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Preface

Basic philosophy

Algebra, as we know it today (2008), consists of a great many ideas, concepts, and
results, and this was also the case in 1995 when this handbook started (which does
not mean that nothing has happened in those 12 years; on the contrary, the field of
algebra and its applications has developed at a furious pace).

A reasonable estimate of the number of all the various different concepts, ideas,
definitions, constructions, results, . . . in algebra would be somewhere between 50 000
and 200 000. Many of these have been named and many more could (and perhaps
should) have a “name” or other convenient designation. Even a nonspecialist is quite
likely to encounter most of these, either somewhere in the published literature in the
form of an idea, definition, theorem, algorithm. . . or to hear about them, often in
somewhat vague terms, and to feel the need for more information. In such a case,
if the concept relates to algebra, then one should be able to find something in this
handbook, at least enough to judge whether it is worth the trouble to try to find out
more. In addition to the primary information, the numerous references to important
articles, books, or lecture notes should help the reader find out as much as desired.

As a further tool, the index is perhaps more extensive than usual, and is definitely
not limited to definitions, (famous) named theorems, and the like.

For the purposes of this handbook, “algebra” is more or less defined as the union
of the following areas of the Mathematics Subject Classification Scheme:

– 20 (Group theory)
– 19 (K-theory this will be treated at an intermediate level; a separate Handbook

of K-Theory, which goes into far more detail than the section planned for this
Handbook of Algebra is under consideration)

– 18 (Category theory and homological algebra, including some of the uses of cate-
gories in computer science, often classified somewhere in Section 68)

– 17 (Nonassociative rings and algebras, especially Lie algebras)
– 16 (Associative rings and algebras)
– 15 (Linear and multilinear algebra. Matrix theory)
– 13 (Commutative rings and algebras; here, there is a fine line to tread between

commutative algebras and algebraic geometry; algebraic geometry is definitely
not a topic that will be dealt within any detail in this handbook; one day, there will,
hopefully, be a separate handbook on that topic)

– 12 (Field theory and polynomials)

v
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– 11 [Number theory, the part that also used to be classified under 12 (Algebraic
number theory)]

– 08 (General algebraic systems)
– 06 (Order, lattices, ordered algebraic structures; certain parts; but not topics specific

to Boolean algebras as there is a separate three-volume Handbook of Boolean
Algebras)

Planning

Originally (1992), we expected to cover the whole field in a systematic way. Volume
1 would be devoted to what is now called Section 1 (see below), Volume 2 to Section
2, and so on. A quite detailed and comprehensive plan was made in terms of topics
that needed to be covered and authors to be invited. That turned out to be an inef-
ficient approach. Different authors have different priorities, and to wait for the last
contribution to a volume, as planned originally, would have resulted in long delays.
Instead, there is now a dynamic evolving plan. This also makes it possible to take
new developments into account.

Chapters are still by invitation only according to the then current version of the plan,
but the various chapters are published as they arrive, allowing for faster publication.
Thus, in this volume 6 of the Handbook ofAlgebra, the reader will find contributions
from five sections.

As the plan is dynamic, suggestions fromusers, both as to topics that could or should
be covered, and authors are most welcome and will be given serious consideration
by the board and editor.

The list of sections looks as follows:
Section 1: Linear algebra. Fields. Algebraic number theory
Section 2: Category theory. Homological and homotopical algebra. Methods from

logic (algebraic model theory)
Section 3: Commutative and associative rings and algebras
Section 4: Other algebraic structures. Nonassociative rings and algebras. Commu-

tative and associative rings and algebras with extra structure
Section 5: Groups and semigroups
Section 6: Representations and invariant theory
Section 7: Machine computation. Algorithms. Tables
Section 8: Applied algebra
Section 9: History of algebra
For the detailed plan (2008 version), the reader is referred to the Outline of the

Series following this preface.

The individual chapters

It is not the intention that the handbook as a whole can also be a substitute under-
graduate or even graduate, textbook. Indeed, the treatments of the various topics will
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be too much dense and professional for that. Basically, the level should be graduate
and up, and such material as can be found in P.M. Cohn’s three-volume textbook
“Algebra” (Wiley) should, as a rule, be assumed known. The most important function
of the chapters in this handbook is to provide professional mathematicians working
in a different area with a sufficiency of information on the topic in question if and
when it is needed.

Each of the chapters combines some of the features of both a graduate-level text-
book and a research-level survey. Not all the ingredients mentioned below will be
appropriate in each case, but authors have been asked to include the following:
– Introduction (including motivation and historical remarks).
– Outline of the chapter.
– Basic concepts, definitions, and results (these may be accompanied by proofs or

(usually better) ideas/sketches of the proofs when space permits).
– Comments on the relevance of the results, relations to other results, and applica-

tions.
– Reviewof the relevant literature; possibly completewith the opinions of the author

on recent developments and future directions.
– Extensive bibliography (several hundred items will not be exceptional).

The present

Volume 1 appeared in 1995 (copyright 1996), Volume 2 in 2000, Volume 3 in 2003,
Volume 4 in 2005 (copyright 2006), Volume 5 in 2007. Volume 7 is planned for 2009.
Thereafter, we aim at one volume every 2 years (or better).

The future

Of course, ideally, a comprehensive series of books like this should be interactive and
have a hypertext structure to make finding material and navigation through it imme-
diate and intuitive. It should also incorporate the various algorithms in implemented
form as well as permit a certain amount of dialog with the reader. Plans for such an
interactive, hypertext, CDROM (DVD)-based (or web-based) version certainly exist,
but the realization is still a nontrivial number of years in the future.

Kvoseliai, July 2008 Michiel Hazewinkel

Kaum nennt man die Dinge beim richtigen Namen
so verlieren sie ihren gefährlichen Zauber

(You have but to know an object by its proper name
for it to lose its dangerous magic)

Elias Canetti



Outline of the series
(as of July 2008)

Plilosophy and principles of the Handbook of Algebra

Compared to the outline in Volume 1, this version differs in several aspects.
First, there is a major shift in emphasis away from completeness as far as the more

elementary material is concerned and toward more emphasis on recent developments
and active areas. Second, the plan is now more dynamic in that there is no longer a
fixed list of topics to be covered, determined long in advance. Instead, there is a more
flexible nonrigid list that can and does change in response to new developments and
availability of authors.
The new policy, which started with Volume 2, is to work with a dynamic list

of topics that should be covered, to arrange these in sections and larger groups
according to the major divisions into which algebra falls, and to publish collec-
tions of contributions (i.e. chapters) as they become available from the invited authors.

The coding below is by style and is as follows:
– Author(s) in bold, followed by chapter title: articles (chapters) that have been

received and are published or are being published in this volume.
– Chapter title in italic: chapters that are being written.
– Chapter title in plain text: topics that should be covered but for which no author

has yet been definitely contracted.

Chapters that are included in Volumes 1–6 have a (x; yy pp) after them, where “x”
is the volume number and “yy” is the number of pages.
Compared to the plan that appeared in Volume 1, the section on “Representation

and invariant theory” has been thoroughly revised.
Compared with the outline that appeared in Volume 4, section 4H (Rings and

algebras with additional structure has been split into two parts: 4H: Hopf algebras
and related structures; 4I: Other rings and algebras with additional structure. The old
section 4I (Witt vectors) has been absorbed into the section on Hopf algebras. The
other changes of this current version compared to the one in Volume 4 (2006) are
relatively minor: mostly the addition of a number of topics.

ix
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Compared with the outline in Volume 5, there are only minor changes.
Editorial set-up

Managing editor: Michiel Hazewinkel
Editorial board: M. Artin, M. Nagata, C. Procesi, O. Tausky-Todd†, R.G.
Swan, P.M. Cohn, A. Dress, J. Tits, N.J.A. Sloane, C. Faith, S.I.A’dyan, Y.
Ihara, L. Small, E.Manes, I.G.Macdonald,M.Marcus, L.A. Bokut’, Eliezer
(Louis Halle) Rowen, John S. Wilson, Vlastimil Dlab.

Planned publishing schedule (as of September 2007)
1996: Volume 1 (published)
2001: Volume 2 (published)
2003: Volume 3 (published)
2006: Volume 4 (published)
2007 (last quarter): Volume 5 (published)
2008: (last quarter) Volume 6
Further volumes, roughly, at the rate of one every year.

Contents of the Handbook of Algebra
Section 1: Linear algebra. Fields. Algebraic number theory
Section 2: Category theory. Homological and homotopical algebra
Section 3: Commutative and associative rings and algebras
Section 4: Other algebraic structures. Nonassociative rings and algebras. Com-

mutative and associative rings and algebraswith additional structure.
Section 5: Groups and semigroups
Section 6: Representations and invariant theory
Section 7: Machine computation. Algorithms. Tables
Section 8: Applied algebra
Section 9: History of algebra

More detailed plans for Sections 1–9 follow below.Very little in the way of detailed
plans has been made so far for Sections 7–9.
Experience has shown that often 40–50 pages is a suitable length for a chapter, but

both longer and shorter chapters have already occurred and authors are basically free
in this matter.
It is not the intention that the handbook as a whole will also be a substitute under-

graduate textbook. Basically, the level should be graduate and up, and such material
as can be found in P.M. Cohn’s three-volume textbook “Algebra” (Wiley) can as a
rule be assumed known. A main function of the articles in the handbook is to pro-
vide professional mathematicians working in a different area with a sufficiency of
information on the topic in question if and when he needs it.
In the following, there is a more detailed description of a number of sections

in various volumes, which have more elementary sounding titles. These are partly
intended as quick condensed surveys, establishing basic definitions and notations
among other things but mainly as opportunities to discuss modern developments and
new kinds of applications.



Outline of the series xi

Mostly, each chapter should combine some of the features of a graduate–level
textbook and a research-level survey. Not all the ingredients mentioned below will
be appropriate in each case, but basically the authors should strive to include the
following:

– Introduction (including motivation and historical remarks).
– Outline of the chapter.
– Basic concepts, definitions, and results [these can be accompanied by proofs

or (usually better) ideas/sketches of the proofs if space permits].
– Comments on the relevance of the results, relations to other results, and

applications.
– Review of the relevant literature; possibly complete with the opinions of the

author on recent developments and future directions.
– Extensive bibliography (several hundred items will not be exceptional).

Often, it will be better to present a result in terms of its central core instead of the
widest possible but technically involved generalization; the latter can be mentioned
later, for instance in terms of an appropriate reference.

Section 1. Linear algebra. Fields. Algebraic number theory

A. Linear algebra

G.P. Egorychev, Van der Waerden conjecture and applications (1; 22 pp)
V.L. Girko, Random matrices (1; 52 pp)
Alexander E. Guterman, Matrix invariants over semirings (6; 35 pp)
J.A. Hermida-Alonso, Linear algebra over commutative rings (3; 49 pp)
A.N. Malyshev, Matrix equations. Factorization of matrices (1; 38 pp)
L. Rodman, Matrix functions (1; 38 pp)
Correction to the chapter by L. Rodman, Matrix functions (3; 1 p)
Kazimierz Szymiczek, Quadratic forms (6; 43 pp)
Linear inequalities
Orderings (partial and total) on vectors and matrices
Structured matrices
Matrices over the integers and other (special) rings and fields
Quasideterminants and determinants over noncommutative fields
Nonnegative matrices, positive definite matrices, and doubly nonnegative

matrices
Generalized inverses of matrices
Matrix invariants over noncommutative rings

B. Linear (in)dependence

J.P.S. Kung, Matroids (1; 28 pp)

C. Algebras arising from vector spaces

Clifford algebras
Other algebras arising from vector spaces
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D. Fields, Galois theory, and algebraic number theory

(There is also a chapter planned on ordered fields in Section 4I; see Section
4H for a chapter on Picard–Vessiot theory)

TomaAlbu, From field theoretic to abstract co-Galois theory (5; 81 pp)
J.K. Deveney, J.N. Mordeson, Higher derivation Galois theory of inseparable

field extensions (1; 34 pp)
I. Fesenko,Complete discrete valuation fields.Abelian local class field theories

(1; 48 pp)
M. Jarden, Infinite Galois theory (1; 52 pp)
R. Lidl, H. Niederreiter, Finite fields and their applications (1; 44 pp)
W. Narkiewicz, Global class field theory (1; 30 pp)
H. van Tilborg, Finite fields and error correcting codes (1; 28 pp)
Skew fields and division rings. Brauer group
Topological and valued fields. Valuation theory
Zeta and L-functions of fields and related topics
Structure of Galois modules
Constructive Galois theory
Dessins d’enfants
Hopf–Galois theory

E. Non-Abelian class field theory and the Langlands program

(to be arranged in several chapters by Y. Ihara)

F. Generalizations of fields and related objects

U. Hebisch, H.J. Weinert, Semirings and semifields (1; 38 pp)
G. Pilz, Near rings and near fields (1; 36 pp)

Section 2. Category theory. Homological and homotopical algebra. Methods
from logic

A. Category theory

S. Mac Lane, I. Moerdijk, Topos theory (1; 28 pp)
Ernie Manes, Monads of sets (3; 48 pp)
Martin Markl, Operad and PROPs (5; 54 pp)
Boris I. Plotkin,Algebra, categories, and databases (2; 71 pp)
Peter S. Scott, Some aspects of categories in computer science (2; 71 pp)
Ross Street, Categorical structures (1; 50 pp)
Algebraic structures in braided categories

B. Homological algebra. Cohomology. Cohomological methods in algebra.
Homotopical algebra

Ronald Brown, Crossed complexes and higher homotopy groupoids as
noncommutative tools for higher dimensional local-to-global problems
(6; 32 pp)
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Jon F. Carlson, The cohomology of groups (1; 30 pp)
A. Generalov, Relative homological algebra. Cohomology of categories,

posets, and coalgebras (1; 28 pp)
A. Ya Helemskii, Homology for the algebras of analysis (2; 143 pp)
J.F. Jardine, Homotopy and homotopical algebra (1; 32 pp)
B. Keller, Derived categories and their uses (1; 32 pp)
Volodymyr Lyubashenko, Oleksandr Manchuk, A(\infty)-algebras, -

categories, and -functors (5; 46 pp)
Boris V. Novikov, 0-cohomology of semigroups (5; 23 pp)
Galois cohomology (H. Koch)
Cohomology of commutative and associative algebras
Cohomology of Lie algebras
Cohomology of group schemes

C. Algebraic K-theory

Aderemi Kuku, Classical Algebraic K-theory: the functors K0, K1, K2
(3; 55 pp)
Aderemi Kuku, Algebraic K-theory: the higher K-functors (4; 106 pp)
Grothendieck groups
K2 and symbols
KK-theory and EXT
Hilbert C*-modules
Index theory for elliptic operators over C* algebras
Simplicial algebraic K-theory
Chern character in algebraic K-theory
Noncommutative differential geometry
K-theory of noncommutative rings
Algebraic L-theory
Cyclic cohomology
Asymptotic morphisms and E-theory
Hirzebruch formulae

D. Model theoretic algebra

(see also Paul C. Eklof, Whitehead modules, in Section 3B)
Mike Prest, Model theory for algebra (3; 31 pp)
Mike Prest, Model theory and modules (3; 34 pp)
Frank O. Wagner, Stable groups (2; 36 pp)
Logical properties of fields and applications
Recursive algebras
Logical properties of Boolean algebras
The A-E-K theorem and its relatives

E. Rings up to homotopy. Homotopic algebra

Rings up to homotopy
Simplicial algebras
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Section 3. Commutative and associative rings and algebras

A. Commutative rings and algebras

(See also Carl Faith, Coherent rings and annihilator conditions in matrix and
polynomial rings in Section 3B)

J.P. Lafon, Ideals and modules (1; 24 pp)
Dorin Popescu,Artin approximation (2; 45 pp)
Rafael H. Villareal, Monomial algebras and polyhedral geometry (3; 62 pp)
General theory. Radicals, prime ideals, etc. Local rings (general). Finiteness

and chain conditions
Extensions. Galois theory of rings
Modules with quadratic form
Homological algebra and commutative rings. Ext, Tor, etc. Special pro-

perties (p.i.d., factorial, Gorenstein, Cohen–Macauley, Bezout, Fatou,
Japanese, excellent, Ore, Prüfer, Dedekind, . . . and their interrelations)

Finite commutative rings and algebras (see also the chapter by A.A. Nechaev
in Section 3B)

Localization. Local-global theory
Rings associated to combinatorial and partial order structures (straightening

laws, Hodge algebras, shellability, . . .)
Witt rings of quadratic forms and real spectra

B. Associative rings and algebras

(see also “Freeness theorem for groups, rings, and Lie algebras” in
Section 5A)

Victor Bavula, Filter dimension (4; 28 pp)
Paul M. Cohn, Polynomial and power series rings. Free algebras, firs, and

semifirs (1; 30 pp)
Paul C. Eklof,Whitehead modules (3; 23 pp)
Edgar E. Enochs, Flat covers (3; 21 pp)
Alberto Facchini, The Krull–Schmidt theorem (3; 42 pp)
Carl Faith, Coherent rings and annihilation conditions in matrix and polyno-

mial rings (3; 31 pp)
V.K. Kharchenko, Simple, prime, and semiprime rings (1; 52 pp)
V.K. Kharchenko, Fixed rings and noncommutative invariant theory

(2; 27 pp)
T.Y. Lam, Hamilton’s quaternions (3; 26 pp)
Aleksandr A. Necchaev, Finite rings with applications (5; 108 pp)
Sudarshan K. Sehgal, Group rings and algebras (3; 96 pp).
Askar A. Tuganbaev, Modules with distributive submodule lattice

(2; 25 pp)
Askar A. Tuganbaev, Serial and distributive modules and rings (2; 25 pp)
AskarA. Tuganbaev,Modules with the exchange property and exchange rings
(2; 25 pp)
Askar A. Tuganbaev, Max rings and V-rings (3; 23 pp)
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Askar A. Tuganbaev, Semiregular, weakly regular, and πregular rings
(3; 25 pp)

A. van den Essen,Algebraic microlocalization and modules with regular sin-
gularities over filtered rings (1; 28 pp)

F. Van Oystaeyen, Separable algebras (2; 66 pp)
K. Yamagata, Frobenius rings (1; 48 pp)
Classification of Artinian algebras and rings
General theory of associative rings and algebras
Rings of quotients. Noncommutative localization. Torsion theories
von Neumann regular rings
Lattices of submodules
PI rings
Generalized identities
Endomorphism rings, rings of linear transformations, matrix rings
Homological classification of (noncommutative) rings
Dimension theory
Duality. Morita-duality
Commutants of differential operators
Rings of differential operators
Graded and filtered rings and modules (also commutative)
Goldie’s theorem, Noetherian rings, and related rings
Sheaves in ring theory
Koszul algebras
Hamiltonian algebras
Algebraic asymptotics
Antiautomorphisms, especially for simple central algebras

C. Coalgebras

(See also the chapter by Tomasz Brzezinski in Section 4H)
W. Michaelis, Coassociative coalgebras (3; 120 pp)
Co-Lie-algebras

D. Deformation theory of rings and algebras (including Lie algebras)

Yu Khakimdzanov, Varieties of Lie algebras (2; 35 pp)
Deformation theory of rings and algebras (general)
Deformation theoretic quantization

Section 4. Other algebraic structures. Nonassociative rings and algebras.
Commutative and associative algebras with extra structure

A. Lattices and partially ordered sets

David Kruml, Jan Paseka, Algebraic and categorical aspects of quantales
(5; 43 pp)

Ales Pultr, Frames (3; 63 pp)
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B. Boolean algebras
C. Universal algebra and general algebraic concepts and constructions

Universal algebra (general)
Radicals

D. Varieties of algebras, groups . . .

(See also Yu Khakimdzanov, Varieties of Lie algebras in Section 3D)
V.A. Artamonov, Varieties of algebras (2; 30 pp)
V.A. Artamonov, Quasi-varieties (3; 19 pp)
Varieties of groups
Varieties of semigroups

E. Lie algebras
(See also “Freeness theorems for groups, rings, andLie algebras” in Section 5A)
Yu A. Bahturin, M.V. Zaitsev, A.A. Mikhailov, Infinite-dimensional Lie

superalgebras (2; 30 pp)
MichelGoze,YusupdjanKhakimdjanov,Nilpotent and solvable Lie algebras

(2; 51 pp)
A.T. Molev, Gel’fand–Tsetlin bases (4; 69 pp). Could also have been placed in

Section 6D.
Christophe Reutenauer, Free Lie algebras (3; 21 pp)
General structure theory
Classification theory of semisimple Lie algebras over R and C
The exceptional Lie algebras
Universal enveloping algebras
Modular (ss) Lie algebras (including classification)
Infinite dimensional Lie algebras (general)
Kac–Moody Lie algebras
Finitary Lie algebras
Standard bases
Affine Lie algebras and Lie super algebras and their representations
Kostka polynomials

F. Jordan algebras (finite and infinite dimensional and including their cohomology
theory)
G. Other nonassociative algebras (Malcev, alternative, Lie admissible . . .)

Mal’tsev algebras
Alternative algebras

H. Hopf algebras and related structure

(see also “Hopf–Galois theory” in Section 1D)
(see also “Co-Galois theory” in Section 1D)
(see also “Algebraic structures on braided categories” in Section 2A)
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(see also “Representation theory of semisimple Hopf algebras” in Section 6D)
Katsutoshi Amano, Akaira Masuoka, Mitsuhiro Takeuchi, Hopf algebraic

approach to Picard–Vessiot theory (6; 50 pp)
Gabriella Böhm, Hopf algebroids (6; 44 pp)
Tomasz Brzeziński, Comodules and corings (6; 72 pp)
Mia Cohen a.o., Hopf algebras (general) (4; 87 pp)
Michiel Hazewinkel,Witt vectors. Part 1 (6; 148 pp)
Jae-Hoon Kwon, Crystal graphs and the combinatorics of Young tableaux (6;

32 pp)
Dominiue Manchon, Hopf algebras in renormalization (5; 67 pp)
Akira Masuoka, Classification of semisimple Hopf algebras (5; 29 pp)
A.I. Molev,Yangians and their applications (3; 54 pp)
Frédéric Patras, Lambda-rings (3; 34 pp)
Classification of pointed Hopf algebras
Quantum groups (general)
Formal groups
p-divisible groups
Combinatorial Hopf algebras
Symmetric functions
Special functions and q-special functions, 1–2 variable case
Quantum groups and multiparameter q-special functions
Noncommutative geometry à la Connes
Noncommutative geometry from the algebraic point of view
Noncommutative geometry, categorical point of view
Solomon descent algebras
Hopf algebras and operads
Noncommutative symmetric functions and quasisymmetric functions
Witt vectors. Part 2
Trees, dendriform algebras, and dialgebras
Quantum differential geometry, quantum calculus, quantum group approach to
noncommutative geometry
Connes–Baum theory

I. Other rings and algebras with additional structure

Alexander Levin, Difference algebra (4; 100 pp)
Graded and super algebras (commutative, associative; for Lie superalgebras,

see Section 4E)
Topological rings
Ordered and lattice-ordered rings and algebras.
Rings and algebras with involution. C*-algebras
Differential algebra
Baxter algebras
Ordered fields
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Hypergroups
Stratified algebras

Section 5. Groups and semigroups

A. Groups

(see also “Groups and semigroups of automata transformations” in Section 5B)
Laurent Bartholdi, Rostislav I. Grigorchuk, Zoran Sunik, Branch groups

(3; 129 pp)
Meinolf Geck, Gunter Malle, Reflection groups. Coxeter groups (4; 38 pp)
A.V. Mikhalev, A.P. Mishina, InfiniteAbelian groups: methods and results (2;

48 pp)
V.I. Senashov, Groups with finiteness conditions (4; 27 pp)
M.C. Tamburini. E.V. semirnov, Hurwitz groups and Hurwitz generation (4;

28 pp)
V.V. Vershinin, Braid groups (4; 22 pp)
Simple groups, sporadic groups
Representations of the finite simple groups
Diagram methods in group theory (Presentations of groups)
Abstract (finite) groups. Structure theory. Special subgroups. Extensions and
decompositions
Solvable (soluble) groups, nilpotent groups, p-groups. Fitting classes, Schunck
classes. Thompson’s list of minimal nonsolvable groups to be included
Infinite soluble groups
Word and conjugacy problems
Burnside problem
Combinatorial group theory
Distance transitive graphs and their groups
Free groups (including actions on trees)
Formations
Infinite groups. Local properties
The infinite dimensional classical groups
Infinite simple groups
Algebraic groups. The classical groups. Chevalley groups
Chevalley groups over rings
Other groups of matrices. Discrete subgroups
Groups with BN-pair, Tits buildings . . .
Groups and (finite combinatorial) geometry
“Additive” group theory
Probabilistic techniques and results in group theory
Self-similar groups
Frobenius group
Just-infinite groups
Automorphism groups of groups
Automorphism groups of algebras and rings
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Freeness theorems (in groups and rings and Lie algebras)
Groups with perscribed systems of subgroups
Automatic groups
Groups withminimality andmaximality conditions (School of N.S. Chernikov)
Lattice-ordered groups
Linearly and totally ordered groups
Finitary groups
Random groups
Hyperbolic groups
Infinite dimensional groups

B. Semigroups

(See also the chapter by Boris Novikov in Section 2B)
Semigroup theory. Ideals, radicals, structure theory
Semigroups and automata theory and linguistics
Groups and semigroups of automata transformations

C. Algebraic formal language theory. Combinatorics of words
D. Loops, quasigroups, heaps. . .

Quasigroups in combinatorics

E. Combinatorial group theory and topology

(See also: “Diagram methods in group theory” in Section 5A)

Section 6. Representation and invariant theory

A. Representation theory. General

Representation theory of rings, groups, algebras (general)
Modular representation theory (general)
Representations of Lie groups and Lie algebras. General
Multiplicity free representations

B. Representation theory of finite and discrete groups and algebras

Representation theory of finite groups in characteristic zero
Modular representation theory of finite groups. Blocks
Representation theory of the symmetric groups (both in characteristic zero and

modular)
Representation theory of the finite Chevalley groups (both in characteristic zero

and modular)
Modular representation theory of Lie algebras

C. Representation theory of “continuous groups” (linear algebraic groups, Lie
groups, loop groups. . .) and the corresponding algebras
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(see also Gel’fand–Tsetlin bases for classical Lie algebras in Section 4E byA.I.
Molev)

A.U. Klimyk, Infinite dimensional representations of quantum algebras (2;
26 pp)

Representation theory of compact topolgical groups
Representation theory of locally compact topological groups
Representation theory of SL2(R). . .
Representation theory of the classical groups. Classical invariant theory
Classical and transcendental invariant theory
Reductive groups and their representation theory
Unitary representation theory of Lie groups
Finite dimensional representation theory of the ss Lie algebras (in characteristic

zero); structure theory of semisimple Lie algebras
Infinite dimensional representation theory of ss Lie algebras. Verma

modules
Representation of Lie algebras. Analytic methods
Representations of solvable and nilpotent Lie algebras. The Kirillov orbit
method
Orbit method, Dixmier map. . . for ss Lie algebras
Representation theory of the exceptional Lie groups and Lie algebras
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1. Introduction

In the last decades, matrices with entries from various semirings have attracted atten-
tion of many researchers working in both theoretical and applied mathematics. The
concept of a semiring is defined as follows:

Definition 1.1. A semiring is a set S with two binary operations, addition and
multiplication, such that

• S is an Abelian monoid under addition (identity denoted by 0);
• S is a semigroup under multiplication (identity, if any, denoted by 1);
• multiplication is distributive over addition on both sides;
• s0 = 0s = 0 for all s ∈ S.

In this chapter, we always assume that there is a multiplicative identity 1 in S, which
is different from 0.

Briefly, a semiring differs froma ring by the fact that not every element is required to
have the additive inverse. The most common examples of semirings that are not rings
are the non-negative integersZ+, the non-negative rationalsQ+, and the non-negative
reals R+, with the usual addition and multiplication. There are classical examples of
non-numerical semirings as well. Probably, the first such example appeared in the
work of Dedekind [1] in connection with the algebra of ideals of a commutative
ring (one can add and multiply ideals, but it is not possible to subtract them). Later,
Vandiver [2] put forward the concept of semirings as the best algebraic structure,which
includes both rings and bounded distributive lattices. Other important examples of
semirings are Boolean algebras, max-algebras, tropical semirings, and fuzzy scalars.
See the monographs [3–5] for more details.
It should be noted that the majority of examples of semirings arise in various

applications of algebra. Among them, there are automata theory [6, 7], optimiza-
tion theory [8, 9], combinatorial optimization [10–12], optimal control [13, 14],
discrete event systems [15], operations research [13], ergodic control [16,17], math-
ematical economics [16], assignment problem [11, 18], graph theory [11, 19], and
algebraic geometry [20–22]. For a detailed index of applications, one may consult
[4, pp. 355–356].

Definition 1.2. A semiring S is called commutative if the multiplication in S is
commutative.

Definition 1.3. A semiring S is called antinegative (or zero-sum-free) if a+ b = 0
implies that a = b = 0.
This means that the zero element is the only element with an additive inverse.

Definition 1.4. We say that a semiring S has no zero divisors if from ab = 0
in S it follows that a = 0 or b = 0 (or both).
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Definition 1.5. A semiring S is called Boolean if S is isomorphic to a suitable set
of subsets of a given setM, the sum of two subsets being their union, and the product
being their intersection. The zero element is the empty set and the identity element is
the whole setM.

It is straightforward to see that Boolean semirings are commutative and antineg-
ative. If a Boolean semiring S consists of only two subsets of M: the empty subset
andM, then it is called a binary Boolean semiring (or {0, 1}-semiring) and is denoted
by B. Note that the binary Boolean semiring does not have zero divisors.

Definition 1.6. A semiring is called a chain semiring if the set S is totally ordered
with universal lower and upper bounds, and the operations are defined by a + b =
max{a, b} and a · b = min{a, b}.

It is straightforward to see that any chain semiring S is a Boolean semiring on a set
of appropriate subsets of S. Namely, let us consider the setM of all elements in S.We
choose all those subsets ofM that consist of all elements of S, which are strictly lower
than a given element. Chain semirings are examples of Boolean semirings without
zero divisors.

Definition 1.7. A semiring is called a max-algebra if the set S is an ordered group
with a multiplication ∗ and an order relation ≤, and operations in S are defined as
follows: a+ b = max{a, b}, a · b = a ∗ b, for any a, b ∈ S.

The most common example of max-algebras is Rmax := (R ∪ {−∞},≤,+).
In a similar way, min-algebras can be defined, with the only difference being

a+ b = min{a, b}. These algebras are sometimes called tropical algebras.

2. Matrices and determinants

Let Mm,n(S) denote the set of m × n matrices with entries from the semiring S,
Mn(S) = Mn,n(S). Under the natural (and usual) definitions of matrix addition
and multiplication, Mn(S) is obviously a semiring. Matrix theory over semirings
has been an object of intensive study during the last decades; see for example the
monographs [3, 23] and references therein. For more recent results on this subject,
see [20, 24–30].
The matrix In is the n × n identity matrix, Jm,n is the m × n matrix with all

elements equal to 1, andOm,n is them× n zero matrix. We omit the subscripts when
the order is obvious from the context and we write I, J , and O. The matrix Ei,j

denotes the matrix with 1 at the (i, j)th position and zeros elsewhere, Ci =
m∑
j=1

Ei,j

is the ith column matrix, and Rj =
n∑
i=1
Ei,j is the jth row matrix. For A ∈Mm,n(S)
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and B ∈ Mm,k(S), we denote by (A|B) ∈ Mm,n+k(S) the matrix whose rows are
obtained by the union of columns of A and B.
The development of linear algebra over semirings certainly requires an analog of

the determinant function (see [4]). However, it turns out that even over commutative
semirings without zero divisors, the classical determinant cannot be defined as over
fields and commutative rings. The main problem lies in the fact that, in semirings that
are not rings not all elements possess an additive inverse.Anatural replacement of the
determinant function for matrices over commutative semirings is the bideterminant
known since 1972 (see [31] and also [4, 32–34]). The bideterminant is useful for the
solution of various pure algebraic problems (see [34]). The bideterminant is important
for applications aswell, for example, to solve systemsof linear equations (see [32,35]),
and in connections with graph theory (see [31]). For example, in [36], on the basis
of the properties of max-algebraic determinants, it is shown that, the problem of the
verification if a matrix is sign-nonsingular is polynomially equivalent to the problem
of deciding whether the digraph of the corresponding matrix contains a cycle of
even length. See also monographs [4, 5, 35] for more detailed and self-contained
information.

Definition 2.1. [4, Chapter 19] The bideterminant of amatrixA = [ai,j] ∈Mn(S)
is the pair (‖A‖+, ‖A‖−), where

‖A‖+ =
∑
σ∈An

a1,σ(1) · · · an,σ(n), ‖A‖− =
∑

σ∈Sn\An
a1,σ(1) · · · an,σ(n).

Here, Sn denotes the symmetric group on the set {1, . . . , n} and An denotes its sub-
group of even permutations.

It is known that the bideterminant function possesses some natural prop-
erties. Namely, it is invariant under transposition, and for any scalar α∈S,
(‖αA‖+, ‖αA‖−)= (αn‖A‖+, αn‖A‖−). However, some basic properties of the
determinant are no longer true for the bideterminant. For example, if A is invert-
ible, then ‖A‖+ �= ‖A‖−, but the converse is not always true.

Example 2.2. [32] Let us consider A = E1,1 + 2E1,2 + 3E2,1 + 4E2,2 ∈ M2(S),
where S = (Q+,max, · ), i.e. the set of non-negative rationals with the standard
multiplication and the addition defined by a + b = max{a, b}. Then (‖A‖+, ‖A‖−)
= (4, 6) but A is not invertible.

The bideterminant is not multiplicative in general. However, the following weaker
version of this property is true.

Proposition 2.3. [30] The following equality holds for all A,B ∈Mn(S)

‖AB‖+ + ‖A‖+‖B‖− + ‖A‖−‖B‖+ = ‖AB‖− + ‖A‖+‖B‖+ + ‖A‖−‖B‖−,
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and, more generally, for A1, . . . , As ∈Mn(S), it holds that

‖A1, A2 · · ·As‖+ +
∑

t1,...,ts=±
t1···ts=−

‖A1‖t1‖A2‖t2 · · · ‖As‖ts

= ‖A1A2 · · ·As‖− +
∑

t1,...,ts=±
t1··· ts=+

‖A1‖t1‖A2‖t2 · · · ‖As‖ts

It also appears that the following function can be used instead of the determinant
for matrices over semirings.

Definition 2.4. The permanent of a matrix A = [ai,j] ∈Mn(S) is

per (A) =
∑
σ∈Sn

a1,σ(1) · · · an,σ(n).

Also, if S is a subsemiring of a certain commutative ringR, then for A ∈Mn(S),
the determinant det(A)= ∑

σ∈Sn
(−1)σa1,σ(1) · · · an,σ(n)=‖A‖+ − ‖A‖− is well

defined inR.

In the following, we will concentrate on the recognition of different matrix prop-
erties via the determinant function.

2.1. Singularity and determinant

LetR be an associative ring. Amatrix, A ∈Mm,n(R), with entries fromR is called
right singular if there exists a nonzero element x ∈ Rn such that Ax = 0, and A is
called left singular if there exists a nonzero element y ∈ Rm such that ytA = 0.
It is proved in [37, Theorem 9.1] that both these definitions coincide for matrices

over commutative rings and for square matrices are equivalent to the statement that
detA is a zero divisor in R, where detA is the usual determinant of a square matrix
over a commutative ring.
The notion of singularity for matrices over semirings can be defined in a

similar way:

Definition 2.5. A matrix A∈Mm,n(S) is S-right singular if Ax= 0 for some
nonzero x ∈ Sn.

Definition 2.6. A matrix A∈Mm,n(S) is S-left singular if xtA= 0t for some
nonzero x ∈ Sm.
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Definition 2.7. A matrix A ∈ Mm,n(S) is S-singular if A is either S-left singular
or S-right singular.

The next example shows that even over antinegative commutative semirings with-
out zero divisors, there exist matrices that are S-left singular and are not S-right
singular or vice versa.

Example 2.8. [24] Let A =
[
0 0
1 1

]
, B =

[
1 0
1 0

]
∈ M2(Z+). We have that

Ax = 0 forces x = 0 since Z+ is an antinegative semiring, but [1, 0]A = [0, 0].
Similarly xtB = 0 forces x = 0 while B[0, 1]t = [0, 0]t .

Definition 2.9. A matrix A ∈ Mm,n(S) is S-nonsingular if A is neither S-left
singular nor S-right singular.

Lemma 2.10. [24, Lemma 3.8] Let S be an antinegative semiring. Then the following
conditions are equivalent for any matrix A ∈Mm,n(S):
1. A is S-singular.
2. A has a zero row or a zero column.

Note that if S is commutative and A is an S-singular square matrix, then
(‖A‖+, ‖A‖−) = (0, 0). However, the following example shows that there are
S-nonsingular matrices with bideterminant equal to (0, 0).

Example 2.11. [24] Over any commutative antinegative semiring,

∥∥∥∥∥∥∥
0 0 1

1 1 0

0 0 1

∥∥∥∥∥∥∥
+

= 0 =

∥∥∥∥∥∥∥
0 0 1

1 1 0

0 0 1

∥∥∥∥∥∥∥
−

.

However, if the semiring S is also a subsemiring of an associative ringR without
zero divisors, we can consider the following notion of singularity as well.

Definition 2.12. We say that a matrix A ∈Mm,n(S) isR-right singular if Ax = 0
for some nonzero x ∈ Rn.

Definition 2.13. We say that a matrix A ∈ Mm,n(S) isR-left singular if xtA = 0
for some nonzero x ∈ Rm.

It is straightforward to see that if a semiring S is a subsemiring of a certain
ring R, then R-right (left) singularity follows from S-right (left) singularity. How-
ever, the following example shows that there are S-nonsingular matrices, which are
R-singular.
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Example 2.14. For any n, the matrix Jn=
n∑

i,j=1
Ei,j ∈Mn(Z+) is Z-left singular

and Z-right singular but Z+-nonsingular.

Definition 2.15. We say that a matrix A ∈ Mm,n(S) is R-singular if A is R-left
singular orR-right singular.

Definition 2.16. Amatrix A ∈Mm,n(S) isR-nonsingular if A is notR-singular.

Note that similarly to the situation over fields, all nonsquare matrices are
R-singular.
Assume in addition that R is commutative. Then det(A) ∈ R is well defined and

the following analog of [37, Theorem 9.1] can be obtained.

Lemma 2.17. [24, Lemma 5.3] If R is an associative commutative ring then for a
matrix A ∈Mn(S) the following conditions are equivalent:
1. A isR-right singular;
2. A isR-left singular;
3. detA = 0.

Definition 2.18. An element g from a certain multiplicative system G with identity
element 1G is invertible (resp., left invertible, right invertible) if there is an element
f ∈ G such that fg = gf = 1G (resp., fg = 1G , gf = 1G).

Definition 2.19. A matrix A ∈ Mn(S) is called monomial if it has exactly one
nonzero element in each row and column.

It follows from [38] that a matrix over an antinegative semiring is invertible
(resp., left invertible, right invertible) if and only if it is a monomial matrix
such that all its nonzero elements are invertible (resp., left invertible, right
invertible).

For matrices over max-algebras, the following notion of singularity is often in use
(see [28] for the details).

Definition 2.20. Let S be a max-algebra (operations are denoted by max and +).
A matrix A = [aij] ∈ Mn(S) is said to be tropically singular if the maximum in the
expression for the permanent

per (A) = max
σ∈Sn

{a1σ(1) + · · · + anσ(n)}

is achieved at least twice.

This can be generalized to the case of an arbitrary antinegative semiring S in the
following way.



10 A. E. Guterman

Definition 2.21. A matrix A = [aij] ∈ Mn(S) is said to be tropically singular if
there exists a subset T ∈ Sn such that∑

σ∈T
a1σ(1) · · · anσ(n) =

∑
σ∈Sn\T

a1σ(1) · · · anσ(n).

We use these concepts in Section 4.1 to deal with the notion of rank.

3. Semimodules: bases and dimension

Semimodules over semiring are analogs of vector spaces over fields and modules
over rings. These are discussed more precisely in the following.

Definition 3.1. Given a semiring S, we define a left semimodule, U, over S to be
an abelian monoid with identity element, 0 ∈ U. In addition, U is equipped with a
function,

S × U → U

(s, u) → su,

called scalar multiplication such that for all u and v in U and r, s ∈ S we have
1. (sr)u = s(ru),
2. (s+ r)u = su+ ru,
3. s(u+ v) = su+ sv,
4. 1u = u,
5. s0 = 0 = 0u.

In a similar way, a right semimodule can be defined.

In particular, under the natural definitions of matrix addition and multiplication
with scalars,Mm,n(S) is obviously a semimodule over S.

Definition 3.2. An element u in a semimodule U is called a left (resp., right)
linear combination of elements from a certain subset P ⊆ U if there exists k ∈ N,

s1, . . . , sk ∈ S, u1, . . . ,uk ∈ P such that u =
k∑
i=1
siui

(
resp., u =

k∑
i=1

uisi

)
. In this

case,
k∑
i=1
siui

(
k∑
i=1

uisi

)
is called a left (right) linear combination of the elements

u1, . . . ,uk from P with coefficients s1, . . . , sk from S.

Definition 3.3. A left (right) linear span, 〈P〉S , of the set P is the set of all left
(right) linear combinations of elements from P with coefficients from S. We say that
the set P generates a subset V ⊆ U if V ⊆ 〈P〉S . Note that by definition, all linear
combinations, we consider, are finite and nonempty. We will not specially point out
the semiring of the coefficients if it will be clear from the context.
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As over fields and rings, we denote the linear span of the set

{[1, 0, . . . , 0]t , [0, 1, 0, . . . , 0]t , . . . , [0, . . . , 0, 1]t}
by Sn; here, At denotes the transposed matrix to the matrix A.
Note that, in contrast with vector spaces over fields, there are several ways to define

a notion of independence for semimodules. For example, in [27,37,39], the following
definition is used.

Definition 3.4. A set of elements, P , from a semimodule U over a semiring S is
called left (right) linearly independent if there is no element inP that can be expressed
as a left (right) linear combination of the other elements of P with the coefficients
from S. The set P is called linearly dependent if it is not linearly independent.

However, in [16, 19, 32], the following definition is used.

Definition 3.5. A system of elements, u1, . . . ,uk, in a semimodule U is left (resp.,
right) linearly dependent in the Gondran–Minoux sense if there exist two subsets
I, J ⊆ K := {1, . . . , k}, I ∩ J = ∅, I ∪ J = K, and scalars α1, . . . , αk ∈ S, not all
equal to 0, such that

∑
i∈I
αiui = ∑

j∈J
αjuj

(
resp.,

∑
i∈I

uiαi = ∑
j∈J

ujαj
)
.

Remark 3.6. For any semiring, this definition is stronger than the first one. Namely,
any system of elements, which is independent in the sense of Definition 3.5, is evi-
dently independent in the sense of Definition 3.4, but the converse is not true as the
following example shows.

Example 3.7. It is shown in [40, Lemma 3.11] that the system⎧⎨
⎩u1 =

⎛
⎝ 1
0
0

⎞
⎠ , u2 =

⎛
⎝ 0
1
0

⎞
⎠ , u3 =

⎛
⎝ 1
0
1

⎞
⎠ , u4 =

⎛
⎝ 0
1
1

⎞
⎠
⎫⎬
⎭

is linearly independent in the sense of Definition 3.4 over any antinegative semiring.
However, u1 + u4 = u2 + u3, that is, this system is linearly dependent in the sense
of Definition 3.5.

In [41], the following definition of linear dependence is introduced:

Definition 3.8. A system of elements, u1, . . . ,uk, ui = [u1i , . . . , uni ]t , i = 1, . . . , k,
in a semimodule U is left (resp., right) linearly dependent in the sense of Izhakian if
there exist two series of subsets Il, Jl ⊆ K := {1, . . . , k}, Il ∩ Jl = ∅, Il ∪ Jl = K,
l = 1, . . . , n, and scalars α1, . . . , αk ∈ R, not all equal to 0, such that

∑
i∈Il

αiu
l
i =

∑
j∈Jl

αju
l
j

(
resp.,

∑
i∈Il

uliαi =
∑
j∈Jl

uljαj

)
for all l, 1 ≤ l ≤ n. A system is called

linearly independent if it is not linearly dependent.
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Remark 3.9. Definition 3.8 is stronger than Definition 3.5. Namely, it is straightfor-
ward to see that a system of elements, which is independent in the sense of Defini-
tion 3.8, is also independent in the sense of Definition 3.5; however, the converse is
not always true as it is shown by the following example.

Example 3.10. LetS be an arbitrary antinegative semiring. Let us consider the system
of vectors [0, 1, 1]t , [1, 0, 1]t , [1, 1, 0]t with the entries in S. By the antinegativity, it
is easy to see that these vectors are linearly independent in the sense of Definitions 3.4
and 3.5. However, taking I1 = {1, 2}, J1 = {3}, I2 = {1, 2}, J2 = {3}, I3 = {1},
J3 = {2, 3}, and the coefficients (1, 1, 1), we see that these vectors are linearly
dependent in the sense of Definition 3.8.

As in the case of vector spaces over fields, we can introduce the following
definition.

Definition 3.11. A collection, B, of elements is called a left (right) basis of the
semimoduleM if these elements are left (right) linearly independent in the sense of
Definition 3.4 and their left (right) linear span isM.

Remark 3.12. It may seem that we can have three different definitions of basis
if we use here Definition 3.5 or Definition 3.8 instead of Definition 3.4. How-
ever, it appears that this is not the case. Namely, in the following, we show that
any finitely generated module has a basis in the sense of Definition 3.11, but the
same fact does not hold if we consider Definition 3.5 or Definition 3.8 instead
of Definition 3.4 (see Remark 3.14). Moreover, it is easy to see that if we con-
sider similar definitions of basis using the notion of independence from Defini-
tion 3.5 or 3.8, then any B, which is a basis in this sense, is a basis in the sense of
Definition 3.11.

In the following we will consider left linear independence and left basis without
pointing this out anymore. However, all those considerations are valid for right linear
independence and right basis as well.

Lemma 3.13. Let S be a semiring and U be a finitely generated semimodule over S.
Then for the notion of linear dependence introduced in Definition 3.4, there exists a
basis of U.

Proof. LetM be a certain finite generating set for U. IfM is linearly independent
in the sense of Definition 3.4, then we are done.Assume thatM is linearly dependent.
Then there exist m ∈ M, m1, . . . ,mk ∈ M, mi �= m for i = 1, . . . , k, and s1, . . . ,
sk ∈ S such that m =

k∑
i=1
simi. It follows that M1 = M \ {m} is a generating set

for U also. Continuing this process, we complete the proof. �
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Remark 3.14. Let us show that there are spaces without a basis if we consider linear
independence in the sense of Definition 3.5 or Definition 3.8. We consider the linear
span U4 of the system of vectors⎧⎨

⎩u1 =
⎛
⎝ 1
0
0

⎞
⎠, u2 =

⎛
⎝ 0
1
0

⎞
⎠, u3 =

⎛
⎝ 1
0
1

⎞
⎠, u4 =

⎛
⎝ 0
1
1

⎞
⎠
⎫⎬
⎭

(the same vectors as in Example 3.7). Assume that there is a basis in this space
in the sense of Definition 3.5. Thus, it is a basis in the sense of Definition 3.4 by
Remark 3.6. However, it is proved in [40, Lemma 3.11] that any basis of U4 contains
u1, u2, u3, and u4, which are linearly dependent in the sense of Definition 3.5. The
same considerations hold for linear dependence in the sense of Definition 3.8.

In [27], it is proved that if S is a max-algebra,U is a finitely generated semimodule
over S, then any basis of U in the sense of Definition 3.4 has the same number of
elements. The following example shows that this does not hold for more general
classes of semirings, even under the condition of antinegativity.

Example 3.15. LetS = Z[√7]+ be the set of non-negative reals of the form a+b
√
7,

where a, b ∈ Z. We consider the semimodule U over S, which is generated by the
elements {3−√7, √7− 2}. The set {3−√7, √7− 2} is a basis for U in the sense
of Definition 3.4, which consists of two elements, but 1 = (

3−√7)+ (√7− 2) also
generates U over S. Thus, {1} is a basis consisting of one element.

In view of these examples, we give the following definition.

Definition 3.16. LetU be a semimodule over a certain semiring S. The (left) dimen-
sion, dim(U), is the minimal number of elements in any (left) basis of U.

By Lemma 3.13, any finitely generated semimodule has finite dimension. However,
the following example shows that even a three-dimensional semimodule may have
an infinite-dimensional subsemimodule.

Example 3.17. It is shown in [27] that in the sense of Definition 3.4, the vectors⎡
⎣ xi

0
−xi

⎤
⎦ ∈ R3max, i = 1, 2, . . . , m, are linearly independent for any m for differ-

ent xi.

Thus, in some cases, it is more informative to consider the maximal number of
linear independent vectors in the system than to consider its dimension. From this
point of view, all three definitions, Definitions 3.4, 3.5, and 3.8, work. It is easy to see
that if S is a subsemiring of a certain field, then any n+ 1 vectors in Sn are linearly
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dependent in the sense of Definition 3.5. Also, it is proved in [42] that any n + 1
vectors in Rnmax are linearly dependent in the sense of Definition 3.5. Hence, in both
cases, they are dependent in the sense of Definition 3.8. In particular, a situation as
in Example 3.17 cannot appear in these cases.

4. Rank functions

Definition 4.1. We say that a matrix, A, dominates a matrix, B, A ≥ B, if and only
if bi,j �= 0 implies that ai,j �= 0.

Definition 4.2. If A = [ai,j], B = [bi,j] ∈ Mm,n(S), A ≥ B, we denote by A\B
the matrix C = [ci,j] ∈Mm,n(S) such that

ci,j =
{

0 if bi,j �= 0
ai,j otherwise

.

Many authors have investigated various rank functions for matrices over semirings
and their properties [40, 44–53].
It is known that over a field, the concept of a matrix rank has a geometrical interpre-

tation as the dimension of the image space of the corresponding linear transformation.
Over semirings, the situation is more involved, namely, this geometric approach leads
to some surprising properties of the corresponding rank function. For example, it can
appear that the rank of a submatrix is greater than the rank of a matrix. The rea-
son is that the dimension of a certain subsemimodule may exceed in general the
dimension of the whole semimodule, cf. Example 3.17 for matrices with entries from
a max-algebra and Example 3.7. For completeness, we give it here again in more
details:

Example 4.3. [40] Let S be an arbitrary antinegative semiring without zero divisors.
Consider the semimodule U4 over S generated by the vectors a1 = [0, 1, 0]t , a2=
[0, 0, 1]t , a3=[1, 0, 1]t , and a4=[1, 1, 0]t from Example 3.7. Then dim U4 = 4,
however, U4 is a proper subsemimodule of the three-dimensional S-semimodule S3.

Indeed, it is easy to see that none of these vectors is a linear combination of the oth-
ers. The reason whyU4 has no basis of less than four elements is that [1, 0, 0]t cannot
be expressed as a linear combination of vectors fromU4 due to the antinegativity (see
also [40, Lemma 3.11] for the detailed proof).
Based on Example 4.3, we may easily construct the following matrix example:

Example 4.4. Let S be any antinegative semiring without zero divisors; we consider
the matrix

Y =
⎡
⎣ 1 0 0 1 1
0 1 0 0 1
0 0 1 1 0

⎤
⎦
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and its proper submatrix

X =
⎡
⎣ 0 0 1 1
1 0 0 1
0 1 1 0

⎤
⎦.

The image of the linear operator corresponding to Y is the whole space S3; so its
dimension is three, however, the dimension of the image of the linear operator corre-
sponding to X is equal to 4 by Example 4.3.

In the following, we collect different definitions of a matrix rank over semirings.
Each of them has some advantages and disadvantages in comparison with the usual
rank function over a field. However, all these functions are vital to solve some prob-
lems arising in the theory of matrices over semirings and their applications.

4.1. Definitions

We start with one of the most important semiring rank functions.

Definition 4.5. A matrix A∈Mm,n(S) is of factor rank k (f (A)=k) if there exist
matrices B∈Mm,k(S) and C∈Mk,n(S)withA = BC, and k is the smallest positive
integer for which such a factorization exists. By definition, the only matrix with the
factor rank zero is the zero matrix, O.

Let us note (see [45, 54] for the proof) that the factor rank of A is equal to the
minimum number of factor rank-1 matrices whose sum is A. For any submatrix B of
A, it holds that f (B) ≤ f (A) [49].
The notion of factor rank is very important in different applications. It was used

in [55] for demographical investigations, in [56] for combinatorial optimization prob-
lems, and in [54] for statistics.

If S is a subsemiring of a certain field, then there is the usual rank function ρ(A)
for any matrix A ∈Mm,n(S).

The geometric approach leads to the following definitions based on the notion of
linear independence.

Definition 4.6. The matrix A∈Mm,n(S) is of row rank k (r(A) = k) if the dimen-
sion of the linear span of the rows of A is equal to k.

Definition 4.7. The matrix A ∈ Mm,n(S) is of column rank k (c(A) = k) if the
dimension of the linear span of the columns of A is equal to k.

It is proved in [49] that r(B) ≤ r(A) if B is obtained by deleting some columns
of A and c(B) ≤ c(A) if B is obtained by deleting some rows of A. However, as
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Example 4.4 shows, in general, the rank of a submatrix can be greater than the rank
of a matrix.
The following example shows that all aforesaid functions may differ for matrices

over semirings.

Example 4.8. [39] Let

A =

⎡
⎢⎢⎢⎢⎣
2 3 0 0 0 1
0 0 2 2 2 2
0 0 2 4 0 2
0 0 2 0 4 2
2 3 1 0 2 2

⎤
⎥⎥⎥⎥⎦ ∈M5,6(Z+).

Then ρ(A) = 3, f (A) = 4, r(A) = 5, c(A) = 6.
Since a basis of the linear span of a system of elements may not lie in this system

(Examples 5.3 and 5.4 below), we consider also the following definitions of row and
column ranks.

Definition 4.9. The matrix A∈Mm,n(S) is said to be of spanning row rank k
(sr(A) = k) if the minimal number of rows that span all rows of A is k.

Definition 4.10. The matrix A ∈ Mm,n(S) is said to be of spanning column rank
k (sc(A) = k) if the minimal number of columns that span all columns of A is k.
The following definitions depend on Definitions 3.4, 3.5, or 3.8 of linear indepen-

dence, correspondingly.

Definition 4.11. The matrix A ∈ Mm,n(S) is said to be of maximal row rank k
(mr1(A) = k, mr2(A) = k, or mr3(A) = k) if it has k linearly independent rows, in
the sense of Definitions 3.4, 3.5, or 3.8, respectively, and any (k+1) rows are linearly
dependent.

Definition 4.12. The matrix A∈Mm,n(S) is said to be of maximal column rank k
(mci(A) = k, i = 1, 2, 3) if it has k linearly independent columns and any (k + 1)
columns are linearly dependent with respect to Definitions 3.4, 3.5, or 3.8.

Also to avoid the obstruction of Example 4.4, wemay use the following definitions:

Definition 4.13. The matrix A∈Mm,n(S) is said to be of enveloping row rank k
(er(A) = k) if the minimal dimension of any semimodule containing all rows of A is
equal to k.

Definition 4.14. The matrix A∈Mm,n(S) is said to be of enveloping column rank
k (ec(A) = k) if the minimal dimension of any semimodule containing all columns
of A is equal to k.
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It will be shown later (see Proposition 5.1) that actually er(A) = ec(A) = f (A) for
matrices over arbitrary semirings; r(A) = mr1(A) = sr(A) [resp., c(A) = mc1(A) =
sc(A)] if S is a max-algebra [27].
Let us recall that formatrices over fields, all notions introduced earlier give the same

concept; however, they can be different for matrices over semirings. In the following
sections, we provide some examples illustrating these difference and investigate how
these functions are related to each other.

The definition of rank over fields based on the notion of maximal nonsingular
minors has the following analogs in the semiring case:

Definition 4.15. Let A∈Mm,n(S). It is said that A is of tropical rank k (trop
(A) = k) if k is the largest number such that A has a (k × k)-submatrix, which is
tropically nonsingular (see Definition 2.21).

Definition 4.16. Let A∈Mm,n(S). It is said that A is of symmetric rank or sym-
metric tropical rank k (rksym(A) = k) if k is the largest number such that A has a
(k × k)-submatrix A′, satisfying |A′|+ �= |A′|−.

Remark 4.17. In other words, symmetric tropical rank differs from the tropical rank
by fixing T from Definition 2.21 to be the alternating group Ai ⊂ Si for all (i × i)-
submatrices of A, i = 1, . . . , n.

Proposition 4.18. Let A ∈Mm,n(S). Then sym(A) ≤ trop(A).

Proof. The proof follows easily from Remark 4.17. �

Now we consider the so-called combinatorial ranks, which are very useful for
graph theory, transversal theory, and communication networks (see [4, 57, 58] and
references therein). Note that these ranks do not coincide with the usual rank function
even in the case where S is a field.

Definition 4.19. A line of a matrix is its row or column.

Definition 4.20. A matrix A ∈ Mm,n(S) is of term rank k (t(A) = k) if the
minimum number of lines needed to include all nonzero elements of A is equal to k.

Let us denote by tc(A) the least number of columns needed to include all nonzero
elements of A and by tr(A) the least number of rows needed to include all nonzero
elements of A.

Definition 4.21. A generalized diagonal of a matrix A∈Mm,n(S) is a set of
min{m, n} positions in A such that no row or column contains two of these
positions.
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Proposition 4.22 (König Theorem). [57, Theorem 1.2.1] Let S be a semiring,
A ∈ Mm,n(S). Then the term rank of A is the maximum number of nonzero entries
in some generalized diagonal of A.

Also the term rank can be characterized in terms of a zero submatrix of maximal
size.

Proposition 4.23. [59] Let S be a semiring, A ∈ Mm,n(S). Then t(A) = k if and
only if there exist positive integers s, r, s + r = n + m − k such that for a certain
permutation of rows and columns ofA contains a submatrixOr,s and no permutation
of rows and columns of A contains an Op,q if p+ q > n+m− k.

The following “dual” matrix invariant is also known.

Definition 4.24. The matrix A∈Mm,n(S) is said to be of zero-term rank k
(z(A) = k) if the minimum number of lines needed to include all zero elements
of A is equal to k.

In the case when S is the max-algebra, Rmax, also the notion of Kapranov rank,
K(A), is useful (see [28, 60] for the details).
We should note that the list of rank functions introduced here is not exhausting.

We presented here only the most common definitions. However, there are still other
natural ways to define rank functions over semirings.

5. Relations between different rank functions

If the semiring S coincides with a field, then

ρ(A) = f (A) = r(A) = c(A) = sr(A) = sc(A) = mri(A) = mci(A),
i = 1, 2. Over more general semirings, the situation is more complicated.

Proposition 5.1. Let A ∈Mm,n(S), then er(A) = f (A) = ec(A).

Proof. Let us check that er(A) ≤ f (A). Write f (A) = f . Then A = BC for certain
B ∈ Mm,f (S) and C ∈ Mf,n(S). Then the row space of A is contained in the row
space of C; hence er(A) ≤ er(C) ≤ f .
Let us show that the converse inequality also holds. We write er(A) = r. By

definition, there exist vectors v1, . . . , vr ∈ Sn and elements αi,j ∈ S, i = 1, . . . , m,
j = 1, . . . , r such that the ith row of A is equal to

r∑
j=1

αi,jvtj . Thus A = BC, where

B = [αi,j], C =
⎡
⎢⎣

v1
...

vr

⎤
⎥⎦.

Similar considerations with the columns of A show that ec(A) = f (A). �
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Proposition 5.2. LetA∈Mm,n(S). Then r(A)≤ sr(A)≤mr1(A)≤m and ec(A) ≤
c(A) ≤ sc(A) ≤ mc1(A) ≤ n.

Proof. These statements follow directly from the definitions of these rank
functions. �

The maximal column rank associated with Definition 3.4 may actually exceed the
spanning column rank, and the spanning column rank may exceed the column rank
over some semirings shown in the following examples.

Example 5.3. [51] Let us consider A = [3−√7,√7− 2] ∈M1,2(Z[
√
7]+). Thus

sc(A) = 2, since 3 − √7 �= α(
√
7 − 2) and α(3 − √7) �= √

7 − 2 in Z[√7]+.
However, c(A) = 1 since 1 = (3 − √7) + (√7 − 2) generates the column space
of A.

Example 5.4. [45] We consider A = [4−√7,√7− 2, 1] ∈ M1,3(Z[
√
7]+). Thus

sc(A) = 1, since 1 spans all columns ofA. However, just like in the previous example,
one can see that mc(A) = 2.

The same statements are also true for the row ranks.

Proposition 5.5. Let A ∈Mm,n(S) then f (A) ≤ min{r(A), c(A)}.

Proof. See [45, Proposition 3.1.1]. �

Let us note that this inequality can be strict. Moreover, unlike the case with rank
over fields, rowand column ranksmaynot coincide even over commutative semirings;
moreover, column ranks may be greater than the number of rows, just like row ranks
may be greater than the number of columns.

Example 5.6. Let S be any antinegative semiring without zero divisors; we consider
the matrix X defined in Example 4.4. Then it follows from Example 4.3 and Propo-
sition 5.2 that r(X) = sr(X) = mr1(X) = 3 = m while c(X) = sc(X) = mc1(X) =
4 = n > m.

Proposition 5.7. Let A ∈Mm,n(S) then f (A) ≤ t(A).

Proof. See [45, Proposition 3.1.3]. �

Note that the inequality max{r(A), c(A)} ≤ t(A) does not hold in general.

Example 5.8. For the matrixX given in Example 4.4, one has that r(A) = t(A) = 3,
c(A) = 4.
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The inequality min{r(A), c(A)} ≤ t(A) does not hold over Z+.

Example 5.9. [45] For

A =
⎡
⎣ 3 5 7
5 0 0
7 0 0

⎤
⎦ ∈M3,3(Z+),

one has that r(A) = c(A) = 3, t(A) = 2.

Proposition 5.10. Let S be either a max-algebra or an antinegative subsemiring
of a field, or some other semiring, for which any n+ 1 vectors from Sn are linearly
dependent, A ∈Mm,n(S). Then mr2(A) ≤ f(A).

Proof. Repeat the arguments from [42, Lemma 5.9]. �

The factor rank of some matrices can be greater than the Gondran–Minoux rank.

Example 5.11. Let us consider the matrix

K4 :=

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦ ∈M4(Rmax) or K4 ∈M4(B).

Then it is easy to see that the sum of first two rows (columns) is the vector of all ones,
and it is equal to the sum of last two rows (columns). Thus mr1(K4) ≤ 3. However,
f (K4) = 4 (see [42] or [28]).

Proposition 5.12. Let S be a max-algebra, A ∈Mm,n(S). Then

rksym(A) ≤ mr2(A).

Proof. The result follows from [19]; see also [45, Theorem 1’]. �

Proposition 5.13. Let S be an antinegative subsemiring of a field, A ∈ Mm,n(S).
Then mr2(A) = ρ(A) = rksym(A).

Proof. Let us prove the first equality. Let some vectors over a semiring S ⊂ F be
linearly dependent in the sense of Definition 3.5. Here, F is a field. Then it is straight-
forward to see that they are linearly dependent over F, i.e., mr2(A) ≤ ρ(A) for anyA.
Conversely, if v1, . . . , vk are F-linearly dependent, then they are linearly dependent
in the field of fractions of the ring S ∪ (−S), since over fields dimension does not
depend on the field extension. Thus, multiplying by the common denominator of all
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coefficients, we get a linear relation between v1, . . . , vk overS∪(−S). It is nontrivial,
since char(F) = 0 by the antinegativity ofS. Now, taking the summandswith negative
coefficients to the other side of the equality sign, we obtain that v1, . . . , vk are linearly
dependent in the sense of Definition 3.5, i.e., ρ(A) ≤ mr2(A), which completes the
proof of the first inequality.
Now, ρ(A) is the size of a maximal nonzero minor |Â| of A, i.e., this is a maximal

submatrix with |Â|+ �= |Â|−, which proves the second inequality. �

The following is the main result of [41], see also [42] and [43].

Proposition5.14. LetS beamax-algebra,A∈Mm,n(S). Thenmr3(A)= trop(A) =
mc3(A).

Proposition 5.15. Let A ∈Mm,n(S), then mr3(A) ≤ mr2(A) ≤ mr1(A).

Proof. This follows from Remarks 3.6 and 3.9. �

Now, let us show that mr3(A) can be less than mr2(A) both over max-algebras and
antinegative subsemirings of fields.

Example 5.17. In the case where S is a max-algebra, let us consider the matrix

K3 =
⎡
⎣ 0 1 1
1 0 1
1 1 0

⎤
⎦ .

Then the rows (columns) of this matrix are linearly dependent in the sense of Defini-
tion 3.8with the coefficients 0, 0, 0. Let us recall that 0 is the identity element of amax-
algebra; so this is nontrivial linear dependence. However, |K3|+ = 3 �= 2 = |K3|−
and by Proposition 5.12, we have that mr2(K3) ≥ rksym(K3) = 3.
In the case where S is the semiring of nonnegative integers with natural addi-

tion and multiplication, we consider the same matrix K3. Then its rows (columns)
are linearly dependent in the sense of Definition 3.8 with the coefficients 1, 1, 1;
however, det(K3) = 2 evaluated over Z; thus, by Proposition 5.13, it holds that
mr2(A) = 3.

The statement below follows easily from Remark 3.12 and the above inequalities.

Corollary 5.17.

• If S is a max-algebra and the row space ofA has a basis for linear independence
as defined by Definition 3.8, then

mr3(A) = trop(A) = rksym(A) = K(A) = mr2(A) = mc2(A)
= f (A) = r(A) = c(A) = mr1(A) = mc1(A) = sr(A) = sc(A).
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• If S possesses the property that any n+1 vectors from Sn are linearly dependent
and that the row space of A has a basis for linear independence as defined by
Definition 3.5, then

mr2(A) = f (A) = r(A).

In [47], the authors investigate how the column rank and the factor rank of matrices
over certain algebraic systems change as the algebraic system changes. For different
classes of semirings in [49], upper bounds are found for the sets of numbers r such
that for all A ∈ Mm,n(S) with c(A) = r, it follows that f (A) = r. It appears that
these upper bounds depend considerably on the semiring S.

Remark 5.18. It is straightforward to see that if S = B is a binary Boolean semiring,
then z(A) = t(J \ A) for any A ∈Mm,n(S).

6. Arithmetic behavior of rank

The behavior of the usual rank function ρ over fields with respect to matrix multi-
plication, addition, and union is given by the following classical inequalities: The
rank-sum inequalities:

| ρ(A)− ρ(B) |≤ ρ(A+ B) ≤ ρ(A)+ ρ(B);
Sylvester’s laws:

ρ(A)+ ρ(B)− n ≤ ρ(AB) ≤ min{ρ(A), ρ(B)};
the rank inequalities for matrix union:

max{ρ(A), ρ(B)} ≤ ρ(A|B) ≤ ρ(A)+ ρ(B),
where A and B are conformal matrices with entries from a field.
Following [45], we investigate the behavior of different rank functions over semir-

ings with respect to matrix addition and multiplication. It turns out that the arithmetic
properties of semiring rank functions depend deeply on the structure of the semiring
of entries.

Definition 6.1. We say that a bound is exact if there are matrices such that equality
holds and best possible if for any given r and s, there are matrices of ranks r and s,
respectively, such that the equality holds.

6.1. Rank-sum inequalities

Let us show that the standard lower bound for the rank of a sum of two matrices is
not valid in general.
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Example 6.2. [45] Let S be a Boolean semiring. Then it is possible that

f (A+ B) �≥ |f (A)− f (B)|.

Let us consider A = K7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 1
1 0 1 1 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 0 1 1
1 1 1 1 1 0 1
1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
and B = I7, then 1 = f (J7) =

f (A+ B), but over any Boolean semiring, f (K7) ≤ 5 due to the factorization

K7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1
1 1 0 0 0
0 1 0 1 1
0 1 1 1 0
0 1 1 0 1
0 0 1 1 1
1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
0 0 1 1 1 1 0
1 0 0 0 0 1 1
0 1 1 0 0 0 0
1 1 0 0 1 0 0
0 0 0 1 0 0 1

⎤
⎥⎥⎥⎥⎦

(see [61] for more details). Thus,

|f (A)− f (B)| = f (B)− f (A) ≥ 7− 5 = 2 > 1 = f (A+ B).

However, the following bounds are true.

Proposition 6.3. [45] LetS be an antinegative semiring,A,B ∈Mm,n(S). Then,
1. f (A+ B) ≤ min{f (A)+ f (B),m, n};

2. f (A+ B) ≥
⎧⎨
⎩
f (A) if B = O
f (B) if A = O
1 if A �= O and B �= O

.

These bounds are exact, the upper bound is best possible and the lower bound is best
possible over Boolean semirings.

In the case when S is a subsemiring of R+, the positive reals with the usual
operations, the standard lower bound for the rank of sum of two matrices is again not
valid because of the following example.

Example 6.4. [45] Let r, s ≥ 4 and s < n− 4. Let us consider

A′ =

⎡
⎢⎢⎣
1 2 3 4
1 1 1 1
1 0 1 0
0 0 2 2

⎤
⎥⎥⎦
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and

B′ =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1

⎤
⎥⎥⎦.

Note that f (A′) = 4, ρ(A′) = 3, f (B′) = ρ(B′) = 1, and f (A′ + B′) = ρ(A′+
B′) = 2.
Let

A =
⎡
⎣ A′ O4,r−4 O4,n−r
Or−4,4 Lr−4 Or−4,n−r
Om−r,4 Om−r,r−4 Om−r,n−r

⎤
⎦

and

B =
⎡
⎣ B′ O4,1 O4,s−1 O4,n−s−4

Os−1,4 Os−1,1 Us−1 Os−1,n−s−4
Om−s−3,4 Om−s−3,1 Om−s−3,s−1 Om−s−3,n−s−4

⎤
⎦,

whereUk = ∑
1≤i≤j≤k

Ei,j, Lk = ∑
1≤j<i≤k

Ei,j ∈Mk(S). Here, we have that f (A) = r,
ρ(A) = r − 1, f (B) = ρ(B) = s, and f (A+ B) =| r − s | −1 < | f (A)− f (B) | if
S is a subsemiring of R+. Note that if r = s+ 3, reversing the roles of A′ and B′ in
A and B also gives a corresponding example.

However, the following is true.

Proposition 6.5. [45] Let S ⊆ R+, A,B ∈Mm,n(S). Then

f (A+ B) ≥ |ρ(A)− ρ(B)|.
This bound is exact and best possible.

The following inequalities are true for the term rank.

Proposition 6.6. [45] Let S be an arbitrary semiring. For any matrices A,B ∈
Mm,n(S), we have

t(A+ B) ≤ min{t(A)+ t(B),m, n}.
This bound is exact and best possible.

The following example shows that a nontrivial, additive lower bound does not hold
over an arbitrary semiring.

Example 6.7. [45] Let A = B = Jm,n over a field whose characteristic is equal to 2.
Then t(A+ B) = t(O) = 0.



Matrix Invariants over Semirings 25

However for antinegative semirings there is a lower bound, which is even better
than the standard one. Namely, the following is true.

Proposition 6.8. [45] Let S be an antinegative semiring. For any matrices A,B ∈
Mm,n(S), the following inequality holds:

t(A+ B) ≥ max{t(A), t(B)}.
This bound is exact and best possible.

Proposition 6.9. [45] Let S be an antinegative semiring. ForA,B ∈Mm,n(S), one
has that

0 ≤ z(A+ B) ≤ min{z(A), z(B)}.
These bounds are exact and best possible.

Proof. Both bounds follow directly from the definition of the zero-term rank func-
tion. To check that the lower bound is exact and best possible for each pair (r, s),

0 ≤ r, s ≤ min{m, n}, let us consider the family of matrices Ar = J \
(

r∑
i=1
Ei,i

)
,

Bs = J \
(

s∑
i=1
Ei,i+1

)
if s < min{m, n}, and Bs = J \

(∑s−1
i=1 Ei,i+1 + Es,1

)
if

s = min{m, n}. Then z(Ar) = r, z(Bs) = s by the definition and z(Ar + Bs) = 0
by antinegativity. Similarly, it can be checked that the upper bound is exact and best
possible. �

As the following example shows, the standard upper bound for the additive inequal-
ities is not valid for row and column ranks.

Example 6.10. Consider

A =

⎡
⎢⎢⎢⎢⎣
1 0 0
0 1 0
1 1 0
1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣
0 2 2
0 2 0
0 0 2
0 6 2
0 4 6

⎤
⎥⎥⎥⎥⎦ .

Then it is easy to see that r(A) = r(B) = sr(A) = sr(B) = mr1(A) = 2. However,

r(A+ B) = r

⎡
⎢⎢⎢⎢⎣
1 2 2
0 3 0
1 1 2
1 6 2
0 5 6

⎤
⎥⎥⎥⎥⎦ = 5 = sr(A+ B) = mr1(A+ B)

over Z+.
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Proposition 6.11. [45] Let S be an antinegative semiring. Then for O �= A,B ∈
Mm,n(S), one has that

1≤ c(A+B), r(A+B), sr(A+B), sc(A+B),mri(A+B),mci(A+B), i= 1, 2, 3.
These bounds are exact over any antinegative semiring and best possible over Boolean
semirings if i = 1.

Proof. Again we are going to show that the lower bound is best possible. Let S be a
Boolean semiring. For each pair (r, s), 0 ≤ r, s ≤ m, we consider the matrices Ar =
J \

(
r∑
i=1
Ei,i

)
, Bs = J \

(
s∑
i=1
Ei,i+1

)
if s < m and Bs = J \

(∑s−1
i=1 Ei,i+1

)
+Es,1

if s = m. Then
c(Ar) = r(Ar) = sr(Ar) = sc(Ar) = mr1(Ar) = mc1(Ar) = r,
c(Bs) = r(Bs) = sr(Bs) = sc(Bs) = mr1(Bs) = mc1(Bs) = s,

and Ar + Bs = J has row and column ranks equal to 1. Thus, these bounds are best
possible over Boolean semirings.
The rest of the proof follows directly from the definitions. �

Proposition 6.12. [45] Let S be a subsemiring in R+. Then for A,B ∈ Mm,n(S),
one has that

c(A+ B), r(A+ B), sr(A+ B), sc(A+ B),mr1(A+ B),
mc1(A+ B) ≥ |ρ(A)− ρ(B)|.

These bounds are exact and best possible.

6.2. Sylvester inequalities

First, we show that the analog of the Sylvester lower bound does not hold for the
factor rank.

Example 6.13. Let S be a Boolean semiring,

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 1 0 · · · 0
1 0 1 · · ·
...

...
...

. . .
...

1 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

and B = At , then f (A) = f (B) = n and f (AB) = 1 �≥ f (A) + f (B) − n = n since
AB = J .

However, we can prove the following.
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Proposition 6.14. [45] Let S be an antinegative semiring, A ∈ Mm,n(S), B ∈
Mn,k(S). Then
1. f (AB) ≤ min{f (A), f (B)},
2. f (AB) ≥

{
0 if f (A)+ f (B) ≤ n
1 if f (A)+ f (B) > n,

provided that S has no zero divisors.
These bounds are exact, the upper bound is best possible, and the lower bound is best
possible over Boolean semirings.

The next example demonstrates that the standard lower bounds of the Sylvester
inequality are not valid in the case S ⊆ R+.

Example 6.15. [45] Let us consider

A =

⎡
⎢⎢⎣
0 1 1 1
1 0 1 1
1 1 0 4
1 1 4 0

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦,

then ρ(A) = 3, f (A) = 4, ρ(B) = f (B) = 2, and

AB =

⎡
⎢⎢⎣
1 1 2 2
1 1 2 2
2 2 4 4
2 2 4 4

⎤
⎥⎥⎦,

so f (AB) = 1. Thus, 1 = f (AB) �≥ f (A)+f (B)−n = 4+2−4 = 2 and 6 = 4+2 =
f (AI)+ f (IB) �≤ f (AIB)+ f (I) = 1+ 4 = 5.

However, the following generalization for the lower bound is true.

Proposition 6.16. [45] Let S ⊆ R+, A ∈ Mm,n(S), B ∈ Mn,k(S). Then

f (AB) ≥
{

0 if ρ(A)+ ρ(B) ≤ n,
ρ(A)+ ρ(B)− n if ρ(A)+ ρ(B) > n.

This bound is exact and best possible.

Let us turn to the term rank now.

Example 6.17. The inequality t(AB) ≤ min(t(A), t(B)) does not hold. For a coun-
terexample, take A = C1, B = R1. Then t(AB) = t(Jn) = n > 1.

Also, there is no nontrivial multiplicative lower bound over an arbitrary semiring.

Example 6.18. Set A = B = Jn over a field whose characteristic is a divisor of n.
Then t(AB) = t(nJn) = 0.
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However, the following inequalities are true.

Proposition 6.19. [45] Let S be an antinegative semiring. Then for any A ∈
Mm,n(S), B ∈Mn,k(S), the inequalities

t(AB) ≤ min(tr(A), tc(B))
and

t(AB) ≥
{

0 if t(A)+ t(B) ≤ n,
t(A)+ t(B)− n if t(A)+ t(B) > n

hold. These are exact and best possible bounds.

Proposition 6.20. [45] Let S be an antinegative semiring. For A ∈ Mm,n(S),
B ∈Mn,k(S), we have

0 ≤ z(AB) ≤ min{z(A)+ z(B), k,m}.
These bounds are exact and best possible for n > 2.

Proposition 6.21. [45] Let S be an antinegative semiring without zero divisors. For
O �= A ∈Mm,n(S), O �= B ∈Mn,k(S), and c(A)+ r(B) > n, one has that

1 ≤ c(AB), r(AB), sr(AB), sc(AB),mr1(AB),mc1(AB).
These bounds are exact over any antinegative semiring without zero divisors and best
possible over Boolean semirings.

Proof. For O �= A ∈ Mm,n(S) and O �= B ∈ Mn,k(S), the matrix A has
at least c(A) (sc(A), mc1(A)) nonzero columns while B has at least r(B) (sr(B),
mr1(B)) nonzero rows. Thus, if c(A) + r(B)>n, AB �=O and hence these bounds
are established. For the proof of exactness, let us take A = B = E1,1.
Let S be a Boolean semiring. For each pair (r, s), 1 ≤ r ≤ min{m, n}, 1 ≤ s ≤

min{k, n}, let us consider the matrices

Ar =
r∑
i=1

Ei,i +
m∑
i=1

Ei,1, Bs =
s∑
i=1

Ei,i +
n∑
i=1

E1,i.

Then

c(Ar) = r(Ar) = sr(Ar) = sc(Ar) = mr1(Ar) = mc1(Ar) = r,
c(Bs) = r(Bs) = sr(Bs) = sc(Bs) = mr1(Bs) = mc1(Bs) = s

by definition, and ArBs = J . Thus c(ArBs) = r(ArBs) = sr(ArBs) = sc(ArBs) =
mr1(ArBs) = mc1(ArBs) = 1. �

Note that the condition that c(A)+ r(B) > n is necessary because for A = Ik⊕O
and B = O⊕ Ij , we have AB = O whenever k + j ≤ n.
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Proposition 6.22. [45] Let S be a subsemiring in R+. Then for A ∈ Mm,n(S) and
B ∈Mn,k(S), one has that

c(AB), sc(AB),mc1(AB)

r(AB), sr(AB),mr1(AB)
≥
{

0 if ρ(A)+ ρ(B) ≤ n,
ρ(A)+ ρ(B)− n if ρ(A)+ ρ(B) > n.

These bounds are exact and best possible.

The following example, given in [51] for the spanning column rank, shows that
standard analog for the upper bound of the rank of product of two matrices do not
work for row and column ranks.

Example 6.23. [51] Let A=[3, 7, 7] ∈ M1,3(Z+), B=
⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦. Then

c(A)= sc(A)=mc(A)= 2, c(B)= sc(B)=mc(B)= 3, and c(AB)= c(3, 10, 17)=
sc(AB)=mc(AB) = 3.

However, the following upper bounds are proved in [51].

Proposition 6.24. [51] Let S be an antinegative semiring. Then for A ∈ Mm,n(S)
and B∈Mn,k(S), one has that

c(AB) ≤ c(B), sc(AB) ≤ sc(B),mc1(AB) ≤ mc1(B),
r(AB) ≤ r(A), sr(AB) ≤ sr(A),mr1(AB) ≤ mr1(A).

These bounds are exact and best possible.

Similarly, the following can be proved.

Proposition 6.25. Let S be an antinegative semiring. Then for A∈Mm,n(S),
B∈Mn,k(S), one has that

mci(AB) ≤ mci(B), mri(AB) ≤ mri(A), i = 2, 3.
These bounds are exact and best possible.

Proposition 6.26. [42] Let S be a max-algebra then the following holds

rksym(AB) ≤ min{rksym(A), rksym(B)}.

6.3. Ranks of matrix union

In [53, Lemma 3.17, Lemma 3.20], the following is proved.
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Proposition 6.27. Let S be an antinegative semiring. For any A ∈ Mm,n(S), and
B ∈ Mm,k(S), the following inequalities for the rank of a matrix union hold. These
inequalities are sharp and the upper bounds are best possible:

max{f (A), f (B)} ≤ f (A|B) ≤ f (A)+ f (B),
max{t(A), t(B)} ≤ t(A|B) ≤ t(A)+ t(B).

Proposition 6.28. Let S be an antinegative semiring. Then for any A ∈ Mm,n(S),
B ∈Mm,k(S), it holds that max{r(A), r(B)} ≤ r(A|B).

Proof. This is straightforward by the definition of row rank. �

Let us show that the row rank of the matrix union (A|B) can be bigger than the
sum of the row ranks of A and B.

Example 6.29. Let us consider the following two matrices

A =

⎡
⎢⎢⎣
0 1 0
0 0 1
0 0 1
0 1 0

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
0 0 0
0 0 0
1 0 0
1 0 0

⎤
⎥⎥⎦.

Then it is straightforward to see that r(A) = 2, r(B) = 1. Note that by Example 4.4,
it holds that

r(A|B) = 4 > 3 = r(A)+ r(B).

Proposition 6.30. Let S be an antinegative semiring. Then for any A ∈ Mm,n(S),
B ∈Mm,k(S), it holds that c(A|B) ≤ c(A)+ c(B).

Proof. This follows directly from the definition of column rank. �

The following example shows that the column rank of the matrix union (A|B) can
be less than the minimum of column ranks of A and B.

Example 6.31. Let us consider the matrices

A =
⎡
⎣ 1 0 1 0
0 1 0 1
0 0 1 1

⎤
⎦, B =

⎡
⎣ 0 0 1 1
0 1 0 1
1 0 1 0

⎤
⎦.

Then one has by Example 4.4 that c(A) = 4, c(B) = 4, but c(A|B) = 3 < 4.

For the other row and column ranks, the situation is analogous.
Propositions 6.32 and 6.33 follow directly from the definitions of bi-determinant

and tropical singularity, respectively.
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Proposition 6.32. Let S be an antinegative semiring. For any A∈Mm,n(S),
B∈Mm,k(S), the following inequalities for the rank of matrix union hold. These
inequalities are sharp and the upper bound is best possible:

max{rksym(A), rksym(B)} ≤ rksym(A|B) ≤ rksym(A)+ rksym(B).

Proposition 6.33. Let S be an antinegative semiring. For any A∈Mm,n(S),
B ∈ Mm,k(S), the following inequalities for the rank of matrix union hold. These
inequalities are sharp and the upper bound is best possible:

max{trop(A), trop(B) ≤ trop(A|B) ≤ trop(A)+ trop(B).
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1. Introduction

Quadratic forms constitute a large domain of research, with roots in classical mathe-
matics and remarkable developments in the last decades. Its origins go back to Fermat
and Euler, and at the times of Gauss there existed already a deep theory of quadratic
forms with integer coefficients. A new stimulus was provided by two of the Hilbert
problems (11th and 17th) on quadratic forms resolved in the 1920s byHasse andArtin.
Together with the important 1937 paper byWitt [240], this laid the foundation for the
development of the algebraic theory of quadratic forms with the leading role played
by the theory of quadratic forms over fields of characteristic different from two. This
survey concentrates on that motor force behind the spectacular developments we have
witnessed lately in the subject of quadratic forms.
Sections 2–4 contain introductory material. Here, we set up the notation, terminol-

ogy, recall the fundamentals of the theory, and provide motivation for the material
discussed in the next sections. In Section 5, we discuss briefly the Milnor Conjecture
and its solution by Voevodsky. In Section 6, the classification results for quadratic
forms and Witt rings are presented. While classification of quadratic forms up to
equivalence is an obvious central problem of the theory, its solution does not suffice
to determine the structure of theWitt ring.We consider the classification ofWitt rings
over a field F to be the ultimate goal of the theory and report on the results over those
fields where the theory is complete.
Section 7 discusses selected applications of function fields of quadratic forms. This

technique brings to quadratic form theory the methods of algebraic geometry, which
proved to be extremely important and successful. The subsection on the u−invariant
shows the strength of the function fields compared with the earlier more elementary
and direct approach.
Section 8 discusses the properties of particular quadratic forms, the sums of squares.

Here, three most important themes are brought up which are as follows: the level of
a field or ring, the composition of sums of squares, and the Pythagoras number of
fields and rings.
In Section 9, we briefly discuss the most natural generalization of the original Witt

ring, theWitt ring of a commutative ring.As a vehicle, we have chosen two problems.
First, for an integral domain R and its field of fractions F , we report on the results on
the naturalWitt ring homomorphismW(R)→W(F). Second, for a Dedekind domain
R, there is an exact Knebusch–Milnor sequence

0→ W(R)
i−→ W(F)

∂−→
∐
p

W(R/p),

and the problem we discuss is the computation of the cokernel of ∂.
In Section 10, we describe the abstract approaches to quadratic form theory that

emerged from the work on the classification of Witt rings and from the attempts to
generalizeWitt rings to the context of semilocal rings.We explain the most important
unsolved problem of the abstract theory, the elementary type conjecture. Its solution
would give a full classification of Witt rings of fields with finite number of square
classes. We also present the basic result on the structure of reduced Witt rings.
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In Section 11, we sketch the developments leading to the Witt’s 1937 paper,
beginning with Minkowski and Hilbert.
While the literature on algebraic theory of quadratic forms is huge and grows

steadily, there are several books synthesizing the work in the area. Of these, we men-
tion only three: Scharlau [204] covering Hermitian forms with an extensive literature
up to 1982; Lam [143], covering almost all areas of quadratic form theory over fields
of characteristic �= 2; and Elman, Karpenko, and Merkurjev [65], a new important
book written from the viewpoint of algebraic geometry (not available at the time of
writing this chapter).
In this survey, we do not discuss the areas of research that properly belong to

quadratic form theory over domains other than fields, such as

• classical theory of quadratic forms over rings of integers in an algebraic num-
ber field, especially over Z, for this see [11, 37, 83, 114, 125, 174, 181], and the
literature cited there in,

• quadratic forms over algebraic geometric varieties, see [3, 7, 33, 120, 180, 186,
187,223]

• quadratic and Hermitian forms over general rings, polynomial rings, and affine
algebras [126,204].

We also do not discuss the areas of research close to quadratic form theory and
naturally related and motivated by the developments in quadratic form theory,
such as

• ordered fields, preorderings, and valuation theory [141,142]
• central simple algebras, linear algebraic groups [107]
• Galois theory [1, 82, 104, 105, 140,175,176]
• real commutative algebra, semialgebraic geometry, and algebraic topology [63,
106, 163, 198,207]

• higher level orderings of fields, Witt rings of higher level [17, 20, 21, 185]
• forms of higher degree, higher levels, and higher Pythagoras numbers [18, 29,
85, 166, 203].

2. Quadratic forms over fields

In this section, we consider quadratic forms and bilinear forms over fields of charac-
teristic different from 2. Given a finite dimensional vector space V over the field F ,
a quadratic form q on V is a function q : V → F such that the associated function
bq : V × V → F defined by bq(u, v) = 1

2 (q(u + v) − q(u) − q(v)) is bilinear and
q(av) = a2q(v) for all a ∈ F and v ∈ V . The pair (V, q) is then said to be a quadratic
space and (V, bq) a bilinear space over the field F . Two vectors u, v ∈ V are said to
be orthogonal if bq(u, v) = 0.
Two quadratic spaces (V1, q1) and (V2, q2) over F are said to be isometric when

there is a vector space isomorphism ϕ : V1 → V2 satisfying q2(ϕ(v)) = q1(v) for
all v ∈ V1. The two quadratic forms q1 and q2 are then said to be equivalent, written
q1 ∼= q2. For a quadratic form q on V , the set of nonzero values of the form q is
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denoted as DF(q). The elements in DF(q) are said to be represented by q over F .
Since q(av) = a2q(v) for a ∈ F , it follows that the setDF(q) consists of whole cosets
of the multiplicative group Ḟ modulo the subgroup Ḟ2 of squares. Hence,DF(q) can
be viewed as a subset of the group Ḟ/Ḟ2 of square classes of F .
For a quadratic space (V, q), the dimension of V is said to be the dimension of the

quadratic form q, written as dim q. If B = {v1, . . . , vn} is a basis for V , the matrix
B = [bq(vi, vj)] is said to be the matrix of q with respect to B. Distinct bases B1
and B2 produce congruent matrices B1 and B2 = PB1PT , where P is a nonsingular
matrix. Hence, detB1 and detB2, if nonzero, lie in the same coset (detB)Ḟ2, which
is said to be the determinant of the form q (or of the space (V, q)), written as det q. If
detB = 0 for some basis B, we set det q = 0. Forms with nonzero determinant are
called nonsingular. This is equivalent to the fact that the map

V → V ∗, v �→ bq( , v)

is an isomorphism of V onto the dual space V ∗. Each quadratic form q over a field of
characteristic not 2 can be diagonalized. That is, there is a basis B for V such that the
matrix of q with respect to B is a diagonal matrix. In this case, B consists of pairwise
orthogonal vectors. We often identify quadratic forms with their diagonal matrices.
If (V1, q1) and (V2, q2) are quadratic spaces, then so is (V1 ⊕ V2, q1 ⊥ q2), where

(q1 ⊥ q2)(v1, v2) = q1(v1) + q2(v2). This is called the orthogonal direct sum of
forms q1 and q2. Also, the tensor product V1⊗V2 can be equipped with the structure
of a quadratic space (V1 ⊗ V2, q), where the associated bilinear form bq equals the
tensor product bq1 ⊗ bq2 . Hence,

bq(v1 ⊗ v2, v′1 ⊗ v′2) = bq1(v1, v′1) · bq2(v2, v′2)
for all simple tensors v1 ⊗ v2, v

′
1 ⊗ v′2 in V1 ⊗ V2. The form q is then called the

tensor product of the quadratic forms q1 and q2, written as q1⊗q2. Direct orthogonal
sum and tensor product of nonsingular quadratic forms are likewise nonsingular. If
q1 = (a1, . . . , an) and q2 = (b1, . . . , bm) are diagonalized forms, then
q1 ⊥ q2 = (a1, . . . , an, b1, . . . , bm), q1 ⊗ q2 = (a1b1, . . . , anb1, a2b1, . . . , anbm).
The very useful Witt cancellation theorem states that if q is nonsingular and
q ⊥ q1 ∼= q ⊥ q2, then q1 ∼= q2.
Aquadratic form (1, a), a ∈ Ḟ , is called one-fold Pfister form, and an n-fold tensor

product (1, a1) ⊗ · · · ⊗ (1, an) of one-fold Pfister form is called an n-fold Pfister
form. A quadratic form q is said to be isotropic if there exists a nonzero vector v ∈ V
so that q(v) = 0. A simple but fundamental example of a nonsingular isotropic form
is the hyperbolic plane. This is the two-dimensional form h with diagonalization
(1,−1) in some basis of the plane. If a quadratic form q is isotropic, then it splits off
a hyperbolic plane h1, i.e., q ∼= h1 ⊥ q1 for some quadratic form q1. Continuing with
q1, we ultimately obtain a decomposition

q ∼= h1 ⊥ · · · ⊥ hi ⊥ qa,
where h1, . . . , hi are hyperbolic planes and qa is anisotropic. By Witt cancellation,
the form qa, called the anisotropic part of q, is unique up to isometry, and also, the
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number i (called the Witt index of q) is unique. If qa = 0, the form q is said to
be hyperbolic. It is an important property of Pfister forms that if a Pfister form is
isotropic, then it is necessarily hyperbolic. Another fundamental property is that for
a Pfister form q, the value set DF(q) is a group under multiplication. This implies
immediately that the level of a nonformally real field is always a power of two (see
Section 8.1). Here, the level s(A) of a ring A is the minimal number of summands
in a representation of −1 ∈ A as a sum of squares of elements in A (or∞ if such a
representation does not exist).
Two quadratic forms q and g over F are said to be similar (or Witt equivalent),

written as q ∼ g, if their anisotropic parts are isometric, qa ∼= ga.An easy observation
is that for quadratic forms q and g over F ,

dim q = dim g and q ∼ g⇒ q ∼= g. (2.1)

Two fundamental problems of quadratic form theory are the representation problem
and the classification problem. The representation problem over a field F asks for an
explicit determination of the elements represented by any quadratic form over F . The
classification problem over a field F asks for criteria for deciding whether any given
quadratic forms over F are equivalent or not.
If the representation problem is solved over a field F , the equivalence problem

can be solved by induction on dimension. Indeed, for two forms q and g of the same
dimension n, take any element a ∈ DF(q) and check whether a ∈ DF(g) or not. If a
is not represented by g, the forms q and g are not equivalent. If a is represented by g,
the forms q and g can be diagonalized with the element a occurring on the diagonal.
Hence, q = (a) ⊥ q1 and g = (a) ⊥ g1 for some (n− 1)-dimensional forms q1, g1,
and by the Witt cancellation theorem, q ∼= g⇐⇒ q1 ∼= g1. Thus, the question is
reduced to a lower dimension.
Another elementary observation is that the representation problem is equivalent to

the isotropy problem: to decide whether or not a given quadratic form is isotropic.
For a ∈ DF(q)⇐⇒ q ⊥ (−a) is isotropic.

3. Witt rings of fields

We continue to assume that F is a field of characteristic different from 2. For a
nonsingular quadratic form q over F , we write 〈q〉 for the class of quadratic forms
similar to q. This is the Witt class of q. Witt classes of nonsingular quadratic forms
over F with addition and multiplication induced by direct orthogonal sum and tensor
product form a commutative ring called the Witt ring of the field F and denoted as
W(F).1 When the characteristic of F equals 2, a similar construction produces the
Witt ring of nonsingular bilinear forms overF , also denoted asW(F). Belowwe refer
to this ring when we allow characteristic 2.

1 The same notation,W(A), is used for the ring of bigWitt vectors over a ring or fieldA, a totally different
concept. See Michiel Hazewinkel,Witt vectors. Part 1, this volume.
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The Witt ring has the following description in terms of generators and relations.
Consider the integral group ring Z[Ḟ/Ḟ2] of the group of square classes of the field
F . Then,

W(F) = Z[Ḟ/Ḟ2]/J,
where J is the ideal in the group ring Z[Ḟ/Ḟ2] generated by the set,

{[a] + [b] − [c] − [d] : (a, b) ∼= (c, d)} ∪ {[1] + [−1]} .
This is a straightforward consequence of the Witt theorem on chain equivalence of
quadratic forms (see [240, Satz 7]).
For a Witt class 〈q〉, we define the dimension-index

e〈q〉 = dim q (mod 2) ∈ Z/2Z

and the discriminant

d〈q〉 = (−1) 12n(n−1) det q ∈ Ḟ/Ḟ2,
where n = dim q. These are well-defined invariants of the similarity class. Moreover,

e : W(F)→ Z/2Z

is a ring epimorphism. Its kernel consists of theWitt classes 〈q〉with even-dimensional
q and is said to be the fundamental ideal of the Witt ring W(F), written as I(F).
Further, d : W(F)→ Ḟ/Ḟ2 is a well-defined map, but it fails to be a homomorphism
of the additive group W(F) (for instance, take F = R). However, if we restrict
the discriminant map to the fundamental ideal I(F), we obtain a surjective group
homomorphism

d : I(F)→ Ḟ/Ḟ2

of the additive group I(F) onto the group of square classes. Interestingly enough, the
kernel of this homomorphism equals I2(F), the additive group of the square of the
fundamental ideal. This prompts looking at higher powers In(F) of the fundamental
ideal. An elementary observation is that In(F) is generated as an Abelian group by
theWitt classes of all n-fold Pfister forms over F . Much deeper and difficult to prove
is the following theorem known as the Hauptsatz. It was proved byArason and Pfister
[5] in 1971.

Theorem 3.1 (Arason–Pfister Hauptsatz). For a positive-dimensional anisotropic
quadratic form q over a field F , if 〈q〉 ∈ In(F), then dim q ≥ 2n.

As a consequence, we get the intersection property in the Witt ring W(F) of the
field F ,

∞⋂
n=0

In(F) = 0.
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3.1. Prime ideals

Prime ideals of the Witt ring are described as follows (Harrison [84], Lorenz and
Leicht [159]).

Theorem 3.2. Let F be a field of characteristic not 2.

(a) If the Witt ringW(F) has a prime ideal p �= I(F), then the field F is formally
real and the set

P := { a ∈ Ḟ : 〈1,−a〉 ∈ p }
defines an ordering of the field F.

(b) Let F be a formally real field and let P be an ordering of F. Let p0 be the ideal
of the Witt ringW(F) generated by the set

{ 〈1,−a〉 ∈ W(F) : a ∈ P }.
Then, p0 is a minimal prime ideal of the Witt ringW(F).
Moreover, p0 ⊂ I(F) and p0 �= I(F).

Hence, MinSpecW(F) = {I(F)} is a singleton set when the field F is nonreal, and
MinSpecW(F) contains at least one nonmaximal minimal prime ideal when the field
F is formally real.
Each ordering P of a formally real field F gives rise to a signature homomorphism

sgnP : W(F)→ Z

sending the class 〈q〉 to the signature of the form q for the ordering P . The map
σ : X(F)→ MinSpecW(F), P �→ ker sgnP

is a bijective correspondence between the setX(F) of all orderings of the field F and
the minimal prime ideals of the Witt ringW(F).
The inverse map for σ is the map π defined as follows:

π : MinSpecW(F)→ X(F), p �→ P = {a ∈ Ḟ : 〈1,−a〉 ∈ p}.
The setX(F) can be given the induced Zariski topology from the prime spectrum and
this turnsX(F) into a Boolean space (compact, Hausdorff, and totally disconnected).
Craven [42] proved that every Boolean space can be obtained as the space of orderings
of some field. For a realization of Boolean spaces as spaces of orderings of higher
level, see Osiak [183,184].

3.2. Nilradical, torsion, divisors of zero, and units

For a nilpotent element x ∈ W(F), we obviously have e(x) = 0 and hence
NilW(F) ⊆ I(F). When F is non-formally real (nonreal, for short) field, we actually
have NilW(F) = I(F). When F is formally real, we observe that nilpotent elements
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inW(F) have zero signatures at every ordering of F , and so the nilradical NilW(F)
is contained in the intersection of the kernels of all signature homomorphisms. Since
the latter are all minimal prime ideals inW(F), their intersection actually equals the
nilradical NilW(F).
For a nonreal field F of level s, the unit element 〈1〉 ∈ W(F) has finite order 2s

in the additive group W(F) and so 2sW(F) = 0. This is an immediate consequence
of the theory of Pfister forms. Thus, W(F) is torsion group and every element is
two-primary torsion. When F is formally real, torsion elements have zero signatures
at all orderings of the field, so it follows that TorsW(F) ⊆ NilW(F). A deeper result
says that, in fact, for every formally real field F,

TorsW(F) = NilW(F).
This is a consequence of the local–global principle for torsion elements of Witt rings
first proved by Pfister [191].

Theorem 3.3 (Pfister local–global principle). Let F be a formally real field and
let q be an anisotropic quadratic form over F. For every ordering P of the field F ,
choose a real closure FP inducing the ordering P on F. The following statements are
equivalent.

(a) 〈q〉 is a torsion element of the Witt ringW(F).
(b) 〈q〉FP = 0 in the Witt ringW(FP), for every ordering P of the field F.
(c) sgnP 〈q〉 = 0 for all orderings P of the field F .

Moreover, every torsion element inW(F) is two-primary torsion.
Afield F is said to be Pythagorean when every sum of squares of nonzero elements

of F is a square of a nonzero element in F . Thus, a Pythagorean field is automatically
formally real. For all fieldsF except for Pythagorean fields, the set ZD(W(F)) of zero
divisors of the Witt ringW(F) coincides with the ideal I(F). And for a Pythagorean
field F , an element of theWitt ring of F is a zero divisor inW(F) if and only if it lies
in a minimal prime ideal of the ringW(F). Hence for a Pythagorean field F ,

ZD(W(F)) =
⋃
{ker sgnP : P ∈ X(F)}.

The following theorem gives an important characterization of Pythagorean fields in
terms of their Witt rings.

Theorem 3.4. For a formally real field F ,

F is Pythagorean ⇐⇒ TorsW(F) = 0 ⇐⇒ NilW(F) = 0.

This theorem implies a solution of the classification problem for quadratic forms
over Pythagorean fields. If q and g are nonsingular quadratic forms over a Pythagorean
field F , then q ∼= g if and only if dim q = dim g and sgnP q = sgnP g for every
ordering P of the field F.
The units U(W(F)) of the Witt ringW(F) can be determined as follows.



Quadratic Forms 43

Theorem 3.5. If the field F is nonreal, then U(W(F)) = 1+ I(F).
If F is formally real, then 〈q〉 ∈ U(W(F)) if and only if sgnP 〈q〉 = ±1 for all
orderings P of F .

Finally, for any field F , 0 and 1 are the only idempotents of the Witt ringW(F).
The proofs of the results in this and preceding sections can be found in any standard

text on algebraic theory of quadratic forms (for instance, [143, 204, 228]).

4. Hasse andWitt invariants

For a nonsingular diagonal quadratic form q = (a1, . . . , an) with the entries ai in a
field F of characteristic �= 2, we define the Hasse algebra H(q) of the form q as the
following tensor product of quaternion algebras:

H(q) :=
⊗

1≤i≤j≤n

(ai, aj
F

)
.

Here, for a, b ∈ Ḟ , the symbol ( a,b
F
) denotes the quaternion algebra over F with

structure constants a, b. This is a four-dimensional F−algebra with a basis 1, i, j, k
and the multiplication rules i2 = a, j2 = b, ij = k = −ji.
If q = (a1, . . . , an) and g = (b1, . . . , bn) are equivalent quadratic forms, thenH(q) ∼=
H(g). In other words, the Hasse algebra of a quadratic form q is uniquely determined
up to algebra isomorphism and is an equivalence invariant. To calculate the Hasse
algebra one uses the following observation

H(q ⊥ g) ∼= H(q)⊗ H(g)⊗
(
det q, det g

F

)
⊗M�(F), (4.1)

where � is an appropriate positive integer. The formula (4.1) suggests that it is suitable
to pass from theHasse algebra to the similarity class of the algebra in the Brauer group
Br(F) of the field F .
For a nonsingular quadratic form q = (a1, . . . , an) over a field F of characteristic

�= 2, the Hasse invariant h(q) of the form q is defined to be the similarity class of the
Hasse algebra H(q) of the form q in the Brauer group of the field F :

h(q) := [H(q)] =
∏

1≤i≤j≤n
[ai, aj] ∈ Br(F).

Here [ai, aj] stands for the similarity class of the quaternion algebra
( ai,aj
F

)
in the

Brauer group of the field F .

Theorem 4.1 (Classification theorem for quadratic forms of dimension ≤ 3). Let
q and g be nonsingular quadratic forms over a field F of characteristic �= 2 and let
dim q ≤ 3 and dim g ≤ 3. Then, we have

q ∼= g ⇔ dim q = dim g, det q = det g, h(q) = h(g).
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The Hasse invariant, like the determinant, is an invariant for equivalence but not
for similarity of quadratic forms. However, as in the case of the determinant, one can
correct this by multiplying the Hasse invariant with a suitable factor. This works in
all dimensions, but we shall restrict attention to even-dimensional forms. We define

w(q) := h(q) · [−1,−1]n(n+1)/2, where dim q = 2n. (4.2)

It turns out that the new function is a similarity invariant on the set of even-dimensional
forms with discriminant 1 ∈ Ḟ/Ḟ2 and this set is precisely I2(F). Hence for 〈q〉 ∈
I2(F), we set w(〈q〉) := w(q) ∈ Br(F), and call it theWitt invariant of the form q,
and of the class 〈q〉 ∈ I2(F).
Thus,

w(q) =
{
h(q) · [−1,−1] when 2n ≡ 2, 4 mod 8,
h(q) when 2n ≡ 0, 6 mod 8.

Notice that w(q) ∈ Quat F , the subgroup of Br(F) generated by classes of quaternion
algebras. Since

w(x,−ax,−bx, abx) = w(1,−a,−b, ab) = [a, b],
w((1,−a)⊗ (1,−b)⊗ (1,−c)) = 1,

for all x, a, b, c ∈ Ḟ , it easily follows that the map w : I2(F)→ Quat F is a group
epimorphism and

I3(F) ⊆ ker w.
It has been of central importance for quadratic form theory whether actually I3(F) =
ker w. This was proved for various classes of fieldsF including local and global fields
and fields of transcendence degree ≤ 1 over a real closed field.
A more general approach presented in [69] showed that I3(F) = ker w for all 1-

amenable fields. Here F is said to be 1-amenable if for any multiquadratic extension
K of F , i.e. K = F(

√
a1, · · · ,√ar), ai ∈ Ḟ , the kernel ker(W(F) → W(K)) of

the natural ring homomorphismW(F)→ W(K) is generated as an ideal by the one-
fold Pfister forms 〈1,−ai〉. A field extension K/F is said to be excellent if, for any
quadratic form q over F , the anisotropic part of q ⊗ K is defined over F . F is 1-
amenable if every multiquadratic extension is excellent. Excellence and amenability
were investigated in [70, 71], but then the first examples of fields, which are not 1-
amenable were found in [72], thus showing that I3(F) = ker w cannot be deduced in
general from 1-amenability. Further, counterexamples to amenability and excellence
were given in [149,210–212].
The question whether I3(F) = ker w was resolved by Merkurjev [168] in 1981 as

a part of an even more spectacular result discussed below.
We shall use the Milnor K-theory group K2F and its factor group, the elementary

Abelian two-group k2F := K2F/2K2F generated by the cosets of symbols {a, b}
with a, b ∈ Ḟ . The correspondence {a, b} �→ ( a,b

F
) induces a group homomorphism

h : k2F → Br2(F), where Br2(F) is the subgroup of the Brauer group Br(F) consist-
ing of elements of order≤ 2. However, the correspondence {a, b} �→ 〈1,−a,−b, ab〉
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induces a group homomorphism s : k2F → I2(F)/I3(F), and the Witt invariant
induces a homomorphism e2 : I2(F)/I3(F)→ Quat F ⊆ Br2(F). These homomor-
phisms yield the commutative diagram

I2(F )/I3(F ) Br2(F )

k2F

s h

e2

It was proved by Milnor [173] that s is an isomorphism. Merkurjev’s contribution
is the following important result.

Theorem 4.2 (Merkurjev [168]). The homomorphism h is an isomorphism for all
fields F of characteristic �= 2.

It follows that the homomorphism e2 is also an isomorphism and consequently
I3(F) = ker w. Thus, we get a complete characterization of quadratic forms in
I3(F): these are even dimensional forms with trivial discriminant and trivial Witt
invariant. Another consequence is an improvement on the classification theorem 4.1
contained in Theorem 6.2 below.
Merkurjev’s theorem shows that Quat F = h(k2F) = Br2(F), which solves an

old problem in the theory of algebras (any element of order 2 in the Brauer group
B(F) is expressible as a product of classes of quaternion algebras, or, equivalently,
any central division algebra with an involution over F is similar to a tensor product of
quaternion algebras). Merkurjev’s proof that h : k2F → Br2(F) is an isomorphism
depended on a result of Suslin on the quadratic norm residue symbol available at
that time only through deep results in Quillen’s K-theory. New proofs were given
subsequently by Arason [4], Wadsworth [238], and Merkurjev [171] and they do not
depend on Quillen’s K-theory.
While the setup of Merkurjev’s theorem can be generalized to commutative rings,

there is, however, no analog to Merkurjev’s theorem. Parimala and Sridharan have
given in [188] an example of a commutative ring R for which the Clifford algebra
map (corresponding to the Witt invariant w) from strictly even rank quadratic forms
over R to Br2(R) is not surjective.

5. Milnor’s Conjecture

In a paper published in 1970, Milnor [173] observed interrelations amongWitt rings,
K-theory, and Galois cohomology. For a field F of characteristic not 2, the K-theory
groups are Milnor’s KnF and the factor groups knF := KnF/2KnF , and the coho-
mology groups are the Galois cohomologyHn(F) = Hn(Gal (F/F),Z/2Z), where
F denotes a separable closure of F.Milnor defined homomorphisms

sn : knF → In(F)/In+1(F)
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induced by the map sending the pure symbol {a1, . . . , an} ∈ KnF onto theWitt class
of the Pfister form (1,−a1) ⊗ · · · ⊗ (1,−an) ∈ In(F). Since In(F) is additively
generated by all n-fold Pfister forms, every sn is surjective, and Milnor proved that
s1 and s2 are bijective. He also defined homomorphisms

hn : knF → Hn(F)

induced by themap sending the pure symbol {a1, . . . , an} ∈ KnF onto the cup product
(a1) ∪ · · · ∪ (an) ∈ Hn(F).
For n = 0, 1, 2, the groupsHn(F) can be identified with Z/2Z, Ḟ/Ḟ2, Br2 F , and

dimension index, discriminant, and Witt invariant can be viewed as surjective group
homomorphisms

en : In(F)→ Hn(F)

satisfying ker en = In+1(F) (for n = 2, this assumes Merkurjev’s theorem). Hence
in these cases, we have isomorphisms

en : In(F)/In+1(F)→ Hn(F).

It was an open problem whether such isomorphisms exist for n ≥ 3.
The existence of these isomorphisms is of importance for the classification of

quadratic forms, and so it is highly desirable to extend these existence results for other
values of n. In 1975, Arason [2] proved the existence of the group homomorphism
e3, and in 1989 Jacob and Rost [103] and independently Szyjewski [222] proved the
existence of e4.
The homomorphisms sn, hn, and the supposed maps en combine into the diagram

In(F )/In+1(F ) Hn(F )

knF

sn hn

en

TheMilnor conjecture asserts that sn and hn are isomorphisms for all n and all fieldsF
of characteristic not 2. Thus, the difficult and, in fact, intractable question in quadratic
form theory about the existence of the invariants en has been transferred to K-theory
and cohomology theory.
The bijectivity of hn for all nwas proved by Voevodsky in 1996 and the bijectivity

of sn shortly thereafter by Orlov, Vishik and Voevodsky. Hence, for any n and any
field F of characteristic not 2, the map

en = hn ◦ s−1n : In(F)/In+1(F)→ Hn(F)

is an isomorphism sending the cosets (1,−a1)⊗· · ·⊗ (1,−an)+ In+1(F) of Pfister
forms onto the cup products (a1) ∪ · · · ∪ (an) ∈ Hn(F).
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The final versions of their papers are now available [182, 236]. There are also
several accounts of Voevodsky’s work explaining with various degree of detail the
proofs of Milnor’s conjecture (see, Morel [179]). Therefore, we shall not discuss here
the papers [182, 236]. We refer to the survey by Pfister [199] and to the paper by
Arason and Elman [6] for consequences of Voevodsky’s results in quadratic form
theory. We shall mention a few newer developments in the following sections.

6. Classification

The classification of quadratic forms up to equivalence may be considered the central
problemof quadratic form theory. By (2.1), this is essentially the same as classification
of quadratic forms up to similarity. Hence, solving the classification problem for forms
over a field F , we determine the elements of the Witt ringW(F). However, this says
nothing about the ring structure ofW(F). Hence, it is natural to split the classification
problem into two parts. First, classify quadratic forms up to equivalence, and second,
classify the Witt rings of fields up to isomorphism.

6.1. Equivalence of quadratic forms

The classical invariants of quadratic forms are dimension, determinant, Hasse invari-
ant, and the total signature. The latter is the totality of all signatures sgnP defined by
all orderings P of the field in question. Total signature occurs only for formally real
fields. The class of fields for which classical invariants classify quadratic forms was
characterized by Elman and Lam [68] as follows.

Theorem 6.1. Quadratic forms over a field F are classified by their dimension,
determinant, Hasse invariant, and total signature if and only if the ideal I3(F) of the
Witt ringW(F) is torsion-free.

When the field F is nonreal, theWitt ringW(F) is the torsion so that torsion-freeness
of I3(F) is to be interpreted as I3(F) = 0.Observe that, since I3(F) is torsion-free for
all local and global fields, this theorem recaptures the classical results of Hasse on the
classificationof quadratic formsover local andglobal fields (seeSection11 forHasse’s
results).Theorem6.1wasprovedbeforeMerkurjev’sTheorem4.2.UsingMerkurjev’s
theorem, the proofwould becomemuch easier.Arefined version of the proof not using
Merkurjev’s theorem is given in Lam’s book [143, pp. 440–443]. For more general
classification results involving the classical invariants, see [16] (Hermitian forms over
central simple algebras with involution) and [158] (classification of central simple
algebras with involution).
Voevodsky’s theorem gives new possibilities for the classification of quadratic

forms. When we want to check whether two quadratic forms q, g over a field F of
characteristic different from 2 are equivalent, wemay assume that dim q = dim g = n
and consider the class ϕ = 〈q ⊥ −g〉. From (2.1), we have q ∼= g ⇐⇒ ϕ = 0 ∈
W(F).
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We shall write en for the composition In(F) → In(F)/In+1(F) → Hn(F) and
view the values of the homomorphisms en as invariants of quadratic forms in In(F).
In order to compute en(ϕ), we need to know that ϕ ∈ In(F). The latter is equivalent
to requiring that ei(ϕ) = 0 for i = 0, 1, . . . , n− 1.

Theorem 6.2 (General classification theorem). Let q, g be quadratic forms over a
field F of characteristic different from 2 and assume that dim q = dim g = n. Set
ϕ = 〈q ⊥ −g〉, and let k satisfy 2k ≤ 2n < 2k+1.

If ei(ϕ) �= 0 for some i ≤ k, then q and g are not equivalent forms.
If ei(ϕ) = 0 for i = 1, . . . , k, then q and g are equivalent forms.

Proof. The class ϕ is even-dimensional and hence lies in I(F) and so e0(ϕ) = 0. If
e1(ϕ) = 0, we have ϕ ∈ I2(F), and if � is the smallest index for which e�(ϕ) �= 0,
then necessarily ϕ �= 0 ∈ W(F) and so q and g are inequivalent.
If ei(ϕ) = 0 for i = 1, . . . , k, then by Voevodsky’s theorem ϕ ∈ Ik+1(F). However,
dim ϕ = 2n < 2k+1 implies ϕ = 0 ∈ W(F) by the Arason–Pfister Hauptsatz, but
ϕ = 0 ∈ W(F) and dim q = dim g imply q ∼= g. �

6.1.1. Trace forms For a finite separable field extension K/F , the trace functional
trK/F : K→ F defines a symmetric bilinear form

K ×K→ F, (x, y) �→ trK/F (xy).

The associated quadratic form is called the trace form and denoted tK/F . When F is
a number field, trace forms tK/F are quadratic forms over F and so are classified up
to isometry by the four classical invariants. Here, dim tK/F = [K : F ], det tK/F =
NK/F (f

′(θ)), where K = F(θ) and f is the minimal polynomial of θ over F . The
signature sgnP tK/F with respect to an ordering P of F equals the number of the
extensions of P to orderings ofK. In particular, we always have sgnP tK/F ≥ 0. The
details may be found in [34]. The Hasse invariant of tK/F was computed by Serre
[208] (see also [34, Chapter II]).
A quadratic form q (the Witt class 〈q〉 ∈ W(F)) over a number field F is said

to be positive if the form (the Witt class) has nonnegative signature with respect to
every ordering of F . If F has no orderings, then every quadratic form (and everyWitt
class) over F is positive. As mentioned above, trace forms (and their Witt classes)
are positive. Conner and Perlis [34] proved that in the Witt ring W(Q) the converse
holds: if a Witt class X ∈ W(Q) is positive, then there is a finite extension K of Q

such that
〈
tK/Q

〉 = X. For an arbitrary number field F as a base field the result, was
proved by Scharlau [205].
A characterization of positive quadratic forms up to isometry was found by

Krüskemper [131]. He proved that every positive quadratic form of even degree
n ≥ 4 over a number field F is isometric to a trace form. Then, J.-P. Serre (in a letter
to Krüskemper) pointed out that, over a number field, every positive form of odd
rank n > 4 is isometric to a trace form. Serre’s proof is based on a result of Mestre
[172] concerning deformations of polynomials leaving trace forms intact. Thus, over
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a number field F, all positive forms of dimension n ≥ 4 are trace forms, and for forms
of lower dimension, this was known from [34, III 3.6].
For related work on trace forms, see [36, 73–76,202,239].

6.2. Witt equivalence of fields

Two fields with isomorphic Witt rings are called Witt equivalent. The first ques-
tion is what kind of affinity of behavior of quadratic forms can we expect over two
Witt equivalent fields. The following definition describes the ideal situation where
quadratic forms over two fields behave in the same way.

Definition 6.3. Let K and L be fields of characteristic �= 2.We say that K and L
are equivalent with respect to quadratic forms, when there exists a pair of bijective
maps

t : K̇/K̇2→ L̇/L̇2 and T : Cl(K)→ Cl(L),

where Cl(K) denotes the set of equivalence classes of nonsingular quadratic forms
over K, satisfying the following four conditions:

(A) T(a1, . . . , an) = (t(a1), . . . , t(an)) for all a1, . . . , an ∈ K̇/K̇2.
(B) det T(q) = t(det q) for every nonsingular quadratic form q over K.
(C) DL(T(q)) = t(DK(q)) for every nonsingular quadratic form q over K.
(D) t(1) = 1 and t(−1) = −1.

In 1970, Harrison [84] proved a criterion for Witt equivalence of fields, which
combined with a result of Cordes [38] yielding the following theorem.

Theorem 6.4 (Harrison criterion). Let K and L be fields of characteristic �= 2. The
following statements are equivalent:

(a) K and L are equivalent with respect to quadratic forms.
(b) There exists a group isomorphism t : K̇/K̇2 → L̇/L̇2 such that t(−1) = −1,

and for all a, b ∈ K̇/K̇2,
1 ∈ DK(a, b) ⇔ 1 ∈ DL(t(a), t(b)).

(c) W(K) ∼= W(L).
(d) W(K)/I3(K) ∼= W(L)/I3(L).

For proof, see [189] or [228, p. 417]. For a characteristic 2 counterpart of Harrison’s
criterion, see the paper [12].

Example 6.1. Quadratically closed fields are all Witt equivalent and their Witt ring
is Z/2Z. Quadratic forms are classified by their dimension.
Real closed fields are all Witt equivalent and their Witt ring is Z. Quadratic forms

are classified by dimension and signature.
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Finite fields of characteristic different from 2 areWitt equivalent if and only if they
have the same level. Here quadratic forms are classified by dimension and determi-
nant, and there are only two (kinds of) nonisomorphic Witt rings for finite fields of
characteristic �= 2. These are Z/4Z for fields with the number of elements congruent
to 3 (mod 4), and the group ring Z/2Z[Ḟ/Ḟ2] for the remaining finite fields of odd
characteristic.
Two completionsFp1 andFp2 of a global fieldF at primes p1, p2 areWitt equivalent

if and only if |Ḟp1/Ḟ
2
p1
| = |Ḟp2/Ḟ

2
p2
| and s(Fp1) = s(Fp2) (see [143, Chapter VI]).

Here again quadratic forms are classified by the same set of invariants (dimension,
determinant, and the Hasse invariant), but there are infinitely many distinctWitt rings
for this class of fields (see [143, ChapterVI]).

6.3. Fields with finite square class number

From Harrison’s criterion it follows that Witt equivalence preserves the order of the
square class group of the field, and so classification of fields up to Witt equivalence
reduces to classification of fields with a given cardinality of the group of square
classes. So it is natural to begin with fields having only finitely many square classes.
We have already indicated in Example 6.1 that all fields with one square class are
equivalent, and all fields with two square classes split into exactly three classes with
respect to Witt equivalence represented by real closed fields and finite fields. These
are the only simplest results in a series of classification theorems for fields with a
finite number of square classes.
Write q = q(F) = |Ḟ/Ḟ2| for the number of square classes of a field F , and let

w(q) be the number of classes of Witt equivalent fields (of characteristic �= 2) with
q square classes. Then, as said earlier, w(1) = 1 and w(2) = 3. The exact values of
w(q) are known only for q ≤ 32. They are shown in the following table:

q 1 2 4 8 16 32
w(q) 1 3 6 17 51 155

Witt groups of nonreal fields with q ≤ 8 were classified by Cordes [38]. For q = 8,
he found 10 distinct possible Witt groups and for 7 of them he found fields having
the prescribed Witt groups. The three remaining fields were constructed by Kula
[133]. For formally real fields with q = 8, the classification was carried out in [224]
and [139]. Seven possible Witt groups were exhibited and for each of them a field
with that Witt group was constructed. These results classify Witt groups, but the
method of classification is based on determining value sets of binary forms and,
by Harrison’s criterion, these determine the Witt ring structure. However, Cordes
[38, Example 7.2] gave an example of two fields K and F with isomorphic Witt
groups and nonisomorphic Witt rings. In his example, q(K) = 8 and q(F) = 16. In
fact, there exists a simpler example of this type with q(K) = 4 and q(F) = 8 (see the
cases (3.3) and (4.1) of Theorem 3.2 in [224]).
The fields with q = 16 were classified in 1979 in the dissertation of Szczepanik

[221] (published in 1985). An interesting fact revealed by that classification is that,
for fields with q = 16, there are 51 distinct Witt rings, but there are only 45 distinct



Quadratic Forms 51

Witt groups. Hence, there exist fields having the same number of square classes with
isomorphicWitt groups and nonisomorphicWitt rings. These observations show that
the Witt ring, and not the Witt group, is the object reflecting properly the behavior
of quadratic forms over fields. Hence, one can maintain that generalizations of Witt
groups, which do not have natural ring structure, cannot be viewed as part of quadratic
form theory.
The classification of Witt rings of fields with q = 32 is due to Carson and

Marshall [25].

6.4. Witt equivalence of global fields

In this section, we consider global fields of characteristic not 2. These are either
number fields (finite extensions of the rationals) or function fields (finite extensions
of rational function fields with a finite field of constants of characteristic not 2). The
following property of global fields turns out to be important for investigating Witt
equivalence of global fields.
AHilbert-symbol equivalence (HSE, for short) between two global fields K and L is
a pair of maps

t : K̇/K̇2→ L̇/L̇2, T : �K → �L,

where t is an isomorphism of the square class groups and T is a bijective map between
the sets of all primes of K and L, preserving quadratic Hilbert symbols2 in the sense
that

(a, b)p = (ta, tb)Tp ∀ a, b ∈ K̇/K̇2, ∀ p ∈ �K.
Using standard results such as the Hasse principle for quadratic forms over global
fields and the Harrison criterion for Witt equivalence of fields, one shows that HSE
implies Witt equivalence of global fields. Thus, HSE is a set of local conditions for
Witt equivalence of global fields. Actually, the two equivalences coincide, but the
proof of the converse is not so straightforward (see [189,226,229] for three different
proofs).
The main result onWitt equivalence of global fields has the form of a local–global

principle.

Theorem 6.5 ([189]). Two global fields areWitt equivalent if and only if their primes
can be paired so that corresponding completions are Witt equivalent.

Since Witt equivalence of the completions is well understood (see Example 6.1),
the local–global principle is an efficient tool for checking Witt equivalence of
global fields. The local behavior implies that global function fields split into two
Witt equivalence classes (depending on the level) and these are disjoint from
Witt equivalence classes of number fields. Two other simple consequences of the

2 For a definition of the quadratic Hilbert symbol see [143, p. 159].
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local–global principle, not obvious otherwise, are the following. First, the rational
field Q forms a singleton class, being not Witt equivalent to any other number field,
and second, theWitt equivalence of number fields preserves the field degrees overQ.
More generally, as a consequence of the local–global principle, the following is

the complete set of invariants of Witt equivalence for a number field F :(
n, r, s, g ; (ni, si), i = 1, . . . , g),

where n is the field degree over Q, r is the number of infinite real primes, s is the
level of the field (assuming the value zero when F is formally real), g is the number
of dyadic primes, and ni and si are local dyadic degrees and the corresponding local
dyadic levels, respectively (see [24]).
Since n = n1+· · ·+ng, and with fixed values of local degrees the other invariants

can assume only finitely many values, it follows that given the degree n, there are
only finitely many Witt equivalent classes of number fields of degree n. The number
w(n) of Witt equivalence classes of number fields of degree n is known for n ≤ 11.
For example, w(2) = 7, w(3) = 8, w(4) = 29, and w(9) = 365 (see [227]).

Remark 6.6. The Witt ring of a global field is a much more sensitive measure than
the additiveWitt group. One can prove that two formally real algebraic number fields
have isomorphic Witt groups if and only if they have the same number of orderings.
Two nonreal algebraic number fields have the same Witt group if and only if they
have the same level. For quadratic fields, this gives only fourWitt groups (while there
are seven distinct Witt rings), and for cubic fields, we get only two Witt groups (and
eight Witt rings). Another striking difference is that number fields with isomorphic
Witt groups can have distinct degrees over Q.

As a result of goodunderstanding of theWitt ring of global field,Czogała andSładek
[55] gave a presentation for theWitt ringW(F) of a global field of characteristic not 2
in terms of square classes, Hilbert symbols and the reduced Witt ring. This had been
done earlier for Q by DeMeyer and Harrison [58, p. 9].
Hilbert-symbol equivalences come in two types: tame and wild. The equivalence

(t, T ) is said to be tame at the finite prime p if

ordp(a) ≡ ordTp(ta) (mod 2),

for all square classes a ∈ K̇/K̇2; otherwise (t, T ) is wild at p. The equivalence (t, T )
is said to be tame if it is tame at every finite prime of K. A main interest in tame
equivalence comes from the fact that it induces the following commutative diagram
with exact rows

0 → W(OK) → W(K)
∂K−→ ∐

pW(OK/p) → C(K)/C(K)2 → 1⏐⏐� ⏐⏐�ϕ ⏐⏐�ϕ ⏐⏐�
0 → W(OL) → W(L)

∂L−→ ∐
pW(OL/Tp) → C(L)/C(L)2 → 1
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Here, OK is the ring of integers in K, W(OK) is the Witt ring of OK (defined in
Section 9 below), and C(K) is the ideal class group of K. In this diagram, the first
three vertical arrows are ring isomorphisms and the fourth is a group isomorphism.
It follows that tame equivalence preserves the integralWitt rings and also preserves the
2-ranks of ideal class groups. Tame equivalence was introduced in [189] and studied
in [35, 47, 48, 130, 230]. In [231], tameness is studied in the context of semigroups
with divisor theory.
Hilbert-symbol equivalence has been generalized to the context of higher degree

Hilbert symbols. For this, see the papers [49, 51–53,218].
Another generalization of HSE was studied by Koprowski in [129]. In algebraic

function fields of one variable over a fixed real closed field k, Hilbert symbols are
replaced with quaternion algebras. It is proved that there are only two Witt rings for
this class of fields so that all formally real function fields over k are Witt equivalent.
It is established that two formally real function fields are tamely equivalent if and
only if the associated algebraic curves have the same number of semialgebraically
connected components. The genus of a function field turns out not to be an invariant
of tame equivalence. And finally, there is one special case: for R, the field of real
numbers, the rational function field k(X) is tamely equivalent to R(X) if and only if
k is isomorphic to R.
In 1985, Baeza andMoresi showed that any two global fields of characteristic 2 are

Witt equivalent (see [12]). It is not difficult to see that a global field of characteristic
2 is never Witt equivalent to a global field of characteristic different from 2.

7. Function fields

7.1. Selected applications of function fields techniques

A nonsingular quadratic form q of dimension at least 2 over a field F , viewed as
a polynomial over F , is irreducible over F unless q is a hyperbolic plane. Hence,
assuming that dim q ≥ 2 and q is not a hyperbolic plane, we can consider the integral
domain F [X]/q(X) called the affine algebra of the quadric q = 0 and its field of
fractions F [q] called the function field of q.
It is obvious that q becomes isotropic over F [q], but it is a nontrivial question as

to what other quadratic forms g over F become isotropic over F [q]. If g becomes
isotropic over F [q], one writes g > q, and if g becomes hyperbolic over F [q], one
writes g >> q. The starting point of the theory is the following result.

Theorem 7.1. If g >> q and 1 ∈ DF(q), then q(X) · g ∼= g over the rational
function field F(X). Moreover, if g is anisotropic, then dim g ≥ dim q.

From this result, the Arason–Pfister Hauptsatz follows without much difficulty
by an inductive argument (see [143, p. 354]). Since an isotropic Pfister form q is
hyperbolic, it becomes hyperbolic over F [q]. Conversely, from Theorem 7.1 and
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the multiplicative properties of Pfister forms it follows that, if q >> q, then q is
either a scalar multiple of a Pfister form or is itself a hyperbolic form. According to
Lam [143, p. 348], the following three results are amongst the strongest and most
interesting results obtained on function fields in the decade.

Theorem 7.2 (Hoffmann [92]). Let q and g be quadratic forms over F , and let g
be anisotropic. If the dimensions of q and g are separated by a power of two, that is
dim g ≤ 2n < dim q for some n ≥ 1, then g remains anisotropic over F [q].

The firstWitt index i1(q) of an anisotropic quadratic form q over F is by definition
the (usual) Witt index of the form q over its function field F [q]. Clearly, i1(q) ≥ 1,
and the precise determination of all possible values of the first Witt index is given in
the following theorem.

Theorem 7.3 (Karpenko [110]). Let q be an anisotropic quadratic form, and let

dim q − 1 = 2n1 + 2n2 + · · · + 2nr
be the dyadic expansion of dim q − 1, n1 < n2 < · · · < nr. Then, for the first Witt
index i1(q), we necessarily have

i1(q) − 1 = 2n1 + 2n2 + · · · + 2ns
for some nonnegative s < r.

For an anisotropic form q the integer dimes q = dim q− i1(q)+ 1 is said to be the
essential dimension of q.

Theorem 7.4 (Karpenko and Merkurjev [113]). For anisotropic forms g and q over
F , if g > q, then dimes g ≥ dimes q and equality holds iff q > g.

As an application of their result, Karpenko and Merkurjev proved the following
extension of the Arason–Pfister Hauptsatz.

Theorem 7.5. For a positive-dimensional anisotropic quadratic form q over a field
F , if 〈q〉 ∈ In(F) and dim q > 2n, then dim q ≥ 2n + 2n−1.

While Karpenko and Merkurjev’s arguments work in any characteristic �= 2, The-
orem 7.5 was first proved for fields F of characteristic 0 by Vishik [234].
There is an even more penetrating result solving completely the problem of deter-

mining dimensions of anisotropic forms q in In(F).

Theorem 7.6 (Vishik gap theorem). Any anisotropic form q in In(F) has dimension
equal to one of the following numbers:

2n+1 − 2r+1, 0 ≤ r ≤ n or 2n+1 + 2k, k ≥ 0.
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It is also possible to realize all these dimensions by anisotropic forms in In(F) over
a suitable field F. For a proof of Vishik’s gap theorem see Karpenko [111].
Knebusch [119] introduced generic splitting towers of quadratic forms, which is

essentially the following construction leading to higherWitt indices ij(q) by iterating
the process of forming the first Witt index i1(q) (for fields of arbitrary characteristic
see [124]). So, we put F0 = F, q0 = q, and let F1 = F [q] be the function field
of q. We have defined i1(q) to be the Witt index of q over F1, and if, for j > 0,
qj−1 is the anisotropic part of q over Fj−1, we set ij(q) to be the Witt index of
qj−1 over Fj = Fj−1[qj−1] if dim qj−1 ≥ 2. The smallest h such that dim qh ≤ 1
is called the height of q and i1(q), . . . , ih(q) is the sequence of higher Witt indices
of q. The question of possible values for these higher Witt indices remains open.
In [112], Karpenko found relations among the 2-adic orders v2(ij(q)) of the higher
Witt indices. He proved that

max
m<j≤h v2(ij(q)) ≥ v2(im(q)) ≥ min

m<j≤h v2(ij(q))− 1,

where the first inequality requires that im(q)+2∑h
j=m+1 ij(q) be not a power of two.

See also [98] for the lower bound of the heights of all forms of a given dimension.
As a final example, we discuss characterization of In(F) via Knebusch’s degree. For
an even-dimensional form q of height h, the form qh−1 above has itself height 1 and
so it is similar to a Pfister form by a theorem of Wadsworth [237]. If qh−1 is similar
to an n-fold Pfister form, n = deg q is said to be the Knebusch’s degree of the form
q. Observe that, when q is an n-fold Pfister form, then its height is 0 and hence its
degree equals n. Now, following Knebusch [119], we set

Jn(F) = {〈q〉 ∈ I(F) : deg q ≥ n} .
Knebusch [119, Theorem 6.4] proved that Jn(F) is an ideal of the Witt ring W(F).
A first consequence of this is that

In(F) ⊆ Jn(F).
To see this, observe that for an anisotropic form q we have dim q ≥ 2n, where
n = deg q. Since all n-fold Pfister forms have degree n, they certainly belong to
Jn(F), and so, since Jn(F) is an ideal of theWitt ringW(F), we have In(F) ⊆ Jn(F).
A second consequence is the Arason–Pfister Hauptsatz. For, if In(F) ⊆ Jn(F),

then each anisotropic form in In(F) has degree at least n, and hence the dimension
at least 2n, which is the Arason–Pfister Hauptsatz.
A natural and important question to ask was whether In(F) = Jn(F) holds for

all n ≥ 1. This outstanding problem was solved in the affirmative in Orlov–Vishik–
Voevodsky’s paper [182, Theorem 4.3].
There are several surveys and texts on quadratic forms emphasizing function fields

and their applications in quadratic form theory. First, Lam [143] gives an introduction
to the subject and an overview of new results in the area. The Lens Conference volume
[100] includes an introduction to motives of quadrics by Vishik, with applications to
the splitting patterns of quadratic forms; papers by Izhboldin and Karpenko on Chow
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groups of quadrics with application to the construction of fields with u-invariant 9;
and a paper by Kahn presenting a general framework for the computation of the
unramified cohomology groups of quadrics and other varieties. A forthcoming book
[65] by Elman, Karpenko and Merkurjev is a research monograph written from the
viewpoint of algebraic geometry and presents quadratic form theory in full generality.
Part I of the book was available before publication in preprint form. The publisher’s
announcement includes the following information. “Part I includes the classical alge-
braic theory of quadratic and bilinear forms and answers many questions that have
been raised in the early stages of the development of the theory. Assuming only a
basic course in algebraic geometry, Part II presents the necessary additional topics
from algebraic geometry including the theory of Chow groups, Chow motives, and
Steenrod operations. These topics are used in Part III to develop a modern geometric
theory of quadratic forms.”

7.2. u-invariant

For nonreal field F, Kaplansky defined u(F) to be the maximal dimension of univer-
sal quadratic form (which is the same as the maximal dimension of an anisotropic
quadratic form) over F . Here, universal means representing all nonzero field ele-
ments. Hence, u(F) = 1 iff F is quadratically closed, u(F) = 2 for a finite field F ,
u(F) = 4 for any local field F , and hence (by Hasse Principle) u(F) = 4 for any
nonreal global field F . If F is an algebraic function field of transcendence degree
n over the complex field C, then u(F) ≤ 2n and u(F) = 2n when F is finitely
generated over C. This is a special case of a more general result proved in 1936 by
Tsen [233]. However, using the theory of Pfister forms one easily proves that always
u(F) �= 3, 5, 7.
In 1953, Kaplansky [108] conjectured that u(F) is always a power of two (or∞).

He observed that, for a field F complete with respect to a discrete rank one valuation
with residue class field K of characteristic different from two, u(F) = 2u(K). This
produces examples of fields with u-invariant equal to any given power of 2 (for
instance, the iterated power series field C((t1)) · · · ((tn)) has u = 2n). See also the
Elman and Lam papers [66, 67].
Kaplansky’s conjecture was proved for various classes of fields, but in 1988, much

to anybody’s surprise, the first examples of nonreal fields with u-invariant equal
to 6 were constructed by Merkurjev [169]. Actually, any field K is contained in a
field F with u(F) = 6. Merkurjev’s construction uses function field techniques for
six-dimensional quadratic forms of determinant −1. These arise naturally as “Albert
forms” of biquaternion algebras. IfB =

(
a,b
F

)
andC =

(
c,d
F

)
are quaternion algebras

over F , then the Albert form of their tensor product A = B ⊗F C is the form qA =
(−a,−b, ab, c, d,−cd). The crucial property of qA is that, A is a division algebra
iff qA is anisotropic over F (see [127, Chapter IV, Section 16] for a comprehensive
discussion of Albert forms). The main ingredient of Merkurjev’s construction is the
following theorem.
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Theorem 7.7 (Merkurjev). If the Albert form qA is anisotropic over F , then for any
nonsingular form g over F of dimension ≥ 7, the form qA remains anisotropic over
the function field F [g].
For a comprehensive survey and details of proofs, see Lam [144] and also [143,

pp. 484–495].
Further, in 1991,Merkurjev [170] proved that for any even number 2n there exists a

field (of cohomological dimension two) with u-invariant 2n. This construction led to
the study of index-reduction formulas for division algebras and algebraic groups. In
case of fields of characteristic 2, fields with any even u-invariant were constructed by
Mammone, Tignol, andWadsworth [160] using the ideas ofMerkurjev’s construction
of fields with u = 6.
The next challenge was to decide whether there exist fields with odd u-invariant.

Izhboldin [99] constructed the first examples of fields with u = 9. It is now known
that u(F) can assume any value of the form 2r + 1 for r ≥ 3. This was proved by
Vishik [235] using a new method which also allows constructing fields with even
u-invariant without using the Merkurjev index reduction formula.
Anatural problem in the study of theu-invariant is to find estimates foru under finite

field extensions. The best general result in this direction is the following theorem.

Theorem 7.8 (Leep [145]). For a nonreal field F and any field extension K/F of
degree n = [K : F ] <∞, we have u(K) ≤ 1

2 (n+ 1)u(F).
The proof depends on a generalization of the u-invariant to the context of systems

of quadratic forms. See [147,177].
The u-invariant considered so far is an invariant of nonreal fields. Already

Kaplansky in 1953 stated that “the formally real case probably has a parallel theory,
which may be worth separate study.” For a formally real field F , there are at least
three distinct generalizations of the u-invariant. We shall confine attention to the one
introduced by Elman and Lam in [66]. The u-invariant of F is the supremum of
the dimensions of anisotropic forms over F having signature zero with respect to
every ordering of F . By the Pfister local–global principle (Theorem 3.3), u(F) is
the supremum of dimensions of anisotropic torsion forms over F . Torsion forms are
necessarily even-dimensional, so u(F), if finite, is an even integer. For power series
fields, the equality u(F((t))) = 2u(F) still holds; hence, there are formally real fields
with the u-invariant 2n for any integer n. But also here Kaplansky’s conjecture fails to
hold. Modifying Merkurjev’s construction Lam [144, Theorem 5.2] shows that there
exist formally real fields with u-invariant 6. Then, in a (handwritten) manuscript,
“Some consequences of Merkurjev’s work on function fields” (1989), Lam adopted
the arguments of the preprint version of Merkurjev’s paper [170] to the formally real
field context and proved that there exist formally real fields with u = 2n, any given
even integer. Similar results were published a little later by Hornix [96].
A survey of results on isotropy questions over function fields of quadrics is avail-

able (see Hoffmann [94]). It presents a uniform approach to constructing fields with
prescribed invariants (level, Pythagoras number, u-invariant, including u = 9).



58 K. Szymiczek

8. Sums of squares

8.1. Level

Recall that for a ring A, the level s(A) is the smallest natural number n such that
−1 ∈ A is a sum of n squares in A or∞ if −1 is not a sum of squares in A. We have
mentioned already in Section 2 that the level of a nonformally real field is always a
power of two. This was proved by Pfister as a simple consequence of the fact that for
a Pfister form q, the value set DF(q) is a group under multiplication. In particular,
nonzero sums of 2n squares of elements of F form a group under multiplication.
Now, assume that F is a nonreal field with s = s(F) and let 2n ≤ s < 2n+1. Then
−1 = A+ B, where A is a sum of 2n and B a sum of less than 2n squares in F . By
the group property, it follows that −1 = (1+ B)/A is a sum of 2n squares in F , and
so s = 2n. This proves the first part of the following theorem.

Theorem 8.1 (Pfister level theorem [190]). For any nonreal field F , its level s(F)
is a power of 2. For any s = 2n, there exists a nonreal field F with s(F) = s.

The function field R[q] of the quadratic form q = X21 + · · · + X2m over R, where
2n ≤ m− 1 < 2n+1, can be shown to have level 2n.
Pfister’s level theorem, together with the calculations of the u-invariant and

Pythagoras number prior toMerkurjev’s breakthrough in 1989, gave the false impres-
sion that all sensible quadratic form invariants of fields should be powers of two.3 In
particular, it would be natural to expect that the level of integral domains also assumes
only some restricted values. However, there are no restrictions at all, as follows from
the following elegant theorem.

Theorem 8.2 (Dai–Lam–Peng [56]). s(R[X1, . . . , Xn]/(1+X21+ · · · +X2n)) = n.

Themethodof proof is somewhat astonishing: it is based on the topologicalBorsuk–
Ulam antipodal point theorem. Dai and Lam [57] studied in depth the interrelations
between levels in algebra and topology. In topology, the level s(X) of a topolog-
ical space X endowed with a fix-point-free involution i is the smallest number n
with the property that there exists an equivariant map from (X, i) to the sphere
(Sn−1,−), where − denotes the antipodal involution on the sphere (or s(X) = ∞
if such a map does not exist). Then, for instance, the Borsuk–Ulam theorem states
that s(Sn−1,−) = n. Dai and Lam prove a general “Level Theorem” associating
with each space (X, i) a commutative R−algebra AX such that the levels coincide:
s(X) = s(AX). Theorem 8.2 is then obtained by taking X = Sn−1. For proofs, see
also [143, pp. 505–514] and [198, pp. 46–50].

3 At an Oberwolfach conference on quadratic forms sitting at breakfast, I mentioned in the presence of
J.-P. Serre that it is a bit strange that the organizers invited only 29 persons for the conference since in
quadratic form theory all good invariants are powers of two. Serre replied: 16 would be enough.
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Lewis [150] constructed examples of quaternion division algebras whose levels
take any prescribed value 2k or 2k + 1. Whether the level of a division quaternion
algebra can take other values was an open question. Recently, Hoffmann [95] proved
that there are infinitely many values not of the form 2k or 2k + 1 that occur as levels
of quaternion algebras. This uses function field techniques and a result of Karpenko
and Merkurjev [113].
For a survey on levels of fields and quaternion algebras, see Lewis [156] and the list

of references there. For the relation between the commutativity of a division algebra
and representability of 0 as a sum of squares, see [148].

8.2. Composition

A composition formula of size [r, s, n] is a sum of squares formula of the type
(x21 + x22 + · · · + x2r ) · (y21 + y22 + · · · + y2s ) = z21 + z22 + · · · + z2n,

where X = (x1, x2, . . . , xr) and Y = (y1, y2, . . . , ys) are systems of indeterminates
and each zk = zk(X, Y) is a bilinear form in X and Y . A triple [r, s, n] is admissible
over a field F if a composition formula of size [r, s, n] exists with the bilinear forms
zk in X and Y having coefficients in F .
Formulas of size [n, n, n] are known to exist for n = 1, 2, 4, 8, and they are related

to multiplication in the field of complex numbers, and in quaternion and octonion
algebras. Hurwitz proved in 1898 that [n, n, n] formulas exist over C only for n =
1, 2, 4, 8. Actually, Hurwitz’s arguments work over any field of characteristic �= 2.
Another classical result is the Hurwitz–Radon theorem for the size [r, n, n]. For this

to be admissible over R or C, it is necessary and sufficient that r ≤ ρ(n), where ρ(n)
is the “Hurwitz–Radon function” defined as follows: if n = 24a+bn0, where n0 is odd
and 0 ≤ b ≤ 3, then ρ(n) = 8a + 2b. Again, Hurwitz’s ideas can be generalized to
any field of characteristic �= 2.
In 1940, using topological methods, Hopf proved the following result.

Theorem 8.3. If [r, s, n] is admissible over R, then the binomial coefficient
(
n
k

)
is

even whenever n− s < k < r.

The parity condition on binomial coefficients in the above theorem is said to be the
hopf condition. It has been known that for any formally real field F , and even for all
fields of characteristic 0, if [r, s, n] is admissible overF , then theHopf condition holds.
However, generalizing this to fields of prime characteristic was an unsolved problem.
As it turned out recently, extending Hopf’s theorem to fields of prime characteristic
required the use of motivic cohomology. Dugger and Isaksen [64] proved in 2007
that the Hopf conditions are necessary for admissibility of [r, s, n] over an arbitrary
field F of characteristic �= 2.
A comprehensive presentation of all aspects of the composition of quadratic forms

is contained in the book Shapiro [209]. See also [127, Chapter VIII].
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8.3. Pythagoras number

The Pythagoras number of a ring R, denoted P(R), is the smallest positive integer
n such that every sum of squares in R can be written as a sum of ≤n squares. The
Pythagoras number of a nonreal field F with level s assumes one of the following
two values: s or s+ 1. Indeed, any element of the field can be written as a difference
of two squares x2 + (−1)y2 and −1 is a sum of s squares. Moreover, using standard
arguments, one can show that for any s = 2n there are fields of level s and Pythagoras
number s, s+1, respectively (see [143, p. 396]). The formally real fields have a much
more difficult and interesting theory of Pythagoras numbers. Prestel [201] showed
that for any number m, there exist uniquely ordered formally real subfields F and K
of R with P(F) = 2m and P(K) = 2m + 1. For a long time, it remained an open
problem whether the Pythagoras number of a formally real field, if finite, must be of
the form 2m or 2m + 1. A complete solution to this problem came as a great surprise
not so because of the author but rather because of the answer.

Theorem 8.4 (Hoffmann [93]). For any n ≥ 1, there exists a formally real field F
with P(F) = n.

In fact, a more precise result was obtained, namely a field exists which is uniquely
ordered, has P(F) = n and has any prescribed even value of the u−invariant. The
method of proof relies on function field technique used by Merkurjev to prove the
existence of fields with u = 6. Lam [143, pp. 495–499] explains the approach in the
example of construction of fields with Pythagoras numbers 6 and 7.
Artin [8] proved in 1927 that every positive semidefinite rational function in K =

R(X1, . . . , Xn) is a sum of squares of rational functions. His approach does not say,
however, whether the Pythagoras number P(K) is finite. This was clarified 40 years
later by Pfister.

Theorem 8.5 (Pfister [192]). P(R(X1, . . . , Xn)) ≤ 2n.

The three main ingredients of Pfister’s proof are the Artin result, the theorem of
Tsen, and Pfister’s theory of multiplicative (Pfister) forms. While this is an important
quantitative result, yet all is not well. We know the exact value of P(R(X1, . . . , Xn))
only for n = 1 and n = 2. Here, P(R(X1)) = 2 is elementary algebra, and
P(R(X1, X2)) = 4 is a very difficult result proved by Cassels, Ellison and Pfister
[27] in 1971 by using the theory of elliptic curves over R(X). On the other hand, for
the polynomial rings overR andZ, the situation is clarified by the following theorem.

Theorem 8.6 (Choi, Dai, Lam, and Reznick [28]). P(R[X1, . . . , Xn]) = ∞ for
n ≥ 2 and P(Z[X1, . . . , Xn]) = ∞ for n ≥ 1.

Another natural question is to find the Pythagoras numbers P(Q(X1, . . . , Xn)) and
P(Q[X1, . . . , Xn]). Landau proved in 1906 that P(Q[X1]) ≤ 8 and Pourchet [200]
in 1971 established P(Q[X1]) = 5. According to a result of Cassels [26], for an



Quadratic Forms 61

arbitrary field F , one has P(F [X1]) = P(F(X1)). Hence, P(Q(X1)) = 5. For n = 2
and n = 3, it was proved by Colliot-Thélène and Jannsen [32] that

P(Q(X1, X2)) ≤ 8 and P(Q(X1, X2, X3)) ≤ 16.
A conditional result in [32], modulo Milnor’s conjecture and a conjecture of Kato,
asserts that P(Q(X1, . . . , Xn)) ≤ 2n+1 for n ≥ 2. For further details, see [199] and
[77].

9. Witt rings of rings

9.1. Witt rings of commutative rings

Knebusch [115] generalized in 1970 the construction of the Witt ring W(R) of a
field R to cover the case when R is a commutative ring. Instead of nonsingular
symmetric bilinear forms on finite dimensional vector spaces, one considers finitely
generated projective modules over R equipped with nonsingular symmetric bilinear
forms, called inner product spaces. For two inner product spaces (S, α) and (T, β)
their orthogonal direct sum, written (S, α) ⊥ (T, β) or S ⊥ T , is defined to be the
direct sum of the modules S and T with bilinear form γ , defined by the equation

γ(s1 ⊕ t1, s2 ⊕ t2) = α(s1, s2)+ β(t1, t2).
For inner product spaces S and T , S ⊥ T is also an inner product space. For an
inner product space (S, α) and for a submodule N of S, consider the orthogonal
complement N⊥ of N in S,

N⊥ := {s ∈ S : α(s,N) = 0} .
The inner product space (S, α) is said to be metabolic if there exist submodules M
and N of S such that,

S = M ⊕N and N = N⊥.
Two inner product spacesM and N are said to be similar, orWitt equivalent, written
as M ∼ N, if there exist metabolic spaces S and T so that M ⊥ S is isometric to
N ⊥ T . Similarity is an equivalence relation and we write W(R) for the collection
of all similarity classes (Witt classes) of inner product spaces over the commutative
ring R. The class containing the space (M, β) is written as 〈M,β〉 or simply 〈M〉.
We define two operations in W(R), the addition and the multiplication of classes by
setting

〈M〉 + 〈N〉 = 〈M ⊥ N〉 and 〈M〉 · 〈N〉 = 〈M ⊗N〉.
These operations do not depend on the choice of representatives of the similarity
classes, and the sum and the product of similarity classes of two inner product spaces
are the similarity classes of inner product spaces. Thus, we have well-defined addition
andmultiplication operations inW(R). The collectionW(R) of allWitt classes of inner
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product spaces overR forms a commutative ring, using the orthogonal sum as addition
operation and the tensor product as multiplication operation.
When R is a field, this construction is identical with the original construction of

Witt presented in Section 3. Details of the construction and further material may be
found in [10, 163, 174, 204].
Any ring homomorphism R → R′ induces a homomorphism W(R) → W(R′) of

Witt rings. For an integral domain R and its field of fractions F , consider the ring
homomorphism

ϕ : W(R)→ W(F)

induced by the inclusion R ↪→ F . If R is a Dedekind domain it is known that ker ϕ
is zero. This was first proved by M. Knebusch ([115, Satz 11.1.1]).
Also in some other cases, this homomorphism is injective. The most general situa-

tion known where this happens is the case when R is a regular domain of dimension
≤ 3 (theorem of Pardon (1984) and Ojanguren (1982), see [126, p. 472]). However,
ϕ is no longer injective when the dimension of R is four. A counterexample can be
found in [128].
A more general case was considered by Craven, Rosenberg, and Ware [41]. They

proved that when R is a regular Noetherian domain of an arbitrary Krull dimension,
then ker ϕ is a nilideal. Here, the regularity condition is not necessary since, as shown
in [30], the kernel of ϕ is a nilideal also for nonmaximal orders in global fields, and
these are not regular rings.
On the other hand, for eachorderZ[fi],f > 1, of theGaussianfieldQ(i), the natural

ring homomorphismW(Z[fi])→ W(Q(i)) is not injective, and there are other results
of that type [31]. They confirm in part the conjecture that for an algebraic number
field F and its order O the natural ring homomorphism W(O)→ W(F) is injective
if and only if O is the maximal order of F .
All the results on nilpotency of the kernel of natural homomorphisms of Witt rings

depend on the following local–global principle proved by Dress [62]. For a ring R,
and a prime ideal p of R, we write Rp for the localization of R at p.
For a commutative ringR and any inner productR-spaceE, the class 〈E〉 ∈ W(R)

is nilpotent if and only if
〈
ERp

〉 ∈ W(Rp) is nilpotent for all maximal ideals p in R.
From this result, facts about prime ideal structure in Witt rings over fields can be

extended to commutative rings (see, [163]).
Knebusch, Rosenberg, and Ware in [122, 123] generalized most of the results

in Section 3 to the case of Witt rings of semilocal rings (for this, see also [116]),
and of Dedekind rings. Actually, they consider semilocal and Dedekind rings with
involutions and work with more general Witt rings described in [121]. Their work
culminated in two papers by Knebusch [117, 118], where finally the notion of a
real closure of a commutative ring was discovered and a ring-theoretical counter-
part of the Artin–Schreier theory of formally real fields with its relation to Witt
rings of fields was found. For a self-contained treatment of quadratic and bilinear
forms over semilocal rings and of Witt rings of semilocal rings, see Baeza [10] and
Marshall [163].
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9.2. Witt rings of Dedekind domains

LetF be the field of fractions of a Dedekind domainO.Asmentioned in the preceding
section, Knebusch [115] proved that the natural ring homomorphism

W(O) i−→ W(F)

is injective. Milnor extended the result in the following way. With p running over the
set of all nonzero prime ideals of O, we have the following exact sequence for the
Witt groupsW(O),W(F):

0→ W(O) i−→ W(F)
∂−→

∐
p

W(O/p), (9.1)

where ∂ = ∂O is the total residue homomorphism. This is said to be the Knebusch–
Milnor exact sequence. The background, definitions of the maps involved, and proofs
can be found in [174, Ch. IV].
The sequence (9.1) can be extended to the right in some important special cases.

First of all, when O is the ring of integers of a number field F and C = C(F) is the
ideal class group, Milnor proved that with a suitable choice of the homomorphism λ
the sequence

0→ W(O) i−→ W(F)
∂−→

∐
p

W(O/p) λ−→ C/C2→ 0 (9.2)

is exact. Hence, the cokernel of the total residue homomorphism ∂ is the finite ele-
mentary Abelian 2-group C/C2. For a proof, see [174, pp. 93–94] and [204, p. 227].
WhenO = k[X] is the ring of polynomials in one indeterminate over a field k and

F = k(X) is the field of rational functions over k, the cokernel is known to be the
zero group (Milnor’s theorem, see [204, p. 211]). When O is the ring of polynomial
functions on the circleO = R[X, Y ]/(X2 + Y2 − 1), then coker ∂ = Z is the infinite
cyclic group ([174, p. 94]).
Pfister [197] studied the Knebusch–Milnor sequence in the case of the quadratic

extension O = k[X,√aX2 + b ] of the polynomial ring k[X] such that for F =
k(X,

√
aX2 + b ), the field of fractions, F/k is a function field of genus 0 but is not

a rational function field. Pfister [197, Theorem 5] proved that in that case

coker ∂ ∼= ann〈1,−a,−b, ab〉/ ann〈1,−a〉,
where the annihilators are taken in the Witt ring W(k). Using this result, one can
construct a Dedekind domainO with the cokernel of ∂O containing torsion elements
of any given two-power order (see [232] for details).
The description of the cokernels of the total residue homomorphisms ∂O for all

Dedekind rings O seems to be out of reach. A more realistic open problem is to
characterize the class of Abelian groups, which occur as cokernels of total residue
homomorphisms ∂O for all Dedekind rings O.
Very little is known about Witt equivalence for general Dedekind domains. The

structure of Witt rings of Hasse domains in global fields is determined in [50], and
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also, sufficient conditions for Witt equivalence of Hasse domains are given. In [54],
an analog of the Theorem 6.5 was proved for Witt equivalence of semilocal subrings
of a Dedekind domain.

9.3. Witt rings of skew fields and algebras

For a skew field A, Craven [46] defined the Witt ringW(A) as the abstract Witt ring
(see Section 10.1 below)

W(A) = Z[S(A)]/J,
where S(A) is the subgroup of the multiplicative group A× generated by the set of
all squares A×2. Here, J is the ideal generated by the set

{[1] + [a] − [1+ a] − [a(1+ a)] : a ∈ S(A), a �= 0,−1} ∪ {[1] + [−1]}.
As in the commutative case, for an ordered skew fieldA there is a bijective correspon-
dence between the set of minimal prime ideals of the ringW(A) and the set X(A) of
all orderings of A. The set X(A) can be given the induced Zariski topology from the
prime spectrum and this makes X(A) into a Boolean space. Craven [45] proved that
every Boolean space can be obtained as the space of orderings of a noncommutative
skew field. He also proved that every field F can be embedded in a noncommutative
skew fieldA such that the induced ring homomorphismW(F)→ W(A) is an isomor-
phism. However in [46], an example is produced of a skew field D, for which, given
any commutative subfield F ↪→ D, the induced ring homomorphismW(F)→ W(D)

has nontrivial kernel.
Another interesting question is whether for a given noncommutative skew field A,

there is a field F such that W(A) ∼= W(F). Sładek proved that this is so when (a) A
is a quaternion algebra over a Pythagorean field or over a local field ([213]) or (b)
A is a division algebra over a global field and has odd dimension ([216]).
When the dimension of A is even,W(A) is a homomorphic image of the Witt ring

of a field ([217]).
Sładek [215] proved a noncommutative counterpart of Springer’s theorem on the

structure ofWitt groups (and rings) of fields complete with respect to a discrete valu-
ation. As a consequence, he showed that there is a noncommutative field A complete
with respect to a discrete valuation and such that theWitt ringW(A) is not isomorphic
to the Witt ring of any field ([214]).
ForWitt rings of central simple algebras, see Lewis andTignol [157]. For orderings

of higher level and reduced Witt rings of skew fields, see Craven [46].

9.4. More general Witt rings and groups

Knebusch defined in [120] theWitt rings of arbitrary schemes. Balmer [13,14] intro-
duced Witt groups of triangulated categories with duality. These generalize Kneb-
usch’s Witt groups of schemes. A discussion of the interrelations amongst various
generalizations of the concept of Witt group can be found in Balmer [15].
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10. Abstract Witt rings

10.1. Elementary type conjecture

We have mentioned in Section 3 that the Witt ring of a field F has a presentation
by generators and relations W(F) = Z[G]/J , where G = Ḟ/Ḟ2 is the square class
group of F and J is an ideal of the group ring Z[G]. It is an important property of the
Witt ring that the torsion subgroup of the additive group of the ring is 2-primary. These
observations led Knebusch, Rosenberg, and Ware [121] to the following definition.
An abstract Witt ring is a ring R with a presentation

R = Z[G]/J,
where G is an elementary 2-group and the subgroup of torsion elements in R is
2-primary. It turns out that for such abstract Witt rings one can prove most of the
structure results, which Pfister proved for the Witt rings of fields.
Abstract Witt rings form a category where a morphism h : Z[G]/J → Z[G1]/J1

between two objects is a ring homomorphism sending each coset g + J for g ∈ G
onto a coset g1+ J1 for some g1 ∈ G1. Denote this category asAWR. Clearly, Witt
rings of fields are objects of this category. IfR is an abstractWitt ring and there exists
a field F such that R and W(F) are isomorphic, then we say that the Witt ring R is
realized by the field F .
Another approach to abstract Witt rings uses linked quaternionic mappings as the

basic concept of the theory (see [162,167]). The categories of abstract Witt rings and
linked quaternionic mappings are equivalent.
The first fact showing advantages of the abstract approach to Witt rings is the

following observation: finite products exist in the category AWR. Indeed, given
abstract Witt rings R1, . . . , Rn, the subring R of the Cartesian product R1× · · ·×Rn
consisting of elements (f1, . . . , fn) satisfying dim fi ≡ dim fj (mod 2) for all i, j ≤
n, is the product of R1, . . . , Rn in the category AWR (fiber product over Z/2Z).
There is a second operation in APW , the group extension of a Witt ring. If R is

a Witt ring, then the group ring R[�], where � is an elementary 2-group, is also an
abstract Witt ring. These two operations are said to be the elementary operations on
abstractWitt rings. For a given list of basicWitt rings, sayR1, . . . , Rm, the elementary
operations generate a class of Witt rings constructible from the basic rings by means
of the elementary operations. For example, all Witt rings of fields with square class
number q ≤ 8 can be obtained by elementary operations from the following list of
basic Witt rings:

Z, Z/2Z, Z/4Z, L,

whereL is theWitt ring of the fieldQ2 of 2-adic numbers. The four basic rings cannot
be constructed from any simpler Witt rings by elementary operations and they are
realized by the fields R,C,F3,Q2, respectively. A further analysis of the situation
leads to the conclusion that the list of basic Witt rings should include also the Witt
rings Ln, n ≥ 1, of finite extensions of degree n of the field Q2 of 2-adic numbers.
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If n = 2k is even, there are two nonisomorphic Witt rings denoted L2k,0 and L2k,1
corresponding to fields with level s = 1 or 2, respectively.
All these Witt rings are indecomposable in terms of elementary operations. The

Witt rings obtained from

Z, Z/2Z, Z/4Z, L2k,0, L2k,1, L2k−1 k ≥ 2
by elementary operations are said to be of elementary type. With this list of basicWitt
rings, we have the following elementary type conjecture:
Each finitely generated abstract Witt ring is of elementary type.
A restricted form of the conjecture states that each finitely generated abstract Witt

ring, which is realized by a field, is of elementary type. The classification results for
fields with respect to Witt equivalence described in Section 6.3 confirm the ETC for
Witt rings of fields with square class number q(F) ≤ 32.
The ETC has also been proved for torsion-free abstract Witt rings. As we know

from Theorem 3.4, the Witt ring of a field is torsion-free if and only if the field is
Pythagorean. Hence, the Witt ring of any Pythagorean field with finite square class
number can be obtained from the Witt ring of the reals W(R) = Z by means of a
sequence of elementary operations. This was first proved by Bröcker [23] and Craven
[43, 44] in the field case (for reduced Witt rings, see Section 10.2 below) and then
by Marshall ([161]), and independently in the dissertation of Sładek in 1979, in the
general abstract case.
Elementary operations and ETC are particularly (and, perhaps, exclusively) impor-

tant for Witt rings of fields (abstract Witt rings realizable by fields). A fundamental
question arises whether rings obtained by elementary operations fromWitt rings real-
izable by fields are likewise realizable by fields. In case of group extensions, a positive
answer follows from results of Springer [220] on the structure of the Witt group of
a nondyadic complete discretely valuated field F . Springer’s theorem asserts that
W(F) ∼= W(F) ⊕ W(F), where F is the residue class field of F (for an analog of
Springer’s theorem for fields of characteristic 0, carrying a 2-Henselian valuation
with residue field of characteristic 2, see Jacob [101,102]).
Roughly speaking, group extensions of theWitt ringW(F) are realized by (iterated)

formal power series fields over F . Realizability of products is more difficult and was
proved by Kula using valuation theoretic means.

Theorem 10.1 (Kula [132, 134]). The product of Witt rings of fields is the Witt ring
of a field.

This theorem and the validity of ETC would give a complete solution to the classifi-
cation problem of Witt rings of fields with finite groups of square classes.
The complexity of ETC for the Witt ring of a field F is measured by the square

class number q(F) = |Ḟ/Ḟ2|. As we have mentioned earlier, for q ≤ 32, ETC
holds. Another measure of complexity of ETC for a field F is the number Q =
Q(F) of quaternion algebras over F . The most difficult are the cases where Q is
a power of two. The case Q = 2 is already nontrivial and was investigated by
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Fröhlich, Kaplansky [109], and Cordes [39] (a definitive exposition in [162, pp. 95–
99]). Kaplansky introduced the concept of a radical of any field F . This is the set of
all a ∈ Ḟ for which the quaternion4 algebra (a, b/F) splits for all b ∈ Ḟ . Equivalently,
the radical is the intersection of the value sets of all one-fold Pfister forms over F .
Kaplansky studied quadratic form theory over fields F withQ = 2, and for formally
real fields, these are exactly the fields with the index of the radical in Ḟ equal to
two. The higher radicals were introduced in [241], and Kaplansky’s results were
generalized to the context of n-fold Pfister forms in [225].
Cordes [40] proved that, ifQ(F) = 4, the ETC holds for F , and Kula [136] proved

that, ifQ(F) = 8, the ETC holds for F . Another important piece of evidence for the
ETC comes from the work of Jacob and Ware [105]. They proved that, for a field F
with finite square class group, if W(F) is a finite direct product of Witt rings, then
the Witt ring W(K) of any quadratic extension K = F(

√
a) is a finite direct product

of abstract Witt rings describable in terms of factors ofW(F). In particular, when the
Witt ringW(F) is of elementary type, then for any a ∈ Ḟ the Witt ringW(F(√a)) is
of elementary type.
Kula [137] studied the number of Witt rings for fields with a given number of

square classes and its asymptotics. Scharlau [206] defined the generating function
for a field F with finite group of square classes as the power series 1 +∑

i>0 cix
i,

where ci is the number of equivalence classes of n-dimensional quadratic forms over
F . If the Witt ringW(F) is of elementary type, he proved that the series is a rational
function with the only pole at x = 1. Kula [135] proved that this is so for an arbitrary
field F with finite square class group. Kula, Marshall, and Sładek [138] investigated
the structure of direct limits of torsion-free abstract Witt rings.
Various ring properties of Witt rings of fields and abstract Witt rings have been

studied, such as units [154,164], level and sums of squares [153,155], automorphisms
[146], annihilating polynomials [97,151,152], primary ideals, ideal class groups and
Picard groups [78–80], and projectivity of W(K) over W(F) for a field extension
K/F [81].
The best source for abstract Witt rings is Marshall’s book [162]. For a compre-

hensive survey of work related to elementary type conjecture, citing 117 papers, see
Marshall [165]. For an approach to an axiomatization of quadratic form theory in
terms of the isometry relation on binary forms, see Dickmann and Miraglia [59, 60].

10.2. Reduced theory of quadratic forms

For a formally real field F , there exists a complete theory of quadratic forms relative
to a fixed preordering of the field. Here, a preordering in F is a proper subset T of
F closed with respect to addition and multiplication and satisfying Ḟ 2 ⊆ T . Any

4 Actually, Kaplansky avoids quaternion algebras and usesHilbert symbols instead.As to the term radical
of field, Kaplansky says “Since any conventional concept of radical is ridiculous for a field, I trust there
will be no confusion.”
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preordering T in F is contained in at least one ordering P of F (i.e., a preordering P
satisfying additionally P ∪−P = F ). The set of all orderings of F extending a given
preordering T is denoted as X/T . Using the Kuratowski–Zorn Lemma, one shows
that T = ⋂

P , where as P ranges over X/T . In case of T = ∑
Ḟ 2, this recaptures

the Artin–Schreier characterization of totally positive elements in an ordered field.
A T -form is just a finite sequence f = (a1, . . . , an) of elements in Ḟ and at each

ordering P ∈ X/T , we have the signature sgnP f . Two forms f and g are said to
be T -isometric if they have the same dimension n and have the same signatures with
respect to any ordering P extending T . With these definitions, one can now follow
the classical quadratic form theory pattern over fields and define the counterparts of
all the classical concepts including the Witt ring, denoted as WT (F). In the special
case, when T =∑

Ḟ2, it may be shown that WT (F) ∼= W(F)/Wt(F), and this ring
is said to be the reduced Witt ring of the field F .
The setX = X/∑ Ḟ2 of all orderings of the field F can be viewed as a topological

space with the induced Zariski topology from the prime spectrum of the Witt ring
W(F). Alternatively, the Harrison sets

H(a) = {P ∈ X : a ∈ P} , a ∈ Ḟ
form a subbasis. X is a Boolean space and for each preordering T , the set X/T is
closed, hence also a Boolean space. We now consider the ring C(X/T,Z) of contin-
uous functions from the space X/T to Z (with discrete topology) and the map

cT : WT (F)→ C(X/T,Z), cT (f ) = f̂ ,
where f̂ : X/T → Z, f̂ (P) = sgnP f . One checks that cT is an injective ring
homomorphism and it is of great interest to describe precisely the image of cT . The
functions in the image are said to be represented overT and the representation problem
asks for a description of represented functions.
A crucial role in solving the representation problem is played by a special type of

preorderings called fans. A preordering T is a fan when, for any subset S of F , if
−1 /∈ S and Ṡ is a subgroup of Ḟ , then S is a preordering in F . The ultimate result
reads as follows.

