auxiliary cosine integral, gi(x) gi 38:13

auxiliary cylinder fc function, fcv(x) fc 54:14

auxiliary cylinder gc function, gcv(x) gc 54:14

auxiliary Fresnel cosine integral, Fres(x) Fres 39:13

auxiliary Fresnel sine integral, Gres(x) Gres 39:13

auxiliary sine integral, fi(x) fi 38:13

Avogadro’s (Löschmidt’s) constant, L AvogadroL A:5

base of natural logarithms, e ebase 1:7

Bateman G function, G(v) G 44:13

Bateman’s confluent function, v(x) kappa 48:13

Bernoulli number, Bn Bnum 4

Bernoulli polynomial, Bn(x) Bpoly 19

Bessel function, Jn(x) or Jv(x) J 52 or 53

(complete) beta function, B(v, ) Beta 43:13

beta number, (v) betanum 3

binomial coefficient, bincoef 6( )v
m

bivariate eta function, (v,u) eta 64:13

Boltzmann’s constant, k Boltzmannk A:5

Catalan’s constant, G catalan 1:7

Chebyshev gamma coefficient, Chebygamma 22:5( )n
j

Chebyshev polynomial of the first kind, Tn(x) Tpoly 22

Chebyshev polynomial of the second kind, Un(x) Upoly 22

Chebyshev tau coefficient, Chebytau 22:6( )n
k

Clausen’s integral, Clausen(x) Clausen 32:14

common mean, mc(x,y) mc 61:14
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Name and symbol Keyword Chap/Secn

complete beta function, B(v, ) Beta 43:13

complete elliptic integral of the first kind, K(k) EllipticK 61

complete elliptic integral of the second kind, E(k) EllipticE 61

complete elliptic integral of the third kind, (v,k) EllipticPi 61:12

complete gamma function, (v) Gamma 43

complex number raised to a real power, (x + iy)n or (x + iy)v compower 10:11 or 12:8

cosecant function, csc(x) csc 33

cosine function, cos(x) cos 32

cosine integral, Ci(x) Ci 38

cotangent function, cot(x) cot 34

cotangent root, n(b) rho 34:7

cubic function, cubic 163 2+ +x ax bx c
cubic zeros, r3(a,b,c,n) r3 16:7

cumulative function for a Boltzmann distribution, FBoltzmann( ,x) FBoltzmann 27:14

cumulative function for a Laplace distribution, FLaplace( , ,x) FLaplace 27:14

cumulative function for a logistic distribution, Flogistic( , ,x) Flogistic 27:14

cumulative function for a lognormal distribution, Flognormal( , ,x) Flognormal 27:14

cumulative function for a Lorentz distribution, FLorentz( , ,x) FLorentz 27:14

cumulative function for a Maxwell distribution, FMaxwell( ,x) FMaxwell 27:14

cumulative function for a normal distribution, Fnormal( , ,x) Fnormal 27:14

cumulative function for a Rayleigh distribution, FRayleigh( ,x) FRayleigh 27:14

Dawson’s integral, daw(x) daw 42

Debye function,
0

d
exp( ) 1

x nt t
t

Debye 3:15

decadic logarithm, log10(x) log10 25:14

digamma function, (v) digamma 44

dilogarithm, diln(x) diln 25:12

discrete Chebyshev polynomial, discCheby 22:13( )t ( )J
n x

division, ÷ / C:10

double factorial function, n!! !! 2:13

electron charge, qe electronq A:5

electron mass, me electronm A:5

electron volt, eV eV A:3

elliptic amplitude, am(k,x) am 63
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Name and symbol Keyword Chap/Secn

elliptic nome, q(k) q 61:15

entire cosine integral, Cin(x) Cin 38

entire exponential integral, Ein(x) Ein 37

entire hyperbolic cosine integral, Chin(x) Chin 38

entire incomplete gamma function, n(v,x) gamentire 45

error function, erf(x) erf 40

error function complement, erfc(x) erfc 40

eta number, (v) etanum 3

Euler number, En Enum 5

Euler polynomial, En(x) Epoly 20

Euler’s constant, euler 1:7

exponential error function complement product, experfc 41exp erfcx x
exponential function, exp(x) exp 26

exponential function of complex argument, exp(x+iy) complexp 26:11

exponential integral, Ei(x) Ei 37

exponential polynomial, e(x) epoly 26:12

exponential theta-four function, theta4 27:134 ( , )v t
exponential theta-one function, theta1 27:131( , )v t
exponential theta-three function, theta3 27:133( , )v t
exponential theta-two function, theta2 27:132 ( , )v t
extrema, and their (associated) values, of the Bessel function, and Jextrema 52:7( )j k

n
( )J( )k

nj
factorial function, n! ! 2

Faraday’s constant, F FaradayF A:5

Fibonacci number, Fib(n) Fibnum 23:14

Fibonacci polynomial, Fibn(x) Fibpoly 23:14

fine structure constant, alpha A:5

fractional-part function, Fp(x) Fp 8

fractional-value function, frac(x) frac 8

Fresnel cosine integral, C(x) C 39

Fresnel sine integral, S(x) S 39

(complete) gamma function, (v) Gamma 43

gas constant, R gasR A:5

Gauss hypergeometric function, F(a,b,c,x) F 60

Gauss’s constant, g gauss 1:7
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Name and symbol Keyword Chap/Secn

