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Preface

Basic philosophy

Algebra, as we know it today (2007), consists of a great many ideas, concepts and results.
And this was also the case in 1995 when this Handbook started (which does not mean
that nothing has happened in those 12 years; on the contrary, the field of algebra and its
applications has developed at a furious pace.)

A reasonable estimate of the number of all the various different concepts, ideas, defini-
tions, constructions, results, . . . would be somewhere between 50 000 and 200 000. Many
of these have been named and many more could (and perhaps should) have a “name”,
or other convenient designation. Even a nonspecialist is quite likely to encounter most of
these, either somewhere in the published literature in the form of an idea, definition, theo-
rem, algorithm, . . . somewhere, or to hear about them, often in somewhat vague terms, and
to feel the need for more information. In such a case, if the concept relates to algebra, then
one should be able to find something in this handbook; at least enough to judge whether
it is worth the trouble to try to find out more. In addition to the primary information the
numerous references to important articles, books, or lecture notes should help the reader
find out as much as desired.

As a further tool the index is perhaps more extensive than usual, and is definitely not
limited to definitions, (famous) named theorems and the like.

For the purposes of this Handbook, “algebra” is more or less defined as the union of the
following areas of the Mathematics Subject Classification Scheme:
– 20 (Group theory)
– 19 (K-theory; this will be treated at an intermediate level; a separate Handbook of

K-theory which goes into far more detail than the section planned for this Handbook
of Algebra is under consideration)

– 18 (Category theory and homological algebra; including some of the uses of categories
in computer science, often classified somewhere in section 68)

– 17 (Nonassociative rings and algebras; especially Lie algebras)
– 16 (Associative rings and algebras)
– 15 (Linear and multilinear algebra. Matrix theory)
– 13 (Commutative rings and algebras; here there is a fine line to tread between commu-

tative algebras and algebraic geometry; algebraic geometry is definitely not a topic that
will be dealt with in any detail in this Handbook; there will, hopefully, one day be a
separate Handbook on that topic)

– 12 (Field theory and polynomials)
– 11 (Number theory, the part that also used to be classified under 12 (Algebraic number

theory))

v
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– 08 (General algebraic systems)
– 06 (Order, lattices, ordered algebraic structures; certain parts; but not topics specific to

Boolean algebras as there is a separate three-volume Handbook of Boolean Algebras)

Planning

Originally (1992), we expected to cover the whole field in a systematic way. Volume 1
would be devoted to what is now called Section 1 (see below), Volume 2 to Section 2, and
so on. A quite detailed and comprehensive plan was made in terms of topics that needed
to be covered and authors to be invited. That turned out to be an inefficient approach.
Different authors have different priorities and to wait for the last contribution to a volume,
as planned originally, would have resulted in long delays. Instead there is now a dynamic
evolving plan. This also permits to take new developments into account.

Chapters are still by invitation only according to the then current version of the plan,
but the various chapters are published as they arrive, allowing for faster publication. Thus
in this Volume 5 of the Handbook of Algebra the reader will find contributions from 5
sections.

As the plan is dynamic, suggestions from users, both as to topics that could or should
be covered, and authors, are most welcome and will be given serious consideration by the
board and editor.

The list of sections looks as follows:
Section 1: Linear algebra. Fields. Algebraic number theory
Section 2: Category theory. Homological and homotopical algebra. Methods from logic

(algebraic model theory)
Section 3: Commutative and associative rings and algebras
Section 4: Other algebraic structures. Nonassociative rings and algebras. Commutative

and associative rings and algebras with extra structure
Section 5: Groups and semigroups
Section 6: Representations and invariant theory
Section 7: Machine computation. Algorithms. Tables
Section 8: Applied algebra
Section 9: History of algebra
For the detailed plan (2007 version), the reader is referred to the Outline of the Series

following this preface.

The individual chapters

It is not the intention that the handbook as a whole can also be a substitute undergraduate
or even graduate, textbook. Indeed, the treatments of the various topics will be much too
dense and professional for that. Basically, the level should be graduate and up, and such
material as can be found in P.M. Cohn’s three volume textbook ‘Algebra’ (Wiley) should,
as a rule, be assumed known. The most important function of the chapters in this Handbook
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is to provide professional mathematicians working in a different area with a sufficiency of
information on the topic in question if and when it is needed.

Each of the chapters combines some of the features of both a graduate level textbook
and a research-level survey. Not all of the ingredients mentioned below will be appropriate
in each case, but authors have been asked to include the following:
– Introduction (including motivation and historical remarks)
– Outline of the chapter
– Basic concepts, definitions, and results. (These may be accompanied by proofs or (usu-

ally better) ideas/sketches of the proofs when space permits)
– Comments on the relevance of the results, relations to other results, and applications
– Review of the relevant literature; possibly complete with the opinions of the author on

recent developments and future directions
– Extensive bibliography (several hundred items will not be exceptional)

The present

Volume 1 appeared in 1995 (copyright 1996), Volume 2 in 2000, Volume 3 in 2003, Vol-
ume 4 in 2005 (copyright 2006). Volume 6 is planned for 2008. Thereafter, we aim at one
volume every two years (or better).

The future

Of course, ideally, a comprehensive series of books like this should be interactive and have
a hypertext structure to make finding material and navigation through it immediate and
intuitive. It should also incorporate the various algorithms in implemented form as well as
permit a certain amount of dialogue with the reader. Plans for such an interactive, hypertext,
CDROM (DVD)-based (or web-based) version certainly exist but the realization is still a
non-trivial number of years in the future.

Kvoseliai, August 2007 Michiel Hazewinkel

Kaum nennt man die Dinge beim richtigen Namen
so verlieren sie ihren gefährlichen Zauber

(You have but to know an object by its proper name
for it to lose its dangerous magic)

Elias Canetti
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Outline of the Series
(as of June 2007)

Philosophy and principles of the Handbook of Algebra

Compared to the outline in Volume 1 this version differs in several aspects.
First there is a major shift in emphasis away from completeness as far as the more

elementary material is concerned and towards more emphasis on recent developments and
active areas. Second the plan is now more dynamic in that there is no longer a fixed list of
topics to be covered, determined long in advance. Instead there is a more flexible nonrigid
list that can and does change in response to new developments and availability of authors.

The new policy, starting with Volume 2, is to work with a dynamic list of topics that
should be covered, to arrange these in sections and larger groups according to the major
divisions into which algebra falls, and to publish collections of contributions (i.e. chapters)
as they become available from the invited authors.

The coding below is by style and is as follows.
– Author(s) in bold, followed by chapter title: articles (chapters) that have been received

and are published or are being published in this volume.
– Chapter title in italic: chapters that are being written.
– Chapter title in plain text: topics that should be covered but for which no author has yet

been definitely contracted.

Chapters that are included in Volumes 1–5 have a (x; yy pp.) after them, where ‘x’ is the
volume number and ‘yy’ is the number of pages.

Compared to the plan that appeared in Volume 1 the section on “Representation and
invariant theory” has been thoroughly revised from Volume 2 on.

Compared to the plan that appeared in Volume 4, Section 4H (Rings and algebras with
additional structure) has been split into two parts: 4H (Hopf algebras and related struc-
tures) and 4I (Other rings and algebras with additional structure). The old Section 4I (Witt
vectors) has been absorbed into the section on Hopf algebras.

There also a few more changes; mostly addition of some more topics.
Editorial set-up

Managing editor: M Hazewinkel.
Editorial board: M. Artin, M. Nagata, C. Procesi, O. Tausky-Todd†, R.G. Swan,
P.M. Cohn, A. Dress, J. Tits, N.J.A. Sloane, C. Faith, S.I. A’dyan, Y. Ihara, L. Small,
E. Manes, I.G. Macdonald, M. Marcus, L.A. Bokut’, Eliezer (Louis Halle) Rowen,
John S. Wilson, Vlastimil Dlab. Note that three editors have been added starting
with Volume 5.

ix
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Planned publishing schedule (as of July 2007)
1996: Volume 1 (published)
2001: Volume 2 (published)
2003: Volume 3 (published)
2005: Volume 4 (published)
2007: Volume 5 (last quarter)
Further volumes at the rate of one every year.

Section 1. Linear algebra. Fields. Algebraic number theory

A. Linear Algebra

G.P. Egorychev, Van der Waerden conjecture and applications (1; 22 pp.)
V.L. Girko, Random matrices (1; 52 pp.)
A.N. Malyshev, Matrix equations. Factorization of matrices (1; 38 pp.)
L. Rodman, Matrix functions (1; 38 pp.)
Correction to the chapter by L. Rodman, Matrix functions (3; 1 p.)
J.A. Hermida-Alonso, Linear algebra over commutative rings (3; 49 pp.)
Linear inequalities (also involving matrices)
Orderings (partial and total) on vectors and matrices
Positive matrices
Structured matrices such as Toeplitz and Hankel
Integral matrices. Matrices over other rings and fields.
Quasideterminants, and determinants over noncommutative fields.
Nonnegative matrices, positive definite matrices, and doubly nonnegative matrices.
Linear algebra over skew fields

B. Linear (In)dependence

J.P.S. Kung, Matroids (1; 28 pp.)

C. Algebras Arising from Vector Spaces

Clifford algebras, related algebras, and applications
Other algebras arising from vector spaces (working title only)

D. Fields, Galois Theory, and Algebraic Number Theory

(There is also a chapter on ordered fields in Section 4)
J.K. Deveney, J.N. Mordeson, Higher derivation Galois theory of inseparable field

extensions (1; 34 pp.)
I. Fesenko, Complete discrete valuation fields. Abelian local class field theories (1;

48 pp.)
M. Jarden, Infinite Galois theory (1; 52 pp.)
R. Lidl, H. Niederreiter, Finite fields and their applications (1; 44 pp.)
W. Narkiewicz, Global class field theory (1; 30 pp.)
H. van Tilborg, Finite fields and error correcting codes (1; 28 pp.)
Skew fields and division rings. Brauer group



Outline of the series xi

Topological and valued fields. Valuation theory
Zeta and L-functions of fields and related topics
Structure of Galois modules
Constructive Galois theory (realizations of groups as Galois groups)
Dessins d’enfants
Hopf Galois theory
T. Albu, From field theoretic to abstract co-Galois theory (5; 81 pp.)

E. Nonabelian Class Field Theory and the Langlands Program

(to be arranged in several chapters by Y. Ihara)

F. Generalizations of Fields and Related Objects

U. Hebisch, H.J. Weinert, Semi-rings and semi-fields (1; 38 pp.)
G. Pilz, Near rings and near fields (1; 36 pp.)

Section 2. Category theory. Homological and homotopical algebra. Methods from
logic

A. Category Theory

S. MacLane, I. Moerdijk, Topos theory (1; 28 pp.)
R. Street, Categorical structures (1; 50 pp.)
B.I. Plotkin, Algebra, categories and databases (2; 71 pp.)
P.S. Scott, Some aspects of categories in computer science (2; 71 pp.)
E. Manes, Monads of sets (3; 48 pp.)
M. Markl, Operads and PROPs (5; 54 pp.)

B. Homological Algebra. Cohomology. Cohomological Methods in Algebra.
Homotopical Algebra

J.F. Carlson, The cohomology of groups (1; 30 pp.)
A. Generalov, Relative homological algebra. Cohomology of categories, posets,

and coalgebras (1; 28 pp.)
J.F. Jardine, Homotopy and homotopical algebra (1; 32 pp.)
B. Keller, Derived categories and their uses (1; 32 pp.)
A.Ya. Helemskii, Homology for the algebras of analysis (2; 143 pp.))
Galois cohomology
Cohomology of commutative and associative algebras
Cohomology of Lie algebras
Cohomology of group schemes
V. Lyubashenko, O. Manzyuk, A{∞}-algebras, A{∞}-categories, and A{∞}-functors

(5; 46 pp.)
B.V. Novikov, 0-Cohomology of semigroups (5; 21 pp.)

C. Algebraic K-theory

A. Kuku, Classical algebraic K-theory: the functors K0, K1, K2 (3; 55 pp.)
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A. Kuku, Algebraic K-theory: the higher K-functors (4; 122 pp.)
Grothendieck groups
K2 and symbols
KK-theory and EXT
Hilbert C∗-modules
Index theory for elliptic operators over C∗ algebras
Simplicial algebraic K-theory
Chern character in algebraic K-theory
Noncommutative differential geometry
K-theory of noncommutative rings
Algebraic L-theory
Cyclic cohomology
Asymptotic morphisms and E-theory
Hirzebruch formulae

D. Model Theoretic Algebra

(See also P.C. Eklof, Whitehead modules, in Section 3B)
M. Prest, Model theory for algebra (3; 31 pp.)
M. Prest, Model theory and modules (3; 34 pp.)
Logical properties of fields and applications
Recursive algebras
Logical properties of Boolean algebras
F.O. Wagner, Stable groups (2; 36 pp.)
The Ax–Ershov–Kochen theorem and its relatives and applications

E. Rings up to Homotopy

Rings up to homotopy
Simplicial algebras

Section 3. Commutative and associative rings and algebras

A. Commutative Rings and Algebras

(See also C. Faith, Coherent rings and annihilator conditions in matrix and poly-
nomial rings, in Section 3B)

(See also Freeness theorems for group rings and Lie algebras in Section 5A)
J.P. Lafon, Ideals and modules (1; 24 pp.)
General theory. Radicals, prime ideals, etc. Local rings (general). Finiteness and

chain conditions
Extensions. Galois theory of rings
Modules with quadratic form
Homological algebra and commutative rings. Ext, Tor, etc. Special properties (p.i.d.,

factorial, Gorenstein, Cohen–Macauley, Bezout, Fatou, Japanese, excellent, Ore,
Prüfer, Dedekind, . . . and their interrelations)

D. Popescu, Artin approximation (2; 45 pp.)
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Finite commutative rings and algebras. (Absorbed in the Chapter A.A. Nechaev,
Finite rings with applications, in Section 3B)

Localization. Local–global theory
Rings associated to combinatorial and partial order structures (straightening laws,

Hodge algebras, shellability, . . .)
Witt rings, real spectra
R.H. Villareal, Monomial algebras and polyhedral geometry (3; 62 pp.)

B. Associative Rings and Algebras

P.M. Cohn, Polynomial and power series rings. Free algebras, firs and semifirs (1;
30 pp.)

Classification of Artinian algebras and rings
V.K. Kharchenko, Simple, prime, and semi-prime rings (1; 52 pp.)
A. van den Essen, Algebraic microlocalization and modules with regular singular-

ities over filtered rings (1; 28 pp.)
F. Van Oystaeyen, Separable algebras (2; 66 pp.)
K. Yamagata, Frobenius rings (1; 48 pp.)
V.K. Kharchenko, Fixed rings and noncommutative invariant theory (2; 27 pp.)
General theory of associative rings and algebras
Rings of quotients. Noncommutative localization. Torsion theories
von Neumann regular rings
Semi-regular and pi-regular rings
Lattices of submodules
A.A. Tuganbaev, Modules with distributive submodule lattice (2; 25 pp.)
A.A. Tuganbaev, Serial and distributive modules and rings (2; 25 pp.)
PI rings
Generalized identities
Endomorphism rings, rings of linear transformations, matrix rings
Homological classification of (noncommutative) rings
S.K. Sehgal, Group rings and algebras (3; 96 pp.)
Dimension theory
V.V. Bavula, Filter dimension (4; 28 pp.)
A. Facchini, The Krull–Schmidt theorem (3; 42 pp.)
Duality. Morita-duality
Commutants of differential operators
E.E. Enochs, Flat covers (3; 21 pp.)
C. Faith, Coherent rings and annihilation conditions in matrix and polynomial

rings (3; 31 pp.)
Rings of differential operators
Graded and filtered rings and modules (also commutative)
P.C. Eklof, Whitehead modules (3; 23 pp.)
Goldie’s theorem, Noetherian rings and related rings
Sheaves in ring theory
A.A. Tuganbaev, Modules with the exchange property and exchange rings (2;

25 pp.)
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A.A. Nechaev, Finite rings with applications (5; 116 pp.)
T.Y. Lam, Hamilton’s quaternions (3; 26 pp.)
Koszul algebras
A.A. Tuganbaev, Semiregular, weakly regular, and π-regular rings (3; 25 pp.)
Hamiltonian algebras
A.A. Tuganbaev, Max rings and V -rings (3; 23 pp.)
Algebraic asymptotics
Anti-automorphisms

C. Coalgebras

W. Michaelis, Coalgebras (3; 120 pp.)
Co-Lie-algebras
Comodules and corings

D. Deformation Theory of Rings and Algebras (Including Lie Algebras)

Deformation theory of rings and algebras (general)
Yu. Khakimdzanov, Varieties of Lie algebras (2; 35 pp.)
Deformation theoretic quantization

Section 4. Other algebraic structures. Nonassociative rings and algebras.
Commutative and associative algebras with extra structure

A. Lattices and Partially Ordered Sets

Lattices and partially ordered sets
A. Pultr, Frames (3; 63 pp.)
D. Kruml, J. Paseka, Algebraic and categorical aspects of quantales (5; 40 pp.)

B. Boolean Algebras

C. Universal Algebra

Universal algebra

D. Varieties of Algebras, Groups, . . .

(See also Yu. Khakimdzanov, Varieties of Lie algebras, in Section 3D)
V.A. Artamonov, Varieties of algebras (2; 30 pp.)
Varieties of groups
V.A. Artamonov, Quasi-varieties (3; 19 pp.)
Varieties of semigroups

E. Lie Algebras

Yu.A. Bahturin, M.V. Zaitsev, A.A. Mikhailov, Infinite-dimensional Lie superal-
gebras (2; 30 pp.)

General structure theory
Ch. Reutenauer, Free Lie algebras (3; 21 pp.)
Classification theory of semisimple Lie algebras over R and C
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The exceptional Lie algebras
M. Goze, Y. Khakimdjanov, Nilpotent and solvable Lie algebras (2; 51 pp.)
Universal enveloping algebras
Modular (ss) Lie algebras (including classification)
Infinite-dimensional Lie algebras (general)
Kac–Moody Lie algebras
Affine Lie algebras and Lie super algebras and their representations
Finitary Lie algebras
Standard bases
A.I. Molev, Gelfand–Tsetlin bases for classical Lie algebras (4; 69 pp.)
Kostka polynomials

F. Jordan Algebras (finite and infinite-dimensional and including their cohomology
theory)

G. Other Nonassociative Algebras (Mal’tsev, alternative, Lie admissible, . . .)

Mal’tsev algebras
Alternative algebras

H. Hopf Algebras and Related Structures

(See also “Hopf-Galois theory” in Section 1D)
(See also “Co-Galois theory” in Section 1D)
(See also “Algebraic structures on braided categories” in Section 2A)
(See also “Representation theory of semi-simple Hopf algebras” in Section 6D)
M. Cohen, S. Gelakov, S. Westreich, Hopf algebras (4; 87 pp.)
Classification of pointed Hopf algebras
Recursive sequences from the Hopf algebra and coalgebra points of view
Quantum groups (general)
Crystal bases
A.I. Molev, Yangians and their applications (3; 54 pp.)
Formal groups
p-divisible groups
Combinatorial Hopf algebras
Symmetric functions
Special functions and q-special functions, one and two variable case
Quantum groups and multiparameter q-special functions
D. Manchon, Hopf algebras in renormalisation (5; 63 pp.)
Noncommutative geometry à la Connes
Noncommutative geometry from the algebraic point of view
Noncommutative geometry from the categorical point of view
Hopf algebras and operads
Noncommutative symmetric functions and quasi-symmetric functions
Solomon descent algebras
Witt vectors and symmetric function
Picard–Vessiot theory and Hopf algebras
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Hopf-algebroids
Trees, dendriform algebras and dialgebras
A. Masuoka, Classification of semisimple Hopf algebras (5; 27 pp.)
Quantum differential geometry, quantum calculus and the quantum approach to

noncommutative geometry
Connes–Baum theory

I. Other Rings and Algebras with Additional Structure

Graded and super algebras (commutative, associative; for Lie superalgebras, see
Section 4E)

Topological rings
F. Patras, Lambda-rings (3; 34 pp.)
Ordered and lattice-ordered groups, rings and algebras
Rings and algebras with involution. C∗-algebras
A. Levin, Difference algebra (4; 100 pp.)
Differential algebra
Ordered fields
Hypergroups
Stratified algebras

Section 5. Groups and semigroups

A. Groups

(See also “Groups and semigroups of automata transformations” in Section 5B)
A.V. Mikhalev, A.P. Mishina, Infinite Abelian groups: Methods and results (2;

48 pp.)
Simple groups, sporadic groups
Representations of the finite simple groups
Diagram methods in group theory
Abstract (finite) groups. Structure theory. Special subgroups. Extensions and de-

compositions.
Solvable groups, nilpotent groups, p-groups
Infinite soluble groups
Word problems
Burnside problem
Combinatorial group theory
Free groups (including actions on trees)
Formations
Infinite groups. Local properties
Algebraic groups. The classical groups. Chevalley groups
Chevalley groups over rings
The infinite-dimensional classical groups
Other groups of matrices. Discrete subgroups.
M. Geck, G. Malle, Reflection groups. Coxeter groups (4; 38 pp.)



Outline of the series xvii

M.C. Tamburini, M. Vsemirnov, Hurwitz groups and Hurwitz generation (4;
38 pp.)

Groups with BN-pair, Tits buildings, . . .
Groups and (finite combinatorial) geometry
“Additive” group theory
Probabilistic techniques and results in group theory
V.V. Vershinin, Survey on braids (4; 24 pp.)
L. Bartholdi, R.I. Grigorchuk, Z. Šuniḱ, Branch groups (3; 129 pp.)
Frobenius groups
Just infinite groups
V.I. Senashov, Groups with finiteness conditions (4, 27 pp.)
Automorphism groups of groups
Automorphism groups of algebras and rings
Freeness theorems in groups and rings and Lie algebras
Groups with prescribed systems of subgroups
Automatic groups
Groups with minimality and maximality conditions (school of Chernikov)
Lattice-ordered groups
Linearly and totally ordered groups
Finitary groups
Random groups
Hyperbolic groups
Probabilistic techniques in group theory
Infinite dimensional groups

B. Semigroups

(See also B.V. Novikov, 0-cohomology of semigroups, in Section 2B)
Semigroup theory. Ideals, radicals, structure theory
Semigroups and automata theory and linguistics
Groups and semigroups of automata transformations

C. Algebraic Formal Language Theory. Combinatorics of Words
D. Loops, Quasigroups, Heaps, . . .

Quasigroups in combinatorics

E. Combinatorial Group Theory and Topology

(See also “Diagram methods in group theory” in Section 5A)

Section 6. Representation and invariant theory

A. Representation Theory. General

Representation theory of rings, groups, algebras (general)
Modular representation theory (general)
Representations of Lie groups and Lie algebras (general)
Multiplicity free representations
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B. Representation Theory of Finite and Discrete Groups (and Algebras)

Representation theory of finite groups in characteristic zero
Modular representation theory of finite groups. Blocks
Representation theory of the symmetric groups (both in characteristic zero and mod-

ular)
Representation theory of the finite Chevalley groups (both in characteristic zero and

modular
Modular representation theory of Lie algebras

C. Representation Theory of ‘Continuous Groups’ (linear algebraic groups, Lie groups,
loop groups, . . .) and the Corresponding Algebras

(See also A.I. Molev, Gelfand–Tsetlin bases for classical Lie algebras, in Section 4E)
Representation theory of compact topological groups
Representation theory of locally compact topological groups
Representation theory of SL2(R), . . .

Representation theory of the classical groups. Classical invariant theory
Classical and transcendental invariant theory
Reductive groups and their representation theory
Unitary representation theory of Lie groups
Finite-dimensional representation theory of the ss Lie algebras (in characteristic

zero); structure theory of semi-simple Lie algebras
Infinite-dimensional representation theory of ss Lie algebras. Verma modules
Representation of Lie algebras. Analytic methods
Representations of solvable and nilpotent Lie algebras. The Kirillov orbit method
Orbit method, Dixmier map, . . . for ss Lie algebras
Representation theory of the exceptional Lie groups and Lie algebras
Representation theory of ‘classical’ quantum groups
A.U. Klimyk, Infinite-dimensional representations of quantum algebras (2; 26 pp.)
Duality in representation theory
Representation theory of loop groups and higher-dimensional analogues, gauge

groups, and current algebras
Representation theory of Kac–Moody algebras
Invariants of nonlinear representations of Lie groups
Representation theory of infinite-dimensional groups like GL∞
Metaplectic representation theory

D. Representation Theory of Algebras

Representations of rings and algebras by sections of sheafs
Representation theory of algebras (Quivers, Auslander–Reiten sequences, almost

split sequences, . . .)
Quivers and Their Representations
Tame algebras
Ringel–Hall algebras
Composition algebras
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Quasi-heriditary algebras
Cellular algebras
Representation theory of (semi-simple) Hopf algebras

E. Abstract and Functorial Representation Theory

Abstract representation theory
S. Bouc, Burnside rings (2; 60 pp.)
P. Webb, A guide to Mackey functors (2; 32 pp.)

F. Representation Theory and Combinatorics

G. Representations of Semigroups

Representation of discrete semigroups
Representations of Lie semigroups

H. Hecke Algebras

Hecke–Iwahori algebras

I. Invariant theory

Section 7. Machine computation. Algorithms. Tables

Some notes on this volume: Besides some general article(s) on machine computation in
algebra, this volume should contain specific articles on the computational aspects of the
various larger topics occurring in the main volume, as well as the basic corresponding
tables. There should also be a general survey on the various available symbolic algebra
computation packages.

The CoCoA computer algebra system
G.P. Egorychev, E.V. Zima, Integral representation and algorithms for closed form

summation (5; 71 pp.)
Groebner bases and their applications

Section 8. Applied algebra

Section 9. History of algebra

(See also K.T. Lam, Hamilton’s quaternions, in Section 3B)
History of coalgebras and Hopf algebras
Development of algebra in the 19-th century
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Abstract
The aim of this chapter is to present the basic notions and results of co-Galois theory, a fairly

new area in field theory investigating field extensions, finite or not, that possess a co-Galois
correspondence. The subject is somewhat dual to the very classical Galois theory dealing with
field extensions possessing a Galois correspondence. There exists an abstract Galois theory for
arbitrary profinite groups; an abstract co-Galois theory for such groups was recently invented,
and presented here.

Keywords: field, field extension, radical extension, Kneser extension, strongly Kneser exten-
sion, Kneser criterion, Galois extension, co-Galois extension, G-co-Galois extension, purity
criterion, Galois theory, co-Galois theory, Galois connection, co-Galois connection, Galois
group, co-Galois group, Kneser group, Kummer theory, Abelian extension, Galois cohomol-
ogy, profinite group, cohomology group, crossed homomorphism, Pontryagin duality, alge-
braic number field, group-graded algebra, Hopf algebra, abstract co-Galois theory, Kneser
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1. Introduction

An interesting but difficult problem in field theory is to describe in a satisfactory manner the
set I(E/F) which, as a matter of fact is a lattice, of all intermediate fields of a given field
extension E/F . If E/F is a finite Galois extension, then by the fundamental theorem of
finite Galois theory, there exists a canonical one-to-one order-reversing correspondence, or
equivalently, a lattice anti-isomorphism between the lattice I(E/F) and the lattice L(Γ )

of all subgroups of a certain group Γ canonically associated with the extension E/F ,
namely the Galois group Gal(E/F); we say that such an E/F is an extension with Γ -
Galois correspondence.

On the other hand, there exists a fairly large class of field extensions which are not
necessarily Galois, but enjoy a property that is dual to the previous one. Namely, these
are the extensions E/F for which there exists a canonical lattice isomorphism (and not a
lattice anti-isomorphism as in the Galois case) between I(E/F) and L(Δ), where Δ is a
certain group canonically associated with the extension E/F . We call the members of this
class, extensions with Δ-co-Galois correspondence. Their prototype is the field extension
Q( n1

√
a1, . . . , nr

√
ar)/Q, where r, n1, . . . , nr , a1, . . . , ar are positive integers, and where

ni
√
ai is the positive real ni-th root of ai for each i, 1 � i � r . For such an extension,

the associated group Δ is the quotient group Q∗〈 n1
√
a1, . . . , nr

√
ar 〉/Q∗. Note that the finite

classical Kummer extensions have a privileged position: they are at the same time exten-
sions with Galois and with co-Galois correspondences, and the two groups appearing in
this setting are isomorphic.

The purpose of this chapter is to present the basic concepts, results, and methods of
studying field extensions, finite or not, which possess a co-Galois correspondence. This
topic, called co-Galois theory, is dual to the very classical one known as Galois theory
investigating field extensions possessing a Galois correspondence.

On the other hand, Galois theory can be also developed in an abstract group theoretic
framework, namely for arbitrary profinite groups. Since the profinite groups are precisely
those topological groups which arise as Galois groups of Galois extensions, an abstract
Galois theory for arbitrary profinite groups was developed within abstract class field theory
(see, e.g., Neukirch [63]). Therefore, a dual theory to abstract Galois theory, called abstract
co-Galois theory, emerging from and generalizing (field theoretic) co-Galois theory, has
been very recently invented. We present it in this chapter.

The field extensions possessing a Galois or co-Galois correspondence are very particular
illustrations of the following general problem in mathematics: Describe in a satisfactory
manner the collection of all subobjects of a given object of a category C. In general, this is a
difficult problem, but sometimes it can be reduced to describing the subobjects of an object
in another more suitable category D. For instance, let F be a given field and let C denote
the category of all field extensions of F . If E is any object of C, i.e., a field extension E/F ,
then the set I(E/F) of all subfields of E containing F is precisely the set of all subobjects
of E in C. This set is, in general, a complicated-to-conceive, potentially infinite set of hard-
to-describe-and-identify objects. However, when E/F is a finite Galois extension, then,
as we have already noted, the fundamental theorem of finite Galois theory establishes a
lattice anti-isomorphism between the lattices I(E/F) and L(Gal(E/F)). In this way, the
lattice of all subobjects of an object E ∈ C, which has the additional property that is a
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finite Galois extension of F , can be described by the lattice of all subobjects of the object
Gal(E/F) in the category of all finite groups; in principle, this category is more convenient
than the category C of all field extensions of F , since the set of all subgroups of a finite
group is a far more benign object. Thus, many questions concerning a field are best studied
by transforming them into group theoretical questions in the group of automorphisms of
the field.

If now E ∈ C is an infinite Galois extension of F , the above description does not work
anymore, and in this case the Galois group Gal(E/F) is in fact a profinite group, that is,
a projective limit of finite groups, or equivalently, a Hausdorff, compact, totally discon-
nected topological group, having as a fundamental system of open neighborhoods of the
identity element the set of all subgroups of it of the form Gal(E/K) with K ∈ I(E/F) and
K/F a finite Galois extension; this topology on Gal(E/F) is called the Krull topology,
and it coincides with its finite topology. By the fundamental theorem of infinite Galois the-
ory, there exists a canonical one-to-one order-reversing correspondence, or equivalently,
a lattice anti-isomorphism between the lattice I(E/F) and the lattice L(Γ ) of all closed
subgroups of the Galois group Γ of the extension E/F . Observe that the lattice L(Γ ) is
nothing else than the lattice of all subobjects of Γ in the category of all profinite groups.

The Galois group of a given Galois field extension E/F , finite or not, is in general
difficult to describe concretely; so, it will be desirable to impose additional conditions on
E/F such that the lattice I(E/F) be isomorphic (or anti-isomorphic) to the lattice L(Δ)

of all subgroups of some other group Δ, easily computable and appearing explicitly in the
data of the given Galois extension E/F . A class of such Galois extensions is that of the
classical Kummer extensions. Recall that a field extension E/F is said to be a classical
n-Kummer extension, where n is a positive integer, if gcd(n, e(F )) = 1, ζn ∈ F , and
E = F({ n

√
ai | i ∈ I }), where e(F ) is the characteristic exponent of F , ζn is a primitive

n-th root of unity in a fixed algebraic closure F of F , I is an arbitrary set, finite or not,
ai ∈ F ∗, and n

√
ai is a certain root in F of the polynomial Xn − ai , i ∈ I (see Section 2

for the notation used); note that the extension E/F is finite if and only if the set I can
be chosen to be finite. For such a classical n-Kummer extension E/F , if one denotes by
Δ the so called Kummer group Kum(E/F) := F ∗〈{ n

√
ai | i ∈ I }〉/F ∗ of E/F , then

Kummer theory establishes a canonical lattice isomorphism I(E/F)
∼−→ L(Δ). Observe

that the torsion Abelian group Δ is intrinsically given with the extension E/F and easily
manageable as well. This group is isomorphic, but not canonically, with the character
group Γ̂ of the Galois group Γ of E/F (see also Section 5); in particular, it follows that
for E/F finite, the group Δ has exactly [E : F ] elements. Note also that E/F is a Galois
extension, with Abelian Galois group of exponent a divisor of n.

In our opinion, there are six periods or moments in the history of co-Galois theory:

I. The classical period (∼∼∼1830–∼∼∼1930) was basically concerned with the description
of the lattices of all intermediate fields of finite Galois extensions and Kummer extensions
E/F in terms of the anti-isomorphic and isomorphic lattices of all subgroups of two differ-
ent, but isomorphic, groups canonically associated with E/F , namely the Galois group and
the Kummer group of E/F , respectively. Of course, E. Galois (1811–1832) and E.E. Kum-
mer (1810–1893) were the main contributors in this era.
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II. The pre-Kneser period (1930–1975) comprises mainly attempts made in the follow-
ing two directions: (1) to see when is [F( n

√
a1, . . . , n

√
ar) : F ] = ∏

1�i�r [F( n
√
ai) : F ];

and (2) to weaken the condition ζn ∈ F above for Kummer extensions in order to com-
pute effectively the degree of particular finite radical extensions, i.e., of extensions of type
F( n1

√
a1, . . . , nr

√
ar)/F , where F was mainly an algebraic number field. The question (1)

was first answered by H. Hasse in 1930 (see the second edition [50] of his mimeographed
lectures on class field theory). The case when the algebraic number field F does not neces-
sarily contain a primitive n-th root ζn of unity was, surprisingly, first discussed fairly late,
only in 1940 by A. Besicovitch [30] for F = Q and n

√
a1, . . . , n

√
ar real roots of positive

integers a1, . . . ar satisfying certain additional conditions, and then, by L.J. Mordell [62]
in 1953 for F any real number field and n

√
a1, . . . , n

√
ar ∈ R. Later, in 1972, C.L. Siegel

[73] shows that the degree [F( n
√
a1, . . . , n

√
ar) : F ] is the order of the quotient group

F ∗〈 n
√
a1, . . . , n

√
ar 〉/F ∗ for any real number field F and any real roots n

√
a1, . . . , n

√
ar .

A particular case of Besicovitch’s result was proved by I. Richards [67] in 1974 (see also
L. Gaal’s book [42], where Richards’ proof is reproduced). A result of the same nature
was established by H.D. Ursell [79]. All these results deal with a particular case of the
following

PROBLEM 1. Let F be a field, let F be an algebraic closure of F , and let x1, . . . , xr ∈ F

be elements of degree n1, . . . , nr over F , respectively. When does the field F(x1, . . . , xr )

have degree n1 · · · nr over F ?

A more general question is

PROBLEM 2. With the same notation and hypotheses as in Problem 1, when can be found
an explicit formula to compute [F(x1, . . . , xr ) : F ]?

Partial answers to Problem 2 are given, as we already have seen above, by a well known
result on classical finite Kummer extensions (see, e.g., E. Artin’s book [22]), as well as by
a result appearing in I. Kaplansky’s book [53], and by another one of similar nature due to
A. Baker and H.M. Stark [24].

III. The Kneser moment (1975) is represented by the appearance of the only two-page-
paper of M. Kneser [55]. In this paper Kneser answered Problem 2 for a large class of
extensions that have since been named Kneser extensions by Albu and Nicolae [16], hon-
oring his nice and important result.

IV. The pre-Greither & Harrison period (1975–1986) contains the investigation of finite
radical extensions, with or without the use of the Kneser criterion. The main work in this
area was done, chronologically, by A. Schinzel [68–70], D. Gay and W.Y. Vélez [43,44],
W. May [60], M. Norris and W.Y. Vélez [64], F. Halter-Koch [47,48], W.Y. Vélez [80–82],
M. Acosta de Arozco and W.Y. Vélez [1,2], etc.

V. The Greither & Harrison moment (1986) represents in fact the birth year of the co-
Galois theory. It gives a partial answer to the following natural
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PROBLEM 3. Find large classes F of (finite) field extensions, not necessarily Galois, for
which the lattice of all intermediate fields of every E/F ∈ F can be described in terms of
the lattice of all subgroups of a certain group canonically associated with E/F .

To the best of our knowledge, the term of “co-Galois” appeared for the first time in the lit-
erature in 1986 in the fundamental paper of C. Greither and D.K. Harrison [45], where co-
Galois extensions were introduced and investigated. They also considered other classes of
finite field extensions possessing a co-Galois correspondence, including the so called neat
presentations. The prototype of an extension with a Δ-co-Galois correspondence is any
field extension Q( n1

√
a1, . . . , nr

√
ar)/Q, where r, n1, . . . , nr , a1, . . . , ar ∈ N∗ = N \ {0},

and for every i, 1 � i � r , ni
√
ai is the positive real ni-th root of ai . For such an extension,

the associated group Δ is the quotient group Q∗〈 n1
√
a1, . . . , nr

√
ar 〉/Q∗. It seems surprising

it was stated and proved explicitly only fairly late, in 1986, by Greither and Harrison [45],
that such extensions are extensions with a Δ-co-Galois correspondence. In particular, it
follows that [Q( n1

√
a1, . . . , nr

√
ar) : Q] = |Q∗〈 n1

√
a1, . . . , nr

√
ar 〉/Q∗|.

VI. The post-Greither & Harrison period (1986–present) begins in 1989 with A. Ma-
suoka [59], who apparently used for the first time in the literature the term of “co-Galois
theory”. Besides the co-Galois extensions introduced by C. Greither and D.K. Harrison
already in 1986, new important classes of finite radical field extensions co-Galois theory
deals with are introduced and investigated: G-Kneser extensions, strongly G-Kneser exten-
sions, G-co-Galois extensions. The setting of G-co-Galois extensions permits a simple and
unified manner to study the classical Kummer extensions, the Kummer extensions with few
roots of unity, co-Galois extensions, and neat presentations. In 2001 an infinite co-Galois
theory investigating infinite radical extensions has been developed, in 2003 appeared the
author’s monograph “Cogalois Theory” [11], and in 2005 infinite co-Galois theory has
been generalized to arbitrary profinite groups, leading to a so called abstract co-Galois
theory. The main contributors of co-Galois theory in this period, in chronological order,
are: D.S. Dummit [39], A. Masuoka [59], F. Barrera-Mora, M. Rzedowski-Calderón, and
G. Villa-Salvador [26,27], T. Albu [3–13], F. Barrera-Mora and W.Y. Vélez [28], T. Albu
and F. Nicolae [16–19], T. Albu, F. Nicolae, and M. Ţena [20], P. Lam-Estrada, F. Barrera-
Mora, and G.D. Villa-Salvador [56], F. Barrera-Mora [25], D. Ştefan [74], M. Ţena [78],
T. Albu and M. Ţena [21], T. Albu and Ş.A. Basarab [14,15], etc.

We are now going to describe the contents of this chapter. Section 2 contains the neces-
sary basic notation and terminology which will be used throughout the chapter.

Section 3 introduces and investigates three basic concepts of co-Galois theory, namely
that of G-radical extension, of G-Kneser extension, and of co-Galois extension. The con-
cept of a radical extension is rather basic and well known in Galois theory. However,
our terminology is somewhat different from that used in Galois theory (see, e.g., Kaplan-
sky [53], Karpilovsky [54], Lang [57]), but coincides for simple extensions. Note that rad-
ical extensions are called coseparable by Greither and Harrison [45]. Roughly speaking,
a radical extension is a field extension E/F such that E is obtained by adjoining to the base
field F an arbitrary set of “radicals” over F , i.e., of elements x ∈ E such that xn = a ∈ F

for some n ∈ N∗. Such an x is denoted by n
√
a and is called an n-th radical of a. So, E/F

is a radical extension when E = F(R), where R is a set of radicals over F . Clearly, one
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can replace R by the subgroup G = F ∗〈R〉 of the multiplicative group E∗ of E generated
by F ∗ and R. Thus, any radical extension E/F has the form E = F(G), where G is a
subgroup of E∗ containing F ∗, with G/F ∗ a torsion group. Such an extension is called
G-radical. A field extension E/F , which is not necessarily finite, is called G-Kneser if
it is a G-radical extension such that there exists a set of representatives for the quotient
group G/F ∗ which is linearly independent over F ; in case the G-radical extension E/F

is finite then the last condition can be expressed equivalently as |G/F ∗| = [E : F ]. The
extension E/F is called Kneser if it is G-Kneser for some group G. These extensions were
introduced by Albu and Nicolae [16] for finite extensions and by Albu and Ţena [21] for
infinite extensions, honoring the nice criterion due to Kneser [55] evaluating the degrees
of separable finite radical extensions. This criterion is a basic tool in co-Galois theory.
Co-Galois extensions, which were introduced by Greither and Harrison in [45] for finite
extensions and by Albu and Ţena [21] for infinite extensions are nothing else than the field
extensions E/F which are T (E/F)-Kneser, where T (E/F) is the subgroup of the multi-
plicative group E∗ of the field E such that the quotient subgroup T (E/F)/F ∗ is the torsion
subgroup t (E∗/F ∗) of the quotient group E∗/F ∗. The group T (E/F)/F ∗, called by Gre-
ither and Harrison the co-Galois group of the extension E/F , is denoted by Cog(E/F).
Note that the torsion group t (E∗/F ∗) of an extension E/F was intensively investigated by
Acosta de Orozco and Vélez [2], Gay and Vélez [44]. To the best of our knowledge, the
name of co-Galois group of E/F for the group t (E∗/F ∗) appeared for the first time in the
literature in the fundamental paper [45] of Greither and Harrison. The term of “co-Galois
group” was also used by Enochs, Rozas, and Oyonarte [40,41], but with a completely dif-
ferent meaning, involving the concept of an F -cover of a module. In general, the concrete
computation of the co-Galois group of an extension is not so easy. We completely describe
Cog(E/F) for quadratic extensions, as well as for other classes of finite or infinite ex-
tensions. The main results of Section 3 were obtained, chronologically, by Kneser [55],
Gay and Vélez [44], Greither and Harrison [45], Barrera-Mora, Rzedowski-Calderón, and
Villa-Salvador [26,27], Albu and Nicolae [16], Albu, Nicolae, and Ţena [20], Albu and
Ţena [21], Albu [5].

Section 4 contains some of the main results of this chapter. After presenting a very
general discussion of Galois connections and co-Galois connections, we associate with
any G-radical extension E/F , finite or not, a canonical co-Galois connection

I(E/F)
ϕ

L(G/F ∗)
ψ

between the lattice I(E/F) of all intermediate fields of the extension E/F and the lattice
L(G/F ∗) of all subgroups of the quotient group G/F ∗, where ϕ : I(E/F) → L(G/F ∗),
ϕ(K) = (K ∩ G)/F ∗, and ψ : L(G/F ∗) → I(E/F),ψ(H/F ∗) = F(H). Then, the basic
notion of a strongly G-Kneser extension, introduced by Albu and Nicolae [16] for finite
extensions and by Albu and Ţena [21] for infinite extensions is discussed: an extension
E/F is said to be strongly G-Kneser if it is G-radical such that, for any intermediate field
K of E/F , the extension K/F is K∗ ∩ G-Kneser, or equivalently, the extension E/K

is K∗G-Kneser. These are precisely the G-Kneser extensions for which the maps ϕ and
ψ defined above are isomorphisms of lattices, inverse to one another; in other words, the
G-Kneser extensions E/F with G/F ∗-co-Galois correspondence. In the theory of field
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extensions with a G/F ∗-co-Galois correspondence the most interesting are those which
additionally are separable. They were called G-co-Galois extensions by Albu and Nicolae
[16], and are completely characterized within the class of finite G-radical extensions by
means of a very useful n-purity criterion, where n is the exponent of the finite group
G/F ∗, and generalized by Albu [5] to infinite extensions. This allows to obtain in a simple
and unified manner, and even in a more general setting, a series of results from classical
Kummer theory, as well as results of Albu [3] concerning Kummer extensions with few
roots of unity, and of Barrera-Mora, Rzedowski-Calderón, and Villa-Salvador [26] and
Greither and Harrison [45] concerning co-Galois extensions and neat presentations. It is
shown that a separable G-Kneser extension E/F is G-co-Galois if and only if the group
G/F ∗ has a prescribed structure. As a consequence, the uniqueness of the group G is
deduced; this means that if the extension E/F is simultaneously G-co-Galois and H -co-
Galois, then necessarily G = H . Consequently, it makes sense to define the Kneser group
of a G-co-Galois extension as the group G/F ∗, which is denoted by Kne(E/F).

It is well known that for any finitely many elements x1, . . . , xr in F which are separable
over an infinite field F , there exist elements c1, . . . , cr in F such that θ =∑1�i�r cixi is a
primitive element of the finite separable extension F(x1, . . . , xr )/F , i.e., F(x1, . . . , xr ) =
F(θ). The following natural problem arises: Let F be any field, and let x1, . . . , xr in F

be finitely many separable elements over F . When is
∑

1�i�r xi a primitive element of the
finite separable extension F(x1, . . . , xr )/F? Partial answers to this problem are given, e.g.,
by Albu [3], Kaplansky [53], and Zhou [84]. These were extended by Albu and Nicolae
in [17], where a general statement was proved for the large class of finite separable field
extensions with co-Galois correspondence, namely: if E/F is a G-co-Galois extension,
n ∈ N∗, and (xi)1�i�n is a finite family of elements of G such that xiF ∗ �= xjF

∗ for every
i, j ∈ {1, . . . , n}, i �= j , then x1 + · · · + xn is a primitive element of E/F if and only if
G = K∗〈x1, . . . , xn〉. In particular, from this general approach it follows very easily that
Q( n1

√
a1, . . . , nr

√
ar) = Q( n1

√
a1 + · · ·+ nr

√
ar), where r, n1, . . . , nr , a1, . . . , ar ∈ N∗. The

results of Section 4 were obtained, chronologically, by Vélez [80], Acosta de Orozco and
Vélez [1], Albu and Nicolae [16,17], Lam-Estrada, Barrera-Mora, and Villa-Salvador [56],
Albu and Ţena [21], Albu [5,8].

Section 5 is devoted to the investigation of Galois G-co-Galois extensions. The main
result of this section is the description, due to Dummit [39] for extensions of alge-
braic number fields, and to Masuoka [59] and Barrera-Mora, Rzedowski-Calderón, and
Villa-Salvador [26] for arbitrary (infinite) Galois extensions, of the co-Galois group
Cog(E/F) of any Galois extension E/F by means of the canonically isomorphic group
Z1

c (Gal(E/F), μ(E)) of all continuous 1-cocycles of the profinite Galois group Gal(E/F)

of the extension E/F with coefficients in the discrete group μ(E) of all roots of unity in E.
This immediately implies a nice result of Greither and Harrison [45], that originally has
been proved in a complicated manner, saying that the co-Galois group of any extension of
algebraic number fields is finite. It is also shown that if E/F is a Galois n-bounded G-
co-Galois extension then the Kneser group Kne(E/F) of E/F is isomorphic to the group
Z1

c (Gal(E/F), μn(E)) of all continuous crossed homomorphisms of Gal(E/F) with co-
efficients in the discrete group μn(E) of all n-th roots of unity contained in E. A similar
result holds for an arbitrary Galois G-co-Galois extension, with μn(E) replaced by a cer-
tain subgroup μG(E) of the group μ(E) of all roots of unity contained in E. Then we
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investigate Galois extensions which are radical, Kneser, or G-co-Galois in terms of contin-
uous crossed homomorphisms. Next, we present the basic terminology, notation, and facts
concerning lattice-isomorphic groups, which will be needed in the investigation of Abelian
G-co-Galois extensions. A prototype of these extensions is any classical n-Kummer ex-
tension. We are especially interested in finding the connection between the Kneser group
Kne(E/F) and the Galois group Gal(E/F) of an arbitrary Abelian G-co-Galois extension
E/F . We show that the first one is isomorphic to the group Ch(Gal(E/F)) of characters
of the profinite group Gal(E/F). In particular, in the case of finite extensions these two
groups are isomorphic, but not in a canonical way.

Further we show that classical Kummer theory can be immediately deduced from co-
Galois theory using the n-purity criterion. Moreover, this criterion allows us to provide
large classes of G-co-Galois extensions which generalize or are closely related to classical
Kummer extensions: generalized Kummer extensions, Kummer extensions with few roots
of unity, and quasi-Kummer extensions. The prototype of an (infinite) Kummer extension
with few roots of unity is any subextension of R/Q of the form Q({ n

√
ai | i ∈ I })/Q,

where {ai | i ∈ I } is an arbitrary nonempty set of strictly positive rational numbers. Notice
that, in general, these extensions are not Galois if n � 3. In particular, we derive from
co-Galois theory results on Kummer extensions with few roots of unity, which are very
similar to the known ones for classical finite Kummer extensions. The idea to place the
finite classical Kummer extensions in the framework of G-co-Galois extensions goes back
to Albu and Nicolae [16], and was also exploited by Albu [7] and Albu and Ţena [21] for
infinite Kummer extensions. The notion of a (finite) neat presentation is due to Greither
and Harrison [45]. Albu and Nicolae [16] introduced the more general concept of (finite)
generalized neat presentation. Infinite generalized neat presentations, called here quasi-
Kummer extensions were introduced and investigated by Albu and Ţena [21]. Note that
the fact that finite neat presentations have a co-Galois correspondence, i.e., they are G-co-
Galois, was originally proved by Greither and Harrison [45] in a very complicated manner
by using heavy cohomological machinery, which includes the Lyndon–Hochschild spectral
sequence. The results of Section 5 were obtained, chronologically, by Baer [23], Greither
and Harrison [45], Dummit [39], Masuoka [59], Barrera-Mora, Rzedowski-Calderón, and
Villa-Salvador [26], Albu and Nicolae [16,19] Albu and Ţena [21], Albu [5–7,11], Albu
and Basarab [14].

Section 6 presents some applications of co-Galois theory to elementary field arithmetic
and algebraic number theory. We are specially interested in investigating when the exten-

sion Q(
√
r + √

d)/Q with r, d ∈ Q is Galois, radical, Kneser, or co-Galois. It turns out
that such extensions provide many interesting examples and counterexamples in co-Galois
theory. The Kneser criterion has nice applications not only in investigating field extensions
with co-Galois correspondence, but also in proving some results in algebraic number the-
ory. We present in this section such applications. Thus, a series of classical results due to
Hasse [50], Besicovitch [30], Mordell [62], and Siegel [73] concerning the computation
of degrees of particular radical extensions of algebraic number fields, as well as the links
between these results, are not only presented in Subsection 6.3, but their very easy proofs,
based on the Kneser criterion, are also provided. Next we deal with a surprising applica-
tion of co-Galois theory in proving some very classical results in algebraic number theory.
More precisely, we apply our approach to establish very easily a classical result, related to
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the so-called Hecke systems of ideal numbers, claimed by Hecke (but not proved) in his
book [52]. The results of this section were obtained, in a chronological order, by Hecke
[51,52], Hasse [49,50], Besicovitch [30], Mordell [62], Baker and Stark [24], Siegel [73],
Kaplansky [53], Ursell [79], Schinzel [70], Neukirch [63], Albu and Nicolae [17,18], Albu
[4,9].

Section 7 contains links of co-Galois theory with graded algebras and Hopf algebras. We
analyze first the basic concepts of co-Galois theory like G-radical, G-Kneser, and G-co-
Galois field extension in terms of Clifford extensions and strongly group-graded algebras.
The concepts of a Clifford system and a Clifford extension were invented in 1970 by Dade
in his papers [35,36] devoted to so-called Clifford theory. This theory investigates when an
absolutely irreducible character of a normal subgroup N of a finite group G, defined over
an algebraically closed field of arbitrary characteristic, can be extended to a character of G.
Dade also introduced ten years later in [37] the concept of a strongly group-graded algebra.
The idea to use the Clifford systems and Clifford extensions in investigating finite G-
Kneser and G-co-Galois extensions is due to Ştefan [74]. His results were generalized from
finite to infinite field extensions by Albu [12]. A similar approach in investigating co-Galois
extensions E/F , finite or not, is due to Masuoka [59] using the concepts of group-graded
field extension and coring. Next, we describe the Kneser and co-Galois field extensions in
terms of Galois H -objects appearing in Hopf algebras. Note that the connection between
co-Galois extensions and Hopf algebras is mentioned in passing in Greither and Harrison
[45]. The explicit connections provided in this section are due to Albu [12]. The main
results of this section were obtained by Masuoka [59], Ştefan [74], Albu [12].

The efforts to generalize the famous Gauss’ quadratic reciprocity law led to the theory of
Abelian extensions of global and local fields, known as class field theory. This theory can
be also developed in an abstract group theoretic framework, namely for arbitrary profinite
groups. Since, according to a result of Leptin [58] (see also Ribes and Zaleskii [66], and/or
Wilson [83]), the profinite groups are precisely those topological groups which arise as
Galois groups of Galois extensions, an abstract Galois theory for arbitrary profinite groups
was developed within the abstract class field theory (see, e.g., Neukirch [63]). The aim of
Section 8 is to present a dual theory, we called abstract co-Galois theory, to the abstract
Galois theory. The basic concepts of field theoretic co-Galois theory, namely that of G-
Kneser and G-co-Galois field extensions, as well as their main properties are generalized
to arbitrary profinite groups. More precisely, let Γ be an arbitrary profinite group, and
let A be any subgroup of the Abelian group Q/Z such that Γ acts continuously on the
discrete group A. Then, one defines the concepts of a Kneser subgroup and co-Galois
subgroup of the group Z1

c (Γ,A) of all continuous 1-cocycles of Γ with coefficients in A,
and one establish their main properties, including an abstract Kneser criterion for Kneser
groups of cocycles and an abstract quasi-purity criterion for co-Galois groups of cocycles.
The proofs, involving cohomological as well as topological tools, are completely different
from that of their field theoretic analogs. A natural dictionary relates the basic notions of
(field theoretic) co-Galois theory to their correspondents in the abstract co-Galois theory,
which permit us to retrieve easily most of the basic results of the former one from the
corresponding results from the latter one.

The idea to involve the group Z1
c (Γ,A) in defining the abstract concepts mentioned

above comes from the description presented in Section 5, via the Hilbert theorem 90,
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of the co-Galois group Cog(E/F) of an arbitrary Galois extension E/F as the group
Z1

c (Gal(E/F), μ(E)) of all continuous 1-cocycles of the profinite Galois group Gal(E/F)

of the extension E/F with coefficients in the group μ(E) of all roots of unity in E. Note
that the multiplicative group μ(E) is isomorphic (in a noncanonical way) to a subgroup of
the additive group Q/Z, and that the basic groups appearing in the investigation of E/F

from co-Galois theory perspective are subgroups of Cog(E/F). In this way, the above
description of Cog(E/F) in terms of 1-cocycles naturally suggests to study the abstract
setting of subgroups of groups of type Z1

c (Γ,A), with Γ an arbitrary profinite group and
A any subgroup of Q/Z such that Γ acts continuously on the discrete group A. Such a con-
tinuous action establishes through the evaluation map Γ ×Z1

c (Γ,A) → A, (σ, g) �→ g(σ ),
a Galois connection between the lattice L(Z1

c (Γ,A)) of all subgroups of Z1
c (Γ,A) and the

lattice L(Γ ) of all closed subgroups of Γ . On the other hand, the continuous action of

Γ on A endows the character group ̂Z1
c (Γ,A) = Hom(Z1

c (Γ,A),Q/Z) with a natural
structure of a topological Γ -module, related to Γ through a canonical continuous cocycle

η :Γ → ̂Z1
c (Γ,A) which plays a key role in the study of Kneser and co-Galois groups of

cocycles. Four types of Kummer groups of cocycles, that are precisely the abstract group
theoretic correspondents of the various types of Kummer field extensions studied in Galois
theory and co-Galois theory are introduced. As in field theoretic co-Galois theory, it turns
out that all of them are co-Galois groups of cocycles. The results of this section are entirely
due to Albu and Basarab [15] and Albu [13].

2. Basic notation and terminology

By N we denote the set {0, 1, 2, . . .} of all natural numbers, by N∗ the set N \ {0} of all
strictly positive natural numbers, by Z the ring of all rational integers, and by Q (respec-
tively R,C) the field of all rational (respectively real, complex) numbers. Zn denotes the
ring of rational integers modulo n ∈ N∗, and Fq the finite field with q elements. For
any ∅ �= A ⊆ C (respectively ∅ �= X ⊆ R) we denote A∗ = A \ {0} (respectively
X+ = {x ∈ X | x � 0}. Thus, Q∗+ means the set of all strictly positive rational numbers.
If a ∈ R∗+ and n ∈ N∗, then the unique positive real root of the equation xn − a = 0 will
be denoted by n

√
a and called the n-th radical of a; however, if a ∈ C \ R∗+, then n

√
a will

designate a root (which in general is not specified) in C of the polynomial Xn − a ∈ C[X].
For any set M , not necessarily finite, |M| will denote the cardinal number of M .

By an overfield of a field F we mean any field which includes F as a subfield. A field
extension is a pair (F,E) of fields, where F is a subfield of E (or E is an overfield of F ),
and in this case we shall write E/F . Very often, instead of “field extension” we shall use
the shorter term “extension”. If E is an overfield of a field F we will also say that E is
an extension of F . Throughout this chapter F always denotes a field, Char(F ) its char-
acteristic, e(F ) its characteristic exponent (that is, e(F ) = 1 if F has characteristic 0,
and e(F ) = p if F has characteristic p > 0), and Ω a fixed algebraically closed field
containing F as a subfield. Any overfield of F considered is supposed to be a subfield
of Ω .
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For an arbitrary nonempty subset S of Ω and a number n ∈ N∗ we denote throughout
this chapter:

S∗ = S \ {0}, Sn = {xn | x ∈ S
}
, μn(S) = {x ∈ S | xn = 1

}
,

μ(S) = {x ∈ S | xk = 1 for some k ∈ N∗}.
For any x ∈ Ω∗, x̂ will denote the coset xF ∗ of x in the quotient group Ω∗/F ∗. By a
primitive n-th root of unity we mean any generator of the cyclic group μn(Ω); ζn will
always denote such an element. When Ω = C, then we can choose a canonical generator
of the cyclic group μn(C) of order n, and in this case ζn will always mean the complex
number cos(2π/n) + i sin(2π/n).

For an arbitrary multiplicative group G, the notation H � G means that H is a subgroup
of G. The lattice of all subgroups of G will be denoted by L(G). For any subset M of G,
〈M〉 will denote the subgroup of G generated by M . For any n ∈ N, n � 2 we denote
by D2n the dihedral group of order 2n. Given an action of a group C on a group D, the
semidirect product of C by D is denoted by D � C, with a suitable subscript, if necessary,
to specify the action. If S and T are topological groups, then L(T ) will denote the lattice
of all closed subgroups of T and Homc(S, T ) will denote the set of all continuous group
morphisms from S to T . We denote by Ch(T ) or by T̂ the character group of T , that
is, the group Homc(T ,U) of all continuous group morphisms of T into the unit circle
U = {z ∈ C | |z| = 1}.

For a field extension E/F we shall denote by [E : F ] the degree, and by Gal(E/F)

the Galois group of E/F . For any subgroup Δ of Gal(E/F), Fix(Δ) will denote the fixed
field of Δ. If E/F is an extension and A ⊆ E, then F [A] will denote the smallest subring
of E containing both A and F as subsets, or equivalently, the smallest F -subalgebra of E
containing A as a subset. We call F [A] the subring of E obtained by adjoining to F the
set A, or the F -subalgebra of E generated by A. We also denote by F(A) the smallest
subfield of E containing both A and F as subsets. We call F(A) the subfield of E obtained
by adjoining to F the set A, and the extension F(A)/F is called the subextension of E/F

generated by A. For all other undefined terms and notation concerning basic field theory
the reader is referred to Bourbaki [31], Karpilovsky [54], and/or Lang [57].

We shall also use throughout this chapter the following notation:

P = {p ∈ N∗ | p prime
}
,

P = (P \ {2}) ∪ {4},
Pn = {p ∈ P | p | n} for any n ∈ N∗,
Dn = {m ∈ N∗ | m | n} for any n ∈ N∗,
Pn = P ∩ Dn for any n ∈ N∗.

If E/F is an extension, then any subfield K of E with F ⊆ K is called an intermediate
field of the extension E/F , and I(E/F) will denote the set of all its intermediate fields.
A subextension (respectively quotient extension) of the extension E/F is any extension of
the form K/F (respectively E/K), where K is an intermediate field of the extension E/F .
Note that I(E/F) is a poset, that is, a partially ordered set, with respect to the partial order
given by inclusion. Actually, this poset is a complete lattice, where infi∈I Ki = ⋂

i∈I Ki

and supi∈I Ki = F(
⋃

i∈I Ki).
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3. Kneser and co-Galois extensions

3.1. G-Radical and G-Kneser extensions

This subsection introduces two basic concepts of co-Galois theory, namely that of G-
radical and of G-Kneser field extension, and presents the Kneser criterion [55].

For any extension E/F we shall use throughout this chapter the following notation:

T (E/F) := {x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗}.
Observe that for every element x ∈ T (E/F) there exists an n ∈ N∗ such that xn = a ∈ F ,
so x is an n-th radical of a. Thus, T (E/F) is precisely the set of all “radicals” belonging
to E of elements of F ∗. This observation suggests the following

DEFINITION. An extension E/F is said to be radical (respectively G-radical) if there
exists a set A with A ⊆ T (E/F) (respectively a group G with F ∗ � G � T (E/F)) such
that E = F(A) (respectively E = F(G)).

Clearly, one can replace the set A in definition above by the subgroup G = F ∗〈A〉 of
the multiplicative group E∗ of E generated by F ∗ and A. So, any radical extension E/F

has the form E = F(G), where G is a subgroup of E∗ containing F ∗, with G/F ∗ a torsion
group, i.e., it is G-radical.

Recall that by a set of representatives of quotient group G/H we mean any subset S of
G consisting of precisely one representative of each (left) coset modulo H .

PROPOSITION 3.1. ([16,21].) The following assertions are equivalent for a G-radical ex-
tension E/F .

(1) There exists a set of representatives of the quotient group G/F ∗ which is linearly
independent over F .

(2) Every set of representatives of G/F ∗ is a vector space basis of E over F .
(3) Every finite subset {x1, . . . , xn} ⊆ G such that x̂i �= x̂j for each i, j ∈ {1, . . . , n},

i �= j , is linearly independent over F .
(4) For every subgroup H of G such that F ∗ � H and H/F ∗ finite, |H/F ∗| �

[F(H) : F ].

DEFINITION. An extension E/F is said to be G-Kneser if it is a G-radical extension
satisfying one of the equivalent conditions from Proposition 3.1. The extension E/F is
called Kneser if it is G-Kneser for some group G.

Observe that if E/F is an arbitrary G-radical extension, then any set of representatives
of the quotient group G/F ∗ is a set of generators of the F -vector space E; in particular, one
has |G/F ∗| � [E : F ]. This implies that a finite G-radical extension E/F is G-Kneser if
and only if |G/F ∗| = [E : F ], and that an arbitrary G-radical extension E/F is G-Kneser
if and only if for every subgroup H of G such that F ∗ � H and H/F ∗ is a finite group,
the finite extension F(H)/F is H -Kneser; in other words, the property of a G-radical
extension being G-Kneser is of finite character. Note also that for any G-Kneser extension
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E/F , the extension F(H)/F is H -Kneser and F(H) ∩ G = H for every subgroup H of
G with F ∗ � H .

EXAMPLES.
(1) Let K denote the quadratic field Q(

√−3) = Q(ζ3). Then, the extension K/Q
is clearly Q∗〈√−3〉-Kneser but it is not Q∗〈ζ3〉-Kneser since [K : Q] =
|Q∗〈√−3〉/Q∗| = 2 < 3 = |Q∗〈ζ3〉/Q∗|.

(2) Consider the extension Q(
4
√−9)/Q, where 4

√−9 is one of the complex roots of the
irreducible polynomial X4 + 9 ∈ Q[X], say

√
6(1 + i)/2. Since (

4
√−9)2 = 3i,

we have i = (
4
√−9)2/3 ∈ Q(

4
√−9), and so,

√
6 = 2 4

√−9/(1 + i) ∈ Q(
4
√−9),

which implies that Q( 4
√−9) = Q(i,

√
6). If G = Q∗〈 4

√−9〉 and H = Q∗〈i,√6〉,
then |G/Q∗| = |H/Q∗| = 4 = [Q(

4
√−9) : Q]. Thus, the extension Q(

4
√−9)/Q

is simultaneously G-Kneser and H -Kneser, but G �= H since
√

6 ∈ H \ G. This
example shows the non-uniqueness of G for a given G-Kneser extension. However,
if E/F is an arbitrary extension which is simultaneously G-Kneser and H -Kneser,
and H � G, then G = E ∩ G = F(H) ∩ G = H . The uniqueness of the group G

for the so called G-co-Galois extensions, which are separable G-Kneser extensions
possessing a certain inheritance property, will be discussed in Subsection 4.4.

(3) Let A = {ζ3,
√
p1, . . . ,

√
pn, . . .}, where p1, . . . , pn, . . . is the sequence of all

positive prime numbers. Set G = Q∗〈A〉 and E = Q(A) = Q(G). Then
|G/Q∗| = [E : Q] = ℵ0, but the G-radical extension E/Q is not G-Kneser,
for otherwise, if H := Q∗〈ζ3〉, then it would follow that the quadratic extension
Q(H)/Q would be H -Kneser, which contradicts example (1) above. This shows
that the characterization of finite G-radical extensions E/F being G-Kneser by the
equality |G/F ∗| = [E : F ] fails for infinite G-radical extensions.

(4) A subextension of a Kneser extension is not necessarily Kneser. Indeed, we will

see in 6.2.1 that the extension Q(
√

2 + √
2)/Q is not radical, and so, it is not

Kneser. On the other hand, it is easily seen that Q(
√

2 + √
2) ⊆ Q(ζ16), and

Q(ζ16)/Q is a Q∗〈ζ16〉-Kneser extension. Observe that the quadratic extensions

Q(
√

2 + √
2)/Q(

√
2) and Q(

√
2)/Q are both Kneser extensions, so the property

of an extension being Kneser is, in general, not transitive.

We present now a crucial result which characterizes separable G-Kneser extensions E/F

according to whether or not certain roots of unity belonging to G are in F . Originally, it
has been established by Kneser in [55] only for finite extensions. The general case has
been proved by Albu and Ţena [21] using the fact, mentioned above, that the property of
an arbitrary G-radical extension being G-Kneser is of finite character.

THEOREM 3.2 (Kneser criterion [55,21]). An arbitrary separable G-radical extension
E/F is G-Kneser if and only if ζp ∈ G ⇒ ζp ∈ F for every odd prime p and
1 ± ζ4 ∈ G ⇒ ζ4 ∈ F .

The separability condition cannot be dropped from the Kneser criterion, as the following
example shows. Consider the extension E/F , where F = F2(X

2) and E = F2(X). If G =
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T (E/F), then G/F ∗ = E∗/F ∗ is a countably infinite group isomorphic to a countably
infinite direct sum of copies of Z2. Observe that E/F is G-radical since E = F(X) and
X2 ∈ F . Further, the conditions from the Kneser criterion are satisfied for G = T (E/F)

since μn(E) = {1} for every n ∈ N∗. However, the finite extension E/F is not G-Kneser,
since 2 = [E : F ] < |G/F ∗| = ℵ0.

The Kneser criterion is a powerful tool in co-Galois theory. Its immediate applications
are in the following directions: (1) in establishing the equality [Q( n1

√
a1, . . . , nr

√
ar) : Q] =

|Q∗〈 n1
√
a1, . . . , nr

√
ar 〉/Q∗|, where r, n1, . . . , nr , a1, . . . , ar ∈ N∗ (see Subsection 3.2);

(2) in proving the Greither–Harrison criterion (see Theorem 3.3); (3) in classical algebraic
number theory (see Subsections 6.3 and 6.4); (4) in investigating G-co-Galois extensions
(see Subsection 4.3); (5) in Gröbner bases (see Becker, Grobe, and Niermann [29]).

3.2. Co-Galois extensions

Remember that for any extension E/F we use throughout this chapter the following nota-
tion:

T (E/F) := {x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗}.
Clearly F ∗ � T (E/F), so it makes sense to consider the quotient group T (E/F)/F ∗.
Note that the quotient group T (E/F)/F ∗ is precisely the torsion group t (E∗/F ∗) of the
quotient group E∗/F ∗. This group, playing a major role in this chapter, is somewhat dual
to the Galois group of E/F , which explains the terminology below.

DEFINITIONS. The co-Galois group of an arbitrary field extension E/F , denoted by
Cog(E/F), is the quotient group T (E/F)/F ∗. The extension E/F is said to be a co-
Galois if it is T (E/F)-Kneser.

Observe that a finite extension E/F is co-Galois if and only if it is radical, i.e., E =
F(T (E/F)), and | Cog(E/F)| = [E : F ] (just the inequality | Cog(E/F)| � [E : F ] is
sufficient). Note also that an extension E/F is co-Galois if and only if, for every subgroup
H of E∗ such that F ∗ � H and H/F ∗ is a finite group, the finite extension F(H)/F is
co-Galois, in other words, the property of an arbitrary extension being co-Galois is of finite
character.

To the best of our knowledge, the term of “co-Galois extension” appeared for the first
time in the literature in 1986 in the fundamental paper of Greither and Harrison [45],
where co-Galois extensions were introduced and investigated. A finite extension E/F is
called conormal (respectively coseparable) by Greither and Harrison if | Cog(E/F)| �
[E : F ] (respectively if E/F is radical), and it is called co-Galois if it is both conormal
and coseparable.

As it is well known, one of the characterizations of Galois extensions, finite or not, is that
they are exactly those extensions which are both normal and separable. So, the Greither
and Harrison terminology for finite co-Galois extensions has been chosen to agree with the
dual of this characterization.
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EXAMPLES.
(1) As we have already seen in Subsection 3.1, the co-Galois group of the quadratic

extension F2(X)/F2(X
2) is isomorphic to a countably infinite direct sum of copies

of Z2. More generally, for any prime number p > 0, the extension Fp(X)/Fp(X
p),

of degree p, has co-Galois group isomorphic to a countably infinite direct sum of
copies of the cyclic group Zp. This shows that a finite field extension may have an
infinite co-Galois group.

(2) In general, the concrete calculation of the co-Galois group of a given extension is
quite hard. However, for any quadratic extension E = Q(

√
d) of Q, with d �=

1 a square-free integer, we have the following very explicit description of its co-

Galois group: (i) Cog(E/Q) = 〈√̂d〉 ∼= Z2 if d �= −1,−3; (ii) Cog(E/Q) =
〈1̂ + i〉 ∼= Z4 if d = −1; (iii) Cog(E/Q) = 〈î√3 · ( ̂1 + i

√
3)〉 ∼= Z6 if d = −3.

This immediately implies that Q(
√
d)/Q is a co-Galois extension if and only if

d �= −1,−3. In particular, the quadratic extension Q(
√−3)/Q is not co-Galois, but

it is of course Q∗〈√−3〉-Kneser.
(3) Using the description of the co-Galois group of a Galois extension by means of

crossed homomorphisms, we will see in Corollary 5.6 that any extension E/F of
algebraic number fields has a finite co-Galois group.

(4) Calculations of more co-Galois groups are provided in 6.2.8.

A basic concept in the theory of radical extensions is that of purity, which is somewhat
related to that used in group theory: a subgroup H of an Abelian multiplicative group G

is called pure if Gn ∩ H = Hn for every n ∈ N∗. Recall that throughout this chapter P
denotes the set of all positive prime numbers and P = (P \ {2}) ∪ {4}.

DEFINITION. An extension E/F is said to be pure if μp(E) ⊆ F for every p ∈ P .

Observe that any extension E/F , where E is any subfield of R, is pure and for any field
F and any m ∈ N∗, the extension F(X1, . . . , Xm)/F is pure. Also, a quadratic extension
Q(

√
d)/Q where d is a square-free integer is pure if and only if d �= −1,−3.

We are now going to present a criterion characterizing co-Galois extensions in terms of
purity, due to Greither and Harrison [45] for finite extensions, and generalized by Albu and
Ţena [21] to arbitrary extensions. The original proof in [45] involves the machinery of the
cohomology of groups. A very short and simple proof, based only on the Kneser criterion,
due to Albu and Ţena [21] is sketched below.

THEOREM 3.3 (Greither–Harrison criterion [45,21]). An arbitrary extension E/F is co-
Galois if and only if it is radical, separable, and pure.

PROOF. We will prove only the implication “⇐”, which in the original one-and-a-half-
page proof of Greither and Harrison [45], given only for the case of finite extensions, uses
among others the Vahlen–Capelli criterion, properties of classical Kummer extensions, an
exact sequence of cohomology groups in low dimensions, and Hilbert theorem 90. So,
assume that the extension E/F , finite or not, is radical, separable and pure. We are going
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to prove that the extension E/F is co-Galois. First of all, note that the radical extension
E/F is also T (E/F)-radical. Let p be an odd prime with ζp ∈ T (E/F). Then ζp ∈ E,
hence ζp ∈ F by purity. If 1 + ζ4 ∈ T (E/F), then 1 + ζ4 ∈ E, hence ζ4 ∈ E, and so,
ζ4 ∈ F again by purity. Now, by Kneser criterion (Theorem 3.2), we deduce that E/F is a
T (E/F)-Kneser extension, i.e., a co-Galois extension, as desired. �

Observe that an extension E/F is pure ⇔ μp(E) = μp(F ),∀p ∈ P ⇔ ζ2p /∈ E \ F ,
∀p ∈ P. This shows that an equivalent form of the Greither–Harrison criterion is the
following one.

THEOREM 3.4 (Gay–Vélez criterion [44,21]). An arbitrary extension E/F is co-Galois if
and only if it is radical, separable, and ζ2p /∈ E \ F for every p ∈ P.

The Gay–Vélez criterion, as formulated above, is an expanded reformulation of Theo-
rem 1.7 in Gay and Vélez [44], where only the implication “⇐” and only for finite ex-
tensions has been proved, but the indispensable separability condition in its statement has
been omitted. Chronologically, this paper appeared in 1981, so five years earlier than the
one of Greither and Harrison [45].

By the Greither–Harrison criterion, any co-Galois extension is separable. However, a
Kneser extension is not necessarily separable, as the following example shows: F =
F2(X

2), E = F2(X),G = F ∗〈X〉. The extension E/F is G-Kneser since |G/F ∗| =
ord(X̂) = 2 = [E : F ], but it is not separable.

EXAMPLES OF CO-GALOIS EXTENSIONS.
(1) Any finite G-radical extension E/F with E a subfield of R is clearly pure,

hence it is co-Galois by the Greither–Harrison criterion. Note that for such
an extension E/F we have Cog(E/F) = G/F ∗. For example, the extension
Q( n1

√
a1, . . . , nr

√
ar)/Q, with r, n1, . . . , nr , a1, . . . , ar ∈ N∗, is a G-radical co-

Galois extension, where G = Q∗〈 n1
√
a1, . . . , nr

√
ar 〉, hence its co-Galois group is

precisely Q∗〈 n1
√
a1, . . . , nr

√
ar 〉/Q∗.

(2) We have already seen that a quadratic extension Q(
√
d)/Q where d �= 1 is a square-

free integer is co-Galois if and only if d �= −1,−3.
(3) For any odd prime p > 0 and any n ∈ N∗, the radical extension Q(ζpn)/Q(ζp) is

pure, hence it is co-Galois by the Greither–Harrison criterion.
(4) The extension Q(ζ9,

9
√

5)/Q(ζ3) is a Galois and co-Galois but is not Abelian.
(5) Other examples are provided in Subsection 6.2.

The next result investigates the property of an extension being co-Galois in a tower of
fields.

PROPOSITION 3.5. ([45,5].) If F ⊆ K ⊆ E is a tower of fields then there exists a canoni-
cal exact sequence of Abelian groups

1 → Cog(K/F) → Cog(E/F) → Cog(E/K).

Moreover, if E/F is a co-Galois extension, then E/K and K/F are both co-Galois exten-
sions, and the groups Cog(E/K) and Cog(E/F)/Cog(K/F) are canonically isomorphic.
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EXAMPLE. Consider the quartic extension Q(
√

1 + √
2)/Q. Of course, Q(

√
2) is an in-

termediate field of this extension, and the quadratic extensions Q(
√

1 + √
2)/Q(

√
2) and

Q(
√

2)/Q are both co-Galois, but the extension Q(
√

1 + √
2)/Q is neither radical, nor a

Kneser extension, and not co-Galois (see 6.2.6). Also, Cog(Q(
√

1 + √
2)/Q) = {̂1, √̂2 }.

Observe that the element
̂√
1 + √

2 of the group Q(
√

1 + √
2)∗/Q∗ has infinite order. This

example show that the property of an extension being radical, Kneser, or co-Galois is, in
general, not transitive.

We end this section by presenting some results of Barrera-Mora, Rzedowski-Calderón,
and Villa-Salvador [26] about the following partial analogue to the inverse Galois theory
problem for co-Galois extensions: given a finite group Γ and an algebraic number field
F does there exist an extension E/F such that E/F is a Galois co-Galois extension with
Gal(E/F) ∼= Γ ? Note that when the given finite group Γ is Abelian, then necessarily
Gal(E/F) ∼= Cog(E/F) by Corollary 5.19.

PROPOSITION 3.6. ([45,26].) Given any finite Abelian group A, and any algebraic number
field F , there exists a finite co-Galois extension E/F such that Cog(E/F) ∼= A.

PROPOSITION 3.7. ([26].) Let Γ be an arbitrary finite group. Then, there exists a Galois
co-Galois extension E/Q with Gal(E/Q) ∼= Γ if and only if Γ ∼= (Z2)

r for some r ∈ N.

THEOREM 3.8. ([26].) Let F be an algebraic number field, and let A be a finite Abelian
group with A ∼= ∏r

k=1 Znk
and n1|n2| . . . |nr . Then, there exists a Galois co-Galois ex-

tension E/F such that Gal(E/F) ∼= A if and only if ζnr−1 ∈ F and F(ζnr )/F is a pure
extension.

A more general result, dropping the Abelian condition in Theorem 3.8, was obtained
again by Barrera-Mora, Rzedowski-Calderón, and Villa-Salvador in a subsequent paper
[27]: given an algebraic number field F and an arbitrary allowable group Γ , they found
necessary and sufficient conditions on the field F for the existence of a Galois co-Galois
extension E/F with Gal(E/F) ∼= Γ . The concept of an allowable group has been intro-
duced by Greither and Harrison [45] in connection with their investigation of the so called
neat presentations, that we named in this chapter quasi-Kummer extensions (see 5.4.4).
These groups turn out to be precisely those finite groups Γ for which the lattice L(Γ )

of all subgroups of Γ has an involutive lattice anti-isomorphism ϕ : L(Γ ) → L(Γ ) with
ϕ(U) = |Γ |/|U | for all U � Γ . According to [76, Theorem 5], any allowable group Γ is
nilpotent and all p-Sylow subgroups of Γ have a modular lattices of subgroups. For more
facts about allowable groups and their connections with co-Galois theory, see [45,27,76].
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4. Strongly Kneser and G-co-Galois extensions

4.1. Galois and co-Galois connections

As in [75], a Galois connection between the posets (X,�) and (Y,�) is a pair of order-
reversing maps α :X → Y and β :Y → X such that x � (β ◦ α)(x),∀x ∈ X, and
y � (α ◦ β)(y),∀y ∈ Y , and in this case we shall use the notation

X
α

Y.
β

If the maps α and β are both order-preserving instead of order-reversing, we obtain a co-
Galois connection between X and Y . More precisely, we have the following

DEFINITION. A co-Galois connection between two posets (X,�) and (Y,�) is a pair of
order-preserving maps α :X → Y and β :Y → X such that (β ◦ α)(x) � x,∀x ∈ X, and
y � (α ◦ β)(y),∀y ∈ Y .

If we denote by Xop the opposite poset of X, then it is clear that X
α

Y
β

is a co-Galois

connection if and only if Xop
α

Y
β

is a Galois connection.

Let X
α

Y
β

be a Galois or co-Galois connection. If x ∈ X and y ∈ Y , then we

shall briefly denote x′ = α(x), y′ = β(y), x′′ = (x′)′, and y′′ = (y′)′. An element z

of X or Y is said to be a closed element of X or Y , if z = z′′. A closed element is also
called Galois object (respectively co-Galois object) in the case of a Galois (respectively co-
Galois) connection. We shall denote by X (respectively Y ) the set of all closed elements
of X (respectively Y ). Then X = β(Y ), Y = α(X), and the restrictions ᾱ :X → Y and
β̄ :Y → X of α and β to the sets of closed elements of X and Y are bijections inverse to
one another.

The most relevant example of a Galois connection, which actually originated the name of
this concept, is the one appearing in Galois theory. Let E/F be an arbitrary field extension,
and denote by Γ the Galois group Gal(E/F) of E/F . Then, it is easily seen that the maps

α : I(E/F) → L(Γ ), α(K) = Gal(E/K),

and

β : L(Γ ) → I(E/F), β(Δ) = Fix(Δ),

yield a Galois connection between the lattice I(E/F) of all intermediate fields of the ex-
tension E/F and the lattice L(Γ ) of all subgroups of Γ . We will call it the standard Galois
connection associated with the extension E/F .

One can see that a finite extension E/F with Galois group Γ is a Galois extension ⇔
every intermediate field of the extension E/F is a closed element in the standard Galois
connection associated with E/F ⇔ F is a closed element in the standard Galois connec-
tion associated with E/F ⇔ the map α is injective ⇔ the map β is surjective ⇔ the maps
α and β establish anti-isomorphisms of lattices, inverse to one another, between the lattices
I(E/F) and L(Γ ).
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The prototype of a co-Galois connection is that canonically associated with any radical
extension. Let E/F be an arbitrary G-radical extension. Then, the maps

ϕ : I(E/F) → L
(
G/F ∗), ϕ(K) = (K ∩ G)/F ∗,

and

ψ : L(G/F ∗) → I(E/F),ψ
(
H/F ∗) = F(H),

establish a co-Galois connection between the lattices I(E/F) and L(G/F ∗), called the
standard co-Galois connection associated with the extension E/F . Notice that, in con-
trast with the standard Galois connection which can be associated with any extension, the
standard co-Galois connection can be associated only with radical extensions.

The considerations above naturally lead us to define the following dual concepts. An ex-
tension E/F with Galois group Γ is said to be an extension with Γ -Galois correspondence
if the standard Galois connection associated with E/F yields a lattice anti-isomorphism
between the lattices I(E/F) and L(Γ ). Dually, a G-radical extension E/F is said to be an
extension with G/F ∗-co-Galois correspondence if the standard co-Galois connection asso-
ciated with E/F yields a lattice isomorphism between the lattices I(E/F) and L(G/F ∗).

We have already seen that any finite extension E/F with Γ -Galois correspondence,
where Γ = Gal(E/F), is necessarily a Galois extension. Consequently, the equality
[E : F ] = |Gal(E/F)| is a consequence of the fact that E/F is an extension with Γ -Galois
correspondence. Conversely, if a finite extension E/F is such that [E : F ] = |Gal(E/F)|,
then E/F is necessarily a Galois extension. This is not the case for finite extensions
E/F with G/F ∗-co-Galois correspondence; indeed, for such extensions, the equality
[E : F ] = |G/F ∗|, saying precisely that E/F is G-Kneser, is, in general, not a conse-
quence of the fact that E/F is an extension with G/F ∗-co-Galois correspondence. We
will examine more closely this situation in Subsection 4.6.

4.2. Strongly G-Kneser extensions

As we already noted in Subsection 3.1, a subextension of a Kneser extension is not nec-
essarily Kneser, just as a subextension of a normal extension is not necessarily normal.
So, it makes sense to consider extensions that inherit the property of being Kneser, which
will be called strongly Kneser. It turns out that such extensions are precisely the G-Kneser
extensions with G/F ∗-co-Galois correspondence.

PROPOSITION 4.1. ([21].) Let F ⊆ K ⊆ E be a tower of fields, and let G be a group
such that F ∗ � G � E∗. Consider the following assertions.

(1) K/F is K∗ ∩ G-Kneser.
(2) E/K is K∗G-Kneser.
(3) E/F is G-Kneser.

Then, any two of the assertions (1)–(3) imply the remaining one.

EXAMPLE. Consider the extension Q(
4
√−9)/Q discussed in Subsection 3.1. We have seen

that the extension Q( 4
√−9)/Q is Q∗〈 4

√−9〉-Kneser. Observe that K = Q(
√

6) is an inter-
mediate field of the extension Q(

4
√−9)/Q and Q(

4
√−9)/K is not a K∗Q∗〈 4

√−9〉-Kneser
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extension. It follows that for every H with Q∗ � H � Q∗〈 4
√−9〉, Q(

√
6)/Q is not a

H -Kneser extension. However, Q(
√

6)/Q is clearly Q∗〈√6〉-Kneser.

DEFINITION. An extension E/F is said to be strongly G-Kneser if it is a G-radical exten-
sion such that, for every intermediate field K of E/F , the extension E/K is K∗G-Kneser,
or equivalently, the extension K/F is K∗∩G-Kneser. The extension E/F is called strongly
Kneser if it is strongly G-Kneser for some group G.

Observe that a finite extension E/F is strongly Kneser if and only if, for every inter-
mediate field K of E/F , one has [E : K] = |G/(K∗ ∩ G)|, or equivalently, [K : F ] =
|(K∗ ∩G)/F ∗|. Clearly, any strongly G-Kneser extension is G-Kneser, but not conversely,
as the example above shows.

We have seen in Subsection 4.1 that for any G-radical extension E/F the maps

ϕ : I(E/F) → L
(
G/F ∗), ϕ(K) = (K ∩ G)/F ∗,

ψ : L
(
G/F ∗)→ I(E/F), ψ

(
H/F ∗) = F(H),

establish a co-Galois connection between the lattices I(E/F) and L(G/F ∗) which we
called the standard co-Galois connection associated with E/F .

The next result gives a characterization of G-Kneser extensions E/F for which the
standard associated co-Galois connection yields a bijective correspondence between the
lattices I(E/F) and L(G/F ∗), and is somewhat dual to the corresponding result for Galois
extensions discussed in Subsection 4.1.

THEOREM 4.2. ([21].) The following assertions are equivalent for an arbitrary G-radical
extension E/F .

(1) E/F is strongly G-Kneser.
(2) E/F is G-Kneser, and the map ψ : L(G/F ∗) → I(E/F),H/F ∗ �→ F(H), is sur-

jective.
(3) E/F is G-Kneser, and every element of I(E/F) is a closed element in the standard

co-Galois connection associated with E/F .
(4) E/F is G-Kneser, and the map ϕ : I(E/F) → L(G/F ∗),K �→ (K ∩ G)/F ∗, is

injective.
(5) E/F is G-Kneser with G/F ∗-co-Galois correspondence, i.e., the maps

ϕ : I(E/F) → L
(
G/F ∗) and ψ : L

(
G/F ∗)→ I(E/F)

defined above are isomorphisms of lattices, inverse to one another.

The property of an extension being strongly Kneser behaves nicely with respect to
subextensions and quotient extensions, that is, if E/F is a strongly G-Kneser extension,
then, for any intermediate field K of E/F , K/F is strongly K∗ ∩ G-Kneser and E/K is
strongly K∗G-Kneser.
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4.3. G-co-Galois extensions

In this subsection we introduce the basic concept of a G-co-Galois extension, which plays
in co-Galois theory the same role as that of Galois extension in Galois theory. A G-co-
Galois extension is nothing else than a separable G-Kneser extension with G/F ∗-co-
Galois correspondence. These extensions can be nicely characterized within the class of
G-radical extensions by means of a certain kind of “purity”. Using this characterization,
we will see that the class of G-co-Galois extensions is large enough, including important
classes of field extensions: co-Galois extensions, classical Kummer extensions, Kummer
extensions with few roots of unity, generalized Kummer extensions, and quasi-Kummer
extensions.

Recall that P denotes the set of all strictly positive prime numbers, that P is the set
(P\{2})∪{4}, Dn is the set of all positive divisors of a given number n ∈ N∗, and Pn is the
set P ∩ Dn. Also, recall from Subsection 3.2 that an extension E/F is called pure when
μp(E) ⊆ F for all p ∈ P . More generally, if Q is a nonempty subset of P , we say that an
extension E/F is Q-pure if μp(E) ⊆ F , or equivalently, μp(E) = μp(F ) for all p ∈ Q.
If n ∈ N∗, then an extension E/F is called n-pure if it is Pn-pure, i.e., if μp(E) ⊆ F for
all p, p odd prime or 4, with p | n. Clearly, an extension E/F is pure if and only if it is
n-pure for every n ∈ N∗. Also, note that an n-pure extension is not necessarily pure; e.g.,
Q(

√−3)/Q is 2-pure but not pure.
For any torsion multiplicative group T with identity element e we will denote by OT

the set {ord(x) | x ∈ T } of all orders of elements of T . When the subset OT of N is
a bounded set, or equivalently, a finite set, one says that the torsion group T is a group
of bounded order, and the least number n ∈ N∗ with the property that T n = {e} is the
exponent exp(T ) of T . The group T is said to be n-bounded if T is a group of bounded
order and exp(T ) = n.

Observe that for any G-radical extension E/F , which is not necessarily finite, the group
G/F ∗ is a torsion Abelian group, so it makes sense to consider the set OG/F ∗ of natural
numbers.

DEFINITION. A G-radical extension E/F is said to be a bounded extension if G/F ∗ is a
group of bounded order; in this case, if exp(G/F ∗) = n, we say that E/F is an n-bounded
extension.

In the class of field extensions E/F with G/F ∗-co-Galois correspondence the most in-
teresting are those extensions which additionally are separable. In view of the equivalence
(1) ⇔ (5) in Theorem 4.2, these are precisely the separable strongly G-Kneser extensions.
They deserve a special name.

DEFINITION. An extension E/F is called G-co-Galois if it is a separable strongly G-
Kneser extension.

For any G-radical extension E/F write PG := P∩OG/F ∗ . The next result characterizes
the G-co-Galois extensions in terms of PG-purity.
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THEOREM 4.3 (General purity criterion [5]). A separable G-radical extension is G-co-
Galois if and only if it is PG-pure.

COROLLARY 4.4. ([5].) Any co-Galois extension E/F is T (E/F)-co-Galois.

PROOF. In view of the Greither–Harrison criterion (Theorem 3.3), the radical extension
E/F is separable and pure, so, a fortiori, PT (E/F)-pure. Thus, E/F is T (E/F)-co-Galois
by Theorem 4.3. �

Note that when a G-radical extension E/F is n-bounded, then OG/F ∗ = Dn, hence
PG = P ∩ Dn = Pn, and so, we obtain the following particular case of Theorem 4.3.

COROLLARY 4.5 (n-Purity criterion [16,21]). A separable n-bounded G-radical exten-
sion E/F is G-co-Galois if and only if it is n-pure. In particular, a finite separable G-
radical extension E/F with exp(G/F ∗) = n is G-co-Galois if and only if it is n-pure.

REMARKS.
(1) If we combine Theorems 4.2 and 4.3, we deduce that a separable G-radical exten-

sion is G-Kneser with G/F ∗-co-Galois correspondence if and only if it is PG-pure.
The condition “E/F is G-Kneser” is essential in this statement as the following ex-
ample shows: the G-radical extension Q(ζ3)/Q, where G = Q∗〈ζ3〉, is an extension
with G/Q∗-co-Galois correspondence which is not G-co-Galois.

(2) A strongly G-Kneser extension is not necessarily separable. Indeed, if F =
F2(X

2), E = F2(X), G = F ∗〈X〉, then the extension E/F is G-Kneser since
|G/F ∗| = ord(X̂) = 2 = [E : F ], so also strongly G-Kneser, but it is not separa-
ble.

The property of an extension being G-co-Galois behaves nicely with respect to subex-
tensions and quotient extensions, that is, if E/F is a G-co-Galois extension, then, for every
intermediate field K of E/F , K/F is K∗∩G-co-Galois and E/K is K∗G-co-Galois. Note
also that the property of an extension being G-co-Galois, like that of being G-Kneser or
co-Galois, is of finite character, i.e., a G-radical extension E/F is G-co-Galois if and only
if every finite subextension K/F of E/F is K∗ ∩ G-co-Galois.

We end this subsection by presenting the class, introduced by Vélez [80], of field exten-
sions having the unique subfield property and its connection with the class of G-co-Galois
extensions. A finite extension E/F is said to have the unique subfield property, abbreviated
USP, if for every divisor m of [E : F ] there exists a unique intermediate field K of E/F

such that [K : F ] = m. Clearly, a finite extension E/F of degree n has the USP if and
only if the canonical map I(E/F) → Dn,K �→ [K : F ], is a lattice isomorphism. The
next result characterizes the extensions having the USP in the class of finite G-co-Galois
extensions.

PROPOSITION 4.6. ([8].) A finite G-co-Galois extension E/F of degree n has the USP if
and only if the group G/F ∗ is cyclic (of order n). In particular, a finite co-Galois extension
E/F of degree n has the USP if and only if the co-Galois group Cog(E/F) of E/F is
cyclic (of order n).
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The next result, due Acosta de Orozco and Vélez [1] characterizes separable simple
radical extensions having the USP. A simple proof of it, via basic facts of co-Galois theory,
can be found in [8].

PROPOSITION 4.7. ([1].) Let F be any field, and let u ∈ Ω be a root of an irreducible
binomial Xn − a ∈ F [X] with gcd(n, e(F )) = 1. The extension F(u)/F has the USP if
and only if the following two conditions are satisfied.

(a) ζp /∈ F(u) \ F for every odd prime divisor p of n.
(b) If 4 | n, then ζ4 /∈ F(u) \ F .

PROPOSITION 4.8. ([8].) Let F be any field, and let u ∈ Ω be a root of an irreducible
binomial Xn − a ∈ F [X] with gcd(n, e(F )) = 1. Then, the following assertions are
equivalent.

(1) The extension F(u)/F has the USP.
(2) The extension F(u)/F is n-pure.
(3) The extension F(u)/F is F ∗〈u〉-co-Galois.
(4) The extension F(u)/F is G-co-Galois for some group G, and G/F ∗ is a cyclic

group.

COROLLARY 4.9. ([80].) Let F be an arbitrary field, let n ∈ N∗ be such that
gcd(n, e(F )) = 1, and let Xn − a,Xn − b be irreducible polynomials in F [X] with
roots u, v ∈ Ω , respectively. If the extension F(u)/F has the USP, then the following
assertions are equivalent.

(1) The fields F(u) and F(v) are F -isomorphic.
(2) There exist c ∈ F and j ∈ N with gcd(j, n) = 1 and a = bj cn.

EXAMPLES.
(1) Any extension of degree a prime number has clearly the USP.
(2) A finite G-radical extension which has USP is not necessarily G-co-Galois. Indeed

the quadratic extension Q(
√−3)/Q is not Q∗〈ζ3〉-Kneser, so it is not Q∗〈ζ3〉-co-

Galois either, but it has the USP. Note that the quartic extension Q(
√

1 + √
2)/Q

has precisely one quadratic intermediate field, so it has the USP, but it is neither a
radical nor a co-Galois extension (see 6.2.6). Also, any cyclic Galois extension E/Q
of degree > 2 is not G-co-Galois, but has the USP.

(3) A finite G-co-Galois extension may fail to have the USP. Indeed the quartic co-
Galois extension Q(

√
2,

√
3)/Q does not have the USP.

4.4. The Kneser group of a G-co-Galois extension

This subsection essentially shows that a separable G-Kneser extension is G-co-Galois if
and only if the group G has a prescribed structure. This implies that the group G/F ∗ of
any G-co-Galois extension E/F is uniquely determined; it is called the Kneser group of
E/F and denoted by Kne(E/F).



