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Preface

Fundamental properties of different physical systems are often encoded in the
spectrum of certain, mostly geometric, differential operators. This leads to
the analysis of different functions of the spectrum, the so-called spectral func-
tions. Examples are partition sums (as they occur in statistical mechanics),
functional determinants (useful for the evaluation of the analytic torsion, of
ground-state energies, Casimir energies, or effective actions) and the heat ker-
nel. The most prominent spectral function is the zeta function, which can be
related to all the above-mentioned spectral functions and which represents a
very intelligent organization of the spectrum.

Most of the existing literature is concerned with the analysis of spectral
functions in cases where the spectrum is known explicitly, or, in case it is not
known explicitly, approximative schemes are developed.

However, during recent years, several colleagues and I have developed new
methods for the exact analysis of different spectral functions. Several appli-
cations of the techniques developed lie within the fields of the heat equation,
quantum field theory under the influence of external conditions, the Casimir
effect and Bose-Einstein condensation. Most recently, the techniques also ap-
pear to be of increasing use in brane physics, a further indication of the very
broad applicability of the ideas involved.

The aim of this book is to provide a comprehensive description of the rel-
evant techniques and of the various applications mentioned. At the moment
the new developments are scattered in the literature and I feel the time has
come to summarize and present everything in the form of a book. The benefit
for the reader is a unified view on the different topics mentioned as well as a
technical knowledge he might apply in his own study or research.

The Introduction provides a general overview that describes the physical
context in which spectral functions play a central role. In Chapter 2, I derive
the basic properties of several spectral functions, in particular their relation
with the associated zeta function. Apart from Section 2.3 this chapter con-
tains some of the basic formulas which will be applied throughout the book.
For the reader not familiar with the application of zeta function techniques in
physical problems, the study of this chapter is essential. Section 2.3 describes
how properties of the zeta function and the heat kernel expansion can be
proven and briefly explains why the properties of spectral functions strongly
depend on whether local or global boundary conditions are imposed. This sec-
tion can be skipped in the first reading, but it provides some insight into why
the properties are as they are. Chapter 3 is very essential to an understanding

                      



of the subject of the book because it is here that the basic techniques used
throughout are explained in great detail. This chapter shows how an exact
analysis of spectral functions for Laplace-type operators can be performed for
cases where the spectrum is not known explicitly, but only implicitly. Starting
with simple examples, more and more general and complicated situations are
considered. In the following chapters I use the relations derived in Chapter
2, in order to apply the techniques explained in Chapter 3 to different fields
of mathematics and physics. The applications are grouped according to their
complexity. Chapters 4 and 5 start with the determination of local quanti-
ties, namely, the heat kernel and heat content coefficients, that can be done
by purely analytical means. I derive, for Laplace-type operators, virtually all
results known on heat kernel coefficients for smooth Riemannian manifolds
with smooth boundaries and various boundary conditions. Sections 4.10 and
4.11 give a complete list of results that are very easily accessible. Chapter
6 uses the ideas of Chapter 3 in order to calculate functional determinants.
These are non-local quantities, but for the examples considered a complete
analytical treatment is still possible. In the following two chapters questions
of quantum field theory under external conditions are considered, in partic-
ular the dependence of the vacuum energy on boundary conditions imposed,
and on external scalar or magnetic background fields present. In addition to
analytical work, numerical evaluations are necessary; scattering theory plays
an important part in the calculations presented. The book is rounded off by a
description of ideal Bose-Einstein gases under external conditions as they are
relevant for an understanding of recent experiments on Bose-Einstein conden-
sation. Relations to the theory of partitions are discussed. Technical details
are summarized in appendices, of which I describe briefly Appendices A and
B. Appendix A gives the essential properties of zeta functions associated with
simple known spectra. Conformal transformations are an extremely impor-
tant tool for the considerations of Chapters 4 and 6. Appendix B provides
transformation properties of many geometrical invariants, useful beyond the
scope of this book, as well as relations between the interior and the boundary
geometry.

The intended readership of Spectral Functions in Mathematics and Physics
is primarily graduate or Ph.D. students of theoretical/mathematical physics
and mathematics who want to enter into the applications of zeta function
techniques within the context of the heat equation, quantum field theory, and
statistical mechanics, as well as researchers working in any of the above fields.

My thanks go to many colleagues and friends for very pleasant collabora-
tions in the course of the past years. For Spectral Functions in Mathematics
and Physics, working with Michael Bordag, Stuart Dowker, Emilio Elizalde,
Peter Gilkey, and David Toms has been most influential. Furthermore, my
thanks are due to Guido Cognola, Gerd Grubb, Giampiero Esposito, Horacio
Falomir, Martin Holthaus, Mariel Santangelo, Luciano Vanzo, Dmitri Vassile-
vich, Andreas Wipf, and Sergio Zerbini for very interesting discussions on the
various subjects encountered in this book. Finally, I would like to express my
gratitude to the publisher for help in getting the book to its final form.

                      



Conventions

Below is a summary of the main conventions used throughout the book.
LetM be aD-dimensional smooth Riemannian manifold and let (y1, ..., yD)

be a local coordinate system. With respect to this coordinate system the
metric is ds2 = gijdy

idyj and the Christoffel symbols are

Γijk =
1
2
gil {glj,k + gkl,j − gjk,l} .

Here the indices i, j, k, l, range from 1, ..., D, the commas denote partial dif-
ferentiation, e.g., glj,k := (∂/∂yk)glj , and I use the Einstein convention where
identical indices are summed over. For the Riemann tensor I use the sign
convention

Rijkl = −
{
Γijk,l − Γijl,k + ΓnjkΓ

i
nl − ΓnjkΓ

i
nk

}
,

and I contract indices according to

Rjl := Rijil, R := Rjj .

Let g = det(gij). Then I define the Laplacian ∆ on M as

∆ = g−1/2 ∂

∂yi
g1/2gij

∂

∂yj
.

Let M be a D-dimensional smooth Riemannian manifold with a smooth
boundary ∂M. The normal N to the boundary is defined to be the exterior
normal and the index “m” refers to this normal, e.g., Rma := N iRia.

The Dirac matrices γi are defined as anti-Hermitian and they satisfy the
Clifford relation

γiγj + γjγi = −2gij .



Preface

Conventions

1 Introduction

2 A first look at zeta functions and heat traces
2.0 Introduction
2.1 Zeta functions in quantum field theory
2.2 Statistical mechanics of finite systems:Bose-

Einstein condensation
2.3 Local versus global boundary conditions
2.4 Concluding remarks

3 Zeta functions on generalized cones and related manifolds
3.0 Introduction
3.1 Scalar field on the three-dimensional ball
3.2 Scalar field on the D-dimensional generalized cone
3.3 Spinor field with global and local boundary conditions
3.4 Forms with absolute and relative boundary conditions
3.5 Oblique boundary conditions on the generalized cone

3.6.1 Oblique boundary conditions on B2 × TD−2

3.6.2 Spectral boundary conditions on B2 ×N

3.6 Further examples on a related geometry

3.7 Concluding remarks

4 Calculation of heat kernel coefficients via special cases
4.0 Introduction
4.1 Heat equation asymptotics for manifolds without boundary
4.2 General form for Dirichlet and Robin boundary conditions
4.3 Heat kernel coefficients on the generalized cone
4.4 Determination of the general heat kernel coefficients
4.5 Mixed boundary conditions

4.6.1 Spinor field with local boundary conditions
4.6.2 Forms with absolute and relative boundary conditions

                      

Contents

4.6    Special case calculations for mixed boundary conditions



4.7 Determination of the mixed heat kernel coefficients
4.8 Oblique boundary conditions
4.9    Leading heat equation asymptotics with spectral boundary con-

ditions

4.10.1 Volume contributions
4.10.2 Dirichlet boundary conditions
4.10.3 Robin boundary conditions
4.10.4 Mixed boundary conditions
4.10.5 Oblique boundary conditions
4.10.6 Spectral boundary conditions

4.10 Summary of the results

4.11.1 Time-dependent process
4.11.2 Transmittal boundary conditions
4.11.3 Zaremba or N/D problem

4.11 Further boundary conditions

4.12 Concluding remarks

5 Heat content asymptotics
5.0 Introduction
5.1 General form of the heat content coefficients
5.2 Dirichlet boundary conditions
5.3 Robin boundary conditions
5.4 Heat content asymptotics on the generalized cone
5.5 Mixed boundary conditions
5.6 Concluding remarks

6 Functional determinants
6.0 Introduction
6.1 Some one-dimensional examples
6.2 Scalar field
6.3 Spinor field with global and local boundary conditions
6.4 Forms with absolute and relative boundary conditions
6.5 Determinants by conformal transformation
6.6 Concluding remarks

7 Casimir energies
7.0 Introduction
7.1 Scalar field
7.2 Spinor field with global and local boundary conditions
7.3 Electromagnetic field with and without medium
7.4 Massive scalar field
7.5 Massive spinor field with local boundary conditions
7.6 Concluding remarks

                      



8 Ground-state energies under the influence of external fields
8.0 Introduction
8.1 Formalism: Scattering theory and ground-state energy
8.2 Examples and general results
8.3 Spinor field in the background of a finite radius flux tube
8.4 Concluding remarks

9 Bose-Einstein condensation of ideal Bose gases un-
under external conditions
9.0 Introduction
9.1 Ideal Bose gases in the grand canonical description
9.2 Canonical description of ideal Bose-Einstein condensates
9.3 Microcanonical condensate fluctuations
9.4 Concluding remarks

10 Conclusions

A Basic zeta functions

B Conformal relations between geometric tensors

C Application of index theorems

D Representations for the asymptotic contributions

E Perturbation theory for the logarithm of the Jost function

                      

References



Chapter 1

Introduction

Many properties of physical systems or Riemannian manifolds are encoded in
the spectrum {λk}k∈IN of certain interesting, mostly Laplace-type, differential
operators. These properties are analyzed by considering suitable functions of
the spectrum. A wide field where these so-called spectral functions make their
appearance is quantum field theory or quantum mechanics under “external
conditions.” External refers to the fact that the condition is assumed to be
known as a function of space and time and that it only appears in the equation
of motion of other fields. If the focus of interest is on the influence these
conditions have, the other fields are often assumed to be non-selfinteracting.
The present book provides a comprehensive overview of recent developments
which allow for the analysis of the spectral functions occurring in this setting.

In the context of quantum field theory, under the described circumstances
the action of the theory under consideration will be quadratic in the quan-
tized field. In the path integral formulation used to describe the underlying
quantized theory, we encounter Gaussian functional integrals which lead to
functional determinants formally defined as

∏∞
k=1 λk. It is one of the basic

themes of quantum field theory, relevant to the calculation of one-loop effec-
tive actions, to make sense of this kind of expression. In this book we will
develop and apply techniques to analyze determinants arising when the exter-
nal conditions originate from boundaries present (Casimir effect), dielectric
media, scalar backgrounds and magnetic backgrounds. Each class of examples
has its own history, which is briefly described in the following.

That the presence of a boundary may alter the vacuum of a field theory
model in a significant way was first shown in 1948 by Casimir, who computed
the pressure between two parallel perfectly conducting plates in vacuum. He
found an attractive force between the plates behaving as the inverse fourth
power of the distance between them [100]. This kind of situation is often
called the Casimir effect. Having found an attractive force between parallel
plates due to the vacuum energy, the hope was that the same would be true
for a spherically symmetric situation. This led Casimir to the idea that the
force stabilizing a classical electron arises from the zero-point energy of the
electromagnetic field within and without a perfectly conducting spherical shell
[101]. But as Boyer first showed [63], for this geometry the stress is repulsive.
This result has been confirmed subsequently by various authors and methods
[118, 311, 31, 285].

Since then, many different situations have been considered. Apart from the



finite-mass photon [38], the effect also has been analyzed for scalar fields and
spinor fields. For all fields various possible boundary conditions exist. For
the scalar field the most familiar boundary conditions are known as Dirichlet
and Neumann boundary conditions. In the former, the field is required to
vanish on the boundary, whereas in the latter it is the derivative of the field
normal to the boundary which vanishes. There is also a generalization of
the Neumann condition, usually referred to as Robin boundary condition, in
which the normal derivative is required to equal some specified linear function
of the field on the boundary. For spinor fields Dirichlet and Robin boundary
conditions are not applicable and instead Dirichlet conditions are imposed
only on certain components and Robin conditions on the others. These so-
called mixed boundary conditions are relevant in such different branches of
quantum field theory as quantum gravity and cosmology [292, 177, 179, 178]
and in bag models of quantum chromodynamics [108, 107]. In these simplified,
approximate models of hadronic structure, confinement is introduced by hand,
assuming that the fields are localized inside finite regions. This is accomplished
by imposing boundary conditions such that no quark and gluon current is
lost through the boundary. Another possible choice for spinors are non-local
spectral boundary conditions as discussed in the context of the Atiyah-Patodi-
Singer index theorem [15].

A typical question asked in the context of the Casimir effect is how the
energy depends on the chosen boundary condition, on the dimension of the
spacetime or on the mass of the field. Among the most important issues is
the question about the sign of the Casimir energy, indicating if the Casimir
effect tends to contract or expand a physical system. General answers are still
lacking; only for certain cases is detailed information available [171, 164, 88].
Most of these calculations are done for situations where eigenvalues are known
explicitly [171, 164], or where suitable trace formulas are available such that
the resulting expressions can be dealt with by direct means [88]. Although no
general proof exists, it seems that the vacuum stabilizes the most symmetric
background [10].

In the static setting and at zero temperature the calculation of the relevant
determinant reduces (formally) to a treatment of a sum over all one-particle
energy eigenvalues,

∑∞
k=1Ek. These sums are, of course, also divergent and

need regularization. In the above-mentioned example of the electromagnetic
field in a spherical shell, it turns out that due to several cancellations, after
removal of a regularization parameter the Casimir energy is finite. However, it
was soon realized that as a rule, when applying the standard renormalization
description for boundaryless manifolds (see for example [47]), divergences of
a new nature appear due to the presence of boundaries. So it was stated in
[31, 126], that the components of the stress-energy-tensor generically diverge
in a nonintegrable manner as the boundary of the manifold is approached.
However, as was shown soon afterwards, the finiteness of the global energy of
a quantized field confined to a cavity may be ensured by a due renormalization
of bare surface actions introduced just for this purpose [261]. The meaning of



these terms will become clearer in Section 7 in the context of the bag model.
Another possibility to implement boundary conditions and to obtain finite
Casimir energies is to view the conditions as a result of an interaction of
the quantum field with the set of classical external fields which describe the
geometrical characteristics of the boundary, namely the normal unit vector
and the second fundamental form [387, 48]. Whatever procedure is used, in
summary we can say that it is well understood how to render the Casimir
energy finite. However, due to the finite renormalizations usually involved,
discussion on how to get an unambiguous answer or if it is possible to get an
unambiguous answer is still under way and we will further comment on this
question later.

Given that high precision measurements of Casimir forces are being per-
formed [281, 318], interest in these theoretical studies of the Casimir effect
has been greatly renewed.

In most of the above-mentioned situations, “empty space” is supplemented
by boundary conditions. Clearly, however, (perfect) boundaries are an ide-
alization and no boundary made of matter can be perfectly smooth. Seen
as modeling some distribution of matter which interacts with the quantum
field, it might be more justified to introduce an external potential and to
quantize a theory within this potential. This will change the quantum modes
and the associated spectrum and, as a result, the energy of the vacuum, the
ground-state energy. For certain types of external confinement this situation
has been called Casimir effect with soft or semihard boundaries [4, 3]. Apart
from this type of setting, in many situations the potential is provided by clas-
sical solutions to nonlinear field equations [349]. The quantization about these
solutions leads to the same kind of determinants as discussed above [349]. The
classical solutions involved may be monopoles [389, 347], sphalerons [277] or
electroweak Skyrmions [217, 216, 9, 163, 195, 196, 383, 384, 5], often known
themselves only numerically. The determinant in the presence of these exter-
nal fields describes semiclassical transition rates as well as the nucleation of
bubbles or droplets [113, 91]. In general, the classical fields are inhomogeneous
configurations and as a rule the effective potential approximation to the effec-
tive action, where quantum fluctuations are integrated out about a constant
classical field, is not expected to be adequate. The derivative expansion [102]
improves on this in that it accounts for spatially varying background fields.
As a perturbative approximation it has, however, its own limitations. Some
efforts to overcome these limitations can be found in [26, 28, 282, 65].

In the context of the electromagnetic field external conditions are most nat-
urally provided by introducing dielectrics. In fact it has been shown that the
force between dielectric slabs can be understood as the response of the vacuum
to the presence of the dielectrics. This explanation based on vacuum fluctua-
tions provides an alternative derivation of the theory of Lifshitz. In addition,
in the limit of dilute media it provides a further viewpoint on van der Waals
forces [373, 306]. This kind of consideration had become very fashionable again
recently due to the suggested explanation of sonoluminescence by Casimir-like

                      



phenomena [369, 370, 372, 371, 160, 159, 313, 314, 98, 97, 319, 275, 296, 78, 80],
and due to the mentioned experiments [281, 318] it remains a very active area
of research.

Further examples of external conditions are provided in quantum electrody-
namics. When calculating effective Lagrangians, the charge fluctuations of the
quantized electron-positron Dirac field in the presence of an external unquan-
tized electromagnetic field is studied. The main objective is to learn something
about the structure of the vacuum, which, in this approach, is probed by an ex-
ternal electromagnetic field. Classical references in this field are [243, 414, 368].
Again, the case of a constant electromagnetic field is the main one that has
been studied [130], but the extension to inhomogeneous fields is of obvious
interest in various situations.

In all the above-mentioned situations, the theory generically is plagued by
divergences, which are removed by a renormalization. In various regulariza-
tion schemes as, for example, within the zeta function technique or the proper
time formalism, at one-loop, divergences are completely described by the lead-
ing heat kernel coefficients of the associated field equations. These coefficients
arise in the asymptotic t → 0 expansion of the heat kernel

∑∞
k=1 e

−tλk pro-
viding a further spectral sum of particular interest. A knowledge of these
coefficients is already equivalent to a knowledge of the one-loop renormal-
ization group equations in various theories [417], which provides one reason
for the consideration of heat kernel coefficients in physics. In addition, if an
exact evaluation of relevant quantities is not possible, asymptotic expansions
(with respect to inverse masses, slowly varying background fields, high tem-
perature,...) are often very useful and naturally given in terms of heat kernel
coefficients (see, e.g., [147, 153, 32, 269]). Via index theorems [208], the heat
kernel and the heat equation also provides an especially important link be-
tween physics and mathematics [162]. But, in mathematics the interest in the
heat equation extends to basically all of geometric analysis, including analytic
torsion [194, 353], characteristic classes [208], sharp inequalities of borderline
Sobolev and Moser-Trudinger type [66] and the isospectral problem. The ques-
tion in the last mentioned field is under which changes in the boundary or the
operator the spectrum λk remains unchanged. On the one hand, this leads to
the consideration of isospectral domains. The proof that isospectral families
of plane domains are compact in a natural C∞ topology involves functional
determinants as well as heat kernel coefficients [335]. On the other hand, if a
spectrum is invariant under changes of the operator, the potential obeys the
Korteweg-De Vries equation and heat kernel coefficients determine invariants
of it [342].



This outlines briefly the fields of the applications envisaged within quantum
field theory under external conditions. All of them are considered at zero tem-
perature, although including finite temperature would not be a fundamental
problem but rather one of additional technical complication. However, in the
present book, applications of finite temperature theory are reserved within
the nonrelativistic context of quantum mechanics. Due to a remarkable series
of experiments on vapors of rubidium [11] and sodium [119] in which Bose-
Einstein condensation was observed, interest in theoretical studies in this field
has been greatly renewed. In these experiments the atoms are confined in mag-
netic traps and cooled down to extremely low temperatures of the order of
fractions of microkelvins such that the use of nonrelativistic theories is com-
pletely justified. The inner atomic interaction is essentially determined by the
s-wave scattering length of the atoms used. However, after it has been demon-
strated that the s-wave scattering length in optically confined condensates can
be tuned through the Feshbach resonance, the creation of almost ideal Bose-
Einstein condensates might become feasible [254]. Thus, these experiments
might provide a prototype for a theory under external conditions.

Thermodynamical properties of the gas are of basic interest and (most of
them are) conveniently calculated by the use of the grand canonical approach
in which the partition sum q = −

∑∞
k=1 ln(1 − ze−βEk), with the fugacity

z = eβµ, µ being the chemical potential and β the inverse temperature, plays
the central role. This provides another spectral function of enormous use in
physics.

The aim of the present book is to provide and apply techniques for the
analysis of all spectral sums mentioned. As it will turn out, it is the zeta func-
tion associated with the spectrum which underlies all calculations done. For
that reason, its basic properties as well as relations with the spectral func-
tions mentioned will be briefly derived in Chapter 2. In particular, equations
common to many situations dealt with afterwards will be given. Basically,
values, residues and derivatives of the zeta function at different points of the
complex plane determine the relevant properties of the spectral sums and of
the physical system. We restrict our attention primarily to zeta functions of
second-order elliptic differential operators; only a few comments about more
general cases are included. In addition, in Section 2.3 we explain how the
boundary condition imposed might alter the meromorphic structure of the
zeta function.

Having established general properties of zeta functions, we continue in
Chapter 3 with the description of the actual process of constructing ana-
lytical continuations in order to calculate their function values, residues and
derivatives. In order to explain clearly the basic underlying ideas we start with
the analysis of spherically symmetric external conditions, which is also well
motivated because many of the classical solutions share this property. In all
spherically symmetric problems the total angular momentum is a conserved
quantity. As a result eigenvalues will be labelled by this angular momen-
tum and an additional main quantum number. Spectral functions will contain

                      



angular momentum sums which, compared to the one-dimensional problem
where many calculations can be done exactly [419, 54], leads to considerable
technical complications. Any spherically symmetric example can help to un-
derstand the difficulties involved.

Intuitively, it seems simpler to impose boundary conditions than to deal
with an arbitrary spherically symmetric external field because at least eigen-
functions are known explicitly. We stress, however, that analytical expres-
sions for the eigenvalues are not available, which complicates the analysis
considerably. But due to developments of recent years various properties of
spectral functions associated with a spectrum which is not known explicitly
can be determined based on a knowledge of eigenfunctions only. We explain
this procedure in detail for the spectrum of the Laplace operator on the three-
dimensional ball in Section 3.1. We will see that the transition to the bounded
generalized cone (a special case of which is the ball) and related manifolds of
arbitrary dimension as well as to other spin fields is readily established once
the organizing quantity, namely the Barnes zeta function associated with the
harmonic oscillator potential, is found. Various boundary conditions are in-
troduced and for all cases, the analytical continuation of the associated zeta
function to the whole complex plane is found.

Now that a very good knowledge of the zeta function is at our disposal,
we use the relationships explained in Chapter 2 to calculate the associated
heat kernel coefficients, functional determinants and Casimir energies. The
applications are grouped according to their complexity: (1) the heat kernel
coefficients are local quantities and their determination is purely analytical;
(2) the functional determinant can still be determined analytically but con-
tains non-local information; and finally (3) the Casimir energy which is also
non-local but where additional numerical work is needed.

For the reason mentioned above we start with the consideration of heat
kernel coefficients. Systematic use of algebraic computer programs is made
and, on the ball, in principle an arbitrary number of coefficients can be calcu-
lated. An extremely important aspect of this calculation is that it is not just
a special case calculation but that very rich information about heat kernel
coefficients for Laplace-type operators on arbitrary compact smooth Rieman-
nian manifolds evolves. Supplemented by other techniques involving conformal
variations and the application of index theorems [208], it allows for the deter-
mination of heat kernel coefficients for all boundary conditions including the
above-mentioned Dirichlet, Robin, mixed and spectral boundary conditions,
and for oblique boundary conditions involving tangential derivatives.

Related to the heat kernel is the heat content, and results on its asymptotic
behavior are summarized in Chapter 5.

In Chapter 6 functional determinants for the different fields are calculated.
Again, although this is only a special case calculation, by integration of the
anomaly equation [71, 152, 153, 154, 51, 135, 49, 85, 238], the determinants of
the operators considered in the conformally related metric are known, at least
in dimensions smaller than or equal to five. The relevant relation is derived in

                      



Section 6.5 and the working principle is exemplified by calculating hemisphere
determinants from the ball results.

In Chapter 7 we consider Casimir energies. Its dependence on the dimension
of space (for the massless field) as well as on the mass of the field (in space
dimension three) is analysed. Based on the calculation for planar boundaries
at a distance R, the general belief is that for mR � 1 the Casimir energy
is exponentially small and thus of very short range. As we will see and ex-
plain, this is due to the planar boundaries and does not hold if the boundaries
are curved. It might even happen that the Casimir energy changes sign as
a function of the mass. This surprising result nevertheless justifies the addi-
tional complications resulting from the non-vanishing mass. This concludes
the section that discusses the influence of boundary conditions.

In Chapters 8 and 9 we analyze the influence of external background fields.
Starting with relativistic quantum field theory we consider a scalar field in the
background of a scalar field, and then treat a spinor field in a (purely) magnetic
background. In general not even the eigenfunctions are explicitly given, but
it is possible to replace this knowledge by the information available from
scattering theory. In detail, we will express the ground-state energy by the
Jost function, which is known at least numerically by solving the Lippmann-
Schwinger equation. The treatment of the angular momentum sums developed
in Chapter 3 will still be applicable and quite explicit results for the ground-
state energies are obtained. Some examples show the typical features of the
dependence of the ground-state energy on the external potentials.

Thus far the applications of zeta function techniques in the context of quan-
tum field theory under external conditions have been discussed. In the non-
relativistic context we apply these techniques to the phenomenon of Bose-
Einstein condensation of an ideal Bose gas. The experiments mentioned are
viewed as some of the most important developments of the last few years and
it seemed very worthwhile to include, apart from mathematical and theoreti-
cal physics, a phenomenological application as well. Although at first glance,
the topic seems quite disconnected, the technical link between these consider-
ations is provided by the Barnes zeta function. In the theoretical description
of the experiments, the magnetic traps used are modelled by anisotropic har-
monic oscillator potentials, and it is clear that the properties of the Barnes
zeta function are very useful for an understanding of thermodynamical prop-
erties of the gas. We start our analysis by using the grand canonical approach.
Surprising as it seems, a basic object for the calculation of heat kernel coef-
ficients on generalized cones also serves for the calculation of, for example,
critical temperatures in real physical experiments. An important feature of
the calculation is that it deals with the sums over the energy eigenvalues,
thus naturally including effects due to the finite number of particles. The
connection to the density of states approach is explained. Using the ideas de-
scribed in Baltes and Hilf [33] the density of states is given in terms of heat
kernel coefficients. Not only are the used magnetic traps considered, but the
situation of quite arbitrary external potentials is included and expressions for

                      



(most of) the thermodynamical properties can be found. This is interesting
because different trapping potentials as, e.g., power-law potentials are relevant
for studying adiabatic cooling of a system in a reversible way [262, 343].

There is one serious failure of the grand canonical ensemble, usually called
the grand canonical fluctuation catastrophe [185, 199, 424]. In the Bose con-
densed phase the grand canonicial ensemble predicts that the ground-state
fluctuations are given by 〈n0〉gc(〈n0〉gc + 1) with the expectation value of the
ground-state occupation number 〈n0〉gc. This is clearly not acceptable because
when all particles occupy the ground-state, the fluctuation has to die out. So-
lutions to this problem have been suggested within the canonical framework.
Based on recent progress in this field [228, 345, 202, 418, 413, 326, 229], it was
possible also to show in the canonical and even microcanonical treatment of
the fluctuations that in the regime relevant to condensation the basic features
are described by the heat kernel coefficients of the associated Schrödinger
operator connecting the theory of partitions intimately to the heat equation.

The Conclusions sections summarize the main results presented and give
an overview of further possible applications of the techniques developed.

Various appendices provide technical details needed in the main text. Ap-
pendix A gives a brief summary of properties of some basic zeta functions.
Appendices B and C contain many differential geometric identities used in
Chapter 4 for the calculation of heat kernel coefficients and in Section 6.5 for
the calculation of determinants. Appendix D derives analytical continuations
of several integrals needed for the determination of Casimir and ground-state
energies. Finally, Appendix E presents a perturbative expansion connected
with the Lippmann-Schwinger equation, which is used in Chapter 7.

                      



Chapter 2

A first look at zeta functions
and heat traces

2.0 Introduction

The aim of this chapter is to show how the spectral functions mentioned
appear in physical contexts and to prove some of their basic properties. The
physical context we choose is quantum field theory and quantum mechanics
under external conditions. Relevant physical properties of the systems consid-
ered, encoded for example in functional determinants, ground-state energies
and heat kernel coefficients, are expressed through zeta functions. The var-
ious relations displayed depend crucially on the properties of the spectral
functions involved. The needed results are derived using pseudo-differential
operator calculus [278, 248, 378, 377, 376, 230]. Differences occurring for el-
liptic operators on manifolds without and with boundaries are explained in
detail. We also explain some peculiarities for global boundary conditions as
compared to local ones.

2.1 Zeta functions in quantum field theory

Our main concern in this section will be quantum field theory of a non-
selfinteracting field under external conditions. As a result, the corresponding
action is quadratic in the field. A simple example for this situation is the
action in a D-dimensional flat Euclidean manifold M,

S[Φ] = −1
2

∫
M

dxΦ(x)(2E − V (x))Φ(x), (2.1.1)

describing a scalar field Φ in the background potential V (x). Although the
physical world is described by Minkowski space, Euclidean formulations of
a quantum field theory lead to the above Riemannian setting. In particular,
we encounter M = S1 × Ms, where the circle S1 of radius β (the inverse



temperature) plays the role of Euclidean time andMs is the flat spatial section
of the manifold.

For a Dirac field in an external electromagnetic field we have typically the
action

S[Ψ,Ψ∗] = i

∫
M

dxΨ∗(x)
[
γj∇j + ime

]
Ψ(x), (2.1.2)

with the massme of the spinor. We use the Einstein convention where identical
indices are summed over, so γj∇j means

∑D
k=1 γ

k∇k. The gauge potential Aj
is introduced via minimal coupling, that is, ∇j = (∂/∂xj) + ieAj . The γj are
the anti-Hermitian gamma or Dirac matrices satisfying the Clifford relation

γiγj + γjγi = −2δij .

For the action (2.1.1) and (2.1.2), the corresponding field equations are

(2E − V (x))Φ(x) = 0,[
γj∇j + ime

]
Ψ(x) = 0,

for scalar and spinor fields, respectively. If boundaries ∂M are present, these
equations of motion have to be supplemented by boundary conditions, de-
noted, e.g., in the form

BΦ |∂M = 0 and BΨ |∂M = 0 .

In the course of this book we will meet many different boundary conditions
and the peculiarities involved will be discussed in detail later.

In the Euclidean path-integral formalism, physical properties of the system
are conveniently described by means of the path-integral functionals

Z[V ] =
∫
DΦe−S[Φ], (2.1.3)

Z[A] =
∫
DΨDΨ∗e−S[Ψ,Ψ∗], (2.1.4)

where we have neglected an infinite normalization constant. If applicable, the
functional integration is to be taken only over all fields satisfying the boundary
condition.

The Gaussian integration in (2.1.3) and (2.1.4) is easily performed, at least
formally, to yield

Γ[V ] = − lnZ[V ] =
1
2

ln det
[
(−2E + V (x))/µ2

]
, (2.1.5)

Γ[A] = − lnZ[A] = − ln det
[
(γj∇j + ime)/µ

]
= − ln det

√
(γj∇j + ime)(γk∇k − ime)/µ2

= −1
2

ln det
[
(−∇j∇j + ieΣjkFjk +m2

e)/µ
2
]
. (2.1.6)



Here, µ is an arbitrary parameter with dimension of a mass to adjust the di-
mension of the argument of the logarithm. As is usual, we have multiplied the
Dirac operator by its adjoint in order to define a real determinant. Although
the definition of the Dirac operator itself is possible, see, e.g., [123, 421, 166], it
might contain ambiguities, the relevance of which is under discussion [166, 123]
(see also [167, 304]). Furthermore, we introduced Σjk = (1/4)[γj , γk], and the
electromagnetic field tensor Fjk = (∂/∂xj)Ak−(∂/∂xk)Aj . Finally, if present,
we exclude possible zero modes in the determinant because otherwise it van-
ishes identically.

The operators in eqs. (2.1.5) and (2.1.6) are Laplace-type operators. Let us
write them in the unified form also used later, namely

P = −gjk∇Vj ∇Vk − E, (2.1.7)

where in flat space gjk = δjk. In general, for a Laplace-type operator on a
Riemannian manifold M, gjk is the metric of M and ∇V is the connection
on M acting on a smooth vector or spinor bundle V over M. We will always
assume that P is formally self-adjoint and that the bundle V has a smooth
Hermitian inner product. Finally, E is an endomorphism of V in this case.

We are thus confronted with the task of calculating expressions of the type

Γ[C] = −a ln[detP/µ2], (2.1.8)

where a = 1/2,−1/2 according to whether we are dealing with neutral scalar
fields or Dirac fields. The argument C holds for V , respectively, A and indi-
cates the dependence of the effective action Γ on the external fields.

Clearly, eq. (2.1.8) is purely formal because the eigenvalues λn of P ,

Pφn = λnφn,

grow without bound for n → ∞. In order to give a meaning to (2.1.8) a re-
gularization procedure has to be employed. Among the various possibilities
are Pauli-Villars, dimensional regularization and zeta function regularization.
We are going to use the zeta function regularization scheme. Given the many
relations between the zeta function and other spectral functions, the zeta
function represents probably the most intelligent organization of the spec-
trum. Information on the subjects described in the different chapters of this
book is encoded in properties of the zeta function at different points and this
scheme is the most convenient one for our purposes. In physics, this regulariza-
tion scheme took its origin in ambiguities of dimensional regularization when
applied to quantum field theory in curved spacetime [242] (see also [144]).

In order to explain the basic idea of this scheme consider a Hermitian (N ×
N)-matrix P with eigenvalues λn. The simple computation

ln det P =
N∑
n=1

lnλn = − d

ds

N∑
n=1

λ−sn |s=0 = − d

ds
ζP (s)|s=0,

shows that the determinant of P can be expressed in terms of the zeta function



of P ,

ζP (s) =
N∑
n=1

λ−sn .

This definition,

ln det P = −ζ ′P (0), (2.1.9)

with

ζP (s) =
∞∑
n=1

λ−sn , (2.1.10)

is now applied to differential operators P as in (2.1.7). The definition (2.1.9)
was first used by the mathematicians Ray and Singer [353], when they tried
to give a definition of the Reidemeister-Franz torsion [194], a combinatorial
topological invariant of a manifold, in analytic terms [352, 353, 354]. (That the
two definitions in fact agreed in all cases was independently proven by Cheeger
[104] and Müller [325].) Later it was used by physicists in the context indicated
previously.

That this definition is indeed sensible relies very much on the analytical
structure of ζP (s) which is considered in the following.

Having in mind simple examples where the spectrum of P is known ex-
plicitly, we certainly expect the sum in eq. (2.1.10) to converge if <s is large
enough. This statement is made precise by using a classical theorem from
Weyl [415], which says that for a second-order elliptic differential operator
the eigenvalues behave asymptotically for n→∞ as

λD/2n ∼ 2D−1πD/2DΓ(D/2)
vol(M)

n. (2.1.11)

This shows that the sum in eq. (2.1.10) is convergent for <s > D/2. In order to
use definition (2.1.9), the question arises if ζP (s) is analytic about s = 0 and
how to analytically continue ζP (s) to a neighborhood of s = 0. The analytic
structure of ζP (s) is very elegantly examined by using the representation (A.
2) of the Γ-function to write (see, e.g., [410]), still for <s > D/2,

ζP (s) =
1

Γ(s)

∞∫
0

ts−1K(t), (2.1.12)

with the global heat kernel

K(t) =
∞∑
n=1

e−λnt. (2.1.13)

The local version of K(t) is the fundamental solution

K(t, x, x′) =
∞∑
n=1

e−λntφn(x)φ∗n(x
′), (2.1.14)



of the heat equation. It satisfies(
∂

∂t
+ P

)
K(t, x, x′) = 0,

BK(t, x, x′) |x∈∂M = 0,
lim
t→0

K(t, x, x′) = δ(x, x′),

and the connection with K(t) obviously is

K(t) =
∫
M

dxTrVK(t, x, x),

where dx is the volume element on M. For positive real λn, the integral in
(2.1.12) works well for t → ∞ due to the exponential damping coming from
K(t). Possible residues only arise from the t → 0 behavior of the integrand
which lead us to consider K(t) for t → 0. The precise form of the t → 0
behavior depends very much on the properties of the operator P , the manifold
M and the boundary conditions imposed. For now, we are simply interested
in the implications of the t→ 0 expansion and we will only state the relevant
results. For those readers who are not familiar with the concepts involved,
Section 2.3 provides insight into these results from the viewpoint of pseudo-
differential operators. The expansion we might call standard or classical has
the form [316, 315, 208]

K(t) ∼
∞∑

l=0,1/2,1,...

al(P,B)tl−D/2, (2.1.15)

with the heat kernel coefficients al(P,B), which, as the notation indicates, de-
pend of course explicitly on the operator P and the boundary conditions
B considered. The expansion (2.1.15) of the heat kernel holds, if P is a
strongly elliptic second-order differential operator on a smooth compact Rie-
mannian manifold with a smooth boundary and local boundary conditions
[224, 223, 375, 377, 378, 208]. For the Laplace-type operator P and, e.g.,
Dirichlet or Neumann boundary conditions these assumptions are satisfied.
The coefficients with half-integer index vanish if the manifold has no bound-
ary [377]; see (2.3.10). With the expansion (2.1.15), the analytical structure of
ζP (s) is easily revealed splitting the integral (for example) into

∫ 1

0
dt+

∫∞
1
dt.

One establishes the connection [378],

Res (ζP (s)Γ(s))|s=D/2−l = al(P,B), (2.1.16)

or, showing the information contained more clearly, for z = D/2, (D−1)/2, ...,
1/2,−(2n+ 1)/2, n ∈ IN0,

Res ζP (z) =
aD/2−z(P,B)

Γ(z)
, (2.1.17)

                      



and for q ∈ IN0,

ζP (−q) = (−1)qq! aD/2+q(P,B). (2.1.18)

Keeping in mind the vanishing of the coefficients with half-integer index for
∂M = ∅, in this case forD even the poles are located at z = D/2, D/2−1, ..., 1,
whereas for D odd additional poles appear at z = −(2n + 1)/2, n ∈ IN0. In
addition, for D odd, we get ζP (−q) = 0 for q ∈ IN0. For a manifold with
boundary, in general, there will be poles atD/2, (D−1)/2, ..., 1/2,−(2n+1)/2,
n ∈ IN0, irrespective of the dimension D. Most importantly at present, ζP (s)
is for all cases an analytical function in a neighborhood of s = 0. So eq. (2.1.9)
can be employed as a definition. Furthermore, eq. (2.1.16) will be the basic
connection for the calculation of the heat kernel coefficients from a knowledge
of the zeta function.

The fact that these properties crucially depend on the assumptions made
becomes apparent when considering the square-root of P . Clearly

ζ√P (s) =
∞∑
n=1

λ−s/2n ,

where the poles, for ζ(s) located at z, are now located at 2z. The implications
for the heat trace are most easily seen using the contour integral representation
of the exponential,

e−v =
1

2πi

c+i∞∫
c−i∞

dα Γ(α)v−α, (2.1.19)

valid for <v > 0 and c ∈ IR, c > 0. Eq. (2.1.19) is easily proven by closing
the contour to the left, obtaining immediately the power series expansion of
exp(−v). From here we obtain

K√P (t) =
1

2πi

c̃+i∞∫
c̃−i∞

dα Γ(α)t−αζ√P
(α

2

)
,

where summation and integration have been interchanged. In order to do so,
absolute convergence of the integrand is needed such that <c̃ > D. Shifting
the contour to the left the small-t expansion of K√P (t) is found. Given the
generically present poles in the zeta function at s = −(2n + 1), n ∈ IN0, the
integrand has double poles at these points and ln(t)-terms are present. In full,
the appearance is [156, 112],

K√P (t) ∼
∞∑
n=0

Gnt
n−D +

∞∑
n=1

Dnt
n ln(t). (2.1.20)

The ln(t)-terms are present even for a manifold without boundary and are a
result of P being pseudo-differential. But also if P is a differential operator,
imposing pseudo-differential boundary conditions leads to the appearance of



ln(t)-terms. This is the case for global spectral boundary conditions [15, 16,
17], as has been shown in [235, 234]. For this case the full expansion reads

K(t) =
∞∑

n=0,1/2,1,...

Gnt
n−D/2 +

∞∑
l=0

Dlt
l+1/2 ln(t). (2.1.21)

Also here the zeta function is well defined about s = 0, as is easily established,
and the definition (2.1.9) can again be applied.

The type of expansion given in eqs. (2.1.20) and (2.1.21) involves fractional
powers of t as well as ln(t)-terms and is the expansion generically found for
pseudo-differential operators, the powers of t appearing in the asymptotic
small-t expansion depending on the order of the pseudo-differential operator.
If M is a manifold without boundary, and P a positive elliptic self-adjoint
pseudo-differential operator of order m, the full expansion is of the form [156]

K(t) =
∑

k 6=D+lm

l∈IN

Gkt
(k−D)/m +

∞∑
l=0

νlt
l

+
∞∑
l=1

D+lm∈ZZ

Dlt
l ln(t). (2.1.22)

The meromorphic structure of the associated zeta function can be recovered
along the lines described; see [258]. Let us mention that there are situations
where the definition (2.1.9) cannot be applied due to a pole of the zeta function
at s = 0. This problem occurs, e.g., when considering singular problems, as
for example problems in the presence of a singular potential or of a conical
singularity in the manifold [83, 84]. We will encounter this situation in Chapter
3 and these comments will become clearer there.

Having stated these general results, let us now consider a case of particular
interest, namely the manifold M = S1 ×Ms with the operator

P = − ∂2

∂τ2
+ Ps. (2.1.23)

We assume that Ps does not depend on τ and that it is of Laplace type on
Ms, as it follows, e.g., for P the Laplacian on M, once M is endowed with
the ultrastatic metric

ds2M = dτ2 + ds2Ms
.

This is also the case in eqs. (2.1.5) and (2.1.6) once the potential and the
electromagnetic field tensor are assumed to be static.

Imposing periodic boundary conditions in the τ -variable yields finite tem-
perature quantum field theory for a scalar field, the perimeter β of the circle
playing the role of the inverse temperature. With x ∈ Ms, in this case the

                      



eigenfunctions, respectively, eigenvalues of P are of the form

φn,j =
1
β
e

2πin
β τϕj(x),

λn,j =
(

2πn
β

)2

+ E2
j , (2.1.24)

with

Psϕj(x) = E2
jϕj(x).

For the non-selfinteracting case, Ej are the one-particle energy eigenvalues
of the system. Within this context, let us consider the partition function or
equally well the determinant using the definition (2.1.9). Using the Poisson
resummation, eq. (A. 29), the zeta function associated with P is written as

ζP (s) =
1

Γ(s)

∞∑
n=−∞

∞∫
0

dt ts−1e−( 2πn
β )2

tKPs
(t)

=
β√
4π

Γ(s− 1/2)
Γ(s)

ζPs
(s− 1/2)

+
β√
πΓ(s)

∞∑
n=1

∞∫
0

dt ts−3/2e−
n2β2

4t KPs(t).

For the derivative at s = 0 this gives

ζ ′P/µ2(0) = ζ ′P (0) + ζP (0) lnµ2

= −β (FP ζPs
(−1/2) + 2(1− ln 2)Res ζPs

(−1/2)

− 1
β
ζP (0) lnµ2

)
+

β√
π

∞∑
n=1

∞∫
0

dt t−3/2e
−
(

n2β2

4t

)
KPs(t)

= −β (FP ζPs(−1/2)

− 1√
4π
aD/2(Ps,B)

[
(lnµ2) + 2(1− ln 2)

])

+
β√
π

∞∑
n=1

∞∫
0

dt t−3/2e
−
(

n2β2

4t

)
KPs

(t), (2.1.25)

with the finite part FP of the zeta function. In the last step we used the
connection aD/2(P,B) = (β/

√
4π)aD/2(Ps,B), for the operator P , eq. (2.1.23),

which is completely obvious by using again eq. (A. 29). This formula shows
clearly how renormalization in the zeta function scheme works. As we shall
see, it also provides a definition of Casimir energies and ground-state energies
without further input.

Let us start with a discussion of the renormalization. In formula (2.1.25)
it is clearly realized that the length scale µ leads to an arbitrary term in the



effective action which is proportional to the heat kernel coefficient aD/2(Ps,B).
By demanding the scale independence of Γ[V ], this is

µ
d

dµ
Γ[V ] = 0, (2.1.26)

one-loop renormalization group equations are found [417, 111]. The minimal
set of terms needed to renormalize the theory is thus determined by the co-
efficient aD/2(Ps,B); these terms need to be present in the classical part of
the Lagrangian which describes the external fields or the boundary conditions
[147, 134, 50]. A well-known example for this procedure is quantum field the-
ory in curved space time, where V (x) describes the coupling of the scalar field
to the gravitational field. There, the classical gravitational background pro-
vides the quadratic curvature terms needed to renormalize the theory [47]. If
V (x) arises from one-loop calculations in Φ4 theories, V (x) = m2 +λ′Φ2, with
the coupling λ′, eq. (2.1.26) leads to the known mass and coupling constant
renormalization. We will supply further examples for the procedure and the
physical interpretation of the terms contained in aD/2(Ps,B) in Chapters 7
and 8.

One of the themes of this book is the Casimir or ground-state energy. At
finite temperature the energy of the system is

E = − ∂

∂β
lnZ = −1

2
∂

∂β
ζ ′P/µ2(0),

and at T = 0, in view of eq. (2.2.25), it seems natural to define

ECas = lim
β→∞

E =
1
2
FP ζPs

(−1/2)− 1
2
√

4π
aD/2(Ps,B) ln µ̃2, (2.1.27)

with the scale µ̃ = (µe/2). The index “Cas” is used to indicate the dependence
of E on both boundary conditions and external fields. It is also seen that the
Casimir energy is ambiguous, which generally causes problems to extract a
physically sensible answer. However, this is the way the Casimir energy is
usually defined (see, for example, [147, 10, 134, 132, 99, 112, 88, 171, 164,
270]), and the idea for the derivation presented goes back to Gibbons [204].
Again, eq. (2.1.27) clearly shows that the total energy of the system needs
to contain all terms present in aD/2(Ps,B). These terms describe the energy
of the external fields or are the energy needed to set up a model for the
boundary conditions. If aD/2(Ps,B) 6= 0, the Casimir energy is determined
only up to terms proportional to aD/2(Ps,B) and this finite ambiguity can (in
principle) only be eliminated by experiments [50]. If, however, aD/2(Ps,B) =
0, eq. (2.1.27) gives a unique answer for the energy. In Chapters 7 and 8 we will
encounter both situations and will give specific comments on the ambiguities
involved there.

                      



Eq. (2.1.27) is also the definition we are led to by a naive calculation. The
Hamilton operator is formally

H =
∑
k

Ek

(
Nk +

1
2

)
,

with the number operator Nk. For the vacuum energy expectation value we
obtain

ECas =< 0|H|0 >=
1
2

∑
k

Ek.

Regularizing this expression as

ECas =
µ2s

2

∑
k

(E2
k)

1/2−s|s=0 =
µ2s

2
ζPs(s− 1/2)|s=0

=
1
2
FP ζPs(−1/2) +

1
2

(
1
s

+ lnµ2

)
Res ζPs(−1/2)

=
1
2
FP ζPs(−1/2)

−
(

1
s

+ lnµ2

)
1

2
√

4π
aD/2(Ps,B), (2.1.28)

is clearly equivalent to eq. (2.1.27), the only difference being that renormal-
ization now involves infinities. But the same terms are needed as counterterms
and the definition contains the same finite ambiguities.

For the spinor field the situation only changes slightly. Imposing as usual
antiperiodic boundary conditions in the imaginary time variable τ , instead of
eq. (2.1.24) we have

λn,j =
[
(2n+ 1)π

β

]2
+ E2

j ,

with Ej the eigenvalues of the Hamiltonian H of the system. Writing Ps = H2

and performing the identical steps as before, we find the Casimir energy to be

ECas = −1
2
FP ζPs

(−1/2) +
1

2
√

4π
aD/2(Ps,B) ln µ̃2, (2.1.29)

where the opposite sign compared to (2.1.27) can be clearly traced back to
the Grassmann property of spinors, responsible for the sign in eq. (2.1.6). By
obvious means we can proceed naively as for (2.1.28).

These definitions, eqs. (2.1.27) and (2.1.29), will be the basis for the analysis
of Casimir energies and ground-state energies in Chapters 7 and 8.

                      



2.2 Statistical mechanics of finite systems: Bose-Einstein con-
densation

Although we are not going to say anything more about finite temperature
quantum field theory, we will show in the context of quantum statistical me-
chanics how zeta functions and heat kernel techniques may be successfully
applied. Here, we are going to briefly derive the connection between grand
canonical partition sums and zeta functions, which will be used in Chapter 9
(in a slightly different form) to give an analysis of Bose-Einstein condensation
of magnetically trapped Bose gases.

Bose gases are described quantum mechanically by the Schrödinger equation

Pφk(x) := − h̄2

2m
∆φk(x) + V (x)φk(x) = Ekφk(x),

Bφk|x∈∂M = 0, (2.2.1)

where, as before, V (x) is some external potential describing, e.g., the trap-
ping magnetic fields, and, in addition, the field exists only subject to suitable
boundary conditions. Although this situation is quite general, the calculational
effort to get relevant thermodynamical quantities will be nearly identical as
for a special case.

In the grand canonical approach, the partition sum reads

q = −
∑
k

ln
(
1− ze−βEk

)
, (2.2.2)

with the fugacity z = exp(βµ), µ being the chemical potential. To explain
clearly the basic idea let us put µ = 0 in the following. For the calculation of
the partition sum we will first expand the logarithm to obtain

q =
∞∑
n=1

∑
k

1
n
e−βnEk . (2.2.3)

For the evaluation of this kind of expressions it is very effective to make use
of the contour integral representation (2.1.19).

Using (2.1.19) in (2.2.3), we find

q =
∞∑
n=1

∑
k

1
2πi

c+i∞∫
c−i∞

dαΓ(α)(βn)−αE−αk .

At this stage we would like to interchange the summations over k and n and
the integration in order to arrive at an expression containing the zeta function
associated with the Schrödinger equation (2.2.1),

ζP (s) =
∑
k

E−sk .

                      



As we have seen in eq. (2.1.17), the rightmost pole of ζP (s) is located at
s = D/2. To ensure absolute convergence of the integrand, in order that the
summation and integration might be interchanged, we have to impose that
<c > D/2 to obtain

q =
1

2πi

c+i∞∫
c−i∞

dα Γ(α)β−αζR(α)ζP (α) (2.2.4)

with the Riemann zeta function ζR(s), eq. (A. 1). This is a very suitable
starting point for the analysis of certain properties of the partition function q,
which will be exploited later. It shows clearly the intimate connection between
partition sums of statistical mechanics and zeta functions of the associated
spectrum.

Less obvious are the connections between the canonical or even microcanon-
ical treatment of ideal Bose gases and zeta functions. These will be derived in
Chapter 9 and applied to the discussion of the Bose condensed magnetically
trapped gases. Specifically, the ground-state number fluctuations, not acces-
sible to a grand canonical treatment [424], will be calculated.

2.3 Local versus global boundary conditions

The aim of this section is to give an idea of the proofs of the properties
(2.1.15), (2.1.17), (2.1.18) and (2.1.21) for the zeta function and the heat
trace. In particular we will explain the basic reason for the differences in the
asymptotics of the heat trace for local and global boundary conditions. We
will need to determine information on the resolvent of Laplace-type operators
and pseudo-differential calculus [90, 248, 278, 396, 338, 374, 230] is essential
to this aim. We start introducing some relevant notation.

Let α = (α1, ..., αD) be a multi-index with αj ∈ IN0, j = 1, ..., D. We then
define

|α| = α1 + ...+ αD, α! = α1!...αD! .

For x ∈ IRD we define further

dαx =
(

∂

∂x1

)α1

...

(
∂

∂xD

)αD

, Dα
x = (−i)|α|dαx .

Pseudo-differential operators or Calderón-Zygmund operators T are general-
izations of differential operators

A =
∑
|α|≤m

Aα(x)Dα
x ,

                      



where m is the order of A. For later use we state the local form of Laplace-type
operators, where m = 2,

P = −
(
gij(x)

d2

dxidxj
+ P k(x)

d

dxj
+Q(x)

)
. (2.3.1)

For convenience we assume P has no zero-modes.
The symbol σ(A)(x, ξ) of A describes the action of A in the Fourier space.

Let f ∈ C∞0 (IRD) be a smooth test function with compact support. If f̂(ξ) is
the Fourier transform of f ,

f̂(ξ) =
1

(2π)D/2

∫
IRD

dx e−ixξf(x),

by definition we have

Af(x) =
1

(2π)D/2

∫
IRD

dξ eixξσ(A)(x, ξ)f̂(ξ).

This shows the symbol for the differential operator A is

σ(A)(x, ξ) =
∑
|α|≤m

Aα(x)ξα.

With the definition

Aj(x, ξ) =
∑
|α|=j

Aα(x)ξα,

the symbol reads

σ(A)(x, ξ) =
m∑
j=0

Aj(x, ξ).

For the Laplace-type operator (2.4.1) we have simply

A2(x, ξ) = |ξ|2, A1(x, ξ) = −iP kξk, A0(x, ξ) = −Q.

For a pseudo-differential operator T , the symbol σ(T )(x, ξ) need not be a
polynomial in ξ. Instead, the standard symbol space is Sm(IRn × IRn), which
consists of C∞ functions σ(T )(x, ξ), such that

|Dα
xD

β
ξ σ(T )(x, ξ)| ≤ Cα,β(1 + |ξ)m−|β|

for suitably chosen constants Cα,β , α, β ∈ INn
0 [249]. We will say σ(T )(x, ξ) ∈

Sm(IRn × IRn) is a symbol of order m.
In the following we will see that the small-t behavior of the fundamental

solution (2.1.14) and the heat kernel (2.1.13) is encoded in the resolvent Rλ =
(P − λ)−1 of P . It is in the analysis of Rλ that pseudo-differential operator
calculus will be extremely useful.



First we rewrite the fundamental solution as

K(t, x, x′) =
i

2π

∫
γ

dλ e−tλGλ(x, x′), (2.3.2)

where γ encloses counterclockwise all eigenvalues λk on the real axis. Here,
the Green’s function Gλ(x, x′) is the kernel of Rλ,

Rλf(x) =
∫

IRD

dx Gλ(x, x′)f(x′). (2.3.3)

The kernel Gλ(x, x′) satisfies

(P − λ)Gλ(x, x′) = δ(x, x′),

and it has the expansion

Gλ(x, x′) =
∑
k

φk(x)φ∗k(x
′)

λk − λ
(2.3.4)

in terms of a complete set of normalized eigenfunctions φk. Apart from several
special cases, many of which we will encounter in the course of this book, the
eigenfunctions and eigenvalues are not known explicitly and for that reason
the representation (2.3.4) is merely formal. For example, in order to analyze
the asymptotic t → 0 behavior of K(t, x, x′), the |λ| → ∞ behavior of the
resolvent is needed, which cannot be obtained, as a rule, from (2.3.4). Instead,
pseudo-differential calculus provides an effective tool to find precisely this
information. Instead of dealing with the differential operators themselves, we
work with their symbols in Fourier space.

First note that K(t, x, x′), eq. (2.3.2), is the kernel of the operator

e−tP =
i

2π

∫
γ

dλ e−λt(P − λ)−1. (2.3.5)

We want to find the resolvent Rλ defined by

(P − λ)Rλ = 1,

or at least, for the reason mentioned, a large-|λ| approximation. Written as
an equation for symbols we have the condition

σ((P − λ)Rλ) ∼ 1.

Here, T ∼ Q defines an equivalence class of symbols which differ only by an
infinitely smoothing part. This part is irrelevant for the heat trace asymptotics
(2.1.15) [378].

Given the symbols of P − λ, the problem is to find the symbols describing
Rλ. In this process, λ is combined with the top term [6], so that we define

a2(x, ξ, λ) = |ξ|2 − λ, a1(x, ξ, λ) = A1(x, ξ), a0(x, ξ, λ) = A0(x, ξ).



The symbol for Rλ is assumed to have the form

σ(Rλ)(x, ξ, λ) ∼
∞∑
l=0

q−2−l(x, ξ, λ),

with the symbols q−2−l(x, ξ, λ) of order −2− l to be determined. The purely
algebraic equations for q−2−l(x, ξ, λ) are determined applying what can be
regarded as the Leibniz formula for pseudo-differential operators. Let T and
Q be pseudo-differential operators. Then by definition

TQf(x) =
1

(2π)D/2

∫
IRD

dξ eixξσ(TQ)(x, ξ)f̂(ξ). (2.3.6)

On the other hand

TQf(x) =
1

(2π)D/2

∫
IRD

dξ eixξσ(T )(x, ξ)Q̂f(ξ),

with

Q̂f(ξ) =
1

(2π)D/2

∫
IRD

dye−iyξ(Qf)(y)

=
1

(2π)D/2

∫
IRD

dy

∫
IRD

dηe−iy(ξ−η)σ(Q)(y, η)f̂(η).

Comparing this with (2.3.6), after a simple Taylor series expansion, we obtain

σ(TQ)(x, ξ) =
∑

α∈IND

0

1
α!
[
dαξ σ(T )(x, ξ)

]
[Dα

xσ(Q)(x, ξ)] . (2.3.7)

Applied to the construction of the resolvent, the condition obtained reads

σ((P − λ)Rλ) ∼
∞∑
n=0

∑
|α|−j+2+l=n

1
α!
[
dαξ aj(x, ξ, λ)

]
[Dα

x q−2−l(x, ξ, λ)] ∼ 1,

where the index n labels the order of the symbols on the right-hand side and
the summation extends over α, j and l. This yields the equations

1 =
∑

0=|α|+2+l−j

1
α!
[
dαξ aj(x, ξ, λ)

]
[Dα

x q−2−l(x, ξ, λ)]

= a2(x, ξ, λ)q−2(x, ξ, λ) = (|ξ|2 − λ)q−2(x, ξ, λ),

0 =
∑

n=|α|+2+l−j

1
α!
[
dαξ aj(x, ξ, λ)

]
[Dα

x q−2−l(x, ξ, λ)]

= q−2−n(x, ξ, λ)a2(x, ξ, λ) (2.3.8)



+
∑

n=|α|+2+l−j

l<n

1
α!
[
dαξ aj(x, ξ, λ)

]
[Dα

x q−2−l(x, ξ, λ)] ,

which can be solved inductively. We find

q−2(x, ξ, λ) = (|ξ|2 − λ)−1,

q−2−n(x, ξ, λ) = −(|ξ|2 − λ)−1 ×∑
n=|α|+2+l−j

l<n

1
α!
[
dαξ aj(x, ξ, λ)

]
[Dα

x q−2−l(x, ξ, λ)] .

This provides an approximation of the resolvent for |λ| → ∞. Note that for n
odd, q−2−n is an odd function in ξ, which can be shown by induction.

It is clearly seen that in order to get the construction started and in order
to use the results in (2.3.5), the invertibility of the leading symbol along γ is
needed. This is what the following definitions are about.

Definition: The operator A is elliptic of order m if the leading symbol
Am(x, ξ) has no zero eigenvalues for |ξ| = 1.

For a differential operator, given the homogeneity of the leading symbol, this
implies no zero eigenvalues for ξ 6= 0.

Definition: The ray {argλ = θ} in the complex plane is a ray of minimal
growth (of the resolvent) if no eigenvalue of Am(x, ξ) lies on that ray.

Under these conditions, and if the eigenvalues of the leading symbol lie within
the region −π/2 + ε < arg(λ) < π/2− ε, the contour integral representation
(2.3.5) holds in this general context, where γ is counterclockwise and consists
of the rays arg(γ) = π/2− ε and arg(γ) = −π/2 + ε.

The asymptotic expansion of the heat kernel for t → 0 follows from the
homogeneity properties of the symbols q−2−l. The kernel of e−tP is approxi-
mated by

K(t, x, x) =
i

(2π)D+1

∞∑
l=0

∫
IRD

dξ

∫
γ

dλ e−tλq−2−l(x, ξ, λ)

=
1

(2π)D+1

∞∑
l=0

∫
IRD

dξ

∞∫
−∞

ds eistq−2−l(x, ξ,−is).

With the substitutions ξ = t−1/2µ and u = st, the homogeneity property

q−2−l

(
x, t−1/2µ,−iu

t

)
= t

1
2 (2+l)q−2−l(x, ξ,−iu)

shows

K(t, x, x) =
∞∑
l=0

t
l−D

2 c l
2
(x), (2.3.9)



with

c l
2
(x) =

1
(2π)D+1

∫
IRD

dξ

∞∫
−∞

dueiuq−2−l(x, ξ,−iu). (2.3.10)

For l odd, the coefficient cl/2 vanishes because as mentioned q−2−l is an odd
polynomial in ξ.

If instead of IRD we consider a compact Riemannian manifold M without
boundary, the analysis shown represents the calculation in a local coordinate
system. Integrating over the manifold M and tracing over V , this provides
the anticipated small-t behavior (2.1.15) for the heat kernel. The properties
(2.1.17) and (2.1.18) for the zeta function now follow.

Let us next generalize the above considerations to manifolds with a bound-
ary. We will consider the manifold IRD+ = {(x, r)|x ∈ IRD−1, r ≥ 0}. The
Green’s function GBλ (x, x′) of P − λ is defined as the solution of

(P − λ)GBλ (x, x′) = δ(x, x′),

together with the boundary condition

BGBλ (x, x′) = 0 for x ∈ ∂IRD+ .

For the solution GBλ (x, x′) it is natural to make the ansatz

GBλ (x, x′) = Gλ(x, x′)−HB
λ (x, x′), (2.3.11)

where the boundary correction HB
λ (x, x′) satisfies the homogeneous equation

(P − λ)HB
λ (x, x′) = 0, (2.3.12)

and it adjusts the boundary value of Gλ(x, x′) to the correct one,

BHB
λ (x, x′) = BGλ(x, x′) for x ∈ ∂IRD+ . (2.3.13)

Finally, we have the standard asymptotic behavior, which is

lim
|x|→∞

HB
λ (x, x′) = lim

|x′|→∞
HB
λ (x, x′) = 0. (2.3.14)

Again our focus is on the |λ| → ∞ behavior of the resolvent. Previously
we provided all that is needed for the construction of the approximation of
Gλ(x, x′). We proceed with the novelties needed to deal with HB

λ (x, x′). It is
to be expected that the normal coordinate plays a distinctive role, because
eq. (2.3.13) shows that we have to fix the boundary values of HB

λ (x, x′). In
order to do so, the behavior of Gλ(x, x′) near the boundary is relevant. These
observations lead us to consider Taylor series expansions about r = 0. With
the notation

Dα
y,r =

(
D−1∏
i=1

Dαi
y

)
DαD
r ,



we therefore write

P − λ =
∞∑
k=0

1
k!
rk
∑
|α|≤2

∂k

∂rk
Aα(y, r) |r=0 D

α
y,r.

We denote the Fourier variable by ξ = (ω, τ) with ω = (ω1, ..., ωD−1). Re-
specting the special role of the variable r we introduce the partial symbol

σ′(P − λ) =
∞∑
k=0

1
k!
rk
∑
|α|≤2

∂k

∂rk
Aα(y, r) |r=0

(
D−1∏
i=1

ωαi
i

)
DαD
r

=
∞∑
k=0

1
k!
rk
∑
j≤2

∂k

∂rk
aj(y, r, ω,Dr, λ), (2.3.15)

by which aj(y, r, ω,Dr, λ) is defined. Having noticed the importance of homo-
geneity properties of symbols, we introduce

a(j)(y, r, ω,Dr, λ) =
2∑
l=0

∞∑
k=0

l−k=j

1
k!
rk

∂k

∂rk
al(y, r, ω,Dr, λ) |r=0 ,

with the property

a(j)
(
y,
r

t
, tω, tDr, t

2λ
)

= tja(j)(y, r, ω,Dr, λ).

Later, this property will allow us to separate the t-dependence in a way similar
to eqs. (2.3.9) and (2.3.10). Expressed in terms of these symbols, the partial
symbol (2.3.15) is

σ′(P − λ) =
2∑

j=−∞
a(j)(y, r, ω,Dr, λ).

If we write the symbol for HB
λ (x, x′) again in the form

∑∞
j=0 h−2−j , with

h−2−j homogeneous of degree −2− j, eq. (2.4.12) reads

σ′(P − λ)
∞∑
j=0

h−2−j(y, r, ω, τ, λ) = 0. (2.3.16)

Grouped according to their order −j of homogeneity, j = 1, 2, ..., we find

0 = a(2)(y, r, ω,Dr, λ) h−2−j(y, r, ω, τ, λ)

+
∑

α,k,l;l<j

k−|α|−2−l=−j

1
α!

[
Dα
ωa

(k)(y, r, ω,Dr, λ)
] [
iDα

y h−2−l(y, r, ω, τ, λ)
]
,

much as in (2.3.8), and where again the Leibniz rule (2.3.7) has been used.
Note this equation is not a purely algebraic equation anymore, but instead
an ordinary differential equation in the variable r. Supplemented by suitable



boundary conditions, arising from eq. (2.3.13), this, under suitable assump-
tions, will provide uniquely defined symbols h−2−j . To formulate the boundary
conditions, consider local boundary conditions of the form

B =
∑

|α|≤OB

bα(y)Dα
y,r,

with the order OB < 2 of the operator B. The symbol of B is written as

σ(B) =
OB∑
k=0

b−k(y, ω, τ),

with

b−k(y, ω, τ) =
∑

|α|=OB−k

bα(y)(ω, τ)α.

In order to impose the boundary condition (2.3.13), in analogy to (2.3.15), we
introduce the partial symbol

σ′(B) =
OB∑
k=0

b(−k)(y, ω,Dr),

with

b(−k)(y, ω,Dr) = b−k(y, ω,Dr).

This allows us to write the condition (2.3.13) in the symbol formσ′(B)
∞∑
j=0

h−2−j(y, r, ω, τ, λ)

∣∣∣∣∣∣
r=0

=

σ(B)
∞∑
j=0

q−2−j(y, r, ω, τ, λ)

∣∣∣∣∣∣
r=0

. (2.3.17)

Ordered according to their degree −j of homogeneity, with the Leibniz rule,
we find

b(0)(y, ω,Dr)h−2−j(y, r, ω, τ, λ)

+
∑

α,k,l;l<j

k+|α|+l=j

1
α!

[
Dα
ωb

(−k)(y, ω,Dr)
] [
iDα

y h−2−l(y, r, ω, τ, λ)
]

=
∑
β,k,l

k+|β|+l=j

1
β!
[
Dβ
ω,τ b−k(y, ω, τ)

] [
iDβ

y,rq−2−l(y, r, ω, τ, λ)
]
.

This boundary condition is supplemented by the behavior (2.3.14), which
imposes on the symbols

h−2−j(y, r, ω, τ, λ) → 0 for r →∞. (2.3.18)



If the eqs. (2.3.16), (2.3.17) and (2.3.18) have a unique solution, the symbols
h−2−j are formally determined and so is the |λ| → ∞ behavior of HB

λ .

Definition: Let A be an elliptic differential operator with leading symbol
Am(x, ξ) and let K be a cone containing 0 such that for ξ 6= 0 the spectrum of
Am(x, ξ) lies in the complement of K. Let b(0)(y, ω,Dr) be the leading partial
symbol of B. Then (A,B) is said to be strongly elliptic, if for (0, 0) 6= (ω, λ) ∈
∂IRD+ ×K, the equations

Am(y, 0, ω,Dr)f(r) = λf(r),
lim
r→∞

f(r) = 0, (2.3.19)

b(0)(y, ω,Dr)f(r) |r=0 = g(ω),

have a unique solution. If K = {0}, this reduces to the classical condition of
ellipticity of Lopatinski-Shapiro.

The previous analysis thus shows, that if (P,B) is strongly elliptic, the
symbols h−2−j are uniquely defined and the |λ| → ∞ behavior of HB

λ is in
principle determined. The homogeneity property of h−2−j then allows us again
to show, that the asymptotic form of the heat kernel is given as in (2.3.9). To
see this in some detail, consider the action of the operator associated with the
symbol h−2−j(y, r, ω, τ, λ). We can show that

H−2−jf(y, r) =
1

(2π)D/2

∫
IRD−1

dω

∞∫
−∞

dτeiωyh−2−j(y, r, ω, τ, λ)f̂(ω, τ),

where the Fourier transform is taken at r = 0, because the τ -dependence of
h−2−j comes from the boundary condition (2.3.17) at r = 0 only. Defining the
Fourier transform with respect to y,

f̃(ω, s) =
1

(2π)D/2

∫
IRD−1

dy e−iωyf(y, s),

the Fourier transform f̂(ω, τ) is rewritten as

f̂(ω, τ) =
1√
2π

∞∫
−∞

ds e−isτ f̃(ω, s),

and H−2−j is cast into the form

H−2−jf(y, r) =
1

(2π)(D+1)/2

∫
IRD−1

dω

∞∫
−∞

dseiωyh̃−2−j(y, r, ω, τ, λ)f̃(ω, s).

We introduced

h̃−2−j(y, r, ω, σ, λ) = −
∫
Γ−

dτ e−iστh−2−j(y, r, ω, τ, λ),



with the contour Γ− enclosing counterclockwise all poles of h−2−j(y, r, ω, τ, λ)
in the lower half-plane, here, e.g., Γ− = (∞,−∞). Note the homogeneity
property

h̃−2−j

(
y, ρ,

ω√
t
, σ,

λ

t

)
= t

1+j
2 h̃−2−j

(
y,

ρ√
t
, ω,

σ√
t
, λ

)
.

For the kernel of H−2−j , on the diagonal, this shows

H−2−j(y, r, y, r, λ) =
1

(2π)D

∫
IRD−1

dω h̃−2−j(y, r, ω, r, λ).

Its contribution to the heat kernel is

H−2−j(t, y, r, y, r) =
1

(2π)D+1

∫
IRD−1

dω

∞∫
−∞

ds eisth̃−2−j(y, r, ω, r,−is),

where the integration with respect to λ along the imaginary axis has been
shifted to the real axis by substituting λ = −is.

In order to write down the contribution to the (smeared) integrated heat
kernel, it is convenient to introduce the notation

∫
dI =

∞∫
0

dr

∫
IRD−1

dy

∫
IRD−1

dω

∞∫
−∞

ds.

With a suitable testfunction f ∈ C∞0 (IRD+), we compute

∞∫
0

dr

∫
IRD−1

dy H−2−j(t, y, r, y, r)f(y, r)

=
1

(2π)D+1t
D+1

2

∫
dI eish̃−2−j

(
y, r,

ω√
t
, r,− is

t

)
f(y, r)

=
t

j−D
2

(2π)D+1

∫
dI eish̃−2−j

(
y,

r√
t
, ω,

r√
t
,−is

)
f(y, r)

=
t

j+1−D
2

(2π)D+1

∫
dI eish̃−2−j (y, r, ω, r,−is) f(y,

√
tr)

=
t

j+1−D
2

(2π)D+1

∫
dI eish̃−2−j (y, r, ω, r,−is)×{ ∞∑

k=0

rk

k!
∂k

∂rk
f(y, r) |r=0 t

k/2

}
.



Together with the expansion (2.3.9), in summary we have found

K(t, y, r, y, r) ∼
∞∑
l=0

t
l−D

2
[
cl/2(y, r) + bl/2(y, r)

]
, (2.3.20)

where the boundary contributions are

bl/2(y, r) = − 1
(2π)D+1

∑
k+j+1=l

(−1)k

k!
δ(k)(r)× (2.3.21)

∫
IRD−1

dω

∞∫
−∞

ds

∞∫
0

dr′ eisr′
k
h̃−2−j(y, r′, ω, r′,−is).

The result nicely shows that the volume contributions, cl/2, completely sepa-
rate from the boundary contributions, bl/2, and that they do not depend on
the boundary condition.

On a compact smooth Riemmanian manifold with a smooth boundary,
the above expansion holds true in a local coordinate system, which confirms
(2.1.15).

The explicit calculation of heat kernel coefficients using the Seeley formalism
presented [376, 377], turns out to be surprisingly difficult, see, e.g., [158, 125]
where for Dirichlet and Neumann boundary conditions up to the coefficient
a1, respectively, for Dirichlet up to a2 have been calculated. First of all, the
calculation of the symbols of the resolvent is getting cumbersome beyond the
leading orders. Second, the result obtained is in a local coordinate system and
the answer has to be rewritten covariantly in terms of geometrical curvature
tensors. Again, for higher coefficients this is very difficult practically and for
the calculation of the coefficients different methods will be provided. However,
let us stress that to prove the general form of the heat trace expansions,
pseudo-differential operators and (variants of) the methods described are very
powerful.

Let us consider more closely the condition of strong ellipticity for Laplace-
type operators. The leading symbol is A2(x, ξ) = |ξ|2 and we have to consider
the differential equation

A2(y, 0, ω,Dr)f(r) =
(
− d2

dr2
+ |ω|2

)
f(r) = λf(r).

The general solution has the form

f(r) = α(ω)e−rΛ + β(ω)erΛ,

with Λ =
√
|ω|2 − λ. The asymptotic behavior f(r) → 0 for r → ∞ imposes

β = 0.
The strong ellipticity for various boundary conditions is considered in the

following.



For Dirichlet boundary conditions,

B−φ |∂M = φ |∂M = 0,

we simply have b0 = 1, b−1 = 0, so b(0) = 1 and b(−1) = 0. We obtain
α(ω) = g(ω) and Dirichlet boundary conditions are strongly elliptic with
respect to the cone C − IR+.

The next example is the Neumann or Robin boundary condition. Let S be
an endomorphism of V defined on ∂M. Then Robin boundary conditions are

B+φ |∂M = (φ;m − Sφ) |∂M = 0,

with φ;m the normal covariant derivative of φ with respect to the exterior
normal N to the boundary ∂M, here −d/dr. We compute for this case

b(0)(y, ω,Dr)f(r) |r=0 = Λα(ω) = g(ω)

to see Robin boundary conditions are strongly elliptic in C − IR+.
The Dirichlet and Robin boundary conditions may be combined into what

is called mixed boundary conditions. Let V± be complementary subbundles of
V and Π± projections onto V±. Mixed boundary conditions are then defined
as

Bmφ |∂M = Π−φ |∂M ⊕ (∇m − S) Π+φ |∂M = 0,

and strong ellipticity again follows.
Boundary conditions involving tangential derivatives define in general a

problem that is not strongly elliptic [148, 23, 21]. We further elucidate this
case in Section 4.8.

The procedure exhibited for local boundary conditions relies on the fact
that B is a differential operator. For global boundary conditions, the boundary
operator B is pseudo-differential and as a consequence the small-t structure
for the heat kernel of the associated boundary value problem is different. We
will present the simplest possible example where the new particular features
for global boundary conditions are clearly exposed [235].

Consider the cylindrical manifold M = IR+ × N , where N is a compact
manifold without boundary. Let A be a self-adjoint first-order elliptic differ-
ential operator on a vector bundle V over N and let V have an inner product
denoted by (·, ·). Then A has a discrete spectrum λj ∈ IR with eigenfunctions
ϕj(w), w ∈ N , so

Aϕj(w) = λjϕj(w).

As A is first order, λj may be positive or negative. Although zero modes of A
are of crucial importance for a discussion of the associated index theory [15],
the main point of our discussion, namely the occurrence of ln(t)-terms, does
not depend on the presence or absence of zero modes. For that reason, merely
for notational convenience, we assume A has no zero-modes, which always can
be achieved by adding an appropriate constant. Under this assumption, we
define projectors Π> and Π< onto the space spanned by the eigenfunction ϕj

                      



with λj > 0 and λj < 0, respectively. Explicitly, this means, e.g., if Π>φ = 0,
then ∫

N

dw (φ(w), ϕj(w)) = 0

for all eigenfunctions ϕj(w) of positive eigenvalues λj .
Consider now the operator

D =
∂

∂u
+A, (2.3.22)

with u ∈ IR+ the normal coordinate to the boundary, ∂/∂u being the interior
normal derivative. We impose the boundary condition [15, 16, 17]

Π>φ |u=0 = 0 .

The formal adjoint of D is

D∗ = − ∂

∂u
+A,

and given

(Dψ,ϕ)− (ψ,D∗ϕ) =
∫
N

dw (ψ(0, w), ϕ(0, w)), (2.3.23)

the adjoint boundary condition is

(1−Π>)φ |u=0 = Π<φ |u=0 = 0.

Consider now the associated second-order eigenvalue problem for the operator

P = D∗D = − ∂2

∂u2
+A2. (2.3.24)

We separate variables to write for the eigenfunctions

ψj,k(u,w) = fj,k(u)ϕj(w).

These satisfy

Pψj,k(u,w) = (k2 + λ2
j )ψj,k(u,w). (2.3.25)

The boundary conditions are

fj,k(0) = 0 for λj > 0 (2.3.26)

and

Π<Dψj,k(u,w) |u=0 = Π<

(
∂

∂u
+ λj

)
ψj,k(u,w) = 0,

or, equivalently, (
∂

∂u
+ λj

)
fj,k(u) |u=0 = 0 for λj < 0. (2.3.27)



Although each condition (2.3.26) and (2.3.27) is a local condition, the crucial
difference is that a projection onto the space spanned by the eigenfunctions
ϕj(w) with positive, respectively, negative eigenvalues is involved. But, e.g.,

Π> =
1
2
A+ |A|
|A|

,

so Π> is a pseudo-differential operator of order 0 and we leave the class of
situations considered previously.

To analyze the problem further let us consider again the resolvent for the
boundary value problem (2.3.25)—(2.3.27). Given our choice of example, we
do not need to resort to a symbol calculus. Instead, we express the heat
trace and the zeta function of P in terms of these quantities for A2. For A an
operator of Dirac type, A2 will be Laplace type and the unknown properties for
global boundary conditions will be expressed by known results for manifolds
without boundary.

Formally, the kernel of the resolvent can be written as

GBλ (u,w;u′, w′) =
∑
j

Gλ,j(u, u′)ϕj(w)ϕ∗j (w
′),

with

Gλ,j(u, u′) =

∞∫
0

dk
fj,k(u)f∗j,k(u

′)
k2 + λ2

j − λ
.

Here, fj,k(u) are the appropriate functions satisfying (2.3.26) and (2.3.27).
For λj > 0 we find with

fj,k(u) =
1√
π

sin(ku),

or with an image construction, the standard result for Dirichlet boundary
conditions,

Gλ,j(u, u′) =
1

2
√
λ2
j − λ

(
e
−
√
λ2

j
−λ |u−u′| − e

−
√
λ2

j
−λ (u+u′)

)
.

For λj < 0 we seek fj,k(u) in the form

fj,k(u) = C1e
iku + C2e

−iku, k ∈ IR+.

The boundary condition (2.3.27) and the normalization condition of the eigen-
functions shows, up to a phase factor,

C2 =
1√
2π
, C1 =

1√
2π

ik − λj
ik + λj

.

From here we easily obtain

Gλ,j(u, u′) =
1

2
√
λ2
j − λ

e
−
√
λ2

j
−λ |u−u′|



+

√
λ2
j − λ − |λj |

2
√
λ2
j − λ

(
|λj |+

√
λ2
j − λ

)e−√λ2
j
−λ (u+u′)

.

Adding up, the kernel of the resolvent is found to be

GBλ (u,w;u′, w′) =
1
2

∑
j

1√
λ2
j − λ

e
−
√
λ2

j
−λ |u−u′|

ϕj(w)ϕ∗j (w
′)

−1
2

∑
λj>0

1√
λ2
j − λ

e
−
√
λ2

j
−λ (u+u′)

ϕj(w)ϕ∗j (w
′) (2.3.28)

+
1
2

∑
λj<0

√
λ2
j − λ − |λj |√

λ2
j − λ

(
|λj |+

√
λ2
j − λ

)e−√λ2
j
−λ (u+u′)

ϕj(w)ϕ∗j (w
′).

In this result, the first term represents the resolvent of the space IR×N without
boundary, the remaining terms describe the effect of the boundary. Comparing
(2.3.28) with eq. (2.3.11), the first term corresponds to Gλ(x, x′), the remain-
ing ones to HB

λ (x, x′). We focus on the latter terms. The sums over positive

and negative λj can be suitably combined. The factor exp(−
√
λ2
j − λ (u+u′))

is irrelevant for this discussion and we neglect it for the moment. With Aλ =√
A2 − λ, the operator defined by the above kernel without exponential is

H̃B
λ = − 1

2Aλ
Π> +

Aλ − |A|
2Aλ(|A|+Aλ)

Π<.

This can be rewritten as

H̃B
λ = − 1

2Aλ
Π> +

(
− 1

2Aλ
+

1
2Aλ

+
Aλ − |A|

2Aλ(|A|+Aλ)

)
Π<

= − 1
2Aλ

+
1

|A|+Aλ
Π<

= − |A|+Aλ
2Aλ(|A|+Aλ)

+
1

|A|+Aλ
Π<

= − |A|
2Aλ(|A|+Aλ)

− 1
2(|A|+Aλ)

+
1

|A|+Aλ
Π<.

We use

− 1
2(|A|+Aλ)

= − A

|A|
1

2(|A|+Aλ)
Π> +

A

|A|
1

2(|A|+Aλ)
Π<

to find

H̃B
λ = − |A|

2Aλ(|A|+Aλ)
− A

2|A|(|A|+Aλ)
.

Reinserting the exponential from (2.3.28), performing the u-integration at the



coincidence points u = u′ and with

1
|A|+Aλ

=
|A| −Aλ
|A|2 −A2

λ

=
|A|
λ
− Aλ

λ
,

the resulting operator is

HB
λ = He +Ho,

with

He = − |A|2

4λA2
λ

+
|A|

4λAλ

and

Ho = − A

4λAλ
+

A

4λ|A|
.

These results provide a closed expression for the resolvent of P , eq. (2.3.24),
with the boundary conditions (2.3.26) and (2.3.27). Instead of analyzing the
meromorphic structure of the associated zeta function via the small-t asymp-
totics of the heat trace, we proceed this time the other way round.

The zeta function is the trace of the complex power of the operator

P−s =
i

2π

∫
γ

dλλ−s(P − λ)−1.

In the present situation, the contour γ can be chosen as

γ = {λ = reiπ|∞ > r ≥ r0}+ {λ = r0e
iθ|π > θ > −π}

+{λ = re−iπ|r0 ≤ r <∞},

where r0 is smaller than λ2
j for all j.

Denoting by ζe(s) and ζo(s) the contributions of He and Ho to the zeta
function, we compute

ζe(s) =
1
4

∑
j

i

2π

∫
γ

dλ λ−s

− |λj |2

λ(λ2
j − λ)

+
|λj |

λ
√
λ2
j − λ


=

1
4

∑
j

|λj |−2s i

2π

∫
γ

dτ
[
−τ−s−1(1− τ)−1 + τ−s−1(1− τ)−1/2

]
.

The sum over j leads to the zeta function of A2,

ζ(s;A2) =
∑
j

|λj |−2s,

with a meromophic structure known from the considerations of a manifold
without boundary. For <(−t) < <s < 0, the τ -integrals are determined using



[235]

Ft(s) :=
i

2π

∫
γ

dτ τ−s−1(1− τ)−t

=
i

2π

(
e−iπ(s+1) − eiπ(s+1)

) ∞∫
0

du u−s−1(1 + u)−t

=
1
π

sin(π(s+ 1))
Γ(−s)Γ(s+ t)

Γ(t)

=
Γ(s+ t)

Γ(t)Γ(s+ 1)
.

So the final answer for ζe(s) is

ζe(s) =
1
4
(−F1(s) + F1/2(s))ζ(s;A2)

=
1
4
(F1/2(s)− 1)ζ(s;A2). (2.3.29)

In the same way we compute

ζo(s) = −1
4
F1/2(s)η(2s;A) (2.3.30)

with the eta function

η(s;A) =
∑
j

sgn(λj)|λj |−s. (2.3.31)

Due to

F1/2(s) =
Γ(s+ 1/2)

Γ(1/2)Γ(s+ 1)
, (2.3.32)

with poles at s = −(2l+ 1)/2, l ∈ IN0, the part ζe(s) might have double poles
at these points, because in odd dimensions, ζ(s;A2) will generically have a
simple pole at these values of s; see eq. (2.1.17). These double poles correspond
to ln(t)-terms in the heat trace, as explained already above eq. (2.1.20), and
we have exemplified the crucial difference between local and global boundary
conditions. Note, however, that the poles located at <s > 0 are simple and
locally determined.

Some further remarks are in order regarding the calculation. The manifold
IR+ ×N is non-compact. In integrated quantities this leads to volume infini-
ties. We have avoided this occurrence by identifying locally the volume part
Gλ(x, x′), see the discussion below eq. (2.3.28), and by discussing further only
the boundary contributions. In fact we can show that these boundary terms
are the same if we dealt instead with a compact manifold M, such that with u
the normal coordinate near the boundary, D has the form (2.3.22) The precise
formulation involves the double M̃ of M, which provides a manifold without



boundary [15, 235]. We denote the operators C on the double by C̃. The con-
struction of the resolvent on M̃ proceeds as described, the contributions from
the interior of M are identified by restricting the result to M. The global
interior contributions are thus recovered by tracing only over M,

Tr+(P̃ ) =
∫
M

dx TrV K(x, x, P̃ ),

with the kernel K(x, x, P̃ ) of P̃ . In this context, allowing for zero modes of A,
the following structures for the zeta functions of P1 = D∗D and P2 = DD∗
have been found in [235],

Γ(s)ζ(s;Pi) = Γ(s)
[
ζ+(s; P̃i) +

1
4
(
F1/2(s)− 1

)
ζ(s;A2)

+(−1)i
1
4
F1/2(s)η(2s;A)

]
+

1
s

[
Tr+

(
Π0(P̃i)

)
− ν0(Pi) + (−1)i

1
4
ν0(A)

]
+hi(s), (2.3.33)

where Π0(P̃i) is the projection onto the null space of P̃i, ν0(C) is the number
of zero modes of the operator C and hi(s) denotes an entire remainder. As
anticipated, the result contains ζe(s) and ζo(s), zero mode contributions and
the zeta function of the double ofM completing the answer. Again, the simple
poles at s = D/2, (D − 1)/2, ..., 1/2, are local and eq. (2.1.17) still holds.

The same result holds, if near the boundary

D = σ

(
∂

∂u
+A

)
,

where σ is a unitary morphism between vector bundles [235].
Generalizations to the non-product case [231, 234] as well as to localized

traces can be found in the references [231, 234, 235].
Written in a more informative way than in eq. (2.1.21), the full expansion

for the smeared heat trace is

K(t, F ) = TrL2(M)

(
Fe−tP

)
∼

∑
n=0,1/2,...,(D−1)/2

Gnt
n−D/2

+
∞∑
l=0

(Gl ln(t) +G′l) t
l/2, (2.3.34)

where Gl is locally determined and G′l globally. Analogous results for the eta
function and the associated “heat trace” have been proven; see, e.g., [214, 69,
231, 235, 232].

There are further generalizations regarding the operator A. We assumed A is
a first-order self-adjoint elliptic differential operator. As a result the spectrum



is real and Atiyah-Patodi-Singer boundary conditions are imposed as we have
described.

If the operator A is not self-adjoint, some modifications, displayed in the
following, are necessary. We assume then

D : C∞(E1) → C∞(E2), (2.3.35)

with unitary bundles Ei over M. In addition, we assume that display (2.3.35)
is an elliptic complex of Dirac type. So if D∗ is the formal adjoint of D, the
associated second order operators P1 = D∗D and P2 = DD∗ on C∞(E1) and
C∞(E2) are of Laplace type.

Assume a D-bein system ej and let γj be the Dirac matrices projected along
ej (for explicit representations see Section 3.3). We write D as

D = γj∇j + ψ, (2.3.36)

where ψ : C∞(E1) → C∞(E2) is a 0th order operator and ∇j is a unitary,
compatible ([∇j , γi] = 0) connection. An example is the spin connection given
in (3.3.3). We do not impose further restrictions on ψ. Let y ∈ ∂M be local
coordinates, and xm minus the geodesic distance, such that ∇m defines the
exterior normal derivative. Near the boundary we decompose D as

D = γm(∇m +B). (2.3.37)

Setting xm = 0, this defines the tangential operator

B1(y) = (γm)−1(y, 0) (γa(y, 0)∇a + ψ(y, 0)) . (2.3.38)

Here and in the following, we use the convention that letters from the begin-
ning of the alphabet label the boundary and run from 1, ..., D − 1. So γa∇a
equals

∑D−1
b=1 γb∇b. The operator B1 : C∞ (E1 |∂M ) → C∞ (E1 |∂M ) need not

be a self-adjoint endomorphism. However, a self-adjoint tangential operator
of Dirac type on C∞ (E1 |∂M ) is obtained via

A0 =
1
2
(B1 +B∗1),

where B∗1 is the adjoint of B1 with respect to the structure on the boundary.
This operator A0 can be used to define spectral boundary conditions as done
before. However, it is convenient to introduce an auxiliary self-adjoint endo-
morphism Θ1 of E1 |∂M and define spectral boundary conditions with respect
to

A1 =
1
2
(B1 +B∗1)−Θ1. (2.3.39)

Arguing as around eq. (2.3.23), with slight modifications due to the presence
of γm, the adjoint boundary condition is the projection on the non-positive
spectrum of A2 = −γmA1(γm)−1. This may be evaluated further,

B2 := −γmB1γ
−1
m = −γmγ−1

m γa∇aγ−1
m − ψγ−1

m

= γ−1
m γa∇a +Kabγaγb − ψγ−1

m = γ−1
m γa∇a −K − ψγ−1

m ,

                      



with the second fundamental form Kab = −(∇ea
eb, N), N as before being the

exterior normal to the boundary, and K = Kaa. So we continue

A2 = −1
2
γm(B1 +B∗1)γ−1

m + γmΘ1γ
−1
m

=
1
2
(
γ−1
m γa∇a + (γ−1

m γa∇a)∗ − ψγ−1
m − γmψ

∗)
−K + γmΘ1γ

−1
m . (2.3.40)

This shows that for ψ = ψ∗ and Θ1 = K/2, the adjoint boundary condition for
D∗ equals the boundary condition for D and in this case D is self-adjoint. This
will be our choice for the examples to come, because it enables us straightfor-
wardly to establish a spectral resolution in the cases considered.

2.4 Concluding remarks

The main results of this chapter are eqs. (2.1.9), (2.1.17), (2.1.18), (2.1.28)
and (2.1.29), which relate different spectral functions with the zeta function. In
the physical theories considered, examples of spectral functions are functional
determinants, the heat trace and the partition sums of statistical mechanics,
each of which has the relevance described. These various connections put the
zeta function in the centre of our analysis. Once a mean is known for the
analysis of zeta functions, as a direct application the relevant properties of
various spectral functions can be found. In Chapter 3 we will develop tools
which allow for the analysis of zeta functions for cases where the spectrum of
the operator is not known explicitly. This forms the basis of the various ap-
plications described later. For the somewhat complementary case of a known
spectrum and the associated technical machinery see, e.g., [171, 164].

                      



Chapter 3

Zeta functions on generalized cones
and related manifolds

3.0 Introduction

In Section 2.1 we have seen that the definition of the zeta function of a
Laplace-type operator as a sum, eq. (2.1.10), is valid only for <s > D/2. Most
of the relevant properties lie, however, to the left of that strip. In this chap-
ter we will describe and apply some basic techniques for the construction of
analytical continuations of zeta functions. As the most important ingredients
let us mention contour integral representations and Mellin transformations.
These techniques will allow us to obtain the zeta function (for a specific class
of examples) for all required values of the complex parameter s. The repre-
sentations obtained are the basis for the different applications in the following
chapters and for this reason we shall provide considerable details.

In order to keep the technical complications as small as possible we explain
first the case of a massive scalar field on the three-dimensional ball where
the field is supposed to fulfill Dirichlet boundary conditions at the boundary,
which is the sphere in this case. Afterwards we generalize the procedure in
several respects. We treat the case not only of the ball but also of the gen-
eralized cone and, in addition, we work in arbitrary dimension D and with
all the boundary conditions briefly mentioned in Section 2.3. The aspect of
arbitrary dimension will turn out to be very essential for the calculation of
heat kernel coefficients on general smooth manifolds. The inclusion of coni-
cal singularities is of general interest due to the appearance of ln t-terms in
asymptotic expansions of the heat kernel [84] (see also [94, 93, 83]), and in
the context of Euclidean black hole physics [197, 201, 423, 89]. As we will see,
all ideas are applicable to spinors and forms as well. Also, in Chapter 8, a
slight modification of the procedure will enable us to deal with the problem
of quantum fields under the influence of a spherically symmetric background
field.

                      



3.1 Scalar field on the three-dimensional ball

To start we focus our interest on the zeta function of the operator (−∆+m2)
on the three-dimensional ball B3

a = {x ∈ IR3; |x| ≤ a} endowed with Dirichlet
boundary conditions to be imposed at the boundary of the ball, which is the
sphere of radius a, ∂B3

a = S2
a. The eigenvalues λk for this situation, with k as

a multiindex here, are thus determined through

(−∆ +m2)φk(x) = λkφk(x), φk(x)
∣∣
x∈S2

a
= 0, (3.1.1)

and the zeta function is defined as

ζ(s) =
∑
k

λ−sk , (3.1.2)

for <s > 3/2. It is convenient to introduce a spherical coordinate basis, with
r = |x| and the angles Ω = (θ, ϕ). With these coordinates, eq. (3.1.1) reads(

− ∂2

∂r2
− 2
r

∂

∂r
− 1
r2

∆S2 +m2

)
φl,m,n(r,Ω) = λl,nφl,m,n(r,Ω),

φl,m,n(a,Ω) = 0. (3.1.3)

The Laplacian on the sphere is

∆S2 =
1

sin2 θ

∂2

∂ϕ2
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ
.

Its eigenfunctions are the spherical surface harmonics [175]

−∆S2Ylm(Ω) = l(l + 1)Ylm(Ω),

and, as a result, a complete set of solutions of eq. (3.2.3) may be given in the
form

φl,m,n(r,Ω) = r−1/2Jl+1/2(wl,nr)Ylm(Ω).

Here, Jν is the Bessel function of the first kind, a solution of the differential
equation [220]

d2Jν(z)
dz2

+
1
z

dJν(z)
dz

+
(

1− ν2

z2

)
Jν(z) = 0. (3.1.4)

The wl,n (> 0) are determined through the boundary condition by

Jl+1/2(wl,na) = 0, (3.1.5)

and the relation to λl,n is simply λl,n = w2
l,n + m2. The index l labels the

angular momentum and n labels all positive zeroes of eq. (3.1.5). In this
notation, the zeta function (3.1.2) can be given in the form

ζ(s) =
∞∑
n=0

∞∑
l=0

(2l + 1)(w2
l,n +m2)−s. (3.1.6)



The factor (2l+ 1) counts the number of independent harmonic polynomials,
which defines the degeneracy of each value of l and n in three dimensions.