Gegenbauer polynomial, Cpoly 22:12( )C ( )n x
generalized mean, m(x,y,n) m 61:14

golden section, golden 23:14

gravitational constant, G gravityG A:5

Gudermannian function, gd(x) gd 33:15

Hermite polynomial, Hn(x) Hpoly 24

Hurwitz function, (v,u) Hurwitz 64

hyperbolic cosecant function, csch(x) csch 29

hyperbolic cosine function, cosh(x) cosh 28

hyperbolic cosine integral, Chi(x) Chi 38

hyperbolic cotangent function, coth(x) coth 30

hyperbolic secant function, sech(x) sech 29

hyperbolic sine function, sinh(x) sinh 28

hyperbolic sine integral, Shi(x) Shi 38

hyperbolic tangent function, tanh(x) tanh 30

incomplete elliptic integral of the first kind, F(k, ) ellipF 62

incomplete elliptic integral of the second kind, E(k, ) ellipE 62

incomplete elliptic integral of the third kind, (v,k, ) ellipPi 62:12

incomplete beta function, B(v, ,x) incompBeta 58

integer-part function, Ip(x) Ip 8

integer-value function, Int(x) Int 8

inverse cosecant function, arccsc(x) arccsc 35

inverse cosine function, arccos(x) arccos 35

inverse cotangent function, arccot(x) arccot 35

inverse error function, inverf(x) inverf 40

inverse Gudermannian function, invgd(x) invgd 33:15

inverse hyperbolic cosecant function, arcsch(x) arcsch 31

inverse hyperbolic cosine function, arcosh(x) arcosh 31

inverse hyperbolic cotangent function, arcoth(x) arcoth 31

inverse hyperbolic secant function, arsech(x) arsech 31

inverse hyperbolic sine function, arsinh(x) arsinh 31

inverse hyperbolic tangent function, artanh(x) artanh 31

inverse secant function, arcsec(x) arcsec 35

inverse sine function, arcsin(x) arcsin 35
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Name and symbol Keyword Chap/Secn

inverse tangent function, arctan(x) arctan 35

Jacobi polynomial, Jacobipoly 22:12( , )P ( )v
n x

Jacobian elliptic cd function, cd(k,x) cd 63

Jacobian elliptic cn function, cn(k,x) cn 63

Jacobian elliptic cs function, cs(k,x) cs 63

Jacobian elliptic dc function, dc(k,x) dc 63

Jacobian elliptic dn function, dn(k,x) dn 63

Jacobian elliptic ds function, ds(k,x) ds 63

Jacobian elliptic nc function, nc(k,x) nc 63

Jacobian elliptic nd function, nd(k,x) nd 63

Jacobian elliptic ns function, ns(k,x) ns 63

Jacobian elliptic sc function, sc(k,x) sc 63

Jacobian elliptic sd function, sd(k,x) sd 63

Jacobian elliptic sn function, sn(k,x) sn 63

Kelvin bei function, bei(x) bei 55

Kelvin ber function, ber(x) ber 55

Kelvin kei function, kei(x) kei 55

Kelvin ker function, ker(x) ker 55

Kummer function, M(a,c,x) M 47

Laguerre polynomial, Ln(x) Lpoly 23

lambda number, (v) lambdanum 3

Langevin function, coth( ) (1/ )x x Langevin 30:14

Legendre function of the first kind, Pv(x) P 59

Legendre function of the second kind, Qv(x) Q 59

Legendre polynomial, Pn(x) Ppoly 21

Lerch function, (x,v,u) Lerch 64:12

logarithm to any base, log (x) loganybase 25:14

logarithm to base 10 of the factorial function, log10(n!) log10! 2:8

logarithm to base 10 of the gamma function, log10{ (v)} log10Gamma 43:8

logarithmic factorial function, ln(n!) ln! 2:8

logarithmic function, ln(x) ln 25

logarithmic gamma function, ln{ (v)} lnGamma 43:8

logarithmic integral, li(x) li 25:13

lower incomplete gamma function, (v,x) gamlower 45
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Name and symbol Keyword Chap/Secn

Macdonald function, Kv(x) K 51

Mittag-Leffler function, Ev, (x) Mittag 45:13

modified Struve function, lv(x) l 57

modified (hyperbolic) Bessel function, In(x) or Iv(x) I 49 or 50

modified spherical Bessel function, in(x) i 28:13

modulo function, v(mod m) mod 8:12

multiplication, × * C:10

n-fold integral of the error function complement, inerfc(x) inerfc 40:13

nearest binary approximant, bin(x) bin 8:14

Neumann function, Yv(x) Y 54

neutron mass, mn neutronm A:5

Neville’s c theta function, theta-c 61:15c ( , )k x
Neville’s d theta function, theta-d 61:15d ( , )k x
Neville’s n theta function, theta-n 61:15n ( , )k x
Neville’s s theta function, theta-s 61:15s ( , )k x
normally distributed random variates, normal( , ,J,s) normal 40:14