From Field Theoretic to Abstract Co-Galois Theory 27

LEMMA 4.10. ([5].) Let E/F be a G-co-Galois extension, and let x ∈ E∗ be such that
xm ∈ F for some m ∈ N∗. Suppose that one of the following two conditions is satisfied.

(a) Pm ⊆ PG (in particular, this holds if E/F is n-bounded and m | n).
(b) μm(E) ⊆ F (in particular, this holds if ζm ∈ F ).

Then, we have F(x) ⊆ E ⇔ x ∈ G.

If A is an Abelian group, then for every p ∈ P we denote by tp(A) the p-primary com-
ponent of A. For any extension E/F we denote by Cog2(E/F) the subgroup of Cog(E/F)

consisting of all its elements of order � 2. The notation A = ⊕
i∈I Ai below means that

the Abelian group A is the internal direct sum of an independent family (Ai)i∈I of its
subgroups, that is, any element x ∈ A can be uniquely expressed as x = ∑

i∈I xi , where
(xi)i∈I is a family of finite support, with xi ∈ Ai for every i ∈ I .

Using Lemma 4.10, the Kneser criterion, as well as the general purity criterion one
obtains the next result characterizing, via the structure of the torsion Abelian group G/F ∗,
the G-co-Galois extensions among the separable G-Kneser extensions.

THEOREM 4.11. ([5].) The following statements hold for a separable G-Kneser extension
E/F .

(1) Assume that 4 ∈ PG. Then E/F is G-co-Galois if and only if

G/F ∗ =
( ⊕

p∈PG\{4}
tp
(
Cog(E/F)

))⊕
t2
(
Cog(E/F)

)
.

(2) Assume that 4 /∈ PG. Then E/F is G-co-Galois if and only if

G/F ∗ =
(⊕

p∈PG

tp
(
Cog(E/F)

))⊕
Cog2(E/F).

COROLLARY 4.12. ([16,21].) Let E/F be a separable n-bounded G-Kneser extension, in
particular, a finite separable G-Kneser extension with exp(G/F ∗) = n.

(1) Suppose that n ≡ 2 (mod 4). Then E/F is a G-co-Galois extension if and only if

G/F ∗ =
⊕
p∈Pn

tp
(
Cog(E/F)

)
.

(2) Suppose that n ≡ 2 (mod 4). Then E/F is a G-co-Galois extension if and only if

G/F ∗ =
( ⊕

p∈Pn\{2}
tp
(
Cog(E/F)

))⊕
Cog2(E/F).

The condition “E/F is a G-Kneser extension” in Theorem 4.11 and Corollary 4.12
cannot be dropped since, otherwise, E/F may not be G-co-Galois. Indeed, the quadratic
G-radical extension Q(ζ3)/Q, with G = Q∗〈ζ3〉 is not G-co-Galois, but G/Q∗ =
t3(Cog(Q(ζ3)/Q)) and |G/Q∗| = exp(G/Q∗) = 3.

Note that if E/F is a finite G-co-Galois extension with exp(G/F ∗) ≡ 2 (mod 4), then
we may have t2(G/F ∗) �= t2(Cog(E/F)). Indeed, the extension Q(i,

√
6)/Q is Q∗〈i,√6〉-

co-Galois, but
√

6(1 + i)/2 ∈ t2(Cog(Q(i,
√

6)/Q)) \ t2(Q∗〈i,√6〉/Q∗).
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THEOREM 4.13. ([16,21].) Let E/F be an extension which is simultaneously G-co-Galois
and H -co-Galois. Then G = H .

PROOF. Let x ∈ G be arbitrary, and set K = F(x), G′ = F ∗〈x〉. Since the exten-
sion E/F is H -co-Galois it follows by Theorem 4.2 that K = F(H ′) for some H ′ with
F ∗ � H ′ � H . Then, the finite extension K/F is simultaneously K∗ ∩ G-co-Galois and
K∗ ∩H -co-Galois. But K∗ ∩G = F(G′)∩G = G′ and K∗ ∩H = F(H ′)∩H = H ′. So,
the finite extension K/F is simultaneously G′-co-Galois and H ′-co-Galois. Therefore, if
the result holds for finite extensions it follows that G′ = H ′, and then, since x ∈ G′, we
deduce that x ∈ H ′ ⊆ H . Hence G ⊆ H . The proof of the inverse inclusion H ⊆ G is
similar.

Thus, without loss of generality, we may assume that the given extension E/F is finite.
Set m = exp(G/F ∗), n = exp(H/F ∗), and k = [E : F ]. Then |G/F ∗| = |H/F ∗| =
[E : F ] = k. On the other hand, since the order and the exponent of any finite Abelian
group have the same prime divisors, we have Pm = Pn = Pk , and hence, by Corollary 4.12,
it is sufficient to prove only that 4 | m ⇔ 4 | n.

Assume that 4 | m. Then G/F ∗ contains an element of order 4, say ĝ. Set G1 = F ∗〈g〉
and E1 = F(G1). By Theorem 4.2, there exists H1 such that F ∗ � H1 � H,E1 = F(H1),
and |H1/F

∗| = 4. Note that E1/F is an E∗
1 ∩ G-co-Galois extension and E∗

1 ∩ G =
E1 ∩ G = F(G1) ∩ G = G1, hence E1/F is a G1-co-Galois extension. Then, using the
lattice isomorphism (provided by Theorem 4.2) between the lattice I(E1/F ) of all interme-
diate fields of E1/F and the lattice L(G1/F

∗) of all subgroups of the cyclic group G1/F
∗

of order 4, one deduces that the extension E1/F has only one proper intermediate field. On
the other hand, one shows similarly that the extension E1/F is H1-co-Galois. Now, using
the lattice isomorphism between the lattices I(E1/F ) and L(H1/F

∗), one deduces that the
group H1/F

∗ of order 4 is necessarily cyclic, and then, 4 | n, as desired. �

In view of Theorem 4.13, the group G of any G-co-Galois extension, finite or not, is
uniquely determined. So, it makes sense to introduce the following concept.

DEFINITION. If E/F is a G-co-Galois extension, then the group G/F ∗ is called the
Kneser group of the extension E/F and is denoted by Kne(E/F).

4.5. Primitive elements for G-co-Galois extensions

By a well known result, any finite separable extension E/F has a primitive element, i.e., an
element u ∈ E such that E = F(u). However, in general, there is no practical procedure
to find such a u effectively for a given extension E/F . In this subsection we show that for
a fairly large class of finite separable extensions, namely, for G-co-Galois extensions, it is
possible to provide a simple and easily manageable method of finding primitive elements.
In particular, it follows that for any set of representatives S of the (finite) Kneser group
G/F ∗ of any finite G-co-Galois extension E/F , the sum

∑
s∈S s is a primitive element

of E/F .
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THEOREM 4.14. ([17].) Let E/F be a finite G-co-Galois extension, let n ∈ N∗, and
let (xi)1�i�n be a finite family of elements of G such that x̂i �= x̂j for every i, j ∈
{1, . . . , n}, i �= j . Then x1 + · · · + xn is a primitive element of E/F if and only if
G = F ∗〈x1, . . . , xn〉. In particular, if {u1, . . . , ur} is any set of representatives of G/F ∗,
then u1 + · · · + ur is a primitive element of the extension E/F .

LEMMA 4.15. ([17].) Let E/F be an extension, let n ∈ N∗, and let x1, . . . , xn ∈ E∗. If
F(x1, . . . , xn)/F is an F ∗〈x1, . . . , xn〉-Kneser extension, then the following assertions are
equivalent.

(1) [F(x1, . . . , xn) : F ] =∏n
i=1 [F(xi) : F ].

(2) |F ∗〈x1, . . . , xn〉/F ∗| =∏1�i�n |F ∗〈xi〉/F ∗|.
(3) The groups F ∗〈x1, . . . , xn〉/F ∗ and

∏
1�i�n(F

∗〈xi〉/F ∗) are isomorphic.

(4) If i1, . . . , in ∈ N, then x
i1
1 · · · · · xin

n ∈ F ∗ ⇒ x
ik
k ∈ F ∗ for every k, 1 � k � n.

PROPOSITION 4.16. ([17].) Let n ∈ N∗, and let x1, . . . , xn ∈ Ω∗ be such that
the extension F(x1, . . . , xn)/F is F ∗〈x1, . . . , xn〉-co-Galois. If [F(x1, . . . , xn) : F ] =∏n

i=1 [F(xi) : F ], then

F(x1, . . . , xn) = F(x1 + · · · + xn).

4.6. Almost G-co-Galois extensions

An analogue of Theorem 5.3 of Greither and Pareigis [46] prompted Albu and Nicolae
to raise in [16] the following problem: if E/F is a separable finite G-radical extension
which is not G-co-Galois, but is an extension with G/F ∗-co-Galois correspondence, then
does there exist another group G̃ such that E/F is G̃-co-Galois? This problem was solved
in negative by Lam-Estrada, Barrera-Mora, and Villa-Salvador in [56, Section 4]. They
introduced the concept of a pseudo G-co-Galois extension, which is precisely our concept
of finite almost G-co-Galois extension defined below. Recall from Subsection 4.1 that a
G-radical extension E/F is said to be an extension with G/F ∗-co-Galois correspondence
if the standard co-Galois connection associated with E/F yields a lattice isomorphism
between the lattices I(E/F) and L(G/F ∗).

DEFINITION. An extension E/F is said to be almost G-co-Galois if it is a separable G-
radical extension with G/F ∗-co-Galois correspondence. A strictly almost G-co-Galois ex-
tension is an almost G-co-Galois extension which is not G-co-Galois.

Observe that a G-co-Galois extension is precisely an almost G-co-Galois extension
which is also G-Kneser. The property of a radical extension being almost G-co-Galois is
inherited by subextensions and quotient extensions, i.e., if E/F is an almost G-co-Galois
extension, then for every K ∈ I(E/F), K/F is an almost K ∩G-co-Galois extension, and
E/K is an almost K∗G-co-Galois extension.

A technical result due to Lam-Estrada, Barrera-Mora, and Villa-Salvador [56] charac-
terizes those finite strictly almost G-co-Galois extensions that are G̃-co-Galois for some
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group G̃. If one applies this characterization to algebraic number fields one obtains the
following result.

PROPOSITION 4.17. ([56].) Let E be an algebraic number field such that the extension
E/Q is strictly almost G-co-Galois. Then E/Q is G̃-co-Galois for some group G̃ if and
only if there exists an intermediate field K of E/Q such that K/Q is co-Galois, with
gcd(| Cog(K/Q)|, 6) = 1, E = K(ζ3), and

G/Q∗ = Cog(K/Q) ⊕ (Q∗〈ζ3〉/Q∗).
In this case, we have

G̃/Q∗ = Cog(K/Q) ⊕ (Q∗〈√−3
〉
/Q∗).

The next examples are due to Lam-Estrada, Barrera-Mora, and Villa-Salvador [56].

EXAMPLES.
(1) The extension Q(ζ3,

3
√

2)/Q is strictly almost G-co-Galois, where G = Q∗〈ζ3,
3
√

2〉.
(2) Let a, p ∈ P, p � 5, and let F = Q, E = Q(ζ3,

p
√
a), and G = Q∗〈ζ3,

p
√
a〉.

Then, the extension E/Q is strictly almost G-co-Galois and G̃-co-Galois, where
G̃/Q∗ = (Q∗〈√−3〉/Q∗) ⊕ (Q∗〈 p

√
a〉/Q∗). This shows that there exist infinitely

many number fields satisfying the conditions in Proposition 4.17.
(3) Let p ∈ P, and let q = pr � 3, r ∈ N∗. One can choose t, l ∈ P such that l | qt − 1

and gcd(l, q −1) = gcd(t, q −1) = 1. Then, the extension Fqt /Fq is strictly almost
G-co-Galois, where G = F∗

q〈ζl〉, but is not G̃-co-Galois for any group G̃.

(4) Let E = Q(ζ3,
3
√

2), F = Q, and G = Q∗〈ζ3,
3
√

2〉. Then E/F is a strictly almost
G-co-Galois extension, but there exists no group G̃ such that E/F is G̃-co-Galois.

5. Galois G-co-Galois extensions

5.1. G-Radical Galois extensions

In this subsection we characterize G-radical extensions, not necessarily finite, which are
separable or Galois.

LEMMA 5.1. ([7].) A G-radical extension E/F is separable if and only if gcd(m, e(F )) = 1
for every m ∈ OG/F ∗ .

PROPOSITION 5.2. ([7].) A G-radical extension E/F is a Galois extension if and only if
gcd(m, e(F )) = 1 and ζm ∈ E,∀m ∈ OG/F ∗ .

Observe that if E/F is an n-bounded G-radical extension, then OG/F ∗ = Dn, and so,
we obtain the next two results.

COROLLARY 5.3. ([21].) Let E/F be an n-bounded G-radical extension. Then E/F is a
Galois extension if and only if gcd(n, e(F )) = 1 and ζn ∈ E.
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COROLLARY 5.4. ([16].) Let E/F be a finite G-radical extension with G/F ∗ a finite
group of exponent n. Then E/F is a Galois extension if and only if gcd(n, e(F )) = 1 and
ζn ∈ E.

5.2. Galois extensions and crossed homomorphisms

In this subsection we investigate Galois extensions E/F by means of continuous crossed
homomorphisms of Gal(E/F) with coefficients in the group μ(E) of all roots of unity
of E. As an application of this result, one deduces very easily that the co-Galois group
of any extension of algebraic number fields is a finite group. We also describe the Kneser
group Kne(E/F) of any Galois G-co-Galois extension E/F via continuous crossed ho-
momorphisms.

Recall first only those basic facts on Galois cohomology which will be used in the se-
quel. Let E/F be an arbitrary extension with Galois group Γ , and let M � E∗ be such
that σ(M) ⊆ M for every σ ∈ Γ . A crossed homomorphism (or a 1-cocycle) of Γ with
coefficients in M is a map f :Γ → M satisfying the condition f (στ) = f (σ ) · σ(f (τ))

for every σ, τ ∈ Γ . The set of all crossed homomorphisms of Γ with coefficients in M

is an Abelian group, which will be denoted by Z1(Γ,M). For every α ∈ M we shall
denote by fα the 1-coboundary fα :Γ → M , defined as fα(σ ) = σ(α) · α−1, σ ∈ Γ .
The set B1(Γ,M) = {fα | α ∈ M} is a subgroup of Z1(Γ,M). The quotient group
Z1(Γ,M)/B1(Γ,M) is called the first cohomology group of Γ with coefficients in M ,
and is denoted by H 1(Γ,M). Note that for any group G, for any G-module A, and for any
n ∈ N one can define the more general concept of n-th cohomology group Hn(G,A) of G
with coefficients in A (see, e.g., Cassels and Fröhlich [34, Chapter IV] or Karpilovsky [54,
p. 369]). The famous Hilbert theorem 90 asserts that H 1(Gal(E/F),E∗) = 1, for any fi-
nite Galois extension E/F (see, e.g., Cassels and Fröhlich [34, Chapter V, Proposition 2.2]
or Karpilovsky [54, Chapter 6, Theorem 9.2]).

In case the Galois extension E/F is infinite, then an infinite Hilbert theorem 90 still
holds. As it is well known, the Galois group Γ of E/F is a profinite group, or equiva-
lently, a Hausdorff, compact, and totally disconnected topological group with respect to its
Krull topology. A fundamental system of open neighborhoods of the identity element 1E

of Γ consists of normal subgroups of Γ of finite index, that is, of subgroups of the form
Gal(E/N), with N/F is a finite normal subextension of E/F . As above, let M � E∗ be
such that σ(M) ⊆ M for every σ ∈ Γ . A continuous crossed homomorphism or a con-
tinuous 1-cocycle of Γ with coefficients in M is a continuous function f ∈ Z1(Γ,M),
where M is endowed with the discrete topology. The set of all continuous crossed homo-
morphisms of Γ with coefficients in M is a subgroup of Z1(Γ,M), and will be denoted
in the sequel by Z1

c (Γ,M), where the subscript “c” stands for “continuous”. Observe that
for every α ∈ M , the 1-coboundary fα :Γ → M , fα(σ ) = σ(α) · α−1, σ ∈ Γ , is a con-
tinuous map. Consequently, the set B1(Γ,M) = {fα | α ∈ M} of all 1-coboundaries of Γ
with coefficients in M coincides with the set B1

c (Γ,M) of all continuous 1-coboundaries
of Γ with coefficients in M . The quotient group Z1

c (Γ,M)/B1
c (Γ,M) is called the first

continuous cohomology group of Γ with coefficients in M , and is denoted by H 1
c (Γ,M).

Note that when E/F is a finite Galois extension, then Z1
c (Γ,M) = Z1(Γ,M), hence
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H 1(Γ,M) = H 1
c (Γ,M). The continuous (or infinite) Hilbert theorem 90 asserts that if

E/F is an arbitrary Galois extension, finite or infinite, then H 1
c (Γ,E∗) = 1 (see, e.g., Cas-

sels and Fröhlich [34, Chapter V, Proposition 2.2] or Serre [72, Chapitre 2, Proposition 1]).
Recall that for any extension E/F used in this chapter there is the following notation:

μ(E) = {x ∈ E∗ | xn = 1 for some n ∈ N∗},
T (E/F) = {x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗},
Cog(E/F) = T (E/F)/F ∗,
x̂ = the coset xF ∗ ∈ E∗/F ∗ of any x ∈ E.

For an arbitrary extension E/F we consider the following map

f : Gal(E/F) × Cog(E/F) → μ(E),

f (σ, α̂) = fα(σ ) = σ(α) · α−1, σ ∈ Gal(E/F), α ∈ T (E/F).

For every fixed σ ∈ Gal(E/F), the partial map f (σ,−) is multiplicative on Cog(E/F),
and for every fixed α̂ ∈ Cog(E/F), the partial map f (−, α̂) is precisely the 1-coboundary
fα ∈ Z1(Gal(E/F), μ(E)), so f induces the group morphism

ψ : Cog(E/F) → Z1(Gal(E/F), μ(E)
)
, ψ(̂α) = fα.

The Galois group Gal(E/F) = Γ is a profinite group, in particular it is a topological
group with respect to its Krull topology. The morphism ψ has its image in the correspond-
ing group of continuous crossed homomorphisms since ψ(̂α) = fα ∈ B1(Γ, μ(E)) ⊆
Z1

c (Γ, μ(E)). Consequently, we can assume that the canonical map ψ is defined as fol-
lows:

ψ : Cog(E/F) → Z1
c

(
Gal(E/F), μ(E)

)
, ψ(̂α) = fα.

THEOREM 5.5. ([39,59,26].) For any Galois extension E/F , the map α̂ �→ fα establishes
a group isomorphism

Cog(E/F) ∼= Z1
c

(
Gal(E/F), μ(E)

)
.

In particular, if E/F is a finite Galois extension, then the groups Cog(E/F) and
Z1(Gal(E/F), μ(E)) are canonically isomorphic.

COROLLARY 5.6. ([45,26].) Let E/F be a finite Galois extension with μ(E) finite. Then
Cog(E/F) is a finite group. In particular, for any extension K/L of algebraic number
fields, which is not necessarily Galois, the group Cog(K/L) is finite.

PROOF. Since Gal(E/F) and μ(E) are finite groups, it is obvious that the group
Z1(Gal(E/F), μ(E)) is finite, hence Cog(E/F) is also finite by Theorem 5.5. Since K/Q
and L/Q are both finite extensions, it follows that the extension K/L is a finite separable
extension. Consider the normal closure K̃/L of the extension K/L, which is a finite Galois
extension. Then, Cog(K̃/L) is a finite group since μ(N) is a finite group for any algebraic
number field N . Now, observe that Cog(K/L) is a subgroup of the finite group Cog(K̃/L),
hence it is also finite. �
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COROLLARY 5.7. ([6].) If E/F is a Galois extension with Galois group Γ , then the map

ϕ :
{
H | F ∗ � H � T (E/F)

}→ {
U | U � Z1

c

(
Γ,μ(E)

)}
,

H �→ {
fα ∈ Z1

c

(
Γ,μ(E)

) | α ∈ H
}
,

is a lattice isomorphism, which induces a canonical lattice isomorphism

L
(
Cog(E/F)

) ∼= L
(
Z1

c

(
Γ,μ(E)

))
.

For every cyclic subgroup C of Z1
c (Γ, μ(E)) there exists α ∈ T (E/F) such that

ϕ(F ∗〈α〉) = 〈fα〉 = C. Moreover, H/F ∗ ∼= ϕ(H) for every H with F ∗ � H � T (E/F).

For an arbitrary G-radical extension E/F we shall use the following notation:

μG(E) :=
⋃

m∈OG/F∗
μm(E).

Observe that μG(E) is a subgroup of the group μ(E), and Im(fα) ∈ μG(E) for all
α ∈ G. We deduce that the group isomorphism ψ : Cog(E/F) → Z1

c (Gal(E/F), μ(E))

induces by restriction to G/F ∗ a monomorphism

ψG :G/F ∗ → Z1
c

(
Gal(E/F), μG(E)

)
.

The next result shows that if additionally the extension E/F is G-co-Galois, then the
monomorphism ψG is also surjective, in other words, it is a group isomorphism.

THEOREM 5.8. ([6].) For any Galois G-co-Galois extension E/F , the map α̂ �→ fα yields
a group isomorphism

Kne(E/F) ∼= Z1
c

(
Gal(E/F), μG(E)

)
.

PROOF. Denote by Γ the Galois group of E/F . Since Γ is a profinite group, every f ∈
Z1

c (Γ, μG(E)) is locally constant, and so, taking into account that lcm(s, t) ∈ OG/F ∗ for
all s, t ∈ OG/F ∗ , we deduce that Z1

c (Γ, μG(E)) = ⋃
m∈OG/F∗ Z1

c (Γ, μm(E)). Let h ∈
Z1

c (Γ, μG(E)). Then there exists m ∈ OG/F ∗ such that h ∈ Z1
c (Γ, μm(E)). But, the map

ψm : Cogm(E/F) → Z1
c (Γ, μm(E)) is an isomorphism, hence h = ψm(̂α) for some α ∈

Tm(E/F), where Tm(E/F) = {x ∈ E∗ | xm ∈ F ∗} and Cogm(E/F) = Tm(E/F)/F ∗.
Since clearly Pm ⊆ PG, Lemma 4.10 implies that α ∈ G. Thus α̂ ∈ G/F ∗ = Kne(E/F),
and so h = ψm(̂α) = ψG(̂α), which proves that ψG is a surjective map, as desired. �

COROLLARY 5.9. ([19,6].) Let E/F be a Galois n-bounded G-co-Galois extension, in
particular a finite Galois G-co-Galois extension with n = exp(G/F ∗). Then

Kne(E/F) ∼= Z1
c

(
Gal(E/F), μn(E)

)
.

For any Galois G-co-Galois extension E/F , the map

f : Gal(E/F) × Cog(E/F) → μ(E),
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considered at the beginning of this subsection yields by restriction the map

g : Gal(E/F) × Kne(E/F) → μG(E), (σ, α̂) �→ σ(α) · α−1.

For every Δ � Gal(E/F) and W � Kne(E/F) let

Δ� = {c ∈ Kne(E/F) | g(σ, c) = 1,∀σ ∈ Δ
}
,

W� = {σ ∈ Gal(E/F) | g(σ, c) = 1,∀c ∈ W
}
.

PROPOSITION 5.10. ([6].) For any Galois G-co-Galois extension E/F , the assignments
(-)� define mutually inverse anti-isomorphisms between the lattices L(Gal(E/F)) and
L(Kne(E/F)).

Let E/F be a Galois extension with Galois group Γ . Then, by Theorem 5.5, there
exists a canonical isomorphism Cog(E/F) ∼= Z1

c (Γ, μ(E)), hence the canonical map
f : Gal(E/F)×Cog(E/F) → μ(E), considered above produces, by replacing Cog(E/F)

with its isomorphic copy Z1
c (Γ, μ(E)), precisely the evaluation map

〈-,-〉 : Γ × Z1
c (Γ, μ(E)) → μ(E), 〈σ, h〉 = h(σ ).

For any Δ � Γ , U � Z1
c (Γ, μ(E)), and χ ∈ Z1

c (Γ, μ(E)) we shall write

Δ⊥ = {h ∈ Z1
c

(
Γ,μ(E)

) | 〈σ, h〉 = 1,∀σ ∈ Δ
}
,

U⊥ = {σ ∈ Γ | 〈σ, h〉 = 1,∀h ∈ U
}
,

χ⊥ = {σ ∈ Γ | 〈σ, χ〉 = 1
}
.

One verifies easily that Δ⊥ � Z1
c (Γ, μ(E)), U⊥ � Γ , and χ⊥ = 〈χ〉⊥.

The next two results characterize the radical, G-Kneser, and G-co-Galois subextensions
of a given Galois extension E/F with Galois group Γ via subgroups of Z1

c (Γ, μ(E)).

PROPOSITION 5.11. ([6].) Let E/F be a Galois extension with Galois group Γ , and let
K ∈ I(E/F). Then K/F is a radical extension (respectively a simple radical extension) if
and only if there exists a U � Z1

c (Γ, μ(E)) (respectively a χ ∈ Z1
c (Γ, μ(E))) such that

Gal(E/K) = U⊥ (respectively Gal(E/K) = χ⊥).

COROLLARY 5.12. ([6].) Let E/F be a Galois extension with Galois group Γ , and let
K/F be a G-radical subextension of E/F . For every H with F ∗ � H � G set UH =
{fα | α ∈ H } � Z1

c (Γ, μ(E)). Then, the following assertions hold.
(1) The extension K/F is G-Kneser if and only if (Γ : U⊥

H ) = |UH | for every H with
F ∗ � H � G and H/F ∗ finite.

(2) The extension K/F is G-co-Galois if and only if it is G-Kneser and the “perpen-
dicular” map V �→ V ⊥ yields a bijection, or equivalently, an anti-isomorphism of
lattices

{V | V � UG} → {
Δ | U⊥

G � Δ � Γ,Δ closed subgroup of Γ
}
.
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Now, we analyze the transfer under change of base fields of the property of a Galois ex-
tension being radical. For any extension E/F we denote by R(E/F) the set of all subex-
tensions K/F of E/F which are radical. If E/F is an arbitrary Galois extension and L/F

is any extension with L ∩ E = F , and such that E and L are subfields of some other field,
then it is well known that the canonical map Gal(EL/L)

∼→ Gal(E/F), σ �→ σ|E , is an
isomorphism of topological groups. Using this map, it follows that there exists an injective
map

ρ :R(E/F) → R(EL/L),

F (G)/F �→ F(G)L/L = L(GL∗)/L, F ∗ � G � T (E/F).

PROPOSITION 5.13. ([6].) Let E/F be a Galois extension with Galois group Γ , and let
L/F be an arbitrary field extension such that E∩L = F . If E and L are subfields of some
other field, and μ(EL) = μ(E), then the map

ρ :R(E/F) → R(EL/L), F (G)/F �→ L(GL∗)/L, F ∗ � G � T (E/F),

is bijective, with inverse

R(EL/L) → R(E/F),

L(G1)/L �→ F(G1 ∩ E∗)/F, L∗ � G1 � T (EL/L).

5.3. Abelian G-co-Galois extensions

The aim of this subsection is to show that for any Abelian G-co-Galois extension E/F , the
Kneser group G/F ∗ of E/F is isomorphic to the group Ch(Γ ) of characters of the profinite
group Γ = Gal(E/F). To do that, observe that the lattice anti-isomorphism from the lattice
I(E/F) of all intermediate fields of the extension E/F onto the lattice L(Γ ) of all closed
subgroups of Γ given by the fundamental theorem of infinite Galois theory, produces,
by taking the characters, a lattice isomorphism from the lattice I(E/F) onto the lattice
L(Ch(Γ )) of all subgroups of the character group Ch(Γ ). On the other hand, since E/F

is a G-co-Galois extension, the map H/F ∗ �→ F(H) is an isomorphism from the lattice
L(Kne(E/F)) onto the lattice I(E/F). If we compose these two lattice isomorphisms,
we obtain a lattice isomorphism from L(Kne(E/F)) onto L(Ch(Γ )). It is natural to ask
whether or not such a lattice isomorphism yields a group isomorphism between Kne(E/F)

and Ch(Gal(E/F)).
Thus, the following natural question arises: given two groups A and B, when does a

lattice isomorphism ϕ : L(A) → L(B) produce a group isomorphism f :A → B? The
groups A and B are called lattice-isomorphic if there exists a lattice isomorphism be-
tween their subgroup lattices L(A) and L(B). With this terminology, the problem we just
stated can be briefly reformulated as follows: when are two lattice-isomorphic groups iso-
morphic? In general, lattice-isomorphic groups are not isomorphic, as a classical example
discovered in 1928 by A. Rottlaender shows (see Baer [23]). However, if some restrictive
conditions on one or both groups A and B are imposed, then any lattice-isomorphism be-
tween A and B produces a group isomorphism between them. By chance, such conditions
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are satisfied in our case, and so, the canonical lattice isomorphism between L(Kne(E/F))

and L(Ch(Gal(E/F))) yields a (non-canonical) group isomorphism between the groups
Kne(E/F) and Ch(Gal(E/F)). In case E/F is a finite Abelian G-co-Galois, this implies
that the two Abelian groups Kne(E/F) and Gal(E/F) are isomorphic, but not in a canon-
ical way.

We shall denote by Gr the category of all groups, by Pos the category of all posets,
and by Lat the category of all lattices. The morphisms in the category Pos are the order-
preserving (i.e., increasing) maps. Recall that if L and L′ are lattices, then a morphism in
Lat from L to L′ is a map α :L → L′ commuting with the joins and meets. Clearly, any
group morphism f :A → B yields a morphism L(f ) : L(A) → L(B),H �→ f (H), in
Pos, which is not necessarily a morphism in Lat. A map α :L → L′ is an isomorphism
in Lat if and only if α is an order-preserving bijection such that its inverse α−1 is also
an order-preserving map, in other words, α is an isomorphism in the category Pos. This
implies that for any isomorphism f :A → B in Gr, the map L(f ) : L(A) → L(B),

H �→ f (H), is an isomorphism in Lat. This fact can be described briefly by saying that
we have a canonical map

LA,B : IsomGr(A,B) → IsomLat
(
L(A),L(B)

)
, f �→ L(f ),

where, if C is any category, then IsomC(X, Y ) denotes the set, possibly empty, of all iso-
morphisms from the object X of C to the object Y of C.

DEFINITION. A lattice-isomorphism from a group A to a group B is any isomorphism of
lattices ϕ ∈ IsomLat(L(A),L(B)). The lattice-isomorphism ϕ is said to be induced by a
group isomorphism if there exists a group isomorphism f :A → B such that ϕ = L(f ),
and in that case, ϕ is said to be induced by f . The groups A and B are called lattice-
isomorphic if IsomLat(L(A),L(B)) �= ∅, and we denote this situation by A ∼=L B.

The term of lattice-isomorphism of groups also has various other names in the litera-
ture: subgroup-isomorphism in Baer [23], projectivity in Schmidt [71] and Suzuki [76],
L-isomorphism, etc. If A and B are isomorphic groups, then, as usually, we shall denote
this situation by A ∼= B. Clearly, if A,B ∈ Gr and A ∼= B, then A ∼=L B, but not con-
versely. Therefore, the following natural question arises: Given a class X of groups, what
kind of conditions (C) on lattice-isomorphisms of groups should be imposed such that for
every A ∈ X and for every B ∈ Gr, every lattice-isomorphism A ∼=L B satisfying the
conditions (C) implies that A ∼= B?

For X = the class of all Abelian torsion groups, two conditions are sufficient to com-
pletely answer the question above, namely, “index-preserving” and “normal”: we say that
a lattice-isomorphism ϕ ∈ IsomLat(L(A),L(B)) between the groups A and B is index-
preserving if (C : D) = (ϕ(C) : ϕ(D)) for every cyclic subgroup C of A and for every
D � C. The lattice-isomorphism ϕ is said to be normal if ϕ(N) � B for every N � A.

THEOREM 5.14. ([23,14].) Let A be a torsion Abelian group, and let B be a group which
is lattice-isomorphic to A via ϕ : L(A)

∼→ L(B). If ϕ is index-preserving and normal, then
A ∼= B.
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Recall that for any topological group T we denote by L(T ) the lattice of all closed sub-
groups of T , and by Ch(T ) or by T̂ the character group of T , that is, the group Homc(T ,U)

of all continuous group morphisms of T into the unit circle U. Note that if T is a profinite
group, then T̂ can be identified with the torsion Abelian group Homc(T ,Q/Z). For any
locally compact Abelian group A and subsets ∅ �= X ⊆ A and ∅ �= Y ⊆ Â we shall use
the following notation:

X⊥ = {χ ∈ Â | χ(a) = 1,∀a ∈ X
}
, Y⊥ = {a ∈ A | χ(a) = 1,∀χ ∈ Y

}
.

From the Pontryagin duality one deduces easily that the map L(A) → L(Â),X �→ X̂, is an
anti-isomorphism of lattices, with inverse L(Â) → L(A), Y �→ Ŷ . Note that the Abelian
group A is compact if and only if Â is a discrete group, and then L(Â) = L(Â).

PROPOSITION 5.15. ([14].) For any Abelian G-co-Galois extension E/F , the discrete
torsion Abelian groups Kne(E/F) and ̂Gal(E/F) are lattice-isomorphic via the canonical
lattice isomorphism

L
(
Kne(E/F)

) ∼→ L
( ̂Gal(E/F)

)
, H/F ∗ �→ Gal

(
E/F(H)

)⊥
.

PROOF. Consider the following canonical maps:

γ1 : L
(
Kne(E/F)

)→ I(E/F), H/F ∗ �→ F(H)/F,

γ2 : I(E/F) → L
(
Gal(E/F)

)
, K/F �→ Gal(E/K),

γ3 : L
(
Gal(E/F)

)→ L
( ̂Gal(E/F)

)
, B �→ B⊥.

Since γ1 is an isomorphism of lattices by Theorem 4.2, γ2 is an anti-isomorphism of lattices
by the fundamental theorem of infinite Galois theory, and γ3 is an anti-isomorphism of
lattices as observed above, we deduce that their composition γ = γ3 ◦ γ2 ◦ γ1 yields an
isomorphism of lattices

γ : L
(
Kne(E/F)

)→ L
( ̂Gal(E/F)

)
, H/F ∗ �→ Gal

(
E/F(H)

)⊥
.

�

THEOREM 5.16. ([7,14].) If E/F is an Abelian G-co-Galois extension, then the discrete
torsion Abelian groups Kne(E/F) and ̂Gal(E/F) are isomorphic.

PROOF. By Proposition 5.15, the Abelian groups Kne(E/F) and ̂Gal(E/F) are lattice-
isomorphic via the isomorphism of lattices

γ : L
(
Kne(E/F)

)→ L
( ̂Gal(E/F)

)
, H/F ∗ �→ Gal

(
E/F(H)

)⊥
,

for every H/F ∗ � Kne(E/F) = G/F ∗, where F ∗ � H � G. Since Kne(E/F) is clearly
a torsion Abelian group, the lattice-isomorphism γ is index-preserving as can be easily
checked, and γ is obviously normal because ̂Gal(E/F) is an Abelian group, we can apply
Theorem 5.14 to obtain the desired result. �

By Pontryagin duality, any locally compact Abelian group A is topologically isomorphic
to its second character group Ch(Ch(A)) = ̂̂A, so Theorem 5.16 immediately implies the
next result.
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COROLLARY 5.17. ([14].) For any Abelian G-co-Galois extension E/F , the totally dis-
connected compact Abelian groups Gal(E/F) and ̂Kne(E/F) are topologically isomor-
phic.

COROLLARY 5.18. ([14].) If E/F is an Abelian co-Galois extension, then the discrete
torsion Abelian groups Cog(E/F) and ̂Gal(E/F) are isomorphic.

PROOF. Any co-Galois extension E/F is T (E/F)-co-Galois by Corollary 4.4. But
Kne(E/F) = T (E/F)/F ∗ = Cog(E/F), so the result follows at once from Theo-
rem 5.16. �

Since any finite Abelian group A is isomorphic with its character group Â, there is the
following particular case of Theorem 5.16.

COROLLARY 5.19. ([16,26].) For any finite Abelian G-co-Galois extension E/F , the fi-
nite Abelian groups Kne(E/F) and Gal(E/F) are isomorphic. In particular, the groups
Cog(E/F) and Gal(E/F) are isomorphic for any finite Abelian co-Galois extension E/F .

A proof of Corollary 5.19 by induction on [E : F ] is given in Albu and Nicolae [16], and
an alternate proof of Theorem 5.16, that avoids the lattice-isomorphism technique and is
based on reducing the problem to the case when the Kneser group Kne(E/F) is a p-group,
is provided in Albu [11, Remark 15.3.12].

5.4. Kummer theory via co-Galois theory

The concept of a Kummer extension is a classical one in field theory. To distinguish such
extensions from various generalizations, we refer to them as classical Kummer extensions.
A good account of the (classical) Kummer theory is provided by Artin [22], Bourbaki
[31], Karpilovsky [54], and Lang [57]. The prototype of a G-co-Galois extension is, by
Kummer theory, any classical Kummer extension. In this subsection we show that all of
Kummer theory can be immediately deduced from our co-Galois theory using the n-purity
criterion (Corollary 4.5). Moreover, this criterion allows us to give large classes of G-co-
Galois extensions which generalize or are closely related to classical Kummer extensions:
generalized Kummer extensions, Kummer extensions with few roots of unity, and quasi-
Kummer extensions. The prototype of an (infinite) Kummer extension with few roots of
unity is any subextension of R/Q of the form Q({ n

√
ai | i ∈ I })/Q, where {ai | i ∈ I }

is an arbitrary nonempty set of strictly positive rational numbers. Note that, in general,
these extensions are not Galois if n � 3. Placing the classical Kummer extensions in
the framework of G-co-Galois extensions allows us to derive, from the co-Galois theory,
results on generalized Kummer extensions and quasi-Kummer extensions. In particular, we
obtain results on Kummer extensions with few roots of unity, which are very similar to the
known ones for classical Kummer extensions.



From Field Theoretic to Abstract Co-Galois Theory 39

5.4.1. Classical Kummer extensions First, we present various characterizations of clas-
sical Kummer extensions. Then, we show that the classical Kummer extensions are G-
co-Galois. As an immediate consequence of this fact we deduce the whole of classical
Kummer theory.

Recall that Ω is a fixed algebraically closed field containing the fixed base field F as a
subfield; any overfield of F considered is supposed to be a subfield of Ω . For any nonempty
subset A of F ∗ and any n ∈ N∗ we will denote by n

√
A the subset of T (Ω/F) defined by

n
√
A := {x ∈ Ω | xn ∈ A}. In particular, if A is a singleton {a}, then n

√{a} is precisely
the set of all roots (in Ω) of the polynomial Xn − a ∈ F [X]. We shall use throughout
this chapter the notation n

√
a to designate a root, which in general is not specified, of this

polynomial. Thus, n
√
a ∈ n

√{a}. More precisely, for any choice of the root n
√
a, we have

n
√{a} = {ζ k

n
n
√
a | 0 � k � n − 1}. In particular, if ζn ∈ F , then F( n

√{a}) = F( n
√
a).

However, in certain cases, for instance when F is a subfield of the field R of all real num-
bers and a > 0, then n

√
a will always mean the unique positive root in R of the polynomial

Xn − a.

DEFINITION. A classical n-Kummer extension, where n ∈ N∗, is an Abelian extension
E/F such that gcd(n, e(F )) = 1, μn(Ω) ⊆ F and Gal(E/F) is a group of exponent a
divisor of n. A classical Kummer extension is an extension which is a classical n-Kummer
extension for some n ∈ N∗. If E/F is a classical Kummer extension, we also say that E is
a classical Kummer extension of F .

THEOREM 5.20. The following assertions are equivalent for an extension E/F and a
number n ∈ N∗.

(1) E/F is a classical n-Kummer extension.
(2) gcd(n, e(F )) = 1, μn(Ω) ⊆ F , and E = F(

n
√
A) for some ∅ �= A ⊆ F ∗.

(3) gcd(n, e(F )) = 1, μn(Ω) ⊆ F , and E = F(B) for some ∅ �= B ⊆ E∗ with
Bn ⊆ F .

Note that a classical n-Kummer extension E/F is finite if and only if any of the sets A

and B in Theorem 5.20 can be chosen to be finite.
We are now going to show how all of Kummer theory can be very easily derived from

co-Galois theory.

LEMMA 5.21. ([21].) Let E/F be a bounded separable G-radical extension, and let
n ∈ N∗ be such that Gn ⊆ F ∗. If the extension E/F is n-pure, then E/F is G-co-Galois.

PROOF. If m = exp(G/F ∗), then clearly m | n, hence for any p ∈ Pm, we have p | n. By
hypothesis, μp(E) ⊆ F , and so, the extension E/F is also m-pure, hence it is G-co-Galois
by Corollary 4.5. �

LEMMA 5.22. ([11].) The following statements hold for any extension E/F such that
μn(E) ⊆ F for a given n ∈ N∗, and any group G such that F ∗ � G � E∗.

(1) The map G/F ∗ → Gn/F ∗n, xF ∗ �→ xnF ∗n, is a group isomorphism.
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(2) The maps H �→ Hn and M �→ n
√
M ∩ G establish lattice isomorphisms, inverse to

one another, between the lattices {H | F ∗ � H � G} and {M | F ∗n � M � Gn}.

Excepting point (1) which is due to Albu and Ţena [21], the next result is the core of the
classical Kummer theory. Our approach, based on (1), is completely different from the stan-
dard one, as presented, e.g., in the books of Artin [22], Bourbaki [31], Karpilovsky [54],
and/or Lang [57] that offer a good account of (classical) Kummer theory.

THEOREM 5.23. Let E/F be a classical n-Kummer extension, with ∅ �= A ⊆ F ∗, E =
F(

n
√
A), gcd(n, e(F )) = 1, and μn(Ω) ⊆ F . Then, the following assertions hold.

(1) E/F is an F ∗〈 n
√
A〉-co-Galois extension.

(2) The maps H �→ F(
n
√
H) and K �→ Kn ∩ (F ∗n〈A〉) establish isomorphisms of

lattices, inverse to one another, between the lattice of all subgroups H of F ∗n〈A〉
containing F ∗n, and the lattice I(E/F) of all intermediate fields K of E/F . More-
over, any subextension K/F of E/F is a classical n-Kummer extension.

(3) If H is any subgroup of F ∗n〈A〉 containing F ∗n, then any set of representatives of
the group n

√
H/F ∗ is a vector space basis of F(

n
√
H) over F , and [F(

n
√
H) : F ] =

|H/F ∗n|.
(4) There exists a canonical group isomorphism

F ∗〈 n
√
A
〉
/F ∗ ∼= Homc

(
Gal(E/F), μn(F )

)
.

PROOF. Set B = n
√
A and G = F ∗〈B〉. Since μn(Ω) ⊆ F it follows that the extension

E/F is n-pure. Clearly Gn ⊆ F , hence the extension E/F is G-co-Galois by Lemma 5.21.
By (1) and Theorem 4.2, the maps H �→ F(H) and K �→ K ∩ (F ∗〈 n

√
A〉) are lattice

isomorphisms, inverse to one another, between the lattice of all subgroups H of F ∗〈 n
√
A〉

containing F ∗ and the lattice I(E/F) of all intermediate fields K of E/F . Now, apply
Lemma 5.22 for G = F ∗〈 n

√
A〉 and observe that Gn = F ∗n〈A〉. The extension E/F

is F ∗〈 n
√
A〉-co-Galois by (1), hence the extension F(

n
√
H)/F is n

√
H -Kneser. Use again

Lemma 5.22 to deduce (3).
To prove (4), observe that Kne(E/F) = G/F ∗ = F ∗〈 n

√
A〉/F ∗ by (1). On the

other hand, by Corollary 5.9, there exists a canonical group isomorphism Kne(E/F) ∼=
Z1

c (Gal(E/F), μm(E)), where m = exp(G/F ∗). Clearly m | n, so μm(E) ⊆ μn(E) ⊆ F .
It follows that every 1-cocycle f of Gal(E/F) with coefficients in μm(E) is actually
a morphism of groups, since f (στ) = f (σ ) · σ(f (τ)) = f (σ ) · f (τ), for every
σ, τ ∈ Gal(E/F). Thus,

Kne(E/F) ∼= Z1
c

(
Gal(E/F), μm(E)

) = Homc

(
Gal(E/F), μm(E)

)
= Homc

(
Gal(E/F), μn(F )

)
.

�

Let F be any field, and let n ∈ N∗ be such that gcd(n, e(F )) = 1 and μn(Ω) ⊆ F .
In view of Theorem 5.20, any classical n-Kummer extension E of F , with E a subfield
of Ω , has the form F(

n
√
A) for some ∅ �= A ⊆ F ∗. Since obviously F(

n
√
F ∗)/F is a

classical n-Kummer extension, it follows that the set of all classical n-Kummer extensions
of F contained in Ω , ordered by inclusion, has a greatest element, namely F(

n
√
F ∗), called

the maximal classical n-Kummer extension of F contained in Ω; clearly, it is the greatest
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Abelian extension of F contained in Ω for which its Galois group is a group of exponent a
divisor of n. Taking A = F ∗ in Theorem 5.23, we obtain the next result, which is Kummer
theory for the maximal classical n-Kummer extension of F .

COROLLARY 5.24. Let F be any field and let n ∈ N∗ be such that gcd(n, e(F )) = 1 and
μn(Ω) ⊆ F . Then, the maps H �→ F(

n
√
H) and E �→ En ∩ F ∗ establish isomorphisms

of lattices, inverse to one another, between the lattice of all subgroups H of F ∗ containing
F ∗n and the lattice of all classical n-Kummer extensions E of F (contained in Ω).

5.4.2. Generalized Kummer extensions We present another class of G-co-Galois exten-
sions, which is larger than the class of classical Kummer extensions, namely the class of
generalized Kummer extensions, introduced and investigated by Albu and Nicolae [16] for
finite extensions, and by Albu and Ţena [21] for infinite extensions. This new class also
includes the class of Kummer extension with few roots of unity which will be discussed
in 5.4.3. We show that a theory of generalized Kummer extensions, which is very similar to
that of classical Kummer extensions, can be developed using the properties of G-co-Galois
extensions; since, in general, they are not Galois extensions, no other approach (e.g., via
Galois theory, as in the case of classical Kummer extensions) seems to be applicable.

DEFINITION. We say that an extension E/F is a generalized n-Kummer extension, where
n ∈ N∗, if E = F(B) for some ∅ �= B ⊆ E∗, with gcd(n, e(F )) = 1, Bn ⊆ F , and
μn(E) ⊆ F . A generalized Kummer extension is an extension which is a generalized n-
Kummer extension for some n ∈ N∗.

Observe that any classical n-Kummer extension F(
n
√
A)/F is a generalized n-Kummer

extension, since if we write B = n
√
A, then Bn = A ⊆ F ∗. If we proceed as in the proof

of Theorem 5.23, the following result is obtained.

THEOREM 5.25. ([21,11].) Let E/F be a generalized n-Kummer extension, with ∅ �=
B ⊆ E∗, E = F(B), Bn ⊆ F , gcd(n, e(F )) = 1, and μn(E) ⊆ F . If we write
G = F ∗〈B〉, then the following statements hold.

(1) The extension E/F is G-co-Galois.
(2) The maps H �→ F(

n
√
H ∩G) and K �→ Kn ∩ (F ∗n〈Bn〉) establish isomorphisms of

lattices, inverse to one another, between the lattice of all subgroups H of F ∗n〈Bn〉
containing F ∗n and the lattice I(E/F) of all intermediate fields K of E/F . More-
over, any subextension K/F of E/F is a generalized n-Kummer extension.

(3) If H is any subgroup of F ∗n〈Bn〉 containing F ∗n, then any set of representatives
of the group (

n
√
H ∩ G)/F ∗ is a vector space basis of F(

n
√
H ∩ G) over F , and

[F(
n
√
H ∩ G) : F ] = |H/F ∗n|.

5.4.3. Kummer extensions with few roots of unity The concept of Kummer extension with
few roots of unity was introduced and investigated by Albu [3] for finite extensions, and by
Albu and Ţena [21] for infinite extensions.

DEFINITION. We say that an extension E/F is an n-Kummer extensions with few roots
of unity if E = F(B) for some ∅ �= B ⊆ E∗, with gcd(n, e(F )) = 1, Bn ⊆ F and



42 T. Albu

μn(E) ⊆ {−1, 1}. A Kummer extensions with few roots of unity is an extension which is
an n-Kummer extensions with few roots of unity for some n ∈ N∗.

Kummer extensions with few roots of unity are very particular cases of generalized
Kummer extensions, so Theorem 5.25 is applicable for them.

5.4.4. Quasi-Kummer extensions We present now still another class of G-co-Galois ex-
tensions which is close to the class of classical Kummer extensions. The notion of a (fi-
nite) neat presentation has been introduced by Greither and Harrison [45] as follows: a
neat presentation is a Galois extension E/F with E = F(x1, . . . , xr ), Char(F ) = 0, and
xn

1 , . . . , x
n
r ∈ F for some n ∈ N∗, such that μp(Ω) ⊆ F for every p ∈ Pn. Using heavy

cohomological machinery, which includes the Lyndon–Hochschild spectral sequence, Gre-
ither and Harrison proved that any such extension is an extension with F ∗〈x1, . . . , xr 〉/F ∗-
co-Galois correspondence, i.e., in our terminology, is an F ∗〈x1, . . . , xr 〉-co-Galois ex-
tension. Albu and Nicolae [16] introduced the more general concept of (finite) general-
ized neat presentation by dropping from Greither and Harrison’s definition the condition
“E/F is Galois” and by weakening the condition “Char(F ) = 0” to “gcd(e(F ), n) = 1”,
and proved in a very simple manner that any such extension is still F ∗〈x1, . . . , xr 〉-co-
Galois. Infinite generalized neat presentations were introduced and investigated by Albu
and Ţena [21], and then renamed quasi-Kummer extensions in Albu [11].

DEFINITION. An extension E/F is said to be a quasi-Kummer extension if E = F(B) for
some ∅ �= B ⊆ E∗, and there exists an n ∈ N∗ with Bn ⊆ F , gcd(n, e(F )) = 1, such that
ζp ∈ F for every p ∈ Pn.

THEOREM 5.26. ([21].) Any quasi-Kummer extension F(B)/F with B as in definition
above is an F ∗〈B〉-co-Galois extension.

PROOF. Set G = F ∗〈B〉. Then Gn ⊆ F ∗ and E = F(G), so, E/F is a bounded G-radical
extension. If m = exp(G/F ∗), then m|n, hence gcd(m, e(F )) = 1, and consequently, E/F

is a separable extension by Lemma 5.1. For every p ∈ Pn we have μp(E) ⊆ μp(Ω) ⊆ F ,
so E/F is n-pure. By Lemma 5.21, it follows that F(B)/F is an F ∗〈B〉-co-Galois exten-
sion. �

PROPOSITION 5.27. ([21].) Any Galois n-bounded G-co-Galois extension is a quasi-
Kummer extension.

PROOF. Let E/F be a Galois n-bounded G-co-Galois extension. Then E = F(G), with
F ∗ � G � E∗ and exp(G/F ∗) = n. Since the extension E/F is Galois, it follows
that gcd(n, e(F )) = 1 and ζn ∈ E by Corollary 5.3, so μn(Ω) ⊆ μn(E). By Corol-
lary 4.5, the G-co-Galois extension E/F is n-pure, hence μp(E) ⊆ F for every p ∈ Pn.
Then μp(Ω) ⊆ μp(E) ⊆ F for any such p. Consequently, the extension E/F is quasi-
Kummer. �

COROLLARY 5.28. ([21].) Let E be a subfield of C. Then E/Q is a Galois n-bounded
G-co-Galois extension if and only if E/Q is a classical 2-Kummer extension.
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PROPOSITION 5.29. ([21].) Let E/F be a Galois generalized m-Kummer extension, with
E = F(B), ∅ �= B ⊆ E∗, gcd(m, e(F )) = 1, Bm ⊆ F , and μm(E) ⊆ F . Then E/F is
F ∗〈B〉-co-Galois and μn(Ω) ⊆ F , where n = exp(F ∗〈B〉/F ∗), i.e., E/F is a classical
n-Kummer extension.

PROOF. Let p ∈ Pn. Since n | m, we have μp(E) ⊆ μm(E) ⊆ F , hence E/F is
n-pure. Observe that E/F is G-radical, where G = F ∗〈B〉. By the n-purity criterion
(Corollary 4.5), E/F is a G-co-Galois extension. Now, in view of Corollary 5.3, we have
gcd(n, e(F )) = 1 and ζn ∈ E. But n | m, hence ζn ∈ E∩μn(Ω) = μn(E) ⊆ μm(E) ⊆ F .
Thus E/F is a classical n-Kummer extension. �

6. Applications to elementary field arithmetic and algebraic number theory

6.1. When is a biquadratic extension Galois, radical, or co-Galois?

For any r, d ∈ Q, let Qr,d = Q(
√
r + √

d). Recall that if n ∈ N∗ and a ∈ R∗+, then n
√
a

designates the unique positive root of the equation xn − a = 0, and if a ∈ C \ R∗+, then
n
√
a designates one of the not specified roots in C of the polynomial Xn − a ∈ C[X]. We

are interested in when the biquadratic extension Qr,d/Q is Galois, co-Galois, or radical.

PROPOSITION 6.1. ([4].) The following statements are equivalent for r ∈ Q and d ∈
Q \ Q2.

(1) The polynomial X4 − 2rX2 + r2 − d is reducible in Q[X].
(2) There exist c, k ∈ Q∗+ such that r2 − d = c2 and r ± c = k2/2.
(3) There exists a c ∈ Q∗+ such that r2 − d = c2 and Qr,d = Q(

√
(r ± c)/2).

(4) [Qr,d : Q] = 2.

COROLLARY 6.2. ([4].) For any square-free integer d ∈ Z \ {1} and any n ∈ Z, the
polynomial X4 − 2nX2 + n2 − d is irreducible in Q[X], and so, [Qn,d : Q] = 4.

The next result completely answers the question when Qr,d/Q, r ∈ Q, d ∈ Q \ Q2, is a
Galois extension.

PROPOSITION 6.3. ([4].) The following statements hold for r ∈ Q and d ∈ Q \ Q2.
(1) If the polynomial X4 −2rX2 + r2 −d is reducible in Q[X], then Qr,d/Q is a Galois

extension, and Gal(Qr,d/Q) ∼= Z2.
(2) If the polynomial X4 − 2rX2 + r2 − d is irreducible in Q[X], then Qr,d/Q is a

Galois extension if and only if
√
r2 − d ∈ Q(

√
d). In this case, we have

(a) Gal(Qr,d/Q) ∼= Z2 × Z2 ⇔ √
r2 − d ∈ Q∗,

(b) Gal(Qr,d/Q) ∼= Z4 ⇔ √
r2 − d = s

√
d for some s ∈ Q∗.

COROLLARY 6.4. ([4].) The following assertions are equivalent for an n ∈ Z and a
square-free integer d ∈ Z \ {1}.
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(1) Qn,d/Q is a Galois extension.
(2) There exists k ∈ Z∗ such that either

√
n2 − d = k or

√
n2 − d = k

√
d.

(3) n2 − d ∈ N∗2, or there exist x, y ∈ Z∗ such that x2 − dy2 = −1 and n = dy.

We are now going to find conditions on the rational numbers r, d for which Qr,d/Q is a
co-Galois extension.

THEOREM 6.5. ([4].) The following statements hold for r ∈ Q and d ∈ Q \ Q2.
(1) Qr,d/Q is a quadratic co-Galois extension if and only if

√
r2 − d ∈ Q∗+ and,

either 2(r − √
r2 − d) ∈ Q2, or 2(r + √

r2 − d) ∈ Q2 and 2(
√
r2 − d − r),

6(
√
r2 − d − r) /∈ Q2.

(2) If [Qr,d : Q] = 4 and
√
r2 − d ∈ Q, then Qr,d/Q is a co-Galois extension if and

only if −d,−3d , 2(−r ± √
r2 − d), 6(−r ± √

r2 − d) /∈ Q2.
(3) If [Qr,d : Q] = 4,

√
r2 − d ∈ Q(

√
d) \ Q, and −d /∈ Q2, then Qr,d/Q is not a

co-Galois extension.
(4) If [Qr,d : Q] = 4,

√
r2 − d /∈ Q(

√
d), and either

√
d − r2 /∈ Q(

√
d) or d2 − dr2 /∈

Q2, then Qr,d/Q is not a co-Galois extension.

COROLLARY 6.6. ([4].) Let d ∈ N, d � 2, be a square-free integer, and let n ∈ Z∗ be
such that

√
n2 − d /∈ Q(

√
d). Then Qn,d/Q is not a co-Galois extension.

Next, we discuss when is Qr,d/Q a radical extension. We will mainly consider those
Qr,d which are subfields of R. Since any extension E/F with E a subfield of R is clearly
pure and separable, by the Greither–Harrison criterion it follows that E/F is radical if and
only if it is co-Galois. Thus, the radical extensions of type Qr,d/Q, with r + √

d > 0, are
precisely the co-Galois ones.

PROPOSITION 6.7. ([4].) The following statements hold for r ∈ Q and d ∈ Q \ Q2.
(1) If

√
r2 − d ∈ Q then Qr,d/Q is a radical Galois extension.

(2) If
√
r2 − d ∈ Q(

√
d) \ Q, d > 0, and r + √

d > 0, then Qr,d/Q is a nonradical
Galois extension.

(3) If d ∈ N, d � 2 is square-free, r ∈ Z∗, r + √
d > 0, and

√
r2 − d /∈ Q(

√
d), then

the extension Qr,d/Q is neither Galois nor radical.

6.2. Some examples in co-Galois theory with applications to elementary field arithmetic

In this subsection we present first some very concrete examples, dues to Albu [4], of field
extensions, finite or not, involving the concepts of radical, Kneser, Galois, co-Galois, and
G-co-Galois extension, and effectively describe the co-Galois groups of some biquadratic
and infinite field extensions. Then we are interested to see when a positive algebraic num-
ber can or cannot be written as a sum of monomials of form c · n1

√
a1

j1 · · · · · nr
√
ar

jr ,
with r, n1, . . . , nr , a1, . . . , ar ∈ N∗, j1, . . . , jr ∈ N and c ∈ Q∗. Finally, we present appli-
cations of co-Galois theory to elementary field arithmetic essentially based on the results
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concerning the primitive elements of G-co-Galois extensions and generalized Kummer
extensions discussed in Subsections 4.5 and 5.4.

6.2.1. A nonradical quartic Galois extension Consider the quartic Galois extension

Q2,2/Q, where Q2,2 = Q(
√

2 + √
2). Then K = Q(

√
2) is a subfield of Q2,2, and K/Q,

Q2,2/K are both co-Galois extensions, hence also radical, as well as Kneser extensions,
but the extension Q2,2/Q is neither radical, nor Kneser, and also not co-Galois by Propo-
sition 6.7(2). This example also shows that the property of an extension being radical,
Kneser, or co-Galois is, in general, not transitive.

6.2.2. Cyclotomic Kneser, co-Galois, and G-co-Galois extensions A direct calculation
shows that the cyclotomic extension Q(ζn)/Q is Q∗〈ζn〉-Kneser if and only if n is a power
of 2. Using Corollaries 5.19 and 5.28, it follows that the extension Q(ζn)/Q is G-co-
Galois for some group G if and only if n ∈ {1, 2, 3, 4, 6, 8, 12, 24}. However, by the
Greither–Harrison criterion (Theorem 3.3), the extension Q(ζn)/Q is co-Galois if and only
if n ∈ {1, 2}.

6.2.3. A nonradical Galois extension of degree 2r More generally, consider the extension
Er/Q, where Er = Q(θr ), and

θr =
√

2 +
√

2 +
√

2 + · · · + √
2︸ ︷︷ ︸

r radicals

.

Observe that E2 = Q2,2, θr = 2 cos(π/2r+1) = ζ2r+2 + ζ−1
2r+2 , and Er/Q is a Galois exten-

sion having as Galois group the cyclic group of order 2r generated by the automorphism
sending cos(π/2r+1) to cos(5π/2r+1). However, for every r ∈ N, r � 2, the extension
Er/Q is not a radical extension, for otherwise it would be co-Galois by the Greither–
Harrison criterion, so Cog(Er/F ) � Gal(Er/F ) � Z2r by Corollary 5.19. Consequently,
the extension Er/Q is neither Kneser nor co-Galois. Notice that for every r � 2, the exten-
sion Er/Q is a subextension of the cyclotomic extension Q(ζ2r+2)/Q, which is a Kneser
extension by 6.2.2. This shows that a subextension of a radical (respectively Kneser) ex-
tension is not necessarily radical (respectively Kneser), in contrast with the fact that any
subextension of a co-Galois extension is still co-Galois (see Proposition 3.5).

6.2.4. An infinite nonradical Abelian extension Now consider the directed union E∞ =⋃
r�1 Er of the subfields Er of the R defined in 6.2.3. The field E∞ is a subfield of

Q2,ab := ⋃
r�1 Q(ζ2r ), the maximal 2-primary Abelian extension of Q contained in C.

Since the extension Q(ζ2r )/Q is Q∗〈ζ2r 〉-Kneser for every r � 1, we deduce that the in-
finite Abelian extension Q2,ab/Q is Q∗〈{ζ2r | r � 1}〉-Kneser. However, its subextension
E∞/Q is not Kneser. Thus E∞/Q is a Galois extension of infinite degree which is neither
radical, nor Kneser, and nor co-Galois.

6.2.5. Other nonradical non-Galois quartic extensions For a given r ∈ N∗ there are
infinitely many d such that the extension Qr,d/Q is neither radical nor Galois. Indeed,
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take as d any prime number with d > r2. Since r2 − d < 0 and d > 0 we cannot
have

√
r2 − d ∈ Q(

√
d), hence, Qr,d/Q is a nonradical non-Galois quartic extension by

Proposition 6.7(3).

6.2.6. A nonradical non-Galois extension of degree 2r Let r ∈ N, r � 2. We claim that
Fr/Q is such an example, where Fr = Q(νr ) and

νr =
√

1 +
√

1 +
√

1 + · · · + √
2︸ ︷︷ ︸

r radicals

.

Indeed, if Fr/Q would be radical, it would be co-Galois and then, so would be also its
subextension F2/Q, which contradicts Corollary 6.6. An induction on r shows that the
extension Fr/Q has degree 2r and is not Galois. In particular, for r = 2, we deduce that

the non-Galois extension Q(
√

1 + √
2)/Q is neither radical, nor Kneser, and nor co-Galois.

6.2.7. An infinite nonradical non-Galois extension Consider the directed union F∞ =⋃
r�1 Fr of subfields Fr of R defined in 6.2.6. Then F∞/Q is a non-Galois extension

of infinite degree which is neither radical, nor Kneser, and nor co-Galois. Indeed, if it
would be radical, then necessarily it would be co-Galois, hence any of its subextensions,
in particular F2/Q would be so, which would contradict Corollary 6.6.

6.2.8. Calculation of some co-Galois groups We determine explicitly the co-Galois
groups of the extensions Qr,d/Q (r ∈ Q, d ∈ Q \ Q2) and En/Q (n ∈ N∗ ∪ {∞})
considered above.

(1) Cog(En/Q) = {̂1, √̂2} for every n ∈ N∗ ∪ {∞}.
(2) If c := √

r2 − d ∈ Q∗+ and 2(r − c) ∈ Q2, then Cog(Qr,d/Q) = {̂1, ̂√
2(r + c)} ∼=

Z2.
(3) If c := √

r2 − d ∈ Q∗+ and 2(r + c) ∈ Q2, then

Cog(Qr,d/Q) =

⎧⎪⎪⎨⎪⎪⎩
〈1̂ + i〉 ∼= Z4 if 2(c − r) ∈ Q2,

〈î√3 · ( ̂1 + i
√

3)〉 ∼= Z6 if 6(c − r) ∈ Q2,

{̂1, ̂√
2(r − c)} ∼= Z2 otherwise.

(4) If c := √
r2 − d ∈ Q∗+, 2(r ± c) /∈ Q2, and −d,−3d, 2(−r ± c), 6(−r ± c) /∈ Q2,

then

Cog(Qr,d/Q) = {̂1, ̂√2(r + c),
̂√2(r − c),

√̂
d
} ∼= Z2 × Z2.

(5) If
√
r2 − d ∈ Q(

√
d) \ Q, [Qr,d : Q] = 4, and the extension Qr,d/Q is co-Galois,

then

Cog(Qr,d/Q) = 〈1̂ + i〉 ∼= Z4.

(6) If [Qr,d : Q] = 4 and the extension Qr,d/Q is not radical, then Cog(Qr,d/Q) =
{̂1, √̂d} ∼= Z2.
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PROOF. We will prove only (1). Let n ∈ N∗ ∪ {∞}. The inclusion {̂1, √̂2} ⊆ Cog(En/Q)

is clear. Now let x̂ ∈ Cog(En/Q). We may assume that x ∈ T (E∞/Q) \ Q, x > 0. Then
xk = a ∈ Q∗ for some k ∈ N∗, and let m ∈ N∗ be minimum with xm = a ∈ Q∗. Thus
x = m

√
a, and m = ord( x̂ ). Then, the extension Q( m

√
a)/Q is a finite radical subextension

of E∞/Q, so there exists an r ∈ N∗ such that Q( m
√
a) ⊆ Er . By 6.2.3, Er/Q is an

Abelian extension, and so is Q( m
√
a)/Q as well. Observe that Q( m

√
a)/Q is a Q〈 m

√
a〉-

radical extension, and m = exp(Q〈 m
√
a〉/Q∗), hence ζm ∈ Q( m

√
a) by Corollary 5.4. But

Q( m
√
a) ⊆ R, hence necessarily m = 2. By Galois theory, the cyclic extension Er/Q has

a unique quadratic subextension. Since Q(
√
a)/Q and Q(

√
2)/Q are such subextensions,

we deduce that Q(
√
a) = Q(

√
2), i.e., x = √

a = b
√

2 for some b ∈ Q∗+. Thus x̂ = √̂
2.

This proves that Cog(En/Q) = {̂1, √̂2}. �

Next, we show that the property of the extension Q(
√

2 + √
2)/Q not being co-Galois

(see 6.2.1) can be equivalently expressed more attractively and elementarily as the im-

possibility to write
√

2 + √
2 as a finite sum of real numbers of type ± ni

√
ai , where

r, n1, . . . , nr , a1, . . . , ar ∈ N∗. The same problem will be discussed for any algebraic num-
ber α ∈ R∗+.

PROPOSITION 6.8. ([4].) The following statements are equivalent for a real algebraic
number field K .

(1) There exist r ∈ N∗ and n1, . . . , nr , a1, . . . , ar ∈ N∗ such that

K = Q
(

n1
√
a1, . . . ,

nr
√
ar
)
.

(2) The extension K/Q is radical.
(3) The extension K/Q is Kneser.
(4) The extension K/Q is co-Galois.

PROOF. (1) ⇒ (4) and (2) ⇒ (4): The extension K/Q is clearly separable, radical by
hypothesis, and pure since K ⊆ R, hence it is co-Galois by the Greither–Harrison criterion.

(4) ⇒ (1): Let {x1, . . . , xr } be a set of representatives of the finite group Cog(K/Q) =
T (K/Q)/Q∗. Since xi ≡ −xi (mod Q∗), we may assume that xi > 0 for all i, 1 � i � r .
Then K = Q(x1, . . . , xr ), and for every i, 1 � i � r , there exists ni ∈ N∗ such that
x
ni

i = ai ∈ Q. Clearly, ai > 0 for all i. Then K = Q( n1
√
a1, . . . , nr

√
ar). Of course, we

may also assume that all ai ∈ N∗.
The other implications are obvious. �

COROLLARY 6.9. ([4].) The following assertions are equivalent for an algebraic number
α ∈ R∗+.

(1) α can be written as a finite sum of real numbers of type ± ni
√
ai , 1 � i � r , r, ni,

ai ∈ N∗.
(2) The extension Q(α)/Q is radical.
(3) The extension Q(α)/Q is Kneser.
(4) The extension Q(α)/Q is co-Galois.
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We deduce from Corollary 6.9 that each of the numbers

√
1 + √

2,

√
2 +

√
2 +

√
2 + · · · + √

2

cannot be written as a finite sum of real numbers of type ± ni
√
ai, 1 � i � r , where

r, ni, ai ∈ N∗; also if a square-free integer d � 2 and r ∈ Z∗ are such that r > −√
d and√

r2 − d /∈ Q(
√
d), then

√
r + √

d cannot be written as a finite sum of real numbers of
type ± ni

√
ai, 1 � i � r , with r, ni, ai ∈ N∗, by Proposition 6.7(3).

We are now going to present further applications of co-Galois theory to elementary field
arithmetic, essentially based on Theorem 4.14, Proposition 4.16, and Theorem 5.25.

PROPOSITION 6.10. ([17].) Let F be an arbitrary field, let r, n1, . . . , nr ∈ N∗, let
a1, . . . , ar ∈ F ∗, and let n = lcm(n1, . . . , nr ). Assume that gcd(n, e(F )) = 1,
μn(F ( n1

√
a1, . . . , nr

√
ar)) ⊆ F , and n̂i

√
ai �= n̂j

√
aj for all i �= j in {1, . . . , r}. Then

F( n1
√
a1, . . . , nr

√
ar) = F( n1

√
a1 + · · · + nr

√
ar).

PROOF. The first two conditions show that F( n1
√
a1, . . . , nr

√
ar)/F is a generalized n-

Kummer extension, hence according to Theorem 5.25, it is F ∗〈 n1
√
a1, . . . , nr

√
ar〉-co-

Galois. This fact and the third condition imply the desired equality in view of Theo-
rem 4.14. �

COROLLARY 6.11. ([17].) Let F be a subfield of R, let r, n1, . . . , nr ∈ N∗, and let
a1, . . . , ar ∈ F ∗ be positive numbers. Then F( n1

√
a1, . . . , nr

√
ar) = F( n1

√
a1 +· · ·+ nr

√
ar).

In particular, if a1, . . . , ar ∈ Q∗+, then Q( n1
√
a1, . . . , nr

√
ar) = Q( n1

√
a1 + · · · + nr

√
ar).

COROLLARY 6.12. ([17].) Let F be a subfield of R, let r, n1, . . . , nr ∈ N∗, and let
a1, . . . , ar ∈ F ∗ be positive numbers. Then n1

√
a1 + · · · + nr

√
ar ∈ F ⇔ ni

√
ai ∈

F for all i, 1 � i � r . In particular, if a1, . . . , ar ∈ Q∗+, then n1
√
a1 + · · · + nr

√
ar ∈ Q ⇔

ni
√
ai ∈ Q for all i, 1 � i � r .

PROOF. If n1
√
a1+· · ·+ nr

√
ar ∈ F , then F( n1

√
a1, . . . , nr

√
ar) = F( n1

√
a1+· · ·+ nr

√
ar) = F

by Corollary 6.11, and consequently n1
√
a1, . . . , nr

√
ar ∈ F . �

COROLLARY 6.13. ([17].) Let n, r ∈ N∗, let F be a field with gcd(n, e(F )) = 1, and let
a1, . . . , ar ∈ F ∗. Suppose that μn(F ( n

√
a1, . . . , n

√
ar)) ⊆ F and

[
F
(

n
√
a1, . . . ,

n
√
ar
) : F ] =

r∏
i=1

[
F
(

n
√
ai
) : F ].

Then

F
(

n
√
a1, . . . ,

n
√
ar
) = F

(
n
√
a1 + · · · + n

√
ar
)
.

PROOF. By Theorem 5.25, the extension F( n
√
a1, . . . , n

√
ar)/F is F ∗〈 n1

√
a1, . . . , nr

√
ar 〉-

co-Galois. Now apply Proposition 4.16. �
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PROPOSITION 6.14. ([4].) Let r, n0, n1, . . . , nr ∈ N∗ and a0, a1, . . . , ar ∈ F ∗. Let n =
lcm(n0, n1, . . . , nr ), and suppose that gcd(n, e(F )) = 1 and

μn

(
F
(

n1
√
a1, . . . ,

nr
√
ar
)) ⊆ F.

Then n0
√
a0 ∈ F( n1

√
a1, . . . , nr

√
ar) if and only if there exist j1, . . . , jr ∈ N and c ∈ F ∗

such that n0
√
a0 = c · n1

√
a1

j1 · · · · · nr
√
ar

jr .

PROOF. Set E = F( n1
√
a1, . . . , nr

√
ar) and G = F ∗〈 n1

√
a1, . . . , nr

√
ar 〉. By Theorem 5.25,

E/F is a G-co-Galois extension. Now, observe that since n0 | n, we have μn0(E) ⊆
μn(E) ⊆ F . So, we can apply Lemma 4.10 to deduce that n0

√
a0 ∈ F( n1

√
a1, . . . , nr

√
ar) if

and only if n0
√
a0 ∈ G, as desired. �

COROLLARY 6.15. ([4].) Let r, n ∈ N∗, let a0, a1, . . . , ar ∈ F ∗, and suppose that
gcd(n, e(F )) = 1, and μn(F ( n

√
a0, n

√
a1, . . . , n

√
ar)) ⊆ {−1, 1} or μn(Ω) ⊆ F , i.e., the

extension F( n
√
a0, n

√
a1, . . . , n

√
ar)/F is either an n-Kummer extension with few roots of

unity or a classical n-Kummer extension. Then n
√
a0 ∈ F( n

√
a1, . . . , n

√
ar) if and only if

there exist j1, . . . , jr ∈ N and c ∈ F ∗ such that a0 = cn · aj1
1 · · · · · ajr

r .

COROLLARY 6.16. ([4].) Let r, n0, n1, . . . , nr ∈ N∗, and let a0, a1, . . . , ar ∈ Q∗+. Then
n0
√
a0 can be written as a finite sum of monomials of form c · n1

√
a1

j1 · · · · · nr
√
ar

jr , with
j1, . . . , jr ∈ N and c ∈ Q∗, if and only if n0

√
a0 is itself such a monomial.

We will now examine the elementary arithmetic of finite G-radical extensions E/F

with exp(G/F ∗) a prime number p, in other words, the elementary arithmetic of finite
p-bounded radical extensions.

LEMMA 6.17. ([9,10].) Let F be an arbitrary field, let p > 0 be a prime number, other
than the characteristic of F , let r ∈ N∗, let a1, . . . , ar ∈ F ∗, and let p

√
a1, . . . , p

√
ar ∈ Ω

denote any fixed p-th roots. Assume that [F( p
√
a1, . . . , p

√
ar) : F ] = pr . Then, we have

either ζp ∈ F or μp(F ( p
√
a1, . . . , p

√
ar)) = {1}, in other words, F( p

√
a1, . . . , p

√
ar)/F is

either a classical p-Kummer extension or a p-Kummer extension with few roots of unity.

PROPOSITION 6.18. ([9,10].) Let F be an arbitrary field, let p > 0 be a prime num-
ber, other than the characteristic of F , let r ∈ N∗, let a1, . . . , ar ∈ F ∗, and let
p
√
a1, . . . , p

√
ar ∈ Ω denote any fixed p-th roots. If [F( p

√
a1, . . . , p

√
ar) : F ] = pr , then the

following assertions hold.
(1) The extension F( p

√
a1, . . . , p

√
ar)/F is F ∗〈 p

√
a1, . . . , p

√
ar 〉-co-Galois.

(2) The Kneser group F ∗〈 p
√
a1, . . . , p

√
ar 〉/F ∗ of the extension E/F is isomorphic to

the direct product Zr
p of r copies of the group Zp.

(3) |〈 p̂
√
a1, . . . , p̂

√
ar〉| = |〈̂̂a1, . . . , ̂̂ar 〉| = pr , where ̂̂a denotes for any a ∈ F ∗ its coset

in the group F ∗/F ∗p.
(4) If i1, . . . , in ∈ N and a

i1
1 · · · · · air

r ∈ F ∗p, then p | i1, . . . , p | ir .
(5) F( p

√
a1, . . . , p

√
ar) = F( p

√
a1 + · · · + p

√
ar).
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COROLLARY 6.19. ([53].) Let p be a prime other than the characteristic of a field F .
Let u, v ∈ Ω be any roots of the irreducible polynomials Xp − a and Xp − b ∈ F [X],
respectively. Then [F(u, v) : F ] = p2 unless b = cpan for some c ∈ F and n ∈ N, and if
[F(u, v) : F ] = p2 then F(u, v) = F(u + v).

COROLLARY 6.20. ([24].) Let F be an arbitrary field, let p > 0 be a prime num-
ber, other than the characteristic of F , let r ∈ N, r � 2, let a1, . . . , ar ∈ F ∗,
and let p

√
a1, . . . , p

√
ar ∈ Ω denote any fixed p-th roots. Further, let denote E =

F( p
√
a1, . . . , p

√
ar−1). Then either [E( p

√
ar) : E] = p, or ar = cp · aj1

1 · · · · · ajr−1
r−1

for some j1, . . . , jr ∈ N and c ∈ F ∗.

6.3. Some classical results on algebraic number fields via co-Galois theory

We show in this subsection how some classical results on algebraic number fields, chrono-
logically due to Hasse, Besicovitch, Mordell, Siegel, etc., can be immediately deduced
from basic facts of co-Galois theory, especially from the Kneser criterion. Throughout this
subsection K denotes a fixed algebraic number field, and for any a ∈ K∗ and n ∈ N∗, n

√
a

designates a root (which in general is not specified) in C of the polynomial Xn−a ∈ K[X].
However, if K is a subfield of R and a > 0, then n

√
a will always mean the unique positive

root in R of the polynomial Xn − a.

THEOREM 6.21 (Hasse [50], 1930). Let K be an algebraic number field containing ζn for
some n ∈ N∗, let r ∈ N∗, and let x1, . . . , xr ∈ C∗ be such that xn

k ∈ K for all k, 1 � k � r .
Assume that the following condition is satisfied:

(†)m1, . . . , mr ∈ N and x
m1
1 · · · · · xmr

r ∈ K ⇒ x
mk

k ∈ K, k = 1, . . . , r.

Then [K(x1, . . . , xr ) : K] =∏1�k�r |K∗〈xk〉/K∗|.

PROOF. Clearly, K(x1, . . . , xr )/K is a classical n-Kummer extension, so it is a G-co-
Galois extension by Theorem 5.23, where G = K〈x1, . . . , xr 〉. In particular, the extension
K(x1, . . . , xr )/K is G-Kneser, hence[

K(x1, . . . , xr ) : K] = ∣∣G/K∗∣∣ = ∣∣K∗〈x1, . . . , xr 〉/K∗∣∣.
Now apply Lemma 4.15 to deduce that∣∣K∗〈x1, . . . , xr 〉/K∗∣∣ = ∏

1�k�r

∣∣K∗〈xk〉/K∗∣∣. �

THEOREM 6.22 (Siegel [73], 1972). Let K be an algebraic number field, let r ∈ N∗, let
n1, . . . , nr ∈ N∗, and let x1, . . . , xr ∈ C be such that xnk

k ∈ K for all k, 1 � k � r . Assume
that either ζnk

∈ K for all k, 1 � k � r , or K ⊆ R and xk ∈ R∗+ for all k, 1 � k � r .
Then [K(x1, . . . , xr ) : K] = |K∗〈x1, . . . , xr 〉/K∗|.

PROOF. Set G = K〈x1, . . . , xr 〉 and L = K(x1, . . . , xr ). Observe that L/K is a separable
G-radical extension, and so, the desired equality means precisely that L/K is a G-Kneser
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extension. If K ⊆ R and xk ∈ R∗+ for all k, 1 � k � r , then L ⊆ R, hence L/K

is clearly a pure extension, and thus, it is G-Kneser. Now, assume that ζnk
∈ K for all

k, 1 � k � r , and let n = lcm(n1, . . . , nr ). Then n = nkbk for some bk ∈ Z, 1 � k � r .
Since gcd(b1, . . . , br ) = 1, 1 = ∑

1�k�r bkck for some c1, . . . , cr ∈ Z. It follows that

ζn = ζ
b1c1+···+br cr
n = (ζ

b1
n )c1 · · · · · (ζ br

n )cr ∈ K , since ζnk
∈ K and ζ

bk
n is a primitive nk-th

root of unity for all k = 1, . . . , r . Using the Kneser criterion, this easily implies that L/K

is a G-Kneser extension. �

THEOREM 6.23 (Mordell [62], 1953). Let K be an algebraic number field, let r ∈ N∗, let
n1, . . . , nr ∈ N∗, and let x1, . . . , xr ∈ C be such that xnk

k ∈ K for all k, 1 � k � r , and

(††)m1, . . . , mr ∈ N and x
m1
1 · · · · · xmr

r ∈ K ⇒ nk | mk, k = 1, . . . , r.

Assume that either ζnk
∈ K for all k, 1 � k � r , or K ⊆ R and xk ∈ R∗+ for all

k, 1 � k � r . Then [K(x1, . . . , xr ) : K] = n1 · · · · · nr .

PROOF. The extension K(x1, . . . , xr )/K is K〈x1, . . . , xr 〉-Kneser by Theorem 6.22. To
conclude, observe that condition (††) is the same as condition (†) in Theorem 6.21. Now,
apply Lemma 4.15 to obtain the desired equality. �

COROLLARY 6.24 (Ursell [79], 1974). Let r ∈ N, r � 2, and let a1, . . . , ar , n1, . . . , nr ∈
N∗ be such that for every k, 1 � k � r , and every sk, 1 � sk < nk one has ( nk

√
ak)

sk /∈ N.
If a1, . . . , ak are relatively prime in pairs, then [Q( n1

√
a1, . . . , nr

√
ar) : Q] = n1 · · · · · nr .

PROOF. Observe that the condition “a1, . . . , ak are relatively prime in pairs” implies the
condition (††) in Theorem 6.23. �

THEOREM 6.25 (Besicovitch [30], 1940). Let r ∈ N∗, let p1, . . . , pr be different positive
prime integers, let b1, . . . , br ∈ N∗ be not divisible by any of these primes, and let a1 =
b1p1, . . . , ar = brpr . Then, for any n1, . . . , nr ∈ N∗ one has [Q( n1

√
a1, . . . , nr

√
ar) : Q] =

n1 · · · · · nr .

PROOF. One easily shows that the condition (††) in Theorem 6.23 is satisfied. �

COROLLARY 6.26. Let r ∈ N∗, let p1, . . . , pr be different positive prime integers, and let
n1, . . . , nr ∈ N∗ be arbitrary. Then [Q( n1

√
p1, . . . , nr

√
pr) : Q] = n1 · · · · · nr .

PROOF. Apply Theorem 6.25 for b1 = · · · = br = 1. �

REMARKS.
(1) In view of Theorem 5.23 and Lemma 4.15, Theorem 6.21 holds not only for al-

gebraic number fields K , but also for any field K and any n ∈ N∗ such that
gcd(n, e(F )) = 1. Of course, the field C in the statement of Theorem 6.21 should
be replaced by an algebraically closed field Ω containing K as a subfield. Also,
according to Theorem 5.25 and Lemma 4.15, Theorems 6.22 and 6.23 are valid for
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any field K , any n1, . . . , nr ∈ N∗, and any x1, . . . , xr ∈ Ω with x
nk

k ∈ K for
all k, 1 � k � r , such that gcd(n, e(K)) = 1 and μn(K(x1, . . . , xr )) ⊆ K , where
n = lcm(n1, . . . , nr ).

(2) We have seen that the conditions in Theorem 6.25 as well as those in Corol-
lary 6.24 imply for K = Q the condition (††) in Theorem 6.23. Observe that
the extension Q(

√
2,

√
6)/Q satisfies the condition (††) in Theorem 6.23 with

r = 2, n1 = n2 = 2, x1 = √
2, x2 = √

6, but satisfies neither the conditions in
Corollary 6.24 nor the conditions in Theorem 6.25. On the other hand, the extension
Q(

√
8,

√
3)/Q satisfies the conditions in Corollary 6.24, but does not satisfy the

conditions in Theorem 6.25. Also, the extension Q(
√

6,
√

10)/Q satisfies the con-
ditions in Theorem 6.25, but does not satisfy the ones in Corollary 6.24. This shows
that we cannot deduce Corollary 6.24 from Theorem 6.25, and vice versa.

(3) Corollary 6.24 and Theorem 6.25 can be extended from Q to the field of quotients
of any UFD.

Necessary and sufficient conditions for an arbitrary radical extension F(x1, . . . , xr )/F

to have degree n1 · · · · · nr , where x1, . . . , xr ∈ Ω∗ are such that x
ni

i ∈ F ∗ for every
i, 1 � i � r , are provided in the next result.

THEOREM 6.27 (Schinzel [70]). Let F be any field, let r ∈ N∗, let n1, . . . , nr ∈ N∗ be
positive integers such that at most one of them is divisible by the characteristic of F , let
a1, . . . , ar ∈ F ∗, and let x1, . . . , xr ∈ Ω be such that xni

i = ai for every i = 1, . . . , r .
Then [F(x1, . . . , xr ) : F ] = n1 · · · · · nr if and only if the following two conditions are
satisfied.

(a) Whenever p ∈ P and k1, . . . , kr ∈ N are such that p | niki for every i = 1, . . . , r
and a

k1
1 · · · · · akr

r ∈ Fp, then p | ki for every i = 1, . . . , r .
(b) Whenever k1, . . . , kr ∈ N are such that 4 | niki for every i = 1, . . . , r and

a
k1
1 · · · · · akr

r ∈ −4F 4, then p | ki for every i = 1, . . . , r .

EXAMPLE. We are going to calculate the degree [Q(
4
√

12 + 6
√

108) : Q] and to exhibit a
vector space basis of the extension Q(

4
√

12 + 6
√

108)/Q. To do this, we first apply Corol-
lary 6.11 to deduce that Q(

4
√

12 + 6
√

108) = Q(
4
√

12, 6
√

108). Since 4
√

12 = 12√
26 · 33

and 6
√

108 = 12√
24 · 36, we have Q(

4
√

12, 6
√

108) = Q(
12√

26 · 33,
12√

24 · 36). Set E =
Q(

12
√

26 · 33,
12
√

24 · 36), and observe that E/Q is a 12-Kummer extension with few roots

of unity; so [E : Q] = |Q∗〈 12
√
a,

12
√
b〉/Q∗| = |〈 1̂2

√
a,

1̂2
√
b〉| = |〈̂̂a,̂̂b〉| by Theorem 5.25,

where a = 24 · 36, b = 26 · 33, and ̂̂x denotes for any x ∈ Q∗ its coset xQ∗12 in the group
Q∗/Q∗12. We describe now explicitly the group 〈̂a, b̂〉. Since ord(̂̂a) = 6, ord(̂̂b) = 4,

and ̂̂b2 = ̂̂
a3 = ̂̂36, we have 〈̂̂a, ̂̂b〉 = {̂̂ai · ̂̂bj | 0 � i � 5, 0 � j � 1} =

{̂̂1, ̂̂a, ̂̂a2,
̂̂
a3,

̂̂
a4,

̂̂
a5, ̂̂b, ̂̂a · ̂̂b, ̂̂a2 · ̂̂b, ̂̂a3 · ̂̂b, ̂̂a4 · ̂̂b, ̂̂a5 · ̂̂b}. Note that ̂̂b /∈ 〈̂̂a〉, and conse-

quently |〈̂̂a, ̂̂b〉| = 12. Thus [E : Q] = 12, and, by Proposition 3.1, a basis of the extension
Q(

4
√

12 + 6
√

108)/Q is the set { 4
√

12i · 6
√

108j | 0 � i � 5, 0 � j � 1}.
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6.4. Applications to Hecke systems of ideal numbers

The Kneser criterion (Theorem 3.2) is not only a powerful as well as indispensable tool in
investigating radical field extensions, but, as we have already seen in the previous subsec-
tion, it has nice applications in proving some classical results of algebraic number theory.
In this subsection we present other such applications.

A classical construction from 1920 in algebraic number theory is the following one: to
every algebraic number field K one can associate a so-called system of ideal numbers S,
which is a certain subgroup of the multiplicative group C∗ of complex numbers such that
K∗ � S and the quotient group S/K∗ is canonically isomorphic to the ideal class group
C�K of K . This construction, originating with Hecke [51], has the following important
property, that the Hilbert class field also possesses: every ideal of K becomes a principal
ideal in the algebraic number field K(S). The equality [K(S) : K] = |C�K | was claimed
by Hecke on page 122 of his monograph [52] published in 1948, but never proved by him.
To the best of our knowledge, no proof of this assertion, excepting the very short one due
to Albu and Nicolae [18] and reproduced below, is available in the literature. Note that
Ribenboim gives on page 124 of his monograph [65] only the inequality [K(S) : K] � h.

The main aim of this subsection is to provide a short proof of this equality by using the
Kneser criterion, and to discuss some other related questions.

First let us fix the notation and terminology needed to explain the equality mentioned
above. Throughout this subsection K will denote a fixed algebraic number field. We will
denote by OK the ring of algebraic integers of K , by FK the group of nonzero fractional
ideals of K , by PK the group of nonzero principal fractional ideals of K , by C�K =
FK/PK the ideal class group of K , and by h = |C�K | the class number of K . For any
a ∈ K∗, (a) will denote the principal fractional ideal aOK of K .

As any finite Abelian group, the group C�K is an internal direct sum of finitely many
cyclic subgroups. This means that there exist ideal classes C1, . . . , Cs in C�K , s � 1,
such that every ideal class C ∈ C�K has a unique decomposition C = Cr1

1 · · · · · Crs
s ,

where 0 � rk < hk , hk > 1 is the order of the ideal class Ck in C�K , k = 1, . . . , s, and
h = h1 · · · · · hs . For any k = 1, . . . , s, let Ik be an integral ideal from the ideal class Ck .
Then, every fractional ideal I ∈ FK has a unique decomposition I = (a)I

r1
1 ·· · ··I rs

s , where
a ∈ K∗, 0 � rk < hk , k = 1, . . . , s, and the exponents rk are uniquely determined. Since
Chk

k = 1, one deduces that Ihk

k = (ck) ∈ PK for suitable numbers ck ∈ K∗, k = 1, . . . , s,
which are uniquely determined up to units of K . Assume that we have fixed the numbers ck
and consider the number field K(γ1, . . . , γs), where γk is a complex root of the polynomial
Xhk − ck ∈ K[X], i.e., γ hk

k = ck .

DEFINITION. With the notation above, the group K∗〈γ1, . . . , γs〉 is called a Hecke system
of ideal numbers of K , and the field K(γ1, . . . , γs), denoted by HK , is called the Hecke
field of K associated with the Hecke system of ideal numbers K∗〈γ1, . . . , γs〉 of K .

The Hecke field of any algebraic number field K , which clearly depends on the chosen
Hecke system of ideal numbers of K , is uniquely determined up to a K-isomorphism.
Therefore, we will just call it the Hecke field of K . Observe that HK = K ⇔ h = 1, so we
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may assume that h > 1. The group morphism

FK → K∗〈γ1, . . . , γs〉/K∗, (a)I
r1
1 · · · · · I rs

s �−→ ̂γ
r1
1 · · · · · γ rs

s ,

with a ∈ K∗, 0 � rk < hk, k = 1, . . . , s, clearly induces a surjective group morphism

ψK : C�K → K∗〈γ1, . . . , γs〉/K∗.

LEMMA 6.28. ([63,18].) With the notation above, the map

ψK : C�K → K∗〈γ1, . . . , γs〉/K∗

is a group isomorphism. In particular, one has |K∗〈γ1, . . . , γs〉/K∗| = |C�K | = h.

LEMMA 6.29. If ε ∈ K∗〈γ1, . . . , γs〉 is a unit of HK , then ε ∈ K .

THEOREM 6.30. ([51,18].) Let K be an algebraic number field, and let HK be its Hecke
field. Then [HK : K] = h.

PROOF. By Lemma 6.28, we have to prove that[
K(γ1, . . . , γs) : K] = ∣∣K∗〈γ1, . . . , γs〉/K∗∣∣ = h.

Since K(γ1, . . . , γs) = K(K∗〈γ1, . . . , γs〉) and γ
hi

i = ci ∈ K∗ for all i = 1, . . . , s, it
follows that the extension K(γ1, . . . , γs)/K is K∗〈γ1, . . . , γs〉-radical. Consequently, the
desired equality means precisely that the extension K(γ1, . . . , γs)/K is K∗〈γ1, . . . , γs〉-
Kneser. To prove that, we will check that the conditions from the Kneser criterion are satis-
fied. Let p be an odd prime such that ζp ∈ K∗〈γ1, . . . , γs〉. Then ζp ∈ K by Lemma 6.29.
Now, assume that 1 + ζ4 ∈ K∗〈γ1, . . . , γs〉. Then (1 + ζ4)

2 = 2ζ4 ∈ K∗〈γ1, . . . , γs〉, so
ζ4 ∈ K∗〈γ1, . . . , γs〉. Thus, ζ4 ∈ K again by Lemma 6.29. This proves that HK/K is a
K∗〈γ1, . . . , γs〉-Kneser extension, as desired. �

COROLLARY 6.31. ([18].) Let C ∈ C�K and let γ ∈ K∗〈γ1, . . . , γs〉 be such that
γ̂ = ψK(C), where ψK is the isomorphism in Lemma 6.28. If m = ord(C) in C�K , then
[K(γ ) : K] = m, and every ideal of C becomes a principal ideal in K(γ ).

PROOF. Since K∗〈γ 〉 � K∗〈γ1, . . . , γs〉 and K(γ1, . . . , γs)/K is a K∗〈γ1, . . . , γs〉-
Kneser extension, it follows that K(K∗〈γ 〉)/K is a K∗〈γ 〉-Kneser extension by Propo-
sition 3.1. But K(K∗〈γ 〉) = K(γ ), hence [K(γ ) : K] = |K∗〈γ 〉/K∗| = ord(γ̂ ) =
ord(C) = m.

Let I be any integral ideal of the ideal class C. Then I = I
r1
1 · · · · · I rs

s with 0 � rk <

hk, k = 1, . . . , s. We may assume that γ = γ
r1
1 · · · · · γ rs

s . Since I
hk

k = (γk)
hk = (ck), it

follows that (IkOHK
)hk = (γkOHK

)hk , hence IkOHK
= γkOHK

for all k = 1, . . . , s. Thus,
IOHK

= (γ
r1
1 · · · · · γ rs

s )OHK
= γOHK

, so I = IOHK
∩ OK = γOHK

∩ OK = γOK .
This implies that IOK(γ ) = γOK(γ ), and we are done. �

The Hecke field HK of a number field K has two of the basic properties of the Hilbert
class field HCFK of K , namely: (i) [HK : K] = h; and (ii) every ideal of K becomes a
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principal ideal in HK . However, the fields HK and HCFK are different since the extension
HCFK/K is always Galois, while, in general, the extension HK/K is not necessarily Ga-
lois. Corollary 6.31 shows that every ideal class C ∈ C�K of order m becomes a principal
ideal class in a suitable intermediate field of HK/K of degree m over K . As is known, the
question of whether HCFK has the same property, was answered in the negative by Artin
and Furtwängler (see Hasse [50, pp. 173–174]).

PROPOSITION 6.32. ([18].) Let I ∈ FK , let C the class of I in C�K , let m = ord(C) in
C�K , and let c ∈ K∗ with Im = (c). Then, the polynomial Xm − c is irreducible in K[X].

PROOF. Let γ denote a root in C of the polynomial Xm−c. Then (IOK(γ ))
m = cOK(γ ) =

(γOK(γ ))
m, hence IOK(γ ) = γOK(γ ). Let ε be a unit of OK(γ ) with ε ∈ K∗〈γ 〉. Then

ε = aγ r for some a ∈ K∗ and 0 � r < m. So I r = (IOK(γ ))
r ∩ K = (γ )rOK(γ ) ∩ K =

(εa−1)OK(γ ) ∩ K = (a−1)OK(γ ) ∩ K = a−1OK = (a−1). Thus, I r is a principal frac-
tional ideal, hence its ideal class Cr is the identity class. Since ord(C) = m, it follows that
m | r , hence necessarily r = 0, and so, ε = a ∈ K∗. Now, proceed as in the proof of
Theorem 6.30 to deduce that K(γ )/K is a K∗〈γ 〉-Kneser extension. Therefore[

K(γ ) : K] = ∣∣K∗〈γ 〉/K∗∣∣ = ord(γ̂ ).