No closed analytical form for the eigenvalues ωl,n is available and it seems
impossible to proceed directly with them. However, the spectral sum (3.1.6)
can be rewritten only in terms of the (known) eigenfunctions by the use of
the residue theorem. This is shown as follows. Clearly (∂/∂k) ln Jl+1/2(ka) =
aJ ′l+1/2(ka)/Jl+1/2(ka) has simple poles at the solutions of eq. (3.1.5) with
residue 1. So eq. (3.1.6) may be written in the form of a contour integral on
the complex plane,

ζ(s) =
∞∑
l=0

(2l + 1)
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
lnJl+1/2(ka), (3.1.7)

where the contour γ runs counterclockwise and must enclose all the solutions of
(3.1.5) on the positive real axis; see Fig. 3.1 (for this and a similar treatment
of the zeta function as a contour integral see [55, 259, 40, 54]). The above
representation of the zeta function is the first step of our procedure.

-
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Figure 3.1
Contour γ

By construction, the representation (3.1.7) is valid for <s > 3/2 only. For
reasons explained in Chapter 2, we are especially interested in the properties
of ζ(s) in the range <s < 3/2 and therefore we need to perform the analytical
continuation to the left. Leaving out the l-summation for the moment, we will
first proceed with the k-integral alone.

                      



The first specific idea is to shift the integration contour and place it along
the imaginary axis. If we look at the origin, we see that for k → 0, to leading
order, we have the behavior Jν(k) ∼ kν/(2νΓ(ν + 1)) such that the integrand
diverges at this limit. For this reason, in order to avoid contributions coming
from the origin k = 0, we include an additional factor k−ν with ν = l + 1/2
in the logarithm. This does not change the result because no additional pole
is enclosed and we will consider the expression

ζν(s) =
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
ln
(
k−νJν(ka)

)
. (3.1.8)

Using the relations Jν(ik) = eiπνJν(−ik) and Iν(k) = e−iνπ/2Jν(ik) [220], we
then easily obtain

ζν(s) =
sin(πs)
π

∞∫
m

dk [k2 −m2]−s
∂

∂k
ln
(
k−νIν(ka)

)
(3.1.9)

valid in the strip 1/2 < <s < 1. Given Jν(z) for ν > −1 has only real zeroes
[220], no further contributions occur. The upper restriction <s < 1 is imposed
by the behaviour of the integrand at the lower integration bound, which is
proportional to (k −m)−s for k → m. For k → ∞ we use Iν(k) ∼ ek/

√
2πk

to find the behaviour k−2s and thus the restriction 1/2 < <s. The reason
for introducing the mass m to start with becomes clear here, because the
representation (3.1.9) with m = 0 is defined for no value of s. The procedure
might be modified for m = 0 but that is slightly more difficult [168, 284]. We
prefer to include the mass m and consider the limit m→ 0 (whenever needed)
at the end of the calculation where the limit will be well defined. (Especially
in Chapter 4 on heat kernel coefficients we will be interested basically only in
the massless case and we will set m = 0 without always explicitly mentioning
this. For these cases we have to remember that in principle the calculation
has to be done the way it is described in this section. However, in Chapters 7
and 8, one emphasis will be on the role of the mass such that its introduction
is not merely for technical reasons.)

Given that the interesting properties of the zeta function (namely nearly all
heat kernel coefficients of (−∆), the determinant and the Casimir energy) are
encoded to the left of the strip 1/2 < <s < 1, how can we find the analytical
continuation of it to this range? As explained, the restriction 1/2 < <s is
a result of the behaviour of the integrand as k → ∞. If we subtract this
asymptotic behaviour from the integrand in (3.1.9), the strip of convergence
will certainly move to the left. So if the asymptotic terms alone can be treated
analytically and ζν(s) with the asymptotic terms subtracted can be dealt with
at least numerically, the analytic continuation can be found. In order to ensure
that the convergence of the subsequent l-summation also is improved, we need
to make use of the uniform asymptotic expansion of the Bessel function Iν(k)

                      



for ν →∞ as z = k/ν fixed [2]. We have

Iν(νz) ∼
1√
2πν

eνη

(1 + z2)
1
4

[
1 +

∞∑
k=1

uk(t)
νk

]
, (3.1.10)

with t = 1/
√

1 + z2 and η =
√

1 + z2 + ln[z/(1 +
√

1 + z2)]. The first few
coefficients are listed in [2], higher coefficients are immediately obtained by
using the recursion [2]

uk+1(t) =
1
2
t2(1− t2)u′k(t) +

1
8

t∫
0

dτ (1− 5τ2)uk(τ), (3.1.11)

starting with u0(t) = 1. As is clear, all the uk(t) are polynomials in t. The
same holds for the coefficients Dn(t) defined by

ln

[
1 +

∞∑
k=1

uk(t)
νk

]
∼

∞∑
n=1

Dn(t)
νn

. (3.1.12)

The polynomials uk(t) as well as Dn(t) are easily found with the help of a
simple computer program. For example, we have

D1(t) =
1
8
t− 5

24
t3,

D2(t) =
1
16
t2 − 3

8
t4 +

5
16
t6. (3.1.13)

By adding and subtracting N leading terms of the asymptotic expansion
(3.1.12), for ν →∞, eq. (3.1.9) may be split into the following parts

ζν(s) = Zν(s) +
N∑

i=−1

Aνi (s).

The first term represents ζν(s) with the asymptotic terms subtracted,

Zν(s) =
sin(πs)
π

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
∂

∂z

{
ln
[
z−νIν(zν)

]

− ln
[
z−ν√
2πν

eνη

(1 + z2)
1
4

]
−

N∑
n=1

Dn(t)
νn

}
, (3.1.14)

and Aνi (s) represents the asymptotic contribution of the order ν−i of the
Debye expansion,

Aν−1(s) =
sin(πs)
π

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
∂

∂z
ln
(
z−νeνη

)
, (3.1.15)



Aν0(s) =
sin(πs)
π

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
∂

∂z
ln(1 + z2)−

1
4 , (3.1.16)

Aνi (s) =
sin(πs)
π

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
∂

∂z

(
Di(t)
νi

)
. (3.1.17)

As anticipated, the strip of convergence in Zν(s) has moved to the left. By
considering the asymptotics of the integrand in eq. (3.1.14) for z → ma/ν
and z → ∞, and by considering the behavior of Zν(s) for ν → ∞, which is
ν−2s−N−1, it can be seen that the function

Z(s) =
∞∑
l=0

(2l + 1)Zν(s) (3.1.18)

is analytic on the half plane (1−N)/2 < <s. (The integral alone has poles at
s = k ∈ IN which is seen by writing [(zν/a)2−m2]−s = (−1)j(Γ(1− s)/Γ(j+
1− s))(dj/d(m2)j)[(zν/a)2 −m2]−s+j . But these are cancelled by the zeroes
of the prefactor.) For this reason Z(s) gives no contribution to the residues
of ζ(s) in that range. Furthermore, for s = −k, k ∈ IN0, k < (−1 + N)/2,
the prefactor guarantees Z(s) = 0 and thus no contributions to the values of
the zeta function at these points arise. This result means that the heat kernel
coefficients are just determined by the asymptotic terms Ai(s) with

Ai(s) =
∞∑
l=0

(2l + 1)Aνi (s).

However, the determinant and the Casimir energy will receive additional con-
tributions from Z(s) and in general an analysis of both these parts is necessary.

Up to now we have simply rewritten ζ(s) as

ζ(s) = Z(s) +
N∑

i=−1

Ai(s),

with Z(s) having the properties described. Something has been gained only
if the asymptotic terms Ai(s) can be treated analytically in an explicit way.
The goal has to be a representation of Ai(s) in terms of known functions and
valid in the whole of the complex plane. In the following we proceed with the
relevant procedure.

As explained, as they stand, the Aνi (s) in eqs. (3.1.15), (3.1.16) and (3.1.17)
are well defined on the strip 1/2 < <s < 1 (at least). Keeping in mind that
Di(t) is a polynomial in t (see for example eq. (3.1.13)), all the Aνi (s) are in
fact hypergeometric functions, which is seen by means of the basic relation



[220]

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

dt tb−1(1− t)c−b−1(1− tz)−a.

To exemplify some details, consider Aν−1(s), A
ν
0(s), and the corresponding

A−1(s), A0(s). One finds immediately that

Aν−1(s) =
sin(πs)
π

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
ν

√
1 + z2 − 1

z

=
m−2s

2
√
π
am

Γ
(
s− 1

2

)
Γ(s) 2F1

(
−1

2
, s− 1

2
;
1
2
;−
( ν

ma

)2
)

−ν
2
m−2s, (3.1.19)

Aν0(s) = −1
4
m−2s

2F1

(
1, s; 1;−

( ν

ma

)2
)

= −1
4
m−2s

[
1 +

( ν

ma

)2
]−s

, (3.1.20)

where in the last equality we have used that 2F1(b, s; b;x) = (1− x)−s. These
representations show the meromorphic structure of Aν−1(s), A

ν
0(s) for all values

of s.
We are left with the summation over l. For Aν−1(s) this is best done using

a Mellin-Barnes type integral representation of the hypergeometric functions,
namely

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)
1

2πi

∫
C

dt
Γ(a+ t)Γ(b+ t)Γ(−t)

Γ(c+ t)
(−z)t,(3.1.21)

where the contour is such that the poles of Γ(a+ t)Γ(b+ t)/Γ(c+ t) lie to the
left of it and the poles of Γ(−t) to the right [220]. The contour involved for
Aν−1(s) is shown in Fig. 3.2. The argument Γ(−1/2+t)Γ(s−1/2+t)/Γ(1/2+t)
has a pole at t = 1/2 and at t = 1/2− s−n, n ∈ IN0. Assume for the moment
Re s� 1 so that the poles at 1/2−s have a large negative real part. Then the
contour C coming from −i∞ must cross the real axis to the right of t = 1/2,
and then once more between 0 and 1/2 (in order that the pole t = 0 of Γ(−t)
lies to the right of it), before going to +i∞ to the right of 1/2− s.

The summation over l in (3.1.21) could be performed in terms of a Hurwitz
zeta function

ζH(s; v) =
∞∑
l=0

(l + v)−s, <s > 1,

if only the order of summation and integration were interchanged. However, as
already emphasized previously, before interchanging the summation and inte-
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Contour C for eq. (3.2.19)

gration we have to ensure that the resulting sum will be absolutely convergent
along the contour C. Applying this criterion to A−1(s),

A−1(s) =
∞∑
l=0

(2l + 1)

[
m−2s

2
√
π
am

Γ
(
s− 1

2

)
Γ(s) 2F1

(
−1

2
, s− 1

2
;
1
2
;−
(
l + 1

2

ma

)2
)

−
l + 1

2

2
m−2s

]
,

it turns out that we may interchange the
∑
l and the integral in eq. (3.1.21)

only if for the real part <C of the contour the condition <C < −1 is satisfied.
That is, before interchanging the sum and the integral we have to shift the
contour C over the pole at t = 1/2 to the left, which cancels the (potentially
divergent) second part in A−1(s). This term, −(l+1/2)m−2s/2, is the result of
the factor ln k−ν introduced in eq. (3.1.8) to avoid contributions coming from
the origin and its crucial importance is made explicit in the above step. Had
we not introduced this factor from the beginning, the term −(l+1/2)m−2s/2
would have appeared as a contribution from a small half-circle about the
origin and the final answer would have been, of course, the same. The fact
that the contour can be simply shifted against the imaginary axis without
any additional contributions arising from the origin makes the procedure as
presented slightly more streamlike.

Taking due care of the above comments, an intermediate result is

A−1(s) =



− m−2s

2
√
πΓ(s)

1
2πi

∫
C̃

dt
Γ(s− 1/2 + t)Γ(−t)

t− 1/2
(ma)1−2tζH(−2t− 1; 1/2),

where the contour C̃ might be placed parallel to the imaginary axis just to the
left of the origin. Closing the contour to the left, we end up with the following
expression in terms of Hurwitz zeta functions (the contour at infinity does not
contribute, which we see by considering the asymptotics of the integrand)

A−1(s) =
a2s

2
√
πΓ(s)

∞∑
j=0

(−1)j

j!
(ma)2j

Γ
(
j + s− 1

2

)
s+ j

× (3.1.22)

ζH(2j + 2s− 2; 1/2).

For A0(s) we only need to use the binomial expansion in eq. (3.1.20) in order
to find

A0(s) = − a2s

2Γ(s)

∞∑
j=0

(−1)j

j!
(ma)2jΓ(s+ j)ζH(2j + 2s− 1; 1/2). (3.1.23)

The series are convergent for |ma| < 1/2. Analytical continuations valid be-
yond that range will be constructed in the context of Casimir energies and
ground-state energies; see Chapters 7 and 8.

Finally, we need to obtain analytic expressions for Ai(s), i ∈ IN. To deal
systematically with all values of i, write the polynomial D(t), eq. (3.2.12), as

Di(t) =
i∑

b=0

xi,bt
i+2b,

for which the coefficients xi,b are easily found by using eqs. (3.1.11) and
(3.1.12) directly. The calculation of Aνi (s), eq. (3.1.17), is solved through the
identity

∞∫
ma/ν

dz

[(zν
a

)2

−m2

]−s
∂

∂z
tn = −m−2s n

2(ma)n
Γ
(
s+ n

2

)
Γ(1− s)

Γ
(
1 + n

2

) ×

νn
[
1 +

( ν

ma

)2
]−s−n

2

. (3.1.24)

Combined with a binomial expansion, the remaining sum may be calculated
as described for A0(s) and the representation

Ai(s) = −2a2s

Γ(s)

∞∑
j=0

(−1)j

j!
(ma)2jζH(−1 + i+ 2j + 2s; 1/2)×

i∑
b=0

xi,b
Γ
(
s+ b+ j + i

2

)
Γ
(
b+ i

2

) , (3.1.25)

convergent once more for |ma| < 1/2, can be found. Restricting attention to
the massless field, the asymptotic contributions take the surprisingly simple

                      



form

A−1(s) =
a2s

2
√
π

Γ(s− 1/2)
Γ(s+ 1)

ζH(2s− 2; 1/2),

A0(s) = −a
2s

2
ζH(2s− 1; 1/2), (3.1.26)

Ai(s) = −2a2s

Γ(s)
ζH(i− 1 + 2s; 1/2)

i∑
b=0

xi,b
Γ
(
s+ b+ i

2

)
Γ
(
b+ i

2

) .

In summary the analytical structure of the zeta function for the problem
considered is made completely explicit. As far as concerns the calculation of
heat kernel coefficients, all relevant information is revealed by the asymptotic
terms (3.1.26) in the form of well-known meromorphic functions. This repre-
sentation allows for a direct and efficient evaluation not only of residues and
function values, but also of derivatives, at whatever values of s are needed. All
ingredients can be dealt with by Mathematica and calculations can be easily
automized.

The remaining part Z(s), see (3.1.18) and (3.1.14), is by construction suit-
able for numerical evaluation for values of s depending on the number of
asymptotic terms subtracted. This will be used to find Casimir energies and
ground-state energies. Beyond its use for numerics, somewhat surprisingly,
the derivative Z ′(0) allows for a closed analytical treatment which leads to
the determinant ζ ′(0) in terms of elementary Hurwitz zeta functions. How-
ever, before proceeding to these different applications we will discuss general
aspects of the described procedure.

3.2 Scalar field on the D-dimensional generalized cone

For the applications to come, it will be very important that results in ar-
bitrary dimensions are available. Furthermore, as we will see, no additional
complication will arise by not considering the ball as the underlying manifold,
but instead what can be termed the bounded generalized cone. The relevant
approach has been developed by Bordag, Dowker and Kirsten [61].

We define the bounded generalized cone as the D = (d + 1)-dimensional
space M = I ×N with the hyperspherical metric [106]

ds2 = dr2 + r2dΣ2, (3.2.1)

where dΣ2 is the metric on the manifoldN . We take r to run from 0 to 1, which
for the example of the ball means that we take the radius a to be one. This is
not a restriction because the dependence on the radius is easily recovered by
dimensional reasons. To this end simply note that the eigenvalues scale like



1/a2 as a function of the radius. We will refer to N as the base, or end, of the
cone. If N itself has no boundary then it is the boundary of M.

Sometimes it is of interest to consider not just the Laplacian on M but to
include a coupling to the Riemann scalar curvature R of M. In order to apply
a separation of variables we will need to relate the curvatures of M and N .
This is most conveniently done by noting that M is conformal to the product
half-cylinder IR+ ×N ,

ds2 = e−2y
(
dy2 + dΣ2), y = − ln r.

Using relations (B. 6)—(B. 9) between geometric tensors of conformally re-
lated metrics, this determines the curvatures on M in terms of those on N .
Let the indices a, b, c, e range from 1, ..., d and parameterize a local coordinate
frame of the base N . The only nonzero components of the curvature on M
are

Rabce =
1
r2
(
R̂abce − (δacδ

b
e − δaeδ

b
c)
)
, Rab =

1
r2
(
R̂ab − (d− 1)δab

)
,

R =
1
r2
(
R̂− d(d− 1)

)
, (3.2.2)

where R̂abce is the Riemann tensor of N with metric dΣ2. These curvature
tensors measure the local deviation of N from a unit d-sphere and indicate
the existence of a singularity at the origin.

The embedding of N in M is described by the extrinsic curvature of N .
Let N be the exterior normal vector; here N = (∂/∂r). Then in the local
coordinate system we have Kab = −(∇a(∂/∂xb), N) = −Γrab = gab,r evaluated
at r = 1. In the given metric (3.2.1) we immediately find Ka

b = δab, such that
at r = 1, (3.2.2) is, of course, nothing other than the Gauss-Codacci equation

Rabce = R̂abce +KbcK
a
e −KbeK

a
c .

Let us turn in this general context to the eigenvalue problem for the Laplacian

∆M =
∂2

∂r2
+
d

r

∂

∂r
+

1
r2

∆N

on M. Boundary conditions are imposed at r = 1, as will be described below.
Assume the harmonics on N satisfy

∆NY (Ω) = −λ2Y (Ω). (3.2.3)

Then the nonzero eigenmodes of ∆M that are finite at the origin have eigen-
values −α2 and are of the form

Jν(αr)
r(d−1)/2

Y (Ω), (3.2.4)

where the index of the Bessel function is determined to be

ν2 = λ2 + (d− 1)2/4. (3.2.5)

In cases when R̂ is constant we may easily allow for the addition of the term
−ξR to ∆M. In the detailed calculations presented later this is what we shall



assume. Obvious examples are the sphere and the torus. If we are interested
solely in the Laplacian (ξ = 0) this restriction is unnecessary. For all these
cases the modes will still be as in equation (3.2.4), now with

ν2 = λ2 + (d− 1)2/4 + ξ
(
R̂− d(d− 1)

)
= λ2 + ξR̂+ d(d− 1)

(
ξd − ξ

)
, (3.2.6)

where ξd = (d − 1)/4d. For conformal coupling in d + 1 dimensions, ξ = ξd,
the last term disappears, as it also does when d = 0 or d = 1.

When R̂ is not constant we can formally proceed in very similar fashion.
Introduce the eigenfunctions Y of the modified Laplacian on N ,(

∆N − ξR̂
)
Y = −λ̄2Y .

Then the eigenfunctions of the modified Laplacian on M,

∆M − ξR =
∂2

∂r2
+
d

r

∂

∂r
+
ξd(d− 1)

r2
+

1
r2
(
∆N − ξR̂

)
,

are again of the form (3.2.4) with Y replaced by Y and

ν2 = λ̄2 + d(d− 1)
(
ξd − ξ

)
. (3.2.7)

This shows that also technically the addition of a coupling, namely of ξ = ξd,
might be useful in that the index ν is simply ν = λ̄.

In the general developments to come, we assume that ν ≥ 1/2 in order to
avoid for all values of d the appearance of types of solutions other than (3.2.4),
as, e.g., Jν replaced by Nν , which otherwise could be square integrable, too.

Let us first proceed without specifying the base manifold N and let us see
how far the analysis can be taken. Dirichlet boundary conditions may still
easily be posed and read

Jν(α) = 0. (3.2.8)

Robin boundary conditions in the present context are(
∂

∂r
− S

)
φk(r,Ω) |r=1 = 0

with a function S ∈ C∞(N ). (A detailed discussion of general Robin boundary
conditions is given in Section 4.2.) In order that the variables can easily be
separated in the boundary conditions we need to assume S = const and in
this case Robin boundary conditions read

uJν(α) + αJ ′ν(α) = 0 (3.2.9)

with u = 1− D
2 −S ∈ IR. The case S = 0 is referred to as Neumann boundary

conditions.
Our focus is again on the zeta function in this context. As we have seen in

the calculation in three dimensions, the summation over l led to a zeta func-
tion, namely ζH(s; 1/2), closely related to the zeta function of the boundary
Laplacian. This suggests the following definition. Let d(ν) be the number of

                      



linearly independent scalar harmonics on N . Then we introduce the base zeta
function by

ζN (s) =
∑

d(ν)ν−2s =
∑

d(ν)
(
λ̄2 + d(d− 1)(ξd − ξ)

)−s
, (3.2.10)

and we anticipate this to be the central object to state the asymptotic contri-
butions. As mentioned, this definition is clearly motivated by the calculation
in three dimensions where 2ζH(2s− 1; 1/2) plays the role of ζN (s).

Our first aim will be to express the whole zeta function on M,

ζM(s) =
∑

α−2s,

as far as possible in terms of this quantity. That is, we seek to replace analysis
on the cone by that on its base in the manner of Cheeger for the infinite cone,
[106].

We start with Dirichlet boundary conditions. The discussion for Robin con-
ditions will turn out to be virtually identical.

Following the analysis of the previous section the starting point is again the
representation of the zeta function in terms of a contour integral

ζM(s) =
∑

d(ν)
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
lnJν(k),

where the anticlockwise contour γ must enclose all the solutions of (3.2.8) on
the positive real axis.

As we have already established, it is very useful to split the zeta function
into two parts,

ζM(s) = Z(s) +
N∑

i=−1

Ai(s). (3.2.11)

The steps following eq. (3.1.9) can be repeated identically and the different
parts are determined to be

Z(s) =
sin(πs)
π

∑
d(ν)

∞∫
m/ν

dz
[
(zν)2 −m2

]−s × (3.2.12)

∂

∂z

(
ln
(
z−νIν(zν)

)
− ln

[
z−ν√
2πν

eνη

(1 + z2)
1
4

]
−

N∑
n=1

Dn(t)
νn

)
,

and (for m = 0)

A−1(s) =
1

4
√
π

Γ
(
s− 1

2

)
Γ(s+ 1)

ζN (s− 1/2) , (3.2.13)

A0(s) = −1
4
ζN (s), (3.2.14)



Ai(s) = − 1
Γ(s)

ζN (s+ i/2)
i∑

b=0

xi,b
Γ (s+ b+ i/2)

Γ (b+ i/2)
. (3.2.15)

These results can be read from eqs. (3.1.14), (3.1.18) and (3.1.26) once the
definition (3.2.5) for ν2 is used and 2ζH(2s − 1; 1/2) is replaced by the base
zeta function. Considering the asymptotics of the integrand in eq. (3.2.12) and
by having in mind that the ν2 are eigenvalues of a second-order differential
operator, see eqs. (3.2.3) and (3.2.5), the function Z(s) is seen to be analytic
on the strip (d− 1−N)/2 < <s.

As is clearly apparent in eqs. (3.2.13)—(3.2.15), base contributions are sep-
arated from radial ones. The fact that a generalized cone with metric (3.2.1)
is considered is completely encoded in the numerical multipliers xi,b. The an-
alytical structure is made very explicit and the result is very well organized
by the introduction of the base zeta function. For cases where ζN (s−1/2) has
a pole at s = 0, ζM(s) will also have a pole at s = 0,

Res ζM(0) = −1
2
Res ζN (−1/2). (3.2.16)

When N has no boundary, this might happen for d odd whereas for ∂N 6= ∅
this will generically be the case. This pole leads to the situation with a (ln t)-
term in the asymptotic expansion of the heat kernel and is a result of the
conical singularity. To see this simply use eq. (2.1.12) and

1∫
0

dt ts−1 ln t = − 1
s2
.

Similar comments hold for spinor fields and forms considered later although
we will not mention this pole structure again.

In order to treat Robin boundary conditions, only a few changes are neces-
sary. The boundary condition now involves Bessel functions and its derivatives
and in addition to expansion (3.1.10) we need [334, 2]

I ′ν(νz) ∼
1√
2πν

eνη(1 + z2)1/4

z

[
1 +

∞∑
k=1

vk(t)
νk

]
, (3.2.17)

with the vk(t) determined by

vk(t) = uk(t) + t(t2 − 1)
[
1
2
uk−1(t) + tu′k−1(t)

]
.

This shows vk(t) is a polynomial in t. Instead of the expansion eq. (3.1.12),
we need now

ln

[
1 +

∞∑
k=1

vk(t)
νk

+
1−D/2− S

ν
t

(
1 +

∞∑
k=1

uk(t)
νk

)]
∼

∞∑
n=1

Mn(t, u)
νn

and the polynomials Mn(t, u) have the same structure as the analogous poly-



nomials Dn(t),

Mn(t, u) =
n∑
b=0

zn,b t
n+2b. (3.2.18)

Next, we introduce again a split as in eq. (3.2.11) with ARi (s) ordered accord-
ing to the order of the asymptotic expansion. The upper index R indicates
that these are the results for Robin boundary conditions. It is then immedi-
ate that AR−1(s) = A−1(s) and AR0 (s) = −A0(s). Furthermore, the ARi (s) are
simply given by eq. (3.3.15) once the xi,b is replaced by zi,b. In addition, we
find

ZR(s) =
sin(πs)
π

∑
d(ν)

∞∫
m/ν

dz
[
(zν)2 −m2

]−s ×
∂

∂z

(
ln ((1−D/2− S)Iν(zν) + zνI ′ν(zν))

− ln
[√

ν

2π
eνη(1 + z2)

1
4

]
−

N∑
n=1

Mn(t, u)
νn

)
.

For Robin boundary conditions some attention is needed when shifting
the contour. A result going back to Dixon [131] and which is summarized
in Watson [412] states that for A,B ∈ IR and ν > −1, the combination
AJν(z) + BzJ ′ν(z) has real zeroes only if A/B + ν ≥ 0. If A/B + ν < 0 two
purely imaginary zeroes exist. So in the notation of eq. (3.2.9), there will be
imaginary zeroes for S > 1+ν−D/2 and for convenience we restrict attention
to S ≤ 1 + ν −D/2. This will be sufficient for our purposes.

This concludes our consideration of a general base manifold N because
without any knowledge of λ̄2 the base zeta function ζN cannot be analysed
further.

So let us now see how far we can go when specializing to a “simple” base
manifold, where simple might be defined to mean cases for which the eigen-
values λ are known. Examples that come immediately to mind are the sphere
or the torus.

For the unit sphere the harmonics on N are the spherical harmonics Yl+D/2
(Ω) with eigenvalues [175]

λ2
l = l(l + d− 1) =

(
l +

d− 1
2

)2

−
(
d− 1

2

)2

, l ∈ IN0. (3.2.19)

Each eigenvalue λl is

d(l) = (2l + d− 1)
(l + d− 2)!
l!(d− 1)!

times degenerate. In taking conformal coupling ξd = (d − 1)/(4d) and with
R̂ = d(d − 1) the scalar curvature of the sphere, in eq. (3.2.6) we obtain the



usual simplification (see [298] for d = 2)

ν2 =
(
l +

d− 1
2

)2

.

In this case the base zeta function is

ζN (s) =
∞∑
l=0

(2l + d− 1)
(l + d− 2)!
l!(d− 1)!

(
l +

d− 1
2

)−2s

.

The degeneracy can be written as

d(l) =
(
l + d− 1
d− 1

)
+
(
l + d− 2
d− 1

)
,

and it is seen immediately that ζN (s) is a sum of Barnes zeta functions [35, 34]
defined as

ζB(s, b) =
∞∑
~m=0

1
(b+m1 + ...+md)s

=
∞∑
l=0

(
l + d− 1
d− 1

)
(l + b)−s. (3.2.20)

(Some basic properties of Barnes zeta functions as their residues and particular
function values are derived in Appendix A.) In detail we find the relation

ζN (s) = ζB

(
2s,

d+ 1
2

)
+ ζB

(
2s,

d− 1
2

)
. (3.2.21)

A slightly more complicated situation is if N is not a unit d-sphere but a
sphere of radius a. In this case the resulting manifold M is not flat; instead, a
distortion which exhibits itself as a solid angle deficit at the origin is produced.
The resulting manifold is a bounded version of the simplified global monopole
introduced by Sokolov and Starobinsky [386] and discussed more physically
by Barriola and Vilenkin [36].

The metric
ds2 = dr2 + a2r2dΩ2,

is conformal to the (Euclidean) Einstein universe IR+ × Sda ,

ds2 = e−2y
(
dy2 + a2dΩ2), y = − ln r.

This conformal relation allows us to obtain the nonzero curvature components
in terms of those on the unit sphere (see (3.2.2)),

Rbcfe =
1− a2

a2r2
(
δbfδ

c
e − δbeδ

c
f

)
,

and thus

R = d(d− 1)
1− a2

a2r2
.



As explained earlier, for R̂ constant the mode decomposition goes through
exactly as in the flat case except that the order of the Bessel function acquires
an extra shift as given in (3.2.6),

ν2 =
λ2

a2
+

(d− 1)2

4
+ ξd(d− 1)

1− a2

a2
.

Here, λ2 are the eigenvalues of the Laplacian on the unit d-sphere and using
their explicit form (3.2.19) we find

ν2 =
(l + (d− 1)/2)2

a2
+ d(d− 1)

1− a2

a2

(
ξ − ξd

)
.

Again, for conformal coupling ξ = ξd we obtain the simplification

ν =
1
a

(
l +

d− 1
2
)
, l = 0, 1, 2 . . . (3.2.22)

In the latter case the base zeta function is obtained from the unit sphere zeta
function, eq. (3.2.21), just by a scaling of a2s. In the case of general coupling
ξ, we encounter the following type of zeta function [138]

ζB(s, α, β|~r) = a2s
∞∑
~m=0

1
[(~m · ~r + α)2 + β]s

. (3.2.23)

For the example of the simplified global monopole with ~r = (1, 1, ..., 1), α =
(d− 1)/2, and β = d(d− 1)(1− a2)(ξ− ξd), we have in analogy to eq. (3.2.21)

ζN (s) = ζB(s, α, β|~r) + ζB(s, α+ 1, β|~r).

Clearly, an expansion in terms of the Barnes zeta functions (3.2.20) is possible.
As a final example, if we take the (for simplicity) equilateral torus as a base

manifold, the harmonics are simply

ei(x1n1+...+xdnd), ~n ∈ ZZd,

and for conformal coupling the index ν equals

ν =
(
n2

1 + ...+ n2
d

)1/2
.

Here we encounter generically the situation with ν = 0, as we do when con-
sidering the two-dimensional disc. This mode has to be dealt with separately
as described below.

All other contributions are adequately summarized using the base zeta func-
tion

ζN (s) = E(2s),

where the Epstein zeta function [173]

E(s) =
∑

~n∈ZZd
/{~0}

(n2
1 + ...+ n2

d)
−s (3.2.24)



has been introduced. The properties of E(s) essential for our purposes are
provided in Appendix A.

For ν = 0 we cannot use the uniform asymptotic expansion of the Bessel
function, as, e.g., (3.1.10) for Dirichlet boundary conditions. So let us see how
we can proceed for this case. We take Dirichlet boundary conditions as an
example and consider the contribution

ζ0(s) =
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
lnJ0(k)

=
sinπs
π

∞∫
m

dz (z2 −m2)−s
∂

∂z
ln I0(z), (3.2.25)

where the z → m and z → ∞ behavior guarantees that the last integral
exists in the strip 1/2 < <s < 1. The basic idea to analytically continue the
integral (3.2.25) is the same as before, but now we simply subtract and add
the behavior for large arguments of I0(z). For z →∞ we have the expansion
[220]

Iν(z) ∼
ez√
2πz

∞∑
l=0

(−1)l

(2z)l
Γ(ν + 1/2 + l)
l!Γ(ν + 1/2− l)

,

and so

ln Iν(z) ∼ z − 1
2

ln(2πz) +
∞∑
j=1

hj(ν)z−j , (3.2.26)

whereby the hj(ν) are defined. Subtracting terms up to the order z−N in the
above sum,

Z0(s) =
sinπs
π

∞∫
m

dz (z2 −m2)−s ×

∂

∂z

ln I0(z)− z +
1
2

ln(2πz)−
N∑
j=1

hj(0)z−j

 ,

the integrand behaves as z−2s−N−1 for z → ∞ and so the integral exists for
−N/2 < <s < 1. The resulting asymptotic contributions are all of the type

∞∫
m

dz (z2 −m2)−sz−j =
1
2
m1−j−2sΓ(1− s)Γ

(
s+ j−1

2

)
Γ
(
j+1
2

) ,

and are easily determined. Note that the above procedure is not suitable for
small masses, especially for m → 0, because the large-z asymptotics (3.2.26)
is singular for z → 0. So in the range m2 � 1 we subtract the asymptotics
(3.2.26) only in the interval z ∈ [1,∞) and leave the integral for z ∈ [m, 1]



unchanged. The integral needed to provide the analytical continuation for the
asymptotic contributions reads then

∞∫
1

dz (z2 −m2)−sz−j =
1

j + 2s− 1 2F1

(
s,
j − 1

2
+ s;

j + 1
2

+ s;m2

)
,

and the limit m→ 0 is trivially performed.
In summary, we have reduced the analysis of the zeta function on the gener-

alized cone to the one on the base manifold N , which for specific manifolds N
(see the examples above) can be given very explicitly in terms of known and
well-studied zeta functions. As a result residues, function values and deriva-
tives at whatever values of s needed can be calculated in the way it was
possible for the case of the three-dimensional ball, eq. (3.1.26).

3.3 Spinor field with global and local boundary condi-
tions

Let us now proceed with the Dirac equation on the generalized cone and
analyse the zeta function ζM(s) associated with the square of the Dirac op-
erator [143]. We will first fix the γ-matrices generating a Clifford algebra in
D-dimensions. In what follows it will be important to distinguish between
γ-matrices of different dimensions and we need some notation. We denote by
γ

(D)
j , j = 1, ..., D, the γ-matrices projected along some D-bein system ej . Let

us take D to be even dimensional (there is a corresponding decomposition for
D odd). In that case, the γ’s are defined inductively by

γ(D)
a =

(
0 iγ

(D−2)
a

−iγ(D−2)
a 0

)
, a = 1, 2, . . . D − 1, (3.3.1)

γ
(D)
D = −i

(
0 1
1 0

)
, γ

(D)
D+1 = −i

(
1 0
0 −1

)
starting from

γ
(2)
1 = −iσ1, γ

(2)
2 = −iσ2, γ

(2)
3 = −iσ3,

with the Pauli matrices

σ1 =
(

0 i
−i 0

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

These anti-Hermitian matrices (3.3.1) satisfy the Dirac anti-commutation for-
mula

γ
(D)
j γ

(D)
l + γ

(D)
l γ

(D)
j = −2δjl.



For convenience we will write in the following Γr = γ
(D)
D and

Γa := γ(D)
a =

(
0 iγ

(D−2)
a

−iγ(D−2)
a 0

)
=:
(

0 iγa
−iγa 0

)
,

Γ̃ := (i)D/2γ(D)
1 ...γ

(D)
D =

(
1 0
0 −1

)
.

Here, Γ̃ is the generalization of “γ5” to even dimension. As already done in the
above equations, we will use the convention that indices from the beginning
of the alphabet range from 1, ..., d and parameterize an orthonormal frame
of the boundary of the manifold. Instead, the indices j, k, l, ..., range from
1, ..., D and parameterize an orthonormal frame ej of the manifold M. The
Christoffel symbols relative to the orthonormal frame are

Γjkl =< ∇ej
ek, el >= −Γjlk. (3.3.2)

The covariant derivative ∇jψ of a spinor ψ along the vielbein ej is ∇j =
ej + ωj , with the connection one-form ωj of the spin-connection

ωj =
1
2
ΓjklΣkl, (3.3.3)

where as before Σkl = [Γk,Γl]/4. In this notation the eigenvalue equation for
the Dirac operator on M is

Γj∇jψ± = ±kψ±. (3.3.4)

In order to separate the modes in polar coordinates, note that in the given
geometry (3.2.1) of a generalized cone the nonvanishing coefficients may be
expressed as

Γabc =
1
r
Γ̂abc, Γarb =

1
r
δab,

Γ̂abc being the Christoffel symbols of the baseN . As a result the Dirac operator
takes the form

Γj∇jψ =
(
∂

∂r
+

d

2r

)
Γrψ +

1
r

(
0 iγa∇̂a

−iγa∇̂a 0

)
ψ,

with the covariant derivative ∇̂a of the base manifold N with metric dΣ2.
The nonzero modes are separated in polar coordinates in standard fashion

to be regular at the origin,

ψ
(+)
± =

C

r(d−1)/2

(
iJλn+1/2(kr)Z

(n)
+ (Ω)

±Jλn−1/2(kr)Z
(n)
+ (Ω)

)
, (3.3.5)

ψ
(−)
± =

C

r(d−1)/2

(
±Jλn−1/2(kr)Z

(n)
− (Ω)

iJλn+1/2(kr)Z
(n)
− (Ω)

)
.

Here the Z(n)
± (Ω) are the normalized spinor modes on the base manifold N



satisfying the intrinsic equation

γa∇̂aZ(n)
± (Ω) = ±λnZ(n)

± (Ω). (3.3.6)

C is a radial normalization factor depending on the boundary conditions con-
sidered. In order that the boundary condition leads to a self-adjoint operator,
it is necessary that

(ψ1,Γj∇jψ2)− (Γj∇jψ1, ψ2) =
∫
M

dxψ∗1Γj∇jψ2 −
∫
M

(Γj∇jψ1)∗ψ2

=
∫
∂M

dyψ∗1Γrψ2 = 0,

with the Riemannian volume elements dx and dy of M, respectively, ∂M.
Two possible conditions are spectral (global) boundary conditions, introduced
by Atiyah, Patodi and Singer [15, 16, 17], and local boundary conditions as
a special case of mixed boundary conditions. Spectral boundary conditions
have already been discussed in Section 2.3; mixed boundary conditions will
be discussed in detail in Section 4.5.

Spectral boundary conditions in the present context are imposed as follows.
The operator B1, eq. (2.3.38), in the present case is

B1 = −ΓrΓa∇a.

The covariant derivative ∇a is related to the covariant derivative ∇̂a with
respect to the boundary by

∇a =
(
∇̂a 0
0 ∇̂a

)
+

1
2
KabΓrΓb.

We compute

B1 = −ΓrΓa

((
∇̂a 0
0 ∇̂a

)
+

1
2
KabΓrΓb

)
=
(
γa∇̂a + 1

2K 0
0 −γa∇̂a + 1

2K

)
.

Clearly, B1 is self-adjoint with respect to the structure on the boundary. We
choose Θ1 = K/2 and so

A1 =
(
γa∇̂a 0

0 −γa∇̂a

)
.

Spectral boundary conditions amount to suppress at the boundary the modes
of A1 with negative eigenvalues (see, e.g., [15, 207, 188, 331, 360, 295, 317, 330,
205, 121] and note our formulation here is with respect to the exterior normal
to the boundary). This condition guarantees that the eigenmodes of (3.3.4)
are square-integrable on the elongated manifold obtained from the generalized
cone by extending the narrow collar of approximate product metric dr2 +dΩ2

                      



just outside the surface to values of r ranging from 1 to ∞. From (3.3.1) and
(3.3.6) it is easily seen that the eigenstates of A1 are

A1

(
Z

(n)
+

Z
(n)
−

)
= λn

(
Z

(n)
+

Z
(n)
−

)
, A1

(
Z

(n)
−

Z
(n)
+

)
= −λn

(
Z

(n)
−

Z
(n)
+

)
.

Suppressing the negative modes ofA1 at the boundary then leads, from (3.3.5),
to the condition Jλn−1/2(k) = 0.

Regarding ζM(s), looking at the previous calculations of Section 3.2, this
suggests the definition of the base zeta function

ζN (s) =
∑

d(ν)ν−2s

with ν = λn − 1/2 and d(ν) is four times the degeneracy of λn, the factor
of four coming from the four types of solutions in (3.3.5). In terms of ζN (s),
eqs. (3.2.13)—(3.2.15) as well as eq. (3.2.12) remain valid.

The example is easily extended to include a potential term

U(r) = − i
r

(
0 a
b 0

)
. (3.3.7)

Instead of (3.3.5), the eigenmodes of Γj∇j + U are this time

ψ
(+)
± =

C

r(d−1+a+b)/2

(
iJλn+(b−a+1)/2(kr)Z

(n)
+ (Ω)

±Jλn+(b−a−1)/2(kr)Z
(n)
+ (Ω)

)
, (3.3.8)

ψ
(−)
± =

C

r(d−1+a+b)/2

(
±Jλn+(a−b−1)/2(kr)Z

(n)
− (Ω)

iJλn+(a−b+1)/2(kr)Z
(n)
− (Ω)

)
. (3.3.9)

Proceeding as before, for B1 we compute

B1 =
(
γa∇̂a + 1

2K + b 0
0 −γa∇̂a + 1

2K + a

)
.

We put a = −b such that ψ = ψ∗; furthermore, Θ1 = K/2 such that D with
spectral boundary conditions is self-adjoint. For this choice of A1, the modes
(3.3.8) and (3.3.9) are eigenmodes of D∗D. The boundary condition imposed
on (3.3.8) yields

Jλn−a−1/2(k) = 0,

whereas from (3.3.9) we find

Jλn+a−1/2(k) = 0.

For the special case of the ball, the Z(n)
± are the well-known spinor modes

on the unit d-sphere (some modern references are [25, 95, 257]) and the eigen-
values λn are

λn =
(
n+

d

2

)
, n ∈ IN0.

                      



Each eigenvalue is greater than or equal to 1/2 and has degeneracy

1
2
ds

(
d+ n− 1

n

)
.

The dimension, ds, of ψ–spinor space is 2D/2 for D even. For the full degen-
eracy this means

d(ν) = 2ds

(
n+D − 2
D − 2

)
and the relevant boundary zeta function is

ζN (s) =
∞∑
n=0

d(ν)
(
n+

D

2
− 1± a

)−2s

,

the case a = 0 corresponding to the situation without potential. But, as before,
this can be expressed immediately as a Barnes zeta function

ζN (s) = 2dsζB(2s,D/2− 1± a) (3.3.10)

and a very explicit representation of ζM(s) is obtained.
For mixed boundary conditions [68, 205, 322, 293, 292, 299] we apply Π−ψ =

0 at r = 1 where the projection is

Π− =
1
2
(
1− Γ̃Γr

)
. (3.3.11)

These boundary conditions are similar to the MIT bag boundary conditions
discussed in the context of quantum chromodynamics [108, 107]; see Section
7.2. More general boundary conditions depending on an angle θ are also dis-
cussed in the literature [355, 81, 409, 250, 420] in the context of the chiral bag
model and chiral symmetry breaking. We will comment on these boundary
conditions in the Conclusions.

Explicitly the projection is

Π− =
1
2

(
1− Γ̃Γr

)
=

1
2

(
1 i1
−i1 1

)
,

and so for ψ(+)
± ,

Jλn+1/2(k) = ∓Jλn−1/2(k),

and for ψ(−)
± ,

Jλn−1/2(k) = ∓Jλn+1/2(k).

Thus the implicit eigenvalue equation is

J2
ν (k)− J2

ν+1(k) = 0, (3.3.12)

and for the zeta function we write in the same manner as before

ζM(s) =
∑

d(ν)
∫
γ

dk

2πi
k−2s ∂

∂k
ln
(
k−2ν [J2

ν (k)− J2
ν+1(k)]

)
. (3.3.13)

                      



Shifting the contour to the imaginary axis and rewriting the Bessel functions
in (3.3.13) as combinations of Bessel functions with only one index [220], we
may show that

ζνM(s) =
sin(πs)
π

∞∫
0

dz(zν)−2s ∂

∂z
ln
(
z−2ν

[
I
′2
ν (zν)

+
(

1 +
1
z2

)
I2
ν (zν)−

2
z
Iν(zν)I ′ν(zν)

])
.

Using the asymptotics (3.1.10) and (3.2.17) for the Bessel functions above,
the relevant asymptotics can be found. With the notation

Σ1 = 1 +
∞∑
k=1

uk(t)
νk

, Σ2 = 1 +
∞∑
k=1

vk(t)
νk

,

it reads

ln
{
I ′

2
ν(zν) +

(
1 +

1
z2

)
I2
ν (zν)−

2
z
Iν(zν)I ′ν(νz)

}
∼ ln

{
(1 + z2)1/2e2νη

2πνz2

[
Σ2

1 + Σ2
2 − 2tΣ1Σ2

]}
= ln

{
(1 + z2)1/2e2νη

2πνz2
2(1− t)

}
+ ln

{
1

2(1− t)
[
Σ2

1 + Σ2
2 − 2tΣ1Σ2

]}
.

For that reason we introduce the polynomials

ln
{

1
2(1− t)

[
Σ2

1 + Σ2
2 − 2tΣ1Σ2

]}
=

∞∑
j=1

Dj(t)
νj

.

These are a bit different from before,

Di(t) =
2i∑
a=0

xi,at
a+i,

which results in the following final form of the asymptotic parts of the zeta
function,

A−1(s) =
1

2
√
π

Γ(s− 1/2)
Γ(s+ 1)

ζN (s− 1/2) ,

A0(s) = − 1
2
√
π

Γ(s+ 1/2)
Γ(s+ 1)

ζN (s) , (3.3.14)

Ai(s) = − 1
Γ(s)

ζN (s+ i/2)
2i∑
a=0

xi,a
Γ (s+ (i+ a)/2)

Γ ((i+ a)/2)
.



The integral part this time clearly reads

Z(s) =
sin(πs)
π

∑
dν

∞∫
0

dz (zν)−2s ∂

∂z

(
ln
(
I2
ν (zν) + I2

ν+1(zν)
)

− ln
[
(1 + z2)1/2e2νη

πνz2
(1− t)

]
−

N∑
j=1

Dj(t)
νj

)
. (3.3.15)

For the ball we get ν = n+D/2− 1 and the degeneracy is

d(ν) = ds

(
n+D − 2
D − 2

)
.

So also here the relevant base zeta function is the Barnes zeta function,

ζN (s) = dsζB(2s,D/2− 1). (3.3.16)

We could include a potential as in (3.3.7) with straightforward modifications
to the analysis.

In summary, for the spinor field the analysis of the zeta function on the
generalized cone also has been reduced to the one on the base manifold. For
a simple basis very explicit results can be given along the lines described pre-
viously.

3.4 Forms with absolute and relative boundary condi-
tions

To continue our study of zeta functions on the generalized cone let us con-
sider the de Rham Laplacian

∆M = dδ + δd

on p-forms Λp(M) on M. Here d is the exterior derivative, d : Λp(M) →
Λp+1(M), and δ is the coderivative, δ : Λp(M) → Λp−1(M). In order to give
a brief derivation of the eigenforms of ∆M let us pause for a moment to sum-
marize basic properties of operators acting on forms and to fix conventions.

To define the coderivative, introduce the star operator ? : Λp(M) → Λl(M),
l = D − p, by

?(Θi1 ∧ ... ∧Θip) =
1
l!
|g|1/2gi1j1 ...gipjpεj1...jpk1...kl

Θk1 ∧ ... ∧Θkl ,



with the totally antisymmetric tensor

εµ1µ2...µm =

+1 if (µ1µ2...µm) is an even permutation of (1, 2, ...,m)
−1 if (µ1µ2...µm) is an odd permutation of (1, 2, ...,m)

0 otherwise.

The star operator is an isomorphism and we have for Θ ∈ Λp(M),

? ?Θ = (−1)p(D−p)Θ.

In terms of the ?-operator the coderivative reads

δ = (−1)D(p+1) ? d ? .

The first step in our analysis is to study the structure of the eigenforms of the
de Rham Laplacian, ∆M, on the generalized cone [106, 105]. As a first idea
we use separation of variables to reduce the analysis on ∆M to the problem
on the base N as we succeeded in doing for scalars and spinors. Using the
separation, a generic p-form on M will have the form

Θ(r, x) = g(r)φ(x) + f(r)dr ∧ ω(x),

with φ(x) ∈ Λp(M), ω(x) ∈ Λp−1(M), and x coordinates on N . To determine
the action of the de Rham Laplacian ∆M on the form Θ(r, x), we need the
basic ingredients

?φ(x) = (−1)prd−2pdr ∧ ?̃φ(x), (3.4.1)
?(dr ∧ ω(x)) = rd+2−2p?̃ω. (3.4.2)

Furthermore

δΘ(r, x) =
1
r2
g(r)δ̃φ(x) +

(
f ′(r) +

d− 2p+ 2
r

f

)
ω(x)

− 1
r2
f(r)dr ∧ δ̃ω(x). (3.4.3)

The ?̃, δ̃ (and below d̃) denote the operators defined on the manifoldN . After a
straightforward calculation using only the definitions and eqs. (3.4.1)—(3.4.3)
we get,

∆Θ(r, x) =
[
g′′(r) +

1
r
(d− 2p)g′(r)

]
φ(x)

+
1
r2
g(r)∆Nφ(x)− 2

r3
g(r)dr ∧ δ̃φ(x) (3.4.4)

+
[
f ′′(r) +

d− 2p+ 2
r

f ′(r)− d− 2p+ 2
r2

f(r)
]
dr ∧ ω(x)

+
2
r
fd̃ω(x) +

1
r2
f(r)dr ∧∆Nω(x).

Now let φNp be coexact eigenfunctions of ∆N ,

∆Nφ
N
p (x) = −µ(p)φNp , (3.4.5)



and hNp the harmonic forms,

∆Nh
N
p = 0. (3.4.6)

Exact eigenfunctions of ∆N are expressed through exterior derivatives of co-
exact ones by the Hodge decomposition theorem and are not considered ex-
plicitly for this reason (see below).

In this notation there are four basic types of eigenforms with nonzero eigen-
values, −α2,

φM(1)
p =

Jν(p)(αr)
r(d−1−2p)/2

φNp , (3.4.7)

φM(2)
p =

Jν(p−1)(αr)
r(d+1−2p)/2

d̃φNp−1 +
(
Jν(p−1)(αr)
r(d+1−2p)/2

)′
dr ∧ φNp−1, (3.4.8)

φM(3)
p =

1
rd−2p

(
r(d+1−2p)/2 Jν(p−1)(αr)

)′
d̃φNp−1

−
Jν(p−1)(αr)
r(d+3−2p)/2

dr ∧ δ̃d̃φNp−1, (3.4.9)

φM(4)
p =

Jν(p−2)(αr)
r(d+1−2p)/2

dr ∧ d̃φNp−2. (3.4.10)

Here we have the separation of variables relation

ν(p) =
(
µ(p) + ((d− 1)/2− p)2

)1/2 (3.4.11)

and we are assuming that ν ≥ 1 so that the “negative” modes ∼ J−ν do
not arise. With this condition it is guaranteed that the Hodge decomposition
theorem holds [106].

In addition, there are modes (‘zero modes’) whose N part is harmonic,

φM(E)
p =

JνE(p)(αr)
r(d−1−2p)/2

hNp (3.4.12)

and

φM(O)
p =

(
JνO(p)(αr)
r(d+1−2p)/2

)′
dr ∧ hNp−1, (3.4.13)

with

νE(p) = |(d− 1)/2− p| = νE(d− 1− p),
νO(p) = |(d+ 1)/2− p| = νE(d− p). (3.4.14)

At first glance the above eigenforms might seem complicated, but in fact they
are an immediate consequence of the action of ∆M, eq. (3.4.4), and the Hodge
decomposition theorem. The Hodge decomposition theorem states that every
form ω on a compact Riemannian manifold can be uniquely written as a sum

ω = dα+ δβ + ωh



of an exact form (dα), a coexact form (δβ), and a harmonic form (∆ωh = 0)
[411]. Eq. (3.4.4) shows immediately that with the ansatz g(r)φ(x) with a
coclosed form φ(x) the eigenvalue equation reduces to a differential equation
for g(r) which is of Bessel type. This leads to solutions (3.4.7) and (3.4.12).
The same comment holds for f(r)dr ∧ ω(x), once ω(x) is closed, which gives
the solutions (3.4.10) and (3.4.13), taking into account the comment below
eq. (3.4.6). Since d and δ both commute with ∆M, it follows that for Θ a
p-eigenform, also dΘ and δΘ are (p+ 1), respectively, (p− 1)-eigenforms with
the same eigenvalues. This provides φM(2)

p = dφ
M(1)
p−1 and φ

M(3)
p = δφ

M(4)
p+1 .

No other solutions are possible [106, 105]. In summary we have shown the
basic structure of the eigenforms of the de Rham Laplacian. As is clear from
the construction, on M, types 1, E and 3 are coexact and types 2, O and 4
are exact.

For the bounded, generalized cone, conditions are to be set at r = 1 such
that the de Rham Laplacian is self-adjoint with respect to the inner product

(ω, η)L2(M) :=
∫
ω ∧ ?η =:

∫
M

(ω, η)

for two p-forms ω and η. Two possible choices are absolute and relative bound-
ary conditions. A description of these boundary conditions as a special case
of mixed boundary conditions and additional details are provided in Section
4.5.

Absolute boundary conditions are [104, 208](
φMa...b

)′∣∣∣∣
N

= 0, φMra...b

∣∣∣∣
N

= 0 (3.4.15)

and have to be applied to the six types separately.
Since φNp , hNp are pure N forms, it is easily shown that types 1, 2, E and O

satisfy Neumann (Robin) and types 3 and 4 Dirichlet conditions. For type 3
we have to use the differential equation (3.1.4) for Bessel functions to derive

∂r

(
1

rd−2p

(
r(d+1−2p)/2Jν(p−1)(αr)

)′)
|r=1 =

(
ν(p− 1)− α2

)
Jν(p−1)(αr).

More precisely, the Robin conditions are for type 1

∂r
(
rp−(d−1)/2Jν(p)(αr)

)∣∣∣∣
N

= 0, (3.4.16)

so that the Robin parameter, see eq. (3.2.9), is u = ua(p) = p − (d − 1)/2.
The same holds for type E and the parameter for type 2 and O is ua(p− 1).

Relative boundary conditions are obtained by dualizing, which means the
application of the boundary conditions (3.4.15) not to φMp but to ?φMp . In the
present context this amounts to(

∂r + d+ 2− 2p
)
φMra...b

∣∣∣∣
N

= 0, φMa...b

∣∣∣∣
N

= 0, (3.4.17)

                      



which is seen immediately from (3.4.1) and (3.4.2). Now types 1, 2, E and
O satisfy Dirichlet and types 3 and 4 Robin conditions. For type 3, Robin
conditions read

∂r
(
r(d+1)/2−pJν(p−1)(αr)

)∣∣∣∣
N

= 0, (3.4.18)

with the Robin parameter u = ur(p) = (d + 1)/2 − p = ua(d − p). The
parameter for type 4 is ur(p− 1).

We denote the coexact degeneracies on N by d(p) and remark that the
exact degeneracies, dex(p), and eigenvalues, µex(p), are given by

dex(p) = d(p− 1), µex(p) = µ(p− 1). (3.4.19)

This is easily seen in general using again the commutativity of δ and ∆M.
The structure of the eigenforms shows that the degeneracies of types 1, 2,

3 and 4 are d(p), d(p− 1), d(p− 1) and d(p− 2), respectively.
The previous subsections made clear that the relevant construct is this time

the base zeta function

ζNp (s) =
∑ d(p)

ν(p)2s
=
∑ d(p)(

µ(p) + ((d− 1)/2− p)2
)s . (3.4.20)

Sometimes it is notationally convenient to include “zero modes” and then we
have

ζ̃Np (s) = ζNp (s) +
βNp

νE(p)2s
≡
∑ d̃(p)

ν(p)2s
, (3.4.21)

which defines d̃(p) and where βNp is the p-th Betti number of N . The summa-
tions, here and later, are over the mode labels, which are not always explicitly
displayed.

Hodge duality on N can be applied to yield the coexact relations

d(d− 1− p) = d(p) and µ(d− 1− p) = µ(p), (3.4.22)

whence

ν(d− 1− p) = ν(p) (3.4.23)

and therefore, for the coexact zeta function,

ζNd−1−p(s) = ζNp (s). (3.4.24)

These relations are seen to hold in general just by remembering that ? com-
mutes with ∆ and that the dual of a coexact p-eigenform is an exact (d− p)
eigenform, ?δΩ = (−1)d(p+1)d ? Ω. The missing step is then provided by eq.
(3.4.19).

We could equally well present everything in terms of an “exact” base zeta
function. In view of the relations (3.4.19) the connection is simply

ζNex, p(s) = ζNp−1(s).



As before, our main objective is the total zeta function on M. According to
(3.4.7)—(3.4.10), (3.4.12), (3.4.13), it is a combination of exact and coexact
(on M) contributions. Taking into account the number of zero modes on N
we have

ζM+
p (s) =

4∑
i=1

∑
αi

1
α2s
i

+ βNp
∑
αE

1
α2s
E

+ βNp−1

∑
αO

1
α2s
O

, (3.4.25)

where the α2s
i are the eigenvalues of the p-form Laplacian on M for i-type

modes.
Using the analogous eq. (3.4.19) on the manifold M, eq. (3.4.25) can be

written in terms of the coexact zeta function on M, ζMp (s), as

ζM+
p (s) = ζMp (s) + ζMp−1(s), (3.4.26)

the inverse of which is

ζMp (s) =
p∑
q=0

(−1)p−qζM+
q (s).

Eq. (3.4.26) holds for any manifold, in particular the total zeta function is
always the sum of coexact zeta functions.

Using the method explained in the previous sections we can now continue
with the detailed analysis of the coexact zeta function [150]. For absolute
conditions we find,

ζMa,p(s) =
∑∫

γ

dk

2πi
k−2s ∂

∂k

(
d̃(p) ln

(
rua(p)Jν(p)(kr)

)′∣∣∣∣
N

+d(p− 1) ln Jν(p−1)(k)
)
, (3.4.27)

where the details of the contour γ are as already provided. The first term
is the Neumann (Robin) (types 1 and E) and the second term the Dirichlet
(type 3) part. For economy of writing, the degeneracy d̃(p) is introduced so
as to take into account the βNp E-type zero modes on N , eq. (3.4.21). When
p → p − 1, the type 1 contribution becomes a type 2, the type E a type O
and the type 3 a type 4.

For relative conditions, likewise,

ζMr,p(s) =
∑∫

γ

dk

2πi
k−2s ∂

∂k

(
d(p− 1) ln

(
rur(p)Jν(p−1)(kr)

)′∣∣∣∣
N

+d̃(p) ln Jν(p)(k)
)
. (3.4.28)

It is amusing to check in detail Hodge duality on M,

ζM+
a,p (s) = ζM+

r,d+1−p(s), (3.4.29)



which fundamentally arises from the intertwining [208]

?∆M
p,a = ∆M

d+1−p,r ? . (3.4.30)

It is easily seen from (3.4.26) that (3.4.29) is equivalent to the statement
that, under p→ d− p, ζMa,p(s) of (3.4.27) turns into ζMr,p(s) of (3.4.28). This is
readily seen to be the case from the relations (3.4.22) and (3.4.23), if the zero
E modes are set aside. For the contribution coming from the zero E modes in
(3.4.27) an extra consideration is necessary. One has ua(p) = p−(d−1)/2 and
the argument of the logarithm reads explicitly ua(p)JνE(p) + kJ ′νE(p) where
|ua(p)| = νE(p). Let us assume for the moment that ua(p) ≤ 0, and then
use the relation zJ ′ν(z) − νJν(z) = −zJν+1(z) to write the above argument
as −kJνE(p)+1. The factor (−k) does not contribute because it has no zero
inside the contour, γ, and so the contribution is just that of JνE(p)+1. Now
from (3.4.14), νE(p)+1 = νE(d−p) and, taking into account Poincaré duality
on N , βNp = βNd−p, the contribution of the p-form zero modes for absolute
boundary conditions is seen to equal that of the (d− p)-form zero modes for
relative boundary conditions, which was to be shown in order to complete the
demonstration of Hodge duality on M. For ua(p) > 0 use zJ ′ν(z) + νJν(z) =
zJν−1(z) to arrive at the same conclusion.

Given the detailed description in the previous sections it is now completely
clear how to obtain the analytical continuation of the total zeta function
(3.4.25). The asymptotic terms denoted by Ai(s) previously, as in eqs. (3.2.13)-
(3.2.15), are now replaced by a combination of the Dirichlet and Robin results,
where the Robin parameters are provided below eqs. (3.4.16) and (3.4.18).
Instead of writing once more all formulas involved, let us now consider forms
on that cone whose base is a unit d-sphere, d = D − 1; this is on the D-
ball. This will be our main application of the general formalism shown in the
previous sections. As we have seen, it is sufficient to look at coexact forms.

The form zeta functions (3.4.20) on the d-sphere will be needed in order
to find the total zeta function ζM+

p (s). The spectral properties have been
known for some time [203, 42, 255, 253, 115, 361, 169] and the coexact p-form
eigenvalues of the de Rham Laplacian are readily established to be

µ(p, l) =
(
l + (d− 1)/2

)2 − ((d− 1)/2− p
)2
, l = 1, 2, . . . .

We again witness the important simplification of the Bessel function order,
(3.4.11), to the p-independent form

ν(p, l) = l + (d− 1)/2 > (d− 1)/2,

exactly as in the scalar case. As a result, the absolute zeta function (3.4.27)
simplifies to (note the p independence of the index ν)

ζball
a,p (s) =

∑∫
γ

dk

2πi
k−2s ∂

∂k

(
d̃(p) ln

(
rua(p)Jν(kr)

)′∣∣∣∣
r=1



+d(p− 1) ln Jν(k)
)
. (3.4.31)

For the time being let us work at a fixed p. The sphere coexact p-form degen-
eracy is

d(p, l) =
(2l + d− 1)(l + d− 1)!

p!(d− p− 1)!(l − 1)!(l + p)(l + d− p− 1)
. (3.4.32)

We note the symmetry, d(p, l) = d(d−1−p, l) and that d(d, l) = 0. In addition,
there is a zero mode for p = 0 and one for p = d.

Rewrite (3.4.32) as

d(p, l) =
(l + d− 1)!

p!(d− p− 1)!(l − 1)!

(
1

l + p
+

1
l + d− p− 1

)
, (3.4.33)

and consider, first, the sum
∞∑
l=1

(l + d− 1)!
(l − 1)!

zl+(d−1)/2

l + p
, (3.4.34)

with z = exp(−τ) < 1. The idea is that this gives the “square-root” heat
kernel, and the base zeta function of the sphere, (3.4.20), follows by Mellin
transform on τ as in [136, 103].

The generating function for a given form order can be rewritten using the
identity

∞∑
l=1

(l + d− 1)!
(l − 1)!

zl

l + p
= (d− p− 1)!

d∑
m=p+1

(m− 1)!
(m− p− 1)!

z

(1− z)m

which follows easily from recursion.
There is still an overall factor of z(d−1)/2 in (3.4.34) and performing the

Mellin transform produces a series of Barnes zeta functions, giving, after the
addition of the p→ d− p− 1 term, see eq. (3.4.33), the modified coexact zeta
function, (3.4.20), on the sphere as

ζS
d

p (s) =
d∑

m=p+1

(
m− 1
p

)
ζB
(
2s, (d+ 1)/2 | 1m

)
(3.4.35)

+
d∑

m=d−p

(
m− 1

d− p− 1

)
ζB(2s, (d+ 1)/2|1m)

for 0 ≤ p < d. Obviously ζS
d

d (s) = 0. The definition of the Barnes zeta function
is given in eq. (A. 17) and it has to be stressed that different dimensions m
of the summation range are involved.

Alternatively we could expand the degeneracy to give a series of Hurwitz
zeta functions (a series noted in passing by Copeland and Toms, [115], and
frequently used). However, eq. (3.4.35) is formally much simpler and further
expansion, if needed, comes later.



When p = 0, (3.4.35), with the zero mode included according to (3.4.21),
gives the known scalar expression. The first sum reduces to a term that is
cancelled by the zero mode and to a single Barnes zeta function, the result
being,

ζ̃S
d

0 (s) = ζB(2s; (d+ 1)/2 | 1d) + ζB(2s; (d− 1)/2 | 1d).

This is elegantly seen from a rearrangement of (3.4.35) [150], which yields
ζS

d

p (s) as a finite series of scalar zeta functions by means of a recursion relating
a p-form in d dimensions to a (p − 1)-form in (d − 2) dimensions. The series
is (0 ≤ p < (d− 1)/2)

ζ̃S
d

p (s) =
p∑
j=0

(−1)j
(
d− 1− 2j
p− j

)
ζ̃S

d−2j

0 (s) (3.4.36)

+δp,0

(
d− 1

2

)−2s

− (−1)p
(
d− 2p− 1

2

)−2s

and this is one of our basic equations. Duality, (3.4.24), can be used to extend
the range of p.

Together with eq. (3.4.31), for the ball, this reduces the p-form zeta func-
tion to the scalar one, containing a specific combination of Dirichlet and Robin
boundary condition contributions. Again, the analytic structure of the zeta
function associated with the de Rham Laplacian is made completely clear and
the results can be used for the calculation of heat kernel coefficients and func-
tional determinants.

3.5 Oblique boundary conditions on the generalized cone

As a last example on the generalized cone, we consider boundary condi-
tions that involve tangential (covariant) derivatives. Let ∇̂a be the tangential
covariant derivative computed from the induced metric on the boundary. Fur-
thermore, let Γa be an anti-Hermitean bundle endomorphism valued boundary
vector field and S still a Hermitean bundle automorphism. With these defini-
tions, oblique boundary conditions take the form

B = ∇m +
1
2

(
Γa∇̂a + ∇̂aΓa

)
− S. (3.5.1)

The case Γa = 0 reduces to Robin boundary conditions. A particularly simple
example for Γa is Γd = −ig, g a real constant, and Γa = 0 for a = 1, ..., d− 1.
On the generalized cone, the spectral analysis parallels the one described
in Section 3.2 with additional complications due to the occurrence of the
tangential derivative in the boundary condition [148, 149]. The eigenfunctions

                      



of the conformal Laplacian

∆M − d− 1
4d

R =
∂2

∂r2
+
d

r

∂

∂r
+

(d− 1)2

4r2
+

1
r2

∆N

still separate and read

Jν(αr)
r(d−1)/2

exp{i(x1n1 + ...+ xdnd)}, ~n ∈ ZZd , (3.5.2)

with the index

ν =
(
n2

1 + ...+ n2
d

)1/2
.

The eigenvalues α are determined through (3.5.1) by

αJ ′ν(α) + (u+ gnd)Jν(α) = 0, (3.5.3)

where, as before, u = 1−D/2− S when S is chosen constant.
The basic object is again the zeta function of M

ζM(s) =
∑

α−2s .

Proceeding as before, the starting point of the analysis of ζM is the contour
integral representation,

ζM(s) =
∑
~n∈ZZd

∫
γ

dk

2πi
k−2s ∂

∂k
ln (kJ ′ν(k) + (u+ gnd)Jν(k)) , (3.5.4)

where γ must enclose all the solutions of (3.5.3) on the positive real axis.
As explained previously, see below (3.2.24), the index ν = 0 has to be dealt

with separately. Later, we will be interested only in the leading residues of
ζM(s) for this particular example in order to determine heat kernel coefficients
via eq. (2.1.17) and so analyze further only the asymptotic contributions.
Also, given the index ν = 0 does produce its rightmost pole at s = 1/2, the
resulting contribution is associated with a second-order differential operator
in one dimension, so we will omit its contribution. For convenience we will
still use the same notation, ζM(s).

Shifting the contour to the imaginary axis, the zeta function (with the zero
mode ν = 0 omitted, as explained) reads

ζM(s) =
sinπs
π

∑
~n∈ZZd

/{~0}

∞∫
0

dz (zν)−2s ×

∂

∂z
log z−ν

[
zνI ′ν(zν) + (u+ gnd)Iν(zν)

]
. (3.5.5)

As discussed before in detail, the heat kernel coefficients are determined solely
by the asymptotic contributions of the Bessel functions as ν →∞. In the given
consideration care is needed in the counting of the asymptotic order since
terms like nd/ν have to be counted as of order ν0. The base zeta function



that naturally occurs by the asymptotic expansion is the Epstein-type zeta
function

Ek(s) =
∑

~n∈ZZd
/{~0}

nkd
(n2

1 + ...+ n2
d)
s , (3.5.6)

where the nd-powers arise from the tangential derivatives in (3.5.1).
In detail, using the uniform asymptotic expansion of the Bessel function,

eqs. (3.1.10) and (3.2.17) [2], we encounter the expression

ln
{

1 +
(

1 +
gnd
ν
t

)−1[ ∞∑
k=1

vk(t)
νk

+
ut

ν
+
(
u+ gnd

ν

)
t

∞∑
k=1

uk(t)
νk

]}
=

∞∑
j=1

Tj(u, g, t)
νj

,

whereby the Tj are defined and t = 1/
√

1 + z2.
A splitting as in (3.2.11) can be introduced; our interest here is just in the

asymptotic terms which are ordered according to

ζM(s) ∼ A−1(s) +A0(s) +A+(s) +
∞∑
j=1

Aj(s), (3.5.7)

where A−1(s) and A0(s) are formally the same as in Robin boundary condi-
tions when ζN (s) = E0(s) is used, namely

A−1(s) =
1

4
√
π

Γ(s− 1/2)
Γ(s+ 1)

E0(s− 1/2), (3.5.8)

A0(s) =
1
4
E0(s). (3.5.9)

The new quantities are

A+(s) =
sinπs
π

∑
~n∈ZZd

/{~0}

∞∫
0

dz (zν)−2s ∂

∂z
ln
(

1 +
gndt

ν

)
(3.5.10)

and

Aj(s) =
sinπs
π

∑
~n∈ZZd

/{~0}

∞∫
0

dz (zν)−2s ∂

∂z

Tj(u, g, t)
νj

. (3.5.11)

In order to write the asymptotics in terms of the Epstein-type zeta function
(3.5.6), the dependence of Tj on nd and ν has to be made explicit. Its form is
the finite sum

Tj =
∑
a,b,c

f
(j)
a,b,c

δcta

(1 + δt)b
, (3.5.12)



with δ = gnd/ν and where the f (j)
a,b,c are easily determined via an algebraic

computer program.
The next steps are to perform the z-integrations by the identity,

∞∫
0

dz z−2s ztx

(1 + δt)y
=

1
2

Γ(1− s)
Γ(y)

×

∞∑
k=0

(−1)k
Γ(y + k)Γ(s− 1 + (x+ k)/2)

k!Γ((x+ k)/2)
δk,

and then do the ~n-summation to write everything in terms of the Epstein
functions (3.5.6). Performing these steps we first get

A+(s) =
1

2Γ(s)

∞∑
n=1

Γ(s+ n)
Γ(n+ 1)

E2n(s+ n)g2n. (3.5.13)

In Aj , j ∈ IN, the cases c even and c odd in (3.5.12) have to be distinguished.
Writing

Aj(s) =
∑
a,b,c

f
(j)
a,b,cA

a,b,c
j (s), (3.5.14)

we have for c even

Aa,b,cj (s) = − 1
Γ(s)

∞∑
n=0

Γ(b+ 2n)
Γ(b)Γ(2n+ 1)

Γ(s+ a/2 + n)
Γ(a/2 + n)

×

E2n+c(s+ n+ (j + c)/2)g2n+c, (3.5.15)

whereas for c odd

Aa,b,cj (s) =
1

Γ(s)

∞∑
n=0

Γ(b+ 2n+ 1)
Γ(b)(2n+ 1)!

Γ(s+ (a+ 1)/2 + n)
Γ((a+ 1)/2 + n)

×

E2n+c+1(s+ n+ (j + c+ 1)/2)g2n+c+1. (3.5.16)

Our goal is only to find the residues of A−1, A0, A+ and Aj . This is not too
difficult, because the Epstein zeta functions are very well-studied objects, the
relevant properties being

En(s) = 0 for n odd (3.5.17)

and

Res E2l(l + d/2) =
π(d−1)/2Γ(l + 1/2)

Γ(d/2 + l)
, (3.5.18)

as may be derived from eq. (A. 33). Once these results are used in (3.5.13) and
(3.5.14), the relevant residues, Res A+((D−k)/2) and Res Aj((D−k)/2), will
be given as a series representation of the generalized hypergeometric function



[220],

pFq(α1, α2, ..., αp;β1, β2, ..., βq; z) =
∞∑
k=0

(α1)k(α2)k...(αp)k
(β1)k(β2)k...(βq)k

zk

k!
.

For example, for A+ only one contribution arises which, usefully normalized,
reads

Γ((D − 1)/2)
(4π)d/2

(2π)d
Res A+((D − 1)/2)

=
1
2
{

2F1(1/2, d/2; d/2; g2)− 1
}

=
1
2

{
(1− g2)−1/2 − 1

}
. (3.5.19)

In this case the intermediate step in terms of the hypergeometric function is
artificial of course but useful in general.

The higher terms lead generally to derivatives of hypergeometric functions.
Their representations differ slightly for j odd and j even. For c odd and j odd
we find

Γ((D − 1− j)/2)
(4π)D/2

(2π)d
Res Aa,b,cj ((D − 1− j)/2) =

2Γ(1 + c/2)
Γ((a+ 1)/2)Γ(b)

(
D + c

2

)
a−j−c

2

gc
(
d

dg

)b−1

gb (3.5.20)

3F2(1, (d+ a+ 1− j)/2, 1 + c/2; (a+ 1)/2, (D + c)/2; g2),

which contributes to the heat kernel coefficient a(1+j)/2. The apparent com-
plicated answer collapses to a simple algebraic or hyperbolic function as soon
as we specify the values of b, c, j and k. The above result neatly summarizes
all this information in one equation.

For c odd and j even the relevant result is 1/(2
√
π) times the above, also

contributing to the heat kernel coefficient a(1+j)/2.
Furthermore, for c even and j odd the analogous result is

Γ((D − 1− j)/2)
(4π)D/2

(2π)d
Res Aa,b,cj ((D − 1− j)/2) =

−2
Γ((1 + c)/2)
Γ(a/2)Γ(b)

(
d+ c

2

)
a−j−c

2

gc
(
d

dg

)b−1

gb−1 (3.5.21)

3F2(1, (d+ a− j)/2, (1 + c)/2; a/2, (d+ c)/2; g2),

again with a factor of 1/(2
√
π) for j even, and where the same comment as

above applies.
These results determine in principle all poles for <s > 1/2 and will be used

in Section 4.8 to put restrictions on the general form of heat kernel coefficients.

                      



3.6 Further examples on a related geometry

The underlying geometry of all previous examples has been the generalized
cone and mostly the ball. Some of the applications in Section 4.8 and Section
4.9   will make it necessary to leave this class of examples and to consider
instead M = Bn × N , with Bn as before the n-dimensional ball (which
might be replaced by a generalized cone) and N a m-dimensional compact
Riemannian manifold. The product metric on M has the form

ds2 = dr2 + r2dΣ2 + ds2N ,

with ds2N the metric on N . The boundary of the manifold is at r = 1 and
∂M = Sn−1 × N . If the boundary condition does not depend on the vari-
ables of N , the eigenvalue problem of the Laplacian simply separates. With
φn(x) the eigenfunction of the boundary value problem on the ball and with
ϕm(y) the eigenfunctions of the Laplacian on N , the spectral resolution of
the Laplacian on M is simply {φn(x)ϕm(y), λ2

n + µ2
m}. As a result, the zeta

function can be analyzed in the way shown, e.g., for Dirichlet conditions,

ζM(s) =
∑
n,m

(λ2
n + µ2

m)−s

=
∑

d(ν)
∑
m

∫
γ

dk

2πi
(k2 + µ2

m)−s
∂

∂k
lnJν(k),

and similarly for Robin and oblique boundary conditions. The heat kernel
simply splits into a product,

KM(t) = KBn(t)KN (t),

a relation valid also in a more general context; see eq. (4.2.12). As long as the
boundary conditions do not involve data from N , this generalization is trivial.

However, if the boundary conditions entangle Bn and N , some new ideas
are involved in the analysis. This is the subject of the present section. The
choice of the following two examples is determined by later applications we
have in mind. At this stage we intend to show that there are many more
possible applications than we have shown.

3.6.1 Oblique boundary conditions on B2 × TD−2

The eigenvalue problem is also easily solved on this manifold. With the
notation ~n2

t = n2
1 + ...+ n2

d−1 the eigenfunctions are

J|nd|

(
r
√
α2 − ~n2

t

)
ei(x1n1+...+xdnd), ~n2

t ∈ ZZd,

where, as before, we denote the eigenvalues by α2. If we consider Γd = −igd,
Γa = −ig, g, gd ∈ IR, and Γb = 0 for b 6= a, b = 1, ..., d− 1, oblique boundary

                      



conditions entangle B2 with TD−2. In detail, the boundary condition now
takes the form√

α2 − ~n2
tJ
′
|nd|

(√
α2 − ~n2

t

)
+ (gdnd + gn− S)J|nd|

(√
α2 − ~n2

t

)
= 0,

where, to simplify notation, we have used n = na (in fact, the result is the
same for any a ∈ {1, ..., d− 1}).

The procedure is very much the same as before. One starts with a contour
representation similar to eq. (3.5.4) and shifts the contour to the imaginary
axis. An intermediate result is

ζM(s) =
sinπs
π

∑
~n∈ZZd

/{~0}

∞∫
|~nt|

dk (k2 − ~n2
t )
−s ×

∂

∂k
ln
(
kI ′|nd|(k) + [gdnd + gn− S]I|nd|(k)

)
.

The eigenvalues on the base, ~n2
t , act effectively as a mass of the field. This

agrees formally with equation (3.5.5) once the replacements gnd → gdnd+gn,
u→ −S and ν → |nd| are performed. We will explain the several new features
arising by looking at

A+(s) =
sinπs
π

∑
~nt∈ZZd−1

/{0}

∞∑
nd=−∞

′
∞∫

|~nt/nd|

dz [z2n2
d − ~n2

t ]
−s ×

∂

∂z
ln
(

1 +
gn+ gdnd
|nd|

1√
1 + z2

)
,

where the prime indicates the omission of nd = 0. The integral is nothing but
a hypergeometric function [220] and we find

A+(s) = − 1
2Γ(s)

∞∑
l=0

(−1)l
Γ(s+ (l + 1)/2)

Γ((l + 3)/2)
×

∑
~nt∈ZZd−1

/{0}

∞∑
nd=−∞

′ (gn+ gdnd)l+1(~n2
t )
−s−(l+1)/2 ×

2F1

(
l + 3

2
, s+

l + 1
2

,
l + 3

2
;−
∣∣∣∣nd~nt

∣∣∣∣2
)
.

We want to extract the meromorphic structure of multiple sums of hyperge-
ometric functions. This is very effectively done by using the Mellin-Barnes
integral representation (3.1.21) of 2F1,

2F1(α, β, γ; z) =
Γ(γ)

Γ(α)Γ(β)
1

2πi

i∞∫
−i∞

dt
Γ(α+ t)Γ(β + t)Γ(−t)

Γ(γ + t)
(−z)t .



In this integral representation the sum over ~nt leads to (d − 1)-dimensional
Epstein-type zeta functions, whereas the sum over nd gives rise to a Riemann
zeta function. The relevant zeta function is again of the Epstein type (3.5.6),
which in the present notation is

Et,2l(s) =
∑

~nt∈ZZd−1
/{0}

(~n2
t )
−sn2l.

The index t reminds us that this is a (d− 1)-dimensional sum only.
Placing the contour properly when interchanging summation and integra-

tion, see the discussion following eq. (3.1.21), we arrive at

A+(s) =
1

Γ(s)

∞∑
l=1

l∑
k=0

1
l!

(
2l
2k

)
g2kg2l−2k

d ×

1
2πi

i∞∫
−i∞

dt Γ(s+ l + t)Γ(−t)ζR(−2t− 2l + 2k)Et,2k(s+ l + t),

where the contour (depending on l and k) is such that the poles of ζR lie
to the right of the contour, the poles of Et,2k to the left of it. This Mellin-
Barnes representation allows the meromorphic structure of A+(s) to be read
off by closing the contour to the left. We then encounter poles of Γ(s + l +
t) at t = −s − l − m, m ∈ IN0 with residues Γ(s + l + m)ζR(2s + 2k +
2m)Et,2k(m)(−1)m/m!. The rightmost pole lies at s = 1/2 and it is clear
that these poles are irrelevant for our purposes. The relevant contributions
are the ones coming from the pole of the Epstein function situated at t =
(d− 1)/2− l − s+ k. Keeping only these terms,

A+(s) ∼ π(d−1)/2

Γ(s)

∞∑
l=1

1
l!

l∑
k=0

(
2l
2k

)
Γ(k + 1/2)√

π
× (3.6.1)

Γ(s+ l − k − (d− 1)/2)ζR(2s− d+ 1)g2kg2l−2k
d ,

where the rightmost pole at s = d/2 comes from the Riemann zeta function.
Using the doubling formula for the Γ-function [220]

Γ(x)
Γ(2x)

=
√
π

22x−1Γ(x+ 1/2)
,

and

(2l)!
l!22l

=
(2l − 1)!

2l
=

Γ(l + 1/2)√
π

we get

Res A+(d/2) =
πd/2

2Γ(d/2)

{
(1− g2 − g2

d)
−1/2 − 1

}
. (3.6.2)



A further pole in (3.6.1) at s = (d−1)/2 comes from the Γ-function for k = l.
This special value k = l eliminates the dependence on gd and we end up with

Res A+((d− 1)/2) = − π(d−1)/2

2Γ((d− 1)/2)

{
(1− g2)−1/2 − 1

}
. (3.6.3)

Due to the zeros of ζR(s) at s = −2m, m ∈ IN, there are no further (interest-
ing) poles in A+.

This brief account clarifies the basic characteristics present for all other
Aj(s): representations in terms of hypergeometric functions can be found, and
residues are effectively calculated by Mellin-Barnes representations of them
[148].

3.6.2 Spectral boundary conditions on B2 ×N

The boundary conditions in this case will involve the Dirac operator on
S1 × N and no product structure of the heat kernel or a simple relation
for the eigenvalues can be expected. Nevertheless, it will be possible to find
solutions for the Dirac operator on B2×N in terms of spinors related to those
on N .

In order to construct the eigenspinors, consider the Dirac operator on M.
Using the convention (3.3.1) for the γ-matrices as in (3.3.4), it reads

D =
(
∂

∂r
+

1
2r

)
Γr +

1
r

(
0 iγθ

−iγθ 0

)
∂θ

+
(

0 iD̃
−iD̃ 0

)
, (3.6.4)

with (r, θ) the polar coordinates on the disc B2. We denote the eigenspinors
of D by ϕ, so Dϕ = µϕ, and write

ϕ =
(
ψ1

ψ2

)
. (3.6.5)

With Zn as the eigenfunctions of D̃, D̃Zn = λZn, we are tempted to try an
ansatz of the form ψ1 = f(r)ei(m+1/2)θZn. However, γθ and D̃ anticommute,
a simultaneous set of eigenfunctions does not exist and the ansatz fails. If,
however, the ansatz (3.6.5) is used in (3.6.4), we might show(

∂2

∂r2
+

1
r

∂

∂r
− 1

4r2

)
ψ1 −

1
r2
γθ

∂

∂θ
ψ1 +

1
r2

∂2

∂θ2
ψ1 − D̃2ψ1 = −µ2ψ1,

where, as usual, ψ2 has been expressed through ψ1 using the lower spinor
of (3.6.5). This suggests considering simultaneous eigenspinors of γθ and D̃2.
However, γθ plays the role of “Γ̃” for the γ-matrices of N ,

γθ = −i
(

1 0
0 −1

)
,



and the upper and lower chirality parts of Zn,

Z±n :=
1√
2

(1± iγθ)Zn,

provide what is needed. Namely,

iγθZ±n = ±Z±n ,

furthermore

D̃Z±n = λnZ∓n , D̃2Z±n = λ2
nZ±n .

With the ansatz

ψ1 = f(r)ei(m+1/2)θZ±n ,

the following full set of eigenfunctions is found,

ϕ
(±)
1 = ei(m+1/2)θ × (3.6.6)(

Jm+1(
√
µ2 − λ2

nr)Z+
n

∓ i
µ

√
µ2 − λ2

nJm+1(
√
µ2 − λ2

nr)Z−n ∓ iλn

µ Jm(
√
µ2 − λ2

nr)Z+
n

)
,

ϕ
(±)
2 = ei(m+1/2)θ × (3.6.7)(

Jm(
√
µ2 − λ2

nr)Z−n
± i
k

√
µ2 − λ2

nJm+1(
√
µ2 − λ2

nr)Z−n ∓ iλn

µ Jm(
√
µ2 − λ2

nr)Z+
n

)
.

In order to impose spectral boundary conditions we need the eigenfunctions
of the boundary operator to construct the projector on its negative spectrum.
As explained in Section 2.3, eq. (2.3.40), to ensure the boundary conditions
for D and D∗ agree, we choose Θ = K/2 = 1/2 for the present geometry.
With this choice of Θ, the boundary operator reads

A1 =
(
γθ 0
0 −γθ

)
∂θ +

(
D̃ 0
0 −D̃

)
.

With the ansatz

α =
(
α1

α2

)
for the eigenspinors, the eigenvalue equation separates into differential equa-
tions for α1 and α2,

γθ∂θα1 + D̃α1 = Etα1,

−γθ∂θα2 − D̃α2 = Etα2. (3.6.8)

For reasons made clear above, we expand α1 and α2 in terms of Z±n , e.g.,

α1 = ei(m+1/2)θ(bZ+
n + aZ−n ).

                      



Without loss of generality we normalize a = 1. Eq. (3.6.8) then shows that
with

b± =
m+ 1/2±

√
λ2
n + (m+ 1/2)2

λn

the eigenspinors are

α
(∓)
1 = ei(m+1/2)θ(b±Z+

n + Z−n ).

Proceeding in the same manner for α2, the answer is

α
(∓)
2 = ei(m+1/2)θ(b∓Z+

n + Z−n ).

The spectral problem for A1 is thus summarized by the equation

A1α
±
i = ∓

√
λ2
n + (m+ 1/2)2α±i , i = 1, 2.

The eigenvalues are determined by the condition that the projection of the
eigenfunctions onto the span of α(+)

i has to vanish. As we soon realize, the basis
(3.6.6), (3.6.7), is not suitable to impose the boundary condition. Instead, the
linear combination ϕ(±)

1 + a±ϕ
(±)
2 with

a∓ =
λn ∓ µ√
µ2 − λ2

n

,

is suitable to achieve this goal. Noting that b−b+ = a−a+ = −1 gives the
conditions

Jm(
√
µ2 − λ2

n) +
b−
a−

Jm+1(
√
µ2 − λ2

n) = 0,

Jm(
√
µ2 − λ2

n) +
b−
a+

Jm+1(
√
µ2 − λ2

n) = 0,

which can be combined to yield

0 = J2
m(
√
µ2 − λ2

n)−
2λnb−√
µ2 − λ2

n

Jm(
√
µ2 − λ2

n)Jm+1(
√
µ2 − λ2

n)

−b2−Jm+1(
√
µ2 − λ2

n).

This is the implicit eigenvalue equation needed in order to employ the contour
integration techniques. Proceeding much in the way explained, we write

ζM(s) =
∞∑

m=−∞

∑
n

∫
C

dk

2πi
(k2 + λ2

n)
−s ×

∂

∂k
ln
{
J2
m(k)− 2λnb−

k
Jm(k)Jm+1(k)− b2−J

2
m+1(k)

}
=

2 sin(πs)
π

∞∑
m=0

∑
n

∫
|λn|

dk (k2 − λ2
n)
−s × (3.6.9)



∂

∂k
ln
{
k−2m

[
I2
m(k)− 2λnb−

k
Im(k)Im+1(k) + b2−I

2
m+1(k)

]}
.

As we have repeatedly noted, the asymptotic contributions are most suitably
represented in terms of the boundary zeta function, a role played here by the
zeta function associated with A2,

ζA2(s) =
∞∑
m=0

∑
n

[
(m+ 1/2)2 + λ2

n

]−s
. (3.6.10)

This suggests analyzing the uniform asymptotic behavior of the integrand
in (3.6.9) for ν = m + 1/2 → ∞. This asymptotic expansion is naturally
expressed in terms of the parameter

δ =
ν√

ν2 + λ2
n

.

Useful relations to simplify the asymptotics are

δ =
1− b2−
1 + b2−

,
δ − 1
δ

=
λn
ν
b−, b2− =

1− δ

1 + δ
, 1 + b2− =

2
1 + δ

.

Restricting ourselves to the order needed for later applications, we find

ln
{
z−2ν+1

[
I2
ν−1/2(zν) + b2−I

2
ν+1/2(zν)

−2λnb−
νz

Iν−1/2(zν)Iν+1/2(zν)
]}

∼ ln

{
z−2ν e

2νη

2πν
(1 + b2−)

(
1 + t

√
λ2 + ν2

ν

)}

+
1
ν
M1(t) +

1
ν2
M2(t) +O(1/ν3),

with the polynomials

M1(t) =
δ

2
t2 − 5

12
t3,

M2(t) =
1
2

δ2

δ + t
t3 +

1
8

δ

δ + t
t4 − 1

8
δ3

δ + t
t4

−1
2

1
δ + t

t5 − 5
8

δ2

δ + t
t5 +

5
8

1
δ + t

t7.

The structure of the polynomials is presented by the finite sum

Mq(t) =
∑

xj,k
δjtk

δ + t
.

This suggests the definition of the asymptotic terms

A−1(s) =
2 sin(πs)

π

∞∑
m=0

∑
n

∞∫
|λn|/ν

dz (z2ν2 − λ2
n)
−s ∂

∂z
ln
(
z−2νe2νη

)
,



A0(s) =
2 sin(πs)

π

∞∑
m=0

∑
n

∞∫
|λn|/ν

dz (z2ν2 − λ2
n)
−s ×

∂

∂z
ln

(
1 + t

√
λ2
n + ν2

ν

)
,

Aq(s) =
2 sin(πs)

π

∞∑
m=0

∑
n

∞∫
|λn|/ν

dz (z2ν2 − λ2
n)
−s ∂

∂z

Mq(t)
νq

,

where Aq(s) can be split according to

Aq(s) =
∑

Aj,kq (s)

with

Aj,kq (s) =
2 sin(πs)

π

∞∑
m=0

∑
n

∞∫
|λn|/ν

dz (z2ν2 − λ2
n)
−s ∂

∂z

1
νq

δjtk

δ + t
.

The structure of these terms shows that in addition to (3.6.10), the zeta
function asociated with D̃2,

ζN (s) =
∑
n

(λ2
n)
−s, (3.6.11)

and furthermore

ζlA(s) =
∞∑
m=0

∑
n

(m+ 1/2)l

[(m+ 1/2)2 + λ2
n]s

(3.6.12)

will be needed to elegantly express Ai(s). Indeed, using the previous ideas, we
obtain the compact representation

A−1(s) = − 2√
πΓ(s)

∫
C

dt

2πi
Γ(s− 1/2 + t)Γ(−t)

t− 1/2
×

ζH(−2t; 1/2)ζN (s+ t− 1/2),

A0(s) = −

(
1−

Γ
(
s+ 1

2

)
√
πΓ (s+ 1)

)
ζA2(s), (3.6.13)

A1(s) =
1

Γ(s)

[
5

3
√
π

Γ
(
s+

3
2

)
− Γ(s+ 1)

]
ζ2
A2(s+ 3/2),

A
(j,k)
2 (s) =

2sxj,k
Γ(s+ 2)

[
Γ
(
s+ k

2

)
Γ
(
k
2 − 1

) − Γ
(
s+ k+1

2

)
Γ
(
k−1
2

) ]
×

ζk+j−3
A2

(
s+

k + j − 1
2

)
.



This reveals the pole structure of ζ(s), a fact that is used in Section 4.9 in the
analysis of the heat equation asymptotics for spectral boundary conditions.

Note the similarities of the result (3.6.13) compared to (2.3.33), especially
regarding the occurrence of double poles. However, the non-product structure
of B2 × TD−2 makes the answer considerably more complicated.

3.7 Concluding remarks

In this chapter we have explained in great detail how the analysis of the
zeta function can be performed when the eigenfunctions of the problem are
known but no closed form for the eigenvalues is available. The basic ingredients
of the formalism are a contour integral representation for the zeta function
involving the implicit eigenvalue equation. The meromorphic structure of the
zeta function was revealed by the use of the uniform asymptotic expansion of
the eigenfunctions and the elegance of the method depends considerably on
the question whether specific integrals of the asymptotic contribution can be
performed analytically. Pulling this question apart, it is clear that in principle
the ideas can be applied whenever eigenfunctions and their asymptotics are
known.

A further example that comes to mind is the spherical suspension with
metric

ds2 = dθ2 + sin2 θdΣ2, 0 ≤ θ ≤ θ0.

Compared to the ball, it shares the property of constant extrinsic curvature,
but in addition it has non-vanishing scalar curvature. Analysis associated with
the Legendre functions is the relevant one for this case.

Another very interesting example is the ellipsoid because the extrinsic cur-
vature is not constant.

As we will show later in Chapter 8, a knowledge of eigenfunctions can be
replaced just by their asymptotic knowledge. This allows for the spectral anal-
ysis of Laplace operators with spherically symmetric background potentials.
In this case, it is the well-known scattering theory that provides the needed
tools for the determination of the asymptotic needed. This, in a way, is a
different problematic, which we prefer to discuss in a different chapter.

                      



Chapter 4

Calculation of heat kernel
coefficients via special cases

4.0 Introduction

We now come to the first application of our analysis in Chapter 3, namely
the calculation of heat kernel coefficients for Laplace-like operators on smooth
manifolds with smooth boundaries and various boundary conditions. Our main
emphasis is on the determination of the boundary contribution to the heat
kernel coefficients because it is here that the special cases such as the general-
ized cone or the ball provide rich information. But it is also justified because
the calculation of the volume part is nowadays nearly automatic [19, 200, 397].
As we have shown in Section 2.3, eqs. (2.3.20) and (2.3.21), these terms do
not depend on the boundary conditions [377] and are thus already known for
all problems to be considered. The main approaches to the calculation of the
volume part are briefly presented in Section 4.1. Afterwards we assume this
part to be known (for a list of results see Section 4.10.1), and we concentrate
fully on the boundary contributions.

First we give the general form of the heat kernel coefficients for Dirichlet and
Robin boundary conditions. As we will see these are built from certain geomet-
rical invariants with unknown numerical coefficients. Relations between the
unknown coefficients can be derived by conformal transformation techniques
most systematically used by Branson and Gilkey [68]. However, in order to de-
termine the numerical coefficients additional information is needed. A product
formula gives a certain subset of the numerical coefficients but in general not
enough to complete the calculation by using the conformal techniques [68].
In particular, the group of terms containing the extrinsic curvature is not
even touched by the product formula and our calculation on the ball will turn
out to be very valuable. The combination of the conformal techniques, the
application of index theorems, and additional examples allows the determina-
tion of (at least) the leading heat kernel coefficients for all classical boundary
conditions.

Of considerable importance is the analysis of the smeared heat kernel, which
allows us to obtain local information from integrated quantities. Thus, after
having calculated the heat kernel coefficient in Section 3.2, we will include a

                      



smearing function F (r) in our formalism. The information obtained will then
be used to put restrictions on the general form of the heat kernel coefficients.
All ideas are clearly explained and comparison of the special case with the
general form is done in great detail.

We now apply the same scheme to mixed, oblique and global boundary
conditions. In this chapter we discuss heat equation asymptotics for these
boundary conditions and summarize the results in Section 4.10.