parabolic cylinder function, Dv(x) D 46

permeability of free space, m0 mu0 A:5

permittivity of free space, 0 epsilon0 A:5

Planck’s constant, h Planckh A:5

Pochhammer polynomial, (x)n Poch 18

polygamma function, (n)(v) polygamma 44

power function, xn or xv power 10 or 12

probability function for a Boltzmann distribution, PBoltzmann( ,x) PBoltzmann 27:14

probability function for a Laplace distribution, PLaplace( , ,x) PLaplace 27:14

probability function for a logistic distribution, Plogistic( , ,x) Plogistic 27:14

probability function for a lognormal distribution, Plognormal( , ,x) Plognormal 27:14

probability function for a Lorentz distribution, PLorentz( , ,x) PLorentz 27:14

probability function for a Maxwell distribution, PMaxwell( ,x) PMaxwell 27:14

probability function for a normal distribution, Pnormal( , ,x) Pnormal 27:14

probability function for a Rayleigh distribution, PRayleigh( ,x) PRayleigh 27:14

proton mass, mp protonm A:5

quadratic function, quadratic 152ax bx c
quadratic zeros, r2(a,b,c,n) r2 15:7
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Name and symbol Keyword Chap/Secn

quartic zeros, r4(a3,a2,a1,a0) r4 16:12

rational approximants, n/d rational 8:13

reperiodized cosine function, cos( x) cospi 32:8

reperiodized sine function, sin( x) sinpi 32:8

Rydberg constant, R RydbergR A:5

sampling function, sinc(x) sinc 32:13

secant function, sec(x) sec 33

sine function, sin(x) sin 32

sine integral, Si(x) Si 38

spherical Bessel function, jn(x) j 32:13

spherical Macdonald function, kn(x) k 26:13

spherical Neumann function, yn(x) y 32:13

square-root function, sqrt 11x iy
standard atmospheric pressure, Pstd standardP A:6

standard gravitational acceleration, g earthg A:6

standard laboratory temperature, Tstd standardT A:6

standard random numbers, random(J,s) random 40:14

Stirling number of the first kind, Snum 18:6( )S m
n

Stirling number of the second kind, sigmanum 2:14( )m
n

Struve function, hv(x) h 57

subtraction, C:10

tangent function, tan(x) tan 34

tangent root, rn(b) r 34:7

tetragamma function, (2)(v) tetragamma 44

Tricomi function, U(a,c,x) U 48

trigamma function, (1)(v) trigamma 44

trilogarithm, triln(x) triln 25:12

upper incomplete gamma function, (v,x) gamupper 45

velocity of light, c lightc A:5

Whittaker M function, Mv, (x) WhitM 48:13

Whittaker W function, Wv, (x) WhitW 48:13

zeros, and their associated values, of the Bessel function, and Jzero 52:7( )j k
n

( )J ( j )k
n

zeta number, (v) zetanum 3





Red numbers in brackets identify the section in which the symbol is encountered, or the equation by which it
is defined. Numbers colored in teal imply brief mention in the cited section of a symbol that is not otherwise
discussed or used in the Atlas. Temporary abbreviations, used only locally, are not always indexed. Symbols used
in the appendices are not indexed either.

UPPERCASE LATIN

polynomials arising in the expansion of spherical functions [32:13:12]( )A ( )k
n x

A , B , C angles of a triangle [34:15]
ABS(x) absolute value of x [8:1]
Arc###(x) {### cos, cot, csc, sec, sin, tan} multivalued inverse circular function [35:12]
Bn nth Bernoulli number [4:1]

Bernoulli numbers [4:1]B ,Bn n

Bn(x) Bernoulli polynomial of degree n and argument x [19:1]
Bernoulli polynomial [19.1]B ( )n x

Bv(x), generalized Bernoulli polynomials [19:12]( )B ( )m
n x

B(v , ) (complete) beta function of interchangeable arguments v and [43:13]
B(x) , C(x) terms serving as coefficients in differential equations [24:14]

binomial coefficients [6:1]( )C ,n
m n mC

C Euler’s constant [1:7]
C(x) Fresnel cosine integral [39:1]
C(v , x) Böhmer integral [39:12]

Gegenbauer polynomial [22:12]( )C ( )n x
Cv(x) Clifford’s notation for the Bessel function [53:1]
Chi(x) hyperbolic cosine integral of argument x [38:3]
Chin(x) entire hyperbolic cosine integral of argument x [38:0]
Ci(x) cosine integral of argument x [38:3]
Cin(x) entire cosine integral [38:3]
Cinh(x) entire hyperbolic cosine integral of argument x [38:1]

723
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Clausen(x) Clausen’s integral of argument x [32:14:7]
Cos(x) hyperbolic cosine [28:1]
Cot(x) hyperbolic cotangent [28:1]
D discriminant of a cubic function [15:1]
D(x) [42:1]2 daw /2x x
D+(x) [41:1]2/ 4 exp( )erf ( )x x
D (x) daw(x), Dawson’s integral [42:1]
Dm {m is odd}, mth Euler-Maclaurin denominator [4:14]
Dv(x) parabolic cylinder function [46:3]
E(k) complete elliptic integral of the second kind of modulus k [61:3]
E E(k), complete elliptic integral serving as a variable [61:1]
E E(k ), complementary complete elliptic integral serving as a variable [61:1]
En nth Euler number [5:1]