If n = ord(γ̂ ), then n | m, hence m = nt for some t ∈ N∗. On the other hand, we have
(c) = (γ )m = (γ n)t = Im = (In)t , which implies that In = (γ n), hence In is a principal
fractional ideal. As above, we deduce that m | n. Then m = n, and so [K(γ ) : K] = m.
We conclude that the polynomial Xm − c is irreducible in K[X]. �

Related to Hecke systems of ideal numbers a natural question arose: are the polynomials
Xhk − ck irreducible in K[X], where ck = γ

hk

k ∈ K? This problem was only mentioned
(but not settled) by Hasse [49, p. 544] as follows: “Auf die Frage nach der Irreduzibilität
der Polynome Xhk − ck über K wollen wir hier nicht eingehen”. The positive answer to
this question, due to Albu and Nicolae [18] and presented below, immediately follows from
Proposition 6.32.

COROLLARY 6.33. ([18].) With the notation above, the polynomials Xhk − ck are irre-
ducible in K[X] for every k, 1 � k � s, the fields K(γ1), . . . , K(γs) are linearly disjoint
over K , and there exists a canonical group isomorphism

K∗〈γ1, . . . , γs〉/K∗ ∼=
∏

1�i�s

(
K∗〈γi〉/K∗).

PROPOSITION 6.34. ([18].) Let K be an algebraic number field, let SK = K∗〈γ1, . . . , γs〉
be any Hecke system of ideal numbers of K , and let HK = K∗(γ1, . . . , γs) be its associated
Hecke field. Then HK/K is an SK -Kneser extension.

PROOF. The result follows at once from the proof of Theorem 6.30. �
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EXAMPLE. In general, the SK -Kneser extension HK/K is not necessarily SK -co-Galois.
To see that, consider the quadratic field K = Q(

√−87). Then OK = Z[(1 + √−87)/2]
and the class number h of K is 6. The decomposition of 3 as a product of prime ideals in
the ring OK is 3OK = (3,

√−87)2, and the prime ideal I = (3,
√−87) is not a principal

ideal of OK . Thus, the ideal class C1 of I in C�K has order 2, and I 2 = (3) = (−3). We
choose γ1 = √−3 as an ideal number of I . Since the group C�K is cyclic of order 6, it
contains an ideal class C2 of order 3. Then, we have necessarily C�K = 〈C1〉 ⊕ 〈C2〉. Let γ2

be an ideal number of an integral ideal I2 from the ideal class C2, that is, γ2 is one of the
complex roots of the polynomial X3 − c2 ∈ K[X], where c2 ∈ K∗ is such that I 3

2 = (c2).
Thus, the group K∗〈√−3, γ2〉 is a Hecke system of ideal numbers of K , and HK =

K(
√−3, γ2) is the associated Hecke field of K . By Proposition 6.34, the extension HK/K

is a K∗〈√−3, γ2〉-Kneser extension. Observe that exp(K∗〈√−3, γ2〉/K∗) = 6, 3 | 6 and
ζ3 = (−1 + √−3)/2 ∈ HK \ K , so the extension HK/K is not 6-pure. By the n-purity
criterion (Corollary 4.5), it follows that HK/K is not a K∗〈√−3, γ2〉-co-Galois extension.

The next result provides two cases when the extension HK/K is SK -co-Galois.

PROPOSITION 6.35. ([18].) Let K be an algebraic number field with class number h.
(1) If ζh ∈ K , then the extension K∗(γ1, . . . , γs)/K is K∗〈γ1, . . . , γs〉-co-Galois for

any choice of the Hecke system K∗〈γ1, . . . , γs〉 of ideal numbers of K .
(2) If K can be embedded into the field R, then there exists a Hecke system

K∗〈γ1, . . . , γs〉
of ideal numbers of K such that the extension K∗(γ1, . . . , γs)/K is K∗〈γ1, . . . , γs〉-
co-Galois.

PROOF. (1) If ζh ∈ K , then clearly μh(K
∗(γ1, . . . , γs)) ⊆ K . Since h = h1 · · · · · hs and

γ
hk

k = ck ∈ K for all k, 1 � k � s, we deduce that K∗(γ1, . . . , γs)/K is a generalized
h-Kummer extension. Now apply Theorem 5.25 to obtain the desired result.

(2) Without loss of generality, we may assume that K is a subfield of R. In the con-
struction of ideal numbers we may choose c1 > 0, . . . , cs > 0. For γk we choose the
positive real root of the polynomial Xhk − ck, 1 � k � s. Then, HK = K(γ1, . . . , γs)

is a subfield of R. Thus, HK/K is a pure extension, and, a fortiori, an n-pure extension,
where n = exp(K∗〈γ1, . . . , γs〉/K∗). By the n-purity criterion, we deduce that HK/K is
a K∗〈γ1, . . . , γs〉-co-Galois extension. �

Let A be a Dedekind ring with a finite ideal class group C�A of order h, and denote by L

its quotient field. Assume that the characteristic of L is not 2 and is relatively prime with h.
Then, we can perform mutatis-mutandis the construction presented at the beginning of this
subsection to define a Hecke system L∗〈γ1, . . . , γs〉 of ideal elements of L and a Hecke
field HL of L. One can show that the main part of the results of this subsection can be
extended from algebraic number fields K to such more general fields L.
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7. Connections with graded algebras and Hopf algebras

7.1. Kneser and G-co-Galois extensions via strongly graded algebras

In this subsection we describe the concepts of G-radical, G-Kneser, and G-co-Galois ex-
tensions in terms of graded ring theory.

Throughout this subsection all algebras are assumed to be associative with unit, and K

will denote a fixed commutative ring with nonzero identity element. If A is a K-algebra and
X, Y are subsets of A, then XY will denote the K-submodule of the underlying K-module
of the algebra A which is generated by the set {xy|x ∈ X, y ∈ Y }. For a K-module M and
a family (Mi)i∈I of submodules of M , the notation M = ⊕

i∈I Mi will mean throughout
this chapter that M is the internal direct sum of the independent family (Mi)i∈I of its
submodules, that is, any element x ∈ M can be uniquely expressed as x =∑i∈I xi , where
(xi)i∈I is a family of finite support, with xi ∈ Mi for every i ∈ I .

Let Γ be a multiplicative group with identity element e. Recall that a K-algebra A is
said to be a Γ -graded algebra if A = ⊕

γ∈Γ Aγ is a direct sum of K-submodules Aγ

of A, with AγAδ ⊆ Aγδ for every γ, δ ∈ Γ . A Γ -graded algebra A = ⊕
γ∈Γ Aγ is

said to be strongly graded if AγAδ = Aγδ for every γ, δ ∈ Γ . A (strongly) Γ -graded
ring is a (strongly) Γ -graded algebra over the ring Z of rational integers. A left module M

over the Γ -graded algebra A = ⊕
γ∈Γ Aγ is said to be a graded module (respectively a

strongly graded module) if M = ⊕
γ∈Γ Mγ is a direct sum of K-submodules Mγ of M ,

with AγMδ ⊆ Mγδ (respectively AγMδ = Mγδ) for every γ, δ ∈ Γ . The elements of
h(M) = ⋃

γ∈Γ Mγ are called homogeneous elements of M . Any element x ∈ M has a
unique decomposition x =∑γ∈Γ xγ , with xγ ∈ Mγ , γ ∈ Γ , where all but a finite number
of the xγ are zero; the elements xγ are called the homogeneous components of x.

DEFINITION. Let E/F be a field extension, and let Γ be a multiplicative group with iden-
tity element e. One says that E/F is a Γ -Clifford extension (respectively a strongly Γ -
graded extension) if there exists a family (Eγ )γ∈Γ of F -subspaces of the vector space FE

indexed by the group Γ , satisfying the following conditions.
(1) E =∑γ∈Γ Eγ (respectively E =⊕γ∈Γ Eγ ).
(2) EγEδ = Eγδ for every γ, δ ∈ Γ .
(3) Eγ = F ⇔ γ = e.

An element x ∈ E is said to be homogeneous of degree γ if x ∈ Eγ . The set of all nonzero
homogeneous elements of E will be denoted by Uh(E).

LEMMA 7.1. ([74,12].) The following statements hold for a Γ -Clifford extension E/F .
(1) If γ, δ ∈ Γ , then Eγ = Eδ ⇔ γ = δ.
(2) dimF (Eγ ) = 1 for all γ ∈ Γ . In particular, Eγ = Fx for every x ∈ E∗

γ .
(3) For every γ ∈ Γ let xγ ∈ E∗

γ be arbitrary. Then X = {xγ | γ ∈ Γ } is a set of
generators of the vector space FE, and [E : F ] � |Γ |. If E/F is a strongly Γ -
graded extension, then X is a basis of the vector space FE, and [E : F ] = |Γ |.
Conversely, if there exists a family (xγ )γ∈Γ ∈ ∏

γ∈Γ E∗
γ which is a basis of the

vector space FE, then E/F is a strongly Γ -graded extension.
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(4) If E/F is a finite extension, then E/F is a strongly Γ -graded extension if and only
if [E : F ] = |Γ |.

(5) The group Γ is Abelian.
(6) If Γ is a torsion group, then E/F is an algebraic extension.

EXAMPLE. The next example shows that, in general, the converse implication in

Lemma 7.1(6) does not hold. Let θ =
√

1 + √
2, F = Q and E = Q(θ). Then E/F

is a quartic extension, hence an algebraic extension, which is also a Z-Clifford exten-
sion with E = ∑

n∈Z
En,En = Fθn, n ∈ Z. Indeed, the only nontrivial fact is that

En = F ⇒ n = 0. But En = F ⇔ θn ∈ Q, which can happen only if n = 0 by the
example following Proposition 3.5 in Subsection 3.2. Thus, E/F is a Z-Clifford extension,
but Z is a torsion-free group.

For any Γ -Clifford extension E/F and any Δ � Γ we shall write EΔ := ∑
γ∈Δ Eγ .

Obviously, EΔ/F is a Δ-Clifford extension, which is strongly Δ-graded whenever the
extension E/F is strongly Γ -graded.

PROPOSITION 7.2. ([12].) The following assertions hold for a field extension E/F .
(1) Let G be a group with F ∗ � G � E∗. If E/F is a G-radical extension, then E/F

is a G/F ∗-Clifford extension.
(2) Conversely, if E/F is a Γ -Clifford extension for some torsion group Γ , then there

exists a group G such that F ∗ � G � E∗, Γ ∼= G/F ∗, E/F is G-radical, and
Uh(E) = G.

(3) If E/F is a G/F ∗-Clifford extension, where F ∗ � G � T (E/F) and Uh(E) ⊆ G,
then E/F is G-radical.

(4) Let G be a group with F ∗ � G � E∗. If E/F is a G-Kneser extension, then E/F

is a strongly G/F ∗-graded extension.
(5) Conversely, if E/F is a strongly Γ -graded extension for some torsion group Γ , then

there exists a group G such that F ∗ � G � E∗, Γ ∼= G/F ∗, E/F is G-Kneser, and
Uh(E) = G.

(6) If E/F is a strongly G/F ∗-graded extension, with F ∗ � G � T (E/F) and
Uh(E) ⊆ G, then E/F is G-Kneser.

The graded version of the concept of G-co-Galois extension is that of Γ -Clifford-co-
Galois extension we are going to introduce below. For any Γ -Clifford extension E/F with
E =∑γ∈Γ Eγ , and any intermediate field K of E/F we shall use the following notation:
ΓK = {γ ∈ Γ | Eγ ⊆ K}. Then clearly ΓK is a subgroup of Γ , hence it makes sense to
consider the order-preserving map

Φ : I(E/F) → L(Γ ), Φ(K) = ΓK.

We have also another order-preserving map

Ψ : L(Γ ) → I(E/F), Ψ (Δ) = EΔ =
∑
γ∈Δ

Eγ ,
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and the maps Φ and Φ define a co-Galois connection between the lattices I(E/F) and
L(Γ ).

PROPOSITION 7.3. ([12].) The following assertions are equivalent for a Γ -Clifford exten-
sion E/F with Γ a torsion group.

(1) Every subextension K/F of E/F is a strongly ΓK -graded extension.
(2) E/F is a strongly Γ -graded extension, and the map Φ : I(E/F) → L(Γ ),Φ(K) =

ΓK , is a lattice isomorphism.
(3) E/F is a strongly Γ -graded extension, and the maps

Φ : I(E/F) → L(Γ ),Φ(K) = ΓK,

Ψ : L(Γ ) → I(E/F), Ψ (Δ) = EΔ,

are isomorphisms of lattices, inverse to one another.
(4) E/F is a strongly Γ -graded extension, and every intermediate field K of E/F has

a vector space basis over F consisting of homogeneous elements.
(5) E/F is a strongly Γ -graded extension, and every intermediate field K of E/F is

obtained by adjoining to F a set of homogeneous elements of E.
(6) E/F is a strongly Γ -graded extension, and every nonzero element x ∈ E has its

homogeneous components in F(x).
(7) E/K is a strongly Γ/ΓK -graded extension for every intermediate field K of E/F .

DEFINITION. A field extension E/F is said to be Γ -Clifford-co-Galois if it a separable
Γ -Clifford extension which satisfies one of the equivalent conditions of Proposition 7.3.

PROPOSITION 7.4. ([12].) The following statements hold for a field extension E/F .
(1) If the extension E/F is G-co-Galois for some G with F ∗ � G � E∗, then E/F is

a G/F ∗-Clifford-co-Galois extension.
(2) Conversely, if E/F is a Γ -Clifford-co-Galois extension for some group Γ , then there

exists a uniquely determined group G such that F ∗ � G � E∗, Γ ∼= G/F ∗, E/F

is G-co-Galois, and Uh(E) = G.

The first of the next two results is the graded version of Theorem 4.13 on the uniqueness
of the Kneser group of a G-co-Galois field extension, while the second one is the graded
version of Theorem 4.14 concerning primitive elements of such field extensions.

COROLLARY 7.5. ([12].) Let E/F be a field extension which is simultaneously Γ -
Clifford-co-Galois and Δ-Clifford-co-Galois. Then the groups Γ and Δ are isomorphic.

We present below a series of results due to Ştefan [74] about Γ -Clifford extensions
with Γ a finite group, other than the ones that were extended by Albu [12] to arbitrary
Γ -Clifford extensions and presented above.

PROPOSITION 7.6. ([74].) Let E/F be a finite Γ -Clifford-co-Galois extension, let Λ be a
finite nonempty subset of Γ , and let {xλ | λ ∈ Λ} ⊆ Uh(E). Then

∑
λ∈Λ xλ is a primitive

element of the extension E/F if and only if 〈Λ〉 = Γ .
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PROPOSITION 7.7 (Graded version of the Kneser criterion [74]). The following assertions
are equivalent for a separable Γ -Clifford extension E/F with Γ a finite group of expo-
nent n.

(a) E/F is a strongly Γ -graded extension.
(b) For every p ∈ Pn and for every cyclic subgroup Δ of order p of Γ one has

[EΔ : F ] = p.
(c) For every odd prime p, ζp ∈ Uh(E) ⇒ ζp ∈ F , and 1 + ζ4 ∈ Uh(E) ⇒ ζ4 ∈ F .
(d) μp(E) ∩ Uh(E) ⊆ F and (1 + μ4(E)) ∩ Uh(E) ⊆ F .

PROPOSITION 7.8 (Graded version of the finite n-purity criterion [74]). A separable Γ -
Clifford extension E/F with Γ a finite group of exponent n is a Γ -Clifford-co-Galois
extension if and only if μp(E) = μp(F ) for all p ∈ Pn.

PROPOSITION 7.9. ([74].) Let E/F be a Galois Γ -Clifford-co-Galois extension with Γ a
finite group of exponent n. If n ∈ P or μn(E) = μn(F ), then Gal(E/F) ∼= Γ .

We strongly believe that infinite graded versions of the Kneser criterion and of the gen-
eral purity criterion for field extensions also hold.

We end this subsection by presenting a similar group-graded/coring approach in inves-
tigating co-Galois extensions E/F , finite or not, due to Masuoka [59]. Masuoka’s termi-
nology is slightly different from ours; for instance, if E/F is a field extension, finite or
not, and Γ is a torsion subgroup of the quotient group E∗/F ∗, then his notion of strongly
Γ -graded extension is our notion of a Γ -Clifford-co-Galois extension. Then, the concept
of coring is used to interpret the quotient group E∗/F ∗ for an arbitrary field extension
E/F as a group of group-like elements of the coring E ⊗ FE and to define the concepts
of (possibly infinite) coseparable and co-Galois field extension as follows.

Recall that if R is a ring with identity element 1, an R-coring is an (R,R)-bimodule
C together with (R,R)-bimodule maps ΔC :C → C ⊗R C called a coproduct and
εC :C → R called a counit, satisfying the usual coassociativity and left and right counit
conditions for Hopf algebras (see Brzeziński and Wisbauer [32]). A group-like element in
C is any element g ∈ C satisfying ΔC(g) = g ⊗ g and εC(g) = 1. We denote by Gr(C)

the set of all group-like elements of C.
If E/F is an arbitrary field extension, then E ⊗ FE has a natural structure of (E,E)-

bimodule and a E-coring structure defined by the following maps:

Δ :E ⊗F E → (E ⊗F E) ⊗E (E ⊗F E) = E ⊗F E ⊗F E,

Δ(x ⊗ y) = x ⊗ 1 ⊗ y,

ε :E ⊗F E → E, ε(x ⊗ y) = xy.

The F -algebra structure on E ⊗ FE makes Gr(E ⊗ FE) a group. A nice interpretation of
this group, due to Masuoka [59], is the following: the map

E∗/F ∗ → Gr(E ⊗ FE), xF ∗ �→ x−1 ⊗ x,

is a group isomorphism.
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For any subgroup Γ of Gr(E ⊗ FE), a canonical E-algebra morphism

ΘΓ :E[Γ ] → E ⊗ FE

is induced by the inclusion map of Γ into the group of units of E ⊗ FE, where
E ⊗ FE is viewed as an E-algebra via the map E → E ⊗ FE, x �→ x ⊗ 1. Ma-
suoka [59] calls the field extension E/F coseparable (respectively co-Galois) if the map
ΘCog(E/F) :E[Cog(E/F)] → E⊗FE is surjective (respectively bijective). It turns out that
the co-Galois (respectively coseparable) extensions in Masuoka’s sense are precisely the
co-Galois (respectively radical) extensions in the usual sense. Proofs in this coring setting
of Theorems 3.2, 3.3, Proposition 3.5, and Corollary 4.4 are also given in [59].

Now, if E/F is a Galois extension with Δ = Gal(E/F) then the canonical E-algebra
isomorphism E ⊗ FE

∼→ Mapc(Δ,E), x ⊗ y �→ (σ �→ xσ(y)), where Mapc(Δ,E) is
the E-algebra of all continuous maps from the profinite group Δ into the discrete space E,
induces a group isomorphism E∗/F ∗ ∼= Gr(E ⊗ FE) ∼= Z1

c (Δ,E∗), and hence, by tak-
ing the torsion part we retrieve the group isomorphism Cog(E/F) ∼= Z1

c (Δ,μ(E)) from
Theorem 5.5.

7.2. Kneser and co-Galois extensions via Hopf algebras

In this subsection we show that a G-Kneser extension E/F is nothing else than a field
extension E/F such that E is a Galois H -object, where H is the group algebra F [G/F ∗].
Since an extension E/F is co-Galois if and only if it is T (E/F)-Kneser, one obtains a
similar description for co-Galois extensions.

Throughout this subsection K will denote a fixed field, and H will denote a K-Hopf
algebra. Tensor products are assumed to be over K , unless stated otherwise. We shall de-
note by K-Mod the category of all K-vector spaces. For the standard concepts and facts of
Hopf algebras presented in this subsection the reader is referred to Sweedler [77], Mont-
gomery [61], Caenepeel [33], and/or Dăscălescu, Năstăsescu, and Raianu [38]. In partic-
ular, if (C,Δ, ε) is a K-coalgebra, then for any right C-comodule M with structure map
ρ :M → M⊗C and any m ∈ M , we shall also use the sigma notation: ρ(m) =∑m0⊗m1.
If A is a right H -comodule algebra then by MH

A we will denote the category of all right
(H,A)-Hopf modules.

DEFINITION. A Galois H -object is a right H -comodule algebra A such that the map

γ :A ⊗ A → A ⊗ H, γ (a ⊗ b) =
∑

ab0 ⊗ b1, a, b ∈ A,

is bijective.

THEOREM 7.10. ([33].) The following statements are equivalent for a K-Hopf algebra H

with bijective antipode and for a right H -comodule algebra A.
(1) A is a Galois H -object.
(2) The functors F and G defined by

F :K-Mod → MH
A , F (X) = A ⊗ X,X ∈ K-Mod,
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G :MH
A → K-Mod, G(M) = McoH ,M ∈ MH

A ,

are inverse equivalences, or equivalently, for all X ∈ K-Mod and all M ∈ MH
A , the

natural maps

X → G
(
F(X)

) = (A ⊗ X)coH , x �→ 1 ⊗ x,

F
(
G(M)

) = A ⊗ McoH → M, a ⊗ m �→ m · a,
are isomorphisms.

Moreover, if (1) or (2) holds, then AcoH = K .

COROLLARY 7.11. Let A be a Galois H -object. Then, for any M ∈ MH
A , the map

Subobjects(M) → Subspaces
(
McoH ), N �→ NcoH ,

is a lattice isomorphism.

LEMMA 7.12. Let G be a group, and let M be a K-vector space. Assume that there exists
a family (Mg)g∈G of K-subspaces of M such that M =∑g∈G Mg . Then,

ρ : M → M ⊗K K[G], x �→ x ⊗ g,

for all x ∈ Mg is a well-defined map if and only if M = ⊕
g∈G Mg , and in this case M

is a right K[G]-comodule via the linear map ρ. Conversely, if the K-vector space M is a
right K[G]-comodule, then M is a G-graded K-vector space, that is, M =⊕g∈G Ng is a
direct sum of K-subspaces Ng , g ∈ G.

PROOF. Assume that ρ is a well-defined map, and let g ∈ G. If m ∈ Mg ∩∑h∈G\{g} Mh,
then m = ∑

h∈G\{g} mh with mh ∈ Mh. Apply ρ to both sides of this equality, and then
apply 1M ⊗pg to both sides to obtain m⊗1 = 0, where pg :K[G] → K denotes the linear
map defined by pg(

∑
h∈G khh) = kg . This implies that m = 0, hence M = ⊕

g∈G Mg .
Conversely, if M =⊕g∈G Mg , then clearly ρ is a well-defined linear map. It can be easily
checked that the map ρ endows M with a structure of right K[G]-comodule, and any right
K[G]-comodule is a G-graded K-vector space. �

PROPOSITION 7.13. The following assertions hold for an arbitrary group G and a K-
vector space A.

(1) A is a right K[G]-comodule algebra if and only if A is a G-graded K-algebra.
(2) A is a Galois K[G]-object if and only if A is a strongly G-graded K-algebra and

Ae = K .

COROLLARY 7.14. ([12].) Let E/F be a G-radical field extension. Then, the assignment
E → E ⊗ F [G/F ∗], x �→ x ⊗ ĝ, for all x ∈ Fg and g ∈ G is a well-defined map which
endows E with a structure of F [G/F ∗]-comodule if and only if E =⊕ĝ∈G/F ∗ Fg. In this
case, E is a right F [G/F ∗]-comodule algebra.

We are now in a position to present the relationships of Kneser and co-Galois field
extensions with Hopf algebras.
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THEOREM 7.15. ([12].) The following assertions are equivalent for a G-radical field ex-
tension E/F .

(1) E/F is a G-Kneser extension.
(2) E is a Galois F [G/F ∗]-object via the comodule structure given by the map

E → E ⊗ F [G/F ∗], x �→ x ⊗ ĝ,

for all x ∈ Fg and g ∈ G.

PROOF. (1) ⇒ (2): By Proposition 7.2(4), E/F is a strongly G/F ∗-graded extension
via the decomposition E = ⊕

ĝ∈G/F ∗ Eĝ , with Eĝ = Fg for every g ∈ G. Since E1̂ =
F1 = F , we deduce by Proposition 7.13(2) that E is a Galois F [G/F ∗]-object.

(2) ⇒ (1): Again, by Proposition 7.13(2), and using also Corollary 7.14, we deduce that
the extension E/F is strongly G/F ∗-graded. Now, apply Proposition 7.2(6) to deduce that
E/F is G-Kneser. �

COROLLARY 7.16. ([12].) The following assertions are equivalent for a field extension
E/F .

(1) E/F is a co-Galois extension.
(2) E is a Galois F [Cog(E/F)]-object with respect to the comodule structure given

by the linear map E → E ⊗ F [Cog(E/F)], x �→ x ⊗ ĝ, for all x ∈ Fg and
g ∈ T (E/F).

PROOF. The result follows at once from Theorem 7.15, since Cog(E/F) = T (E/F)/F ∗,
and by definition, an extension E/F is co-Galois if and only if it is T (E/F)-Kneser. �

Next, we present the concept of an H -Galois extension, as well as its connection with
that of Galois H -object.

DEFINITION. If A is a right H -comodule algebra, then we say that AcoH ⊂ A is an H -
extension. The H -extension AcoH ⊂ A is said to be an H -Galois extension if the map
β :A ⊗AcoA H → A ⊗K H , a ⊗ b �→ ab0 ⊗ b1, is bijective.

PROPOSITION 7.17. ([33].) Let H be a K-Hopf algebra, and suppose that the antipode
of H is bijective. Then, the following statements hold for a right H -comodule algebra A.

(1) If A is a Galois H -object, then K = AcoH ⊂ A is an H -Galois extension.
(2) If AcoH ⊂ A is an H -Galois extension and AcoH = K , then A is a Galois H -object.

We end this subsection by examining the connection between classical Galois field ex-
tensions and H -Galois extensions.

LEMMA 7.18. ([38].) Let H be any finite-dimensional K-Hopf algebra, and let A be any
K-algebra. Then A is a right H -comodule algebra if and only if A is a left H ∗-module
algebra. Moreover, in this case we have AH ∗ = AcoH .
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In particular, if E/F is any field extension, and G � Gal(E/F) is any finite group of
F -automorphisms of E, then it is easily verified that E is a left F [G]-module algebra.
Consequently, by Lemma 7.18, E is a right F [G]∗-comodule algebra and EcoF [G]∗ =
EF [G] = Fix(G).

PROPOSITION 7.19. ([12].) The following assertions are equivalent for a field extension
E/F and a finite group G with G � Gal(E/F).

(1) E/F is a Galois field extension with G = Gal(E/F).
(2) E is a Galois F [G]∗-object.
(3) F ⊂ E is an F [G]∗-Galois extension and F = Fix(G).

Note that the concept of Galois H -coobject is defined and investigated in the theory of
Hopf algebras and is the formal dual of the Galois H -object (see, e.g., Caenepeel [33, Sec-
tion 8.7]). It is not clear how this concept is related to that of co-Galois field extension. Also
we do not know how it can be expressed via Hopf algebras that field extension is G-co-
Galois. Finally, let us mention that a Hopf–Galois correspondence for division F -algebras
via corings and Hopf algebras, generalizing the equivalence (3) ⇔ (4) in Proposition 7.3
expressed in a slightly modified terminology, can be found in Masuoka [59].

8. Abstract co-Galois theory

8.1. Notation and preliminaries

Throughout this last part of the chapter Γ will denote a fixed profinite group with identity
element denoted by 1, and A will always be a fixed subgroup of the Abelian group Q/Z
such that Γ acts continuously on A endowed with the discrete topology, i.e., A is a discrete
Γ -module. For any r ∈ Q, the coset of r in the quotient group Q/Z will be denoted by r̂ .
The action of σ ∈ Γ on a ∈ A will be denoted by σa. The set of all elements of A invariant
under the action of Γ will be denoted by AΓ .

If n ∈ N∗ and D is an Abelian torsion group, then we shall use the notation D[n] :=
{x ∈ D | nx = 0}. For any p ∈ P we denote by D(p) the p-primary component of D.
Recall that OD is the set of all n ∈ N∗ for which there exists an x ∈ D of order n, i.e.,
D[n] has exponent n.

For any topological group T and any subgroup U of T we denote by L(T |U) (respec-
tively L(T |U)) the lattice of all subgroups (respectively closed subgroups) of T lying
over U . If X ⊆ T , then X will denote the closure of X. For a subgroup U of T we
shall denote by T/U the set {tU | t ∈ T } of all left cosets of U in T .

Recall that a crossed homomorphism (or a 1-cocycle) of Γ with coefficients in A is a
map f :Γ → A such that f (στ) = f (σ ) + σf (τ), σ, τ ∈ Γ . The set of all continuous
crossed homomorphisms of Γ with coefficients in A is an Abelian group, which will be
denoted by Z1

c (Γ,A). Note that, in fact, Z1
c (Γ,A) is a torsion group. Indeed, since Γ is a

profinite group and A is a discrete space, a map h :Γ → A is continuous if and only if h

is locally constant, that is, there exists an open normal subgroup Δ (in particular, of finite
index) in Γ such that h factorizes through the canonical surjection Γ → Γ/Δ. Since A
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is a torsion group, it follows now that for any continuous map h :Γ → A there exists an
n ∈ N∗ such that h(Γ ) ⊆ (1/n)Z/Z, and then nh = 0, i.e., h has finite order.

Elements of Z1
c (Γ,A) will be denoted by f, g, h. Always G,H will denote subgroups

of Z1
c (Γ,A) and Δ a subgroup of Γ . For every a ∈ A we shall denote by fa the 1-

coboundary fa :Γ → A, defined as fa(σ ) = σa − a, σ ∈ Γ . The set B1(Γ,A) :=
{fa | a ∈ A} is a subgroup of Z1

c (Γ,A). The quotient group Z1
c (Γ,A)/B1(Γ,A) is called

the first cohomology group of Γ with coefficients in A, and is denoted by H 1
c (Γ,A). As

in Subsection 5.2, we can consider the evaluation map

〈-,-〉 :Γ × Z1
c (Γ,A) → A, 〈σ, h〉 = h(σ ).

For any Δ � Γ , G � Z1
c (Γ,A), g ∈ Z1

c (Γ,A), and γ ∈ Γ we write

Δ⊥ = {h ∈ Z1
c (Γ,A) | 〈σ, h〉 = 0,∀σ ∈ Δ

}
,

G⊥ = {σ ∈ Γ | 〈σ, h〉 = 0,∀h ∈ G
}
,

g⊥ = {σ ∈ Γ | 〈σ, g〉 = 0
}
,

γ⊥ = {h ∈ Z1
c (Γ,A) | 〈γ, h〉 = 0

}
.

Then Δ⊥ � Z1
c (Γ,A), G⊥ � Γ , and g⊥ = 〈g〉⊥. Observe that g⊥ is the set of zeroes of

the continuous map g from Γ to the discrete group A, hence it is an open subgroup of Γ .
Since G⊥ =⋂g∈G g⊥, it follows that G⊥ ∈ L(Γ ).

The group Z1
c (Γ,A) is clearly a discrete left Γ -module with respect to the following

action: (σh)(τ ) = σh(σ−1τσ ), σ, τ ∈ Γ, h ∈ Z1
c (Γ,A). If σ ∈ Γ and G ∈ L(Z1

c (Γ,A)),
then (σG)⊥ = σG⊥σ−1. For any Δ ∈ L(Γ ) we denote by

resΓΔ :Z1
c (Γ,A) → Z1

c (Δ,A), h �→ h|Δ,

the restriction map.
The next result lists the main properties of the assignments (-)⊥.

PROPOSITION 8.1. ([15].) The following assertions hold.
(1) The maps

L(Z1
c (Γ,A)) → L(Γ ), G �→ G⊥,

L(Γ ) → L
(
Z1

c (Γ,A)
)
, Δ �→ Δ⊥,

establish a Galois connection between the lattices L(Z1
c (Γ,A)) and L(Γ ), i.e., they

are order-reversing maps and X � X⊥⊥ for any element X of L(Z1
c (Γ,A)) or

L(Γ ).
(2) Δ⊥ = Δ⊥ = Ker(resΓΔ) and (resΓΔ(G))⊥ = G⊥ ∩ Δ for any Δ ∈ L(Γ ),

G ∈ Z1
c (Γ,A).

(3) (G1 +G2)
⊥ = G⊥

1 ∩G⊥
2 and Δ⊥

1 ∩Δ⊥
2 = 〈Δ1 ∪Δ2〉⊥ for any G1,G2 ∈ Z1

c (Γ,A),
Δ1,Δ2 ∈ L(Γ ).

The natural continuous action of Γ on the profinite Abelian group ̂Z1
c (Γ,A) induces

a canonical continuous 1-cocycle η : Γ → ̂Z1
c (Γ,A) that we are going to define be-

low, and which will play a key role in the remaining pages of this chapter. First note that
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̂Z1
c (Γ,A) := Hom(Z1

c (Γ,A),Q/Z) = Hom(Z1
c (Γ,A),A). Indeed, for any ϕ ∈ ̂Z1

c (Γ,A)

and for any g ∈ Z1
c (Γ,A), we have ϕ(g) ∈ (1/n)Z/Z, where n = ord(g). On the

other hand, as n is the lcm of the orders of g(σ ) for σ ∈ Γ , one easily deduces that

(1/n)Z/Z ⊆ A, and hence ϕ(g) ∈ A, as required. The Abelian profinite group ̂Z1
c (Γ,A)

becomes a topological Γ -module via the canonical continuous action of the profinite

group Γ given by (σϕ)(g) = σϕ(g),∀σ ∈ Γ, ϕ ∈ ̂Z1
c (Γ,A), g ∈ Z1

c (Γ,A). We have
̂̂

Z1
c (Γ,A) = HomΓ ( ̂Z1

c (Γ,A),A), i.e., any continuous morphism χ : ̂Z1
c (Γ,A) → Q/Z

takes values in A and is also a morphism of Γ -modules. Indeed, the canonical mor-

phism α :Z1
c (Γ,A) → ̂̂

Z1
c (Γ,A) defined by α(g)(ϕ) = ϕ(g) for g ∈ Z1

c (Γ,A) and

ϕ ∈ ̂Z1
c (Γ,A) = Hom(Z1

c (Γ,A),A) is an isomorphism by Pontryagin duality, and hence

for χ ∈ ̂̂
Z1

c (Γ,A), σ ∈ Γ , and ϕ ∈ ̂Z1
c (Γ,A) we have χ(σϕ) = (σϕ)(α−1(χ)) =

σϕ(α−1(χ)) = σχ(ϕ), as required.
For any subgroup G of Z1

c (Γ,A) set XG = Z1
c (Γ,A)/G. Then observe that X̂G =

Hom(XG,A) is identified with a closed subgroup of ̂Z1
c (Γ,A), stable under the action

of Γ , so the quotient ̂Z1
c (Γ,A)/X̂G

∼= Ĝ = Hom(G,A) is also a topological Γ -module,

and ̂̂G = HomΓ (Ĝ, A). Now consider the map

η :Γ → ̂Z1
c (Γ,A), η(σ )(g) = 〈σ, g〉 = g(σ ), σ ∈ Γ, g ∈ Z1

c (Γ,A),

and for any G � Z1
c (Γ,A), let ηG : Γ → Ĝ denote the map obtained from η by composing

it with the canonical epimorphism of topological Γ -modules

res
Z1

c (Γ,A)

G : ̂Z1
c (Γ,A) → Ĝ, ϕ �→ ϕ|G.

PROPOSITION 8.2. ([15].) For any G � Z1
c (Γ,A), the map ηG :Γ → Ĝ defined by

ηG(σ)(g) = g(σ ), σ ∈ Γ, g ∈ G, is a continuous 1-cocycle satisfying the follow-
ing universality property: for every g ∈ G there exists a unique continuous morphism
χ : Ĝ → A such that χ ◦ ηG = g.

PROOF. One easily checks that ηG is a continuous 1-cocycle, so χ ◦ ηG ∈ Z1
c (Γ,A) for

all χ ∈ ̂̂G = HomΓ (Ĝ, A). Thus, it is sufficient to show that the canonical morphism
βG : ̂̂G → Z1

c (Γ,A), χ �→ χ ◦ ηG, takes values in G and is the inverse of canonical

isomorphism αG = α|G :G → ̂̂G given by Pontryagin duality. The equality βG ◦ αG =
1G is obvious, so it remains only to check that βG is injective. Let χ ∈ ̂̂G be such that
βG(χ) = 0, and let g = α−1

G (χ). For all σ ∈ Γ we have

0 = βG(χ)(σ ) = χ
(
ηG(σ)

) = αG(g)
(
ηG(σ)

) = ηG(σ)(g) = g(σ ),

so g = 0, and hence χ = αG(g) = 0, as desired. �
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8.2. Kneser groups of cocycles

In this subsection we define the concept of an abstract Kneser group, present the main
properties of these groups, and establish an abstract version of the field theoretic Kneser
criterion (Theorem 3.2).

LEMMA 8.3. ([15].) If G is a finite subgroup of Z1
c (Γ,A), then (Γ : G⊥) � |G|.

PROOF. The canonical cocycle ηG :Γ → Ĝ defined above, induces an injective map
Γ/G⊥ → Ĝ, so (Γ : G⊥) � |Ĝ| = |G|. �

DEFINITION. A subgroup G of Z1
c (Γ,A) is called a Kneser group in Z1

c (Γ,A) if the
canonical continuous cocycle ηG :Γ → Ĝ is onto.

From Lemma 8.3 we deduce that a finite subgroup G of Z1
c (Γ,A) is a Kneser group of

Z1
c (Γ,A) if and only if (Γ : G⊥) = |G|. We shall denote by K(Γ,A) the set of all Kneser

groups of Z1
c (Γ,A), partially ordered by inclusion, with {0} as the least element.

LEMMA 8.4. ([15].) If G ∈ K(Γ,A), then H ∈ K(Γ,A) for any H � G; in other words,
K(Γ,A) is a lower subset of the poset L(Z1

c (Γ,A)).

PROOF. Since ηH is obtained from ηG by composing it with the canonical epimorphism
resGH : Ĝ → Ĥ , ϕ �→ ϕ|H , and ηG is onto by assumption, it follows that the cocycle ηH is
onto too, so H ∈ K(Γ,A). �

PROPOSITION 8.5. ([15].) If G ∈ K(Γ,A), then the map L(G) → L(Γ ),H �→ H⊥, is
injective. In particular, H = G ∩ H⊥⊥ for every H ∈ L(G).

PROOF. Let H1,H2 ∈ L(G) be such that H⊥
1 = H⊥

2 . We have to show that H1 = H2.
Since (H1 + H2)

⊥ = H⊥
1 ∩ H⊥

2 = H⊥
1 = H⊥

2 , we may assume from the beginning that
H2 � H1. By Lemma 8.4, Hi ∈ K(Γ,A), i = 1, 2, and hence, the map Γ/H⊥

i → Ĥi

induced by the surjective cocycle ηHi
is bijective for i = 1, 2. As ηH2 = resH1

H2
◦ηH1 and

H⊥
1 = H⊥

2 by assumption, it follows that resH1
H2

: Ĥ1 → Ĥ2 is an isomorphism, and hence
H1 = H2 by Pontryagin duality. The last part of the statement is now immediate since
(G ∩ H⊥⊥)⊥ = H⊥ for any H ∈ L(G). �

COROLLARY 8.6. ([15].) If Z1
c (Γ,A) ∈ K(Γ,A), then the canonical map

L(Z1
c (Γ,A)) → L(Γ ) is injective, and H = H⊥⊥ for every H ∈ L(Z1

c (Γ,A)), i.e.,
every H ∈ L(Z1

c (Γ,A)) is a closed element of the Galois connection described in Propo-
sition 8.1(1).

The next statement shows that the property of a subgroup of Z1
c (Γ,A) being Kneser is

of finite character.
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PROPOSITION 8.7. ([15].) If G � Z1
c (Γ,A), then G ∈ K(Γ,A) ⇔ H ∈ K(Γ,A) for

every finite subgroup H of G.

PROOF. By Lemma 8.4, we have only to prove “⇐”. By assumption, the continuous co-
cycle ηH :Γ → Ĥ is onto for any finite subgroup H of G. We are going to show that the
continuous cocycle ηG :Γ → Ĝ is also onto. Let ϕ ∈ Ĝ. Since the family (η−1

H (ϕ|H ))H
of nonempty closed subsets of Γ , for H ranging over all finite subgroups of G, has the
finite intersection property, it follows by compactness that S :=⋂H η−1

H (ϕ|H ) �= ∅. Con-
sequently, ηG(σ) = ϕ for all σ ∈ S, as ηG is the projective limit of the projective system
of maps (ηH )H . Thus ηG is onto, and so G ∈ K(Γ,A), as desired. �

Using Proposition 8.7 and Zorn lemma, it follows that for any G ∈ K(Γ,A) there exists
a maximal Kneser group lying over G.

COROLLARY 8.8. ([15].) Z1
c (Γ,AΓ ) = Homc(Γ,AΓ ) ∈ K(Γ,A). In particular, if the

action of Γ on A is trivial, then Z1
c (Γ,A) = Homc(Γ,A) ∈ K(Γ,A).

PROOF. By Proposition 8.7, we have to show that G ∈ K(Γ,A) for any finite subgroup
G of Z1

c (Γ,AΓ ) = Homc(Γ,AΓ ). For any such G it follows that G⊥ = ⋂
g∈G Ker(g)

is an open normal subgroup of Γ , the quotient Γ/G⊥ is a finite Abelian group, and G

can be embedded into Hom(Γ/G⊥, AΓ ) � Hom(Γ/G⊥,Q/Z) = Γ̂ /G⊥ ∼= Γ/G⊥.
Consequently, (Γ : G⊥) � |G| � (Γ : G⊥) by Lemma 8.3, which shows that G ∈
K(Γ,A). �

The next two results investigate when an internal direct sum of Kneser subgroups of a
given subgroup G of Z1

c (Γ,A) is also Kneser.

PROPOSITION 8.9. ([15].) Let G � Z1
c (Γ,A), and assume that G is an internal direct

sum of a finite family (Gi)1�i�n of finite subgroups. If gcd(|Gi |, |Gj |) = 1 for all i �= j

in {1, . . . , n}, then

G ∈ K(Γ,A) ⇔ Gi ∈ K(Γ,A), ∀i, 1 � i � n.

PROOF. If every Gi is a Kneser group of Z1
c (Γ,A), then, |G| = ∏

1�i�n |Gi | =∏
1�i�n(Γ : G⊥

i ). Since G⊥ � G⊥
i , it follows that (Γ : G⊥

i ) | (Γ : G⊥) for all

i = 1, . . . , n. But (Γ : G⊥
i ) = |Gi | are mutually relatively prime by hypothesis, hence∏

1�i�n(Γ : G⊥
i ) | (Γ : G⊥), and so, |G| | (Γ : G⊥). On the other hand, (Γ : G⊥) � |G|

by Lemma 8.3, which implies that |G| = (Γ : G⊥), i.e., G is a Kneser group. �

REMARK. In general, an internal direct sum of two nonzero Kneser subgroups of
Z1

c (Γ,A) is not necessarily Kneser, as the following example shows. Let Γ = D6 =
〈σ, τ | σ 2 = τ 3 = (στ)2 = 1〉, and let A = (1/3)Z/Z with the action defined by
σa = −a, τa = a for a ∈ A. The map Z1

c (Γ,A) → A × A, g �→ (g(σ ), g(τ )),

is a group isomorphism. Let g, h ∈ Z1
c (Γ,A) be defined by g(σ ) = 0, h(σ ) = 1̂/3,
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g(τ) = h(τ) = 1̂/3. Then, it is easily verified that Z1
c (Γ,A) has two independent Kneser

subgroups of order 3, namely, G = 〈g〉 and H = 〈h〉, whose (internal direct) sum is not
Kneser since |Γ | = 6 < 9 = |G ⊕ H |.

The next result is the local–global principle for Kneser groups.

COROLLARY 8.10. ([15].) A subgroup G of Z1
c (Γ,A) is a Kneser group if and only if

every one of its p-primary components G(p) is a Kneser group.

PROOF. For the nontrivial implication, assume that G(p) ∈ K(Γ,A) for all p ∈ P. By
Proposition 8.7, we have to prove that any finite subgroup H of G is Kneser. Then H(p) =
G ∩ G(p), so H(p) is a Kneser group of Z1

c (Γ,A) for all p ∈ P. If

I := {p ∈ P | H(p) �= 0
}
,

then H = ⊕
p∈I

H(p). Now, observe that I is finite and gcd(|H(p)|, |H(q)|) = 1 for all
p �= q ∈ I. Hence H is a Kneser group by Proposition 8.9. �

We are now going to present the main result of this subsection, namely an abstract ver-
sion of the (field theoretic) Kneser criterion (Theorem 3.2). To do that, we introduce some
basic notation which will be used in the sequel.

Let N (Γ,A) denote the set (possibly empty) L(Z1
c (Γ,A)) \ K(Γ,A) of all subgroups

of Z1
c (Γ,A) which are not Kneser groups. Clearly, for any G ∈ N (Γ,A) there exists at

least one minimal member H of N (Γ,A) such that H ⊆ G. By N (Γ,A)min we shall
denote the set of all minimal members of N (Γ,A). By Proposition 8.7 and Corollary 8.10,
if G ∈ N (Γ,A)min, then necessarily G is a nontrivial finite p-group for some prime
number p.

If p ∈ P, p > 2, and 1̂/p ∈ A\AΓ , define the 1-coboundary εp ∈ B1(Γ, (1/p)Z/Z) �
B1(Γ,A) by εp(σ ) = σ 1̂/p − 1̂/p, σ ∈ Γ . If 1̂/4 ∈ A \ AΓ , define the map
ε′

4 : Γ → (1/4)Z/Z by

ε′
4(σ ) =

{
1̂/4 if σ 1̂/4 = −1̂/4,

0̂ if σ 1̂/4 = 1̂/4.

It is easily checked that ε′
4 ∈ Z1

c (Γ, (1/4)Z/Z) � Z1
c (Γ,A). Observe that ε′

4 has order 4
and ε4 := 2ε′

4 is the generator of the cyclic group B1(Γ, (1/4)Z/Z) � Homc(Γ,A[2]) of
order 2.

In the sequel we shall use the following notation: P(Γ,A) = {p ∈ P | 1̂/p ∈ A \ AΓ },
where, as usual, P = (P \ {2}) ∪ {4}. We shall also use the following notation:

Bp = B1(Γ, (1/p)Z/Z
) = B1(Γ,A[p]) = 〈εp〉

∼= Z/pZ if 4 �= p ∈ P(Γ,A),

B4 = 〈ε′
4〉 ∼= Z/4Z if 4 ∈ P(Γ,A).

We are now in a position to present a crucial result in abstract co-Galois theory; for its
very technical proof, see [15].
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LEMMA 8.11. ([15].) In the notation from above N (Γ,A)min = {Bp | p ∈ P(Γ,A)}.

The next statement, which is an equivalent form of Lemma 8.11, is an abstract version
of the Kneser criterion (Theorem 3.2) from field theoretic co-Galois theory. Note that the
place of the primitive p-th roots of unity ζp, p odd prime, from the Kneser criterion is
taken in its abstract version by εp, while ε′

4 corresponds to 1 − ζ4.

THEOREM 8.12 (Abstract Kneser criterion [15]). A subgroup G of Z1
c (Γ,A) is Kneser if

and only if εp /∈ G whenever 4 �= p ∈ P(Γ,A) and ε′
4 /∈ G whenever 4 ∈ P(Γ,A).

PROOF. Assume that G ∈ K(Γ,A). If εp ∈ G for some 4 �= p ∈ P(Γ,A), then
Bp = 〈εp〉 � G, hence Bp ∈ K(Γ,A), which contradicts Lemma 8.11. Similarly, if
4 ∈ P(Γ,A) and ε′

4 ∈ G then B4 = 〈ε′
4〉 � G, hence B4 ∈ K(Γ,A), which again

contradicts Lemma 8.11.
Assume that G /∈ K(Γ,A), i.e., G ∈ N (Γ,A). Then G contains a minimal member of

N (Γ,A), i.e., an element of the set N (Γ,A)min. To conclude, apply again Lemma 8.11. �

COROLLARY 8.13. ([15].) The following assertions are equivalent for G � Z1
c (Γ,A).

(1) G ∈ K(Γ,A) and G = G⊥⊥.
(2) G⊥ �⊆ ε⊥

p for all p ∈ P(Γ,A).

PROOF. Observe that condition (1) is equivalent to G⊥⊥ ∈ K(Γ,A). On the other hand,
by Theorem 8.12, G⊥⊥ ∈ K(Γ,A) if and only if εp /∈ G⊥⊥ whenever 4 �= p ∈ P(Γ,A)

and ε′
4 /∈ G⊥⊥ whenever 4 ∈ P(Γ,A). Since ε⊥

4 = ε′ ⊥
4 = B⊥

4 if 4 ∈ P(Γ,A), and
ε ∈ G⊥⊥ ⇔ G⊥ ⊆ ε⊥, the result follows. �

COROLLARY 8.14. ([15].) Z1
c (Γ,A) is a Kneser group of itself if and only if P(Γ,A) = ∅,

i.e., A[p] ⊆ AΓ for all p ∈ P .

8.3. Co-Galois groups of cocycles

In this subsection we define the concept of an abstract co-Galois group and establish var-
ious equivalent characterizations for such groups, including a quasi-purity criterion, an
abstract version of the structure theorem for Kneser groups from field theoretic co-Galois
theory, and an analogue of the abstract Kneser criterion (Theorem 8.12) for co-Galois
groups.

For a given subgroup G of Z1
c (Γ,A), the lattice L(G) of all subgroups of G and the lat-

tice L(Γ |G⊥) of all closed subgroups of Γ lying over G⊥ are related through the canonical
order-reversing maps H �→ H⊥ and Δ �→ G ∩ Δ⊥ = G ∩ Ker(resΓΔ). Clearly, these two
maps establish a Galois connection, which is induced by the one considered in Proposi-
tion 8.1(1).
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DEFINITION. A subgroup G of Z1
c (Γ,A) is said to be a co-Galois group of Z1

c (Γ,A) if it
is a Kneser group of Z1

c (Γ,A) and the maps

(-)⊥ : L(G) → L(Γ |G⊥) and G ∩ (-)⊥ : L(Γ |G⊥) → L(G)

are lattice anti-isomorphisms inverse to one another.

Some characterizations of co-Galois groups of Z1
c (Γ,A) are given in the next result.

PROPOSITION 8.15. ([15].) The following statements are equivalent for a Kneser group
G of Z1

c (Γ,A).
(1) Δ = (G ∩ Δ⊥)⊥ for every Δ ∈ L(Γ |G⊥).
(2) resΓΔ(G) ∈ K(Δ,A) for every Δ ∈ L(Γ |G⊥).
(3) The map L(G) → L(Γ |G⊥),H �→ H⊥, is onto.
(4) The map L(Γ |G⊥) → L(G),Δ �→ G ∩ Δ⊥, is injective.
(5) G is a co-Galois group of Z1

c (Γ,A).

As Γ ∈ L(Γ |G⊥) for every G � Z1
c (Γ,A) and P(Δ,A) ⊆ P(Γ,A) for all Δ ∈ L(Γ ),

the next result follows immediately from Proposition 8.15 and Corollary 8.14.

COROLLARY 8.16. ([15].) A subgroup G of Z1
c (Γ,A) is co-Galois if and only if resΓΔ(G)

is a Kneser group of Z1
c (Δ,A) for every Δ ∈ L(Γ |G⊥). In particular, Z1

c (Γ,A) is a
co-Galois group of itself if and only if Z1

c (Γ,A) is a Kneser group of itself.

DEFINITION. A subgroup D of an Abelian group C is said to be quasi-n-pure, where
n ∈ N∗, if C[n] ⊆ D. For ∅ �= M ⊆ N∗, C is called quasi-M-pure if C is quasi-n-pure
for all n ∈ M .

A well-established concept in group theory is that of n-purity: a subgroup D of an
Abelian group C is said to be n-pure if D∩nC = nD. There is no connection between the
concepts of n-purity and quasi-n-purity; e.g., the subgroup 2Z/4Z of Z4 is quasi-2-pure
but not 2-pure, and any of the three subgroups of order 2 of the group Z2 ×Z2 is 2-pure but
not quasi-2-pure. Notice that the abstract notion of quasi-n-purity goes back to the concept
of n-purity from field theoretic co-Galois theory (see Subsection 4.3).

Recall that for any torsion group D we use the notation OT = {ord(x) | x ∈ T }, and for
any G-radical extension E/F we have used in field theoretic co-Galois theory the notation
PG := P∩OG/F ∗ , where P = (P\{2})∪{4}. The same notation, but with another meaning
will be used in abstract co-Galois theory: if G is a subgroup of Z1

c (Γ,A), then we write
PG := P ∩ OG, i.e., PG is the set of those p ∈ P for which exp(G[p]) = p.

Quasi-PG-purity plays a basic role in the characterization of co-Galois groups of
Z1

c (Γ,A). The next result, with a very technical proof (see [15]), is the abstract version
of the general purity criterion (Theorem 4.3) from field theoretic co-Galois theory.

THEOREM 8.17 (Quasi-purity criterion [15]). The following statements are equivalent for
a subgroup G of Z1

c (Γ,A).
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(1) G is co-Galois.
(2) The subgroup AΓ of AG⊥

is quasi-PG-pure.
(3) G⊥ �⊆ ε⊥

p for all p ∈ PG ∩ P(Γ,A).

Denote by C(Γ,A) the poset of all co-Galois groups of Z1(Γ,A). Recall that K(Γ,A) is
the poset of all Kneser groups of Z1(Γ,A). Using the quasi-purity criterion above, one can
show that C(Γ,A) has properties similar to K(Γ,A), namely, C(Γ,A) is a lower Γ -poset,
for any G ∈ C(Γ,A) there exists a maximal co-Galois group lying over G, and, moreover,
the property of a subgroup of Z1

c (Γ,A) being co-Galois is a property of finite character.
Another consequence of the quasi-purity criterion is the following one.

COROLLARY 8.18. ([15].) Let p be an odd prime number, and let G be a p-subgroup of
Z1

c (Γ,A). Then G is co-Galois if and only if G is Kneser.

REMARKS.
(1) Corollary 8.18 may fail for p = 2. Indeed, the simplest example of a Kneser non-

co-Galois 2-group is the one corresponding to an action of type D4 or D8 (see
Lemma 8.22 and the definition preceding it).

(2) In contrast with the property of Kneser groups given in Corollary 8.10, the condition
that all p-primary components of G are co-Galois, is, in general, not sufficient to
ensure G being co-Galois. To see that, observe that the group corresponding to the
action of type Dpr is Kneser but not co-Galois, and has all its primary components
co-Galois (see again Lemma 8.22 and the definition preceding it).

We are now going to present a result showing that a subgroup G � Z1
c (Γ,A) is co-

Galois if and only if G has a prescribed structure, which is the abstract version of the struc-
ture theorem for Kneser groups from field theoretic co-Galois theory (see Theorem 4.11).
To do that some notation is needed. For any subgroup G of Z1

c (Γ,A) and for any prime
number p, we write

G̃p =
⎧⎨⎩G⊥⊥(p) if either p ∈ PG, or p = 2 and 4 ∈ PG,

G⊥⊥[2] if p = 2, 4 /∈ PG, and G[2] �= 0,
0 otherwise,

G̃ = ⊕
p∈P

G̃p, and μG = ⋃
n∈OG

(1/n)Z/Z. Observe that μG is a subgroup of A,
and hence a discrete Γ -submodule of A too. One easily checks that μG is the subgroup∑

g∈G g(Γ ) of Q/Z generated by
⋃

g∈G g(Γ ), and hence it is the smallest subgroup B

of A for which G � Z1
c (Γ, B). Also note that μG(p) = μG(p) = ⋃

g∈G(p) g(Γ ) for all
p ∈ P.

Let Z1
c (Γ |G⊥, μG) = G⊥⊥ ∩ Z1

c (Γ, μG) denote the subgroup of Z1
c (Γ,A) con-

sisting of those cocycles which are trivial on G⊥ and take values in μG. Then G �
Z1

c (Γ |G⊥, μG) � G̃ � G⊥⊥, which implies that G⊥ = Z1
c (Γ |G⊥, μG)⊥ = G̃⊥. Notice

also that PG = PZ1
c (Γ |G⊥,μG) = PG̃.

THEOREM 8.19. ([15].) With the notation above, the following assertions are equivalent
for a Kneser group G of Z1

c (Γ,A).
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(1) G is co-Galois.
(2) G = Z1

c (Γ |G⊥, μG).
(3) G = G̃.

PROOF. (1) ⇒ (3): If G is co-Galois, then G̃ is also co-Galois by the quasi-purity criterion
(Theorem 8.17) since PG = PG̃ and G⊥ = G̃⊥. Therefore, by the definition of the concept
of a co-Galois group, we have H = G̃∩H⊥⊥ for any H ∈ L(G̃). In particular, we deduce
that G = G̃ ∩ G⊥⊥ = G̃, as desired.

(3) ⇒ (2) is trivial.
(2) ⇒ (1): Assume that G = Z1

c (Γ |G⊥, μG) and G is not co-Galois. Then, by the
quasi-purity criterion, there exists p ∈ PG ∩ P(Γ,A) such that G⊥ ⊆ ε⊥

p . Therefore,

εp ∈ Z1
c (Γ |G⊥, μG) = G for p �= 4, and ε′

4 ∈ Z1
c (Γ |G⊥, μG) = G for p = 4. By the

abstract Kneser criterion (Theorem 8.12), we deduce that G is not a Kneser group, contrary
to our hypothesis. �

COROLLARY 8.20. ([15].) For any G,H ∈ C(Γ,A) we have H � G if and only if
G⊥ � H⊥. In particular, the map C(Γ,A) → L(Γ ),G �→ G⊥, is injective.

PROOF. Let G,H ∈ C(Γ,A) be such that G⊥ � H⊥, and prove that H � G. By the
definition of the groups G̃ and H̃ , and using Theorem 8.19, it suffices to show that PH ⊆
PG and H [2] �= {0} ⇒ G[2] �= {0}. Let p ∈ PH ∪{2} and h ∈ H be such that ord(h) = p.
Since H ∈ C(Γ,A), we have (Γ : h⊥) = p, and moreover, there exists only one proper
subgroup (of index 2) lying over h⊥ if p = 4. Since G ∈ C(Γ,A) and G⊥ � H⊥ � h⊥,
it follows that G ∩ h⊥⊥ is a cyclic subgroup of G of order p, and hence either p ∈ PG or
p = 2 and G[2] �= {0}, as desired. The injectivity of the canonical map C(Γ,A) → L(Γ )

is now obvious. �

COROLLARY 8.21. ([15].) The following assertions are equivalent for a co-Galois G

group of Z1
c (Γ,A).

(1) G is stable under the action of Γ , i.e., G is a Γ -submodule of Z1
c (Γ,A).

(2) G⊥ � Γ .
(3) μG⊥

G = μG.
In this case, we have G ∼= Z1

c (Γ /G⊥, μG).

According to Lemma 8.11, the Kneser groups are precisely those subgroups of Z1
c (Γ,A)

which do not contain some particular cyclic groups, namely the minimal subgroups Bp

which are not Kneser, p ∈ P(Γ,A). We are now going to present a similar characterization
for co-Galois groups. To do that we will first describe effectively the minimal subgroups
of Z1

c (Γ,A) which are Kneser but not co-Galois. A special class of actions which are
introduced below plays a major role in this description.

DEFINITION. Let Γ be a finite group, and let A be a finite subgroup of Q/Z on which the
group Γ acts. One says that the action of Γ on A, or the Γ -module A, is

(1) of type D4 if Γ = D4 = 〈σ, τ | σ 2 = τ 2 = (στ)2 = 1〉 ∼= Z/2Z × Z/2Z,
A = (1/4)Z/Z, and σ 1̂/4 = −1̂/4, τ 1̂/4 = 1̂/4;
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(2) of type D8 if Γ = D8 = 〈σ, τ | σ 2 = τ 4 = (στ)2 = 1〉 ∼= Z/4Z � Z/2Z,
A = (1/4)Z/Z, and σ 1̂/4 = −1̂/4, τ 1̂/4 = 1̂/4;

(3) of type Dpr if Γ = 〈σ, τ | σ r = τp = στσ−1τ−u = 1〉 ∼= Z/pZ �u Z/rZ,

A = (1/pr)Z/Z, and σ 1̂/pr = u1̂/pr, τ 1̂/pr = 1̂/pr, where p ∈ P, p > 2,
r ∈ N, r > 1, r | (p − 1), and u ∈ (Z/prZ)∗ is such that the order of u mod p in
(Z/pZ)∗ is r and u mod l = 1 mod l for all l ∈ P, l | r .

In the definition above we used the following notation: for any integers k,m ∈ Z,
k mod m denotes the congruence class k +mZ of k modulo m; if n ∈ N∗ is a divisor of m,
then we write k + mZ mod n instead of k mod n; finally, (Z/mZ)∗ denotes the group of
units of the ring Z/mZ.

Let M(Γ,A) denote the set (possibly empty) L(Z1
c (Γ,A)) \ C(Γ,A) of all subgroups

of Z1
c (Γ,A) which are not co-Galois groups. Clearly, for any G ∈ M(Γ,A) there exists

at least one minimal member H of M(Γ,A) such that H ⊆ G. By M(Γ,A)min we shall
denote the set of all minimal members of M(Γ,A), and call them minimal non-co-Galois
groups. Observe that whenever G ∈ M(Γ,A)min, then necessarily G is a nontrivial finite
group.

LEMMA 8.22. ([15].) The following conditions are equivalent for a Kneser group G of
Z1

c (Γ,A).
(1) G ∈ M(Γ,A)min.
(2) G⊥ � Γ and the action of Γ/G⊥ on μG is of one of the types D4,D8, or Dpr

defined above.

COROLLARY 8.23. ([15].) Any Kneser minimal non-co-Galois group of Z1
c (Γ,A) is iso-

morphic either to Z/4Z, or to Z/2Z⊕Z/4Z, or to Z/prZ for an odd prime number p and
a divisor r �= 1 of p − 1.

The next result, providing an analogue of the abstract Kneser criterion (Theorem 8.12)
for co-Galois groups of cocycles, is an immediate consequence of Lemma 8.22.

THEOREM 8.24. ([15].) A Kneser subgroup G of Z1
c (Γ,A) is co-Galois if and only if G

contains no H for which H⊥ � Γ and the action of Γ/H⊥ on μH is of one of the types
D4,D8, or Dpr.

As it follows from Lemma 8.22, the fact that all the p-primary components of a subgroup
G of Z1

c (Γ,A) are co-Galois does not imply that the whole group G is co-Galois. The
next result provides a supplementary lattice theoretic condition which ensures such an
implication, obtaining in this way a local–global principle for co-Galois groups.

THEOREM 8.25. ([15].) Let G be a subgroup of Z1
c (Γ,A), and let

θ : L(Γ |G⊥) →
∏
p∈P

L
(
Γ |G(p)⊥

)
, Δ �→ (〈

Δ ∪ G(p)⊥
〉)

p∈P
.

Then, the following statements are equivalent.
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(1) G is co-Galois.
(2) G(p) is co-Galois for all prime numbers p, and the order-preserving map θ is a

lattice isomorphism.
(3) G is Kneser, G(2) is co-Galois, and Δ = Γ whenever Δ ∈ L(Γ |G⊥) is such that

θ(Δ) = θ(Γ ).

Finally, we consider the case when G is stable under the action of Γ . Then, the local–
global principle for co-Galois groups has the following simple formulation.

PROPOSITION 8.26. ([15].) The following assertions are equivalent for a Γ -submodule
G of Z1

c (Γ,A).
(1) G is co-Galois.
(2) G(p) is co-Galois for all prime numbers p.
(3) G is Kneser, and G(2) is co-Galois.

PROOF. The implication (1) ⇒ (2) is trivial, while the implication (2) ⇒ (3) follows at
once from Corollary 8.10.

(3) ⇒ (1): Assuming that the Γ -module G is Kneser but not co-Galois, we have only
to show that G(2) is not co-Galois. Let H be a minimal non-co-Galois subgroup of G.
According to Lemma 8.22, H⊥ � Γ and the action of Γ/H⊥ on μH is the one described in
definition just before Lemma 8.22. If the action is of type D4 or of type D8, then H � G(2),
and hence G(2) is not co-Galois, as desired. Now assume that the action is of type Dpr.
Then (Γ : H⊥G(p)⊥) = p. On the other hand, G(p)⊥ � Γ since G(p) is a Γ -submodule
of G. Hence H⊥G(p)⊥ � Γ , and so, Z/pZ is a quotient of Γ/H⊥ ∼= Z/pZ �u Z/rZ,
which is a contradiction. �

8.4. Kummer groups of cocycles

In this subsection we introduce four types of Kummer groups of cocycles; these are pre-
cisely the abstract group theoretic correspondents of the various types of Kummer field
extensions studied in Galois theory and co-Galois theory. We show that all of them are
co-Galois groups of cocycles.

DEFINITION. Let G � Z1
c (Γ,A), and let n ∈ N∗.

(1) G is said to be a classical n-Kummer group if nG = {0} and A[n] ⊆ AΓ .
(2) G is said to be a generalized n-Kummer group if nG = {0} and AG⊥[n] ⊆ AΓ .
(3) G is said to be an n-Kummer group with few cocycles if nG = {0} and AG⊥[n] ⊆

A[2].
(4) G is said to be an n-quasi-Kummer group if nG = {0} and A[p] ⊆ AΓ for every

p ∈ Pn.
We say that G is a classical Kummer group (respectively a generalized Kummer group,
Kummer group with few cocycles, quasi-Kummer group) if G is a classical m-Kummer
group (respectively a generalized m-Kummer group, m-Kummer group with few cocycles,
m-quasi-Kummer group) for some m ∈ N∗.
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Since A[2] ⊆ {̂0, 1̂/2} ⊆ AΓ , any n-Kummer group with few cocycles is a generalized
n-Kummer group. Clearly, any classical n-Kummer group is both a generalized n-Kummer
group and an n-quasi-Kummer group.

PROPOSITION 8.27. ([13].) Any generalized Kummer group and any quasi-Kummer group
is co-Galois. In particular, any classical Kummer group and any Kummer group with few
cocycles is co-Galois.

PROOF. Let G � Z1
c (Γ,A). If G is a generalized Kummer group, then nG = {0} and

AG⊥[n] ⊆ AΓ for some n ∈ N∗. If p ∈ PG, then p | n, and hence AG⊥[p] ⊆
AG⊥[n] ⊆ AΓ , i.e., the subgroup AΓ of AG⊥

is quasi-PG-pure. Thus G is a co-Galois
group of Z1

c (Γ,A) by the quasi-purity criterion (Theorem 8.17).
If G is a quasi-Kummer group, then there exists n ∈ N∗ with nG = {0} and A[p] ⊆ AΓ

for every p ∈ Pn. Since PG ⊆ Pn, we have AG⊥[p] ⊆ A[p] ⊆ AΓ for every p ∈ PG,
which shows that the subgroup AΓ of AG⊥

is quasi-PG-pure. Again by Theorem 8.17, G is
a co-Galois group of Z1

c (Γ,A). �

COROLLARY 8.28. ([13].) Let G � Z1
c (Γ,A) be any of the four types of Kummer groups

of cocycles defined above. Then the maps

(-)⊥ : L(G) → L(Γ |G⊥) and G ∩ (-)⊥ : L(Γ |G⊥) → L(G)

are lattice anti-isomorphisms, inverse to one another.

The next two results are the abstract analogs of Propositions 5.27 and 5.29 from field
theoretic Kummer theory.

PROPOSITION 8.29. ([13].) Let G � Z1
c (Γ,A) be a co-Galois group of bounded order

such that A[exp(G)] ⊆ AG⊥
. Then G is a quasi-Kummer group.

PROPOSITION 8.30. ([13].) Any generalized Kummer group G � Z1
c (Γ,A) with

A[exp(G)] ⊆ AG⊥
is a classical Kummer group.

8.5. Field theoretic co-Galois theory via abstract co-Galois theory

The aim of this subsection is two-fold: firstly, to present a field theoretic co-Galois theory
↔ abstract co-Galois theory dictionary, and secondly, using this dictionary, to show how
some basic results of field theoretic co-Galois theory, like the Kneser criterion, the general
purity criterion, the uniqueness of the Kneser group of a G-co-Galois field extension, etc.,
can be very easily deduced form their abstract versions.

The abstract correspondents for subgroups of Z1
c (Γ,A) of Kneser field extensions and

co-Galois field extensions are those of Kneser groups of cocycles and co-Galois groups
of cocycles, respectively. If we move now via the maps (-)⊥ from subgroups of Z1

c (Γ,A)

to subgroups of the given profinite group Γ , then one can define as follows the abstract
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versions for the latter of the concepts of radical, simple radical, Kneser, and co-Galois field
extension.

DEFINITION. Let Δ be a subgroup of Γ . We say that Δ is G-radical if Δ = G⊥ for
some G � Z1

c (Γ,A). A radical subgroup of Γ is a subgroup which is G-radical for some
G � Z1

c (Γ,A). Δ is called simple radical if there exists a g ∈ Z1
c (Γ,A) such that Δ = g⊥.

Δ is said to be G-Kneser if Δ is G-radical and G is a Kneser group of Z1
c (Γ,A). Δ is

said to be a Kneser group if Δ is G-Kneser for some G � Z1
c (Γ,A).

Δ is said to be co-Galois if there exists a co-Galois group G of Z1
c (Γ,A) such that

Δ = G⊥. Δ is said to be strongly co-Galois if Δ = Δ⊥⊥ and Δ⊥ is a co-Galois group of
Z1

c (Γ,A).

Observe that any radical subgroup of Γ is necessarily closed, and any simple radical
subgroups of Γ is open. If Δ is co-Galois, then the co-Galois group G of Z1

c (Γ,A) for
which Δ = G⊥ is uniquely determined by Corollary 8.20, and we say in this case that Δ
is G-co-Galois.

LEMMA 8.31. ([13].) A radical subgroup Δ of Γ is strongly co-Galois if and only if Δ⊥
is a Kneser group of Z1

c (Γ,A).

PROOF. If Δ is a radical subgroup of Γ , then there exists H � Z1
c (Γ,A) such that Δ =

H⊥, and so Δ⊥⊥ = (H⊥)⊥⊥ = H⊥ = Δ. If G := Δ⊥ is not a co-Galois group of
Z1

c (Γ,A), then we are going to show that G is not Kneser. As G is not co-Galois, it follows
by the quasi-purity criterion (Theorem 8.17) that there exists p ∈ P(Γ,A) ∩PG such that
Δ = G⊥ � ε⊥

p , and hence ε⊥⊥
p � Δ⊥ = G. Consequently, εp ∈ ε⊥⊥

p � G if p �= 4, and

ε′
4 ∈ ε⊥⊥

4 � G if p = 4. By the abstract Kneser criterion (Theorem 8.12) we deduce that
G is not Kneser. �

We establish now a dictionary relating the basic notions of field theoretic co-Galois
theory to their analogs in the group theoretic abstract co-Galois theory; this will allow us
to recover at the end of this subsection some of the main results of the former theory from
the latter one.

In the sequel, Ω/F denotes a fixed Galois extension with the (profinite) Galois group
Γ := Gal(Ω/F). In particular, we can take as Ω an algebraic separable closure F̃ sep of
the base field F , in which case Γ is the absolute Galois group of F . If Ω = F̃ sep and the
characteristic Char(F ) of F is p, then the multiplicative torsion group μ(Ω) of all roots
of unity contained in Ω is isomorphic in a non-canonical way to the additive group Q/Z
if p = 0, respectively to its subgroup

⊕
q∈P\{p}(Q/Z)(q) for p �= 0. Thus, the group

A := μ(Ω) is isomorphic to a uniquely determined subgroup of Q/Z, and the canonical
action of Γ on Ω induces a continuous action of the profinite group Γ on the discrete
group A.

The exact sequence {1} → A → Ω∗ → Ω∗/A → {1} of topological discrete Γ -
modules yields the exact sequence of cohomology groups in low dimensions

{1} → AΓ → Ω∗Γ → (Ω∗/A)Γ → H 1
c (Γ,A) → H 1

c (Γ,Ω∗).
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Since H 1
c (Γ,Ω∗) = {1} by Hilbert theorem 90, we obtain a canonical epimorphism of

Abelian torsion groups

ψ : T (Ω/F) → Z1
c (Γ,A), x �→ (

σ ∈ Γ �→ (σx)x−1 ∈ A
)
,

whose kernel is F ∗, where

T (Ω/F) = {x ∈ Ω∗ | (σx)x−1 ∈ A,∀σ ∈ Γ
} = {x ∈ Ω∗ | ∃n ∈ N∗, xn ∈ F

}
.

The quotient T (Ω/F)/F ∗ is exactly the torsion subgroup of the quotient group Ω∗/F ∗,
that is, the co-Galois group Cog(Ω/F) of the field extension Ω/F . Thus, the epimorphism
ψ induces a canonical isomorphism

ϕ : Cog(Ω/F)
∼→ Z1

c (Γ,A)

(see also Theorem 5.5), which identifies in a canonical way the subgroups G � Z1
c (Γ,A)

investigated in the frame of abstract co-Galois theory with the subgroups G/F ∗ :=
ϕ−1(G) � Cog(Ω/F) investigated in the frame of field theoretic co-Galois theory (see
Corollary 5.7). In particular, for every intermediate field E of Ω/F , the restriction of ψ to
T (E/F) = T (Ω/F) ∩ E induces an isomorphism from the torsion group Cog(E/F) :=
T (E/F)/F ∗ of E∗/F ∗ onto the subgroup Γ ⊥

E of Z1
c (Γ,A), where ΓE := Gal(Ω/E).

The lattice I(Ω/F) of all intermediate fields of the extension Ω/F , the lattice
L(T (Ω/F)|F ∗) of all subgroups of T (Ω/F) lying over F ∗, the lattice L(Γ ) of all closed
subgroups of Γ , and the lattice L(Z1

c (Γ,A)) of all subgroups of Z1
c (Γ,A) are related as

shown in the commutative diagram:

L(T (Ω/F)|F ∗) I(Ω/F)

L(Z1
c (Γ,A)) L(Γ )

where the left vertical arrow is the lattice isomorphism induced by ψ , the right vertical
arrow is the canonical lattice anti-isomorphism E �→ ΓE (with inverse Δ �→ EΔ) given
by the fundamental theorem of infinite Galois theory, the horizontal top arrows are the
sup-semilattice morphism G �→ F(G) and the inf-semilattice morphism E �→ T (E/F),
while the horizontal bottom arrows are the sup-semilattice anti-morphism G �→ G⊥ and
the inf-semilattice anti-morphism Δ �→ Δ⊥ defined in Proposition 8.1. Note that the com-
mutativity of the diagram above follows at once from Proposition 5.11.

The next result is essentially a reformulation of the corresponding results from Subsec-
tion 5.2 involving the lattices and the maps above.

PROPOSITION 8.32. ([13].) Let E be an intermediate field of the given Galois extension
Ω/F , let ΓE = Gal(Ω/E), let A = μ(Ω), let G ∈ L(T (Ω/F)|F ∗), and let G = ψ(G),
where ψ is the canonical group epimorphism ψ : T (Ω/F) → Z1

c (Γ,A) defined above.
Then, the following statements hold.

(1) The extension E/F is G-radical if and only if the subgroup ΓE of Γ is G-radical.
In particular, E/F is a radical extension (respectively a simple radical extension) if
and only if ΓE is a radical group (respectively a simple radical group) of Γ .
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(2) The extension E/F is G-Kneser if and only if the subgroup ΓE of Γ is G-Kneser. In
particular, E/F is a Kneser extension if and only if ΓE is a Kneser group of Γ .

(3) The extension F(G)/F is G-Kneser if and only if G is a Kneser group of Z1
c (Γ,A).

(4) The extension E/F is G-co-Galois if and only if the subgroup ΓE of Γ is co-Galois.
In this case, G is the unique co-Galois group of Z1

c (Γ,A) for which ΓE = G⊥.
(5) The extension F(G)/F is G-co-Galois if and only if G is a co-Galois group of

Z1
c (Γ,A).

(6) The extension E/F is co-Galois if and only if the subgroup ΓE of Γ is strongly
co-Galois.

PROOF. (1) is a reformulation of Proposition 5.11, (2) is a reformulation of Corol-
lary 5.12(1), and (4) is a reformulation of Corollary 5.12(2). The uniqueness of G is assured
by Corollary 8.20.

(6) Write H = T (E/F) and H = ψ(H) = Γ ⊥
E . By (2), the extension E/F is co-Galois,

i.e., H-Kneser, if and only if ΓE = H⊥ = Γ ⊥⊥
E and Γ ⊥

E is a Kneser group of Z1
c (Γ,A).

By Lemma 8.31, this means precisely that ΓE is strongly-co-Galois. �

COROLLARY 8.33. ([13].) Let Ω/F be a Galois extension, Γ := Gal(Ω/F),A := μ(Ω),
and let F ∗ � G � T (Ω/F) be such that E := F(G) is a G-co-Galois extension of F . If
G := ψ(G) � Z1

c (Γ,A), then, the following assertions are equivalent.
(1) G is a Γ -submodule of Z1

c (Γ,A), i.e., it is stable under the action of Γ .
(2) E/F is a Galois extension.
(3) σx ∈ E for all σ ∈ Γ and x ∈ G.

PROOF. First, observe that ΓE := Gal(Ω/E) = G⊥ by Proposition 8.32(4). Now, by
Corollary 8.21, G is a Γ -submodule of Z1

c (Γ,A) if and only if G⊥ is a normal subgroup
of Γ if and only if E/F is a Galois extension. �

The connection between various types of Kummer field extensions and their abstract
correspondents is given by the next result.

PROPOSITION 8.34. ([13].) Let E/F be an arbitrary separable algebraic extension, let
Ω := F̃ sep, Γ = Gal(Ω/F), A = μ(Ω), and let n ∈ N∗ be such that gcd(n, e(F )) = 1.
Then, the extension E/F is a classical n-Kummer extension (respectively a generalized
n-Kummer extension, an n-Kummer extension with few roots of unity, an n-quasi-Kummer
extension) if and only if there exists a unique classical n-Kummer group (respectively a
generalized n-Kummer group, an n-Kummer group with few cocycles, an n-quasi-Kummer
group) G,G � Z1

c (Γ,A), such that ΓE := Gal(Ω/E) = G⊥.

PROOF. We may assume that E ⊆ Ω . If E/F is a classical n-Kummer extension,
then there exists a group G ∈ L(T (E/F)|F ∗) such that E = F(G), Gn ⊆ F ∗, and
A[n] = μn(Ω) ⊆ μn(F ) ⊆ AΓ . Let G = ψ(G). Then nG = {0}, and so G is a clas-
sical n-Kummer group. By Proposition 8.32(1) we have ΓE := Gal(Ω/E) = G⊥. Now
observe that G is co-Galois by Proposition 8.27, so the uniqueness of G follows from
Proposition 8.32(4).
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Conversely, assume that there exists a classical n-Kummer group G of Z1
c (Γ,A) such

that Gal(Ω/E) = G⊥. If we denote G = ψ−1(G), then E = F(G) by Proposition 8.32(1).
Since clearly Gn = 1 and μn(Ω) = A[n] ⊆ AΓ ⊆ F , we deduce that E/F is a classical
n-Kummer extension.

The cases of generalized n-Kummer extensions, n-Kummer extensions with few roots
of unity, and n-quasi-Kummer extensions follow in the same manner as above from the
following simple facts: A[n] = μn(Ω) (in particular A[2] = {−1, 1}) and AGal(Ω/L) =
{x ∈ μ(Ω) | σx = x,∀σ ∈ Gal(Ω/L)} = μ(L) for any intermediate field L of the given
Galois extension Ω/F . �

By Proposition 8.34, all the types of Kummer groups of cocycles defined in Subsec-
tion 8.4 are abstract versions of corresponding field extensions from field theoretic Kum-
mer theory. So, the counterexamples from field theoretic Kummer theory, converted into
Kummer groups of cocycles via Proposition 8.34, show that, except the obvious inclusions
indicated just before Proposition 8.27, no other inclusions between these four types of
Kummer groups of cocycles do exist.

The results above permit us now to retrieve easily most of the results of field theoretic
co-Galois theory from the basic results of abstract co-Galois theory. We will illustrate this
by presenting only three of them.

KNESER CRITERION (Theorem 3.2). Let E/F be an arbitrary separable G-radical exten-
sion. For any n ∈ N∗, let ζn ∈ Ω := F̃ sep denote a primitive n-th root of unity. Then, the
following assertions are equivalent.

(1) E/F is a G-Kneser extension.
(2) ζp ∈ G ⇒ ζp ∈ F for every odd prime p, and 1 ± ζ4 ∈ G ⇒ ζ4 ∈ F .

PROOF. We may assume that E ⊆ Ω . Set Γ = Gal(Ω/F),A = μ(Ω), and let
ψ : T (Ω/F) → Z1

c (Γ,A) be the canonical group epimorphism defined above. Then
AΓ = μ(F) and P(Γ,A) = {p ∈ P | ζp /∈ F }. By assumption, E = F(G), with
F ∗ � G � T (Ω/F). Setting G := ψ(G) � Z1

c (Γ,A) we have ΓE = G⊥ by Proposi-
tion 8.32(1). Consequently, by Proposition 8.32(3), the extension E/F is G-Kneser if and
only if G is a Kneser group of Z1

c (Γ,A).
For every odd prime p �= Char(F ), εp := ψ(ζp) ∈ Z1

c (Γ,A) is the coboundary assign-
ing to any σ ∈ Γ the p-th root of unity (σζp)ζ

−1
p ∈ A[p]. Obviously, εp ∈ G if and only

if ζp ∈ G. Observe that if p = Char(F ) > 2, then ζp ∈ A[p] = {1} ⊆ AΓ .
Assume that Char(F ) �= 2. Since 1 − ζ4 ∈ T (Ω/F), we can consider the continuous

cocycle ψ(1 − ζ4) ∈ Z1
c (Γ,A), which by definition works as follows:

ψ(1 − ζ4)(σ ) = σ(1 − ζ4) · (1 − ζ4)
−1 = (1 − σζ4) · (1 − ζ4)

−1, ∀σ ∈ Γ.

Since for any σ ∈ Γ , we have either σζ4 = ζ4 or σζ4 = −ζ4, we deduce that

ψ(1 − ζ4)(σ ) =
{
ζ4 if σζ4 = −ζ4,

1 if σζ4 = ζ4.

Thus, ψ(1 − ζ4) is nothing else than the multiplicative version of the cocycle ε′
4 de-

fined in Subsection 8.2 just before Lemma 8.11 and appearing in the statement of the
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abstract Kneser criterion (Theorem 8.12). A simple calculation shows that ψ(1 + ζ4) =
(ψ(1 − ζ4))

−1 in the multiplicative group Z1
c (Γ,A), so ε′

4 ∈ G ⇔ 1 ± ζ4 ∈ G. Observe
that if Char(F ) = 2, then ζ4 ∈ A[4] = {1} ⊆ AΓ . To finish the proof it remains to apply
Proposition 8.32(3) and the abstract Kneser criterion (Theorem 8.12). �

COROLLARY 8.35. ([13].) Let E/F be a separable G-radical extension, which is not G-
Kneser. Assume that the extension E/F is minimal with respect to the property not being
G-Kneser, that is, for any proper subgroup G′ of G, the extension F(G′)/F is G′-Kneser.
Then, the extension E/F is cyclic having either the form E = F(ζp) with p �= Char(F )

an odd prime number and ζp /∈ F , or the form F(ζ4) with Char(F ) �= 2 and ζ4 /∈ F .

PROOF. With Ω = F̃ sep, Γ , and A as above, let E/F be a subextension of Ω/F satisfy-
ing the minimality condition from the statement. Using the canonical group epimorphism
ψ : T (Ω/F) → Z1

c (Γ,A) as well as Proposition 8.32, we deduce that G = ψ(G) is a
minimal non-Kneser group of Z1

c (Γ,A). According to Lemma 8.11, it follows that either
G = 〈εp〉 ∼= Z/pZ for some odd prime number p �= Char(F ) such that ζp /∈ F , or
G = 〈ε′

4〉 ∼= Z/4Z, with Char(F ) �= 2 and ζ4 /∈ F . Consequently, G = F ∗〈ζp〉 in the
former case and G = F ∗〈1 + ζ4〉 in the latter one. The result now follows easily. �

Observe that the inverse implication in Corollary 8.35 may fail. Indeed, F(ζ4)/F is
F ∗〈ζ4〉-co-Galois, in particular Kneser, whenever Char(F ) �= 2 and ζ4 /∈ F . Also, for
every odd prime p, if e(F ) is prime with p(p − 1), ζp /∈ F , and ζp−1 ∈ F , then there
exists θ ∈ E := F(ζp) such that E = F(θ) and θp−1 ∈ F ; therefore E/F is an F ∗〈θ〉-co-
Galois extension, in particular Kneser.

GENERAL PURITY CRITERION (Theorem 4.3). A separable G-radical extension E/F is
G-co-Galois if and only if it is PG-pure.

PROOF. We may assume that E ⊆ Ω := F̃ sep. Set Γ := Gal(Ω/F) and A := μ(Ω).
Since E/F is a G-radical extension, we have E = F(G) with F ∗ � G � T (Ω/F). If
G := ψ(G) � Z1

c (Γ,A), then ΓE := Gal(Ω/E) = G⊥ by Proposition 8.32(1), so E/F is
G-co-Galois if and only if G is a co-Galois subgroup of Z1

c (Γ,A) by Proposition 8.32(5).

Since for any p ∈ PG we have AΓ [p] = μp(F ) and AG⊥[p] = μp(E), we deduce that
the PG-purity of the extension E/F is equivalent to the quasi-PG-purity of the embedding
AΓ � AG⊥

. The result follows now at once by applying Theorem 8.17. �

UNIQUENESS OF THE KNESER GROUP (Theorem 4.13). If E/F is an algebraic separable
extension which is simultaneously G-co-Galois and H-co-Galois, then G = H.

PROOF. Apply Corollary 8.20 and Proposition 8.32(4). �
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Operads and PROPs 89

Operads involve an abstraction of the family {Map(Xn,X)}n�0 of composable functions
of several variables together with an action of permutations of variables. As such, they
were originally studied as a tool in homotopy theory, specifically for iterated loop spaces
and homotopy invariant structures, but the theory of operads has recently received new
inspiration from homological algebra, category theory, algebraic geometry and mathemat-
ical physics. The name operad and the formal definition appear first in the early 1970s in
J.P. May’s book [86], but a year or more earlier, M. Boardman and R. Vogt [9] described
the same concept under the name categories of operators in standard form, inspired by the
PROPs and PACTs of Adams and Mac Lane [67]. As pointed out in [62], also Lambek’s
definition of multicategory [60] (late 1960s) was almost equivalent to what is called today a
colored or many-sorted operad. Another important precursor was the associahedron K that
appeared in J.D. Stasheff’s 1963 paper [106] on homotopy associativity of H-spaces. We
do not, however, aspire to write an account on the history of operads and their applications
here – we refer to the introduction of [83], to [89], [114], or to the report [105] instead.

Operads are important not in and of themselves but, like PROPs, through their repre-
sentations, more commonly called algebras over operads or operad algebras. If an operad
is thought of as a kind of algebraic theory, then an algebra over an operad is a model of
that theory. Algebras over operads involve most of ‘classical’ algebras (associative, Lie,
commutative associative, Poisson, &c.), loop spaces, moduli spaces of algebraic curves,
vertex operator algebras, &c. Colored or many-sorted operads then describe diagrams of
homomorphisms of these objects, homotopies between homomorphisms, modules, &c.

PROPs generalize operads in the sense that they admit operations with several inputs and
several outputs. Therefore various bialgebras (associative, Lie, infinitesimal) are PROPic
algebras. PROPs were also used to encode ‘profiles’ of structures in formal differential
geometry [92,93].

By the renaissance of operads we mean the first half of the nineties of the last century
when several papers which stimulated the rebirth of interest in operads appeared [31,34,
41,45,47,49,72]. Let us mention the most important new ideas that emerged during this
period.

First of all, operads were recognized as the underlying combinatorial structure of the
moduli space of stable algebraic curves in complex geometry, and of compactifications of
configuration spaces of points of affine spaces in real geometry. In mathematical physics,
several very important concepts such as vertex operator algebras or various string theories
were interpreted as algebras over operads. On the algebraic side, the notion of Koszulness
of operads was introduced and studied, and the relation between resolutions of operads and
deformations of their algebras was recognized. See [63] for an autochthonous account of
the renaissance. Other papers that later became influential then followed in a rapid succes-
sion [30,33,32,73,75].

Let us list some of the most important outcomes of the renaissance of operads. The
choice of the material for this incomplete catalog has been of course influenced by the
author’s personal expertise and inclination towards algebra, geometry and topics that are
commonly called mathematical physics. We will therefore not be able to pay as much
attention to other aspects of operads, such as topology, category theory and homotopy
theory, as they deserve.
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Complex geometry. Applications involve moduli spaces of stable complex algebraic
curves of genus zero [34], enumerative geometry, Frobenius manifolds, quantum coho-
mology and cohomological field theory [55,71]. The moduli space of genus zero curves
exhibits an additional symmetry that leads to a generalization called cyclic operads [32].
Modular operads [33] then describe the combinatorial structure of the space of curves of
arbitrary genus.

Real geometry. Compactifications of configuration spaces of points in real smooth man-
ifolds are operads in the category of smooth manifolds with corners or modules over
these operads [76]. This fact is crucial for the theory of configuration spaces with sum-
mable labels [96]. The cacti operad [117] lies behind the Chas–Sullivan product on the
free loop space of a smooth manifold [13], see also [14]. Tamarkin’s proof of the for-
mality of Hochschild cochains of the algebra of functions on smooth manifolds [110] ex-
plained in [40] uses obstruction theory for operad algebras and the affirmative answer to
the Deligne conjecture [17,56].

Mathematical physics. The formality mentioned in the previous item implies the exis-
tence of the deformation quantization of Poisson manifolds [54]. We must not forget to
mention the operadic interpretation of vertex operator algebras [46], string theory [49] and
Connes–Kreimer’s approach to renormalization [15]. Operads and multicategories are im-
portant also for Beilinson–Drinfeld’s theory of chiral algebras [6].

Algebra. Operadic cohomology [1,26,31,34,83] provides a uniform treatment of all
‘classical’ cohomology theories, such as the Hochschild cohomology of associative al-
gebras, Harrison cohomology of associative commutative algebras, Chevalley–Eilenberg
cohomology of Lie algebras, &c. Minimal models for operads [75] offer a conceptual
understanding of strong homotopy algebras, their homomorphisms and homotopy invari-
ance [80]. Operads serve as a natural language for various types of ‘multialgebras’ [64,65].
Relation between Koszulness of operads and properties of posets was studied in [27]. Also
the concept of the operadic distributive law turned out to be useful [26,74].

Model structures. It turned out [8,31,39,100] that algebras over a reasonable (possibly
colored) operad form a model category that generalizes the classical model structures of
the categories of dg commutative associative algebras and dg Lie algebras [95,107]. Op-
erads, in a reasonable monoidal model category, themselves form a model category [7,31]
such that algebras over cofibrant operads are homotopy invariant, see also [104]. Minimal
operads mentioned in the previous item are particular cases of cofibrant dg-operads and the
classical W -construction [9] is a functorial cofibrant replacement in the category of topo-
logical operads [116]. The above model structures are important for various constructions
in the homology theory of (free or based) loop spaces [14,43] and formulations of ‘higher’
Deligne conjecture [44].

Topology. Operads as gadgets organizing homotopy coherent structures are important
in the brave new algebra approach to topological Hochschild cohomology and algebraic
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K-theory, see [22,23,90,115], or [21] for a historical background. A description of a lo-
calized category of integral and p-adic homotopy types by E∞-operads was given in [69,
70]. An operadic approach to partial algebras and their completions was applied in [58] to
mixed Tate motives over the rationals. See also an overview [88].

Category theory. Operads and multicategories were used as a language in which to pro-
pose a definition of weak ω-category [3–5,61]. Operads themselves can be viewed as spe-
cial kinds of algebraic theory (as can multicategories, if one allows many-sorted theories),
see [85]. There are also ‘categorical’ generalizations of operads, e.g. the globular oper-
ads of [2] and T -categories of [11]. An interesting presentation of PROP-like structures in
enriched monoidal categories can be found in [91].

Graph complexes. Each cyclic operad P determines a graph complex [33,77]. As ob-
served earlier by M. Kontsevich [52], these graph complexes are, for some specific choices
of P, closely related to some very interesting objects such as moduli spaces of Riemann
surfaces, automorphisms of free groups or primitives in the homology of certain infinite-
dimensional Lie algebras, see also [83, II.5.5]. In the same vein, complexes of directed
graphs are related to PROPs [84,111–113] and directed graphs with back-in-time edges
are tied to wheeled PROPs introduced in [93].

Deformation theory and homotopy invariant structures in algebra. A concept of ho-
motopy invariant structures in algebra parallel to the classical one in topology [9,10] was
developed in [80]. It was explained in [56,73,79] how cofibrant resolutions of operads
or PROPs determine a cohomology theory governing deformations of related algebras.
In [81], deformations were identified with solutions of the Maurer–Cartan equation of a
certain strongly homotopy Lie algebra constructed in a very explicit way from a cofibrant
resolution of the underlying operad or PROP.

Terminology. As we already observed, operads are abstractions of families of compos-
able functions. Given functions f :X×n → X and gi :X×ki → X, 1 � i � n, one may
consider the simultaneous composition

(I)f (g1, . . . , gn) : X×(k1+···+kn) → X.

One may also consider, for f :X×n → X, g :X×m → X and 1 � i � n, the individual
compositions

(II)f (id, . . . , id, g, id, . . . , id) :X×(m+m−1) → X,

with g at the i-th place. While May’s original definition of an operad [86] was an abstrac-
tion of type (I) compositions, there exists an alternative approach based on type (II) compo-
sitions. This second point of view was formalized in the 1963 papers by Gerstenhaber [29]
and Stasheff [106]. A definition that included the symmetric group action was formulated
much later in the author’s paper [75] in which the two approaches were also compared.

In the presence of operadic units, these approaches are equivalent. There are, however,
situations where one needs also non-unital versions, and then the two approaches lead to
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different structures – a non-unital structure of the second type always determines a non-
unital structure of the first type, but not vice versa! It turns out that more common are
non-unital structures of the second type; they describe, for example, the underlying com-
binatorial structure of the moduli space of stable complex curves.

We will therefore call the non-unital versions of the first type of operads non-unital
May’s operads, while the second version simply non-unital operads. We opted for this
terminology, which was used already in the first version of [75], after a long hesitation,
being aware that it might not be universally welcome. Note that non-unital operads are
sometimes called (Markl’s) pseudo-operads [75,83].

Outline of the chapter. In the first three sections we review the basic definitions of
(unital and non-unital) operads and operad algebras, and give examples that illustrate these
notions. Section 4 describes free operads and their relation to rooted trees. In Section 5
we explain that operads can be defined as algebras over the monad of rooted trees. In
the following two sections we show that, replacing rooted trees by other types of trees,
one obtains two important generalizations – cyclic and modular operads. In the last two
sections, PROPs and their versions are recalled; this article is the first expository text where
these structures are systematically treated.

Sections 1–3 are based on the classical book [86] by J.P. May and the author’s arti-
cle [75]. Sections 4–7 follow the seminal paper [34] by V. Ginzburg and M.M. Kapranov,
and papers [32,33] by E. Getzler and M.M. Kapranov. The last two sections are based on
the preprint [84] of A.A. Voronov and the author, and on an e-mail message [53] from
M. Kontsevich. We were also influenced by T. Leinster’s concept of biased versus un-
biased definitions [61]. At some places, our exposition follows the monograph [83] by
S. Shnider, J.D. Stasheff and the author.