A brief summary of some recent developments is provided in Section 4.11.
Finally, possible future applications are described in the Concluding remarks.

4.1 Heat equation asymptotics for manifolds without bound-
ary

Let M be a D-dimensional compact smooth Riemannian manifold and we
first assume that M has no boundary. Let V be a smooth vector bundle over
M equipped with a connection ∇V and finally let E be an endomorphism of
V . Our interest is then in Laplace-type operators of the form

P = −gij∇Vi ∇Vj − E. (4.1.1)

Let us mention that every second-order elliptic differential operator on M
with leading symbol given by the metric can be put in this form. We will see
this explicitly below, starting with eq. (4.2.17).

Various methods for the calculation of heat kernel coefficients have been
developed during the last decades. Our main emphasis will be on the boundary
contributions and for that reason the description of the different approaches
to evaluate the volume contribution to the heat trace will be relatively brief.

Consider first the simplest case where P = −∆ is a Laplacian acting on
scalar functions. The heat kernel is then defined as the fundamental solution
of the equation (

∂

∂t
−∆

)
K(t, x, y) = 0,

with the initial condition

lim
t→0

K(t, x, y) = δ(x, y).

Here we used the bi-scalar δ function, which is defined by∫
dx δ(x, y)φ(x) = φ(y)

for any scalar field φ(y). As always, dx is the volume element of the Rieman-
nian manifold M.

                      



On the diagonal, as t → 0, the heat kernel K(t, x, y) has the asymptotic
expansion (2.3.9),

K(t;x, x) ∼
∞∑
n=0

an(x, x)tn−D/2

with the local heat kernel coefficients an(x, x). We have seen in Section 2.3
that the coefficients an(x, x) are determined by the large-λ behavior of the
resolvent; see eq. (2.3.5). By using these asymptotic properties of the resolvent
of the Laplacian it is even possible to find a closed form for the coefficients
an(x, x) [346]. Consider the resolvent Rλ = (−∆ − λ)−1 together with its
derivatives (dk/dλk)Rλ. Formally, in the notation of eq. (2.3.3), we have

ds

dλs
Gλ(x, x) =

∞∫
0

dt tse−t(−λ)K(t, x, x)

∼
∞∑
n=0

Γ(s+ n+ 1−D/2)
(−λ)s+n+1−D/2 an(x, x) (4.1.2)

for λ → ∞ and for s ≥ D/2. This expansion can be directly compared with
the large mass expansion of the zeta function associated with the operator
−∆ +m2. It shows that if the asymptotic behavior of the derivatives of the
resolvent can be determined, the heat equation asymptotics can be read off. A
method to actually evaluate this asymptotics is provided by a generalization
of the Agmon-Kannai expansion [7]. Let us first consider the resolvent itself.
We denote by −∆0 the operator obtained by freezing the coefficient of the
principal part of −∆. Comparing the kernel of Rλ with the resolvent Fλ of
−∆0, we find

Gλ(x, x) ∼
1√
|g|

∞∑
m=0

XmF
m+1
λ (x, x),

where

Xm =
m∑
k=0

(−1)k
(
m

k

)
(−∆)k(−∆0)m−k, m ≥ 0.

From here, formally, it is immediately apparent that

ds

dλs
Gλ(x, x) ∼

1√
|g|

∞∑
m=0

(m+ s)!
m!

XmF
m+s+1
λ , (4.1.3)

valid for s ≥ D/2. This has to be compared with eq. (4.1.2), which makes it
necessary to collect all terms in eq. (4.1.3) containing (−λ)D/2−s−n−1. This
is achieved by using a Taylor series expansion of Fm+s+1

λ . This can be done
most easily by using a normal coordinate system (x1, ..., xD) with the origin
at x = (0, ..., 0) and gij

∣∣
x=(0,...,0) = δij . At the origin, −∆0 = (∂2/∂x2

1)+ ...+
(∂2/∂x2

D) and the leading symbol of −∆0 is simply |ξ|2. So the Taylor series

                      



expansion of Fm+s+1
λ contains terms of the type (for the multi-index notation

see the beginning of Section 2.3)

∂γ

∂xγ
Fm+s+1
λ (x, x)

∣∣
x=(0,...,0) = (−λ)

D+|γ|
2 −m−s−1 (−1)

|γ|
2

(2π)D
×∫

IRD

ξγ dξ

(ξ2 + 1)m+s+1

and collecting asymptotic terms we arrive at

an(x, x) =
4n∑
m=n

m∑
k=0

(−1)k+m−n

m!(2π)D

(
m

k

)
(−∆)k(−∆0)m−k ×

∑
|µ|=m−n

x2µ

(2µ)!

D∏
i=1

Γ(µi + 1/2). (4.1.4)

As to be expected, the dependence on s has disappeared.
This result, eq. (4.1.4), can be considerably simplified. The part (−∆0)m−k

x2µ is easily evaluated; furthermore, various relations involving binomial co-
efficients can be applied. An invariant form is obtained by identifying x2 in
the normal coordinate system with the square of the geodesic distance ρ(x, 0).
We finally obtain the compact closed form [346]

an(x, x) = (4π)−D/2(−1)n
3n∑
j=0

(
3n+D/2
j +D/2

)
× (4.1.5)

1
4jj!(j + n)!

(−∆)j+n(ρ(x, y))2j |y=x (4.1.6)

Although a closed form for the coefficients seems attractive, it is difficult to
obtain from here the coefficients an(x, x) in terms of easily accessible geometric
tensors. The coincidence limits of derivatives of powers of the geodesic distance
needed are more involved than in related recursive schemes described in the
following.

In these schemes the starting point is De Witt’s ansatz for the heat kernel
[127, 128, 129, 19, 397],

K(t, x, y) = (4πt)−D/2∆1/2(x, y)e−
σ(x,y)

2t

∞∑
j=0

aj(x, y)tj , (4.1.7)

where σ(x, x′) = (1/2)ρ2(x, x′) is the geodetic interval and

∆(x, x′) = |g(x)|−1/2 det(−σ;µν′)|g(x′)|−1/2

is the Van Vleck-Morette determinant. The “;”denotes differentiation with
respect to the Levi-Civita connection of M. Considering now the operator P
as given in eq. (4.1.1), from the ansatz (4.1.7) we find the recursion relation

                      



for j ≥ 0,

(σk; ∇k + j)aj + ∆−1/2P∆1/2aj−1 = 0, [a0] = 1, (4.1.8)

with the understanding that a−1 vanishes and 1 is the identity operator. We
used Synge’s bracket notation [ ] to indicate evaluation on the diagonal [388].
Given the relations

σk; σ;k = 2σ, [σ] = 0,

for the geodesic interval and

(2σk; ∇k + σ k
;k −D)∆1/2(x, x′) = 0, [∆] = 1,

for the Van Vleck-Morette determinant, eq. (4.1.8) can be used to recursively
obtain the coefficients aj . In taking the coincidence limit we have, e.g.,

aj(x, x) = −1
j
[∆−1/2P∆1/2aj−1]. (4.1.9)

The unpleasant feature of relation (4.1.9) is that in order to find aj(x, x)
not only aj−1(x, x) is needed but also derivatives of aj−1(x, y) at coincidence
points. So here we also need coincidence limits of derivatives of the geodesic
interval and, in addition, of the Van Vleck-Morette determinant. But for the
leading three coefficients a0, a1 and a2, which is all we are going to need later
on, the calculation is relatively straightforward and all necessary coincidence
limits can be found in [127].

However, if we are interested in higher coefficients, e.g., in order to de-
rive asymptotic expansions in inverse powers of the mass [127, 128] or to de-
rive low-energy, respectively, high-energy effective actions by summing slowly,
respectively, rapidly varying parts of all coefficients [19], more effective ap-
proaches have been developed. For example, in [19], and also [20], a formal
operator solution of eq. (4.1.8) has been obtained,

aj =
(−1)j

j!
a0

(
1 +

1
j
σk; ∇k

)−1

M

(
1 +

1
j − 1

σk; ∇k
)−1

M × ...×(
1 + σk; ∇k

)−1
M (4.1.10)

with

M = a−1
0 ∆−1/2P∆1/2a0.

Together with an effective way of finding coincidence limits based on covariant
Taylor series expansions, the coefficients up to a4 are calculated in [19]. Results
for a5(x, x) are given in [397]. Working in Riemann normal coordinates and
in a specific gauge (Fock-Schwinger gauge) the recursion relations (4.1.8) are
solved directly. Although the procedure is thus non-covariant, the gauged and
curved versions are found by making simple covariant substitutions.

A completely different approach has been applied in [206]. The essential
ingredient is the calculus of pseudo-differential operators depending upon a



complex parameter which was developed by Seeley [378] and which was ex-
plained in Section 2.3. Instead of applying the calculus to P of the form (2.3.1),
it is applied to the operator

P = −
(
hi

d2

dx2
i

+ ai
d

dxi
+ b

)
, (4.1.11)

and the coefficients a0(x, x),...,a3(x, x) are obtained. For simplicity it is as-
sumed that ai,i = 0 and gi,i = 0, where hi = g−1

i . On the other hand, the
operator P in eq. (4.1.11) can be written invariantly in the form of eq. (4.1.1),
by which the associated curvature tensors of a Riemannian manifold are de-
fined. Applying invariance theory, the heat kernel coefficients can be written
in terms of polynomials in covariant derivatives of these tensors. As a re-
sult, the coefficients an(x, x) are expressed as a sum of various contractions of
these tensors with unknown numerical multipliers. Comparing this expression
with the result coming from the Seeley calculus, the unknown multipliers are
determined. The assumptions made following eq. (4.1.11) simply guarantee
that the computations are particularly simple, but nevertheless allow us to
determine the leading coefficients an(x, x) for a general operator of the form
(4.1.1). Some of the aspects described will be applied in the calculation of
the boundary contribution, to which we now proceed, and the comments will
become completely clear.

4.2 General form for Dirichlet and Robin boundary con-
ditions

Let us now assume that M has a smooth boundary ∂M. Then in order to
define a symmetric operator P we have to impose boundary conditions. By
Green’s theorem we have

(v, Pw)L2(M) − (Pv,w)L2(M) ≡
∫
M

dx(v∗Pw − (Pv)∗w)

=
∫
∂M

dy(v∗;mw − v∗w;m), (4.2.1)

with dx and dy the volume elements on M and ∂M, and v;m is the nor-
mal covariant derivative of v with respect to the exterior normal N to the
boundary ∂M. The boundary conditions have to guarantee that this bound-
ary integral vanishes. One way to achieve this is to make the integrand itself
vanish. Obvious possibilities are the classical Dirichlet and Robin boundary

                      



condition,

B−φ ≡ φ|∂M and B+
S φ ≡ (φ;m − Sφ) |∂M, (4.2.2)

with S a Hermitian endomorphism of V defined on ∂M. But also a mixture
of these boundary conditions is possible and the integrand still vanishes. For
a precise formulation assume a suitable splitting of V = V− ⊕ V+ and im-
pose Dirichlet boundary conditions in V−, Robin ones in V+. Quantum grav-
ity and supergravity, spinor field theory, and various elliptic complexes all
lend themselves to these boundary conditions ([292] and references therein),
which are discussed further in Section 4.5. As we have seen in Section 2.3
all these boundary conditions define a strongly elliptic problem. Apart from
these possibilities, for a smooth boundary, we might assume that the inte-
grand in (4.2.1) equals a boundary divergence. Thus this condition involves
tangential derivatives and in the mathematical literature they are sometimes
referred to as oblique. This kind of boundary condition arises naturally if
we require invariance of the boundary conditions under infinitesimal diffeo-
morphisms [39, 179, 297] or Becchi-Rouet-Stora-Tyutin transformations [323].
Furthermore they are suggested by self-adjointness theory [301, 24] and string
theory [1, 92]. Although they have been subject of classical analysis (see,
e.g., [395, 161, 279]), very little is known about the associated heat equation
asymptotics. We will return to this case in Section 4.8, but we concentrate
now on conditions (4.2.2). We will follow the presentation of Branson and
Gilkey [68].

In order to deal simultaneously with Dirichlet and Robin boundary condi-
tions, we set S = 0 for Dirichlet boundary conditions and write B∓S . Let F be
a smooth function on M. We saw in Section 2.3 that there is an asymptotic
series as t→ 0 of the form

TrL2(M)

(
Fe−tP

)
∼

∑
n=0,1/2,1,...

tn−
D
2 an(F, P,B∓S ), (4.2.3)

where the an(F, P,B∓S ) are locally computable [208].
At this point the smearing or localizing function F is introduced for vari-

ous reasons. First it allows us to obtain local information from the integrated
and traced ones. As an example consider ∂M = ∅. In the case of F = 1
volume divergences are integrated away, whereas for general F normal deriva-
tives of it survive. Generally, we might say that near the boundary the heat
kernel behaves like a distribution and by studying TrL2(M)(Fe−tP ) this lo-
cal behavior is recovered; see eq. (2.3.21). A second reason to introduce F
is that its presence is absolutely essential for the functorial formalism to be
described [68]. Finally, it is exactly this smeared coefficient appearing in the
integration of conformal anomalies relevant for several physical applications
[51, 135, 152, 153, 154, 49, 85, 238, 420]. In this approach, if the functional
determinant of the operator P is known, the smeared coefficient enables us
to find the determinant for the conformally transformed operator. This is
explained in more detail in Section 6.5.

                      



The general principle behind the calculations to come is to state a general
form for the coefficients in (4.2.3) and to determine unknown numerical multi-
pliers by a mixture of different methods. In order to state the general form it is
convenient to introduce some notation. We will use G[M] = TrV

∫
M dxG(x)

and G[∂M] = TrV
∫
∂M dyG(y), with the fiber trace TrV . In addition, “;” de-

notes differentiation with respect to the Levi-Civita connection of M and “:”
covariant differentiation tangentially with respect to the Levi-Civita connec-
tion of the boundary. Furthermore, Ω is the curvature of the connection ∇V ,
[∇Vi ,∇Vj ] = Ωij , and Rijkl, Rij , R, are as usual the Riemann tensor, Ricci
tensor and Riemann scalar. Finally let Nν(F ) = F;m... be the νth normal co-
variant derivative. Then there exist local formulae an(x, P ) and an,ν(y, P,B∓S )
so that [214]

an(F, P,B∓S ) = {Fan(x, P )}[M] (4.2.4)

+

{
2n−1∑
ν=0

Nν(F )an,ν(y, P,B∓S )

}
[∂M].

From the Seeley calculus [377], see Section 2.3, we have for 0 < c ∈ IR the
important homogeneity properties [214]

an(x, c−2P ) = c−2nan(x, P ),
an,ν(y, c−2P, c−1B∓S ) = c−(2n−ν)an,ν(y, P,B∓S ). (4.2.5)

For a physicist it might be natural to use dimensional arguments. The op-
erator P has dimension length−2. Thus e−tP only makes sense if t carries
dimension length2. Then eq. (4.2.3) is dimensionless and an(F, P,B∓S ) must
have dimension of length−D+2n. As a result, an(x, P ) has dimension of length
to the power 2n and an,ν(y, P,B∓S ) to the power 2n− ν which is equivalent to
the above.

The interior invariants an(x, P ) are built universally and polynomially from
the metric tensor, its inverse, and the covariant derivatives of R,Ω, and E. By
Weyl’s work on the invariants of the orthogonal group [416], these polynomials
can be formed using only tensor products and contraction of tensor indices. If
A is a monomial term of an(x, P ) of degree (kR, kΩ, kE) in (R,Ω, E), and if k∇
explicit covariant derivatives appear in A, then by the homogeneity property
of an(x, P ),

2(kR + kΩ + kE) + k∇ = 2n.

When considering the boundary invariants an,ν(y, P,B∓S ) additional building
blocks have to be considered. The embedding of the boundary ∂M in M is
described by the second fundamental form Kab = −(∇eaeb, N), K = K a

a ,
where, as before, {e1, ..., ed} is an orthonormal frame of T (∂M). This tensor,
as well as the tensor S when considering Robin boundary conditions, must
be taken into account. Given that these are defined only at the boundary, we
only differentiate {K,S} tangentially. We use Weyl’s [416] theorem again to
construct invariants. The structure group now is O(D−1), and the normal N

                      



plays a distinguished role. If A is a monomial term of an,ν(y, P,B∓S ) of degree
(kR, kΩ, kE , kK , kS) in (R,Ω, E,K, S), and if k∇ explicit covariant derivatives
appear in A, then once more by homogeneity

2(kR + kΩ + kE) + kK + kS + k∇ = 2n− ν.

By constructing a basis for the space of invariants of a given homogeneity we
write down the following general form of the heat kernel coefficients [68, 74]
(let us stress again, that i, j, k, ..., range from 1, ..., D, whereas a, b, c, ..., range
from 1, ..., D − 1, and that m refers to the exterior normal component),

a0(F, P,B∓S ) = (4π)−D/2F [M], (4.2.6)

a1/2(F, P,B∓S ) = δ(4π)−d/2F [∂M], (4.2.7)

a1(F, P,B∓S ) = (4π)−D/26−1 {(6FE + FR)[M]

+(b0FK + b1F;m + b2FS)[∂M]} , (4.2.8)

a3/2(F, P,B∓S ) =
δ

96(4π)d/2
{F
(
c0E + c1R+ c2Rmm + c3K

2+ c4KabK
ab

+c7SK+ c8S
2
)

+ F;m(c5K + c9S) + c6F;mm}[∂M], (4.2.9)

a2(F, P,B∓S ) = (4π)−D/2360−1{F (60∆E + 60RE + 180E2

+30ΩijΩij + 12∆R+ 5R2 − 2RijRij + 2RijklRijkl)[M]
+[F (v1E;m + v2R;m + v3K

a
:a + v4K

ab
ab: + v5EK

+v6RK + v7RmmK + v8RambmK
ab + v9R

b
abc K

ac + v10K
3

+v11KabK
abK + v12KabK

b
cK

ac + v13SE + v14SR+ v15SRmm

+v16SK2 + v17SKabK
ab + v18S

2K + v19S
3 + v20S

a
:a)

+F;m(e1E + e2R+ e3Rmm + e4K
2 + e5KabK

ab + e8SK

+e9S2 + F;mm(e6K + e10S) + e7(∆F );m][∂M]} (4.2.10)

and, finally,

a5/2(F, P,B∓S ) = ∓5760−1(4π)−d/2{F
{
g1E;mm + g2E;mS + g3E

2

+g4E a
:a + g5RE + j1ΩabΩab + g6∆R+ g7R

2 + g8RijR
ij

+g9RijklRijkl + g10RmmE + g11RmmR+ g12RS
2 + j2ΩamΩam

+g13R;mm + g14R
a

mm:a + g15Rmm;mm + g16R;mS + g17RmmS
2

+g18SS a
:a + g19S:aS

a
: + g20RammbR

ab + g21RmmRmm

+g22RammbRa b
mm + g23ES

2 + g24S
4
}

+F;m {g25R;m + g26RS + g27RmmS + g28S
a

:a

+ g29E;m + g30ES + g31S
3
}

+F;mm

{
g32R+ g33Rmm + g34E + g35S

2
}

+g36SF;mmm + g37F;mmmm



+F
{
d1KE;m + d2KR;m + d3K

abRammb;m + d4KS
b

:b + d5KabS
ab
:

+d6K:bS
b
: + d7Kab:

aSb: + d8K:b
bS + d9Kab:

abS + d10K:bK
b
:

+d11Kab:
aKb

: + d12Kab:
aKbc

:c + d13Kab:cK
ab c

: + d14Kab:cK
ac b

:

+d15K
b

:b K + d16K
ab

ab: K + d17K
a

ab: cK
bc + d18K:bcK

bc

+d19K
a

bc:a Kbc + g38KSE + d20KSRmm + g39KSR+ d21KabR
abS

+d22K
abSRammb + g40K

2E + g41KabK
abE + g42K

2R+ g43KabK
abR

+d23K
2Rmm + d24KabK

abRmm + d25KKabR
ab + d26KK

abRammb

+d27KabK
acRbc + d28K

b
aK

acRbmmc + d29KabKcdR
acbd + d30KS

3

+d31K
2S2 + d32KabK

abS2 + d33K
3S + d34KKabK

abS

+d35KabK
bcKa

c S + d36K
4 + d37K

2KabK
ab + d38KabK

abKcdK
cd

+d39KKabK
bcKa

c + d40KabK
bcKcdK

da
}

+F;m

{
g44KE + d41KRmm + g45KR+ d42KS

2

+d43K
b

:b + d44K
ab

ab: + d45KabR
ab + d46K

abRammb + d47K
2S

+d48KabK
abS + d49K

3 + d50KKabK
ab + d51KabK

bcKa
c

}
+F;mm

{
d52KS + d53K

2 + d54KabK
ab
}

+ d55KF;mmm}[∂M], (4.2.11)

which is the last one we are going to determine.
It is crucial that only independent invariants are included. For example, in

the coefficient a5/2 we have omitted the invariants FK:bR
a

am b, FK
a

ab: R
c

cm b, F

KabR
c

acb ;m, FRmm;mK,FRmm;mS, F;mRmm;m because they can be expressed
in terms of invariants already appearing. This may be seen by identities of
the kind

Rmm;m =
1
2

(R;m + 2K a
:a − 2K ac

ac: − 2RmmK + 2RacKac) ,

Rab;m = −K c
ab:c +Kc

b:ca +K c
ca: b −RmabmK −RmcmbK

c
a

−RmdmaKd
a +RcbaeK

ec −Rmabm;m −K:ab +RmmKab

−Kc
dKbaK

d
c +KKd

bKda,

Rabcm = Kbc:a −Kac:b,

which are shown using definitions, Bianchi identities, Ricci identities and the
Gauss-Codacci relation. A full list of identities needed is given in Appendix
B.

Furthermore, we omitted the terms Tr V (Ωam;a) in the coefficient a2 and the
terms F;m Tr V ( Ωam;a), F Tr V (Ωam;ma), F Tr V (SΩam;a), F Tr V (S a

: Ωam),
FK Tr V (Ωam;a) in a5/2 [74] due to the following argument [70, 74]. Let F
as well as P and S be real. Then Tr L2(M)(Fe−tP ) is real and so are the
coefficients of the terms listed above. On the other hand, take E,S and P
self-adjoint such that again Tr L2(M)(Fe−tP ) is real. With V a line bundle,
Ω is purely imaginary and then the coefficients of the above terms must be
imaginary as well. This proves the terms are absent.



The determination of the numerical multipliers in eqs. (4.2.7)—(4.2.11) is
simplified considerably by the observation that they are independent of the
dimension D [214]. This is a consequence of a product formula for the heat
kernel coefficients and it is proven as follows [68]. Consider the product man-
ifold M = M1 ×M2 with ∂M2 = ∅ and P = P1 ⊗ 1 + 1⊗ P2. Let S depend
only on coordinates in M1. Then by a separation of variables the heat kernel
of the operator P becomes the product of the kernels P1 and P2. Comparing
powers of t in the respective asymptotic expansions we easily find

an(x, P ) =
∑

p+q=n

ap(x1, P1)aq(x2, P2),

an,ν(y, P,B∓S ) =
∑

p+q=n

ap,ν(y1, P1,B∓S )aq(x2, P2). (4.2.12)

To avoid the appearance of factors of
√

4π normalize for the moment a0(x, P )
= 1. The simplest choice in the present context is probably (M2, P2) = (S1,
−∂2/∂θ2), for which a0(θ, P2) = 1 and aq(θ, P2) = 0 for q > 0. As a result,
by eq. (4.2.12), we find an(θ, P2) = an((x1, θ), P ) and an,ν(y1, P1,B∓S ) =
an,ν((y1, θ), P,B∓S ). However, invariants formed by contractions of indices are
restricted from M1 × S1 to M1 by restricting the range of summation, but
have the same appearance. This shows that the numerical constants are inde-
pendent of the dimension.

The remaining task to determine the heat kernel coefficients is thus to
find the values of the numerical constants by whatever method. A possible
rich source of information are special case calculations. As described, the
analysis of Section 3.2 allows for the calculation of the coefficients on the
generalized cone. So let us first discuss in detail how information is obtained
from this special case in order to give a motivation for the calculation of the
coefficients for this setting. In Section 3.2 we dealt with a constant function
S and Kb

a = δba. As a result we get K = d, KabK
ab = d, K2 = d2, and

so on. The polynomials, traces and contractions of Kab give a polynomial in
the dimension d. Restricting ourselves to the example of the ball, we have
Rijkl = 0, and we have chosen P = −∆M, thus E = 0. Finally, we included
no smearing function and have F = 1. In this setting, (4.2.7) gives for the ball

a1/2(1,−∆M,B∓S ) = δ(4π)−d/2|Sd|,

with the volume |Sd| = 2π(d+1)/2/Γ((d + 1)/2) of the d-sphere. Calculating
the heat kernel coefficients on the ball explicitly we will find the “unknown”
numerical constant δ. Given (4.2.7) holds for a general manifold, we then also
know a1/2(F, P,B∓S ) for an arbitrary manifold. Continuing on to a1, on the
ball we have

a1(1,−∆M,B∓S ) = (4π)−D/26−1|Sd| (b0d+ b2S) .

Just by comparing powers of d and S we can determine b0 and b2 from the
explicit a1(1,−∆M B∓S ) on the ball. Note that if we included a smearing

                      



function F (r) into the formalism, then F;m = (d/dr)F (r) is the derivative
with respect to the exterior normal, and we also could have determined b1.
By application of (4.2.8) we see that by just having the result on the ball we
can get a1(F, P,B∓S ) for a general manifold.

It is clear that continuing with the same argumentation, in eq. (4.2.9) we
can determine c3, c4, c7 and c8 for F = 1 and furthermore c5, c9 and c6 includ-
ing an F (r). Let us stress that c3 and c4 both can be determined only because
we performed our calculation in arbitrary dimension. This observation gets
more important for the higher coefficients and it provides further motivation
for the great generality of the analysis presented. Thus for a3/2 only 3 of 10
unknowns are left and it becomes clear that the special case calculation chosen
contains rich information. Because the ball is flat, the Riemann tensor van-
ishes, and because we have chosen E = 0, it is clear that the example cannot
determine the full coefficients. The situation could be slightly improved by
including a mass (as we have done in Section 3), or by choosing a sphere of
radius a 6= 1, see eqs. (3.2.21) and (3.2.22), or a torus as a base manifold, see
eq. (3.2.2). But, as we will see, the information obtained thereby is also very
easily obtained by an application of the product formula (4.2.12). However,
product manifolds share the “defect” of having vanishing normal components
of the Riemann tensor (their appearance starts with a3/2). The correspond-
ing universal constants thus have to be determined by different means. One
possibility is to consider the example of a hemisphere. However, for higher
coefficients only special cases will not be sufficient and further input is called
for.

At this stage we have seen how to determine part of the coefficients by
special cases and a method relating the known multipliers with unknowns is
very desirable. In fact, such a method exists and it consists of studying the
transformation properties of the coefficients under conformal variations [73,
68]. To this end, consider the one-parameter family of differential operators

P (ε) = e−2εFP (4.2.13)

and boundary operators

B∓S (ε) = e−εFB∓S . (4.2.14)

As before, F is a function onM, and furthermore ε is a real-valued parameter.
The transformation (4.2.14) guarantees that the boundary condition remains
invariant along the one-parameter family of operators (see below, eq. (4.2.22)).
This allows us to study the transformation behavior of the heat kernel coef-
ficients under (4.2.13) and (4.2.14). The relevant information is contained in
the following

Lemma:

(a)
d

dε
|ε=0 an(1, P (ε),B∓S (ε)) = (D − 2n)an(F, P,B∓S ), (4.2.15)

(b) If D = 2n+ 2, then

                      



d

dε
|ε=0 an

(
e−2εfF, P (ε),B∓S (ε)

)
= 0. (4.2.16)

Formally, part (a) is proven by considering

d

dε
|ε=0 Tr

(
e−tP (ε)

)
= −tTr

([
d

dε
|ε=0 P (ε)

]
e−tP

)
= 2tTr

(
FPe−tP

)
= −2t

∂

∂t
Tr
(
Fe−tP

)
,

and comparing powers of t in the asymptotic expansion. For the necessary
justification of the analytic steps see [214]. The proof of part (b) is much the
same by starting with (d/dε)|ε=0Tr(e−2εfFe−tP (ε)).

Part (a) of the lemma relates the non-smeared coefficients with the smeared
ones. As we will see, this fact is the very basis for many relations between the
different multipliers and the relevance of F already becomes apparent here.
We will apply the lemma extensively in Section 4.4. For now, we will just
explain the basic mechanism of how the relations (4.2.15) and (4.2.16) are
able to determine universal constants.

As a first step, we obviously need to know the heat kernel coefficients for the
operator P (ε). In order to find these, we need to rewrite P (ε), eq. (4.2.13),
in the invariant form of eq. (4.1.1). An arbitrary second-order differential
operator with leading symbol given by the metric tensor can be written in
local coordinates as

P = −
(
gij

∂2

∂xi∂xj
+ P k

∂

∂xk
+Q

)
. (4.2.17)

Just by inspection, P (ε) is obtained by defining

gij(ε) = e−2εF gij , P k(ε) = e−2εFP k, Q(ε) = e−2εFQ.

This shows the conformally related Riemannian manifold will play a crucial
role. Furthermore, let ωl be the connection one-form and consequently we
have for the curvature of ∇V the definition Ωij = [∇Vi ,∇Vj ] = ωj,i − ωi,j +
ωiωj − ωjωi with “,” the partial derivative. Comparing the two different rep-
resentations of P we find

ωl =
1
2
gil
(
P i + gjkΓijk

)
, (4.2.18)

E = Q− gij
(
ωi,j + ωiωj − ωkΓkij

)
, (4.2.19)

with the Christoffel symbols Γijk; see eq. (B. 3). As a result, this defines the
one-parameter family of relations

ωl(ε) = ωl +
1
2
ε(2−D)F;l , (4.2.20)

Ωij(ε) = Ωij , (4.2.21)

E(ε) = e−2εF

(
E +

1
2
(D − 2)ε∆MF

                      



+
1
4
(D − 2)2ε2F;kF;

k ) . (4.2.22)

The above connections show that the leading an(F, P (ε),B∓S (ε)) are given
by eqs. (4.2.6)—(4.2.11) once the above definitions are used and once all
geometrical tensors and covariant derivatives are calculated with respect to
the metric gij(ε) (a full list is given in Appendix B, see also [68, 74]). Whereas
Dirichlet boundary conditions are obviously conformally invariant, we can
show that with

S(ε) = e−εF
(
S − ε

D − 2
2

F;m

)
(4.2.23)

the same holds for Robin conditions. This is an immediate consequence of
eq. (4.2.20) and the boundary condition (4.2.2). As a result, (d/dε)|ε=0ak(1,
P (ε),B∓S (ε)) will have the same formal appearance as ak(F, P,B∓S ), and lemma
(4.3.15) will give relations among the universal constants as well as (4.2.16)
does. To make these general remarks completely clear, look at a3/2(F, P,B∓S ).
The term (d/dε)E(ε) contains a contribution F;mm as part of ∆F ; see (4.2.22).
By the lemma (4.2.15), we then relate the numerical constant c0, e.g., with
c6 (more invariants are involved, however). Let us stress here that due care
must be given that only independent terms are compared in eqs. (4.2.15) and
(4.2.16) and that partial integrations (or more involved manipulations, see
the relations following eq. (4.2.11)) may be necessary to see that apparently
independent terms are actually dependent. Given the invariants that build up
the coefficients (4.2.6)—(4.2.11) form a complete set of independent terms, a
safe way to proceed is to rewrite all terms of (d/dε)|ε=0ak(1, P (ε),B∓S (ε)) into
this form.

Although the functorial method very effectively provides relations among
the different universal constants, on its own, the functorial method is unable to
determine the coefficients fully. But given a subset of numerical coefficients,
found, e.g., by special case calculations, the method provides the required
information with relative ease. This is the basic reason to start the analysis
by applying the product lemma (4.2.12) and by calculating the heat kernel
coefficients for the Laplacian on the generalized cone, determine (a subset of
the) universal constants and complete the calculation by use of the functorial
properties.

As we have already emphasized, the inclusion of a smearing function F is
of great importance. To take full advantage of the special case calculations,
we will generalize the calculations in Section 3.2 to the smeared zeta func-
tion. This further generalization is essential, because, as seen in eq. (4.2.15),
the functorial techniques (apart from other things) yield relations between
the smeared and non-smeared case. Thus the information we can get on the
“smeared side” is crucial to find the full “non-smeared” side.

Before we actually do the calculation on the generalized cone, let us mention
the special role played by the curvature terms containing Ω; the unknowns
involved here are j1ΩabΩab and j2ΩamΩam in a5/2. Obviously, the calculation

                      



on the generalized cone as well as the functorial techniques give no infor-
mation. Instead, the application of index theorems is very powerful here, as
will be discussed in the context of mixed boundary conditions [70, 74, 72];
see Section 4.7. For that reason, the determination of j1 and j2 will be post-
poned until then and obtained as a special case of mixed boundary conditions.

4.3 Heat kernel coefficients on the generalized cone

Let us now apply the outlined strategy to the calculation of the coefficients
(4.3.7)—(4.3.11). For reasons mentioned, we first provide the coefficients on
the ball [61]. For Dirichlet boundary conditions and for F = 1 these are
easily derived from eqs. (3.2.13)—(3.2.15) and (3.2.21). The generalization
to (a specific) F (r) is explained afterwards. In this section, for notational
convenience, we will just write aMn/2 for an/2(1,−∆M,B∓S ), because it is clear
that we are talking about the Laplacian on the generalized cone and it will
be clearly stated which boundary condition is dealt with.

We consider an arbitrary dimension D of the ball. Apart from providing
relations for the universal constants this has the advantage that it will be
sufficient to work with n < D in order to determine any coefficient. In conse-
quence, in the following we need to use only, see eq. (2.1.17),

aMn/2 = Γ
(
(D − n)/2

)
Res ζM

(
(D − n)/2

)
. (4.3.1)

Eqs. (3.2.13)–(3.2.15) reduce the analysis on the cone to the analysis on its
baseN . Therefore it is appropriate to introduce the heat kernel coefficients aNn
associated with ζN by the corresponding equation (4.3.1). With this notation,
an immediate consequence of eqs. (3.2.13)–(3.2.15) and (4.3.1) is the basic
relation,

aMn/2 =
1

2
√
π(D − n)

aNn/2 −
1
4
aN(n−1)/2 (4.3.2)

−
n−1∑
i=1

aN(n−1−i)/2

i∑
b=0

xi,b
Γ ((D − n+ i)/2 + b)

Γ ((D − n+ i)/2) Γ(b+ i/2)
,

with aN(n−1)/2 = 0 for n = 0. Thus, given the coefficients on N , eq. (4.3.2)
relates them immediately to the coefficients on M. The boundary condition
at r = 1 is encoded just in the constants xi,b in the sum over b.

As has been explained just following eq. (3.2.18), eq. (4.3.2) remains true
for Robin conditions once the sign of the second term on the right-hand side
is reversed and the x’s are replaced with the z’s. This already provides the
final answer for Robin boundary conditions.

                      



ForN = Sda the base zeta function is just a sum of two Barnes zeta functions
multiplied with a2s; see eq. (3.2.21) and the comment preceding (3.2.23).
Although eq. (A. 20) could be used to express the coefficients in terms of
Bernoulli polynomials, a slightly easier method is the following. As derived in
Appendix A, for the Barnes zeta function we have the integral representation,
see (A. 18),

ζB(s, c) =
iΓ(1− s)

2π

∫
L

dz
ez(d/2−c)(−z)s−1

2d sinhd
(
z/2
) ,

where L is the Hankel contour. For the base zeta function, eq. (3.2.21), this
yields immediately

ζN (s) = a2s iΓ(1− 2s)
2π

22s+1−d
∫
L

dz (−z)2s−1 cosh z
sinhd z

= a2s iΓ(2− 2s)
2π(d− 1)

22s+1−d
∫
L

dz (−z)2s−2 1
sinhd−1 z

.

The residues at m = 1, 2, ..., d are easily found by an application of the residue
theorem,

Res ζN (m/2) = am
2m−dD(d−1)

d−m
(d− 1)(m− 2)!(d−m)!

, (4.3.3)

with the D(d−1)
ν defined through [109]( z

sinh z

)d−1

=
∞∑
ν=0

D(d−1)
ν

zν

ν!
.

Obviously D
(d−1)
ν = 0 for ν odd, so there are actually poles only for m =

1, 2, ..., d with d − m even. The advantage of this approach is that known
recursion formulas allow efficient evaluation of the D(n)

ν as polynomials in d,
[332].

Rewriting aNn in eq. (4.3.2) using eq. (4.3.3), we find for the heat kernel
coefficients aMk/2

(4π)D/2

|Sd|
aMk/2 =

(d− k − 1)
(d− 1)(d− k + 1)k!

(
d+ 1− k

2

)
k/2

D
(d−1)
k ad−k

− (d− k)
4(d− 1)(k − 1)!

(
d+ 2− k

2

)
(k−1)/2

D
(d−1)
k−1 ad+1−k

− 2
√
π

(d− 1)

k−1∑
i=1

d+ i− k

(k − 1− i)!

(
d+ 2− k + i

2

)
(k−i−1)/2

× (4.3.4)

i∑
b=0

xi,b
Γ (b+ i/2)

(
d+ 1− k + i

2

)
b

D
(d−1)
k−1−ia

d+1+i−k,



where (y)n = Γ(y + n)/Γ(y) is the Pochhammer symbol. Eq. (4.3.4) exhibits
the heat kernel coefficients as explicit functions of the dimension d. Note that
this dependence is partly encoded in D(d−1)

ν . Although the result was derived
for k < D, it can now be extended beyond this range. Clearly, evaluation of
eq. (4.3.4) is a simple routine machine matter, because all ingredients can be
found by simple algebraic computer programs.

For a = 1, that is on the ball, the coefficients were also considered by Levitin
[288]. In his method, calculations are done dimension by dimension and the
results are used to fit unknowns coming from the general form of the heat
kernel coefficients.

For later use, for a = 1 we list the polynomials up to aM5/2. For Dirichlet
conditions they read

(4π)d/2

ad|Sd|
aM1/2 = −1

4
, (4.3.5)

(4π)D/2

ad|Sd|
aM1 =

d

3
, (4.3.6)

(4π)d/2

ad|Sd|
aM3/2 =

d(10− 7d)
384

, (4.3.7)

(4π)D/2

ad|Sd|
aM2 =

d(40− 33d+ 5d2)
945

, (4.3.8)

(4π)d/2

ad|Sd|
aM5/2 =

d(5232− 4196d+ 564d2 + 65d3)
737280

. (4.3.9)

For Robin boundary conditions we have to make the modifications outlined
just following eq. (4.3.2). The results up to aM5/2 are

(4π)d/2

ad|Sd|
aM1/2 =

1
4
, (4.3.10)

(4π)D/2

ad|Sd|
aM1 =

d

3
+ 2S, (4.3.11)

(4π)d/2

ad|Sd|
aM3/2 =

d(2 + 13d)
384

+
d

4
S +

1
2
S2, (4.3.12)

(4π)D/2

ad|Sd|
aM2 =

d(4 + 3d+ 5d2)
135

+
2d(1 + 3d)S

15

+
4
3
dS2 +

4
3
S3, (4.3.13)

(4π)d/2

ad|Sd|
aM5/2 =

d(3696 + 4700d+ 1668d2 + 2041d3)
737280

+
d(40 + 42d+ 59d2)S

1536
+
d(1 + 3d)S2

16



+
3
8
dS3 +

1
4
S4. (4.3.14)

Further coefficients could be calculated with ease, e.g., for the first 20 co-
efficients a simple program takes about 2 minutes. Let us mention that the
ability to calculate higher-order asymptotic expansions is of interest in con-
nection with the mathematical phenomenon called resurgence, in which the
divergent tails of asymptotic expansions are related to additional small expo-
nential contributions to the function being expanded [46].

These results could now be used to put restrictions on the general form
of the heat kernel coefficients, eqs. (4.2.6)—(4.2.11). Instead, before actually
doing this, we first explain the approach to deal with a suitably smeared heat
kernel, respectively, a smeared zeta function [151]. This generalization will
allow us to read off many more universal constants. Note that only normal
derivatives of the localizing function are present in the coefficients. It will thus
be sufficient to just consider a smearing depending on the radial varible.

In general, the smeared heat kernel is defined by

K(t, F ) =
∫
dxF (x)K(t, x, x) (4.3.15)

and the associated zeta function is obtained via its Mellin transform,

ζM(F ; s) =
∑∫

dxF (x)φ(x)φ∗(x)
1
α2s

(4.3.16)

in terms of normalized eigenfunctions, φ, and eigenvalues, −α2.
On the generalized cone, the eigenfunctions are of the form (3.2.4), namely

they are a product of a Bessel function and a “spherical,” i.e., base, harmon-
ics. If we smear, for reasons indicated, in the radial coordinate only, then in
(4.3.16) the integration over the base yields exactly the same degeneracies
as in the unsmeared case, i.e., the d(ν). So it is immediate that the contour
expression for the zeta function on M reads (we treat Dirichlet scalars first)

ζM(F ; s) =
∑

d(ν)
∫
γ

dk

2πi
k−2s

1∫
0

dr F (r)J̄2
ν (kr)r

∂

∂k
lnJν(k). (4.3.17)

Here the bar stands for the normalised radial part of the eigenfunctions, which
is J̄ν(αr) =

√
2Jν(αr)/J ′ν(α).

The boundary parts of the coefficients contain normal derivatives, F,r...r of
F , only; see eqs. (4.2.8)—(4.2.11). In the present context, the only reason to
work with a smearing function is to pick out the associated universal constants
by a special case calculation. The simplest choice that contains sufficient in-
dependent derivatives to do so is thus also the best choice. It is dictated by
the ability to perform analytically the remaining integral over r. As we will
see, a suitable choice for F is a polynomial in r2. For example, in aM1 , since
there is only one normal derivative F,r, it is sufficient to take

F (r) = f0 + f1 r
2 (4.3.18)



and to use

F (1) = f0 + f1 , F,r(1) = 2f1 ,

in order to identify the boundary terms.
Let us continue with this simple example in order to explain our method

more precisely. Afterwards we will generalize to an arbitrary polynomial with
even powers in the variable r, a generalization needed for the higher coeffi-
cients. For this example we need the integral

1∫
0

dr r3J̄2
ν (αr) =

2
3
ν2 − 1
α2

+
1
3

and substituting (4.3.18) into (4.3.17) we obtain two contributions,

ζM(F ; s) = (f0 +
1
3
f1)ζM(s) (4.3.19)

+
2
3
f1
∑

(ν2 − 1)d(ν)
∫
γ

dk

2πi
k−2(s+1) ∂

∂k
lnJν(k).

Here, ζM(s) is defined to be ζM(1; s) and is known from the previous analysis
of Section 3.2. Also the second term in (4.3.19) may be immediately given by
direct comparison with our previous calculation. The first observation is that
the contour integral is the same as previously apart from replacing s→ s+1.
The second observation is that factors of ν2 raise the argument of the base
zeta function by one; see eq. (4.3.20).

By adding and subtracting L leading terms of the asymptotic expansion
and performing the same steps as described previously we find, as for the
non-smeared case, the split

ζM(F ; s) = Z(F ; s) +
L∑

i=−1

Ai(F ; s),

with the definitions

A−1(F ; s) =
1

4
√
π

Γ
(
s− 1

2

)
Γ(s+ 1)

ζN (s− 1/2)
[
f0 +

1
3
f1 +

2
3
f1
s− 1/2
s+ 1

]
−2

3
f1

1
4
√
π

Γ
(
s+ 1

2

)
Γ(s+ 2)

ζN (s+ 1/2) ,

A0(F ; s) = −1
4
ζN (s) [f0 + f1]−

1
4
ζN (s+ 1) f1, (4.3.20)

Ai(F ; s) = − 1
Γ(s)

ζN (s+ i/2)×

i∑
b=0

xi,b
Γ (s+ b+ i/2)

Γ (b+ i/2)

[
f0 +

1
3
f1 +

2
3
f1
s+ b+ i/2

s

]

                      



−2
3
f1ζN (s+ 1 + i/2)

i∑
b=0

xi,b
Γ (s+ 1 + b+ i/2)
Γ(s+ 1)Γ (b+ i/2)

.

Again, in (4.3.20) we have achieved the separation of the base contributions
from radial ones. Also for the smeared case, this enables the heat kernel co-
efficients of the Laplacian on the manifold M to be written in terms of those
on N .

In the next section we discuss the restrictions our calculation places on the
general form of the heat kernel coefficients. It is seen in eq. (4.2.10) that the
coefficient a2 contains the third normal derivative of the smearing function
F and the higher coefficients involve correspondingly higher derivatives. For
that reason, the F (r) employed earlier, eq. (4.3.18), will not be general enough
to discuss coefficients beyond a3/2. Therefore, in order to apply our technique
to all higher coefficients, at least in principle, we consider the polynomial

F (r) =
N∑
n=0

fnr
2n. (4.3.21)

The normalization integrals needed are of the type

S[1 + 2p] =

1∫
0

dr J̄2
ν (αr)r

1+2p. (4.3.22)

These can be treated using Schafheitlin’s reduction formula [412],

(µ+ 2)

z∫
dx xµ+2J2

ν (x) = (µ+ 1)
{
ν2 − (µ+ 1)2

4

} z∫
dx xµJ2

ν (x)

+
1
2

[
zµ+1

{
zJ ′ν(z)−

1
2
(µ+ 1)Jν(z)

}2

(4.3.23)

+zµ+1

{
z2 − ν2 +

1
4
(µ+ 1)2

}
J2
ν (z)

]
,

the existence of this formula being one of the basic reasons for choosing F (r)
as given in (4.3.21).

For the normalization integral simplifications occur because α is a zero of
the Bessel function, Jν(α) = 0. So we have

1∫
0

dr J̄2
ν (αr)r

µ+2 =
µ+ 1
µ+ 2

(
ν2 − (µ+ 1)2/4

)
α2

1∫
0

dr J̄2
ν (αr)r

µ

+
1

µ+ 2
, (4.3.24)

and this can be iterated down to the standard normalization value, µ = 1. In
order to use this formula we see that it is necessary to have a polynomial in
r2. With this choice, the smeared case is reduced to the case F = 1.



Schafheitlin’s formula, via eq. (4.3.24) with µ = 2p− 1, gives the recursion
for the normalization integrals (4.3.22),

S[1 + 2p] =
2p

2p+ 1
ν2 − p2

α2
S[2p− 1] +

1
2p+ 1

. (4.3.25)

As described immediately below eq. (4.3.19), the calculation can be reduced
to a rule of replacements once the dependence on α and ν2 is made explicit.
Inspecting eq. (4.3.25), S[1 + 2p] is seen to have the following form,

S[1 + 2p] =
p∑

m=0

( ν
α

)2m m∑
l=0

γpmlν
−2l, (4.3.26)

with the numerical coefficients γpml being easily determined recursively.
So after some rearrangement, the Ai(F ; s) read

A−1(F ; s) =
1

4
√
π

N∑
l=0

[ N∑
m=l

L
(N)
m,l

Γ
(
s− 1/2 +m

)
Γ
(
s+ 1 +m

) ]ζN (s− 1/2 + l
)
,

A0(F ; s) = −1
4

N∑
l=0

[ N∑
m=l

L
(N)
m,l

]
ζN (s+ l), (4.3.27)

Ai(F ; s) = −
N∑
l=0

[ N∑
m=l

L
(N)
m,l

i∑
b=0

xi,b
Γ(s+ b+ i/2 +m)
Γ(s+m)Γ(b+ i/2)

]
×

ζN
(
s+ l + i/2

)
,

where the linear form in the fp is defined by

L
(N)
m,l =

N∑
p=m

γpml fp.

For Dirichlet boundary conditions, these formulas provide the generalization of
our formalism to the radially smeared case. As emphasized, this is enough for
our purposes because the general forms of the heat kernel coefficients contain
only normal derivatives and these are radial derivatives on the generalized
cone.

As before, in the special case of the D–ball, the residues of the poles of the
base (i.e., sphere) zeta function are given in terms of Bernoulli polynomials
and the ball coefficients are then once more efficiently evaluated by machine.
One could equally well take the torus as the base manifold, but the information
obtained about the heat kernel coefficients differs only slightly and we will not
do so here. The same comment holds for a general base N , effectively because
the extrinsic curvature is always K b

a = δ b
a independently of the base.

We now turn to Robin boundary conditions. Contrary to the non-smeared
case it is not possible to obtain the Robin case just by simple replacements.
Instead, the situation is sufficiently different so as to warrant a separate de-
scription.



With the Robin conditions

Gν(α) = αJ ′ν(α) + uJν(α) = 0,

the normalization is
1∫

0

J2
ν (αr)rdr =

1
2α2

(
α2 − ν2 + u2

)
J2
ν (α).

So, using again the bar notation, we introduce

J̄ν(αr) =
√

2α
(u2 + α2 − ν2)1/2

Jν(αr)
Jν(α)

, (4.3.28)

with characteristic differences compared to the Dirichlet case. The normalized
Schafheitlin formula takes the slightly more complicated form

1∫
0

dr J̄2
ν (αr)r

µ+2 =
µ+ 1
µ+ 2

(
ν2 − (µ+ 1)2/4

)
α2

1∫
0

dr J̄2
ν (αr)r

µ

+
1

µ+ 2

(
1 +

(µ+ 1)(u+ 1
2 (µ+ 1))

α2 − ν2 + u2

)
.

Nevertheless, defining S[1 + 2p] as in (4.3.22), it allows for the reduction
formula

S[1 + 2p] =
2p

2p+ 1
ν2 − p2

α2
S[2p− 1]

+
1

2p+ 1

(
1 +

2p(u+ p)
α2 + u2 − ν2

)
. (4.3.29)

Making the α and ν2 dependence explicit, we write this time

S[1 + 2p] =
p∑

m=0

( ν
α

)2m m∑
l=0

γpml ν
−2l

+
1

α2 + u2 − ν2

p−1∑
m=0

( ν
α

)2m n∑
l=0

δpml ν
−2l, (4.3.30)

where the γpml are the same as in (4.3.26) and the δpml are also easily determined
by machine.

As before, for the zeta function we have the contour representation

ζRob
M (F ; s) =

∑
d(ν)

∫
γ

dk

2πi
k−2s

1∫
0

dr F (r)J̄2
ν (kr)r

∂

∂k
lnGν(k), (4.3.31)

where γ has to be chosen so as to enclose the zeros of only Gν(k). Thus the
poles of S[1+2p], located at k = ±

√
ν2 − u2 and originating from the normal-

ization integrals, must be outside the contour. This observation is important,



because when deforming the contour to the imaginary axis, contributions from
the poles at k =

√
ν2 − u2 arise.

As a result, apart from contributions identical to (4.3.27), with the changes
mentioned between Dirichlet and Robin boundary conditions, we have the
extra parts

ζpδ (F ; s) =
sinπs
π

∑
d(ν)

p−1∑
m=0

m∑
l=0

δpml ν
−2l−2s × (4.3.32)

∞∫
0

dz
z−2s−2m

u2 − ν2(1 + z2)
∂

∂z
ln
(
uIν(zν) + zνI ′ν(νz)

)
,

ζpshift(F ; s) = −1
2

p−1∑
m=0

m∑
l=0

δpml

∑
d(ν)ν2m−2l(ν2 − u2)−s−m−1/2 ×

∂

∂k
ln
(
kJ ′ν(k) + uJν(k)

)
|k=√ν2−u2 , (4.3.33)

the last one arising on moving the contour over the pole at k =
√
ν2 − u2. The

index p refers to the fact that these are the contributions coming from the
power r2p in (4.3.21). In order to obtain the full zeta function, the

∑N
p=0 fpζ

p

has to be done.
How can these additional parts be dealt with? Looking at (4.3.32), we first

define the asymptotic contributions Api,δ(F ; s) in the same manner as before
by taking the different terms in the asymptotic expansion of the argument of
the logarithm. The calculation will be clear if we use an illustration of the
leading asymptotic term

Ap−1,δ(F ; s) =
sinπs
π

∑
d(ν)

p−1∑
m=0

m∑
l=0

(−1)mδpmlν
1−2l−2s ×

∞∫
0

dz
z−2s−2m−1

u2 − ν2(1 + z2)
(1 + z2)1/2. (4.3.34)

Using the expansion for small u,

1
u2 − ν2(1 + z2)

= −
∞∑
i=0

u2i

(ν2)i+1(1 + z2)i+1

we arrive at

Ap−1,δ(F ; s) =
1

2Γ(s)

∞∑
i=0

u2i

p−1∑
m=0

m∑
l=0

δpml × (4.3.35)

Γ(−s−m)Γ(s+ i+m+ 1/2)
Γ(−s+ 1)Γ(i+ 1/2)

ζN (s+ l + i+ 1/2),

which again reduces the smeared calculation on the cone to the non-smeared



calculation on the base.
In the same way we obtain for the other Api,δ(s),

Ap0,δ(F ; s) = − 1
4Γ(s)

∞∑
i=0

u2i

Γ(i+ 2)

p−1∑
m=0

m∑
l=0

(−1)mδpml ×

Γ(s+ i+m+ 1)Γ(1− s−m)
Γ(1− s)

ζN (s+ i+ l + 1) ,

Apn,δ(F ; s) =
1

2Γ(s)

∞∑
i=0

u2i
n−1∑
m=0

m∑
l=0

(−1)mδpml

n∑
b=0

xn,b(n+ 2b)×

Γ(1− s−m)Γ(s+ i+ n/2 + b+m+ 1)
Γ(1− s)Γ(i+ n/2 + b+ 2)

ζN (s+ i+ l + 1 + n/2) .

These forms are well suited for machine evaluation and the residues relevant
for the heat kernel expansion are thereby quickly determined.

The remaining task is to deal with ζpshift(F ; s) defined in (4.3.33). For its
evaluation we proceed as follows. First differentiate the logarithm to find

∂

∂k
ln
(
kJ ′ν(k) + uJν(k)

)
=
J ′ν(k) + kJ ′′ν (k) + uJ ′ν(k)

kJ ′ν(k) + uJν(k)
.

Using the differential equation for the Bessel function, eq. (3.1.4), J ′′ν (k) can
be rewritten to give for the above

∂

∂k
ln
(
kJ ′ν(k) + uJν(k)

)
=
uJ ′ν(k) + k

(
ν2

k2 − 1
)
Jν(k)

kJ ′ν(k) + uJν(k)
.

This simplifies further, if evaluated at k =
√
ν2 − u2,

∂

∂k
ln
(
kJ ′ν(k) + uJν(k)

) ∣∣∣∣k=√ν2−u2 =
u√

ν2 − u2
. (4.3.36)

As a consequence, we find

ζpshift(F ; s) = −u
2

p−1∑
m=0

m∑
l=0

δpml ×∑
d(ν)ν2m−2l(ν2 − u2)−s−m−1

= −1
2

p−1∑
m=0

m∑
l=0

δpml

∞∑
k=0

Γ(s+m+ 1 + k)
k!Γ(s+m+ 1)

×

u2k+1ζN (s+ l + 1 + k),

completely revealing the meromorphic structure of ζpshift(F ; s).
So all the relevant results for the calculation of the heat kernel coefficient

are now at hand. The expansions are systematic and in principle many arbi-



trary coefficients could be calculated if desired.

4.4 Determination of the general heat kernel coefficients

After all these preparations, we now compare, one by one, the general form
of the coefficients with our special case evaluation. The coefficient a0 is, by
normalization,

a0(F, P,B∓S ) = (4π)−D/2F [M].

The next one is
a1/2(F, P,B∓S ) = δ (4π)−d/2F [∂M].

Restricting ourselves to the ball this means

a1/2(F,−∆M,B∓S ) = δ (4π)−d/2F (1)|Sd|.

Using the relations (4.4.5) and (4.4.10) this determines immediately δ,

δ =
(
−1

4

−
,
1
4

+)
.

The coefficient a1/2 is thus given for a general manifold from the result on the
ball. The general form of a1 is

a1(F, P,B∓S ) = (4π)−D/26−1 ×
{(6FE + FR)[M] + (b0FK + b1F;m + b2FS)[∂M]} .

In our special case on the ball, we have for the extrinsic curvature K b
a = δ b

a

and thus

a1(F,−∆M,B∓S ) = (4π)−D/26−1|Sd| {b0F (1)d+ b1F,r(1) + b2F (1)S} .

Comparing with the results (4.3.6), (4.3.11) and the analogous smeared for-
mulas given in the previous section we find

b0 = 2, b1 = (3−,−3+), b2 = 12.

Thus our special case also gives the entire a1 coefficient without any further
information being needed. It is very important that the calculation can be
performed for an arbitrary ball dimension D, and also for a smearing function
F (r). This allows us just to compare polynomials in d with the associated
extrinsic curvature terms in the general expression and simply to read off the
universal constants in this expression.

The idea is now sufficiently clear and to simplify reading, we will give again
in the following the general expression (apart from a5/2) and simply state the
restrictions found from the special case presented in the previous section. The



general form of the next higher coefficient is

a3/2(F, P,B∓S ) =
δ

96(4π)d/2

(
F
(
c0E + c1R+ c2Rmm + c3K

2

+c4KabK
ab + c7SK+ c8S

2
)

+ F;m(c5K + c9S) + c6F;mm

)
[∂M].

The ball calculation is still very informative and immediately gives 7 of the
10 unknowns,

c3 = (7−, 13+), c4 = (−10−, 2+), c5 = (30−,−6+),
c6 = 24, c7 = 96, c8 = 192, c9 = −96.

Next apply the lemma on product manifolds (4.2.12), which also very easily
gives additional information. Written out, for a3/2 the lemma means

a3/2,ν(y, P,B∓S ) = a3/2,ν(y1, P1,B∓S )a0(x2, P2) + a1/2,ν(y1, P1,B∓S )a1(x2, P2).

For simplicity we will choose P1 = −∆1 and P2 = −∆2 +E(x2) with obvious
notation. For the curvature on product manifolds we have the simple relation
R(M1 ×M2) = R(M1) +R(M2), which allows us to obtain

δ96−1(c0E + c1R(M2)) = δ6−1(6E +R(M2)).

This gives
c0 = 96, c1 = 16.

We see that the determination of a3/2 is relatively simple, once the ball result
is at hand. The lemma on product manifolds is also very easily applied and
only one of the universal constants ci, namely c2, is missing.

The remaining information can be obtained by various means. One possi-
bility is to consider the example of a hemisphere. A second possibility is to
use the relations between the heat kernel coefficients under conformal rescal-
ing, (4.2.15). As mentioned, all conformal variations needed can be found in
Appendix B. Several relations between the universal constants ci are found by
setting to zero the coefficients of all terms in (4.2.15). The missing coefficient
c2 is found by setting to zero the coefficient of F;mm. The relation reads

1
2
(D − 2)c0 − 2(D − 1)c1 − (D − 1)c2 − (D − 3)c6 = 0

and so c2 = −8 for Dirichlet and Robin boundary conditions. This completes
the calculation of a3/2.

We continue with the treatment of a2. The general form becomes increas-
ingly more difficult and it reads

a2(F, P,B∓S ) = (4π)−D/2360−1
{
F (60∆E + 60RE + 180E2 + 30ΩijΩij

+12∆R+ 5R2 − 2RijRij + 2RijklRijkl)[M]
+
[
F (v1E;m + v2R;m + v3K

a
:a + v4K

ab
ab: + v5EK + v6RK

+v7RmmK + v8RambmK
ab + v9R

b
abc K

ac + v10K
3 + v11KabK

abK



+v12KabK
b
cK

ac + v13SE + v14SR+ v15SRmm + v16SK
2

+v17SKabK
ab + v18S

2K + v19S
3 + v20S

a
:a)

+F;m(e1E + e2R+ e3Rmm + e4K
2 + e5KabK

ab + e8SK + e9S
2)

+F;mm(e6K + e10S) + e7(∆F );m ] [∂M]} .

From the ball calculation we find

v10 = (40/21−, 40/3+), v11 = (−88/7−, 8+), v12 = (320/21−, 32/3+),
v16 = 144, v17 = 48, v18 = 480, v19 = 480,
e4 = (180/7−,−12+), e5 = (−60/7−,−12+), e6 = 24,
e7 = (30−,−30+), e8 = −72, e9 = −240, e10 = 120.

The product formula this time reads

a2,ν(y, P,B∓S ) = a2,ν(y1, P1,B∓S )a0(x2, P2) + a1,ν(y1, P1,B∓S )a1(x2, P2)

and leads to the universal constants,

v5 = 120, v6 = 20, v13 = 720, v14 = 120,
e1 = (180−,−180+), e2 = (30−,−30+).

These two relatively simple inputs, namely the ball and the product formula,
already give 20 of the 30 unknowns. As before, the remaining 10 universal
constants are determined by the conformal rescaling (4.2.15). Having that
large pool of information already available, only a few more relations are
required to fix the remaining ones. On the left of the following list, we give
the term in (4.2.15) whose coefficient is equated to zero.

Term Coefficient
EF;m 0 = −2v1 + 60(D − 6) + v5(D − 1)− (D − 4)e1 − 1

2 (D − 2)v13
(∆F );m 0 = 6(D − 6) + 1

2 (D − 2)v1 − 2(D − 1)v2 − (D − 4)e7
F:aK

a
: 0 = −4(D − 6) + (D − 4)v3 − 1

2 (D − 2)v5 + 2(D − 1)v6
+ v7 + v9

KF;mm 0 = 1
2 (D − 2)v5 − 2(D − 1)v6 − (D − 1)v7 − v8 − (D − 4)e6

K b
ab: F

a
: 0 = (D − 4)v4 + v8 + (D − 3)v9 + 4(D − 6)

RmmF;m 0 = (D − 1)v7 + v8 − 2v9 + e3 + 4(D − 6)− 1
2 (D − 2)v15

F:aS
a
: 0 = − 1

2 (D − 2)v13 + 2(D − 1)v14 + v15 + (D − 4)v20

Solving these equations using the information obtained previously, we find the
universal constants

v1 = (120−,−240+), v2 = (18−,−42+), v3 = 24, v4 = 0,
v7 = −4, v8 = 12, v9 = −4, v15 = 0, v20 = 120, e3 = 0.

This completes the evaluation of a2 and concludes the summary of the co-
efficients for Dirichlet and Robin boundary conditions known already since
about 1990 [302, 125, 68, 320, 321, 154, 408]. We finally come to the calcula-
tion of a5/2. For an arbitrary smearing function F , it has been calculated for
a totally geodesic boundary ∂M in [74]. For F = 1, it has been determined



for M a domain of IRD. The general form, see (4.2.11) has also been stated
in [74]. Finally, the universal constants g1, ..., g45 and d43, d44 and d55 were
calculated there. However, the main group of terms containing the extrinsic
curvature Kab and its derivatives remained undetermined. It is clear here that
the calculation on the ball gives additional information [267]. In detail, from
the ball we get the following 25 constants or relations among them:

g24 = 1440 g31 = −720
g35 = 360 g36 = −180
g37 = 45 d30 = 2160
d31 = 1080 d32 = 360
d33 = 885/4 d34 = 315/2
d35 = 150 d36 = (−65/128−, 2041/128+)
d37 = (−141/32−, 417/32+) d40 = (−327/8−, 231/8+)
d42 = −600 d47 = −705/4
d48 = 75/2 d49 = (495/32−,−459/32+)
d50 = (−1485/16−,−267/16+) d51 = (225/2−, 54+)
d52 = 30 d53 = (1215/16−, 315/16+)
d54 = (−945/8−,−645/8+) d55 = (105−, 30+)

and d38 +d39 = (1049/32−, 1175/32+). The product lemma (4.2.12) takes the
form

a5/2,ν(y, P,B∓S )− a5/2,ν(y1, P1,B∓S )a0(x2, P2) = (4.4.1)

a3/2,ν(y1, P1,B∓S )a1(x2, P2) + a1/2,ν(y1, P1,B∓S )a2,ν(x2, P2).

This gives the following 22 universal constants:

g3 = 720 g5 = 240 g6 = 48
g7 = 20 g8 = −8 g9 = 8
g10 = −120 g11 = −20 g12 = 480
g23 = 2880 g26 = −240 g30 − 1440
g32 = 60 g34 = 360 g38 = 1440
g39 = 240 g40 = (105−, 195+) g41 = (−150−, 30+)
g42 = (105/6−, 195/6+) g43 = (−25−, 5+) g44 = (450−,−90+)
g45 = (75−,−15+)

All this information is now a very good starting point to use relations of the
heat kernel coefficients under conformal rescalings (4.2.15). The relevant ones
for our case read

0 =
d

dε
|ε=0a5/2

(
1, P (ε),B∓S (ε)

)
)− (D − 5)a5/2(F, P,B∓S ) (4.4.2)

0 =
d

dε
|ε=0a5/2

(
e−2εfF, P (ε),B∓S (ε)

)
for D = 7. (4.4.3)

The needed calculation to extract all relevant information from these rela-
tions is very excessive and some of the details are presented in Appendix B.
We decided to include the analysis of a5/2 in this presentation, because its



knowledge is needed to analyze quantum field theories on the newly proposed
Randall-Sundrum models [351, 350]. Furthermore, some part of it controls
certain compactness estimates; for details see [237].

Using the results of Appendix B and setting to zero the coefficients of all
terms in (4.4.2) we obtain the following set of equations. They are ordered in
such a way that nearly every equation immediately yields a universal constant,
which was the main motivation for the ordering given.

Term Coefficient
EF;mm 0 = −2g1 + (D − 2)g3 − 2(D − 1)g5 − (D − 1)g10

− (D − 5)g34
ESF;m 0 = −2g2 − (D − 2)g23 + (D − 1)g38 − (D − 5)g30
SF;mmm 0 = 1

2 (D − 2)g2 − 2(D − 1)g16 − (D − 5)g36
KSF;mm 0 = 1

2 (D − 2)g2 − 2(D − 1)g16 + 1
2 (D − 2)g38 − (D − 1)d20

− 2(D − 1)g39 − d21 + d22 − (D − 5)d52

FE a
:a 0 = −g1 + (D − 2)g3 − (D − 5)g4 − 2(D − 1)g5 − g10

F;mmmm 0 = 1
2 (D − 2)g1 − 2(D − 1)g6 − 2(D − 1)g13 − (D − 1)g15
− (D − 5)g37

F∆R 0 = 1
2 (D − 2)g5 − (D − 4)g6 − 4(D − 1)g7 −Dg8 − 4g9
− g11 − g13 + 1

2g20
FR;mm 0 = − 1

2 (D − 2)g5 + (D − 4)g6 + 4(D − 1)g7 + 2(D − 1)g8
+ 8g9 + g11 + g13 − 2g15 − 1

2Dg20 + g22
FR a

mm:a 0 = 1
2 (D − 2)g1 − 2(D − 1)g6 + 1

2 (D − 2)g10 − 2(D − 1)g11
− 2(D − 1)g13 − (D − 5)g14 − 2g15 + (D − 1)g20
− 2g21 − 2g22

F;mmS
2 0 = −2(D − 1)g12 − (D − 1)g17 + 1

2 (D − 2)g23 − (D − 5)g35
FS:aS

a
: 0 = −4(D − 1)g12 − 2g17 − (D − 3)g18 + 2g19 + (D − 2)g23

F;mE;m 0 = −5g1 − 1
2 (D − 2)g2 + (D − 1)d1 − (D − 5)g29

F;mmmK 0 = 1
2 (D − 2)g1 − 4(D − 1)g6 − 2(D − 1)g13 − g15
+ 1

2 (D − 2)d1 − 2(D − 1)d2 + d3 − (D − 5)d55

F;mR;m 0 = − 1
4 (D − 2)g1 + (2D − 7)g6 + (D − 6)g13 − 2g15

− 1
2 (D − 2)g16 + (D − 1)d2 − 1

2d3 − (D − 5)g25
F;mmRmm 0 = −(D − 2)g1 + 4(D − 1)g6 − 2(D − 2)g8 − 8g9

+ 1
2 (D − 2)g10 − 2(D − 1)g11 + 4(D − 1)g13

− 2(D − 1)g21 − 2g22 − (D − 5)g33
F;mRmmS 0 = − 1

2 (D − 2)g2 + 2(D − 1)g16 − (D − 2)g17 + (D − 1)d20

− d21 − d22 − (D − 5)g27
FKS a

:a 0 = −(D − 4)d4 − d5 + d6 + d7 − d8 − d9 + 1
2 (D − 2)g38

− d20 − 2(D − 1)g39 − d21

FK a
:a S 0 = − 1

2 (D − 2)g2 + 2(D − 1)g16 − d4 + d6 − (D − 4)d8

+ 1
2 (D − 2)g38 − d20 − 2(D − 1)g39 − d21

FKabS
ab
: 0 = −(D − 2)g2 + 4(D − 1)g16 + 3d5 − (D − 2)d7

+ (D − 2)d9 − (D − 2)d21 + d22

FK ab
ab: S 0 = −d5 + d7 − (D − 4)d9 − (D − 2)d21 + d22

F;mS
a

:a 0 = 1
2 (D − 2)g2 − 2(D − 1)g16 − (D − 2)g18 + (D − 2)g19



+ (D − 1)d4 + d5 − (D − 1)d6 − d7 + (D − 1)d8

+ d9 − (D − 5)g28

The equations given up to this point allow for the determination of the
universal constants apart from two groups. The first group is d23, ..., d29, d38,
d39, d41, d45, d46. The second one is d10, ..., d19, d43, d44. Explicitly, up to this
point we obtain

g1 = 360 g2 = −1440 g4 = 240
g13 = 12 g14 = 24 g15 = 15
g16 = −270 g17 = 120 g18 = 960
g19 = 600 g20 = −16 g21 − 17
g22 = −10 g25 = (60−, 195/2+) g27 = 90
g28 = −270 g29 = (450−, 630+) g33 = −90
d1 = (450−,−90+) d2 = (42−,−111/2+) d3 = (0−, 30+)
d4 = 240 d5 = 420 d6 = 390
d7 = 480 d8 = 420 d9 = 60
d20 = 30 d21 = −60 d22 = −180

The first group is completely determined using the relations

Term Coefficient
F;mmKabK

ab 0 = −(D − 2)g1 + 4(D − 1)g6 + 4(D − 1)g13 + 2g15
+ d3 + 1

2 (D − 2)g41 − 2(D − 1)g43 − (D − 1)d24

− d27 + d28 − (D − 5)d54

F;mmK
2 0 = −2(D − 1)g6 + 1

2 (D − 2)d1 − 2(D − 1)d2

+ 1
2 (D − 2)g40 − 2(D − 1)g42 − (D − 1)d23 − d25

+ d26 − (D − 5)d53

F;mKR 0 = 1
2 (D − 2)g5 − 2g6 − 4(D − 1)g7 − 2g8 − g11 − 2d2

− 1
2 (D − 2)g39 + 2(D − 1)g42 + 2g43 + d25

− (D − 5)g45
F;mKRmm 0 = 1

2 (D − 2)g1 + 1
2 (D − 2)g10 − 2(D − 1)g11

− 2(D − 1)g13 + 4g15 + g20 − 2g21 − 1
2 (D − 2)d1

+ 2(D − 1)d2 + d3 − 1
2 (D − 2)d20 + 2(D − 1)d23

+ 2d24 − d25 − d26 − (D − 5)d41

F;mKabR
ab 0 = − 1

2 (D − 2)g1 + 2(D − 1)g6 − 2(D − 2)g8 − 8g9
+ 2(D − 1)g13 − 4g15 + g20 − d3 − 1

2 (D − 2)d21

+ (D − 1)d25 + 2d27 + 2d29 − (D − 5)d45

F;mK
abRammb 0 = −(D − 2)g1 + 4(D − 1)g6 + 4(D − 1)g13 + 2g15

− (D − 2)g20 + 2g22 − d3 − 1
2 (D − 2)d22

+ (D − 1)d26 + 2d28 + 2d29 − (D − 5)d46

F;mKabK
bcKa

c 0 = (D − 2)g1 − 4(D − 1)g6 − 4(D − 1)g13 − 2g15 − d3

− (D − 2)d27 + d28 + 2d29 − 1
2 (D − 2)d35

+ (D − 1)d39 + 4d40 − (D − 5)d51

FRacK
c
bK

ab 0 = −2(D − 2)g8 − 8g9 + 4g15 + g20 + 2d3 + 4d13

+ 4d14 − 4d19 − (D − 2)d27 + d28 + 2d29



which also still follow from (4.4.2). We find

d23 = (−215/16−,−275/16+) d24 = (−215/8−,−275/8+)
d25 = (14−,−1+) d26 = (−49/4−,−109/4+)
d27 = 16 d28 = (47/2−,−133/2+)
d29 = 32 d38 = (777/32−, 375/32+)
d39 = (17/2−, 25+) d41 = (−255/8−, 165/8+)
d45 = (−30−,−15+) d46 = (−465/4−,−165/4+)

Finally, let us consider the second group mentioned above. In addition to
those relations obtained from equation (4.4.2), just one more relation is needed
to complete the calculation. The remaining equations from (4.4.2) are:

Term Coefficient
FK:bK

:b 0 = 2(D − 1)g6 − 4g15 − (D − 2)g20 + 2g22 − 1
2 (D − 2)d1

+ 2(D − 1)d2 + 2d10 + d11 − (D − 3)d15 − d16

− d18 + (D − 2)g40 − 4(D − 1)g42 − 2d23 − 2d25

FK a
ab: K

b
: 0 = 2(D − 2)g1 − 4(D − 1)g6 − 8(D − 1)g13

+ (4D − 6)g20 − 8g22 − (D − 2)d1 + 4(D − 1)d2

− (D − 3)d11 + 2d12 − 2d14 + 2d16 − 2d17 + 2d18

− 2(D − 2)d25 + 2d26 − 4d29

FKab:cK
ab c

: 0 = (D − 2)g1 − 4(D − 1)g6 − 4(D − 1)g13 − 2g15
+ (D − 2)g20 − 2g22 − 3d3 + 2d13 + 2d14 − (D − 3)d19

+ (D − 2)g41 − 4(D − 1)g43 − 2d24 − 2d27

FKK ab
ab: 0 = 4(D − 2)g8 + 16g9 − 4g15 −Dg20 + 2g22 + d11 + 2d12

− (D − 4)d16 − 2d17 − d18 − (D − 2)d25 + d26 − 2d29

F;mK
a

:a 0 = − 3
2 (D − 2)g1 + 4(D − 1)g6 − 4(D − 2)g8 − 16g9

+ 6(D − 1)g13 + 1
2 (D − 2)d1 − 2(D − 1)d2 − d3

− 1
2 (D − 2)d4 + 1

2 (D − 2)d6 − 1
2 (D − 2)d8

− 2(D − 1)d10 − d11 − 2d13 + 2(D − 1)d15 + d16

+ d18 + 2d19 − (D − 5)d43

F;mK
ab

ab: 0 = 1
2 (D − 2)g1 − 2(D − 1)g6 + 4(D − 2)g8 + 16g9
− 2(D − 1)g13 + 2g15 + 2d3 − 1

2 (D − 2)d5

+ 1
2 (D − 2)d7 − 1

2 (D − 2)d9 − (D − 1)d11 − 2d12

− 2d14 + (D − 1)d16 + 2d17 + (D − 1)d18

− (D − 5)d44

FK a
ab: K

bc
:c 0 = (4− 3D)g20 + 6g22 − 2d3 − 2(D − 2)d12 − 4d13 − 2d14

+ (D + 1)d17 + 4d19 − (D − 2)d27 + d28 + 2d29

FK:abK
ab 0 = 2(D − 2)g1 − 4(D − 1)g6 − 2(D − 2)g8 − 8g9

− 8(D − 1)g13 + (4D − 5)g20 − 8g22
− (D − 2)d1 + 4(D − 1)d2 − (D − 2)d11 − 2d14

+ (D − 2)d16 + 3d18 − (D − 2)d25 + d26 − 2d29



This yields

d11 = (58−, 238+) d15 = (6−, 111+)
d16 = (−30−,−15+) d19 = (54−, 114+)

together with the relations

2d10 + d43 = −91
2d10 − d18 = (−983/8−,−1403/8+)
2d14 − 3d18 = (−913/4−,−2533/4+)
d13 + d14 = (297/8−, 837/8+)
d18 − d44 = (60−, 225+)
2d12 − 2d17 − d18 = (−7/4−,−787/4+)
2d12 − d17 = 32

With these results we have exhausted all information that we can get with
the relation (4.4.2). If for example d43 or d44 were known, the remaining
constants would be determined. This is achieved with the eq. (4.4.3) [74].
Thus at the end we get

d10 = (−413/16−, 487/16+) d12 = (−11/4−, 49/4+)
d13 = (355/8−, 535/8+) d14 = (−29/4−, 151/4+)
d17 = (−75/2−,−15/2+) d18 = (285/4−, 945/4+)
d43 = (−315/8−,−1215/8+) d44 = 45/4

In summary, we have determined the full (apart from the Ω-terms) a5/2 heat
kernel coefficient for Dirichlet and Robin boundary conditions. All relations
arising from eqs. (4.4.2) and (4.4.3) and which are not displayed in the above
lists can be used as a check for the universal constants. As a general comment,
let us stress that this type of calculations calls for any possible cross check to
be used in order to guarantee the final answer is correct. Also in this respect,
the mixture of the methods displayed is very productive.

A collection of the results for Dirichlet and Robin boundary conditions is
provided in Sections 4.10.2 and 4.10.3, respectively.

It is clear by now that the combination of the different methods is extremely
effective in obtaining heat kernel coefficients. The next sections will show that
this remains true, unaffected by the boundary condition treated.

4.5 Mixed boundary conditions

The results for Dirichlet and Robin boundary conditions can be combined
into a single formula by using so-called mixed boundary conditions. These
were briefly mentioned just below eq. (4.2.2) and they are defined as follows

                      



[69]. As before, let V be a vector bundle over M. The boundary conditions we
will consider arise from a suitable splitting of V . To define the splitting, we
assume an auxilary Hermitian endomorphism χ of V defined over ∂M with
χ2 = 1. Using the normal geodesics to the boundary, we extend χ to a collared
neighborhood U of ∂M so χ;m = 0. Let V± be the complementary subbundles
of V over U corresponding to the ±1 eigenspaces of χ and let Π± = 1

2 (1± χ)
be the projection on V±. Consider the operator as before,

P = −(gij∇Vi ∇Vj + E).

For S, a Hermitian endomorphism of V+, mixed boundary conditions are
defined as follows,

Bψ = Π−ψ |∂M ⊕ (∇m − S)Π+ψ |∂M = 0. (4.5.1)

As is clear from the discussion just below eq. (4.2.1), these boundary con-
ditions define a symmetric operator P . Obviously, χ = 1 reduces to Robin
boundary conditions and χ = −1 to Dirichlet boundary conditions. As we
will explain in more detail later, see Section 4.5, the boundary conditions pre-
ceding eq. (3.3.11) for spinors as well as absolute, eq. (3.4.15), and relative
boundary conditions, eq. (3.4.17), are of this type.

In the same way we have found the leading heat kernel coefficients for
Dirichlet and Robin boundary conditions, (4.2.6)—(4.2.11), we can proceed
to find the general form of the heat kernel coefficients for the boundary condi-
tions (4.5.1). Due care must be given to possible additional terms containing
the endomorphism χ. We have χ2 = 1, thus {1, χ} or {Π−,Π+}, whatever is
more convenient, can be used as independent invariants. Tangential covari-
ant derivatives of these as well as new terms resulting from the (in general)
noncommutativity of the different endomorphisms involved can appear. To
fix the possible new terms note that χ does not scale under P → c−2P ; see
eq. (4.2.5).

When writing down the general form of the coefficients, it is very important
to systematically incorporate the knowledge obtained already through Dirich-
let and Robin boundary conditions. In fact, this is very simple and we will
exemplify the procedure only for a1/2. The general ansatz for mixed boundary
conditions would be

a1/2(F, P,B) = (4π)−d/2(e0F + e1Fχ)[∂M].

Previous results on Dirichlet and Robin boundary conditions show that

e0 + e1 =
1
4
, e0 − e1 = −1

4
,

which proves e0 = 0, e1 = 1/4. Proceeding with the higher coefficients, again
due care has to be taken to include only independent geometric quantities.
This is discussed further below. The general form that incorporates all infor-
mation from Dirichlet and Robin boundary conditions is stated in the follow-

                      



ing,

a0(F, P,B) = (4π)−D/2F [M], (4.5.2)
a1/2(F, P,B) = 4−1(4π)−d/2χF [∂M], (4.5.3)

a1(F, P,B) = (4π)−D/26−1 {(6FE + FR)[M]
+(2FK + 3χF;m + 12FS)[∂M]} , (4.5.4)

a3/2(F, P,B) =
1

384(4π)d/2
{
F
(
96χE + 16χR+ 8χRmm

+(13Π+ − 7Π−)K2+ (2Π+ + 10Π−)KabK
ab

+96SK+ 192S2+ β1χ:aχ
a
:

)
−F;m((6Π+ + 30Π−)K + 96S) + 24χF;mm} [∂M], (4.5.5)

a2(F, P,B) = (4π)−D/2360−1
{
F (60∆E + 60RE + 180E2 + 30ΩijΩij

+12∆R+ 5R2 − 2RijRij + 2RijklRijkl)[M] (4.5.6)
+ [F ((−240Π+ − 120Π−)E;m + (−42Π+ + 18Π−)R;m + 24Ka

:a

+0K ab
ab: + 120EK + 20RK − 4RmmK + 12RambmKab − 4R b

abc K
ac

+21−1(280Π+ + 40Π−)K3 + 21−1(168Π+ − 264Π−)KabK
abK

+21−1(224Π+ + 320Π−)KabK
b
cK

ac + 720SE + 120SR+ 0SRmm
+144SK2 + 48SKabK

ab + 480S2K + 480S3 + 120Sa:a) + β2χχ
a
: Ωam

+β3χ
a
: χ:aK + β4χ:aχ:bK

ab + β5χ:aχ
a
: S) + F;m(−180χE − 30χR

+0Rmm + ((−84Π+ + 180Π−)/7)K2 − (84Π+ + 60Π−)/7KabK
ab

−72SK − 240S2 + β6χ:aχ
a
: )

+F;mm(24K + 120S)− 30χ(∆F );m ] [∂M]}

and finally,

a5/2(F, P,B) = 5760−1(4π)−(D−1)/2 {F (360χE;mm − 1440E;mS

+720χE2 + 240χE a
:a + 240χRE + 48χ∆R+ 20χR2 − 8χRijRij

+8χRijklRijkl − 120χRmmE − 20χRmmR+ 480RS2

+12χR;mm + 24χR a
mm:a + 15χRmm;mm − 270R;mS + 120RmmS2

+960SS a
:a − 16χRammbRab − 17χRmmRmm − 10χRammbRa b

mm

+2880ES2 + 1440S4
)

+F;m {(195/2 Π+ − 60Π−)R;m − 240RS + 90RmmS − 270S a
:a

+(630Π+ − 450Π−)E;m − 1440ES − 720S3
}

+F;mm

{
60χR− 90χRmm + 360χE + 360S2

}
−180SF;mmm + 45χF;mmmm



+F {(−90Π+ − 450Π−)KE;m + (−111/2Π+ − 42Π−)KR;m

+30Π+K
abRammb;m + 240KS b

:b + 420KabS
ab
: + 390K:bS

b
:

+480Kab:
aSb: + 420K:b

bS + 60Kab:
abS

+(487/16Π+ + 413/16Π−)K:bK
b
: + (238Π+ − 58Π−)Kab:

aKb
:

+(49/4Π+ + 11/4Π−)Kab:
aKbc

:c + (535/8Π+ − 355/8Π−)Kab:cK
ab c

:

+(151/4Π+ + 29/4Π−)Kab:cK
ac b

: + (111Π+ − 6Π−)K b
:b K

+(−15Π+ + 30Π−)K ab
ab: K + (−15/2Π+ + 75/2Π−)K a

ab: cK
bc

+(945/4Π+ − 285/4Π−)K:bcK
bc + (114Π+ − 54Π−)K a

bc:a Kbc

+1440KSE + 30KSRmm + 240KSR− 60KabR
abS

−180KabSRammb + (195Π+ − 105Π−)K2E

+(30Π+ + 159Π−)KabK
abE + (195/6Π+ − 105/6Π−)K2R

+(5Π+ + 25Π−)KabK
abR+ (−275/16Π+ + 215/16Π−)K2Rmm

+(−275/8Π+ + 215/8Π−)KabK
abRmm + (−Π+ − 14Π−)KKabR

ab

+(−109/4Π+ + 49/4Π−)KKabRammb + (16Π+ − 16Π−)KabK
acRbc

+(−133/2Π+ − 47/2Π−)Kb
aK

acRbmmc + (32Π+ − 32Π−)KabKcdR
acbd

+2160KS3 + 1080K2S2 + 360KabK
abS2 + 885/4K3S

+315/2KKabK
abS + 150KabK

bcKa
c S + (2041/128Π+ + 65/128Π−)K4

+(417/32Π+ + 141/32Π−)K2KabK
ab

+(375/32Π+ − 777/32Π−)KabK
abKcdK

cd

+(25Π+ − 17/2Π−)KKabK
bcKa

c

+(231/8Π+ + 327/8Π−)KabK
bcKcdK

da
}

+F;m {(−90Π+ − 450Π−)KE + (165/8Π+ + 255/8Π−)KRmm
+(−15Π+ − 75Π−)KR− 600KS2 + (−1215/8Π+ + 315/8Π−)K b

:b

+(45/4Π+ − 45/4Π−)K ab
ab: + (−15Π+ + 30Π−)KabR

ab

+(−165/4Π+ + 465/4Π−)KabRammb − 705/4K2S

+75/2KabK
abS + (−459/32Π+ − 495/32Π−)K3

+(−267/16Π+ + 1485/16Π−)KKabK
ab

+(54Π+ − 225/2Π−)KabK
bcKa

c

}
+F;mm

{
30KS + (315/16Π+ − 1215/16Π−)K2

+(−645/8Π+ + 945/8Π−)KabK
ab
}

+ (30Π+ − 105Π−)KF;mmm

+F
(
w1E

2 + w2χEχE + w3S:aS
a
: + w4χS:aS

a
: + w5ΩabΩab

+w6χΩabΩab + w7χΩabχΩab + w8ΩamΩam + w9χΩamΩam
+w10χΩamχΩam + w11(ΩamχSa: − ΩamSa: χ) + w12χχ:aΩamK
+w13χ:aχ:bΩab + w14χχ:aχ:bΩab + w15χχ:aΩam;m + w16χχ

a
: Ω b

ab:

+w17χχ:aΩbmKab + w18χ:aE
a
: + w19χ:aχ

a
: E + w20χχ:aχ

a
: E



+w21χ
a

:a E + w22χ:aχ
a
: R+ w23χ:aχ

a
: Rmm + w24χ:aχ:bR

ab

+w25χ:aχ:bR
ab

m m + w26χa
χa: K

2 + w27χ:aχ:bK
acKb

c

+w28χ:aχ
:aKcdK

cd + w29χ:aχ:bK
abK + w30χ:aS

a
: K + w31χ:aS:bK

ab

+w32χ:aχ
a
: χ:bχ

b
: + w33χ:aχ:bχ

a
: χ

b
: + w34χ

a
:a χ

b
:b

+w35χ:abχ
ab
: + w36χ:aχ

a
: χ

b
:b + w37χ:bχ

ab
:a

)
+F;m

(
w38χ:aS

a
: + w39χ:aχ

a
: K + w40χ:aχ:bK

ab + w41χχ:aΩam
)

+w42χ:aχ
a
: F;mm}[∂M]. (4.5.7)

For a5/2 we have in addition the two relations

w1 + w2 = 0, w3 + w4 = 600. (4.5.8)

Given [χ,E] = 0 for Dirichlet and Robin boundary conditions, the multipliers
w1 and w2 cannot be separated. When writing down these general formulas,
we must be very careful that only independent geometrical quantities are used.
Some examples will clarify the main points. The coefficients a0, a1/2 and a1 are
already determined by Dirichlet and Robin boundary conditions because no
tangential derivatives of χ enter. No more terms other than the ones written
down are possible due to

χ2 = 1 (4.5.9)

and

χS = Sχ = S. (4.5.10)

For the higher coefficients some computations in invariance theory are nec-
essary. As an example consider a3/2. It seems that the terms χχ:aχ

a
: , χ

a
:a , χ

χ a
:a could be present. However, differentiating eq. (4.5.9) we get the identities

{χ, χ:a} = 0, {χ, χ:ab}+ {χ:a, χ:b} = 0. (4.5.11)

Furthermore, by eq. (4.5.9) and the cyclicity of the trace,

Trχ:ab = Tr (χ2χ:ab) =
1
2

Tr (χ{χ, χ:ab}) = −1
2

Tr (χ{χ:a, χ:b})

= −1
2

Tr ({χ, χ:a}χ:b) = 0,

Tr (χχ:aχ
a
: ) =

1
2

Tr ({χ, χ:a}χ a
: ) = 0,

and χ a
:a as well as χχ:aχ

a
: need not be included. By a similar reasoning

Tr (χχ a
:a ) = −Tr ({χ:a, χ

a
: }) = −2 Tr (χ:aχ

a
: ),

being dependent on terms already present.
For a2, in addition to the list in (4.5.6), the following further combinations

are in principle possible (they are ordered with respect to their length, which
is the number of terms):

Length 2: (χ:aK
a
: ), (χ a

:a K), (χ a
:a S), (χ:aS

a
: ), (χS a

:a ), (χ:aΩam).
Two terms have vanishing trace, Trχ a

:a = Trχ:a = 0. The remaining three



terms are controlled by the terms S a
:a and χ:aχ

a
: S. To see this, differentiate

eq. (4.5.10) to find

S:a = χ:aS + χS:a = S:aχ+ Sχ:a, (4.5.12)
S:ab = χ:abS + χ:aS:b + χ:bS:a + χS:ab

= S:abχ+ S:aχ:b + S:bχ:a + Sχ:ab. (4.5.13)

Playing around with these equations we eventually get

Tr (S:aχ
a
: ) = Tr (Sχ:aχ

a
: ), Tr (Sχa:a) = −Tr (S:aχ

a
: ),

Tr (χS a
:a ) = Tr (S a

:a − χ:aS
a

: ).

For the last term we use traces of anti-Hermitian operators are purely imagi-
nary, TrA∗ = ( TrA)∗ = −TrA. But, given that P is self-adjoint, the smeared
heat kernel should be real and the corresponding numerical constant has to
vanish (see discussion just below eq. (4.2.11)).

Length 3: (χχ a
:a K), (χχ:abK

ab), (χχ:aK
a
: ), (χχ:aS

a
: ).

The first term is controlled by β3, the second by β4, the third traces to zero
(see eq. (4.5.11)), and the last one’s trace is purely imaginary.

Finally let us give the reasoning for the structure of a5/2. The trace of the
following terms is purely imaginary,

Xχχ:aE
a

: , χχ:aχ
ab
: b, Ωam(S a

: χ+ χS a
: ),

χχ:aχ:bX
ab, F;mχχ:aS

a
: , [χ a

:a , χ]E,
Xijχ:aΩkl, χ:aΩjk;i (4.5.14)

where X is an arbitrary tensor monomial constructed from Kab, F , Riemann
curvature and their derivatives. Thus the coefficients of the above-mentioned
terms in a5/2 must be zero.

Eq. (4.5.11) clearly shows that terms of the type

χ:abX
ab, χχ:aX

a, χχ:aχ
a
: X,

χχ:aχ:bχ
a
: χ

b
: , χ:aX

a

trace to zero. Furthermore, terms of the form χχ:abX
ab are already controlled

by χ:aχ:bX
ab. It is obvious as well that due to eq. (4.5.11) the terms

χχ a
:a χ

b
:b , χχ:abχ

ab
: , χχ a

:a χχ
b

:b , χχ:abχχ
ab
: ,

χχ ab
: χ:aχ:b, χχ ab

: χ:bχ:a, χχ a
:a χ:bχ

b
: ,

are linearly dependent on the ones which are already included in our list. Less
trivial are the connections

Tr(χ:aχ:bχ
ab
: ) =

1
2
Tr(χ:aχ:bχ{χ, χ ab

: }) =
1
2
Tr(χχ:aχ

a
: χ:bχ

b
: )

Tr(χ:aχ
a
: χ

b
:b ) = −Tr(χχ:aχ

a
: χ:bχ

b
: ).

Differentiating eq. (4.5.11) two times more,

{χ a
: ab, χ}+ {χ a

:a , χ:b}+ 2{χ:ab, χ
a
: } = 0,



{χ a b
:a b , χ}+ (lower number of derivatives in χ) = 0,

the fourth derivative of χ can be reduced to lower derivatives, eventually at
the cost of getting Ω-terms by the Ricci-identity.

Eqs. (4.5.12) and (4.5.13) show that we do not need a χ, a χ:a nor a χ a
:a

touching an S. Additional reductions derived using (4.5.12) and (4.5.13) are

Tr(χ:aS) = 0, Tr(χS:b) = Tr(S:b),
Tr(χS:aχS

a
: ) = Tr(2χS:aS

a
: − S:aS

a
: ),

Tr(χS:abK
ab) = Tr(S:abK

ab − Sχ:abK
ab − 2S:aχ:bK

ab

= Tr(S:abK
ab − S:aχ:bK

ab),

where in the last step we used

Tr(Sχ:abK
ab) = −Tr(Sχ:aχ:bK

ab) = −Tr(S:aχ:bK
ab),

Tr(χχ:aS:bK
ab) = 0.

Apart from this reduction due to (4.5.9) and (4.5.10) and derivatives thereof,
a final general remark is that terms obtained by commuting the order of
derivatives are controlled by the Ricci-identity.

Having all these criteria at hand, in addition to the terms in a5/2, eq. (4.5.7),
only a few possible invariants are left which are ruled out in the following
discussion. We state them ordered by their length.

Length 2: Because Ωab is antisymmetric, Tr(χ:abΩab) = 0.
Length 3: Using the Ricci-identity,

χχ:abΩab =
1
2
χ(χ:ab − χ:ba)Ωab =

1
2
χ[χ,Ωab]Ωab,

and these terms are already controlled. One can proceed in the same way for
χ:abχΩab. Instead of χχ a

:a E and χ a
:a χE take the difference and the sum. The

difference is excluded by (4.5.14), the sum controlled by χ:aχ
a
: E.

Length 4: With eq. (4.5.11), it is immediate that Tr(χχ:abχΩab) = 0.
It becomes apparent that for the higher coefficients stating the general form

containing only independent invariants is already becoming a difficult task.
However, once this is done, as before, the remaining task is the determination
of the universal constants βi and wi. To achieve this goal we will use again
conformal transformation techniques combined with special case calculation
and the application of index theorems. As a next step we will explain how
the local boundary conditions for the spinor field and absolute and relative
boundary conditions for forms fit into the formulation of mixed boundary
conditions. Afterwards for these examples the coefficients will be calculated
explicitly using the results of Sections 3.3 and 3.4. Several universal constants
or relations among them will be determined. Together with the relations found
by the functorial methods as well as by index theory, all coefficients listed will
be fully determined. The coefficients up to a2 were found in [68, 408], and
a5/2 was given for the first time in [72].

                      



4.6 Special case calculations for mixed boundary condi-
tions

4.6.1 Spinor field with local boundary conditions

In Section 3.3 we considered the Dirac operator with a kind of bag boundary
conditions. In the explicit calculations shown there, we introduced the Dirac
matrices Γk and γk to distinguish between representations of different dimen-
sions. This will not be necessary in the following and from now on we will use
γk. Let us now reformulate these boundary conditions in terms of the mixed
ones introduced in eq. (4.5.1) [69]. We considered the Dirac operator γj∇j ,
eq. (3.3.4), with the boundary condition Π−ψ|∂M = (1/2)(1−Γ̃γm)ψ|∂M = 0.
Let P = (γj∇j)2 be the associated Laplacian with domain

domain(P ) =
{
ψ ∈ C∞(V ) : Π−ψ|∂M ⊕Π−(γj∇j)ψ|∂M = 0

}
.