Theorem 10.2 (Representation Theorem, Becker and Bröcker [19]). Let T0 be a
preordering in F . Then a function f ∈ C(X/T0),Z) is represented over T0 iff for
every fan T ⊇ T0 of finite index in F ,∑

P∈X/T
f(P) ≡ 0 (mod |X/T |).

A comprehensive survey of the reduced theory, the relations to valuation theory, and
detailed proofs are provided in Lam’s notes [142]. There are 164 references there, but
Lam says the list is incomplete and one should consult the bibliography in his survey
on ordered fields [141] where there are 223 references.
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11. Historical

Since the time of Fermat, eminent mathematicians were always interested in phe-
nomena connected with quadratic forms. However, quadratic forms were considered
usually over the integers or over the fields R and C. The equivalence problem over
integers is extraordinarily difficult and over R and C it is trivial. Hence, finding cri-
teria for equivalence of quadratic forms was not the central problem. This changed at
the end of 19th century when Minkowski [178] solved the equivalence problem for
quadratic forms over the rationals, and Hilbert included in his list of 23 problems the
following eleventh problem.5

Our present knowledge of the theory of quadratic number fields puts us in a position
to attack successfully the theory of quadratic forms with any number of variables and
with any algebraic numerical coefficients. This leads in particular to the interesting
problem: to solve a given quadratic equation with algebraic numerical coefficients in
any number of variables by integral or fractional numbers belonging to the algebraic
realm of rationality determined by the coefficients.
Thus, Hilbert asks for solution of the representation problem over algebraic number

fields and over rings of algebraic integers.As we know, in the case of fields, a solution
of the representation problem implies a solution of the equivalence problem; hence,
Hilbert’s question addresses the more general problem.
Hilbert’s high opinion on the present knowledge is certainly, at least in part, based

on the results of his 1899 paper [91]. He presented there a complete theory of the
Hilbert symbol in relative quadratic extensions of nonreal algebraic number fields
with odd class number. For such a field K, he proved ([91, Section 44, Satz 66])
that the equation ax2 + by2 = 1 has a solution in K if and only if for every prime
ideal p of K we have (a, b/p) = 1. This condition is equivalent to the solvability of
the congruence ax2 + by2 ≡ 1 (mod pn) in integers x, y in K for all exponents n.
Hilbert does not say so, but the latter is equivalent to the solvability of the equation
ax2 + by2 = 1 in the p-adic completions of the field K. Thus, Hilbert’s result is a
prototype of a local–global principle: the equation ax2 + by2 = 1 is solvable in the
field K if and only if it is solvable in all completions of K.
Five papers of Hasse [86–90] give a complete solution to the algebraic part of

Hilbert’s problem XI. Hasse does not mention the Hilbert problem at all, but there
is no doubt that his results form a theory of quadratic forms over number fields, as
demanded by Hilbert. Hasse shows that two quadratic forms are equivalent over a
number field F if and only if they are equivalent over all completions Fp of F (where
p runs through all primes of F , including infinite primes). A similar principle holds
for the representation problem: a quadratic form over number field F represents an
element of the field F if and only if it represents that element over all completions
Fp of F . Thus, the solutions of the equivalence and representation problems over
the number field F depend exclusively on solutions of these problems in the local
fields, Fp. For local fields, Hasse found a complete solution of both problems in

5 Translation taken from BAMS 8 (1902), 437–479.
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principle equivalent to what follows from Theorem 6.1 before. In this way, the Hasse
local–global principle becomes an effective tool for solving the equivalence and
representation problems for quadratic forms over algebraic number fields.
Another important event in the 1920swasArtin’s solution ofHilbert’s 17th problem

titled by Hilbert “Expression of definite forms by squares.”
For a field F , let S(F) denote the set of all sums of squares of elements of F , and

let T(F) be the set of all elements of F , that is, nonnegative at every ordering of F .
Further, for the rational function field K = F(X1, . . . , Xn) over an ordered field F ,
let D(K) be the set of positive semidefinite elements of K. Thus, D(K) consists of
rational functions f(X1, . . . , Xn) ∈ K with f(a1, . . . , an) non-negative in F for all
n-tuples a1, . . . , an ∈ F in the domain of f . Clearly,

S(K) ⊆ T(K) and S(K) ⊆ D(K).
Hilbert’s 17th problem askedwhether S(K) = D(K)whenF = R. Thus, the question
was whether every positive semidefinite rational function over R can be written as
the sum of squares of rational functions over R. Obviously, this question reduces to
representing positive semidefinite polynomials over R as sums of squares of rational
functions overR.AlreadyHilbert knew that there are semidefinite polynomials, which
cannot be written as sums of squares of polynomials, but the first explicit example of
such a polynomial was found only in 1967 by T. Motzkin,

f = 1+X2Y4 +X4Y2 − 3X2Y2.
Hilbert also knew that the answer to his question is in the positive when n = 2.
Hilbert’s problem was solved by E. Artin in 1927. Two main results in his paper [8]
assert that, first, S(K) = T(K) for all fields K [with the convention that T(K) = K

for a nonreal field K], and second, T(K) = D(K) for any rational function field
K = F(X1, . . . , Xn), where F is a number field with exactly one ordering, for
example, F = R. Thus, S(K) = T(K) = D(K) for any K = F(X1, . . . , Xn), where
F is a subfield of R with a unique ordering. Artin’s solution was based on the theory
of formally real fields founded byArtin and Schreier in [9]. Brauer [22] comments on
these results as follows: “His method was as remarkable as the result. It was perhaps
the first triumph of what is sometimes called abstract algebra.”
After Hasse andArtin, the third important paper of that time, and perhaps the most

influential paper on quadratic forms, is the 1937 ErnstWitt paper [240]. He introduced
the geometric language of “metric spaces,” that is, vector spaces with quadratic (and
bilinear) forms, and proved a series of theorems which became a standard foundation
of quadratic form theory. Thus, he proves the orthogonal complement theorem, the
existence of orthogonal bases, the cancellation theorem (Satz 4), the theorem on
decomposition of isotropic forms into a direct sum of hyperbolic and anisotropic
forms. Then he proves that classes of similar forms form a commutative ring (Satz 6)
and proves the chain equivalence theorem (Satz 7). In the second part of the paper,
he introduces the Clifford algebra of an arbitrary quadratic form (not just sum of
squares) and uses it to prove that the Hasse algebra of a quadratic form is a well-
defined equivalence invariant. It is amusing that Witt used for this Clifford algebras
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and did not notice that his chain equivalence theorem (Satz 7) does the job effortlessly.
Then he proceeds to a series of classification results of which the first (Satz 11) is
Theorem 4.1 above. In the third part of the paper Witt gives new, concise and lucid
proof of the Hasse principle. In particular, he deduces the local–global principle for
equivalence from the principle for the representation problem using his cancellation
theorem. The final section of the paper solves the classification problem over real
algebraic function fields in one variable.
While Witt’s paper is of utmost importance, it is interesting and surprising that at

some points it was anticipated by a 1907 Dickson paper [61].As reported by Scharlau
[207], Dickson not only found the diagonalizability of quadratic forms over fields
of characteristic �= 2 but also proved the cancellation theorem! It is a melancholy
thought to realize that it took almost 100 years to recognize Dickson’s contribution.
After Witt’s paper, there has been very little activity in quadratic form theory with

sporadic, albeit important, publications such as Kaplansky’s paper [108] mentioned
in Section 7.2 and Springer [219, 220]. Then in 1965, the first paper of Pfister [190]
appeared with the solution of the level problem for fields. In his next papers [191,
192], the local–global principle (Theorem 3.3) for torsion forms was proved and the
quantitative solution of Hilbert’s 17th problem was obtained (Theorem 8.5). These
results attracted the attention of many researchers and were the starting point of
continual activity in quadratic form theory over fields. The progress was surveyed by
Pfister himself in at least five surveys [193–196, 199]. Also Scharlau [207] gives an
overview, which concentrates on “some aspects neglected in the existing literature.”
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[175] J. Mináč, M. Spira, Witt rings and Galois groups, Ann. of Math. 144 (1996), 35–60.
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Introduction

An aim is to give a survey and explain the origins of results obtained by R. Brown
and P.J. Higgins and others over the years 1974–2008, and to point to applications
and related areas. These results yield an account of some basic algebraic topology
on the border between homology and homotopy; it differs from the standard account
through the use of crossed complexes, rather than chain complexes, as a fundamental
notion. In this way, one obtains comparatively quickly1 not only classical results such
as the Brouwer degree and the relative Hurewicz theorem but also noncommutative
results on second relative homotopy groups, as well as higher dimensional results
involving the fundamental group through its actions and presentations.Abasic tool is
the fundamental crossed complex�X∗ of the filtered spaceX∗, which in the caseX0 is
a singleton is fairly classical; when applied to the skeletal filtration of aCW -complex
X,� gives a more powerful version of the usual cellular chains of the universal cover
ofX because it contains non-Abelian information in dimensions 1 and 2 and has good
realization properties. It also gives a replacement for singular chains by taking X to
be the geometric realization of a singular complex of a space.
One of the major results is a homotopy classification theorem (4.1.9), which gen-

eralizes a classical theorem of Eilenberg–Mac Lane, though this does require results
on geometric realizations of cubical sets.
A replacement for the excision theorem in homology is obtained by using cubical

methods to prove a Higher Homotopy van Kampen Theorem (HHvKT)2 for the
fundamental crossed complex functor � on filtered spaces. This theorem is a higher
dimensional version of the van Kampen Theorem (vKT) on the fundamental group
of a space with base point, [1]3, which is a classical example of a

noncommutative local-to-global theorem,

and is the initial motivation for the work described here. The vKT determines com-
pletely the fundamental group π1(X, x) of a space X with base point, which is the
union of open sets U,V whose intersection is path-connected and contains the base
point x; the “local information” is on the morphisms of fundamental groups induced
by the inclusions U ∩ V → U,U ∩ V → V . The importance of this result reflects
the importance of the fundamental group in algebraic topology, algebraic geometry,
complex analysis, and many other subjects. Indeed, the origin of the fundamental
group was in Poincaré’s work on monodromy for complex variable theory.
Essential to this use of crossed complexes, particularly for conjecturing and proving

local-to-global theorems, is a construction of a cubical higher homotopy groupoid,
with properties described by an algebra of cubes. There are applications to local-
to-global problems in homotopy theory, which are more powerful than available by

1 This comparison is based on the fact that the methods do not require singular homology or simplicial
approximation.
2 We originally called this a generalized van Kampen Theorem, but this new term was suggested in 2007
by Jim Stasheff.
3 An earlier version for simplicial complexes is due to Seifert.
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purely classical tools while shedding light on those tools. It is hoped that this account
will increase the interest in the possibility of wider applications of these methods and
results since homotopical methods play a key role in many areas.

Background in higher homotopy groups
Topologists in the early part of the 20th century were well aware that

• the noncommutativity of the fundamental group was useful in geometric
applications;

• for path-connected X, there was an isomorphism

H1(X) ∼= π1(X, x)ab;
• the Abelian homology groups Hn(X) existed for all n � 0.

Consequently, there was a desire to generalize the noncommutative fundamental
group to all dimensions.
In 1932, Čech submitted a paper on higher homotopy groups πn(X, x) to the ICM

at Zurich, but it was quickly proved that these groups were Abelian for n � 2, and
on these grounds, Čech was persuaded to withdraw his paper so that only a small
paragraph appeared in the Proceedings [2]. We now see the reason for this commuta-
tivity as the result (Eckmann–Hilton) that a group internal to the category of groups
is just an Abelian group. Thus, since 1932, the vision of a noncommutative higher
dimensional version of the fundamental group has been generally considered to be a
mirage. Before we go back to the vKT, we explain in the next section how neverthe-
less work on crossed modules did introduce noncommutative structures relevant to
topology in dimension 2.
Work of Hurewicz, [3], led to a strong development of higher homotopy groups.

The fundamental group still came into the picture with its action on the higher homo-
topy groups, which I once heard J.H.C. Whitehead remark (1957) was especially
fascinating for the early workers in homotopy theory. Much of Whitehead’s work
was intended to extend to higher dimensions the methods of combinatorial group
theory of the 1930s, hence the title of his papers were as follows: “Combinatorial
homotopy, I, II” [4, 5]. The first of these two papers has been very influential and is
part of the basic structure of algebraic topology. It is the development of work of the
second paper, which we explain here.
The paper byWhitehead on “Simple homotopy types” [6], which deals with higher

dimensional analogs of Tietze transformations, has a final section using crossed com-
plexes. We refer to this again later in Section 15.
It is hoped also that this survey will be useful background to work on the van

KampenTheorem for diagrams of spaces in [7],which uses a formof higher homotopy
groupoid that is in an important sense much more powerful than that given here since
it encompasses n-adic information; however, current expositions are still restricted to
the reduced (one base point) case, the proof uses advanced tools of algebraic topology,
and the result was suggested by the work exposed here.



Crossed Complexes and Higher Homotopy Groupoids 87

1. Crossed modules

In the years 1941–1950, Whitehead developed work on crossed modules to represent
the structure of the boundary map of the relative homotopy group

π2(X,A, x)→ π1(A, x), (1)

in which both groups can be noncommutative. Here is the definition he found.
A crossed module is a morphism of groups μ : M → P together with an action

(m, p) �→ mp of the group P on the group M satisfying the following two
axioms:

CM1) μ(mp) = p−1(μm)p
CM2) n−1mn = mμn

for all m, n ∈ M,p ∈ P.
Standard algebraic examples of crossed modules are as follows:

(i) an inclusion of a normal subgroup, with action given by conjugation;
(ii) the inner automorphism map χ : M → Aut M, in which χm is the automor-

phism n �→ m−1nm;
(iii) the zero mapM → P whereM is a P-module;
(iv) an epimorphismM → P with kernel contained in the center ofM.

Simple consequences of the axioms for a crossed module μ : M → P are as follows:

1.1. Imμ is normal in P .

1.2. Kerμ is central in M and is acted on trivially by Imμ so that Kerμ inherits
an action ofM/ Imμ.

Another important algebraic construction is the free crossed P-module

∂ : C(ω)→ P

determined by a function ω : R→ P , where P is a group and R is a set. The group
C(ω) is generated by elements (r, p) ∈ R× P with the relations

(r, p)−1(s, q)−1(r, p)(s, qp−1(ωr)p);
the action is given by (r, p)q = (r, pq); and the boundary morphism is given by
∂(r, p) = p−1(ωr)p, for all (r, p), (s, q) ∈ R× P .
A major result of Whitehead was

Theorem W. [5]. If the space X = A ∪ {e2r }r∈R is obtained from A by attaching
2-cells by maps fr : (S1, 1)→ (A, x), then the crossed module of (1) is isomorphic
to the free crossedπ1(A, x)-module on the classes of the attachingmaps of the 2-cells.

Whitehead’s proof, which stretched over three papers, 1941–1949, used transver-
sality and knot theory—an exposition is given in [8]. Mac Lane and Whitehead [9]
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used this result as part of their proof that crossed modules capture all homotopy
2-types (they used the term “3-types”).
The title of the paper in which the first intimation of Theorem W appeared was

“On adding relations to homotopy groups” [10]. This indicates a search for higher
dimensional vKTs.
The concept of free crossed module gives a noncommutative context for chains

of syzygies. The latter idea, in the case of modules over polynomial rings, is one
of the origins of homological algebra through the notion of free resolution. Here is
how similar ideas can be applied to groups. Pioneering work here, independent of
Whitehead, was by Peiffer [11] and Reidemeister [12]. See [13] for an exposition of
these ideas.
SupposeP = 〈X | ω〉 is a presentation of a groupG so thatX is a set of generators

ofG and ω : R→ F(X) is a function, whose image is called the set of relators of the
presentation. Then we have an exact sequence

1
i−→ N(ωR)

φ−→ F(X) −→ G −→ 1,

where N(ωR) is the normal closure in F(X) of the set ωR of relators. The above
work of Reidemeister, Peiffer, and Whitehead showed that to obtain the next level
of syzygies, one should consider the free crossed F(X)-module ∂ : C(ω) → F(X)

since this takes into account the operations of F(X) on its normal subgroup N(ωR).
Elements of C(ω) are a kind of “formal consequences of the relators” so that the rela-
tion between the elements of C(ω) and those of N(ωR) is analogous to the relation
between the elements of F(X) and those ofG. It follows from the rules for a crossed
module that the kernel of ∂ is a G-module, called the module of identities among
relations, and sometimes written as π(P); there is considerable work on computing
it [13–17, 126]. By splicing to ∂ a free G-module resolution of π(P), one obtains
what is called a free crossed resolution of the groupG. We explain later (Proposition
15.3) why these resolutions have better realization properties than the usual resolu-
tions by chain complexes of G-modules. They are relevant to the Schreier extension
theory [18].
This notion of using crossed modules as the first stage of syzygies in fact represents

a wider tradition in homological algebra, in the work of Frölich and Lue [19, 20].
Crossed modules also occurred in other contexts, notably in representing elements

of the cohomology group H3(G,M) of a group G with coefficients in a G-module
M [21] and as coefficients in Dedecker’s theory of non-Abelian cohomology [22].
The notion of free crossed resolution has been exploited by Huebschmann [23–25]
to represent cohomology classes in Hn(G,M) of a group G with coefficients in a
G-moduleM and also to calculate with these.
The HHvKT can make it easier to compute a crossed module arising from some

topological situation, such as an induced crossed module [26, 27], or a coproduct
crossed module [28], than the cohomology class in H3(G,M) the crossed module
represents. To obtain information on such a cohomology element, it is useful to work
with a small free crossed resolution of G, and this is one motivation for developing
methods for calculating such resolutions. However, it is not so clearwhat a calculation
of such a cohomology element would amount to although it is interesting to know
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whether the element is nonzero or what its order is. Thus, the use of algebraic models
of cohomology classes may yield easier computations than the use of cocycles, and
this somewhat inverts traditional approaches.
Since crossed modules are algebraic objects generalizing groups, it is natural to

consider the problem of explicit calculations by extending techniques of computa-
tional group theory. Substantial work on this has been done by C.D. Wensley using
the program GAP [29,30].

2. The fundamental groupoid on a set of base points

A change in prospects for higher order noncommutative invariants was suggested by
Higgins’ paper [31] and leading to work of the writer published in 1967 [32]. This
showed that the vKT could be formulated for the fundamental groupoid π1(X,X0)
on a set X0 of base points, thus enabling computations in the nonconnected case,
including those in Van Kampen’s original paper [1]. This successful use of groupoids
in dimension 1 suggested the question of the use of groupoids in higher homotopy
theory and, in particular, the question of the existence of higher homotopy groupoids.
To see how this research programme could progress, it is useful to consider the

statement and special features of this generalized vKT for the fundamental groupoid.
If X0 is a set, and X is a space, then π1(X,X0) denotes the fundamental groupoid on
the setX∩X0 of base points. This allows the setX0 to be chosen in a way appropriate
to the geometry. For example, if the circle S1 is written as the union of two semicircles
E+∪E−, then the intersection {−1, 1} of the semicircles is not connected, so it is not
clear where to take the base point. Instead, one takes X0 = {−1, 1}, and so has two
base points. This flexibility is very important in computations, and this example of
S1 was a motivating example for this development. As another example, you might
like to consider the difference between the quotients of the actions of Z2 on the
group π1(S1, 1) and on the groupoid π1(S1, {−1, 1}), where the action is induced by
complex conjugation on S1. Relevant work on orbit groupoids has been developed
by Higgins and Taylor [33, 34], (under useful conditions, the fundamental groupoid
of the orbit space is the orbit groupoid of the fundamental groupoid [35, 11.2.3]).
Consideration of a set of base points leads to the following theorem (Theorem 2.1):

Theorem 2.1. [32] Let the space X be the union of open sets U,V with intersection
W , and let X0 be a subset of X meeting each path component of U,V,W . Then,
(C) (connectivity) X0 meets each path component of X and
(I) (isomorphism) the diagram of groupoid morphisms induced by inclusions

π1(W,X0)
i ��

j

��

π1(U,X0)

j′
��

π1(V,X0)
i′

�� π1(X,X0)

(2)

is a pushout of groupoids.
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From this theorem, one can compute a particular fundamental group π1(X, x0)
using combinatorial information on the graph of intersections of path components
of U,V,W , but for this, it is useful to develop the algebra of groupoids. Notice two
special features of this result, which are as follows.

(i) The computation of the invariant you may want, a fundamental group, is
obtained from the computation of a larger structure, and so part of the work is
to give methods for computing the smaller structure from the larger one. This
usually involves noncanonical choices, for example, that of a maximal tree
in a connected graph. The work on applying groupoids to groups gives many
examples of this [31, 32, 36, 37].

(ii) The fact that the computation can be done is surprising in two ways: (a) the
fundamental group is computed precisely, even though the information for
it uses input in two dimensions, namely 0 and 1. This is contrary to the
experience in homological algebra and algebraic topology, where the inter-
action of several dimensions involves exact sequences or spectral sequences,
which give information only up to extension, and (b) the result is a non-
commutative invariant, which is usually even more difficult to compute
precisely.

The reason for the success seems to be that the fundamental groupoid π1(X,X0)
contains information in dimensions 0 and 1, and so can adequately reflect the geometry
of the intersections of the path components of U,V,W and of the morphisms induced
by the inclusions ofW in U and V .
This suggested the question of whether these methods could be extended success-

fully to higher dimensions.
Part of the initial evidence for this quest was the intuitions in the proof of this

groupoid vKT, which seemed to use three main ideas to verify the universal property
of a pushout for diagram (2). So, suppose given morphisms of groupoids fU, fV from
π1(U,X0), π1(V,X0) to a groupoidG, satisfying fUi = fV j. We have to construct a
morphism f : π1(X,X0)→ G such that fi′ = fU, fj′ = fV and prove f is unique.
We concentrate on the construction.

• One needs a “deformation,” or “filling,” argument: given a path a : (I, İ) →
(X,X0), one can write a = a1 + · · · + an where each ai maps into U or V , but
ai will not necessarily have end points in X0. So one has to deform each ai to a′i
in U,V , orW , using the connectivity condition so that each a′i has end points in
X0, and a′ = a′1 + · · · + a′n is well defined. Then, one can construct using fU or
fV an image of each a′i in G and hence of the composite, called F(a) ∈ G, of
these images. Note that we subdivide inX and then put together again inG (this
uses the condition fUi = fV j to prove that the elements of G are composable),
and this part can be summarized as follows:

• Groupoids provided a convenient algebraic inverse to subdivision. Note that the
usual exposition in terms only of the fundamental group uses loops, that is, paths
which start and finish at the same point. An appropriate analogy is that if one
goes on a train journey from Bangor and back to Bangor, one usually wants to
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stop off at intermediate stations; this breaking and continuing a journey is better
described in terms of groupoids rather than groups.
Next, one has to prove that F(a) depends only on the class of a in the fun-

damental groupoid. This involves a homotopy relative end points h : a � b,
considered as a map I2→ X; subdivide h as h = [hij] so that each hij maps into
U,V , or W ; deform h to h′ = [h′ij] (keeping in U,V,W) so that each h′ij maps
the vertices toX0 and so determines a commutative square4 in one of π1(Q,X0)
forQ = U,V,W . Move these commutative squares over toG using fU, fV and
recompose them (this is possible again because of the condition fUi = fV j),
noting that

• in a groupoid, any composition of commutative squares is commutative. Here, a
“big” composition of commutative squares is represented by a diagram such as

• ��

��

• ��

��

• ��

��

• ��

��

• ��

��

• ��

��

•

��• ��

��

• ��

��

• ��

��

• ��

��

• ��

��

• ��

��

•

��• ��

��

• ��

��

• ��

��

• ��

��

•

��

��• ��

��

•

��• ��

��

• ��

��

• ��• ��• ��• ��•

(3)

and one checks that if each individual square is commutative, so also is the
boundary square (later called a 2-shell) of the compositions of the boundary
edges.

4 We need the notion of commutative square in a categoryC. This is a quadruple

⎛
⎝ c

a d

b

⎞
⎠ of arrows

in C, called “edges” of the square such that ab = cd, that is, these compositions are defined and agreed.
The commutative squares in C form a double category �C in that they compose “vertically”

⎛
⎝ c

a d

b

⎞
⎠ ◦1

⎛
⎝ b

a′ d′
e

⎞
⎠ =

⎛
⎝ c

aa′ dd′
e

⎞
⎠

and “horizontally” ⎛
⎝ c

a d

b

⎞
⎠ ◦2

⎛
⎝ c′
d f

b′

⎞
⎠ =

⎛
⎝ cc′
a f

bb′

⎞
⎠

This notion of �C was defined by C. Ehresmann in papers and in [38]. Note the obvious geometric
conditions for these compositions to be defined. Similarly, one has geometric conditions for a rectangular
array (cij), 1 � i � m, 1 � j � n, of commutative squares to have a well-defined composition, and then
their “multiple composition,” written as [cij], is also a commutative square, whose edges are compositions
of the “edges” along the outside boundary of the array. It is easy to give formal definitions of all this.
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Two opposite sides of the composite commutative square in G so obtained are
identities because h was a homotopy relative to end points, and the other two sides
are F(a), F(b). This proves that F(a) = F(b) in G.
Thus, the argument can be summarized as follows: a path or homotopy is divided

into small pieces, then deformed so that these pieces can be packaged andmoved over
toG, where they are reassembled. There seems to be an analogy with the processing
of an e-mail.
Notable applications of the groupoid theorem were: (i) to give a proof of a formula

in van Kampen’s paper of the fundamental group of a space, which is the union of two
connected spaces with non connected intersection, see [35, 8.4.9]; and (ii) to show
the topological utility of the construction by Higgins [36] of the groupoid f∗(G) over
Y0 induced from a groupoid G over X0 by a function f : X0 → Y0. (Accounts of
these with the notation Uf (G) rather than f∗(G) are given in [35, 36].) This latter
construction is regarded as a “change of base,” and analogs in higher dimensions
yielded generalizations of the relative Hurewicz theorem and of the Theorem W,
using induced modules and crossed modules.
There is another approach to the vKT, which goes via the theory of covering spaces

and the equivalence between covering spaces of a reasonable space X and functors
π1(X)→ Set [35]. See for example [39] for an exposition of the relation with tradi-
tional Galois theory and [40] for a modern account in which Galois groupoids make
an essential appearance. The paper [41] gives a general formulation of conditions for
the theorem to hold in the case X0 = X in terms of the map U � V → X being
an “effective global descent morphism” (the theorem is given in the generality of
lextensive categories). This work has been developed for toposes [42]. Analogous
interpretations for higher dimensional vKTs are not known.
The justificationof the breakingof a paradigm in changing fromgroups to groupoids

is several fold: the elegance and power of the results; the increased linking with
other uses of groupoids [43]; and the opening out of new possibilities in higher
dimensions, which allowed for new results and calculations in homotopy theory and
suggested new algebraic constructions. The important and extensive work of Charles
Ehresmann in using groupoids in geometric situations (bundles, foliations, germes,
. . .) should also be stated (see his collected works of which [44] is volume 1 and a
survey [45]).

3. The search for higher homotopy groupoids

Contemplation of the proof of the groupoid vKT in the last section suggested that
a higher dimensional version should exist, though this version amounted to an idea
of a proof in search of a theorem. Further evidence was the proof by J.F. Adams
of the cellular approximation theorem given in [35]. This type of subdivision argu-
ment failed to give algebraic information apparently because of a lack of an appro-
priate higher homotopy groupoid, that is a gadget to capture what might be the
underlying “algebra of cubes.” In the end, the results exactly encapsulated this
intuition.
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One intuition was that in groupoids, we are dealing with a partial algebraic
structure,5 in which composition is defined for two arrows if and only if the source
of one arrow is the target of the other. This seems to generalize easily to directed
squares, in which two such are composable horizontally if and only if the left-hand
side of one is the right-hand side of the other (and similarly vertically).
However, the formulation of a theorem in higher dimensions required specification

of the topological data, the algebraic data, and of a functor

� : (topological data)→ (algebraic data),

which would allow the expression of these ideas for the proof.
Experiments were made in the years 1967–1973 to define some functor � from

spaces to some kind of double groupoid, using compositions of squares in two direc-
tions, but these proved abortive. However, considerable progress was made in work
with Chris Spencer in 1971–1973 on investigating the algebra of double groupoids
[47] and on showing a relation to crossed modules. Further evidence was provided
when it was found, [48], that group objects in the category of groupoids (or groupoid
objects in the category of groups, either of which are often now called “2-groups”)
are equivalent to crossed modules and, in particular, are not necessarily commutative
objects. It turned out that this result was known to the Grothendieck school in the
1960s, but not published.
We review next a notion of double category, which is not the most general but

is appropriate in many cases. It was called an edge symmetric double category
in [49].
In the first place, a double category, K, consists of a triple of category structures

(K2,K1, ∂
−
1 , ∂

+
1 , ◦1, ε1), (K2,K1, ∂

−
2 , ∂

+
2 , ◦2, ε2),

(K1,K0, ∂
−, ∂+, ◦, ε),

as partly shown in the diagram

K2

∂−1

��

∂+1

��

∂−2 ��

∂+2
�� K1

∂−

��

∂+

��
K1

∂− ��

∂+
�� K0

(4)

The elements ofK0,K1, andK2 will be called, respectively, points or objects, edges,
and squares. The maps ∂±, ∂±i , i = 1, 2, will be called face maps, the maps εi :

5 The study of partial algebraic operations was initiated in [46]. We can now suggest a reasonable
definition of “higher dimensional algebra” as dealing with families of algebraic operations, whose domains
of definitions are given by geometric conditions.
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K1 −→ K2, i = 1, 2, resp. ε : K0 −→ K1 will be called degeneracies. The
boundaries of an edge and of a square are given by the diagrams

∂− �� ∂+

��
∂−1

∂−2 �� �� ∂+2

∂+1
��

1

2

��
��

(5)

The partial compositions, ◦1, resp. ◦2, are referred to as vertical, resp. horizontal,
composition of squares, are defined under the obvious geometric conditions, and
have the obvious boundaries. The axioms for a double category also include the usual
relations of a 2-cubical set (e.g. ∂−∂+2 = ∂+∂−1 ) and the interchange law. We use
matrix notation for compositions as[

a

c

]
= a ◦1 c,

[
a b

] = a ◦2 b,
and the crucial interchange law6 for these two compositions allows one to use matrix
notation [

a b

c d

]
=

[[
a b

]
[
c d

]
]
=

[[
a

c

] [
b

d

]]

for double composites of squares, whenever each row composite and each column
composite is defined. We also allow the multiple composition [aij] of an array (aij),
whenever for all appropriate i, j we have ∂+1 aij = ∂−1 ai+1,j, ∂

+
2 aij = ∂−2 ai,j+1.

A clear advantage of double categories and cubical methods is this easy expression
of multiple compositions, which allows for algebraic inverse to subdivision, and so
applications to local-to-global problems.
The identities with respect to ◦1 (vertical identities) are given by ε1 and will be

denoted by . Similarly, we have horizontal identities denoted by . Elements of the
form ε1ε(a) = ε2ε(a) for a ∈ K0 are called double degeneracies and will be denoted
by .
A morphism of double categories f : K → L consists of a triple of maps

fi : Ki → Li, (i = 0, 1, 2), respecting the cubical structure, compositions, and
identities.
Whereas it is easy to describe a commutative square of morphisms in a category,

it is not possible with this amount of structure to describe a commutative cube of
squares in a double category. We first define a cube, or 3-shell, that is, without any
condition of commutativity, in a double category.

6 The interchange implies that a double monoid is simply an Abelian monoid, so partial algebraic oper-
ations are essential for the higher dimensional work.
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Definition 3.1. Let K be a double category. A cube (3-shell) in K,

α = (α−1 , α+1 , α−2 , α+2 , α−3 , α+3 ),
consists of squares α±i ∈ K2 (i = 1, 2, 3) such that

∂σi (α
τ
j) = ∂τj−1(ασi )

for σ, τ = ± and 1 � i < j � 3. �

It is also convenient to have the corresponding notion of square, or 2-shell, of
arrows in a category. The obvious compositions also makes these into a double
category.
It is not hard to define three compositions of cubes in a double category so that

these cubes form a triple category: this is done in [50] or more generally in Section 5
of [51]. A key point is that to define the notion of a commutative cube, we need extra
structure on a double category. Thus, this step up a dimension is nontrivial, as was
first observed in the groupoid case in [52]. The problem is that a cube has six faces,
which easily divide into three even and three odd faces. So we cannot say as wemight
like that “the cube is commutative if the composition of the even faces equals the
composition of the odd faces,” since there are no such valid compositions.
The intuitive reason for the need of a new basic structure in that in a 2-dimensional

situation, we also need to use the possibility of “turning an edge clockwise or anti-
clockwise.” The structure to do this is as follows.
A connection pair on a double category K is given by a pair of maps

−, + : K1 −→ K2,

whose edges are given by the following diagrams for a ∈ K1:

−(a) =

a ��

a ��
��
��
��
��
��

1

��������
1

=
��

��
��
��
��
��
��

��������

=
1

2

��
��

+(a) =
1 ��������

1

��
��
��
��
��

a��

a
��

=
�������� ��

��
��
��
��
��

a��

a
��

=
1

2

��
��

This “hieroglyphic” notation, which was introduced in [53], is useful for expressing
the laws these connections satisfy. The first is a pair of cancellation laws which read[ ]

= ,
[ ] = ,
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which can be understood as “if you turn right and then left, you face the sameway,” and
similarly the other way round. They were introduced in [54]. Note that in this matrix
notation, we assume that the edges of the connections are such that the composition
is defined.
Two other laws relate the connections to the compositions and read[ ]

= ,

[ ]
= .

These can be interpreted as “turning left (or right) with your arm outstretched is the
same as turning left (or right).” The term “connections” and the name “transport
laws” were because these laws were suggested by the laws for path connections in
differential geometry, as explained in [47]. It was proved in [49] that a connection
pair on a double category K is equivalent to a “thin structure,” namely a morphism
of double categories � : �K1 → K, which is the identity on the edges. The proof
requires some “2-dimensional rewriting” using the connections.
We can now explain what is a “commutative cube” in a double category K with

connection pair.

Definition 3.2. Suppose given, in a double category with connections K, a cube
(3-shell)

α = (α−1 , α+1 , α−2 , α+2 , α−3 , α+3 ).
We define the composition of the odd faces of α to be

∂oddα =
[

α−1
α−3 α+2

]
(6)

and the composition of the even faces of α to be

∂evenα =
[

α−2 α+3
α+1

]
. (7)

We define α to be commutative if it satisfies the homotopy commutativity lemma
(HCL), that is,

∂oddα = ∂evenα. (HCL)

This definition can be regarded as a cubical, categorical (rather than groupoid) form
of the Homotopy Addition Lemma (HAL) in dimension 3.

You should draw a 3-shell, label all the edges with letters, and see that this equation
makes sense in that the 2-shells of each side of equation (HCL) coincide. Notice,
however, that these 2-shells do not have coincident partitions along the edges: that is,
the edges of this 2-shell in direction 1 are formed from different compositions of the
type 1 ◦ a and a ◦ 1. This definition is discussed in more detail in [50], is related to
other equivalent definitions, and it is proved that compositions of commutative cubes
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in the three possible directions are also commutative. These results are extended to
all dimensions in [55]; this requires the full structure indicated in Section 9 and also
the notion of thin element indicated in Section 12.
The initial discovery of connections arose in [47] from relating crossed modules to

double groupoids.Thefirst example of a double groupoidwas the double groupoid G

of commutative squares in a groupG. The first step in generalizing this construction

was to consider quadruples
(

c
a d
b

)
of elements of G such that abn = cd for some

element n of a subgroup N of G. Experiments quickly showed that for the two
compositions of such quadruples to be valid, it was necessary and sufficient that N
be normal in G. But in this case, the element n is determined by the boundary, or
2-shell, a, b, c, d. In homotopy theory, we require something more general. So we

consider a morphism μ : N → G of groups and consider quintuples
(
n : c

a d
b

)
such that abμ(n) = cd. It then turns out that we get a double groupoid if and only
if μ : N → G is a crossed module. The next question is which double groupoids
arise in this way? It turns out that we need exactly double groupoids with connection
pairs, though in this groupoid case we can deduce − from + using inverses in each
dimension. This gives the main result of [47], the equivalence between the category
of crossed modules and that of double groupoids with connections and one vertex.
These connections were also used in [52] to define a “commutative cube” in a

double groupoid with connections using the equation

c1 =
⎡
⎣ a−10−b0 c0 b1

a1

⎤
⎦

representing one face of a cube in terms of the other five and where the other con-
nections , are obtained from , by using the two inverses in dimension 2.
As you might imagine, there are problems in finding a formula in still higher dimen-
sions. In the groupoid case, this is handled by a homotopy addition lemma and thin
elements, [51], but in the category case, a formula for just a commutative four-cube
is complicated (see [56]).
The blockage of defining a functor� to double groupoids was resolved after nine

years in 1974 in discussions with Higgins, by considering theWhitehead TheoremW.
This showed that a 2-dimensional universal property was available in homotopy
theory, which was encouraging; it also suggested that a theory to be any good should
recover Theorem W. But this theorem was about relative homotopy groups. This
suggested studying a relative situation X∗ : X0 ⊆ X1 ⊆ X. On looking for the
simplest way to get a homotopy functor from this situation using squares, the obvious
answer came up: consider maps (I2, ∂I2, ∂∂I2)→ (X,X1, X0), that is, maps of the
square, which take the edges intoX1 and the vertices intoX0, and then take homotopy
classes of such maps relative to the vertices of I2 to form a set ρ2X∗. Of course, this
set will not inherit a group structure, but the surprise is that it does inherit the structure
of double groupoid with connections—the proof is not entirely trivial, and is given
in [52] and the expository article [57]. In the case X0 is a singleton, the equivalence
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of such double groupoids to crossed modules takes ρX∗ to the usual second-relative
homotopy crossed module.
Thus, a search for a higher homotopy groupoidwas realized in dimension 2. Connes

suggests in [58] that it has been fashionable formathematicians to disparage groupoids
and it might be that a lack of attention to this notion was one reason why such a
construction had not been found earlier than 40 years after Hurewicz’s papers.
Finding a good homotopy double groupoid led rather quickly, in view of the pre-

vious experience, to a substantial account of a 2-dimensional HHvKT [52]. This
recovers Theorem W and also leads to new calculations in 2-dimensional homotopy
theory, and in fact to some new calculations of 2-types. For a recent summary of some
results and some new ones, see the paper published in the J. Symbolic Computation
[30]—publication in this journal illustrates that we are interested in using general
methods to obtain specific calculations and ones to which there seems no other route.
Once the 2-dimensional case had been completed in 1975, it was easy to conjec-

ture the form of general results for dimensions > 2. These were proved by 1979
and announcements were made in [59] with full details in [51, 60]. However, these
results needed a number of new ideas, even just to construct the higher dimensional
compositions, and the proof of the HHvKT was quite hard and intricate. Further, for
applications such as to explain how the general � behaved on homotopies, we also
needed a theory of tensor products, found in [61], so that the resulting theory is quite
complex. It is also remarkable that ideas of Whitehead in [5] played a key role in
these results.

4. Main results

Major features of the work over the years with Philip Higgins and others can be
summarized in the following diagram of categories and functors:

Diagram 4.1.

in which

4.1.1 the categories FTop of filtered spaces, ω-Gpd of cubical ω-groupoids with
connections, and Crs of crossed complexes are monoidal closed, and have
a notion of homotopy using ⊗ and a unit interval object;

4.1.2 ρ, � are homotopical functors (that is, they are defined in terms of homotopy
classes of certain maps) and preserve homotopies;



Crossed Complexes and Higher Homotopy Groupoids 99

4.1.3 λ, γ are inverse adjoint equivalences of monoidal closed categories;

4.1.4 there is a natural equivalence γρ � � so that either ρ or � can be used as
appropriate;

4.1.5 ρ, � preserve certain colimits and certain tensor products;

4.1.6 the category of chain complexes with a groupoid of operators is monoidal
closed, ∇ preserves the monoid structures, and is left adjoint to �;

4.1.7 by definition, the cubical filtered classifying space is B� = | | ◦ U∗, where
U∗ is the forgetful functor to filtered cubical sets7 using the filtration of an
ω-groupoid by skeleta, and | | is geometric realization of a cubical set;

4.1.8 there is a natural equivalence � ◦ B� � 1;
4.1.9 if C is a crossed complex and its cubical classifying space is defined as

B�C = (B�C)∞, then for a CW -complex X, and using homotopy as in
4.1.1 for crossed complexes, there is a natural bijection of sets of homotopy
classes

[X,B�C] ∼= [�X∗, C].
Recent applications of the simplicial version of the classifying space are in
[62–64].

Here, a filtered space consists of a (compactly generated) spaceX∞ and an increas-
ing sequence of subspaces

X∗ : X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X∞.
With the obvious morphisms, this gives the category FTop. The tensor product in this
category is the usual

(X∗ ⊗ Y∗)n =
⋃

p+q=n
Xp × Yq.

The closed structure is easy to construct from the law

FTop(X∗ ⊗ Y∗, Z∗) ∼= FTop(X∗,FTOP(Y∗, Z∗)).

An advantage of this monoidal closed structure is that it allows an enrichment
of the category FTop over crossed complexes, ω-Gpd using �, or ρ applied to
FTOP(Y∗, Z∗).
The structure of crossed complex is suggested by the canonical example, the

fundamental crossed complex �X∗ of the filtered space X∗. So it is given by a
diagram

7 Cubical sets are defined, analogously to simplicial sets, as functors K : �op → Set, where � is
the “box” category with objects In and morphisms the compositions of inclusions of faces and of the
various projections In → Ir for n > r. The geometric realization |K| of such a cubical set is obtained by
quotienting the disjoint union of the sets K(In)× In by the relations defined by the morphisms of�. For
more details, see [65], and for variations on the category� to include for example connections, see [66].
See also Section 9.
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· · · − · · ·· · · Cn

t

n
Cn 1

t

C2
2

t

C1

ts

C0 C0 C0 C0

Diagram 4.2.

in which in this example, C1 is the fundamental groupoid π1(X1, X0) of X1 on the
“set of base points” C0 = X0, while for n � 2, Cn is the family of relative homotopy
groups {Cn(x)} = {πn(Xn,Xn−1, x) | x ∈ X0}. The boundarymaps are those standard
in homotopy theory. There is, for n � 2, an action of the groupoid C1 on Cn (and
of C1 on the groups C1(x), x ∈ X0 by conjugation), the boundary morphisms are
operator morphisms, δn−1δn = 0, n � 3, and the additional axioms are satisfied
that

4.3. b−1cb = cδ2b, b, c ∈ C2 so that δ2 : C2 → C1 is a crossed module (of
groupoids);

4.4. if c ∈ C2 then δ2c acts trivially on Cn for n � 3;

4.5. each group Cn(x) is Abelian for n � 3, and so the family Cn is a C1-module.

Clearly,we obtain a categoryCrsof crossed complexes; this category is not so familiar
and so we give arguments for using it in the next section.
As algebraic examples of crossed complexes, we have C = C(G, n) where G is

a group, commutative if n � 2, and C is G in dimension n and trivial elsewhere;
C = C(G, 1 : M,n), where G is a group, M is a G-module, n � 2, and C is G in
dimension 1,M in dimension n, trivial elsewhere, and zero boundary if n = 2; C is
a crossed module (of groups) in dimensions 1 and 2 and trivial elsewhere.
A crossed complex C has a fundamental groupoid π1C = C1/ Im δ2 and also, for

n � 2, a family {Hn(C, p)|p ∈ C0} of homology groups.

5. Why crossed complexes?

• They generalize groupoids and crossed modules to all dimensions. Note that
the natural context for second-relative homotopy groups is crossed modules of
groupoids rather than groups.

• They are good for modelling CW -complexes.
• Free crossed resolutions enable calculations with small CW -complexes and
CW -maps, see Section 15.

• Crossed complexes give a kind of “linear model” of homotopy types, which
includes all 2-types. Thus, although they are not the most general model by any
means (they do not contain quadratic information such as Whitehead products),
this simplicity makes them easier to handle and to relate to classical tools. The
new methods and results obtained for crossed complexes can be used as a model
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for more complicated situations. This is how a general n-adic Hurewicz theorem
was found [67].

• They are convenient for calculation and the functor � is classical, involving
relative homotopy groups. We explain some results in this form later.

• They are close to chain complexes with a group(oid) of operators and related
to some classical homological algebra (e.g. chains of syzygies). In fact if SX is
the simplicial singular complex of a space, with its skeletal filtration, then the
crossed complex�(SX) can be considered as a slightly noncommutative version
of the singular chains of a space.

• The monoidal structure is suggestive of further developments (e.g. crossed diff-
erential algebras), see [68, 69]. It is used in [70] to give an algebraic model of
homotopy 3-types and to discuss automorphisms of crossed modules.

• Crossed complexes have a good homotopy theory, with a cylinder object, and
homotopy colimits, [71]. The homotopy classification result 4.1.9 generalizes a
classical theorem of Eilenberg–Mac Lane.Applications of the simplicial version
are given in, for example, [63, 64, 72].

• They have an interesting relation with the Moore complex of simplicial groups
and of simplicial groupoids (see Section 18).

6. Why cubical ω-groupoids with connections?

The definition of these objects is more difficult to give but will be indicated in
Section 9. Here we explain why these structures are a kind of engine giving the
power behind the theory.

• The functor ρ gives a form of higher homotopy groupoid, thus confirming the
visions of the early topologists.

• They are equivalent to crossed complexes.
• They have a clear monoidal closed structure, and a notion of homotopy, from
which one can deduce those on crossed complexes, using the equivalence of
categories.

• It is easy to relate the functor ρ to tensor products but quite difficult to do this
directly for �.

• Cubical methods, unlike globular or simplicial methods, allow for a sim-
ple algebraic inverse to subdivision, which is crucial for our local-to-global
theorems.

• The additional structure of “connections,” and the equivalencewith crossed com-
plexes, allows for the sophisticated notion of commutative cube and the proof
that multiple compositions of commutative cubes are commutative. The last fact
is a key component of the proof of the HHvKT.

• They yield a construction of a (cubical) classifying space B�C = (B�C)∞ of a
crossed complexC, which generalizes (cubical) versions of Eilenberg–MacLane
spaces, including the local coefficient case. This has convenient relation to
homotopies.
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• There is a current resurgence of the use of cubes in, for example, combinatorics,
algebraic topology, and concurrency. There is a Dold–Kan type theorem for
cubical Abelian groups with connections [73].

7. The equivalence of categories

Let Crs and ω-Gpd denote, respectively, the categories of crossed complexes and
ω-groupoids: we use the latter term as an abbreviation of “cubical ω-groupoids with
connections.” A major part of the work consists in defining these categories and
proving their equivalence, which, thus, gives an example of two algebraically defined
categories whose equivalence is nontrivial. It is even more subtle than that because
the functors γ : Crs → ω−Gpd and λ : ω−Gpd → Crs are not hard to define, and
it is easy to prove γλ � 1. The hard part is to prove λγ � 1, which shows that an
ω-groupoidGmay be reconstructed from the crossed complex γ (G) it contains. The
proof involves using the connections to construct a “folding map” � : Gn → Gn,
with image γ (G)n, and establishing its major properties, including the relations with
the compositions. This gives an algebraic form of some old intuitions of several ways
of defining relative homotopy groups, for example, using cubes or cells.
On the way, we establish properties of thin elements, as those which fold down to

1, and show thatG satisfies a strong Kan extension condition, namely that every box
has a unique thin filler. This result plays a key role in the proof of the HHvKT for
ρ since it is used to show an independence of choice. This part of the proof goes by
showing that the two choices can be seen, since we start with a homotopy, as given
by the two ends ∂±n+1x of an (n+ 1)-cube x. It is then shown by induction, using the
method of construction and the above result, that x is degenerate in direction n+ 1.
Hence the two ends in that direction coincide.
Properties of the foldingmap are used also in showing that�X∗ is actually included

in ρX∗, in relating two types of thinness for elements of ρX∗, and in proving a
homotopy addition lemma in ρX∗.
Any ω-Gpd G has an underlying cubical set UG. If C is a crossed complex, then

the cubical set U(λC) is called the cubical nerve N�C of C. It is a conclusion of the
theory that we can also obtain N�C as

(N�C)n = Crs(�In∗ , C),

where In∗ is the usual geometric cube with its standard skeletal filtration. The (cubical)
geometric realization |N�C| is also called the cubical classifying space B�C of the
crossed complex C. The filtration C∗ of C by skeleta gives a filtration B�C∗ of
B�C and there is (as in 4.1.6) a natural isomorphism �(B�C∗) ∼= C. Thus, the
properties of a crossed complex are those that are universally satisfied by�X∗. These
proofs use the equivalence of the homotopy categories of Kan8 cubical sets and of

8 The notion of Kan cubical set K is also called a cofibrant cubical set. It is an extension condition that
any partial r-box in K is the partial boundary of an element of Kr . See, for example, [65], but the idea
goes back to the first papers by D. Kan [74, 75].
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CW -complexes.We originally took this from theWarwickMasters thesis of S. Hintze,
but it is now available with different proofs fromAntolini [76] and Jardine [65].
As said above, by taking particular values for C, the classifying space B�C gives

cubical versions of Eilenberg–Mac Lane spaces K(G, n), including the case n = 1
andG noncommutative. If C is essentially a crossed module, then B�C is called the
cubical classifying space of the crossed module, and in fact realizes the k-invariant
of the crossed module.
Another useful result is that if K is a cubical set, then ρ(|K|∗) may be identi-

fied with ρ(K), the free ω-Gpd on the cubical set K, where here |K|∗ is the usual
filtration by skeleta. On the other hand, our proof that �(|K|∗) is the free crossed
complex on the nondegenerate cubes of K uses the generalized HHvKT of the next
section.
It is also possible to give simplicial and globular versions of some of the above

results because the category of crossed complexes is equivalent also to those of
simplicial T -complexes [77] and of globular∞-groupoids [78]. In fact, the published
paper on the classifying space of a crossed complex [79] is given in simplicial terms
to link more easily with well-known theories.

8. First main aim of the work: higher Homotopy van Kampen theorems

These theorems give noncommutative tools for higher dimensional local-to-global
problems yielding a variety of new, often noncommutative, calculations, which prove
(i.e. test) the theory. We now explain these theorems in a way which strengthens the
relation with descent, since that was a theme of the conference at which the talk was
given on which this survey is based.
We suppose given an open cover U = {Uλ}λ∈� of X. This cover defines a map

q : E =
⊔
λ∈�

Uλ→ X

and so we can form an augmented simplicial space

Č(q) : · · ·E×X E×X E ������ E×X E �� �� E
q �� X,

where the higher dimensional terms involve disjoint unions of multiple intersections
Uν of the Uλ.
We now suppose given a filtered space X∗, a cover U as above of X = X∞, and

an augmented simplicial filtered space Č(q∗), involving multiple intersections Uν∗ of
the induced filtered spaces.
We still need a connectivity condition.

Definition 8.1. A filtered space X∗ is connected if and only if the induced maps
π0X0 → π0Xn are surjective and πn(Xr,Xn, ν) = 0 for all n > 0, r > n and
ν ∈ X0.
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Theorem 8.2 (Main result (HHvKT)). If Uν∗ is connected for all finite intersections
Uν of the elements of the open cover, then
(C) (connectivity) X∗ is connected, and
(I) (isomorphism) the following diagram as part of ρ(Č(q∗)),

ρ(E∗ ×X∗ E∗) ���� ρE∗
ρ(q∗) �� ρX∗, (cρ)

is a coequalizer diagram. Hence the following diagram of crossed complexes,

�(E∗ ×X∗ E∗) ���� �E∗
�(q∗) �� �X∗, (c�)

is also a coequalizer diagram.

So we get calculations of the fundamental crossed complex �X∗.
It should be emphasized that to get to and apply, this theorem takes just the two

papers [51, 60], totalling 58 pages. With this we deduce in the first instance

• the usual vKT for the fundamental groupoid on a set of base points;
• the Brouwer degree theorem (πnSn = Z);
• the relative Hurewicz theorem;
• Whitehead’s theorem that πn(X ∪ {e2λ}, X) is a free crossed module;
• an excision result, more general than the previous two, on πn(A∪B,A, x) as an
inducedmodule (crossedmodule if n = 2)when (A,A∩B) is (n−1)-connected.

The assumptions required of the reader are quite small, just some familiaritywithCW -
complexes. This contrasts with some expositions of basic homotopy theory, where the
proof of say the relative Hurewicz theorem requires knowledge of singular homology
theory. Of course, it is surprising to get this last theorem without homology, but this
is because it is seen as a statement on the morphism of relative homotopy groups

πn(X,A, x)→ πn(X ∪ CA,CA, x) ∼= πn(X ∪ CA, x)
and is obtained, like our proof of TheoremW, as a special case of an excision result.
The reason for this success is that we use algebraic structures that model the underly-
ing processes of the geometrymore closely than those in common use. These algebraic
structures and their relations are quite intricate, as befits the complications of homo-
topy theory, so the theory is tight knit.
Note also that these results cope well with the action of the fundamental group on

higher homotopy groups.
The calculational use of the HHvKT for�X∗ is enhanced by the relation of�with

tensor products (see Section 15 for more details).

9. The fundamental cubical ω-groupoid ρX∗ of a filtered space X∗

Here are the basic elements of the construction.
In∗ : the n-cube with its skeletal filtration.
Set RnX∗ = FTop(In∗ , X∗). This is a cubical set with compositions, connections,

and inversions.



Crossed Complexes and Higher Homotopy Groupoids 105

For i = 1, . . . , n, there are standard:
face maps ∂±i : RnX∗ → Rn−1X∗;
degeneracy maps εi : Rn−1X∗ → RnX∗
connections ±i : Rn−1X∗ → RnX∗
compositions a ◦i b defined for a, b ∈ RnX∗ such that ∂+i a = ∂−i b
inversions −i : Rn→ Rn.
The connections are induced by γαi : In → In−1 defined using the monoid struc-

turesmax,min : I2→ I. They are essential formany reasons, for example, to discuss
the notion of commutative cube.
These operations have certain algebraic properties that are easily derived from the

geometry and which we do not itemize here (see, e.g. [80]). These were listed first
in the Bangor thesis of Al-Agl [81] (In the paper [51], the only basic connections
needed are the +i , from which the 

−
i are derived using the inverses of the groupoid

structures.).
Now it is natural and convenient to define f ≡ g for f, g : In∗ → X∗ to mean f is

homotopic to g through filtered maps and relative to the vertices of In. This gives a
quotient map

p : RnX∗ → ρnX∗ = (RnX∗/ ≡).

The following results are proved in [60].

9.1. The compositions on RX∗ are inherited by ρX∗ to give ρX∗, the structure of
cubical multiple groupoid with connections.

9.2. The map p : RX∗ → ρX∗ is a Kan fibration of cubical sets.

The proofs of both results usemethods of collapsing, which are indicated in the next
section. The second result is almost unbelievable. Its proof has to give a systematic
method of deforming a cube with the right faces “up to homotopy” into a cube with
exactly the right faces, using the given homotopies. In both cases, the assumption
that the relation ≡ uses homotopies relative to the vertices is essential to start the
induction. (In fact, the paper [60] does not use homotopy relative to the vertices,
but imposes an extra condition J0, that each loop in X0 is contractible X1, which
again starts the induction. This condition is awkward in applications, for example, to
function spaces. A full exposition of the whole story is in preparation [82].)
An essential ingredient in the proof of the HHvKT is the notion of multiple com-

position. We have discussed this already in dimension 2, with a suggestive picture in
the diagram (3). In dimension n, the aim is to give algebraic expression to the idea
of a cube In being subdivided by hyperplanes parallel to the faces into many small
cubes, a subdivision with a long history in mathematics.
Let (m) = (m1, . . . , mn) be an n-tuple of positive integers and

φ(m) : In→ [0,m1] × · · · × [0,mn]
be the map (x1, . . . , xn) �→ (m1x1, . . . , mnxn). Then a subdivision of type (m) of a
map α : In → X is a factorization α = α′ ◦ φ(m); its parts are the cubes α(r), where
(r) = (r1, . . . , rn) is an n-tuple of integers with 1 � ri � mi, i = 1, . . . , n, and
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where α(r) : In→ X is given by

(x1, . . . , xn) �→ α′(x1 + r1 − 1, . . . , xn + rn − 1).
We then say that α is the composite of the cubes α(r) and write α = [α(r)]. The

domain of α(r) is then the set {(x1, . . . , xn) ∈ In : ri − 1 � xi � ri, 1 � i � n}. This
ability to express “algebraic inverse to subdivision” is one benefit of using cubical
methods.
Similarly, in a cubical set with compositions satisfying the interchange law, we can

define themultiple composition [α(r)] of amultiple array (α(r)) provided the obviously
necessary multiple incidence relations of the individual α(r) to their neighbors are
satisfied.
Here is an application that is essential in many proofs and seems hard to prove

without the techniques involved in 9.2.

Theorem 9.3 (Lifting multiple compositions). Let [α(r)] be a multiple composition
in ρnX∗. Then representatives a(r) of the α(r) may be chosen so that the multiple
composition [a(r)] is well defined in RnX∗.

Proof: The multiple composition [α(r)] determines a cubical map
A : K→ ρX∗,

where the cubical set K corresponds to a representation of the multiple composition
by a subdivision of the geometric cube so that top cells c(r) of K are mapped by A
to α(r).
Consider the diagram, in which ∗ is a corner vertex of K,

∗ ��

��

RX∗

p

��
K

A
��

A′

���
�

�
�

�
�

�
�

ρX∗

.

Then K collapses to ∗, written K ↘ ∗. (As an example, see how the subdivision in
the diagram (3) may be collapsed row by row to a point.) By the fibration result, A
lifts to A′, which represents [a(r)], as required.
So we have to explain collapsing.

10. Collapsing

We use a basic notion of collapsing and expanding due to J.H.C. Whitehead [6].
Let C ⊆ B be subcomplexes of In. We say C is an elementary collapse of B,

B ↘e C, if for some s � 1, there is an s-cell a of B and (s− 1)-face b of a, the free
face, such that

B = C ∪ a, C ∩ a = ȧ \ b
(where ȧ denotes the union of the proper faces of a).
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We say B1 collapses to Br, written B1 ↘ Br, if there is a sequence

B1 ↘e B2 ↘e · · · ↘e Br

of elementary collapses.
If C is a subcomplex of B, then

B × I ↘ (B × {0} ∪ C × I)
(this is proved by induction on dimension of B \ C).
Further, In collapses to any one of its vertices (this may be proved by induction on

n using the first example). These collapsing techniques allow the construction of the
extensions of filtered maps and filtered homotopies that are crucial for proving 9.1
that ρX∗ does obtain the structure of multiple groupoid.
However, more subtle collapsing techniques using partial boxes are required to

prove the fibration theorem 9.2, as partly explained in the next section.

11. Partial boxes

Let C be an r-cell in the n-cube In. Two (r− 1)-faces of C are called opposite if they
do not meet.
A partial box in C is a subcomplex B of C generated by one (r − 1)-face b of C

(called a base of B) and a number, possibly zero, of other (r− 1)-faces of C, none of
which is opposite to b.
The partial box is a box if its (r−1)-cells consist of all but one of the (r−1)-faces

of C.
The proof of the fibration theorem uses a filter homotopy extension property and

the following:

Proposition 11.1 (Key Proposition). Let B,B′ be partial boxes in an r-cell C of In

such that B′ ⊆ B. Then there is a chain

B = Bs ↘ Bs−1 ↘ · · · ↘ B1 = B′
such that

(i) each Bi is a partial box in C;
(ii) Bi+1 = Bi ∪ ai, where ai is an (r − 1)-cell of C not in Bi;
(iii) ai ∩ Bi is a partial box in ai.

The proof is quite neat and follows the pictures. Induction up such a chain of
partial boxes is one of the steps in the proof of the fibration theorem 9.2. The propo-
sition implies that an inclusion of partial boxes is what is known as an anodyne
extension [65].
Here is an example of a sequence of collapsings of a partial box B, which illustrate

some choices in forming a collapse B ↘ 0 through two other partial boxes B1
and B2.
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B B1 B2

e e e e e e e

The proof of the fibration theoremgives a program for carrying out the deformations
needed to do the lifting. In some sense, it implies computing a multiple composition
that can be done using collapsing as the guide.
Methods of collapsing generalize methods of trees in dimension 1.

12. Thin elements

Another key concept is that of thin element α ∈ ρnX∗ for n � 2. The proofs here use
strong results of [51].
We say α is geometrically thin if it has a deficient representative, that is, an a :

In∗ → X∗ such that a(In) ⊆ Xn−1.
We say α is algebraically thin if it is a multiple composition of degenerate elements

or those coming from repeated (including 0) negatives of connections. Clearly, any
multiple composition of algebraically thin elements is thin.

Theorem 12.1. (i) Algebraically thin is equivalent to geometrically thin.
(ii) In a cubical ω-groupoid with connections, any box has a unique thin filler.

Proof. The proof of the forward implication in (i) uses lifting of multiple composi-
tions, in a stronger form than stated above.
The proofs of (ii) and the backward implication in (i) use the full force of the algebraic
relation between ω-groupoids and crossed complexes. �

These results allowone to replace argumentswith commutative cubes by arguments
with thin elements.

13. Sketch proof of the HHvKT

The proof goes by verifying the required universal property. Let U be an open cover
of X as in Theorem 8.2.
We go back to the following diagram, whose top row is part of ρ(Č(q∗)),

ρ(E∗ ×X∗ E∗)
∂0 ��
∂1

�� ρ(E∗)

f

�����������������
ρ(q∗) �� ρX∗

f ′

���
�
�
�

G

(cρ)
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To prove this top row is a coequalizer diagram, we suppose given a morphism
f : ρ(E∗) → G of cubical ω-groupoids with connection such that f ◦ ∂0 =
f ◦ ∂1, and we prove that there is a unique morphism f ′ : ρX∗ → G such that
f ′ ◦ ρ(q∗) = f .
To definef ′(α) forα ∈ ρX∗, you subdivide a representative a ofα to give a = [a(r)]

so that each a(r) lies in an element U(r) of U ; use the connectivity conditions and this
subdivision to deform a into b = [b(r)] so that

b(r) ∈ R(U(r)∗ )
and so obtain

β(r) ∈ ρ(U(r)∗ ).
The elements

fβ(r) ∈ G
may be composed in G (by the conditions on f ) to give an element

θ(α) = [fβ(r)] ∈ G.
So the proof of the universal property has to use an algebraic inverse to subdivision.
Again an analogy here is with sending an email: the element you start with is sub-
divided, deformed so that each part is correctly labelled, the separate parts are sent,
and then recombined.
The proof that θ(α) is independent of the choices made uses crucially properties of

thin elements. The key point is a filter homotopy h : α ≡ α′ in RnX∗ gives a deficient
element of Rn+1X∗.
Themethod is to do the subdivision and deformation argument on such a homotopy,

push the little bits in some

ρn+1(Uλ∗ )

(now thin) over to G, combine them, and get a thin element

τ ∈ Gn+1,
all of whose faces not involving the direction (n+ 1) are thin because h was given
to be a filter homotopy. An inductive argument on unique thin fillers of boxes then
shows that τ is degenerate in direction (n+1) so that the two ends in direction (n+1)
are the same.
This ends a rough sketch of the proof of the HHvKT for ρ.
Note that the theory of these forms of multiple groupoids is designed to make

this last argument work. We replace a formula for saying a cube h has commutative
boundary by a statement that h is thin. It would be very difficult to replace the above
argument, on the composition of thin elements, by a higher dimensional manipulation
of formulae such as that given in Section 3 for a commutative 3-cube.
Further, the proof does not require knowledge of the existence of all coequalizers,

nor does it give a recipe for constructing these in specific examples.
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14. Tensor products and homotopies

The construction of the monoidal closed structure on the category ω-Gpd is based on
rather formal properties of cubical sets, and the fact that for the cubical set In, we have
Im⊗ In ∼= Im+n. The details are given in [61]. The equivalence of categories implies
then that the category Crs is also monoidal closed, with a natural isomorphism

Crs(A⊗ B,C) ∼= Crs(A,CRS(B,C)).

Here the ‘internal hom’CRS(B,C) is a crossed complex and its elements in dimen-
sion n are: for n = 0 themorphismsB→ C; for n = 1 are homotopies of morphisms;
and for n � 2 are forms of higher homotopies. The precise description of these is
obtained of course by tracing out in detail the equivalence of categories. It should be
emphasized that certain choices are made in constructing this equivalence, and these
choices are reflected in the final formulae that are obtained.
An important result is that if X∗, Y∗ are filtered spaces, then there is a natural

transformation

η : ρX∗ ⊗ ρY∗ → ρ(X∗ ⊗ Y∗)
[a] ⊗ [b] �→ [a⊗ b],

where if a : Im∗ → X∗, b : In∗ → Y∗, then a⊗ b : Im+n∗ → X∗ ⊗ Y∗. It is not hard to
see, in this cubical setting, that η is well defined. It can also be shown using previous
results that η is an isomorphism if X∗, Y∗ are the geometric realizations of cubical
sets with the usual skeletal filtration.
The equivalence of categories now gives a natural transformation of crossed com-

plexes

η′ : �X∗ ⊗�Y∗ → �(X∗ ⊗ Y∗). (8)

It would be hard to construct this directly. It is proved in [79] that η′ is an isomorphism
if X∗, Y∗ are the skeletal filtrations of CW -complexes. The proof uses the HHvKT,
and the fact that A ⊗ − on crossed complexes has a right adjoint and so preserves
colimits. It is proved in [69] that η is an isomorphism ifX∗, Y∗ are cofibred, connected
filtered spaces. This applies, in particular, to the useful case of the filtration B�C∗ of
the classifying space of a crossed complex.
It turns out that the defining rules for the tensor product of crossed complexes,

which follows from the above construction, are obtained as follows. We first define a
bimorphism of crossed complexes.

Definition 14.1. A bimorphism θ : (A,B) → C of crossed complexes is a family
of maps θ : Am × Bn → Cm+n satisfying the following conditions, where a ∈
Am, b ∈ Bn, a1 ∈ A1, b1 ∈ B1 (temporarily using additive notation throughout the
definition):

(i)

β(θ(a, b)) = θ(βa, βb) for all a ∈ A, b ∈ B.
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(ii)

θ(a, bb1) = θ(a, b)θ(βa,b1) if m � 0, n � 2,

θ(aa1 , b) = θ(a, b)θ(a1,βb) if m � 2, n � 0.

(iii)

θ(a, b+ b′)

=
{
θ(a, b)+ θ(a, b′) if m = 0, n � 1 or m � 1, n � 2,

θ(a, b)θ(βa,b
′) + θ(a, b′) if m � 1, n = 1,

θ(a+ a′, b)

=
{
θ(a, b)+ θ(a′, b) if m � 1, n = 0 or m � 2, n � 1,

θ(a′, b)+ θ(a, b)θ(a′,βb) if m = 1, n � 1.

(iv)

δm+n(θ(a, b)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ(δma, b)+ (−)mθ(a, δnb) if m � 2, n � 2,

−θ(a, δnb)− θ(βa, b)+ θ(αa, b)θ(a,βb) if m = 1, n � 2,

(−)m+1θ(a, βb)+ (−)mθ(a, αb)θ(βa,b) + θ(δma, b) if m � 2, n = 1,
−θ(βa, b)− θ(a, αb)+ θ(αa, b)+ θ(a, βb) if m = n = 1.

(v)

δm+n(θ(a, b)) =
{
θ(a, δnb) if m = 0, n � 2 ,

θ(δma, b) if m � 2, n = 0 .

(vi)

α(θ(a, b)) = θ(a, αb) and β(θ(a, b)) = θ(a, βb) if m = 0, n = 1 ,
α(θ(a, b)) = θ(αa, b) and β(θ(a, b)) = θ(βa, b) if m = 1, n = 0 .

The tensor product of crossed complexes A,B is given by the universal bimorphism
(A,B)→ A⊗ B, (a, b) �→ a⊗ b. The rules for the tensor product are obtained by
replacing θ(a, b) by a⊗ b in the above formulae.

The conventions for these formulae for the tensor product arise from the derivation
of the tensor product via the category of cubical ω-groupoids with connections, and
the formulae are forced by our conventions for the equivalence of the two categories
[51, 61].
The complexity of these formulae is directly related to the complexities of the cell

structure of the product Em ×En, where the n-cell En has cell structure e0 if n = 0,
e0± ∪ e1 if n = 1, and e0 ∪ en−1 ∪ en if n � 2.
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It is proved in [61] that the bifunctor −⊗− is symmetric and that if a0 is a vertex
of A, then the morphism B→ A⊗ B, b→ a0 ⊗ b is injective.
There is a standard groupoid model I of the unit interval, namely the indiscrete

groupoid on two objects 0, 1. This is easily extended trivially to either a crossed
complex or an ω-Gpd. So using ⊗, we can define a “cylinder object” I⊗− in these
categories and so a homotopy theory [71].

15. Free crossed complexes and free crossed resolutions

Let C be a crossed complex. A free basis B∗ for C consists of the following:
B0 is set which we take to be C0;
B1 is a graph with source and target maps s, t : B1→ B0 and C1 is the free groupoid
on the graph B1: that is, B1 is a subgraph of C1 and any graph morphism B1→ G to
a groupoid G extends uniquely to a groupoid morphism C1→ G;
Bn is, for n � 2, a totally disconnected subgraph of Cn with target map t : Bn→ B0;
for n = 2, C2 is the free crossed C1-module on B2 while for n > 2, Cn is the free
(π1C)-module on Bn.
It may be proved using the HHvKT that if X∗ is a CW -complex with the skeletal

filtration, then �X∗ is the free crossed complex on the characteristic maps of the
cells of X∗. It is proved in [79] that the tensor product of free crossed complexes
is free.
A free crossed resolution F∗ of a groupoid G is a free crossed complex that is

aspherical together with an isomorphism φ : π1(F∗) → G. Analogs of standard
methods of homological algebra show that free crossed resolutions of a group are
unique up to homotopy equivalence.
To apply this result to free crossed resolutions, we need to replace free crossed

resolutions by CW -complexes. A fundamental result for this is the following, which
goes back to Whitehead [6] and Wall [83], and which is discussed further by Baues
in [84, Chapter VI, Section 7]:

Theorem 15.1. LetX∗ be aCW -filtered space, and let φ : �X∗ → C be a homotopy
equivalence to a free crossed complex with a preferred free basis. Then, there is a
CW -filtered space Y∗, and an isomorphism �Y∗ ∼= C of crossed complexes with
preferred basis such that φ is realized by a homotopy equivalence X∗ → Y∗.

In fact, as pointed out by Baues, Wall states his result in terms of chain complexes,
but the crossed complex formulation seems more natural, and avoids questions of
realizability in dimension 2, which are unsolved for chain complexes.

Corollary 15.2. If A is a free crossed resolution of a group G, then A is realized
as free crossed complex with preferred basis by some CW -filtered space Y∗.

Proof. We only have to note that the groupG has a classifyingCW -spaceBG, whose
fundamental crossed complex �(BG) is homotopy equivalent to A. �
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Baues also points out in [84, p. 657] an extension of these results, which we can
apply to the realization of morphisms of free crossed resolutions. A new proof of this
extension is given by Faria Martins in [85], using methods of Ashley [77].

Proposition 15.3. Let X = K(G, 1), Y = K(H, 1) be CW -models of Eilenberg–
Mac Lane spaces and let h : �X∗ → �(Y∗) be a morphism of their fundamental
crossed complexes with the preferred bases given by skeletal filtrations. Then h =
�(g) for some cellular g : X→ Y .

Proof. Certainly, h is homotopic to �(f ) for some f : X → Y since the set of
pointed homotopy classesX→ Y is bijective with the morphisms of groupsA→ B.
The result follows from [84, p. 657, (**)] (if f is�-realizable, then each element in
the homotopy class of f is �-realizable). �

These results are exploited in [86, 87] to calculate free crossed resolutions of the
fundamental groupoid of a graph of groups.
An algorithmic approach to the calculation of free crossed resolutions for groups is

given in [17] by constructing partial contracting homotopies for the universal cover at
the same time as constructing this universal cover inductively. This has been imple-
mented in GAP4 by Heyworth and Wensley [88].

16. Classifying spaces and the homotopy classification of maps

The formal relations of cubical sets and of cubical ω-groupoids with connections and
the relation of Kan cubical sets with topological spaces allow the proof of a homotopy
classification theorem.

Theorem 16.1. If K is a cubical set and G is an ω-groupoid, then there is a natural
bijection of sets of homotopy classes

[|K|, |UG|] ∼= [ρ(|K|∗),G],
where on the left-hand side, we work in the category of spaces, and on the right in
ω-groupoids.

Here, |K|∗ is the filtration by skeleta of the geometric realization of the cubical set.
We explained earlier how to define a cubical classifying space say B�(C) of a

crossed complex C as B�(C) = |UN�C| = |UλC|. The properties already stated
now give the homotopy classification theorem 4.1.9.
It is shown in [60] that for a CW -complex Y , there is a map p : Y → B��Y∗,

whose homotopyfibre isn-connected ifY is connected andπiY = 0 for 2 � i � n−1.
It follows that if alsoX is a connected CW -complex with dimX � n, then p induces
a bijection

[X, Y ] → [X,B�Y∗].
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So, under these circumstances, we get a bijection

[X, Y ] → [�X∗,�Y∗]. (9)

This result, due to Whitehead [5], translates a topological homotopy classification
problem to an algebraic one. We explain below how this result can be translated to a
result on chain complexes with operators.
It is also possible to define a simplicial nerve N�(C) of a crossed complex C by

N�(C)n = Crs(�(�n), C).

The simplicial classifying space of C is then defined using the simplicial geometric
realization

B�(C) = |N�(C)|.
The properties of this simplicial classifying space are developed in [79], and in par-
ticular an analog of 4.1.9 is proved.
The simplicial nerve and an adjointness

Crs(�(L), C) ∼= Simp(L,N�(C))

are used in [89, 90] for an equivariant homotopy theory of crossed complexes and
their classifying spaces. Important ingredients in this are notions of coherence and
an Eilenberg–Zilber type theorem for crossed complexes proved in Tonks’ Bangor
thesis [91, 92], see also [93].
Labesse in [94] defines a crossed set. In fact, a crossed set is exactly a crossed

module (of groupoids) δ : C → X � G, where G is a group acting on the set X
and X � G is the associated actor groupoid; thus, the simplicial construction from
a crossed set described by Larry Breen in [94] is exactly the simplicial nerve of the
crossed module, which is regarded as a crossed complex. Hence, the cohomology
with coefficients in a crossed set used in [94] is a special case of cohomology with
coefficients in a crossed complex, dealt with in [79] (We are grateful to Breen for
pointing this out to us in 1999.).

17. Relation with chain complexes with a groupoid of operators

Chain complexes with a group of operators are a well-known tool in algebraic topol-
ogy, where they arise naturally as the chain complex C∗X̃∗ of cellular chains of the
universal cover X̃∗ of a reduced CW -complexX∗. The group of operators here is the
fundamental group of the space X.
Whitehead in [5] gave an interesting relation between his free crossed complexes

(he called them “homotopy systems”) and such chain complexes.We refer later to his
important homotopy classification results in this area. Here, we explain the relation
with the Fox free differential calculus [95].
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Let μ : M → P be a crossed module of groups and let G = Cokerμ. Then, there
is an associated diagram

M
μ ��

h2
��

P

h1
��

φ �� G

h0

��
Mab

∂2

�� Dφ ∂1

�� Z[G]

(10)

in which the second row consists of (right)G-modules and module morphisms. Here,
h2 is simply the Abelianization map; h1 : P → Dφ is the universal φ-derivation,
that is, it satisfies h1(pq) = h1(p)

φq + h1(q), for all p, q ∈ P , and is universal for
this property; and h0 is the usual derivation g �→ g − 1. Whitehead in his Lemma 7
of [5] gives this diagram in the case P is a free group, when he takes Dφ to be the
free G-module on the same generators as the free generators of P . Our formulation,
which uses the derivedmodule due to Crowell [96], includes his case. It is remarkable
that diagram (10) is a commutative diagram in which the vertical maps are operator
morphisms and that the bottom row is defined by this property. The proof in [97]
follows essentially Whitehead’s proof. The bottom row is exact: this follows from
results in [96], and is a reflection of a classical fact on group cohomology, namely
the relation between central extensions and the Ext functor, (see [21]). In the case the
crossed module is the crossed module δ : C(ω)→ F(X) derived from a presentation
of a group, then C(ω)ab is isomorphic to the free G-module on R, Dφ is the free
G-module on X, and it is immediate from the above that ∂2 is the usual derivative
(∂r/∂x) of Fox’s free differential calculus [95]. Thus, Whitehead’s results anticipate
those of Fox.
It is also proved in [5] that if the restrictionM → μ(M)ofμhas a section,which is a

morphism but not necessarily aP-map, then h2 maps Kerμ isomorphically to Ker ∂2.
This allows calculation of the module of identities among relations by using module
methods, and this is commonly exploited, see for example [16] and the references
there.
Whitehead introduced the categoriesCW of reducedCW -complexes,HS of homo-

topy systems, and FCC of free chain complexes with a group of operators, together
with functors

CW
�−→ HS

C−→ FCC.

In each of these categories, he introduced notions of homotopy and he proved that
C induces an equivalence of the homotopy category of HS with a subcategory of
the homotopy category of FCC. Further, C�X∗ is isomorphic to the chain complex
C∗X̃∗ of cellular chains of the universal cover ofX so that under these circumstances,
there is a bijection of sets of homotopy classes

[�X∗,�Y∗] → [C∗X̃∗, C∗Ỹ∗]. (11)

This with the bijection (9) can be interpreted as an operator version of the Hopf
classification theorem. It is surprisingly little known. It includes results of Olum [98]
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published later, and it enables quite useful calculations to be done easily, such as the
homotopy classification of maps from a surface to the projective plane [99], and other
cases. Thus, we see once again that this general theory leads to specific calculations.
All these results are generalized in [97] to the nonfree case and to the nonreduced

case, which requires a groupoid of operators, thus giving functors

FTop
�−→ Crs

∇−→ Chain.

(The paper [97] uses the notation � for this ∇.) One utility of the generalization to
groupoids is that the functor ∇ then has a right adjoint and so preserves colimits. An
example of this preservation is given in [97, Example 2.10]. The construction of the
right adjoint� to ∇ builds on a number of constructions used earlier in homological
algebra.
The definitions of the categories under consideration to obtain a generalization of

the bijection (11) has to be quite careful, since it works in the groupoid case, and not
all morphisms of the chain complex are realizable.
This analysis of the relations between these two categories is used in [79] to give

an account of cohomology with local coefficients.
It is also proved in [97] that the functor ∇ preserves tensor products, where the

tensor in the category Chain is a generalization to modules over groupoids of the
usual tensor for chain complexes of modules of groups. Since the tensor product
is described explicitly in dimensions � 2 in [61] and (∇C)n = Cn for n � 3, this
preservation yields a complete description of the tensor product of crossed complexes.

18. Crossed complexes and simplicial groups and groupoids

TheMoore complexNG of a simplicial groupG is not in general a (reduced) crossed
complex. LetDnG be the subgroup ofGn generated by degenerate elements. Ashley
showed in his thesis [77] thatNG is a crossed complex if and only if (NG)n∩(DG)n =
{1} for all n � 1.
Ehlers and Porter in [100, 101] show that there is a functor C from simplicial

groupoids to crossed complexes in whichC(G)n is obtained fromN(G)n by factoring
out

(NGn ∩Dn)dn+1(NGn+1 ∩Dn+1),
where the Moore complex is defined so that its differential comes from the last sim-
plicial face operator.
This is one part of an investigation into the Moore complex of a simplicial group,

of which the most general investigation is by Carrasco and Cegarra in [102].
An important observation in [103] is that if N � G is an inclusion of a normal

simplicial subgroup of a simplicial group, then the induced morphism on components
π0(N)→ π0(G) obtains the structure of crossed module. This is directly analogous
to the fact that if F → E → B is a fibration sequence, then the induced morphism
of fundamental groups π1(F, x) → π1(E, x) also obtains the structure of crossed
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module. This last fact is relevant to algebraic K-theory, where for a ring R, the
homotopy fibration sequence is taken to be F → B(GL(R))→ B(GL(R))+.

19. Other homotopy multiple groupoids

A natural question is whether there are other useful forms of higher homotopy
groupoids. It is because the geometry of convex sets is so much more complicated in
dimensions > 1 than in dimension 1 that new complications emerge for the theories
of higher order group theory and of higher homotopy groupoids. We have differ-
ent geometries, for example, those of disks, globes, simplices, cubes, as shown in
dimension 2 in the following diagram.

The cellular decomposition for an n-disk is Dn = e0 ∪ en−1 ∪ en and that for
globes is

Gn = e0± ∪ e1± ∪ · · · ∪ en−1± ∪ en.
The higher dimensional group(oid) theory reflecting the n-disks is that of crossed
complexes and that for the n-globes is called globular ω-groupoids.
A common notion of higher dimensional category is that of n-category, which

generalize the 2-categories studied in the late 1960s. A 2-category C is a category
enriched in categories, in the sense that each hom set C(x, y) is given the structure
of category, and there are appropriate axioms. This gives inductively the notion of an
n-category as a category enriched in (n − 1)-categories. This is called a “globular”
approach to higher categories. The notion of n-category for all n was axiomatized in
[78] and called an∞-category; its underlying geometry was also axiomatized in this
paper as a family of sets Sn, n � 0 with operations

Dαi : Sn→ Si, Ei : Si→ Sn, α = 0, 1; i = 1, . . . , n− 1
satisfying appropriate laws. Such a structure was later called a “globular set” [104],
and the term ω-category was used instead of the earlier∞-category. Difficulties of
the globular approach are to define multiple compositions, and also monoidal closed
structures, although these are clear in the cubical approach. A globular higher homo-
topy groupoid of a filtered space has been constructed in [105], deduced from cubical
results in [60, 80].
Although the proof of the HHvKT outlined earlier does seem to require cubical

methods, there is still a question of the place of globular and simplicial methods in this
area. A simplicial analog of the equivalence of categories is given in [77,106], using
Dakin’s notion of simplicial T -complex [107]. However, it is difficult to describe in
detail the notion of tensor product of such structures or to formulate a proof of the
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HHvKT theorem in that context. There is a tendency to replace the term T -complex
from all this earlier work such as [77, 108] by complicial set [109].
It is easy to define a homotopy globular set ρ©X∗ of a filtered space X∗, but it

is not quite so clear how to prove directly that the expected compositions are well
defined. However, there is a natural graded map

i : ρ©X∗ → ρX∗ (12)

and applying the folding map of [80,81] analogously to methods in [60] allows one to
prove that i of (12) is injective. It follows that the compositions on ρX∗ are inherited
by ρ©X∗ to make the latter a globular ω-groupoid. The details are in [105].
Loday in 1982 [110] defined the fundamental catn-group of an n-cube of spaces (a

catn-group may be defined as an n-fold category internal to the category of groups)
and showed that catn-groups model all reduced weak homotopy (n+ 1)-types. Joint
work [7] formulated and proved a HHvKT for the catn-group functor from n-cubes
of spaces. This allows new local to global calculations of certain homotopy n-types
[111] and also an n-adic Hurewicz theorem [67]. This work obtains more powerful
results than the purely linear theory of crossed complexes. It yields a group-theoretic
description of the first nonvanishing homotopy group of a certain (n+1)-ad of spaces,
so several formulae for the homotopy and homology groups of specific spaces; [112]
gives new applications. Porter in [103] gives an interpretation of Loday’s results using
methods of simplicial groups. There is clearly a lot to do in this area. See [113] for
relations of catn-groups with homological algebra.
Recently, some absolute homotopy 2-groupoids and double groupoids have been

defined, see [114] and the references there, while [115] applies generalized Galois
theory to give a new homotopy double groupoid of a map, generalizing previous work
of [52]. It is significant that crossed modules have been used in a differential topology
situation by Mackaay and Picken [116]. Reinterpretations of these ideas in terms of
double groupoids are started in [117].
It seems reasonable to suggest that in the most general case, double groupoids are

still somewhat mysterious objects. The paper [118] gives a kind of classification of
them.

20. Conclusion and questions

• The emphasis on filtered spaces rather than the absolute case is open to question.
But no useful definition of a higher homotopy groupoid of a space with clear
uses has been proposed. The work of Loday makes use of n-cubes of filtered
spaces (see [110,119]).

• Mirroring the geometry by the algebra is crucial for conjecturing and proving
universal properties.

• Thin elements are crucial for modelling a concept not so easy to define or handle
algebraically, that of commutative cubes. (see also [55, 120]).

• The cubical methods summarized in Section 9 have also been applied in concur-
rency theory, (see, e.g. [121, 122].)
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• HHvKT theorems give, when they apply, exact information even in noncom-
mutative situations. The implications of this for homological algebra could be
important.

• One construction inspired eventually by this work, the non-Abelian tensor prod-
uct of groups, has a bibliography of 90 papers, since it was defined with Loday
in [7].

• Globular methods do fit into this scheme. They have not so far yielded new
calculations in homotopy theory (see [105]) but have been applied to directed
homotopy theory [121]. Globular methods are the main tool in approaches to
weak category theory (see, e.g. [104, 123]) although the potential of cubical
methods in that area is hinted at in [120].

• For computations, we really need strict structures (although we do want to com-
pute invariants of homotopy colimits).

• No work seems to have been done on Poincaré duality, that is, on finding special
qualities of the fundamental crossed complex of the skeletal filtration of a com-
binatorial manifold. However, the book by Sharko ([124, Chapter VI]) does use
crossed complexes for investigating Morse functions on a manifold.

• In homotopy theory, identifications in low dimensions can affect high-
dimensional homotopy. So we need structure in a range of dimensions to model
homotopical identifications algebraically. The idea of identifications in low
dimensions is reflected in the algebra by “induced constructions.”

• In this way, we calculate some crossed modules modeling homotopy 2-types,
whereas the corresponding k-invariant is often difficult to calculate.

• The use of crossed complexes in Čech theory is a current project with Jim Glaze-
brook and Tim Porter.

• Question:Are there applications of higher homotopy groupoids in other contexts
where the fundamental groupoid is currently used, such as algebraic geometry?

• Question:There are uses of double groupoids in differential geometry, for exam-
ple in Poisson geometry, and in 2-dimensional holonomy [125]. Is there a non-
Abelian De Rham theory, using an analog of crossed complexes?

• Question: Is there a truly noncommutative integration theory based on limits of
multiple compositions of elements of multiple groupoids, in analogy to the way
length is defined using limits of sequences of line segments?
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Introduction

Picard–Vessiot (PV) theory is a Galois theory of linear differential equations; see
[1–4]. Let us quickly review its basics along the traditional approach. A field K
together with a single derivation is called a differential field. Suppose that the char-
acteristic chK ofK is zero, and the subfield k, say, of constants inK is algebraically
closed. Given a linear homogeneous differential equation

∂y = y(n) + a1y(n−1) + · · · + an−1y = 0 (ai ∈ K )
with coefficients inK, there is a unique (up to isomorphism) minimal splitting exten-
sion L/K of differential fields. By definition, L has the same constant field k as K,
includes an n-dimensional k-subspace of solutions of ∂y = 0, and is generated by
those solutions over K. Such an extension L/K is called a PV extension, just as the
minimal splitting field of a (separable) algebraic equation is called as a Galois exten-
sion. The group Autdif (L/K) of differential automorphisms of L/K forms a linear
algebraic group as a closed subgroup of GLn(k), the group of linear automorphisms
of the solution space. Then,M �→ Autdif (L/M) gives a 1–1 correspondence (Galois
correspondence) between the intermediate differential fields in L/K and the closed
subgroups in Autdif (L/K). The extension L/K is said to be Liouville if there is a
sequenceK = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L of differential fields in which eachLi/Li−1
is a finite extension or a simple extension Li = Li−1(xi), where xi is an integral, or
the exponential of an integral, of some element in Li−1. This condition holds if and
only if the connected component in Autdif (L/K) containing 1 is solvable.
Parallel resultswere obtained by replacing differential fieldswith partial differential

fields [5],�-fields [6], andfieldswith higher derivation [7].Oncontrary, theFranke [8]
in his attempt of difference PV theory encountered the following difficulty: it often
happens that a difference equation with coefficients in a difference field, say K,
cannot split in any difference field extension L/K with the same constants. Here, a
difference field is a field together with a single automorphism. More than 30 years
later, van der Put and Singer [9] overcame the difficulty stated before by extending
the framework from difference fields to simple total difference rings and thereby
succeeded in establishing the desired difference PV theory.
A Hopf algebraic approach to the PV theory was proposed by Takeuchi [10] in

the context of C-ferential fields, where C is a cocommutative coalgebra with speci-
fied grouplike 1C. With C appropriately chosen, differential fields, partial differential
fields,�-fields, and fields with higher derivation all turn into examples of C-ferential
fields. According to this approach, to each PV extension L/K (see below for defini-
tion) is associated a commutative Hopf algebra H over the constant field k, which
is called the PV Hopf algebra for L/K. Quite generally, commutative Hopf alge-
bras are in 1–1 correspondence with affine group schemes. The affine group scheme
G(L/K) := SpH corresponding toH is called the PV group scheme forL/K. This use
of commutative Hopf algebras (or affine group schemes) instead of linear algebraic
groups makes it possible to avoid certain dispensable assumptions on k and L/K. For
example, the Galois correspondence is formulated as a 1–1 correspondence between
the intermediate C-ferential fields in L/K and the affine closed subgroup schemes in
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G(L/K), for which k may be arbitrary, and L/K may not be finitely generated. Of
course, this result reduces to the Galois correspondence cited in the first paragraph in
the special situation there.
Amano and Masuoka [11] pursued Takeuchi’s approach, to include difference PV

theory as well, working with ASD-module algebras. Here,D denotes a split cocom-
mutative Hopf algebra over a fixed ground field R; it is thus of the form D1#RG,
where G denotes the group of grouplikes in D, and D1 is the irreducible compo-
nent containing 1. A D-module algebra is said to be AS, if it is Artinian as a ring,
and is simple as a D-module algebra; such a D-module algebra K is necessarily
the product K1 × · · · × K1 of finitely many copies of a D(G1)-module field K1,
where G1 ⊂ G is the subgroup of the stabilizers of a primitive idempotent in K and
D(G1) = D1#RG1. If D1 is trivial and G is the free group on one generator, then
an ASD-module algebra is precisely a simple total ring as in [9]. Roughly speaking,
the special situation where G is trivial corresponds to the C-ferential context, but
Amano andMasuoka [11] imposes throughout the assumption thatD1 is of Birkhoff–
Witt type, which is assumed in [10] only to a small extent. The article [11] does not
include [10] as a special case but clarifies how the argument in theC-ferential context
can be used to deal with the context of AS D-module algebras. We remark that prior
to Amano and Masuoka [11], André [12] gave a unified approach to differential and
difference PV theories from the viewpoint of noncommutative differential geometry.
Liouville extensions are not discussed in [10–12]. Amano [13] characterized Liou-
ville PV extensions in the context of AS D-module algebras, introducing the notion
of Liouville affine group schemes.
The present article brings the three papers [10, 11, 13] together and is divided into

the three parts:

Part I: PV theory in the differential context
Part II: PV theory in the C-ferential context
Part III: Unified PV theory

To avoid too much technical argument, we discuss in Part I everything in the
differential context.We then explain how the results are generalized in theC-ferential
context (Part II) and in the context of AS D-module algebras (Part III). Part I is
fairly selfcontained, with almost full proofs given. Only minimal knowledge of Hopf
algebras and affine group schemes is assumed there. The language of tensor categories
will be used only in Parts II and III. In what follows in the Introduction, we will work
in the differential context for simplicity.
One more feature of our Hopf algebraic approach is first to formalize the notion

of a PV extension intrinsically (see below), and then to characterize it as a minimal
splitting extension of a linear differential equation, just as Emil Artin formalized
a Galois extension as a separable normal extension, subsequently characterizing it
as a minimal splitting extension of a separable algebraic equation. To explain our
formalism of PV extensions, let L/K be an extension of differential fields with the
same constant field k. We define L/K to be a PV extension (Definition 1.8) if there is
a (necessarily unique) differential subring A ⊂ L including K such that (a) L equals
the quotient field Q(A) of A and (b) the constants H := (A ⊗K A)0 in A ⊗K A
generate the left (or right) A-module A⊗K A. It is then proved that the natural map
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μ : A⊗kH → A⊗KA,μ(a⊗h) = (a⊗1)·h is an isomorphism so thatH is a k-form
of the leftA-moduleA⊗KA. The naturalA-coring structure onA⊗KA induces onH
a structure of a commutative k-Hopf algebra; thisH is precisely the PVHopf algebra
cited before. Moreover, A/K turns into a right H-Galois extension [14, Definition

8.1.1] for which the canonical isomorphism A ⊗K A �−→ A ⊗k H required by the
definition coincides with the inverse of μ. Thus, our approach is based on an idea of
Hopf–Galois theory.
According to our definition, PV extensions need not be finitely generated.We prove

that L/K is finitely generated PV if and only if L is a minimal splitting field of some
linear differential equation (or a system of such equations) over K (Theorem 3.11).
Giving a system of linear differential equations over K is equivalent to giving a
differential K-module of finite K-dimension. Giving an appropriate definition of a
minimal splitting field of a possibly infinite-dimensional differential K-module, we
extend the last result, characterizing PV extensions in general (Proposition 3.17).
There is another known approach to the PV theory proposed by Deligne [15] called

the Tannaka approach. It is based on the result that a finite-dimensional differential
K-module V generates the neutral Tannaka category, which corresponds to the PV
group scheme G(L/K), where L is a minimal splitting field for V . We reformulate
this result in the C-ferential context (Theorem 8.11) and give an elementary proof
based on a fundamental result of Hopf–Galois theory. In this way, our approach links
the traditional approach and the Tannaka approach.
Throughout this article, rings, fields, and algebras are supposed to be commutative

unless otherwise stated.

Part I: PV theory in the differential context

1. Formalism of Picard–Vessiot extensions

Definition 1.1. A differential ring (or field ) is a ring (or field) A with a given
derivation ′ : A→ A, which is by definition is an additive operation such that (ab)′ =
a′b + ab′, and then necessarily 1′ = 0. The subring (or subfield) of constants in a
differential ring (or field) A is defined and denoted by

A0 = {a ∈ A | a′ = 0}.
The adjective “differential” will mean ′-stable or ′-preserving. Thus, a differential
subring is a ′-stable subring.A differential ring map is a ′-preserving ring map. Given
such a map i : K→ A, the pair (A, i) is called a differential K-algebra.

Lemma 1.2 (Extension lemma). Let A be a differential ring and let S ⊂ A be a
multiplicative subset. Then, the localization S−1A by S has a unique differential
A-algebra structure. The derivation is(a

s

)′ = a′s− as′
s2

(a ∈ A, s ∈ S).
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In particular, if A is an integral domain, its quotient field, which will be denoted by
Q(A), has a unique differential A-algebra structure.

Proposition 1.3 (see [16, Lemma 10.2.2]). Let K be a differential field, and let
A be a differential K-algebra. Then, K and A0 are K0-linearly disjoint, that is, the
multiplication K ⊗K0 A0→ A, x⊗ a �→ xa is injective.

We will denote iterated derivations by x(1) = x′, x(2) = x′′, . . . , x(i+1) = (x(i))′.

Proposition 1.4 (Wronskian criterion, [1, Theorem 3.7]). Finitely many elements
x1, x2, . . . , xn in a differential field K are K0-linearly independent if and only if the
determinant

w(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn

x′1 x′2 · · · x′n
...

...
...

x
(n−1)
1 x

(n−1)
2 · · · x

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
,

called theWronskian, is nonzero.

Let K be a differential field, and let A 	= 0 be a differential K-algebra. The K-
algebra A⊗K A is regarded as differential with respect to (a⊗ b)′ = a′ ⊗ b+ a⊗ b′.
Similarly, A ⊗K A ⊗K A and A ⊗K A ⊗K A ⊗K A are regarded as differential
K-algebras. The A-bimodule

C = CA/K := A⊗K A (1.5)

together with the A-bimodule maps

� : C = A⊗K A→ A⊗K A⊗K A = C ⊗A C,
�(a⊗K b) = a⊗K 1⊗K b, (1.6)

ε : C = A⊗K A→ A, ε(a⊗K b) = ab
forms an A-coring; this means that � and ε satisfy the coalgebra axioms. Note that
both� and ε are maps of differentialK-algebras, which therefore induceK0-algebra
maps �0 and ε0 on the constants. Let

H = (A⊗K A)0
denote the K0-subalgebra of constants in A⊗K A.

Proposition 1.7.

(1) We have three natural K0-algebra maps:

(i) K0→ A0, (ii) H ⊗K0 H → (A⊗K A⊗K A)0, and
(iii) H ⊗K0 H ⊗K0 H → (A⊗K A⊗K A⊗K A)0.
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(2) If both the maps (i) and (ii) are isomorphic, �0 and ε0 can be transfered to
K0-algebra maps,

� : H → H ⊗K0 H, ε : H → K0.

(3) If in addition, the map (iii) is injective, then (H,�, ε) forms a commutative
K0-Hopf algebra. Its antipode S : H → H is induced by the flip

τ : A⊗K A→ A⊗K A, τ(a⊗ b) = b⊗ a.
In summary, (H,�, ε, S ) is a kind of K0-form of (CA/K,�, ε, τ).1

Proof. To see (3), draw first the commutative diagrams, which represent that CA/K
is an A-coring, and take constants ( )0. What is obtained are the commutative dia-
grams, which show that H is a K0-coalgebra. To see then that S = τ0 is a left, say,
convolution-inverse of the identity map idH , take constants in the two coinciding
maps

A⊗K A �−→ A⊗K A⊗K A τ⊗id−−−→ A⊗K A⊗K A id⊗ε−−→ A⊗K A,

A⊗K A ε−→ A
1⊗−→ A⊗K A. �

Definition 1.8. An inclusionL ⊃ K of differential fields will be called an extension
and will be denoted by L/K. Such an extension L/K is called a PV (Picard–Vessiot)
extension if the following are satisfied:

(i) L0 = K0.
(ii) There exists an intermediate differential ring L ⊃ A ⊃ K such that

(a) L = Q(A), the quotient field of A,
(b) H := (A ⊗K A)0 generates the left A-module A ⊗K A, that is,

(A ⊗K K)·H = A ⊗K A; this is equivalent to the statement that H
generates the right A-module A⊗K A, as is seen by applying the flip τ.

Such an A as above is called a principal differential ring for L/K; it will be seen to
be unique in 1.11. When L/K is PV, we will write

k := L0 = K0.
Lemma 1.9. Let A be a principal differential ring for a PV extension L/K. Let H :=
(A⊗K A)0.
(1) The natural maps (i)–(iii) of 1.7 are all isomorphisms so that H forms a

commutative k-Hopf algebra.
(2) We have a unique K-linear map

θ : A→ A⊗k H, θ(a) =
∑

a0 ⊗ a1

1 This means that tensoring up (H,�, ε, S) with K over K0 gives (up to isomorphism) (CA/K,�, ε, τ)
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such that for every a ∈ A,
1⊗K a =

∑
(a0 ⊗K 1)·a1 in A⊗K A.

(3) We have
(i) The θ above is a k-algebra map, which makes A a right H-comodule;

(A, θ) is thus a right H-comodule algebra.
(ii) The k-subalgebra AcoH = {a ∈ A | θ(a) = a⊗ 1} of H-coinvariants in

A coincides with K.
(iii) The left A-linearization of θ

Aθ : A⊗K A→ A⊗k H, Aθ(a⊗K b) = aθ(b)
is an isomorphism.

In summary, A/K is a right H-Galois extension [14, Definition 8.1.1] in the
sense of Kreimer and Takeuchi [17].

Proof. (1) We have K0 = A0, since k = K0 ⊂ A0 ⊂ L0 = k. It then suffices
to prove that the maps (ii) and (iii) of 1.7 are isomorphic. By applying 1.3 to the
differential L-algebra L⊗K A together with (L⊗K A)0 ⊃ H , we see that the natural
map L⊗k H → L⊗K A is injective. Hence,

μ : A⊗k H → A⊗K A, μ(a⊗k h) = (a⊗K 1)·h, (1.10)

being surjective by assumption (ii)(b) of 1.8, is isomorphic. As an iteration of μ, we
have

A⊗k H ⊗k H �−→ A⊗K A⊗k H �−→ A⊗K A⊗K A,
and similarly A⊗k H ⊗k H ⊗k H �−→ A⊗K A⊗K A⊗K A. By taking ( )0 in these
isomorphisms of differential K-algebras, the desired result follows.
(2) Let θ be the composite of 1⊗ : A → A ⊗K A, a �→ 1 ⊗ a with μ−1; this is

the unique map as required earlier. To see that (A, θ) is a right H-comodule, transfer
the commutative diagrams, which show that the map 1⊗ : A → A ⊗A CA/K above
satisfies the axioms for right comodules.
(3) Note that Aθ is an isomorphism with inverse μ. �

Lemma 1.11. A principal differential ring for a PV extension L/K is unique.

Proof. Suppose we have two such rings, sayA1 andA2. SinceA1A2 is principal as
well, we may suppose A1 ⊂ A2. Then, the corresponding Hi := (Ai ⊗K Ai)0 gives
an extensionH1 ⊂ H2 of commutative Hopf algebras, which is necessarily faithfully
flat [18, Theorm 3.1]. The isomorphisms L⊗k Hi � L⊗K Ai, which arise from the
μ in (1.10), commute with the inclusions. It follows that A1 ⊂ A2 is faithfully flat.
Since A2 ⊂ Q(A1), we must have A1 = A2. �

In summary, given a PV extension L/K, we have a unique principal differential
ring A, which naturally defines a commutative k-Hopf algebra H = (A⊗K A)0.
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Definition 1.12. This H is called the PV Hopf algebra of L/K. We say that
(L/K,A,H) is a PV extension, indicating A,H too.

Remark 1.13. Suppose that L/K is an extension of differential fields with the same
constant field k. LetAbe a differential intermediate ring inL/K, and letJ ⊂ (A⊗KA)0
be a k-subspace. As is seen from the proof of 1.9, if (A ⊗K K)·J = A ⊗K A, then
J = (A⊗K A)0. Therefore, if L = Q(A) in addition, (L/K,A, J ) is PV.

To give examples of PV extensions, recall from (1.5) that given a field extension
L/K, we have an L-coring CL/K = L ⊗K L. Just as with ordinary coalgebras, an
element c in CL/K is called primitive (resp. grouplike), if �(c) = 1 ⊗L c + c ⊗L 1,
ε(c) = 0 (resp., �(c) = c⊗L c, ε(c) = 1).

Lemma 1.14. In CL/K,
(1) every primitive is of the form 1⊗K x− x⊗K 1, where x ∈ L,
(2) every grouplike is of the form x−1 ⊗K x, where 0 	= x ∈ L.

This is verified directly. One may note that the lemma can be reformulated as
the vanishing of the Amitsur cohomology groups H1(L/K,Ga), H1(L/K,Gm) [19,
Chapter 17]. The lemma yields the following.

Example 1.15. Let L/K be an extension of differential fields with the same constant
field k.

(1) An element x ∈ L is said to be primitive2 over K, if x′ ∈ K or, symbolically
speaking, if x is the integral

∫
a of some element a in K. This condition is

equivalent to

l := 1⊗K x− x⊗K 1 ∈ (L⊗K L)0.
With x and l as given earlier, construct the subalgebras A = K[x] in L and
H = k[l] in (A ⊗K A)0; note that A′ ⊂ A. Since 1 ⊗K x = x ⊗K 1 + l in
A⊗K A, we see that (K(x)/K,A,H) is PV. Moreover, l is a primitive in H ,
and the map θ : A→ A⊗k H is given by θ(x) = x⊗ 1+ 1⊗ l. Any PV Hopf
algebra that is generated by a primitive arises in this way.

(2) A nonzero element x in L is said to be exponential over K, if x′x−1 ∈ K or,
symbolically speaking, if x is the exponential exp

∫
a of some integral

∫
a

(a ∈ K). This condition is equivalent to
g := x−1 ⊗K x ∈ (L⊗K L)0.

2 Warning! One should distinguish the word “primitive” in this context of differential calculus, which
comes from “primitive functions,” from the (more familiar) usage of the same word for primitive elements
in a Hopf algebra or a coring, especially because these two distinct (though related) concepts can appear
at the same time. Recall this warning at Definition 5.3, Theorem 5.8 and just above Theorem 8.4.
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With x and g as given earlier, constructA = K[x, x−1] inL andH = k[g, g−1]
in (A⊗KA)0; note thatA′ ⊂ A. Since 1⊗Kx±1 = (x±1⊗K 1)·g±1 inA⊗KA,
we see that (K(x)/K,A,H) is PV. Moreover, g is a grouplike in H , and the
map θ is given by θ(x±1) = x±1⊗g±1.Any PVHopf algebra that is generated
by a grouplike and its inverse arises in this way.

To generalize the last example, we will work in the matrix algebraMn(L⊗K L),
which is a noncommutative differential ring with entrywise derivation.

Example 1.16. Let L/K and k be as given earlier. Fix an integer n > 0. Suppose
that an invertible matrix X = (xij) in GLn(L) is GLn-primitive in the sense that
X′X−1 ∈ Mn(K), that is, X′ = CX for some C ∈ Mn(K). Then, (X−1)′ = −X−1C.
Hence the matrices inMn(L⊗K L)

B := (X−1 ⊗K 1)(1⊗K X), B−1 := (1⊗K X−1)(X⊗K 1),

which aremutual inverses, are constants. LetB = (bij), and constructA = K[xij, 1
|X| ]

in L, andH = k[bij, 1
|B| ] in (A⊗K A)0; note thatA′ ⊂ A. It follows from 1⊗K X =

(X⊗K 1)·B that (K(xij)/K,A,H) is PV . Moreover,
�(B) = (B⊗k 1)(1⊗k B), ε(B) = I, S(B) = B−1,
θ(X) = (X⊗k 1)(1⊗k B),

where the last identity, for example, should be read as θ(xij) = ∑
r xir ⊗k brj . We

will see in Section 3 that any finitely generated PV extension arises in this way.

2. Galois correspondence

To establish a Galois correspondence for a PV extension, let L/K be an extension of
differential fields. The L-coring CL/K = L ⊗K L with its natural derivation may be
called a differential L-coring. If M is an intermediate differential field in L/K, then
L⊗M L is a quotient differential L-coring of CL/K, or in other words the kernel, say
aM , of the natural surjection L⊗K L � L⊗M L is a differential coideal in CL/K.

Lemma 2.1. M �→ aM gives a bijection from the set of all intermediate differential
fieldsM in L/K onto the set of all differential coideals a in CL/K. The inverse assigns
to each a

Ma := {x ∈ L | 1⊗K x− x⊗K 1 ∈ a}. (2.2)

This follows immediately from the correspondence due to Sweedler [20, Theo-
rem 2.1] in the nondifferential situation.

Proposition 2.3. Let (L/K,A,H) be a PV extension.
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(1) There is a 1–1 correspondence between the ideals a0 inH and the differential
ideals a in L⊗K L, given by

a0 = a ∩H, a = a0·(L⊗K L).
(2) Suppose a0 ↔ a under this correspondence. Then a0 is a Hopf ideal if and

only if a is a differential coideal.

Proof. (1) Let I (resp., Idif ) indicate the set of ordinary (resp., differential) ideals.
It follows from the isomorphism L ⊗A μ : L ⊗k H �−→ L ⊗K A of differential
L-algebras that a0 �→ a0·(L⊗K A) gives a bijection I(H ) �−→ Idif (L⊗K A). This
means that a0 �→ a0·(A⊗KA) gives an injection I(H ) ↪→ Idif (A⊗KA)with image
Idif (L ⊗K A), which is contained in Idif (A ⊗K A), since L ⊗K A is a localization
of A⊗K A. By symmetry, the image above coincides with Idif (A⊗K L) and hence
with the intersection Idif (L⊗K A) ∩ Idif (A⊗K L) = Idif (L⊗K L).
(2) Similarly, we have a bijection I(H ⊗k H ) � Idif (L⊗K L⊗K L) under which

b0 := H ⊗k a0 + a0 ⊗k H ↔ b := L ⊗K a + a ⊗K L when a0 ↔ a under
I(H ) � Idif (L⊗K L). Moreover, �(a0) ⊂ b0, ε(a0) = 0 if and only if �(a) ⊂ b,
ε(a) = 0; this proves (2). Here, recall that every biideal in a commutative Hopf
algebra is stable under the antipode, as is seen in our situation from the fact that every
coideal in L⊗K L is stable under τ. �

Definition 2.4. A differential ring A 	= 0 is said to be simple if it includes no
nontrivial differential ideal. In this case, A0 is a field since every constant generates
a differential ideal.

Proposition 2.5. The principal differential ring A for a PV extension L/K is simple.

Proof. Let 0 	= a ⊂ A be a differential ideal. Suppose a0 ↔ L ⊗K a under
I(H ) � Idif (L ⊗K A). Then, a0·(L ⊗K L) = L ⊗K aL = L ⊗K L. By 2.3 (1),
a0 = H , whence a = A. �

Theorem 2.6 (Galois correspondence I). Let (L/K,A,H) be a PV extension.

(1) There is a 1–1 correspondence between the Hopf ideals I in H and the inter-
mediate differential fieldsM in L/K, given by

M = {x ∈ L | 1⊗K x− x⊗K 1 ∈ I·(L⊗K L)} (2.7)

I = H ∩ Ker(L⊗K L � L⊗M L).

(2) If I ↔ M under the correspondence, (L/M,AM,H/I) is a PV extension.

Proof. (1) This follows from 2.1 and 2.3. (2) We see that

AM·(H/I) = AM ⊗M AM, by considering the image of A ⊗k H �−→
μ
A ⊗K A →

L⊗M L. �
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In general, let H be a commutative Hopf algebra over a field k. Given a Hopf
subalgebra J ⊂ H , the ideal HJ+ generated by J+ = Ker(ε : J → k) is a normal
Hopf ideal in H ; recall that a Hopf ideal I in H is called normal if

∑
a1S(a3) ⊗

a2 ∈ H ⊗k I for all a ∈ I. It is known that J �→ HJ+ gives a bijection from
the set of all Hopf subalgebras in H onto the set of all normal Hopf ideals in H ;
see [18, Theorem 4.3].
Suppose I ↔ M under the correspondence in 2.6. It has been proved that the Hopf

ideal I is normal if and only ifM/K is PV. In other words, we have the following.

Theorem 2.8 (Galois correspondence II). Let (L/K,A,H) be a PV extension. There
is a 1–1 correspondence between the Hopf subalgebras J in H and the intermediate
PV extensionsM/K in L/K, in which to eachM/K its PV Hopf algebra is assigned.

Proof. Fix a normal Hopf ideal I inH . Given a rightH-comodule V with structure
map λ : V → V ⊗k H , define

V1 := {v ∈ V | λ(v)− v⊗ 1 ∈ H ⊗k I}.
When V = H ,H1 is precisely the Hopf subalgebra corresponding to I [18, Corollary
3.10]. In general, V1 is the largest H1-comodule in V or V1 = λ−1(V ⊗k H1).
Since θ(A1) ⊂ A1⊗kH1, we remark that the isomorphism Aθ : A⊗KA �−→ A⊗kH

maps A1⊗K A1 into A1⊗k H1. Regard A⊗K A as a rightH-comodule with respect
to the structure arising from the right factor. Since the inclusion H ↪→ A ⊗K A is
rightH-colinear,H1 ⊂ A⊗K A1. By applying the antipode S and the flip τ, we have
H1 ⊂ A1⊗K A, whenceH1 ⊂ A1⊗K A1. This together with the last remark implies
that the isomorphism μ : A⊗k H �−→ A⊗K A restricts to

A1 ⊗k H1 �−→ A1 ⊗K A1. (2.9)

Hence, (L1/K,A1, H1) is PV, where L1 = Q(A1); note that A′1 ⊂ A1, L′1 ⊂ L1. To
see the correspondence I ↔ L1, note from (2.9) that in A1 ⊗K A1, (A1 ⊗K K)·H+1
equals the ideal generated by 1⊗K a− a⊗K 1 (a ∈ A1), whence in L⊗K L,

I·(L⊗K L) = H+1 · (L⊗K L) = Ker(L⊗K L � L⊗L1 L).
Conversely, let (M/K,B, J ) be an intermediate PV extension. Obviously, B ⊂ A,

J ⊂ H . We see that Bθ : B ⊗K B �−→ B ⊗k J induces A ⊗K B �−→ A ⊗k J , which
extends to Aθ : A⊗K A �−→ A⊗k H . It follows that B = θ−1(A⊗k J). The argument
in the preceding paragraph shows that HJ+ ↔ M. �

Let (L/K,A,H) be a PV extension. We denote by

G(L/K) = SpH
the affine k-group scheme corresponding to H ; let us call this the PV group scheme
of L/K. By definition, this is the functor, which associates to each commutative k-
algebra R the group Alg(H,R) of all k-algebra maps H → R; see [19, Section 1.4].
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LetAutdif(A/K) denote the functor, which associates to eachR the group Autdif(A⊗k
R/K ⊗k R) of differential K ⊗k R-algebra automorphisms of A ⊗k R. It has been
proved that the k-linear representation G(L/K) → GL(A) arising from θ : A →
A⊗kH gives an isomorphismφ : G(L/K) �−→ Autdif(A/K) of group-functors; see [10,
Theorem (A.2)]. Consequently, the algebraic group G(L/K)(k) of the rational points
in k is isomorphic to the group Autdif(A/K) of differentialK-algebra automorphisms
of A, which is isomorphic to the group Autdif(L/K) for L, by 1.11. This last group
plays the role of Galois groups in standard PV theory (see 2.12 below).

Example 2.10. Let the situation and the notation be as in 1.16, but we suppose
L = K(xij). We have a closed embedding of affine k-group schemes,

α : G(L/K)→ GLn, g �→ g(B) = (g(bij)).
If f ∈ Autdif(A⊗k R/K ⊗k R), then

β(f ) := X−1·f(X) ∈ GLn(R),
since this equals the image Af(B) of the differentialA-algebra map Af : A⊗K A→
A ⊗k R, Af(a ⊗K b) = a·f(b) applied entry-wise to B = (X−1 ⊗K 1)·(1 ⊗K X).
Thus, we have a closed embedding β : Autdif (A/K) → GLn. Since β(φ(idH)) =
Aθ(B) = B = α(idH), the following diagram of group functors commutes by the
Yoneda lemma:

G(L/K) �φ

� Autdif (A/K)

�
��

�
��β

GLn

α

The Galois correspondence theorems 2.6 and 2.8 are interpreted in terms of group
schemes as follows.

Theorem 2.11. Let L/K be a PV extension with PV group scheme G(L/K).

(1) For every intermediate differential field M in L/K, the extension L/M is PV.
The map M �→ G(L/M) gives a bijection from the set of all intermediate
differential fields inL/K onto the set of all closed subgroup schemes inG(L/K).

(2) An intermediate differential fieldM inL/K is PV overK if and only ifG(L/M)
is normal in G(L/K). In this case, we have G(M/K) � G(L/K)/G(L/M).

Remark 2.12. In the situation of 2.10, Autdif (L/K) (� G(L/K)(k)) is naturally a
linear algebraic group over k. If k is an algebraically closed field of characteristic
zero, we obtain from 2.11 a 1–1 correspondence between the intermediate differential
fields in L/K and the closed subgroups in Autdif (L/K), since the latter are in 1–1
correspondence with the closed affine group schemes in G(L/K). This is precisely
the Galois correspondence in standard PV theory.
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Lemma 1.9 (3) is interpreted as follows.

Proposition 2.13. Let (L/K,A,H) be a PV extension. The k-scheme map

Sp θ : SpA×k G(L/K)→ SpA

corresponding to θ makes SpA a right G(L/K)-torsor over SpK.

3. Splitting fields

Let K be a differential field.

Definition 3.1. A differentialK-module is aK-module V together with an additive
operation ′ : V → V such that (av)′ = a′v + av′ (a ∈ K, v ∈ V ). For such V , we
write as before,

V0 := {v ∈ V | v′ = 0}.
This is a K0-subspace of V .

Proposition 1.3 can be directly generalized as follows.

Proposition 3.2. For a differential K-module V , the natural map K ⊗K0 V0 → V ,
x⊗ v �→ xv is injective.

Lemma 3.3. Let V,W be differentialK-modules. TheK-module HomK(V,W ) of all
K-linear maps V → W becomes a differential K-module with respect to

f ′(v) := f(v)′ − f(v′) (f ∈ HomK(V,W), v ∈ V )
in which HomK(V,W)0 coincides with the K0-subspace

HomK dif(V,W)

of differential K-module maps. By 3.2, we have K ⊗K0 HomK dif (V,W) ↪→
HomK(V,W).

To give a variation, let L/K be an extension of differential fields, and suppose
thatW is a differential L-module. Then, HomK(V,W ) is a differential L-module so
that we have L ⊗L0 HomK dif(V,W) ↪→ HomK(V,W ). Important is the case when
W = L. We then write

LV := HomK dif(V, L).

If the K-dimension dimK V = n <∞, then the L0-dimension dimL0 LV ≤ n, since
we have

L⊗L0 LV ↪→ HomK(V,L). (3.4)
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Example 3.5. A differentialK-module V is said to be cyclic if it is generated by one
element, say y; this means thatV isK-spanned by y, y′, y′′, . . . . If dimK V <∞, such
a pair (V, y) uniquely arises from a monic homogeneous linear differential equation
with coefficients in K,

y(n) + a1y(n−1) + · · · + an−1y = 0 (ai ∈ K). (3.6)

We recover V as V = Ky⊕Ky′ ⊕ · · ·⊕Ky(n−1) with relation (3.6). By assigning the
value f(y) to each f ∈ LV , we can identify LV with the L0-space of the solutions of
(3.6) in L, whose dimension is at most n.

Example3.7. The differentialK-moduleV = Ky1⊕· · ·⊕Kyn of finiteK-dimension,
together with an ordered K-basis y1, . . . , yn, uniquely arises from a homogeneous
linear differential system with coefficients in K,⎛

⎜⎜⎜⎜⎝
y′1
y′2
...

y′n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
y1

y2

...

yn

⎞
⎟⎟⎟⎟⎠ (aij ∈ K ). (3.8)

Here, (3.8) is regarded as giving the defining relations for V . By assigning the vector
t(f(y1), . . . , f(yn)) to each f ∈ LV , we can identify LV with the L0-space of solu-
tions of (3.8) in Ln, whose dimension is at most n. As is well known, the differential
equation (3.6) can be treated as a differential system with coefficient matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 1
. . .

...

. . .
. . . 0

0 1

−an−1 · · · · · · −a2 −a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let L/K be an extension of differential fields. Given elements u1, . . . , ur ∈ L, let
K〈u1, . . . , ur〉 denote the smallest intermediate differential field in L/K containing
u1, . . . , ur. Given a differentialK-module V , letK〈V 〉 denote the smallest intermedi-
ate differential field inL/K including allf(V ), wheref ∈ LV .We haveK〈V 〉V = LV .
In 3.7, K〈V 〉 equals the smallest intermediate differential field in L/K that contains
all entries in the solutions of (3.8) in Ln.

Lemma-Definition3.9. LetL/K be as stated earlier. LetV be a differentialK-module
with dimK V = n <∞. Then the following are equivalent:

(i) L⊗K V � Ln as differential L-modules;
(ii) The natural injection L⊗L0 LV ↪→ HomK(V,L) is bijective;
(iii) dimL0 L

V = n.
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If these hold, L is called a splitting field for V . If L = K〈V 〉 in addition, L is called
a minimal splitting field for V . Note that (i) implies K〈V 〉 ⊗K V � K〈V 〉n, whence
K〈V 〉 is a splitting field for V if L is.

Proof. (ii)⇔ (iii) is obvious. (i) impliesLV � Ln0, (iii). Take theL-dual of the map
in (ii). Then we have

L⊗K V → HomL0(L
V , L), a⊗ v �→ (f �→ af(v)). (3.10)

Hence, (iii) implies (i). �

Theorem 3.11 (Characterization). Let L/K be an extension of differential fields with
the same constant field k. Then the following are equivalent:

(i) L/K is a PV extension, which is finitely generated in the sense L =
K〈u1, . . . , un〉 for certain finitely many elements u1, . . . , un in L.

(ii) L is a minimal splitting field of some cyclic differential K-module of finite
K-dimension.

(iii) L is a minimal splitting field of some differential K-module of finite K-
dimension.

(iv) There exists a GLn-primitive matrix X = (xij) ∈ GLn(L) for some n (see
1.16), such that L = K(xij).

Proof. (ii)⇒ (iii) is obvious. (iv)⇒ (i) follows from 1.16.
(i) ⇒ (ii). Suppose that (L/K,A,H) is finitely generated PV. Suitable elements

u1, . . . , un as in (i) can be taken so that they form a k-basis of an H-subcomodule of
A = (A, θ). Then, θ(uj) =∑

r ur⊗k brj , where brj ∈ H . This means that inL⊗K L,
1⊗K uj =∑

r(ur ⊗K 1)·brj , whence

1⊗K u(i)j =
∑
r

(
u(i)r ⊗K 1

) ·brj (i = 0, 1, . . . ) . (3.12)

Let

W =
(
u
(i)
j

)
∈ GLn(L), B = (bij) ∈ Mn(H), u(n) =

(
u
(n)
1 , . . . , u(n)n

)
∈ Ln.
(3.13)

Note thatW ∈ GLn(L) by 1.4. By (3.12),
1⊗K W = (W ⊗K 1) ·B, 1⊗K u(n) = (u(n) ⊗K 1)·B.

It follows that B ∈ GLn(H). We have
1⊗K u(n)W−1 = (u(n) ⊗K 1)BB−1(W ⊗K 1)−1 = u(n)W−1 ⊗K 1,

whence u(n)W−1 ∈ Kn. Hence, there exist ai ∈ K such that u(n) = (a1, . . . , an)W .
Thus, u1, . . . , un are solutions of y(n) = a1y + · · · + an−1y(n−1); this implies (ii).
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(iii)⇒ (iv). Suppose thatL is a minimal splitting field of such a differential system
as given by (3.8). Let

x1, . . . , xn (∈ Ln) (3.14)

be k-linearly independent solutions of (3.8). The crucial point is that we see from (3.4)
that they are L-linearly independent. One concludes that the matrixX = (x1 . . . xn)
satisfies Condition (iv). �

Corollary 3.15.

(1) Let (L/K,A,H ) be a PV extension. The following are equivalent:
(i) L/K is finitely generated as an extension of differential fields

(see 3.11(i));
(ii) L/K is finitely generated as an extension of fields;
(iii) A is finitely generated as a K-algebra;
(iv) H is finitely generated as a k-algebra.

(2) Any intermediate PV extensionM/K in a finitely generated PV extension L/K
is finitely generated.

(3) If (L/K,A,H ) is a finitely generated PV extension, then the transcendence
degree trans.degK L and the Krull dimensions KdimA and KdimH all
coincide.

Proof. (1) We see from the last proof that (i)⇔ (ii)⇔ (iii). The remaining equiv-
alence (iii)⇔ (iv) follows from L ⊗K A � L ⊗k H . (2) This follows since a Hopf
subalgebra of a commutative finitely generated Hopf algebra is finitely generated [18,
Corollary 3.11]. (3) This also follows from L⊗K A � L⊗k H . �

Let us extend the notion of (minimal) splitting fields so that the differential
K-module in question can be of infinite dimension.

Lemma-Definition 3.16. Let L/K be an extension of differential fields. Let V
be a differential K-module of possibly infinite K-dimension. The following are
equivalent:

(i) There exists a differential L-linear injection L ⊗K V ↪→ ∏
λ∈� Lλ into the

direct product of copies Lλ of L,
(ii) The natural injection L ⊗L0 LV ↪→ HomK(V,L) has a dense image, or in

other words, its L-dual given by (3.10) is injective.

If these conditions (and L = K〈V 〉) hold, L is called a (minimal) splitting field for
V . Note from (i) that K〈V 〉 is a splitting field for V if L is.

Proof. Modify the proof of 3.9. �

Proposition3.17. LetL/K bean extension of differential fieldswith the same constant
field. Then, L/K is PV if and only if L is a minimal splitting field for a differential
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K-module V , which is locally finite in the sense that it is a sum of differential K-
submodules of finite K-dimension.

Proof. “Only if”. Suppose that H is the PV Hopf algebra of L/K. One can write
H =⋃

λ Hλ as a directed union of finitely generated Hopf subalgebras Hλ. We have
L =⋃

λ Lλ, where Lλ/K is a finitely generated PV extension with Hopf algebraHλ;
see 2.8, 3.15. By 3.11, Lλ is a minimal splitting field of a differential K-module, say
Vλ, of finite K-dimension, say nλ. Let V = ⊕

λ Vλ; this is locally finite. We have
K〈V 〉 =⋃

λ K〈Vλ〉 = L and L⊗K V �
⊕

λ L
nλ ↪→∏

λ L
nλ .

“If”. Suppose that L is a minimal splitting field for V , where V = ⋃
ν Vν is a

directed union of differential K-submodules Vν of finite K-dimension. Then, Lν :=
K〈Vν〉 (⊂ L) is a minimal splitting field for Vν such that L = ⋃

ν Lν. By 3.11, we
have finitely generated PV extensions, (Lν/K,Aν,Hν). Let A := ⋃

ν Aν; this is a
directed union of intermediate differential rings in L/K, with L = Q(A). By taking⋃
ν in Aν ⊗k Hν � Aν ⊗K Aν, we obtain A⊗k H � A⊗K A, where H = ⋃

ν Hν.
It follows that (L,A,H ) is PV. �

4. Unique existence of minimal splitting fields

LetA be a ring. LetA[[t]] denote the ring of formal power series of one variable t with
coefficients in A. This is regarded as a differential ring with respect to the standard
derivation( ∞∑

n=0
ant

n

)′
=

∞∑
n=1

nant
n−1 (an ∈ A).

Given an ideal I of A, I[[t]] = {∑∞
n=0 antn | an ∈ I

}
is a differential ideal of A[[t]].

Lemma 4.1 (cf. [1, Lemma 1.8, Theorem 2.1]). Suppose that A is a differential ring
including Q as a subfield.

(1) ρ : A→ A[[t]], ρ(a) =∑∞
n=0 a

(n)

n! t
n is an injection of differential rings.

(2) An ideal I of A is a differential ideal if and only if I = ρ−1(I[[t]]).
(3) If I is a differential ideal of A, then the radical

√
I of I is differential too.

Moreover,
√
I equals the intersection

⋂
λ Qλ of suitable differential idealsQλ

that are prime.
(4) If A is simple as a differential ring (see 2.4), it is an integral domain.

Proof. (1), (2) Easy. (3) The first assertion follows from (2), since I = ρ−1(I[[t]])
implies

√
I = ρ−1(

√
I[[t]]). For the second, let Qλ = ρ−1(Pλ[[t]]), where Pλ are

prime ideals such that
√
I =⋂

λ Pλ. (4) This follows from (3). �

Lemma 4.2 (Levelt [21, Appendix]). Let K be a differential field of characteristic
chK = 0, and let A be a differentialK-algebra. Suppose that A is finitely generated
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as a K-algebra and is simple as a differential ring, which is then necessarily an
integral domain; see 4.1 (4). Let L = Q(A); see 1.2. Then the field extension L0/K0
is algebraic.

Proof. First, we claim L0 = A0. In fact, if x ∈ L0, then {a ∈ A | ax ∈ A} is a
nonzero differential ideal in A and hence equals A, whence x ∈ A0. Next, we see
that every y ∈ A0 is algebraic over K, since for any maximal ideal P of A, the
constant field A0 is included in A/P , which, being finitely generated as a K-algebra,
is algebraic overK. Let ϕ(t) = tn + c1tn−1 + · · · + cn be the minimal polynomial of
y (∈ A0) overK. Since c′1tn−1 + c′2tn−2 + · · · + c′n has y as a root, the minimality of
ϕ(t) implies that all ci ∈ K0 so that y is algebraic over K0. �

Theorem 4.3 (Unique existence). Suppose that K is a differential field of char-
acteristic 0 whose constant field K0 is algebraically closed. Let V be a differential
K-module of finite K-dimension. Then, there exists a minimal splitting field L for V
with L0 = K0 so that L/K is necessarily a finitely generated PV extension. Such an
L is unique up to isomorphism of differential K-algebras.

Proof. Existence. Suppose that (3.8) is the differential system corresponding to V
with respect to an orderedK-basis y1, . . . , yn. LetK[Xij] be the polynomial algebra
in Xij (1 ≤ i, j ≤ n), and let O := K[Xij, 1

det ] be its localization at the determinant
det(Xij). Make these into differential K-algebras by defining (X′ij) = (aij)(Xij).
Choose a maximal differential ideal P in O, and let L = Q(O/P). By 4.2, L0 = K0,
since K0 is algebraically closed. Let xij denote the natural image of Xij in L. Then,
L = K(xij), and the matrix (xij) is invertible. It follows that t(x1j, . . . , xnj) (1 ≤ j ≤
n) are n K0-linearly independent solutions of (3.8). Hence, L is what is required.

Uniqueness. Suppose we have two fields, Li (i = 1, 2), such as required. Let
Ai be the principal differential ring for Li/K, and define A = A1 ⊗K A2, and
consider it as a differential K-algebra. Choose a maximal differential ideal I in A,
and let L = Q(A/I). Again by 4.2, L0 = K0. Since Ai is simple by 2.5, the natural
maps Ai → A/I of differential K-algebras are both injective so that they extend

to injections Li ↪→ L of differential fields over K. Since we have LVi
�−→ LV by

counting L0-dimension, the images of the Li are bothK〈V 〉 in L so that L1 � L2, as
desired. �

5. Liouville extensions

Let k be a field with an algebraic closure k̄. A separable k-algebra is a finite-
dimensional k-algebra R such that the base extension R ⊗k k̄ is reduced; this is
equivalent to the statement that R is isomorphic to a product L1 × · · · × Lr of
finitelymany separable field extensionsLi/k of finite degree. Every finitely generated
k-algebraA contains the largest separable subalgebra; itwill be denoted byπ0A, called
the separable partofA.Wehaveπ0(A⊗kB) = π0A⊗kπ0B,π0(A⊗kk′) = π0A⊗kk′,
where A and B are finitely generated k-algebras, and k′/k is a field extension.
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If H is a finitely generated commutative Hopf algebra, then π0H ⊂ H is a finite-
dimensional Hopf subalgebra. Let H0 := H/(π0H)

+H denote the corresponding
quotient Hopf algebra. Note that (π0H)+H is the smallest ideal I of H such that
ε(I) = 0, andH/I is coconnected in the sense that the topological space SpecH/I of
all prime ideals is connected; this means thatH/I contains no nontrivial idempotents.
If k is algebraically closed, π0H is isomorphic to the dual (k�)∗ of the group algebra
k� of some finite group �.

Proposition 5.1. Let (L/K,A,H) be a finitely generated PV extension with k = K0
(= L0).
(1) The K-separable part π0A of A is an intermediate differential field in L/K.

It coincides with the separable algebraic closure Ks of K in L. In particular,
Ks/K is a finite extension.

(2) (π0A/K,π0A,π0H ) is a PV extension. Suppose that k is algebraically closed
so that π0H = (k�)∗ with � a finite group. Then, π0A/K is a finite Galois
extension with Galois group �.

(3) L/K is finite separable if and only if H is separable as a k-algebra.
(4) L/K is separably closed (i.e. Ks = K) if and only if H is coconnected.

Proof. (1), (2) Taking theK-separable part inA⊗KA � A⊗kH = A⊗K(K⊗kH ),
we have

π0A⊗K π0A � π0A⊗ π0H, (5.2)

whence A ⊗K π0A � A ⊗k π0H . This implies π0A = θ−1(A ⊗k π0H). Hence,
π0A is an intermediate differential field in L/K. Part 2 now follows by (5.2). Set
M = π0A. It remains to prove that L/M is separably closed. Since (L/M,A,H0)
is PV by 2.6 (2) and 2.8, we have L ⊗M A � L ⊗k H0. Since the base extension
L⊗k H0 is still coconnected, its spectrum contains the nilradical as a generic point.
Therefore, its localizationL⊗ML, whose spectrum necessarily contains such a point,
is coconnected; this implies what should be proved. (3), (4) These follow from (1)
and (2). �

Definition 5.3. An extension L/K of differential fields is said to be Liouville if the
following are satisfied.

(i) L0 = K0.
(ii) There is a sequence of intermediate differential fields in L/K

K = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L
in which each Li/Li−1 (0 < i ≤ r) is either
(a) finite separable,
(b) of the form Li = Li−1(x) with x primitive over Li−1 (1.15 (1)), or
(c) of the form Li = Li−1(x) with x exponential over Li−1 (1.15 (2)).

Of course it follows that L/K is finitely generated as a field extension.
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To characterize Liouville PV extensions, the language of group schemes seems
more suitable than that of Hopf algebras. We will use some terminology and basic
results on group schemes from [19]. Let G = SpH be an affine group scheme over
a field k, which corresponds to a commutative Hopf algebra H . Suppose that H is
finitely generated, or in other words, G is algebraic. The dimension dimG is by
definition the Krull dimension KdimH . We write

π0G = Sp(π0H), G0 = SpH0.
The latter is called the connected component of the unit element in G. We have a
short exact sequenceG0 � G � π0G of affine group schemes.G is said to be finite
etale (resp., connected) if G = π0G (resp., G0 = G). If k is algebraically closed,
G0 � G splits as a left or right G0-equivariant morphism of schemes.

Example 5.4 (Two basic affine group schemes). (1) The additive group Ga =
Sp k[X]; X is a primitive in k[X]. The group Ga(R) of the rational points in a k-
algebra R is the additive group R. A closed subgroup G of Ga corresponds to a Hopf
algebra H = k[l] that is generated by a primitive l, with a closed embedding given
by X �→ l, k[X] � k[l]. If G = Ga, it is connected. Suppose that G � Ga. If
ch k = 0, then G = {1}. If ch k = p > 0, then H = k[X]/(f(Xpr )), where r ≥ 0
and f(X) = X+ c1Xp + c2Xp2 + · · · + csXps (ci ∈ k). In this case,

H0 = k[X]/(Xpr ), π0H = k[Xpr ]/(f(Xpr )).
(2) The multiplicative group Gm = Sp k[X,X−1]; X is a grouplike in k[X,X−1].

The groupGm(R) is the group of units inR. A closed subgroup ofGm corresponds to
a Hopf algebraH = k[g, g−1] that is generated by a grouplike g and its inverse, with
a closed embedding given byX±1 �→ g±1, k[X,X−1]� k[g, g−1]. IfG = Gm, it is
connected. Suppose that G � Gm. Then, G is finite and g has a finite order, say n. If
ch k = 0, G is finite etale. Suppose ch k = p > 0 and n = pen′ with p � n′. In this
case,

H0 = k[X]/(Xpe − 1), π0H = k[Xpe ]/(Xn − 1).

Definition 5.5. An algebraic affine group scheme G is said to be Liouville, if there
is a normal chain of closed subgroups

G = G0 � G1 � · · · � Gr = {1}
in which each factor Gi/Gi+1 (0 ≤ i < r) is either

(a) finite etale,
(b) a closed subgroup scheme of Ga, or
(c) a closed subgroup scheme of Gm.

Such a chain as above will be called a Liouville normal chain (LNC) of length r.



Hopf Algebraic Approach to Picard–Vessiot Theory 147

Lemma 5.6. Let G be an algebraic affine group scheme over a field k.

(1) If G is Liouville, every closed subgroup of G is Liouville.
(2) Given a normal closed subgroup N � G, G is Liouville if and only if N and

G/N are both Liouville.
(3) G is Liouville if and only if G0 is Liouville.

Proof. (1), (2) Standard; see the proof of [13, Lemma 1.2]. (3) This follows
from (2). �

Proposition 5.7. Let G be a connected algebraic affine group scheme over a
field k.

(1) Suppose that G is Liouville. Then, it has an LNC in which each factor is a
connected closed subgroup of Ga or Gm. If ch k = 0, this means that an LNC
can be chosen so that each factor is isomorphic to Ga or Gm.

(2) If G is Liouville, it is solvable (i.e. has a normal chain with Abelian factors).
The converse holds if k is algebraically closed.

Proof. (1) Let G = G0 � · · · � Gr = {1} be an LNC of least length. We will
proceed by induction on r. Since G is connected, the derived closed subgroup DG
is connected as well [19, Theorem 10.1]. The first factor G/G1 cannot be finite etale
so that DG ⊂ G1. Hence, the least length of LNC’s for DG is smaller than r;
the induction hypothesis can apply to DG. By replacing G with G/DG, we may
suppose that G is Abelian. We then have a short exact sequence Gs � G � Gu,
where Gu is unipotent and Gs is of multiplicative type; this sequence splits if k is
perfect [19, Theorem 9.5]. So it remains to prove (1) when G = Gu or Gs.
The case G = Gu. If ch k = 0, G � Ga × · · · ×Ga. In general, every (connected)

unipotent algebraic affine group scheme has a normal chain in which every factor is
a (connected) closed subgroup of Ga. Hence we are done.
The case G = Gs. Since G is connected, it is a torus if ch k = 0. If ch k = p > 0,

we have a short exact sequence T � G � F, where T is a torus, and F (= Sp J) is
a finite group scheme of multiplicative type whose order, i.e. the dimension dim J ,
is a power of p. The desired result for F is proved by induction on its order. In any
characteristic, we may suppose that G is a torus. The first factor G/G1 then must be
a closed subgroup of Gm. The result applied to the largest anisotropic subtorus Ta in
G implies that Ta must be trivial. By [19, Theorem 7.4], this means that G splits or
G � Gm × · · · ×Gm. The desired result is then obvious.
(2) The first assertion follows by (1). For the second, we can replace G with

DiG/Di+1G, and may suppose that G is Abelian, in which case we are done using
the argument stated earlier since Gs is diagonalizable if k is algebraically closed. �

Theorem 5.8. Let L/K be a finitely generated PV extension with PV group scheme
G = G(L/K). Let Ks denote the separable algebraic closure of K in L; see 5.1 (1).
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(1) The following are equivalent:
(i) L/K is Liouville.
(ii) There is a sequence of intermediate differential fields in L/Ks

Ks = L0 ⊂ L1 ⊂ · · · ⊂ Lr = L (5.9)

such that for each 0 < i ≤ r, Li−1 is separably closed in Li, and
Li = Li−1(xi), where xi is either primitive or exponential over Li−1.

(iii) L/K is embedded into some Liouville extension L̃/K.
(iv) G is Liouville.
(v) G0 is Liouville.
If the constant field k is algebraically closed, these are further equivalent to
(vi) G0 is solvable.

(2) Suppose ch k = 0, and that L/K is Liouville. Then, such a sequence as in (ii)
earlier can be chosen so that for each 0 < i ≤ r, xi is transcendental over
Li−1 or equivalently G(Li/Li−1) � Ga or Gm. In this case,

r = trans.degK L = dimG = the least length of LNC’s for G0.

Proof. (1) Recall from 1.15 the characterization of the two types of basic PV
extensions. Then, Theorem 2.11, combined with 5.1 and 5.7, proves the equiva-
lence among the conditions except (iii). Obviously, (i)⇒ (iii). Suppose (iii), and that
K = L̃0 ⊂ L̃1 ⊂ · · · ⊂ L̃r = L̃ is a sequence satisfying the conditions in 5.3. We
will prove (iv) and (v) by induction on r. If r = 0, this is obvious. Suppose r > 0, and
let LL̃1 be the composite field. By the next proposition, LL̃1/L̃1 is a finitely gener-
ated PV extension with G(LL̃1/L̃1) � G(L/L ∩ L̃1). With the induction hypothesis
applied to LL̃1/L̃1, G(L/L ∩ L̃1) is Liouville. If L̃1/K is finite separable, L/L ∩ L̃1
too is, so that G(L/K)0 ⊂ G(L/L ∩ L̃1), and (v) follows. Otherwise, L ∩ L̃1/K is a
PV extension whose PV group scheme, a quotient of G(L̃1/K), is a closed subgroup
of Ga or Gm; (iv) follows. (2) This follows from Part 1 just proven and 5.7 (1). �

Proposition 5.10. Let L̃/K be an extension of differential fields such that L̃0 = K0.
Let L,M be an intermediate differential fields in L̃/K. Suppose that L/K is a finitely
generated PV extension. Then, LM/M is a finitely generated PV extension whose PV
group scheme G(LM/M) is naturally isomorphic to G(L/L ∩M).

Proof. Set F := L ∩ M. Let X = (xij) ∈ GLn(L) be a GLn-primitive matrix
such that L = K(xij); see 3.11 (iv). Set B = (bij) := (X−1 ⊗F 1)(1 ⊗F X) in
Mn(L ⊗F L), and B̃ = (b̃ij) := (X−1 ⊗M 1)(1 ⊗M X) in Mn(LM ⊗M LM).
Construct the subalgebras

H := k
[
bij,

1

|B|
]
⊂ L⊗F L, H̃ := k

[
b̃ij,

1

|B̃|
]
⊂ LM ⊗M LM

over the constant field k = K0. By 3.11,L/F (resp.,LM/M) is a finitely generated PV
extension with PV Hopf algebra H (resp., H̃). It remains to prove that the canonical
epimorphism ϕ : H → H̃ , ϕ(bij) = b̃ij is injective. Consider the correspondence of
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2.1 applied to L/F . It then suffices to prove that the intermediate differential field
Ma which corresponds to the differential coideal a := (Kerϕ) · (L⊗F L) coincides
with F . Since a ⊂ Ker (L ⊗F L → LM ⊗M LM), it follows that if x εMa, then
1⊗M x = x⊗M 1 in LM ⊗M LM, whence x εL ∩M = F ; this provesMa = F , as
desired. �

Part II: PV theory in the C-ferential context

Throughout this part, we work over a fixed ground field R. All vector spaces,
(co)algebras, and linear maps are overR. Let⊗, and Hom stand for the tensor product
⊗R over R, and the vector space HomR of linear maps, respectively. Let C denote a
cocommutative coalgebra (over R) with a specified grouplike 1C.

6. C-ferential algebras

We let

� : C→ C ⊗ C, �(c) =
∑

c1 ⊗ c2; ε : C→ R

denote the structure maps of C. So, �(1C) = 1C ⊗ 1C, ε(1C) = 1.

Definition 6.1. A C-ferential module is a vector space V equipped with a unital
C-action ψ : C ⊗ V → V by which we mean that ψ is a linear map such that
ψ(1C ⊗ v) = v (v ∈ V ). We will simply write cv for ψ(c ⊗ v). Let CM denote the
category of C-ferential modules and C-ferential (i.e. C-action preserving) maps.

The category CM forms an R-linear Abelian tensor category (CM,⊗, R) with
respect to the tensor product V ⊗W (V,W ∈ CM) endowed with the C-action

c(v⊗ w) =
∑

c1v⊗ c2w (c ∈ C, v⊗ w ∈ V ⊗W)
and the unit object R with the trivial action c1 = ε(c)1. This is symmetric with
respect to the obvious symmetry v ⊗ w �→ w ⊗ v, V ⊗ W → W ⊗ V , since C is
supposed to be cocommutative [or in notation,

∑
c2 ⊗ c1 = ∑

c1 ⊗ c2 (c ∈ C)].
We attach the adjective ‘C-ferential’ to the algebra- and the module-objects in CM,
as follows.

Definition 6.2. A commutative algebra in the symmetric tensor category CM is
called a C-ferential algebra; we thus keep the assumption that algebras are commu-
tative. For such an algebra A, an A-module in CM is called a C-ferential A-module.
Let A,CM denote the category of C-ferential A-modules and C-ferential A-linear
maps.
Explicitly, a C-ferential algebra is an ordinary commutative algebra A equipped

with a unitalC-action such that c(ab) =∑
(c1a)(c2b), c1 = ε(c)1 (c ∈ C, a, b ∈ A).
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It is called a C-ferential field if it is a field. A C-ferential A-module is an ordinary
A-moduleM togetherwith a unitalC-action such that c(am) =∑

(c1a)(c2m) (c ∈ C,
a ∈ A, m ∈ M).

Remark 6.3. LetC+ = Kerε. The tensor algebra T(C+) onC+ has a unique (cocom-
mutative) bialgebra structure such that the natural embedding C → T(C+), which
sends 1C to the unit 1 of T(C+), and is the identity on C+, is a coalgebra map.
In the obvious way, a C-ferential module is identified with a left (or right) T(C+)-
module. Moreover, the symmetric tensor category CM is identified with that of left
T(C+)-modules T(C+)M. A C-ferential algebra A and a C-ferential A-module are
identified with a T(C+)-module algebra and a left module over the smash-product
algebra A#T(C+), respectively. Thus, A,CM = A#T(C+)M; see [16, Chapter VII].

Example 6.4. Suppose C = R1C ⊕ Rd, where d( 	= 0) is a primitive. Then, CM
is precisely the tensor category of differential R-modules, where R is regarded as a
differential algebra with zero derivation. Hence, C-ferential objects (e.g. C-ferential
algebras) equal differential objects over R (e.g. differential R-algebras). Note that
any differential field K can be regarded as a C-ferential field, by choosing as R the
prime field of K.

One will see that the results in this part specialize to those in the previous part, with
C chosen just as above, and also specialize to the situation of [6, p. 3], [7], with C
chosen as in the following two examples. In Sections 8 and 9, we will impose some
additional assumptions on C, which are, however, fulfilled for these three examples
at least in characteristic zero.

Example 6.5. (1) Suppose that C = R1C ⊕⊕
δ∈� Rδ, where δ (	= φ) is a family �

of primitives3. Then, a C-ferential algebra is precisely an algebra A given a family
� of linear derivations on A; this is a �-algebra in the sense of Buium [6].
(2) Suppose that C = R1C⊕Rd1⊕Rd2⊕ · · · , where d0 = 1C, d1, d2, . . . form a

divided power sequence in the sense�(dn) =∑n
i=0 di⊗ dn−i (n = 1, 2, . . . ). Then,

a C-ferential algebra is an algebra A provided with a higher derivation, that is, an
infinite sequence of linear endomorphisms ∂0 = id, ∂1, ∂2, . . . such that ∂n(ab) =∑n
i=0(∂ia)(∂n−ib) (a, b ∈ A).

Given a C-ferential module V , we define the subspace of constants by

V0 = {v ∈ V | cv = ε(c)v (c ∈ C)}.

If A is a C-ferential algebra, A0 ⊂ A is a subalgebra. More generally, suppose that A
is a C-ferential K-algebra, that is, a C-ferential algebra equipped with a C-ferential

3 Following a custum we have used the symbol � to denote families of primitives and of derivations;
the same symbol always denotes the comultiplication of a coalgebra, elsewhere in the text.
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algebra mapK→ A. ThenA0 is aK0-subalgebra ofA. IfM ∈ A,CM, thenM0 ⊂ M
is an A0-submodule.

Definition 6.6. A C-ferential algebra A (	= 0) is said to be simple if it includes no
nontrivial C-ferential ideal.

Proposition 6.7 (see [16, Lemma 10.2.2]). A C-ferential algebraA is simple if and
only if

(a) A0 is a field and

(b) for every M ∈ A,CM, the natural map A ⊗A0 M0 → M, a ⊗ m �→ am is
injective.

In general, if D is a coalgebra and A an algebra, Hom(D,A) becomes an algebra
with respect to the convolution product (f ∗ g)(d) = ∑

f(d1)g(d2), where f, g ∈
Hom(D,A), d ∈ D,�(d) = �d1 ⊗ d2; see [16, Section 4.0].

Lemma 6.8. Suppose that A is a C-ferential algebra. Then Hom(T(C+), A) is a
C-ferential A-algebra with respect to the C-action

(cf )(h) = f(hc) (c ∈ C, h ∈ T(C+), f ∈ Hom(T(C+), A))
and the (splitting) algebra map

ρ̃ : A→ Hom(T(C+), A), a �→ (h �→ ha). (6.9)

We have

Hom(T(C+), A)0 = Hom(T(C+)/Kerε,A) = A.

Corollary 6.10. If K is a C-ferential field, then the map

K ⊗K0 K→ Hom(T(C+),K), a⊗ b �→ (h �→ a(hb))

is injective.

Proof. This follows from property (b) in 6.7 which holds for the C-ferential
K-module Hom(T(C+),K). �

The following will play the role of the Wronskian criterion 1.4.

Proposition 6.11. In a C-ferential fieldK, finitely many, say n, elements a1, . . . , an
areK0-linearly independent if and only if there exist n elements h1, . . . , hn in T(C+)
such that the matrix (hiaj) inMn(K) is invertible.

Proof. “If”. If
∑
j cjaj = 0 with ci ∈ K0,

∑
j cj(haj) = 0 (h ∈ T(C+)), whence

(c1, . . . , cn)
t(hiaj) = (0, . . . , 0); this implies c1 = · · · = cn = 0.
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“Only if.” SetW =∑n
j=1K0aj . By 6.10, we have a K-linear injection

K ⊗K0 W ↪→ Hom(T(C+),K) � HomK(K ⊗ T(C+),K),
whose K-predual

K ⊗ T(C+)→ HomK0(W,K) = Kn, a⊗ h �→ (a(haj))j

must be surjective. Hence, there exist h1, . . . , hn ∈ T(C+) such that their restric-
tions h|W, . . . , hn|W form a K-basis of HomK0(W,K), or in other words, (hiaj) is
invertible. �

7. Formalism of PV extensions and Galois correspondence I

Both the “PVextension formalism” and “Galois correspondence I”, [seeTheorem2.6]
can be directly generalized to theC-ferential context, without any additional assump-
tions on C.

Definition 7.1. An inclusion L ⊃ K, or an extension L/K, of C-ferential fields is
called a PV extension, if

(i) L0 = K0, which will be denoted by k, and
(ii) there exists an intermediate C-ferential algebra L ⊃ A ⊃ K such that

(a) L = Q(A), the quotient field of A,
(b) A ⊗K A is generated by (A ⊗K A)0 as a left (or equivalently right)

A-module.

Such an A as given earlier is called a principal C-ferential algebra for L/K.

With L/K, A as given earlier, A⊗K A is naturally a C-ferential K-algebra so that
H := (A⊗K A)0 is an algebra over k = K0. The A-bimodules in CM form a tensor
category, (A(CM)A,⊗A,A). The objectA⊗KA in A(CM)A has the natural structure
maps� and ε given by (1.6), of a C-ferential A-coring (i.e. a coalgebra in the tensor
category just mentioned). Just as in the proof of 1.9, the property (b) in 6.7 of the

C-ferential L-module L ⊗K A gives the isomorphism μ : A ⊗k H �−→ A ⊗K A,
μ(a⊗k h) = (a⊗K 1)·h, from which the next two results follow.

Lemma 7.2. Let A be a principal C-ferential algebra in a PV extension L/K of C-
ferential fields. Let H := (A⊗K A)0.
(1) The C-ferential K-algebra maps �, ε, and the flip τ induce on H structure

maps

� : H → H ⊗k H, ε : H → k, S : H → H

which make it a commutative k-Hopf algebra.
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(2) A/K is a right H-Galois extension with respect to the H-comodule structure
θ : A→ A⊗k H , θ(a) =∑

a0 ⊗ a1 uniquely determined by

1⊗K a =
∑

(a0 ⊗K 1) · a1 in A⊗K A.

Lemma 7.3. For each PV extension of C-ferential fields, its principal C-ferential
algebra is unique.

Given a PV extension L/K, we say that (L/K,A,H) is a PV extension, to indicate
that A is the (unique) principal C-ferential algebra and H = (A ⊗K A)0 is the
associated Hopf algebra, which is called the PV Hopf algebra for L/K.

We can reprove 2.1 and 2.3 in theC-ferential context, so that the next two results
follow.

Proposition 7.4. The principalC-ferential algebra for a PV extension ofC-ferential
fields is simple.

Theorem 7.5 (Galois correspondence I). Let (L/K,A,H) be a PV extension of
C-ferential fields.

(1) There is a 1–1 correspondence, given by (2.7), between the Hopf ideals I inH
and the intermediate C-ferential fieldsM in L/K.

(2) If I ↔ M under the correspondence, (L/M,AM,H/I) is a PV extension.

8. Galois correspondence II and Characterization

Throughout this section, we assume the following:

Assumption 8.1. C is pointed irreducible, or in other words, the coradical of C
equals R1C.

This holds for the C in 6.4 and 6.5. The assumption ensures the following.

Lemma 8.2 (Sweedler [16, Lemma 9.2.3]). Let A be an algebra. An element f in
the algebra Hom(C,A) is invertible if and only if f(1C) is invertible in A.

The Extension Lemma 1.2 is generalized by the following.

Proposition 8.3. Let A be a C-ferential algebra, and let T ⊂ A be a multiplicative
subset. Then theC-ferential algebra structure onA uniquely extends via the canonical
map A→ T−1A to such a structure on the localization T−1A.

Proof. Quite generally, ifA is an algebra, theC-ferential algebra structures onA are
in 1–1 correspondencewith the sectionsA→ Hom(C,A) of the algebra epimorphism
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Hom(C,A) � A, f �→ f(1C). We see from 8.2 that the composite

A
ρ−→ Hom(C,A)

cano−−→ Hom(C, T−1A),

where ρ denotes the algebra map a �→ (c �→ ca) corresponding to the
given C-ferential algebra structure, sends each t (∈ T ) to an invertible map in
Hom(C, T−1A) with value t/1 at 1C. Therefore, it uniquely extends to an alge-
bra map T−1A → Hom(C, T−1A), which, as is easily checked, is the desired
section. �

Given an extension L/K of C-ferential fields, an element x in L is said to be
primitive (resp., exponential) over K, if cx ∈ K for all c ∈ C+ [resp., if it is nonzero
and (cx)x−1 ∈ K for all c ∈ C]. By using the proposition stated earlier, we can
restate word for word Examples 1.15, and therefore reprove the results in Section 5
(especially Theorem 5.8), all in the C-ferential context.

Theorem 8.4 (Galois correspondence II). Let (L/K,A,H) be a PV extension of
C-ferential fields. Then, there is a 1–1 correspondence between the Hopf subalgebras
J inH and the intermediate PV extensionsM/K in L/K, in which to eachM/K its PV
Hopf algebra is assigned.

Proof. Note from the proof of 8.3 that if A1 ⊂ L is a C-ferential subalgebra, the
quotient field L1 = Q(A1) of A1 (realized in L) is C-stable. Then, one sees that the
proof of 2.8 is valid; see especially the sentence following (2.9). �

Just as in 2.11 and 2.13, the results 7.5 and 8.4 can be interpreted in terms of group
schemes. We can restate Example 2.10 in the C-ferential context.
Assumption 8.1 is equivalent to the property that the bialgebra T(C+) is pointed

irreducible as a coalgebra. It follows that T(C+) is necessarily a Hopf algebra. It is
easy to see the following, which generalizes 3.3.

Lemma 8.5. LetA be aC-ferential algebra. Let V andW be aC-ferentialA-modules
[or leftA#T(C+)-modules]. Then theA-moduleHomA(V,W) ofA-linear mapsV →
W is a C-ferential A-module with respect to the C-action

(cf )(v) =
∑

c1f(S(c2)v) (8.6)

[c ∈ C, v ∈ V , f ∈ HomA(V,W)], where S denotes the antipode of T(C+). We have

HomA(V,W)0 = HomA,C(V,W),
which denotes the A0-module of C-ferential A-linear maps V → W .

Let L/K be an extension of C-ferential fields, and let V be a C-ferentialK-module.
Let us write

LV := HomK,C(V,L).
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By a slight modification of 8.5, HomK(V,L) is a C-ferential L-module with
HomK(V,L)0 = LV . By 6.7, we have a natural injection L⊗L0 LV ↪→ HomK(V,L)
in L,CM so that dimL0 L

V ≤ dimK V .
Definition 8.7. L is called a splitting field for V if the followingmutually equivalent
conditions are satisfied (see 3.16):

(i) There exists an injection L ⊗K V ↪→ ∏
λ Lλ in L,CM, where

∏
λ Lλ is the

direct product of copies Lλ of L.
(ii) L⊗L0 LV ↪→ HomK(V,L) has a dense image.

If dimK V = n < ∞, Conditions (i) and (ii) are equivalent to each of the following
(see 3.9):

(iii) L⊗K V � Ln in L,CM.

(iv) L⊗L0 LV �−→ HomK(V,L).
(v) dimL0 L

V = n.
For a subset Z = {z1, z2, . . . } of L, let K〈Z〉 = K〈z1, z2, . . .〉 denote the small-

est intermediate C-ferential field in L/K that contains Z. By 8.3, this equals the
quotient field of the K-subalgebra of L generated by T(C+)Z. L/K is said to be
finitely generated if L = K〈z1, . . . , zn〉 for some finitely many elements z1, . . . , zn
in L.

LetK〈V 〉 stand forK〈⋃f∈LV f(V )〉; this is the smallest intermediateC-ferential
field in L/K such that LV = K〈V 〉V . A splitting C-ferential field L for V is said to be
minimal if L = K〈V 〉.

Theorem 8.8 (Characterization). Let L/K be an extension of C-ferential fields with
the same constant field k.

(1) The following are equivalent:
(i) L/K is a finitely generated PV extension.
(ii) L is a minimal splitting field for some C-ferential K-module of finite

K-dimension that is cyclic, regarded as a K#T(C+)-module.
(iii) L is a minimal splitting field for some C-ferential K-module V of finite

K-dimension.
(iv) There exists a GLn-primitive matrix X = (xij) ∈ GLn(L) for some n

such that L = K(xij); by saying that X is GLn-primitive, we mean that
for every c ∈ C, (cX)X−1 ∈ Mn(K), where cX = (cxij).

(2) The following are equivalent:
(i) L/K is a PV extension.
(ii) L is aminimal splitting field for someC-ferentialK-module that is locally

finite in the sense that it is a sum of C-ferential K-submodules of finite
K-dimension.

Proof. (1) This is a modification of the proof of 3.11. For (i)⇒ (ii), let u1, . . . , un
and u = (u1, . . . , un) be just as in that proof. By 6.11, we can choose h1, . . . , hn in
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T(C+) such that the matrix (hiuj) inMn(L) is invertible. Replace theW and the u(n)

in (3.13) with

W = (hiuj) and hu = (hu1, . . . , hun) (h ∈ T(C+)),
respectively. Then, we see that (hu)W−1 ∈ Kn. This means that the cyclic C-
ferential K-submodule, say V , of Ln, which is generated by u, is K-spanned by
the L-basis h1u, . . . , hnu of Ln, whence L ⊗K V = Ln. Note in addition that
K〈V 〉 = K〈u1, . . . , un〉, since LV is k-spanned by the n projections.
For (iii)⇒ (iv), we need to choose a K-basis v1, . . . , vn of V , and replace (3.8)

with ⎛
⎜⎝
cv1
...

cvn

⎞
⎟⎠ = (aij(c))

⎛
⎜⎝
v1
...

vn

⎞
⎟⎠ (c ∈ K, aij(c) ∈ K).

The xi in (3.14) should be replaced by

xi = t(fi(v1), . . . , fi(vn)), (8.9)

where f1, . . . , fn constitute a k-basis of LV . We see that

X = (x1, . . . , xn) (8.10)

is the desired GLn-primitive matrix. The further modifications should be obvious.
(2) For this, the proof of 3.17 can be copied since 3.15 is directly generalizable in

the C-ferential context. �

To state a result without counterpart in Part I, let K be a C-ferential field with
k = K0. There is the k-Abelian symmetric tensor category, (K,CM,⊗K,K). Let V ∈
K,CM be of finiteK-dimension. TheK-dualV ∗ := HomK(V,K) is inK,CM; see 8.6.
Therefore, the full tensor subcategory,K,CMfin, consisting of all finiteK-dimensional
objects in K,CM is rigid. Let {{V }} denote the Abelian, rigid full tensor subcategory
of K,CMfin generated by V , that is, the smallest full subcategory containing V that
is closed under subquotients, finite direct sums, tensor products, and duals. Thus, an
object in {{V }} is precisely a subquotient of someW1 ⊕ · · · ⊕Wr, where eachWi is
the tensor product of copies of V, V ∗.

Theorem 8.11 (cf. [4, Theorem 2.33]). Let (L/K,A,H) be a finitely generated PV
extension of C-ferential fields. By 8.8 (1), we have an object V ∈ K,CMfin for which
L is a minimal splitting field.

(1) Let W ∈ {{V }}. Regard A ⊗K W as a right H-comodule with respect to
the structure induced by A = (A, θ); see 7.2 (2). Then, (A ⊗K W)0 is an
H-subcomodule with dimk(A⊗K W)0 = dimK W .

(2) W �→ (A⊗K W)0 gives a k-linear equivalence
{{V }} ≈MH

fin
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of symmetric tensor categories, whereMH
fin = (MH

fin,⊗k, k) denotes the rigid
symmetric tensor category of finite-dimensional rightH-comodules; note that
this is isomorphic to the category of the same kind RepG(L/K), which consists
of the finite-dimensional k-linear representations of G(L/K) = SpH , the PV
group scheme of L/K.

Proof. Let (CMH,⊗k, k) denote the symmetric tensor category consisting of those
C-ferential k-modulesN, which have aC-ferential, rightH-comodule structureN →
N ⊗k H . Since A is an algebra in CMH , we have the symmetric tensor category
(A,CMH,⊗A,A) ofA-modules inCMH . SinceA/K isH-Galois by 7.2 (2), it follows
from [22, Theorem 2.11] (or see [14, Theorem 8.5.6, (1)⇒ (3)]) thatW �→ A⊗K W
gives an equivalence K,CM ≈ A,CMH ; this is a k-linear equivalence of symmetric
tensor categories. Define k-linear functors,

(MH,⊗k, k) �−→←
�

A,CMH (≈ K,CM),

�(N) = N0, �(U) = A⊗k U (codiagonal H-coaction),

where the category of the left-hand side is that of right H-comodules. Obviously, �
is a symmetric tensor functor. Since A0 = k, � ◦� � id. By 6.7 and 7.4, the natural
morphism in A,CMH

μN : � ◦�(N) = A⊗k N0→ N, μN(a⊗k n) = an,
is injective. Let N denote the full subcategory in A,CMH consisting of those N for
which μN is bijective. Since �(U) ∈ N , N is closed under tensor products and �
gives an equivalenceMH ≈ N of symmetric tensor categories.

Part 2 of the theorem will follow if we prove

(a) A⊗K V ∈ N ,
(b) (A⊗K V )0 = �(A⊗K V ) ∈MH

fin, and

(c) (A⊗K V )0 generatesMH
fin.

Choose a K-basis v1, . . . , vn of V and set v = (v1, . . . , vn). Let xi = t(fi(v1),

. . . , fi(vn)) (1 ≤ i ≤ n) be as in (8.9) and set X = (xij) = (x1, . . . , xn) as in
(8.10). Recall from 1.16 that A = K[xij, 1

|X| ]. We see that 1 ⊗K v �→ tX, or 1 ⊗
vi �→ (f1(vi), . . . , fn(vi)) (1 ≤ i ≤ n), gives an isomorphism A ⊗K V �−→ An in
A,CM, which implies (a) and (b). It also follows that (A ⊗K V )0 has the entries in
(1 ⊗K v)(tX−1 ⊗K 1) as a k-basis of it. Let B = (bij) = (X−1 ⊗K 1)(1 ⊗K X);
see 1.16. Since θ(tX−1) = (tX−1 ⊗k 1)(1 ⊗k tB−1) in Mn(A ⊗k H ), we see that
the coefficient space of the rightH-comodule (A⊗K V )0 is k-spanned by S(bij), the
entries of tB−1; this implies (c).
IfW ∈ {{V }}, then A⊗K W ∈ N . Hence, dimk(A⊗K W)0 equals the free A-rank

of A⊗K W or dimK W ; this proves Part 1. �
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9. Uniqueness and existence of minimal splitting fields

In general, a coalgebra D is said to be Birkhoff–Witt if it is isomorphic to the cofree
pointed irreducible cocommutative coalgebra B(U) on some vector spaceU; see [16,
p. 261]. Such aD is necessarily pointed irreducible and cocommutative. Suppose that
D is an irreducible cocommutative bialgebra, which is necessarily a Hopf algebra. If
chR = 0, thenD is necessarily Birkhoff–Witt. If chR = p > 0, thenD is Birkhoff–
Witt if and only if the Verschiebung map VD : D → R1/p ⊗ D is surjective [23,
Corollary 4.2.7 (b)]. Recall that the map VD is defined for every cocommutative
coalgebra D, as the dual notion of the Frobenius map for commutative algebras.
Throughout this section we assume the following:

Assumption 9.1. T(C+) is Birkhoff-Witt.

If chR = 0, this is equivalent to Assumption 8.1 that C is pointed irreducible. If
chR = p > 0, the assumption stated afore holds if C is pointed irreducible and if
VC is surjective. These last two conditions are true if C is spanned by divided power
sequences. Therefore, suchC as in Example 6.5 (2) satisfy the assumption in arbitrary
characteristic, while those C in Examples 6.4 and 6.5 (1) do so only when chR = 0;
see the following example below.
LetA be aC-ferential algebra. Recall from 6.8 that Hom(T(C+), A) is aC-ferential

A-algebra endowedwith theC-ferential algebramap ρ̃ : A→ Hom(T(C+), A) given
by (6.9).

Example 9.2. Suppose chR = 0 andC = R1C⊕Rd, as in 6.4. Then, T(C+) = R[d],
the polynomial Hopf algebra, in which 1, d, d

2

2! ,
d3

3! , . . . form a divided power
sequence; see 6.5 (2). We can identify Hom(T(C+), A) = A[[t]], by means of the
pairing 〈di, tj〉 = δiji!

The map ρ̃ above generalizes the map ρ : A→ A[[t]] defined in Lemma 4.1 (1).
Lemma 4.1 (4) generalizes to the following.

Lemma 9.3. If a C-ferential algebra A is simple, it is an integral domain.

Proof. Just as in the proof of 4.1 (4), it suffices to prove the following in the order
given:

(a) An ideal I of A is C-ferential if and only if I = ρ̃−1(Hom(T(C+), I)).
(b) If I ⊂ A is a C-ferential ideal, then√I = ρ̃−1(Hom(T(C+),√I)).
(c) If P ⊂ A is a prime ideal, then Hom(T(C+), P) is prime.

It is easy to prove (a).Assumption9.1 implies thatHom(T(C+), A) is a projective limit
of A-algebras, A[[t1, . . . , tr]], of formal power series. Therefore, Hom(T(C+), A) is
reduced (resp., an integral domain) if A is. This implies (b) and (c). �

Using 8.3 and 9.3, we can now reprove Lemma 4.2 in the C-ferential context.
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Theorem 9.4 (Unique existence). Suppose that K is a C-ferential field whose con-
stant field K0 is algebraically closed. Let V be a C-ferential K-module of finite
K-dimension. There exists a minimal splitting field L for V with L0 = K0 so that
L/K is necessarily a finitely generated PV extension of C-ferential fields. Such an L
is unique up to isomorphism of C-ferential K-algebras.

Proof. Modify the proof of 4.3, by using the just reproved lemma together with 7.4
and 8.3. �

We end this part with an example in positive characteristic.