Euler numbers or Euler polynomials [5:1, 20:1]E ,E ,E ( )n n n x
En(x) nth Euler polynomial of argument x [20:1]
En(x) Schlömilch function [37:14]
Ei(x) exponential integral of argument x [37:3]

exponential integral or a related function [37:1]Ei*,Ei,E ,
Ein(x) entire exponential integral of argument x [37:0]
Erf(x) , Erfc(x) probability integrals [40:1]
Erfi(x) exp(x2)daw(x) [42:1]
Ev(x) [45:1]1(1 , ) / vv x x
E ,v(x) two-parameter Mittag-Leffler function of argument x [45:14]
E(k , ) incomplete elliptic integral of the second kind of modulus k and amplitude [62:3]
Ef(k , x) integral of the square of a Jacobian elliptic function [63:1:2]
F scalar quantity [46:15]
F(x) , G(x) functions that generate f(x) and g(x) on differentiation [0:10]
F(a , b , c , x) Gauss hypergeometric function of argument x, numeratorial parameters of a and b, and

denominatorial parameters of c and 1 [60:3]
F1(x) , F2(x) functions employed in solving second-order differential equations [24:14]
Fib(n) Fibonacci number [23:14]
Fibn(x) Fibonacci polynomial [23:14]
pFq( ) hypergeometric function incorporating a denominatorial factorial [18:4:2]
1F1( , , ) Kummer function [47:1]
2F0( , , ) Tricomi function [48:1]
2F1( , , , ) Gauss hypergeometric function [60:1]
Fp(x) fractional-part function of x [8:1]
Fres(x) auxiliary Fresnel cosine integral [39:13]
F( ), G( ) functions, often related in some way to f( ) , g( ) [0:3]
Fdist(x) cumulative function for the distribution named in the subscript [27:14]
Fnormal(x) cumulative function for the normal (Gaussian) distribution [27:14, 40:14]
F(k , ) incomplete elliptic integral of the first kind of modulus k and amplitude [62:3]
G(x , t) generating function defining a function of x [0:3]
G Catalan’s constant, 0.91597 [1:7:4]
G(v) Bateman’s G function [44:13]
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Gj jth concatenation quotient for the hypergeometric series [18:14:13]
G( , , ) Tricomi function [48:1]
Gi(x) subsidiary Airy integral [56:3]
Gres(x) auxiliary Fresnel sine integral [39:13]
H(x) error function [40:1]
Hn(x) Hermite polynomial [24:1]
Hv(x) Hermite function [24:13, 46:1]
Hen(x) alternative Hermite polynomial [24:1]
Hi(x) subsidiary Airy integral [56:3]
I(x) “invariant” function used in solving second-order differential equations [24:14]
Im mth “imaginary” component of a Fourier transform [32:15]
Im[z] , Im[f( )] imaginary part of the complex number z, of function f [1:11]
Int(x) integer-value function of x [8:1]
Ip(x) integer-part function of x [8:1]
In(x) , Iv(x) modified Bessel function of argument x and order n or v [49:3, 50:3]

inverse Laplace operator acting on a function of the variable s [0:10:18]f( )sI
Jn(x) , Jv(x) Bessel function of argument x and order n or v [52:3, 53:3]

associated value of the kth positive zero of the Bessel function Jn(x) [52:7]( )J ( j )k
n n

(associated) value of the kth extremum of the Bessel function Jn(x) [52:7]( )J ( j )k
n n

K numeratorial degree of a hypergeometric function [18:14]
K(k) complete elliptic integral of the first kind of modulus k [61:3]
K K(k), complete elliptic integral serving as a variable [61:1]
K K(k ), complementary complete elliptic integral serving as a variable [61:1]
Kv(x) Macdonald function of argument x and order v [51:3]
Kiv(x) indefinite integral of Kv(x) [51:13]
Kin(x) nth repeated integral of K0(x) [51:13]
Kv(x) [45:1]1(1 , ) / vv x x
L denominatorial degree of a hypergeometric function [18:14]
Ln(x) Laguerre polynomial [23:1]
Ln(z) logarithmic function of complex argument [25:11]

associated Laguerre polynomial [23:12]( )L ( )m
n x

Laplace operator acting on a function of the variable t [0:10:18]f ( )t
M(N , m1 , , mn) multinomial coefficients [6:12]
Mv, (x) Whittaker M function of argument x and parameters v and [48:13]
M(a , c , x) Kummer function of argument x and parameters a and c [47:3]
Nv(x) Yv(x), Neumann function [54:1]
N(p) q(k), elliptic nome [61:15]
Pdist(x) probability function for the distribution named in the subscript [27:14]
Pnormal(x) probability function for the normal (Gaussian) distribution [27:14, 40:14]
P period of a periodic function [36:3]
Pm mth component of a power spectrum [32:15:7]
P(x) sine integral [38:1]
Pn(x) modified Legendre polynomial [21:1]
Pn(x) Legendre polynomial [21:1]

shifted Legendre polynomial [21:1]P ( )n x
Pv(x) Legendre function of the first kind of degree v and argument x [59:3]
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associated Legendre function of the first kind of degree v, order , and argument x [59:12]( )P ( )v x
Pv(x) , Qv(x) rationalized incomplete gamma functions [45:1]
P , Q , D parameters of a cubic function [16:1]
Q(x) cosine integral [38:1]
Qn(x) Legendre “polynomial” of the second kind [21:13]
Qv(x) Legendre function of the first second of degree v and argument x [59:3]