In the notation of eq. (4.5.1) we have to determine first the endomorphisms
χ and S. By definition of Π− we read off

χ = Γ̃γm. (4.6.1)

This shows the identities

{χ, γm} = 0, [χ, γa] = 0, γmΠ− = Π+γm, Π±γa = γaΠ±. (4.6.2)

The endomorphism S is determined by considering [69]

0 = Π−(γj∇j)ψ
∣∣
∂M = −γmΠ2

−(γj∇j)ψ |∂M
= −Π+γmΠ−(γj∇j)ψ |∂M = −Π+γmΠ−(γa∇a + γm∇m)ψ |∂M
= −Π+(γmγaΠ−∇a −Π+∇m)ψ |∂M
= −Π+(γmγa∇aΠ− − γmγ

a(∇aΠ−)−Π+∇m)ψ |∂M

= Π+

(
∇m −

1
2
γmγ

aχ:a

)
(Π+ + Π−)ψ |∂M

=
(
∇m −Π+

1
2
γmγ

aχ:a

)
Π+ψ |∂M, (4.6.3)

thus

S = Π+
1
2
γmγ

aχ:aΠ+. (4.6.4)

Notice that in order to arrive at the form (4.6.3) involving only normal deriva-
tives and no tangential ones, the commutator [Π−, γa] = 0 was crucial. If this
relation does not hold, the situation is much more complicated; we comment
further on this case in the Conclusions.

In order to evaluate the general expressions, eqs. (4.5.2)—(4.5.7), for this
example, we need several traces of various derivatives of χ and S. Basic iden-

                      



tities are

γm:a = Kabγ
b, γa:b = −γmKa

b, Γ̃:a = 0, (4.6.5)

from which all relevant traces are derived. For example, from eq. (4.6.5) we
find

χ:a = KabΓ̃γb,

and then by eq. (4.6.4),

S = −1
2
KΠ+.

In addition, the following quantities are needed,

S:a = −1
4
Kχ:a, S:ab =

1
4
KKacK

c
bχ, χ:ab = −KacK

c
bχ,

where we have taken into account that on the surface of the unit ballKab:c = 0.
Traces are then immediately found by

TrV (χ) = 0, TrV (Π±) =
1
2
dim(V ),

with the dimension dim(V ) of V ; here dim(V ) = 2D/2 = ds.
Thus, starting from the general expressions, eqs. (4.5.2)—(4.5.7), the heat

kernel coefficients for the special case are easily found, including the unknown
universal constants. These have to be compared with the explicit results ob-
tained from (3.3.14) and (3.3.16). As we have seen in the scalar field calcu-
lation, the coefficients are completely determined by the residues of the base
zeta function. As an immediate consequence of (3.3.14) we find

aMn/2 =
Γ ((D − n− 1)/2)√

π(D − n)
Res ζN ((D − n− 1)/2)

−Γ ((D − n+ 1)/2)√
π(D − n)

Res ζN ((D − n)/2) (4.6.6)

−
n−1∑
i=1

Res ζN ((D − n+ i)/2)
2i∑
a=0

xi,a
Γ ((D − n+ i+ a)/2)

Γ ((i+ a)/2)
,

and an equation analogous to eq. (4.3.2) for the scalar field could be written
down. Instead, restricting ourselves to the ball, the base zeta function is a
Barnes zeta function, see eq. (3.3.16), and the heat kernel coefficients are easily
found using eq. (A. 20) together with a simple algebraic computer program.
As a result, we get for the first few coefficients

aM0 =
2−Dds

Γ(1 +D/2)
,

aM1/2 = 0,

aM1 = − 2−Dds
3 Γ(D/2)

d,



aM3/2 =
2−Dds

√
π

32 Γ(D/2)
d (d− 2), (4.6.7)

aM2 =
2−D ds

1890 Γ(D/2)
d (d+ 4) (17d− 29),

aM5/2 = − 2−Dds
Γ(D/2)

√
π

61440
d(d+ 2)(d− 4)(89d− 174),

higher coefficients being immediate [143, 150]. These can be compared with
the general expressions restricted to the ball together with the boundary con-
ditions described by eqs. (4.5.1), (4.6.1) and (4.6.4). The coefficients a0, a1/2

and a1 serve as a mere check. Let us mention that the smeared calculation
could be done for spinors. But because the few relations obtained can be found
by easier means also we will not present this calculation.

Before explicitly making the comparison, let us discuss forms in the given
context, providing all information needed in Section 4.7.

4.6.2 Forms with absolute and relative boundary conditions

In order to embed absolute and relative boundary conditions into the frame-
work of mixed boundary conditions let us state the required splitting into
V+ and V− [52]. The example discussed in Section 3.4 clearly shows the
natural decomposition. In general, let xD be the geodesic distance to the
boundary and y = (x1, ..., xD−1) a system of local coordinates on ∂M. For
I = {1 ≤ α1 < α2 < ... < αp ≤ D − 1} a multiindex,

dyI = dxα1 ∧ ... ∧ dxαp ∈ Λp(∂M) (4.6.8)

defines the tangential differential forms,

ΛN = span{dyI}.

With

ΛD = span{dxD ∧ dyI}

we have the decomposition ΛM = ΛN ⊕ΛD, with the exterior algebra bundle
ΛM. For ω ∈ C∞ΛM, write

ω =
∑
I

{fIdyI + gIdx
D ∧ dyI}.

Absolute boundary conditions are defined by taking Neumann boundary con-
ditions on ΛN and Dirichlet conditions on ΛD,

Ba(ω) =

{∑
I

−
(

∂

∂xD
fI

)
dyI

}∣∣∣∣∣
∂M

⊕

{∑
I

gIdy
I

}∣∣∣∣∣
∂M

, (4.6.9)

which is eq. (3.4.15) for the example of the generalized cone. We have written
−(∂/∂xD) to continue with our convention of derivatives with respect to the
exterior normal. In the given coordinate xD the natural normal is of course

                      



the interior one, but for the special case calculations the coordinate “r” leads
to the exterior normal and we stay with this convention here.

Relative boundary conditions in this context amount to

Br(ω) = Ba(?ω) (4.6.10)

and with these definitions Hodge duality reads

?∆M
p,a = ∆M

D−p,r ? .

These boundary conditions are motivated by index theory and the de Rham-
Hodge theorem generalizes to this setting and can be used to give a heat
equation proof of the Gauss-Bonnet theorem for manifolds with boundary
[206].

In fact, these boundary conditions arise very similarly as for the Dirac
operator. First, we try to generalize the relation d + δ = (d + δ)∗ to mani-
folds with boundary. For ω = ω1 + dxD ∧ w2 and φ = φ1 + dxD ∧ φ2, with
ω1, ω2, φ1, φ2 ∈ ΛN , the relation

((d+ δ)ω, φ)L2(M) − (ω, (d+ δ)φ)L2(M) =
∫
∂M

[−(ω1, φ2) + (ω2, φ1)]

is found. In order to define a symmetric operator, the simplest choices are

Ba(ω) = ω2|∂M, Br(ω) = ω1|∂M,

and we can show Br(ω) = Ba(?ω) [208].
Considering then the de Rham Laplacian, ∆M = (d+ δ)2 = dδ + δd, with

domain

domain (∆M) = Bε(ω)|∂M ⊕ (d+ δ)Bε(ω)∂M = 0,

and with ε = (a, r), eqs. (4.6.9) and (4.6.10) are found.
To continue with the consideration of heat kernel coefficients we need the

endomorphisms χ and S. We add the index a and r and write Π(a)
∓ , Π(r)

∓ ,
χ(a),..., to distinguish between absolute and relative boundary conditions.
Using the notation of eq. (4.6.8), the boundary condition (4.6.9) is clearly
defined through

Π(a)
− (dyI) = 0, Π(a)

− (dxD ∧ dyI) = dxD ∧ dyI ,

Π(r)
− (dyI) = dyI , Π(r)

− (dxD ∧ dyI) = 0,

giving

χ(a)(dyI) = dyI , χ(a)(dxD ∧ dyI) = −dxD ∧ dyI ,

and χ(r) = −χ(a). To determine S, just realize that in eq. (4.6.9) we have
the partial normal derivative. This has to be rewritten as (∇m − S), and, for
p-forms on the ball,

S(a)(dyI) = −p (dyI), S(a)(dxD ∧ dyI) = 0,
S(r)(dyI) = 0, S(r)(dxD ∧ dyI) = −p (dxD ∧ dyI),



or, in summary,

S(ε) = −pΠ(ε)
+ .

For later use let us state a few relevant identities for 1-forms on the unit ball
with absolute boundary conditions. The endomorphism χ(a) can be viewed as
a matrix acting in the tangential space to M,

(χ(a))mm = −1, (χ(a))bc = δbc, S(a) = −Π(a)
+ .

To built the relevant traces the following relations will be sufficient,

[(χ(a)):b]mc = [(χ(a)):b]cm = −2δbc,[
(χ(a)):bc

]
mm

= 4δbc, [(χ(a)):bc]de = −2(δdcδbe + δbdδce).

Having seen that the form calculations give information about mixed bound-
ary conditions, let us continue with the determination of the heat kernel co-
efficients for this example.

Given the detailed exposition for the scalar field in Section 4.3 we can
quickly produce final answers now. Let us first discuss absolute conditions.
Eq. (3.4.27) together with eq. (4.3.2) shows that the coexact heat kernel co-
efficients on M in terms of those on N are (n < D)

aMa,n/2(p) =
1

2
√
π(D − n)

(
aNn/2(p) + aNn/2(p− 1)

)
+

1
4
(
aN(n−1)/2(p)− aN(n−1)/2(p− 1)

)
(4.6.11)

−
n−1∑
i=1

(
aN(n−1−i)/2(p)Pi

(
za(p)

)
+ aN(n−1−i)/2(p− 1)Pi(x)

)
.

The aNn are the heat kernel coefficients corresponding to the base zeta function,
(3.4.21). The Pi are known polynomials arising from the asymptotic expansion
of the Bessel functions,

Pi(x) =
i∑

b=0

xi,b
Γ ((D − n+ i)/2 + b)

Γ ((D − n+ i)/2) Γ(b+ i/2)
.

The notation in eq. (4.6.11) indicates the Dirichlet contributions, Pi(x), and
the Robin contributions Pi(za(p)), which depend on p through the ua(p).

The total coefficients on M are given as the combination, see (3.4.26),

aM+
a,n/2(p) = aMa,n/2(p) + aMa,n/2(p− 1), (4.6.12)

and similarly for relative conditions.
These are the only general equations that are needed. The algebra can be

checked by confirming Hodge duality on M, which in the coefficient form is

aM+
r,n/2(d+ 1− p) = aM+

a,n/2(p).

                      



This is easily verified by the formula

aN±n/2 (d− p) = ±aN±n/2 (p),

where the coefficients aN±n/2 (p) are those resulting from the combinations of
the coexact and exact zeta functions on N ,

ζN±p (s) = ζNp (s)± ζNp−1(s).

Using the result on the base zeta function on the unit sphere, eq. (3.4.36),
the total heat kernel coefficients (4.6.12) can be expressed through the result
for the scalar field, see eq. (4.3.3). In detail, as an immediate consequence of
these equations, the residue of the modified coexact sphere zeta function at
s = k/2, k ∈ ZZ, is

Res ζS
d

p (k/2) =

1
(k − 2)!

p∑
j=0

(−1)j
2k−d+2jD

(d−2j−1)
d−2j−k

(d− 2j − 1)(d− 2j − k)!

(
d− 2j − 1
p− j

)
. (4.6.13)

The corresponding heat kernel coefficients are, for min ([n/2], p, d−p) = [n/2]
with d− k = n,

(4π)d/2

|Sd|
aS

d

n/2(p) =

(k − 1)
Γ
(
(d+ 1)/2

)
Γ
(
(k + 1)/2

) [n/2]∑
j=0

(−1)j22jD
(d−2j−1)
n−2j

(d− 2j − 1)(n− 2j)!

(
d− 2j − 1
p− j

)
. (4.6.14)

Although these results can be used for a direct evaluation of coefficients, a
systematic approach to the evaluation of any coefficient is better provided by
fitting unknowns in a general form.

As follows from the previous discussion of the general form of the heat kernel
coefficients, specifically for forms see also [208, 52], the geometric expression
on a flat, bounded D-manifold M is, up to terms involving derivatives of the
extrinsic curvature K,

c(n)(4π)d/2a(D)
n/2(p) =

∫
∂M

bn(D, p)
∑
n

(
Tr(Kn1) Tr (Kn2) . . .

)
, (4.6.15)

with

c(n) =

2
√
π, n even

1, n odd
2(d+ 1)

√
π, n = 0.

Here n = (n1, n2, . . .) is a partition of n−1 and the Tr above means contrac-
tion over the indices of the ni external curvatures. For convenience the n = 0
term has been included although it is really a volume contribution.



For the D-ball, (4.7.15) reduces to

c(n)(4π)d/2a(D)
n/2(p) = |Sd|

∑
n

d|n|bn(D, p)

= |Sd|
n−1∑
k=1

dk b
(n)
k (D, p), (4.6.16)

where |n| is the number of components in the partition and b
(n)
k , is the sum

of those bn for which |n| = k,

b
(n)
k (D, p) =

∑
n

bn(D, p)
∣∣∣∣
|n|=k

.

These are the only combinations that can be determined from working on the
ball.

The numerical multipliers bn(D, p) satisfy the binomial recursion

bn(D, p) = bn(D − 1, p) + bn(D − 1, p− 1), (4.6.17)

proved by crossingM with a unit circle, [52]. This relation is what has become
of the more familiar statement of dimension-independence for scalars.

Eq. (4.7.17) shows that bn(D, p) can be expanded as a linear combination
of binomial coefficients

(
D+a
p+b

)
for varying a and b. Due to (4.6.17) the only

dependence on D, p is the one exposed in the binomial coefficients. Since
bn(D, p) vanishes for p outside the range 0 to D, the combination can be
restricted to b nonpositive and a = b. The limits for a must be independent
of both D and p and can be set by considering the particular value D = n.
Consequently the expansion reads

bn(D, p) =
n∑

m=0

Mn,m

(
D −m

p−m

)
,

which is the boundary version of the Günther and Schimming form [236]. By
eq. (4.6.16), the general form on the ball can thus be written as

c(n)(4π)d/2

|Sd|
a
(D)
n/2(p) =

n∑
m=0

P (n)
m (d)

(
D −m

p−m

)
, (4.6.18)

where P (n)
m (d) is a polynomial of degree n− 1 in D. For n > 1

P (n)
m (d) =

∑
n

Mn,md
|n| =

n−1∑
k=1

M
(n)
k,m d

k, (4.6.19)

where the M (n)
k,m are constants.

In order to determine a(D)
n/2(p) it is sufficient to know the polynomials P (n)

m (d)
for m = 0, ..., n. To this end note that for p = 0 to n, the matrix of binomial
coefficients on the right-hand side of (4.6.18) is triangular. For that reason it



can be inverted recursively to give

P (n)
m (d) =

c(n)(4π)d/2

|Sd|
a
(D)
n/2(m)

−
m−1∑
µ=0

(
D − µ

m− µ

)
P (n)
µ (d), m = 0, . . . , n. (4.6.20)

The driving coefficients a(D)
n/2(m) (0 ≤ m ≤ n) will be determined from (4.6.11)

as polynomials in d because, for given numerical values of p and n, the sphere
coefficients, (4.6.14), are obviously such polynomials.

Evaluation is a routine machine matter and a0, a1/2, a1 are seen to agree
with the results already presented in eqs. (4.5.2)—(4.5.4) (see [52]). Some
more results are given below in the form of matrices of the constants M (n)

k,m in
(4.6.19),

M(3)
a =

(
1

192
13
48 − 3

4
1
2

13
384 − 29

96
3
4 − 1

2

)
, (4.6.21)

M(4)
a =

 4
135 − 164

315
16
5 − 16

3
8
3

1
45

92
105 − 74

15 8 −4
1
27 − 136

315
26
15 − 8

3
4
3

 , (4.6.22)

M(5)
a =


77

15360
77
960 − 191

192
19
6 − 15

4
3
2

235
36864 − 263

1440
1475
768 − 47

8
55
8 − 11

4
139

61440
1987
15360 − 1769

1536
157
48 − 15

4
3
2

2041
737280 − 3787

92160
347
1536 − 9

16
5
8 − 1

4

 . (4.6.23)

A subscript has been added to indicate that these values are for absolute
boundary conditions.

The result for relative boundary conditions can be found by various means.
One possibility is to use Hodge duality and derive relative results from ab-
solute ones. A tactically better way is to repeat the previous analysis and to
apply Hodge duality just on the driving coefficients a(D)

n/2(m) for 0 ≤ m ≤
n. In any case, we rapidly find that the first coefficients again agree with
eqs. (4.5.2)—(4.5.4) and that the remaining ones (up to n = 5) are contained
in the matrices,

M(3)
r =

(
5

192 − 13
48

3
4 − 1

2
− 7

384
29
96 − 3

4
1
2

)
, (4.6.24)

M(4)
r =

 8
189 − 172

315
16
5 − 16

3
8
3

− 11
315

104
105 − 74

15 8 −4
1

189 − 116
315

26
15 − 8

3
4
3

 , (4.6.25)



M(5)
r =


109

15360 − 29
320

193
192 − 19

6
15
4 − 3

2
− 1049

184320
1247
5760 − 1501

768
47
8 − 55

8
11
4

47
61440 − 709

5120
1783
1536 − 157

48
15
4 − 3

2
13

147456
2467
92160 − 325

1536
9
16 − 5

8
1
4

 . (4.6.26)

It is a matter of a few minutes by machine algebra to calculate larger matrices.



4.7 Determination of the mixed heat kernel coefficients

Now all results are at hand to continue the calculation of the mixed co-
efficients, eqs. (4.5.5)—(4.5.7). The coefficients a0, a1/2 and a1 were already
determined by Dirichlet and Robin boundary conditions, so let us continue
with a3/2. Restricting the general form, eq. (4.5.5) with F = 1, to the ball
with E = Ω = R = 0 gives

aM3/2 =
√
πds

32Γ(D/2)2D
d

(
d+ 2 +

1
3
β1

)
,

which has to be compared to eq. (4.7.7),

aM3/2 =
√
πds

32Γ(D/2)2D
d(d− 2).

This determines

β1 = −12,

which is the correct answer [68]. Forms can be used as a check.
Continuing with a2, eq. (4.5.6), yields the relations

β4 = −24, 4β3 − β5 = 72,

from the spinor field, and

β3 = −12, 2β4 − β5 = 72

from one-forms with absolute boundary conditions. This also gives

β5 = −120,

again everything in agreement with the correct answers (for β5 see [68], for
β3, β4 [408]).

This is all we can get from the special cases. Conformal relations determine
β6 = 18 by using eq. (4.2.15) for the term F;mχ:aχ

a
: ,

(D − 1)β3 + β4 −
1
4
(D − 2)β5 = (D − 4)β6.

Concerning the conformal relations, let us mention that χ itself is invariant
under conformal transformations (and so is χ:a = χ,a), but higher tangential
covariant derivatives depend on ε due to the dependence of the Christoffel
symbols on ε. In addition, in the context of mixed boundary conditions instead
of eq. (4.2.23) we have

S(ε) = e−εF
(
S − ε

D − 2
2

F;m

)
Π+,

because S should compensate the variation of ωm only on the subspace V+

[408].



We are left with β2, the numerical factor of χχ:aΩam. For this unknown we
are going to use index theory [14, 208]. We choose an example needed also for
the determination of a5/2; further examples will be provided then. Given that
index theory is very powerful and that we will need it again afterwards, let us
give some details of the ideas involved and we start with a manifold without
boundary.

Let D be an elliptic differential operator and D∗ its adjoint. Then P = D∗D
as well as P̂ = DD∗ define self-adjoint operators. For φk any eigenfunction of
P ,

D∗Dφk = λkφk,

we have

DD∗Dφk = λkDφk,

in words, Dφk is an eigenfunction of P̂ = DD∗, provided λk does not vanish.
The same holds when interchanging the roles of P and P̂ . Thus P and P̂ have
the same non-vanishing eigenvalues and the difference of the associated heat
kernel traces just counts the zero modes of D and D∗,

index D = Tr
(
e−tD

∗D
)
− Tr

(
e−tDD

∗
)

= aD/2(1, P )− aD/2(1, P̂ ). (4.7.1)

In particular, the heat kernel coefficients of P and P̂ apart from aD/2 all agree.
This statement continues to hold if suitable boundary conditions are imposed
for P and P̂ . This will be systematically used in the following. To show how
the application of eq. (4.7.1) for the determination of unknown numerical
constants in the heat kernel coefficients works, let us consider the following
example (this example was used in [74] to determine the a5/2 coefficient for
Dirichlet and Robin boundary conditions for a totally geodesic boundary).

Let M = S1 × [0, 1] have the standard flat metric. Let {h, j, k} be real
skew-adjoint 4 × 4 constant matrices, which satisfy the quaternion relations.
These are

hj = −jh = k, hk = −kh = −j, jk = −kj = h,

h2 = j2 = k2 = −1.

Let

A = a0 + ha1 + ja2 + ka3, B = b0 + hb1 + jb2 + kb3,

be matrix-valued functions. We assume {a0, b1, b2, b3} to be real and {a1, a2,
a3, b0} to be purely imaginary complex functions, such that A∗ = A and
B∗ = −B. Define the following operators of Dirac type

D = h∂1 + j∂2 +A+B, D∗ = h∂1 + j∂2 +A−B, (4.7.2)

and let P = D∗D and P̂ = DD∗ be the associated operators of Laplace type.
We define χ = ih and note that χ2 = 1, χh = hχ and χj = −jχ. Defining as



before the projections Π± = (1/2)(1± χ), the boundary conditions

Bφ = (Π−φ) |∂M ⊕ (Π−Dφ) |∂M = 0,
B̂φ = (Π−φ) |∂M ⊕ (Π−D∗φ) |∂M = 0, (4.7.3)

are boundary conditions of mixed type which make P and P̂ self-adjoint. It is
then easy to see that if φ is an eigenfunction of P with Bφ = 0, then Dφ is an
eigenfunction of P̂ with B̂(Dφ) = 0 (the same holds interchanging the roles
of P and P̂ ). Thus, eq. (4.7.1) holds in the situation described and we can
use an(1, P,B) = an(1, P̂ , B̂) for n 6= 1, to determine the missing numerical
constant β2. The relevant observation is that if we interchange B and −B we
interchange the roles of D and D∗ and so also the roles of P and P̂ . Thus the
terms of odd degree in B must vanish in an(1, P,B). To actually apply the
index theorem we need the geometrical invariants appearing in a2(1, P,B) for
this example. Omitting some elementary algebra we obtain

P = −∂2
1 − ∂2

2 + (hA+Ah−Bh+ hB)∂1 + (jA+ jB +Aj −Bj)∂2

+A2 +AB −BA−B2 + hȦ+ hḂ + jÃ+ jB̃,

where we use the notation Ȧ = ∂1A, Ã = ∂2A, Ḃ = ∂1B and B̃ = ∂2B. From
eq. (4.2.18) we immediately obtain that

ω1 = a1 − a0h+ b3j − b2k, ω2 = a2 − a0j + b1k − b3h,

Ω12 = ȧ2 − ã1 + h(−ḃ3 + ã0 + 2b3b1 − 2b2a0)
+j(−ȧ0 − b̃3 + 2a0b1 + 2b2b3) + k(ḃ1 + b̃2 + 2a2

0 + 2b23).

For E, using (4.2.19), we find

E = E1 + E2

with

E1 = −hȦ− hḂ − jÃ− jB̃ − ω̇1 − ω̃2,

E2 = B2 −A2 +BA−AB − ω2
1 − ω2

2 .

To obtain the endomorphism S consider

Π−Dφ = jΠ+(∂2 − jA− jB)Π+φ

= jΠ+(∂2 + ω2 − ω2 − jA− jB)Π+φ,

to see

S = Π+(−ω2 − jA− jB) = Π+(a1k − a3h− b0j + b2)Π+.

Simplifications occur due to Π+jΠ+ = Π+kΠ+ = 0. In addition we use
Π+hΠ+ = −iΠ+ to give S in the final form

S = Π+(ia3 + b2).

This provides the basic ingredients for the example. The relevant term the
numerical constant of which we are going to determine is Tr (χχ a

: Ωam), in



the above setting Tr (χχ:1Ω12). With

χ = ih, χ:1 = 2i(−b3k − b2j), χχ:1 = 2b2k − 2b3j,

this is seen to be

Tr V (χχ:1Ω12) = 8b3(−ȧ0 − b̃3 + 2a0b1 + 2b2b3)− 8b2(ḃ1 + b̃2 + 2a2
0 + 2b23).

As argued, adding up all contributions in a2(1, P,B), the coefficient of (b3ȧ0)
has to vanish. To make things as simple as possible assume for this calculation
b0 = b1 = b2 = 0, a1 = a2 = a3 = 0, and a0 = a0(x1) only. Under these
assumptions it is easy to see that the only further relevant contribution in the
general coefficient (4.5.6) is the volume term

Tr V (ΩijΩij) = −8ȧ0b̃3 + (irrelevant),

which leads to the boundary term (assume b3(x1, 0) = 0)

Tr V
∫
M

dx1dx2(ΩijΩij) = −16
∫
S1

dx1ȧ0

1∫
0

dx2b̃3(x1, x2)

= −16
∫
S1

dx1ȧ0b3(x1, 1),

and comparing coefficients

−8β2 − 16× 30 = 0,

we find β2 = −60, which completes the calculation of a2, eq. (4.5.6). In de-
scribing this first example, we have been pretty detailed, because this example
is used to find the numerical constants in a5/2, eq. (4.5.7). In doing so [72],
we will be brief, however, and relegate some details to Appendix C.

In the given setting, (4.5.7) simplifies considerably and we might show there
exist universal constants so that

a5/2(D,B) = 5760−1(4π)1/2{α0Ω12Ω12 + α1χΩ12Ω12 + α2χΩ12χΩ12

+720χE2 + α3χEχE + α4E
2 + α5χ:11E + 360χE;22

−360S:1S:1 + 1440SE;2 + 1440S4 + 2880S2E + α7χ:11χ:11

+α8Π−S:1S:1 + α9χ:1χ:1E + α10χχ:1χ:1E + α11χ:1χ:1χ:1χ:1

+α13(Sχ:1 − χ:1S)Ω12 + α14χχ:1Ω12;2}[∂M ]. (4.7.4)

Eq. (4.7.1) then shows along the lines described (for details see Appendix C),

α0 = −45, α1 = 180, α2 = −45, α3 = 180, α4 = −180, α5 = 180,
α8 = −1440, α9 = −180, α10 = −90, α13 = 360, α14 = 90. (4.7.5)

For the universal constants in eq. (4.5.7) we conclude, also using (4.5.8),

w1 = −180, w2 = 180, w3 = −120, w4 = 720, w8 = −45,
w9 = 180, w10 = −45, w11 = −360, w15 = 90, w19 = −180,



w20 = −90, w21 − w18 = −60.

The application of the product formula (4.4.1) needs some care. Assuming
the situation described just preceding eq. (4.2.12) holds, product structure
of the heat kernel can only be assumed if P2 commutes with the boundary
conditon operator B. This effectively imposes that χ commutes with E and Ω,
by which several traces vanish. Nevertheless, some information is found and
it reads

w5 + w7 = 0, w6 = 120, w22 = −30. (4.7.6)

Furthermore, w1 + w2 and w19 are obtained as a check. Since the product
structure assumes commutativity of Ω and χ we get only restrictions on
ΩabΩab + χΩabχΩab.

The list of conformal variations needed is not excessive here, because (nearly)
all unknowns involved contain the endomorphism χ. A list of the conformal
variations needed to derive the following relations is given in Appendix B:

Term Coefficient
Fχ:aE

a
: 0 = 2w18 − (D − 3)w21 − 360 + 1440(D − 2)

− 240(D − 3)− 960(D − 1) + 240
F;mχ:aS

a
: 0 = (D − 1)w30 − 1

2 (D − 2)w3 + 480(m− 2) + w31

− (D − 5)w38

Fχ:abχ
ab
: 0 = (D − 2)w19 − 4(D − 1)w22 − 2w23 −Dw24

+ w25 + 4w35

F;mKχ:aχ
a
: 0 = 1

2 (D − 2)w19 − 2(D − 1)w22 − w23 − w24

+ 2(D − 1)w26 + 2w28 + w29 − 1
4 (D − 2)w30

− (D − 5)w39

FΩabΩab 0 = − 1
2w15 − 1

2 (D − 5)w16 − (D − 2)w24 + w25 + 2w35

Fχχa: Ω b
ab: 0 = −w15 − (D − 5)w16 − 2(D − 2)w19 + 8(D − 1)w22

+ 4w23 + 4w24 − 4w35

F;mmχ:aχ
a
: 0 = 1

2 (D − 2)w19 − 2(D − 1)w22 − (D − 1)w23 − w24

+ w25 − (D − 5)w42

F;mχ:aχ:bK
ab 0 = − 1

4 (D − 2)w31 − (D − 2)w24 + w25 + 2w27

+ (D − 1)w29 − (D − 5)w40

Fχa:aχ
b
:b 0 = −(D − 2)w24 + w25 − 2(D − 3)w34 − 2w35

+ (D − 1)w37

f;mF;mχ:aχ
a
: 0 = w40 − 5w42 + 6w39 + 5

4w38

F;mχχ:aΩam 0 = − 1
2 (D − 2)w11 + (D − 1)w12 − 2w15 + w17

− (D − 5)w41

For all the terms listed, (4.2.15) was used, except for f;mF;mχ:aχ
a
: , which is

obtained from (4.2.16).
Together with the results for the Dirac operator with mixed boundary con-

ditions (compare with eq. (4.6.7)),

−135 = 2w27 + 4w33 + 2w35 , (4.7.7)
705 = 16w28 + 16w29 − 4w31 + 16w32 − 16w33



+16w34 − 16w37 , (4.7.8)
1725 = 2w3 + 32w26 − 8w30 , (4.7.9)

and for one-forms with absolute boundary conditions, see the equations start-
ing with (4.6.18),

−675 = 32w26, (4.7.10)
1935 = 16w28 + 16w29 − 8w30 + 32w32 + 32w34

+16w35 + 32w36 − 32w37, (4.7.11)
585 = 4w27 − 2w31 + 8w32 + 16w33 + 8w34 + 12w35

−8w36 − 8w37, (4.7.12)

this provides the results needed to determine the universal constants apart
from the following ones involving Ω-terms,

G =
1
2
(w5 − w7)F (ΩabΩab − χΩabχΩab) + w12Fχχ

a
: ΩamK

+w13Fχ:aχ:bΩab + w14Fχχ:aχ:bΩab (4.7.13)
+w17Fχχ:aΩbmKab + w41F;mχχ:aΩam.

The universal constants appearing in G will be found by using further exam-
ples of the index theorem, see below. Let us first describe briefly the way the
remaining wi are obtained from the relations above.

From (4.7.10),

w26 = −675
32

,

which, from (4.7.9), gives

w30 = −330.

From the conformal relations, the coefficients of Fχ:aE
a
: , Fχ:aS

a
: , Fχ:abχ

ab
: ,

F;mKχ:aχ
a
: , FΩabΩab give immediately

w16 = 120, w18 = 300, w21 = 240, w24 = −60,

w31 = −300, w38 = 210, w39 =
165
16

,

where mostly just the order D of the relation has been used. Combining the
coefficients of FΩabΩab and Fχχ:aΩab:b gives the relation,

w25 + 2w23 = −30,

whereas the invariant F;mmχ:aχ
a
: shows

w25 − 4w23 = −30,

together

w23 = 0, w25 = −30.



Then, using the list of conformal relations apart from the invariant F;mχχ:a

Ωam, and now also including order D0 terms, straightforwardly

w27 = −75
4
, w28 = −195

16
, w29 = −675

8
, w34 = −15

4
,

w35 = −105
2
, w37 = −135

2
, w40 =

405
8
, w42 = −30.

This finally allows (4.8.7), (4.8.8) and (4.8.12) to yield,

w32 =
15
4
, w33 =

15
8
, w36 = −15.

Eq. (4.7.11), as well as several conformal relations not given, can be used as a
check. Further checks can be provided by the form and smeared calculations
on the ball. The last conformal relation will determine w41, once w12 and w17

are known.
Hence we are left with the task to find the universal constants appearing in

G, eq. (4.7.13). To this end we apply two further particular cases of the index
theorem [72].
Lemma: Let D even be the dimension of M = S1 × S1.... × S1 × [0, 1].
Consider the conformally flat metric ds2 = e2f (dx2

1 + ... + dx2
D). Let γi be

skew-adjoint matrices satisfying the Clifford relation γjγk+γkγj = −2δkj and
let χ = Γ̃γm. Define

A := e−f (γi∂i)
A∗ := e−Df (γi∂i)e(D−1)f (4.7.14)

and D[0] := A∗A and D[1] := AA∗. Then

a5/2(1, D[0],B[0]) = a5/2(1, D[1],B[1]).

Let us calculate the above coefficients, or better, their difference, to see what
conditions arise. For simplicity we put f |∂M = 0. This also implies f,a|∂M = 0,
but, in general, f,ma|∂M 6= 0. Identical indices are summed over. First of all
we get

D[1] = e−2f

{
−∂2

i −
1
2
Df,i[γi, γj ]∂j + (2−D)f,i∂i

+ (D − 1)f,if,i − (D − 1)f,ii
}
,

D[0] = e−2f

{
−∂2

i +
1
2
(D − 2)f,i[γi, γj ]∂j + (2−D)f,i∂i

}
.

Boundary conditions are defined as in eq. (4.8.3):

B[0]φ := (Π−φ) |∂M ⊕ (Π−Aφ) |∂M ,
B[1]φ := (Π−φ) |∂M ⊕ (Π−A∗φ) |∂M .

From here we find the following basic ingredients:

ω
[1]
i = −1

4
D[γi, γj ]f,j ,



Ω[1]
ij = −1

4
D {f,ki[γj , γk]− f,kj [γi, γk}

+
1
4
D2 {−f,jf,k[γi, γk] + f,if,k[γj , γk] + f,kf,k[γi, γj ]} ,

E[1] = e−2f (D − 1)
{
f,ii +

1
4
f,if,i(D2 − 4)

}
,

S[1] = −(D − 1)f,mΠ+ ,

ω
[0]
i =

1
4
(D − 2)[γi, γj ]f,j ,

Ω[0]
ij =

1
4
(D − 2) {f,ki[γj , γk]− f,kj [γi, γk}

+
1
4
(D − 2)2 {−f,jf,k[γi, γk] + f,if,k[γj , γk] + f,kf,k[γi, γj ]} ,

E[0] =
1
4
e−2f (D − 1)(D − 2)2f,if,i ,

S[0] = 0.

The Riemann tensor is identical for both cases, see eq. (B. 6),

Rijkl = e2f (f,jf,kδil + f,if,lδjk − f,jf,lδik − f,if,kδjl

+ f,pf,p(δjlδik − δjkδil)).

From this collection of results, everything needed is easily calculated. In G,
eq. (4.7.13), the terms (1/2)(w5 −w7), w12, w13 and w17 contribute to a5/2 in
this setting. The invariants appearing from these are f2

,am; f,mmf2
,m; f4

,m; and
thus only this type of term needs to be kept during the calculation.

In Appendix C we list all contributions appearing in the relevant difference
a5(1, D[1],B[1])− a5(1, D[0],B[0]). With the above lemma, we obtain

Term Coefficient
f2
,am 0 = 105 + 4(1/2)(w5 − w7)
f2
,mf,mm 0 = 135− w12 + w17 +D(45 + w12)
f4
,m 0 = 180 + w13

(4.7.15)

This gives immediately

−1
2
(w5 − w7) =

105
4

, w17 = −180 , w12 = −45 , w13 = −180 .

The fact that the coefficients could be determined independently of the di-
mension is itself already a very strong check of the calculation.

By the conformal relation of the previous section, w41 is now determined,

w41 = 135.

With the help of (4.7.6) we find w5 and w7 to be

w5 = −105
4
, w7 =

105
4
.



Now only w14 is left undetermined. We will determine it by using the fol-
lowing.
Lemma: Let M be as in the previous lemma, A = γi(∂i + χfi), let fm be
imaginary and fa be real. Then the coefficient of f2

mfa,a in a5/2(1, A∗A) is
zero.
It is obvious that a5/2(1, A∗A) = a5/2(1, AA∗). Since A∗ = γi(∂i − χfi), the
heat kernel for AA∗ is obtained from that of A∗A by changing the sign of fi.
Therefore, all coefficients of odd powers in fi must vanish.

Proceeding as above we get S = 0. Other relevant quantities are:

ωa =
1
2
[γb, γa]χfb − γaγmχfm ,

ωm = χfm ,

Ωam = fm,aχ− 2γaγmf2
m ,

Ωab = −1
2

(fc,a[γb, γc]− fc,b[γa, γc])χ

−(fm,bγa − fm,aγb)γmχ
−[γa, γb]f2

m

+
1
2
fcfm(−2γaγcγb + 2γbγcγa + γc[γa, γb] + [γa, γb]γc) ,

E = χfa,a − (D − 1)f2
m + 2(D − 3)γaγmfafm .

Since we are looking for the terms with f2
mfa,a, all derivatives with respect to

the m-th coordinate drop out. Direct calculations also give:

χ:a = −2fmγaγm ,

χ:ab = −2γaγmfm,b + ([γc, γb]γa + γa[γc, γb])γmχfcfm + 4δabχf2
m ,

χ:aa = −2γaγmfm,a + 4(D − 1)f2
mχ .

Only four invariants contain f2
mfa,a. They are listed in the table:

Invariant            Coefficient of f2
mfa,a Coefficient in a5/2

χχ:aχ:bΩab 8(D − 2)                   w 14

χE2              −2(D − 1)                720
χ:aE:                                     – 2(D + 1)       -180
χχ:aχ:aE            −4(D − 1)            -90

This gives

w14 = 90,

                      



and the complete a5/2 for mixed boundary conditions is found. The results on
mixed boundary conditions are summarized in Section 4.10.4.

Using χ = −1 for Dirichlet and χ = 1 for Robin boundary conditions we
complete also the a5/2 calculation for these conditions by realizing that the
unknown constants j1, j2 in eq. (4.2.11) are given through

j1 = −w5 + w6 − w7 = 120,
j2 = −w8 + w9 − w10 = 270,

for the Dirichlet and

j1 = w5 + w6 + w7 = 120,
j2 = w8 + w9 + w10 = 90,

for the Robin case.

4.8 Oblique boundary conditions

In contrast to the more traditional boundary conditions treated in Sections
4.2—4.7 relatively little is known about oblique boundary conditions. These
more general conditions take the form

B = ∇m +
1
2
(
Γa∇̂a + ∇̂aΓa

)
− S, (4.8.1)

and involve tangential (covariant) derivatives, ∇̂a, computed from the induced
metric hab on the boundary. Furthermore, Γa is a bundle endomorphism val-
ued boundary vector field and S is still a Hermitian bundle automorphism.
Symmetry of the operator P together with the boundary operator

BV
∣∣
∂M = 0

on a section of some vector bundle is ensured by imposing (Γa)∗ = −Γa and
S∗ = S; see also eq. (4.2.1).

In order to continue with a discussion of the heat equation asymptotics we
have to state clearly the assumptions under which the structure of the coef-
ficients is formulated. As we have noted for mixed boundary conditions, the
possible non-commutativity of the endomorphism χ with E and Ω increased
the number of independent geometric invariants. However, due to χ2 = 1 this
did not lead to considerable additional complications. For an arbitrary bun-
dle endomorphism valued boundary vector field Γa no such identity will be
available and without further assumptions the situation is extremely compli-
cated; see [23]. For that reason we follow here Avramidi and Esposito [22] and
impose the following assumptions:

                      



(i) The problem is purely Abelian, i.e., the matrices Γa commute : [Γa,Γb] =
0.

(ii) The matrix Γ2 = habΓaΓb which automatically commutes with Γa by
virtue of (i), commutes also with the matrix S: [Γ2, S] = 0.

(iii) The matrices Γa are covariantly constant with respect to the (induced)
connection on the boundary: ∇̂aΓb = 0. (This assumption will be relaxed at
some point, but only in order to get information on the numerical constant
µ2 in eq. (4.8.4)).

Under these assumptions we continue to consider the Laplace-like operator

P = −(gij∇Vi ∇Vj + E),

but now with the boundary condition (4.8.1). Then by invariance theory the
general form of the heat kernel coefficients is

a1/2(F, P,B) = (4π)−d/2(δ̃F )[∂M], (4.8.2)

a1(F, P,B) = (4π)−D/2
1
6
{(6FE + FR)[M] (4.8.3)

+
{
F (b0K + b2S) + b1F;m + Fσ1KabΓaΓb

}
[∂M]

}
,

a3/2(F, P,B) = (4π)−(D−1)/2 1
384

{[
F (c0E + c1R+ c2R

a
mam + c3K

2

+c4KabK
ab + c7SK + c8S

2) + F;m(c5K + c9S) + c6F;mm

]
[∂M]

+
[
F (σ2(KabΓaΓb)2 + σ3KabΓaΓbK + σ4KacK

c
bΓ

aΓb

+λ1KabΓaΓbS + µ1RambmΓaΓb + µ2R
c
acbΓ

aΓb

+ρ1ΩamΓa) + β1F;mKabΓaΓb
]
[∂M]

}
. (4.8.4)

The terms in a3/2 are grouped together such that the first two lines, c0 up to
c9, contain the type of geometric invariants already present for Robin bound-
ary conditions, whereas all the other terms are due only to the tangential
derivatives in the boundary condition. Despite the assumption made, for a3/2

the number of invariants is already nearly doubled.
A remark is in order here. It is to be expected that the “numerical” con-

stants in eqs. (4.8.2)—(4.8.4) will depend on the endomorphism Γa. To see this
consider a1. We explicitly displayed the geometric invariant K, but the gen-
eral “building blocks” for the coefficients consist of K, ΓaΓaK, ΓaΓaΓbΓbK,
ΓaΓbΓaΓbK,..., which by commutativity all lead to a product of K and pow-
ers of the endomorphism Γ2. The b0K summarizes the appearance of all the
above terms and so b0 = b0(Γ2) is expected. Connected with this dependence,
unlike the standard Dirichlet or Robin boundary conditions, oblique bound-
ary conditions are not automatically elliptic but become elliptic under certain
conditions on the boundary operator. This will be clearly visible from the
results obtained and is discussed at the end of this section.

Proceeding as in the previous sections, our first aim will be to put restric-
tions on the universal constants of eqs. (4.8.2)—(4.8.4) by calculating the



coefficients on the bounded generalized cone. The best choice for the operator
P is the conformal Laplacian with E = −(d − 1)R/(4d), because then the
simplifications mentioned various times occur.

It is a natural expectation that a special case calculation will be simplified
considerably by taking a constant Γa, say Γd = −ig, with the real constant g.
The choice of the base N is led by this being covariantly constant. This will
be the case for N = T d, the flat torus, with metric dΣ2 = dx2

1 + ... + dx2
d.

For convenience we take the equilateral torus with perimeter L = 2π and the
volume is vol(T d) = (2π)d. The basic geometric tensors for this case are, see
eq. (3.2.2),

Rabce =
1
r2

(δae δ
b
c − δac δ

b
e), Ka

b = δab .

To take full advantage of the special case calculation, we include again a
smearing function of the type discussed before, eq. (4.3.21). All we need here
is

F (r) = f0 + f1r
2 + f2r

4.

For these special choices of endomorphism, base and smearing function, the
coefficients will have the following appearance:

(4π)d/2

(2π)d
a1/2(F, P,B) = δ̃F (1), (4.8.5)

(4π)D/2

(2π)d
6 a1(F, P,B) =

1
2
(d− 3)(d− 1)

[
f0

d− 1
+

f1
d+ 1

+
f2

d+ 3

]
+b0F (1)d+ b1F;m(1) + b2F (1)S − σ1F (1)g2, (4.8.6)

(4π)d/2

(2π)d
384 a3/2(F, P,B) = F (1)

[
c0(d− 1)2/4− c1d(d− 1) + c3d

2

+c4d+ c7Sd+ c8S
2 + σ2g

4 − σ3dg
2 − σ4g

2 − λ1Sg
2 (4.8.7)

−µ2g
2(1− d)

]
+ F;m(1)

[
c5d+ c9S − β1g

2
]
+ c6F;mm(1).

Thus, by comparing terms containing a specific number of normal derivatives
of F together with a fixed number of powers in d and S, the calculation on
the manifold M = I × T d with F (r) = f0 + f1r

2 + f2r
4 reveals the following

information,

a1/2 δ̃,

a1 b0, b1, b2, σ1,

a3/2 c3 − c1 + c0/4,Γ2(σ3 − µ2) + c4 + c1 − c0/2, c5, c6, c7, c8, c9, β1, λ1,

Γ4σ2 + Γ2σ4 + Γ2µ2 + c0/4.

So a1/2 and a1 are already completely determined; from a3/2 we get 10 of
18 unknowns. Having the analysis of the classical boundary conditions in



mind, we hope that by the product formula and the functorial techniques the
remaining information can be found.

For F (r) = 1, the relevant calculation for oblique boundary conditions on
M = I×T d has already been presented in Section 3.5. These results, in prin-
ciple, determine every heat kernel coefficient for oblique boundary conditions
on the generalized cone with the flat torus as its base. A direct evaluation
of the coefficients by an algebraic computer program such as Mathematica
is possible. Before we use these results to restrict the general form of the
coefficients (4.9.2)—(4.9.4), let us describe the necessary modifications when
dealing with the smeared case.

The inclusion of a smearing function F (r) is very much along the lines for
Robin boundary conditons; see Section 4.3. In fact, the starting equations can
be taken over by replacing u → u + gnd, see eqs. (4.3.31) and (3.3.5). The
contour representation this time reads

ζM(F ; s) =
∑

~n∈ZZd
/{~0}

∫
γ

dk

2πi
k−2s

1∫
0

dr F (r)J̄2
ν (kr)r ×

∂

∂k
ln(kJ ′ν(k) + (u+ gnd)Jν(k)). (4.8.8)

The bar in (4.8.8) again signifies normalized, and

J̄ν(kr) =
√

2k
((u+ gnd)2 + k2 − ν2)1/2Jν(k)

Jν(kr).

For

F (r) =
N∑
n=0

fnr
2n (4.8.9)

the normalization integrals

S[1 + 2p] =

1∫
0

dr J̄2
ν (αr)r

1+2p

are again treated using Schafheitlin’s reduction formula [412]; see eq. (4.3.23).
The answer parallels completely (4.3.29),

S[1 + 2p] =
2p

2p+ 1
ν2 − p2

α2
S[2p− 1]

+
1

2p+ 1

(
1 +

2p(u+ p)
α2 + (u+ gnd)2 − ν2

)
,

starting with S[1] = 1. So S[1 + 2p] has the form, see eq. (4.3.30),

S[1 + 2p] =
p∑

m=0

( ν
α

)2m m∑
l=0

γpml ν
−2l

                      



+
1

α2 + (u+ gnd)2 − ν2

p−1∑
m=0

( ν
α

)2m n∑
l=0

δpml ν
−2l. (4.8.10)

The numerical coefficients γpml and δpml are easily determined recursively,
where δpml depends on nd. This essentially reduces the smeared zeta function
ζM(F ; s) to ζM(s).

As for Robin boundary conditons we divide ζM(F ; s) into different parts.
Respecting the structure in (4.8.10), we define

ζpγ(F, s) =
p∑

m=0

m∑
l=0

γpml

∑
~n∈ZZd

/{~0}

ν2m−2l

∫
γ

dk

2πi
k−2(s+m) ×

∂

∂k
ln(kJ ′ν(k) + (u+ gnd)Jν(k)) , (4.8.11)

ζ̃pδ (F, s) =
p−1∑
m=0

m∑
l=0

∑
~n∈ZZd

/{~0}

δpmlν
2m−2l

∫
γ

dk

2πi
k−2(s+m)

(k2 + (u+ gnd)2 − ν2)
×

∂

∂k
ln(kJ ′ν(k) + (u+ gnd)Jν(k)),

where the contour γ has to be chosen so as to enclose the zeros of only
kJ ′ν(k)+(u+gnd)Jν(k). As discussed for Robin boundary conditions, see just
following eq. (4.3.31), it is important that the poles of S[1+2p], located at k =
±
√
ν2 − (u+ gnd)2, are outside the contour. When deforming to the imagi-

nary axis, this leads to contributions from the poles at k =
√
ν2 − (u+ gnd)2.

The index p refers again to the fact that these are the contributions coming
from the power r2p in (4.8.9). In order to obtain the full zeta function, the∑N
p=0 fpζ

p has to be done.
The first part, ζpγ , may be given just by inspection. The observation follow-

ing eq. (4.3.19) here amounts to setting s→ s+m and to raising the argument
of the base zeta function by l −m in order to determine (4.8.11) in terms of
(4.8.8). For explanatory purposes we give the explicit case

Aγ−1(F, s) =
1

4
√
π

N∑
p=0

fp

p∑
m=0

m∑
l=0

γpml
Γ(s+m− 1/2)
Γ(s+m+ 1)

×

E0(s+ l − 1/2).

In exactly the same way, Aγ0(F, s), Aγ+(F, s) and Aγj (F, s) are obtained from
(3.5.9), (3.5.13), (3.5.15) and (3.5.16). This is the stage where the properties
(3.5.17) and (3.5.18) are used and the contributions to the heat kernel co-
efficients in terms of hypergeometric functions emerge. The structure is the
one already seen in (3.5.20) and the way they are obtained is identical to the
procedure described. For that reason we will not display it explicitly.

We continue with the analysis of ζ̃pδ . Shifting the contour to the imaginary



axis, as expected we get the two parts

ζpδ (F, s) =
sinπs
π

∑
~n∈ZZd

/{~0}

p−1∑
m=0

m∑
l=0

δpml(−1)m ν−2s−2l × (4.8.12)

∞∫
0

dz
z−2s−2m

(u+ gnd)2 − ν2(1 + z2)
×

∂

∂z
ln
(
(u+ gnd)Iν(zν) + zνI ′ν(νz)

)
,

ζpshift(F, s) = −1
2

p−1∑
m=0

m∑
l=0

∑
~n∈ZZd

/{~0}

δpml × (4.8.13)

ν2m−2l(ν2 − (u+ gnd)2)−s−m−1/2 ×
∂

∂k
ln
(
kJ ′ν(k) + (u+ gnd)Jν(k)

)
|
k=
√
ν2−(u+gnd)2

,

the last one arising upon moving the contour over the poles originating from
the normalization integrals.

In dealing with ζpδ (F, s) we proceed as for Robin boundary conditions; see
eq. (4.3.32). Using the uniform asymptotics of the Bessel function we define
the asymptotic contributions Ai,δ(F, s). We will illustrate the calculation by
dealing with Ap−1,δ(F, s), which is given as in eq. (4.3.34) with u → u + gnd.
Performing the z-integrations we arrive at

Ap−1,δ(F, s) =
∞∑
i=0

p−1∑
m=0

m∑
l=0

Γ(s+ i+m+ 1/2)
Γ(s+m+ 1)Γ(i+ 1/2)

×

∑
~n∈ZZd

/{~0}

δpml
(u+ gnd)2i

ν2s+2l+2i+1
. (4.8.14)

Comparing this with eq. (4.3.35), it is the additional nd dependence which
hinders the ~n-summation to be done directly.

Before we proceed, we have to remind ourselves of our initial goal, namely,
the determination of the heat kernel coefficients up to a3/2. Thus we need
to find only the residues of (4.8.14) at s = D/2, (D − 1)/2, D/2 − 1 and
(D − 3)/2, which will be determined by the leading powers in nd. Thus in
addition consider the expansion

(u+ gnd)2i = g2in2i
d + 2iug2i−1n2i−1

d +O(n2i−2
d ) (4.8.15)

in powers of nd. Furthermore, note that the numbers δpml contain terms inde-
pendent of nd and linear in nd,

δpml = δpml0 + δpml1gnd.

With the help of eq. (3.5.18) it is then obvious that the rightmost pole in
Ap−1,δ(F, s) due to the O(n2i−2

d ) term in (4.8.15) is situated at s = (D− 4)/2.



It contributes only to a2 and it is sufficient to consider just the two terms
given in (4.8.15). The splitting of δpml suggests

Ap−1,δ(F, s) = F p1 (F, s) + F p2 (F, s),

with

F p1 (F, s) =
1
2

∞∑
i=0

p−1∑
m=0

m∑
l=0

δpml0
Γ(s+ i+m+ 1/2)

Γ(s+m+ 1)Γ(i+ 1/2)
×

g2iE2i(s+ l + i+ 1/2),

F p2 (F, s) =
1
2

∞∑
i=0

p−1∑
m=0

m∑
l=0

δpml12iu
Γ(s+ i+m+ 1/2)

Γ(s+m+ 1)Γ(i+ 1/2)
×

g2iE2i(s+ l + i+ 1/2).

By eq. (3.5.18) the residues are easily evaluated. Using for k = 0 the notation
δpml = 0 for l < 0, we find

Γ(D/2− k)
(4π)D/2

(2π)d
Res F p1 (F,D/2− k) =

p−1∑
m=k−1

δpm(k−1)0

(
d
2

)
m+1−k

(D/2− k)m+1

× 2F1(1, D/2− k +m+ 1/2, d/2; g2),

Γ(D/2− k)
(4π)D/2

(2π)d
Res F p2 (F,D/2− k) = u

p−1∑
m=k−1

δpm(k−1)1

(d/2)m+1−k

(D/2− k)m+1

× g
d

dg
2F1(1, D/2− k +m+ 1/2, d/2; g2),

where for our purposes only k = 1 is relevant. These general results show,
however, that in principle we could go further.

Proceeding in the same way, the relevant parts in the other Aδi (F, s) can all
be represented in terms of hypergeometric functions.

Finally we are left with the treatment of ζpshift(F, s), eq. (4.8.13). Replacing
u→ u+ gnd, we know from the Robin treatment, see eq. (4.3.36),

∂

∂k
ln(kJ ′ν(k) + (u+ gnd)Jν(k))

∣∣∣
k=
√
ν2−(u+gnd)2

=

u+ gnd√
ν2 − (u+ dnd)2

.

We then can write

ζpshift(F, s) = −1
2

p−1∑
m=0

m∑
l=0

∑
~n∈ZZd

/{~0}

δpml ×

(u+ gnd)ν2m−2l(ν2 − (u+ gnd)2)−s−m−1



= −1
2

p−1∑
m=0

m∑
l=0

∑
~n∈ZZd

/{~0}

δpml × (4.8.16)

∞∑
k=0

Γ(s+m+ 1 + k)
k!Γ(s+ k + 1)

(u+ gnd)2k+1

ν2s+2l+2k+2
,

and from here we proceed as described for Ap−1,δ(F, s).
Let us now collect the information about the universal constants appearing

in eqs. (4.8.5)—(4.8.7). Let us consider first a1/2 and take F (r) = f0. For this
case only A0 and A+ contribute and the answer is

(4π)d/2

(2π)d
a1/2(F ) = f0

1
4

(
2√

1− g2
− 1

)
,

which by comparison with (4.8.5) gives the correct universal constant [301]

δ̃ =
1
4

(
2√

1 + Γ2
− 1
)
. (4.8.17)

We turn now to a1. Dealing first with F (r) = f0, the linear term in d defines
b0, the linear term in S defines b2, the term independent of d and S defines
σ1. Dealing afterwards with F (r) = f1r

2 the additional part is immediately
identified with b1. As a result we obtain the correct answer [301]

b0 = 2− 6

(
− 1

1 + Γ2
+

ArcTanh(
√
−Γ2)√

−Γ2

)
,

b1 = 3− 6 ArcTanh(
√
−Γ2)√

−Γ2
,

b2 =
12

1 + Γ2
,

σ1 =
6
Γ2

(
− 1

1 + Γ2
+

ArcTanh(
√
−Γ2)√

−Γ2

)
,

which shows that the ideas involved in our special case calculation are indeed
correct. Again, the complete coefficient for a general smooth manifold with
boundary is determined just by the example.

Proceeding in the same way for a3/2 we obtain the following universal con-
stants,

c5 =
1
Γ4

[
2
(
−
(

Γ2

(
144− 160√

1 + Γ2

))
+ 32

(
−1 +

1√
1 + Γ2

)
+Γ4

(
−15 +

80√
1 + Γ2

))]
, (4.8.18)

c6 =
1
Γ4

[
8
(

32− 32√
1 + Γ2

+ Γ4

(
−3− 8√

1 + Γ2

)



−Γ2

(
−36 +

52√
1 + Γ2

))]
+

32
(
5 Γ4 − 8

(
−1 +

√
1 + Γ2

)
− 4 Γ2

(
−4 + 3

√
1 + Γ2

))
Γ4
√

1 + Γ2
,

c7 =
192

(
1−

√
1 + Γ2 − Γ2

(
−2 +

√
1 + Γ2

))
Γ2 (1 + Γ2)

3
2

,

c8 =
192

(1 + Γ2)
3
2
,

c9 =
−192
Γ2

(
1− 1√

1 + Γ2

)
,

β1 =
−32

(
5 Γ4 − 8

(
−1 +

√
1 + Γ2

)
− 4 Γ2

(
−4 + 3

√
1 + Γ2

))
Γ6
√

1 + Γ2
,

λ1 =
192

(
−
(
Γ2
(
3− 2

√
1 + Γ2

))
+ 2

(
−1 +

√
1 + Γ2

))
Γ4 (1 + Γ2)

3
2

,

plus the following relations among them,

c3 − c1 + c0/4 =
1

Γ4(1 + Γ2)3/2

[
Γ2
(
240− 224

√
1 + Γ2

)
+Γ4

(
336− 207

√
1 + Γ2

)
− 32

(
−1 +

√
1 + Γ2

)
−5 Γ6

(
−16 + 3

√
1 + Γ2

)]
, (4.8.19)

Γ2(σ3 − µ2) + c4 + c1 − c0/2 =
6

Γ4(1 + Γ2)3/2

[
32
(
−1 +

√
1 + Γ2

)
+Γ6

(
−48 + 7

√
1 + Γ2

)
+ 16 Γ2

(
−10 + 9

√
1 + Γ2

)
+Γ4

(
−192 + 119

√
1 + Γ2

)]
,

σ2 +
1
Γ2

(σ4 + µ2) +
c0

4Γ4
= − 8

Γ8(1 + Γ2)3/2

[
32
(
−1 +

√
1 + Γ2

)
+Γ6

(
−32 + 3

√
1 + Γ2

)
+ 8 Γ2

(
−15 + 13

√
1 + Γ2

)
+3Γ4

(
−42 + 25

√
1 + Γ2

)]
.

In the limit Γ → 0 we might show that the results for Robin boundary condi-
tions are reproduced.

Next we use the result on product manifolds [68], see eq. (4.2.12), which in
the present case gives

c0 = 96
(
−1 +

2√
1 + Γ2

)
, (4.8.20)



c1 = 16
(
−1 +

2√
1 + Γ2

)
. (4.8.21)

Together with eq. (4.8.19) this also determines c3,

c3 =
1

Γ4(1 + Γ2)3/2

[
Γ2
(
240− 224

√
1 + Γ2

)
+Γ4

(
320− 199

√
1 + Γ2

)
+ Γ6

(
64− 7

√
1 + Γ2

)
−32

(
−1 +

√
1 + Γ2

)]
.

The next step is to apply the functorial techniques of [68]; see relations (4.2.15)
and (4.2.16). The only new relation needed is [22]

Γa(ε) = e−εFΓa , (4.8.22)

found by imposing on the boundary operator

B(ε) = e−εFB.

Setting to zero the coefficients of all terms in (4.2.15), for n = 3/2 we obtain
the following useful relations,

Term Coefficient
f;mm 0 = 1

2 (D − 2)c0 − 2(D − 1)c1 − (D − 1)c2 − (D − 3)c6 − Γ2µ1

Kf;m 0 = 1
2 (D − 2)c0 − 2(D − 1)c1 − c2 + 2(D − 1)c3 + 2c4
− 1

2 (D − 2)c7 − (D − 3)c5 + Γ2σ3 − Γ2µ2

The first of these determines c2 and µ1, namely

c2 =
8
Γ2

(
12− 12√

1 + Γ2
+ Γ2

(
1− 8√

1 + Γ2

))
,

µ1 =
96
(
2 + Γ2 − 2

√
1 + Γ2

)
Γ4
√

1 + Γ2
.

The second together with (4.8.18) gives

c4 =
2
Γ4

(
Γ4

(
5− 32√

1 + Γ2

)
+ Γ2

(
48− 32√

1 + Γ2

)
+32

(
−1 +

1√
1 + Γ2

))
.

Disappointing as it is, under the given assumptions these are the only new
universal constants the functorial techniques yield. This is partly due to the
restrictions imposed, because several invariants, due to ∇̂bΓa = 0, integrate to
zero and so fail to produce a relation. As an example consider the variational
formula

d

dε
|ε=0 R

c
acbΓ

aΓb = −2FRcacbΓ
aΓb − (D − 3)KabΓaΓbF;m (4.8.23)

−Γ2KF;m − (D − 3)F:abΓaΓb − Γ2F a
:a .



The last two terms are the aforementioned terms that integrate to zero due to
our assumptions. But relaxing the condition of covariantly constant Γa, still
assuming commutativity, two additional relations for the universal constant
µ2 will arise. However, when ∇̂bΓa 6= 0, additional independent geometrical
terms have to be included in a3/2 and it has to be seen if indeed µ2 can be
determined. The additional terms by which eq. (4.8.4) has to be supplemented
are the following:

384
(4π)1/2

acov3/2(F, P,B) = [F (γ1Γa:bΓ
b
a: + γ2Γa:bΓ

b
:a + γ3Γa:aΓ

b
:b

+γ4Γa:abΓ
b + γ5Γ b

a:b Γa + γ6Γa:bΓa:cΓ
bΓc

+γ7Γa:bΓc:aΓ
bΓc + γ8Γa:bΓ

b
c: ΓaΓc + γ9Γa:aΓ

e
:cΓeΓ

c

+γ10Γa:bcΓaΓ
bΓc + γ11Γa:bΓ

e
:cΓ

bΓcΓaΓe)][∂M]. (4.8.24)

The term Γa:baΓ
b is not independent from the above because due to the Gauss-

Codacci relation we have

Γa:baΓ
b = Γa:abΓ

b +RacabΓ
cΓb +KKcbΓcΓb −KcaK

a
b ΓcΓb.

Because of the simple conformal transformation property of Γa, eq. (4.8.22), it
is relatively easy to find the variational formulas of all invariants in eq. (4.8.24).
Surprisingly, without knowing any of the γi, setting to zero the coefficients of
the tangential derivatives terms in (4.8.23), we find the unambiguous answer

µ2 = 0. (4.8.25)

Although irrelevant for this specific result, caution is needed when doing the
calculation because when performing partial integrations we must keep in
mind the dependence of the universal constants on Γ2.

As a consequence of eq. (4.8.25), we also find by eq. (4.8.18),

σ3 =
1

Γ6 (1 + Γ2)3/2

[
32
(
−5 Γ6 + 8

(
−1 +

√
1 + Γ2

)
+6Γ4

(
−5 + 3

√
1 + Γ2

)
+ Γ2

(
−30 + 26

√
1 + Γ2

))]
.

In summary, up to this point we have determined all universal constants
apart from ρ1, associated with ΩamΓa, σ2, the geometric invariant being
(KabΓaΓb)2, and finally σ4 related to KacK

c
bΓ
aΓb. Within the application of

the product formula and the conformal transformation properties, and with
the special example of the generalized cone, all possible information has been
found. Next we could attempt to find a suitable index theory example, but
this leads naturally to a kind of mixed oblique boundary condition, a problem
we do not want to get into. So what are the possibilities to find the remaining
information?

In the previous calculations on the generalized cone we only could determine
the combination Γ2σ2+σ4. This is a direct consequence ofK b

a = δ b
a , by which

KabΓaΓb = Γ2 and also KabK
b
cΓ
aΓc = Γ2 irrespective of the Γa chosen. As



a result, the special case fixes g(Γ2) = σ2(Γ2)Γ4 + σ4(Γ2)Γ2, but there is no
possibility to uniquely determine σ2 and σ4, which both possibly depend on
Γ2. As the equations make clear this is not a result of the Γa chosen.

Leaving the class of generalized cones, σ2 and σ4 could be separated by
introducing more than one non-vanishing Γa and by taking Kab to project
onto just one of them. Take, e.g., Γd = −igd and Γa = −ig, a 6= d, with
gd and g real constants. If Kdd = 1 and Kbc = 0 for (b, c) 6= (d, d), then
(KbcΓbΓc)2 = g4

d and KebK
b
cΓ
eΓc = −g2

d. The dependence on Γ2 = −g2
d − g2

could clearly be distinguished from the appearance of powers of g2
d.

However, a manifold with these properties is easily found. It is the flat
manifold M = B2 × T d−1 with metric

ds2 = dr2 + dx2
1 + ...+ dx2

d−1 + r2dx2
d.

As we have shown already in Section 3.6, the eigenvalue problem can be solved
and the meromorphic structure of the associated zeta function be revealed. We
had restricted ourselves to F (r) = 1, because this is all needed to determine
σ2 and σ4. The above comments are made clear by the results (3.6.2) and
(3.6.3). Eq. (3.6.2) shows the manner in which Γ2 = g2 + g2

d is built up. On
the other hand, eq. (3.6.3) gives an example for contributions other than Γ2 to
appear, although the part there has to be, and indeed is, cancelled by another
contribution.

Using the calculation of Section 3.6, we can confirm the results on c3 +
c4, c7, c8, λ1. Most importantly, we determine two of the remaining constants
to be

σ2 =
1

Γ8 (1 + Γ2)
3
2

[
−48

(
−5 Γ6 + 16

(
−1 +

√
1 + Γ2

)
+8Γ2

(
−5 + 4

√
1 + Γ2

)
+ Γ4

(
−30 + 16

√
1 + Γ2

))]
,

σ4 =
32
(
−Γ4 + 16

(
−1 +

√
1 + Γ2

)
+ 2 Γ2

(
−7 + 3

√
1 + Γ2

))
Γ6
√

1 + Γ2
.

We are thus left with the one unknown ρ1. Although the natural venue to
consider the curvature terms Ω is within index theorems, for reasons men-
tioned we cannot use these easily in the present context. However, the special
cases can be extended slightly as to involve Ωam terms and so also ρ1 will
be determined. Referring to the example on the generalized cone, we need
ΩamΓa = ΩdmΓd 6= 0 in order for ρ1 to occur in the result. The most suit-
able choice for the connection one-forms is probably ωd = (1/2)iεr2, ωa = 0
for a 6= d, which leads to Ωdm = −ωd,r = −iεr, such that at the bound-
ary ΩdmΓd = −εg. Restricting our attention again to the necessary, we need
to consider the problem only up to the O(ε)-term. Denoting the associated
operators by Pε and Bε, we have the perturbative expansions

Pε = P0 −
2
r2
ωd∇d +O(ε2)

                      



= P0 − iε∇d +O(ε2),

Bε = B0 + ωdΓd = B0 +
1
2
εg.

This shows the eigenfunctions are still of the type given by eq. (3.5.2) and
the eigenvalues are α2

ε + εnd, where αε is determined through the boundary
condition

αJ ′ν(α) + (u(ε) + gnd)Jν(α) = 0,

with u(ε) = 1 − (D/2) − S + (1/2)εg. For the perturbative expansion of the
zeta function of Pε this gives

ζε(s) ∼
∑

α−2s
ε − sε

∑
ndα

−2s−2
ε +O(ε2)

=
∑

α−2s
ε − sε

∑
ndα

−2s−2 +O(ε2),

with the unperturbed eigenvalues α. The first term is identical to our previ-
ous analysis once S → S − (1/2)εg is used. Also the second term is seen to
lead to the kind of technicalities already encountered and the analysis can be
performed without problem. The outcome shows

ρ1 =
192
Γ2

[
1− 1√

1 + Γ2

]
,

and this completes our analysis of a3/2(F, P,B) for covariantly constant Γb.
The results for oblique boundary conditions are summarized in Section 4.10.5.

As is apparent from some, if not all, unknowns, as, e.g., δ̃ in eq. (4.8.17),
something odd happens whenever any eigenvalue of Γ2 is smaller than, or equal
to, minus one. In fact our specific expressions derived exhibit branch points
and poles at g2 = 1. These singularities can be attributed to a loss of ellipticity
in form of a breakdown of the Lopatinski-Shapiro condition [161, 279, 395],
see Section 2.3, what has been observed by Dowker and Kirsten [148] and
further elaborated by Avramidi and Esposito [23, 21].

In order to show the failure of this condition, we note first that the leading
symbol of the Laplacian on ∂M is −hcdξcξd = −ξaξa = −ξξ. Similarly, the
leading symbol of the boundary condition (4.8.1) is ∂r − iΓξ and the classic
Lopatinski-Shapiro condition requires that the set of equations

(−∂2
r + ξ2)f(r) = 0 (4.8.26)

with the condition f(r) → 0 for r →∞, and

(−∂r + iΓξ)f(r) |∂M = h(ξ) (4.8.27)

should have a unique solution for any h(ξ), for |ξ| 6= 0.
The relevant solution of the eq. (4.8.26) is

f(r) = w(ξ)e−|ξ|r,

so that (4.8.27) reads

(|ξ|+ iΓξ)w(ξ) = |ξ|(1 + g cos θ)w(ξ) = h(ξ) (4.8.28)

                      



and there is a clear breakdown of invertibility when g ≥ 1. In this case, as
a result, the Green’s function for the boundary problem at hand does not
exist. This becomes apparent because the construction of its symbols using
the Seeley formalism [378, 377], as described in detail in Section 2.3, fails.

                      



4.9 Leading heat equation asymptotics with spectral bound-
ary conditions

As a final example let us derive the heat kernel coefficients up to a3/2 for
spectral boundary conditions. A very important aspect in which these differ
from the previously treated ones is that they are global boundary conditions.
As a consequence, in contrast to local boundary conditions considered thus
far, the numerical unknowns will exhibit a non-trivial dependence upon the di-
mension (a product formula such as eq. (4.2.12) in this case fails). This makes
the determination of the coefficients considerably more difficult because the
number of equations obtained by any of the methods is reduced. For example,
in the special case calculation powers of the dimension d of the boundary can-
not be simply identified with certain combinations of the extrinsic curvatures.
This is seen clearly in a3/2, where for F = 1 the result on the ball involves the
invariants β1K

2 + β2KabK
ab. Whereas previously we could determine β1 and

β2, given that these can now depend on d, we find only one equation for the
two unknowns. Similarly, for the application of functorial techniques and the
index theorem, whereas previously we could equate to zero the coefficient of
any power of d or D, this is not possible here anymore. So in a certain sense
it is especially here that it is only the conglomerate of methods that leads to
the determination of the full coefficients; see [145, 210].

For convenience, we will start summarizing spectral boundary conditions;
see Section 2.3. Let Ei be unitary bundles over M and let

D : C∞(E1) → C∞(E2),

where D is a first-order partial differential operator. For D∗, the formal adjoint
of D, assume that the associated second-order operator

P := D∗D

on C∞(E1) is of Laplace-type. We will work in the general context of E1

different from E2 because this will reduce the number of invariants needed.
Spectral boundary conditions are imposed as follows [15, 16, 17]. Let γ be

the leading symbol of the operator P and ∇ a compatible unitary connection.
Such a connection always exists [69]; the spin connection (3.3.3) provides an
example. Near the boundary we can decompose

D = γm(∇m +B)

where B is a tangential first-order operator on C∞(E1|∂M ). For Θ an auxiliary
self-adjoint endomorphism of E1|∂M we define the operator

A :=
1
2
(B +B∗)−Θ

on C∞(E1|∂M ). Here, the adjoint of B is taken with respect to the structures
on the boundary. The operator A is a self-adjoint operator of Dirac type on

                      



C∞(E1|∂M ). Let the boundary operator B, which we will use to define the
boundary conditions for the operator D, be the orthogonal projection on the
non-positive spectrum of A. Denote the realization of D and the associated
self-adjoint operator of Laplace type by DB and PB := (DB)∗DB. As was
shown by Grubb and Seeley [233, 234, 235], for a summary see Section 2.3,
there is an asymptotic series as t→ 0 of the form,

Tr L2(Fe−tPB) ∼
∑

0≤k≤D−1

ak(F, P,B)t(k−D)/2 +O(t−1/8). (4.9.1)

There is a complete asymptotic series, which, as mentioned in Chapter 2
also contains ln(t)-terms; see (2.3.34). We are only interested in the first few
terms in the series and these are known to be locally computable for k ≤ D
[233, 234, 235]; see Section 2.3.

We shall determine a0, a1/2, a1 and a3/2 and thus impose D ≥ 4. Write
D in the form D = γi∇i + ψ and define ψ̂ := γ−1

m ψ, γ̂a = γ−1
m γa. Then the

general form of the coefficients is (a0 as in eq. (4.2.6)),

a1/2(F, P,B) = (4π)−(D−1)/2b1(D)F [∂M], (4.9.2)

a1(F, P,B) = (4π)−D/26−1(6FE + FR)[M] (4.9.3)

+(4π)−D/2
[
c0(D)F (ψ̂ + ψ̂∗) + c1(D)F (ψ̂ − ψ̂∗)

+c2(D)FΘ + c3(D)FK + c4(D)F;m] [∂M],

a3/2(F, P,B) = (4π)−(D−1)/2
[
F (d0[ψ̂ψ̂ + ψ̂∗ψ̂∗] + d1[ψ̂ψ̂ − ψ̂∗ψ̂∗]

+d2ψ̂
∗ψ̂ + d3[γ̂aψ̂γ̂aψ̂ + γ̂aψ̂∗γ̂aψ̂

∗] + d4[γ̂aψ̂γ̂aψ̂ − γ̂aψ̂∗γ̂aψ̂
∗]

+d5γ̂
aψ̂∗γ̂aψ̂ + d6[ψ̂;m + ψ̂∗;m] + d7[ψ̂;m − ψ̂∗;m] + d8[γ̂aψ̂:a + γ̂aψ̂∗:a]

+d9[γ̂aψ̂:a − γ̂aψ̂∗:a] + d10K[ψ̂ + ψ̂∗] + d11K[ψ̂ − ψ̂∗] + d12R

+d13Rmm + d14Wabγ̂
aγ̂b + d15Wamγ̂

a + d16K
abKab + d17K

2)

+F;m(d18[ψ̂ + ψ̂∗] + d19[ψ̂ − ψ̂∗] + d20K) + d21F;mm (4.9.4)

+F (e0ΘΘ + e1γ̂
aΘγ̂aΘ + e2γ̂

aΘ:a + e3KΘ + e4Θ[ψ̂ + ψ̂∗]

+e5Θ[ψ̂ − ψ̂∗] + e6γ̂
aΘγ̂a[ψ̂ + ψ̂∗] + e7γ̂

aΘγ̂a[ψ̂ − ψ̂∗])
+e8F;mΘ ] [∂M].

We have chosen to use

Wij := Ωij −
1
4
R kl
ij γ∗kγl,

instead of the curvature Ωij . This choice is more convenient, because as it
turns out, the coefficient d14 and d15 can be put to zero. The endomorphism
E in eq. (4.9.3) is determined by the decomposition (4.2.17) and (4.2.19).
The explicit form of the volume contribution is provided in (4.9.6).

It is here that distinct bundles E1 and E2 exclude for example the appear-
ance of ψ in eq. (4.9.3) and of further invariants in (4.9.4).

                      



Let us first use our special case calculation on the ball to determine b1(D),
c3(D) and c4(D). The coefficients are found as repeatedly shown. Using the
eqs. (3.2.13)—(3.2.15) with the base zeta function (3.3.10), we obtain the
following first few coefficients:

a1/2 = 2−Dds

(
1

Γ((D + 1)/2)
−
√
π

1
Γ(D/2)

)
,

a1 = 2−Dds

(
2d

3Γ(D/2)
−
√
π

d

2Γ((D + 1)/2)

)
,

a3/2 = 2−5−D(D − 1)ds

(
8(4D − 11)

3Γ((D + 1)/2)
+
√
π

(17− 7D)
3Γ(D/2)

)
.

Higher coefficients are provided in [143, 150]. To express the universal con-
stants, introduce for convenience

β(D) =
Γ(D/2)√

πΓ((D + 1)/2)
.

From the above results we see that

b1(D) =
1
4

[β(D)− 1] ,

c3(D) =
1
3

[
1− 3π

4
β(D)

]
,

d16 + (D − 1)d17 =
17− 7D

384
+

4D − 11
48

β(D). (4.9.5)

Regarding the smeared calculation, we can proceed exactly along the lines
described just following eq. (4.3.15). The relevant normalization integral for
the solutions (3.4.5) is

1 = C2

1∫
0

dr r
{
J2
n+D/2(kr) + J2

n+D/2−1(kr)
}
,

from which we derive [220]

C =
1

Jn+D/2(k)
,

where the fact that Jn+D/2−1(k) = 0 also has been used. The Schafheitlin
reduction formula (4.3.23) allows the inclusion of a radial smearing function
and no further complications to our previous treatment are encountered. From
this calculation we determine in addition

c4(D) =
D − 1

2(D − 2)

[
1− π

2
β(D)

]
,

d20(D) = − 1
8(D − 3)

(
5D − 7

8
− 5D − 9

3
β(D)

)
,



d21(D) =
D − 1

16(D − 3)
(2β(D)− 1).

From the manifold B2 ×N , see eq. (3.6.13), we find

d16(D) + d17(D) =
1

16(D2 − 1)

(
D2 + 8D − 17

8
− (3D − 4)β(D)

)
,

which, together with (4.9.5), determines the remaining unknowns in the
group of the extrinsic curvature terms,

d16(D) =
17 + 5D

192(D + 1)
+

23− 2D − 4D2

48(D − 2)(D + 1)
β(D),

d17(D) = − 17 + 7D2

384(D2 − 1)
+

4D3 − 11D2 + 5D − 1
48(D2 − 1)(D − 2)

β(D).

Furthermore, this example shows

d12 = − 1
48

(
D − 1
D − 2

β(D)− 1
)
.

The last information from a special case comes from the inclusion of a potential
term; see eqs. (3.3.7)—(3.3.9). We easily find

ψ̂ =
(
a 0
0 −a

)
,

and traces of linear terms in the potential vanish. From the squares in the
potential we get the relation

(2d0 + d2)− (D − 1)(2d3 + d5) =
1
4
(D − 2)

(
D − 1
D − 2

β(D)− 1
)
.

For the remaining constants a series of lemmas is used, some of them particular
to Dirac operators. Alone the number of different ideas needed in addition to
the special case shows that spectral boundary conditions are the most difficult
ones to analyse. We start with an argument involving anti-Hermiticity of
invariants, as discussed also for Dirichlet and Robin boundary conditions.

Lemma: We have

0 = c1 = d1 = d4 = d7 = d8 = d11 = d19 = e2 = e5 = e7.

Proof: On the one hand, since PB is a self-adjoint operator, the invariants ak
will be real. Thus the anti-Hermitian invariants must appear with an imag-
inary coefficient. But with Ei and γ, ψ and Θ real, the universal constants
have to be real in order that ak is real. So the constants associated with anti-
Hermitian invariants have to vanish. The fact that γ̂a is skew-Hermitian and
Θ is Hermitian shows these constants are the ones given.ut

The next idea involves a simple variation of Θ.



Lemma: We have

c2 = 0, 0 = e3 = e8,

0 = e0 − (D − 1)e1, 0 = e4 − (D − 1)e6.

Proof: For generic values of a real ε, the operator Θ(ε) := Θ + ε will lead to
a A(ε) with trivial kernel. So the boundary condition, for ε small enough, will
remain unchanged. In particular we have

d

dε
|ε=0 ak(F, P,B) = 0.

Setting to zero the coefficients of independent invariants, the equations of the
lemma follow.ut

Next we observe the invariants Wabγ̂
aγ̂b and Wamγ̂

a trace to zero and thus
play no role.

Lemma: We may take

0 = d14 = d15.

Proof: First we note that [W,γ] = 0; see [69]. Furthermore, by the cyclicity
of the trace we compute

Tr (Wabγ̂
aγ̂b) = Tr (γ̂aWabγ̂

b) = Tr (Wabγ̂
bγ̂a)

and from the Clifford relation

Tr (Wabγ̂
aγ̂b) =

1
2

Tr (Wab{γ̂a, γ̂b}) = −Tr (Wabg
ab) = 0.

Similarly,

−(D − 1) Tr (Wamγ̂
a) = Tr (γ̂bγ̂bWamγ̂

a) = Tr (Wamγ̂
bγ̂aγ̂b)

= Tr (Wam(−2gabγ̂b − γ̂aγ̂bγ̂
b)) = (D − 3) Tr (Wamγ̂

a),

and given D 6= 2 we find Tr (Wamγ̂
a) = 0.ut

Let us next use index theory. Particular attention has to be paid to the role
played by the boundary condition of the adjoint operator.

Lemma: We have

c0 = −1
2
, 0 = d6 = d10.

Proof: Consider E1 = E2 and as before an operator of the typeD1 = γi∇i+ψ.
Its formal adjoint is D2 = γi∇i + ψ∗. As usual, the index theorem involves
the operators P1 = D2D1 and P2 = D1D2 with the appropriate boundary
conditions. The well-known relation between the index of (D1,B1) and the
heat trace is

index (D1,B1) = Tr
(
e−t(P1)B1

)
− Tr

(
e−t(P2)B2

)
.



This shows

ak(1, P1,B1)− ak(1, P2,B2) = 0

for k 6= D/2. Formally, the relation between ak(1, P1,B1) and ak(1, P2,B2)
is very simple. Whereas (P1,B1) is described by ψ̂, ψ̂∗ and Θ, the associated
quantities for (P2,B2) are γmψ̂γm, γmψ̂∗γm and γmΘγm+K; see Section 2.3,
eq. (2.3.40). A slight complication occurs because for a1 the volume contribu-
tion has to be considered. This has been done for P = D2 with D self-adjoint,
see [69], but not for P = D∗D. However, using the same procedure as de-
scribed in detail there, we can show that for P = (γi∇i + ϕ)(γj∇j + φ) the
volume contribution to a1 reads,

aM1 (1, P ) = −12−1(4π)−D/2
{
R+ 6γi(φ− ϕ);i

+(12− 6D)ϕφ+ 3γiφγiφ+ 3γiϕγiϕ
}

[M] (4.9.6)

From there, with φ = ψ and ϕ = ψ∗, we find

a1(1, P1,B1)− a1(1, P2,B2) = −(4π)−D/2 {γmψ − γmψ
∗} [∂M]

+(4π)−D/2c0(D)
{
ψ̂ + ψ̂∗ − (γmψ̂γm + γmψ̂

∗γm)
}

[∂M]

= (4π)−D/2
{
ψ̂ + ψ̂∗ + 2c0(D)(ψ̂ + ψ̂∗)

}
[∂M] = 0,

from which follows c0 = −1/2. Similarly, the results on a3/2 can be shown. ut

The next idea is characteristic for Dirac-type operators. It is based on the
idea that the connection ∇ is not canonically defined.

Lemma: We have

0 = 2d0 + d2 + (D − 3)(2d3 + d5),
0 = −2d0 + d2 + (D − 1)(2d3 − d5),
0 = e4 + (D − 3)e6.

Proof: The operator D = γi∇i + ψ0 is left invariant under a simultaneous
change of the connection ∇,

∇i(ε) = ∇i + εσi,

and the endomorphism

ψ(ε) = ψ0 − εγiσi,

where σi is skew-adjoint. In order to ensure ∇i(ε) is compatible, assume
[σi, γj ] = 0. If in addition to D(ε) = γi∇i(ε) + ψ(ε) = D, the boundary
condition is unchanged, the heat trace coefficients do not depend on ε. But
this is easily seen because of

B(ε) = −γm(γa∇a + ψ0 + εγaσa − εγiσi) = B0 − εσm.

                      



By this it follows that

A(ε) =
1
2
(B(ε) +B(ε)∗)−Θ(ε) =

1
2
(B +B∗)−Θ = A,

if Θ(ε) = Θ. Evaluating the O(ε) terms of this perturbation, the following
small list of results is obtained:

δψ̂(ε) = −γ̂bσb − σm,

δψ̂(ε)∗ = −γ̂bσb + σm,

δd0 Tr {ψ̂0ψ̂0 + ψ̂∗0ψ̂
∗
0} = 2d0 Tr {−γ̂bσb(ψ̂0 + ψ̂∗0)− σm(ψ̂0 − ψ̂∗0)},

δd2 Tr {ψ̂0ψ̂
∗
0} = d2 Tr {−γ̂bσb(ψ̂0 + ψ̂∗0) + σm(ψ̂0 − ψ̂∗0)},

δd3 Tr {γ̂aψ̂0γ̂aψ̂0 + γ̂aψ̂∗0γ
T
a ψ̂

∗
0}

= 2d3 Tr {−γ̂aγ̂bσbγTa (ψ̂0 + ψ̂∗0)− γ̂aσmγ
T
a (ψ̂0 − ψ̂∗0)}

= 2d3 Tr {(D − 3)(−γ̂bσb)(ψ̂0 + ψ̂∗0) + (D − 1)σm(ψ̂0 − ψ̂∗0)},
δd5 Tr {γ̂aψ̂∗0γTa ψ̂0}

= d5 Tr {−γ̂aγ̂bσbγTa (ψ̂0 + ψ̂∗0) + γ̂aσmγ
T
a (ψ̂0 − ψ̂∗0)}

= d5 Tr {−(D − 3)γ̂bσb(ψ̂0 + ψ̂∗0) + (1−D)σm(ψ̂0 − ψ̂∗0)},
δe4F Tr {Θ(ψ̂0 + ψ̂∗0)} = −2e4 Tr {Θγ̂bσb},
δe6F Tr {Θγ̂a(ψ̂0 + ψ̂∗0)γTa } = −2e6 Tr {Θ(D − 3)γ̂bσb}. (4.9.7)

This yields the relation:

0 =
[
{2d0 + d2 + (D − 3)(2d3 + d5)}Tr {−γ̂bσb(ψ̂0 + ψ̂∗0)}

+{−2d0 + d2 + (D − 1)(2d3 − d5)}Tr {σm(ψ̂0 − ψ̂∗0)}
+ {−2e4 − 2(D − 3)e6}Tr {Θγ̂bσb}

]
,

which completes the proof of the lemma.ut

Actually, the variation of the connection presented in the previous lemma
contains much more information than revealed up to now. Several invariants
did not contribute to the variations of the list (4.9.7), because of the com-
mutativity of σi and γj . In particular, consider the invariant associated with
d9. In detail we compute

Tr (F:aγ̂
aσm) = −F:a Tr (γmγaσm) = −F:a Tr (γaγmσm)

= F:a Tr (γmγaσm) = −F:a Tr (γ̂aσm),

and so

Tr (F:aγ̂
aσm) = 0.

To show this identity, it was essential that F was just a scalar with no effect
on the trace Tr . Extending the setting to an endomorphism valued smearing
function F more relations can be obtained. However, also many more invari-
ants exist due to the lack of commutativity, so that we did not do so from the



beginning. But in order to study just linear terms in ψ̂ and ψ̂∗ the extra effort
is not very great. Given no additional information on the ei-group is needed,
we restrict ourselves to the di-group of invariants.

Lemma: We have

0 = d6 = d9 = d10 = d18.

Proof: Assume F an endomorphism valued smearing function. Consider first
d9 and concentrate on terms involving a tangential derivative. The relevant
invariants for this setting are

{u1 Tr (F:aγ̂
a(ψ̂ − ψ̂∗)), u2 Tr (F:aγ̂

a(ψ̂ + ψ̂∗)),

u3 Tr (F:a(ψ̂ − ψ̂∗)γ̂a), u4 Tr (F:a(ψ̂ + ψ̂∗)γ̂a)}.

For F scalar, the relations to the previous constants are

d8 = −u2 − u4, d9 = −u1 − u3.

But this allows us to determine d9, because in order that the variation with
respect to ε vanishes we need, e.g.,

0 = −2(u1 + u3) Tr (F:aγ̂
aσm),

which shows d9 = 0. The remaining results of the lemma are immediate, once
the table of variations has been amended by

δ(ψ̂;m + ψ̂∗;m) = −2γ̂aσa;m + [σm, ψ̂0 + ψ̂∗0 ].

ut

In order to find a relation for d13, the procedure for Dirichlet and Robin
boundary conditions suggests considering conformal tranformations.

Lemma: We have

0 = d18,

0 = 2(D − 1)d12 + d13 − 2d16 + 2(1−D)d17 + (D − 3)d20,

0 = 2(1−D)d12 + (1−D)d13 + (3−D)d21.

Proof: Consider the conformal transformation of the metric, gij(ε) = e2εF

gij(0). The γ-matrices transform according to γi(ε) = e−εF γi and γi(ε) =
eεF γi. The spin-connection (3.3.3) for the transformed metric gij(ε) is then

∇i(ε) = ∇i +
1
2
εF;jγ

jγi +
1
2
εF;i. (4.9.8)

By construction this defines a compatible connection, (∇(ε)γ(ε)) = 0. Fur-
thermore, we find the relation

γi(ε)∇i(ε) = e−εF
(
γi∇i +

1
2
εF;jγ

iγjγi +
1
2
εF;iγ

i

)



= e−εF
(
γi∇i +

1
2
ε(D − 1)F;jγ

j

)
= e−(D+1)εF/2γi∇ie(D−1)εF/2.

Assume ψ0 is self-adjoint and define

D(ε) := e−(D+1)εF/2(γi∇i + ψ0)e(D−1)εF/2

=: γi(ε)∇i(ε) + ψ(ε)

with

ψ(ε) = e−εFψ0.

By construction, D(ε) is formally self-adjoint. Consider next the boundary
operator. Note that the situation for spectral boundary conditions is different
from the one for Dirichlet and Robin boundary conditions. Namely, given we
need the full spectral resolution of the operator A in order to define the orthog-
onal projection on the span of its eigenspaces for the non-positive spectrum,
in general it is not sufficient if A transforms according to

A(ε) = e−εFA0.

Only if F |∂M = constant, the boundary condition is left unchanged. For
simplicity we take F |∂M = 0. Define

Θ1(ε) =
1
2
(D − 1)εF;m + Θ0,

then A(ε) = A0 and the boundary condition for D(ε) remains unchanged. The
adjoint boundary condition is described by the change

Θ2(ε) = −1
2
(D − 1)εF;m − γmΘ0γ

−1
m +K + (D − 1)F;m

=
1
2
(D − 1)εF;m +K − γmΘ0γ

−1
m ,

and with Θ0 = K/2 we find Θ2(ε) = Θ1(ε) and D∗(ε) = D(ε). With these
transformations defined, eq. (4.2.15) holds,

d

dε
|ε=0 an(1,D2(ε),B(ε)) = (D − 2n)an(F,D2,B). (4.9.9)

The coefficient a1 is already fully determined and conformal variations can
be used to produce a check. For a3/2 we only need the variations provided in
Appendix B; note that ψ̂(ε) = ψ̂0. Eq. (4.9.9) then yields the equations

0 = {[2(D − 1)d12 + d13 − 2d16 − 2(D − 1)d17

+(D − 3)d20]F;mK

+[2(D − 1)d12 + (D − 1)d13 + (D − 3)d21](F;mm)} [∂M] ,

which proves the lemma. ut

In summary, we now are missing just one equation to find e0 and e1. The



missing equation is given in the following result.

Lemma: We have

0 =
1
4
(β(D)− 1) + 2d0 + d2 + 2(D − 1)d3 + (D − 1)d5

+e0 + (D − 1)e1 + 2e4 + 2e6(D − 1).

Proof: Consider the variation

D(ε) = D0 + iε.

So ψ(ε) = ψ0 + iε, ψ∗(ε) = ψ∗0 − iε and ψ̂(ε) = ψ̂0 − iεγm, ψ̂∗(ε) = ψ̂∗0 −
iεγm. The boundary operator A0 = 1

2 (B0 + B∗0 −K) − Θ0, is kept invariant
defining Θ(ε) = Θ0 − iεγm. Assume D0 formally self-adjoint. To guarantee
the boundary conditions for D0 and D∗0 agree we need γmΘ0γm = Θ0, and
Tr (γmΘ0) = 0 follows. Furthermore, given ψ0 = ψ∗0 we have Tr {γm(ψ̂0 +
ψ̂∗0)} = 0. Under the assumptions made, given a spectral resolution {φk, λk}
of D0, {φk, λk+ε} will be a spectral resolution of D(ε). With D∗(ε) = D0− iε,
P0 = D∗0D0 and P (ε) = D∗(ε)D(ε), we have

Tr
[
e−tP (ε)

]
= e−tε

2
Tr
[
e−tP0

]
and so

a3/2(1, P (ε),B) = a3/2(1, P0,B)− ε2a1/2(1, P0,B). (4.9.10)

Using the general form for a3/2, we compute the relevant variations

d0 Tr (ψ̂ψ̂ + ψ̂∗ψ̂∗)(ε) = d0 Tr (ψ̂0ψ̂0 + ψ̂∗0ψ̂
∗
0) + 2d0ε

2 Tr (1),

d2 Tr (ψ̂ψ̂∗)(ε) = d2 Tr (ψ̂0ψ̂
∗
0) + d2ε

2 Tr (1),

d3 Tr (γ̂aψ̂γ̂aψ̂ + γ̂aψ̂∗γ̂aψ̂
∗)(ε) = d3 Tr (γ̂aψ̂0γ̂aψ̂0 + γ̂aψ̂∗0 γ̂aψ̂

∗
0)

+2(D − 1)d3ε
2 Tr (1),

d5 Tr (γ̂aψ̂γ̂aψ̂∗)(ε) = d5 Tr (γ̂aψ̂0γ̂aψ̂
∗
0) + (D − 1)d5ε

2 Tr (1),
e0 Tr (ΘΘ)(ε) = e0 Tr (Θ0Θ0) + e0ε

2 Tr (1),
e1 Tr (γ̂aΘγ̂aΘ)(ε) = e1 Tr (γ̂aΘ0γ̂aΘ0) + e1(D − 1)ε2 Tr (1),

e4 Tr (Θ(ψ̂ + ψ̂∗))(ε) = e4 Tr (Θ0(ψ̂0 + ψ̂∗0)) + 2e4ε2 Tr (1),

e6 Tr (γ̂aΘγ̂a(ψ̂ + ψ̂∗))(ε) = e6 Tr (γ̂aΘ0γ̂a(ψ̂0 + ψ̂∗0))
+2e6(D − 1)ε2 Tr (1),

where all the O(ε)-terms vanish due to the conditions on the traces shown.
Comparing the order ε2-term in (4.9.10), the relation

[2d0 + d2 + 2(D − 1)d3 + (D − 1)d5 + e0 + (D − 1)e1

+2e4 + 2e6(D − 1)][∂M] =
1
4
(β(D)− 1)[∂M]

is found, which proves the lemma.ut



Thus we have derived enough information to determine the remaining multi-
pliers. Results on the cylindrical manifold, eq. (2.3.33), can be used as a further
check. In that case, A = γ̂a∇a+ ψ̂, where ψ̂ is self-adjoint. Eq. (2.3.33) shows

a3/2(F, P,B) =
1
4

(
D − 1
D − 2

β(D)− 1
)
a1(F,A2).