Example9.5. LetC be as inExample 6.5 (2), butwrite k forR. Recall that this satisfies
Assumption 9.1. Both the algebra k[[t]] of formal power series and its quotient field
k((t)) areC-ferential algebrawith respect to the action ditj =

(
j
i

)
tj−i (i ≤ j), ditj = 0

(i > j), so that k[[t]]0 = k((t))0 = k. Note thatC is a commutative Hopf algebra with
respect to the product didj =

(
i+j
i

)
di+j and that theC-action above coincideswith the

natural actionon the dual algebraC∗ = k[[t]]. Suppose ch k = p > 0. In the dualHopf
algebra C◦ (⊂ k[[t]]) of C [16, Section 6.2], pick the primitive t, and choose another
primitive f 	= 0; this must be an element of the form f = ∑∞

i=0 aitp
i
(ai ∈ k) and

all these quality. Now take the (Hopf) subalgebra, J := k[t, f ]. The Hopf subalgebra
J1 := k[t]∩k[f ] in the polynomial Hopf algebra k[f ] is generated by a primitive, say
ν(f ). Since k[t] ⊗J1 k[f ] = J , we see J/(t) = k[f ]/(ν(f )). Let H = k[f ]/(ν(f )),
K = k(t),A = K⊗k[t]J = K[f ], andL = Q(A) = k(t, f ).The natural isomorphism
J⊗k[t] J �−→ J⊗H , x⊗y �→∑

xy1⊗ ȳ2 isC-ferential, whereC acts on the factor J
in J⊗H . By applyingK⊗k[t], we have aC-ferential isomorphismA⊗KA �−→ A⊗H
so that (L/K,A,H) is PV. For example, if f =∑∞

i=0 tp
i
, then ν(f ) = f − fp (= t)

so that L = A = K[f ]/(fp − f + t) and H = k[f ]/(fp − f ) � k(Z/(p))∗. If
f =∑∞

i=0 tp
pi

, then ν(f ) = 0 so thatA = K[f ],H = k[f ] are polynomial algebras.

Part III: Unified PV theory

In this part, we work over a fixed ground field R, keeping the conventions stated at
the beginning of Part II, but C will be replaced by a special kind of D.

10. What’s the difference in the difference case

Tomove from the differential world to the difference world, one has only to exchange
“derivation” to “automorphism.” A difference field is thus a field K together with a
single (specified) automorphism; this is what is called an inversive difference field
by Cohn [24]. A homogeneous linear difference equation with coefficients in K is an
equation of the form

φny + a1φn−1y + · · · + an−1y = 0 (ai ∈ K),
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where φ is understood to be an automorphism. This notion can be generalized to
difference systems (or even to differencemodules), just as linear differential equations
are generalized to differential systems (and differential modules).

Linear recurrence equationswith coefficients, say, in the complex number fieldC

are regarded as difference equations over the differencefield (C, idC),whose solutions
lie in the C-algebra CZ = Map(Z,C) of C-valued maps on Z; this is a difference
ring with constants C, with respect to the shift operator φ{αn}n = {αn+1}n, where
{αn}n ∈ CZ.

Example 10.1. Consider the Fibonacci recurrence equation

αn+2 − αn+1 − αn = 0. (10.2)

This is regarded as a difference equation by setting φ(αn) = αn+1. As is well-
known, its solutions in CZ form a C-vector space with basis α = {( 1+

√
5

2 )n}n, β =
{(− 2

1+√5 )
n}n. Let A be the difference C-subalgebra of CZ generated by α, β. It

contains the nontrivial idempotent 12 (αβ + 1) = {. . . , 1, 0, 1, 0, . . . }, as though we
could say that (10.2) splits in A. This suggests that the difference fields could not be
adequate to work with when we develop difference PV theory. We remark that α �→
(t, 1

t
),β �→ ( 1

t
,−t)gives an embeddingofA into thedifferenceC-algebraC(t)×C(t)

with the automorphism φ(t, 0) = (0, 1+
√
5

2t ), φ(0, t) = ( 2
(1+√5)t , 0). Precisely as in

this example, the product of copies of fields equipped with an automorphism that acts
transitively on the primitive idempotents will turn out to be a desired object.

To extend the framework so as to include difference PV theory as well, we have
to replace, on the one hand, the C [or rather T(C+)] in Part II by some D that
contains grouplikes, and on the other hand, replace dif- or C-ferential fields by some
generalized object. These are precisely the AS D-module algebras as will be defined
in 11.6, while D is as follows.

Notation 10.3. D denotes a pointed cocommutative Hopf algebra, which may not
be commutative. Let G = G(D) denote the group of all grouplikes in D, and let D1

denote the largest irreducible Hopf subalgebra inD. The multiplication d⊗ g �→ dg

gives an isomorphism D1 ⊗ RG
�−→ D of coalgebras. Since D1 is stable under

G-conjugation, we have

D = D1#RG.
If the C as in Part II is pointed, then T(C+) can be D. We will later impose some
additional assumption on D1; see 11.4.

The left D-modules form a symmetric tensor category, (DM,⊗, R). Given V ∈
DM, we define the subspace of D-invariants by

VD = {v ∈ V | dv = ε(d)v (d ∈ D)}.
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This notation is used, instead of V0, since D will possibly change in the sequel.
Recall that aD-module algebra is a commutative algebra in (DM,⊗, R). The result
8.3 generalizes as follows.

Proposition 10.4. Let A be a D-module algebra, and let T ⊂ A be a G-stable
multiplicative set. Then the D-module algebra structure on A uniquely extends to
such a structure on T−1A.

Proof. By [14, Lemma 5.2.10] due to Takeuchi, the algebra map ρ : A →
Hom(D,A), a �→ (d �→ da) uniquely extends to an algebra map ρ̃ : T−1A →
Hom(D, T−1A), since in Hom(D, T−1A), each ρ(t) (t ∈ T ) is invertible on the
coradical RG of D. The associated D-action d(a/t) = ρ̃(a/t)(d) makes T−1A into
a D-module, since the two maps D⊗D→ T−1A given by c⊗ d �→ (cd)(1/t) and
c⊗ d �→ c(d(1/t)) coincide, both being inverse to c⊗ d �→ cdt. �

AD-module algebra A 	= 0 is simple if it includes no nontrivial D-stable ideal or
in other words if it is simple as anA#D-module. Bymodifying 6.7 in the obvious way
we have the simplicity criterion of a D-module algebra; see also Proposition 12.5.
We have especially that if A is simple, AD is a field.

11. AS D-module algebras

LetG1 ⊂ G be a subgroup of finite index. Define a Hopf subalgebra ofD = D1#RG
by

D(G1) = D1#RG1.
We will identify the finite set G/G1 of left cosets with some fixed system of their
representatives in G. By convention, we choose 1 as one representative. Set D1 =
D(G1), and let V be a left D1-module. We denote the left D-module D ⊗D1 V by
�G1(V ) or by �(V ). This is identified as

�(V ) =
⊕

g∈G/G1
g⊗ V,

where by g ∈ G/G1, we mean that g runs over the fixed representatives for G/G1.
D acts the right hand side so that if d ∈ D1,

d(g⊗ v) = g⊗ g−1dgv (v ∈ V )
and if h ∈ G,

h(g⊗ v) = g′ ⊗ h′v (v ∈ V ),
where g′ ∈ G/G1, h′ ∈ G1, such that hg = g′h′.

Lemma11.1. Anatural isomorphismVD1
�−→ �(V )D is given by v �→∑

g∈G/G1g⊗v.
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Keep the notation as above. Let A1 be a D1-module algebra. Then, �(A1) is a
D-module algebra with respect to the “component-wise” product

(g⊗ a)(g′ ⊗ a′) = δg,g′g⊗ aa′ (a, a′ ∈ A1).
Thus the g⊗1 (g ∈ G/G1) are orthogonal idempotents in�(A1)whose sum is 1. Set
A = �(A1). Note that if V is a leftA1#D1-module, then�(V ) is a leftA#D-module
with respect to the component-wise A-action.

Proposition 11.2. �G1 : A1#D1M→ A#DM is a category equivalence.

The A1-bimodules in (D1M,⊗, R) form a tensor category, (A1(D1M)A1 ,⊗A1 ,
A1). Similarly, we have (A(DM)A,⊗A,A).
Proposition 11.3. �G1 : (A1(D1M)A1 ,⊗A1 , A1) → (A(DM)A,⊗A,A) gives a
tensor equivalence onto the full tensor subcategory of A(DM)A, which consists of
the objects M such that (g ⊗ 1)m = m(g ⊗ 1)(m ∈ M) for every (or equivalently,
an arbitrarily chosen) g ∈ G/G1.
Subsequently, we assume the following.

Assumption 11.4. D1 is Birkhoff-Witt.

This is equivalent to saying thatD is smooth as a cocommutative coalgebra. Since
11.4 is the same as Assumption 9.1 if D = T(C+), the results in Section 9 can be
recovered from the forthcoming results by taking D = D1 = T(C+).
Let K be a D-module algebra. Suppose that K is Noetherian as a ring. Let �(K)

denote the (finite) set of all minimal prime ideals inK. ThenG acts on�(K). ForP ∈
�(K), let GP denote the subgroup of stabilizers of P . Set G�(K) = ⋂

P∈�(K) GP ;
this is a normal subgroup in G of finite index.

Proposition 11.5. Suppose in addition that K is simple.

(1) The action ofG on �(K) is transitive so that the subgroupsGP [P ∈ �(K)]
are conjugate to each other.

(2) Every P ∈ �(K) is D1-stable so that K/P is a D(GP)-module domain. This
is simple as a D(G�(K))-module algebra.

(3) Let P ∈ �(K) and set K1 = K/P . Then, we have a natural isomorphism
K � �GP (K1) of D-module algebras.

Proof. (2) Just as in the proof of 9.3, we see that Hom(D1, P) is a prime in
Hom(D1,K), and Q := ρ−1(Hom(D1, P)) is a D1-stable prime in K, which is
included in P . By its minimality, P must equal Q and be D1-stable. For the sec-
ond assertion, let P ⊂ J � K be a D(G�(K))-stable ideal. Then,

⋂
g∈G/G�(K) gJ

is D-stable and hence is zero. There exists a g such that gJ ⊂ P ; this implies
P ⊂ J ⊂ g−1P , whence P = J by the minimality of g−1P .
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(1) If P ∈ �(K), then⋂
g∈G gP , being D-stable, must be zero. Hence, {gP | g ∈

G} = �(K), as desired.
(3) By (1), g �→ gP gives a bijection G/GP

�−→ �(K). If g 	= g′ in G/GP ,
then gP + g′P = K by (2). Hence, K

�−→ ∏
g∈G/GP K/gP =

⊕
g∈G/GP g ⊗ K1 =

�GP (K1), as desired. �

A ring K is said to be total if every nonzero-divisor in K is invertible. In Part III,
we letQ(K) stand for the total quotient ring ofK; this is by definition the localization
ofK by the multiplicative set of all nonzero-divisors. Hence,K is total if and only if
K = Q(K).
Lemma-Definition 11.6. Let K 	= 0 be a D-module algebra. The following are
equivalent:

(i) K is Artinian and simple (as a D-module algebra);
(ii) K is Noetherian, total, and simple.

If these conditions are satisfied, K is said to be AS. In this case, every K#D-module
is free as a K-module.

Proof. Suppose that K is Noetherian and simple. By 11.5, K = ∏
P∈�(K) K/P .

Both (i) and (ii) are equivalent to the statement that each K/P is a field. Choose
P ∈ �(K) and set K1 = K/P . By 11.3 and 11.5 (3), every K#D-module is of the
form �GP (V ) =

⊕
g∈G/GP g ⊗ V , where V is a K1#D(GP)-module; this implies

the last assertion. �

Remark 11.7. AD-module that is a field is obviouslyAS; it will be called aD-module
field. AC-ferential field as defined in Part II is precisely a T(C+)-module field, where
for Assumption 11.4, we need to assume 9.1. On the other hand, a D-module field is
necessarily a D-ferential field.

Lemma 11.8. Let G1 ⊂ G be a subgroup of finite index. A D(G1)-module algebra
K1 is AS if and only if the D-module algebra �G1(K1) is AS.

Lemma 11.9. Let L be an AS D-module algebra, and let A ⊂ L be a D-module
subalgebra.

(1) Every nonzero-divisor of A is a nonzero-divisor of L so that the total quotient
ringQ(A) is realized in L.

(2) ThisQ(A) is a D-module subalgebra of L, which is AS.

Proof. (1) Given 0 	= x ∈ L, define its support by
Supp(x) = {P ∈ �(L) | x 	∈ P}.

Note that x is a nonzero-divisor of L if and only if Supp(x) = �(L). Let x be a
nonzero-divisor of A whose support is minimal among the nonzero-divisors of A. If
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Supp(x) 	= �(L), then by 11.5 (1) and the minimality, there exists a g ∈ G such
that Supp(x) ∩ Supp(gx) = ∅; this implies x(gx) = 0, a contradiction. (2) By 10.4,
Q(A) is a D-module subalgebra of L. It is necessarily AS, since a total D-module
subalgebra of an AS D-module algebra is AS, as is proved in [11, Lemma 2.8]. �

12. PV extensions of AS D-module algebras

Let L ⊃ K be an inclusion of AS D-module algebras; it is also referred to as an
extension L/K. There is the corresponding field extension LD/KD.

Definition 12.1. We say that L/K is a PV extension if

(i) LD = KD, which is a field and will be denoted by k, and
(ii) there exists an intermediate D-module algebra L ⊃ A ⊃ K such that

(a) L = Q(A) [see 11.9 (2)],
(b) A ⊗K A is generated by (A ⊗K A)D as a left (or equivalently right)

A-module.

Such an A as above is called a principal D-module algebra for L/K.

Let L/K and A be as above. Set H = (A ⊗K A)D; this is a k-subalgebra of
A ⊗K A. By using the simplicity of L, it follows that μ : A ⊗k H → A ⊗K A,
μ(a⊗k h) = (a⊗K 1)·h is an isomorphism. Then, we can now reprove Lemmas 7.2
and 7.3 in the present context. Thus,H has a natural structure of commutative k-Hopf
algebra; it is called the PV Hopf algebra for L/K. A principal D-module algebra A
for L/K is unique; it has a natural structure θ : A→ A⊗k H of a right H-comodule
algebra for which A/K is an H-Galois extension. We say that (L/K,A,H) is a PV
extension, indicating A,H as well.

Example 12.2. Let G1 ⊂ G be a normal subgroup of finite index. Let K be a
D-module field. Regarding this as a D(G1)-module field, define L := �G1(K).
There is an inclusion of D-module algebras,

K ↪→ L =
⊕

g∈G/G1
g⊗K, x �→

∑
g

g⊗ g−1x.

If KD(G1) = KD, then KD = LD (=: k) by 11.1. Moreover, (L/K,L,H) is a PV
extension, where H = k(G/G1)∗. In fact, we see that the elements

eg :=
∑

h∈G/G1
(h⊗ 1)⊗K (hg⊗ 1) (g ∈ G/G1)

in L ⊗K L are D-invariant and behave as the dual basis of the group elements g
in k(G/G1). Thus, �(eg) = ∑

h egh−1 ⊗k eh, ε(eg) = δ1,g, S(eg) = eg−1 . The
H-comodule structure θ : L→ L⊗kH is given by θ(h⊗x) =∑

g(hg
−1⊗gx)⊗k eg.
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Lemma 12.3. Let G1 ⊂ G be a subgroup of finite index, and write � = �G1 . Let
L1/K1 be an extension of ASD(G1)-module algebras;�(L1)/�(K1) is then also an
extension of ASD-module algebras. (L1/K1, A1, H ) is a PV extension if and only if
(�(L1)/�(K1),�(A1),H ) is a PV extension.

Proof. The natural coalgebra isomorphism�(A1⊗K1A1) � �(A1)⊗�(K1)�(A1)
(see 11.3) together with 11.1 proves the lemma. �

Remark 12.4. Let L/K be an extension of AS D-module algebras. Choose p ∈
�(K), and let P1, . . . , Pr be those primes in �(L), which lie over p. Define K1 =
K/p, L1 = ∏r

i=1 L/Pi. Then, we have an extension L1/K1 of AS D(Gp)-module
algebras such that the induced �(L1)/�(K1) is identified with L/K. Replacing L/K
with L1/K1, we can often suppose that K is a field when discussing PV extensions;
see 12.3.

To give a general result, which holds in an arbitrary Abelian category A, fix an
object X in A, and set E = A(X,X), the endomorphism ring of X. Note that for
every object Y in A, A(X, Y ) is naturally a right E-module.

Proposition 12.5 (Simplicity criterion). X is simple (i.e., is nonzero and includes
no nontrivial subobject) if and only if

(a) E is a division ring, and
(b) for every object Y in A, the morphism

(f1, . . . , fn) : Xn = X⊕ · · · ⊕X→ Y

given by finitely many, E-linearly independent morphisms f1, . . . , fn in
A(X, Y) is a monomorphism.

Proof. “If”. Let Z � X be a proper subobject. The quotient map f in A(X,X/Z),
being nonzero, is E-linearly independent by (a). By (b), f : X→ X/Z is monic, and
so Z = 0.
“Only if”. The argument that proves Schur’s lemma shows (a). We prove (b) by

induction on the number n. The proof in case n= 1 is obvious. Let n> 1, and assume
contrary to (b) that (f1, . . . , fn) is not monic, while f1, . . . , fn are E-linearly inde-
pendent. Set g = (f1, . . . , fn−1); this g as well as fn is monic by the induction
hypothesis. Let

Xn−1 g
Y�⏐⏐

�⏐⏐
�⏐⏐

�⏐⏐fn
Z X

be a pull-back diagram, which consists ofmonomorphisms. By the assumption above,

Z 	= 0, and so Z �−→ X by the simplicity of X. The induced morphism X � Z →
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Xn−1 is of the form t(a1, . . . , an−1) with ai ∈ E. This implies fn = ∑n−1
i=1 fiai,

contradicting the E-linear independence. �

Note that Propositions 1.3, 3.2, and 6.7 can all be obtained as special cases of the
proposition just proved.

Theorem 12.6 (Galois correspondence). Let (L/K,A,H ) be a PV extension of AS
D-module algebras.

(1) There is a 1–1 correspondence, given by (2.7), between the Hopf ideals I inH
and the intermediate AS D-module algebrasM in L/K.

(2) If I ↔ M under the correspondence, (L/M,AM,H/I ) is a PV extension.
(3) If I ↔ M under the correspondence, the Hopf ideal I is normal if and only

if M/K is a PV extension. By [18, Theorem 4.3], this gives rise to a 1–1
correspondence between the Hopf subalgebras J in H and the intermediate
PV extensions M/K in L/K, in which to each M/K its PV Hopf algebra is
assigned.

Proof. Once Part 1 is proved, Parts 2 and 3 will follow in the same way as for
2.6 (2) and 2.8. For Part 1, we need to prove 2.1 and 2.3 in the present, generalized
situation. For 2.3, this is easy. For 2.1, suppose that M is given. Since L, being
an M#D-module, is M-free, M can be recovered from the corresponding D-stable
coideal Ker(L ⊗K L → L ⊗M L) in the coalgebra L ⊗K L in (L(DM)L,⊗L,L).
Conversely, let a ⊂ L ⊗K L be a D-stable coideal. Define M=Ma by 2.2; this
is obviously an intermediate D-module algebra, which is seen to be total, and so
AS by 11.9 (2). Set C=L ⊗K L/a. One sees that the quotient map L ⊗K L � C
factors through a coalgebra surjection γ : L ⊗M L � C. We need to prove that
γ is injective. By 11.3, we may suppose that M is a field. To apply 12.5, regard
C just as an L-coring or a coalgebra in (LML,⊗L,L), and suppose that A is the
category of right C-comodules; an object Y in A is thus a right L-module together
with an L-linear comodule structure map Y → Y ⊗L C. Take L as the X in 12.5;
it has the natural C-comodule structure λ : L → L ⊗L C = C, λ(x) ≡ 1 ⊗K x
mod a. Since E=A(L,L)�M, A(L, C) � L, Condition (b) in 12.5, applied to
Y = C, is equivalent to injectivity of γ . Therefore, it suffices to verify the assumption
of 12.5 that L is simple in A. A subobject of L is of the form eL, where e is an
idempotent. Since λ is D-linear, g(eL), where g ∈ G, is also a subobject so that L is
semisimple by 11.5 (1). However,Lmust be simple, since the endomorphism ringE is
a field. �

Just as in the previous parts I and II, the result above can be interpreted in terms of
group schemes.

Corollary 12.7. Let (L/K,A,H ) be a PV extension of AS D-module algebras.

(1) A is simple as a D-module algebra.
(2) A contains all primitive idempotents in L so that A =∏

P∈�(L) A/P ∩ A.



Hopf Algebraic Approach to Picard–Vessiot Theory 167

Proof. (1) See the proof of 2.5. (2) Since A ↪→ L is a localization, we have
�(A) ⊃ �(L).We need to prove that ifP 	= Q in�(L), the sum J := P∩A+Q∩A
equals A. If on the contrary J � A, one sees from (1), as in the proof of 11.5 (2), that
J = P ∩ A = Q ∩ A, which implies P = Q. �

Proposition 12.8. Let (L/K,A,H ) be a PV extension of AS D-module algebras.
Choose P ∈ �(L) arbitrarily, and write � = �GP . Set p = P ∩K (∈ �(K)), and
define K1 = K/p, A1 = A/P ∩ A, L1 = L/P . Then
(1) A � �(A1).
(2) �(K1) identifies with the K-subalgebra of L, say K̂, which is K-spanned by

the primitive idempotents in L.
(3) (L1/K1, A1, H̄ := H/I ) is a PV extension of D(GP)-module fields, where

I = H ∩ Ker(L⊗K L→ L⊗
K̂
L), the Hopf ideal corresponding to K̂.

(4) The subalgebra of H

B := {h ∈ H | �(h)− h⊗ 1 ∈ H ⊗ I}
is a separable k-algebra of dimension [Gp : GP ]. There is a right H̄-colinear
B-algebra isomorphism H � B⊗k H̄ .

(5) The subgroup GP ⊂ Gp is normal if and only if B splits in the sense of
B � k × · · · × k. In this case, B ⊂ H is a Hopf subalgebra isomorphic
to k(Gp/GP)

∗ so that there is a short exact sequence of k-Hopf algebras,
k(Gp/GP)

∗ � H � H̄ .

Proof. (1) This follows by 12.7 (2). (2) This is easy. (3) By 12.6 (2), we have
a PV extension, (L/K̂,A, H̄) = (�(L1)/�(K1),�(A1), H̄). Part 3 now follows
from 12.3.

(4) and (5). By 12.3, we may suppose that K is a field, and so p= 0, G=Gp.
The obvious equalizer diagram 0 → A ⊗K K̂ → A ⊗K A →→ A ⊗K A ⊗K̂ A of
D-module algebras is naturally identified with 0 → A ⊗k B → A ⊗k H →→ A ⊗k
H ⊗k H̄ . Induced is an isomorphism A ⊗k B � A ⊗K K̂. By applying L1⊗A, we
obtain

L1 ⊗k B � L1 ⊗K K̂ = �(L1) = L. (12.1)

This implies the first assertion of (4). For the second, note that σ : �(A1 ⊗K A1) =
A⊗

K̂
A→ A⊗KA given by σ(g⊗ (a⊗K b)) = (g⊗a)⊗K (g⊗b) (g ∈ G/GP ) is a

D-linear, right H̄-colinear k-algebra splitting of A⊗K A→ A⊗
K̂
A. The restriction

σD : H̄ → H to D-invariants is an H̄-colinear k-algebra splitting of H → H̄ .
It follows from [25, Theorem 9] (or see [14, Theorem 7.2.2]) that B ⊗k H̄ → H ,
b⊗ x �→ bσD(x) is the desired isomorphism.

IfGP � G, then by 12.2, K̂/K is a PV extensionwith PVHopf algebra k(G/GP)∗.
We must have B = k(G/GP)

∗, which splits. If B splits, it follows from the iso-
morphism (12.1), which preserves the GP -action, that GP stabilizes each compo-
nent in L, whence GP � G. This proves the first assertion of (5). The second one
is easy. �
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Theorem 12.10. Let L/K be an extension of AS D-module algebras. Choose an
arbitrary P ∈ �(L), and set p = P ∩K (∈ �(K)). Set K1 = K/p, L1 = L/P . Then
L/K is a PV extension if

(i) GP is normal in Gp, and
(ii) the extension L1/K1 of D(GP)-module fields is PV.

The converse is true if the field KD (=LD) is separably closed.

Proof. If KD is separably closed and L/K is PV, then the separable algebra B as
given in 12.8 (4) splits, which implies (i) above, by 12.8 (5). This together with 12.8
(3) proves the last assertion.
For what remains, we can suppose that K is a field. Suppose that (L1/K1, A1, H̄)

is PV. Let �=�GP , and define A=�(A1). If L/K is PV, the principal D-module
algebra must be A; see 12.8 (1). A ⊗K A is a right H̄-comodule algebra with H̄-
coinvariants A ⊗K �(K). We can define a D-linear, H̄-colinear k-algebra map σ :
�(A1⊗KA1)→ A⊗KA as in the last proof. Induced is an H̄-colinear k-algebramap
σD : H̄ → (A⊗K A)D. Again by [25, Theorem 9], we have a D-linear, H̄-colinear
algebra isomorphismA⊗K�(K)⊗k H̄ �−→ A⊗KA overA⊗K�(K). Hence,L/K is
PV if and only if the natural injectionA⊗k (A⊗k�(K))D → A⊗k�(K) is surjective.
Indeed, this is surjective ifGP � G, since then by 12.2,A⊗k (�(K)⊗K�(K))D →
A⊗k �(K) is already surjective. �

There is an example [11, Example 3.16] of a PV extension of the form�G1(K)/K,
where K is a D-module field, and G1 ⊂ G is a non-normal subgroup of finite
index. This shows that, in 12.10, the converse does not necessarily hold without the
assumption of separable closedness.

13. Characterization and unique existence

Let L/K be an extension of AS D-module algebras. Let V be a K#D-module, which
is necessarily K-free; see 11.6. Its K-free rank will be denoted by rkK V and simply
called the K-rank. By slightly modifying the argument in Section 8, we see that
HomK(V,L) is naturally an L#D-module [see (8.6)], whose D-invariants equal the
LD-vector space

LV := HomK#D(V,L).

There is a natural injection L⊗LD LV ↪→ HomK(V,L) in L#DM, which necessarily
splits L-linearly so that dimLD L

V ≤ rkK V .

Definition 13.1. Let V be a K#D-module. L is a splitting algebra for V if there
exists an injectionL⊗KV ↪→∏

λ Lλ in L#DM, where
∏
λ Lλ is the product of copies

Lλ of L. If rkK V = n < ∞, the condition is equivalent to each of the following:
L⊗K V � Ln in L#DM; L⊗LD LV �−→ HomK(V,L); dimLD L

V = n.
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For a subset Z = {z1, z2, . . . } of L, let K〈Z〉 = K〈z1, z2, . . .〉 denote the smallest
intermediate AS D-module algebra in L/K that includes Z. This coincides with the
localization T−1A of the K-subalgebra A ⊂ L generated by the D-submodule DZ,
where T is the multiplicative set consisting of those elements x inAwith full support,
i.e., Supp(x) = �(L); see the proof of 11.9. L/K is said to be finitely generated if
L = K〈z1, . . . , zn〉 for some finite elements z1, . . . , zn in L. If L/K is PV, this, as
will be seen from 13.3, is equivalent to the following: L is the total quotient ring of
some finitely generated K-subalgebra in L.
Let K〈V 〉 stand for K〈⋃f∈LV f(V )〉. A splitting algebra L for V is said to be

minimal if L = K〈V 〉.

Lemma 13.2. Let G1 ⊂ G, K1 ⊂ L1 be as in 12.3. Write �=�G1 . Then, L1 is
a (minimal) splitting algebra for a K1#D(G1)-module V1 if and only if �(L1) is a
(minimal) splitting algebra for the �(K1)#D-module �(V1).

Proof. This follows from 11.2; note that �(K1〈V1〉) = �(K1)〈�(V1)〉. �

Theorem 13.3 (Characterization). LetL/K be an extension of ASD-module algebras
such that LD = KD.
(1) The following are equivalent:

(i) L/K is a finitely generated PV extension.
(ii) L is a minimal splitting algebra for some cyclic K#D-module of finite

K-rank.
(iii) L is a minimal splitting algebra for some K#D-module of finite K-rank.
(iv) There is a GLn-primitive matrix X = (xij) ∈ GLn(L) for some n such

that L = K〈xij〉; by saying that X is GLn-primitive, we mean that for
every d ∈ D, (dX)X−1 ∈ Mn(K), where dX = (dxij).

(2) The following are equivalent:
(i) L/K is a PV extension.
(ii) L is a minimal splitting algebra for some K#D-module that is a sum of

K#D-submodules of finite K-rank.

Proof. (1) We prove only the implication (i) ⇒ (ii). For the rest just adapt the
proofs of 3.11 and 8.8. Suppose that (L/K,A,H) is finitely generated PV. By 12.3
and 13.2, we can suppose that K is a field. By 12.8 (3), we have a finitely generated
PV extension (L1/K1, A1, H̄) of module fields over D1 = D(GP) with P ∈ �(L)
such that L = �GP (L1), A = �GP (A1). Write k = KD (= LD).
There exist finitely many elements u1, . . . , un in A = (A, θ) such that they k-

span an H-subcomodule and satisfy L = K〈u1, . . . , un〉. Take the element u =
(u1, . . . , un) in An, and let V = (K#D)u, the cyclic K#D-module generated by u.
SinceL⊗KA � L⊗kH , we see thatL is aminimal splitting algebra forAn and hence
for V . It remains to prove dimK V <∞. For this, it suffices to prove that the natural
image V(P), say, of V under the projection An → An1 has finite K-dimension since
V ↪→∏

P∈�(L) V(P). Let g1, . . . , gs (∈ G) be a system of representatives forGP\G.
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Then, V =∑s
i=1(K#D1)giu. Fix 1 ≤ i ≤ s, and let w = (w1, . . . , wn) ∈ An1 be the

natural image of giu. It suffices to prove thatW := (K#D1)w has finiteK-dimension.
By renumbering, we suppose that w1, . . . , wr (r ≤ n) are a k-basis of the k-subspace
of A1 spanned by w1, . . . , wn. Set w′ = (w1, . . . , wr). Then, w = w′T for some
rank r matrix T with entries in k. It suffices to prove thatW ′ := (K#D1)w′ has finite
K-dimension, sinceW ′ �−→ W via the right multiplication by T , but this follows by an
obvious modification of the proof of 8.8, (i)⇒ (ii), since w1, . . . , wr form a k-basis
of an H̄-subcomodule of An1.
(2) We can reprove 3.15 (1) in the present context. The result, together with Part 1

above and 12.6 (3), proves Part 2; see the proof of 3.17. �

We can now reprove Theorem 8.11 in the present context; see [11, Theorem 4.10].

Theorem 13.4 (Unique existence). Suppose thatK is an ASD-module algebra such
that the field KD is algebraically closed. Let V be a K#D-module of finite K-rank.
There exists a minimal splitting algebra L for V with LD = KD so that L/K is
necessarily a finitely generated PV extension of ASD-module algebras. Such an L is
unique up to isomorphism of D-module algebras over K.

Proof. Modify the proof of 4.3 by using the following lemma, which
generalizes 4.2. �

Lemma 13.5 (cf. [21, Appendix]). Let A/K be an extension of D-module algebra
such that A is finitely generated as a K-algebra. Suppose that K is AS, and A is
simple; then by 11.5 (3), A � �GP (A/P), where P ∈ �(A). Let L = Q(A); by 10.4,
L is uniquely a D-module algebra, which is AS. Then the field extension LD/KD is
algebraic.

Proof. As in the first part of the proof of 4.2, one sees LD=AD. The remaining
parts are also valid, since by 11.1 and 11.5 (3), we can suppose that K is a field, and
A is a domain, by replacing K,A with K/P ∩K, A/P , where P ∈ �(A). �

We can rewrite Section 5 in the present context. We only point out some aspects;
see [13] for details. Let L/K be an extension of AS D-module algebras. Recall the
remark on the Amitsur cohomology vanishing just after Lemma 1.14. One then sees
that the lemma holds for L/K, sinceK is the product of fields, and L isK-free. Using
the lemma we can restate Example 1.15. To proceed, understandKs to denote�(Ks1)
with the notation of 12.8, where Ks1 denotes the separable algebraic closure of K1 in
the field extension L1/K1.
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1. Introduction

If it should be formulated in one sentence what a Hopf algebroid is, it should be
described as a generalization of a Hopf algebra to a noncommutative base algebra.
More precisely, the best known examples of Hopf algebroids are Hopf algebras.
Clearly, the notion of a Hopf algebroid turns out to be a successful generalization only
if a convincing amount of results about Hopf algebras extend to Hopf algebroids. But
one expects more: working with Hopf algebroids should be considered to be useful
if in this way one could solve problems that could not be solved in terms of Hopf
algebras.Hopf algebroids provide uswith results of two types: one that extends known
results about Hopf algebras and the other that is conceptually new.
Hopf algebras have been intensively studied and successfully applied in various

fields of mathematics and even physics, for more than 50 years. Without aiming
at a complete list, let us mention a few applications. Hopf algebras were used to
construct invariants in topology and knot theory. In connection with solutions of the
quantumYang–Baxter equation, quantum groups, that is, certain Hopf algebras, play
a central role. In (low-dimensional) quantum field theory, Hopf algebras are capable
of describing internal symmetry of some models. In noncommutative differential
geometry (faithfully flat), Galois extensions by a Hopf algebra are interpreted as
noncommutative principal bundles. Although the theory of Hopf algebras was (is!)
extremely successful, in the 1990s, there arose more and more motivations for a
generalization.
Originally, the term Hopf algebroid was used for cogroupoid objects in the cate-

gory of commutative algebras. These are examples of Hopf algebroids in the current
chapter with commutative underlying algebra structure. They found an application,
for example, in algebraic topology [1]. As a tool for a study of the geometry of
principal fiber bundles with groupoid symmetry, recently, more general, noncommu-
tative Hopf algebroids have been used but still over commutative base algebras [2].
For some applications, this is still not the necessary level of generality. In Poisson
geometry, solutions of the dynamicalYang–Baxter equation correspond to dynamical
quantum groups, which are not Hopf algebras [3–8]. In topology, invariants obtained
in [9] do not fit the Hopf algebraic framework. In transverse geometry, extensions of
Hopf algebras by noncommutative base algebras occurred [10]. In low-dimensional
quantum field theories, nonintegral values of the statistical (also called quantum)
dimensions in some models exclude a Hopf algebra symmetry [11]. Another field
where important questions could not be answered in the framework of Hopf algebras
is noncommutative geometry, that is, Hopf Galois theory. Thinking about classical
Galois extensions of fields by a finite group, such an extension can be characterized
without explicitlymentioning the Galois group.A(unique, up to isomorphism)Galois
group is determined by aGalois field extension. In the case of Hopf Galois extensions,
no such intrinsic characterization, without explicit use of a Hopf algebra, is known.
Also, although the Hopf algebra describing the symmetry of a given Hopf Galois
extension is known to be nonunique, the relation between the possible choices is not
known. These questions have been handled by allowing for noncommutative base
algebras [12,13]. On the other hand, as the study of Hopf algebroids has a quite short
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past, there are many aspects of Hopf algebras that have not yet been investigated as
to how they extend to Hopf algebroids. It has to be admitted that almost nothing has
been done yet toward a classification and structure theory of Hopf algebroids.
What does it mean that the base algebraR of a Hopf algebroid is noncommutative?

Recall that a bialgebra over a commutative base ring k is a k-module, with compatible
algebra and coalgebra structures. By analogy, in a bialgebroid, the coalgebra structure
is replaced by a coring over any not necessarily commutative k-algebra R. Also, the
algebra structure is replaced by a ring over a noncommutative base algebra. However,
in order to formulate the compatibility between the ring and coring structures, the base
algebra of the ring has to be notR butR⊗kRop.AHopf algebra is a bialgebra with an
additional antipodemap. In the Hopf algebroid case, the antipode relates two different
bialgebroid structures over the base algebras R and Rop.

In these notes, we arrive at the notion of a Hopf algebroid after considering all con-
stituent structures. In Section 2, R-rings and R-corings are introduced. They are seen
to generalize algebras and coalgebras. Emphasis is put on their duality. Section 3
is devoted to a study of bialgebroids, generalizing bialgebras. Several equivalent
descriptions are given and examples are collected. In particular, constructions of new
bialgebroids from known ones are presented. Some of them change the base algebra
of a bialgebroid, so they have no counterparts for bialgebras. Although bialgebroid
axioms are not manifestly self-dual, duals of finitely generated and projective bialge-
broids are shown to be bialgebroids.Key properties of a bialgebroid aremonoidality of
the categories of modules and comodules. This is explained in some detail. Section 3
is closed by a most important and most successful application, Galois theory of bial-
gebroids. Hopf algebroids are the subject of Section 4.After presenting the definition,
listing some examples, and deriving some immediate consequences of the axioms, we
discuss the theory of comodules. Since in a Hopf algebroid there are two bialgebroids
(hence corings), comodules of the Hopf algebroid comprise comodule structures of
both. The relation between the categories of comodules of a Hopf algebroid and
comodules of the constituent bialgebroids is investigated. The category of comodules
of a Hopf algebroid is proven to be monoidal, what is essential from the point of view
of Galois theory. Next, we turn to a study of the theory of integrals. It is a good exam-
ple of results that are obtained by using some new ideas but that extend analogous
results for Hopf algebras in a reassuring way. The structure of Galois extensions by
Hopf algebroids is investigated. Useful theorems are presented about situations when
surjectivity of a canonical map implies Galois property. They extend known results
about Hopf Galois extensions. While there seems to be an accord in the literature
that the right generalization of a bialgebra to a noncommutative base is a bialgebroid,
there is some discussion about the right generalization of a Hopf algebra. We close
these notes by collecting and comparing notions suggested by various authors.
To keep the list of references perspicuous, we do not refer in these notes to papers

containing classical results about Hopf algebras, which are generalized here. We
believe it is more useful to give here a detailed bibliography of those papers that deal
with structures over a noncommutative base.Avery good and detailed bibliography of
the literature of Hopf algebras can be found in chapter “HopfAlgebras” of Handbook
of Algebra [14].
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Notations and conventions.Throughout k is an associative and commutative unital
ring. All algebras are associative and unital k-algebras. A k-algebra is denoted by A,
and the underlying k-module is denoted by A. On elements of A, multiplication
is denoted by juxtaposition. The unit element is denoted by 1A. For an algebra A,
with multiplication (a, a′) �→ aa′, Aop denotes the opposite of A. As a k-module
it is equal to A and multiplication is (a, a′) �→ a′a. The category of right (resp.
left) modules of an algebra A is denoted by MA (resp. AM). Hom sets are denoted
by HomA(−,−) (resp. AHom(−,−)). The category of A-bimodules is denoted by
AMA, and its hom sets by AHomA(−,−). Often, we identify left A-modules with
right Aop-modules, but in every such case, this is explicitly said. Action on a (say
right) module M of a k-algebra A, if evaluated on elements m ∈ M and a ∈ A, is
denoted by �M : m⊗ a �→ m · a.
For coproducts in a coalgebra and, more generally, in a coring C, Sweedler’s index

notation is used. That is, for an element c ∈ C, wewrite c �→ c(1)⊗c(2) (or sometimes
c �→ c(1)⊗c(2)) for the coproduct, where implicit summation is understood. Similarly,
for a (say right) coaction on a comodule M of a coring, evaluated on an element
m ∈ M, the notation �M : m �→ m[0] ⊗ m[1] (or m �→ m[0] ⊗ m[1]) is used, where
implicit summation is understood. The category of right (resp. left) comodules of a
coringC is denoted byMC (resp. CM). Hom sets are denoted byHomC(−,−) (resp.
CHom(−,−)).

In any category A, the identity morphism at an object A is denoted by the same
symbol A. Hom sets in A are denoted by HomA(−,−).
In a monoidal category (M,⊗, U), we allow for nontrivial coherence isomor-

phisms (− ⊗ −) ⊗ − ∼= − ⊗ (− ⊗ −) and − ⊗ U ∼= − ∼= U ⊗ − but do not
denote them explicitly. (Such monoidal categories are called in the literature, some-
times, lax monoidal.) The opposite of a monoidal category (M,⊗, U), denoted by
(M,⊗, U)op,means the same categoryMwith oppositemonoidal product.Afunctor
F between monoidal categories (M,⊗, U) and (M′,⊗′, U ′) is said to be monoidal
if there exist natural transformations F2 : F(−)⊗′F(−)→ F(−⊗−) and F0 : U ′ →
F(U), satisfying the usual compatibility conditions. F is said to be op-monoidal if
there exist compatible natural transformations F2 : F(−⊗−)→ F(−)⊗′ F(−) and
F0 : F(U)→ U ′. Amonoidal functor (F,F2,F0) is strong monoidal if F2 and F0 are
isomorphisms, and it is strict monoidal if F2 and F0 are identity morphisms.

2. R-rings and R-corings

Amonoid in a monoidal category (M,⊗, U) is a triple (A,μ, η). Here,A is an object
and μ : A⊗ A→ A and η : U → A are morphisms in M, satisfying associativity
and unitality conditions

μ◦(μ⊗A) = μ◦(A⊗μ) and μ◦(η⊗A) = A = μ◦(A⊗η). (2.1)
The morphism μ is called a multiplication (or product) and η is called a unit. An
algebra over a commutative ring k can be described as a monoid in the monoidal
category (Mk,⊗k, k) of k-modules.
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A right module of a monoid (A,μ, η) is a pair (V, ν), where V is an object and
ν : V ⊗ A→ V is a morphism in M such that

ν ◦ (V ⊗ μ) = ν ◦ (ν⊗ A) and ν ◦ (V ⊗ η) = V.
Left modules are defined symmetrically.
Reversing all arrows in the definition of a monoid, we arrive at the dual notion of a

comonoid.A comonoid in a monoidal category (M,⊗, U) is a triple (C,�, ε). Here,
C is an object and � : C→ C ⊗ C and ε : C→ U are morphisms in M, satisfying
coassociativity and counitality conditions

(�⊗C)◦� = (C⊗�)◦� and (ε⊗C)◦� = C = (C⊗ε)◦�. (2.2)
The morphism � is called a comultiplication (or coproduct) and ε is called a counit.
A coalgebra over a commutative ring k can be described as a comonoid in the mono-
idal category (Mk,⊗k, k) of k-modules. Dualizing the definition of a module of a
monoid, one arrives at the notion of a comodule of a comonoid.
Many aspects of the theory of algebras and their modules, or coalgebras and their

comodules, can be extended to monoids or comonoids in general monoidal cate-
gories. Here, we are interested in monoids and comonoids in a monoidal category
(RMR,⊗R,R) of bimodules over a k-algebra R. These monoids and comonoids are
called R-rings and R-corings, respectively.

2.1. R-rings

Generalizing algebras over commutative rings, we study monoids in bimodule
categories.

Definition 2.1. For an algebra R over a commutative ring k, an R-ring is a triple
(A,μ, η). Here, A is an R-bimodule and μ : A ⊗R A → A and η : R → A are
R-bimodule maps, satisfying the associativity and unit conditions (2.1). Amorphism
of R-rings f : (A,μ, η)→ (A′, μ′, η′) is an R-bimodule map f : A→ A′ such that
f ◦ μ = μ′ ◦ (f ⊗R f) and f ◦ η = η′.

For an R-ring (A,μ, η), the oppositemeans the Rop-ring (Aop, μop, η). Here, Aop

is the same k-module A. It is understood to be a left (resp. right) Rop-module via
the right (resp. left) R-action. Multiplication is μop(a ⊗Rop a′) := μ(a′ ⊗R a) and
unit is η.
A most handy characterization of R-rings comes from the following observation.

Lemma 2.2. There is a bijective correspondence between R-rings (A,μ, η) and
k-algebra homomorphisms η : R→ A.

Indeed, starting with an R-ring (A,μ, η), a multiplication map A ⊗k A → A is
obtained by composing the canonical epimorphism A ⊗k A → A ⊗R A with μ.
Conversely, starting with an algebra map η : R → A, an R-bilinear associative
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multiplication A⊗R A→ A is obtained by using the universality of the coequalizer
A⊗k A→ A⊗R A.
An R-ring (A,μ, η) determines monads on the categories of right and left

R-modules (i.e. monoids in the monoidal categories of endofunctors on MR and
RM). They are given by − ⊗R A : MR → MR and A ⊗R − : RM → RM,
respectively.

Definition 2.3. A right module for an R-ring (A,μ, η) is an algebra for the monad
− ⊗R A on the category MR. A right module morphism is a morphism of algebras
for the monad −⊗R A.

A left module for an R-ring (A,μ, η) is an algebra for the monad A ⊗R − on
the category RM. A left module morphism is a morphism of algebras for the monad
A⊗R −.
Left modules of an R-ring are canonically identified with right modules for the

opposite Rop-ring. Analogously to Lemma 2.2, modules for R-rings can be charac-
terized as follows.

Lemma 2.4. A k-module M is a (left or right) module of an R-ring (A,μ, η) if and
only if it is a (left or right) module of the corresponding k-algebra A in Lemma 2.2.
Furthermore, a k-module map f : M → M ′ is a morphism of (left or right) modules
of an R-ring (A,μ, η) if and only if it is a morphism of (left or right) modules of the
corresponding k-algebra A in Lemma 2.2.

The situation when the (left or right) regular R-module extends to a (left or right)
module of an R-ring (A,μ, η) is of particular interest.

Lemma 2.5. The right regular module of a k-algebra R extends to a right module of
an R-ring (A,μ, η) if and only if there exists a k-module map χ : A→ R, obeying
the following properties.

(i) χ(aη(r)) = χ(a)r, for a ∈ A and r ∈ R (right R-linearity),
(ii) χ(aa′) = χ((η ◦ χ)(a)a′), for a, a′ ∈ A (associativity),
(iii) χ(1A) = 1R (unitality).

A map χ obeying these properties is called a right character on the R-ring (A,μ, η).

In terms of a right character χ, a right A-action on R is given by r · a := χ(η(r)a).
Conversely, in terms of a right A-action on R, a right character is constructed as
χ(a) := 1R · a. Symmetrically, one can define a left character on an R-ring (A,μ, η)
via the requirement that the left regular R-module extends to a left module for
(A,μ, η).

Definition 2.6. Let (A,μ, η) be an R-ring possessing a right character χ : A→ R.
The invariants of a right module (M, �M) with respect to χ are the elements of the



Hopf Algebroids 179

k-submodule

Mχ := {m ∈ M |�M(m⊗
R
a) = �M(m⊗

R
(η◦χ)(a)), ∀a ∈ A } ∼= HomA(R,M),

where the isomorphism Mχ → HomA(R,M) is given by m �→ (r �→ m · η(r)). In
particular, the invariants of R are the elements of the subalgebra

B := Rχ = { b ∈ R | χ(η(b)a) = bχ(a), ∀a ∈ A }.
Associated to a character χ, there is a canonical map

A→ BEnd(R), a �→ (
r �→ χ(η(r)a)

)
. (2.3)

The R-ring (A,μ, η) is said to be a Galois R-ring (with respect to the character χ)
provided that the canonical map (2.3) is bijective.

2.2. R-corings

The theory of R-corings is dual to that of R-rings. A detailed study can be found in
the monograph [15].

Definition 2.7. For an algebra R over a commutative ring k, an R-coring is a triple
(C,�, ε). Here, C is an R-bimodule and � : C → C ⊗R C and ε : C → R are
R-bimodule maps, satisfying the coassociativity and counit conditions (2.2). Amor-
phism of R-corings f : (C,�, ε)→ (C′,�′, ε′) is an R-bimodule map f : C→ C′
such that �′ ◦ f = (f ⊗R f) ◦� and ε′ ◦ f = ε.

For an R-coring (C,�, ε), the co-opposite is the Rop-coring (Ccop,�cop, ε). Here
Ccop is the same k-module C. It is understood to be a left (resp. right) Rop-module
via the right (resp. left) R-action. The comultiplication is �cop(c) := c(2) ⊗Rop c(1)
and the counit is ε.
An R-coring (C,�, ε) determines comonads on the categories of right and left

R-modules (i.e. comonoids in the monoidal categories of endofunctors on MR and
RM). They are given by − ⊗R C : MR → MR and C ⊗R − : RM → RM,
respectively.

Definition 2.8. A right comodule for an R-coring (C,�, ε) is a coalgebra for the
comonad − ⊗R C on the category MR. That is, a pair (M, �M), where M is a
right R-module and �M : M → M ⊗R C is a right R-module map, satisfying the
coassociativity and counit conditions

(�M⊗
R
C) ◦ �M = (M⊗

R
�) ◦ �M and (M⊗

R
ε) ◦ �M = M. (2.4)

A right comodule morphism f : (M, �M)→ (M ′, �M′
) is a morphism of coalgebras

for the comonad − ⊗R C. That is, a right R-module map f : M → M ′, satisfying
�M

′ ◦ f = (f ⊗R C) ◦ �M .
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Symmetrically, a left comodule is a coalgebra for the comonad C ⊗R − on the
categoryRM.A left comodulemorphism is amorphismof coalgebras for the comonad
C ⊗R −.

Left comodules of an R-coring are canonically identified with right comodules for
the co-opposite Rop-coring.
The situation when the (left or right) regular R-module extends to a (left or right)

comodule of an R-coring (C,�, ε) is of particular interest (see [16, Lemma 5.1]).

Lemma 2.9. The (left or right) regularR-module extends to a (left or right) comodule
of an R-coring (C,�, ε) if and only if there exists an element g ∈ C, obeying the
following properties.

(i) �(g) = g⊗R g.
(ii) ε(g) = 1R.

An element g obeying these properties is called a grouplike element in the R-coring
(C,�, ε).

Having a grouplike element g in an R-coring (C,�, ε), a right coaction on R is
constructed as a map R→ C, r �→ g · r. Conversely, a right coaction �R : R→ C

determines a grouplike element �R(1R).

Definition 2.10. Let (C,�, ε) be anR-coring possessing a grouplike elementg ∈ C.
The coinvariants of a right comodule (M, �M) with respect to g are the elements of
the k-submodule

Mg := { m ∈ M | �M(m) = m⊗
R
g } ∼= HomC(R,M),

where the isomorphism Mg → HomC(R,M) is given by m �→ (r �→ m · r). In
particular, the coinvariants of R are the elements of the subalgebra

B := Rg = { b ∈ R | b · g = g · b }.
Associated to a grouplike element g, there is a canonical map

R⊗
B
R→ C, r⊗

B
r′ �→ r · g · r′. (2.5)

The R-coring (C,�, ε) is said to be a Galois R-coring (with respect to the grouplike
element g) provided that the canonical map (2.5) is bijective.

Let (C,�, ε) be an R-coring possessing a grouplike element g. Put B := Rg. For
any rightC-comoduleM,Mg is a rightB-module. Furthermore, any rightC-comodule
mapM → M ′ restricts to a right B-module mapMg → M ′g. There is an adjoint pair
of functors

−⊗
B
R :MB →MC and (−)g :MC →MB. (2.6)
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If (C,�, ε) is a Galois coring (with respect to g), then MC is equivalent to the
category of descent data for the extension B ⊆ R. Hence, the situation, when the
functors (2.6) establish an equivalence, is interesting from the descent theory point
of view.

2.3. Duality

Beyond the formal duality between algebras and coalgebras, it is well known that the
k-dual of a coalgebra over a commutative ring k possesses a canonical algebra struc-
ture. The converse is true whenever a k-algebra is finitely generated and projective
as a k-module. In what follows, we recall analogs of these facts for rings and corings
over an arbitrary algebra R.

Proposition 2.11. Let R be an algebra over a commutative ring k.

(1) For an R-coring (C,�, ε), the left dual ∗C := RHom(C,R) possesses a
canonical R-ring structure. Multiplication is given by (φψ)(c) := ψ

(
c(1) ·

φ(c(2))
)
, for φ,ψ ∈ ∗C and c ∈ C. Unit map is R→ ∗C, r �→ ε(−)r.

(2) For an R-ring (A,μ, η), which is a finitely generated and projective right R-
module, the right dual A∗ := HomR(A,R) possesses a canonical R-coring
structure. In terms of a dual basis ({ai ∈ A}, {αi ∈ A∗}), comultiplication is
given by ξ �→∑

i ξ(ai−)⊗R αi, which is independent of the choice of a dual
basis. Counit is A∗ → R, ξ �→ ξ(1A).

(3) For an R-coring (C,�, ε), which is a finitely generated and projective left
R-module, the second dual (∗C)∗ is isomorphic to C as an R-coring.

(4) For an R-ring (A,μ, η), which is a finitely generated and projective right
R-module, the second dual ∗(A∗) is isomorphic to A as an R-ring.

Applying Proposition 2.11 to the co-opposite coring and the opposite ring, ana-
logous correspondences are found between right duals of corings and left duals of
rings.

Proposition 2.12. Let C be a coring over an algebra R.

(1) Any right C-comodule (M, �M) possesses a right module structure for the
R-ring ∗C,

m · φ := m[0] · φ(m[1]), for m ∈ M, φ ∈ ∗C. (2.7)

Any right C-comodule map becomes a ∗C-module map. That is, there is a
faithful functor MC →M ∗C.

(2) The functor MC → M ∗C is an equivalence if and only if C is a finitely
generated and projective left R-module.

There is a duality between Galois rings and Galois corings too.
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Proposition 2.13. LetC be anR-coring, which is a finitely generated and projective
left R-module. For an element g ∈ C, introduce the map χg : ∗C → R, φ �→ φ(g).
The following statements hold.

(1) The element g ∈ C is grouplike if and only if χg is a right character on the
R-ring ∗C.

(2) An element b ∈ R is a coinvariant of the right C-comodule R (with coaction
induced by a grouplike element g) if and only if b is an invariant of the right
∗C-module R (with respect to the right character χg).

(3) The R-coring C is a Galois coring (with respect to a grouplike element g) if
and only if the R-ring ∗C is a Galois ring (with respect to the right
character χg).

3. Bialgebroids

In Section 2, we generalized algebras and coalgebras over commutative rings to
monoids and comonoids in bimodule categories. We could easily do so, the category
of bimodules over any k-algebra R is a monoidal category, just as the category of
k-modules. If we try to generalize bialgebras to a noncommutative base algebra R,
however, we encounter difficulties. Recall that a k-bialgebra consists of an algebra
(B,μ, η), and a coalgebra (B,�, ε) defined on the same k-module B. They are sub-
ject to compatibility conditions. Unit and multiplication must be coalgebra maps or
equivalently counit, and comultiplication must be algebra maps. This means in par-
ticular that, for any elements b and b′ inB, multiplication and comultiplication satisfy
the condition

(bb′)(1)⊗
k
(bb′)(2) = b(1)b′(1)⊗

k
b(2)b

′
(2). (3.1)

Note that (3.1) is formulated in terms of the symmetry tw in Mk. For any k-modules
M and N, the twist map twM,N : M ⊗k N → N ⊗k M maps m ⊗k n to n ⊗k m.
Written in terms of morphisms (3.1) is equivalent to

� ◦ μ = (μ⊗
k
μ) ◦ (B⊗

k
twB,B⊗

k
B) ◦ (�⊗

k
�).

In the literature, one can find generalizations when tw is replaced by a braiding
[17–19]. (For an approach when tw is replaced by amixed distributive law (see [20]).)
However, general bimodule categories are neither symmetric nor braided. There is
no natural way to formulate an analog of (3.1) in a bimodule category. Indeed, more
sophisticated ideas are needed.
The notion that is known today as a (left) bialgebroid was introduced (indepen-

dently) by several authors. The first definition is due to Takeuchi, who used the name
×R-bialgebra in [21]. Some twenty years later, with motivation coming from Poisson
geometry, in [6], Lu proposed an equivalent definition. The term bialgebroid is due
to her. A third equivalent set of axioms was invented by Xu in [8]. The equivalence
of the listed definitions is far from obvious. It was proven by Brzeziński and Militaru
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in [22]. Symmetrical notions of left and right bialgebroids were formulated and
studied by Kadison and Szlachányi in [23]. The definition presented here is a slightly
reformulated version of the one in [6] or [23].

3.1. Right and left bialgebroids

In contrast to the definition of a bialgebra, in this section, a bialgebroid is not described
as a compatiblemonoid and comonoid in somemonoidal category (of bimodules).The
ring and coring structures of a bialgebroid are defined over different base algebras;
they are a monoid and a comonoid in different monoidal categories. Recall from
Lemma 2.2 that an R ⊗k Rop-ring A (for some algebra, R over a commutative ring
k) is described by a k-algebra map η : R⊗k Rop → A. Equivalently, instead of η, we
can consider its restrictions

s := η(−⊗
k
1R) : R→ A and t := η(1R⊗

k
−) : Rop → A, (3.2)

which are k-algebra maps with commuting ranges in A. The maps s and t in (3.2)
are called the source and target maps of an R ⊗k Rop-ring A, respectively. In what
follows, an R ⊗k Rop-ring will be given by a triple (A, s, t), where A is a k-algebra
(with underlying k-module A) and s and t are algebra maps with commuting ranges
as in (3.2).

Definition 3.1. LetR be an algebra over a commutative ring k.ArightR-bialgebroid
B consists of an R ⊗k Rop-ring (B, s, t) and an R-coring (B,�, ε) on the same
k-module B. They are subject to the following compatibility axioms.

(i) The bimodule structure in the R-coring (B,�, ε) is related to the R⊗k Rop-
ring (B, s, t) via

r · b · r′ := bs(r′)t(r), for r, r′ ∈ R, b ∈ B. (3.3)

(ii) Considering B as an R-bimodule as in (3.3), the coproduct � corestricts to a
k-algebra map from B to

B×RB :=
{ ∑

i

bi⊗
R
b′i |

∑
i

s(r)bi⊗
R
b′i =

∑
i

bi⊗
R
t(r)b′i, ∀r ∈ R

}
,

(3.4)

where B ×R B is an algebra via factorwise multiplication.
(iii) The counit ε is a right character on the R-ring (B, s).

Remark 3.2. The bialgebroid axioms in Definition 3.1 have some immediate
consequences.

(1) Note that the k-submodule B ×R B of B ⊗R B is defined in such a way that
factorwise multiplication is well defined on it. B ×R B is called the Takeuchi
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product. In fact, it has more structure than that of a k-algebra: it is anR⊗kRop-
ring with unit map R ⊗k Rop → B ×R B, r ⊗k r′ �→ t(r′) ⊗R s(r). The
(corestriction of the) coproduct is easily checked to be an R⊗k Rop-bimodule
map B→ B ×R B.

(2) Axiom (iii) is equivalent to the requirement that the counit ε is a right character
on the Rop-ring (B, t).

(3) Yet another equivalent formulation of axiom (iii) is the following. The map
θ : B → Endk(R)op, b �→

(
r �→ ε(s(r)b)

)
is a k-algebra map, where

Endk(R)op is an algebra via opposite composition of endomorphisms. The
map θ is called an anchor map in [8].

Recall that in a bialgebra over a commutative ring, replacing the algebra with the
opposite one or replacing the coalgebra with the co-opposite one, one arrives at bial-
gebras again. Analogously, the co-opposite of a right R-bialgebroid B, with structure
maps denoted as in Definition 3.1, is the following right Rop-bialgebroid Bcop. The
Rop ⊗k R-ring structure is (B, t, s), and the Rop-coring structure is (Bcop,�cop, ε).
However, the R⊗k Rop-ring (Bop, t, s) and the R-coring (B,�, ε) do not satisfy the
same axioms in Definition 3.1. Instead, they are subject to a left- right symmetrical
version of Definition 3.1.

Definition 3.3. LetR be an algebra over a commutative ring k. A leftR-bialgebroid
B consists of an R ⊗k Rop-ring (B, s, t) and an R-coring (B,�, ε) on the same
k-module B. They are subject to the following compatibility axioms.

(i) The bimodule structure in the R-coring (B,�, ε) is related to the R⊗k Rop-
ring (B, s, t) via

r · b · r′ := s(r)t(r′)b, for r, r′ ∈ R, b ∈ B. (3.5)

(ii) Considering B as an R-bimodule as in (3.5), the coproduct � corestricts to
a k-algebra map from B to

BR×B :=
{ ∑

i

bi⊗
R
b′i |

∑
i

bit(r)⊗
R
b′i =

∑
i

bi⊗
R
b′is(r), ∀r ∈ R

}
,

(3.6)

where BR× B is an algebra via factorwise multiplication.
(iii) The counit ε is a left character on the R-ring (B, s).

Since in this note left and right bialgebroids are considered simultaneously, we use
two versions of Sweedler’s index notation. In a left bialgebroid, we use lower indices
to denote components of the coproduct, that is, we write b �→ b(1)⊗R b(2). In a right
bialgebroid, we use upper indices to denote components of the coproduct, that is, we
write b �→ b(1) ⊗R b

(2). In both cases, implicit summation is understood.
Recall that coalgebras over a commutative ring k form a monoidal category with

respect to the k-module tensor product. Bialgebras over k can be described asmonoids
in the monoidal category of k-coalgebras. In [21], Takeuchi defined bialgebroids
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(×R-bialgebras in his terminology) as monoids in a monoidal category of certain
corings too. By [24, Definition 3.5], for two k-algebras R and S, an S|R-coring is
an S ⊗k R-bimodule C together with an R-coring structure (C,�, ε) such that the
following identities hold.

�((s⊗
k
1R) · c · (s′ ⊗

k
1R)) = c(1) · (s′ ⊗

k
1R) ⊗

R
(s⊗

k
1R) · c(2) and

(s⊗
k
1R) · c(1) ⊗

R
c(2) = c(1) ⊗

R
c(2) · (s⊗

k
1R), for s, s′ ∈ S, c ∈ C.

Morphisms of S|R-corings are morphisms of R-corings, which are in addition
S-bimodule maps. In particular, it can be shown by using the same methods
as in [22] that the notion of an R|R-coring is equivalent to a ×R-coalgebra
in [21, Definition 4.1]. Part (1) of the following Theorem 3.4 is, thus, a refor-
mulation of [21, Proposition 4.7]. Part (2) states an equivalence of a right R-
bialgebroid as in Definition 3.1 and a symmetrical version of a ×R-bialgebra as in
[21, Definition 4.5].

Theorem 3.4. For an algebraR over a commutative ring k, the following statements
hold.

(1) R|R-corings form a monoidal category. The monoidal product of two objects
(C,�, ε) and (C′,�′, ε′) is the R ⊗k Rop-module tensor product

C�C′ := C⊗
k
C′/{ (1R⊗

k
r)·c·(1R⊗

k
r′)⊗

k
c′−c⊗

k
(r′ ⊗

k
1R)·c′ ·(r⊗

k
1R) | r, r′ ∈ R }.

C � C′ is an R ⊗k R-bimodule, via the actions
(r1⊗

k
r2)·(c�c′)·(r′1⊗

k
r′2) := (r1⊗

k
1R)·c·(r′1⊗

k
1R)�(1R⊗

k
r2)·c′·(1R⊗

k
r′2).

The coproduct and counit in C � C′ are
c�c′ �→ (c(1)�c′(1))⊗

R
(c(2)�c′(2)) and c�c′ �→ ε′

(
(ε(c)⊗

k
1R)·c′

)
.

The monoidal unit is R ⊗k R, with R|R-coring structure described in Sec-
tion 3.2.3 below. The monoidal product of morphisms αi : (Ci,�i, εi) →
(C′i, �′i, ε′i), for i = 1, 2, is given by

(α1 � α2)(c1 � c2) := α1(c1)� α2(c2).
(2) Monoids in the monoidal category of R|R-corings are the same as right

R-bialgebroids.
(3) Monoidal morphisms in the monoidal category of R|R-corings are the same

as maps of R ⊗k Rop-rings and of R-corings.

Considering a right R-bialgebroid as an R|R-coring, the ·|R -bimodule structure
is given by right multiplications by the source and target maps. The R|· -bimodule
structure is given by left multiplications by the source and target maps.
Theorem 3.4 was extended by Szlachányi in [25]. He has shown that S|R-corings

form a bicategory. Bialgebroids can be described as monads in this bicategory. This
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makes it possible to define (base changing) morphisms of bialgebroids as bimodules
for the corresponding monads. The constructions described in Section 3.4.1 and also
in Definition 3.15 provide examples of bialgebroid morphisms in this sense. For more
details we refer to [25].
An S|R-coring C can be looked at as an S⊗k Sop-R⊗k Rop bimodule in a canoni-

cal way. Identifying S-bimodules with right S⊗k Sop-modules andR-bimodules with
right R ⊗k Rop-modules, there is an op-monoidal left adjoint functor −⊗S⊗kSop C :
SMS → RMR. As a matter of fact, this correspondence establishes a bifunctor from
the bicategory of S|R-corings to the 2-category of op-monoidal left adjoint functors
between bimodule categories. For any two 0-cells (i.e. algebras S and R), it gives
an equivalence of the vertical subcategories. So, in addition to a characterization of
bialgebroids as monads in the bicategory of S|R-corings, they can be described as
monads in the 2-category of op-monoidal left adjoint functors between bimodule cat-
egories. Monads in the 2-category of op-monoidal functors (i.e. op-monoidal monads
such that multiplication and unit natural transformations of the monad are compatible
with the op-monoidal structure) were termed Hopf monads in [26] and bimonads in
[27]. Using the latter terminology, the following characterization of bialgebroids in
[27, Theorem 4.5] is obtained.

Theorem 3.5. For an algebra R, any right R-bialgebroid induces a bimonad on
RMR, which possesses a right adjoint. Conversely, every bimonad on RMR pos-
sessing a right adjoint is naturally equivalent to a bimonad induced by a right
R-bialgebroid.

Another aspect of the equivalence in Theorem 3.5 is explained in Section 3.5.
In the paper [28] by Day and Street, op-monoidal monads were studied in

the more general framework of pseudomonoids in monoidal bicategories. Based
on Theorem 3.5, a description of bialgebroids as strong monoidal morphisms
between pseudomonoids in the monoidal bicategory of bimodules was obtained [28,
Proposition 3.3].

3.2. Examples

In order to make the reader more familiar with the notion, in this section, we list some
examples of bialgebroids.

3.2.1. Bialgebras Obviously, a bialgebra B over a commutative ring k determines
a (left or right) k-bialgebroid in which both the source and target maps are equal to
the unit map k→ B. Note, however, that there are k-bialgebroids in which the source
and target maps are different, or possibly they are equal but their range is not central
in the total algebra, hence they are not bialgebras (see Section 4.1.4).

3.2.2. Weak bialgebras Aweak bialgebra over a commutative ring k consists of an
algebra and a coalgebra structure on the same k-module B, subject to compatibility
axioms generalizing the axioms of a bialgebra [29, 30]. Explicitly, the coproduct �
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is required to be multiplicative in the sense of (3.1). Unitality of the coproduct� and
multiplicativity of the counit ε are weakened to the identities

(�(1B)⊗
k
1B)(1B⊗

k
�(1B))= (�⊗

k
B) ◦�(1B)

= (1B⊗
k
�(1B))(�(1B)⊗

k
1B) and

ε(b1(1))ε(1(2)b′)= ε(bb′) = ε(b1(2))ε(1(1)b′), for b and b′ ∈ B,
respectively. Here, 1(1) ⊗k 1(2) denotes �(1B) (which may differ from 1B ⊗k 1B).
The map

R : B→ B, b �→ 1(1)ε(b1(2))

is checked to be idempotent. Its range is a subalgebra R of B. B is an R ⊗k Rop-
ring, with source map given by the inclusion R → B and target map given by the
restriction to R of the map B→ B, b �→ ε(b1(1))1(2). Consider B as an R-bimodule
via right multiplication by these source and target maps. The coproduct in anR-coring
B is obtained by composing � : B → B ⊗k B with the canonical epimorphism
B ⊗k B→ B ⊗R B. It has a counit R. The R ⊗k Rop-ring and R-coring structures
constructed on B in this way constitute a right R-bialgebroid.
AleftRop-bialgebroid structure in aweak bialgebraB is constructed symmetrically.

Its source map is the inclusion map into B of the range subalgebra of the idempo-
tent map

L : B→ B, b �→ ε(1(1)b)1(2).

The coproduct is obtained by composing the weak coproduct � : B→ B⊗k B with
an appropriate canonical epimorphism to an Rop-module tensor product too.
As it was observed by Schauenburg in [31] (see also [32] Sections 1.2 and 1.3),

the base algebra R of a weak bialgebra B is Frobenius separable. This means the
existence of a k-module map R → k (given by the counit ε), possessing a dual
basis

∑
i ei ⊗k fi ∈ R⊗k R such that

∑
i eifi = 1R. The dual-basis property means∑

i eiε(fir) = r = ∑
i ε(rei)fi, for all r ∈ R. In a weak bialgebra, a dual basis is

given by 1(1) ⊗k R(1(2)) ∈ R ⊗k R. In [23, 31, 32] also the converse is proved:
a k-module map ε : R→ k on the base algebraR of a bialgebroidB, with normalized
dual basis

∑
i ei ⊗k fi ∈ R ⊗k R, determines a weak bialgebra structure on the

underlying k-module B. In [23, Proposition 9.3], any separable algebra over a field
was proved to be Frobenius separable.
Consider a small category C with finitely many objects. For a commutative ring k,

the free k-module generated by the morphisms in C carries a weak bialgebra struc-
ture. The product of two morphisms is equal to the composite morphism if they are
composable, and zero otherwise. The unit element is the (finite) sum of the identity
morphisms for all objects. Extending the product k-linearly, we obtain a k-algebra.
The coproduct is diagonal on all morphisms, that is, �(f) = f ⊗k f . The counit
maps every morphism to 1k. Extending the coproduct and the counit k-linearly, we
obtain a k-coalgebra. The algebra and coalgebra structures constructed in this way
constitute a weak bialgebra.
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3.2.3. The bialgebroid R ⊗ Rop For any algebra R over a commutative ring k, a
simplest possible right R-bialgebroid is constructed on the algebra R⊗k Rop. Source
and target maps are given by the inclusions

R→ R⊗
k
Rop, r �→ r⊗

k
1R and Rop → R⊗

k
Rop, r �→ 1R⊗

k
r,

respectively. Coproduct is

R⊗
k
Rop → (R⊗

k
Rop)⊗

R
(R⊗

k
Rop), r⊗

k
r′ �→ (1R⊗

k
r′)⊗

R
(r⊗

k
1R).

Counit is R ⊗k Rop → R, r ⊗k r′ �→ r′r. The corresponding R|R-coring occurred
in Theorem 3.4 (1). The opposite co-opposite of the above construction yields a left
Rop-bialgebroid structure on Rop ⊗k R ∼= R ⊗k Rop.

3.3. Duality

In Section 2.3, the duality betweenR-rings andR-corings has been studied. Now, we
shall see how it leads to a duality of bialgebroids. Recall that the axioms of a bialgebra
over a commutative ring k are self-dual. That is, the diagrams (in the category Mk

of k-modules), expressing the bialgebra axioms, remain unchanged if all arrows are
reversed. As a consequence, if a bialgebra B is finitely generated and projective as a
k-module (hence possesses a dual in Mk), then the dual has a bialgebra structure too,
which is the transpose of the bialgebra structure of B. In contrast to bialgebras, the
axioms of a bialgebroid are not self-dual in the same sense. Although it follows by
the considerations in Section 2.3 that theR-dual of a finitely generated and projective
bialgebroid possesses anR-ring and anR-coring structure, it is not obvious that these
dual structures constitute a bialgebroid. The fact that they do indeed was shown first
by Schauenburg in [33]. A detailed study can be found also in the paper [23] by
Kadison and Szlachányi. Our presentation here is closer to [23, Proposition 2.5].

Proposition 3.6. Let R be an algebra. Consider a left bialgebroid B over R, which
is a finitely generated and projective left R-module (via left multiplication by the
source map). Then the left R-dual ∗B := RHom(B,R) possesses a (canonical) right
R-bialgebroid structure.

Applying part (1) of Proposition 2.11 to the R-coring (B,�, ε) underlying B,
we find the existence of an R-ring structure on ∗B. Its unit map is ∗s : R → ∗B,
r �→ ε(−)r. Multiplication is given by

(ββ′)(b) = β′(t(β(b(2)))b(1)), for β, β′ ∈ B,
where we used that the right R-module structure in B is given via the target map t
of B. Applying (a symmetrical version of ) part (2) of Proposition 2.11 to the R-ring
(B, s) underlying B, we deduce the existence of an R-coring structure in ∗B. It has a
bimodule structure

r · β · r′ = β(− s(r))r′ for r, r′ ∈ R, β ∈ ∗B.
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In particular, ε · r = ∗s(r), for r ∈ R, as expected. A to-be-target-map is defined as
∗t(r) := r · ε, for r ∈ R. The counit in the R-coring ∗B is ∗ε : ∗B→ R, β �→ β(1B).
The coproduct is given in terms of a dual basis ({ai ∈ B}, {αi ∈ ∗B}) as

∗� : ∗B→ ∗B⊗
R

∗B, β �→
∑
i

αi⊗
R
β(−ai).

The right bialgebroid axioms are verified by direct computations.
One can apply Proposition 3.6 to the co-opposite left bialgebroid, which is a finitely

generated and projective rightRop-module via left multiplication by the targetmap. In
this way, one verifies that the right dual B∗ := HomR(B,R) of a left R-bialgebroid
B, which is a finitely generated and projective right R-module, possesses a right
R-bialgebroid structure B∗ := (∗(Bcop))cop. Note that (conventionally), multiplica-
tion is chosen in such a way that it results in right bialgebroid structures on both
duals of a left bialgebroid. Applying the constructions to the opposite bialgebroid,
left and right duals of a right bialgebroid, which is a finitely generated and projec-
tive R-module on the appropriate side, are concluded to be left bialgebroids. Our
convention is to choose (Bop)∗ := (B∗)op and ∗(Bop) := (∗B)op.

3.4. Construction of new bialgebroids from known ones

In addition to the examples in Section 3.2, further (somewhat implicit) examples of
bialgebroids are provided by various constructions starting with given bialgebroids.

3.4.1. Drinfel’d twist A Drinfel’d twist of a bialgebra B over a commutative ring
k is a bialgebra with the same algebra structure in B and coproduct deformed (or
twisted) by an invertible normalized 2-cocycle in B (the so calledDrinfel’d element).
In this section, we recall analogous Drinfel’d twists of bialgebroids from [25, Section
6.3]. More general twists, which do not correspond to invertible Drinfel’d elements,
are studied in [8]. Such generalized twists will not be considered here.

Definition 3.7. For an algebra R, consider a right R-bialgebroid B, with structure
maps denoted as in Definition 3.1. An (invertible) element J of the Takeuchi product
B ×R B is called an (invertible) normalized 2-cocycle in B provided it satisfies the
following conditions.

(i) (t(r)⊗R s(r
′))J = J(t(r)⊗R s(r

′)) for r, r′ ∈ R (bilinearity),
(ii) (J ⊗R 1B)(�⊗R B)(J) = (1B ⊗R J)(B⊗R �)(J) (cocycle condition),
(iii) (ε⊗R B)(J) = 1B = (B⊗R ε)(J) (normalization).

Proposition3.8. LetJ be an invertible normalized 2-cocycle in a rightR-bialgebroid
B. The R ⊗k Rop-ring (B, s, t) in B, the counit ε of B, and the twisted form �J :=
J�(−)J−1 of the coproduct � in B constitute a right R-bialgebroid BJ .

3.4.2. Cocycle double twist Dually to the construction in Section 3.4.1, one can
leave the coproduct in a bialgebroid B unchanged and twist multiplication by an
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invertible normalized 2-cocycle on B. For an algebra R over a commutative ring k,
consider a left R-bialgebroid B, with structure maps denoted as in Definition 3.3.
Recall from Theorem 3.4 that the R ⊗k Rop-module tensor product B ⊗R⊗kRop B

(with respect to the right (resp. left) actions given by right (resp. left) multiplications
by s and t) is anR-coring. It has a bimodule structure r · (b⊗b′) · r′ := s(r)t(r′)b⊗b′,
coproduct b ⊗ b′ �→ (b(1) ⊗ b′(1)) ⊗R (b(2) ⊗ b′(2)), and counit b ⊗ b′ �→ ε(bb′).
Hence, there is a corresponding convolution algebra RHomR(B⊗R⊗kRop B,R) with
multiplication (f � g)(b⊗ b′) := f(b(1) ⊗ b′(1))g(b(2) ⊗ b′(2)).

Definition 3.9. Let R be an algebra over a commutative ring k and let B be a left
R-bialgebroid, with structure maps denoted as in Definition 3.3. An (invertible) ele-
ment of the convolution algebraRHomR(B⊗R⊗kRopB,R) is called an (invertible) nor-
malized 2-cocycle onB provided it satisfies the following conditions, for b, b′, b′′ ∈ B
and r, r′ ∈ R.

(i) σ(s(r)t(r′)b, b′) = rσ(b, b′)r′ (bilinearity),
(ii) σ(b, s(σ(b′(1), b′′(1)))b′(2)b′′(2))= σ(s(σ(b(1), b′(1)))b(2)b′(2), b′′) (cocycle

condition),
(iii) σ(1B, b) = ε(b) = σ(b, 1B) (normalization).

Proposition3.10. Letσ be an invertible normalized 2-cocycle on a leftR-bialgebroid
B, with inverse σ̃. The source and target maps s and t in B, the R-coring (B,�, ε)
in B, and the twisted product b ·σ b′ := s

(
σ(b(1), b

′
(1))

)
t
(̃
σ(b(3), b

′
(3))

)
b(2)b

′
(2), for

b, b′ ∈ B, constitute a left R-bialgebroid Bσ .

3.4.3. Duality The constructions in Sections 3.4.1 and 3.4.2 are dual of each other
in the following sense.

Proposition 3.11. For an algebraR, let B be a leftR-bialgebroid, which is a finitely
generated and projective right R-module via left multiplication by the target map t,
and consider the right dual rightR-bialgebroidB∗. The following statements hold.

(1) An element J =∑
k ξk⊗Rζk ∈ B∗×RB

∗ is an invertible normalized 2-cocycle
in B∗ if and only if

σJ : B ⊗
R⊗Rop

B→ R, σJ(b, b
′) :=

∑
k

ξk
(
bt(ζk(b

′))
)

(3.7)

is an invertible normalized 2-cocycle on B.
(2) Assume the equivalent properties in part (1). The right bialgebroid (B∗)J ,

obtained by twisting the coproduct of B∗ by the cocycle J , is right dual of the
left bialgebroid BσJ , obtained by twisting the product in B by the cocycle σJ
in (3.7).

The inverse of the construction in (3.7) is given by associating to an invertible
normalized 2-cocycle σ on B an invertible normalized 2-cocycle in B∗: Jσ :=∑
i σ(−, ai)⊗R αi, where ({ai ∈ B}, {αi ∈ B∗}) is a dual basis.
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3.4.4. Drinfel’d double For a Hopf algebraB over a commutative ring k such thatB
is a finitely generated and projective k-module, the k-module D(B) := B⊗k B∗ has
a bialgebra (in fact Hopf algebra) structure. It is known as the Drinfel’d double of B.
The category ofD(B)-modules is isomorphic (as amonoidal category) to the category
of Yetter–Drinfel’d modules for B and also to the monoidal center of the category
of B-modules. These results were extended to certain bialgebroids by Schauenburg
in [33].
In this section, let B be a left bialgebroid over a k-algebra R, finitely generated

and projective as a right R-module. Assume in addition that the following map is
bijective.

ϑ : B⊗
Rop
B→ B⊗

R
B, b⊗

Rop
b′ �→ b(1)⊗

R
b(2)b

′, (3.8)

where in the domain of ϑ, the module structures are given by right and left multi-
plications by the target map, and in the codomain, the module structures are given
by left multiplications by the target and source maps. Left bialgebroids, for which
the map (3.8) is bijective, were named (left) ×R-Hopf algebras in [33] and they
are discussed in more detail in Section 4.6.2. In the following Proposition 3.12,
Sweedler’s index notation is used for the coproducts and also the index notation
ϑ−1(b⊗R 1B) = b〈1〉 ⊗Rop b〈2〉, where implicit summation is understood.

Proposition 3.12. Let R be an algebra over a commutative ring k. Let B be a left
×R-Hopf algebra, which is a finitely generated and projective rightR-module via left
multiplication by the target map. Denote the structure maps in B as in Definition 3.3.
Consider B as a right R ⊗k Rop-module via right multiplications by the source and
target maps s and t in the left bialgebroid B. Consider the right dual B∗ as a left
R ⊗k Rop-module via right multiplications by the target and source maps t∗ and
s∗ in the right bialgebroid B∗. The tensor product D(B) :=B ⊗R⊗Rop B∗ has a left
R-bialgebroid structure as follows. Multiplication is given by

(b �� β)(b′ �� β′) := bs(β(1)(b′(1)))b′(2)〈1〉 �� β′β(2)s∗(β(3)(b′(2)〈2〉)),
for b �� β, b′ �� β′ ∈ D(B).

The source and target maps are

R→ D(B), r �→ 1B �� t∗(r) and Rop → D(B), r �→ 1B �� s∗(r),
respectively. The coproduct is

D(B)→ D(B)⊗
R

D(B), b �� β �→ (b(1) �� β(1))⊗
R
(b(2) �� β(2)),

and the counit is D(B)→ R, b �� β �→ ε
(
bs(β(1B))

)
.

It is not known if the Drinfel’d double (or the dual) of a ×R-Hopf algebra is a
×R-Hopf algebra as well.

3.4.5. Morita base change In contrast to the previous sections, constructions in this
section and in the forthcoming ones change the base algebra of a bialgebroid.
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Let R be an algebra over a commutative ring k and let B be a left R-bialgebroid.
Denote the structure maps of B as in Definition 3.3. Let R̃ be a k-algebra, which
is Morita equivalent to R. Fix a strict Morita context (R, R̃, P,Q, •, ◦). Denote the
inverse image of 1R under themap • by∑

i qi⊗R̃p
i ∈ Q⊗R̃P and denote the inverse

image of 1R̃ under the map ◦ by
∑
j pj ⊗R q

j ∈ P ⊗R Q. The R̃-R bimodule P

determines a canonical Rop-R̃op bimodule P . Similarly, there is a canonical R̃op-Rop

bimoduleQ. In [34, Section 5], a left R̃-bialgebroid structure was constructed on the
k-module B̃ := (P ⊗k Q) ⊗ B ⊗ (Q ⊗k P), where an unadorned tensor product is
meant to be one over R ⊗k Rop. Multiplication is given by

[(p1 ⊗ q1)⊗ b⊗ (q2 ⊗ p2)][(p′1 ⊗ q′1)⊗ b′ ⊗ (q′2 ⊗ p′2)]
:= (p1 ⊗ q1)⊗ bs(q2 • p′1)t(q′1 • p2)b′ ⊗ (q′2 ⊗ p′2).

The source and target maps in B̃ are, for r̃ ∈ R̃,

r̃ �→
∑
j,j′
( r̃·pj′⊗qj)⊗1B⊗(qj′⊗pj) and r̃ �→

∑
j,j′
(pj′⊗qj ·̃r )⊗1B⊗(qj′⊗pj),

respectively. The coproduct and counit are given on an element (p1⊗q1)⊗b⊗ (q2⊗
p2) ∈ B̃ as

(p1 ⊗ q1)⊗ b⊗ (q2 ⊗ p2) �→
∑
i,j

[(p1 ⊗ qi)⊗ b(1) ⊗ (q2 ⊗ pj)] ⊗̃
R

[(pi ⊗ q1)⊗ b(2) ⊗ (qj ⊗ p2)] and

(p1 ⊗ q1)⊗ b⊗ (q2 ⊗ p2) �→ p1 · ε
(
bs(q2 • p2)

) ◦ q1,
respectively. A generalization and a more conceptual background of Morita base
change in bialgebroids are presented in Section 3.5.

3.4.6. Connes–Moscovici bialgebroids The following bialgebroid was constructed
in [10] in the framework of transverse geometry. Let H be a Hopf algebra over a
commutative ring k, with coproduct δ : h �→ h(1)⊗k h(2) and counit ε. LetR be a left
H-module algebra. Consider the k-module B := R ⊗k H ⊗k R. It can be equipped
with an associative multiplication

(r1⊗
k
h⊗

k
r2)(r

′
1⊗
k
h′ ⊗

k
r′2) := r1(h(1) · r′1)⊗

k
h(2)h

′ ⊗
k
(h(3) · r′2)r2,

with unit 1R⊗k 1H⊗k 1R. The algebraB can bemade a leftR-bialgebroid with source
and target maps

R→ B, r �→ r⊗
k
1H⊗

k
1R and Rop → B, r �→ 1R⊗

k
1H⊗

k
r,

respectively. The coproduct and counit are

r⊗
k
h⊗

k
r′ �→ (r⊗

k
h(1)⊗

k
1R)⊗

R
(1R⊗

k
h(2)⊗

k
r′) and r⊗

k
h⊗

k
r′ �→ rε(h)r′.
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3.4.7. Scalar extension Let B be a bialgebra over a commutative ring k and let A
be an algebra in the category of right–right Yetter–Drinfel’d modules of B. Recall
that this means A is a right B-module algebra and a right B-comodule algebra such
that the following compatibility condition holds, for a ∈ A and b ∈ B.

(a · b(2))[0] ⊗
k
b(1)(a · b(2))[1] = a[0] · b(1)⊗

k
a[1]b(2).

The category of right–right Yetter–Drinfel’d modules is prebraided.Assume thatA is
braided commutative, that is, fora, a′ ∈ A, the identitya′[0](a·a′[1]) = aa′ holds.Under
these assumptions, it follows by a symmetrical version of [22, Theorem 4.1] that
the smash product algebra has a right A-bialgebroid structure. Recall that the smash
product algebra is the k-moduleA#B := A⊗k B, with multiplication (a#b)(a′#b′) :=
a′(a · b′(1))⊗k bb

′
(2). The source and target maps are

s : A→ A#B, a �→ a[0]#a[1] and t : Aop → A#B, a �→ a#1B,

respectively. The coproduct is

� : A#B→ (A#B)⊗
A
(A#B), a#b �→ (a#b(1))⊗

A
(1A#b(2))

and the counit is given in terms of the counit ε in B as A#B → A, a#b �→ aε(b).
The name scalar extension comes from the feature that the base algebra k of B (the
subalgebra of “scalars”) becomes replaced by the base algebra A of A#B.
A solution R of the quantumYang–Baxter equation on a finite-dimensional vector

space determines a bialgebra B(R) via the so called Faddeev-Reshetikhin-Takhtajan
construction. In [22, Proposition 4.3], a braided commutative algebra in the cate-
gory of Yetter–Drinfel’d modules for B(R) was constructed; thus, a bialgebroid was
associated to a finite-dimensional solution R of the quantum Yang–Baxter equation.
The construction above of a scalar extension was extended in [12, Theorem 4.6].

Following it, a smash product of a right bialgebroidB over an algebraR, with a braided
commutative algebra A in the category of right–right Yetter–Drinfel’d modules for
B, is shown to possess a right A-bialgebroid structure. The fundamental importance
of scalar extensions from the point of view of Galois extensions by bialgebroids is
discussed in Section 3.7.

3.5. The monoidal category of modules

An algebra B over a commutative ring k is known to have a k-bialgebra structure
if and only if the category of (left or right) B-modules is monoidal such that the
forgetful functor toMk is strict monoidal [35].Ageneralization [36, Theorem 5.1] of
this fact to bialgebroids is due to Schauenburg. Recall that any (right) module of an
R ⊗k Rop-ring (B, s, t) is an R-bimodule via the actions by t(r) and s(r), for r ∈ R.

Theorem 3.13. For an algebra R over a commutative ring k, the following data are
equivalent on an R ⊗k Rop-ring (B, s, t).
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(1) A right bialgebroid structure on (B, s, t);
(2) A monoidal structure on the category MB of right B-modules such that the

forgetful functor MB → RMR is strict monoidal.

Applying Theorem 3.13 to the oppositeR⊗kRop-ring, an analogous equivalence is
obtained between left bialgebroid structures and monoidal structures on the category
of left modules. At the heart of Theorem 3.13 lies the fact that the right regular
B-module is a generator in the category MB. Hence, the B-module structure on the
R-module tensor product of any two B-modules can be expressed in terms of the
action on 1B ⊗R 1B ∈ B ⊗R B, which defines a coproduct. In terms of a coproduct
b �→ b(1)⊗Rb

(2) := (1B⊗R1B)·b, the rightB-action in theR-module tensor product
of two right B-modulesM and N is written as

(m⊗
R
n) · b = m · b(1)⊗

R
n · b(2), for m⊗

R
n ∈ M⊗

R
N, b ∈ B. (3.9)

A B-module structure on the monoidal unit R is equivalent to a right character
ε : B→ R by Lemma 2.5.

Recall that, for an R ⊗k Rop-ring (B, s, t), the category MB is isomorphic to
the category of algebras for the monad − ⊗R⊗Rop B on RMR (where R-bimodules
are considered as right R ⊗k Rop-modules). In light of this fact, Theorem 3.13 is a
particular case of a question discussed by Moerdijk in [26]: Having a monad B on a
monoidal categoryM, themonoidal structure ofM lifts to amonoidal structure on the
categoryMB ofB-algebras (in the sense that the forgetful functorMB →M is strict
monoidal, as in part (2) in Theorem 3.13) if and only if B is a monoid in the category
of op-monoidal endofunctors on M, that is, aHopf monad in the terminology of [26]
(called a bimonad in [27]). Comparing this result with Theorem 3.13, we obtain other
evidence for a characterization of bialgebroids as bimonads as in Theorem 3.5.
In the paper [25] by Szlachányi, it was investigated what bialgebroids possess

monoidally equivalent module categories. That is, a monoidal Morita theory of bial-
gebroids was developed. Based on Theorem 3.5, one main result in [25] can be
reformulated as in Theorem 3.14 below. Recall that a bimodule, for two monads
B : M → M and B′ : M′ → M′, is a functor M : M → M′ together with
natural transformations � : MB → M and λ : B′M → M, satisfying the usual
compatibility conditions for the right and left actions in a bimodule. If any pair of
parallel morphisms in M′ possesses a coequalizer, and B′ preserves coequalizers,
then the bimodule M induces a functor M :MB →M′

B′ , between the categories of
algebras for B and B′, respectively, with object map (V, v) �→ Coeq(M(v), �V ). If
both categories M and M′ possess coequalizers and both B and B′ preserve them,
then one can define the inverse of a bimodule as in Morita theory. A B′-B bimod-
ule M′ is said to be the inverse of M provided that M′M is naturally equivalent to
the identity functor on MB, and M M′ is naturally equivalent to the identity functor
on MB′ .

Theorem 3.14. For two right bialgebroids B and B′, over respective base algebras
R and R′, the right module categories MB and MB′ are monoidally equivalent if
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and only if there exists an invertible bimodule in the 2-category of op-monoidal left
adjoint functors, for the monads−⊗R⊗Rop B : RMR → RMR and−⊗R′⊗R′op B′ :
R′MR′ → R′MR′ .

By standard Morita theory, an equivalence M :MB → MB′ is of the form M =
−⊗BM, for some invertibleB-B′ bimoduleM. In [25],monoidality of the equivalence
is translated to properties of the Morita equivalence bimoduleM.
In [24, Definition 2.1], two algebras R and R̃ over a commutative ring k were

said to be
√
Morita-equivalent whenever the bimodule categories RMR and R̃MR̃

are strictly equivalent as k-linear monoidal categories. This property implies that
the algebras R ⊗k Rop and R̃ ⊗k R̃op are

√
Morita-equivalent (but not conversely).

In this situation, any R ⊗k Rop-ring B (i.e. monoid in the category of R ⊗k Rop-
bimodules) determines an R̃ ⊗k R̃op-ring B̃, with underlying k-algebra B̃ Morita
equivalent toB. IfB is a rightR-bialgebroid, then the forgetful functorMB → RMR
is strict monoidal by Theorem 3.13. Hence, the equivalence MB ∼=MB̃ can be used
to induce a monoidal structure on MB̃ such that the forgetful functor MB̃ → R̃MR̃
is strict monoidal. By Theorem 3.13, we conclude that there is a right R̃-bialgebroid
structure on B̃. In [34], the bialgebroid B̃was said to be obtained fromB via

√
Morita-

base change. Since Morita equivalent algebras are also
√
Morita-equivalent (but not

conversely), the construction in Section 3.4.5 is a special instance of a
√
Morita-base

change.
For a right R-bialgebroid B, with structure maps denoted as in Definition 3.1,

consider B as an R-bimodule (or Rop-bimodule) via right multiplications by the
source map s and the target map t. Both B ⊗R B and B ⊗Rop B are left modules for
B ⊗k B via the regular actions on the two factors. Associated to B, we construct a
category C(B), with two objects ◦ and •. The morphisms with source ◦ are defined to
be elements ofB⊗RB and themorphismswith source • are elements ofB⊗RopB. The
morphismsF , with target◦ and•, are required to satisfy the following (R-centralizing)
conditions (T◦) and (T•), respectively, for all r ∈ R.

(T◦) (s(r)⊗
k
1B) · F = (1B⊗

k
t(r)) · F ,

(T•) (t(r)⊗
k
1B) · F = (1B⊗

k
s(r)) · F .

Via composition given by factorwise multiplication, C(B) is a category. The unit
morphisms at the objects ◦ and • are 1B ⊗R 1B and 1B ⊗Rop 1B, respectively. The
range of the coproduct� lies inHom(◦, ◦) = B×RB, and the range of the co-opposite
coproduct �cop lies in Hom(•, •) = Bcop ×Rop Bcop. In terms of the category C(B),
the definition of a quasi-triangular bialgebroid as formulated in [3, Proposition 3.13]
can be described as follows.

Definition 3.15. For a right R-bialgebroid B, with structure maps denoted as
in Definition 3.1, let C(B) be the category constructed above. An invertible mor-
phism R = R1 ⊗Rop R2 ∈ Hom(•, ◦) (where implicit summation is understood)
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is a universal R-matrix provided that for any b∈B, the following identity holds
in Hom(•, ◦):

�(b)R = R�cop(b)

and

(�cop ⊗
Rop
B)(R) = R �R and (B ⊗

Rop
�cop)(R) = R �R,

where the (well defined) maps

− � R : B⊗
Rop
B→ B⊗

Rop
B⊗

Rop
B, b ⊗

Rop
b′ �→ b ⊗

Rop
R1 ⊗

Rop
b′R2 and

R � − : B⊗
Rop
B→ B⊗

Rop
B⊗

Rop
B, b ⊗

Rop
b′ �→ bR1 ⊗

Rop
R2 ⊗

Rop
b′

are used. A right bialgebroid B with a given universal R-matrix R is called a quasi-
triangular bialgebroid.

The followingTheorem 3.16was obtained in [3, Theorem 3.15], as a generalization
of an analogous result for quasi-triangular bialgebras.

Theorem 3.16. Consider a quasi-triangular right bialgebroid (B,R) over a base
algebra R. The monoidal category of right B-modules is braided, with as braiding
the natural isomorphism

M⊗
R
M ′ → M ′ ⊗

R
M, m⊗

R
m′ �→ m′ ·R2⊗

R
m ·R1.

3.6. The monoidal category of comodules

For a bialgebra over a commutative ring k, not only the category of modules but
also the category of (left or right) comodules has a monoidal structure such that the
forgetful functor toMk is strict monoidal. In trying to prove an analogue of this result
for bialgebroids, the first step is to find a forgetful functor. A right, say, comodule of
(the constituent coring in) an R-bialgebroid is by definition only a right R-module.
To obtain a forgetful functor to the monoidal category of R-bimodules, the following
lemma [75, Lemma 1.4.1] is needed.

Lemma 3.17. Let R and S be two algebras over a commutative ring k and let C
be an S|R-coring. Any right comodule (M, �M) of the R-coring C can be equipped
with a unique left S-module structure such that �M(m) belongs to the center of the
S-bimodule M ⊗R C, for every m ∈ M. This unique left S-action makes M an S-R
bimodule. Every C-comodule map becomes an S-R bimodule map. That is, there is a
forgetful functor MC → SMR.

The left S-action on a right comodule (M, �M) of the R-coring C is constructed as

s ·m := m[0] · ε(m[1] · (s⊗
k
1R)), for s ∈ S, m ∈ M. (3.10)
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In particular, (3.10) can be used to equip a right comodule of a right R-bialgebroid
with an R-R bimodule structure. Applying the construction to co-opposite and oppo-
site bialgebroids, forgetful functors are obtained from categories of left and right
comodules of left and right R-bialgebroids to RMR.

Theorem 3.18. LetR be an algebra and letB be a rightR-bialgebroid. The category
MB of right B-comodules is monoidal such that the forgetful functor MB → RMR
is strict monoidal.

The monoidal unit R in RMR is a right B-comodule via a coaction provided by
the source map. One has to verify that, for any two right B-comodulesM and N, the
diagonal coaction

M⊗
R
N → M⊗

R
N⊗

R
B, m⊗

R
n �→ m[0] ⊗

R
n[0] ⊗

R
m[1]n[1] (3.11)

is well defined and that the natural coherence isomorphisms in RMR areB-comodule
maps.
We do not know a converse of Theorem 3.18, that is, an analog of the correspon-

dence (2)⇒(1) in Theorem 3.13 for the category of comodules. A reason for this is
that (in contrast to modules of an R-bialgebroid B, which are algebras for the monad
− ⊗R⊗Rop B on the monoidal category of R-bimodules) it is not known whether
comodules can be described as coalgebras of a comonad on RMR.
However, the definition of a bialgebroid can be dualized in the sense of reversing

all arrows in the diagrams in Mk, expressing the axioms of a bialgebroid over a
k-algebra. For a flat k-coalgebra C, (e.g. when k is a field), C-bicomodules constitute
a monoidal category CMC. A monoidal structure is given by cotensor products – a
notion dual to a module tensor product. That is, for C-bicomodules M and N, the
cotensor productM�CN is the equalizer of the maps �M ⊗k N andM⊗k N�, where
�M is the right coaction on M and N� is the left coaction on N. Flatness of the
k-module C implies thatM�CN is a C-bicomodule via the left C-coaction onM and
right C-coaction on N. In this case, dualization of the bialgebroid axioms leads to
the notion of a bicoalgebroid over the k-coalgebra C (see [22]). The relation between
C-bicoalgebroid structures on a comonoid in CMC and strict monoidal structures on
the forgetful functor from its comodule category to CMC is studied in [37] and [38].
Applying Theorem 3.18 to the co-opposite bialgebroid, strict monoidality follows

for the forgetful functor BM → RopMRop , for a right R-bialgebroid B. Applying
Theorem 3.18 to opposite bialgebroids, it follows that the forgetful functors BM→
RMR and MB → RopMRop are strict monoidal, for a left R-bialgebroid B. Note
that, for an R-bialgebroid B, which is a finitely generated and projective R-module
on the appropriate side, the equivalence in Proposition 2.12 between the categories
of comodules for B and modules for its dual is strict (anti)monoidal.
The reader should be warned that in the paper [39], a different notion of a comodule

is used. For an S|R-coringC, the coproduct and the counit of theR-coringC project to
a coproduct and a counit on the quotientR-bimoduleC/{(s⊗k1R)·c−c·(s⊗k1R) | c ∈
C, s ∈ S}. Applying the definition of a comodule of a bimonad in [39, Section 4.1]
to a bimonad induced by a right R-bialgebroid B, the resulting notion is a comodule
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for the corresponding quotient coring B/{s(r)b − t(r)b | b ∈ B, r ∈ R} (where s and
t are the source and target maps of B, respectively). The category of such comodules
is not known to be monoidal.

3.7. Algebra extensions by bialgebroids. Galois extensions

In analogy with bialgebra extensions, there are two symmetrical notions of an algebra
extension by a bialgebroidB. In the action picture, one deals with aB-module algebra
M and its invariant subalgebra (with respect to a character defined by the counit). In
this picture, Galois property means Galois property of an associatedM-ring. Dually,
in the coaction picture, one deals with a B-comodule algebra M and its coinvariant
subalgebra (with respect to a grouplike element defined by the unit). In this picture,
Galois property means Galois property of an associated M-coring. Although the
two approaches are symmetric (and equivalent for finitely generated and projective
bialgebroids), the coaction picture is more popular and more developed. We present
it in more detail but, for the sake of completeness, we shortly describe the action
picture as well.

3.7.1. The action and coaction pictures By Theorem 3.13, the category MB of
right modules of a rightR-bialgebroidB is monoidal. By definition, a rightB-module
algebra is a monoid M in MB. Denote the structure maps of B as in Definition 3.1.
In view of Lemma 2.2, a right B-module algebra is the same as an algebra and right
B-moduleM such that the multiplication inM is R-balanced and

(mm′) · b= (m · b(1))(m′ · b(2)) and 1M · b= 1M · s
(
ε(b)

)
, for m,m′ ∈ M, b ∈ B,

cf. (3.9). Note in passing that, by strict monoidality of the forgetful functor MB →
RMR, a right B-module algebra M has a canonical R-ring structure. Its unit is the
map R→M, r �→ 1M · s(r) = 1M · t(r).

For a right B-module algebraM, B⊗R M has anM-ring structure. It is called the
smash product. The multiplication is (b⊗R m)(b

′ ⊗R m
′) = bb′(1) ⊗R (m · b′(2))m′,

and the unit ism �→ 1B⊗Rm. The right character ε on theR-ring (B, s) determines a
right character ε⊗RM on theM-ring B⊗RM. Hence, we can consider the invariant
subalgebra of the base algebra M, with respect to the right character ε ⊗R M. It
coincides with the ε-invariants of the (B, s)-moduleM,

N := Mε = {n ∈ M | n · b = n · s (ε(b)), ∀b ∈ B}.
In the action picture, the algebra M is said to be a right B-Galois extension of the
invariant subalgebra N provided that B⊗R M is a GaloisM-ring with respect to the
right character ε⊗R M. That is, the canonical map

B⊗
R
M → NEnd(M), b⊗

R
m �→ (

m′ �→ (m′ · b)m)
is bijective. Left Galois extensions by a left bialgabroid B are defined symmetrically,
referring to a left B-module algebra and its ε-invariant subalgebra.
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ByTheorem3.18, also the categoryMB of right comodules of a rightR-bialgebroid
B is monoidal. By definition, a right B-comodule algebra is a monoid in MB. In
view of Lemma 2.2, a right B-comodule algebra is the same as an algebra and right
B-comodule M, with coaction m �→ m[0] ⊗R m

[1] such that the multiplication in M
is R-balanced and, for m,m′ ∈ M,

(mm′)[0] ⊗
R
(mm′)[1] = m[0]m′[0] ⊗

R
m[1]m′[1] and 1M

[0] ⊗
R
1M

[1] = 1M⊗
R
1B.

(3.12)

Note in passing that, by strict monoidality of the forgetful functor MB → RMR,
a right B-comodule algebra M has a canonical R-ring structure. Its unit is the map
R→M, r �→ 1M · r = r · 1M.
For a right B-comodule algebra M, M ⊗R B has an M-coring structure with left

and right M-actions

m1 · (m⊗
R
b) ·m2 = m1mm2

[0] ⊗
R
bm2

[1], for m1,m2 ∈ M, m⊗
R
b ∈ M⊗

R
B,

(3.13)

comultiplication m⊗R b �→ (m⊗R b
(1))⊗M (1M ⊗R b

(2)), and counit m⊗R b �→
m · ε(b). The grouplike element 1B in the R-coring (B,�, ε) determines a grouplike
element 1M⊗R 1B in theM-coringM⊗R B. Hence, we can consider the coinvariant
subalgebra of the base algebra M, with respect to the grouplike element 1M ⊗R 1B.
It coincides with the 1B-coinvariants of the B-comoduleM,

N := M1B = {n ∈ M | n[0] ⊗
R
n[1] = n⊗

R
1B}.

Note that by right R-linearity of the B-coaction on M and (3.12), for n ∈ N and
r ∈ R,

(n · r)[0] ⊗
R
(n · r)[1] = n⊗

R
s(r) = (r · n)[0] ⊗

R
(r · n)[1].

Hence, for n ∈ N and r ∈ R,
n(1M · r) = n · r = r · n = (1M · r)n. (3.14)

In the coaction picture, the algebra M is said to be a right B-Galois extension of
the coinvariant subalgebraN provided thatM⊗RB is a GaloisM-coring with respect
to the grouplike element 1M ⊗R 1B. That is, the canonical map

can : M⊗
N
M → M⊗

R
B, m⊗

N
m′ �→ mm′[0] ⊗

R
m′[1] (3.15)

is bijective. Since for a right R-bialgebroid B also the category of left comodules is
monoidal, there is a symmetrical notion of a left B-Galois extension N ⊆ M. It is a
left B-comodule algebra M, with coinvariant subalgebra N, such that an associated
M-coringB⊗RM is a Galois coring, with respect to the grouplike element 1B⊗R 1M.
Left and right Galois extensions by left bialgebroids are treated symmetrically.
For a right comodule algebraM of a right R-bialgebroid B, a right–right relative

Hopf module is a rightM-module in MB. The category of right–right relative Hopf
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modules is denoted by MB
M , and it turns out to be isomorphic to the category of right

comodules for theM-coring (3.13).Hence, the grouplike element 1M⊗R1B ∈ M⊗RB

determines an adjunction as in (2.6) between MB
M and the category MN of right

modules for the coinvariant subalgebra N ofM. It will be denoted as

−⊗
N
M :MN →MB

M and (−)coB :MB
M →MN. (3.16)

Recall from Section 2.2 that for a B-Galois extension N ⊆ M, this adjunction is
interesting from the descent theory point of view.
For a finitely generated and projective bialgebroid, the action and coaction pictures

are equivalent in the sense of Proposition 3.19. This equivalence was observed (in a
slightly more restricted context) in [12, Theorem and Definition 3.3].

Proposition 3.19. Let B be a right R-bialgebroid, which is a finitely generated and
projective right R-module via right multiplication by the source map.

(1) There is a bijective correspondence between rightB-module algebra structures
and right (B∗)op-comodule algebra structures on a given algebra M.

(2) The invariant subalgebraN of a rightB-module algebraM (with respect to the
right character given by the counit) is the same as the coinvariant subalgebra
of the corresponding right (B∗)op-comodule algebra M (with respect to the
grouplike element given by the unit).

(3) A rightB-module algebraM is aB-Galois extension of its invariant subalgebra
N in the action picture if and only if M is a (B∗)op-Galois extension of N in
the coaction picture.

Part (1) of Proposition 3.19 follows by the strict monoidal equivalence MB ∼=
M(B∗)op . Parts (2) and (3) follow by Proposition 2.13 since the M-ring B ⊗R M,
associated to a right B-module algebraM, is the leftM-dual of theM-coringM ⊗R
(B∗)op, associated to the right (B∗)op-comodule algebraM.

Consider a rightR-bialgebroid B, which is a finitely generated and projective right
R-module via the source map. Then, for a right B-module algebraM, the category of
right–right (M, (B∗)op) relative Hopf modules is equivalent also to the category of
right modules for the smash product algebra B⊗R M.

In the remainder of these notes, only the coaction picture of Galois extensions will
be used.

3.7.2. Quantum torsors and bi-Galois extensions Following the work of Grunspan
and Schauenburg [40–43], for a bialgebra B over a commutative ring k, a faithfully
flat right B-Galois extension T of k can be described without explicit mention of the
bialgebra B. Instead, a quantum torsor structure is introduced on T, from which B
can be reconstructed uniquely. What is more, a quantum torsor determines a second
k-bialgebra B′ for which T is a left B′-Galois extension of k. It is said that any
faithfullyflatGalois extensionofk bya k-bialgebra is in fact a bi-Galois extension.The
categories of (left) comodules for the bialgebras B and B′ are monoidally equivalent.
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Such a description of faithfully flat Galois extensions by bialgebroids was developed
in the PhD thesis of Hobst [44] and in the paper [45].

Definition 3.20. For two algebrasR and S over a commutative ring k, anR-S torsor
is a pair (T, τ). Here, T is an R⊗k S-ring with underlying k-algebra T and unit maps
α : R → T and β : S → T (with commuting ranges in T). Considering T as an
R-S bimodule and as an S-R bimodule via the maps α and β, τ is an S-R bimodule
map T → T ⊗R T ⊗S T , t �→ t〈1〉 ⊗R t

〈2〉 ⊗S t
〈3〉 (where implicit summation is

understood), satisfying the following axioms, for t, t′ ∈ T , r ∈ R, and s ∈ S.
(i) (τ ⊗R T ⊗S T ) ◦ τ = (T ⊗R T ⊗S τ) ◦ τ (coassociativity),
(ii) (μR ⊗S T) ◦ τ = β ⊗S T and (T ⊗R μS) ◦ τ = T ⊗R α (left and right

counitality),
(iii) τ(1T) = 1T ⊗R 1T ⊗S 1T (unitality),
(iv) α(r)t〈1〉 ⊗R t

〈2〉 ⊗S t
〈3〉 = t〈1〉 ⊗R t

〈2〉α(r)⊗S t
〈3〉 and

t〈1〉 ⊗R β(s)t
〈2〉 ⊗S t

〈3〉 = t〈1〉 ⊗R t
〈2〉 ⊗S t

〈3〉β(s), (centrality conditions)
(v) τ(tt′) = t〈1〉t′〈1〉 ⊗R t

′〈2〉t〈2〉 ⊗S t
〈3〉t′〈3〉 (multiplicativity),

where μR and μS denote multiplication in the R-ring (T, α) and the S-ring (T, β),
respectively.

AnR-S torsor (T, τ) is said to be faithfully flat if T is a faithfully flat rightR-module
and a faithfully flat left S-module.

Note that axiom (iv) in Definition 3.20 is needed in order for the multiplication in
axiom (v) to be well defined.

Theorem 3.21. For two k-algebras R and S, there is a bijective correspondence
between the following sets of data.

(i) Faithfully flat R-S torsors (T, τ).
(ii) RightR-bialgebroidsB and left faithfully flat rightB-Galois extensionsS ⊆ T

such that T is a right faithfully flat R-ring.
(iii) LeftS-bialgebroidsB′ and right faithfully flat leftB′-Galois extensionsR ⊆ T

such that T is a left faithfully flat S-ring.

Furthermore, a faithfully flat R-S torsor T is a B′-B bicomodule, that is, the left B′,
and right B-coactions on T do commute.

Starting with the data in part (ii) of Theorem 3.21, a torsor map on T is constructed
in terms of the B-coaction �T : T → T ⊗R B, and the inverse of the canonical map
(3.15) (with the role of the comodule algebra M in (3.15) played by T ), as τ :=
(T ⊗R can−1(1T⊗R −)) ◦ �T . Conversely, to a faithfully flat R-S torsor (T, τ) (with
multiplicationμS in the S-ring (T, β)), one associates a rightR-bialgebroidB defined
on the R-R bimodule given by the equalizer of the maps (μS⊗R T ⊗S T ) ◦ (T ⊗S τ)

and α⊗R T ⊗S T : T ⊗S T → T ⊗R T ⊗S T .
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Theorem 3.22. For two k-algebras R and S, consider a faithfully flat R-S torsor
(T, τ). Let B and B′ be the associated bialgebroids in Theorem 3.21. Assume that T
is a faithfully flat right S-module and B′ is a flat right S-module. Then the categories
of left B- and B′-comodules are monoidally equivalent.

Note that the assumptionsmade about the rightS-modulesT andB′ inTheorem3.22
become redundant when working with one commutative base ring R = S and equal
unit maps α = β. The equivalence in Theorem 3.22 is given by T�B− : BM →
B′M, a cotensor product with the B′-B bicomodule T . (Recall that the notion of a
cotensor product is dual to the one of module tensor product. That is, for a right
B-comodule (M, �M) and a left B-comodule (N, N�),M�BN is the equalizer of the
maps �M ⊗R N andM ⊗R

N�.)

3.7.3. Galois extensions by finitely generated and projective bialgebroids The bial-
gebra B, for which a given algebra extension is B-Galois, is nonunique. Obviously,
there are (potentially) evenmore possibilities for the choice ofB if it is allowed to be a
bialgebroid. Still, as a main advantage of studying Galois extensions by bialgebroids,
in appropriate finite cases all possible bialgebroids B can be related to a canonical
one. The following Theorem 3.24 is a mild generalization of [12, Proposition 4.12].

Definition 3.23. Let B be a right bialgebroid over an algebra R. A right–right
Yetter–Drinfel’d module forB is a rightB-module and rightB-comoduleM (with one
and the same underlyingR-bimodule structure) such that the following compatibility
condition holds,

(m · b(2))[0] ⊗
R
b(1)(m · b(2))[1] = m[0] · b(1)⊗

R
m[1]b(2), for m ∈ M, b ∈ B.

It follows by a symmetrical version of [33, Proposition 4.4] that the category of
right–right Yetter–Drinfel’d modules of a right bialgebroid B is isomorphic to the
weak center of the monoidal category of right B-modules. Hence, it is monoidal
and prebraided. Following the paper [12], the construction in Section 3.4.7 can be
extended to a braided commutative algebra A in the category of right–right Yetter–
Drinfel’d modules of a rightR-bialgebroidB. That is, the smash product algebraA#B
can be proven to carry the structure of a right A-bialgebroid, which is called a scalar
extension of B by A.
In Theorem 3.24, the center of a bimoduleM of an algebra R is denoted byMR.

Theorem 3.24. For an algebraR, consider a rightR-bialgebroidB, which is a finitely
generated and projective left R-module via right multiplication by the target map.
Let N ⊆ M be a right B-Galois extension. Then N ⊆ M is a right Galois extension
by a right bialgebroid (M ⊗N M)

N over the base algebra MN. What is more, the
bialgebroid (M ⊗N M)

N is isomorphic to a scalar extension of B.

In proving Theorem 3.24, the following key ideas are used. First, a braided com-
mutative algebra structure, in the category of right–right Yetter–Drinfel’d modules
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for B, is constructed on MN. The B-coaction on MN is given by restriction of the
B-coaction on M. The B-action on MN is of the Miyashita–Ulbrich type, that is, it
is given in terms of the inverse of the canonical map (3.15). Introducing the index
notation can−1(1M ⊗R b) = b{1} ⊗N b

{2}, for b ∈ B (implicit summation is under-
stood), the right B-action on MN is a · b := b{1}ab{2}, for b ∈ B and a ∈ MN.
Since in this way MN is a braided commutative algebra in the category of right–
right Yetter–Drinfel’d modules for B, there exists a rightMN-bialgebroidMN ⊗R B

(cf. Section 3.4.7). Restriction of the B-canonical map (3.15) establishes a bijec-
tion (M ⊗N M)

N → MN ⊗R B. Hence, it induces an MN-bialgebroid structure
on (M ⊗N M)

N and also an (M ⊗N M)
N-comodule algebra structure on M. After

checking that the coinvariants of the (M ⊗N M)
N-comodule M are precisely the

elements of N, the (M ⊗N M)
N-Galois property of the extension N ⊆ M becomes

obvious: the (M⊗NM)
N-canonical map differs from the B-canonical map (3.15) by

an isomorphism.

3.7.4. Depth 2 algebra extensions Classical finitary Galois extensions of fields can
be characterized inherently by normality and separability properties, without referring
to the Galois group G. That is, a (unique up to isomorphism) finite Galois group
G := AutK(F) is determined by any normal and separable field extension F of K.
While no such inherent characterization of Galois extensions by (finitely generated
and projective) bialgebras is known, a most important achievement in the Galois
theory of bialgebroids is a characterization of Galois extensions by finitely generated
and projective bialgebroids. A first result in this direction was given in [12, Theorem
3.7]. At the level of generality presented here, it was proven in [13, Theorem 2.1].
The following definition in [23, Definition 3.1] was abstracted from depth 2 exten-

sions of C∗-algebras.

Definition 3.25. Consider an extension N ⊆ M of algebras. It is said to satisfy
the right (resp. left) depth 2 condition if the M-N bimodule (resp. N-M bimodule)
M ⊗N M is a direct summand in a finite direct sum of copies ofM.

Note that the right depth 2 property of an algebra extensionN ⊆M is equivalent to
the existence of finitely many elements γk ∈ NEndN(M) ∼= MHomN(M ⊗N M,M)

and ck ∈ (M ⊗N M)
N ∼= MHomN(M,M ⊗N M), the so called right depth 2 quasi-

basis satisfying the identity∑
k

mγk(m
′)ck = m⊗

N
m′ for m,m′ ∈ M. (3.17)

Definition 3.26. An extensionN ⊆M of algebras is balanced if all endomorphisms
ofM, as a leftmodule for the algebra E := EndN(M), are given by rightmultiplication
by some element of N.

Theorem 3.27. For an algebra extension N⊆M, the following properties are
equivalent.
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(i) N ⊆M is a right Galois extension by some right R-bialgebroid B, which is a
finitely generated and projective left R-module via right multiplication by the
target map.

(ii) The algebra extension N ⊆ M is balanced and satisfies the right depth 2
condition.

If N ⊆M is a right Galois extension by a right R-bialgebroid B, thenM ⊗NM ∼=
M ⊗R B as M-N bimodules. Hence, the right depth 2 condition follows by finitely
generated projectivity of the left R-module B. The map, given by left multiplication
by an element m ∈ M, and the map, given by right multiplication by r ∈ R, are both
right N-linear. Therefore, a left E = EndN(M)-module endomorphism ofM is given
by right multiplication by an element x ∈ MR. Since by (3.14) also the right action
(2.7) onM by φ ∈ ∗B is a right N-module map, it follows that x[0]φ(x[1]) = xφ(1B)
for all φ ∈ ∗B. Together with the finitely generated projectivity of the left R-module
B, this implies that x belongs to the coinvariant subalgebraN, and hence the extension
N ⊆M is balanced.
By Theorem 3.24, if N ⊆M is a right Galois extension by some finitely generated

projective rightR-bialgebroidB, then it is aGalois extension by the (finitely generated
projective) right MN-bialgebroid (M ⊗N M)

N. Hence, in the converse direction, a
balanced algebra extensionN ⊆M, satisfying the right depth 2 condition, is shown to
be a right Galois extension by a rightMN-bialgebroid (M⊗NM)

N, as constructed in
[23, Section 5]. (In fact, in [23], both the left and right depth 2 properties are assumed.
It is proven in [13] that the construction works for one-sided depth 2 extensions as
well.) The coproduct in (M ⊗N M)

N and its coaction onM are constructed in terms
of the right depth 2 quasi-basis (3.17). Let us mention that the only point in the proof
where the balanced property is used is to show that the (M ⊗N M)

N-coinvariants in
M are precisely the elements of N.

4. Hopf algebroids

AHopf algebra is a bialgebraH equipped with an additional antipodemapH → H .
The antipode is known to be a bialgebramap fromH to the opposite co-opposite ofH .
It does not seem to be possible to define a Hopf algebroid based on this analogy. Start-
ing with a, say left, bialgebroidH, its opposite co-oppositeHop

cop is a right bialgebroid.
There is no sensible notion of a bialgebroidmapH → Hop

cop. If we choose as a guiding
principle the antipode of a Hopf algebroid H to be a bialgebroid map H → Hop

cop,
then H and Hop

cop need to carry the same, say left, bialgebroid structure. This means
that the underlying algebra H must be equipped with both left and right bialgebroid
structures. The first definition fulfilling this requirement was proposed in [46, Defini-
tion 4.1], where, however, the antipode was defined to be bijective. Bijectivity of the
antipode was relaxed in [47, Definition 2.2]. Here, we present a set of axioms, which
is equivalent to [47, Definition 2.2], as it was formulated in [48, Remark 2.1].

Definition 4.1. For two algebras R and L over a commutative ring k, a Hopf alge-
broid over the base algebras R and L is a triple H = (HL,HR, S). Here HL is a left
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L-bialgebroid andHR is a rightR-bialgebroid such that their underlying k-algebraH
is the same. The antipode S is a k-module map H → H . Denote the R ⊗k Rop-ring
structure of HR by (H, sR, tR) and its R-coring structure by (H,�R, εR). Similarly,
denote the L ⊗k Lop-ring structure of HL by (H, sL, tL) and its L-coring structure
by (H,�L, εL). Denote the multiplication in the R-ring (H, sR) by μR and denote
the multiplication in the L-ring (H, sL) by μL. These structures are subject to the
following compatibility axioms.

(i) sL◦εL◦tR = tR, tL◦εL◦sR = sR, sR◦εR◦tL = tL, and tR◦εR◦sL = sL.
(ii) (�L⊗RH)◦�R = (H⊗L�R)◦�L and (�R⊗LH)◦�L = (H⊗R�L)◦�R.
(iii) For l ∈ L, r ∈ R and h ∈ H , S(tL(l)htR(r)) = sR(r)S(h)sL(l).
(iv) μL ◦ (S ⊗L H) ◦�L = sR ◦ εR and μR ◦ (H ⊗R S) ◦�R = sL ◦ εL.

Remark 4.2. The Hopf algebroid axioms in Definition 4.1 require some interpreta-
tion.

(1) By the bialgebroid axioms, all the maps sL ◦εL, tL ◦εL, sR ◦εR, and tR ◦εR are
idempotent maps H → H . Hence, the message of axiom (i) is that the ranges
of sL and tR and the ranges of sR and tL are coinciding subalgebras ofH. These
axioms imply that the coproduct�L inHL is not only an L-bimodule map but
also an R-bimodule map. Symmetrically, �R is an L-bimodule map so that
axiom (ii) makes sense.

(2) The k-module H underlying a (left or right) bialgebroid is a left and right
comodule via the coproduct. Hence, the k-module H underlying a Hopf alge-
broid is a left and right comodule for the constituent left and right bialgebroids
HL andHR, via the two coproducts�L and�R.Axiom (ii) expresses the prop-
erty that these regular coactions commute, that is,H is anHL-HR bicomodule
and also an HR-HL bicomodule.

Alternatively, considering H and H ⊗L H as right HR-comodules via the
respective coactions�R andH⊗L�R, the first axiom in (ii) expresses that�L
is a right HR-comodule map. Symmetrically, this condition can be interpreted
as a left HL-comodule map property of �R. Similarly, the second axiom in
(ii) can be read as right HL-colinearity of �R or left HR-colinearity of �L.

(3) Axiom (iii) formulates theR-L bimodule map property of the antipode, which
is needed in order for axiom (iv) to make sense.

(4) In analogy with the Hopf algebra axioms, axiom (iv) says that the antipode
is a convolution inverse of the identity map of H in some generalized sense.
The notion of convolution products in the case of two different base algebras
L and R is discussed in Section 4.5.2.

Since in a Hopf algebroid H, there are two constituent bialgebroids HL and HR,
in these notes we use two versions of Sweedler’s index notation in parallel to denote
components of the coproducts �L and �R. We will use lower indices in the case of
a left bialgebroid HL, that is, we write �L(h) = h(1) ⊗L h(2), and upper indices
in the case of a right bialgebroid HR, that is, we write �R(h) = h(1) ⊗R h

(2), for
h ∈ H , where implicit summation is understood in both cases. Analogously, we use
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upper indices to denote components of a coaction by HR and lower indices to denote
components of a coaction by HL.

4.1. Examples and constructions

Before turning to a study of the structure of Hopf algebroids, let us present some
examples.

4.1.1. Hopf algebras A Hopf algebra H over a commutative ring k is an example
of a Hopf algebroid over base algebras R = k = L. Both bialgebroids HL and HR

are equal to the k-bialgebraH, and the Hopf algebra antipode ofH satisfies the Hopf
algebroid axioms.
Certainly, not every Hopf algebroid over base algebras R = k = L is a Hopf

algebra (see e.g. Section 4.1.4). Examples of this kind have been constructed in [49],
as follows. Let H be a Hopf algebra over k, with coproduct �L : h �→ h(1) ⊗k h(2),
counit εL, and antipode S. Let χ be a character onH , that is, a k-algebra mapH → k.
The coproduct �R : h �→ h(1) ⊗k χ

(
S(h(2))

)
h(3) and the counit εR := χ define a

second bialgebra structure on the k-algebra H. Looking at these two bialgebras as
left and right k-bialgebroids respectively, we obtain a Hopf algebroid with a twisted
antipode h �→ χ(h(1))S(h(2)). This construction was extended in [50, Theorem 4.2],
where new examples of Hopf algebroids were constructed by twisting a (bijective)
antipode of a given Hopf algebroid.

4.1.2. Weak Hopf algebras A weak Hopf algebra over a commutative ring k is a
weak bialgebra H equipped with a k-linear antipode map S : H → H , subject to the
following axioms [29]. For h ∈ H ,

h(1)S(h(2)) = L(h), S(h(1))h(2) = R(h), and S(h(1))h(2)S(h(3)) = S(h),
where the maps L and R were introduced in Section 3.2.2.
The right R-bialgebroid and the left Rop-bialgebroid constructed for a weak Hopf

algebra H in Section 3.2.2, together with the antipode S, satisfy the Hopf algebroid
axioms.
In particular, consider a small groupoidwith finitelymanyobjects. BySection 3.2.2,

the free k-module spanned by its morphisms is a weak k-bialgebra. It can be equipped
with an antipode by putting S(f ) := f−1 for every morphism f and extending it
k-linearly. Motivated by this example, weak Hopf algebras and sometimes also Hopf
algebroids are called quantum groupoids in the literature.
Weak Hopf algebras have a nice and well-understood representation theory. The

category of finite-dimensionalmodules of a finite-dimensional semisimpleweakHopf
algebraH over a field k is a k-linear semisimple category with finitely many inequiv-
alent irreducible objects, with all hom spaces finite dimensional. It is a monoidal
category with left and right duals. A category with the listed properties is termed a
fusion category. Conversely, based on Tannaka–Krein type reconstruction theorems
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in [32] and [51], it was proven in [52] that any fusion category is equivalent to the cat-
egory of finite-dimensional modules of a (nonunique) finite-dimensional semisimple
weak Hopf algebra.

4.1.3. R⊗Rop The left and right bialgebroids on an algebra of the formR⊗k Rop,
constructed for any k-algebraR in Section 3.2.3, form a Hopf algebroid together with
the antipode r ⊗k r′ �→ r′ ⊗k r.
4.1.4. The algebraic quantum torus Consider an algebraTq over a commutative ring
k generated by two invertible elements U and V subject to the relation UV = qVU,
where q is an invertible element in k. Tq possesses a right bialgebroid structure over
the commutative subalgebra R generated by U. Both the source and target maps are
given by the inclusion R → Tq. The coproduct and counit are defined by �R :
VmUn �→ VmUn ⊗R V

m and εR : VmUn �→ Un, respectively. Symmetrically, there
is a leftR-bialgebroid structure given by the coproduct�L : UnVm �→ UnVm⊗RV

m

and counit εL : UnVm �→ Un. Together with the antipode S : UnVm �→ V−mUn,
they constitute a Hopf algebroid.

4.1.5. Scalar extension Consider a Hopf algebra H and a braided commutative
algebra A in the category of right–right Yetter–Drinfel’d modules of H . As was
seen in Section 3.4.7, the smash product algebra A#H carries a right A-bialgebroid
structure. If the antipode S of H is bijective, then the A-bialgebroid structure of
A#H extends to a Hopf algebroid. Indeed, A#H is a left Aop-bialgebroid via the
source map a �→ a[0] · S(a[1])#1B, target map a �→ a[0]#a[1], coproduct a#h �→
(a#h(1)) ⊗Aop (1A#h(2)), and counit a#h �→ a[0] · S−1

(
hS−1(a[1])

)
. The (bijective)

antipode is given by a#h �→ a[0] · S(h(2))#a[1]S(h(1)).

4.2. Basic properties of Hopf algebroids

In this section, some consequences of Definition 4.1 of a Hopf algebroid are recalled
from [47, Section 2].
The opposite co-opposite of a Hopf algebra H is a Hopf algebra, with the same

antipode S ofH . If S is bijective, then also the opposite and the co-opposite ofH are
Hopf algebras, with antipode S−1. A generalization of these facts to Hopf algebroids
is given below.

Proposition 4.3. Consider a Hopf algebroid (HL,HR, S) over base algebras L
and R. Then

(1) The triple ((HR)
op
cop, (HL)

op
cop, S) is a Hopf algebroid over the base algebras

Rop and Lop.
(2) If the antipode S is bijective, then ((HR)

op, (HL)
op, S−1) is a Hopf algebroid

over the base algebras R and L and ((HL)cop, (HR)cop, S
−1) is a Hopf alge-

broid over the base algebras Lop and Rop.
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Proposition 4.4 states the expected behavior of the antipode of a Hopf algebroid
with respect to the underlying ring and coring structures. Consider a Hopf algebroid
H over base algebras L and R, with structure maps denoted as in Definition 4.1. It
follows immediately by axiom (i) in Definition 4.1 that the base algebras L andR are
anti-isomorphic. Indeed, there are inverse algebra isomorphisms

εL ◦ sR : Rop → L and εR ◦ tL : L→ Rop. (4.1)

Symmetrically, there are inverse algebra isomorphisms

εR ◦ sL : Lop → R and εL ◦ tR : R→ Lop. (4.2)

Proposition 4.4. Let H be a Hopf algebroid over base algebras L and R with
structure maps denoted as in Definition 4.1. The following assertions hold.

(1) The antipode S is a homomorphism of R ⊗k Rop-rings

(H, sR, tR)→ (Hop, sL ◦ (εL ◦ sR), tL ◦ (εL ◦ sR))
and also a homomorphism of L⊗k Lop-rings

(H, sL, tL)→ (Hop, sR ◦ (εR ◦ sL), tR ◦ (εR ◦ sL)).
In particular, S is a k-algebra antihomomorphism H→ H.

(2) The antipode S is a homomorphism of R-corings

(H,�R, εR)→ (H,�
cop
L , (εR ◦ sL) ◦ εL),

where �cop
L is considered as a map H → H ⊗Lop H ∼= H ⊗R H , via the

isomorphism induced by the algebra isomorphism (4.2). Symmetrically, S is a
homomorphism of L-corings

(H,�L, εL)→ (H,�
cop
R , (εL ◦ sR) ◦ εR),

where �cop
R is considered as a map H → H ⊗Rop H ∼= H ⊗L H , via the

isomorphism induced by the algebra isomorphism (4.1).

The k-dual H∗ of a finitely generated and projective Hopf algebra H over a com-
mutative ring k is a Hopf algebra. The antipode inH∗ is the transpose of the antipode
of H . No generalization of this fact for Hopf algebroids is known. Although the dual
H∗ of a finitely generated and projective Hopf algebroid H has a bialgebroid struc-
ture (cf. Section 3.3), the transpose of the antipode in H is not an endomorphism
of H∗. Only duals of Frobenius Hopf algebroids are known to be (Frobenius) Hopf
algebroids (see Section 4.4.2).

4.3. Comodules of Hopf algebroids

In a Hopf algebroid, the constituent left and right bialgebroids are defined on the
same underlying algebra. Therefore, modules for the two bialgebroids coincide. This
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is not the casewith comodules: the two bialgebroids have different underlying corings
(over anti-isomorphic base algebras, cf. (4.1) and (4.2)), which have a priori different
categories of (say, right) comodules. We take the opportunity here to call the reader’s
attention to a regrettable error in the literature. Based on [53, Theorem 2.6], whose
proof turned out to be incorrect, the categories of (right) comodules of two constituent
bialgebroids in a Hopf algebroid were claimed to be strict monoidally isomorphic
in [48, Theorem 2.2]. Since it turned out recently that in [53, Theorem 2.6] some
assumptions are missing, the derived result [48, Theorem 2.2] need not hold either
at the stated level of generality. (There is a similar error in [54, Proposition 3.1].).
Regrettably, this error influences some results also in [55], [48], and [56]. In the
current section and in 4.5, we present the corrected statements.

4.3.1. Comodules of a Hopf algebroid and of its constituent bialgebroids Since, as
was explained in the first paragraph of Section 4.3, comodules of the two constituent
bialgebroids in a Hopf algebroid are in general different notions, none of them can be
expected to be awell-working definition of a comodule of aHopf-algebroid.The follo-
wing definition of a comodule for a Hopf algebroid, as a compatible comodule of both
constituent bialgebroids, was suggested in [54, Definition 3.2] and [12, Section 2.2].

Definition 4.5. Let H = (HL,HR, S) be a Hopf algebroid over base k-algebras
L and R with structure maps denoted as in Definition 4.1. A right H-comodule is a
right L-module as well as a right R-module M, together with a right HR-coaction
�R : M → M ⊗R H and a right HL-coaction �L : M → M ⊗L H such that �R
is an HL-comodule map and �L is an HR-comodule map. Explicitly, �R : m �→
m[0] ⊗R m

[1] is a right L-module map in the sense that

(m · l)[0] ⊗
R
(m · l)[1] = m[0] ⊗

R
tL(l)m

[1], for m ∈ M, l ∈ L,
�L : m �→ m[0] ⊗L m[1] is a right R-module map in the sense that

(m · r)[0] ⊗
L
(m · r)[1] = m[0] ⊗

L
m[1]sR(r), for m ∈ M, r ∈ R,

and the following compatibility conditions hold.

(�R⊗
L
H) ◦ �L = (M⊗

R
�L) ◦ �R and (�L⊗

R
H) ◦ �R = (M⊗

L
�R) ◦ �L.

Morphisms of H-comodules are precisely those morphism that are HL- and
HR-comodule maps.

The category of right comodules of a Hopf algebroid H is denoted by MH.
It is not difficult to see that the right R- and L-actions on a right H-comodule M

necessarily commute. That is,M carries the structure of a right L⊗k R-module.
Note that byDefinition 4.1 (i) and (ii), the rightR⊗kL-moduleH , withR-action via

the right source map sR and L-action via the left target map tL, is a right comodule of
the Hopf algebroidH, via the two coactions given by the two coproducts�R and�L.

Left comodules of aHopf algebroidH are defined symmetrically, and their category
is denoted by HM.
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Remark 4.6. The antipode S in a Hopf algebroid H defines a functor MH → HM.
Indeed, if M is a right H-comodule, with HR-coaction m �→ m[0] ⊗R m

[1] and
HL-coaction m �→ m[0] ⊗L m[1], then it is a left H-comodule with left R-action
r · m = m · εL(tR(r)), left L-action l · m = m · εR(tL(l)) (where the notations in
Definition 4.1 are used), and the respective coactions

m �→ S(m[1])⊗
R
m[0] and m �→ S(m[1])⊗

L
m[0].

Right H-comodule maps are also left H-comodule maps for these coactions.
A functor HM→MH is constructed symmetrically.

Although comodules of a Hopf algebroid H = (HL,HR, S) cannot be described
as comodules of a coring, the free-forgetful adjunction (cf. [15, 18.13(2)]), corre-
sponding to the L-coring underlying HL, lifts to an adjunction between the cate-
gories MH and ML. Indeed, the forgetful functor MH → ML has a right adjoint
−⊗L H : ML → MH. The unit and counit of the adjunction are given for a right
H-comodule (M, �L, �R) and a right L-module N by the maps

�L : M → M⊗
L
H and N⊗

L
εL : N⊗

L
H → N, (4.3)

respectively, where εL is the counit of HL. There is a similar adjunction between the
categories MH and MR.

Our next task is to look for situations when the category of comodules of a Hopf
algebroid coincides with the comodule category of one the constituent bialgebroids.
Recall from Remark 4.2 (2) that for a Hopf algebroidH = (HL,HR, S), the underly-
ing k-module H is an HL-HR bicomodule and an HR-HL bicomodule via the coac-
tions given by the coproducts. In appropriate situations, taking cotensor products
with a bicomodule induces a functor between the comodule categories of the two
corings (see [15, 22.3] and its Erratum). In Theorem 4.7, functors of this type are
considered.
Recall from Section 3.6 that any right comodule of a right bialgebroid over a

k-algebra R possesses a unique R-bimodule structure such that any comodule map is
R-bilinear. Thus, if H is a Hopf algebroid over the anti-isomorphic base k-algebras
L and R, then any right comodule of the constituent right (or left) bialgebroid can be
regarded as a right L⊗k R-module and the coaction is a right R ⊗k L-module map.

Theorem 4.7. Let H = (HL,HR, S) be a Hopf algebroid over base k-algebras
L and R, with structure maps denoted as in Definition 4.1. Consider the R- and
L-actions on H that define its coring structures (cf. Definitions 3.1 and 3.3). If the
equalizer

M
� �� M⊗

R
H

�⊗RH ��
M⊗R�R

�� M⊗
R
H⊗

R
H (4.4)

in the category ML of right L-modules is preserved by both functors−⊗L H ⊗L H

and − ⊗L H ⊗R H : ML → Mk, for any right HR-comodule (M, �), then the
forgetful functor MH →MHR is an isomorphism.
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By standard terminology, the conditions inTheorem4.7 are phrased as the equalizer
(4.4) in ML is H ⊗L H-pure and H ⊗R H-pure. Symmetrical conditions imply that
the forgetful functor to the category of right HL-comodules is an isomorphism.
Theorem 4.7 is proved by constructing the inverse of the forgetful functor, that

is, by equipping any right HR-comodule with an H-comodule structure. Any right
HR-comoduleM is isomorphic, as a rightR-module, to the cotensor productM�H of
M with the leftHR comoduleH . Since under the assumptions in Theorem 4.7,M�H

is a right HL-comodule via M��L :M�H → M�(H ⊗L H) ∼= (M�H) ⊗L H ,
the isomorphism M ∼= M�H induces a right HL-coaction on M. Moreover, by
the assumptions in Theorem 4.7, we have isomorphisms M�(H ⊗L H) ∼= M ⊗L
H , M�(H ⊗R H) ∼= M ⊗R H , M�(H ⊗R H ⊗L H) ∼= M ⊗R H ⊗L H , and
M�(H ⊗L H ⊗R H) ∼= M ⊗L H ⊗R H . The compatibility conditions between the
HR- and HL-coactions follow by these isomorphisms, the Hopf algebroid axioms of
Definition 4.1 (ii), and functoriality of the cotensor product. With similar methods,
any HR-comodule map is checked to be also HL-colinear.
The purity conditions in Theorem 4.7 are checked to hold in all the examples in

Section 4.1. Moreover, if a Hopf algebroid is a flat left R-module (via right multi-
plication by the target map of the right bialgebroid) and a flat left L-module (via left
multiplication by the source map of the left bialgebroid) then it satisfies all purity
conditions in Theorem 4.7 since taking tensor products with flat modules preserves
any equalizer.

4.3.2. Coinvariants in a comodule of a Hopf algebroid By Definition 4.5, a comod-
ule M of a Hopf algebroid H = (HL,HR, S) is a comodule for both constituent
bialgebroids HL and HR. Since the unit element 1H is grouplike for both corings
underlying HL and HR, one can speak about coinvariants

McoHR = {m ∈ M | �R(M) = m⊗
R
1H}

ofM with respect to the HR-coaction �R or coinvariants

McoHL = {m ∈ M | �L(M) = m⊗
L
1H}

with respect to the HL-coaction �L. Proposition 4.8 relates these two notions. It is of
crucial importance from the point of view of Galois theory (see Section 4.5).

Proposition 4.8. Let H = (HL,HR, S) be a Hopf algebroid and (M, �L, �R) be a
rightH-comodule. Then, any coinvariant of theHR-comodule (M, �R) is coinvariant
also for the HL-comodule (M, �L).

If moreover the antipode S is bijective, then the coinvariants of the HR-comodule
(M, �R) and the HL-comodule (M, �L) coincide.

For a right H-comodule (M, �L, �R), consider the map

�M : M⊗
R
H → M⊗

L
H, m⊗R h �→ �L(m) · S(h), (4.5)
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where (using the notations in Definition 4.1) H is a left L-module via the source
map sL and a left R-module via the target map tR, and M ⊗L H is understood
to be a right H-module via the second factor. Since �M(�R(m))=m ⊗L 1H and
�M(m⊗R 1H) = �L(m), we have the first claim in Proposition 4.8 proved. In order
to prove the second assertion, note that if S is an isomorphism, then so is �M , with
inverse �−1M (m⊗L h) = S−1(h) · �R(m), whereM ⊗R H is understood to be a left
H-module via the second factor.

4.3.3. Comodule algebras of a Hopf algebroid As it was explained in Section 3.7,
from the point of view of Galois theory (in the coaction picture), monoidality of the
category of comodules is of central importance. Theorem 4.9 replaces the unjustified
theorem [48, Theorem 2.2] (cf. the first paragraph of Section 4.3).
By Definition 4.5, a right comodule of a Hopf algebroid H over base k-algebras

L and R is a right L⊗k R-module. Since L and R are anti-isomorphic algebras, we
may regard alternatively any H-comodule as an R-bimodule by translating the right
L-action to a left R-action via the algebra anti-isomorphism (4.1).

Theorem 4.9. For a Hopf algebroid (HL,HR, S) over base k-algebras L andR, the
categoryMH of rightH-comodules is monoidal. Moreover, there are strict monoidal
forgetful functors, rendering the following diagram commutative.

MH ��

��

MHR

��
MHL �� RMR.

Commutativity of the diagram in Theorem 4.9 follows by comparing the unique
R-actions that make R-bilinear the HR-coaction and the HL-coaction in an
H-comodule. Strict monoidality of the functor on the right-hand side was proved in
Theorem 3.18. Strict monoidality of the functor in the bottom row follows by applying
Theorem 3.18 to the opposite of the bialgebroid HL and identifying Lop-bimodules
and R-bimodules via the algebra isomorphism (4.1). To see strict monoidality of the
remaining two functors, recall that by Theorem 3.18 – applied toHR and the opposite
ofHL – theR-module tensor product of any twoH-comodules is anHR-comodule and
an HL-comodule, via the diagonal coactions, cf. (3.11). It is straightforward to check
compatibility of these coactions in the sense of Definition 4.5. Similarly, R(∼= Lop)
is known to be an HR-comodule and an HL-comodule and compatibility of the coac-
tions is obvious. Finally, the R-module tensor product of H-comodule maps is an
HR-comodule map and an HL-comodule map by Theorem 3.18. Thus, it is an H-
comodule map. ByTheorem 3.18 also the natural coherence transformations in RMR
are HR- and HL-comodule maps, so H-comodule maps, which proves Theorem 4.9.
Theorem 4.9 enables us to introduce comodule algebras of Hopf algebroids.

Definition 4.10. A right comodule algebra of a Hopf algebroid H is a monoid in
the monoidal category MH of right H-comodules, explicitly, an R-ring (M,μ, η),
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such thatM is a right H-comodule and η : R→ M and μ : M⊗RM → M are right
H-comodule maps. Using the notations m �→ m[0] ⊗R m

[1] and m �→ m[0] ⊗L m[1]
for the HL- and HR-coactions, respectively, H-colinearity of η and μ means the
identities, for all m,m′ ∈ M,

1M[0] ⊗
R
1M[1] = 1M⊗

R
1H, (mm′)[0] ⊗

R
(mm′)[1] = m[0]m′[0] ⊗

R
m[1]m′[1]

1M[0] ⊗
L
1M[1] = 1M⊗

L
1H, (mm′)[0] ⊗

L
(mm′)[1] = m[0]m′[0] ⊗L m[1]m

′[1].

Symmetrically, a left H-comodule algebra is a monoid in HM.

The functors in Remark 4.6 induced by the antipode are checked to be strictly
antimonoidal. Therefore, the opposite of a right H-comodule algebra, with coactions
in Remark 4.6, is a left H-comodule algebra and vice versa. Thus, there are four
different categories of modules of a comodule algebra of a Hopf algebroid.

Definition 4.11. Let H be a Hopf algebroid andM be a right H-comodule algebra.
The left and right M-modules in MH are called left–right and right–right relative
Hopf modules, respectively. Their categories are denoted byMMH andMH

M , respec-
tively. Left and rightMop-modules in HM are called right–left and left–left relative
Hopf modules, respectively, and their categories are denoted by HMM and H

MM,
respectively.

Explicitly, for example, a right–right (M,H)-relative Hopf module is a right mod-
uleW for theR-ringM such that the action is a rightH-comodulemapW⊗RM → W .
Using index notations, with superscripts for the HR-coactions and subscripts for the
HL-coactions, both onW andM, this amounts to the following identities, forw ∈ W
and m ∈ M,

(w ·m)[0] ⊗
R
(w ·m)[1] = w[0] ·m[0] ⊗

R
w[1]m[1] and

(w ·m)[0] ⊗
L
(w ·m)[1] = w[0] ·m[0] ⊗

L
w[1]m[1].

In contrast to relative Hopf modules of bialgebroids in Section 3.7.1, relative Hopf
modules of Hopf algebroids cannot be identifiedwith comodules of a coring. Still they
determine an adjunction, very similar to (3.16). Consider a right comodule algebra
M of a Hopf algebroid H = (HL,HR, S) over base algebras L and R. Denote the
HR-coinvariant subalgebra of M by N. It follows from Proposition 4.8 that for any
right N-module V , V ⊗N M is a right–right relative Hopf module via the second
factor. The resulting functor−⊗NM :MN →MH

M turns out to have a right adjoint.

Any objectW in MH
M can be regarded as an object in MHR

M , so we can take its HR-
coinvariants (cf. Section 4.3.2).These considerations lead to an adjoint pair of functors

−⊗
N
M :MN →MH

M and (−)coHR :MH
M →MN. (4.6)

The unit of the adjunction is given, for any right N-module V , by the map

V → (V ⊗
N
M)coHR, v �→ v⊗

N
1M (4.7)
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and the counit is given, for an (M,H)-relative Hopf moduleW , by

WcoHR⊗
N
M → M, w⊗

N
m �→ w ·m. (4.8)

The message of this observation is that by studying descent theory of Galois
extensions of a Hopf algebroid H = (HL,HR, S), one can examine the adjunction
in both (4.6), corresponding to an H-comodule algebraM, and (3.16) determined by
M regarded as an HR-comodule algebra. Proposition 4.12 is obtained by observing
that the units of the two adjunctions coincide, and the counit of the adjunction in (4.8)
is obtained by restricting to the objects in MH

M the counit of the adjunction (3.16).

Proposition 4.12. Consider a Hopf algebroid H= (HL,HR, S) and a right
H-comodule algebraM. Denote the HR-coinvariant subalgebra ofM by N.

(1) The functor−⊗NM :MN →MHR

M is fully faithful if and only if the functor
−⊗N M :MN →MH

M is fully faithful.

(2) If the functor−⊗NM :MN →MHR

M is an equivalence, then also the functor
−⊗N M :MN →MH

M is an equivalence.

4.3.4. The fundamental theorem of Hopf modules In this section, we investigate the
adjunction (4.6) in a special case.
The coproducts�L and�R in a Hopf algebroidHmake the underlying algebraH a

right H-comodule algebra. The corresponding right–right relative Hopf modules are
called simply Hopf modules, and their category is denoted by MH

H . The coinvariants
of the rightHR-comodule algebraH are the elements tR(r), for r ∈ R, where tR is the
target map. IfHR is the underlying bialgebroid in a Hopf algebroid (HL,HR, S), then
tR : Rop → H, equivalently, sL : L→ H, is a rightHR-Galois extension (cf. Section
4.6.2). Hence, Theorem 4.13, known as the Fundamental Theorem of Hopf modules,
can be interpreted as a descent Theorem for this Galois extension L ∼= Rop ⊆ H.

Theorem 4.13. For a Hopf algebroid H over base algebras L and R, the functor
−⊗L H :ML →MH

H is an equivalence.

Theorem 4.13 is proved by constructing the inverses of the unit (4.7) and the counit
(4.8) of the relevant adjunction. Use the notations for the structure maps of a Hopf
algebroid in Definition 4.1. For a right L-module V , the inverse of (4.7) is the map
(V ⊗L H)

coHR → V ,
∑
i vi ⊗L hi �→ ∑

i vi · sL(εL(hi)). For a Hopf module W ,
denote the HR-coaction by w �→ w[0] ⊗R w

[1] and for the HL-coaction, write w �→
w[0] ⊗L w[1]. Then, an epimorphism W → WcoHR is given by w �→ w[0] · S(w[1]).
The inverse of (4.8) is the mapW → WcoHR⊗LH ,w �→ w[0][0] ·S(w[0][1])⊗Lw[1].

4.4. Integral theory

In a Hopf algebraH over a commutative ring k, integrals are invariants of the regular
module of the underlying k-algebra H, with respect to the character given by the
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counit. The study of integrals provides a lot of information about the structure of
the k-algebra H. Most significantly, (k-relative) semisimplicity of H is equivalent
to its separability over k and also to the existence of a normalized integral in H
[57,58]. Since this extends Maschke’s theorem about group algebras, it is known as a
Maschke-type theorem. Its dual version relates cosemisimplicity and coseparability
of the k-coalgebra underlying H to the existence of normalized cointegrals [57].
Another group of results concerns Frobenius property ofH, which is equivalent to the
existence of a nondegenerate integral in H [59,60]. Integral theory of Hopf algebras
was generalized to Hopf algebroids in [47].

Definition 4.14. For an algebra R, consider a right R-bialgebroid B, with structure
maps denoted as in Definition 3.1. Right integrals in B are the invariants of the right
regular module of the underlying R-ring (B, s), with respect to the right character ε.
Equivalently, invariants of the right regularmodule of theRop-ring (B, t), with respect
to ε. That is, the elements of

Bε = {i ∈ B | ib = is(ε(b)), ∀b ∈ B} = {i ∈ B | ib = it(ε(b)),
∀b ∈ B} ∼= HomB(R,B).

A right integral i is normalized if ε(i) = 1R.

Symmetrically, left integrals in a left R-bialgebroid are defined as invariants of
the left regular module of the underlying R-ring or Rop-ring, with respect to the
left character defined by the counit. Note that a left integral i in a left bialgebroid
B is a left integral also in Bcop and a right integral in the right bialgebroids Bop

and Bop
cop.

Since the counit in a right (resp. left) bialgebroid is a right (resp. left) character,
there is no way to consider left (resp. right) integrals in a right (resp. left) bialgebroid.
On the contrary, the base algebra in a right bialgebroid B is both a right and a left
B-comodule via coactions given by the source and target maps, respectively. Hence,
there are corresponding notions of left and right cointegrals.

Definition 4.15. For an algebra R, consider a right R-bialgebroid B, with structure
maps denoted as in Definition 3.1. A right cointegral on B is an element of

HomB(B,R) = {ι ∈ HomR(B,R) | (ι⊗
R
B) ◦� = s ◦ ι}.

A right cointegral ι is normalized if ι(1B) = 1R.
Symmetrically, a left cointegral on B is an element of BHom(B,R).

Left and right cointegrals on a left R-bialgebroid B are defined analogously as left
and right comodule maps B→ R.
If a right R-bialgebroid B is finitely generated and projective as a, say

right, R-module (via right multiplication by the source map), then the isomor-
phism HomR(R,B

∗) ∼= HomR(B,R) induces an isomorphism B∗Hom(R,B∗) ∼=
HomB(B,R). Hence in this case, left integrals in the left R-bialgebroid B∗ are the
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same as right cointegrals on B. Similar statements hold for all other duals of left and
right bialgebroids.
For a Hopf algebroid (HL,HR, S), left (resp. right) cointegrals onHL andHR can

be shown to be left (resp. right) H-comodule maps.

4.4.1. Maschke-type theorems Recall that an R-ring B is said to be separable pro-
vided that themultiplicationmapB⊗RB→ B is a split epimorphismofB-bimodules.
The R-ring B is said to be left (resp. right) semisimple (or sometimes R-relatively
semisimple) if every left (resp. right)B-module isR-relative projective. That is, every
B-module epimorphism, which has an R-module section, is a split epimorphism of
B-modules. By a classical result due to Hirata and Sugano [61], a separable R-ring
is left and right semisimple. For Hopf algebroids also the converse can be proved.

Theorem 4.16. Let (HL,HR, S) be a Hopf algebroid over base algebras L and
R with structure maps as denoted in Definition 4.1. The following properties are
equivalent.

(i) The R-ring (H, sR) underlying HR is separable.
(ii) The Rop-ring (H, tR) underlying HR is separable.
(iii) The L-ring (H, sL) underlying HL is separable.
(iv) The Lop-ring (H, tL) underlying HL is separable.
(v) The R-ring (H, sR) underlying HR is right semisimple.
(vi) The Rop-ring (H, tR) underlying HR is right semisimple.
(vii) The L-ring (H, sL) underlying HL is left semisimple.
(viii) The Lop-ring (H, tL) underlying HL is left semisimple.
(ix) There exists a normalized right integral in HR.
(x) There exists a normalized left integral in HL.
(xi) The counit εR in HR is a split epimorphism of right H-modules.
(xii) The counit εL in HL is a split epimorphism of left H-modules.

Since the source map in a right R-bialgebroid is a right R-module section of the
counit, implication (v)⇒(xi) is obvious. For a rightH-module section ν of the counit,
ν(1R) is a normalized right integral. Thus, (xi)⇒(ix).The antipode in aHopf algebroid
maps a normalized right integral in HR to a normalized left integral in HL and vice
versa. So (ix)⇔(x). If i is a normalized left integral inHL, then themapH → H⊗RH ,
h �→ hi(1)⊗RS(i

(2)) = i(1)⊗RS(i
(2))h is anH-bimodule section of themultiplication

in theR-ring underlying HR (where the index notation�R(h) = h(1)⊗R h
(2) is used

for h ∈ H). This proves (x)⇒(i). The remaining equivalences follow by symmetry.
Note that equivalences (iv)⇔(viii)⇔(x)⇔(xii) hold also for a×L-Hopf algebra HL

(as discussed in Section 4.6.2).
As an alternative to Theorem 4.16, one can ask about properties of the R ⊗k Rop-

ring, underlying a right bialgebroid HR, and the L ⊗k Lop-ring, underlying a left
bialgebroid HL, in a Hopf algebroid (HL,HR, S). Theorem 4.17 is obtained by
application of [39, Theorem 6.5]. For a k-algebra L, consider a left L-bialgebroid
HL. Denote its L ⊗k Lop-ring structure by (H, sL, tL) and its L-coring structure by



Hopf Algebroids 217

(H,�L, εL). Look at L as a left L⊗k Lop-module, with action given by left and right
multiplications. Look at H as a right L ⊗k Lop-module, with action given by right
multiplications by sL and tL. Note that

H ⊗L⊗kLop L ∼= H/{ hsL(l)− htL(l) | h ∈ H, l ∈ L } (4.9)

is an L-coring (via quotient maps of �L and εL) and a left H-module. Hence, we
can speak about the invariants of H ⊗L⊗kLop L with respect to εL. An invariant of
H ⊗L⊗kLop L is said to be normalized if the quotient of εL maps it to 1L.

Theorem 4.17. Consider a Hopf algebroid (HL,HR, S) over base k-algebras L and
R. The following assertions are equivalent.

(i) The R ⊗k Rop-ring underlying HR is separable.
(ii) The L⊗k Lop-ring underlying HL is separable.
(iii) The R ⊗k Rop-ring underlying HR is right semisimple.
(iv) The L⊗k Lop-ring underlying HL is left semisimple.
(v) There is a normalized invariant in the right H-module R⊗R⊗kRop H .
(vi) There is a normalized invariant in the left H-module H ⊗L⊗kLop L.

For a ×L-Hopf algebra HL (as discussed in Section 4.6.2), equivalences
(ii)⇔(iv)⇔(vi) in Theorem 4.17 also hold.
Recall that an R-coring B is said to be coseparable provided that the comul-

tiplication map B → B ⊗R B is a split monomorphism of B-bicomodules. The
R-coring B is said to be left (resp. right) cosemisimple (or sometimes R-relatively
cosemisimple) if every left (resp. right) B-comodule is R-relative injective. That
is, every B-comodule monomorphism, which has an R-module retraction, is a split
monomorphism ofB-comodules.AcoseparableR-coring is left and right cosemisim-
ple. For Hopf algebroids also the converse can be proved.

Theorem 4.18. For a Hopf algebroid (HL,HR, S) over base algebras L and R, the
following properties are equivalent.

(i) The R-coring underlying HR is coseparable.
(ii) The L-coring underlying HL is coseparable.
(iii) The R-coring underlying HR is right cosemisimple.
(iv) The R-coring underlying HR is left cosemisimple.
(v) The L-coring underlying HL is right cosemisimple.
(vi) The L-coring underlying HL is left cosemisimple.
(vii) There exists a normalized right cointegral on HR.
(viii) There exists a normalized left cointegral on HR.
(ix) There exists a normalized right cointegral on HL.
(x) There exists a normalized left cointegral on HL.
(xi) The source map in HR is a split right HR-comodule monomorphism.
(xii) The target map in HR is a split left HR-comodule monomorphism.
(xiii) The source map in HL is a split left HL-comodule monomorphism.
(xiv) The target map in HL is a split right HL-comodule monomorphism.
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4.4.2. FrobeniusHopf algebroids It was proven by Larson and Sweedler in [59] that
every finite-dimensional Hopf algebra over a field is a Frobenius algebra. Although
this is not believed to be true for any finitely generated projective Hopf algebra over a
commutative ring, FrobeniusHopf algebras formadistinguished class.AHopf algebra
is known to be a Frobenius algebra if and only if it possesses a nondegenerate integral
[60]. It is a self-dual property; a nondegenerate integral determines a nondegenerate
cointegral, that is, a nondegenerate integral in the dual Hopf algebra.
In a Hopf algebroid, there are four algebra extensions: the ones given by the source

and target maps of the two constituent bialgebroids.Among Hopf algebroids, those in
which these are Frobenius extensions play an even more distinguished role.Although
the dual of any finitely generated projective Hopf algebroid is not known to be a Hopf
algebroid, duals of Frobenius Hopf algebroids are Frobenius Hopf algebroids.
While every finitely generated and projective Hopf algebra over a commutative

ring k was proved by Pareigis to be a quasi-Frobenius k-algebra in [60], an analogous
statement fails to hold for Hopf algebroids. In [47, Section 5], Hopf algebroids were
constructed, which are finitely generated and projective over their base algebras (in
all the four senses in (3.3) and (3.5)) but are not quasi-Frobenius extensions of the
base algebra.
Recall (e.g. from [62]) that an R-ring (H, s) is said to be Frobenius provided

that H is a finitely generated and projective left R-module, and ∗H := RHom(H,R)
is isomorphic to H as an H-R bimodule. Equivalently, (H, s) is a Frobenius R-
ring if and only if H is a finitely generated and projective right R-module and
H∗ :=HomR(H,R) is isomorphic to H as an R-H bimodule. These properties are
equivalent also to the existence of an R-bimodule map ψ : H → R, the so called
Frobenius functional, possessing a dual basis

∑
i ei⊗R fi ∈ H ⊗R H , satisfying, for

all h ∈ H ,
∑
i ei · ψ(fih)=h=

∑
i ψ(hei) · fi. The following characterization of

Frobenius Hopf algebroids was obtained in [47, Theorem 4.7], see the Corrigendum.

Theorem 4.19. Consider a Hopf algebroid H over base algebras L and R with
structure maps denoted as in Definition 4.1. Assume thatH is a finitely generated and
projective left and rightR-module via the actions in (3.3) and a finitely generated and
projective left and right L-module via the actions in (3.5). The following statements
are equivalent.

(i) The R-ring (H, sR) is Frobenius.
(ii) The Rop-ring (Hop, tR) is Frobenius.
(iii) The L-ring (H, sL) is Frobenius.
(iv) The Lop-ring (Hop, tL) is Frobenius.
(v) There exists a right cointegral ι on HR such that the map ι̃ :H →

HomR(H,R), h �→ ι(h−) is bijective.
(vi) There exists a left cointegral υ on HL such that the map υ̃ :H →

LHom(H,L), h �→ υ(−h) is bijective.
(vii) There exists a right integral i inHR such that themap ĩ : LHom(H,L)→ H ,

ψ �→ tL(ψ(i(2)))i(1) is bijective.
(viii) There exists a left integral j inHL such that the map j̃ : HomR(H,R)→ H ,

φ �→ j(2)tR(φ(j
(1))) is bijective.
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A Hopf algebroid for which these equivalent conditions hold is said to be Frobenius,
and a right (resp. left) integral obeying property (vii) (resp. (viii)) is said to be non-
degenerate.

In a Frobenius Hopf algebroid the antipode S is bijective.

If j is a nondegenerate left integral in HL, then ι := ( j̃ )−1(1H) is a right
cointegral on HR and a Frobenius functional for the R-ring (H, sR) with dual
basis j(1) ⊗R S(j

(2)). Thus, (viii)⇒(i). If property (i) holds, then the right cointe-
grals on HR are shown to form a free rank one left R-module I, via the action
r · ι = ι(tR(r)−). Using finitely generated projectivity of the right R-module H ,
the dual H∗ := HomR(H,R) can be equipped with a Hopf module structure, with
coinvariants I. Hence, Theorem 4.13 implies an isomorphism H∗ ∼= H ⊗R I. This
isomorphism is used to show that the cyclic generator ι of the R-module I satisfies
condition (v). If there is a right cointegral ι as in part (v), then a nondegenerate left inte-
gral j as in part (viii) is constructed in terms of ( ι̃ )−1 and a dual basis for the finitely
generated projective right R-module H . It is shown to satisfy ( j̃ )−1 = ι̃ ◦ S, which
implies bijectivity of S. The remaining equivalences follow by relations between the
source and target maps in HL and HR and symmetrical versions of the arguments
above.
For a Frobenius Hopf algebroid (HL,HR, S) over base algebras L and R, all

the four duals HomR(H,R), RHom(H,R), HomL(H,L), and LHom(H,L) possess
(left or right) bialgebroid structures. A left integral j in HL, such that the map j̃
in part (viii) of Theorem 4.19 is bijective, determines further similar isomorphisms
RHom(H,R) → H , HomL(H,L) → H and LHom(H,L) → H . What is more,
putting ι := ( j̃ )−1(1H), there is an algebra automorphism of H ,

ζ : H → H, h �→ h(2)tR(ι(j h
(1))). (4.10)

These isomorphisms combine to bialgebroid (anti-) isomorphisms between the four
duals of H (cf. [46, Theorem 5.16]).
The Frobenius property of a Hopf algebroid was shown to be self-dual in [46,

Theorem 5.17 and Proposition 5.19] in the following sense.

Theorem 4.20. Consider a Frobenius Hopf algebroid (HL,HR, S) over base alge-
bras L and R. Let j be a left integral in HL such that the map j̃ in part (viii) of
Theorem 4.19 is bijective. Then, the left R-bialgebroid H∗ := HomR(H,R) extends
to a Hopf algebroid. A bijective antipode is given in terms of the map (4.10) by
S∗ := ( j̃ )−1 ◦ S ◦ ζ ◦ j̃. The right bialgebroid structure is determined by the require-
ment that S∗ is a bialgebroid anti-isomorphism in the sense of Proposition 4.4. This
dual Hopf algebroid is Frobenius, with nondegenerate left integral ( j̃ )−1(1H) ∈ H∗.

In a paper [63] by Szlachányi, an equivalent description of a Frobenius Hopf alge-
broid (HL,HR, S) was proposed, via the so-called double algebras. In this picture,
the isomorphism j̃ in part (viii) of Theorem 4.19 is used to transfer the multiplication
in H∗ := HomR(H,R) to a second algebra structure in H , with unit j. In this way,
four Frobenius ring structures are obtained onH . Note that the coproducts in HL and
HR correspond canonically to the Frobenius ring structures transferred from H∗. In
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this approach, the Hopf algebroid axioms are formulated as compatibility conditions
between the two algebra structures on H .

4.5. Galois theory of Hopf algebroids

Galois extensions by Hopf algebras are the same as Galois extensions by the con-
stituent bialgebra. Still, since the structure of a Hopf algebra is more complex than
that of a bialgebra, it allows to derive stronger results. On the contrary, Galois theory
of a Hopf algebroid is more conceptually different from the Galois theory of the con-
stituent bialgebroids.As it is discussed in Section 4.3, comodules of a Hopf algebroid
carry more structure than comodules of any constituent bialgebroid. Consequently,
Galois theory of Hopf algebroids, discussed in this section, is significantly richer than
the theory of bialgebroids. In particular, for a comodule algebra of a Hopf algebroid
(cf. Section 4.3.3), several theorems concerning an equivalence between the category
of relative Hopf modules and the category of modules of the coinvariant subalgebra,
that is descent theorems, can be proved.
By Definition 4.10 and Theorem 4.9, a right comodule algebraM of a Hopf alge-

broidH = (HL,HR, S) is both anHL-comodule algebra and anHR-comodule alge-
bra. Denote the HR-coinvariant subalgebra of M by N. In light of Proposition 4.8,
there are two corresponding canonical maps

M⊗
N
M → M⊗

R
H, m⊗

N
m′ �→ mm′[0] ⊗

R
m′[1] and (4.11)

M⊗
N
M → M⊗

L
H, m⊗

N
m′ �→ m[0]m′ ⊗

L
m[1], (4.12)

where m �→ m[0] ⊗R m[1] and m �→ m[0] ⊗L m[1] denote the HR-coaction and the
HL-coaction onM, respectively. In general, the bijectivity of the two canonical maps
(4.11) and (4.12) are not known to be equivalent. Only a partial result [54, Lemma
3.3] is known.

Proposition 4.21. If the antipode S in a Hopf algebroid (HL,HR, S) is bijective,
then the HR-canonical map (4.11) is bijective if and only if the HL-canonical map
(4.12) is bijective.

This follows by noting that the two canonical maps differ by the isomorphism �A
from (4.5).
By Propositions 4.8 and 4.21, for a right comodule algebraM of a Hopf algebroid

(HL,HR, S) with a bijective antipode, an algebra extension N ⊆M is HL-Galois if
and only if it is HR-Galois.

Remark 4.22. Consider a Hopf algebroid H = (HL,HR, S) over base algebras L
andR, which is finitely generated and projective as a leftL-module via the sourcemap
inHL and as a leftR-module via the target map inHR. Then,H is in particular flat as
a left L-module and as a leftR-module. Therefore, by Theorem 4.7 and Theorem 4.9,
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the category of right H-comodules is strict monoidally isomorphic to the category
of comodules for both the constituent left and right bialgebroids HL and HR. Thus,
comodule algebras for H coincide with comodule algebras for HL or HR.

Furthermore, if the antipode is bijective, it follows from Propositions 4.8 and 4.21
that an algebra extension N ⊆M is a right HR-Galois extension if and only if it is a
right HL-Galois extension.

4.5.1. Depth 2Frobenius extensions An analog ofTheorem3.27 for FrobeniusHopf
algebroids is [12, Theorem 3.6].

Theorem 4.23. An algebra extension N ⊆M is a right Galois extension by a Frobe-
nius Hopf algebroid (i.e. by any of its constituent bialgebroids) if and only if it is
a Frobenius extension, it is balanced, and it satisfies the (left and right) depth 2
conditions.

In a case of a Frobenius extension N ⊆ M, the left and right depth 2 properties
are equivalent. By Remark 4.22, for a Frobenius Hopf algebroid (HL,HR, S), the
HL- and HR-Galois properties of an extension are equivalent. By Theorem 3.24,
a right depth 2 and balanced algebra extension N⊆M are Galois extension by a
right bialgebroid (M ⊗N M)

N. In addition, if N ⊆ M is a Frobenius extension,
then (M ⊗N M)

N is shown to be a constituent right bialgebroid in a Frobenius Hopf
algebroid. A nondegenerate (left and right) integral

∑
i mi ⊗N m

′
i ∈ (M ⊗N M)

N is
provided by the dual basis of a Frobenius functional ψ : M → N. A nondegenerate
(left and right) integral in the dual Hopf algebroid NEndN(M) is provided by ψ. In
the converse direction, note that a right comodule M of a Hopf algebroid H is an
H∗-module. If H is a Frobenius Hopf algebroid and N ⊆ M is an H-Galois exten-
sion, a Frobenius functional M → N is given by the action of a nondegenerate
integral in H∗.