associated Legendre function of the second kind of degree v, order , and argument x [59:12]( )Q ( )v x
Rm mth “real” component of a Fourier transform [32:15]
Re[z] , Re[f( )] real part the complex number z, the function f [1:11]
R J the remainder, after J terms, of a truncated power series expansion [18:14]
R j (x) ratio of two consecutive Bessel functions or modified Bessel functions [52:8,49:8]
Rm,v(x) Lommel polynomial [52:5]

rational function of x with numeratorial and denominatorial degrees of m and n [17:12]R ( )m
n x

Round(x) rounding function applied to the number x [8:13]
Stirling number of the first kind of degree n and order m [18:6]( )S m

n

S(x) Fresnel sine integral [39:1]
S(v , x) Böhmer integral [39:12]
Shi(x) hyperbolic sine integral of argument x [38:1]
Si(x) sine integral of argument x [38:1]
Sih(x) hyperbolic sine integral [38:1]
Sin(x) hyperbolic sine [28:1]
Tn(x) Chebyshev polynomial of the first kind, of degree n and argument x [22:3]
T*n(x) shifted Chebyshev polynomial of the first kind [22:1]

Chebyshev function of the first kind [22:1]T ( )v x
Tan(x) hyperbolic tangent [30:1]
T( , ) temperature [53:15]
U ubiquitous constant, [1:7]1/ 2 0 84721g .
U(a , c , x) Tricomi function of argument x and parameters a and c [48:3]
U(a , x) , V(a , x) functions related to Dv(x) [46:1]
Un(x) Chebyshev polynomial of the second kind, of degree n and argument x [22:3]
U*n(x) shifted Chebyshev polynomial of the second kind [22:1]

Chebyshev function of the second kind [22:1]T ( )v x
V position-dependent quantity [46:15]
V( x , y) Voigt function [41:11]
W(z) exp( z2)erfc( iz), “error function for complex argument” [41:11]
Wv, (x) Whittaker W function of argument xand parameters v and [48:13]
W(t) Wronskian of two functions of t [24:14]
Wf( ), Wg( ) weighting functions for auxiliary cylinder functions [54:14]

{k 0,1} weighting polynomial for modified Bessel functions [49:5]( )Wi ( )k
n x

{k 0,1} Lommel polynomial, weighting polynomial for J and Y functions [52:5, 54:5]( )Wj ( )k
n x

{k 0,1} weighting polynomial for Macdonald functions [51:5]( )Wk ( )k
n x

Yv (x) Neumann function of order v and argument x [54:3]
Z Apéry’s constant, 1.2021 [3:7]
Z(k , ) Jacobi’s zeta function [62:13]
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LOWERCASE LATIN

a radius of a circle [13:4]
aj jth coefficient of a power series or polynomial [0:1, 10:13, 17:1]

jth coefficient of a second power series [17:5,17:9]ja
ak kth numeratorial parameter of a hypergeometric function [18:14]
abs(x) absolute value of x [8:1]
a , b semiaxes of ellipse or hyperbola [13.1, 14:14]
a , b , c coefficients of quadratic or cubic function [15:1, 16:1]
a , b , c lengths of the sides of a triangle [34:15]
am(k , x) , elliptic amplitude of modulus k and argument x [63:1]
arccos(x) inverse cosine function [35:3]
arccot(x) inverse cotangent function [35:3]
arccsc(x) inverse cosecant function [35:3]
arcsec(x) inverse secant function [35:3]
arcsin(x) inverse sine function [35:3]
arctan(x) inverse tangent function [35:3]
arcsch(x) inverse hyperbolic cosecant function [31:3]
arcosh(x) inverse hyperbolic cosine function [31:3]
arcoth(x) inverse hyperbolic cotangent function [31:3]
arsech(x) inverse hyperbolic secant function [31:3]
arsinh(x) inverse hyperbolic sine function [31:3]
artanh(x) inverse hyperbolic tangent function [31:3]
arc###h(x) {### cos, cot, csc, sec, sin, tan} inverse hyperbolic functions [31.1]
arg###h(x) {### cos, cot, csc, sec, sin, tan} inverse hyperbolic functions [31.1]
ar#h(x) {# c, s, t}inverse hyperbolic functions [31.1]
ar###(x) {### = ccosec, ctg, gsin, cctg} inverse circular functions [35:1]
a , c parameters of the Kummer and Tricomi functions [47:1,48:1]
b 1 + a c, auxiliary parameter for the Tricomi function [48:1:2]
b , c slope, intercept of a linear function [7:1]
ber(x) , bei(x) zero-order Kelvin functions of argument x [55:3]
berv(x) , beiv(x) Kelvin functions of order v and argument x [55:3]
c constant [0:1, 1:1]
cj jth cosine Fourier coefficient [36:6]
cl lth denominatorial parameter of a hypergeometric function [18:14]
ci(x) cosine integral [38:1]
ch(x) hyperbolic cosine [28:1]
c#(k , x) {# n, d, s} Jacobian elliptic functions of modulus k and argument x [63:3]
cos(x) , cos( ) cosine function of argument x or angular argument [32:1]
cosh(x) hyperbolic cosine of argument x [28:1]
cos 1(x) inverse cosine [35.1]
cosh 1(x) inverse hyperbolic cosine [31.1]
cotan(x) , ctg(x) cotangent [34:1]
cot(x) , cot( ) cotangent function of argument x or [34:3]
cot 1(x) inverse cotangent [35.1]
coth(x) hyperbolic cotangent function [30.1]
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coth 1(x) inverse hyperbolic cotangent [31.1]
coth(x) (1/x) Langevin function [30:14]
ctnh(x) hyperbolic cotangent [28:1]
covers(x) coversine function [32:13:4]
csc(x) , csc( ) cosecant function [33:3]
csc 1(x) inverse cosecant [35.1]
d differential operator [0:10]
daw(x) Dawson’s integral [42:3]
diln(x) dilogarithm [25:12]
d#(k , x) {# n, s, c} Jacobian elliptic functions of modulus k and argument x [63:3]