The coefficient a1(F,A2) is found from eq. (4.9.6), and the relations

2d0 + d2 =
D − 3

8

(
D − 1
D − 2

β(D)− 1
)
,

2d3 + d5 = −1
8

(
D − 1
D − 2

β(D)− 1
)
,

d12 = − 1
48

(
D − 1
D − 2

β(D)− 1
)
,

emerge. In summary, for the non-vanishing coefficients the results are given
in the following table; see also Section 4.10.6:

d 0 = 1
32

(
1− β(D)

D−2

)
d2 = 1

16

(
5− 2D + 7−8D+2D2

D−2 β(D)
)

d3 = 1
32(D−1)

(
2D − 3− 2D2−6D+5

D−2 β(D)
)

d5 = 1
16(D−1)

(
1 + 3−2D

D−2 β(D)
)

d12 = − 1
48 (D−1

D−2β(D)− 1)

d13 = 1
48 (1− 4D−10

D−2 β(D))

d16 = 17+5D
192(D+1) + 23−2D−4D2

48(D−2)(D+1)β(D)

d17 = − 17+7D2

384(D2−1) + 4D3−11D2+5D−1
48(D2−1)(D−2) β(D)

d20 = − 1
8(D−3) (

5D−7
8 − 5D−9

3 β(D))

                      



d21 = D−1
16(D−3) (−1 + 2β(D))

e0 = 1
8(D−2)β(D)

e1 = 1
8(D−1)(D−2)β(D)

This completes the derivation of heat kernel coefficients for different boundary
conditions.

4.10 Summary of the results

For the convenience of the reader, this section summarizes the results on
the heat equation asymptotics derived thus far. The volume contributions, de-
noted by aMn , do not depend on the boundary condition and they are stated
first. Afterwards, we give the boundary contributions for the different bound-
ary conditions considered. These will be denoted by a∂Mn .

4.10.1 Volume contributions

aM0 (F, P ) = (4π)−D/2F [M]
aM1 (F, P ) = (4π)−D/26−1(6FE + FR)[M]
aM2 (F, P ) = (4π)−D/2360−1{F (60∆E + 60RE + 180E2

+30ΩijΩij + 12∆R+ 5R2 − 2RijRij + 2RijklRijkl)[M]

4.10.2 Dirichlet boundary conditions

a∂M1/2 (F, P,B−) = −(4π)−(D−1)/2 1
4
F [∂M]

a∂M1 (F, P,B−) = (4π)−D/26−1(2FK + 3F;m)[∂M]



a∂M3/2 (F, P,B−) = − 1
384(4π)(D−1)/2

(
F
(
96E + 16R− 8Rmm + 7K2

−10KabK
ab
)

+ 30KF;m + 24F;mm

)
[∂M]

a∂M2 (F, P,B−) = (4π)−D/2360−1×[
F (120E;m + 18R;m + 24Ka

:a + 0K ab
ab: + 120EK + 20RK

−4RmmK + 12RambmKab − 4R b
abc K

ac + 40/21K3

−88/7KabK
abK + 320/21KabK

b
cK

ac)
+F;m(180E + 30R+ 0Rmm + 180/7K2 − 60/7KabK

ab)
+24KF;mm + 30(∆F );m] [∂M]

a∂M5/2 (F, P,B−) = −5760−1(4π)−(D−1)/2
{
F
{
360E;mm − 1440E;mS + 720E2

+240E a
:a + 240RE + 120ΩabΩab + 48∆R+ 20R2 − 8RijRij

+8RijklRijkl − 120RmmE − 20RmmR+ 270ΩamΩam
+12R;mm + 24R a

mm:a + 15Rmm;mm − 16RammbRab − 17RmmRmm
−10RammbRa b

mm

}
+F;m {60R;m + 450E;m}+ F;mm {60R− 90Rmm + 360E}+ 45F;mmmm

+F
{
450KE;m + 42KR;m + 0KabRammb;m − 413/16K:bK

b
:

+58Kab:
aKb

: − 11/4Kab:
aKbc

:c + 355/8Kab:cK
ab c

: − 29/4Kab:cK
ac b

:

+6K b
:b K − 30K ab

ab: K − 75/2K a
ab: cK

bc + 285/4K:bcK
bc + 54K a

bc:a Kbc

+105K2E − 150KabK
abE + 105/6K2R− 25KabK

abR

−215/16K2Rmm − 215/8KabK
abRmm + 14KKabR

ab

−49/4KKabRammb + 16KabK
acRbc + 47/2Kb

aK
acRbmmc

+32KabKcdR
acbd − 65/128K4 − 141/32K2KabK

ab

+777/32KabK
abKcdK

cd + 17/2KKabK
bcKa

c − 327/8KabK
bcKcdK

da
}

+F;m {450KE − 255/8KRmm + 75KR
−315/8K b

:b + 45/4K ab
ab: − 30KabR

ab − 465/4KabRammb

+495/32K3 − 1485/16KKabK
ab + 225/2KabK

bcKa
c

}
+F;mm

{
1215/16K2 − 945/8KabK

ab
}

+ 105KF;mmm

}
[∂M]

4.10.3 Robin boundary conditions

a∂M1/2 (F, P,B+) = (4π)−(D−1)/2 1
4
F [∂M]



a∂M1 (F, P,B+) = (4π)−D/26−1(2FK − 3F;m + 12FS)[∂M]

a∂M3/2 (F, P,B+) =
1

384(4π)(D−1)/2

(
F
(
96E + 16R− 8Rmm + 13K2

+2KabK
ab + 96SK+ 192S2

)
+ F;m(−6K − 96S) + 24F;mm

)
[∂M]

a∂M2 (F, P,B+) = (4π)−D/2360−1×[
F (−240E;m − 42R;m + 24Ka

:a + 0K ab
ab: + 120EK + 20RK

−4RmmK + 12RambmKab − 4R b
abc K

ac + 40/3K3 + 8KabK
abK

+32/3KabK
b
cK

ac + 720SE + 120SR+ 0SRmm + 144SK2

+48SKabK
ab + 480S2K + 480S3 + 120Sa:a)

+F;m(−180E − 30R+ 0Rmm − 12K2 − 12KabK
ab − 72SK − 240S2)

+F;mm(24K + 120S)− 30(∆F );m] [∂M]

a∂M5/2 (F, P,B+) = 5760−1(4π)−(D−1)/2{F
{
360E;mm − 1440E;mS + 720E2

+240E a
:a + 240RE + 120ΩabΩab + 48∆R+ 20R2 − 8RijRij

+8RijklRijkl − 120RmmE − 20RmmR+ 480RS2 + 90ΩamΩam
+12R;mm + 24R a

mm:a + 15Rmm;mm − 270R;mS + 120RmmS2

+960SS a
:a + 600S:aS

a
: − 16RammbRab − 17RmmRmm

−10RammbRa b
mm + 2880ES2 + 1440S4

}
+F;m {195/2R;m − 240RS + 90RmmS − 270S a

:a

+ 630E;m − 1440ES − 720S3
}

+F;mm

{
60R− 90Rmm + 360E + 360S2

}
− 180SF;mmm + 45F;mmmm

+F
{
−90KE;m − 111/2KR;m + 30KabRammb;m + 240KS b

:b + 420KabS
ab
:

+390K:bS
b
: + 480Kab:

aSb: + 420K:b
bS + 60Kab:

abS + 487/16K:bK
b
:

+238Kab:
aKb

: + 49/4Kab:
aKbc

:c + 535/8Kab:cK
ab c

: + 151/4Kab:cK
ac b

:

+111K b
:b K − 15K ab

ab: K − 15/2K a
ab: cK

bc + 945/4K:bcK
bc

+114K a
bc:a Kbc + 1440KSE + 30KSRmm + 240KSR− 60KabR

abS

−180KabSRammb + 195K2E + 30KabK
abE + 195/6K2R+ 5KabK

abR

−275/16K2Rmm − 275/8KabK
abRmm − 1KKabR

ab − 109/4KKabRammb

+16KabK
acRbc − 133/2Kb

aK
acRbmmc + 32KabKcdR

acbd + 2160KS3

+1080K2S2 + 360KabK
abS2 + 885/4K3S + 315/2KKabK

abS

+150KabK
bcKa

c S + 2041/128K4 + 417/32K2KabK
ab

+375/32KabK
abKcdK

cd + 25KKabK
bcKa

c + 231/8KabK
bcKcdK

da
}

+F;m

{
−90KE + 165/8KRmm − 15KR− 600KS2



−1215/8K b
:b + 45/4K ab

ab: − 15KabR
ab − 165/4KabRammb − 705/4K2S

+75/2KabK
abS − 459/32K3 − 267/16KKabK

ab + 54KabK
bcKa

c

}
+F;mm

{
30KS + 315/16K2 − 645/8KabK

ab
}

+ 30KF;mmm}[∂M]

4.10.4 Mixed boundary conditions

a∂M1/2 (F, P,B) = 4−1(4π)−(D−1)/2χF [∂M]

a∂M1 (F, P,B) = (4π)−D/26−1(2FK + 3χF;m + 12FS)[∂M]

a3/2(F, P,B) =
1

384(4π)(D−1)/2

{
F
(
96χE + 16χR+ 8χRmm

+(13Π+ − 7Π−)K2+ (2Π+ + 10Π−)KabK
ab

+96SK+ 192S2− 12χ:aχ
a
:

)
−F;m((6Π+ + 30Π−)K + 96S) + 24χF;mm} [∂M]

a2(F, P,B) = (4π)−D/2360−1×
[F ((−240Π+ − 120Π−)E;m + (−42Π+ + 18Π−)R;m + 24Ka

:a

+0K ab
ab: + 120EK + 20RK − 4RmmK + 12RambmKab − 4R b

abc K
ac

+21−1(280Π+ + 40Π−)K3 + 21−1(168Π+ − 264Π−)KabK
abK

+21−1(224Π+ + 320Π−)KabK
b
cK

ac + 720SE + 120SR+ 0SRmm
+144SK2 + 48SKabK

ab + 480S2K + 480S3 + 120Sa:a)− 60χχa: Ωam
−12χa: χ:aK − 24χ:aχ:bK

ab − 120χ:aχ
a
: S) + F;m(−180χE − 30χR

+0Rmm + ((−84Π+ + 180Π−)/7)K2 − (84Π+ + 60Π−)/7KabK
ab

−72SK − 240S2 + 18χ:aχ
a
: )

+F;mm(24K + 120S)− 30χ(∆F );m ] [∂M]

a5/2(F, P,B) = 5760−1(4π)−(D−1)/2 {F {360χE;mm − 1440E;mS

+720χE2 + 240χE a
:a + 240χRE + 48χ∆R+ 20χR2 − 8χRijRij

+8χRijklRijkl − 120χRmmE − 20χRmmR+ 480RS2

+12χR;mm + 24χR a
mm:a + 15χRmm;mm − 270R;mS + 120RmmS2

+960SS a
:a − 16χRammbRab − 17χRmmRmm − 10χRammbRa b

mm

+2880ES2 + 1440S4
}

+F;m {(195/2Π+ − 60Π−)R;m − 240RS + 90RmmS − 270S a
:a

+(630Π+ − 450Π−)E;m − 1440ES − 720S3
}



+F;mm

{
60χR− 90χRmm + 360χE + 360S2

}
−180SF;mmm + 45χF;mmmm

+F {(−90Π+ − 450Π−)KE;m + (−111/2Π+ − 42Π−)KR;m

+30Π+K
abRammb;m + 240KS b

:b + 420KabS
ab
: + 390K:bS

b
:

+480Kab:
aSb: + 420K:b

bS + 60Kab:
abS

+(487/16Π+ + 413/16Π−)K:bK
b
: + (238Π+ − 58Π−)Kab:

aKb
:

+(49/4Π+ + 11/4Π−)Kab:
aKbc

:c + (535/8Π+ − 355/8Π−)Kab:cK
ab c

:

+(151/4Π+ + 29/4Π−)Kab:cK
ac b

: + (111Π+ − 6Π−)K b
:b K

+(−15Π+ + 30Π−)K ab
ab: K + (−15/2Π+ + 75/2Π−)K a

ab: cK
bc

+(945/4Π+ − 285/4Π−)K:bcK
bc + (114Π+ − 54Π−)K a

bc:a Kbc

+1440KSE + 30KSRmm + 240KSR− 60KabR
abS

−180KabSRammb + (195Π+ − 105Π−)K2E

+(30Π+ + 159Π−)KabK
abE + (195/6Π+ − 105/6Π−)K2R

+(5Π+ + 25Π−)KabK
abR+ (−275/16Π+ + 215/16Π−)K2Rmm

+(−275/8Π+ + 215/8Π−)KabK
abRmm + (−Π+ − 14Π−)KKabR

ab

+(−109/4Π+ + 49/4Π−)KKabRammb + (16Π+ − 16Π−)KabK
acRbc

+(−133/2Π+ − 47/2Π−)Kb
aK

acRbmmc + (32Π+ − 32Π−)KabKcdR
acbd

+2160KS3 + 1080K2S2 + 360KabK
abS2 + 885/4K3S

+315/2KKabK
abS + 150KabK

bcKa
c S + (2041/128Π+ + 65/128Π−)K4

+(417/32Π+ + 141/32Π−)K2KabK
ab

+(375/32Π+ − 777/32Π−)KabK
abKcdK

cd

+(25Π+ − 17/2Π−)KKabK
bcKa

c

+(231/8Π+ + 327/8Π−)KabK
bcKcdK

da
}

+F;m {(−90Π+ − 450Π−)KE + (165/8Π+ + 255/8Π−)KRmm
+(−15Π+ − 75Π−)KR− 600KS2 + (−1215/8Π+ + 315/8Π−)K b

:b

+(45/4Π+ − 45/4Π−)K ab
ab: + (−15Π+ + 30Π−)KabR

ab

+(−165/4Π+ + 465/4Π−)KabRammb − 705/4K2S

+75/2KabK
abS + (−459/32Π+ − 495/32Π−)K3

+(−267/16Π+ + 1485/16Π−)KKabK
ab

+(54Π+ − 225/2Π−)KabK
bcKa

c

}
+F;mm

{
30KS + (315/16Π+ − 1215/16Π−)K2

+(−645/8Π+ + 945/8Π−)KabK
ab
}

+ (30Π+ − 105Π−)KF;mmm

+F
(
−180E2 + 180χEχE − 120S:aS

a
: + 720χS:aS

a
: − 105/4ΩabΩab

+120χΩabΩab + 105/4χΩabχΩab − 45ΩamΩam + 180χΩamΩam
−45χΩamχΩam − 360(ΩamχSa: − ΩamSa: χ)− 45χχ:aΩamK



−180χ:aχ:bΩab + 90χχ:aχ:bΩab + 90χχ:aΩam;m + 120χχa: Ω b
ab:

−180χχ:aΩbmKab + 300χ:aE
a
: − 180χ:aχ

a
: E − 90χχ:aχ

a
: E

+240χ a
:a E − 30χ:aχ

a
: R+ 0χ:aχ

a
: Rmm − 60χ:aχ:bR

ab

−30χ:aχ:bR
ab

m m − 675/32χ
a
χa: K

2 − 75/4χ:aχ:bK
acKb

c

−195/16χ:aχ
:aKcdK

cd − 675/8χ:aχ:bK
abK − 330χ:aS

a
: K

−300χ:aS:bK
ab + 15/4χ:aχ

a
: χ:bχ

b
: + 15/8χ:aχ:bχ

a
: χ

b
: − 15/4χ a

:a χ
b

:b

−105/2χ:abχ
ab
: − 15χ:aχ

a
: χ

b
:b − 135/2χ:bχ

ab
:a

)
+F;m

(
210χ:aS

a
: + 165/16χ:aχ

a
: K + 405/8χ:aχ:bK

ab + 135χχ:aΩam
)

−30χ:aχ
a
: F;mm}[∂M]

4.10.5 Oblique boundary conditions

Given the complicated structure of the heat kernel coefficients for these
boundary conditions, we state the general form of them again and list the
results on the “multipliers” afterwards:

a1/2(F, P,B) = (4π)−(D−1)/2(δ̃F )[∂M]

a1(F, P,B) = (4π)−D/26−1 ×{
F (b0K + b2S) + b1F;m + Fσ1KabΓaΓb

}
[∂M]

a3/2(F, P,B) = (4π)−(D−1)/2 1
384

{[
F (c0E + c1R+ c2R

a
mam + c3K

2

+c4KabK
ab + c7SK + c8S

2) + F;m(c5K + c9S) + c6F;mm

]
[∂M]

+
[
F (σ2(KabΓaΓb)2 + σ3KabΓaΓbK + σ4KacK

c
bΓ

aΓb

+λ1KabΓaΓbS + µ1RambmΓaΓb + µ2R
c
acbΓ

aΓb

+ρ1ΩamΓa) + β1F;mKabΓaΓb
]
[∂M]

}
δ̃ =

1
4

(
2√

1 + Γ2
− 1
)

b0 = 2− 6

(
− 1

1 + Γ2
+

ArcTanh(
√
−Γ2)√

−Γ2

)

b1 = 3− 6 ArcTanh(
√
−Γ2)√

−Γ2

b2 =
12

1 + Γ2

σ1 =
6
Γ2

(
− 1

1 + Γ2
+

ArcTanh(
√
−Γ2)√

−Γ2

)



c0 = 96
(
−1 +

2√
1 + Γ2

)
c1 = 16

(
−1 +

2√
1 + Γ2

)
c2 =

8
Γ2

(
12− 12√

1 + Γ2
+ Γ2

(
1− 8√

1 + Γ2

))
c3 =

1
Γ4(1 + Γ2)3/2

[
Γ2
(
240− 224

√
1 + Γ2

)
+Γ4

(
320− 199

√
1 + Γ2

)
+ Γ6

(
64− 7

√
1 + Γ2

)
−32

(
−1 +

√
1 + Γ2

)]
c4 =

2
Γ4

(
Γ4

(
5− 32√

1 + Γ2

)
+ Γ2

(
48− 32√

1 + Γ2

)
+32

(
−1 +

1√
1 + Γ2

))
c5 =

1
Γ4

[
2
(
−
(

Γ2

(
144− 160√

1 + Γ2

))
+ 32

(
−1 +

1√
1 + Γ2

)
+Γ4

(
−15 +

80√
1 + Γ2

))]
c6 =

1
Γ4

[
8
(

32− 32√
1 + Γ2

+ Γ4

(
−3− 8√

1 + Γ2

)
−Γ2

(
−36 +

52√
1 + Γ2

))]
+

32
(
5 Γ4 − 8

(
−1 +

√
1 + Γ2

)
− 4 Γ2

(
−4 + 3

√
1 + Γ2

))
Γ4
√

1 + Γ2

c7 =
192

(
1−

√
1 + Γ2 − Γ2

(
−2 +

√
1 + Γ2

))
Γ2 (1 + Γ2)

3
2

c8 =
192

(1 + Γ2)
3
2

c9 =
−192
Γ2

(
1− 1√

1 + Γ2

)
σ2 =

1

Γ8 (1 + Γ2)
3
2

[
−48

(
−5 Γ6 + 16

(
−1 +

√
1 + Γ2

)
+8Γ2

(
−5 + 4

√
1 + Γ2

)
+ Γ4

(
−30 + 16

√
1 + Γ2

))]
σ3 =

1

Γ6 (1 + Γ2)3/2

[
32
(
−5 Γ6 + 8

(
−1 +

√
1 + Γ2

)
+6Γ4

(
−5 + 3

√
1 + Γ2

)
+ Γ2

(
−30 + 26

√
1 + Γ2

))]



σ4 =
32
(
−Γ4 + 16

(
−1 +

√
1 + Γ2

)
+ 2 Γ2

(
−7 + 3

√
1 + Γ2

))
Γ6
√

1 + Γ2

λ1 =
192

(
−
(
Γ2
(
3− 2

√
1 + Γ2

))
+ 2

(
−1 +

√
1 + Γ2

))
Γ4 (1 + Γ2)

3
2

µ1 =
96
(
2 + Γ2 − 2

√
1 + Γ2

)
Γ4
√

1 + Γ2

µ2 = 0

ρ1 =
192
Γ2

[
1− 1√

1 + Γ2

]
β1 =

−32
(
5 Γ4 − 8

(
−1 +

√
1 + Γ2

)
− 4 Γ2

(
−4 + 3

√
1 + Γ2

))
Γ6
√

1 + Γ2

4.10.6 Spectral boundary conditions

For spectral boundary conditions we proceed as above. We state the general
form of the coefficients and afterwards the multipliers, depending in a rather
complicated way on the dimension D. As in the main text, we will use the
abbreviation

β(D) =
Γ(D/2)√

πΓ((D + 1)/2)
.

The leading coefficients for spectral boundary conditions are:

a1/2(F, P,B) = (4π)−(D−1)/2b1F [∂M]

a1(F, P,B) = (4π)−D/2
[
c0F (ψ̂ + ψ̂∗) + c3FK + c4F;m

]
[∂M]

a3/2(F, P,B) = (4π)−(D−1)/2
[
F (d0[ψ̂ψ̂ + ψ̂∗ψ̂∗] + d2ψ̂

∗ψ̂

+d3[γ̂aψ̂γ̂aψ̂ + γ̂aψ̂∗γ̂aψ̂
∗] + d5γ̂

aψ̂∗γ̂aψ̂ + d12R

+d13Rmm + d16K
abKab + d17K

2) + d20KF;m + d21F;mm

+F (e0ΘΘ + e1γ̂
aΘγ̂aΘ)] [∂M]

b1(D) =
1
4

[β(D)− 1]

c0 = −1
2

c3(D) =
1
3

[
1− 3π

4
β(D)

]
c4(D) =

D − 1
2(D − 2)

[
1−

√
π

2
Γ(D/2)

Γ((D + 1)/2)

]
d0(D) =

1
32

(
1− β(D)

D − 2

)



d2(D) =
1
16

(
5− 2D +

7− 8D + 2D2

D − 2
β(D)

)
d3(D) =

1
32(D − 1)

(
2D − 3− 2D2 − 6D + 5

D − 2
β(D)

)
d5(D) =

1
16(D − 1)

(
1 +

3− 2D
D − 2

β(D)
)

d12(D) = − 1
48

(
D − 1
D − 2

β(D)− 1
)

d13(D) =
1
48

(
1− 4D − 10

D − 2
β(D)

)
d16(D) =

17 + 5D
192(D + 1)

+
23− 2D − 4D2

48(D − 2)(D + 1)
β(D)

d17(D) = − 17 + 7D2

384(D2 − 1)
+

4D3 − 11D2 + 5D − 1
48(D2 − 1)(D − 2)

β(D)

d20(D) = − 1
8(D − 3)

(
5D − 7

8
− 5D − 9

3
β(D)

)
d21(D) =

D − 1
16(D − 3)

(−1 + 2β(D))

e0(D) =
1

8(D − 2)
β(D)

e1(D) =
1

8(D − 1)(D − 2)
β(D)

4.11 Further boundary conditions

In this section we will provide some recently obtained results on time-
dependent boundary conditions, transmittal boundary conditions and on the
so-called Zaremba or N/D-problem. We will essentially only state the known
results on the heat trace asymptotics and refer for details to the appropriate
references.

4.11.1 Time-dependent process

In all our previous considerations we analyzed properties of the fundamental
solution of the heat equation

(∂t + P )uφ(t, x) = 0, B0u = 0, and uφ(0, x) = φ,



where P is a static Laplace-type operator and B0 an operator describing
the static boundary condition. For this situation, the fundamental solution
K : φ → uφ of the heat equation is simply K = e−PB0 t and the short-time
asymptotics of the trace of K has been the subject of the previous sections.

We now want to generalize this setting to the case where P is a time-depend-
ent family of Laplace-type operator and where B defines a time-dependent
boundary condition. The fundamental solution is then not of the above form
e−PBt, but an endomorphism valued kernel K(t, x, x′,P,B) still exists with

uφ(t, x) = (Kφ)(t, x) =
∫
M

dx′K(t, x, x′,P,B)φ(x′).

Define the trace

a(F,P,B)(t) := Tr L2(FK(t))

=
∫
M

dxF (x) Tr V (K(t, x, x,P,B)).

One can extend the analysis of [230] to show that there is a complete asymp-
totic expansion of the form

a(F,P,B)(t) ∼
∞∑

n=0,1/2,1,...

an(F,P,B)tn−D/2. (4.11.1)

As before, the asymptotic coefficients an(F,P,B) decompose into an interior
and a boundary contribution,

an(F,P,B) = aMn (F,P) + a∂Mn (F,P,B).

To state a general form of the coefficients, expand P in a Taylor series expan-
sion in t and write it invariantly in the form

Pu := Pu+
∑
r>0

tr{Gr,iju;ij + Fr,iu;i + Eru},

where P = −(gij∇Vi ∇Vj + E) is the static operator considered before.
In order to give a simultaneous formulation of Dirichlet and Robin boun-

dary conditions, decompose the boundary ∂M = CN ∪ CD into the disjoint
union of closed sets CN and CD; CN or CD may be empty. We then define
the boundary conditions

Bu := u|CD
⊕ (u;m − Su− t(T au;a + S1u))|CN

. (4.11.2)

We included only linear powers of t because higher orders do not enter into the
asymptotic terms we are going to state. The tangential derivatives in (4.11.2)
have been included to ensure that the class of boundary conditions is invari-
ant under the gauge and coordinate transformations employed to determine
an(F,P,B).



For this setting, the following result has been found in [211],

a0(F,P) = a0(F, P ),
a1/2(F,P,B) = a1/2(F, P,B0),

a1(F,P,B) = a1(F, P,B0) + (4π)−D/2
1
6
F

3
2
G1,i

i[M],

a3/2(F,P,B) = a3/2(F, P,B0) + (4π)(1−D)/2 1
384

F (−24G1,a
a)[CD]

+(4π)(1−D)/2 1
384

F (24G1,a
a)[CN ],

a2(F,P,B) = a2(F, P,B0) + (4π)−D/2
1

360
F

[
45
4
G1,i

iG1,j
j

+
45
2
G1,ijG1,

ij + 60G2,i
i − 180E1 + 15G1,i

iR− 30G1,ijR
ij

+90G1,i
iE + 60F1,i;

i + 15Gi,ii;jj − 30G1,ij;
ij
]
[M]

+(4π)−D/2
1

360
{
F
[
30G1,a

aK − 60G1,mmK + 30G1,abK
ab

−30G1,mm;m + 30G1,a
a
;m + 0G1,am;

a + 30F1,m ]
+F;m [45G1,a

a − 45G1,mm] } [CD]

+(4π)−D/2
1

360
{F [30G1,a

aK + 120G1,mmK

−150G1,abK
ab + 60G1,mm;m − 60G1,a

a
;m + 0G1,am;

a

−150F1,m + 180SG1,a
a − 180SG1,mm + 360S1 + 0Ta:a ]

+F;m [−45G1,a
a + 45G1,mm] } [CN ].

4.11.2 Transmittal boundary conditions

Consider the D-dimensional manifold

M := M+ ∪Σ M−,

which is the union of two compact manifolds M± along their common bound-
ary Σ. Assume Σ to be a compact smooth manifold of dimension D − 1. A
possible example is the two-sphere glued together with a two-dimensional disc,
Σ being the circle S1. For this case, the standard Riemannian metric is smooth
when restricted to M±, but only continuous along Σ. This is the setting we
assume in this section.

Let M be endowed with a smooth vector bundle V and let P± be formally
self-adjoint operators of Laplace type on V ± := V |± . The condition that
the metric is continuous imposes that the leading symbols of P± agree on
Σ. Furthermore, let U be an auxiliary self-adjoint endomorphism of V |Σ and
∇± the canonical connections determined by P±. Define the operator P as
P := (P+, P−), which acts on a pair φ := (φ+, φ−) of smooth sections to V ±.



The boundary condition defined by the transmittal operator

BUφ = {φ+|Σ − φ−|Σ} ⊕ {(∇+
m+φ

+)|Σ + (∇−m−φ
−)|Σ + Uφ+|Σ},

with m± the outward unit normals of Σ ⊂M±, makes P a self-adjoint oper-
ator. Let

ωa := ∇+
a −∇−a

be the difference of the two connections. Under the assumption that the stan-
dard small-t expansion applies and is the sum of the interior contributions of
M+ and M− plus extra “boundary” contributions,

an(F, P,BU ) = a+
n (F, P ) + a−n (F, P ) + aΣ

n (F, P,BU ),

the following leading coefficients have been determined in [212],

aΣ
0 (F, P,BU ) = 0,

aΣ
1/2(F, P,BU ) = 0,

aΣ
1 (F, P,BU ) = (4π)−D/2

1
6
{
2F
(
K+ +K−)− 6FU

}
[Σ],

aΣ
3/2(F, P,BU ) = (4π)(1−D)/2 1

384

{
3
2
F
(
K+K+ +K−K− + 2K+K−)

+3F
(
K+

abK
+ab +K−

abK
−ab + 2K+

abK
−ab)

−9(K+ +K−)(F+
;m+ + F−;m−)

+48FU2 + 24Fωaωa − 24F (K+ +K−)U
+24(F+

;m+ + F−;m−)U } [Σ],

aΣ
2 (F, P,BU ) = (4π)−D/2

1
360

(A1 +A2 +A3) [Σ],

where

A1 = 30(E+ − E−)(F+
;m+ − F−;m−) + 5(R+ −R−)(F+

;m+ − F−;m−)

+2(Rm+m+ −Rm−m−)(F+
;m+ − F−;m−)

−F (K+
ab −K−

ab)(K+ab −K−ab)(K+ +K−)
−F (K+

ab +K−
ab)(K+ab −K−ab)(K+ −K−)

+2(K+
ab −K−

ab)(K+b
c −K−b

c)(K+ca −K−ca)
+5(K+ −K−)(K+ +K−)(F+

;m+ − F−;m−)

+(K+
ab −K−

ab)(K+ab +K−ab)(F+
;m+ − F−;m−)

−2(R+
abc

b −R−abc
b)(K+ac −K−ac)− 18ωaωa(F+

;m+ + F−;m−)

+12Fωaωa(K+ +K−) + 24Fωaωb(K+
ab +K−

ab),
A2 = −60F (E;m+ + E;m−)− 12F (R;m+ +R;m−)

+60Fωa(Ωam+ − Ωam−)



+
40
21
F (K+ +K−)(K+ +K−)(K+ +K−)

−4
7
F (K+

ab +K−
ab)(K+ab +K−ab)(K+ +K−)

+
68
21
F (K+

ab +K−
ab)(K

+b
c +K−b

c)(K+ca +K−ca)

+
12
7

(K+ +K−)(K+ +K−)(F+
;m+ + F−;m−)

−18
7

(K+
ab +K−

ab)(K+ab +K−ab)(F+
;m+ + F−;m−)

+24F (K+
:b
b +K−

:b
b) + 60F (E+ + E−)(K+ +K−)

+10F (R+ +R−)(K+ +K−)
−2F (Rm+m+ +Rm−m−)(K+ +K−)
+6F (Ram+bm+ +Ram−bm−)(K+ab +K−ab)
−2F (R+

abc
b +R−abc

b)(K+ac +K−ac)
+12(K+ +K−)(F;m+m+ + F;m−m−),

A3 = −60FU3 − 30FU(R+ +R−)− 180FU(E+ + E−)
−60FU:a

a − 15U(K+ −K−)(F+
;m+ − F−;m−)

+9U(K+ +K−)(F+
;m+ + F−;m−)− 18FU(K+ +K−)(K+ +K−)

−6FU(K+
ab +K−

ab)(K+ab +K−ab)− 30U(F;m+m+ + F;m−m−)
−30U2(F+

;m+ + F−;m−) + 60FU2(K+ +K−)− 60FUωaωa .

4.11.3 Zaremba or N/D problem

As a final example let us discuss the spectral problem, where the field sat-
isfies Dirichlet conditions on one part of the boundary of the relevant domain
and Neumann (or Robin) on the remainder. A solid ball floating in icewater is
a realization of this situation. The part of the boundary of the ball which is in
air satisfies Neumann conditions and the part underwater satisfies Dirichlet
conditions. The complementary domains, here the spherical caps, intersect in
a circle of latitude.

In the notation of Section 4.11.1, the boundary operator is

Bu := u |CD
⊕ (u;m − Su)|CN

,

but where now CD ∩ CN =: Σ is a non-empty smooth submanifold of ∂M of
dimension D − 2.

It is natural to conjecture that the heat trace a(F, P,B) as t→ 0 has again
the asymptotic expansion (4.11.1), and that the coefficients consist of volume
contributions, boundary contributions and contributions from the non-empty

                      



intersection Σ,

an(P,B) =
∫
M

dx an(x, P )

+
∫
CN

dy a+
n (y, P,B) +

∫
CD

dy a−n (y, P,B)

+
∫
Σ

dz aΣ
n (z, P,B). (4.11.3)

For the coefficients a0, ..., a5/2, the first three terms are known from the anal-
ysis in Section 4.4. The new integrand aΣ

n is built up of universal polynomials
which are homogeneous of degree 2n− 2; see, e.g., [146]. This shows that

aΣ
0 = 0, aΣ

1/2 = 0 aΣ
1 = c0dim(V ).

Recent calculations of Avramidi [18] and Dowker [133] suggest that

c0 = −π
4

(4π)−D/2.

However, the analysis in [146] showed that the above ansatz (4.11.3) in general
does not hold.

                      



4.12 Concluding remarks

In this chapter we have shown that the conglomerate of different methods is
very effective for determining the heat equation asymptotics for a large variety
of boundary conditions. Although we already have provided many examples,
our list is by no means exhaustive and physics easily provides further boundary
conditions for which the asymptotics is not yet known. This idea is further
elaborated in the Conclusions.

The fact that the (leading terms in the) heat equation asymptotics can
be represented by local quantities only is reflected in the fact that in special
case calculations only asymptotic terms are needed for its determination. The
determinant and the Casimir energy are non-local quantities, which consid-
erably complicates the analysis needed in the special case. This observation
becomes explicit in Chapters 6 and 7.

                      



Chapter 5

Heat content asymptotics

5.0 Introduction

In this chapter we briefly summarize some of the results on the heat content
asymptotics. As for the heat equation asymptotics, the results provided are
valid on compact smooth Riemannian manifolds with smooth boundary. In
contrast to the heat equation asymptotics, the heat content asymptotics is
not known for oblique, spectral and transmittal boundary conditions and we
restrict ourselves mainly to Dirichlet and Robin boundary conditions. The
Concluding remarks contain references to further boundary conditions and
results on non-smooth manifolds.

We start by defining the heat content asymptotics as opposed to the heat
equation asymptotics. As before, let M be a Riemannian manifold of dimen-
sion D and let f1 ∈ C∞(M) represent the initial temperature distribution of
M. The temperature h(x, t) for t > 0 is given as the unique solution of

∂

∂t
h(x, t) = ∆h(x, t),

Bh(x, t) = 0,
lim
t→0

h(x, t) = f1(x),

with ∆ the scalar Laplacian on M and where the operator B defines the
boundary condition, either Dirichlet or Robin, see eq. (4.2.2). The total amount
of heat is then given by

β(f1, 1,−∆,B)(t) =
∫
M

dx h(x, t) (5.0.1)

and one question is how the heat content behaves asymptotically as t→ 0. It
is the aim of the present chapter to provide some of the pertinent results.

Apart from reviewing results of [403, 404, 124], we will present heat content
calculations on the generalized cone. On the one hand, this places restrictions
on the general form of the heat content, but in addition it provides possibili-
ties by which the influence of conical singularities in curved manifolds might
be studied.



5.1 General form of the heat content coefficients

To study the asymptotic behavior of the heat content, various general-
izations to eq. (5.0.1) have been considered in order to take full advantage
of certain functorial properties [404, 403, 124]. Instead of dealing with the
Laplacian only, we consider the operator P as in (4.1.1),

P = −gij∇Vi ∇Vj − E. (5.1.1)

Furthermore, we introduce an auxiliary smooth test function f2(x) and we
denote the pairing between V and its dual V ∗ by < ·, · >. In this notation,
we study

β(f1, f2, P,B)(t) =
∫
M

dx < h(x, t), f2(x) > .

In ref. [404] the existence of an asymptotic series of the type

β(f1, f2, P,B)(t) =
∞∑
n=0

βn(f1, f2, P,B)tn/2,

has been established. The proof proceeds similar to the construction in Section
2.3; see [404, 230]. As for the heat equation asymptotics, the contributions to
βn(f1, f2, P,B) split into a volume and a boundary part,

βn(f1, f2, P,B) =
∫
M

dx βintn (f1, f2, P )

+
∫
∂M

dy βbdn (f1, f2, P,B). (5.1.2)

The strategy for the determination of the leading coefficients is much the
same as for the heat equation asymptotics. As repeatedly shown in Chapter
4, we first fix the general form of the coefficients and then determine unknown
numerical multipliers using a product formula, functorial properties and the
calculations on the generalized cone.

The general form of the coefficients is considerably simplified by the follow-
ing observations [404, 124].

Lemma: (a) If Bf1 = 0, then

βn(f1, f2, P,B) = − 2
n
βn−2(Pf1, f2, P,B). (5.1.3)

(b) We have

βn(f1, f2, P,B) = βn(f2, f1, P,B). (5.1.4)

                      



Proof: Let {φl, λl} be a spectral resolution of (P,B) and

γl(f) =
∫
M

dx < f(x), φl(x) >

the Fourier component of f . In this notation, the evolution of f is described
by

e−tP f = e−tP
∑
l

γl(f)φl(x)

=
∑
l

γl(f)φl(x)e−tλl ,

and the heat content

β(f1, f2, P,B) =
∫
M

dx < e−tP f1(x), f2(x) >

=
∑
l

γl(f1)γl(f2)e−tλl

follows. To show part (a) of the lemma, we study

γl(Pf1) =
∫
M

dx < Pf1(x), φl(x) >

=
∫
M

dx < f1(x), Pφl(x) >= λlγl(f1),

where Bf1 = 0 is crucial to avoid the appearance of boundary terms. From
here it follows that

β(Pf1, f2, P,B) = − ∂

∂t
β(f1, f2, P,B)

and computing the asymptotics of both sides shows relation (a).
In order to show part (b), assume the fi are smooth and vanish near the

boundary. Integration by parts then shows

β(f1, f2, P,B) =
∫
M

dx < e−tP f1(x), f2(x) >

=
∫
M

dx < f1(x), e−tP f2(x) >

= β(f2, f1, P,B).

Since β extends continuously to L2, β is symmetric for arbitrary fi and the
lemma follows. ut

Part (a), eq. (5.1.3), of the lemma already fully determines all interior in-
variants [124]. These do not depend on the boundary conditions imposed and



we assume ∂M = ∅. Clearly

β0(f1, f2, P ) =
∫
M

dx < f1(x), f2(x) >, β−1(f1, f2, P ) = 0.

For k ∈ IN0 we may conclude by induction

β2k+1(f1, f2, P ) = 0,

β2k(f1, f2, P ) = =
(−1)k

k!

∫
M

dx < P kf1(x), f2(x) > .

The local formula βintn (f1, f2, P ) is not completely determined by (5.1.2) be-
cause integrations by parts are possible. We use this freedom to write more
symmetrically

βint4n (f1, f2, P ) =
1

(2n)!
< Pnf1(x), Pnf2(x) >,

βint4n+2(f1, f2, P ) = − 1
(2n+ 1)!

< Pn+1f1(x), Pnf2(x) > .

Next we study the boundary terms.

5.2 Dirichlet boundary conditions

The leading boundary contribution is of the type

βbd1 (f1, f2, P,B−) = 2π−1/2

∫
∂M

dy c1 < f1(y), f2(y) > . (5.2.1)

The coefficient βbd2 (f1, f2, P,B−) is built from the invariants

K < f1, f2 >, < f1;m, f2 >, < f1, f2;m > .

Eq. (5.2.3) shows for B−f1 = 0,

β2(f1, f2, P,B−) = −β0(Pf1, f2, P,B−) = −
∫
M

dx < Pf1(x), f2(x) >,

which excludes the invariant < f1;m, f2 >. So the ansatz is

β2(f1, f2, P,B−) = −
∫
M

dx < Pf1(x), f2(x) >

+
∫
∂M

dy [c2K < f1(y), f2(y) > +c̃3 < f1(y), f2;m(y) >] .



This is simplified further by (5.1.4), which says in the present context

0 = −
∫
M

dx [< Pf1(x), f2(x) > − < f1(x), Pf2(x) >]

+
∫
∂M

dy c̃3 [< f1(y), f2;m(y) > − < f1;m(y), f2(y) >]

=
∫
∂M

dy [< f1(y), f2;m(y) > − < f1;m(y), f2(y) >] (c̃3 − 1),

and so c̃3 = 1. Thus, the starting point for β2(f1, f2, P,B−) is

β2(f1, f2, P,B−) = −
∫
M

dx < Pf1(x), f2(x) > (5.2.2)

+
∫
∂M

dy [c2K < f1(y), f2(y) > + < f1(y), f2;m(y) >] .

As a final example consider β3(f1, f2, P,B−) with the following building blocks,

β3(f1, f2, P,B−) = 2π−1/2

∫
∂M

dy
[
d̃1 < f1;mm(y), f2(y) >

+d̃2 < f1(y), f2;mm(y) > +d̃3 < f1:a(y), f2:a(y) > +d̃4 < Ef1(y), f2(y) >

+d̃5R < f1(y), f2(y) > +d̃6 < f1;m(y), f2;m(y) >

+d̃7K < f1;m(y), f2(y) > +d̃8K < f1(y), f2;m(y) >

+ < f1(y), f2(y) >
(
d̃9K

2 + d̃10KabK
ab + d̃11R

a
mam

)]
. (5.2.3)

The appearance is again simplified using the results (5.1.3) and (5.1.4). From
(5.1.3), for B−f1 = 0,

β3(f1, f2, P,B−) = −2
3
β1(Pf1, f2, P,B−)

= 2π−1/2

(
−2

3

) ∫
∂M

dy c1 < Pf1(y), f2(y) > .

This has to be decomposed into the invariants of eq. (5.2.3),

Pf1 = −f1;jj − E = −f1;mm − f1;a
a − E

= −f1;mm − f1:a
a −Kf1;m − E,

to obtain

d̃1 =
2
3
c1, d̃6 = 0, d̃7 =

2
3
c1.

Note that no further information is obtained because f1 |∂M = 0.



From the symmetry (5.1.4) we easily derive the relationships

d̃1 = d̃2, d̃7 = d̃8,

so that we express β3(f1, f2, P,B−) in the form

β3(f1, f2, P,B−) = 2π−1/2

∫
∂M

dy

[
2
3
c1 < f1;mm(y), f2(y) >

+
2
3
c1 < f1(y), f2;mm(y) > +c3 < f1:a(y), f2:a(y) >

+c4 < Ef1(y), f2(y) > +c5R < f1(y), f2(y) >

+
2
3
c1K < f1;m(y), f2(y) > +

2
3
c1K < f1(y), f2;m(y) >

+ < f1(y), f2(y) >
(
c6K

2 + c7KabK
ab + c8R

a
mam

)]
. (5.2.4)

This is as far as we will go to explain the procedure. Results for β4 and β5

may be stated similarly [403, 405].
The independence of the numerical multipliers ci, i = 1, ..., 8, of the dimen-

sion D is shown with the help of a product formula analogous to eq. (4.2.12).
The situation we consider is identical to the one considered there, namely we
assume M = M1 ×M2 with ∂M2 = ∅, P = P1 ⊗ 1 + 1⊗ P2. Furthermore,
we assume the separation fi(x) = gi(x1) ⊗ hi(x2) for the auxiliary smooth
test functions. Proceeding as for the proof of (4.2.12), it is straightforward to
obtain [403]

βn(f1, f2, P,B−) =
∑

p+q=n

βp(g1, g2, P1,B−)βq(h1, h2, P2).

With the choice (M2, P2) = (S1,−∂2
θ ) the multipliers ci follow as independent

of D.

5.3 Robin boundary conditions

Applied to Robin boundary conditions, eq. (5.1.3) turns out to be very
restrictive because the boundary condition involves a normal derivative. Ar-
guing as for Dirichlet boundary conditions, the following form for the heat
content coefficients is found:

β1(f1, f2, P,B+) = 0,

β2(f1, f2, P,B+) = −
∫
M

dx < Pf1(x), f2(x) >



−
∫
∂M

dy < B+f1(y), f2(y) >,

β3(f1, f2, P,B+) = 2π−1/2

∫
∂M

dy ε1 < B+f1(y),B+f2(y) > . (5.3.1)

As for Dirichlet, we can show ε1 does not depend on the dimension D.
For results up to β6 see [403].
We proceed with the determination of the unknown multipliers in the spirit

of Chapter 4.

5.4 Heat content asymptotics on the generalized cone

Similar to what we have done for the heat equation asymptotics, we will
analyze the zeta function associated with the heat content,

ζ(s, f1, f2, P,B∓) =
∑
l

γl(f1)γl(f2)λ−sl . (5.4.1)

The connection with the heat content asymptotics is provided by the relations

β2k(f1, f2, P,B∓) =
(−1)k

k!
ζ(−k, f1, f2, P,B∓), (5.4.2)

β2k+1(f1, f2, P,B∓) = Γ(−k − 1/2) Res ζ(−k − 1/2, f1, f2, P,B∓)

= (−1)k+1π Res ζ(−k − 1/2, f1, f2, P,B∓)
Γ(k + 3/2)

, (5.4.3)

which are shown in the same way as (2.2.17) and (2.2.18). We consider the
special case of a generalized cone, the geometry of which has already been
described in detail in Section 3.2, and we choose E = −m2. In this geometry,
a natural test function fi has the form

fi(x) = Ri(r)ϕi(Ω), i = 1, 2.

In an explicit calculation, great simplifications occur if ϕi(Ω) is a harmonic
on N with eigenvalue λ2; see eq. (3.2.3). Proceeding with Dirichlet boundary
conditions, under these circumstances the sum over all eigenvalues λl in (5.4.1)
reduces to the sum over the zeroes of Jν(ω) only, ν2 = λ2 + (d − 1)2/4. For
this choice of test functions, in analogy with eq. (4.3.17), we find

ζ(s) =
∫
γ

dk

2πi
(k2 +m2)−sI1I2

∂

∂k
lnJν(k) , (5.4.4)

                      



with the “normalization” integrals

Ii =

1∫
0

dr rD/2J̄ν(kr)Ri(r). (5.4.5)

As already stated just following eq. (4.3.17), J̄ν(kr) =
√

2Jν(kr)/J ′ν(k). In
the notation of (5.4.4), we have omitted the dependence of ζ(s) on the test
function because it will always be clear which test function we are talking
about.

We consider first the simplest case, namely Ri(r) = 1. Furthermore, we
consider the ball where ν = L+D/2− 1 and we start with L = 0, such that
ν = D/2 − 1. This case has already been dealt with in [404] and it serves
merely to explain the main ideas of our approach which easily allows for the
generalizations described later. For the integrals Ii we find [220]

Ii =

1∫
0

dr rD/2Jν(kr) =
1
k
Jν+1(k).

As a result

ζ(s) = 2
∫
γ

dk

2πi
(k2 +m2)−s

k2

J2
ν+1(k)

J ′ν(k)Jν(k)
.

Using the recursion relation [220]

Jν+1(k) =
ν

k
Jν(k)− J ′ν(k),

this can be rewritten in the form

J2
ν+1(k)

J ′ν(k)Jν(k)
=
ν2

k2

Jν(k)
J ′ν(k)

+
J ′ν(k)
Jν(k)

− 2ν
k
.

Given the contour encloses only the zeroes of the Bessel function Jν(k), and
knowing these are simple zeroes [220], only the second term contributes to
ζ(s) and so

ζ(s) = 2
∫
γ

dk

2πi
(k2 +m2)−s

k2

∂

∂k
lnJν(k).

Deforming the contour towards the imaginary axis we arrive at

ζ(s) = −2
sinπs
π

∞∫
m

(k2 −m2)−s

k2

∂

∂k
ln Iν(k) (5.4.6)

+2
∫
γε

dk

2πi
(k2 +m2)−s

k2

∂

∂k
lnJν(k),



where γε is a half-circle of radius ε > 0 around k = 0, γε = {εeit, t ∈
[π/2,−π/2]}. Consider the contribution from the second term first and call it
ζε(s). Given the expression has to be independent of ε we take ε→ 0. In that
limit the small k-expansion of the argument is needed. For the Bessel function
we have [220]

Jν(k) =
(
k

2

)ν 1
Γ(ν + 1)

∞∑
l=0

(−1)l
Γ(ν + 1)

l!Γ(ν + l + 1)

(
k

2

)2l

.

For later use we define the coefficients gl through the expansion

lnJν(k) = ν ln k − ln[2νΓ(ν + 1)] +
∞∑
l=1

glk
2l.

Here we need only g1 = −1/(2D) and find

(k2 +m2)−s

k2

∂

∂k
lnJν(k) =

m−2s

(
D − 2
2k3

− 1
k

[
1
D

+
D − 2
2m2

s

]
+O(k)

)
,

where ν = D/2− 1 has been put. Given this expansion, we easily find

ζε(s) = m−2s

[
1
D

+
D − 2
2m2

s

]
.

We continue with the contribution along the imaginary axis and use ζi(s) as
a notation. The meromorphic structure of ζi(s) is determined by the large k
behavior of the argument. In this range the relevant expansion of the Bessel
function is [220]

Iν(k) ∼
ek√
2πk

∞∑
l=0

(−1)l

(2k)l
Γ(ν + 1/2 + l)
l!Γ(ν + 1/2− l)

and so

ln Iν(k) ∼ k − 1
2

ln(2πk) +
∞∑
j=1

hjk
−j , (5.4.7)

whereby the hj are defined. Due to the prefactor sinπs in the first term
of (5.4.6), this asymptotic behavior also determines completely the function
values at −l, l ∈ IN0. Given the above comments, the part of ζi(s) which is
relevant for the heat content asymptotics is described by

ζi(s) = − 1
Γ(s)

{
2√
π

Γ(s+ 1/2)m−2s−1 − 1
2
m−2s−2Γ(s+ 1)

−
∞∑
j=1

jhjm
−2s−2−j Γ(s+ 1 + j/2)

Γ(2 + j/2)

+ (irr.).



Adding up ζε(s) and ζi(s), the relevant part of the full zeta function is ob-
tained. Residues and function values are then easily evaluated and the parts
independent of m are

ζ(0) =
1
D
, Res ζ(−1/2) = − 1

π
, ζ(−1) = −D − 1

2
,

Res ζ(−k − 1/2) =
(2k − 1)h2k−1

Γ(−k − 1/2)Γ(k + 3/2)
, k ∈ IN,

ζ(−k) = (−1)k2(k − 1)h2k−2, k − 1 ∈ IN.

With eqs. (5.4.2) and (5.4.3) this is easily transformed to the values for the
heat content coefficients. Using the above formulas, many arbitrary coefficients
can be calculated by the use of a simple computer program. Comparing the
results with the general forms, eqs. (5.2.1), (5.2.2) and (5.2.3), we find

c1 = −1, c2 =
1
2
, c6 = − 1

12
, c7 =

1
6
.

Let us next consider the complications occurring due to choosing non-trivial
initial temperature and test functions. So we assume now the tangential part
describes a state of angular momentum L ∈ IN0 and the radial part is a poly-
nomial in r, R1(r) = rb and R2(r) = rc, b, c ∈ IN0. Under these circumstances
the relevant normalization integrals are slightly more complicated [220],

1∫
0

dr rµJν(kr) =
2µΓ

(
ν+µ+1

2

)
kµ+1Γ

(
ν−µ+1

2

) (5.4.8)

+k−µ {(µ+ ν − 1)Jν(k)Sµ−1,ν−1(k)− Jν−1(k)Sµ,ν(k)} ,
with the Lommel functions Sµ,ν(k). The indices in our case are µ = D/2 + b,
respectively, µ = D/2+c and ν = L+D/2−1 as already defined. A simplifying
observation is that for (ν − µ + 1)/2 = −l, l ∈ IN0, the first term vanishes.
For that reason we assume b−L and c−L positive even integers. In addition,
this choice has the advantage that the Lommel functions are represented by
a finite sum only [175]. In detail we have for µ + ν or µ − ν an odd integer,
2n− 1 say,

Sµ,ν(k) = kµ−1
n∑
l=0

(−1)lk−2l ×

l∏
i=1

[µ− (2i− 1)− ν] [µ− (2i− 1) + ν] .

The k → 0 as well as the k → ∞ behavior is clearly seen and the steps de-
scribed previously can be followed again. The results obtained for the range
b − L and c − L even will be valid also outside this range by remembering
that the heat content coefficients can be expressed invariantly [404, 124]. This
justifies performing the explicit calculation for parameters that are most con-
venient.



Keeping all this in mind and, furthermore, that only terms with poles within
the contour have to be kept, further simplifications are possible. First we can
neglect the second term in (5.4.8). Rewriting the third term using [220]

Jν−1(k) = J ′ν(k) +
ν

k
Jν(k),

we can again neglect the second term. For the zeta function we end up with

ζ(s) = 2
∫
γ

dk

2πi
(k2 +m2)−s

[
∂

∂k
Jν(k)

]
×

1
kD+b+c

SD/2+b,ν(k)SD/2+c,ν(k). (5.4.9)

We have seen previously that the decisive information for the heat content
asymptotics is encoded in the k → 0 and k → ∞ behavior of the integrand.
For that reason we define coefficients µl by

k−D−b−cSD/2+b,ν(k)SD/2+c,ν(k) =
(b−L)/2∑
l=0

(−1)lk−2l
l∏
i=1

(L+D + b− 2i)(b+ 2− L− 2i)

×


(c−L)/2∑
j=0

(−1)jk−2j

j∏
t=1

(L+D + c− 2t)(c+ 2− L− 2t)


=

(b+c)/2−L∑
l=0

µlk
−2l.

In doing so, the basic ingredients of ζ(s) are integrals of the type

I(s; j) =
∫
γ

dk

2πi
(k2 +m2)−s

k2j

∂

∂k
lnJν(k)

and in detail we have

ζ(s) = 2
(b+c)/2−L∑

l=0

µlI(s; l + 1). (5.4.10)

The remaining task is to understand the analytical structure of I(s; j). There
will be again the contributions from the small ε-circle and from the contour
along the imaginary axis. The contribution Iε(s) is determined by the small-k
expansion (

1 +
k2

m2

)−s
∂

∂k
lnJν(k) =

∞∑
j=0

αjk
2j−1



and reads

Iε(s; j) = −1
2
αjm

−2s.

Taking into account the structure of αj ,

αj =
j∑
l=0

δj,lm
−2l,

for the relevant m independent function values we find

Iε(−n; j) = −1
2
δj,n.

The contribution

Ii(s; j) = (−1)j
sinπs
π

∞∫
m

dk
(k2 −m2)−s

k2j

∂

∂k
ln Iν(k)

is dealt with the help of eq. (5.4.7) again. Performing the k-integrals we arrive
at

Ii(s; j) =
(−1)j

2Γ(s)

{
m−2j−2s+1 Γ(j + s− 1/2)

Γ(j + 1/2)
− 1

2
m−2j−2sΓ(j + s)

Γ(j + 1)

−
∞∑
l=1

m−2j−2s−llhl
Γ(j + l/2 + s)
Γ(j + l/2 + 1)

}
+ (irr.).

This allows all function values and residues to be read off. In detail,

Ii(−j; j) = −1
4
, Res Ii(1/2− j; j) =

1
2π
,

Ii(−j − l/2; j) = (−1)l/2+1 lhl
2

for l odd,

Res Ii(−j − l/2; j) = (−1)(l−1)/2 lhl
2π

for l even.

As a result, all relevant properties of the zeta function are known due to
(5.4.10). Again, explicit results for given values of b, c and L are easily and
rapidly obtained via the use of an algebraic computer program.

Apart from various checks, this smeared special case calculation allows us
to obtain the information

c3 = 1.

The remaining “unknowns” are c4, c5 and c8. Applying the product formula
to M = [0, π] × M2, where ∂M2 = ∅, fi = fi(x2), P = −∂2

x + P2, and
E = E(x2), we find [404]

c4 = −1, c5 = 0.

The remaining multiplier c8 is determined with the example of the hemisphere.
We need only one more relation and consider D = 2. The metric of the



hemisphere is

ds2 = dθ2 + sin2 θdϕ2,

where 0 ≤ θ ≤ π/2, ϕ ∈ [0, 2π]. The variable θ plays the role of the nor-
mal coordinate and ∂/∂θ is the exterior normal derivative. In order that the
multiplier c8 appears in the final answer, we need test functions that do not
vanish at the boundary, e.g., f1 = f2 = 1. With P minus the Laplacian on
the hemisphere,

P = −
(

1
sin2 θ

∂2

∂ϕ2
+

1
sin θ

∂

∂θ
sin θ

∂

∂θ

)
,

the heat content coefficient β3, eq. (5.3.4), is simply

β3(1, 1,−∆,B−) = 2π−1/2

2π∫
0

dϕ c8 R
ϕ
mϕm

= 2π−1/2 2π c8.

On the other hand, separation of variables shows

e−t(−∆)f1(θ) = e−tDf1(θ),

where

D = − 1
sin θ

∂

∂θ
sin θ

∂

∂θ
= − ∂2

∂θ2
− cot θ

∂

∂θ
.

Writing D invariantly as in (5.1.1), see eqs. (4.2.18) and (4.2.19), we see that
the associated quantities are

ωθ = (1/2) cot θ, E =
1

2 sin2 θ
− 1

4
cot2 θ.

So for the heat content,

β(1, 1,−∆,B−) =
∫
M

dx < e−t(−∆)f1(θ), f2(θ) >

= 2π

π/2∫
0

dθ sin θ < e−tDf1(θ), f2(θ) >

= 2π

π/2∫
0

dθ < e−tDf1(θ), sin θf2(θ) >,

we can write, using (5.2.4), the asymptotics alternatively as

β3(1, 1,−∆,B−) = 2π−1/2

2π∫
0

dϕ

{
2
3
c1(sin θ);θθ + c4

1
2 sin θ

} ∣∣
θ=π/2



= 2π−1/2 2π
(
−2

3
c1 +

1
2
c4

)
= 2π−1/2 2π

(
1
6

)
,

and read off c8 = 1/6.
A similar procedure can be applied to more general situations [404], but the

two-dimensional hemisphere is all we actually need in the present context.
Going back to the generalized cone, let us briefly comment on the case where

a general base N is considered. The index ν of the Bessel function is then, in
general, no integer or half-integer. This has no influence on the starting point
(5.4.4) of the analysis. However, in order that the simplifications described
just following eq. (5.4.8) persist, the test functions f1 and f2 will, in general,
not be smooth. In detail, we need b − ν + D/2 − 1 = even, respectively,
c− ν +D/2− 1 = even, such that b and c in general will not be integers and
Ri 6∈ C∞(I).

The ideas presented are easily generalized to Robin boundary conditions.
For these cases we will also provide results which allow in principle for the
calculation of an arbitrary number of heat content coefficients. Because we
have been very explicit in the description of calculational details for Dirichlet
boundary conditions, we will now be brief in our description of details for
Robin boundary conditions.

The eigenvalues for Robin boundary conditions are determined through

uJν(k) + kJ ′ν(k) = 0,

where u is related to the boundary endomorphism S via u = 1 − D/2 − S,
assumed constant here. The analogue of eq. (5.4.4) is thus

ζ(s) =
∫
γ

dk

2πi
(k2 +m2)−sI1I2

∂

∂k
ln [uJν(k) + kJ ′ν(k)] .

The radial integrals Ii are defined as in eq. (5.4.5), but now, see eq. (4.3.28),

J̄ν(kr) =
√

2 k
(u2 + k2 − ν2)1/2

Jν(kr)
Jν(k)

.

The r-integrals are identical to the previous case; see (5.4.8). This time a
suitable manipulation is

Jν−1(k) = J ′ν(k) +
ν

k
Jν(k) =

1
k

(kJ ′ν(k) + uJν(k) + (ν − u)Jν(k)) ,

which allows us to neglect the first two terms (defining the eigenvalues) for
reasons described. So in complete analogy with eq. (5.4.9) we now have

ζ(s) = 2
∫
γ

dk

2πi
(k2 +m2)−sk2

u2 + k2 − ν2

{
∂

∂k
ln [uJν(k) + kJ ′ν(k)]

}
k−D−b−c ×



{
(L+D + b− 2)SD/2+b−1,ν−1(k)−

ν − u

k
SD/2+b,ν(k)

}
×{

(L+D + c− 2)SD/2+c−1,ν−1(k)−
ν − u

k
SD/2+c,ν(k)

}
.

Following the procedure for Dirichlet boundary conditions, we arrive at a
formulation completely analogous to eq. (5.4.10),

ζ(s) = 2
(b+c)/2−L∑

l=0

µlI(s; l + 1),

where the µl have been defined by the large-k expansion of k−D−b−c times the
last two lines above and where due to the different normalization the relevant
integrals for Robin boundary conditions read

I(s; j) =
∫
γ

dk

2πi
(k2 +m2)−s

(u2 + k2 − ν2)k2j

∂

∂k
ln [uJν(k) + kJ ′ν(k)] .

Note the additional factor in the denominator. Due to this factor, when
shifting the contour to the imaginary axis, we cross poles located at k =
(ν2 − u2)1/2. In addition to Iε(s; j) and Ii(s; j), this produces the additional
term, see the discussion following eq. (4.3.31),

Ia(s; j) = −
[
(ν2 − u2) +m2

]−s
2(ν2 − u2)j+1/2

∂

∂k
ln [uJν(k) + kJ ′ν(k)] |k=(ν2−u2)1/2 .

At first glance this seems very unpleasant because function values and deriva-
tives of the Bessel function apparently enter. However, a calculation shows
everything fits nicely together. Indeed, we have shown already, see eq. (4.3.36),

∂

∂k
ln [uJν(k) + kJ ′ν(k)] =

u√
ν2 − u2)

.

So

Ia(s; j) = −
[
(ν2 − u2) +m2

]−s
2(ν2 − u2)j+1

and

Ia(−n; j) = −u
2
(ν2 − u2)n−j−1.

The calculation of Iε and Ii proceeds exactly as before. The small-k expansion
of (

1 + k2

M2

)−s
(
1 + k2

u2−ν2

) ∂

∂k
ln [uJν(k) + kJ ′ν(k)] =

∞∑
j=0

αjk
2j−1



and the large-k behavior of

1(
1 + ν2−u2

k2

) ∂
∂k

ln [uJν(k) + kJ ′ν(k)] = 1 +
∞∑
j=1

hjk
−j

are needed. All results relevant to this calculation are already provided and
the evaluation of the heat content asymptotics proceeds exactly as before and
can be completely automated. The final answers read

Iε(−n; j) =
1

2(ν2 − u2)
δj,n, Res Ii(−1/2− j; j) =

1
2π
,

Ii

(
−j − l + 1

2
; j
)

= (−1)(l−1)/2hl
2

for l odd,

Res Ii

(
−j − l + 1

2
; j
)

= (−1)l/2
hl
2π

for l even.

The leading coefficients can be used as a check; from (5.3.1) we determine
the multiplier ε1 = 2/3. There are different possibilities to determine the heat
content asymptotics; see, e.g., [124, 403], where in addition the coefficients up
to β5(f1, f2, P,B+), respectively, β6(f1, f2, P,B+) can be found.

5.5 Mixed boundary conditions

As we have seen already in Section 4.5, it is possible to combine Dirichlet
and Robin boundary conditions into one result at the cost of some notational
complexity.

In principle we can consider the heat content for spinors and forms along
the lines provided in Sections 3.3 and 3.4. This gives an alternative proof of
the following results, which have been derived in [124]; see also [299, 300].

We use the notation

f±;ij... = Π±f;ij...

and B is defined in eq. (4.5.1). The leading heat content coefficients have the
following form,

β0(f1, f2, P,B) =
∫
M

dx < f1(y), f2(y) >,

β1(f1, f2, P,B) = −2π−1/2

∫
∂M

dy < f−1 (y), f−2 (y) >,

                      



β2(f1, f2, P,B) = −
∫
M

dx < Pf1(x), f2(x) >

+
∫
∂M

dy
{
< −f+

1;m(y) + Sf+
1 (y), f+

2 (y) >

+
1
2
K < f−1 (y), f−2 (y) > + < f−1 (y), f−2;m(y) >

}

β3(f1, f2, P,B) = 2π−1/2

∫
∂M

dy

{
−2

3
< f−1;mm(y), f−2 (y) >

−2
3
< f−1 (y), f−2;mm(y) > −2

3
K < f−1;m(y), f−2 (y) >

−2
3
K < f−1 (y), f−2;m(y) >

+
(
− 1

12
K2 +

1
6
KabK

ab +
1
6
Rmm

)
< f−1 (y), f−2 (y) >

+
2
3
< f+

1;m(y)− Sf+
1 (y), f+

2;m(y)− Sf+
2 (y) >

− < Ef−1 (y), f−2 (y) > −2
3
< Ef−1 (y), f+

2 (y) >

−2
3
< Ef+

1 (y), f−2 (y) > + < f−1:a(y), f
−
2:
a(y) >

+
2
3
< f+

1:a(y), f
−
2:
a(y) > +

2
3
< f−1:a(y), f

+
2:
a(y) >

}
.

5.6 Concluding remarks

As for the heat equation asymptotics, further boundary conditions have
been considered for the heat content. A time-dependent geometry has been
analyzed in [209] and the coefficients up to β4 have been determined. Results
up to β4 for a time-dependent heat source and time-dependent boundary
conditions are given in [400]. In addition, a time-dependent specific heat was
allowed for in [213] and again results up to β4 have been found.

Further results in the static setting include inhomogeneous Dirichlet bound-
ary conditions [405] and a recursive algorithm for the computation of the
complete asymptotic series for Dirichlet boundary conditions [364, 363].

Finally, the effects of the non-smoothness of the boundary or the presence
of cusps have been taken into account. Some pertinent references include [406,
398, 399, 402, 401] with further references provided therein.



Chapter 6

Functional determinants

6.0 Introduction

In this chapter we will apply our results from Chapter 3 to the calcu-
lation of determinants based on the definition of determinants proposed in
[353, 144, 242]. The particulars of the determinant calculation are explained
in the one-dimensional situation. Some closed formulas for the determinant of
second-order operators with potential will be given [155, 287]. A generaliza-
tion of these results which includes the effect of zero modes is provided [303].
Afterwards, we continue with the considerably more difficult higher dimen-
sional situation. We will start by considering the generalized cone in arbitrary
dimension with an arbitrary base N and develop the formalism for this case
as far as possible. But at some point an explicit knowledge of the zeta function
connected with the base is needed and restricting ourselves to the ball, the
determinant for scalars, spinors and forms is given in terms of (derivatives of)
the Riemann zeta function [57, 61, 150]; see also [170].

Our approach is a direct approach. A different possibility is to use the con-
formal techniques which, apart from a correction, express the determinant
of a given operator in terms of the determinant of a conformally related op-
erator. We will derive this relation in Section 6.5, including the effect that
zero modes might have. In practice this idea can only be used in the lower
dimensions because in order to calculate the correction an explicit knowledge
of the heat kernel coefficient aD/2 is needed. In the given context this was
used by Dowker to find functional determinants for a variety of sectors of
Euclidean space, spheres and flat balls for dimensions D ≤ 4 [136, 137, 138],
by Dowker and Apps [141] and by Branson and Gilkey [71]. Given that we
have the ball results available, we will exemplify the procedure for D = 2, 3
and 4 by calculating the determinants on the hemisphere via a stereographic
projection.

As further references for direct approaches let us mention Dowker [139],
Barvinsky et.al. [40] and Forman [189].

                      



6.1 Some one-dimensional examples

In this section we will reproduce some known results using the contour
integral techniques presented in Chapter 3.

Consider the operators

Lj = − d2

dx2
+m2 +Rj(x), (6.1.1)

on the interval I = [0, 1] with Dirichlet boundary conditions. Let uj,k(x) be
the unique solution of

(Lj − k2)uj,k(x) = 0

satisfying

uj,k(0) = 0, u′j,k(0) = 1, (6.1.2)

with k a complex parameter. The eigenvalues of the operator Lj are then fixed
by imposing

uj,k(1) = 0.

In the spirit of Chapter 3 we write the zeta function associated with the
problem as

ζLj
(s) =

∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
lnuj,k(1). (6.1.3)

For the construction of the analytic continuation, note that as k → ∞ we
have the behavior [116]

uj,k(x) ∼ sin(kx)
(
1 +O(k−1)

)
. (6.1.4)

Higher order terms are not needed to continue ζLj (s) to a neighborhood about
s = 0. This leading asymptotic term contributes a constant (independent of
Rj(x)) to the determinant. Although the determination of the constant is
simple, we avoid its calculation by considering instead

ζL1−L2(s) =
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
ln
u1,k(1)
u2,k(1)

. (6.1.5)

Given (6.1.4) does not depend on the potential, ζL1−L2(s) has its rightmost
pole at s = −1/2 and is thus analytical about s = 0.

As before, the next step is to deform the contour to the imaginary axis. We
assume first the Lj ’s have no zero modes. This guarantees that uj,0(1) 6= 0 and
no contribution arises from the origin. Using the symmetry uj,k(x) = uj,−k(x)

                      



allows us to rewrite eq. (6.1.5) as

ζL1−L2(s) =
sinπs
π

∞∫
m

dk (k2 −m2)−s
∂

∂k
ln
u1,ik(1)
u2,ik(1)

. (6.1.6)

For the calculation of the determinant, the crucial observation is that the
prefactor vanishes such that

ζ ′L1−L2
(0) =

∞∫
m

dk
∂

∂k
ln
u1,ik(1)
u2,ik(1)

= − ln
u1,im(1)
u2,im(1)

.

In the limit m→ 0, this shows

det

[
− d2

dx2 +R1(x)

− d2

dx2 +R2(x)

]
=
y1(1)
y2(1)

, (6.1.7)

where yi(x) is the unique solution of(
− d2

dx2
+Ri(x)

)
yi(x) = 0,

satisfying

yi(0) = 0, y′i(0) = 1.

This result has been long known [155, 287] and it expresses the determinant of
a quotient of two operator Lj defining a boundary value problem completely
by the boundary values of a suitable function yi(x). Clearly, this reduction to
boundary values is one of the main characteristics of the approach developed
in Chapter 3.

Similar results hold for other boundary conditions and for operators defined
by a system of differential equations [190, 189].

Let us next consider the effect that the presence of zero modes has on the
determinant. We assume L1 has a zero mode, which satisfies by definition
uj,0(1) = 0. When shifting the contour towards the origin particular care
is necessary, because the integrand now has a pole at k = 0. The following
procedure has been suggested to me by my colleague Alan McKane from the
University of Manchester, England.

The problem mentioned can be resolved by multiplying u1,k(1) by a “suit-
able factor” as is explained in detail just preceding eq. (3.1.8). In order to do
so we need to determine this suitable factor and so we need to determine the
behavior of u1,k(1) for small values of k.

First note that
1∫

0

dx u1,0(x)L1u1,k(x) = k2

1∫
0

dx u1,0(x)u1,k(x) =: k2 < u1,0|u1,k > .

                      



Integrating by parts on the left-hand side, this produces the identity

[
u′1,0(x)u1,k(x)− u′1,k(x)u1,0(x)

]1
0

+

1∫
0

dx u1,k(x)L1u1,0(x)

= k2 < u1,0|u1,k > .

Taking into account the initial condition (6.1.2) and the fact that u1,0(x) is a
zero mode, this shows

u1,k(1) = k2< u1,0|u1,k >

u′1,0(1)
=: k2f1,k(1). (6.1.8)

Since f1,k(1) is well behaved as k → 0, eq. (6.1.8) describes the leading k → 0
behavior. The factor k2 does not contribute in the integral (6.1.3). In the
presence of a zero mode we thus choose as a starting point

ζL1(s) =
∫
γ

dk

2πi
(k2 +m2)−s

∂

∂k
ln f1,k(1). (6.1.9)

Proceeding exactly as before, we now obtain

det

[
− d2

dx2 +R1(x)

− d2

dx2 +R2(x)

]
=
< y1|y1 >
y′1(1)y2(1)

, (6.1.10)

which is the answer given in [303]. The procedure clearly generalizes to the
case where in addition L2 has a zero mode.

The one-dimensional case is particularly simple because the asymptotic
behavior (6.1.4) of the eigenfunctions does not depend on the potential Rj(x).
This is the origin of the fact that L1/L2 = 1 + T , where T is trace class.
This guarantees that L1/L2 has a finite determinant without regularization
being necessary. The difference of the zeta function ζL1−L2(s) reflects this fact
because, as mentioned, its rightmost pole is at s = −1/2.

Proceeding to higher dimensions, it is clear from the analysis in Chapter 3
that more asymptotic terms than only the leading one are becoming relevant.
Only when sufficiently many asymptotic terms agree, the above procedure
can, at least formally, be straightforwardly generalized. However, compact re-
sults like eqs. (6.1.7) and (6.1.10) cannot be expected, because summations
over degeneracies will be present, which, as a rule, cannot be performed an-
alytically. But again, the determinant for these cases is reduced to boundary
data [189].

In the approach developed here in Chapter 3, we do not need to consider
determinants of quotients of suitable operators Lj , but instead we can analyze
determinants of Lj themselves if the asymptotic behavior of the eigenfuntions
involved can be determined. Based on the analysis of Chapter 3 we will eluci-
date this aspect further for the Laplace operator on the generalized cone. In
Chapter 8 we will comment further on operators with spherically symmetric

                      



potentials in higher dimensions.

6.2 Scalar field

We now start the analysis on the generalized cone. Let us begin with Dirich-
let boundary conditions for the scalar field in D ≥ 3 dimensions. The treat-
ment for D = 2 is slightly different and we comment on this case at the end
of the section. As a starting point of the calculation we need a representation
of the zeta function which is valid around s = 0. In order to have an analytic
Z(s), eq. (3.2.12), near s = 0, choose the number of subtracted asymptotic
terms N = d. The contributions of the Ai(s), see eqs. (3.2.13)—(3.2.15), to
the determinant may be given,

A′−1(0) = (ln 2− 1) ζN (−1/2)− 1
2
ζ ′N (−1/2),

A′0(0) = −1
4
ζ ′N (0), (6.2.1)

A′i(0) = −ζR(−i)
i

(
γRes ζN (i/2) + PP ζN (i/2)

)
−

i∑
b=0

xi,b ψ(b+ i/2) Res ζN (i/2),

with ψ(x) = (d/dx) ln Γ(x).
For Z(s), eq. (3.2.12), some additional calculation is needed. First of all,

using the analyticity of Z(s) around s = 0, the derivative is found to be

Z ′(0) = −
∑

d(ν)
[
ln Iν(zν)− νη + ln

(√
2πν(1 + z2)1/4

)
−

d∑
n=1

Dn(t)
νn

]∣∣∣∣∣
z=m/ν

. (6.2.2)

In the limit m→ 0 we compute the behavior

t = 1 +O(m2), η = 1 + ln
(m

2ν

)
+O(m),

ln Iν(m) = ν lnm− ln[2νΓ(ν + 1)] +O(m2),

and equation (6.2.2) reduces to

Z ′(0) =
∑

d(ν)

[
ln Γ(ν + 1) + ν − ν ln ν − 1

2
ln(2πν)−

d∑
n=1

Dn(1)
νn

]
.



To actually perform the sum over ν, it is convenient to use the integral re-
presentation of ln Γ(ν + 1) [220],

ln Γ(ν + 1) =
(
ν +

1
2

)
ln ν − ν +

1
2

ln(2π)

+

∞∫
0

dt

(
1
2
− 1
t

+
1

et − 1

)
e−tν

t
.

This allows us to rewrite Z ′(0) as

Z ′(0) =
∑

d(ν)

∞∫
0

dt

(
d∑

n=1

Dn(1)
(n− 1)!

tn +
1
2
− 1
t

+
1

et − 1

)
e−tν

t
, (6.2.3)

which is well defined by construction. In order to see this explicitly, consider
the small t behavior of the integrand. We need to compare the expansion

1
et − 1

− 1
t

+
1
2

= −
∞∑
n=1

tn

n!
ζR(−n), (6.2.4)

with the expansion involving Dn(1). The value of Dn(1) can be determined
comparing the small z approximation of the Bessel function Iν(νz) with
Olver’s asymptotic form. The small z approximation up to order O(z2) gives

ln Iν(νz) ∼ ν ln(νz/2)− ln Γ(1 + ν) + ln
(

1 +
(νz)2

4(ν + 1)

)
∼ ν ln

(z
2

)
− ln

√
2πν + ν +

∞∑
k=1

ζR(−k)
k

ν−k

+
z2ν

4

∞∑
n=0

(−1)nν−n,

whereas from Olver’s expansion we derive

ln Iν(νz) ∼ −
1
2

ln 2πν− 1
4

ln(1 + z2)

+ν
(√

1 + z2+ln
( z

1 +
√

1 + z2

))
+

∞∑
n=1

Dn(t)
νn

∼ −1
2

ln 2πν − 1
4
z2 + ν

(
1 +

1
4
z2 + ln(z/2)

)
+

∞∑
n=1

Dn(1)− z2D′n(1)/2
νn

.

Comparing these expansions, we read off that

Dn(1) =
ζR(−k)

k
, D′n(1) =

1
2
(−1)n.



This guarantees the integrand behaves as td for t → 0. Given the “square
root” heat kernel associated with the eigenvalue ν,

K
1/2
N (t) =

∑
d(ν)e−tν ,

behaves like t−d, this shows the integrand remains finite for t→ 0 even after
performing the sum over ν.

Let us see how far the analysis of

Z ′(0) =

∞∫
0

dt
1
t

(
d∑

n=1

Dn(1)
(n− 1)!

tn +
1
2
− 1
t

+
1

et − 1

)
K

1/2
N (t)

can be performed without specifying the base manifold N . In order to deal
only with the individual parts, we introduce a regularization parameter, z,
and define

Z ′(0, z) =

∞∫
0

dt tz−1

(
d∑

n=1

Dn(1)
(n− 1)!

tn +
1
2
− 1
t

+
1

et − 1

)
K

1/2
N (t). (6.2.5)

Whereas the first three terms are immediately expressed through the base
zeta function, the last term naturally leads to the definition

ζN+1(z) =
1

Γ(z)

∑
d(ν)

∞∫
0

dt tz−1 e−tν

et − 1

=
∞∑
n=1

∑
d(ν)(ν + n)−z. (6.2.6)

This allows us to reexpress (6.3.5) as

Z ′(0, z) =
d∑

n=1

Dn(1)
(n− 1)!

Γ(n+ z) ζN

(
z + n

2

)
+

1
2
ζN

(z
2

)
Γ(z)

−ζN
(
z − 1

2

)
Γ(z − 1) + ζN+1(z)Γ(z). (6.2.7)

In the limit z → 0, as expected, several single parts contain divergences.
Apart from the last term, these are described by the residues of the base zeta
function. For the last term the small z expansion reads

Γ(z)ζN+1(z) ∼
1
z
ζN+1(0)− γζN+1(0) + ζ ′N+1(0) +O(z).

As suggested by (2.1.18), ζN+1(0) might be easily calculated considering the
t→ 0 expansion of

∞∑
n=1

∑
d(ν)e−t(ν+n) =

∑
d(ν)

e−tν

et − 1
=

∞∑
n=0

Cnt
n−D.



The relation reads ζN+1(0) = CD and using (6.3.4) it reads explicitly

ζN+1(0) = −1
2
ζN (0)− ζN (−1/2)− 2

d∑
i=1

Res ζN (i/2)
ζR(−i)

i
.

This guarantees the poles from the single parts in (6.2.7) cancel among each
other. For the zeta function determinant we can thus write

ζ ′M(0) =
d∑
i=1

Res ζN (i/2)

(
ζR(−i)

i
(−γ + 2ψ(i))−

i∑
b=0

xi,b ψ(b+ i/2)

)

−1
2
γζN (0) + (ln 2− γ) ζN (−1/2)

+ lim
z→0

(
d∑
i=1

2
zi
ζR(−i) Res ζN (i/2) +

1
2z
ζN (0)

+
1
z
ζN (−1/2) + Γ(z)ζN+1(z)

)
= ζ ′N+1(0) + ln 2ζN (−1/2) +

d∑
i=1

Res ζN (i/2)×[
2ζR(−i)

i

i−1∑
k=1

1
k
−

i∑
a=0

xi,a

(
ψ

(
a+

i

2

)
+ γ

)]
.

Fortunately, several non-local parts, difficult to determine, have cancelled be-
tween Z ′(0) and the A′i(0) to yield this compact answer.

A slightly more convenient form is found when using the integral represen-
tation for the ψ-function [220],

ψ(z) = −γ +

1∫
0

dt
tz−1 − 1
t− 1

.

Instead of involving the multipliers xi,a, the answer is cast in a form containing
the polynomials Di(t),

ζ ′M(0) = ζ ′N+1(0) + ln 2
(
ζN (−1/2) + 2

d∑
i=1

Res ζN (i/2)Di(1)
)

+2
d∑
i=1

Res ζN (i/2)

Di(1)
i−1∑
k=1

1
k

+

1∫
0

Di(t)− tDi(1)
t(1− t2)

dt

 . (6.2.8)

Let us stress that for this answer to hold it is essential that ζN (s) has no pole
at s = −1/2. Otherwise, ζM(s) has a pole at s = 0 and the definition of a
functional determinant as employed cannot be used.

Eq. (6.2.8) is as far as we can go without specifying the base manifold N .
As in Chapter 4 let us consider again the ball. The base zeta function in this

                      



case is, see eq. (3.3.21),

ζN (s) =
∞∑
l=0

d(l)
(
l +

d− 1
2

)−2s

= ζB

(
2s,

d+ 1
2

)
+ ζB

(
2s,

d− 1
2

)
= ζB

(
2s,

d+ 1
2

, 0
∣∣∣~1d)+ ζB

(
2s,

d− 1
2

, 0
∣∣∣∣~1d) , (6.2.9)

where the notation of eq. (3.2.23) has been used here. The vector ~1d = (1, ..., 1)
is the d-dimensional vector with entries 1 only. The additional sum over n
present in ζN+1(s) essentially just changes the number of summations and
obviously

ζN+1(s) =
∞∑
n=1

∞∑
l=0

d(l)
(
l + an+

d− 1
2

)−s
(6.2.10)

=
(
ζB
(
s, (d+ 3)/2, 0|~1d+1

)
+ ζB

(
s, (d+ 1)/2, 0|~1d+1

))
.

One possibility to evaluate ζ ′N+1(0) is to rewrite it in terms of Hurwitz zeta
functions. To this end note that

ζN+1(s) =
∞∑
l=0

e(l)
(
l +

d+ 1
2

)−s
with the “degeneracy”

e(l) = (2l + d)
(l + d− 1)!

l! d!
.

Expanding e(l) in powers of (l+ (d+ 1)/2), as to produce Hurwitz zeta func-
tions when summing over l, we continue

e(l) =
d∑

α=0

eα

(
l +

d+ 1
2

)α
,

and so

ζN+1(s) =
d∑

α=0

eα ζH
(
s− α; (d+ 1)/2

)
. (6.2.11)

The derivative then simply reads

ζ ′N+1(0) =
d∑

α=0

eα ζ
′
H

(
− α; (d+ 1)/2

)
. (6.2.12)

In fact, the numbers eα can be expressed by Bernoulli polynomials [34]; see
Appendix A starting with (A. 22). Further ingredients needed for the deter-



minant (6.2.8) are given in (4.3.3); in addition, we find similarly

ζN (0) = − 21−d

(d− 1)d!
D

(d−1)
d ,

ζN (−1/2) =
21−d

(d− 1)(d+ 1)!
D

(d−1)
d+1 .

All quantities needed to calculate the functional determinant on the ball are
now provided. Some results in lower dimensions read,

ζ ′D,3(0) = − 3
32
− 1

12
ln 2− 3

4
ζ ′R(−2) +

1
2
ζ ′R(−1)− 1

24
lnR, (6.2.13)

ζ ′D,4(0) =
173

30240
+

1
90

ln 2− 1
90

lnR+
1
3
ζ ′R(−3)

−1
2
ζ ′R(−2) +

1
6
ζ ′R(−1), (6.2.14)

ζ ′D,5(0) =
47

9216
+

17
2880

ln 2 +
17

5760
lnR− 5

64
ζ ′R(−4)

+
7
48
ζ ′R(−3)− 1

32
ζ ′R(−2)− 1

48
ζ ′R(−1),

ζ ′D,6(0) = − 4027
6486480

− 1
756

ln 2 +
1

756
lnR+

1
60
ζ ′R(−5)− 1

24
ζ ′R(−4)

+
1
24
ζ ′R(−2)− 1

60
ζ ′R(−1),

where the dependence on the radius R of the ball has been reestablished.

Although, formally, the transition to the global monopole is simple, namely
the base zeta function just scales with a2s, see eq. (3.2.22), and

ζN+1(s) = as
∞∑
n=1

∞∑
l=0

d(l)
(
l + an+

d− 1
2

)−s
= as

(
ζB
(
s, (d+ 1)/2 + a|~r

)
+ ζB

(
s, (d− 1)/2 + a|~r

))
,

with ~r = (~1, a), ~1 ≡ (1, ..., 1) being the d-dimensional unit vector, to reexpress
derivatives of these Barnes zeta functions is difficult. For a rational radius we
can go further [141], but for a general radius a numerical treatment starting,
e.g., with (6.2.3) seems unavoidable.

Let us describe briefly the analogous treatment for Robin boundary con-
ditions. We will need a special treatment for Neumann boundary conditions
and it will turn out useful to display explicitly the dependence of the zeta
function on the parameter u = 1−D/2− S. The contributions coming from
the Ai(s) are given by eq. (6.2.1), once the replacements explained just fol-
lowing eq. (3.2.18) are taken into account. For ZR(s, u), in the limit m → 0,



we obtain

ZR(s, u) =
∑

d(ν)

 ∞∫
0

dt

(
1
2
− 1
t

+
1

et − 1

)
e−tν

t
+ ln

ν

u+ ν

+
d∑

n=1

Mn(1, u)
νn

]
.

In the way indicated for Dirichlet boundary conditions, we can show

Mn(1, 0) = Dn(1), Mn(1, u)−Mn(1, 0) = (−1)n+1u
n

n
,

and, as a result,

Z ′R(0) = Z ′(0) +N(u),

with N(u) given by

N(u) =
∑

d(ν)

(
− ln

(
1 +

u

ν

)
+

d∑
n=1

(−1)n+1 1
n

(u
ν

)n)
. (6.2.15)

Thus, for Robin conditions we have to treat only one additional part, namely
N(u). It is convenient to write N(u) as an integral. Note that

ln
(
A

B

)
= −

∞∫
0

dt t−1
[
e−At − e−Bt

]
,

and an immediate consequence is

N(u) =
∑

d(ν)

∞∫
0

dt
e−νt

t

(
e−ut +

d∑
n=0

(−1)n+1u
ntn

n!

)
.

This is again reduced to the calculation of the single parts by introducing a
regularization parameter z, as in the derivation of eq. (6.2.7). This naturally
leads to the definition of

ζN (z, u) =
1

Γ(s)

∑
d(ν)

∞∫
0

dt tz−1e−(ν+u)t,

in terms of which we find

N(u, z) = ζN (z, u) Γ(z) +
d∑

n=0

(−1)n+1u
n

n!
Γ(z + n) ζN ((z + n)/2).(6.2.16)

Our interest is in the z → 0 limit and in the way explained previously we
obtain

ζN (0, u) = ζN (0) + 2
d∑
l=1

(−1)l
ul

l
Res ζN (l/2).



This guarantees, as is clear by construction, that the limit z → 0 can be
performed in eq. (6.2.16) and this limit leads to

N(u) = ζ ′N (0, u)− 1
2
ζ ′N (0)

+
d∑

n=1

(−1)n+1u
n

n

(
2Res ζN (n/2) (ψ(n) + γ) + PP ζN (n/2)

)
.

Upon adding up all contributions to give the required derivative, several parts
cancel, as occurred previously, leaving the compact form

ζ ′R(0, u) = ζ ′N+1(0) + ζ ′N (0, u) (6.2.17)

+ ln 2
(
ζN (−1/2) + 2

d∑
i=1

i odd

Res ζN (i/2)Mi(1, u)
)

+2
d∑

i=1
i odd

Res ζN (i/2)
(
Mi(1, u)

i−1∑
k=1

1
k

+

1∫
0

Mi(t, u)− tMi(1, u)
t(1− t2)

dt

)

+2
d∑

i=1
i even

Res ζN (i/2)
(
Mi(1, u)

i−1∑
k=1

1
k

+

1∫
0

Mi(t, u)− t2Mi(1, u)
t(1− t2)

dt

)
.

This is completely parallel to eq. (6.2.8) for Dirichlet conditions. The nonlocal
parts are clearly confined to the first two terms which have to be seen as special
functions as they stand. As for the Dirichlet case, nothing more can be said
without specializing to simple manifolds.

Let us briefly describe the simplifications occurring for the monopole. Apart
from ζN (s, u) all parts are known from the Dirichlet case. We proceed as
before, writing

ζN (s, u) = as
∞∑
l=0

d(l) (l + (d− 1)/2 + au)−s

= as
(
ζB (s, (d+ 1)/2 + au) + ζB (s, (d− 1)/2 + au)

)
.

The Barnes zeta functions are expressed through Hurwitz zeta functions using
the procedure leading to eq. (6.2.11); see also eq. (A. 25). First we expand

d(l) =
d−1∑
α=0

eα(au) (l + (d− 1)/2 + au)α ,

note the eα(au) are polynomials in au, and then ζN (s, u) appears as a sum of
Hurwitz zeta functions

ζN (s, u) = as
d−1∑
α=0

eα(au) ζH (s− α; (d− 1)/2 + au) .



Its derivative at s = 0 is easily computed,

ζ ′N (0, u) =
d−1∑
α=0

(ζ ′H(−α; (d− 1)/2 + au) (6.2.18)

−(ln a)
Bα+1((d− 1)/2 + au)

α+ 1

)
,

where the Bn(x) are ordinary Bernoulli polynomials.

Thus, as before, the only contribution not readily available for the arbitrary
radius a is the ζN+1 one. As in Dirichlet conditions, the ball case, a = 1, is
easily extracted. In detail we obtain the following (R is the radius of the ball,
which has been reintroduced here),

ζ ′R,3(0, u) =
1
32
− 1

6
ln 2− 3

4
ζ ′R(−2)− 1

2
ζ ′R(−1) +

1
24

lnR (6.2.19)

+
u

2
− 2u ln Γ

(
1
2

+ u

)
+ u2 lnR+ 2

u∫
0

dx ln Γ
(

1
2

+ x

)

ζ ′R,4(0, u) =
11

4320
+

u

30
− 5u2

12
− u3

3
+

ln(2)
90

+
u3 ln(2)

3

− ln(R)
90

− u3 ln(R)
3

+
ζ ′R(−3)

3
+
ζ ′R(−2)

2
+
ζ ′R(−1)

6

+u2 ln Γ(1 + u)− 2

u∫
0

dx x ln Γ(1 + x), (6.2.20)

ζ ′R,5(0, u) = − 61
46080

− 11u
576

− u2

16
+

11u3

72
+
u4

24

+
7 ln(2)

720
− 17 ln(R)

5760
− u2 ln(R)

24
+
u4 ln(R)

12

−5 ζ ′R(−4)
64

− 7 ζ ′R(−3)
48

− ζ ′R(−2)
32

+
ζ ′R(−1)

48

− 1
12

u∫
0

dx ln Γ
(

3
2

+ x

)
+

u∫
0

dx x2 ln Γ
(

3
2

+ x

)

+
1
12
u ln Γ

(
3
2

+ u

)
− 1

3
u3 ln Γ

(
3
2

+ u

)
,

ζ ′R,6(0, u) = − 9479
32432400

− u

315
+

517u2

15120
+

83u3

1512
− 19u4

480

−u
5

45
− log(2)

756
− u3 ln(2)

36
+
u5 ln(2)

60
+

ln(R)
756

+
u3 ln(R)

36

−u
5 ln(R)

60
+
ζ ′R(−5)

60
+
ζ ′R(−4)

24
− ζ ′R(−2)

24
− ζ ′R(−1)

60



+
1
6

u∫
0

dx x ln Γ(2 + x)− 1
3

u∫
0

dx x3 ln Γ(2 + x)

− 1
12
u2 ln Γ(2 + u) +

1
12
u4 ln Γ(2 + u).

The detailed dependence of ζ ′(0, u) on the parameter u for dimensions D =
3, 4, 5, 6 is given in Fig. 6.1, for R = 1.

Figure 6.1
Plot of the dependence of ζ′  (0,u) on the parameter u for R = 1 and
for dimensions D = 3, 4, 5, 6. Notice the divergence that appears for
u = 1 − D/2 in each dimension, corresponding to the case of
Neumann boundary conditions. (From M. Bordag, B. Geyer,
K. Kirsten and E. Elizalde, Commun. Math. Phys. 179, 215-234,
1996. Copyright (1996) by Springer-Verlag. With permission.)

As is seen in the above results and also in the definition (6.2.15) of N(u),
the limit u→ 1−D/2 corresponding to Neumann boundary conditions is not
smooth, since a logarithmic divergence arises from the contribution of the term
ν = D/2− 1. In fact, for u = 1−D/2 this term has to be treated specifically,
because the behavior of uIν(zν)+zνI ′ν(zν) for z → 0 is different for this case.
Probably the easiest way to find the results for Neumann boundary conditions
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is to write

ζR(s, 1−D/2) = ζl=0
R (s, 1−D/2) + lim

u→1−D/2

(
ζR(s, u)− ζl=0

R (s, u)
)
,

because then we can use all the results for the Robin boundary conditions that
we have derived before. Here ζl=0

R (s, u) is the contribution from the angular
momentum component l = 0 to ζR(s, u),

ζl=0
R (s, u) =

sinπs
π

d

(
D − 2

2

) ∞∫
m

dk [k2 −m2]−s ×

∂

∂k

[
uI(D−2)/2(k) + kI ′(D−2)/2(k)

]
.

Proceeding with the calculation as for Robin boundary conditions, in the limit
m→ 0 we easily find

d

ds

(
ζl=0
R

(
s, 1− D

2

)
− ζl=0

R (s, u)
)∣∣∣∣

s=0

(6.2.21)

= d

(
D − 2

2

)
[−2 lnR+ ln(D/2) + ln((D − 2)/2 + u) + ln 2] .

In the limit u → 1 − D/2 the logarithmic divergence in (6.2.21) cancels the
divergence in ζR(s, u) and a finite answer is obtained. Given that absolute 0-
forms are Neumann scalars, we postpone the presentation of results to Section
6.4.