4.5.2. Cleft extensions by Hopf algebroids For an algebra M and a coalgebra C
over a commutative ring k, Homk(C,M) is a k-algebra via the convolution product

(f � g)(c) := f(c(1))g(c(2)), for f, g ∈ Homk(C,M), c ∈ C. (4.13)

A comodule algebra M of a k-Hopf algebra H is said to be a cleft extension of
its coinvariant subalgebra N provided that there exists a convolution invertible map
j ∈ Homk(H,M), which is an H-comodule map. The relevance of cleft extensions
by Hopf algebras stems from Doi and Takeuchi’s observation in [64] that N ⊆ M is
a cleft extension if and only if it is a Galois extension and an additional normal basis
property holds, that is, M ∼= N ⊗k H as a left N-module right H-comodule. What
is more (establishing an even stronger similarity with Galois extensions of fields),
N ⊆ M is a cleft extension if and only if M is isomorphic to a crossed product of N
with H with respect to an invertible 2-cocycle [64, 65].
The results have been extended to Hopf algebroids in [48]. To formulate the def-

inition of a cleft extension, as a first step, a generalized convolution product has to
be introduced. Using notations as in Definition 4.1, in a Hopf algebroid (HL,HR, S)
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there is an L-coring (H,�L, εL) and an R-coring (H,�R, εR). Consider an L⊗k
R-ring M, with multiplications μL : M ⊗L M → M and μR : M ⊗R M → M.
For these data, the convolution algebra (4.13) can be generalized to a convolution
category. It has two objects, conveniently labelled by L and R. For P,Q ∈ {L,R},
morphisms from P to Q are Q-P bimodule maps H → M, where the bimodule
structure of the domain is determined by the (P- and Q-) coring structures of H
and the bimodule structure of the codomain is determined by the (P- and Q-) ring
structures ofM. For P,Q, T ∈ {L,R}, and morphisms f : Q→ P and g : T → Q,
composition is given by a convolution product

f � g := μQ ◦ (f ⊗
Q
g) ◦�Q. (4.14)

Recall from Theorem 4.9 that a right comodule algebra of a Hopf algebroid
(HL,HR, S) has a canonical R-ring structure over the base algebra R of HR.

Definition 4.24. Consider a Hopf algebroid H = (HL,HR, S) over base algebras
L and R. A right H-comodule algebra M is said to be a cleft extension of the HR-
coinvariant subalgebra N provided that the following properties hold.

(i) The canonical R-ring structure ofM extends to an L⊗k R-ring structure.
(ii) There exists an invertible morphism j : R → L in the convolution category

(4.14), which is a right H-comodule map.

In an H-cleft extension N ⊆M, N can be proved to be an L-subring of M.
In a Hopf algebroidH, using the notations introduced in Definition 4.1, anL⊗kR-

ring is given by (H, sL, sR). The identity map of H is a morphism R → L in the
corresponding convolution category (4.14). It is obviously right H-colinear. What is
more, the antipode is its inverse by axioms (iii) and (iv) in Definition 4.1. Hence, the
right regular comodule algebra of a Hopf algebroid is a cleft extension of the coinvari-
ant subalgebra tR(R). This extends a well-known fact that the right regular comodule
algebra of a Hopf algebra, over a commutative ring k, is a cleft extension of k. A
further similarity between cleft extensions by Hopf algebras and Hopf algebroids is
expressed by the following Theorem 4.25.

Theorem 4.25. Consider a Hopf algebroid (HL,HR, S) over base algebras L and
R. Its right comodule algebraM is a cleft extension of theHR-coinvariant subalgebra
N if and only if the following properties hold.

(i) N ⊆M is a Galois extension by HR;
(ii) the normal basis condition holds, that is, M ∼= N ⊗L H as left N-modules

right H-comodules.

Note the appearance of the two base algebras L and R in conditions (i) and (ii) in
Theorem 4.25.
Another characterization of a cleft extension by a Hopf algebroid can be given by

using the construction of a crossed product.
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Definition 4.26. Consider a left bialgebroid B over a base k-algebra L. Denote
its structure maps as in Definition 3.3. We say that B measures an L-ring N with
unit map ι : L → N if there exists a k-module map: ·B ⊗k N → N, the so-called
measuring, such that, for b ∈ B, l ∈ L and n, n′ ∈ N, the following axioms are
satisfied.

(i) b · 1N = ι(ε(b)),
(ii) (t(l)b) · n = (b · n)ι(l) and (s(l)b) · n = ι(l)(b · n),
(iii) b · (nn′) = (b(1) · n)(b(2) · n′).

Note that in Definition 4.26, condition (iii) makes sense in view of (ii).
Consider a left bialgebroid B over a k-algebra L and denote its structure maps

as in Definition 3.3. Let N be an L-ring with unit ι : L → N, which is measured
by B. These data determine a category C(B, N) as follows. Consider B ⊗k B as an
L-bimodule via left multiplication by s and t in the first factor. For an element f in
LHomL(B⊗k B,N), consider the following (L-balancing) conditions. For a, b ∈ B,
and l ∈ L,

(T◦) f(a⊗
k
s(l)b) = f(as(l)⊗

k
b)

(S◦) f(a⊗
k
t(l)b) = f(at(l)⊗

k
b)

(T•) f(a⊗
k
s(l)b) = (a(1) · ι(l))f(a(2)⊗

k
b)

(S•) f(a⊗
k
t(l)b) = f(a(1)⊗

k
b)(a(2) · ι(l)).

Define a category C(B, N) of two objects ◦ and •. For two objects X, Y ∈ {◦, •}, the
morphisms X→ Y are elements of LHomL(B⊗k B,N), satisfying conditions (SX)
and (TY). The composition of the morphisms g : X→ Y and f : Y → Z is given by

(f � g)(a⊗
k
b) := f(a(1)⊗

k
b(1))g(a(2)⊗

k
b(2)).

The unit morphism at the object ◦ is the map a⊗k b �→ (ab) · 1N = ι(ε(ab)) and the
unit morphism at the object • is the map a⊗k b �→ a · (b · 1N).

Definition 4.27. Consider a left bialgebroid B over a k-algebra L with structure
maps as in Definition 3.3. Let N be a B-measured L-ring, with unit ι : L → N. An
N-valued 2-cocycle on B is a morphism ◦ → • in the category C(B, N) given in the
previous paragraph such that, for all a, b, c ∈ B,

(i) σ(1B, b) = ι
(
ε(b)

) = σ(b, 1B),
(ii)

(
a(1) · σ(b(1), c(1))

)
σ(a(2), b(2)c(2)) = σ(a(1), b(1))σ(a(2)b(2), c).

The B-measured L-ring N is called a σ-twisted B-module if in addition, for n ∈ N
and a, b ∈ B,

(iii) 1B · n = n,
(iv)

(
a(1) · (b(1) · n)

)
σ(a(2), b(2)) = σ(a(1), b(1))(a(2)b(2) · n).

AnN-valued 2-cocycle σ on B is said to be invertible if it is invertible as a morphism
in C(B, N).
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Note that in Definition 4.27, conditions (ii) and (iv) make sense in view of the
module map and balanced properties of σ. If an L-ring N is measured by a left
L-bialgebroid B, then the Lop-ring Nop is measured by the co-opposite left Lop-
bialgebroid Bcop. The inverse of an N-valued 2-cocycle σ on B turns out to be an
Nop-valued 2-cocycle on Bcop.

For a left bialgebroid B over an algebra L, with structure maps denoted as in Def-
inition 3.3, the base algebra L is measured by B via the left action b · l := ε(bs(l)).
For this measuring, conditions (S◦) and (S•) are equivalent and also conditions (T◦)
and (T•) are equivalent. Consequently, an L-valued 2-cocycle on B in the sense of
Definition 4.27 is equivalent to a cocycle as considered in Section 3.4.2. Extending
the cocycle double twists of Section 3.4.2, one can consider more general deforma-
tions of a Hopf algebroid H (or a ×L-Hopf algebra B, discussed in Section 4.6.2)
by an N-valued invertible 2-cocycle σ in Definition 4.27 (cf. [45, Appendix]). In
that construction, the base algebra L of HL is replaced by an HL-measured L-ring
N. In particular, the Connes and Moscovici’s bialgebroids in Section 3.4.6 arise in
this way.
A crossed product N#σB of a left L-bialgebroid B with a σ-twisted B-module

N, with respect to an N-valued 2-cocycle σ, is the the L-module tensor product
N⊗LB (whereB is a leftL-module via the source map s), with associative and unital
multiplication

(n#b)(n′#b′) = n(b(1) ·n′)σ(b(2), b′(1))#b(3)b′(2), for n#b, n′#b′ ∈ N⊗
L
B.

Equivalence classes of crossed products with a bialgebroid were classified in [48,
Section 4].

Theorem 4.28. A right comodule algebra M of a Hopf algebroid (HL,HR, S) is a
cleft extension of the HR-coinvariant subalgebraN if and only ifM is isomorphic, as
a leftN-module and rightH-comodule algebra, to a crossed product algebraN#σHL,
with respect to some invertible N-valued 2-cocycle σ on HL.

4.5.3. The structure of Galois extensions by Hopf algebroids In the theory of
Galois extensions by Hopf algebras (with a bijective antipode), important tools are
provided by theorems, which state that in appropriate situations, surjectivity of the
canonical map implies its bijectivity, that is, the Galois property of an algebra exten-
sion N ⊆ M. There are two big groups of such theorems. In the first group, a Hopf
algebraH is assumed to be a flat module over its commutative base ring k and its reg-
ular comodule algebra is assumed to be a projective H-comodule. These properties
hold in particular if H is a finitely generated and projective k-module, in which case
such a theorem was proven first by Kreimer and Takeuchi [66]. In the second group
of such results, due to Schneider, H is assumed to be a projective k-module and its
comodule algebraM is assumed to be a k-relative injective H-comodule [67].
Analogous results for extensions by a Hopf algebroid H = (HL,HR, S) were

obtained in the papers [12, 54, 55], respectively. A common philosophy behind such
theorems originates from a paper [43] of Schauenburg (on the Hopf algebra case).
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The key idea is to investigate a lifting (4.16) of the canonical map (4.11) introduced
for an H-comodule algebra M in the following. By a general result [68, Theorem
2.1] about Galois comodules, split surjectivity of the lifted canonical map (4.16) as
a morphism of relative (M,HR)-Hopf modules implies the HR-Galois property, that
is, bijectivity of (4.11), whenever (M ⊗TM)

coHR = M ⊗TM
coHR , where (−)coHR

denotes the HR-coinvariants functor.
For a Hopf algebra H over a commutative ring k and a right H-comodule algebra

M with coinvariant subalgebra N, the canonical map M ⊗N M → M ⊗k H can be
lifted to a map

M⊗
k
M �� �� M⊗

N
M can �� M⊗

k
H . (4.15)

More generally, consider a Hopf algebroid H = (HL,HR, S) over base k-algebras
L and R. For a right H-comodule algebra M, the canonical map (4.11) can be
lifted to

M⊗
T
M → M⊗

R
H, m⊗

T
m′ �→ mm′[0] ⊗

R
m′[1] (4.16)

for any k-algebra T such that the HR-coinvariant subalgebra N ofM is a T-ring. The
map (4.16) is a morphism of right–right (M,H)-relative Hopf modules.

Theorem 4.29. Consider a Hopf algebroid H over base k-algebras L and R, with a
bijective antipode. Denote its structure maps as in Definition 4.1. Assume thatH is a
flat leftR-module (via right multiplication by tR) and a projective rightHR-comodule
(via�R). LetM be a right H-comodule algebra with HR-coinvariant subalgebra N.
Under these assumptions the following statements hold.

(1) If theHR-coinvariants of the rightH-comoduleM⊗kM (with coactions given
via the second factor) are precisely the elements ofM⊗kN, then the canonical
map (4.11) is bijective if and only if it is surjective.

(2) If the canonical map (4.11) is bijective, thenM is a projective rightN-module.

Since coinvariants are defined as a kernel, the coinvariants of M ⊗k M are pre-
cisely the elements of M ⊗k N if, for example, M is a flat k-module. To gain an
impression of the proof of part (1) of Theorem 4.29, note that flatness of the left
R-module H and projectivity of the right regular HR-comodule together imply that
M ⊗R H is projective as a right–right (M,HR)-relative Hopf module. Hence, if the
canonical map (4.11) is surjective, then the (surjective) lifted canonical map (4.16) is
a split epimorphism of right–right (M,HR)-relative Hopf modules, for any possible
k-algebra T. Thus, bijectivity of the canonical map (4.11) follows by [68, Theorem
2.1]. Part (2) ofTheorem4.29 follows by exactness of the naturally equivalent functors
HomHR(H,−) ∼= HomN(M, (−)coHR), which is a consequence of the projectivity
of the right regular HR-comodule.
If in a Hopf algebroid H with a bijective antipode, H is a finitely generated

and projective left and right R-module, and a finitely generated and projective
left and right L-module, with respect to the respective actions in (3.3) and (3.5),
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then it is obviously a flat left R-module. Furthermore, in this case, the right reg-
ular HR-comodule can be shown to be projective by using Theorem 4.13. The
following Weak Structure Theorem 4.30 is, thus, based on Remark 4.22, part
(2) of Theorem 4.29 and its application to the right comodule algebra Mop of
the opposite Hopf algebroid Hop, and a theorem [69, Theorem 3.5] about Galois
corings.

Theorem 4.30. Consider a Hopf algebroid H = (HL,HR, S) over base algebras
L and R, with a bijective antipode S. Assume that H is a finitely generated and
projective left and right R-module, and a finitely generated and projective left and
right L-module, with respect to the respective actions in (3.3) and (3.5). For a right
H-comodule algebraM, withHR-coinvariant subalgebraN, the following statements
are equivalent.

(i) The extension N ⊆M is HR-Galois.
(ii) M is a generator in the category MH

M
∼=MHR

M
∼=MHL

M .
(iii) The HR-coinvariants functor MH

M →MN is fully faithful.
(iv) The extension N ⊆M is HL-Galois.
(v) M is a generator in the category MMH ∼= MMHR ∼= MMHL .
(vi) The HL-coinvariants functor MMH → NM is fully faithful.

Furthermore, if these equivalent conditions hold, thenM is a projective left and right
N-module.

It was a key observation by Doi that relative injectivity of a comodule algebraM
of a Hopf algebra H is equivalent to the existence of the so-called total integral –
meaning an H-comodule map j : H → M such that j(1H) = 1M [70]. This fact
extends to Hopf algebroids. Recall (e.g. from [71]) that, for any functor U : A→ B,
between any categories A and B, an object A ∈ A is said to be U-injective if the
map HomA(g,A) : HomA(Y,A) → HomA(X,A) is surjective, for any objects
X, Y ∈ A, and all morphisms g ∈ HomA(X, Y) such that U(g) is a split monomor-
phism in B. If U has a right adjoint, then U-injectivity of an object A is equivalent
to the unit of the adjunction, evaluated at A, being a split monomorphism in A (see
[71, Proposition 1]). For example, for a Hopf algebra H over a commutative ring
k, injective objects with respect to the forgetful functor MH → Mk are precisely
relative injective H-comodules.
A version of Theorem 4.31 below was proved in [55, Theorem 4.1], using the

notion of relative separability of a forgetful functor. Recall from Remark 4.6 that
the opposite of a right comodule algebra M of a Hopf algebroid H has a canonical
structure of a left H-comodule algebra.

Theorem 4.31. For a right comodule algebra M of a Hopf algebroid
H= (HL,HR, S), the following statements are equivalent.

(i) There exists a right H-comodule map (resp. right HL-comodule map)
j : H → M, such that j(1H) = 1M.
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(ii) M is injective with respect to the forgetful functor MH → ML (resp. with
respect to the forgetful functor MHL → ML, i.e. M is a relative injective
HL-comodule).

(iii) Any object in the category MH
M of right–right relative Hopf modules is injec-

tive with respect to the forgetful functor MH → ML (resp. with respect to
the forgetful functor MHL →ML).

If in addition the antipode S is bijective, then assertions (i)–(iii) are also equi-
valent to

(iv) There exists a left H-comodule map (resp. left HR-comodule map) j′ : H →
M such that j′(1H) = 1M.

Hence, assertions (i)–(iv) are also equivalent to the symmetrical versions of (ii)
and (iii).

The key idea behind Theorem 4.31 is the observation that both forgetful functors
MH → ML and MHL → ML possess left adjoints − ⊗L H (cf. (4.3)). A cor-
respondence can be established between comodule maps j as in part (i) and natural
retractions of the counit of the adjunction, that is, of the HL-coaction.

Based on [72, Theorem 4.7] and Theorem 4.31, also the following Strong Structure
Theorem holds.

Theorem 4.32. Consider a Hopf algebroid (HL,HR, S) over base algebras L and
R, with a bijective antipode S. Assume that H is a finitely generated and projective
left and rightR andL-module with respect to the actions in (3.3) and (3.5). For a right
HR- (equivalently, right HL-), Galois extension N ⊆ M, the following statements
are equivalent.

(i) M is a faithfully flat right N-module.
(ii) The inclusion N→M splits in MN.
(iii) M is a generator of right N-modules.
(iv) M is a faithfully flat left N-module.
(v) The inclusion N→M splits in NM.
(vi) M is a generator of left N-modules.
(vii) The functor −⊗N M :MN →MH

M is an equivalence.

(viii) M is a projective generator in MH
M .

(ix) There exists a right H-comodule map j : M → H such that j(1H) = 1M.

Note that if a Hopf algebra H over a commutative ring k is a projective k-module,
then M ⊗k H is a projective left M-module for any right H-comodule algebra M.
Thus, denoting the subalgebra of coinvariants inM byN, surjectivity of the canonical
mapM⊗NM → M⊗k H implies that its lifted version (4.15) is a split epimorphism
of leftM-modules, so in particular of k-modules. By Schneider’s result [67, Theorem
I], if the antipode ofH is bijective andM is a k-relative injective right H-comodule,
then bijectivity of the canonical map follows from the k-module splitting of its lifted
version (4.15). To formulate the following generalization, Theorem 4.33, of this
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result, note that the lifted canonical map (4.16) is an L-bimodule map, with respect to
theL-actions l ·(m⊗Tm

′)·l′ := m·εR(sL(l))⊗TεR(tL(l
′))·m′ (recall that theR-, and

T-actions onM commute by virtue of (3.14)) and l·(m⊗Rh)·l′ := m⊗R sL(l)tL(l
′)h,

on its domain and codomain, respectively, where the notations from Definition 4.1
are used.

Theorem 4.33. Consider a Hopf algebroid H with a bijective antipode over base
algebras L and R. Denote its structure maps as in Definition 4.1. Let M be a right
H-comodule algebra with HR-coinvariants N. Let T be a k-algebra such that N is
a T-ring. In this setting, if the lifted canonical map (4.16) is a split epimorphism of
right L-modules, then the following statements are equivalent.

(i) N ⊆M is an HR-Galois extension and the inclusion N→M splits in MN.

(ii) N ⊆M is an HR-Galois extension and the inclusion N→M splits in NM.

(iii) There exists a right H-comodule map j : H → M such that j(1H) = 1M.

(iv) M ⊗N − : NM → H
MM is an equivalence and the inclusion N→ M splits

in MN.

Furthermore, if the equivalent properties (i)–(iii) hold, thenM is a T-relative projec-
tive right N-module.

Note that by Propositions 4.8 and 4.21, in parts (i) and (ii) the HR-Galois property
can be replaced equivalently by the HL-Galois property. Also, by Theorem 4.31, the
existence of a unit preserving right H-comodule map in part (iii) can be replaced
equivalently by the existence of a unit preserving left H-comodule map.
The most interesting part of Theorem 4.33 is perhaps the claim that if property

(iii) holds, then right L-module splitting of the lifted canonical map (4.16) implies
the HR-Galois property. The proof of this fact is based on an observation, originally
in [55], that assertion (iii) is equivalent to relative separability of the forgetful func-
tor MH → ML, with respect to the forgetful functor MH

M → MH. A relative
separable functor reflects split epimorphisms in the sense that if f is a morphism
in MH

M , which is a split epimorphism of right L-modules, then it is a split epimor-
phism of rightH-comodules. This proves that, under the assumptions made, the lifted
canonical map (4.16) is a split epimorphism of right H-comodules. Furthermore, the
forgetful functor MH

M → MH possesses a left adjoint − ⊗R M. Hence, the right-
right (M,H)-relative Hopf module M ⊗R H , which is isomorphic to H ⊗R M by
bijectivity of the antipode, is relative projective in the sense that a split epimorphism
g in MH of codomain H ⊗R M ∼= M ⊗R H is a split epimorphism in MH

M . This
proves that in the situation considered the lifted canonical map (4.16) is a split epimor-
phism of right-right (M,H)-relative Hopf modules. Then it is a split epimorphism of
right-right (M,HR)-relative Hopf modules. Moreover, in terms of a unit preserving
right H-comodule map H → M, a left N-module splitting of the equalizer of the
HR-coaction onM and the mapm �→ m⊗R 1H can be constructed. This implies that
the equalizer is preserved by the functorM⊗T−, that is, (M⊗TM)

coHR = M⊗TN.
Thus, the canonical map (4.11) is bijective by [68, Theorem 2.1].
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Recall that a left module V of a k-algebra N is k-relative projective if and only if
the left action N ⊗k V → V is a split epimorphism of left N-modules. If V has an
additional structure of a right comodule for a k-coalgebra C such that the N-action
is a right C-comodule map, then it can be asked if the action N ⊗k V → V splits as
a map of left N-modules and right C-comodules as well. In the case when it does,
V is said to be a C-equivariantly projective left N-module. For a Galois extension
N ⊆ M by a k-Hopf algebra H , H-equivariant projectivity of the left N-module M
was shown by Hajac to be equivalent to the existence of a strong connection [73].
That is, interpreting a Hopf Galois extension as a noncommutative principal bundle,
equivariant projectivitymeans its local triviality. In case of aGalois extensionN ⊆M
by a k-Hopf algebraH , the equivalent conditions (i)–(iii) in Theorem 4.33 are known
to imply H-equivariant projectivity of the left N-moduleM. To obtain an analogous
result for a Galois extension by a Hopf algebroid, slightly stronger assumptions are
needed, see Theorem 4.35 below.

Definition 4.34. Consider a Hopf algebroid H and consider a T-ring N for some
algebra T. Let V be a left N-module and right H-comodule such that the left
N-action onV is a rightH-comodulemap.V is said to be aT-relativeH-equivariantly
projective leftN-module provided that the left actionN⊗TV → V is an epimorphism
split by a left N-module, right H-comodule map.

Theorem 4.35. Consider a Hopf algebroid H with a bijective antipode. LetM be a
right H-comodule algebra with HR-coinvariants N. Let T be an algebra such that N
is aT-ring. Assume that there exists a unit preserving rightH-comodulemapH → M

and that the lifted canonical map (4.16) is a split epimorphism of L-bimodules. Then
N ⊆ M is a right HR-, and right HL-Galois extension and M is a T-relative H-
equivariantly projective left N-module.

Under the assumptions of Theorem 4.35, the HR-Galois property holds by
Theorem 4.33 and the HL-Galois property follows by Propositions 4.8 and 4.21.
A proof of Theorem 4.35 is completed by constructing the required left N-module
right H-comodule section of the action N ⊗TM → M. The construction makes use
of the relative Hopf module section of the lifted canonical map (4.16). The existence
of such a section was proved in the paragraph following Theorem 4.33. Examples of
L-relative H-equivariantly projective Galois extensions are provided by cleft
extensions by a Hopf algebroid H with a bijective antipode over base algebras
L and R.

4.6. Alternative notions

In the literature there is an agreement that the right generalization of a bialgebra to
the case of a noncommutative base algebra is a bialgebroid. On the contrary, there is
some discussion about the structure that should replace a Hopf algebra. In this current
final section we revisit and compare the various suggestions.
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4.6.1. Lu Hopf algebroid In Definition 4.1, the antipode axioms are formulated for
a compatible pair of a left and a right bialgebroid. In followingDefinition 4.36, quoted
from [6], only a left bialgebroid is used. While the first one of the antipode axioms in
Definition 4.1 (iv) is easily formulated also in this case, to formulate the second one,
some additional assumption is needed.

Definition 4.36. Consider a left bialgebroid B, over a k-algebra L, with structure
maps denoted as in Definition 3.3. B is a Lu Hopf algebroid provided that there exists
an antialgebramapS : B→ B and a k-module section ξ of the canonical epimorphism
B⊗k B→ B⊗L B such that the following axioms are satisfied.

(i) S ◦ t = s,
(ii) μB ◦ (S ⊗L B) ◦� = t ◦ ε ◦ S,
(iii) μB ◦ (B⊗k S) ◦ ξ ◦� = s ◦ ε,

where μB denotes multiplication in the L-ring (B, s) and μB denotes multiplication
in the underlying k-algebra B.

None of the notions of a Hopf algebroid in Definition 4.1 or 4.36 seem to be more
general than the others. Indeed, a Hopf algebroid in the sense of Definition 4.1, which
does not satisfy the axioms in Definition 4.36, is constructed as follows. Let k be a
commutative ring inwhich 2 is invertible. For the order 2 cyclic groupZ2, consider the
group bialgebra kZ2 as a left bialgebroid over k. Equip it with the twisted (bijective)
antipode S, mapping the order 2 generator t of Z2 to S(t) := −t. Together with
the unique right bialgebroid, determined by the requirement that S is a bialgebroid
anti-isomorphism in the sense of Proposition 4.4, they constitute a Hopf algebroid
as in Definition 4.1. However, for this Hopf algebroid there exists no section ξ as in
Definition 4.36.

4.6.2. On×L-Hopf algebras The coinvariants of the (left or right) regular comodule
of a bialgebraH over a commutative ring k are precisely the multiples of the unit ele-
ment 1H.H is known to be a Hopf algebra if and only ifH is anH-Galois extension of
k. Indeed, the hom-tensor relationHHomH(H⊗kH,H⊗kH) ∼= Homk(H,H) relates
the inverse of the canonical map to the antipode. Motivated by this characterization
of a Hopf algebra, in [33] Schauenburg proposed the following definition.

Definition 4.37. Let B be a left bialgebroid over an algebra L, with structure maps
denoted as in Definition 3.3. Consider the left regularB-comodule, whose coinvariant
subalgebra is t(Lop). B is said to be a ×L-Hopf algebra provided that the algebra
extension t : Lop → B is left B-Galois.

The notion of a ×L-Hopf algebra in Definition 4.37 is more general than that of a
Hopf algebroid as in Definition 4.1. Indeed, consider a Hopf algebroid (HL,HR, S),
over the base algebras L andR, with structure maps denoted as in Definition 4.1. The
canonical map H ⊗Lop H → H ⊗L H , h ⊗ h′ �→ h(1) ⊗ h(2)h′ is bijective, with
inverse h ⊗ h′ �→ h(1) ⊗ S(h(2))h′. Hence HL is a ×L-Hopf algebra. An example
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of a ×L-Hopf algebra, that admits no Hopf algebroid structure, was proposed in
[76, Example 8].
Extending a result [74] by Schauenburg about Hopf algebras, the following propo-

sition was proved in [44].

Proposition 4.38. Consider a left bialgebroid B over a base algebra L. If there is a
left B-Galois extension N ⊆ M such thatM is a faithfully flat left L-module, then B
is a ×L-Hopf algebra.

Indeed, the canonical maps can : M⊗NM → B⊗LM andϑ : B⊗LopB→ B⊗LB

satisfy the pentagonal identity (B⊗L can)◦(can⊗NM) = (ϑ⊗LM)◦can13 ◦(M⊗N
can), where the (well defined) map can13 : M ⊗N (B ⊗L M)→ (B ⊗Lop B)⊗L M

is obtained by applying ‘can’ to the first and third factors.
In Theorem 3.13, bialgebroids were characterized via strict monoidality of a for-

getful functor. A characterization of a similar flavor for×L-Hopf algebras was given
in [33, Theorem and Definition 3.5]. Recall that a monoidal category (M,⊗, U) is
said to be right closed if the endofunctor − ⊗ X on M possesses a right adjoint
denoted by hom(X,−) for any object X in M. The monoidal category of bimodules
of an algebra L is right closed with hom(X, Y) = HomL(X, Y). It is slightly more
involved to see that so is the category of left B-modules, for a left L-bialgebroid B,
with hom(X, Y) = BHom(B⊗LX, Y) (where for a left B-moduleX, B⊗LX is a left
B-module via the diagonal action and a right B-module via the first factor). A strict
monoidal functorF :M→M′ between right-closed categories is called strong right
closed provided that the canonical morphism F(hom(X, Y))→ hom(F(X),F(Y)) is
an isomorphism, for all objects X, Y ∈M.

Theorem 4.39. A left bialgebroid B over a base algebra L is a ×L-Hopf algebra
if and only if the (strict monoidal) forgetful functor BM → LML is strong right
closed.

For a Hopf algebra H over a commutative ring k, those (left or right) H-modules,
which are finitely generated and projective k-modules, possess (right or left) duals in
themonoidal category of (left or right)H-modules. This property extends to×L-Hopf
algebras (hence to Hopf algebroids!) as follows.

Proposition 4.40. Let B be a ×L-Hopf algebra over a base algebra L. Denote
its structure maps as in Definition 3.3. For a left B-module M, the dual M∗ :=
HomL(M,L) is a left B-module via the action

(b · φ)(m) := ε(b〈1〉t(φ(b〈2〉 ·m))), for b ∈ B, φ ∈ M∗, m ∈ M,
where for the inverse of the (right B-linear) canonical map B ⊗Lop B → B ⊗L B,
the index notation b ⊗ b′ �→ b〈1〉 ⊗ b〈2〉b′ is used. Furthermore, if M is a finitely
generated and projective rightL-module, thenM∗ is a right dual ofM in themonoidal
category BM.



232 G. Böhm

4.6.3. Hopf monad In Theorem 3.5, bialgebroids were related to bimonads on a
bimodule category that possess a right adjoint. In the paper [39], special bimonads,
the so-called Hopf monads, on autonomous categories were studied. Recall that a
monoidal category is said to be left (resp. right) autonomous provided that every
object possesses a left (resp. right) dual. In particular, a category of finitely gen-
erated and projective bimodules is autonomous. Instead of the somewhat technical
definition in [39, 3.3], we adopt an equivalent description from [39, Theorem 3.8] as
a definition.

Definition 4.41. A left (resp. right) Hopf monad is a bimonad B on a left (resp.
right) autonomous monoidal category M such that the left (resp. right) autonomous
structure of M lifts to the category of B-algebras.

The reader should be warned that although the same term Hopf monad is used in
the papers [39] and [26], they have different meanings (and a further totally different
meaning of the same term is used in [20]). Also, the notions of a comodule and
a corresponding (co)integral in [39] are different from the notions used in these
notes.

4.6.4. A ∗-autonomous structure on a strong monoidal special opmorphism between
pseudomonoids in a monoidal bicategory In the paper [28], strongmonoidal special
opmorphisms h in monoidal bicategories, from a canonical pseudomonoid Rop ⊗ R
to some pseudomonoid B, were studied. The opmorphism h was called Hopf if in
addition there is a ∗-autonomous structure on B and h is strong ∗-autonomous (where
Rop ⊗R is meant to be ∗-autonomous in a canonical way). In [28, Section 3], a bial-
gebroid was described as a strong monoidal special opmorphism h of pseudomonoids
in the monoidal bicategory of [Algebras; Bimodules; Bimodule maps].
This opmorphism h is strong ∗-autonomous if and only if the corresponding bialge-
broid constitutes a Hopf algebroid with a bijective antipode (see [46, Section 4.2]).
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References

[1] J. Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (2)
(1985) 1–39.
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[15] T. Brzeziński, R.Wisbauer,Corings and comodules,Cambridge University Press, Cambridge 2003.
Erratum: http://www-maths.swan.ac.uk/staff/tb/Corings.htm.

[16] T. Brzeziński, The structure of corings: Induction functors, Maschke-type theorem, and Frobenius
and Galois-type properties, Algebr. Represent. Theory 5 (2002) 389–410.

[17] S. Majid, Algebras and Hopf algebras in braided categories, in: Advances in Hopf algebras
(Chicago, IL, 1992), pp. 55–105, Lecture Notes in Pure and Appl. Math., vol. 158, Dekker,
New York, 1994.

[18] P. Schauenburg, On the braiding of a Hopf algebra in a braided category, New York J. Math.
4 (1998) 259–263.

[19] M. Takeuchi, Survey of braided Hopf algebras, in: New trends in Hopf algebra theory (La Falda,
1999), in: Contemp. Math. vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301–323.

[20] B. Mesablishvili, R. Wisbauer, Bimonads and Hopf monads on categories, preprint
arXiv:0710.1163.

[21] M. Takeuchi, Groups of algebras over A⊗ A, J. Math. Soc. Jpn. 29 (1977) 459–492.
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1. Introduction

A coring is one of the most basic algebraic structures (formally) dual to that of a ring
(but also a ring itself can be viewed as a coring). The notion of a coring appeared
first in the algebra literature in 1975 in Sweedler’s paper [178] on a predual version
of the Jacobson–Bourbaki correspondence. As corings are coalgebras in the category
of bimodules of an algebra, they were implicitly studied earlier, for example, in
[115]. Also, in the late 1970s, they appeared under the name BOCS in representation
theory and were used in studies of matrix problems in works of Drozd, Kleiner,
and Roiter [161]. Between the late 1970s and the end of the 1990s corings attracted
rather limited attention, with, to the best of our knowledge, only a handful of papers
[106, 122, 134,135,183,184] and a monograph [20] published.
In the meantime, there was a resurgence of interest in Hopf algebras, triggered by

the appearance of quantum groups as symmetries of integrable systems in quantum
and statistical mechanics in works of Drinfeld and Jimbo. This led to intensive studies
of Hopf algebras also from a purely algebraic point of view and to the development
of more general categories of Hopf-type modules. These serve as representations of
Hopf algebras and related structures, such as those described by solutions to braid or
Yang-Baxter equations. By the end of the 1990s, all such Hopf-type modules were
unified in terms of entwined modules associated to entwining structures (cf. [36,49]).
It was an observation of Takeuchi (reported in [136]) that entwined modules are
comodules of a certain coring that instigated renewal of interest in corings in Hopf
algebra theory. This allowed one to viewmore conceptually and directly a connection
between properties of various types of Hopf modules [37]. More or less at the same
time corings appeared as one of themain structures in an approach to noncommutative
algebraic geometry advocated by Kontsevich and Rosenberg [124].
The aim of this chapter is two-fold. First, we would like to give a summary of

basic definitions and basic properties of corings and comodules, focussing on recent
developments. Rather than giving a complete picture, we give an overview of the
coring and comodule theory, describe basic examples, and discuss applications which
prompted recent resurgence of interest in this theory. Since a coalgebra is an example
of a coring, a summary of properties of comodules of a coring provides also the
reader with the knowledge of properties of comodules of a coalgebra. Furthermore,
many types of comodules of coalgebras considered inHopf algebra theory (Hopf-type
modules) turn out to be comodules of specific corings. In this way, this chapter should
supplement [140], which is our second aim.
For fuller and more detailed description of corings and comodules, the reader

should consult [53]. Inevitably, there is an overlap between this chapter and [53],
in particular, in these parts which deal with a pure or “older” coring theory. On the
other hand, we have tried to include as much as possible results, which have been
obtained or about which we have learnt since [53] was written. The reader should
be aware that since coring theory went through a significant transformation over the
last few years and is still being intensively developed, this chapter is a “state-of-the-
art” presentation of these developments rather than a definitive account. It is still
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too early to determine the significance of particular developments. The selection of
topics reflects the author’s taste more than their actual “objective” value (whatever
this might be).

2. Categorical preliminaries

Throughout this chapter we use the language of category theory. On the other hand,
to understand the main elements of the theory developed in this chapter, very little
knowledge of categorical language is needed. The aim of this section is to introduce
the reader who is not familiar with this language to the basic concepts and notions.
We hope that in this way such a reader can freely read the later parts of this chapter.
The reader familiar with category theory can skip this section, and only come back to
it when notation or conventions used later on will raise doubts. A standard reference
for category theory is [132].

2.1. Categories. AcategoryA consists of a class of objects, and, for any two objects
A, B, a set of morphisms or arrows from A to B, denoted by A(A,B). The sets of
arrows satisfy the following axioms:

(a) A(A,B) ∩ A(C,D) = ∅, if either A �= C or B �= D.
(b) For any objects A,B,C and any morphisms f ∈ A(A,B) and g ∈ A(B,C),

there exists a unique morphism g ◦ f ∈ A(A,C) known as a composition of
f with g and such that for any object D and any h ∈ A(C,D), (h ◦ g) ◦ f =
h ◦ (g ◦ f ).

(c) For any objectA, there is a unique identity morphism idA ∈ A(A,A) such that,
for any objectB and any f ∈ A(A,B), g ∈ A(B,A), idA ◦g = g, f ◦ idA = f.

In this chapter, we adopt the convention whereby for any object A the identity
morphism idA is denoted by A. For any f ∈ A(A,B), we write f : A → B. A
composition is also denoted as a sequence of arrows A→ B→ C.
The opposite category Aop of A is a category with the same collection of objects

and arrows as A, but any arrow A→ B in A is understood as an arrow B→ A, that
is, Aop(A,B) = A(B,A).
Given two categoriesA andB, the product categoryA×B has ordered pairs (A,B),

with A an object in A and B an object in B, as objects and with morphism sets:

A× B((A,B), (A′, B′)) = A(A,A′)× B(B, B′).

A subcategory B of A is a category whose objects are a subclass of objects of A,
and, for each pair of objects in B, the morphism set is a subset of the morphism set
of corresponding objects in A. A subcategory B of A is said to be full if B(A,B) =
A(A,B), for all objects A,B of B.
If k is a commutative ring with unit, by a k-linear category, we understand a

categoryA in which all morphism sets are k-modules and composition of morphisms
is k-linear. In case k = Z, a k-linear category is called a preadditive category. All the
categories described in the main body of this chapter are k-linear.
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2.2. Examples of categories. Here are some elementary examples of categories:

(1) Set (the category of sets): objects are sets and morphisms are functions.
(2) RM, MR, RMS (the category of left, resp. right, R-modules, over a ring

R, resp. (R, S )-bimodules over rings R and S): objects are left, resp. right,
R-modules, resp. (R, S )-bimodules, morphisms are R-module, resp. (R, S )-
bimodule maps. Morphisms in these categories are denoted by RHom(−,−),
resp. HomR(−,−), and RHomS(−,−).

(3) Any monoid G can be understood as a category G with a single object ∗. The
set of morphisms G(∗, ∗) equals G; the composition of morphisms is simply
the multiplication in G. Similarly, any associative, unital k-algebra can be
understood as a k-linear category with one object.

2.3. Types of morphisms. Amorphism f : A→ B in A is called

(a) a monomorphism if, for all g, h ∈ A(C,A), f ◦ g = f ◦ h implies g = h;
(b) an epimorphism if, for all g, h ∈ A(B,D), g ◦ f = h ◦ f implies g = h;
(c) a retraction if there exists g ∈ A(B,A) with f ◦ g = B; a retraction is

necessarily an epimorphism and hence is also called a split epimorphism;
(d) a section if there exists g ∈ A(B,A) with g ◦ f = A; a section is necessarily

a monomorphism and hence is also called a split monomorphism;
(e) an isomorphism if f is both a retraction and a section. The splitting morphism

g as in (c) and (d) is called the inverse of f and denoted by f−1.

2.4. Functors. A covariant functor or simply a functor F from A to B is a map
assigning to each object A of A an object F(A) of B and to any arrow f ∈ A(A,B)
an arrow F(f ) ∈ B(F(A), F(B)) such that

(a) for any objectA ofA, the morphismF(idA) is the identity morphism forF(A);
(b) for any f ∈ A(A,B), g ∈ A(B,C), F(g ◦ f ) = F(g) ◦ F(f ).

A contravariant functor F from A to B means a functor from Aop to B.
A functor F : A→ B between k-linear categories is assumed to be a k-linear oper-

ation in the sense that for any two objects A and B in A, A(A,B)→ B(F(A), F(B))
is a homomorphism of k-modules. In case k = Z, a k-linear functor is called an
additive functor.
Main examples of functors include the identity functor A : A→ A, which sends

objects A to A and morphisms f to f , and two hom-functors, defined for any object
A of A as follows. The covariant hom-functor

A(A,−) : A→ Set, B 
→ A(A,B), A(A, f ) : u 
→ f ◦ u,
and the contravariant hom-functor

A(−, A) : Aop→ Set, B→ A(B,A), A(f,A) : u 
→ u ◦ f.
2.5. Full and faithful functors. A functor is said to be faithful if it is injective
when restricted to each set of morphisms and is said to be full if it is surjective when
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restricted to each set of morphisms. A full and faithful functor is referred to as a fully
faithful functor.

2.6. Tensor (induction) functors. Given rings R and S, and an (R, S )-bimodule
M, one can define tensor functors−⊗R M :MR→MS andM ⊗S − : SM→ RM.
On objects N ∈ MR. N ⊗R M is a right S-module through the right multiplication
in M, (n ⊗R m)s = n ⊗R ms. For any morphism f : N → N ′ in MR, f ⊗R M is
a morphism in MS by n ⊗R m 
→ f(n) ⊗R m. The other tensor functor is defined
symmetrically.

2.7. Forgetful functors. A forgetful functor is a functor that “forgets” part of the
structure of objects. For example, since every rightR-module is a set, there is a functor
fromMR→ Set, which views modules as sets and module maps as functions. IfA is
a k-algebra, then there is a forgetful functor from the categoryMA of rightA-modules
to the category of k-modules, which views objects inMA purely as k-modules.

2.8. Natural transformations. Given functors F,G : A → B, a natural transfor-
mation ϕ : F → G is a collection of morphisms in B, ϕA : F(A) → G(A) labeled
by all objects A ∈ A and such that for any morphism f : A→ B,

ϕB ◦ F(f ) = G(f ) ◦ ϕA.
In case all the ϕA are isomorphisms, one calls ϕ a natural isomorphism.
Functors from A to B and natural transformations form a category denoted by

Fun(A,B).

2.9. Adjoint functors. A pair of functors L : A→ B, R : B→ A is said to be an
adjoint pair provided that there exists a pair of natural transformations, η : idA → RL

and ψ : LR→ idB such that

ψL(A) ◦ L(ηA) = L(A), R(ψB) ◦ ηR(B) = R(B).
L is called a left adjoint of R and R is called a right adjoint of L. The transformation
η is called a unit of the adjunction and ψ is termed a counit of the adjunction.
L,R is a pair of adjoint functors if and only if there is a natural isomorphism

� : B(L(−),−)→ A(−, R(−))
of functors Aop × B → Set. In terms of the unit and counit of the adjunction, � is
given by

�A,B = B(L(A), B)→ A(A,R(B)), g 
→ R(g) ◦ ηA,
and the inverse of � is �−1A,B : A(A,R(B))→ B(L(A), B), f 
→ ψB ◦ L(f ).
In an adjoint pair (L,R), the functor L sends epimorphisms to epimorphisms (i.e.

L preserves epimorphisms), while R sends monomorphisms to monomorphisms (i.e.
R preserves monomorphisms). Furthermore, L is fully faithful if and only if the unit
of the adjunction is a natural isomorphism, while R is fully faithful if and only if the
counit is an isomorphism.
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The hom-tensor adjunction is one of the key adjoint pairs of functors in this
chapter. Take R, S to be rings and M to be an (R, S)-bimodule. Then, the
tensor functor − ⊗R M : MR → MS (cf. 2.6) is the left adjoint of the hom-
functor HomS(M,−) : MS → MR. Here, HomS(M, V ) is a right R-module by
(fr)(m) = f(rm), for all f ∈ HomS(M, V ), m ∈ M, and r ∈ R. The counit and unit
of this adjunction are

ψV : HomS(M, V)⊗R M → V, f ⊗Rm 
→ f(m),

ηX : X→ HomS(M,X⊗R M), x 
→ [m 
→ x⊗R m].
The isomorphisms �X,V : HomS(X⊗R M,V ) → HomR(X,HomS(M, V )) come
out as

�X,V (g)(x) : m 
→ g(x⊗R m),
for all right R-modules X, right S-modules V , g ∈ HomS(X⊗R M,V ), x ∈ X, and
m ∈ M.
2.10. Equivalence of categories. Anadjoint pair of functorsL : A→ B,R : B→ A
with counit and unit, which are natural isomorphisms, is called a pair of inverse
equivalences. Each of L and R is called an equivalence, and the categories A and B
are said to be equivalent.

2.11. Comonads and monads. Let A be a category. A functor G : A → A is
called a comonad if there exist a natural transformation δ : G→ GG and a natural
transformation σ : G→ idA such that for all objects A ∈ A, the following diagrams

G(A)
δA ��

δA

��

GG(A)

G(δA)

��
GG(A)

δG(A) �� GGG(A) ,

G(A)
δA ��

G(A)

���������������

δA

��

GG(A)

G(σA)

��
GG(A)

σG(A) �� G(A)

are commutative.
A coalgebra or comodule of a comonad (G, δ, σ) is a pair (A, �A), where A is

an object in A and �A is a morphism �A : A → G(A) rendering commutative the
following diagrams

A
�A ��

�A

��

G(A)

δA

��
G(A)

G(�A)�� GG(A) ,

A
�A ��

A ���
������� G(A)

σA

��
A .

Amorphism of G-coalgebras (A, �A), (B, �B) is an element f ∈ A(A,B) such that

�B ◦ f = G(f ) ◦ �A.
G-coalgebras with their morphisms form a category denoted by AG.
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Dual to comonads one definesmonads as functorsF : A→ A togetherwith natural
transformations μ : FF → F and η : idA → F such that for all objects A ∈ A, the
following diagrams

FFF(A)
F(μA) ��

μF(A)

��

FF(A)

μA

��
FF(A)

μA �� A ,

F(A)
ηF(A) ��

F(A)

��������������

F(ηA)

��

FF(A)

μA

��
FF(A)

μA �� F(A)

are commutative. To monads one associates the category of algebras or modules,
denoted by AF .1 In this chapter, we are primarily interested in comonads and coal-
gebras.

2.12. Comonads and adjoint functors. Any adjoint pair of functors L : A→ B,
R : B → A gives rise to a comonad (G, δ, σ) on B, where G = LR, and for all
objects B in B, δB = L(ηR(B)), σB = ψB. Here, η is the unit and ψ is the counit for
the adjunction (L,R).
Conversely, any comonad (G, δ, σ) on A gives rise to a pair of adjoint functors

L : AG→ A,R : A→ AG. The functorL is the forgetful functor, whileR is defined
by R(A) = (G(A), δA). The unit and counit of adjunction are η(A,�A) = �A and
ψB = σB, for every object B of A and a G-coalgebra (A, �A).
Dually, a pair of adjoint functors L : A → B, R : B → A gives rise to a monad

F=RL : A→ A. Conversely, amonadF induces a pair of adjoint functorsA→ AF ,
AF → A.

2.13. Monoidal categories and monoidal functors. A category A is called a
monoidal category if there exist a functor − � − : A × A → A, a distinguished
object E in A and natural isomorphisms

α : (−�−)�−→ −�(−�−), λ : E�−→ idA, � : −�E→ idA

such that for all objectsW,X, Y,Z in A, the following two diagrams commute:

((W�X)�Y )�Z αW,X,Y�Z ��

αW�X,Y,Z

��

(W�(X�Y ))�Z
αW,X�Y,Z

�����������������

W�((X�Y )�Z)

W�αX,Y,Z�����������������

(W�X)�(Y�Z) αW,X,Y�Z �� W�(X�(Y�Z)) ,

1 The convention to denote coalgebras (comodules) of a comonad G by AG while algebras of a monad
by AF is a standard category theory convention, which, unfortunately, is opposite to the module-theoretic
conventions. We hope this will not cause any confusion later on.
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(X� E)� Y

�X�Y �������������
αX,E,Y �� X� (E� Y )

X�λY		�����������

X� Y.

A monoidal category is denoted by (A,�, E). The functor � is referred to as a
multiplication and E is called a unit. For example, if R is a ring, then the category
of R-bimodules is monoidal with the usual tensor product of R-bimodules ⊗R as a
multiplication and unit object R.
A monoidal functor between categories (A,�, E) and (A′,�′, E′) is a triple

(F, F2, F0), where F : A → A′ is a functor, F2 : F(−) �′ F(−) → F(− � −)
is a natural transformation, and F0 : E′ → F(E) is a morphism in A′. F2 and F0 are
compatible with the structure maps α, λ, � and α′, λ′, �′ in an obvious (natural) way;
see [132, Section 11.2] for more details. (F, F2, F0) is said to be strong if F2 and F0

are isomorphisms and strict if they are identities.

3. Corings

From now on,A is an associative unital algebra over an associative commutative ring
k with unit. The product inA is denoted byμA and the unit, understood both as a map
k→ A or as an element ofA, by 1A. Unless explicitly specified otherwise, whenever
we say “an algebra”wemean an associative k-algebrawith unit. The unadorned tensor
product is over k, that is, ⊗ = ⊗k.

3.1. Definition

In this section, we give the definition and categorical interpretation of corings.
3.1. Definition of a coring [178]. An A-coring is an A-bimodule C with A-bilinear
maps

�C : C → C ⊗A C and εC : C → A,

called coproduct and counit, rendering commutative the following diagrams

C
�C ��

�C
��

C ⊗A C
C⊗A�C
��

C ⊗A C �C⊗AC �� C ⊗A C ⊗A C ,

C
�C ��

C

������������������

�C
��

C ⊗A C
εC⊗AC
��

C ⊗A C C⊗AεC �� C .

The first of these diagrams is usually referred to as the coassociative law or it is
said that it expresses the coassociativity of the coproduct. The diagrams involving εC
express the counitality of the coproduct. In these diagrams, the obvious isomorphisms
A⊗A C  C  C ⊗A A are suppressed.
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3.2. Coassociativity and the Sweedler–Heyneman notation. The Sweedler–
Heyneman notation allows one to express the action of the coproduct on elements.
Given c ∈ C, one writes

�C(c) =
∑

c(1) ⊗A c(2)
(with an implicit summation; the summation sign reminds about it). The coasso-
ciative law means that∑

c(1) ⊗A c(2)(1) ⊗A c(2)(2) =
∑

c(1)(1) ⊗A c(1)(2) ⊗A c(2),
and therefore one can relabel the Sweedler indices and write

(C ⊗A �C) ◦�C(c) =
∑

c(1) ⊗A c(2) ⊗A c(3).
For a detailed discussion of the Sweedler–Heyneman notation, we refer to [140,
pp. 610–611].

3.3. Morphisms of corings. Let C be an A-coring with coproduct �C and counit
εC , and let D be an A-coring with coproduct �D and counit εD. An A-bimodule
map f : C → D is said to be a morphism of A-corings or an A-coring morphism
provided

�D ◦ f = (f ⊗A f ) ◦�C, εD ◦ f = εC .
In Sweedler’s notation, one thus requires that for all c ∈ C,∑

f(c)(1) ⊗A f(c)(2) =
∑

f(c(1))⊗A f(c(2)), εD(f(c)) = εC(c).

3.4. Coideals. The kernel of a surjective A-coring map p : C → D is called a
coideal in C. Thus, an A-subbimodule K ⊂ C is a coideal if and only if D = C/K is
a coring and p : C → C/K is a coring map. Equivalently, �C(K) ⊆ ker(p ⊗A p)
and εC(K) = 0. If the inclusion K ⊂ C is left and right C-pure (i.e. if it is a
monomorphism after tensoring with C over A), the former condition is equivalent
to �C(K) = C ⊗A K +K ⊗A C.
3.5. Corings and comonads. For an A-bimodule C, the following statements are
equivalent:

(a) C is an A-coring with comultiplication �C and counit εC .
(b) The functor −⊗A C :MA →MA is a comonad with comultiplication δ such

that δA = �C and counit σ such that σA = εC .
(c) The functor C ⊗A − : AM→ AM is a comonad with comultiplication δ such

that δA = �C and counit σ such that σA = εC .

Sketch of proof. If �C is a comultiplication for a coring C, the comultiplication δ for
− ⊗A C (resp. C ⊗A −) is given by δM = M ⊗A �C (resp. δM = �C ⊗A M). If
εC is the counit for C, then the counit σ for the comonad − ⊗A C (resp. C ⊗A −) is
σM = M ⊗A εC (resp. σM = εC ⊗A M). ��
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3.6. The base algebra extension coring. LetD be aB-coring and let j : B→ A be
an algebramap.ThusA is aB-bimodule by bab′ =j(b)aj(b′). Then,C = A⊗BD⊗BA
is an A-coring with the coproduct

�C : A⊗B D ⊗B A→ C ⊗A C  A⊗B D ⊗B A⊗B D ⊗B A,
a⊗B d ⊗B a′ 
→

∑
a⊗B d(1) ⊗B 1A ⊗B d(2) ⊗B a′,

and counit εC : A⊗B D ⊗B A→ A, a⊗B d ⊗B a′ 
→ aj(εD(d))a′.

3.7. The category of corings. Corings over different rings can be grouped in the
category of corings Crg. Objects in Crg are pairs (C, A), where A is a k-algebra and
C is an A-coring. Amorphism between corings (C, A) and (D, B) (cf. [101]) is a pair
of maps (γ, α) satisfying the following conditions:

(1) α : A→ B is an algebra map. Thus one can view D as an A-bimodule via α.
Explicitly, ada′ = α(a)dα(a′) for all a, a′ ∈ A and d ∈ D.

(2) γ : C → D is an A-bimodule map such that the induced map,

B⊗A C ⊗A B→ D, b⊗A c⊗A b′ 
→ bγ(c)b′,

is a morphism of B-corings, where B⊗A C⊗A B is the base algebra extension
of C; see 3.6.

3.2. Examples

In this section, we list a number of examples of corings, in particular those which
appeared in the literature in recent years and which are related to other fields of
algebra.

3.8. Coalgebras. If A is a commutative algebra and C is an A-module (i.e. both the
left and right A-multiplications coincide, i.e. ac = ca, for all a ∈ A and c ∈ C),
then an A-coring C is called a coalgebra. Thus any k-coalgebra is a k-coring (but not
every k-coring is a k-coalgebra). Whatever can be said about a coring, can also be
said about a k-coalgebra.

3.9.The trivialA-coring. An algebraA is itself anA-coring with both the coproduct
and counit given by the identity map A.

3.10. The Sweedler coring [178]. Given an algebra map j : B → A, one defines
the canonical Sweedler coring as follows. First, one viewsA as a B-bimodule via the
algebra map j, i.e. bab′ = j(b)aj(b′), for all a ∈ A and b, b′ ∈ B. Then, one forms the
A-bimodule C = A⊗B A, with theA-multiplications a(a′ ⊗B a′′)a′′′ = aa′ ⊗B a′′a′′′.
The coproduct is defined by

�C : C → C ⊗A C  A⊗B A⊗B A, a⊗B a′ 
→ a⊗B 1A ⊗B a′,
and the counit is εC : C → A, a⊗B a′ 
→ aa′.
Even if both A and B are commutative algebras, the associated Sweedler coring

need not be anA-coalgebra. The Sweedler coring can be understood as a base algebra
extension coring 3.6, where D = B is a trivial coring.
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3.11. Comatrix corings [92]. Given algebras B and A, let P be a (B,A)-bimodule
that is finitely generated and projective as a right A-module. Let ei ∈ P and πi ∈
P∗ = HomA(P,A) be a finite dual basis for P . Write e = ∑

i ei ⊗A πi for the
dual basis (canonical) element. The dual module P∗ is an (A,B)-bimodule with
multiplications (afb)(x) = af(bx), for all a ∈ A, b ∈ B, x ∈ P and f ∈ P∗. Thus
C = P∗ ⊗B P is an A-bimodule, a(f ⊗B x)a′ = af ⊗B xa′. Similarly, P ⊗A P∗ is
a B-bimodule, and for all b ∈ B, be = eb. C is an A-coring with the coproduct and
counit,

�C : P∗ ⊗B P → P∗ ⊗B P ⊗A P∗ ⊗B P, x⊗B f 
→ x⊗B e⊗B f,
and εC : P∗ ⊗B P → A, f ⊗B x 
→ f(x). The coring C is called a (finite) comatrix
coring associated to a (B,A)-bimodule P .
One way of understanding a comatrix coring is to observe that since P is a finitely

generated projective right A-module, for all right A-modules N, HomA(P,N) 
N ⊗A P∗. Hence − ⊗B P : MB → MA is a left adjoint of − ⊗A P∗ : MA → MB

(this is the hom-tensor adjunction 2.9), with the unit given by the dual basis element
e and the counit given by the evaluation map. Thus−⊗A P∗ ⊗B P :MA→MA is a
comonad (see 2.12), and therefore, by 3.5, P∗ ⊗B P is an A-coring with the structure
given above.
In case of an algebra map B → A, A is a (B,A)-bimodule that is (obviously)

finitely generated and projective as anA-module.The dualmoduleA∗ can be naturally
identified with A. In this way, one can understand the Sweedler coring as a (finite)
comatrix coring associated to A.

3.12. Infinite comatrix corings I [93]. Let A be a (unital) k-algebra, and let P be
a set of finitely generated and projective right A-modules. For any P ∈ P , write
eP = ∑

i e
P
i ⊗A πPi for the dual basis element of P . Set M = ⊕

P∈P P and let{uP : M → M | P ∈ P} be the corresponding set of orthogonal idempotents. For a
subalgebra T of the endomorphism algebra EndA(M), define B =∑

P,Q∈P uPTuQ.
Then B is a firm (nonunital) algebra andM is a (B,A)-bimodule. Define an (A,B)-
bimodule

M† =
⊕
P∈P

HomA(P,A).

C = M† ⊗B M is an A-coring with the coproduct and counit determined by

�C(f ⊗B x) = f ⊗B eP ⊗B x, εC(f ⊗B x) = f(x),
for all f ∈ HomA(P,A) and x ∈ P . A construction of C from colimits is described in
[58]. If P is a one-element or finite set, then C is a finite comatrix coring as defined
in 3.11.

3.13. Comatrix coring contexts [45, 103]. Let A be a unital algebra, and let B be
a nonunital algebra that is firm2 or regular in the sense that the multiplication map

2 The terminologies firm ring and firm module are taken from [149].
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B ⊗B B → B is an isomorphism (of left or right B-modules). A comatrix coring
context consists of

(i) an (A,B)-bimodule N, which is firm as a right B-module in the sense that
the product map N ⊗B B→ N is an isomorphism of right B-modules;

(ii) a (B,A)-bimoduleM, which is firm as a left B-module in the sense that the
product map B⊗B M → M is an isomorphism of left B-modules;

(iii) a pair of A- resp. B-bimodule maps

σ : N ⊗B M → A, τ : B→ M ⊗A N,
such that the following diagrams

N ⊗BM ⊗AN σ⊗AN �� A⊗AN

��

M ⊗AN ⊗BM
M⊗Aσ

��

B⊗BMτ⊗BM




��

N ⊗B B
N⊗Bτ

��

 �� N M ⊗A A  �� M
,

commute.Acomatrix coring context is denoted by (A,B,N,M, σ, τ). By [189, Theo-
rem 2.51], the existence of a comatrix coring context (A,B,N,M, σ, τ) is equivalent
to the statement that −⊗B M :MB →MA and −⊗A N :MA →MB is an adjoint
pair of functors between the categories of firm right modules.
In caseB is a unital algebra (and then, by convention,M,N are unital B-modules),

a comatrix coring context exists if and only ifM is finitely generated and projective as
a rightA-module. ThemoduleN can be identified with the dual moduleM∗.With this
identification, σ is the evaluation map and τ is the map b 
→ be, where e ∈ M⊗AM∗
is the dual basis element forM.

3.14. Corings from comatrix contexts [45,103]. Let (A,B,N,M, σ, τ) be a coma-
trix coring context. Write ∇N : N → N ⊗B B for the inverse of the product map
N ⊗B B → N and ∇M : M → B ⊗B M for the inverse of the product map
B⊗BM → M. Then theA-bimodule C = N⊗BM is anA-coring with the coproduct

�C = (N ⊗B τ ⊗B M) ◦ (∇N ⊗B M) = (N ⊗B τ ⊗B M) ◦ (N ⊗B ∇M)
and counit εC = σ. This is a consequence of the fact that −⊗B M :MB →MA and
−⊗A N :MA→MB are an adjoint pair (compare the discussion in 3.11).
In case of a unital ring B, the coring C constructed here is isomorphic to a (finite)

comatrix coring 3.11.

3.15. Infinite comatrix corings II [103]. Let A and B be (unital) k-algebras. Con-
sider an (A,B)-bimodule N and a (B,A)-bimodule M. Let σ : N ⊗B M → A be
an A-bimodule map so that M ⊗A N can be made into a nonunital k-algebra with
product

M ⊗A σ ⊗A N : M ⊗A N ⊗B M ⊗A N → M ⊗A N.
Let R be a firm ring and suppose that there exists a (nonunital) algebra map τ : R→
M⊗AN. ThenM is a leftR-module with multiplication rm = (M⊗A σ)(τ(r)⊗Bm)
and N is a right R-module with multiplication nr = (σ ⊗A N)(n ⊗B τ(r)). If M is
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a firm left R-module (with the isomorphism denoted by ∇M : M → R⊗R M), then
C = N ⊗R M is an A-coring with the counit εC(n ⊗R m) = σ(n ⊗B m) and the
coproduct

�C : N⊗RM → N⊗RM⊗AN⊗RM, �C = (N⊗Rτ⊗RM)◦(N⊗R∇M).
The coring C is known as an infinite comatrix coring. C is isomorphic to the coring
constructed from the comatrix context (A,R,N ⊗R R,M, σ, τ).
In the setup of 3.12, an infinite comatrix coring is constructed by taking N =

HomA(M,A); see [103, Section 6] for a detailed discussion of the relationship of
infinite comatrix corings to the corings described in 3.12.

3.16. Corings and semifree differential graded algebras [162]. A differential
(non-negatively) graded algebra is an N ∪ {0}-graded k-algebra � = ⊕∞

n=0�n
together with a k-linear degree one operation d : �• → �•+1 such that d ◦ d = 0
and, for all elementsω′ and all degreen elementsω, d(ωω′) = d(ω)ω′+(−1)nωd(ω′).
The degree zero part �0 is a subalgebra of �; denote it by A. �1 is an A-bimodule.
� is said to be semifree, provided �n = �n−1 ⊗A �1, for all n = 1, 2, . . ..
Starting with a semifree differential graded algebra � (A = �0), define

C = Ag⊕�1,
where g is an indeterminate. In other words C is a direct sum of A and �1 as a left
A-module. A compatible right A-module structure on C is defined by

(ag+ ω)a′ = aa′g+ ada′ + ωa′,
for all a, a′ ∈ A, ω ∈ �1. C is an A-coring with the coproduct specified by

�C(ag) = ag⊗A g, �C(ω) = g⊗A ω + ω ⊗A g− d(ω),
and the counit εC(ag+ ω) = a, for all a ∈ A and ω ∈ �1.
3.17. Frobenius extensions. The studies of Frobenius extensions of noncommuta-
tive rings were initiated in [119]. According to [120, 143], an algebra map A → B

is called a Frobenius extension (of the first kind) if and only if B is a finitely gen-
erated projective right A-module and B  HomA(B,A) as (A,B)-bimodules. The
(A,B)-bimodule structure of HomA(B,A) is given by (afb)(b′) = af(bb′), for all
a ∈ A, b, b′ ∈ B and f ∈ HomA(B,A). The statement that A → B is a Frobenius
extension is equivalent to the existence of an A-bimodule map E : B → A and an
element β =∑

i bi ⊗ b̄i ∈ B⊗A B such that, for all b ∈ B,∑
i
E(bbi)b̄

i =
∑

i
biE(b̄

ib) = b.
E is called a Frobenius homomorphism and β is known as a Frobenius element.
One can easily show that β ∈ (B ⊗A B)B := {x ∈ B ⊗A B | for all b ∈ B,

bx = xb}.
3.18. Frobenius extensions and corings [116, Proposition 4.6]. An algebra map
A→ B is a Frobenius extension if and only ifB is anA-coring such that the coproduct
is a B-bimodule map.
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Sketch of proof. If A→ B is a Frobenius extension with a Frobenius homomorphism
E and a Frobenius element β, then B is an A-coring with the counit E and the
B-bimodule coproduct �B : B → B ⊗A B, b 
→ bβ = βb. Conversely, if B is an
A-coring with aB-bimodule coproduct�B, then β = �B(1B) is a Frobenius element
and the counit of B is a Frobenius homomorphism. ��
This description of Frobenius extensions as corings generalizes the description of

Frobenius algebras in terms of coalgebras [1]. The fact that a Frobenius extension
induces a coring has been proved already in [191, Proposition 1.8.3].

3.19. Depth-2 extensions [118]. An extension B ⊆ R of k-algebras is called a
depth-2 extension if R ⊗B R is a direct summand in a finite direct sum of copies
of R both as an (R,B)-bimodule and as a (B,R) bimodule. By [118, Lemma 3.7],
this is equivalent to the existence of right and left D2 quasi-bases. A right D2 quasi-
basis consists of finite sets {γj}j∈J in BEndB(R) and {∑m∈Mj

rjm ⊗B r′jm}j∈J in
(R⊗B R)B = {x ∈ R⊗B R | ∀b ∈ B, bx = xb} such that∑

j∈J,m∈Mj

rγj(r
′)cjm ⊗R c′jm = r ⊗B r′,

for all r ⊗B r′ ∈ R⊗B R. A left D2 quasi-basis is defined symmetrically.
Given a depth-2 extension B ⊆ R, define A = {a ∈ R | ∀b ∈ B, ab = ba}. Then

C = BEndB(R) is an A-coring with A-multiplications aca′ : r 
→ ac(r)a′, counit
εC(c) = c(1R), and coproduct

�C(c) =
∑
j∈J

γj ⊗A
∑
m∈Mj

rjmc(r
′j
m−).

Furthermore, D = (R⊗B R)B is an A-coring with coproduct and counit obtained by
restricting the structure maps of the Sweedler coring R⊗B R.
3.20. Entwining structures [49]. A (right–right) entwining structure (over k)
(A,C)ψ consists of a k-algebra (A,μA, 1A), a k-coalgebra (C,�C, εC), and a
k-module map ψ : C⊗A → A⊗C, rendering commutative the following bow-tie
diagram:

C ⊗ A⊗ A

ψ⊗A

��		
		

		
		

		
		

		
		

		 C⊗μA
��









 C ⊗ C ⊗ A

C⊗ψ

�
��

��
��

��
��

��
��

��
�

C ⊗ A

�C⊗A
������������

εC⊗A

��













ψ

��

A⊗ C ⊗ A

A⊗ψ

�
��

��
��

��
��

��
��

��
� C

C⊗1A
��������������

1A⊗C ��











 A C ⊗ A⊗ C

ψ⊗C

��		
		

		
		

		
		

		
		

		

A⊗ C
A⊗εC

��������������

A⊗�C ��











A⊗ A⊗ C
μA⊗C

������������
A⊗ C ⊗ C
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The map ψ is known as an entwining map. C and A are said to be entwined by ψ.

An entwining structure is a special case of a mixed distributive law between a
comonad and a monad; see [18]. The comonad is −⊗ C and the monad is −⊗ A.
3.21. Corings associated to entwining structures [37, Proposition 2.2]. Let A be
a k-algebra and C be a k-coalgebra with coproduct �C and counit εC.
For an entwining structure (A,C)ψ, view A⊗ C as an (A,A)-bimodule with the

left action a(a′ ⊗ c) = aa′ ⊗ c and the right action (a′ ⊗ c)a = a′ψ(c ⊗ a), for all
a, a′ ∈ A, c ∈ C. Then C = A⊗ C is an A-coring with the coproduct

�C : C → C ⊗A C  A⊗ C ⊗ C, �C = A⊗�C,
and the counit εC = A⊗ εC.
Conversely, if A⊗C is anA-coring with the coproduct, counit, and left A-module

structure above, then (A,C)ψ is an entwining structure, whereψ : c⊗a 
→ (1⊗c)a.
3.22. Weak entwining structures [56]. A (right–right) weak entwining structure
(over k) is a triple (A,C,ψ) consisting of a k-algebra (A,μA, 1A), a k-coalgebra
(C,�C, εC), and a k-module map ψ : C⊗A→ A⊗C, rendering commutative the
following bow-tie diagram:

C

�

��
C⊗1A

������������� C ⊗ A⊗ A
ψ⊗A

�������������

C ⊗ C

C⊗1A⊗C

��

C ⊗ A⊗ AC⊗μA ��

ψ⊗A
��

C ⊗ A

ψ

��

�C⊗A��

C⊗1A⊗A
������������

C ⊗ C ⊗ A
C⊗ψ
��

A⊗ C ⊗ A

A⊗εC⊗A

��

A⊗ C ⊗ A
A⊗ψ

��

C ⊗ A⊗ C
ψ⊗C
��

C ⊗ A⊗ C

ψ⊗C ������������� A⊗ A⊗ CμA⊗C �� A⊗ C A⊗�C��

A⊗εC
������������� A⊗ C ⊗ C A⊗ A

μA

��

A⊗ C ⊗ C
A⊗εC⊗C

������������
A .

One easily checks that any entwining structure is a weak entwining structure.

3.23. Corings associated to weak entwining structures [37, Proposition 2.3]. Let
A be an algebra and C be a coalgebra with coproduct �C and counit εC.
Given a weak entwining structure (A,C,ψ), define

p : A⊗ C→ A⊗ C, p = (μA ⊗ C) ◦ (A⊗ ψ) ◦ (A⊗ C ⊗ 1A),
and

C = Im p =
{∑

i

aiψ(ci ⊗ 1A) |
∑
i

ai ⊗ ci ∈ A⊗ C
}
.

C is an A-bimodule with the A-multiplications a′
(∑

i ai ⊗ ci
)
a′′ = ∑

i a
′aiψ(ci ⊗

a′′). Furthermore, C is an A-coring with coproduct �C = (A ⊗ �C)|C and counit
εC = (A⊗ εC)|C .
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3.3. Duality

The notion of an A-coring is dual to that of an A-ring or an algebra over an algebra
or an algebra extension. In this section, we explain this duality.

3.24. Rings over algebras. Given an algebra A, an A-ring is an A-bimodule B
together with A-bimodule maps μB : B ⊗A B → B and ιB : A → B rendering
commutative the following diagrams:

B⊗A B⊗A B μB⊗AB ��

B⊗AμB
��

B⊗A B
μB

��
B⊗A B μB �� B ,

B
B⊗AιB ��

B

�������������������

ιB⊗AB
��

B⊗A B
μB

��
B⊗A B μB �� B

ThemapμB is called a product and ιB is called a unit. The product mapμB composed
with the canonical surjection B⊗ B→ B⊗A B induces a k-algebra structure on B.
The unit for the k-algebra B is ιB(1A). Thus the notion of an A-ring is equivalent to
the existence of an algebra map ιB : A→ B.

3.25. Dual rings [178, Proposition 3.2]. Let C be an A-coring.
(1) C∗ = HomA(C, A) is an algebra with unit εC and the product

f ∗r g : C �C−→ C⊗AC f⊗AC−→ C g−→ A, f ∗r g(c) =
∑

g(f(c(1))c(2)),

and there is an antialgebra map ιR : A → C∗, a 
→ εC(a−). Thus C∗ is an
Aop-ring.

(2) ∗C = AHom(C, A) is an algebra with unit εC and the product

f ∗l g : C �C−→ C⊗AC C⊗Ag−→ C f−→ A, f ∗l g(c) =
∑

f(c(1)g(c(2))),

and there is an antialgebra map ιL : A → ∗C, a 
→ εC(−a). Thus ∗C is an
Aop-ring.

(3) ∗C∗ = AHomA(C, A) is an algebra with unit εC and the product

f ∗ g(c) =
∑

f(c(1))g(c(2)),

and there is a ring morphism Z(A) → Z(∗C∗), a 
→ εC(a−) = εC(−a) ,
where Z(A) is the center of A and Z(∗C∗) is the center of ∗C∗. Thus ∗C∗ is a
Z(A)-algebra.

3.26. Dual rings as natural endomorphism rings.

(1) The algebra C∗ in 3.25 is isomorphic to the algebra of natural endomorphisms
of the forgetful functor A(−) : CM→ AM, with the product given by ϕϕ′ =
ϕ ◦ ϕ′.

(2) The algebra ∗C in 3.25 is isomorphic to the algebra of natural endomorphisms
of the forgetful functor (−)A :MC →MA.
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3.27.Monoidal functors andB|A-corings [184]. Corings and dual rings are closely
related to monoidal functors between bimodule categories; see 2.13 for the definition
of a monoidal category and a monoidal functor.
Let A and B be k-algebras. Following [184, Definition 3.5], a B|A-coring is a pair

(C, ι), where C is an A-coring and ι : B → ∗C∗ = AHomA(C, A) is a morphism of
algebras. Here ∗C∗ is an algebra as in 3.25(3).
As explained in [184, Theorem 3.6], there is a one-to-one correspondence between

B|A-corings and representable monoidal functors between categories of bimodules
(AMA,⊗A,A) → (BMB,⊗B, B), that is, monoidal functors (F, F2, F0) with F :
AMA → BMB, of the formM → AHomA(C,M), where C is an (Ae, Be)-bimodule
(Ae = A⊗Aop is the enveloping algebra ofA, andBe is the enveloping algebra ofB).
Explicitly, given such an (F, F2, F0), the coproduct for C is�C = F2C,C(idC⊗B idC),
the counit is εC = F0(1B), and the map ι : B→ ∗C∗ is ι = F0.
3.28. Dual ring of the Sweedler coring. Let B→ A be an algebra map and let C be
the associated Sweedler coring 3.10. Using the isomorphism HomA(A⊗B A,A) 
EndB(A), the right dual ring C∗ is identified with the opposite of the endomorphism
ring EndB(A). Similarly, ∗C is identified with the endomorphism ring BEnd(A) (both
endomorphism rings with product given by the composition).

3.29. Dual ring of the comatrix coring. Let P be a (B,A)-bimodule such that P
is finitely generated and projective as a right A-module, and let C = P∗ ⊗B P be the
associated comatrix coring 3.11. Using the isomorphisms

AHom(P
∗ ⊗B P,A)  BHom(P, AHom(P

∗, A))  BEnd(P),

the left dual ring ∗C is identified with the endomorphism ring BEnd(P). Similarly, C∗
is identified with the opposite of the endomorphism ring EndB(P∗).

3.30. The ψ-twisted convolution algebra.
Let (A,C)ψ be an entwining structure and let C = A ⊗ C be the associated

A-coring; see 3.20, 3.21. With the isomorphism

AHom(A⊗ C,A)  Homk(C,A),

the algebra ∗C can be identified with the k-module of k-linear maps C→ A with the
product

f ∗ψ g(c) =
∑
ψ

g(c(2))ψf(c(1)
ψ),

where ψ(c ⊗ a) = ∑
ψ aψ ⊗ cψ is the notation for the entwining map. The algebra

Homk(C,A) with the above product (and unit 1A ◦ εC) is known as a ψ-twisted
convolution algebra.

3.31. Dual coring theorem [178, Theorem 3.7]. Let φ : A→ S be an antialgebra
map. View S as an A-bimodule with multiplications given by asb := φ(b)sφ(a), for
all s ∈ S, a, b ∈ A. Then
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(1) If S is a finitely generated projective right A-module, then there is a unique
A-coring structure on S∗ = HomA(S,A) whereby the evaluation map

β : S → ∗(S∗) = AHom(HomA(S,A),A), s 
→ [σ 
→ σ(s)],
is an algebra isomorphism. Here, ∗(S∗) has an algebra structure as in 3.25.
Furthermore, β ◦ φ = ιL, where ιL is as in 3.25(2).

(2) If S is a finitely generated projective left A-module, then there is a unique
A-coring structure on ∗S = AHom(S,A) whereby the evaluation map

β : S → (∗S)∗ = HomA(AHom(S,A),A), s 
→ [σ 
→ σ(s)],
is an algebra isomorphism. Here, (∗S)∗ has an algebra structure as in 3.25.
Furthermore, β ◦ φ = ιR, where ιR is as in 3.25(1).

Sketch of proof. The coproduct in C = S∗ is defined as the unique map �C : C →
C⊗AC such that, for all s⊗A s′ ∈ S⊗AS and c ∈ C,�C(c)(s⊗As′) = c(s′s).Explicitly,
if {si ∈ S, ci ∈ S∗} is a finite dual basis for S, then �C(c) = ∑

i c(s
i−)⊗A ci. The

counit of C is defined as εC : c 
→ c(1S). ��

4. Comodules

Modules represent rings. Similarly, to represent corings one studies comodules. In
this section, we describe the main properties and examples of comodules.

4.1. Definition

Here, we give the definition and basic properties of comodules.

4.1. Comodules of a coring. Let C be an A-coring and let D be a B-coring.

(1) A right C-comodule is a pair (M, �M), where M is a right A-module, and
�M : M → M ⊗A C is a right A-module map making the following diagrams

M
�M ��

�M

��

M ⊗A C
M⊗A�C
��

M ⊗A C �M⊗AC�� M ⊗A C ⊗A C ,

M
�M ��

 ���
�������� M ⊗A C

M⊗AεC
��

M ⊗A A
commute. The map �M is called a right coaction. A morphism of right
C-comodules (or a right C-colinear map) (M, �M) → (N, �N) is a right
A-module map f : M → N such that

(f ⊗A C) ◦ �M = �N ◦ f.
The category with objects right C-comodules and morphisms right C-colinear
maps is denoted byMC ; k-modules of morphisms in this category are denoted
by HomC(M,N).
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(2) A left C-comodule is a pair (M,M�), where M is a left A-module, and M� :
M → C ⊗A M is a left A-module map making the following diagrams

M
M� ��

M�

��

C ⊗A M
�C⊗AM
��

C ⊗A M C⊗AM��� C ⊗A C ⊗A M ,

M
M� ��

 ���
�������� C ⊗A M

εC⊗AM
��

A⊗A M
commute.ThemapM� is called a left coaction.Amorphismof leftC-comodules
(or a left C-colinearmap) (M,M�)→ (N, N�) is a leftA-modulemap f : M →
N such that

(C ⊗A f ) ◦ M� = N� ◦ f.
The category with objects left C-comodules and morphisms left C-colinear
maps is denoted by CM; k-modules of morphisms in this category are denoted
by CHom(M,N).

(3) A (C,D)-bicomodule is a triple (M, �M,M�), whereM is an (A,B)-bimodule,
(M, �M) is a right D-comodule, and (M,M�) is a left C-comodule such that
the right coaction �M is left C-colinear or, equivalently, the left coaction M� is
right D-colinear. Morphisms or (C,D)-bicolinear maps are (A,B)-bimodule
maps, which are at the same time left C-colinear and right D-colinear. The
category of (C,D)-bicomodules is denoted by CMD; morphisms are denoted
by CHomD(M,N).
In case D = C one simply talks about C-bicomodules.

Whatever is said about right comodules can be equivalently said about left comod-
ules (this is known as a left-right symmetry). Thus, in this chapter, we restrict our
attention mainly to right comodules.

4.2. The Sweedler–Heyneman notation. For a right C-comodule (M, �M), the
coaction on elements m ∈ M is denoted by the Sweedler–Heyneman notation:

�M(m) =
∑

m(0) ⊗A m(1) ∈ M ⊗A C.

Similar to coproducts, the coassociative law implies that∑
m(0) ⊗A m(1)(1) ⊗A m(1)(2) =

∑
m(0)(0) ⊗A m(1)(1) ⊗A m(1),

and therefore one can relabel the Sweedler–Heyneman indices and write

(M⊗A �C) ◦ �M(m) = (�M ⊗A C) ◦ �M(m) =
∑

m(0)⊗A m(1)⊗A m(2).
4.3. The image of the coaction. If (M, �M) is a right C-comodule, then (M ⊗A
C,M ⊗A �C) is also a right C-comodule. Furthermore, �M is a C-comodule map.
Since�M has a retractionM⊗AεC (i.e. (M⊗AεC)◦�M = M),�M is amonomorphism
of right C-comodules. Thus

(M, �M)  (�M(M),M ⊗A �C |�M(M))
as C-comodules.
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4.4. Factorizablemorphisms of comodules. Let (M, �M), (N, �N), (P, �P) be right
C-comodules and let f : M → N, g : N → P be A-module maps such that g ◦ f is
a comodule morphism. If f is colinear, then

�P ◦ g ◦ f = (g ◦ f ⊗A C) ◦ �M = (g⊗A C) ◦ �N ◦ f.
Thus if f is an epimorphism of comodules, then g is a right C-comodule map. In
particular, if a C-colinear map f has a k-linear (hence A-linear) inverse f−1, then
f−1 is necessarily a C-colinear map (i.e. f is an isomorphism of comodules).
4.5. The regular bicomodule. (C,�C,�C) is a C-bicomodule, that is, C can be
viewed as a right C-comodule and as a left C-comodule with coaction given by the
coproduct �C . This is known as a regular C-comodule.
4.6. Comodules finitely generated and projective as modules. Let (P, �P) be
a right C-comodule. Assume that P is finitely generated and projective as a right
A-module, and let {ei ∈ P, πi ∈ P∗ = HomA(P,A)} be its finite dual basis. View
P∗ as a left A-module with the multiplication (af )(x) = af(x). Then P∗ is a left
C-comodule with the coaction

P∗�(f ) =
∑
i

f(ei(0))e
i
(1) ⊗A πi.

4.7. Comodules as coalgebras. In view of 3.5, C is a coring if and only if−⊗A C :
MA → MA is a comonad. The category of − ⊗A C-coalgebras is isomorphic to
the category of right C-comodules. Similarly, the category of left C-comodules is
isomorphic to the category of coalgebras of the comonad C ⊗A − : AM→ AM.

4.8. The defining adjunctions [106, Proposition 3.1]. Since anA-coring C is given
by comonads, whose coalgebras coincide with comodules, with every A-coring C,
one can associate two pairs of adjoint functors between categories of A-modules and
C-comodules.
(1) The forgetful functor (−)A :MC →MA is a left adjoint of the tensor functor

−⊗A C :MA→MC, N 
→ (N ⊗A C, N ⊗A �C).

The unit and the counit of this adjunction are

η(M,�M) = �M : M → M ⊗A C, ψN = N ⊗A εC : N ⊗A C → N,

for all right C-comodules (M, �M) and right A-modules N. Consequently,
there is an isomorphism (natural in N ∈MA, (M, �M) ∈MC),

�M,N : HomA(M,N)→ HomC(M,N ⊗A C), �M,N(g) = (g⊗AC)◦�M.
The inverse of �M,N is �

−1
M,N(f ) = (N ⊗A εC) ◦ f .

(2) The forgetful functor A(−) : CM→ AM is a left adjoint of the tensor functor

C ⊗A − : AM→ CM, N 
→ (C ⊗A N,�C ⊗A N).
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The unit and the counit of this adjunction are

η(M,M�) = M� : M → C ⊗A M, ψN = εC ⊗A N : C ⊗A N → N,

for all left C-comodules (M,M�) and left A-modules N. Consequently, there
is an isomorphism (natural in N ∈ AM, (M,M�) ∈ CM),

�M,N : AHom(M,N)→ CHom(M, C ⊗A N), �M,N(g) = (C⊗Ag)◦M�.
The inverse of �M,N is �

−1
M,N(f ) = (εC ⊗A N) ◦ f .

4.9. Coinvariants. Let (M, �M) be a right C-comodule. Given any right C-comodule
(N, �N), the k-module HomC(M,N) is called the coinvariants of N with respect to
M orM-coinvariants of N.
TheM-coinvariants or, simply, coinvariants ofM are thus equal to the endomor-

phism ring

S = HomC(M,M) = EndC(M).

The product in S is given by the composition of maps, that is, ss′(m) = s(s′(m)),
for all s, s′ ∈ S, m ∈ M. The endomorphism ring S acts on M from the left by the
evaluation, that is, for all s ∈ S and m ∈ M, sm := s(m). By the construction of S,
the coaction �M is left S-linear. Obviously, S is a subalgebra of the right A-module
endomorphism ring EndA(M).

4.10. The coinvariants of the regular comodule. Let (M, �M) be a right
C-comodule. In viewof the hom-tensor relations 4.8, theM-coinvariants of the regular
C-comodule (C,�C) are isomorphic to the right dual moduleM∗, that is,

HomC(M, C)  HomC(M,A⊗A C)  HomA(M,A) = M∗.

In particular, the endomorphisms of the right regular C-comodule (C,�C) are
isomorphic to the right dual module C∗. When the algebra structure of EndC(C) is
ported through this isomorphism to C∗, it coincideswith the opposite algebra structure
of the dual ring C∗ as described in 3.25.
4.11. The coinvariants adjunction. For a right C-comodule (M, �M), let S =
EndC(M) be the ring of M-coinvariants of M; see 4.9. For any right C-comodule
(N, �N), the M-coinvariants of N are a right S-module with the multiplication
fs := f ◦ s. Thus theM-coinvariants define a functor

HomC(M,−) :MC →MS.

Since this is the hom-functor, it has the left adjoint, the tensor functor

−⊗S M :MS →MC, X 
→ (X⊗S M,X⊗S �M).
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Explicitly, the counit and unit of adjunction are

ψN : HomC(M,N)⊗S M → N, f ⊗S m 
→ f(m),

ηX : X→ HomC(M,X⊗S M), x 
→ [m 
→ x⊗S m];

see 2.9. In other words, for all (N, �N) ∈MC and X ∈MS , there is an isomorphism
[natural in (N, N�) and X]

HomC(X⊗S M,N)→ HomS(X,Hom
C(M,N)), δ 
→ [x 
→ δ(x⊗S −)] ,

with the inverse ϕ 
→ [x⊗S m 
→ ϕ(x)(m)].
This adjoint pair of functors has been one of the main objects of studies in the

coring theory in recent years. We refer to it as the coinvariants adjunction.

4.12. Group-like elements. The (regular) right (or left) A-module A is a right (or
left) comodule of an A-coring if and only if there exists an element g ∈ C such that

�C(g) = g⊗A g, εC(g) = 1A.
An element g satisfying the above properties is called a group-like element. Given a
group-like element g, a right C-coaction on A is defined by

�A : A→ A⊗A C  C, a 
→ ga,

while a left C-coaction is A� : A→ C ⊗A A  C, a 
→ ag.

For example, the Sweedler coring C = A ⊗B A associated to an algebra
map B→ A (cf. 3.10) has a group-like element 1A ⊗B 1A. Thus, A is a right
C-comodule with the coaction a 
→ 1A⊗B a and a left C-comodule with the coaction
a 
→ a⊗B 1A.
4.13. Group-like elements and differential graded algebras. Any group-like ele-
ment g in an A-coring C gives rise to a semifree differential graded algebra. This
construction provides one with the inverse to the construction of corings in 3.16.
Since a coring associated to a semifree differential graded algebra has a group-like
element (the “indeterminate” g in 3.16), this establishes a bijective correspondence
between corings with a group-like element and semifree differential graded algebras
[162].
Given anA-coring C with a group-like element g, one defines a semifree differential

graded algebra � as follows:

�1 = ker εC, �n+1 = �1 ⊗A �n,
and the multiplication is given by the tensor product [i.e. � is the tensor algebra
� = TA(ker εC)]. The differential is defined by

d(a) = ga− ag,
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for all a ∈ A, and for all c1 ⊗A · · · ⊗A cn ∈ (ker εC)⊗An,
d(c1 ⊗A · · · ⊗A cn) = g⊗A c1 ⊗A · · · ⊗A cn + (−1)n+1c1 ⊗A · · · ⊗A cn ⊗Ag

+
n∑
i=1
(−1)ic1 ⊗A · · · ⊗A ci−1 ⊗A �C(ci)⊗A ci+1 ⊗A · · · ⊗A cn.

The differential algebra associated to the Sweedler coring A⊗B A and a group-like
element 1A⊗B1A coincides with the algebra ofB-relative universal differential forms
on A (cf. [80]).

4.14. The g-coinvariants of A. Suppose that A is a right (or left) C-comodule with
the coaction given by a group-like element g. Let (M, �M) be a right C-comodule.
Then the isomorphism of k-modules

M  HomA(A,M), m 
→ [a 
→ ma],
allows one to identify A-coinvariants ofM with the k-module

Mg = {m ∈ M | �M(m) = m⊗A g}.
Mg is called the g-coinvariants of M. In particular, the g-coinvariants of A are the
subalgebra Ag of A defined by Ag = {b ∈ A | gb = bg}. As Ag is isomorphic to
EndC(A) andMg is isomorphic to HomC(A,M), the g-coinvariantsMg form a right
Ag-module.M is a left Ag-module and �M is a left Ag-linear map.

4.15. The cotensor product. Let (M, �M) be a right comodule and let (N, N�) be
a left comodule over an A-coring C. The cotensor product M�CN is the k-module
defined by the equalizer

M�CN �� M ⊗A N
�M⊗AN ��

M⊗AN�
�� M ⊗A C ⊗A N .

Put differently,M�CN is the kernel of the k-linearmapωM,N = �M⊗AN−M⊗AN�.
Given a right A-module M ′, left A-module N ′, and module maps f : M → M ′,
g : N → N ′, we write f�Cg for the restriction of f ⊗A g toM�CN. In caseM ′, N ′
are comodules and f , g are comodule maps, f�Cg factors through the canonical
inclusion M ′�CN ′ ⊆ M ′ ⊗A N ′ and hence is considered as a map M�CN →
M ′�CN ′.
If either (M, �M) or (N, N�) is the regular comodule (C,�C), then

M�CC = �M(M)  M, C�CN = N�(N)  N,
with the isomorphisms given byM�CεC and εC�CN, respectively.

4.16.Coinvariants and the cotensorproduct. Take any rightC-comodules (M, �M)
and (N, �N) and assume that M is finitely generated and projective as a right
A-module. Let M∗ = HomA(M,A) be the dual module, and let (M∗, M

∗
�) be the



260 T. Brzeziński

induced left C-comodule as in 4.6. Then the k-module isomorphism

N ⊗A M∗  HomA(M,N), n⊗A f 
→ [m 
→ nf(m)],
restricts to the isomorphism

N�CM∗  HomC(M,N).

Thus, in particular, in case (N, �N) = (M, �M), the coinvariants S = EndC(M) of
M can be identified with the cotensor productM�CM∗.

4.17. The tensor–cotensor relations. In general, if (M, �M) is a right C-comodule
and (N, �N, N�) is a (C,D)-bicomodule, the coactionM⊗A �N onM⊗A N does not
restrict to a coaction inM�CN. It does restrict if themapωM,N = �M⊗AN−M⊗AN�
is D ⊗B D-pure as a right B-module map.
The cotensor product is not an associative operation and it does not commute with

the tensor product. Given algebras A and B and an A-coring C, if (M, �M) is a right
C-comodule, (N, N�) is a (C, B)-bicomodule, and V is a left B-module, then there is
a k-linear map

τM,N,V : (M�CN)⊗B V → M�C(N ⊗B V ),
which is not an isomorphism unless ωM,N = �M ⊗A N −M ⊗A N� is V -pure. Here,
N ⊗B V is a left C-comodule by N�⊗B V . Thus

(M�CN)⊗B V  M�C(N ⊗B V )
if, for example, V is a flat left B-module or (M, �M) is a (C, A)-injective comodule
[see 5.1 for the definition of (C, A)-injectivity].
For a detailed discussion of the cotensor product see, [101] and [53] (including

erratum).
4.18. Coinvariants of a coring morphism [133]. Let φ : D → C be a morphism
of A-corings. Then (D, (D ⊗A φ) ◦ �D, (φ ⊗A D) ◦ �D) is a C-bicomodule. Set
B = CHomC(D, C). B is an algebra with unit φ and product, for all b, b′ ∈ B, d ∈ D,

bb′(d) =
∑

εC(b(d(1)))b′(d(2)) =
∑

b(d(1))εC(b′(d(2))).

The algebra B is called an algebra of coinvariants of the A-coring morphism φ.
Given an A-coring C and a right C-comodule (P, �P) that is finitely generated

projective as a right A-module, consider the comatrix coring D = P∗ ⊗ P ; see 3.11.
Then

φ : D = P∗ ⊗ P → C, f ⊗ x 
→
∑

f(x(0))x(1),

is an A-coring morphism. The induced (by φ) C-bicomodule structure on D comes
out as (D, P∗ ⊗ �P, P∗� ⊗ P), where P∗� is a left C-coaction as in 4.6. Since P is a
finitely generated and projective A-module, AHomA(P∗ ⊗ P,A)  EndA(P). This
restricts to an isomorphism of algebras

CHomC(P∗ ⊗ P, C)  EndC(P),
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(note that CHomC(P∗ ⊗ P, C) ⊆ AHomA(P∗ ⊗ P,A) by the defining adjunction).
Thus, the coinvariants of the A-coring morphism φ : P∗ ⊗ P → C coincide with the
P-coinvariants of P .

4.2. Examples

Here, we describe comodules of examples of corings discussed in Section 3.2. In
this way, we discover objects (and categories) studied in the precoring literature by
different means.

4.19. Comodules of the trivial A-coring. Since both coproduct and counit of the
trivial A-coring A are identity maps to be a right comodule of a trivial A-coring, A
is the same as to be a right A-module. ThusMA =MA and AM = AM.
In particular, as observed in 4.9, given an A-coring C and a right C-comodule

(M, �M), the coaction �M is left linear over the coinvariants S = EndC(M). Viewing
S as a trivial S-coring, we can thus say thatM is an (S, C)-bicomodule.
4.20. Descent data. Let C = A ⊗B A be the Sweedler coring associated to an
algebra map B → A; see 3.10. Right C-comodules are in bijective correspondence
with descent data (cf. [104]). The latter are defined as pairs (M, f ), where M is a
right A-module and f : M → M ⊗B A is a right A-module morphism such that
writing f(m) =∑

i mi ⊗B ai, for any m ∈ M,∑
i

f(mi)⊗B ai =
∑
i

mi ⊗B 1A ⊗B ai,
∑
i

miai = m.

This bijective correspondence is obtained simply by identifyingM ⊗A A⊗B A with
M ⊗B A.
Amorphism of descent data (M, f )→ (M ′, f ′) is a rightA-modulemap φ : M →

M ′ such that f ′ ◦ φ = (φ ⊗B A) ◦ f . The category of descent data is denoted by
Desc(A|B). This category has been introduced in [125] (for commutative rings) and
[74] (for general rings). The identification of right C-comodules with descent data is
compatible with the definitions of morphisms in respective categories. Thus there is
an isomorphism of categoriesMA⊗BA ≡ Desc(A|B); see [37], [68, Section 4.8].
4.21. Comodules in a comatrix coring context. Consider a comatrix coring context
(A,B,N,M, σ, τ) and the associated coring C = N⊗BM; see 3.13, 3.14. Recall that
B is a firm (nonunital) algebra, and write ∇M : M → B ⊗B M for the inverse of
the multiplication map B ⊗B M → M and ∇N : N → N ⊗B B for the inverse
of the multiplication map N ⊗B B → B. Then M is a right C-comodule with the
coaction

�M : M → M ⊗A N ⊗B M, �M = (τ ⊗B M) ◦ ∇M,
and N is a left C-comodule with the coaction

N� : N → N ⊗B M ⊗A N, N� = (N ⊗B τ) ◦ ∇N.
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4.22. Comodules and (finite) comatrix corings. A comatrix A-coring associated
to a (B,A)-bimodule P , finitely generated and projective as a right A-module (cf.
3.11), is a special case of a coring associated to a comatrix coring context. Thus both
P and P∗ are C-comodules, with the right and left coactions, respectively,

�P : P 
→ P ⊗A P∗ ⊗B P, x 
→ e⊗B x,
P∗� : P∗ 
→ P∗ ⊗B P ⊗A P∗, π 
→ π ⊗A e,

where e is the dual basis element.

4.23. Flat connections [38]. Let � = ⊕∞
n=0�n be a semifree differential algebra

with a differential d : �• → �•+1. Set A = �0, and let C = Ag ⊕ �1 be the
associated A-coring; see 3.16. Take a right A-module M. Any k-linear map �M :
M → M ⊗A C = M ⊗A Ag ⊕M ⊗A �1 such that (M ⊗A εC) ◦ �M = M can be
identified with a map ∇ : M → M ⊗A �1 by

�M(m) = m⊗A g+ ∇(m).
The map �M is a right A-module map if and only if, for all m ∈ M,a ∈ A,

∇(ma) = ∇(m)a+md(a).
Amap ∇ : M → M ⊗A �1 satisfying this condition is known as the connection in
M with respect to � (cf. [21, 2.8 Definition], [76]). The map �M is coassociative if
and only if

(∇ ⊗A �1) ◦ ∇ + (M ⊗A d) ◦ ∇ = 0.

The map F := (∇ ⊗A �1) ◦ ∇ + (M ⊗A d) ◦ ∇ is known as a curvature of ∇,
and a connection with vanishing curvature is called a flat connection. Thus, right
C-comodules are in bijective correspondence with modules with flat connections
with respect to �.

4.24. Entwined modules [36] [37, Proposition 2.2]. Let (A,C)ψ be an entwining
structure and let C = A ⊗ C be the associated A-coring; see 3.20, 3.21. Using the
identificationM ⊗A C = M ⊗A A⊗ C  M ⊗ C, one identifies right C-comodules
with triples (M, �M, �M), where (M, �M) is a rightA-module (withA-multiplication
�M : M ⊗ A→ M) and (M, �M) is a right C-comodule such that

M ⊗ A �M⊗A ��

�M

��

M ⊗ C ⊗ A
M⊗ψ

��������������

M ⊗ A⊗ C

�M⊗C��������������

M
�M �� M ⊗ C
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is a commutative diagram.Any such triple (M, �M, �M) is called an entwinedmodule.
A morphism of entwined modules is a right A-linear map, which is also right
C-colinear. Entwined modules and their morphisms form a category denoted by
MC
A(ψ). Again, through the identificationM⊗A C  M⊗C, morphisms of entwined

modules can be identified with right C-colinear maps. HenceMC ≡MC
A(ψ).

4.25.Weak entwinedmodules [56], [37, Proposition 2.3]. Let (A,C,ψ) be aweak
entwining structure, and let C be the associated A-coring; see 3.22, 3.23. By similar
arguments to those in 4.24, one identifies right C-comodules with right weak entwined
modules. The latter are defined as rightA-modules and right C-comodules satisfying
the same compatibility condition as in the diagram in 4.24.

4.3. The category of comodules

In this section, we discuss properties of the category of comodules, and in particular,
we describe how properties of C as an A-module affect the structure of the category
MC .Althoughmany notions appearing in this section are explained in Section 2, some
additional background in category theory might be required to understand some of
the topics discussed here.

4.26. Comodules form a k-linear category. Since every hom-set HomC(M,N) is
a k-module and the composition of morphisms inMC is k-linear, the categoryMC is
a k-linear (hence also preadditive) category.

4.27. Cokernels. Consider any morphism f : (M, �M)→ (N, �N) inMC . Since f
is amorphism of rightA-modules, it has a cokernel g : N → L in the category of right
A-modules. Furthermore, f is a morphism of C-comodules; hence, g◦f = 0 implies
(g⊗A C) ◦ �N ◦ f = 0. By the universality of cokernels, there is a unique A-module
map �L : L→ L⊗A C such that �L ◦ g = (g⊗A C) ◦ �N . The coassociativity and
counitality of �N (together with the fact that g is surjective) imply the coassociativity
and counitality of �L. Hence (L, �L) is a right C-comodule. By construction, g is
a comodule map. By the universality of cokernels in MA, for any h : (N, �N) →
(P, �P) such that h ◦ f = 0, there is a unique A-module map h′ : L→ P such that
h′ ◦g = h. Since both h and g are comodule maps and g is an epimorphism, also h′ is
a comodule map by 4.4. This proves the universality of (L, �L). Hence (L, �L) is a
cokernel of the right C-comodule morphism f . Thus the categoryMC has cokernels.

4.28. Kernels. Consider any morphism f : (M, �M)→ (N, �N) inMC . Since f is
a morphism of right A-modules, it has a kernel h : K → M in the category of right
A-modules. By tensoring the defining sequence of the kernel with C, one obtains the
following commutative diagram

0 �� K
h �� M

f ��

�M

��

N

�N

��
0 �� K ⊗A C h⊗AC �� M ⊗A C f⊗AC �� N ⊗A C .
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The top sequence is exact by the definition of a kernel of an A-module morphism.
However, since the tensor functor does not necessarily preserve monomorphisms,
the bottom sequence need not be exact. The exactness of the bottom sequence is
equivalent to saying that f is C-pure as a right A-module morphism. Thus, if the
bottom sequence is exact, the diagram can be extended commutatively to give a map
�K : K → K ⊗A C; see 4.27. To check that the map �K is coassociative, one needs
the exactness of the following sequence:

0 �� K ⊗A C ⊗A C h⊗AC⊗AC �� M ⊗A C ⊗A C f⊗AC⊗AC �� N ⊗A C ⊗A C.

This means that one needs to assume that f is C ⊗A C-pure as a right A-module
map. By the counitality of the coproduct, this implies that f is C-pure. Thus, if f is
C ⊗A C-pure, then (K, �K) is a right C-comodule. The pair (K, �K) is the kernel of
the comodule morphism f .
If C is a flat left A-module, then the tensor functor −⊗A C : MA → Mk is exact.

This implies that every right A-module map is C ⊗A C-pure. Consequently, every
C-comodule morphism has a kernel. Thus, the category of right C-comodules has
kernels provided C is flat as a left A-module.
4.29. Coproducts in the category of comodules. Let {(Mλ, �

Mλ)}λ∈� be a family
of right C-comodules. Consider the rightA-moduleM =⊕

λ∈�Mλ inMA and define
the right A-module map

�M :
⊕
λ∈�

Mλ = M → M ⊗A C =
⊕
λ∈�

(Mλ ⊗A C), �M |Mλ= �Mλ.

Since each of the �Mλ is coassociative, so is their coproduct �M : M → M ⊗A C.
Hence, (M, �M) is a right C-comodule such that the inclusions Mλ → M are right
C-comodule morphisms. This is the coproduct of the family of right C-comodules
{(Mλ, �

Mλ)}λ∈�.
4.30. Comodules of a flat coring [96, Proposition 1.2]. As a consequence of the
defining adjunctions 4.8, the forgetful functor (−)A :MC →MA has a right adjoint;
hence it preserves epimorphisms, that is, every epimorphism of right C-comodules
is a right A-linear epimorphism. On the other hand, (−)A : MC → MA preserves
monomorphisms if and only ifC is flat as a leftA-module.This leads to the equivalence
of the following statements:

(a) C is flat as a left A-module;
(b) MC is an Abelian category and the forgetful functor (−)A : MC → MA is

exact (i.e. it preserves exact sequences);
(c) MC is a Grothendieck category and (−)A :MC →MA is an exact functor.

4.31. A Grothendieck category of comodules over a nonflat coring [96, Exam-
ple 1.1]. The following two examples show that flatness of C as a left A-module is
not necessary for the category of comodules to be Abelian (Grothendieck).
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(1) Take k-algebras R, S, and an (R, S)-bimoduleM, and let

A =
(
R M

0 S

)
, C =

(
R M

0 0

)
.

A is a (matrix) algebra, and C is an ideal in A. C has a coproduct given by
the isomorphism C  C ⊗A C and a counit given by the inclusion C ⊆ A.
Right C-comodules can be identified with triples (X, Y, θ), where X is a right
R-module, Y is a right S-module, and θ : X ⊗R M → Y is an isomorphism
of right S-modules. The functor (X, Y, θ)→ X establishes an equivalence of
categoriesMC andMR. The latter is a Grothendieck category hence so is the
former. Yet C is not necessarily a flat left A-module.

(2) Even more explicit example of a nonflat coring, whose category of comod-
ules is Abelian (Grothendieck), is constructed in [81, Remark 2.2.9] (cf.
[34, Exercise 4.8.13]), by using the correspondence between comodules of
the Sweedler coring and the category of descent data; see 4.20. Consider a
monomorphism of commutative rings f : B → A. By the Joyal–Tierney
theorem (see [137, Theorem] for the commutative case and [55, Propo-
sition 2.3], [59, Theorem 2.7] for noncommutative versions), the functor
− ⊗B A : MB → Desc(A|B) ≡ MA⊗BA is an equivalence if and only if
f is a pure morphism of B-modules (i.e. N ⊗B f is a monomorphism for all
B-modulesN). Take B = Z,A = Z×Z/2Z, and f : n 
→ (n, [n]). ThenA is
not a flat B-module (the map i⊗B A, where i : 2Z→ Z is the inclusion, has a
nontrivial kernel), and henceA⊗B A is not a flat leftA-module. Yet, f is pure
as a Z-module map, as it has a Z-module retraction (n, [m]) 
→ n. Therefore,
MA⊗BA is equivalent to a Grothendieck category MZ, hence, MA⊗BA is a
Grothendieck category.

4.32. Monomorphisms and products. As a consequence of the defining adjunc-
tions 4.8, the functor − ⊗A C : MA → MC has a left adjoint; hence, it preserves
monomorphisms, that is, if f is a monomorphism of right A-modules, then f ⊗A C
is a monomorphism of right C-comodules.
For the same reason, given a family of right A-modules {Mλ}λ∈�, the comodule

((
∏
�Mλ) ⊗A C, (∏�Mλ) ⊗A �C) is the product of the comodules (Mλ ⊗A C,

Mλ ⊗A �C).

4.33. Comodules and modules of the dual ring. Let C be an A-coring and let
B = ∗C be the dual ring defined in 3.25(2). Every right C-comodule (M, �M) is a left
B-module with the multiplication, for all b ∈ B, m ∈ M,

bm =
∑

m(0)b(m(1)).

Furthermore, every right C-comodule map is a left B-module map. This defines a
functorMC → BM.
Clearly, if two right C-comodule maps differ when viewed as left B-module maps,

they differ as right C-comodule maps. Hence the functorMC → BM is faithful.
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4.34. Comodules of a locally projective coring. Following [99, 204], a left
A-module P is said to be locally projective if every finitely generated submodule
of P is a finitely generated projective module. Equivalently, P is a locally projective
left A-module if, for any diagram of left A-modules with exact rows,

0 �� F
i �� P

g

��
M

f �� N �� 0,

where F is finitely generated, there exists h : P → M such that g ◦ i = f ◦ h ◦ i.
Equivalently, P is a locally projective left A-module if and only if, for any left
A-module N, the map

αN : N ⊗A P → HomA(AHom(P,A),N), n⊗A x 
→ [f 
→ nf(x)],
is injective; see [204, Theorem 2.1]. If P is a locally projective module, then P is a
flat module. Clearly, if P is projective as a leftA-module, then P is locally projective.
Thus, local projectivity is a property of a module located in-between flatness and
projectivity. For a detailed discussion of local projectivity, the reader is referred to
[189]. In relation to corings, one refers to an A-coring C that is a locally projective
left A-module as an A-coring satisfying the left α-condition; see [2] (these notions
arise from studies of rationality of coalgebras over commutative rings [7, 100]).
An A-coring C satisfies the left α-condition if and only if the category of right

C-comodules is a full subcategory of the category of left modules over the dual ring
B = ∗C; see [197] (cf. [53, 19.3]). In other words, C is a locally projective module if
and only if the functorMC → BM is full, that is, HomC(M,N) = BHom(M,N), for
any comodules (M, �M), (N, �N) ∈MC .

4.35. Rational modules and the rational functor. Let C be an A-coring, which
is locally projective as a left A-module, and let B = ∗C. For any left B-module M,
r ∈ M is called a rational element if there exists an element

∑
i mi ⊗A ci ∈ M ⊗A C

such that for all b ∈ B, br = ∑
imib(ci). Since αM : M ⊗A C → HomA(B,M) in

4.34 is assumed to be injective, such an element
∑
imi⊗A ci is uniquely determined.

The set of all rational elements of M is a (left B-, hence right A-) submodule ofM,
which is called the rational submodule ofM, and is denoted by RatC(M). Since, for
any r the corresponding

∑
imi⊗A ci is uniquely determined, there is a right A-linear

map

RatC(M)→ M ⊗A C, r 
→
∑
i

mi ⊗A ci.

One can check that all the mi are in RatC(M) and that this map is coassociative and
counital, thus giving rise to a coaction �Rat

C(M) on RatC(M). This defines a functor:

RatC : BM→MC, M 
→ (RatC(M), �Rat
C(M)),

f : M → N 
→ f |RatC(M) : RatC(M)→ RatC(N),

known as the rational functor.



Comodules and Corings 267

RatC(M) = M if and only if the left B action onM is obtained from a C-coaction
�M , that is, (M, �M) ∈ MC , and bm =∑

m(0)b(m(1)). The equality RatC(M) = M
holds for all left B-modulesM if and only if C is finitely generated as a leftA-module
(and thus is finitely generated and projective).
Formore details on rationalmodules including their description in terms of pairings

and their topological aspects, the reader is referred to [2, 62, 69].

4.36. Comodules as theWisbauer σ-category [53, 19.3]. An A-coring C is locally
projective as a left A-module if and only if MC is the smallest full Grothendieck
subcategory of BM, which contains C. Such a category is denoted by σ[C] and is
called the Wisbauer σ-category. Equivalently, σ[C] is characterized as the full sub-
category of BM consisting of all submodules of modules M, for which there is an
epimorphism C(�) → M (i.e. σ[C] consists of C-subgenerated modules). The Wis-
bauer σ-category σ[C] contains large amount of module-theoretic information about
C as a left B-module. For detailed studies of σ-categories, we refer to [195].
4.37. Comodules of a finitely generated and projective coring. Let C be an
A-coring and B = ∗C the left-dual ring. The functor MC → BM described in 4.33
can be combined with the defining functor −⊗A C :MA →MC to give the functor
−⊗A C :MA→ BM. On the other hand, since B is anAop-ring, there is a restriction
of scalar functors (−)B/A :MB →MA.

Lemma. The functor − ⊗A C : MA → BM is a right adjoint of the restriction of
scalar functors (−)B/A : BM → MA if and only if C is a finitely generated and
projective left A-module.

Sketch of proof. If − ⊗A C is a right adjoint of (−)B/A, then the dual basis element
for C is ηB(1B) ∈ B ⊗A C, where η is the unit of the adjunction. Conversely, if
{ci ∈ C, bi ∈ B} is a dual basis for C, then the unit of the adjunction is defined as
ηM : M → M ⊗A C, m 
→∑

i bim⊗A ci, and the counit is ψN = N ⊗A εC , for all
M ∈ BM, N ∈MA. ��
If C is finitely generated and projective as a left A-module, then one can identify

the category MC with the category BM. More precisely, the functor MC → BM
is an isomorphism of categories with the inverse given on objects as follows. Let
{ci ∈ C, bi ∈ B} be a finite dual basis for C. Any left B-module M is mapped to a
right C-comodule (M, �M), with coaction

�M : M → M ⊗A C, m 
→
∑
i

bim⊗A ci,

whereM is a right A-module by the left multiplication with ιL, that is,

ma = ιL(a)m = εC(−a)m.
Conversely, if MC ≡ BM, then, since there is the defining adjoint pair of functors
((−)A = (−)B/A,−⊗AC), Lemma implies thatC is a finitely generated and projective
left A-module.
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4.38. Module properties of a coring and the structure of comodules. Summary.
The impact of module properties of a coring on the category of its comodules can be
summarized as the following three statements about an A-coring C and its dual ring
B = ∗C:
(1) If C is flat as a left A-module, thenMC is a Grothendieck category.
(2) MC is the smallest full Grothendieck subcategory of BM containing C if and

only if C is a locally projective left A-module (hence a flat left A-module).
(3) MC coincides with the category BM if and only if C is a finitely generated and

projective left A-module (hence a locally projective left A-module).

For example, taking C = A⊗DA to be the Sweedler coring associated to an algebra
mapD→ A, we obtain the following information about the category of descent data
Desc(A|D) (cf. 4.20):
(1) Desc(A|D) is a Grothendieck category provided A is flat as a left D-module.
(2) If A is locally projective as a left D-module, then Desc(A|D) is the smallest

full Grothendieck subcategory of the category of left modules over the endo-
morphism ring B = DEnd(A) that contains A⊗D A [where A⊗D A is a left
B-module via b(a⊗D a′) = a⊗D b(a′)].

(3) If A is a finitely generated and projective as a left D-module, then
Desc(A|D) ≡

DEnd(A)M.

5. Special types of corings and comodules

In this section, we describe several classes of corings, which satisfy additional prop-
erties. Such corings arise in a natural way in discussions of derived functors of the
cotensor product or from the analysis of ring extensions (coseparable corings, cosplit
corings, and Frobenius corings) or from descent theory (Galois corings). The richness
of the structure of a coring has a bearing on its category of comodules. We discuss
this matter here.

5.1. Coseparable and cosplit corings

5.1. Injective comodules. A right C-comodule (M, �M) is called a (C, A)-injective
comodule if, for every right C-comodule map i : N → L that is a section in MA,
every diagram

N
i ��

f ���
��

��
��

� L

M

(∗)

of right C-comodule maps can be completed commutatively by a right C-comodule
map g : L→ M.
Equivalently, (M, �M) is a (C, A)-injective comodule if and only if there exists a

right C-colinear map σM : M ⊗A C → M such that σM ◦ �M = M. Indeed, since
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�M : M → M ⊗A C is a section inMA with retraction M ⊗A εC : M ⊗A C → M,
the diagram

M
�M ��

M ���
��

��
��

� L

M

meets all the above requirements. Hence, if (M, �M) is (C, A)-injective, then there is
a map σM as required. Conversely, if there is such a map, then the diagram (∗) can
be completed by g = σM ◦ (f ⊗A C) ◦ (p⊗A C) ◦ �L, where p : L→ N is a right
A-linear retraction of i.
Still equivalently (M, �M) is a (C, A)-injective comodule if and only if every right

C-comodule mapM → L, which is a section inMA, is a section inMC . To see this,
simply set N = M and f = M in the diagram (∗).
Since �C has a right C-colinear retraction εC ⊗A C, the regular right C-comodule

(C,�C) is (C, A)-injective. More generally and by the same token, for any right
A-module X, (X⊗A C, X⊗A �C) is a (C, A)-injective comodule.
5.2. Right (C, A)-semisimple corings. An A-coring C whose all right comodules
are (C, A)-injective is called a right (C, A)-semisimple coring.
5.3. Coseparable corings. Coseparable corings are an example of right (and left)
(C, A)-semisimple corings.
An A-coring C is called a coseparable coring [106] if the coaction �C has a C-

bicolinear retraction, that is, if there exists anA-bimodule map π : C⊗A C → C such
that π ◦�C = C, and the following diagrams are commutative

C ⊗A C C⊗A�C ��

π

��

C ⊗A C ⊗A C
π⊗AC
��

C
�C �� C ⊗A C ,

C ⊗A C �C⊗AC ��

π

��

C ⊗A C ⊗A C
C⊗Aπ
��

C
�C �� C ⊗A C .

The existence of such a map π is equivalent to the existence of anA-bimodule map
δ : C ⊗A C → A such that for all c, c′ ∈ C,∑

c(1)δ(c(2) ⊗A c′) =
∑

δ(c⊗A c′(1))c′(2),
∑

δ(c(1) ⊗A c(2)) = εC(c).
The correspondence is given by

π 
→ εC ◦ π, δ 
→ (δ⊗A C) ◦ (C ⊗A �C) = (C ⊗A δ) ◦ (�C ⊗A C).

Amap δ satisfying the above properties is called a cointegral.
Given a right comodule (M, �M) of a coseparable A-coring C, the right C-colinear

map σM = (M ⊗A δ) ◦ (�M ⊗A C) is a retraction of �M . This means that every right
C-comodule of a coseparable coring C is (C, A)-injective, that is, a coseparable coring
is (C, A)-semisimple.



270 T. Brzeziński

5.4. Coseparable corings as firm algebras [48]. Let C be a coseparable coring
(with π and δ as in 5.3). Then C is a firm algebra with the product

μC : C ⊗ C → C, c⊗ c′ 
→ π(c⊗A c′).
The inverse of the productmap C⊗CC → C is given by the coproduct�C (canonically
projected to C ⊗C C). Furthermore, every right C-comodule (M, �M) is a firm right
C-module with the multiplication, for all m ∈ M, c ∈ C,

mc =
∑

m(0)δ(m(1) ⊗A c).

The inverse ∇M : M → M⊗C C of the multiplication map is given by �M (projected
canonically toM ⊗C C).
5.5. Cosplit corings. An A-coring C is called a cosplit coring if there exists an
element

e ∈ CA := {c ∈ C | ∀a ∈ A, ca = ac}
such that εC(e) = 1A. Equivalently, one requires that the counit εC has anA-bimodule
section. Such an element e is called a normalized integral in C.
The name “cosplit” is motivated by the observation that a dual ring of a cosplit

coring is a split extension. More precisely, an algebra map i : A→ B is said to be a
split extension [154] if it is anA-bimodule section. LetB = (∗C)op be the opposite left
dual ring of a cosplitA-coring C. Then, the algebra map ιL : A→ B, a 
→ εC(−a) is
a split extension. Indeed, if e ∈ CA is a normalized integral, then the mapE : B→ A,
f 
→ f(e), is an A-bilinear retraction of ιL.

5.6. Separable bimodules [176] (cf. [65]). LetM be a (B,A)-bimodule.M is called
a separable bimodule or B is said to beM-separable overA, provided the evaluation
map

M ⊗A BHom(M,B)→ B, m⊗A ϕ 
→ ϕ(m),

is a retraction (i.e. a split epimorphism) of B-bimodules.
The notion of a separable bimodule includes the notion of a separable extension

and a split extension. Recall that an algebra map A→ B is separable if there exists
an invariant e = ∑

i bi ⊗A b′i ∈ (B ⊗A B)B such that ∑i bib
′
i = 1B; see [109,

Definition 2]. This is equivalent to the requirement that the product mapB⊗AB→ B

is a retraction of B-bimodules. In case M = B, the dual module BHom(B, B) can
be identified with B, and then the evaluation map coincides with the product map.
Hence, in the case of an algebra map A → B, B is a separable (B,A)-bimodule if
and only if A→ B is a separable extension.
Furthermore, as shown in [176] (cf. [117, Theorem 3.1]), if M is a separable

bimodule, then B → S := EndA(M) is a split extension. Conversely, if a (B,A)-
bimoduleM is such thatM is finitely generated and projective as a right A-module,
and B→ S is a split extension, thenM is a separable (B,A)-bimodule.
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5.7. Separable bimodules and comatrix corings [45]. Let P be a (B,A)-bimodule
that is finitely generated and projective as a rightA-module, and let C = P∗ ⊗B P be
the corresponding comatrix coring.

(1) The (A,B)-bimodule P∗ is a separable bimodule if and only if C is a cosplit
A-coring.

(2) If P is a separable bimodule, then C is a coseparable A-coring.
(3) Let S = EndA(P) and suppose that S is a faithfully flat left or right B-module.

If C is a coseparable A-coring, then P is a separable bimodule.

5.8. Separable functors. The notions of coseparable and cosplit corings are com-
plementary to each other in the sense that the coseparablity and the cosplit property
correspond to the same property of functors in the defining adjunction. This common
property is that of separability.
The notion of a separable functor was introduced in [144]. Following the formu-

lation in [159], a functor F : A → B is said to be separable if the transformation
A(−,−)→ B(F(−), F(−)), f 
→ F(f ) is a split natural monomorphism.
In case the functor F has a right adjointG, the Rafael theorem [159, Theorem 1.2]

asserts that F is separable if and only if the unit of adjunction is a natural section,
while G is separable if and only if the counit of adjunction is a natural retraction.

5.9. Coseparable functors and corings [37, Theorem 3.3, Corollary 3.6]. Let C
be an A-coring.

(1) The forgetful functor (−)A : MC → MA is a separable functor if and only if
C is a coseparable coring.

(2) The functor − ⊗A C : MA → MC is a separable functor if and only if C is a
cosplit coring.

5.2. Frobenius corings

5.10. Frobenius corings. An A-coring C is called a Frobenius coring if there exist
an A-bimodule map η : A→ C and a C-bicomodule map π : C ⊗A C → C yielding
a commutative diagram

C
C⊗Aη ��

η⊗AC
��

C

������������������� C ⊗A C
π

��
C ⊗A C π �� C .

Equivalently, identifying π with the corresponding A-bimodule map δ = εC ◦ π
(cf. 5.3) and η with an element e ∈ CA, C is a Frobenius coring if and only if there
exist e ∈ CA and an A-bimodule map δ : C ⊗A C → A such that for all c, c′ ∈ C,∑

c(1)δ(c(2)⊗Ac′) =
∑

δ(c⊗Ac′(1))c′(2), δ(c⊗Ae) = δ(e⊗Ac) = εC(c).
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The pair (π, e) is called a Frobenius system, while the pair (δ, e) is called a reduced
Frobenius system.
Note that any Frobenius A-coring C is a finitely generated projective left and right

A-module. In terms of the reduced Frobenius system (δ, e), and writing �C(e) =∑
i ei⊗A ēi, a dual basis for the right A-module C is {ei, δ(ēi⊗A −)} and for the left

A-module is {ēi, δ(−⊗A ei)}.
5.11. Frobenius functors and Frobenius corings. In [141, Theorem 2.1], it
has been observed that an algebra extension is a Frobenius extension if and only
if the extension of scalars functor has the same left and right adjoint. Follow-
ing [67], a functor F is said to be a Frobenius functor if and only if it has
the same left and right adjoint (such functors were termed strongly adjoint pairs
in [141]).

C is a Frobenius A-coring if and only if − ⊗A C : MA → MC is a Frobenius
functor and if and only if (−)A :MC →MA is a Frobenius functor.

5.12. Frobenius corings and Frobenius extensions [39, Proposition 2.5,
Theorem 2.7]. In 3.18, we have described a relationship between corings and Frobe-
nius extensions. This description is completed by the following observations:

(1) Let A → B be a Frobenius extension with a Frobenius element β and a
Frobenius homomorphism E. Then B is a Frobenius A-coring with coproduct
β (viewed as a B-bimodule map B → B ⊗A B), counit E, and a Frobenius
system (π, 1B), where π : B⊗A B→ B, b⊗A b′ 
→ bb′.

(2) Let C be a Frobenius A-coring with a Frobenius system (π, e). Then,
(a) C is a k-algebra with product cc′ = π(c⊗A c′) and unit 1C = e.
(b) A→ C, a 
→ ae = ea is a Frobenius extension with a Frobenius element

β = �C(e) and Frobenius homomorphism E = εC .
Thus, the notions of a Frobenius coring and a Frobenius extension are dual to each
other descriptions of the same situation.

5.13. Frobenius bimodules. A (B,A)-bimodule M is said to be Frobenius if M is
finitely generated and projective as a left B- and rightA-module and BHom(M,B) 
HomA(M,A) as (A,B)-bimodules; see [9, p. 261] or [116, Definition 2.1]. The endo-
morphism ring theorem (cf. [116, Theorem 2.5]) asserts that if M is a Frobenius
(B,A)-bimodule, then B→ EndA(M) is a Frobenius extension.

5.14.Frobeniusbimodules andcomatrix corings [45,Theorem3.7,Corollary3.8].
Let P be a (B,A)-bimodule that is finitely generated and projective as a right
A-module, and let C = P∗ ⊗B P be the corresponding comatrix coring.
(1) If P is a Frobenius bimodule, then C is a Frobenius A-coring.
(2) Assume that P is finitely generated and projective as a left B-module. Let

S = EndA(P) and suppose that S is a faithfully flat left or right B-module
and that SHom(P, S) ∼= HomA(P,A) as (A,B)-bimodules. If C is a Frobenius
A-coring, then P is a Frobenius bimodule.
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In particular, if there is a Frobenius algebra map B→ A, then P = A is a Frobenius
(B,A)-bimodule, andhence, the correspondingSweedler coringA⊗BA is aFrobenius
coring.

5.15. Towers of Frobenius extensions [39, Theorem 3.8]. Suppose that C is a
Frobenius A-coring with a Frobenius system (π, e). Then by 5.12, e viewed as a map
A→ C is a Frobenius extension with the Frobenius element�C(e) and the Frobenius
homomorphism εC . Now 5.14 implies that the Sweedler C-coring C⊗AC is Frobenius
with the Frobenius system (C ⊗A εC ⊗A C,�C(e)). Then C ⊗A C is a ring with unit
�C(e) and the product

(c⊗A c′)(c′′ ⊗A c′′′) = c⊗A εC(π(c′ ⊗A c′′))c′′′,
and the extension �C : C → C ⊗A C is Frobenius by 5.12. The Frobenius element
explicitly reads

∑
e(1) ⊗A e⊗A e(2), and the Frobenius homomorphism is π. Apply

5.12 to deduce that Sweedler’s C⊗A C-coring (C⊗A C)⊗C (C⊗A C) ∼= C⊗A C⊗A C
is Frobenius. Iterating this procedure we obtain the following Jones-like tower of
corings and algebra maps

A
e ��C �C ��C ⊗A C C⊗Ae⊗AC ��C ⊗A C ⊗A C �� . . . ,

in which for all k = 1, 2, . . ., C⊗Ak−1→ C⊗Ak is a Frobenius extension and C⊗Ak is
a Frobenius C⊗Ak−1-coring.
5.16. Categorical interpretation. Many of the properties of Frobenius corings can
be derived by purely categorical methods. Given anymonoidal category (M,�, E), a
Frobenius algebra inM is an objectF such that (F, μF , 1F ) is an algebra in (M,�, E)
and (F,�F , εF ) is a coalgebra inM such that

(μF � F ) ◦ (F ��F) = �F ◦ μF = (F � μF) ◦ (�F � F);
see [142]. In particular, for any category A, the category End A := Fun(A,A) of
functorsA→ A is amonoidal category (with tensor product given by the composition
of functors). A Frobenius algebra in End A is simply a pair consisting of a monad
(F, ν, η) and a comonad (F, δ, σ) such that

νF ◦ F(δ) = δ ◦ ν = F(ν) ◦ δF .
If R : A→ B is a Frobenius functor with the same left and right adjoint L, F = LR
is both a monad and comonad. Both structures are compatible making F a Frobenius
algebra in End A. One easily finds that, for a Frobenius algebra F in End A, the
categories of algebras of the monad (F, ν, η) and coalgebras of the comonad (F, δ, σ)
are mutually isomorphic.
On the other hand, a Frobenius algebra F in the monoidal category ofA-bimodules

(with tensor product⊗A) is the same as a FrobeniusA-coring or a Frobenius extension
A→ F . By arguments similar to those in 3.5, this is equivalent to the statement that
F ⊗A − is a Frobenius algebra in End AM. The results presented in this section
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are just an interplay between these different descriptions of a Frobenius algebra (in
monoidal categories).
For example, a (B,A)-bimoduleP is Frobenius if and only ifP⊗A− : AM→ BM

is a Frobenius functor with (left = right) adjoint P∗ ⊗B −; see [9, Exercise 21.8].
Thus,P∗⊗BP⊗A− is a Frobenius algebra inEnd AM; henceP∗⊗BP is a Frobenius
algebra in the category of A-bimodules, that is, it is a Frobenius A-coring.
We refer the reader to [142] for more details. A very accessible expanded review

of [142] can also be found in [12]. Finally, we would like to mention that Frobenius
algebras (hence also Frobenius corings) play an important role in description of certain
quantum field theories. A review of recent developments in this area can be found
in [168].

5.17. Co-Frobenius corings [112]. An A-coring C is said to be a left co-Frobenius
coring in case there is an injective morphism C → ∗C of left A ⊗ ∗C-modules [i.e.
(∗C, Aop)-bimodules, where ∗C is a right Aop-module via ιL; see 3.25]. C is a right
co-Frobenius coring in case there is an injective morphism C → C∗ of right A⊗ C∗-
modules; see [130] for the case of coalgebras. C is called a left quasi-co-Frobenius
coring provided that there are a set � and an injective morphism C → (∗C)� of left
A⊗ ∗C-modules.
A Frobenius A-coring C is isomorphic to ∗C as a left A ⊗ ∗C-module and is

isomorphic to C∗ as a right A ⊗ C∗-module. Explicitly, if (δ, e) is a reduced Frobe-
nius system for C, then the left A ⊗ ∗C-module isomorphism is θL : C → ∗C,
c 
→ [c′ 
→ δ(c′ ⊗A c)], with inverse ξ 
→∑

e(1)ξ(e(2)). The right A⊗ C∗-module
isomorphism is θR : C → C∗, c 
→ [c′ 
→ δ(c ⊗A c′)], with inverse ξ 
→∑
ξ(e(1))e(2). Thus, in particular, a Frobenius coring is left and right co-Frobenius.
Recall that C is a Frobenius coring if and only if the functor − ⊗A C is Frobe-

nius. Similar characterization exists also for (quasi)-co-Frobenius corings. A detailed
discussion of (quasi)-co-Frobenius corings and related functors can be found
in [112].

5.18. Generalizations of Frobenius corings. Quasi-Frobenius corings are defined
in [72] in terms of quasi-Frobenius functors [141]. Let A, B be categories with finite
direct sums (finite coproducts, e.g. Grothendieck categories). A functor L : B→ A
is said to be similar to R : B → A if there exist positive integers m, n and natural
transformations α : L → Rn, α̃ : Rn → L, β : R → Lm, β̃ : Lm → R such
that

α̃ ◦ α = L, β̃ ◦ β = R.
Here, Rn (resp., Ln) is a functor defined on objects B as the direct sum of n-copies
of R(B) [resp., L(B)]. A functor F : A → B is said to be quasi-Frobenius if it
has a left adjoint L and right adjoint R such that L is similar to R. The notion of
quasi-Frobenius functors is a symmetrized version of a left quasi-Frobenius pair of
functors studied in [105]. C is called a quasi-Frobenius A-coring if the forgetful
functor (−)A : MC → MA is quasi-Frobenius. Properties of such corings as well as
quasi-Frobenius functors between comodule categories are studied in [71, 72].
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Frobenius properties of functors associated to morphisms of corings (or Frobenius
coring extensions) are studied in [111,203].

5.3. Galois corings (comodules) and generalized descent

Galois corings or Galois comodules are possibly the most studied class of corings in
recent years. Galois corings can be understood as an approach to generalized Galois
theory with its classical origins in field extensions (see [198] for a review of the classi-
cal Galois theory in the context of comodules), which is still not quite well-understood
from the categorical point of view developed in [35]. Furthermore, Galois corings
lead to a reformulation of noncommutative descent theory [55]. Probably the strongest
motivation of the recent interest in Galois comodules comes from noncommutative
geometry; see Sections 6.2 and 6.3.

5.19. Galois comodules. Let C be an A-coring and (M, �M) a right C-comodule.
Set S = EndC(M). For any right A-moduleN, define a right C-comodule map ψ̃N as
a composition

ψ̃N : HomA(M,N)⊗SM → N⊗AC, f⊗Sm 
→
∑

f(m(0))⊗Am(1).
(M, �M) is called a Galois comodule if and only if, for any right A-module N,
the map ψ̃N is an isomorphism of right C-comodules [199].
IfM is finitely generated and projective as a rightA-module, then HomA(M,N) 

N ⊗A M∗, where M∗ = HomA(M,A). Thus, in this case, (M, �M) is a Galois
comodule if and only if the canonical A-coring morphism

canM : M∗ ⊗S M → C, ξ ⊗m 
→
∑

ξ(m(0))m(1),

where M∗ ⊗S M is the comatrix coring (cf. 3.11), is an isomorphism. A Galois
comodule (M, �M) that is finitely generated and projective as anA-module is called a
finite Galois comodule or the pair (C,M) is called aGalois coring [92]. The bijectivity
of canM is referred to as a finite Galois condition. Furthermore, identifyingM∗ with
HomC(M, C) by 4.10, one finds that the finite Galois condition is satisfied if and
only if the evaluation map ψC : HomC(M, C) ⊗S M → C, f ⊗ m 
→ f(m), is an
isomorphism of right C-comodules. Note that the evaluation map is a counit of the
coinvariants adjunction 4.11.
In this chapter, we focus on finite Galois comodules, as these have been more

thoroughly studied so far. For more information on general Galois comodules, the
reader is referred to [199].

5.20. A as a Galois comodule. The case in which A itself is a Galois C-comodule
is of prime interest. As explained in 4.12, A is a right C-comodule if and only if there
exists a group-like element g. In this case, the coinvariants S = EndC(A) coincide
with the subalgebraAg = {s ∈ A | sg = gs} ⊆ A; see 4.14. Obviously,A is a finitely
generated projective rightA-module,A∗  A, andA⊗S A is the SweedlerA-coring;
see 3.10 and 3.11. The canonical map comes out as

canA : A⊗S A→ C, a⊗ a′ 
→ aga′.
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Thus, A is a finite Galois comodule if and only if C is a Galois coring with respect to
g, a notion introduced in [37].

5.21. Galois connections associated to a finite Galois comodule. [79] Let M
be a (B,A)-bimodule that is finitely generated and projective as a right A-module,
and let C = M∗ ⊗B M be the associated comatrix coring. Set T = EndA(M) and
consider the set Subext(T |B) of all algebras S such that B ⊆ S ⊆ T . Subext(T |B)
is a partially ordered set with the order given by inclusion. Next, consider the set
Coideal(C) of all coideals of C, cf. 3.4, and order it by K ≤ K′ ⇔ K′ ⊆ K. For
any coideal K ∈ Coideal(C), view M as a right C/K-comodule with the coaction
�M : M → M ⊗A C/K, m 
→ (M ⊗A p)(e⊗A m), where e ∈ M ⊗A M∗ is a dual
basis element and p : C → C/K is the defining epimorphism of K.
Given any S ∈ Subext(T | B), define a coideal K(S) ∈ Coideal(C) as the kernel

of the canonical map M∗ ⊗B M → M∗ ⊗S M. This defines an order-reversing
operation

K : Subext(T |B)→ Coideal(C).

Starting with a coideal K ∈ Coideal(C), define S(K) = EndC/K(P) ⊆ T . In this
way, one obtains an order-reversing operation

S : Coideal(C)→ Subext(T |B).
Then, for all K ∈ Coideal(C) and S ∈ Subext(T |B),

S (K (S)) ⊇ S, K (S (K)) ⊆ K,
that is, the pair (K,S) is a Galois connection between the partially ordered
sets Subext(T | B) and Coideal(C). Furthermore, S (K (S)) = S, if and only if
EndM

∗⊗SM(M) = S, and K (S (K)) = K, if and only if (M, �M) is a finite Galois
C/K-comodule.
5.22. The finite Galois comodule structure theorem. This theorem describes
properties of the M-coinvariants functor associated to a finite Galois comodule. It
arose as a generalization of the structure theorem for Hopf–Galois extensions [167,
Theorem 3.7] and was first stated in [92, Theorem 3.2]. The present formulation
includes further additions from [40, Theorem 2.1], [53, 18.27], [59].

Theorem. LetC beanA-coring andM bea rightC-comodule that is finitely generated
and projective as a rightA-module. SetS = EndC(M), and denote theM-coinvariants
functor HomC(M,−) :MC →MS by G.

(1) The following statements are equivalent:
(a) M is a finite Galois comodule that is flat as a left S-module.
(b) C is a flat left A-module andM is a generator inMC .
(c) C is a flat left A-module and G is fully faithful, that is, for any N ∈ MC ,

the counit of the coinvariants adjunction ψN : HomC(M,N)⊗S M → N

is an isomorphism of right C-comodules.
(d) M is a flat left S-module and G is fully faithful.
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(2) The following statements are equivalent:
(a) M is a finite Galois comodule that is faithfully flat as a left S-module.
(b) C is a flat left A-module andM is a projective generator in MC .
(c) C is a flat leftA-module andG is an equivalence with the inverse−⊗SM :

MS →MC .
(d) M is a flat left S-module and G is an equivalence.

Part (1) is often referred to as the weak structure theorem, while part (2) is known
as the strong structure theorem. It is worth pointing out that equivalences (b)⇔ (c)
⇔ (d) are standard properties of Grothendieck categories and only (a) is special for
comodules.

5.23. Semisimple and simple finite Galois comodules. A right C-comodule
(M, �M) is called a semisimple comodule if, for any right C-comodule (N, �N), every
right C-colinear monomorphism N → M is a section (of C-comodules). If any such
monomorphism is an isomorphism, then (M, �M) is called a simple comodule. In case
C is flat as a left A-module, and henceMC is an Abelian category, (M, �M) is simple
if and only if every monomorphism N → M is either 0 or an isomorphism, and it is
semisimple if it is a direct sum of simple comodules.
Following [199, 3.5], if C is a flat left A-module, then (M, �M) is a semisimple

comodule if and only if, for any set �, the endomorphism ring of the direct sum
comodule, EndC(M(�)), is a von Neumann regular ring and for any right C-comodule
(N, �N), the counit of theM-coinvariants adjunction

ψN : HomC(M,N)⊗S M → N, f ⊗m 
→ f(m),

is injective. Here, as before, S = EndC(M). If, in addition,M is a finitely generated
and projective rightA-module, then (M, �M) is semisimple if and only if S is a (right)
semisimple ring and, for all (N, �N), ψN is injective.
Finally, by [40, Theorem 3.1], if C is flat as a leftA-module, and (M, �M) is finitely

generated and projective as a right A-module, then (M, �M) is a simple comodule if
and only if S is a division ring, and the counit of theM-coinvariants adjunctionψN is
injective for any right C-comodule (N, �N). Therefore, every finite Galois comodule,
whose endomorphism ring, is a division ring is a simple comodule. A (semi)simple
comodule (M, �M) that is finitely generated and projective as a right A-module is a
finite Galois comodule if and only if the evaluation map ψC is surjective and if and
only if the canonical map canM is surjective.
The definitions of a simple and semisimple comodules we use here in general differ

from the definitions in [96] but coincide provided C is a flat left A-module.
5.24. Simple cosemisimple corings and the Jacobson–Bourbaki correspondence.
An A-coring is said to be cosemisimple if (C,�C) is a semisimple right C-comodule.
This is a left–right symmetric notion [i.e. C is cosemisimple if and only if (C,�C) is
a semisimple left C-comodule]. If C is cosemisimple, then C is projective (hence also
flat) as a left and rightA-module; see [53, 19.14]. C is said to be simple if (C,�C,�C)
is a simple C-bicomodule.
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Cosemisimple corings were first studied in [96]. In both [53, 96], they are termed
semisimple corings. The term cosemisimple was introduced in [92] to be in-line with
the accepted coalgebra terminology.
AcoringC is simple and cosemisimple if and only if there is a finiteGalois comodule

(M, �M) such that the coinvariants algebra EndC(M) is a division algebra. Further-
more, C is a simple and cosemisimple A-coring if and only if C is (isomorphic to) a
comatrix coring associated to a (B,A)-bimodule P , where B is a division algebra. If
B′ is another division algebra andP ′ is a (B′, A)-bimodule such that C is isomorphic to
the comatrix coring associated to P ′, then P and P ′ are isomorphicA-modules andB′
is conjugate to B by this isomorphism; see [92, Theorem 4.3]. Finally, any (nonzero)
finitely generated right comodule over a simple cosemisimple coring is a finite Galois
comodule, and its coinvariants algebra is simple Artinian [92, Proposition 4.2].
If C = M∗ ⊗B M is a comatrix coring, then the Galois connection described

in 5.21 restricts to mutually inverse maps on sets of simple Artinian subrings S of
EndA(M) [i.e. subextensions B ⊆ S ⊆ EndA(M), where S is a simple Artinian
algebra] and coideals K in C such that C/K is a simple cosemisimple A-coring
[79, Theorem 2.4]. In case of an algebra map B → A, where A is a division
algebra, setting M = A one obtains Sweedler’s predual version of the Jacobson–
Bourbaki correspondence [178,Theorem2.1]. It isworth notinghere that somecoring-
type ideas appear already in Hochschild’s formulation of the Jacobson–Bourbaki
theorem [110].

5.25. Principal Galois comodules. Let (M, �M) be a right C-comodule; set S =
EndC(M) and consider any algebra map B→ S. (M, �M) is called a B-relative prin-
cipal Galois comodule if it is a finite Galois comodule that isB-relatively projective as
a left S-module. Explicitly, for (M, �M) to be aB-relative principal Galois comodule,
it is required that the canonical map

canM : M∗ ⊗S M → C, ξ ⊗S m 
→
∑

ξ(m(0))m(1),

be bijective (the Galois condition) and that the S-multiplication map

S ⊗B M → M, s⊗B m 
→ s(m),

have a left S-linear section (the relative projectivity).
(M, �M) is said to be a principal Galois comodule if it is Galois and projective as

a left S-module.

5.26. Structure theorem for principal Galois comodules. Let C be an A-coring
and (M, �M) a right C-comodule that is finitely generated and projective as a
right A-module. View M∗ = HomA(M,A) as a left C-comodule as in 4.6. Let
S = EndC(M), and let B→ S be an algebra map such that

S ⊗B M → CHom(M∗,M∗ ⊗B M), s⊗B m 
→ [ξ 
→ ξ ◦ s⊗B m],
is an isomorphism of left S-modules. Then, the following statements are equivalent:
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(a) The map

c̃anM : M∗ ⊗B M → C, ξ ⊗B m 
→
∑

ξ(m(0))m(1),

is a split epimorphism of left C-comodules.
(b) (M, �M) is a B-relative principal Galois comodule.

Proof. The proof of implication (b)⇒ (a) is straightforward; thus, we only comment
on the proof (a)⇒ (b). By assumption (a), the coring C is a direct summand ofM∗⊗B
M as a left C-comodule; hence, in view of the hypothesis; M  AHom(M∗, A) 
CHom(M∗, C) is a direct summand of a left S-module S ⊗B M, that is, M is a B-
relatively projective left S-module.
The evaluation map ϕ̂M : M∗ ⊗S CHom(M∗,M∗ ⊗B M)→ M∗ ⊗B M factorizes

through the isomorphism S ⊗B M → CHom(M∗,M∗ ⊗B M) tensored withM∗ and
through the obvious isomorphism M∗ ⊗S S ⊗B M → M∗ ⊗B M. Hence ϕ̂M is an
isomorphism. Consider the following diagram, which is commutative in all possible
directions,

M∗ ⊗S CHom(M∗,M∗ ⊗B M)

M∗⊗SCHom(M∗,c̃anM)

��

ϕ̂M �� M∗ ⊗B M

c̃anM

��
M∗ ⊗S CHom(M∗, C)

��

ϕ̂C �� C

��

where ϕ̂C is the evaluation map. The upward pointing arrows are sections ofM∗ ⊗S
CHom(M∗, c̃anM) and c̃anM , respectively. Since ϕ̂M is an isomorphism, the map ϕ̂C
is bijective. The identifications CHom(M∗, C)  M andM∗  HomC(M, C) lead to
a k-linear isomorphismM∗ ⊗S CHom(M∗, C)  HomC(M, C)⊗S M. In view of this
isomorphism, the fact that ϕ̂C is bijective implies that the counit of adjunction ψC is
bijective. Thus,M is a finite Galois right C-comodule. ��
The above theorem is essentially the same as [40, Theorem 4.4]. The latter is

formulated for algebras over a field, that is, for the case when B = k is a field, and
the isomorphism S ⊗B M  CHom(M∗,M∗ ⊗B M) is proved rather than assumed.
The case when B = k is a commutative ring is described in [52, Theorem 2.1]. The
case of a general B with a list of sufficient conditions for the isomorphism S⊗BM 
CHom(M∗,M∗ ⊗B M) is studied in [199, Theorem 5.9] using the correspondence
between Galois and ad-static comodules. The formulation given above follows that
of [10, Theorem 5.1], with left–right conventions interchanged.
Note that ifM is a projective leftB-module, then there is the required isomorphism

S⊗B M  CHom(M∗,M∗ ⊗B M), and the resulting finite Galois module in part (b)
is principal (not only B-relative principal).

5.27. Comonadicity and generalized descent. Categorical descent theory (cf.
[138]) considers the following situation. With a monad T on a category B, one
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can associate the following (commutative, up to a natural isomorphism) triangle of
categories and functors

B
K ��

L

�
��

��
��

� (BT )G

UG����
��

��
��

BT
R

����������
.

HereBT is the category ofT -algebras (orT -modules),R andUG are forgetful functors,
L is a left adjoint ofR (the induction functor), andG is the comonadLR. The functor
K is the comparison functor defined byK(B) = (L(B), L(ηB)), where η is the unit of
the adjunction (L,R). The category (BT )G is called the category of descent data. In
descent theory, one is interested in studying whenK is a full and faithful functor (one
then says that T is of descent type) and when it is an equivalence (one then says that
T is of effective descent type). This is a categorical formulation of the descent for an
algebra map, discussed in 4.20. To see this, take an algebra map B→ A, take B to be
the category of rightB-modules and T to be themonad (−⊗BA,−⊗BμA,−⊗B1A).
Then, BT is the category of right A-modules, G is the comonad on MA associated
to the Sweedler coring A ⊗B A, and (BT )G is indeed the category of descent data
Desc(A |B).
Categorical descent theory fits in a (yet) more general framework. Given categories

A and B, a comonad G on A, a diagram of categories and functors

B
K ��

L

�
��

��
��

� AG

UG����
��

��
��

A
R

���������
,

in which L is the left adjoint of R, UG is the forgetful functor, and L = UGK, is
called a G-comonadic triangle on A and B. We denote it by (L � R,K)G.
Start with an adjoint pair of functors (L,R), L : B → A, and write ψ and η for

the counit and the unit, respectively. Then (LR,L(ηR), ψ) is a comonad on A. By an
argument dual to [88, Theorem II.1.1] (cf. [102, Theorem 2.2]), one can show that
G-comonadic triangles (L � R,K)G are in bijective correspondence with comonad
morphisms ϕ : LR→ G. Explicitly, given such ϕ, define β = ϕL ◦ L(η), and then,
the functor K is constructed by setting K(B) = (L(B), βB), for all objects B of B.
Conversely, given a G-comonadic triangle (L � R,K)G, the natural transformation
ϕ is defined as the composition ϕ = G(ψ) ◦ βR, where β : L → GL is the natural
transformation defined on objects B of B by the structure maps of K(B). In this
general situation, one can study when the functorK is fully faithful or an equivalence.
A complete solution to this problem, which is partly based on Beck’s theorem [17],
can be found in [102, Theorems 2.6 and 2.7].
As explained in [102], the fact that the functor K in a comonadic triangle (L �

R,K)G is an equivalence is closely related to the fact that ϕ is an isomorphism.
More precisely, given (L � R,K)G and the corresponding ϕ, assume that, for all
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G-coalgebras, (M, �M), there exists in B an equalizer of R(�M) and R(ϕM) ◦ ηR(M).
Then K is an equivalence if and only if the functor L preserves all such equalizers
and the map ϕ is an isomorphism of comonads.
The relevance of comonadic triangles to Galois properties of comodules of an

A-coring C can be explained as follows. Take A = MA and G = − ⊗A C, the
comonad associated to C. Thus AG = MC . Fix a right C-comodule (M, �M) and let
S = EndC(M). Let B =MS . Since the homomorphism functor is the right adjoint of
the tensor functor, this can be recast as the following comonadic triangle

MS
K ��

−⊗SM
���

��
��

��
� MC

(−)A����
��

��
��

MA

HomA(M,−)

����������
,

whereK(N) = (N ⊗S M,N ⊗S �M). The natural transformation ϕ associated to this
triangle comesout as ψ̃ as defined in5.19.Thus, the (finite)Galois property of (M, �M)
is a necessary condition for the effectiveness of generalized descent associated with
(M, �M) (note that M is a finitely generated and projective as a right A-module by
[187, Corollary 3.7]).

5.28. Strong structure theorem over nonunital rings [102, Theorem 3.5]. Let C
be an A-coring, B be a nonunital firm algebra. To any (B, C)-bicomodule (M, �M)
(M is firm as a left B-module), one can associate the following comonadic triangle

MB
K ��

−⊗BM
���

��
��

��
� MC

(−)A����
��

��
��

MA

HomA(M,−)⊗BB

����������
,

where K(N) = (N ⊗B M,N ⊗B �M). Applying 5.27 to this triangle, one concludes
thatK is an equivalence of categories if and only ifM is a faithfully flat leftB-module
and, for all right A-modules N, the map

HomA(M,N)⊗B B⊗B M → N⊗A C, f ⊗B b⊗B m 
→
∑

f(bm(0))⊗A m(1),
is an isomorphism.

5.4. Morita theory and corings

There are several Morita contexts, which can be associated to corings and comodules.
They can be used to formulate structure theorems for Galois comodules or to study
equivalences betweenmodule categories. In this section, we describeMorita contexts
associated to corings.

5.29.Morita contexts. AMorita context or a set of pre-equivalence data is a sextuple
(A,B,N,M, σ, τ), where
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(i) A and B are algebras;
(ii) M is a (B,A)-bimodule and N is an (A,B)-bimodule;
(iii) τ : M ⊗A N → B is a B-bimodule map and σ : N ⊗B M → A is an

A-bimodule map rendering the following diagrams commutative

N ⊗BM ⊗AN
N⊗Bτ

��

σ⊗AN �� A⊗AN

��

M ⊗AN ⊗BM
M⊗Aσ

��

τ⊗BM �� B⊗BM

��

N ⊗B B  �� N , M ⊗A A  �� M .

A Morita context (A,B,N,M, σ, τ) is said to be strict provided both σ and τ are

isomorphisms. Any strict Morita context induces and arises from an equivalence of
categories of modulesMA andMB (in which case one says that the algebrasA and B
areMorita equivalent). For a detailed discussionofMorita contexts or pre-equivalence
data, the reader is referred to [14, Chapter II.3].

5.30. Morita context as a two-object category [27, Remark 3.2(1)]. A k-linear
category A with two objects a and b gives rise to a Morita context as follows. The
composition of morphisms makes k-modules M = A(a, b) and N = A(b, a)
bimodules for k-algebras (with product given by composition) A = A(a, a) and
B = A(b, b). Furthermore, the composition of maps defines bimodule maps

τ : A(a, b)⊗A A(b, a)→ B, σ : A(b, a)⊗B A(a, b)→ A.

One easily checks that (A,B,A(b, a),A(a, b), σ, τ) is aMorita context. Clearly, there
is a category of this kind behind any Morita context.

5.31. Morita context associated to a comodule I [59, Section 4]. The first Morita
context connects the endomorphism algebra of a comodule with the right dual ring
of a coring. Take a right comodule (M, �M) over an A-coring C.

(i) Let S = EndC(M) be the endomorphism algebra ofM and B be the opposite
algebra to the right dual ring C∗; see 3.25.

(ii) LetQ=HomC(C,M) andM∗=HomA(M,A). ThenQ is an (S, B)-bimodule
with the multiplications given by, for all s ∈ S, b ∈ B, q ∈ Q, and c ∈ C,

(qb)(c) =
∑

q(b(c(1))c(2)), sq = s ◦ q,

andM∗ is a (B, S)-bimodule with the multiplications given by, for all s ∈ S,
b ∈ B, n ∈ M∗, and m ∈ M,

(bn)(m) =
∑

b(n(m(0))m(1)), ns = n ◦ s.

(iii) Define an S-bimodule map

σ : Q⊗B M∗ → S, q⊗B n 
→
[
m 
→

∑
q(n(m(0))m(1))

]
,
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and a B-bimodule map

τ : M∗ ⊗S Q→ B, n⊗S q 
→ n ◦ q.
Then M∗ = (S, B,Q,M∗, σ, τ) is a Morita context. In view of 4.10, B  EndC(M)
andM∗  HomC(M, C). HenceM∗ is a context associated to the full subcategory of
MC consisting of the two objects (M, �M) and (C,�C); cf. [189, Proposition 5.10].
A similar context can be constructed for a left C-comodule.

5.32. Morita context associated to a comodule II [33, Section 2]. This Morita
context connects the endomorphism algebra of a comodule with the left dual ring of
a coring. Take a right comodule (M, �M) of an A-coring C.

(i) Let S = EndC(M) be the endomorphism algebra ofM and B be the opposite
algebra to the left dual ring ∗C, that is, bb′ = b′ ∗l b; see 3.25.

(ii) Let

Q =
{
q ∈ HomA(M,B) | ∀m ∈ M, c ∈ C,

∑
q(m(0))(c)m(1)

=
∑

c(1)q(m)(c(2))
}
.

ThenQ is a (B, S)-bimodule with the multiplications (bqs)(m) = bq(s(m)),
for all s ∈ S, b ∈ B, q ∈ Q, and m ∈ M. M is an (S, B)-bimodule with the
multiplications smb =∑

s(m(0)b(m(1))); cf. 4.33.
(iii) Define an S-bimodule map

σ : M ⊗B Q→ S, m⊗B q 
→ [m′ 
→ mq(m′)],
and a B-bimodule map

τ : Q⊗S M → B, q⊗S m 
→ q(m).

ThenM = (S, B,M,Q, σ, τ) is a Morita context.
Recall from 4.6 that if M is finitely generated projective as a right A-module,

then (M∗, M∗�) is a left C-comodule. In this case, the Morita context M is the same
as the Morita context M∗ in 5.31 associated to the left comodule (M∗, M∗�); see
[33, Remark 2.3].
In the case, C is a locally projective left A-module, the bimoduleQ is isomorphic

to the B-dual module HomB(M,B); see [33, Remark 2.2]. In this case,M is a Morita
context associated to the full subcategory ofMB consisting of the two objectsM and
B (cf. 5.30).
The context M controls the behavior of the functor − ⊗S M : MS → MC . If the

map σ inM is surjective, then −⊗S M is a fully faithful functor [33, Theorem 2.6].
If C is finitely generated and projective as a left A-module, then M is strict if and
only if (M, �M) is a finite Galois comodule andM is faithfully flat as a left S-module
[59, Theorem 4.12], [33, Proposition 2.7] (and hence − ⊗S M is an equivalence by
the finite Galois comodule structure theorem 5.22).

5.33. Coring extensions [41]. In case of algebras, an algebra map is the same as an
algebra extension. More explicitly, given two algebrasA and B, an algebra extension
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or an algebra map B → A can be equivalently characterized as a k-linear functor
F :MA→MB with the factorization property

MA

UA ���
��

��
��

�
F �� MB

UB����
��

��
��

Mk, ,

where UA and UB are forgetful functors (cf. [152]). Extending this functorial char-
acterization of algebra extensions, one says that a B-coring D is a (right) functorial
coring extension of an A-coring C if there exists a k-linear functor F : MC → MD

with the factorization property

MC F ��

(−)A ���
��

��
��

� MD

(−)B����
��

��
��

MA

UA ���
��

��
��

� MB

UB����
��

��
��

Mk, ,

where (−)A, and (−)B are forgetful functors. If the above diagram can be completed
commutatively by a functor MA → MB, then functorial coring extension is also
known as a cofunctor (between internal cocategories); see [8, Section 4.2].
Following [41, Definition 2.1], D is called a (right) coring extension of C if there

exists a right coaction κ : C → C⊗BD such that (C, κ,�C) is a (C,D)-bicomodule.A
coring extension is denoted by (D | C; κ). Every functorial coring extension gives rise
to a coring extension (cf. [41, (2)⇒ (1) Theorem 2.6]3). Given a functor F :MC →
MD, the coaction κ is induced from the right regular coaction�C , that is, κ = F(�C).
Conversely, given a right coring extension (D | C; κ), the functor F : MC → MD

can be defined by

F : (M, �M) 
→ (M,F(�M)),

F(�M) : M �M �� M�CC M�Cκ �� M�C(C ⊗B D)  M ⊗B D,

provided that, for all C-comodulesM, the right B-module map �M ⊗A C−M⊗A�C
is D ⊗B D-pure. An extension (D | C; κ) satisfying this purity condition is called a
pure (functorial) coring extension. For example, if D is a flat left B-module, or D is
a coring associated to an entwining structure as in 3.21, then any coring extension
(D | C; κ) is pure (hence functorial).

3 Unfortunately, the proof of the claim (1) ⇒ (2) of Theorem 2.6 in [41] is incorrect without further
assumptions discussed in this section.
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If B = A, then a coring map γ : C → D induces a coring extension (D | C; (C ⊗A
γ) ◦�C). Every coring extension (D | C; κ), in which C is a right D-comodule with
its original A-multiplication, induces an A-coring morphism γ : C → D by γ =
(εC ⊗A D) ◦ κ; see [28, Corrigendum, Lemma 1].
If D and C are corings associated to entwining structures (see 3.20 and 3.21), then

extensions (D | C; κ) correspond to morphisms of entwining structures in the sense
of [153].
Take an entwining structure (A,C)ψ and let C = A⊗C be the associatedA-coring.

Then C is a pure coring extension of C, (C | C;A⊗�C).
5.34. Morita context for a pure coring extension [33, Proposition 3.1]. Let C be
an A-coring and D be a B-coring, and let (D | C; κ) be a pure coring extension. Take
a (B, C)-bicomodule (M, �M), and set S = EndC(M). Since �M is leftB-linear, there
is an algebra map j : B→ S; hence S is a B-bimodule.

(i) View R = BHomB(D, S) as an algebra with the convolution product,
rr′(d) =∑

r(d(1))r
′(d(2)) and unit j ◦ εD, and set T to be the opposite of

the endomorphism ring CEndD(C) (i.e. the product in T is tt′ = t′ ◦ t).
(ii) Let N = BHomD(D,M) and

Q =
{
q ∈ AHomB(C,M∗) | ∀m ∈ M, c ∈ C,

∑
c(1)q(c(2))(m)

=
∑

q(c)(m(0))m(1)

}
,

where M∗ = HomA(M,A) is an (A,B)-bimodule by (afb)(m) = af(bm).
Then N is an (R, T )-bimodule with multiplications, for all n ∈ N, r ∈ R,
t ∈ T , and d ∈ D,

(rn)(d) =
∑

r(d(1))(n(d(2))), (nt)(d) =
∑

n(d)(0)εC
(
t
(
n (d) (1)

))
,

andQ is a (T, R)-bimodule with multiplications, for all q ∈ N, r ∈ R, t ∈ T ,
and c ∈ C,

qt(c) =
∑

q(c[0])t(c[1]), tq = q ◦ t,

where
∑
c[0] ⊗A c[1] = κ(c).

(iii) Define a T -bimodule map

τ : Q⊗RN → T, q⊗R n 
→
[
c 
→

∑
c(1)q(c(2)

[0])
(
n
(
c(2)

[1]))],
and an R-bimodule map

σ : N⊗T Q→ R, n⊗T q 
→
[
d 
→

∑
n(d)(0)q

(
n (d) (1)

)
(−)

]
.

Then BV = (R, T,N,Q, σ, τ) is a Morita context.
When interpreted as a category with two objects as in 5.30, the Morita context BV

arises from a category whose objects are functors: the functor F :MC →MD, which
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defines the pure coring extension (D | C; κ), and the functor HomC(M,−) ⊗B D :
MC →MD. Morphisms in this category are natural transformations.

5.35. Morita contexts and structure theorems for Galois comodules [33,
Theorems 3.6, 4.1, 4.6]. Let BV = (R, T,N,Q, σ, τ) be the Morita context
constructed in 5.34.

(1) Themap τ is surjective if and only ifM is aGalois comodule, and, as an (S,D)-
bicomodule,M is a direct summand of a finite number of copies of S⊗BD. In
particular, if τ is surjective, then the M-coinvariants functor HomC(M,−) :
MC →MS is fully faithful.

(2) TheM-coinvariants functor is an equivalence, provided the contextBV is strict,
and there exists a finite number of elements ri ∈ BHomB(D, S), di ∈ D, such
that

∑
i ri(di) = 1S . In this case,M is a finitely generated and projective right

A-module (hence a finite Galois comodule, but not necessarily faithfully flat
as a left S-module).

5.36. Cleft bicomodules and structure theorems [33, Section 5]. Let C be an
A-coring and D be a B-coring, and let (D | C; κ) be a pure coring extension. Take
a (B, C)-bicomodule (M, �M) and consider the associated Morita context BV =
(R, T,N,Q, σ, τ). If there exist q ∈ Q and n ∈ N such that

τ(q⊗R n) = C, σ(n⊗T q) = εD(−)1S,
then (M, �M) is said to be a cleft bicomodule.
Following [3, Definition 4.6], an entwining structure (A,C)ψ is said to be cleft if

A is an entwined module, and there exists a convolution invertible right C-comodule
map C → A. Set C = A ⊗ C to be the coring associated to (A,C)ψ. Then A is a
cleft bicomodule, with respect to the coring extension (C | C;A⊗�C), if and only if
(A,C)ψ is a cleft entwining structure.
Any cleft bicomodule is a Galois comodule. Furthermore, theM-coinvariants func-

tor of a cleft bicomodule (M, �M) is fully faithful, and it is an equivalence, provided
there exists a finite number of elements ri ∈ BHomB(D, S), di ∈ D, such that∑
i ri(di) = 1S .

5.5. Bialgebroids

A bialgebroid is a generalization of the notion of a bialgebra to the case of a noncom-
mutative base ring. Thus, this is a coring with a compatible algebra structure. The
structure of bialgebroids and Hopf algebroids is treated in full in [25]. Here, we only
give the most basic definitions.

5.37. Ae-rings. Let Ae = A ⊗ Aop be the enveloping algebra of an algebra A. An
algebra H is an Ae-ring if and only if there exist an algebra map s : A → H and
an antialgebra map t : A → H such that s(a)t(b) = t(b)s(a), for all a, b ∈ A. A is
called a base algebra, H a total algebra, s the source map and t the target map. To
indicate explicitly the source and target maps, we write (H, s, t).
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5.38. The Takeuchi product [179, 181]. Take a pair of Ae-rings (U, sU, tU) and
(V, sV , tV ), view U as a right A-module via the left multiplication by the target map
tU and view V as a left A-module via the left multiplication by the source map sV . A
Takeuchi ×A-product is then defined as

U ×A V :=
{∑

i

ui ⊗A vi∈M⊗AN | ∀ b∈A,
∑
i

uitU(b)⊗A vi=
∑
i

ui ⊗A visV (b)
}
.

The importance of the notion of the Takeuchi×A-product is a direct consequence of
the following observation ([179, Proposition 3.1], [181, Proposition 3.1]).

Lemma. For any pair ofAe-rings (U, sU, tU) and (V, sV , tV ), theAe-bimoduleU×AV
is anAe-ring with source a 
→ sU(a)⊗A1V and target a 
→ 1U⊗A tV (a), associative
product (∑

i
ui ⊗A vi

) (∑
j
ũj ⊗A ṽj

)
=

∑
i,j
uiũj ⊗A viṽj,

and unit 1U ⊗A 1V .

5.39. Bialgebroids [131,181]. Let (H, s, t) be anAe-ring. ViewH as anA-bimodule
by ah = s(a)h, ha = t(a)h, for all a ∈ A, h ∈ H.We say that (H, s, t,�H, εH) is a
left A-bialgebroid if

(1) (H,�H, εH) is an A-coring;
(2) Im(�H) ⊆ H ×A H and the corestriction of �H to �H : H → H ×A H is

an algebra map;
(3) εH(1H) = 1A, and, for all g, h ∈ H,

εH(gh) = εH (gs(εH(h))) = εH (gt(εH(h))) .

5.40. The monoidal structure of the category of (co) modules [165]. Let (H, s, t)
be an Ae-ring. ThenH is an A-bialgebroid if and only if HM is a monoidal category
such that the forgetful functor F : HM→ AMA is strict monoidal.
Furthermore, if H is an A-bialgebroid, the category HM of left comodules of the

A-coringH is monoidal with the tensor product defined by

(M,M�)⊗ (N, N�) = (M ⊗A N,M⊗AN�),
where, writing M�(m) = ∑

m(−1) ⊗A m(0), N�(n) = ∑
n(−1) ⊗A n(0), for the left

H-coactions,

M⊗AN� : m⊗A n 
→
∑

m(−1)n(−1) ⊗A m(0) ⊗A n(0).

The right A-multiplication on a leftH-comodule (M,M�) is given by

ma =
∑

εH(m(−1)s(a))m(0).
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This is a unique right A-module structure which makes H an A-bimodule and such
that the image of the coaction M� is contained in the Takeuchi productH×A M; see
[23, Section 2.2].

6. Applications

6.1. Hopf modules

Recent interest in the theory of corings has arisen from their connection with Hopf-
type modules, studied in Hopf algebra theory since the 1960s. This connection is
provided through the observation that all such Hopf-type modules can be interpreted
as entwined modules and hence as comodules of corings. In this section, we merely
list the known types of Hopf modules and describe the corresponding entwining
structures. More details can be found in [53, 68].

6.1. Bialgebras and Hopf algebras. A bialgebra can be defined as a special case
of an A-bialgebroid by specifying A to be k. Explicitly, a bialgebra is a k-module B
such that (B,μB, 1B) is a k-algebra, (B,�B, εB) is a k-coalgebra, and both �B and
εB are algebra maps, that is, for all a, b ∈ B,

εB(ab) = εB(a)εB(b), εB(1B) = 1,
and

�B(ab) =
∑

a(1)b(1) ⊗ a(2)b(2), �B(1B) = 1B ⊗ 1B.
Abialgebra B is called a Hopf algebra if there exists a k-linear map S : B→ B such
that

μB ◦ (B⊗ S) ◦�B = 1B ◦ εB = μB ◦ (S ⊗ B) ◦�B.
Themap S is called an antipode. For more details about bialgebras and Hopf algebras,
the reader is referred, for example, to [75].

6.2. Comodule algebras and module coalgebras. Let B be a bialgebra.An algebra
A is called a rightB-comodule algebra if there exists an algebramap �A : A→ A⊗B
such that (A, �A) is a right B-comodule. The algebra map property of �A means that,
for all a, b ∈ A,

�A(ab) =
∑

a(0)b(0) ⊗ a(1)b(1), �A(1B) = 1A ⊗ 1B.
Dually, a coalgebra C is called a right B-module coalgebra if C is a right B-module
and, for all b ∈ B and c ∈ C,

�C(cb) =
∑

c(1)b(1) ⊗ c(2)b(2), εC(cb) = εC(c)εB(b).

6.3. Hopf modules. Let B be an algebra and a coalgebra. The k-linear map

ψ : B⊗ B→ B⊗ B, b′ ⊗ b 
→
∑

b(1) ⊗ b′b(2),
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entwines B with B if and only if B is a bialgebra.An entwined module corresponding
to (B, B)ψ is a right B-comoduleM such that for all m ∈ M and b ∈ B,

�M(mb) =
∑

m(0)b(1) ⊗m(1)b(2).

Any suchM is known as a Hopf module, a notion introduced and studied already in
[129,177].
Thus ifB is a bialgebra, thenC = B⊗B is aB-coringwith coproduct�C = B⊗�B,

counit εC = B⊗ εB, and the B-bimodule structure
b(b′ ⊗ b′′)c =

∑
bb′c(1) ⊗ b′′c(2),

for b, b′, b′′, c ∈ B. The category of right C-comodules is the same as the category of
(right) B-Hopf modules.

6.4. Relative Hopf modules. Let B be a bialgebra and let A be an algebra together
with a k-linear map �A : A→ A⊗ B, a 
→∑

a(0) ⊗ a(1). Then the map

ψ : B⊗ A→ A⊗ B, b⊗ a 
→
∑

a(0) ⊗ ba(1),

entwines A with B if and only if (A, �A) is a right B-comodule algebra (cf. [63,
Lemma 4.1]). The corresponding entwined modules are right A-modules and right
B-comodules (M, �M) such that, for all m ∈ M and a ∈ A,

�M(ma) =
∑

m(0)a(0) ⊗m(1)a(1).

Such a module is known as a relative (B,A)-Hopf module, a notion introduced in
[182] (cf. [83]).
Thus if A is a right B-comodule algebra, then C = A ⊗ B is an A-coring with

coproduct �C = A ⊗ �B, counit εC = A ⊗ εB, and the A-bimodule structure, for
a, a′, a′′ ∈ A and b ∈ B,

a′′(a⊗ b)a′ =
∑

a′′aa′(0) ⊗ ba′(1).

The category of right C-comodules is the same as the category of relative (B,A)-Hopf
modules.
Dualizing the above construction, one entwines a bialgebraB and a rightB-module

coalgebra C by the map

ψ : C ⊗ B→ B⊗ C, c⊗ b 
→
∑

b(1) ⊗ cb(2).

The corresponding B-coring C = B ⊗ C has a coproduct �C = B ⊗ �C, counit
εC = B⊗ εC, and the (B, B)-bimodule structure, for b, b′, b′′ ∈ B, and c ∈ C,

b′′(b⊗ c)b′ =
∑

b′′bb′(1) ⊗ cb′(2).
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Comodules over C are identified with right C-comodules right B-modules M such
that the coaction is compatible with the action via

�M(mb) =
∑

m(0)b(1) ⊗m(1)b(2).

Such anM is called a [B,C]-Hopf module [83].
6.5. Doi–Koppinen Hopf modules. All the above examples of Hopf modules are
special cases of Doi–Koppinen Hopf modules introduced in [84, 126]. In this case,
one starts with a triple (B,A,C), where B is a bialgebra, A is a right B-comodule
algebra, and C is a right B-module coalgebra. A is then entwined with C by the map

ψ : C ⊗ A→ A⊗ C, c⊗ a 
→
∑

a(0) ⊗ ca(1),

where �A(a) =∑
a(0)⊗a(1) ∈ A⊗B is theB-coaction onA. Thus the corresponding

A-coring C = A⊗C has the coproduct�C = A⊗�C, counit εC = A⊗ εC, and the
A-bimodule structure, for a, a′, a′′ ∈ A, and c ∈ C,

a′(a′′ ⊗ c)a =
∑

a′a′′a(0) ⊗ ca(1).