1. Operads

Although operads, operad algebras and most of related structures can be defined in an ar-
bitrary symmetric monoidal category with countable coproducts, we decided to follow the
choice of [58] and formulate precise definitions only for the category Modk = (Modk,⊗)

of modules over a commutative unital ring k, with the monoidal structure given by the
tensor product ⊗ = ⊗k over k. The reason for such a decision was to give, in Section 4,
a clean construction of free operads. In a general monoidal category, this construction in-
volves the unordered �-product [83, Definition II.1.38] so the free operad is then a double
colimit, see [83, Section II.1.9]. Our choice also allows us to write formulas involving
maps in terms of elements, which is sometimes a welcome simplification. We believe that
the reader can easily reformulate our definitions for the case of other monoidal categories
or consult [83,87].

As usual, the symmetric group Σn is, for n � 1, the automorphism group of the set
{1, . . . , n}, with the group multiplication given by the composition, σ ′ · σ ′′ := σ ′(σ ′′), for
σ ′, σ ′′ ∈ Σn. Let k[Σn] denote the k-group ring of Σn.
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DEFINITION 1 (May operad). An operad in the category of k-modules is a collection P =
{P(n)}n�0 of right k[Σn]-modules, together with k-linear maps (operadic compositions)

(1)γ : P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn) → P(k1 + · · · + kn),

for n � 1 and k1, . . . , kn � 0, and a unit map η : k → P(1). These data fulfill the
following axioms.

Associativity. Let n � 1 and let m1, . . . , mn and k1, . . . , km, where m := m1 +· · ·+mn,
be non-negative integers. Then the following diagram, in which gs := m1 + · · · + ms−1

and hs = kgs+1 + · · · + kgs+1 , for 1 � s � n, commutes.1(
P(n) ⊗⊗n

s=1 P(ms)
)

⊗⊗m
r=1 P(kr )

γ⊗id

shuffle

P(m) ⊗⊗m
r=1 P(kr )

γ

P(k1 + · · · + km)

P(n) ⊗⊗n
s=1

(
P(ms) ⊗⊗ms

q=1 P(kgs+q)
)

id⊗(
⊗n

s=1 γ )
P(n) ⊗⊗n

s=1 P(hs)

γ

Equivariance. Let n � 1, let k1, . . . , kn be non-negative integers and let σ ∈ Σn,
τ1 ∈ Σk1, . . . , τn ∈ Σkn be permutations. Let σ(k1, . . . , kn) ∈ Σk1+···+kn denote the per-
mutation that permutes the n blocks (1, . . . , k1), . . . , (k1+· · ·+kn−1+1, . . . , k1+· · ·+kn)

as σ permutes (1, . . . , n) and let τ1 ⊕ · · · ⊕ τn ∈ Σk1+···+kn be the block sum of permuta-
tions. Then the following diagrams commute.

P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn)

γ

σ⊗σ−1
P(n) ⊗ P(kσ(1)) ⊗ · · · ⊗ P(kσ(n))

γ

P(k1 + · · · + kn)
σ(kσ(1),...,kσ(n))

P(kσ(1) + · · · + kσ(n))

P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn)

γ

id⊗τ1⊗···⊗τn
P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn)

γ

P(k1 + · · · + kn)
τ1⊕···⊕τn

P(k1 + · · · + kn)

Unitality. For each n � 1, the following diagrams commute.

P(n) ⊗ k⊗n

id⊗η⊗n

∼= P(n)

P(n) ⊗ P(1)⊗n

γ

k ⊗ P(n)

η⊗id

∼= P(n)

P(1) ⊗ P(n)

γ

1 The meaning of “shuffle” in the diagram below is explained in a remark following this definition.
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In the associativity diagram above, “shuffle” means switching the various factors in the
tensor product

P(n) ⊗ (P(m1) ⊗ · · · ⊗ P(mn)
)⊗ (P(k1) ⊗ · · · ⊗ P(km)

)
suitably. For instance, if n = 2, “shuffle” is the natural isomorphism of

P(2) ⊗ (P(m1) ⊗ P(m2)
)⊗ (P(k1) ⊗ · · · ⊗ P(km1+m2)

)
with

P(2) ⊗ (P(m1) ⊗ P(k1) ⊗ · · · ⊗ P(km1)
)⊗ (P(m2) ⊗ P(km1+1) ⊗ · · · ⊗ P(km1+m2)

)
.

A straightforward modification of the above definition makes sense in any symmetric
monoidal category (M,�, 1) such as the categories of differential graded modules, sim-
plicial sets, topological spaces, &c., see [83, Definition II.1.4] or [87, Definition 1]. We
then speak about differential graded operads, simplicial operads, topological operads, &c.

EXAMPLE 2. All properties axiomatized by Definition 1 can be read from the endomor-
phism operad EndV = {EndV (n)}n�0 of a k-module V . It is defined by setting EndV (n)

to be the space of k-linear maps V ⊗n → V . The operadic composition of f ∈ EndV (n)

with g1 ∈ EndV (k1), . . . , gn ∈ EndV (kn) is given by the usual composition of multilinear
maps as

γ (f, g1, . . . , gn) := f (g1 ⊗ · · · ⊗ gn),

the symmetric group acts by2

γ σ(f, g1, . . . , gn) := f (gσ−1(1) ⊗ · · · ⊗ gσ−1(n)), σ ∈ Σn,

and the unit map η : k → EndV (1) is given by η(1) := idV :V → V . The endomorphism
operad can be constructed over an object of an arbitrary symmetric monoidal category with
an internal hom-functor, as it was done in [83, Definition II.1.7].

One often considers operads A such that A(0) = 0 (the trivial k-module). We will
indicate that A is of this type by writing A = {A(n)}n�1.

EXAMPLE 3. Let us denote by Ass = {Ass(n)}n�1 the operad with Ass(n) := k[Σn],
n � 1, and the operadic composition defined as follows. Let idn ∈ Σn, idk1 ∈ Σk1 , . . . ,

idkn ∈ Σkn be the identity permutations. Then

γ (idn, idk1, . . . , idkn) := idk1+···+kn ∈ Σk1+···+kn .

The above formula determines γ (σ, τ1, . . . , τn) for general σ ∈ Σn, τ1 ∈ Σk1, . . . , τn ∈
Σkn by the equivariance axiom. The unit map η : k → Ass(1) is given by η(1) := id1.

2 I.e. the action of Σn on a linear map f ∈ Lin(V ⊗n, V ) is given by f (σ)(v1 ⊗ · · · ⊗ vn) :=
f (v

σ−1(1) ⊗ · · · ⊗ v
σ−1(n)).
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EXAMPLE 4. Let us give an example of a topological operad. For k � 1, the little k-discs
operad Dk = {Dk(n)}n�0 is defined as follows [83, Section II.4.1]. Let

Dk := {(x1, . . . , xk) ∈ Rk; x2
1 + · · · + x2

k � 1
}

be the standard closed disc in Rk . A little k-disc is then a linear embedding d : Dk ↪→ Dk

which is the restriction of a linear map Rk → Rk given by the composition of a translation
and a contraction. The n-th space Dk(n) of the little k-disc operad is the space of all
n-tuples (d1, . . . , dn) of little k-discs such that the images of d1, . . . , dn have mutually
disjoint interiors. The operad structure is obvious – the symmetric group Σn acts on Dk(n)

by permuting the labels of the little discs and the structure map γ is given by composition
of embeddings. The unit is the identity embedding id : Dk ↪→ Dk .

EXAMPLE 5. The collection of normalized singular chains C∗(T) = {C∗(T(n))}n�0 of a
topological operad T = {T(n)}n�0 is an operad in the category of differential graded Z-
modules. For a ring R, the singular homology H∗(T(n);R) = H∗(C∗(T(n)) ⊗Z R) forms
an operad H∗(T;R) in the category of graded R-modules, see [58, Section I.5] for details.

DEFINITION 6. Let P = {P(n)}n�0 and Q = {Q(n)}n�0 be two operads. A homomor-
phism f : P → Q is a sequence f = {f (n) : P(n) → Q(n)}n�0 of equivariant maps which
commute with the operadic compositions and preserve the units.

An operad R = {R(n)}n�0 is a suboperad of P if R(n) is, for each n � 0, a Σn-
submodule of P(n) and if all structure operations of R are the restrictions of those of P.
Finally, an ideal in the operad P is the collection I = {I(n)}n�0 of Σn-invariant subspaces
I(n) ⊂ P(n) such that

γP(f ⊗ g1 ⊗ · · · ⊗ gn) ∈ I(k1 + · · · + kn)

if either f ∈ I(n) or gi ∈ I(ki) for some 1 � i � n.

EXAMPLE 7. Given an operad P = {P(n)}n�0, let P̂ = {P̂(n)}n�0 be the collection
defined by P̂(n) := P(n) for n � 1 and P̂(0) := 0. Then P̂ is a suboperad of P. The
correspondence P �→ P̂ is a full embedding of the category of operads P with P(0) ∼=
k into the category of operads A with A(0) = 0. Operads satisfying P(0) ∼= k have
been called unital while operads with A(0) = 0 non-unital operads. We will not use this
terminology because non-unital operads will mean something different in this chapter, see
Section 2.

An example of an operad A which is not of the form P̂ for some operad P with P(0) ∼= k
can be constructed as follows. Observe first that operads P with the property that

P(0) ∼= k and P(n) = 0 for n � 2

are the same as augmented associative algebras. Indeed, the space P(1) with the opera-
tion ◦1 : P(1) ⊗ P(1) → P(1) is clearly a unital associative algebra, augmented by the
composition

P(1)
∼=−→ P(1) ⊗ k

∼=−→ P(1) ⊗ P(0)
◦1−→ P(0) ∼= k.
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Now take an arbitrary unital associative algebra A and define the operad A = {A(n)}n�1
by

A(n) :=
{
A, for n = 1,
0, for n �= 1,

with ◦1 : A(1) ⊗ A(1) → A(1) the multiplication of A. It follows from the above con-
siderations that A = P̂ for some operad P with P(0) ∼= k if and only if A admits an
augmentation. Therefore any unital associative algebra that does not admit an augmenta-
tion produces the desired example.

EXAMPLE 8. Kernels, images, &c., of homomorphisms between operads in the category
of k-modules are defined componentwise. For example, if f : P → Q is such homomor-
phism, then Ker(f ) = {Ker(f )(n)}n�0 is the collection with

Ker(f )(n) := Ker
(
f (n) : P(n) → Q(n)

)
, n � 0.

It is clear that Ker(f ) is an ideal in P.
Also quotients are defined componentwise. If I is an ideal in P, then the collection

P/I = {(P/I)(n)}n�0 with (P/I)(n) := P(n)/I(n) for n � 0, has a natural operad struc-
ture induced by the structure of P. The canonical projection P → P/I has the expected
universal property. The kernel of this projection equals I.

Sometimes it suffices to consider operads without the symmetric group action. This
notion is formalized by:

DEFINITION 9 (May non-Σ operad). A non-Σ operad in the category of k-modules is a
collection P = {P(n)}n�0 of k-modules, together with operadic compositions

γ : P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn) → P(k1 + · · · + kn),

for n � 1 and k1, . . . , kn � 0, and a unit map η : k → P(1) that fulfill the associativity and
unitality axioms of Definition 1.

Each operad can be considered as a non-Σ operad by forgetting the Σn-actions. On the
other hand, given a non-Σ operad P, there is an associated operad Σ[P] with Σ[P](n) :=
P(n) ⊗ k[Σn], n � 0, with the structure operations induced by the structure operations
of P. Operads of this form are sometimes called regular operads.

EXAMPLE 10. Consider the operad Com = {Com(n)}n�1 such that Com(n) := k with
the trivial Σn-action, n � 1, and the operadic compositions (1) given by the canonical
identifications

Com(n) ⊗ Com(k1) ⊗ · · · ⊗ Com(kn) ∼= k⊗(n+1) ∼=−→ k ∼= Com(k1 + · · · + kn).

The operad Com is obviously not regular. Observe also that Com ∼= Êndk, where Êndk is
the endomorphism operad of the ground ring without the initial component, see Example 7
for the notation.

Let Ass denote the operad Com considered as a non-Σ operad. Its symmetrization
Σ[Ass] then equals the operad Ass introduced in Example 3.
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Fig. 1. Flow charts explaining the associativity in a Markl operad.

As we already observed, there is an alternative approach to operads. For the purposes of
comparison, in the rest of this section and in the following section we will refer to operads
viewed from this alternative perspective as to Markl operads. See also the remarks on the
terminology in the introduction.

DEFINITION 11. A Markl operad in the category of k-modules is a collection S =
{S(n)}n�0 of right k[Σn]-modules, together with k-linear maps (◦i-compositions)

◦i : S(m) ⊗ S(n) → S(m + n − 1),

for 1 � i � m and n � 0. These data fulfill the following axioms.

Associativity. For each 1 � j � a; 1 � i � a + b − 1; b, c � 0, f ∈ S(a), g ∈ S(b)

and h ∈ S(c),

(f ◦j g) ◦i h =
⎧⎨⎩

(f ◦i h) ◦j+c−1 g, for 1 � i < j,

f ◦j (g ◦i−j+1 h), for j � i < b + j,

(f ◦i−b+1 h) ◦j g, for j + b � i � a + b − 1,

see Fig. 1.

Equivariance. For each 1 � i � m, n � 0, τ ∈ Σm and σ ∈ Σn, let τ ◦i σ ∈ Σm+n−1
be given by inserting the permutation σ at the i-th place in τ . Let f ∈ S(m) and g ∈ S(n).
Then

(f τ) ◦i (gσ ) = (f ◦τ(i) g)(τ ◦i σ ).
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Unitality. There exists e ∈ S(1) such that

(2)f ◦i e = f and e ◦1 g = g

for each 1 � i � m, n � 0, f ∈ S(m) and g ∈ S(n).

EXAMPLE 12. All axioms in Definition 11 can be read from the endomorphism operad
EndV = {EndV (n)}n�0 of a k-module V reviewed in Example 2, with ◦i-operations given
by

f ◦i g := f
(
id⊗i−1

V ⊗ g ⊗ id⊗m−i
V

)
,

for f ∈ EndV (m), g ∈ EndV (n), 1 � i � m and n � 0.

The following proposition shows that Definition 1 describes the same objects as Defini-
tion 11.

PROPOSITION 13. The category of May operads is isomorphic to the category of Markl
operads.

PROOF. Given a Markl operad S = {S(n)}n�0 as in Definition 11, define a May operad
P = May(S) by P(n) := S(n) for n � 0, with the γ -operations given by

(3)γ (f, g1, . . . , gn) := (. . . ((f ◦n gn) ◦n−1 gn−1
)
. . .
) ◦1 g1

where f ∈ P(n), gi ∈ P(ki), 1 � i � n, k1, . . . , kn � 0. The unit morphism η : k → P(1)
is defined by η(1) := e. It is easy to verify that May(−) extends to a functor from the
category of Markl operads the category of May operads.

On the other hand, given a May operad P, one can define a Markl operad S = Mar(P)

by S(n) := P(n) for n � 0, with the ◦i-operations:

(4)f ◦i g := γ (f, e, . . . , e︸ ︷︷ ︸
i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

),

for f ∈ S(m), g ∈ S(n), m � 1, n � 0, where e := η(1) ∈ P(1). It is again obvious that
Mar(−) extends to a functor that the functors May(−) and Mar(−) are mutually inverse
isomorphisms between the category of Markl operads and the category of May operads.
This involves, of course, checking that the functors May(−) and Mar(−) take the respec-
tive associativity, unitality, and equivariance conditions into each other. This is left as a
potential exercise for the reader. �

The equivalence between May and Markl operads implies that an operad can be defined
by specifying ◦i-operations and a unit. This is sometimes simpler that to define the γ -
operations directly, as illustrated by:

EXAMPLE 14. Let Σ be a Riemann sphere, that is, a nonsingular complex projective curve
of genus 0. By a puncture or a parametrized hole we mean a point p of Σ together with a
holomorphic embedding of the standard closed discU = {z ∈ C ; |z| � 1} to Σ centered
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at the point. Thus a puncture is a holomorphic embedding u : Ũ → Σ , where Ũ ⊂ C is
an open neighborhood of U and u(0) = p. We say that two punctures u1 : Ũ1 → Σ and
u2 : Ũ2 → Σ are disjoint, if

u1(Ů) ∩ u2(Ů) = ∅,
where Ů := {z ∈ C; |z| < 1} is the interior of U .

Let M̂0(n) be the moduli space of Riemann spheres Σ with n + 1 disjoint punctures
ui : Ũi → Σ , 0 � i � n, modulo the action of complex projective automorphisms. The
topology of M̂0(n) is a very subtle thing and we are not going to discuss this issue here;
see [46]. The constructions below will be made only ‘up to topology’.

Renumbering the holes u1, . . . , un defines on each M̂0(n) a natural right Σn-action and
the Σ-module M̂0 = {M̂0(n)}n�0 forms a topological operad under sewing Riemannian
spheres at punctures. Let us describe this operadic structure using the ◦i-formalism. Thus,
let Σ represent an element x ∈ M̂0(m) and Δ represent an element y ∈ M̂0(n). For
1 � i � m, let ui : Ũi → Σ be the i-th puncture of Σ and let u0 : Ũ0 → Δ be the 0-th
puncture of Δ.

There certainly exists some 0 < r < 1 such that both Ũ0 and Ũi contain the disc
U1/r := {z ∈ C; |z| < 1/r}. Let now Σr := Σ \ ui(Ur) and Δr := Δ \ u0(Ur). Define
finally

Ξ := (Σr " Δr)/ ∼,

where the relation ∼ is given by

Σr # ui(ξ) ∼ u0(1/ξ) ∈ Δr,

for r < |ξ | < 1/r . It is immediate to see that Ξ is a well-defined punctured Riemann
sphere, with n + m punctures induced in the obvious manner from those of Σ and Δ, and
that the class of the punctured surface Ξ in the moduli space M̂0(m + n − 1) does not
depend on the representatives Σ , Δ and on r . We define x ◦i y to be the class of Ξ .

The unit e ∈ M̂0(1) can be defined as follows. Let CP1 be the complex projective
line with homogeneous coordinates [z,w], z,w ∈ C, [118, Example I.1.6]. Let 0 :=
[0, 1] ∈ CP1 and ∞ := [1, 0] ∈ CP1. Recall that we have two canonical isomorphisms
p∞ : CP1 \ ∞ → C and p0 : CP1 \ 0 → C given by

p∞
([z,w]) := z/w and p0

([z,w]) := w/z.

Then p−1∞ : C → CP1 (respectively p−1
0 : C → CP1) is a puncture at 0 (respectively at

∞). We define e ∈ M̂0(1) to be the class of (CP1, p−1
0 , p−1∞ ).

It is not hard to verify that the above constructions make the collection M̂0 =
{M̂0(n)}n�0 into a Markl operad. By Proposition 13, M̂0 is a also May operad.

In the rest of this chapter, we will consider May and Markl operads as two versions of
the same object which we will call simply a (unital) operad.
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2. Non-unital operads

It turns out that the combinatorial structure of the moduli space of stable genus zero curves
is captured by a certain non-unital version of operads. Let M0,n+1 be the moduli space of
(n+1)-tuples (x0, . . . , xn) of distinct numbered points on the complex projective line CP1

modulo projective automorphisms, that is, transformations of the form

CP1 # [ξ1, ξ2] �→ [aξ1 + bξ2, cξ1 + dξ2] ∈ CP1,

where a, b, c, d ∈ C with ad − bc �= 0.
The moduli space M0,n+1 has, for n � 2, a canonical compactification M0(n) ⊃ M0,n+1

introduced by A. Grothendieck and F.F. Knudsen [16,50]. The space M0(n) is the moduli
space of stable (n + 1)-pointed curves of genus 0:

DEFINITION 15. A stable (n + 1)-pointed curve of genus 0 is an object

(C; x0, . . . , xn),

where C is a (possibly reducible) algebraic curve with at most nodal singularities and
x0, . . . , xn ∈ C are distinct smooth points such that:

(i) each component of C is isomorphic to CP1,
(ii) the graph of intersections of components of C (i.e. the graph whose vertices corre-

spond to the components of C and edges to the intersection points of the compo-
nents) is a tree,

(iii) each component of C has at least three special points, where a special point means
either one of the xi , 0 � i � n, or a singular point of C (the stability).

It can be easily seen that a stable curve (C; x0, . . . , xn) admits no infinitesimal automor-
phisms that fix marked points x0, . . . , xn, therefore (C; x0, . . . , xn) is ‘stable’ in the usual
sense. Observe also that M0(0) = M0(1) = ∅ (there are no stable curves with less than
three marked points) and that M0(2) = the point corresponding to the three-pointed stable
curve (CP1; ∞, 1, 0). The space M0,n+1 forms an open dense part of M0(n) consisting of
marked curves (C; x0, . . . , xn) such that C is isomorphic to CP1.

Let us try to equip the collection M0 = {M0(n)}n�2 with an operad structure as in
Definition 1. For C = (C, x1, . . . , xn) ∈ M0(n) and Ci = (Ci, y

i
1, . . . , y

i
ki
) ∈ M0(ki),

1 � i � n, let

(5)γ (C,C1, . . . , Cn) ∈ M0(k1 + · · · + kn)

be the stable marked curve obtained from the disjoint union C " C1 " · · · " Cn by iden-
tifying, for each 1 � i � n, the point xi ∈ C with the point yi

0 ∈ Ci , introducing a nodal
singularity, and relabeling the remaining marked points accordingly. The symmetric group
acts on M0(n) by

(C, x0, x1, . . . , xn) �→ (C, x0, xσ(1), . . . , xσ(n)), σ ∈ Σn.

We have defined the γ -compositions and the symmetric group action, but there is no
room for the identity, because M0(1) is empty! The above structure is, therefore, a non-
unital operad in the sense of the following definition (which is formulated, as all definitions
in this article, for the monoidal category of k-modules).
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Fig. 2. The ◦i -compositions in M0 = {M0(n)}n�2.

DEFINITION 16. A May non-unital operad in the category of k-modules is a collection
P = {P(n)}n�0 of k[Σn]-modules, together with operadic compositions

γ : P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn) → P(k1 + · · · + kn),

for n � 1 and k1, . . . , kn � 0, that fulfill the associativity and equivariance axioms of
Definition 1.

We may as well define on the collection M0 = {M0(n)}n�2 operations

(6)◦i : M0(m) × M0(n) → M0(m + n − 1)

for m, n � 2, 1 � i � m, by

(C1; y0, . . . , ym) × (C2; x0, . . . , xn)

�→ (C; y0, . . . , yi−1, x0, . . . , xn, yi+1, . . . , ym)

where C is the quotient of the disjoint union C1 " C2 given by identifying x0 with yi at a
nodal singularity, see Fig. 2. The collection M0 = {M0(n)}n�2 with ◦i-operations (6) is
an example of another version of non-unital operads, recalled in:

DEFINITION 17. A non-unital Markl operad in the category of k-modules is a collection
P = {P(n)}n�0 of k[Σn]-modules, together with operadic compositions

◦i : S(m) ⊗ S(n) → S(m + n − 1),

for 1 � i � m and n � 0, that fulfill the associativity and equivariance axioms of Defini-
tion 11.

A we saw in Proposition 13, in the presence of operadic units, May operads are the same
as Markl operads. Surprisingly, the non-unital versions of these structures are radically dif-
ferent – Markl operads capture more information than May operads! This is made precise
in the following:

PROPOSITION 18. The category of non-unital Markl operads is a subcategory of the cat-
egory of non-unital May operads.
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PROOF. It is easy to see that (3) defines, as in the proof of Proposition 13, a functor
ψMay(−) which is an embedding of the category of non-unital Markl operads into the
category of non-unital May operads. �

Observe that formula (4), inverse to (3), does not make sense without units. The rela-
tion between various versions of operads discussed so far is summarized in the following
diagram of categories and their inclusions:

May operads

Mar

Markl operads
May

non-unital May operads
ψMay

non-unital Markl operads

The following example shows that non-unital Markl operads form a proper sub-category
of the category of non-unital May operads.

EXAMPLE 19. We describe a non-unital May operad V = {V(n)}n�0 which is not of the
form ψMay(S) for some non-unital Markl operad S. Let

V(n) :=
{

k for n = 2 or 4,
0 otherwise.

The only non-trivial γ -composition is γ : V(2) ⊗ V(2) ⊗ V(2) → V(4), given as the
canonical isomorphism

V(2) ⊗ V(2) ⊗ V(2) ∼= k⊗3 ∼=−→ k ∼= V(4).

Suppose that V = May(S) for some non-unital Markl operad S. Then, according to (3),
for f, g1, g2 ∈ V(2),

γ (f, g1, g2) = (f ◦2 g2) ◦1 g1.

Since (f ◦2 g) ∈ V(3) = 0, this would imply that γ is trivial, which is not true.

Proposition 21 below shows that the Markl non-unital operads rather than the May non-
unital operads are the true non-unital versions of operads. We will need the following
definition in which K = {K(n)}n�1 is the trivial (unital) operad with K(1) := k and
K(n) = 0, for n �= 1.

DEFINITION 20. An augmentation of an operad P in the category of k-modules is a ho-
momorphism ε : P → K. Operads with an augmentation are called augmented operads.
The kernel

P := Ker(ε : P → K)

is called the augmentation ideal.

The following proposition was proved in [75].
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PROPOSITION 21. The correspondence P �→ P is an isomorphism between the category
of augmented operads and the category of Markl non-unital operads.

PROOF. The ◦i-operations of P obviously restrict to P, making it a non-unital Markl op-
erad. It is simple to describe a functorial inverse S �→ S̃ of the correspondence P �→ P.
For a Markl non-unital operad S, denote by S̃ the collection

(7)S̃(n) :=
{

S(n), for n �= 1,
S(1) ⊕ k, for n = 1.

The ◦i-operations of S̃ are uniquely determined by requiring that they extend the ◦i-
operations of S and satisfy (2), with the unit e := 0 ⊕ 1k ∈ S(1)⊕ k = S̃(1). Informally, S̃

is obtained from the Markl non-unital operad S by adjoining a unit. �

Observe that if S were a May, not Markl, non-unital operad, the construction of S̃ de-
scribed in the above proof would not make sense, because we would not know how to
define

γ (f, e, . . . , e︸ ︷︷ ︸
i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

)

for f ∈ S(m), g ∈ S(n), m � 2, n � 0, 1 � i � m. Proposition 21 should be compared
to the obvious statement that the category of augmented unital associative algebras is iso-
morphic to the category of (non-unital) associative algebras. In the following proposition,
Oper denotes the category of k-linear operads and ψOper the category of k-linear Markl
non-unital operads.

PROPOSITION 22. Let P be an augmented operad and Q an arbitrary operad in the cate-
gory of k-modules. Then there exists a natural isomorphism

(8)MorOper(P,Q) ∼= MorψOper(P, ψMay(Q)).

The proof is simple and we leave it to the reader. Combining (8) with the isomorphism
of Proposition 21 one obtains a natural isomorphism

(9)MorOper(̃S,Q) ∼= MorψOper
(
S, ψMay(Q)

)
which holds for each Markl non-unital operad S and operad Q. Isomorphism (9) means that

:̃ψOper → Oper and ψMay : Oper → ψOper are adjoint functors. This adjunction
will be used in the construction of free operads in Section 4.

In the rest of this chapter, non-unital Markl operads will be called simply non-unital
operads. This will not lead to confusion, since all non-unital operads referred to in the rest
of this chapter will be Markl.

3. Operad algebras

As we already remarked, operads are important through their representations called operad
algebras or simply algebras.
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DEFINITION 23. Let V be a k-module and EndV the endomorphism operad of V recalled
in Example 2. A P-algebra is a homomorphism of operads ρ : P → EndV .

The above definition admits an obvious generalization for an arbitrary symmetric
monoidal category with an internal hom-functor. The last assumption is necessary for the
existence of the ‘internal’ endomorphism operad, see [83, Definition II.1.20]. Definition 23
can, however, be unwrapped into the form given in [58, Definition 2.1] that makes sense in
an arbitrary symmetric monoidal category without the internal hom-functor assumption:

PROPOSITION 24. Let P be an operad. A P-algebra is the same as a k-module V together
with maps

(10)α : P(n) ⊗ V ⊗n → V, n � 0,

that satisfy the following axioms.
Associativity. For each n � 1 and non-negative integers k1, . . . , kn, the following dia-

gram commutes.(
P(n) ⊗⊗n

s=1 P(ks)
)

⊗⊗n
s=1 V ⊗ks

shuffle

γ⊗id
P(k1 + · · · + kn) ⊗ V ⊗(k1+···+kn)

α

V

P(n) ⊗⊗n
s=1

(
P(ks) ⊗ V ⊗ks

) id⊗(
⊗n

s=1 α)
P(n) ⊗ V ⊗n

α

Equivariance. For each n � 1 and σ ∈ Σn, the following diagram commutes.

P(n) ⊗ V ⊗n

α

σ⊗σ−1

P(n) ⊗ V ⊗n

α

V

Unitality. For each n � 1, the following diagram commutes.

k ⊗ V

η⊗id

∼=
V

P(1) ⊗ V

α

We leave as an exercise to formulate a version of Proposition 24 that would use ◦i-
operations instead of γ -operations.

EXAMPLE 25. In this example we verify, using Proposition 24, that algebras over the
operad Com = {Com(n)}n�1 recalled in Example 10 are ordinary commutative associative
algebras. To simplify the exposition, let us agree that v’s with various subscripts denote
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elements of V . Since Com(n) = k for n � 1, the structure map (10) determines, for each
n � 1, a linear map μn :V ⊗n → V by

μn(v1, . . . , vn) := α(1n, v1, . . . , vn),

where 1n denotes in this example the unit 1n ∈ k = Com(n). The associativity of Proposi-
tion 24 says that

μn

(
μk1(v1, . . . , vk1), . . . , μkn(vk1+···+kn−1+1, . . . , vk1+···+kn)

)
(11)= μk1+···+kn(v1, . . . , vk1+···+kn),

for each n, k1, . . . , kn � 1. The equivariance of Proposition 24 means that each μn is fully
symmetric

(12)μn(v1, . . . , vn) = μn(vσ(1), . . . , vσ(n)), σ ∈ Σn,

and the unitality implies that μ1 is the identity map,

(13)μ1(v) = v.

The above structure can be identified with a commutative associative multiplication
on V . Indeed, the bilinear map · := μ2 : V ⊗ V → V is clearly associative:

(14)(v1 · v2) · v3 = v1 · (v2 · v3)

and commutative:

(15)v1 · v2 = v2 · v1.

On the other hand, μ1(v) := v and

μn(v1, . . . , vn) := (· · · (v1 · v2) · · · vn−1
) · vn for n � 2,

defines multilinear maps {μn :V ⊗n → V } satisfying (11)–(13). It is equally easy to ver-
ify that algebras over the operad Ass introduced in Example 3 are ordinary associative
algebras.

Following Leinster [61], one could say that (11)–(13) is an unbiased definition of as-
sociative commutative algebras, while (14), (15) is a definition of the same object biased
towards bilinear operations. Operads therefore provide unbiased definitions of algebras.

EXAMPLE 26. Let us denote by UCom the endomorphism operad Endk of the ground
ring k. It is easy to verify that UCom-algebras are unital commutative associative algebras.
We leave it to the reader to describe the operad UAss governing unital associative operads.

Algebras over a non-Σ operad P are defined as algebras, in the sense of Definition 23,
over the symmetrization Σ[P] of P. Algebras over non-unital operads as discussed in Sec-
tion 2 are defined by appropriate obvious modifications of Definition 23.
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EXAMPLE 27. Let Y be a topological space with a base point ∗ and Sk the k-dimensional
sphere, k � 1. The k-fold loop space ΩkY is the space of all continuous maps Sk → Y

that send the south pole of Sk to the base point of Y . Equivalently, ΩkY is the space of
all continuous maps λ : (Dk,Sk−1) → (Y, ∗) from the standard closed k-dimensional disc
Dk to Y that map the boundary Sk−1 of Dk to the base point of Y . Let us show, following
Boardman and Vogt [10], that ΩkY is a natural topological algebra over the little k-discs
operad Dk = {Dk(n)}n�0 recalled in Example 4.

The action α : Dk(n) × (ΩkY )×n → ΩkY is, for n � 0, defined as follows. Given
λi : (Dk,Sk−1) → (Y, ∗) ∈ ΩkY , 1 � i � n, and little k-discs d = (d1, . . . , dn) ∈ Dk(n)

as in Example 4, then

α(d, λ1, . . . , λn) : (Dk,Sk−1) → (Y, ∗) ∈ ΩkY

is the map defined to be λi : Dk → Y (suitably rescaled) on the image of di , and to be ∗ on
the complement of the images of the maps di , 1 � i � n.

Therefore each k-fold loop space is a Dk-space. The following classical theorem is a
certain form of the inverse statement.

THEOREM 28 (Boardman–Vogt [10], May [86]). A path-connected Dk-algebra X has the
weak homotopy type of a k-fold loop space.

The connectedness assumption in the above theorem can be weakened by assuming that
the Dk-action makes the set π0(X) of path components of X a group.

EXAMPLE 29. The non-unital operad M0 of stable pointed curves of genus 0 (also called
the configuration (non-unital) operad) recalled on p. 100 is a non-unital operad in the
category of smooth complex projective varieties. It therefore makes sense, as explained in
Example 5, to consider its homology operad H∗(M0,k) = {H∗(M0(n),k)}n�2.

An algebra over this non-unital operad is called a (tree level) cohomological conformal
field theory or a hyper-commutative algebra [55]. It consist of a family{

(-, . . . , -) :V ⊗n → V
}
n�2

of linear operations which are totally symmetric, that is

(vσ(1), . . . , vσ(n)) = (v1, . . . , vn),

for each permutation σ ∈ Σn. Moreover, we require the following form of associativity:∑
(S,T )

(
(u, v, xi; i ∈ S),w, xj ; j ∈ T

)
(16)=

∑
(S,T )

(
u, (v,w, xi; i ∈ S), xj ; j ∈ T

)
,

where u, v,w, x1, . . . , xn ∈ V and (S, T ) runs over disjoint decompositions S " T =
{1, . . . , n}. For n = 0, (16) means the (usual) associativity of the bilinear operation (−,−),
i.e. ((u, v), w) = (u, (v,w)). For n = 1 we get(

(u, v),w, x
)+ ((u, v, x), w) = (u, (v,w, x)

)+ (u, (v,w), x
)
.
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EXAMPLE 30. In this example, k is a field of characteristic 0. The non-unital op-
erad M0(R) = {M0(R)(n)}n�2 of real points in the configuration operad M0 is cal-
led the mosaic non-unital operad [19]. Algebras over the homology H∗(M0(R),k) =
{H∗(M0(R)(n),k)}n�2 of this operad were recently identified [25] with 2-Gerstenhaber
algebras, which are structures (V , μ, τ) consisting of a commutative associative product
μ :V ⊗ V → V and an anti-symmetric degree +1 ternary operation τ :V ⊗ V ⊗ V → V

which satisfies the generalized Jacobi identity∑
σ

sgn(σ ) · τ(τ(xσ(1), xσ(2), xσ(3)), xσ(4), xσ(5)
) = 0,

where the summation runs over all (3, 2)-unshuffles σ(1) < σ(2) < σ(3), σ(4) < σ(5).
Moreover, the ternary operation τ is tied to the multiplication μ by the distributive law

τ
(
μ(s, t), u, v

) = μ
(
τ(s, u, v), t

)+ (−1)(1+|u|+|v|)|s| · μ(s, τ (t, u, v)),
s, t, u, v ∈ V , saying that the assignment s �→ τ(s, u, v) is a degree (1 + |u| + |v|)-
derivation of the associative commutative algebra (V , μ), for each u, v ∈ V .

4. Free operads and trees

The purpose of this section is three-fold. First, we want to study free operads because
each operad is a quotient of a free one. The second reason why we are interested in free
operads is that their construction involves trees. Indeed, it turns out that rooted trees provide
‘pasting schemes’ for operads and that, replacing trees by other types of graphs, one can
introduce several important generalizations of operads, such as cyclic operads, modular
operads, and PROPs. The last reason is that the free operad functor defines a monad which
provides an unbiased definition of operads as algebras over this monad. Everything in
this section is written for k-linear operads, but the constructions can be generalized into
an arbitrary symmetric monoidal category with countable coproducts (M,�, 1) whose
monoidal product � is distributive over coproducts, see [83, Section II.1.9].

Recall that a Σ-module is a collection E = {E(n)}n�0 in which each E(n) is a right
k[Σn]-module. There is an obvious forgetful functor � : Oper → Σ-mod from the cate-
gory Oper of k-linear operads to the category Σ-mod of Σ-modules.

DEFINITION 31. The free operad functor is the left adjoint [38, §II.7] Γ :Σ-mod →
Oper to the forgetful functor � : Oper → Σ-mod. This means that there exists a functo-
rial isomorphism

MorOper
(
Γ (E),P

) ∼= MorΣ-mod
(
E,�(P)

)
for an arbitrary Σ-module E and operad P. The operad Γ (E) is the free operad gener-
ated by the Σ-module E. Similarly, the free non-unital operad functor is a left adjoint
Ψ :Σ-mod → ψOper of the obvious forgetful functor �ψ :ψOper → Σ-mod, that is

MorψOper
(
Ψ (E), S

) ∼= MorΣ-mod
(
E,�ψ(S)

)
,

where E is a Σ-module and S a non-unital operad. The non-unital operad Ψ (E) is the free
non-unital operad generated by the Σ-module E.
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Fig. 3. Flow diagrams in non-unital operads.

Let :̃ψOper → Oper be the functor of ‘adjoining the unit’ considered in the proof
of Proposition 21 on p. 103. The functorial isomorphism (9) implies that one may take

(17)Γ := Ψ̃ ,

which means that the free operad Γ (E) can be obtained from the free non-unital operad
Ψ (E) by formally adjoining the unit.

Let us indicate how to construct the free non-unital operad Ψ (E), a precise description
will be given later in this section. The free non-unital operad Ψ (E) must be built up from
all formal ◦i-compositions of elements of E modulo the axioms listed in Definition 11. For
instance, given f ∈ E(2), g ∈ E(3), h ∈ E(2) and l ∈ E(0), the component Ψ (E)(5)
must contain the following five compositions(

f ◦1 (g ◦2 l)
) ◦3 h, (f ◦2 h) ◦1 (g ◦2 l),

(
(f ◦2 h) ◦1 g

) ◦2 l,

(18)
(
(f ◦1 g) ◦2 l

) ◦3 h and
(
(f ◦1 g) ◦4 h

) ◦2 l.

The elements in (18) can be depicted by the ‘flow diagrams’ of Fig. 3. Nodes of these
diagrams are decorated by elements f, g, h and l of E in such a way that an element of
E(n) decorates a node with n input lines, n � 0. Thin ‘amoebas’ indicate the nesting
which specifies the order in which the ◦i-operations are performed. The associativity of
Definition 11 however says that the result of the composition does not depend on the order,
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therefore the amoebas can be erased and the common value of the compositions represented
by

(19)

Let us look more closely how diagram (19) determines an element of the (still hypothet-
ical) free non-unital operad Ψ (E). The crucial fact is that the underlying graph of (19) is a
planar rooted tree. Recall that a tree is a finite connected simply connected graph without
loops and multiple edges. For a tree T we denote, as usual, by Vert(T ) the set of vertices
and Edg(T ) the set of edges of T . The number of edges adjacent to a vertex v ∈ Vert(T )

is called the valence of v and denoted val(v). We assume that one is given a subset

ext(T ) ⊂ {v ∈ Vert(T ); val(v) = 1
}

of external vertices, the remaining vertices are internal. Let us denote

vert(T ) := Vert(T ) \ ext(T )

the set of all internal vertices. Henceforth, we will assume that our trees have at least one
internal vertex. This excludes at this stage the exceptional tree consisting of two external
vertices connected by an edge.

Edges adjacent to external vertices are the legs of T . A tree is rooted if one of its legs,
called the root, is marked and all other edges are oriented, pointing to the root. The legs
different from the root are the leaves of T . For example, the tree in (19) has 4 internal ver-
tices decorated f , g, h and l, and 4 leaves. Finally, the planarity means that an embedding
of T into the plane is specified. In our pictures, the root will always be placed on the top.
By a vertex we will always mean an internal one.

The planarity and a choice of the root of the underlying tree of (19) specifies a total order
of the set in(v) of input edges of each vertex v ∈ vert(T ) as well as a total order of the set
Leaf(T ) of the leaves of T , by numbering from the left to the right:

(20)

This tells us that l should be inserted into the second input of g, g into the first input of f
and h into the second input of f . Using ‘abstract variables’ v1, v2, v3 and v4, the element
represented by (20) can also be written as the ‘composition’ f (g(v1, l, v2), h(v3, v4)).
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Now we need to take into account also the symmetric group action. If τ is the generator
of Σ2, then the obvious equality

f
(
g(v1, l, v2), h(v3, v4)

) = f τ
(
h(v3, v4), g(v1, l, v2)

)
of ‘abstract compositions’ coming from the equivariance of Definition 11 translates into
the following equality of flow diagrams:

(21)

Relation (21) shows that the equivariance of Definition 11 violates the linear orders
induced by the planar embedding of T . This leads us to the conclusion that the flow di-
agrams describing elements of free non-unital operads are (abstract, non-planar) rooted,
leaf-labeled decorated trees.

Let us describe, after these motivational remarks, a precise construction of Ψ (E). The
first subtlety one needs to understand is how to decorate vertices of non-planar trees. To
this end, we need to explain how each Σ-module E = {E(n)}n�0 naturally extends into a
functor (denoted again E) from the category Setf of finite sets and their bijections to the
category of k-modules. If X and Y are finite sets, denote by

(22)Bij(Y,X) := {ϑ :X
∼=−→ Y }

the set of all isomorphisms between X and Y (notice the unexpected direction of the
arrow!). It is clear that Bij(Y,X) is a natural left AutY - right AutX-bimodule, where
AutX := Bij(X,X) and AutY := Bij(Y, Y ) are the sets of automorphisms with group
structure given by composition. For a finite set S ∈ Setf of cardinality n and a Σ-module
E = {E(n)}n�0 define E(S) to be

(23)E(S) := E(n) ×Σn Bij
([n], S)

where, as usual, [n] := {1, . . . , n} and, of course, Σn = Aut[n].
Let us recall that a (leaf -) labeled rooted n-tree is a rooted tree T together with a speci-

fied bijection � : Leaf(T )
∼→ [n]. Let Treen be the category of labeled rooted n-trees and

their bijections. For T ∈ Treen define

(24)E(T ) :=
⊗

v∈vert(T )

E
(
in(v)

)
where in(v) is, as before, the set of all input edges of a vertex v ∈ vert(T ). It is easy to
verify that E �→ E(T ) defines a functor from the category Treen to the category of k-
modules.

Recall that the colimit of a covariant functor F : D → Modk is the quotient

colim
x∈D

F(x) =
⊕
x∈D

F(x)/ ∼,
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where ∼ is the equivalence generated by

F(y) # a ∼ F(f )(a) ∈ F(z),

for each a ∈ F(y), y, z ∈ D and f ∈ MorD(y, z). Define finally

(25)Ψ (E)(n) := colim
T ∈Treen

E(T ), n � 0.

The following theorem was proved in [83, II.1.9].

THEOREM 32. There exists a natural non-unital operad structure on the Σ-module

Ψ (E) = {Ψ (E)(n)
}
n�0,

with the ◦i-operations given by the grafting of trees and the symmetric group re-labeling
the leaves, such that Ψ (E) is the free non-unital operad generated by the Σ-module E.

One could simplify (25) by introducing Tree(n) as the set of isomorphism classes of
n-trees from Treen and defining Ψ (E) by the formula

(26)Ψ (E)(n) =
⊕

[T ]∈Tree(n)

E(T ), n � 0,

which does not involve the colimit. The drawback of (26) is that it assumes a choice of a
representative [T ] of each isomorphism class in Tree(n), while (25) is functorial and admits
simple generalizations to other types of operads and PROPs. See [83, Section II.1.9] for
other representations of the free non-unital operad functor.

Having constructed the free non-unital operad Ψ (E), we may use (17) to define the free
operad Γ (E). This is obviously equivalent to enlarging, in (25) for n = 1, the category
Treen by the exceptional rooted tree | with one leg and no internal vertex. If we denote this
enlarged category of trees and their isomorphisms (which, however, differs from Treen

only at n = 1) by UTreen, we may represent the free operad as

(27)Γ (E)(n) := colim
T ∈UTreen

E(T ), n � 0.

If E is a Σ-module such that E(0) = E(1) = 0, then (26) reduces to a summation
over reduced trees, that is trees whose all vertices have at least two input edges. By simple
combinatorics, the number of isomorphism classes of reduced trees in Treen is finite for
each n � 0. This implies the following proposition that says that operads are relatively
small objects.

PROPOSITION 33. Let E = {E(n)}n�0 be a Σ-module such that

E(0) = E(1) = 0

and such that E(n) are finite-dimensional for n � 2. Then the spaces Ψ (E)(n) and
Γ (E)(n) are finite-dimensional for each n � 0.
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We close this section by showing how the free operad functor can be used to define
operads. It follows from general principles that any operad P is a quotient P = Γ (E)/(R),
where E and R are Σ-modules and (R) is the operadic ideal (see Definition 6) generated
by R in Γ (E).

EXAMPLE 34. The commutative associative operad Com recalled in Example 10 is gen-
erated by the Σ-module

ECom(n) :=
{

k · μ, if n = 2,
0 if n �= 2,

where k · μ is the trivial representation of Σ2. The ideal of relations is generated by

RCom := Spank
{
μ(μ ⊗ id) − μ(id ⊗ μ)

} ⊂ Γ (ECom)(3),

where μ(μ ⊗ id) − μ(id ⊗ μ) is the obvious shorthand for γ (μ,μ, e) − γ (μ, e, μ), with
e the unit of Γ (ECom).

Similarly, the operad Ass for associative algebras reviewed in Example 3 is generated
by the Σ-module EAss such that

EAss(n) :=
{

k[Σ2], if n = 2,
0 if n �= 2.

The ideal of relations is generated by the k[Σ3]-closure RAss of the associativity

(28)α(α ⊗ id) − α(id ⊗ α) ∈ Γ (EAss)(3),

where α is a generator of the regular representation EAss(2) = k[Σ2].

EXAMPLE 35. The operad Lie governing Lie algebras is the quotient

Lie := Γ (ELie)/(RLie),

where ELie is the Σ-module

ELie(n) :=
{

k · β if n = 2,
0 if n �= 2,

with k · β is the signum representation of Σ2. The ideal of relations (RLie) is generated by
the Jacobi identity:

(29)β(β ⊗ id) + β(β ⊗ id)c + β(β ⊗ id)c2 = 0,

in which c ∈ Σ3 is the cyclic permutation (1, 2, 3) �→ (2, 3, 1).

EXAMPLE 36. We show how to describe the presentations of the operads Ass and Lie
given in Examples 34 and 35 in a simple graphical language. The generator α of EAss is
an operation with two inputs and one output, so we depict it as . The associativity (28)
then reads

= ,
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therefore Ass = Γ ( )/( = ). Also the operad for Lie algebras is generated by one
bilinear operation , but this time the operation is anti-symmetric:

1 2
= −

2 1
.

The Jacobi identity (29) reads:

1 2 3
+

2 3 1
+

3 1 2
= 0.

The kind of description used in the above examples is ‘tautological’ in the sense that it
just says that the operad P governing a certain type of algebras is generated by operations
of these algebras, with an appropriate symmetry, modulo the axioms satisfied by these
operations. It does not say directly anything about the properties of the individual spaces
P(n), n � 0. Describing these individual components may be a very nontrivial task, see
for example the formula for the Σn-modules Lie(n) given in [83, p. 50]. The operads in
Examples 34 and 35 are quadratic in the sense of the following:

DEFINITION 37. An operad P is quadratic if it has a presentation P = Γ (E)/(R), where
E = P(2) and R ⊂ Γ (E)(3).

Quadratic operads form a very important class of operads. Each quadratic operad P

has a quadratic dual P! [34], [83, Definition II.3.37] which is a quadratic operad defined,
roughly speaking, by dualizing the generators of P and replacing the relations of P by their
annihilator in the dual space. For example, Ass! = Ass, Com! = Lie and Lie! = Com.
A quadratic operad P is Koszul if it has the homotopy type of the bar construction of its
quadratic dual [34], [83, Definition II.3.40]. For quadratic Koszul operads, there is a deep
understanding of the derived category of the corresponding algebras. The operads Ass,
Com and Lie above, as well as most quadratic operads one encounters in everyday life, are
Koszul.

5. Unbiased definitions

In this section, we review the definition of a triple (monad) and give, in Theorem 40,
a description of unital and non-unital operads in terms of algebras over a triple. The relevant
triples come from the endofunctors Ψ and Γ recalled in Section 4. Let End(C) be the strict
symmetric monoidal category of endofunctors on a category C where multiplication is the
composition of functors.

DEFINITION 38. A triple (also called a monad) T on a category C is an associative and
unital monoid (T , μ, υ) in End(C). The multiplication μ : T T → T and unit morphism
υ : id → T satisfy the axioms given by commutativity of the diagrams in Fig. 4.

Triples arise naturally from pairs of adjoint functors. Given an adjoint pair [38, II.7]

A
G

B
F
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Fig. 4. Associativity and unit axioms for a triple.

Fig. 5. T -algebra structure.

with associated functorial isomorphism

MorA
(
F(X), Y

) ∼= MorB
(
X,G(Y )

)
, X ∈ B, Y ∈ A,

there is a triple in B defined by T := GF . The unit of the adjunction id → GF defines
the unit υ of the triple and the counit of the adjunction FG → id induces a natural trans-
formation GFGF → GF which defines the multiplication μ. In fact, it is a theorem of
Eilenberg and Moore [20] that all triples arise in this way from adjoint pairs. This is exactly
the situation with the free operad and free non-unital operad functors that were described
in Section 4. We will show how operads and non-unital operads can actually be defined
using the concept of an algebra over a triple:

DEFINITION 39. A T -algebra or algebra over the triple T is an object A of C together
with a structure morphism α : T (A) → A satisfying

α
(
T (α)

) = α(μA) and αυA = idA,

see Fig. 5.

The category of T -algebras in C will be denoted AlgT (C). Since the free non-unital
operad functor Ψ and the free operad functor Γ described in Section 4 are left adjoints
to �ψ :ψOper → Σ-mod and � : Oper → Σ-mod, respectively, the functors �ψΨ

(denoted simply Ψ ) and �Γ (denoted Γ ) define triples on Σ-mod.

THEOREM 40. A Σ-module S is a Ψ -algebra if and only if it is a non-unital operad and
it is a Γ -algebra if and only if it is an operad. In shorthand:

AlgΨ (Σ-mod) ∼= ψOper and AlgΓ (Σ-mod) ∼= Oper.
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Fig. 6. Bracketed trees. The left picture shows an element of ΨΨ (E)(5) while the right picture shows the same
element interpreted, after erasing the braces indicated by thin cycles, as an element of Ψ (E)(5). For simplicity,

we did not show the decoration of vertices by elements of E.

PROOF. We outline first the proof of the implication in the direction from algebra to non-
unital operad. Let S be a Ψ -algebra. The restriction of the structure morphism α :Ψ (S) →
S to the components of Ψ (S) supported on trees with one internal edge defines the non-
unital operad composition maps ◦i , as indicated by

In the opposite direction, for a non-unital operad S, the Ψ -algebra structure α : Ψ (S) →
S is the contraction along the edges of underlying trees, using the ◦i-operations. The proof
that Γ -algebras are operads is similar. �

Let us change our perspective and consider formula (25) as defining an endofunctor
Ψ :Σ-mod → Σ-mod, ignoring that we already know that it represents free non-unital
operads. We are going to construct maps

μ :ΨΨ → Ψ and υ : id → Ψ

making Ψ a triple on the category Σ-mod. Let us start with the triple multiplication μ. It
follows from (25) that, for each Σ-module E,

ΨΨ (E)(n) := colim
T ∈Treen

Ψ (E)(T ), n � 0.

The elements in the right-hand side are represented by rooted trees T with vertices deco-
rated by elements of Ψ (E), while elements of Ψ (E) are represented by rooted trees with
vertices decorated by E. We may therefore imagine elements of ΨΨ (E) as ‘bracketed’
rooted trees, in the sense indicated in Fig. 6. The triple multiplication μE :ΨΨ (E) →
Ψ (E) then simply erases the braces. The triple unit υE :E → Ψ (E) identifies elements of
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Fig. 7. A May tree.

E with decorated corollas:

E(n) # e ←→ •
. . .︸ ︷︷ ︸

n inputs

e ∈ Ψ (E)(n), n � 0.

It is not difficult to verify that the above constructions indeed make Ψ a triple, com-
pare [83, §II.1.12]. Now we can define non-unital operads as algebras over the triple
(Ψ,μ, υ). The advantage of this approach is that, by replacing Treen in (25) by another
category of trees or graphs, one may obtain triples defining other types of operads and their
generalizations.

We have already seen in (27) that enlarging Treen into UTreen by adding the excep-
tional tree, one gets the triple Γ describing (unital) operads. It is not difficult to see that
non-unital May operads are related to the category MTreen of May trees which are, by
definition, rooted trees whose vertices can be arranged into levels as in Fig. 7. Non-unital
May operads are then algebras over the triple M :Σ-mod → Σ-mod defined by

M(E)(n) := colim
T ∈MTreen

E(T ), n � 0.

These observations are summarized in the first three lines of the table in Fig. 14 on p. 136.

6. Cyclic operads

In the following two sections we use the approach developed in Section 5 to introduce
cyclic and modular operads. We recalled, in Example 14, the operad M̂0 = {M̂0(n)}n�0
of Riemann spheres with parametrized labeled holes. Each M̂0(n) was a right Σn-space,
with the operadic right Σn-action permuting the labels 1, . . . , n of the holes u1, . . . , un.
But each M̂0(n) obviously admits a higher type of symmetry which interchanges the labels
0, . . . , n of all holes, including the label of the ‘output’ hole u0. Another example admitting
a similar higher symmetry is the configuration (non-unital) operad M0 = {M0(n)}n�2.
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These examples indicate that, for some operads, there is no clear distinction between
‘inputs’ and the ‘output’. Cyclic operads, introduced by E. Getzler and M.M. Kapranov
in [32], formalize this phenomenon. They are, roughly speaking, operads with an extra
symmetry that interchanges the output with one of the inputs. Let us recall some notions
necessary to give a precise definition.

We remind the reader that in this section, as well as everywhere in this chapter, the
main definitions are formulated over the underlying category of k-modules, where k is a
commutative associative unital ring. However, for some constructions, we will require k
to be a field; we will indicate this, as usual, by speaking about vector spaces instead of
k-modules.

Let Σ+
n be the permutation group of the set {0, . . . , n}. The group Σ+

n is, of course, non-
canonically isomorphic to the symmetric group Σn+1. We identify Σn with the subgroup
of Σ+

n consisting of permutations σ ∈ Σ+
n such that σ(0) = 0. If τn ∈ Σ+

n denotes the
cycle (0, . . . , n), that is, the permutation with τn(0) = 1, τn(1) = 2, . . . , τn(n) = 0, then
τn and Σn generate Σ+

n .
Recall that a cyclic Σ-module or a Σ+-module is a sequence W = {W(n)}n�0 such

that each W(n) is a (right) k[Σ+
n ]-module. Let Σ+-mod denote the category of cyclic

Σ-modules. As (ordinary) operads were Σ-modules with an additional structure, cyclic
operads are Σ+-modules with an additional structure.

We will also need the following ‘cyclic’ analog of (23): if X is a set with n+ 1 elements
and W ∈ Σ+-mod, then

(30)W((X)) := W(n) ×Σ+
n

Bij
([n]+, X

)
,

where [n]+ := {0, . . . , n}, n � 0. The double brackets in W((X)) remind us that the n-th
piece of the cyclic Σ-module W = {W(n)}n�0 is applied to a set with n + 1 elements,
using the extended Σ+

n -symmetry. Therefore

W
(({0, . . . , n})) ∼= W(n) while W

({0, . . . , n}) ∼= W(n + 1), n � 0.

Pasting schemes for cyclic operads are cyclic (leg-) labeled n-trees, by which we mean
unrooted trees as on p. 109, with legs labeled by the set {0, . . . , n}. An example of such a
tree is given in Fig. 8. Since we do not assume a choice of the root, the edges of a cyclic
tree C are not directed and it does not make sense to speak about inputs and the output
of a vertex v ∈ vert(C). Let Tree+

n be the category of cyclic labeled n-trees and their
bijections.

For a cyclic Σ-module W and a cyclic labeled tree T we have the following cyclic
version of the product (24)

W((T )) :=
⊗

v∈vert(T )

W
((

edge(v)
))
.

The conceptual difference between (24) and the above formula is that instead of the set
in(v) of incoming edges of a vertex v of a rooted tree, here we use the set edge(v) of all
edges incident with v. Let, finally, Ψ+ :Σ+-mod → Σ+-mod be the functor

(31)Ψ+(W)(n) := colim
T ∈Tree+

n

W((T )), n � 0,
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Fig. 8. A cyclic labeled tree from Tree+
9 .

equipped with the triple structure of ‘forgetting the braces’ similar to that reviewed on
p. 115. We will use also the ‘extended’ triple Γ+ :Σ+-mod → Σ+-mod,

Γ+(W)(n) := colim
T ∈UTree+

n

W((T )), n � 0,

where UTree+
n is the obvious extension of the category Tree+

n by the exceptional tree |.

DEFINITION 41. A cyclic (respectively non-unital cyclic) operad is an algebra over the
triple Γ+ (resppectively the triple Ψ+) introduced above.

In the following proposition, which slightly improves [32, Theorem 2.2], τn ∈ Σ+
n

denotes the cycle (0, . . . , n).

PROPOSITION 42. A non-unital cyclic operad is the same as a non-unital operad C =
{C(n)}n�0 (Definition 11) such that the right Σn-action on C(n) extends, for each n � 0,
to an action of Σ+

n with the property that for p ∈ C(m) and q ∈ C(n), 1 � i � m, n � 0,
the composition maps satisfy

(p ◦i q)τm+n−1 =
{
(qτn) ◦n (pτm) if i = 1,
(pτm) ◦i−1 q, for 2 � i � m.

The above structure is a (unital) cyclic operad if moreover there exists a Σ+
1 -invariant

operadic unit e ∈ C(1).

Proposition 42 gives a biased definition of cyclic operads whose obvious modification
(see [83, Definition II.5.2]) makes sense in an arbitrary symmetric monoidal category. We
can therefore speak about topological cyclic operads, differential graded cyclic operads,
simplicial cyclic operads &c. Observe that there are no non-unital cyclic May operads
because it does not make sense to speak about levels in trees without a choice of the root.

EXAMPLE 43. Let V be a finite-dimensional vector space and B :V ⊗ V → k a nonde-
generate symmetric bilinear form. The form B induces an identification

Lin(V ⊗n, V ) # f �→ B̂(f ) := B
(−, f (−)

) ∈ Lin(V ⊗(n+1),k)
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of the spaces of linear maps. The standard right Σ+
n -action

B̂(f )σ (v0, . . . , vn) = B̂(f )(vσ−1(0), . . . , vσ−1(n)), σ ∈ Σ+
n , v0, . . . , vn ∈ V,

defines, via this identification, a right Σ+
n -action on Lin(V ⊗n, V ), that is, on the n-th piece

of the endomorphism operad EndV = {EndV (n)}n�0 recalled in Example 2. It is easy
to show that, with the above action, EndV is a cyclic operad in the monoidal category of
vector spaces, called the cyclic endomorphism operad of the pair V = (V , B). The biased
definition of cyclic operads given in Proposition 42 can be read off from this example.

EXAMPLE 44. We saw in Example 7 that a unital operad A = {A(n)}n�0 such that
A(n) = 0 for n �= 1 is the same as a unital associative algebra. Similarly, it can be easily
shown that a cyclic operad C = {C(n)}n�0 satisfying C(n) = 0 for n �= 1 is the same as a
unital associative algebra A with a linear involutive antiautomorphism, by which we mean
a k-linear map ∗ : A → A such that

(ab)∗ = b∗a∗, (a∗)∗ = a and 1∗ = 1,

for arbitrary a, b ∈ A.

Let P = Γ (E)/(R) be a quadratic operad as in Definition 37. The action of Σ2 on E

extends to an action of Σ+
2 , via the sign representation sgn :Σ+

2 → {±1} = Σ2. It can be
easily verified that this action induces a cyclic operad structure on the free operad Γ (E).
In particular, Γ (E)(3) is a right Σ+

3 -module.

DEFINITION 45. We say that the operad P is a cyclic quadratic operad if, in the above
presentation, R is a Σ+

3 -invariant subspace of Γ (E)(3).

If the condition of the above definition is satisfied, P has a natural induced cyclic operad
structure.

EXAMPLE 46. By [32, Proposition 3.6], all quadratic operads generated by a one-
dimensional space are cyclic quadratic, therefore the operads Lie and Com are cyclic
quadratic. Also the operads Ass and the operad Poiss for Poisson algebras are cyclic
quadratic [32, Proposition 3.11]. A surprisingly simple operad which is cyclic and
quadratic, but not cyclic quadratic, is constructed in [82, Remark 15].

The operad M̂0 of Riemann spheres with labeled punctures reviewed in Example 14
is a topological cyclic operad. The configuration operad M0 recalled on p. 100 is a non-
unital topological cyclic operad. Important examples of non-cyclic operads are the operad
pre-Lie for pre-Lie algebras [82, Section 3] and the operad Leib for Leibniz algebras [32,
§3.15].

Let C be an operad, α : C(n)⊗V ⊗n → V , n � 0, a C-algebra with the underlying vector
space V as in Proposition 24 and B :V ⊗ V → U a bilinear form on V with values in a
vector space U . We can form a map

(32)B̃(α) : C(n) ⊗ V ⊗(n+1) → U, n � 0,
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by the formula

B̃(α)(c ⊗ v0 ⊗ · · · ⊗ vn) := B
(
v0, α(c ⊗ v1 ⊗ · · · ⊗ vn)

)
,

c ∈ C(n), v0, . . . , vn ∈ V . Suppose now that the operad C is cyclic, in particular, that each
C(n) is a right Σ+

n -module. We say that the bilinear form B :V ⊗ V → U is invariant
[32, Definition 4.1], if the maps B̃(α) in (32) are, for each n � 0, invariant under the
diagonal action of Σ+

n on C(n) ⊗ V ⊗(n+1). We leave as an exercise to verify that the
invariance of B̃(α) for n = 1 together with the existence of the operadic unit implies that
B is symmetric,

B(v0, v1) = B(v1, v0), v0, v1 ∈ V.

DEFINITION 47. A cyclic algebra over a cyclic operad C is a C-algebra structure on a
vector space V together with a nondegenerate invariant bilinear form B : V ⊗ V → k.

By [83, Proposition II.5.14], a cyclic algebra is the same as a cyclic operad homomor-
phism C → EndV , where EndV is the cyclic endomorphism operad of the pair (V , B)

recalled in Example 43.

EXAMPLE 48. A cyclic algebra over the cyclic operad Com is a Frobenius algebra, that
is, a structure consisting of a commutative associative multiplication · :V ⊗ V → V as
in Example 25 together with a non-degenerate symmetric bilinear form B :V ⊗ V → k,
invariant in the sense that

B(a · b, c) = B(a, b · c), for all a, b, c ∈ V.

Similarly, a cyclic Lie algebra is given by a Lie bracket [−,−] :V ⊗ V → V and a non-
degenerate symmetric bilinear form B :V ⊗ V → k satisfying

B
([a, b], c) = B

(
a, [b, c]), for a, b, c ∈ V.

For algebras over cyclic operads, one may introduce cyclic cohomology that generalizes
the classical cyclic cohomology of associative algebras [12,66,109] as the non-Abelian
derived functor of the universal bilinear form [32], [83, Proposition II.5.26]. Let us close
this section by mentioning two examples of operads with other types of higher symmetries.
The symmetry required for anticyclic operads differs from the symmetry of cyclic operads
by the sign [83, Definition II.5.20]. Dihedral operads exhibit a symmetry governed by the
dihedral groups [82, Definition 16].

7. Modular operads

Let us consider again the Σ+-module M̂0 = {M̂0(n)}n�0 of Riemann spheres with punc-
tures. We saw that the operation M,N �→ M ◦i N of sewing the 0-th hole of the surface N

to the i-th hole of the surface M defined on M̂0 a cyclic operad structure. One may gener-
alize this operation by defining, for M ∈ M̂0(m), N ∈ M̂0(n), 0 � i � m, 0 � j � n,
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the element Mi◦jN ∈ M̂0(m + n − 1) by sewing the j -th hole of M to the i-th hole
of N . Under this notation, ◦i = i◦0. In the same manner, one may consider a single surface
M ∈ M̂0(n), choose labels i, j , 0 � i �= j � n, and sew the i-th hole of M along the
j -th hole of the same surface. The result is a new surface ξ{i,j}(M), with n − 2 holes and
genus 1.

This leads us to the system M̂ = {M̂(g, n)}g�0,n�−1, where M̂(g, n) denotes now the
moduli space of genus g Riemann surfaces with n + 1 holes. Observe that we include
M̂(g, n) also for n = −1; M̂(g,−1) is the moduli space of Riemann surfaces of genus g.
The operations i◦j and ξ{i,j} act on M̂. Clearly, for M ∈ M̂(g,m) and N ∈ M̂(h, n),
0 � i � m, 0 � j � n and g, h � 0,

(33)Mi◦jN ∈ M̂(g + h,m + n − 1)

and, for m � 1 and g � 0,

(34)ξ{i,j}(M) ∈ M̂(g + 1,m − 2).

A particular case of (33) is the non-operadic composition

(35)0◦0 : M̂(g, 0) × M̂(h, 0) → M̂(g + h,−1), g, h � 0.

Modular operads are abstractions of the above structure satisfying a certain additional
stability condition. The following definitions, taken from [33], are made for the category
of k-modules, but they can be easily generalized to an arbitrary symmetric monoidal cat-
egory with finite colimits, whose monoidal product � is distributive over colimits. Let us
introduce the underlying category for modular operads.

A modular Σ-module is a sequence E = {E(g, n)}g�0,n�−1 of k-modules such that
each E(g, n) has a right k[Σ+

n ]-action. We say that E is stable if

(36)E(g, n) = 0 for 2g + n − 1 � 0

and denote MMod the category of stable modular Σ-modules.
Stability (36) says that E(g, n) is trivial for (g, n) = (0,−1), (1,−1), (0, 0) and (0, 1).

We will sometimes express the stability of E by writing E = {E(g, n)}(g,n)∈S, where

S := {(g, n) | g � 0, n � −1 and 2g + n − 1 > 0
}
.

Recall that a genus g Riemann surface with k marked points is stable if it does not admit
infinitesimal automorphisms. This happens if and only if 2(g−1)+k > 0, that is, excluded
is the torus with no marked points and the sphere with less than three marked points.
Thus the stability property of modular Σ-modules is analogous to the stability of Riemann
surfaces.

Now we introduce graphs that serve as pasting schemes for modular operads. The naive
notion of a graph as we have used it up to this point is not subtle enough; we need to replace
it by a more sophisticated notion:

DEFINITION 49. A graph Γ is a finite set Flag(Γ ) (whose elements are called flags or
half-edges) together with an involution σ and a partition λ. The vertices vert(Γ ) of a graph
Γ are the blocks of the partition λ, we assume also that the number of these blocks is finite.
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Fig. 9. The sputnik.

The edges Edg(Γ ) are pairs of flags forming a two-cycle of σ . The legs Leg(Γ ) are the
fixed points of σ .

We also denote by edge(v) the flags belonging to the block v or, in common speech, half-
edges adjacent to the vertex v. We say that graphs Γ1 and Γ2 are isomorphic if there exists a
set isomorphism ϕ : Flag(Γ1) → Flag(Γ2) that preserves the partitions and commutes with
the involutions. We may associate to a graph Γ a finite one-dimensional cell complex |Γ |,
obtained by taking one copy of [0, 1

2 ] for each flag, a point for each block of the partition,
and imposing the following equivalence relation: the points 0 ∈ [0, 1

2 ] are identified for all
flags in a block of the partition λ with the point corresponding to the block, and the points
1
2 ∈ [0, 1

2 ] are identified for pairs of flags exchanged by the involution σ .
We call |Γ | the geometric realization of Γ . Observe that empty blocks of the partition

generate isolated vertices in the geometric realization. We will usually make no distinction
between a graph and its geometric realization. As an example (taken from [33]), consider
the graph with {a, b, . . . , i} as the set of flags, the involution σ = (df )(eg) and the parti-
tion {a, b, c, d, e} ∪ {f, g, h, i}. The geometric realization of this graph is the ‘sputnik’ in
Fig. 9.

Let us introduce labeled versions of the above notions. A (vertex-) labeled graph is
a connected graph Γ together with a map g (the genus map) from vert(Γ ) to the set
{0, 1, 2, . . .}. The labeled graphs Γ1 and Γ2 are isomorphic if there exists an isomorphism
preserving the labels of the vertices. The genus g(Γ ) of a labeled graph Γ is defined by

(37)g(Γ ) := b1(Γ ) +
∑

v∈vert(Γ )

g(v),

where b1(Γ ) := dimH1(|Γ |) is the first Betti number of the graph |Γ |, i.e. the number of
independent circuits of Γ . A graph Γ is stable if

2
(
g(v) − 1

)+ ∣∣edge(v)
∣∣ > 0,

at each vertex v ∈ vert(Γ ).
For g � 0 and n � −1, let MGr(g, n) be the groupoid whose objects are pairs (Γ, �) con-

sisting of a stable (vertex-) labeled graph Γ of genus g and an isomorphism � : Leg(Γ ) →
{0, . . . , n} labeling the legs of Γ by elements of {0, . . . , n}. The morphisms of MGr(g, S)
are isomorphisms of vertex-labeled graphs preserving the labeling of the legs. The stability
implies, via elementary combinatorial topology that, for each fixed g � 0 and n � −1,
there is only a finite number of isomorphism classes of stable graphs Γ ∈ MGr(g, n),
see [33, Lemma 2.16].
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We will also need the following obvious generalization of (30): if E = {E(g, n)}g�0,n�−1
is a modular Σ-module and X a set with n + 1 elements, then

(38)E((g,X)) := E(g, n) ×Σ+
n

Bij
([n]+, X

)
, g � 0, n � −1.

For a modular Σ-module E = {E(g, n)}g�0,n�−1 and a labeled graph Γ , let E((Γ )) be the
product

(39)E((Γ )) :=
⊗

v∈vert(Γ )

E
((
g(v), edge(v)

))
.

Evidently, the correspondence Γ �→ E((Γ )) defines a functor from the category MGr(g, n)
to the category of k-modules and their isomorphisms. We may thus define an endofunctor
M on the category MMod of stable modular Σ-modules by the formula

ME(g, n) := colim
Γ ∈MGr(g,n)

E((Γ )), g � 0, n � −1.

Choosing a representative for each isomorphism class in MGr(g, n), one obtains the
identification

(40)ME(g, n) ∼=
⊕

[Γ ]∈{MGr(g,n)}
E((Γ ))Aut(Γ ), g � 0, n � −1,

where {MGr(g, n)} is the set of isomorphism classes of objects of the groupoid MGr(g, n)
and the subscript Aut(Γ ) denotes the space of coinvariants. Stability (36) implies that
the summation in the right-hand side of (40) is finite. Formula (40) generalizes (26) which
does not contain coinvariants because there are no nontrivial automorphisms of leaf-labeled
trees. On the other hand, stable labeled graphs with nontrivial automorphisms are abundant,
an example can be easily constructed from the graph in Fig. 9. The functor M carries a
triple structure of ‘erasing the braces’ similar to the one used on pp. 115 and 118.

DEFINITION 50. A modular operad is an algebra over the triple M : MMod → MMod.

Therefore a modular operad is a stable modular Σ-module A = {A(g, n)}(g,n)∈S

equipped with operations that determine coherent contractions along stable modular
graphs. Observe that the stability condition is built firmly into the very definition. Very
crucially, modular operads do not have units, because such a unit ought to be an element
of the space A(0, 1) which is empty, by (36).

One can easily introduce un-stable modular operads and their unital versions, but the
main motivating example reviewed below is stable. We will consider an extension of the
Grothendieck–Knudsen configuration operad M0 = {M0(n)}n�2 consisting of moduli
spaces of stable curves of arbitrary genera in the sense of the following generalization
of Definition 15.

DEFINITION 51. A stable (n+1)-pointed curve, n � 0, is a connected complex projective
curve C with at most nodal singularities, together with a ‘marking’ given by a choice
x0, . . . , xn ∈ C of smooth points. Stability means, as usual, that there are no infinitesimal
automorphisms of C fixing the marked points and double points.
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Fig. 10. A stable curve and its dual graph. The curve C on the left has five components Ai , 1 � i � 5, and three
marked points x0, x1 and x2. The dual graph Γ (C) on the right has five vertices ai , 1 � i � 5, corresponding to

the components of the curve and three legs labeled by the marked points.

The stability in Definition 51 is equivalent to saying that each smooth component of
C isomorphic to complex projective space CP1 has at least three special points and that
each smooth component isomorphic to the torus has at least one special point, where by a
special point we mean either a double point or a node.

The dual graph Γ = Γ (C) of a stable (n + 1)-pointed curve C = (C, x0, . . . , xn) is a
labeled graph whose vertices are the components of C, edges are the nodes and its legs are
the points {xi}0�i�n. An edge ey corresponding to a nodal point y joins the vertices cor-
responding to the components intersecting at y. The vertex vK corresponding to a branch
K is labeled by the genus of the normalization of K . See [37, p. 23] for the normalization
and recall that a curve is normal if and only if it is nonsingular. The construction of Γ (C)

from a curve C is visualized in Fig. 10.
Let us denote by Mg,n+1 the coarse moduli space [37, p. 347] of stable (n + 1)-pointed

curves C such that the dual graph Γ (C) has genus g, in the sense of (37). The genus of
Γ (C) in fact equals the arithmetic genus of the curve C, thus Mg,n+1 is the coarse moduli
space of stable curves of arithmetic genus g with n + 1 marked points. By a result of
P. Deligne, F.F. Knudsen and D. Mumford [18,51,50], Mg,n+1 is a projective variety.

Observe that, for a curve C ∈ M0,n+1, the graph Γ (C) must necessarily be a tree and
all components of C must be smooth of genus 0, therefore M0,n+1 coincides with the
moduli space M0(n) of genus 0 stable curves with n + 1 marked points that we discussed
in Section 2. Dual graphs of curves C ∈ Mg,n+1 are stable labeled graphs belonging to
MGr(g, n + 1).

The symmetric group Σ+
n acts on Mg,n+1 by renumbering the marked points, therefore

M := {M(g, n)
}
g�0,n�−1,

with M(g, n) := Mg,n+1, is a modular Σ-module in the category of projective varieties.
Since there are no stable curves of genus g with n + 1 punctures if 2g + n − 1 � 0, M

is a stable modular Σ-module. Let us define the contraction along a stable graph Γ ∈
MGr(g, n)

(41)αΓ : M((Γ )) =
∏

v∈vert(Γ )

M
((
g(v), edge(v)

))→ M(g, n)
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by gluing the marked points of curves from M((g(v), edge(v))), v ∈ vert(Γ ), according to
the graph Γ . To be more precise, let∏

v∈vert(Γ )

Cv, where Cv ∈ M
((
g(v), edge(v)

))
,

be an element of M((Γ )). Let e be an edge of the graph Γ connecting vertices v1 and v2,
e = {ye

v1
, ye

v2
}, where ye

vi
is a marked point of the component Cvi , i = 1, 2, which is also

the name of the corresponding flag of the graph Γ . The curve αΓ (C) is then obtained by
the identifications ye

v1
= ye

v2
, introducing a nodal singularity, for all e ∈ Edg(Γ ). The

procedure is the same as that described for the tree level in Section 2. As proved in [33,
§6.2], the contraction maps (41) define on the stable modular Σ-module of coarse moduli
spaces M = {M(g, n)}(g,n)∈S a modular operad structure in the category of complex
projective varieties.

Let us look more closely at the structure of the modular triple M. Given a (stable or
unstable) modular Σ-module E , there is, for each g � 0 and n � −1, a natural decompo-
sition

M(E)(g, n) = M0(E)(g, n) ⊕ M1(E)(g, n) ⊕ M2(E)(g, n) ⊕ · · · ,
with Mk(E)(g, n) the subspace obtained by summing over graphs Γ with dimH1(|Γ |) = k,
k � 0. In particular, M0(E)(g, n) is a summation over simply connected graphs. It is not
difficult to see that M0(E) is a subtriple of M(E). This shows that modular operads are
M0-algebras with some additional operations (the ‘contractions’) that raise the genus and
generate the higher components Mk , k � 1, of the modular triple M.

There seems to be a belief expressed in the proof of [33, Lemma 3.4] and also in [33,
Theorem 3.7] that, in the stable case, the triple M0 is equivalent to the non-unital cyclic
operad triple Ψ+, but it is not so. The triple M0 is much bigger, for example, if a ∈ E(1, 0),
then M0(E)(2,−1) contains a non-operadic element

aa
••

which can be also written, using (35), as a 0◦0 a. The corresponding part Ψ+(E)(−1) of
the cyclic triple is empty. In the Grothendieck–Knudsen modular operad M, an element of
the above type is realized by two tori meeting at a nodal point.

On the other hand, the triple M0 restricted to the subcategory of stable modular Σ-
modules E such that E(g, n) = 0 for g > 0 indeed coincides with the non-unital cyclic
operad triple Ψ+, as was in fact proved in [33, p. 81]. Therefore, given a modular operad
A = {A(g, n)}(g,n)∈S, there is an induced non-unital cyclic operad structure on the cyclic
collection A# := {A(0, n)}n�2. We will call A# the associated cyclic operad. For example,
the cyclic operad associated to the Grothendieck–Knudsen modular operad M equals its
genus zero part M0.

A biased definition of modular operads can be found in [83, Definition II.5.35]. It is
formulated in terms of operations{

i◦j : A(g,m) ⊗ A(h, n) → A(g + h,m + n); 0 � i � m, 0 � j � n, g, h � 0
}
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together with contractions{
ξ{i,j} : A(g,m) → A(g + 1,m − 2); m � 1, g � 0

}
that generalize (33) and (34).

EXAMPLE 52. Let V = (V , B) be a vector space with a symmetric inner product B :
V ⊗ V → k. Denote, for each g � 0 and n � −1,

EndV (g, n) := V ⊗(n+1).

It is clear from definition (39) that, for any labeled graph Γ ∈ MGr(g, n), EndV ((Γ )) =
V ⊗ Flag(Γ ).

Let B⊗ Edg(Γ ) :V ⊗ Flag(Γ ) → V ⊗ Leg(Γ ) be the multilinear form which contracts the
factors of V ⊗ Flag(Γ ) corresponding to the flags which are paired up as edges of Γ . Then
we define αΓ : EndV ((Γ )) → EndV (g, n) to be the map

αΓ : EndV ((Γ )) = V ⊗ Flag(Γ ) B⊗ Edg(Γ )−→ V ⊗ Leg(Γ ) V ⊗�−→ V ⊗(n+1) = EndV (g, n),

where � : Leg(Γ ) → {0, . . . , n} is the labeling of the legs of Γ . It is easy to show that the
compositions {αΓ ; Γ ∈ MGr(g, n)} define on EndV the structure of an un-stable unital
modular operad, see [33, §2.25].

An algebra over a modular operad A is a vector space V with an inner product B,
together with a morphism ρ : A → EndV of modular operads. Several important structures
are algebras over modular operads. For example, an algebra over the homology H∗(M) of
the Grothendieck–Knudsen modular operad is the same as a cohomological field theory in
the sense of [55]. Other physically relevant algebras over modular operads can be found
in [33,78,83]. Relations between modular operads, chord diagrams and Vassiliev invariants
are studied in [42].

8. PROPs

Operads are devices invented to describe structures consisting of operations with several
inputs and one output. There are, however, important structures with operations having
several inputs and several outputs. Let us recall the most prominent one.

EXAMPLE 53. A (associative) bialgebra is a k-module V with a multiplication μ :
V ⊗ V → V and a comultiplication (also called a diagonal) Δ :V → V ⊗ V . The
multiplication is associative:

μ(μ ⊗ idV ) = μ(idV ⊗ μ),

the comultiplication is coassociative:

(Δ ⊗ idV )Δ = (idV ⊗ Δ)Δ
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and the usual compatibility between μ and Δ is assumed:

(42)Δ(u · v) = Δ(u) · Δ(v) for u, v ∈ V,

where u · v := μ(u, v) and the dot · in the right-hand side denotes the multiplication
induced on V ⊗ V by μ. Loosely speaking, bialgebras are Hopf algebras without unit,
counit and antipode.

PROPs (an abbreviation of product and permutation category) describe structures as in
Example 53. Although PROPs are more general than operads, they appeared much earlier,
in a 1965 paper of Mac Lane [68]. This might be explained by the fact that the definition
of PROPs is more compact than that of operads – compare Definition 54 below with Defi-
nition 1 in Section 1. PROPs then entered the ‘renaissance of operads’ in 1996 via [73].

Definition 54 uses the notion of a symmetric strict monoidal category which we consider
so basic and commonly known that we will not recall it, standard citations are [68,67],
see also [83, §II.1.1]. An example is the category Modk of k-modules, with the monoidal
product � given by the tensor product ⊗ = ⊗k, the symmetry SU,V :U ⊗ V → V ⊗ U

defined as SU,V (u, v) := v ⊗ u for u ∈ U and v ∈ V , and the unit 1 the ground ring k.

DEFINITION 54. A (k-linear) PROP (called a theory in [73]) is a symmetric strict
monoidal category P = (P,�, S, 1) enriched over Modk such that:

(i) the objects are indexed by (or identified with) the set N = {0, 1, 2, . . .} of natural
numbers, and

(ii) the product satisfies m � n = m + n, for any m, n ∈ N = Ob(P) (hence the unit 1
equals 0).

Recall that the Modk-enrichment in the above definition means that each hom-set
MorP(m, n) is a k-module and the operations of the monoidal category P (the composi-
tion ◦, the product � and the symmetry S) are compatible with this k-linear structure.

For a PROP P denote P(m, n) := MorP(m, n). The symmetry S induces, via the canon-
ical identifications m ∼= 1�m and n ∼= 1�n, on each P(m, n) a structure of (Σm,Σn)-
bimodule (left Σm–right Σn-module such that the left action commutes with the right one).
Therefore a PROP is a collection P = {P(m, n)}m,n�0 of (Σm,Σn)-bimodules, together
with two types of compositions, horizontal

⊗ : P(m1, n1) ⊗ · · · ⊗ P(ms, ns) → P(m1 + · · · + ms, n1 + · · · + ns),

induced, for all m1, . . . , ms, n1, . . . , ns � 0, by the monoidal product � of P, and vertical

◦ : P(m, n) ⊗ P(n, k) → P(m, k),

given, for all m, n, k � 0, by the categorial composition. The monoidal unit is an element
e := 1 ∈ P(1, 1). In Definition 54, Modk can be replaced by an arbitrary symmetric strict
monoidal category.

Let P = {P(m, n)}m,n�0 and Q = {Q(m, n)}m,n�0 be two PROPs. A homomor-
phism f : P → Q is a sequence f = {f (m, n) : P(m, n) → Q(m, n)}m,n�0 of bi-
equivariant maps which commute with both the vertical and horizontal compositions. An
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ideal in a PROP P is a system I = {I(m, n)}m,n�0 of left Σm–right Σn-invariant subspaces
I(m, n) ⊂ P(m, n) which is closed, in the obvious sense, under both the vertical and hori-
zontal compositions. Kernels, images, &c., of homomorphisms between PROPs, as well as
quotients of PROPs by PROPic ideals, are defined componentwise, see [73,111–113] for
details.

EXAMPLE 55. The endomorphism PROP of a k-module V is the system

EndV = {EndV (m, n)
}
m,n�0

with EndV (m, n) the space of linear maps Lin(V ⊗n, V ⊗m) with n ‘inputs’ and m ‘outputs’,
e ∈ EndV (1, 1) the identity map, horizontal composition given by the tensor product of
linear maps, and vertical composition by the ordinary composition of linear maps.

Also algebras over PROPs can be introduced in a very concise way.

DEFINITION 56. A P-algebra is a strict symmetric monoidal functor λ : P → Modk of
enriched monoidal categories. The value λ(1) is the underlying space of the algebra ρ.

It is easy to see that a P-algebra is the same as a PROP homomorphism ρ : P → EndV .
As in Proposition 24, a P-algebra is determined by a system

α : P(m, n) ⊗ V ⊗n → V ⊗m, m, n,� 0,

of linear maps satisfying appropriate axioms.
As before, the first step in formulating an unbiased definition of PROPs is to specify

their underlying category. A Σ-bimodule is a system E = {E(m, n)}m,n�0 such that each
E(m, n) is a left k[Σm]- right k[Σn]-bimodule. Let Σ-bimod denote the category of Σ-
bimodules. For E ∈ Σ-bimod and finite sets Y,X with m, respectively n, elements put

E(Y,X) := Bij
(
Y, [m])×Σm E(m, n) ×Σn Bij

([n], X), m, n � 0,

where Bij(−,−) is the same as in (22). Pasting schemes for PROPs are directed (m, n)-
graphs, by which we mean finite, not necessary connected, graphs in the sense of Defini-
tion 49 such that

(i) each edge is equipped with a direction;
(ii) there are no directed cycles and;

(iii) the set of legs is divided into the set of inputs labeled by {1, . . . , n} and the set of
outputs labeled by {1, . . . , m}.

An example of a directed graph is given in Fig. 11. We denote by Gr(m, n) the category of
directed (m, n)-graphs and their isomorphisms. The direction of edges determines at each
vertex v ∈ vert(G) of a directed graph G a disjoint decomposition

edge(v) = in(v) " out(v)

of the set of edges adjacent to v into the set in(v) of incoming edges and the set out(v)
of outgoing edges. The pair (#(out(v)), #(in(v))) ∈ N × N is called the biarity of v. To
incorporate the unit, we need to extend the category Gr(m, n), for m = n, into the category
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Fig. 11. A directed graph from Gr(4, 3).

UGr(m, n) by allowing the exceptional graph

↑ ↑ ↑ . . . ↑ ∈ UGr(n, n), n � 1,

with n inputs, n outputs and no vertices. For a graph G ∈ UGr(m, n) and a Σ-bimodule E,
let

E(G) :=
⊗

v∈vert(G)

E
(
out(v), in(v)

)
and

(43)ΓP(E)(m, n) := colim
G∈UGr(m,n)

E(G), m, n � 0.

The Σ-bimodule ΓP(E) is a PROP, with the vertical composition given by the disjoint
union of graphs, the horizontal composition by grafting the legs, and the unit the excep-
tional graph ↑∈ ΓP(E)(1, 1). The following proposition follows from [84] and [111–113].

PROPOSITION 57. The PROP ΓP(E) is the free PROP generated by the Σ-bimodule E.

As in the previous sections, (43) defines a triple ΓP :Σ-bimod → Σ-bimod with the
triple multiplication of erasing the braces. According to general principles [20], Proposi-
tion 57 is almost equivalent to

PROPOSITION 58. PROPs are algebras over the triple ΓP.

One may obviously consider non-unital PROPs defined as algebras over the triple

ΨP(E)(m, n) := colim
G∈Gr(m,n)

E(G), m, n � 0,

and develop a theory parallel to the theory of non-unital operads reviewed in Section 2.

EXAMPLE 59. We will use the graphical language explained in Example 36. Let
Γ ( , ) be the free PROP generated by one operation of biarity (1, 2) and one opera-
tion of biarity (2, 1). As we noted already in [72,73], the PROP B describing bialgebras



130 M. Markl

equals

B = Γ ( , )/IB,

where IB is the PROPic ideal generated by

(44)− , − and − �� .

In the above display we denoted

:= ◦ ( ⊗ e), := ◦ (e ⊗ ), := ( ⊗ e) ◦ ,

:= (e ⊗ ) ◦ , := ◦ and

�� := ( ⊗ ) ◦ κ ◦ ( ⊗ ),

where κ ∈ Σ4 is the permutation

(45)κ :=
(

1 2 3 4
1 3 2 4

)
=

•

•

•

•

•

•

•

•

�� .

The above description of B is ‘tautological’, but B. Enriquez and P. Etingof found in [24,
Proposition 6.2] the following basis of the k-linear space B(m, n) for arbitrary m, n � 1.
Let ∈ B(1, 2) be the equivalence class, in B = Γ ( , )/IB, of the generator ∈
Γ ( , )(1, 2) (we use the same symbol both for a generator and its equivalence class).
Define [1] := e ∈ B(1, 1) and, for a � 2, let

[a] := ◦ ( ⊗ e) ◦ ( ⊗ e⊗2) ◦ · · · ◦ ( ⊗ e⊗(a−2)) ∈ B(1, a).

Let [b] ∈ B(b, 1) has the obvious similar meaning. The elements

(46)
( [a1] ⊗ · · · ⊗ [am]) ◦ σ ◦ ( [b1] ⊗ · · · ⊗ [bn]),

where σ ∈ ΣN for some N � 1, and a1 + · · · + am = b1 + · · · + bm = N , form a k-linear
basis of B(m, n). This result can also be found in [57]. See also [59,94] for the bialgebra
PROP viewed from a different perspective.

EXAMPLE 60. Each operad P generates a unique PROP P such that P(1, n) = P(n) for
each n � 0. The components of such a PROP are given by

P(m, n) =
⊕

r1+···+rm=n

[
P(1, r1) ⊗ · · · ⊗ P(1, rm)

]×Σr1×···×Σrm
Σn,

for each m, n � 0. The (topological) PROPs considered in [10] are all of this type. On the
other hand, Example 59 shows that not each PROP is of this form. A PROP P is generated
by an operad if and only if it has a presentation P = ΓP(E)/(R), where E is a Σ-bimodule
such that E(m, n) = 0 for m �= 1 and R is generated by elements in ΓP(E)(1, n), n � 0.



Operads and PROPs 131

9. Properads, dioperads and 1
2 PROPs

As we saw in Proposition 33, under some mild assumptions, the components of free oper-
ads are finite-dimensional. In contrast, PROPs are huge objects. For example, the compo-
nent ΓP( , )(m, n) of the free PROP ΓP( , ) used in the definition of the bialgebra
PROP B in Example 59 is infinite-dimensional for each m, n � 1, and also the components
of the bialgebra PROP B itself are infinite-dimensional, as follows from the fact that the
Enriquez–Etingof basis (46) of B(m, n) has, for m, n � 1, infinitely many elements.

To handle this combinatorial explosion of PROPs combined with lack of suitable filtra-
tions, smaller versions of PROPs were invented. Let us begin with the simplest modifica-
tion which we use as an example which explains the general scheme of modifying PROPs.
Denote UGrc(m, n) the full subcategory of UGr(m, n) consisting of connected graphs and
consider the triple defined by

(47)Γc(E)(m, n) := colim
G∈UGrc(m,n)

E(G), m, n � 0,

for E ∈ Σ-bimod. The following notion was introduced by B. Vallette [111–113].

DEFINITION 61. Properads are algebras over the triple Γc : Σ-bimod → Σ-bimod.

A properad is therefore a Σ-bimodule with operations that determine coherent contrac-
tions along connected graphs. A biased definition of properads is given in [111–113]. Since
Γc is a subtriple of ΓP, each PROP is automatically also a properad. Therefore one may
speak about the endomorphism properad EndV and define algebras over a properad P as
properad homomorphisms ρ :P → EndV . Algebras over other versions of PROPs recalled
below can be defined in a similar way.

EXAMPLE 62. Associative bialgebras reviewed in Example 59 are algebras over the
properad B defined (tautologically) as the quotient of the free properad Γc( , ) by
the properadic ideal generated by the elements listed in (44). We leave it as an exercise to
describe the sub-basis of (46) that spans B(m, n), m, n � 1.

The following slightly artificial structure exists over PROPs but not over properads. It
consists of a ‘multiplication’ μ = :V ⊗ V → V , a ‘comultiplication’ Δ = :V →
V ⊗ V and a linear map f = • : V → V satisfying Δ ◦ μ = f ⊗ f or, diagrammatically

= • •.
This structure cannot be a properad algebra because the graph on the right-hand side of the
above display is not connected.

Properads are still huge objects. The first really small version of PROPs were dioperads
introduced in 2003 by W.L. Gan [28]. As a motivation for his definition, consider the
following

EXAMPLE 63. A Lie bialgebra is a vector space V with a Lie algebra structure [–, –] =
:V ⊗V → V and a Lie diagonal δ = :V → V ⊗V . We assume that [–, –] and δ are
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related by

δ[a, b] =
∑([a(1), b] ⊗ a(2) + [a, b(1)] ⊗ b(2) + a(1) ⊗ [a(2), b]

(48)+ b(1) ⊗ [a, b(2)]
)

for any a, b ∈ V , with the Sweedler notation δa =∑ a(1) ⊗ a(2) and δb =∑ b(1) ⊗ b(2).
Lie bialgebras are governed by the PROP LieB = Γ ( , )/ILieB, where and are

now antisymmetric and ILieB denotes the ideal generated by

1 2 3
+

2 3 1
+

3 1 2
,

1 2 3

+
2 3 1

+
3 1 2

and

(49)
1 2

1 2

−
21

21

−
1 2

1 2

+
21

12

+
1 2

2 1

,

with labels indicating the corresponding permutations of the inputs and outputs.

We observe that all graphs in (49) are not only connected as demanded for properads,
but also simply-connected. This suggests considering the full subcategory UGrD(m, n) of
UGr(m, n) consisting of connected simply-connected graphs and the related triple

(50)ΓD(E)(m, n) := colim
G∈UGrD(m,n)

E(G), m, n � 0.

DEFINITION 64. Dioperads are algebras over the triple ΓD : Σ-bimod → Σ-bimod.

A biased definition of dioperads can be found in [28]. As observed by T. Leinster, diop-
erads are more or less equivalent to polycategories, in the sense of [108], with one object.
Lie bialgebras reviewed in Example 63 are algebras over a dioperad. Another important
class of dioperad algebras is recalled in:

EXAMPLE 65. An infinitesimal bialgebra [48] (called in [26, Example 11.7] a mock bial-
gebra) is a vector space V with an associative multiplication · :V ⊗V → V and a coasso-
ciative comultiplication Δ :V → V ⊗ V such that

Δ(a · b) =
∑(

a(1) ⊗ a(2) · b + a · b(1) ⊗ b(2)
)

for any a, b ∈ V . It is easy to see that the axioms of infinitesimal bialgebras are encoded
by the following simply connected graphs:

− , − and − − .

Observe that associative bialgebras, as recalled in Example 53, cannot be defined over
dioperads, because the rightmost graph in (44) is not simply connected. The following
proposition, which should be compared to Proposition 33, shows that dioperads are of the
same size as operads.

PROPOSITION 66. Let E = {E(m, n)}m,n�0 be a Σ-bimodule such that

(51)E(m, n) = 0, for m + n � 2
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and that E(m, n) is finite-dimensional for all remaining m, n. Then the components
ΓD(E)(m, n) of the free dioperad ΓD(E) are finite-dimensional, for all m, n � 0.

The proof, similar to the proof of Proposition 33, is based on the observation that the
assumption (51) reduces the colimit (50) to a summation over reduced trees (trees whose
all vertices have at least three adjacent edges).