Let us conclude this section with the pertinent comments for the caseD = 2.
Here the degeneracy of every l ≥ 1 is 2 and l = 0 has to be counted only once.
Due to the presence of this term l = 0, the procedure of subtracting the
uniform asymptotic behavior of the Bessel functions is not valid any more but
may be applied only to l ≥ 1. The l = 0 term may be treated as before for the
Neumann boundary conditions. Without giving further details, for Dirichlet
boundary conditions we have

ζ ′D(0) =
5
12

+ 2ζ ′R(−1) +
1
2

lnπ +
1
6

ln 2 +
1
3

lnR, (6.2.22)

the zeta function determinant for general Robin boundary conditions reads

ζ ′R(0) = − 7
12

+
1
3

lnR+ 2ζ ′R(−1)− 5
6

ln 2− 1
2

lnπ + 2u ln(2/R)

− lnu+ 2 ln Γ(1 + u),

and, finally, the result for Neumann boundary conditions is

ζ ′N (0) = − 7
12
− 5

3
lnR+ 2ζ ′R(−1) +

1
6

ln 2− 1
2

lnπ. (6.2.23)

                      



6.3 Spinor field with global and local boundary condi-
tions

One can proceed in much the same way for the spinor field [150]. For spectral
boundary conditions almost no further calculation is necessary due to the
formally identical results with Dirichlet boundary conditions once the base
zeta function is replaced; see eq. (3.3.10). Thus, for a general baseN eq. (6.2.8)
remains valid with ζN (s), eq. (3.3.10), used and, restricting ourselves to the
ball with, by definition (6.2.6),

ζN+1(z) =
∞∑
n=1

∞∑
l=0

d(l)(l + n+D/2− 1)−z

= 2ds
∞∑
n=1

∞∑
~m=~0

(m1 + ...+md + n+D/2− 1)−z

= 2dsζB(z,D/2|~1D), (6.3.1)

which is now a D-dimensional Barnes zeta function. The needed derivative in
z = 0, ζ ′N+1(0), is easily obtained by an expansion in terms of Hurwitz zeta
functions, (A. 25), as before. The final results in some lower dimensions are:

ζ ′2(0) = 4ζ ′R(−1) +
4
3

ln 2 +
5
6
,

ζ ′3(0) = −3ζ ′R(−2) +
1
3

ln 2 +
11
24
,

ζ ′4(0) =
4
3
(
ζ ′R(−3)− 2ζ ′R(−1)

)
+

2
45

ln 2− 2489
15120

,

ζ ′5(0) =
5
4
ζ ′R(−2)− 5

8
ζ ′R(−4)− 59

360
ln 2− 17497

120960
,

ζ ′6(0) =
8
15
ζ ′R(−1)− 2

3
ζ ′R(−3)− 2

15
ζ ′R(−5)− 2

189
ln 2 +

6466519
103783680

,

ζ ′7(0) = −259
480

ζ ′R(−2) +
35
96
ζ ′R(−4)− 7

160
ζ ′R(−6) +

2179
30240

ln 2

+
59792179

1037836800
,

ζ ′8(0) = − 8
35
ζ ′R(−1) +

14
45
ζ ′R(−3)− 4

45
ζ ′R(−5) +

2
315

ζ ′R(−7)

+
46

14175
ln 2− 183927381289

7039647014400
.

For local boundary conditions few additional calculations are necessary. The
asymptotic contributions follow from (3.3.14) to be

A′−1(0) = 2 (ln 2− 1) ζN (−1/2)− ζ ′N (−1/2) ,



A′0(0) = ln 2 ζN (0)− 1
2
ζ ′N (0), (6.3.2)

A′i(0) = −
2i∑
a=0

xi,a

(
FP ζN (i/2) + γRes ζN (i/2) +

Res ζN (i/2)ψ ((a+ i)/2)
)
,

with characteristic differences from the spectral case. This time we have
Dn(1) = 2ζR(−n)/n, and find analogously to eq. (6.2.7),

Z ′(0, z) =
d∑

n=1

Dn(1)
(n− 1)!

Γ(n+ z) ζN

(
z + n

2

)
+ ζN

(z
2

)
Γ(z)

−2ζN

(
z − 1

2

)
Γ(z − 1) + 2ζN+1(z)Γ(z).

Proceeding as for the scalar field, the final answer reads

ζlo1/2
′
(0) = ln 2

(
2ζN (−1/2) + ζN (0)

)
+ 2ζ ′N+1(0)

+4 ln 2
D−1∑
i=1

ζR(−i)
i

Res ζN (i/2) (6.3.3)

+2
D−1∑
i=1

Res ζN (i/2)

2ζR(−i)
i

i−1∑
k=1

1
k

+

1∫
0

dt
Di(t)− tDi(1)

t(1− t2)

 .
Evaluating eq. (6.3.3) on the ball, ζN+1(s) is just one half of the spectral case,
and for the lower dimensions the following results are obtained:

ζ ′2(0) = 4ζ ′R(−1) +
1
3

ln 2− 1
6
,

ζ ′3(0) = −3ζ ′R(−2) +
1
2

ln 2 +
1
8
,

ζ ′4(0) =
251
7560

− 11
90

ln 2 +
4
3
(
ζ ′R(−3)− ζ ′R(−1)

)
,

ζ ′5(0) = − 91
1920

− 3
16

ln 2− 5
8
ζ ′R(−4) +

5
4
ζ ′R(−2),

ζ ′6(0) = − 28417
2494800

+
191
3780

ln 2 +
2
15
ζ ′R(−5)− 2

3
ζ ′R(−3) +

8
15
ζ ′R(−1),

ζ ′7(0) =
47941

2419200
+

5
64

ln 2− 7
160

ζ ′R(−6) +
35
96
ζ ′R(−4)− 259

480
ζ ′R(−2),

ζ ′8(0) =
14493407

3199839552
− 2497

113400
ln 2 +

2
315

ζ ′R(−7)− 4
45
ζ ′R(−5)

+
14
45
ζ ′R(−3)− 8

35
ζ ′R(−1).

The two-, three- and four-dimensional results are those found in [142] using a
conformal transformation method. Furthermore, the four-dimensional result
is that given in [140, 268].



6.4 Forms with absolute and relative boundary condi-
tions

Let us finally consider functional determinants for forms. As we have seen
in Section 3.4, it will be sufficient to consider the determinant associated with
the coexact zeta function (3.4.27), which is simply a combination of Robin and
Dirichlet contributions. Again it is immediately appreciated that the results
for the scalar field with Dirichlet boundary conditions, eq. (6.2.8), and Robin
boundary conditions, eq. (6.2.17), remain valid once the base zeta function
there is replaced with the form base zeta function, eq. (3.4.20). In addition
we need the definitions,

ζN+1
p (s) =

∞∑
n=1

∑ d(p)(
ν(p) + n

)s , ζNp (s, u) =
∑ d(p)(

ν(p) + u
)s , (6.4.1)

as well as the definitions for the related quantities, ζ̃N+1
p (s), ζ̃Np (s, u), if the

zero modes are included as in (3.4.21).
Combining Robin with Dirichlet, the coexact determinant for p ≥ 1 is

computed to be, for absolute conditions,

ζ ′
M
p (0) = ζ̃ ′N+1

p (0) + ζ ′
N+1
p−1 (0) + ζ̃ ′Np

(
0, ua(p)

)
(6.4.2)

+ ln 2
(
ζ̃Np (−1/2) + ζNp−1(−1/2)

+2
d∑

i=1
i odd

Res ζNp (i/2)Mi

(
1, ua(p)

)
+ 2

d∑
i=1

Res ζNp−1(i/2)Di(1)
)

+2
d∑

i=1
i odd

Res ζNp (i/2)
(
Mi

(
1, ua(p)

) i−1∑
k=1

1/k

+

1∫
0

dt
Mi

(
t, ua(p)

)
− tMi

(
1, ua(p)

)
t(1− t2)

)

+2
d∑

i=1
i even

Res ζNp (i/2)
(
Mi

(
1, ua(p)

) i−1∑
k=1

1/k

+

1∫
0

dt
Mi

(
t, ua(p)

)
− t2Mi

(
1, ua(p)

)
t(1− t2)

)

+2
d∑
i=1

Res ζNp−1(i/2)
(
Di(1)

i−1∑
k=1

1/k +

1∫
0

dt
Di(t)− tDi(1)

t(1− t2)

)
.

                      



A small extra consideration is necessary for p = 0. Absolute 0-forms are
Neumann scalars and in this case the Robin parameter is ua(0) = −(d−1)/2.
Looking at ζNp (s, u) in eq. (6.4.1) we see that for u = −ν(p) a branch cut is
encountered. This happens because the zero mode for Neumann conditions has
been (incorrectly) included and as mentioned, the technical reason is that the
asymptotic expansion for these specific Robin parameters is slightly different
from the others.

As we have explained in discussing eq. (6.2.21), the easiest way to take this
into account is to subtract this contribution in (6.4.1), then take the limit as
u → −ν(p) and finally to add the correct contribution for u = −ν(p). For
Neumann conditions the end result is

ζ ′
M
0 (0) = ζ̃ ′N+1

0 (0) + ln 2
(
ζ̃N0 (−1/2) (6.4.3)

+2
d∑

i=1
i odd

Res ζN0 (i/2)Mi

(
1, ua(0)

))

+2
d∑

i=1
i odd

Res ζN0 (i/2)
(
Mi

(
1, ua(0)

) i−1∑
k=1

1/k

+

1∫
0

dt
Mi

(
t, ua(0)

)
− tMi

(
1, ua(0)

)
t(1− t2)

)

+2
d∑

i=1
i even

Res ζN0 (i/2)
(
Mi

(
1, ua(0)

) i−1∑
k=1

1/k

+

1∫
0

dt
Mi

(
t, ua(0)

)
− t2Mi

(
1, ua(0)

)
t(1− t2)

)
+ lim
u→−(d−1)/2

(
ζ̃ ′N0 (0, u) + ln ((d− 1)/2 + u)

)
+ ln

(
d+ 1

)
.

Results for relative boundary conditions are not given explicitly; they follow
by Hodge duality.

Equations (6.4.2) and (6.4.3) are expressions on the generalized cone and
again this is as far as we can go without specifying the base. Let us apply
these equations now to the ball. Apart from ζN+1

p (s) (ζ̃N+1
p (s)) and ζNp (s, u)

(ζ̃Np (s, u)) all quantities have already been discussed. For these remaining zeta
functions we immediately find, along the lines previously described,

ζ̃N+1
p (s) =

d∑
m=p+1

(
m− 1
p

)
ζB
(
s, (d+ 3)/2 | 1m+1

)
+ζR

(
s, (d+ 3)/2)

)
δpd (6.4.4)



+
d∑

m=d−p

(
m− 1

d− p− 1

)
ζB
(
s, (d+ 3)/2 | 1m+1

)
+ζR

(
s, (d+ 1)/2)

)
δp0

and

ζ̃Np (s, ua) =
d∑

m=p+1

(
m− 1
p

)
ζB
(
s, p+ 1 | 1m

)
(6.4.5)

+
d∑

m=d−p

(
m− 1

d− p− 1

)
ζB
(
s, p+ 1 | 1m

)
+δpd(d+ 1)−s + δp0

(
(d− 1)/2 + u

)−s
.

The contribution of the zero modes is clearly visible. The limit u→ −(d−1)/2
in (6.4.3) is well defined because the logarithm is cancelled by the last term
in (6.4.5).

Using (6.4.4) and (6.4.5) in (6.4.2) and (6.4.3), the determinants emerge as
derivatives of the Barnes zeta function at s = 0, and by expanding it again in
Hurwitz zeta function, see eq. (A. 25), e.g., the following small list of results
is obtained [170, 150]:
In d = 2,

ζ ′0
M(0) = −15

32
− log 2

12
+ log 3− 3 ζ ′R(−2)

4
+

5 ζ ′R(−1)
2

+ ζ ′R(0),

ζ ′1
M(0) = − 1

16
+

11 log 2
6

− 3 ζ ′R(−2)
2

+ 3 ζ ′R(−1)− ζ ′R(0),

ζ ′2
M(0) = − 3

32
− log 2

12
− 3 ζ ′R(−2)

4
+
ζ ′R(−1)

2
.

In d = 3,

ζ ′0
M(0) = −1213

4320
+

151 log 2
90

+
ζ ′R(−3)

3
+
ζ ′R(−2)

2

+
13 ζ ′R(−1)

6
+ ζ ′R(0),

ζ ′1
M(0) =

5989
10080

− 19 log 2
30

+ ζ ′R(−3) +
ζ ′R(−2)

2
− 3 ζ ′R(−1)

2
− ζ ′R(0),

ζ ′2
M(0) = − 507

1120
+

7 log 2
10

+ ζ ′R(−3)− ζ ′R(−2)
2

− 7 ζ ′R(−1)
2

+ 2 ζ ′R(0),

ζ ′3
M(0) =

173
30240

+
log 2
90

+
ζ ′R(−3)

3
− ζ ′R(−2)

2
+
ζ ′R(−1)

6
.

In d = 4,

ζ ′0
M(0) = −25381

46080
+

17 log 2
2880

+ log 5− 5 ζ ′R(−4)
64

+
23 ζ ′R(−3)

48

+
47 ζ ′R(−2)

32
+

103 ζ ′R(−1)
48

+ ζ ′R(0),



ζ ′1
M(0) =

5803
11520

+
77 log 2

720
− log 3− 5 ζ ′R(−4)

16
+

19 ζ ′R(−3)
12

+
17 ζ ′R(−2)

8
− 25 ζ ′R(−1)

12
− ζ ′R(0),

ζ ′2
M(0) =

209
2560

− 863 log 2
480

− 15 ζ ′R(−4)
32

+
15 ζ ′R(−3)

8

−3 ζ ′R(−2)
16

− 21 ζ ′R(−1)
8

+ ζ ′R(0),

ζ ′3
M(0) = − 2509

11520
+

77 log 2
720

− 5 ζ ′R(−4)
16

+
11 ζ ′R(−3)

12

−7 ζ ′R(−2)
8

+
19 ζ ′R(−1)

12
− ζ ′R(0),

ζ ′4
M(0) =

47
9216

+
17 log 2
2880

− 5 ζ ′R(−4)
64

+
7 ζ ′R(−3)

48

−ζ
′
R(−2)
32

− ζ ′R(−1)
48

.

As is clear from what has been discussed already, it is possible to obtain the
determinants in any dimension d and for any value of p without difficulty.

This concludes our summary of calculations of determinants on the gener-
alized cone within the zeta function definition. Up to this point, on the ball,
everything could be done by purely analytical means and no numerical work
was needed. For the evaluation of Casimir energies associated with the value
of the zeta function at s = −1/2 this, however, will be necessary.

Before we come to these applications, let us see how conformal transfor-
mations can be used to evaluate determinants. The basic feature is that the
determinants of two operators are equal up to an easily available correction
term. As we will see in more detail, this makes every special case calculation
more valuable because it determines already the determinant of a one-parame-
ter family of operators.

6.5 Determinants by conformal transformation

In the previous sections we presented a direct approach to the calculation
of determinants. As a result, we have a certain pool of determinants available.
To enlarge the class of solved problems, a possible strategy is to relate known
cases to unknown ones. This strategy was very successfully applied in Chapter
4, where the transformation properties of the heat kernel coefficients under
conformal transformations were crucial for their determination. Let us now
study this transformation behavior for the functional determinant, see, e.g.,
[147, 71].

                      



We consider the setting given in Section 4.2, so we consider the one-parame-
ter family of operators

P (ε) = e−2εFP (6.5.1)

with

P = −gij∇Vi ∇Vj − E,

and one of the local boundary conditions, such that eq. (4.2.3) holds. Let
{λl(ε), φl(ε)}l∈IN be the spectral resolution of P (ε), and we first assume
λl(ε) > 0. The variation of the eigenvalues is described by the Hellmann-
Feynman formula

d

dε
λl(ε) =

d

dε
(φl(ε), P (ε)φl(ε))L2(M)

=
(
φl(ε),

[
d

dε
P (ε)

]
φl(ε)

)
L2(M)

. (6.5.2)

In particular, for the variation (6.5.1) of P we find

d

dε
λl(ε) = −2(φl(ε), FP (ε)φl(ε))L2(M).

For the variation of the associated zeta function ζε(1; s) this implies

d

dε
ζε(1; s) =

1
Γ(s)

∞∑
l=1

∞∫
0

dt ts−1 d

dε
e−λl(ε)t

=
2

Γ(s)

∞∑
l=1

∞∫
0

dt ts(φl(ε), FP (ε)φl(ε))L2(M)e
−λl(ε)t

=
2

Γ(s)

∞∫
0

dt ts Tr L2(M)

(
FP (ε)e−tP (ε)

)

= − 2
Γ(s)

∞∫
0

dt ts
d

dt
Tr L2(M)

(
Fe−tP (ε)

)

=
2s

Γ(s)

∞∫
0

dt ts−1 Tr L2(M)

(
Fe−tP (ε)

)
= 2sζε(F ; s), (6.5.3)

where in the partial integration no boundary contributions arise if <s > D/2
and λl(ε) > 0 is assumed.

From here, with eq. (2.1.18), it easily follows that

d

ds

d

dε
ζε(1; s)

∣∣
s=0 = 2ζε(F ; 0) = 2aD/2(F, P (ε),B(ε)) . (6.5.4)

                      



Integrating with respect to ε relates the determinants of P (ε) and P ,

W [P (ε), P ] := ζ ′ε(1; 0)− ζ ′0(1; 0) = 2

ε∫
0

dτ aD/2(F, P (τ),B(τ)). (6.5.5)

The explicit use of the connection (6.5.5) relies on the knowledge of the coeffi-
cient aD/2(F, P (τ),B(τ)) and all information available on these was provided
in Chapter 4.

Let us first study further eq. (6.5.5) for Dirichlet boundary conditions. In
D = 2, the conformal variations in Appendix B and eq. (4.2.22) show

E(ε) = e−2εFE,

R(ε) = e−2εF (R− 2ε∆F ),
K(ε) = e−εF (K + εF;m).

The exponential factors are cancelled by the opposite ones coming from the
Riemannian volume element of the metric g(ε), and we easily obtain

W [P (1), P ] =
1

12π


∫
M

dx Tr V (F [6E +R−∆F ]) (6.5.6)

+
∫
∂M

dy Tr V (F [2K + F;m] + 3F;m)

 ,

a result known for quite some time [294, 348, 8].
We proceed similarly for the higher dimensions. All needed conformal vari-

ations are stated in Appendix B. Denoting by Ê the deviation from the con-
formally invariant operator,

Ê = E +
D − 2

4(D − 1)
R, Ê(ε) = e−2εF Ê, (6.5.7)

we find

W [P (1), P ] = − 1
768π

∫
∂M

dy Tr V
{
F
(
96Ê + 4R− 8Rmm + 16F;mm

+16F;mK + 7K2 − 10KabK
ab − 16∆F

)
(6.5.8)

+18F;mF;m + 24F;mm + 30KF;m} .

Using the intrinsic quantities of the boundary instead,

∆F = F;mm +KF;m + ∆∂MF,

R− 2Rmm = Rabab = R∂M +KabK
ab −K2,

this can be cast into the slightly more compact form,

W [P (1), P ] = − 1
768π

∫
∂M

dy Tr V
{
F
(
96Ê + 4R∂M + 3K2 − 6KabK

ab

                      



−16∆∂MF ) + 18F;mF;m + 24F;mm + 30KF;m} .

The calculation in D = 4 dimensions gives the answer

W [P (1), P ] =
1

2880π2

 ∫
M

dx Tr V
{
2F
(
RijklR

ijkl −RijR
ij + ∆R

)
+4RklF;kF;l − 4(F;lF;

l)2 − 8F;lF;
l∆F − 6(∆F )2

}
+
∫
∂M

dy Tr V

{
F

(
320
21

KabK
b
cK

ac − 88
7
KKabK

ab +
40
21
K3

−4RabKab − 4KRmm + 16RambmKab − 2R;m

)
+F;m

(
12
7
K2 − 60

7
KabK

ab + 12∆F + 8F;lF;
l

)
+

4
7
KF;mF;m −

16
21
F;mF;mF;m + 24K∆F

+20KF;lF;
l + 4KabF;aF;b + 30∇m

(
∆F + F;lF;

l
)}]

+
1

48π2

 ∫
M

dx Tr V

(
3FÊ2 + ÊF;lF;

l + Ê∆F +
1
2
ΩijΩij

)

+
∫
∂M

dy Tr V
(
3FÊ;m + 2ÊF;m + 2ÊFK

) . (6.5.9)

We next show with a specific example how these results can be used. A
geometry related to the ball is the hemisphere. For example, we might define
a stereographic projection that identifies the upper hemisphere of SD with
the unit ball in IRD [71]. We view SD as the unit sphere of IRD+1 with the
coordinate function ξ = (u, s) ∈ IRD× IR. We use the south pole of the sphere
to project the upper hemisphere onto the ball, where the coordinates on the
ball are

x =
u

1 + s
.

Let p be the azimuthal angle between the vector (u, s) and the ray emanating
from the orign (0, 0) and passing through the north pole. Then the metric on
the ball and on the sphere are related by

gball =
1

(1 + s)2
ghemisphere.

Let gij be ghemisphere and define

gij(ε) = e2εF gij ,

with F = − ln(1 + s), such that gij(1) equals the metric on the ball. The
Laplace operator on the ball is conformally related to −∆ + (D − 2)/(4(D −



1))R on the hemisphere. We will use this relation to calculate the hemisphere
determinants starting from the ball.

The conformal factor depends only on the normal coordinate, especially
when s = cos p and the exterior normal derivative is ∂p. The calculation is
particularly simple, because Kab = 0 on the hemisphere and F vanishes at
the boundary. Further useful identities valid on the hemisphere are

R = D(D − 1), Rmm = (D − 1),
RijklR

ijkl = 2D(D − 1), RijR
ij = D(D − 1)2,

∂pF (s) =
sin p

1 + cos p
, ∂pF (s)

∣∣
p=π/2 = 1, (6.5.10)

∆HDF (s) =
1 + (D − 1) cos p

1 + cos p
, ∆HDF (s)

∣∣
p=π/2 = 1 .

This is sufficient to exploit the connection between the ball and the hemisphere
determinants.

In D = 2, eq. (6.5.6) relates the two determinants. The volume integral can
be calculated using

π/2∫
0

dp sin p ln(1 + cos p) = ln 4− 1,

such that the relation between the ball and the hemisphere determinant reads

ζ ′D,2(0)− ζ ′H2(0) = −1
3

ln 2 +
2
3
.

Together with the ball result (6.2.22), this shows

ζ ′H2(0) = 2ζ ′R(−1)− 1
4

+
1
2

ln(2π). (6.5.11)

Due to the absence of volume contributions in eq. (6.6.8) and due to F |∂M =
0, three dimensions are particularly simple and we find

ζ ′D,3(0)− ζ ′H3(0) = − 7
32
,

and so with (6.2.13),

ζ ′H3(0) = −3
4
ζ ′R(−2) +

1
2
ζ ′R(−1) +

1
8
− 1

12
ln 2. (6.5.12)

Finally, in D = 4 dimensions, using the eq. (6.5.10), the connection (6.5.9) is

ζ ′D,4(0)− ζ ′H4(0) =
1
90

ln 2 +
17

7560
,

and it follows from (6.2.14), that

ζ ′H4(0) =
1

288
+

1
3
ζ ′R(−3)− 1

2
ζ ′R(−2) +

1
6
ζ ′R(−1). (6.5.13)



The way we have derived eqs. (6.5.11), (6.5.12) and (6.5.13) reverses the stan-
dard procedure, which uses the hemisphere result to find the answer for the
ball. The reason is that the analysis on the hemisphere is seen to be easier
than the one on the ball because the spectrum is known explicitly. Whereas
this was probably true some years ago, having the formalism of Chapter 3 at
hand, the difficulties are now equal.

Let us next consider Neumann, or more general, Robin boundary conditions.
An immediate observation is that for Neumann boundary conditions in general
we expect zero modes to occur. When P = −∆M, the constant solution is the
simplest example. We first study how these zero modes manifest themselves
in the integration of the conformal anomaly, eq. (6.5.5). By definition, the
zero modes are not included in the definition of the zeta function. Let Kε be
the projection onto the space spanned by the zero modes φ(ε)

i (x), i = 0, ..., n,
of P (ε). The proof of (6.5.5) is then modified as follows. We need to subtract
the contribution of the zero modes from the heat kernel and we write

d

dε
ζε(1; s) =

2s
Γ(s)

∞∫
0

dt ts−1
{

Tr L2(M)

(
Fe−tP (ε)

)
− Tr L2(M)(FKε)

}
.

From here, the corrected anomaly equation follows directly,

W̃ [P (1), P ] = 2

1∫
0

dεaD/2(F, P (ε),B(ε))

−2
n∑
i=0

1∫
0

dε

∫
M

dx |g(ε)|1/2φ(ε)
i (x)∗F (x)φ(ε)

i (x), (6.5.14)

where the Riemannian volume element |g(ε)|1/2 has been written explicitly to
remind us that g(ε) is to be used.

Based on this observation regarding the zero modes, let us now apply
eq. (6.5.14) to Robin boundary conditions. We continue to use W [P (1), P ]
for the above relation without the zero mode correction.

The coefficient aD/2(F, P,B+) contains characteristic differences from the
Dirichlet case, and in addition the influence of S has to be taken into account.

Starting again with two dimensions, we find

W [P (1), P ] =
1
12


∫
M

dx Tr V (F [6E +R−∆F ]) (6.5.15)

+
∫
∂M

dy Tr V (F [2K + F;m + 12S]− 3F;m)

 ,

                      



whereas in three dimensions the answer is

W [P (1), P ] =
1

768π

∫
∂M

dy Tr V
{
F
[
96Ê + 4R− 8Rmm + 16F;mm

+16F;mK +K2 + 2KabK
ab − 16∆F + 192Ŝ2

]
(6.5.16)

+6F;mF;m + 24F;mm + 18F;mK − 96F;mŜ
}
.

Here we introduce

Ŝ = S +
D − 2

2(D − 1)
K, Ŝ(ε) = e−εF Ŝ, (6.5.17)

and a purely geometrical choice is Ŝ = 0, that is

S = − D − 2
2(D − 1)

K. (6.5.18)

This particular value of S is important in the study of the Yamabe problem
on manifolds with boundary; see [176].

As before for Dirichlet boundary conditions, eq. (6.5.16) slightly simplifies
if interior quantities are used. We find

W [P (1), P ] =
1

768π

∫
∂M

dy Tr V
{
F
[
96Ê + 4R∂M + 6KabK

ab

−3K2 − 16∆∂MF + 192Ŝ2
]

+6F;mF;m + 24F;mm + 18F;mK − 96F;mŜ
}
.

Finally, in D = 4 dimensions the general answer reads

W [P (1), P ] =
1

2880π2

 ∫
M

dx Tr V
{
2F
(
RijklR

ijkl −RijR
ij + ∆R

)
+4RklF;kF;l − 4(F;lF;

l)2 − 8F;lF;
l∆F − 6(∆F )2

}
+
∫
∂M

dy Tr V

{
F

(
32
3
KabK

b
cK

ac − 8KKabK
ab +

8
9
K3

−4RabKab − 4KRmm + 16RambmKab − 2R;m

)
+F;m

(
4
3
K2 − 12KabK

ab + 12∆F + 8F;lF;
l

)
−4KF;mF;m −

16
3
F;mF;mF;m − 16K∆F

−20KF;lF;
l + 4KabF;aF;b − 30∇m

(
∆F + F;lF;

l
)}]



+
1

48π2

∫
M

dx Tr V

(
3FÊ2 + ÊF;lF;

l + Ê∆F +
1
2
ΩijΩij

)

+
∫
∂M

dy Tr V
(
−3FÊ;m − 4ÊF;m − 2ÊFK + 12ÊF Ŝ

)
+

1
720π2

∫
∂M

dy Tr V
(
30F;lF;

lŜ − 12F;mF;mŜ − 8F;mKŜ − 4FK2Ŝ

+12FŜKabK
ab + 30Ŝ∆F − 60F;mŜ

2 + 120FŜ3
)
. (6.5.19)

Let us use these results again to relate determinants on the ball and on the
hemisphere. We concentrate on the geometrical choice (6.5.18) and we start
with D = 2. In this case, we deal with Neumann boundary conditions of the
pure Laplacian and the constant solution is a zero mode φ(ε)

0 (x). Let

Vol(Mε) =
∫
M

dx|g(ε)|1/2

be the volume of M in the metric g(ε). The normalized zero mode then reads

φ
(ε)
0 (x) =

1√
Vol(Mε)

and its contribution to (6.5.14) is easily determined,

−2

1∫
0

dε

∫
M

dx|g(ε)|1/2 F (x)
Vol(Mε)

= −
1∫

0

dε
d

dε
lnVol(Mε)

= − lnVol(M1) + lnVol(M0).

For the example considered, ln Vol(H2)− lnVol(B2) = ln 2, and written out,
eq. (6.5.14) shows

ζ ′R,2(0, 0)− ζ ′H2(0) = −1
3

+
2
3

ln 2,

which proves, together with eq. (6.2.23) for the ball,

ζ ′H2(0) = −1
4

+ 2ζ ′R(−1)− 1
2

ln(2π).

In D = 3 the connection is

ζ ′R,3(0, 0)− ζ ′H3(0) =
5
32
,

where the geometric choice

S(ε) = −1
4
K(ε),



corresponds on the ball to u = 1 − 3/2 +K(1)/4 = 0. In fact, this is true in
any dimension D, because

u = 1− D

2
+

D − 2
2(D − 1)

K(1) = 0.

From the ball result (6.2.19), we then derive

ζ ′H3(0) = −1
8
− 1

6
ln 2− 3

4
ζ ′R(−2)− 1

2
ζ ′R(−1).

As a last example, in D = 4 we find

ζ ′R,4(0, 0)− ζ ′H4(0) =
1
90

ln 2− 1
1080

,

such that with eq. (6.2.20) we derive

ζ ′H4(0) =
1

288
+

1
3
ζ ′R(−3) +

1
2
ζ ′R(−2) +

1
6
ζ ′R(−1).

The results on the hemisphere are known of course and can be found, e.g., in
[71]. In this reference, results analogous to (6.5.5) also have been derived for
more general differential operators.

6.6 Concluding remarks

In this chapter we have presented direct and indirect approaches to the cal-
culation of determinants of Laplace-type operators. Whereas one-dimensional
examples are comparatively simple, even for cases with potential, see eq. (6.1.7),
considerations in higher dimensions are considerably more complicated due
to the multiple summations involved. Based on the formulation presented in
Chapter 3 we were able to overcome the pertinent problems for the Laplacian
on a specific class of geometries. Clearly, the approach used is not restricted to
this geometry; further examples and comments on the relevance of the results
are given in the Conclusions. In the presence of potentials progress is possible
by expressing the determinant through related scattering data. This is further
elucidated in Chapter 8.

Finally we have presented an indirect method for the calculation of determi-
nants based on its transformation properties under conformal variations. As
an example we derived the hemisphere determinant from the ball result. But
the hemisphere is of course just one example that might be analyzed in this
fashion. Using the same ideas, various other geometries such as the spherical
cap and further regions of the sphere and the plane can be dealt with; see,
e.g., [138, 141, 137].

                      



In physics, eq. (6.5.5) or related ones have been used to analyze the trans-
formation properties of the effective action, as, e.g., in quantum field theories
in curved space times [49, 51, 85, 238, 86, 87], in finite temperature theories
in static space times [152, 153, 264], and in the analysis of finite size effects
[125, 420]. Furthermore, the relation is crucial to proof certain extremal prop-
erties of determinants [67, 336].



Chapter 7

Casimir energies

7.0 Introduction

Calculations of Casimir energies in spherically symmetric situations have
attracted the interest of physicists for well over thirty years now. Since the
calculation of Boyer [63], who computed the Casimir energy for a conducting
spherical shell and found a repulsive force, many different situations in the
spherically symmetric context have been considered. For example, dielectrics
have been included [373] and used later on for possible explanations of sono-
luminescence [313, 314, 290, 77, 37]. Moreover, the MIT bag model in QCD
attracted enormous interest [108, 107, 82, 81, 307, 308, 306, 309, 27, 165, 193,
192, 191, 181, 246, 245], and the influence of different boundary conditions
also has been considered in detail [56, 285, 328].

It is the aim of this chapter to apply the results obtained in Chapter 3 to
the calculation of Casimir energies. Given the systematic approach developed
there, we can provide results for virtually any possible situation that can
arise concerning spherically symmetric boundaries. So (in principle) arbitrary
dimension and scalars, spinors and the electromagnetic field are dealt with
and the dependence of the Casimir energy on the parameters of the theory
as, e.g., the mass of particles is determined [56, 165, 110].

Explicit calculations will be done only on the ball; thus, the boundary is a
spherical shell. Other examples showing the dependence of the Casimir energy
on the coupling constant ξ, see eq. (3.2.7), or on the base chosen (take, e.g., a
torus instead) can be treated along the same lines. Then, a numerical analysis
of more general Barnes zeta functions or Epstein zeta functions would be
called for.

The literature on the Casimir effect is very extensive. Two books dedicated
to the subject are [324, 310]. Here we provide an alternative approach to
the Casimir energy by using the zeta function regularization instead of the
Green’s function approach. Further references, to some extent concerned with
the Casimir effect, are [88] in hyperbolic space times and [171, 164] in the
presence of flat boundaries. Finally, let us mention the report [344].

                      



7.1 Scalar field

Let us first describe the calculation of Casimir energies for massless fields.
As we did in Chapter 2 we take as a definition

ECas =
µ2s

2
ζ(s− 1/2)|s=0. (7.1.1)

For the discussion of some features of the calculations and results, to be spe-
cific let us consider D = 3 dimensions and Dirichlet boundary conditions for
the scalar field inside the spherical shell. This simple example contains already
a severe problem inherent in most of these considerations.

First of all, as we saw in eq. (2.1.29), the Casimir energy has an ambiguity
proportional to the heat kernel coefficient a2, which, in this case, is a2 =
−2/(315

√
πa) with a the radius of the shell. Thus by definition we have

ECas =
1
2

[
FPζ(−1/2) +

1
315πa

(
1
s

+ lnµ2

)]
. (7.1.2)

As we have argued, in addition to the zero point energy given in (7.1.2),
we need to include a classical system into the theory which enables us to
renormalize the divergent energy, see, e.g., [50, 134]. The description of the
system in this case is very simple. It consists of a spherical surface (“bag”) of
radius a and its energy needs to contain, at a minimum, the term

Eclass =
h

a
.

This allows us to absorb the pole term in (7.1.2) into a redefinition of h,

h̃ = h+
1

630πs
.

By this prescription the Casimir energy is rendered finite. However, by dimen-
sional reasons the FPζ(−1/2) clearly also will have a (1/a)-dependence. As
we will explain below, in D = 3 we obtain (for a = 1) FPζ(−1/2) = 0.0088,
and the total energy reads

Etot =
1
a

(
0.0044 + h̃+

1
630π

ln(µa)2
)
.

The finite contribution from ECas which could be viewed as a genuine result
of the calculation of the ground-state energy cannot be distinguished from the
classical part and its calculation does not have a predictive power. The only
outcome of the calculation is the contribution containing ln(µa)2, which can
be used to analyze the scaling behavior of the Casimir energy [50]. However,
to get this term no detailed calculation is necessary; the known heat kernel
coefficients are sufficient.

The situation improves if the scalar field is considered in the whole space

                      



because then ECas will be finite at least for some situations. To see this, again,
we only need to look at the heat kernel coefficients. The extrinsic curvature
of the sphere will have the opposite sign when viewed from inside or outside.
In D = 3 considered, a2 only contains an odd power of extrinsic curvatures
and these cancel when added from the interior and the exterior of the ball.
Clearly, this does not hold only for the spherical shell but is a general feature
for boundaries of arbitrary shape. The immediate generalization to dimension
D shows that the Casimir energy for a scalar field with Dirichlet boundary
conditions will be finite only for D odd. In these cases no renormalization is
necessary and the finite number obtained is interpreted as the Casimir energy
of the system.

This cancellation of poles occurs only for infinitely thin boundaries. Once
a finite thickness is introduced the absolute value of the extrinsic curvature
at the inner and outer sides of the boundary is different and divergences
remain. Again, the calculation has no predictive power, apart from defining
the description needed for the energy of the boundary.

What we learn from this kind of consideration, which is based only on
the knowledge of the heat kernel coefficients, is that before actually doing a
detailed calculation of finite parts, it is possible to see if there are poles, and
if there are, to make sure that the calculation to be done is not empty in the
sense explained above. This will be the guiding principle for the presentation
of explicit results here and we will consider only situations where at least when
considering the whole space, for some dimensions, a finite result is found. As
we will see, for Robin boundary conditions this restricts considerably the range
of possible S values.

After these general remarks let us come to the application of the results
of Section 3.2 to the calculation of Casimir energies. In order to clearly see
the cancellation of poles and to see the magnitude of the energy coming from
inside and outside, we will consider the following models separately, consisting
of the classical part given by the surface and

(i) the quantized field in the interior of the surface,

(ii) the quantized field in the exterior of the surface,

(iii) the quantized field in both regions together,

respectively.
For model (i), all analytical work is already done and by subtracting N ≥

D terms, eqs. (3.2.12)—(3.2.15) provide the analytical continuation of the
relevant zeta function to s = −1/2. The part (we choose N = D)

Z(−1/2) = − 1
π

∑
d(ν)

∞∫
0

dz (zν)
∂

∂z

(
ln
(
z−νIν(zν)

)

                      



− ln
[
z−ν√
2πν

eνη

(1 + z2)
1
4

]
−

D∑
n=1

Dn(t)
νn

)

=
1
π

∑
d(ν)ν

∞∫
0

dz

(
ln (Iν(zν)) (7.1.3)

− ln
[

1√
2πν

eνη

(1 + z2)
1
4

]
−

D∑
n=1

Dn(t)
νn

)
,

is finite by construction and has to be calculated numerically. In practice we
calculate only a finite number of terms in the angular momentum sum such
that, e.g., an accuracy of 10−5 is achieved. The asymptotic contributions,
eqs. (3.2.13)—(3.2.15), consist only of Γ-functions and (as repeatedly empha-
sized) Hurwitz zeta functions, both of which can be expanded about s = −1/2
such that residues and finite parts at s = −1/2 are known. In fact, all needed
algebraic manipulations are a routine machine matter. However, to exemplify
the kind of results obtained let us give some details for D = 3. As already
stated, for this case the base zeta function is simply ζN (s) = 2ζH(2s−1; 1/2),
and the single contributions to the Casimir energy read (use directly (3.1.26)),

A−1(−1/2 + s) =
1
πa

{
7

1920

[
1
s

+ ln a2

]
+

7
1920

+
1

160
ln 2

+
7
8
ζ ′R(−3)

}
+O(s),

A0(−1/2) = 0,

A1(−1/2 + s) =
1
πa

{
1

192

[
1
s

+ ln a2

]
− 1

36
− 1

8
ζ ′R(−1)

}
+O(s),

A2(−1/2) = 0,

A3(−1/2 + s) =
1
πa

{
− 229

40320

[
1
s

+ ln a2

]
+

269
7560

− 229
20160

γ − 229
6720

ln 2
}

+O(s), (7.1.4)

the numerical evaluation of which is easily done, e.g., by Mathematica. To-
gether with (7.1.3) evaluated for D = 3, we find

ECas =
1
a

(
0.0044 +

1
630π

[
1
s

+ ln(µa)2
])

,

which is equivalent to eq. (7.1.2).
In general, D asymptotic terms are included and the derivative of the Rie-

mann zeta function appears at more arguments, but the appearance is ex-
actly the same. As explained in Chapter 6, the case D = 2 needs the special
treatment provided there. As mentioned and as is clear, everything can be
completely automated and a list of results is given in Table 7.1. As we know,

                      



D ζ(−1/2) interior            ζ(−1/2) exterior

2 +0.0098540− 0.0039062/ε      −0.0084955− 0.0039062/ε

3 +0.0088920 + 0.0010105/ε       −0.0032585− 0.0010105/ε

4 −0.0017939 + 0.0002670/ε   +0.0004544 + 0.0002670/ε

5 −0.0009450− 0.0001343/ε   +0.0003739 + 0.0001343/ε

6 +0.0002699− 0.0000335/ε   −0.0000611− 0.0000335/ε

7 +0.0001371 + 0.0000214/ε     −0.0000555− 0.0000214/ε

8 −0.0000457 + 5.228× 10−6/ε   +0.0000101 + 5.228× 10−6/ε

9 −0.0000230− 3.769× 10−6/ε   +0.0000094 + 3.769× 10−6/ε

D  Casimir Energy

2  +0.0006793− 0.0039062/ε

3  +0.0028168
4  −0.0006698 + 0.0002670/ε

5  −0.0002856
6  +0.0001044− 0.0000335/ε

7  +0.0000408

8  −0.0000178 + 5.228× 10−6/ε

9  −0.0000068

Table 7.1 Scalar field with Dirichlet boundary conditions.Values of the zeta function
at s = −1/2 inside and outside a spherical shell and values of the Casimir energy.

Note the presence of the cutoff ε for all even dimensions. In such cases, the Casimir

energy is divergent and has to be renormalized.

                      



the poles are proportional to the heat kernel coefficients, see eq. (2.1.17), but
are given as digitals for convenience. The D = 2 and D = 3 results for the
Casimir energy are given, e.g., in [285].

Let us now come to the contributions of the exterior space, which is needed
to find finite Casimir energies at least in odd dimensions D when the whole
space is considered. The exterior space to the ball is infinite and the spec-
trum of the Laplacian will be continuous. The resulting zeta function is easily
and perhaps best obtained within a formulation of these continuous states as
scattering states. This will be systematically developed in Chapter 8 in the
context of external potentials and we postpone the derivation of the following
results to this chapter because then a few comments will be sufficient to derive
everything needed here. Actually, the transition from the zeta function of the
interior space to the zeta function of the exterior space (with the Minkowki-
space contribution subtracted) is simply done by replacing the Bessel function
Iν by the Bessel function Kν . The procedure applied in Chapter 3 thus re-
mains unchanged for the exterior zeta function. The asymptotic expansion
applied instead of eq. (3.1.10) is now,

Kν(νz) ∼
√

π

2ν
e−νη

(1 + z2)1/4

[
1 +

∞∑
k=1

(−1)k
uk(t)
νk

]
. (7.1.5)

The characteristic changes of sign compared to eq. (3.1.10) have the conse-
quence that between the asymptotic contributions of the exterior, Aexti (s),
and the interior, Ai(s), see eq. (7.1.4), we have the relation

Aexti (s) = (−1)iAi(s). (7.1.6)

For D = 3 this shows immediately the cancellation of poles, see eq. (7.1.4),
which appears in the same way for all odd dimensions D. Again, a list of
results for the exterior space is given in Table 7.1, together with the results
for the whole space. The result for the exterior space in D = 3 is given in
[285], and the whole space result for D = 3 is that in [285, 43, 328].

For odd dimensions, D = 2n − 1, the sign of the Casimir energy seems to
be determined by the sign of (−1)n. For even dimensions, D = 2n, we also
find the alternating structure (−1)n+1 of the finite part of the Casimir energy;
however, its interpretation is unclear due to the presence of the pole. Similar
comments hold for the interior and exterior contributions separately with the
same problems of interpretation.

Having dealt with Dirichlet boundary conditions, Robin boundary condi-
tions are solved by the analogy explained already for the zeta function itself.
In addition to the above expansion of Kν(νz) here we also need

K ′
ν(νz) ∼ −

√
π

2ν
e−νη

(1 + z2)1/4

z

[
1 +

∞∑
k=1

(−1)k
vk(t)
νk

]
,

to compare with the expansion (3.2.17). It is easily shown that the relation
(7.1.6) remains true also for Robin boundary conditions. In summary, the

                      



D  ζ(−1/2) interior             ζ(−1/2) exterior

2  −0.3446767− 0.0195312/ε   −0.0215672− 0.0195312/ε

3  −0.4597174− 0.0353678/ε   +0.0120743 + 0.0353678/ε

4  −0.5153790− 0.0447159/ε    −0.0060394− 0.0447159/ε

5  −0.5552071− 0.0489213/ε   +0.0030479 + 0.0489213/ε

6  −0.5949395− 0.0513727/ε     −0.0128321− 0.0513727/ε

D   Casimir Energy

2    −0.1831220− 0.0195312/ε

3   −0.2238215
4   −0.2607092− 0.0447159/ε

5   −0.2760796
6   −0.3038858− 0.0513727/ε

 Table 7.2  Scalar field with Neumann boundary conditions. (Robin with the choice
S = 0). Values of the zeta function at s = −1/2 inside and outside a spherical shell

and values of the Casimir energy.

Casimir energy may be calculated for an arbitrary Robin parameter S; see
eq. (3.2.9) and following. As explained, we want to choose the parameter S
in such a way, that, at least for D odd, finite Casimir energies evolve. By
inspecting the heat kernel coefficients we see that this will happen for S = 0
corresponding to Neumann boundary conditions. However, for general values
of S there are terms involving S and even powers of the extrinsic curvature
which do not cancel adding up interior and exterior contributions. For that
reason we restrict our attention to S = 0. Some results are listed in Table 7.2.
For D = 2 the result is given in [285], for D = 3 in [328]. For the dimensions
used the Casimir energy is negative.

                      



7.2 Spinor field with global and local boundary condi-
tions

As a next application let us come to the Casimir energy for a fermionic quan-
tum field. The most often used boundary condition is the MIT bag boundary
condition, which guarantees that no quark current is lost through the bound-
ary. In detail we must solve the equation

Hψn(~r) = Enψn(~r),

with the Hamiltonian

H = γ0γj∇j , (7.2.1)

and the boundary condition

[1 + iγr]ψn|r=1 = 0. (7.2.2)

This problem is solved in much the way as presented in Section 3.3 by a sep-
aration of variables. Details are given already in textbooks and we refer, e.g.,
to [225]. The implicit eigenvalue equation found is identical to (3.3.12). Thus
the zeta function is the one given in Section 3.3 and its value about s = −1/2
can be calculated starting with eqs. (3.3.14) and (3.3.15) as was explained in
some detail for Dirichlet boundary conditions. Again, in principle arbitrary
dimension D can be dealt with. The comments for the exterior space, namely
the replacement of Iν by Kν also remains true here and everything parallels
what already has been said. We thus state without further descriptions Ta-
ble 7.3 containing all results calculated. The D=3 result is the one given by
Milton [309].

As a last example we apply the results of Section 3.3 to the calculation of
Casimir energies for global boundary conditions. All results found are listed
in Table 7.4.

7.3 Electromagnetic field with and without medium

For completeness let us also give some results for the electromagnetic field;
actually, all calculations needed already are done. As is known [63, 385], the
superconductor boundary conditions for the TE modes reduce to Dirichlet
boundary conditions and for the TM modes the result is a Robin condition
with the specific parameter u = D/2 − 1 or S = 2 − D (with the exception
of D = 2 where the electromagnetic field is equivalent to one scalar field with
Neumann boundary condition). The only difference compared to the scalar

                      



D  ζ(−1/2) interior         ζ(−1/2) exterior

2  −0.0058312 + 0.0078125/ε   +0.0213677 + 0.0078125/ε

3  −0.0605944− 0.0050525/ε   +0.0198217 + 0.0050525/ε

4  +0.0059074− 0.0028381/ε     −0.0101965− 0.0028381/ε

5  +0.0250447 + 0.0025110/ε     −0.0089912− 0.0025110/ε

6  −0.0030244 + 0.0011715/ε   +0.0046183 + 0.0011715/ε

7  −0.0108618− 0.0011745/ε   +0.0040247 + 0.0011745/ε

D  Casimir Energy

2  −0.0077683− 0.0078125/ε

3  +0.0203863
4  +0.0021445 + 0.0028381/ε

5  −0.0080268
6  −0.0007969− 0.0011715/ε

7  +0.0034186

Table 7.3 Massless spinor field with mixed boundary conditions.Values of the zeta
function at s = −1/2 inside and outside a spherical shell and values of the Casimir

energy.

field already discussed is that here the contribution of the l = 0 mode has
to be omitted. Proceeding as described the following Table 7.5 of results is
obtained. As said, D = 2 is the Neumann result, D = 3 is the well-known
figure first obtained by Boyer [63] and later established in [311, 31].

Instead of having boundaries, we can also imagine having dielectrics and
consider their influence on the electromagnetic field fluctuations. As men-
tioned in the Introduction, this has been subject of considerable research
[373, 306, 369, 370, 372, 371, 160, 159, 313, 314, 98, 97, 319, 79, 75, 76], recently
in connection with sonoluminescence. To describe this phenomenon in a few
words, in the experiment a small bubble of air or other gas (of radius approx-
imately 10−3 cm) is injected into water, and subjected to an intense acoustic
field. If parameters such as frequency and pressure are carefully chosen, the

                      



D  ζ(−1/2) interior            ζ(−1/2) exterior

2  −0.0093152 + 0.0319762/ε   +0.0100172 + 0.0319762/ε

3  −0.1710212− 0.0037705/ε   +0.0019763 + 0.0037705/ε

4  +0.0082635− 0.0118316/ε     −0.0040473− 0.0118316/ε

5  +0.0680217 + 0.0019471/ε   −0.0009007− 0.0019471/ε

6  −0.0042224 + 0.0049069/ε   +0.0017603 + 0.0049069/ε

7  −0.0290717− 0.0009256/ε   +0.0003983 + 0.0009256/ε

8  +0.0020298− 0.0021417/ε   −0.0007907− 0.0021417/ε

9  +0.0128994 + 0.0004353/ε   −0.0001787− 0.0004353/ε

D  Casimir Energy

2  −0.0003510− 0.0319762/ε

3  +0.0845225
4  −0.0021081 + 0.0118316/ε

5  +0.0335605
6  +0.0012311− 0.0049069/ε

7  +0.0143367
8  −0.0006196 + 0.0021417/ε

9  −0.0063604

Table 7.4 Massless spinor field with global spectral boundary conditions. Values of
the zeta function at s = −1/2 inside and outside a spherical shell and values of the

Casimir energy.

                      



D  ζ(−1/2) interior            ζ(−1/2) exterior

2  −0.3446767− 0.0195312/ε   −0.0215672− 0.0195312/ε

3  +0.1678471 + 0.0080841/ε    −0.0754938− 0.0080841/ε

4  0.5008593 + 0.0231719/ε      −0.1942082− 0.0564056/ε

5  +1.0463255 + 0.1838665/ε   −0.2981425− 0.1838665/ε

D  Casimir Energy

2  −0.1831220− 0.0195312/ε

3  +0.0461767
4  0.1533255− 0.0332337/ε

5  0.3740915

Table 7.5 Electromagnetic field in a perfectly conducting spherical shell. Values of
the zeta function at s = −1/2 inside and outside a spherical shell and values of the

Casimir energy. It has to be noted that in even dimensions, in contrast with the
scalar field, the divergences between the inside and outside energies are different.
This is due to the fact that (only in even dimensions) the l = 0 mode explicitly

contributes to the poles of the ζ-function and such a contribution is absent for the

electromagnetic case.

repetitively collapsing bubble emits an intense flash of light at minimum ra-
dius. In the static approximation the relevant situation is thus a spherical
region of radius a (the gas), having permittivity ε1 and permeability µ1, sur-
rounded by an infinite medium (water) of permittivity ε2 = 1 and permeability
µ2 = 1. Explicit calculations are mostly done in the so-called dilute approxi-
mation, where the two media are assumed to have nearly equal velocities of
light. In this approximation Casimir energies are calculated and finite results
extracted. Some of the schemes used give finite values, others give divergences
of very simple type allowing for a physically reasonable interpretation in terms
of pressure or surface tension. Although we are not going to discuss in detail
whether the Casimir effect can serve as an explanation of sonoluminescence
or not (for an ongoing controversy see [313, 314, 98, 97, 319]), we want to
discuss some very basic issues connected with this type of consideration [62].
As we argued in Section 7.1, the first thing to study is the structure of the

                      



divergences which are going to appear. This is an immediate application of
the method described in Chapter 3. This becomes clear on stating the implicit
eigenvalue equations for the electromagnetic field in the presence of the above
configuration of a medium [385]. These equations are

∆TE
l (ka) =

√
ε1µ2s

′
l(k1a)el(k2a)−

√
ε2µ1sl(k1a)e′l(k2a),

∆TM
l (ka) =

√
ε2µ1s

′
l(k1a)el(k2a)−

√
ε1µ2sl(k1a)e′l(k2a), (7.3.1)

with the notation

sl(x) =
√
πx

2
Il+1/2(x), el(x) =

√
2x
π
Kl+1/2(x),

and with k1,2 = k
√
ε1,2µ1,2. Using these implicit eigenvalue equations for k as

a starting point of the calculation via the complex contour integral represen-
tation, we can calculate divergences and finite parts for whatever values of ε1,2
and µ1,2. However, it turns out that the divergences are so complicated that
any interpretation of the “classical energy” for the medium seems impossible
[62]. Restricting ourselves to a dilute medium, which technically means that
the result is expanded up to quadratic terms in the difference (c1 − c2) of
the velocities of light, the pole structure is simple and different methods have
been shown to yield the same answers [77, 37]. The answer reads, in the dilute
approximation,

ECas =
23

1536πa
(ε1 − 1)2 , (7.3.2)

and predicts a repulsive force. The fact that this result agrees with the sum
of retarded von der Waals forces [77] seems to demonstrate the irrelevance of
the Casimir effect to the light production in sonoluminescence [305].

Recently attempts have been made to include dispersive behavior of the
medium. As a result of dispersion, the larger the frequency, the more trans-
parent the medium. As a simple model we can consider, e.g.,

ε(k) = 1− Ω2

k2
(7.3.3)

as it follows in the high-frequency approximation of the Drude model. The
parameter Ω summarizes properties of the medium and is usually referred to
as the effective plasma frequency. The dispersion relation (7.3.3) guarantees
that for k → ∞ every medium becomes transparent. In case one medium
is embedded in another, as described in the setting of sonoluminescence, we
would expect that the pole structure of the Casimir energy simplifies. This is
in fact the case and possibly realistic dispersion relations might be incorpo-
rated into Casimir energy calculations. Given the implicit eigenvalue equation
(7.3.1) remains valid for frequency-dependent dielectric constants, the tech-
niques described supposedly will turn out to be useful also in this context.

                      



7.4 Massive scalar field

We now start to analyze the influence that the mass of a field has on the
Casimir energy [56]. In this case there is a conceptional advantage for the
definition of the Casimir energy in that the classical part and the quantum
part can be separated (at least in principle). The basis for the separation of
these two parts is the expectation that the quantum fluctuation of a quantum
field, the mass of which tends to infinity, should die out. In other words, in
the limit of infinite mass, the quantum contribution to the Casimir energy
should vanish. This, as we will see, provides a unique definition. At least for
the scalar field this is also implemented relatively easily, because the m→∞
behavior of ECas can be found from the heat kernel only. This is due to the
factorization

K(t) = e−m
2tKB(t),

with KB(t) the heat kernel of minus the Laplacian −∆B on the ball. This
allows us to write the m→∞ asymptotic expansion of ζ(α) directly in terms
of the heat kernel coefficients al of −∆B on the ball, see eq. (2.1.12),

ζ(α) =
1

Γ(α)

∞∫
0

dt tα−1e−m
2tKB(t)

∼ 1
Γ(α)

∞∑
l=0,1/2,1,...

al
Γ(α+ l − 3/2)
m2(α+l−3/2)

. (7.4.1)

Of interest is the expansion about α = −1/2, which reads

ζ(−1/2 + s) = − m4

4
√
π
a0

(
1
s
− 1

2
+ ln

[
4µ2

m2

])
− 2m3

3
a1/2

+
m2

2
√
π
a1

(
1
s
− 1 + ln

[
4µ2

m2

])
+ma3/2 (7.4.2)

− 1
2
√
π
a2

(
1
s
− 2 + ln

[
4µ2

m2

])
+O(1/m) +O(s).

This defines the terms to be subtracted, such that the normalization

lim
m→∞

ErenCas = 0, (7.4.3)

is satisfied. One might object that the terms with odd powers in the mass
are not divergent and thus there is no reason to renormalize them. However,
this behavior is specific to the zeta function regularization and in other reg-
ularizations such as proper time cutoff [50] or exponential cutoff [45], the
analogous contributions are divergent. It is thus reasonable, and in order to
impose (7.4.3) necessary, to include these terms into the renormalized ones.



In this way we arrive at the following definition of the renormalized Casimir
energy,

ErenCas = ECas − EdivCas (7.4.4)

with

EdivCas = − m4

8
√
π
a0

(
1
s
− 1

2
+ ln

[
4µ2

m2

])
− m3

3
a1/2

+
m2

4
√
π
a1

(
1
s
− 1 + ln

[
4µ2

m2

])
+

1
2
ma3/2

− 1
4
√
π
a2

(
1
s
− 2 + ln

[
4µ2

m2

])
. (7.4.5)

To interpret the subtraction in (7.4.4) as a renormalization of bare parameters,
we need to consider a physical system which, as for the massless field, is
composed of two parts:
A classical system consisting of a spherical surface of radius a. Its energy
contains at a minimum the terms

Eclass = pV + σS + Fa+ k +
h

a
, (7.4.6)

where V = 4
3πa

3 and S = 4πa2 are the volume and surface area, respectively.
The classical energy is determined by the pressure p, the surface tension σ,
and by F , k, and h, which do not seem to have special names.
A quantized field ϕ̂(x) whose classical counterpart obeys the Klein-Gordon
equation

(2 +m2)ϕ(x) = 0,

together with suitable boundary conditions on the surface that ensure self-
adjointness of the corresponding elliptic operator on perturbations. In order
to present the analysis, we choose Dirichlet boundary conditions as the easiest
to handle.
For this system we shall again consider three models, which will behave in a
different way. As described, these models consist of the classical part given by
the surface and

(i) the quantized field in the interior of the surface,

(ii) the quantized field in the exterior of the surface,

(iii) the quantized field in both regions together,

respectively.
The heat kernel coefficients needed to impose the normalization (7.4.3) have

been calculated in Chapter 4. In the interior they are,

a
(int)
0 =

1
6
√
π
a3, a

(int)
1/2 = −1

4
a2, a

(int)
1 =

1
3
√
π
a,

                      



a
(int)
3/2 = − 1

24
, a

(int)
2 =

2
315

√
πa
,

and in the exterior, as explained,

a
(ext)
i = a

(int)
i , i =

1
2
,
3
2
, ...,

a
(ext)
i = −a(int)

i , i = 0, 1, 2, ... (7.4.7)

Thus, as seen from eq. (7.4.5), we have in each of the first two models five
divergent contributions. In the third model we note that

EdivCas,tot = EdivCas,int + EdivCas,ext

and owing to the known cancellation of divergent contributions, which is in
fact due to (7.4.7), only two of them remain.

The total energy of the system consists of the classical energy (7.4.6) and
the ground-state energy of the quantum field. So we write for the complete
energy

E = Eclass + ECas

= (Eclass + EdivCas) + ErenCas.

Writing the total energy in this way, it is apparent that the renormalization
can be achieved by simply shifting the parameters in Eclass by an amount
which cancels the divergent contributions (7.4.5). For the renormalized pa-
rameters in the first two models we have

p → p∓ m4

64π2

(
1
s
− 1

2
+ ln

[
4µ2

m2

])
, σ → σ +

m3

48π
,

F → F ± m2

12π

(
1
s
− 1 + ln

[
4µ2

m2

])
, k → k − m

96
,

h → h± 1
630π

(
1
s
− 2 + ln

[
4µ2

m2

])
, (7.4.8)

where the upper sign corresponds to the first model and the lower sign to
the second. As mentioned, for the third model only two renormalizations are
needed, which read

σ → σ +
m3

24π
, k → k − m

48
. (7.4.9)

After the subtraction of these contributions from ECas, the complete energy
becomes

E = Eclass + ErenCas,

where Eclass is given by eq. (7.4.6) with the bare constants replaced by the
above renormalized ones. In our renormalization scheme, we have defined a
unique renormalized Casimir energy ErenCas.

Now that the subtraction procedure has been fully exposed, let us come to a
full evaluation of ECas. We start with the interior region, that is, with model



(i). The equations of Section 3.1 serve as the starting point. As explained
there, with N = D = 3 the part Z(s) is finite at s = −1/2 and eqs. (3.1.14)
and (3.1.18) can be used for the numerical evaluation of ECas for (in prin-
ciple) arbitrary mass m. In the range |ma| < 1/2, the eqs. (3.1.22), (3.1.23)
and (3.1.25), provide representations for Ai(s), i = −1, 0, 1, 2, 3. Results be-
yond that range are obtained using the techniques described in Appendix D.
Possible representations for A−1(s) and A0(s) about s = −1/2 are given in
eqs. (D. 7) and (D. 8). Proceeding from eq. (3.1.24), the remaining Ai(s) have
the form

Ai(s) = −2m−2s

Γ(s)

i∑
c=0

xi,c
(ma)i+2c

Γ(s+ c+ i/2)
Γ(c+ i/2)

× (7.4.10)

f(s; 1 + 2c, c+ i/2;ma),

with

f(s; c, b; z) =
∞∑

ν=1/2,3/2,...

νc
(

1 +
(ν
z

)2
)−s−b

. (7.4.11)

The calculation of f(s; c, b; z) for the relevant values of c and b about s = −1/2
is again sketched in Appendix D. It is slightly simplified by realizing the
recurrence

f(s; c, b; z) = z2 [f(s; c− 2, b− 1; z)− f(s; c− 2, b; z)] . (7.4.12)

In summary, we have provided all analytic expressions needed for the numer-
ical evaluation of ErenCas. For the interior region of the ball, the result is shown
in Fig. 7.1 for a = 1 as a function of m. Interestingly, the result strongly
depends on the mass. Whereas for very small values of the argument, ma,
it is negative, it changes sign at some critical value and stays positive there-
after. For (ma) →∞ it tends to zero as implemented by the renormalization
procedure.

For the Casimir forces this shows that depending on the mass, attraction
as well as repulsion is possible. This emphasizes the crucial importance of the
mass in Casimir energy calculations.

The above-described behavior is in strong contrast to the example of parallel
plates [10, 344], where for a large mass the influence of the mass is exponen-
tially damped away and is thus of very short range. The origin of this different
behavior can clearly be traced to a geometrical origin. Whereas the extrin-
sic curvature of the ball does not vanish, it does vanish for the plates. As a
result, eq. (7.4.1) receives polynomial contributions from the al, whereas for
the case of the plates all coefficients vanish and only exponentially damped
contributions survive. This suggests that for curved boundaries the mass is
relevant in general and should not simply be discarded.

The dependence of ErenCas on the radius for fixed mass is depicted in Fig. 7.2.
This plot also exhibits a maximum for (ma) ∼ 0.023, and here we have re-
stricted the domain to a region around it.

                      



Figure 7.1
Plot of the renormalized vacuum energy ErenCas measured in units of
the inverse of the radius. (From M. Bordag, E. Elizalde, K. Kirsten
and S. Leseduarte, Phys. Rev. D56, 4896-4904, 1997. Copyright
(1997) by the American Physical Society. With permission.)

It is clear that the analysis also can be applied to Robin boundary conditions
as well as to arbitrary dimension D. Using a similar approach this problem
has been considered, e.g., in [362].

As explained in Section 7.1, the zero-point energy in the exterior of the
spherical surface can be calculated in a very similar manner. Using the pro-
cedure explained there, the Casimir energy is again evaluated and Fig. 7.3
shows the result obtained.

Finally, adding up both contributions, the behavior exhibited in Fig. 7.4 is
found and again the strong dependence of the energy on the mass is clearly
visible.
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Figure 7.2
Plot of the renormalized vacuum energy ErenCas measured in units of
the mass. The plot has been restricted to a domain around the
maximum value. (From M. Bordag, E. Elizalde, K. Kirsten and
S. Leseduarte, Phys. Rev. D56, 4896-4904, 1997. Copyright
(1997) by the American Physical Society. With permission.)

7.5 Massive spinor field with local boundary conditions

As a next application let us consider the Casimir energy for a massive
fermionic quantum field with the MIT bag boundary condition [165]; see
eq. (7.2.2). Because of the slight modification due to the fermion mass, we
must solve the equation

Hψn(~r) = Enψn(~r),

where the Hamiltonian is now

H = γ0γj∇j − γ0m, (7.5.1)
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Figure 7.3
Plot of the renormalized vacuum energy in units of the inverse of
the radius. (From M. Bordag, E. Elizalde, K. Kirsten and
S. Leseduarte, Phys. Rev. D56, 4896-4904, 1997. Copyright
(1997) by the American Physical Society. With permission.)

and the boundary condition as for the massless field,

[1 + iγr]ψn|r=1 = 0.

Again we can consider the model in the interior, exterior, and the whole space
and we will describe one after the other, starting with the interior of the bag.

As for the scalar field, before actually calculating ECas let us consider the
pole structure to determine which classical energy we will need to renormal-
ize the quantum contributions. This is easily done by treating the MIT bag
boundary condition as mixed boundary conditions and by using eq. (4.5.6) for
the evaluation of the pole of ζ(s) at s = −1/2. The procedure is as explained
in Section 4.6 with little modification due to the mass. First of all, in the
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Figure 7.4
The renormalized vacuum energy represented in units of the
inverse of the radius.(From M. Bordag, E. Elizalde, K. Kirsten
and S. Leseduarte, Phys. Rev. D 56, 4896-4904, 1997. Copyright
(1997) by the American Physical Society. With permission.)

notation of mixed boundary conditions the projectors read

Π± =
1
2

(1∓ iγr) ,

which means

χ = −iγr.

The same steps used in the derivation of eq. (4.6.4), but now with the Hamil-
tonian (7.5.1) and not with the Dirac operator, determine the endomorphism
S in the simple form,

S = −(1 +m)Π+.

All terms in (4.5.6) are then easily calculated by noting that the endomor-
phism E = −m2; furthermore, γr:a = Kabγ

b and Tr 1 = 4, Tr Π± = 2. As a
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result

Res ζ(−1/2) = − 1
63πR

− m

15π
+
m2R

3π
− m3R2

3π
− m4R3

6π
. (7.5.2)

Contrary to the scalar field, terms of the order m and m3 this time lead to
infinite renormalizations. Thus, without further comment, the physical sys-
tem consists again of a classical part describing the spherical surface with
an energy given by eq. (7.4.6), and of the spinor quantum field, obeying the
Dirac equation and the MIT boundary conditions on the surface, with vacuum
energy ECas.

As before, we would like to impose the normalization condition (7.4.3), but
for the spinor field the situation is considerably more complicated. Whereas for
the scalar field the implicit eigenvalue equation is independent of the mass,
the presence of the mass in the spinor case leads to a modification of the
implicit eigenvalue equation,√

E +m

E −m
Jj+1(k) + Jj(k) = 0,

and

Jj(k)−
√
E −m

E +m
Jj+1(k) = 0,

which, when combined, instead of (3.3.12) for the massless case gives

J2
j (k)− J2

j+1(k) +
2m
k
Jj(k)Jj+1(k) = 0. (7.5.3)

Here, j is the total angular momentum, j = 1/2, 3/2, ..,∞. Thus the mass
enters explicitly into the eigenvalue equation. As a result, the dependence of
the (e.g.) heat kernel on the mass is not adequately described by exp(−m2t).
Realizing that for the scalar field this factor can be obtained by summing
up all mass terms in the heat kernel expansion, it becomes evident that for
the spinor field the analogous task is very difficult because in addition to the
(E = −m2)-terms all S-terms also need to be taken into account. In fact, for
that reason the m → ∞ behavior of the Casimir energy ECas has not yet
been determined.

Now that we have described the properties following from general argu-
ments, let us give a few details for the actual calculation of the Casimir energy.

Proceeding as before, the zeta function in the interior space is given by

ζ(s) = 2
∞∑

j=1/2,3/2,...

(2j + 1)
∫
γ

dk

2πi
(k2 +m2)−s

× ∂

∂k
ln
[
J2
j (ka)− J2

j+1(ka) +
2m
k
Jj(ka)Jj+1(ka)

]
.

In order to systematically employ just the asymptotic expansion (3.1.10), one
possibility is to rewrite the above so that all Bessel functions appear with the



same index j. Deforming the contour to the imaginary axis we then find

ζ(s) =
2 sinπs
π

∞∑
j=1/2,3/2,...

(2j + 1)

∞∫
ma/j

dz

[(
zj

a

)2

−m2

]−s

× ∂

∂z
ln
{
z−2j

[
I2
j (zj)

(
1 +

1
z2
− 2ma

z2j

)
+ I ′j

2(zj)

+
2a
zj

(
m− j

a

)
Ij(zj)Ij ′(zj)

]}
.

Next we split the zeta function into the parts

ζ(s) = ZN (s) +
N∑

i=−1

Ai(s),

with the definition for ZN (s) and Ai(s) in the manner as before. With N = 3,
the suitable choice for the Casimir energy, we obtain

Z3(s) = 2
sinπs
π

∞∑
j= 1

2

(2j + 1)

∞∫
ma

j

dz

[(
zj

a

)2

−m2

]−s
×

∂

∂z

{
ln
[
I2
j (zj)(1 +

1
z2
− 2ma

z2j
) + I ′j

2(zj) +
2a
zj

(m− j

a
)Ij(zj)I ′j(zj)

]
− ln

[
e2jη(1 + z2)

1
2 (1− t)

πjz2

]
−

3∑
k=1

Dk(t)
jk

}
,

where the relevant polynomials are given by (ma = x),

D1(t) =
t3

12
+ (x− 1/4) t,

D2(t) = − t
6

8
− t5

8
+
(
−x

2
+ 1/8

)
t4 +

(
−x

2
+ 1/8

)
t3 − t2x2

2
,

D3(t) =
179 t9

576
+

3 t8

8
+
(
−23

64
+

7x
8

)
t7 + (x− 1/2) t6

+
(

9
320

− x

4
+
x2

2

)
t5 +

(
x2

2
+ 1/8− x

2

)
t4

+
(
−x

8
+

5
192

+
x3

3

)
t3, (7.5.4)

again with the characteristic form

Di(t) =
2i∑
a=0

xi,at
a+i.

The asymptotic contributions Ai(s), i = −1, ..., 3, are defined in the now



standard way as

A−1(s) =
8 sin(πs)

π

∞∑
j=1/2

j(j + 1/2)×

∞∫
ma/j

((
zj

a

)2

−m2

)−s √
1 + z2 − 1

z
,

A0(s) =
4 sin(πs)

π

∞∑
j=1/2

(j + 1/2)×

∞∫
ma/j

((
zj

a

)2

−m2

)−s
∂

∂z
ln
√

1 + z2(1− t)
z2

,

Ai(s) =
4 sin(πs)

π

∞∑
j=1/2

(j + 1/2)× (7.5.5)

∞∫
ma/j

((
zj

a

)2

−m2

)−s
∂

∂z

Di(t)
ji

,

with characteristic differences to the corresponding scalar ones. Results for
A−1(s) and A0(s) are again derived in Appendix D. For Ai(s), i ≥ 1, we find
in the way described for the scalar field,

Ai(s) = −4m−2s

Γ(s)

2i∑
b=0

xi,b
(ma)i+b

Γ(s+ (i+ b)/2)
Γ((i+ b)/2)

× (7.5.6)[
f(s; 1 + b, (i+ b)/2;ma) +

1
2
f(s; b, (i+ b)/2;ma)

]
,

analytic continuation to s = −1/2, which can be found in Appendix D.
These expressions in principle allow for a numerical analysis of ECas. The

infinite renormalization necessary is accounted for by a kind of minimal sub-
traction achieved through the renormalization of the phenomenological pa-
rameters α = {p, σ, F, k, h},

p → p− m4

16π2

1
s
, σ → σ − m3

24π2

1
s
,

F → F +
m2

6π
1
s
, k → k − m

30π
1
s
, (7.5.7)

h → h− 1
126π

1
s
.

As emphasized, the quantities α are a set of free parameters of the theory
to be determined experimentally. In principle we are free to perform finite
renormalizations at our choice of all these parameters. Given that the m→∞



behavior of ECas is not known, there is no way to fix the set of parameters
α further. With the information at hand, the best we can achieve is to write
the complete energy as

E = Eclass + ErenCas, (7.5.8)

where Eclass is defined as in (7.4.6) with the renormalized parameters α,
eq. (7.5.7), and ErenCas is obtained from ζ(−1/2) once the poles, eq. (7.5.2),
have been subtracted. Given that there are five free parameters, the energy
as a function of the radius of the bag might have any shape by varying α and
it does not make too much sense to present a numerical analysis.

In principle, the analysis presented could be used in order to investigate
the influence of the quark masses on the hadronic mass spectrum. This would
allow for a numerical fitting procedure of the parameters α and would resolve
the finite renormalization ambiguity. To get a general idea consider the pro-
cedure described in detail in [122]. Within the bag model, masses and other
parameters of the light hadrons are determined as follows. The mass of a
hadron in these models is composed of several terms,

Mh(a) = EV + ECas + EQ + EM + EE , (7.5.9)

the meaning of which is as follows. The volume energy EV = pV describes the
energy due to the (bag) pressure of the surface of radius a. The Casimir or
zero-point energy is assumed to consist only of a term ECas = −Z0/a with Z0

an unknown numerical multiplier. The contribution EQ takes into account the
bound state energies of the quarks which build up the hadron. Here it is simply
assumed that the quarks in the bag occupy the lowest energy level found from
(7.5.3) and these values are summed up for each quark. Finally, EM and EE
are the color magnetic, respectively, color electric parts of the gluon exchange
energy between these quarks. Roughly speaking, properties of several hadrons,
which are determined experimentally, are used to fit the unknown multipliers
involved in eq. (7.5.9), as there are, e.g., p and Z0. Once the multipliers are
determined, the eq. (7.5.9) can be used to predict further hadron masses
and to check consistency of the model by comparing the predictions with
experiment. For the light hadrons the predictions are in good agreement with
experiment. In order also to fit heavier hadrons is seems reasonable that the
mass of the quarks might play a role. In this case the calculation of the present
chapter suggests using instead of EV and ECas given above a subtler model to
describe the bag, namely the model (7.4.6). So in this case five free parameters
instead of just two are involved in EV and the fitting procedure becomes more
involved. In addition, ECas is replaced by ErenCas as described just following
eq. (7.5.8).

After having explained this possible application of the presented calculation
let us consider the region exterior to the bag. The analysis is quite similar to
the one carried out for the interior region and, as explained, consists of re-
placing Ij by Kj . Again, the analogous definitions to eqs. (7.5.4) and (7.5.5)
are possible and the calculation proceeds as described previously. However,



given that, as explained, we are not able to determine the quantum contri-
bution to the energy and that with the five free parameters of the classical
energy the plot of the renormalized vacuum energy can take on any shape
desired, we restrict ourselves here to the specific changes that arise when dis-
cussing the renormalization. This is most easily done by calculating the a2

heat kernel coefficient for the exterior space (with the Minkowski contribu-
tion subtracted). Essentially the only change is that the exterior normal has
opposite sign compared to the interior calculation. As a result

Π± =
1
2
(1± iγr),

which means

χ = iγr,

and finally

S = (1−m)Π+.

Eq. (4.5.6) then gives

Res ζ(ext)(−1/2) =
1

63πa
− m

15π
− m2a

3π
− m3a2

3π
+
m4a3

6π
. (7.5.10)

Thus the minimal set of counterterms necessary in order to renormalize the
theory in the exterior of the bag is identical to the one in the interior of the
bag.

The divergences with even powers of a do not annihilate when adding up
the two contributions from the two sides. In fact, for the zeta function corre-
sponding to the whole space (internal and external to the bag) we obtain:

Res ζ(−1/2) = Res ζ(int)(−1/2) + Res ζ(ext)(−1/2)

= − 2m
15π

− 2m3a2

3π
, (7.5.11)

therefore, the two free parameters σ and k remain even if the whole space is
considered. The only exception is the massless field where the two (potentially)
divergent contributions vanish. As a result a finite ground-state energy ECas
remains and no renormalization process is necessary. In that case our result
for the energy ECas is the result given in Section 7.2.

Within applications to the bag model we should mention that the inclusion
of high-energy exterior modes is not unreasonable given that at high enough
energies we expect quantum chromodynamics to show a phase transition to an
“unconfined” plasma. One is left with the need to cut out low-energy exterior
modes, as described, e.g., in [409] for the massless quark field. However, given
the complexity of the energy of massive particles, we are still a bit far from
comparing the calculations with a realistic physical situation. But qualita-
tively similar situations, namely the occurrence of several divergences and the
problem of their renormalization, also begin to appear in more phenomeno-

                      



logical considerations, see, e.g., [283].

7.6 Concluding remarks

In this chapter we have concentrated on the application of the techniques
developed in Chapter 3 to spherically symmetric boundaries. Along the same
lines it is possible to consider cylindrical boundaries; some pertinent references
are [359, 276, 219, 327, 329, 280, 312]. A specific result worth mentioning is
that for a cylindrical boundary, instead of eq. (7.3.2) we find identically zero
[276].

Along the lines described, it is hoped that the analysis of Casimir energies
for more general situations, as for example the spherical cap or ellipsoids, will
become possible. This could shed further light on the mysterious dependence
of the Casimir energy on the underlying geometry.

                      



Chapter 8

Ground-state energies under the
influence of external fields

8.0 Introduction

Up to now we have considered the rather idealized situation where the
presence of external constraints is described by forcing the field to satisfy
certain boundary conditions. The clear advantage is that eigenfunctions of the
relevant operators are known, which simplifies the calculation considerably.
However, relaxing these ideal circumstances we are led to consider quantum
fields in the presence of external fields which might be seen as to model some
distribution of matter. The problem considered is thus identical to the problem
of the evaluation of quantum corrections to classical solutions, which plays an
important role in several areas of modern theoretical physics. Examples of
classical solutions involved are monopoles [389, 347], sphalerons [277] and
electroweak skyrmions [217, 216, 9, 163, 195, 196, 383, 384, 5]. In general,
these classical fields are inhomogeneous configurations. Thus, as a rule, the
effective potential approximation as well as the derivative expansion [102] are
not expected to be adequate. Both approaches depend on the fact that the
background is slowly varying, which, in general, is not true. Apart from this
fact, we often face the problem that the classical solutions are known only
numerically and for that reason it is desirable to have a numerical procedure
to determine the quantum corrections. Research in this direction was started,
e.g., in [26, 28, 282, 65].

The aim of this chapter is to present an analytic approach which reduces the
evaluation of quantum corrections to the corresponding quantum mechanical
scattering problem. In (1+1) dimensions this approach has been developed in
[419, 53, 54, 221] and is summarized at the end of Section 8.1. The physically
most interesting (3 + 1)-dimensional space-time is technically considerably
more difficult in that, for a spherically symmetric potential, a summation
over the angular momentum is necessary. This problem has been solved in
recent years [59, 182, 58] as will be explained in the following section and
applied subsequently.

We will consider scalar fields in the background of external sources de-
scribed by a scalar field, but effective Lagrangians in the context of quantum

                      



electrodynamics also will be analyzed. As for the scalar field, mainly the case
of constant external electromagnetic fields has been treated [130]; some excep-
tions are [198, 96, 157, 379, 218, 382, 289]. In [198] a flux where the magnetic
field is concentrated on the surface of the tube is considered. For a specific
class of effectively one-dimensional problems (with homogeneous fields in all
but one direction), the ground-state energy per unit length or area has been
expressed in terms of quite elementary functions in [96, 157]. In relation to the
Aharonov-Bohm effect the infinitely thin magnetic flux tube has been investi-
gated, e.g., in [379, 218, 382, 289]. Finally, the combined effect of an infinitely
thin magnetic flux and boundary conditions has been considered in [44, 286].

Our aim here will be to leave the strong idealization of infinitely thin flux
tubes and to consider the ground-state energy of the spinor field in the back-
ground of a straight magnetic flux of finite radius R. The reason to consider
this situation is that the associated classical energy is finite and the depen-
dence of the total energy when R varies while the flux is fixed can be analyzed.
The interesting question in this context is if some radius Rm exists where the
complete energy, i.e., the sum of the classical energy of the magnetic field
and the ground-state energy of the spinor field is minimized and the magnetic
string becomes stable.

The technicalities involved for the spinor field calculation are slightly more
difficult than for the scalar field. For that reason we explain the procedure
clearly for the scalar field and consider afterwards the above-described situa-
tion.

8.1 Formalism: Scattering theory and ground-state en-
ergy

Let us start describing our concrete model and its renormalization, introduc-
ing various notations used in the following. We will consider the Lagrangian

L =
1
2
Φ(2−M2 − λΦ2)Φ +

1
2
ϕ(2−m2 − λ′Φ2)ϕ, (8.1.1)

where the field Φ is a classical background field. By means of

V (x) = λ′Φ2

it defines the potential in (8.1.1) for the field ϕ(x), which is to be quantized in
the background of V (x). As explained below, the embedding into this external
system is necessary in order to guarantee the renormalizability of the ground-
state energy. Actually, this is clear already from the beginning because the
external system comprises the counterterms of a (λΦ4)-theory. The discussion
of renormalization parallels closely the description in Chapter 7.4.

                      



The complete energy is written as the sum of the classical part, Eclass[Φ],
and the contributions Eϕ[Φ] resulting from the ground-state energy of the
quantum field ϕ in the background of the field Φ,

E[Φ] = Eclass[Φ] + Eϕ[Φ]. (8.1.2)

For reasons that soon become clear, for the classical part we take

Eclass[Φ] =
1
2
Vg +

1
2
M2V1 + λV2, (8.1.3)

with the definitions Vg =
∫
d3x(∇Φ)2, V1 =

∫
d3xΦ2 and V2 =

∫
d3xΦ4. Here,

the parameters M2 and λ are the bare mass and the bare coupling constant,
which will absorb the infinities present in the ground-state energy.

For the ground-state energy Eϕ[Φ], the relevant information is encoded in
the eigenvalues λ(n) of the Laplace operator

(−∆ + V (x))φ(n)(x) = λ2
(n)φ(n)(x). (8.1.4)

Compared to the situations considered thus far, the additional complication
of the present case is that, as a rule, the eigenfunctions will not be known.

As we will explain, the knowledge of the eigenfunctions can be replaced
by a knowledge of its asymptotic behavior, provided by results of scattering
theory.

To express the ground-state energy Eϕ[Φ], consider the relevant zeta func-
tion. At intermediate steps, it is convenient to have a discrete eigenvalue
spectrum. For that reason, we assume the space to be a large ball of radius
R. This also avoids the occurrence of volume divergencies which otherwise
would be present. The limit R→∞ will be considered only after a “suitable
subtraction” has been performed so as to yield finite answers. This suitable
subtraction is easily understood once we have considered the pole structure of
Eϕ[Φ]. At the outer boundary at r = R, for simplicity, we will impose Dirichlet
boundary conditions. Under suitable assumptions, the result for R→∞ will
not depend on the boundary conditions imposed and, again, this is discussed
below.

In summary, the zeta function considered is

ζV (s) =
∑
(n)

(λ2
(n) +m2)−s, (8.1.5)

where λ2
(n) is determined by (8.1.4) with φ(n)(x) vanishing at r = R. In terms

of ζV , the ground-state energy is

Eϕ[Φ] =
1
2
ζV (s− 1/2)µ2s |s=0 . (8.1.6)

Here µ, as before, is an arbitrary mass parameter. The divergencies in Eϕ[Φ]
are determined by the residue of ζV (−1/2), which, in turn, is given by the a2

heat kernel coefficient associated with the spectrum λ2
(n) +m2. It is formally



identical to (7.5.5),

Edivϕ [Φ] = − m4

8
√
π

(
1
s

+ ln
[
4µ2

m2

]
− 1

2

)
a0 −

m3

3
a1/2

+
m2

4
√
π

(
1
s

+ ln
[
4µ2

m2

]
− 1
)
a1 +

1
2
ma3/2 (8.1.7)

− 1
4
√
π

(
1
s

+ ln
[
4µ2

m2

]
− 2
)
a2,

but where now ak are the heat kernel coefficients of the Laplace equation
(8.1.4); for their explicit form see eqs. (4.2.6)—(4.2.10).

In order to discuss the limiting behavior for R → ∞, consider the single
contributions to eq. (8.1.7). It is immediately clear that, e.g., volume divergen-
cies (from a0) and boundary divergencies (from a1/2) occur. Obviously, these
do not depend on the background field Φ(x) and they contain no relevant
information. They can be eliminated by subtracting from Eϕ[Φ] the Casimir
energy of a free field inside a large ball of radius R. In doing this, it is just
the relevant dependence on Φ that is left over and this difference, which we
continue to call Eϕ[Φ], will be normalized according to Eϕ[Φ = 0] = 0.

Continuing the consideration of the single terms in (8.1.7), now for the above
difference, it is seen that in a1 the potential independent boundary terms can-
cel. In a3/2 the term proportional to V (R)R2 survives, see eq. (4.2.9), and only
if V (r) ∼ r−2−ε, ε > 0, for r → ∞, no potential dependent boundary con-
tribution survives. The same conclusion holds for the boundary contributions
of the higher coefficients depending on V (r) as dimensional arguments easily
show. In summary, under the condition V (r) ∼ r−2−ε for r → ∞ there are
no boundary contributions for R → ∞. Similarly, we might argue for Robin
boundary conditions and reach the same conclusion.

In fact, in order that the volume contribution of a1 exists for R → ∞, we
need to impose V (r) ∼ r−3−ε for r →∞, which is what we shall assume from
now on.

As in the calculation of the Casimir energy, the renormalization procedure
is uniquely fixed by the normalization condition

lim
m→∞

Erenϕ [Φ] = 0, (8.1.8)

which, given the above comments, is achieved by a renormalization of the
mass M of the background field,

M2 → M2 +
λ′m2

16π2

(
−1
s

+ 1 + ln
[
m2

4µ2

])
, (8.1.9)

and the coupling constant λ

λ → λ+
λ′

2

64π2

(
−1
s

+ 2 + ln
[
m2

4µ2

])
. (8.1.10)



This follows immediately from the volume contributions to a1 = −(4π)−3/2∫
d3xV (x) and a2 = (1/2)(4π)−3/2

∫
d3xV 2(x); the kinetic term Vg in E[Φ]

suffers no renormalization.
In summary,

Erenϕ [Φ] = Eϕ[Φ]− Edivϕ [Φ] (8.1.11)

defines the finite, renormalized ground-state energy, which is normalized in a
way that the functional dependence on Φ2 present in the classical energy is
now absent in the quantum corrections Erenϕ [Φ].

Let us next describe the calculation of Eϕ[Φ]. Given the background poten-
tial Φ(r) is spherically symmetric, the ansatz for a solution of the eq. (8.1.4)
reads

φ(n)(x) =
1
r
φn,l(r)Ylm(θ, ϕ).

Here (r, θ, ϕ) are the standard polar coordinates and the index (n) →(n, l,m)
refers to the main quantum number n, the angular momentum number l and
the magnetic quantum number m. The radial part φn,l(r) is determined as
the solution of the ordinary differential equation[

d2

dr2
− l(l + 1)

r2
− V (r) + λ2

n,l

]
φn,l(r) = 0. (8.1.12)

For a general potential V (r), it will not be possible to find solutions of (8.1.12)
in closed form. But as we have seen in the previous chapters, it is mostly the
asymptotics on which our procedure relies and this can be extracted using
standard scattering theory. In this context it is natural to replace λn,l by the
momentum p. A distinguished role is played by the so-called regular solution
φl,p(r) which is defined to have the same behavior at r → 0 as the solution
without potential

φl,p(r) ∼ ĵl(pr) (8.1.13)
r→0

with the spherical Bessel function ĵl [390],

ĵl(z) =
√
πz

2
Jl+1/2(z).

The asymptotic behavior of φl,p(r) as r →∞ defines the Jost function fl,

φl,p(r) ∼ i

2

[
fl(p)ĥ−l (pr)− f∗l (p)ĥ+

l (pr)
]
, (8.1.14)

r→∞

where ĥ−l (pr) and ĥ+
l (pr) are the Riccati-Hankel functions [390],

ĥ+
l (z) = i

√
πz

2
H

(1)
l+1/2(z), ĥ−l (z) = −i

√
πz

2
H

(2)
l+1/2(z).

As is well known from scattering theory [390], the analytic properties of the
Jost function fl(p) strongly depend on the properties of the potential V (r).



For us, the analytical properties of the Jost function in the upper half plane
will be of particular importance because they are related to the shifting of
contours in the complex plane. Analyticity of the Jost function as a function
of p for =p > 0 is guaranteed, if in addition to V (r) ∼ r−2−ε for r → ∞, we
impose V (r) ∼ r−2+ε for r → 0 and continuity of V (r) in 0 < r <∞ (except
perhaps at a finite number of finite discontinuities). Furthermore, the finite
number of bound states with energy −κ2

n,l defines the set of points p = iκn,l
where the Jost function vanishes.

In order to proceed, note that if the support of the potential V (r) is con-
tained in the ball of radius R, the asymptotic eq. (8.1.14) is exact at r = R.
It might thus be seen as an implicit eigenvalue equation for the eigenvalues
p = λn,l in much the same way as eq. (3.1.5). With φl,p(R) = 0 it reads
explicitly

fl(p)ĥ−l (pR)− f∗l (p)ĥ+
l (pR) = 0. (8.1.15)

This enables us to represent the frequency sum in (8.1.6) by a contour integral
exactly as described in Section 3.1,

Eϕ[Φ] = µ2s
∞∑
l=0

(l + 1/2)
∫
γ

dp

2πi
(p2 +m2)1/2−s ×

∂

∂p
ln

[
fl(p)ĥ−l (pR)− f∗l (p)ĥ+

l (pR)

h−l (pR)− ĥ+
l (pR)

]

+µ2s
∞∑
l=0

(l + 1/2)
∑
n

(m2 − κ2
n,l)

1/2−s. (8.1.16)

The sum over n describes the contribution of the bound states with given or-
bital momentum l. We will not discuss any questions related to vacuum decay
and particle creation and for that reason we restrict ourselves to examples
where (m2 − κ2

n,l) > 0. The denominator in the logarithm of eq. (8.1.16) is a
reminder of the free space subtraction performed. This is easily identified as
fl(p) = 1 in free space.

The contour γ encloses counterclockwise all solutions of eq. (8.1.15) on the
positive real axis. The division of the discrete eigenvalues within the large
ball into positive (inside γ) and negative ones (−κ2

n,l), is determined by the
conditions that V (r) → 0 for r →∞. In that way, in the limit of the infinite
space the negative eigenvalues become the usual bound states and the λn,l > 0
turn into the scattering states.

To proceed with the calculation of (8.1.16), we deform the contour γ to
the imaginary axis; see Figure 8.1 for the single steps involved. The part of
the contour with negative imaginary part can be transformed onto the upper
half-plane by using the properties [390],

fl(−p) = f∗l (p),

ĥ±l (−z) = (−1)lĥ∓l (z).

                      



A contour coming from i∞+ ε, crossing the imaginary axis at some positive
value smaller than the smallest κn and going to i∞− ε results. In this step
it is also essential that the regular solution is used in order to define the Jost
function because this guarantees the argument of the logarithm tends to one
as r → 0. Next, we shift the contour over the bound state values κn,l, which
are the zeroes of the Jost function on the imaginary axis. This cancels the
bound state contributions in eq. (8.1.16). Furthermore, due to [220]

ĥ±l (z) = e±i(z−lπ/2)
[
1 +O

(
1
z

)]
for large values of z, the limit R→∞ can be performed easily. Shrinking the
contour to the imaginary axis, we find

Eϕ[Φ] = −cosπs
π

µ2s
∞∑
l=0

(l + 1/2)× (8.1.17)

∞∫
m

dk [k2 −m2]
1
2−s

∂

∂k
ln fl(ik).

This is the representation of the ground-state energy in terms of the Jost
function, which will be the basis of our following analysis. The Jost function
substitutes completely the eigenfunctions of the analysis in Section 3.1; see
eq. (3.1.7). It has the appealing property that the dependence on the bound
states is not present explicitly. As an analytic function in the upper half-
plane, these properties are, however, clearly encoded in its properties on the
imaginary axis.

Alternatively, the ground-state energy might be expressed in terms of the
scattering phase δl(q). The relation is established by using the dispersion
relation for the Jost function,

fl(ik) =
∏
n

(
1−

κ2
n,l

k2

)
exp

− 2
π

∞∫
0

dq q

q2 + k2
δl(q)

 . (8.1.18)

Using this in (8.1.17), we find the representation of the ground-state energy
through the scattering phase,

Eϕ[Φ] = µ2s
∞∑
l=0

(
l +

1
2

){
−
∑
n

(
m1−2s −

√
m2 − κ2

n,l

1−2s
)

−1− 2s
π

∞∫
0

dq
q√

q2 +m2
1−2s δl(q)

 .

From here we can pass to the representation through the mode density by
integrating by parts.
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Figure 8.1
Deformation of the contour γ.

This representation is also very suitable to discuss the sign of the ground-
state energy. The first contribution due to the bound states is completely
negative. Results on the scattering phase [390] show that the second contri-
bution is positive for an attractive potential, V (r) < 0, and negative for a
repulsive one, V (r) > 0. So for the regularized, not yet renormalized, ground-
state energy we deduce that it is positive for repulsive potentials, there are no
bound states in this case, and it is negative for attractive potentials. However,
once the renormalization is performed in accordance with (8.1.9) and (8.1.10),
we obtain

Erenϕ [Φ] =

Eϕ[Φ] +
m2

8π

(
1
s

+ log
4µ2

m2
− 1
) ∞∫

0

dr r2 V (r)

+
1

16π

(
1
s

+ log
4µ2

m2
− 2
) ∞∫

0

dr r2 V (r)2


∣∣∣∣∣∣
s=0

,



and any definite sign cannot easily be read off (although the examples consid-
ered, see Section 8.2, seem to show that the renormalized ground-state energy
for a repulsive potential is positive). Note that this is in contrast to the case
of a one-dimensional potential where it was possible to express the subtracted
terms through the scattering phase [54].

The above remarks suggest that the sign of the ground-state energy, or
the Casimir energy, is actually strongly influenced by the renormalization
procedure which might give an indication why no simple rules as to their sign
have emerged in the past.

Somehow related is the observation that although the (local) energy density
might be negative everywhere, the global energy can nevertheless be positive.
Again, some kind of renormalization procedure is involved which changes the
apparently obvious sign of the Casimir energy [333, 307].

After these general comments we come to the detailed analysis of the
ground-state energy, eq. (8.1.17). The divergences in (8.1.17), which are present
at s = 0, see eq. (8.1.7), are by no means obvious. However, in order that the
procedure described by (8.1.11) and by (8.1.8) can actually be applied, these
divergences need to be explicitly visible. As we know from the closely re-
lated analysis presented in Chapter 7, these terms are encoded in the uniform
asymptotic behavior of the Jost function fl(ik). Denoting this behavior by
fasyml (ik), the basic idea is again to add and subtract the leading asymptotic
terms of the integrand in (8.1.17) and to write

Eϕ[Φ] = Ef [Φ] + Eas[Φ], (8.1.19)

where

Ef [Φ] = −cos(πs)
π

µ2s
∞∑
l=0

(l + 1/2)× (8.1.20)

∞∫
m

dk [k2 −m2]
1
2−s

∂

∂k
[ln fl(ik)− ln fasyml (ik)]

and

Eas[Φ] = −cos(πs)
π

µ2s
∞∑
l=0

(l + 1/2)× (8.1.21)

∞∫
m

dk [k2 −m2]
1
2−s

∂

∂k
ln fasyml (ik).

In this split, Ef [Φ] clearly corresponds to Z(s), eqs. (3.2.11) and (3.2.12), and
Eas summarizes the

∑
Ai(s) there.

Ultimately we are interested in the analytical continuation of Eϕ[Φ] to
s = 0. For that reason as many asymptotic terms are included in fasyml (ik) as
necessary to allow us to put s = 0 in the integrand of Ef [Φ]. As was already
necessary in Chapter 7, this term, in general, will be calculated numerically.

                      



In contrast, for Eas[Φ] the analytical continuation has to be constructed.
Although here numerical work is also needed to evaluate the finite parts at
s = 0, at least the explicit pole structure (8.1.7) is recovered, which allows
the renormalization to be performed.