partial differentiation operator [0:10]
e base of natural logarithms, 2.7183 [1:7]
e1 , e2 , e3 parameters of the Weierstrass elliptic system [63:14]
en(x) exponential polynomial of degree n and argument x [26:12]
ei(x) exponential integral [37:1]
ef(k , x) an arbitrary, or set of specified, Jacobian elliptic functions [63:1]
erc(x) , eerfc(x) exp(x2)erfc(x) [41:1]
erf(x) error function of argument x [40:3]
erfc(x) error function complement, complementary error function [40:3]
erfi(x) [42:1]24 / exp( )daw( )x x
exp(x) exponential function [26:1]
experfc(x) exp(x2)erfc(x) [41:1]
exsec(x) exsecant function [33:13]
f( ) , g( ) arbitrary function, or a group of specified functions [0:2]
f a value of the function f [0:2]
f# {# 0, 1, 2, , n , , N 1}values of function f(t) at N equispaced instants [32:15]
f0( , x) progenitor function [55:12]

Laplace transform of the function f(t) [0:10:18]f( )s
Fourier cosine transform of the function f(t) [32:10:16]f ( )C

Fourier sine transform of the function f(t) [32:10:17]f ( )S

fi(x) auxiliary sine integral of argument x [38:13]
fai(x) , gai(x) auxiliary Airy integrals of argument x [56:3]
f(x) auxiliary sine integral [38:1]
fcv(x) , gcv(x) auxiliary cylinder functions [54:14]
g Gauss’s constant, 0.84721 [1:7:8]
g(x) auxiliary cosine integral [38:1]
gd(x) Gudermannian function of argument x [33:15]
gi(x) auxiliary cosine integral of argument x [38:13]
h data point separation [4:14, 7:14]
h scale factor for the curvilinear coordinate [35:14, 46:15]
hv(x) Struve function [57:1]

spherical Hankel functions [49:14](1) (2)
n nh ( ),h ( )x x

haversin(x) haversine function [32:13:4]
hai(x) auxiliary Airy function [56:6]
heiv(x) , herv(x) Kelvin functions of the third kind [55:13]
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in(x) modified spherical Bessel function of order n and argument x [28:13]
i , imaginary operator [1:11]1
ierfc(x) complementary error function integral [40:13]
i#ierfc(x) {# 1, 0, 1, 2, , n}, #-fold integral of the error function complement [40:13]
i 1erfc(x) [40:13:6]22 / exp( )x
inverf(x) inverse error function [40:8]
invgd( ) inverse Gudermannian function of (angular) argument [33:15]
inv#(k , y) {# am, cn, sn, dn} inverse elliptic functions [63:13]

kth positive zero of the Bessel function Jv(x) [52:7, 53:7]( )j k
v

mth estimate of kth positive zero of the Bessel function Jn(x) [52:7]( )j k
n m

kth positive extremum of the Bessel function Jv(x) [52:7, 53:7]( )j k
v

jn,k Bessel zero [52:7]
j,k summation indices [0:6]
jn(x) spherical Bessel function of order n and argument x [32:13:7]
k , k eccentricity (ellipticity), complementary eccentricity of an ellipse [13:1]
k modulus of the elliptic family of functions [62:1]
k , complementary elliptic modulus [62:1]21 k
k physical constant [46:15], thermal conductivity [53:15]
k eccentricity of a conic section [15:15]
ker(x) , kei(x) zero-order Kelvin functions argument x [55:3]
kerv(x) , keiv(x) Kelvin functions of order v and argument x [55:3]
kv(x) Bateman confluent function [48:13]
kn(x) spherical Macdonald function of order n and argument x [26:13]
, s sides of a rectangle [23:14]
(x0 x1) length of a plane curve between points x0 and x1 [39:14]
lv(x) modified Struve function [57:13]
li(x) logarithmic integral of x [25:13]
ln(x) logarithmic function of argument x [25:1]
ln 1(x) natural antilogarithm (that is, the exponential) of x [26:1]
lnv(x) generalized logarithmic function of argument x and order v [25:12]
log (x) logarithm of x to base [25:14]
log10(x) decadic logarithm [25:14]
m integer variable [0:1]
m k2, elliptic parameter [61:1]
m1 complementary elliptic parameter [61:1]
m#(x , y) {# a , g , h , r , c} arithmetic, geometric, harmonic, root-mean-square, common mean of x and y