An important problem arising in connection with deformation quantization is to find a
reasonably small, explicit cofibrant resolution of the bialgebra PROP B. Here by a reso-
lution we mean a differential graded PROP R together with a homomorphism β : R → B
inducing a homology isomorphism. Cofibrant in this context means that R is of the form
(ΓP(E), ∂), where the generating Σ-bimodule E decomposes as E = ⊕

n�0 En and the
differential decreases the filtration, that is

∂(En) ⊂ ΓP(E)<n, for each n � 0,

where ΓP(E)<n denotes the sub-PROP of Γ (E) generated by
⊕

j<n Ej . This notion is an
PROPic analog of the Koszul–Sullivan algebra in rational homotopy theory [36]. Several
papers devoted to finding R appeared recently [57,99,97,98,101,103,102]. The approach
of [79] is based on the observation that B is a deformation, in the sense explained below,
of the PROP describing structures recalled in the following.

DEFINITION 67. A half-bialgebra or simply a 1
2 bialgebra is a vector space V with an

associative multiplication μ :V ⊗ V → V and a coassociative comultiplication Δ :V →
V ⊗ V that satisfy

(52)Δ(u · v) = 0, for each u, v ∈ V.

We chose this strange name because (52) is indeed one half of the compatibility rela-
tion (42) of associative bialgebras. 1

2 bialgebras are algebras over the PROP

1
2 B := Γ ( )/( = , = , = 0).

Now define, for a formal variable t , Bt to be the quotient of the free PROP Γ ( , ) by
the ideal generated by

= , = , = t · �� .

Thus Bt is a one-parameter family of PROPs with the property that B0 = 1
2 B. At a

generic t , Bt is isomorphic to the bialgebra PROP B. In other words, the PROP for bial-
gebras is a deformation of the PROP for 1

2 bialgebras. According to general principles of
homological perturbation theory [35], one may try to construct the resolution R as a pertur-
bation of a cofibrant resolution 1

2 R of the PROP 1
2 B. Since 1

2 B is simpler that B, one may
expect that resolving 1

2 B would be a simpler task than resolving B.
For instance, one may realize that 1

2 bialgebras are algebras over a dioperad 1
2 B, use [28]

to construct a resolution 1
2 R of the dioperad 1

2 B, and then take 1
2 R to be the PROP generated

by 1
2 R. More precisely, one denotes

(53)F1 : diOp → PROP
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Fig. 12. Edges allowed in a 1
2 graph.

Fig. 13. A graph from Gr 1
2
(4, 4).

the left adjoint to the forgetful functor PROP
�1−→ diOp and defines 1

2 R := F1(
1
2 R).

The problem is that we do not know whether the functor F1 is exact, so it is not clear
if 1

2 R constructed in this way is really a resolution of 1
2 B. To get around this subtlety,

M. Kontsevich observed that 1
2 bialgebras live over a version of PROPs which is smaller

than dioperads. It can be defined as follows.
Let an (m, n)- 1

2 graph be a connected simply-connected directed (m, n)-graph each of
whose edges e has the following property: either e is the unique outgoing edge of its initial
vertex or e is the unique incoming edge of its terminal vertex, see Fig. 12. An example of
an (m, n)- 1

2 graph is given in Fig. 13. Let Gr 1
2
(m, n) be the category of (m, n)- 1

2 graphs
and their isomorphisms. Define a triple Γ 1

2
: Σ-bimod → Σ-bimod by

(54)Γ 1
2
(E)(m, n) := colim

G∈Gr 1
2
(m,n)

E(G), m, n � 0.
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DEFINITION 68. A 1
2 PROP (called a meager PROP in [53]) is an algebra over the triple

Γ 1
2

: Σ-bimod → Σ-bimod.

A biased definition of 1
2 PROPs can be found in [53,79,84]. We followed the original

convention of [53] that 1
2 PROPs do not have units; the unital version of 1

2 PROPs can be
defined in an obvious way, compare also the remarks in [79].

EXAMPLE 69. 1
2 Bialgebras are algebras over a 1

2 PROP which we denote 1
2 b. Another

example of structures that can be defined over 1
2 PROPs are Lie 1

2 bialgebras consisting of
a Lie algebra bracket [−,−] :V ⊗ V → V and a Lie diagonal δ :V → V ⊗ V satisfying
one-half of (48):

δ[a, b] = 0.

Let us denote by

F :
1

2
PROP → PROP

the left adjoint to the forgetful functor PROP
�−→ 1

2 PROP from the category of PROPs to
the category of 1

2 PROPs. M. Kontsevich observed that, in contrast to F1 : diOp → PROP
in (53), F is a polynomial functor, which immediately implies the following important
theorem [53,84].

THEOREM 70. The functor F : 1
2 PROP → PROP is exact.

Now one may take a resolution 1
2 r of the 1

2 PROP 1
2 b and put 1

2 R := F( 1
2 r). Theorem 70

guarantees that 1
2 R defined in this way is indeed a resolution of the PROP 1

2 B. Let us
mention that there are also other structures invented to study resolutions of the PROP B, as
the 2

3 PROPs of Shoikhet [101], matrons of Saneblidze and Umble [99], or special PROPs
as considered in [79].

The constructions reviewed in this section can be organized into the following chain of
inclusions of full subcategories:

Oper ⊂ 1

2
PROP ⊂ diOp ⊂ Proper ⊂ PROP.

The general scheme behind all these constructions is the following. We start by choos-
ing a sub-groupoid SGr = ⊔

m,n�0 SGr(m, n) of Gr := ⊔
m,n�0 Gr(m, n) (or a sub-

groupoid of UGr := ⊔
m,n�0 UGr(m, n) if we want units). Then we define a functor

ΓS :Σ-bimod → Σ-bimod by

ΓS(E)(m, n) := colim
G∈SGr(m,n)

E(G), m, n � 0.

It is easy to see that ΓS is a subtriple of the PROP triple ΓP if and only if the following two
conditions are satisfied:
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Pasting schemes Corresponding structures

Rooted trees Non-unital operads
May trees Non-unital May operads
Extended rooted trees Operads
Cyclic trees Non-unital cyclic operads
Extended cyclic trees Cyclic operads
Stable labeled graphs Modular operads
Extended directed graphs PROPs
Extended connected directed graphs Properads
Extended connected 1-connected dir. graphs Dioperads
1
2 Graphs 1

2 PROPs

Fig. 14. Pasting schemes and the structures they define.

(i) the groupoid SGr is hereditary in the sense that, given a graph from SGr with
vertices decorated by graphs from SGr, then the graph obtained by ‘forgetting the
braces’ again belongs to SGr, and

(ii) SGr contains all directed corollas.
Hereditarity (i) is necessary for ΓS to be closed under the triple multiplication of ΓP

while (ii) guarantees that ΓS has an unit. Plainly, all the three choices used above – UGrc,
UGrD and Gr 1

2
– satisfy the above assumptions. Let us mention that one may modify the

definition of PROPs also by enlarging the category Gr(m, n), as was done for wheeled
PROPs in [93]. The pasting schemes and the corresponding structures reviewed in this
article are listed in Fig. 14.
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1. Introduction

A∞-algebras were introduced by Stasheff in 1963 as algebraic counterpart of his theory
of H -spaces, topological monoids associative up to homotopy which are in turn coherent
up to higher homotopies, etc. [34]. Topological applications of A∞-algebras were devel-
oped in a series of papers of Smirnov starting from [31] and culminating in [32] and in
papers of Kadeishvili beginning with [14]. Algebraic aspects of A∞-algebras were studied
by Kadeishvili [15] and by Getzler and Jones [11]. A∞-modules over A∞-algebras are
considered by Keller [17] and by Lefèvre-Hasegawa [23].

A∞-categories generalize differential graded categories on the one hand and A∞-
algebras on the other. The basic notions of A∞-categories and of A∞-functors have been
studied in works of Fukaya [9], Keller [17], the first author [24] and Soibelman [33]. The
homological mirror symmetry conjecture formulated by Kontsevich [20] states equivalence
of two A∞-categories, one coming from the symplectic structure of a manifold, another
from the complex structure of its mirror manifold. It was proven in some cases by Kontse-
vich and Soibelman [21]. This subject is linked with deformation quantization theory via
A∞-algebras and A∞-categories, as shown in the works of Fukaya [10] and of Bressler
and Soibelman [5].

Polishchuk [30] classifies A∞-structures on the category of line bundles over an elliptic
curve with some additional requirements. He applies A∞-categories to deformation theory
questions in algebraic geometry and to the Fourier–Mukai transform in [29]. Applications
of A∞-algebras and of so called cyclic A∞-algebras in mathematical physics are described
by Kajiura [16]. A∞-categories with additional properties are important for topological
conformal field theories as shown by Costello [6].

In the same year, 1963 (simultaneously with the discovery of A∞-algebras) Verdier has
realized the ideas of Grothendieck about homological algebra in the notion of triangulated
category [36]. It was clear, however, that the new concept was but (an offshoot) of some-
thing underlying it. An insight came from Bondal and Kapranov [2], who suggested to
look for pretriangulated differential graded (dg) categories, whose 0-th homology would
give the triangulated category in question. Drinfeld has succeeded in doing this for derived
categories [8] by relating quotient constructions for pretriangulated dg-categories and quo-
tients (localizations) of triangulated categories.

Clearly, the class of differential graded functors between pretriangulated dg-categories
is too small to provide a sufficient supply of morphisms. We propose to extend this class
to unital A∞-functors. It is advantageous to extend simultaneously the class of objects
to pretriangulated A∞-categories. Taking 0-th homology one can get some known results
in the theory of triangulated (derived) categories. However, working with pretriangulated
A∞-categories instead of triangulated categories opens up new possibilities.

1.1. Notation

We work within set theory in which all sets are elements of some universe [12]. In partic-
ular, a universe is an element of another universe. One of them, U (containing an element
which is an infinite set) is considered basic.
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A structure is called U -small if it consists of sets which are in bijection with elements
of the universe U [12, Exposé I.1]. For instance, sets, rings, modules, categories, etc. can
be U -small. A category V is a U -category if the sets of morphisms V(X, Y ) are U -small
for all objects X, Y of V . A U -category V is U -small if and only if ObV is a U -small
set.

Denote by n the linearly ordered set {1 < 2 < · · · < n} for an integer n � 0, where
0 = ∅. Let O be the category with objects n for n � 0, whose morphisms are non-
decreasing maps. Let S denote the category, whose objects are the same as in O, but the
morphisms are all mappings.

Let k be a U -small commutative associative ring with unity. Denote by gr (resp. dg)
the category of graded (resp. differential graded) U -small k-modules. Let Ck = dg be the
differential graded category of differential graded k-modules (complexes of k-modules).

A (differential) graded quiver A always means for us a U -small set of objects ObA to-
gether with U -small (differential) Z-graded k-modules of morphisms A(X, Y ), given for
each pair X, Y ∈ ObA. A span morphism r :A → B is a pair of maps f = Obs r ,
g = Obt r : ObA → ObB and a collection of graded k-linear maps r :A(X, Y ) →
B(Xf, Yg), given for each pair X, Y of objects of A. Morphisms of quivers are span mor-
phisms r :A → B of degree 0 such that Obs r = Obt r : ObA → ObB. This map is
denoted simply Ob r . The category of quivers is denoted Q. The category Q has a natural
symmetric monoidal structure Qp = (Q,�). For given quivers Qi the quiver �i∈IQi

has a set of objects
∏

i∈I ObQi and as (differential) graded k-modules of morphisms
(�i∈IQi )((Xi)i∈I , (Yi)i∈I ) = ⊗i∈IQi (Xi, Yi). The unit object 1p = �∅() of Qp is
the graded k-quiver with a unique object ∗ and module of homomorphisms 1p(∗, ∗) = k.

For any graded k-module M there is another graded k-module sM = M[1], its sus-
pension, with the shifted grading (sM)k = M[1]k = Mk+1. The mapping s :M → sM

given by the identity maps Mk → M[1]k−1 has degree −1. These notions extend to graded
k-quivers.

Let S be a U -small set. Let Q/S be the category of quivers C with set of objects S,
whose morphisms are morphisms of quivers f :A → B such that Ob f = idS . The k-linear
Abelian category Q/S admits the following structure of a monoidal category (Q/S,⊗):

(⊗i∈nQi

)
(X,Z) =

Y0=X,Yn=Z⊕
Yi∈S,0�i�n

⊗i∈nQi (Yi−1, Yi).

In particular, the unit object ⊗0() = kS has set of objects S, and the graded k-module
of morphisms is kS(X, Y ) = k if X = Y ∈ S and kS(X, Y ) = 0 if X �= Y .
Given a quiver C, we abbreviate the quiver k Ob C to kC. We view it as a differential
graded quiver with zero differential. A map f :R → S induces a k-quiver morphism
kf : kR → kS, Ob kf = f , kf = idk : kR(X,X) → kS(Xf,Xf ) for all X ∈ R, and
kf = 0 : kR(X, Y ) → kS(Xf, Yf ) if X �= Y ∈ R. For a quiver morphism f :A → B we
denote by kf the quiver map k Ob f : kA → kB.

Let Ai , Bi , i ∈ n, be quivers with ObAi = S, ObBi = R for all i ∈ n. Let fi :Ai → Bi ,
i ∈ n, be span morphisms such that Obt fi = Obs fi+1 : S → R for all 1 � i < n.
Then the span morphism f = ⊗i∈nfi : ⊗i∈n

S Ai → ⊗i∈n
R Bi with object maps Obs f =

Obs f1 : S → R, Obt f = Obt fn : S → R is defined in the obvious way.
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Suppose that Aj
i are graded quivers, i ∈ I , j ∈ m. Assume that ObAj

i = Si does not
depend on j . Define S = ∏

i∈I Si . Denote by ⊗Si the tensor product in Q/Si . There is an
isomorphism of graded quivers

(1.1.1)& : ⊗j∈m
S �i∈I Aj

i → �i∈I ⊗j∈m
Si

Aj
i ,

the identity on objects, which is a direct sum of the permutation isomorphisms

σ(12) : ⊗j∈m ⊗i∈I Aj
i

(
X

j−1
i , X

j
i

)→ ⊗i∈I ⊗j∈m Aj
i

(
X

j−1
i , X

j
i

)
,

where X
j
i ∈ Si , 0 � j � m.

For a quiver A consider the quivers T nA = A⊗n, n � 0, the tensor powers of A in
Q/ObA, and the quivers TA, T �1A, T �1A:

TA =
∞⊕
n=0

T nA, T �1A =
∞⊕
n=1

T nA,

T �1A = T 0A ⊕ T 1A = kA ⊕ A.

Often we use right operators: the composition of two maps (or morphisms) f :X → Y

and g :Y → Z is denoted by fg = f · g :X → Z instead of g ◦ f . A map is written on
elements as f : x �→ xf = (x)f . However, these conventions are not used systematically,
and f (x) might be used instead. In all formulas with graded elements and maps we assume
the Koszul rule:

(x ⊗ y)(f ⊗ g) = (−)yf xf ⊗ yg = (−1)deg y·deg f xf ⊗ yg.

2. A∞-categories and A∞-functors

We define A∞-categories and A∞-functors as particular cases of differential coalgebras
and their homomorphisms.

2.1. A∞-categories as coalgebras

Following Keller [19] we call a graded quiver A a cocomplete coalgebra if it has a structure
of a locally nilpotent coassociative coalgebra in the monoidal category Q/ObA. Thus,
there is a quiver map ' : A → A ⊗ A with Ob' = idObA that satisfies the usual
coassociativity relation. The local nilpotency means that for each pair X, Y of objects of C

C(X, Y ) =
⋃
k�1

Ker
(
'(k) : C(X, Y ) → C⊗k(X, Y )

)
,

where '(k) is the comultiplication iterated k − 1 times. The morphisms f :A → B of
cocomplete coalgebras are required to preserve comultiplication:(

A f−→ B '−→ B ⊗ B
) = (A '−→ A ⊗ A f⊗f−−−→ B ⊗ B

)
.
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The quiver T �1A equipped with the cut comultiplication

' : T �1A(X, Y ) →
⊕

Z∈ObA
T �1A(X,Z)

⊗
T �1A(Z, Y ),

h1 ⊗ h2 ⊗ · · · ⊗ hn �→
n−1∑
k=1

h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗ · · · ⊗ hn

is an example of cocomplete coalgebra.
A graded quiver A is an augmented coalgebra if it is equipped with a structure of

an augmented counital coassociative coalgebra in the monoidal category Q/ObA. This
means that there are quiver maps ε :A → kA, η : kA → A and '0 :A → A ⊗ A with
Ob ε = Ob η = Ob'0 = idObA that satisfy the usual augmented coalgebra relations.
Morphisms f :A → B of the coalgebras considered are required to preserve comultipli-
cation, counit and augmentation:(

A f−→ B '0−−→ B ⊗ B
) = (A '0−−→ A ⊗ A f⊗f−−−→ B ⊗ B

)
,(

A f−→ B ε−→ kB
) = (A ε−→ kA kf−−→ kB

)
,(

kA η−→ A f−→ B
) = (kA kf−−→ kB η−→ B

)
.

Given a coassociative coalgebra (C,' : C → C ⊗ C) in the monoidal category Q/Ob C
we construct an augmented counital coassociative coalgebra structure ('0, ε, η) on the
object T �1C = kC ⊕ C of the category Q/Ob C by the formulas

'0 = '′ + idT �1C ⊗ η + η ⊗ idT �1C − εη ⊗ η,

where

'′ = (T �1C pr1−−→ C '−→ C ⊗ C in1⊗in1−−−−→ T �1C ⊗ T �1C
)

and

η = in0 : kC → T �1C, ε = pr0 : T �1C → kC.
The resulting functor C �→ T �1C, f �→ T �1f = kf ⊕f , is an equivalence of the category
of coassociative coalgebras cQ and the category of augmented coalgebras acQ. The tensor
quiver TA = T �1T �1A inherits the cut comultiplication '0 :h1 ⊗ h2 ⊗ · · · ⊗ hn �→∑n

k=0 h1 ⊗ · · · ⊗ hk

⊗
hk+1 ⊗ · · · ⊗ hn.

2.2. LEMMA. (Cf. Keller [19].) Let C be a cocomplete coalgebra, and let A be a graded
quiver. Then there are natural bijections

acQ
(
T �1C, TA

) ∼←− cQ
(
C, T �1A

) ∼−→ Q(C,A),(
T �1f : T �1C → TA

)←�
(
f : C → T �1A

) �→ (
C f−→ T �1A pr1−−→ A

)
.

When C = T �1B, we call the quiver morphisms

fnk = (T nB inn
↪→ T �1B f−→ T �1A prk−−→ T kA

)
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the matrix elements of f . The matrix elements fn1 : T nB → A are called components
of f and are abbreviated to fn. The coalgebra morphism f can be recovered from its
components by the formula

fnk =
∑

i1+···+ik=n

fi1 ⊗ · · · ⊗ fik : T nB → T kA.

Let f, g :A → B be augmented coalgebra morphisms. An (f, g)-coderivation r : f →
g :A → B is a span morphism r :A → B of some degree d such that Obs r = Ob f ,
Obt r = Ob g and r'0 = '0(f ⊗ r + r ⊗ g).

Let C be a cocomplete coalgebra. Let A = T �1C and let f, g : C → T �1B be coal-
gebra morphisms. A (T �1f, T �1g)-coderivation r : T �1f → T �1g :A → TB can be
recovered from ř = (A r−→ TB pr1−−→ B) via

r =
∑

q+1+t=l

(
A

'
(l)
0−−→ T lA f̌⊗q⊗ř⊗ǧ⊗t−−−−−−−→ T lB inl−→ T �1B

)
,

where

f̌ = (A = T �1C T �1f−−−→ TB pr1−−→ B
)

and similarly for ǧ. When C = T �1D, A = TD, the quiver maps rk = ř|T kD : T kD → B,
k � 0, of degree d are called components of r . The matrix elements of r are

rnm =
∑

i+j+k=n
p+1+q=m

fip ⊗ rj ⊗ gkq : T nA → T mB.

2.3. DEFINITION. An A∞-category is a graded quiver A equipped with a differential
b : T sA → T sA of degree 1 with Ob b = idObA such that the cut comultiplication, the
counit and the augmentation are chain maps.

The condition of '0 being a chain map is equivalent to b being a (1, 1)-coderivation. It
can be recovered from its components as bnm = ∑p+1+q=m

p+k+q=n 1⊗p ⊗ bk ⊗ 1⊗q : T nsA →
T msA. Commutation of the augmentation map in0 with the differential is equivalent to
b0 = 0. The equation b2 = 0 is equivalent to its particular case b2pr1 = 0:∑

p+k+q=n

(
1⊗p ⊗ bk ⊗ 1⊗q

)
bp+1+q = 0 : T nsA → sA, n � 1.

The components bn also determine operations

mn = (A⊗n s⊗n−−→ (sA)⊗n bn−→ sA s−1−−→ A
)

of degree 2−n. A differential graded category is an example of an A∞-category for which
bn = 0 and mn = 0 if n > 2.

An A∞-algebra is an A∞-category with one object. Even dealing with A∞-algebras one
encounters the (real) A∞-category, whose objects are homomorphisms of A∞-algebras.
The latter are particular cases of A∞-functors, as defined below.
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2.4. DEFINITION. Let A, B be A∞-categories. An A∞-functor f :A → B is an aug-
mented coalgebra morphism f : T sA → T sB which commutes with the differential. It is
called strict if all its components vanish except, possibly, the first, f1 : sA → sB.

The commutation equation f b = bf is equivalent to its particular case f bpr1 = bf pr1:∑
k>0

fnkbk =
∑
m>0

bnmfm : T nsA → sB, n � 1.

The identity coalgebra morphism id : T sA → T sA provides an example of a strict A∞-
functor. Its first component is the identity map id : sA → sA.

2.5. Cones

Let u :A → C, a �→ au, be a chain map. Its cone is defined as the complex Cone(u) =
A[1] ⊕ C, Conek(u) = Ak+1 ⊕ Ck , with the differential (a, c)d = (adA[1], au + cdC) =
(−adA, au + cdC). Cone is one of the tools of the theory of A∞-structures.

If a chain map u :A → C is homotopically invertible, then Cone(u) is contractible.
This can be deduced from triangulatedness of the homotopy category of complexes of
k-modules. For some purposes an explicit homotopy between the identity and the zero
endomorphism of Cone(u) is useful. In order to construct it, consider a chain map v :C →
A homotopically inverse to u. Thus, there are maps h′ :A → A, h′′ :C → C of degree
−1 such that uv = 1 + h′dA + dAh′ :A → A, vu = 1 + h′′dC + dCh′′ :C → C.
Define a map h : Cone(u) → Cone(u) of degree −1 by the formula (a, c)h = (ah′ +
cv,−ch′′). One computes easily that hd + dh = 1 − f : Cone(u) → Cone(u), where the
map f : Cone(u) → Cone(u) is given as (a, c)f = (0, auh′′ − ah′u). We conclude that
f is a chain map homotopic to the identity map. The chain of equivalences idCone(u) ∼
f = idCone(u)f ∼ f 2 = 0 proves that Cone(u) is contractible. It gives also an explicit
contracting homotopy – the map h = h + hf : Cone(u) → Cone(u) of degree −1, which
satisfies idCone(u) = hd + dh. Contractibility of Cone(u) is used e.g. in the proof of the
following result.

2.6. PROPOSITION. Let (sC, d) be a differential graded quiver, let B be an A∞-category,
and let f1 : (sC, d) → (sB, b1) be a chain quiver morphism such that the chain maps
f1 : sC(X, Y ) → sB(Xf1, Yf1) are homotopy invertible for all pairs X, Y of objects of C.
Then there is an A∞-category structure on C such that bC1 = d and an A∞-functor
f : C → B, whose first component is the given morphism f1.

PROOF. Denote Ob f1 : Ob C → ObB simply by f . Let us construct the components of
the (1, 1)-coderivation b : T sC → T sC of degree 1 and of the augmented coalgebra ho-
momorphism f : T sC → T sB by induction. We already know the components b1 = d

and f1. Given an integer n � 2, assume that we have already found the components bm,
fm of the sought for bC and f for m < n, such that the equations

(2.6.1)
(
b2)

m
= 0 : T msC(X, Y ) → sC(X, Y ),
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(2.6.2)(f b)m = (bf )m : T msC(X, Y ) → sB(Xf, Yf )

are satisfied for all m < n. Introduce a (1, 1)-coderivation b̃ : T sC → T sC of degree 1 by
its components (0, b1, . . . , bn−1, 0, 0, . . .) and an augmented coalgebra homomorphism
f̃ : T sC → T sB with Ob f̃ = Ob f1 = f by its components (f1, . . . , fn−1, 0, 0, . . .).

Then λ
def= b̃2 : T sC → T sC is a (1, 1)-coderivation of degree 2 and ν

def= −f̃ bB +
b̃f̃ : T sC → T sB is an (f̃ , f̃ )-coderivation of degree 1. Equations (2.6.1), (2.6.2) imply
that λm = 0, νm = 0 for m < n. The n-th components equal

λn =
1<k<n∑

a+k+c=n

(
1⊗a ⊗ bk ⊗ 1⊗c

)
ba+1+c,

νn = −
1<k�n∑

i1+···+ik=n

(fi1 ⊗ · · · ⊗ fik )b
B
k +

1<k<n∑
a+k+c=n

(
1⊗a ⊗ bk ⊗ 1⊗c

)
fa+1+c.

Equations (2.6.1), (2.6.2) for m = n take the form

(2.6.3)−bnb1 −
∑

a+1+c=n

(
1⊗a ⊗ b1 ⊗ 1⊗c

)
bn = λn : T nsC → sC,

(2.6.4)fnb1 −
∑

a+1+c=n

(
1⊗a ⊗ b1 ⊗ 1⊗c

)
fn − bnf1 = νn : T nsC → sB.

Write N = T nsC(X, Y ) for arbitrary objects X, Y of C and consider the chain map

u = −Ck(N, f1) : Ck

(
N, sC(X, Y )

) → Ck

(
N, sB(Xf, Yf )

)
.

Since f1 is homotopy invertible, the map u is homotopy invertible as well. Therefore, the
complex Cone(u) is contractible, in particular, acyclic. Equations (2.6.3) and (2.6.4) have
the form −bnd = λn, fnd + bnu = νn, that is, the element

(λn, νn) ∈ C2
k

(
N, sC(X, Y )

)⊕ C1
k

(
N, sB(Xf, Yf )

) = Cone1(u)

has to be the boundary of the sought element

(bn, fn) ∈ C1
k

(
N, sC(X, Y )

)⊕ C0
k

(
N, sB(Xf, Yf )

) = Cone0(u).

These equations are solvable because (λn, νn) is a cycle in Cone1(u). Indeed, the equations
to verify −λnd = 0, νnd + λnu = 0 take the form

−λnb1 +
∑

p+1+q=n

(
1⊗p ⊗ b1 ⊗ 1⊗q

)
λn = 0 : T nsC → sC,

νnb1 +
∑

p+1+q=n

(
1⊗p ⊗ b1 ⊗ 1⊗q

)
νn − λnf1 = 0 : T nsC → sB.

The first equation follows by composing the identity −λb̃ + b̃λ = 0 : T nsC → T sC with
pr1 : T sC → sC. The second equation follows by composing the identity νbB + b̃ν −
b̃2f̃ = 0 : T nsC → T sB with pr1 : T sB → sB. Thus, the required pair (bn, fn) exists and
we proceed by induction. �
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Since one knows the contracting homotopy h of Cone(u) by Section 2.5, one can write
down recursive formulas for bn, fn, cf. Gugenheim and Stasheff [13], Merkulov [28], and
to express them in terms of trees, cf. Kontsevich and Soibelman [21, Section 6.4]. The
above result applies, in particular, if the graded k-modules C(X, Y ) = H(B(X, Y ),m1)

with zero differential are homotopy isomorphic to the complexes (B(X, Y ),m1). In this
case it is possible to transfer the A∞-category structure from B to its homology C =
H(B), cf. Kadeishvili [15]. Notice that bC1 = 0. A∞-categories with this property are
called minimal. The composition m2 in minimal A∞-categories is strictly associative.

In the unital case the transferred A∞-category structure is unique up to an equivalence,
see Corollary 4.8.

2.7. A∞-modules over A∞-algebras

The structure of a right or left A∞-module over an A∞-algebra is defined similarly to that
of an A∞-algebra itself, see Keller [17–19], Lefèvre-Hasegawa [23] and Smirnov [32].
A∞-bimodules over an A∞-algebra and their morphisms are defined by Tradler [35]. He
also defines an ∞-inner-product on an A∞-algebra A to be an A∞-bimodule-map from the
A∞-bimodule A to the A∞-bimodule A∗, and relates such inner-products with a certain
graph complex.

2.8. Unital A∞-categories and unital A∞-functors

An A∞-category C is called unital if for each object X of C there is a unit element,
i.e., a chain map 1X : k → C(X,X) such that the chain maps (id ⊗ 1Y )m2, (1X ⊗
id)m2 : C(X, Y ) → C(X, Y ) are homotopic to the identity map. In other terms, for each ob-
ject X of C there is a unit element XiC0 = 1Xs : k → (sC)−1(X,X) – a cycle defined up to
a boundary, such that the chain maps (id ⊗ Y iC0 )b2, −(XiC0 ⊗ id)b2 : sC(X, Y ) → sC(X, Y )

are homotopic to the identity map.
A k-linear category H 0(C) (the homotopy category) is associated with a unital A∞-

category C. It has the set of objects ObH 0(C) = Ob C and the k-modules of morphisms
H 0(C)(X, Y ) = H 0(C(X, Y ),m1). The composition in H 0(C) is induced by m2, and the
unit elements are equivalence classes of the cycles 1X = XiC0 s

−1.
An A∞-category A is called strictly unital if for each object X ∈ ObA there is a

strict unit, that is, a k-linear map XiA0 : k → (sA)−1(X,X) such that XiA0 b1 = 0 and
the following conditions are satisfied: for all pairs X, Y of objects of A the chain maps
(id ⊗ Y iA0 )b2,−(XiA0 ⊗ id)b2 : sA(X, Y ) → sA(X, Y ) are equal to the identity map and
(· · · ⊗ iA0 ⊗ · · ·)bn = 0 if n � 3. For example, differential graded categories are strictly
unital.

Given an A∞-category A, we associate a strictly unital A∞-category Asu with it. It has
the same set of objects and for any pair of objects X, Y ∈ ObA the graded k-module
sAsu(X, Y ) is given by

sAsu(X, Y ) =
{
sA(X, Y ), X �= Y,

sA(X,X) ⊕ kXiA
su

0 , X = Y,
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where XiA
su

0 is a new generator of degree −1. The element XiA
su

0 is a strict unit by defini-
tion, and the canonical embedding eA = usu :A ↪→ Asu is a strict A∞-functor, that is, all
compositions bn in A and Asu agree.

The above definition of unitality is not the only possible. We shall give two more defin-
itions, which turn out to be equivalent to the above.

2.9. DEFINITION (Kontsevich). A unital structure on an A∞-category A is a choice of an
A∞-functor UA

su :Asu → A such that(
A eA

↪→ Asu UA
su−−→ A

) = idA.

2.10. THEOREM. (See [3].) An A∞-category is unital if and only if it admits a unital
structure.

2.11. DEFINITION. An A∞-category C is called homotopy unital in the sense of Fukaya
[9, Definition 5.11] if the graded k-quiver

C+ = C ⊕ kC ⊕ skC

(with Ob C+ = Ob C) has an A∞-structure b+ of the following kind. Denote the generators
of the second and the third summands of sC+ = sC ⊕ skC ⊕ s2kC by XiC

su

0 = 1s and
jCX = 1s2 of degree respectively −1 and −2 for X ∈ Ob C. The conditions on b+ are:

(i) the elements XiC0
def= XiC

su

0 − jCXb+
1 belong to sC(X,X) for all X ∈ Ob C;

(ii) the A∞-category C+ is strictly unital with the strict units iC
su

0 ;
(iii) the embedding C ↪→ C+ is a strict A∞-functor;
(iv) (sC ⊕ s2kC)⊗nb+

n ⊂ sC for any n > 1.

In particular, C+ contains the strictly unital envelope Csu = C ⊕ kC of C.
Let D be a strictly unital A∞-category with strict units iD0 . Then it has a canonical

homotopy unital structure (D+, b+). Namely, jDXb+
1 = XiD

su

0 − XiD0 and b+
n vanishes for

all n > 1 on all summands of (sD⊕s2kD)⊗n except on sD⊗n, where it coincides with bDn .

2.12. THEOREM. (See [3].) An A∞-category C is unital if and only if it is homotopy unital.
Moreover, if C is unital and iC0 are its unit elements, then C admits a homotopy unital
structure (C+, b+) with jCb+

1 = iC
su

0 − iC0 . Conversely, if C is homotopy unital, then the

elements iC0
def= iC

su

0 − jCb+
1 are unit elements of C.

Proof of this theorem is based on the fact that for any unital A∞-category C there
is an A∞-functor φ : C → D to a differential graded category D with ObD = Ob C,
Obφ = idObC such that φ1 : sC → sD is homotopy invertible, see Section 4.8.1. Applying
Proposition 2.6 to the canonically extended A∞-category D+ and to a certain homotopy
isomorphism φ+

1 : sC+ → sD+ we can deduce existence of some A∞-structure on C+. To
satisfy all conditions of Definition 2.11 one has to refine the proof of Proposition 2.6.
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2.13. DEFINITION. Let A, B be unital A∞-categories. An A∞-functor f :A → B is
unital if XiA0 f1 −Xf iB0 ∈ Im b1 for all objects X of A.

To a unital A∞-functor f :A → B a k-linear functor H 0(f ) :H 0(A) → H 0(B) is
assigned. Namely, ObH 0(f ) = Ob f : ObA → ObB, and for each pair of objects X, Y

of A the map H 0(f ) :H 0(A)(X, Y ) → H 0(B)(Xf, Yf ) is induced by the chain map
sf1s

−1 :A(X, Y ) → B(Xf, Yf ).

3. Multicategories

A∞-categories and A∞-functors form a closed multicategory. This permits us to apply
enriched multicategory methods to the study of A∞-categories. We are going to define the
relevant notions.

3.1. Lax Monoidal categories and functors

The term ‘Monoidal’ as opposed to ‘monoidal’ indicates that categories are equipped with
n-ary tensor products, related by many associativity morphisms. The latter are invertible
for Monoidal categories and not necessarily invertible for lax Monoidal categories. The
same convention applies to functors.

3.2. DEFINITION. A lax (symmetric) Monoidal category (V,⊗I
V , λ

f

V ) consists of
1. A category V .
2. A functor ⊗I = ⊗I

V :VI → V , for every set I ∈ ObS, such that ⊗I = IdV for each
1-element set I .1 In particular, a map ⊗I

V :
∏

i∈I V(Xi, Yi) → V(⊗i∈IXi,⊗i∈I Yi) is
given.

For a map f : I → J in MorO (respectively MorS) introduce a functor ⊗f =
⊗f

V :VI → VJ which to a function X : I → ObV , i �→ Xi , assigns the function

J → ObV , j �→ ⊗i∈f−1(j)Xi . The linear order on f−1(j) is induced by the embed-
ding f−1(j) ↪→ I . The functor ⊗f

V :VI → VJ acts on morphisms via the map∏
i∈I

V(Xi, Yi)
∼−→

∏
j∈J

∏
i∈f−1j

V(Xi, Yi)

∏
j∈J ⊗f−1j

−−−−−−−→
∏
j∈J

V
(⊗i∈f−1jXi,⊗i∈f−1j Yi

)
.

3. A morphism of functors

λf : ⊗I → ⊗J ◦ ⊗f :VI → V, λf : ⊗i∈IXi → ⊗j∈J ⊗i∈f−1j Xi,

for every map f : I → J in MorO (respectively MorS),

1 See Section 1.1 above for the definition of the categories S and O.
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such that
(i) for all sets I ∈ ObO, for all 1-element sets J

λidI = id, λI→J = id;
(ii) for any pair of composable maps I

f−→ J
g−→ K from O (respectively from S) the

following equation holds:

⊗i∈IXi

=λfg

λf ⊗j∈J ⊗i∈f−1j Xi

λg

⊗k∈K ⊗i∈f−1g−1k Xi

⊗k∈Kλf | : f−1g−1k→g−1k

⊗k∈K ⊗j∈g−1k ⊗i∈f−1jXi

A Monoidal (respectively symmetric Monoidal) category is a lax one for which all λf are
isomorphisms.

The basic example of a symmetric Monoidal category is the category Set of sets,
equipped with direct product functors (Xi)i∈I �→ ∏

i∈I Xi . Sometimes this is reflected
in notation used.

3.2.1. Monoidal categories of graded quivers A biunital quiver is a quiver C together
with a pair of morphisms kC η−→ C ε−→ kC in Q/Ob C, whose composition is ηε = idkC .

Biunital quivers with arbitrary U -small sets of objects form a category denoted Qbu.
A morphism from a biunital quiver ε : A � kA : η to a biunital quiver ε : B � kB : η is
a quiver morphism f :A → B such that f ε = ε(kf ), ηf = (kf )η. The category Qbu is
equivalent to the category of quivers Q via the functors Qbu → Q, (ε : C � kC : η) �→
C = Im(1 − εη) = Ker ε, and Q → Qbu, A �→ T �1A = (pr1 : kA ⊕ A � kA : in1),
quasi-inverse to each other.

There is a faithful (forgetful) functor F : Qbu → Q, (ε : C � kC : η) �→ C. The
category Qbu inherits a symmetric Monoidal structure from Q via F , namely,

�i∈I
bu

(
Ai

ε

�
η

kAi

) def=
(
�i∈IAi

�I ε

�
�I η

�i∈IkAi
λ∅→I←−∼ k

(
�i∈IAi

))
.

The unit object is the one-object quiver

ε : k = k : η,
and the tensor product of morphisms fi of biunital quivers is �i∈I fi .

This symmetric Monoidal structure (Qbu,�I
bu, λ

f

bu) translates via the equivalence

T �1 : Q → Qbu to a new symmetric Monoidal structure Qu = (Q,�I
u, λ

f
u ) on Q. Ex-

plicitly it is given by

�i∈I
u Ai =

∑
i ji>0⊕

ji∈{0,1},i∈I

�i∈I T jiAi =
⊕

∅ �=S⊂I

�i∈I T χ(i∈S)Ai ,
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where χ(i ∈ S) = 1 if i ∈ S, and χ(i ∈ S) = 0 if i /∈ S. In particular,

Ob �i∈I
u Ai = Ob �i∈IAi =

∏
i∈I

ObAi .

The following canonical isomorphism is implied by the additivity of �,

ϑI =
[
�i∈I

(
T �1Ai

) ∼−→
⊕

ji∈{0,1},i∈I

�i∈I T jiAi

∼−→ T 0(�i∈IAi

)⊕ �i∈I
u Ai = T �1(�i∈I

u Ai

)]
,

and by the isomorphism �i∈I T 0Ai
∼−→ T 0(�i∈IAi ), (given by) the identifications

(λ∅→I )−1 : ⊗Ik ∼−→ k. Actually, ϑI : �i∈I
bu T �1Ai → T �1 �i∈I

u Ai is an isomorphism
of biunital quivers.

In particular, the unit object 1u = �∅
u () of Qu is the quiver with a unique object ∗ and

zero module of homomorphisms, and

(A �u B)
(
(A,B), (A′, B ′)

)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(A,A′) ⊗ B(B,B ′),
A �= A′, B �= B ′,

A(A,A′) ⊗ B(B,B ′) ⊕ k ⊗ B(B,B ′),
A = A′, B �= B ′,

A(A,A′) ⊗ B(B,B ′) ⊕ A(A,A′) ⊗ k,
A �= A′, B = B ′,

A(A,A′) ⊗ B(B,B ′) ⊕ A(A,A′) ⊗ k ⊕ k ⊗ B(B,B ′),
A = A′, B = B ′.

3.3. DEFINITION. A lax (symmetric) Monoidal functor between lax (symmetric) Monoidal
categories(

F, φI
)

:
(
C,⊗I

C, λ
f

C
)→ (

D,⊗I
D, λ

f

D
)

consists of
(i) a functor F : C → D,

(ii) a functorial morphism for each set I ∈ ObS

φI : ⊗I
D ◦ FI → F ◦ ⊗I

C : CI → D, φI : ⊗i∈I
D FXi → F ⊗i∈I

C Xi,

such that φI = idF for each 1-element set I , and for every map f : I → J of O (respec-
tively S) and all families (Xi)i∈I of objects of C the following equation holds:

⊗i∈I
D FXi

=λ
f

D

φI

F ⊗i∈I
C Xi

Fλ
f

C

⊗j∈J

D ⊗i∈f−1j

D FXi

⊗j∈J
D φf−1j

⊗j∈J

D F ⊗i∈f−1j

C Xi

φJ

F ⊗j∈J

C ⊗i∈f−1j

C Xi
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The pair(
T �1, ϑI

)
: Qu = (Q,�I

u, λ
f
u

)→ (
Q,�I , λf

) = Qp

is an example of a symmetric Monoidal functor.
Another example is the functor T : Q → Q which admits a lax symmetric Monoidal

structure (
T , τ̃ I

)
: Qu = (Q,�I

u, λ
f
u

)→ (
Q,�I , λf

) = Qp.

Let Ai , i ∈ I , be graded quivers. Then

�i∈I (TAi ) =
⊕

(mi)∈Z
I
�0

�i∈I T miAi

is a direct sum over (mi) ∈ ZI
�0. On the other hand,

T
(
�i∈I

u Ai

) =
∞⊕

m=0

T m
(
�i∈I

u Ai

) =
∞⊕

m=0

pr2S=m⊕
S⊂I×m

⊗p∈m �i∈I T χ((i,p)∈S)Ai

decomposes into direct sum over pairs (m, S), where m ∈ Z�0, and the subset S ⊂ I × m
satisfies the condition pr2S = m. Define τ̃ I : �i∈I (TAi ) → T (�i∈I

u Ai ) to be the identity
map on objects (Xi)i∈I . Define the only non-trivial matrix coefficients of τ̃ I to be the
isomorphisms

τ̃ I : �i∈I T miAi
�i∈I λSi ↪→m−−−−−−−→ �i∈I ⊗p∈m T χ((i,p)∈S)Ai

&−1−−→ ⊗p∈m �i∈I T χ((i,p)∈S)Ai ,

where the Si = {p ∈ m | (i, p) ∈ S} satisfy the condition |Si | = mi for all i ∈ I . Here
& is given by (1.1.1). If |Si | �= mi for some i, the corresponding matrix coefficient of τ̃ I

vanishes.
The endofunctor T �1 : Q → Q admits a unique lax symmetric Monoidal structure

(T �1, τ I ) : Qu = (Q,�I
u, λ

f
u ) → (Q,�I

u, λ
f
u ) = Qu such that(

T , τ̃ I
) = (T �1, ϑI

) ◦ (T �1, τ I
)

:
(
Q,�I

u, λ
f
u

)→ (
Q,�I , λf

)
.

The transformation τ can be computed via the following formula

τ =
(

�i∈I
u T �1Ai =

⊕
0�=(mi)∈Z

I
�0

�i∈I T miAi

∑
τ̃−−→ T �1 �i∈I

u Ai

)
.

3.4. DEFINITION. A lax Monoidal transformation (morphism of lax (symmetric) Monoi-
dal functors)

t :
(
F, φI

)→ (
G,ψI

)
:
(
C,⊗I

C, λ
f

C
)→ (

D,⊗I
D, λ

f

D
)
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is a natural transformation t :F → G such that for every I ∈ ObS

⊗i∈I
D FXi

=⊗I t

φI

F ⊗i∈I
C Xi

t

⊗i∈I
D GXi

ψI

G ⊗i∈I
C Xi

3.4.1. Lax Monoidal comonad of a tensor quiver The functor T �1 : Q → Q admits a
comultiplication ' : T �1 → T �1T �1 and a counit ε : T �1 → Id which are lax Monoidal
transformations. In fact, the functor T �1 is given by the formula

(3.4.1)T �1C(X, Y ) =
m>0⊕

X0,...,Xm∈ObC
X0=X,Xm=Y

⊗j∈mC(Xj−1, Xj ).

Therefore, its square is

(3.4.2)T �1T �1C(X, Y ) =
n>0

g : m�n∈O⊕
X0,...,Xm∈ObC
X0=X,Xm=Y

⊗p∈n ⊗j∈g−1p C(Xj−1, Xj ),

where the summation extends over all monotonic surjections g : m � n with non-empty n.
The comultiplication ' : T �1 → T �1T �1 is the sum of the morphisms

(3.4.3)λg : ⊗j∈mC(Xj−1, Xj ) → ⊗p∈n ⊗j∈g−1p C(Xj−1, Xj ).

That is, for each summand of (3.4.2) labeled by a monotonic surjection g : m � n there
exists a unique summand of (3.4.1) which is mapped to it by λg , namely, the summand
labeled by the source m of g. The counit is given by the transformation ε = pr1 : T �1 →
Id, pr1 : T �1A → A. Therefore, ((T �1, τ ),', ε) is a lax Monoidal comonad.

Recall that a T �1-coalgebra is a graded quiver morphism δ : C → T �1C such that(
C δ−→ T �1C T �1δ−−−→ T �1T �1C

) = (C δ−→ T �1C '−→ T �1T �1C
)
,(

C δ−→ T �1C ε−→ C
) = id.

In particular, Ob δ = idObC . Coassociativity of δ implies that it has the form

δ = (1,'(2), '(3), . . . , '(k), . . .
)
,

where '(k) : C → C⊗k is the (k−1)-th iteration of some ' = '(2) : C → C⊗C. One easily
finds that the categories of T �1-coalgebras and cocomplete coalgebras are isomorphic.

The functor T has a T �1-comodule structure (coaction)

'̃ = T �1(') : T → T T �1 = T ◦ T �1.

Notice that

T T �1C = ⊕g : m�n ⊗p∈n ⊗j∈g−1pC,
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where the summation extends over all monotonic surjections g : m � n. The components
of '̃ are again given by (3.4.3).

3.5. Multicategories and multifunctors

As defined by Lambek [22], a plain (respectively symmetric) multicategory C is a set Ob C
of objects, together with sets of multimorphisms C((Xi)i∈I ;Y), assigned to each map I "
1 → Ob C, i �→ Xi , 1 �→ Y , where I ∈ ObO, equipped with the units 1X ∈ C(X;X),
X ∈ Ob C, and multiplications

μφ :
∏
J"1

[(
C
(
(Xi)i∈φ−1(j);Yj

))
j∈J

,C
(
(Yj )j∈J ;Z)]→ C

(
(Xi)i∈I ;Z

)
,

given for order preserving (respectively arbitrary) map φ : I → J , together with maps
I # i �→ Xi ∈ Ob C, J # j �→ Yj ∈ Ob C, 1 �→ Z ∈ Ob C. The multiplication is
required to be associative. This is expressed by the equation of Fig. 1, written for each pair

of composable maps I
φ−→ J

ψ−→ K from O (respectively each pair from S), where φk =
φ|(φψ)−1(k) : (φψ)−1(k) → ψ−1(k). Note that φ−1

k (j) = φ−1(j) for any j ∈ ψ−1(k).
The units have to satisfy the axioms:[

C
(
(Xi)i∈I ;Z

) id×1Z−−−−→ C
(
(Xi)i∈I ;Z

)× C(Z;Z)
μI→1−−−→ C

(
(Xi)i∈I ;Z

)] = id,[
C
(
(Xi)i∈I ;Z

) ∏I"1
(
(1Xi

)i∈I ,id
)

−−−−−−−−−−→
∏
I"1

[(
C(Xi;Xi)

)
i∈I

,C
(
(Xi)i∈I ;Z

)]
μidI−−→ C

(
(Xi)i∈I ;Z

)] = id.

Note that an operad is a multicategory with one object. One encounters various forms of
multicategories, e.g. multilinear categories of Borcherds [4], pseudo-tensor categories of
Beilinson and Drinfeld [1, Definition 1.1.1], substitudes of Day and Street [7].

Let C, D be symmetric (respectively plain) multicategories. A symmetric (respectively
plain) multifunctor F : C → D is a mapping of objects ObF : Ob C → Ob D, X �→ FX,
together with maps

F(Xi)i∈I ;Y : C
(
(Xi)i∈I ;Y

)→ D
(
(FXi)i∈I ;FY

)
,

given for each function I " 1 → Ob C, i �→ Xi , 1 �→ Y , such that for each X ∈ Ob C

1C
XFX;X = 1D

FX,

and for each (respectively order preserving) map φ : I → J together with a map I"J"1 →
Ob C, i �→ Xi , j �→ Yj , 1 �→ Z, we have∏

J"1
[(

C
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,C
(
(Yj )j∈J ;Z)]

=
∏

J"1[(F(Xi )i∈φ−1j
;Yj )j∈J ,F(Yj )j∈J ;Z]

μC
φ

C
(
(Xi)i∈I ;Z

)
F(Xi )i∈I ;Z∏

J"1
[(

D
(
(FXi)i∈φ−1j ;FYj

))
j∈J

,D
(
(FYj )j∈J ;FZ

)] μD
φ

D
(
(FXi)i∈I ;FZ

)



160 V. Lyubashenko, O. Manzyuk

Fig. 1. Associativity in multicategories.
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A multinatural transformation of multifunctors r :F → G : C → D is a collection of
elements rX ∈ D(FX;GX), X ∈ Ob C, such that[

C
(
(Xi)i∈I ;Y

) F(Xi )i∈I ;Y ×rY−−−−−−−−→ D
(
(FXi)i∈I ;FY

)× D(FY ;GY)

μD
I→1−−−→ D

(
(FXi)i∈I ;GY

)]
=
[

C
(
(Xi)i∈I ;Y

) ∏I"1[(rXi
)i∈I ,G(Xi )i∈I ;Y ]−−−−−−−−−−−−−−−→

∏
I"1

[(
D(FXi;GXi)

)
i∈I

,D
(
(GXi)i∈I ;GY

)] μD
idI−−→ D

(
(FXi)i∈I ;GY

)]
for any function I"1 → Ob C, i �→ Xi , 1 �→ Y . A natural transformation of multifunctors
r :F → G : C → D is a natural transformation of the underlying functors. It satisfies the
above equation for one-element sets I .

Plain (respectively symmetric) multicategories, multifunctors and their multinatural
transformations form a 2-category MCatm (respectively SMCatm).

3.6. Monoidal categories are examples of multicategories

A plain (respectively symmetric) lax Monoidal category C gives rise to a plain (respectively
symmetric) multicategory Ĉ with
- class of objects Ob Ĉ = Ob C,
- sets of morphisms Ĉ((Xi)i∈I ;Y) = C(⊗i∈IXi, Y ),
- units 1ĈX = 1CX ∈ C(X,X),
- multiplication morphisms for each map f : I → J from O (respectively S)

μf :

[∏
j∈J

Ĉ
(
(Xi)i∈f−1j ;Yj

)]× Ĉ
(
(Yj )j∈J ;Z)

⊗J ×1−−−−→ C
(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J Yj

)× C
(⊗j∈J Yj , Z

)
λf ·-·-−−−→ C

(⊗i∈IXi, Z
) = Ĉ

(
(Xi)i∈I ;Z

)
.

Any lax (symmetric) Monoidal functor (F, φI ) : (C,⊗I , λ
f

C ) → (D,⊗I , λ
f

D) between
lax (symmetric) Monoidal categories gives rise to a (symmetric) multifunctor F̂ : Ĉ → D̂
with
- mapping of objects Ob F̂ = ObF ,
- mapping of sets of morphisms

F̂(Xi);Y =
[
Ĉ
(
(Xi)i∈I ;Y

) = C
(⊗i∈IXi, Y

) F⊗i∈I Xi ,Y−−−−−−→ D
(
F
(⊗i∈IXi

)
, FY

)
D(φI ,FY )−−−−−−→ D

(⊗i∈I (FXi), FY
) = D̂

(
(FXi)i∈I ;FY

)]
.
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A lax Monoidal transformation r : (F, φI ) → (G,ψI ) : C → D gives rise to a multi-
natural transformation r̂ : F̂ → Ĝ : Ĉ → D̂, determined by the morphisms r̂X = rX ∈
D(FX,GX).

Thus, the 2-categories lax-Mono-cat (respectively lax-sym-Mono-cat) of lax (symmet-
ric) Monoidal categories and the 2-categories MCatm (respectively SMCatm) of (sym-
metric) multicategories are related by the 2-functor C �→ Ĉ, F �→ F̂ , r �→ r̂ . Note that
2-categories and 2-functors are the same things as Cat-categories and Cat-functors. For any
symmetric Monoidal category V , in particular for V = Cat, one can define lax symmetric
Monoidal V-categories.

3.7. THEOREM. (See [3].) The assignment C �→ Ĉ, F �→ F̂ , r �→ r̂ is a symmetric
Monoidal Cat-functor lax-Mono-cat → MCatm, lax-sym-Mono-cat → SMCatm. For
arbitrary lax (symmetric) Monoidal categories C, D the maps lax-(sym-)Mono(C,D) →
(S)MCatm(Ĉ, D̂), F �→ F̂ , r �→ r̂ are bijective.

3.8. Multicategories enriched in multicategories

Let V be a symmetric multicategory. A plain (respectively symmetric) multicategory D
enriched in V, or a V-multicategory, is a set Ob D of objects, equipped with objects of
multimorphisms D((Xi)i∈I ;Y) ∈ Ob V, assigned to each map I " {∗} → Ob D, i �→ Xi ,
∗ �→ Y , where I ∈ ObO, equipped with units 1D

X ∈ V(; D(X;X)) for each X ∈ Ob D and
equipped with multiplications

μφ ∈ V
((

D
(
(Xi)i∈φ−1(j);Yj

))
j∈J

,D
(
(Yj )j∈J ;Z); D

(
(Xi)i∈I ;Z

))
,

for a non-decreasing (respectively arbitrary) map φ : I → J together with maps I # i �→
Xi ∈ Ob D, J # j �→ Yj ∈ Ob D, ∗ �→ Z ∈ Ob D. The multiplication is required to
be associative. This is expressed by the following equation in V, written for each pair of

composable maps I
φ−→ J

ψ−→ K:(
D
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,(
D
(
(Yj )j∈ψ−1k;Zk

))
k∈K

,

D
(
(Zk)k∈K ;W )

(
D
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,

D
(
(Yj )j∈J ;W )

((
D
(
(Xi)i∈φ−1j ;Yj

))
j∈ψ−1k

,D
(
(Yj )j∈ψ−1k;Zk

))
k∈K

,

D
(
(Zk)k∈K ;W )

(
D
(
(Xi)i∈(φψ)−1k;Zk

))
k∈K

,

D
(
(Zk)k∈K ;W ) D

(
(Xi)i∈I ;W

)

permutation

(1)j∈J ,μD
ψ

(μD
φk

)k∈K,1

μD
φ

μD
φψ
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where φk = φ|(φψ)−1(k) : (φψ)−1(k) → ψ−1(k). The above diagram means that the fol-
lowing equation holds:

μV
α : J"K"1→J"1

((
1D((Xi)i∈φ−1j ;Yj )

)
j∈J

, μD
ψ,μD

φ

)
= μV

β : J"K"1→K"1

((
μD

φk

)
k∈K

, 1D((Zk)k∈K ;W), μ
D
φψ

)
,

where α = idJ " ) : J " K " 1 → J " 1, and β : J " K " 1 → K " 1 is determined by its

restrictions β|K"1 = id :K " 1 → K " 1, β|J = (J
ψ−→ K ↪→ K " 1).

The units have to satisfy the equations

μV
1↪→2

(
1V

D((Xi)i∈I ;Z), 1D
Z,μ

D
φ

) = 1V
D((Xi)i∈I ;Z),

μV
1↪→I"1

((
1D
Xi

)
i∈I

, 1V
D
(
(Xi)i∈I ;Z), μD

idI

) = 1V
D((Xi)i∈I ;Z).

Let C, D be V-multicategories. A V-multifunctor F : C → D is a mapping of objects
ObF : Ob C → Ob D, X �→ FX, together with morphisms

F(Xi)i∈I ;Y ∈ V
(
C
(
(Xi)i∈I ;Y

); D
(
(FXi)i∈I ;FY

))
,

given for each collection (Xi)i∈I , Y of objects of C, that preserve the units and multiplica-
tions: (

C
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,C((Yj )j∈J ;Z)

=(F(Xi )i∈φ−1j
;Yj )j∈J ,F(Yj )j∈J ;Z

μC
φ

C
(
(Xi)i∈I ;Z

)
F(Xi )i∈I ;Z(

D
(
(FXi)i∈φ−1j ;FYj

))
j∈J

,D
(
(FYj )j∈J ;FZ

) μD
φ

D
(
(FXi)i∈I ;FZ

)
Here compositions are taken in V. A V-functor F : C → D requires such data only for
I = 1.

A (multi)natural V-transformation r :F → G : C → D is a family of elements rX ∈
V(; D(FX;GX)), X ∈ Ob C, that intertwines the actions of F and G on (multi)morphisms:

C
(
(Xi)i∈I ;Y

)
=(rXi

)i∈I ,G(Xi )i∈I ;Y

F(Xi )i∈I ;Y ,rY
D
(
(FXi)i∈I ;FY

)
,D(FY ;GY)

μD
I→1(

D(FXi;GXi)
)
i∈I

,D
(
(GXi)i∈I ;GY

) μD
idI D

(
(FXi)i∈I ;GY

)
The compositions are taken in V. In the natural V-transformation case this equation is
required only for I = 1.

3.9. Closed multicategories

Closed monoidal categories are generalized in this section to the multicategory setting.

3.10. DEFINITION. A plain multicategory C is closed if for any collection ((Xi)i∈I , Z),
I ∈ ObS, of objects of C there is an object C((Xi)i∈I ;Z) of C and an evaluation element

evC
(Xi)i∈I ;Z ∈ C

(
(Xi)i∈I ,C

(
(Xi)i∈I ;Z

);Z)
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such that the composition (with ι = (1 = ∅ " 1 " ∅ *"id"*−−−−→ I " 1 " 1 = I " 2))

ϕ(Yj )j∈J ;(Xi)i∈I ;Z

=
[

C
(
(Yj )j∈J ; C

(
(Xi)i∈I ;Z

)) ∏i∈I 1C
Xi

×id×evC
(Xi )i∈I ;Z−−−−−−−−−−−−−−−→

∏
i∈I

C(Xi;Xi)

× C
(
(Yj )j∈J ; C

(
(Xi)i∈I ;Z

))× C
(
(Xi)i∈I ,C

(
(Xi)i∈I ;Z

);Z)
μC

id") : I"J→I"1−−−−−−−−−→ C
(
(Xi)i∈I , (Yj )j∈J ;Z)]

is a bijection for an arbitrary sequence (Yj )j∈J , J ∈ ObS, of objects of C.

Here * : ∅ → K and ) :K → 1 for an arbitrary set are of course the only maps that
exist. Concatenation of sequences indexed by I and J is indexed by the disjoint union
I " J , where i < j for all i ∈ I , j ∈ J .

Note that for I = ∅ an object C(;Z) and an element evC
;Z with the required property

always exist. Namely, we shall always take C(;Z) = Z and evC
;Z = 1Z :Z → Z. With this

choice ϕ(Yj )j∈J ;Z = id : C((Yj )j∈J ;Z) → C((Yj )j∈J ;Z) is the identity map.
Let C be a symmetric closed multicategory. Let (Xi)i∈I , (Yj )j∈J , Z be objects of C and

let φ : I → J be an arbitrary map. Define the multiplication morphism

μ
C
φ ∈ C

((
C
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,C
(
(Yj )j∈J ;Z); C

(
(Xi)i∈I ;Z

))
as a unique solution of the following equation in C:

(Xi)i∈I ,
(
C
(
(Xi)i∈φ−1j ;Yj

))
j∈J

,C
(
(Yj )j∈J ;Z)

=(1)I ,μ
C
φ

(evC)J ,1
(Yj )j∈J ,C

(
(Yj )j∈J ;Z)
evC

(Xi)i∈I ,C
(
(Xi)i∈I ;Z

) evC

Z

The composition in C of the left-bottom path is μC
id") : I"J"1→I"1. The composition of the

top-right path is μC
β : I"J"1→J"1, where β|J"1 = id, β|I = (I

φ−→ J ↪→ J " 1).

Define for each object X ∈ Ob C the unit 1C
X ∈ C(; C(X;X)) as the unique element

whose image under the bijection ϕ;X;X : C(; C(X;X)) → C(X;X) equals 1C
X.

3.11. PROPOSITION. (See [3].) Let C be a closed symmetric multicategory. The elements
μ

C
φ , φ : I → J , and 1C

X, X ∈ Ob C, make the C-multiquiver C, Ob C = Ob C, into a
symmetric C-multicategory.

A closed Monoidal category provides an example of closed multicategory. More pre-
cisely, let C be a symmetric closed Monoidal category. Then Ĉ is closed with inner ho-
momorphism objects given by Ĉ((Xi)i∈I ;Z) = C(⊗i∈IXi, Z) and with evaluations repre-
sented by compositions in C

evĈ = [⊗I"1((Xi)i∈I , C
(⊗i∈IXi, Z

))
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λ)"id : I"1→2
C−−−−−−−→ (⊗i∈IXi

)⊗ C
(⊗i∈IXi, Z

) evC−−→ Z
]
.

Another example is the multicategory of free coalgebras for a multicomonad. Let C
be a closed multicategory, (T ,', ε) a multicomonad in C. This means that T : C → C
is a multifunctor, ' : T → T T : C → C and ε : T → Id : C → C are multinatural
transformations, and the triple (T ,', ε) is a coalgebra in the strict monoidal category
MCatm(C,C). Let C

f
T denote the multicategory of free T -coalgebras. Its set of objects

coincides with Ob C and for each collection ((Ai)i∈I , B), I ∈ ObO, of objects the set
C
f
T ((Ai)i∈I ;B) consists of T -coalgebra morphisms f : (T Ai)i∈I → T B. The latter are

morphisms f ∈ C((T Ai)i∈I ; T B) that satisfy the following equation in C:(
(T Ai)i∈I

f−→ T B
'−→ T T B

) = ((T Ai)i∈I
(')i∈I−−−−→ (T T Ai)i∈I

Tf−−→ T T B
)
.

Given T -coalgebras Xi , i ∈ I , and an object B of C denote by

Θ(Xi);B : T C
(
(Xi)i∈I ;B

)→ C
(
(Xi)i∈I ; T B

)
the unique morphism that satisfies the equation

(3.11.1)

(Xi)i∈I , T C
(
(Xi)i∈I ;B

)
=(1)I ,Θ(Xi );B

(δ)I ,1
(T Xi)i∈I , T C

(
(Xi)i∈I ;B

)
T evC

(Xi );B

(Xi)i∈I ,C
(
(Xi)i∈I ; T B

) evC
(Xi )i∈I ;T B

T B

Its existence and uniqueness follows from closedness of C.

3.12. PROPOSITION. (See [3].) The multicategory C
f
T of free T -coalgebras is closed. The

inner homomorphisms objects can be chosen as C
f
T ((Ai)i∈I ;B) = C((T Ai)i∈I ;B) and

the evaluations as

ev
C
f
T

(Ai)i∈I ;B = [(T Ai)i∈I , T C
(
(T Ai)i∈I ;B

)
(1)I ,Θ(T Ai );B−−−−−−−−→ (T Ai)i∈I ,C

(
(T Ai)i∈I ; T B

) evC−−→ T B
]
.

Closedness of the multicategory of free T �1-coalgebras is the main ingredient in the
proof of closedness of the multicategory of A∞-categories.

3.13. Closedness of Monoidal categories of quivers

The symmetric Monoidal category Qp is closed. In fact, define the quiver Qp(A,B) as
follows. The objects of Qp(A,B) are maps f : ObA → ObB, and the graded component

Qp(A,B)(f, g)d of the k-module of morphisms consists of span morphisms r :A → B
with Obs r = f , Obt r = g of degree deg r = d , that is,

Qp(A,B)(f, g) =
∏

X,Y∈ObA
gr
(
A(X, Y ),B(Xf, Yg)

) ∈ Ob gr



166 V. Lyubashenko, O. Manzyuk

where gr is the closed Monoidal category of graded k-modules, and gr denotes the corre-
sponding category with inner homomorphisms objects,

gr(P,Q)n =
∏
m∈Z

Homk

(
Pm,Qm+n

)
.

Evaluations are given by

evQp :A � Qp(A,B) → B, (X, f ) �→ Xf,

evQp =
[
A(X, Y ) ⊗ Qp(A,B)(f, g)

1⊗pr(X,Y )−−−−−−→ A(X, Y ) ⊗ gr
(
A(X, Y ),B(Xf, Yg)

)
evgr−−→ B(Xf, Yg)

]
, a ⊗ r �→ a.rX,Y .

3.14. PROPOSITION. (See [3].) The symmetric Monoidal category Qu = (Q,�I
u, λ

f
u ) of

quivers is closed with Qu(A,B) being a quiver, whose objects are morphisms of quivers
A → B and the object of morphisms between f, g :A → B is given by

Qu(A,B)(f, g) = Qp

(
T �1A,B

)
(Ob f,Ob g).

Denote by Υ : Qu(A,B) → Qp(T
�1A,B) the quiver morphism which gives the

map f �→ Ob f on objects and identity map on morphisms. The evaluation morphism
evQu :A �u Qu(A,B) → B acts on objects as evQu(X, f ) = Xf , and on morphisms via

ev′ = [T �1A � Qu(A,B)
1�Υ−−−→ T �1A � Qp(T

�1A,B)
evQp−−−→ B

]
,

ev′′ :A � T 0Qu(A,B) → B,

ev′′ = [A(X, Y ) ⊗ T 0Qu(A,B)(f, f )
(λI.)−1

−→∼ A(X, Y )
fX,Y−−−→ B(Xf, Yf )

]
.

For an arbitrary quiver C ∈ Ob Q and a positive integer M introduce the morphism of
quivers

ν�M : T C → T T �1C,
ν

�M
kn : T kC → ⊕S⊂n ⊗p∈n T χ(p∈S)C = T nT �1C,

as follows. By definition, the matrix element ν�M
kn vanishes, if n > k + M . Its summand

corresponding to a subset S ⊂ n vanishes unless |S| = k. If n � k + M and |S| = k,
the summand is defined as λg : k↪→n : T kC ∼−→ ⊗p∈nT χ(p∈S)C, where the image of the
increasing embedding g : k ↪→ n is S. Thus, ν�M : T → T T �1 is a natural transformation.
We shall use it in formulas, where dependence on M is irrelevant, provided the truncation
parameter M is large enough.
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The quiver map

θ(Ai );B
def= Θ(T �1sAi );sB : T �1Qu

(
�i∈I

u T �1sAi , sB
)

→ Qu

(
�i∈I

u T �1sAi , T
�1sB

)
,

defined by (3.11.1), assigns to an object (a morphism of quivers) f : �i∈I
u T �1sAi → sB,

the object (a morphism of quivers)[
�i∈I

u T �1sAi
�I

u'−−−→ �i∈I
u T �1T �1sAi

τ I−→ T �1 �i∈I
u T �1sAi

T �1f−−−→ T �1sB
] = f̂ .

Starting from elements rt ∈ Qp(�i∈I T sAi , sB)(f t−1, f t ), 1 � t � m, which can be
collected into a diagram

r = (f 0 r1−→ f 1 r2−→ · · · rm−1−−−→ f m−1 rm−→ f m
)

: �i∈I T sAi → sB,

we can compute the element r̂ = (r1 ⊗ · · · ⊗ rm)θ(Ai );B ∈ Qp(�i∈I T sAi , T
�1sB) as

follows:

r̂ =
[
�i∈I T sAi

�I '̃−−−→ �i∈I T T �1sAi
τ̃ I−→ T �i∈I

u T �1sAi

ν�M−−−→ T T �1 �i∈I
u T �1sAi

T (ϑI )−1−−−−−→∼ T n �i∈I T sAi∑
k0+···+km+m=n f̂ 0

k0p0
⊗r1⊗f̂ 1

k1p1
⊗···⊗rm⊗f̂ m

kmpm−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ T p0+···+pm+msB
]
,

where n = k0 + · · · + km + m, M � m is an arbitrary integer, and f̂ q
kqpq

: T kq �i∈I
u

T �1sAi → T pq sB is the matrix coefficient of f̂ q . Other presentations of this formula are

r̂ = (r1 ⊗ · · · ⊗ rm
)
θ(Ai );B

= signed permutation and insertion of units

×
∑
ps�0

ist ,js∈(Z�0)
n;ist �=0

f 0
i0
1

⊗ · · · ⊗ f 0
i0
p0

⊗ r1
j1

⊗ f 1
i1
1

⊗ · · · ⊗ f 1
i1
p1

⊗ · · ·
⊗ rmjm ⊗ f m

im1
⊗ · · · ⊗ f m

impm
,

r̂ = (�i∈I T sAi

'
(2m+1)
0−−−−−→ (�i∈I T sAi )

⊗(2m+1)

f 0⊗ř1⊗f 1⊗···⊗řm⊗fm−−−−−−−−−−−−−−→ T sB ⊗ sB ⊗ T sB ⊗ · · · ⊗ sB ⊗ T sB μ−→ T sB
)
.

Here μ is the multiplication in the tensor algebra quiver T sB. If I = 1, then the matrix
elements of r̂ = (r1 ⊗ · · · ⊗ rm)θA;B are

r̂kl =
∑

p0+j1+p1+···+jn+pn=k
m0+m1+···+mn=l

f 0
p0m0

⊗ r1
j1

⊗ f 1
p1m1

⊗ · · · ⊗ rnjn ⊗ f n
pnmn

:

T ksA → T lsB.
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3.15. Closing transformations of multifunctors

Let C, D be closed symmetric multicategories. Let F : C → D be a (symmetric) multifunc-
tor. Define a morphism in D

(3.15.1)F (Xi);Z : FC
(
(Xi)i∈I ;Z

)→ D
(
(FXi)i∈I ;FZ

)
via the commutative diagram

(FXi)i∈I , FC
(
(Xi)i∈I ;Y

)
F ev(Xi );Y

(1)I ,F (Xi );Y
(FXi)i∈I ,D

(
(FXi)i∈I ;FY

)
ev(FXi );FY

FY

The natural transformation (3.15.1) is called closing transformation of the multifunctor F .

4. Closed multicategories of A∞-categories

Here we construct an A∞-analogue of the category of functors between ordinary cate-
gories. The closedness of multicategories of A∞-categories and of unital A∞-categories
permits it to find in them general features of closed multicategories.

4.1. The A∞-category of A∞-functors

The notions of A∞-functors and A∞-transformations can be generalized to the case of
several arguments.

4.2. DEFINITION. Let Ai , B be A∞-categories, i ∈ n. An A∞-functor (with n arguments)
f : (Ai )i∈n → B is an augmented coalgebra morphism f : �i∈nT sAi → T sB commuting
with the differential.

The commutation condition is equivalent to its composition with pr1:(
�i∈nT sAi

f−→ T sB b̌−→ sB
)

= (�i∈nT sAi

∑n
i=1 1�(i−1)�b�1�(n−i)

−−−−−−−−−−−−−−−→ �i∈nT sAi
f̌−→ sB

)
,

where

(4.2.1)f̌ = (�i∈nT sAi
f−→ T sB pr1−−→ sB

)
.

Composition of A∞-functors as coalgebra morphisms gives an A∞-functor as well.
Therefore, A∞-categories as objects and A∞-functors as morphisms form a multicategory,
denoted A∞.

4.3. DEFINITION. Let f, g : (Ai )i∈I → B be A∞-functors. An A∞-transformation
r : f → g : (Ai )i∈I → B is an (f, g)-coderivation r : f → g : �i∈I T sAi → T sB.
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4.4. Closedness of the multicategory A∞

The multicategory A∞ turns out to be closed. The inner homomorphism object

A∞
(
(Ai )i∈n;B)

is described as follows. Its objects are A∞-functors f : (Ai )i∈n → B. The elements of
the graded component A∞((Ai )i∈n;B)(f, g)d+1 are (f, g)-coderivations r : �i∈nT sAi →
T sB of degree d . We have an isomorphism

sA∞
(
(Ai )i∈n;B)(f, g) ∼−→ Qp

(
�i∈nT sAi , sB

)
(f̌ , ǧ),

r �→ ř = r · pr1 where f̌ , ǧ are given by (4.2.1). The inverse isomorphism expresses a
coderivation via its components.

The components of the differential B : T sA∞((Ai )i∈n;B) → T sA∞((Ai )i∈n;B) are
defined as follows. For m > 1, Bm takes an element

r1 ⊗ · · · ⊗ rm ∈ T mQp

(
�i∈nT sAi; sB

)
to the composition in Qp(

r1 ⊗ · · · ⊗ rm
)
Bm = [�i∈nT sAi

(r1⊗···⊗rm)θ−−−−−−−−→ T �1sB b̌−→ sB
]
.

The component B1 takes an element r to the difference of compositions in Qp

(r)B1 = [�i∈nT sAi
r−→ T sB b̌−→ sB

]
− (−)r

[
�i∈nT sAi

∑n
j=1 1�(j−1)�b�1�(n−j)

−−−−−−−−−−−−−−−−→ �i∈nT sAi
ř−→ sB

]
.

For n = 1 we have

(r)B1 = [r, b]∨ = rb̌ − (−)rbř,[
(r1 ⊗ · · · ⊗ rm)Bm

]
k

=
∑
l

(
r1 ⊗ · · · ⊗ rm

)
θklbl, for m > 1.

The evaluation A∞-functor is given by

evA∞
(Ai );B :

(
�i∈I T sAi

)
� T sA∞

(
(Ai )i∈I ;B

)→ T sB,

a �
(
r1 ⊗ · · · ⊗ rm

)
�→ a

[(
ř1 ⊗ · · · ⊗ řm

)
θ
] = a'

(2m+1)
0

(
f 0 ⊗ ř1 ⊗ f 1 ⊗ · · · ⊗ řm ⊗ f m

)
μ,

where a is a morphism of �i∈I T sAi and r1 ⊗ · · · ⊗ rm is a morphism of

T msA∞
(
(Ai )i∈I ;B

)
.

When n = 1, we denote A∞(A;B) also by A∞(A,B). Being a closed multicategory, A∞
has a uniquely determined multiplication in A∞:
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M :
(
�i∈nT sA∞

((
Aj

i

)
j∈mi

;Bi

))
� T sA∞

(
(Bi )i∈n; C)

→ T sA∞
(
A1

1, . . . ,A
m1
1 , . . . ,A1

n, . . . ,Amn
n ; C),

determined uniquely by its components

Mk1...knl :
(
�i∈nT ki sA∞

((
Aj

i

)
j∈mi

;Bi

))
� T lsA∞

(
(Bi )i∈n; C)

→ sA∞
(((

Aj
i

)
j∈mi

)
i∈n; C).

It turns out that Mk1...knl = 0 for l > 1.
If n = 1, we find the components of M as follows:[(

r1 ⊗ · · · ⊗ rk � g
)
Mk0

]
m

=
∑
p

(
ř1 ⊗ · · · ⊗ řk

)
θmpgp,

[(
r1 ⊗ · · · ⊗ rk � t

)
Mk1

]
m

=
∑
p

(
ř1 ⊗ · · · ⊗ řk

)
θmptp.

Let f : (Ai )i∈I → B be an A∞-functor and let j be an element of I . Choose a family
of objects (Xi)i �=j ∈ ∏i �=j ObAi . We view them as A∞-functors Xi : () → Ai . Define

an A∞-functor f |(Xi)i �=j

j :Aj → B, the restriction of f to the argument j , as the image of
(idAj

, (Xi)i �=j , f ) under the composition map

μ
A∞{j}↪→I : A∞(Aj ;Aj ) ×

∏
i �=j

A∞(;Ai ) × A∞
(
(Ai )i∈I ;B

)→ A∞(Aj ;B).

The A∞-functor f |(Xi)i �=j

j takes an object Xj ∈ ObAj to the object ((Xi)i∈I )f ∈ ObB.
The k-th component is(

f |(Xi)i �=j

j

)
k

: T ksAj (Xj , Yj )

λ{j }↪→I−−−−→∼ ⊗i∈I
[(
T 0sAi (Xi,Xi)

)
i<j

, T ksAj (Xj , Yj ),
(
T 0sAi (Xi,Xi)

)
i>j

]
fkej−−→ sB

(
(X1, . . . , Xn)f, (X1, . . . , Xj−1, Yj ,Xj+1, . . . , Xn)f

)
,

where kej = (0, . . . , 0, k, 0, . . . , 0) ∈ Zn has k on j -th place. Similarly one can define
restriction of f to a subset of arguments J ⊂ I .

4.5. DEFINITION. Let Ai , B be unital A∞-categories, i ∈ I . An A∞-functor

f : (Ai )i∈I → B

is called unital if the A∞-functors f |(Xi)i �=j

j :Aj → B are unital for all j ∈ I .

The subsets Au∞((Ai )i∈I ;B) ⊂ A∞((Ai )i∈I ;B) form a submulticategory Au∞ ⊂ A∞
with unital A∞-categories as objects, and unital A∞-functors as multimorphisms.

4.6. PROPOSITION. (See [3].) The multicategory Au∞ is closed. If (Ai )i∈I , B are uni-
tal A∞-categories, then Au∞((Ai )i∈I ;B) ⊂ A∞((Ai )i∈I ;B) is the full A∞-subcategory,
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whose objects are unital A∞-functors f : (Ai )i∈I → B. The evaluation A∞-functor evAu∞ :
(Ai )i∈I ,Au∞((Ai )i∈I ;B) → B is the restriction of evA∞ : (Ai )i∈I ,A∞((Ai )i∈I ;B) → B.

When n = 1, we denote Au∞(A;B) also by Au∞(A,B).
Let A be a unital A∞-category. Since Au∞(A;A) is unital, there is a unit element

iA ∈ A∞(A;A)(idA, idA) called also a unit transformation iA : id → id :A → A. For
any unital A∞-functor f : (Ai )i∈I → B the unit element in Au∞((Ai )i∈I ;B)(f, f ) can be

chosen as the transformation f iB : f → f : (Ai )i∈I → B [24, Section 7].

4.7. 2-category of A∞-categories

Unital A∞-categories form a 2-category Au∞, whose 2-morphism sets are k-modules,
and whose vertical and horizontal compositions of 2-morphisms are (poly)linear. In-
deed, the objects of Au∞ are unital A∞-categories, 1-morphisms are unital A∞-functors,
2-morphisms rs−1 are equivalence classes of natural A∞-transformations r . An A∞-
transformation r : f → g :A → B, r ∈ A∞(A,B)(f, g)[1] is natural, if deg r = −1
and rB1 = 0. Two natural A∞-transformations p, r : f → g :A → B are equivalent
(p ≡ r) if they are homologous, that is, differ by a B1-boundary. If the A∞-transformations
f

r−→ g
p−→ h :A → B are natural, the vertical composition of the 2-morphisms rs−1 and

ps−1 is represented by (r ⊗ p)B2s
−1. For any unital A∞-functor f : A → B the natural

A∞-transformations f iB ≡ iAf : f → f :A → B represent the identity 2-morphism 1f .
Equivalences in the 2-category Au∞ are called A∞-equivalences.

4.8. COROLLARY (to [24, Theorem 8.8]). Let C be an A∞-category and let A be a unital
A∞-category. Let f : C → A be an A∞-functor such that for all objects X, Y of C the chain
map f1 : (sC(X, Y ), b1) → (sA(Xφ, Yφ), b1) is homotopy invertible, and Ob f : Ob C →
ObA is surjective. Then C is unital and f is an A∞-equivalence.

The theorem mentioned is proved similarly to Proposition 2.6. Combining this propo-
sition with the above corollary we see that if in the assumptions of Proposition 2.6 B is
unital, then the obtained A∞-category C is unital as well and it is A∞-equivalent to the full
A∞-subcategory A of B with ObA = Im(Ob f ).

A natural A∞-transformation r : f → g :A → B of unital A∞-functors f, g :A → B
determines a natural transformation H 0(r) :H 0(f ) → H 0(g) :H 0(A) → H 0(B) given by
the family of elements [Xr0s

−1] ∈ H 0(B)(Xf,Xg), X ∈ ObA. Homologous natural A∞-
transformations determine the same natural transformation. Together with the correspon-
dences C �→ H 0(C), f �→ H 0(f ) this defines a strict 2-functor H 0 from the 2-category
Au∞ to the 2-category of k-linear categories, k-linear functors, and natural transformations.

4.8.1. Yoneda lemma for unital A∞-categories An A∞-analogue of the Yoneda lemma
for strictly unital A∞-categories was proved by Fukaya [9, Theorem 9.1]. The general case
of unital A∞-categories was considered in [25, Appendix A]. Let A be an A∞-category.
The differential graded category of complexes of k-modules is denoted Ck. For any ob-
ject X of A we define an A∞-functor hX :A → Ck as follows. It maps an object Z to
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the complex hXZ = (sA(X,Z), b1). The A∞-functor hX is completely specified by its
components hX

k for k � 1:

hX
k = [sA(Z0, Z1) ⊗ · · · ⊗ sA(Zk−1, Zk)

coev−−→ Ck

(
hXZ0, h

XZ0 ⊗ hZ0Z1 ⊗ · · · ⊗ hZk−1Zk

)
Ck(1,bk+1)−−−−−−→ Ck

(
sA(X,Z0), sA(X,Zk)

)
σ−→ sCk

(
sA(X,Z0), sA(X,Zk)

)]
,

where for a graded k-module P we define the map σ :P → P [1] by p �→ (−)degpps.
The coevaluation map coev is a consequence of the closed monoidal structure of Ck.

The opposite quiver Aop is defined as the quiver with the same class of objects ObAop =
ObA, and with graded k-modules of morphisms Aop(X, Y ) = A(Y,X). Let γ : T sAop →
T sA denote the following coalgebra anti-isomorphism:

γ = (−1)kω0
c : sAop(X0, X1) ⊗ · · · ⊗ sAop(Xk−1, Xk)

→ sA(Xk,Xk−1) ⊗ · · · ⊗ sA(X1, X0),

where the permutation

ω0 =
(

1 2 . . . k − 1 k

k k − 1 . . . 2 1

)
is the longest element of Sk , and ω0

c is the corresponding signed permutation, and where
the action of ω0 on tensor products is the standard one. The opposite A∞-category
Aop to an A∞-category A is the opposite quiver, equipped with the differential bop =
γ bγ : T sAop → T sAop. The components of bop are computed as follows:

b
op
k = (−)k+1[sAop(X0, X1) ⊗ · · · ⊗ sAop(Xk−1, Xk)

ω0
c−→ sA(Xk,Xk−1) ⊗ · · · ⊗ sA(X1, X0)

bk−→ sA(Xk,X0) = sAop(X0, Xk)
]
.

For an arbitrary A∞-category A there is the Yoneda A∞-functor Y :Aop → A∞(A; Ck),
X �→ hX, cf. Fukaya [9]. If A is unital, then Y is an A∞-equivalence of Aop with the
full subcategory of A∞(A; Ck) whose objects are A∞-functors hX :A → Ck [25, Theo-
rem A.11]. Since A∞(A; Ck) is a differential graded category, it follows that each U -small
unital A∞-category A is A∞-equivalent to a U -small differential graded category.

4.9. Au∞-functors and Au∞-transformations

According to the general picture of closed multicategories, the multicategory Au∞ is en-
riched in the multicategory Au∞. This means that there exists a unital A∞-functor

μ
Au∞
1→1 : Au∞(A;B),Au∞(B; C) → Au∞(A; C),
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the composition, or equivalently, an augmented differential coalgebra morphism

M : T sAu∞(A;B) � T sAu∞(B; C) → T sAu∞(A; C).
This morphism satisfies the associativity equation.

An Au∞-functor F : Au∞ → Au∞ consists of the map ObF : Ob Au∞ → Ob Au∞ and of
unital A∞-functors F : Au∞(A;B) → Au∞(FA;FB). These A∞-functors have to map the
unit idA to the unit idFA and to satisfy the equation

Au∞(A;B),Au∞(B; C)
μ

Au∞
1→1

=

F,F Au∞(FA;FB),Au∞(FB;FC)

μ
Au∞
1→1

Au∞(A; C) F Au∞(FA;FC)

An Au∞-transformation λ :G → F : Au∞ → Au∞ is a collection of unital A∞-functors
λA :GA → FA, A ∈ Ob Au∞, such that the following equation holds:

Au∞(C;D)

F =

G Au∞(GC;GD)

=(1�λD)M Au∞(1;λD)

Au∞(FC;FD) ‖(λC�1)M

Au∞(λC;1)
Au∞(GC;FD)

In [24,26,25] the Au∞-category Au∞, Au∞-functors and Au∞-transformations were called re-
spectively Au∞, Au∞-2-functors and Au∞-2-transformations. Au∞-functors Au∞ → Au∞ and
their Au∞-transformations form a strict monoidal category Au∞-2. Algebras in this monoidal
category are called Au∞-2-monads. Analogous notions without the unitality requirement are
called A∞-2-functors, A∞-2-transformations and A∞-2-monads.

An example of an Au∞-functor is given by the A∞-category of A∞-functors. Let D be a
unital A∞-category. Then the correspondence A �→ Au∞(D;A) extends to an Au∞-functor
Au∞ → Au∞.

For an arbitrary A∞-category C there is an Au∞-functor Au∞ → Au∞, A �→ A∞(C;A).
By a theorem from [3] it is representable by the pair (Csu, usu : C ↪→ Csu), that is, the
Au∞-transformation A∞(usu; 1) : Au∞(Csu;A) → A∞(C;A) consists of A∞-equivalences.
Morally this means that the strictly unital envelope of an A∞-category is simultaneously
its unital envelope in the weak sense.

A pair (D, e ∈ ObFD) representing a representable Au∞-functor F : Au∞ → Au∞ is
unique up to an equivalence. Indeed, the same pair (D, e) represents the strict 2-functor
Au∞ → Cat, A �→ H 0(FA). Such a representing pair is unique up to an equivalence by the
2-category analogue of the Yoneda lemma [25, Appendix C.17].

5. Quotients of A∞-categories

Two different constructions of quotients of A∞-categories, one via relatively free A∞-
categories, and another via subquivers of the tensor quiver, turn out to be equivalent.
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5.1. Quotients via representability of an Au∞-functor

An A∞-functor g :B → A from a unital A∞-category B is contractible if for all objects
X, Y of B the chain map g1 : sB(X, Y ) → sA(Xg, Yg) is null-homotopic. If g :B → A
is a unital A∞-functor, then it is contractible if and only if for any X ∈ ObB and any
V ∈ ObA the complexes sA(Xg, V ) and sA(V ,Xg) are contractible, see [27, Section 6].

Let B be a full A∞-subcategory of a unital A∞-category C. Let A be an arbitrary
unital A∞-category. Denote by Au∞(C;A)modB the full A∞-subcategory of Au∞(C;A),
whose objects are unital A∞-functors C → A, whose restriction to B is contractible.
It is allowed to consider A∞-categories with the empty set of objects. The correspon-
dence A �→ Au∞(C;A)modB is an Au∞-functor Au∞ → Au∞. It turns out to be representable,
that is, there is an Au∞-transformation Au∞(D;A) → Au∞(C;A)mod B consisting of A∞-
equivalences.

5.2. THEOREM. (See [25, Theorem 1.3].) Under the assumptions above there exists a
unital A∞-category D and a unital A∞-functor e : C → D such that

(1) the composition B ↪→ C e−→ D is contractible;
(2) the strict A∞-functor given by composition with e

(e � 1)M : Au∞(D;A) → Au∞(C;A)mod B, f �→ ef,

is an A∞-equivalence for an arbitrary unital A∞-category A.

The pair (D, e : C ↪→ D) representing the Au∞-functor A �→ Au∞(C;A)mod B is unique
up to an equivalence due to the general result concerning uniqueness of a representing
object, see Section 4.9. It is called the quotient of C by B and is denoted q(C|B).

The proof of Theorem 5.2 reduces to the case when C is strictly unital. Under these
assumptions the representing A∞-category D = q(C|B) is constructed explicitly as an
A∞-category, freely generated over C by the application of contracting homotopies H to
morphisms, whose source or target is in B. The universality of D is based on the fact that
it is relatively free over C, that is, it admits a filtration

C = D0 ⊂ Q1 ⊂ D1 ⊂ Q2 ⊂ D2 ⊂ Q3 ⊂ · · · ⊂ colimj Dj = D

by A∞-subcategories Dj and differential graded subquivers Qj , such that the graded sub-
quiver Dj ⊂ Qj+1 has a direct complement Nj+1 (a graded subquiver of Qj+1), and
such that Dj+1 is generated by Nj+1 over Dj . This filtration permits us to write down a
sequence of restriction A∞-functors

Au∞(C;A)mod B ← A
ψu

∞1(D0,Q1;A) ← A
ψu∞ (D1,A)

← A
ψu

∞1(D1,Q2;A) ← A
ψu∞ (D2,A)

(5.2.1)← A
ψu

∞1(D2,Q3;A) ← · · ·
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and to prove that each of these A∞-functors is an equivalence, surjective on objects. The
A∞-category A

ψu

∞1(Dj ,Qj+1;A) is defined via the pull-back square

A
ψu

∞1(Dj ,Qj+1;A)

−/

Qp(Qj+1,A)

A
ψu∞ (Dj ,A) Qp(Dj ,A)

where the quivers in the right column get an A∞-structure from A. The A∞-categories
Dj are not unital, but only pseudounital – there are distinguished cycles iC0 ∈ (sDj )

−1,

which are not unit elements of Dj if j > 0. The index ψu in A
ψu∞ indicates that we con-

sider pseudounital A∞-functors – a generalization of unital ones. Their first components
preserve the distinguished cycles up to a boundary. The A∞-equivalence Au∞(D;A) =
A

ψu∞ (D,A) → Au∞(C;A)mod B is the limit case of (5.2.1).

5.3. Quotients via the bar resolution

There is a construction from [27] which gives a unital A∞-category D(C|B) that is also a
kind of quotient. It is a generalization of Drinfeld’s quotient construction for differential
graded categories [8, Section 3]. In order to introduce D(C|B) we endow s−1T �1sC with
a structure of A∞-category, given by b : T (T �1sC) → T (T �1sC) with the components
b0 = 0, b1 = b : T �1sC → T �1sC, b k = 0 for k > 1.

There is an augmented coalgebra automorphism μ : T T �1sC → T T �1sC, Ob μ =
idObC , specified by its components μk = μk : T kT �1sC → T �1sC, k � 1, where
μ : T �1sC ⊗ T �1sC → T �1sC is the multiplication in the tensor algebra, μ1 =
1 : T �1sC → T �1sC, μ2 = μ, μ3 = (μ ⊗ 1)μ : (T �1sC)⊗3 → T �1sC and so on.
Its inverse is the cocategory automorphism μ−1 = μ− : T T �1sC → T T �1sC with the
components μ−

k = (−)k−1μk : T kT �1sC → T �1sC.
The conjugate codifferential b̄ = μbμ−1 : T (T �1sC) → T (T �1sC) has the following

components: b0 = 0, b1 = b and for n � 2

b̄n = μn
∑

m;q<k;t<l

1⊗q ⊗ bm ⊗ 1⊗t : T ksC ⊗ (T �1sC)⊗n−2 ⊗ T lsC → T �1sC,

b̄n = μnb − (1 ⊗ μn−1b
)
μ − (μn−1b ⊗ 1

)
μ

+ (1 ⊗ μn−2b ⊗ 1
)
μ3 :

(
T �1sC

)⊗n → T �1sC,

for all n � 0. Thus, we have an A∞-category (s−1T �1sC, b̄).
As a graded k-quiver E = D(C|B) has the set of objects Ob E = Ob C, the morphisms

for X, Y ∈ Ob C are

sE(X, Y ) = ⊕C1,...,Cn−1∈BsC(X,C1) ⊗ sC(C1, C2) ⊗ · · ·
⊗ sC(Cn−2, Cn−1) ⊗ sC(Cn−1, Y ),
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where the summation runs over all sequences of objects (C1, . . . , Cn−1) of B. To the empty
sequence (n = 1) corresponds the summand sC(X, Y ). Thus, sE is a direct summand
of T �1sC. The operations b̄n restrict to maps sE⊗n → sE via the natural embedding
sE ⊂ T �1sC [27, Proposition 2.2]. Hence, b̄ turns E into an A∞-category.

5.4. THEOREM. (See [25].) Let B be a full A∞-subcategory of a unital A∞-category C.
Then the unital A∞-categories q(C|B) and D(C|B) are A∞-equivalent.

6. The action of differential graded categories on A∞-categories

Some objects of Monoidal categories have an algebra structure and may act on other ob-
jects. Similarly some objects of symmetric Monoidal Cat-categories have a structure im-
itating the lax Monoidal category structure described in Definition 3.2. They may act on
other objects likewise a monoidal category acts on another category. For instance, the cat-
egory of symmetric multicategories SMCatm is a symmetric Monoidal Cat-category; the
symmetric multicategory d̂g-Cat possesses an analogue of a symmetric Monoidal category
structure, coming from the tensor product � in dg-Cat; and the multicategory d̂g-Cat acts
on the multicategory Au∞. The action is a generalization of the tensor product of differential
graded categories. In particular, there is a multifunctor

(6.0.1)� : Au∞ � d̂g-Cat → Au∞.

To a unital A∞-category A and a differential graded category C this multifunctor assigns
the quiver A�C ∈ Ob Q such that s(A�C) = sA�C. It is equipped with the differential
bA�C : id → id :A� C → A� C, specified by its components:

b
A�C
1 = b1 � 1 − 1 � d : sA � C → sA � C,

bA�C
n = [T n(sA � C) &−→ T nsA � T nC bAn �μn

C−−−−−→ sA � C
]
, n > 1.

Here μn
C is iterated composition in the category C. The differential bA�C turns the quiver

A � C into a unital A∞-category. A unit element for the object (X,U) of A � C can be
chosen as XiA0 ⊗ 1U ∈ sA(X,X) ⊗ C(U,U). To a unital A∞-functor f : �i∈I T sAi →
T sB and a differential graded functor g : �i∈ICi → D the action � assigns the unital
A∞-functor f � g : �i∈I T s(Ai � Ci ) → T s(B �D) such that

(f � g)∨ = [�i∈I T (sAi � Ci ) �I &−−−→ �i∈I (T sAi � T Ci )
σ(12)−−−→ (

�i∈I T sAi

)
�
(
�i∈I T Ci

)
f̌�(�I μ)−−−−−−→ sB �

(
�i∈ICi

) 1�g−−−→ sB � D
]
.

The action obeys certain associativity constrains similar to the isomorphisms λf in a
Monoidal category.
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7. Pretriangulated A∞-categories

We introduce the monad of pretriangulated A∞-categories as a composition of two mon-
ads: the Au∞-2-monad of shifts and the Maurer–Cartan Au∞-2-monad. The first monad adds
to an object of an A∞-category its formal shifts. The second adds iterated cones, solutions
of the Maurer–Cartan equation. The commutation morphism between the two monads turns
their composition into an Au∞-2-monad as well.

7.1. The multifunctor of shifts

The category of differential graded categories dg-Cat equipped with the tensor product
� is a symmetric monoidal category. The differential graded quiver Z with ObZ = Z,
Z(m, n) = k[n−m] and zero differential has an obvious structure of a k-linear differential
graded category. We equip the object Z of D = (dg-Cat,�) with an algebra structure,
given by multiplication, a differential graded functor

⊗Z :Z � Z → Z, m × n �→ m + n,

⊗Z = (−1)k(m−l) : (Z � Z)(n × m, k × l) = Z(n, k) ⊗ Z(m, l)

→ Z(n + m, k + l).

Clearly, the algebra (Z,⊗Z ) is unital with unit ηZ : 1p → Z , ∗ �→ 0, id : 1p(∗, ∗) = k →
Z(0, 0). We could say that Z is a strict monoidal differential graded category.

The algebra Z together with the action (6.0.1) provide the multifunctor of shifts
−[] : Au∞ → Au∞. It takes a unital A∞-category A to the unital A∞-category A[] = A�Z .
Objects of A�Z are pairs (X, n) = X[n], X ∈ ObA, n ∈ Z. The k-modules of morphisms
are (A� Z)(X[n], Y [m])[1] = A(X, Y )[1] ⊗ Z(n,m). The multifunctor −[] operates on
morphisms via the map

−[] = [Au∞
(
(Ai )i∈I ;B

) � Au∞
(
(Ai )i∈I ;B

)× {1}
1×Ẑ−−−→ Au∞

(
(Ai )i∈I ;B

)× D̂
(
(Z)i∈I ;Z

)
�−→ Au∞

(
(Ai � Z)i∈I ;B � Z

)]
, f �→ f �

(⊗I
Z
)
,

where Ẑ(1) = ⊗I
Z ∈ D(�IZ,Z) = D̂((Z)i∈I ;Z).