Obviously our first task thus is to find the asymptotics of the Jost function
fl(ik). The results needed to do so are provided by scattering theory [390].
The starting point is the integral equation for the regular solution

φl,p(r) = ĵl(pr) +

r∫
0

dr′ Gl,p(r, r′)V (r′)φl,p(r′), (8.1.22)

with the Green’s function

Gl,p(r, r′) =
1
p

[
ĵl(pr)ĥ+

l (pr′)− ĥ+
l (pr)ĵl(pr′)

]
(8.1.23)

of the free (V (r) = 0) equation (8.1.12). To compare (8.1.22) with the asymp-
totic form (8.1.14) use ĵ = (i/2)(ĥ− − ĥ+). The Green’s function then reads

Gl,p(r, r′) =
i

2p

[
ĥ−l (pr)ĥ+

l (pr′)− ĥ+
l (pr)ĥ−l (pr′)

]
.

Asymptotically for r →∞ we have

φl,p(r) ∼ ĵl(pr) +

∞∫
0

dr′ Gl,p(r, r′)V (r′)φl,p(r′)

and noting that [ĥ±l (x)]∗ = ĥ∓l (x), x real, this can be written as

φl,p(r) ∼
i

2


1 +

1
p

∞∫
0

dr′ ĥ+
l (pr′)V (r′)φl,p(r′)

 ĥ−l (pr)

−

1 +
1
p

∞∫
0

dr′ ĥ+
l (pr′)V (r′)φl,p(r′)

∗ ĥ+
l (pr)

 .

Comparing the definition (8.1.14) of the Jost function with the above result,
the integral equation

fl(p) = 1 +
1
p

∞∫
0

dr ĥ+
l (pr)V (r)φl,p(r) (8.1.24)

follows. Shifting to imaginary arguments, the Bessel functions behave accord-
ing to

Iν(z) = e−
π
2 νiJν(iz), Kν(z) =

πi

2
e

π
2 νiH(1)

ν (iz),



and (8.1.24) turns into

fl(ik) = 1 +

∞∫
0

dr r V (r)φl,ik(r)Kν(kr). (8.1.25)

For the regular solution, starting best with (8.1.22) and (8.1.23), we find the
partial-wave Lippmann-Schwinger integral equation

φl,ik(r) = Iν(kr) (8.1.26)

+

r∫
0

dr′ r′ [Iν(kr)Kν(kr′)− Iν(kr′)Kν(kr)]V (r′)φl,ik(r′),

which is suitable to iteratively calculate fl(ik). We know that the pole in
Eϕ[Φ] contains at most powers of V 2; see eq. (8.1.7). So for our immediate
purpose it is sufficient to take into account the asymptotics of fl(ik) just to
order O(V 2). This is easily obtained using (8.1.26) in (8.1.25) and the answer
is

ln fl(ik) =

∞∫
0

dr rV (r)Kν(kr)Iν(kr)

−
∞∫
0

dr rV (r)K2
ν (kr)

r∫
0

dr′ r′V (r′)I2
ν (kr

′)

+O(V 3). (8.1.27)

This iterative scheme reduces the calculation of the uniform asymptotics of
the Jost function effectively to the known asymptotics of the modified Bessel
function Kν and Iν ; see eqs. (7.1.5) and (3.1.10). Here, in addition, we have
the radial integration and the relevant notation is t = 1/

√
1 + (kr/ν)2 and

η(k) =
√

1 + (kr/ν)2 + ln[(kr/ν)/(1 +
√

1 + (kr/ν)2)]. To the orders needed,
we find for ν →∞, k →∞, with k/ν fixed,

Iν(kr)Kν(kr) ∼
1

2νt
+

t3

16ν3

(
1− 6t2 + 5t4

)
+O(1/ν4)

Iν(kr′)Kν(kr) ∼
1
2ν

e−ν(η(k)−η(kr
′/r))

(1 + (kr/ν)2)1/4(1 + (kr′/ν)2)1/4
×

[1 +O(1/ν)] .

The r′-integration in the term quadratic in V is performed by the saddle point
method, see eq. (E. 14), and including the order needed, we define

ln fasyml (ik) =
1
2ν

∞∫
0

dr
r V (r)[

1 +
(
kr
ν

)2]1/2



+
1

16ν3

∞∫
0

dr
r V (r)[

1 +
(
kr
ν

)2]3/2
1− 6[

1 +
(
kr
ν

)2] +
5[

1 +
(
kr
ν

)2]2


− 1
8ν3

∞∫
0

dr
r3 V 2(r)[

1 +
(
kr
ν

)2]3/2 . (8.1.28)

By construction, Ef [Φ], eq. (8.1.20), is now well defined at s = 0 and we can
write

Ef [Φ] = − 1
π

∞∑
l=0

(l + 1/2)

∞∫
m

dk
√
k2 −m2 ×

∂

∂k
(ln fl(ik)− ln fasyml (ik)) , (8.1.29)

a form which is suited for a numerical evaluation, once the Jost function is
known at least numerically.

The explicit form of the asymptotic terms, eq. (8.1.28), also makes it pos-
sible to find the analytical continuation of Eas[Φ] to s = 0. The k-integral is
done using (3.1.24),

∞∫
m

dk [k2 −m2]
1
2−s

∂

∂k

[
1 +

(
kr

ν

)2
]−n

2

= (8.1.30)

−
Γ(s+ n−1

2 )Γ( 3
2 − s)

Γ(n/2)

(
ν
mr

)n
m1−2s(

1 +
(
ν
mr

)2)s+ n−1
2

,

which again naturally leads to the functions encountered already in the case
of boundary conditions, namely

f(s; c, b;mr) =
∞∑

ν=1/2,3/2,...

νc
(

1 +
( ν

mr

)2
)−s−b

. (8.1.31)

The last two equations allow us to recast Eas[Φ], eq. (8.1.21), in the form

Eas[Φ] = − Γ(s)
2
√
πΓ(s− 1/2)

( µ
m

)2s
∞∫
0

dr V (r)f(s− 1/2; 1, 1/2;mr)

+
Γ(s+ 1)

4
√
πm2Γ(s− 1/2)

( µ
m

)2s
∞∫
0

dr

[
V 2(r)− V (r)

2r2

]
f(s− 1/2; 1, 3/2;mr)

+
Γ(s+ 2)

2
√
πm4Γ(s− 1/2)

( µ
m

)2s
∞∫
0

dr
V (r)
r4

f(s− 1/2; 3, 5/2;mr)



− Γ(s+ 3)
6
√
πm6Γ(s− 1/2)

( µ
m

)2s
∞∫
0

dr
V (r)
r6

f(s− 1/2; 5, 7/2;mr).

The relevant expansion about s = 0 of the f(s − 1/2; c, b;mr) is found in
Appendix D and all divergences are made explicit. As a result,

Erenas [Φ] = Eas[Φ]− Edivϕ [Φ]

takes the compact form

Erenas [Φ] = − 1
8π

∞∫
0

dr r2V 2(r) ln(mr) (8.1.32)

− 1
2π

∞∫
0

dr V (r)

∞∫
0

dν
ν

1 + e2πν
ln |ν2 − (mr)2|

− 1
8π

∞∫
0

dr

[
r2V 2(r)− 1

2
V (r)

] ∞∫
0

dν

(
d

dν

1
1 + e2πν

)
ln
∣∣ν2 − x2

∣∣
− 1

8π

∞∫
0

dr V (r)

∞∫
0

dν

[
d

dν

(
1
ν

d

dν

ν2

1 + e2πν

)]
ln
∣∣ν2 − x2

∣∣
+

1
48π

∞∫
0

dr V (r)

∞∫
0

dν

[
d

dν

(
1
ν

d

dν

1
ν

d

dν

ν4

1 + e2πν

)]
ln
∣∣ν2 − x2

∣∣ ,
valid for any potential with the above-mentioned properties and very suitable
for numerical evaluation.

This is as far as the analysis for Erenas [Φ] can be taken for a general potential.
Regarding the numerical analysis of Ef [Φ], let us add some final comments
on how to achieve a numerical knowledge of the Jost function fl(ik). Starting
from eq. (8.1.25), it seems that a knowledge of the regular solution on the
whole interval r ∈ [0,∞), or at least on the whole support of V , is needed.
However, this can be improved considerably, at least for potentials with com-
pact support, say V (r) = 0 for r ≥ R. In this case the regular solution can be
written as

φl,p(r) = ul,p(r)Θ(R− r)

+
i

2

[
fl(p)ĥ−l (pr)− f∗l (p)ĥ+

l (pr)
]
Θ(r −R). (8.1.33)

Assuming continuity of φl,p(r) and its first derivative, the matching conditions
are

ul,p(R) =
i

2

[
fl(p)ĥ−l (pR)− f∗l (p)ĥ+

l (pR)
]
,

u′l,p(R) =
i

2
p
[
fl(p)ĥ−′l (pR)− f∗l (p)ĥ+′

l (pR)
]
.



From the matching conditions we easily derive

fl(p) = −1
p

(
pul,p(R)ĥ+′

l (pR)− u′l,p(R)ĥ+
l (pR)

)
, (8.1.34)

where the Wronskian determinant of ĥ±l is 2i.
Compared to the integral representations (8.1.25) for the Jost function, this

has the considerable advantage that the regular solution is just needed at one
point, namely at r = R.

In order to make this more precise, consider the differential eq. (8.1.12). We
have already imposed regularity for r → 0,

φl,p(r) = ul,p(r) ∼ ĵl(pr) ∼
√
π

Γ(l + 3/2)

(pr
2

)l+1

,

which suggests the ansatz

ul,p(r) =
√
π

Γ(l + 3/2)

(pr
2

)l+1

gl,p(r),

with the inital value gl,p(0) = 1. The differential equation for gl,p(r) reads{
d2

dr2
+ 2

l + 1
r

d

dr
− V (r) + p2

}
gl,p(r) = 0,

and assuming the behavior V (r) = O(r−1+ε) for r → 0, we obtain the con-
dition (∂/∂r)gl,p(r)|r=0 = 0. Switching to the imaginary p-axis with the def-
inition (∂/∂r)gl,ip(r) = vl,ip(r), the regular solution φl,ip(r) is determined as
the unique solution of the initial value problem

d

dr

(
gl,ip(r)
vl,ip(r)

)
=
(

0 1
V (r) + p2 − 2

r (l + 1)

)(
gl,ip(r)
vl,ip(r)

)
, (8.1.35)

with gl,ip(0) = 1 and vl,ip(0) = 0. With this unique solution of (8.1.35), the
Jost function takes the form

fl(ip) =
2

Γ(l + 3/2)

(
pR

2

)l+3/2

×{
gl,ip(R)Kl+3/2(pR) +

1
p
g′l,ip(R)Kl+1/2(pR)

}
. (8.1.36)

Finally, a slight simplification is achieved by performing a partial integration
and by substituting q =

√
k2 −m2 in eq. (8.1.21). This yields

Ef [Φ] =
1
π

∞∑
l=0

(l + 1/2)×

∞∫
0

dq
[
ln fl(i

√
q2 +m2)− ln fasyml (i

√
q2 +m2)

]
(8.1.37)

as a starting point for the numerical evaluation of Ef [Φ].



Before we proceed with examples let us briefly comment, as promised, on
the Casimir energy calculations of Chapter 7 in the exterior of the ball. To
be specific we consider Dirichlet boundary conditions. Following formally the
approach of this section, the eigenfunctions of the Laplacian are written as in
eq. (8.1.33) and the boundary condition

fl(p)ĥ−l (pR)− f∗l (p)ĥ+
l (pR) = 0

determines the Jost function to be

fl(p) = ĥ+
l (pR) = i

√
πpR

2
H

(1)
l+1/2(pR).

On the imaginary axis, the Hankel function H
(1)
l+1/2 turns into a Bessel func-

tion,

H
(1)
l+1/2(ix) =

2
πi
e−

π
2 i(l+1/2)Kl+1/2(x),

and eq. (8.1.17) applied to this case provides the basis for the calculation of
Casimir energies in the exterior space. Similarly, all other boundary conditions
can be considered and the basic representations of Chapter 7 are easily found.

Let us conclude this section with some comments on the one-dimensional
case. The asymptotic behavior of two independent solutions ψ1 and ψ2 of the
one-dimensional analog of eq. (8.1.4) is

ψ1 ∼ eipx + s12e
−ipx,

x→−∞

ψ1 ∼ s11e
ipx,

x→∞

ψ2 ∼ s22e
−ipx,

x→−∞

ψ2 ∼ s21e
ipx + e−ipx.

x→∞

The matrix S = (sij) is known as the S-matrix. Instead of eq. (8.1.15), com-
bining the above solutions as ψ1 ± ψ2, the implicit eigenvalue equation reads

(s11 ± s21)eipR ± e−ipR = 0

and proceeding as described below eq. (8.1.15), the representation

Eϕ[Φ] = −cosπs
2π

µ2s

∞∫
m

dk (k2 −m2)1/2−s
∂

∂k
ln s11(ik)

follows. The asymptotic behavior of ln s11(ik) is known [422], and it reads

ln(s11(ik)) = − 1
2k

∞∫
−∞

dxV (x) +
1

(2k)3

∞∫
−∞

dx(V (x))2 +O(k−5).(8.1.38)

In fact, this is easily derived by noting that residues of Eϕ[Φ] (or equivalently
of the associated zeta function) can be expressed through the heat kernel

                      



coefficients. The residues at s = −1/2 and s = −3/2 uniquely determine
(8.1.38).

In order to analytically continue Eϕ[Φ] to s = 0, we only need to subtract
the leading term and the procedure consists simply in writing

Eϕ[Φ] = −cosπs
2π

µ2s

∞∫
m

dk (k2 −m2)1/2−s ×

∂

∂k

ln s11(ik) +
1
2k

∞∫
−∞

dxV (x)


+

cosπs
4π

µ2s

∞∫
−∞

dxV (x)

∞∫
m

dk (k2 −m2)1/2−s
∂

∂k

1
k

= − 1
2π

∞∫
m

(k2 −m2)1/2
∂

∂k

ln s11(ik) +
1
2k

∞∫
−∞

dxV (x)


+
(
− 1

8πs
+

1
4π

[
1 + ln

m

2µ

]) ∞∫
−∞

dxV (x) +O(s). (8.1.39)

From here the renormalization is performed as described. In higher dimen-
sions, when V (x) still depends only on one variable, the free dimensions are
integrated out and only a few details change [54].

8.2 Examples and general results

Having developed the general formalism, let us now apply the main results
of the previous section, namely eqs. (8.1.32) and (8.1.37), to the calculation of
Erenϕ for some examples. We choose potentials with a compact support such
that Φ(r ≥ R) = 0. The classical energy, eq. (8.1.3), is finite by demanding
Φ′(r = 0) = Φ′(r = R) = 0. This situation is given in the examples studied.

For the numerical analysis it is convenient to introduce dimensionless pa-
rameters. In the following we use

ε = Erenϕ R, µ = mR, ρ =
r

R
,

V (r) = λ′Φ2(r) =
λ′

R2
φ2(ρ).

We consider two examples where the potentials have different characteristics.
The first potential, called type A in the following, is lump-like concentrated



around r = 0,

φA(ρ) =
a(1− ρ2)2

a+ ρ2
.

The second, called type B, is instead a kind of a spherical wall with a maximum
at ρR/2,

φB(ρ) =
16aρ2(1− ρ)2

a+ (1− 2ρ)2
.

The parameter a allows us to vary the shape of the potential; see the inset of
Figures 8.2 and 8.3.

As the numerical analysis indicates, the number and depth of bound states
are of crucial importance for the value of the energy ε. In order to allow for
a direct observation of this fact, we have shown, for l = 0, the dependence of
the bound state properties as a function of the parameter a and the coupling
constant λ′; see Figures 8.2 and 8.3. As expected, the number as well as the
depth of bound states increases with increasing a and (−λ′). The bound states
in these figures have been obtained as the zeroes of the Jost function.

The way the bound state properties influence the vacuum energy is clearly
seen when analyzing its dependence for fixed λ′ as a function of the parameter
a, Figures 8.4 and 8.5, as well as for fixed a = 1 as a function of λ′, Figures
8.6 and 8.7.

Figures 8.4 and 8.5 suggest the following interpretation. For a large enough,
the existence of bound states together with their properties (number and
depth) guarantee that the vacuum energy is negative. Decreasing the value of
a, scattering states become more important which shifts the energy towards
a positive sign. At some critical value the sign changes, but the tendency of
increasing the energy ε with decreasing a is reversed again as our normalization
imposes Erenϕ [Φ = 0] = 0, so ε → 0 as a → 0. In addition, we observe the
normalization ε→ 0 for µ→∞.

Similarly we might discuss Figures 8.6 and 8.7. In addition, these figures
indicate that for positive λ′ the vacuum energy is positive and increasing with
increasing λ′. If these features hold for any kind of potentials, it means that
without bound states the vacuum energy is always positive and that scattering
states contribute positively to the vacuum energy.

Furthermore, it seems that as long as no bound states exist, the sign of λ′

is not that important. However, symmetry between positive and negative λ′

is disturbed as soon as bound states emerge.

                      



Figure 8.2
Energy of bound states (BS) for type A potential and negative
λ′. The inset shows φ(ρ) where V (ρ) = λ′φ2(ρ). (From M. Bordag,
M. Hellmund and K. Kirsten, Phys. Rev. D 61, 085008, 2000. Copy-
right (2000) by the American Physical Society. With permission.)
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Figure 8.3
Energy of bound states for type B potential and negative λ′. The
inset shows φ(ρ) where V (ρ) = λ′φ2(ρ). (From M. Bordag, M. Hell-
mund and K. Kirsten, Phys. Rev. D 61, 085008, 2000. Copyright
(2000) by the American Physical Society. With permission.)
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Figure 8.4
Energy for type A potentials of different shapes with λ′ = −100. The
positions of bound states (BS) at the µ axis are shown as vertical
lines. (From M. Bordag, M. Hellmund and K. Kirsten, Phys. Rev. D
61, 085008, 2000. Copyright (2000) by the American Physical Soci-
ety. With permission.)

8.3 Spinor field in the background of a finite radius flux
tube

As a final application of our approach, let us consider spinor fields in the
background of a purely magnetic field [60]. In this case, the ground-state
energy is

Eψ = −1
2
µ2s

∑
(m,ε)

(λ2
(m,ε))

1/2−s, (8.3.1)

with the eigenvalues λ(m,ε) of the Hamiltonian

H = γ0γj
(

∂

∂xj
+ ieAj(~x)

)
+ iγ0me, (8.3.2)
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Figure 8.5
Energy for type B potentials of different shapes with λ′ = −100. The
positions of bound states (BS) at the µ axis are shown as vertical
lines and the inset shows φ(ρ). (From M. Bordag, M. Hellmund and
K. Kirsten, Phys. Rev. D 61, 085008, 2000. Copyright (2000) by the
American Physical Society. With permission.)

and me is the electron mass. As we have seen in Section 2, the sign in
eq. (8.3.1) accounts for the spinor obeying anticommutation relations. Fur-
thermore, ε = ±1 is the sign of the one-particle energies for the particle,
respectively, antiparticle, and m is the quantum number.

The pole of the vacuum energy is easily determined by calculating the a1

and a2 coefficient of H2, which by use of the Clifford commutation relation is
evaluated to be

H2 = −∇i∇i +
1
4
[γi, γj ]Ωij +m2

e, (8.3.3)

with the connection Ωij = [∇i,∇j ] = ieFij , and the field tensor Fij = ∂iAj −
∂jAi. In the notation of Section 4.2, eq. (4.1.1), we have for P = H2 − m2

e

the potential term E = −(1/4)[γi, γj ]Ωij . We compute a1(1,H2 −m2
e) = 0.
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Figure 8.6
Energy for type A potentials of different magnitudes λ′ with equal
shape parameter a = 1. The positions of bound states existing for
λ′ = −18,−19.4 and −20 at the µ axis are shown as vertical lines.
(From M. Bordag, M. Hellmund and K. Kirsten, Phys. Rev. D 61,
085008, 2000. Copyright (2000) by the American Physical Society.
With permission.)

Furthermore, see eq. (4.2.10), we have

a2(1,H2 −m2
e) = (4π)−3/2 1

360
Tr
∫
d3x (180E2 + 30ΩijΩij),

which, by use of TrE2 = (1/2)e2 Tr (FijF ij), gives

a2(1,H2 −m2
e) = (4π)−3/2 1

6
e2 Tr

∫
d3x FijF

ij . (8.3.4)

Keeping in mind the sign difference between scalar and spinor fields, the di-
vergent part of the vacuum energy, see eq. (7.4.5), is then

Edivψ =
1

4
√
π
a2(1,H2 −m2)

(
1
s
− 2 + ln

4µ2

m2
e

)
. (8.3.5)

Proceeding as before, imposing the normalization condition (8.1.8), the renor-
malized ground-state energy is defined as

Erenψ = Eψ − Edivψ , (8.3.6)
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Figure 8.7
Energy for type B potentials of different magnitudes λ′ with equal
shape parameter a = 1. The positions of bound states existing for
λ′ = −15 and −10 at the µ axis are shown as vertical lines. (From
M. Bordag, M. Hellmund and K. Kirsten, Phys. Rev. D 61, 085008,
2000. Copyright (2000) by the American Physical Society. With
permission.)

and the divergence is absorbed into the classical energy of the magnetic field,

Eclass =
1
4

∫
d3xFijF

ij =
1
2

∫
d3x ~B2. (8.3.7)

Whereas the basic features of the renormalization procedure can be discussed
for a general magnetic field, the analysis of the full ground-state energy makes
a restriction to special cases necessary. A family of examples where the devel-
opments presented apply is a straight magnetic flux tube of finite radius R
described by the magnetic field

~B(~x) =
φ

2π
h(r) ~ez . (8.3.8)

The profile function h(r) depends only on the radial variable r =
√
x2 + y2

such that the magnetic field has a cylindrical symmetry. The Jost function
analysis of Section 8.1 suggests that it is convenient to assume h(r) with
compact support in the variable r perpendicular to the tube. Normalizing the
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profile function according to
∞∫
0

drrh(r) = 1,

φ has the meaning of the flux inside the tube. A possible choice for the corre-
sponding vector potential is

~A(~x) =
φ

2π
a(r)
r

~eϕ ,

where the relation h(r) = a′(r)/r holds. Although a large part of the analysis
will be shown for general h(r), the numerical analysis will be restricted to the
case of a homogeneous magnetic field inside a tube. In this case,

h(r) =
2
R2

Θ(R− r), a(r) =
r2

R2
Θ(R− r) + Θ(r −R). (8.3.9)

This choice has the advantage that the solutions of the field equations can
be expressed in terms of known special functions, namely Bessel and hyper-
geometric ones. A further example where a closed form for solutions can be
found is a magnetic field concentrated on the surface of the cylinder,

h(r) = δ(r −R)/R.

However, this example has the disadvantage of an infinite classical energy and
it will not be considered further; see, however, [198, 366, 365].

Continuing (as we will do for a large part of the analysis) with arbitrary
profile function h(r), the classical energy of the background per unit length of
the string is

Eclass ≡
1
2

∫
d3x ~B2 =

φ2

4π

∞∫
0

dr r h(r)2. (8.3.10)

For a2 we have

a2 =
8π
3
δ2

∞∫
0

dr r h(r)2, (8.3.11)

where the notation

δ =
(
eφ

2π

)
is introduced. This can be rewritten as δ =

√
α/πφ with α the fine structure

constant.
It is seen, that adding Edivψ to Eclass, see eqs. (8.3.5) and (8.3.6), is equiv-

alent to a renormalization of the flux according to

φ2 → φ2 +
(eφ)2

12π2

(
1
s
− 2 + ln

4µ2

m2
e

)
.



After having discussed the divergences and renormalization of the ground-
state energy, let us next try to proceed as for the scalar field and express
the regularized ground-state energy (8.3.1) in terms of the Jost function of
the scattering problem associated with the operator H, eq. (8.3.2). We first
must study the solutions of the free Hamiltonian in cylindrical coordinates to
compare the eigenspinors of H with these much in the way done in (8.1.14)
for the scalar field. Given that we need the differential equation determining
the Jost function of the problem, let us consider briefly here the way the Dirac
equation is solved, respectively, eigenspinors of H are found, in the presence of
a magnetic field as given in (8.3.8). Because the background is translationally
invariant along the z-axis, a suitable ansatz to find eigenfunctions of H is

Ψ(m,ε)(~x) = e−ipzz

ψ(1)
(m,ε)

ψ
(2)
(m,ε)

 .

Clearly, the contribution of pz to H2 is p2
z and we will put pz = 0 in the

following. We will use the chiral representation of the gamma matrices,

γ0 =
(
−iσ3 0

0 iσ3

)
, γ1 =

(
iσ2 0
0 −iσ2

)
,

γ2 =
(
−iσ1 0

0 iσ1

)
, γ3 =

(
0 1
−1 0

)
,

and the Dirac equation takes the form (we denote the energy eigenvalues of
the now two-dimensional problem by p0)(

p0 + L̂−meσ3 0
0 p0 + L̂+meσ3

)ψ(1)
(m,ε)

ψ
(2)
(m,ε)

 = 0,

with the Pauli matrices σi and L̂ = i
∑2
a=1 σa((∂/∂xa)+ieAa). As seen, there

will be four types of solutions, namely particle and antiparticle solutions with
positive, respectively, negative chirality. We provide a few details for

Ψ(m,1) =

(
ψ

(1)
(m,1)

0

)
(8.3.12)

and write ψ(1)
(m,1) = Φ, the calculation for the other solutions being virtually

identical. A separation in cylindrical coordinates is accomplished by means of

Φ =
(
ig1(r) e−i(m+1)ϕ

g2(r) e−imϕ

)
(m = −∞,∞). The differential equation for

Φ(r) =
(
g1(r)
g2(r)

)



is found to be (
p0 −me

∂
∂r −

m−δa(r)
r

− ∂
∂r −

m+1−δa(r)
r p0 +me

)
Φ(r) = 0. (8.3.13)

For δ = 0, this is in free space, the solution can be expressed in terms of Bessel
functions Zν , and they read explicitly

ΦZ(r) =


(√

p0 +me Zm+1(kr)√
p0 −me Zm(kr)

)
for m+ 1 > 0( √

p0 +me Z−m−1(kr)
−
√
p0 −me Z−m(kr)

)
for m < 0 ,

(8.3.14)

with k =
√
p2
0 −m2

e. In complete analogy to eq. (8.1.14), the asymptotics of
the solution of eq. (8.3.13) for r →∞ is then described by

Φ(r) ∼ 1
2

(fm(k)ΦH(2)(r) + f∗m(k)ΦH(1)(r)) , (8.3.15)

with the Jost function fm(k) and its complex conjugate f∗m(k). Putting the
system into a large ball of radius R̄, a discrete set of eigenvalues e(m,ε) might be
defined imposing the bag boundary condition (7.2.2). The implicit eigenvalue
equation for this case reads

0 =
√
p0 +me√
p0 −me

(f∗m(k)H(1)
m+1(kR̄) + fm(k)H(2)

m+1(kR̄))

+ f∗m(k)H(1)
m (kR̄) + fm(k)H(2)

m (kR̄),

for m + 1 > 0, and similarly for m < 0. This can be used to write down
an integral representation of Eψ in much the way shown in eqs. (8.1.16) and
(3.1.6). However, here we are in an effectively two-dimensional problem and
we can first integrate out p2

z,

Eψ = −1
2
µ2s

∞∫
−∞

dpz
2π

∑
(m,ε)

(p2
z + e2(m,ε))

1/2−s

= −1
2
µ2s Γ(s− 1)

2
√
πΓ(s− 1/2)

∑
(m,ε)

(e2(m,ε))
1−s.

Then, as explained above, removing the finite volume sending R̄ → ∞, sub-
tracting the Minkowski space contribution, to the relevant order in s we have

Eψ = Cs

∞∑
m=−∞

∞∫
me

dk (k2 −m2
e)

1−s ∂

∂k
ln fm(ik), (8.3.16)

with Cs = (1 + s(−1 + 2 ln(2µ)))/(2π). Here we have taken into account
that both signs of the one-particle energies as well as both signs of the spin



projection give equal contributions to the ground-state energies, thus resulting
in a factor of 4 which is included into Cs.

Following our previous procedure, in the next step we will add and subtract
the leading uniform asymptotics of ln fm(ik). The asymptotic behavior of
eq. (8.3.16) suggests that we define ln fasymm (ik) such that

ln fm(ik)− ln fasym
m (ik) = O

(
1
m4

)
(8.3.17)

in the limit m→∞, k →∞, with m/k fixed. This renders the split

Erenψ = Ef + Erenas (8.3.18)

possible, where in the “finite” part Ef we can put s = 0,

Ef =
1
2π

∞∑
m=−∞

∞∫
me

dk (k2 −m2
e)× (8.3.19)

∂

∂k
(ln fm(ik)− ln fasymm (ik)) ,

and in the asymptotic part

Erenas = Cs

∞∑
m=−∞

∞∫
me

dk (k2 −m2
e)

1−s ∂

∂k
ln fasymm (ik)

−Edivψ , (8.3.20)

the analytical continuation to s = 0 has to be constructed.
The first step is the computation of the uniform asymptotics. As for the

scalar field, to this end we will use a Lippmann-Schwinger equation for the
spinor field. First we rewrite eq. (8.3.13) in a way showing the free space
differential equation and a perturbation ∆P(r),(

p0 −me
∂
∂r −

m
r

− ∂
∂r −

m+1
r p0 +me

)
Φ(r) =

−δa(r)
r

(
0 1
1 0

)
Φ(r)

≡ ∆P(r)Φ(r).

The free space Green’s function is found from the free solutions (8.4.14),

G(r, r′) = − π

2i
(
ΦJ(r)ΦTH(1)(r′)− ΦJ(r′)ΦTH(1)(r)

)
, (8.3.21)

with ΦT the transposed of Φ. In terms of G(r, r′), the Lippmann-Schwinger
integral equation for Φ(r) reads

Φ(r) = ΦJ(r) +

r∫
0

dr′ r′G(r, r′) ∆P(r′)Φ(r′). (8.3.22)

As explained for the scalar field, using the expansion (8.3.15) of Φ(r) in
eq. (8.3.22), the coefficient of ΦH(2)(r) can be read off. This gives the Jost



function as

fm(k) = 1− π

2i

∞∫
0

dr r ΦTH(1)(r)∆P(r)Φ(r), (8.3.23)

an equation that can be easily iterated. Related to the fact that we are dealing
with a first-order differential operator, we need all contributions up to the
fourth order in ∆P(r) in order to satisfy condition (8.3.17). For the scalar field
a perturbation expansion of a second-order differential operator was needed
and the first two orders were sufficient; see eq. (8.1.27). Iterating eq. (8.3.22)
we obtain,

Φ(r) = ΦJ(r)

+

r∫
0

dr′ r′G(r, r′)∆P(r′)ΦJ(r′) (8.3.24)

+

r∫
0

dr′ r′
r′∫

0

dr′′ r′′G(r, r′)∆P(r′)G(r′, r′′)∆P(r′′)Φ0
J(r′′)

+

r∫
0

dr′ r′
r′∫

0

dr′′ r′′
r′′∫
0

dr′′′ r′′′G(r, r′)∆P(r′)×

G(r′, r′′)∆P(r′′)G(r′′, r′′′)∆P(r′′′)ΦJ(r′′′)
+O

(
(∆P)4

)
,

which can be used to find the expansion of fm(k), eq. (8.3.23), in terms of
powers of ∆P. But in fact we need the expansion of the logarithm of the Jost
function and further analysis is necessary. Details of this calculation are found
in Appendix E. In order to state the result, we write

ln fm(k) =
∑
n≥1

ln f (n)
m (k),

where n denotes the power of the operator ∆P. We obtain

ln f (1)
m (k) = −

( π
2i

) ∞∫
0

dr r ΦTH(1)(r)∆P(r)ΦJ(r), (8.3.25)

ln f (2)
m (k) = −

( π
2i

)2
∞∫
0

dr r

r∫
0

dr′ r′ ΦTH(1)(r)∆P(r)ΦH(1)(r)

×ΦTJ (r′)∆P(r′)ΦJ(r′), (8.3.26)

ln f (3)
m (k) = −2

( π
2i

)3
∞∫
0

dr r

r∫
0

dr′ r′
r′∫

0

dr′′ r′′ΦTH(1)(r)∆P(r)ΦH(1)(r)



×ΦTH(1)(r′)∆P(r′)ΦJ(r′)ΦTJ (r′′)∆P(r′′)ΦJ(r′′), (8.3.27)

ln f (4)
m (k) = −

( π
2i

)4
∞∫
0

dr r

r∫
0

dr′ r′
r′∫

0

dr′′ r′′
r′′∫
0

dr′′′ r′′′

×
(
4ΦTH(1)(r)∆P(r)ΦH(1)(r) ΦTH(1)(r′)∆P(r′)ΦJ(r′)

×ΦTH(1)(r′′)∆P(r′′)ΦJ(r′′)ΦTJ (r′′′)∆P(r′′′)ΦJ(r′′′)

+2ΦTH(1)(r)∆P(r)ΦH(1)(r) ΦTH(1)(r′)∆P(r′)ΦH(1)(r′)

×ΦTJ (r′′)∆P(r′′)ΦJ(r′′)ΦTJ (r′′′)∆P(r′′′)ΦJ(r′′′)
)
. (8.3.28)

Turning to imaginary argument, as needed for the ground-state energy, as
before a knowledge of the uniform asymptotic expansion of modified Bessel
functions is sufficient. Instead of expanding with respect to 1/m, it is more
convenient to use

ν =

{
m+ 1

2 for m = 0, 1, 2, . . .
−m− 1

2 for m = −1,−2, . . .

as an expansion parameter. This has the additional advantage that results of
Appendix D are applicable. These expansions are then used in eqs. (8.3.25)—
(8.3.28) and the integrations over r′′′, r′′ and r′ are carried out successively
by the saddle point method. The relevant expansion is eq. (E. 14). Note that
only equal arguments in the function η(z) yield contributions which are not
exponentially damped for ν → ∞. After a lengthy calculation best done by
an algebraic computer program, collecting all terms to the order needed, we
find

Erenas = 2Cs
∞∑

ν=1/2,3/2,...

∞∫
me

dk (k2 −m2
e)

1−s ∂

∂k

3∑
n=1

3n∑
j=n

∞∫
0

dr

r
Xn,j

tj

νn

−Edivψ , (8.3.29)

with the notation t =
(
1 + (rk/ν)2

)− 1
2 . The full list of relevant coefficients

Xn,j is

X1,1 = (aδ)2

2 , X1,3 = − (aδ)2

2 ,

X2,2 = 1
4δ

2
(
a2 − raa′

)
, X2,4 = 1

4δ
2
(
−3a2 + raa′

)
,

X2,6 = 1
2 (aδ)2 ,

X3,3 = 1
4δ

2
(
a2 − raa′ + 1

2r
2aa′′ − 1

2δ
2a4
)
,

X3,5 = 1
8δ

2
(
− 39

2 a
2 + 7raa′ − r2aa′′ + 6δ2a4

)
,

X3,7 = 1
8δ

2
(
35a2 − 5raa′ − 5δ2a4

)
, X3,9 = −35

16 δ
2a2.

When summing over the orbital momentum, contributions proportional to δ



and δ3 have cancelled. For that reason we do not show those terms in the
above list.

Performing the k-integration by means of eq. (8.1.30), an intermediate result
is

Erenas = −2Csm2−2s
e Γ(2− s)

3∑
n=1

3n∑
j=n

Γ(s+ j/2− 1)
Γ(j/2)

× (8.3.30)

∞∫
0

dr

r

Xn,j

(mer)j
f(s; j − n, j/2− 1;mer)− Edivψ ,

with f(s; c, b;mer) given in eq. (8.1.31). Using the obvious property f(s; c, b;
mer) = f(s−1/2; a, b+1/2;mer), the needed results can be found in Appendix
D.

Several simplifications occur by performing a partial integration with re-
spect to the variable r. The n = 2 contribution is seen to vanish identically
hereby. After the rescaling ν → νrme the following final form can be obtained,

Erenas =
−16
π

∞∫
0

dr

r3
{
a(r)2 g1(rme)− r2a(r)′2 g2(rme)

+a(r)4 g3(rme)
}
, (8.3.31)

with

gi(x) =

∞∫
x

dν
√
ν2 − x2 hi(ν) (i = 1, 2, 3) .

The functions hi are displayed in Appendix E, eq. (E. 15). This formula can
in principle be applied for the calculation of Erenas for an arbitrary profile
function h(r). For a simple profile function, as, e.g., for the profile function of
a magnetic field inside the flux tube, see eq. (8.3.9), the integration over r can
be performed explicitly. According to the form of a(r) a split of the integral
into

∫ R
0
dr and

∫∞
R

is performed and after elementary calculation the answer
reads

Erenas =
−4
πR2

{ Rme∫
0

dν
ν3

3(Rme)2
δ2 × (8.3.32)

(
h1(ν)− 4h2(ν) +

8
35
δ2h3(ν)

(
ν

meR

)4
)

+

∞∫
Rme

dν

[
h1(ν)δ2

[
ν3 −

√
ν2 − (Rme)2

3

3(Rme)2
+

√
ν2 − (Rme)2

2



− (Rme)2

2ν
ln

(
ν +

√
ν2 − (Rme)2

)
meR

]

−4h2(ν)δ2
ν3 −

√
ν2 − (Rme)2

3

3(Rme)2

+h3(ν)δ4 ×[
8ν7 −

√
ν2 − (Rme)2

(
8ν6 + 4ν4(Rme)2 + 3ν2(Rme)4 − 15(Rme)6

)
105(Rme)6

+

√
ν2 − (Rme)2

2
− (Rme)2

2ν
ln

(
ν +

√
ν2 − (Rme)2

)
meR

]]}
.

This expression consists of two parts, namely contributions proportional to
the second and the fourth power of the coupling constant δ to the background.
One might observe that given the δ4-term in (8.3.32) we have subtracted more
terms than necessary; see the a2-coefficient, eq. (8.3.11). Strictly speaking, this
is true, but it has the advantage that the sum over the quantum number m
in Ef is convergent more quickly.

Technically this arises from eqs. (8.3.16) and (8.3.17), where only powers
of m were counted such that the angular momentum sum becomes finite at
s = 0. However, after the k-integration has been performed, several divergent
parts proportional to δ4 cancel and only finite terms remain. This is a valuable
check of the calculation.

We are left with the numerical treatment of Ef , eq. (8.3.19). In principle we
could proceed similarly to the scalar field starting with eq. (8.1.33). However,
we will provide a numerical analysis only for the homogeneous magnetic field
inside a tube, see eq. (8.3.9), where the Jost function can be obtained in closed
form. To give some idea, consider again solutions of the type (8.3.12). Then,
in the exterior to the magnetic field we have a(r) = 1 and

Φext(r) =


(√

p0 +me Zm−δ+1(kr)√
p0 −me Zm−δ(kr)

)
for m− δ + 1 > 0( √

p0 +me Zδ−m−1(kr)
−
√
p0 −me Zδ−m(kr)

)
for m− δ < 0 .

In the support of the magnetic field, a(r) = r2/R2 and to find a solution
is slightly more complicated. Let us start with m ≥ 0. First, an asymptotic
analysis of the solution for r → 0 and r →∞ suggests the ansatz

g1(r) = rm+1e−
δr2

2R2 h1(r),

which for h1(r) results in the differential equation of the confluent hypergeo-
metric function. In detail we have

h1(r) = 1F1

(
1− R2k2

4δ
;m+ 2;

δr2

R2

)
,



where we used k2 = p2
0 −m2

e. For g2(r) we obtain

g2(r) =
2(m+ 1)
p0 +me

rme−
δr2

2R2
1F1

(
−R

2k2

4δ
;m+ 1;

δr2

R2

)
,

where the property [2]

(b− 1)1F1(a− 1; b− 1; z) = (b− 1− z)1F1(a; b; z) + z
d

dz
1F1(a; b; z)

of the confluent hypergeometric function has been used.
Imposing continuity at r = R, for m ≥ 0 we have

Rme−
δ
2

( RF
(
1− R2k2

4δ ;m+ 2; δ
)

2(m+1)
p0+me

F
(
−R2k2

4δ ;m+ 1δ
)) =

α

2

(√
p0 +meH

(2)
m−δ+1(kR)

√
p0 −meH

(2)
m−δ(kR)

)
+
β

2

(√
p0 +meH

(1)
m−δ+1(kR)

√
p0 −meH

(1)
m−δ(kR)

)
,

which determines α and β in the form

α =
πi

2
Rm+1e−

δ
2

[
2(m+ 1)√
p0 +me

H
(1)
m−δ+1(kR)F

(
−R

2k2

4δ
;m+ 1; δ

)
−R

√
p0 −meH

(1)
m−δ(kR)F

(
1− R2k2

4δ
;m+ 2; δ

)]
,

β =
π

2i
Rm+1e−

δ
2

[
2(m+ 1)√
p0 +me

H
(2)
m−δ+1(kR)F

(
−R

2k2

4δ
;m+ 1; δ

)
−R

√
p0 −meH

(2)
m−δ(kR)F

(
1− R2k2

4δ
;m+ 2; δ

)]
.

Comparing the solution with the asymptotic form (8.3.15), the Jost function
is seen to equal α (apart from an irrelevant phase factor). Using again the
notation ν = l + 1/2, on the imaginary axis the final result for the Jost
function is found to be

fν(ik) = 2
(
kR

2

)ν+1/2 exp(−δ/2)
Γ(ν + 3/2)

× (8.3.33){
kR

2
Kν− 1

2−δ
(kR) 1F1

(
1 +

(kR)2

4δ
, ν +

3
2
; δ
)

+
(
ν +

1
2

)
Kν+ 1

2−δ
(kR) 1F1

(
(kR)2

4δ
, ν +

1
2
; δ
)}

.

For m < 0 the asymptotic analysis suggests

g1(r) = r−m−1e−
δr2

2R2 h1(r),

and the determination of the solution proceeds as above. Using this time the



relation [2]

(b− a) 1F1(a; b+ 1; z) = b 1F1(a; b; z)− b
d

dz
1F1(a; b; z),

we find

g1(r) = r−m−1e−
δr2

R2
1F1

(
−m− R2k2

4δ
;−m;

δr2

R2

)
,

g2(r) =
r−mk2

2m(p0 + µ)
e−

δr2

R2
1F1

(
−m− R2k2

4δ
;−m+ 1;

δr2

R2

)
.

From here, the Jost function follows,

fν(ik) = 2
(
kR

2

)ν+1/2 exp(−δ/2)
Γ(ν + 3/2)

× (8.3.34){
kR

2
Kν− 1

2+δ(kR) 1F1

(
ν +

1
2

+
(kR)2

4δ
, ν +

3
2
; δ
)

+
(
ν +

1
2

)
Kν+ 1

2+δ(kR) 1F1

(
ν +

1
2

+
(kR)2

4δ
, ν +

1
2
; δ
)}

.

Now, having given all ingredients of the integrand in Ef , the remaining task is
to perform numerical computations for several values of the parameters. The
procedure is slightly simplified by integrating by parts, using the substitution
k =

√
x/R. Then we have

Ef =
−1
2π

1
R2

∑
ν= 1

2 ,
3
2 ,...

∞∫
(Rme)2

dx
(
ln f+

ν (ik) (8.3.35)

+ ln f−ν (ik)− 2 ln fas(ik)
)
|k=

√
x/R

.

Adding up the contributions (8.3.35) and (8.3.32) in order to obtain the com-
plete ground-state energy Erenψ , a numerical analysis for the suitably normal-
ized result is shown in Figure 8.8.

In general, this function takes only negative values, relatively weakly de-
pending on the flux δ. For small R, the logarithmic contribution

Erenψ ∼ a2

16π2
ln(Rme)

is dominating.
The complete energy is the sum of Eclass and Erenψ . In Fig. 8.8, the classical

energy would be a straight horizontal line at 1/(2α). From this it is clear that
the complete energy, remaining a monotonically decreasing function of the
radius, deviates only slightly from the classical energy for all values of the
radius R except for very small ones. The condition for a negative complete
energy is

Rme < e−
3π
2α ,

                      



Figure 8.8
The complete ground-state energy multiplied by R2δ−2 for several
values of δ. (From M. Bordag and K. Kirsten, Phys. Rev. D 60,
105019, 1999. Copyright (1999) by the American Physical Society.
With permission.)

which is far outside the range of applicability of quantum electrodynamics
and also ruled out by the renormalization group argument.

8.4 Concluding remarks

As we have mentioned, instead of the Jost function we might alternatively
use the scattering phase δl(q), see eq. (8.1.18), in order to represent the
ground-state energy; for details see [182]. All possible divergences are found
by applying the Born approximation to the phase shift instead of using the
Lippmann-Schwinger equation for the regular solution, as was done in the
approach developed here.

We briefly describe further applications that have been considered using
the scattering phase formulation. In [221] and [182] one-loop corrections to the
energies of classical field configurations are analyzed in φ4 theories. Results on
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fermionic one-loop corrections are presented in [222, 183, 184]. In particular,
it is shown that quantum corrections in a (1 + 1)-dimensional model with a
scalar field chirally coupled to fermions stabilize otherwise unstable classical
solitons [183, 184].



Chapter 9

Bose-Einstein condensation of ideal
Bose gases under external conditions

9.0 Introduction

We now turn to applications involving finite temperature theories. Here
we have chosen to apply the techniques in a quantum mechanical system
described by the Schrödinger equation

− h̄2

2m
∆φk(~x) + V (~x)φk(~x) = Ekφk(~x), Bφk(~x) |~x∈∂M = 0, (9.0.1)

where generally V (~x) describes an external field and in addition we allow the
possibility that the quantum mechanical particle is subject to some boundary
condition described by the operator B. We will not yet specify the boundary
conditions because the treatment to come will be quite general.

One of the most characteristic features of such a system is the possible
appearance of Bose-Einstein condensation. As mentioned in the Introduction,
a series of new experiments [11, 64, 119, 254] has renewed interest in ideal
Bose-Einstein gases. The potential V (~x) relevant for the theoretical study of
these experiments is the anisotropic harmonic oscillator potential

V (~x) =
h̄m

2
(
ω1x

2
1 + ω2x

2
2 + ω3x

2
3

)
, (9.0.2)

which describes the magnetic traps used. As seen, the input for the potential
is the mass of the atoms used and the frequency of the harmonic oscillator,
all of which are determined experimentally.

Although we will restrict attention to the potential (9.0.2) when provid-
ing explicit results, we develop the formalism under the general viewpoint
of eq. (9.0.1). For the description of the statistical mechanics of the system
associated with eq. (9.0.1) we can use in principle three different statistical
ensembles [41, 251]. In the microcanonical ensemble the relevant partition
function is Ω(N,E), which denotes the number of microstates accessible to
a N -particle gas with total excitation energy E. Formulated as a problem
in partition theory, it is the number of possibilities for sharing the energy E
among up to N particles. If the system is in contact with a heat-bath with
which it can exchange energy, the canonical description is the relevant one



and the partition function reads

Z(N, β) =
∑
E

e−βEΩ(N,E), (9.0.3)

with the inverse temperature β. This guarantees the expectation value of
the energy to be fixed, and β is the associated Lagrange multiplier, namely
β = 1/(kBT ) with kB the Boltzmann constant and T the temperature.

Finally, if in addition there is a particle-bath, the grand canonical descrip-
tion is the relevant one and the partition function in this case is

Ξ(µ, β) =
∞∏
ν=0

1
1− z exp(−βEν)

=
∞∑
N=0

eµβNZ(N, β). (9.0.4)

The appropriate Lagrange multiplier µ is called the chemical potential, z =
exp(βµ) is the fugacity.

Technically, the grand canonical partition function is easiest to handle and
in general it is the one used for the analysis of the thermodynamical proper-
ties. In fact, for properties like the energy and the specific heat of the gas this
is justified because in the thermodynamical limit the different ensembles are
known to give the same answer [424]. However, as has been shown also in [424],
the predictions of the different ensembles differ for some of the bulk properties
of the ideal Bose gas, specially for the ground-state mean-square fluctuation
number in the condensed region. In fact, if 〈δ2nν〉 are the mean-square fluctua-
tions of the ν-th single-particle level occupation, the grand canonical statistics
predicts 〈δ2nν〉 = 〈nν〉gc (〈nν〉gc + 1). Applied to the ground state ν = 0, this
gives

〈δ2n0〉gc = 〈n0〉gc (〈n0〉gc + 1) ,

even when the temperature T approaches zero and all particles condense into
the ground state. This implies huge macroscopic fluctuations that occur even
at T = 0, a result clearly unacceptable for physical reasons.

So, in order to analyze the physical system described by eq. (9.0.1), we will
use the grand canonical ensemble to obtain properties like critical tempera-
ture, energy and specific heat. But for the analysis of fluctuations we switch
to the canonical and microcanonical treatment to obtain a physically sensible
answer. We will see that using elegant formulations of the partition sums as
Mellin-Barnes integrals, and physical quantities are expressed through prop-
erties of the zeta function and the heat kernel associated with the spectrum
Ek.

Let us mention that as long as the particle number N is finite, the thermo-
dynamic functions of the system are of course nonsingular at all temperatures,
with the result that there is no temperature T that is truly critical. This is
always given for experiments such that the usage “phase transition” strictly
speaking does not hold (this has been emphasized particularly by Pathria
[341]; see also [337]). Nevertheless, in the recent experiments the change of the
specific heat and of the ground-state occupation number about some “critical



temperature” is so pronounced that the usage Bose-Einstein condensation and
phase transition is very common.

9.1 Ideal Bose gases in the grand canonical description

As briefly mentioned, the basic quantity in the grand canonical approach is
the partition sum

q = lnΞ = −
∑
k

ln
(
1− ze−βEk

)
, (9.1.1)

with the fugacity z = exp(βµ). All other thermodynamical quantities are
expressed through q. The most relevant connections are the following. The
particle number N is given by

N =
1
β

∂q

∂µ
|T,V =

∑
k

1
eβ(Ek−µ) − 1

, (9.1.2)

the energy can be obtained considering

U =
{
− ∂

∂β
+
µ

β

∂

∂µ

}
q =

∑
k

Ek
eβ(Ek−µ) − 1

, (9.1.3)

and finally we have the specific heat

C =
(
∂U

∂T

)
|N,V . (9.1.4)

The ground state is of particular importance for the discussion of Bose-
Einstein condensation. For that reason we separate off the contribution q0
of the ground state with energy E0,

q0 = − ln
(
1− ze−βE0

)
,

and we write

q = q0 −
∑
k

′
ln
(
1− ze−βEk

)
. (9.1.5)

The prime indicates the omission of the ground-state contribution. For the cal-
culation of the partition sum, eq. (9.1.5), we can proceed similarly to Section
2.2 with small additional complications because of the presence of a chemical
potential. So first we expand the logarithm to obtain

q = q0 +
∞∑
n=1

∑
k

′ 1
n
e−βn(Ek−µ).

                      



Employing the Mellin-Barnes type integral representation (2.1.19), the parti-
tion sum may be cast into the form

q = q0 +
1

2πi

b+i∞∫
b−i∞

dαΓ(α)β−αLi1+α
(
e−β(µc−µ)

)
ζ(α), (9.1.6)

with the polylogarithm

Lin(x) =
∞∑
l=1

xl

ln
, (9.1.7)

and the spectral zeta function

ζ(α) =
∑
k

′
(Ek − E0)

−α
.

Here we introduced the variable µc, which denotes the value of the chemical
potential at the transition temperature. For ideal gases this value is identical to
the ground-state energy, µc = E0. The parameter b, which fixes the integration
contour in eq. (9.1.6), is given in a way such that all poles of the integrand lie to
the left of the contour. Closing the contour to the left we pick up the rightmost
residues of ζ(α). As we described in Section 2.1 there are deep connections
between zeta functions and the heat kernel; for the present application see
especially eq. (2.1.17). But a word of caution is needed here. As the example
of the harmonic oscillator already makes clear we may also be dealing with an
infinite space and unbounded potentials. Therefore, the heat kernel expansion
as given in eq. (2.1.15) will generally not be true. Instead, we assume that the
heat kernel has the general small-t behavior

K(t) ∼
∞∑
k=0

akt
−jk , (9.1.8)

jk > jk+1, and see what the coefficients are at the end of the calculations. If we
consider, e.g., a Bose gas in a finite cavity, expansion (2.1.15) is the adequate
one and the results derived in Chapter 4 can be applied. For other simple
potentials where the eigenvalues are known explicitly (as for the harmonic
oscillator) the coefficients can be very easily found; see below. Finally, we will
see that relevant information also can be obtained for quite general external
potentials.

As is clear from the discussion in Section 2.1, see eqs. (2.1.21) and (2.1.22),
the small-t behavior will not always be of the form (9.1.8). However, these
cases are of no relevance to the applications described in the present chapter.

So let us continue with expansion (9.1.8) and let us see how far thermo-
dynamical quantities can be expressed just by the heat kernel coefficients
ak. Performing the calculations as in Section 2.1, instead of eq. (2.1.17) the

                      



connection between the zeta function and the heat kernel coefficients reads

Res ζ(α = jk) =
ak

Γ(jk)
, (9.1.9)

once the expansion (9.1.8) is assumed. Taking into consideration only the two
rightmost poles of ζ(α) we then arrive at

q = q0 + β−j0Li1+j0

(
e−β(µc−µ)

)
a0

+β−j1Li1+j1
(
e−β(µc−µ)

)
a1 + . . . . (9.1.10)

Given that j0 > j1, eq. (9.1.10) provides a high-temperature expansion, where,
as we will see, the relevant µ-dependence has been kept. The actual meaning of
high temperature depends very much on the specific situation considered, and
the relevant length scales might be, e.g., extension of cavities or frequencies of
the harmonic oscillator trap. This will be clearly seen when giving examples
of the general situation.

For the analysis of Bose-Einstein condensation the particle number is of
particular interest. Using the relation for the polylogarithm,

∂Lin(x)
∂x

=
1
x
Lin−1(x),

it is

N = N0 + β−j0Lij0

(
e−β(µc−µ)

)
a0

+β−j1Lij1
(
e−β(µc−µ)

)
a1 + ... (9.1.11)

The critical temperature 1/βc is defined by eq. (9.1.11) with N0 = 0, because
then the excited levels are completely filled and lowering the temperature fur-
ther, particles start to reside in the ground state. Near the critical temperature
µ ∼ µc = E0 and the relevant approximation is, for x ∼ 0,

Lin
(
e−x

)
∼ ζR(n)− xζR(n− 1) + ...,

valid for n > 2. This is easily derived using the definition (9.1.7) and the
Mellin-Barnes integral representation of the exponential. As a result, for j1 > 1
and j0− j1 < 2 (in this case the term xζR(n− 1) above can be neglected) the
critical temperature is approximately defined through

N = β−j0c ζR(j0)a0 + β−j1c ζR(j1)a1 + . . . ,

and reads

Tc = T0

{
1− ζR(j1)a1

j0ζR(j0)j1/j0a
j1/j0
0

1
N (j0−j1)/j0

}
. (9.1.12)

Here, T0 is the critical temperature in the bulk limit,

T0 =
1
kB

(
N

ζR(j0)a0

)1/j0

. (9.1.13)



Let us stress that eq. (9.1.12) contains the influence that the finite number
N of particles has, the details being encoded in the exponents ji and the
coefficients ai. If the condition j1 > 1 is not fulfilled similar considerations
again determine critical temperatures. For example, for j1 = 1 the relevant
approximation is

Li1

(
e−β(µc−µ)

)
= − ln

(
1−

(
e−β(µc−µ)

))
,

which can be used for three-dimensional cavities. Similarly, the case j1 < 1,
which occurs for lower dimensional cavities and for arbitrary power law po-
tentials, can be treated. For more details on the specific calculations involved
see [273, 274] and for different approaches [30, 29, 229, 418].

Here we will concentrate on the harmonic oscillator potential, eq. (9.0.2).
In this case the energy eigenvalues are given by

En1n2n3 = h̄
3∑
i=1

ωi

(
ni +

1
2

)
, ni ∈ IN0,

and the heat kernel is simply a product of three geometric series,

K(t) = e−h̄(ω1+ω2+ω3)/2
∞∑

n1,n2,n3=0

e−th̄(n1ω1+n2ω2+n3ω3).

For the exponents we have j0 = 3, j1 = 2, and

a0 =
1

h̄3ω1ω2ω3

; a1 =
1

2h̄2

(
1

ω1ω2
+

1
ω1ω3

+
1

ω2ω3

)
.

For the critical temperature this means

Tc = T0

{
1− ζR(2)

3ζR(3)2/3
γN−1/3

}
(9.1.14)

with

γ =
1
2
(ω1ω2ω3)2/3

[
1

ω1ω2
+

1
ω1ω3

+
1

ω2ω3

]
and

T0 = (h̄/kB)(ω1ω2ω3)1/3
(

N

ζR(3)

)1/3

. (9.1.15)

These results have also been obtained using an approach based on the Euler-
MacLaurin formula [240, 241] and based on a density of states approach [227,
226]. The advantage of the present approach is that it is very simple and, as
explained, easily applied to various other situations.

Using as an illustration, e.g., the frequencies of the first successful experi-
ment on Bose-Einstein condensation with rubidium [11], namely ω1 = ω2 =
240π/

√
8s−1 and ω3 = 240πs−1 with N = 2000, we find Tc ≈ 31.9nK =

0.93T0 [271], such that finite-N effects are quite important. The first accu-
rate experimental determination of the critical temperature was reported in



[172]. With ω3 = 746πs−1 and ω1 = ω2 = ω3/
√

8 and a particle number of
N = 40000, the critical temperature Tc = 280nK = 0.94T0 was found. Finite
number corrections shift the temperature down about 3%; further corrections
are due to interaction effects. Thus, in order to understand all details of the
experiments, finite-N effects as well as interaction effects have to be taken
into account, at least for particle numbers up to the order of 104 [263]. How-
ever, nowadays, several million atoms are in the condensed state and finite-N
effects become invisible.

Let us next consider the energy of the system. It is helpful to use(
− ∂

∂β
+
µ

β

∂

∂µ

)
Lin

(
e−β(µc−µ)

)
= µcLin−1

(
e−β(µc−µ)

)
,

in order to obtain

U = j0β
−j0−1Li1+j0

(
e−β(µc−µ)

)
a0 + j1β

−j1−1Li1+j1

(
e−β(µc−µ)

)
a1

+E0j0β
−j0Lij0

(
e−β(µc−µ)

)
a0 + ...,

where we have written all terms needed to give the leading two orders for
the harmonic oscillator potential. Introducing the dimensionless quantities
xi = h̄βωi, the expansion for small values of xi reads,

βU =
3ζR(4)
x1x2x3

+
3
2
ζR(3)

(
1

x1x2
+

1
x1x3

+
1

x2x3

)
. (9.1.16)

The treatment of the specific heat is slightly more complicated because the
energy has to be differentiated while keeping the particle number N fixed, see
eq. (9.1.4). Differentiating the free energy in the representation (9.1.3) yields

C = kβ2

{∑
k

E2
k

e−β(Ek−µ)(
1− e−β(Ek−µ)

)2 − ∂

∂β
(βµ)

∑
k

Ek
e−β(Ek−µ)(

1− e−β(Ek−µ)
)2
}
.

The term (∂/∂β)(βµ) is determined by differentiating the fixed particle
number with respect to β to obtain

∂

∂β
(βµ) =

H1

H0
,

where

Hi =
∑
k

Eik
e−β(Ek−µ)(

1− e−β(Ek−µ)
)2 .

In this notation we find immediately,

C = kβ2

(
H2 −

H2
1

H0

)
.

Proceeding in the manner described before, that is, expanding the sums ap-
pearing in Hi in powers of the exponentials and rewriting it in terms of Mellin-



Barnes integrals, the following results are obtained,

H0 = d0
e−β(µc−µ)(

1− e−β(µc−µ)
)2 + ... =

d0

β2(µc − µ)2
+ ...,

H1 = E0S0 + j0β
−j0−1a0Lij0

(
e−β(µc−µ)

)
+j1β−j1−1a1Lij1

(
e−β(µc−µ)

)
+ ...,

H2 = 2E0S1 − E2
0S0 + j0(j0 + 1)β−j0−2a0Lij0+1

(
e−β(µc−µ)

)
+j1(j1 + 1)β−j1−2a1Lij1+1

(
e−β(µc−µ)

)
+ ...

It is then easy to obtain, again for the anisotropic harmonic oscillator trap,
the following relevant approximation,

C

k
=

12ζR(4)
x1x2x3

+ 3ζR(3)
(

1
x1x2

+
1

x1x3

1
x2x3

)
−9β2(µc − µ)2ζR(3)2

(x1x2x3)2
+ ... (9.1.17)

All expansions can be given to (in principle) any order wanted. Already the
ones presented agree very well with a numerical evaluation of the sums in-
volved [271], at least up to the critical temperature.

Agreement beyond the critical temperature might be obtained by the use
of the effective fugacity

zeff = ze−βE1 ,

where E1 is the first excited level with, let us say, degeneracy d1. Whereas in
the previous calculation only the ground state was treated separately, we now
separate the ground state and the first excited level to find

q = q0 + d1Li1(zeff ) + β−j0Li1+j0(zeff )a0 + β−j1Li1+j1(zeff )a1 + ...

Proceeding as before, the results obtained by this procedure are in very good
agreement with a numerical evaluation of the sums even beyond the transi-
tion temperature into the condensed phase. This idea was used in the Euler-
MacLaurin approach employed by Haugerud et al. [240, 241].

Let us add a final comment to the approach used here. The technique allows
us to calculate thermodynamical properties by directly evaluating the sums
over the discrete energy levels. Another possible way to do this analysis is to
approximate the sums by integrals. A crucial feature in obtaining a reliable
approximation is to use an appropriate density of states [227, 226]. We can
show [272, 274] that the use of the density

ρ(E) =
a0

Γ(j0)
Ej0−1 +

a1

Γ(j1)
Ej1−1 (9.1.18)

is completely equivalent to the analysis presented above.



This summarizes the grand canonical description of ideal Bose gases trapped
by magnetic fields. Although the energy and specific heat derived within this
simple model agree quite well with experiments [172], to analyze details of
the properties beyond the condensation temperature of the system, interac-
tion has to be taken into account [215].

9.2 Canonical description of ideal Bose-Einstein conden-
sates

Having provided an analysis of several of the most important thermodynam-
ical properties we now consider the fluctuation of the number of condensate
particles starting with the canonical description [247]. To simplify notation
we stipulate that the ground-state energy be equal to zero, E0 = 0. Of course,
we can equally well study the fluctuation of the number of excited particles.
This is because for the expectation values 〈Nex〉cn of the excited levels and
〈n0〉cn of the condensate particles we have

〈n0〉cn = N − 〈Nex〉cn , (9.2.1)

and so

〈δ2n0〉cn = 〈δ2Nex〉cn
= 〈N2

ex〉cn − 〈Nex〉2cn . (9.2.2)

At this point it seems natural to try a formulation for the fluctuations in terms
of the partition sum for the excited levels only. We write

Ξex(z, β) = (1− z) Ξ(z, β)

=
∞∑
N=0

(
zN − zN+1

)∑
E

e−βE Ω(E|N)

=
∞∑
N=0

zN
∑
E

e−βE [Ω(E|N)− Ω(E|N − 1)]

=
∞∑

Nex=0

zNex
∑
E

e−βE Φ(Nex|E) , (9.2.3)

where we replaced the summation index N by Nex and where we introduced

Φ(Nex|E) = Ω(E|Nex)− Ω(E|Nex − 1).

In words, eq. (9.2.3) means that the grand canonical partition sum of a fic-
titious Bose gas which emerges from the actual gas by removing the single-
particle ground state is the generating function for Φ(Nex|E).



As is clear by construction and as is also easily seen, Φ(Nex|E) is the number
of possibilities for distributing the excitation energy E over exactlyNex excited
particles. Within the canonical ensemble, i.e., if theN -particle gas is in contact
with some heat-bath of temperature T , the probability for finding Nex excited
particles can then be written as

pcn(Nex, β) =
∑
E e

−βE Φ(Nex|E)∑
E e

−βE∑N
N ′

ex=0 Φ(N ′
ex|E)

, Nex ≤ N .

Our next aim is to relate expectation values 〈Nk
ex〉cn with the partition sum

(9.3.3) for the excited levels. Whereas in the customary grand canonical frame-
work, the fugacity z is linked to the ground-state occupation number 〈n0〉gc by
z = (1 + 1/〈n0〉gc)−1, in the present analysis it is merely a formal parameter.
In particular, we can put z = 1 and consider the derivatives of the generating
function (9.3.3),(

z
∂

∂z

)k
Ξex(z, β)

∣∣∣∣∣
z=1

=
∑
E

e−βE

( ∞∑
Nex=0

Nk
ex Φ(Nex|E)

)
≡ Mk(β) , (9.2.4)

which defines the canonical moments [356].
If the sum over Nex in eq. (9.2.4) did range only from zero to the actual

particle number N , the ratio M1(β)/M0(β) would be exactly equal to the
canonical expectation value 〈Nex〉cn. But if Φ(Nex|E) is very small for Nex =
N , we have for small k

∞∑
Nex=0

Nk
ex Φ(Nex|E) =

N∑
Nex=0

Nk
ex Φ(Nex|E) , (9.2.5)

at least to a very good approximation. This situation is certainly given if there
is a condensate, because then by definition the statistical weight of microstates
where the energy E is spread over all N particles is negligible. Hence, in the
presence of a Bose-Einstein condensate, we approximate

〈Nex〉cn =
M1(β)
M0(β)

(9.2.6)

and

〈δ2Nex〉cn =
M2(β)
M0(β)

−
(
M1(β)
M0(β)

)2

. (9.2.7)

The approximation (9.2.5) expresses the replacement of the actual condensate
ofN−〈Nex〉cn particles by a condensate consisting of infinitely many particles.
These infinitely many ground-state particles may be regarded as forming a
particle reservoir for the excited-states subsystem. Such an approach to the
computation of the canonical condensate fluctuations had been suggested as
early as 1956 by Fierz [185]. More recently it has been put forward by [326]
under the name “Maxwell’s Demon Ensemble.”



This approximation allows for a remarkably simple determination of the
number 〈Nex〉cn of excited particles and of the canonical mean-square conden-
sate fluctuation 〈δ2n0〉cn = 〈δ2Nex〉cn. As we will see, the relevant properties
of 〈Nex〉cn are encoded in the residues of the zeta function associated with
the one-particle energy eigenvalue spectrum Eν . Performing the derivatives
required by eq. (9.3.4), in the representation

Ξex(z, β) =
∞∏
ν=1

1
1− z exp(−βEν)

,

we find

M0(β) = Z(β),
M1(β) = Z(β)S1(β),
M2(β) = Z(β)

[
S2

1(β) + S2(β)
]
,

and

S1(β) =
∞∑
ν=1

1
exp(βEν)− 1

=
∞∑
ν=1

∞∑
r=0

exp[−βEν(r + 1)] ,

S2(β) =
∞∑
ν=1

1
exp(βEν)− 1

(
1

exp(βEν)− 1
+ 1
)

=
∞∑
ν=1

∞∑
r=1

r exp[−βEνr] ,

where we used the notation Z(β) = Ξex(1, β).
In the ratios M1(β)/M0(β) and M2(β)/M0(β) needed for the calculation

of 〈Nex〉cn, eq. (9.3.6), and 〈δ2Nex〉cn, eq. (9.3.7), the partition function Z(β)
drops out and we arrive at the appealing relations

〈Nex〉cn = S1(β),
〈δ2Nex〉cn = S2(β) .

For evaluating the sums S1(β) and S2(β) we employ the Mellin–Barnes inte-
gral representation (2.1.19). This leads to

〈Nex〉cn =
∞∑
ν=1

∞∑
r=0

1
2πi

τ+i∞∫
τ−i∞

dt
Γ(t)

[βEν(r + 1)]t

=
1

2πi

τ+i∞∫
τ−i∞

dt
∞∑
ν=1

∞∑
r=0

Γ(t)
[βEν(r + 1)]t



=
1

2πi

τ+i∞∫
τ−i∞

dtΓ(t)β−tζ(t)ζR(t) , (9.2.8)

with the spectral zeta function

ζ(t) =
∞∑
ν=1

1
Etν

that embodies the necessary information about the energy spectrum. In the
same way we derive the remarkably similar-looking equation

〈δ2Nex〉cn =
1

2πi

τ+i∞∫
τ−i∞

dtΓ(t)β−tζ(t)ζR(t− 1) . (9.2.9)

As already mentioned, when interchanging summations and integration in
eq. (9.2.8), and in the analogous derivation of the canonical fluctuation for-
mula (9.2.9), we have to require the absolute convergence of the emerging
sums. Therefore, the real number τ has to be chosen such that the poles of
both zeta functions lie to the left of the path of integration.

A series expansion of the expectation values (9.2.8) and (9.2.9) in powers
of β is obtained by shifting the contour involved to the left. The tempera-
ture dependence of 〈Nex〉cn or 〈δ2Nex〉cn is then determined by the pole of
the integrand (9.2.8) or (9.2.9) that lies farthest to the right. Since Γ(t) has
poles merely at t = 0,−1,−2, . . . , the decisive pole is provided either by the
Riemann zeta function ζR(t) or ζR(t−1), respectively, or by its spectral oppo-
nent ζ(t), which depends on the particular trap under study [229]. Although
it would be possible here to give a quite general discussion of the competition
between these poles by assuming again a pole of ζ(t) as given in eq. (9.1.9),
we will focus on the harmonic oscillator trapping potentials to make contact
with the experimental situations.

We start the discussion with D-dimensional isotropic harmonic traps, in
which case ζ(t) becomes a sum of Riemannian zeta functions. Namely, de-
noting the angular frequency of such a trap by ω, the degeneracy gν of a
single-particle state with excitation energy νh̄ω is

gν =
(
ν +D − 1
D − 1

)
.

In this case ζ(t) acquires the form

ζ(t) = (h̄ω)−t
∞∑
ν=1

gν
νt

.



In some lower dimensions we have explicitly

β−tζ(t) = (βh̄ω)−tζR(t) for D = 1 ,
β−tζ(t) = (βh̄ω)−t [ζR(t− 1) + ζR(t)] for D = 2 ,
β−tζ(t) = (βh̄ω)−t [ζR(t− 2)/2 + 3ζR(t− 1)/2 + ζR(t)] for D = 3 .

(9.2.10)
As is seen in eq. (9.2.10) the relevant expansion parameter is βh̄ω and the ap-
proximation is reliable for βh̄ω � 1. As emphasized, this is formally the high-
temperature regime. On the other hand, from the very start, our approach is
valid only for temperatures below the onset of a “macroscopic” ground-state
occupation. A temperature interval that satisfies both constraints exists, if
the particle number N is sufficiently large, since the condensation tempera-
ture generally increases with N ; see eq. (9.1.13). So in a suitable temperature
interval, the desired asymptotic T -dependence can directly be read off from
the residue of the rightmost pole of the respective integrand (9.2.8) or (9.2.9).
In detail the single results read:

(i) D = 1: The number of excited particles is governed by the double pole
at t = 1 which emerges since ζ(t) is proportional to ζR(t). In contrast, the
mean-square fluctuation is dominated by the simple pole of ζR(t−1) at t = 2.
As a result,

〈Nex〉cn =
kBT

h̄ω

[
ln
(
kBT

h̄ω

)
+ γ

]
, (9.2.11)

〈δ2Nex〉cn =
(
kBT

h̄ω

)2

ζ(2) . (9.2.12)

(ii) D = 2: The rightmost pole of ζ(t) has moved to t = 2 and thus determines
〈Nex〉cn all by itself. It is now the product ζ(t)ζR(t − 1) providing a double
pole that governs the asymptotics of the fluctuation. The results are

〈Nex〉cn =
(
kBT

h̄ω

)2

ζR(2) (9.2.13)

〈δ2Nex〉cn =
(
kBT

h̄ω

)2 [
ln
(
kBT

h̄ω

)
+ γ + 1 + ζR(2)

]
. (9.2.14)

(iii) D = 3: The pole of the spectral zeta function ζ(t) at t = 3 now wins in
both cases and we find

〈Nex〉cn =
(
kBT

h̄ω

)3

ζR(3), (9.2.15)

〈δ2Nex〉cn =
(
kBT

h̄ω

)3

ζR(2) . (9.2.16)

Of course, these results remain valid only as long as 〈Nex〉cn < N .
With these results at hand, we can check that the predictions for the crit-

ical temperature in the grand canonical and the canonical approach agree in
the thermodynamical limit. From (9.2.15), in D = 3, we find the large-N



condensation temperature

T0 =
h̄ω

kB

(
N

ζR(3)

)1/3

. (9.2.17)

This result agrees with eq. (9.1.15), provided by the familiar grand canoni-
cal ensemble [120]. Even taking into account the next-to-leading poles, the
improved formulas in both ensembles agree. First, we find

〈Nex〉cn = ζR(3)
(
kBT

h̄ω

)3

+
3
2
ζR(2)

(
kBT

h̄ω

)2

, (9.2.18)

implying that for Bose gases with merely a moderate number of particles the
actual condensation temperature Tc is lowered by terms of the order N−1/3

against T0,

Tc = T0

[
1− ζ(2)

2 ζ(3)2/3
1

N1/3

]
, (9.2.19)

as has already been observed for the grand canonical counterpart (9.1.14)
[226, 263, 272, 240].

These examples nicely illustrate the working principle of the basic integral
representations (9.2.8) and (9.2.9). There are two opponents that place poles
on the positive real axis. On the one hand there is the spectral zeta function
ζ(t), which depends on the particular trap, and on the other hand ζR(t) or
ζR(t− 1), which are completely independent of the system. The exponent of
the temperature dependence of 〈Nex〉cn and 〈δ2Nex〉cn is determined by the
location of the pole farthest to the right. Given the pole of ζ(t) moves with
increasing dimension D to the right, it is ζ(t) only that governs 〈Nex〉cn and
〈δ2Nex〉cn above D = 1 and above D = 2, respectively.

If a different kind of trap is used, or if the gas is enclosed in a finite volume,
the location of the poles will be different; see eqs. (9.1.8) and (9.1.9). The
outcome of the competition described then depends very much on the values of
the jk in (9.1.8). But given these values, a discussion of the resulting behavior
can easily be carried through. Instead of pursuing this direction, let us consider
anisotropic traps that play a major role in present experiments. For notational
convenience, we set the ground-state energy again to zero, such that with the
angular trap frequencies ωi (i = 1, . . . , D), the energy levels are

Eν1,...,νd
= h̄(ω1ν1 + . . .+ ωDνD) ≡ h̄~ω~ν , ~ν ∈ IND

0 . (9.2.20)

The spectral zeta function

ζ(t) =
∑

~ν∈IND

0 /{0}

1
(h̄~ω~ν)t

(9.2.21)

is now a zeta function of the Barnes type [34] (see also [138]), which we have
already encountered and used extensively in Chapter 4. Its rightmost pole is

                      



located at t = D and it has the residue, see eq. (A. 20),

Res ζ(D) =
1

Γ(D)

(
kB
h̄Ω

)D
, (9.2.22)

with the geometric mean Ω of the trap frequencies,

Ω =

(
D∏
i=1

ωi

)1/D

. (9.2.23)

In order that the asymptotic evaluation of the canonical formulas (9.2.8)
and (9.2.9) provides a reliable approximation, we now require βh̄ωi � 1 for
all i. If this condition is not met, as happens in highly anisotropic traps where
one of the frequencies is much larger than the others, we have to treat the
entailing dimensional crossover effects [407] by keeping the corresponding part
of ζ(t) as a discrete sum. For simplicity, in the following we will assume merely
moderate anisotropy, so that the above inequalities are satisfied.

Due to the occurrence of the double pole for D = 2, this case presents
the most complicated case of an anisotropic trap. The computation of the
canonically expected number of excited particles, and its fluctuation, leads to

〈Nex〉cn =
(
kBT

h̄Ω

)2

ζR(2) , (9.2.24)

〈δ2Nex〉cn =
(
kBT

h̄Ω

)2 [
ln
(

kBT

h̄(ω1 + ω2)

)
(9.2.25)

+
(
ω1

ω2
+
ω2

ω1

)
ζR(2) + I(ω1, ω2)

]
,

with

I(ω1, ω2) =

∞∫
0

dααe−
(√

ω1
ω2

+
√

ω2
ω1

)
α ×

 1(
1− e

−
√

ω1
ω2
α
)(

1− e
−
√

ω2
ω1
α
) − 1

α2

 . (9.2.26)

The rather complicated dependence of the fluctuation 〈δ2Nex〉cn on the trap
frequencies ω1 and ω2 originates from the double pole involved in (9.2.9) due
to which the finite part of the Barnes zeta function (9.2.21) enters the result.
This finite part depends on the frequencies ω1 and ω2, as is described in detail
in Appendix A. There, we also show the identity

I(ω, ω) = γ + 1 + ln 2− ζR(2) , (9.2.27)

which ensures that eq. (9.2.25) reduces to the isotropic result (9.2.14) for
ω1 = ω2 = ω.



For any dimension D ≥ 3, the situation is simpler because it is only the
pole of ζ(t) at t = D which determines the behavior of both 〈Nex〉cn and
〈δ2Nex〉cn. The final answers are

〈Nex〉cn =
(
kBT

h̄Ω

)D
ζR(D), (9.2.28)

〈δ2Nex〉cn =
(
kBT

h̄Ω

)D
ζR(D − 1), (9.2.29)

and the difference between the isotropic and the mildly anisotropic case merely
consists in the replacement of the frequency ω by the geometric mean Ω.

9.3 Microcanonical condensate fluctuations

Let us finally consider the condensate fluctuations in the microcanonical
ensemble and see what differences compared to the canonical treatment ap-
pear. It is possible to attack the microcanonical ensemble directly by the use
of saddle point methods, see, e.g., [247], but here we are going to use a con-
nection between the microcanoncial and canonical ensemble which allows for
an efficient evaluation of condensate fluctuations [247].

First, we use methods employed in thermodynamics to relate the canoni-
cal and the microcanonical mean-square fluctuations. As before, consider the
excited-states subsystem only and keep all parameters that determine the
single-particle energies fixed. For example for the traps described by the har-
monic oscillator potential these are the frequencies ωi. In that case, with the
fugacity z and the energy E as basic variables [326], we have the relation
Nex = Nex(z,E). Taking the total differential,

dNex =
(
∂Nex

∂z

)
E

dz +
(
∂Nex

∂E

)
z

dE ,

and then keeping the temperature T fixed, we find

z

(
∂Nex

∂z

)
T

∣∣∣∣
z=1

= z

[(
∂Nex

∂z

)
E

+
(
∂Nex

∂E

)
z

(
∂E

∂z

)
T

]
z=1

.

The first term on the right-hand side is the microcanonical mean-square fluc-
tuation 〈δ2Nex〉mc, whereas the left-hand side is its canonical counterpart
〈δ2Nex〉cn. Hence, we find

〈δ2Nex〉cn − 〈δ2Nex〉mc =
(
∂Nex

∂E

)
z

(
∂E

∂z

)
T

∣∣∣∣
z=1



=
kBT

2
(
∂Nex
∂T

)
z

(
∂E
∂z

)
T

∣∣
z=1

kBT 2
(
∂E
∂T

)
z

∣∣
z=1

. (9.3.1)

The denominator

kBT
2

(
∂E

∂T

)
z

∣∣∣∣
z=1

= 〈δ2E〉cn

is the canonical mean-square fluctuation of the system’s energy. The two par-
tial derivatives in the numerator,

kBT
2

(
∂Nex

∂T

)
z

∣∣∣∣
z=1

=
(
∂E

∂z

)
T

∣∣∣∣
z=1

= 〈δNex δE〉cn ,

are both equal to the canonical particle-energy correlation 〈δNex δE〉cn =
〈NexE〉cn − 〈Nex〉cn〈E〉cn. This allows us to express the difference between
canonical and microcanonical condensate fluctuations in terms of quantities
that can be computed entirely within the convenient canonical ensemble. The
connection reads

〈δ2n0〉cn − 〈δ2n0〉mc =
[〈δNex δE〉cn]2

〈δ2E〉cn
. (9.3.2)

The usefulness of this formula was first stated by Navez et al. [326]. It rests in
the fact that it lends itself again to the approximation used for the canonical
ensemble, and thus to an efficient evaluation by means of the Mellin–Barnes
transformation. Within the approximation used and with the techniques de-
veloped, the canonical particle-energy correlation becomes

〈δNex δE〉cn =
(
z
∂

∂z

)(
− ∂

∂β

)
ln Ξex(z, β)

∣∣∣∣
z=1

=
∞∑
ν=1

Eν
exp(βEν)− 1

(
1

exp(βEν)− 1
+ 1
)

=
1
β

1
2πi

τ+i∞∫
τ−i∞

dtΓ(t)ζ(β, t− 1)ζR(t− 1) .

Similarly, the canonical energy fluctuation adopts the form

〈δ2E〉cn =
(
− ∂

∂β

)2

ln Ξex(z, β)

∣∣∣∣∣
z=1

=
∞∑
ν=1

E2
ν

exp(βEν)− 1

(
1

exp(βEν)− 1
+ 1
)

=
1
β2

1
2πi

τ+i∞∫
τ−i∞

dtΓ(t)ζ(β, t− 2)ζR(t− 1) .



Hence, from (9.3.1) and (9.3.2),

〈δ2n0〉cn − 〈δ2n0〉mc =

[
1

2πi

τ+i∞∫
τ−i∞

dtΓ(t)ζ(β, t− 1)ζR(t− 1)

]2

1
2πi

τ+i∞∫
τ−i∞

dtΓ(t)ζ(β, t− 2)ζR(t− 1)
. (9.3.3)

This formula again is remarkably easy to handle. Applied to the harmonic
trap, for instance, it yields immediately

〈δ2n0〉cn − 〈δ2n0〉mc =
1

2ζ(2)
kBT

h̄ω

[
ln
(
kBT

h̄ω

)
+ γ + 1

]2
, (9.3.4)

for the one-dimensional trap and

〈δ2n0〉cn − 〈δ2n0〉mc =
D

D + 1
ζR(D)2

ζR(D + 1)

(
kBT

h̄Ω

)D
, (9.3.5)

for the general case D ≥ 2. These formulas show that the condensate fluc-
tuations in harmonically trapped, energetically isolated ideal Bose gases are
significantly smaller than the corresponding fluctuations (9.2.29) in traps that
are thermally coupled to some heat-bath.

The temperature used above can be connected to the total number of exci-
tation quanta, thus establishing connections to the theory of partitions [247].

Given recent experimental progress on the “designing” of ideal Bose gases
[254] and non-destructive imaging methods [12, 13], it is hoped that the ex-
perimental verification of the results for the fluctuations will become possible
in the near future.

9.4 Concluding remarks

Although in this chapter we have concentrated on non-relativistic theories
only, the application of heat kernel techniques in finite-temperature relativis-
tic quantum field theory is very common. In [147], the high-temperature ex-
pansion for the free energy of a massless scalar gas in a static space time
that may have boundaries is derived in terms of the heat kernel coefficients.
Massive fields [152] and chemical potential [153] are considered later on. Fur-
thermore, in the background field formalism, heat kernel coefficients allow
for a very elegant formulation of Bose-Einstein condensation as a symmetry
breaking phenomenon [392, 393]. Finally, finite number and finite size effects,
as analyzed here in the non-relativistic context, have also been considered in
relativistic theories [381].



Chapter 10

Conclusions

In this book we have provided and applied techniques for the analysis of the
most important spectral functions frequently appearing in mathematics and
physics. Examples treated are the heat kernel, determinants and partition
functions of statistical ensemble theory. The central object for dealing with
all these entities is the zeta function associated with a suitable elliptic dif-
ferential operator. Within a specific class of examples we have shown how to
find by analytical as well as numerical means all properties of the zeta func-
tions needed. In addition, approximation schemes useful in finite temperature
theory have been developed.

Most of our analysis is concerned with quantum field theory under the
influence of external conditions. In flat space, for the case when spherically
symmetric boundaries or external potentials are present, we have developed
a method for a detailed analysis of the associated zeta functions, which al-
lowed the residues, function values and derivatives to be evaluated. In general
the eigenvalues of the involved Laplace-like operators are not known explic-
itly. Nevertheless, we managed to calculate relevant spectral functions (nu-
merically) exactly (to any accuracy wanted) by replacing the knowledge of
eigenvalues by an (at least) asymptotic knowledge of eigenfunctions. If eigen-
functions are known, as is the case for the Laplace operator on the ball or
generalized cone, the uniform asymptotic expansion can be used to construct
analytical continuations. But even if these are not given explicitly, we have
provided examples where the relevant expansions are found by results of scat-
tering theory. But these examples by far do not exploit thoroughly the basic
concepts developed. So we considered Laplace-like operators on the general-
ized cone with a metric given by

ds2 = dr2 + r2dΣ2.

But using the same ideas and steps as described in great detail in Section 3.1,
the approach can be applied equally well when we replace the metric by

ds2 = dr2 + f(r2)dΣ2. (10. 1)

Then we would be obliged to analyze the asymptotic behavior of the new
radial eigensolutions. A particularly important example is the spherical sus-
pension, ds2 = dθ2 + sin2 θdΣ2, 0 ≤ θ ≤ θ0. The asymptotic properties of the
resulting Legendre function are already known [391] and have been applied by
Barvinsky et al. [40] in a calculation of a one-loop effective action in quantum

                      



cosmology. Ultimately the aim would be to use an arbitrary function f(r2)
and to get the asymptotics just by dealing with the differential equation.

A great advantage of the approach developed is that it deals with the zeta
function as a whole and not only with certain properties of it. In consequence,
function values, residues and derivatives can be calculated and the analysis
can be applied to various different topics of theoretical and mathematical
physics. We have grouped the applications with respect to their numerical
complexity, starting with the quantities which are under purely analytical
control. We started the various applications by calculating heat kernel coeffi-
cients of Laplace-like operators in Riemannian manifolds with boundary. We
have dealt with mixed boundary conditions, special cases of which are Dirich-
let and Robin boundary conditions, oblique boundary conditions and spectral
boundary conditions. A summary of results on the time-dependent setting, on
transmittal boundary conditions and on the Zaremba problem is also given.
Details about heat equation asymptotics for all boundary conditions can be
found in Chapter 4.

How is it that the special case calculations are useful to obtain heat kernel
coefficients on arbitrary Riemannian manifolds? The reason is found in the
geometric origin of the heat kernel coefficients by which they can be expressed
in terms of geometrical invariants with (numerical) unknowns. The terms
involving the extrinsic curvature are especially difficult to calculate because
in the application of the index theorem they simply cancel out and their
conformal transformation properties are too simple to yield enough relations
by themselves. It is exactly here that the calculation on the generalized cone
fills a gap and allows for an efficient evaluation of coefficients. As is clear
from the presentation in Chapter 4, we carried the standard of special case
calculation so far that combined with the already existing approaches new
results can be found. Special cases provided an additional piece of information
such that the conglomerate of methods is able to find the complete coefficients.

A general motivation for the calculation of heat kernel coefficients is their
connection to index theorems and characteristic classes [208]. They can also
be used directly for the proof of certain compactness theorems [335]. The
higher coefficients found can in principle be of interest in higher dimensional
theories as the very actively considered M -theories [380]. Further applications
in physical contexts such as the calculation of effective actions were presented
in Chapter 2.

Although we already have provided many examples of boundary conditions,
many more considerations are possible where the techniques developed are
expected to be useful. As an example consider bag boundary conditions more
general than the ones dealt with. In detail, instead of Π− in eq. (3.3.11), define
the “projection”

Π− =
1
2

(
1 + eθΓ̃Γ̃γr

)
,

with θ a real parameter. This defines a self-adjoint Dirac operator [250, 420].

                      



In the context of gauge theories in Euclidean bags it has been shown that these
boundary conditions are a substitute for introducing small quark masses to
drive the breaking of the chiral symmetry. The theory has been thoroughly
investigated in two dimensions and the effective action for the gauge bosons,
as well as various correlation functions, has been calculated and the chiral
symmetry breaking considered. To do this analysis in the physically very rele-
vant four-dimensional case, the (θ-dependent) a2 heat kernel coefficient would
be needed. The special case calculation is easily done using essentially the cal-
culation of Section 3.3. The general form of the coefficients is, however, in this
case more difficult, because the conditions (4.6.2) are not satisfied, which in
turn leads to mixed oblique boundary conditions. But again it is hoped that
the mixture of all ideas provided will yield the full coefficient. Whereas this is
a quantum field theory problem, oblique boundary conditions also naturally
appear in problems of elastic vibration, where a mixture of longitudinal and
transversal types of vibrations occurs (mode scrambling) [33].

Another investigation of interest is the inclusion of edges. Again, whereas
the Euler characteristic for two-dimensional surfaces in this case is known,
the associated higher dimensional topological invariants have not yet been
found. By applying the techniques developed to sectors of balls and spheres
(the implicit eigenvalue equations look very similar here) and to bases having
a boundary, progress is possible.

Let us mention that we can deal as well with the η-invariant

Tr L2

(
FDe−tD

2
)
,

which plays an important role in the Atiyah-Singer index theorem for mani-
folds with boundary.

In addition to the heat equation asymptotics, in Chapter 5 we have consid-
ered the heat content asymptotics. The heat content is defined as

Tr
∫
M

dx
(
e−tP f1

)
f2

with auxiliary functions f1 and f2 (see, e.g., [403, 404]). The significance is
best seen by putting P the Laplacian, f2 = 1, and f1 the initial temperature
of M, such that the above integral determines the total heat energy content
of the manifold. Again, for Laplace-type operators on smooth manifolds with
smooth boundaries a summary of the existing results has been given. The
derivation differs from the one in the literature in that again special case
calculations have been used to restrict the general form.

In Chapter 6 we turned our interest to the calculation of determinants. In
one dimension, using the contour integral approach, some known results are
reproduced, see eq. (6.1.7), and generalized to allow for the possibility of zero
modes, see eq. (6.1.10). Afterwards, the results obtained for the zeta function
on the generalized cone are applied to the calculation of determinants. For
an arbitrary base N results are provided, being very explicit for cases where

                      



the base zeta function is a known zeta function. This is the case, e.g., for the
ball where results are expressed in derivatives of the Riemann zeta function;
scalars, spinors and forms are treated. This kind of calculation is of direct rele-
vance in the context of cosmology. When calculating the Hartle-Hawking wave
functional [239] in the semiclassical approximation the prefactor is defined by
a determinant arising from integrating out the fluctuations around the classi-
cal Euclidean background. In regions where the classical theory breaks down,
as for small volume where possible singularities arise, it is of interest how
quantum effects modify the behavior of the Universe. It is expected that the
prefactor for arbitrary three-geometry will be qualitatively the same so that
the Euclidean four-ball can serve as a characteristic example [367, 40, 177].

We conclude the chapter on determinants by using the knowledge of heat
kernel coefficients in order to derive a connection between determinants of
conformally related operators; see Section 6.5.

In general terms techniques for the evaluation of determinants are needed
in many branches. We mention here possible relevance to analytic torsion and
to sharp inequalitites of borderline Sobolev and Moser-Trudinger type (see,
e.g., [335, 66]).

A natural continuation of the determinant calculation is to include an exter-
nal background potential as done in Chapter 8. It is clear from there that the
analysis then includes numerical work, namely the determination of Jost func-
tions. But the results presented make clear that given any spherically sym-
metric potential (with the properties described in Section 8.1) we can find
immediately the associated determinant and ground state energy. An ideal
playground for further applications seems to be the vacuum decay, where the
decay rate is proportional to[

det′(−2E + U ′′(φb))
det′(−2E + U ′′(φf ))

]−1/2

with φf the false vacuum state and φb the bounce solution minimizing the
Euclidean action of the theory [113, 91]. As shown in [114], the solution that
minimizes SE is a spherically symmetric solution such that our developments
apply. The only additional complications that occur are that φb and so the
“external potential” is given only numerically as a solution of an ordinary
differential equation with boundary conditions and that we have to leave the
class of potentials with compact support. In this context a generalization
to finite temperature is desirable [291]. In addition to angular momentum
sums this involves the finite temperature Matsubara sum such that further
analytical manipulations will be necessary. Comments similar to the above
apply to the various classical solutions mentioned already in the Introduction.

                      



The main result of the Casimir energy calculations is the inclusion of a mass
of the scalar or spinor field. Due to the curved boundary its influence is very
important and may even change the sign of the Casimir force. The Casimir
energy is systematically calculated within the zeta function procedure and
arbitrary boundary conditions can be dealt with. This provides further exam-
ples for the complicated dependence on the dimension and on the boundary
conditions. By considering the metric (10. 1) as described in the Conclusions
further examples can be provided to find important features in the sign of
the Casimir energy. Furthermore, its dependence on the curvature and on
the coupling constant to the curvature can be analyzed in specific classes of
manifolds.

Approximate information on how the Casimir energy changes when the
geometrical tensors are slightly changed can now be obtained by the knowledge
of a5/2. For massive fields in the leading 1/m approximation it is exactly this
coefficient which determines the Casimir energy. Variation of the coefficient
with respect to the metric will show the way this changes the energy. Perhaps,
it is here that we can find an indication on what really determines the sign.
However, proceeding this way obviously no topological influence is included.
Given that higher coefficients are neglected, this is an approximation for small
slowly varying curvature tensors.

As a final example of how boundary conditions influence the vacuum energy
let us mention the newly proposed Randall-Sundrum models [351, 350]. When
analyzing the lowest order quantum corrections to the vacuum energy in these
models, the approach presented in great detail in Chapter 3 turns out to be
very valuable again [394, 187, 186].

Our final application in quantum field theory under the influence of external
conditions is the calculation of ground state energies in the presence of external
potentials. For the scalar field theory we have seen that essentially the bound
states determine the interesting features of the ground state energy. Scattering
states apparently contribute positively and the details do not depend very
much on the shape of the potential. In contrast, the negative contributions of
the bound states, strongly depending on their depth and number, are clearly
visible. For further applications we can repeat the outlooks for the determinant
calculations.

In the context of quantum electrodynamics we have started to analyze the
influence of inhomogeneous magnetic fields on the ground state energies. For
the example we considered, namely for a homogeneous magnetic field inside
a tube, the correction to the classical energy of the field remained very small.
Continuing along these lines, the techniques developed are expected to be
useful for the calculation of the fermionic contribution to the vacuum polar-
ization in the background of the Nielsen-Olesen vortex, the Z-string or in a
chromomagnetic background.

In the last chapter we turned to applications of heat kernel and zeta func-
tion techniques in the context of finite temperature theory. Given the great
actual interest in the experiments on Bose-Einstein condensation at temper-

                      



atures of about nK , we have decided to choose quantum mechanics as the
theory framework here. We have considered all usual ensembles, including
the grand canonical, canonical and microcanonical ones. The partition sums
have been conveniently rewritten as complex contour integrals. In the grand
canonical approach all thermodynamical quantities could be determined in
terms of heat kernel coefficients, at least in an approximation which is valid
above and up to the condensation temperature (as described, the range can
be extended). For the ground state fluctuations, canonical or microcanonical
ensemble theory has been used and also here heat kernel coefficients describe
the most relevant features in the Bose condensed phase. The clear advantage
of using the heat kernel language is that the calculation is very well organized.
We never deal with a specific spectrum but rather we solve many examples at
once. Giving results for specific examples often reduces to a formality because
the coefficients are known or are easily evaluated. This last chapter also makes
clear the extensive application of one and the same mathematical object, here,
e.g., the Barnes zeta function, which determines ground state fluctuations as
well as heat kernel coefficients on the generalized cone.