[61:14]
m(n , x , y) generalized mean of x and y [61:14]
m#( j , x , y) {# g, a} iterated mean [61:14:7, 61:14:8]
n integer variable [0:1]
n#(k , x) {# d, s, c} Jacobian elliptic functions of modulus k and argument x [63:3]
p percentile [27:14]
per(x) , qer(x) periodic functions of x [36:1]
perrms root-mean-square amplitude of the periodic function per(x) [36:14]
p chemists’ cologarithm [25:14]
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polylnv(x) polylogarithm of order v and argument x [25:12]
pn(x) polynomial function of degree n and argument x [17:1:1]
p , q parabolic coordinates [35:14]
p , q , z parabolic cylinder coordinates [46:14]
q(k) elliptic nome of modulus k [61:15]
q q(k), elliptic nome of modulus k, serving as a variable [61:15]
r zero of a polynomial, or other, function [0:7, 17:3, 52:15]
r correlation coefficient [7:14]
r , polar coordinates [35:14]
r , , z cylindrical coordinates [46:14]
r2 , r3 , r4 zero of a quadratic, cubic, quartic function [15:7, 16:7, 16:12]
rn(b) nth positive root of the equation tan(x) bx [34:7]

kth positive root of a Kelvin function [55:7]( )k
vr

s Laplace variable [0:10]
s (a + b + c)/2, semiperimeter of a triangle [34:15]
s seed [40:14]
sj jth sine Fourier coefficient [36:6]
sec 1(x) inverse secant [35.1]
sec(x) , sec( ) secant function of argument x or [33:3]
sech(x) hyperbolic secant of argument x [29:1]
sech 1(x) inverse hyperbolic secant of argument x [31:1]
s#(k , x) {# n, d, c} Jacobian elliptic functions of modulus k and argument x [63:3]
sgn(x) signum function of x, the sign of x [8:1]
si(x) sine integral [38:1]
sign(x) , sg(x) signum function [8:1]
sin(x) , sin( ) sine function of argument x or [32:1]
sinc(x) sampling function [32:13:5]
sinh(x) hyperbolic sine of argument x [28:1]
sh(x) hyperbolic sine [28:1]
tan(x) , tan( ) tangent function of argument x or [34:3]
tg(x) tangent [34:1]
th(x) hyperbolic tangent [30:1]
tanh(x) hyperbolic tangent of argument x [30:1]
tanh 1(x) inverse hyperbolic tangent of argument x [31:1]
triln(x) trilogarithm of x [25:12]
t , t½ time, doubling or halving interval [26:0]
t integration variable, dummy variable [0:10]

jth of a J + 1 member set of discrete Chebyshev polynomials [22:13]( )t ( )J
j y

u(x) Heaviside function located at x 0 [9:1]
u(x a) Heaviside function located at x a [9:1]
vers(x) versine function [32:13:4]
w , w# {# 1, 2, } arbitrary weighting factor [24:14]
w(t) a weighting function of the variable t [21:14]
xi argument at which a function f(x) inflects [0:7]

jth normally distributed random variate [40:14]normal
jx
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xm argument at which a function f(x) displays a local minimum [0:7]
xM argument at which a function f(x) displays a local maximum [0:7]
x auxiliary argument [50:4]2 ,x

(3x/2)2/3, auxiliary argument [56:1:1]x
x , y variables [0:1]
x , y rectangular coordinates [35:14]
x , y , z cartesian coordinates [46:14]
yn(x) spherical Neumann function of order n and argument x [32:13:8]
z x + iy, complex variable [0:11]

UPPERCASE GREEK

B(v , ) (complete) beta function of interchangeable arguments v and [43:13]
(v) (complete) gamma function of argument v [43:3]
(v , x) upper incomplete gamma function of argument x and parameter v [45:1]
x(v) (v , x), lower incomplete gamma function [45:1]

discriminant of a quadratic function [15:1]
b standard error in estimate of the slope of a straight line [7:14]
c standard error in estimate of the intercept of a straight line [7:14]
(k, ) dn(k, ), delta-amplitude [61:1]
0(k , ) Heumann’s lambda function [62:13]

product operator [0:6]
(n) factorial function [2:1,43:1]
(v) pi function [2:1,43:1]
(v , k) complete elliptic integral of the third kind of characteristic vand modulus k [61:12]
(v,k, ) incomplete elliptic integral of the third kind of characteristic v, modulus k, and amplitude [62:12]

summation operator [0:6]
j j 0, 1, 2, , terms in asymptotic expansions of cylinder functions [54:14]
(n) (n) + , harmonic number [44:1]
n(x) Bn(x) Bn , Bernoulli difference [19.1]
(x) error function [40:1]
n(x) nth derivative of error function (x) [40:1]
(x , v , u) Lerch function of argument x, order v, and parameter u [64:12]
(a , c , x) Kummer function [47:1]
(a , c , x) Tricomi function [48:1]
n(t) nth member of orthogonal polynomial family of argument t [21:14,52:14]

n normalizing factor for nth member of orthogonal polynomial family [21:14]