The algebra morphism ηZ : 1p → Z gives a multinatural transformation of multi-
functors u[] : IdAu∞ → −[]. Since the algebra Z is not commutative, the multiplication
⊗Z : Z � Z → Z gives a natural transformation m[] : −[] [] → −[] which is not multi-
natural. The triple (−[],m[], u[]) is a monad in Au∞ and an Au∞-monad in Au∞, called the
monad of shifts.

7.2. DEFINITION. We say that a unital A∞-category C is closed under shifts if every object
X[n] of C[] is isomorphic in H 0(C[]) to some object Y [0] for Y ∈ Ob C.

A unital A∞-category C is closed under shifts if and only if the A∞-functor u[] : C → C[]
is an equivalence. If C is a unital A∞-category, then C[] is closed under shifts. Furthermore,
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the A∞-functors u[], u[]
[] : C[] → C[] [] and m[] : C[] [] → C[] are equivalences, quasi-inverse

to each other. Moreover, for an arbitrary A∞-category C closed under shifts there exists an
A∞-equivalence U[] = UC[] : C[] → C such that u[] · U[] = idC . In particular, U[] is quasi-
inverse to u[]. For an arbitrary unital A∞-category A, the strict A∞-functor Au∞(u[], C) =
(u[] � 1)M :Au∞(A[], C) → Au∞(A, C) is an A∞-equivalence which admits a one-sided
inverse

F[] = [Au∞(A, C) −[]−−→ Au∞(A[], C[]) Au∞(A[],U[])−−−−−−−→ Au∞(A[], C)
]

(quasi-inverse to Au∞(u[], C)), namely, F[] · Au∞(u[], C) = idAu∞(A,C).
Adding shifts commutes with taking quotients. More precisely, let C be an A∞-category,

B ⊂ C a full subcategory. Then the A∞-categories q(C[]|B[]) and q(C|B)[] are A∞-
equivalent. Furthermore, if B, C are closed under shifts, then so is q(C|B).

Let C be an A∞-category closed under shifts. Then for an arbitrary A∞-category A
the A∞-category A∞(A, C) is closed under shifts. If A is unital, then the A∞-category
Au∞(A, C) is closed under shifts as well.

7.3. The Maurer–Cartan monad

Let I be the set m for some m ∈ Z�0. We turn I into an A∞-category with the set of
objects m. The only non-zero graded modules of morphisms are I (i, i + 1) = k[−1]
concentrated in degree 1. Thus, the compositions bn in this A∞-category vanish for all
n � 1.

Let C be an A∞-category. The A∞-category Cmc of bounded complexes in C is defined
as follows. Objects of Cmc are A∞-functors X : I → C, ObX : i �→ Xi , where I is some
set m for m ∈ Z�0. If I = ∅, the A∞-functor ∅ → C gives the zero object of Cmc. Besides
Xi the A∞-functor X is determined by k-linear maps of degree 0 for all i < j , i, j ∈ I ,

Xij : k = sI (i, i + 1) ⊗ · · · ⊗ sI (j − 1, j) → sC(Xi,Xj ),

that is, by elements xij ∈ sC(Xi,Xj ) of degree 0. They give an A∞-functor if and only if
the Maurer–Cartan equation holds for all i < j , i, j ∈ I :

m>0∑
i<k1<···<km−1<j

(Xik1 ⊗ Xk1k2 ⊗ · · · ⊗ Xkm−1j )b
C
m = 0 :

k =
j−1⊗
k=i

sI (k, k + 1) → sC(Xi,Xj ).

The graded k-module of morphisms between objects X : I → C and Y : J → C of Cmc is
defined as

sCmc(X, Y ) =
∏

i∈I,j∈J

sC(Xi, Yj ).
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An element r of sCmc(X, Y ) is viewed as an I × J -matrix r = (rij )
i∈I
j∈J . The differential

bmc in Cmc is given by its components:

bmc
n : sCmc(X0, X1)⊗ · · · ⊗ sCmc(Xn−1, Xn

)→ sCmc(X0, Xn
)
,(

r1 ⊗ · · · ⊗ rn
)
bmc
n

=
∑

t0,...,tn�0

[
(X0)⊗t0 ⊗ r1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ rn ⊗ (Xn)⊗tn

]
bCt0+···+tn+n,

where we adopt the following matrix notations: the tensor product A ⊗ B of two matrices
A = (Akl)

k∈K
l∈L , B = (Blm)l∈L

m∈M means (A ⊗ B)km =∑l∈L Akl ⊗ Blm.
Let f :A → B be an A∞-functor. It gives rise to an A∞-functor f mc :Amc → Bmc. An

object X : I → A of Amc is mapped by f mc to the object Xf : I → B of Bmc. It is repre-
sented by the matrix Xf mc = ∑

n�1(X
⊗n)fn = ∑

1�n<|I |(X⊗n)fn. The components of
f mc are

f mc
n : sAmc(X0, X1)⊗ · · · ⊗ sAmc(Xn−1, Xn

)→ sBmc(X0f mc, Xnf mc),(
r1 ⊗ · · · ⊗ rn

)
f mc
n

(7.3.1)

=
∑

t0,...,tn�0

[(
X0)⊗t0 ⊗ r1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ rn ⊗ (Xn

)⊗tn
]
ft0+···+tn+n.

Let p : f → g :A → B be an A∞-transformation. It gives rise to an A∞-transformation
pmc : f mc → gmc :Amc → Bmc specified by its components:

rmc
n : sAmc(X0, X1)⊗ · · · ⊗ sBmc(Xn−1, Xn

)→ sBmc(X0f mc, Xngmc),(
r1 ⊗ · · · ⊗ rn

)
pmc
n

(7.3.2)

=
∑

t0,...,tn�0

[(
X0)⊗t0 ⊗ r1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ rn ⊗ (Xn

)⊗tn
]
pt0+···+tn+n.

The correspondences f �→ f mc, p �→ pmc given by (7.3.1) and (7.3.2) define a strict
A∞-functor −mc :A∞(A,B) → A∞(Amc,Bmc). If C is a unital A∞-category, then Cmc

is unital with the unit transformation i(C
mc) = (iC)mc. For a unital A∞-functor f :A → B

the A∞-functor f mc :Amc → Bmc is unital as well. If A, B are unital A∞-categories,
then the A∞-functor −mc :Au∞(A,B) → Au∞(Amc,Bmc) is unital. The Maurer–Cartan
construction gives an example of an A∞-2-functor −mc :A∞ → A∞ which restricts to an
Au∞-2-functor −mc :Au∞ → Au∞.

Denote by umc = uAmc :A → Amc the strict A∞-functor X �→ (1 # 1 �→ X, 0), with the
first component given by (umc)1 = id : sA(X, Y ) → sAmc((1 �→ X, 0), (1 �→ Y, 0)) =
sA(X, Y ). If A is unital, then the A∞-functor uAmc is unital. The collection of uAmc defines
a strict A∞-2-transformation umc : Id → (−)mc.

Let A be an A∞-category. We want to define a strict A∞-functor

mA
mc = TotA :

(
Amc)mc → Amc.

Objects of (Amc)mc are A∞-functors

X : I → Amc, i �→ (
Xi : J i → A

)
,
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xii′ ∈ [sAmc(Xi,Xi′)]0 for i, i′ ∈ I, i < i′.

For each i ∈ I the A∞-functor Xi : J i → A consists of ObXi : J i # j �→ Xi
j ∈ ObA and

of xii def= xi = (xi
jj ′)j,j ′∈J i . Let K denote the partition

⊔
i∈I J

i = J 0 " · · · " Jn. The A∞-

functors X with fixed sets I , (J i)i∈I are in bijection with A∞-functors X̃ :K → A. The
map Ob TotA : Ob(Amc)mc → ObAmc, X �→ X̃ is given by the assignment J i # j �→ Xi

j ,

x̃ii′
jj ′ = xii′

jj ′ , where j ∈ J i , j ′ ∈ J i′ , i � i′.
Given two objects of (Amc)mc, X : I → Amc, i �→ (Xi : J i → A, j �→ Xi

j ), and

Y :L → Amc, l �→ (Y l :Ml → A,m �→ Y l
m), we describe the k-module of morphisms

between them:(
Amc)mc

(X, Y ) =
∏

i∈I,l∈L

Amc(Xi, Y l
) =

∏
i∈I,l∈L

∏
j∈J i ,m∈Ml

A
(
Xi

j , Y
l
m

)
�

∏
k∈K,n∈N

A
(
X̃k, Ỹ n

) = Amc(X̃, Ỹ ),

where K =⊔i∈I J
i , N =⊔l∈L Ml and X̃ = X Tot, Ỹ = Y Tot.

We make TotA into a strict A∞-functor setting (TotA)1 to be the above isomorphism
and (TotA)k = 0, k > 1. If A is unital, then the A∞-functor TotA :Amcmc → Amc is
unital. When A runs over all A∞-categories, the collection of functors TotA determines an
A∞-2-transformation mmc = Tot : ((−)mc)mc → (−)mc. The triple (−mc,Tot, umc) is an
A∞-2-monad, which restricts to an Au∞-2-monad.

7.4. DEFINITION. We say that a unital A∞-category C is mc-closed if every object X of
Cmc is isomorphic in H 0(Cmc) to Yumc for some object Y ∈ Ob C.

7.5. PROPOSITION. (See [3].) Let C be a unital A∞-category. Then the following condi-
tions are equivalent:

(i) C contains a contractible object, and each object
(
W : 2 → C,

( 0 f

0 0

))
of Cmc is

isomorphic in H 0(Cmc) to Cumc for some object C ∈ Ob C;
(ii) C is mc-closed;

(iii) the A∞-functor umc : C → Cmc is an equivalence.

Equivalence of (i) and (ii) can be put in words as follows: any solution to the Maurer–
Cartan equation is an iterated cone.

If C is a unital A∞-category, then Cmc is mc-closed. Furthermore, the A∞-functors
umc, u

mc
mc : Cmc → Cmc mc and mmc : Cmc mc → Cmc are equivalences, quasi-inverse to

each other. Moreover, for an arbitrary mc-closed A∞-category C there exists an A∞-
equivalence Umc = UC

mc : Cmc → C such that umc · Umc = idC . In particular, Umc

is quasi-inverse to umc. For an arbitrary unital A∞-category A, the strict A∞-functor
Au∞(umc, C) = (umc � 1)M :Au∞(Amc, C) → Au∞(A, C) is an A∞-equivalence which
admits a one-sided inverse

Fmc = [Au∞(A, C) −mc−−→ Au∞
(
Amc, Cmc) Au∞

(Amc,Umc
)

−−−−−−−−→ Au∞(Amc, C)
]

(quasi-inverse to Au∞(umc, C)), namely, Fmc · Au∞(umc, C) = idAu∞(A,C).
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Adding iterated cones commutes with taking quotients. This means that if C is an
A∞-category and B ⊂ C is a full subcategory, then the A∞-categories q(Cmc|Bmc) and
q(C|B)mc are A∞-equivalent. Furthermore, if B, C are mc-closed, then so is q(C|B).

Let C be an mc-closed A∞-category. Then for an arbitrary A∞-category A the A∞-
category A∞(A, C) is mc-closed. If A is unital, then the A-category Au∞(A, C) is mc-
closed as well.

7.6. The monad of pretriangulated A∞-categories

A commutation morphism c = cC : Cmc[] → C[]mc between the A∞-2-monads mc and
[] is defined as follows. The strict A∞-functor cC takes an object X[n] of Cmc[], where
X : I → C is an A∞-functor, to the object X′ = X[n]c : I → C[], i �→ Xi[n], x′

ij = xij ∈
sC[](Xi[n], Xj [n]) = sC(Xi,Xj ). The first component of c is

c1 : sCmc[](X[n], Y [m]) = sCmc(X, Y )[m − n]
=
{ ∏
i∈I,j∈J

sC(Xi, Yj )

}
[m − n]

=
∏

i∈I,j∈J

{
sC(Xi, Yj )[m − n]} =

∏
i∈I,j∈J

sC[](Xi[n], Yj [m])
= sC[]mc(X[n]c, Y [m]c).

The A∞-functor cC : Cmc[] → C[]mc is unital if C is. When C runs over all A∞-categories,
the collection of A∞-functors cC : Cmc[] → C[]mc determines an A∞-2-transformation.

The A∞-2-functor tr :A∞ → A∞ (respectively Au∞-2-functor tr :Au∞ → Au∞), C �→
Ctr = C[]mc, equipped with the unit

utr = (Id u[]−→ −[] umc−−→ −[]mc)
and with the multiplication

mtr = (−[]mc[]mc cmc−−→ −[] []mcmc mmc−−→ −[] []mc
mmc[]−−→ −[]mc)

is an A∞-2-monad (respectively Au∞-2-monad).
Let us describe the strict A∞-functor mtr : Ctr tr → Ctr explicitly. First we consider its

action on objects. An object X of C tr tr = C[]mc[]mc is specified by the following data:
- finite linearly ordered sets I ∈ ObO, J i ObO for every i ∈ I ;
- objects Xi

j of C for all i ∈ I , j ∈ J i ;

- integers mi , ni
j for all i ∈ I , j ∈ J i ;

- and the following matrices x, xii , i ∈ I of morphisms:(
X : I # i �→ (

Xi : J i # j �→ Xi
j

[
ni
j

]
, xii = (xii

jj ′
)
j,j ′∈J i

)[
mi
]
,

x = (xii′)
i,i′∈I

)
,

xii
jj ′ ∈ C[](Xi

j

[
ni
j

]
, Xi

j ′
[
ni
j ′
])[1]0 = C

(
Xi

j ,X
i
j ′
)[
ni
j ′ − ni

j + 1
]0
,

xii′ ∈ C[]mc[](Xi
[
mi
]
, Xi′[mi′])[1]0 = C

(
Xi,Xi′)[mi′ − mi + 1

]0
,
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where Xi and X specify A∞-functors. This means that j � j ′ implies xii
jj ′ = 0, i � i′ im-

plies xii′ = 0, the Maurer–Cartan equations
∑

t�0 x⊗t b
[]mc[]
t = 0 and

∑
t�0(x

ii)⊗t b
[]
t = 0

hold for all i ∈ I .

The elements xii′ are identified with matrices (xii′
jj ′)

j ′∈J i′

j∈J i , where

xii′
jj ′ ∈ C[](Xi

j

[
ni
j

]
, Xi′

j ′
[
ni′
j ′
])[

mi′ − mi + 1
]0

= C
(
Xi

j ,X
i′
j ′
)[
ni′
j ′ + mi′ − ni

j − mi + 1
]0
.

Write IJ =⊔i∈I J
i = {(i, j) ∈ I ×⋃i∈I J

i | j ∈ J i}, and consider the IJ × IJ -matrix
x̃ = x + diag(xii), so that

x̃ii′
jj ′ = xii′

jj ′ ∈ C[] [](Xi
j

[
ni
j

][
mi
]
, Xi′

j ′
[
ni′
j ′
][
mi′])[1]0

= C
(
Xi

j ,X
i′
j ′
)[
mi′ + ni′

j ′ − mi − ni
j + 1

]0
if i < i′, or if i = i′ and j < j ′, and otherwise x̃ii′

jj ′ = 0. The object X is taken by mtr to
the objects(

Xmtr : IJ # (i, j) �→ Xi
j

[
ni
j + mi

]
, x̄ = (x̄ii′

jj ′
)
(i,j),(i′,j ′)∈IJ

)
,

x̄ii′
jj ′ = (−1)

ni′
j ′
(
mi−mi′ )

xii′
jj ′ ∈ C[](Xi

j

[
ni
j + mi

]
, Xi′

j ′
[
ni′
j ′ + mi′])[1]0.

Now we consider the first component of the strict A∞-functor mtr. Let Y be another
object of Ctr tr,(

Y :K # k �→ (
Y k :Lk # l �→ Y k

l

[
pk
l

]
,

ykk = (ykk
ll′
)
l,l′∈Lk

)[
qk
]
, y = (ykk′)

k,k′∈K

)
.

A morphism f ∈ Ctr tr(X, Y )[1] identifies with the matrix (f ik
j l )

i∈I,k∈K

j∈J i ,l∈Lk

f ik
j l ∈ C

(
Xi

j , Y
k
l

)[
pk
l + qk − ni

j − mi + 1
] � Ctr(Xi, Y k

)[
qk − mi + 1

]
.

Write KL = ⊔
k∈K Lk . The morphism f is mapped by (mtr)1 to the morphism f (mtr)1 ∈

Ctr(Xmtr, Ymtr)[1], determined by the matrix

f (mtr)1 = ((−1)p
k
l (m

i−qk)f ik
j l

)
(i,j)∈IJ,(k,l)∈KL

,

f ik
j l ∈ C[](Xi

j

[
ni
j + mi

]
, Y k

l

[
pk
l + qk

])[1].

7.7. DEFINITION. We say that a unital A∞-category C is pretriangulated if every object
X of Ctr is isomorphic in H 0(Ctr) to Yutr for some object Y of C.

Another (but similar) notion of a triangulated category due to Kontsevich and Soibelman
can be found in [33].

7.8. PROPOSITION. (See [3].) Let C be a unital A∞-category. Then the following condi-
tions are equivalent:
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(i) C is pretriangulated;
(ii) the A∞-functor utr : C → Ctr is an equivalence;

(iii) C is closed under shifts and mc-closed;
(iv) the A∞-functors u[] : C → C[] and umc : C → Cmc are equivalences.

Let C be a unital A∞-category. Then the A∞-category Ctr is pretriangulated, closed
under shifts and mc-closed. The A∞-functors utr, u

tr
tr : Ctr → Ctr tr and mtr : Ctr tr → Ctr

are equivalences, quasi-inverse to each other. Moreover, for an arbitrary pretriangulated

A∞-category C there exists an A∞-equivalence Utr = UC
tr = (Ctr

Umc[]−−→ Cmc Umc−−→ C)
such that utr · Utr = idC . In particular, Utr is quasi-inverse to utr. For an arbitrary A∞-
category A the strict A∞-functor Au∞(utr, C) = (utr � 1)M :Au∞(Atr, C) → Au∞(A, C) is
an A∞-equivalence which admits a one-sided inverse

Ftr
def= [

Au∞(A, C) −tr−−→ Au∞(Atr, Ctr)
Au∞(Atr,Utr)−−−−−−−→ Au∞(Atr, C)

] = F[] · Fmc;
indeed, Ftr · Au∞(utr, C) = idAu∞(A,C).

Let Ai , B be unital A∞-categories, i ∈ I . Suppose that B is pretriangulated. Then the
A∞-category Au∞((Ai )i∈I ;B) is pretriangulated.

Let Atr∞ denote the full submulticategory of Au∞, whose objects are pretriangulated
A∞-categories. The multicategory Atr∞ is closed with the inner object of morphism
Atr∞((Ai )i∈I ;B) = Au∞((Ai )i∈I ;B) and the evaluation

evAtr∞ = evAu∞ : (Ai )i∈I ,Atr∞
(
(Ai )i∈I ;B

)→ B.

Since the A∞-2-functors −[] and −mc commute with taking quotients, so does their
composition, the A∞-2-functor −tr. Furthermore, the quotient of a pretriangulated A∞-
category over a full pretriangulated A∞-subcategory is pretriangulated as well.

7.9. Triangulated categories

We define triangulated categories with weak versions of suspension and desuspension func-
tors. These are presented in the 2-category setting.

Let C be a 2-category, C, D objects of C. An adjunction from C to D is a quadruple
(F,U, η, ε), where F : C → D and U :D → C are 1-morphisms, η : IdC → FU and
ε :UF → IdD are 2-morphisms such that the following equations hold:(

F
ηF−−→ FUF

Fε−−→ F
) = idF ,(

U
Uη−−→ UFU

εU−−→ U
) = idU .

Let C be an object of C. The category C(C, C) = End(C) is a strict monoidal category
with the tensor product given by composition of 1-morphisms. The set of integers Z can be
viewed as a discrete category. It is a strict monoidal category with the tensor product given
by addition.
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7.10. DEFINITION. A translation structure on C is a monoidal functor (Σ, ς) : Z →
End(C). More specifically, a translation structure on C consists of the following data: for
every n ∈ Z a 1-morphism Σn = Σ(n) : C → C; for each pair m, n ∈ Z a 2-isomorphism
ςm,n :ΣmΣn ∼−→ Σm+n; a 2-isomorphism ς0 : IdC

∼−→ Σ0. These data must satisfy the
following coherence relations:

(i) cocycle condition: for k,m, n ∈ Z(
ΣkΣmΣn Σkςm,n−−−−→ ΣkΣm+n ςk,m+n−−−−→ Σk+m+n

)
= (ΣkΣmΣn ςk,mΣn

−−−−→ Σk+mΣn ςk+m,n−−−−→ Σk+m+n
);

(ii) for every n ∈ Z:(
Σn ς0Σ

n−−−→ Σ0Σn ς0,n−−→ Σn
) = idΣn,(

Σn Σnς0−−−→ ΣnΣ0 ςn,0−−→ Σn
) = idΣn.

Let us define a new 2-category Trans C. An object of this category is an object of C with
a translation structure on it. A 1-morphism from C to D consists of the following data:
a 1-morphism F : C → D; for every n ∈ Z a 2-isomorphism φn :ΣnF

∼−→ FΣn such that
the following diagram commutes for each pair m, n ∈ Z:

ΣmΣnF

ςm,nF

Σmφn
ΣmFΣn φmΣn

FΣmΣn

Fςm,n

Σm+nF
φm+n

FΣm+n

and the following equation holds:(
F

ς0F−−→ Σ0F
φ0−→ FΣ0) = (F Fς0−−→ FΣ0).

A 2-morphism ν : (F, φn) → (G,ψn) : C → D is a 2-morphism ν :F → G such that the
following diagram commutes for every n ∈ Z:

ΣnF

φn

Σnν
ΣnG

ψn

FΣn νΣn

GΣn

Let C, D be objects of C, (F,U, η, ε) an adjunction from C to D. The correspondence
T �→ FTU extends to a lax monoidal functor Γ : End(D) → End(C). In particular, if
(F,U, η, ε) is an adjunction-equivalence from C to D and D is equipped with a translation

structure, then the composite functor ΣC = (Z ΣD−−→ End(D)
Γ−→ End(C)) is monoidal and

defines a translation structure on C. A given equivalence F : C → D can be completed to an
adjunction in a non-unique way, but ΣC depends functorially on the choice of adjunction
data.

Let A
[]-closed∞ denote the full 2-subcategory of the 2-category Au∞, whose objects are

unital A∞-categories closed under shifts.
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7.11. PROPOSITION. (See [3].) The embedding A
[]-closed∞ ↪→ Au∞ lifts naturally to a 2-

functor −̃ :A[]-closed∞ → TransAu∞ that is the identity on 2-morphisms.

As a corollary, we obtain a composite 2-functor

H̃ 0 = (A[]-closed∞
−̃−→ TransAu∞

TransH 0−−−−−→ Trans k-Cat
)
.

Given an A∞-category B closed under shifts, we denote by H̃ 0(B) the corresponding
k-linear category H 0(B) equipped with the natural translation structure. Similarly, an
A∞-functor f : B → C between such A∞-categories induces a functor H̃ 0(f ) =
(H 0(f ), φn) : H̃ 0(B) → H̃ 0(C) between categories with translation structure.

Let from now on C be the 2-category of additive k-linear categories, k-linear functors,
and natural transformations. Let C be an additive k-linear category with a translation struc-
ture (Σn, ςm,n, ς0) on it. We put Σ = Σ1 for brevity.

7.12. DEFINITION. A triangle (X, Y,Z, a, b, c) in C is the sequence of maps

X
a−→ Y

b−→ Z
c−→ XΣ.

A morphism of triangles

(f, g, h) : (X, Y,Z, a, b, c) → (X′, Y ′, Z′, a′, b′, c′)
is a commutative diagram

X

f

a
Y

g

b
Z

h

c
XΣ

fΣ

X′ a′
Y ′ b′

Z′ c′
X′Σ

A system of triangles in C is a collection of triangles, called distinguished triangles, which
satisfies the axiom

(TR0) Each triangle isomorphic to a distinguished triangle is distinguished. Each mor-
phism u :X → Y is contained in a distinguished triangle (X, Y, ∗, u, ∗, ∗).

Let C, D be categories equipped with a system of triangles. A functor (F, φn) : C → D be-
tween categories with translation structure is called triangulated if for every distinguished
triangle

X
u−→ Y

v−→ Z
w−→ XΣ

in C, the triangle

XF
uF−−→ YF

vF−−→ ZF
(wF)φ1−−−−→ XFΣ

is distinguished in D.

Note that a functor (F, φn) : C → D between categories with translation structure maps
isomorphic triangles to isomorphic ones.

Let B be a pretriangulated A∞-category. Let us construct a system of triangles in H̃ 0(B).
Let A2 be the A∞-category with two objects 1 and 2 and with A2(1, 2) = k{e12} � k,
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deg e12 = 0. The other three k-modules A2(∗, ∗) vanish. All operations bA2
n , n � 1 vanish,

since T �1sA2 = sA2 is concentrated in degree −1. Denote by D2 the differential graded
category Asu

2 (with zero differential). Consider the object Cone(e12) = (
1 �→ 1[1], 2 �→

2[0], ( 0 e12
0 0

))
of Dtr

2 . Denote by i2 and j1 the cycles i2 = (0, 1) ∈ Dtr
2 (2,Cone(e12)) and

jX = ( 1
0

) ∈ Dtr
2 (Cone(e12), 1[1]), respectively. Take the standard distinguished triangle in

H 0(Dtr
2 ):

0 = (1 e12−−→ 2
i2−→ Cone(e12)

j1−→ 1[1]).
An arbitrary A∞-functor F ∈ Au∞(Dtr

2 ;B) gives rise to a morphism of categories with
translation structure H̃ 0(F ) = (H 0(F ), φn) : H̃ 0(Dtr

2 ) → H̃ 0(B), and thus determines a
triangle

0H̃ 0(F ) = (1F e12.H
0(F )−−−−−−→ 2F

i2.H
0(F )−−−−−→ Cone(e12)F

j1.H
0(F )·φ1−−−−−−−→ 1FΣ

)
.

Isomorphic A∞-functors determine isomorphic triangles.

7.13. DEFINITION. The triangles 0H̃ 0(F ) where F :Dtr
2 → B runs over all unital A∞-

functors are called standard distinguished triangles in H̃ 0(B). Distinguished triangles in
H̃ 0(B) are defined as those isomorphic to a standard distinguished triangle. This is the
system of triangles associated with B.

Any unital A∞-functor G : B → C between pretriangulated A∞-categories induces a
triangulated functor H̃ 0(G) : H 0(B) → H 0(C) in homology.

In the setting of translation structures the definition of a triangulated category takes a
form very similar to classical one, given by Verdier [36].

7.14. DEFINITION. A triangulated category is an additive k-linear category C with a
translation structure on it and a system of triangles which satisfies the following axioms.

(TR1) The triangle (A,A, 0, idA, 0, 0) is distinguished.
(TR2) (X, Y,Z, u, v,w) is distinguished if and only if (Y, Z,XΣ, v,w,−uΣ) is dis-

tinguished.
(TR3) Given a diagram as follows,

X

f

u
Y

g

v
Z

w
XΣ

fΣ

X′ u′
Y ′ v′

Z′ w′
X′Σ

whose rows are distinguished triangles such that the left square is commutative,
there is a map h :Z → Z′ making the entire diagram commutative.

(TR4) If we have three distinguished triangles (X, Y,Z′, u, i, ∗), (Y, Z,X′, v, ∗, j),
and (X,Z, Y ′, w, ∗, ∗), with w = uv, then there are morphisms f :Z′ → Y ′,
g :Y ′ → X′ such that:
(a) (idX, v, f ) is a morphism of triangles;
(b) (u, idZ, g) is a morphism of triangles;
(c) (Z′, Y ′, X′, f, g, j (iΣ)) is a distinguished triangle.
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Every triangulated category is equivalent to a triangulated category whose translation
structure is generated by an automorphism of this category, cf. [37].

7.15. THEOREM. (See [3].) Let C be a pretriangulated A∞-category. Then its homotopy
category H̃ 0(C) is triangulated.

The question about pretriangulated A∞-categories is reduced to a question about a few
small differential graded pretriangulated categories as in Soibelman’s approach [33]. After
that it remains to prove that some cycles are boundaries.
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In 1974 my teacher L.M. Gluskin suggested to me to study projective representa-
tions of semigroups. As one could expect, cohomology appeared in this problem, how-
ever it “slightly” differed from Eilenberg–MacLane cohomology. I have named it “0-
cohomology”, have studied its properties insofar as this was necessary for the initial prob-
lem, and thought that I would probably never meet this notion again.

However, in the last 30 years I returned to 0-cohomology again and again since I met
problems, in which it appeared.

This chapter is a survey of 0-cohomology. The main attention is devoted to applications.
The necessary definitions and results from homological algebra and theory of semigroups
can be found in [5], [7], and [19].

I have to note that quite a lot of various cohomology theories have been adapted to solu-
tion of specific problems in semigroups [6,12,18,23–25,42,44,46]; see also my review [40].
So the invention of one more cohomology for this purpose is not any novelty. However,
0-cohomology seems attractive (at least to me!) because it links semigroups with several
different branches of the algebra.

1. Eilenberg–MacLane cohomology

The definition of semigroup cohomology does not differ from group cohomology [5]: for
a semigroup S and a (left) S-module A the n-dimensional cohomology group is the group
Hn(S,A) = Extn

ZS
(Z, A) where Z is considered as a trivial ZS-module. We will call this

cohomology Eilenberg–MacLane cohomology or briefly EM-cohomology.
In what follows another well-known definition will be used. Cn(S,A) denotes the group

of all n-place mappings f : S × · · · × S︸ ︷︷ ︸
n times

→ A (the group of n-dimensional cochains);

a coboundary operator ∂n :Cn(S,A) → Cn+1(S,A) is defined as follows:

∂nf (x1, . . . , xn+1) = x1f (x2, . . . , xn+1)

+
n∑

i=1

(−1)if (x1, . . . , xixi+1, . . . , xn+1)

(1)+ (−1)n+1f (x1, . . . , xn).

Then ∂n∂n−1 = 0, i.e.

Im ∂n−1 = Bn(S,A) (the group of n-dimensional coboundaries)

⊆ Ker ∂n = Zn(S,A) (the group of n-dimensional cocycles)

and the cohomology groups are defined as Hn(S,A) = Zn(S,A)/Bn(S,A).
However, for the cohomology of semigroups one does not manage to obtain results

which are comparable to theory of cohomology of groups. In this section we give several
results about the cohomology of semigroups, illustrating its specifics.

Here is a typical example: since a projective module over a semigroup is not necessarily
projective over a subsemigroup of the semigroup, the lemma of Shapiro [4], which ex-
presses the cohomology of a subgroup through the cohomology of the containing group,
does not hold for semigroups. So a result, obtained in [5], is of interest:
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THEOREM 1. Let T be a subsemigroup of a group G. If G is a group of fractions for T

(i.e. each element from G can be written in the form x−1y for some x, y ∈ T ), then the
homomorphisms in :Hn(G,A) → Hn(T ,A), induced by the embedding i : T → G, are
bijective for any G-module A.

Let I be an ideal of a semigroup S. What can one say about homomorphisms
εn :Hn(S,A) → Hn(I,A), induced by the embedding ε : I → S? It is easy to show
that ε0 is always an isomorphism and that ε1 is a monomorphism. Using a technique of
adjoint functors, Adams and Rieffel [1] proved

THEOREM 2. Let I be a left ideal of a semigroup S, having an identity e. Then for any
S-module A and for any n � 0

Hn(S,A) ∼= Hn(I,A) ∼= Hn(I, eA).

In particular, if S contains zero then Hn(S,A) = 0 for n > 0.
In [1], using Theorem 2, a sufficient condition was obtained for an associative algebra

over R be a semigroup algebra.
The connection between Hn(S,A) and Hn(I,A) becomes closer when we take for I

the so-called Sushkevich kernel (the least two-sided ideal). This situation was considered
in detail by W. Nico [27]. I will not formulate this result, but only note that it implies a
description of the cohomology of completely simple semigroups:

THEOREM 3. Let S be a completely simple semigroup, G its basic group, e the identity
of G, A an S-module. Then Hn(S,A) ∼= Hn(G, eA) for any n � 3.

A number of papers is devoted to the study of the cohomological dimension of semi-
groups. Cohomological dimension (cd S) of a semigroup S is defined as the least integer n
such that Hn+1(S,A) = 0 for any S-module A.

It is well known [5] that cohomological dimension of both a free group and of a free
semigroup (monoid) does not exceed 1. In the case of groups the converse statement is
also true (this is the famous Stallings–Swan theorem [4]). For semigroups the situation is
entirely different: joining an extra zero to any semigroup makes all its cohomology groups
trivial, except the 0-dimensional one. So it is natural to confine ourselves to the class of
semigroups with cancellation. Mitchell [26] has shown that the free product of a free group
and a free monoid (which he called a partially free monoid) has cohomological dimen-
sion 1. In the same paper he has formulated a suggestion: if S is a cancellative monoid
with cd S = 1 then S is partially free.

In [32] (and later in [34] more generally) a counter-example to the Mitchell suggestion
was constructed and a “weakened Mitchell conjecture” was proposed: if S is a cancellative
monoid with cd S = 1 then S can be embedded into a free group. This suggestion was
proved in [39]. Probably, it is difficult to get more exact information: it is shown in [35]
that a semigroup anti-isomorphic to the counter-example from [32] (and therefore also
embeddable into a free group) has cohomological dimension 2. A good answer is known
only in the commutative case: the cohomological dimensions of all subsemigroups of Z
are equal to 1 [36].
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2. Properties of 0-cohomology

Before constructing 0-cohomology we need to define a suitable Abelian category. In what
follows S is a semigroup with zero.

DEFINITION 1. A 0-module over S is an Abelian (additive) group A equipped with a
multiplication (S \ 0) × A → A satisfying the following conditions for all s, t ∈ S \ 0,
a, b ∈ A:

s(a + b) = sa + sb,

st �= 0 ⇒ s(ta) = (st)a.

A morphism of 0-modules is a homomorphism of Abelian groups ϕ :A → B such that
ϕ(sa) = sϕ(a) for s ∈ S \ 0, a ∈ A.

We will denote the category of 0-modules thus defined by Mod0 S. It is easy to see that
for the semigroup T 0 = T ∪ 0 with an extra zero the category Mod0 T 0 is isomorphic to
the category Mod T of the usual modules over T . It turns out that quite generally Mod0 S

is also isomorphic to a category of (standard) modules over some semigroup.
Denote by S the set of all finite sequences (x1, . . . , xm) such that xi ∈ S \0 (1 � i � m)

and xixi+1 = 0 (1 � i < m); thus, all one-element sequences, except (0), are contained
in S. Define a binary relation ρ on S via (x1, . . . , xm)ρ(y1, . . . , yn) if and only if one of
the following conditions is fulfilled:

(1) m = n and there exists i (1 � i � m − 1) that xi = yiu, yi+1 = uxi+1 for some
u ∈ S, and xj = yj for j �= i, j �= i + 1;

(2) m = n + 1 and there exists an i (2 � i � m − 1) such that xi = uv, yi−1 = xi−1u,
yi = vxi+1 for some u, v ∈ S, xj = yj for 1 � j � i − 2, and xj = yj−1 for
i + 2 � j � m.

Let ρ be the least equivalence containing ρ, S̃ the quotient set S/ρ. The image of
(x1, . . . , xm) ∈ S in S̃ will be denoted by [x1, . . . , xm].

Define a multiplication on S̃:

[x1, . . . , xm][y1, . . . , yn] =
{ [x1, . . . , xmy1, . . . , yn], if xmy1 �= 0,

[x1, . . . , xm, y1, . . . , yn], if xmy1 = 0.

Then S̃ becomes a semigroup, which is called the gown of S.
Each 0-module over S can be transformed into a (usual) module over S̃ by

[x1, . . . , xm]a = x1
(
. . . (xma) . . .

)
for x1, . . . , xm ∈ S \ 0, a ∈ A. Hence we obtain

PROPOSITION 1. Mod0 S ∼= Mod S̃.

COROLLARY 1. The category Mod0 S is Abelian.

Here are some simplest properties of the gown of a semigroup [33]:
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(i) If S = T 0 is a semigroup with an extra zero then S̃ ∼= S \ 0 = T .
(ii) It follows from the definition of the relation ρ that the map S \ 0 → S̃, x → [x], is

bijective.
(iii) The subset J = {[x1, . . . , xm] ∈ S̃: m > 1} is an ideal in S̃ and S̃/J ∼= S.
It is easy to find the gown if the semigroup S is given by defining relations. We will write

S = 〈a1, . . . , am | Pi = Qi, 1 � i � n〉 if S is generated by elements a1, . . . , am and is
defined by equalities P1 = Q1, . . . , Pn = Qn. If the value of a word Pi (or the same, of
Qi) in a semigroup S is 0 then the equality Pi = Qi is called a zero relation.

PROPOSITION 2. Let S = 〈a1, . . . , am | Pi = Qi, 1 � i � n〉 be a semigroup with a zero,
in which none of the generating elements is 0. If one deletes all zero defining relations then
the obtained semigroup will be isomorphic to the gown S̃.

EXAMPLE 1. If S is a semigroup with zero multiplication (S2 = 0) then S̃ is a free semi-
group.

Let now A be a 0-module over S.

DEFINITION 2. A partial n-place mapping from S into A, defined on all n-tuples
(x1, . . . , xn) such that x1 · · · xn �= 0, is called a n-dimensional cochain. The group of
n-dimensional cochains is denoted by Cn

0 (S,A). A coboundary operator ∂n :Cn
0 (S,A) →

Cn+1
0 (S,A) is given as above, by the formula (1). Then ∂n∂n−1 = 0 and the 0-cohomology

groups are defined as Hn
0 (S,A) = Zn

0 (S,A)/Bn
0 (S,A), where Zn

0 (S,A) = Ker ∂n is the
group of n-dimensional 0-cocycles, Bn

0 (S,A) = Im ∂n−1 is the group of n-dimensional
0-coboundaries.

EXAMPLE 2. Let S = T 0 = T ∪ 0 be a semigroup with an extra zero. Then S̃ ∼= T and
one can easily check that Hn

0 (S,A) ∼= Hn(T ,A)1 while Hn(S,A) = 0.

This example shows that 0-cohomology is a generalization of EM-cohomology. In view
of Proposition 1, in general case it is naturally to compare the groups Hn

0 (S,A) and
Hn(S̃, A). We describe this comparison in more detail.

Since the sequence of functors {Hn
0 (S, _)}n�0 is connected in the terminology of [19]

and {Hn(S̃, _)}n�0 is a sequence of derived functors in the isomorphic categories Mod0 S

and Mod S̃ respectively, the isomorphism

ε0: H 0(S̃, A) = HomMod S̃
(Z, A) ∼= HomMod0 S(Z, A) = H 0

0 (S,A)

induces group homomorphisms

εn :Hn(S̃, A) → Hn
0 (S,A)

such that {εn}n�0 are morphisms of cohomology functors.

1 Here we consider A both as a 0-module over S and a module over S̃, which does not lead to misunderstanding
in this context.
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The homomorphism εn is described as follows. If f ∈ Cn(S̃, A) then set(
ηnf

)
(x1, . . . , xn) = f

([x1], . . . , [xn]
)

for x1 · · · · · xn �= 0.

Then ηn is a homomorphism from Cn(S̃, A) into Cn
0 (S,A) and it induces the homomor-

phism εn.
Direct calculations prove

THEOREM 4. ε1 is an isomorphism for any semigroup S.

Using the corresponding long exact sequence, from Theorem 4 we obtain

COROLLARY 2. ε2 is a monomorphism for any semigroup S.

Generally speaking, the groups H 2
0 (S,A) and H 2(S̃, A) are not isomorphic:

EXAMPLE 3. Let the commutative semigroup S consists of elements u, v,w, 0 with the
multiplication

u2 = v2 = uv = w, uw = vw = 0.

One can show that H 2(S̃, A) = 0 for any module A over S. On the other hand, if A

(considered now as a 0-module) is not one-element and a ∈ A \ 0, then the 0-cocycle f

defined by the condition

f (x, y) =
{
a for x = y = u,

0 otherwise,

is not a 0-coboundary and thus H 2
0 (S,A) �= 0.

Apropos, this example shows that 0-cohomology is not a derived functor unlike EM-
cohomology. Indeed, according to Proposition 1 there are injective objects in the category
Mod0 S and a derived functor must vanish on them.

In this situation semigroups categorical at zero are of special interest. We recall that a
semigroup S with a zero is called categorical at zero if for any x, y, z ∈ S from xyz = 0
it follows that either xy = 0 or yz = 0. For instance, if we join a new element 0 to the
set of all morphisms of a small category and set the product of morphisms equal to 0 when
their composition is not defined, then the obtained set becomes a semigroup categorical at
zero.

THEOREM 5. (See [28].) If a semigroup S is categorical at zero then εn is an isomorphism
for any n � 0.

This theorem is used in two ways. On the one hand, since, for instance, completely 0-
simple semigroups are categorical at zero then by Theorem 5 one succeeds to calculate
their 0-cohomology in the sense that the problem is reduced to EM-cohomology [30]. On
the other hand, in concrete examples usually it is easier to calculate the 0-cohomology of
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a given semigroup, and then use that for finding EM-cohomology of its gown. We will
consider this question in more detail in the following section.

Example 3 shows that in general Theorem 5 does not hold.

3. Calculating EM-cohomology

The free product of semigroups gives a first example of the use of 0-cohomology:

THEOREM 6. Let S, T be semigroups, S ∗ T their free product. Then

Hn(S ∗ T ,A) ∼= Hn(S,A) ⊕ Hn(T ,A)

for any n � 2 and for any (S ∗ T )-module A.

PROOF. The 0-direct union S0 "0 T 0 is a semigroup categorical at zero. Besides,
˜S0 "0 T 0 ∼= S ∗ T . So

Hn(S ∗ T ,A) ∼= Hn
0

(
S0 "0 T 0, A

) ∼= Hn
0

(
S0, A

)⊕ Hn
0

(
T 0, A

)
∼= Hn(S,A) ⊕ Hn(T ,A).

Here, the first isomorphism follows from Theorem 5, the second is checked directly, and
third follows from Example 2. �

REMARK. There is an analogue of Theorem 6 for groups, but its proof is more compli-
cated.

In Section 1 the notion of cohomological dimension was already mentioned. A counter-
example to Mitchell conjecture was obtained by using 0-cohomology. This is the semi-
group

S = 〈a, b, c, d | ab = cd〉.
Its subset I = S \ {a, b, c, d, ab} is an ideal and S̃/I ∼= S. By Corollary 2 H 2(S,A)

embeds into H 2
0 (S/I,A).

On the other hand, it is easy to see that f = ∂ϕ for any 0-cocycle f ∈ Z2
0(S/I,A) if we

set

ϕ(u) =
{
f (a, b), if u = a,

f (c, d), if u = c,

0 otherwise.

Therefore H 2(S,A) = H 2
0 (S/I,A) = 0.

Here is one more example of the calculation of EM-cohomology for a pair of anti-
isomorphic semigroups.

Let p, q ∈ N. Consider the semigroup

T = 〈a, b | ab = b, ap = aq
〉
.
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This is the gown for the semigroup

S = 〈x, y | xy = y, xp = xq, yx = y2 = 0
〉
.

The last is categorical at zero and consists of the elements xk (k > 0), y and 0. Its 0-
cohomology is easily computed directly, and thus we get:

PROPOSITION 3. (See [31].) For any T -module A:
(1) H 1(T ,A) = H 1

0 (S,A) ∼= A/{m ∈ A | am = 2m};
(2) Hn(T ,A) = Hn

0 (S,A) = 0 for n � 2.

For the semigroup T op anti-isomorphic to T , i.e.

T op = 〈a, b | ba = b, ap = aq
〉
,

the answer is more complicated:

PROPOSITION 4. (See [31].) Let A be an arbitrary T op-module, A1 its underlying addi-
tive group, considered as a T op-module with trivial multiplication, 〈a〉 the subsemigroup
generated by the element a. Let the homomorphisms ψn be induced by the embedding
〈a〉 → T op. Then the sequence

0 → H 0(T op, A
) ψ0

→H 0(〈a〉, A)→ H 0(〈a〉, A1
)→ H 1(T op, A

)
ψ1

→ · · · → Hn
(
T op, A

) ψn

→Hn
(〈a〉, A)→ Hn

(〈a〉, A1
)→ · · ·

is exact.
In particular, if A1 is torsion-free then Hn(T op, A) ∼= Hn(〈a〉, A) for n � 1.

More general results in the calculation of EM-cohomology were obtained by partial
cohomology (see Section 8).

Finally let me formulate an unsolved problem. Theorem 2 shows that in some cases
the cohomology of a semigroup is defined by the cohomology of an ideal in it. Generally
speaking, this is not the case. When I is a two-sided ideal, it is desirable to use for the
calculation of Hn(S,A) not only the cohomology of an ideal, but also of the quotient
semigroup S/I . However, the EM-cohomology of the latter is always trivial, because S/I

contains the zero element. So a question arises: how does the group Hn(S,A) depend
on Hn(I,A) and Hn

0 (S/I,A) (as well as, maybe, on the cohomology groups of smaller
dimension)?

4. Projective representations

In this section we use the following notation. S is an arbitrary semigroup (for simplicity
we suppose that it contains an identity), K is a field, K× its multiplicative group, MatnK
the multiplicative semigroup of all (n × n)-matrices over K (we will often delete the sub-
script n). Define an equivalence λ on MatnK as follows: for A,B ∈ MatnK set

AλB ⇐⇒ ∃c ∈ K×: A = cB.
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Evidently λ is a congruence of MatnK . The quotient semigroup PMatnK = MatnK/λ will
be called a semigroup of projective (n × n)-matrices.

Let Δ : S → PMatnK be a homomorphism and α : MatnK → PMatnK be the canon-
ical homomorphism, corresponding to the congruence λ. Fix a mapping β : PMatnK →
MatnK , by choosing representatives in λ-classes. If we write Γ = βΔ then Δ = αβΔ =
αΓ . Since Δ and α are homomorphisms,

αΓ (xy) = Δ(x)Δ(y) = α
(
Γ (x)Γ (y)

)
for all x, y ∈ S. Hence Γ (xy) and Γ (x)Γ (y) vanish simultaneously. This provides the
motivation for the following definition:

DEFINITION 3. A mapping Γ : S → MatnK is called a projective representation2 of S

over K if it satisfies the following conditions:
(1) Γ (xy) = 0 ⇔ Γ (x)Γ (y) = 0 for all x, y ∈ S;
(2) there is a partially defined mapping ρ : S × S → K× such that

(2)dom ρ = {(x, y) ∣∣ Γ (xy) �= 0
}

and

(3)∀(x, y) ∈ dom ρ Γ (x)Γ (y) = Γ (xy)ρ(x, y).

The mapping ρ is called a factor set of Γ and the number n the degree of Γ .

REMARK. It is easy to see that (3) remains valid for all x, y ∈ S if we extend ρ to a
completely defined mapping setting ρ(x, y) = 0 for x, y such that ρ(x, y) was not defined.
Hereafter we will often suppose this.

As in the case of projective representations of groups, it is desirable to have an inde-
pendent characterization of the partially defined mappings ρ : S × S → K× which can
serve as factor sets for some projective representations of S. Applying (3) to the equality
Γ (x)[Γ (y)Γ (z)] = [Γ (x)Γ (y)]Γ (z), we get:

(4)ρ(x, y)ρ(xy, z) = ρ(x, yz)ρ(y, z)

for all x, y, z ∈ S. However, unlike in the case of projective representations of groups,
condition (4) is not sufficient.

THEOREM 7. (See [29].) A mapping ρ : S × S → K is a factor set for a certain (possibly
infinite-dimensional) projective representation of a monoid S if and only if ρ satisfies (4)
and for all x, y ∈ S

(5)ρ(x, y) = 0 ⇐⇒ ρ(1, xy) = 0.

As in the case of groups, the choice of different representatives of the λ-classes leads
to an equivalent projective representation. So we call two factor sets ρ and σ equivalent

2 One also calls the homomorphism Δ a projective representation.
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(ρ ∼ σ ) if they vanish simultaneously and there exists a function α : S → K× such that
for all x, y ∈ S we have

ρ(x, y) = α(x)α(xy)−1α(y)σ (x, y).

Define the product of factor sets ρ and σ by pointwise multiplication: ρσ(x, y) =
ρ(x, y)σ (x, y). It follows immediately from Theorem 7 that ρσ is also a factor set. So
the set m(S) of all factor sets is a semigroup and ∼ is a congruence on it. The quotient
semigroup M(S) = m(S)/ ∼ is called the Schur multiplier of S.

For groups the Schur multiplier is isomorphic to the group H 2(G,K×) [8]. In our situ-
ation it is a commutative inverse semigroup. Consider the construction of the semigroups
M(S) and m(S).

Since m(S) and M(S) are commutative, it follows from the Clifford theorem [7] that
they are strong semi-lattices of groups:

m(S) =
⋃

α∈b(S)

mα(S), M(S) =
⋃

α∈B(S)

Mα(S),

where b(S) and B(S) are semi-lattices, mα(S) and Mα(S) are groups. We will call mα(S)

and Mα(S) components of semigroups m(S) and M(S), respectively.
The first step in our considerations is a description of idempotent factor sets:

LEMMA 1. There is a bijection ε ↔ Iε between idempotents ε ∈ m(S) and ideals of S
such that

ε(x, y) =
{

1, if xy /∈ Iε,

0, if xy ∈ Iε,

and

(6)Iε1ε2 = Iε1 ∪ Iε2 .

We will denote by Y(S) the semi-lattice of all (two-sided) ideals of S with respect to
union. We consider the empty subset as an ideal as well, i.e. ∅ ∈ Y(S).

COROLLARY 3. b(S) ∼= B(S) ∼= Y(S).

It follows that the ideals I ∈ Y(S) can serve as indices for the components of the semi-
groups m(S) and M(S); thus

mI (S)mJ (S) ⊆ mI∪J (S), MI (S)MJ (S) ⊆ MI∪J (S).

Let εI be the identity of the group mI (S). Then

εI (x, y) = 0 ⇐⇒ xy ∈ I.

LEMMA 2. The group mI (S) consists of the factor sets ρ for which

ρ(x, y) = 0 ⇐⇒ xy ∈ I.
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Hence the groups mI (S) and m0(S/I) are isomorphic for I �= ∅. If I = ∅ we have
m∅(S) ∼= m0(S

0). Certainly, this also holds for the multiplier:

COROLLARY 4. MI(S) ∼= M0(S/I) if I �= ∅, and M∅(S) ∼= M0(S
0).

Finally, it is easy to see that M0(S) ∼= H 2
0 (S,K

×), and we get the final result:

THEOREM 8. (See [29].) The Schur multiplier M(S,K) of a semigroup S over a field K is
isomorphic to the semi-lattice Y of Abelian groups H 2

0 (S/I,K
×), where I ∈ Y , and K×

is considered as a trivial 0-module over S/I .

A further analysis of projective representations of semigroups was carried out in [29]; it
is similar to the description of linear representations [7].

5. Brauer monoid

In several articles Haile, Larson and Sweedler [14–16,45], see also [17], studied so-called
strongly primary algebras. Their definition is rather bulky and we will not need it. Instead
of this I cite their description, given in [15].

Let K/L be a finite Galois extension with Galois group G. A weak 2-cocycle [45] is
defined as a mapping f :G × G → K such that for any σ, τ, ω ∈ G

σ
[
f (τ, ω)

]
f (στ, ω) = f (σ, τ )f (στ, ω),

f (1, σ ) = f (σ, 1) = 1

(hence weak 2-cocycles can take on the value zero unlike usual cocycles).
Let f be a weak 2-cocycle. On the set A of formal sums of the form

∑
σ∈G aσσ , aσ ∈ K ,

we define a multiplication by the rule:

aσ · bτ = aσ(b)f (σ, τ )στ, σ, τ ∈ G, a, b ∈ K.

Then A becomes an associative algebra. The class of such algebras coincides with the class
of strongly primary algebras.

Strongly primary algebras give a generalization of central simple algebras. In accor-
dance with this Haile, Larson and Sweedler introduced a notion of a Brauer monoid as a
generalization of the Brauer group. For this purpose an equivalence of weak 2-cocycles is
defined: f ∼ g if there exists a mapping p :G → K× such that

g(σ, τ ) = f (σ, τ )p(σ )p(τ)
(
p(στ)

)−1

for any σ, τ ∈ G under condition f (σ, τ ) �= 0. After factorization by this equivalence
the set of weak 2-cocycles turns into the Brauer monoid Br(G,K) which is an inverse
semigroup like the Schur multiplier from Section 4. More exactly, denoting by E the
semi-lattice of all idempotents from Br(G,K) (i.e. weak cocycles taking only the values 0
and 1), we obtain:
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THEOREM 9. (See [16].) Br(G,K) is a semi-lattice E of Abelian groups Bre(G,K),
where e ∈ E and Bre(G,K) consists of all weak 2-cocycles which vanish simultaneously
with e. In particular, if e ≡ 1 then Bre(G,K) ∼= H 2(G,K×) is the Brauer group.

It turns out [20,37] that this construction reduces to 0-cohomology. Let e ∈ E. Add an
extra zero 0 to G and define a new operation on G0:

x ◦ y =
{
xy, if e(x, y) = 1,
0, if e(x, y) = 0

and, moreover, x ◦ 0 = 0 ◦ x = 0. With this operation G0 is a semigroup which we will
denote by Ge. Conversely, a modification G(◦) of the group G is a monoid on G0 with
an operation ◦ such that x ◦ y is either xy or 0, and moreover 0 ◦ x = x ◦ 0 = 0. It is
easy to see that there is a bijective correspondence between idempotent weak 2-cocycles
and modifications of G. The group K× turns into a 0-module over Ge, Bre(G,K) ∼=
H 2

0 (Ge,K
×) and Theorem 9 changes into the following statement:

THEOREM 10. Br(G,K) is a semi-lattice of Abelian groups H 2
0 (G(◦),K×), where G(◦)

runs over the set of all modifications of the group G.

As is shown in [37], in this problem 0-cohomology is used essentially: to describe some
properties of the Brauer monoid one has to use 0-cohomology of other (different from
modifications) semigroups.

Thus the study of the Brauer monoid is reduced to a description of the modifications
of the group and their 0-cohomology. However, it is necessary to note that the study of
modifications is a difficult combinatorial problem. In general for a finite group G (only
such groups are considered in Haile–Larson–Sweedler theory) we can only confirm that
each modification is an union of the subgroup of its invertible elements and a nilpotent
ideal. Besides, modifications are 0-cancellative (if ax = bx �= 0 or xa = xb �= 0 then
a = b). Some examples of modification were considered in [38] and [41].

6. Partial representations of groups

The results of this section were obtained when I worked in Saõ Paulo, Brasil, thanks to the
foundation FAPESR. They were announced at the XVIII Brazilian Algebra Meeting [9]
and are being prepared for publication.

In connection with studying C∗-algebras so-called partial linear representations of
groups appeared [10,43]. It is natural to ask: what do partial projective representations
of groups look like? It turned out that also here 0-cohomology appears. We start with the
needed definitions from [10].

DEFINITION 4. A mapping ϕ :G → S from a group G into a semigroup S is called a
partial homomorphism if for all x, y ∈ G,
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ϕ
(
x−1)ϕ(x)ϕ(y) = ϕ

(
x−1)ϕ(xy),

ϕ(x)ϕ(y)ϕ
(
y−1) = ϕ(xy)ϕ

(
y−1),

ϕ(x)ϕ(e) = ϕ(x)

(these equalities imply ϕ(e)ϕ(x) = ϕ(x)).
In particular, a partial linear representation (PLR) over a field K is a partial homomor-

phism into the matrix semigroup, Δ :G → MatnK .

R. Exel introduced a monoid Σ(G) which plays a special role here. It is generated by
symbols [x] (x ∈ G) with defining relations[

x−1][x][y] = [x−1][xy],
[x][y][y−1] = [xy][y−1],
[x][e] = [x]

(these equalities imply [e][x] = [x]).
Σ(G) possesses the following universal property:

(i) The mapping f :G → Σ(G), f (x) = [x], is a partial homomorphism.
(ii) For any semigroup S and any partial homomorphism ϕ :G → S there exists a

unique (usual) homomorphism ϕ̃ :Σ(G) → S such that ϕ = ϕ̃f .
Due to this property the study of PLR’s of groups is equivalent to the study of linear

representations of its Exel monoid.
It is natural to define (and to study) partial projective representations of groups by means

of the usual projective representations of Σ(G): we will call the partial homomorphism
Δ :G → PMatK a partial projective representation (PPR) of G (cf. the footnote on
p. 198). We get the diagram

Σ(G)

f Δ̃

G
Δ

PMatK

where Δ̃ is a projective representation of Σ(G).
However we will see below that PPR’s are not reducible to projective representations of

semigroups unlike in the linear case.
The first step in study of PPR’s is a translation of their definition into the usual language

of matrices:

THEOREM 11. A mapping Γ :G → MatK is PPR of G if and only if the following
conditions hold:

(1) for all x, y ∈ G

Γ
(
x−1)Γ (xy) = 0 ⇐⇒ Γ (x)Γ (y) = 0 ⇐⇒ Γ (xy)Γ

(
y−1) = 0;

(2) there is a mapping σ :G × G → K such that

Γ (x)Γ (y) = 0 ⇐⇒ σ(x, y) = 0
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and

Γ
(
x−1)Γ (x)Γ (y) = Γ

(
x−1)Γ (xy)σ (x, y),

Γ (x)Γ (y)Γ
(
y−1) = Γ (xy)Γ

(
y−1)σ(x, y).

Note that this theorem gives another definition of the notion of a PPR independent of
Σ(G).

We call σ a factor set of Γ and define a product of factor sets as above. However, it is
not evident that this product is also a factor set. To prove this, one uses the Exel monoid
again:

PROPOSITION 5. Let σ :G × G → K be a mapping for which there is a factor set ρ of
the semigroup Σ(G), such that:

(1) ∀x, y ∈ G σ(x, y) = 0 ⇔ ρ
([x], [y]) = 0;

(2)
σ(x, y) �= 0 ⇒ σ(x, y) = ρ([x], [y])ρ([x−1], [x][y])

ρ([x−1], [xy]) .

Then σ is a factor set of some PPR of G.
The converse also holds.

Now the desired result about products follows directly. Moreover:

COROLLARY 5. The factor sets of G form a commutative inverse semigroup Pm(G).

Again, as in Section 4, we define an equivalence of factor sets and call the respective
quotient semigroup the Schur multiplier PM(G). The Schur multiplier is also a commu-
tative inverse semigroup. However, the Schur multipliers of G and of Σ(G) are different:
one can only confirm that PM(G) is an image of M(Σ(G)) (Proposition 5).

At present the main problem in the description of a Schur multiplier is to find a defini-
tion of factor sets which would be independent from both PPR and Σ(G). We recall that
for the usual projective representations of groups such a definition is the cohomological
equation (4). In the case of semigroups (more exactly, monoids) it is necessary to add con-
dition (5). Unfortunately, there is no cohomological equation for PPR’s. At most we can
assert

PROPOSITION 6. Let Γ be a PPR with a factor set σ . Then

∀x, y, z ∈ G Γ (x)Γ (y)Γ (z) �= 0

1⇒ σ(x, y)σ (xy, z) = σ(x, yz)σ (y, z).

Later I will give an example where the cohomological equation does not hold.
Now we consider the structure of a Schur multiplier. Certainly, it is a semi-lattice of

subgroups. So first of all it is necessary to describe its idempotents:
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THEOREM 12. Let σ :G × G → K be a mapping taking only the values 0 and 1 and
σ(1, 1) = 1. Then σ is a factor set if and only if

(7)

∀x, y ∈ G σ(x, y) = 1

1⇒ σ
(
xy, y−1) = σ

(
y−1, x−1) = σ(x, 1) = 1.

EXAMPLE 4. Let G = 〈a, b, c〉 be an elementary Abelian group of order 8 with generators
a, b, c. Let H = 〈b, c〉, F = (H \1)× (H \1)\∇ where ∇ is the diagonal of the Cartesian
square H × H . Set

σ(x, y) =
{

1 if (x, y) /∈ F,

0 if (x, y) ∈ F.

It is easy to check using Theorem 12 that σ is a factor set. However,

σ(b, a)σ (ba, ac) = 1 �= 0 = σ(b, c)σ (a, ac)

and so the cohomological equation does not hold for x = b, y = a, z = ac.

One can put Theorem 12 into a more general form. Consider an abstract semigroup T
generated by elements α, β, γ with defining relations{

α2 = β2 = 1, (αβ)2 = 1,
γ 2 = 1, αγ = γ, γ αβγ = γβαβ, γβγ = 0.

For any group G the semigroup T acts on G × G as follows:

α : (x, y) −→ (
xy, y−1),

β : (x, y) −→ (
y−1, x−1),

γ : (x, y) −→ (x, 1).

Thus, G × G turns into T -set and Theorem 5 takes the form:

COROLLARY 6. An idempotent mapping σ :G×G → K such that σ(1, 1) = 1 is a factor
set if and only if supp σ = {(x, y) | σ(x, y) �= 0} is a T -subset in G × G.

Now from Corollaries 5 and 6 we get:

THEOREM 13. The Schur multiplier is a semi-lattice of Abelian groups

Pm(G) =
⋃

X∈C(G)

PmX(G), PM(G) =
⋃

X∈C(G)

PMX(G),

where C(G) is a semi-lattice of T -subsets in G × G with respect to intersection.

Let me say a few words about the semigroup T . It plays a remarkable role: for any
group G it gives a description of the idempotent factor sets. Since each PLR is a PPR with
an idempotent factor set, we obtain, in particular, some sort of classification of all PLR’s
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of a group G. So T merits to be considered more thoroughly. Here are more details on its
structure.

First of all, its order is 25. The elements α and β generate in T a subgroup H = 〈α, β〉,
isomorphic to the symmetric group S3. The complement U = T \ H is an ideal.

One can prove that U is a completely 0-simple semigroup. In the standard notation of
the theory of semigroups [7] it can be written as U = M0(D; I,Λ;P), where I = Λ =
{1, 2, 3}, D is the group of order 2 and P is the (3 × 3)-sandwich-matrix,

P =
( 1 1 0

1 0 1
0 1 1

)
.

7. Cohomology of small categories

In the further study of properties of 0-cohomology some difficulties arise because, as I
mentioned already, 0-cohomology is not a derived functor in the Abelian category where
it is constructed (see Example 3).

So a question appears: is it possible to extend the category of 0-modules so that 0-
cohomology becomes a derived functor? One of the useful ways is to pass to bimodules.
However, in our situation this does not help as one can see from the following example.

We call an Abelian group A by a 0-bimodule over S if A is right and left 0-module, and
besides, (sa)t = s(at) for any s, t ∈ S \ 0, a ∈ A. The 0-cohomology of S with values in
the category of 0-bimodules is defined similarly to 0-cohomology on 0-modules. Denote it
by HHn

0(S,A).

EXAMPLE 5. Let S = {u, v,w, 0} be the commutative semigroup with multiplication
u2 = v2 = uv = w, uw = vw = 0, M a 0-bimodule over S. Then HH2

0(S,M) �= 0 for
M �= 0.

As in Section 2, this example shows that in the category of 0-bimodules the cohomology
functor HHn

0 is not a derived functor. This is the reason why we use the category Nat S
(which is defined below). Our construction is a generalization of the theory of cohomology
for small categories from [2].

As in Section 4, we suppose for simplicity that S is a monoid with a zero. The category
of factorizations in S is the category Fac S whose objects are all elements from S \ 0,
and the set of morphisms Mor(a, b) consists of all triples (α, a, β) (α, β ∈ S) such that
αaβ = b (we will denote (α, a, β) by (α, β) if this does not lead to confusion). The
composition of morphisms is defined by the rule (α′, β ′)(α, β) = (α′α, ββ ′); hence we
have (α, β) = (α, 1)(1, β) = (1, β)(α, 1).

A natural system on S is a functor D :Fac S → Ab. The category Nat S = AbFac S of
such functors is an Abelian category with enough projectives and injectives [13]. Denote
the value of D on an object a ∈ ObFac S by Da . If we write α∗ = D(α, 1) and β∗ =
D(1, β) then D(α, β) = α∗β∗ for any morphism (α, β).

EXAMPLE 6. Each 0-module A can be considered as a functor A from Nat S, defined as
follows: As = A for any s ∈ S \ 0 and α∗β∗a = αaβ for all α, β ∈ S, a ∈ A.
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EXAMPLE 7. Consider a functor Z which assigns to each object a ∈ S \ 0 the infinite
cyclic group Za generated by a symbol [a]; to each morphism (α, β) : s → t it assigns a
homomorphism of groups Z(α, β) : Za → Zb which takes [a] to [b]. It is a natural system,
which is called trivial.

For a given natural number n denote by Nern S the set of all n-tuples (a1, . . . , an),
ai ∈ S, such that a1 · · · an �= 0 (a nerve of S). For n = 0 we set Ner0 S = {1}. A mapping,
defined on the nerves and assigning to each a = (a1, . . . , an) an element from Da1···an ,
is called an n-dimensional cochain. The set of all n-dimensional cochains is an Abelian
group Cn(S,D) with respect to pointwise addition. Set C0(S,D) = D1.

Define a coboundary homomorphism Δn :Cn(S,D) → Cn+1(S,D) for n � 1 by the
formula (

Δnf
)
(a1, . . . , an+1) = a1∗f (a2, . . . , an+1)

+
n∑

i=1

(−1)if (a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1a∗
n+1f (a1, . . . , an).

For n = 0 we set (Δ0f )(x) = x∗f − x∗f where f ∈ D1, x ∈ S \ 0. One can check
directly that ΔnΔn−1 = 0. The cohomology groups of the complex {Cn(S,D),Δn}n�0
are denoted by Hn(S,D).

The 0-cohomology of a monoid is a special case of this construction. Indeed, Hn
0 (S,A) ∼=

Hn(S,A), where A is the functor defined in Example 6.
Since Nat S has enough projectives and injectives there exist derived functors

ExtnNat S(Z, ).

THEOREM 14. (See [21,22].) For any monoid S with zero

Hn(S, ) ∼= ExtnNat S(Z, ).

To prove this statement a projective resolution for Z is built in the following way.
For every n � 0 define a natural system Bn :Fac S → Ab. Its value on an object

a ∈ S \ 0 is the free Abelian group Bn(a) generated by the set of symbols [a0, . . . , an+1]
such that a0 · · · an+1 = a. To each morphism (α, β) we assign a homomorphism of groups
by the formula

Bn(α, β) : [a0, . . . , an+1] → [αa0, . . . , an+1β].
These functors constitute a chain complex {Bn, ∂n}n�0, where the natural transformations
∂n : Bn

.→ Bn−1 (n � 1) are given by the homomorphisms

(∂n)a : Bn(a) → Bn−1(a),

(∂n)a[a0, . . . , an+1] =
n∑

i=0

(−1)i[a0, . . . , aiai+1, . . . , an+1].
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The natural systems Bn are projective objects in Nat S and the complex {Bn, ∂n}n�0 is
a projective resolution of the natural system Z.

Now one can establish an isomorphism between the complexes{
Cn(S,D),Δn

}
n�0 and

{
HomNat S(Bn,D), ∂n

}
n�0.

Our construction differs from the Baues cohomology theory for monoids [2] in the ini-
tial stage only. Indeed, in [2] a monoid S is regarded as a category with a single object.
At the same time the Baues category of factorizations in S is equal to Fac S0 where S0

is a semigroup with a zero adjoined. Therefore the Baues cohomology groups of S and
the cohomology groups of S0 in our sense are the same. However if S possesses a zero
element then the category Fac S and Baues one are not equivalent and we obtain different
cohomology groups. The construction of this section is a generalization simultaneously of
both Baues and 0-cohomology.

In conclusion I give an example of using the results obtained.
It is well known that in many algebraic theories the cohomological dimension of free

objects is 1. In the category of monoids with zero a free object is a free monoid with a zero
adjoined. However in this category the class of objects having cohomological dimension 1
is essentially greater.

Call every quotient monoid of a free monoid by its ideal 0-free. Free monoids with an
adjoined zero are also considered as 0-free. Let S be a semigroup with zero. The least n
such that Hn+1

0 (S,A) = 0 for any 0-module A, is the 0-cohomological dimension (0-cd S)
of S.

THEOREM 15. 0-cdM � 1 for any 0-free monoid M .

From this theorem there follows an interesting

COROLLARY 7. Any projective representation of a 0-free monoid is linearizable (i.e. is
equivalent to a linear one).

In connection with Theorem 15 a question arises, an answer to which is unknown to me:
is a 0-cancellative monoid (Section 6), of 0-cohomological dimension 1, 0-free?

8. Concluding remarks

The study of the general properties of 0-cohomology has only just begun. Here the same
difficulties (and even greater) appear as for the EM-cohomology of semigroups. Certain
expectancies are raised by Theorem 14, showing that 0-cohomology can be seen as a de-
rived functor. However this interpretation turns out to be too vast. So it remains actual to
find a category, smaller than Fac, in which 0-cohomology would be a derived functor.

0-cohomology appears in other problems too. In an article by Clark [6] it was applied
to semigroups of matrix units and algebras generated by them. A similar situation often
occurs in ring theory. A quotient algebra of a semigroup algebra by the ideal generated by
the zero of the semigroup, is called a contracted quotient algebra (in other words, the zero
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of the semigroup is identified with the zero of the algebra). For instance, the well-known
theorem of Bautista, Gabriel, Roiter, Salmeron [3] confirms that every algebra of final type
is contracted semigroup one.

A natural question arises: how does Hochschild cohomology of contracted algebras
relate to the cohomology of semigroups generating them? Since it is supposed that the
semigroup contains a zero, then, of course, for study of this question it is necessary to
use 0-cohomology. Such an approach could be useful for incidence algebras of simplicial
complexes as well (cf. [11]).

In conclusion let me mention a generalization of 0-cohomology. In a semigroup S (not
necessary containing 0) fix a certain generating subset W ⊂ S instead of S \ 0 and call
mappings W → A 1-dimensional W -coboundaries. Using this one can construct certain
partial n-place mappings S × · · · × S → A (and call them n-dimensional W-cochains)
so that the coboundary homomorphisms ∂n is well defined. I have called the obtained
objects partial cohomology (they have no relation with the partial representations from
Section 6) and considered it in [34] and [35]. Partial cohomology turned out to be useful
for calculations of EM-cohomology (as in Section 3), however I have not found other
applications of them.
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Abstract
The main classes of finite rings (f.r.) and modules interesting for applications are consid-

ered: Wedderburn rings, local, chain and Galois rings, (quasi)-Frobenius bimodules. Polyno-
mials, functions, identities, matrices and linear substitutions over commutative chain f.r. (GE-
rings) are described. As applications the results about standard bases of polynomial ideals,
systems of polynomial equations, periodic properties of polynomial ideals are presented. Prop-
erties of matrices, linear sequences and (poly-)linear recurrences over GE-rings and Galois
rings are shown. We state also the main results of the general theory of linear codes over finite
modules and their representations.

Keywords: nil-radical, Jacobson radical, modular radical, Wedderburn radical, Wedderburn
ring, local ring, Hensel lemma, principal ideal ring, chain ring, Galois ring, GE-ring, GEO-
ring, quasi-Frobenius ring, symmetric ring, nilpotent ring, character module, quasi-Frobenius
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bimodule, Frobenius bimodule, coordinate field, canonical decomposition, trace function, co-
ordinate function, equation with trace, generalized Galois ring, congruence subgroup, poly-
nomial transformation, polynomial identity, Cross variety, complete system of functions over
ring, standard base of polynomial ideal, coordinated standard base, canonical generating sys-
tem, period of the polynomial ideal, distinguished polynomial, polynomial of maximal period,
similar matrices, normal matrix, canonically defined matrix, polynomially defined matrix, Fit-
ting invariants, Kurakin invariants, cyclic type of linear substitution, poly-linear recurrence,
LRS-family, full-cycle recurrence, k-maximal recurrence, coordinate sequence, rank, linear
complexity, recurrence of maximal period, frequency characteristic, pseudo-random sequence,
linear code, socle of a linear code, dual code, MacWilliams identity, equivalent codes, ex-
tension theorem, egalitarian weight, homogeneous weight, scaled isometry, presentation of a
code, generalized Kerdock code, Golay code, MDS-code, linearly optimal code, loop-code,
group-code
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Introduction

The class of finite rings is interesting as the first natural class of rings which allows to
bring forth problems and conjectures, check validity and demonstrate the efficiency of
results in general theory of rings. Moreover some results of the general theory of rings
allow interesting revisions for finite rings, which in general are not true. Finally, in the
last 20–30 years increased interest in possible application of finite rings, different from the
fields, in coding theory and cryptography.

In the first part of this chapter, we present the main results on the structure and properties
of finite rings (f.r.), as well as natural closely related questions: linear algebra problems in
finite modules, description of identities and polynomial functions on finite rings.

The second part is devoted to applications of the theory of finite rings and modules in
the theory of linear codes and (poly-)linear (recurrent) sequences which are important, in
particular, in cryptography.

A need to present the available material in a compact form has naturally limited the text
to the list of results that are most interesting to the author and important for applications.
So, finite fields and non-associative rings were left out of the frame of our presentation. The
exceptions are a few short sections devoted to non-associative Galois rings and quasigroup
codes, which appear to have good perspectives in applications.

Taking this into account, the bibliography is rather interesting by itself, since it contains
practically all publications on finite associative rings that the author is aware of.

I. Finite rings and modules

1. Some properties of finite rings connected with radicals

Here some classical results on Artinian rings are made more precise in the special context
of finite rings.

1.1. Nil-radical, semisimple rings [7,17–21,62,63,136,242,244,246,275,313,386,387]

Let us recall that a left ideal I of a ring R is called a nil-ideal if any element of I is
nilpotent. For a f.r. R any nil-ideal is nilpotent and a sum of left nil-ideals is a nil-ideal;
moreover the sum N(R) of all left nil-ideals of R is a two-sided nilpotent ideal, containing
all right nil-ideals of R. This ideal is called nil-radical of R, it agrees with the Jacobson
radical [184] of the ring R (the intersection of all left (right) maximal ideals of R) and has
the following properties:

N
(
N(R)

) = N(R),
(
R = R/N(R)

) ⇒ (
N(R) = 0

)
,

(1.1)(I * R) ⇒ (
N(I ) = I ∩ N(R)

)
.

A ring R is called semisimple if N(R) = 0. So the top-factor R = R/N(R) of any finite
ring R is a semisimple ring. First there is the following classical result [17,275,387].
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THEOREM 1.1 (Molin, Wedderburn, Artin). If R is a f.r. and R �= 0 then R is a direct sum
of full matrix rings over fields:

(1.2)R = Mn1(P1) ⊕ · · · ⊕ Mnt (Pt ), Ps = GF(qs), s ∈ {1, . . . , t}.

A f.r. R is called primary if it contains the identity and in (1.2) t = 1; it is called
completely primary (or local) if it is primary and in (1.2) t = 1, n1 = 1.

Related sources: [56,90,115,118,165,172–174,185,186,194,209,216,242,243,338,358,
373,397,402].

1.2. Quasi-identities and the modular radical [273]

In general we cannot assert that any f.r. R with R �= 0 contains the identity. However there
are some main approximations to an identity of R.

Let λR(S), ρR(S) be correspondingly the left and the right annihilators in R of a subset
S ⊆ R, let Dl(R),Dr(R) be correspondingly the sets of all left and right zero divisors of
R including 0, and D(R) = Dr(R) ∪ Dl(R).

A quasi-identity is an idempotent e = e2 ∈ R such that λR(e) ∪ ρR(e) does not contain
nonzero idempotents.

PROPOSITION 1.2. Any f.r. R contains a quasi-identity. An idempotent e ∈ R is a left
identity of R exactly if ρR(e) = 0. The ring R contains a left identity exactly if the set
R \ Dl(R) of left regular elements of R is nonempty. If the set of left identities of R is
nonempty then it is the set of all quasi-identities of R.

Let R �= N(R) and e be a quasi-identity of R. Then e �= 0, and the image e of e under
the natural epimorphism R → R is an identity of R.

PROPOSITION 1.3. Let R be a nonzero f.r. with a quasi-identity e. Then the following
conditions are equivalent.

(a) R has identity;
(b) e is identity of R;
(c) ρR(e) = λR(e) = 0;
(d) the set R \ D(R) of regular elements of the ring R is nonempty.

Under these conditions the relations Dr(R) = Dl(R) �= R hold and the multiplicative
group R∗ (the set of invertible elements) of the ring R satisfies the equality R∗ = R\Dr(R).

Let M(R) * R be the two-sided ideal generated by λR(e) ∪ ρR(e).

PROPOSITION 1.4. For any ideal I * R the quotient ring R/I contains an identity if and
only if M(R) ⊆ I .

Hence the ideal M(R) does not depend on the choice of the quasi-identity e.

PROPOSITION 1.5. For a f.r. R with quasi-identity e there are equivalent:
(a) e is a unique quasi-identity of R;



Finite Rings with Applications 219

(b) λR(e) = ρR(e);
(c) R = eRe ⊕ M(R).

We call M(R) the modular radical of the ring R. The function M on the class of all
finite ring satisfies the conditions

M
(
M(R)

) = M(R), M
(
R/M(R)

) = 0,

(I * R) ⇒ (
M(R/I) ⊆ (M(R) + I

)
/I
)
.

Related sources: [30,31,94,99,337,338].

1.3. Wedderburn radical, W-rings [273,313]

Under condition (1.2) there exists an orthogonal system of idempotents e1, . . . , et ∈ R

such that es is the identity of Mnk
(Pk), k ∈ {1, . . . , t}. Then e = e1 + · · · + et is a quasi-

identity of R and the latter is a direct sum of subgroups:

R = R1 ⊕ · · · ⊕ Rt ⊕ Δ (Peirce decomposition),

where Rk = ekRek = Mnk
(Sk), Sk is a local f.r., Sk = Pk , for k ∈ {1, . . . , t}, and

(1.3)Δ =
∑
i �=j

eiRej ⊕ eR(1 − e) ⊕ (1 − e)Re ⊕ (1 − e)R(1 − e) ⊆ N(R).

Note that Δ = 0 if and only if e1, . . . , et are central idempotents and e is identity of the
ring R. A f.r. R is called a Wedderburn- or W-ring, if R = 0, or

(1.4)R = Mn1(St ) ⊕ · · · ⊕ Mnt (St ), t � 1,

is a direct sum of full matrix rings over local rings. Note that any item in (1.4) is a primary
ring. Moreover

THEOREM 1.6. (See [187,244].) A f.r. R is a primary exactly if R = Mn(S), where n ∈ N
and S is a local ring. Under the lust condition if, in addition, R = Mk(T ), where T is a
local ring, then k = n, T ∼= S.

So W-rings are exactly direct sums of primary rings.

THEOREM 1.7. (See [273,286].) For a f.r. R with left identity the following properties
equivalent:

(a) R is a Wedderburn ring;
(b) any two-sided idempotent ideal of R is left principal;
(c) for any idempotent f ∈ R the ideal RfR is left principal.

COROLLARY 1.1. Any commutative f.r. R with identity has unique up to permutation de-
composition in direct sum of local rings.

THEOREM 1.8. Any f.r. R contains an ideal W = W(R) such that for any ideal I * R the
quotient ring R/I is a W-ring if and only if W ⊆ I . This ideal W(R) is generated by the
set (1.3).
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We call W(R) Wedderburn radical of the ring R. There are the inclusions

M(R) ⊆ W(R) ⊆ N(R) (each can be strict).

Related sources: [207,268,375].

2. Local finite rings

2.1. Characterizations and parameters of local rings
[64,75,119,140,152,204,212,213,280,326,357,365,377–379]

So the description of finite rings with identity is reduced modulo some nilpotent ideal to
the description of local finite rings.

THEOREM 2.1. For a f.r. S with identity there are equivalent:
(a) S is a local f.r.;
(b) S does not contain proper idempotents;
(c) S \ S∗ is a subgroup of the group (S,+);
(d) N(S) = S \ S∗.

THEOREM 2.2. Let S be a local f.r. Then S = GF(q), q = pr , for some prime p and
r ∈ N. Let n be the nilpotency index of the ideal N(S). Then S contains a strictly descend-
ing chain of the ideals

(2.1)S ) N(S) ) · · · ) N(S)t ) · · · ) N(S)n−1 ) 0,

and satisfies the conditions

(2.2)charS = pd, |S| = qc,
∣∣N(S)

∣∣ = qc−1, d � n � c.

The quotients Nt = N(S)t /N(S)t+1, t ∈ {0, 1, . . . , n−1}, are left and right spaces over
the field S = GF(q) and the finiteness of S implies

dim SNt = dim Nt S = mt, t ∈ {1, . . . , n − 1}.
The parameters m0, . . . , mn−1 are called the Loewy invariants of a local f.r. S. We have:

(2.3)
∣∣N(S)t

∣∣ = qmt+···+mn−1, t ∈ {1, . . . , n − 1}.
Commutative local rings were first studied by Krull [212–215].

Examples of local f.r. are: GF(q); Zpn ; GF(q)[x]/(f (x)), where f (x) ∈ GF(q)[x] is a
primary polynomial (a power of an irreducible polynomial); and, more general, finite chain
rings (see below).

Up to now (2007) there is no full description of all isomorphism classes of local finite
rings.

2.2. Some properties of the multiplicative group of a local f.r. [25,26,296]

Let S be a ring with parameters as described in the last theorem. Then S∗ = S \ N(S) and
|S∗| = (q − 1)qc−1. Consider the natural epimorphism ψ : S∗ → S∗ = GF(q)∗. Then
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Kerψ = e + N is a normal subgroup of the group S∗ of order |e + N| = |N| = qc−1 =
pr(c−1). It is Sylow p-subgroup of the group S∗, also called a congruenc-subgroup.

THEOREM 2.3. The group S∗ is a semidirect product:

(2.4)S∗ = (e + N(S)
)
	 G,

where G is a cyclic subgroup of S∗ of order q − 1 mapping onto S∗ under the epimor-
phism ψ . There are the equalities

(2.5)exp S∗ = (q − 1)pμ(S), where pμ(S) = exp(e + N)

for the exponents of the groups S∗ and e + N.

The structure of a congruence subgroup and even its exponent are not defined uniquely
by the numerical parameters of the ring S that were discussed above. There is only the
following general upper estimate.

LEMMA 2.4. Let S be any ring with identity e of characteristic pd and I be a nilpotent
ideal of S of nilpotency index n. Then e+ I is a subgroup of S∗ and exp(e+ I ) | pω, where
ω is the minimal t ∈ N with the property Ipt = pIpt−1 = · · · = ptI = 0.

Here if

(2.6)ν = ]logp n[, and char Ips = pωs , for s ∈ {0, . . . , ν},
then

(2.7)ω = max
{
s + ωs : s ∈ {0, . . . , ν}} � w0 + ν − 1.

Here ]x[ is a minimal m ∈ N with property x � m.

PROPOSITION 2.5. Let S be a local f.r. with parameters as fixed in Theorem 2.1 and let
ν = ]logp n[, char Nps = pds for s ∈ {0, . . . , ν}, ω = max{s + ds : s ∈ {0, . . . , ν}}. Then

(2.8)exp(e + N) = pμ(S), μ(S) � ω � d0 + ν − 1.

In general case the estimate pd0+ν−1 for exp(e + N) is precise. For example if S =
Zp2[x]/(x2), p � 3, then N = (p, x), n−3, ν = 1, d0 = 2 and d0 +ν−1 = 2. Moreover,
the order of the element e + x ∈ e + N equals p2 and therefore exp(e + N) = p2.

The value of the parameter ω in the last proposition can be made more precise under
some additional condition on the ring S. We call a local f.r. balanced if for some ε ∈ N the
following equality holds

(2.9)Nε = pS (p = char S).

The least ε satisfying (2.9) is called the ramification index of the ring S. The class of
balanced ring is a big enough. In particular, such are all rings of the characteristic p (then
ε = n) and all local principal ideal (chain) f.r. (see below). Note that under condition (2.9)
the parameters n and d are connected by the relations n � ε, d =]n

ε
[.
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THEOREM 2.6. Let S be a balanced local f.r. with ramification index ε. Then

exp(e + N) = pμ(S), μ(S) � ω, where

(2.10)ω =
]
n − pb

ε

[
+ b, b = max

{
0,

]
logp

ε

p − 1

[}
.

2.3. Polynomials over a commutative local f.r. [53,170,212,213,262,280,284,357,403]

Here R is a commutative local f.r. with nilradical N = N(R) of nilpotency index n; and
R = R[x] is the ring of polynomials in one variable over R.

2.3.1. Invertible polynomials, Krull theorem The canonical epimorphism ν :R → R im-
plies an epimorphism σ :R → R, such that image of any polynomial F(x) =∑ fix

i ∈ R
is σ(F (x)) = F(x) =∑ f ix

i ∈ R. It is evident that Ker σ = N[x] consists of all polyno-
mials with coefficients from N and Ker σ = N(R) the nilradical of R. The reduction from
R to the ring R = R[x] of polynomials over the field R is one of the main approaches to
the investigation of the ring R.

PROPOSITION 2.7. A polynomial U(x) = ∑
usx

s ∈ R is invertible in the ring R if and
only if degU(x) = 0, i.e. u0 ∈ R∗, us ∈ N for s � 1.

The following result generalizes the well-known fact that any nonzero polynomial over
a field has a unique monic polynomial associated to it.

THEOREM 2.8 (Krull). Let H(x) = ∑
hsx

s ∈ R and H(x) �= 0. Then there exists
a unique invertible polynomial U(x) ∈ R∗ and monic polynomial F(x) ∈ R such that

(2.11)U(x)H(x) = F(x).

Moreover degF(x) = k, where k = max{l ∈ N0: hl ∈ R∗}.

2.3.2. Coprime polynomials Let (F1, . . . , Ft )R be the ideal generated in R by polyno-
mials F1, . . . , Ft ∈ R, and let (F 1, . . . , F t ) be the gcd of the system of the polynomials
F 1, . . . , F t over the field R. The polynomials F1, . . . , Ft ∈ R are said to be coprime if
(F1, . . . , Ft )R = (e)R = R. The last condition is equivalent to the existence of polyno-
mials A1, . . . , At ∈ R such that

(2.12)A1(x)F1(x) + · · · + At(x)Ft (x) = e.

PROPOSITION 2.9. For any polynomials F1, . . . , Ft ∈ R there is the equivalence

(F1, . . . , Ft )R = (e)R ⇔ (F 1, . . . , F t ) = e.

Some of the properties of the coprime polynomials over a field still hold for coprime
polynomials over any commutative ring.



Finite Rings with Applications 223

PROPOSITION 2.10. Let R be an arbitrary commutative ring with identity. Then for any
polynomials A(x), B(x), C(x) ∈ R the following conditions are true.

(a) If (A(x), B(x))R = (e)R and (A(x), C(x))R = (e)R, then (A(x), B(x)C(x))R =
(e)R.

(b) If (A(x), B(x))R = (e)R and A(x) | B(x)C(x), then A(x) | C(x).
(c) If (A(x), B(x))R = (e)R, A(x) | C(x) and B(x) | C(x), then A(x)B(x) | C(x).

2.3.3. Hensel lemma and canonical decomposition [53,262,280,284,403] The following
important result gives an analog of the canonical decomposition of polynomials over a field
to polynomials over a local commutative f.r..

THEOREM 2.11 (Hensel lemma). Let F(x) ∈ R be a monic polynomial and let
g(x), h(x) ∈ R[x] be monic polynomials such that F(x) = g(x)h(x), (g(x), h(x)) = e.
Then there exists a unique pair of monic polynomials G(x),H(x) ∈ R with the properties

(2.13)F(x) = G(x)H(x), G(x) = g(x), H(x) = h(x).

A monic polynomial F(x) ∈ R is called primary (with base g(x) ∈ R) if F(x) = g(x)k ,
where g(x) is an irreducible polynomial over R.

THEOREM 2.12. Any polynomial F(x) ∈ R such that F(x) �= 0 has a unique (up to
a permutation of the factors) decomposition into a product

(2.14)F(x) = U(x)F1(x) · · ·Ft(x), t � 0,

where U(x) is invertible and (for t > 1) F1(x), . . . , Ft (x) are primary pairwise coprime
monic polynomials.

We call the decomposition (2.14) the canonical decomposition of F(x).
Of course any monic polynomial F(x) can be presented as product of monic irre-

ducible polynomials: F(x) = G1(x) · · ·Gr(x). However this decomposition is not only
nonunique, but even can consists of a different number of factors. For example if R = Z4
then

x4 = x · x · x · x = (x2 + 2
)(
x2 + 2

) = (x2 + 2x + 2
)(
x2 + 2x + 2

)
.

2.3.4. Lifting of divisors and roots modulo the radical Let us say that a polynomial
G(x) ∈ R lies over the polynomial g(x) ∈ R or G(x) is a lifting of the polynomial g(x)
from R to R, if G(x) = g(x). We say that a polynomial G(x) is a full divisor of the
polynomial F(x) if F(x) = G(x)H(x) and (G(x),H(x))R = R.

PROPOSITION 2.13. Any monic full divisor of a polynomial F(x) can be uniquely lifted
to a monic full divisor of the polynomial F(x) in the ring R.

PROPOSITION 2.14. Let F(x) ∈ R and a ∈ R be such that F(a) = 0 and F ′(a) �= 0.
Then element a uniquely lifts up to a root α of the polynomial F(x) in the ring R.
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PROPOSITION 2.15. Let F(x) ∈ R be a monic polynomial of degree m such that F(x) has
m different roots in the field R. Then the polynomial F(x) has a unique (up to permutation)
decomposition in linear pairwise coprime factors over R.

2.4. Coordinate field of a commutative local f.r.

Let R = GF(q). Consider the polynomial F(x) = xq − x ∈ R. It is well known that

F(x) =
∏
a∈R

(x − a).

Together with Proposition 2.15 this implies that the set Γ (R) = {α ∈ R: αq = α} of all
roots in R of the polynomial xq − x consists of q elements, all different modulo N, and

xq − x =
∏

α∈Γ (R)

(x − α).

Evidently Γ (R) is a subsemigroup of the semigroup (R, ·) containing 0. The set Γ (R)∗ =
Γ (R) \ 0 is the set of all roots of the polynomial xq−1 − e in the ring R and a subgroup of
the group R∗ of order q − 1.

The map μ :Γ (R) → R given by the rule μ(α) = α is an isomorphism of multiplicative
semigroups, which induces an isomorphism of groups μ :Γ (R)∗ → R∗. So we have

PROPOSITION 2.16. For any element α ∈ R there exists a unique element γ (α) ∈ Γ (R)

with the property α = γ (α). The function γ (x) on R is given by a polynomial: γ (x) =
xpd−1

, where pd = charR.

The set Γ (R) is called the (Teichmüller) coordinate set of the ring R.
Since R∗ = 〈a〉 is a cyclic group the decomposition of the polynomial xq−1 − e over the

field R is

xq−1 − e =
q−2∏
i=0

(
x − ai

)
.

If α ∈ Γ (R)∗ is a lift of a then α is a cyclic generator of the group Γ (R)∗ and

xq−1 − e =
q−2∏
i=0

(
x − αi

)
.

Let us consider a binary operation ⊕ on the semigroup (Γ (R), ·) given by

(2.15)α ⊕ β = γ (α + β), α, β ∈ Γ (R).

PROPOSITION 2.17. The algebra (Γ (R),⊕, ·) is a field of q elements. The map μ is an
isomorphism of the algebra (Γ (R),⊕, ·) to the field (R,+, ·).
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3. Principal ideal rings [111,181,190,191,284,317,375]

A f.r. R with identity is called left principal ideal ring (left PIR) if any left ideal I � RR

is left principal: I = Ra; it is called principal ideal ring (PIR) if it is a left PIR and a right
PIR.

3.1. General construction

THEOREM 3.1. (See [284].) For a f.r. R with identity the following are equivalent:
(a) R is a left PIR;
(b) any two-sided ideal of R is left principal;
(c) R is a PIR;
(d) R is a W-ring such that the rings S1, . . . , St in (1.4) are local PIR.

The equivalence of (a) and (c), together with Theorem 1.7, give interesting pair of con-
ditions of type

LEFT ⇒ RIGHT,

which are specific for finite rings. Note that if R is an Artinian ring then conditions (a)
and (c) are not equivalent, [190].

About finite principal ideal rings without identity see [265].

3.2. Chain rings [40,72,93,124–127,129,137,188,197,282,284,319,353–355]

A ring S is called a left chain ring if the lattice of all its left ideals is a chain; it is called
chain ring if S is a left and right chain ring.

THEOREM 3.2. For a f.r. S with identity the following conditions are equivalent:
(a) S is a local PIR;
(b) S is a chain ring;
(c) S is a left chain ring;
(d) S is a local f.r. with Loewy invariants m1 = · · · = mn = 1;
(e) S is a local f.r. with m1 = 1;
(f) S is a local f.r. and N(S) is a left principal ideal;
(g) the lattice of all one-sided ideals of S is a chain S ) N(S) ) · · · ) N(S)n−1 ) 0, for

some n ∈ N;
Under condition (g), if n > 1 then Ni = Sπi = πiS, for any π ∈ N \ N2, i ∈ {0, . . . , n}.

3.3. π-Adic decomposition in a chain ring

In accordance with Theorem 2.3, the multiplicative group S∗ of the finite chain ring S

has a decomposition (2.4). Using the subgroup G of this decomposition we can state that
the set Γ = G ∪ {0} is a subsemigroup of (S, ·), and that the canonical homomorphism
ϕ : S → S induces an isomorphism Γ → S.
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PROPOSITION 3.3. Let S be a finite chain ring with n > 1 and π ∈ N \ N2. Then any
element a ∈ S has unique representation in the form

(3.1)a = a0 + a1π + · · · + an−1π
n−1, a0, . . . , an−1 ∈ Γ.

We call (3.1) a π-adic decomposition of the element a (relative to the coordinate set Γ
and uniformizing element π).

Note that if S is a commutative chain f.r. then the decomposition (2.4) is a direct product,
G is the unique subgroup of S∗ of order q−1 and Γ = Γ (S) is the Teichmüller coordinate
set of the ring S (see Section 2.4).

4. Galois rings [111,189,213,217,218,226,239,240,262,284,294,320,362]

These rings are the simplest, most investigated, and the most important in the theory and
applications of finite chain rings.

4.1. Equivalent definitions and constructions of Galois rings

If R is a f.r. with identity then R \ R∗ is the set of all two-sided zero divisors of R.
A f.r. R with identity e is called a Galois ring (GR) if R \ R∗ = λR for some λ ∈ N.

This is the short definition of a GR. More useful for applications is the definition given by
the following theorem.

THEOREM 4.1. A f.r. R is a GR if and only if R is a commutative local PIR such that
N(R) = pR for some prime p. The lattice of all ideals of R is a chain

R ) N = pR ) · · · ) Nn−1 = pn−1R ) Nn = pnR = 0,

for some n ∈ N; the top factor of R is R = GF(q), where q = pr , for some r ∈ N, and

charR = pn, |R| = qn,

|R∗| = qn−1(q − 1),
∣∣piR

∣∣ = qn−i , i ∈ {0, 1, . . . , n}.

The simplest examples of GR’ are the GF(q), Zpn . As for Galois fields we have

THEOREM 4.2. For every prime p ∈ N and for any n, r ∈ N there exists a unique up to
isomorphism GR R of characteristic pn consisting of qn elements, where q = pr .