The most pressing continuation in the application to Bose-Einstein con-
densation is to allow for a self-interaction term. The coupling constant is
determined by the s-wave scattering length of the atoms used and the result-
ing equation is the Gross-Pitaevski equation (for a recent review see [117]).
Apart from having an additional external potential, namely the harmonic os-
cillator potential, this is a typical problem for the background field formalism.
The background field is given by the ground state condensate function, which
is determined as a solution of the effective field equation. It is hoped that
a resummed form of the heat kernel expansion can be applied to give fur-
ther analytical developments [340, 339, 256]. This resummed form provides a
systematic derivative expansion in the background field and is expected to be
connected with the Thomas-Fermi theory. The effective equations we obtained
contain in a systematic fashion corrections due to the nonconstant character
of the background field. These ideas might be helpful to get a deeper under-
standing of the effect of interactions, and, at a later stage, also on dynamic
effects. Definitely it will give a different viewpoint, which often leads to new
and fruitful ideas.

Given the broad range of applications provided, including mathematical
problems such as the heat equation asymptotics and phenomenological ones
such as Bose-Einstein condensation, it is clear that spectral functions indeed
play a crucial role in many different fields. The book presented provides a
unified framework, which is expected to yield further insight into the various
problems mentioned in the Conclusions.



APPENDIX A

Basic zeta functions

In this appendix we introduce some basic zeta functions and derive the prop-
erties needed in the context of this book. We will provide some details for the
simplest cases because several ideas remain applicable later on to the more
difficult cases.

Virtually every text on zeta functions starts with the definition of the Rie-
mann zeta function,

ζR(s) =
∞∑
n=1

1
ns
, (A. 1)

where this representation is valid for <s > 1. For real values of s this function
has already been considered by Euler in the context of the theory of prime
numbers [180]. However, its most remarkable properties were not discovered
before Riemann [358, 357], who turned s into a complex variable. Some of its
properties are immediately determined by using the integral representation of
the Γ-function,

Γ(z) =

∞∫
0

dt tz−1e−t, (A. 2)

valid for <z > 0, or its generalization

Γ(z) =
i

2 sinπz

∫
C

dt (−t)z−1e−t, (A. 3)

valid for z not an integer. The contour C is given in Fig. A.1 and shrinking it
to the real axis (for <z > 0), (A. 2) is found.

Using (A. 3) and sin(πs)Γ(s) = π/Γ(1 − s), the zeta function of Riemann
may be represented in the form

ζR(s) =
iΓ(1− s)

2π

∫
C

dt
(−t)s−1

et − 1
, (A. 4)

which makes the meromorphic structure very apparent. For s ∈ ZZ the contour
integral may be evaluated immediately by just collecting the residues enclosed
by C. The only possible pole contributing to the integral lies at t = 0 and its

                      



-

6

�
�

�r
2πi r
4πi r

−2πi r
−4πi r

t-plane

Figure A.1
Contour C

residue is determined by the expansion

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, (A. 5)

defining the Bernoulli numbers Bn. As a result we find that ζR(s) has the
only pole at s = 1 with

Res ζR(s = 1) = 1 , (A. 6)

and furthermore

ζR(1− 2m) = −B2m

2m
, ζR(−2m) = 0. (A. 7)

Shifting the contour to the left side of the complex plane we pick up the
residues of (et − 1)−1 at t = 2πni, n ∈ ZZ/{0}, and obtains the reflection
formula,

ζR(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζR(1− s). (A. 8)

By (A. 7) this gives ζR(2m) in terms of the Bernoulli numbers. Furthermore,
at s = 0 we get, differentiating (A. 8),

ζ ′R(0) = −1
2

ln(2π). (A. 9)

Many of the properties possessed by the Riemann zeta function are particular



cases of properties of the Hurwitz zeta function [252],

ζH(s, a) =
∞∑
n=0

1
(n+ a)s

, (A. 10)

where for a = 1 we obviously have ζH(s, 1) = ζR(s). Using the identical steps
as before we find

Res ζH(s = 1, a) = 1, (A. 11)

ζH(−l, a) = −Bl+1(a)
l + 1

, (A. 12)

with the Bernoulli polynomials Bl(a) defined through

eat

et − 1
=

∞∑
n=0

Bn(a)
tn−1

n!
. (A. 13)

For |a| < 1 the function ζH(s, a) can be expanded in powers of a and expressed
through ζR(s). In detail

ζH(s, a) =
1
as

+
∞∑
l=0

(−1)l
Γ(s+ l)
l!Γ(s)

alζR(s+ l). (A. 14)

Differentiating (A. 14) with respect to s we get

ζ ′H(0, a) = − ln a− 1
2

ln(2π)− γ +
∞∑
l=2

(−1)l
al

l
ζR(l). (A. 15)

This might be compared with the Weierstrass definition of the Γ-function,

1
Γ(z)

= zeγz
∞∏
n=1

{(
1 +

z

n

)
e−

z
n

}
,

which shows the identity

ζ ′H(0, a) = lnΓ(a)− 1
2

ln(2π). (A. 16)

The next natural generalization is to multidimensional series of the type

ζB(s, a|~r) =
∑
~m∈INd

0

(a+ ~m~r)−s, (A. 17)

considered first by Barnes [35, 34]. This Barnes zeta function is obviously con-
nected with the spectrum of the harmonic oscillator and this connection can
be fruitfully used to describe the phenomenon of Bose-Einstein condensation
of magnetically trapped atoms [271, 247]; see Chapter 9.

Proceeding as before we write

ζB(s, a|~r) =
iΓ(1− s)

2π

∫
C

dt (−t)s−1 e−at∏d
j=1 (1− e−rjt)

, (A. 18)

                      



showing that the residues of ζB are intimately connected with the generalized
Bernoulli polynomials [332],

e−at∏d
j=1 (1− e−rjt)

=
(−1)d∏d
j=1 rj

∞∑
n=0

(−t)n−d

n!
B(d)
n (a|~r). (A. 19)

An easy application of the residue theorem leads to

Res ζB(z, a|~r) =
(−1)d+z

(z − 1)!(d− z)!
∏d
j=1 rj

B
(d)
d−z(a|~r) (A. 20)

for z = 1, ..., d, and furthermore for n ∈ IN0 we have

ζB(−n, a|~r) =
(−1)dn!

(d+ n)!
∏d
j=1 rj

B
(d)
d+n(a|~r). (A. 21)

As useful as eq. (A. 18) is to determine the above properties, it is not very
helpful for the calculation of derivatives of ζB or of function values other than
the above. Surprisingly, for a general vector ~r this turns out to be extremely
difficult analytically. However, in the main text we concentrate on ~r = ~1 ≡
(1, 1, ..., 1) where we can go further. In that case, by resumming (A. 17) we
get first

ζB(s, a) ≡ ζB(s, a|~1) =
∞∑
l=0

e
(d)
l (a+ l)−s (A. 22)

with the “degeneracy”

e
(d)
l =

(
l + d− 1
d− 1

)
.

Obviously there is an expansion of the kind

e
(d)
l =

d−1∑
i=0

g
(d)
i (a)(l + a)d−1−i, (A. 23)

which proves the representation

ζB(s, a) =
d−1∑
i=0

g
(d)
i (a)ζH(s+ 1 + i− d, a).

This expansion is made more explicit by realizing that [34] (we use the nota-
tion B(d)

i (a) = B
(d)
i (a|~1))

g
(d)
i (a) =

(−1)i

(d− i− 1)! i!
B

(d)
i (a). (A. 24)

A possible way to prove (A. 23), different from the one in Barnes [34], is to
differentiate (A. 23) with respect to a. We get

d

da
g
(d)
0 (a) = 0,



d

da
g
(d)
i+1(a) = (i+ 1− d) g(d)

i (a), i = 1, ..., d− 2.

This equation is fulfilled by a constant multiple of the ansatz (A. 24), which
is seen by using [332]

d

da
B

(d)
i (a) = iB

(d)
i−1(a).

The constant is then fixed to 1 by normalization,
d−1∑
i=0

g
(d)
i (0) ld−1−i =

(
l + d− 1
d− 1

)
,

specifically g(d)
d−1(0) = 1 which is seen to hold because B(d)

d−1(0) = (−1)d−1(d−
1)! [332].

In summary, after a further resummation we find

ζB(s, a) =
d∑
k=1

(−1)k+d

(k − 1)!(d− k)!
B

(d)
d−k(a)ζH(s+ 1− k, a). (A. 25)

This equation provides the analytical continuation of ζB(s, a) to all complex
values of s in terms of the elementary Hurwitz zeta function, which allows for
an efficient determination of all properties needed in Chapters 4 and 6.

In Chapter 9 we need some properties of the Barnes zeta function for a = 0
and when the sums extend over ~m ∈ INd

0/{0} only. There we also are interested
in the case ~r 6= ~1, which describes the case of anisotropic harmonic oscillator
traps. Whereas eq. (A. 20) for the residues does not change, it gets more
difficult to provide explicit results for the analytical continuation to the left.
For that reason we will strictly concentrate on what is needed in Chapter 9;
see eq. (9.2.26). There we defined, see eq. (9.2.21),

ζ(t) =
∑

~ν∈INd

0/{0}

1
(h̄~ω~ν)t

and what is needed is the expansion

ζ(t) =
(
kB
h̄Ω

)2( 1
t− 2

+ f(ω1, ω2, t) +O(t− 2)
)

for the case d = 2, where Ω = (ω1ω2)1/2.
With the notation a =

√
ω1/ω2 and b =

√
ω2/ω1, we first write

ζ(t) =
(
kB
h̄Ω

)t ∑
~ν∈IN2

0/{0}

1
(aν1 + bν2)t

,

which is valid for <t > 2. Splitting the sum according to∑
~ν∈IN2

0/{0}

=
∞∑
ν1=1

(ν2 = 0) +
∞∑
ν2=1

(ν1 = 0) +
∞∑

ν1,ν2=1

,

                      



we find the decomposition

ζ(t) =
(
kB
h̄Ω

)t {
ζR(t)(a−t + b−t) +H(ω1, ω2, t)

}
. (A. 26)

Here, H(ω1, ω2, t) results from the double sum,

H(ω1, ω2, t) =
∞∑

ν1,ν2=1

1
(aν1 + bν2)t

=
1

Γ(t)

∞∫
0

dααt−1 e−(a+b)α

(1− e−aα) (1− e−bα)
, (A. 27)

and clearly it contains the pole at t = 2. In the integral (A. 27) this is realized
by considering the lower integration bound. For α→ 0 the integrand behaves
as 1/α for t → 2 and therefore the integral diverges at t = 2. The behavior
of the integral as t tends to 2 is extracted by subtracting and adding the
asymptotics as α→ 0. For < t > 2, we write

H(ω1, ω2, t) =
1

Γ(t)

∞∫
0

dααt−1e−(a+b)α ×

(
1

(1− e−aα) (1− e−bα)
− 1
α2

+
1
α2

)
=

Γ(t− 2)
Γ(t)

(a+ b)2−t

+
1

Γ(t)

∞∫
0

dααt−1e−(a+b)α

(
1

(1− e−aα) (1− e−bα)
− 1
α2

)
,

where eq. (A. 2) has been used. The integrand now behaves as αt−2 for α→ 0
and the simple pole of ζ(t) at t = 2 is contained in the first term, Γ(t −
2)/Γ(t) = 1/[(t− 1)(t− 2)]. In this way, we arrive at the expansion

H(ω1, ω2, t) =
1

t− 2
− 1− ln

(√
ω1

ω2
+
√
ω2

ω1

)
+ I(ω1, ω2) +O(t− 2) ,

with I(ω1, ω2) as defined in eq. (9.2.26). Together with eq. (A. 26), this deter-
mines the desired function f(ω1, ω2, t) and thereby leads to the result (9.2.25).

As a check, let us see how the fluctuation formula (9.2.14) for the isotropic
case is recovered in the limit ω1 = ω2 = ω. The integral simplifies to

I(ω, ω) =

∞∫
0

dααe−2α

(
1

(1− e−α)2
− 1
α2

)

= 2−
∞∫
0

dα
[
e−2α

(
1
α
− 1

1− e−α

)
+

αe−α

1− e−α

]
.



The first term is realized as an integral representation of the psi-function [220],

ψ(z) =
d
dz

ln Γ(z) = ln z +

∞∫
0

dα e−zα
(

1
α
− 1

1− e−α

)
.

The second term is a Hurwitz zeta function [220],

ζH(z, q) =
∞∑
n=0

1
(n+ q)z

=
1

Γ(z)

∞∫
0

dα
αz−1e−qα

1− e−α
,

and we end up with eq. (9.2.27). This equation confirms that the compli-
cated expression (9.2.25) for the canonical condensate fluctuation in a two-
dimensional anisotropic harmonic trap indeed becomes equal to the expres-
sion (9.2.14) in the isotropic limit.

This summarizes the main properties of zeta functions associated with a
linear spectrum. When dealing with the Laplace operator in flat space with
Dirichlet and Neumann boundary conditions in rectangular regions or with
periodic boundary conditions on tori, we encounter spectra of a quadratic
form. We need to consider only periodic boundary conditions and the relevant
zeta function

E(s,m2|~a) =
∑
~n∈ZZd

(a1n
2
1 + ...+ adn

2
d +m2)−s, (A. 28)

valid for <s > d/2, is of Epstein type [173, 174]. For the other boundary
conditions mentioned we get different summation ranges and the details of
their analytical treatment differs. However, Epstein-type zeta functions have
been studied in great detail (see, e.g., [173, 174, 171, 164, 265, 266]) and we
can say that all properties needed in physical problems can be found already
in the literature.

In the case of eq. (A. 28) the procedure to find the analytical continuation
to all values of s is especially simple. First we use a Mellin transform, which
yields

E(s,m2|~a) =
1

Γ(s)

∑
~n∈ZZd

∞∫
0

dt ts−1e−(a1n
2
1+...+adn

2
d+m2)t.

This is rewritten performing resummations employing for c complex and t ∈
IR+ [244],

∞∑
l=−∞

e−t(l+c)
2

=
(π
t

)1/2 ∞∑
l=−∞

e−
π2
t l

2−2πilc. (A. 29)

As a result, for ~n 6= ~0 we entcounter an integral representation of Kelvin



functions [220],

Kν(z) =
1
2

(z
2

)ν ∞∫
0

dt tν−1e−t−
z2
4t ,

and in detail we find for the Epstein zeta function, eq. (A. 28),

E(s,m2|~a) =
πd/2

√
a1...ad

Γ
(
s− d

2

)
Γ(s)

md−2s (A. 30)

+
2πsmd/2−s

Γ (s)
√
a1...ad

∑
~n∈ZZd

/{~0}

[
n2

1

a1
+ ...+

n2
d

ad

] 1
2 (s− d

2 )
×

K d
2−s

(
2πm

[
n2

1

a1
+ ...+

n2
d

ad

]1/2)
.

The residues as well as the function values at s = −p, p ∈ IN0, are encoded in
the first term. We see

Res E(j,m2|~a) =
(−1)d/2+jπj/2md−2j

√
a1...adΓ(j)Γ

(
d
2 − j + 1

) , (A. 31)

E(−p,m2|~a) =

{
0 for d odd
(−1)d/2p!πd/2md+2p

√
a1...adΓ(d/2+p+1) for d even.

(A. 32)

Let us stress that for d even the poles are located only at s = d/2, d/2−1, ..., 1,
whereas for d odd they are at s = d/2, ..., 1,−(2l + 1)/2, l ∈ IN0.

In the limitm→ 0 only the pole at j = d/2 survives and defining E(s, 0|~a) =
E(s|~a) as in (A. 28) but with the zero mode ~n = ~0 omitted, we get

Res E
(
d

2
|~a
)

=
πd/2

Γ
(
d
2

)√
a1...ad

, (A. 33)

E(0|~a) = −1, E(−p|~a) = 0 for p ∈ IN. (A. 34)

This concludes the summary of results on basic zeta functions needed in the
main body of the text.



APPENDIX B

Conformal relations between
geometric tensors

In this appendix we collect formulas for the relations between different geo-
metrical tensors in conformally related metrics

gjk(ε) = e2εF gjk. (B. 1)

The Laplacian transforms as

∆(ε) = e−2εF

[
∆ + (D − 2)εF;

j ∂

∂xj

]
. (B. 2)

Here and in the following, the indices i, j, k, ..., range from 1, ..., D, and we use
the Einstein convention, where identical upper and lower indices are summed
over. For the Christoffel symbols in a local coordinate frame,

Γijk =
1
2
gil {glj,k + gkl,j − gjk,l} , (B. 3)

we have

Γijk(ε) = Γijk + ε
{
δijF;k + δikF;j − gilgjkF;l

}
, (B. 4)

with the obvious notations that Γijk(ε) are the Christoffel symbols of gjk(ε)
and Γijk is the one of gjk. The Riemann tensor in terms of Christoffel symbols
is

Rijkl = −
{
Γijk,l − Γijl,k + ΓnjkΓ

i
nl − ΓnjkΓ

i
nk

}
(B. 5)

and this gives

Rijkl(ε) = Rijkl + ε(δilF;jk − δikF;jl + gjkF
i
;l − gjlF

i
;k)

+ε2(−δilF;kF;j + gjlF;kF
i
; + δilgjkF;nF

n
; (B. 6)

+δikF;lF;j − gjkF;lF
i
; − δikgjlF;nF

n
; ).

The Riemann tensor satisfies the following identities,

Rijkl = −Rijlk,
0 = Rijkl +Riklj +Riljk,

Rijkl = −Rjikl, (B. 7)
Rijkl = Rklij ,

0 = Rijkl;m +Rijlm;k +Rijmk;l.



Contracting the indices in (B. 6) we get for the Ricci tensor

Rjk(ε) = Rijik(ε) = Rjk − ε((D − 2)F;jk + gjk∆F )
+ε2(D − 2)(F;jF;k − gjkF;lF

l
; ) (B. 8)

and finally, for the scalar curvature,

R(ε) = e−2εF
{
R− 2ε(D − 1)∆F − (D − 1)(D − 2)ε2F;kF

k
;

}
. (B. 9)

Near the boundary we can choose a collared neighborhood such that

ds2 = gab(x, y)dyadyb + dx2,

where x is the geodesic distance to the boundary and the ya parameterize
the boundary. Here and in the following, letters from the beginning of the
alphabet always run from 1, ..., D − 1, and parametrize the boundary. The
index m refers to the exterior normal direction. The extrinsic curvature is

Kab = −Γmab =
1
2
gab,m (B. 10)

and in the conformally related metric we easily show

Kab(ε) = eεF (Kab + εgabF;m) . (B. 11)

The geometry of the manifold M and its boundary is related by the Gauss-
Codacci relation

Rabce = R̂abce +KbcK
a
e −KbeK

a
c,

with R̂abce the Riemann tensor on ∂M. This is easily shown using (B. 6) and
(B. 10). Further examples of equations relating the two geometries are

F;ab = F:ab +KabF;m ,

F;ma = F;m:a −KabF;
b ,

∆F = = F;mm + ∆∂MF +KF;m , (B. 12)
Rabcm = Kbc:a −Kac:b ,

Rma = Ka
b
:b −K:a .

The proof of these identities is a straightforward computation. Which quan-
tities are used to state final results is a matter of taste. However, if only
independent geometrical invariants are to be used, this type of relation is
crucial to discover possible dependences of invariants.

The conformal variations briefly described are relevant to the analysis of the
heat equation asymptotics presented in Chapter 4 and to the calculation of
the determinant in Section 6.5. For the convenience of the reader we state the
following list of results useful in deriving (6.5.9) and (6.5.19). The definitions
of Ê and Ŝ are those in (6.5.7) and (6.5.17). The results given are a direct
consequence of the basic relations between tensors with respect to the metric
gij and gij(ε) already given:

∆(ε)R(ε) = e−4εF {∆R− 2ε2(D − 4)RF;lF;
l + 2ε3(D − 1)(3D − 10)F;lF;

l∆F

                      



+2ε4(D − 1)(D − 2)(D − 4)(F;lF;
l)2 + ε(D − 6)F;

lR;l

−2ε3(D − 1)(D − 2)(D − 6)F;klF;
kF;

l − 2εR∆F
+4ε2(D − 1)(∆F )2 − 2ε(D − 1)∆∆F − 2ε2(D − 1)(D − 2)F;klF;

kl

−2ε2(D − 1)(D − 2)F;
k∆(F;k)− 2ε2(D − 1)(D − 6)F;

k∇k∆F
}
,

∆(ε)Ê(ε) = e−4εF {∆Ê − 2εÊ∆F + ε(D − 6)F;lÊ;
l

−2ε2(D − 4)ÊF;lF;
l}

R(ε)2 = e−4εF {R2 − 4ε(D − 1)R∆F − 2ε2(D − 1)(D − 2)RF;lF;
l

+4ε2(D − 1)2(∆F )2 + 4ε3(D − 1)2(D − 2)F;lF;
l∆F

+ε4(D − 1)2(D − 2)2(F;lF;
l)2},

Rij(ε)Rij(ε) = e−4εF {RijRij − 2ε(D − 2)F;klR
kl + 2ε2(D − 2)F;kF;lR

kl

−2εR∆F − 2ε2(D − 2)RF;lF;
l + ε2(D − 2)2F;klF;

kl

+ε2(3D − 4)(∆F )2 − 2ε3(D − 2)(3− 2D)F;lF;
l∆F

+ε4(D − 1)(D − 2)2(F;lF;
l)2 − 2ε3(D − 2)2F;kF;lF;

kl}
Rijkl(ε)Rijkl(ε) = e−4εF {RijklRijkl − 8εF;klR

kl + 8ε2RijF;iF;j

−4ε2RF;lF;
l + 4ε2(D − 2)F;klF;

kl − 8ε3(D − 2)F;
iF;

jF;ij

+8ε3(D − 2)F;lF;
l∆F + 4ε2(∆F )2 + 2ε4(D − 2)(D − 1)(F;lF;

l)2}
Ê;m(ε) = e−3εF (Ê;m − 2εÊF;m),
R;m(ε) = e−3εF {R;m − 2εRF;m + 4ε2(D − 1)F;m∆F

+2ε3(D − 1)(D − 2)F;mF;lF;
l − 2ε(D − 1)∇m∆F

−2ε2(D − 1)(D − 2)F;mlF;
l}

(F∆∂M(ε)K(ε))[∂Mε] = e−3εF {K∆F + ε(D − 1)F;m∆F −KF;mm

−ε(D − 1)F;mF;mm −K2F;m − ε(D − 1)KF;mF;m + ε(D − 3)F;lF;
lK

+ε2(D − 1)(D − 3)F;lF;
lF;m − ε(D − 3)F;mF;mK

−ε2(D − 1)(D − 3)F;mF;mF;m}[∂Mε],
R(ε)K(ε) = e−3εF {RK − 2ε(D − 1)K∆F − ε2(D − 1)(D − 2)KF;lF;

l

+ε(D − 1)RF;m − 2ε2(D − 1)2F;m∆F − ε3(D − 1)2(D − 2)F;lF;
lF;m}

Rmm(ε)K(ε) = e−3εF {RmmK − ε(D − 2)KF;mm − εK∆F
+ε2(D − 2)KF;mF;m − ε2(D − 2)KF;lF;

l + ε(D − 1)RmmF;m

−ε2(D − 1)(D − 2)F;mmF;m − ε2(D − 1)F;m∆F
+ε3(D − 1)(D − 2)F;mF;mF;m − ε3(D − 1)(D − 2)F;mF;lF;

l}
Rambm(ε)Kab(ε) = e−3εF {RambmKab − εKF;mm − εKabF;ab + ε2KF;mF;m

+ε2KabF;aF;b − ε2KF;lF;
l + εRmmF;m − ε2(D − 2)F;mmF;m

−ε2F;m∆F + ε3(D − 2)F;mF;mF;m − ε3(D − 2)F;lF;
lF;m},

Rabc
b(ε)Kac(ε) = e−3εF {RabcbKac − ε(D − 3)KabF;ab − εK∆F

+ε2(D − 3)KabF;aF;b − ε2(D − 3)KF;lF;
l + εRF;m − 2εRmmF;m



−2ε2(D − 2)F;m∆F + 2ε2(D − 2)F;mmF;m − 2ε3(D − 2)F;mF;mF;m

−ε3(D − 2)(D − 3)F;mF;lF;
l + εKF;mm − ε2KF;mF;m},

K(ε)3 = e−3εF {K3 + 3ε(D − 1)K2F;m + 3ε2(D − 1)2F;mF;mK

+ε3(D − 1)3F;mF;mF;m}
K(ε)Kab(ε)Kab(ε) = e−3εF {KKabK

ab + 2εK2F;m + 3ε2(D − 1)KF;mF;m

+ε(D − 1)KabK
abF;m + ε3(D − 1)2F;mF;mF;m},

Kab(ε)Kb
c(ε)Kac(ε) = e−3εF {KabK

b
cK

ac + 3εKabK
abF;m + 3ε2KF;mF;m

+ε3(D − 1)F;mF;mF;m},
(F;mm)(ε) = e−2εF {F;mm − 2εF;mF;m + εF;lF;

l},
(∇m∆F )(ε) = e−3εF {∇m∆F − 2εF;m∆F − 2ε2(D − 2)F;lF;

lF;m

+2ε(D − 2)F;mlF;
l}.

In order to obtain the final form given in the eqs. (6.5.9) and (6.5.19), use in
addition∫
∂M

dy {FF;mlF;
l − 2FF;mF;mm − FF;mF;mK + FF;aF;bK

ab + FF;m∆F}

=
∫
∂M

dy (−F;aF;
aF;m) =

∫
∂M

dy (−F;lF;
lF;m + F;mF;mF;m),

and ∫
∂M

dy {−FF;mmK − FF;mK
2 − FF;abK

ab + FF;mKabK
ab

+KF∆F − FF;kR
k
m + FF;mRmm}

=
∫
∂M

dy {F;aF;bK
ab −KF;lF;

l +KF;mF;m}.

Regarding the calculation of heat kernel coefficients, we give the following
tables of variational formulas needed in Section 4.4.

Variational formulas for Dirichlet and Robin boundary conditions

Heat kernel coefficient a1:

Term d
dε |ε=0

6 E −2FE + 1
2 (D − 2)∆F

1 R −2FR− 2(D − 1)∆F
b0 K −FK + (D − 1)F;m

b2 S −FS − 1
2 (D − 2)F;m

                      



Heat kernel coefficient a3/2:

Term d
dε |ε=0

c0 E −2FE + 1
2 (D − 2)∆F

c1 R −2FR− 2(D − 1)∆F
c2 Rmm −2FRmm − (D − 2)F;mm −∆F
c3 K2 −2FK2 + 2(D − 1)F;mK
c4 KabK

ab −2FKabK
ab + 2F;mK

c7 SK −2FSK − 1
2 (D − 2)KF;m + (D − 1)SF;m

c8 S2 −2FS2 − (D − 2)SF;m

Heat kernel coefficient a2:

Term d
dε |ε=0

60 ∆E −4F∆E + (D − 6)F;jE
j
; − 2E∆F

+ 1
2 (D − 2)∆∆F

60 RE −4FRE − 2(D − 1)E∆F + 1
2 (D − 2)R∆F

180 E2 −4FE2 + (D − 2)E∆F
30 ΩijΩij −4FΩijΩij

12 ∆R −4F∆R+ (D − 6)F;jR
j
; − 2R∆F

−2(D − 1)∆∆F
5 R2 −4FR2 − 4(D − 1)R∆F
−2 RijR

ij −4FRijRij − 2R∆F − 2(D − 2)RjkF;jk

2 RijklR
ijkl −4FRijklRijkl − 8RjkF;jk

v1 E;m −3FE;m − 2EF;m + 1
2 (D − 2)F i

;i m

v2 R;m −3FR;m − 2RF;m − 2(D − 1)F i
;i m

v3 Ka
:a −3FKa

:a + (D − 4)f:aKa
: + (divergences)

v4 Kab
:ab −3FKab

:ab + (D − 4)Kac
:af:c + (divergences)

v5 EK −3FEK + (D − 1)EF;m + 1
2 (D − 2)K∆F

v6 RK −3FRK + (D − 1)RF;m − 2(D − 1)K∆F
v7 RmmK −3FKRmm −KF a

:a − (D − 1)KF;mm

−K2F;m + (D − 1)F;mRmm
v8 RambmK

ab −3FRambmKab +RmmF;m −KF;mm

−KabF:ab −KabKabF;m

v9 R b
abc K

ac −3FR b
abc K

ac − (D − 3)F:abK
ab

−(D − 3)KabK
abF;m − F a

:a K
−F;mK

2 + F;mR− 2F;mRmm
v10 K3 −3FK3 + 3K2(D − 1)F;m

v11 KabK
abK −3FKabK

abK + 2K2F;m +KabK
ab(D − 1)F;m

v12 KabK
b
cK

ac −3FKabK
b
cK

ac + 3KabK
abF;m

v13 SE −3FSE − 1
2 (D − 2)EF;m + 1

2 (D − 2)S∆F



v14 SR −3FRS − 1
2 (D − 2)RF;m − 2(D − 1)S∆F

v15 SRmm −3FSRmm − 1
2 (D − 2)RmmF;m − SF a

:a

−SKF;m − (D − 1)F;mmS
v16 SK2 −3FSK2 + 2(D − 1)KSF;m − 1

2 (D − 2)K2F;m

v17 SKabK
ab −3FSKabK

ab − 1
2 (D − 2)F;mKabK

ab + 2KSF;m

v18 S2K −3FS2K − (D − 2)SF;mK + (D − 1)F;mS
2

v19 S3 −3FS3 − 3
2 (D − 2)F;mS

2

v20 S a
:a −3FS a

:a + (D − 4)F:aS
a
: + (divergences)

Heat kernel coefficient a5/2:

Term d
dε |ε=0

g1 E;mm −4FE;mm − 2F;mmE − 5F;mE;m + F:aE
a
:

+ 1
2 (D − 2)(∆F );mm

g2 E;mS −4FE;mS − 2EF;mS + 1
2 (D − 2)F;iimS

− 1
2 (D − 2)F;mE;m

g3 E2 −4FE2 + (D − 2)E∆F
g4 E a

:a −4FE a
:a + (D − 5)F:aE

a
: + (divergences)

g5 RE −4FRE − 2(D − 1)(∆F )E
+ 1

2 (D − 2)(∆F )R
g6 ∆R −4F∆R+ (D − 6)F i; R;i − 2R∆F

−2(D − 1)∆∆F
g7 R2 −4FR2 − 4(D − 1)R∆F
g8 RjkR

jk −4FRjkRjk − 2R∆F − 2(D − 2)RjkF;jk

g9 RijklR
ijkl −4FRijklRijkl − 8RjkF;jk

g10 RmmE −4FERmm − F a
:a E − (D − 1)F;mmE

−KEF;m + 1
2 (D − 2)(∆F )Rmm

g11 RmmR −4FRmmR− 2(D − 1)(∆F )Rmm −RF a
:a

−(D − 1)RF;mm −KRF;m

g12 RS2 −4FRS2 − 2(D − 1)(∆F )S2

−(D − 2)SRF;m

g13 R;mm −4FR;mm − 2RF;mm − 5F;mR;m +R:aF
a
:

−2(D − 1)(∆F );mm
g14 R a

mm:a −4FR a
mm:a + (D − 5)fa: Rmm:a + (divergences)

g15 Rmm;mm −4FRmm;mm − 5F;mRmm;m + f;aR
a

mm;

−2F;mmRmm − (D − 1)F;mmmm

−F a; amm + 4Ram;mF;a + 2RamF;am

g16 R;mS −4FR;mS − 2F;mRS − 2(D − 1)F i
; imS

− 1
2 (D − 2)R;mF;m

g17 RmmS
2 −4FRmmS2 − (D − 2)SF;mRmm − F a

:a S2

−(D − 1)F;mmS
2 −KF;mS

2

g18 SS a
:a −4FSS a

:a + (D − 5)SF:aS
a
: − S2F a

:a

− 1
2 (D − 2)SF a

;m:a − 1
2 (D − 2)F;mS

a
:a



g19 S:aS
a
: −4FS:aS

a
: − 2SF:aS

a
: − (D − 2)F;m:aS

a
:

g20 RammbR
ab −4FRammbRab +RabF;ab +RF;mm

+F a
;a Rmm − (D − 2)F ab; Rammb

g21 RmmRmm −4FRmmRmm − 2RmmF a
:a

−2(D − 1)RmmF;mm − 2KF;mRmm
g22 RammbR

a b
mm −4FRammbRa b

mm − 2RmmF;mm

+2F ab; Rammb
g23 ES2 −4FES2 + 1

2 (D − 2)(∆F )S2

−(D − 2)SEF;m

g24 S4 −4FS4 − 2(D − 2)S3F;m

d1 KE;m −4FKE;m − 2EKF;m + 1
2 (D − 2)KF i

; im

+(D − 1)E;mF;m

d2 KR;m −4FKR;m − 2RKF;m − 2(D − 1)KF i
; im

+(D − 1)R;mF;m

d3 KabRammb;m −4FKabRammb;m +KF;mmm +KabF;abm

−2KabRammbF;m −Rmm;mF;m

d4 KS b
:b −4FKS b

:b + (D − 5)KF:aS
a
: −KSF a

:a

− 1
2 (D − 2)KF a

;m:a + (D − 1)F;mS
a

:a

d5 KabS:ab −4FKabS:ab − SKabF:ab − 4KabF:aS:b

+KSc: F:c + F;mS
a

:a − 1
2 (D − 2)F;m:abK

ab

d6 K:bS
b
: −4FK:bS

b
: −KF:bS

b
: − SF:bK

b
:

+(D − 1)F;m:bS
b
: − 1

2 (D − 2)F;m:bK
b
:

d7 Ka
b:aS

b
: −4FKa

b:aS
b
: + Sb: F;m:b

+(D − 2)Kc
bS

b
: F:c −KS:bF

b
: − SF b: K

a
b:a

− 1
2 (D − 2)F;m:bK

ab
:a

d8 K b
:b S −4FK b

:b S − SKf b
:b − 1

2 (D − 2)F;mK
b

:b

+(D − 5)SF:aK
a
: + (D − 1)SF a

;m:a

d9 K ab
ab: S −4FK ab

ab: S + SF a
;m:a + (D − 4)Kac

:aF:cS
− 1

2 (D − 2)F;mK
ab

ab: − (D − 2)F:cK
cbS:b

+KF:bS
b
: + (divergences)

d10 K:bK
b
: −4FK:bK

b
: − 2KF:bK

b
: + 2(D − 1)F;m:bK

b
:

d11 K a
ab: K

b
: −4FK a

ab: K
b
: −KF:bK

ab
:a + F;m:bK

b
: −KF:bK

b
:

+(D − 1)F;m:bK
ab

:a + (D − 2)Kc
bF:cK

b
:

d12 K a
ab: K

bc
:c −4FK a

ab: K
bc

:c + 2F;m:bK
bc

:c

+2(D − 2)KcbF:cK
a

ab: − 2KF b: K
a

ab:

d13 Kab:cK
ab c

: −4FKab:cK
ab c

: − 2KabF:cK
ab c

: + 2Kc
: F;m:c

−4F:aKcbK
ab c

: + 4F:eK
ebK c

bc:

d14 Kab:cK
ac b

: −4FKab:cK
ac b

: − 4F:cKabK
ac b

: + 2F;m:cK
c b
b:

+2F:eK
e
bK

b
: − 2KabF:cK

ab c
: + 2Ke

aF:eK
a b
b:

d15 K b
:b K −4FK b

:b K −K2f a
:a + (D − 5)F:aK

a
: K

+(D − 1)KF a
;m:a + (D − 1)F;mK

b
:b

d16 K ab
ab: K −4FK ab

ab: K + (D − 4)Kac
:aF:cK

−(D − 2)K:bF:cK
cb + F a

;m:a K +KF:bK
b
:

+(D − 1)F;mK
ab

ab: + (divergences)



d17 Kab
:acK

c
b −4FKab

:acK
c
b + (D − 2)F:acK

abKc
b

+(D − 2)F:aK
ab

:cK
c
b − 3F:cK

ab
:aK

c
b +KKad

:aF:d

−KF b
: cK

c
b + F;m:bcK

bc +Kab
:abF;m −K:cF:bK

bc

d18 K:bcK
bc −4FK:bcK

bc −KF:bcK
bc − 4F:cK:bK

bc +KKa
: F:a

+(D − 1)F;m:bcK
bc + F;mK

a
:a

d19 K a
bc:a Kbc −4FK a

bc:a Kbc − 4Ka
c:aF:bK

bc + 4Ke
c:bF:eK

bc

+(D − 5)KbcKbc:eF
e
: − f a

:a KbcK
bc +KF a

;m:a

+F;mK
a

:a

g38 KSE −4FKSE − 1
2 (D − 2)EKF;m + 1

2 (D − 2)SK∆F
+(D − 1)F;mSE

d20 KSRmm −4FRmmSK − 1
2 (D − 2)F;mRmmK − f a

:a SK
−SK2F;m − (D − 1)SKF;mm + (D − 1)F;mSRmm

g39 KSR −4FKSR− 1
2 (D − 2)RKF;m − 2(D − 1)SK∆F

+(D − 1)SRF;m

d21 KabR
abS −4FKabR

abS − 1
2 (D − 2)F;mKabR

ab + F;mR
a
aS

−(D − 2)F;abK
abS −KS∆F

d22 KabRmabmS −4FKabRmabmS −RmmF;mS +KSF;mm

+KabF:abS +KabKabSF;m

− 1
2 (D − 2)KabRmabmF;m

g40 K2E −4FK2E + 2(D − 1)EKF;m + 1
2 (D − 2)K2∆F

g41 KabK
abE −4FKabK

abE + 2F;mKE + 1
2 (D − 2)KabK

ab∆F
g42 K2R −4FK2R+ 2(D − 1)KRF;m − 2(D − 1)K2∆F
g43 KabK

abR −4FKabK
abR+ 2F;mKR− 2(D − 1)KabK

ab∆F
d23 K2Rmm −4FK2Rmm + 2(D − 1)F;mKRmm − F a

;a K2

−(D − 1)F;mmK
2

d24 KabK
abRmm −4FKabK

abRmm − F c
;c KabK

ab

−(D − 1)F;mmKabK
ab + 2F;mKRmm

d25 KKabR
ab −4FKKabR

ab + (D − 1)F;mKabR
ab +KRaaF;m

−(D − 2)F;bcK
bcK −K2∆F

d26 KKbcRmbcm −4FKKbcRmbcm −KRmmF;m +K2F;mm

+KabF;abK + (D − 1)F;mK
bcRmbcm

d27 KabK
acRbc −4FKabK

acRbc + 2F;mK
acRac

−(∆F )KabK
ab − (D − 2)F;bcK

b
aK

ac

d28 Kb
aK

acRmbcm −4FKb
aK

acRmbcm + 2F;mK
acRmacm

+F;mmKabK
ab +KabK

acF b
; c

d29 KabKcdR
acbd −4FKabKcdR

acbd − 2F;mKcdR
acd

a

+2Kd
bKcdF

bc
; − 2KKcdF

cd
;

d30 KS3 −4FKS3 − 3
2 (D − 2)KS2F;m

+(D − 1)F;mS
3

d31 K2S2 −4FK2S2 + 2(D − 1)F;mKS
2

−(D − 2)SK2F;m

d32 KabK
abS2 −4FS2KabK

ab − (D − 2)SKabK
abF;m

+2F;mKS
2

d33 K3S −4FK3S + 3K2S(D − 1)F;m



− 1
2 (D − 2)F;mK

3

d34 KKabK
abS −4FKKabK

abS − 1
2 (D − 2)F;mKKabK

ab

+2K2SF;m + (D − 1)KabK
abSF;m

d35 KabK
bcKa

c S −4FKabK
bcKa

c S + 3KabK
abSF;m

− 1
2 (D − 2)F;mKabK

bcKa
c

d36 K4 −4FK4 + 4(D − 1)K3F;m

d37 K2KabK
ab −4FK2KabK

ab + 2(D − 1)F;mKKabK
ab

+2K3F;m

d38 KabK
abKcdK

cd −4FKabK
abKcdK

cd + 4F;mKKabK
ab

d39 KKbcK
cdKb

d −4FKKbcK
cdKb

d + 3KKabK
abF;m

+(D − 1)F;mKbcK
cdKb

d

d40 KabK
bcKcdK

da −4FKabK
bcKcdK

da + 4F;mK
bcKcdK

d
b

In order to derive from the above list for a5/2 the relations given in Section
4.4 it is necessary to perform partial integrations and to rewrite covariant
tangential derivatives “:” by “;” and the other way round. In doing this,
many relations are involved, some of which were given in (B. 12) and (B. 7).
Of crucial importance is the generalized Ricci identity, which reads

ti1...irj1...js;kl − ti1...irj1...js;lk = (B. 13)

ti1...irpj2...js
Rpj1kl + (similarly for lower indices)

−tpi2...irj1...js
Ri1pkl − (similarly for upper indices),

and the analogous one for the commutation of tangential derivatives for ten-
sors on ∂M. The guiding principle is to rewrite all terms of the list in a form
that appears in eq. (4.2.11) such that the independence of the terms compared
is guaranteed.

Variational formulas for mixed boundary conditions

Heat kernel coefficient a5/2:

Term d
dε |ε=0

w1 E2 −4FE2 + (D − 2) [FE a
:a + F;mEK

+F;mmE]
w2 χEχE −4FχEχE + (D − 2) [FE a

:a + F;mEK
+F;mmE]

w3 S:aS
a
: −4FS:aS

a
: + 2FS:aS

a
: + 2FSS a

:a

+(D − 2)F;mS
a

:a

w4 χS:aS
a
: −4FχS:aS

a
: + 2FS:aS

a
: + 2FSS a

:a

+ 1
2 (D − 2)F;mχ:aS

a
: + (D − 2)F;mS

a
:a

w5 ΩabΩab −4FΩabΩab

                      



w6 χΩabΩab −4FχΩabΩab

w7 χΩabχΩab −4FχΩabχΩab

w8 ΩamΩam −4FΩamΩam
w9 χΩamΩam −4FχΩamΩam
w10 χΩamχΩam −4FχΩamχΩam
w11 ΩamχSa: −4F (ΩamχSa: − ΩamSa: χ)

−ΩamSa: χ − 1
2 (D − 2)F;mχχ:aΩam

w12 χχ:aΩamK −4Fχχ:aΩamK + (D − 1)F;mχχ:aΩam
w13 χ:aχ:bΩab −4Fχ:aχ:bΩab

w14 χχ:aχ:bΩab −4Fχχ:aχ:bΩab

w15 χχ:aΩam;m −4Fχχ:aΩam;m + Fχ:aχ:bΩab − Fχχa: Ω b
ab:

− 1
2FΩabΩab + 1

2FχΩabχΩab − 2χχ:aΩamF;m

w16 χχa: Ω b
ab: −4Fχχa: Ω b

ab: + (D − 5)Fχ:aχ:bΩab

−(D − 5)χχa: Ω b
ab: − 1

2 (D − 5)FΩabΩab

+ 1
2F (D − 5)χΩabχΩab

w17 χχ:aΩbmKab −4Fχχ:aΩbmKab + χχ:aΩamF;m

w18 χ:aE
a
: −4Fχ:aE

a
: + 2Fχ a

:a E + 2Fχ:aE
a
:

w19 χ:aχ
a
: E −4Fχ:aχ

a
: E + 1

2 (D − 2)χ:aχ
a
: F;mm

+ 1
2 (D − 2)χ:aχ

a
: KF;m + (D − 2)χ:abχ

ab
: F

+(D − 2)χ b
: baχ

a
: F + 4(D − 2)χ:aχ:bΩabF

−2(D − 2)χχ:aΩab:bF
−(D − 2)χa: χ

b
:F [−Rab −Rmbam −KabK +KacK

c
b ]

w20 χχ:aχ
a
: E −4Fχχ:aχ

a
: E

w21 χ a
:a E −4Fχ a

:a E − (D − 3)Fχ a
:a E

−(D − 3)Fχ:aE
a
:

w22 χ:aχ
a
: R −4Fχ:aχ

a
: R− 2(D − 1)χ:aχ

a
: F;mm

−2(D − 1)χ:aχ
a
: KF;m − 4(D − 1)χ:abχ

ab
: F

−4(D − 1)χ b
: baχ

a
: F − 16(D − 1)χ:aχ:bΩabF

+8(D − 1)χχa: Ω b
a :bF

+4(D − 1)χa: χ
b
:F [−Rab −Rmbam −KabK +KacK

c
b ]

w23 χ:aχ
a
: Rmm −4Fχ:aχ

a
: Rmm − (D − 1)χ:aχ

a
: F;mm

−χ:aχ
a
: KF;m − 2χ:abχ

ab
: F

−2χ b
: baχ

a
: F − 8χ:aχ:bΩabF + 4χχ:aΩab:bF

+2Fχa: χ
b
: [−Rab −Rmbam −KabK +KacK

c
b ]

w24 χ:aχ:aR
ab −4Fχ:aχ:bR

ab − χ:aχ
a
: F;mm − χ:aχ

a
: KF;m

−(D − 2)χ:aχ:bK
abF;m −Dχ:abχ

ab
: F

+2(1−D)χ a
: abχ

b
:F − (2D + 4)Fχ:aχ:bΩab

−(D − 2)χ a
:a χ

b
:b F + 4Fχχ:aΩab:b

−(D − 2)ΩabΩab + (D − 2)χΩabχΩab

+Dχa: χ
b
: [−Rab −Rmbam −KabK +KacK

c
b ]

w25 χ:aχ:bR
ab

m m −4Fχ:aχ:bR
ab
m m + χ:aχ

a
: F;mm

+χ:aχ:bK
abF;m + 2Fχ a

: abχ
b
:

+2Fχ:aχ:bΩab + Fχ:abχ
ab
: + Fχ a

:a χ
b

:b

+FΩabΩab − χΩabχΩab



−χa: χb: [−Rab −Rmbam −KabK +KacK
c
b ]

w26 χ:aχ
a
: K

2 −4Fχ:aχ
a
: K

2 + 2(D − 1)F;mKχ:aχ
a
:

w27 χ:aχ:bK
acKb

c −4Fχ:aχ:bK
acKb

c + 2χ:aχ:bK
abF;m

w28 χ:aχ
a
: KcdK

cd −4Fχ:aχ
a
: KcdK

cd + 2F;mKχ:aχ
a
:

w29 χ:aχ:bK
abK −4Fχ:aχ:bK

abK + χ:aχ
a
: KF;m

+(D − 1)χ:aχ:bK
abF;m

w30 χ:aS
a
: K −4Fχ:aS

a
: K − 1

4 (D − 2)F;mχ:aχ
a
: K

+(D − 1)F;mχ:aS
a
:

w31 χ:aS:bK
ab −4Fχ:aS:bK

ab + χ:aS
a
: F;m

− 1
4 (D − 2)F;mχ:aχ:bK

ab

w32 χ:aχ
a
: χ:bχ

b
: −4Fχ:aχ

a
: χ:bχ

b
:

w33 χ:aχ:bχ
a
: χ

b
: −4Fχ:aχ:bχ

a
: χ

b
:

w34 χ a
:a χ

b
:b −4Fχ a

:a χ
b

:b − 2(D − 3)Fχ a
:a χ

b
:b

−2(D − 3)Fχ:aχ
b

:b a

w35 χ:abχ
ab
: −4Fχ:abχ

ab
: + 4Fχ:abχ

ab
: + 2FΩabΩab

−2FχΩabχΩab − 2Fχ a
:a χ

b
:b + 2Fχb:χ

a
:a b

−4Fχa: χ
b
: [−Rab −Rmbam −KabK +KacK

c
b ]

+12Fχ:aχ:bΩab − 4Fχχa: Ω b
a :b

w36 χ:aχ
a
: χ

b
:b −4Fχ:aχ

a
: χ

b
:b

w37 χ:bχ
ab

:a −4Fχ:bχ
ab

:a + (D − 1)Fχ:bχ
ab

:a

+(D − 1)Fχ b
:b χ

a
:a

In this table for a5/2 for mixed boundary conditions we have already pro-
vided all terms in the form they appear in eq. (4.5.7). To achieve this, again
partial integration as well as commutation of indices have been performed, as
for example

χ:ab − χ:ba = [χ,Ωab],
χ a

: ba − χ a
: ab = −χ a

: [−Rab −Rmabm −KabK +KacK
c
b ]

+χ a
: Ωba − Ωbaχ a

: ,

where in the second equality in addition to the Ricci-identity the Gauss-
Codacci relation has been used.



APPENDIX C

Application of index theorems

In this appendix we summarize formulas needed for the application of the
index theorem for the different examples used in Section 4.7.

Let us start with example (4.7.2). The basic ingredients to calculate a5/2,
see eq. (4.8.4), have been given already in the main text. Instead of stating
a5/2(P,B) and a5/2(P̂ , B̂) separately note that only the difference a5/2(P,B)−
a5/2(P̂ , B̂) is needed in order to extract information. If E is a local invari-
ant, this is taken into account by using the notation µ(E) = Tr (E(P,B)) −
Tr (E(P̂ , B̂)). In using µ(E) we avoid stating redundant information. We want
to derive the results (4.7.5) and we need to compute µ(E) for the terms appear-
ing in the formula (4.7.4). For the sake of clarity the results are summarized
in two lemmas. The first lemma contains terms in µ(E) which are bilinear in
A and B or involve ã0a0b2. The second lemma will study terms in a3 and in
the jets of B. For the traces left over we use the notation I = 2 Tr (1) and
K = 2iTr (1).

Lemma: The terms in µ(E) which are bilinear in A and B and the term
ã0a0b2.
( 1) µ(Ω2

12) = 2(ã0ḃ3 − ȧ0b̃3)J + 4a0b2ã0J + ... (α0)
( 2) µ(χΩ2

12) = 2(ȧ2ḃ3 − ã1ḃ3)K + ... (α1)
( 3) µ(χΩ12χΩ12) = (2ã0ḃ3 + 2ȧ0b̃3 + 4a0b2ã0)J + ... (α2)
( 4) µ(χE2) = (2ã3ḃ1 + 2ã3b̃2)K + ... (720)
( 5) µ(χEχE) = −2(ã3ḃ0 + ȧ3b̃0)J + ... (α3)
( 6) µ(E2) = 2(−ã3ḃ0 + ȧ3b̃0)J + ... (α4)
( 7) µ(χ:11E) = 2(ȧ3ḃ2 − ȧ2ḃ3 + ã1ḃ3)K + ... (α5)
( 8) µ(χ:11χ:11) = 0 + ... (α7)
( 9) µ(χE;22) = 2(−∂2

2(a3b2) + 2b1∂2∂1a3 + ȧ3b̃1)K + .... (360)
(10) µ(S:1S:1) = ȧ3ḃ2K + .... (-360)
(11) µ(SE:2) = 1

2 (a3∂1∂2b1 + a3∂
2
2b2 + b2∂2a3)K (1440)

+(− 1
2a3∂1∂2b0 + ã0a0b2)J + ...

(12) µ(S2E) = 0 + ... (2880)
(13) µ(S4) = 0 + ... (1440)
(14) µ(Π−S:1S:1) = 0 + ... (α8)
(15) µ(χ:1χ:1E) = 0 + ... (α9)
(16) µ(χχ:1χ:1E) = 0 + ... (α10)
(17) µ(χ4

:1) = 0 + ... (α11)

                      



(18) µ((Sχ:1 − χ:1S)Ω12) = 0 + ... (α13)
(19) µ(χχ:1Ω12:2) = −2b3∂2∂1a0J − 12a0b2ã0J + ...... (α14)

Putting to zero the multiplier of the invariants indicated at the right of the
following list, we obtain the system of equations,

0 = 2α0 + 2α2 + 2α14 (ã0ḃ3J )
0 = −2α0 + 2α2 (ȧ0b̃3J )
0 = −2α1 + 2α5 (ã1ḃ3K)
0 = −2α3 − 2α4 (ã3ḃ0J )
0 = −2α3 + 2α4 + 1

21440 (ȧ3b̃0J )
0 = 2α5 − 360 (ȧ3ḃ2K)
0 = 4α0 + 4α2 + 1440− 12α14 (ã0a0b2J )

This implies that:

α0 = −45, α1 = 180, α2 = −45, α3 = 180,
α4 = −180, α5 = 180, α14 = 90.

Further relations are obtained by considering some of the remaining invari-
ants. It is sufficient to assume the situation of the following lemma.

Lemma: Let a0 = a1 = a2 = 0, let a3 be constant, and let B = B(x1).
( 1) µ(Ω2

12) = (4ḃ3b3b1 − 4ḃ1b23)J (α0)
( 2) µ(χΩ2

12) = 0. (α1 = 180)
( 3) µ((χΩ12)2) = (4ḃ3b3b1 + 4ḃ1b23)J (α2)
( 4) µ((χE)2) = {2ḃ1(a2

3 + b20 + b23)− 4(−ḃ0 + 2a3b2)b0b1 (α3)
−8a3b1b0b2}J

( 5) µ(E2) = {2ḃ1(a2
3 + b20 + b23) + 4ḃ0b0b1}J (α4)

( 6) µ(χE2) = {−2(a2
3 + b20 + b23)(−ḃ0 + 2a3b2)− 4ḃ1b0b1}K (720)

( 7) µ(χ:11E) = {4(−ḃ0 + 2a3b2)(b23 + b22) + 4b0b2ḃ2 + 4b0b3ḃ3}K (α5)
( 8) µ(χ:11χ:11) = 0 (α7)
( 9) µ(χE:22) = (−4b21ḃ0 + 8b21a3b2)K (360)
(10) µ(S:1S:1) = {2a3b2(b23 + b22)}K (-360)
(11) µ(SE;2) = (−2a3b

2
1b2)K − (2a3b0b1b2)J (1440)

(12) µ(S2E) = { 1
2 (b22 − a2

3)ḃ1 + 2a3b0b1b2}J (2880)
+{− 1

2 (b22 − a2
3)(−ḃ0 + 2a3b2) + a3b2(a2

3 + b20 + b23)}K
(13) µ(S4) = (2a3b

3
2 − 2a3

3b2)K (1440)
(14) µ(Π−S:1S:1) = a3b2(b23 + b22)K (α8)
(15) µ(χ:1χ:1E) = (4b23 + 4b22)ḃ1J (α9)
(16) µ(χχ:1χ:1E) = −4(b23 + b22)(−ḃ0 + 2a3b2)K (α10)
(17) µ(χ4

:1) = 0 (α11)



(18) µ((Sχ:1 − χ:1S)Ω12) = −2b22ḃ1J (α13)
(19) µ(χχ:1Ω12:2) = −4ḃ3b3b1 + 4ḃ1b23. (α14)

From the above we get the additional relations,

0 = 4α10 − 6α5 + 2 · 720 (ḃ0b23K, b0ḃ3b3K)
0 = −8α10 + α8 + 2(−360) + 8α5 − 2880 + 2 · 1440 (a3b

3
2K)

0 = 4α9 + 1
22880− 2α13 (ḃ1b22J )

0 = (4α0 + 4α2 − 4α14) (ḃ3b3b1J , ḃ1b23J )
− 2(−4α0 + 4α2 + 4α14 + 4α9)

Putting together the information obtained, we find the results listed in
(4.7.5).

Let us proceed with the second index theory example, eq. (4.7.14). As be-
fore, we denote by µ(E) = Tr

(
E(D[1],B[1])

)
− Tr

(
E(D[0],B[0])

)
the relevant

difference occurring in the index theorem. The following table contains the
full list of the µ(E) needed. We have omitted the factor Tr (1) and the terms
f,mf,mmm because they are not needed.

E µ(E)
−1440 E;mS − 1

4 (D − 1)2(D2 − 8)f,mmf2
,m

+ 1
4 (D − 1)2(D2 − 4)f4

,m + 1
2 (D − 1)2f2

,am

480 RS2 −(D − 1)3f,mmf2
,m − 1

2 (D − 1)3(D − 2)f4
,m

−270 R;mS (D − 1)2(D − 4)f,mmf2
,m

−(D − 1)2(D − 2)f4
,m − (D − 1)2f2

,am

120 RmmS
2 − 1

2 (D − 1)3f,mmf2
,m

960 SS a
:a − 1

2 (D − 1)2f2
,am − 1

4D
2(D − 1)3f4

,m

2880 ES2 1
2 (D − 1)3f,mmf2

,m + 1
8 (D − 1)3(D2 − 4)f4

,m

1440 S4 1
2 (D − 1)4f4

,m

−270 E;mK 2(D − 1)2(D − 3)f,mmf2
,m − 2(D − 1)2(D − 2)f4

,m

−(D − 1)2f2
,am

240 KS b
:b

1
2 (D − 1)2f2

,am

420 KabS:ab
1
2 (D − 1)f2

,am

390 K:aS
a
: − 1

2 (D − 1)2f2
,am

480 K a
ab: S

b
: − 1

2 (D − 1)f2
,am

420 K b
:b S

1
2 (D − 1)2f2

,am

60 K ab
ab: S 1

2 (D − 1)f2
,am

1440 KSE − 1
2 (D − 1)3f,mmf2

,m − 1
8 (D − 1)3(D2 − 4)f4

,m



30 KSRmm
1
2 (D − 1)3f,mmf2

,m

240 KSR (D − 1)3f,mmf2
,m + 1

2 (D − 1)3(D − 2)f4
,m

−60 KabR
abS 1

2 (D − 1)2f,mmf2
,m + 1

2 (D − 1)2(D − 2)f4
,m

−180 KabSRammb − 1
2 (D − 1)2f,mmf2

,m

45 K2E (D − 1)3f,mmf2
,m + (D − 1)3(D − 2)f4

,m

90 KabK
abE (D − 1)2f,mmf2

,m + (D − 1)2(D − 2)f4
,m

2160 KS3 − 1
2 (D − 1)4f4

,m

1080 K2S2 1
2 (D − 1)4f4

,m

360 KabK
abS2 1

2 (D − 1)3f4
,m

885
4 K3S − 1

2 (D − 1)4f4
,m

315
2 KKabK

abS − 1
2 (D − 1)3f4

,m

150 KabK
bcKa

c S − 1
2 (D − 1)2f4

,m

−180 E2 1
2D(D − 1)2(D − 2)2f4

,m

180 χEχE 1
2D(D − 1)2(D − 2)2f4

,m

−120 S:aS
a
:

1
2 (D − 1)2f2

,am + 1
4D

2(D − 1)3f4
,m

0 ΩabΩab+ −4(D − 1)(4− 10D + 10D2 − 5D3 +D4)f4
,m

χΩabχΩab

c2 ΩabΩab− −4(D − 1)(D − 2)f2
,am

χΩabχΩab

−45 ΩamΩam+ −2(D − 1)(D − 2)f2
,am

χΩamχΩam
−360 ΩamχSa: − 1

2D
2(D − 1)2f,mmf2

,m

ΩamSa: χ
c5 χχ:aΩamK −2(D − 1)3f,mmf2

,m

c3 χ:aχ:bΩab 2(D − 1)2(D − 2)(D2 + (D − 2)2)f4
,m

90 χχ:aΩam;m 4(D − 1)2f,mmf2
,m + 2(D − 1)f2

,am

120 χχa: Ω b
ab: 2(D − 1)(D − 2)f2

,am

+(D − 1)(16− 40D + 40D2 − 20D3 + 4D4)f4
,m

c6 χχ:aΩbmKab −2(D − 1)2f,mmf2
,m

−180 χ:aχ
a
: E D2(D − 1)2f,mmf2

,m

+(D − 1)2(−4 + 8m− 7m2 + 2m3)f4
,m

−30 χ:aχ
a
: R −8(D − 1)3f,mmf2

,m − 4(D − 1)3(D − 2)f4
,m

0 χ:aχ
a
: Rmm −4(D − 1)3f,mmf2

,m

−60 χ:aχ:bR
ab −4(D − 1)2f,mmf2

,m − 4(D − 1)2(D − 2)f4
,m

−30 χa: χ
b
:Rmabm 4(D − 1)2f,mmf2

,m

− 675
32 χ:aχ

a
: K

2 4(D − 1)4f4
,m



− 75
4 χ:aχ:bK

acKb
c 4(D − 1)2f4

,m

− 195
16 χ:aχ

a
: KcdK

cd 4(D − 1)3f4
,m

− 675
8 χ:aχ:bK

abK 4(D − 1)3f4
,m

−330 χ:aS
a
: K − 1

2D
2(D − 1)3f4

,m

−300 χ:aS:bK
ab − 1

2D
2(D − 1)2f4

,m
15
4 χ:aχ

a
: χ:bχ

b
: 8(D − 1)2(−2 + 4D − 3D2 +D3)f4

,m
15
8 χ:aχ:bχ

a
: χ

b
: −8(D − 1)(D − 3)(−2 + 4D − 3D2 +D3)f4

,m

− 15
4 χ a

:a χ
b

:b 4(D − 1)f2
,am

+8(D − 1)2(−2 + 4D − 3D2 +D3)f4
,m

− 105
2 χ:abχ

ab
: 4(D − 1)2f2

,am

+8(D − 1)(−2 + 4D − 3D2 +D3)f4
,m

− 135
2 χ:bχ

ab
:a −4(D − 1)f2

,am

−8(D − 1)2(−2 + 4D − 3D2 +D3)f4
,m

720 χS:aS
a
:

1
2 (D − 1)2f2

,am

From here we obtain the result (4.7.15), and this concludes the presentation
of results arising from the application of the index theorem.



APPENDIX D

Representations for the asymptotic
contributions

In this appendix we derive explicit representations of the asymptotic contri-
butions as they appear in the Casimir and ground state energies for massive
fields in Sections 7.4, 7.5, 8.1 and 8.3. There is, of course, no unique way of
constructing analytical continuations of the functions involved. We present
here one systematic approach to do so.

Let us start with the leading term A−1(s) for the massive scalar field,
eq. (3.1.15). Performing the remaining derivative in (3.1.15), a slightly more
explicit form reads

A−1(s) = 2
sin(πs)
π

∞∑
l=0

ν2

∞∫
ma/ν

dx

[(xν
a

)2

−m2

]−s √1 + x2 − 1
x

, (D. 1)

where ν = l + 1/2 had been defined. We need the analytical continuation to
s = −1/2, the problem being that the summation over l hinders us to simply
put s = −1/2. A form suitable to perform the summation over l is obtained
as follows.

First we substitute t = (xν/a)2 −m2 and (D. 1) results into

A−1(s) =
sin(πs)
π

∞∑
l=0

ν

∞∫
0

dt
t−s

t+m2

{√
ν2 + a2(t+m2)− ν

}

= − 1
2
√
π

sin(πs)
π

∞∑
l=0

ν

∞∫
0

dt t−s
∞∫
0

dα e−α(t+m2) ×

∞∫
0

dβ β−3/2
{
e−β(ν2+a2[t+m2]) − e−βν

2
}
.

In the last step, the Mellin integral representation for the single factors has
been used. As we see, the β-integral is well defined because the bracket {...} is
O(β). Introducing a regularization parameter δ, A−1(s) can then be written
as

A−1(s) = lim
δ→0

[
A1
−1(s, δ) +A2

−1(s, δ)
]
,

                      



with

A1
−1(s, δ) = − 1

2
√
π

sin(πs)
π

∞∑
l=0

ν

∞∫
0

dα e−αm
2
×

∞∫
0

dβ β−3/2+δe−β(ν2+a2m2)

∞∫
0

dt t−se−t(α+βa2)

and

A2
−1(s, δ) =

1
2
√
π

Γ(1− s)
sin(πs)
π

∞∑
l=0

ν

∞∫
0

dα e−αm
2
αs−1 ×

∞∫
0

dβ β−3/2+δe−βν
2
.

This has the simple technical advantage that the single parts can be dealt
with separately. In A1

−1(s, δ) two of the integrals can be performed, yielding

A1
−1(s, δ) = − a1−2δ

2
√
πΓ(s)

Γ(s+ δ − 1/2)× (D. 2)

∞∑
l=0

ν

∞∫
1

dx xs−1

[
m2x+

(ν
a

)2
]1/2−s−δ

.

Also in A2
−1(s, δ) the two integrals can be done and we find

A2
−1(s, δ) =

m−2s

2
√
π

Γ(δ − 1/2)
∞∑
l=0

ν2−2δ.

This can be nicely combined with A1
−1(s, δ) with the help of the identity

∞∫
0

dx
xα−1

(y + zx)s+ε
=

Γ(α)Γ(s+ ε− α)
Γ(s+ ε)

z−αy−ε−s+α,

by which we get

A2
−1(s, δ) =

a1−2δ

2
√
πΓ(s)

Γ(s+ δ − 1/2)×

∞∑
l=0

ν

∞∫
0

dx xs−1

[
m2x+

(ν
a

)2
]1/2−s−δ

. (D. 3)

Adding up (D. 2) and (D. 3) yields

A−1(s) =
a

2
√
πΓ(s)

Γ(s− 1/2)
∞∑
l=0

ν

1∫
0

dx xs−1

[
m2x+

(ν
a

)2
]1/2−s

.



At this stage it is suitable to perform a partial integration, because the integral
diverges at s = −1/2. For that reason we write instead

A−1(s) =
a2s

2
√
π

Γ(s− 1/2)
Γ(s+ 1)

∞∑
l=0

ν

{
1

[ν2 + (ma)2]s−1/2
(D. 4)

+
(
s− 1

2

)
(ma)2

1∫
0

dx
xs

(ν2 + (ma)2x)s+1/2

 ,

with a well-behaved x-integral about s = −1/2.
In fact, A−1(s) could be expressed through the functions f(s; c, b; z) in-

troduced in (7.4.11), but due to the x-integral still to be performed, this is
of no real use here. Instead, we proceed differently and the techniques em-
ployed to deal with A−1(s) will also be the essential tools to consider all other
asymptotic contributions.

First we note, that now we can perform the angular momentum sum by
means of the Plana formula,

∞∑
ν=1/2

f(ν) =

∞∫
0

dν f(ν)− i

∞∫
0

dν
f(iν + ε)− f(−iν + ε)

1 + e2πν
, (D. 5)

where ε→ 0 is understood and appropriate analytic properties of the function
f(ν) are assumed. This relation is often used in finite temperature field theory
because it separates zero temperature contributions (the first integral) from
finite temperature contributions [260].

For A−1(s) the relevant application of eq. (D. 5) is

∞∑
ν=1/2,3/2,...

ν2n+1

(
1 +

(ν
x

)2
)−s

=
1
2
n!Γ(s− n− 1)

Γ(s)
x2n+2

+(−1)n2

x∫
0

dν
ν2n+1

1 + e2πν

(
1−

(ν
x

)2
)−s

(D. 6)

+(−1)n2 cos(πs)

∞∫
x

dν
ν2n+1

1 + e2πν

((ν
x

)2

− 1
)−s

.

Due to the fact that the prefactor in (D. 4) contains a pole at s = −1/2, an
expansion of the integrand including the order O(s + 1/2) is necessary. Part
of the resulting integrals can be performed, namely we need

∞∫
0

νn

1 + e2πν
=

n!
(2π)n+1

η(n+ 1),



with the eta function

η(s) =
∞∑
k=1

(−1)k+1

ks
= (1− 21−s)ζR(s).

After some calculations, the following final form of A−1(s) is obtained,

A−1(−1/2 + s) =
(

1
s

+ ln a2

)(
7

1920πa
+
m2a

48π
− m4a3

24π

)
+ ln 4

(
7

1920πa
+
m2a

48π
− m4a3

24π

)
(D. 7)

+
7

1920πa
− m2a

48π
+
m4a3

48π
(1 + 4 ln(ma))

− 1
πa

∞∫
0

dν
ν

1 + e2πν
(ν2 −m2a2) ln |ν2 −m2a2|

−2m2a

π

∞∫
0

dν
ν

1 + e2πν

(
ln |ν2 −m2a2|+ ν

ma
ln
∣∣∣∣ma+ ν

ma− ν

∣∣∣∣) .
A partial check is provided in that the residue agrees with what is expected
from the heat kernel coefficients.

A suitable representation for

A0(s) = −m
−2s

2

∞∑
l=0

ν

[
1 +

( ν

ma

)2
]−2s

is found by simply using (D. 6), and it reads

A0(s) =
1
6
a2m3 −m

ma∫
0

dν
ν

1 + e2πν

√
1−

( ν

ma

)2

. (D. 8)

In fact, using only these ingredients, a systematic treatment of all remaining
asymptotic contributions is possible. We have seen that the central spectral
function in this context is, see eq. (7.4.11),

f(s; c, b;x) =
∞∑

ν=1/2,3/2,...

νc
(

1 +
(ν
x

)2
)−s−b

.

Odd and even values of c are needed, and for c even instead of (D. 6) we find
∞∑

ν=1/2,3/2,...

ν2n

(
1 +

(ν
x

)2
)−s

=
1
2

Γ(n+ 1/2)Γ(s− n− 1/2)
Γ(s)

x2n+1

−(−1)n2 sin(πs)

∞∫
x

dν
ν2n

1 + e2πν

((ν
x

)2

− 1
)−s

. (D. 9)



As is easily seen, this result as well as (D. 6) can only be applied in the range
<s < 1, because otherwise the integrals diverge at the integration limit ν = x.
This range for s will not be sufficient for our considerations and a further
analysis is wanted. In fact, simple partial integrations increase the range of
validity as shown in the following. By induction we can show that

x∫
0

dν
ν2n+1

1 + e2πν

(
1−

(ν
x

)2
)−s

=

δk,n+1(−1)n+1n!Γ(s− n− 1)
4Γ(s)

x2n+2

+(−1)k
Γ(s− k)

Γ(s)

x∫
0

dν

[(
d

dν

x2

2ν

)k
ν2n+1

1 + e2πν

](
1−

(ν
x

)2
)−s+k

,

∞∫
x

dν
ν2n+1

1 + e2πν

((ν
x

)2

− 1
)−s

=

Γ(s− k)
Γ(s)

∞∫
x

dν

[(
d

dν

x2

2ν

)k
ν2n+1

1 + e2πν

] [(ν
x

)2

− 1
]−s+k

,

which holds for <s < k + 1 ≤ n+ 2. So in this range we have found
∞∑

ν=1/2,3/2,...

ν2n+1

(
1 +

(ν
x

)2
)−s

=
1
2
n!Γ(s− n− 1)

Γ(s)
x2n+2

−δk,n+1
n!Γ(s− n− 1)

2Γ(s)
x2n+2 (D. 10)

+2(−1)k+n
Γ(s− k)

Γ(s)
×

x∫
0

dν

[(
d

dν

x2

2ν

)k
ν2n+1

1 + e2πν

](
1−

(ν
x

)2
)−s+k

+2(−1)n cos(πs)
Γ(s− k)

Γ(s)
×

∞∫
x

dν

[(
d

dν

x2

2ν

)k
ν2n+1

1 + e2πν

] [(ν
x

)2

− 1
]−s+k

.

Similarly we derive from (D. 9), again by induction,
∞∫
x

dν
ν2n

1 + e2πν

[(ν
x

)2

− 1
)−s

=



Γ(s− k)
Γ(s)

∞∫
x

dν

[(
d

dν

x2

2ν

)k
ν2n

1 + e2πν

] [(ν
x

)2

− 1
]−s+k

,

valid for <s < k + 1. So in this case we immediately obtain
∞∑

ν=1/2,3/2,...

ν2n

(
1 +

(ν
x

)2
)−s

=
1
2

Γ(n+ 1/2)Γ(s− n− 1/2)
Γ(s)

x2n+1

−2(−1)n sin(πs)
Γ(s− k)

Γ(s)
× (D. 11)

∞∫
x

dν

[(
d

dν

x2

2ν

)k
ν2n

1 + e2πν

] [(ν
x

)2

− 1
]−s+k

.

In case the value of s needed falls outside this range, using the recursion
(7.4.12), now written as

f(s; c, b; z) = f(s; c, b− 1; z)− 1
z2
f(s; c+ 2, b; z),

a valid representation can be found. In fact, using this relation systematically
all that is needed can be reduced to a couple of cases. The relevant expansion
about s = −1/2 for these cases is listed in the following (to arrive at the final
form substitute u = ν/x and neglect O(s+ 1/2) terms),

f(s; 2n, n;x) =
1
2

(
n− 1

2

)
x2n+1

(
− 1
s+ 1/2

+ ψ(n− 1/2)− 1 + γ

)

− 22−n√π
Γ(n− 1/2)

x2n+1

∞∫
1

du

[(
d

du

1
u

)n
u2n

1 + e2πux

]
(u2 − 1)1/2, (D. 12)

f(s; 2n, n+ 1/2;x) = −
√
πΓ(n+ 1/2)

Γ(n)
x2n+1

+
21−nπ

Γ(n)
x2n+1

(
d

du

1
u

)n−1
u2n

1 + e2πux

∣∣∣∣∣
u=1

, (D. 13)

f(s; 2n+ 1, n+ 1;x) =

21−n√π
Γ(n+ 1/2)

x2n+2

1∫
0

du

[(
d

du

1
u

)n+1
u2n+1

1 + e2πux

]
(1− u2)1/2 , (D. 14)

f(s; 2n+ 1, n+ 3/2;x) =
1
2
x2n+2

{
1

s+ 1/2
− ψ(n+ 1)− γ

}

+
x2n+2

2nΓ(n+ 1)

∞∫
0

du

[(
d

du

1
u

)n+1
u2n+1

1 + e2πux

]
ln |u2 − 1|. (D. 15)



For the convenience of the reader, in the following we give a full list of results
which are relevant to the Casimir effect and ground state energy. Instead of
using (7.4.12), we have sometimes resorted to (D. 10) and (D. 11), because in
doing so the answer found is more compact. The f(s; a, b;x) needed are:

f(0; 0) =
1
4
x

(
1

s+ 1/2
+ 2 ln 2− 1

)

+ 2x

∞∫
1

du
1

1 + e2πux
[
u2 − 1

]1/2
,

f(0; 1/2) = 0, f(1; 1/2) = −1
2
x2 +

1
24
,

d

ds

∣∣
s=−1/2 f(s; 0; 1/2) = −πx− 2πx

∞∫
1

du
1

1 + e2πux
,

d

ds

∣∣
s=−1/2 f(s; 1; 1/2) = −1

2
x2 − 2x2

∞∫
0

du
u

1 + e2πux
ln
∣∣1− u2

∣∣ ,
f(0; 1) =

x

2(s+ 1/2)
+ x ln 2

+ 2x

∞∫
1

du
d

du

(
1

u (1 + e2πux)

) [
u2 − 1

]1/2
,

f(0; 3/2) =
πx

2
− πx

1 + e2πx
,

f(1; 3/2) =
x2

2(s+ 1/2)
+ x2

∞∫
0

du

(
d

du

1
1 + e2πux

)
ln
∣∣u2 − 1

∣∣ ,
f(1; 1) = 2x2

1∫
0

du

(
d

du

1
1 + e2πux

) [
1− u2

]1/2
,

f(1; 2) = −2x2

1∫
0

du

(
d

du

1
1 + e2πux

) ∣∣1− u2
∣∣−1/2

,

f(2; 1) = −1
4
x3

(
1

s+ 1/2
+ 2 ln 2 + 1

)

− 2x3

∞∫
1

du

(
d

du

u

1 + e2πux

)[
u2 − 1

]1/2
,

f(2; 3/2) = −π
2
x3 +

πx3

1 + e2πx
,



f(2; 2) =
x3

2(s+ 1/2)
+ (ln 2− 1)x3

+ 2x3

∞∫
1

du

[
d

du

(
1
u

d

du

u

1 + e2πux

)] [
u2 − 1

]1/2
,

f(2; 5/2) =
π

4
x3 − π

2
x3

(
d

du

u

1 + e2πux

)∣∣∣∣
u=1

,

f(3; 2) = 2x4

1∫
0

du

[
d

du

(
1
u

d

du

u2

1 + e2πux

)] [
1− u2

]1/2
,

f(3; 5/2) =
x4

2(s+ 1/2)
− 1

2
x4

+
x4

2

∞∫
0

du

[
d

du

(
1
u

d

du

u2

1 + e2πux

)]
ln
∣∣u2 − 1

∣∣ ,
f(3; 3) = −2

3
x4

1∫
0

du

[
d

du

(
1
u

d

du

u2

1 + e2πux

)] [
1− u2

]−1/2
,

f(4; 5/2) = −3
4
πx5 +

π

2
x5 d

du

u3

1 + e2πux

∣∣∣∣
u=1

,

f(4; 3) =
x5

2(s+ 1/2)
+ (3 ln 2− 4)

x5

3

+
2x5

3

∞∫
1

du

[
d

du

(
1
u

d

du

1
u

d

du

u3

1 + e2πux

)] [
u2 − 1

]1/2
,

f(4; 7/2) =
3π
16
x5 − π

8
x5

(
d

du

1
u

d

du

u3

1 + e2πux

)∣∣∣∣
u=1

,

f(5; 7/2) =
x6

2(s+ 1/2)
− 3

4
x6

+
x6

8

∞∫
0

du

[
d

du

(
1
u

d

du

1
u

d

du

u4

1 + e2πux

)]
ln
∣∣u2 − 1

∣∣ ,
f(5; 4) = −2x6

15

1∫
0

du

[
d

du

(
1
u

d

du

1
u

d

du

u4

1 + e2πux

)] [
1− u2

]−1/2
,

f(6; 4) =
x7

2(s+ 1/2)
+ (ln 2− 23/15)x7

+
2x7

15

∞∫
1

du

[
d

du

(
1
u

d

du

1
u

d

du

1
u

d

du

u5

1 + e2πux

)] [
u2 − 1

]1/2
,



f(6; 9/2) =
5π
32
x7 +

π

48
x7

(
d

du

1
u

d

du

1
u

d

du

u5

1 + e2πux

)∣∣∣∣
u=1

,

f(7; 9/2) =
x8

2(s+ 1/2)
− 11

12
x8

+
x8

48

∞∫
0

du

[
d

du

(
1
u

d

du

1
u

d

du

1
u

d

du

u6

1 + e2πux

)]
ln
∣∣u2 − 1

∣∣ .
In addition to the above explanations, very little is needed for the spinor field.
Performing the completely analogous steps as for the derivation of (D. 7), the
leading asymptotic contributions in eq. (7.5.5) read

A−1(s) =
(

1
s+ 1/2

− lnm2

)(
−a

3m4

6π
+
m2a

12π
+

7
480πa

)
+
a3m4

12π
(1− 4 ln 2)− m3a2

3
+
m2a

12π
[2 ln(2ma)− 1]

+
7

480πa
[1 + 2 ln(2ma)] (D. 16)

− 4
πa

∞∫
0

dν ν

1 + e2πν
(
ν2 −m2a2

)
ln
∣∣ν2 −m2a2

∣∣
−8m2a

π

∞∫
0

dν ν

1 + e2πν

(
ln
∣∣ν2 −m2a2

∣∣+ ν

ma
ln
∣∣∣∣ma+ ν

ma− ν

∣∣∣∣)

+
m2a

π
ln
(
1 + e−2πma

)
− 2
a

∞∫
ma

dν ν2

1 + e2πν

−m
2a

π

1∫
0

dy ln
(
1 + e−2πmay

)
,

A0(s) = −
(

1
s+ 1/2

− lnm2

)(
1

24πa
+
m2a

2π

)
+
m3a2

3
+

2m2a

π

[
5
4
− 1

2
ln 2− ln(ma)

]
− ln 2

12πa

−4
a

∞∫
ma

dν ν2

1 + e2πν
− 2m3a2

1∫
0

dx

1 + e2πma
√
x

+
2
πa

∞∫
0

dν ν

1 + e2πν
ln
∣∣∣∣1− ( ν

ma

)2
∣∣∣∣ (D. 17)



−m
2a

π

∞∫
0

dν

(
d

dν

1
1 + e2πν

) 1∫
0

dx√
x

ln
∣∣m2a2x− ν2

∣∣ .
In summary, this appendix allows for the calculation of all asymptotic contri-
butions in Sections 7.4, 7.5, 8.1 and 8.3.

                      



APPENDIX E

Perturbation theory for the
logarithm of the Jost function

In the calculation of the spinor ground state energy in the background of a
finite radius flux tube, see Section 8.3, the uniform asymptotic expansion of the
logarithm of the Jost function is needed. Some part of the calculation has been
relegated to this appendix and the aim is to derive the expansion (8.3.25)—
(8.3.28). First eq. (8.3.24) is inserted into eq. (8.3.23) and an expansion of the
Jost function itself in powers of (∆P) is obtained. With obvious notation,

fm(k) =: 1 + x1 + x2 + x3 + x4 +O
(
(∆P)5

)
, (E. 1)

we find

x1 = −
( π

2i

) ∞∫
0

dr1 r1 ΦTH(1)(r1)∆P(r1)ΦJ(r1), (E. 2)

x2 = −
( π

2i

) ∞∫
0

dr1 r1

r1∫
0

dr2 r2× (E. 3)

ΦTH(1)(r1)∆P(r1)g(r1, r2)∆P(r2)ΦJ(r2),

x3 = −
( π

2i

) ∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3× (E. 4)

ΦTH(1)(r1)∆P(r1)g(r1, r2)∆P(r2)g(r2, r3)∆P(r3)ΦJ(r3),

x4 = −
( π

2i

) ∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4× (E. 5)

ΦTH(1)(r1)∆P(r1)g(r1, r2)∆P(r2)g(r2, r3)∆P(r3)g(r3, r4)∆P(r4)ΦJ(r4).

In order to obtain the expansion of the logarithm of fm(k),

ln fm(k) = ln f (1)
m (k) + ln f (2)

m (k) + ln f (3)
m (k)

+ ln f (4)
m (k) +O

(
(∆P)5

)
, (E. 6)

we need the combinations

ln f (1)
m = x1, (E. 7)

                      



ln f (2)
m = x2 −

1
2
x2

1, (E. 8)

ln f (3)
m =

1
3
x3

1 − x1x2 + x3, (E. 9)

ln f (4)
m = −1

4
x4

1 + x2
1x2 −

1
2
x2

2 − x1x3 + x4. (E. 10)

Let us consider the different orders separately. The first order ln f (1)
m (k), see

eqs. (E. 7) and (E. 2), equals already (8.3.25). For the higher orders differ-
ent integration domains are involved and several rearrangements of these are
necessary to obtain the “unified” result (8.3.26)—(8.3.28). We will give some
details for ln f (2)

m (k), but later on we will content ourselves with a few com-
ments. Making explicit use of the Green’s function G(r, r′), (8.3.21), in eq. (E.
3), ln f (2)

m (k) takes the form

ln f (2)
m (k) =

( π
2i

)2

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2 ΦTH(1)(r1)∆P(r1)ΦJ(r1)ΦTH(1)(r2)∆P(r2)ΦJ(r2)

−
∞∫
0

dr1 r1

r1∫
0

dr2 r2 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)ΦTJ (r2)∆P(r2)ΦJ(r2)

−1
2

 ∞∫
0

dr1 r1 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

2
 .

The first and third terms combine to give

1
2

( π
2i

)2
∞∫
0

dr1 r1 ΦTH(1)(r1)∆P(r1)ΦJ(r1)×
r1∫
0

dr2 r2 ΦTH(1)(r2)∆P(r2)ΦJ(r2)

−
∞∫
r1

dr2 r2 ΦTH(1)(r2)∆P(r2)ΦJ(r2)

 .

Rearranging the integration domains,
∞∫
0

dr1

∞∫
r1

dr2 =

∞∫
0

dr2

r2∫
0

dr1 ,

with the change of variables, r1 ↔ r2, at the end, this contribution vanishes
and we arrive at eq. (8.3.26).



Proceeding with the higher orders, it is extremely helpful to reexpress these
by the lower orders already obtained. So for the next order, eq. (E. 9), we
write instead

ln f (3)
m (k) = x3 −

1
6
(ln f (1)

m )3 − (ln f (1)
m )(ln f (2)

m ).

Again by using the Green’s function, eq. (8.3.21), the term

x3 = x3,1 + x3,2 + x3,3 + x3,4

consists of the four parts

x3,1 = −
( π

2i

)3
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦJ(r3) ,

x3,2 =
( π

2i

)3
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦJ(r3) ,

x3,3 =
( π

2i

)3
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦJ(r3) ,

x3,4 = −
( π

2i

)3
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦJ(r3) .

Cancellations are made apparent by the identity

∞∫
0

dr1

∞∫
0

dr2 ...

rn∫
0

drn+1f(r1)...f(rn+1)

=
1

(n+ 1)!

 ∞∫
0

drf(r)

n+1

, (E. 11)

which can be proven by induction. This shows, e.g.,

x3,1 −
1
6
(ln f (1)

m )3 = 0.

The contribution (ln f (1)
m )(ln f (2)

m ) can be rewritten by splitting the integrals



according to
∞∫
0

dr3 =

r2∫
0

dr3 +

∞∫
r2

dr3 (E. 12)

and by using identities of the kind
r∫

0

dr1

∞∫
r1

dr2 =

r∫
0

dr2

r2∫
0

dr1 +

∞∫
r

dr2

r∫
0

dr1. (E. 13)

This produces terms as they occur in x3,

−(ln f (1)
m )(ln f (2)

m ) = −x3,2 − x3,3 + x3,4

and adding up all parts, eq. (8.3.27) is found.
Proceeding with the same strategy for ln f (4)

m (k), we first write (E. 10) as

ln f (4)
m (k) = x4 −

1
2
(ln f (2)

m (k))2 − 1
2
(ln f (1)

m (k)2(ln f (2)
m (k))

−(ln f (1)
m (k))(ln f (3)

m (k))− 1
24

(ln f (1)
m )4.

Because a product of three Green’s functions is involved, the term

x4 =
8∑
i=1

x4,i

now consists of eight contributions

x4,1 =
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦJ(r3)ΦTH(1)(r4)∆P(r4)ΦJ(r4),

x4,2 = −
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦH(1)(r3)ΦTJ (r4)∆P(r4)ΦJ(r4),

x4,3 = −
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦJ(r3)ΦTH(1)(r4)∆P(r4)ΦJ(r4),



x4,4 =
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦJ(r1)

ΦTH(1)(r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦH(1)(r3)ΦTJ (r4)∆P(r4)ΦJ(r4),

x4,5 = −
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦJ(r3)ΦTH(1)(r4)∆P(r4)ΦJ(r4),

x4,6 =
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦJ(r2)ΦTH(1)(r3)∆P(r3)ΦH(1)(r3)ΦTJ (r4)∆P(r4)ΦJ(r4),

x4,7 =
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦJ(r3)ΦTH(1)(r4)∆P(r4)ΦJ(r4),

x4,8 = −
( π

2i

)4

×
∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTJ (r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦH(1)(r3)ΦTJ (r4)∆P(r4)ΦJ(r4) .

Cancellations occur again due to (E. 11),

x4,1 −
1
24

(ln f (1)
m (k))4 = 0.

Furthermore, rearranging integration domains as given in (E. 12) and (E. 13)
or similarly, it can be shown that

−(ln f (1)
m (k))(ln f (3)

m (k)) = −2x4,7 + 4x4,8 − 2x4,4,

−1
2
(ln f (1)

m (k))2(ln f (2)
m (k)) = −x4,5 + x4,7 − x4,3 − x4,8 + x4,4 − 2x4,2,

−1
2
(ln f (2)

m (k))2 = −x4,6



−2

∞∫
0

dr1 r1

r1∫
0

dr2 r2

r2∫
0

dr3 r3

r3∫
0

dr4 r4 ΦTH(1)(r1)∆P(r1)ΦH(1)(r1)

ΦTH(1)(r2)∆P(r2)ΦH(1)(r2)ΦTJ (r3)∆P(r3)ΦJ(r3)ΦTJ (r4)∆P(r4)ΦJ(r4).

Adding up all parts, we arrive at (8.3.28).
Our goal was to derive the uniform asymptotic expansion of ln fm(ik). Up

to now, using the representation (8.3.14) for the spinor eigenfunctions ΦZ ,
the above integrals are explicitly given in terms of the Bessel functions Iν and
Kν . However, given the asymptotic expansions for these special functions are
at hand, see eqs. (3.1.10) and (7.1.5), for the derivation of eqs. (8.3.29) and
(8.3.30), only a repeated use of saddle point expansions has to be made. The
type of expression which appears is given below in eq. (E. 14). For ν →∞ we
obtain the following type of asymptotic expansion,

r∫
0

dr′φ(r′)eνϕ(r′) = eνϕ(r)
∞∑
k=1

hk−1ν
−k. (E. 14)

Explicitly, the needed leading terms of the expansion are

h0 =
φ(r)
ϕ′(r)

,

h1 =
φ(r)ϕ′′(r)
(ϕ′(r))3

− φ′(r)
(ϕ′(r))2

,

h2 =
φ′′(r)

(ϕ′(r))3
− 3φ′(r)ϕ′′(r)

(ϕ′(r))4
+

3φ(r)(ϕ′′(r))2

(ϕ′(r))5
− φ(r)ϕ′′′(r)

(ϕ′(r))4
.

This saddle point expansion is the basis to represent the ground state energy
as given in eq. (8.3.29). From there we proceed as described in the main text
and for the integrands in (8.3.31) we find, using the results of Appendix D,

h1(x) =
1
2
f1,1(x)−

1
2
f1,3(x) +

1
4
f3,3(x)−

39
16
f3,5(x) +

35
8
f3,7(x)

−35
16
f3,9(x)−

1
2
x∂x

(
−1

4
f3,3(x) +

7
8
f3,5(x)−

5
8
f3,7(x)

)
+

1
2
x∂2

x

(x
8
f3,3(x)−

x

8
f3,5(x)

)
,

h2(x) =
1
8

(f3,3(x)− f3,5(x)) , (E. 15)

h3(x) = −1
8

(f3,3(x)− 6f3,5(x) + 5f3,7(x)) ,

where the building blocks fi,j read explicitly

f1,1(ν) = − 1
1 + exp(2πν)



f1,3(ν) = −
(

ν

1 + exp(2πν)

)′
f3,3(ν) =

(
1
ν

1
1 + exp(2πν)

)′
f3,5(ν) =

1
3

(
1
ν

(
ν

1 + exp(2πν)

)′)′

f3,7(ν) =
1
15

(
1
ν

(
1
ν

(
ν3

1 + exp(2πν)

)′)′)′

f3,9(ν) =
1

105

1
ν

(
1
ν

(
1
ν

(
ν5

1 + exp(2πν)

)′)′)′′ ,
the prime indicating d/dν. In summary, we have provided all formulas needed
for the calculation of the asymptotic contributions Erenas to the ground state
energy needed in Section 8.3.
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[83] J. Brüning. Heat-equation asymptotics for singular Sturm-Liouville op-
erators. Math. Ann., 268:173–196, 1984.
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173:245–254, 1935.

[195] R. Friedberg and T.D. Lee. Fermion field nontopological solitons. I.
Phys. Rev., D15:1694–1711, 1977.

[196] R. Friedberg and T.D. Lee. Fermion field nontopological solitons. II.
Models for hadrons. Phys. Rev., D16:1096–1118, 1977.

[197] V.P. Frolov and D.V. Fursaev. Thermal fields, entropy, and black holes.
Class. Quantum Grav., 15:2041–2074, 1998.

[198] M.P. Fry. Fermion determinants in static, inhomogeneous magnetic
fields. Phys. Rev., D51:810–823, 1995.

[199] I. Fujiwara, D. ter Haar, and H. Wergeland. Fluctuations in the pop-
ulation of the ground state of Bose systems. J. Stat. Phys., 2:329–346,
1970.

[200] S.A. Fulling and G. Kennedy. The resolvent parametrix of the gen-
eral elliptic linear-differential operator—a closed form for the intrinsic
symbol. Amer. Math. Soc., 310:583–617, 1988.

[201] D.V. Fursaev. Euclidean and canonical formulations of statistical me-
chanics in the presence of Killing horizons. Nucl. Phys., B524:447–468,
1998.
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formes différentielles d’une variété riemannienne. J. Math. Pures. Appl.,
54:259–284, 1975.

[204] G.W. Gibbons. Thermal zeta functions. Phys. Lett., A60:385–386, 1977.
[205] P.B. Gilkey. The boundary integrand in the formula for the signature

and Euler characteristic of a Riemannian manifold with boundary. Adv.
Math., 15:334–360, 1975.

[206] P.B. Gilkey. The spectral geometry of a Riemannian manifold. J. Diff.
Geometry, 10:601–618, 1975.

[207] P.B. Gilkey. On the index of geometrical operators for Riemannian
manifolds with boundary. Adv. Math., 102:129–183, 1993.

[208] P.B. Gilkey. Invariance Theory, the Heat Equation and the Atiyah-
Singer Index Theorem. CRC Press, Boca Raton, 1995.

[209] P.B. Gilkey. The heat content asymptotics for variable geometries. J.
Phys. A: Math. Gen., 32:2825–2834, 1999.



[210] P.B. Gilkey and K. Kirsten. Heat asymptotics with spectral boundary
conditions II. math-ph/0007015.

[211] P.B. Gilkey, K. Kirsten, and JH. Park. Heat trace asymptotics of a
time-dependent process. J. Phys. A: Math. Gen., 34:1153–1168, 2001.

[212] P.B. Gilkey, K. Kirsten, and D.V. Vassilevich. Heat trace asymptotics
with transmittal boundary conditions and quantum brane world sce-
nario. Nucl. Phys., B601:125–148, 2001.

[213] P.B. Gilkey and JH. Park. Heat content asymptotics of an inhomoge-
nous time dependent processes. Mod. Phys. Lett., A15:1165–1179, 2000.

[214] P.B. Gilkey and L. Smith. The eta invariant for a class of elliptic bound-
ary value problems. Commun. Pure Appl. Math., 36:85–131, 1983.

[215] S. Giorgini, L.P. Pitaevskii, and S. Stringari. Thermodynamics of a
trapped Bose-condensed gas. J. Low. Temp. Phys., 109:309–355, 1997.

[216] J.M. Gipson. Quasi-solitons in the strongly coupled Higgs sector of the
standard model. Nucl. Phys., B231:365–385, 1984.

[217] J.M. Gipson and C.-H. Tze. Possible heavy solitons in the strongly
coupled Higgs sector. Nucl. Phys., B183:524–546, 1981.

[218] P. Gornicki. Aharonov-Bohm effect and vacuum polarization. Ann.
Phys., 202:271–296, 1990.

[219] P. Gosdzinsky and A. Romeo. Energy of the vacuum with a perfectly
conducting and infinite cylindrical surface. Phys. Lett., B441:265–274,
1998.

[220] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series and Prod-
ucts. Academic Press, New York, 1965.

[221] N. Graham and R.L. Jaffe. Unambiguous one-loop quantum energies
of 1+1 dimensional bosonic field configurations. Phys. Lett., B435:145–
151, 1998.

[222] N. Graham and R.L. Jaffe. Fermionic one-loop corrections to soliton
energies in 1+1 dimensions. Nucl. Phys., B549:516–526, 1999.

[223] P. Greiner. An asymptotic expansion for the heat equation. Arch. Rat.
Mech. and Anal., 41:163–218, 1971.

[224] P. Greiner. An asymptotic expansion for the heat equation, Global
analysis, Berkeley 1968. Proc. Symp. Pure Math., 16:133–137, Amer.
Math. Soc., Providence, 1970.

[225] W. Greiner. Relativistische Quantenmechanik. Verlag Harri Deutsch,
Frankfurt, 1981.

[226] S. Grossmann and M. Holthaus. λ-transition to the Bose-Einstein con-
densate. Z. Naturforsch., A50:921–930, 1995.

[227] S. Grossmann and M. Holthaus. On Bose-Einstein condensation in
harmonic traps. Phys. Lett., A208:188–192, 1995.



[228] S. Grossmann and M. Holthaus. Microcanonical fluctuations of a Bose
system’s ground state occupation number. Phys. Rev. E, 54:3495–3498,
1996.

[229] S. Grossmann and M. Holthaus. Maxwell’s demon at work: two types
of Bose condensate fluctuations in power law traps. Optics Express,
1:262–271, 1997.

[230] G. Grubb. Functional Calculus of Pseudo-Differential Boundary Prob-
lems. Progress in Mathematics, Vol. 65, Birkhäuser, Boston, 1986. Sec-
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