Right C-comodules are identified with right A-modules and right C-comodules M
with the action-coaction compatibility, for all a ∈ A and m ∈ M,

�M(ma) =
∑

m(0)a(0) ⊗m(1)a(1).

The triple (B,A,C) satisfying above conditions is known as a Doi–Koppinen
datum. Doi–Koppinen data were considered in [126, Definition 2.1], where they
were termed opposite smash data. This was the first (recorded) step toward under-
standing Doi–Koppinen Hopf modules as representations of an algebraic structure
(hence, toward viewing Hopf modules as comodules of a coring). Finally, the entwin-
ing structure associated to a Doi–Koppinen datum was first introduced in [36]. The
left dual algebra of the coringA⊗C is isomorphic to the Koppinen (opposite) smash
product algebra [126]. Many properties and applications of Doi–Koppinen structures
are studied in the monograph [68].

6.6. Yetter–Drinfeld modules. Given a Hopf algebra H with antipode S, a (right–
right) Yetter–Drinfeld module is a right H-module and a right H-comodule (M, �M)
such that, for all m ∈ M and h ∈ H ,

�M(mh) =
∑

m(0)h(2) ⊗ (Sh(1))m(1)h(3)
[158,201]. As explained in [66,67], Yetter–Drinfeld modules are an example of Doi–
Koppinen Hopf modules, hence entwined modules. The entwining map is

ψ : H ⊗H → H ⊗H, h′ ⊗ h 
→
∑

h(2) ⊗ (Sh(1))h′h(3).
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Thus Yetter–Drinfeld modules are right comodules over the H-coring C = H ⊗ H
with coproduct�C = H ⊗�H , counit εC = H ⊗ εH , and theH-bimodule structure,
for all h, h′, h′′, k ∈ H ,

k(h′′ ⊗ h′)h =
∑

kh′′h(2) ⊗ (Sh(1))h′h(3).

6.7. Anti-Yetter–Drinfeld modules. This most recent addition to Hopf modules
appeared in [107, 108, 113] as coefficients for Hopf-cyclic homology [77]. Let H be
a Hopf algebra with a bijective antipode S. An anti-Yetter–Drinfeld module is a right
H-module and H-comoduleM with the action-coaction compatibility condition, for
all a ∈ H , m ∈ M,

�M(ma) =
∑

m(0)a(2) ⊗ S−1(a(1))m(1)a(3).

As explicitly explained in [43], anti-Yetter–Drinfeld modules are entwined modules
for the entwining map ψ : H ⊗H → H ⊗H given by

ψ(c⊗ a) =
∑

a(2) ⊗ S−1(a(1))ca(3),

for all a, c ∈ H . The existence of entwining means that C = H ⊗H is an H-coring
with coproduct�C = H ⊗�H , counit εC = H ⊗ εH , and theH-bimodule structure,
for all h, h′, h′′, k ∈ H ,

k(h′′ ⊗ h′)h =
∑

kh′′h(2) ⊗ S−1(h(1))h′h(3).

Anti-Yetter–Drinfeld modules are right comodules over the coring C.
In the definition of both Yetter–Drinfeld and anti-Yetter–Drinfeld modules, the

important property is that the antipode is an antibialgebra map and the identity map
is a bialgebra map. Following this observation, the notion of (α, β)-equivariant
C-comodules was introduced in [150]. The defining data comprise a bialgebra
A, A-bimodule coalgebra C, a bialgebra map α : A → A, and an antibialgebra
map β : A→ A (i.e. β is both an antialgebra and anticoalgebra map). All these data
give rise to an entwining map ψ : C ⊗ A→ A⊗ C,

ψ(c⊗ a) =
∑

a(2) ⊗ β(a(1))cα(a(3)),
and thus to anA-coringC = A⊗Cwith coproduct�C = A⊗�C, counit εC = A⊗εC,
and the A-multiplication

a′(a′′ ⊗ c)a =
∑

a′a′′a(2) ⊗ β(a(1))cα(a(3)).
The (α, β)-equivariant C-comodules are simply comodules over C.
6.8.WeakDoi–Koppinenmodules. The notion of aweak bialgebrawas introduced
in [32, 145] (cf. [30]), by weakening the axioms of a bialgebra. A weak k-bialgebra
H is a k-module with a k-algebra structure (μH, 1H) and a k-coalgebra structure
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(�H, εH) such that �H is a multiplicative map and

(�H ⊗H) ◦�H(1H) =
∑

1H(1) ⊗ 1H(2)1H(1′) ⊗ 1H(2′)
=

∑
1H(1) ⊗ 1H(1′)1H(2) ⊗ 1H(2′),

εH(hkl) =
∑

εH(hk(1))εH(k(2)l) =
∑

εH(hk(2))εH(k(1)l)

for all h, k, l ∈ H . Here �H(1H) =∑
1H(1) ⊗ 1H(2) =∑

1H(1′) ⊗ 1H(2′).
Given a weak bialgebra H , a right H-comodule algebra is defined in [22, Def-

inition 2.1] (cf. [56, Proposition 4.12]) as a k-algebra A with a right H coaction
�A : A→ A⊗H such that, for all a, b ∈ A,

�A(ab) = �A(a)�A(b),
∑

a(0)⊗εH(1H(1)a(1))1H(2) =
∑

1A(0)a⊗1A(1).
Dually, a rightH-module coalgebra is defined as a coalgebra (C,�C, εC) and a right
H-module such that, for all h, k ∈ H , and c ∈ C,

�C(ch) =
∑

c(1)h(1) ⊗ c(2)h(2), εC(chk) =
∑

εC(ch(2))ε(h(1)k).

Given a right H-comodule algebra A and a right H-module coalgebra C, one
defines a k-linear map

ψ : C ⊗ A→ A⊗ C, c⊗ a 
→
∑

a(0) ⊗ ca(1).
The triple (A,C,ψ) is a right-right weak entwining structure (cf. [56, Theorem 4.14]),
and hence there is an associatedA-coring C as described in 3.23. The comodules over
this coring are identified with right A-modules and right C-comodulesM that satisfy
the action–coaction compatibility condition

�M(ma) =
∑

m(0)a(0) ⊗m(1)a(1).
Such modules were first introduced and studied in [22] and are termed weak Doi–
KoppinenHopf modules.A triple comprising aweak bialgebraH , a rightH-comodule
algebra A, and a right H-module coalgebra C is known as a weak Doi–Koppinen
datum.

6.9. Hopf modules as comodules of a coring. Once it is realized that all known
types of Hopf modules can be seen as comodules of specific corings, the general
results of the coring theory can be used to gain information about Hopf modules.
In all cases, the coring arises from an entwining structure (A,C)ψ hence is of the
type C = A ⊗ C. The defining adjunction (−)A,− ⊗A C can be identified with the
adjunction

(−)A :MC
A(ψ)→MA, −⊗ C :MA→MC

A(ψ),

where, for any right A-module V , V ⊗ C is a right C-comodule by V ⊗ �C and a
right A-module by (v ⊗ c)a = vψ(c ⊗ a). Using knowledge about the category of
comodules over a coring, one thus derives conditions for a category of specific Hopf
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modules to beGrothendieck or to be a full subcategory of the category ofmodules over
the corresponding smash (i.e. twisted convolution) algebra. Furthermore, properties
of the functors − ⊗ C and (−)A such as separability or the Frobenius property are
derived from properties of the defining adjunction of the coring C = A⊗C and thus
correspond to C being a cosplit, coseparable, or Frobenius coring. More geometric
properties such as the interpretation ofHopfmodules asmoduleswith flat connections
discussed in [121] are a direct consequence of the interpretation of comodules over
a coring as flat connections. Similar comments apply to weak Doi–Koppinen Hopf
modules.
There are, however, limitations as to this use of corings in description of Hopf

modules. First, every class of Hopf modules has its specific properties, which are not
captured by the definition of a coring. For example, the category of Yetter–Drinfeld
modules is a braided monoidal category. This property and its consequences cannot
be derived from the general properties of corings (without specifying the coring
precisely). Second, the notion of an entwining structure is self-dual in the sense that
replacing A by C, μA by �C, 1A by εC, and reversing all the arrows in the Diagram
3.20 produces exactly the same conditions. Using this self-duality, one can translate
properties of functors (−)A, −⊗ C into corresponding properties of functors

(−)C :MC
A(ψ)→MC, −⊗ A :MC →MC

A(ψ),

where (−)C is the forgetful functor and, for any right C-comodule V , the C-coaction
for V ⊗ A is v ⊗ c 
→ ∑

v(0)ψ(v(1) ⊗ a). Obviously, there can be no functor such
as (−)C for a general A-coring C. Thus to have a more unifying point of view on
these properties of Hopf modules, one needs to study algebras in the category of
bicomodules over a coalgebra C or C-rings; see Section 7.2.

6.2. Noncommutative differential geometry

We have already seen in 3.16 that corings with a group-like element give rise to
(semifree) differential graded algebras. Furthermore, as explained in 4.23, comodules
over a coringwith a group-like element are the same asmodules with a flat connection
(with respect to the induced differential graded algebra). This is one of the situations,
where corings relate to noncommutative geometry. The second is the appearance of
comodules over a coring (of the anti-Yetter–Drinfeld type) as coefficients for the
Hopf-cyclic homology; see 6.7. Another one is the geometry of noncommutative
principal bundles. As this is not a text about geometry or addressed to geometers, we
recall briefly the basic notions, andwe provide an algebraic description of a geometric
situation that makes it possible to relate noncommutative principal bundles to Galois
type extensions. For a detailed and easy accessible noncommutative description of
classical bundles, we refer to [15].

6.10. Free actions and principal bundles. Let X be a compact Hausdorff space
andG a compact group. The action ofG onX is said to be free if the property xg = x
for any x ∈ X implies that g = u, the group identity.
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Consider the map F̃GX : X ×G→ X × X, (x, g) 
→ (x, xg). The freeness of the
G-action on X means, equivalently, that the map F̃GX is injective. Write Y = X/G

and let π : X→ Y , x 
→ xG, be the canonical surjection. Let X×Y X := {(x, y) ∈
X × X | π(x) = π(y)}. Clearly, X ×Y X = Im F̃GX ; so, the action of G on X is free
if and only if

F̃GX : X×G→ X×Y X, (x, g) 
→ (x, xg),

is bijective.
Given a free action of G on X, the function τ̂ : X ⊗Y X → G, (x, xg) 
→ g, is

called a translation function. X is called aG-principal bundle over Y if and only if τ̂
is continuous. X is called the total space, Y is called the base space, and G is called
the structure group or the fiber.

6.11. Algebras of functions on X, G, Y and X ×Y X. Consider now algebras of
(complex, polynomial – thus we assume that all spaces are embedded inCn) functions
A = O(X) and H = O(G). Use the identification O(G × G)  O(G) ⊗ O(G) to
see that H is a Hopf algebra with the coproduct �H(f )(g, h) = f(gh) and counit
εH(f ) = f(u), where u is the neutral element ofG. The action ofG on X translates
into the coaction of H on A �A : A → A ⊗ H , �A(a)(x, g) = a(xg). Obviously,
since both H and A are commutative algebras, �A is an algebra map; hence A is a
right H-comodule algebra.
Let B = O(Y ), the algebra of (polynomial) functions on Y = X/G. We can view

B as a subalgebra of A via the pullback of π : X → Y , that is, via the function
π∗ : B→ A, b 
→ b◦π.The map π∗ is injective, since b �= b′ means that there exists
at least one coset xG such that b(xG) �= b′(xG). But xG = π(x); so we conclude
that π∗(b)(x) �= π∗(b′)(x). Furthermore, a ∈ π∗(B) if and only if a(xg) = a(x), for
all x ∈ X, g ∈ G. This is the same as �A(a)(x, g) = (a ⊗ 1)(x, g), for all x ∈ X,
g ∈ G, where 1 : G→ k is the unit function 1(g) = 1 [the unit of the Hopf algebra
H = O(G)]. Thus, we can identify B with the coinvariants:

B = AcoH := {a ∈ A | �A(a) = a⊗ 1H }.
Since �A is an algebra map, AcoH can be described equivalently as

AcoH = {b ∈ A | ∀a ∈ A, �A(ba) = b�A(a)}.
B is a subalgebra ofA (via the map π∗), hence it acts onA through the inclusion map,
(bab′)(x) = b(π(x))a(x)b′(π(x)). We can identify O(X ×Y X) with O(X) ⊗O(Y)
O(X) = A⊗B A, via the map θ(a⊗B a′)(x, y) = a(x)a′(y), with π(x) = π(y).
6.12. Principal bundles as Hopf–Galois extensions. With X, G, Y as before, the
action of G on X is free if and only if the map

FGX
∗ : O(X×Y X)→ O(X×G), f 
→ f ◦ FGX ,

is bijective. In view of the identifications in 6.11, FGX
∗
is the canonical map

canA : a⊗B a′ 
→ [(x, g) 
→ a(x)a′(xg)] = a�A(a′).
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Thus the action of G on X is free if and only if the map canA is bijective, that is,
the extension of algebras B ⊆ A is a Hopf-Galois extension by H . Here A = O(X),
H = O(G), and B = O(X/G).
To deal with the topological aspects, one needs to consider C∗-algebras of contin-

uous functions (in which, by the Stone-Weierstrass theorem, the polynomial algebras
are dense subalgebras) and complete tensor products.

6.13. Coalgebra-Galois extensions. The algebraic formulation of the notion of a
principal bundle leads to the following definition. Let C be a k-coalgebra and A a
k-algebra and a right C-comodule with coaction �A : A → A ⊗ C. Let B be the
subalgebra of coinvariants of A,

B :={b∈A | ∀a∈A, �A(ba) = b�A(a)}.
We say that B ⊆ A is a coalgebra extension by C or a C-extension. The extension
B ⊆ A is called a coalgebra-Galois extension (or a C-Galois extension) if the canon-
ical left A-module, right C-comodule map

canA : A⊗B A→ A⊗ C, a⊗B a′ 
→ a�A(a′),

is bijective.
The notion of aC-Galois extension in this generality and in this formwas introduced

in [46], extending the definition of a coalgebra principal bundle in [49]. In the case
when C is a Hopf algebra and A is a C-comodule algebra (i.e. the coaction �A is
an algebra map), a coalgebra-Galois extension is known as a Hopf–Galois extension,
a notion introduced in [127] (and rooted in an algebraic approach to Galois theory
[73]). The discovery of examples of noncommutative spaces such as quantum spheres
[155] made it clear that the notion of a Hopf–Galois extension is too rigid to capture
all the geometrically interesting algebras, hence the introduction of a more general
Galois-type extensions in [49].

6.14. Canonical entwining for a coalgebra-Galois extension [46, Theorem 2.7].
Let A be a C-Galois extension of B. Then, there exists a unique entwining map
ψ : C⊗A → A⊗C such that A ∈ MC

A(ψ) by the structure maps μA and �A. The
map ψ is called the canonical entwining map associated to a C-Galois extension
B ⊆ A.
Sketch of proof. The entwining map ψ is given by

ψ : c⊗ a 
→ canA
(
can−1A (1A ⊗ c) a

)
,

where canA is the canonical map in 6.13. ��
6.15. Coalgebra-Galois extension as a Galois coring. By 6.14 and 3.21, if
B ⊆ A is a C-Galois extension, then C = A ⊗ C is an A-coring with coproduct
�C = A ⊗ �C, counit εC = A ⊗ εC, and A-multiplications a′′(a′ ⊗ c)a = a′′a′

canA
(
can−1A (1A ⊗ c) a

)
. Since A is an entwined module, it is a right C-comodule;

hence there exists a group-like element g; see 4.12. Since the C-coaction (induced
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by g) on A is the same as the C-coaction �A, necessarily, g = �A(1A). Again, since
A is an entwined module, one finds that C-coinvariants B can be described differ-
ently as B = {b ∈ A, | �A(b) = b�A(1A)}. Remember that the C-coaction on A is
�A(a) = ga. Hence b is an element of B if and only if

gb = �A(b) = b�A(1A) = bg.
Thus B is the same subalgebra of A as g-coinvariants Ag in A. The canonical map
canA in 6.13 coincides with the canonical map canA in 5.20. Therefore, if B ⊆ A is
a C-Galois extension, then A is a Galois C-comodule [with respect to the group-like
element �A(1A)].
Conversely, if we are starting from an entwining structure (A,C)ψ such that C =

A ⊗ C is a Galois A-coring, that is, A is a Galois comodule, then A is a C-Galois
extension (of C-coinvariants).
Thus the general theory of coalgebra-Galois extensions (understood as rudimentary

noncommutative principal bundles) is a special case of the theory of (finite) Galois
comodules.

6.16. Principal extensions. Although a coalgebra-Galois extension is a first approx-
imation to a noncommutative principal bundle, it does not have all desired geometric
properties. One of missing properties is the existence of a connection or local trivial-
ity. The definition of a noncommutative principal bundle, which appears to fill these
gaps, was proposed in [47]. Since in differential geometry one is interested in algebras
over a field (typically the field of complex numbers) in this item, we assume that k is
a field.
AC-Galois extension B ⊆ A is called a principal extension if
(a) the canonical entwining map ψ is bijective,
(b) the multiplication mapB⊗A→ A has a leftB-linear rightC-colinear section

(i.e. A is a C-equivariantly projective left B-module),
(c) there exists a group-like element x ∈ C such that �A(1A) = 1A ⊗ x.
From the algebraic point of view, (c) is a minor condition and is needed only for

differential-geometric reasons. Since A is an entwined module, it is equivalent to the
requirement that �A(a) = ψ(x⊗ a).
If B ⊆ A is a principal extension, then A is a principal Galois comodule of the

associated A-coring C = A ⊗ C (this is the original motivation for introducing
principal Galois comodules over a coring).
In geometrically interesting cases (e.g. when C is a compact quantum group), the

coalgebra C is a coseparable coalgebra (i.e. it has a cointegral; cf. 5.3). Applying the
structure theorem for principal comodules 5.26 to this particular setup, one finds that
for an extension to be principal, it is sufficient to assume that the canonical map canA
is surjective. More precisely, there is:

Theorem [40, Theorem 4.6], [166, Theorem 5.9]. Let k be a field and (A,C)ψ an
entwining structure such that the map ψ is bijective. Suppose that x ∈ C is a group-
like element and view A as a right C-comodule with the coaction �A : A→ A⊗ C,
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a 
→ ψ(x⊗ a). If C is a coseparable coalgebra and the (lifted) canonical map

c̃anA : A⊗ A→A⊗ C, a⊗ a′ 
→ a�A(a′),

is surjective, then A is a principal C-extension of the coinvariants B.

Principal extensions allow one to make a connection between the corepresentation
theory of coalgebras C and the cyclic homology of B. This connection is provided by
the Chern–Galois character. Its description goes beyond the scope of this chapter,
and we refer the interested reader to the note [47] and to paper [26] for more detailed
and general formulation.

6.3. Noncommutative algebraic geometry

To the best of our knowledge, there are at least three approaches to noncommutative
algebraic geometry in which corings play some role. The terminology is specific to
each one of these approaches.

6.3.1. Approach through Grothendieck categories. This is an approach to noncom-
mutative algebraic geometry advocated by Rosenberg [163,164] and Van den Bergh
[186]. Although corings do not seem to play as fundamental role as in two other
approaches described in subsequent sections, the category of comodules appears to
have a geometric meaning. Also, specific properties of the category of comodules
have geometric interpretation. Here, we simply translate some of the properties of
comodules into the language of noncommutative algebraic geometry.On the algebraic
geometry side, we follow the terminology of [172,173].

6.17. Spaces as Grothendieck categories. A noncommutative space X is a
Grothendieck category, denotedModX.A standard classical (motivating) example of
a space is the category of quasi-coherent sheaves on a quasi-compact, quasi-separated
scheme.
Since a category of right modules over an algebra A is a Grothendieck category, it

is a noncommutative space.AspaceX equivalent (as a category) to amodule category
MA is called a noncommutative affine space. The algebraA is known as a coordinate
ring of X. Making use of the Gabriel–Popescu theorem [156], one concludes that
X is an affine non-commutative space if and only if ModX has a finitely generated
projective generator U. In this case A ModX(U,U); see [174, p. 223].

6.18. Maps between noncommutative spaces. A map X→Y between two non-
commutative spaces is defined as an adjoint pair of functors f = (f ∗, f∗), f ∗ :
ModY →ModX, f∗ :ModX→ModY . The functor f ∗ is referred to as the inverse
image and f∗ is termed the direct image.
The map f = (f ∗, f∗) is said to be affine if f∗ is faithful and has a right adjoint.

6.19. Comodules as a noncommutative space. Let C be an A-coring. In view
of 4.30, if C is a flat left A-module, then the category of right C-comodules MC
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is a Grothendieck category. Hence, in this case, MC is a noncommutative space.
Furthermore, since the forgetful functor (−)A : MC → MA has the right adjoint
−⊗AC :MA→MC , there is amorphism of noncommutative spaces ((−)A,−⊗AC)
fromMC toMA.
If C is finitely generated and projective as a left A-module, then, in view of 4.38,

MC is an affine noncommutative space with coordinate ring B = (∗C)op.
In view of the finite Galois comodule structure theorem 5.22, if C is flat as a left

A-module and there exists a finite Galois comodule (M, �M)which is faithfully flat as
a leftmodule over its coinvariant ringEndC(M), thenMC is an affine noncommutative
space with the coordiante ring EndC(M).

6.20. Weakly closed subspaces. A subspace Y of a noncommutative space X is a
full subcategory ModY of ModX, which is closed under direct sums, kernels, and
isomorphisms. A subspace Y is said to be weakly closed if ModY is closed under
subquotients and the inclusion functor ModY → ModX has a right adjoint; see
[173, Definition 2.4].
For an A-coring C, MC = σ[C] if and only if C is a locally projective left

A-module.Wisbauer’sσ-category is closed under direct sums, kernels, isomorphisms,
and subquotients. ThusMC is the smallest weakly closed subspace of the affine non-
commutative space with the coordinate ring, B = (∗C)op containing C if and only if
C is a locally projective left A-module.
6.21. Integral spaces. Anoncommutative spaceX is said to be integral ifModX =
σ[E] for an indecomposable injective object E ofModX whose endomorphism ring
is a division ring; see [172, Definition 3.1], [151, Definition 7.1].
Thus, if C is an A-coring, locally projective as a left A-module, indecomposable

and injective as a C-comodule and such that the right dual algebra C∗ is a division ring,
thenMC is an integral noncommutative space. Note that if C is a simple C-comodule,
then it is indecomposable and C∗ is a division ring (by the Schur lemma). On the other
hand, any (locally projective as a left A-module) coring C over an injective ring A is
injective inMC ; [53, 18.19].
In view of [151, Theorem 3.7], if C is finitely generated as a left A-module, then

MC is an integral (affine) space if and only if the left dual algebra ∗C is a prime ring,
that is C is a prime coring in the sense of [98].

6.3.2. Approach through covers. This is an approach to noncommutative algebraic
geometry in which corings play a central role. Initiated in [123] it is fully developed
in the series of papers [124].

6.22. Finite covers and quasi-coherent sheaves. An A-coring C that is faithfully
flat as a left A-module is called a finite cover. Covers are denoted by (A, C). Right
C-comodules are called quasi-coherent sheaves. In the context of noncommutative
geometry,MC is denoted by Qcoh(A, C). The category of covers Covers is defined
as a full subcategory of the opposite of the category of corings Crg consisting of all
corings, which are faithfully flat as left modules (over their base rings); compare 3.7.
Thus a morphism of covers (A, C) → (B,D) is a pair of maps (α, γ), α : B → A,
γ : D → C such that α is algebra map and A⊗B γ ⊗B A is an A-coring map.
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6.23. Refinements and space covers. Given an inclusion of algebras α : B → A

and a B-coringD, consider the base algebra extension coring C = A⊗BD⊗B A; see
3.6. There is a coring morphism (γ, α) : D → C, where γ : d 
→ 1A⊗B d⊗B 1A. IfA
andD are faithfully flat as left B-modules, then C is faithfully flat as a leftA-module;
hence it is a cover. In this case, the coring morphism (γ, α) induces a morphism of
covers (A, C) → (B,D) (note the direction of the arrow). Any morphism of this
type is called a refinement morphism. The class of refinement morphisms in Covers
is denoted by Ref.
A cover (A, C) is called a space cover if there is an A-coring epimorphism

sC : A⊗A→ C (whereA⊗A is the Sweedler coring corresponding to 1A : k→ A).
In other words, a space cover is an A-coring C generated as a bimodule by a group-
like element and faithfully flat as a left A-module. Space covers are denoted by
(C, sC). Morphisms of space covers are morphisms of covers compatible with struc-
ture maps sC , sD [i.e. sending the group-like element sC(1A ⊗ 1A) to the group-
like element sD(1B ⊗ 1B)]. The resulting category of space covers is denoted by
Coverssp.

6.24. Equivalent morphisms of covers and noncommutative spaces. Two mor-
phisms (α, γ), (α′, γ ′) : (C, sC)→ (D, sD) of space covers are said to be equivalent
if, for any element

∑
i xi ⊗ yi ∈ ker sD,∑

i

α(xi)α
′(yi) =

∑
i

α′(xi)α(yi) = 0.

Aquotient category ofCoverssp by this equivalence relation is denoted by ˜Coverssp.
A noncommutative space is defined as an object of the localization of ˜Coverssp with
respect to the class of refinements Ref.

6.3.3. Approach through monoidal categories. This, the most recent proposal
for noncommutative algebraic geometry, was made in [133] and is based on the
premise that noncommutative schemes should be understood as monoidal categories;
see 2.13.

6.25.Noncommutative schemes. Anoncommutative scheme is anAbelianmonoidal
category (Qcoh(X),�X,OX) (�X is multiplication, OX is a unit). A morphism
of noncommutative schemes is an isoclass of an additive monoidal functor G :
(Qcoh(X),�X,OX) → (Qcoh(Y ),�Y ,OY ), which has a left adjoint. If A is a
k-algebra, then (AMA,⊗A,A) is called a non-commutative affine scheme. A non-
commutative affine scheme corresponding to A is denoted by Spec(A).

6.26. Morphisms of affine schemes and representations. A B|A-coring C (cf.
3.27) is termed a representation of an algebra B over an algebraA. By the Eilenberg-
Watts theorem (see [192, Theorem 6] or e.g. [174, Chapter IV, Proposition 10.1]),
every additive functor between bimodule categories AMA→ BMB, which has a left
adjoint, can be represented asG = AHomA(C,−). Thus, by 3.27, there is a one-to-one
correspondence between morphisms of affine schemes and representations (or B|A-
corings).
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6.27. Flat covers. In the set-up of 6.26, the left adjoint of G is the tensor functor
F = −⊗Bop⊗B C. The A-coring structure on C induces an A-coring structure on

D = F(B) = B⊗Bop⊗B C = C/[C, B],
where [C, B] is the commutator submodule of C. For any B-bimodules M and N,
theunitηandcounitψ of theadjunction (F,G) induceamorphism(natural inM andN)

F2M,N : F(M ⊗B N) F(ηM⊗BηN) �� F(GF(M)⊗B GF(N))
F(G2F(M),F(N )) �� FG(F(M)⊗A F(N))

ψF(M)⊗AF(N ) �� F(M)�DF(N) .

Amorphism of affine schemesG is said to be a flat cover if the left adjoint F ofG is
faithful and the maps F2M,N are isomorphisms for all B-bimodulesM, N.

6.28. Galois extensions. Let (D, ι) be aB|A-coring. The map ι : B→ ∗D∗ is called
a noncommutative Galois ring extension if there exists anA-coring C and anA-coring
morphism φ : D → C such that
(a) the category of C-bicomodules is anAbelian monoidal category with multipli-

cation �C ;
(b) (D ⊗A φ ⊗A D) ◦ ((�D ⊗A D)− (D ⊗A �D)) is a pure morphism of

B-bimodules;
(c) B is isomorphic to the algebra of coinvariants CHomC(D, C) (cf. 4.18);
(d) B⊗D → D�CD, b⊗ d 
→∑

d(1)ι(b)(d(2))⊗A d(3), is an isomorphism;
(e) D is a faithfully flat left Bop ⊗ B-module;
(f) the map of A-corings

φ̄ : D/[D, B] → C,
defined byφ = φ̄◦p, wherep : D → D/[D, B] is the canonical epimorphism,
is an isomorphism;

(g) for all A-bimodulesM, the map

θM : AHomA(D,M)⊗Bop⊗B D → C ⊗A M ⊗A C,
f ⊗ d 
→

∑
φ(d(1))⊗A f(d(2))⊗A φ(d(3)),

is an isomorphism (natural inM).

From the point of view of Galois comodules studied earlier, the key (Galois) prop-
erties are (c) and (f). More specifically, let C be an A-coring and (M, �M) be a right
C-comodule that is finitely generated and projective as an A-module. Set B =
EndC(M), T = EndA(M), andD = M∗ ⊗M [the (finite) comatrix coring]. SinceM
is a finitely generated and projective right A-module,

∗D∗ = AHomA(M
∗ ⊗M,A)  EndA(M) = T,

so that there is an algebra inclusion ι : B ↪→ ∗D∗. Thus (D, ι) is a B|A-coring. Let
φ : D = M∗ ⊗M → C, ξ ⊗m 
→

∑
ξ(m(0))m(1),
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be the (lifted) canonical map; see 5.26, 4.18. Then B = CHomC(D, C) (cf. 4.18);
so condition (c) is automatically satisfied. Finally, D/[D, B] = M∗ ⊗B M, p :
M∗ ⊗M → M∗ ⊗B M is the canonical surjection, hence φ̄ = canM . Thus, (f) is the
same as the finite Galois condition in 5.19. For a finite Galois comodule (M, �M), all
other conditions follow, provided the functor M∗ ⊗B − ⊗B M : BMB → AMA is
faithful and exact, and the map T → T ⊗B T , t 
→ 1T ⊗B t− t⊗B 1T is pure in BMB.
From the noncommutative algebraic geometry point of view, all the conditions

(a)–(g) are needed, since as proved in [133, Theorem 3], there is a one-to-one cor-
respondence between noncommutative Galois ring extensions and flat covers in the
category of noncommutative affine schemes.

7. Extensions and dualizations

7.1. Weak and lax corings

As explained in 3.21, if (A,C)ψ is an entwining structure, thenA⊗C is anA-coring.
On the other hand, if (A,C,ψ) is a weak entwining structure not all of A ⊗ C is a
coring, but only a direct summand of it. Weak corings were introduced to answer the
following question: what is a coring-like structure ofA⊗C? On the other hand, recent
interest in partial Galois theory led to the introduction of lax and partial entwining
structures, and, consequently, lax corings. In this section, we briefly describe these
notions.

7.1. Weak corings. Let A be a k-algebra, and let C be an A-bimodule, which can
be nonunital as both left and right A-module, that is, there can exist c ∈ C such that
1Ac �= c or c1A �= c. C is called a weak A-coring [196] if there exist A-bimodule
maps �C : C → C ⊗A A⊗A C and εC : C → A such that the following diagrams

C
�C ��

�C
��

C ⊗A A⊗A C
C⊗AA⊗A�C
��

C ⊗A A⊗A C �C⊗AA⊗AC �� C ⊗A A⊗A C ⊗A A⊗A C,

C
�C

�������������
�C

�������������

1A⊗A− −⊗A1A

��

C ⊗A A⊗A C

εC⊗AAC
�������������� C ⊗A A⊗A C

CA⊗AεC
��������������

C
are commutative. Here 1A ⊗A − denotes the map c 
→ 1Ac and −⊗A 1A is the map
c 
→ c1A. If C is a left (resp. right) unital A-bimodule, then we say that C is a left
(resp. right) unital weak A-coring.
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For any weak A-coring C, ACA is a unital A-bimodule, and it is an A-coring.
Similarly, if C is a left (resp. right) unital weak A-coring, then CA (resp. AC) is an
A-coring.
As for corings, the coproduct on C induces an associative multiplication on the

dual modules C∗ = HomA(C, A), ∗C = AHom(C, A), ∗C∗ = AHomA(C, A). ∗C∗ is
a unital algebra with unit εC , and it coincides with the two-sided dual of the coring
ACA. C∗ and ∗C are nonunital, but εC is a central idempotent in each one of them
(hence they are firm rings). The dual rings of the coringACA coincide with the unital
subrings of dual rings of C generated (as modules) by εC .
7.2.Weak corings and weak entwining structures. Weak corings were introduced
in [196] to understand fully the correspondence between weak entwining structures
(see 3.22) and corings, in particular to obtain a statement similar to that in 3.21. This
aim is achieved in the following

Proposition . Let A be an algebra and (C,�C, εC) be a coalgebra. Set C = A⊗ C
and view it as a (unital) left A-module with the product a(a′ ⊗ c) = aa′ ⊗ c.
If (A,C,ψ) is a weak entwining structure, then A ⊗ C is a (nonunital) right A-

module by (a′⊗c)a = a′ ψ(c⊗a), and C is a left unital weakA-coring with coproduct
and counit

�C : A⊗ C → (A⊗ C)⊗A (A⊗ C)  (A⊗ C)1A ⊗ C,
a⊗ c 
→ ∑

(a⊗ c(1))⊗A (1A ⊗ c(2)) 
→ ∑
(a⊗ c(1))1A ⊗ c(2),

εC : A⊗ C → (A⊗ C)1A → A ,

a⊗ c 
→ (a⊗ c)1A 
→ (A⊗ εC)((a⊗ c)1A).

Conversely, if C is a left unital weak A-coring with�C and εC as defined above, then
C ⊗ A→ A⊗ C, c⊗ a 
→ (1A ⊗ c)a, is a weak entwining map for A and C.

7.3. Comments on weak comodules. Similarly as for corings, one defines comod-
ules over a weakA-coring C or weak comodules. These are defined as pairs (M, �M),
whereM is a nonunital rightA-module, and �M : M → M⊗AAC is a rightA-module
map such that the following diagrams

M

�M

��

�M �� M ⊗A AC
M⊗A�C
��

M ⊗A AC �
M⊗AAC�� M ⊗A AC ⊗A AC,

M
�M ��

−⊗A1A ��










 M ⊗A AC
M⊗AεC
��

M ⊗A A,
commute. Morphisms between comodules over weak corings are defined in the
same way as for comodules over corings. If (M, �M) is a right C-comodule, then
(MA, �M|MA) is a right comodule over the A-coring ACA. As a consequence of this,
the category of weak comodules has similar properties to the category of comodules
over a coring. For example, it always has cokernels and direct sums, and it has ker-
nels provided that AC is a flat left A-module. The tensor functor −⊗A CA from the
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category ofA-modules to C-comodules is the right adjoint of the functor−⊗AA (the
defining adjunctions). For more detailed studies of weak corings and comodules, the
reader is referred to [53, Chapter 6] and [196].

7.4. Lax corings. Let A be a k-algebra, and let C be an A-bimodule, which is
nonunital as a right A-module, that is, although it is required that, for all c, 1Ac = c,
it is not required that c1A = c. Write C for C1A = CA. C is a unital A-bimodule, and
it is a direct summand of C as anA-bimodule. Denote the inclusion C ⊆ C by ι. Since
C is a unital left A-module, any A-bimodule map �C : C → C ⊗A C restricts to the
map �C : C → C ⊗A C.

C is called a left unital lax A-coring [63] if there exist a coassociative A-bimodule
map �C : C → C ⊗A C and an A-bimodule map εC : C → A such that C is an
A-coring with coproduct �C and counit εC ◦ ι.
A left unital weak A-coring is an example of a left unital lax A-coring.

7.5. Lax and partial entwining structures and corings. Let A be an algebra and
C be a coalgebra. Consider a map ψ : C ⊗ A → A ⊗ C, and write, for all c ∈ C,
a ∈ A, ψ(c⊗ a) =∑

ψ aψ ⊗ cψ =
∑
� a� ⊗ c�. Assume that for all a, b ∈ A, and

c ∈ C, ∑
ψ

(ab)ψ ⊗ cψ =
∑
ψ,�

aψb� ⊗ cψ�,
∑
ψ,�

aψ1A� ⊗ cψ(1)� ⊗ cψ(2) =
∑
ψ,�

aψ� ⊗ c(1)� ⊗ c(2)ψ.

The first of these conditions means that A ⊗ C is a nonunital right A-module with
multiplication (a′ ⊗ c)a = a′ψ(c⊗ a). Write C = A⊗ C and define

�C : A⊗ C→ A⊗ C ⊗A A⊗ C  (A⊗ C)1A ⊗ C,
a⊗ c 
→

∑
aψ(c(1) ⊗ 1A)⊗ c(2).

If the map ψ satisfies the following additional conditions, for all a ∈ A, c ∈ C,∑
ψ

εC(c
ψ)1Aψa =

∑
ψ

εC(c
ψ)aψ,

∑
ψ

1Aψ⊗cψ =
∑
ψ,�

εC(c(1)
�)1Aψ�⊗c(2)ψ,

then the triple (A,C,ψ) is called a lax entwining structure. The existence of a lax
entwining structure is equivalent to the statement that C is a left unital lax A-coring
with coproduct�C and counit εC : A⊗C 
→ A, a⊗ c 
→∑

ψ a1AψεC(c
ψ) (and the

canonical left A-multiplication).
If the map ψ satisfies the following additional condition,

(εC ⊗ A) = (A⊗ εC) ◦ ψ,
then the triple (A,C,ψ) is called a partial entwining structure. The existence of a
partial entwining structure is equivalent to the statement that C is a left unital lax
A-coring with coproduct �C and counit A⊗ εC.
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Given a lax entwining structure (A,C,ψ), a lax entwined module is a right
A-moduleM together with a k-linear map �M : M → M ⊗ C, written on elements
as �M(m) =∑

m[0] ⊗m[1], such that, for all m ∈ M, a ∈ A,
(a) (M ⊗ εC) ◦ �M = M,
(b) (�M ⊗ C) ◦ �M(m) =∑

ψ,� m
[0]1Aψ� ⊗m[1](1)� ⊗m[1](2)ψ,

(c) �M(ma) =∑
m[0]ψ(m[1] ⊗ a).

The category with objects lax entwined modules and morphismsA-linear,C-colinear
maps is denoted byMC

A(ψ)
lax. This category is isomorphic to the categoryMC , where

C = A⊗ C := (A ⊗ C)1A is the A-coring associated to a left unital lax A-coring
C = A⊗ C; see 7.4.
7.6. Partial entwining structures and partial (co)actions. LetH be a bialgebra.

(1) An algebra A is said to be a partial rightH-comodule algebra if there exists a
k-linear map �A : A→ A⊗H , written on elements as �A(a) =∑

a[0] ⊗a[1],
such that, for all a, b ∈ A,
(a) �A(ab) =∑

a[0]b[0] ⊗ a[1]b[1],
(b)

∑
a[0]εH(a[1]) = a,

(c)
∑
�A(a[0])⊗ a[1] = a[0]1A[0] ⊗ a[1](1)1A[1] ⊗ a[1](2).

(2) A coalgebra C is said to be a partial right H-module coalgebra if there exists
a nonunital right action ofH on C, �C : C⊗H → C, c⊗ h 
→ ch, such that,
for all c ∈ C and h ∈ H ,
(a) εC(ch) = εC(c)εH(h),
(b)

∑
(ch)(1)1H ⊗ (ch)(2) =∑

c(1)h(1) ⊗ c(2)h(2).
IfA is a partial rightH-comodule algebra andC is a partial rightH-module coalgebra,
then there is a partial entwining structure (A,C,ψ), where

ψ : C ⊗ A→ A⊗ C, c⊗ a 
→
∑

a[0] ⊗ ca[1].
Partial entwining structures of this (or its dual) kind arise in the context of partial
group actions; see [63, Section 5], [57, 85].

7.7. Comments on the structure and usage of lax corings. Since lax corings
are defined through corings, that is, C is a left unital lax coring if and only if C is an
A-coring, they share many properties with the latter. For example, their dual mod-
ules are (nonunital) rings. Using this correspondence, one can study Frobenius or
Galois properties of lax corings. In the case of lax corings associated to partial and
lax entwining structures, where the category of lax entwinedmodules is isomorphic to
the categoryof comodules of the associatedA-coringA⊗ C, suchproperties are a con-
sequenceof the (nonlax) coring theory. For further details, the reader is referred to [63].

7.2. C-rings

A notion of a C-ring or a C-algebra arises as a dualization of that of coring; corings
are coalgebras in the category of bimodules, C-rings are algebras in the category of
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bicomodules. To avoid complications arising from the nonassociativity of cotensor
product (for coalgebras over rings), in this section, we assume that k is a field. In this
case, given a coalgebraC, for allC-bicomodules (M, �M,M�), (N, �N, N�), the coten-
sor product M�CN is a C-bicomodule with coactions M�C�

N and M��CN. Fur-
thermore, for any bicomodule morphisms f , g, also f�Cg is a bicomodule morphism
(i.e.−�C− is a functor CMC × CMC → CMC), and the category of C-bicomodules
is a monoidal category, (CMC,�C,C); see 2.13.

7.8. C-rings [37, Section 6]. Let C be a k-coalgebra and let A be a C-bicomodule
with coactions A� : A → C ⊗ A and �A : A → A ⊗ C. A is called a C-ring if
there are two bicomodule maps μA : A�CA → A and ηA : C→ A rendering the
following diagrams commutative

A�CA�CA μA�CA ��

A�CμA
��

A�CA
μA
��

A�CA μA �� A ,

A
�A

��

A
��

A�CC

A�CηA
��

A
A� ��

A
��

C�CA
ηA�CA
��

A A�CA ,
μA

 A A�CA .

μA



Equivalently, aC-bicomoduleA is aC-ring if and only if the cotensor functor−�CA :
MC →MC (or, equivalently, A�C− : CM→ CM) is a monad. Still equivalently, a
C-ring is a monoid (algebra) in the monoidal category (CMC,�C,C).
C-rings in this form were introduced in [37] to retain properties of entwining

structures, which are not captured by corings, and in [157] as a natural algebraic
structure underlying semi-infinite cohomology [190]. In [157], C-rings are termed
C-algebras. However, since in parallel to the k-algebra case, the term “C-algebra”
might suggest that A is C-(co)central, the term “C-ring” is our preferred name.

7.9.Modules over C-rings. Aright module over aC-ringA is a triple (M, �M, �M),
where (M, �M) is a right C-comodule M with coaction �M : M → M ⊗ C, and
�M : M�CA→ M is a right C-comodule map such that

M�CA�CA �M�CA ��

M�CμA
��

M�CA
�M

��

M
�M ��

M

��

M�CC

M�CηA
��

M�CA �M �� M , M M�CA .
�M



Themap �M is called a rightA-action.Amap ofA-modules is a rightC-colinearmap,
which respects the actions, that is, a map ofA-modules (M, �M, �M)→ (N, �N, �N)
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is a C-comodule map f : M → N such that

�N ◦ (f�CA) = f ◦ �M.
The category of right A-modules is denoted byMA.
The category of right A-modules coincides with the category of algebras of the

monad −�CA :MC →MC, that is,MA = (MC)−�CA. Consequently the functor

−�CA :MC →MA, (M, �M) 
→ (M�CA,M�C�
A,M�CμA),

is a left adjoint of the forgetful functor (−)C :MA →MC.
LeftA-modules are defined symmetrically as triples (N, N�, N�), where (N, N�) is

a left C-comodule and N� : A�CN → N is an associative, unital left C-comodule
map.

7.10. Separable and split C-rings [37, Theorem 6.3]. The defining adjunction
−�CA, (−)C retains large amount of information about the structure of C-rings. For
example, the functor −�CA : MC → MA is separable if and only if there exists a
map e : A → k such that (e⊗ C) ◦ ρA = (C ⊗ e) ◦ A� and e ◦ ηA = εC. A C-ring
with such a map is called a split C-ring.
The forgetful functor (−)C : MA → MC is separable if and only if there exists

γ ∈ CHomC(C,A�CA) such that

(μA�CA) ◦ (A�Cγ) ◦ �A = (A�CμA) ◦ (γ�CA) ◦ A�

and μA ◦ γ = ηA. In this case, A is called a separable C-ring.
A right A-module (P, �P, �P) is said to be (A, C)-projective if the action �P has

an A-module section. Every module of a separable C-ring A is (A, C)-projective.
7.11. Characters. A character in A is a k-linear map κ : A→ k such that

κ ◦ μA = κ�Cκ, κ ◦ ηA = εC.
The regular right C-comodule (C,�C) is a right A-module if and only if there is a
character in A.
As explained in [43, Section 8], to every C-ring A with a character, one can asso-

ciate a comodule with an extended coderivation (cf. [82]) and then interpret right
A-modules as comodules with flat connections. This is parallel to the description of
comodules over a coring with a group-like element; see 4.23.

7.12. Trivial and dual-Sweedler C-rings. A coalgebra C is itself a C-ring with
both the unit and multiplication provided by the identity map C (combined with the
isomorphism C�CC  C in case of the multiplication). Right C-modules are the
same as right C-comodules, soMC ≡MC.
Let π : C → B be a morphism of coalgebras, then C is a B-bicomodule via

(C⊗ π) ◦� and (π⊗C) ◦�. DefineA = C�BC. Then,A is a C-ring with product
μA : A�CA ∼= C�BC�BC→ A, μA = C�BεC�BC, and unit νA = �C. This is
a dualization of the Sweedler coring. The objects in the category of rightA-modules
are triples (M, �M, f ), where (M, �M) is a right C-comodule and f : M�BC→ M
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is a right C-comodule map such that

f ◦ (f�BC) = f ◦ (M�BεC�BC), f ◦ �M = M.
By analogy with Sweedler’s coring and descent data, it appears quite natural to call
such triples (M, �M, f ) ascent data.

7.13. C-rings and entwining structures. The main motivation for introducing
C-rings in [37] was that their defining adjunction involves the forgetful functor
(−)C : MA → MC. If, therefore, there is a C-ring associated to an entwining
structure (A,C)ψ and MA ≡ MC

A(ψ) (the category of entwined modules), then,
by studying general properties of C-rings, one derives these properties of entwined
modules, which arise from the properties of (−)C. This is, indeed, the case.

Proposition. For an entwining structure (A,C)ψ, view A = C ⊗ A as a
C-bicomodule with the left coaction A� = �C⊗C and the right coaction �A = (C⊗
ψ)◦(�C⊗A). ThenA is aC-ring with the productμA : A�CA ∼= C⊗A⊗A→ A,
μA = C ⊗ μA, and the unit ηA = C ⊗ 1A.
Conversely, ifC⊗A is aC-ring with the product and the unit above and the natural

left C-comodule structure �C ⊗ A, then (A,C)ψ is an entwining structure, where
ψ = (εC ⊗ A⊗ C) ◦ �C⊗A.
Under this bijective correspondence, MA ≡MC

A(ψ).

In a similar way, one associates a C-ring to a weak entwining structure (A,C,ψ).
In this case, A = Im pR, where

pR : C ⊗ A→ C ⊗ A, pR = (C ⊗ A⊗ εC) ◦ (C ⊗ ψ) ◦ (�C ⊗ A),
and the unit of A is c 
→ pR(1A ⊗ c); see [51, Section 4].
7.14. Matrix ring contexts [51]. A matrix ring context, (C,D,N,M, σ, τ), con-
sists of a pair of coalgebras C and D, a (C,D)-bicomodule (N, �N, N�), a (D,C)-
bicomodule (M, �M,M�), and a pair of bicomodule maps

σ : C→ N�DM, τ : M�CN → D,

such that the diagrams

N�DM�CN

N�Dτ

��

C�CN
σ�CN

 M�CN�DM

τ�DM �� D�DM

N�DD N,
�N



N�

��

M�CC

M�Cσ

��

M
�M



M�

��

commute. The map σ is called a unit and τ is called a counit of a matrix context.
Since a counit τ of a matrix ring context is a D-bicomodule map, it is fully deter-

mined by its reduced form τ̂ = εD ◦ τ. The map τ̂ is called a reduced counit of a
matrix context. TheD-bicolinearity of τ is equivalent to the following property of τ̂,

(D⊗ τ̂ ) ◦ (M�⊗N) = ( τ̂ ⊗D) ◦ (M ⊗ �N).
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In terms of the reduced counit, the above commutative diagrams read

(N ⊗ τ̂ ) ◦ (σ�CN ) ◦ N� = N, ( τ̂ ⊗M) ◦ (M�Cσ) ◦ �M = M.
The notion of a matrix context is closely related to that of pre-equivalence data or a
Morita-Takeuchi context introduced in [180, Definition 2.3]. In particular, in view of
[180, Theorem 2.5], if one of the maps in a Morita-Takeuchi context is injective, then
there is a corresponding matrix ring context. Furthermore, all equivalence data give
rise to a matrix ring context.
Matrix ring contexts are in one-to-one correspondence with adjoint pairs of func-

tors −�CN : MC → MD, −�DM : MD → MC (or adjunctions in a bicategory:
coalgebras, bicomodules, bicolinear maps; for bicategories see [19]). In particular,
if (C,D,N,M, σ, τ) is a matrix ring context, then M is a quasi-finite injector, that
is, the cotensor functor −�CN : MC → Mk is a left adoint of the tensor func-
tor G = − ⊗ M : Mk → MC ([180, Proposition 1.3], [53, Section 12.8]). Con-
versely, (M, �M) can be a part of a matrix ring context only if it is a quasi-finite
injector.

7.15. Matrix C-rings. Let (C,D,N,M, σ, τ) be a matrix ring context. Then A :=
N�DM is a C-ring with the product μA = N�Dτ̂ �DM and unit ηA = σ, where τ̂
is the reduced counit. Furthermore, M is a right A-module with the action τ̂ �DM

and N is a left A-module with the action N�Dτ̂. The C-ring A is called a matrix
C-ring. The monad −�CA : MC → MC is simply the monad corresponding to the
adjoint pair of functors −�CN :MC →MD, −�DM :MD →MC; see 7.14.

7.16. Tensor product of modules and the coendomorphism C-ring. Let A be a
C-ring, (M, �M, �M) a rightA-module, and (N, N�, N�) a leftA-module. The tensor
product of (M, �M, �M) with (N, N�, N�) is defined as the coequalizer of k-linear
maps

M�CA�CN

�M�CN ��

M�C N�

�� M�CN
πM,A,N ��

M ⊗A N,

that is, M ⊗A N is the cokernel of �M�CN −M�C N�. As argued in [157], semi-
infinite cohomology of [11, 190] can be understood in terms of derived functors of
such a tensor product for a specific C-ring.
Let (M, �M) be a quasi-finite injector, and let (N, N�) be a left C-comodule such

that −�CN is the left adjoint of the tensor functor − ⊗ M : Mk → MC. Then
E = M�CN is a coalgebra, known as a C-coendomorphism coalgebra of M. (E
arises as a comonad − ⊗M�CN : Mk → Mk corresponding to the adjoint pair of
functors −�CN, −⊗M.) Furthermore, there exists a unique coalgebra structure on
M ⊗A N, whereby πM,A,N is a coalgebra map. The coalgebraM ⊗A N is called an
A-coendomorphism coalgebra ofM and is denoted by EA(M).
To any right A-module (M, �M, �M), which is a quasi-finite injector as a right

C-comodule, one can associate the matrix ring context (C,EA(M),N,M, σ, τ) with

σ : C ηC−→ N�EM → N�EA(M)M, τ : M�CN
ψE−→ E −→ EA(M),



Comodules and Corings 309

where η is the unit and ψ is the counit of adjunction −�CN :MC →ME, −�EM :
ME →MC. We refer to this context as an A-coendomorphism context associated to
M. The corresponding matrix C-ring is called an A-coendomorphism ring ofM.

7.17. Galois theory. In parallel to (finite) Galois comodules of a coring, one can
study Galois comodules of a C-ring A. Let (M, �M, �M) be a right A-module such
that (M, �M) is a quasi-finite injector. Set (N, N�) to be a left C-comodule such that
−�CN is the left adjoint of the tensor functor−⊗M :Mk →MC. Let S = EA(M)
and let σ be the unit of the A-coendomorphism context associated toM. ThenM is
called a Galois A-module if the map

β : A→ N�SM, β := (N ⊗ �M) ◦ (σ�CA) ◦ A�,

is an isomorphism.
As shown in [51, Theorem 3.11],M is a GaloisA-module if and only if β is a split

monomorphism of left A-modules.
7.18. Bicoalgebroids. Bialgebroids are defined as corings with a compatible algebra
structure. In a dual way, one can define bicoalgebroids as C-rings with compatible
coproduct and counit.
Let (C,�C, εC) and (H,�H, εH) be coalgebras, and assume that there is a coal-

gebra map α : H → C and an anticoalgebra map β : H → C such that for all
h ∈ H,∑α(h(1)) ⊗ β(h(2)) = ∑

α(h(2)) ⊗ β(h(1)). This allows one to view H as
a C-bicomodule via left coaction H�(h) = ∑

α(h(1)) ⊗ h(2) and the right coaction
�H(h) =∑

h(2) ⊗ β(h(1)). Following [50],H is called a bicoalgebroid if

(a) (H, μH, ηH) is a C-ring;
(b) for all

∑
i g
i ⊗ hi ∈ H�CH,∑

i

μH(gi ⊗ hi(1))⊗ α(hi(2)) =
∑
i

μH(gi(1) ⊗ hi)⊗ β(gi(2)),

�H(μH(
∑
i

gi ⊗ hi)) =
∑
i

μH(gi(1) ⊗ hi(1))⊗ μH(gi(2) ⊗ hi(2)),

and εH�CεH = εH ◦ μH;
(c) for all c ∈ C, εH(ηH(c)) = εC(c), and

�H(ηH(c)) =
∑

ηH(c)(1)⊗ηH(α(ηH(c)(2))) =
∑

ηH(c)(1)⊗ηH(β(ηH(c)(2))).

Similarly to bialgebroids, the category of left comodules of a C-bicoalgebroid
H is monoidal and the forgetful functor to the category of C-bicomodules is strict
monoidal [13].

7.3. Other topics

As time, space, and the author’s expertise are all limited, there are several topics in
coring and comodule theory, which are not covered in this chapter. In this final section,
we would like to list some of these topics and supply the reader with references.
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7.19. Contramodules. While we concentrated on comodules, there is another, much
less-studied but seemingly equally natural, category of representations of corings. Let
C be anA-bimodule. Since the tensor functor−⊗AC :MA→MA has a right adjoint,
the hom-functor HomA(C,−), the characterization of corings as comonads−⊗AC in
3.5 can be extended to the characterization of corings as monads HomA(C,−). This
has been observed already in [90]. As explained in 4.7, right comodules over C are
the same as coalgebras of the comonad−⊗A C. Algebras of the monad HomA(C,−)
are known as contramodules over C [89]. Various properties of contramodules are
discussed in [29, 157].

7.20. Module theoretic and topological aspects. Several module theoretic and
topological aspects of corings are described in [53]. Zariski topology for corings
and comodules and top bicomodules are studied in [6]. Rational modules, pairings,
and related topologies are described in [2]. Further rationality properties and comod-
ules over semiperfect corings are studied in [62, 69]. (Co)prime and (co)semiprime
corings and comodules are discussed in [5,98,193,194]. Symmetric corings are con-
sidered in [16].

7.21. Applications to representation theory. Some of the earliest applications of
corings were in representation theory, in particular to matrix problems (cf. [161]). In
representation theory, corings are known asBOCSs, and among others, theywere used
in settling the tame-wild conjecture [86]. Possibly the earliest reference to BOCSs is
[162], and their role in the tame-wild conjecture is explained in [78, 87].

7.22. Index theory for C∗-algebras. Corings appeared in [191] as an algebraic
structure describing (finite) index theory for operator algebras [114]. Motivated by
this, coring structures on Hilbert C∗-modules are studied in [147, 148]. The theory
of depth-2 extensions initiated as a special case of the Jones index theory in [118]
makes extensive use of corings (bialgebroids); see also 3.19.

7.23. Categorical aspects. Throughout the chapter we have not discussed in great
detail the categorical aspects of corings.An algebraist oriented overviewof categorical
aspects of corings can be found in [200]. One of the main modern examples of
corings is a coring associated to an entwining structure. An entwining structure itself
is an example of a distributive law [18]. For recent developments in the categorical
approach to distributive laws, we refer to [171, Section 6], [170, 200]. Entwining
structures over noncommutative rings and associated corings are studied in [24]. For
a description of functors (and equivalences) between categories of comodules, see,
for example, [4, 95, 101, 187]. Since, from the categorical point of view, corings are
comonads (in a specific category), they fit well into the formal theory of (co)monads
[128, 175]. The bicategories arising from this formal theory are discussed in [44].
Monoidal aspects of the category of corings are discussed in [91].

7.24. The Picard and Brauer groups. The Picard and Brauer groups for corings
and Azumaya corings are studied in [60, 202]. Corings are used in studies of Picard
and Brauer groups for rings in [61, 94, 134, 183].
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7.25. Cohomology. Cohomology of corings and comodules is discussed in [97,
106]. Cyclic cohomology of corings is studied in [31, 160]. Čech cohomology for
corings is proposed in [169]. This construction is motivated by the interpretation of
complete coverings of algebras [70] in terms of Galois corings [54]. Non-Abelian
(descent) cohomology that extends non-Abelian cohomology of Hopf algebras [146]
is proposed in [42] and is given a categorical treatment in [139]. Some cohomological
aspects of corings are also described in [53, Section 30].

7.26. Generalizations of corings. Corings with local structure maps are introduced
in [188] and group corings in [64].

7.27. Universal algebra and computer science. Coalgebras in universal algebra,
and therefore also corings, are used in theoretical computer science. For example,
entwining structures appear in [185] in the context of operational semantics. The
interested reader can find some comments and references in [200].
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[36] Brzeziński, T., On modules associated to coalgebra-Galois extensions, J. Algebra 215 (1999),

290–317.
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[49] Brzeziński, T., Majid, S., Coalgebra bundles, Comm. Math. Phys. 191 (1998), 467–492.
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[72] Castaño Iglesias, F., Nǎstǎsescu, C., Quasi-Frobenius functors with applications to corings,

arXiv:math/0612662, (2006).
[73] Chase, S.U., Harrison, D.K., Rosenberg, A., Galois theory and cohomology of commutative rings,

Mem. Amer. Math. Soc. 52 (1965).
[74] Cipolla, M., Discesa fedelemente piatta dei moduli, Rend. Circ. Mat. Palermo 25 (1976), 43–46.
[75] Cohen, M., Gelaki, S., Westreich, S., Hopf algebras, Handb Algebra 4 (2006), 173–239.
[76] Connes,A.,Non-commutative differential geometry, Inst.HautesÉtudesSci. Publ.Math.62 (1985),

257–360.
[77] Connes, A., Moscovici, H., Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys. 52

(2000), 1–28.
[78] Crawley-Boevey, W.W., On tame algebras and bocses, Proc. London Math. Soc. 56 (1988),

451–483.
[79] Cuadra, J., Gómez-Torrecillas, J., Galois corings and a Jacobson-Bourbaki type correspondence,

J. Algebra 308 (2007), 178–198.
[80] Cuntz, J., and Quillen, D., Algebra extensions and nonsingularity, J. Amer. Math. Soc. 8 (1995),

251–289.
[81] De Groot, E., Comatrix Corings Applied to Weak and Partial Galois Theory, PhD thesis, Vrije

Universiteit Brussel, Brussels, 2005.
[82] Doi, Y., Homological coalgebra, J. Math. Soc. Japan 33 (1981), 31–50.
[83] Doi, Y., On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243–253.
[84] Doi, Y., Unifying Hopf modules, J. Algebra 153 (1992), 373–385.
[85] Dokuchaev, M., Ferrero, M., Pacques, A., Partial actions and Galois theory, J. Pure Appl. Algebra

208 (2007), 77–87.
[86] Drozd, Y.A., Tame and wild matrix problems, in: Yu. A. Mitropolskii, ed., Representations and

Quadratic Forms, Institute of Mathematics, Kiev, 1979, pp. 39–74. (English translation: Amer.
Math. Soc. Transl. 128 (1986), 31–55.)

[87] Drozd, Y.A., Reduction algorithm and representations of boxes and algebras, Comptes Rendue
Math. Acad. Sci. Canada 23 (2001), 97–125.

[88] Dubuc, E., Kan extensions in enriched category theory, Lecture Notes in Mathematics vol. 145,
Springer, Berlin, 1970.

[89] Eilenberg, S. and Moore, J.C., Foundations of relative homological algebra, Mem. Amer. Math.
Soc. 55 (1965).

[90] Eilenberg, S. and Moore, J.C., Adjoint functors and triples, Ill. J. Math. 9 (1965), 381–398.
[91] El Kaoutit, L., Monoidal categories of corings,Annali dell’Universitá di Ferrara, Sezione VII.-Sci.

Mat. 51 (2005), 197–208.
[92] El Kaoutit, L., Gómez-Torrecillas, J., Comatrix corings: Galois corings, descent theory, and a

structure theorem for cosemisimple corings, Math. Z. 244 (2003), 887–906.
[93] El Kaoutit, L., Gómez-Torrecillas, J., Infinite comatrix corings, Int. Math. Res. Notices 39 (2004),

2017–2037.
[94] El Kaoutit, L., Gómez-Torrecillas, J., Comatrix corings and invertible bimodules, Annali

dell’Universitá di Ferrara, Sezione VII.-Sci. Mat. 51 (2005), 263–280.
[95] El Kaoutit, L., Gómez-Torrecillas, J., Morita duality for corings over quasi-Frobenius rings, in:

S. Caenepeel, F. Van Oystaeyen, eds., Hopf Algebras in Noncommutative Geometry and Physics,
Marcel Dekker, New York, 2005, pp. 137–153.



Comodules and Corings 315

[96] El Kaoutit, L., Gómez-Torrecillas, J., Lobillo, F.J., Semisimple corings,Algebra Colloq. 11 (2004),
427–442.

[97] El Kaoutit, L., Vercruysse, J., Cohomology for bicomodules. Separable and Maschke functors,
J. K-Theory to appear, arXiv:math/0608195 (2006).

[98] Ferrero, M.A., Rodrigues, V., On prime and semiprime modules and comodules, J. Algebra Appl.
5 (2006), 681–694.

[99] Garfinkel, G.S., Universally torsionless and trace modules, Trans. Amer. Math. Soc. 215 (1976),
119–144.

[100] Gómez-Torrecillas, J., Coalgebras and comodules over a commutative ring, Rev. Roumaine Math.
Pures Appl. 43 (1998), 591–603.

[101] Gómez-Torrecillas, J., Separable functors in corings, Int. J. Math. Math. Sci. 30 (2002), 203–225.
[102] Gómez-Torrecillas, J., Comonads and Galois corings, Appl. Categ. Str. 14 (2006), 579–598.
[103] Gómez-Torrecillas, J., Vercruysse, J., Comatrix corings and Galois comodules over firm rings,

Algebras Rep. Theory 10 (2007), 271–306.
[104] Grothendieck, A., Technique de descente et théorèmes d’existence en géométrie algébrique, I.

Généralités, descente par morphismes fidèlement plats. Séminaire Bourbaki. 12 (1959/1960), 190.
[105] Guo, J., Quasi-Frobenius corings and quasi-Frobenius extensions, Comm. Algebra 34 (2006),

2269–2280.
[106] Guzman, F., Cointegrations, relative cohomology for comodules, and coseparable corings, J.Alge-

bra 126 (1989), 211–224.
[107] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser,Y., Stable anti-Yetter-Drinfeld modules,

C. R. Acad. Sci. Paris, Ser. I 338 (2004), 587–590.
[108] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y., Hopf-cyclic homology and coho-

mology with coefficients, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 667–672.
[109] Hirata, K., Sugano, K., On semisimple extensions and separable extensions over noncommutative

rings, J. Math. Soc. Japan 18 (1966), 360–374.
[110] Hochschild, G., Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443–460.
[111] Iovanov, M., Frobenius extensions of corings, arXiv:math/0612447 (2006).
[112] Iovanov,M.,Vercruysse, J., CoFrobenius corings and related functors, arXiv:math/0610853 (2006),

to appear in J. Pure Appl. Algebra.
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1. Introduction and delimitation

Let CRing be the category of commutative rings with unit element. Most of this
chapter is about the big (or large or generalized) Witt vectors; that is about a certain
functor

W: CRing −→ CRing (1.1)

that (therefore) assigns to each unital commutative ring A a new unital commutative
ring W(A) (and to a unit element preserving ring morphism A −→ B a unital ring
morphism W(A) −→ W(B)). It is also about the many quotient functors of W of
which the most important are the p-adic Witt vectors Wp∞ , the truncated big Witt
vectors Wn, and the truncated p-adic Witt vectors Wpn . Instead of ‘truncated’ one
also finds ‘of finite length’ in the literature.

The p-adic Witt vectors functor gets defined via the socalled p-adic Witt
polynomials

Y0, Y
p

0 +pY1, Y
p2

0 +pYp1 +p2Y2, Y
p3

0 +pYp2

1 +p2Y
p

2 +p3Y3, · · · (1.2)

and their generalizations, the big Witt polynomials

w1(X) = X1

w2(X) = X2
1 + 2X2

· · · · · ·
wn(X) = ∑

d|n
dX

n/d

d

· · · · · ·

(1.3)

can2 be used to define the big Witt vectors. To see that (1.3) specializes to (1.2) relabel
Xpi in wpn(X) as Yi.

Here and there in the published literature one finds the Witt polynomials referred
to as “mysterious polynomials that come out of nowhere.” It is one of my aims in the
present screed to try to argue that that is simply not true. There is something inevitable
about the Witt polynomials and they turn up naturally in various contexts and with
some frequency.

1.4. Historically, this is also how things started. The setting is that of the inves-
tigations by Helmut Hasse and his students and collaborators into the structure of
complete discrete valuation ringsA with residue field k. Oswald Teichmüller discov-
ered that in such a situation there is a multiplicative system of representatives, i.e.
a multiplicative section of the natural projection A −→ k. Such a system is unique
if k is perfect.3 These are now called Teichmüller representatives. Assuming that A

2 But there are other ways. One of these will be used below (most of the time).
3 If k is not perfect a multiplicative system of representatives still exists but is not unique.
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is unramified, every element of A can be written as a power series in T , a generator
of the maximal ideal of A, with coefficients from any chosen system of representa-
tives. Given the nice properties of the Teichmüller system it was and is natural to
use these. As they are already multiplicative the first problem was of course to figure
out how Teichmüller representatives should be added in the arithmetic of the ring A.
In the equal characteristic case, char(A) = char(k) = p > 0 that is no problem at
all. The Teichmüller system is then additive as well. But in the unequal characteris-
tic case, char(A) = 0, char(k) = p > 0 things are very different. In this case one
can and does choose T = p. In 1936 Teichmüller [382], found a formula for doing
precisely this, i.e. adding Teichmüller representatives. The formula is, see loc. cit.
p. 156

a+ b =
∞∑
n=0

cnp
n (1.5)

Here a and b are Teichmüller representatives of, say, a, b, and the cn are the Teich-
müller representatives of elements cn in k that satisfy

cp
n

n = rn(a, b) (1.6)

where the rn(X, Y) are the integer valued polynomials (recursively) determ-
ined by

r0(X, Y)
pn + pr1(X, Y)pn−1 + · · · + pnrn(X, Y) = Xpn + Ypn (1.7)

And here they surface, on the left hand side of (1.7), the p-adic Witt polynomials.

1.8. Some 30+ years later, in another context, a very similar picture emerged. As
a functor the big Witt vectors are isomorphic to the functor � that assigns to a
commutative unital ring A the Abelian group �(A) of power series with constant
term 1 and coeffients in A (under multiplication of power series). Much of Witt
vector theory can be developed from this point of view without ever mentioning the
generalized Witt polynomials (1.3). Except that it is far from obvious how to get the
p-adic Witt vectors in this picture. In the main, this power series treatment is what is
given below. But the Witt vectors themselves and the Witt polynomials will not be
denied, as will be seen now.

For any functor one is (or at least should be) interested in the operations on it,
i.e. its functorial endomorphisms. In the present case a number of obvious and easy
operations are the homothety operators 〈u〉f(t) = f(ut) and the Verschiebung oper-
ators Vnf(t) = f(tn). Rather less obvious are the Frobenius operators fn which are
as much like raising to the n-th power as a morphism of Abelian groups can be.
Now what is the sum (pointwise sum of operations) of two homothety operators? The
answer is

〈u〉 + 〈v〉 =
∞∑
n=1

Vn〈rn(u, v)〉fn (1.9)
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where this time the polynomials rn(X, Y) are the integer valued polynomials
determined recursively by∑

d|n
drd(X, Y)

n/d = Xn + Yn (1.10)

and there they are, the generalized Witt polynomials (1.3).4

To appreciate the near perfect fit of the picture of formulas (1.5)–(1.7) with that of
(1.9)–(1.10), reflect that in a field of characteristic p raising to the p-th power is the
Frobenius morphism and that multiplication by p (in a characteristic zero ring, say,
the p-adic integers) has a shift built into it. Further, the 〈u〉, which are multiplicative,
can be seen, in a very real sense, as Teichmüller representatives.

1.11. The underlying set of W(A) or, better (for the moment), �(A), is the set of
power series over A with constant term 1 (the unit element of A):

�(A) = {1+ a1t + a2t
2 + a3t

3 + · · · : ai ∈ A for all i ∈ N} (1.12)

(where, as usual, N denotes the natural numbers N = {1, 2, 3, · · · }). This functor (to
Set, the category of sets), is obviously representable by the ring

Symm = Z[h1, h2, h3, · · · ] (1.13)

of polynomials in an infinity of indeterminates over the integers Z.

As will rapidly become clear one really should see the hi as the complete symmetric
functions (polynomials)5 in an infinity of indeterminates6 ξ1, ξ2, ξ3, · · · . Whence the
notation used in (1.13). Also it turns out that many constructions, results, . . . for the
Witt vectors have their natural counterparts in the theory of symmetric functions (as
should be). Thus a chapter on the Witt vectors could very properly include most of
symmetric function theory, that very large subject that could fill several volumes. This
will, of course, not be done. Also, there will be a separate chapter on the symmetric
functions in this Handbook of Algebra.

1.14. Symm, the Hopf algebra of the symmetric functions is a truly amazing and
rich object. It turns up everywhere and carries more extra structure than one would
believe possible. For instance it turns up as the homology of the classifying space
BU and also as the the cohomology of that space, illustrating its selfduality. It turns
up as the direct sum of the representation spaces of the symmetric group and as

4 But in this case, I believe, the generalized Witt polynomials were known before formula (1.8) was
written down.

5 Of course Symm is also equal to the polynomials in the elementary symmetric functions in the same
infinity of indeterminates and one could also work with those (and that is often done). But using the complete
symmetric functions works out just a bit more elegantly, especially in connection with the autoduality of
the Hopf algebra Symm. See sections 11.37 and 12.

6 Some of the readers hoped for may not be familiar with working with symmetric polynomials in an
infinity of indeterminates. There is really nothing to it. But for those that do not feel comfortable about it
(and for the pernickety) there is a short appendix on the matter.
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the ring of rational representations of the infinite general linear group. This time
it is Schur duality that is involved. It is the free λ-ring on one generator. It has a
nondegenerate inner product which makes it selfdual and the associated orthonormal
basis of the Schur symmetric functions is such that coproduct and product are positive
with respect to these basis functions. In this setting, positive, self dual, Hopf algebras
with distinguished basis, there is a uniqueness theorem due to Andrei Zelevinsky
[425]. But this is not yet entirely satisfactory unless it can be shown that the Schur
symmetric functions are in some algebraic way canonical (which seems very likely).
Symm is also the representing ring of the functor of the big Witt vectors and the
covariant bialgebra of the formal group of the big Witt vectors (another manisfestation
of its autoduality). Most of these things will be at least touched on below.

As the free λ-ring on one generator it of course carries a λ-ring structure. In addition
it carries ring endomorphisms which define a functorial λ-ring structure on the rings
W(A) = CRing(Symm, A) for all unital commutative rings A. A sort of higher λ-
ring structure. Being selfdual there are also co-λ-ring structures and higher co-λ-ring
structures (whatever those may be).

Of course, Symm carries still more structure: it has a second multiplication and
a second comultiplication (dual to each other) that make it a coring object in the
category of algebras and, dually, (almost) a ring object in the category of coalgebras.

The functor represented by Symm, i.e. the big Witt vector functor, has a comonad
structure and the associated coalgebras are precisely the λ-rings.

All this by no means exhausts the manifestations of and structures carried bySymm.
It seems unlikely that there is any object in mathematics richer and/or more beautiful
than this one, and many more uniqueness theorems are needed.

In this chapter I will only touch upon the aspects of Symm which relate directly to
the Witt vector constructions and their properties.

To conclude this introduction let me remark that the Witt vector construction is a
very beautiful one. But is takes one out of the more traditional realms of algebra very
quickly. For instance the ring ofp-adic Witt vectors of a field is Noetherian if and only
if that field is perfect, [63], Chapter IX, page 43, exercise 9. Also, much related, the
p-adicWittvectorringWp∞(k[T ])ofonedimensionalaffinespaceovera characteristic
p > 0 field is not Noetherian, which would appear to rule out any kind of systematic
use of the Witt vectors in algebraic geometry as currently practiced.7 It is perhaps
because of this that the Witt vector functors and the rings and algebras thus arising
have not really been much studied,8 except in so far as needed for their applications
(which are many and varied).

1.15. Initial sources of information. There are a number of (electronic) encyclopedia
articles on the Witt vectors, mostly the p-adic Witt vectors, see [4, 5, 6, 7]. These can

7 This is not really true; witness crystalline cohomologyy and the de Rham-Witt complex (of which
cristalline cohomology is the hyper homology) which is made up of W(k) modules.

8 Should a reader inadvertently get really interested in the Witt vector ring functors he/she is recom-
mended to work through the 57 exercises on the subject in [63], 26 pp worth for the statements only, mostly
contributed, I have been told, by Pierre Cartier.
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serve to obtain a first sketchy impression. There are also a number of (introductory)
lecture notes and chapters in books on the subject, see e.g. [57, 74, 86, 188], [192
Chapter 3], [212, 263], [271, §26] [326 Lectures 6–12], [336]. However, the full story
of the Witt vectors is a long and varied one. Here, in the present chapter. I try to
present a first outline.

2. Terminology

The big and p-adic and truncated Witt vectors carry ring and algebra structures, and
hence, naturally, are sometimes referred to as a ring or algebra of Witt vectors and then
(by erosion) as Witt ring and Witt algebra. This is a bit unfortunate and potentially
confusing because these phrases mostly carry other totally unrelated meanings.

Mostly, ‘Witt ring’ refers to a ring of equivalence classes of quadratic forms (with
addition and multiplication induced by direct product and tensor product respectively),
see e.g. [96, 296].

Further ‘Witt algebra’ mostly refers to something like the Lie algebra of differ-
ential operators spanned by the di = xi+1 d

dx
, i ∈ Z under the commutator product

[di, dj] = (j − i)di+j , i.e. the centerless Virasoro algebra, much studied in physics;
see e.g. [182, 410, 426]. The fact that the sub Lie algebra spanned by the di for i ≥ −1
is usually denoted W1 adds a bit more potential confusion, and this becomes worse
when one encounters Wn for the more variable version of this algebra of differential
operators.

On the other hand the term ‘Witt group’ mostly indeed refers to a group of Witt
vectors.9

3. The p-adic Witt vectors. More historical motivation

It has become customary to ‘motivate’ the introduction of the Witt vectors by look-
ing at unramified complete discrete valuation fields, or, more precisely their rings
of integers. To start with, consider the ring of p-adic integers Zp, i.e. the comple-
tion of the integers with respect to the norm ||n|| =p−vp(n) where the valuation
vp(n) of an integer n is the largest power of p that divides n. Here p is a prime
number.

Every p-adic integer α, i.e. element of Zp, can be uniquely written as a
convergent sum

α = a0 + a1p+ a2p
2 + a3p

3 + · · · , ai ∈ {0, 1, · · · , p− 1} (3.1)

More generally, instead of the set {0, 1, · · · , p− 1} one can choose any set of repre-
sentatives of the residue fieldZ/(p) = Fp = GF(p).10 Now what happens if two such
expressions are added or multiplied; i.e. what are the coefficients of a sum or prod-
uct of p-adic integers? As in the case of the familiar decimal notation for arithmetic

9 But not always, cf e.g. [82], which is again about quadratic form related matters.
10 To use three of the standard notations for the prime field of p elements.
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with integers this involves carry-overs. That is perfectly acceptable for a calculating
machine but irritating to algebraists who would like universal formulas which always
work. Things get much worse if the residue field is not a prime field where it is not
even clear (a priori) what set of representatives to choose. Of course at this stage it is
far from obvious whether a universal formula can exist; that even seems unlikely at
first sight.

As it turns out there are universal formulas: the addition and multiplication poly-
nomials of the p-adic Witt vectors.

However, judging from the introduction in Witt’s seminal paper [420] the arith-
metic of p-adic fields was not Witt’s primary motivation. This seems also indicated
by the fact that this arithmetic is not mentioned in the title of the paper, but only in
the subtitle. Instead Witt seems to have been mainly motivated by a desire to obtain
a theory of cyclic Galois extensions for general charateristic p fields similar to the
theory he had himself obtained for power series fields in [415, 416] and, especially,
to understand some mysterious formulas of Hermann Ludwig Schmid, [355] con-
cerning central cyclic algebras in characteristic p. All this more or less in the frame-
work of a class field theory for function fields that was being vigorously developed
at the time by H Hasse, F K Schmidt, O Teichmüller, H L Schmid, C Chevalley,
E Witt and others. See [338] for a thorough and very readable account of this
part of the history of class field theory. Some of the important original papers are
[16, 23, 87, 191, 190, 355, 356, 357, 382, 415, 416, 420].

The situation as regards these cyclic central algebras was as follows. For α, β ∈ k
(of characteristicp > 0) let (α, β] denote the simple central cyclic11 algebra of degree
p with two generators u, θ subject to the relations

up = α, θp − θ = β, uθu−1 = θ + 1

In the Brauer group there are the relations

(α, β] · (α′, β] = (αα′, β] and (α, β] · (α, β′] = (α, β + β′]
H L Schmid in [355] succeeded in defining simple central cyclic algebras of degree
pn denoted (α|β] = (α|β0, β1, . . . , βn−1] and by dint of some heroic formula manip-
ulation found rules of the form

(α|β] · (α′|β] = (αα′|β] and (α|β] · (α|β′] = (α|s0(β, β′), · · · , sn−1(β, β
′)]

with, as Witt writes, “certain polynomials si(x, y) that are initially defined in charac-
teristic 0 and only after they have been proved to be integral are taken modulo p”. In
his fundamental paper [420] Witt proves that these formulas are in fact the addition
formulas of the p-adic Witt vectors; see also section 5 below. I will also briefly return
to these algebras in section 8 below.

11 The word ‘cyclic’ here refers to the fact that the algebras considered are cross products involving a
cyclic Galois group; see [96], chapter 7, especially §7.2 and §7.5 for more detail. See also section 8 below.
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So, here is already a third way in which the Witt vector polynomials turn up naturally
and unavoidably.

4. Teichmüller representatives

Let A be a ring with an ideal m such that the quotient ring k = A/m of charac-
teristic p > 0 is perfect, which means that the ring morphism σ: k −→ k, x �→ xp,
the Frobenius morphism, is supposed to be bijective.12 Suppose, moreover, that A is
complete in the m-adic topology. For instance A can be the ring of p-adic numbers
Zp, the quotient ring Z/(pm), or the ring of power series k((T )) over a perfect field
k of characteristic p. Here the corresponding ideals m are respectively the principal
ideals pZ, pZ/(pm), and (T ).

There is now the following simple observation:

For all a, b ∈ A, if a ≡ b mod mr, r ≥ 1, then ap ≡ bp mod mr+1 (4.1)

Now for any x ∈ k take lifts yr ∈ A of σ−r(x), r = 0, 1, 2, · · · ; i.e. q(yr) =
σ−r(x) where q: A −→ k is the canonical projection, so that all the yp

r

r are lifts of

x. Now consider the sequence y0, y
p

1 , y
p2

2 , · · · , yp
r

r , · · · . It follows from (4.1) and
the completeness hypothesis on A that this sequence converges to a limit that is a
lift of x. Moreover, again by (4.1), this limit does not depend on the choice of the
yr. This limit is denoted t(x) or tA(x) and called the Teichmüller representative of x.
This Teichmüller system of representatives has the following properties

t(0) = 0, t(1) = 1, t(xx′) = t(x)t(x′) (4.2)

i.e. it is multiplicative. (And if A is also of characteristic p it is also additive: tA(x+
x′) = tA(x)+ tA(x′). But in general this is not the case.)

The Teichmüller system is also the unique multiplicative one and the unique one
which commutes with p-th powers.

5. Construction of the functor of the p-adic Witt vectors

Let p be a prime number and consider the following polynomials in a countable
infinity of commuting indeterminates X0, X1, X2, · · ·

w0(X) = X0

w1(X) = Xp0 + pX1
· · · · · ·
wn(X) = Xp

n

0 + pXpn−1

1 + · · · + pn−1X
p

n−1 + pnXn· · · · · ·

(5.1)

12 For instance the finite fields GF(pf ) are perfect. There are also perfect rings that are not fields, for

instance, the ring k[Tp−i , i = 0, 1, 2, · · · ] for a perfect field of constants k.
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These are called the (p-adic) Witt polynomials. Now there occurs what has been called
‘the miracle of the Witt polynomials’. This is the following integrality statement.

5.2. Theorem. Let ϕ(X, Y,Z) be a polynomial over the integers in three (or less,
or more) commuting indeterminates. Then there are unique polynomials ϕn(X0, X1,

· · · , Xn;Y0, Y1, · · · , Yn;Z0, Z1, · · · , Zn) = ϕn(X;Y;Z), n = 0, 1, 2, · · · such
that for all n

wn(ϕ0(X;Y;Z), · · · , ϕn(X;Y;Z)) = ϕ(wn(X),wn(Y),wn(Z)) (5.3)

The proof is really quite simple. For instance by induction using the following simple
observation.

5.4. Lemma. Let ψ(X)=ψ(Xi, i∈ I ) be a polynomial (or power series for that
matter) in any set of commuting indeterminates with integer coefficients. Writeψ(Xp)
for the polynomial obtained from ψ(X) by replacing each indeterminate by its p-th
power. Then

ψ(Xp) ≡ ψ(X)p mod p and ψ(Xp)p
j ≡ ψ(X)pj+1

mod pj+1 (5.5)

Note the similarity with (4.1).

5.6. Proof of theorem 5.2. Obviously the polynomials ϕn are unique and can be
recursively calculated from (5.3) over the rationals, starting with ϕ0(X0;Y0;Z0) =
ϕ(X0;Y0;Z0). This also provides the start of the induction. So suppose with induction
that the ϕi have been proved integral for i = 0, 1, · · · , n− 1. Now observe that

wn(X) ≡ wn−1(X
p) mod p

and hence

ϕ(wn(X),wn(Y),wn(Z)) ≡ ϕ(wn−1(X
p),wn−1(Y

p), wn−1(Z
p))

= wn−1(ϕ0(X
p;Yp;Zp), · · · , ϕn−1(X

p;Yp;Zp))
(5.7)

Using (5.5) one has

pn−iϕp
i

n−i(X;Y;Z) ≡ pn−iϕp
i−1

n−i (X
p;Yp;Zp) mod pn

and so the n terms of the last expression in (5.7) are term for term equal modpn to
the first n terms of

wn(ϕ0(X;Y;Z), · · · , ϕn(X;Y;Z)) = ϕp
n

0 +pϕp
n−1

1 +· · ·+pn−1ϕ
p

n−1+pnϕn.
Hence pnϕn(X;Y;Z) ≡ 0 modpn, i.e. ϕn(X;Y;Z) is integral.

There are also other proofs; for instance a very elegant one due to Lazard, [258],
and reproduced in [367].

5.8. It is obvious from the proof that the theorem holds for polynomials ϕ in any
number of variables or power series in any number of variables, but things tend to get
a bit messy notationally. It is also obvious that there are all kinds of versions for other
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rings of coefficients; see also subsection 9.77–9.98 below for some more remarks on
this theme.

Actually, as will be seen later, see section 9 on the big Witt vectors, theorem 5.2
is not at all necessary for the construction of the various functors of Witt vectors and
to work with them; nor, for that matter the Witt polynomials. There are several other
ways of doing things.

5.9. The p-adic Witt addition and multiplication polynomials. The addition poly-
nomials sn(X0, · · · , Xn;Y0, · · · , Yn) and multiplication polynomials mn(X0, · · · ,
Xn;Y0, · · · , Yn) of the p-adic Witt vectors are now defined by

wn(s0, s1, · · · , sn) = wn(X)+ wn(Y) and

wn(m0,m1, · · · ,mn) = wn(X)wn(Y) (5.10)

5.11. And the functor of the p-adic Witt vectors itself is defined as

Wp∞(A) =
{
(a0, a1, · · · an, · · ·) : ai ∈ A

} = AN∪{0} (5.12)

as a set and with multiplication and addition defined by

a+W b = (a0, a1, · · · , an, · · · )+W (b0, b1, · · · , bn, · · · )
= (s0(a;b), s1(a;b), · · · , sn(a;b0), · · · )

a ·W b = (a0, a1, · · · , an, · · · ) ·W (b0, b1, · · · , bn, · · · )
= (m0(a;b),m1(a;b), · · · ,mn(a;b0), · · · )

(5.13)

There is a zero element, viz (0, 0, 0, · · · ) and a unit element, viz (1, 0, 0, · · · ) and the
claim is:

5.14. Theorem. The sets Wp∞(A) together with the addition and multiplication
defined by (5.9) and the unit and zero element as specified define a commutative uni-
tal ring valued functor, where the ring morphism corresponding to a ring morphism
α: A−→B is component wise, i.e. Wp∞(α)(a0, a1, · · · ) = (α(a0), α(a1), · · · ).
Moreover, the Witt polynomials wn define functor morphisms wn:Wp∞(A)−→
A, a= (a0, a1, a2, · · · ) �→wn(a). Finally for Q-algebras w:Wp∞(A)−→AN∪{0},
a �→w(a) = (w0(a), w1(a), · · · ) is an isomorphism onto the ring AN∪{0} with com-
ponentwise addition and multiplication.

Wp∞ is also (obviously) the unique functor which setwise looks like A �→ AN∪{0}
and for which the wn are functorial ring morphisms.

The elements wn(a) for a Witt vector a are often called the ghost components of
that Witt vector (originally: ‘Nebenkomponente’).

5.15. Proofs of theorem 5.14. To prove commutativity, associativity, distributivity
and that the zero and unit element have the required properties there are several
methods. One is to use defining polynomials as in (5.3). For instance the sequences
of polynomials s(m(X;Y);m(X;Z)) and m(X;s(Y;Z)) both satisfy (5.3) for the
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polynomial ϕ(X, Y,Z) = X(Y + Z) = XY + XZ and so they are equal proving
distributivity on the left.

Another way is to rely on functoriality. First, by the last line in the theorem (which is
obvious) distributivity etc. hold forQ-algebras. Then, because a commutative integral
domain embeds injectively into its ring of quotients, the required properties hold for
integral domains. Finally for every unital commutative ring there is an integral domain
that surjects onto it and so it follows that the required properties hold for every unital
commutative ring.

5.16. Ghost component equations. Universal calculations (= ‘Calculating with uni-
versal polynomials’). The polynomials sn(X;Y),mn(X;Y) are solutions of what I call
‘ghost component equations’. For instance the ghost component equations for addi-
tion can be written

wn(addition) = wn(X)+ wn(Y), n = 0, 1, 2, · · · (5.17)

and call for a sequence of polynomials s(X;Y) = (s0(X;Y), s1(X;Y), · · · ) such that
wn(s) = wn(X)+ wn(Y).

For the unit Witt vector one has the ghost component equations

wn(unitvector) = 1, n = 0, 1, 2, · · · (5.18)

which call for a series of polynomials u (which turn out to be constants) such that
wn(u) = 1 for all n. (So that u0 = 1, un = 0 for n ≥ 1.)

There will be many ‘ghost component equations’ below. They constitute a most
useful and elegant tool, though, as has already been remarked on, one can perfectly
well do without them. Not all of these ghost component equations fall within the
scope of theorem 5.2, see e.g. subsections 5.25 and 5.27 below.

Here are some more general properties of the p-adic Witt vector functor.

5.19. Ideals and topology. For each n = 1, 2, 3, · · ·
mn = {(0, · · · , 0, an, an+1, an+2, · · · ): aj ∈ A} (5.20)

is a (functorial) ideal in Wp∞(A); further mimj ⊂ mmax(i,j) (obviously, and no
more can be expected in general;13 for instance the multiplication polynomial m1
has the term pX1Y1 and so in general m1m1 �⊂ m2). The ring Wp∞(A) is complete
and Hausdorff in the topology defined by these ideals. The quotients Wpn(A) =
Wp∞(A)/mn+1 are the rings of p-adic Witt vectors of finite length n+ 1.

5.21. Teichmüller representatives. For each x ∈ A let t(x) = tWp∞ (A)(x) =
(x, 0, 0, · · · ). This is the Teichmüller representative of x (for the natural projec-
tion w0:Wp∞(A)−→A=Wp∞(A)/m1). This system of representatives is indeed
multiplicative because, as is easily checked, m0(X0;Y0) = X0Y0 and mn(X0,

0, · · · , 0;Y0, 0, · · · , 0) = 0 for n ≥ 1.

13 But things change very much for the case of p-adic Witt vectors over a ring of characteristic p; see
section 6.
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5.22. Multiplication with a Teichmüller representative. It is an easy exercise to check
that for the multiplication polynomials

mn(X0, 0, · · · , 0;Y0, Y1, · · · , Yn) = Xp
n

0 Yn (5.23)

and so in every Wp∞(A)

(a0, 0, · · · ) ·W (b0, b1, · · · , bn, · · · ) = (a0b0, a
p

0b1, · · · , ap
n

0 bn, · · · )
(5.24)

5.25. Verschiebung. Consider the ghost component equations

w0(Vp) = 0, wn(Vp) = pwn−1 for n ≥ 1 (5.26)

These call for a series of polynomials v = (v0, v1, v2, · · · ) such that w0(v) = 0,
wn(v) = pwn−1(v) for n ≥ 1 and do not fall within the scope of theorem 5.2. The
immediate and obvious solution is

v0(X) = 0, vn(X) = Xn−1 for n ≥ 1

and so for each a = (a0, a1, · · · ) ∈ Wp∞(A) the operation Vp acts like Vpa=
(0, a0, a1, a2, · · · ). Then because wn(Vpa) = pwn−1(a), wn(Vp(a +W b)) = wn
(Vpa) + wn(Vpb), and it follows that Vp defines a functorial group endomorphism
of the Witt vectors.14 It does not respect the multiplication. It is called Verschiebung.
Note that, see (5.19)

mi(A) = Vip(Wp∞(A))

5.27. Frobenius. The ghost component equations for the Frobenius operation are

wn(fp) = wn+1, n = 0, 1, 2, · · · (5.28)

This calls for a sequence of polynomials f = (f0, f1, f2, · · · ) such that wn(f ) =
wn+1, a set of equations that also falls outside the scope of theorem 5.2. For one thing
the polynomial fn involves the indeterminate Xn+1; for instance

f0 = Xp0 + pX1, f1 = Xp1 + pX2 −
p−1∑
i=0

pp−i−1
(
p

i

)
X
ip

0 X
p−i
1 ≡ Xp1 modp

(5.29)

It is easy to show that the fn are integral and that, moreover,

fn(X) ≡ Xpn modp, n = 0, 1, 2, 3, · · · (5.30)

14 There are pitfalls in calculating with ghost components as is done here. Such a calculation gives a
valid proof of an identity or something else only if it is a universal calculation; that is, makes no use of
any properties beyond those that follow from the axioms for a unital commutative ring only. That is the
case here. See also the second proof of theorem 5.14 in 5.15.
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so that for a ring k of characteristic p the Frobenius operations on the p-adic Witt
vectors over k are given by

fp(a0, a1, a2, · · · ) = (ap0 , ap1 , ap2 , · · · ) (5.31)

It follows from the ghost component equations (5.28) that the Frobenius operation

fp(a0, a1, a2, · · · ) = (f0(a), f1(a), f2(a), · · · ) (5.32)

is a functorial endomorphism of unital rings of the functor of the p-adic Witt vectors.

5.33. Multiplication by p for the p-adic Witt vectors. The operation of taking p-fold
sums on the p-adic Witt vectors, i.e. a �→ p ·W a = a +W a +W · · · +W a is (of
course) given by the polynomials Pn = s(s(· · · (s(X;X);X); · · · ;X) which satisfy
the ghost component equations

wn(P0, P1, P2, · · · ) = pwn(X) (5.34)

The first two polynomials are P0 = pX0, P1 = X
p

0 + pX1 − pp−1X
p2

0 . With
induction one sees

Pn(X) ≡ Xpn−1 mod p for n ≥ 1 (and P0(X) ≡ 0 mod p) (5.35)

For a change, here are the details. According to (5.34) the polynomials Pn are
recursively given by the formulas

P
pn

0 + pPpn−1

1 + · · · + pn−1P
p

n−1 + pnPn
= pXpn0 + p2X

pn−1

1 + · · · + pnXpn−1 + pn+1Xn (5.36)

With induction, assume Pi≡Xpi−1 modp for i≥ 1. This gives Pp
n−i

i ≡Xpn−i+1

i−1

modpn−i+1 and piPp
n−i

i ≡piXpn−i+1

i−1 modpn+1. So the middle n−1 terms of the left
hand side of (5.36) are term for term congruent to the first n − 1 terms of the right
hand side leaving

P
pn

0 + pnPn ≡ pnXpn−1 + pn+1Xn modpn+1

so that indeed Pn ≡ Xpn−1 modp because P0 = pX0 and pn > n.

5.37. Takingp-th powers in the Witt vectors. This operation is governed by the ghost
component equations

wn(M0,M1,M2, · · · ) = wn(X)p (5.38)

These polynomials Mi are of course integral as they can be obtained by repeated
substitution of the p-adic Witt vector multiplication polynomials into themselves.
For the first few polynomials Mi one finds (by direct calculation)

M0(X) = Xp0 ,M1(X) ≡ pXp−1
0 X1 modp2, M2(X) ≡ Xp

2−1
0 X

p

1 modp

(5.39)
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5.40. Adding ‘disjoint’ Witt vectors. Finally, suppose for two p-adic Witt vectors
a = (a0, a1, a2, · · · ) and b = (b0, b1, b2, · · · ) it is the case that for every n at least

one of an or bn is zero. Then (ai + bi)pj = a
pj

i + bpji for each i, j and it follows
that wn(a0 + b0, a1 + b1, a2 + b2, · · · ) = wn(a) + wn(b) so that in such a case
a+W b = (a0 + b0, a1 + b1, a2 + b2, · · · ). More generally it now follows that each
Witt vector a = (a0, a1, a2, · · · ) is equal to the unique convergent sum

a =
∞∑
i=0

Vip(t(ai)) (5.41)

5.42. Product formula. The Frobenius operator, Verschiebung operator, and mul-
tiplication for Witt vectors are related in various ways. One of these is the product
formula, [192], page 126, formula (17.3.17):

Vp(a · (fpb)) = Vp(a) · b (5.43)

This is a kind of formula that shows up in various parts of mathematics, such
as when dealing with direct and inverse images of sheaves in algebraic geometry,
in (algebraic) K-theory and in (abstract representation theory when dealing with
restriction and induction of representations.15

For instance in representation theory such a formula holds with ‘induction’ in place
of Vp and ‘restriction’ in place of fp. It is important enough in representation theory
that it has become an axiom in the part of abstract representation theory known as the
theory of Green functors. There it takes the form, [409], page 809:

IHK (a · RHK(b)) = IHK (a) · b
Sometimes this axiom is called the Frobenius axiom. Further in algebraic geometry
one has a natural isomorphism f∗(F ⊗OX f

∗E) ∼= f∗F ⊗OX E for a morphism of
ringed spacesf: (X,OX) −→ (Y,OY ) and suitable sheaves E and F wheref∗ andf ∗
stand for taking direct and inverse images under f , see [189], exercise 5.1(d) on page
124, while in (étale) cohomology one finds in [295], Chapter VI, §6, proposition 6.5,
page 250, a cupproduct formula i∗(i∗(x) ∪ y) = x ∪ i∗(y). These types of formulae
are variously called both product formulae and projection formulae.

It is absolutely not an accident that the same kind of formula turns up in Witt vector
theory.

To prove the product formula (5.43) one does a universal calculation. Apply the
ghost component morphismwn to both sides of (5.43) to find respectively (for n ≥ 1):

wn(Vp(a · fpb) = pwn−1(a · fpb) = pwn−1(a)wn−1(fpb) = pwn−1(a)wn(b)

wn(Vpa · b) = wn(Vpa)wn(b) = pwn−1(a)wn(b)

15 The terminology ‘product formula’ is not particularly fortunate. There are many things called ‘product
formula’ in many part of mathematics. Mostly they refer to formulae that assert that an object associated
to a product is the product of the objects associated to the constituents or to such formulae where a global
object for e.g. a global field is the product of corresponding local objects. This happens e.g. for norm residue
symbols in class field theory. The terminology ‘projection formula’ (which is also used for formulas like
(5.43) is also not particularly fortunate and suffers from similar defects.
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and these are equal. As also applying w0 to the two sides gives the same result, the
product formula is proved.

5.44. Here is another interrelation between the Frobenius and Verschiebung operators
and multiplication:

fpVp = [p] (5.45)

where [p] stands for the operation that takes a p-adic Witt vector into the p-fold sum
of itself, a �→ a+W a+W · · · +W a.

But in general Vpfp is not equal to [p].
To prove (5.45) one again does a universal calculation: wn(fpVpa) =

wn+1(Vpa) = pwn(a) and also wn([p]a) = pwn(a).

6. The ring of p-adic Witt vectors over a perfect ring of characteristic p

In this section k will finally be a perfect ring of characteristic p > 0. In this case
the ring of p-adic Witt vectors over k has a number of additional nice properties
including a first nice universality property. Recall that ‘k is perfect’ means that the
Frobenius ring morphism σ: k −→ k, x �→ xp is bijective. One of the aims of
this section to show that if k is a perfect field of characteristic p then the p-adic
Witt vectors form a characteristic zero complete discrete valuation ring with residue
field k.

6.1. p-adic Witt vectors over a ring of characteristic p. First, just assume only that
k is of characteristic p. Then calculations with p-adic Witt vectors simplify quite a
bit. For instance:

fp(a0, a1, a2, · · · ) = (ap0 , ap1 , ap2 , · · · )
[p](a0, a1, a2, · · · ) = p · (a0, a1, a2, · · · ) = (0, ap0 , ap1 , ap2 , · · · )
p = (0, 1, 0, 0, 0, · · · ) (6.2)

fpVp = [p] = Vpfp

Vipa · Vjpb = Vi+jp (a
pj

0 b
pi

0 , ??, ??, · · · )
where the ??’s in the last line stand for some not specified polynomial expressions
in the coordinates (components) of a and b. The first four of these formulas follow
directly from (5.25), (5.30) and (5.35). The last one follows from the fourth one,
repeated application of the product formula, and the first formula of (6.2) (and com-
mutativity of the multiplication). Note that the last formula implies that

mimj ⊂ mi+j (6.3)

(but equality need not hold). Also there is the corrollary

6.4. Corollary. If k is an integral domain of characteristic p then the ring of p-adic
Witt vectors over k is an integral domain of characteristic zero.
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6.5. Valuation rings. A (normalized) discrete valuation16 on a (commutative) field
K is a surjective function v: K −→ Z ∪ {∞} such that

v(x) = ∞ if and only if x = 0,

v(xy) = v(x)+ v(y), (6.6)

v(x+ y) ≥ min{v(x), v(y)}
for all x, y ∈ K. Such a valuation can be used to define a norm, and hence a topology,
onK by setting ||x|| = r−v(x) where r is e.g. an integer> 1. This defines an ultrametric
or non-Archimedean metric, d(x, y) = ||x − y||, on K where ‘ultra’ means that
instead of the familiar triangle inequality one has the stronger statement d(x, y) ≤
max{d(x, z), d(y, z)}.

The valuation ring of the valued field (K, v) is the ring

A = {x ∈ K: v(x) ≥ 0} (6.7)

Note that such a ring automatically has two properties

A is local with maximal ideal m = {x ∈ K: v(x) ≥ 1} (6.8)

The maximal ideal m is principal (6.9)

One can also start with a valuation on an integral domainA, which now is a surjective
function v: A −→ N ∪ {0,∞} such that the properties (6.6) hold. A valuation on
the field of fractions Q(A) is then defined by v(xy−1) = v(x) − v(y) (which is
independent of how an element of the field of fractions is written as a fraction). Such
an integral domain with a valuation is not necessarily a valuation ring. In particular,
one or both of the properties (6.8), (6.9) may fail.

6.10. Example. The p-adic valuation on the integers. Take a prime numberp. Define
on the integers the function vp(n)= r if and only if pr is the largest power of the
prime number p that divides n. This is obviously a valuation, but Z is not its cor-
responding valuation ring. That valuation ring is the localization Z(p) consisting
of all rational numbers that can be written as fractions with a denominator that is
prime to p.

6.11. However, if A is an integral domain with a valuation and the ring A satisfies
properties (6.8), (6.9), then A is a discrete valuation ring. See e.g. [136], page 50,
theorem 7.7; [62], Chapter 5, §3, no 6, proposition 9, page 100.

After this intermezzo on discrete valuation ringss let’s us return to rings of p-adic
Witt vectors.

16 Such valuations as here are also sometimes called ‘exponential valuations’. More generally one
considers such functions with values in the real numbers (or more general ordered groups) with infinity
adjoined, cf e.g. [136], page 20. Then the value group v(K\{0}) is a subgroup of the additive group of real
numbers. Such a group is either discrete (when there is a smallest positive real number in it) or dense. In
the discrete case one may as well assume that the value subgroup is the group of integers. Whence the
terminology ‘normalized discrete’.
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6.12. Units in the ring of p-adic Witt vectors. Let k be any ring of characteristic p,
then a p-adic Witt vector a = (a0, a1, a2, · · · ) is invertible in Wp∞(A) if and only if
a0 is invertible in k.

Indeed, multiplying with (a−1
0 , 0, 0, 0, · · · ) it can be assumed by (5.24) that a0 = 1

(multiplication with a Teichmüller representative). Then a = 1 + Vpb with b =
(a1, a2, · · · ). The series 1 − Vpb + (Vpb)2 − (Vpb)3 + · · · converges in Wp∞(k)
because of (6.2) or (6.3), say, to an element c. Then a · c = 1.

It follows in particular that if k is a field of characteristic p then Wp∞(k) is a local
ring with maximal ideal m = m1 = VpWp∞(k).

6.13. Rings of p-adic Witt vectors over a perfect ring of characteristic p. Now let k
be a ring of characteristic p that is perfect. There are of course such rings that are not
fields, for instance a ring k′[T1, T2, · · · ] with the relations Tpi = Ti−1 for i ≥ 2 and

k′ a perfect field. This field can be suggestively written k′[T, T p−1
, T p

−2
, · · · ].

Now first note that if k is perfect of characteristic p then the ideal m = m1 =
VpWp∞(k) is principal and generated by the element p ∈ Wp∞(k). This is immediate
from the second formula in (6.2) above. Second, observe that in this case mr =
prWp∞(k) = (m1)

r = VrpWp∞(k).
In this setting there is the first nice universality property of the p-adic Witt vectors.

6.14. Theorem. Let k be a ring of characteristic p that is perfect. Let A be a ring
with an ideal a such that A/a = k and such that A is complete and separated in
the topology defined by a. Then there is a unique morphism of rings ϕ such that the
following diagram commutes

Wp∞(k)
ϕ−→ A

↓ w0 ↓ q
k = k

Here the topology defined by a is the topology defined by the sequence of ideals an,
n = 1, 2, · · · and ‘separated’ means that

⋂
n

an = {0}. Further q is the canonical quo-

tient mapping A −→ A/a = k. It is perfectly OK for A to be a ring of characteristic
p or for it to be such that ar = 0 for some r.

6.15. Proof of theorem. 6.14. First, let’s prove uniqueness of ϕ (if it exists at all).
To this end observe that by the remarks in (6.13) and (5.41) every element inWp∞(k)
can be uniquely written in the form of a convergent sum

∞∑
n=0

t(ap
−n
n )pn, an ∈ k

and thus (by the completeness and separatedness of A) a ring morphism ϕ :
Wp∞(k) −→ A is uniquely determined by what it does to the Teichmüller repre-
sentives. But, as ϕ is a ring morphsim and hence multiplicative, the ϕ(t(a)), a ∈ k
from a system of Teichmüller representatives for k in A. As such systems are unique
it follows that there can be at most one ϕ that does the job.
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For existence consider the ghost component ring morphism

wn: Wpn(A) = Wp∞(A)/mn+1(A) −→ A

If r0, r1, · · · , rn ∈ a then wn(r1, r2, · · · , rn) ∈ an+1 and so there is an induced ring
morphism ψn that makes the following diagram commutative

Wpn(A)
wn−→ A

↓ Wpn(q) ↓
Wpn(k)

ψn−→ A/an+1

Now define

ϕn: Wpn(k) −→ A/an+1

as the composite

Wpn(k)
Wpn(σ

−n)−→ Wpn(k)
ψn−→ A/an+1

Then for any a0, a1, · · · , an ∈ A it follows that

ϕn(q(a
pn

0 , q(a
pn

1 ), · · · , q(ap
n

n )) = ap
n

0 + papn−1

1 + · · · + pnan (6.16)

Now let x0, x1, · · · , xn ∈ k and substitute in this formula (6.16) the Teichmüller

representatives (in A) tA(x
p−n
i ) to find that

ϕn(x0, x1, · · · , xn) = tA(x0)+ ptA
(
x
p−1

1

)
+ p2tA

(
x
p−2

2

)
+ · · ·

+ pntA(xp−nn ) mod an+1

and so the projective limit ϕ of the ϕn exists, is a ring morphism, and is given by the
formula

ϕ(x0, x1, x2, · · · ) = tA(x0)+ ptA(xp
−1

1 )+ p2tA(x
p−2

2 )+ · · · (6.17)

Of course one can write down this formula directly but then one is faced with proving
that it is a ring morphism which comes down to much the same calculations as were
carried out just now.

Now suppose in addition that a = (p) and that A is of characteristic zero. Then
the ring morphism

Wp∞(k)
ϕ−→ A, (x0, x1, x2, · · · ) �→ x0 + ptA(x1)

p + p2tA(x2)
p2 + · · · (6.18)

is clearly bijective and hence an isomorphism. So there is a (strong) uniqueness result
as follows

6.19. Theorem. Let k be a perfect ring of characteristic p > 0. Then, up to isomor-
phism, there is precisely one ringA of characteristic zero with residue ringA/(p) = k
and complete in the p-adic topology. Moreover A is rigid in the sense that the only
ring automorphism of A that induces the identity on k is the identity on A.
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6.20. The p-adic Witt vectors over a perfect field of characteristic p > 0. Finally
let k be a perfect field of characteristic p. Then by 6.13, m = m1 = VpWp∞(k) is
generated by p. Define v as follows

v : Wp∞(k) −→ N ∪ {0,∞}, (6.21)

v(0) = ∞, v(x0, x1, x2, · · · ) = n if xn is the first coordinate unequal to zero

Then v is a valuation on the ring of p-adic Witt vectors and makes this ring into a
complete discrete valuation ring by (6.11) and (6.12). And this ring is unramified as
the maximal ideal is generated by p.

Theorem 6.19 now translates into an existence and uniqueness (and rigidity) theo-
rem for complete discrete unramified valuation rings of characteristic zero and residue
characteristic p > 0.

Thus, for a perfect residue field there are indeed universal formulae that govern
the addition and multiplication of p-adic expansions as in section 3 above. The treat-
ment here has a bit of a ‘deus ex machina’ flavor in that the p-adic Witt vectors are
constructed first and subsequently proved to do the job. Motivationally speaking one
can do better. Once it is accepted that it is a good idea to write p-adic expansions
using Teichmüller representatives one can calculate and come up with addition and
multiplication formulae. This is nicely done in [188]. It was also already known in
1936, [382], that there should be integral coefficient formulae that could do the job.17

Witt’s major contribution was finding a way to describe them nicely and recursively.

6.22. Complete discrete valuation rings with nonperfect residue field. Immediately
after Witt’s paper, in the same18 issue of ‘Crelle’, there is a paper by Teichmüller,
[380], in which he proves existence and uniqueness of unramified complete discrete
valuation rings with given residue field, thus completing his own arguments from
[382]. For the unequal characteristic case he uses the p-adic Witt vectors.

Existence and uniqueness of unramified complete discrete valuation rings had been
treated before by Friedrich Carl Schmidt and Helmut Hasse in [191], but that paper
had an error, which was later, in 1940, pointed out by Saunders MacLane, [277], and
still later corrected by him [278]. For more see [339].

6.23. Cohen rings. The unique characteristic zero complete unramified discrete
valuation ring with a given residue field k of characteristic p> 0 is nowadays often

17 Indeed in [382], the theorem at the bottom of page 58 says the following. Define polynomials

h0, h1, h2, · · · in two variables by the formulae xp
n + ypn = hpn0 +phpn−1

1 +· · ·+pn−1h
p
n−1+pnhn.

Then these have integer coefficients. Given a, b in the perfect residue field k, let cn, n = 0, 1, 2, · · · be

given by cp
n

n =hn(a, b). Then the p-adic expansion of the sum to the Teichmüller representatives of a
and b is t(a)+ t(b)= t(c0)+ pt(c1)+ p2t(c2)+ · · · , which of course nicely agrees with the addition of
p-adic Witt vectors via the isomorphism (6.17). Thus the addition formula for Teichmüller representatives
was known, and given by universal formulae, and involved what were to be called Witt polynomials.
The multiplication of Teichmüller representatives was of course also known (as these are multiplicative).
Distributivity then determines things recursively. There was still much to be done and no prediction that
things would come out as nicely as they did, but the seeds were there.

18 The two papers carry the same date of receipt.
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called the Cohen ring19 of k; see [63] Chapter IX, §2 for a treatment of Cohen rings.20

If k is perfect the Cohen ring of k is the ring of p-adic Witt vectors. If k is not perfect
it is a ‘much smaller’ ring.

The technical definition of Cohen ring in loc. cit. is as follows. A p-ring is (by
definition) a unital commutative ring such that the ideal pC is maximal and the ring
is complete and separated in the p-adic topology defined by the powers of this ideal.
Given a local separated complete ringA a Cohen subring of it is a p-ring that satisfies
A = mA + C (where mA is the maximal ideal of A.

The existence and uniqueness of such a subring of thep-adic Witt vectors is implicit
in the work of Teichmüller, [380] and Nagata, [304], Chapter V, §31, p. 106ff, but a
nice functorial description had to wait till the work of Colette Schoeller, [358].21

6.24. p-basis. Let k be a field of characteristic p> 0. The field is perfect if and
only if k = kp = {xp : x ∈ k}. If it is not perfect there exists a set of elements
B = {bi : i ∈ I} of k such that the monomials∏

i∈I
b
ji
i , ji ∈ {0, 1, · · · , p− 1}, ji equal to zero for all but finitely many i

form a basis (as a vector space) for k over the subfield kp. The cardinality of I, which
can be anything, is an invariant of k and sometimes called the imperfection degree
of k. Such a set is called a p-basis. The notion is again due to Teichmüller and first
appeared in [381] (for other purposes than valuation theory). For some theory of
p-bases see [64], Chapter 5, §8, exercise 1, and [304], p. 107ff. If B is a p-basis for
k the monomials∏

i∈I
b
ji
i , ji ∈ {0, 1, · · · , pn − 1}, ji equal to zero for all but finitely many i

form a vector space basis for k over the subfield kp
n
.

6.25. Cohen functor. Given a characteristic p> 0 field k and a chosen p-basis let
Z[B] be the ring of polynomials over the integers in the symbols from B. Then
Schoeller defines functors Cn on the category of commutative unital Z[B]-algebras

19 There are other rings that are called ‘Cohen rings’ in the published literature. First there are certain
twisted power series rings which are a kind of noncommutative complete discrete valuation rings, see e.g.
[131, 342, 406]. Further in [137], section 18.34B, p. 48, a Cohen ring is defined as a ring R such that R/P
is right Artinian for each nonzero prime ideal P ; see also [138, 413]. This last bit of terminology has to do
with the paper [93].

20 This terminology would appear to come from the so-called Cohen structure theorems for complete
local rings, [94].

21 Existence of a multiplicative system of representatives is again crucial. In the general case, i.e., when
the residue field k is not necessarily perfect there is still existence (as noticed by Teichmüller, [382]), but no
uniqueness. A very nice way of seeing existence is due to Kaplansky, [235] section 26, p. 84ff, who notes
that the group of 1-units (Einseinheiten) of A, i.e. the invertible elements that are mapped to 1 under the
residue mapping, form a direct summand of the group of all invertible elements of A. This remark seems
to have been of some importance for Schoeller, and reference 4 in her paper, a paper that never appeared,
should probably be taken as referring to this.
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to the category of unital commutative rings. These functors depend on the choice of
the p-basis. They define affine group schemes.

Now if the characteristic of the base field k is p and perfect the finite length
p-adic Witt vector group schemes serve to classify unipotent affine algebraic groups
over k, a topic which will get some attention in a later section of this chapter. For
a non-perfect base field the Cohen functors defined in [358], see also [248] are a
well-working substitute.22

6.26. Cohen ring of k. It follows from (6.25) that Fp[B], where Fp is the field of p
elements, naturally embeds in k; combined with the canonical projection Z[B] −→
FP [B] this defines a Z[B]-algebra structure on k. The value of the Cohen functors
on k can now be described as follows, see [358], section 3.2, p. 260ff; see also [63],
Chapter IX, §2, exercise 10, p. 72.

Cn(k) is the subring of Wn+1(k) generated by Wn+1(k
pn) ⊂ Wn+1(k)

and the Teichmüller representatives (b, 0, 0, · · · , 0) ∈ Wn+1(k), b ∈ B
These form a projective system (with surjective morphisms of rings Cn+1(k)→ Cn(k)
induced by the projections Wn+1(k) → Wn(k)) and taking the projective limit one
finds a subring C(k) of the ring of p-adic Witt vectors which is a discrete complete
unramified valuation ring. It is unique but one loses the rigidity property that holds
for the Witt vectors, see theorem 6.19 and 6.20.

7. Cyclic Galois extension of degree pn over a field of characteristic p

As already indicated in the introduction (section 1) for Witt himself one of the most
important aspects of the Witt vectors was that they could be used to extend and
complete his own results from [416, 415] to obtain a Kummer theory (class field
theory) for Abelian extensions of a field of characteristic p. This section is a brief
outline of this theory. In this whole section p is a fixed prime number.

7.1. Construction of some Abelian extensions of a field of characteristic p> 0.
Consider the functor of p-adic Witt vectors Wp∞ . It is an easy observation that
for each n ≥ 1, the multiplication and addition polynomials si(X;Y),mi(X;Y), i =
0, · · · , n − 1 only depend on X0, · · · , Xn−1;Y0, · · · , Yn−1. It follows immediately
that the sets

VnpWp∞(A) = {(0, · · · , 0,︸ ︷︷ ︸
n

a0, a1, · · · , am, · · · )} (7.2)

are (functorial) ideals in the ringsWp∞(A). And hence, for each n, there is a quotient
functor

Wpn−1(A) = Wp∞(A)/VnpWp∞(A) = {(a0, a1, · · · , an−1) : ai ∈ A} (7.3)

22 There may be some difficulties with the constructions in [358] in case the cardinality of the p-basis is
not finite as is stated in [378], where also an alternative is proposed.
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These are called thep-adic Witt vectors of length n. The multiplication and addition
of these vectors of length n are given by the multiplication and addition polynomials
si(X;Y),mi(X;Y), i = 0. · · · , n− 1.

In other words Wpn−1 is the functor on CRing to CRing represented by
Z[X0, X1, · · · , Xn−1] provided with the coring object structure given by the polyno-
mials si(X;Y),mi(X;Y), i = 0. · · · , n− 1.

If the ring A is of characteristic p the Frobenius endomorphism on Wp∞(A) is
given by (see (6.2) above)

fp(a0, a1, a2, · · · ) = (ap0 , ap1 , ap2 , · · · ) (7.4)

and thus manifestly takes the ideal VnpWp∞(A) into itself. In general this is not the
case. Thus for rings of characteristic p there is an induced (functorial) Frobenius
endomorphism of rings

fp:Wpn−1(A)→ Wpn−1(A) (7.5)

From now on in this section k is a field of characteristic p > 0. Consider the additive
operator

p:Wpn−1(k)→ Wpn−1(k),p(α) = fp(α)− α (7.6)

(Witt vector subtraction, of course.) For n = 1, so thatWpn−1(k) = k this is the well-
known Artin-Schreier operator xp − x which governs the theory of cyclic extensions
of degree p of the field k.

For n > 1 the operator (7.6) is very similar, particularly if one reflects that the
Frobenius operator is ‘as much like raising to the power p as an additive operator on
the Witt vectors can be’ (as has been remarked before).

Moreover, consider the kernel of the operator p. For a given n his kernel consists
of all p-adic Witt vectors α = (a0, a1, · · · , an−1) of length n such that api = ai for
all i = 0, 1, · · · , n − 1. Thus for all these i, ai ∈ Fp ⊂ k the prime subfield of p
elements of k. Thus

Ker(p) = Wpn−1(Fp) = Z/pnZ (7.7)

the cyclic group of order pn. (The last equality in (7.7) is immediate from the con-
siderations of the previous chapter.) This is most encouraging in that it suggests that
the study of equations

fp(α)− α = p(α) = β (7.8)

in Wpn−1(k) with β ∈ Wpn−1(k) and k an algebraic closure of k could lead to cyclic
extensions of degree pn just like in standard Artin–Schreier theory as described e.g.
in [96], pp. 205–206. This is indeed substantially the case and things turn out even
better.

For any β ∈ Wpn−1(k) consider a solution α = (a0, a1, · · · , an−1) of (7.8).
Then k(p−1β) denotes the extension field of k generated by the components
a0, a1, · · · , an−1. Because of (7.7) if α′ = (a′0, a′1, · · · , a′n−1) is another solution
k(a0, a1, · · · , an−1) = k(a′0, a′1, · · · , a′n−1) so that the extension k(p−1β) of k does
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not depend on the choice of a solution. More generally if� is any subset ofWpn−1(k)

then k(p−1�) denotes the union of all the k(p−1β) for β ∈ �.

7.9. The main theorems for Abelian extension of exponent pn of fields of character-
istic p. There is now sufficient notation to formulate the main theorems of Kummer
theory for Abelian extensions of exponent pn of a field of characteristic p.

7.10. Theorem (Kummer theory). Let � ⊂ Wpn−1(k) be a subgroup which contains
pWpn−1(k) and such that�/pWpn−1(k) is finite. Then the Galois group of the extension
k(p−1�) is isomorphic to �/pWpn−1(k).

For each Abelian field extensionK/k of exponent a divisor of pn there is precisely
one group �/pWpn−1(k) such that K = k(p−1�).

7.11. Theorem (on cyclic extensions of degree pn). Let β = (b0, b1, · · · , bn−1) be
a p-adic Witt vector of length n over k such that b0 /∈ pWpn−1(k). Then k(p−1β) is a
cyclic extension of degree pn of k.

A generator of the Galois group is given by σ(α) = α + 1 (Witt vector addition,
and 1 the unit of the ring Wpn−1(k)).

All cyclic extensions of degree pn can be obtained in this way.

7.12. On the proofs. The theorems above already occur in [420]. But the proofs
there are very terse. They consists of brief instructions to the reader to first prove
a kind of (additve) “Hilbert 90 theorem” for Witt vectors by redoing the proof of
theorem 1.2 in [415]. This says that a first Galois cohomology group with coefficients
in Witt vectors is zero and is ‘Satz 11’ in [420]. The further instructions are to redo
the arguments of [415] using vectors instead of numbers and using ‘Satz 11’ instead
of the usual ‘Hilbert 90’ as the occasions demand.

For a good complete treatment of this Kummer theory for Abelian extensions
of fields of characteristic p> 0 see [271], pp. 146–150. The statements there are
slightly more general and a bit more elegant than in [420] in that the group
�/pWpn−1(k) is not required to be finite. The isomorphism statement of theorem
7.10 now becomes a duality statement to the effect that the group �/pWpn−1(k)

and the Galois group of the extension are dual to each other under a natural
pairing.

8. Cyclic central simple algebras of degree pn over a field of characteristic p

The second main application of the p-adic Witt vectors in [420] is to cyclic central
simple algebras of prime power degree pn over a field of characteristic p > 0. This
is a topic in the theory of simple central algebras over and the Brauer group of a field,
[1, 2], [96] Chapter 7, [102] Chapter III.

8.1. Central simple algebras. Acentral simple algebra over a field k is what the name
indicates: it is a finite dimensional algebra over k, it is simple, i.e. no nontrivial ideals,
and it is central, i.e. its centre, {a ∈ A: ar = ra for all r ∈ A} coincides with k. A
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central division algebra over k is a central simple algebra in which every nonzero
element is invertible. The classic example is the algebra of quaternions over the
reals.

For every central simple algebra A there is a (unique up to isomorphism) central
division algebra D such that A is isomorphic to a full matrix ring over D.

For every central simple algebra over k there is a field extension23 K/k such the
tensor product Ak = A ⊗k K is a full matrix ring over K. Such a field is called a
splitting field.

The tensor product (over k) of two central simple algebras over k is again a central
simple algebra over k.

8.2. Brauer group. Two central simple algebras A, B, over k are called (Brauer)
equivalent if for suitable natural numbers m and n

A⊗k Mm(k) ∼= B⊗k Mn(k) (8.3)

Here Mm(k) is the full matrix algebra over k of all m×m matrices with entries in k.

Equivalently, A and B are equivalent if they have isomorphic associated division
algebras.

The tensor product is compatible with this equivalence notion and defines (hence)
a group structure on the equivalence classes. This group is called the Brauer group,
Br(k), of k. It can be interpreted as a second Galois cohomology group.

8.4. Crossed product central simple algebras, [102] §III-2, [96] §7.5. A central
simple algebra over k is called a cross product if it contains a maximal subfield K
such that K/k is a Galois extension.

That K is then a splitting field.
This is the ‘abstract’ definition of a crossed product. There is also an explicit

description/construction which is important and explains the terminology. This goes
as follows. Let U be the group of invertible elements of a crossed product central
simple algebra A. Let N be the centralizer of K× = K\{0} in U:

N = {u ∈ U: u−1Ku ⊆ K} (8.5)

ThenK× is a normal subgroup ofN and hence gives rise to a short exact sequence
of groups

1 −→ K× −→ N −→  −→ 1 (8.6)

a group extension of  by K×. One easily shows that  ∼= Gal(K/k).
Being a group extension, it is determined by what is called a factor system and this

same factor system can be used to recover (up to isomorphism) the crossed product
central simple algebra A.

Not every central simple algebra is a crossed product, but every Brauer equivalence
class contains one.

23 As always the term ‘field’ implies commutativity.
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When the Galois extension involved is cyclic, i.e. the group=Gal(K/k) is cyclic,
one speaks of a cyclic central simple algebra.

8.7. Cyclic central algebra associated to a finite length p-adic Witt vector. From
now on in this section k is a fixed field of characteristic p > 0. Take an element
α ∈ k and a finite length Witt vector β = (b0, b1, · · · , bn−1) ∈ Wpn−1(k). To these
data associate the algebra generated over k by an indeterminate u and commuting
indeterminates θ0, θ1, · · · , θn−1 subject to the relations

up
n = α, pθ = β, uθu−1 = θ + 1 (8.8)

Here, θ = (θ0, θ1, · · · , θn−1) (as a Witt vector) and uθu−1 = (uθ0u
−1, uθ1u

−1, · · · ,
uθn−1u

−1). This algebra will be denoted (α|β]. These algebras are central simple
algebras of ‘degree’pn (meaning that their dimension over k is p2n).

Note that conjugation by u is an operation of order pn. Also, by the results of
Section 7 above, if b0 /∈ pWpn−1(k) the subalgebra k(θ0, θ1, · · · , θn−1) is a cyclic
field extension of degree pn and conjugation by u is the action of a generator of
the Galois group. This is just about sufficient to prove that (α|β] is a cyclic central
simple (crossed product type) algebra. In case b0 ∈ pWpn−1(k) there is a ‘reduction
theorem’, Satz 15 from [420], which says the following.

8.9. Theorem. The algebra (α|0, b1, b2, · · · , bn−1] is Brauer equivalent to (α|b1,

b2, · · · , bn−1]

The next theorem is rather remarkable and shows once more that there is no escaping
the Witt vectors.

8.10. Theorem (Brauer group and Witt vectors). In the Brauer group of the field k
there are the (calculating) rules

(α|β] · (α′|β] = (αα′|β] (8.11)

(α|β] · (α|β′] = (α|β + β′]
(where in the second line of (8.11) the ‘+’ sign means Witt vector addition.

For the time being the sections above conclude the discussions on p-adic Witt
vectors. There will be more about the p-adic Witt vectors in various sections below.
But first it is time to say something about that truly universal object the functor of the
big Witt vectors; and that will be the subject in the next few sections.

9. The functor of the big Witt vectors

In the early 1960’s, probably independent of each other, several people, notably Ernst
Witt himself and Pierre Cartier, noticed that the p-adic Witt polynomials (5.1) are
but part of a more general family and that these polynomials can be used in a similar
manner to define a ring valued functor W : CRing −→ CRing of which the p-adic
Witt vectors are a quotient, see [105, 149, 192, 255, 419]. This functor W is called
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the functor of the big Witt vectors.24 (And also, over Z(p)-algebras the canonical
projectionW(A) −→ Wp∞(A) has an Abelian group section, making in this case the
p-adic Witt vectors also a sub functor of the big Witt vectors.)

Here, I will first construct the big Witt vectors in another way, before describing
those ‘generalized’ Witt polynomials alluded to, and how the p-adic Witt vectors fit
with the big ones.

9.1. The functor of one power series. For each ring (unital and commutative) let

�(A) = 1+ tA[[t]] = {f = f(t) = 1+ a1t + a2t
2 + · · · : ai ∈ A} (9.2)

be the set of power series overAwith constant term 1. Under the usual multiplication
of power series this is an Abelian group (for which the power series 1 acts as the
zero element). Thus (9.2) defines an Abelian group valued functor �: CRing −→
AbGroup. The morphism of Abelian groups associated to a morphism α:A −→ B

is coefficient-wise, i.e.

�(α)(1+ a1t + a2t
2 + a3t

3 + · · · ) = 1+ α(a1)t + α(a2)t
2 + α(a3)t

3 + · · · (9.3)

Giving a power series like (9.2) is of course the same thing as giving an infinite
length vector (a1, a2, a3, · · · ) and in turn such a vector is the same as a morphism of
commutative rings

Symm = Z[h1, h2, h3, · · · ] = Z[h] ϕf−→ A, ϕf : hi �→ ai (9.4)

where, as indicated in the notation, Symm is the ring of polynomials in an infinity
of commuting indeterminates h1, h2, h3, · · · . Thus the functor � is representable
by Symm. The functorial addition on the Abelian group �(A) then defines a co-
multiplication on Symm

μS = μSum: Symm −→ Symm⊗ Symm, hn �→
∑
i+j=n

hi ⊗ hj (9.5)

where by definition and for ease of notation h0= 1. This makes Symm a Hopf alge-
bra. The comultiplication formula of course encodes the ‘universal’ formula (that is
‘recipe’) for multiplying power series which is

(1+ a1 + a2 + a3 + · · · )(1+ b1 + b2 + b3 + · · · ) = 1+ c1 + c2 + c3 + · · ·
⇔ cn =

∑
i+j=n

aibj

with, again, a0 = b0 = c0 = 1. Which, in turn, is the same as saying that the addition
on CRing(Symm, A) is given by the convolution product

ϕfg = Symm
μs−→ Symm⊗ Symm

ϕf⊗ϕg−−−−→ A⊗ A mA−−→ A (9.6)

where mA is the multiplication on the ring A.

24 In earlier writings also ‘generalized Witt vectors’.
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As in the case of the p-adic Witt vectors of the previous 7 sections it is often
convenient (but never, strictly speaking, necessary) to work with ghost components.
These are defined by the formula

s(f ) = s(a1, a2, a3, · · · ) = s1t + s2t2 + s3t3 + · · · = t d
dt

log(f(t)) = tf ′(t)
f(t)

(9.7)

so that for example the first three ghost components are given by the universal formulas

s1(a) = −a1, s2(a) = a2
1 − a2, s3(a) = −a3

1 + 2a1a2 − a3 (9.8)

Because of the properties of ‘log’ as defined formally by

log(1+ x) = x− x2

2
+ x3

3
− x4

4
+ · · · + (−1)n+1 x

n

n
+ · · · (9.9)

so that log(fg) = log(f )+ log(g), this implies that addition in �(A) (which is mul-
tiplication of power series) corresponds to coordinate-wise addition of ghost compo-
nents ( just as in the case of the p-adic Witt vectors).

9.10. The symmetric function point of view. Now imagine that the ai are really the
complete symmetric functions in a set of elements ξ1, ξ2, ξ3, · · · (living as it were in
some larger ring containing A); i.e.

an = hn(ξ1, · · · , ξn, · · · ) (9.11)

where the hn(X) are the familiar complete symmetric functions in the commuting
indeterminates X1, X2, X3, · · · , viz

hn(X) =
∑

j1≤j2≤···≤jn
Xj1Xj2 · · ·Xjn (9.12)

The relation (9.11) can be conveniently written down in power series terms as

∞∏
i=1

1

(1− ξi) = 1+ a1t + a2t
2 + a3t

3 + · · · = f(t) = f (9.13)

The ghost components of f are given by (9.7). In terms of the ξi that means that

s1t + s2t2 + s3t3 + · · · = t d
dt

log f(t) = t d
dt

∑
i

log
(
(1− ξit)−1

)

= −t d
dt

∑
i

(
−ξit − ξ2

i t
2

2
− ξ3

i t
3

3
− · · ·

)
(9.14)

=
∞∑
j=1

(
ξ
j

1 + ξj2 + ξj3 + · · ·
)
tj

so that in terms of the ξ’s the ghost components are given by the power sums.

9.15. Multiplication on the Abelian groups�(A). If there is to be a ring multiplica-
tion on �(A) then in particular there should be a multiplication of the very special
power series (1−xt)−1 and (1−yt)−1. Just about the simplest thing one can imagine
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is that the product of these very special power series is

(1− xt)−1 ∗ (1− yt)−1 = (1− xyt)−1 (9.15)

Something which fits with what has been seen in the theory of the p-adic Witt vectors:
the (1− xt)−1 are the Teichmüller representatives of the x ∈ Awhich should be mul-
tiplicative. Distributivity and functoriality together now force that the multiplication
of power series in �(A) should be given by

f(t) =
∏
i

(1− ξit)−1, g(t) =
∏
i

(1− ηit)−1

⇒ (f ∗ g)(t) =
∏
i,j

(1− ξiηjt)−1 (9.16)

Note that this formula makes perfectly good sense. The right most expression is
symmetric in the ξ’s and also symmetric in the η’s and so, when written out, gives a
power series with coefficients that are complete symmetric functions in the ξ’s and
in the η’s. And that means that they are universal polynomials in the coefficients of
f and g.

Here is how this multiplication works out on the ghost components. As in (9.14)

t
d

dt
log

( ∏
i,j

(1− ξiηjt)−1
)
=

∑
i,j

((ξiηj)t + (ξiηj)2t2 + (ξiηj)3t3 + · · · )

(9.17)

=
∞∑
n=1

pn(ξ)pn(η)t
n

Thus, multiplication according to (9.16) translates into component-wise multiplica-
tion for the ghost components. Actually because of distributivity it would have been
sufficient to do this calculation for (9.15).

Associativity of the multiplication and distributivity follow by functoriality (or
directly for that matter).

All in all, what has been defined is a unital-commutative-ring-valued functor

�: CRing −→ CRing (9.18)

together with a set of ‘ghost component’ functorial ring morphisms

sn: �(A) −→ A (9.19)

which determine the ring structure on �(A) by the very requirement that they be
functorial ring morphisms.

The unit element of the ring �(A) is the power series 1 + t + t2 + t3 + · · · =
(1− t)−1.

9.20. The functor of the big Witt vectors. Now what has all this to do with
Witt-vector-like constructions? As a set define

W(A) = AN = {(x1, x2, x3, · · · ): xi ∈ A} (9.21)
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and set up a functorial bijection (of sets) between W(A) and �(A) by

eA: (x1, x2, x3, · · · ) �→
∞∏
n=1

(1− xnt n)−1 (9.22)

and transfer the functorial ring structure on the �(A) to the W(A) by this bijection.
This then defines a unital-commutative-ring-valued functor

W : CRing −→ CRing

(that is isomorphic to�, so one might justifiably wonder why one takes the trouble).
Let’s calculate the ghost components of a Witt vector (x1, x2, x3, · · · ) ∈ W(A), which
by definition means calculating

wn(x) = wn(x1, x2, x3, · · · ) = sn(eA(x)) (9.23)

This is easy

t
d

dt
log

( ∏
d

(1− xdtd)−1
)
= t d

dt

∑
d

−
( ∑

m

−m−1(xdt
d)m

)

=
∑
d,m

dxmd t
dm =

∞∑
n=1

∑
d|n
dx
n/d

d (9.24)

and thus the ghost components of the ring valued functorW are given by the (genera-
lized) Witt polynomials

wn(X1, X2, · · · , Xn) =
∑
d|n
dX

n/d

d (9.25)

Note that these do indeed generalize the Witt polynomials (5.1) of the previous 8
sections in that, apart from a relabeling the polynomials wpn of (9.25) are indeed the
polynomials wn of (5.1).
From now on in this whole chapter, that is in all sections that follow, wn and

wn(X) and · · · refer to the polynomials as defined by (9.25).
Incidentally, the formula for (second) multiplication of power series, i.e. multipli-

cation in the ring�(A) of power series written in ‘x-coordinates’ as in the right hand
side of (9.22) can be written down directly as follows

( ∏
d

(1− xdtd)−1
)
∗

( ∏
n

(1− yntn)−1
)
=

∏
r,s≥1

(1− xm/rr ym/ss tm)−rs/m (9.27)

where on the right hand side m is the least common multiple of r and s. This is a
formula that was known to Witt, [419]. Thus there is no absolute need to introduce
symmetric functions into the game; it is just very convenient.

As far as I know the first substantial treatment of the big Witt vectors from the
symmetric functions point of view is due to Pierre Cartier, [84, 86].
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9.28. The ai of (9.2) and (9.13), and the xi of (9.22) can be best seen as simply being
different ways to coordinatize�(A).As is usual with two different coordinate systems
each has its advantages and diadvantages. One good property of the ‘x-coordinates’
has already been pointed out. They show that the ring�(A) is a (far reaching) generali-
zation of the p-adic Witt vectors. Another is that the ghost component formulae, i.e.
the Witt polynomialswn(X) are very simple. For one thing they do not involve mixed
terms in theXi; for anotherwn(X) depends only on thoseXd for which d is a divisor
of n. This latter fact makes it clear that there are many interesting quotient functors
of W (which is difficult to see in the � formulation). These quotient functors will be
described in the next section, 10.

On the other hand there are good well known formuals both ways (from symmetric
function theory) that relate the ‘a-coordinates’ (i.e. the power series coordinates)
with their ghost components while inverting the Witt polynomials seems to be a
bit of a mess.

Quite a number of formulas from symmetric function theory are important (or at
least very useful) for Witt vector theory. In the next subsections there are a few.

9.29. Very partial symmetric function formularium (1).25 Everything takes place in
the rings

Z[ξi: i ∈ I] respectively Z[[ξi: i ∈ I]]
of polynomials, respectively power series, in a countable infinite collection of com-
muting indeterminates over the integers. (And also in their analoguesQ[ξi: i ∈ I] and
Q[[ξi: i ∈ I]] over the rationals.) For some definitional and foundational remarks on
what it means to have a polynomial or power series in an infinite number of variables
see the appendix to this chapter.

The rings just above are graded by giving all the ξi degree 1.
The reader who does not like polynomials and power series in an infinite number

of variables can just imagine that things are in terms of a finite number of them, large
enough for the business at hand.

9.30. Partitions and monomial symmetric functions. A partition λ = (λ1, λ2,

· · · , λn) is a finite sequence of elements from N ∪ {0} in non-increasing order,
λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · . Partitions with different numbers of trailing zeros
are identified. The length of a partition, lg(λ), is the number of its non zero entries;
its weight is wt(λ) = λ1 + λ2 + · · · + λn. A different notation for a partition is
(1m1(λ)2m2(λ) · · · nmn(λ))wheremi(λ) is the number of entries of it that are equal to i.
A partition of weight n is said to be a partition of n and its entries are (also) called the
parts of that partition.
For any sequence α = (a1, a2, · · · , am) of elements from N ∪ {0} let

ξα = ξa1
1 ξ

a2
2 · · · ξamm , e.g. ξ(0,0,0,2,0,3,0,0) = ξ2

4ξ
3
6 (9.31)

25 Not all of the formulas and functions that follow belong to the standard formularium of the symmetric
functions.



354 M. Hazewinkel

Given a partition λ (strictly speaking with an infinite string of trailing zeros added),
the associated monomial symmetric function is the sum

mλ =
∑
α

ξα (9.32)

where the sum is over all distinct sequences α (infinite with only a finite number
of nonzero entries) that are permutations of λ (with trailing zeros added). Thus, for
example,

m(2,1) =
∑
i�=j

ξ2
i ξj = ξ2

1ξ2 + ξ2
2ξ1 + ξ2

1ξ3 + ξ2
3ξ1 + ξ2

2ξ3 + ξ2
3ξ2 + · · · (9.33)

m(1,1) =
∑
i<j

ξiξj = ξ1ξ2 + ξ1ξ3 + ξ2ξ3 + · · · (9.34)26

These are the simplest symmetric functions in that if a symmetric function contains one
of the monomials from anmλ then it also contains all others (with the same coefficient).
The monomial symmetric functionmλ is homogeneous of degree wt(λ) = n and they
form a basis for the free Abelian group of symmetric functions of weight n.
By definition the complete symmetric functions and the elementary symmetric func-
tions are

hn=
∑

wt(λ)=n
mλ and en = m(1,1,··· ,1) (n1’s) (9.35)

and for a partition λ = (λ1, λ2, · · · , λm) one writes

hλ = hλ1hλ2 · · ·hλm and eλ = eλ1eλ2 · · · eλm (9.36)27

The complete symmetric functions and the elementary ones are related by the Wronski
relations ∑

i+j=n
(−1)ihiej = 0 for n ≥1, where h0 = e0 = 1 (9.37)

The hλ (resp. eλ) for λ of weight n also form a basis for the symmetric functions of
degree n. By definition

Symm = ⊕n Symmn ⊂ Z[ξ] (9.38)

is the graded ring of symmetric functions in the commuting indeterminates ξ. In
this whole chapter it will (usually) be seen as the graded ring in the complete

26 Note the difference between the two formulae which rests on the word ‘distinct’ in the sentence just
below (9.32).

27 Note that this notation has a rather different meaning than that formλ. It is definitely not true thatmλ
is equal to something like m(λ1)m(λ2) . . . m(λm).
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symmetric functions

Symm = Z[h1, h2, · · · , hm, · · · ] = Z[h] (9.39)

For many purposes one could equally well work with the elementary symmetric
functions, but the complete ones just work out better. Actually, there are precisely
four ‘canonical’ choices, see subsection 10.18 below on the Liulevicius theorem.

9.40. Inner product. One defines a (symmetric positive definite) inner product on
Symm by declaring the monomial and the complete symmetric functions to form a
bi-orthogonal system:

<hλ,mκ>= δλ,κ (Kronecker delta) (9.41)28

There is now a remarkable theorem, see [281], (4.6), p. 63:

9.42. Theorem. Let {uλ} and {vλ} be two sets of symmetric functions indexed by
all partitions (including the zero partition) that both form a basis for SymmQ =
Symm ⊗Z Q (or Symm itself ). Then they form a bi-orthonormal system (i.e <uλ,
vλ>= δλ,κ) if and only if∑

λ

uλ(ξ)vλ(η) =
∏
i,j

(1− ξiηj)−1 (9.43)

Here η = {η1, η2, · · · } is a second set of commuting indeterminates that also commute
with the ξ’s, and vλ(η) is the same as vλ(ξ) = vλ but now written as an expression in
the η’s.

The theorem is especially remarkable to a mathematician with (products of ) Witt
vectors on his mind29 and I am far from sure that its consequences in that context
have been fully explored and understood.

Theorem 9.42 fits with formula (9.41) for it is indeed the case that ([281], p. 62)

∑
λ

hλ(ξ)mλ(η) =
∏
i,j

(1− ξiηj)−1 (9.44)

9.45. Schur functions. A symmetric function, i.e. an element of Symm, is called
positive if when expressed as a sum in the monomial basis {mλ} all its coefficient are
non negative. All the specific symmetric functions introduced so far, the mλ, hλ, eλ,
are positive.

It now turns out that there is a unique positive orthonormal basis of Symm. They
are called the Schur functions, and are determined by∑

λ

sλ(ξ)sλ(η) =
∏
i,j

(1− ξiηj)−1 (9.46)

and the positivity requirement.

28 This inner product is often called ‘Hall inner product’.
29 See (9.16).
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The first few Schur functions are

s(1) = m(1) = h1, s(2) = m(2) +m(1,1) = h2, s(1,1) = m(1,1) = −h2 + h(1,1)
(9.47)

and the ones in weights 3 and 4 are given by the matrices⎛
⎝1 0 0

1 1 0
1 2 1

⎞
⎠, s-m matrix;

⎛
⎝1 −1 1

0 1 −2
0 0 1

⎞
⎠, s-h matrix (9.48)

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 2 1 1 0
1 3 2 3 1

⎞
⎟⎟⎟⎟⎠, s-m matrix;

⎛
⎜⎜⎜⎜⎝

1 −1 0 1 −1
0 1 −1 −1 2
0 0 1 −1 1
0 0 0 1 −3
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠, s-h matrix

(9.49)

where the partitions have been ordered lexicographically, (4), (3,1), (2,2), (2,1,1),
(1,1,1,1), and the columns give the coefficients of the Schur functions in terms
of the monomial symmetric functions (resp. the complete symmetric functions).
Thus e.g.

s(3,1)= m(3,1) +m(2,2) + 2m(2,1,1) + 3m(1,1,1,1)

s(2,1,1)= h(4) − h(3,1) − h(2,2) + h(2,1,1) (9.50)30

There are many ways to define the Schur functions and to write down formulas for
them. The standard (and oldest) definition is the one by Jacobi, see [281], p. 40ff. An
explicit expression is given by the Jacobi–Trudy formulas

sλ = det(hi − i+ j)1≤i,j≤n (9.51)

Other expressions come from the Schur identity∑
λ

sλ =
∏
i

(1− ξi)−1
∏
i<j

(1− ξiξj)−1 (9.52)

(see [273], 5.4, p. 176). This one has the advantage of showing immediately that
Schur symmetric functions are positive (which is far from obvious from (9.51)).

30 Calculating with the monomial symmetric functions directly is a bit messy (and so is calculating
with their explicit expressions). For instance m(3,1)m(1) = m(4,1) + m(3,2) + 2m(3,1,1), m(4,1)m(2) =
m(6,1) + m(4,3) + m(4,2,1), m(2,1)m(1) = 2m(2,2) + m(3,1) + 2m(2,1,1). It is fairly easy to see what
monomial functions should occur in such a product; things are less clear as regards the coefficients with
which they occur. For instance, why is there a 2 in front of m(2,2) in the third formula but not one in
front of m(3,2) in the first. Things become a good deal better (in my opinion) when one works in the
larger ring QSymm ⊃ Symm of quasi-symmetric functions where there is a clear easy to use formula for
multiplying quasi-symmetric monomial functions. This is the overlapping shuffle product, see 11.26. See
also the appendix to this chapter for some more details.
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9.53. Forgotten symmetric functions. The complete symmetric functions {hλ} form
a basis dual to that of the monomial symmetric functions. There also is of course a
dual basis to the basis of elementary symmetric functions {eλ}. These are obtained by
replacing the hi by the ei in the formulas for the mλ in the hi. There seem to be no
‘nice’ formulas for them, [281], p. 22.

9.54. Power sum symmetric functions. The power sum symmetric functions are
defined by

pn = m(n) =
∑
i

ξni (9.55)

Recall that they are the ghost components of the element

H(t) = 1+ h1t + h2t
2 + h3t

3 + · · · ∈ �(Symm) = 1+ tSymm[[t]]
(9.56)

The power sum symmetric functions are related to the complete symmetric functions
by the Newton relations

nhn = pn + h1pn−1 + h2pn−2 + · · · + hn−1p1 (9.57)

which in terms of the generating functions H(t), see (9.56), and

P(t) =
∑
i≥1

pit
i (so that p0 is set to zero) (9.58)

can be encoded by the ‘differental’ equation (defining ghost components)

P(t) = t d
dt

logH(t) = tH ′(t)
H(t)

(9.59)

From (9.59) one readily obtains a formula for the power sum symmetric functions
in terms of the complete symmetric functions, i.e. a universal formula for the ghost
components of an element 1+ a1t + a2t

2 + · · · in terms of its ‘a-coordinates’.

pn =
∑

r1+r2+···+rk=n
(−1)k+1r1hr1hr2 · · ·hrk ; ri ∈ N = {1, 2, · · · } (9.60)

This formula can readily be inversted by ‘solving’ (9.59) using formal exponentials.

For each partition λ (with no zero parts) define also

pλ = pλ1pλ2 · · ·pλn (9.61)

Then, obviously, given the Newton relations, the pλ form a homogeneous basis over
the rationals for the vector space SymmQ. But they are not a basis for Symm itself.
For a partition λ = (λ1, λ2, · · · , λn) define the integer zλ by

zλ = 1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · · nmn(λ)mn(λ)!
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where, as before, mi(λ) is the number of parts i in λ. Then ([281], p. 62)∑
λ

z−1
λ pλ(ξ)pλ(η) =

∏
i,j

(1− ξiηj)−1 (9.62)

showing that suitably normalized pλ form an orthonormal basis for SymmQ
(but not of course for Symm as these normalized pλ are not even elements of
Symm).

9.63. On the Witt coordinates. Now consider the transformation from ‘a-coor-
dinates’ of a 1-power-series, i.e. an element of�(A), to Witt vector coordinates. This
is given by the universal formula, see (9.22)∏

d

(1− xdtd)−1 = 1+ h1t + h2t
2 + · · · (9.64)

Assuredly the xd as defined by (9.64) are symmetric functions and also, obviously,
from (9.64) one has

xd = hd + (homogenous polynomial of weight d in the h1, · · · , hd−1) (9.65)

and so the

xλ = xλ1xλ2xλ3 · · · (9.66)

form yet another homogenous basis for Symm. It is quite easy to express the hn in
terms of the xd . Indeed rewriting the left hand side of (9.61) as∏

i

(1+ xiti + x2
i t

2i + · · · ) (9.67)

it is immediate that

hn =
∑

wt(λ)=n
xλ =

∑
wt(λ)=n

x
m1(λ)
1 x

m2(λ)
2 x

m3(λ)
3 · · · (9.68)

However, finding a formula the other way seems to be rather messy.31 On the other
hand, there is a duality formula. For each symmetric function f(ξ) introduce the
shorthand notation

f(ξi) = f(ξi1, ξi2, ξi3, · · · ) (9.69)32

Now for any partition λ = (1k1 2k2 · · · nkn) introduce

rλ = hk1 (ξ
1)hk2 (ξ

2) · · ·hkn (ξn)

31 This corresponds to the fact that inverting the Witt vector polynomials appears to be a messy business.
32 This is the (outer) plethysm with perspect to the power sum symmetric function pi; see subsections

16.76, 18.35 and 18.37 below.
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It is not difficult to check that these also form a basis of Symm.33 There is now the
following duality formula

<xλ, rκ> = δλ,κ (9.70)

i.e. the xλ form a dual or adjoint basis to the one of the rλ. This is due to [350], where
there is a quite elegant proof using theorem 9.42.

The symmetric functions xn also have an interesting, even remarkable, positivity
property:

9.71. Theorem. The symmetric functions−x1, x2, · · · , xn, · · · are Schur positive.34

Here ‘Schur positive’ means that when expressed as a Z-linear combination of the
Schur symmetric functions all the coefficients are nonnegative. This is stronger than
being positive of course. Theorem 9.71 was conjectured by Christoph Reutenauer,
[333, 332], and proved by Thomas Scharf and Jean-Yves Thibon, [350], and also by
W Doran. Some more investigations relating to the xn are reported in loc. cit. Much
remains to be done in my opinion, particularly regarding exploiting the positivity
result of theorem 9.71.35

9.72. Integrality lemmata. The miracle of the Witt polynomials (2). For the general-
ized Witt polynomials wn(X) there is the same integrality theorem as for the p-adic
ones.

9.73. Theorem. Let ϕ(X, Y,Z) be a polynomial over the integers in three (or less,
or more) commuting indeterminates then there are unique polynomials over the
integers ϕn(X1, X2, · · · , Xn;Y1, Y2, · · · , Yn;Z1, Z2, · · · , Zn) = ϕn(X;Y;Z), n =
1, 2, 3, · · · such that for all n ≥ 1

wn(ϕ1(X;Y;Z), · · · , ϕn(X;Y;Z)) = ϕ(wn(X),wn(Y),wn(Z)) (9.74)

The proof is (basically) the same as in the p-adic case.
The theory of the functor of the big Witt vectors can now be developed starting from

this integrality theorem in just the same way as was done for the p-adic Witt vectors
in section 5 above. That is define addition polynomials μS,i(X1, · · · , Xi;Y1, · · · , Yi)
and multiplication polynomials μP,i(X1, · · · , Xi;Y1, · · · , Yi) by taking the polyno-
mial ϕ(X, Y) in theorem 9.73 respectively equal to X+ Y and XY , so that

wn(μ
W
S,1(X;Y),μWS,n(X;Y), · · · ,μWS,n(X;Y))=wn(X)+ wn(Y)

wn(μ
W
P,1(X;Y),μWP,2(X;Y), · · · ,μWs,n(X;Y))=wn(X)wn(Y)

(9.75)

33 This one has a certain amount of special interest in that for any symmetric function f the integrality
conditions <f , rλ> ∈ Z are equivalent to certain congruences established by Andreas Dress, [118], for
testing whether a central function of a symmetric group Sn is a virtual character; see Thomas Scharf and
Jean-Yves Thibon, [350].

34 There is no printing error here; there really is just one minus sign.
35 Quite generally the systematic use of (partial) orderings and positive properties in Hopf algebra theory

(and hence Witt vector theory) has started only fairly recently.
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and define an addition and multiplication on Witt vectors a = (a1, a2, a3, · · · ) by

(a1, a2, a3, · · · )+W (b1, b2, b3, · · · ) =
(
μWs,1(a; b),μWs,2(a; b),μWs,3(a; b), · · ·

)
(a1, a2, a3, · · · ) ·W (b1, b2, b3, · · · ) =

(
μWP,1(a; b),μWP,2(a; b),μWP,3(a; b), · · ·

)
(9.76)

This then defines the functorial ring W(A) with multiplication and addition given by
(9.76) with zero element (0, 0, 0, · · · ) and unit element (1, 0, 0, 0, · · · ).

9.77. Theorem 9.73 is only one of a slew of integrality theorems. One of my favourites
is the ‘functional equation lemma’ which is of great use in formal group theory;
particularly in the construction of universal formal groups, see [192], Chapter 1, §2.3.

9.78. Ingredients for the functional equation integrality lemma. The ingredients for
the functional equation lemma are the following

A ⊂ K, σ: K −→ K, p ⊂ A,p, q, s1, s2, s3, · · · (9.79)

HereA is a subring of a ringK, σ is a ring endomorphism ofK, a is an ideal inA, p is
a prime number and q is a power of p, and the si are elements ofK. These ingredients
are supposed to satisfy the following conditions

σ(A) ⊂ A, σ(a) ≡ aq mod p for all a ∈ A,p ∈ p, sib ∈ A for all b ∈ p
(9.80)

and also

prb ⊂ p⇒ prσ(b) ⊂ p for all r ∈ N, b ∈ K (9.81)

a property that is automatically satisfied if the ideal p = (c) is principal and σ(c) = uc
for some unit of A.

Here are three examples of such situations. There are many more.

A = Z,K = Q, σ = id, q = p,p = pZ, si ∈ p−1Z (9.82)

A = Z(p),K = Q, σ = id, q = p,p = pZ(p), si ∈ p−1Z(p) (9.83)

A = Z[V1, V2, · · · ],K = Q[V1, V2, · · · ], σf(V1, V2, · · · ) = f(Vp1 , Vp2 , · · · ),
q = p,p = pA, si ∈ p−1A (9.84)

9.82. Constructions for the functional equation lemma. Now, let g(X)= b1X +
b2X

2 + · · · be a power series with coefficients in A. Using the ingredients (9.78)
construct from it a new power series by the recursion formula (or functional
equation)

fg(X) = g(X)+
∞∑
i=1

siσ
i∗fg(Xq

i

) (9.85)
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where σi∗fg(X) is the power series obtained from fg(X) by applying σi to the
coefficients of fg(X). Three examples of power series obtained in this way are:

X+ p−1Xp + p−2Xp
2 + p−3Xp

3 + · · · (9.86)

log(1+X) =
∞∑
n=1

n−1(−1)n+1Xn (9.87)

X+ p−1V1X
p + (p−2V1V

p

1 + p−1V2)X
p2

+ (p−3V1V
p

1 V
p2

1 + p−2V1V
p

2 + p−2V2V
p2

1 + p−1V3)X
p3 + · · · (9.88)

9.89. Functional equation integrality.

Lemma. Let A ⊂ K, σ, p⊂A,p, q, s1, s2, s3, · · · be as in (9.77) and be such that
(9.80) and (9.81) hold. Let g(X)= b1X+ b2X

2+ · · · and g(X)= b1X+ b2X
2+ · · ·

be two power series with coefficients in A and let b1 be invertible. Let this
time f−1(X) denote the functional inverse of f(X) (for a power series with zero
constant term and nonzero coefficient in degree 1, defined by f−1(f(X))=X.
Then

The power series Fg(X, Y) = f−1
g (fg(X)+ fg(Y)) has its coefficients in A (9.90)

The power seriesf−1
g (fg(X)) has its coefficients in A (9.91)

If h(X) is a power series with zero constant term over K, then

h(X) ≡ g(X) mod prA[[X]] ⇔ fg(h(X)) ≡ fg(g(X)) mod prA[[X]]
(9.92)

Statement (9.90) says thatFg(X, Y) is a (one dimensional) formal group overAwith
logarithm fg(X). Example (9.88) is the logarithm of the universal one dimensional
p-typical formal group.

There are also more dimensional and infinite dimensional versions and these can
be used to construct universal formal groups and also the Witt vectors. For all these
statements and the appropriate definitions see [192].

Another application of the functional equation lemma is the following statement,
especially useful in the Witt vector context.

9.93. Lemma. [192], lemma 17.6.1, page 137; ghost component integrality lemma.
Let A be a characteristic zero ring with endomorphisms ϕp for all prime numbers
p such that ϕp(a) ≡ ap for all a ∈ A. Then for a given sequence b1, b2, · · · in A
there exists another sequence x1, x2, · · · in A such that wn(x) = bn for all n (i.e. the
sequence b1, b2, · · · lies in the image of the ghost mapping) if and only if

ϕp(bn) ≡ bnp mod(pvp(n)+1) (9.94)
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Here, as before, see example 6.10, vp denotes the p-adic valuation on Z. A vector
with components in A which is in the image of w:W(A) −→ AN, (a1, a2, · · · ) �→
(w1(a), w2(a), · · · ) will be called a ghost-Witt vector over A.

As far as I know, this lemma, in this form, first appeared in [86]. Pierre Cartier
attributes it to Bernard Dwork and Jean Dieudonné, [107], proposition 1; [132],
lemma 1. The formulations there are a bit different.

In e.g. the caseA=Z where one takes all the endomorphisms ϕp to be the identity,
the integrality condition (9.94) can be given the following quite elegant formulation.
Write down the Mobius inversion transform of the sequence b1, b2, · · · , i.e. the
sequence

cn =
∑
d|n
bn/dμ(d) (9.95)

Then the sequence b1, b2, · · · satisfies (9.94) if and only if cn ≡ 0 mod n for all n.
This remark seems to be due to Albrecht Dold, [113]. Here the Möbius function
μ: N −→ Z is defined by μ(1) = 1, μ(n) = (−1)r if n is the product of precisely r
different primes and μ(n) = 0 otherwise. Still another formulation of the integrality
condition is

n∑
i=1

b(i,n)≡ 0 mod n (9.96)

where (i, n) denotes the greatest common divisor of i and n.
The (integrality aspects of the) theory of Witt vectors can be developed solely on

the basis of this lemma 9.93. This is how things are done in [212].

9.97. Witt vectors over the integers and fixed points and fixed point indices of iterated
mappings. In [113], Dold proves that a sequence of integers s = (s1, s2, s3, · · · ) is
the sequence of fixed point indices of the iterates of a continuous mapping if and only
if the formal power series

exp

(
−

∞∑
i=1

si

i
ti

)

has integral coefficients; that is iff s is the ghost vector of a Witt vector over the
integers. This is done using the integrality criterium (9.96).

More concretely, call a sequence of nonnegative integers exactly realizable if there
is a set X and a map f : X −→ X such that the number of fixed points of the n-th
iterate fn of f is exactly an. Then a sequence is exactly realizable if and only if the
numbers ∑

d|n
μ(d)an/d

are nonnegative and divisible by n, [330]. Similar things happen when studying
iterates of mappings of the unit interval into itself, i.e. in the part of dynamical system
and chaos theory that deals with such mappings, see [70, 292].
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The first extensive treatment that I know of the Witt vector constructions based
basically totally on the symmetric function point of view is by Pierre Cartier, [86].

10. TheHopf algebra Symmas the representing algebra for the bigWitt vectors

Recall that Symm = Z[h1, h2, h3, · · · ] = Z[h] represents the functor � and hence
the functor W of the big Witt vectors

�(A) = {a(t) = 1+ a1t + a2t
2 + a3t

3 + · · · : ai ∈ A} = CRing(Z[h], A)
(10.1)

The fact that this is an Abelian group valued functor means that there is a comulti-
plication making Symm a coalgebra object in the category CRing of commutative
unital rings, which in turn means that there is a comultiplication, and a co-unit

μs: Symm−→Symm⊗ Symm, εs: Symm−→Z, (10.2)

that are ring morphisms and that make (Symm,μs, εs)36 a co-associative, cocommu-
tative co-unital coalgebra. See [293] for a lot of material on coalgebras.

Because the addition on the set �(A) is defined as multiplication of power series
and the unit element is the power series 1, the morphisms μs, εs are given by

μs(hn) = 1⊗ hn +
n−1∑
i=1

hi ⊗ hn−i + hn ⊗ 1, εs(hn) = 0, n ≥ 1 (10.3)

(It is often convenient to define h0= 1 so that the multiplication can be written∑
i+j=n hi ⊗ hj.)

Writing

m: Symm⊗ Symm−→Symm, e : Z−→Symm (10.4)

for the multiplication and unit element of Symm, in total there is a bialgebra structure
(Symm,m, e,μs, εs). Finally there is an antipode

ιs : Symm−→Symm (10.5)

The existence of an antipode comes for free in the present case, see below. The
antipode is an anti ring morphism (and hence in the present case a ring morphism
because of commutativity). The antipode is determined by

ιs(hn) = −hn (10.6)

All this makes the total structure (Symm,m, e,μs, εs, ιs) a Hopf algebra over the
integers. For the basic theory of Hopf algebras, see [95].

36 The index ‘S’ here refers to the matter that these are the ring morphisms that give the sum part of the
Witt vector functor.
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10.7. Skew Schur functions. (Very partial symmetric function formularium (2)).
Let κ, λ be two partitions and let sκ, sλ be the corresponding Schur func-
tions. As the Schur functions form an orthogonal basis, there are coefficients cvκ,λ
such that

sκsλ =
∑
v

cvκ,λsv or, equivalently, 〈sκsλ, sv〉 = cvκ,λ (10.8)

The multiplicity coefficients37 cvκ,λ have a combinatorial interpretation, see [281],
Chapter 1, §9, p. 143, and are, hence, nonnegative integers. Define the skew Schur
function sκ/λ by

〈sκ/λ, sv〉 = 〈sκ, sλsv〉, or, equivalently, sκ/λ =
∑
v

cκλ,vsv (10.9)

It turns out that sκ/λ = 0 unless λ ⊂ κ which by definition means that λi ≤ κi for all
i.38 There is a determinantal formula for the skew Schur functions as follows

sκ/λ = det(hκi−λj−i+j)i,j (10.10)

In terms of skew Schur functions the comultiplication of Symm can be written

μS(sκ) =
∑
λ

sκ/λ ⊗ sλ (10.11)

as follows from the duality formula 〈xy, z〉 = 〈x⊗ y,μs(z)〉 in Symm.

10.12. Grading. Symm is a graded Hopf algebra. That is, as an Abelian group it is
a direct sum

Symm = ∞⊕
n=0

Symmn (10.13)

where the homogenous part of degree (or weight) n is spanned by the monomials in
the hi of weight n where hi has weight i; i.e. by the monomials hλ with wt(λ) = n,
and that moreover the multiplication and comultiplication and unit and co-unit are
compatible with the grading, which means

m(Symmi ⊗ Symmj) ⊂ Symmi+j, e(Z) ⊂ Symm0

μs(Symmn) ⊂ ⊕
i+j=n

Symmi ⊗ Symmj, ε(Symmn) = 0 for n ≥ 1

ιs(Symmn) ⊂ Symmn

Note that Symm0 = Z and from the point of view of this component e and ε identify
with the identity on this component.

37 In the representation theoretic incarnation of Symm, see section 18 below, these coefficients turn up
as multiplicities of irreducible representations (Littlewood–Richardson rule).

38 κ ⊃ λ is the case if and only if the diagram of κ contains the diagram of λ; whence the notation.
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A graded Hopf algebra is connected if its degree 0 component is of rank 1. It is
easy to see that for a connected graded bialgebra there is a unique antipode making
it a Hopf algebra.

10.14. Antipodes on connected graded bialgebras. Indeed, asH0 = Z (or whatever
ring once is working over), an antipode must be the identity on H0. Further, if x is
primitive, i.e. μH(x) = 1⊗ x+ x⊗ 1, the defining requirements for an antipode say
that ι(x) = −x. Further, if i is the smallest integer ≥1 such that Hi �= 0 all elements
ofHi must be primitive by degree considerations (and the counit properties). Finally
if the antipode is known on all the Hj with j < n and x ∈ Hn, id⊗ ι and ι⊗ id are
known on all the terms of μH(x) except 1⊗ x and x⊗ 1. The defining requirements
for an antipode then immediately give a formula for ι(x) (two formulas really). They
must give the same result because anitpodes (if they exist) are unique (by the same
argument that is used to show that inverses in groups are unique).

10.15. Primitives of Symm. For every Hopf algebra it is important to know its
primitives. That is the elements x that satisfy

μ(x) = 1⊗ x+ x⊗ 1. (10.16)

These form a module over the ring over which the Hopf algebra is defined (in this case
Z) and have a Lie algebra structure under the commutator product [x, y] = xy− yx.
Because of commutativity this Lie product is zero in the present case.

By definition, p1 = h1 is a primitive. With induction, from the Newton relations
(9.57) it follows immediately that all the pn are primitives. It is not difficult to see
that these form a basis over Z for the module of primitives.39

So the comultiplication and counit of Symm satisfy

μs(pn) = 1⊗ pn + pn ⊗ 1, εs(pn) = 0 (10.17)

and as the power sum symmetric functions form a free polynomial basis (over Q)
for the symmetric functions this is a perfectly good description of the Hopf algebra
Symm (once it is known that it is in fact defined over the integers). Formulas (10.17)
of course amount to completely the same thing as saying that at the ghost component
level addition is coordinate-wise.

10.18. Liulevicius theorem, [269, 268]. There are precisely four graded Hopf algebra
automorphisms of Symm. They are functorially given by

identity, a(t) �→ a(−t), a(t) �→ a(t)−1, a(t) �→ a(−t)−1 (10.19)

and they form the Klein 4-group.

39 First observe that if an element is primitive its different homogeneous summands must all be primitives.
next observe that a term in the coproduct of a monomial of length n can only cancel against one from
another term of the same length; continue by using lexicographic order on exponent sequences. Finally,
as pn ≡ (−1)n+1hn1 mod (h2, h3, · · · ) (also from the Newton relations with induction), the pn are not
divisible by any natural number other than 1 and as the different pn are of different degree no sum of them
is divisible by any natural number other than 1.
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The proof is quite simple and it is surprising that this theorem was discovered so
late.40 Over the rationals of course the situation is quite different and the group of
automorphisms is quite large viz a countable sum of copies of the multiplicative group
of the rationals.

10.20. Here is the proof. The power sum symmetric functions are primitives for the
Hopf algebra structure meaning that

μs(pi) = 1⊗ pi + pi ⊗ 1 (10.21)

Moreover every homogeneous primitive of weight i is a scalar multiple of pi. Let ϕ
be a graded automorphism. Automorphisms of Hopf algebras must take primitives
into primitives and as a graded automorphism preserves the grading it must be the
case that

ϕ(pi) = api
with a ∈ {1,−1} because ϕ is an invertible morphism. The last three automorphisms
named in (10.19) take on p1, p2 respectively the values

−p1, p2;−p1,−p2;p1,−p2

and so composing with a suitable one from the four automorphisms (10.19) it remains
to analyze the case that

ϕ(p1) = p1, ϕ(p2) = p2

Suppose with induction that it has been proved that ϕ(pi) = pi, i < n ≥ 3. Look at
the Newton relations (see (9.57))

nhn = pn + h1pn−1 + · · · + hn−1p1, (10.22)

Because the hi are polynomials in the p1, p2, · · · , pi (albeit with rational coeffi-
cients), ϕ(hi) = hi, i < n. So applying ϕ to (10.16) and subtracting the result from
(10.16) one finds

n(hn − ϕ(hn)) = pn ± pn
which because n ≥ 3 and ϕ(hn) must be an integral polynomial of weight n, and pn
is not divisible by any integer>1, is only possible if on the right hand side of (10.13)
the minus sign applies; i.e. only if ϕ(pn) = pn.

10.23. Product comultiplication. Besides the Abelian group structure on�(A) and
W(A) there is also the product of Witt vectors and power series. These are also
functorial and (hence) given by universal polynomials, i.e. by algebra morphisms

μp: Symm −→ Symm⊗ Symm, εp : Symm −→ Z

40 This has most probably to do with the unwarranted and regrettable tendency of mathematicians to
think primarily of Hopf algebras, etc. as things over a field of characteristic zero.
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and these give a second bialgebra structure (Symm,m, e,μp, εp) on Symm. Because
the functorial unit on the rings�(A) is given by the power series 1+ t+ t2+ t3+· · ·
the co-unit morphism of rings εp is given by

εp(hn) = 1, n = 1, 2, 3, · · · (10.24)

The formula for the morphism governing the multiplication is less easy to describe;
certainly explicitly. Various descriptions will be given later in the present section 10.
There is no antipode for the second comultiplication of course (otherwise Symm
would define a field valued functor).

Putting all these structure morphisms together there results the object

(Symm,m, e,μs, εs, ιs,μp, εp)

which is a coring object in the categoryCRing of commutative unital rings. One axiom
that such an object much satisfy is distributivity on both the left and the right of the
second comultiplication over the first in the category CRing (where the appropriate
codiagonal map is the multiplication on a ring). For distributivity on the left this
means that the following diagram must be commutative

Symm

id
id id

id id

Symm Symm

Symm Symm Symm

Symm Symm

Symm Symm Symm Symm

SymmSymm Symm Symmm
τ

¬ ¬
¬¬

mp

ms

ms

mp Ä mp

where, as usual τ : a⊗ b �→ b⊗ a is the twist morphism. There is a similar diagram
for distributivity on the right.