The main part of the proof of the last theorem is formed by the following construction of
a GR. Let R be a GR. A monic polynomial F(x) ∈ R is called a Galois polynomial (GP)
if its image F(x) under the natural epimorphism R → R = R/pR = GF(q) is irreducible
in R[x]. By a standard way we can consider R as a subring of the ring S = R/F (x)R.
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THEOREM 4.3. Let R be a GR of the characteristic pn consisting of qn elements, and let
F(x) ∈ R be a GP of the degree m. Then S = R/F (x)R is a GR of characteristic pn

consisting of qmn elements. This ring contains all roots of any GP G(x) ∈ R satisfying the
condition degG | m. For ξ ∈ S the equality S = R[ξ ] holds iff ξ is a root of some GP
G(x) ∈ R of degree m. The ring S does not contains a root of GP G(x) ∈ R such that
degG � m.

We call S a Galois extension of the GR R of degree m.
Now it is correct to use notation: R = GR(qn, pn) (in some articles R = GR(r, pn))

for a Galois ring R of characteristic pn consisting of qn elements. So we have: GF(q) =
GR(q, p), Zpn = GR(pn, pn) and for any r ∈ N the ring R = GR(qn, pn) with q = pr

can be constructed in the form:

R = Zpn[x]/F (x)Zpn [x],
where F(x) is a GP of the degree r over Zpn . So any GR R = GR(qn, pn), q = pr , is a
Galois extension of the degree r of its subring Zpn generated by the identity.

4.2. p-Adic decomposition of elements

In accordance with the results of Section 3.3 for any a ∈ R there exists a unique element
γ (a) ∈ Γ (R) = {α ∈ R: αq = α} such that a ≡ γ (a) (mod pR). This implies that any
a ∈ R has unique p-adic decomposition:

(4.1)

a = a0 + a1p + · · · + an−1p
n−1, as = γs(a) ∈ Γ (R), s ∈ {0, 1, . . . , n − 1}.

We call γs :R → Γ (R) s-th p-adic coordinate function (γ0(x) = γ (x)).
Note that according to Proposition 2.16 the function γ0(x) = γ (x) is the polynomial

function: γ0(x) = xpn−1
. However for s � 1 the function γs(x) cannot be a polynomial

function on R.
The set Γ (R) is closed relative to multiplication on R, but not relative to addition. Using

the operations of the field (Γ (R),⊕, ·) we can prove the following result.

THEOREM 4.4. (See [239].) For any α, β ∈ Γ (R) there holds the equality

γ1(α + β) =
⊕

i∈1,p−1

(
(−1)i/i

)
αpr−1iβpr−1(p−i).

If R = Zpn then Γ (R) is not equal to the usual p-ary coordinate set {0, . . . , p − 1}. We
have instead

Γ (R) = {0, 1pn−1 = 1, 2pn−1
, . . . , (p − 1)p

n−1}
,

Γ (R) = {0, 1, . . . , p − 1} ⇐⇒ (p = 2 or n = 1).

Formulae for the first p-ary coordinate of the sum a + b, where a, b ∈ Zpn , are given in
[226,228].
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4.3. Group of automorphisms of a GR and the Galois theorem [284,320]

THEOREM 4.5. The group Aut(R) of automorphisms of the ring R = GR(qn, pn),
q = pr , is a cyclic group of order r generated by the Frobenius automorphism σ , act-
ing on an element a =∑n−1

i=0 aip
i , ai = γi(a), by the rule σ(a) =∑n−1

i=0 a
p
i p

i . There is a
canonical isomorphism ϕ : Aut(R) → Aut(R) such that

∀τ ∈ Aut(R): ϕ(τ) = τ , where τ(α) = τ(α) for all α ∈ R.

The correspondence R → R gives an equivalence between the category of Galois rings of
characteristic pn and the category of Galois fields of characteristic p.

THEOREM 4.6. A subring K < R is a GR iff K = Rτ = {a ∈ R: τ(a) = a} for some τ ∈
Aut(R). In such a case K = GR(ptn, pn), where t = m/ord τ . So if K = GR(ptn, pn) ⊆
R then t | r and if t | r then R contains a unique subring K = GR(ptn, pn) � R.

In this connection it is important to note that the result of [262,320], stating that any
subring with the identity of the ring R is a GR, is not true for the case r > 1, n > 1. For
example: under the last conditions the subring K = eZpn + N of the ring R is not a GR.

THEOREM 4.7. Let R ⊂ S = GR(qmn, pn) be a Galois extension of the ring R of
degree m. Then the group Aut(S/R) of automorphisms of S over R is a cyclic group
Aut(S/R) = 〈σ 〉 of order m generated by an automorphism σ , acting on an element
α ∈ S with p-adic decomposition α =∑i∈{0,...,n−1} αsp

s as σ(α) =∑i∈{0,...,n−1} α
q
s p

s .
There exists a one to one correspondence between subgroups H = 〈τ 〉 ⊆ Aut(S/R) and

Galois extensions K of the subring R in the ring S, given by the map

H �→ SH = {α ∈ S: ∀h ∈ H h(α) = α
} = Sτ .

Related sources: [8,279].

4.4. Trace function

Let S = GR(qmn, pn) be a Galois extension of the ring R = GR(qn, pn). The trace from
S onto R is defined as the function TrSR(x) =∑τ∈Aut(S/R) τ (x).

PROPOSITION 4.8. (See [284].) The function TrSR is an epimorphism of modules TrSR : RS →
RR.

4.4.1. Coordinate functions of trace Using the p-adic decomposition (Section 4.2) we
have

TrSR(x) = γ0
(
TrSR(x)

)+ pγ1
(
TrSR(x)

)+ · · · + pn−1γn−1
(
TrSR(x)

)
.

Different applications of this function in coding theory and cryptography are connected
with properties of the coordinate functions γs(TrSR(x)). Some expressions for these func-

tions are known. Let us denote by trΓ (S)
Γ (R)(z) the trace from the coordinate field (Γ (S),⊕, ·)
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onto the subfield Γ (R):

trΓ (S)
Γ (R)(z) = z ⊕ zq ⊕ · · · ⊕ zq

m−1
.

THEOREM 4.9. (See [226,239].) The zero and first coordinate functions of the trace func-
tion have the form

γ0
(
TrSR(x)

) = trΓ (S)
Γ (R)

(
γ0(x)

) = γ0(x) ⊕ γ0(x)
q ⊕ · · · ⊕ γ0(x)

qn−1;
γ1
(
TrSR(x)

) = Ψ
(
γ0(x)

)⊕ trΓ (S)
Γ (R)

(
γ1(x)

)
, where

Ψ (x) =
⊕

k0+···+km−1=p, ki∈{0,...,p−1}

1

k0! · · · km−1!x
pr−1(k0+qk1+···+qm−1km−1).

If p = 2 then

Ψ (x) = &(x)2r−1
, where &(x) =

⊕
0�i<j�m−1

xqi+qj

is a quadratic function on the field Γ (S) = GF(qm) over Γ (R) = GF(q).

Indeed this fact allows one to find a linear presentation of the binary Kerdock code and
to describe a generalization of this code over any finite field of characteristic 2 [240] (see
Section 14.3.3). Formulas for γi(Tr(x)), i � 2, are given in [226,239].

4.4.2. Equations with trace In the study of linear recurrences over Galois rings in con-
nection with their applications to algebraic coding theory and cryptography, a special role
is played by equations of type

(4.2)TrSR(ax) = c,

where c ∈ R, a ∈ S∗. Here the number Ma(c) of solutions of this equation in the coordinate
field Γ (S) is of special interest.

Exact formulas for these numbers are known only for Galois rings of characteristic 4,
i.e. for the case p = 2, q = 2r , n = 2. In this case the last statement of the Theorem 4.9,
allows to use the theory of quadrics over a field of characteristic 2.

THEOREM 4.10. (See [240].) Let a ∈ S∗, a0 = γ0(a), a1 = γ1(a), α = a−1
0 a1 and

c(α) = trΓ (S)
Z2

(α) ⊕ λe. Then the number Ma(c) satisfies the following conditions.
(a) If m = 2λ + 1 � 3, then

(4.3)Ma(c) = qm−2 + v
(
c1 ⊕ c0c(α)

)
δαq

λ−1,

where v(0) = q − 1, v(b) = −1 for b �= 0;

δα = (−1)ε(α), ε(α) = trΓ (R)
Z2

(
&(α)

)⊕ λtrΓ (S)
Z2

(α) ⊕
(
λ + 1

2

)
le.
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(b) If m = 2λ > 2, then the values of Ma(c) are given by the following table:

No. Conditions on α and c Values of Ma(c)

1 (c0, c(α)) = (0, 0) qm−2 + v(c1)δαq
λ−1

2 (c0, c(α)) �= (0, 0), c0c(α) = 0 qm−2

3 c0c(α) �= 0, trΓ (R)
Z2

(c−1
0 c1c(α)) = σ qm−2 + (−1)σ δαqλ−1

where δα = (−1)ε(α) and

ε(α) = trΓ (R)
Z2

(
&(α)

)⊕ (λ + 1)trΓ (S)
Z2

(α) ⊕
((

λ

2

)
l + 1

)
e.

(c) For a given δ ∈ {−1, 1} the number Dq(m, δ) of elements a ∈ S∗ such that in (a),
(b) the equality δ(α) = δ holds, has the value

(4.4)Dq(m, δ) = qm − 1

2

(
qm + δq[m+1

2 ]).
4.5. Multiplicative group of a Galois ring [226,262,320]

Group R∗ of R = GR(qn, pn) is a direct product R∗ = Γ (R)∗ × (e + pR) of the cyclic
group Γ (R)∗ = Γ (R) \ 0 of order q − 1 and the p-group e + pR (congruence-subgroup).
For the latter a decomposition in a direct product of cyclic subgroups is known.

In many applications the following description of the possible orders of elements in the
group e + pR elements is useful.

PROPOSITION 4.11. Let u = e + pkv ∈ e + pR, 1 � k � n − 1, v �= 0.
(a) If pk > 2 or pk = 2 and v + v2 �= 0, then ord u = pn−k;
(b) If pk = 2, v + v2 = 0, then u2 = e + plw1, where w1 �= 0, 3 � l � n,

ord u = 2n−l+1 < 2n−k � 2n−1.

In particular

exp(e + pR) =
{

2n−2, if R = Z2n , n � 3,
pn−1 in all other cases.

In general case canonical decomposition of the group e + pR for q = pr , r > 1,
n > 1 described by the following way. Let us choose elements ω1, . . . , ωr ∈ R such that
ω1, . . . , ωr is a basis of the field R over simple subfield GF(p). In the case p = 2, n > 2
we can also suppose that ωr = e, and can choose element ω ∈ R such that trRGF(2)(ω) = e.

Let finally gi = e + pωi for i ∈ 1, r and g = e + pω.
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THEOREM 4.12. Under the above denotations
(a) if p > 2 or pn = 4, then group e + pR has canonical decomposition

e + pR = 〈g1〉 ×̇ · · · ×̇ 〈gr〉, typ(e + pR) = (pn−1, . . . , pn−1);
(b) if p = 2, n � 3, then group e + pR has canonical decomposition

e + pR = 〈g1〉 ×̇ · · · ×̇ 〈gr−1〉 ×̇ 〈g〉 ×̇ 〈−e〉,
typ(e + pR) = (2n−1, . . . , 2n−1, 2n−2, 2

)
.

4.6. Bimodules over Galois rings

Any local f.r. S with S = GF(q), charS = pd , contains a subring R = GR(qd, pd) such
that S = R. It allows the investigation of S as an (R,R)-bimodule. Here is useful theorem.

THEOREM 4.13. (See [284].) For any finite (R,R)-bimodule RMR there exist a generator
system μ1, . . . , μk ∈ M and a system of automorphisms σ1, . . . , σk ∈ Aut(R), such that

∀a ∈ R, l ∈ {1, . . . , k}: μla = σl(a)μl, and M = Rμ1 ⊕ · · · ⊕ Rμk

is a direct sum of cyclic (R,R)-bimodules.

A first variant of this theorem for the case R = R = GF(q) was proved in [320].
This theorem about distinguished bases allows one to prove structure theorems for vari-

ous different classes of finite rings considered as algebras over a GR. In particular it makes
possible a description of finite chain rings [284] (see below) and to present any finite in-
decomposable ring as a ring of matrices of special form over a Galois ring [71,121,370,
393–395].

4.7. Generalized (nonassociative) Galois ring

4.7.1. Semifields (division algebras) [2–5,85,95,96,171,261,332,388,389] A ring (C,+, ∗)
(not necessary associative) is called a semifield or division algebra if C\0 is a subloop of the
groupoid (C, ∗). Such a ring has prime characteristic p, and its (associative-commutative)
center

(4.5)Z(C) = {a ∈ C: ∀x, y ∈ C: ax = xa, (xy)a = x(ya), a(xy) = (ax)y
}

is a field: Z(C) = GF(pr) and C is Z(C)-space of some dimension m, so |C| = ps , s = rm.
For a given g ∈ C, k ∈ N let us define the right principal k-power of g by

g[k] = (. . . ((g ∗ g) ∗ g
)... k times ...)

.

A semifield C is called right cyclic or primitive if there exists g ∈ C such that any a ∈ C
has the form a = g[k] for some k ∈ N.

The conjecture that any finite division ring is primitive [388,389] is not true: there exist
at least two non-primitive division rings of orders 32 (see [332]) and 64 (see [171]).
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4.7.2. Main properties of generalized Galois rings [153–156] For any (possibly nonas-
sociative) ring S let D(S) be the set of all one-sided zero divisors together with 0. A finite
ring S with the identity e is called a generalized Galois ring (GGR) if D(S) = λS for
some λ ∈ N (see Section 4.1). The standard Galois ring S = GR(qn, pn) is a GGR with
D(S) = pS.

THEOREM 4.14. Let (S,+, ∗) be a finite GGR. Then
(a) the minimal λ ∈ N with D(S) = λS is a prime number p, D = D(S) = pS is the

unique maximal two-sided ideal of S and S = S/D is a semifield of q = ps elements
for some s ∈ N;

(b) the set S∗ = S \ D is closed relative to the operation ∗ and (S∗, ∗) is a loop;
(c) the lattice of one-sided ideals of S is a strong chain of two-sided ideals:

S = D0 ) D1 = pS ) · · · ) Dn−1 = pn−1S ) Dn = 0, for some n ∈ N;
charS = pn; and Sα = αS = Dt for any α ∈ Dt \ Dt+1, t ∈ {0, 1, . . . , n − 1}.

(d) the equalities |S∗| = qn − qn−1, |Dt | = qn−t , for t ∈ {0, 1, . . . , n} take place.

For a finite semifield C we shall call any GGR S with top-factor S ∼= C — a lift of the
semifield C to GGR S.

PROPOSITION 4.15. For any division algebra (C,+, ∗) of dimension m over the center
Z(C) = P = GF(pr) and for any n ∈ N there exists a lift to a GGR (S,+, ∗) of the
characteristic pn with center Z(S) = R = GR(prn, pn).

This proposition is based on the following general construction of a GGR S with a
fixed Galois subring R = GR(prn, pn) in the center Z(S). Let S = GR(qmn, pn) be a
Galois extension of the degree m of the ring R where q = pr . Let us fix some basis
e = (e0 = e, . . . , em−1) of the module RS and denote by αe the column of coordinates
of the element α ∈ S in the basis e. So α = eαe. Now let us fix some m × m-matrix
G = (gij )i,j∈{0,...,m−1} over the module S and define an operation ∗ on S by the condition

(4.6)∀α, β ∈ S: α ∗ β = αT
e Gβe.

We shall call G = G(e) the Gramm matrix of the operation ∗ with respect to basis e; G is
said to be unitary if all elements of its first row and first column are equal to e; and it is
called a linear Latin square over R if any linear combinations of the rows (of the columns)
of the matrix G with coefficients in R, not all of them belonging to pR, is a basis of RS.

PROPOSITION 4.16. The algebra (S,+, ∗) is a (in general nonassociative) ring with R ⊆
Z(S); an element e is the identity of this ring if and only if G is an unitary matrix; (S,+, ∗)
is a GGR if and only if G is an unitary linear Latin square over R.

Now it is not difficult to see that in using the notation above we can suppose that the
top-factor S = S/pS is the set C in Proposition 4.15 and R = P . Then e = (e0, . . . , em−1)

is a basis of P C and we can choose the matrix G in Proposition 4.16 such that G = G(e)
is a Gramm matrix of the operation ∗ on C in the basis e. It imply that GGR (S,+, ∗) in
Proposition 4.16 is a lift of C with center R.
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5. Structure and properties of chain rings
[22,23,72,111,120,184,212–214,262,264,280,283–285,357,403]

As was noted above, a finite chain ring S is a local f.r. with N(S) = Sπ for some π ∈ N(S).
The lattice of all left (right) ideals of S is a chain of two-sided ideals N(S)i = SπI = πiS:

(5.1)S ) N(S) ) · · · ) N(S)n−1 ) N(S)n = 0, n = ind N(S) ∈ N.

If S = S/N(S) = GF(q), q = pr , then |S| = qn, char S = pd , 1 � d � n; and the
ring S contains a Galois subring K = GR(qd, pd) called the coefficient ring of S. Any
such subring satisfies the relations:

(5.2)K = S, S = K[π], for any π ∈ N(S) \ N(S)2.

A coefficient ring of the ring S is uniquely defined if and only if S is a commutative ring.
In this case it has the form

(5.3)K = Γ (S) + Γ (S)p + · · · + Γ (S)pd−1,

where Γ (S) is the coordinate field of the ring S (see Section 2.4)
Since every ideal of the ring S is a power of N(S) there exists a parameter ε ∈ N, called

the ramification index of S, such that pS = N(S)ε.

5.1. Commutative chain rings (GE-rings)

In the following we fix parameters

(5.4)p, r, q = pr, d, n, ε

of the ring S and consider only the nontrivial case when n > 1 (i.e. S is not a field) and
ε > 1 (i.e. S is not a Galois ring).

5.1.1. Description of commutative chain rings [16,73,283,357,381]

THEOREM 5.1. (See [357].) Let S be a commutative chain ring with coefficient ring K =
GR(qd, pd). Then π is a root of an Eisenstein polynomial E(x) = xε − cε−1x

ε−1 − · · · −
c0 ∈ K[x], where c0, . . . , cε−1 ∈ pK , c0 /∈ p2K , if d > 1, and

(5.5)S ∼= K[x]/(E(x), pd−1xρ
)
, n = (d − 1)ε + ρ, 1 � ρ � ε.

In view of (5.5) a commutative chain f.r. is also called a Galois–Eisenstein ring or GE-
ring.

Any GE-ring is a quotient ring of some commutative local principal ideal domain. Let
Qp be the field of p-adic numbers and E let be some finite extension of Qp. Then the
ring ZE of integer numbers of the field E [245] is a local principal ideal domain and if
J (ZE ) is its Jacobson radical, then ZE/J (ZE ) = GF(pr), pZE = J (ZE )ε for some
r, ε ∈ N. In this situation any quotient ring S = ZE/J (ZE )n, n � ε, is a GE-ring with
ramification index ε and top-factor S = GF(pr) [245].
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PROPOSITION 5.2. (See [283].) Any GE-ring S is of the form pointed out above: S ∼=
ZE/J (ZE )n for a suitable finite extension E of the field Qp.

A GE-ring is a simple extension of any chain subring A < S. Let N(A) = πAA, and
let nA be the nilpotency index of the ring A; let δ = ε(S/A) be the ramification index
of S over A, defined by N(A)S = N(S)δ; finally let m = [S : A] be the degree of the
extension S of the field A. Then n = (nA − 1)δ + ν for some ν ∈ {1, . . . , δ}.

PROPOSITION 5.3. (See [283].) For any Galois polynomial G(x) ∈ A[x] of degree m

there exists a polynomial F(x) = G(x)δ + Fδ−1(x)G(x)δ−1 + · · · + F0(x) such that
degFi(x) < m, Fi(x) ∈ N(A)[x] for i ∈ {0, . . . , δ − 1}, F0(x) /∈ N(A)2[x] if nA > 1,
and

S ∼= A[x]/(F(x), π
nA−1
A G(x)ν

)
.

In particular S = A[α] for some α ∈ S.

Under the conditions of the last proposition the polynomial F(x) is called a Galois–
Eisenstein polynomial over the ring A.

COROLLARY 5.1. For any Galois polynomial G(x) ∈ Zpd [x] of degree r there exists an
isomorphism

(5.6)S ∼= Zpd [x]/(F(x), pd−1G(x)ρ
)
,

where F(x) = G(x)ε+Fε−1(x)G(x)ε−1+· · ·+F0(x) ∈ Zpd [x] is such that degFi(x) < r ,
Fi(x) ∈ pZpd [x] for i ∈ {0, . . . , ε − 1}, F0(x) /∈ p2Zpd [x] if d > 1. Any ring of the
form (5.6) is a GE-ring.

A GE-ring S is called a weakly ramified if (ε, p) = 1. In this case there exists an element
π ∈ N \ N2 such that in (5.5) E(x) = xε − π .

THEOREM 5.4. (See [16].) A GE-ring S is uniquely defined by the parameters q, n, ε up
to isomorphism in exactly the following cases:

(a) n = ε, i.e. d = 1 (then S ∼= GF(q)[x]/(xn));
(b) n = ε + 1, (ε, q − 1) = 1 (then S ∼= GR(q2, p2)[x]/(x2 − pe, px));
(c) (ε, q − 1) = 1, (ε, p) = 1 (then S ∼= GR(qd, pd)[x]/(xε − pe, pd−1xρ), ρ =

n − (d − 1)ε).

Some estimates of the number of classes of isomorphic GE-rings for a fixed parameters
q, n, ε are given in [73]. In general the isomorphism problem for GE-rings with given
parameters q, n, ε is still open.

The pair of GE-rings Z9[x]/(x2 − 3, 3x) and Z9[x]/(x2 − 6, 3x) gives the sim-
plest example of finite non-isomorphic rings with isomorphic additive and multiplicative
groups [141]. Another example: Z4[x]/(x2 − 2) and Z4[x]/(x2 − 2x − 2).
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5.1.2. Systems of linear equations over a GE-ring Here S is a GE-ring with radical N =
πS, nilpotency index n � 1 and residue field S = GF(q) of characteristic p. Let us
consider a system

(5.7)Ak×mx↓ = b
↓
k×1

of k linear equations in m variables over the ring S. A solvability criterion of this system,
results on the number of solutions and a description of the algebraic structure of the set of
solutions are based on the following notions.

We say that a matrix Bk×m over S is (row) equivalent to A and write A ∼ B (resp.

A
rw∼ B) if B can be obtained from A by a finite series of elementary transformations

(resp. of rows). Condition A ∼ B (A
rw∼ B) is equivalent to the equality B = UAV (resp.

B = UA), where U , V are invertible matrices.

PROPOSITION 5.5. Any matrix Ak×m over the ring S is equivalent to a unique diagonal
matrix of the form

(5.8)

K(A) = diag
(
πs1, . . . , πst

)
, 0 � s1 � s2 � · · · � st � n, t = min{k,m}.

The matrix K(A) is called the canonical form of the matrix A. We define the signature
and (right) defect of A respectively by

(5.9)signA = [s1, . . . , st ], defA = s1 + · · · + st + (m − t)n.

PROPOSITION 5.6. Two matrices Ak×m, Bk×m over the ring S are equivalent if and only
if signA = signB. A square matrix A is invertible if and only if defA = 0.

The following result is a generalization of well-known criterion of Kronecker–Capelli.

THEOREM 5.7. A system of linear equations (5.7) is solvable if and only if

(5.10)sign
(
A, b↓) = sign

(
A, 0↓).

Under this condition the number of solutions of the system (5.7) is equal to qdefA.

In order to describe the set of all solutions of the system (5.7) let us consider first the
associated system of homogeneous linear equations:

(5.11)Ak×mx↓ = 0↓.

Under the condition (5.8) let

(5.12)K(A) = UAV, U ∈ S∗
k,k, V ∈ S∗

m,m, V = (V ↓
1 · · ·V ↓

t V
↓
t+1 · · ·V ↓

m

)
.

THEOREM 5.8. The set R(A) of solutions of the system (5.11) is a submodule of SS
(m)

with direct decomposition
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R(A) = VR
(
K(A)

) = S · (πn−s1V
↓
1

) .+ · · · .+ S · (πn−st V
↓
t

) .+ S · V ↓
t+1

.+ · · ·
(5.13)

.+ S · V ↓
m.

The system (5.7) is solvable exactly if the column Ub↓ of length k has the form

(5.14)Ub↓ = (πs1d1, . . . , π
st dt , 0, . . . , 0

)T
, for some d1, . . . , dt ∈ R,

and then the set of all solutions of this system is

(5.15)c↓ + R(A), where c↓ = Ud↓, d↓ = (d1, . . . , dt , 0, . . . , 0)T .

Some others approaches to the solution systems of linear equation over GE-rings and
other finite rings are in [105–110,112].

5.1.3. Exponent of congruence-subgroup of a GE-ring For a GE-ring S the parameter
exp(e+N) can be calculated exactly. In this case parameter μ(S) in (2.8) equals ω in (2.10)
for “almost” all values of parameters q, n, ε corresponding to S.

Under the conditions of Theorem 5.1 we can state that

(5.16)πε = c0 + c1π + · · · + cε−1π
ε−1 = pv, where v ∈ S∗.

A GE-ring (5.5) is called non-stable if

q = p; ε = pb(p − 1), for some b ∈ N0;
(5.17)n > pb+1; c0 = pv, v = e.

Otherwise the GE-ring S is said to be stable.
The simplest example of a non-stable ring is Z2d for d � 3. Some series of other exam-

ples are given in [224].

THEOREM 5.9. (See [296].) If S is a stable GE-ring, then exp(e + N) = pω.

For a non-stable GE-ring (5.5) with a root π of the polynomial E(x) let us define a
parameter δ by the conditions:

(5.18)

δ =

⎧⎪⎪⎨⎪⎪⎩
min{‖v − e‖, pb}, if p � 3;
1, if p = 2, b = 0;
min{‖v − e − π + π2‖, 3}, if p = 2, b = 1;
min{‖v − e − π2b−1 + π2b + π2b+2b−2‖, 2b + 2b−1}, if p = 2, b � 2.

THEOREM 5.10. (See [224].) Let S be a non-stable GE-ring. Then

(5.19)exp(e + N) = p&, where & = max

{]
n − pb − δ

ε

[
+ b, b + 1

}
.

In some cases it is possible to present exp(e + N) in a more explicit form.



Finite Rings with Applications 237

THEOREM 5.11. (See [224].) Let S be a nonstable ring. If p � 3, then

(5.20)exp(e + N) =
{
pω−1, if pb < ρ � pb + δ;
pω, otherwise;

if p = 2, then

(5.21)exp(e + N) =
⎧⎨⎩ 2ω−2, if ρ + ε � δ, d � 4;

2ω−1, if ρ � δ < ρ + ε, or ρ + ε � δ, d = 3;
2ω, if δ < ρ.

5.1.4. A ring of polynomial transformations of a GE-ring [287] A function f : S → S is
called a polynomial transformation of the ring S if there exists a polynomial F(x) ∈ S[x]
such that f (a) = F(a) for all a ∈ S. We shall write that f = FS and say also that F(x) is
a polynomial presentation of the transformation f .

The set P(S) of all polynomial transformations of the ring S is a ring relative to addition
and (pointwise) multiplication of functions. Consider the epimorphism ψ : S[x] → P(S)

defined by the rule ψ(F(x)) = FS . Then

(5.22)P(S) ∼= S[x]/Kerψ.

In order to describe P(S) we need to describe Kerψ .
Note that polynomial presentations of transformations of the finite field S are connected

with its characteristic polynomial xq − x ∈ S[x]. Properties of the polynomial Φ(x) =
xq − x ∈ R are important also in our investigations. It is evident that Φ(a) ∈ πS for every
a ∈ S.

PROPOSITION 5.12. The map ΦS : S → πS is surjective. For every element b ∈ πS there
exist exactly q different elements a ∈ S with the property Φ(a) = b and any two of them
are different modulo πS.

Let us consider the system of polynomials

(5.23)

Φ0(x) = Φ(x) = xq − x, Φt (x) = Φt−1(x)
q − πqt−1Φt−1(x), t ∈ N;

and put

(5.24)δt = qt+1 − 1

q − 1
.

PROPOSITION 5.13.
(a) For t � 0 there are equalities

(5.25)degΦt(x) = qt+1, Φt (S) = πδt S.

(b) For every t � 0 and any elements ρ, ρ0, . . . , ρt−1 ∈ S, b ∈ S there exists an element
a ∈ S satisfying the conditions:

a = ρ, Φ0(a) = πδ0r0, r0 = ρ0; . . . ;
Φt−1(a) = πδt−1rt−1, rt−1 = ρt−1; Φt(a) = πδt b.
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For any i ∈ N0 let us consider its p-adic decomposition i = i0 + qi1 + · · · + qhih,
0 � it � q − 1, t ∈ {0, . . . , h}, and define a polynomial Fi(x) ∈ S[x] by the rule

Fi(x) = Φ0(x)
i0Φ1(x)

i1 · · ·Φh(x)
ih .

Then F0 = e and degFi(x) = qi for i ∈ N. Introduce also the following functions on N0:

αq(t) =
[
t

q

]
+
[

t

q2

]
+ · · · , βq(k) = min

{
t : αq(t) � k

}
,

and note that q|βq(k) for every k ∈ N0. Below m = (1/q)βq(n).

THEOREM 5.14.
(a) The ideal Kerψ in (5.22) is generated by the system of polynomials

Fm(x), πεm−1Fm−1(x), . . . , π
ε1F1(x),

where εi = n − αq(qi), i ∈ {1, . . . , m − 1}.
(b) Any polynomial transformation g ∈ P(S) has a polynomial presentation of the form

g = GS, where

G(x) = G0(x) + G1(x)F1(x) + · · · + Gm−1(x)Fm−1(x),

(5.26)degGi(x) < q.

(c) A transformation g of the form (5.26) is a permutation on S exactly if G0(x) presents
a permutation on the field S = GF(q) and polynomial G1(x)−G′

0(x) has no roots
in this field.

(d) ∣∣P(S)
∣∣ = qq(nm−∑m−1

i=1 αq(qi)) = q
∑n

i=1 βq(i),∣∣P(S)∗
∣∣ = q!

qq

(
q − 1

q

)q ∣∣P(S)
∣∣.

In [330] some results about |P(S)| for any commutative f.r. S with identity are given.

5.1.5. Polynomial functions over integer residue rings Let S = Z/(N) be the ring of
residues modulo N . For any function f : S → S and t ∈ N the t-th difference 'tf (x) is
defined recursively by

'f (x) = f (x + 1) − f (x), 'tf (x) = ''t−1f (x).

Using the notations of the previous section set γ (t) = min{n, αp(t)}.

THEOREM 5.15. (See [61].) If S = Z/(N), N = pn, p is a prime, then the following
conditions are equivalent:

(a) f (x) ∈ P(S);
(b) ∀t ∈ N; Δtf (x) ≡ 0 (mod pγ (t));
(c) ∀t ∈ {1, . . . , pn − 1}; Δtf (x) ≡ 0 (mod pγ (t));
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(d) ∀t ∈ {1, . . . , pn − 1};∑s∈{0,...,t}(−1)t−s
(
t
s

)
f (x + ps) ≡ 0 (mod pγ (t));

(e) ∃f0(x), f1(x), . . . , fn−1(x) ∈ P(S): f (x + py) = f0(x) + pyf1(x) + · · · +
(py)n−1fn−1(x).

Any function f ∈ P(S) can be presented in the form

f (x) =
∑

t∈{0,...,βp(n−1)}
ctx(x − 1) · · · (x − t + 1),

where t !ct ≡ Δtf (0)
(
mod pn

)
.

For any N ∈ N let β(N) = min{t ∈ N: N | t !} (then β(pn) = βp(n)).

THEOREM 5.16. (See [195,352].) If S = Z/(N), N ∈ N, then any function f ∈ P(S) has
unique representation in a form

f (x) =
∑

s∈{0,...,β(N)−1}
bsx

s, where 0 � bs <
N

(s!, N)
.

See also [44].

5.2. Noncommutative chain rings (GEO-rings) [284,285]

Let now S be a noncommutative finite chain ring with its parameters given as in the begin-
ning of the Section 5.

Let R = GR(qd, pd), (q = pr), be a Galois subring of S with the property R = S (co-
efficient subring of S). Theorem 4.13 (about distinguished bases of an (R,R)-bimodule)
gives

PROPOSITION 5.17. There exists a generator π of N(S) and an automorphism τ ∈
Aut(R) such that

∀a ∈ R: πa = τ(a)π.

The automorphism τ is completely defined by a parameter λ ∈ {0, . . . , r − 1} satisfying
the condition

∀a ∈ R: τ(a) = apλ

.

Under the last condition we have ord τ = t = r
(r,λ)

and t |(ε, r). If t = 1, in particular, if
(r, ε) = 1, then S is commutative, i.e. a GE-ring.

Under the condition of Proposition 5.17 we call π a distinguished generator of the radi-
cal and τ an associated automorphism of the ring S.

Let R[x, τ ] be an Ore polynomial ring, i.e. a polynomial ring with the usual addition but
multiplication (on the right) defined by xa = τ(a)x, a ∈ R.
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THEOREM 5.18.
(a) A distinguishing generator π of N(S) is a root of a special Eisenstein polynomial:

E(x) = xtm − cm−1x
t(m−1) − · · · − c1x

t − c0 ∈ R[x; τ ], where

(5.27)ci ∈ pR, i ∈ {0, . . . , m − 1}; c0 /∈ p2R, if d > 1;
and either
(a1) ci ∈ Rτ = {a ∈ R: τ(a) = a}, i ∈ {0, . . . , m − 1}; or
(a2) n− (d − 1)ε = tk + 1, for some k ∈ {1, . . . , m− 1}, τ(ck)− ck ∈ pd−1R \ 0,

and ci ∈ Rτ , for i ∈ {0, . . . , m − 1}, i �= k.
(b) Let ρ = n − (d − 1)ε. Then ρ ∈ {1, . . . , ε} and there exists an isomorphism

S ∼= R[x; τ ]/I,
(5.28)where I = E(x)R[x; τ ] + pd−1xρR[x; τ ] = (E(x), pd−1xρ

)
.

(c) For any special Eisenstein polynomial (5.27) the ideal I of the form (5.28) is a two-
sided ideal and the ring (5.28) is a chain ring with its parameters as described.

(d) The center Z of the ring S is Z = C = Rτ + Rτπ
t + · · · + Rτπ

tk in case (a1), and
Z = C + pd−1Rπtk in case (a2).

A weaker version of this theorem was obtained in [72].
In view of this result we call a noncommutative chain f.r. also a Galois–Eisenstein–Ore-

or GEO-ring. In case (a1) the GEO-ring S can be represented as a quotient ring of some
prime principal ideal ring (a generalization of Proposition 5.2), in case (a2) it cannot be
represented in such a form [285].

THEOREM 5.19. (See [333].) A GEO-ring S is uniquely defined by its parameters
n, d, q, λ up to isomorphism exactly in the following cases.

(a) n = ε (then S = R[x, τ ]/(xε));
(b) n = ε + 1, (q − 1,m(pλt − 1)/(pλ − 1)) = 1 (then S = R[x, τ ]/(xε − p, xn)));
(c) n > ε + 1, (q − 1,m(pλt − 1)/(pλ − 1)) = (q − 1)/(p(λ,r) − 1) (then S =

R[x, τ ]/(xε − p, xn)).

Related sources: [9,11,12,97,98,175].

6. Finite (quasi-)Frobenius rings and bimodules

Let A,B be f.r. with identity. Recall that an Abelian group M is called an (A,B)-bimodule
(AMB ) if it is left A-module, a right B-module and

∀a ∈ A, b ∈ B, α ∈ M: a(αb) = (aα)b.

For any subsets I ⊆ A, J ⊆ B,N ⊆ M define the right annihilator of I in M by ρM(I) =
{β ∈ M: Iβ = 0}, and by analogy define λM(J ), the left annihilator of J in M , λA(N),
the left annihilator of N in A, ρB(N), the right annihilator of N in B.

A bimodule AMB is called quasi-Frobenius (QF-bimodule) [27], or a duality context
[116], if it is faithful from the left (λA(M) = 0) and from the right (ρB(M) = 0); for every
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maximal left ideal I <max AA its (right) annihilator ρM(I) is an irreducible B-module,
and for every maximal right ideal J <max BB its (left) annihilator λM(J ) is an irreducible
A-module. A ring R is called quasi-Frobenius (QF-ring) if the regular bimodule RRR is
QF.

EXAMPLE 6.1. Any principal ideal f.r. R in particular R = Zm, is a QF-ring. Indeed, if
R = Zm and I <max RR then I = pR, where p | m and p is a prime. Therefore ρR(I) =
dR, where d = m/p, and dR is an irreducible (minimal) ideal of R of cardinality p.

EXAMPLE 6.2. The bimodule AMB , where A = Mm(P ), B = Mn(P ) are matrix rings
over P = GF(q), and M = Mm,n(P ) is the space of m × n-matrix, is a QF-bimodule.

THEOREM 6.3. (See [193,244].) For a finite field P and a finite group G the group ring
PG is a QF-ring.

6.1. Characterizations of QF-bimodules

Let End(MB) and End(AM) be the rings of endomorphisms of MB and AM , where the
elements of End(AM) act on elements of M from the right, and the elements of End(MB)

act on elements of M from the left. Then we can consider the ring B as a subring of the
ring End(AM) identifying b ∈ B with the map b̌ :M → M , b̌(x) = xb. Symmetrically we
can consider the ring A as a subring of the ring End(MB), identifying a ∈ A and the map
â :M → M , â(x) = ax [26,65,116].

6.1.1. Characterizations in terms of categories and annihilators Recall that a module
AM is called injective (a cogenerator in the category A− Mod) if for any module AN , any
submodule K � AN , and any homomorphism ϕ : AK → AM there exists an extension
of ϕ to a homomorphism ψ : AN → AM (and so AM contains isomorphic images of all
irreducible A-modules [116,396]).

THEOREM 6.4. (See [27,116,163].) For a bimodule AMB the following conditions are
equivalent.

(a) AMB is a (finite) QF-bimodule.
(b) AM is a finite injective cogenerator and B = End(AM).
(c) MB is a finite injective cogenerator and A = End(MB).
(d) A = End(MB), B = End(AM) and λM(ρB(L)) = L, ρM(λA(N)) = N for all

submodules L � AM and N � MB .
If AMB is a QF-bimodule then also λA(ρM(I)) = I , ρB(λM(J )) = J , for every left ideal
I � AA and right ideal J � BB .

6.1.2. Socle characterization of QF-bimodules Recall that the nil-radical N = N(R) of
a f.r. R coincides with the Jacobson radical of R and can be defined as the intersection of
all right maximal ideals of R.

The socle of AM is a notion dual to the notion of Jacobson radical, it is the sum S(AM)

of all left minimal (irreducible) submodules of AM . We can represent it also as the right
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annihilator of N = N(A) in M: S(AM) = ρM(N) = {α ∈ M: Nα = 0}. In fact the
A-module S(AM) is a left module over the top-factor A = A/N where the multiplication
of α ∈ S(AM) by a = a + N ∈ A is defined as aα = aα. There is the following useful
addition to Theorem 6.4

THEOREM 6.5. (See [163,306].) A faithful bimodule AMB is QF iff
(e) S(AM) = S(MB) = S and ASB is a QF-bimodule.

EXAMPLE 6.6. The ring R of all upper-triangle 2 × 2-matrices over a field P is not a
QF-ring. In fact, N(R) is the subset of all matrices from R with zero diagonal; S(RR) =
λR(N(R)) is the subset of all matrices with zero first column; S(RR) = ρR(N(R)) is the
subset of all matrices with zero second row. So S(RR) �= S(RR).

The equivalence of statements (a, b, c) of Theorem 6.4 permits the introduction of the
following definition: a module AM is called a QF-module if the natural bimodule AMB ,
where B = End(AM) is a QF-bimodule.

6.2. Existence and construction of finite QF-modules [163]

There is natural question: for a given f.r. A does there exist a QF-module AM?

6.2.1. Character module Let AM be a finite module and let M# = HomZ(M,Q/Z) be
the group of rational characters of the group (M,+) with the natural addition. Then [246]

(6.1)(M#,+) ∼= (M,+), M## = M.

The last equality is a natural identification by understanding the element x ∈ M as a
character of the group (M#,+), where the action is given by x(ω) := ω(x) for all ω ∈ M#.

Since M is a left A-module we can consider M# as a right A-module by defining

(6.2)∀ω ∈ M#, a ∈ A, x ∈ M: (ωa)(x) := ω(ax)

Symmetrically, if MB is a right B-module then M# is a left B-module with (bω)(x) :=
ω(xb) for all ω ∈ M#, x ∈ M and b ∈ B.

For subgroups N � (M,+), W � (M#,+) define their map-annihilators:

N⊥ := {ω ∈ M#: ∀x ∈ N ω(x) = 0
}
,

W⊥ := {x ∈ M: ∀ω ∈ W ω(x) = 0
}
.

Then

(6.3)W⊥ � (M,+), N⊥ � (M#,+), N⊥⊥ = N, W⊥⊥ = W.

PROPOSITION 6.7. Let AMB be a bimodule and N � (M,+), W � (M#,+). Then

N � AM ⇔ N⊥ � M
#
A, W � BM

# ⇔ W⊥ � MB.

So we have a 1–1 Galois correspondence between submodules of AM (resp. of MB ) and
submodules of M#

A (resp. of BM
#).
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6.2.2. Construction of QF-modules Let M = A be a f.r. (with identity). Then there are
the bimodules AAA and AA

#
A. and hence the annihilator of a left (right) ideal of A is a right

(left) submodule of A#. But even more is true.

PROPOSITION 6.8. Let I � AA, J � AA, L � AA
# and N � A

#
A then

(6.4)ρA#(I ) = I⊥, λA#(J ) = J⊥. ρA(L) = L⊥, λA(N) = N⊥.

Now we have the following existence theorem for QF-modules.

THEOREM 6.9. For every f.r. A with identity the module AA
# is a QF-module (i.e. AA

#
A is

a QF-bimodule).

See also [167,198,380].

6.3. Frobenius rings and bimodules

6.3.1. Definitions, characterizations and examples [163,179,193,281,398] A QF-ring R

is called Frobenius if RR
∼= RS(R), and RR

∼= S(R)R . Any principal ideal f.r. is a
Frobenius ring. We have the following characterizations of Frobenius f.r.’s.

A character ε ∈ R# is called left generating or left admissible [74] or left distinguished
[300] if R# = Rε. The last equality is equivalent to the equality λR(ε) = 0 which means
that the kernel Ker ε = ε⊥ of the homomorphism ε :R → Q/Z contains no nonzero left
ideals. A character that is left and right generating is called a generating character.

THEOREM 6.10. (See [398].) For a f.r. R every left (or right) generating character is
generating, and the following statements are equivalent:

(a) R is a Frobenius ring.
(b) R has a (left) generating character ε.
(c) There exists an isomorphism ϕ : RR → RR

#.
(d) There exists an isomorphism ψ :RR → R

#
R .

There exist finite non-Frobenius algebras that are, however, QF-algebras [398].
For a f.r. there exists more simple criterion for it to be Frobenius.

THEOREM 6.11. (See [179].) A f.r. R is a Frobenius ring iff S(RR) is a left principal
ideal.

REMARK. Theorems 6.10, 6.11 give an interesting continuation of the series of

(LEFT) ⇒ (RIGHT) theorems for f.r.’s.

1. If R is a f.r. with identity and any two-sided idempotent ideal of R is left principal
then R is a Wedderburn ring and any idempotent ideal is right principal (Theorem 1.7).

2. If R is a f.r. and any two-sided ideal of R is left principal then R is a PIR and any two
sided ideal of R is right principal (Theorem 3.1).
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3. If R has a left generating character, then R has a right generating character (Theo-
rem 6.10).

4. If S(RR) is a left principal ideal then S(RR) = S(RR) is right principal ideal
(Theorem 6.11).

In analogy with the definition of a Frobenius ring we call a finite QF-bimodule a AQB

Frobenius bimodule, if

(6.5)AA
∼= AS(Q), and BB

∼= S(Q)B;
The condition (6.5) gives some hard restriction on rings A,B.

PROPOSITION 6.12. (See [305].) Let AQB be a Frobenius bimodule. Then A ∼= B.

Whether in this situation that A ∼= B is an open question?
The following result proves in particular the existence of Frobenius bimodules.

THEOREM 6.13. For every f.r. A with identity there exists an isomorphism of bimodules

(6.6)AAA
∼= AS(A#)A.

The submodules AS(A#) and S(A#)A are cyclic and there exists a common generator ω

of these submodules such that rω = ωr for all r ∈ A. In particular AA
#
A is a Frobenius

bimodule.

COROLLARY 6.1. For every f.r. A with identity there exists a Frobenius (A,A)-bimodule.

6.3.2. Reduction from bimodules to rings [182,305] In order to generalize Theorem 6.11
on finite (A,A)-bimodules we introduce the following generalization to the noncommuta-
tive case of a construction from [193, Chapter 12, Ex. 10].

For an arbitrary f.r. A with identity and a finite bimodule AMA define the idealizer A�M

of M by A as the ring A×M with operations of addition and multiplication defined in the
following way: for every b, b′ ∈ A, β, β ′ ∈ M

(b, β) + (b′, β ′) = (b + b′, β + β ′);
(6.7)(b, β) · (b′, β ′) = (bb′, bβ ′ + βb′).

This construction is called also triangle extension of A by M . The algebra (A � M,+, ·)
is a f.r. with identity. If I � AA is a left ideal of the ring A, then I �M is a left ideal of the
ring A � M . If J is a left ideal of the ring A � M , then its projection on A: I = prA(J ) =
{b ∈ A: ∃α ∈ M(b, α) ∈ J } is a left ideal of the ring A, moreover J is a nilpotent ideal
exactly if I is a nilpotent ideal.

PROPOSITION 6.14. Let A be a f.r. with identity, let M be a finite (A,A)-bimodule and
let R = A � M . Then

(a) the multiplicative group of the ring R is R∗ = A∗ × M;
(b) the radical of R is N(R) = N(A) � M;
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(c) R/N(R) ∼= A/N(A);
(d) the left (right) socle of the ring R is equal to S(RR) = 0 � S(AM) (S(RR) =

0 � S(MA)).

Now the following characterization of QF-bimodules of type AMA can be given.

THEOREM 6.15. A faithful bimodule AMA over a f.r. A with identity is a (quasi-)Frobenius
bimodule if and only if its idealizer R = A � M is a (quasi-)Frobenius ring.

6.3.3. Description of finite Frobenius (A,A)-bimodules [305,308] The full description
of Frobenius bimodules of the form AQA with a given finite coefficient ring A is the fol-
lowing. For any fixed ϑ ∈ Aut(A) define a structure of (A,A)-bimodule on the group
(A#,+) by the conditions:

∀a ∈ A, ω ∈ A#, let aω ∈ A# be such that ∀x ∈ A: (aω)(x) = ω(xa),

and let ωa ∈ A# be such that ∀x ∈ A: (ωa)(x) = ω(ϑ(a)x).

We denote this bimodule by AA
ϑ
A. Note that for ϑ = 1 we have AA

1
A = AA

#
A.

THEOREM 6.16. For a faithful bimodule AQA the following conditions are equivalent:
(a) AQA is a Frobenius bimodule;
(b) S(AQ) = S(QA) = S and ASA is a Frobenius bimodule;
(c) S(AQ) is a left cyclic A-module;
(d) AQ ∼= AA

#;
(e) AQA

∼= AA
ϑ
A for some ϑ ∈ Aut(A).

The equivalency of statements (a) and (c) is a generalization of Theorem 6.11. Again
there is a

(LEFT) ⇒ (RIGHT) theorem (see Section 6.3.1)!

THEOREM 6.17. Let Inn(A) be the group of inner automorphisms of the ring A, then

∀ϑ, τ ∈ Aut(A)
(
AA

ϑ
A

∼= AA
τ
A

) ⇔ (ϑ ≡ τ
(
mod Inn(A)

)
.

The number of classes of isomorphic Frobenius (A,A)-bimodules equals to
|Aut(A)/ Inn(A)|.

6.4. Frobenius bimodules over a commutative f.r.

Let R be a commutative f.r. with identity. In this case for any faithful module RM there is
the evident inclusion R � End(RM)) and we can consider M as a natural bimodule RMR

such that

∀α ∈ M, r ∈ R: αr = rα.
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Moreover, in this case RM is a QF-module if and only if RMR is a QF-bimodule. The ring
R is a direct sum of local rings (Corollary 1.1); this decomposition implies a decomposi-
tion of the (bi-)module M into direct sum of (bi-)modules over local rings. Then RM is a
(quasi-) Frobenius module exactly if this is so for every component in the last decomposi-
tion.

THEOREM 6.18. (See [298,308].) For a faithful module RQ over a commutative local f.r.
R the following conditions are equivalent:

(a) RQ is a QF-module;
(b) RQ ∼= RR

#;
(c) S(RQ) is an irreducible module;
(d) S(RQ) is a cyclic module;
(e) RQ is a Frobenius module.

COROLLARY 6.2. A faithful module RQ over a commutative f.r. R is quasi-Frobenius if
and only if it is a Frobenius module.

For any (not necessary free) module RM the cardinality of smallest generating system
is denoted by rank(RM).

THEOREM 6.19. (See [298].) Let RQ be a QF-module over a local commutative f.r. R,
and dimR S(R) = t . Then rank(RQ) = t . Let a1, . . . , at be a basis of the space RS(R)

and ω be a generator of the socle S(RQ) of RQ, then there exists a system of elements
α1, . . . , αt ∈ S(Q) with the property

aiαj = δijω, i, j ∈ {1, . . . , t},
where δij is the Kronecker delta. Any such system generates the module RQ.

6.5. Frobenius rings and symmetric rings [163,298,308,398]

Note that in general if R is a noncommutative Frobenius ring it is not necessarily the case
that there exists isomorphism of Frobenius bimodules RRR and RR

#
R . Under condition (b)

of Theorem 6.10 the isomorphisms ϕ,ψ in statements (c), (d) can be chosen to be of the
form

(6.8)ϕ(a) = aε, ψ(a) = εa.

However in this case we cannot state that bimodules RRR and RR
#
R are isomorphic because

the isomorphisms (6.8) can be different. A finite ring R is called symmetric, if

(6.9)RRR
∼= RR

#
R.

Of course any symmetric ring is a Frobenius one. We have the following characterization
of symmetric rings. Let K(R) = Z〈ab − ba | a, b ∈ R〉 be the subgroup of (R,+),
generated by all differences ab − ba.
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THEOREM 6.20. A f.r. R is symmetric iff it has a generating character ε ∈ R# such that
ε(K(R)) = 0.

COROLLARY 6.1. If R is a symmetric ring then K(R) does not contain any nonzero left
or right ideals of R.

The converse of the latter statement is an open question.
The class of finite symmetric rings is large enough.

PROPOSITION 6.21. The following f.r. with identity are symmetric:
(a) all finite commutative Frobenius rings (in particular all finite commutative PIR);
(b) all finite Frobenius rings R with Aut(R) = Inn(R);
(c) every ring-direct sum of symmetric rings;
(d) full matrix rings over symmetric rings;
(e) every finite group ring over a symmetric ring.

COROLLARY 6.2. Every finite semisimple ring is symmetric.

Finally note that there exist finite Frobenius nonsymmetric rings.

EXAMPLE 6.22. Let P = GF(q) be a finite field with a nontrivial automorphism σ and
let P [x; σ ] be an Ore polynomial ring with multiplication defined for a ∈ P by xa =
σ(a)x. Then R = P [x; σ ]/(x2) is a GEO-ring (Section 5.2), and hence a Frobenius ring,
consisting of elements α = a0 + a1z, a0, a1 ∈ P , z = x + (x2) [320]. The unique proper
ideal of R is N(R) = Rz = Pz. For a pair of elements α ∈ R and β = b0 + b1z ∈ R we
have

αβ − βα = (a1
(
σ(b0) − b0

)+ b1
(
σ(a0) − a0

))
z.

It is evident that the set of all such differences is Pz = Rz and K(R) = N(R) is a nonzero
ideal. So R is not a symmetric ring.

7. Finite rings with specific conditions [111,262]

7.1. Rings of fixed order

A f.r. R is called decomposable if it is a direct sum of two nonzero two-sided ideals, and
indecomposable otherwise. A f.r. with identity is decomposable exactly if it contains a
proper central idempotent.

THEOREM 7.1. (See [111].) Any f.r. is a direct sum of indecomposable ideals:

R = A1 ⊕ · · · ⊕ As, s � 1.

Such a decomposition is defined uniquely up to a permutation and isomorphism of sum-
mands, and for a ring with identity it is unique up to a permutation of summands.
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Here each summand Ai is a pi- ring for some prime pi , i.e. a ring of order pni

i , ni ∈ N.
Let N (k) (respectively Ne(k),N0(k)) be the set of classes of isomorphic indecom-

posable rings (respectively indecomposable rings with identity, indecomposable nilpotent
rings) of order k; let [R] be the class of rings isomorphic to R; and let (G)0 be the ring
with zero multiplication on Abelian group G.

THEOREM 7.2. (See [15,104,111].) For any prime p the following equalities hold:∣∣N (p)
∣∣ = 2;

Ne(p) = {[GF(p)
]}; N0(p) = {[(Zp,+)0

]}
.∣∣N (p2)∣∣ = 9;

Ne

(
p2) = {[GF

(
p2)], [GF(p)[x]/(x2)], [Zp2 ]};

N0
(
p2) = {[(Zp2,+)0

]
, [pZp3], [x GF(p)[x]/(x3)]}.∣∣N (23)∣∣ = 32,

∣∣Ne

(
23)∣∣ = 7,

∣∣N0
(
23)∣∣ = 18;

for p � 3:∣∣N (p3)∣∣ = 3p + 30,
∣∣Ne

(
p3)∣∣ = 8,

∣∣N0
(
p3)∣∣ = 3p + 15.

The parameters |Nx(p
4)| already have different values for the cases: p = 2, 3, p ≡

1 (mod 3), p ≡ 2 (mod 3) [111].
Now there exist descriptions of all:

• rings R of the order p5 [69,81,82];
• local rings R of characteristic p and order p6 with N(R)4 = 0 [164].

If |R| = pk , where p is a prime and k � 4, then R is a subring of a matrix ring over
some commutative ring, but this is false for k � 5 [41,367].

If n → ∞ then the number of semisimple rings of the order pn is exp((π2/9 +
O(1))

√
n ) [201].

Related sources about f.r. with the conditions on the order: [32,45,48,49,70,88,92,101,
103,113,128,134,135,151,202,327,328,331,342–344,351,371,383].

7.2. Nilpotent rings and rings with other conditions

For n → ∞ we have an asymptotic equivalence of functions [203,222]:∣∣N (pn
)∣∣ ∼ ∣∣N0

(
pn
)∣∣ ∼ p(4/27)n3

.

So “almost all” f.r. of a given order are nilpotent.
However nilpotent rings are difficult to investigate. The results of [111,221] give a

chance to classify nilpotent rings of order p4. If R is an indecomposable right principal
ideal ring and Rn = 0, Rn−1 �= 0, then R is a commutative chain ring and |R| = pn for a
prime p.

A nilpotent f.r. R of characteristic m can be considered as an ideal of the f.r. R′ = R×Zm

with identity (0, 1), with componentwise addition and the multiplication defined by the
formula
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(r, k)(s, l) = (rs + rl + ks, kl).

Some other results about nilpotent f.r. see in [54,55,60,131,144,161,208,220,346,347,
361,363,372,374].

Let us introduce on a f.r. R an operation called composition and denoted ◦ by the condi-
tion:

∀x, y ∈ R: x ◦ y = x + y − xy.

Then (R, ◦) is a semigroup with the identity 0. The set R◦ of all invertible elements of the
semigroup (R, ◦) is a subgroup, called the group of quasi-regular elements of the ring R.
If R contains an identity e, then there exists an isomorphism σ :R◦ → R∗ by the rule
σ(x) = e − x [187].

There exists a description of finite rings with any of the following properties:
(a) the group (R,+) or R0 is cyclic [262];
(b) the group R∗ is cyclic (Gilmer ring [102,148,321]);
(c) |Dr(R)|2 = |R| (Corbas ring [79]);
(d) the product of any two zero divisors is zero [10,80];
(e) charR = p2, N(R)2 = 0 [10,80];
(f) R is non-nilpotent and (R,+) is a group of type (pa, pb), or (pa, pb, p) [33,35,36,

104,111,391,392];
(g) D(R) is an ideal of R and D(R)3 = 0 [67,68].
See additionally the results about:

– f.r. with the conditions on (R,+): [15,34,38,39,114,130,312,376,385,390];
– f.r. with the conditions on R0, R∗, (R, ·): [13,14,100,117,311,324,325,349,350,356];
– f.r. with the conditions on D(R),N(R): [6,66,132,133,138,139,150,205,250,252,322,

323,382,401];
– rings with the conditions on ideals and subrings: [43,86,149,206,210,248,249,251,339–

341,369].

8. Identities and varieties of finite rings

8.1. Finite rings and Cross varieties

Let F = Z〈x1, x2, . . . , xi, . . .〉 be the free algebra on a countable system of independent
variables over Z, and let f (x1, . . . , xn) ∈ F \ {0}. We say that a ring R satisfies an identity
f (x1, . . . , xn) = 0 if

∀r1, . . . , rn ∈ R: f (r1, . . . , rn) = 0.

A ring R is called a polynomial identity ring (PI-ring) if it satisfies some polynomial
identity with a coefficient 1. Every f.r. R is PI-ring because for n > |R| it satisfies the
standard identity of degree n:∑

σ∈Sn

(−1)σ xσ(1) · · · xσ(n) = 0.

Let B be the system of left parts of the identities of the ring R and T (B) be the ideal of F
generated by all polynomials of the form f (g1, . . . , gn), where f ∈ B, g1, . . . , gn ∈ F .
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A system B is called a basis of identities of the ring R, if T (B) = T (R) is the set of all
identities of R.

The class Var(R) of all rings satisfying identities of the set T (R) is called the variety
generated by R.

A variety V is called locally finite if any finitely generated ring S ∈ V is finite.
A ring is called critical if it does not belong to the variety generated by its proper factors.

THEOREM 8.1. (See [219,254].) A variety Var(R), generated by some f.r. R is a Cross
variety, i.e. it is a locally finite variety with a finite basis of identities, containing only a
finite set of pairwise nonisomorphic critical rings, each of which is finite. Vice versa, any
Cross variety in the class of associative rings is generated by some f.r.

THEOREM 8.2. (See [219,254].) A variety V of rings is a Cross one if and only if the
ideal T (V ) of its identities in F contains polynomials of the following form: mx, for some
m ∈ N, and x1 · · · xn − f (x1, . . . , xn), where f ∈ F is a polynomial with monomials of
degree not less than n + 1. In this case every nilpotent ring A of the variety V satisfies the
equality An = 0 and the ideal T (V ) contains some polynomial xk − xl , 1 � k < l. Such a
variety is generated by its critical rings.

THEOREM 8.3. (See [269,271].) Critical rings are subdirect indecomposable. A f.r. R with
identity is critical exactly if the matrix ring Rn,n is critical.

THEOREM 8.4. (See [292].) A finite principal ideal ring is critical if and only if it is
primary, i.e. is a full matrix ring over a chain ring.

One of the main ways to prove that a given f.r. R is critical is to build a critical polyno-
mial for this ring, i.e. a polynomial which is an identity for any proper subring and quotient
ring of R but does not belong to the ideal T (R) of all identities of R. For example a critical
polynomial of the field R = GF(q), q = pr , is

f (x) =
∏

t |r,t �=r

(
xpt − x

)
,

THEOREM 8.5. (See [292].) Let S be a chain ring with residue field S = GF(q) and nilpo-
tency index of its radical equal to n. Then f (x)(yq − y)n−1 is a critical polynomial of S.

Let NcritC(k) be the set of classes of isomorphic critical rings of order k. Using the
description of f.r.’s of orders p, p2, p3 (Theorem 7.2) it is possible to describe the critical
rings of these orders.

THEOREM 8.6. For a prime p

Ncrit(p) = {[GF(p)
]
,
[
(Zp,+)0

]}
,∣∣Ncrit

(
p2)∣∣ = 8,

∣∣Ncrit(8)
∣∣ = 18,

∣∣Ncrit
(
p3)∣∣ = 3p + 14, for p � 3.

Related sources: [28,29,42,255,274,314–316,384].
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8.2. Bases of identities of some finite rings

The bases of identities (BI) are described only for a few classes of rings. For a field GF(q)

a BI in the class of associative commutative rings consists of the polynomials xq − x, px.

THEOREM 8.7. (See [270].) A basis of the identities of the matrix ring M2(GF(q)) is
described by polynomials

(xy)z − x(yz),
(
xq − x

)(
yq2 − y

)([x, y]q−1 − 1
)
,(

xq − x
) ◦ (yq − y

)
)q − (xq − x

) ◦ (yq − y
)
,

where [x, y] = xy − yx, x ◦ y = xy + yx.

There are also known BI’s of the rings Mn(GF(q)), for n = 3, 4 [145–147]; and
M2(GR(q2, p2)) [309,310].

See also [257,260,368].

8.3. Identities of Galois and GE-rings

Let R = GR(qn, pn) be a Galois ring. Consider the polynomials Ψj (x) ∈ F that are
defined recursively by the equalities

Ψ0(x) = xq − x, Ψt (x) = Ψt−1(x)
q − pqt−1Ψt−1(x), t � 1.

THEOREM 8.8. (See [286].) The set of polynomials

pjΨ0(x1) · · ·Ψ0(xu)Ψ1(y1) · · ·Ψ1(yv) · · ·Ψt(z1) · · ·Ψt(zw),

satisfying the conditions

j + 1

q − 1

(
u(q − 1) + v

(
q2 − 1

)+ · · · + w
(
qt − 1

)) = n,

is a basis of the identities of a ring R = GR(qn, pn) in the class of associative–
commutative rings of the characteristic pn.

A description of bases of identities of GE-rings with parameters (5.4) in the case ε > 1
is an open question.

We can only state that the system of parameters (5.4) does not define a basis of GE-ring
identities uniquely. Indeed, let R = GR(42, 22) and let α ∈ R be an element such that
α2 − α /∈ 2R. Then

S1 = R/
(
x3 − 2, x5), S2 = R/

(
x3 − 2α, x5)

are two GE-rings with the same parameters (5.4): q = 4, n = 5, d = 2, ε = 3. However,
the polynomial f (x) = Ψ0(x)

4 − 2Ψ0(x) is an identity for S1, but not an identity for S2.
In view of this remark it is interesting to solve the following problems.

PROBLEMS.
1. To describe systems of parameters q, n, d such that any two GE-rings with these

parameters have the same identities;
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2. To describe identities of the variety V(GE(q, n, d)) generated by all GE-rings with
parameters q, n, d;

3. To estimate the number of different varieties V(R), where R is a GE-ring with the
parameters q, n, d (weak isomorphism problem).

8.4. Generalized identities of GE-rings

Let S be GE-ring with the same parameters (5.4), and let S0[X] = S0[x1, x2, . . .] be
the associative-commutative ring of polynomials in a countably set of variables X =
{x1, x2, . . . , y1, y2, . . . , z1, z2, . . .} with zero constant term.

A polynomial f (X) = f (x1, . . . , xn) ∈ S0[X] is called generalized identity of the
ring S if

∀a1, . . . , an ∈ S: f (a1, . . . , an) = 0.

Let B be a system of generalized identities of the ring S and let T (B) be the ideal of S0[X]
generated by all polynomials of the form g(f1(X), . . . , fm(X)), where g(x1, . . . , xm) ∈ B,
f1(X), . . . , fm(X) ∈ S0[X].

A system B is called a basis of generalized identities of the ring S (in the variety of
associative-commutative rings), if T (B) is the set of all generalized identities of the ring S.

THEOREM 8.9. (See [287].) Under the conditions (5.23), (5.24) the system of polynomials

(8.1)πjΦ0(x1) · · ·Φ0(xu)Φ1(y1) · · ·Φ1(yv) · · ·Φt(z1) · · ·Φt(zw),

where j + uδ0 + vδ1 + · · · + wδt = n, is a basis of generalized identities of the ring S in
the variety of associative-commutative rings.

9. Complete system of functions over finite rings

Let A be a set of cardinality |A| = k, and let PA be the set of all functions
f :An → A, n ∈ N. A selector or projection is any function εni :An → A of the form
εni (x1 · · · xn) = xi . Denote by E the set of all selectors. Say that xi is a fictitious vari-
able of a function f (x1, . . . , xn) if f (a1, . . . , ai−1, xi, ai+1, . . . , an) = constant for every
a1, . . . , ai−1, ai+1, . . . , an ∈ A.

The closure of a subset G ⊆ PA is defined as a minimal subset [G] ⊆ PA with the
properties:

1. G ∪ E ⊆ [G];
2. if f (x1, . . . , xn), g1, . . . , gn ∈ [G], then f (g1, . . . , gn) ∈ [G];
3. if f (x1, . . . , xn) ∈ [G], then any function obtained from f by addition or deleting of

a fictitious variable belongs to [G].
A set of functions G ⊆ PA is called complete, if [G] = PA.
We shall say that a system G of functions preserves an equivalence relation ρ on A, if

for every function f (x1, . . . , xn) ∈ G and for any (a1, . . . , an), (b1, . . . , bn) ∈ An(
aiρbi, i ∈ {1, . . . , n}) ⇒ (

f (a1, . . . , an)ρf (b1, . . . , bn)
)
.

If G is a full system, then it does not preserve any nontrivial equivalence relation on A.
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Let now (A,+, ·) be a finite, not necessary associative, ring. Then any complete sys-
tem G of functions on A satisfy the following conditions.

F1. System G does not preserve nontrivial congruences on A.
F2. Class [G] contains functions x + y and the set const of all constant functions.
F3. Class [G] contains all functions ax, xa, a ∈ A.
F4. Class [G] contains function xy.

THEOREM 9.1. A system G of functions on a finite, not necessarily associative, ring A

with nonzero multiplication is complete iff it satisfies the conditions F1, F2, F4.

A ring is called polynomially complete if the system G = {xy, x+y, const} is complete.

COROLLARY 9.1. (See [290].) A finite, not necessarily associative, ring A with nonzero
multiplication is polynomially complete iff it is simple.

For associative rings see [57,183,247] (firstly this result was first obtained by A.V. Kuz-
netsov in 1955 [258, p. 106]).

We call a ring A with nonzero multiplication linearized if for any G ⊆ PA

(F1, F2, F3) ⇒ F4,

i.e. if completeness of G is equivalent to F1–F3.

THEOREM 9.2. (See [289].) Let A be a ring of order pn, n > 1, with cyclic additive group
and G ⊂ PA. Then

[G] = PA ⇔ (F1, F2).

THEOREM 9.3. (See [290].) A matrix ring Mn(R) is linearized iff R is linearized.

THEOREM 9.4. (See [290].) Let R1, R2 be finite linearized rings and each of them contains
an identity or (|R1|, |R2|) = 1. Then R = R1 ⊕ R2 is a linearized ring.

THEOREM 9.5. (See [290].) Let S1, . . . , St be local quasi-Frobenius rings, such that each
of them has a non-simple characteristic. Then the ring (1.4) is linearized.

See also [288,329].

II. Applications of finite rings

10. Standard bases of polynomial ideals over a commutative chain ring

In this section R is a commutative chain f.r. (GE-ring, Section 5.1). Since R is a com-
mutative local ring all results of Section 2.3 for polynomials in R[x] are valid. Here we
discuss “deeper” aspects of polynomials and ideals in R[x] and R[x] = R[x1, . . . , xk] al-
lowing the calculation certain combinatorial parameters connected with some applications
of polynomial rings.
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10.1. Canonical generating systems of a polynomial ideals of one variable

Suppose that the nilradical of the ring R has the form N = N(R) = πR and has nilpotency
index n > 1. Then the lattice of the ideals of the ring R is a chain

(10.1)R ) πR ) · · · ) πn−1R ) πnR = 0.

Let’s also fix the parameters

(10.2)p = charR, |R| = |R/πR| = q = pr.

10.1.1. Main properties of canonical generating systems (CGS) The well-known Hilbert
theorem state that any ideal I * R[x] has a finite generating system. Moreover under con-
dition (10.1) the ideal I has such a system of cardinality not more than n (see, e.g. [116,
Theorem 2, Section 17.11]). Below there is a revised version of this result based on results
of [211], [357, Section 8].

Let us define the norm of an element r ∈ R, of a polynomial G(x) = gmxm + · · · +
g1x + g0 ∈ R and of a subset M ⊆ R respectively by the equalities

‖r‖ = max
{
i ∈ {0, . . . , n}: r ∈ πiR

}
, ‖G‖ = min

{‖gs‖: s ∈ {0, . . . , m}},
(10.3)‖M‖ = min

{‖G‖: G ∈ M
}
.

We call a polynomial G(x) of degree m a right polynomial, if ‖gm‖ � ‖gs‖ (i.e. gs ∈ gmR)
for s ∈ {0, . . . , m}.

PROPOSITION 10.1. A right polynomial G(x) ∈ R of degree m divides a polynomial
F(x) = ∑

fix
i ∈ R with remainder exactly if ‖fi‖ � ‖gm‖ for i � m. Moreover, the

remainder Res(F/G) of the division of F(x) by G(x) is uniquely defined.

We say that G(x) divides F(x) modulo πd and write G(x) | F(x) mod πd , if F =
QG + πdH , where Q,H ∈ R.

THEOREM 10.2. (See [226,295].) Let I be a nonzero ideal in R and ‖I‖ = a0. Then I

contains a system of t + 1 � n − a0 right polynomials

(10.4)

G0(x), . . . , Gt (x) ∈ I, ‖Gs‖ = as, degGs(x) = ms, s ∈ {0, . . . , t},

with the properties:
(C1) ‖I‖ = a0 < a1 < · · · < at < n;
(C2) m0 > m1 > · · · > mt � 0;
(C3) if F(x) ∈ I and degF(x) < ms , s � 0, then F(x) = 0 if s = t and ‖F(x)‖ �

as+1 if s < t .
Any such system of polynomials has also the following additional properties:
(C4) If F(x) ∈ I and ‖F‖ � as , then

(10.5)Gs(x) | F(x) mod πas+1
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(here we suppose that at+1 = n) and

(10.6)F(x) ∈ (Gs(x), Gs+1(x), . . . ,Gt (x)
)
.

(C5) There is the equality

(10.7)I = (G0(x),G1(x), . . . ,Gt (x)
)
,

and every polynomial F(x) ∈ I can be presented as a sum

(10.8)F(x) = Q0(x)G0(x) + · · · + Qt(x)Gt (x),

such that degQsGs < ms−1 for s ∈ {1, . . . , t}, and the summands in this repre-
sentation are defined uniquely.

(C6) If s ∈ {0, . . . , t} and as � a < as+1, then

(10.9)I ∩ πaR = (πa−asGs(x),Gs+1(x), . . . ,Gt (x)
)
,

(10.10)
(
I : πa

) = (Fs(x), π
as+1−aFs+1(x), . . . , π

at−aFt (x), π
n−a
)
,

where F0(x), . . . , Ft (x) are polynomials with invertible highest coefficients, satis-
fying the conditions

(10.11)Gs(x) = πasFs(x), s ∈ {0, . . . , t}.
(C7) Under the condition (10.11) for any polynomial H(x) ∈ R there exists a unique

representation in the form

(10.12)H(x) = H0(x)F0(x) + · · · + Ht(x)Ft (x) + Ht+1(x),

where degHs(x)Fs(x) < ms−1 for s ∈ {1, . . . , t}, degHt+1(x) < mt , and
H(x) ∈ I is equivalent to the system of inequalities

(10.13)
∥∥Hs(x)

∥∥ � as, s ∈ {0, . . . , t + 1}, where at+1 = n.

Any system of polynomials (10.4) with the properties (C1)–(C3) is called a canonical
generating system (CGS) of the ideal I . The proof of this theorem in [295, Proposition 13]
contains an algorithm for building such a CGS.

10.1.2. The cardinality of a quotient ring of a polynomial ring An ideal I * R is called
monic, if it contains some monic polynomial. Evidently, this condition is equivalent to the
condition ‖I‖ = 0 and to the condition | R/I |< ∞.

THEOREM 10.3. (See [226, Corollary 16.7].) A monic ideal I * R has a CGS of the form

(10.14)F0(x), πa1F1(x), . . . , πat Ft (x),

were Fs(x) is a monic polynomial of degree ms , s ∈ {0, . . . , t},
m0 > m1 > · · · > mt � 0, 0 < a1 < a2 < · · · < at < n.

Under this condition the cardinality of the quotient ring R/I is

(10.15)|R/I | = q(m0−m1)a1+···+(mt−1−mt )at+mtn.
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10.1.3. Decomposition of a polynomial ideal into its product of primary ideals The CGS
of a polynomial ideal I * R makes it possible to construct the primary components of I .

Let us recall that an ideal I is called primary if for any K(x),H(x) ∈ R the condition
K(x)H(x) ∈ I , K(x) /∈ I implies that H(x)r ∈ I for some r ∈ N. A polynomial
G(x) ∈ R is called primary if G(x)R is a primary ideal. The last condition is equivalent
to that G is a power of some irreducible polynomial over the field R (see Section 2.3.3) or
G(x) = πsU(x) for some s ∈ {0, . . . , n}, U(x) ∈ R∗.

PROPOSITION 10.4. An ideal I with CGS (10.4) is a primary exactly if either a0 = 0 and
G0(x) is a primary monic polynomial or degG0(x) = 0 (i.e. I = (πa0)).

It is well known (see e.g. [24,403]), that any ideal I *R is the intersection (product) of a
finite set of two by two coprime primary ideals called primary components of the ideal I .
If I has a CGS

(10.16)πa0F0(x), πa1F1(x), . . . , πat Ft (x),

where the polynomials Fs(x) are monic, the canonical generating systems of its primary
components can be constructed based on the following results.

In accordance with property (C6), the equality

(10.17)I = (πa0
) ∩ (F0(x), π

a1F1(x), . . . , π
at Ft (x)

)
.

is true.

PROPOSITION 10.5. Let an ideal I *R have a CGS (10.14) and let F0(x) be a product of
coprime polynomials

(10.18)F0(x) = K0(x)H0(x),
(
K0(x),H0(x)

) = e.

Then for every s ∈ {1, . . . , t} the polynomial Fs(x) has a unique representation in the form

(10.19)Fs(x) = Ks(x)Hs(x),

where Ks(x), Hs(x) are monic polynomials with the properties

(10.20)Ks(x) | K0(x), Hs(x) | H 0(x),

Moreover, (Ks(x), Hs(x)) = e and the ideal I is the intersection of two coprime ideals

I = K ∩ H, K + H = (e), where

K = (K0(x), π
a1K1(x), . . . , π

atKt (x)
)
,

(10.21)H = (H0(x), π
a1H1(x), . . . , π

atHt (x)
)
.

A CGS of the ideal K obtained from the system of polynomials

(10.22)K0(x), πa1K1(x), . . . , πatKt (x)

by deleting of every polynomial πasKs(x) with degKs(x) = degKs−1(x).
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So if the ideal I of the ring R has a CGS (10.14), and the polynomial F0(x) has canon-
ical decomposition (see Section 2.3.3) of the form F0(x) = F

(1)
0 (x) · · ·F (r)

0 (x), then

every one of the polynomials Fs(x) has the form Fs(x) = F
(1)
s (x) · · ·F (r)

s (x), where
F

(i)
s (x) | F

(j)

0 (x) for j ∈ {1, . . . , r}, and the ideal I has the following representation
as an intersection (product) of two by two comaximal primary ideals:

I = I (1) ∩ · · · ∩ I (r) = I (1) · · · · · I (r), where

I (j) = (F (j)

0 (x), πa1F
(j)

1 (x), . . . , πat F
(j)
t (x)

)
, j ∈ {1, . . . , r}.

10.2. Standard bases coordinated with the norm (multivariate case)

From the application point of view one of the most important problems in the theory of
ideals in a commutative ring R[X] = R[x1, . . . , xk] is the membership problem: for an
ideal I = (χ) � R[X], given by some generating system χ , to verify whether F(X) ∈ I ,
where F(X) ∈ R[X]. This whether problem was solved for ideals in Lee algebras [348]
and for polynomial ideals over fields [59] by the construction of some standard bases,
called also Gröbner bases of the ideal. The same Shirshov–Buchberger algorithm allows
to find standard bases in any polynomial ideal over a Noetherian ring (see, e.g, [1]). We
call this algorithm a formal generalization of the Shirshov–Buchberger algorithm. In this
section a modification of the algorithm mentioned is presented, giving standard bases of
polynomial ideals over a commutative chain f.r. coordinated with the norm on the ring R

(see Section 10.1). These bases, named coordinated standard bases (CSB’s), can be viewed
as a generalization of Gröbner bases for fields and a generalization of the CGS from Sec-
tion 10.1. Using CSB’s one can solve not only membership problem, but also some other
classical computational problems: listing of representatives of cosets of the ideal I , build-
ing of the set of generators of syzygy module, decision of the systems of the polynomial
equations, etc. ([158,159,277,307]) (see Sections 10.2.3, 10.2.4).

10.2.1. Definition and characterization of coordinated standard bases Recall that a re-
flexive transitive and antisymmetric binary relation 
 on a set M is called an order on M .
An order 
 is called linear if any two elements of M are comparable. A linear order 
 is
called a well-ordering if it satisfies the descending chain condition.

Fix the set of variables X = {x1, . . . , xk}, k � 1. Let [X〉 = [x1, . . . , xk〉 be the semi-
group of commuting monomials over X. A linear order on [X〉 is called admissible if it is
multiplicative (∀u, v,w ∈ [X〉: u 
 v ⇒ uw 
 vw) and it is a well-ordering (equivalently
∀u ∈ [X〉: 1 
 u, see, e.g., [89]). The most used admissible orders are the following:
• The lexicographic order (lex): xi1

1 · · · xik
k 
lex x

j1
1 · · · xjk

k if and only if the first non-zero
number in the row j1 − i1, j2 − i2, . . . , jk − ik is positive.

• The degree-lexicographic order (deglex): xi1
1 · · · xik

k 
deglex x
j1
1 · · · xjk

k if and only if the
first non-zero number in the row (j1+· · ·+jk)−(i1+· · ·+ik), j1−i1, j2−i2, . . . , jk−ik
is positive.

• The degree-reversed-lexicographic order (degrevlex): xi1
1 · · · xik

k 
degrevlex x
j1
1 · · · xjk

k if
and only if the first non-zero number in the row (j1 + · · · + jk) − (i1 + · · · + ik), ik −
jk, ik−1 − jk−1, . . . , i1 − j1 is positive.
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Let R[X] = R[x1, . . . , xk] be a polynomial algebra over a commutative chain f.r. R
with parameters (10.1), (10.2). The subsemigroup

[R,X〉 = {au | a ∈ R, u ∈ [X〉}
of the semigroup (R[X], ·) is called a semigroup of terms. Any admissible order on [X〉
can be extended to [R,X〉 as follows: for a, b ∈ R and u, v ∈ [X〉:

(10.23)(au 
 bv) ⇔ ((‖a‖ > ‖b‖), or
(‖a‖ = ‖b‖, and u 
 v

))
,

where ‖a‖ is defined in (10.3). Any non-zero polynomial F ∈ R[X] can be represented as

(10.24)F = a1u1 + a2u2 + · · · + anun, a1u1 5 a2u2 5 · · · 5 anun,

where ai ∈ R \ 0 and the ui ∈ [X〉 are pairwise distinct monomials. The leading term, the
leading monomial and the leading coefficient of the polynomial F are defined to be

Lt(F ) = a1u1, Lm(F ) = u1, and Lc(F ) = a1.

It is assumed that Lt(0) = Lc(0) = 0. Note that for any F ∈ R[X] and U ∈ [R,X〉:
Lt(UF) = U Lt(F ) [159]. (This important property does not hold if we consider a formal
generalization of Shirshov–Buchberger algorithm. Such a generalization does not take into
account the norms of the coefficients of terms and instead of (10.23) the order used on
[R,X〉 is of the following form: (au 
 bv) ⇔ ((a = 0), or (b �= 0, and u 
 v)).)

The coefficient of a monomial v ∈ [X〉 in a polynomial F ∈ R[X] is denoted by
Cf (F, v). Let F,G,H ∈ R[X] with F �= 0,G �= 0, Lt(G) = au and let χ ⊂ R[X] \ 0. It
is said that:

(a) F reduces to H modulo G by eliminating v ∈ [X〉 (notation F
G−→ H [v]) if

Cf (F, v) = c �= 0, and there exist b ∈ R and w ∈ [X〉 such that c = ba, v = wu

and H = F − bwG,
(b) F reduces to H modulo G (notation F

G−→ H ) if F G−→ H [v] for some v ∈ [X〉,
(c) F reduces to H modulo χ (notation F

χ−→ H ) if F G−→ H for some G ∈ χ .
F is called normal modulo χ if F cannot be reduced modulo χ .
Let now ∗ χ−→ be the reflexive-transitive closure of the relation

χ−→. A polynomial H is
called a normal form of F modulo χ if it is normal modulo χ and F∗ χ−→ H . The set of all
normal forms of F modulo χ denoted by NF(F, χ). Let F,G ∈ R[X] \ 0 and

Lt(F ) = απau, Lt(G) = βπbv, where

α, β ∈ R∗, a, b ∈ {0, . . . , n − 1}, u, v ∈ [X〉.
Let w = g.c.d.(u, v) ∈ [X〉 and c = max{a, b}. Then there exist monomials u′, v′ ∈ [X〉,
such that u = wu′ and v = wv′. The polynomial

(10.25)S(F,G) = πc−av′α−1F − πc−bu′β−1G

is called the S-polynomial of F and G.
The following theorem is an analog of the composition lemma from the theory of Gröb-

ner bases over fields, called also diamond lemma (see, e.g., [1,89]).
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THEOREM 10.6. (See [158,159].) Let χ be a nonempty subset of an ideal I �R[X]. Then
the following assertions are equivalent:

(a) F∗ χ−→ 0 for any F ∈ I .
(b) For any F ∈ I there exists G ∈ χ such that Lt(G) divides Lt(F ).
(c) I = (χ) and S(G1,G2) ∗ χ−→ 0 for all G1,G2 ∈ χ .
(d) Any F ∈ I can be represented as F = ∑m

α=1(
∑mα

k=1 ak
αu

k
α)Gα where ak

α ∈ R,
uk
α ∈ [X〉, Gα ∈ χ , and Lt(ak

αu
k
αGα) 
 Lt(F ).

We call the last representation of F a homogeneous representation or H-representation.
In the notation of the Theorem 10.6 the set χ is called a standard basis of the ideal I

coordinated with the norm (coordinated standard basis (CSB in brief)).
Condition (c) from Theorem 10.6 gives the possibility to construct an effective procedure

determining whether a finite polynomial set χ ⊂ R[X] is a CSB of the ideal (χ). Moreover,
given a finite set of polynomials ψ , the Algorithm 10.7 will construct a CSB of the ideal (χ)

(see [158,159]). This algorithm is analogous to the familiar algorithm for fields [1,89].

ALGORITHM 10.7 (Construction of a CSB).

input: A finite set of non-zero polynomials ψ = {F1, F2, . . . , Fs}.
output: A CSB χ of the ideal (ψ).
χ := ψ , G := {(Fi, Fj ) | 1 � i < j � s}
while G �= ∅ do

Choose any (F,G) ∈ G, G = G \ {(F,G)}.
Find a normal form H of S(F,G) modulo χ .
if H �= 0 then

G := G ∪ {(U,H) | U ∈ χ}
χ := χ ∪ {H }

end
end
return χ

The generating system of the ideal (ψ) constructed by this algorithm is in general ex-
cessive. For example it contains in any case the initial generating system ψ . A polynomial
system χ ⊆ R[X] is called minimal if for any polynomial G ∈ χ the ideal (χ \ {G}) is not
equal to (χ). Characterizations of minimal coordinated standard bases of a given ideal are
connected with the following notions.

Let us define the leading π-monomial of F(X) ∈ R[X] by LM(F) = π‖Lc(F )‖Lm(F)

and the set of obstructions of an ideal I * R[X] as the set O(I ) of all minimal elements in
the partially ordered set (LM(I), |).

THEOREM 10.8. A system χ ⊆ I is a CSB of I precisely when O(I ) ⊆ LM(χ).

A polynomial G ∈ R[X] is called self-normal if G can be reduced modulo G only to 0.
A polynomial system χ ⊆ R[X] is called reduced if any polynomial G ∈ χ is self-normal
and normal modulo χ \ {G};
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THEOREM 10.9. Any ideal I *R[X] has a reduced CSB. Any reduced CSB of I is minimal.
A CSB χ of an ideal I is minimal if and only if |χ | = |O(I )|.

10.2.2. Canonical generating system of a polynomial ideal in k variables If k = 1 then
a CGS of an ideal I * R (see Section 10.1) is exactly a reduced CSB.

The notion of a CGS generalizes to the case k > 1 in the following way [277,307].
A polynomial system ϕ is called π-homogeneous polynomial system if ‖F‖ = ‖ϕ‖ for any
F ∈ ϕ. Any set χ of polynomials can be represented as a disjoint union of π-homogeneous
subsets:

(10.26)χ = πa0χ0 ∪ · · · ∪ πat χt , ‖χs‖ = 0, s ∈ {0, . . . , t}.
Let Lm(χs)[X〉 be the ideal of the semigroup [X〉 generated by the set of monomials
Lm(χs) = {Lm(G) | G ∈ χs} and let Fs ⊆ Nk

0 be the subset consists of all rows (i1, . . . ,

ik) ∈ Nk
0 such that xi1

1 · · · xik
k ∈ [X〉 \ Lm(χs)[X〉. Then Fs is a Ferrer diagram, i.e. for any

i = (i1, . . . , ik), j = (j1, . . . , jk) ∈ Nk
0 if j � i (coordinate-wise) then i ∈ Fs ⇒ j ∈ Fs .

We call Fs the support Ferrer diagram of the system χs .

THEOREM 10.10. (See [277].) Let I *R[X] be an ideal, 
 be a monomial ordering on Nk
0.

Then for some t ∈ {0, . . . , n − 1} there exists a chain

(10.27)Ft ⊂ Ft−1 ⊂ · · · ⊂ F0 ⊂ Nk
0

of Ferrer diagrams, strictly ordered by inclusion, and a series

(10.28)0 � ‖I‖ = a0 < a1 < · · · < at < at+1 = n

of integers satisfying the following conditions:
(C1) for all F ∈ Rk and s ∈ {0, . . . , t} (F ∈ I, supp(F ) ⊆ Fs) ⇒ (‖F‖ � as+1);
(C2) for each s ∈ {0, . . . , t} there exists a π-homogeneous system χs ⊂ R[X] of poly-

nomials that is reduced relative to 
 such that ‖χs‖ = 0, πasχs ⊂ I .
Any system of polynomials

(10.29)χ0, χ1, . . . , χt ,

satisfying conditions (C1), (C2), has also the following properties.
(C3) If F ∈ I and ‖F‖ = a, where a � as , for some s ∈ {0, . . . , t}, then

F ∈ Rk

(
πaχs ∪ πas+1χs+1 ∪ · · · ∪ πat χt

)
,

in particular,

I = Rk

(
πa0χ0 ∪ πa1χ1 ∪ · · · ∪ πat χt

)
.

(C4) If s ∈ {0, . . . , t} and as � a < as+1, then

(10.30)I ∩ πaRk = Rk

(
πaχs ∪ πas+1χs+1 ∪ · · · ∪ πat χt

)
,

(10.31)
(
I : πa

) = Rk

(
χs ∪ πas+1−aχs+1 ∪ . . . , πat−aχt ∪ {πn−a

})
.
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(C5) If H(x) = H0(x) ∈ Rk and H1(x), . . . , Ht+1(x) are polynomials, constructed
recursively by the rule:

Hs+1 ∈ NF(Hs, χs), s ∈ {0, . . . , t},
then the inclusion H ∈ I is equivalent to the system of conditions

(10.32)
∥∥Hs(x)

∥∥ � as, s ∈ {0, . . . , t + 1}.
(C6) The set χ = πa0χ0 ∪ πa1χ1 ∪ · · · ∪ πat χt is a coordinate standard basis of

the ideal I with respect to the ordering 
, i.e. for any polynomial F ∈ Rk the
conditions F ∈ I and F

χ−→ 0 are equivalent.
(C7) The ideal I is monic iff a0 = 0 and the Ferrer diagram F0 is finite (i.e all of the

diagrams Fs are finite). Suppose I is a monic ideal, R is a finite ring, R = GF(q)

and |Fs | = ms for each s ∈ {0, . . . , t}. Then S = Rk/I is a finite ring and

(10.33)|S| = q(m0−m1)a1+···+(mt−1−mt )at+mtn.

Now we can give the following definition. A subset χ of an ideal I � Rk is called
canonical generating system (CGS) of I (corresponding to an admissible order 
) if it is
a union (10.26) of π-homogeneous subsets πa0χ0, . . . , π

at χt of the ideal I such that:
(i) 0 � a0 < a1 < · · · < at < n = at+1;

(ii) For every s ∈ {0, . . . , t} the system χs is reduced (corresponding to 
) with support
Ferrer diagram Fs ;

(iii) F0 	 · · · 	 Ft ;
(iv) ∀F ∈ I , s ∈ {0, . . . , t}: (supp(F ) ⊆ Fs) ⇒ (‖F‖ � as+1).
This definition is natural generalization of the definition of CGS of an ideal I ∈ R1

(Section 10.1.1). So Theorem 10.10 states that any non-zero ideal I � Rk contains a CGS
corresponding to any admissible order 
. Any CGS of I is its CSB of it [158]. In [158]
an algorithm for the construction of a CGS of a non-zero ideal I , given a finite set of
generators of I , was presented.

10.2.3. Systems of polynomial equations Consider a system of polynomial equations

(10.34)
{
Fi(x1, . . . , xk) = 0, i ∈ {1, . . . , d}}

over a GE-ring R. Let us consider the vector-function Φ(x) = (F1(x), . . . , Fd(x))T ∈
R(d)

k . Then the system (10.34) can be written in the following short form

(10.35)Φ(x) = 0.

Below it is assumed that Φ(x) �= 0. The simplest method of the description of all solutions
of this system is:

METHOD OF COORDINATEWISE LINEARIZATION. For any vector c = (c1, . . . , ck) ∈ Rk

and for every j ∈ {0, . . . , n − 1} vector γj (c) = (γj (c1), . . . , γj (ck)) ∈ Γ (R)k is call the
j -th coordinate-vector of c. Then c = γ0(c) + πγ1(c) + · · · + πn−1γn−1(c). Let us put

c[j ] = γ0(c) + πγ1(c) + · · · + πj−1γj−1(c) ∈ Γ k + πΓ k + · · · + πj−1Γ k,

j ∈ {1, . . . , n},
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DΦ(x) = (DsFi(x))d×k , where DsFi(x) is the partial derivative of Fi(x) with respect
to xs .

THEOREM 10.11. A vector c ∈ Rk is a solution of the system of Eq. (10.34) iff the vector
γ0(c) is a solution in Γ k of the system of polynomial equations

(10.36)Φ(z) ≡ 0 (mod πR),

and for j ∈ {1, . . . , n − 1} the vector γj (c) is a solution in Γ k of the system of linear
equations

(10.37)DΦ
(
γ0(c)

) · z ≡ −γj
(
Φ(c[j ])

) (
mod πjR

)
.

It is important to note that (10.36) and (10.37) are in fact systems of equations over the
field Γ = GF(q). In particular, if the system (10.37) is solvable then it has qk−r solutions,
where r = rankDΦ(γ0(c)).

COROLLARY 10.1. A system (10.34) of d = k polynomial equations has unique solution
over the ring R iff the system (10.36) has unique solution c0 over the field Γ , and the
equality rankDΦ(c0) = k holds.

Another way to obtain solutions of the system (10.34) is given by the following (related)
approach.

METHOD OF SOLVING EQUATIONS USING CANONICAL GENERATING SYSTEMS. Let 

be some admissible ordering on Nk

0 and χ be the CGS of the ideal I = Rk{F1, . . . , Fd}*Rk

generated by the polynomials from the left part of the system (10.34) corresponding to the
ordering 
. Then the original system of equations is equivalent to the system

(10.38)χ(x) = 0.

As before we suppose that Φ(x) �= 0. That means that χ(x) �= 0, i.e. the set (10.26)
satisfies the condition a0 = 0, and has the form

χ = χ0 ∪ πa1χ1 ∪ · · · ∪ πat χt .

In order to simplify the notations we consider a somewhat redundant system of generators
of the same ideal I :

Ψ = Ψ0 ∪ πΨ1 ∪ · · · ∪ πn−1Ψn−1, where Ψj = χi, if ai � j < ai+1.

The system of equations (10.34) is equivalent to the system Ψ (x) = 0, i.e. to the system

(10.39)Ψ0(x) = 0, πΨ1(x) = 0, . . . , πn−1Ψn−1(x) = 0.

THEOREM 10.12. A vector c ∈ Rk is a solution of the system (10.34) (of the sys-
tem (10.39)) iff

(a) the vector γ0(c) ∈ Γ k is a solution of the system of equations

(10.40)Ψn−1(z) ≡ 0 (mod πR),
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(b) for every j ∈ {1, . . . , n − 1} the coordinate-vector γj (c) ∈ Γ k is a solution of the
system of linear equations

(10.41)DΨn−j−1
(
γ0(c)

) · z ≡ −γj
(
Ψn−j−1

(
c[j ])).

10.2.4. Some other applications of coordinated standard bases Coordinated standard
bases allow one to solve many computational problems in the polynomial ring R[X].

IDEAL MEMBERSHIP PROBLEM. Given a finite set of polynomials ψ ⊂ R[X] and a poly-
nomial F , determine whether F ∈ (ψ). This problem can be effectively solved using
CSB’s. Let χ be a CSB of the ideal (ψ) then

F ∈ (ψ) ⇔ F∗ χ−→ 0.

A SET OF COSET REPRESENTATIVES. Given an ideal I �R[X], find a set of polynomials
C ⊂ R[X] such that for any F ∈ R[X] there exists the only one polynomial G ∈ C: F ≡
G mod (I ). Let Γ be the coordinate field of R (Section 2.4). Take a CSB χ of the ideal I .
Consider the set of terms

T = {πau
∣∣ a ∈ {1, . . . , n}, u ∈ [X〉, there is no G ∈ χ

such that Lt(G) divides πau
}
.

THEOREM 10.13. (See [159].) For any ideal I � R[X] the set of polynomials of the form∑
U∈T

aUU

(where only a finite number of the coefficients aU ∈ Γ is not equal 0) is a set of coset
representatives for R[X]/I .

THEOREM 10.14. Let I be a monic ideal in R[X], then the factor-ring R[X]/I is finite
and ∣∣R[X]/I ∣∣ = q |T |,

where q is the cardinality of the residue field R.
If in addition χ = χ0 ∪ · · · ∪ χt is a CGS of the ideal I then

|T | = (m0 − m1)a1 + · · · + (mt−1 − mt)at + mtn,

where ms = |Fs | and as = ‖χs‖ for s ∈ {0, . . . , t} (compare with (10.15)).

The following theorem shows that the problem of the evaluation of the parameters ms =
|Fs | = |[X〉 \ Lm(χs)[X〉|, s ∈ 0, t is rather difficult.

THEOREM 10.15. (See [37].) The following problem is NP-complete:
Given a set of monomials L and m ∈ N, is |[X〉 \ L[X〉| � m?
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SYZYGY MODULE GENERATORS. The syzygy module of a polynomial system ψ =
{F1, . . . , Fl} ⊂ R[X] is defined to be

(10.42)

Syz(F1, . . . , Fl) = {(H1, . . . , Hl) ∈ R[X]l ∣∣ F1H1 + · · · + FlHl = 0
}
.