LOWERCASE GREEK

arcsin(k), modular angle [61:1]
arccos(k), complementary modular angle [61:1]

real constant exceeding the real part of every pole of a function [0:11]
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n(x) alpha exponential integral [37:13]
base of a logarithm [25:14]

(v) beta number of order v [3:3]
(v) G(v)/2 [44:13]
n(x) beta exponential integral [37:13]

Euler’s constant, 0.57722 [1:7:7]
(v , x) lower incomplete gamma function of argument x and parameter v [45:1]
n(v , x) entire incomplete gamma function of argument x and parameter v [45:1]
*(v , x) n(v , x), entire incomplete gamma function [45:1]

jth Chebyshev gamma coefficient of degree n [22:5]( )n
j

(x) Dirac function located at x 0 [9:1]
(x a) Dirac function located at x a [9:1]
(1)(x a) unit-moment function located at x a [9:12]
n,m Kronecker function (nonzero only when n m) [9:13]
(v) zeta number of order v [3:3]
(v , u) Hurwitz function of order v and parameter u [64:3]
(v) eta number of order v [3:3]
(v , u) bivariate eta function of order v and parameter u [64:13]
, elliptical coordinates [35:14]
, , z elliptic cylinder coordinates [46:14]
, , spheroidal coordinates, prolate or oblate [46:14]
, variables that may be regarded as angles [0:1]

angular polar coordinate, latitude [35:14]
(x a) Heaviside function [9:1]
#(v , x) {# 1, 2, 3, 4} exponential theta functions of (periodic) parameter v and argument x [27:13]

{# 1, 2, 3, 4} modified exponential theta functions [27:13]# ( , )v x
{# = 1, 2, 3, 4} elliptic theta functions of periodic parameter q and periodic variable x [61:15]# ( , )q x
{# s, c, d, n} Neville’s theta functions of modulus k and periodic variable x [61:15]# ( , )k x

(x) curvature of a plane curve at a point x [39:14]
v(x) Bateman’s confluent function of argument x and order v [48:13]
(v) lambda number of order v [3:3]
, bipolar coordinates [35:14]
, , z bipolar cylinder coordinates [46:14]
, , toroidal coordinates [46:14]

mean of a distribution [27:14]
v, variables that are often, but not necessarily, integers [0:1]
v standard random number [40:14]

Archimedes’s constant, 3 1416 [1:7]
, real or imaginary part of a complex zero of a polynomial function [17:3]
n(b) nth root of the equation cot(x) bx [34:7]

standard deviation of a distribution [27:14]
sign of a specified variable [31:0]

1# {# 2, 3, 4} = +1 in the first and #th quadrants but 1 in the others [32:13:4]
Stirling number of the second kind of indices n and m [2:14]( )m

n

tan(x/2) [34:14]



SYMBOL INDEX 733

kth Chebyshev tau coefficient of degree n [22:6]( )n
k

golden section, 1.6180 [23:14]
angle, longitude [0:1, 46:14]
amplitude of the elliptic family of functions [62:1]

(a , c , x) regularized Kummer function [47:12]
auxiliary angle for cylinder function asymptotic formulas [54:14:3]

(v) digamma function [44:3:1]
(v) trigamma function [44:1]
(v) tetragamma function [44:1]

(#)(v) {# 1, 2, 3, } trigamma, tetragamma, pentagamma, functions [44:10:1]
(n)(v) nth polygamma function [44:10:1]

2 /P, frequency [36:1]
1 , 2 variables of the Weierstrass elliptic system [63:14]

NONLITERAL SYMBOLS &MODIFIERS

K-fold product of Pochhammer polynomials [18:14]1 K( ) ja 1 2 K( ) ( ) ( ) ( )j j k j ja a a a
x , f ,f variable akin to x or functions akin to f [0:1]
~ asymptotic equivalence [0:6]

approximate equivalence [0:9]
x c the value of x approaches that of the constant c [0:9]

partial differentiation operator [0:10]

integration of the function f with respect to t [0:10]f( )dt t

n! factorial function of the nonnegative integer n [2:3:1]
n!, factorial function of n [2:1]n

n!! double factorial function [2:13]
n!!! triple factorial function [2:13]
n!!!! quadruple factorial function [2:13]

nth Debye function of argument x [3:15]
0
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opening the CD pouch which contains Equator, the Atlas
function calculator.

Opening this pouch may preclude your returning the book to
the bookseller.

This software product is protected by copyright and all rights
are reserved by the authors. The license permits you to use this
software on a single computer and copy it for backup purposes,
as detailed in the licensing agreement on the CD.

This software product is provided as is without warranty of any
kind, either express or implied, including, but not limited to, the
implied warranty of merchantability and fitness for a particular
purpose. Neither the authors, nor Springer, nor their dealers or
distributors, assume any liability for any alleged or actual
damages arising from the use of or the inability to use this
software. (Some jurisdictions do not allow the exclusion of
implied warranties, so the exclusion may not apply to you.)

This disk is designed to operate under at least Windows XP.
Simply load the CD and follow the prompts to install
the software or see Appendix C for more detailed installation
instructions.

The Equator program is fully described in Appendix C of this
Atlas.
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