10.25. Various descriptions of the second comultiplication morphism on Symm. At
first sight the easiest description is of course in terms of the power sum symmetric
functions as

μP(pn) = pn ⊗ pn (10.20)

but for a variety of reasons this one is of very limited use. It is of course the definition
of the multiplication in terms of ghost components.

Much better are the three descriptions that follow from the three expansions of∏
(1− ξiηj)−1 given in (9.62), (9.44), (9.45). These give the second comultiplication

formulas

μP(hn) =
∑
λ

hλ ⊗mλ (10.21)

μP(hn) =
∑
λ

z−1
λ
pλ ⊗ pλ (10.22)

μP(hn) =
∑
λ

sλ ⊗ sλ (10.23)
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where in all three formulas the sum is over all partitions of n. Explicitly the first few
multiplication polynomials are

μP(h1) = h1 ⊗ h1,μP(h2) = 2h2 ⊗ h2 − (h2 ⊗ h1
2 + h1

2 ⊗ h2)+ h1
2 ⊗ h1

2

μP(h3) = 3h3 ⊗ h3 − 3(h3 ⊗ h2h1 + h2h1 ⊗ h3)+ (h3 ⊗ h1
3 + h1

3 ⊗ h3)

− (h2h1 ⊗ h1
3 + h1

3 ⊗ h2h1)+ h1
3 ⊗ h1

3 (10.24)

10.25. Still other descriptions of the second comultiplication morphism and the
(functorial) multiplication on W(A) will be given below, in sections 15 and 11
respectively.

10.26. Product comultiplication vs inner product. Theorem 9.42, in particular the
expansion formula (9.44), compared with the definition of the multiplication on the
Witt vectors determined by

(1− ξt)−1 ∗ (1− ηt)−1 = (1− ξηt)−1

suggest that there are nontrivial interrelations between the inner product on Symm
and the second comultiplication (= product comultiplication) on Symm. And so there
are. For instance cocommutativity of the product comultiplication and symmetry of
the inner product are equivalent. At this stage and in this setting this is just an amusing
remark. There may be more to it in other contexts.

The inner product is defined by formula (9.41)

〈hλ,mμ〉 = δλ,μ
Write the monomial symmetric functions as (integer) linear combinations of the hλ:

mμ =
∑
λ

aλμhλ

so that

〈mμ,mμ′ 〉 = aμ′
μ (10.27)

Now (by (9.44))

μP(hn) =
∑

wt(λ)=n
hλ ⊗mλ =

∑
aλ
′
λ hλ ⊗ hλ′ (10.28)

By cocommutativity of the product comultiplication, also

μP(hn) =
∑

wt(λ)=n
mλ ⊗ hλ =

∑
aλ
′
λ hλ′ ⊗ hλ (10.29)

Comparison ot the two expressions (10.28) and (10.29) gives, see (10.27),

aλ
′
λ = aλλ′

i.e. symmetry of the inner product. The argument also runs the other way.
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11. QSymm, the Hopf algebras of quasisymmetric functions and NSymm, the
Hopf algebra of noncommutative symmetric functions

When looking at various universality properties of the Witt vectors and Symm
(which is the topic of the next section) one rapidly stumbles over a (maximally)
non commutative version, NSymm, and a (maximally) non cocommutative ver-
sion, QSymm. This section is devoted to a brief discussion of these two objects.
Somehow a good many things become easier to see and to formulate in these con-
texts (including certain explicit calculations). As I have said before, e.g. in [200],
p. 56; [199], Ch 1, p. 1, once one has found the right non commutative version,
things frequently become more transparent, easier to understand, and much more
elegant.

11.1. The Hopf algebra of non commutative symmetric functions. LetZ = {Z1, Z2,

Z3, · · · } be a countably infinite set of (noncommuting) indeterminates. As an algebra
the Hopf algebra of noncommutative symmetric functions is simply the free associa-
tive algebra in these indetermines over the integers

NSymm = Z〈Z1, Z2, Z3, · · ·〉 = Z〈Z〉 (11.2)

The coalgebra structure is given on the generators Zn by

μ(Zn) =
∑
i+j=n

Zi⊗Zj = 1⊗ Zn + Z1 ⊗ Zn−1 + Z2 ⊗ Zn−2

+ · · · + Zn−1 ⊗ Z1 + Zn ⊗ 1 (11.3)

where the notation Z0 = 1 is used in the expression in the middle. For every word
over the natural numbers α = [a1, a2, · · · , am], ai ∈ N ={1, 2, 3, · · ·}

Zα = Za1Za2 · · ·Zam (11.4)

denotes the corresponding (non commutative) monomial. This incudesZ[] = 1. These
form a basis of the free Abelian group underlying NSymm. The co-unit morphism is
given by

ε(Zn) = 0, n = 1, 2, 3, · · · , ε(Z[ ]) = 1 (11.5)

Give Zn degree (or weight) n, so that the weight (or degree) of a monomial Zα is
a1 + a2 + · · · + am = wt(α). Then, obviously, NSymm is a graded Abelian group

NSymm = ⊕
n≥0

NSymmn (11.6)

with the homogeneous part of degree n spanned by the monomials (11.4) of
weight n. Then, obviously, (Symm,m, e,μ, ε) is a graded, connected (meaning that
NSymm0=Z) bialgebra so that there is (for free, see 10.14) a suitable antipode mak-
ing NSymm a connected, graded, non commutative, cocommutative Hopf algebra.

There is a natural surjective morphism of graded Hopf algebras

NSymm −→ Symm, Zn �→ hn (11.7)
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that exhibits Symm as the maximal commutative quotient Hopf algebra of NSymm.
The kernel of (11.7) is the commutator ideal generated by all elements of the form
ZiZj − ZjZi, i, j ∈ N.

The first paper to study NSymm in depth was probably [162]. It was immediately
followed by a slew of other publications [54, 129, 130, 128, 216, 214, 219, 249, 251,
250, 386, 384, 200, 195, 198, 193, 201]. 41

11.8. Divided power sequences. Curves. Given a Hopf algebra H a divided power
sequence, or curve, in H is by definition a sequence of elements

γ = (d0 = 1, d1, d2, · · ·) (11.9)

such that
μH(dn) =

∑
i+j=n

di ⊗ dj (11.10)

If H is the covariant bialgebra of a formal group F this translates into a mapping
of the formal affine line into the formal scheme (variety) underlying F , whence the
terminology curve.42 A curve is often denoted by its generating power series

γ (t) = 1+ d1t + d2t
2 + d3t

3 + · · · (11.11)

Two such power series can be multiplied and the result is again a curve, i.e a power
series in t of which the coefficients satsify (11.10). This defines a functor

Curve: Hopf −→ Group (11.12)

from the category of Hopf algebras to the category of groups. An example of a curve
is the universal curve

Z(t) = 1+ Z1t + Z2t
2 + · · · ∈ Curve(NSymm) (11.13)

and it is immediate from the defining property (11.10) and the freeness of NSymm
as an associative algebra that

11.14. Theorem (universality property of NSymm). For every curve γ(t) in a Hopf
algebra H there is a unique morphism of Hopf algebras NSymm −→ H that takes
the universal curve Z(t) to the given curve γ(t).

That is, the functor Curve is represented byNSymm.43 The group operation on curves
corresponds to the convolution product onHopf(NSymm,H). When the Hopf algebra
H is commutative this theorem translates into the following.

41 Many of these papers are about noncommutative symmetric functions over a field of characteristic
zero; here, of course, it is NSymm over the integers that is really important (here and elsewhere).

42 There is also another notion in algebra that goes by the name ‘divided powers’ viz the presence of a
sequence of operators (usually on an ideal in a commutative ring) that behave like sending an element x
to (n!)−1xn. Hence the term curve, rather than divided power sequence (DPS) is preferred for the notion
defined by (11.9), (11.10).

43 See also [149].
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11.15. Theorem. (Second universality property of the Witt vectors). Let γ(t) be a
curve in a commutative Hopf algebra H . Then there is a unique morphism of Hopf
algebras Symm −→ H that takes the curve

h(t) = 1+ h1t + h2t
2 + · · · ∈ Curve(Symm) (11.16)

into the given curve γ(t).

In the context of commutative formal groups with H the covariant bialgebra of a
commutative formal group this is known as Cartier’s first theorem.

11.17. The Hopf algebra QSymm of quasi-symmetric functions. The next sections
deal with another generalization of Symm, dual to NSymm and containing Symm.

11.18. Compositions and partitions. A composition is a word (of finite length) over
the natural numbers. Here a composition will be written

α = [a1, a2, · · · , am], ai ∈ N = {1, 2, 3, · · · } (11.19)

Acomposition (11.19) is said to have lengthm and weight wt(α) = a1+a2+· · ·+am.
Associated to a composition α is a partition λ which consists of the aj re-arranged in
nonincreasing order. Or, equivalently, λ = (

1m1(α)2m2(α)3m3(α) · · ·) where mj(α) is
the number of entries of α equal to j.

11.19. Monomial quasi-symmetric functions. Consider again the ring of polyno-
mials, i.e. power series of bounded degree44 in a countable infinity of commuting
indeterminates, i.e. an element of Z [ξ1, ξ2, ξ3, · · ·]. Such a polynomial∑

cα,ι1,··· ,imξ
a1
i1
ξ
a2
i2
· · · ξamim (11.20)

where the sum runs over runs over all compositions α = [a1, · · · , am] and all index
sequences i1 < · · · < im of the same length as α, is said to be quasi-symmetric if

cα, ι1,··· , im = cα,j1,··· ,jm for all index sequences i1 < · · · < im and j1 < · · · < jm
(11.21)

For a given composition α = [a1, · · · , am] the associated monomial quasi-symmetric
function is

[a1, · · · , am] =
∑

i1<i2<···<im
ξ
a1
i1
ξ
a2
i2
· · · ξamim (11.22)

It is denoted by the same symbol. For example in four variables

[1, 2] = ξ1ξ
2
2 + ξ1ξ

2
3 + ξ1ξ

2
4 + ξ2ξ

2
3 + ξ2ξ

2
4 + ξ3ξ

2
4

[1, 2, 1] = ξ1ξ
2
2ξ3 + ξ1ξ

2
2ξ4 + ξ1ξ

2
3ξ4 + ξ2ξ

2
3ξ4 (11.23)

[3, 2, 1] = ξ3
1ξ

2
2ξ3 + ξ3

1ξ
2
2ξ4 + ξ3

1ξ
2
3ξ4 + ξ3

2ξ
2
3ξ4

44 See the appendix.
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Note that the monomial symmetric functionmλ defined by a partition λ is the sum of
all distinct monomial quasi-symmetric functions α whose associated partition is λ.
For example

m(2,1) = [2, 1] + [1, 2], m(2,1,1) = [2, 1, 1] + [1, 2, 1] + [1, 1, 2]
m(3,2,1) = [3, 2, 1] + [3, 1, 2] + [2, 3, 1] + [2, 1, 3] + [1, 3, 2] + [1, 2, 3] (11.24)

The monomial quasi-symmetric functions form a free basis of the free Abelian group
QSymm of all quasi-symmetric functions. This group is graded by assigning to the
monomial quasi-symmetric function α = [a1, · · · , am] the weight wt(α). Sum and
product of quasi-symmetric functions are again quasi-symmetric, so that QSymm is
a ring.

The ring Symm is a subring with the inbedding

hn =
∑

wt(α)=n
α (11.25)

11.26. Overlapping shuffle product. It is useful to have an explicit direct recipe in
terms of compositions for the multiplication of monomial quasi-symmetric functions.
This is given by the overlapping shuffle product.

Let α = [a1, a2, · · · , am] and β = [b1, b2, · · · , bn] be two compositions or words.
Take a ‘sofar empty’ word with n+m− r slots where r is an integer between 0 and
min{m, n}, 0 ≤ r ≤ min{m, n}.

Choose m of the available n + m − r slots and place in it the natural numbers
from α in their original order; choose r of the now filled places; together with the
remaining n+m− r−m = n− r empty places these form n slots; in these place the
entries form β in their original order; finally, for those slots which have two entries,
add them. The product of the two words α and β is the sum (with multiplicities) of
all words that can be so obtained. So, for instance

[a, b][c, d] = [a, b, c, d] + [a, c, b, d] + [a, c, d, b] + [c, a, b, d] + [c, a, d, b]
+ [c, d, a, b] + [a+ c, b, d] + [a+ c, d, b] + [c, a+ d, b]
+ [a, b+ c, d] + [a, c, b+ d] + [c, a, b+ d] + [a+ c, b+ d]

(11.27)

[1][1][1] = 6[1, 1, 1] + 3[1, 2] + 3[2, 1] + [3] (11.28)

It is easy to see that the recipe given above gives precisely the multiplication of
(the corresponding basis) quasi-symmetric functions. The shuffles with no overlap
of a1, · · · , am; b1, · · · , bn correspond to the products of the monomials that have no
ξj in common; the other terms arise when one or more of the ξ‘s in the monomials
making up α and β do coincide. In example (11.27) the first six terms are the shuffles;
the other terms are ‘overlapping shuffles’.

The term shuffle comes from the familiar rifle shuffle of cardplaying; an overlapping
shuffle occurs when one or more cards from each deck don’t slide along each other
but stick edgewise together; then their values are added.
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11.29. Hopf algebra structure on QSymm. Now introduce on QSymm the comul-
tiplication ‘cut’:

μQSymm([a1, a2, · · · , am])= 1⊗ [a1, a2, · · · , am]

+
n−1∑
i=1

[a1, · · · , ai] ⊗ [ai+1, · · · , am]

+[a1, a2, · · · , am] ⊗ 1

(11.30)

and the counit

εQSymm(α) =
{

1 if lg(α) = 0

0 if lg(α) ≥ 1
(11.31)

Here recall that the only composition of length zero is the empty composition 1 = [ ]
which is the unit for the overlapping shuffle multiplication.

Write mQSymm for the overlapping shuffle multiplication and eQSymm for the unit
morphism determined by 1 �→ [ ] = 1. Then

11.32. Theorem. The structure (QSymm, mQSymm, eQSymm, μQSymm, εQSymm) is
a commutative non cocommutative graded connected bialgebra and hence defines a
Hopf algebra.

The antipode again comes for free once the the bialgebra statement has been proved
because QSymm is connected graded. The only thing in proving the bialgebra state-
ment which is not dead easy is the verification that the comultiplication is an algebra
morphism for the overlapping shuffle product. Even that can be avoided by using
graded duality as described below.

11.33. Duality between. NSymm and QSymm. Introduce the nondegenerate graded
pairing

〈 , 〉: NSymm×QSymm −→ Z, 〈Zα, β〉 = δα,β (11.34)

With respect to this pairing the multiplication (resp. comultiplication) on NSymm is
dual to the comultiplication (resp. multiplication) on QSymm. Similarly the counit
(resp. unit) onNSymm is dual to the unit (resp. counit) onQSymm. These statements
amount to the following four formulas.

〈mNSymm(Zα ⊗ Zβ), γ〉= 〈Zα ⊗ Zβ,μQSymm(γ)〉
〈μNSymm(Zα), β⊗ γ〉= 〈Zα,mQSymm (β⊗ γ)〉

〈eNSymm(1), β〉= 〈1, εQSymm(β)〉
〈εNSymm(α), 1〉= 〈α, eQSymm(1)〉

(11.35)

Where 〈 , 〉 on Z is the innerproduct 〈r, s〉 = rs. Formulas (11.35) easily imply that
if NSymm is a bialgebra, so is QSymm (and vice-versa). The antipodes on the two
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Hopf algebras are (as a consequence) also dual to each other:

〈ιNSymm(Zα), β〉 = 〈Zα, ιQSymm(β)〉
11.36. Primitives of QSymm. It is an easy exercise to show that the primitives for
the first comultiplication, the ‘sum comultiplication’, i.e. the elements for which

μS(x) = 1⊗ x+ x⊗ 1

are precisely the linear combinations of the words of length 1.45

11.37. Autoduality of Symm. Under (graded) duality a sub Hopf algebra of a Hopf
algebra H corresponds to a quotient Hopf algebra of the graded dual. To avoid nota-
tional confusion write temporarily Symm’ for the algebra of symmetric functions as
a subalgebra of QSymm and retain the notation Symm = Z[h] for the algebra of
symmetric functions as a quotient algebra of NSymm. The Hopf ideal J in NSymm
such that Nsymm/J = Symm is the commutator ideal spanned by all elements of
the form Zα(ZiZj −ZjZi)Zβ. It is easy to check that a quasisymmetric function has
pairing 0 (under (11.34) with all these elements if and only if it is symmetric. Thus
the sub Hopf algebra of QSymm corresponding to the quotient Symm of NSymm
is Symm’. Also the induced pairing is

〈hλ,mκ〉 = δλ,κ (11.38)

which is the inner product on Symm as defined in 9.40.46

Moreover as algebras Symm and Symm’ are isomorphic under the isomorphism
hn �→ en. To prove that Symm and Symm’ are isomorphic as Hopf algebras, it
remains to check that this isomorphism takes the given comultiplication on Symm,
hn �→ ∑

i+j=n hi ⊗ hj into the comultiplication induced on Symm’ by ‘cut’ the
comultiplication on QSymm. But en = [1, 1, 1, · · · , 1] as an element of Symm’ ⊂
QSymm and so ‘cut = μQSymm’ on en takes the value

μQSymm(en) =
∑
i+j=n

ei ⊗ ej

and things fit perfectly.

11.39. The second comultiplication on QSymm. There is a second comultiplication
(morphism) on QSymm that is distributive over the first one on the right but not on
the left. Here is the definition. Let α = [a1, a2, · · · , am] be a composition. A (0, α)-
matrix is a matrix whose entries are either zero or one of the ai, which has no zero
columns or zero rows, and in which the entries a1, a2, · · · , am occur in their original

45 The situation for the primitives of NSymm is very different. Over the rationals the primitives form
the free Lie algebra in countably many generators. Over the integers the description is still more involved
and was only recently found; see [198].

46 This is one main reason for working with the complete symmetric functions rather than with the
elementary ones.
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order if one orders the entries of a matrix by first going left to right through the first
row, then left to right through the second row, etc.

For a matrixM let column(M) be the vector of column sums and row(M) the vector
of row sums. For instance

M =
⎛
⎜⎝

0 1 0 3

1 2 0 1

0 0 1 0

⎞
⎟⎠ (11.40)

is a (0, [1, 3, 1, 2, 1, 1])-matrix with column(M)=[1, 3, 1, 4] and row(M)=[4, 4, 1].
The second comultiplication on QSymm is now given by

μP(α) =
∑
M is a

(0,α)-matrix

row(M)⊗ column(M) (11.41)

Restricted to Symm ⊂ QSymm, this describes the second comultiplication on Symm
in combinatorial terms. To specify it, it suffices to do this on the elementary symmetric
polynomials (because it is a ring morphism). i.e. to use the recipe for compositions
of the form α = [1, 1, 1, · · · , 1]. For these compositions, the matrices involved are
what are usually called (0, 1)-matrices.

Probably the most famous theorem on (0, 1)-matrices is the Gale-Ryser theorem.
Thus it would appear likely that there is some connection between Witt vectors (via
symmetric functions) and the Gale Ryser theorem, [150, 345]. And indeed there is
(via the additional link of the symmetric functions with the representations of the
symmetric groups). It is the Snapper Liebler-Vitale Lam theorem, [196, 254]. This
will be described in a little more detail in subsection 18.33 below.

11.42. Distributivity properties of μP over μS . The second comultiplication mor-
phism μP of (11.39) is distributive on the right over the first comultiplication mor-
phism μS but not on the left.

Quite generally let (H,m, e,μ, ε) be a bialgebra equipped with a second comulti-
plication morphism of rings μP :H −→ H ⊗H . For this second comultiplication to
be distributive on the right over the first one (in the category of rings) one needs the
following diagram (11.43) to commute. (This is precisely what is needed to ensure
that the functor represented byH,A �→ CRing(H,A) have as values groups (denoted
additively even when they are noncommutative) (as in the case at hand)) equipped
with an additional multiplication such that (a+ b)c = ab+ bc.)

H

H Ä H H Ä H Ä H Ä H

H Ä H Ä H Ä H

H Ä H

H Ä H Ä H

¬
¬

¬
¬

�

�p �p Ä �p

� Ä id id Ä tw Ä id
id Ä id Ä m

(11.43)
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Here is a proof that this diagram is commutative in the case at hand. Take a com-
position α and let M be a (0, α)-matrix. Applying μ⊗ id to row(M)⊗ column(M)
is the same thing as cutting the matrix M horizontally to obtain two blocks M1, M2
with the same number of columns stacked on top of each other. All terms in the lower
left hand corner of diagram (11.43) coming from α thus are of the form row(M1)⊗
row(M2)⊗ column(M). Now in μ(α) (top horizontal arrow in the diagram) consider
the term α1⊗α2 for which the length of α1 is the same as the number of rows ofM1.
Let M ′

1, M ′
2 be the matrices obtaine from M1, M2 by removing zero colums. These

are respectively a (0, α1)-matrix and a (0, α2)-matrix. The term obtained in the lower
right hand corner is now

row(M ′
1)⊗ row(M ′

2)⊗ column(M ′
1)⊗ column(M ′

2)

= row(M1)⊗ row(M2)⊗ column(M ′
1)⊗ column(M ′

2)
(11.44)

Now look at the overlapping shuffle product of two compositions β1, β2 in a slightly
different way. Intersperse both compositions with zeros in any way to obtain vectors
of the same length n and such that the two zero-interspersed compositions when put
on top of each other give a 2× nmatrix without zero columns. Take the column sum
vector of this 2 × n matrix. Doing this in all possible ways gives the overlapping
shuffle product (obviously).

Now, all matrices M which yield given matrices M1, M2, are obtained from M ′
1,

M ′
2 by interspersing them with zero columns to have the same number of columns and

such that when stacked on top of each other they give a matrix without zero columns.
Combining these two remarks gives that for a given M ′

1, M ′
2 the possible

originating M precisely give the compositions column(M) that arise as terms of
the overlapping shuffle product of column(M ′

1) and column(M ′
2), proving the

commutativity of (11.43).
For left distributivity a similar diagram must be commutative. it is obtained from

the one at hand by replacing the lower left hand morphism by id⊗μ and the bottom
morphism by m⊗ id⊗ id. It is a trivial matter to check that left distributivity does
not hold; it already fails for any α = [a1, a2] with a1 �= a2.

If one switches ‘row’and ‘column’in (11.37) there results a second comultiplication
morphism that is left distributive but not right distributive.

One easily sees that on a symmetric sum of quasisymmetric monomials μP is com-
mutative. Indeed if M is a (0, α) - matrix then row(Mtr) = column(M) and col-
umn(Mtr) = row(M) and the transpose M tr is a (0, α′)-matrix for some permutation
α′ of α.

Given right distributivity of this second comultiplication on QSymm to check
that it does indeed give the functorial multiplication of Witt vectors or power
series it suffices to check things on power series of the form 1 + at which is a
triviality.

11.45. Co-unit for the second comultiplication on QSymm. There is also a counit
morphism εP for μP . It is given by

εP([a1, a2, · · · , am]) =
{

1 for m ≤ 1

0 for m ≥ 2
(11.46)
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To be a counit for μP it must satisfy the condition that the following composition of
morphisms is the identify

QSymm
μP−→ QSymm ⊗ QSymm

εP ⊗ id−→ QSymm ⊗ QSymm
m−→ QSymm

and also the composition of morphisms obtained from this by switching εP and id for
the middle arrow.

Let α = [a1, a2, · · · , am]. As εP is zero on anything of length 2 or more the only
(0, α)-matrices that need to be considered have only one row. There is just one such
matrix, viz (a1, a2, · · · , am). This gives that the composed morphism in question is
indeed the identity.

11.47. Second multiplication on NSymm. Dually the second comultiplication on
QSymm gives a second mutliplication morphism (of coalgebras) onNSymm. Denot-
ing this one by *, there is the right distributivity formula (which follows from the right
distributivity of μP over μS in QSymm).

(ZαZβ) ∗ Zγ =
∑
i

(
Zα ∗ Zγ ′i

)(
Zβ ∗ Zγ ′′i

)
where μ(Zγ) =

∑
i

Zγ ′i ⊗ Zγ ′′i
This formula is also in [162]. The dual of the recipe for the second comultiplication
given in (11.39) is due to Solomon, [373].

11.48. Unit for the second multiplication on NSymm. The second multiplication,
mP onNSymm defines a multiplication on each homogeneous component NSymmn.
The unit for this second multiplication is the element Zn. So the ‘unit’ for the second
comultiplication on all NSymm is the infinite sum

1+ Z1 + Z2 + Z3 + · · ·
which does not live in NSymm but only in a suitable completion.

The same situation holds for Symm. Here, for each n the second multiplication,
sometimes called inner multiplication, turns each homogenous summandSymmn into
a commutative ring with unit element hn, and the sum of all these elements, which
does not live in Symm itself is the unit element for the second multiplication on all
of Symm.

So the autoduality of Symm is not prefect at this level. The second multiplication
and second comultiplication are nicely dual to each other but the second unit only
exists in a suitable completion while the second counit is present for Symm itself.

This is understandable because the second multiplication and second comultipli-
cation do not respect the grading.

12. Free, cofree and duality properties of Symm

This short section concerns ways of obtaining Symm etc. by means of free and
cofree constructions and consequences thereof. And open questions concerning these
matters. All algebras and coalgebras in this section will come with a unit resp. counit
element seen as.morphisms from and to Z.
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12.1. Free algebras. To set the stage consider first the well known case of free
algebras. Let M be an Abelian group. A free algebra on M is an algebra Free(M)
together with a morphism of Abelian groups iM : M −→ Free(M) such that the
following universality property holds

For every morphism of Abelian groups ϕ:M −→ A to a ring A
there is a unique morphism of rings ϕ̃: Free(M) −→ A such that ϕ̃iM = ϕ (12.2)

This defines a functor Free:AbGroup −→ Ring that is left adjoint to the (forgetful)
functor U: Ring −→ AbGroup that forgets about the multiplication. Pictorially, the
situation looks as follows.

Free(M)

iM A

M
�

�1$

(12.3)

The symbol group ∃1 in the diagram above means ‘there exists a unique’. Such a
functor ‘Free’ exists. It is given by the tensor algebra over M.

12.4. Tensor algebra and tensor coalgebra. For an Abelian group M let T iM =
M⊗i = M ⊗M ⊗ · · · ⊗M (and T 0M = Z) be the i-fold tensor product. There are

natural isomorphisms ψn,m : T nM ⊗ T nM ∼=−→ T n+mM. Now consider

TM =
∞⊕
n=0

T nM,

iM :M −→ TM, pM : TM −→ M,

eM : Z −→ TM, εM : TM −→ Z

(12.5)

where the morphisms iM , pM are obtained by identifying M and T 1M and eM , εM
by identifying Z and T 0M. There is a ring structure on TM given by

TmM ⊗ T nM ψm,n−→ T n+mM and iM as unit morphism. (12.6)

This is the tensor algebra and it is the free algebra onM with respect to the (canonical)
morphism iM .

There is also a coalgebra structure on TM given by

(ψ−1
0,n, ψ

−1
1,n−1, ψ

−1
2,n−2, · · · , ψ−1

n−1,1, ψ
−1
n,0): T nM −→ n⊕

i=0
T iM ⊗ T n−iM

(12.7)

and εM as counit morphism

The two structures do not combine to give a bialgebra structure. Far from it.

12.8. The graded case. In the present context the important case is when everything
in sight is graded and M is a free Abelian group.



Witt vectors. Part 1 379

So let M be a positively graded Abelian group

M = ∞⊕
i=1
Mi (12.9)

Then TM is graded by giving a pure tensor x1⊗· · ·⊗xm, xi ∈ Mi1 degree i1+· · · im.
If no grading on M is specified it is treated as graded with all nonzero elements of
degree 1. If now M is moreover free with homogeneous basis

{Tu: u ∈ U}, degree(Tu) = ru (12.10)

Free(M) is Z〈Tu: u ∈ I〉. For instance if the index set is N and the degree of Ti is i
Free(M) = NSymm (as far as the underlying graded algebra is concerned).

There is also a commutative version with Freecomm(M) being the maximal com-

mutative qoutient of Free(M). So if M = ∞⊕
i=1

Zhi, degree (hi) = i, Freecomm(M) =
Symm.

12.11. Cofree coalgebras. All coalgebras in the following are supposed to come
with a co-unit and morphisms of coalgebras are supposed to be compatible with the
co-units involved. Given anAbelian groupM the cofree coalgebra overM (if it exists)
is a coalgebra CoFree(M) (over the integers) together with a morphism of Abelian
groups πM: CoFree(M) −→ M with the following universal property:

For every coalgebra C together with a morphism of Abelian groups

ϕ : C −→ M there is a unique morphism of coalgebras

ϕ̃ : C −→ CoFree(M) such that πMϕ̃ = ϕ
(12.12)

Pictorially this looks as follows:

CoFree(M)

C

M

�∼'1

M�

�

(12.13)

a picture that is completely dual to the one, see(12.3), for a free algebra over a module.
The universality property (12.12), (12.13) says, given existence, that ‘CoFree’ is right
adjoint to the forgetful functor which assigns to a coalgebra the underlying Abelian
group. Whether the cofree coalgebra on47 an Abelian group always exists is unkown.
It does do so in the case of free Abelian groups, their duals48 and certain other cases,
see [194].

47 It pays to be linguistically careful here: free algebra on an Abelian group; cofree coalgebra over an
Abelian group.

48 These are not free in the infinite rank case.
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LetM be (graded) free with (homogeneous) basis {Tu: u ∈ I}; and letC be a coalgebra

together with a morphism ofAbelian groupsC
ϕ−→M.As anAbelian group the tensor

coalgebra consists of all noncommutative polynomials in the Tu. This is not always
large enough to serve as receiving object for the unique morphism ϕ̃ covering ϕ
as required in (12.12), (12.13). Consider for example the coalgebra C=Z ⊕ Zx,
μ(x) = x⊗x, ε(x) = 1 together with the morphism of Abelian groups that sends Z to
zero and x to one of the basis elements T ofM. It is obivous that the n-th component
of the covering morphism, ϕ̃n: C −→ T iM, must (always) be given by ϕ̃n = ϕ⊗nμn
where μn is the iterated comultiplication

μ0 = ε,μ1 = id,μ2 = μ, · · · ,μn+1 = (μ⊗ id⊗ · · · ⊗ id)μn, · · · (12.14)

Thus in the example at hand ϕ̃n(x) = T ⊗T ⊗· · ·⊗T (n factors), so that the ϕ̃(x) ‘is’
the power series 1+ T + T 2+ · · · + T n+ · · · which is not in TM. To obtain the free
coalgebra on M consider the completion T̂M of all formal noncommutative power
series in the indeterminates Tu, u ∈ I. The free coalgebra overM is now something in
between TM and T̂M of which the elements can be called for good (but varying) rea-
sons ‘rational noncommutative power series’, ‘representative noncommutative power
series’, ‘Schützenberger-recognizable noncommutative power series’, or ‘recursive
noncommutative power series’. loc. cit.

Things become a good deal easier in the graded case. In this case, i.e. for graded
morphisms of graded coalgebras into graded Abelian groups, the tensor coalgebra is
the cofree coalgebra. To sees this first observe that a morphism of graded Abelian
groups C −→ M takes the degree 0 component of C to zero. Next for any homoge-
neous x ∈ C of degree n, say, all terms in its terated coproduct μm(x) form > nmust
contain a factor from C0. Hence ϕ̃m(x) = ϕ⊗m μm(x) = 0 for m > n and things
are OK.

There is also a cocommutative version whereTM is replaced by its maximal cocom-
mutative sub coalgebra of all symmetric tensors.

In the case of graded free Abelian groups the graded free and graded cofree con-
structions are graded dual in that there is a natural isomorphism

CoFree(M)dual = Free(Mdual)

For the nongraded case there is also a duality but things are more complicated.49

12.15. Inheritance of structure. Now letC be a coalgebra and apply the free algebra
construction to the augmentation module I = Ker(ε). This gives (in any case) an
algebra which will still be denoted Free(C). It inherits a coalgebra structure as follows.

By functoriality the coalgebra morphism gives an algebra morphism

Free(C)
Free(μ)−→ Free(C ⊗ C) (12.16)

49 Partly this comes from the fact that while the linear algebraic dual of a coalgebra is immediately an
algebra it is not true that the full dual of an algebra is a coalgebra; instead, one must take a submodle of
the dual called the zero-dual.
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Further there is the natural morphism ic ⊗ ic: C ⊗ C −→ Free(C) ⊗ Free(C) and
by the freeness property this induces a morphism of algebras Free(C ⊗ C) −→
Free(C)⊗ Free(C) which when composed with (12.16) gives the desired coalgebra
structure morphism

Free(C)
μFree(C)−→ Free(C)⊗ Free(C) (12.17)

By construction it is an algebra morphism and so Free(C) becomes a bialgebra.
Dually, consider an algebra A and apply the cofree construction to the quotient

module A/Z. Denote the result by CoFree(A). This one inherits an algebra structure
in a similar way. Applying CoFree to the multiplication morphism gives a coalgebra
morphism

CoFree(A⊗ A) −→ CoFree(A) (12.18)

On the other hand there is a fairly obvious (canonical) morphism of Abelian groups
CoFree(A)⊗ CoFree(A) −→ (A⊗ A)/Z that by the cofreeness property induces a
morphism of coalgebras

CoFree(A)⊗ CoFree(A)→ CoFree(A⊗ A) (12.19)

which when composed with with (12.18) gives the desired multiplication morphism
which is by construction a coalgebra morphism so that the result is again a bialgebra.

12.20. Symm, NSymm and QSymm again. The cofree coalgebra over the
integers is

CoFree(Z) = Z⊕ ZZ1 ⊕ ZZ2 ⊗ · · ·

μ(Zn) =
n∑
i=0
Zi ⊗ Zn−i, where Z0 = 1, ε(Zn) = δ0,n

(12.21)

It is now easy to see that

NSymm = Free(CoFree(Z)), Symm = Freecomm(CoFree(Z)) (12.22)

It is far less easy (except via duality) to see in this way that QSymm=
CoFree(Free(Z)), but it is interesting to do the exercise as this way the overlapping
shuffle product comes about naturally.

It is also not easy to see directly that Symm = CoFreecocomm(Free(Z)) (except,
again, via duality. The duality argument is simple.

QSymm= NSymmdual = Free(CoFree(Z))dual

= CoFree(CoFree(Z)dual) = CoFree(Free(Zdual))

= CoFree(Free(Z))

where ‘dual’ stands for graded dual.
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13. Frobenius and Verschiebung and other endomorphisms of �

and theWitt vectors.

After the rather abstract stuff of the two previous sections, it is a pleasure to return
in this one to such concrete things as ghost components of power series and Witt
vectors.

There are a vast number of functorial operations on the functorial rings �(A) ∼=
W(A) which is no surprise as every ring endomorphism of Symm induces such
a functorial operation; and, as a free ring on countably many generators there
are very many ring endomorphisms. Things become different if one also requires
such things as preservation of the Abelian group structure on the rings W(A) or
preservation of the full functorial ring structure or one requires other interesting
properties.

Probably the easiest to describe are the socalled Verschiebung operations.

13.1. Verschiebung. The Verschiebung50 operators are defined on the �(A) = 1+
tA[[t]] by

Vn: �(A) −→ �(A), a(t) �→ a(tn) (13.2)

To see what this means at the ghost component level, apply t d
dt

log. Now if

d

dt
log a(t) = p1 + p2t + p3t

2 + · · ·,

t

(
d

dt
log a(tn)

)
= t(ntn−1(p1 + p2t

n + p3t + · · · ))

and so, on the ghost component level Verschiebung is given by

Vnpr =
{
npr/n if r is divisible by n

0 if r is not divisible by n
(13.3)

This corresponds to the ring endomorphism of Symm (also denoted by Vn)

Vn: Symm −→ Symm, hr �→
{
hr/n if r is divisible by n

0 if r is not divisible by n

(13.4)

13.5. Proposition. The Verschiebung morphisms define additive functorial endo-
morphisms of the �(A). That is they are Hopf algebra endomorphisms of Symm.

This is obvious from the definition. It can also be checked by the usual ghost
component argument using (13.3).

50 The word means ‘shift’ and comes for the German. So it should indeed be written with an upper case
first letter. In the case of the p-adic Witt vectors it was introduced by Witt.
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13.6. Frobenius operations. For the Frobenius operations on the�(A) use again the
symmetric function point of view. So again write the universal power series h(t) as

h(t) = 1+ h1t + h2t
2 + · · · =

∏
i

(1− ξit)−1 (13.7)

and define

fnh(t) =
∏
i

(1− ξni t)−1 (13.8)

Formally, of course, one observes that the right hand side of (13.8) is symmetric in ξ.
So there are universal polynomials Qn,1(h),Qn,2(h), · · · ∈ Symm = Z[h1, h2, · · ·]
for the coefficients in the power series (13.8) and now define

fna(t) = 1+Qn,1(a)t +Qn,2(a)t
2 + · · · (13.9)

The sequences of polynomials Qn(h)= (Qn,1(h),Qn,2(h), · · · ) that define the
Frobenius operations are determined by

wr(Qn(h)) = wnr(h) (13.10)

In particular

Qn,1(h) = wn(h) (13.11)

and

Qp,pr (h) only involves the variables h1, hp, · · · , hpr+1 (13.12)

The higher Qn,r(h) are difficult to write down explicitely.
The Frobenius Hopf algebra endomorphisms of Symm corresponding to the Frobe-

nius operations are (of course) given by hr �→ Qn,r(h).
For later purposes it is useful to have a little explicit knowledge about these poly-

nomials.

13.13. Lemma. The polynomials Qn,r(h) determining the Frobenius operations
satisfy

Qp,pr (h) ≡
(
hpr

)p mod p, for p a prime number (13.14)

Qn,r(h) ≡ nhrn mod (h1, h2, · · · , hrn−1) (13.15)

Both statements are proved by induction. From (13.11) it follows that (13.15) holds
for r= 1. Suppose with induction that it holds for all 1 ≤ i < r. By the defining
property and this induction assumption wr(Qn) ≡ rQn,r mod (h1, h2, · · · , hnr−1).

On the other handwnr(h) ≡ nrhnr mod (h1, h2, · · · , hnr−1). Comparing these two
congruences proves (13.15).

Further (13.14) holds for r= 0, again by (13.11). Suppose (13.14) holds for
0 ≤ i < r. It follows that

pi
(
Qp,pi

)pr−i ≡ pi(hpi−1

)
pr−i+1 (13.16)
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and consequently the first r terms of

wpr (Qp) = (Qp,1)
pr + p(Qp,p)

pr−1 + · · · + pr−1(Qp,pr−1)
p + prQp,pr

Cancel mod pr with the first r terms of

wpr+1(h) = (h1)
pr+1 + p(hp)pr + · · ·pr−1(hpr−1)

pr + pr(hpr )p + pr+1hpr=1

leaving

prQp,pr ≡ pr
(
hpr

)p + pr+1hpr+1

proving (13.14).
In the same formal vein let ζn be a primitive n-th root of unity. Then always

n∏
j=1

(
1− ζjnt1/n

)
= (1− t)

and so the Frobenius operation can also be written as

fna(t) =
n∏
j=1

a
(
ζjnt

1/n
)

(13.17)

The ghost components of h(t) as in (13.7) are the power sums in the ξ and so on the
level of ghost components the Frobenius operations are characterized by

fnpr = pnr (13.18)

The Frobenius operations fp for p a prime number have a Frobenius like property:

fpa(t) ≡ a(t)∗p mod p (13.19)51

Here ∗p means taking the p-th power in the ring �(A). The congruence (13.20)
takes place in �(A), so it means that there is a power series b(t) ∈ �(A) such that
b(t)p(fpa(t)) = a(t)∗p.

To prove this first observe that for power series of the form (1 − xt)−1 by the
definition of Frobenius and product

fp(1− xt)−1 = (1− xpt)−1 = ((1− xt)−1)∗p (13.20)

Now in any commutative ring, including �(A), (y + z)p ≡ yp + zp mod p and so
from (13.20) it follows that (13.19) holds for any finite product power series

(1− ξ1t)
−1 · · · (1− ξt)−1

51 LetK/Qp be an unramified extension of the p-adic numbers with ring of integers A. Then the Galois
group Gal(K/Qp) is cyclic with a generator σ. Let k be the residue field of K. Then, as extensions of
fields A/Zp = Wp∞ (k)/Wp∞ (Fp) and σ is the Frobenius endomorphism ofWp∞ (k). It is characterized
by σ(a) ≡ ap mod p. This has to do with the terminology employed here.
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(and in fact under the right circumstances (such as here) also for infinite products).
Alternatively, for an arbitrary series take its Witt vector coordinate expression

a(t) =
∞∏
d=1

(
1− xdtd

)−1
(13.21)

This stabilizes in that the first n coefficients of a(t) only depend on the first n
x-coordinates. As (13.20) already holds for all factors on the right of (13.21) one
gets (13.19) in full generality by a simple limit argument.

13.22. Theorem. The fn:Symm −→ Symm induce functorial ring endomorphisms
on the rings �(A). They are also the only ring endomorphisms of Symm that do so.

13.23. Corollary. The only ring automorphism of Symm that preserves its coring
object structure (as an object in the category of rings) is the identity.

I.e. the object Symm is rigid as a coring object in the category CRing. Note that
in contrast to the Liulevicius theorem 10.8, homogeneity is not needed.

13.24. Proof of the corollary. The Frobenius morphisms fn satisfy fnpr = pnr. So
the only one that induces an operation that is always injective is f1 = id (as is seen
by looking at the operation on any Q-algebra).52

13.25. Proof of theorem 13.22. For the first statement of the theorem is suffices to
verify this on the ghost components, that is the power sums pr. On these the sum
comultiplication, sum counit, product comultiplication, product counit are respec-
tively given by

μs(pr) = 1⊗ pr + pr ⊗ 1, εs(pr) = 0,
(13.26)

μP(pr) = pr ⊗ pr, εP(pr) = 1

So the characterizing property (13.18) of the Frobenius morphism proves that they
preserve the functorial ring structure on the �(A).

Now let ϕ be a ring endomorphism of Symm that respects the structures (13.26). In
particular that means that ϕmust take primitives of the Hopf algebra Symm into prim-
itives. The space of primitives of Symm consists of the linear (integer) combinations
of the pr. So the image of pr under ϕ is of the form

ϕ(pr) =
∑

crjpj (13.27)

52 Incidentally, all Frobenius operations except the identity are also not injective on the integers. Indeed
let p be a prime number and consider the vector a = (a1, a2, a3, · · · ) ∈ ZN with an = p if n is not
a multiple of p, and an = 0 if n is a multiple of p. Then by the ghost-vector criterium in 9.93 (with
A = Z and all the endomorphisms the identity) this vector is a ghost-Witt vector i.e. there is a Witt vector
x ∈ W(Z) such that w(x) = a. For this vector fp(x) = 0.
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Now use μP(ϕ(pr)) = (ϕ⊗ϕ)μP(pr) = ϕ(pr)⊗ϕ(pr) and 1 = ϕ(1) = ϕ(εp(pr)) =
εp(ϕ(pr)) to find that the coefficients crj must satisfy

crjcrj = crj, crjcrj′ = 0 if j �= j′,
∑
j

crj = 1

and this is only possible if all but one of these coefficients are zero and that last one
is equal to 1. Thus there is a mapping σ : N −→ N such that

ϕ(pr) = pσ(r) (13.28)

Now consider the Newton relations (9.57):

pr = rhr − (p1hr−1 + p2hr−2 + · · · + pr−1h1) (13.29)

It easily follows with induction that

pr ≡ (−1)r+1hr1 mod(h2, h3, · · · ) (13.30)

Let n = σ(1) and suppose with induction that it has been shown that

ϕ(pu) = pnu, ϕ(hu) ≡ 0 mod(h2, h3, · · · ) for r − 1 ≥ u ≥ 2 (13.31)

Now apply ϕ to the Newton relation (13.29) and use (13.28), (13.30) and the induction
hypothesis (13.31) to find that

(−1)σ(r)+1h
σ(r)
1 ≡ ϕ(pr)

≡ rϕ(hr)− ((−1)(r−1)n+1h
(r−1)n
1 )(−1)n+1hn1) mod(h2, h3, · · · )

and so σ(r) = nr and ϕ(hr) ≡ 0 mod(h2, h3, · · · ). It follows that ϕ = fn.

13.32. Note that the proof does not use any integrality of coefficients statement and
so the theorem still holds over the rationals. Indeed it works over any ring and so
the theorem is true for the coring object algebras SymmR = Symm ⊗ R over any
ring R.

13.33. Frobenius endomorphisms of QSymm. The Frobenius morphisms fn on
Symm extend to Frobenius endomorphisms on QSymm ⊃ Symm. The formula
is simple

fn([a1, a2, · · ·, am]) = [na1, na2, · · ·, nam] (13.34)

It is obvious from the original definitions of the first and second comultiplication,
and the description of the overlapping shuffle product that these are Hopf algebra
endomorphisms that preserve the second comultiplication and second co-unit. They
are also the only ring endomorphisms of QSymm that do so.

To prove this consider a Hopf algebra endomorphism ϕ of QSymm that preserves
the second comultiplication. First it must take primitives into primitives. The primi-
tives are spanned by the compositions of length 1, see 11.36. Further

μP([a]) = [a] ⊗ [a], εP([a]) = 1
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and so, exactly as above, there is a mapping σ: N −→ N such that

ϕ([a]) = [σ(a)] (13.35)

Let σ(1) = n and let J2 be the ideal in QSymm spanned by all compositions of length
2 or more. This is indeed an ideal. Now also εPϕ = εP and it follows that ϕ(J2) ⊂ J2.
Further [r] ≡ [1]r modJ2 and so

ϕ([r]) ≡ ϕ([1]r) = ϕ([1])r = [n]r ≡ [nr]
and so ϕ is equal to fn on the submodule spanned by the [a]. Now consider a compo-
sition of length 2. As ϕ respects the first comultiplication

μS(ϕ([a, b])) = (ϕ⊗ ϕ)(1⊗ [a, b] + [a] ⊗ [b] + [a, b] ⊗ 1)

= 1⊗ ϕ([a, b])+ [na] ⊗ [nb] + ϕ([a, b])⊗ 1 (13.36)

The term [na] ⊗ [nb] on the right of (13.36) can only come under μS from the
composition [na, nb] and if there were any other compositions involved in ϕ([a, b])
that would show up after applying μS . So ϕ([a, b]) = [na, nb]. This argument easily
continues.

13.37. Corollary. The Frobenius operators on Symm are given on the monomial
symmetric functions by

fnm(λ1,λ2,··· ,λm)=m(nλ1,nλ2,··· ,nλm) (13.38)

There are (of course) also other ways of seeing this, but this is a particularly elegant
way. Thus on the monomial symmetric functions the Frobenius operators are easy to
describe. It is far more difficult to describe them on the hλ, though of course there
are the messy formulas giving the h’s in terms of the p’s. Dually the Verschiebung
operators are easy to describe on the h’s and difficult to describe on the monomial
symmetric functions.

13.39. Corollary. There are no second multiplication preserving Hopf algebra endo-
morphisms of NSymm that descend to a Frobenius endomorphism of Symm as a
quotient of NSymm except the identity.

Indeed such a morphism would involve some degree increasing part. Its dual would
therefore involve some degree increasing part and be a second comultiplication pre-
serving Hopf algebra endomorphism ofQSymm, which is impossible by 13.25 above.

Thisgivesanothernegativeanswer, asconjectured, toaquestionposed in [200, 201].

13.40. The Frobenius morphisms fp, for p a prime number also satisfy the Frobenius
like property

[a1, a2, · · · , am]p ≡ [pa1, pa2, · · · , pam] modp (13.41)

This is more or less immediate from the definition of the overlapping shuffle product.
Indeed, the terms of this p-th power are the column sums of all matrices without zero
columns of which the rows are obtained from a1, a2, · · · , am by interspersing zeros.
If all the rows are equal the column sum [pa1, pa2, · · · , pam] results. If not all rows
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are equal any (non identity) cyclic permutation yields another different matrix of the
same type (this uses that p is prime) and so all the other terms in the shuffle power
occur with a coefficient divisible by p.

13.42. ‘Multiplication by n’ operator. Consider the operator of adding (in �(A) or
W(A)) an element to itself n times, i.e. in �(A) taking the n-th power of a power
series. This operator is denoted

[n] : �(A) −→ �(A), a(t) �→ a(t)n (13.43)

This operator as an endomorphism of Symm is given by the composition of maps

Symm
μn−→ Symm⊗n mn−→ Symm (13.44)

where μn is the n-fold first comultiplication as defined in (12.14) andmn is the n-fold
multiplication. This composed map can be written down for any Hopf algebra H .
In general it is not a Hopf algebra endomorphism, nor even an algebra or coalgebra
morphism unless H is commutative and cocommutative. Then it is a Hopf algebra
endomorphism. In spite of not being a Hopf algebra endomorphism in general these
maps have proved to be most useful in various investigations in Hopf algebra theory,
see e.g. [323].

13.45. Homothety operations. Consider the Hopf algebraSymmR= Symm⊗Rover
a ring R. For every R-algebra A and every u ∈ R consider the operation

〈u〉a(t) = a(ut), a(t) ∈ �(A) (13.46)

These are the homothety operators and they clearly define additive functorial Abelian
group endomorphisms of the �(A). The associated Hopf algebra endomorphism of
SymmR is

〈u〉(hn) = unhn (13.47)

As will be seen later the homothety, Verschiebung, and Frobenius endomorphisms
together, in a very precise sense, generate all R-Hopf algebra endomorphisms of
SymmR.

There are quite a good many relations among all these operators. They are summed
up in the following theorem.

13.48. Theorem. There are the following identifies between operations on the func-
tors �R(−), WR(−), respectively the Hopf algebra SymmR.

〈u〉〈u′〉 = 〈uu′〉 (13.49)

〈1〉 = f1 = V1 = id (13.50)

VmVn = Vnm (13.51)

fmfn = fmn (13.52)

if gcd(m,n) = 1, then fmVn = Vnfm (13.53)
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fnVn = [n] (13.54)

Vn(a(t) ∗ fnb(t)) = (Vna(t)) ∗ b(t), a(t), b(t) ∈ �(A) (13.55)

〈fnx, y〉 = 〈x,Vny〉, x, y ∈ Symm (13.56)

〈u〉Vn = Vn〈un〉 (13.57)

fn〈u〉 = 〈un〉fn (13.58)

〈u〉 + 〈v〉 =
∞∑
n=1

Vn〈rn(u, v)〉fn (13.59)

where the rd(X, Y) are the integer coefficient polynomials in two variables determined
by

(1−Xt)(1− Yt) =
∞∏
d=1

(1− rd(X, Y)td) (13.60)

These last two, (13.59), (13.60) constitute of course the formula for the addition of
Teichmüller representatives in Witt coordinates. Applying t d

dt
log to the two sides of

(13.60) it follows that the polynomials rj(X, Y) are determined by the relation

Xn + Yn =
∑
d|n
drd(X, Y)

n/d (13.61)

For example

r1(X, Y) = X+ Y
r2(X, Y) = −XY
r3(X, Y) = −(X2Y +XY2)

r4(X, Y) = −(X3Y + 2X2Y2 +XY3)

r5(X, Y) = −(X4Y + 2X3Y2 + 2X2Y3 +XY4)

r6(X, Y) = −(X5Y + 3X4Y2 + 4X3Y3 + 3X2Y4 +XY5)

It immediately strikes one’s attention that the coefficients in r2, r3 · · · , r6 are all
negative. This is true for all n ≥ 2 as an immediate consequence of the Reutenauer-
Scharf-Thibon result 9.71. Another striking fact is that all monomials that possibly
can occur do in fact occur with nonzero coefficient. I know of no proof for that but
definitely believe it to be true.

13.62. Caveat. All these formulas are written from the functorial operations point
of view (except (13.56) where the only possible interpretation is in terms of endo-
morphisms). So, for instance, (13.54) means that for an element a(t) ∈ �(A) there
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is the equality

fn(Vn(a(t))) = [n](a(t)) (13.63)

IfU1, U2, U are functorial operations and u1, u2, u are the endomorphism that induce
them, then seeing an element a(t)∈�(A) as a morphism Symm −→ A (as must be
done to have this correspondence between endomorphisms and operators), the relation
beteen the operation U and the endomorphism u is

U(a(t)) = a(t) ◦ u (13.64)

where the small circle denotes composition. It follows that under the correspon-
dence ‘functorial operation’⇔ ‘endomorphism’ the order of composition reverses.
Indeed

U1(U2(a(t))) = U1(a(t) ◦ u2) = (a(t) ◦ u2) ◦ u1 = a(t) ◦ (u2 ◦ u1)

13.65. Proof of theorem 13.48. Most of these are pretty trivial using the ghost com-
ponent formalism (see also 5.16). As before for any natural number r and element
a(t) ∈ �(A) let

sr(a(t)) = coefficient of tr in t
d

dt
log(a(t)) (13.66)

Then the characterizing ghost component description of the various functorial oper-
ations are

sr(Vna(t)) =
{
nsr/n(a(t)) if n divides r

0 if n does not divide r
(13.67)

sr(fna(t)) = snr(a(t)) (13.68)

sr(〈u〉a(t)) = ursr(a(t)) (13.69)

sr([n]a(t)) = nsr(a(t)) (13.70)

So, using this, here is a proof of (13.54):

sr(fnVna(t)) = srn(Vna(t)) = nsr(a(t)) = sr([n]a(t))
using (13.68), (13.67), (13.70) in the order named. And here is how (13.59) is tackled
with the ghost component formalism

sr(Vn 〈rn(u, v)〉 fna(t) =
{
nsr/n (〈rn(u, v)〉 fna(t)) if n divides r

0 if n does not divide r

=
{
nrn(u, v)

r/nsr/n(fna(t)) if n divides r

0 if n does not divide r

=
{
nrn(u, v)

r/nsr(a(t)) if n divides r

0 if n does not divide r
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and so

sr

( ∞∑
n=1

�

Vn 〈rn(u, v)〉 fn(a(t))
)
=

∑
n|r
nrn(u, v)

r/nsr(a(t)) = (un + vn)sr(a(t))

= sr (〈u〉 a(t)+� 〈v〉 a(t))
where of course, as indicated, the sum of elements in �(A) is taken according to the
addition law in the Abelian group �(A).

Here is the proof of (13.53) as a further illustration of ghost component techniques

sr(fmVna(t)) = srm(Vna(t)) =
{
srm/n(a(t)) if n divides rm

0 otherwise

and as (m, n) = 1 the divisibility condition in the formula above is the same as ‘n
divides r’, which is what turns up when calculating sr(Vnfma(t)).

All the other statements of theorem 13.48 are proved the same way, except of
course the duality statement (13.56). For this statement use the orthonormal dual
pair of bases {hλ}, {mλ}, see (9.40), (9.42). Let κ = (κ1, κ2, · · · , κm), λ = (λ1, λ2,

· · · , λn) be two partitions. Recall that

frmλ = m(rλ1,rλ2,··· ,rλn),Vrhκ =
{
h(κ1/r,κ2/r,··· ,κm/r) if all κj are divisible by r

0 otherwise

Thus

〈frmλ, hκ〉 =
{

1 if lg(λ)= lg(κ) and κi = rλi for all i

0 otherwise
(13.71)

〈mλ,Vrhκ〉 =
{

1 if lg(λ) = lg(κ), r divides all κi and κi/r = λi for all i

0 otherwise

(13.72)

comparing (13.71) and (13.72) now gives the duality formula (13.56)

13.73. Convention. Thus from (13.56) the Frobenius and Verschiebung endomor-
phisms of Symm = Z[h] are (graded) dual to each other. But Symm is also isomor-
phic to its graded dual. That makes it a trifle difficult to agree what should be called
Frobenius and what Verschiebung. The convention is that the degree nondecreasing
endomorphisms (of these) are always called Frobenius and the degree nonincreasing
ones Verschiebung. Both are Hopf algebra endomorphisms.

Then the Frobenius endomorphisms always respect the second comultiplication
(and the corresponding co-unit), but not the second multiplication, and thus induce
functorial ring endomorphisms of theW(A) ∼= �(A) = CRing(Symm, A), while the
Verschiebung endomorphisms respect the second multiplication (and corresponding
unit), but not the second comultiplication, and thus induce ring endomorphisms on
the rings of coalgebra morphisms CoAlg(C, Symm).
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13.74. Ring of Hopf endomorphisms of Symm. Naturally the next step is to try to
determine the full ring of Hopf algebra endomorphisms of Symm, which is the same
as the determination of all additive functorial operations on the functor �. Consider
again, see 12.11ff, the cofree coalgebra over Z, i.e. the coalgebra

CoFree(Z) = ∞⊕
n=0

Zhn, h0 = 1,μ(hn) =
∑
i+j=n

hi ⊗ hj, ε(hn) = 0 for n ≥ 1

(13.75)

Now Symm = Z[h] is the free algebra on Cofree(Z), more precisely it is the free

algebra over the augmentation submodule
∞⊕
n=1

Zhn ⊂ CoFree(Z) and hence a Hopf

algebra endomorphism of Symm is the same thing as a morphism of coalgebras from
CoFree(Z) to Symm that takes h0 to 1.

Hopf(Symm, Symm) ∼= CoAlg′(CoFree(Z), Symm) (13.76)

where the prime indicates that only morphisms that take h0 to 1 are permitted. In
more pedestrian terms, as Symm=Z[h] is free on the generators hn an algebra
endomorphism ϕ of Symm is the same thing as specifying a sequence of polynomials
ϕ(hn) and this sequence yields an endomorphism of Hopf algebras if and only if the
sequence 1, ϕ(h1), φ(h2), ϕ(h3), · · · is a curve (= divided power sequence).

The graded dual of CoFree(Z) is Z[T ] the ring of polynomials in one variable T .
Thus, taking graded duals, and using that Symm and its graded dual are isomorphic

as Hopf algebras (and even as coring objects in the category of rings and as ring objects
in the category of coalgebras) one sees that

CoAlg(CoFree(Z), Symm) ∼= CRing(Symm,Z[T ]) (13.77)

and thus, tracing out what the prime in (13.68) means for the right hand side of (13.69),

Hopf(Symm, Symm) ∼= CRing′(Symm,Z[t]) (13.78)

where this time the prime means that only morphisms are allowed that take the degee
≥1 part of Symm into the degree ≥1 part of Z[T ].

But his last object is easy to describe: an element ofCRing′(Symm, Z[t]) is simply
an infinite sequence of polynomials in T with constant terms zero. Things go exactly
the same way for SymmA = Symm⊗ A.

As the isomorphism between Symm and its graded dual takes the hn into the en it
is best to see this sequence of polynomials as the images of the en.

Thus in this way a Hopf algebra endomorphism ϕ of SymmA is exactly the same
thing as an infinite × infinite matrix with coefficients in A

Mϕ =

⎛
⎜⎜⎜⎝
a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

such that in each row there are but finitely many coefficients that are nonzero.
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It remains to figure out how these matrices are to be added and multiplied (com-
posed) when interpreted as encodings of Hopf endomorphisms of the Hopf algebra
Symm. That will be the business of section 15 below.

To do something similar for the characteristic p case as well (and the p-adic case)
one needs to figure out how the p-adic Witt vectors fit with the power series point of
view. That is the subject matter of the next section.

14. Supernatural and other quotients of the big Witt vectors

It is when trying to figure out how thep-adic Witt vectors fit with the power series point
of view of sections 9-13 that the Witt vector coordinates have a decided advantage.
Recall that in terms of Witt vector coordinates, 9.63, as a set

W(A) = {(x1, x2, x3, · · · ): xn ∈ A} (14.1)

and that two Witt vectors are added and multiplied by means of universal polynomials
with integer coordinates

x+W y = (μS,1(x, y),μS,2(x, y),μS,3(x, y), · · · )
x×W y = (μP,1(x, y),μP,2(x, y),μP,3(x, y), · · · ) (14.2)

where x = (x1, x2, x3, · · · ), y = (y1, y2, y3, · · · ), and where the polynomials μS,i,
μP,i are recursively given by

wn(μS,1(X;Y),μS,2(X;Y),μS,3(X;Y), · · · ) = wn(X)+ wn(Y)
wn(μP,1(X;Y),μP,2(X;Y),μP,3(X;Y), · · · ) = wn(X)wn(Y) (14.3)

with
wn(X) =

∑
d|n
dX

n/d

d (14.4)

The important fact to notice is now thatwn(X) depends only on theXd for d a divisor
of n, and hence that the n-th addition and multiplication polynomials μS,n, μP,n are
polynomials that only involve theXd and Yd with d a divisor of n. Thus, for instance,
Z[X1, Xp,Xp2 , Xp3 , · · · ], where p is a prime number, is a sub Hopf algebra and sub
coring object of Z[X]=Z[X1, X2, X3, · · · ], which means that it defines a quotient
functor ofW , which is manifestlyWp∞ , so that thep-adic Witt vectors are a functorial
quotient of the big Witt vectors. There are lots more of such quotient functors.

14.5. Nests. A nest is a nonempty subset N of the natural numbers N such that
together with any n ∈ N all the divisors of n are also in N. Some simple examples
of nests are

for any given fixed n ∈ N, the set {1, 2, 3, · · · , n}
p∞ = {1, p, p2, p3, · · · } (14.6)

for any fixed n ∈ N, the set {d: d divides n}
Unions and intersections of nests are nests. Every nest contains the natural number 1.
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14.7. Supernatural numbers. A supernatural number is a formal expression of the
form

n =
∏

p
pαp αp ∈ N ∪ {0,∞}

where the product is over all prime numbers p. This is exactly the same as specifying
for every prime number p an element of the extended natural numbers {0}∪N∪{∞}.
Given a supernatural number n there is a nest associated to it (often denoted with the
same symbol), viz

n = Nn = {m ∈ N: vp(m) ≤ αp for all prime numberp}
where vp is the p-adic valuation on the integers. The last two examples in (14.6) are
nests coming from a supernatural number. The first example from (14.6) is not of this
from (if n ≥ 3).

14.8. Supernatural quotients of the big Witt vectors. Let N be a nest. Let Symm
(N) = Z[Xn : n ∈ N] ⊂ Symm. By the remarks made in the beginning of this
section these form sub Hopf algebras of Symm and hence define quotient Witt vector
functors WN(A) of the big Witt vectors, called the N-adic Witt vectors. The most
important ones are

Wp∞(A), the p-adic Witt vectors

Wpn(A), the p-adic Witt vectors of length n+ 1

Wn(A), the Witt vectors of length n.

The last named quotient functor is the one defined by the next {1, 2, · · · , n}. This
notation is not entirely consistent with the other two. However, the quotient Witt
vectors defined by the nest {d : d|n} are so seldom used (if ever) that this seems
justified.

Sometimes the curious appellation “nested Witt vectors” is used for the elements
of a WN(A).

14.9. Operations on nested Witt vectors. A first question now is now which of the
functorial additive operations 〈a〉, Vr, fr survive to define operations on the various
quotients WN . Here of course these functorial operations are the ones defined by
transferring the operations denoted by the same symbols on�(A). They are therefore
characterized by

wrfn = wrn, wrVn =
{
wr/n if n divides r

0 otherwise
, wr〈a〉 = arwr (14.10)

The answer to the above question of which operations ‘descend’ to operations on the
various WN is fairly simple.

The homothety operations 〈a〉 always define a quotient operation.
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For the Verschiebung operations the situation is simple. The polynomials defining
Vn are either zero or of the form Xr/n for r a multiple of n. So by the nest property
they always exist on the quotients WN . Of course many of them may be zero.

The situation with the Frobenius operators is different and slightly more compli-
cated. Let p be a prime number. The polynomials defining fp are degree increasing by
a factor of p and because fp is characterized by fp(pn) = ppn at the ghost component
level, the n-th polynomial defining fp involves the indeterminateXnp. See also lemma
13.13 above. So for fp to descend to a nest quotient in full generality, i.e. to exist for
the functor WN on all of CRing, it is necessary and sufficient that the nest contain
together with any n ∈ N also all its p-power multiples pin. In particular fp exists on
the p-adic Witt vectors.

However, if one restricts attention to the functor on rings of characteristic p the
operation fp always exists on the quotients WN because in that case the Frobenius
is given by raising each coordinate of a Witt vector to its p-th power See again
lemma 13.13.

14.11. Möbius function. The next question is whether there exists lifts, that is an
additive functor morphism WN −→ W which composed with the quotient map
W −→ WN gives the identity on WN . This will involve the Möbius function from
number theory and combinatorics. Explicitly this function is defined by

μ(1) = 1

μ(n) = (−1)r if n is the product of r different prime numbers (14.12)

μ(n) = 0 ifn is divisible by the square of a nontrivial prime number

The function has the characterizing property∑
d|n

μ(d) = 1 (14.13)

(which also defines it recursively). Let N(p) = {n ∈ N: (p, n) = 1} be the set of all
natural numbers relatively prime to a given prime number p. It immediately follows
from the above that

∑
d|n,d∈N(p)

μ(d) =
{

1 if n is a power of p

0 otherwise
(14.14)

14.15. Sectioning the projection W(A) −→ Wp∞(A). To set the stage here is
the abstract situation. Suppose there is an Abelian group M together with a
surjective projection π: M −→ Mp to another group Mp. Suppose there is a
section, i.e. a morphism of Abelian groups s: Mp −→ M such that πs = idMp .
Then � = sπ is an idempotent endomorphism of M with image s(Mp) and
kernel Ker(π). Further the projection π induces an isomorphism from �(M) =
s

(
Mp

)
to Mp. It is such an idempotent endomorphism � that will now be
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constructed in the case of the canonical projection

πp : W(A) −→ Wp∞(A) (14.16)

in the case of Z(p) algebras, i.e. rings A in which all prime numbers except the give
prime number p are invertible.

To this end consider the operation

�p−typ =
∑ [

μ(n)

n

]
Vnfn

(14.17)

This functorial operation satisfies

wr�p−typ =
{
wr if r is a power of p

0 otherwise
(14.18)

(and it is characterized by this property, of course). This is an immediate consequence
of (14.14) and (14.10). Note that it follows that�p−typ is idempotent. (First for rings
A of characteristic zero and then for all by functoriality).

14.19. Remark. �p−typ commutes with the operations 〈a〉, fp, Vp.

14.20. Comments. �p−typ is not easy to write down explicitly, say, in terms of its
defining polynomials. It is definitely not something like murdering each coordinate
that is not at a p-th power position.

Easy explicit calculations show that it does not preserve the unit element and that
it is not multiplicative. This already shows up at the second coordinate for all prime
numbers larger than 2 and in the third coordinate for the prime number 2.

14.21. Proposition. For each Z(p)-algebra A, a Witt vector x = (x1, x2, x3, · · ·) ∈
W(A) is in the image of �p−typ(A): W(A) −→ W(A) if and only if fp′x = 0 for all
prime numbers p′ different from p.

First, if fp′x= 0 for all prime numbers different from p, then fnx= 0 for all
n=N(p), n ≥ 2 and so �p−typx=[1]x= x. Second, if A is of characteristic zero
and x ∈ W(A) is in the image of �p−typ(A) then the characterizing property (14.18)
shows that fp′x= 0. Third, suppose that x ∈ W(A) is in the image�p−typ. Choose any
lift x̃ ∈ W(Ã) of x ∈ W(A) for some characteristic zero Z(p)-algebra Ã covering A.
Then, by idempotency, �p−typ(Ã)x̃ is also a lift of x, and so fp′�p−typx̃= 0 implies
fp′x= 0.

14.21. Theorem. For Z(p)-algebras the canonical projection πp :W(A) −→
Wp∞(A) induces an isomorphism of Abelian groups �p−typ(W(A))

πp−→ Wp∞(A).

Pictorially things are described by the following commutative diagram.
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W(A)

A

W(A) (W(A)) Wp` (A)

wpr
wpr

wpr

Fp–typ
Fp–typ �p

�p

∪

(14.22)

It follows just about immediately that the theorem holds for A of characteristic zero.
Now let A

W(A) (W(A))

W(Ã) (W(Ã)) Wp�(Ã)

Wp�(A)

Wp�(ψ)W(ψ)W(ψ)

�p–typ

�p–typ
�p–typ

�p-typ

�p

�p

(14.23)

be anyZ(p)-algebra and choose a characteristic zeroZ(p)-algebra Ã that covers it with
corresponding projectionψ: Ã −→ A and setJ = Ker(ψ). Consider the commutative
diagram (14.23) above.

It follows immediately from the fact that the upper right πp is an isomorphism that
the lower right πp is surjective. Now let x ∈ �p−typW(A), and take a y ∈ W(A) that
maps to x and take a ỹ ∈ W(Ã) that lifts it. Then x̃ = �p−typ(ỹ) is a lift of x. Now
suppose that πp(x) = 0 (lower right hand corner in the diagram). Then πp(x̃) has
all its coordinates in J . By the commutativity of diagram (14.22) another, possibly
different, lift of x can be obtained by applying �p−typ to the vector in W(Ã) that
has the same coordinates πp(x̃) at the p power spots and zeros elsewhere. Let this
vector be x̃′. But the morphism �p−typ is given by some universal polynomials with
coefficients in Z(p) and so all coordinates of x̃′ are in J , and so x = W(ψ)x̃′ = 0.
This proves that the lower πp in diagram (14.23) is also injective.

14.24. The morphism�p−typ (transferred to the power series case) is an example of
‘p-typification.’This is general notion, due to Pierre Cartier, defined for curves in any
commutative formal group. The one involved here is the second simplest example,
namely the one for the one dimensional multiplicative formal group Ĝm. See [85]
and [192], section 15.2.

14.25. Decomposition. It follows pretty directly from the preceding that over a
Z(p)-algebra each Witt vector can be written uniquely as a sum
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x =
∑
n∈N(p)

Vnyn, yn ∈ �p−typW(A) (14.26)

of shifted p-typical Witt vectors. And thus for Z(p)-algebras the functor of the big
Witt vectors decomposes (as an Abelian group) into a direct product ofN(p) copies of
the p-adic Witt vectors.

14.27. Iterated nested Witt vectors. Let N andM be two nests. These can be multi-
plied to form a new nest

MN = {mn : m ∈ M, n ∈ N} ⊂ N (14.28)

There is now, in [28], the theorem (observation) that if M ∩ N = {1} there is a
canonical functorial isomorphism

WMN(A) −→ WM(WN(A))

which essentially come from the Artin-Hasse exponential W(−) −→ W(W(−))
which is the essential part of the cotriple structure on the functor of the big Witt
vectors, see subsections 16.43 and 16.59 below.

The case M={1, p, p2, p3, · · · }, N = N(p) = (n ∈ N : (n, p) = 1}, so that
MN = N can already be found, more or less, in [336].

This is a good, actually better, substitute for the decomposition (14.26), and it works
also for rings that are not Z(p)-algebras

15. Cartier algebra and Dieudonné algebra

Consider again the matter of Hopf algebra endomorphisms of Symm, or, equiva-
lently, the matter of determining all functorial additive operations on the Witt vectors
W(A) ∼= �(A). More generally consider the Hopf algebra SymmR over a ring R
and consider the isomorphic functors� andW on the category of R-algebras and the
additive operations on them, or, equivalently, the Hopf R-algebra endomorphisms of
SymmR. As was already indicated these can be desribed by some infinity × infinity
matrix with only finitely many nonzero entries in each row. See 13.74 above. There are
other ways to see such a thing and to describe all Hopf algebra endomorphisms overR.

15.1. (h−h)-matrix of a Hopf R-algebra endomorphism of SymmR. One other way
is as follows. Because SymmR is free as an algebra over the ring R an algebra endo-
morphsim ϕ of it is uniquely specified by a sequence of polynomials, e.g. the images
ϕ(hn) of the free polynomial generators hn. To be a Hopf algebra endomorphism the
sequence of polynomials

d0 = 1, d1 = ϕ(h1) , d2 = ϕ(h2) , d3 = ϕ(h3), · · · (15.2)

must form a curve (divided power sequence) in SymmR, which means that

εs(dn) = 0 for n ≥ 1 and μs(dn) =
∑
i+j=n

di ⊗ dj (15.3)
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where μs and εs are the sum comultiplication and corresponding counit of SymmR.
This means that the dn have constant terms zero and, I claim, are uniquely specified
by the matrix

M(h−h)(ϕ) =
(〈
ϕ(hi), hj

〉)
i,j

(15.4)

I like to call this matrix the (h − h)-matrix of the endomorphism ϕ. There are only
finitely many nonzero entries in each row because the ϕ(hi) are polynomials (and
hence bounded in weight).

The proof of the claim is simplicity itself. By the autoduality of SymmR one has for
example

〈ϕ(hn), hkhl〉 =
〈 ∑
i+j=n

ϕ(hi)⊗ ϕ(hj), hk ⊗ hl
〉

=
∑
i+j=n

〈ϕ(hi), hk〉
〈
ϕ(hj), hl

〉

and thus, with induction, the (h − h)-matrix determines the inner products of the
polynomials ϕ(hn) with every monomial in the h’s and hence specifies the polyno-
mials themselves completely. One can also of course take any other free polynomial
basis for SymmR, for instance the elementary symmetric functions, which gives the
(h− e)-matrix of an endomorphism.

It is perhaps interesting to calculate these matrices for some of the more important
endomorphisms. For instance the Frobenius and Verschiebung endomorphisms. By
definition 〈h1, e1〉=1 and 〈hn, en〉 = 0 for n ≥ 2. It follows with induction using the
Newton relations, the fact that fn is a ring endomorphism, and duality, that 〈pn, en〉 =
(−1)n+1 and hence that 〈fnh1, en〉 = (−1)n+1. Using again the Newton relations,
ring morphism, and duality and induction one further finds 〈fnhr, enr〉 = 0. Or use
〈frhn, enr〉 = 〈hn, Vrenr〉 = 〈hn, en〉 to see this. As all other entries of the matrix must
be zero by degree considerations it follows that the (h − e)-matrix of the Frobenius
Hopf algebra endomorphism fn of Symm has an entry (−1)n+1 at spot (1, n) and
zeros everywhere else.

Even easier one finds that the (h − e)-matrix of the n-th Verschiebung opera-
tor has a 1 at spot (n, 1) and zeros everywhere else. This is encouraging and sug-
gests that every matrix of the type specified can arise. And this is indeed the case
and can be proved this way. But this is not the easiest or most elegant way to
see this.

15.5. The DE-matrix of a Hopf algebra endomorphism of SymmR. Let R[T ] be the
algebra of polynomials in a single indeterminate over the ring R. The determining
example for an additive operation on the functor �R (the functor � restricted to the
category ofR-algebras), and hence for the corresponding Hopf algebra endomorphism
of SymmR, is the element

(1− Tt)−1 ∈ �(R[T ]) (15.6)
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in the sense that what a functorial operation does to this one example determines it
completely. This claim will be examined a bit more closely further on. For the moment
the argument is as follows. Let ϕ be an additive operation and suppose that

ϕ((1− Tt)−1) = 1+ a1(T )t + a2(T )t
2 + a3(T )t

3 + · · · (15.7)

where the an(T ) are polynomials in T with coefficients in R. Because the operation
is supposed additive it must take the zero of the Abelian group �(R[T ]), which is 1,
into itself and so ai(0) = 0 for all i. Then the naive argument goes at follows.

Take any element b(t) ∈ �(A) for an R-algebra A. Write it formally as a product

b(t) = 1+ b1t + b21t
2 + b3t

3 + · · · =
∞∏
i=1

(1− ηit)−1 (15.8)

Then

ϕ(b(t)) =
∞∏
i=1

(1+ a1(ηi)t + a2(ηi)t
2 + a3(ηi)t

3 + · · · ) (15.9)

This is more than a bit shaky. For one thing it is far from clear whether the product
on the right hand side exists in a suitable sense. To make sense of things and also for
other purposes rewrite the right hand side of 15.7 as a product

ϕ((1− Tt)−1) =
∏
m,n≥1

(
1− cmnT ntm

)−1 (15.10)

where for anym there are only finitely many n such that cmn �= 0. This can be done in
precisely one way. The finiteness condition comes about precisely because the ai(T )
in (15.7) are polynomials (not power series for instance). The matrix

MDE(ϕ) = (cmn)m,n (15.11)

is the DE-matrix of ϕ.53

15.12. Proof of the DE principle (splitting principle). Manifestly, by the definition of
the Frobenius, Verschiebung and homothety operations the right hand side of (15.10)
is the operation∑

m,n

Vm 〈cmn〉fn (15.13)

applied to the determining example power series (1− Tt)−1. It remains to show that
(15.13) makes unique sense when applied to an arbitrary element b(t). To this end
write b(t) in Witt vector coordinates as

b(t) =
∏
d

(1− xdtd)−1
(15.14)

53 DE stands for ‘determining example.’
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Fix for the moment a power m0 of t. Because of the finiteness condition there is an
n0 such that cnm = 0 for all m ≤ m0, n ≥ n0. Because of the definition of Vm the
first m0 coefficients of (15.13) applied to a finite product like (15.14) are determined
by the part of (15.13) with m ≤ m0. Now an fn is given by a series of polynomials
of weights n, 2n, 3n, · · · . It follows that fn applied to an (1 − xtr)−1 with r > m0n

gives a result that has the first m0 coefficients (except the constant term 1) equal to
zero. Thus to calculate the firstm0 coefficients of (15.13) applied to (15.14) it suffices
to apply it to the finite product

∏
d≤m0n0

(1− xdtd)−1 =
<∞∏
i

(1− ηit)−1 (15.15)

where the right hand side of (15.15) is also a finite product. And this is perfectly
well defined by additivity and functoriality. This proves the DE principle. This
principle, apart form the infinity questions just taken care of, is an algebraic ana-
logue of the splitting principle in algebraic topology as used in, say, topological
K-theory.54

15.16. Cartier algebra. By now it is clear that the ring of all additive operations on
the functor is the set of all expressions (15.13) (with the stated finiteness condition
on the coefficients involved). This ring, which is also the ring of Hopf R-algebra
endomorphisms of the Hopf algebra SymmR, is called the Cartier algebra on R and
denoted Cart(R).55

There are also already a number of calculating rules, as given by the formulas
from theorem 13.48 viz formulas (13.49)–(13.54), (13.57)–(13.59). The remaining
question is whether these suffice. The most troublesome one (potentially) seems to
be adding two expressions like (15.13). So consider a sum∑

m,n

Vm 〈bmn〉 fn +
∑
m,n

Vm 〈cmn〉 fn (15.17)

Manipulating these directly according to the rules given, which needs especially
(13.51), just seems to lead to more and more sums at first sight. More care is
needed. To see how things work, calculate what the sum (15.17) perscribes for the
first few coefficients, say 2. That means that all terms with a Vm, m≥ 3 can be

54 Suppose one has an additive (in some suitable sense) operation in, say, topological K-theory. To find
out what it does to a given bundle over a space take a suitable covering space such that the induced buncle
splits into a sum of line bundles. This can always be done. Thus, by functoriality and additivity it suffices
to know what the operation does to line bundles. And that in turn is governed (again by functoriality) by
what it does to the universal line bundle over infinite dimensional projective space. From this point of view
I should have called (15.6) the universal example (overworking the word ‘universal’).

The ‘principle’ that under suitable circumstances it suffices to verify properties just for the case of line
bundles is (or at least used to be) called the ‘verification principle’; see e.g. [27].

55 When seen as endomorphisms of the Hopf algebra SymmR the elements of Cart(R) need to be written
in the form

∑
fn 〈cmn〉Vm. See the ‘caveat’ 16.62 below. The need for the finiteness condition is perhaps

even clearer in this interpretation.
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discarded leaving∑
n

〈b1n〉 fn +
∑
n

V2 〈b2n〉 fn +
∑
n

〈c1n〉 fn +
∑
n

V2 〈c2n〉 fn (15.18)

Now 〈b1n〉 + 〈cin〉 = ∑∞
i=1 Vi 〈ri(b1n, c1n〉 fi and so the V1 part of the sum (15.17)

is given by∑
n

〈b1n + c1n〉fn

(which is a finite sum). What is left is a sum

V2 〈r2 (b1n, c1n)〉 f2 +
∑
n

V2 〈b2n〉fn +
∑
n

V2 〈c2n〉 fn

and so the V2 part of (15.17) is given by

V2 〈b21 + c21〉 f1 + V2 〈(r2 (b12, c12)+ b22 + c22)〉 f2 +
∑
n≥3

V2 〈(b2n + c2n)〉 fn

Continuing this way (which is tedious) one sees that the calculating rules given suffice
to deal with sums.

Composing operations means dealing with products like

Vm 〈b〉 fnVr 〈c〉 fs (15.19)

Let d be the greatest common divisor of n and r. Then the product (15.19) is equal to

Vm 〈b〉 fnVr 〈c〉 fs = Vm 〈b〉 fn/dfdVdVr/d 〈c〉 fs = Vm 〈b〉 fn/d[d]Vr/d 〈c〉 fs
= [d]Vm 〈b〉 fn/dVr/d 〈c〉 fs = [d]Vm 〈b〉Vr/dfn/d 〈c〉 fs
= [d]Vmr/d

〈
br/dcn/d

〉
fsn/d

So, back to (finite) sums again. The only remaining thing to check is that no infi-
nite sums turn up when multiplying (composing) two things like (15.13) which is
immediate.

So the given calculating rules suffice.

15.20. Witt vectors as endomorphisms. Quite generally if� is a unital-commutative-
ring-valued functor on CRing to itself its restriction to R-algebras has �(R) as part
of its ring of additive endo operations. Indeed anR-algebra structure on a ringA is the
same thing as a morphism of rings R−→A, which on applying� yields a morphism
of rings �(R)−→�(A) which, in turn, for each x ∈ �(R) an associated additive
operation (x, a) �→ xa.56

56 If the functor takes noncommutative rings as values, or more generally groups with an extra multi-
plication structure as values, there are two such operations, one on each side and these are additive if and
only if resp. left distributivity or right distributivity holds for the extra multiplication structure over the
group structure. This applies for instance to the case of the functor defined by the ring of quasi-symmetric
functions. QSymm, see [200].
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So in the present case of the big Witt vectors W(R) must be part of the ring af
additive endo operations ofWR

∼=�R. It remains to identify these Witt vectors among
the

∑
m,nVm 〈cmn〉 fn.

This is not difficult. Inside the algebras of operations on�R there are the operations
of the form

∞∑
n=1

Vn 〈xn〉 fn, xn ∈R (15.21)

which take the determining example (1− Tt)−1 into the power series

∞∏
n=1

(1− xnT ntn)−1 (15.22)

which is a power series with constant term 1 in the variable Tt in Witt coordinate form.
As addition of operations goes pointwise, the power series attached to the sum of

two elements of the form (15.21) is the product of the corresponding power series
(15.22). It follows that the special operations (15.21) constitute a subgroup of all
operations that is (isomorphic to) the additve group of the Witt vectors W(R).

Now consider the composition of an operation (15.21) with an operation of the
form 〈η〉 with associated power series (1− ηTt)−1 = 〈η〉(1− Tt)−1. Appling 〈η〉 to
(15.22) by definition gives

∞∏
n=1

(1− xnηnT ntn)−1

By the definition of the multiplication of Witt vectors, see (9.16) taking a product of
a Witt vector a(tT ) with one of the form (1− ηTt)−1 is the same as substituting ηtT
for tT . Thus composition of operations and Witt vector multiplication agree in this
case. As should be the case for the operation of 〈η〉 to fit with the algebra structure
�(R) −→ �(A). By additivity and distributivity (both of Witt vector multiplication
over Witt vector addition and operation composition over operation addition) it
folllows that a product of Witt vectors of the form

(1− xtnT n)−1 ∗
( ∞∏
n=1

(1− xnT ntn)−1

)

corresponds exactly to the composition of the corresponding operations. A degree
argument now finishes the proof that multiplication of Witt vectors corresponds to
the composition of operations of the form (15.21).

15.23. Theorem. The Witt vectors W(R) under the correpondence (15.21)–(15.22)
form a functorial subring of the rings of operations End(�R) ∼= EndR(SymmR).

A somewhat remarkable fact in this case is that in the description 15.16 the subring
of operations corresponding to �(R) comes in Witt vector coordinates.
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Still another way to see that the Witt vectors are part of Cart(R) will be briefly
discussed further below.

15.24. Further description of the Cartier algebra. It is now natural to describe the
ring of operations Cart(R) as an overring of W(R), [84]. Let H be the skew polyno-
mial ring over W(R) in commuting indeterminates fp, p a prime number, with the
commutation relation with Witt vectors given by fpx= xfp fp where xfp = x(p) denotes
the Witt vector arising from applying the p-th Frobenius operation to the Witt
vector x. Next take power series in the commuting indeterminates Vp with com-
mutation relations

xVp = Vpxfp and fpVp′ = Vp′ fp for p �= p′
Let this ring be S. In it take the ideal J generated by the elements

fpVp − p, Vpxfp − xVp, x∈W(R), p a prime number

Then Cart(R) = S/J .

15.25. The ring of additive endo operations ofWp∞ . The situation in the case of the
ring valued functor of thep-adic Witt vectors is a bit different. There is no ‘determining
example’ (as far as I can see) like in the case of the big Witt vectors and it is not true
that the operations V = Vp, f = fp (the only surviving Frobenius and Verschiebung
operations) together with the homothety operations suffice to generate all of them.
In fact for p �= 2 these are not even enough to produce the operation [2] of adding a
p-adic Witt vector to itself.

However, as above in 15.20 there are thep-adic Witt vectorsWp∞(Z) as operations
on Wp∞ and together with V, f these do suffice to generate all additive operations.
This is the topic of the next few pages. In this case I find it more convenient to work in
terms of Hopf algebra endomorphisms of the representing Hopf algebra of the p-adic
Witt vectors. This is the Hopf algebra

WH(p) = Z [X0, X1, X2, · · ·] (15.26)57

with addition and multiplication comultiplications determined by the p-adic Witt
polynomials as in section 5 above. For this part of this section 15, temporarily, the
notations of section 5 will be used again.

15.27. Endomorphisms of the infinite dimensional additive group. To start with con-
sider the infinite dimensional additive group. This is the functor

A �→ AN, represented by the ring Z[U] = Z[U0, U1, U2, · · · ] (15.28)

with sum comultiplication and product comultiplication and corresponding counits

μs(Un) = 1⊗ Un + Un ⊗ 1, εs(Un) = 0, μp(Un) = Un ⊗ Un, εp(Un) = 1
(15.29)

57 The “WH” here stands for “Witt-Hopf” (as a sort of mnemonic).
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AHopf algebra endomorphism of this Hopf algebra is given by a series of polynomials
with coefficients in the integers

G(U ) = (G0(U ),G1(U ),G2(U ), · · · )
which are additive. This means that

Gn
(
U1 + U ′1, U2 + U ′2, U3 + U ′3, · · ·

) = Gn(U1, U2, U3, · · · )
+Gn

(
U ′1, U ′2, U ′3, · · ·

)
(15.30)

There are over a ring of characteristic zero, such as Z, not many such polynomials.
The only ones are the linear ones, i.e. polynomials of the form

Gn(U ) =
<∞∑
i

an,iUi, an,i ∈ Z (15.31)

where, as indicated, the sums are finite.

15.32. Determination of the Hopf algebra endomorphisms of WH(p). Now let ϕ
be a Hopf algebra endomorphism of WH(p). It is given by a series of polynomials
(ϕ0, ϕ1, ϕ2, · · · ). These, when substituted in the polynomials w0, w1, w2, · · · define
an Hopf algebra endomorphism of the infinite additive group and so are linear in
the wi(X). Thus a series of polynomials (ϕ0, ϕ1, ϕ2, · · · ) defines a Hopf algebra
endomorphism of WH(p) if and only if

wn(ϕ(X)) =
∞∑
i=0

an,iwi(X) (15.33)

for suitable integers an,i of which only finitely many are nonzero for each n. Note that
the integrality of the coefficients an,i follows from (15.33). Just look at the coefficients
of the powers of X0 on the left and right hand side of (15.33). It also follows that the
right hand side ‘comes from’ an integral vector over WH(p). This ring is of the type
described in the ‘ghost component integrality lemma’ 9.93. The ring endomorphism
ϕp is the one that takes eachXi toXpi . Here we are dealing withp-adic Witt vectors so
the only denominators involved are powers of the prime number p. So the integrality
criterion simplifies to the single sequence for the prime number p. So in the case at
hand

∞∑
i=0

an,iwi(X
p) ≡

∞∑
i=0

an+1,iwi(X) modpn+1 (15.34)

is necessary and sufficient for the sequence ϕ(X) as determined by (15.33) to define
a Hopf algebra endomorphism of WH(p) and all Hopf algebra endomorphisms of
WH(p) arise (uniquely) in this way.
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Looking at the coefficients of the powers Xp
j

0 it follows from (15.34) that the
integers an,i satisfy

am,0 ≡ 0 mod(pm), m = 1, 2, 3, · · ·
am,i ≡ am+1,i+1 mod(pm+1), m, i ∈ N ∪ {0} (15.35)

(and these congruences are also sufficient for (15.34) to hold). Now consider the
following vectors over the integers

bm = (p−mam,0, p−mam+1,1, p
−mam+2,2, · · · ), m = 1, 2, 3, · · ·

cn = (a0,n, a1,n+1, a2,n+2, a3,n+3, · · · ) n = 0, 1, 2, 3, · · · (15.36)

By (15.35) these satisfy the criterium of lemma (9.93) for being a p-adic ghost Witt
vector. So there are Witt vectors

xm, yn ∈ Wp∞(Z) such that w(xm) = bm, w(yn) = cn (15.37)

By definition the endomorphism f takes wr(X) into wr+1(X) and the endomorphism
V takes wr(X) into pwr−1(X) and by the definition of the multiplication of Witt
vectors

w(x ·Wp∞ (X0, X1, X2, · · · ) = (w0(x)w0(X),w1(x)w1(X),

w2(x)w2(X), · · · )
for any x ∈ Wp∞(Z). So the endomorphism

∞∑
n=1

fncn + c0 +
∞∑
m=1

bmVm (15.38)

takes wr(X) into

∞∑
n=1

fnar,n+rwr(X)+ ar,rwr(X)+
r∑

m=1

(
p−mar,r−m

)
pmwr−m(X) =

∞∑
i=1

ar,iwi(X)

exactly as in (15.33). Because a Witt vector x∈Wp∞(Z) starts with j zeroes, i.e lies in
the ideal VjWp∞(Z), if and only if its associated ghost vector starts with j zeroes (as
also follows from the ghost vector criterium of lemma 9.93), the finiteness condition
of 15.33) translates into the statement that for each r all but finitely many of the Witt
vectors cn in (15.38) lie in the ideal VrWp∞(Z). Thus the ring of Hopf algebra endo-
morphisms ofWH(p) consists of all expressions (15.38) with the finiteness condition
just stated and with the calculating rules

Vf = p, Vx = x(p)V, xf = fx(p) (15.39)
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where x(p) denotes the result of applying the operation f to the p-adic Witt vector x
and where p = [p] is the p-fold sum of the unit element in Wp∞(Z).

15.40. The same technique can be used to determine the ring of endomorphisms of
the Hopf algebra Symm as the representing Hopf algebra of the big Witt vectors,
giving another way to obtain the ring CartZ.

15.41. The techniques of (15.32) as a method to determine the endomorphisms of
the Hopf algebra WH(p)

R break down when R is not a ring of characteristic zero
for two reasons. One is that ghost component calculations as used are then not
determining and second because in characteristic p> 0 there are other endomor-
phism of the additive groups than the linear ones; e.g. raising to the p-th power.
Still I believe that the same picture holds. One reason is that the picture holds for
the WH(p)

R when k is a perfect field of characteristic p> 0. This will be described
below. However, the proofs are quite different. Still every endomorphism in this
case does come from one defined in characteristic zero (after the fact, i.e. after
they have been determined in characteristic p). So there still appears to be a bit of
work to do.

15.42. Dieudonné algebras. Let k be a perfect field of characteristic p> 0. The
Dieudonné algebra Dk consists of all expressions

<∞∑
n=1

fncn + c0 +
<∞∑
m=1

bmVm, cn, bm ∈ Wp∞(k) (15.43)

subject to the calculating rules

Vf = fV = p, Vx = x(p)V, xf = fx(p) (15.44)

Recall that in this case the Frobenius operation on Wp∞(k) is given by

x(p) = (
x
p

0 , x
p

1 , x
p

2 , x
p

3 , · · ·
)

and hence is an isomorphism, so that in (15.43) the Frobenius and Verschiebung
symbols can be written on the left or the right as convenient.Also recall that (see 13.13)
the sequence of polynomials that define the Frobenius endomorphism on WK(p)k is

X
p

0 , X
p

1 , X
p

2 , · · ·
so that these endomorphisms in characteristic p take care of the ‘raising to the power
p’ additive operations. One result in the present case is now (see [105], Chapter V,
§1, No 3, p. 550):

15.45. Theorem. The endomorphim ring (over k) of the sub Hopf algebra k[X0,

X1, · · ·Xn−1] ⊂ WH(p)

k is isomorphic to the ring Dk/DkVn.

15.46. Hirzebruch polynomials. (Very partial symmetric function formularium (3)).
Consider again an additive (functorial) operation on the groups of Witt vectors�(A).
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Such an operation is given uniquely by a series of polynomials

1 = K0,K1,K2, · · · ∈ Z[e] = Z[e1, e2, e3, · · · ] (15.47)

such that

μs(Kn) =
n∑
i=0

Ki ⊗Kn−i, where μs(en) =
n∑
i=0

ei ⊗ en−i (15.48)

is the sum comultiplication on Symm = Z[h] = Z[e].58 If the Kn are also homoge-
neous of degree n (where ei has degree i this is precisely what is defined in [213],
Chapter I, §1, p. 9 as a multiplicative sequence.

The operation ψK defined by the multiplicative sequence (15.47) is of course

ψK : a(t) = 1+ a1t + a2t
2 + · · ·+ �→ 1+K1(a)t +K2(a)t

2 + · · · (15.49)

A multiplicative sequence is uniquely determined by what in loc. cit. is called its
characteristic power series

Q(z) = 1+K1(1, 0, 0, · · · )z+K2(1, 0, 0, · · · )z2+ (15.50)

which can be seen as the value of the operation on the determining example 1 + zt
because by the homogeneity condition on the Kn

ψK(1+ zt) = Q(zt) (15.51)

The homogeneity condition is also clearly equivalent to the property that in the DE
formalism of (15.5) the DE-matrix of the operation is diagonal and so the operation
on �(A) in question is multiplication by a single Witt vector from �(Z) (or �(Q)
if rational coefficients are allowed in the K (and in the characteristic power series).
This single particular Witt vector is Q(−t)−1.

The multiplicative sequence itself is recovered by considering the product
∞∏
i=1

Q(ξit)

For each n the coefficient of tn is a homogeneous symmetric polynomial in the ξ and
hence a homogeneous polynomial of weight n in the ei. These are the original multi-
plicative sequence polynomials by multiplicativity of the sequence or, equivalently,
additivity of the operation defined by them.

Inversely, start with any power series Q(t) over the integers or rationals and
form the sum and product

sQ(t) =
∞∑
i=1

Q(ξit), pQ(t) =
∞∏
i=1

Q(ξit) (15.52)

58 Elementary symmetric functions are used here in order to conform with usage in algebraic topology
such as in [213] where these things were first introduced.
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where for the sum case it is assumed thatQ(0) = 0 and for the product caseQ(0) = 1.
The coefficients of tn in (15.52) are symmetric in the ξ and hence are polynomials in
the elementary symmetric functions. These are the n-th additive and multiplicative
Hirzebruch polynomials defined by the power series Q(t).

For example the Todd genus operation is defined by the power series

Q(z) = z

1− e−z = 1+ 1

2
z+

∞∑
n=1

(−1)n
Bn

(2n)!z
2n (15.53)

and the Todd genus of a vector bundle is obtained by applying this operation of the
total Chern class 1+ c1(V )t + c2(V )t

2 + · · · + cn(V )tn of a complex vector bundle
of dimension n.

The additive Hirzebruch polynomials serve to define functorial additive operations
from �(A) to AN. An example is the Chern character of a vector bundle defined by
applying the operation associated to the power series ez to the total Chern class of a
vector bundle.59

15.54. Open problem. In subsection 15.5 (on the DE principle), formula 15.7 to be
precise, an endomorphism of the Hopf algebra is given by an element of�(Z[T ]), the
Witt vectors over the ring of polynomials in one indeterminate. One wonders how the
multiplication of these as Witt vectors fits with the other bits of structure (composition
and addition of endomorphisms).

16. More operations on the � andW functors: λ-rings.

There can be other operations than additive ones on an (Abelian) group valued
functor that are important. This happens e.g. in algebraic topology and algebraic
geometry with the operations on various functors induced by exterior powers (or,
equivalently, symmetric powers) of vectorbundles. There are such functorial opera-
tions on the big Witt vectors. Indeed the Witt vectors �(A) are functorial λ-rings.60

In this setting the Witt vectors have three more universality properties (that are
interrelated).

16.1. Third universality property of the Witt vectors. The functor
�: CRing −→ λ−Ring is right adjoint to the forgetful functor the other way. This
means the following. First there is a canonical projection �(A)

π−→A (which is
in fact the functorial morphism s1 (see (9.8), the first ghost component morphism)
and second there is the universal property (that says that �(A) is the cofree object

59 HereQ(0) = 1 �= 0 and so a finite factorization 1+ c1(V )t + · · · + cn(V )tn =
n∏
i=1
(1+ βit) is used.

60 I do not know whether the notation ‘�’ for the functor A �→ 1+ tA[[t]] has anything to do with the
fact that the 1 + tA[[t]] are functorial λ-rings. I believe not. However, � is also a standard notation for
Symm the representing object of this functor.
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over A) to the effect that for every morphism of rings ϕ : S−→A from a λ-ring to A
there is a unique lift, that is a morphism of λ-rings ϕ̃ : S−→�(A) such that πϕ̃ = ϕ
as illustrated in the diagram below.61

�

�

S

�
∼�1

A

�(A)

16.2. Fourth universality property of the Witt vectors. Symm, the representing object
of the functor �, is the free λ-ring on one generator.

16.3. Fifth universality property of the Witt vectors. There is a comonad (= cotriple)
structure on � and the coalgebras for this comonad are precisely the λ-rings.

16.4. Definition of λ-rings. A λ-ring is a unital commutative ring that comes
equipped with a an extra collection of operations

λi : A −→ A, i = 1, 2, 3, · · · (16.5)

which ‘behave like exterior powers.’ In particular they are not additive for i ≥ 2. The
phrase ‘behave like exterior powers’means like the exterior powers of vector bundles
over a space or like the exterior powers of representations of a group. Thus the first
requirement is that

λn(a+ b) = λn(a)+
n−1∑
i=1

λi(a)λn−i(b)+ λn(b) =
n∑
i=0

λi(a)λn−i(b) (16.6)

where by definition λ0(a) = 1 for all a ∈ A. In addition the exterior product opera-
tions are supposed to satisfy some properties on products and when iterated in the
sense that there are some universal polynomials which give λn(xy) and λm(λn(x))
in terms of the λi(x), λj(y). These polynomials are specified by defining exterior
products on the rings �(A) and declaring these particular rings with these particular
exterior products to be λ-rings.62 That goes as follows.

61 This property rather nicely takes care of the complaint on page 1 of [263].
62 Lambda rings were introduced by Alexandre Grothendieck in the course of his investigations into

Riemann-Roch type theorems, [48, 178, 179]. In spite of its attractive sounding title the reader is advised
to steer clear of [148]. This book contains a great deal of most interesting material; it also contains nasty
mistakes (as in the second paragraph of p. 15) and is sloppily written; see also the review by K R Coombes
in Math. Rev. (88h:14011).

In the older literature, see e.g. loc. cit. and [27, 239] a lambda ring is a ring with exterior product
operations satisfying just the additivity condition (16.6) and the term ‘special lambda ring’ was used for
what here is called a lambda ring.
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A morphism of λ-rings is a morphism of rings that respects the exterior product
structures, i.e. a unital morphims of rings ϕ : A−→B such that

ϕ(λiA(x)) = λiB(ϕ(x)) (16.7)

The exterior product structure on the �(A) is defined by

λma(t) =
∏

i1<i2<···<im

(
1− ξi1ξi2 · · · ξimt

)−1 when a(t) =
∞∏
i=1

(1− ξit)−1 (16.8)

By definition a λ-ring is a unital commutative ring A equipped with exterior product
operations λi such that

λ1 = id and the mapping A−→�(A) given by

x �→ (1− λ1(x)t + λ2(x)t2 − λ3(x)t3 + λ4(x)t4 · · · )−1 (16.9)

is a morphism of λ-rings (where�(A) is given the exterior product structure (16.8)).
Writing

λ1(x) = 1+ λ1(x)t + λ2(x)t2 + λ3(x)t3 + · · · (16.10)

the second part of (16.9) says that

x �→ λ−t(x)−1, A−→�(A) (16.11)63

is a morphism of λ-rings,while the first part says that s1
(
λ−1−t

)
= id.

Of course of make the whole thing consistent it has to be proved that �(A) with
the exterior product as specified by (16.8) is a λ-ring as defined via (16.9). That is it
has to be proved that

�(A)−→�(�(A)) (16.12)

is a morphism of λ-rings. This will be done below, mixing in a number of lemmas
which will also be useful later.

16.14. λ-rings vs σ-rings. Given a ring with exterior product operations λn define
the corresponding symmetric power operations σn by the formula

n∑
i=0

(−1)iλi(x)σn−1(x) = 0, where σ0(x) = 1 = λ0(x) (16.15)

63 There are a couple minus signs here compared to the definition as given in e.g. [239, 324]. The
reason for that is that in the present text (for good reasons) the ring structure on �(A) is specified by the
‘Hadamard like product’ (1 − xt)−1 ∗ (1 − yt)−1 = (1 − xyt)−1 with unit element (1 − t)−1 instead of
(1 + xt) ∗′ (1 + yt) = 1 + xyt with unit element 1 + t (as in [239, 324]). There are more good reasons
for the particular choice made here (Which is also the choice made in the first treatments of this subject,
[84, 86]) For instance, as already mentioned, it works out nicer for the autoduality of Symm). Still another
good reason is that the multiplication (1 − xt)−1 ∗ (1 − yt)−1 = (1 − xyt)−1 is how zeta functions of
varieties over a finite field multiply in the sense that ζ(X× Y ) = ζ(X) ∗ ζ(Y ), see [263], p. 2.
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If the exterior product operations satisfy (16.6) then so do the symmetric product
operations. Also, obviously a morphism of rings respects exterior products if and
only if it respects symmetric products. Write

σt(x) = 1+ σ1(x)t + σ2(x)t
2 + σ3(x)t

3 + · · · (16.16)

then by definition a ring is a σ-ring if and only if

σt : x �→ σt(x), A −→ �(A) (16.17)

is a morphism of σ-rings. The relation between the λn and σm can be succintly
written

σt(x) = (λ−t(x))−1 (16.18)

and so σt is precisely the mapping that figures in condition (16.11). Thus a σ-ring is
exactly the same as a λ-ring. But the formulation of the property is just a tiny bit more
elegant in terms of σ-rings (no minus signs).

It is a nice little exercise to show that the σ-ring structure on �(A) is given more
explicitly by

σm

(∏
i

(1− ξit)−1

)
=

∏
i1≤i2≤...≤im

(
1− ξi1ξi2 · · · ξimt

)−1 (16.19)

This is in fact the Wronski relations again between elementary and complete sym-
metric functions (when the complete symmetric functions are written out as the sum
of all monomial symmetric functions of the same weight).

16.20. Adams operations. Given a ring with exterior product structure operations λn

the associated Adams operations,64,65 are defined by

∞∑
n=1

�n(x)tn = −t d
dt

log(λ−t(x)) = t d
dt

log(σt(x)) (16.21)

where the last equality of course follows from (16.18). Here also the formulation is
just a bit more elegant in terms of the σ-structure.

64 The operations are named after J Frank Adams who first defined them in algebraic topology in the
context of complex vector bundles and topological K-theory, [14].

65 Consider a Hopf algebra H and let μn and mn be the n-th iterates of its comultiplication and mul-
tiplication. Then the composite is the additive map (in general nothing more) [n], the n-fold sum of the
identity (under convolution). In some of the literature, e.g. [141, 167, 270, 323] these maps are calledAdams
operations. That is a bit unfortunate as it does not fit in e.g. the case of Symm. For one thing if the Hopf
algebra is graded these maps [n] are homogeneous (of degree zero) while theAddams operations are degree
increasing. Also it does not fit with the case where the Adams operations came from, the cohomology of
the classifying space BU. This does not mean that these maps are not important. They are, see loc. cit.
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16.22. Theorem. The Adams operations on the rings �(A) with exterior product
operations given by (16.8) or, equivalently, with symmetric product operations given
by (16.19), are the Frobenius operations.

I like to call this observation the first ‘Adams = Frobenius’ theorem. The proof is
easy. First take a power series of the form x = (1−at)−1. Then λ1(x) = x, λi(x) = 0
for i ≥ 2 and hence

λ−u(x) = 1− xu,−u d
du

log(λ−u(x)) = xu

1− xu = xu+ x
2u2 + x3u3 + · · ·

And so

�n((1− at)−1) = ((1− at)−1)∗n = (1− ant)−1 = fn((1− at)−1)

by the definition of product and Frobenius operations on�(A). Now write an arbitrary
element from �(A) (formally) in the form

x =
∏
i

(1− ξit)−1, i.e. x = x1 +� x2 +� x3 +� · · ·, xi = (1− ξit)−1

in terms of the addition in a �(Ã). The same calculation as above gives

�n(x) = xn1 + � x
n
2 + � x

n
3 + � · · · =

∏
i

(
(1− ξit)−1 )∗n 66

=
∏
i

(
1− ξni t

)−1 = fnx

16.23. Also observe that by the definitions the Frobenius operations on the �(A),
and hence the Adams operations, commute with the exterior and symmetric power
operations.

16.34. Existence lemma ( for exterior power (and other) structures), [192], lemma
17.6.8, p.138. LetA be a characteristic zero ring with ring endomorphisms ϕn :A −→
A for all n∈N such that ϕ1 = id, ϕmϕn=ϕmn and such that ϕp(a)≡ apmod(pA)
for all prime numbers p and a∈A. Then there exists a unique mapping DA :A −→
�(A) (resp.DA : A −→ W(A)) such that snDA = ϕn (resp.wnDA = ϕn). Moreover,
this mapping is a ring morphism.

This is an immediate consequence of the ghost Witt vector integrality lemma 9.93.

16.35. Lemma. Let α: A −→ B be a ring morphism and let both rings have exterior
products λnA, λnB with associated Adams operators �nA, �nB. Then if α�nA = �nBα for
all n, also αλnA = λnBα.

This comes about because the Adams operations and the exterior products are
related by (universal) polynomials with rational coefficients.

66 Here, again, the splitting principle is used together with what has been called the ‘verification principle,’
which says that under suitable circumstances it suffices to verify things for line bundles.
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Indeed these polynomials had better be given explicitly as they will also be needed
further on. They are as follows

�n = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 1 0 · · · 0

2λ2 λ1 1
. . .

...

3λ3 λ2 . . .
. . . 0

...
...

. . . λ1 1

nλn λn−1 · · · λ2 λ1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.40)

n!λn = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 1 0 · · · 0

�2 �1 2
. . .

...

�3 �2 . . .
. . . 0

...
...

. . . �1 n− 1

�n �n−1 · · · �2 �1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.41)

Some care must be taken in reading these formulas. E.g. in λ2 = 1
2 (�

1)2 −
1
2�

2, (�1)2(x) must not be read as �1(�1(x)) but as (�1(x))2.

These determinental formulas are exactly the same as those linking power sums and
elementary symmetric functions in symmetric function theory ([281], p. 28), which
is as must be because the defining formulas are the same in the two cases.67

16.42. Clarence Wilkerson theorem. Let A be as above in lemma 16.34. Then there
is a unique λ-ring structure on A such that the associated Adams operators are the
given ring morphisms ϕn. Moreover the thus defined exterior powers commute with
the given morphisms ϕn.

Proof. By the existence lemma 16.34 there is a unique ring morphism σt : A −→
�(A) such that snσt = ϕn for all n. This defines the exterior powers. Now observe
that for all a∈A

smσt(ϕn(a)) = ϕm(ϕn(a)) = ϕmn(a)
and on the other hand, using the defining property of the Frobenius operation on the
Witt vectors

smfn(σt(a)) = smn(σt(a)) = ϕmn(a)

67 It is because of this that the Adams operations are often called ‘power operations’.
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BecauseA is of characteristic zero (so that s : �(A) −→ AN is injective) this implies
that fnσt = σtϕn. Thus by lemma 16.35 σt respects the exterior powers and thus is a
morphism of λ-rings as required. �

16.43. Corollary. The rings of Witt vectors �(A) are functorial λ-rings.

Proof. First suppose that A is of characteristic zero. Then so is �(A). Now let
AH be the mapping�(A)−→�(�(A)) defined by the given exterior product struc-
ture on �(A). At this stage almost nothing is known about what properties it has.
However, by definition of the Adams operations these satisfy sn,�(A) ◦ AH = �n.
The operations �n on �(A) have been shown to be the Frobenius operations (the
first Adams = Frobenius theorem) and these Frobenius operations satisfy the con-
ditions of the existence lemma 16.34. So the uniqueness part says that AH is equal
to the morphism whose existence is guaranteed by that lemma and that one is a ring
morphism by that lemma and respects exterior powers by theorem 16.42. This proves
the corollary for characteristic zero rings. For an arbitrary ring take any characteristic
zero cover. Everything in sight is functorial and so a little diagram chasing gives the
result also in this case. �

16.44. Remark. The following diagram commutes for any λ-ring.

fn
L(A)

st st

C
n

L(A)

AA

For instance because fn and �n are given by the same polynomials in the exterior
products (see (16.40) and the σt are morphisms of λ-rings. In fact more generally ifA
andB are λ-rings andA

α−→B is a morphism of λ-rings then the morphism commutes
with the respective Adams operations.

It follows from the commutativity of the above diagram that �m�n = �mn and
that the �n respect the exterior powers.

16.45. Remark. The notation ‘AH’ for the functorial morphism of λ-rings
�(A) −→ �(�(A)), which could also be properly denoted σt,�(A), stands for ‘Artin-
Hasse’. It is in fact a variant of the Artin Hasse exponential68 in algebraic number

68 For the definition of the Artin-Hasse exponential in algebraic number theory and some of its uses see
e.g. [412] to start with.
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theory. More precisely if one takes a finite field k, identifies �(k) = W(k), takes the
quotientW(k)−→Wp∞ , and sees the latter ring as the unramified mixed characteris-
tic complete discrete valuation ring with residue field k one finds a morphism of rings
Wp∞(k) −→ �(Wp∞(k)) which is in fact the classical Artin-Hasse exponential, see
[192], sections 17.5, 17.6 and E2.

By its definition the Artin-Hasse exponentialAH is such that the left hand diagram
below commutes. It follows that the right hand diagram also commutes.

AH

fn

�(�(A))

sn,�(A)�(A)

�(A)
fn

AH
�(�(A))

�(sn,A)�(A)

�(A)

16.46. Remark. The simplest example of a (nontrivial) λ-ring is probably the ring of
integers with the exterior power structure λt(x) = (1 + t)x. So in this case λt is a kind
of exponential, and that is a good way to think about it. In fact there are situations
where the presence of an exterior power structure does lead to exponential type
isomorphisms between the underlying ‘additive’ group of a ring and a multiplicative
group of units of it, see e.g. [27], [388, 389].

16.47. The essence of a λ-ring structure. LetA be a λ-ring. Then it comes with with
a morphism of λ-rings σt : A −→ �(A), σt(x) = (1− λ1(x)t+ λ2(x)t2− λ3(x)t3+
· · · )−1. That means that there are formulas for the exterior product λn(x + y) of
a sum of elements of A because σt is additive; there are formulas for the exterior
product λn(xy) of a product of elements of A because σt is multiplicative; and there
are formulas for the iterations of exterior products λm(λn(x)) because σt is respects
exterior products (as a morphism of λ-rings). These formulas are given in terms of
the addition, multiplication, and exterior products on the Witt vector ring �(A). But
these formulas are universal;69 they do not in any way depend on the ring A; they
are certain polynomials with integer coefficients determined by certain manipulations
with symmetric functions over the integers.

Thus there are formulas for λn(x + y), λn(xy), λm(λn(x)) as polynomials in the
λi(x) and λj(y) and, which is the real essence of the story, these polynomials have
their coefficients in the integers and are the same for all λ-rings A.

These polynomials can be calculated. Either by working directly with the one
universal example of the Witt vectors 1 + h1(ξ)t + h2(ξ)t

2 + h3(ξ)t
3 + · · · and

1+ h1(η)t + h2(η)t
2 + h3(η)t

3 + · · · over Z[h(ξ);h(η)] ⊂ Z[ξ; η], or, which I find
easier, by using the determinantal formulas (16.40) and (16.41).

69 Overworking that unhappy word again; but I know of none other that meets the case.
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For example

λ3(xy) = 1

6
(�1)3(xy)− 1

2
(�1�2)(xy)+ 1

3
(�3)(xy)

= 1

6
�1(x)3�1(y)3 − 1

2
�1(x)�1(y)�2(x)�2(y)+ 1

3
�3(x)�3(y)

= λ1(x)λ2(x)λ1(y)λ2(y)+ λ1(x)3λ3(y)+ λ3(x)λ1(y)3

− 3λ1(x)λ2(x)λ1(y)3 − 3λ1(x)3λ1(y)λ2(y)+ 3λ3(x)λ3(y)

λ2(λ2(x)) = 1

2
(�1)2(λ2(x))− 1

2
�2(λ2(x))

= 1

2
λ2(x)2 − 1

2
�2(

1

2
�1(x)2 − 1

2
�2(x))

= 1

2
λ2(x)2 − 1

4
�2(x)2 + 1

4
�4(x)

= λ1(x)λ3(x)− λ4(x)

16.48. �-rings. A �-ring is a ring together with a family of ring endomorphisms
(�n)n∈N such that

�1 = id, �m�n = �mn (16.49)

I shall say that A is a ‘�-ring with Frobenius morphism like property’ if moreover

�p(a) = apmodp for all prime numbers p (16.50)

Then ifA is aλ-ring the associatedAdams operations it becomes a�-ring by what was
remarked in 16.44 above. It is moreover a�-ring with Frobenius morphism like prop-
erty. To see this it suffices to remark that that the Adams operations are given in terms
of the symmetric powers (resp. the exterior powers) by the same polynomials that
relate the power sum symmetric functions to the complete symmetric functions (resp.
the elementary symmetric functions). Now hp ≡ hp1 modp and the statement follows.
Another way to get it is to look at the defining equation for �p in Witt coordinates:

Ψp

W(A)
wp��t

A A

where σ′t is σt followed by the isomorphism eA : �(A) −→ W(A). Because
w1σ

′
t = id, σ′t (a) is of the form (a, x2, x3, · · · ) and so

�p(a) = wp(a, x2, x3, · · · ) = ap + pxp ≡ apmodp
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16.51. Thus for a characteristic zero ring the statements “A is a λ-ring’ and ‘A is a
�-ring with Frobenius morphism like property’ are equivalent. If A is not of charac-
teristic zero this need not be the case.

16.52. Another result in this setting is that if A is a characteristic zero ring with
exterior power operations defined on it such that the associated Adams operations
turn it into a �-ring then it is a λ-ring.

Note the differences between the two theorems 16.51 and 16.52.

Thus the difference between�-rings and λ-rings is an integrality matter (and such
matters can be important). The idea of a �-ring can easily be extended to a noncom-
mutative setting (see below) and dualized. In view of the autoduality of Symm there
should be some interesting notion of what a ‘co-λ-coring’ could be. Some sort of
co-�-coring with an extra integrality property.

16.53. There are a number of noncommutative rings in various parts of algebra that
behave almost like �-rings and λ-rings. Thus it makes sense to develop a theory
of noncommutative �-rings just like it was (and is) important to have a theory of
noncommutative symmetric functions; the theory ofNSymm briefly alluded to above
in Section 11.

The beginnings of a theory of noncommutative�-rings have been established, see
[325] (and [324] for a brief account). And it turns out that this theory relates nicely
to the theory of noncommutative symmetric functions, loc. cit.

The next topic is the comonad structure on the functor of the Witt vectors.

16.54. Monads and comonads. A monad70 in a category C is a triple (T,m, e) con-
sisting of an endofunctor T : C −→ C, a natural transformationm: T T −→ T (where
T T stands for the iterate of T , i.e. T T(A) = T(T(A))) and a natural transformation
e: id −→ T such that the following diagrams commute.

TT

TT TTT T

TT
m

mT m

Tm Te eT

id idm

TTT

(16.55)

70 Other names for monad that are used (or have been used) in the literature are ‘triad,’ ‘standard
construction,’ ‘fundamental construction,’ ‘triple’.

Monads first arose in work of Roger Godement, [171], in connection with the construction of simplicial
objects and (standard) resolutions in connection with sheaf cohomology.
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Here ‘Tm’ means ‘m’ first and then ‘T ’, i.e. at an object C take the morphism
mC: T(C)−→ TT(C)= T(T(C)) and then apply the functor T to it to obtain a mor-
phism that is also often denoted T(mC); on the other hand ‘mT ’ at an object C, i.e.
‘T ’ first and then ‘m’, is ‘m’ at the object T(C), often written mT(C).
An algebra (in the category C) for a monad (T,m, e), also called a T -algebra, is an
objectA ∈ C together with a morphism α: TA −→ A such that the following diagram
commutes

TA

TA A

A
�

�mA

eAT�

id

TTA

(16.56)

The opposite notions, i.e. the same notions in the opposite category, are those of a
comonad and a coalgebra. Explicitly: a comonad (T,μ, ε) in a category C is an endo
functor T of C together with a morphism of functors μ: T −→ T T and a morphism
of functors ε: T −→ id such that

(Tμ)μ = (μT )μ, (εT )μ = id = (T ε)μ (16.57)

And a coalgebra for the comonad (T,μ, ε) is an object in the category C together with
a morphism σ: C −→ TC such that

εCσ = id, (T(σ)σ = (μTC)σ (16.58)

The equations (16.57) and (16.58) can of course be written out in diagram form, the
diagrams involved being the ones one gets by reversing all arrows in (16.55) and
(16.56). This seems hardly worth the ink and paper in view of the fact that they will
shortly appear explicitly in the case of the particular comonad of the Witt vectors and
its coalgebras, which are precisely the λ-rings (or, better, σ-rings).

A standard text on monads and comonads is [33]; for a thorough up-to-date account
see [284].71

16.59. Comonad structure on the Witt vectors. The claim is that the Witt vector
functor � (or W ) is a comonad in the category CRing, with the comonad morphism
given by the Artin-Hasse exponential and the first ghost component morphism and
that the coalgebras for this comonad are precisely the λ-rings.

To prove this it must be shown that for each ringA the following diagrams (16.60)
are commutative and that an exterior product structure σt : A −→ �(A) gives a

71 And a, in my opinion, inspiring account.
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λ-ring structure if and only if the diagrams (16.61) below are commutative.

��(A)
�(AHA)

��(A)

�(A)

id id

�(A)

�(A)

���(A) ��(A)

AHA

AHA

AHAAH�(A)

�(A)

�(s1,A) s1,�(A)

(16.60)

�(A)s1

�(A)

�(�t)

�t

�t �t,�(A)

A

A

id

��(A)

(16.61)

This looks like there is a fair amount of work to do. Especially the triple iterate at the
upper right hand corner of the left diagram in (16.60) could seem a bit intimidating.
Actually everything has already been proved. Start with the commutativity of the
right hand part of diagram (16.61). This is just saying (in a slightly fancy way) that
σt is a morphism of λ-rings (with the fact that it is a ring morphism coming from
the requirement that things take place in the category of rings). The left hand part of
(16.61) just says that λ1 = id.

As AH is the morphism determined by the exterior power structure on �(A) (see
the proof of 16.43) the commutativity of the left diagram of (16.60) is just proving
that �(A) is a λ-ring. The remainder of (16.60) is part of the definition of AH (right
half ) and a consequence of that (see 16.45). The right half of the right diagram of
(16.60) is also the first part of the requirement that �(A) be a λ-ring.

16.62. Theorem. Cofreeness of the Witt vectors. The λ-ring �(A) of Witt vectors
over A, together with the first ghost component morphism s1 : �(A) −→ A is the
cofree λ-ring over A.

This means that if S is a λ-ring and α: S −→ A is a morphisms of rings (i.e. forget
the exterior product structure on S for the moment), then there is a unique morphism
of λ-rings α̃ : S −→ �(A) that lifts α. This is illustrated in the following diagram.

�

s1

S

�∼
�1

�(A)

A

(16.63)
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By now this is simple to prove. First remark that if

a(t) = 1+ a1t + a2t
2 + a3t

3 + · · · =
∏
i

(1− ξit)−1 ∈ �(A)

then by the definition of the λ-ring structure on �(A) (see (16.8)

λna(t) ≡ 1+ en(ξ)t ≡ 1+
(
(−1)n+1 (hn (ξ)+ P(h1(ξ), · · · , hn−1(ξ))

)
t mod t2

for some polynomial P with integer coefficients. And so

s1
(
λna(t)

) = (−1)n+1an + P (a1, · · · , an−1) (16.64)

Now let α : S −→ A be a morphism of rings. Define α̃ : S−→�(A) as the composi-

tion S
σt−→�(S)

�(α)−−→ �(A). Then this α̃ does the job, and, with induction, it is also
the only possibility because it is required to be a morphism of λ-rings and (16.64).72

16.65. λ-ring structure on Symm itself. There is a very simple and obvious λ-ring
structure on the ring Z[ξ] = Z [ξ1, ξ2, ξ3, · · · ] of polynomials over the integers, viz
the one determined by

λ1(ξi) = ξi, λj(ξi) = 0 if j ≥ 2 (16.66)

The easiest way to prove that there is indeed such a λ-ring structure is to consider the
ring endomorphisms given by

�n(ξi) = ξni (16.67)

These ring endomorphisms satisfy all the requirements of the Wilkerson theorem
16.42 and so there is a λ-ring structure on Z[ξ] for which the ring endomorphisms
(16.67) are the associated Adams operations. The relations between the Adams opera-
tions and the exterior product operations are the usual ones linking power sums and
elementary symmetric functions. In particular

n!λn = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 1 0 · · · 0

�2 �1 2
. . .

...

�3 �2 . . .
. . . 0

...
...

. . . �1 n− 1

�n �n−1 · · · �2 �1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.68)

and it follows immediately that the λ-operations (exterior powers) is casu are indeed
those of (16.66).

72 Again the proof would be more elegant if things were formulated for σ-rings.
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Now consider the subring of the symmetric functions Z[h] ⊂ Z[ξ]. Obviously this
subring is stable under the ring endomorphisms (16.67), so applying the Wilkerson
theorem 16.42 again there is a λ-ring structure on Z[h] for which the morphisms
(16.66) are the associated Adams operations which is obviously the restriction of the
λ-ring structure (16.65) to the symmetric functions.

16.69. λ-ring structure on QSymm. In between the symmetric functions and Z[ξ]
there sit the quasi-symmetric functions Z[h] = Symm ⊂ QSymm ⊂ Z[ξ]. Obvi-
ously, QSymm is stable under the ring morphisms (16.67) and so there is a corre-
sponding λ-ring structure on QSymm, which is the restriction of the one on Z[ξ] and
which extends the one just discussed on Symm. The associated Adams operations
are the ring morphisms (16.67) which are the same as the Frobenius endomorphisms
of 13.33.

16.70. Lyndon words. The proper tails of a word α = [a1, a2, · · · , am], ai ∈ N, over
the natural numbers are the words [ai, ai+1, · · · , am], 1 < i ≤ m. A word is Lyndon
if it is lexicographically smaller than each of its proper tails. For instance [1, 3, 2] is
Lyndon and [2, 1, 1] and [1, 1] are not Lyndon. A word α is primitive if the greatest
common divisor of its entries is 1.

16.71. Theorem, [195, 198] (Free polynomial generators for QSymm over the inte-
gers). The elements λnα, n ∈ N, α primitive word, form a free polynomial basis
over the integers of the ring QSymm.

This has been a vexing problem since 1972 which was finally solved in 1999,
see [193]. QSymm is a strong candidate for a theory of noncommutative Witt
vectors (as a tool for classifying noncommutative formal groups amoung other
things).

16.72. Discussion. The many different (?) operations on Symm. There are by now
some five potentially different unary operations on Symm and it is perhaps wise to
list them.

(a) The exterior product operations that define the λ-ring structure on Symm.
These are not additive of course.

(b) The corresponding Adams operations as described by (16.66)

(c) The rings �(A) are functorial λ-rings. The functor A �→ �(A) is represented
by Symm:�(A) = CRing(Symm, A). The functorial exterior product opera-
tions on�(A)must therefore come from ring endomorphisms ofSymm. These
endomorphism cannot be Hopf algebra endomorphisms (because otherwise the
functorial exterior product operations on W(A) would be additive.

(d) The rings �(A) have functorial Adams operations. These also must come
from ring endomorphisms of Symm. Moreover these must be Hopf algebra
endomorphisms and even coring object morphisms in the category of rings.

(e) The Frobenius endomorphisms as defined in subsection 13.6. These are the
ones that induce the functorial Frobenius operarions on the �(A).
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The first Adams = Frobenius theorem, 16.22, says that the morphisms (d) and (e) are
the same. By the remarks already made the only one which could conceivable also
be the same is (b). And this is indeed the case

16.73. Theorem. (Second Adams = Frobenius theorem). The Adams operations
�n coming from the λ-ring structure on Symm are the same as the endomorphisms
fn of Symm that induce the Frobenius endomorphisms of the functor�(A) of the big
Witt vectors.

Proof. This follows immediately from the fact that fn(pm) = pnm compared with
(16.66). �

There is of course still more structure on Symm. Symm being autodual there are also
all the duals of (a)–(e). It is not evident what all these dual operations are.

16.74. Theorem. Universal λ-ring on one generator. The ring of symmetric poly-
nomials with the λ-ring structure defined above is the universal λ-ring on one
generator.73

This means the following. For each λ-ring A and element a ∈ A there is a unique
morphism of λ-rings ϕ : Symm −→ A such that ϕ(e1) = a.

Proof. As is easily verified from e.g. (16.58) the λ-ring structure on Symm satisfies
λn(e1) = en. It follows that the only ring morphism that could possibly work is
defined by ϕ: en �→ λn(a). And there is such a ring morphism because Symm is free
on the en. That this is actually a morphism of λ-rings requires a bit more work, as
follows. Let x be an element of Symm, i.e. a polynomial in the elementary symmetric
functions

x = Px (e1, e2, · · · ) ≡ Px
(
λ1(e1), λ

2(e1), · · ·
)

�

Now consider λn(x). Because composition of lambda operations, a lambda operation
applied to a product, and a lambda operation applied to a sum, are given by ‘universal
polynomials’, that means the same polynomials for any λ-ring, see 16.47, there is
a universal polynomial Qn,Px (with coefficients in the integers)74 such that for any
λ-ring and any element a in it

λn(Px(λ
1(a), λ2(a), · · · )) = Qn,Px(λ

1(a), λ2(a), · · ·)
Also ϕ is a ring homomorphism and so commutes with polynomials

ϕ(Q(x1, x2, · · ·)) = Q(ϕ(x1), ϕ(x2), · · ·)

73 There is a far reaching generalization. As will be discussed below Symm is isomorphic to RS the
direct sum of the representation rings of the symmetric groups. For a fixed finite group G let G ×wr Sn
be the wreath product of G and Sn. The direct sum of the representation rings R(G ×wr Sn) is the free
lambda ring on the irreducible representations of G as generators, [280].

74 This polynomial is in fact the plethysm en ◦ Px, see subsection 16.76 below.
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It follows that ϕ commutes with the lambda operations, so that it is a morphism of
λ-rings.

16.75. Comonadability vs cofreeness vs representability vs freeness. The various
notions that passed under review in the previous few subsections are far from being
unrelated. The following matters were discussed.

(a) The functor� :CRing−→ λ−Ring takes a ringA into the cofree λ-ring over
A.

(b) The functor � comes with a comonad structure and the coalgebras of this
comad are precisely the λ-rings.

(c) The functor� is representable. The representing ring is a λ-ring and is the free
λ-ring on one generator.

The relation (a)–(b) is a well known part of monad and comonad theory (from the
early days of this theory). Every monad or comonad comes from an adjoint pair of
functors, see [284, 33], and of course cofreeness of �(A) −→ A translates into the
observation that � is right adjoint to the functor λ-Ring −→ CRing that forgets
about the exterior product structure.

Here is how the relation (b)–(c) goes.75 Let C be a category and let (T,μ, ε) be
a comonad in C. Now let (Z, z∈ T(Z)) represent the functor T . That is, there is a
functorial bijection C(Z,A)−→ T(A), f �→ T(f )(z). The comonad structure gives
in particular a morphism σ: Z −→ TZ, viz the image of idz under μz : T(Z) =
C(Z,Z) −→ T(T(Z)) = C(Z, T(Z)). This defines a ‘coalgebra for T ’ structure
on Z. Now let (A, σ) be a coalgebra for the comonad T and let a be an element of
A. Consider the element σ(a) ∈ T(A) = C(Z,A). This gives a unique morphism
of T -coalgebras that takes z into a. There are of course a number of things to ver-
ify both at this categorical level and to check that these categorical considerations
fit with the explicit constructions carried out in the previous subsections. This is
straightforward.

16.76. Plethysm. (Very partial symmetric function formularium (4)). Given an ele-
ment a ∈ A in a λ-ring A and a polynomial f ∈ Symm define

αa(f ) = βf (a) = f
(
λ1a, λ2a, · · ·

)
(16.77)

where in the last part of (16.77) f is seen as a polynomial in the elementary symmetric
functions; i.e. in the expression for f as a polynomial in the elementary symmetric
functions these elementary symmetric functions are replaced by the exterior powers
of the element a. If f is seen as a polynomial in the complete symmetric functions the
same result is obtained by replacing these with the symmetric powers of the element a.
This can lead to confusion so it is better to have a description that does not depend

75 I have not found this relation in the monad literature (which does not mean it is not there somewhere).
There should be a general theorem to this effect also in a more general context than ‘categories of sets with
structure.’
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on what free polynomial basis is used for Symm. That goes as follows. Give a ∈ A
and f ∈ Symm

Let αa : Symm −→ A be the unique morphism of λ-rings

such that φa(h1) = φa|e1| = a. Then αa(f ) = βf (a) (16.78)

This looks at a ∈ A as something that defines (and is defined by) a morphism of
λ-rings from the free λ-ring on one generator to A.

Another way to look at (16.77) is as the definition of a functorial operation on
λ-rings defined by the polynomial f . This is the most used way to look at (16.77),
(16.78).

In particular Symm itself is a λ-ring, and so, taking a g ∈ Symm for a in (16.77),
(16.78) there results a new kind of composition of polynomials

f ◦ g = αg(f ) = βf (g) = f
(
λ1g, λ2g, · · ·) (16.79)

This composition law on Symm is called plethysm. More precisely it is called ‘outer
plethysm.’ There is also something called ‘inner plethysm’ which has to do with the
λ-ring structures on the homogeneous summands Symm(n) of Symm.76 In the rep-
resentation theoretic incarnation of Symm in terms of representations of the general
linear groups, outer plethysm corresponds to composition of representations.

In terms of the λ-ring interpretation mentioned above it also corresponds to compo-
sition: the functorial operation onλ-rings defined byf ◦g onλ-rings is the composition
of the functorial operations defined by f and g:

βf◦g(a) = βf
(
βg(a)

)
(16.80)

Plethysm is associative

(f ◦ g) ◦ h = f ◦ (g ◦ h) (16.81)

This is a special case of (16.80).

16.80. Calculation of plethysms. Write g ∈ Symm ⊂ Z as a sum of monomials in
the ξ g = ∑

τ cτξ
τ and write (formally)∏

(1+ yit) =
∏
τ

(
1+ ξτt)cτ (16.81)

then

f ◦ g = f (y1, y2, · · ·) (16.82)

where f is seen as a symmetric polynominal in the ξ.

76 These homogeneous summands are rings under the second multiplication on Symm. In the represen-
tation theoretic incarnation of Symm they correspond with the ring of (virtual) representations R(Sn) of
the symmetric groups Sn. The exterior powers there are the exterior powers of representations.
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Thus for instance f ◦ pn = f
(
ξn1 , ξ

n
2 , · · ·

)
, a plethysm that was used in 9.93 above

when discussing the Witt symmetric functions which give the Witt coordinates of a
power series.

To see that (16.82)–(16.83) fits with the definition, first note that for the λ-ring
structure on Z[ξ], λ1(ξi) = ξi, λn(ξi) = 0 for n ≥ 2. Thus σt(ξi) = (1 − ξit)−1 and
because σt is a morphism of rings

σt(g) =
∏
τ

(
1− ξτt)−cτ (16.83)

and so

λt(g) = σ−t(g)−1 =
∏
τ

(
1+ ξτt)cτ = ∏

(1+ yit)

so that the elementary symmetric functions in the y are the λng.

16.84. Distributivity of the functorial plethysm operations. The plethysm opera-
tions βf on λ-rings A are not additive. But they are distributive over addition and
multiplication in a Hopf algebra way as follows. Let

μS(f ) =
∑
i

f ′S,i ⊗ f ′′S,i, μP(f ) =
∑
i

f ′P,i ⊗ f ′′P,i (16.85)

Then

βf (a+ b) =
∑
i

f ′S,i(a)f ′′S,i, (b), βf (ab) =
∑
i

f ′P,i(a)f ′′P,i(b) (16.86)

This is seen as follows given a, b ∈ A, they define Witt vectors σt(a), σt(b) ∈ �(A)
which, in turn, are morphisms of rings Symm −→ A. Because σt is a morphism of
rings the Witt vectors of a+b and ab are the Witt vector sum and Witt vector product

of the Witt vectors of a and b. As morphisms of rings Symm
ϕa,ϕb−→A. Witt vectors are

summed and multiplied as follows. The sum Witt vector corresponds to the composite

Symm
μS−→Symm⊗ Symm

ϕa⊗ϕb−−−→A⊗ A mA−→A

and the product Witt vector corresponds to the composite

Symm
μP−→Symm⊗ Symm

ϕa⊗ϕb−−−→A⊗ A mA−→A

Formula (16.86) follows.
For those polynomials for which there are nice formulas for the sum comultipli-

cation morphism μS or for the product comultiplication μp (16.85) and (16.86) can
give useful formulas for calculating plethysm operations. For instance, using 10.7

sκ ◦ (f + g) =
∑
λ⊂κ

(sλ ◦ f ) (sκ/λ ◦ g) (16.87)

It also follows (again) from (16.85), (16.86) that the plethysm operations βpn on
λ-rings defined by the power sum symmetric functions pn are both additive and



Witt vectors. Part 1 427

multiplicative; they are of course the Adams operations (explaining once more why
these are often called “power operations.’

Rather few of the plethysm operations defined by a polynomial are additive: only
those that come from a sum of power sum symmetric functions. On the other hand
there are all the additive operations generated by the Frobenius, Verschiebung and
homothety operations (the Cartier ring). It is unknown whether all these together with
the plethysm operations generate all operations on the functor �.

There is quite a bit of literature on plethysm, mostly in a representation theo-
retic context and much is on how to calculate it in special cases. A sampling is
[8, 66, 82, 282, 313, 394, 395], [312, 306, 43, 42, 429].

17. Necklace rings

There is (for suitable rings) a third coordinatization of the unital power series over a
ring A, i.e. the elements of �(A)= 1+ tA[[t]], besides the power series coordinates
and Witt vector coordinates considered so far. These coordinates go by the name
necklace coordinates. The three systems of coordinates are related by

1+ a1t + a2t
2 + a2t

2 + · · · =
∞∏
i=1

(
1− xiti

)−1 =
∞∏
i=1

(
1− ti)−ci (17.1)

Unlike in the case of Witt vector coordinates it is not always possible to find necklace
coordinates. It can certainly be done for the case that A is a Q-algebra, but there is
but little interest in that as in that case

W(A) ∼= �(A) ∼= Gh(A) = AN

But there are quite a few rings A that are not Q-algebras for which such a represen-
tation in necklace coordinates can always be found with the ci ∈ A; in particular the
rather important case A = Z. This will be discussed a bit further below. On the other
hand this can not be done for the case thatA is a ring of polynomials, in particular not
for A= Symm which is the context in which the universal example of a one power
series lives; that is the power series

h(t) = 1+ h1t + h2t
2 + h3t

3 + · · · (17.2)

from which all others are obtained.
Why I like to call the coordinates on the right hand side of (17.1) by the name

necklace coordinates will become apparent in a minute.

17.3. Necklace polynomials. Consider a totally ordered alphabet of α letters, say
{1, 2, · · · , α}. A word over this alphabet is primitive (also called aperiodic) if it is
not a concatenation power of a strictly smaller word. A word is Lyndon if it is strictly
smaller in the lexicographic order than any of its (non-identity) cyclic permutations.
So in particular it is primitive. For the equivalence of this definition of Lyndon word
with the one used in 16.71 see e.g. [273], Section 4.4.
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A necklace (also called circular word) is an equivalence class under cyclic per-
mutations of words. A necklace is primitive if the words in the equivalence class
are primitive. Thus the Lyndon words can be regarded as a systematic choice of
representatives of primitive necklaces.

The formula for the number of primitive necklaces of length n on α letters, i.e. with
α different colors of beads, has been known since Colonel Moreau, [298], in 1872. It is

M(α; n) = n−1
∑
d|n

μ(d)αn/d (17.4)

These expressions, seen as polynomials in an indeterminate α are known as the neck-
lace polynomials. Note that though these polynomials are integer valued for every inte-
ger argument they do not have integer coefficients. For instance for a prime number p

M(α; p) = p−1(αp − α) (17.5)

The same expression (17.4) turns up in other contexts. For instance in the theory of
free Lie algebras. Consider the free Lie algebra generated by α symbols. Give each
symbol weight one. The free Lie algebra (over the integers or any field) is then graded
and the graded part of weight n has rank M(α, n). This can be seen for instance by
the so called Hall set construction of a basis (as an Abelian group) for the free Lie
algebra, using the set of Lyndon words as a Hall set. See Chapter 5 in [334] for details.
In this context of free Lie algebras (17.4) is known as the Witt formula, [418].

In loc. cit., p. 153, Witt writes: “Es ist merkwürdig, dass diese Rangformel übere-
instimmt mit der bekannten Gausschen Formel für die Anzahl der Primpolynome
xn + a1x

n−1 + · · · + an im Galoisfeld von q Elementen.” Later, Solomon Golomb,
[174], found indeed a bijection between primitive necklaces and irreducible polyno-
mials. This correspondence is not yet entirely satisfactory in that it depends on the
choice of a primitive element for the Galois field. See also [335] for a discussion of
this correspondence and other occurences of expression (17.4).

Consider the power series in Witt coordinates∑
n≥0

βnt
n =

∏
n≥1

(
1−M(α, n)tn)−1 (17.6)

Then βn is the rank of the homogeneous component of degree n of the free
associative algebra over Z in α symbols. This results from the Witt formula by
using the Poincaré-Birkhoff-Witt theorem combined with the Milnor-Moore type
result that says that the free associative algebra is the universal enveloping alge-
bra of the free Lie algebra on the same set of symbols. For some further mani-
festations of the necklace polynomials and related expressions in such varied
fields of inquiry as the Feynman identity, the elliptic modular function, multi-
ple zeta values, (symbolic) dynamics and fixed points, formal groups, see also
[70, 101, 113, 218, 234, 261, 260, 292, 299, 316, 317].

17.7. Necklace polynomial formulas. Here are two interesting formulas from
[291].

M(αβ; n) =
∑
[i,j]=n

(i, j)M(α; i)M(β; j) (17.8)
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where (i, j) denotes the greatest common divisor of i and j, and [i, j] denotes their
least common multiple.

M(βr; n) =
∑ j

n
M(β; j) (17.9)

where the sum ranges over all j such that [j, r] = nr (which implies that j is a multiple
of n).

17.10. Cyclotomic identity. The so called cyclotomic identity is

1

(1− αt) =
∞∏
n=1

(
1

1− tn
)M(α;n)

(17.11)

(It is a tradition to write it precisely this way.) All three identities (17.8), (17.8),
(17.11) are identities about polynomials. As such it suffices to prove them for integer
values of the variables α, β which is (usually) done by combinatorial means. Cf e.g.
[290, 291].

There is a very elegant ‘symmetric’ generalization of the cyclotomic identity due
to Volker Strehl, [375]

∞∏
n=1

(
1

1− αtn
)M(β;n)

=
∞∏
n=1

(
1

1− βtn
)M(α;n)

(17.12)77

There are some other generalizations which will be described later in a section devoted
to generalized Witt vectors.

17.13. Motivational remarks regarding the necklace algebra functor. Now consider
power series expressed by means of necklace coordinates as in (the right hand side
of ) 17.1. Multiplying two such expression means adding their necklace coordinates.
The multiplication defined on the Witt vector ring is determined by

1

(1− αt) ∗
1

(1− βt) =
1

(1− αβt) (17.14)

Taking into account distributivity, the cyclotomic identity (17.11) and formula (17.9)
this dictates the following definition of the necklace algebra (and its ghost component
morphisms).

17.15. Definition of the necklace algebra functor. As an Abelian group the necklace
ring over a ring A is the infinite product AN of all sequences (a1, a2, a3, . . .),

ai ∈Awith component wise addition. Two such sequences are multiplied according to
the rule

(a1, a2, a3, · · · ) ∗ (b1, b2, b3, · · · ) = (c1, c2, c3, · · · )
cn =

∑
[i,j]=n

(i, j)aibj (17.16)

77 This has the flavour of a ‘reciprocity formula’ and one wonders if it relates to some other ‘reciprocity
results’ in mathematics.
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This is clearly functorial and this functor will be denoted Nr :CRing −→ CRing.
There is a functorial ghost components ring morphism u :Nr(A) −→ Gh(A) = AN

to the direct product of N copies of the ring A defined by

u(a) = (u1(a), u2(a), u3(a), · · · ), un(a) =
∑
d|n
dad (17.17)

Given a power series for which necklace coordinates exist, so that (17.1) holds, one
then has for these coordinates

w(x) = s(a) = u(c) (17.18)

in the ghost ring Gh(A) = AN (with component-wise addition and multiplication).
Necklace rings (in the sense defined above78 are a special kind of convolution rings

as defined in [403, 402, 405]. For some first investigations in the algebraic theory of
necklace rings see [404, 322].

17.19. Binomial rings. Obviously, from (17.1), necklace coordinates are hardly
compatible with the presence of torsion.

Further as

(1− tn)x = 1− xtn + x(x− 1)

2! t2n − x(x− 1)(x− 2)

3! t3n + · · · (17.20)

it seems necessary for necklace coordinates to exist over a ring A to require that
together with anx ∈ A it also contains the binomial coefficients (n!)−1x(x−1) · · · (x−
n+ 1). This leads to the idea of a binomial ring.

A (commutative unital) ring A is said to be binomial if it is torsion free (as a
Z-module) and if together with any x in it it also contains the binomial coefficients(

x

n

)
= x(x− 1)(x− 2) · · · (x− n+ 1)

n! (17.21)

These rings have made their appearance before in 1958, in the fundamental work of
Philip Hall on the theory of nilpotent groups, [186], often referred to as the ‘Edmonton
notes.”

Obviously any Q-algebra is binomial. But there are many rings that are binomial
that are not algebras over the rationals. First and foremost the ring of integers Z and
certain rings of functions with values in the integers (under pointwise addition and
multiplication), notably polynomials.

17.22. Free binomial rings. Let X={Xi : i ∈ I} be a set (of indeterminates). By
definition IVal[X] is the ring of all polynomials with rational coefficients that take
integer values on integers; i.e. integer valued polynomials. These are also sometimes
called numerical polynomials.

78 There is another kind of object in this more or less same corner of algebra that has ‘necklace’ in its
name. Viz necklace Lie algebras, necklace Hopf algebra, necklace Lie coalgebra, see [55, 151, 170, 352].
These have little to do with the necklace approach to Witt vectors.
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Examples are the binomial coefficients polynomials(
Xi
n

)
= Xi(Xi − 1)(Xi − 2) · · · (Xi − n+ 1)

n! (17.22)

and it is a theorem that the monomials in these form a basis of IVal[X] over the
integers (as an Abelian group), see [45], §45, p. 240ff.

These are indeed the free binomial rings in the technical sense that the functor
IVal : Set −→ BinRing (where BinRing stands for the sub category of binomial
rings in CRing) is left adjoint to the forgetful functor the other way, see [134], p. 168,
proposition 2:

BinRing(IVal[X], A) ∼= Set(X,A) (17.23)

A monograph on integer valued polynomials is [80].79

Other examples of binomial rings are the p-adic integers, the profinite completion
Ẑ of the integers and localizations of the integers, and a special kind of λ-rings.

17.24. Binomial rings vs λ-rings. Let A be a torsion free ring such that xp ≡ x

mod p for all prime numbers p. Then, taking ϕn = id for all n the conditions of
the Wilkerson theorem 16.42 are satisfied and so there is a λ-ring structure on A for
which all the Adams operations are the identity. For this λ-ring structure

λn(x) =
(
x

n

)
, λt(x) = (1+ t)x, σt(x) = (1− t)−x (17.25)

and thus A is a binomial ring. To see (17.25) simply calculate the determinant of
the matrix Mx = (mi,j), mi,j = x for i ≥ j, mi,i+1 = i, mi,j = 0 for j ≥ i + 2, see
(16.41). Actually one can do a little better and prove that a λ-ring for which all the
Adams operations are equal to the identity is automatically torsion free, see [134],
section 5.

Inversely let A be a binomial ring then taking the (tentative) exterior product
operations to be the binomial coefficients one gets a ring with exterior products with
associated Adams operations that are all the identity and hence a λ-ring structure.

17.26. Frobenius and Verschiebung on necklace rings. From the above it is clear that
for binomial rings necklace coordinates always exist and that the necklace ring over
a binomial ring is isomorphic (functorially) to the ring of Witt vectors over that ring.

Using this isomorphism one can of course transfer the Frobenius and Verschiebung
operations to necklace rings. Actually these are always defined. Here are the explicit
formulas.

For c = (c1, c2, c3, · · · ) ∈ Nr(A), frc = (b1, b2, b3, · · · )
bn =

∑
[j,r]=nr

n−1jcj Vrc = (0, 0, · · · , 0, c1︸ ︷︷ ︸
r

, 0, 0, · · · , 0, c2︸ ︷︷ ︸
r

, · · · ) (17.27)

79 As far as I know this is also the only monograph on the topic.
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and one easily proves the usual formulas; either directly or via the ghost components
or via …, such as

VrVs = Vrs, frfs = frs, frVr = [r], frVs = Vsfr if (r, s) = 1 (17.28)

17.29. Witt vectors vs necklaces in general. LetA be a torsion free ring.80 Consider
the mapping

ψA : Nr(A) −→ �(A), (c1, c2, c3, · · · ) �→
∞∏
n=1

(1− tn)−cn (17.30)

This is by the very definition of addition and multiplication on Nr(A) a morphism of
rings and it is compatible with the Frobenius and Verschiebung morphims on the two
sides.

WhenA is a binomial ring it is an isomorphism. WhenA is not binomial this is not
the case. However, it is an isomorphism forAQ = A⊗Q and it is (of course) dead easy
to describe the subring ofNr(AQ)which corresponds to the subring�(A) ⊂ �(AQ).

For each α ∈ A let M(α) be the necklace vector

M(α) = (M(α; 1),M(α; 2),M(α; 3), · · · ) ∈ Nr(AQ) (17.31)

Then by the cyclotomic identity and the definition of the Verschiebung operations

ψAQ(M(α)) = (1− αt)−1, ψAQ(VrM(α)) = (1− αtr)−1 (17.32)

and it follows that ψAQ induces an isomorphism{ ∞∑
r=1

VrM(αr) : αi ∈ A
}

ψAQ−−→ �(A) ⊂ �(AQ) (17.33)

By the left half of (17.32) it is clear that the necklace vectors M(α) are the analogs
of Teichmüller representatives.

For a binomial ring, like the integers, it follows from (17.31)–(17.33) that each
necklace vector can be written uniquely as an infinite sum

∞∑
r=1

VrM(αr), M(αr) = (M(αr; 1),M(αr; 2),M(αr; 3), · · · ) ∈ Nr(A) (17.34)

17.35. Modified necklace rings. The description (17.33) of the ring of Witt vectors
in terms of necklace vectors is not very satisfactory or elegant. One can in fact do a

80 As far as I know no investigations have been carried out on the necklace ring over A when A is
not torsion free, for instance when A is a finite field. Yet it is in that setting that something interesting
may happen that is different from what happens in the case of the Witt vectors. Also the analogue of the
p-typification endomorphism defined by the Frobenius and Verschiebung operations has not been investi-
gated for necklace rings.
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good deal better using modified necklace polynomials, [316]. In loc. cit. Young-Tak
Oh defines modified necklace polynomials over a λ-ring A which explicitly involve
the Adams operations as follows

M(r; n) = n−1
∑
d|n

μ(d )�d(rn/d) (17.36)

He also introduces much related81 multivariable versions of the necklace polynomials

M(X; n) = n−1
∑
d|n

μ(d )pd(X) (17.37)

where the pd’s are the power sums in theX’s. These polynomials satisfy very similar
properties to (17.7) and (17.8) and lead to a definition of necklace rings for λ-rings
which are isomorphic to the rings of Witt vectors.

It would be very nice if there were combinatorial interpretations of these modified
necklace polynomials.

17.38. Adjoints of the inclusion BinRing ⊂ CRing. Now consider the inclusion of
the binomial rings into the category of rings. This inclusion functor has both a left
adjoint (free objects), BinU , and a right adjoint (cofree objects), BinU , characterized
and defined by the functorial properties

BinRing(BinU(A), B) ∼= CRing(A,B),BinRing(B, BinU(A)) ∼= CRing(B,A)

for binomial rings B and rings A.

The construction ofBinU(A) is much like IVal[X] compared toZ[X]. ForBinU(A)
take�(A) and take the subring of all elements on which all the Frobenius operations
are the identity. For more details and proofs see [134].

17.39. The functors BinW. The sum comultiplication μs and the product comul-
tiplication μp on Z[h] that define the ring valued functor of the big Witt vectors,
extend uniquely to IVal[h1, h2, h3, · · · ] and IVal[h1, h2, h3, · · · , hn] to define cor-
ing objects and hence ring-valued sub functors of the Witt vectors and the truncated
Witt vectors. These would seem to merit some investigation. Even the simplest one
IVal[h1] already has thought provoking properties, see [45], p. 241ff.

17.40. Carryless Witt vectors. Like the real numbers in decimal notation the Witt
vectors, when added or multiplied, involve ‘carry-overs.’ The necklace approach to
them can be used to describe a carry-less version, [291]. The price, however, is high,
too high in my opinion, in that Witt vectors in this approach are seen as equivalence
classes rather than single objects.

81 This again involves the splitting principle technique/philosophy.
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17.41. To ponder and muse about. Anice theory of necklace rings as in [316] works
precisely for λ-rings, i.e. the very objects which are coalgebras for the main functor
involved, the one of the Witt vectors. There is something circular about this; almost
incestuous, of much the same flavour as one often meets in various parts of category
theory. To me this is something that needs to be pondered and mulled over a bit.

17.42. Apology. Within the published literature on necklace algebras one finds the
notion of what are called aperiodic rings. The formulas involved are, in my opinion,
essentially empty given the necklace formulas and, better, Witt vector formulas. So
in this chapter 1 will not discuss these aperiodic rings.

17.43. A selection of references on necklaces and necklace algebras is [21, 22,
55, 70, 115, 120, 144, 145, 174, 260, 261, 291, 294, 303, 314, 315, 316, 322, 329, 399,
401, 404].

18. Symm vs ⊕
n

R(Sn)

That symmetric functions and representations of the symmetric groups represen-
tations of the general linear groups have much to do with one another has been
known since the early days of the previous century (Alfred Young, Issai Schur,
Georg F Frobenius, . . .). The realization that these things become more elegant and
better understandable from the Hopf algebra point of view is of a more recent date,
[269, 268, 239, 425]. Here, mostly, the latter approach will be outlined. For more
details see [199], Chapter 4. First, however, here is a streamlined version of what might
be called classical Schur-Frobenius theory as presented in [281], pages 112–114.

18.1. The ringR(S). Let Sn be the group of permutations on n letters, usually taken
to be {1, 2, . . . , n}. For each n let R(Sn) be the free Abelian (Grothendieck) group
spanned by the irreducible representations of the symmetric group Sn; or, what is the
same, the Grothendieck group of isomorphism classes of (complex) representations
of Sn, or, what is again the same, the free Abelian group with a basis the irreducible
characters of Sn. An element from R(Sn) that comes from an actual representation
will be called real (as opposed to virtual (not as opposed to complex)). These are the
ones that are nonnegative integral sums of irreducible representation. Other elements
of R(Sn) are sometimes referred to as virtual representations.

As an Abelian group R(S) is the direct sum of all these groups of representations:

R(S) = ∞⊕
n=0

R(Sn) (18.2)

where, by decree, R(S0) = Z. A product is defined on R(S) as follows. Take a
representation ρ of Sp and a representation σ of Sq. Taking the (outer) tensor product
gives a representation ρ ⊗ σ of Sp × Sq on the tensor product of the representation
spaces of ρ and σ. Now consider Sp × Sq as the subgroup of Sn = Sp+q of those
permutations that take the set of the first p elements into itself and that take the set
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of the last q elements into itself. Now induce the representation ρ ⊗ σ up to Sn.
Further take 1 ∈ Z = R(S0) to be the unit element. This defines an associative and
commutative multiplication on R(S) that makes it into a graded ring. As a rule this
outer product of two irreducible representations is not irreducible and determining
the multiplicities of the irreducible representations that occur in it is and always has
been a major part of the representation theory of the symmetric groups (Littlewood-
Richardson rule82).

18.3. Scalar product.83 If f , g are functions on a finite groupG their scalar product
is defined by

〈f, g〉G = 1

#G

∑
x∈G

f(x)g(x−1) (18.4)

This scalar product is used to define a scalar product on all of R(S) by

〈f, g〉 =
∑
ṅ≥0

〈fn, gn〉Sn (18.5)

where f = ∑
fn, g = ∑

gn ∈ R(S) (and 〈1, 1〉 = 1 for 1 ∈ R0(S) = Z).

18.6. Characteristic map. Let w ∈ Sn be a permutation on n letters. It decomposes
as a product of disjoint cycles and the lengths of these cycle define a partition λ(w)
of n called the cycles type of w. Define a mapping

ψ : Sn −→ Symmn, w �→ pλ(w) (18.7)

where pλ(w) is the power sum monomial, see (9.61), defined by the cycle type of w.
The next step is the definition of a morphism of Abelian groups called the characteris-
tic map

ch : R(S ) −→ SymmC = Symm⊗Z C (18.8)

as follows. If f is a (virtual) character of Sn

ch(f ) = 〈f,ψ〉Sn =
1

n!
∑
w∈Sn

f(w)ψ(w−1)

= 1

n!
∑
w∈Sn

f(w)ψ(w) =
∑

wt(λ)=n
z−1
λ fλpλ (18.9)84

where fλ is the value of f on the cycle class λ and zλ is the number from (9.62) that
gives the scalar product of the power sum monomials with themselves and where it

82 [230], theorem 2.8.13, p. 93.
83 This inner product is sometimes called ‘Hall inner product.’
84 Where for the second expression in (18.9) definition (18.4) is extended a bit in that g has its values in
Symm.
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is used that the cycle class of w ∈ Sn is the same as that of w−1. (Recall that f as a
character has the same value on each element of a conjugacy class). It follows that,
using also 〈pλ, pμ〉 = zλδλ,μ,

〈ch(f ), ch(g)〉 =
∑

wt(λ)=n
z−1
λ fλgλ = 〈f, g〉Sn (18.10)

and hence that ch is an isometry. The basic theorem is now that

18.11. Theorem. The characteristic map is (induces) an isometric isomorphism from
R(S) onto Symm.

There are a certain number of things to prove. But this is not a text on representation
theory, let alone a text on the representation theory of the symmetric groups, that
vast and fascinating subject; so I will restrict myself to a brief sketch. First, ch is
multiplicative. This is handled by Frobenius reciprocity (which will also turn up later
in the Hopf algebra approach).

Next one shows that the identity character ηn, i.e. the character of the trivial rep-
resentation of Sn corresponds under ch to the complete symmetric function hn. (The
sign character corresponds to the elementary symmetric function en.)

Further for each partition λ of n define

χλ = det
(
ηλi−i+j

)
1≤i,j≤n ∈ R(Sn) (18.12)

These are (possibly virtual) characters of Sn. Their images under ch are the Schur
functions and so 〈χκ, χλ〉= δκ,λ and as ch is an isometry they are up to sign irreducible
characters. As the number of conjugacy classes of Sn is equal to the number of parti-
tions of n they must form a basis for R(Sn) and so ch indeed induces an isomorphism
of R(Sn) onto Symm.

It remains to verify that the χλ are in fact real characters (as opposed to virtual)
which is done by checking their value on the trivial permutations.

18.13. Enter Hopf algebras. The topologist knows Symm asH∗(BU;Z), the coho-
mology of the classifying space BU of the unitary group. And he remembers that this
is a Hopf algebra. So wouldn’t it be nice if R(S ) were a Hopf algebra too and if ch
were an isomorphism of Hopf algebras. This is indeed the case. The first to notice that
R(S) is a Hopf algebra would appear to have been Burroughs, [79]. It was, however,
Arunas Liulevicius, [269, 268], who first systematically exploited this point of view.
To quote a bit more from the second of his two papers: “The aim of this paper is to
present a ridiculously simple proof of a theorem on representations rings of the sym-
metric groups which concisely presents theorems of Frobenius, Atiyah, and Knutson”
(and Schur in my view of things).

Whether this approach is really simpler than the very streamlined presentation of
Macdonald outlined above is debatable. A Hopf algebra is a heavy structure. But it
certainly brings in new and more functorial and universal points of view, which are,
I believe, important.
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18.14. The Hopf algebra structure onR(S). For a compositionα = [a1, a2, · · · , am]
of weight n the corresponding Young subgroup is Sα = Sa1 × Sa2 × · · · × Sam . It
consists of all permutations that map all the sets of letters {1, · · · a1}, {a1+1, · · · , a1+
a2}, · · · {a1+· · · am−1+1, · · · , a1+· · ·+am = n} to themselves. Define a coproduct
structure by

μS(ρ) = 1⊗ ρ +
n−1∑
i=1

ResSnSi×Sn−i (ρ)+ ρ ⊗ 1 ∈ n⊕
i=0
R(Si)⊗ R(Sn−i) (18.15)

and a counit (augmentation)

εS : RS −→ Z, ε =
{

id on R(S0) = Z

0 on R(Sn), n ≥ 1
(18.16)

The basic fact is now that together with the ring structure already defined and used this
makesR(S) a Hopf algebra. The harder part of this is to prove the compatibility of the
multiplication with the comultiplication. This is taken care of by the Mackey double
coset theorem which describes what happens when a representation is first induced
up from a subgroup and then restricted to another subgroup, see [199], Chapt. 4 for
details. Actually, it is the projection formula which does the job (together with a
description of double cosets of Young subgroups of the type Si × Sn−i ⊂ Sn. This
‘induction restriction projection formula’ is the following:85

18.17. Theorem. Projection formula, Frobenius axiom. LetG be a finite group with
subgroup H , and let V be an H-module and W a G-module, then

IndGH
(
V ⊗ ResGH(W )

) = IndGH(V )⊗W (18.18)

18.19. Hopf algebras continue their insidious work. For an account of how to use the
Hopf algebraic structure so far described in the representation theory of the symmetric
groups, see the two papers of Liulevicius already quoted. Here I will now continue to
describe some more Hopf algebraic structure, culminating in the Zelevinsky structure
theorem. This involves further fairly heavy machinery, and certainly does not give
the easiest way to get at the representation theory of the symmetric groups. But this
way is, in my view, quite important.

As to the various bits of structure on R(S ) the situation is now as follows:

(i) R(S ) is a connected graded Z module.
(ii) There is a preferred basis consisting of 1 and the irreducible representations

with a corresponding inner product for which this basis is orthonormal.
(iii) Multiplication is positive (because taking the outer tensor product of true

(real) representations and than inducing up gives a true representation).

85 Caveat: this is not the same instance of a projection formula as occurred i theorem 13.48.
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(iv) Comultiplication is positive (because restricting a true representation yields
true representations.

(v) Comultiplication is multiplication preserving (or, equivalently, the multipli-
cation is comultiplication preserving). This is an immediate consequence of
the Mackey double coset theorem combined with the description of double
cosets of Young subgroups.

(vi) Comultiplication and multiplication are dual to each other with respect to
the inner product. This follows from Frobenius reciprocity in the form that
induction is adjoint to restriction (both on the left and on the right) combined
with the fact that the scalar product of two characters on a group counts the
number of irreducible representations that they have in common.

(vii) The counit morphism is a morphism of algebras.
(viii) There is just one element of the preferred basis that is primitive. This is the

unique irreducible representation of S1. Indeed for all n ≥ 2 a real represen-
tation of Sn must restrict to some real (as opposed to virtual) representation
of S1 × Sn−1.

18.20. PSH algebras. The acronym ‘PSH’ stands for ‘positive selfadjoint Hopf.’
This implies sort of that there is also a positive definite inner product and that we are
working over something like the integers or the reals, where positive makes sense.
What is not mentioned is that these Hopf algebras are also supposed to be connected
and graded.As will be seen the assumptions ‘positive, selfadjoint, graded’are all three
very strong; so strong that these algebras can actually be classified. Indeed they are
all products of one example86 and that example is the Hopf algebra of the symmetric
functions. The notion is due to Zelevinsky, [425], and the classification theorem is his.

The precise definition is as follows. A PSH algebra is a connected graded Hopf
algebra over the integers, so that

H = ⊕
n
Hn, H0 = Z, rk(Hn) <∞ (18.21)

which is free as an Abelian group and which comes with a given, ‘preferred’ homo-
geneous basis {ωi : i ∈ I} = B. Define an inner product 〈 , 〉 on H by declaring this
basis to be orthonormal. Then the further requirements are:

Selfadjointness: 〈xy, z〉 = 〈x⊗ y,μ(z)〉, 〈ε(x), a〉 = 〈x, e(a)〉,
x, y, z ∈ H, a ∈ Z (18.22)

Positivity: let ωiωj =
∑
r

ari,jωr, μ(ωr) =
∑
i,j

bi,jr ωi ⊗ ωj,

then ari,j, b
i,j
r ≥ 0 (18.23)

86 More precisely they are all products of that one example, but the factors are possibly degree shifted.
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The Zelevinsky classification theorem now says that a PSH algebra with just one
primitive among the preferred basis elements is isomorphic to the Hopf algebra of
the symmetric functions (as a Hopf algebra). The proof proceeds by the inductive
construction in any PSH algebra with just one primitive preferred basis element p of
a series of elements that behave just like the hn, en, pn of symmetric function theory.
The key observation here is that the powers of p must involve all preferred basis
elements. In the representations theoretic case R(S) this corresponds to the fact that
by definition of the outer multiplication pn is the regular representation of Sn. Here
p is the identity representation of S1. For the details of the proof see [425], [199]
Chapter 4.87

18.24. Bernstein morphism.88 The final step of the proof involves a construction
that I think of particular interest, that is not yet well understood, and that deserves
more study.

Let H be any graded commutative and associative Hopf algebra. Let

μn(x) =
∑
i

xi,1 ⊗ xi,2 ⊗ · · · ⊗ xi,n (18.25)

be the n-fold comultiplication written as a sum of tensor products of homogeneous
components. Now define

βn : H −→ H[ξ1, ξ2, . . .] = H ⊗ Z[ξ1, ξ2, . . .]
by

βn(x) =
∑
i

xi,1xi,2 · · · xi,nξdeg(xi,1)
1 ξ

deg(xi,2)
2 · · · ξdeg(xi,n)

n (18.26)

Because H is coassociative and cocommutative this is symmetric in the variables
ξ1, · · · , ξn so that there is an induced algebra morphism89

βn : H −→ H ⊗ Z[h1, . . . , hn]
and because H is graded this stabilizes in n giving the Bernstein morphism90

β : H −→ H ⊗ Symm (18.27)

In the case that H is Symm this turns out to be the product comultiplication mor-
phism!. The final step of the proof of the Zelevinsky classification theorem is now to

87 The proof as written down in loc. cit. is just my own attempt to write down Zelevinsky’s proof in a
way that I could understand it.

88 The construction is due to Joseph N Bernstein.
89 The fact that this is a morphism of algebras uses commutativity; otherwise multiplication is not an

algebra morphism.
90 For a general graded commutative Hopf algebra the Bernstein morphism defines a coaction of Symm

on H and then by duality also an action of Symm on the graded dual of H .
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compose the Bernstein morphism with a morphism H −→ Z that takes the induc-
tively constructed analogues of the hn all to one. In the case H = Symm this is the
counit morphism of the product comultiplication morphism μP .91

As promised in 11.39 above, there now follow a few remarks on (0, 1)-matrices and
their links with Witt vectors and representation theory. This requires some preparation.

18.28. Majorization ordering. Let α = (a1, a2, · · · , an) and β = (b1, b2, · · · , bn)
be two vectors of non-negative real numbers of the same l1-norm, i.e. a1+a2+· · ·+
an = b1+b2+· · ·+bn. Denote byα = (a1, a2, · · · , an) a reordering (rearrangement,
permutation) of α such that a1 ≥ a2 ≥ · · · ≥ an.

The majorization ordering is now defined by

α ≥maj β⇔
r∑
i=1

ai ≥
r∑
i=1

bi, r = 1, 2, · · · , n (18.29)

This ordering occurs is many parts of mathematics under many different names:
majority ordering, dominance ordering, natural ordering, specialization ordering,
Snapper ordering, Ehresmann ordering, mixing ordering. Parts of mathematics where
it plays an important role include: families of algebraic geometric vectorbundles, fam-
ilies of representations, families of nilpotent matrices, Grassmann manifolds, control
theory, representation theory, thermodynamics, convex function theory (Schur convex
functions92), doubly stochastic matrices, (0, 1) matrices, inequality theory (Muirhead
inequalities, a far reaching generalization of the geometric mean-arithmetic mean
inequality), representation theory, . . .. See [3]. Many of these uses of the majoriza-
tion ordering are strongly related, see [202].

18.30. Conjugate partition. Let α = [a1, a2, · · · , am] be a partition of n. Then the
conjugate partition αconj = [

a′1, a′2, · · · , a′m′
]

is defined by

a′i = #{j : aj ≥ i} (18.31)

So, for instance, [4, 4, 3, 2, 1, 1, 1]conj = [7, 4, 3, 2]. (If the partition is displayed
as a diagram (either in the French or Anglo-Saxon manner), the conjugate partition
looks at columns instead of rows.)

There are (at least) three93 applications of the majorization ordering in the repre-
sentation theory of the symmetric groups. In addition there is the Gale-Ryser theorem
which is of immediate relvance here as it deals with the existence of (0, 1)-matrices

91 Note that without the characteristic map isomorphism or the Zelevinsky theorem itself, it is not yet
clear that Symm is PSH (but R(S) is). The trouble is positivity; specifically the fact that the product of
two Schur symmetric functions is a nonnegative linear combination of Schur functions. This seems a fact
that is not so easy to establish directly (without going to representation theory) (and, hence, is a bit of a
blemish on symmetric function theory).

92 Same Schur; totally different topic.
93 Another (related one), due to Kraft and de Concini, is too far from the present topic to discuss.
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and thus has things to say about the second comultiplication on Symm (and hence
the multiplication of Witt vectors.

18.32. Gale-Ryser theorem. Let α and β be two partitions then there is a
(0, 1)−matrix with row sum α and column sum β if and only if αconj ≥maj β.

Of course a similar theorem holds for compositions instead of partitions; this
amounts to taking permutations of columns and permutations of rows.

For example take the (0, 1)−matrix

M =
⎛
⎝ 0 1 0 0 1

1 0 1 0 1
0 1 0 1 0

⎞
⎠

This one has as row sum the composition [2, 3, 2] with associated partition
[3, 2, 2]; and the column sum is the composition [1, 2, 1, 1, 2]with associated partition
[2, 2, 1, 1, 1]. Also [3, 2, 2]conj = [3, 3, 1]. And, indeed [3, 3, 1] ≥maj [2, 2, 1, 1, 1].

Of the three theorems in the representation theory of the symmetric groups that
involve the majorization ordering the one closest to the present concerns (Witt vectors)
is the Snapper Liebler-Vitale Lam theorem.

18.33. Snapper Liebler-Vitale Lam theorem. Let α and β be partitions and let Sα
be the Young subgroup defined by α. Then ρβ, the irreducible representation corre-
sponding to β, occurs in IndSnSα(I) if and only if α ≤maj β.

Here I stands for the trivial representation of Sα. For a proof see [203] and/or the
references therein.

For completeness sake and possible future applications, below there is the Ruch-
Schönhofer theorem. Under the isomorphism between Symm and R(S) the trivial
representation of Sn corresponds to the complete symmetric function hn and the sign
representation ASn corresponds to the elementary symmetric function en. So this
theorem could certainly be relevant.

18.34. Ruch-Schönhofer theorem. The representations IndSnSα
(
ISα

)
and IndSnSβ

(
ASβ

)
have an irreducible representation in common (which is the same as saying that their
inner product is nonzero), if and only if α ≤maj β.

18.35. Outer plethysm and inner plethysm. In section 16.67 the composition opera-
tor ‘outer plethysm’on Symmmade its appearance. But Symm is isomorphic toR(S )
as Hopf algebras (with extra product multiplication and extra coproduct multiplica-
tion with counit). Thus there is an outer plethysm operation on R(S). The problem is
to describe this operation in representation theoretic terms. This has been called the
‘outer plethysm problem.’

The other way: each of the summands of R(S )= ∞⊕
n=0

R(Sn) is a λ−ring in its own

right, giving rise to plethym operations called inner plethysm, and the ‘inner plethysm
problem’ is to describe these in symmetric function terms when transferred to Symm.
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18.36. Outer plethysm problem. Outer plethysm gives in particular a composition
of ISn , the trivial representation of Sn with any σ ∈ R(Sk). The result is denoted
hn(α) in [239], p. 135. The trivial (or identity) representation of Sn corresponds to
hn ∈ Symm, hence the notation.

In loc. cit., p. 135 Donald Ivar Knutson guesses94 the following representation
theoretic description of hn(α). Given a representation α of Sk on V first construct
the induced representation of the wreath product Sn[Sk] on V⊗n, then induce up the
representation obtained to Snk using the natural inclusion Sn[Sk] ⊂ Snk.

This ‘guess’ has since turned out to be correct, see [221, 313, 394].

18.37. Inner plethysm problem. The λ−ring structure on R(Sn) gives of course rise
to Frobenius operators which via the isomorphism give rise to (degree preserving)
Adams-Frobenius type operators on the homogeneous component of weight (degree)
n of Symm. Using the inner product there are corresponding adjoint operators. These
are described nicely in section 3 of [349].

Besides the five references just quoted here is a selection of further references
on plethysm: [8, 43, 42, 59, 66, 82, 267, 265, 266, 282, 306, 312, 313, 341, 351, 385,
394, 395, 429].

19. Burnside rings

Let G be a finite group. The Burnside ring B(G) is one of the fundamental (repre-
sentation like) rings attached to G. It is the Grothendieck ring of finite G-sets with
sum and product inducted by disjoint union and Cartesian product respectively. Or,
equivalently, the ring of permutation representations.

So as a group B(G) is a finitely generated Abelian group with as (canonical) basis
the transitive G-sets (orbits). According to some the Burnside ring was introduced
by Andreas Dress in [117], where he proved a somewhat unexpected kind of result,
viz. that a finite group is solvable if and only if the spectrum of its Burnside ring is
Zariski connected, i.e. if and only if 0 and 1 are the only idempotents in B(G).

Others attribute the introduction of the concept to Louis Solomon [372].
By now there is a substantial literature on Burnside rings: the ZMath database lists

at the moment95 305 publications with “Burnside ring” in title or abstract. For a fair
selection see the bibliography of [61].

“[The Burnside ring] is in many ways the universal object to consider when looking
at the category of G-sets. It can be viewed an analogue of the ring Z of integers for
this category.”

“The ring B(G) is also functorial with respect to G and subgroups of G and this
leads to the Mackey functor or Green functor point of view. . . .The Burnside Mackey
functor is a typical example of projective Mackey functor. It is also a universal object
in the category of Green functors.”

94 His word.
95 19 April 2008.
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These are two quotes from the introduction of [61]. So if the Burnside ring of an
arbitrary finite group is already as nice as all that, what about the Burnside ring of a
really nice group like the integers. That one must then be super-nice. And it is. It turns
out to be the ring of Witt vectors of the integers, W(Z), a discovery due to Andreas
Dress and Christian Siebeneicher, [115, 120].96

19.1. G-sets. Let G be a group. AG-set is a set X together with an action (on the
left) of G on it; that is a mapping G × X −→ X, (g, x) �→ gx such that g(h(x))=
(gh)(x), g, h ∈ G, x ∈ X and e(x)= x where e is the identity element of G. A mor-
phism of G-sets is a mapping f : X −→ Y such that f(gx)= g(f(x)). This defines
the category G-Set of G-sets.

For x ∈ X the subgroup

Gx={g ∈ G : gx = x} (19.2)

is the stabilizer of x ∈ X and

Gx = {gx : g ∈ G} (19.3)

is the orbit of x (or through x). If H is a subgroup multiplication on the left induces
a G-set structure on the set of left cosets G/H which has a single orbit (a transitive
G-set). The orbit Gx of an element is isomorphic as a G-set to G/Gx.

AG-set X gives rise to a permutation representation ρ(X) over any ring of which
the underlying module is the free module with basisX and with the action ofG given
by the the permutations of basis elements determined by the G-set structure of X.

19.4. Induction and restriction for G-sets. Let H be a subgroup of a group G.
Then if X is a G-set retricting the action to H gives an H-set, defining a functor
ResGH: G− Set −→ H − Set.

As is to be expected there is also a functor the other way called induction. Let Y
be an H-set. Consider the set G× Y with the equivalence relation determined by

(g, y) ∼ (gh−1, hy), g ∈ G,h ∈ H, y ∈ Y (19.5)

The set of equivalence classes is suggestively denotedG×H Y . (Note that (g, y) �→(
gh−1, hy

)
defines an action of H on G× Y and that the equivalence classes are the

orbits for this action.) Multiplication on the left
(
g′, (g, y)

) �→ (g′g, y) induces an
action of G on G×H Y giving a G-set denoted IndGH(Y ). It is obvious how to make
this into a functor IndGH: H −Set −→ G−Set. Induction is left adjoint to restriction
(but not right adjoint in general). There is also a product formula (projection formula,
Frobenius identity)

X× IndGH(Y ) ∼= IndGH
(
ResGH(X)× Y

)
(19.6)

For more details on this and some more related material see e.g. [409] p. 811, [61]
pp. 744–745.

96 This also of course, given the ‘universality remark’just quoted, provides a seventh universality property
of the Witt vectros. Working out what this one really means is still an open matter.
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Restriction and induction are compatible with the notions of the same name for
representations; i.e. they are compatible with the mapping ρ that assigns to a G-set
its associated permutation representation.

19.7. Almost finite G-sets. Given a group G its profinite completion Ĝ is its com-
pletion for the topology of normal subgroups of finite index. Or, equivalently it is the
projective limit

Ĝ = lim←−G/N, N runs over the normal subgroups of finite index (19.8)

AG-set X for a group G is almost finite if for each x ∈ X the stabilizer subgroup
Gx is a subgroup of finite index (so that all orbits are finite) and such that the subsets
of invariants

XU = {x ∈ X : Gx ⊆ U} (19.9)

are finite for every subgroup of finite index. (So that there are only finitely many
orbits of isomorphism type G/U for each such U.)

It does not matter whether one works in this with the group G or its profinite
completion. In the case of a profinite group one works with G-spaces. These are
Hausdorff spaces with a continuous action97 of G. See [115], p. 5. Most papers
that deal with the present subject (Burnside rings and Witt-Burnside rings) take the
profinite point of view.

For a subgroup of finite index H ⊂ G restriction takes almost finite G-sets into
almost finiteH-sets and induction takes almost finiteH-sets into almost finiteG-sets.

Finite disjoint unions and finite Cartesian products of almost finiteG-sets are almost
finite.

19.10. Burnside theorem. [78] Chapter XII theorem 1. Let G be a finite group and
X and Y finite G-sets. Then the following are equivalent

(i) The G-sets X and Y are isomorphic

(ii) For any subgroup H of G the sets of invariants XH and YH have the same
cardinality.

This still holds for almost finite G-sets where one only need consider subgroups
of finite index.

19.11. Burnside ring. The (completed) Burnside ring B̂(G) of a group is now defined
as the Grothendieck ring of the category of almost finite G-sets.

It can also be defined as the projective limit of the usual Burnside rings (of finite
groups) B(G/N) where N ranges over all normal subgroups (resp. closed normal
subgroups) of finite index.98

97 Here G is given the topology defined by the normal subgroups of finite index (which define the
profinite structure) and the set X is given the discrete topology.

98 This explains the notation B̂ and the terminology ‘completed.’
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19.12. Almost finite cyclic sets. In the case of the group of integers all this specializes
as follows. A cyclic set is simply a set with a left action of the group of integers on
it. That is it is a set with a specified bijection. A cyclic set is almost finite if every
orbit is of finite length and if for every n ∈ N there are only finitely many orbits of
length n. Obviously (finite) disjoint unions and (finite) Cartesian products of almost
finite cyclic sets are again almost finite and so there is the Grothendieck ring B̂(Z) of
almost finite cyclic sets.

If B(Z) denotes the Grothendieck ring of finite cyclic sets, B̂(Z) is the com-
pletion of B(Z) under a suitable natural topology on B(Z), see [120], p. 3 and
below.

19.13. A remarkable commutative diagram. TheW(Z), B̂(Z),�(Z), Nr(Z) isomor-
phisms. The ring B̂(Z) fits in the following commutative diagram.

ZN = Gh(Z) ZN = Gh(Z) tZ[[t]]

W(Z)
T

itp

id

SyP

Nr(Z) �( B(Z))

B(Z)

�

�(Z)

L(�z)

syP

s

coeff

w t
dt 

logd

(19.14)

All the horizontal arrows in this diagram are isomorphisms (of rings with oper-
ators) and so is the morphism denoted ‘itp’ (which stands for ‘interpretation’). The
morphismsw, ϕ̂, s, t d

dt
log are ghost component morphisms and injective. Finally, ϕZ

and �(ϕZ) are surjections and SyP is an injection. Those morphisms which have not
already occurred in earlier sections, such as w, s and the logarithmic derivative, will
be elucidated below of course.

One of the more remarkable aspects of this diagram is the fact that the composite
syP ◦ T precisely embodies the very nasty coordinate change from Witt vector coor-
dinates to power series coordinates encoded by the power series identity∏

n

1

(1− xntn) = 1+ a1t + a2t
2 + · · · (19.15)

I consider this a main contribution from [120]. (The necklace coordinates also fit in
as suggested by the diagram.)
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19.16. The ghost component morphism ϕ̂ : B̂(Z) −→ Gh(Z) = ZN. Given an
almost finite cyclic setX and an element n ∈ N, consider the subgroup of finite index
nZ ⊆ Z and define

ϕnZ(X) = #{x ∈ X : x is invariant under nZ} (19.17)

This induces ring morphisms B̂(Z)−→ Z and these combine to define the ghost
component ring morphism ϕ̂ : B̂−→Gh(Z). The morphism ϕ̂ is injective because of
the (extension to almost finite sets of the) Burnside theorem 19.10.

Take the restrictions of the ϕnZ to B(Z) and give B(Z) the coarsest topology for
which all these restrictions are continuous (with Z discrete). Then B̂(Z) is the com-
pletion of B(Z) for this topology.

The morphism ϕ̂ is injective; it is not surjective; an element y ∈Gh(Z) is in its
image if and only if∑

d|n
μ(d−1n)y(d) ≡ 0 mod n (19.18)

for all n ∈ N. The same condition turned up in connection with the necklace ring in
section 17 above ([113, 118, 126], [391] pp. 11–12).

19.19. The isomorphism itp: Nr(Z)−→ B̂(Z). The only transitive almost finite
cyclic sets are the coset spaces Cn = Z/nZ. So every element of B̂(Z) is a (possibly
infinite) sum∑

n

bnCn, bn ∈Z (19.20)

As a groupNr(Z) = ZN with coordinate wise addition. So assigning to an element
β = (b1, b2, b3, . . .) ∈ ZN the formal difference of almost finite cyclic sets∑

bn>0

bnCn −
∑
bn<0

(−bn)Cn

defines an isomorphism ‘itp’ of Abelian groups Nr(Z) −→ B̂(Z). It remains to see
how itp behaves with respect to multiplication.

Now observe99 that the product of two transitive cyclic setsCr andCs decomposes
as the sum of (r, s) copies of C[r,s]. Here (r, s) is the greatest common divisor of r and
s and [r, s] is their least common multiple. Given the definition of the multiplication
on the necklace ring, see 17.15, it follows that itp is an isomorphism of rings.

19.21. The isomorphism T : W(Z)−→ B̂(Z). This isomorphism of rings is denoted
τ in [120] and called “Teichmüller” there. This may be (indeed, is) appropriate in some
sense but is also potentially confusing in view of the Teichmüller representatives
mapping τ : A −→ W(A) in Witt vector theory.

99 It appears, see [120] p. 5, that it was this observation that lead to the investigations of Andreas Dress
and Christian Siebeneicher that culminated in [115, 120, 126].
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The definition of the isomorphism T involves induction. Let X be a Z-set. Via the
isomorphism Z −→ nZ ⊂ Z, r �→ nr it can be seen as an nZ-set. Now induce100

this one up to Z. The result is denoted indn(X). In concreto this works out as fol-
lows. Consider the product Z × X and the equivalence relation on it defined by
(z, x) ∼ (z − nu, ux), u ∈ Z. Then indn(X) is the set of equivalence classes of
this equivalence relation with the action induced by the left action of Z on itself,
(z′, (z, x)) �→ (z′ + z, x).

It readily follows that

indn(Cr) = Crn
and hence that

indn

(∑
r

brCr

)
=

∑
r

b′rCr (19.22)

where

b′r =
{
br/n if n divides r

0 otherwise
(19.23)

and hence that

ϕrZ(indn(X)) =
{
nϕr/n(X) if n divides r

0 otherwise
(19.24)

So, at the ghost component level indn behaves just like Verschiebung in the case
of the big Witt vectors.

Now letq ∈ N∪{0}. Withq(z) denote the set of mapsZ−→{1, 2, · · · , q} that factor
through some set of cosets Z / nZ. That is the continous maps Z −→ {1, 2, · · · , q}
where {1, 2, · · · , q} has the discrete topology and Z the topology of subgroups of
finite index. The action of Z is given by

(zf )(z′) = f(z′ − z) (19.25)

Note that 0(Z) = Ø. It is fairly immediate that

(qq′)(Z) = q(Z) × q′(Z), ϕnZ(q(Z)) = qn (19.26)

ϕ̂(q(Z)) = (1, q, q2, q3, . . .) = coeff (1− q)−1 (19.27)

Finally define

T : W(Z) −→ B̂(Z), (x1, x2, x3, · · · ) �→
∞∑
n=1

indn
(
x(Z)n

)
(19.28)

100 See 19.4 above.
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Then it follows from what has been noted just above that

ϕnZ(x1, x2, x3, · · · ) =
∑
d|n
dx
n/d

d (19.29)

and that
∞∏
n=1

(1− xntn)−1 =
∞∏
n=1

(1 − tn)−bn ⇔ T(x1, x2, x3, · · · ) =
∞∑
i=1

biCi (19.30)

Formula (19.29) shows that the lower left square in the diagram (19.14) is commu-
tative. Using the characterizations of the image of the ghost components morphisms
w and ϕ̂, see (9.95) and (19.20) above, and their injectivity, it follows that T is an
isomorphism.

Further (19.30) says that the composite morphism (itp)−1 ◦T exactly embodies the
coordinate transformation between Witt vector coordinates and necklace coordinates
encoded by the power series identity

∞∏
n=1

(1− xntn)−1 =
∞∏
n=1

(1− tn)−bn

19.31. Symmetric powers of G-sets. Given a G-set X its n-th symmetric power is
obtained by first taking the n-fold Cartesian product Xn with diagonal action

g(x1, x2, · · · , xn) = (gx1, gx2, · · · , gxn) (19.32)

The symmetric group Sn acts on this by permuting coordinates

σ(x1, x2, · · · , xn) = (xσ−1(1), xσ−1(2), · · · , xσ−1(n))

and this action commutes with the diagonal action ofG. So there is an induced action
of G on the set of orbits SnX. This is the n-th symmetric power of the G-set X.
Alternatively, and better, an element from SnX can be described as a multiset of
size n, i.e. a function f : X −→ N ∪ {0} such that

∑
x∈X f(x) = n. In this picture

the action is (gf )(x) = f(g−1x). The symmetric powers of almost finite G-sets are
almost finite.

It follows rather immediately from the construction that

Sn (X� Y) = �
i+j=n

SiX× SjY (19.33)

and it follows that the map

X �→
∞∑
n=1

(SnX)tn (19.34)

induces a morphism of Abelian groups

SyP : B̂(Z)−→�(B̂(Z)) (19.35)



Witt vectors. Part 1 449

Now compose this with �(ϕz) : �(B̂(Z)) −→ �(Z) to obtain a morphism of
Abelian groups

syP : B̂(Z) −→ �(Z) (19.36)

(and the commutative upper triangle of diagram (19.14)). Thus the coefficient of tn

in syP(X) is the number of invariant elements in the n-th symmetric power SnX.
It now turns out that in fact syP is an isomorphism of rings and even an isomorphism

of λ−rings. The key to that is the easy observation that

ϕz(S
nCr) =

{
1 if r divides n
0 otherwise

(19.37)

(Indeed, a function f : {0, 1, · · · , r − 1} −→ N ∪ {0} is invariant under ‘left shift
modulo r of its argument’ if and only if all its values are equal.)

Formula (19.37) serves to prove that the lower right square of diagram (19.14) is
commutative (as well as the two triangles there, that syP is an isomorphism of rings,
and that the composed morphism syP ◦ itp embodies the coordinate change encoded
by the power series identity

∞∏
n=1

(1 − tn)−bn = 1+ a1t + a2t
2 + a3t

3+ (19.38)

When combined with (19.30) this shows that the composite morphism syP ◦ T :
W(Z) −→ �(Z) precisely gives the nasty coordinate change formulas between Witt
vector coordinates and power series coordinates encoded by the power series identity

∞∏
n=1

(1 − xnt
n)−1 = 1+ a1t + a2t

2 + a3t
3 + · · ·

which I feel is a major insight from [120].

19.39. Frobenius and Verschiebung on W(Z), B̂(Z),�(Z). On all the rings in
diagram (19.14) there are Frobenius and Verschiebung operators. All have been
defined before except the ones on B̂(Z). On this Burnside ring ‘Verschiebung’ is
‘ind’ and Frobenius is restriction (followed by the identification coming from the
obvious (canonical) isomorphism of Abelian groups Z −→ nZ.

It now turns out (and is verified with no great difficulty) that all morphism indi-
cated in the diagram are compatible with the Frobenius operators and all except
SyP are compatible with Verschiebung. (SyP is most definitely not compatible with
Verschiebung.)

As a matter of fact, identifying B̂(Z) with �(Z) via syP turns SyP into the
morphism of λ-rings σt :�(Z)−→�(�(Z)) of λ-ring theory,101 see section 16
above.

101 This is one more indication that it is better to work with symmetric powers than with exterior powers.
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19.40. This concludes the treatment here of the Burnside ring of the integers (or
its profinite completion Ẑ). I have pretty much followed [120] apart from some
interspersed remarks. I hope and believe that the outline above is sufficient that the
reader can fill in all details. But if needed they can be found in loc. cit.

However, there is more to the Burnside ring story in connection with Witt vectors.
For every profinite group there is a Witt vector like functorCRing −→ CRing called
the Witt Burnside functor. Below there is the main theorem from [126] about them.
First some definitions and notation.

19.41. LetG be a profinite group. That is a projective limitG= lim←− G/N of finite

quotient group. Give G the topology defined by the collection of normal subgroups
N of finite index. AG-space is a Hausdorff spcae on whichG acts continuously from
the left. Such a G-space is almost finite if it is discrete and if for any open subgroup
U ⊂ G the number of invariants under U is finite. Set

ϕU(X)= #{x ∈ X: ux= x for all u ∈ U} (19.42)

For any open subgroup U there is the transitive almost finite (in fact finite) G-space
of left cosets G/U. Denote with osg(G) the set of all open subgroups of G and with
cosg(G) the quotient of conjugacy classes of open subgroups.

Finally let B̂(G) be the “completed Burnside ring” of G, that is the Grothen-
dieck ring of (isomorphism classes) of almost finite G-spaces with addition
induced by disjoint union and multiplication induced by the Cartesian product of
G-spaces.

19.43. Existence theorem of the Witt-Burnside functors [126]. Let G be a profinite
group. There exists a unique covariant functor WG from the category of unital com-
mutative rings to itself such that as a setWG(A) is the setAcosg(G) of all functions from
cosg(G) to A. That is all functions from osg(G) to A that are constant on conjugacy
classes of subgroups, and with WG(h): WG(A) −→ WG(B) given by composition
α �→ α ◦ h, α ∈ WG(A), such that for all open subgroups the map

ψAU : WG(A) −→ A (19.44)

defined by ∑
U⊂scjgV⊂G

ϕU(G/V )α(V )(V :U) (19.45)

is a natural transformation of functors from WG to the identity. Here the sum (9.45)
is over all V such that U is subconjugate to U (denoted U ⊂scjg V ), which
means that there is a g ∈ G such that U is a subgroup of gVg−1, the ‘index’
(V :U)= (G:U)/(G:V ), and in the sum (9.45) exactly one summand is taken for
each conjugacy class of subgroups V with U ⊂scjg V .

Moreover, WG(Z) = B̂(G) and Wz=W the functor of the big Witt vectors.

There are also Frobenius and Verschiebung like functorial endomorphisms coming
respectively from restriction and induction. The Frobenius morphism are ring
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morphisms, the Verschiebung morphism are morphisms of Abelian groups. These
morphisms have the usual kinds of properties.

Since the appearance of the foundational papers [126, 120] a number of other papers
have appeared on the topic of Witt-Burnside functors, giving refinements, further
developments, applications and interrelations, simplifications and complications; see
[73, 116, 122, 135, 156, 175, 318, 319, 315].

19.46. β-rings. It seems clear from [370] that there is no good way to define a
λ-ring structure on Burnside rings, see also [158]. There are (at least) two different
choices giving pre-λ-rings but neither is guaranteed to yield a λ-ring. Of the two the
symmetric power construction seems to work best.

Instead one needs what are called β-operations102 (power operations), first intro-
duced in [56], and β-rings. There is a β-operation for each conjugacy class of sub-
groups of the symmetric groups Sn and they are constructed by means of symmetric
powers of G-sets. Every λ-ring is a β-ring (but not vice versa).

There is some vagueness about what is precisely the right definition of a β-ring,
see, e.g. the second paragraph on page 2 of [183] and the second comment at the end
of §3 of that preprint.

However, it seems clear that the free β-ring on one generator must be the ring

B(S)= ∞⊕
n=0

B(Sn) (19.47)

This is the direct sum of the Burnside rings of the symmetric groups (withB(S0)=Z
by decree) equipped with an outer product defined completely analogously as in the
case of R(S), see section 18 above. I.e.

XY = Ind
Si+j
Si×Sj (X× Y) (19.48)

There is also a coproduct making it a Hopf algebra and the underlying ring is again
a ring of polynomials in countably many indeterminates over the integers.

The natural morphism

ρ : B(S ) −→ R(S) (19.49)

that assigns to an Sn-set the corresponding permutation representation is a surjective
(but not injective) morphism of Hopf algebras and also a morphism of λ-rings, see
[183] p. 11.

A selection of papers on β-rings is [56, 158, 183, 300, 301, 344, 397, 396, 433].

Coda.

Some people write about the Witt polynomials as mysterious polynomials that come
out of nowhere.103 To me they are so elegant and natural that they simply cry out for

102 I have tried to track down where the appellation ‘beta’comes from unsuccessfully. But it seems likely
that it is some sort of philosophical mix between the ‘B’ from Burnside and the ‘λ’ from λ-ring.

103 Also, see section 3 above, they definitely do not come out nowhere.
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deep study. This is my main reason for presenting things here as I have done above,
even though, as has been shown, they are not really needed.

Should a reader inadvertently get really interested in the Witt vector ring functors
he/she is recommended to work through the 57 exercises on the subject in [63], pp. 26
worth, just for the formulations only, mostly contributed, I have been told, by Pierre
Cartier. He/she can then continue with the exercises on Cohen rings in same volume
which also involve a fair amount of Witt vector stuff.

Appendix. The algebra of symmetric functions in infinitely many
indeterminates

In several places in the sections above there occur expressions like

∞∏
i= 1

(
1+ ξit + ξ2

i t
2 + ξ3

i t
3 + · · ·

)
(A.1)

and statements that the coefficients of each power in t in (A.1) are symmetric func-
tions in the infinity of commuting variables ξ1, ξ2, ξ3, · · · and that they are, hence,
polynomials in the elementary (or complete) symmetric functions in the infinity of
commuting indeterminates ξ1, ξ2, ξ3, . . .. The few pages in this appendix are meant
for those who feel (rightly) a bit nervous about statements like this even though the
meaning seems intuitively clear.104

A.2. Power series in infinitely many variables. Let I be any set and let {ξi : i ∈ I}
be a corresponding set of commuting indeterminates. An exponent sequence for I is
a map e : I −→N ∪ {0} of finite support. I.e. there are only finitely may i ∈ I for
which e(i) �= 0. Let E(I) be the set of all exponent sequences. For each e∈E(I)
introduce a symbol ξe. Giving I a total order, one can think of ξe as

ξe =
∏
e(i)�=0

ξ
e(i)
i (A.3)

where the product (monomial) on the right hand side is written down in the order
specified by an ordering of I.105 Two monomials, i.e. symbols, ξe are multiplied by
the rule ξeξe

′ = ξe+e′ where e+e′ is the point-wise sum (e+ e′)(i)= e(i)+e′(i). The
ring of formal power series over a base ring k is now defined as

k〈〈ξi : i ∈ I〉〉=
⎧⎨
⎩

∑
e∈E(I )

aeξ
e: ae ∈ k

⎫⎬
⎭ (A.4)

104 To my mind the matters touched upon here illustrate well issues in foundational mathematics (intu-
itionism) having to do with realized infinities vs potential infinites.

105 But this is not needed.
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Two such expressions as on the right of (A.4) are multiplied by the rule⎛
⎝ ∑
e∈E(I )

aeξ
e

⎞
⎠

⎛
⎝ ∑
e∈E(I )

beξ
e

⎞
⎠ =

⎛
⎝ ∑
e∈E(I )

ceξ
e

⎞
⎠, ce= ∑

e′+e′′ = e
ae′be′′ (A.5)106

This product rule is well defined because of the finite support condition on exponent
sequences.

A product like (A.1) is now by definition interpreted as the formal power series one
obtains by multiplying any finite number of factors from it. That is

∞∏
i=1

⎛
⎝1+

∑
wt(ei)≥1

ai,eiξ
ei twt(ei)

⎞
⎠= 1+

∑
wt(e)≥1

ceξ
etwt(e),

wt(e)=
∑
i

e(i), ce=
∑

e1+···+er=e
wt(ei)≥1

ai1,e1 · · · air,er
(A.6)

and similar products with the ‘counting variable’ t left out.

A.7. Symmetric and quasisymmetric power series. Probably every one (who is likely
to get his fingers on this chapter) knows, or can easily guess at, what is a symmetric
polynomial (over the integers, or any other base rink k).

Say, the polynomial is in n (commuting) variables ξ1, ξ2, · · · , ξn. Then the polyno-
mial f = f(ξ1, ξ2, · · · , ξn) is symmetric if for every permutation σ of {1, 2, . . . , n}

f(ξσ(1), ξσ(2), · · · , ξσ(n))= f(ξ1, ξ2, · · · , ξn) (A.8)

And, in that case, the main theorem of symmetric functions says that: the polynomial
f is a polynomial pf in the complete symmetric functions h1, h2, · · ·, hn or, equiva-
lently, in the elementary symmetric functions, and “the polynomial pf is independent
of the number of variables involved provided there are enough of them” (meaning
more than or equal to the degree of f ). The last phrase needs explaining. Also this
strongly suggests that the best way to work with symmetric polynomials is to take an
infinity of variables.

A little bit more notation is useful. Let SI be the group (under composition) of all
bijections σ: I −→ I such that there are only finitely many i ∈ I with σ(i) �= i. For
SN the notation S∞ is usually used. For an exponent sequence e let eσ be the exponent
sequence eσ(i)= e(σ−1(i)).107

106 All this just formalizes what everyone knows intuitively. One can also do these things for noncom-
muting indeterminates, and things are (curiously enough?) actually easier in that case. For totally ordered
index sets one can go much further and make sense of infinite ordered products and sums by using injective
limit ideas to make sense of infinite ordered sums and in finite products of elements of the base field and
the integers by treating them as sequences with two sequences equal if they eventually agree.

107 The exponent ‘−1’ is there to ensure that eστ = (eσ)τ ; not that that is important in the present
context.
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A power series
∑

e∈E(I )
aeξ

e is now symmetric if and only if ae = aeσ for all σ ∈ SI .
A polynomial in an infinite set of commutating indeterminates is a finite sum∑
e∈E(I )

aeξ
e i.e. a power series with all but finitely many of the coefficients ae unequal

to zero. A power series
∑

e∈E(I )
aeξ

e is of bounded degree if and only if there is a natural

number n such that ae= 0 for all ewith wt(e) > n. The complete symmetric functions
in the ξ are by definition

hn=
∑

wt(e)=n
ξ e (A.9)

The main theorem for symmetric power series in an infinity of indeterminates now
takes the following form.

A.10. Theorem. Every symmetric power series can be uniquely written as a power
series in the complete symmetric functions.Abounded degree symmetric power series
is a polynomial in the complete symmetric functions.

There is of course a similar theorem in terms of the elementary symmetric func-
tions.

The algebra Symm is the algebra of polynomials in the countable set of complete
symmetric functions hn for the case of the index set I =N.

A.11. Projective limit description. For the finicky (or pernickety) the following
projective limit construction is perhaps more congenial. For each n consider the
algebra morphism

πn+1,n: k [ξ1, · · ·, ξn, ξn+1] −→ k [ξ1, · · ·, ξn],

ξi �→ ξi for i ∈ {1, · · ·, n}, ξn+1 �→ 0

These are graded algebra morphisms

Let Symm(n)
k be the subalgebra of symmetric polynomials k [x1, · · · , xn]. This gives

a graded projective system of graded algebras

πn+1,n: Symm(n+1)
k −→ Symm(n)

k

andSymm is the graded projective limit of this system. So, for instance, the symmetric
power series

∑
e∈E(N)

ξe is not in Symm. In this picture theorem A.10 is obtained by the

usual theorem for symmetric functions in a finite number of variables and using that
for each given degree the coefficients involved in that degree stabilize as n→∞.

References

[1] Brauer group, in M. Hazewinkel, ed., Encyclopaedia of mathematics, volume 1, Kluwer Acad.
Publ., 1988, 479–480. http://eom.springer.de.

[2] Central simple algebra, in M. Hazewinkel, ed., Encyclopaedia of mathematics, volume 2,
Kluwer Acad. Publ., 1988, 87. http://eom.springer.de.



Witt vectors. Part 1 455

[3] Majorization ordering, in M. Hazewinkel, ed., Encyclopaedia of Mathematics, volume 6,
Kluwer Acad. Publ., 1990, 74–76. http://eom.springer.de.

[4] Witt vector, Wikipedia, 2007. http://en.wikipedia.org/wiki/Witt_vector.
[5] Witt vector, in M. Hazewinkel, ed., Encyclopaedia of mathematics, volume 9, Kluwer Acad.

Publ., 1993, 505–507. http://eom.springer.de/W/w098100.htm.
[6] Witt vectors, PlanetMath, 2005. http://planetmath.org/encyclopaedia/Witt Vectors.html.
[7] Witt vectors, in S. Iyanaga and Y. Kawada, eds., Encyclopaedic dictionary of mathematics,

MIT, 1960, 1690–1691.
[8] Abotteen, Essam A, Inner plethysm in the representation ring of the general linear group,

Missouri J. of the math. Sci. 2 (1990), 115–131.
[9] Abotteen, Essam A, On the structure of the Hopf representations ring of the symmetric groups,

Missouri J. of the math. Sci. 4 (1992), 20–29.
[10] Abrashkin, V. A., Explicit formulae for the Hilbert symbol of a formal group over the Witt

vectors, Izvestiya Mathematics 61 (1997), 463–515.
[11] Abrashkin, V.A., Galois moduli of period p-group schemes over a ring of Witt vectors, Math-

ematics of the USSR-Izvestiya 51 (1987), 1–46.
[12] Abrashkin, V.A., The image of the Galois group for some crystalline representations, Izvestiya

Mathematics 63 (1999), 1–36.
[13] Abrashkin, V.A., Modular-Representations of the Galois group of a local field, and a gen-

eralization of the Shafarevich conjecture, Mathematics of the USSR-Izvestiya 53 (1989),
469–518.

[14] Adams, J. Frank, Vector fields on spheres, Ann. of Math. 75 (1962), 603–632. See also the
J(X) series of papers: On the groups J(X) I-IV, Differential and combinatorial topology
symposium in honor of Marston Morse, Princeton Univ. Press, 1965, 121–143; Topology 2
(1963), 181–195; Topology 3 (1965), 193–222; Topology 5 (1966), 21–71; Topology 7 (1968),
331 (correction).

[15] Agboola, A. and D. Burns, Grothendieck groups of bundles on varieties over finite fields,
K-Theory 23 (2001), 251–303.

[16] Albert, Adrian A, Cyclic fields of degree pn over F of characteristic p, Bull. Amer. math. Soc.
40 (1934), 625–631.

[17] Almkvist, Gert, Endomorphisms of finitely generated projective modules over a commutative
ring, Arkiv för Matematik 11 (1973), 263–301.

[18] Almkvist, Gert, The Grothendieck ring of the category of endomorphisms, J. of Algebra 28
(1974), 375–388.

[19] Almkvist, Gert, Integrity of ghosts, preprint, 2006.
[20] Almkvist, Gert,K-theory of endomorphisms, J. of Algebra 55 (1978), 308–340. Erratum: J. of

Algebra 68 (1981), 520–521.
[21] Alon, Noga, Splitting necklaces, Advances in Mathematics 63 (1987), 247–253.
[22] Alon, Noga, and Douglas B West, The Borsuk-Ulam theorem and bisection of necklaces, Proc.

Amer. math. soc. 98 (1986), 623–628.
[23] Artin, Emil and O Schreier, Eine Kenzeichnung der reell abgeschlossenen Körper, Abh. math.

Sem. Hamburg 5 (1927), 225–231.
[24] Artin, Michael and Barry Mazur, Formal groups arising from algebraic varieties, Ann. sci. de

l’École norm. sup. 10 (1977), 87–131.
[25] Ash,A., Non-vanishing of alternants, LinearAlgebra and itsApplications 411 (2005), 348–355.
[26] Atiyah, Michael Francis and Graeme B Segal, Exponential isomorphisms for λ-rings, Quartely

J. Math. Oxford 22 (1971), 371–378.
[27] Atiyah, Michael Francis and D O Tall, Group representations, λ-rings and the J-homomor-

phism, Topology 8 (1969), 253–297.
[28] Auer, R., A functorial property of nested Witt vectors, Journal of Algebra 252 (2002), 293–299.
[29] Badra, A., Deformations of finite p-group schemes to a formal scheme, Comptes Rendus de l’

Academie des Sciences, Serie I-Mathematique 325 (1997), 177–181.
[30] Baker, Andrew and Birgit Richter, Quasisymmetric functions from a topological point of view,

Math. Dept., Univ. of Glasgow, Scotland; Math. Dept. Univ. of Hamburg, Germany, 2006.



456 M. Hazewinkel

[31] Ballico, E., Applications of the Lifting from characteristic p of some rational n-fold, Journal
of pure and applied Algebra 103 (1995), 285–286.

[32] Balmer, Paul, Witt groups, in E.M. Friedlander and et al., eds., Handbook of K-theory. Volume
2, Springer, 2005, 539–279.

[33] Barr, Michael and Charles Wells, Toposes, triples, and theories, Springer, 1985.
[34] Barsotti, Iacopo, On Witt vectors and periodic group varieties, Illinois Journal of Mathematics

2 (1958), 99–110.
[35] Bélair, L., Difference equations in Witt vectors, Comptes Rendus de l’Academie des Sciences,

Série I-Mathématique 340 (2005), 99–102.
[36] Bélair, L., Integral valued difference rational functions over Witt vectors, Comptes Rendus de

l’Academie des Sciences, Série I-Mathématique 339 (2004), 83–86.
[37] Bélair, L. and A. Macintyre, The Frobenius automorphism of Witt vectors, Comptes Rendus de

l’Academie des Sciences, Série I-Mathématique 331 (2000), 1–4.
[38] Bélair, L., A. Macintyre and T. Scanlon, Model theory of the Frobenius on the Witt vectors,

American Journal of Mathematics 129 (2007), 665–721.
[39] Bélair, Luc, Approximation for Frobenius algebraic equations in Witt vectors, Université de

Quebec, Montréal, Quebec, Canada, 2006.
[40] Bélair, Luc, Vecteurs de Witt, Publ. math. Univ. de Paris VII 33 (1990), 141–149.
[41] Berger, L., Limits of crystalline representations, Compositio mathematica 140 (2004), 1473–

1498.
[42] Bergeron, François, A combinatorial outlook on symmetric functions, J. of combinatorial

Theory, series A 50 (1989), 226–234.
[43] Bergeron, François, Une combinatoire du pléthysme, J. of combinatorial Theory, series A

46 (1987), 291–305.
[44] Bergman, G.M., Ring schemes: The Witt scheme (with appendix), in D. Mumford, ed., Lectures

on curves on an algebraic surface, Princeton Univ. Press, 1966, 171–192.
[45] Bergman, George, M. and Adam, O. Hausknecht, Cogroups and co-rings in categories of

associative rings, American math. Soc., 1996.
[46] Berstein, Israel, On cogropus in the category of graded algebras, Trans. Amer. math. Soc. 115

(1965), 257–269.
[47] Berthelot, P., S. Bloch and H. Esnault, On Witt vector cohomology for singular varieties,

Compositio mathematica 143 (2007), 363–392.
[48] Berthelot, Pierre, Généralités sur les lambda-anneaux, in P. Berthelot, A. Grothendieck and

L. Illusie, eds, Séminaire de géométrie algébrique du Bois Marie 1966/67 (SGA 6), Springer,
1971, 279–364.

[49] Blache, R.G., A Stickelberger theorem for p-adic Gauss sums, Acta arithmetica 118 (2005),
11–26.

[50] Bleher, F.M., Universal deformation rings and dihedral 2-groups, 2007. arXiv:0705.0834
[math.RT].

[51] Bleher, F.M., Universal deformation rings and dihedral defect groups, 2007.
arXiv:math.RT/0607571.

[52] Bleher, F.M., Universal deformation rings and Klein four defect groups, Transactions of the
American mathematical Society 354 (2002), 3893–3906.

[53] Bleher, F.M. and T. Chinburg, Deformations with respect to an algebraic group, Illinois Journal
of Mathematics 47 (2003), 899–919.

[54] Blessnohl, Dieter and Manfred Schocker, Noncommutative character theory of the symmetric
group, Imperial College Press, 2005.

[55] Bocklandt, Ralf and Lieven Le Bruyn, Necklace Lie algebras and noncommutative symplectic
geometry, Math. Zeitschrift 240 (2002), 141–167.

[56] Boorman, Evelyn Hutterer, S-operations in representation theory, Transactions of theAmerican
mathematical Society 205 (1975), 127–149.

[57] Borger, James, The basic geometry of Witt vectors, Dept. Math., Australian national University,
Canberra, Australia, 2007.



Witt vectors. Part 1 457

[58] Borger, James and Bart de Smit, Galois theory and integral models of lambda rings, Math.
Sci. Inst., Australian national Univ., Canberra, 2007.

[59] Borger, James and Ben Wieland, Plethystic algebra, Advances in Mathematics 194 (2005),
246–283. arXiv:math.AC/0407227.

[60] Borwein, J. and S. Lou, Asymptotics of a sequence of Witt vectors, Journal of Approximation
Theory 69 (1992), 326–337.

[61] Bouc, Serge, Burnside rings, in M. Hazewinkel, ed., Handbook of Algebra. Volume 2, North
Holland (imprint of Elsevier), 2000, 739–804.

[62] Bourbaki, Nicholas, Algèbre commutative. Chapitres 5 et 6, Masson, 1964. Chapitre 6: Valu-
ations.

[63] Bourbaki, Nicholas, Algèbre commutative. Chapitres 8 et 9, Masson, 1983. Chapitre IX:
Anneaux locaux Noethériens complets, $1: Vecteurs de Witt.

[64] Bourbaki, Nicholas, Algèbre. Chapitre 4: Polynômes et fractions rationelles; Chapitre 5: Corps
commutatifs, Hermann, 1959.

[65] Bousfield, A K, On lambda-rings and the K-theory of infinite loop spaces, K-theory 10 (1996),
1–30.

[66] Brennan, Joseph P, The restriction of the outer plethysm to a Young Subgroup, Comm. in
Algebra 21 (1993), 1029–1036.

[67] Breuil, C., Construction of p-adic semi-stable representations,Annales scientifiques de l’École
normale supérieure 31 (1998), 281–327.

[68] Breuil, C., Group schemes and filtered modules, Comptes Rendus de l’Academie des Sciences,
Série I-Mathématique 328 (1999), 93–97.

[69] Breuil, C., Log-syntomic topology, log-crystalline cohomology and Cech cohomology, Bulletin
de la Soc. mathématique de France 124 (1996), 587–647.

[70] Brucks, K.M, MSS sequences, colorings of necklaces, and periodic points of f(z) = z2 − 2,
Adv. applied Math. 8 (1987), 434–445.

[71] Brun, M., Witt vectors and equivariant ring spectra, 2004. arXiv:math.AT/0411567.
[72] Brun, M., Witt vectors and equivariant ring spectra applied to cobordism, Proceedings of the

London mathematical Society 94 (2007), 351–385.
[73] Brun, M., Witt vectors and Tambara functors, Advances in Mathematics 193 (2005), 233–256.

Preprint version: arXiv:math.AC/0304495.
[74] Brun, Morton, Introduction toWitt vectors, preprint Fachbereich Mathematik/Informatik, Univ.

Osnabrück, 2006.
[75] Bryden, J. and K. Varadarajan, Witt vectors which are rational functions, Communications in

Algebra 21 (1993), 4263–4270.
[76] Buch, A., J.F. Thomsen, N. Lauritzen and V. Mehta, Frobenius morphisms module p(2),

Comptes Rendus de l’Academie des Sciences, Série I-Mathématique 322 (1996), 69–72.
[77] Buchheim, C. and H. Frommer, Reduction of tori split over tamely ramified extensions, Comptes

Rendus de l’Academie des Sciences, Série I-Mathématique 338 (2004), 219–221.
[78] Burnside, William S, Theory of groups of finite order, Cambridge Univ. Press, 1911. Dover

reprint: 1955.
[79] Burroughs, J, Operations in Grothendieck rings and the symmetric group, Canadian Journal

of Mathematics 26 (1974), 543–550.
[80] Cahen, P.-J. and J.-L. Chabert, Integer valued polynomials, Amer. math. Soc., 1997.
[81] Calderbank, A.R., P. Hanlon and S. Sundaram, Representations of the symmetrical group in

deformations of the free Lie algebra, Transactions of the American mathematical Society 341
(1994), 315–333.

[82] Carré, Christophe and Jean-Yves Thibon, Plethysm and vertex operators, Adv. in Math. 13
(1992), 390–403.

[83] Cartier, Pierre, Groupes de Lubin-Tate généralisés, Inventiones mathematicae 35 (1976), 273–
284.

[84] Cariter, Pierre, Groupes formels associés aux vecteurs de Witt généralisés, Compt. Rend. Acad.
Sci. Paris, Ser. A-B 265 (1967), A49–A52.



458 M. Hazewinkel

[85] Cartier, Pierre, Modules associés à un groupe formel commutatif. Courbes typiques, Compt.
Rend. Acad. Sci. Paris, Ser. A-B 265 (1967), A129–A132.

[86] Cartier, Pierre, Séminaire sur les groupes formels à l’IHES, 1972. Unpublished lecture notes.
[87] Chevalley, Claude, La théorie du symbole de restes normiques, J. reine und angew. Math.

(Crelle) 169 (1933), 140–157.
[88] Christol, Gilles, Opération de Cartier et vecteurs de Witt, J. of combinatorial Theory, series A

104 (1971), 217–263.
[89] Clauwens, F.J.B.J, K-theory, lambda rings, and formal groups, Compositio mathematica 65

(1988), 223–240.
[90] Clauwens, F.J-B.J, Commuting polynomials and lambda ring structures on Z[x], J. pure and

applied Algebra 95 (1994), 261–269.
[91] Clauwens, F.J-B.J, The K-theory of lambda-rings. Part I: Construction of the logarithmic

invariant, Compositio mathematica 61 (1987), 295–328.
[92] Clauwnes, F.J-B.J, The K-theory of lambda-rings. Part II: Invertibility of the logarithmic map,

Compositio mathematica 92 (1994), 205–225.
[93] Cohen, I.S., Commutative rings with restricted minimum condition, Duke math. J. 17 (1950),

27–42.
[94] Cohen, I.S., On the structure and ideal theory of complete local rings, Transactions of the

American mathematical Society 59 (1946), 54–106.
[95] Cohen, Miriam, Shlomo Gelaki and Sara Westreich, Hopf algebras, in M. Hazewinkel, ed.,

Handbook of Algebra. Volume 4, Elsevier, 2006, 173–239.
[96] Cohn, P.M., Algebra. Volume 3, Wiley, 1991.
[97] Colmez, Pierre, Le corps des périodes p-adiques, Comp. Rendus Acad. Sci. Paris, Série I 310

(1990), 321–324.
[98] Connes, Alain, Cohomologie cyclique et foncteurs Extn, CR Acad. Sci. Paris, Sér. I Math 296

(1983), 953–958.
[99] Contou-Carrère, Carlos, Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole

modéré, Compt. Rend. Acad. Sci. Paris, Sér. I (1994), 743–746.
[100] Cronheim, Arno, Dual numbers, Witt vectors, and Hjelmslev planes, Geometria dedicata 7

(1978), 287–302.
[101] Da Costa, G.A.T.F and J. Variane Jr, Feynman identity: a special case revisited, Letters in

mathematical Physics 73 (2005), 221–235.
[102] Dauns, John, A concrete approach to division rings, Heldermann Verlag, 1982.
[103] de Cataldo, M.A.A., Vanishing via lifting to second Witt vectors and a proof of an isotriviality

result, Journal of Algebra 219 (1999), 255–265.
[104] de Graaf, W.A., Constructing homomorphisms between Verma modules, Journal of Lie Theory

15 (2005), 415–428.
[105] Demazure, Michel and Pierre Gabriel, Groupes algébriques, North Holland, 1970. Chap. V,

$1–3.
[106] Demchenko, O., Covariant Honda theory, Tohoku mathematical Journal 57 (2005), 303–319.
[107] Dieudonné, Jean, On the Artin-Hasse exponential series, Proc. Amer. math. Soc. 8 (1957),

210–214.
[108] Dobrev, V.K. Singular vectors of quantum group representations for straight Lie-algebra roots,

Letters in Mathematical Physics 22 (1991), 251–266.
[109] Dobrev, V.K. Singular vectors of representations of quantum groups, Journal of Physics A-

mathematical and general 25 (1992), 149–160.
[110] Dobrev,V.K. and M. El Falaki, Quantum group Uq(A(l)) singular vectors in Poincaré-Birkhoff-

Witt basis, Letters in Mathematical Physics 49 (1999), 47–57.
[111] Dobrev, V.K. and M. El Falaki, Quantum group Uq(D-l) singular vectors in the

Poincare-Birkhoff-Witt basis, Journal of Physics A-mathematical and general 33 (2000),
6321–6332.

[112] Dobrev, V.K. and P. Truini, Irregular Uq(sl(3)) representations at roots of unity via Gel’fand-
(Weyl)-Zetlin basis, Journal of mathematical Physics 38 (1997), 2631–2651.



Witt vectors. Part 1 459

[113] Dold, Albrecht, Fixed point indices of iterated maps, Inventiones mathematicae 74 (1983),
419–435.

[114] Dress, A. and T. Muller, Decomposable functors and the exponential principle, Advances in
Mathematics 129 (1997), 188–221.

[115] Dress,A.W.M. and C. Siebeneicher, The Burnside Ring of infinite groups,Witt vectors, necklace
algebras, lambda-rings and all that, Dept. Math., University of Bielefeld, Germany, 1986.
Preprint version of 120.

[116] Dress, A.W.M. and C. Siebeneicher, A multinomial Identity for Witt vectors, Advances in
Mathematics 80 (1990), 250–260.

[117] Dress, Andreas W.M., A characterisation of solvable groups, Math. Zeitschrift 110 (1969),
213–217.

[118] Dress, Andreas W.M., Congruence relations characterizing the representation ring of the sym-
metric group, J. of Algebra 101 (1986), 350–364.

[119] Dress, Andreas W.M., Contributions to the theory of induced representations, in H. Bass, ed.,
Algebraic K-theory II, Springer, 1973, 183–242.

[120] Dress,Andreas W.M., and Christian Siebeneicher, The Burnside ring of the infinite cyclic group
and its relations to the necklace algebra, λ-rings, and the universal ring of Witt vectors, Adv.
in Math. 78 (1989), 1–41.

[121] Dress, Andreas W.M., and Christian Siebeneicher, On the number of solutions of certain linear
diophantine equations, Hokkaido math J. 19 (1990), 385–401.

[122] Dress, Andreas W.M., and Ernesto Vallejo, A simple proof for a result by Kratzer and Thévenaz
concerning the embedding of the Burnside ring into the ghost ring, J. of Algebra 154 (1993),
356–359.

[123] Dress, Andreas W.M., Notes on the theory of representations of finite groups and related
topics with two appendices, A: The Witt ring as a Mackey functor, B: A relation between
Burnside- and Witt-rings, Dept. Math., University of Bielefeld, Germany, 1971.

[124] Dress, Andreas W.M., and Christian Siebeneicher, On the integrality of the Witt polynomials,
Séminaire Lotharingien de Combinatoire, 1992.

[125] Dress, Andreas W.M., Christian Siebeneicher and Tomoyuki Yoshida, An application of Burn-
side rings in elementary finite group theory, Advances in Mathematics 91 (1992), 27–44.

[126] Dress, Andreas W.M., and Christian Siebeneicher, The Burnside ring of profinite groups and
the Witt vector construction, Adv. in Math. 70 (1988), 87–132.

[127] Dubrovin, B.A., Generalized Witt groups (Russian), Mat. Zametki 13 (1973), 419–426.
[128] Duchamp, G., D. Krob, B. Leclerc and J.-Y. Thibon, Fonctions quasi-symmétriques, fonctions

symmétriques noncommutatives, et algèbres de Hecke à q = 0, CR Acad. Sci. Paris, Série
I- Math. 322 (1996), 107–112.

[129] Duchamp, Gérard, Florent Hivert and Jean-Yves Thibon, Noncommutative symmetric functions
VI: free quasisymmetric functions and related algebras, Int. J. Algebra Comput. 12 (2002),
671–717.

[130] Duchamp, Gérard,Alexander Klyachko, Daniel Krob and Jean–Yves Thibon, Noncommutative
symmetric functions III: deformations of Cauchy and convolution algebras, Discrete Math.
Theor. Comput. Sci. 1 (1996), 159–216.

[131] Dumas, François, Hautes dérivations et anneaux de séries non commutatifs en charactérisi-
tuque nulle, Compt. Rend. Acad. Sci. PAris, Sér. I Math. 303 (1986), 383–385.

[132] Dwork, Bernard, Norm residue symbol in local number fields, Abh. math. Sem. Hamburg 22
(1958), 180–190.

[133] Dwyer, W.G., M.J. Hopkins and D.M. Kan, The homotopy theory of cyclic sets, Trans. Amer.
math. Soc. 291 (1985), 281–289.

[134] Elliott, J., Binomial rings, integer-valued polynomials, and lambda-rings, Journal of pure and
applied Algebra 207 (2006), 165–185.

[135] Elliott, J., Constructing Witt-Burnside rings, Advances in Mathematics 203 (2006), 319–363.
[136] Endler, O., Valuation theory, Springer, 1972.
[137] Faith, Carl., Algebra II. Ring theory, Springer, 1976.



460 M. Hazewinkel

[138] Faith, Carl., Projective ideals in Cohen rings, Archiv Math. 26 (1975), 588–594.
[140] Faltin, F, N. Metropolis, B. Ross and G.-C. Rota, The real numbers as a wreath product, Adv.

in Math. 16 (1975), 278–304.
[141] Feigin, Boris .I and Boris .I. Tsygan, Additive K-theory, in Y.I. Manin, ed., K-theory: arithmetic

and geometry, Springer, 1987, 97–209.
[142] Ferrero, Miguel,Antonio Paques andAndrzej Solecki, OnZp-extensions of commutative rings,

J. Pure and applied Algebra 72 (1991), 5–22.
[143] Finotti, L.R.A., Minimal degree liftings in characteristic 2, Journal of pure and appliedAlgebra

207 (2006), 631–673.
[144] Fredricksen, Harold and Irving J. Kessler, An algorithm for generating necklaces of beads in

two colors, Discrete Mathematics 61 (1986), 181–188.
[145] Fredrickesn, Harold and James Maiorana, Necklaces of beads in k colors and k-ary de Bruijn

sequences, Discrete Mathematics 23 (1978), 207–210.
[146] Fresse, Benoit, Cogroups in algebras over an operad are free algebras, Comm. math. Helv.

73 (1998), 637–676.
[147] Fripertinger, Harald, Endliche Gruppenaktionen auf Funktionenmengen. Das Lemma von

Burnside, Repräsentanenkonstruktionen, Anwendungen in der Musiktheorie, Bayreuther Math-
ematische Schriften 45 (1993), 19–132.

[148] Fulton, William and Serge Lang, Riemann-Roch algebra, Springer, 1985.
[149] Gabriel, Peter, Universelle Eigenschaften der Wittsche Vektoren und der Einseinheitenalge-

bra einer Potenzreihenalgebra in einer Veränderlichen, Jahresbericht Deutsche Mathematiker
Vereinigung 72 (1970), 116–121.

[150] Gale, D., A theorem on flows in networks, Pacific Journal of Mathematics 7 (1957), 1073–1083.
[151] Gan,Wee Liang andTravis Schedler,The necklace Lie coalgebra and renormalization algebras,

2007. arXiv:math-ph/0702055v3.
[152] Garsia, A.M., and Nolan Wallach, Qsym over Sym is free, J. of combinatorial Theory, Series A

104 (2003), 217–263.
[153] Garsia, A.M., and Nolan Wallach, r-Qsym is free over Sym, J. of combinatorial Theory, Series

A 114 (2006), 704–732.
[154] Gaudier, Henri, Algèbres de group du groupe additif, Bull. Soc. math. de France 117 (1989),

233–245. http://emis.kaist.ac.kr/journals/SLC/opapers/s21.html.
[155] Gaudier, Henri, Multiplication des matrices et vecteurs de Witt, Séminaire Lotharingien

de Combinatoire, IRMS Strassbourg 21 (1989). http://emis.kaist.ac.kr/journals/SLC/opapers/
s21.html.

[156] Gaudier, Henri, Relêvement des coefficients binômiaux dans les vecteurs de Witt, Séminaire
Lotharingien de Combinatoire, IRMA Strassbourg 18 (1988), 93–108. http://www.mat.univie
.ac.at/∼slc/s18gaudier.html.

[157] Gavarini, F., A PBW basis for Lusztig’s form of untwisted affine quantum groups, Communi-
cations in Algebra 27 (1999), 903–918.

[158] Gay, C.D., G.C. Morris and I. Morris, Computing Adams operations on the Burnside ring of a
finite group, J. reine und angew. Math. (Crelle) 341 (1983), 87–97.

[159] Gebhard, David D., Noncommutative symmetric functions and the chromatic polynomial, Dept
Math., Michigan State Uni., East Lansing, Michigan, USA, 1994.

[160] Geisser, T., On K-3 ofWitt vectors of length two over finite fields, K-Theory 12 (1997), 193–226.
[161] Geissinger, Ladnor, Hopf algebras of symmetric functions and class functions, in D. Foata, ed.,

Combinatoier et réprésentation du groupe symmétrique, Springer, 1977, 168–181.
[162] Gelfand, Israel M., Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S Retakh

and Jean- Yves-Thibon, Noncommutative symmetric functions, Adv. in Math. 112 (1995),
218–348.

[163] Gerstenhaber, Murray, On the deformation theory of rings and algebras, Ann. of Math. 79
(1964), 59–103.

[164] Gerstenhaber, Murray, On the deformation theory of rings and algebras: II, Ann. of Math. 84
(1966), 1–19.



Witt vectors. Part 1 461

[165] Gerstenhaber, Murray, On the deformation theory of rings and algebras: III, Ann. of Math. 88
(1968), 1–34.

[166] Gerstenhaber, Murray, On the deformation theory of rings and algebras: IV, Ann. of Math. 99
(1974), 257–276.

[167] Gerstenhaber, Murray and S. Don Shack, The shuffle bialgebra and the cohomology of com-
mutative algebras, J. pure and appl. Algebra 70 (1991), 263–272.

[168] Gerstenhaber, Murray and Clarence Wilterson, On the deformation theory of rings and algebras
V: Deformation of differential graded algebras, in J. McCleary, ed., Higher homotopy structures
in topology and mathematical physics, Amer. math. Soc., 1999, 89–102.

[169] Gingold, H. and A. Knopfmacher, Analytic properties of power product expansions, Canadian
Journal of Mathematics-Journal Canadien de Mathématiques 47 (1995), 1219–1239.

[170] Ginzburg, Victor and Travis Schedler, Moyal quantization and stable homology of necklace
Lie algebras, 2006. arXiv:math/0605704v2 [math. QA].

[171] Godement, Roger, Topologie algébrique et théorie des faisceaux, Hermann, 1964.
[172] Goerss, P., J. Lannes and F. Morel, Vecteurs de Witt non commutatifs et représentabilité de

l’homologie modulo p, Inventiones mathematicae 108 (1992), 163–227.
[173] Goerss, Paul, J. Lannes and F. Morel, Hopf algebras, Witt vectors, and Brown-Gitler spectra,

in M.C. Tangora, ed., Algebraic topology, Oaxtepec 1991, Amer. math. Soc., 1993, 217–263.
[174] Golomb, Solomon W., Irreducible polynomials, synchronization codes, primitive necklaces,

and the cyclotomic algebra, in R.C. Bose and T. A. Dowling, eds., Combinatorial mathematics
and its applications, Univ of North Carolina Press, 1967, 358–370.

[175] Graham, John J., Generalized Witt vectors, Advances in Mathematics 99 (1993), 248–263.
Preprint version: “A new approach to the Witt-Burnside ring”, Dept. pure Math., Univ. of
Sydney, Australia, Research report 90–5, March 1990.

[176] Green, B., Realizing deformations of curves using Lubin-Tate formal groups, Israel Journal of
Mathematics 139 (2004), 139–148.

[177] Greenberg, Marvin J., Unit Witt vectors, Proc. Amer. math. Soc. 13 (1962), 72–73.
[178] Grothendieck, Alexander, La théorie des classes de Chern, Bull. Soc. math. de France 86

(1958), 137–154.
[179] Grothendieck, Alexandre, Classes de faisceaux et théorème de Riemann-Roch, in P. Berthelot,

A. Grothendieck and L. Illusie, eds., Séminaire de géométrie algébrique du Bois Marie 1966/67
(SGA 6), Springer, 1971, 20–77.

[180] Gubeladze, J., Higher K-theory of toric varieties, K-Theory 28 (2003), 285–327.
[181] Gubeladze, J., Toric varieties with huge Grothendieck group, Advances in Mathematics 186

(2004), 117–124.
[182] Guerrini, Luca, Formal and analytic deformations of the Witt algebra, Lett. in math. Physics

46 (1998), 121–129.
[183] Guillot, Pierre, Adams operations in cohomotopy, 2008. arXiv:math/0612327v1 [math.AT]
[184] Guillot, Pierre, The representation ring of a simply connected Lie group as a lambda-ring,

Comm. Algebra 35 (2007), 875–883.
[185] Haboush, W.J., Infinite dimensional algebraic geometry; Algebraic structures on p-adic groups

and their homogeneous spaces, Tohoku mathematical Journal 57 (2005), 65–117.
[186] Hall, Philip, Nilpotent groups. Notes of lectures given at the Canadian mathematical congress,

summer seminar, Univ. of Alberta, August 1957, Dept. Math., Queen Mary College, London,
UK, 1969. These notes are often referred to as the “Edmonton notes”.

[187] Haraguchi, Yuki, On noncommutative extensions of Ga by Gm over an Fp-algebra, Tsukuba
J. of Math. 29 (2005), 405–435.

[188] Harder, G., Wittvektoren, Jahresbericht Deutsche Mathematiker Vereinigung 99 (1997), 18–48.
A translation into English of this paper appears in “Ina Kersten (ed.), E. Witt: Gesammelte
Abhandlungen, Springer, 1998, 165–194”, see [238].

[189] Hartshorne, Robin, Algebraic geometry, Springer, 1977.
[190] Hasse, Helmut, Theorie der relativ zyklischen algebraische Funktionenkörper, insbesondere

bei endlichem Konstantenkörper, J reine angew. Math. (= Crelle) 172 (1934), 37–54.



462 M. Hazewinkel

[191] Hasse, Helmut and Friedrich Karl Schmidt, Die Struktur diskret bewerter Körper, J reine
angew. Math. (= Crelle) 170 (1934), 4–63.

[192] Hazewinkel, M., Formal groups and applications, Acad. Press, 1978. Free electronic copy:
‘Darenet/Cream of Science’ <www.darenet.nl/en/page/language.view/keur.page>.

[193] Hazewinkel, Michiel, The algebra of quasi-symmetric functions is free over the integers,
Advances in Mathematics 164 (2001), 283–300.

[194] Hazewinkel, Michiel, Cofree coalgebras and multivariable recursiveness, J. of pure and applied
Algebra 183 (2003), 61–103.

[195] Hazewinkel, Michiel, Explicit polynomial generators for the ring of quasisymmetric functions
over the integers, 2002. arXiv:math/0410365.

[196] Hazewinkel, Michiel, On the Snapper Liebler-Vitale Lam theorem on permutation represen-
tations of the symmetric froup, J. pure and applied Algebra 23 (1982), 29–32.

[197] Hazewinkel, Michiel, Operations in the K-theory of endomorphisms, J. of Algebra 84 (1983),
285–305. Free electronic copyg: ‘Darenet/Cream of Science’ <www.darenet.nl/en/page/
language.view/keur.page>.

[198] Hazewinkel, Michiel, The primitives of the Hopf algebra of noncommutative symmetric func-
tions over the integers, CWI, 2001. arXiv:math/0410365.

[199] Hazewinkel, Michiel, Six chapters on Hopf algebras. Preliminary version of the first six (of
seven) chapters on Hopf algebras for: “Michiel Hazewinkel, Nadiya Gubareni, Volodymyr
Kirichenko, Algebras, rings, and modules. Volume 3”, Springer, to appear., 2008.

[200] Hazewinkel, Michiel, Symmetric functions, noncommutative symmetric functions and qua-
sisymmetric functions, Acta appl. Math. 75 (2003), 55–83. Free electronic copy: ‘Darenet/
Cream of Science’ <www.darenet.nl/en/page/language.view/keur.page>. Also arXiv:math/
0410468.

[201] Hazewinkel, Michiel, Symmetric functions, noncommutative symmetric functions and qua-
sisymmetric functions II, Acta appl. Math. 85 (2005), 319–340. Free electronic copy: ‘Darenet/
Cream of Science’ <www.darenet.nl/en/page/language.view/keur.page>. Also arXiv:math/
0410470.

[202] Hazewinkel, Michiel and Clyde F. Martin, Representations of the symmetric groups, the
specialization order, systems, and Grassmann manifolds, Enseignement math. 29 (1983),
53–87.

[203] Hazewinkel, Michiel and Ton Vorst, On the Snapper Liebler-Vitale Lam theorem on permu-
tation representations of the symmetric groups, J. pure and applied Algebra 23 (1982), 29–32.

[204] Hellegouarch, Yves and François Recher, Canonical t-modules, J. of Algebra 187 (1997),
323–272.

[205] Hellegouarch, Yves and François Recher, Relèvement de modules de Drinfeld en charactéris-
tique zéro, Comp. Rendus Math. Acad. Sci., Soc. royale de Canada 15 (1993), 167–172.

[206] Hesselholt, L., Correction to Witt vectors of non-commutative rings and topological cyclic
homology, [Hesselholt, 1997 #108], Acta Math. 95 (2005), 155–160.

[207] Hesselholt, L., Witt vectors of non-commutative rings and topological cyclic homology, Acta
Mathematica 178 (1997), 109–141.

[208] Hesselholt, L., Witt vectors of non-commutative rings and topological cyclic homology (vol
178, pg 109, 1997), Acta mathematica 195 (2005), 55–60.

[209] Hesselholt, L. and I. Madsen, On the K-theory of finite algebras over Witt vectors of perfect
fields, Topology 36 (1997), 29–101.

[210] Hesselholt, Lars, The absolute de Rham-Witt complex, MIT, Cambridge, Massachusetts, USA,
2005.

[211] Hesselholt, Lars, Galois cohomology of Witt vectors of algebraic integers, Math. Proc. of the
Cambridge phil. Soc. 137 (2004), 55157.

[212] Hesselholt, Lars, Lecture notes on Witt vectors, MIT, Cambridge, Massachusetts, USA, 2005.
[213] Hirzebruch, Friedrich, Topological methods in algebraic geometry, Springer, 1966. Original

edition: Neue topologische Methoden in der algebraische Geometrie, Springer, 1962.



Witt vectors. Part 1 463

[214] Hivert, Florent, Hecke algebras, difference operators and quasi-symmetric functions, Adv.
Math. 155 (2000), 181–238.

[215] Hivert, Florent, Alain Lascoux and Jean-Yves Thibon, Noncommutative symmetric functions
and quasi symmetric functions with two and more parameters, Inst. Gaspard Monge, Univ.
Marne-la-Vallée, 2001.

[216] Hivert, Florent, Alain Lascoux and Jean-Yves Thibon, Noncommutative symmetric functions
and quasisymmetric functions with two and more parameters, Inst. Gaspard Monge, Univ.
Marne-la-Vallée, 2001.

[217] Hivert, Florent, Jean-Christophe Novelli and Jean-Yves Thibon, Une analogue du monoïde
plaxique pour les arbres binaires de recherche, 2002.

[218] Hoffman, Michael E., The algebra of multiple harmonic series, J. of Algebra 194 (1997),
477–495.

[219] Hoffman, Michael E., Quasi-shuffle products, J. algebraic Combinatorics 11 (2000), 49–68.
[220] Hoffman, P., Exponential maps and λ-rings, J. pure and appl. Algebra 27 (1983), 131–162.
[221] Hoffman, Peter, τ-rings and wreath product representations, Springer, 1979.
[222] Holland, Martin P., K-theory of endomorphism rings and of rings of invariants, J. of Algebra

191 (1997), 668–685.
[223] Hyodo, Osamu, A cohomological construction of Swan representations over the Witt ring I,

II, Proc. Japan Acad. Ser. A 64 (1988), 300–303, 350–351.
[224] Hyodo, Osamu, On the de Rham-Witt complex attached to a semi-stable family, Compositio

mathematica 78 (1991), 241–260.
[225] Illusie, Luc, Complex de de Rham-Witt et cohomologie cristalline, Ann. sci. École norm. sup.

12 (1979), 501–661.
[226] Ischebeck, Friedrich and Volker Kokot, Modules of Witt vectors, in R. Tandon, ed., Algebra

and number theory, Hindustan Book Agency, 2005.
[227] Itzykson, C., Geometry of Differential-Equations and Projective-Representations of the Witt

Algebra, International Journal of Modern Physics B 6 (1992), 1969–2003.
[228] Jacobi, Carl Gustav, De functiones alternantibus, J. reine und angew. Math. (Crelle) 22

(1841), 360–371. Also in: Werke 3, 439–452.
[229] Jacobson, Nathan, Abstract algebra. Volume 3: theory of fields and Galois theory, van

Nostrand, 1964. pp. 124–132, 234–236.
[230] James, Gordon and Adalbert Kerber, The representation theory of the symmetric group,

Addison-Wesley, 1981.
[231] Jean, Sandrine, Witt vectors over local fields of positive characteristic and conjugacy classes

of p-torsion elements in the Nottingham group, copy of overhead transparancies, 2007.
[232] Kambayashi, T., On the Witt vectors over nonperfect rings, J. Math. Kyoto Univ. 8 (1968),

279–283.
[233] Kanesaka, Kiyomi and Koji Sekiguchi, Representation of Witt vectors by formal power series

and its applications, Tokyo J. of Math. 2 (1979), 249–270.
[234] Kang, Seok-Jin and Myung-Hwan Kim, Free Lie algebras, generalized Witt formula, and the

denominator identity, J. of Algebra 183 (1996), 560–594.
[235] Kaplansky, Irving, Topics in commutative ring theory, Dept. of Mathematics, University of

Chicago, 1974.
[236] Kashiwabara, Takuji and W. Stephen Wilson, The Morava K-theory and Brown-Peterson

cohomology of spaces related to BP, J. Math. Kyoto Univ. 41 (2001), 43–95.
[237] Kedlaya, K. S., Power series and p-adic algebraic closures, Journal of Number Theory 89

(2001), 324–339.
[238] Kersten, Ina, ed., Ernst Witt. Collected papers. Gesammelte Abhandlungen, Springer, 1998.
[239] Knutson, Donald, Lambda rings and the representation theory of the symmetric groups,

Springer, 1973.
[240] Koch, A., Endomorphisms of monogenic Hopf algebras, Communications in Algebra 35

(2007), 747–758.



464 M. Hazewinkel

[241] Koch, A., The Hopf algebra of a uniserial group, Pacific Journal of Mathematics 215 (2004),
347–356.

[242] Koch, A., Monogenic bialgebras over finite fields and rings of Witt vectors, Journal of pure
and applied Algebra 163 (2001), 193–207.

[243] Koch, A., Monogenic Hopf algebras and local Galois module theory, Journal of Algebra 264
(2003), 408–419.

[244] Koch, A., Witt subgroups and cyclic Dieudonné modules killed by p, Rocky Mountain J. of
Mathematics 31 (2001), 1023–1038.

[245] Koch, Alan, Lifting Witt subgroups to characteristic zero, New York J. Math. 4 (1998),
127–136. Journal is electronic only.

[246] Kokot, Volker, Moduln von Wittvektoren, Münster, 2000.
[247] Kozma, Ilan, Witt vectors and complex cobordism, Topology 13 (1974), 389–394.
[248] Kraft, Hanspeter, Kommutative algebraische Gruppen und Ringe, Springer, 1975.
[249] Krob, D., B. Leclerc and J.-Y. Thibon, Noncommutative symmetric functions II: transforma-

tions of alphabeths, Int. J. of Algebra and Computation 7 (1997), 181–264.
[250] Krob, D., and J.-Y. Thibon, Noncommutative symmetric functions V: a degenerate version of

Uq(glN ), Int. J. of Algebra and Computation 9 (1997), 405–430.
[251] Krob, Daniel and Jean-Yves Thibon, Noncommutative symmetric functions IV: quantum

linear groups and Hecke algebras at q= 0, J. of algebraic Combinatorics 6 (1997),
339–376.

[252] Kung, Joseph P.S., ed., Gian-Carlo Rota on combinatorics, Birkhäuser, 1995.
[253] Labelle, J., and Y.N. Yeh, The relation between Burnside rings and combinatorial species, J.

of combinatorial Theory, series A 50 (1989), 269–284.
[254] Lam, T.Y., Young diagrams, Schur functions, the Gale-Ryser theorem and a conjecture of

Snapper, J. pure and applied Algebra 10 (1977), 81–94.
[255] Lang, Serge, Algebra, Addison-Wesley, 1965. Chapter VIII, exercises 21–26 (pp 233ff );

Chapter XII, exercises 8–10 (pp. 313ff).
[256] Langer, Andreas and Thomas Zink, De Rham-Witt cohomology for a proper and smooth

morphism, (2003).
[257] Lasalle, Michel, Une q-specialisation pour les fonctions symétriques monomiales, Adv. Math.

162 (2001), 217–242.
[258] Lazard, Michel, Bemerkungen zur Theorie der bewerteten Körper und Ringe, Math. Nachr.

12 (1954), 67–73.
[260] Lenart, Cristian., Formal group-theoretic generalizations of the necklace algebra, including

a q-deformation, Journal of Algebra 199 (1998), 703–732.
[261] Lenart, Cristian, Necklace algebras and Witt vectors associated with formal group laws.

Extended abstract, Dept. Math., University of Manchester, UK.
[262] Lenart, Cristian, Symmetric functions, formal group laws, and Lazard’s theorem, Journal of

Algebra 134 (1998), 219–239.
[263] Lenstra, Hendrik, Construction of the ring of Witt vectors, Univ. of California at Berkeley,

California, USA, 2002. Notes by John Voigt.
[264] Li, Changchun, The forms of the Witt group schemes, J. of Algebra 186 (1996), 182–206.
[265] Littlewood, D.E., The inner plethysm of S-functions, Canadian Journal of Mathematics 10

(1958), 1–16.
[266] Littlewood, D.E., Products and plethysms of characters with orthogonal, symplectic and

symmetric groups, Canadian Journal of Mathematics 10 (1958), 17–32.
[267] Littlewood, D.E., The theory of group characters, Oxford University Press, 1950.
[268] Liulevicius, Arunas, Arrows. Symmetries and representation rings, J. pure and applied Algebra

19 (1980), 259–273.
[269] Liulevicius, Arunas, Representation rings of the symmetric groups - a Hopf algebra approach,

Mat. Inst., Aarhus Univ., Denmark, 1976.
[270] Loday, Jean-Louis, Cyclic homology, Springer, 1992.
[271] Lorenz, Falko, Einführung in die Algebra II, Spektrum akademischer Verlag, 1997.



Witt vectors. Part 1 465

[272] Lorenz, Falko and Peter Roquette, The theorem of Grunwald-Wang in the setting of valuation
theory, in F.-V. Kuhlmann, S. Kuhlmann and M. Marshall, eds., Valuation theory and
its applications. Volume II, Amer. math. Soc., 2002, 175–212. Free electronic version:
<www.rzuser.uni-heidelberg.de/∼ci3>.

[273] Lothaire, M., Algebraic combinatorics on words, Cambridge Univ. Press, 2002.
[274] Lubin, Jonathan and John Tate, Formal moduli for one-parameter formal Lie groups, Bull.

Soc. math. de France 94 (1966), 49–59.
[275] Lück, Wolfgang, The Burnside ring and equivariant stable cohomotopy for infinite groups,

Fachbereich Math., Univ. Münster, Germany, 2006. arXiv:AT/0504051;
[276] Luque, Jean-Gabriel and Jean-Yves Thibon, Noncommutative symmetric functions associated

with a code, Lazard elimination, and Witt vectors, Discrete mathematics and theoretical
Computer Science 9 (2007), 59–72.

[277] Mac Lane, Saunders, Subfields and automorphism groups of p-adic fields, Ann. of Math. 40
(1939), 423–442.

[278] Mac Lane, Saunders and Friedrich Karl Schmidt, The generation of inseparable fields, Proc.
national Acad. Sci. USA 27 (1941), 583–587.

[279] Macdonald, I.G., A new class of symmetric functions, Publ. IRMA Strassbourg, Actes 20-e
Séminaire Lotharingien, IRMA, 1988, 131–171. First edition 1979.

[280] Macdonald, I.G., Polynomial functors and wreath products, J. pure and applied Algebra 18
(1980), 173–204.

[281] Macdonald, I.G., Symmetric functions and Hall polynomials, Oxford Univ. Press, 1995. First
edition 1979.

[282] Malvenuto, Claudia and Christophe Reutenauer, Plethysm and conjugation of quasi-symmetric
functions, Discrete Math. 193 (1998), 225–233.

[283] Mammone, P and A Merkurjev, On the corestriction of pn-symbol, Israel J. of Mathematics
76 (1991), 73–80.

[284] Manes, Ernie, Monads of sets, in M. Hazewinkel, ed., Handbook of algebra. Volume 3, North
Holland (imprint of Elsevier), 2003, 67–153.

[285] Matignon, M., Abelianp-groups of type (p, . . . , p) andp-adic open disks, Manuscripta Mathe-
matica 99 (1999), 93–109.

[286] McNinch, G.J., Faithful representations of SL2 over truncated Witt vectors, Journal of Algebra
265 (2003), 606–618.

[287] Mendez, M. A., The umbral calculus of symmetric functions, Advances in Mathematics 124
(1996), 207–271.

[288] Mendez, Miguel, Multisets and the combinatorics of symmetric functions, Adv. in Math. 102
(1993), 95–125.

[289] Messing, William and Thomas Zink, De Jong’s theorem on homomorphisms of p-divisible
groups, (2002).

[290] Metropolis, Nick and Gian-Carlo Rota, The cyclotomic identity, Combinatorics and algebra,
1984, 19–27. Also: [252], 390–396.

[291] Metropolis, Nick and Gian-Carlo Rota, Witt vectors and the algebra of necklaces, Adv. Math
50 (1983), 95–125. Also: [252], 359–389.

[292] Metropolis, Nick, M.L. Stein and P.R. Stein, On finite limit sets for transformations on the
unit interval, J. combinatorial Theory 15 (1973), 25–44.

[293] Michaelis, Walter, Coassociative coalgebras, in M. Hazewinkel, ed., Handbook of algebra.
Volume 3, North Holland (imprint of Elsevier), 2003, 587–788.

[294] Miller, Robert L., Necklaces, symmetries and self-reciprocal polynomials, Discrete Mathe-
matics 22 (1978), 25–33.

[295] Milne, J.S, Étale cohomology, Princeton Univ. Press, 1980.
[296] Milnor, John and Dale Husemoller, Symmetric bilinear forms, Springer, 1973.
[297] Molev, Alexander, Noncommutative symmetric functions and Laplace operators for classical

Lie algebras, Letters in math. Physics 35 (1995), 135–143.
[298] Moreau, C., Sur les permutations ciculaires distincts, Nouv. Ann. Math. 11 (1872), 309–314.



466 M. Hazewinkel

[299] Moree, Pieter, The formal series Witt transform, Max Planck Inst., Bonn, Germany, 2005.
[300] Morris, I., and C.B. Wensley, Adams operations and lambda-operations in beta-rings, Discrete

Mathematics 50 (1984), 253–270.
[301] Morris, I., and C.D. Wensley, Lambda-operations in beta-rings, Proc. Cambridge phil. Soc.

121 (1997), 247–267.
[302] Morris, Robert A., Derivations of Witt vectors with application toK2 of truncated polynomial

rings and Laurent series, J. pure and applied Algebra 18 (1980), 91–96.
[303] Mramor, Neza, Splitting necklaces, Obz. mat Fiz 40 (1993), 75–80.
[304] Nagata, Masayoshi, Local rings, Wiley, 1962.
[305] Nakamura, Tetsuo, On torsion points of formal groups over a ring of Witt vectors, Math.

Zeitschrift 193 (1986), 397–404.
[306] Nava Z., Oscar A., On the combinatorics of plethysm, J. of combinatorial Theory, series A 46

(1987), 212–251.
[307] Newman, Kenneth, Constructing sequences of divided powers, Proc. Amer. math. Soc. 31

(1972), 32–38.
[308] Newman, Kenneth, A realization of the additive Witt group, Proc. Amer. math. Soc. 76 (1979),

39–42.
[309] Newman, Kenneth, Tensor products of Witt Hopf algebras, Comm. in Algebra 6 (1976),

761–773.
[310] Nitsuma, Yasuhiro, On the extensions of Wn by G(m) over a Z(p)-algebra, Tsukuba J. of

Math. 29 (2005), 437–470.
[311] Niziol, W., Duality in the cohomology of crystalline local systems, Compositio mathematica

109 (1997), 67–97.
[312] Ochoa, Gustavo, Outer plethysm, Burnside rings and beta-rings, J. pure and appl. Algebra 55

(1988), 173–195.
[313] Ochoa, S., A complete description of the outer plethysm in R(S), Rev. Acad. cienciae Zaragoza

42 (1987), 119–122.
[314] Oh, Young-Tak, Classification of the ring of Witt vectors and the necklace ring associated

with the formal group law X+Y-qXY, Journal of Algebra 310 (2007), 325–350.
[315] Oh, Young-Tak, Generalized Burnside-Grothendieck ring functor and aperiodic ring functor

associated with profinite groups, Journal of Algebra 291 (2005), 607–648.
[316] Oh, Young-Tak, Necklace rings and logarithmic functions, Advances in Mathematics 205

(2006), 434–486.
[317] Oh, Young-Tak, Nested Witt vectors and their q-deformation, Journal of Algebra 309 (2007),

683–710.
[318] Oh, Young-Tak, R-analogue of the Burnside ring of profinite groups and free Lie algebras,

Advances in Mathematics 190 (2005), 1–46. Corrigendum: ibid. 192 (2005), 226–227.
[319] Oh, Young-Tak, q-deformation of Witt-Burnside rings, 2006. arXiv:math/0411353v3

[math.RA]. Version 2/3 of this preprint differs substantially from version 1.
[320] Pajitnov, A. V., Closed orbits of gradient flows and logarithms of non-Abelian Witt vectors,

K-Theory 21 (2000), 301–324.
[321] Pajitnov, A. V. and A. A. Ranicki, The Whitehead group of the Novikov rings, K-Theory 21

(2000), 325–365.
[322] Parmenter, M. M. and E. Spiegel, Algebraic properties of necklace rings, Communications in

Algebra 26 (1998), 1625–1632.
[323] Patras, F., La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier 43 (1993),

1067–1087.
[324] Patras, Frédéric, Lambda rings, in M. Hazewinkel, ed., Handbook of algebra. Volume 3, North

Holland (imprint of Elsevier), 2005, 961–986.
[325] Patras, Frédéric, Lambda-anneaux non commutatifs, Comm. Algebra 23 (1995), 2067–2078.
[326] Pink, Richard, Finite group schemes, ETH Zürich, Switzerland, 2005.
[327] Plyushchay, Mikhail, S., Deformed Heisenberg algebra with reflection, 1997. arXiv:hep-

th/901091v1.



Witt vectors. Part 1 467

[328] Pop, Horia, Noncommutative p-adic rings and Witt vectors with coefficients in a separable
algebra, J. pure and applied Algebra 48 (1987), 271–279.

[329] Prasad, Lakshman and S.S. Iyengar, An asymptotic equality for the number of necklaces in a
shuffle exchange network, Theoretical Comp. Sci. 102 (1992), 355–365.

[330] Puri, Y. and T. Ward, Arithmetic and growth of periodic orbits, J. of integer Sequences 4
(2001), Article 01.2.1.

[331] Ravenel, Douglas, C., Complex cobordism and stable homotopy groups of spheres, Academic
Press, 1986. Appendix 2.

[332] Reutenauer, C., On symmetric functions related to Witt vectors and the free Lie algebra,
Advances in Mathematics 110 (1995), 234–246.

[333] Reutenauer, C., Sur des fonctions symmétriques reliées aux vecteurs de Witt, Comptes Rendus
de l’Academie Des Sciences, Série I Mathématique 312 (1991), 487–490.

[334] Reutenauer, Christophe, Free Lie algebras, Oxford University Press, 1993.
[335] Reutenauer, Christophe, Mots circulaires et polynômes irréductibles, Ann. Sci. Math. Québec

12 (1988), 275–285.
[336] Roberts, Leslie G., The ring of Witt vectors, in A. V. Geramita, ed., Curves seminar at Queen’s.

Volume XI. Queen’s papers pure appl. Math. 105, Queen’s University, Kingston, Ontario,
Canada, 1997, 3–366.

[337] Ronco, M., Free Lie algebra and lambda-ring structure, Bulletin of the Australian Mathemat-
ical Society 50 (1994), 373–382.

[338] Roquette, Peter, Class field theory in characteristic p, its origin and development, in K.
Miyake, ed., Class field theory - its centenary and prospects, Math Soc. of Japan, 2001,
549–631. Free electronic version (of 23 July 2003): <www.rzuser.uni-heidelberg.de/∼ci3>.

[339] Roquette, Peter, History of valuation theory. Part I, in F.-V. Kuhlmann, S. Kuhlmann and
M. Marshall, eds., Valuation theory and its applications. Volume I, Amer. math. Soc., 2002,
291–356. Free electronic version: <www.rzuser.uni-heidelberg.de/∼i3>.

[340] Rosas, Mercedes H. and Gian-Carlo Rota, A combinatorial overview of the Hopf algebra of
macMahon symmetric functions, Annals of Combinatories 6 (2002), 195–207.

[341] Rota, Gian-Carlo and Joel A Stein, Plethystic Hopf algebras, Proc. national Acad. Sci. USA
91 (1994), 13057–13061.

[342] Roux, Bernard, Hautes sigma-dérivations et anneaux de valuation discrète non commutatifs
en charactéristique nulle, Compt. Rend. Acad. Sci. Paris, Sér. I Math. 303 (1986), 943–946.

[343] Russell, Peter, Continuous derivations of the ring of Witt vectors, J. pure and applied Algebra
6 (1975), 259–263.

[344] Rymer, N. W., Power operations on the Burnside ring, J. London math. Soc. 15 (1977), 75–80.
[345] Ryser, H. J., Combinatorial properties of matrices of zeros and ones, Canadian Journal of

Mathematics 9 (1957), 371–377.
[346] Saibi, M., Upper bounds of modulo p(n) trigonometric sums, Compositio mathematica 116

(1999), 311–319.
[347] Saïdi, Mohammed, On the degeneration of étale Z/pZ and Z/p2Z-torsors in equal character-

istic p > 0, Hiroshima math. J. 37 (2007), 315–341.
[348] Scanlon, T., Local Andre-Oort conjecture for the universal abelian variety, Inventiones

mathematicae 163 (2006), 191–211.
[349] Scharf, Thomas and Jean-Yves Thibon, A Hopf algebra approach to inner plethysm, Adv. in

Math. 104 (1994), 30–58.
[350] Scharf, Thomas and Jean-Yves Thibon, On Witt vectors and symmetric functions, Algebra

Colloquium 3 (1996), 231–238.
[351] Scharf, Thomas and Jean-Yves Thibon, Über die Adamsoperatoren des inneren Plethysmus,

Sitz. ber. Math. -Nat. wiss. KL., Akad. Gem.nütz. Wiss. Erfurt 4 (1992), 125–138.
[352] Schedler, Travis, A Hopf algebra quantizing a necklace Lie algebra canonically associated to

a quiver, 2004. arXiv:math/0406200v2 [math.QA].
[353] Schmalz, Bernd, Verwendung von Untergruppenleitern zur Bestimmung von Doppelneben-

klassen, Bayreuther Mathematische Schriften 31 (1990), 109–143.



468 M. Hazewinkel

[354] Schmid, Hermann Ludwig, Zur Arithmetik der Zyklischen p-Körper, J. reine und angew.
Math. (Crelle) 176 (1937), 161–167.

[355] Schmid, Hermann Ludwig, Zyklische algebraische Funktionenkörper vom Grade pn über
endlichen Konstantenkörper der Charakteristik p, J. reine und angew. Math. (Crelle) 175
(1936), 108–123.

[356] Schmid, Hermann Ludwig and Ernst Witt, Unverzweigte abelsche Körper vom Exponenten pn

über einem algebraischen Funktionenkörper der Charakteristik p, J. reine und angew. Math.
(Crelle) 176 (1937), 168–173.

[357] Schmidt, Friedrich Karl, Die Theorie der Klassenkörper über einem Körper algebraischer
Funktionen in einer Unbestimmten und mit endlichem Koeffizientenbereich, Sitz.-Ber. phys.
med. Soz. 62 (1931), 267–284.

[358] Schoeller, Colette, Groupes affines, commutatifs, unipotents sur un corps non parfait, Bull.
de la Soc. math. de France 100 (1972), 241–300.

[359] Schröer, S., Some Calabi-Yau threefolds with obstructed deformations over the Witt vectors,
Compositio mathematica 140 (2004), 1579–1592.

[360] Schröer, Stefan, The T1-lifting theorem in positive characteristic, J. algebraic Geometry 12
(2003), 699–714.

[361] Schur, Issai, Über eine Klasse von Matrizen die such eine gegebenen Matrix zuordnen lassen.
Dissertation, Berlin, 1901. Gesammelte Abhandlungen 4, 1–72.

[362] Sekiguchi, Koji, The Lubin-Tate theory for formal power series fields with finite coefficient
fields, J. of Number Theory 18 (1984), 360–370.

[363] Sekiguchi, T. and N. Suwa, A note on extensions of algebraic and formal groups III, Tôhoku
mathematical Journal 49 (1997), 241–257.

[364] Sekiguchi, Tsutom and Noriyuki Suwa, A note on extensions of algebraic and formal groups,
V, Japan J. of Math. 29 (2003), 221–284.

[365] Sekiguchi, Tsutomu, On the deformations of Witt groups to tori, II, J. of Algebra 138 (1991),
273–297.

[366] Sekiguchi, Tsutomu and Noriyuki Suwa, Théories de Kummer-Artin-Schreier-Witt, Comp.
Rendus Acad. Sci. Paris, Série I Math. 319 (1994), 105–110.

[367] Serre, J.-P., Corps locaux, Hermann, 1968. Chap. II, $6.
[368] Shay, P. Brian, Bipolynomial Hopf algebras H*(BSU; Z) et al., J. pure and applied Algebra

9 (1977), 163–168.
[369] Shay, P. Brian, Erratum: Representations for p-typical curves, J. of Algebra 51 (1978),

326–334. This article replaces the earlier one in J. of Algebra 45.
[370] Siebeneicher, Christian, Lambda-ring Strukturen auf dem Burnsidering der Permetations-

darstellungen einer endlichen Gruppe, Math. Zeitschrift 146 (1976), 223–238.
[371] Silverman, J. H., N. P. Smart and F. Vercauteren, An algebraic approach to NTRU (q=2(n)) via

Witt vectors and overdetermined systems of nonlinear equations, in Security in Communication
Networks, Springer-Verlag Berlin, Berlin, 2005, 278–293.

[372] Solomon, Louis, The Burnside algebra of a finite group, J. of combinatorial Theory 2 (1967),
603–615.

[373] Solomon, Louis, A Mackey formula in the group ring of a Coxeter group, J. of Algebra 41
(1976), 255–268.

[374] Stienstra, Jan, Marius van der Put and Bert van der Marel, On p-adic monodromy, Math.
Zeitschrift 208 (1991), 309–325.

[375] Strehl, V., Cycle counting for isomorphism types of endofunctions, Bayreuther math. Schriften
40 (1992), 153–167.

[376] Sullivan, John Brendan, Products of Wit groups, Illinois Journal of Mathematics 19 (1975),
27–32.

[377] Suwa, Noriyuki, Hodge-Witt cohomology of complete intersections, J. math. Soc. of Japan 45
(1993), 295–300.

[378] Takeuchi, Mitsuhiro, On the structure of commutative affine group schemes over a nonperfect
filed, Manuscripta mathematica 16 (1975), 101–136.



Witt vectors. Part 1 469

[379] Tall, D. O. and G. C. Wraith, Representable functors and operations on rings, Proc. London
math. Society 20 (1970), 619–643.

[380] Teichmüller, Oswald, Diskret bewertete perfekte Körper mit unvollkommenem Rest-
klassenkörper, J. reine und angew. Math. (Crelle) 176 (1937), 141–156.

[381] Teichmüller, Oswald, p-Algebren, Deutsche Math. 1 (1936), 362–388.
[382] Teichmüller, Oswald, Über die Struktur diskret bewerteter perfekter Körper, Nachr. Ges.

Wiss. Göttingen N.F. 1 (1936), 151–161.
[383] Terakawa, H., On the Kawamata-Viehweg vanishing theorem for a surface in positive

characteristic, Archiv der Mathematik 71 (1998), 370–375.
[384] Thibon, J.-Y and B.-C.-V. Ung, Quantum quasisymmetric functions and Hecke algebras, J.

Phys. A: math. gen. 29 (1996), 7337–7348.
[385] Thibon, Jean-Yves, The inner plethysm of symmetric functions and some of its applications,

Bayreuther math. Schriften 40 (1992), 177–201.
[386] Thibon, Jean-Yves, Lectures on noncommutative symmetric functions, in J. R. Stembridge,

J.-Y. Thibon and M. A. A. v. Leeuwen, eds., Interaction of combinatorics and representation
theory, Math. Soc. of Japan, 2001, 39–94.

[387] Thomas, Laura, Ramification groups in Artin-Schreier-Witt extensions, J. des théorie des
nombres de Bordeaux 17 (2005), 689–720.

[388] tom Dieck, Tammo, The Artin-Hasse logarithm for lambda-rings, in G. Carlsson, R. L. Cohen,
H. R. Miller and D. C. Ravenel, eds., Algebraic topology. Proceedings of an international
conference, Arcata, California, 1986, Springer, 1989, 409–415.

[389] tom Dieck, Tammo, Der Artin-Hasse-Logarithmus für lambda-Ringe, Math. Gottingensis,
Schriftenr. Sonderforschungsbereich Geom. Anal. 47 (1986).

[390] tom Dieck, Tammo, Transformation groups, Walter de Gruyter, 1987.
[391] tom Dieck, Tammo, Tranformation groups and representation theory, Springer, 1979.
[392] tom Dieck, Tammo and Ted Petrie, Geometric modules over the Burnside ring, Inventiones

mathematicae 47 (1978), 273–287.
[393] Tyc, A, Witt groups of commutative formal groups, Bull. de l’Acad. Pol. des Sci. Sér. des Sci.

Math., Nat. et Phys. 28 (1975), 1233–1340.
[394] Uehara, Hiroshi, Essam Abotteen and Man-Wai Lee, Outer plethysms and lambda-rings,

Arch. Math. 46 (1986), 216–224.
[395] Uehara, Hiroshi and Robert A DiVall, Hopf algebra of class functions and inner plethysms,

Hiroshima math. J. 12 (1982), 225–244.
[396] Vallejo, Ernesto, The free beta-ring on one generator, J. pure and applied Algebra 56 (1993),

95–108.
[397] Vallejo, Ernesto, Polynomial operations from Burnside rings to representation functors, J.

pure and appl. Algebra 65 (1990), 163–190.
[398] van den Dries, L., On the elementary theory of rings of Witt vectors with a multiplicative set

of representatives for the residue held, Manuscripta Mathematica 98 (1999), 133–137.
[399] Varadarajan, K., Aperiodic rings, necklace rings and Witt vectors - II, Proc. Indian Acad. Sci.

99 (1989), 7–15.
[400] Varadarajan, K., Verschiebung and Frobenius operators, Proc Indian Acad Sci (Math Sci) 100

(1990), 37–43. Erratum: ibid, p. 303.
[401] Varadarajan, K. and K Wehrhahn, Aperiodic rings, necklace rings and Witt vectors, Adv.

Math. 81 (1990), 1–29.
[402] Veldsman, S., Chain conditions on convolution rings, Communications in Algebra 35 (2007),

371–388.
[403] Veldsman, S., Convolution rings, Algebra Colloquium 13 (2006), 211–238.
[404] Veldsman, S., Necklace rings and their radicals, Mathematica Pannonica 12 (2001), 269–289.
[405] Veldsman, S., The radical theory of convolution rings, Bull. Acad. de Stiinte a Republicii

Moldava. Mathematica 1 (2004), 98–115.
[406] Vidal, Robert, Anneaux de valuation discrète complets non commutatifs, Transactions of the

American mathematical Society 267 (1981), 65–81.



470 M. Hazewinkel

[407] Voloch, J. F. and J. L. Walker, Homogeneous weights and exponential sums, Finite Fields and
their Applications 9 (2003), 310–321.

[408] Vostokov, S. V. and A. N. Gurevich, A relationship between the Hilbert and the Witt symbols,
J of mathematical Sciences 89 (1998), 1108–1112.

[409] Webb, Peter, A guide to Mackey functors, in M. Hazewinkel, ed., Handbook of Algebra.
Volume 2, North Holland (imprint of Elsevier), 2000, 805–836.

[410] Weinstein, Felix V., Filtering bases: a tool to compute cohomologies of abstract subalgebras
of the Witt algebra, in D. Fuchs, ed., Unconventional Lie algebras, Amer. math. Soc., 1993,
155–216.

[411] Weston, T., Unobstructed modular deformation problems, American Journal of Mathematics
126 (2004), 1237–1252.

[412] Whaples, G., Generalized local class field theory III: second form of the existence theorem.
Structure of analytic groups, Duke math. J. (1954), 575–581.

[413] Widiger, A, Nichtprime Cohen-Ringe, Period. math. Hungar. 12 (1981), 141–160.
[414] Wilkerson, Clarence, Lambda rings, binomial domains, and vector bundles over CP∞,

Comm. Algebra 10 (1982), pp. 311–328.
[415] Witt, Ernst, Der Existenzsatz für abelsche Funktionenkörper, J reine angew. Math. (= Crelle)

173 (1935), 43–51. Also in [238], pp. 69–77.
[416] Witt, Ernst, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebenen

Gruppe der Ordnung pn, J reine angew. Math. (= Crelle) 174 (1936), 237–245. Also in [238],
pp. 120–128.

[417] Witt, Ernst, p-Algebren und Pfaffsche Formen, Abh. math. Sem. Hamburg 22 (1958), 308–315.
Also in [238], pp. 133–141.

[418] Witt, Ernst, Treue Darstellung Liescher Ringe, J. reine und angew. Math. (Crelle) 177 (1937),
152–160.

[419] Witt, Ernst, Vektorkalkül und Endomorphismen der Einspotenzreihengruppe, in I. Kersten,
ed., Ernst Witt, Springer, 1969, 157–164. Originally unpublished. Notes for a colloquium
Lecture in Hamburg, June 1964; mailed by Witt to Peter Gabriel, Sept. 1969.

[420] Witt, Ernst, Zyklische Körper und Algebren der Charakteristik p von Grad pn. Struktur diskret
bewerteter Körper mit vollkommenem Restklassenköper der Charakteristik p, J reine angew.
Math. 176 (1937), 126–140. Also in [238], pp. 142–156.

[421] Yau, Donald, Cohomology of lambda-rings, J. of Algebra 284 (2005), 37–51.
[422] Yau, Donald, Deformation theory of modules, Comm. Algebra 33 (2005), 2351–2359.
[423] Yau, Donald, Moduli space of filtered lambda-ring structures over a filtered ring, 2003.
[424] Yoshida, Tomoyuki, The generalized Burnside ring of a finite group, Hokkaido math. J. 19

(1990), 509–574.
[425] Zelevinsky, A V, Representations of the finite classical groups, Springer, 1980.
[426] Zhang, Hechun, Witt-like algebras and their q-analogues, Linear and multilinear Algebra 42

(1997), 221–231.

Additional references.
[427] Anderson, Greg W., t-Motives, Duke math. J. 53 (1986), 457–502.
[428] Azymaya, Goro, On maximally central algebras, Nagoya math. J. 2 (1951), 119–150.
[429] Baker, T. H., Symmetric function products and plethysms and the boson-fermion correspon-

dence, J. Physics A: math. gen. 28 (1995), 589–606.
[430] Baldassari, Francesco, Una funzione intera p-adica a valori interi, Ann. della Scuola norm.

sup. di Pisa, Classe di Scienze (4) 2 (1975), 321–331.
[431] Berthelot, Pierre, Théorie de Dieudonné sur un anneau de valuation parfait, Ann. scient. de

l’École norm. sup. (4) 13 (1980), 225–268.
[432] Berthelot, Pierre, Cohomologie rigide et théorie des D-modules, in F. Baldassarri, S. Bosch,

B. Dwork, eds., p-adic analysis, Springer, 1990, 80–124.
[433] Blass, Andreas, Natural endomorphisms of Burnside rings, Trans. Amer. math. Soc. 253

(1979), 121–137.



Witt vectors. Part 1 471

[434] Bleher, Frouke and Ted Chinburg, Operations on ring structures preserved by normalized
automorphisms of group rings, J. of Algebra 215 (1999), 531–542.

[435] Candilera, Maurizio and Valentino Cristante, Witt realization of p-adic Barsotti-Tate groups,
in Valentino Cristante and William Messing, eds., Barsotti symposium in algebraic geometry,
Acad. Press, 1994, 65–123.

[436] Candilera, Maurizio and Valentino Cristane, Periods and duality of p-adic Barsotti-Tate
groups, Ann. della Scuola norm. sup. di Pisa, Classe di Scienze (4) 22 (1995), 545–593.

[437] Candilera, Maurizio, Vettori di Witt ed anelli di Fontaine, Dip. Mat. Univ. Padova, preprint.
[438] Candilera, Maurizio, A note about p-adic logarithms, Dip. Mat. Univ. Padova, preprint.
[439] Cline, Edward, Brian Parshall and Leonard Scott, Cohomology, hyperalgebras, and

representations, J. of Algebra 63 (1980), 98–123.
[440] Cristante, Valentino, Theta functions and Barsotti-Tate groups, Ann. della Scuola norm. sup.

di Pisa, Classe di Scienze (4) 7 (1980), 181–215.
[441] Cristante, Valentino, Witt realization of p-adic Barsotti-Tate groups; some applications, in

Valentino Cristante and William Messing, eds., Barsotti symposium in algebraic geometry,
Acad. Press, 1994, 205–216.

[442] Devinatz, Ethan, S. and Michael J. Hopkins, The action of the Morava stabilizer group on the
Lubin-Tate Moduli space of lifts, Amer. J. of Math. 117 (1995), 669–710.

[443] Diarra, Bertin, Point de vue séries formelles des nombres p-adiques, preprint, Lab. de Math.
pures, Univ. Blaise Pascal, Clairmont-Ferrand, France.

[444] Drinfel’d, V. G., Elliptic modules, Math. USSR Sbornik 23 (1974), 561–592.
[445] Ekedahl, Torsten, Duality for the de Rham-Witt complex, preprint, Dep. Math., Chalmers

Univ. Techn. 1982.
[446] Fontaine, Jean-Marc, Le corps des périodes p-adiques, in Jean-Marc Fontaine, ed., Périodes

p-adiques, Soc. math. de France, 1994, 59–111. Avec un appendice par Pierre Colmez.
[447] Fontaine, Jean-Marc, Cohomologie de de Rham, cohomologie cristalline et réprésentations

p-adiques, in Algebraic geometry Tokyo-Kyoto, Springer 1983, 86–108.
[448] Fontaine, Jean-Marc, Sur certains types de réprésentations p-adiques du groupe de Galois

d’un corps local; construction d’un anneau de Barsotti-Tate, Annals of Math. 115 (1982),
520–577.

[449] Greenberg, Marvin J., Algebraic rings, Trans. Amer. math. Soc. 111 (1964), 472–481.
[450] Greenberg, Marvin J., Schemata over local rings, Ann. of Math. (2) 73 (1961), 624–648.
[451] Hesselholt, Lars and Ib Madsen, on the de Rham-Witt comples in mixed characteristic,

preprint, Univ. of Åarhus, 2002.
[452] Hesselholt, Lars and Ib Madsen, Cyclic polytopes and the K-theory of truncated polynomial

algebras, Inventiones math. 130 (1997), 73–97.
[453] Izhboldin, O. T., On the torsion subgroup of Milnor’s K-groups, Soviet Math. Dokl. 35 (1987),

493–495.
[454] Kirkman, E, C. Procesi and L. Small, A q-analog for the Vitasoro algebra, Comm. in Algebra

22 (1994), 3755–3774.
[455] Kurihara, Masato, Abelian extensions of an absolutely unramified local field with general

residue field, Inventiones math. 93 (1988), 451–480.
[456] Langer, Andreas and Thomas Zink, De Rham - Witt cohomology and displays, Documenta

math. 12 (2007), 147–191.
[457] Lazarev, A., Deformations of formal groups and stable homotopy theory, Topology 36 (1987),

1317–1331.
[458] Moore, John C. and Larry Smith, Hopf algebras and multiplicative fibrations I, Amer. J. of

Math. 90 (1968), 752–780.
[459] Moore, John C. and Larry Smith, Hopf algebras and multiplicative fibrations II, Amer. J. of

Math. 90 (1968), 1113–1150.
[460] Oort, Frans, Lifting algebraic curves, Abelian varieties, and their endomorphisms to charac-

teristic zero, in Spencer J. Bloch, ed., Algebraic geometry Bowdoin 1985, Amer. math. Soc.,
1987, 165–195.



472 M. Hazewinkel

[461] Oort, Frans and David Mumford, Deformations and liftings of finite, commutative group
schemes, Inventiones math. 5 (1968), 317–334.

[462] Pajitnov, A. V., Closed orbits of gradient flows and logarithms of non-Abelian Witt vectors,
2000. arXiv:math.DG/9908010.

[463] Schneider, Peter, Arithmetic of formal groups and applications I: universal norm subgroups,
Inventiones math. 87 (1987), 587–602.

[464] Schoeller, Colette, F-H-algèbres sur un corps, C. R. Acad. Sci. Paris Série A 265 (1967),
655–658.

[465] Schoeller, Colette, Étude de la catégorie des algèbres de Hopf commutatives connexes sur un
corps, Manuscripta math. 3 (1970), 133–155.

[466] Sekiguchi, T., Frans Oort and N. Suwa, On the deformation of Artin - Schreier to Kummer,
Ann. Sci. de l’École norm. sup. (4) 22 (1989), 345–375.

[467] Serre, Jean-Pierre, Exemples de variétés projectives en charactéristique p non relevables en
charactéristique zéro, Proc. national Acad. Sci. USA 47 (1961), 108–109.

[468] Yau, Donald, Unstable K-cohomology algebra is filtered λ-ring, Int. J. of Math. and math.
Sci.10 (2003), 593–405.

[469] Yau, Donald, On λ-rings and topological realization, Int. J. of Math. and math. Sci.13 (2006),
1–21.

[470] Zhang, Qifan, Polynomial functions and permutation polynomials over some finite commutative
rings, J. Number Theory 105 (2004), 192–202.

[471] Zhang, Qifan, Witt rings and permutation polynomials, Algebra Colloquium 12 (2005),
161–169.



Crystal Graphs and the Combinatorics of
Young Tableaux

Jae-Hoon Kwon
Department of Mathematics, University of Seoul, Seoul 130-743, Korea

E-mail: jhkwon@uos.ac.kr

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2. Quantum group and crystal base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2.1. Quantum group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2.2. Crystal base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

3. Crystals and Young tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.1. Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.2. Crystal of words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
3.3. Crystal of a Young tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
3.4. Crystal of a rational Young tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

4. Crystal equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.1. Knuth equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.2. Robinson–Schensted correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
4.3. Littlewood–Richardson rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

5. Bicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
5.1. Robinson–Schensted–Knuth correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
5.2. Dual Robinson–Schensted–Knuth correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
5.3. Decomposition of Fock space representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

HANDBOOK OFALGEBRA, VOL. 6
Edited by M. Hazewinkel
Copyright © 2009 by Elsevier B.V. All rights reserved
DOI: 10.1016/S1570-7954(08)00208-8

473



474 J.-H. Kwon

1. Introduction

The quantum group Uq(g) of a symmetrizable Kac–Moody algebra g [17] is a
q-analogue of the universal enveloping algebra U(g), which was introduced inde-
pendently by Drinfel’d [7] and Jimbo [15], and it has been one of the most important
objects in representation theory in connection with many areas of mathematics and
mathematical physics.
In [21, 22], Kashiwara introduced a crystal base of an integrable representation

of Uq(g). A crystal base is usually understood as a basis at q = 0, or a crystallized
basis because the parameter q in the quantum group Uq(g) corresponds to the abso-
lute temperature in certain exactly solvable lattice models in statistical mechanics.
Remarkably, to a crystal base, we can associate a unique colored oriented graph called
a crystal graph, which reflects the combinatorial structure of a given integrable repre-
sentation.Therefore, with crystal base theory,many problems in representation theory
are reduced to problems in combinatorics, and also certain combinatorial results nat-
urally obtain representation theoretical meanings (interpretations).
On the other hand, the notion of Young tableaux together with its combinatorics

plays an essential role in the representation theory of the general linear Lie algebra gln
or the symmetric group Sk. There are many beautiful algorithms by which we under-
stand the combinatorics ofYoung tableaux, based on the Schensted bumping rule, the
Schützenberger sliding rule, and the Knuth equivalence.Among them, the Robinson–
Schensted–Knuth correspondence and the Littlewood–Richardson rule are the most
important ones closely related to representation theory (see, for example, [10,41,43]).
The purpose of this survey article is to give an exposition on the relations between

the classical combinatorics of Young tableaux and the crystal graphs of integrable
Uq(gln)-modules, as an introduction to crystal base theory for those who are not
familiar with this area (see also [5] that deals with similar topics, but is written from
a different point of view). This article is organized as follows. In Section 2, we recall
the definition of the quantum group Uq(gln), its integrable representations, and their
crystal bases. In Section 3, we review the Kashiwara and Nakashima description of
the crystal graphs of integrable highest weight Uq(gln)-modules [26]. In Section 4,
we explain the Robinson–Schensted correspondence and the Littlewood–Richardson
rule in the context of crystal graphs. Our explanation is based on the crucial fact
that the Knuth equivalence on words is a special case of the crystal equivalence. In
Section 5, we discuss the Robinson–Schensted–Knuth correspondence in a similar
vein, and give another proof of it using the notion of crystals. We also give some
applications to combinatorics and representation theory.

2. Quantum group and crystal base

2.1. Quantum group

For n ≥ 2, let Pn =⊕
1≤i≤n Zεi be the free abelian group with a basis {ε1, . . . , εn}1,

called the weight lattice. There is a natural symmetric bilinear form ( , ) on Pn given

1 ε1, . . . , εn are formal symbols.
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by (εi, εj) = δij for 1 ≤ i, j ≤ n. Let 〈 , 〉 denote the canonical pairing on P∨n × Pn,
where P∨n = Hom(Pn,Z) is the dual weight lattice. Set In = {1, . . . , n− 1}. Then,
for i ∈ In the simple root αi is given by αi = εi − εi+1, and the simple coroot hi is
defined to be the unique element inP∨n such that 〈hi, λ〉 = (αi, λ) for all λ ∈ Pn. Note
that

(〈hj, αi〉)i,j∈In = (
(αi, αj)

)
i,j∈In is the Cartan matrix of An−1 type (see [17]).

Let gln be the general linear Lie algebra over a field K of characteristic 0 and let
q be an indeterminate. We define Uq(gln) to be the associative algebra over K(q)
with 1 generated by qh, ei, and fi (h ∈ P∨n and i ∈ In) subject to the following
relations;

q0 = 1, qh+h = qhqh′ ,
qheiq

−h = q〈h,αi〉ei, qhfiq
−h = q−〈h,αi〉fi,

eifj − fjei = δij q
hi − q−hi
q− q−1 ,

eiej = ejei, fifj = fjfi, if |i− j| > 1,
eje

2
i − (q+ q−1)eiejei + e2i ej = 0,

fjf
2
i − (q+ q−1)fifjfi + f 2i fj = 0, if |i− j| = 1,

for h, h′ ∈ P∨n and i, j ∈ In. We call Uq(gln) the quantized universal enveloping
algebra of gln (or simply, the quantum group of gln).
Also, we defineUq(sln) to be the subalgebra ofUq(gln) generated by ei, fi and q

±hi
for i ∈ In. Note that for each i ∈ In, Uq(gln)i, the subalgebra of Uq(gln) generated
by ei, fi, q±hi is isomorphic to Uq(sl2).
A left Uq(gln)-moduleM is called integrable if ei and fi act locally nilpotently on

M. LetOint be the category of integrableUq(gln)-modulesM satisfying the following
conditions;

(1) M has a weight space decomposition, that is,M =⊕
λ∈Pn Mλ, where

Mλ = { u ∈ M | qhu = q〈h,λ〉u for all h ∈ P∨n },
and dimK(q) Mλ <∞ for λ ∈ Pn (λ is called a weight ofM ifMλ 
= {0}).

(2) The weights of M are dominated by a finite number of elements in Pn, that
is, there exist λ1, . . . , λr ∈ Pn such that every weight of M is contained in
λk −∑

i∈In Z≥0αi for some 1 ≤ k ≤ r.
Note that any M in Oint is a direct sum of finite dimensional representations of
Uq(gln)i � Uq(sl2) for each i ∈ In.
The representation theory ofUq(gln) is almost parallel to that of its Lie algebra gln.

Set P+n = { λ ∈ Pn | 〈hi, λ〉 ≥ 0 for i ∈ In }. An element in P+n is called a dominant
integral weight. We may identify Pn with Zn, and hence P+n with

Zn+ = { λ = (λ1, . . . , λn) ∈ Zn | λi ≥ λi+1 for 1 ≤ i ≤ n− 1 }.
There is a partial ordering≤ onPn such thatμ ≤ λ if and only if λ−μ ∈∑

i∈In Z≥0αi
for λ,μ ∈ Pn.
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For λ ∈ P+n , let V(λ) be the Uq(gln)-module generated by vλ
2 subject to the

following relations;

qhvλ = q〈h,λ〉vλ, eivλ = 0, f
1+〈hi,λ〉
i vλ = 0,

for h ∈ P∨n and i ∈ In. Then V(λ) is an irreducibleUq(gln)-module, and anyUq(gln)-
module M in Oint is completely reducible with irreducible summands that are iso-
morphic to V(λ) for some λ ∈ P+n , that is, M is isomorphic to

⊕
λ∈P+n V(λ)

⊕mλ for
some mλ ∈ Z≥0 (see [36]). We call V(λ) the irreducible highest weight module with
highest weight λ, and vλ the highest weight vector, since for each weight μ of V(λ),
we have μ ≤ λ.
The quantum group Uq(gln) has a Hopf algebra structure, where the comultiplica-

tion � : Uq(gln)→ Uq(gln)⊗ Uq(gln) is given by

�qh = qh ⊗ qh,
�ei = ei ⊗ q−hi + 1⊗ ei,
�fi = fi ⊗ 1+ qhi ⊗ fi,

for h ∈ P∨n and i ∈ In. So, we can define a Uq(gln)-module structure on the tensor
product of twoUq(gln)-modules. In particular, the categoryOint is closed under tensor
product.

Remark 2.1. For more detailed expositions on quantum groups of symmetrizable
Kac–Moody algebras and their representations, see the books [3, 12, 14, 36].

2.2. Crystal base

Let us briefly review the crystal base theory developed byKashiwara (see also [24] for
a general review on crystal bases). ForM ∈ Oint and i ∈ In,M is a direct sum of finite
dimensional irreducible representations of Uq(gln)i. Then each u ∈ Mλ (λ ∈ Pn) can
be written uniquely as

u =
∑

k≥0,−〈hi,λ〉
f
(k)
i uk,

with eiuk = 0 for all k ≥ 0, where

[a] = qa − q−a
q− q−1 (a ≥ 1), [k]! =

k∏
a=1
[a], f

(k)
i = 1

[k]!f
k
i .

Then we define

ẽiu =
∑
k≥1

f
(k−1)
i uk, f̃iu =

∑
k≥0

f
(k+1)
i uk.

2 More precisely, V(λ) = Uq(gln)/
(∑

i Uq(gln)ei +
∑
h Uq(gln)(q

h − q〈h,λ〉)+∑
i Uq(gln)f

1+〈hi,λ〉
i

)
, and vλ

is the image of 1 ∈ Uq(gln) in V(λ).
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The operators ẽi, f̃i : M → M are called Kashiwara operators.
Let A be the subring of K(q) that consists of rational functions regular at q = 0.

A free A-module L is called a crystal lattice ofM if

(1) L is an A-lattice ofM, that is,M = K(q)⊗A L,
(2) L =⊕

λ∈Pn Lλ, where Lλ = Mλ ∩ L,
(3) ẽiL ⊂ L and f̃iL ⊂ L for i ∈ In.

Note that the Kashiwara operators also induce K-linear endomorphisms on L/qL.
Now, a crystal base ofM is a pair (L, B) satisfying the following conditions;

(1) L is a crystal lattice ofM,
(2) B is a K-basis of L/qL,
(3) B =⊔

λ∈Pn Bλ, where Bλ = (Lλ/qLλ) ∩ B,
(4) ẽiB ⊂ B ∪ {0} and f̃iB ⊂ B ∪ {0} for i ∈ In.
(5) for b, b′ ∈ B and i ∈ In, f̃ib = b′ if and only if ẽib′ = b.

It is not difficult to see that dimK(q) Mλ = |Bλ| for λ ∈ Pn. Moreover, to a crystal
base (L, B) of M, we can associate an In-colored oriented graph, where the set of
vertices is given by B and the colored arrows are determined by

b
i→ b′ if and only if b′ = f̃ib (i ∈ In).

We call B together with the In-colored oriented graph structure the crystal
graph ofM.

Theorem 2.2 (Existence of a crystal base [21, 22]). For λ ∈ P+n , let
L(λ) =

∑
r≥0, i1,...,ir∈In

Af̃i1 . . . f̃ir vλ,

B(λ) = { f̃i1 . . . f̃ir vλ (mod qL(λ)) | r ≥ 0, i1, . . . ir ∈ In }\{0}.
Then (L(λ), B(λ)) is a crystal base of V(λ).

It follows directly from the theorem aforementioned that any M ∈ Oint has a
crystal base. That is, if M is isomorphic to

⊕
λ∈P+n V(λ)

⊕mλ for some mλ ∈ Z≥0,
then a crystal base ofM can be given by (

⊕
λ∈P+n L(λ)

⊕mλ,
⊔
λ∈P+n B(λ)

⊕mλ).

Theorem 2.3 (Uniqueness of a crystal base [21,22]). ForM ∈ Oint, let (L, B) be a
crystal base ofM. Then there exists an isomorphism of Uq(gln)-modules

ψ : M −→
⊕
λ∈P+n

V(λ)⊕mλ

for some mλ ∈ Z≥0 (λ ∈ P+n ) such that ψ restricts to an A-linear isomorphism from
L to

⊕
λ∈P+n L(λ)

⊕mλ , and the induced K-linear map ψ gives a bijection from B to⊔
λ∈P+n B(λ)

⊕mλ .
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Note that the crystal graphB(λ) is connected, and any element inB(λ) is generated
by the highest weight element vλ = vλ + qL(λ) ∈ L(λ)/qL(λ), so that for any
b ∈ B(λ), we have b = f̃i1 . . . f̃ir vλ for some i1, . . . , ir ∈ In. Also, the highest
weight element in B(λ) can be characterized by the fact that ẽivλ = 0 for all i ∈ In.
By the uniqueness theorem, there exists a unique In-colored oriented graph B

associated with eachM ∈ Oint, where each connected component in B is isomorphic
to B(λ) for some λ ∈ P+n as an In-colored oriented graph.

Example 2.4. Let us consider crystal bases of integrable Uq(sl2)-modules. Suppose
that Uq(sl2) is generated by e, f , and q±h. Each dominant integral weight is deter-
mined by its value on h, which is a nonnegative integer. For m ≥ 0, let V(m) be the
irreducible highest weight module with highest weight m, and vm the highest weight
vector. Then dimK(q) V(m) = m+ 1 with a basis { vm, fvm, . . . , fmvm }. If we put

L(m) =
⊕
0≤k≤m

Af (k)vm, B(m) = { f (k)vm | 0 ≤ k ≤ m },

then (L(m), B(m)) is a crystal base of V(m). The associated crystal graph of V(m) is
given by

vm −→ fvm −→ · · · −→ f (m)vm.

Note that the weight of f (k)vm is m− 2k for 0 ≤ k ≤ m.

ForM ∈ Oint, let (L, B) be a crystal base ofM. For each i ∈ In, (L, B) is also a
crystal base of M as a representation of Uq(gln)i � Uq(sl2). Hence, the connected
component of each b in B, as the crystal graph of a Uq(sl2)-module, is equal to the
crystal graph of V(m) for some m ≥ 0, called the i-string of b. Set

εi(b) =max{ k ∈ Z≥0 : ẽki b 
= 0 },
ϕi(b) =max{ k ∈ Z≥0 : f̃ ki b 
= 0 },

which denote the number of i-arrows coming into b and going out of b in the i-string
of b, respectively3. Then we have

ϕi(b)− εi(b) = 〈hi,wt(b)〉,
where wt(b) denotes the weight of b.
One of the most important features of a crystal base is that it has a nice behavior

under tensor product, which can be stated as follows;

Theorem 2.5 (Tensor product of crystal bases [21,22]). ForMi ∈ Oint, let (Li, Bi)
be the crystal base of Mi (i = 1, 2). Then (L1 ⊗ L2, B1 ⊗ B2) is a crystal base of

3 Note that εi is a function on B, and εi is a basis element of Pn.
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M1 ⊗M2. Moreover, for b1 ⊗ b2 ∈ B1 ⊗ B2 and i ∈ In, we have

ẽi(b1 ⊗ b2) =
{
ẽib1 ⊗ b2, if ϕi(b1) ≥ εi(b2),
b1 ⊗ ẽib2, if ϕi(b1) < εi(b2),

f̃i(b1 ⊗ b2) =
{
f̃ib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2, if ϕi(b1) ≤ εi(b2).

The formulas mentioned earlier for the actions of ẽi and f̃i are often called the tensor
product rule, and this rule plays a crucial role when we construct various crystal
graphs (see the next section). The tensor product rule also implies that under the same
hypothesis,

εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),
ϕi(b1 ⊗ b2) = max(ϕi(b1)+ 〈hi,wt(b2)〉, ϕi(b2)).

Example 2.6. Let us illustrate the tensor product rule for the crystal bases of
Uq(sl2)-modules. We keep the notations of the previous example. Let B(3)={ bk =
f (k)v3 | k = 0, 1, 2, 3 } and B(2) = { b′k = f (k)v2 | k = 0, 1, 2 } be the crystal graphs
ofV(3) andV(2), respectively. Then the crystal graphB(3)⊗B(2) is given as follows;

b0 ⊗ b′0 −→ b1 ⊗ b′0 −→ b2 ⊗ b′0 −→ b3 ⊗ b′0↓
b0 ⊗ b′1 −→ b1 ⊗ b′1 −→ b2 ⊗ b′1 b3 ⊗ b′1↓ ↓
b0 ⊗ b′2 −→ b1 ⊗ b′2 b2 ⊗ b′2 b3 ⊗ b′2

This implies that B(3) ⊗ B(2) = B(5) � B(3) � B(1), and hence V(3) ⊗ V(2) �
V(5)⊕ V(3)⊕ V(1).

Remark 2.7. The results on crystal bases presented here were proved in case of the
quantum group Uq(g) of a symmetrizable Kac–Moody algebra g by Kashiwara [22].
Also, it is an important problem to give an explicit realization of the crystal graph
of a Uq(g)-module. There have been many papers on this problem: for classical Lie
algebras, there are tableaux realizations byKashiwara andNakashima [26]. For affine
Lie algebras, there are path realizations using perfect crystals [20]. For a symmetriz-
able Kac–Moody algebra g, Littelmann realized the crystal graph of an irreducible
integrable highest weight module in terms of certain piecewise linear paths in the
weight lattice, often called the Littelmann path model [34]. Recently, Nakajima intro-
duced themonomial realization, where the crystal graphs are given in terms of certain
monomials in commuting variables [25, 39].
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3. Crystals and Young tableaux

3.1. Crystal

Motivated by the colored oriented graphs induced from crystal graphs of integrable
Uq(gln)-modules, we may define the notion of (abstract) crystals.

Definition 3.1. ([23, 24]) Let Pn be the weight lattice, P∨n the dual weight lattice,
{αi | i ∈ In } the set of simple roots, and {hi | i ∈ In } the set of simple coroots given
in 2.1. A gln-crystal is a set B together with the maps

wt : B→ Pn,

εi, ϕi : B→ Z ∪ {−∞},
ei, fi : B→ B ∪ {0},

for i ∈ In, satisfying the following conditions;
(1) for i ∈ In and b ∈ B, we have ϕi(b) = 〈hi,wt(b)〉 + εi(b),
(2) if eib ∈ B for i ∈ In and b ∈ B, then

εi(eib) = εi(b)− 1, ϕi(eib) = ϕi(b)+ 1, wt(eib) = wt(b)+ αi,
(3) if fib ∈ B for i ∈ In and b ∈ B, then

εi(fib) = εi(b)+ 1, ϕi(fib) = ϕi(b)− 1, wt(fib) = wt(b)− αi,
(4) fib = b′ if and only if b = eib′ for all i ∈ In, b, b′ ∈ B,
(5) If ϕi(b) = −∞, then eib = fib = 0,

where 0 is a formal symbol and−∞ is the smallest element inZ∪{−∞} and is taken
to satisfy −∞+ n = −∞ for all n ∈ Z.

Remark 3.2. (1) A gln-crystal B is an In-colored oriented graph, where

b
i→ b′ if and only if b′ = fib (i ∈ In).

We also call ei and fi (i ∈ In) Kashiwara operators.
(2) For λ ∈ P+n , B(λ) is a gln-crystal with ei = ẽi and fi = f̃i for i ∈ In (see 2.2).

In fact, the gln-crystals, which we deal with in this chapter, will always satisfy the
following additional conditions;

εi(b) = max{ k ∈ Z≥0 : eki b 
= 0 }, ϕi(b) = max{ k ∈ Z≥0 : f ki b 
= 0 },
for b ∈ B and i ∈ In. Such crystals are called seminormal [24]. There are gln-crystals
that are not isomorphic to a B(λ), but play important roles in the construction of
various crystal graphs, for example the crystal graphs of the Verma modules and the
negative part of a quantum group and so on (see [23]).
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Let B1 and B2 be gln-crystals. Let B1 ⊗ B2 be { b1 ⊗ b2 | bi ∈ Bi (i = 1, 2) } as a
set. Define

wt(b1 ⊗ b2) = wt(b1)+ wt(b2),
εi(b1 ⊗ b2) = max(εi(b1), εi(b2)− 〈hi,wt(b1)〉),
ϕi(b1 ⊗ b2) = max(ϕi(b1)+ 〈hi,wt(b2)〉, ϕi(b2)),

ei(b1 ⊗ b2) =
{
eib1 ⊗ b2, if ϕi(b1) ≥ εi(b2),
b1 ⊗ eib2, if ϕi(b1) < εi(b2),

fi(b1 ⊗ b2) =
{
fib1 ⊗ b2, if ϕi(b1) > εi(b2),

b1 ⊗ fib2, if ϕi(b1) ≤ εi(b2),
where we assume that 0⊗ b2 = b1 ⊗ 0 = 0. Then, it is straightforward to check that
B1 ⊗ B2 is a gln-crystal with respect to the wt, εi, ϕi, ei, fi (i ∈ In) on B1 ⊗ B2, and
it is called the tensor product of B1 and B2.
Finally, let us fix some terminology. Let B be a gln-crystal. A subset B

′ ⊂ B is
called a subcrystal of B if B′ itself is a gln-crystal with respect to the wt, εi, ϕi, ei, fi
(i ∈ In) ofB. LetB1 andB2 be two gln-crystals. The direct sumB1⊕B2 is the disjoint
union of B1 and B2.An isomorphismψ : B1→ B2 of gln-crystals is an isomorphism
of In-colored oriented graphs which preserves wt, εi, and ϕi (i ∈ In). We say that B1
is isomorphic to B2, and write B1 � B2. For bi ∈ Bi (i = 1, 2), let C(bi) denote the
connected component of bi as an In-colored oriented graph. We say that b1 is (gln-)
crystal equivalent to b2 if there is an isomorphism of gln-crystals C(b1) → C(b2)

sending b1 to b2, and write b1�glnb2.

3.2. Crystal of words

For n ≥ 2, let
Bn = { 1 < 2 < · · · < n }

be a linearly ordered set. Then Bn can be made into a gln-crystal whose associated
In-colored oriented graph is given by

1
1−→ 2

2−→ · · · n−2−→ n− 1 n−1−→ n,

where wt(b) = εb. Note that Bn is the crystal graph of the natural representation
K(q)⊕n [26].
LetWn be the set of all finite words with letters in Bn. That is,

Wn =
⎛
⎝⊕
r≥1

B⊗rn

⎞
⎠⊕ {∅},
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where ∅ denotes the empty word. ThenWn is a gln-crystal, where {∅} forms a trivial
crystal, that is, wt(∅) = 0, ei∅ = fi∅ = 0, and εi(∅) = ϕi(∅) = 0 for all i ∈ In. In fact,
Wn is the crystal graph of the tensor algebra generated by the natural representation.
For simplicity, let us write a nonempty word w1 ⊗ · · · ⊗ wr ∈ B⊗rn as w1 · · ·wr.
Following the tensor product rule of the crystals, we can describe the Kashiwara

operators ei, fi :Wn→Wn ∪ {0} (i ∈ In) induced from those on Bn explicitly;
(1) Suppose that a nonempty word w = w1 · · ·wr is given. To each letter wk, we

assign

ε(i)(wk) =

⎧⎪⎨
⎪⎩
+, if wk = i,
−, if wk = i+ 1,
· , otherwise,

and let ε(i)(w) = (ε(i)(w1), . . . , ε(i)(wr)).
(2) We replace a pair (ε(i)(ws), ε(i)(ws′))= (+,−) such that s< s′ and ε(i)(wt)= ·

for s < t < s′ with ( · , · ) in ε(i)(w), and repeat this process as long as possible
until we get a sequence with no + placed to the left of −. This is called the
i-signature of w.

(3) We call the right-most − in the i-signature of w the i-good − sign, and define
eiw to be the word obtained by applying ei to i+1 corresponding to the i-good
− sign. If there is no i-good − sign, then we define eiw = 0.

(4) We call the left-most + in the i-signature of w the i-good + sign, and define
fiw to be the word obtained by applying fi to i corresponding to the i-good +
sign. If there is no i-good + sign, then we define fiw = 0.

Example 3.3. Suppose that

w = 1 2 4 2 1 1 2 3 2 1 1 3 ∈ B⊗124 .

Then

ε(1)(w) = ( + , − , · , − , + , + , − , · , − , + , + , · )
= ( 
+ , 
− , · , − , 
+ , 
+ , 
− , · , 
− , + , + , · )
= ( · , · , · , � , · , · , · , · , · , ⊕ , + , · )

where ⊕ and � denote the i-good signs. We have
e1w = 1 2 4 1 1 1 2 3 2 1 1 3, f1w = 1 2 4 2 1 1 2 3 2 2 1 3.

3.3. Crystal of a Young tableau

A partition is a nonincreasing sequence of nonnegative integers λ = (λk)k≥1 such
that all but a finite number of its terms are zero. Each λk is called a part of λ,
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and the number of nonzero parts is called the length of λ and denoted by 
(λ). We
also write λ= (1m1 , 2m2 , . . .), where mi is the number of occurrences of i in λ, and
|λ| =∑

k≥1 λk =
∑
i≥1 imi. Recall that a partition λ = (λk)k≥1 is identified with a

Young diagram, which is a collection of nodes (or boxes) in left-justified rows with
λk nodes in the k-th row numbered from top to bottom. We denote by P the set of
all partitions, and setPn = { λ ∈P | 
(λ) ≤ n } for n ≥ 1.
AYoung tableau T is obtained by filling a Young diagram λ with the entries from

N. We say that T is semistandard if the entries in each row (resp. column) are weakly
(resp. strictly) increasing from left to right (resp. from top to bottom). If all the entries
in T are distinct, then T is called standard. We say that λ is the shape of T , and write
sh(T ) = λ.
For λ∈Pn, let Bn(λ) be the set of all semistandard (Young) tableaux of shape

λ with entries in Bn={ 1, . . . , n }. For each T ∈Bn(λ), let w(T ) (or wcol(T )) be
the word obtained by reading the entries of T column by column from right to
left, and in each column from top to bottom. Note that a semistandard tableau
can be uniquely recovered from the associated word. Hence the map T �→ w(T )

gives a natural embedding of Bn(λ) into Wn, and we may view Bn(λ) as a
subset ofWn.

Example 3.4.

B5((3, 2)) � 1 2 2
4 5

�−→
Column

reading

2 2 5 1 4 ∈W5

For T ∈ Bn(λ), the weight of T is given by wt(T ) =∑
b∈Bn μbεb ∈ Pn, where μb

is the number of occurrences of b in T . Indeed, Bn(λ) together with 0 is stable under
ei, fi (i ∈ In), and hence Bn(λ) is a subcrystal ofWn.

Theorem 3.5 ([26]). For λ = (λ1, . . . , λn) ∈ Pn, Bn(λ) is a gln-crystal, which is
isomorphic to the crystal graph of the irreducible highest weight module with highest
weight

∑
b∈Bn λbεb ∈ P+n .

Remark 3.6. (1) For λ ∈Pn, letHλ
n be the semistandard tableaux inBn(λ) such that

each k-th row is filled with k (1 ≤ k ≤ n). Then wt(Hλ
n ) ≥ wt(T ) for all T ∈ Bn(λ),

that is, Hλ
n is the highest weight vector of weight λ1ε1 + · · · + λnεn4. Hence, each

T ∈ Bn(λ) can be obtained from Hλ
n by applying a finite number of fi.

(2) The way of reading the entries of a tableau by which we give a crystal structure
on Bn(λ) is not unique. In fact, we may also define ei, fi on Bn(λ) with respect to
various readings (see, for example, [2]).

4 We may identify a partition λ = (λ1, . . . , λn) with a dominant integral weight λ1ε1 + · · · + λnεn.
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Example 3.7. Here is the gl3-crystal B3((2, 1)), where the action of the fi on
semistandard tableaux is given by that on the associated words inW3.

1 1
2

2−→ 1 1
3

1−→ 1 2
3

↓ 1 ↓ 1
1 2
2

2−→ 1 3
2

2 2
3

↓ 2 ↓ 2
1 3
3

1−→ 2 3
3

In general, we can also define a gln-crystal for semistandard tableaux of skew shape.
For λ,μ ∈ P such that λ ⊃ μ (that is, λk ≥ μk for all k), let λ/μ be the diagram
given by removing the nodes of μ from λ. Let Bn(λ/μ) be the set of all semistandard
tableaux of shape λ/μwith entries in Bn. Just as mentioned earlier, we can check that
Bn(λ/μ) is a gln-crystal. The crystal Bn(λ/μ) is not necessarily connected. We will
discuss its explicit decomposition into its connected components in Section 4.

3.4. Crystal of a rational Young tableau

Let us describe the crystal graph of the irreducible highest weight Uq(gln)-module
with arbitrary highest weight λ = (λ1, . . . , λn) ∈ Zn+ = P+n .
An element λ = (λ1, . . . , λn) in Zn+ is called a generalized partition of length n,

and it may be identified with a generalizedYoung diagram in the following way. First,
we fix a vertical line. Then for each λk, we place |λk| nodes (or boxes) in the k-th row
in a left-justified (resp. right-justified) way with respect to this vertical line if λk ≥ 0
(resp. λk ≤ 0). For example,

λ = (3, 2, 0,−1,−2) ←→

• • •
• •

− − − − −
•

• •
−2 −1 1 2 3 ← column number

where the horizontal line denotes an empty row. We enumerate the columns of a
diagram as mentioned earlier.
Let B∨n = {−n < −n+1 < · · · < −1} be the dual crystal of Bn whose associated

graph is given by

−n n−1−→ −n+ 1 n−2−→ · · · 1−→ −1,
where wt(−b) = −wt(b) = −εb for b ∈ Bn (cf [24]).
Let T be a tableau obtained by filling a generalized Young diagram λ =

(λ1, . . . , λn) of length n with the entries in Bn � B∨n . We call T a rational semis-
tandard tableau of shape λ if
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(1) the entries in the columns indexed by positive (resp. negative) numbers are
from Bn (resp. B∨n ),

(2) the entries in each row (resp. column) are weakly (resp. strictly) increasing
from left to right (resp. from top to bottom),

(3) if b1 < · · · < bs (resp. −b′1 < · · · < −b′t) are the entries in the 1-st (resp. the−1-st) column (s + t ≤ n), then b′′i ≤ bi for 1 ≤ i ≤ s, where {b′′1 < · · · <
b′′n−t} = Bn\{b′1, · · · , b′t}.

We denote by Bn(λ) the set of all rational semistandard tableaux of shape λ.

Remark 3.8. The notion of rational semistandard tableaux was introduced by Stem-
bridge [42] to describe the characters of rational representations of gln over the com-
plex numbers.

Example 3.9. For λ = (3, 2, 0,−1,−2), we have
1 2 2
3 4

− − − − −
−5

−4 −3

∈ B5(λ).

Now, embed Bn(λ) into (Bn⊕B∨n )⊗N (whereN =
∑
k≥1 |λk|) by column reading

of tableaux, and apply ei, fi to Bn(λ) (i ∈ In). Then Bn(λ) together with 0 is stable
under ei, fi, and becomes a gln-crystal, which is in fact isomorphic to the crystal graph
of the irreducible highest weight Uq(gln)-module with highest weight λ (which is∑
b∈Bn λbεb).
Let us explain the relation between the crystals of rational semistandard tableaux

and ordinary semistandard tableaux. Let T be a rational semistandard tableau in
Bn((0n−t ,−1t)) (0 ≤ t ≤ n) with the entries −b1 < · · · < −bt in the −1-st column.
We define σ(T ) be the tableau in Bn((1n−t , 0t)) with the entries b′1 < · · · < b′n−t in
the 1-st column, where {b′1 < · · · < b′n−t} = Bn \ {b1 < · · · < bt}. If t = n, then we
define σ(T ) to be the empty tableau.
In general, for λ ∈ Zn+ and T ∈ Bn(λ), we define σ(T ) to be the tableau obtained

by applying σ to the−1-st column of T . Note that the shape of σ(T ) is λ+ (1n). For
example, when n = 5, we have

σ

⎛
⎜⎜⎜⎜⎝

1 2 2
3 4

− − − − −
−5

−4 −3

⎞
⎟⎟⎟⎟⎠ =

1 1 2 2
2 3 4
4

− − − − −
−4

.

Lemma 3.10. For λ ∈ Zn+, the map

σ : Bn(λ) ∪ {0} → Bn(λ+ (1n)) ∪ {0},
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(σ(0) = 0) is a bijection which commutes with ei, fi for i ∈ In, where wt(σ(T )) =
wt(T )+ (ε1 + · · · + εn) for T ∈ Bn(λ). In particular, Bn(λ) and Bn(λ+ (1n)) gives
the same In-colored oriented graph.

In other words, the crystal Bn(λ) for λ ∈ Zn+ is essentially the same as the crystal
of ordinary semistandard tableaux Bn(λ+ (dn)) for λ+ (dn) ∈Pn. In particular, it
is connected with the unique highest weight element, say Hλ

n .

Example 3.11. For λ = (3, 2, 0,−1,−2),

Hλ
n =

1 1 1
2 2

− − − − −
−5

−5 −4

is the unique highest weight element in B5(λ). Note Hλ
n = σ−2

(
H
λ+(25)
n

)
.

4. Crystal equivalence

In classical representation theory, the decompositions of finite-dimensional gln-
modules are explained using the characters of the representations, which are
symmetric polynomials in n variables. In particular, there are well-known com-
binatorial algorithms, called the Robinson–Schensted correspondence and the
Littlewood–Richardson rule, which provide in a bijective way the character identities
corresponding to the decomposition of the tensor power of the natural representation
and the tensor product of two irreducible highest weight representations, respectively
(for a background on the combinatorics of Young tableaux, which will be needed in
this section, see [10, 37, 41]).
In this section,wewill see that these algorithms obtainmore concrete representation

theoretical meanings in the language of crystals, that is, they yield morphisms of
crystals, and hence explain the decompositions of the corresponding crystals directly.

4.1. Knuth equivalence

For a given word w ∈ Wn and three consecutive letters xyz in w, consider the
transformations

w = . . . xyz . . . �−→ w′ = . . . xzy . . . , if y ≤ x < z,

w = . . . xyz . . . �−→ w′ = . . . yxz . . . , if y < x ≤ z,
which are called the elementary Knuth transformations. Then, we say that two words
w and w′ inWn are Knuth equivalent if they can be transformed into each other by a
sequence of elementaryKnuth transformations and their inverses, andwritew �K w′.
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In general, for two semistandard tableauT andT ′with entries in { 1, . . . , n }, we define
T �K T ′ if w(T ) �K w(T ′).

Remark 4.1. Note that the following two semistandard tableaux (of skew shapes)
are Knuth equivalent.

y x

z
�K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x

y z
, if y ≤ x < z,

y

z x
, if y < x ≤ z

where the tableau on the right-hand side can be obtained by sliding the two entries of
the tableau in the left-hand side in such a way that it still remains semistandard, and
also vice versa.

Next, let us recall the Schensted column bumping algorithm for semistandard
tableaux: For λ∈Pn and T ∈Bn(λ), we define (T ← b) (b∈Bn) to be the tableau
obtained from T by applying the following procedure;

(1) Let b′ be the smallest entry in the first (or the left-most) column that is greater
than or equal to b.

(2) Replace b′ by b (b′ is bumped out of the first column). If there is no such b′,
put b at the bottom of the first column and stop the procedure.

(3) Repeat (1) and (2) on the next column with b′.

Note that (T ← b)∈Bn(μ) for some μ∈Pn, where μ is obtained by adding a node
to λ. Now, for a given word w = w1 · · ·wr ∈Wn, define

P(w) = ((· · · ((w1← w2 )← w3 ) · · · )← wr).

P(w) is called the P-tableau of w or the insertion tableau of w. Because the Knuth
equivalence of words with three letters can be understood in terms of sliding of
entries in skew diagrams (see Remark 4.1), it is not difficult to see that w �K P(w)
(or w �K w(P(w))).
The following is the key fact, which connects the theory of crystals and the classical

combinatorics of Young tableaux;

Theorem 4.2 ([35]). For w,w′ ∈Wn, we have

w �K w′ ⇐⇒ w �gln w
′.

Proof. (⇒)By definition of the tensor product of crystals, wemay assume thatw =
xyz and w is transformed to w′ by an elementary Knuth transformation. Identifying
w andw′ with the column words of the corresponding semistandard tableaux of skew
shapes respectively (seeRemark 4.1), it is straightforward to check that the elementary
Knuth transformation naturally extends to an isomorphism of gln-crystals between
the connected components of two words w and w′.
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(⇐) Sincew �K P(w) andw′ �K P(w′), we haveP(w) �gln P(w
′). Suppose that

sh(P(w)) = λ and sh(P(w′)) = μ. There exists a sequence of indices i1, · · · , ir ∈ In
and nonnegative integers ak(1 ≤ k ≤ r) such that

ea1i1 . . . e
ar
ir
P(w) = Hλ

n .

Since P(w) �gln P(w
′), we must have

ea1i1 . . . e
ar
ir
P(w′) = Hμ

n .

Hence, we get wt(Hλ
n ) = wt(Hμ

n ), which implies λ = μ and Hλ
n = H

μ
n . Since

P(w) = f arir · · · f a1i1 Hλ
n , we conclude that P(w) = P(w′). In particular, we have

w �K w′ �

Corollary 4.3. Each connected component in Wn is isomorphic to a Bn(λ) for
some λ ∈Pn.

Corollary 4.4 (cf [30]). Let T and T ′ be two semistandard tableaux. If T �K T ′,
then T = T ′. That is, for a given word w ∈ Wn, there exists a unique semistandard
tableau T which is Knuth equivalent to w.

4.2. Robinson–Schensted correspondence

Let us consider the decomposition ofB⊗rn (r ≥ 2). Forw = w1 . . . wr ∈Wn, suppose
that P(w) is of shape λ. Then we define Q(w) to be the standard tableau of shape
λ such that if wi is inserted into (((· · · ( w1←w2) · · · )←wi−1) to create a node in
λ, then we fill the node with i. We call Q(w) the Q-tableau of w or the recording
tableau.

Example 4.5. For example, if w = 31224 ∈W4, then we have

P(w) =
1 2 3
2
4

, Q(w) =
1 2 4
3
5

.

Then the Robinson–Schensted correspondence is that the mapw �→ (P(w),Q(w))

for w∈Wn gives a one-to-one correspondence between the two sets, B⊗rn and⊔
λ Bn(λ) × STr(λ), where the union is taken over all partitions λ∈Pn such that
|λ| = r, and STr(λ) denotes the set of all standard tableaux of shape λ with entries in
{ 1, . . . , r }.
Because each connected component in B⊗rn is isomorphic to a Bn(λ) for some

λ∈Pn with |λ| = r andBn(λ) is connected, the multiplicity ofBn(λ) inB⊗rn , saymλ,
is equal to the number of thewords inB⊗rn such thatP(w)=Hλ

n , that is,mλ = |STr(λ)|
by the Robinson–Schensted correspondence.
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Moreover, we can check that for w ∈ B⊗rn and i ∈ In,
Q(w) = Q(fiw), if fiw 
= 0,

(equivalently, Q(w) = Q(eiw), if eiw 
= 0). In other words, the Q-tableaux are
invariant under the Kashiwara operators, and it turns out that the Q-tableau of w
represents the connected component of w in B⊗rn . Summarizing the aforementioned
arguments, we have the following crystal version of the Robinson–Schensted corre-
spondence;

Theorem 4.6 ([31]). The mapw �→ (P(w),Q(w)) gives the following isomorphism
of gln-crystals;

B⊗rn �
⊕

λ∈Pn,|λ|=r
Q∈STr(λ)

Bn(Q),

where Bn(Q) = Bn(λ) × {Q } for λ ∈ Pn with |λ| = r and Q ∈ STr(λ) is a
gln-crystal isomorphic to Bn(λ).

A word w = w1 . . . wr ∈ Wn is called a lattice permutation if for 1 ≤ k ≤ r and
1 ≤ i ≤ n − 1, the number of occurrences of i in w1 . . . wk is no less than that of
i+ 1. Then it follows from the crystal structure onWn (see 3.2) that eiw = 0 for all
i ∈ In (that is, P(w) = Hλ

n for some λ ∈Pn) if and only ifw is a lattice permutation.

Remark 4.7. A connection between the Robinson–Schensted correspondence and
the representations of Uq(gln) was first observed by Date et al. [6].

4.3. Littlewood–Richardson rule

Next, let us discuss the decomposition of Bn(μ) ⊗ Bn(ν) for μ, ν ∈ Pn. For T ∈
Bn(μ) and T ′ ∈ Bn(ν), let w(T ′) = w1w2 . . . wr. We define

P(T ⊗ T ′) = ((((T ← w1)← w2) · · · )← wr)

(usually denoted as (T ← T ′)). Clearly, we have T ⊗ T ′ �gln P(T ⊗ T ′).
Next, defineQ(T⊗T ′) to be the semistandard tableau of shape λ/μ (λ = sh(P(T⊗

T ′)) such that if wi is in the k-th row of T ′ and inserted into (((· · · ( T ← w1 ) ←
w2) · · · ) ← wi−1) to create a node in λ/μ, then we fill the node with k. We call
Q(T ⊗ T ′) the recording tableau of (T ← T ′).

Example 4.8. Suppose that we have

T = 1 2 2
3

and T ′ =
2 2
3 4
4

.
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Then we have

P(T ⊗ T ′) =
1 2 2 2
2 3
3 4
4

and Q(T ⊗ T ′) =
• • • 1
• 1
2 2
3

.

Recall that given λ, μ, and ν in P such that μ ⊂ λ and |λ| = |μ| + |ν|, a
semistandard tableau T of shape λ/μ is called a Littlewood–Richardson tableau of
shape λ/μ with content ν if

(1) the number of occurrences of k in T is equal to νk for k ≥ 1,
(2) w(T) is a lattice permutation.

We denote by LRλμ ν the set of all Littlewood–Richardson tableaux of shape λ/μwith
content ν.
Then, the map T ⊗ T ′ �→ (P(T ⊗ T ′),Q(T ⊗ T ′)) gives a bijection between the

two sets Bn(μ) ⊗ Bn(ν) and
⊔
λ∈Pn

Bn(λ) × LRλμ ν [44]. Because the connected
components are completely determined by T ⊗ T ′ such that P(T ⊗ T ′) = Hλ

n , the
multiplicity of Bn(λ) in Bn(μ) ⊗ Bn(ν) is equal to |LRλμ ν| called the Littlewood–
Richardson coefficient.
Moreover, as in the case of the Robinson–Schensted correspondence, we have for

T ⊗ T ′ ∈ Bn(μ)⊗ Bn(ν) and i ∈ In,
Q(T ⊗ T ′) = Q(fi(T ⊗ T ′)), if fi(T ⊗ T ′) 
= 0.

Hence, the Q-tableau is invariant under the Kashiwara operators, and it represents
the connected component of T ⊗ T ′ in Bn(μ)⊗ Bn(ν). Summarizing, we also have
the crystal version of the Littlewood–Richardson rule;

Theorem 4.9 (cf [40]). The map T ⊗ T ′ �→ (P(T ⊗ T ′),Q(T ⊗ T ′)) gives the
following isomorphism of gln-crystals;

Bn(μ)⊗ Bn(ν) �
⊕
λ∈Pn

Q∈LRλμν

Bn(Q),

whereBn(Q) = Bn(λ)×{Q } for λ ∈Pn andQ ∈ LRλμν is a gln-crystal isomorphic
to Bn(λ).

For a skew Young diagram λ/μ, let us consider Bn(λ/μ). Then the decomposi-
tion of Bn(λ/μ) into its connected components reduces to finding all T ∈Bn(λ/μ)
equivalent toHν

n , where ν is the content (or weight) of T . For T ∈Bn(λ/μ), it follows
that

T �gln H
ν
n ⇐⇒ eiT = 0 for all i ∈ In
⇐⇒ w(T) is a lattice permutation

⇐⇒ T ∈ LRλμν.
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Therefore, we obtain the skew Littlewood–Richardson rule;

Bn(λ/μ) �
⊕
ν∈Pn

T∈LRλμν

Bn(T),

where Bn(T) is the connected component of T in Bn(λ/μ), which is isomorphic to
Bn(ν).

Remark 4.10. (1) There are analogues of the material in this section for classical Lie
algebras of B,C,D type, using the Kashiwara and Nakashima description [1,32,33].
See also [2, 19] for a generalization to Lie superalgebras.
(2) The combinatorics of Young tableaux presented here can be formalized using

the notion of the plactic algebra introduced by Lascoux and Schützenberger [30],
which is a noncommutative ring of the Knuth equivalence classes of the words inWn

with the multiplication given by juxtaposition (or tensor product) of words. In [35],
using his path models, Littelmann gave a nice generalization of the plactic algebra for
complex semisimple Lie algebras, which consists of the crystal equivalence classes of
certain piecewise linear paths in the weight lattice, where the multiplication is given
by the concatenation of paths.

5. Bicrystals

Generalizing the Robinson–Schensted correspondence, Knuth introduced an algo-
rithm that establishes a bijection between m × n matrices of nonnegative integers
and pairs of semistandard tableaux of the same shape [27] (now called the Robinson–
Schensted–Knuth correspondence). The associated character identity explains the
decomposition of the symmetric algebra generated by the tensor product of the natu-
ral representations of glm and gln into irreducible representations of the Lie algebra
glm⊕gln over the complex numbers [13]. In this section, we explain the Knuth result
in terms of crystals (see [4, 29]), and discuss its applications to combinatorics and
representation theory.

5.1. Robinson–Schensted–Knuth correspondence

First, let us consider a crystal of biwords. Let m, n be nonnegative integers not both
zero. Set

m,n = { (i, j) ∈Wm ×Wn |
(1) i = i1 . . . ir and j = j1 . . . jr for some r ≥ 0,
(2) (i1, j1) ≤ · · · ≤ (ir, jr)},

where the ordering is a rather weird kind of lexicographic type ordering given by

(i, j) < (k, l) ⇐⇒ (j < l) or (j = l and i > k)
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for (i, j) and (k, l) ∈ Bm × Bn. Now, for i ∈ Im and (i, j) ∈ m,n, we define
ei(i, j) = (eii, j), fi(i, j) = (fii, j),

where we assume that xi(i, j) = 0 if xii = 0 (x = e, f ).We set wt(i, j) = wt(i) ∈ Pm,
εi(i, j) = εi(i) and ϕi(i, j) = ϕi(i) (i ∈ Im). Then the set of biwords m,n together
with wt, ei, fi, εi, ϕi (i ∈ Im) becomes a glm-crystal. In fact, it is isomorphic to⊕


1,...,
n∈Z≥0
Bm(
1)⊗ · · · ⊗ Bm(
n),

where Bm(
) is a glm-crystal with highest weight 
ε1 for 
 ≥ 0 (note that Bm(
j)
corresponds to subwords isis+1 . . . it of i in (i, j) ∈ m,n such that js = js+1 = . . . =
jt = j).
Next, set

∗m,n = { (k, l) ∈Wm ×Wn | (l, k) ∈ n,m }.
Similarly, for j ∈ In and (k, l) ∈ ∗m,n, we define

e∗j (k, l) = (k, ejl), f ∗j (k, l) = (k, fjl),
and set wt∗(k, l) = wt(l) ∈ Pn, ε∗j (k, l) = εj(l), and ϕ∗j (k, l) = ϕj(l) (j ∈ In). Then
also the set of biwords∗m,n together with wt∗, e∗j , f ∗j , ε∗j , ϕ∗j (j ∈ In) is a gln-crystal,
which is isomorphic to⊕

(
1,...,
m)∈Zm≥0
Bn(
1)⊗ · · · ⊗ Bn(
m).

Let Mm×n be the set of all m × n matrices with nonnegative integral entries.
We assume that the row (resp. column) numbers are indexed by Bm (resp. Bn). For
(i, j) ∈ m,n, define A(i, j) = (aij) to be the matrix in Mm×n, where aij is the
number of k’ such that (ik, jk) = (i, j) for i ∈ Bm and j ∈ Bn. For (k, l) ∈ ∗m,n,
we define A(k, l) ∈ Mm×n in the same way. Then the map (i, j) �→ A(i, j) (resp.
(k, l) �→ A(k, l)) gives a bijection from m,n (resp. ∗m,n ) to Mm×n, where the
pair of empty words (∅, ∅) corresponds to the zero matrix. With these identifications,
Mm×n becomes a glm and gln-crystal, simultaneously.

Example 5.1. Suppose that

A =

⎛
⎜⎜⎝
1 0 1 1
0 2 0 0
1 0 0 1
0 0 2 0

⎞
⎟⎟⎠ ∈M4×4.

Then A = A(i, j) = A(k, l) for (i, j) ∈ 4,4 and (k, l) ∈ ∗4,4, where
i = 3 1 2 2 4 4 1 3 1, k = 1 1 1 2 2 3 3 4 4,
j = 1 1 2 2 3 3 3 4 4, l = 4 3 1 2 2 4 1 3 3.
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Definition 5.2. Suppose that B is a glm-crystal and also a gln-crystal under ei, fi
(i ∈ Im) and e∗j , f ∗j (j ∈ In), respectively. We call B a (glm, gln)-bicrystal if ei, fi
commute with e∗j , f ∗j (i ∈ Im, j ∈ In), where we understand the Kashiwara operators
as the associated maps from B ∪ {0} to itself (that is, xi0 = x∗j0 = 0, for x = e, f ).

For a (glm, gln)-bicrystalB, if we put Im,n = Im� I∗n (I∗n = { k∗ | 1 ≤ k ≤ n−1 }),
then B can be viewed as an Im,n-colored oriented graph, where

b
j∗→ b′ if and only if b′ = f ∗j b (j ∈ In).

Example 5.3. For λ ∈ Pm and μ ∈ Pn, Bm(λ) × Bn(μ) is a (glm, gln)-bicrystal
where xi(b1, b2) = (xib1, b2), x∗j (b1, b2) = (b1, x∗jb2) for (b1, b2) ∈ Bm(λ)×Bn(μ)
and x = e, f .

Now, we can also check that Mm×n is a (glm, gln)-bicrystal. For A ∈ Mm×n,
suppose that A = A(i, j) = A(k, l) for (i, j) ∈ m,n and (k, l) ∈ ∗m,n. Let us define

P(A) = P(i), Q(A) = P(l).
Note that P(A) �glm A and Q(A) �gln A by definition of the crystal structures on
Mm×n. SinceMm×n is a (glm, gln)-bicrystal, it follows that

P(f ∗j A) = P(A), if f ∗j A 
= 0 for j ∈ In,
Q(fiA) = Q(A), if fiA 
= 0 for i ∈ Im.

In other words, f ∗j A �glm A and fiA �gln A.
Let C be a connected component in Mm×n as an Im,n-colored oriented graph.

For A ∈ C, suppose that P(A) ∈ Bm(λ) and Q(A) ∈ Bn(μ) for some λ ∈ Pm

and μ ∈ Pn. Then the map A �→ (P(A),Q(A)) extends to an isomorphism of
(glm, gln)-bicrystals;

C −→ Bm(λ)× Bn(μ)

(for detailed verifications, see [4, 28]).
Hence, to describe the decomposition of Mm×n as a (glm, gln)-bicrystal, it suf-

fices to find all the highest weight elements A in Mm×n, that is, those A for
which (P(A),Q(A))= (

Hλ
m,H

μ
n

)
for some λ∈Pm and μ∈Pn, or equivalently,

eiA = e∗jA = 0 for all i ∈ Im and j ∈ In. It is not difficult to verify that A = (aij) is
of highest weight if and only if (1) aij = 0 unless i = j, and (2) the diagonal entries,
say λi = aii for 1 ≤ i ≤ min{m, n}, are weakly decreasing, and hence they form a
partition λ = (λi)i≥1 ∈Pm ∩Pn. For example, if m ≤ n, then

A =

⎛
⎜⎜⎜⎜⎜⎝

λ1
λ2

. . .

λm−1
λm

⎞
⎟⎟⎟⎟⎟⎠ .
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Then, the connected component ofA is isomorphic to Bm(λ)×Bn(λ). Therefore, we
obtain the crystal version of the Robinson–Schensted–Knuth correspondence.

Theorem 5.4 ([4]). The map A �→ (P(A),Q(A)) gives the following isomorphism
of (glm, gln)-bicrystals;

Mm×n �
⊕

λ∈Pm∩Pn

Bm(λ)× Bn(λ).

Remark 5.5. The map A �→ (P(A),Q(A)) above is slightly different from Knuth’s
original description. But if we give Mm×n another bicrystal structure by replacing
Bm and Bn (the index sets of rows and columns in Mm×n) with their duals, then
we recover the original Knuth map with a little modification, which amounts to a
morphism of crystals. (See [10,28] for other variations of the Knuth correspondence
and bicrystal structures onMm×n.)

As an application to combinatorics, let us consider the crystal of symmetricmatrices
with respect to a diagonal action of the Kashiwara operators. For n ≥ 2, set

Mn = {A ∈Mn×n |A = At }.
For i ∈ In and A ∈Mn, we define

eiA = eie∗i A = e∗i eiA, fiA = fif ∗i A = f ∗i fiA.
Then we have

(eiA)t = (eie∗i A)t = e∗i eiAt = eiA ∈Mn ∪ {0},
(fiA)t = (fif ∗i A)t = f ∗i fiAt = fiA ∈Mn ∪ {0}.

Hence, ei, fi :Mn→Mn ∪ {0} are well-defined operators. Note that P(A) = Q(A),
and

P(eiA) = eiP(A), P(fiA) = fiP(A).
Now, if we put wt(A) = wt(P(A)) = wt(Q(A)) ∈ Pn, εi(A) = max{ k : eki A 
= 0 },
and ϕi(A) = max{ k : fki A 
= 0 } for i ∈ In and A ∈Mn, thenMn is a gln-crystal.
Because the highest weight elements inMn are exactly those inMn×n, we have

Proposition 5.6 (cf [27]). Mn is a gln-crystal, which decomposes as follows;

Mn �
⊕
λ∈Pn

Bn(λ).

For A = (aij) ∈Mn, let

o(A) = | { i ∈ Bn | aii ≡ 1 (mod 2) } | .
With the help of the crystal structure on Mn, we may easily deduce the following
fact, which comes from [27].
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Proposition 5.7. Let Mn(k) = {A ∈ Mn | o(A) = k } for k ≥ 0. Then Mn(k) is a
subcrystal of Mn, and decomposes as follows;

Mn(k) �
⊕
λ∈Pn
o(λ)=k

Bn(λ),

where o(λ) is the number of odd parts in λ.

Proof. Note that for A ∈Mn and i ∈ In, if fiA 
= 0, then

tr(fiA) = tr(A) or tr(A)± 2.
This implies that Mn(k) together with 0 is stable under ei and fi, and hence it is
a subcrystal of Mn. Moreover, if A is a highest weight element in Mn(k), that
is, P(A) = Hλ

n for some λ = (λ1, . . . , λn) ∈ Pn, then A is a diagonal matrix
with diagonal entries λ1, . . . , λn, and o(A) = k is equal to the number of odd
parts in λ. �

In particular, we have

Mn(0) �
⊕
λ∈Pn
λ : even

Bn(λ),

where a partition λ is called even if each part of λ is an even integer.

Remark 5.8.A relation between the diagonal entries of a symmetric matrix and the
shape of the corresponding tableau was first observed by Knuth [27]. The present
exposition is a variation. (See [28] for a general statement including the result
in [27]).

5.2. Dual Robinson–Schensted–Knuth correspondence

Let us now discuss the dual Robinson–Schensted–Knuth correspondence. LetM′m×n
be the set of allm×nmatrices with entries 0 or 1.We also assume that the row (resp.
column) numbers are indexed by Bm (resp. Bn).
As in the case ofMm×n, we identify a matrix inM′m×n with a biword reading the

row and column indices of nonzero entries in the matrix with respect to a certain
linear ordering. First, we set

�m,n = { (i, j) ∈Wm ×Wn |
(1) i = i1 . . . ir and j = j1 . . . jr for some r ≥ 0,
(2) (i1, j1) ≺ · · · ≺ (ir, jr) },

where for (i, j) and (k, l) ∈ Bm×Bn, the linear ordering≺ (right to left lexicographic
ordering) is given by

(i, j) ≺ (k, l) ⇐⇒ (j < l) or (j = l and i < k).
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We define ei, fi : �m,n→ �m,n ∪ {0} (i ∈ Im) by
ei(i, j) = (eii, j), fi(i, j) = (fii, j),

for (i, j) ∈ �m,n. Set wt(i, j) = wt(i) ∈ Pm, εi(i, j) = εi(i), and ϕi(i, j) = ϕi(i)
(i ∈ Im). Then �m,n is a glm-crystal, which is isomorphic to⊕

0≤
1,...,
n≤m
Bm(1
1)⊗ · · · ⊗ Bm(1
n),

where Bm(1
) is a glm-crystal with highest weight ε1 + · · · + ε
 for 0 ≤ 
 ≤ m.
Next, we set

�∗m,n = { (k, l) ∈Wm ×Wn |
(1) k = k1 · · · kr and l = l1 · · · lr for some r ≥ 0,
(2) (k1, l1) ≺′ · · · ≺′ (kr, lr) },

where for (i, j) and (k, l) ∈ Bm × Bn, the linear ordering ≺′ is given by
(i, j) ≺′ (k, l) ⇐⇒ (i > k) or (i = k and j < l).

Similarly, we define e∗j , f ∗j : �∗m,n→ �∗m,n ∪ {0} (j ∈ In) by
e∗j (k, l) = (k, ejl), f ∗j (k, l) = (k, fjl),

for (k, l) ∈ �∗m,n. Set wt∗(k, l) = wt(l) ∈ Pn, ε∗j (k, l) = εj(l), and ϕ∗j (k, l) = ϕj(l)
(j ∈ In). Then �∗m,n is a gln-crystal isomorphic to⊕

0≤
1,...,
m≤n
Bn(1
1)⊗ · · · ⊗ Bn(1
m).

For (i, j) ∈ �m,n (resp. (k, l) ∈ �∗m,n), we define A(i, j) ∈ M′m×n (resp. A(k, l) ∈
M′m×n) in the same way as in 5.1, which yields a bijection between �m,n (resp. �∗m,n)
andM′m×n. Under thesemaps,M′m×n becomes a (glm, gln)-bicrystal. ForA ∈M′m×n,
if we define P(A) = P(i) andQ(A) = P(l), where A = A(i, j) = A(k, l) for (i, j) ∈
�m,n and (k, l) ∈ �∗m,n, then the map A �→ (P(A),Q(A)) gives an isomorphism of
(glm, gln)-bicrystals from each connected component in M′m×n to Bm(λ) × Bn(μ)
for some λ ∈Pm and μ ∈Pn.
Now, we can check thatA = (aij) ∈M′m×n is a highest weight element if and only

if it satisfies the following condition;

aij = 0 =⇒ ai+1 j = ai j+1 = 0,
whenever i+ 1 ∈ Bm and j + 1 ∈ Bn.

Example 5.9. For m = 4 and n = 8,

A =

⎛
⎜⎜⎝
1 1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1
1

⎞
⎟⎟⎠
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is a highest weight element, and (P(A),Q(A)) = (Hλ
m,H

λ′
n ), where λ = (8, 6, 4, 1)

and λ′ is the conjugate of λ (cf [37]).

In general, for a highest weight elementA = (aij) ∈M′m×n, put λ = (λ1, . . . , λm)
with λi = ∑n

j=1 aij for 1 ≤ i ≤ m. Then λ is a partition and (P(A),Q(A)) =
(Hλ

m,H
λ′
n ). Summarizing the aforementioned arguments, we have

Theorem 5.10 ([4]). The mapA �→ (P(A),Q(A)) gives the following isomorphism
of (glm, gln)-bicrystals;

M′m×n �
⊕
λ∈Pm

λ′∈Pn

Bm(λ)× Bn(λ′).

Remark 5.11. The gln-crystal structure onM
′
m×n is not obtained from its glm-crystal

structure just by taking the transpose of a matrix, as in case of Mm×n. The reasons
for this can be found in [28].

5.3. Decomposition of Fock space representations

Let gl∞ be the Lie algebra of Z×Z-matrices over K with only finite number of
nonzero entries. As an application of the dual Robinson–Schensted–Knuth corre-
spondence, let us give an explicit decomposition of the n-fold tensor power of the
Fock space representation of gl∞ or Uq(gl∞).
The quantum group Uq(gl∞) is defined in a similar way as Uq(gln), where the

weight lattice is P =⊕
i∈Z Zεi, the simple root is αi = εi − εi+1, the simple coroot

hi satisfies 〈hi, λ〉 = (αi, λ) for all λ ∈ P (i ∈ Z), and so on. Let us denote by I the
index set for the simple roots.
To consider integrable highest weight Uq(gl∞)-modules, we will use the extended

weight lattice P̂ instead of P , where

P̂ = Z�0 ⊕
⊕
i∈Z

Zεi,

and�0 ∈ Hom
(⊕

i∈I Zhi,Z
)
is given by 〈hi,�0〉 = δ0i for i ∈ I. For c ∈ Z, let�c

be the fundamental weight, that is, �c(hi) = δic for i ∈ I.
Then all the results in Section 2 hold for Uq(gl∞), and we can thus define the

notion of (abstract) gl∞-crystals in the same way. Now, consider the following
gl∞-crystal B;

· · · −2−→ −1 −1−→ 0
0−→ 1

1−→ 2
2−→ · · ·,

where wt(b) = εb for b ∈ Z. Note that B is the crystal graph of the natural repre-
sentation of Uq(gl∞). Unlike gln-crystals, a connected component in B

⊗r does not
contain a highest weight element. So, we use the q-deformed Fermionic Fock space
(or semi-infinite wedge space) representationF ofUq(gl∞) [11] and its crystal graph
(cf [38]) to describe the crystal graphs of integrable highest weightUq(gl∞)-modules.
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Let F be the set of semi-infinite words w = · · ·w−3w−2w−1w0 with letters in B
such that

(1) wi−1 < wi for i ≤ 0,
(2) there exists an integer c ∈ Z such that wi = i+ c for i 0,

where c is called a charge ofw. For example, the charge ofw = · · ·−5−4−1 2 4∈F
is −1. For w ∈ F, we define

wt(w) = �0 +
∑
i∈B

miεi ∈ P̂,

where mi =
∣∣{ k |wk = i }∣∣ − δ−i,|i|. Because mi = 0 for almost all i ∈ B, wt(w)

is well-defined. For each i ∈ I, we define the Kashiwara operators ei, fi : F −→
F ∪ {0} as in the case of Wn (see 3.2). Since for w = · · ·w−3w−2w−1w0 ∈ F and
i ∈ I, ε(i)(w) = (· · · , ε(i)(w−3), ε(i)(w−2), ε(i)(w−1), ε(i)(w0)) has at most one +
or − (we read the signs from left to right), ei and fi (i ∈ I) are well-defined. Set
εi(w) = max{ k : eki w 
= 0 } and ϕi(w) = max{ k : f ki w 
= 0 }. Then F becomes a
gl∞-crystal, and it is isomorphic to the crystal graph of the Fock space representation
F (cf [38]).

Remark 5.12. Note that a semi-infinite word w in F of charge c can be identified
with a partition λ = (λk)k≥1 such that λk = w1−k−c+k−1 for k ≥ 1. For example,

w = · · · − 5− 4− 1 1 4 ←→ λ =
• • • • •
• • •
• •

.

Let B(c) be the set of words in F of charge c ∈ Z. Then B(c) is a subcrystal of F
isomorphic to the crystal graph of the irreducible highest weight module with highest
weight �c (cf [38]). Hence, we have

F =
⊕
c∈Z

B(c),

where B(c) is a connected component with the highest weight elementHc = · · · c−
3 c − 2 c − 1 c.
Let λ = (λ1, . . . , λn) ∈ Zn+ be a generalized partition of length n. We call an

n-tuple of semi-infinite words w = (w(1), · · · , w(n)) a semi-infinite semistandard
tableau of shape λ if

(1) w(i) = · · ·w(i)−2w(i)−1w(i)0 ∈ B(λn−i+1) for 1 ≤ i ≤ n,
(2) w(i)k ≥ w(i+1)k+di for 1 ≤ i < n and k ≤ 0, where di = λn−i+1 − λn−i.

We denote by B(λ) the set of all semi-infinite semistandard tableaux of shape λ. We
may identify each w ∈ B(λ) with a semi-infinite tableau with infinitely many rows
and n columns, where each row of w reads (from left to right) as follows;

w
(n)
k+d1+···+dn−1 · · ·w

(3)
k+d1+d2w

(2)
k+d1w

(1)
k (k ≤ 0).
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Example 5.13. Let λ= (3, 1,−2,−3), and let w= (w(1), w(2), w(3), w(4)) be
given by

w(4) w(3) w(2) w(1)

...
...

...
...

−4 −4 −4 −4
−3 −3 −2 −1
−2 −2 0
−1 −1
0 1
2 3
3
5

.

Then w is a semi-infinite semistandard tableau of shape λ.

For λ = (λ1, . . . , λn) ∈ Zn+ and w = (w(1), . . . , w(n)) ∈ B(λ) , we may assume
that w = w(1) ⊗ · · · ⊗ w(n) ∈ F⊗n, and consider B(λ) as a subset of F⊗n. Then we
can check that B(λ) together with 0 is stable under ei and fi (i ∈ I). Hence, B(λ)
is a gl∞-crystal. Moreover, it is connected with the unique highest weight element
Hλ = Hλn ⊗ · · · ⊗Hλ1 .

Theorem 5.14. For λ = (λ1, . . . , λn) ∈ Zn+, B(λ) is a gl∞-crystal, which is isomor-
phic to the crystal graph of the irreducible highest weight module with highest weight
�λ1 + · · · +�λn .

Remark 5.15. Since each word in F can be identified with a partition, a semi-infinite
semistandard tableau in B(λ) can be identified with an n-tuple of partitions where
the semistandard condition can be expressed in terms of certain inclusions among
the associated partitions. This identification naturally gives rise to a realization of the
crystal graph of an irreducible highest weight representation of an affine quantum
group (cf [8, 16, 38]). Here we will use the tableaux realization of B(λ) to apply the
combinatorics of Young tableaux given in the previous sections.

Our goal is to give an explicit decomposition of F⊗n for n ≥ 2. We start with
another description of F⊗n in terms of matrices of nonnegative integers. Set

M′∞×n = {A = (aij)i∈B,j∈Bn |
(1) aij ∈ { 0, 1 },
(2) aij = 1 for all i 0, and aij = 0 for all i" 0 }.

For w = w(1) ⊗ · · · ⊗ w(n) ∈ F⊗n, set A(w) = (aij) ∈ M′∞×n, where aij is the
number of occurrences of i in w(j) (1 ≤ j ≤ n). The map w �→ A(w) is a bijection
from F⊗n to M′∞×n, where each w(j) corresponds to the j-th column of A(w) for
1 ≤ j ≤ n.
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Example 5.16.

F⊗3 � w =

...

−4
−3
−2
2
3

⊗

...

−4
−3
−1
3
⊗

...

−4
−1
0
1
2
3

−→ A(w) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

1 1 1
1 1 0
1 0 0
0 1 1
0 0 1
0 0 1
1 0 1
1 1 1
0 0 0
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈M′∞×3,

where the horizontal line is between the 0-th row and the 1-st row of the matrix.

Now define a bicrystal structure on M′∞×n, which is naturally induced from the
one onM′m×n in 5.2. For m > 0, we define

Resm :M′∞×n −→M′2m+1×n
by ResmA= (aij)−m≤i≤m, j∈In for A= (aij)∈M′∞×n, where we assume that instead
of B2m+1 and I2m+1, the row index set for M′2m+1×n and the index set for the sim-
ple roots of gl2m+1 are given by {−m, . . . ,−1, 0, 1, . . . , m } and {−m + 1, . . . ,
0, . . . , m− 1}, respectively. For A ∈ M′∞×n and i ∈ I, we define eiA and fiA to be
the unique elements inM′∞×n ∪ {0} satisfying

Resm(eiA) = ei(ResmA), Resm(fiA) = fi(ResmA),
for all sufficiently large m > |i|, where Resm0 = 0. We set

wt(A) = n�0 +
∑
i∈B

miεi ∈ P̂, where mi =
∑
j∈Bn

(aij − δ−i,|i|),

εi(A) = max{ k : eki A 
= 0 }, ϕi(A) = max{ k : f ki A 
= 0 }.
Then M′∞×n is a gl∞-crystal, and the map w �→ A(w) is an isomorphism of gl∞-
crystals from F⊗n toM′∞×n since each column in A ∈M′∞×n can be identified with
a word in F.
Next, let us define a gln-crystal structure onM

′∞×n. SinceM′∞×n can be identified
with F⊗n, this will induce a gln-crystal structure on F

⊗n. ForA ∈M′∞×n and j ∈ In,
define e∗jA and f ∗j A to be the unique elements inM′∞×n ∪ {0} satisfying

Resm(e
∗
jA) = e∗j (ResmA), Resm(f

∗
j A) = f ∗j (ResmA),
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for all sufficiently large m > 0. Set

wt∗(A) =
∑
j∈Bn

mjεj ∈ Pn, where mj =
∑
i∈B
(aij − δ−i,|i|),

ε∗j (A) = max{ k : (e∗j )kA 
= 0 }, ϕ∗j (A) = max{ k : (f ∗j )kA 
= 0 }.
ThenM′∞×n is a gln-crystal. Since the crystal structures onM

′∞×n are induced from
those onM′2m+1×n, it is clear thatM′∞×n is a (gl∞, gln)-bicrystal.
Suppose that A = (aij) ∈ M′∞×n is given and A = A(w) for w = w(1) ⊗ · · · ⊗

w(n) ∈ F⊗n. Identifying a semi-infinite word in F with a semi-infinite semistandard
tableau of a single column, we can define an algorithm of inserting a semi-infinite
word in F into another one in a similar way as in 4.3 so that we obtain a semi-infinite
semistandard tableau with two columns. Now we define the P-tableau of A to be

P(A) = (((· · · ( w(1) ← w(2)) · · · )← w(n)),

which is a semi-infinite semistandard tableau with n columns5. Then P(A) is gl∞-
crystal equivalent to A.

Example 5.17. Let A be the matrix given in Example 5.16. Then

P(A) =

...

−4
−3
−2
2
3

←

...

−4
−3
−1
3
←

...

−4
−1
0
1
2
3

=

...

−4 −4 −4
−3 −3 2
−2 −1 3
−1 3
0
1
2
3

.

Next, define theQ-tableau ofA as follows. Choose a sufficiently largem such that
aij = 1 for all i ≤ −m and aij = 0 for all i ≥ m, and let Qm be the unique semis-
tandard tableau which is gln-crystal equivalent to ResmA, that is,Qm = Q(ResmA).
Then the connected components of A andQm are isomorphic as In-colored oriented
graphs, but wt∗(A) = wt(Qm)−(m+1)(ε1+· · ·+εn). So, if we define theQ-tableau
of A to be

Q(A) = σ−m−1(Qm)

(see 3.4), thenQ(A) is a rational semistandard tableau, which is gln-crystal equivalent
to A. Note thatQ(A) is independent of the choice of m.

5 More precisely, P(A) is the unique semi-infinite semistandard tableau such that Resm(P(A)) =
P(Resm(A)) for all m" 0, where P(A) is identified with its matrix form inM′∞×n.
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Example 5.18. Let A be as in Example 5.16. Then

Res3A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0

1 0 0

0 1 1

0 0 1

0 0 1

1 0 1

1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈M′7×3,

and

Q3 = Q(Res3A) =
1 1 1 1 3 3 3

2 2 2

3 3
.

Therefore,

Q(A) = σ−4(Q3) =
3 3 3

−3
−3 −2

.

It can now be concluded that each connected component inM′∞×n as a (gl∞, gln)-
bicrystal is isomorphic to B(λ) × Bn(μ) for some λ and μ ∈ Zn+. Moreover, A =
(aij) ∈M′∞×n is of highest weight if and only if

aij = 0 =⇒ ai+1 j = 0, and ai j+1 = 0 (j < n)

(see 5.2). For a highest weight element A ∈M′∞×n, if λj is set to be

λj =
∑
i∈B
(aij − δ−i,|i|) (j ∈ Bn),

then λ = (λ1, . . . , λn) ∈ Zn+ and (P(A),Q(A)) = (Hλ,Hλ
n ).

Summarizing, we obtain the decomposition of F⊗n and hence F⊗n, which can
be viewed as a semi-infinite analogue of the Robinson–Schensted–Knuth correspon-
dence.

Theorem 5.19. The map w �→ (P(A(w)),Q(A(w))) gives the following isomor-
phism of (gl∞, gln)-bicrystals;

F⊗n �
⊕
λ∈Zn+

B(λ)× Bn(λ).

Remark 5.20. The decomposition of the corresponding representation of Lie algebras
was first obtained by Frenkel [44] (see also [18]).
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1. Introduction

Why quivers? In this introductory section, we provide some motivation for the use of
the language of quivers in mathematics. Quivers arise in many areas of mathemat-
ics, including representation theory, algebraic geometry, and differential geometry,
Kac–Moody algebras, and quantum groups.

A quiver is just a directed graph, and a representation of a quiver associates a
vector space to each vertex and a linear map to each arrow. The notions of quiver
and its representations were introduced by P. Gabriel in the early 1970s of the past
century. The introduction of quivers marked the starting point of the modern repre-
sentation theory of finite-dimensional associative algebras. A number of remarkable
connections to other mathematical fields have been discovered, in particular to Hall
algebras, quantum groups, elliptic Lie algebras, and more recently cluster algebras.

In the following short overview of these topics, we highlight some of the main
contributors.

Representations of finite-dimensional algebras: (P. Gabriel, M. Auslander,
I. Reiten, V. Dlab, C. M. Ringel, V. Kac et al.).

The representation theory of finite-dimensional algebras can be formulated
using the language of quivers. A basic finite-dimensional hereditary algebra
over an algebraically closed field k is isomorphic to a path algebra kQ associated
to a quiver Q. If it is basic but not hereditary, it is isomorphic to a certain quotient
algebra of a path algebra kQ, where the quiver Q depends only on homological
properties of the simple modules of the algebra.

In effect, the study of representations of a finite-dimensional algebra over an
algebraically closed field is reduced to the study of a quotient of a path algebra
of a certain quiver. If the base field is not algebraically closed, one may use
“species” (or valued graphs) introduced by V. Dlab and C. M. Ringel in [1]
instead of quivers to realize finite-dimensional algebras. Methods based on
quivers and their representations have been used in the past 30 years extensively
to describe the structure of length categories (Abelian categories where every
object has a finite composition series), which arise very frequently in algebra.
These techniques provide much better understanding of the indecomposable
objects and sometimes allow a fairly complete description of the category.

Ringel–Hall algebras: (C. M. Ringel, J. A. Green).

Hall algebras were introduced by E. Steinitz and P. Hall in the context of
counting subgroups of finite Abelian groups. In a broad sense, a Hall algebra is
a tool allowing one to code a category. C. M. Ringel realized that Hall algebras
provide a link between the representation theory of quivers on one side and
Lie algebras and quantum groups on the other. This discovery had a profound
influence on representation theory.
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The Ringel–Hall algebra is an algebra, which has a basis labeled by
isomorphism classes of modules of a finite-dimensional hereditary algebra (or,
more specially, representations of a quiver). The “structure constants” describ-
ing the multiplicative structure (relative to this basis) reflect the structure of the
underlying modules. The Ringel–Hall algebra encodes a large amount of infor-
mation about the modules of finite-dimensional hereditary algebra. Amazingly,
the generic composition algebra of the Ringel–Hall algebra is isomorphic to
the positive part of a quantum group. Via the Ringel–Hall algebra approach,
J. Xiao and L. Peng [2] provided a realization of all symmetrizable Kac–Moody
algebras, and Y. Lin and L. Peng [3] obtained a realization of some elliptic Lie
algebras.

Canonical bases of quantum groups: (G. Lusztig).

A canonical basis of the quantum group U+v (g) was first introduced by
G. Lusztig in [4] via an elementary algebraic definition when g is a simple
finite-dimensional Lie algebra. Later, he examined this basis in the framework
of Ringel–Hall algebras. This canonical basis provides a natural setting for clas-
sical combinatorial results in the representation theory of simple Lie algebras.
The original algebraic definition does not work for quantum groups of arbitrary
Kac–Moody algebras. The difficulty in constructing the basis arises from the
need to define suitable analogs of imaginary root vectors. By using topolog-
ical methods [5], G. Lusztig constructed this canonical basis of the quantum
group of a symmetric Kac–Moody algebra. It was shown that the “global crys-
tal basis” introduced by M. Kashiwara and this canonical basis coincide. This
canonical basis has very nice properties, which make it a powerful tool for the
study of representation theory of quantum groups, Hecke algebras, quantized
Schur algebra, etc. It is particularly suited for the investigation of the structure
of integrable modules of quantum groups and their tensor products.

Quiver variety: (G. Lusztig and H. Nakajima).

By introducing quiver variety, G. Lusztig provided a geometric realization
of the positive part of the universal enveloping algebra of a simply laced Kac–
Moody algebra g using constructible functions. A geometric realization of the
positive part of a quantum group using perverse sheaf permitted the construction
of a canonical basis, which plays a major role in representation theory. The
quiver varieties introduced by H. Nakajima yield a geometric realization of the
highest weight representations of simply laced Kac–Moody algebras.

Category O and stratified algebras: (E. Cline, B. Parshall, and
L. Scott).

Quasi-hereditary algebras were introduced by E. Cline, B. Parshall, and
L. Scott in their efforts to understand Kazhdan–Lusztig theory and developed
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further by V. Dlab and C. M. Ringel. Quasi-hereditary algebras and their
generalizations may be viewed as generalizations of quiver algebras more
appropriate for understanding the relationship between standard modules and
irreducible modules in the category O, perverse sheaves, and categories of rep-
resentations of algebraic groups in positive characteristic.

Some of the most interesting generalizations of quasi-hereditary algebras,
called stratified algebras, have been defined in independent (and slightly dif-
ferent) ways by I. Ágoston, V. Dlab and E. Lukács, and E. Cline, B. Parshall,
and L. Scott. In each case, the stratification involved occurs categorically at the
derived category level and internally in terms of particular ideals of the algebra.

Weighted projective lines and canonical algebras: (W. Geigle
and H. Lenzing).

W. Geigle and H. Lenzing in [6] introduced a new class of curves called
weighted projective lines. These curves are essentially lines in a weighted pro-
jective space and behave like smooth projective curves with respect to coherent
sheaves and vector bundles. In particular, the category of coherent sheaf coh C
over a weighted projective line C has Serre duality, almost-split sequences, and
each coherent sheaf splits into a direct sum of a vector bundle and a torsion
sheaf.

There is a bijective correspondence between weighted projective lines and
canonical algebras as studied by C. M. Ringel in [7]. By means of a tilting
sheaf, one has an equivalence Db(coh C) � Db(mod−�) of the derived cat-
egories of coh C and the category mod−� of finite-dimensional �–modules,
where � is the canonical algebra associated to C. In the case where the vir-
tual genus of C is one, a brief account of the classification of indecomposable
bundles onC can be given. The equivalenceDb(coh C) � Db(mod−�) estab-
lishes a link between M. F. Atiyah’s classification of vector bundles on elliptic
curves and C. M. Ringel’s classification of modules over canonical algebras of
tubular type.

Dynkin diagrams of type A, D, and E:

Dn

An ……

E6



512 X. Chen, K.–B. Nam and T. Pospíchal

E7

E8

The Dynkin diagrams An, Dn, E6, E7, and E8 have appeared in many different
parts of mathematics.

The A–D–E classifications: In accordance with the ubiquity of A–D–E classifica-
tions [8, 9], the following graph shows some of the main occurrences of Dynkin
diagrams in mathematics.

Representation Theory
of f.d. Algebras

Kac–Moody
Lie Algebras

Quantum
Groups

Semisimple Lie Algebras
and Lie Groups

Quiver Representations
Gabriel Theorem

Singularities of
Algebraic Hypersurfaces

Critical Points of
Smooth Functions

3-dimensional
Orthogonal Groups

Simple Groups of Lie Type
Chevalley Groups

Dynkin

Diagrams

As V.I. Arnold said in [8]:

The problem is to find a common origin of all A–D–E classification theorems
and to substitute a priori proofs to a posteriori verifications of the parallelism
of the classifications.

Are there direct relationship among some fields of mathematics where the same dia-
grams occur? Can results already developed in one field be applied to get new result
and new information in another field?

In the following sections, you will see why these diagrams have come up in the
representation theory of finite-dimensional algebras and related topics and how the
representation theory of finite-dimensional algebras is connected with other fields of
mathematics.
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Classes of Lie algebras: The class of semisimple Lie algebras has been extended to
several more general classes. We list some of those related to the topic of this chapter
without mentioning details.

Finite-dimensional

Semi-simple

Lie algebras

Affine Kac–Moody Lie algebras Symmetrizable

Kac–Moody

Lie algebras

Kac–Moody

Lie algebras

Extended affine Lie algebras

Toroidal Lie algebras

The finite-dimensional algebras can be classified with respect to their representation
types. Every algebra is either of finite type, tame type, or wild type. In this chapter,
the close connection between the classification of finite-dimensional algebras and the
classification of Kac–Moody algebras will be given.

The main problems of the representation theory of finite-dimensional algebras are:

• to study the structure of the given algebra;
• to describe all indecomposable modules and their homological properties;
• to classify the given algebra.

The following graph (c.f. [10]) illustrates the relations between the representation
theory of quivers and Lie theory, and also provides a guideline for the following
sections.

Dynkin

g

g n h n

g n h n
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In Section 2, we recall the basic terminology of Kac–Moody algebras and quantum
groups, which is needed in the following sections. We introduce the language of quiv-
ers and their representations in Section 3 and describe the relation between quivers
and finite-dimensional algebras. Section 4 provides the first connection between the
representation theory of quivers and Lie theory; Gabriel theorem is explained. We
give the definition of the Ringel–Hall algebra and discuss the amazing isomorphism
between the generic composition algebra and the positive part of the correspond-
ing quantum group in Section 5. In Section 6, by using the Ringel–Hall algebra
approach, we construct root vectors, the Poincaré–Birkhoff–Witt (PBW) basis, and
the canonical basis of a quantum group of finite or affine type. Section 7 provides a
realization of all symmetrizable Kac–Moody algebras and some elliptic Lie algebras
of type D(1,1)4 , E

(1,1)
6 , E

(1,1)
7 , and E(1,1)8 via the root category of hereditary algebras

and tubular algebras of the same type, respectively.

Throughout this chapter, the composition of any two mapsX
f→ Y

g→ Z is denoted
by gf and the set of non-negative integers is denoted by N.

2. Kac–Moody algebras and quantum groups

We will use the Cartan datum to unify a variety of set-ups in different mathematical
fields.

Definition 2.0.1 (G. Lusztig). A Cartan datum is a pair � = (I, ( , )) where

• I is a finite set;
• ( , ) is a symmetric bilinear form on ZI .

It is assumed that

• (i, i) ∈ {2, 4, 6, . . . } for any i ∈ I;
• 2

(i, j)

(i, i)
∈ {0,−1,−2, . . . } for any i �= j in I.

A Cartan datum � is symmetric Cartan datum if (i, i) = 2 for all i ∈ I; we call
� simply laced if it is symmetric and (i, j) ∈ {0,−1} for all i �= j. A Cartan datum
� is said to be irreducible Cartan datum if I is nonempty and for any i �= j in
I, there exists a sequence i = i1, i2, . . . , im = j in I such that (ip, ip+1) < 0 for
p = 1, 2, . . . , m− 1.

A matrix C is called symmetrizable matrix if there exists an invertible diag-
onal matrix D such that DC is symmetric. Note that any symmetric matrix is
symmetrizable.

Every Cartan datum determines a symmetrizable (generalized) Cartan matrix in

the following way: write aij = 2
(i, j)

(i, i)
, and let C = (aij)i,j∈I . In the following until

the end of this section, assume I = {1, . . . , n}.
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Definition 2.0.2. A realization of a symmetrizable (generalized) Cartan matrix
C = (aij)1≤i,j≤n is a triple (h,�,�∨), where h is a complex vector space, � =
{α1, α2, . . . , αn} ⊂ h∗, and �∨ = {h1, h2, . . . , hn} ⊂ h such that

(1) both � and �∨ are linearly independent;
(2) dim h = 2n− rank(A);
(3) 〈hi, αj〉 = aij for all i, j ∈ I,

where 〈 , 〉 : h× h∗ −→ C, 〈h, α〉 = α(h).
Definition 2.0.3. Let C= (aij)1≤i,j≤n be a symmetrizable (generalized) Cartan
matrix. The associated Kac–Moody algebra g = g(C) is defined as the complex
Lie algebra with generators ei, fi (i = 1, . . . , n) and h and relations:

[h, h′] = 0, ∀ h, h′ ∈ h;

[ei, fj] = δijhi;
[h, ei] = αi(h)ei, ∀ h ∈ h;

[h, fi] = −αi(h)fi, ∀ h ∈ h;

(ad ei)
1−aij ej = 0, if i �= j;

(ad fi)
1−aij fj = 0, if i �= j,

where ad ei = [ei,−]. The elements ei and fj are called Chevalley generators.

Let n+, respectively n−, be the Lie subalgebra of g generated by {ei|1 ≤ i ≤ n},
respectively {fi|1 ≤ i ≤ n}. The Kac–Moody algebra g has triangular decomposition:
g = n− ⊕ h⊕ n+.

Denote by g′ = g′(C) the subalgebra of g generated by all Chevalley generators ei
and fj .

Theorem 2.0.4 [11]. Let h′ ⊂ h be the span of h1, . . . , hn. Then

(1) g′ = n− ⊕ h′ ⊕ n+;
(2) g′ = [g, g].

Remark 2.0.5. The algebra g′ = g′(C) is the derived algebra of a Kac–Moody
algebra g. The algebra g′ can be defined as the complex Lie algebra with 3n generators
ei, fi, hi (1 ≤ i ≤ n) and the following defining relations:

[hi, hj] = 0, ∀ i, j;
[ei, fj] = δijhi;
[hi, ej] = aijej;
[hi, fj] = −aijfj;
(ad ei)

1−aij ej = 0, if i �= j;
(ad fi)

1−aij fj = 0, if i �= j.
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Note that the Kac–Moody algebra g and its derived algebra g′ share a common
structure and representation theory.

Any element h ∈ h gives rise to a decomposition of g into adh-eigenspaces, and
since h is commutative, there is a simultaneous such decomposition

g = ⊕α∈h∗gα,

where

gα = {x ∈ g | [h, x] = α(h)x, ∀h ∈ h}.
A nonzero element α ∈ h∗ such that gα �= {0} is called a root of g, and the set of roots

� = {α ∈ h∗ | gα �= {0}}
is called the root system of g (relative to h). The number

multα := dim gα

is called the multiplicity of α. Note that � = {α1, . . . , αn} ⊂ �. Every root β ∈ �
can be written as

β =
n∑
i=1

liαi

with integer coefficients li, all non-negative or all nonpositive. The root in � is
then called simple root. If all li ≥ 0 (respectively, all li ≤ 0), we call β positive
root (respectively negative root). The collections of positive and negative roots will
usually be denoted by �+ and �−. The set � comes with a canonical polarization
� = �+ ��− and �+ = −�−.

For each i = 1, . . . , n, define the simple reflection si of h∗ by the formula

si(ι) = ι− 〈hi, ι〉αi, ι ∈ h∗.

Note that si ∈ GL(h∗). The subgroupW = W(C) ofGL(h∗) generated by all simple
reflections is called the Weyl group of g.

A root α belonging toW ·� is called real root and obviously satisfies dim gα = 1.
A root that is not real is called imaginary root and may have higher multiplicity. The
imaginary roots areW–invariant, which meansW ·�img = �img. Let�+real be the set
of all positive real roots and�+img be the set of all positive imaginary roots. We know

that every positive root is either real or imaginary, thus we have �+ = �+real ��+img.
For simplicity, we only consider case of an irreducible and simply laced Cartan

datum � = (I, ( , )) in the following sections, except Section 7.
If � is symmetric and irreducible, then the corresponding Cartan matrix is sym-

metric and indecomposable. We can associate a graph of a symmetric Cartan matrix.
Its vertices are labeled by 1, 2, . . . , n (n = |I|). If i �= j, the vertices i,j are jointed
by aijaji edges. Recall that a Cartan matrix is called indecomposable if its associated
graph is connected.
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Theorem 2.0.6. Let g(C) be a Kac–Moody algebra with C symmetric and indecom-
posable. Then,

• g(C) is a simple Lie algebra ⇐⇒ the graph of C is one of Dynkin diagrams
An, Dn, E6, E7, and E8.

• g(C) is affine Kac–Moody algebra ⇐⇒ the graph of C is one of Euclidean
diagrams Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8.

The Dynkin diagrams of type A, D, and E have been displayed in the previous
section.

The Euclidean diagrams (called by some authors “extended Dynkin diagrams”)
of type Ã, D̃, and Ẽ are as follows:

An

Dn

E7

E6

E8

Quantum group of type � = (I, ( , )). Quantum groups were initially developed in
the context of the inverse scattering methods and used to solve integrable quantum
systems. V. Drinfel’d and M. Jimbo showed independently in 1985 that quantum
groups are Hopf algebras that are often deformations of universal enveloping algebras
of Lie algebras. Since then, quantum groups have brought a new level of understanding
to a wide variety of areas of physical and mathematical research. In mathematics, they
have been used to develop invariants of knots; other applications have been found
in category theory and also in the representation theory of algebraic groups in prime
characteristic. They are very influential in modern developments of ring theory and
provide an inspiration to the new field of quantum geometry.
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The Cartan datum considered in this chapter is nothing but a symmetrizable
generalized Cartan matrix together with itsW -invariant scalar product (, ) defined on
ZI , where W is the Weyl group and ZI is the lattice generated by the root system �.

Let g = g(C) be a symmetrizable Kac–Moody Lie Algebra of type � = (I, (, )),
where � = (I, (, )) is a Cartan datum. Let Q(v) be the field of rational function in
the variable v.

Definition 2.0.7 (Drinfel’d–Jimbo). Thequantumgroup (or “quantized enveloping
algebra”)U = Uv(g)of type� is defined as aQ(v)-algebra with generatorsEi, Fi,Ki,
and K−i, i ∈ I subject to the relations:

KiK−i = 1 = K−iKi,
KiKj = KjKi,
KiEj = v(i,j)EjKi,
KiFj = v−(i,j)FjKi,

EiFj − FjEi = δij Ki −K−i
vi − v−1

i

for any i, j ∈ I, where vi = v (i,i)2 , and

1−aij∑
t=0

(−1)t
[

1− aij
t

]
εi

EtiEjE
1−aij−t
i = 0

1−aij∑
t=0

(−1)t
[

1− aij
t

]
εi

F ti FjF
1−aij−t
i = 0

for any i �= j in I, where aij = 2 (i,j)
(i,i)

, εi = (i,i)
2 ; for i ∈ I, we use the notation

[s]εi =
(vεi )s − (vεi )−s
(vεi )− (vεi )−1

= (vεi )s−1 + (vεi )s−3 + · · · + (vεi )−s+1
,

[s]εi ! =
s∏
r=1

[r]εi , and

[
s

r

]
εi
= [s]εi !
[r]εi ![s− r]εi !

here, r and s are non-negative integers, and r ≤ s. For convenience, we set [0]εi ! = 1.

In the case when εi = 1, write [s] = [s]1, [s]! = [s]1!, and
[
s

r

]
=
[
s

r

]
1
.
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Let A=Z[v, v−1]. Define the divided powers subalgebra AU to be the
A-subalgebra of Uv(g) generated by the elements of the set

{K±i, E(r)i = Eri

[r]εi !
, F

(r)
i = Fri

[r]εi !
|i ∈ I, r ≥ 0}.

We define AU± in an analogous manner.
Next, we define the bar involution ( ) of Uv(g) by

Ei = Ei, Fi = Fi, v = v−1.

The involution preserves both U± and AU±.

3. Quivers and their representations

We will work over a base field k. Unless mentioned otherwise, k is assumed to be
algebraically closed.

3.1. Quivers and their representations

Definition 3.1.1. As mentioned before, a quiver is a directed graph. Formally, a
finite quiver

Q = (Q0,Q1, s, t : Q1 −→ Q0)

is given by

• Q0 = a finite set of vertices = {1, 2, . . . , n};
• Q1 = a finite set of arrows = {ρ : s(ρ) ρ−→ t(ρ)},

where the two maps s and t assign to each arrow ρ ∈ Q1 its source s(ρ) ∈ Q0 and its
target t(ρ) ∈ Q0, respectively.

Note that multiple arrows between the same pair of vertices are allowed, as well
as loops (arrows which start and end at the same vertex).

The quiver Q is said to be connected quiver if the underlying graph (which is
obtained from Q by forgetting about the orientation of the arrows) is a connected
graph. We only consider connected quiver in the following.

A nontrivial path σ in a quiver Q is a sequence σ = σ1σ2 . . . σm of arrows, which
satisfies t(σi) = s(σi+1) for all 1 ≤ i ≤ m−1. Often, we shall denote it by a diagram
like the following:

σ = • σ1→ • σ2→ • · · · σm→ •.
This path starts at s(σ1) and terminates at t(σm),m is the length of a path σ. We denote
by s(σ) and t(σ) the starting and terminating vertex of the path σ. For each vertex i,
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we denote by ei the trivial path of length zero, which starts and terminates at i. A
nontrivial path σ is called an oriented cycle if s(σ) = t(σ).

Example 3.1.2. The quiver Q : •1 �α β•2 � •3 has three vertices and two arrows.

Remark 3.1.3. It is trivial to see that every simply laced Dynkin diagram can be
made into a quiver by assigning an orientation to each edge. Note that there are lots
of ways of orienting the edges of a Dynkin diagram to make a quiver. For example,
the following two quivers

2 3 3211

are both obtained from the same Dynkin diagram of type A3.

Given a quiver Q, we now define Rep(Q), the category of representations of a
quiver Q. We will restrict our discussion to finite-dimensional representations of a
quiver.

The ingredients of Rep(Q) are given as follows:

• objects: a (finite dimensional) representationV of a quiver Q is given by a finite-
dimensional k-vector spaceVi for each i∈Q0 and a linear mapVρ : Vs(ρ)→ Vt(ρ)
for each ρ ∈ Q1;

• morphisms: θ : V → V ′ is given by linear maps θi : Vi → V ′i for each i ∈ Q0
satisfying

• composition: V
θ−→ V ′ φ−→ V ′′ is given by (φθ)i = φiθi;

• the direct sum V ′ ⊕ V ′′ of two representations of a quiver Q is given by

(V ′ ⊕ V ′′)i = V ′i ⊕ V ′′i , i ∈ Q0,

(V ′ ⊕ V ′′)ρ : V ′s(ρ) ⊕ V ′′s(ρ)

(
V ′ρ 0
0 V ′′ρ

)

−−−−−−−−−→ V ′t(ρ) ⊕ V ′′t(ρ) , ρ ∈ Q1;

• V is a trivial (or zero) representation if Vi = 0 for each i ∈ Q0 and Vρ = 0 for
each ρ ∈ Q1;

• V is indecomposable representation of a quiver Q if V �� V ′ ⊕ V ′′, where V ′
and V ′′ are nontrivials;
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• the dimension vector of a representation of a quiver Q is denoted by

dim V = (dimk Vi)i∈Q0;
• for each i ∈ Q0, the simple representation Si of a quiver Q is given by

Sij =
{
k when j = i
0 otherwise

and Siρ = 0 for all ρ ∈ Q1.

It is easy to see that the simple representation has a standard vector as dimension
vector, namely

αi = dim Si = (0, 0, . . . ,
i

1, . . . , 0, 0).

Example 3.1.4. Consider the quiver Q : •1 � •2 � •3

A representation V1 is given by 0
[0]→ k

[1]→ k and another representation V2 is

given by k
[1]→ k

[1]→ k. Both are finite dimensional and indecomposable. A morphism
V1 → V2 is given by

It is easy to compute that the following representation k2 [0,1]−−→ k
[1]−→ k is decom-

posable and

k2 [0,1]−−→ k
[1]−→ k � k

[1]−→ k
[1]−→ k ⊕ k

[0]−→ 0
[0]−→ 0.

Moreover, we can see that

dim
(
k2 [0,1]−−→ k

[1]−→ k
)
= (2, 1, 1) = 2α1 + α2 + α3.

Theorem 3.1.5 (Krull–Remak–Schmidt Theorem). Every finite-dimensional rep-
resentation V of a quiver Q is isomorphic to a direct sum of indecomposable
representations. This decomposition is unique up to isomorphism and permutation of
factors.

Thus, the problem of classifying representations of a quiver requires us to classify
all indecomposable representations and then to find what morphisms between those
indecomposables can exist.

We summarize the main problems of the representation theory of quivers as follows
(cf. [12]):

• to develop methods for constructing indecomposable representations;
• to look for suitable invariants to identify indecomposable representations;
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• to show that a given list of indecomposable representations is complete;
• to find connections with other areas of mathematics.

3.2. Representations of Q and problems in linear algebra

A whole range of problems of linear algebra can be formulated in a uniform way in
terms of representations of quivers.

Example 3.2.1 (Equivalence of matrices). Consider the quiver Q : •2 •1�α

In this case, a finite-dimensional representation is given by a linear map
f : V2 → V1, the map itself may be given by a matrix A. The following diagram
illustrates the situation when this representation and another one (given by a matrix
B) are equivalent (i.e. isomorphic in the category of representations). The isomor-
phism is realized by two invertible matrices P and Q:

km

km

kn

knB

A

AP Q

The classification of equivalence classes of linear maps amounts to classifying the
n×mmatrices up to “row and column equivalence.” As is well known from elemen-
tary linear algebra, the equivalence classes of matrices are completely determined by
their size and rank. Every representation of dimension vector (m, n) is a direct sum

of three types of indecomposable representations: S1 : 0
[0]−→ k, S2 : k [0]−→ 0, and

S2,1 : k [1]−→ k. The n×mmatrix has rank r when the summand S2,1 occurs r times in
its decomposition. The classification of representations of this quiver is trivial since
we only have three indecomposable representations up to isomorphism.

Example 3.2.2 (Similarity of matrices). Consider the quiver Q : 1 •��
��
� α

Giving a finite-dimensional representation simply means giving an endomorphism
of a finite-dimensional vector space f : V1 → V1. The following diagram illustrates
the situation where two representations are isomorphic:

kn

kn

kn

knB

A

A .P P

The classification of isomorphism classes is equivalent to the classification
of matrices up to conjugation. This problem is answered by the well-known
Jordan classification. In terms of indecomposable representations, this means that
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for a dimension vector (n), there is a one parameter family of indecomposable
endomorphisms

Jn(λ) =

⎛
⎜⎜⎜⎜⎝
λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎞
⎟⎟⎟⎟⎠
n×n

, λ ∈ k.

Example 3.2.3 (Equivalence of matrix pairs). Consider the Kronecker quiver
Q : •2 •1��β

α

A representation means a pair of linear maps: fα : V2 → V1 and fβ : V2 → V1.
Two representations are isomorphic if the following holds:

km

km

kn

kn

B2

B1

A1

A2

P Q

The problem of classifying such pairs of matrices was considered by K. Weierstrass,
but his solution was incomplete. The problem was completely solved by L. Kronecker
in 1890.

Here, we list isomorphism classes of all indecomposable representations:

This time there are infinitely many indecomposables, but we can classify them. An
effective classification of the representations of this quiver is possible.

Example 3.2.4 (The five subspace problem). Consider the quiver:

A representation of this star quiver is given by

V = {V1, V2, V3, V4, V5, V6; fαi : Vi→ V6, 1 ≤ i ≤ 5}.
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If all maps are injective, we can have such a representation as a subspace configura-
tion. There exists a two-parameter family of pairwise nonisomorphic indecomposable
representations,

Vλ,μ =
{
k, k, k, k, k, k2; ( 1

0

)
,
(

0
1

)
,
(

1
1

)
,
(

1
λ

)
,
(

1
μ

)}
.

Unfortunately, one cannot effectively find a complete list of all indecomposable
representations. The complete classification of representations of this quiver seems
impossible.

3.3. Representation types of quivers

Based on the above discussion, we can distinguish quivers with respect to their rep-
resentation types.

The representation type of a quiver Q is one of the following three:

finite type: the number of isomorphism classes of indecomposable representa-
tions is finite;

tame type: the number of isomorphism classes of indecomposable represen-
tations is infinite, but a complete list of indecomposables can be described
explicitly. In each dimension, there exist only finitely many one-parameter
families of pairwise nonisomorphic indecomposables;

wild type: the quiver is neither of tame nor of finite type. As it turns out, in
this case one cannot provide a “complete list” of indecomposable representa-
tions.

We do not provide the precise definitions of tame and wild, as those are rather
technical. It is well-known that every quiver is either of finite, tame, or wild type.

Remark 3.3.1. The representation types of the quivers discussed in the examples are
as follows:

Example 3.2.1 is of finite type: •2 •1�α

Example 3.2.3 is of tame type: 2 1

Example 3.2.4 is of wild type: 1

2

34

5

6

The basic result in representation theory of quivers is the following theorem clas-
sifying the quivers with respect to different representation types.



Quivers and Representations 525

Theorem 3.3.2 [1, 13]. Let Q be a quiver with no oriented cycles, and let � be the
underlining graph of Q. We get this graph when we forget the orientation of arrows
in Q. Then,

• Q is of finite type ⇐⇒ � is Dynkin.
• Q is of tame type ⇐⇒ � is Euclidean.
• All other quivers are of wild type.

3.4. The path algebra of a quiver

Starting with a quiver, one can construct an algebra that has some remarkable
properties.

Definition 3.4.1. Let Q be a quiver. The path algebra kQ is the k-vector space with

• basis: {all paths in Q};
• multiplication given by:

στ =
{

obvious composition if t(σ) = s(τ),
0 otherwise.

This product is extended to the entire space kQ using distributivity and linearity. In
this way, one obtains an associative algebra kQ. The “zero-length” path starting and
ending at the vertex i is denoted by ei. Note that products are read from left to right
(unlike composition of morphisms).

Example 3.4.2. Consider the quiver Q : •1 � •2 � •3α β

The path algebra kQ has basis {e1, e2, e3, α, β, αβ}. A couple of examples of prod-
ucts are: βα = ββ = αβe1 = e3αβ = 0; αβe3 = αβ.

Example 3.4.3. If Q consists of one vertex and one loop, that is, Q : •��
�	
� α , then

kQ � k[T ]. If Q has one vertex and n loops, then kQ is the free associative algebra
on n letters.

The basic properties of the path algebra kQ are dictated by the quiver Q.

Proposition 3.4.4. Set � = kQ. Note the following facts (cf. [14]) :
(1) the set {ei | i ∈ Q0} is a complete set of primitive orthogonal idempotents

of �;
(2) � has an identity given by

n∑
i=1

ei;
(3) the spaces ei�, �ej , and ei�ej have as bases the paths starting at i, termi-

nating at j and starting at i and terminating at j, respectively;
(4) distinct ei’s are not equivalent, that is, ei� �� ej� for i �= j;
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(5) ��=⊕ni=1ei�, and each ei� is an indecomposable projective right
�-module;

(6) � is finite dimensional ⇐⇒ Q has no oriented cycles;
(7) if Q has no oriented cycles, then � is a hereditary algebra.

Recall that an algebra (or more generally, a ring) is called hereditary if every
submodule of a projective module is projective.

The following theorem tells us that we can identify finite-dimensional representa-
tions of a quiver Q with finitely generated (finite dimensional) right kQ-modules.

Theorem 3.4.5. We have the following equivalence:
Rep(Q) � mod−kQ.

Proof. We only provide the construction. If M is a kQ-module, define a represen-
tation V with Vi = Mei and Vρ(x) = xρ = xρet(ρ) ∈ Vt(ρ).

If V is a representation, define a module M as follows. Let M = ⊕
i∈Q0

Vi. Let

Vi
εi−→ M

πi−→ Vi be the canonical maps. Then,

xei = εiπi(x), xσ1σ2 . . . σm = εt(σm)Vσm . . . Vσ2Vσ1πs(σ1)(x).

�

A module M over kQ can be identified with a representation of Q, which is given
by a set of k-vector spaces indexed by Q0 along with a set of linear maps indexed
by Q1. Thus, M = (Mi, fα)i∈Q0,α∈Q1 , where fα ∈ Homk(Mi,Mj) if α is an arrow
from i to j. For instance, let Si be the simple representation corresponding to a vertex
i, then it can be identified with the module, still denoted by Si = (Sij , fα) where
Sij = k, if j = i, Sij=0, if j �= i, fα = 0 for all α ∈ Q1. Then, Si is a simple module
and, in the case that kQ is finite dimensional, any simple module is of this form.

Remark 3.4.6. Dealing with representations and morphisms of representations of a
quiver Q amounts to the same thing as dealing with modules and homomorphisms
of modules over the path algebra kQ. It is very easy to compute with representations
since only vector spaces and matrices are involved.

In the following, we will not distinguish between representations of a quiver and
modules of corresponding path algebra.

Given a finite-dimensional k-algebraA, consider it as a right module over itself and
decompose it into indecomposables � = ⊕ni=1Pi, which are projective as is easily
seen. The algebra A is called basic if Pi is not isomorphic to Pj for i �= j. Note that
every finite-dimensional algebra is Morita equivalent to a basic finite-dimensional
algebra. The next two theorems elucidate the relationship of finite-dimensional asso-
ciative algebras and path algebras of quivers.

Theorem 3.4.7. A basic finite-dimensional hereditary algebra over an algebraically
closed field k is isomorphic to the path algebra kQ for some quiver Q.
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Since there are finite-dimensional k-algebras that are not hereditary, not every
basic finite-dimensional k-algebra is isomorphic to the path algebra of a quiver. The
following theorem is one of the cornerstones of the theory.

Theorem 3.4.8. A basic finite-dimensional algebra over an algebraically closed
field k is isomorphic to a certain quotient algebra of the path algebra kQ for some
quiver Q.

Remark 3.4.9. A quotient algebra of a path algebra can be described by admissible
relations. An admissible relation on Q over a field k is a k-linear combination of paths
of length ≥ 2. Without loss of generality, we can assume that all paths involved in
one relation have the same starting vertex and the same terminating vertex. Given a
set S of admissible relations, consider the kQ-ideal I generated by S, and call such
an admissible ideal. The quotient algebra kQ/I can be finite dimensional even if kQ
is infinite dimensional. Just as before, a module over kQ/I can be identified with a
representation of Q, where the set of maps is to satisfy the additional conditions that
the linear combinations of homomorphisms corresponding to relations in S are zero.
Let us reiterate that it is well known that any basic algebra over algebraically closed
field k is isomorphic to kQ/I for some quiver Q and some admissible ideal I. Denote
by Rep(Q, I) the full subcategory of Rep(Q) consisting of the representations of Q
bounded by I (see [7]). Then we have Rep(Q, I) � mod−kQ/I.

Example 3.4.10 (Quiver with zero relations). Consider the quiver

Choose the ideal I =< αβ−γδ > generated by one admissible relation. The quotient
algebra kQ/I has a basis {e1, e2, e3, e4, α, β, γ, δ, αβ = γδ}.

It is well known that any finite-dimensional algebra is Morita equivalent to pre-
cisely one basic finite-dimensional algebra. Thus, most problems from the represen-
tation theory of finite-dimensional algebras can be understood as problems about
representations of quivers.

Remark 3.4.11. In case k is not algebraically closed field, one may have to resort to
the use of species (also known as a “modulated quiver”) instead of a simple quiver.
The interested readers may consult [1].

The representation type of an algebra is defined in the same way as it was done for
quivers. Alas, the rigorous definitions of tame and wild type make it far from obvious



528 X. Chen, K.–B. Nam and T. Pospíchal

that each algebra is precisely one of the three types. Fortunately, this highly nontrivial
fact is true.

Theorem 3.4.12 [15]. Let A be a finite-dimensional k-algebra. Then A is of finite,
tame, or wild representation type.

3.5. Auslander–Reiten theory

Let A be a finite-dimensional k-algebra. We would like to record information on the
category mod−A of right A–modules in terms of a directed graph. It seems most
appropriate that vertices should represent some modules and arrows should represent
some homomorphisms. Since mod−A is a Krull–Remak–Schmidt category, we only
allow one point for each isomorphism class of indecomposable modules. As for the
arrows, they should stand for “irreducible homomorphism,” that is, those with no
“nontrivial” factorization.

Definition 3.5.1. A homomorphism f : X → Y in mod−A is irreducible mor-
phism provided

(a) f is neither a split monomorphism nor a split epimorphism, and
(b) if f = f1f2, either f1 is a split epimorphism or f2 is a split monomorphism,

where f2 : X→ Z and f1 : Z→ Y .

Definition 3.5.2. A homomorphism f : X → Y in mod−A is right almost split
morphism provided

(a) it is not a split epimorphism, and
(b) any morphism Z→ Y , which is not a split epimorphism factors through f .

The definition of a left almost split morphism is dual.

Definition 3.5.3. An exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 in mod−A
is called an almost split sequence (also called Auslander–Reiten sequence) if f is
left almost split and g is right almost split.

Almost split sequences can be characterized in terms of irreducible morphisms.

Theorem 3.5.4 [16]. An exact sequence 0 −→ X
f−→ Y

g−→ Z −→ 0 is an almost
split sequence if and only if f and g are both irreducible.

We can construct almost split sequences in mod−A through a functor. First, con-
sider the A-dual functor

(−)t = HomA(−, A) : mod−A→ mod−Aop,
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where mod−Aop is the category of all finite-dimensional left A-modules. Start by
approximating each right A-module M by projective modules. Let

P1
p1−→ P0

p0−→ M −→ 0

be a minimal projective presentation of M, that is, an exact sequence such that p0 :
P0 −→ M and p1 : P1 −→ Ker p0 are projective covers. Applying the left exact
and contravariant functor (−)t , we obtain an exact sequence of left A-modules

0 −→ Mt
pt0−→ Pt0

pt1−→ Pt1 −→ Coker pt1 −→ 0.

Denote Coker pt1 by Tr(M) and call it the transpose of M. The transpose functor
transforms right A-module into left A-module. Thus, if we wish to define an endo-
functor of mod−A, we need to compose it with another duality between right and
left A-modules, namely the standard duality

D = Homk(−, k).
The Auslander–Reiten translations are defined to be the compositions of D and

Tr, namely, set τ = DTr and τ−1 = TrD.
The existence theorem of almost split sequences is described as follows.

Theorem 3.5.5 [16]. Let A be a finite-dimensional k-algebra.

(a) For any indecomposable nonprojective A-module M, there exists an almost
split sequence 0 −→ τM −→ E −→ M −→ 0;

(b) For any indecomposable noninjectiveA-moduleN, there exists an almost split
sequence 0 −→ N −→ F −→ τ−1N −→ 0.

In the following, a device for studying all left and right almost split morphisms
simultaneously is introduced.

Definition 3.5.6. The Auslander–Reiten quiver �(A) of mod−A is constructed
as follows:

• the set of vertices �0 consists of the isomorphism classes [M] of finite-
dimensional indecomposable modules;

• let [M], [N] be the vertices in �(A) corresponding to the indecomposable mod-
ules M,N in mod−A. The arrows [M] → [N] are in bijective correspondence
with the vectors of a basis of the k-vector space Irr(M,N) (all irreducible mor-
phisms from M to N).

The Auslander–Reiten quiver of A encodes a lot of information about the homo-
logical properties of mod−A.

Now, �(A) can be decomposed into components in a straightforward way: two
objectsX and Y lie in the same component if and only if there exist a natural number
n, indecomposable modules Xi, for 1 ≤ i ≤ n, and for each i, either an irreducible



530 X. Chen, K.–B. Nam and T. Pospíchal

morphism fi : Xi→ Xi+1 or an irreducible morphism gi : Xi+1 → Xi withX1 = X
and Xn = Y .

Theorem 3.5.7. Let Q be a quiver without oriented cycles. Then, kQ is of finite
representation type if and only if �(kQ) is a finite connected quiver (i.e. has only a
finite connected component).

Example 3.5.8. Consider the quiver Q : •1 � •2 � •3 . The Auslander–

Reiten quiver �(kQ) looks as follows:

0 0 k 0 k 0 k 0 0 ,

0 k k k k 0

k k k

where the dotted lines indicate the Auslander–Reiten translation. The Auslander–
Reiten quiver encodes much information about the representations and morphisms
between them.

Remark 3.5.9. Given a quiver Q without oriented cycles, let � = kQ be the path
algebra. If it is of finite type, then one can construct all the indecomposables sys-
tematically and completely by following the “flow” of the Auslander–Reiten quiver
�(�). Start with indecomposable projectives ei� (or, alternatively, the injectives
Homk(�ei, k)), for all i ∈ Q0, which correspond to the vertices of the quiver Q,
and then apply the inverse of the Auslander–Reiten translation functor τ−1 (or τ)
repeatedly to get all the indecomposables.

3.6. Quadratic forms of quivers and algebras

Definition 3.6.1. Let A be a basic finite-dimensional k-algebra (associative, with
unit) and let S1, S2, . . . , Sn be a complete set of isomorphism classes of simple right
A-modules. Given any A-module M, the dimension vector of M is the vector

dimM =
n∑
i=1

[M : Si]αi,

where [M : Si] is the Jordan–Hölder multiplicity of Si in M and αi is the
standard coordinate vector (or, equivalently, the dimension vector of the simple
module Si).
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Remark 3.6.2. Let Q be a quiver without oriented cycles. Let M be an kQ-module.
The dimension vector of M is the vector

dimM = (dimk Mei)i∈Q0 =
∑
i∈Q0

[M : Si]αi.

Definition 3.6.3. Let A be a k-algebra. The Grothendieck group of A is the
Abelian group G(A) = F/F′, where F is the free Abelian group having as basis
the set of the isomorphism classes [M] of modules M in mod−A and F′ is the sub-
group of F generated by all elements [M] − [L] − [N] corresponding to an exact
sequence

0 −→ L −→ M −→ N −→ 0.

Theorem 3.6.4. LetA be a basic finite-dimensional k-algebra and let S1, S2, . . . , Sn
be a complete set of isomorphism classes of simple rightA-modules. Then there exists
an isomorphism dim : G(A) −→ Zn such that dim([M]) = dimM.

Note that G(A) can be identified with Zn.

Proposition 3.6.5. LetA be a basic k-algebra of finite global dimension. Let n be the
rank of its Grothendieck group. The Euler form of A is the Z-bilinear form defined
on Zn given by

〈dimM, dimN〉 =
∞∑
j=0

(−1)j dimk ExtjA(M,N),

where M and N are A-modules. The symmetric Euler form is given by

(dimM, dimN) = 〈dimM, dimN〉 + 〈dimN, dimM〉.

Definition 3.6.6. The Euler quadratic form of an algebra A is the form qA :
Zn −→ Z given by

qA(dimM) = 〈dimM, dimM〉 =
∞∑
j=0

(−1)j dimk ExtjA(M,M),

where M is an A-module.

P. Gabriel classified the quivers of finite type in terms of Dynkin diagrams, and
shortly thereafter I.N. Bernstein, I.M. Gelfand, and V.A. Ponomarev gave a new and
elegant proof of Gabriel’s theorem based on the connection between Dynkin diagrams
and the quadratic form of quiver being positive definite.

Let Q be a quiver without oriented cycles. Let n = |Q0|.
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Definition 3.6.7. The Euler form (also known as the Ringel form) of a quiver Q is
the bilinear form on Zn given by

〈x, y〉 =
∑
i∈Q0

xiyi −
∑
ρ∈Q1

xs(ρ)yt(ρ).

Definition 3.6.8. The symmetric Euler form (or the Cartan form) of the quiver
Q is given by

(x, y) = 〈x, y〉 + 〈y, x〉.

Note that the symmetric Euler form is independent of the orientation of Q.

Definition 3.6.9. The Tits form of a quiver Q is defined by

qQ(x) = 〈x, x〉 = 1

2
(x, x) =

∑
i∈Q0

x2
i −

∑
ρ∈Q1

xs(ρ)xt(ρ).

Lemma 3.6.10. LetQ be a quiver without oriented cycles. Then, the Euler quadratic
form qA of the path algebra A = kQ and the Tits form of the quiver Q coincide.
Moreover,

qA(x) =
∑
i∈Q0

x2
i −

∑
i,j∈Q0

nijxixj,

where nij = dimk Ext1
A(Si, Sj) = the number of arrows between i and j.

Lemma 3.6.11. LetQ be a quiver without oriented cycles. The symmetric Euler form
(, ) on Zn of the quiver Q (or kQ) can be given by

(αi, αj) =
{ −nij if i �= j;

2 if i = j,
where αi is the ith standard coordinate vector (or the dimension vector of simple
kQ-module Si). DefineC = (aij)1≤i,j≤n, where aij = (αi, αj). Then,C is a symmetric
Cartan matrix.

Indeed, it is quite convenient to describe a finite quiver Q with no oriented cycles
and vertex set Q0 = {1, 2, . . . , n} in terms of a Cartan matrix C = (aij). By the
above, aii = 2 for 1 ≤ i ≤ n, and −aij (= −aji) is the number of arrows between i
and j. The matrix C will then be called the Cartan matrix of a quiver Q.

Example 3.6.12. Consider the quiver Q : •1 � •2 � •3 .
The associated Cartan matrix of Q is⎡

⎣ 2 −1 0
−1 2 −1
0 −1 2

⎤
⎦.
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If Q does not contain oriented cycles, then � = kQ is hereditary. The Euler form
is given by

〈dimM, dimN〉 = dimk Hom�(M,N)− dimk Ext1
�(M,N)

for any �–modules M and N. Since � is hereditary, 〈dimM, dimN〉 depends only
on the dimension vectors dimM and dimN.

Corollary 3.6.13. Let Q be a quiver with no oriented cycles. The index set I
(= Q0) and the symmetric Euler form (, ) of Q give a realization of a Cartan
datum �.

Using the Tits form of a quiver, the set of roots � can be characterized as follows.

Definition 3.6.14. Define � = {α ∈ Zn | α �= 0, qQ(α) ≤ 1}, the set of roots.
A root α is real if qQ(α) = 1 and imaginary if qQ(α) ≤ 0.

4. Dimension vectors and positive roots

In this section, let k be any field. We will see a close connection between the repre-
sentation theory of quivers and Lie algebras.

4.1. Gabriel theorem

Let g(C) be the Kac–Moody algebra associated to the Cartan matrix of a quiver Q.
Sometimes, we will say that the Kac–Moody algebra g(C) and the path algebra kQ
share the same Cartan datum (or the related diagram). Ignoring the orientation of
Q, the underlying graph � is the Dynkin graph of g(C). Based on the root space
decomposition of g(C), we can obtain the root system � and a set of simple roots
{αi | i ∈ I} indexed by the vertices of Dynkin graph, which coincides with the root
system defined in 3.6.14.

The following result is one of the founding stones of the representation theory of
algebras.

Theorem 4.1.1 [1,13]. Let Q be a quiver without oriented cycles and� = kQ be the
path algebra of Q. Let PInd be the set of isomorphism classes of all indecomposable
�-modules.

If � and g(C) share the same Dynkin (or Euclidean) diagram, then there exists a
surjective map from PInd to �+. The map is given by

[M] �−→
∑
i∈Q0

(dimk Mei)αi.

Moreover, if Q is of finite type, then the above map is bijective.
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Remark 4.1.2.

• If we identify αi = dim Si = (0, 0, . . . ,
i

1, . . . , 0, 0), then

dimM =
∑
i∈Q0

(dimk Mei)αi.

Thus, the dimension vector of the indecomposable �-module is nothing but a
(corresponding) positive root;

• If there is an indecomposable representation of dimension vector α, then α is a
root;

• If α ∈ �+real, then there is a unique indecomposable of dimension vector α (up
to isomorphism);

• If α ∈ �+img, then there are many indecomposables of dimension vector α (up to
isomorphism).

In the following, we will not distinguish between the dimension vector of an inde-
composable �-module and the corresponding positive root of g(C).

Remark 4.1.3. Gabriel’s result was generalized to arbitrary quivers in [17] by V. Kac
who proved that indecomposable representations occur in dimension vectors that are
the roots of Kac–Moody Lie algebra associated to a given graph. In particular, these
dimension vectors do not depend on the orientation of the arrows in Q.

Given a quiver with loops, the symmetric bilinear form is defined by

(αi, αj) =
{−nij if i �= j,

2− #{loops at i} if i = j.

One can define roots for any graph, and more generally for “species” (see [1]).
Using species, all possible Dynkin diagrams can arise.

Example 4.1.4. Consider the quiver Q: •1 � •2 � • .3

The Auslander–Reiten quiver of the path algebra kQ looks as follows:

0 0 k 0 k 0 k 0 0 .

0 k k k k 0

k k k

According to Gabriel theorem, all positive roots of a simple Lie algebra of type A3
can be listed in a manner that is compatible with the above Auslander–Reiten quiver.
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The positive roots of the Lie algebra of type A3: •1 •2 •3 are

.

Example 4.1.5. Consider the quiver Q: •1 � •2� • .
3

.
The Auslander–Reiten quiver of the path algebra kQ looks as follows:

0 k k 0 0  .k

0

0 0

kk

kkkk

k k k

This Auslander–Reiten quiver has a different shape as from previous one even
though the underlying graph of the above two quivers are the same. But at the dimen-
sion vector level, they are the same. All dimension vectors are the positive roots of
Lie algebra of type A3.

4.2. BGP reflection functors

Let Q be a quiver without oriented cycles and t ∈ Q0. Let σtQ be the quiver obtained
from Q by changing the orientation of all arrows that have t as a starting or terminating
vertex.

Assume t is a sink for Q. We now define the Bernstein–Gelfand–Ponomarev
reflection functor:

σ+t : Rep(Q)→ Rep(σtQ).

Let V = (Vi, Vρ)i∈Q0,ρ∈Q1 be a representation of Q. The representation

σ+t V = (V ′i , V ′ρ)i∈(σiQ)0,ρ∈(σtQ)1
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of σtQ is defined as follows:

• V ′i = Vi for i �= t, V ′t is the kernel of⊕
α:s(α)→t

Vs(α)→ Vt,

where the sum is taken over all arrows in Q with terminating vertex t;
• V ′ρ = Vρ for all arrows ρ : i→ j in Q1 with j �= t. If ρ : i→ t is an arrow in Q,

then ρ′ : t → i is an arrow in σtQ, and V ′
ρ′ is the composition of the inclusion

of V ′t into
⊕

α:s(α)→t

Vs(α) with the projection onto the direct summand Vi.

Dually, if t is a source for Q, we can define another BGP-reflection functor

σ−t : Rep(Q)→ Rep(σtQ).

These functors are the analog of simple reflections in Lie algebra theory and will
play a similar role.

Proposition 4.2.1. The functors σ+t and σ−t induce quasi-inverse equivalences
between the full subcategory of Rep(Q) of the representations having no direct sum-
mand isomorphic to St and the full subcategory of Rep(σtQ) of the representations
having no direct summand isomorphic to St .

Definition 4.2.2. A sequence im, . . . , i1 is called a sink sequence for Q if im is a
sink for Q, and for any 1 ≤ t < m, the vertex it is a sink for the quiver σit+1 . . . σmQ.

Definition 4.2.3. Let Q be a quiver with no oriented cycles and let in, . . . , i1 be a
sink sequence that uses each vertex of Q exactly once. We can then define theCoxeter
functors C+ = σ+i1 . . . σ+in and C− = σ−in . . . σ−i1 . Both are endofunctors of Rep(Q).

Remark 4.2.4. Given a Cartan matrix C, one has the following correspondence
between Lie theory and the representation theory of finite-dimensional algebras:

Symmetric Kac–Moody algebra ↔ Hereditary path algebra
Symmetric Cartan matrix ↔ Symmetric Euler form
Root ↔ Dimension vector
Root system ↔ Auslander–Reiten quiver
Reflection si ↔ BGP reflection functor σi

5. Ringel–Hall algebras

In this section, we let k be the finite field Fpr . Let Q be a quiver without oriented
cycles, and let� = kQ be the corresponding path algebra that is a finite-dimensional
hereditary algebra over the finite field k. Recall that the index set I = Q0 and the
symmetric Euler form of Q together give a realization of a Cartan datum �.
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5.1. Ringel–Hall algebras

Let P be the set of isomorphism classes of finite-dimensional�-modules and I ⊂ P
be the set of isomorphism classes of simple �-modules. We choose a representative
Vα ∈ α for any α ∈ P.

For α, β ∈ P , we write

〈α, β〉 = 〈dim Vα, dim Vβ〉,
and that defines the Euler form 〈−,−〉 on ZI . The symmetric Euler form (−,−) is
given by (α, β) = 〈α, β〉 + 〈β, α〉 on ZI .

Let R be a commutative integral domain containing Q(v), where v2 = q, q = |k|,
and Q(v) is the rational function field of v.

Definition 5.1.1 (C. M. Ringel). The Ringel–Hall algebra H(�) is the free
R-module with

• basis: {uα | α ∈ P} = {isomorphism classes of f. d. �−modules};
• multiplication given by

uαuβ = v〈α,β〉
∑
λ∈P

gλαβuλ

for all α, β ∈ P, where gλαβ is the number of submodules V ′ of Vλ such that

Vλ/V
′ and V ′ lie in the isomorphism classes α and β respectively, that is, gλαβ =

#{V ′ ⊆ Vλ | V ′ � Vβ, V/V
′ � Vα}.

It is easy to verify that H(�) is an associativeNI -gradedR-algebra with the identity
element u0. The grading H(�) = ⊕r∈NIHr is defined as follows: for each r ∈ NI,
Hr is the R-span of the set {uλ | λ ∈ P, dim Vλ = r}.

We denote by C(�) the R-subalgebra of H(�), which is generated by ui, i ∈ I.
C(�) is called the composition algebra of �.

Lemma 5.1.2. If � is of finite type, then H(�) = C(�).

Remark 5.1.3. If � is of finite type, whenever we change the ground field to be
another finite field, the filtration number gλαβ can be evaluated by a polynomial at |k|,
that is, gλαβ = φλαβ(|k|) for some polynomial φλαβ. The polynomial φλαβ occurring in
this way is called a Hall polynomial.

C.M. Ringel [18, 19] has proved that the elements ui, i ∈ I satisfy the quantum
Serre relations

1−aij∑
t=0

(−1)t
[

1− aij
t

]
utiuju

1−aij−t
i = 0,
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for any i �= j in I, where aij = 2(i, j)

(i, i)
= (i, j) = (dim Si, dim Sj), and

[s] = vs − v−s
v− v−1

= vs−1 + vs−3 + · · · + v−s+1

[s]! =
s∏
r=1

[r] ,

[
s

r

]
= [s]!
[r]![s− r]!

where r, s are non-negative integers, and r ≤ s.

5.2. Quantum groups and Ringel–Hall algebras

Let k̄ be the algebraic closure of k. For any n ∈ N\{0}, letF(n) be a subfield of k̄ such
that [F(n) : k] = n. If we let �(n) = �⊗k F(n), then �(n) is a finite-dimensional
hereditary F(n)-algebra corresponding to the same Cartan datum as that of �. We
also have the Hall algebra Hn = Hn(�(n)) of �(n). Define

H =
∏
n>0

Hn.

Without creating confusion, we still use letter v to represent v = (vn)n ∈ H, where
vn = √|F(n)|. Obviously, v lies in the center of H and is transcendental over the
rational field Q. Let ui = (ui(n))n ∈ H satisfy that ui(n) is the element of H(�(n))
corresponding to Si(n),where Si(n) is the simple�(n)-module that lies in the class i.

Definition 5.2.1. The generic composition algebra C�(�) of the Cartan datum �

is defined to be the subring of H generated by Q and the elements v, v−1, and ui
(i ∈ I). The integral generic composition algebra AC�(�) is the A–subalgebra of

C�(�) generated by u(m)i = umi

[m]! (i ∈ I), where A = Z[v, v−1].

Let U+v (g) be the positive part of the Drinfel’d–Jimbo quantum group correspond-
ing to the Cartan datum �.A fundamental theorem of Green and Ringel establishes
a wonderful connection between generic composition algebras and quantum groups.

Theorem 5.2.2 [18, 20]. If g and � have the same Cartan datum, then there is a
Q(v)-algebra isomorphism

C�(�) � U+v (g),

which maps ui −→ Ei for all i ∈ I. Even more, AC�(�) is isomorphic to AU+v (g)
by sending u(m)i to E(m)i for all i ∈ I.

Thanks to this isomorphism, our discussion is applicable directly to generic com-
position algebras and quantum groups, even though we have started with our consid-
erations with a composition algebra over finite field.
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Remark 5.2.3. If we extend U+v (g) to the Borel part of Uv(g) and C�(�) to a certain
extension C(�,T), then η can be extended canonically to be a bijection of Hopf
algebras (see [20–22]).

Remark 5.2.4. If � is of finite type, the existence of Hall polynomials makes it
possible to define the generic composition algebra by

uαuβ = v〈α,β〉
∑
λ∈P

φλαβ(v
2)uλ,

where v is an indeterminate.

So far, all the Kac–Moody algebras considered have been symmetric. For
nonsymmetric cases, one should use “species” (introduced by V. Dlab and
C. M. Ringel in [1]) instead of quivers to construct an algebra that realizes the positive
part of the corresponding quantum group.

6. PBW basis and canonical basis

Let g = g(C) be the Kac–Moody algebra of type C, let U = Uv(g) be the corre-
sponding quantum group, and let U+ = U+v (g) be its positive part. For simplicity,
we only consider the case when the Cartan matrix C is symmetric.

Let Q be a quiver without oriented cycles whose Cartan matrix isC, and let� = kQ
be the hereditary path algebra of Q. We will not consider the quivers Ãn with cyclic
orientation in this chapter. Nevertheless, the subcategory of Rep(Ãn) consisting of
all nilpotent representations of the cyclic quiver Ãn plays a very important role in the
representation theory of algebras.

Because of the canonical isomorphism between U+ and the generic composition
algebra C�(�) of� (where g and� have the same diagram), we are going to be able
to use representation theory of algebras to analyze the structure of the corresponding
Kac–Moody algebras and related quantum groups.

The so-called canonical basis of U+ was first introduced by G. Lusztig in [4] via
an elementary algebraic definition in the case when g is simple finite-dimensional
Lie algebra. Subsequently, G. Lusztig studied canonical bases in the framework of
Ringel–Hall algebras. The canonical basis was characterized by being integral, being
invariant under the bar involution, and spanning a certain Z[v−1]-lattice L with a
specific image in the quotient L/v−1L, where L is generated by any basis of PBW
type.

This algebraic definition does not work for quantum group of arbitrary Kac–Moody
algebras. The difficulty in constructing a basis for L arises from the need to define suit-
able analogs of imaginary root vectors. By using topological methods, G. Lusztig [5]
constructed the canonical basis of a quantum group of symmetric Kac–Moody alge-
bra. It was shown that the “global crystal basis” introduced by M. Kashiwara and the
canonical basis coincide. The canonical basis has very nice properties, but there are
also still many unanswered questions.
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There are different approaches to the construction of the canonical basis: an
algebraic approach [4, 23–25], a geometric approach [5], and a quiver approach [26,
27]. We will not comment on the geometric approach here.

To construct the canonical basis, we start with a PBW basis, which involves root
vectors.

6.1. Root vectors in quantum groups

According to G. Lusztig [28], there exists an action of the braid group corresponding
to � on U. Applying the standard generators T ′′i,1, T ′′i,1

−, i ∈ I of the braid group to
the generators of U in an admissible order, we obtain a family of linearly independent
elements in U+. Since these elements degenerate into a basis of ⊕α∈�+real

gα by the

specialization v→ 1, we call these elements the real root vectors of U+. If � is of
finite type, they provide a complete set of root vectors.

Note that by using results of C. M. Ringel [27] and J. Xiao [22], the braid
group action can be realized through BGP-reflection functors. The operations T ′′i,1
are given by σi on the Ringel–Hall algebra according to the canonical isomorphism
C�(�) � U+.

For affine Kac–Moody algebra g, there exist imaginary roots. Several authors have
introduced imaginary root vectors for U (see [23, 29–31]). Those imaginary root
vectors cannot be obtained by Lusztig’s operations.

Since the Auslander–Reiten quiver is a convenient device for visualizing the mod-
ule category of a finite-dimensional algebra, we may ask what kind of information
about root vectors in U+ can be read off from the Auslander–Reiten quiver of �.
C. M. Ringel [27] gives an answer, providing an interpretation for the root vectors
obtained by Lusztig’s braid group action in C�(�).

6.2. PBW basis and canonical basis for C�(�) of finite type

We start with a path algebra � = kQ, where k is a finite field and Q is of finite type.
Let g be a finite-dimensional simple Lie algebra of typeA,D, orE, and let�+ be the
set of all positive roots, W its Weyl group, and U the corresponding quantum group.

Since � is of finite type, there are finitely many isomorphism classes of inde-
composable � modules. The isomorphism classes of all indecomposables are in
one-to-one correspondence with the positive roots �+ of the corresponding sim-
ple Lie algebra. Every indecomposable �–module can be uniquely determined
by a positive root α ∈ �+. We will denote this indecomposable �-module by
Vα if dim Vα = α. It is well known that mod−� (identified with Rep(Q)) is
representation-directed, (see [1, 32]); this means that there exists a total ordering
of the positive roots, say β1, β2, . . . , βN , where N is the cardinality of �+ such that
Hom(Vβi , Vβj ) �= 0 implies that i≤ j. Such an ordering is called Q-admissible. Con-
sider this Q-admissible ordering of positive roots. There exists a sequence i1, . . . , iN
of vertices of Q, with the following properties:

(1) the sequence iN, . . . , i1 is a sink sequence for Q;
(2) we have βl = si1si2 . . . sil−1(αil ), where αil is a simple root.
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There exists a reduced expression of the longest element

w0 = si1 . . . siN−1siN

in W such that iN, iN−1, . . . , i1 is a sink sequence for Q derived from an Q-admis-
sible ordering of positive roots. The element w0 gives a total ordering on �+, which
is the same as the Q-admissible ordering: β1=αi1 <β2= si1(αi2) < · · · < βN =
si1si2 · · · siN−1(αiN ). G. Lusztig defined the root vectors in U by

Eβl := T ′′i1,1T
′′
i2,1 . . . T

′′
il−1,1(Eαil

).

Theorem 6.2.1 [27]. In C�(�),

Eβl = vθ uβl ,
where θ = −dimk(Vβl )+ dimk End�Vβl .

Let N�
+

be the set of multiplicity functions from �+ = {β1, β2, . . . , βN} to N.
Given c ∈ N�

+
, we define

Ec = E(c(β1))
β1

E
(c(β2))
β2

. . . E
(c(βN))
βN

,

where E(r)βi =
Erβi

[r]! for any r ∈ N.

Theorem 6.2.2 [4, 27]. {Ec | c ∈ N�
+} is a PBW A-basis of AU+.

This PBW basis depends on the choice of a reduced expression of the longest
element w0.

Theorem 6.2.3 [4, 24]. For each given c ∈ N�
+

, there exists a unique b(c) ∈A U+
such that

(a) b(c) = b(c);
(b) b(c) = Ec +∑c<c′ ac,c′E

c′ , where ac,c′ ∈ v−1Z[v−1] and < is the lexico-

graphic order on N�
+

.

The basis {b(c) | c ∈ N�
+} is the canonical basis introduced by G. Lusztig. This basis

is independent of the choice of the reduced expression of the longest element w0.

A geometric realization of the canonical basis can be found in [4], where the theory
of perverse sheaves is involved.

6.3. Root vectors in C�(�) of tame type

We start with a path algebra � = kQ where k is a finite field and Q is of tame type.
Let g be a symmetric affine Kac–Moody algebra of type Ã, D̃ or Ẽ, letW be its Weyl
group and U be the corresponding quantum group.
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To construct a PBW basis and a canonical basis of U, some new problems arise,
which do not appear in the finite case (cf. [30]):

(1) there do exist imaginary roots mδ (m ∈ Z\{0}), which are fixed by the action
of Weyl group, so we cannot apply the action of braid group to the simple root
vectors to obtain the imaginary root vectors of a quantum group;

(2) there does no longer exist a longest element of the Weyl group. In the finite
case, the longest elementw0 gives a way to totally order all positive roots. We
need to find another way to order all roots;

(3) the real roots are divided into two disjoint orbits by the action of the Weyl
group.

Let I = {0, 1, 2, . . . , n} be the index set of all simple roots of g. Define a doubly
infinite sequence

. . . i−1, i0, i1, i2 . . .

by setting il = il(mod N), where N is the length of some special element in W. For a
detailed description of this special element, we refer to [23, 24]. Note that sim . . . sit
is reduced for any m < t.

Set

βl =
{
si0si−1 . . . sil+1(αil ) if l ≤ 0,

si1si2 . . . sil−1(αil ) if l > 0.

Lemma 6.3.1 [23, 24]. {βl | l ∈ Z} = �+real.

The imaginary roots cannot be obtained in the same manner (through the action of
Weyl group on simple roots).

Let δ be the smallest imaginary root. Then the imaginary roots of g are the elements
lδ for l ∈ Z, l �= 0 and mult (lδ) = n. Let

�+img = {(lδ, t) | l > 0, 1 ≤ t ≤ n}
be the set of all imaginary roots counted with multiplicity.

Define a total order on �+ by setting

β0 < β−1 < · · · < (δ, 1) < · · · < (δ, n) < (2δ, 1) < · · · (2δ, n) < · · · < β2 < β1.

We now define real root vectors for each positive real root as follows:

Eβl =
{

T ′′−1
i0,1T

′′−1
i−1,1 . . . T

′′−1
il+1,1(Eαil

) if l ≤ 0,

T ′′i1,1T
′′
i2,1

. . . T ′′il−1,1
(Eαil

) if l > 0.

Having defined real root vectors, we continue to define the imaginary root vectors.

For l > 0, i ∈ I\{0}, set

ψ̃lδ,i = Elδ−αiEαi − v−2EαiElδ−αi .



Quivers and Representations 543

Following [29], we introduce “integral” imaginary root vectors Elδ,i (l ≥ 0, 1 ≤
i ≤ n) in U+ by E0,i = 1 and

Elδ,i = 1

[l]
l∑
t=1

vt−lψ̃tδ,iE(l−t)δ,i.

Let Q be a quiver with no oriented cycles and |Q0| = n + 1. Let in+1, in, . . . , i1
be a sink sequence that uses each vertex of Q exactly once. We can define the
Coxeter functors: C+ = σ+i1 . . . σ

+
in+1

and C− = σ−in+1
. . . σ−i1 . Both are endofunc-

tors of mod−� (or Rep(Q)). According to Theorem 4.1.1, if α ∈ �+real, then there
is a unique indecomposable �–module of dimension vector α (up to isomorphism)
and if α ∈ �+img, then there are many indecomposable �–modules of dimension

vector α (up to isomorphism). We can use the Coxeter functors C± to partition all
indecomposable �-modules.

Definition 6.3.2. Given an indecomposable �-module V , we call it

• preprojective indecomposable module if (C+)rV = 0 for r � 0;

• preinjective indecomposable module if (C−)rV = 0 for r � 0;

• regular indecomposable module if it is neither preprojective nor preinjective.
Moreover, (C±)rV � V for some r > 0.

All preprojective and preinjective modules may be constructed in a uniform way
through the action of BGP reflection functors.

For 1 ≤ l ≤ n+ 1, we can obtain all indecomposable projective �-modules by

Pil = σ−in+1
σ−in σ

−
il+1
(Sil ),

where Sil is the simple module of the path algebra of σilσil−1 . . . σi1Q.
Dually, all indecomposable injective �-modules are given by

Iil = σ+i1 σ+i2 σ+il−1
(Sil ),

where Sil is the simple module of the path algebra of σilσil+1 . . . σin+1Q.
If V is an indecomposable preprojective module, then

V � (C−)t(Pil ) =
(
σ−in+1

. . . σ−i1
)t (

σ−in+1
σ−in σ

−
il+1
(Sil )

)
for some t ≥ 0. Even more, dim V = (sin+1 . . . si1)

r(sin+1sinsil+1(αil )).

If V is an indecomposable preinjective module, then

V � (C+)t(Iil ) =
(
σ+i1 . . . σ

+
in+1

)t (
σ+i1 σ

+
i2
σ+il−1

(Sil )
)

for some t ≥ 0. Also dim V = (si1 . . . sin+1)
r(si1si2sil−1(αil )).

Using a sink sequence in+1, in, . . . , i1 of all vertices of Q, we can define a doubly
infinite sequence

. . . , i−1, i0, i1, i2, . . .

by setting il = il(mod n+1) for l ∈ Z.
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Set

β̂l =
{
si0si−1 . . . sil+1(αil ) if l ≤ 0,

si1si2 . . . sil−1(αil ) if l > 0.

We have already shown that β̂l for l ≤ 0 is the dimension vector of an indecomposable
preprojective module and β̂l for l > 0 is the dimension vector of an indecomposable
preinjective module. Using the actions of BGP reflections on simple modules, we can
only get all the indecomposable preprojective and preinjective modules. According
to the Auslander–Reiten quiver of �, the set �+ can be partitioned as follows. The
roots

{β̂l | l ∈ Z}
are called irregular roots. The dimension vector of any indecomposable regular
module is called a regular root. Hence, we have

�+ = {irregular roots} � {regular roots}.
The Auslander–Reiten quiver of � looks as follows:

There exists a unique preprojective (or preinjective) component that consists of
all indecomposable preprojective (or preinjective) modules. There are lots of regular
components containing all indecomposable regular modules. We have the following
geometric picture of a regular component of the AR–quiver:
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Here there is the possibility that (C+)nV0 � V0 for some n > 0. Then (C+)nVi �
Vi for all i and we can identify all points on those two vertical lines to obtain what is
called a stable tube. If n = 1, the tube is called homogeneous stable tube.

Note that only positive real root uniquely determines an indecomposable�-module
(up to isomorphism).

Lemma 6.3.3 [27]. {β̂l | l ∈ Z} ⊆ �+real and {Regular roots} = �+img � {Regular
real roots}.

We can order all irregular roots as

β̂0 < β̂−1 < β̂−2 < · · · < β̂3 < β̂2 < β̂1.

Let V
β̂l

for l ∈ Z be the indecomposable preprojective or preinjective module with

dim V
β̂l
= β̂l. The above order of positive roots is compatible with the structure of

the preprojective and preinjective components of the Auslander–Reiten quiver of �,
which means Hom�(Vβ̂j

, V
β̂t
) �= 0 implies β̂j < β̂t .

Similarly as before, we can define real root vectors for each irregular real root:

E
β̂l
=
⎧⎨
⎩

T ′′i0,1
−1T ′′i−1,1

−1
. . . T ′′il+1,1

−1
(Eαil

) if l ≤ 0,

T ′′i1,1T
′′
i2,1

. . . T ′′il−1,1
(Eαil

) if l > 0.

Recall that T ′′i,1 can be realized by σi under the identification C�(�) � U+.

Theorem 6.3.4 [27]. Let V
β̂l

be an indecomposable preprojective or preinjective

�-module with dim V
β̂l
= β̂l for l ∈ Z, then in C�(�) (or U+),

E
β̂l
= vθu

β̂l
,

where θ = −dimk(Vβ̂l
)+ dimk End� Vβ̂l .

Proposition 6.3.5 [33, 34]. There is an algorithm to express E
β̂l

as linear combi-
nation of simple root vectors.

In this way, we only construct irregular real root vectors. Now the natural next
question is how to construct imaginary and regular real root vectors in Ringel–Hall
algebras. For the quiver of type Ã1—the Kronecker quiver, we answer the question
in next subsection. The question still remains open for the general case.

6.4. Kronecker quiver

In this section, we only consider the Kronecker quiver Q : 2 • • 1�
�

.

Let �+ be the positive root system of Lie algebra ŝl2. Let k be a finite field. The
path algebra K = kQ is the “smallest” tame hereditary algebra. We will provide a
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realization of all imaginary root vectors in the generic composition algebra C�(K).
Moreover, an integral PBW basis and the canonical basis of this algebra are obtained.
The corresponding quantum group is Uv(ŝl2).

The Auslander–Reiten quiver of K consists of one preprojective component, one
preinjective component (which have the same structure as those components of kQ
for k being algebraically closed field), and a family of homogeneous tubes of regular
modules parameterized by the set of all monic irreducible polynomials over k (which
is different from that of kQ when k is an algebraically closed field).

Let α1 = dim S1 and α2 = dim S2. Put δ = α1 + α2. The indecomposable pre-
projective and preinjective modules have the dimension vectors nδ+α1 and nδ+α2
with n ∈ N, respectively. Moreover, each indecomposable preprojective and prein-
jective module is uniquely determined by its dimension vector. The indecomposable
regular modules have the dimension vectors nδ with n ∈ N \ {0}. There is no regular
real root. Every regular root is an imaginary root.

Put (r, t) = rα1 + tα2. We have

�+ = {(l+ 1, l), (m,m), (n, n+ 1) | l ≥ 0,m ≥ 1, n ≥ 0},
which is the set of dimension vector of all indecomposable representations of the
Kronecker quiver.

The Auslander–Reiten quiver of K looks as follows:

In U+, we have for i �= j ∈ {1, 2}
Enδ+α1 = T ′′1,1

−1T ′′2,1
−1T ′′1,1

−1
. . . T ′′i,1

−1︸ ︷︷ ︸
n times

(Ej),

Enδ+α2 = T ′′2,1T ′′1,1T ′′2,1 . . . T ′′i,1︸ ︷︷ ︸
n times

(Ej),

where T ′′1,1 and T ′′2,1 are the braid group operations defined in [28].
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According to C. M. Ringel [27], we can define the following root vectors in C�(K),
which correspond to all positive real roots:

E1 = Eα1 = u1, E2 = Eα2 = u2,

Enδ+α1 = v−dimk Vnδ+α1+dimk End�(Vnδ+α1 )unδ+α1 = v−2nunδ+α1 ,

Enδ+α2 = v−dimk Vnδ+α2+dimk End�(Vnδ+α2 )unδ+α2 = v−2nunδ+α2 .

for any n ∈ N.
Following I. Damiani [30] (or [23]), there are the imaginary root vectors

ψ̃nδ = Enδ−α1E1 − v−2E1Enδ−α1 , for n ∈ N\{0},
and integral imaginary root vectors

E0δ = 1 and Enδ = 1

[n]
n∑
i=1

vi−nψ̃iδE(n−i)δ.

Theorem 6.4.1 [35, 36]. In C�(K), we have

Enδ = v−2n
∑

α ∈ P, Vα regular,
dimVα = nδ

uα.

The total ordering on�+ (adapted for the structure of theAuslander–Reiten quiver)
is as follows:

α1 < δ+ α1 < · · · < (n− 1)δ+ α1 < nδ+ α1 < · · ·
· · · < δ < 2δ < · · · < (n− 1)δ < nδ < · · ·
< nδ+ α2 < (n− 1)δ+ α2 < · · · < δ+ α2 < α2.

Let N�
+

be the set of finitely supported multiplicity functions from �+ to N.
Given c ∈ N�

+
, if

{α ∈ �+ | c(α) �= 0} = {β1 < β2 < . . . βn},
define Ec be the monomial formed by multiplying the divided powers of real root
vectors and imaginary root vectors, that is,

Ec = E(c(β1))
β1

E
(c(β2))
β2

. . . E
(c(βn))
βn

,

where E(c(βm))βm
= E

c(β1)
β1

[m]! if βm is real, and E(c(βm))βm
= Ec(βm)

βm
if βm is imaginary.

Then, there is the following theorem:

Theorem 6.4.2 [35, 37]. The set {Ec | c ∈ N�
+} is a PBW A–basis of AC�(K) (or

AU+v (ŝl2)).
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For d = (d1, d2) ∈ N2, write E(d) = E(d2)
2 E

(d1)
1 . Similarly, for c ∈ N�

+
, define

E(c) = E(c(β1))E(c(β2)) . . . E(c(βm)),

which is a monomial on the divided powers of the Chevalley generators E1 and E2.
Therefore, E(c) ∈ C�(K).

We will now describe a triangular relation between the PBW basis and the above
monomial basis.

Let ϕ : N�+ → N2 be the map given by

ϕ(c) =
∑
α∈�+

c(α)α.

Then for any d ∈ N2, ϕ−1(d) gives the size of all isomorphism classes of modules,
which have the dimension vector d and is a finite set.

Proposition 6.4.3 [26]. For any c ∈ N�
+

,

E(c) =
∑

c′∈ϕ−1(ϕ(c))
hcc′E

c′

such that

(1) hcc′ ∈ Z[v, v−1];
(2) hcc = 1;
(3) if hcc′ �= 0 and c′ �= c, then c′ < c, where < is the geometric order related to

the corresponding modules;
(4) E(c) is bar-invariant, that is, E(c) = E(c).

Proposition 6.4.4 [26]. For any c ∈ N�
+

, set

Ec =
∑

c′∈N�+
ωc
c′E

c′ .

Then,

(1) ωc
c′ ∈ Z[v, v−1];

(2) ωc
c = 1;

(3) if ωc
c′ �= 0 and c′ �= c, then c′ < c.

Consider the bar involution in Section 2, we have Ec = Ec for any c ∈ N�
+

.
Hence,

Ec =
∑
c′
ωc
c′E

c′ =
∑
c′,c′′

ωc
c′ω

c′
c′′E

c′′.
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Since {Ec | c ∈ N�
+} is an A–basis of C�(K), we have∑

c′
ωc
c′ω

c′
c′′ = δcc′′ ,

and therefore, one can uniquely solve the system of equations

ζcc′ =
∑

c′≤c′′≤c
ωc′′
c′ ζ

c
c′′

with unknowns ζcc′ ∈ Z[v−1] such that

(1) ζcc = 1;
(2) ζcc′ ∈ v−1Z[v−1] for all c′ < c.

For any c ∈ ϕ−1(d) and d ∈ N2, set

εc =
∑

c′∈ϕ−1(d)
ζcc′E

c′.

Theorem 6.4.5 [26]. The set {εc | c ∈ ϕ−1(d), d ∈ N2} provides the canonical basis
of AC�(K).

The importance of the Kronecker quiver lies in the existence of a full exact embed-
ding from the category of regular modules of K to the category of regular modules
of any tame hereditary algebra with underlining quiver Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8.

Theorem 6.4.6 [1]. There exists a fully faithful exact functor

F : mod −K �−→ mod − kQ,
which preserves regular modules, where Q = Ãn (excluding the case of a cyclic
orientation), D̃n, Ẽ6, Ẽ7, or Ẽ8. Even more, this functor gives rise to an injection of
Ringel–Hall algebras (which will still be denoted by F).

More recently, P. Baumann and C. Kassel [38] described the Ringel–Hall algebra of
the category of coherent sheaves on the projective line and recovered M. Kapranov’s
isomorphism between a certain subalgebra of this Ringel–Hall algebra and the “pos-
itive part” of Uv(ŝl2). In combination with the isomorphism between the generic
composition algebra C�(K) and U+v (ŝl2), the real root vectors Enδ+α1 and the imag-
inary root vectors Enδ are related to locally free coherent sheaves and the torsion
sheaves, respectively.

6.5. PBW basis and canonical basis for C�(�) of tame type

We use the same assumptions presented in Subsection 6.3. There are differ-
ent approaches to the construction of the canonical basis of U+. G. Lusztig [5]



550 X. Chen, K.–B. Nam and T. Pospíchal

parameterized the canonical basis elements by using the representation theory of
Q and algebraic geometry. J. Beck, V. Chari, and A. Pressley [23] provided an alge-
braic characterization of the canonical basis. J. Beck and H. Nakajima [24] obtained
a purely algebraic construction of the PBW basis. Z. Lin, J. Xiao, and G. Zhang [26]
used the Ringel–Hall algebra approach to construct the PBW basis and the canonical
basis of C�(�).

Let �+prep = {β̂l | l ≤ 0} and �+prei = {β̂l | l > 0}. Let N�
+
prep be the set of finitely

supported multiplicity functions from �+prep to N. Similarly, we define N�
+
prei .

Given c+ ∈ N�
+
prep , if

{α ∈ �+prep | c+(α) �= 0} = {β̂′1 < β̂′2 < · · · < β̂′n},
define Ec+ to be the monomial formed by

Ec+ = E(c(β̂′1))
β̂′1

E
(c(β̂′2))
β̂′2

· · ·E(c(β̂′n))
β̂′n

,

where E
(c(β̂′m))
β̂′m

=
E
c(β̂′m)
β̂′m
[m]! . Similarly, define Ec− for c− ∈ N�

+
prei .

We now define a set M = {(c+, (π1, π2, . . . , πs), w, c−)} by the following rule:

• (π1, π2, . . . , πs) is a collection of partitions and each πt is related to a non-
homogeneous tube;

• w is a partition (w1, w2, . . . , wt) for some t.

Then for each c ∈M, define

Ec = Ec+Eπ1Eπ2 · · ·EπsF(Ew1δ)F(Ew2δ) · · ·F(Ewtδ)Ec+ ,

where Eπ1Eπ2 · · ·Eπs is the product of some elements in C�(�), which are related
to all nonhomogeneous tubes, and F is the functor mentioned in 6.4.6. We omit the
detailed discussion; interested readers are referred to [26].

Theorem 6.5.1 [26]. The set {Ec | c ∈ M} is an A-basis of AC�(�). The set
{εc |c ∈M} provides the canonical basis of AC�(�), where εc is defined in a similar
manner as was done for the Kronecker quiver.

7. Root categories, Kac–Moody algebras and elliptic Lie algebras

7.1. A construction of the Kac–Moody algebra g′(C).

Let � be a finite-dimensional hereditary algebra over a field k (or, more specifically,
� = kQ for some quiver Q without oriented cycles). Let g(C) be a symmetrizable
Kac–Moody algebra associated to a symmetrizable Cartan matrix C, and let g′(C) be
its derived algebra, that is, g′(C) = [g(C), g(C)].

According to Theorem 4.1.1, if � and g(C) (or g′(C)) share the same Cartan
datum, then the map dim induces a surjection between the isomorphism classes of all
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indecomposable �–modules and the positive roots of g(C) (or g′(C)). Moreover, if
� is of finite type, the map dim is bijective. It is natural to ask whether it is possible
to recover the Lie algebra structure of g′(C) in terms of �–modules. For � of finite
type, this was successfully done by C. M. Ringel [39,40] via the Ringel–Hall algebra
construction. Let K(mod−�) be the free Abelian group with basis indexed by the
set of isomorphism classes of indecomposable�–modules. C.M. Ringel showed that
K(mod−�) is the ChevalleyZ-form of n+ and henceK(mod−�)⊗Z C and n+ are
isomorphic Lie algebras, where g′(C) = n−

⊕
h′
⊕

n+ is a triangular decomposition
of g′(C).

One of the important contributions to the representation theory of algebras is the
study of derived categories by D. Happel [41,42]. The derived category Db(�) is a
triangulated category with the translation T obtained from the category of bounded
complexes over � by localizing with respect to the set of all quasi-isomorphisms.
The interested readers are referred to B. Keller’s paper [43] in an earlier volume of
this handbook for a detailed description of derived categories and their uses.

There is a full embedding of mod−� into Db(�) as a full subcategory, which
sends each�-moduleX into the stalk complex X• = (Xi, di) withX0 = X,Xi = 0
for i �= 0, and di = 0 for all i ∈ Z. We keep using the same symbol mod−� for this
subcategory. The dimension vectors of all indecomposable complexes in mod−�
are all positive roots and the dimension vectors of all indecomposable complexes in
T (mod−�) are all negative roots.

Example 7.1.1. Consider the quiver Q : •1 � •2 � •3 . The categorical
structure of the derived category Db(�) can be visualized as follows:

,

where each indecomposable object is represented by its dimension vector.

To recover the whole Lie algebra g′(C) (not only n+) using modules of algebras, we
should consider the orbit category R = Db(�)/T 2 of Db(�) under the automor-
phism T 2. The translation T of a derived category Db(�) induces an automorphism
of R of order 2, which is again denoted by T . R inherits a triangulated category
structure from Db(�) with T as the translation. Note that mod−� can be embedded
into R as a full subcategory. The root category R is divided by mod−� into two
parts, mod−� and T (mod−�).

D. Happel [41] pointed out that if� is of finite type, then the isomorphism classes
of indecomposable objects in R correspond bijectively to all roots of g′(C) (not only
positive roots). For this reason, R is called the root category. It was soon found that
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the category R = Db(�)/T 2 provided a solid framework, which is compatible with
the root system of g′(C) even when � is not of finite type.

In [11], V. Kac asked a fundamental question about the realization of nonaffine Lie
algebras. This question was answered by L. Peng and J. Xiao in [2]. Not only that,
the authors actually gave a realization of all symmetrizable Kac–Moody algebras in a
global way via the root categories R = Db(�)/T 2. In the remainder of this section,
we will summarize their work.

Assume now that the field k is a finite field and q = |k|, the cardinality of k.
Given a root category R of�, we consider the Grothendieck groupG(R) as usual,

that is,G(R) is the quotient of a freeAbelian group with basis {[M] | M ∈ R} indexed
by the isomorphism classes of all objects in R, subject to the relations [Y ]−[X]−[Z]
arising from the triangles of form X → Y → Z → T X in R. For any M ∈ R,
we denote by dimM the canonical image of M in G(R), called the dimension
vector of M.

Given X, Y,L ∈ R, put

W(X, Y,L) = {(f, g, h) ∈ Hom(X,L)× Hom(L, Y)× Hom(Y, T X) |
X

f→ L
g→ Y

h→ T X is a triangle}.
One can define an action of Aut(X)× Aut(Y) on W(X, Y,L) as follows:

(a, c) ◦ (f, g, h) = (fa, c−1g, (T a)−1hc)

for any (a, c) ∈ Aut(X)×Aut(Y), (f, g, h) ∈ W(X, Y,L). Denote the orbit space by

V(X, Y,L) = W(X, Y,L)/Aut(X)× Aut(Y).

V(X, Y, L) is a finite set and

FLY,X = |V(X, Y,L)|
denotes the cardinality of V(X, Y,L).

Let ind R denote the set of representatives of isomorphism classes of all
indecomposable objects in R. For any indecomposable object X∈R, let
d(X)= dimk(EndX/ rad EndX).

For any M ∈R, write hM for the dimension vector dimM of M. Then the
Grothendieck group G(R) is generated by {hM | M ∈ R} and hL = hM + hN if
there exists a triangle of formM → L→ N → TM. Thus, hM = −hT M . Consider
the rational extension Q

⊗
ZG(R). Denote by h the subgroup of Q

⊗
ZG(R) gener-

ated by hM
d(M)

,M ∈ ind R. Note that the Grothendieck groupG(R) is a subgroup of h.
Now define a symmetric bilinear function (−|−) on h× h (and by extension also

on (Q
⊗

Z h)× (Q⊗Z h)) by

(hX|hY ) = dimk Hom(X, Y)− dimk Hom(X, T Y)
+ dimk Hom(Y,X)− dimk Hom(Y, T X)

for any X, Y ∈ R. On G(R), this is just the symmetric Euler form of R.
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Let n be the free Abelian group with a basis {uX|X ∈ ind R}, which is bijective to
the set of isomorphism classes of all indecomposable objects in R. Let

g = h⊕ n

be a direct sum of Z-modules. Consider the quotient group

g(q−1) = g/(q− 1)g.

Mildly abusing notation, denote by uM, hM also the residues in the quotient group
corresponding to M ∈ R.

Theorem 7.1.2 [2]. g(q−1) is a Lie algebra over Z/(q−1) with its bilinear operation
[−,−] defined as follows:

(1) for any two indecomposable objects X, Y ∈ R,

[uX, uY ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
L∈ind R

(
FLXY − FLYX

)
if Y �� T X,

hX

d(X)
if Y � T X;

(2) for any objects X, Y ∈ R with Y indecomposable,

[hX, uY ] = −(hX|hY )uY and [uY , hX] = −[hX, uY ];

(3) [h, h′] = 0, ∀ h, h′ ∈ h.

Remark 7.1.3. Indeed, the positive part of the above Lie algebra can be obtained
through the (untwisted) Ringel–Hall algebra.

Recall the definition of untwisted Ringel–Hall algebra H(�). It is a free Abelian
group with basis {u[M] | M ∈ mod−�} indexed by the isomorphism classes of
all finite-dimensional �–modules. Write simply uM for u[M]. The multiplication is
defined by

uX � uY =
∑

[M],M∈mod−�
gMXYuM.

This is an associative ring with unit u0. Let ind� be the set of representatives of
isomorphism classes of all indecomposable modules in mod−�, and letK(mod−�)
be the subgroup of H(�) generated (freely) by {uX | X ∈ ind�}. Then the proof of
Proposition 5 in [39] implies that over the residue ringZ/(q−1),K(mod−�) is a Lie
subalgebra of H(�), that is, the quotient group K(mod−�)/(q− 1)K(mod−�) is
a Lie subalgebra of the quotient ring H(�)/(q − 1)H(�), where the Lie bracket is
the commutator [uX, uY ] = uX � uY − uY � uX.

The root category R has two parts, mod−� and T (mod−�). Hence, n=K
(mod−�)⊕K(T (mod−�)), whereK(T (mod−�)) is the free Abelian group with
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the basis {uT (X) | X ∈ ind�} and

g = K(mod−�)⊕ h⊕K(T (mod−�)).
Hence, the Lie algebra K(mod−�)/(q − 1)K(mod−�) is a subalgebra of
g(q−1) and

g(q−1) = K(mod−�)/(q− 1)K(mod−�)⊕ h/(q− 1)h

⊕K(T (mod−�))/(q− 1)K(T (mod−�))
is a triangular decomposition of g(q−1).

Let E be a field extension of k. Then, � ⊗k E is a hereditary E-algebra, and for
M ∈ mod−�, the moduleM⊗k E has a canonical�⊗k E-module structure. Recall
thatE is called conservative extension forX ∈ ind� if (End� / rad End� X)⊗kE is
a field again so thatX⊗kE is an indecomposable�⊗kE-module.An indecomposable
�–module X is called exceptional �-module if Ext1

�(X,X) = 0. Note that all
simple �-modules are exceptional. It follows from C.M. Ringel [44] that for an
exceptional module, the endomorphism algebra is isomorphic to the endomorphism
algebra of some simple �-module S.

Let k̄ be the algebraic closure of k and set

� = {E : k ⊆ E ⊆ k̄ is a finite field extension and conservative for

all exceptional �-modules}
= {E : k ⊆ E ⊆ k̄ is a finite field extension and conservative for

all exceptional objects in R}.
The set � is an infinite set.

Let RE be the root category of � ⊗k E. Then, as before, we have hE, nE, and
gE = hE⊕nE, and gE(|E|−1) = gE/(|E|−1)gE which is a Lie algebra overZ/(|E|−1).
Consider the direct product∏

E∈�
gE(|E|−1)

of Lie algebras and let LE(R) be the Lie subalgebra of
∏
E∈� gE(|E|−1) generated by

the set {uX = (uX⊗kE)E∈� | X is an exceptional object in R}.

Theorem 7.1.4 [2]. If� and g′(C) share the same Cartan datum, then there is a Lie
algebra isomorphism

� : C⊗Z LE(R) −→C g′(C)

given by

− hSi

d(Si)
�→ hi, 1 ≤ i ≤ n,

uSi �→ ei, 1 ≤ i ≤ n,
uT (Si) �→ −fi, 1 ≤ i ≤ n,

where {Si|1 ≤ i ≤ n} is the set of all nonisomorphic simple �–modules.
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7.2. A construction of the elliptic Lie algebra g(X)

For the real root system determined by a Cartan datum, one can construct a Lie
algebra, namely, the Kac–Moody algebra, that has a nice decomposition of root spaces.
The same question can be raised for a generalized root system, especially for an
elliptic root system. There have been numerous attempts along these lines, leading to
intersection matrix Lie algebras, vertex algebras, toroidal algebras, extended affine
Lie algebras, and so on.

New advances have been made by K. Saito and D. Yoshii [45], who described sim-
ply laced elliptic Lie algebras from three different points of view. The first one is from
the vertex algebra attached to an elliptic root lattice. In this structure, the root spaces
are of an explicit form. The second one is a presentation given by Chevalley genera-
tors and generalized Serre relations attached to the elliptic Dynkin diagram. The third
one is an amalgamation of an affine Kac–Moody algebra and a Heisenberg algebra.
As mentioned in [45], simply laced elliptic Lie algebras are in fact isomorphic to the
corresponding 2-toroidal algebras (2-extended affine Lie algebras). More recently,
Y. Lin and L. Peng [3] constructed elliptic Lie algebras of type D(1,1)4 , E

(1,1)
6 , E

(1,1)
7 ,

or E(1,1)8 via the root category of the tubular algebras of the same type.
In this subsection, we only deal with the following elliptic Dynkin diagrams:

4
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6

1

5
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7
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6

4

8

1
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10

1

2

.
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Consider n-dimensionalQ-spaceU, where n is the number of vertices of an elliptic
Dynkin diagram of typeD(1,1)4 , E

(1,1)
6 , E

(1,1)
7 , orE(1,1)8 . Let� = {α1, α2, . . . , αn} be

the canonical basis ofU. The symmetric bilinear form (−,−) : U×U → Q attached
to an elliptic Dynkin diagram of type D(1,1)4 , E

(1,1)
6 , E

(1,1)
7 , or E(1,1)8 is defined by

(αi, αj) =

⎧⎪⎪⎨
⎪⎪⎩

2 if i = j;
−1 if there is a real edge between i and j;

2 if there is a double dotted edge between i and j;
0 otherwise.

Then the matrix attached to the symmetric bilinear form (−,−), called an elliptic
Cartanmatrix, is positive semidefinite with corank 2. Note that it is not a generalized
Cartan matrix in the sense of Kac–Moody algebras [11] because it contains positive
entries a1n = an1 = 2 in the off-diagonal part.

Definition 7.2.1 (K. Saito and D. Yoshii). The elliptic Lie algebra of a given elliptic
Cartan matrix is defined by Chevalley generators and generalized Serre relations as
follows:

Generators: {αi | 1 ≤ i ≤ n} and {e±i | 1 ≤ i ≤ n}.
Relations:

0.

[αi, αj] = 0, 1 ≤ i, j ≤ n;
I.

[ei, e−i] = αi, 1 ≤ i ≤ n;
II.1. [αi, ej] = (αi, αj)ej, for i, j = ±1,±2, . . . ,±n,

where α−i = −αi;
II.2. (ad ei)max{1,1−(αi,αj)}ej = 0, for i, j = ±1,±2, . . . ,±n;

III.

[[e−i, e−1], e−n] = 0

[[ei, e1], en] = 0 for

n

1

i.

���

��
�

IV.

[[[e1, e−n], e−i], e−j] = 0

[[[e−1, en], ei], ej] = 0

[[[e−1, e−n], e−i], e−j] = 0

[[[e1, en], ei], ej] = 0

for

j

i

n.

1
�
�
�
��

�
�
�



Quivers and Representations 557

For a generalized Cartan matrix, the relations of type 0–II are defining relations for a
Kac–Moody algebra. But, for an elliptic Cartan matrix, one has to consider additional
relations as given by III–IV above.

Tubular algebras form a certain special class of associative algebras of global
dimension two, which can be determined by quivers with relations. Their module cat-
egories and derived categories are of wide interest (see [6,7]), for example, W. Geigle
and H. Lenzing [6] found that the derived category of a tubular algebra is isomorphic
to the derived category of coherent sheaves on a weighted projective line. (An algebra
of the formB = EndA(TA), whereA is connected, hereditary, representation–infinite,
and TA is a preprojective tilting module, is said to be a concealed algebra. In case A
is, in addition, tame, then B is said to be a tame concealed algebra). By definition, a
tubular algebra is a tubular extension of a tame concealed algebra of extension type
T(r1, r2, . . . , rt), where (r1, r2, . . . , rt) is equal to (2, 2, 2, 2), (3, 3, 3), (4, 4, 2), or
(6, 3, 2). We refer to [7] for a very technical definition of tubular extension. For a tubu-
lar algebra � of type T(r1, r2, . . . , rt), its derived category has a nice structure and
consists of infinitely many tubular families, where each tubular family is determined
essentially by a tame concealed algebra and contains infinitely many homogenous
tubes and t nonhomogenous tubes of rank r1, r2, . . . , rt , respectively.

Y. Lin and L. Peng considered the following tubular algebras given by quivers with
relations, that is, � = kQ/I:
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For each of the four quivers above, if we forget the orientation and add a dotted
edge between the vertices 1 and n (here, n = 6, 8, 9, 10), then the diagram obtained
coincides with an elliptic Dynkin diagram. We extend the usual terminology to such
tubular algebras, calling them of type D(1,1)4 , E

(1,1)
6 , E

(1,1)
7 , and E(1,1)8 .

Using the explicit structure of the derived categories of tubular algebras given by
D. Happel and C.M. Ringel [46], Y. Lin and L. Peng proved the following theorem:

Theorem 7.2.2 [3]. Let� be the tubular algebra of typeX(1,1)l with the isomorphism

classes of simple modules Si, 1 ≤ i ≤ n, where Xl = D(1,1)4 , E(1,1)6 , E(1,1)7 , or E(1,1)8 .

Let g be the elliptic Lie algebra of typeX(1,1)l , with generators αi and e±i, 1 ≤ i ≤ n,
and L(R) the Ringel–Hall Lie algebra over Q of the root category R of �. Then,
there is a Lie algebra isomorphism

� : L(R) −→ g

given by

hSi �→ αi, 1 ≤ i ≤ n,
uSi �→ ei, 1 ≤ i ≤ n,

uT (Si) �→ −e−i, 1 ≤ i ≤ n.
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8. Guide to the literature

A wealth of material concerning the representation theory of finite-dimensional
algebras (or quivers) can be found in the books [7, 16, 47] and online notes [14].
For the unexplained notation concerning the theory of Lie algebra, we refer to the
book [11], for those concerning quantum groups to the book [28], and for derived
categories to the book [42] and the paper [43]. The material related to Ringel–Hall
algebras is discussed in the articles [7, 18–21, 27, 39, 40]. For Section 4, we recom-
mend [1,13]. Finally, the articles [2] and [3] contain a detailed exposition of the topics
discussed in Section 7.
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1. Introduction

Riley et al. [3] observed that

If a physical system is such that after application of a particular symmetry
transformation the final system is indistinguishable from the original sys-
tem, then its behavior, and hence the functions that describe its behavior,
must have the corresponding property of invariance when subject to the
same transformations.

The study of these transformations is a study of the symmetries of the system. More
generally, as Bacry [1] shows, the study of the symmetries of a physical system
often suggests the study of the symmetries of certain physical laws and theories, and
frequently, leads to symmetry-related principles in the form of conservation laws. In
this chapter, a data analytic interpretation of these principles is proposed.
To illustrate, consider the group G = {1, v, h, o} of vertical (v) and horizontal

(h) line reflections, point reflection (o), and the identity (1) under composition of
functions. Its multiplication table

∗ 1 v h o

1 1 v h o

v v 1 o h

h h o 1 v

o o h v 1

(1.1)

shows that G is Abelian. Of course, these are the automorphisms of a rectangle.
Examples of data indexed by these transformations appear, for example, in [5] and
[6,Chapter 1]. Indicating by {x1, xv, xh, xo} the data indexedby these transformations,
it then follows that the four scalar quantities,

I1 = x1 + xo + xv + xh, Iv = x1 + xv − xo − xh,
Ih = x1 + xh − xo − xv, and Io = x1 + xo − xv − xh, (1.2)

are the invariants of interest in the data space under the regular group action. These
data summaries vary only up to companion points in the same invariant subspace.
For example, the invariant x1 + xo − xv − xh is such that

xt∗1 + xt∗o − xt∗v − xt∗h = ±(x1 + xo − xv − xh) for all t ∈ G.
Ideally, then, it is of interest to interpret and describe both the underlying group actions
and the resulting invariants.

2. A general principle of interpretability

As a general principle, group actions can be interpreted as degrees of arbitrariness,
or irrelevance, that are chosen upon the labels and need to be resolved. For example,
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it can be shown that the sum and n − 1 sets of pairwise comparisons in a sample
of size n are the invariants that result when the assignment of observations to the
labels {1, 2, . . . , n} is (determined to be) arbitrary in such a way that its degree of
arbitrariness amounts to shuffling the labels in all possible n! ways. These invariants,
in dimensions of 1 and n− 1, respectively, appear in the practice of data analysis as
the sample mean and its standard deviation. If, however, the data are labeled by n
equally spaced points along a circle and the degree of arbitrariness is now restricted to
shuffling the labels according to then cyclic permutations, then the resulting invariants
are the n linear combinations of the original data, with as coefficients the n sets of
Fourier coefficients cos(2πjk/n)+ i sin(2πjk/n), j, k = 0, . . . , n− 1, that is, the n
finite Fourier transforms of the observed data.
Applying this principle to the example introduced in Section 1, the invariants (1.2)

can be characterized as those data that should be retained when the arbitrariness of
where is left (right) and where is up (down) is resolved. This degree of arbitrariness
can be identified by studying the group action, defined by the multiplication table in
(1.1), each line of which relabels what is up and down and what is left–right. It can
be referred to as planar orientation so that then the pairwise comparisons in (1.2)
are the invariants of planar orientation. For example, x1 + xo − xv − xh gives a one-
dimensional subspace regardless of the planar orientation. Equivalently, it compares
the responses to point symmetry against the combined responses of vertical and
horizontal responses, regardless of the planar orientation. In the present case, all four
invariants are in dimension of one, adding to the dimension (4) of the original vector
space for the data indexed by the elements of G.
A simpler example is given by the invariants x�± xr associated with bilateral, say,

left (�) and right (r) measurements, determined by the identity transformation and
the transposition of left and right measurements. Here, left–right is the arbitrariness
resolved by x� ± xr.
When an invariant is derived from a regular group action (the group acting on itself

by multiplication on the right or on the left), it is called a regular invariant. In the
following sections, the data analytic methods of symmetry studies will be applied
to determine and interpret the regular invariants associated with experimental data
indexed by the permutations of three and four objects.

3. Symmetry studies

Methods of representation theory can be systematically applied in the analysis of data
indexed by a set of labels where a group action can be defined and often justified by an
experimental context. While group representations provide the connection between
the labels and the data space, the canonical decomposition theorem, reducing the
identity matrix in the data space to a sum of algebraically orthogonal projections,
provides the conditions with which the statistical theory of quadratic forms can be
formulated to study the resulting decomposition of the sum of squares or analysis of
variance. The study of these projections also leads to useful summaries of the data in
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the form of canonical invariants, which can be used as descriptive tools or interpreted
for further statistical inference.
These basic elements constitute the core of all symmetry studies as introducedby the

author in [6], where a detailed introduction to a number of data analytical applications
is described. Specifically, every symmetry study includes the identification of the
following:

(1) A set V of labels with v elements;
(2) The observed data x defined in a linear subspace V ⊂ Rv and indexed by those

labels (the structured data);
(3) A rule or group action, according to which the symmetry transformations in a

group G are applied to V ;
(4) The classes and multiplicities of the resulting elementary orbits, subsets of V ,

on which G acts transitively;
(5) The resulting linear representations of these actions in the corresponding data

vector subspaces;
(6) The canonical projection matrices Pχ indexed by the irreducible characters χ

of G;
(7) The canonical invariants Pχx on the data x, and their interpretations;
(8) A statistical analysis of the canonical invariants and, if applicable, their

analysis of variance x′x= ∑
χ x
′Pχx based on the canonical decomposition

I = ∑
χ Pχ of the identity operator in the data subspaces, as a sum of alge-

braically orthogonal projections.

When necessary, these canonical projections may be grouped together to describe V .
Specifically, if there are qλ orbits of type λ, each with oλ elements, classifying the
v = ∑

λ qλoλ points in V , then for each class of orbits with vλ= qλoλ points, the
identitymatrix inV reduces according to Ivλ =Pλ1+Pλ2+. . ., wherePλj is the canonical

projection constructed with qλ copies of the canonical projection Pλ
j in the vector

space associated with the elementary orbits of type λ and indexed by the irreducible
representations j = 1, 2, . . . of the underlying groupG. The reduction in the original
space V is then Iv = Diag(. . . , Ivλ, . . .), with as many components as the different
types of orbits identified by the action of G on V .
To illustrate, consider the set V = {uu, yy, uy, yu} of binary sequences in length

of two or, equivalently, the set of all mappings s from {1, 2} into {u, y} so that
ϕ1(τ, s) = sτ−1,

ϕ1 : {1, 2} τ−1−−→ {1, 2} s−→ {u, y}, s∈V, τ ∈ S2 = {1, (12)}, (3.1)

and ϕ2(σ, s) = σs,
ϕ2 : {1, 2} s−→ {u, y} σ−→ {u, y}, s∈V, σ ∈ S2 = {1, (uy)}, (3.2)

are actions of S2 onV . The action ϕ1 classifies the sequences up to permutations of the
positions {1, 2} of the letters, whereas ϕ2 classifies the sequences up to permutations
of the symbols {u, y}. The action ϕ1 generates three orbits {uu}, {yy}, and {uy, yu}
and ϕ2 generates two orbits {uu, yy} and {uy, yu}.
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In the position symmetry case, the representation is isomorphic to

ξ1 = Diag
(
1, 1,

[
1 0
0 1

])
, ξt = Diag

(
1, 1,Diag

(
1, 1,

[
0 1
1 0

]))
, t ≡ (12),

taking values in GL(R4). Equivalently, writing V = R4, it is observed that the ξ
determines the decomposition

V =W1 ⊕W2 ⊕W3,

where the stable subspacesW1 andW2 reduce isomorphically as a subspace U1 asso-
ciated with the unit representation, andW3 reduces as the sum of an isomorphic copy
of U1 and a subspace USgn associated with the sign (Sgn) representation. Therefore,

V = U1 ⊕ U1 ⊕ U1︸ ︷︷ ︸
V1

⊕ USgn = V1 ⊕ VSgn, (3.3)

showing a decomposition of V into a direct sum of the irreducible representations
of S2 in which the isomorphic copies are collected together. This is the canonical
decomposition of V . Next, to construct the projections P1 and PSgn of V on the
irreducible subspaces V1 and VSgn, define

Pβ = nβ
∑
τ∈G

χβ(τ)ξτ/g,

where χβ is the irreducible character of the irreducible representation β of G with
|G| = g elements and nβ its dimension. In the present case (G = S2), β ∈ {1, Sgn}
with corresponding characters χ1≡ 1 and χSgn = Sgnτ so that P1= (ξ1 + ξt)/2 and
PSgn= (ξ1 − ξt)/2. When the projections are evaluated relative to a basis of V =
V1 ⊕ VSgn on which

ξτ = Diag(I3 ⊗ 1τ, Sgnτ),
where In indicates the n × n identity matrix, the results are Diag(1, 1, 1, 0) and
PSgn = Diag(0, 0, 0, 1).
It then follows that (1) P21 = P1, P2Sgn = PSgn; (2) P1PSgn = PSgnP1 = 0, and

(3) I4 = P1+PSgn so that Pβ is a projection on a subspace isomorphic to Vβ. These
properties remain valid if Pβ is evaluated relative to any representation MξτM−1
equivalent to ξ. In this case, Pβ transforms asMPβM−1 and (1), (2), and (3) remain
unchanged. For example, relative to the basis for V indexed by {uu, yy, uy, yu},

P1 = Diag(1, 1,A2); PSgn = Diag(0, 0,Q2),

whereAn indicates the n×nmatrix with all entries equal to 1/n andQn = In−An.
Similarly, in the letter-symmetry case, ξ is given by

ξ1 = Diag(I2, I2), ξt = Diag
([
0 1
1 0

]
,

[
0 1
1 0

])
,

so that now V = W1 ⊕W2 and in each one of these two stable subspaces ξ reduces
isomorphically as the sum of the unit and the sign representations. Collecting the
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isomorphic copies of the corresponding irreducible subspaces U1 and USgn, it follows
that

V = U1 ⊕ U1︸ ︷︷ ︸
V1

⊕USgn ⊕ USgn︸ ︷︷ ︸
VSgn

,

which is the canonical decomposition of V , with corresponding projections P1 =
(ξ1 + ξt)/2 and PSgn = (ξ1 − ξt)/2. When these matrices are evaluated relative to a
basis of V = V1 ⊕ VSgn on which

ξτ = Diag(I2 ⊗ 1τ, I2 ⊗ Sgnτ),
the result is P1 = Diag(1, 1, 0, 0) and PSgn = Diag(0, 0, 1, 1).
It then follows thatPβ is a projection on a subspace isomorphic toVβ and, regardless

of the chosen basis forV ,P21 =P1,P2Sgn =PSgn;P1PSgn =PSgnP1= 0 and I4=P1+
PSgn. In particular,

P1 = Diag(A2,A2), PSgn = Diag(Q2,Q2).

The arguments illustrated in the above example lead to a proof of following
result [4, 6]:

Theorem 3.1 (Canonical decomposition). Let ρ be a linear representation ofG into
GL(V), and let ρ1, . . ., ρh be the distinct nonisomorphic irreducible representations
of G with g elements, with corresponding characters χ1, . . ., χh and dimensions
n1, . . ., nh. Then,

Pi = ni
∑
τ∈G

χi(τ)ρτ/g

is a projection of V onto a subspace Vi, sum of mi isomorphic copies of the irre-
ducible subspaces associated with ρi, i = 1, . . ., h. Moreover, PiPj = 0, for i 
= j,

P2i = Pi and
∑
i Pi = Iv, where v = dimV =∑h

i=1mini.

The Fourier inverse formula In several experiments, however, the data are naturally
indexed byG in itself so thatV = G. In this case, there is a one-to-one correspondence

x̂(β) =
∑
τ∈G

xτβτ ←→ xτ =
∑
β∈Ĝ

nβtr [βτ−1 x̂(β)]

between the experimental data {xτ, τ ∈ G} and the Fourier transforms x̂(β) over the
irreducible representations β ofG, in dimension of nβ, where in the above expression,
Ĝ indicates the set of all irreducible representations ofG. Observe, in particular, that
the (regular) invariants in (1.2) are the Fourier transforms of the data indexed by G.
More generally, it is given as follows.

Proposition 3.1. The rows of the Fourier transform x̂(β) matrix reduce as β under
the regular action.
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Proof. Assume, without loss of generality, that β is in dimension of 2; select the
first row of x̂(β) and write βτij to indicate the ij entry of βτ . The objective here is to
show that G acting on the components

u =
∑
τ∈G

τβτ11, v =
∑
τ∈G

τβτ12

of the first row of x̂(β) as points in the group algebra of G according to the regular
action (uσ−1, vσ−1) gives βσ so that the representation coincides with (one of the
two copies of) β, that is,

uσ−1 = uβσ11 + vβσ21, vσ−1 = uβσ12 + vβσ22.
Indeed,

uβσ11+vβσ21 =
∑
τ

τ
[
βτ11β

σ
11 + βτ12βσ21

] =∑
τ

τβτσ11 =
∑
γ

(γβ
γ

11)σ
−1 = uσ−1

and similarly uβσ12+vβσ22 = vσ−1, proving the proposed equality and concluding the
proof. �
Replacing τ by xτ (the scalar data indexed by G) so that the rows of the Fourier

transform x̂(β) should give a basis for an invariant subspace tagged by β. If β ∈ Ĝ is
in dimension of m, then there are m such bases, corresponding to the m copies with
which β appears in the regular representation ofG. Repeating the same argument for
the remaining rows of x̂(β), it is seen that, in matrix form, Proposition 3.1 can be
expressed as

x̂(β)βσ−1 =
∑
τ

xτσβτ. (3.4)

In particular, the rows (or columns if the regular action is from the right) form a set
of bases for two isomorphic copies of β. In the next two sections, these results will
be applied to the study of the regular invariants of S3 and S4.

4. The regular invariants of S3

Consider the observed frequencies, shown in Table (4.1), with which the DNAwords
in the permutation orbit

Oact = {act, tac, cta, cat, tca, atc} = {sτ−1; τ ∈ S3}
of the mapping s = act appear in nine subsequent 900-bp-long regions along the
BRU isolate of the human immunodeficiency virus type I. The entire 9229-bp-long
single-strain DNA sequence is available from the National Center for Biotechnology
Information1 data base using the accession number K02013.

1 http://www.ncbi.nlm.nih.gov/.
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It is assumed in this section that the elements of S3 are written in the order of
{1, (123), (132), (12), (13), (23)} so that Oact is obtained by evaluating sτ−1 in that
order, where s(1) = a, s(2) = c, and s(3) = t. In what follows, moreover, the
components of vectors such as

x′ = (act, tac, cta, cat, tca, atc)
indicate in short notation the data and at the same time the corresponding permutations
in S3. Other common examples occur in ranking preferences studies (e.g. [2]) or
scalar data in psychometric studies, where scalar responses to the different sequences
of presentation of a stimuli are recorded.

1 2 3 4 5 6 7 8 9
act 8 16 16 7 17 11 12 6 14
tac 7 17 13 15 9 11 18 5 17
cta 15 8 14 9 14 15 8 5 16
cat 14 15 16 14 21 17 15 10 8
tca 11 18 10 17 11 16 14 9 13
atc 7 15 9 13 11 11 11 12 10
total 62 89 78 75 83 81 78 47 78

(4.1)

Having identified the labels and the structured data, it is remarked here again that
their notation will often be identified so that, for example, act ≡ xact and act+ tac is
to be interpreted as xact + xtac. In particular, the case in which the permutations in S3
act on the labels (which are in one-to-one correspondence with S3) will be studied.
The regular action will be defined by its multiplication table

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 6 4 5
3 3 1 2 5 6 4
4 4 5 6 1 2 3
5 5 6 4 3 1 2
6 6 4 5 2 3 1

, (4.2)

where the permutations 1, (123), (132), (12), (13), and (23) are identified with
1, 2, 3, 4, 5, and 6, respectively. The resulting representation is the regular repre-
sentation of S3, indicated here by φ. For example, when τ = (12), φτ is the permuta-
tion matrix defined by rows 1 and 4 of Table (4.2). Because this action is transitive,
Step (4) in the summary presented in Section 3 leads to a simple single-orbit symmetry
study.

4.1. The canonical projections

Indicate the irreducible representations of S3 by 1, the symmetric or trivial represen-
tation; by Sgn, the alternating (or sign) representation (both in dimension of 1); and
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by β in dimension of two. Their table of characters is given by

τ χ1 χSgn χβ
1 1 1 2

(123) 1 1 −1
(132) 1 1 −1
(12) 1 −1 0
(13) 1 −1 0
(23) 1 −1 0

,

from which the evaluation of the canonical projections

Pχ = nχ
∑
τ∈G

χ(τ)φτ/6

gives P1 the 6× 6 matrix with entries equal to 1/6,

PSgn = 1/6

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1
−1 −1 −1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

Pβ = 1/3

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 2 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

4.2. Interpreting the regular invariants

Borrowing language from physics [1], the permutations {1, (123), (132)} will be
referred to as rotations and {(12), (13), (23)} as reversals. The terminology is a con-
sequence of the action of S3 on the ordered edges of a regular triangle, which identifies
the three-fold rotations seen from each side of the triangle’s plane.Applying the inter-
pretability principles introduced in Section 2, it is observed that

(1) P1x gives the symmetric invariant act + tac+ cta + cat + tca + atc;
(2) PSgnx gives the alternating invariant act+ tac+ cta− cat− tca− atc, com-

paring the total effect of rotations with the total effect of reversals, and
(3) Pβx evaluates as an invariant of within-rotation variability and within-reversal

variability, giving an invariant subspace in dimension of four.
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The degree of arbitrariness induced by the regular action can be interpreted as the
arbitrariness intrinsic to the notion of rotations and reversals, which in a sense is
equivalent to a notion of planar orientation. To see this, observe that although there
are 3! = 6 distinct assignments of the symbols {a, c, t} to the labeled (as 1, 2, 3,
say) vertices of a regular triangle, there are only two distinct assignments to those
vertices when their labels are removed (by shuffling): namely to the two distinct
classes

{(a, c), (c, t), (t, a)} and {(c, a), (a, t), (t, c)}
of oriented edges. These two classes are the rotations and the reversals. It is simple to
verify that the action of the permutations act, tac, cta, cat, tca, and atc on these edges
replicates precisely the regular action of S3. With this language, it can be said that
(1)–(3) above are the canonical invariants of rotations and reversals. It is remarked
however that, more generally, (1)–(3) are the regular invariants of S3.

4.3. A set of bases for the regular invariants

It is simple to verify that

β :
[
1 0
0 1

]
,

[
0 1
−1 −1

]
,

[−1 −1
1 0

]
,

[
0 1
1 0

]
,

[−1 −1
0 1

]
,[

1 0
−1 −1

]
,

where the matrices follow the order of S3 described above, gives an irreducible rep-
resentation of S3. The resulting Fourier transform x̂(β) =∑

τ xτβτ of the structured
data x at β is then

x̂(β) =
[
act − cta − tca + atc tac− cta + cat − tca
−tac+ cta + cat − atc act − tac+ tca − atc

]
� β⊕ β.

By Proposition 3.1, it identifies the two bases

Iβ = {act − cta − tca + atc, tac− cta + cat − tca}
and

I ′β = {−tac+ cta + cat − atc, act − tac+ tca − atc}
from rows 1 and 2 of x̂(β), respectively. The two (isomorphic) subspaces spanned
by these two bases reduce as β under the regular action of S3, that is, (3.4) is
obtained.

The alternating invariant Clearly, a trivial application of Proposition 3.1 with the
alternating character gives the invariant ISgn = act + tac + cta − cat − tca − atc
comparing rotations and reversals.
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The vectors {I1, ISgn, Iβ, I ′β} define the (rows of the) change of basis matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

1 1 1 −1 −1 −1
1 −1 0 0 −1 1

0 1 −1 1 −1 0

0 −1 1 1 0 −1
1 −1 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

relative to which

BP1B−1 = Diag(1, 0, 0, 0, 0, 0), BPSgnB−1 = Diag(0, 1, 0, 0, 0, 0), and
BPβB−1 = Diag(0, 0, 1, 1, 1, 1).

Similarly, the regular action of S3 extended to the components of {I1, ISgn, Iβ, I ′β}
gives the representation

φ̃τ = Diag(1, Sgnτ, I2 ⊗ βτ),
relative to which the canonical projections are, respectively, BP1B−1, BPSgnB−1,
and BPβB−1.

Interpreting voting preferences In the context of voting preferences, in which the
data are the frequencies with which voters select among all permutations of the rank-
ings of three candidates or objects, it is observed that

Iβ = {act − cta − tca + atc, tac− cta + cat − tca} ≡ {v1, v2}
can be characterized (as highlighted by a) as a basis for the space jointly describing
“more radical” (v1, first and third rank) and “less radical” (v2, second and third
rank) comparisons. The same interpretation, not surprisingly, applies to I ′β, with the
symbols c and a interchanged. From Proposition 3.1, these two position-comparisons
depend on the symbols only up to linear superpositions of the components of Iβ. For
example, the difference of these two components compares first and second ranks.

Interpreting planar rotations and reversals Following from Section 4.3, the regular
invariants ISgn and Iβ (or I ′β) can be interpreted as
(1) the comparison between rotations and reversals, in dimension 1;

(2) the two-component within-rotation, within-reversal variability, in dimension
2 (each).

More specifically, indicating by ↪→ and←↩ the two opposing (chiral) orientations of
planar rotation, it is observed that

v1 = act − cta︸ ︷︷ ︸
←↩ two-fold

+ atc− tca︸ ︷︷ ︸
↪→ one-fold

, and v2 = tac− cta︸ ︷︷ ︸
←↩ one-fold

+ cat − tca︸ ︷︷ ︸
↪→ two-fold

.
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Fig. 1. The components of the regular invariant Iβ (chiral variability) along the BRU isolate.

Each component is a within-rotation, within-reversal comparison. However, they are
distinguished by the way with which direction and phase interact. They describe
a right-hand two-fold followed by a left-hand one-fold screw motion, and a left-
hand one-fold followed by a right-hand two-fold screw. It is suggested here that this
property be interpreted as chiral variation.

4.4. A numerical example

Figure 1 displays the two components

v1 = act − cta − tca + atc and v2 = tac− cta + cat − tca
of the regular invariant Iβ for the DNA (log-transformed) frequency data from Table
(4.1) along the nine subsequent regions of the genome, suggesting the presence of a
dominant direction of higher (chiral) variability.

5. The regular invariants of S4

The complete symmetry study of data indexed by S4 is the study of five vector
(invariant) subspaces,

V = V1 ⊕ VSgn ⊕ 2Vη ⊕ 3Vβ ⊕ 3Vγ ,
reducing1 the original data space (see also [2]). Each of the three copies of the sub-
spaces Vβ and Vγ are of dimension three, whereas the two copies of Vη are of dimen-
sion two. There are, in addition, the alternating (VSgn) and the trivial (V1) subspaces,

1 If G has g elements and its r irreducible representations occur with multiplicities di then g = d21 +
d22 + · · · + d2r . E.g. [5].



Canonical Decompositions and Invariants for Data Analysis 577

both of dimension 1. In what follows, a set of bases {Iβ, I ′β, I ′′β}, {Iγ , I ′γ , I ′′γ }, and
{Iη, I ′η} for 3Vβ, 3Vγ , and 2Vη, respectively, will be described.
It is assumed, from now on, that the elements of S4 are listed sequentially following

the rows of Matrix (5.1)

S4 :
1 (12) (13) (14) (23) (24)
(34) (123) (132) (234) (243) (134)
(143) (124) (142) (1234) (13)(24) (1432)
(1324) (12)(34) (1423) (1243) (14)(23) (1342)

(5.1)

so that when S4 acts (via sτ−1) on the positions {1, 2, 3, 4} of the symbols in s = agct,
the resulting complete set of labels (also indicating the data x indexed by those labels)
is given by Matrix (5.2).

x :
agct gact cgat tgca acgt atcg
agtc cagt gcat atgc actg tgac
cgta tacg gtca tagc ctag gcta
tcag gatc ctga catg tcga gtac

. (5.2)

5.1. The regular invariants in dimension of 2

Following Viana [6, Section 3.9], a two-dimensional irreducible representation of S4,
corresponding to the partition λ = 22, can be obtained from the transitive action of
S4 on the classes

1 | 2
3 | 4 ,

1 | 3
2 | 4 ,

1 | 4
2 | 3 ,

2 | 3
1 | 4 ,

2 | 4
1 | 3 ,

3 | 4
1 | 2

of equivalent Young diagrams, shown in Table (5.3), where the classes are labeled
as 1, 2, . . . , 6, respectively. The action gives a permutation representation, indicated
here by ξ, with which the projections

Pi =
∑
τ∈Gi

Sgnτξτ

in dimension of one based on the column stabilizers

G1 = {1, (12), (34), (12)(34)}, G2 = {1, (13), (24), (13)(24)}, and
G3 = {1, (14), (23), (14)(23)}

identify the bases

u = 1 | 3
2 | 4 − 1 | 4

2 | 3 − 2 | 3
1 | 4 + 2 | 4

1 | 3 ≡ 2− 3− 4+ 5

v = 1 | 2
3 | 4 − 1 | 4

2 | 3 − 2 | 3
1 | 4 + 3 | 4

1 | 2 ≡ 1− 3− 4+ 6.
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The action of S4 on {u, v}, shown in the two rightmost columns of Table (5.3), gives
the representation (η) of interest. The resulting matrix representation and its table of
characters are shown in (5.4) and (5.5), respectively, corresponding to the elements
of S4 shown on Table (5.1).

τ
1 | 2
3 | 4

1 | 3
2 | 4

1 | 4
2 | 3

2 | 3
1 | 4

2 | 4
1 | 3

3 | 4
1 | 2 u v

1 1 2 3 4 5 6 u v

(12) 1 4 5 2 3 6 −u −u+ v
(13) 4 2 6 1 5 3 u− v −v
(14) 5 6 3 4 1 2 v u

(23) 2 1 3 4 6 5 v u

(24) 3 2 1 6 5 4 u− v −v
(34) 1 3 2 5 4 6 −u −u+ v
(123) 4 5 1 6 2 3 −u+ v −u
(234) 2 3 1 6 4 5 −v u− v
(134) 4 6 2 5 1 3 −u+ v −u
(124) 5 4 6 1 3 2 −v u− v
(1234) 4 5 1 6 2 3 u− v −v
(1324) 6 4 2 5 3 1 −u −u+ v
(1243) 5 1 4 3 6 2 v u

(5.3)

η :

1 0 −1 0 1 −1 0 1 0 1 1 −1
0 1 −1 1 0 −1 1 0 1 0 0 −1

−1 0 −1 1 0 −1 0 −1 −1 1 −1 1
−1 1 −1 0 1 −1 1 −1 −1 0 −1 0
0 −1 0 −1 −1 1 1 −1 1 0 1 −1
1 −1 1 −1 −1 0 0 −1 0 1 0 −1

−1 0 1 0 −1 0 0 1 1 0 0 1
−1 1 0 1 −1 1 1 0 0 1 1 0

(5.4)

Bases for the regular invariants in dimension of two Applying Proposition 3.1 to
the irreducible representation η, with the labels in (5.1), gives (from the rows of the
Fourier transform of x at η) the bases {v1, v2} and {w1, w2} shown, in matrix form,
in (5.6)–(5.9).

χη :
2 0 0 0 0 0
0 −1 −1 −1 −1 −1

−1 −1 −1 0 2 0
0 2 0 0 2 0

, (5.5)
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v1 =

⎡
⎢⎢⎣
agct −gact cgat 0 0 atcg
−agtc −cagt 0 0 −actg −tgac

0 0 −gtca tagc ctag gcta
−tcag gatc −ctga 0 tcga 0

⎤
⎥⎥⎦, (5.6)

v2 =

⎡
⎢⎢⎣

0 0 −cgat tgca acgt −atcg
0 cagt −gcat −atgc actg tgac

−cgta −tacg gtca −tagc 0 −gcta
0 0 0 catg 0 gtac

⎤
⎥⎥⎦, (5.7)

w1 =

⎡
⎢⎢⎣

0 −gact 0 tgca acgt 0
−agtc −cagt gcat atgc −actg −tgac
cgta tacg −gtca 0 0 0
−tcag 0 −ctga catg 0 gtac

⎤
⎥⎥⎦, (5.8)

w2 =

⎡
⎢⎢⎣
agct gact −cgat 0 0 −atcg
agtc 0 −gcat −atgc 0 0

−cgta −tacg 0 −tagc ctag −gcta
tcag gatc ctga 0 tcga 0

⎤
⎥⎥⎦. (5.9)

Interpretation Write uv = umvn+unvm, where u, v,m, and n are distinct symbols
in {a, g, c, t} so that, for example, ac = agct + atcg. With that notation in mind, the
following diagram illustrates the 16 components of w1 (Note that uv sums over
nonadjacent positions in the square):

a c

c c

a t

t tt

a g

gg g

a

ag at

c

g c

c c

ga gc

c

g g g t

t

a

a a a

t

t

c g

g g

cgct

g

a

a

a

a

c cc

t

t

t t

t

a c g c c a g a

tc ta

g t a t g t c
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Similarly, redefining uv = uvmn+uvnm, summing now over two adjacent positions
in the square, it follows that w2 is given by

a a a agt

t c c c t c g

ag at

g

tg

g

t c t a a t tc

a g c cg g a

ga gc

c g g

g

cgct

ga a

c c ct

t a a t

t

t

c g g

a t t ta c

c g g

tatc

a a

c

Similar interpretation is obtained for the basis {v1, v2}.

5.2. The regular invariants in dimension of 3

Table (5.10) shows one of the two irreducible representation of S4 of dimension
three [6] indexed in correspondence with the elements of S4 in Table (5.1). Applying
Proposition 3.1 to β with the labels in (5.1), the resulting bases (rows of the Fourier
transform of x at β) are shown in (5.11), (5.12), and (5.13), indicated respectively by
Iβ, I ′β, and I ′′β ,

β =
1 0 0 −1 0 0 0 −1 0 0 0 −1 1 1 0 1 0 1
0 1 0 1 1 0 −1 0 0 0 1 0 0 −1 0 0 1 −1
0 0 1 1 0 1 0 0 1 −1 0 0 0 −1 1 0 0 −1
1 0 0 0 1 0 −1 −1 0 1 1 0 1 0 1 0 −1 0
0 0 1 −1 −1 0 1 0 0 0 −1 1 0 0 −1 0 0 1
0 1 0 0 −1 1 1 0 1 0 −1 0 0 1 −1 −1 0 0
0 0 −1 0 0 1 −1 0 −1 0 1 0 0 −1 1 −1 0 −1
−1 0 0 0 1 −1 1 1 0 0 −1 1 −1 0 −1 1 0 0
0 1 0 −1 0 −1 1 0 0 −1 −1 0 0 0 −1 1 1 0
0 −1 1 −1 0 0 0 1 −1 0 0 1 0 1 −1 −1 −1 0
0 0 −1 1 0 1 −1 −1 0 −1 0 −1 0 −1 0 1 0 1

−1 0 −1 1 1 0 0 −1 0 0 1 −1 −1 −1 0 1 0 0

. (5.10)
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⎡
⎢⎣

agct − gact + acgt + atcg+ agtc− gcat + actg+ atgc− gtca − gcta − gatc− gtac
−cgat + acgt − gcat + cagt + atgc− tgac− ctag+ tagc+ ctga − tcag− gtac+ tcga
−tgca + atcg+ actg− cgta − gtca + tacg− gcta + ctag− ctga + tcag− tcga + catg

⎤
⎥⎦, (5.11)

⎡
⎢⎣
gact − cgat + gcat − cagt − cgta + gtca + gcta − ctag− ctga + gatc+ gtac− catg
agct + gact + tgca − acgt + atcg− cagt − atgc+ gtca + tacg− tagc− ctga − tcga
−atcg+ agtc− actg+ atgc+ tgac− tacg− ctag+ tagc+ gatc− tcag+ gtac− catg

⎤
⎥⎦, (5.12)

⎡
⎢⎣

gact − tgca + gcat − tgac+ gtca − tacg+ gcta − tagc+ gatc− tcag+ gtac− tcga
−acgt + agtc− cagt + actg− atgc+ cgta + gcta − tagc− ctga + gatc− tcga + catg
agct + gact + cgat + acgt − atcg+ gcat + cagt − actg− tacg− ctag− tcag− catg

⎤
⎥⎦. (5.13)

each one spanning one copy of Vβ. Inspection of these bases shows that
(1) Iβ describes “g versus a” at positions 1, 3, 4;
(2) I ′β describes “g versus c” at positions 1, 3, 4;
(3) I ′′β describes “g versus t” at positions 1, 3, 4.

The position 2, not present above, is in fact g’s position in the generating sequence
“agct.” In each subspace, the three coordinates correspond to positions 1, 3, 4.

The reduction in the second invariant space in dimension three The companion
(distinct) irreducible representation of S4 is simply γτ = Sgnτβτ . It is obtained
by multiplying the matrices βτ in (5.10) by the parity Sgnτ of the corresponding
permutation. Consequently, the bases for the invariant subspaces of interest are the
rows of Fγ =∑

τ xτSgnτβτ ,⎡
⎢⎣
agct + gact − acgt − atcg− agtc− gcat + atgc+ actg− gtca + gcta − gatc+ gtac
cgat − acgt + cagt − gcat + atgc− tgac− tagc− ctag+ tcag− ctga + tcga + gtac
tgca − atcg+ actg− cgta + tacg− gtca + ctag+ gcta − tcag+ ctga − catg− tcga

⎤
⎥⎦, (5.14)

⎡
⎢⎣
−gact + cgat − cagt + gcat − cgta + gtca − ctag− gcta + gatc+ ctga + catg− gtac
agct − gact − tgca + acgt − atcg− cagt − atgc+ tacg+ gtca + tagc+ ctga − tcga
atcg− agtc+ atgc− actg+ tgac− tacg− tagc− ctag+ tcag+ gatc+ catg− gtac

⎤
⎥⎦, (5.15)

⎡
⎢⎣
−gact + tgca + gcat − tgac− tacg+ gtca + tagc− gcta + tcag+ gatc− tcga − gtac
acgt − agtc− cagt − atgc+ actg+ cgta + tagc− gcta + gatc+ ctga − catg− tcga
agct − gact − cgat − acgt + atcg+ cagt + gcat − actg− tacg− ctag+ tcag+ catg

⎤
⎥⎦. (5.16)

indicated, respectively, by Ir, I ′r, I ′′r .
To outline the interpretation of these subspaces, the following notation is intro-

duced: indicate by±uk the sumof (the data indexedby) the permutationswith the sym-
bolu in the kth position that differ only by cyclicallymoving the remaining symbols in
onedirection (+) and in the opposite direction (−).Then, for example, thefirst compo-
nentIγ1 = agct+gact−acgt−atcg−agtc−gcat+atgc+actg−gtca+gcta−gatc+gtac
of Iγ can be represented as ±a1 ± g1. It then follows that Iγ1 = ±a1 ± g1, Iγ2 =
±a3 ± g3, Iγ3 = ±a4 ± g4. Similarly, Iγ

′
1 = ±c1 ± g1, Iγ

′
2 = ±c3 ± g3,

Iγ
′
3 = ±c4 ± g4, Iγ

′′
1 = ±t1 ± g1, Iγ

′′
2 = ±t3 ± g3, and Iγ

′′
3 = ±t4 ± g4.
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Interpretation Keeping in mind that in the generating permutation the symbol g
occupies position number 3, it is observed that each subspace compares g against
the cyclic (eventually chiral) changes of the remaining symbols in the remaining
positions, one subspace for each one of the three positions 1, 2, or 4 to which g is
moved to.

The joint reduction of the data space The vectors {F1, ISgn, Iη, I ′η, Iβ,
I ′β, I ′′β, Iγ , I ′γ , I ′′γ } define the (rows of the) matrix B shown in Appendix A,

relative to which BP1B−1=Diag(1, 0, . . ., 0), BPSgnB−1=Diag(0, 1, 0, . . ., 0),
BPηB−1=Diag(0, 0, I4, 0, . . ., 0), BPβB−1=Diag(0, . . ., 0, I9, 0, . . ., 0), and
BPγB−1=Diag(0, . . ., 0, I9).
The regular action of S4 extended to the components of the joint basis gives a

representation isomorphic to

Diag(1, Sgnτ, η, ητ, βτ, βτ, βτ, γτ, γτ, γτ).

6. Comments and summary

This chapter developed the regular invariants for S3 and S4 and obtained their inter-
pretations within the context of data indexed by these two groups. These regular
invariants are to be understood in analogy to the usual invariants (leading to the sam-
ple mean and variance) that are obtained under the action of the full symmetric group
shuffling the sample labels {1, 2, . . ., n}. The regular action shuffles the experimental
labels (permutations) by multiplication and introduces a degree of arbitrariness. The
interpretation of the regular invariants, in data analytic applications, should be better
understood so that the corresponding parametric hypotheses can be formulated and
scientific explanations suggested.
It is also observed that symmetry studies of regular (hence transitive) actions

are simpler to interpret. That is, in the regular case, Step (4) described in Sec-
tion 3 always gives a single orbit. Otherwise, when orbits appear, as illustrated
by (3.3), the canonical projections collect together pieces from different orbits and
label the resulting classes by the irreducible representations, in one-to-one corre-
spondence with the canonical projections. This “crossing out into nonisomorphic
subspaces” clearly complicates any eventual interpretations. This is why the repre-
sentations might be restricted to the underlying (transitive) orbits, for data analytic
purposes.
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β-rings, 451
λ-rings, 409
– Adams operation and, 418
– binomial rings v., 431
– definition of, 410–411
– morphisms of, 411, 423
– nontrivial example of, 416
– on one generator, 328
– on QSymm, 422
– σ-rings v., 411–412
– structure of, 416–417
– on Symm, 421–422, 425
– universal, one generator, 423–424
– Witt vectors and, 415
×L-Hopf algebras, 230–231√
Morita-equivalent, 195

μP , 375–376
μS , 375–376
π(P), 88
πX, 85
ϕ endomorphism, 399
ρX∗, 104–106
� functor, 402
ψK operation, 408
×R
– coalgebra, 185
– Hopf algebra, 191

-rings, 417–418
– Adams operation and, 418
– noncommutative, 418
ψ-twisted convolution algebra, 253
R⊗k Rop, 207

A
A-coring, 152. See also B|A-corings
– comodules of, 261
– trivial, 246
A–D–E classifications, 512
A#D-modules, 162
Ae-rings, 286

A-linearization, 133
A-module
– C-ferential, 149–150
– k-form of, 129
AS D-module algebras, 129
– Birkhoff-Witt, 162
– commutative, 161
– finitely generated, 169
– L/K extension and, 165, 169–170
– PV extensions of, 164–168
Abelian
– arbitrary category, 165
– category
– – simplicity criterion for objects in, 165–166
– extensions
– – of field p, 344–346
– factors, 147
– group
– – graded, 378
– groups �(A)
– – multiplication on, 350–351
– tensor subcategory, 156
AbGroup, 349
abstract algebra, 70–71
action picture, 198
Adams, J. F., 92, 412
– first Frobenius theorem, 412
Adams operation, 412–413
– 
-rings/λ-rings and, 418
adjoint pair, 241
adjunctions
– coinvariants and, 257–258
– comodules and, 256–257
– counit/unit of, 241
admissible ideal, 527
affine algebra, 53
– Hermetian/quadratic forms over, 37
– Lioville group scheme, 146
affine group scheme (G), 128–129, 137–138,

146–147
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Akian, Marianne, 31
Albert forms, 56–57
algebra. See alsoAS D-module algebras;

bialgebroids; Cartier algebra; C-rings;
central simple algebras; coalgebra;
D-module algebras; depth 2, algebra
extensions; Hopf algebra; Hopf
algebroids; Kac-Moody algebra;
K-algebra; Lie algebras; max-algebra;
min-algebra; positive selfadjoint Hopf
(PSH) algebras; Ringel-Hall algebras;
Z(p)-algebras

– abstract, 70–71
– affine, 53
– base, 286
– Boolean, 4
– canonical, 511
– central simple, 47
– C-ferential, 149–152, 158
– – simple, 151
– Clifford, 70–71
– cofree, 158
– – over module, universality, 379
– of coinvariants
– – of coring morphism, 260–261
– comodule, 133
– – module coalgebras and, 288
– concealed, 557
– corings and base extension, 246
– coseparable corings and firm, 270
– crossed differential, 101
– crossed modules, examples of, 87
– cubes and, 85
– data, 93
– depth 2 extension of, 203–204
– Dieudonné, 407
– differential graded
– – corings and semi-free, 249
– – group-like elements and, 258–259
– – semi-free, 249
– double, 219
– extension, 252, 283–285
– – balanced, 203
– – equivalence, 203–204
– firm, 248
– free
– – Symm and, 378
– – universality property of, 378
– Frobenius, 273–274
– generic composition, 538
– Hall, 509

– hereditary, 526
– inverse to subdivision, 90, 94, 101, 106
– module, 198
– necklace, 429–430
– over monad, 243
– path
– – of quivers, 525–528
– – quotient of, 509
– plactic, 491
– quasi-hereditary, 510–511
– quaternion, 44
– regular, 248
– representation of, 299
– representations of finite-dimensional, 509
– right comodule, 212–213
– rings over, 252
– Schur, 510
– separable
– – map, 270
– splitting, 168
– – minimal, 169
– stratified, 510–511
– of symmetric functions, 452–454
– tabular type, 511
– tensor, 378
– tensor module, 150
– thin element, 108
– tropical, 5
– tubular, 557
– twisted convolution, 293
– Witt, 329
– ψ-twisted convolution, 253
algebraic geometry, 509
algebraic quantum torus, 207
almost split sequence, 528
alternating invariant, 574–575
Amano, K., 127–130
Amitsur cohomology, 170
André, Y., 129
anisotropic quadratic form, 38
antipode, 204, 288
– on graded bialgebras, 365
Arason, J., 40, 45, 47
Arason-Pfister Hauptsatz, 40, 48, 53–55
A-ring
– product in, 252
– unit in, 252
Arnold, V. I., 512
arrows, 239
Artin, E., 36, 60
– Hilbert problems, solution of, 70
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Artin-Hasse exponential, 415–416
Ashley, N., 116
Atiyah, M. F., 436, 511
Auslander, M., 509
Auslander-Reiten
– quivers, 529–530, 534–535, 546
– sequence, 528–529
– theory, 528
– translations, 529
autoduality
– of Symm, 374
– of SymmR, 399
*-autonomous structure, 232

B
Bacry, H., 566, 573
Baeza, R., 53
Bajnok, D., 232
balanaced extension, 203
Bálint, I., 232
Balmer, P., 64
Bangor thesis of Al-Agl, 105
base changing morphisms, 186
Baues, H.-J., 112
Baumann, P., 549
B-comodules, 197–198
B-modules, 193–194
B|A-corings, 253
Beasley, LeRoy, 31
Beck, J., 549
Becker, E., 68
Beck theorem, 280
Bence, S. J., 566
Bernstein, I. N., 531
Bernstein, J., 439
Bernstein-Gelfand-Ponomarev (BGP)

reflective functors, 535–536
Bernstein morphism, 439–440
best possible bounds, 22
bialgebras, 186
– Galois extensions and, 202–203
– – non-uniqueness of, 202
– graded
– – antipodes on, 365
– Hopf algebra and, 288
– weak, 186–187, 291
– – Frobenius separable, 187
bialgebroids, 286–288
– action picture and, 198
– coaction picture and, 199–200

– cocycle double twists, 189–190
– Connes-Moscovici, 192
– Drinfel’d double, 191
– Drinfel’d twist, 189
– duality of, 188–189
– examples, 186–188
– Galois theory of, 220
– Hopf algebroid comodules and, 209–211
– key properties, 175
– left, 184–186
– L-rings measurement by, 223
– monoidality of, 231
– Morita base change of, 191–192
– morphisms, 185–186
– quasi-triangular, 196
– right, 183–186
– Scalar extension of, 193
– study/history of, 182
bicategory, 308
bicoalgebroids
– C-rings and, 309
– over coalgebra, 197
bicomodule
– cleft, 286
– regular, 256
bicrystals, 491
– isomorphism of, 497
– M′, 500–501
bideterminant, 6
bi-Galois extensions, 200–202
bilinear
– forms
– – Witt rings of, 39–40
– space, 37
binomial rings
– adjoints of, 433
– definition of, 430
– free, 430–431
– λ-rings v., 431
Birkhoff-Witt
– coalgebra, 158
– AS D-module algebras, 162
– T(C+), 158
Bõhm, G., 201, 204, 206–207, 218
Boolean
– algebra, 4
– semiring, 5
– – bounds and, 23, 26–28
– spaces, 41, 68
Borsuk-Ulam theorem, 58
bounded latice, 4
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bounds
– antinegative semiring and, 25–26, 28–29
– arbitrary semiring and, 24, 27
– best possible, 22
– Boolean semiring and, 23, 26–28
– column rank and, 25
– exact, 22
– row rank and, 25
bow-tie diagram, 250
braided category, 182
– monoidal, 196
Brauer equivalence, 347
Brauer group
– central simple algebras and, 347
– for corings, 310
– quaternion algebra of, 43
Breen, L., 114
Bröcker, L., 66, 68
Brown, R., 85, 89
Brzezinski, T., 182, 201, 232
BU
– classifying space, 327
Burnside ring, 442–443. See also

Witt-Burnside functors
– definition of, 444
– Frobenius on B̂(Z), 449
– ghost component morphism of B̂(Z), 446
– Verschiebung on B̂(Z), 449
Burnside theorem, 444
Burroughs, J., 436
Butkovic, Peter, 31
B̂(Z)ψ
– Frobenius on Burnside ring, 449
– ghost component morphism of Burnside

ring, 446
– Verschiebung on Burnside ring, 449

C
canonical
– algebra, 511
– decomposition theorem, 569–570
– dual bases, 247
– entwining, 295
– maps, 198–199
– – lifted, 297
– – surjectivity of, 224
– projections
– – for S3 regular invariants, 572–573
– quantum group and, 510
Carrasco, P., 116

Cartan
– datum, 554
– – symmetric/irreducible, 514
– form, 532
– matrix, 475
– – elliptic, 556
– – generalized, 517
– – graph of symmetric, 514
– – indecomposable, 516–517
– – of quiver, 532
– – symmetrizable, 514–515
Cartier, P., 348, 352, 362, 397
Cartier algebra, 401–404
Cartier first theorem, 371
Cassels, J. W. S., 60
categorical descent theory, 279–280
category of modules, 240
category theory, 239–244
C-bicoalgebroid, 309
CRing, 325, 345, 349
C-rings, 304–305
– bicoalgebroids and, 309
– coendomorphism, 308–309
– dual-Sweedler, 306–307
– entwined structures and, 307
– Galois, 309
– matrix, 308
– modules over, 305–306
– separable/split, 306
CW -complexes, 100
Cegarra, A. M., 116
centralizing conditions, 196
central simple algebras, 346–347
– Brauer group and, 347
– crossed product and, 347–348
C-ferential
– algebra, 149–152
– – integral domain, 158
– – simple, 151
– A-module, 149–150
– extension
– – exponential element in, 154
– – finitely generated, 155
– – primitive element in, 154
– – splitting fields for, 155
– field, 150
– – minimal splitting, 155
– Galois correspondence, 152–153
– K-algebra, 150–151
– L/K extension, 155
– – primitive, 154
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– module, 149
– – constants in, 150
– morphism, 149
– PV extension, 152–153
– splitting field, 155
chain. See also Liouville normal chain
– complexes
– – with groupoids of operators, 114–116
– semiring, 5
– syzygies, 88
chain of syzygies, 101
characters, 306
charge of w, 498
Chari, V., 549
Chern class, 409
Chevalley, C., 330
Chevalley generators, 515, 548
Choi, M. D., 60
Clarence Wilkerson theorem, 414–415
class numbers, 50
cleft extensions, 221–224
Clifford algebra, 70–71
Cline, E., 510
coaction
– image of, 255
– left, 255
– right, 254
coaction picture, 198
– bialgebroids and, 199–200
– Galois extension and, 200
coalgebra, 185, 242–243, 246
– bicoalgebra over, 197
– Birkhoff-Witt, 158
– cofree, 379–381
– – Symm/NSymm/QSymm and, 381
– comodule algebra and module, 288
– comodule as, 256
– of comonad, 242
– Galois comodule, 296
– Galois extensions, 295
– H-module, 292
– pointed irreducible, 153
– principle bundles, 295
– smooth cocommutative, 162
– tensor, 378
coassociative law, 244
coassociativity, 244
– of Sweedler-Heyneman notation, 245
cocycle double twist, 189–190
coendomorphism context, 309

cofree
– algebra over module
– – universality of, 379
– coalgebra, 379–381
– – Symm/NSymm/QSymm and, 381
– Witt vectors, 420–421
co-Frobenius corings, 274
cofunctor, 284
Cohen
– functor, 343–344
– rings, 342–343
– – of k, 344
cohomology, 45
coideals, 245
coinvariants. See also g-coinvariants
– adjunctions, 257–258
– algebra of
– – of coring morphism, 260–261
– of comodule, 257
– coring morphism and, 260–261
– cotensor product and, 259–260
cokernals, 263
collapsing
– elementary, 106
– homotopy and, 107
– partial boxes, 108
Colliot-Thélène, J. L., 61
column rank, 15–16
– bounds and, 25
– spanning, maximal, enveloping, 16, 19
comatrix
– corings
– – comodules and, 261–262
– – contexts, 247–248
– – dual ring of, 253
– – finite, 247
– – Frobenius bimodules and, 272–273
– – infinite, 247–249
– – separable bimodules and, 271
combinatorial ranks, 17
comodule, 242–243. See also bicomodule
– adjunctions of, 256–257
– algebra, 133
– – Hopf algebroid, 213
– – module coalgebras and, 288
– category of, 263–268
– of C-bicoalgebroid, 309
– as coalgebra, 256
– coinvariants of, 257
– cokernels for, 263
– comatrix corings and, 261–262
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– coproduct and, 264
– A-coring and, 261
– corings and
– – flat, 264
– – Hopf module as, 292–293
– – locally projective, 266
– descent data and, 261
– dual rings and, 265
– with flat connections, 306
– Galois, 275
– – A as, 275–276
– – coalgebra, 296
– – connections, 276
– – Morita contexts and, 286
– – principle, 278–279
– – strong/weak structure theorem, 277
– – structure theorem, 276–277, 283
– Grothendieck category, 264–265
– injective, 268–269
– kernals for, 264
– k-linear category, 263
– left, 255
– monoidal structure of, 287–288
– Morita context and, 282–283
– morphisms of
– – factorizable, 256
– as noncommutative space, 297–298
– right, 254
– semisimple, 277
– simple, 277
– structure of, 268
– Sweedler-Heyneman notation and, 255
– weak, 302–303
– Wisbauer σ-category, 267
comonadic triangle, 279–281
comonads, 418–419
– adjoint functors and, 243
– coalgebra/comodule of, 242–243
– corings and, 245
– Witt vector, structure of, 419–420
comonoid, 177
– counit of, 177
complicial set, 118
comultiplication, 177
– cut, 373
– inner product v. product, 368
– product, 366–367
– on QSymm, 374–375
– – co-unit for, 376–377
– Symm morphisms and, 367–368
connection pair, 95

connections
– flat, 262
– Galois comodule, 276
Connes, A., 98, 224
Connes-Moscovici bialgebroids, 192
conservative extension, 554
contramodules, 310
Coombes, K. R., 410
coproduct
– comodules and, 264
– of coring, 244
– counitality of, 244
Cordes, C. M., 50, 67
corings, 131. See also A-coring; co-Frobenius

corings; L-coring; R-corings;
S|R-corings

– algebra and
– – semi-free differential graded, 249
– base algebra extension, 246
– Brauer group for, 310
– category of, 246
– comatrix
– – comodules and, 261–262
– – contexts of, 247–248
– – dual ring of, 253
– – finite, 247
– – Frobenius bimodules and, 272–273
– – infinite, 247–249
– – separable bimodules and, 271
– comodules and, 264
– – Hopf module as, 292–293
– comonads and, 245
– co-opposite, 179
– coproduct of, 244
– cosemisimple, 277–278
– – Jacobson-Bourbaki correspondence

and, 278
– coseparable, 269
– – as firm algebra, 270
– cosplit, 270
– counit of, 244
– definition, 244
– dual, 253–254
– entwined structures and, 251, 262
– – weak, 251–252, 302
– extension, 283–285
– – Morita context for, 285–286
– Frobenius, 271–272
– – generalizations of, 274–275
– Galois, 275
– – Hopf-Galois extension as, 295–296
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– history/study of, 238
– integral in, 270
– lax, 301, 303
– – structure/usage, 304
– locally projective
– – comodules of, 266
– module properties of, 268
– morphisms of, 245
– – algebra of coinvariants of, 260–261
– – coinvariants of, 260–261
– Picard group for, 310
– prime/coprime/cosemiprime, 310
– representable monoidal functors and, 253
– semisimple, 269
– simple, 277–278
– Sweedler, 246
– – dual ring of, 253
– weak, 301–302
– – entwined structures and, 251–252, 302
cotensor products, 197, 210
– coinvariants and, 259–260
counits, 177, 244
– of corings, 244
covers
– equivalent morphisms of, 299
– finite, 298
– flat, 300
– space, 299
Coxeter functors, 536
Craven, T. C., 41, 62, 66
crossed
– complexes, 85
– – advantages of, 100–101
– – bimorphism of, 110–111
– – categories of, 102–103
– – free basis of, 112–113
– – fundamental, 99–100
– – simplicial groups and, 116–117
– – tensor product of, 111–112
– differential algebra, 101
– modules
– – algebraic examples, 87
– – calculation of, 88–89
– – of groupoids, 100
– – homotopy and, 88
– – identities among relations, 88
– product, 224
– – central simple algebras and, 347–348
– set, 114
Crowell, I., 115
crystal. See also bicrystals

– abstract
– – definition of, 480
– base, 474, 510, 539
– – tensor product of, 478–479
– – theories of, 476–478
– direct sum of, 480
– dual, 484
– equivalence, 481
– graph, 474
– – monomial/path/tableaux realization

of, 479
– – structure of, 477
– isomorphism, 480, 490
– semi-normal, 480–481
– sub-, 481
– version of Robinson-Schensted

correspondence, 489
– of words, 481–482
– of Young tableaux, 482–484
– – rational, 484–486
cubes
– algebra of, 85
– commutative, 95, 101, 105
– in double categories, 95–96
– higher homotopy groupoids and, 85
– opposite forces in n-, 107
– resurgence of use of, 102
cubical classifying space, 101–102
– filtered, 99
cubical nerve, 102
cubical sets, 99
curvature of connection, 262
curves
– functor, 370
– in Hopf algebra, 370
– NSymm and, 370–371
– SymmR, 398
cut comultiplication, 373
cyclic sets
– almost finite, 445
– induction for, 447
cyclotomic identity, 429
cylinder object, 101
Czogala, A., 52

D
D2 quasi-bases, 250
Dai, Z. D., 58, 60
Dai-Lam-Pang theorem, 58–59
Damiani, I., 547
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data
– algebraic, 93
– descent
– – category of, 280
– – comodule and, 261
– topological, 93
Date, E., 489
Day, B., 186
DE
– matrix
– – of SymmR, 399–400
– principle, 400–401
D-module algebras, 129. See also

AS D-module algebras
– invariants, 160
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preinjective indecomposable module, 543
preorderings, 68
preprojective indecomposable module, 543
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products; inner product; smash product;
Takeuchi product; tensor product

– category, 239
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– Frobenius, 218–220
– Galois extensions and noncommutative,
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– level of, 36, 38
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– – Verschiebung, 431–432
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skew fields. See fields
Sladek, A., 52, 64, 67
smash product, 198
Snapper Liebler-Vitale Lam theorem, 441
Snapper ordering, 440
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– – BU, 327
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– cover, 299
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– filtered, 98
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– as Grothendieck category, 297
– inner product
– – metabolic, 61
– – Witt equivalence and, 61–62
– integral, 298
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– – comodules as, 297–298
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– – maps between, 297
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– C-rings, 306
– extension, 270
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– right almost, 528
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– of Witt groups, 66
– of Witt rings, 64
squares
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– – Witt equivalent, fields and, 50–51
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– sums of, 36, 58
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– – level and, 58–59
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– algebraic inverse to, 90, 94, 101, 106
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supernatural
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Sweedler
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– C-rings, dual-, 306–307
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Sweedler, M. E., 135, 153, 218, 238
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– autoduality of, 374
– for big Witt vectors, 363
– cofree coalgebra and, 381
– comultiplication morphism on, 367–368
– forms of, 327–328
– free algebra and, 378
– Frobenius operations and, 383–386
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– – matrix of, 398
– Hopf endomorphisms of
– – ring of, 392–393
– inner product on, 355
– Liulevicius theorem and, 365–366
– λ-ring structure on, 421–422, 425
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– primitives of, 365
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– unary operations on, 422–423
– Verschiebung operation and, 382
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– algebra of, 452–454
– forgotten, 357
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– power sum, 357–359
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– DE matrix of, 399–400
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238. See also Morita-Takeuchi context
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Teichmüller, O., 325–326, 330, 343
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– p-adic Witt vectors and, 334–335
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– of modules, 308–309
– rule, 479
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– of p-adic Witt vectors, 334
– splitting principle in, 401
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Tsen theorem, 60
tubular extension, 557
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U
U-injective, 226
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unique existence theorem, 143–144
unital C-action, 149
units, 176, 252
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– differential form, 259
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– upper bound, 5
upper bound, 5
Uq(gln)
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– – module
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Van Kampen, E. H., 89
van Kampen theorem (vKT), 85, 90. See also

higher homotopy van Kampen theorem
(HHvKT)

– approaches to, 90–92
Verschiebung
– on Burnside ring B̂(Z), 449
– endomorphism
– – Frobenius endomorphism compared to, 391
– necklace rings, 431–432
– operation, 449
– – ghost component characterization of, 382
– – for p-adic Witt vectors, 335
– – Symm and, 382
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Vishik gap theorem, 54–55
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weighted projective lines, 511
Wensley, C. D., 89, 113
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w-groupoids (w-Gpd), 113–114
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– cubical, 101–102
– – ρX∗, 104–106
– globular, 117
Whitehead, J. H. C., 86–88, 106, 112, 113–115
Whitehead theorem, 104
Wilkerson theorem, 421–422
Wisbauer σ-category, 267
Witt. See also p-adic Witt polynomials
– algebra, 329
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– – dimension-index and discriminant for, 40
– – of quadratic forms, 39
– equivalent
– – field square class number and, 50–51
– – of global fields, 51–53
– – inner product spaces and, 61–62
– – quadratic forms over, 39, 49–50
– groups, 50–51, 329
– – Knebusch, 64
– – Springer’s theorem of, 66
– – of triangulated gategory, 64
– index, 55
– invariants, 44–45
– polynomials, 325–326, 451–452
– – addition/multiplication, 333
– – integrality theorem of, 359–360
– – p-adic, addition/multiplication, 333–334
– rings, 329
– – abstract, 65–67
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– – of global fields, 52
– – Kula’s theorem on, 66–67
– – Milnor theorem of, 63
– – nilradical of, 42
– – prime ideals, 41
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– – of semilocal ring, 62
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– – Springer’s theorem of, 64
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– – units of, 42–43
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– product formula for, 337–338
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– Teichmüller representative in, 334
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