The problem is to construct a set of generators of Syz(F1, . . . , Fl).
Let χ = {G1, . . . ,Gm} be a CSB of the ideal (ψ). According to the Theorem 10.6, for

any i, j ∈ {1, . . . , m}, i �= j , the S-polynomial S(Gi,Gj ) = VijGi − UijGj possesses an
H -presentation:

VijGi − UijGj =
m∑

α=1

(
mα∑
k=1

ak
ijαu

k
ijα

)
Gα,

where ak
ijα ∈ R, uk

ijα ∈ [X〉 and Lt(ak
ijαu

k
ijαGα) 
 Lt(S(Gi,Gj )). Note that this repre-

sentation can be effectively constructed using the reduction process. The vector

(10.43)sij = Vij ei − Uijej −
m∑

α=1

(
mα∑
k=1

ak
ijαu

k
ijα

)
eα ∈ R[X]m

is called an S-syzygy. Here eα = (0, . . . , 1, . . . , 0) ∈ R[X]m (the 1 occurs in the α-th
location).

The vector

(10.44)pk = πn−‖Gk‖ek ∈ R[X]m
is called a π-syzygy.

THEOREM 10.16. (See [159].) Let G1, . . . ,Gm ∈ R[X] be a CSB of an ideal I . Then
the syzygy module Syz(G1, . . . ,Gm) is generated by the system of vectors {sij | i, j ∈
{1, . . . , m}, i �= j} ∪ {pk | k ∈ {1, . . . , m}}.

There exist matrices Tl×m and Sm×l with entries in R[X] such that

(F1, . . . , Fl) = (G1, . . . ,Gm)S and (G1, . . . ,Gm) = (F1, . . . , Fl)T .

THEOREM 10.17. (See [1].) The syzygy module Syz(F1, . . . , Fl) is generated by the
columns of the matrix El − T S and the vectors T stij , T pt

k , i, j, k ∈ {1, . . . , m}, i �= j ,
where El is the l × l identity matrix, and the vectors sij and pk are S-syzygies and π-
syzygies for G1, . . . ,Gm.

Note that the matrix S can be obtained using the reduction of polynomials Fi modulo χ .
The matrix T can be constructed during the evaluation of the standard basis χ . With that
end in view, it is necessary to keep track of the reductions at every step of Algorithm 10.7.

11. Periods of polynomials and polynomial ideals over a commutative f.r.
[226,227,296]

Here we suppose that R is a commutative f.r. with identity e.
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11.1. Periodic ideals of 1-variable polynomials, properties and parameters

An ideal I � R (respectively polynomial F(x) ∈ R) is called periodic, if there exist
numbers d ∈ N0, t ∈ N such that

(11.1)xd
(
xt − e

) ∈ I
(
respectively F(x)

∣∣ xd
(
xt − e

))
.

LEMMA 11.1. For a periodic ideal I there exist parameters D(I) ∈ N0, T (I) ∈ N such
that

∀d ∈ N0, t ∈ N: (11.1) ⇐⇒ d � D(I) & T (I)|t.

We call D(I) the defect and T (I) the period of the ideal I . For a periodic polyno-
mial F(x) we use correspondingly notations D(F) = D(F(x)R), T (F ) = T (F (x)R).

An ideal I � R is called monic if it contains a monic polynomial.

THEOREM 11.2. For any ideal I � R the following conditions are equivalent:
(a) S = R/I is a finite ring;
(b) I is a periodic ideal;
(c) I is a monic ideal.

Under these conditions there are relations: D(I) + T (I) � |S|, and if |S| > 2, D(I) +
T (I) � |S| − 1.

If |S| > 2, then the equality D(I) + T (I) = |S| − 1 holds if and only if
• either S = GF(2)[x]/(x2) (and then D(I) + T (I) = 3),
• or I has a form I = (F (x), π), where F(x) ∈ R is a monic polynomial of degree m and

image F(x) under the canonical epimorphism R → R = R/πR = GF(q) satisfying
the condition T (F ) = qm −1. In the last case S = GF(qm), D(I) = 0, T (I) = qm −1.

Let us call a periodic ideal I (respectively polynomial F(x)) reversible, if D(I) = 0
(respectively D(F) = 0), and degenerate, if xD(I) ∈ I (respectively F(x) | xD(F)).

PROPOSITION 11.3. Any monic polynomial F(x) ∈ R is a periodic one. If degF(x) = m,
|R|m > 2, then D(F) + T (F ) � |R|m − 1. The polynomial F(x) is reversible if and only
if F(0) ∈ R∗.

PROPOSITION 11.4. If I1, I2 are periodic ideals of the ring R, then the ideal I = I1 ∩ I2
is also periodic and

D(I) = max
{
D(I1),D(I2)

}
, T (I ) = [T (I1), T (I2)

]
.

If F1(x), F2(x) ∈ R are coprime monic polynomials, then

D(F1F2) = max
{
D(F1),D(F2)

}
, T (F1F2) = [T (F1), T (F2)

]
.

PROPOSITION 11.5. Any monic ideal I * R has a unique representation in the form I =
I (r) ∩ I (d), where I (r) is a reversible and I (d) is a degenerate ideal. These ideals are
comaximal and also I = I (r)I (d). There are the equalities: T (I) = T (I (r)), D(I) =
D(I (d)).
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The calculation of parameters of a periodic ideal can be reduced to the case when R is a
local ring. Indeed, a commutative f.r. R with identity e is a direct sum of local rings:

(11.2)R = R1 � · · · � Rt

(see Theorem 1.7). Let e = e1+· · ·+et be the corresponding decomposition of the identity
of the ring R. Then es is the identity of Rs and Rs = Res . The decomposition (11.2) implies
decompositions of any polynomial F(x) ∈ R and any ideal I � R:

(11.3)I = I1 � · · · � It , where Is = esI.

(11.4)

F(x) = F1(x) � · · · � Ft (x), where Fs(x) = esF (x) ∈ Rs[x] = esR;

PROPOSITION 11.6. Under conditions (11.2)–(11.4) an ideal I is periodic if and only if
everyone of its component Is is periodic. If I is a periodic ideal, then

T (I) = [T (I1), . . . , T (It )
]
, D(I) = max

{
D(I1), . . . , D(It )

}
.

For any monic polynomial F(x)

T (F ) = [T (F1), . . . , T (Ft )
]
, D(F ) = max

{
D(F1), . . . , D(Ft )

}
.

11.2. Parameters of periodic ideals over a commutative local f.r.

Below R is a titled ring, R = R/N(R) = GF(q), q = pr, p is a prime, pd = charR is
the characteristic of the ring R, n = ind N(R) is the nilpotency index of the ring R.

11.2.1. General estimates Let I � R be a monic (i.e. periodic) ideal. We call a monic
polynomial F(x) ∈ I of least degree a main generator of the ideal I . This definition is
equivalent to the equality

(11.5)I = F(x)R + N(I ), where N(I ) = I ∩ N[x].

PROPOSITION 11.7. Every monic polynomial F(x) over a commutative local f.r. R has a
unique decomposition into a product F(x) = F (r)(x)F (d)(x) of a reversible polynomial
F (r)(x) and a degenerating polynomial F (d)(x). Moreover, T (F ) = T (F (r)), D(F) =
D(F (d)).

If F is a main generator of the ideal I , then

I (r) = F (r)(x)R + N(I ), I (d) = F (d)(x)R + N(I ).

Note, that in general, if R is not a local ring, the last proposition is not true. For example
the polynomial F(x) = x2 − 4x − 3 over the ring Z/(6) cannot be represented in the form
F = F (r)F (d).

As before we denote by F the image of a polynomial F ∈ R under the natural epimor-
phism R → R.
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PROPOSITION 11.8. The period and defect of a monic ideal I with a main generator F(x)

satisfy the relations

(11.6)D(F) � D(I) � D(F) � nD(F) � n · degF(x),

(11.7)T (F ) | T (I), T (I ) | T (F ).

If I is a reversible ideal, then

(11.8)T (I) = T (F )pα(I), where α(I) � d.

So the calculation of the period of a reversible ideal I reduced to the calculation of
the period T (F ) of the polynomial F(x) over the field R and to the calculation of the
parameter α(I), the minimal α ∈ N0 with the property

Res
(
xT (F)pα − e / F (x)

) ∈ I.

Below there is offered a more convenient approach to the calculation of the parameter α(I),
unconnected with the calculation of the parameter T (F ). This approach is based on the
following notion.

11.2.2. Calculation of the period of a reversible ideal via distinguished polynomials We
call reversible polynomial D(x) ∈ R distinguished, if T (D) = T (D). Say that D(x) is
a distinguished polynomial corresponding to polynomial G(x) ∈ R (or to the polynomial
g(x) ∈ R[x]), if D(x) = G(x) (respectively D(x) = g(x)). A polynomial G(x) ∈ R is
called separable, if (G(x),G(x)′)R = (e)R (i. e. (G(x),G(x)′) = e), where G(x)′ is the
derivative of G(x).

Recall that the ring R contains a unique coefficient ring K = GR(qd, pd), pd = charR,
of the form K = Γ (R) + Γ (R)p + · · · + Γ (R)pd−1 (see (5.3)).

PROPOSITION 11.9. To every reversible separable polynomial G(x) ∈ R corresponds a
unique distinguished polynomial G∗(x) ∈ R, this polynomial belongs to K[x]. A product
of co-prime distinguished polynomials is a distinguished polynomial.

Here we present a simple way for the construction of a polynomial G∗(x) as in the last
proposition. First of all note that in order to construct a distinguished polynomial corre-
sponding to G we can choose any polynomial G[0](x) ∈ K[x] with the property G[0] = G

and then according to Proposition 11.9 G∗ = G
[0]∗ . So it is enough to construct a distin-

guished polynomial for the separable reversible polynomial G(x) ∈ K[x].
There exists an extension S = K[ξ ] of the ring K such that

(11.9)xp − e = (x − e)(x − ξ) · · · (x − ξp−1).
For example if p = 2, then ξ = −e and K[ξ ] = K . In general we can find an S in the
form S = K[x]/(E(x)), where

E(x) = xp−1 + pxp−2 +
(
p

2

)
xp−3 + · · · +

(
p

2

)
x + p.
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LEMMA 11.10. For every separable reversible polynomial G(x) ∈ K[x] of degree m the
following equality over the ring S holds

(11.10)(−1)m(p−1) ·
p−1∏
i=0

G
(
ξ ix
) = G[1](xp

)
,

where G[1](x) ∈ K[x] is a monic polynomial with the property G[1](xp) = G(x)p .

PROPOSITION 11.11. Let G(x) ∈ K[x] be a separable reversible polynomial, degG =
m, and let G[0](x),G[1](x), . . . be a sequence of polynomials over K defined by the rule

(11.11)

G[0](x) = G(x), G[k+1](xp
) = (−1)m(p−1)

p−1∏
i=0

G[k](ξ ix
)
, k ∈ N0.

Then the polynomial

(11.12)G∗(x) = G[&r](x), where & = ](d − 1)/r
[
,

is a distinguished polynomial corresponding to G(x). The polynomial G(x) is distin-
guished exactly if

(11.13)G[r](x) = G(x).

In the important particular case p = 2 formulas (11.11) have essential simplifications.
Any polynomial G(x) ∈ K[x] has a unique representation in the form

G(x) = G(0)
(
x2)+ xG(1)

(
x2).

PROPOSITION 11.12. If under the conditions of Proposition 11.11 the equality p = 2
holds then the series of polynomials (11.11) can be constructed by the rule

(11.14)G[0](x) = G(x), G[k+1](x) = (−1)m
(
G

[k]
(0)(x)

2 − xG
[k]
(1)(x)

2).
We define the radical of a reversible polynomial F(x) ∈ P as the distinguished poly-

nomial radF(x) ∈ P , which corresponds to the product of all different monic divisors of
the polynomial F(x) ∈ P that are irreducible over R. Note that radF(x) is a separable
polynomial and in order to construct radF(x) it is necessary only to know radF(x). The
last one can be found without the decomposition of F(x) into a product of irreducible
polynomials. It is enough to use the operations of differentiation, calculation of gcd’s and
arithmetical operations on polynomials.

THEOREM 11.13. Let I be a reversible ideal with a main generator F(x), let G(x) =
radF(x), let k be the maximum of the multiplicities of irreducible divisors of F(x) over R,
and let pa−1 < k � pa . Then

(11.15)T (I) = T (G)pa+α(I) = T (G)pβ(I),

where α(I) is defined by (11.8) and β(I) is the minimal b ∈ N0 with the property

(11.16)G[b](xpb) ∈ I.
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11.2.3. Periods of reversible polynomials and ideals over a Galois ring Let R = K =
GR(qn, pn) = GR(prn, pn) be a Galois ring. Then, using the canonical generating system
(10.14) of the ideal I :

I = (F(x) = F0(x), p
a1F1(x), . . . , p

at Ft (x)
)
,

we can deduce formulae for α(I) in (11.15).
Let G(x) = radF0(x) and let the parameters, k, a be as in Theorem 11.13. For any

b ∈ N0, we suppose that

(11.17)Ub(x) = Res
(
G[b](xpb)

/F (x)
)

has the following decomposition in the system of radices F1(x), . . . , Ft (x):

(11.18)Ub(x) = Ub1(x)F1(x) + · · · + Ubt (x)Ft (x) + Ub,t+1(x),

where degUbi(x)Fi(x) < degFi−1(x), i ∈ {1, . . . , t + 1}. Let

nbi = ∥∥Ubi(x)
∥∥, i ∈ {1, . . . , t + 1}; nb = min{nb1, . . . , nb,t+1};

(11.19)db(I ) = max{a1 − nb1, . . . , at − nb,t , n − nb,t+1}.

THEOREM 11.14. (See [226].) Under the assumptions above, T (I) = T (F )pα(I), where

α(I) =
{
da(I ), if pna > 2, or pna = 2, da(I ) � 1;
da+1(I ) + 1, if pna = 2, da(I ) > 1.

COROLLARY 11.1. Let F(x) be a reversible polynomial of degree m over the ring R =
GR(qn, pn), n > 1, let G(x) = radF(x) and let k, a be as above. Then

(a) for some na ∈ {1, . . . , n}
(11.20)Res

(
G[a](xpa )

/F (x)
) = pnaVa(x), V a(x) �= 0,

and if pna > 2, or if pna = 2, n = 2, or if pna = 2, n > 2 and

(11.21)V a(x)
(
V a(x) + (xG(x)′

)2a ) �≡ 0
(
mod F(x)

)
,

then

(11.22)T (F ) = T (F )pn−na ;
(b) if pna = 2, n > 2, and (11.21) does not hold, then for some na+1 ∈ {3, . . . , n}

(11.23)Res
(
G[a+1](x2a+1)

/F
) = 2na+1Va+1(x), V a+1(x) �= 0,

and

(11.24)T (F ) = T (F )pn−na+1+1 < T (F)pn−na .

Each of the polynomials considered satisfies the inequality

(11.25)T (F ) �
(
qm − 1

)
pn−1.
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11.3. Polynomials of maximal period over a Galois ring [226]

In view of (11.25) we can call a reversible polynomial F(x) of degree m over a Galois ring
R = GR(qn, pn) a polynomial of maximal period (MP-polynomial) if

(11.26)T (F ) = (qm − 1
)
pn−1.

THEOREM 11.15. A reversible polynomial F(x) of degree m over the ring R =
GR(qn, pn) is a polynomial of maximal period if and only if the following conditions hold:

(a) F(x) is a polynomial of maximal period over the field R;
(b) if F∗(x) is the distinguished polynomial corresponding to F(x) (Section 11.2.2),

then

(11.27)F(x) = F∗(x) + pV (x), where

V (x) �= 0, and if p = 2 < n, then, in addition,

(11.28)V (x) �≡ xF(x)′
(
mod F(x)

)
.

COROLLARY 11.2. An MP-polynomial of degree m over the ring R = GR(qn, pn) exists
iff qm > 2 or qm = 2 = n. Under these conditions for any MP-polynomial f (x) ∈ R of
degree m there exists an MP-polynomial F(x) ∈ R with F(x) = f (x), and the number of
such polynomials is equal to(

qm − 1
)
q(n−2)m, if p > 2 or p = 2 = n;(

qm − 2
)
q(n−2)m, if p = 2 < n.

COROLLARY 11.3. Let F(x) be a reversible polynomial of degree m over a Galois ring
R = GR(qn, pn), q = pr , and let F [r](x) be the polynomial obtained from F by the
rule (11.11). Then F(x) is an MP-polynomial if and only if T (F ) = qm − 1 and the poly-
nomial W(x) defined from the relation F(x) − F [r](x) = pW(x) satisfies the conditions

W(x) �= 0, and if p = 2 < n, W(x) �≡ xF(x)′
(
mod F(x)

)
.

The above results make it possible to simplify the algorithm for the construction of MP-
polynomials over Zpn with the help of the table of MP-polynomials over Zp and some
combinatorial conditions on the coefficients of polynomials.

THEOREM 11.16. Let F(x) = xm + am−1x
m−1 + · · · + a0 be a reversible polynomial

over Zpn , p > 2, such that T (F ) = pm − 1. Then F(x) is an MP-polynomial if and only if∑
j0,...,jm−1∈A

p!
j0! · · · jm−1!

m∏
s=0

(
asx

s
)js �≡ F

(
xp
) (

mod p2),
where am = e, A is the set of all rows (j0, . . . , jm) of numbers from {0, . . . , p − 1} such
that

j0 + j1 + · · · + jm = p, j1 + 2j2 + · · · + mjm ≡ 0 (mod p).
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In particular this implies

THEOREM 11.17. (See [226].) Let F(x) = xm + am−1x
m−1 + · · · + a0 be a polynomial

over Zpn , such that T (F ) = pm − 1. Then F(x) is an MP-polynomial in the following
cases.

1. p > 2 and a
p

0 �≡ a0 (mod p2), or F(x) = xm + akx
k + a0, m � p − 2.

2. p = 2 and:
(a) m is even, a0 ≡ e (mod 4); or
(b) m is odd and

a1 ≡
4

{
e + 2a0a2 if a1 = e,

2(e + a0a2) if a1 = 0;
or

(c) F(x) = xm + akx
k + a0, a0, ak ∈ {−e, e}, (m, a0) �= (2k, e).

11.4. Periodic ideals of k-variable polynomials

Let R be a commutative f.r. with identity e and Rk = R[x1, . . . , xk] = R[x] be the
polynomial ring in k variables over R. We call an ideal I * Rk periodic (respectively
reversible) if there exist parameters l1, . . . , lk ∈ N0, t1, . . . , tk ∈ N, such that

xls
s

(
xts
s − e

) ∈ I for s ∈ {1, . . . , k}
(respectively(

xts
s − e

) ∈ I for s ∈ {1, . . . , k}).
A periodic ideal is said to be degenerated if x� ∈ I for some � ∈ Nk

0\0.
The ring S = Rk/I = R[ϑ1, . . . , ϑk], where ϑs = xs + I ∈ S, will be called the

operator ring of the ideal I . Denote by O(I ) the subsemigroup [e, ϑ1, . . . , ϑk〉 of the
semigroup (S, ·) generated by e, ϑ1, . . . , ϑk , and call it the orbital semigroup of the ideal I .

PROPOSITION 11.18. Let I � Rk . Then
(a) (I is a periodic ideal) ⇔ (I is a monic ideal)⇔ (|S| < ∞) ⇔ (|O(I )| < ∞);
(b) (I is a reversible ideal) ⇔ (I contains some system of elementary reversible poly-

nomials F1(x1), . . . , Fk(xk)) ⇔ (|S| < ∞, O(I ) < S∗);
(c) (I is a degenerated ideal) ⇔ (|S| < ∞, 0 ∈ O(I )).

For a periodic ideal I some natural power of any element of the finite semigroup S

is an idempotent. Let εs = εs(I ) be the unique idempotent of the semigroup [ϑs〉, s ∈
{1, . . . , k}, and let ε = ε(I ) be the product of all idempotents of the semigroup O(I ).

PROPOSITION 11.19. If I is a periodic ideal of Rk , then ε = ε1 · · · εk and εO(I ) = T (I )

is a subgroup of the semigroup O(I ) with unit ε.
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We call the group T (I ) the cycle group of the periodic ideal I , and we call its cardinality
T (I) = |T (I )| the period of I . The parameter D(I) = |O(I )|− |T (I )| is called the defect
of the ideal I . If D(I) > 0, then the ideal I will be called defected.

PROPOSITION 11.20. A periodic ideal I is reversible iff T (I ) = O(I ) (i.e., D(I) = 0)
and it is degenerated iff T (I ) = 0.

We call a vector t ∈ Nk
0 \ 0 a vector-period of the ideal I if

∃ l ∈ Nk
0: ϑ l+t = ϑ l

(i.e., xl(xt − e) ∈ I ). The subgroup P(I ) of the group (Zk,+) generated by all vector-
periods of the ideal I is called its group of periods.

Note that if I is a periodic ideal, then each element εϑs of the group T (I ) has finite
order. For any vector t ∈ Zk define

εϑ t = (εϑ1)
t1 · · · (εϑk)

tk .

PROPOSITION 11.21. If I * Rk is a periodic ideal, then P(I ) is a subgroup of rank k of
the group (Zk,+), and

P(I ) = {t ∈ Zk | εϑ t = ε
}; T (I ) ∼= Zk/P(I ); T (I) = [ZkP(I )

]
.

12. Matrices and linear sequences over chain rings

12.1. Similarity of matrices

Let R be a commutative f.r. with the identity, and let Mm(R) be the ring of all m × m-
matrices over R. We call two matrices A,B ∈ Mm(R) similar and write A ≈ B if B =
T −1AT for some (transforming) matrix T ∈ Mm(R)∗.

12.1.1. Problems of similarity

PROBLEM 1. For the given matrices A,B ∈ Mm(R) to determine when the relation
A ≈ B is true?

Of course this problem can be solved by a brute force algorithm. We call this approach
trivial. The question of Problem 1 alludes to the matter of the existence of a nontrivial
algorithm.

Let us call a system I1(X), . . . , Is(X) of functions on Mm(R) with values in any sets
a system of invariants if

(12.1)

∀A,B ∈ Mm(R): A ≈ B ⇒ (
I1(A) = I1(B), . . . , Is(A) = Is(B)

)
.

This system is called a full system of invariants in a class matrices M if for any two
matrices A,B ∈ M of the same size the inverse to the implication (12.1) is true.
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We have one trivial full invariant: I (A) = [A]≈, the class of all matrices similar to A.
However calculation of I (A) is a hard problem.

PROBLEM 2. To find a nontrivial full system of invariants on Mm(R).

In general Problems 1, 2 have no simple solutions, because they are not more simple than
well-known hard “problem of a pair of matrices over a field” (also called a “wild” problem).
The last one has the following formulation. For a given field P and for given matrices
A1, B1, A2, B2 ∈ Mk(P ) to find a solution X ∈ Mk(P )∗ of the system of equations

X−1A1X = B1, X−1A2X = B2.

The hardness (“wildness”) of this problem is confirmed by the following results. For any
polynomial F(x) ∈ R let

V
(
F,Mm(R)

) = {A ∈ Mm(R): F(A) = 0
}
.

The problem of similarity of matrices implies the problem of a pair of m × m-matrices
over a field Zp in the classes V(x3,M3m(Zpn)), V(xp2 − e,M4m(R)) [51], and in the class
V(x2 − e,Mm(R)), when charR = 2n(p = 2) and N(R) is not a principal ideal [58].

Classes of similar matrices in V(x2 − e,Mm(Z2n)) were described in [58,143].
Approaches to Problems 1, 2 in particular cases are connected with the following no-

tions.
To every matrix A over R corresponds its characteristic matrix xE −A over R. We call

the matrices xE − A and xE − B equivalent and write xE − A ∼ xE − B if xE − B can
be obtained from xE −A by a finite series of elementary transformations. The polynomial
χA(x) = |xE − A| is called the characteristic polynomial of the matrix A.

Let R(m) be the R-module of all columns of the length m over the ring R. Any matrix
A ∈ Mm(R) defines a structure of an R-module on R(m) with multiplication of a↓ ∈ R(m)

by F(x) of the form

(12.2)F(x)a↓ = F(A)a↓.

We denote this module RR(m) by M(A).

THEOREM 12.1. (See [53].) For any two matrices A,B ∈ Mm(R) the following condi-
tions are equivalent:

(a) A ≈ B;
(b) (xE − A) ∼ (xE − B);
(c) RM(A) ∼= RM(B).

PROBLEM 3. For a given matrix A ∈ Mm(R) to check whether it is reducible, i.e. similar
to some decomposed matrix:

Diag(A1, A2) =
(
A1 0
0 A2

)
?
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In the theory under consideration matrix of the special form

(12.3)S =

⎛⎜⎜⎜⎝
0 0 . . . 0 f0
e 0 . . . 0 f1
0 e . . . 0 f2
. . . . . . . . . . . . . . .

0 . . . 0 e fm−1

⎞⎟⎟⎟⎠
is important. It is called the companion matrix of the polynomial F(x) = xm−fm−1x

m−1−
· · · − f1x − f0 and denoted by S = S(F ). We call a matrix A normal if

A ≈ Diag
(
S(F1), . . . , S(Ft )

)
(12.4)for some monic polynomials F1(x), . . . , Ft (x) ∈ R.

PROBLEM 4. To check when a given matrix A ∈ Mm(R) normal?

THEOREM 12.2. (See [291].)
(a) A matrix A ∈ Mm(R) is reducible if and only if the module M(A) is reducible;
(b) the module M(A) is cyclic if and only if A ≈ S(χA(x));
(c) a matrix A ∈ Mm(R) is normal if and only if the module M(A) is a direct sum of

cyclic submodules.

Let Ann(A) = {G(x) ∈ R: G(A) = 0} be the annihilator of A in R. The main result
of the article [263] states that if R is a principal ideal ring and Ann(A) is a principal ideal
of R, then A is normal. This is incorrect. Here is a simple counterexample: the matrix is

A = Diag

((
0 0
2 0

)
,

(
0 0
1 0

))
∈ M4(Z4).

The annihilator of A is Ann(A) = (x2), however A is not normal. Indeed,

A = Diag

(
(0), (0),

(
0 0
1 0

))
= Diag

(
S(x), S(x), S

(
x2)).

Since Ann(A) = (x2), if A were normal it would be similar to some matrix of the form

Diag
(
S(x − 2a), S(x − 2b), S

(
x2)) = Diag

(
2a, 2b,

(
0 0
1 0

))
.

Testing things by exhausting all a, b shows that last statement is false.

12.1.2. Decompositions of a matrix Problem 1 can be further reduced to the same prob-
lem for matrices over a local f.r. with primary characteristic polynomial.

Indeed, using the decomposition (11.2) of the ring R into a direct sum of local rings, we
obtain a decomposition

(12.5)Mm(R) = Mm(R1)
.+ · · · .+ Mm(Rt ), Mm(Rs) = esMm(R),

where es is the identity of the ring Rs , and corresponding decompositions of matrices:

(12.6)A = A1
.+ · · · .+ At, B = B1

.+ · · · .+ Bt , T = T1
.+ · · · .+ Tt .
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Now observe that

T ∈ Mm(R)∗ ⇐⇒ Ts ∈ Mm(Rs)
∗, s ∈ {1, . . . , t},

and

A ≈ B
(
T −1AT = B

) ⇐⇒ As ≈ Bs

(
Bs = T −1

s AsTs

)
, s ∈ {1, . . . , t}.

So all main the problems connected with the solution of the equality X−1AX = B are
reduced to the case when R is a local ring.

The following result gives some sort of universal approach to the decomposition of a
matrix.

THEOREM 12.3. Let A ∈ Mm(R) and F(x) ∈ R be a monic polynomial such that
F(A) = 0 and

(12.7)F(x) = F1(x) · · · · · Ft (x),

where F1, . . . , Ft are monic mutually coprime polynomials and |Fi(A)| /∈ R∗, i ∈
{1, . . . , t}. Then

(12.8)A ≈ Diag(A1, . . . , At ), Fi(Ai) = 0, i ∈ {1, . . . , t}.
Moreover, if F(x) = χA(x), then Fi(x) = χAi

(x), i ∈ {1, . . . , t}.

Theorems 12.3, 12.2, 2.12 imply

COROLLARY 12.1. A square matrix A over a commutative local f.r. R is normal exactly if

(12.9)A ≈ Diag
(
S
(
G1(x)

)
, . . . , S

(
Gr(x)

))
,

where G1, . . . ,Gr ∈ R are primary monic polynomials. The matrix on the right hand
in (12.9) is defined uniquely up to a permutation of blocks.

12.1.3. Quasi-canonical polynomial matrix and Fitting invariants The solution of Prob-
lems 1, 2 for matrices over a field is based on Theorem 12.1 and the fact that any char-
acteristic matrix Ex − A is equivalent to a unique canonical matrix (see e.g. [236]). Here
instead of this result we have only

THEOREM 12.4. Let A be an m × m-matrix over a local commutative f.r. R. Then the
matrix xE − A is equivalent to a matrix

(12.10)K(x) = (Kij (x)
)
,

where K11, . . . , Kmm are monic polynomials such that∑
degKii(x) = m, Kii(x) | Ki+1i+1(x), i ∈ {1, . . . , m − 1};

and if i �= j , then Kij (x) = 0, degKij (x) < min{degKii(x), degKjj (x)}.
For any matrix (12.10) with the properties above there exists a matrix A ∈ Mm(R) such

that xE − A ∼ K(x).
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We call the matrix (12.10) the quasi-canonical matrix equivalent to xE − A or quasi-
canonical form of xE − A. In [291] a constructive algorithm for finding such a form for
xE − A has been given.

Unfortunately, in general the quasi-canonical form of the matrix xE −A is not uniquely
defined. For example, if A = ( 1 0

0 3

) ∈ M2(Z4) then some quasi-canonical forms of xE−A

are (
x − 1 0

0 x − 3

)
,

(
x − 1 2

0 x − 3

)
,

(
x − 1 0

2 x − 3

)
,(

x − 1 2
2 x − 3

)
,

(
x − 3 0

0 x − 1

)
, . . . .

For any polynomial matrix A(x) ∈ Mm(R) and for every s ∈ {1, . . . , m} we define the
s-th Fitting invariant as the ideal Ds(A(x))�R generated by all minors of the matrix A(x)

of order s This definition corresponds to original definition in [123] (see [291]).

PROPOSITION 12.5. Let A,B ∈ Mm(R), then

(12.11)(B ≈ A) ⇒ (
Ds(xE − B) = Ds(xE − A), s ∈ {1, . . . , m}).

So the system of ideals

(12.12)D1(xE − A), . . . ,Dm(xE − A)

is a system of invariants on Mm(R). It is useful to note that this system contains the char-
acteristic polynomial:

Dm(xE − A) = RχA(x),

and allows one to describe one more classical invariant, since according to [259]

(12.13)Ann(A) = Dm(xE − A) :Dm−1(xE − A).

THEOREM 12.6. (See [291].) For a matrix A over a commutative local f.r. R the following
conditions are equivalent:

(a) xE − A ∼ diag(K1(x), . . . , Km(x)), Ki(x) | Ki+1(x), i ∈ {1, . . . , m − 1};
(b) there exists a unique quasi-canonical matrix equivalent to xE − A;
(c) all Fittings invariants of xE − A are principal ideals.

If minimal polynomial of the matrix A over the field R equals to χA(x) then A ≈ S(χA(x)).

It is interesting to note that if R is a field then any matrix A ∈ Mm(R) satisfies all of
conditions listed in previous theorem.

12.1.4. Canonically defined matrices In general the system (12.12) is not a full system
of invariants on Mm(R), i.e. the proposition inverse to Proposition 12.5 is not true. We call
a matrix A ∈ Mm(R) canonically defined if for any matrix B ∈ Mm(R) the implication
inverse to (12.11) is true. Any matrix over a field is canonically defined.

Theorem 12.6 implies
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PROPOSITION 12.7. If all Fitting invariants of a matrix A ∈ Mm(R) are principal ideals
then A is canonically defined.

THEOREM 12.8. (See [291].) A normal matrix A ∈ Mm(R) is canonically defined pre-
cisely if all invariants (12.12) are principal ideals.

However, there exists matrices over rings R which are not canonically defined.

EXAMPLE 12.9. Matrix A = ( 1 0
0 3

) ∈ M2(Z4) is a normal matrix with D1(xE − A) =
(x − 1, 2)R not a principal ideal. So A is not a canonically defined matrix.

These results and some other examples give reason for following

CONJECTURE CANDEF. A matrix A ∈ Mm(R) is canonically defined precisely if all in-
variants (12.12) are principal ideals.

Additional support for this conjecture is provided by following results.

THEOREM 12.10. (See [291].) Let R be a GE-ring with radical N(R) = πR, and
ind(N(R)) = n > 1. Then for A ∈ M2(R) only one of the following situations is pos-
sible:

(a) D1(xE − A) = (e), Ann(A) = (χA(x)), and A ≈ S(χA(x));
(b) D1(xE − A) = (x − r), Ann(A) = (x − r), for some r ∈ R, and A = rE;
(c) D1(xE − A) = (x − r, πk), Ann(A) = (χA(x), π

n−k), for some r ∈ R, k ∈
{1, . . . , n − 1}, and A ≈ rE + πkS(G(x)), G(x) = x2 − ax − b, χA(x) = (x −
r)2 − πk(x − r) − π2kb.

The matrix A is canonically defined precisely if D1(xE − A) is a principal ideal.

THEOREM 12.11. (See [291].) Let R be a GE-ring with radical N(R) = πR, and
ind(N(R)) = 2. Then a matrix A ∈ M3(R) is canonically defined exactly if D1(xE − A),
D2(xE − A) are principal ideals.

THEOREM 12.12. (See [142].) Let R be a GE-ring. Then a matrix A ∈ Mm(R) with the
property A = aE, a ∈ R, is canonically defined precisely if all invariants (12.12) are
principal ideals.

12.1.5. Polynomial defined matrices and radical identities Here R is a commutative local
f.r. with radical N = N(R) and residue field R = R/N = GF(q). The images of a
matrix A ∈ Mm(R), a polynomial F(x) ∈ R and a subset I ⊆ R under the natural
homomorphism R → R will be denoted correspondingly by A,F(x), I .

Note that for any matrices A,B ∈ Mm(R) the equalities Ds(xE − A) = Ds(xE − A),
s ∈ {1, . . . , m} hold and the implication

(12.14)(A ≈ B) ⇒ (
Ann(A) = Ann(B), A ≈ B

)
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is fulfilled. We call a matrix A ∈ Mm(R) polynomially defined if for every B ∈ Mm(R)

the implication inverse to (12.14) is true. Every polynomially defined matrix is canonically
defined.

THEOREM 12.13. (See [291].) A matrix A ∈ Mm(R) is polynomially defined if and only
if the following conditions hold:

(a) Ann(A) is a principal ideal;
(b) any two not coprime elementary divisors of the matrix xE − A are equal.

Under these conditions all Fitting invariants of the matrix xE−A are principal ideals and
if Ann(F (x)) where F(x) has the canonical decomposition F(x) = F1(x) · · ·Ft(x), then

A ≈ Diag
(
S
(
F1(x)

)
, S
(
F2(x)

)
, . . . , S

(
Ft (x)

))
.

We call a monic polynomial F(x) ∈ R a radical identity if

∀A,B ∈ V
(
F,Mm(R)

): A ≈ B ⇐⇒ A ≈ B.

THEOREM 12.14. (See [291].) Let a monic polynomial F(x) ∈ R be a product F(x) =
H1(x) · · ·Ht(x) of mutually coprime Galois–Eisenstein polynomials (see Section 5.1.1).
Then F is a radical identity. Moreover, V(F,Mm(R)) is the set of all matrices satisfying
some relation of the form

A ≈ Diag
(
S(Hi1), . . . , S(His )

)
.

COROLLARY 12.2. Any monic separable polynomial G(x) ∈ R is a radical identity and
any matrix A ∈ V(G,Mm(R)) is normal.

Examples such are the polynomials
xt − e ∈ R if (t, charR) = 1 [318,366];
x2 − x ∈ R [176].

12.1.6. Kurakin invariants for the similarity of matrices [225] Let R be a GE-ring. Then
according to Proposition 5.2 there exists a local principal ideal domain Z with N(Z) = πZ

such that R ∼= Z/πnZ for some natural number n. Let ϕ :Mm(Z) → Mm(R) be the natural
morphism with kernel πnZ. For a matrix A1 ∈ Mm(Z) let DZ

k (Ex − A1) be the Fitting
invariant of A1 in Z[x]. Denote by D̂k(Ex − A) the ideal in Z[x] generated by the sets
DS

k (Ex − A1) for all A1 ∈ Mm(S) such that ϕ(A1) = A:

D̂k(Ex − A) =
∑

A1∈ϕ−1(A)

DZ
k (Ex − A1).

PROPOSITION 12.15. Let A ∈ Mm(R). Then for any fixed matrix A1 ∈ ϕ−1(A) and for
every k ∈ {1, . . . , m} the equality

D̂k(Ex − A) = DZ
k (Ex − A1) + πnDZ

k−1(Ex − A1) + · · ·
+ π(k−1)nDZ

1 (Ex − A1) + πknZ[x].
holds.



Finite Rings with Applications 279

THEOREM 12.16.

∀A,B ∈ Mm(R): (A ≈ B)

⇒ (
D̂k(Ex − A) = D̂k(Ex − B), k ∈ {1, . . . , m}).

If m = 2 the converse implication is true.

So the Kurakin invariants D̂k(Ex−A) of a matrix A are stronger than the Fitting invari-
ants (see Theorem 12.10). There exist examples of non-similar 3 × 3-matrices A, B, such
that D̂k(Ex − A) = D̂k(Ex − B) for k ∈ {1, 2, 3} [364].

Related sources: [50,83,84,122,256].

12.2. Multiplicative group of a matrix ring over a local f.r. [76,199,200,276,296]

12.2.1. Exponents and elements of maximal order Here S is a local f.r. with radical N

of nilpotency index n and residue field S = GF(q) of characteristic p. We consider the
multiplicative group Mm(S)∗ of the ring Mm(S) of all m × m-matrices over S for m > 1
(for the case m = 1 see Sections 2.2, 4.5, 5.1.3).

It is evident that

(12.15)expMm(S) � expMm(S) exp
(
E + Mm(N)

)
,

(12.16)expMm(S) = [q2 − 1, . . . , qm − 1
]
pσ , σ = ]logp m[.

(Here [a, b, . . . , c] is the lcm of the integers a, b, . . . , c).

THEOREM 12.17. Let ν = ]logp n[, char Nps = pds for s ∈ {0, . . . , ν}, ω = max{s + ds :
s ∈ {0, . . . , ν}}. Then

(12.17)exp
(
E + Mm(N)

) = pμ(S), μ(S) � ω � d0 + ν − 1.

If S is a balanced local f.r. with ramification index ε (see Section 2.2), then

(12.18)ω =
]
n − pb

ε

[
+ b, where b = max

{
0,

]
logp

ε

p − 1

[}
.

If S is a GE-ring then

(12.19)exp
(
E + Mm(N)

) = pω.

THEOREM 12.18. Let R = GR(qn, pn) be a Galois ring. Then

expMm(R)∗ = expMm(R) exp
(
E + Mm(pR)

)
= [q2 − 1, . . . , qm − 1

]
pρ, ρ = ]logp m[ + n − 1.

Let S be a GE-ring with radical N = πS and πε = pvπ . Let Tmax(S,m) be maximum
of the orders T (A) of invertible matrices A ∈ Mm(S)∗. Then

Tmax(S,m) � Tmax(S,m) exp
(
E + Mm(N)

) = (qm − 1
)

exp
(
E + Mm(N)

)
.
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For any λ ∈ N define

b(λ) = max

{
0,

]
logp

(
ε

λ(p − 1)

)[}
,

(12.20)ω(λ) =
]
n − λpb(λ)

ε

[
+ b(λ).

THEOREM 12.19. Let S be a GE-ring. Then
(a) under condition (2.10) Tmax(S,m) = Tmax(S,m) exp(E + N) = (qm − 1)pω.
(b) If A ∈ Mm(S)∗, T (A) = Tmax(S,m), then

(b1) χA(x) = g(x) ∈ S[x] is a polynomial of maximal period qm − 1;
(b2) the matrix A has the form A = A∗(E + πλH(A∗)), where χA∗(x) = G(x) is

a distinguished polynomial corresponding to g(x) (see Section 11.2.2),

H(x) ∈ S[x], degH(x) < m,

H(x) �= 0, 1 � λ < n, ω(λ) = ω.

(c) If a matrix A ∈ Mm(S)∗ satisfies conditions (b1), (b2) and if, given the condition

λ(p − 1)pb(λ) = ε, λpb(λ)+1 < n,

an element v ∈ S∗ with the property vpb(λ) = vπ satisfies the condition

H(x)p + vH(x) �= 0
(
mod G(x)

)
,

then T (A) = Tmax(S,m).

12.2.2. Cyclic types of linear substitutions over a commutative f.r. Let R be any commu-
tative f.r. with identity, let A ∈ Mm(R)∗ be an invertible (m×m)-matrix over R and let ϕA

be the linear substitution on the module R(m) of all columns of the length m, acting on a
column α ∈ R(m) by the rule: ϕ(α) = Aα. Let Z1[y] be the set of all polynomials over the
ring Z with zero free coefficient. The cyclic type of the substitution ϕA is the polynomial
CA(y) ∈ Z1[y] given by

CA(y) =
N∑
t=1

cA(t)y
t , N = ∣∣R(m)

∣∣,
where cA(t) is the number of cycles of length t in ϕA.

Let us define a composition ∗ of elements B(y) =∑t∈N
b(t)yt , C(y) =∑t∈N

c(t)yt ∈
Z1[y] in the following way:

B(y) ∗ C(y) = D(y) =
∑
t∈N

d(t)yt , where d(t) =
∑

r,s∈N, [r,s]=t

(r, s)b(r)c(s)

(here (r, s) is the gcd and [r, s] is the lcm of two numbers r, s ∈ N).

PROPOSITION 12.20. The algebra (Z1[y],+, ∗) is a commutative ring with the identity y.
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It is useful to note that if

C1(y) =
∑
t∈N

c1(t)y
t , . . . , Ck(y) =

∑
t∈N

ck(t)y
t ∈ Z1[y]

then

C1(y) ∗ · · · ∗ Ck(y) =
∑
t1∈N

· · ·
∑
tk∈N

t1 · · · tk
[t1, . . . , tk]c1(t1) · · · ck(tk)y[t1,...,tk].

Let

(12.21)R = R1
.+ · · · .+ Rk

be a decomposition of the ring R into a direct sum of commutative local f.r. R1, . . . , Rk

with identities e1, . . . , ek . Then any matrix A ∈ Mm(R) has decomposition

(12.22)A = A1 + · · · + Ak, Ai = eiA ∈ Mm(Ri), i ∈ {0, . . . , k},
and

A ∈ Mm(R)∗ ⇐⇒ Ai ∈ Mm(Ri)
∗, i ∈ {0, . . . , k},

PROPOSITION 12.21. Let A ∈ Mm(R)∗ and either the conditions (12.21), (12.22) hold or
the matrix A is decomposable: A ≈ Diag(A1, . . . , Ak). Then there is the equality

(12.23)CA(y) = CA1(y) ∗ · · · ∗ CAk
(y).

12.2.3. Calculation of cyclic type in the primary case In view of Corollary 1.1 and The-
orem 12.3 Proposition 12.21 shows that the problem of the calculation of the cyclic type
of an invertible matrix over a finite commutative ring R is reduced to the case when R is a
local ring and the characteristic polynomial χA(x) of the matrix A is primary.

Let now R be a commutative local f.r. and A ∈ Mm(R)∗ be a matrix with primary
characteristic polynomial such that χA(x) = χA(x) = g(x)k , where g(x) ∈ R[x] is an
irreducible polynomial.

Note that for any s ∈ N0 there is the equality g(x)p
s = g(s)(xps

), where g(s)(x) ∈ R[x]
is some irreducible polynomial of period τ = T (g(s)) = T (g). Let G(s)(x) ∈ R be the
distinguished polynomial corresponding to g(s)(x). For any s ∈ N0

T
(
G(s)

) = T
(
g(s)
) = T (g) = τ, (τ, p) = 1.

Below, for any m × m-matrix B over the ring R the set of all solutions in R(m) of the
equation Bx↓ = 0↓ will be denoted by R(B).

THEOREM 12.22. Let the minimal polynomial of the matrix A be g(x)l . Then the cyclic
type of the substitution ϕA has the form

CA(y) = y +
σ∑

s=0

cA
(
τps
)
yτps

, where
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cA(τ) = 1

τ

(∣∣R(G[0](A)
)∣∣− 1

)
,

(12.24)cA
(
τps
) = 1

τps

(∣∣R(G[s](Aps ))∣∣− ∣∣R(G[s−1](Aps−1))∣∣),
and under the condition of Theorem 12.17 ]logp l[ � σ � ]logp l[ + ω.

The additional assumption that R = S is a GE-ring allows one to obtain a more in-
teresting formulas for the coefficients in (12.24). Below we use notions and notations of
Section 5.1.2. Let for s � 0

(12.25)sign
(
G[s](Aps )) = [d1(s), . . . , dm(s)

]
, d(s) = d1(s) + · · · + dm(s).

Let s1 be the minimum of the values s ∈ N0 with the property

d1(s) >
ε

2
, if p > 2; d1(s) > ε, if p = 2, n > ε;

d1(s) = ε, if p = 2, n = ε.

THEOREM 12.23. Under the assumptions above the order of the substitution ϕA is

T (A) = τpσ , where σ = s1 +
]
n − d1(s1)

ε

[
,

and the coefficients in (12.24) satisfy the equalities

cA(τ) = 1

τ

(
qd(0) − 1

)
, cA

(
τps
) = 1

τps

(
qd(s) − qd(s−1)).

Moreover, if T (A) = τpξ and b(λ) is defined by (12.20) then

s1 � b
(
d1(ξ)

)+ ξ + 1

and for every s > s1 the parameter d(s) can be calculated from (12.25) and there are the
equalities

dj (s) = min
{
n, dj (s1) + (s − s1)ε

}
, j ∈ {1, . . . , m}.

13. (Poly)-linear recurrences over a finite module

13.1. General theory [226,233–235,278,297–299,301,303]

Let AM be a faithful finite module over a f.r. A with the identity e. For a fixed k ∈ N any
function u : Nk

0 → M will be called a k-sequence over M . Let M〈k〉 be the A-module of
all k-sequences over M (with usual pointwise addition of functions and multiplication by
constants from A). We define on M〈k〉 a structure of a left module over the polynomial ring
Ak = A[x] = A[x1, . . . , xk]. Any H(x) ∈ Ak has the form H(x) = ∑

j∈N
k
0
cjxj, where

xj = x
j1
1 · · · xjk

k for j = (j1, . . . , jk) ∈ Nk
0. The product of u ∈ M〈k〉 by H(x) is defined as

H(x)u = v ∈ M〈k〉, v(i) =
∑
j∈N

k
0

cjv(i + j), i ∈ Nk
0.
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13.1.1. Relations between LRS-families A k-sequence u ∈ M〈k〉 is called a k-linear re-
curring sequence (k-LRS) over the module AM , if it admits a system of elementary char-
acteristic polynomials, i.e. a system of monic polynomials

(13.1)

Fs(xs) = xms
s − cs,ms−1x

ms−1
s − · · · − cs1xs − cs0 ∈ Ak, s ∈ {1, . . . , k},

such that Fs(xs)u = 0, s ∈ {1, . . . , k}. For k = 1 this definition turns into the usual
definition of an LRS over AM . The set LAM

〈k〉 of all k-LRS over AM is an Ak-submodule
of M〈k〉. But this is not true in general (if AM is infinite module).

An ideal of the ring Ak is called monic, if it contains some system (13.1) of monic
polynomials. A subset χ ⊂ Ak is called left monic, if the left ideal Akχ generated by χ is
a monic.

Below we use notations of Section 6. Evidently a sequence u ∈ M〈k〉 is a k-LRS over
the ring A precisely if its left annihilator in Ak: λ(u) = λAk

(u) is a monic ideal. If I is
a monic ideal of Ak then its right annihilator in M〈k〉: ρ(I) = ρM〈k〉(I ) is a finite set of
k-LRS called k-LRS family with characteristic ideal I . Moreover if the ideal I contains a
system (13.1) of monic polynomials, then |ρ(I)| � |M|m1m2···mk .

If AM is a bimodule AMB (e.g. B = End(AM)) in a manner very similar to that of the
left module case we define the product uH(x) of u ∈ M〈k〉 and H(x) ∈ Bk = B[x] =
B[x1, . . . , xk] and define the notion of k-LRS over a module MB . The set of all k-LRS
over MB will be denoted by LM

〈k〉
B .

For any left ideals I , I1, and I2 of Ak and right submodules R, R1, and R2 of M〈k〉
Bk

(13.2)λ
(
ρ(I)

) ⊇ I, ρ
(
λ(R)

) ⊇ R,

(13.3)ρ(I1 ∩ I2) ⊇ ρ(I1) + ρ(I2), λ(R1 ∩ R2) ⊇ λ(R1) + λ(R2),

(13.4)ρ(I1 + I2) = ρ(I1) ∩ ρ(I2), λ(R1 + R2) = λ(R1) ∩ λ(R2).

For right ideals of Bk and left submodules of Ak
M〈k〉 the obvious left-right versions of

these relations are also true.
It is well known that if M = A = B is a field and k = 1 then relations (13.2), (13.3)

are equalities. In order to develop a profound enough theory of LRS’s over AM by analogy
with the theory of LRS’s over a field we need to preserve these equalities. A generalization
of these relations is connected with the notion of QF-bimodule (Section 6).

THEOREM 13.1. For a finite faithful bimodule AMB the following statements are equiva-
lent.

(a) AMB is a QF-bimodule.
(b) For any ideals I � Ak

Ak and J � BkBk
and for any finite submodules R < M

〈k〉
Bk

and L < Ak
M〈k〉 the equalities I = λ(ρ(I)), R = ρ(λ(R)), J = ρ(λ(J )), L =

λ(ρ(L)) hold.
(c) The mappings I �→ ρ(I) and R �→ λ(R) are mutually inverse Galois correspon-

dences between the set of monic left ideals I of the ring Ak and the set of right finite
submodules R < M

〈k〉
Bk

. The mappings J �→ λ(J ) and L �→ ρ(L) are mutually in-
verse Galois correspondences between the set of monic right ideals J of the ring Bk

and the set of left finite submodules L < Ak
M〈k〉.
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(d) If S is a finite (Ak,Bk)-subbimodule of M〈k〉 and I = λ(S), J = ρ(S), then the
(Ak/I,Bk/J )-bimodule S is a QF-bimodule.

COROLLARY 13.1. Let AMB be a finite QF-bimodule. Then
(a) If I is a two-sided monic ideal of Ak , then S = ρ(I) is a finite (Ak,Bk)-subbimodule

of M〈k〉 and J = ρ(S) is a two-sided monic ideal of Bk .
(b) The mappings I �→ ρ(I), S �→ λ(S) and J �→ λ(J ), S �→ ρ(S) are one-to one

correspondences between three sets: the set of two-sided monic ideals I of Ak , the
set of finite (Ak,Bk)-subbimodules of M〈k〉 and the set of two-sided monic ideals J

of the ring Bk .
(c) For a monic left ideal I of Ak the family LM(I) is a left Ak-module if and only if I

is a two-sided ideal of Ak .
(d) For any monic left ideals I1, I2 of Ak and finite right submodules R1, R2 of M〈k〉

Bk

the inclusions (13.3) and their left-right versions are equalities.
(e) LAM

〈k〉 = LM
〈k〉
B is a (Ak,Bk)-subbimodule of M〈k〉.

In the commutative case property (d) of Corollary 13.1 implies that AMB is a QF-
bimodule, in the noncommutative case the correctness of this assertion is an open question.

13.1.2. Criterion of cyclicity of an LRS-family over a QF-module with commutative coef-
ficient ring It is well known that if M = A = B is a field and k = 1 then for any monic
ideal I � A1 the LRS-family ρ(I) is a cyclic A1-module.

A generalization of this result for LRS’s over a module RM with commutative coefficient
ring R is the following. Here we use the notation LM(I) = ρM〈k〉(I ) for a k-LRS family
with characteristic ideal I .

If R is a commutative f.r. then the nilradical N = N(R) of R is the set of all nilpotent
elements of R: ‘N(R) = √

0. It is not difficult to see that the radical
√
I of any ideal

I * Rk satisfies the following relations: NRk ⊆ √
I , N(I : √

I ) ⊆ I . This means that
we can consider the R-modules Rk/

√
I and (I : √

I )/I as modules over the top-factor
R = R/N of the ring R. The following result here is the endproduct of a series of result’s
[226,253,295,297,298,301]

THEOREM 13.2. (See [160].) Let RQ be a quasi-Frobenius module over a commutative
f.r. R. Then for any monic ideal I * Rk the LRS-family M = LQ(I) is a QF-module over
the commutative f.r. S = Rk/I and the following conditions are equivalent:

(a) I = λ(u) for some recurrence u ∈ LQ〈k〉;
(b) M is a cyclic Rk-module: M = Rku;
(c) S is a quasi-Frobenius ring;
(d) there exists an isomorphism of modules R(Rk/

√
I ) ∼= R((I : √

I )/I ).

In [295] for the case when k = 1 and R is a GE-ring an algorithm was given for checking
the conditions of Theorem 13.2 using a canonical generating system of the ideal I .
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13.1.3. Periodic k-sequences Let RM be a finite faithful module over a commutative
f.r. R. For μ ∈ M〈k〉 the set O(μ) of all k-sequences ν ∈ M〈k〉 of the form ν = xiμ,
i ∈ Nk

0, is called the trajectory of μ.
A sequence μ ∈ M〈k〉 is called periodic if its trajectory O(μ) is finite, and it is called

reversible if O(μ) = O(xiμ) for every i ∈ Nk
0.

For a periodic sequence μ the set T (μ) of all reversible elements of its trajectory O(μ)

is called the cycle of the sequence μ, and its cardinality T (μ) = |T (μ)| is called the
period of the sequence μ. The elements of the set D(μ) = O(μ) \ T (μ) are called defect
elements of the trajectory O(μ) and its cardinality D(μ) = |D(μ)| is called the defect of
the sequence μ. The sequence μ is said to be degenerated if it is periodic and its cycle
contains only the zero sequence, i.e., T (μ) = {0}.

Thus, D(μ) + T (μ) = |O(μ)|, and a periodic sequence μ is reversible iff D(μ) = 0,
i.e., T (μ) = O(μ). A periodic sequence is degenerated iff xi ∈ An(μ) for some i ∈ Nk

0.

PROPOSITION 13.3. A k-sequence μ ∈ M〈k〉 is a periodic (respectively reversible, de-
generated) sequence exactly if its annihilator I = An(μ) � Rk is a periodic (respectively
reversible, degenerated) ideal (see Section 11.4).

If μ is a periodic sequence, then T (μ) = T (I), D(μ) = D(I).
The reversibility of the sequence μ ∈ M〈k〉 is equivalent to the condition

∀i ∈ Nk
0∃j ∈ Nk

0: xj(xiμ
) = μ.

PROPOSITION 13.4. A k-sequence μ over a finite module RM is periodic iff it is a k-LRS.

A nonzero vector t ∈ Nk
0 is called a vector-period of the sequence μ ∈ M〈k〉 if xl(xt −

e)μ = 0 for some l ∈ Nk
0. A subgroup P(μ) of the group (Zk,+), generated by all vector-

periods of μ, will be called its group of periods.

PROPOSITION 13.5. For every μ ∈ M〈k〉 the set P+(μ) of all nonzero nonnegative vectors
from P(μ) coincides with the set of all vector-periods of the sequence μ. For any subgroup
G < Zk which is generated by the set G+ of all of its nonnegative vectors, there exists a
k-sequence μ ∈ R〈k〉 such that P(μ) = G. If μ is a periodic k-sequence with annihilator
I = An(μ) then P(μ) = P(I ), rank P(μ) = k, and T (μ) = [Zk : P(μ)].

Note that if rank P(μ) = k, then μ is not necessarily a periodic sequence. The sequence
μ ∈ M〈2〉 of the form

α 0 α 0 0 α 0 0 0 α . . .

0 α 0 α 0 α . . .

α 0 α 0 α 0 . . .

. . . . . . . . . . . . . . . . . . . . .

where α �= 0, is nonperiodic, but rank P(μ) = 2.
Let now RM be a finite faithful module over a commutative f.r. R with identity. Then

the annihilator An(μ) = λ(μ) of any μ ∈ M〈k〉 is an ideal of the polynomial ring
Rk = R[x1, . . . , xk]. The quotient ring S = Rk/An(μ) is called the operator ring of
the sequence μ. It has a form S = R[ϑ1, . . . , ϑk], where ϑs = xs + An(μ),
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THEOREM 13.6. The sequence μ is reversible if and only if its operator ring S is finite
and ϑ1, . . . , ϑk ∈ S∗. If μ is a reversible sequence, then

T (μ) = ∣∣〈ϑ1, . . . , ϑk〉
∣∣ � |S∗| � |S| − 1,

where 〈ϑ1, . . . , ϑk〉 is the subgroup of the group S∗ generated by ϑ1, . . . , ϑk . The equality

T (μ) = |S∗|
holds iff

(13.5)S∗ = 〈ϑ1, . . . , ϑk〉.
If μ is a faithful reversible sequence, then

T (μ) = |S| − 1

if and only if the following three conditions hold:
(a) R = GF(q) is a Galois field;
(b) An(μ) is a maximal ideal of the ring Rk = GF(q)[x1, . . . , xk] (i.e., S = GF(qn)

for some n ∈ N);
(c) the equality (13.5) holds.

13.2. Cycles of reversible LRS-families [226]

Let RM be a finite faithful module over a commutative f.r. R with identity and let I * Rk

be a monic ideal. A k-LRS-family LM(I) is called reversible if any sequence μ ∈ LM(I)

is reversible.

PROPOSITION 13.7. If I * Rk is a reversible ideal, then LM(I) is a reversible family. If
LM(I) is a reversible family, then the ideal I ′ = An(LM(I)) is reversible and LM(I) =
LM(I ′).

Let F1(x1), . . . , Fk(xk) ∈ Rk be a system of monic elementary polynomials. Then the
family LM(F1, . . . , Fk) is reversible iff the polynomials F1(x1), . . . , Fk(xk) are reversible.

Define the relation ∼ on the k-LRS-family LM(I) by

μ ∼ ν ⇐⇒ ∃i ∈ Nk
0: xiμ = ν

(
μ, ν ∈ LM(I)

)
.

Note that for every ideal I *Rk we can consider the left Rk-module LM(I) as a natural
left module over the operator ring S = Rk/I of the ideal I (see Section 11.4). In particular
for any μ ∈ LM(I) the product T (I )μ is well defined.

PROPOSITION 13.8. The relation ∼ on LM(I) is an equivalence relation iff LM(I) is
a reversible family. In the last case the relation ∼ decomposes LM(I) into classes of
equivalent sequences, and the class [μ]∼ of sequences equivalent to μ ∈ LM(I) is
[μ]∼ = T (μ) = T (I )μ, i.e., [μ]∼ is the cycle of μ.
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13.2.1. The cyclic type of reversible k-LRS-family Let Hk be the set of all subgroups
G < Zk of rank k such that G is generated by the set G+ of its nonnegative vectors.
Then Hk is closed relative to the operation ∩ of intersection of subgroups. Thus there is a
semigroup (Hk,∩).

Denote by Z[Hk] the semigroup algebra of a semigroup Hk over Z.
The cyclic type of a finite reversible k-LRS-family LM(I) is the element ZM

I of the
algebra Z[Hk] of the form

ZM
I =

∑
G∈Hk

zMI (G)G,

where zMI (G) is the number of cycles T (μ) ⊆ LM(I) with P(μ) = G.
In the case k = 1 the last definition can be simplified. In fact, each subgroup

G ∈ H1 is generated by the number t = [Z : G], and instead of the cyclic type
ZM

I = ∑
t�1 zMI (〈t〉)〈t〉 we can consider a cyclic type CM

I (y) = ∑
t�1 cMI (t)yt ∈ Z1[y],

where cMI (t) is the number of cycles T (μ) ⊆ LM(I) with T (μ) = t . In this form the
notion of cyclic type coincide with the same notion in Section 12.2.2.

The composition of elements A =∑G∈Hk
aGG and B =∑G∈Hk

bGG in the ring Z[Hk]
is the element A ∗ B = C =∑G∈Hk

cGG, where

cG =
∑

G1∩G2=G

[
Zk : (G1 + G2)

]
aG1bG2 =

∑
G1∩G2=G

[Zk : G1][Zk : G2]
[Zk : G] · aG1bG2 .

THEOREM 13.9. The algebra (Z[Hk],+, ∗) is a commutative ring with unit Zk . If Bs =∑
G∈Hk

b
(s)

G G ∈ Z[Hk] for s ∈ {1, . . . , r}, then

B1 ∗ · · · ∗ Br =
∑
G∈Hk

( ∑
G1∩···∩Gr=G

[Zk : G1] · · · [Zk : Gr ]
[Zk : G] · b(1)G1

· · · b(r)Gr

)
G.

The ring (Z[Hk],+, ∗) is called the ring of cyclic types of k-LRS-families.

THEOREM 13.10. Let LM(I) be a finite reversible k-LRS-family. If M = M1
·+ M2 is the

direct sum of submodules, then ZM
I = Z

M1
I ∗Z

M2
I . If I = I1I2 is the product of comaximal

ideals, then ZM
I = ZM

I1
∗ ZM

I2
.

13.2.2. Full-cycle and k-maximal ideals and recurrences Let R be a commutative f.r.
and I be a reversible ideal of Rk with operator ring S = Rk/I . Then S is a f.r.

We call a reversible ideal I * Rk full-cycle if I ∩ R = 0, LR(I) is a cyclic S-module,
and T (I ) = S∗. A k-sequence u ∈ R〈k〉 is called full-cycle if I = An(u) is a full-cycle
ideal and LR(I) = Su.

PROPOSITION 13.11. Let I *Rk be a reversible ideal such that I ∩R = 0, LR(I) = Su.
Then P(u) = P(I ), and I is a full-cycle ideal iff

∀v ∈ LR(I)
(
P(v) = P(I )

) ⇒ (
v ∈ T (u)

)
.
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PROPOSITION 13.12. Let R, Q be finite quasi-Frobenius rings, R < Q. Then there exists
a full-cycle recurrence u over R such that the ring S of operators of u is isomorphic to Q.

A k-sequence u ∈ R〈k〉 is called exact if R ∩ Ann(u) = ∅.
An exact reversible k-LRS u over a Galois ring R = GR(qn, pn) is called a k-maximal

recurrence if its operator ring S = Rk/An(u) satisfies the conditions

(13.6)S = GR
(
qmn, pn

)
, for some m ∈ N, and T (u) = |S∗|.

i.e., if u is a full-cycle recurrence over R, and its operator ring is a Galois ring. If here
S = GR(qmn, pn), then we say that u is a k-max-LRS of rank m.

By Theorem 13.6 condition (13.6) is equivalent to the condition

(13.7)

S = GR
(
qmn, pn

)
, S∗ = 〈ϑ1, . . . , ϑk〉, where ϑs = xs + I, s ∈ 1, k.

The description of such recurrences is based on the notion of trace in a Galois ring (Sec-
tion 4.4).

THEOREM 13.13. Let Q = GR(qmn, pn) be a Galois extension of the Galois ring R =
GR(qn, pn). Then a k-sequence u ∈ R〈k〉 is a k-max-LRS of rank m over R iff there exist
elements ξ, α1, . . . , αk ∈ Q∗ such that

(13.8)u(z) = TrQR
(
ξαz) = TrQR

(
ξα1

z1 · · · · · αk
zk
)
, Q∗ = 〈α1, . . . , αk〉.

Any such LRS has period T (u) = (qm − 1)qm(n−1).

We can construct a k-max-LRS of rank m over a finite field, i.e. over a Galois ring
R = GR(qn, pn) with n = 1, for any k, m ∈ N. In the case n > 1 this is not true. If
R = GR(qn, pn), q = pr , n > 1, then there exists a k-max-LRS of rank m over R if and
only if

k � mr, if p > 2 or p = n = 2;
k � mr + 1, if p = 2 < n.

These restrictions on k follow from (13.7) and Theorem 4.12.
We call a reversible ideal I * Rk a k-maximal ideal or ideal of maximal period over a

Galois ring R if its operator ring S satisfies (13.7) for some m ∈ N.

THEOREM 13.14. Let I be an ideal of maximal period over R = GR(qn, pn) and suppose
that (13.7) holds. Then the group of periods of I is P(I ) = {t ∈ Zk | ϑ t = e}, and

T (I) = (qm − 1
)
qm(n−1), Zk/P(I ) ∼= GR

(
qmn, pn

)∗
.

The cyclic type of the family LR(I) is given by

ZR
I = 1 · Zk + 1 · P(I1) + · · · + 1 · P(In−1) + 1 · P(I ),

where Is = I + psRk , s ∈ {1, . . . , n − 1}. Moreover, T (Is) ∼= GR(qms, ps)∗.
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13.2.3. Calculation of the cyclic type of a reversible 1-LRS-family [46,68,146] Let now
I be a reversible ideal of the ring R = R[x]. According to Theorem 13.10 the description
of the cyclic type of the family LM(I) is reduced to the case where R is a local ring and I

is a primary ideal; we assume this in what follows.
Let I be a primary ideal with main generator F(x) (see Section 11.2.1) and with a

generating system F(x),G1(x), . . . ,Gt (x). Let degF(x) = m and

(13.9)F(x) = g(x)k,

where g(x) is an irreducible polynomial over the field R,

(13.10)T
(
g(x)

) = τ, pa−1 < k � pa.

Then radF(x) = G(x) is a distinguished polynomial corresponding to g(x) (see Sec-
tion 11.2.2), and by (11.15) T (I) = τpβ(I).

For an (m × l)-matrix B over R, let LM(B) be the R-module of all solutions
(μ1, . . . , μm) ∈ Mm of the system of linear equations (x1, . . . , xm)B = (0, . . . , 0). Write

(13.11)Bs = (G[s](S),G1(S), . . . ,Gt (S)
)
m×m(t+1), s � 0,

where G[s](x) is the polynomial defined in (11.11), and S = S(F ) is the companion matrix
of the polynomial F(x).

THEOREM 13.15. Under the above assumptions, the cyclic type of the family LM(I) is

CM
I (y) = y +

β(I)∑
s=0

cMI
(
τps
)
yτps

, where

cMI (τ ) = 1

τ

(∣∣LM(B0)
∣∣− 1

)
,

cMI
(
τps
) = 1

τps

(∣∣LM(Bs)
∣∣− ∣∣LM(Bs−1)

∣∣), s ∈ {1, . . . , β(I )}.
If RM is a QF-module or I = RF(x) is a principal ideal, then cMI (τpβ(I)) �= 0, i.e., there
exists a recurrence μ ∈ LM(I) such that T (μ) = T (I).

Note that if R is a field then there exists μ ∈ LM(I) such that An(μ) = I . In general
case this statement is not true. However, there is

COROLLARY 13.2. Let M be any faithful finite module over a commutative f.r. R and let
I be a reversible ideal of R. Then the length of any cycle of the family LM(I) divides the
maximum of the lengths of cycles of this family. If M is a QF-module or I is a principal
ideal, then there exists an LRS μ ∈ LM(I) with T (μ) = T (I).

The last result implies

CONJECTURE. Let M be a faithful finite module over a commutative f.r. R and let I be a
reversible ideal of R. Then there exists an LRS μ ∈ LM(I) with T (μ) = T (I).
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Theorem 13.15 is not convenient to use because there is no a good theory which makes
it possible to evaluate the number of solutions of a system of linear equations over an
arbitrary local ring R [11, 12]. But for a GE-ring R there is such theory.

In what follows, we assume that R is a GE-ring with parameters (5.4).
In this case, if m � l, then each (m × l)-matrix B over R is equivalent to a unique

diagonal matrix D in canonical form (see Section 5.1.2):

B ∼ D = diag
(
πd1 , . . . , πdm

)
, 0 � d1 � · · · � dm � n.

Recall that the parameter defB = d1 + · · · + dm is called the defect of B.

PROPOSITION 13.16. Let R be a GE-ring, and let I *R be a primary reversible ideal with
a main generator F satisfying conditions (13.9), (13.10), and let the matrices Bs in (13.11)
satisfy the condition: defBs = d(s) for s � 0. Then the cyclic type of the family LR(I) is
given by

CR
I (y) = y +

β(I)∑
s=0

cRI
(
τps
)
yτps

, where

cRI (τ ) = 1

τ

(
qd(0) − 1

)
,

cRI
(
τps
) = 1

τps

(
qd(s) − qd(s−1)),

(13.12)s ∈ {1, . . . , β(I )}.
Moreover, cRI (τpβ(I)) �= 0.

If I = RF(x) is a principal ideal, there are some simplifications in the calculation of the
cyclic type of LR(I) = LR(F), using the result of Theorem 12.23 for the case A = S(F ).

THEOREM 13.17. Under the conditions of Proposition 13.16 let F(x) be a primary re-
versible polynomial over R satisfying conditions (13.9), (13.10), G(x) = radF(x), and
for s � 0

(13.13)signG[s](Sps ) = [d1(s), . . . , dm(s)
]
, d(s) = d1(s) + · · · + dm(s).

Let s1 be the least s ∈ N0 such that

d1(s) >
ε

2
, if p > 2; d1(s) > ε, if p = 2, n > ε;

(13.14)d1(s) = n, if p = 2, n = ε.

Then

T (F ) = τpσ , where σ = s1 +
]
n − d1(s1)

ε

[
,

and the family LR(F) has the cyclic type

CR
F (y) = y +

σ∑
s=0

cRF
(
τps
)
yτps

,
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where the coefficients cRF (τps) are defined by (13.12). Moreover, for each s > s1 the pa-
rameters dj (s) in (13.13) can be expressed with the help of [d1(s1), . . . , dm(s1)] in the
form

dj (s) = min
{
n, dj (s1) + (s − s1)ε

}
, j ∈ {1, . . . , m}.

The parameter s1 satisfies the inequality s1 � b(d1(a)) + a + 1, where a is defined
in (13.10), b(x) = max{0, logp

ε
x(p−1) }.

13.3. Linear recurrences of maximal period over a Galois ring

Let R = GR(qn, pn) be a Galois ring of order qn and of characteristic pn (where p is
a prime, q = pr ), and let F(x) ∈ R be a monic polynomial of degree m. Then the
periods of F(x) and any LRS u ∈ LR(F(x)) (see Section 11.1) satisfy the inequalities
T (F ) � (qm − 1)pn−1.

Denote by u and F the images respectively of a sequence u and a polynomial F under
the natural homomorphism R → R = R/pR. If degF(x) = m, then

T (u) | T (F ), T (F ) | T (F(x)
)
pn−1 �

(
qm − 1

)
pn−1.

If T (F ) = (qm−1)pn−1, then F is called a polynomial of maximal period (MP-polynomial
of degree m) over R.

If T (u) = (qm − 1)pn−1 then the sequence u is called an LRS of maximal period (MP-
recurrence) of rank m.

PROPOSITION 13.18. An LRS u ∈ LR(F) is an MP-recurrence of rank m if and only if
F(x) is an MP-polynomial over R and u �= 0.

The following representation of MP-recurrences over a Galois ring via the trace function
(Section 4.4) is a fundamental result in the theory of such recurrences.

THEOREM 13.19. Let R = GR(qn, pn), let F(x) ∈ R be an MP-polynomial of degree m

over R, and let Q = GR(qnm, pn) be a Galois extension of degree m of the ring R. Then
Q = R[ϑ], where F(ϑ) = 0, and the family LR(F) is exactly the family of all sequences
u ∈ R〈1〉 of the form

(13.15)u(i) = TrQR
(
ξϑi
)
, i ∈ N0, ξ ∈ Q.

Here ‖u‖ = ‖u[{0, . . . , m − 1}]‖ = ‖ξ‖ = ν ∈ {1, . . . , n} (see (10.3)) and if ν < n, then
T (u) = τpn−ν−1, where τ = qm − 1. The cyclic type of the family LR(F) is

CR
F (y) = y +

n−1∑
s=0

(
qm

p

)
yτps

.

Below we restrict ourselves to some illustrations only of the contention that linear se-
quences over a Galois ring are good source of pseudorandom sequences. More detailed
information on this subject is contained in [226–229,232,233,238,239].



292 A.A. Nechaev

13.3.1. Linear complexity of coordinate sequences of MP-recurrence Let u be an MP-
recurrence of period (qm − 1)pn−1 = τpn−1 with minimal polynomial G(x) of degree m

over the ring R = GR(qn, pn). Any term u(i) of the sequence u has a standard p-adic
decomposition:

u(i) = u0(i) + u1(i)p + · · · + un−1(i)p
n−1,

(13.16)us(i) = γs
(
u(i)

) ∈ Γ (R),

(see Section 4.2). The latter gives us n sequences u0, . . . , un−1 over the field Γ (R) =
GF(q). For sufficiently large but acceptable values of m and s the sequence us is a good
source of pseudorandom numbers. Of course us is an LRS over Γ (R). Let rank us be the
rank or linear complexity of us : the degree of its minimal polynomial. Apparently we can
consider us as an “approximation” of a random sequence only if rank us is large enough.
The simplest estimate of this parameter is the following.

T (us) = τps , s ∈ {0, . . . , n−1}, and u0 is an MP-recurrence of rank m over the field Γ ,

∀s ∈ {1, . . . , n − 1}: rankus > m
(
ps−1 + 1

)
.

In the case R = Zpn instead of the p-adic decomposition (13.16) one can consider the
p-ary decomposition of u(i):

u(i) = v0(i) + v1(i)p + · · · + vn−1(i)p
n−1;

(13.17)vs(i) = δs
(
u(i)

) ∈ {0, . . . , p − 1}.
Any of the sequences v0, . . . , vn−1 is an LRS over the field Zp and rank v0 = m.

Let p be an odd prime number. If sk(p) = 1k + 2k + · · · + (p − 1)k , k � 1, then

p | sk(p), 1 � k � p − 2, p2 � s1(p),

p2 | s2a+1(p), 3 � 2a + 1 � p − 2.

A pair of numbers (p, 2a), 2 � 2a � p − 3, is called regular if p2 � s2a(p) [52].

THEOREM 13.20. (See [223,226].) The rank of the first p-ary coordinate sequence v1 of
MP-LRS u satisfies the relations

rank v1 = m +
(
m

2

)
, if p = 2;

rank v1 = m +
∑
l∈V

(
m + l − 1

l

)
+
(
m + p − 2

p − 1

)
+
(
m + p − 1

p

)
,

if p � 3,

where V is the set of odd numbers l ∈ {3, . . . , p − 2} such that (p, p − l) is a regular pair.

UPPER BOUNDS ON rank vs . Let
{m

r

}
be number of combinations of r identical balls

distributed over m boxes under the extra condition that each box contains p − 1 balls or
less. By [57, p. 215]{

m

r

}
=
∑
j�0

(−1)j
(
m

j

)(
r + m − pj − 1

m − 1

)
, r � 1.
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THEOREM 13.21. (See [226–228].) Let u be an MP-linear recurrence of rank m over the
ring R = Zpn , then rank v0 = m, rank u1 = m + (m+p−1

p

)
and for s � 2 there is an

upper bound:

rank vs �
{

m

ps

}
+ (ps−1 + 1

)
m +

ps−1−1∑
l=1

(l + 1) ·
bs(l)∑

t=bs(l+1)+1

{
m

t

}
,

where bs(l) = ps − pl + πp(l), and

(13.18)πp(l) =
{
l, if l � p − 1;
1 + [(l − 1) mod (p − 1)], if l � p � 3;
1 + [l mod 2], if l � p = 2.

LOWER BOUNDS ON rank vs . Below we fix R = Zpn and an MP-polynomial F(x), sat-
isfying all conditions of Theorem 13.19. Then for every s ∈ {0, . . . , n − 2} there are the
relations

(13.19)

xτps ≡ e + ps+1Φs+1(x)
(
mod F(x)

)
, degΦs+1(x) < m, Φs+1(x) �= 0.

Let us write ws = Φs(ϑ), s ∈ {1, . . . , n − 1}, and say that a polynomial F(x) satisfies the
(s, t)-condition if [R(ws) : R] = t (where, of course, t | m). We say also that F(x) satisfies

the (s, ∗)-condition if ws,w
p
s , . . . , w

pm−1

s is a basis of QR . An algorithm for constructing
an MP-polynomial F with a fixed polynomial Φs is presented in [226].

THEOREM 13.22. (See [226–228].) Let u be an MP-linear recurrence over the ring R =
Zpn with characteristic polynomial F(x). Then

(a) if F satisfies (2, 1)-condition, then

rank vs �
∑

l∈V (2,1,p)

(l + 1)

{
m

bs(l)

}
, where

V (2, 1, p) = {0, . . . , ps−1}, if p � 3,

V (2, 1, p) = {0, . . . , 2s−1} ∩ 2N, if p = 2.

(b) if F satisfies (2, h)-condition, and h > p, then

rank vs � m
(
ps−1 + 1

)+
{

m

ps

}
+ h − p

h

∑
l∈V (2,h,p)

(1 + l)

({
m

bs(l)

}
− δk

)
, where

V (2, h, p) = {l ∈ {1, . . . , ps−1 − 1
}
: πp(l) = 1, bs(l) � m(p − 1)

}
,

δl =
{
e, if m | bs(l), trp

m

p (w2) = 0;
0 otherwise.
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(c) if F satisfies (1, ∗)-condition, then

rank vs �
∑

l∈V1(1,∗,p)
(l + 1)

{
m

bs(l)

}
+ m

m + p

∑
l∈V2(1,∗,p)

(l + 1)

{
m

bs(l)

}
,

where

V1(1, ∗, p) = {l ∈ {0, . . . , ps−1}: πp(l) = 1, and bs(l) < m(p − 1)
}
,

V2(1, ∗, p) = {l ∈ {2, . . . , ps−1}: πp(l) = 2, and bs(l) < m(p − 1)
}
.

There are also simpler but less precise lower bounds.

THEOREM 13.23. (See [226–228,239].) For every m > 1 there exists an MP-polynomial
F(x) ∈ Zpn[x] of degree m such that any MP-linear recurrence u ∈ LZpn

(F ) satisfies the
following condition: for s � 2

rank vs �
{

m

ps

}
+ (ps−1 + 1

)
m +

s−2∑
k=2

(
ps−1 − pk + 1

){ m

pk+1 + p − 1

}
.

CONJECTURE. If p = 2, then the MP-polynomial F(x) can be chosen such that the last
sum contains an additional term

(m
4

)
2s−1.

If p, s are fixed and m → ∞, then rank us = (m
ps

)
(1 + o(1/m)).

13.3.2. Frequency characteristics of MP-recurrences Another important requirement for
a pseudo-random sequence is a “uniformity” condition on the distribution of elements and
of k-tuples on long enough segments from it. Results on this topic are summarized in [226,
227]. We present here only one of the newer results. Let F(x) be an MP-polynomial of
degree m over a Galois ring R = GR(qn, pn), and let u ∈ LR(F) be an MP-recurrence
of period T = (qm − 1)pn−1. Let 0 � i1 � · · · � ik < T be fixed integer numbers,
and let a1, . . . , ak be fixed elements of R. Denote by νu(a/i) the number of solutions
i ∈ {0, . . . , T − 1} of the system of equations

u(i + i1) = a1, . . . , u(i + ik) = ak.

THEOREM 13.24. (See [192].) If the system of residues of polynomials xi1 , . . . , xik ∈ R
modulo F(x) is linearly independent over the field R, then∣∣∣∣νu(a/i) − T

|R|k
∣∣∣∣ � p2(n−1)qm/2 ≈ p3(n−1)/2

√
T .

There are more precise results on the distribution of elements on cycles of MP-linear
recurring sequences over R = Zpn . Note that if F(x) ∈ R is an MP-polynomial with the
parameters pointed out above, then for every s ∈ {1, . . . , n − 1} the following relations
hold:

xτps−1 ≡ e + psΦ(s)(x)
(
mod F(x)

)
, degΦ(s)(x) < m, Φ(s)(x) �= 0.
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Let Nu(a) = νu(a/0) be the number of solutions i ∈ {0, . . . , T − 1} of the equation
u(i) = a for a given a ∈ R.

THEOREM 13.25. (See [227].) Under the above assumptions,
(a) if p � 3, then

νu(a) � p − 1

p
· T

|R| for any a ∈ R in case degΦ(1)(x) > 0,

νu(a) = pm−1 for any a ∈ R∗ in case degΦ(1)(x) = 0;
(b) if p = 2, then

νu(a) � 1

4
· T

|R| for any a ∈ R in case degΦ(2)(x) > 0,

νu(a) � 1

2
· T

|R| for any a ∈ R∗ in case degΦ(2)(x) = 0.

Let now R = GR(q2, 4) be a Galois ring of characteristic 4. Then a full description of
the possible variants of distributions of elements on cycles of MP-recurrences can be given.

Let F(x) ∈ R be a monic polynomial of degree m such that its period T = T (F ) is
equal to τ = qm − 1 (distinguished polynomial) or to 2τ (MP-polynomial). In such a case
there is a description of the possible types [Nu(c): c ∈ R] for u ∈ LR(F) based on the
presentation of an LRS u via the trace-function in Galois rings [226,239,294] and on the
theory of quadratic forms over Galois fields of characteristic 2 (see [240]).

Let λ = [m/2] be the integer part of m/2 and let δc,0 be the Kronecker delta.

THEOREM 13.26. (See [230,231,241].)
(a) If F(x) is a distinguished polynomial then for any c ∈ R

Nu(c) = qm−2 ± wqλ−1 − δc,0,

where w ∈ {1, q − 1} if m = 2λ+ 1, and w ∈ {0, 1, q − 1} if m = 2λ. There exist
not more than 2q + 1 different types [Nu(c): c ∈ R] in LR(F).

(b) If F(x) is an MP-polynomial then for any c ∈ R

Nu(c) = 2qm−2 ± wqλ−1 − 2δc,0,

where w ∈ {0, 2, q−2, q, 2(q−1)} if m = 2λ+1, and w ∈ {0, 1, 2, q−1, 2(q−1)}
if m = 2λ. There exist not more than 2q+1 different types [Nu(c): c ∈ R] in LR(F).

14. Linear codes over finite rings and modules

14.1. Main definitions. Parameters of codes [168,267]

Let M be a finite left module over a finite ring R with identity. The Hamming weight of a
word 8α = (α1, . . . , αn) ∈ Mn is defined as wH(8α) = ‖8α‖ = |{i ∈ {1, . . . , n}: αi �= 0}.
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The (Hamming) distance d(8α, 8β) between words 8α, 8β ∈ Mn is defined as

d(8α, 8β) = ∣∣{i ∈ {1, . . . , n}: αi �= βi

}∣∣ = ‖8α − 8β‖.
Any submodule K � RM

n, n ∈ N, is called a linear n-code over RM .
The (Hamming) distance of a code K � Mn is

d(K) = min
{
d(8α, 8β): 8α, 8β ∈ K, 8α �= 8β} = min

{‖8α‖: 8α ∈ K \ 0
}
.

If d(K) = d we call K an (n, C, d)|M|-code, where C = |K|, or [n, k, d]|M|-code, where
k = log|M| |K|. If d(K) = d � 2t + 1 the code notes d − 1 and corrects t errors.

The main problems of the coding theory are as follows: for a given |M| = q and with
two of the parameters n, k, d fixed to find the extreme (maximal or minimal) possible value
of the third of them. In this connection there are some well-known bounds.

SINGLETON BOUND. d � n − k + 1. A code with d = n − k + 1 is called an MDS-code.
Example: the linear [q, k, q − k + 1] Reed–Solomon codes over GF(q).

PLOTKIN BOUND. d � q−1(C − 1)−1(q − 1)Cn.

Equality holds for the simplex code over GF(q): the linear [qm − 1,m, qm−1(q − 1)]q -
code.

SPHERE PACKING (HAMMING) BOUND. If d � 2t + 1, then

C � qn

( ∑
i∈{0,...,t}

(
n

i

)
(q − 1)i

)−1

.

If the last inequality is equality a code is called perfect. Examples: the linear [n, n −
m, 3]q -Hamming code over GF(q), n = (q − 1)−1(qm − 1); the Golay [23, 12, 7]2-code
and the [11, 6, 5]3-code.

14.2. General results

14.2.1. The socle and the distance of a linear code [163] If K � RM
n then it is possible

to simplify the calculation of d(K) using the notion of socle (Section 6.1.2). Recall that the
socle S(RM) is a left module over the top-factor R of the ring R.

PROPOSITION 14.1. The socle S(K) of a linear code K �R Mn is a linear code
over RS(M):

(14.1)S(K) = K ∩ (S(M)
)n � RS(M)n;

moreover,

(14.2)d(K) = d
(
S(K)

)
.
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According to Theorem 1.1 the ring R has a decomposition

(14.3)R = R1 ⊕ · · · ⊕ Rt,

where Ri = Mmi
(Pi) is the ring of mi × mi-matrices over Pi = GF(qi) with identity ei ,

i ∈ {1, . . . , t}. Then e1, . . . , et is a system of pairwise orthogonal central idempotents of
the ring R and e1 + · · · + et = e is the identity of R. According to (14.3)

(14.4)S(M) = S1 ⊕ · · · ⊕ St , where Si = eiS(M) = Mmi,ni
(Pi)

is a space of mi ×ni-matrices over Pi , Si is a left Ri-module and ni � 0 for i ∈ {1, . . . , t}.
Under the conditions (14.3), (14.4) the code S(K) in (14.2) has a decomposition

(14.5)S(K) = L1 ⊕ · · · ⊕ Lt , where Li = eiS(K) � Ri
Sn

i , i ∈ {1, . . . , t}.

PROPOSITION 14.1. Under the conditions (14.3), (14.4)

(14.6)d(K) = min
{
d(L1), . . . , d(Lt )

}
.

So the calculation of the distance of any linear code over an arbitrary finite module is
reduced to the same problem for codes over the modules Si = Mmi,ni

(Pi) with simple
coefficient rings Ri = Mmi

(Pi).

14.2.2. Dual code over the character module [91,163,233] Let M
#
R be the charac-

ter module of a finite module RM (Section 6.2.1). We can consider any row 8ϕ =
(ϕ1, . . . , ϕn) ∈ (M#)n, as an element of (Mn)#, acting on elements 8α = (α1, . . . , αn) ∈
Mn by the rule

8ϕ(8α) = ϕ1(α1) + · · · + ϕn(αn) ∈ Q/Z.

Then (M#)n is the character group of Mn: (M#)n = (Mn)#.
For every K � (Mn,+) we define its dual code in Delsartes form:

K⊥ := { 8ϕ ∈ (M#
)n: 8ϕ(8α) = 0 for all 8α ∈ K

}
.

Then K⊥ � ((M#)n,+), and if K � RM
n then K⊥ � (M#)nR , and also K ⊆ K⊥⊥.

Moreover, we have the following generalization of the well-known relations between a
linear code over a finite field and its dual code.

PROPOSITION 14.2. The equality K⊥⊥ = K holds and there is a group isomorphism
K⊥ ∼= Mn/K. In particular |K⊥| · |K| = |M|n.

Let K �R Mn and let 8g1, . . . , 8gk ∈ K form a generating set of the module RK. Then
the (k × n)-matrix

Gk×n =
⎡⎣ 8g1

...

8gk

⎤⎦
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with entries in M is called the generating matrix of K. A generating matrix of the code K⊥
over M# is called the check matrix of K. Let

ϕi = (ϕi1, . . . , ϕin) ∈ (M#
)n
, i ∈ {1, . . . , l},

be a generating system of the module RK⊥. Then Φ = (ϕij )l×n is the check matrix of the
code K. We can consider Φ as a group homomorphism Φ :Mn → (Q/Z)(l) into the group
of all l-columns over Q/Z, acting on 8α ∈ Mn by the rule

∀8α ∈ Mn: Φ(8α) = (ϕ1(8α), . . . , ϕl(8α)
)T ∈ (Q/Z)(l).

Then, just as for a linear code over a field we have

PROPOSITION 14.3. K = KerΦ.

The Hamming distance of a code K � RM
n can be characterized by inspecting a check

matrix Φ for K. Any column Φ
↓
j , j ∈ {1, . . . , n}, of the matrix Φ is a homomorphism

Φ
↓
j :M → (Q/Z)(l) according to the rule

∀α ∈ Mn: Φ
↓
j (α) = (ϕ1j (α), . . . , ϕlj (α)

)T ∈ (Q/Z)(l).

We say that a system Φ
↓
j1
, . . . , Φ

↓
js

of s columns of Φ is linearly independent over M , if

Φ
↓
j1
(α1) + · · · + Φ

↓
js
(αs) �= 0↓ for any (α1, . . . , αs) ∈ Ms \ 80.

Let us define the assured (guaranteed) rank &M(Φ) of the matrix Φ relatively to M as
the maximal s ∈ N such that any system Φj1, . . . , Φjs of s columns of Φ is linearly
independent over M . Then there is the following generalization of a well-known classical
result.

PROPOSITION 14.4. Let K � RM
n be a linear code with check matrix Φ. Then d(K) =

&M(Φ) + 1.

Note that any linear code over a QF-bimodule RQR has a check matrix over R, and
certainly the foregoing results hold for these codes and these check matrices.

14.2.3. MacWilliams identity [163,233] Let |M| = m. For any s ∈ M and 8α ∈ Mn write
σs(8α) = |{i ∈ {1, . . . , n}: αi = s}|, and define the specification of 8α as the vector

8σ(8α) = (σs(8α): s ∈ M
) ∈ NM

0 = Nm
0 .

Let Z[x] be the polynomial ring in m indeterminates x = (xs : s ∈ M). For any 8σ ∈ NM
0

write x8σ = ∏
s∈M x

σs
s and define the complete weight enumerator (c.w.e.) of K � RM

n

as:

WK(x) :=
∑
8α∈K

x8σ(8α) =
∑
8α∈K

∏
s∈M

xσs(8α)
s ∈ Z[x].
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This can be rewritten as

WK(x) :=
∑

8σ∈N
M
0

AK(8σ)x8σ , where AK(8σ) = ∣∣{8α ∈ K: 8σ(8α) = 8σ}∣∣.
For a linear code K the system of coefficients AK(8σ), 8σ ∈ NM

0 , gives full description of
the possibility of the code to correct errors.

Similarly for a linear code L � (M#)nR over M
#
R (of the same cardinality m) and for a

vector y = (yμ: μ ∈ M#) of m indeterminates we have the complete weight enumerator

WL(y) :=
∑
8ω∈L

∏
μ∈M#

y
σμ( 8ω)
μ ∈ Z[y], σμ( 8ω) = ∣∣{i ∈ {1, . . . , n}: ωi = μ

}∣∣,
WL(y) :=

∑
8σ∈N

M
0

AL(8σ)y8σ , where AL(8σ) = ∣∣{ω ∈ L: 8σ(ω) = 8σ}∣∣.
The system of coefficients {AK⊥(8σ), 8σ ∈ NM

0 } is well defined by the system of coefficients
{AK(8σ), 8σ ∈ NM

0 }.

THEOREM 14.5. For any K � RM
n the weight enumerator WK⊥(y) is determined by the

relation

WK⊥(y) = 1

|K|WK(yA), where

A = (aμs)m×m, aμs := exp
(
2πiμ(s)

)
for all s ∈ M, μ ∈ M#.

This result is a generalization of the McWilliams theorem for a linear codes over
fields [267].

The Hamming weight enumerator of a code K � RM
n is defined as

WH
K(x, y) :=

∑
8α∈K

xn−wH(8α)ywH(8α) = WK(x, y, . . . , y),

WH
K(x, y) =

∑
i∈0,n

AK(i)xn−iyi , AK(i) = ∣∣{8α ∈ K: wH(8α) = i
}∣∣.

COROLLARY 14.6. (See [91].) The Hamming weight enumerator of K⊥ satisfies the
equality

WH
K⊥(x, y) = 1

|K|W
H
K
(
x + (m − 1)y, x − y

)
.

14.2.4. Equivalence of linear codes We start from the following classical and well-
known result of A.A. Markov Jr. Let M be a finite alphabet. We call a bijection ϕ :Mn →
Mn an isometry relative to the Hamming metric, or a dH-isometry, if

∀x, y ∈ Mn: dH
(
ϕ(x), ϕ(y)

) = dH(x, y).
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We say that ϕ :Mn → Mn is monomial, if there exist a permutation σ ∈ Sn and
β1, . . . , βn ∈ S(M) such that

(14.7)∀8α = (α1, . . . , αn) ∈ Mn: ϕ(8α) = (β1(ασ(1)), . . . , βn(ασ(n))
)
.

It is evident that any monomial bijection is a Hamming isometry. But the following is not
so evident.

THEOREM 14.2. (A.A. Markov Jr., 1956). Any Hamming isometry ϕ :Mn → Mn is mono-
mial.

Below the case when M is a left A-module and ϕ is a linear transformation is important.

COROLLARY 14.1. Let AM be a finite module and B = End(AM). A linear transforma-
tion ψ : AMn → AM

n is a Hamming isometry exactly if there exist a permutation σ ∈ Sn

and elements b1, . . . , bn ∈ B∗ = Aut(AM) such that

(14.8)∀8α = (α1, . . . , αn) ∈ Mn: ψ(8α) = (ασ(1)b1, . . . , ασ(n)bn
)
.

Under condition (14.8) we shall say that ψ is a monomial (over the ring B) linear trans-
formation of the module AM

n. Evidently, for any such ψ and any K � AM
n the code

L = ψ(K) has the same Hamming weight enumerator as K. The codes L and K are called
(linearly) equivalent.

Let us say that two linear codes K,L � AM
n are (linearly) isometric if there exists a

module isomorphism:

(14.9)τ : AK → AL
such that

(14.10)∀8α, 8β ∈ K: dH
(
τ(8α), τ ( 8β)) = dH(8α, 8β).

In the light of these definitions the following questions are interesting. Are any two isomet-
ric linear codes equivalent? Is any linear isometry (14.9) monomial, i.e. can it be extended
to a linear isometry (monomial transformation) (14.8) on Mn? The first classical result in
this direction is the MacWilliams extension theorem:

THEOREM 14.7. (See [266].) Let P = GF(q), K � Pn
P and let τ :KP → Pn

P be a linear
Hamming isometric (isometric imbedding), i.e. wH(τ (8α)) = wH(8α) for all 8α ∈ K. Then τ

can be extended to a linear monomial transformation ψ :Pn
P → Pn

P :

∀8α = (a1, . . . , an) ∈ Pn: ψ(8α) = (aσ(1)u1, . . . , aσ(n)un)

for some fixed permutation σ ∈ Sn and u1, . . . , un ∈ P ∗.

This theorem is the basis of the notion of equivalence for classical algebraic coding
theory and has been extended to the ring-linear context in different ways [78,162,196,398–
400]). The following theorem is a generalization of all these results to linear codes over
QF-bimodules.
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THEOREM 14.8. (See [163].) Let AMB be a finite QF-bimodule, such that S(AM) is a
cyclic A-module. Then for any K � AM

n a linear mapping AK τ−→ AM
n is a Hamming

isometry (isometric imbedding) exactly if τ = ψ | K is the restriction to K of a (right)
monomial transformation ψ : AMn → AM

n over B:

∀8α = (α1, . . . , αn) ∈ Mn: ψ(8α) = (ασ(1)b1, . . . , ασ(n)bn)

for some fixed permutation σ ∈ Sn and b1, . . . , bn ∈ B∗.

This theorem is true for example if A is any f.r. with the identity and AMB = AA
#
A (see

Theorem 6.16).

14.2.5. Comparison of codes over fields, spaces and modules As before RM is a finite
module.

PROPOSITION 14.3. (See [300].) Let R be a commutative local f.r. If there exists a linear
[n, k, d]-code L over the field R, then there exists a linear [n, k, d]-code K over RM with
parity-check matrix over R. In particular if L is an MDS-code, then so is the code K. If
(n, |R|) = 1 and L is a cyclic code, then K can be chosen to be cyclic also.

This result generalizes some partial results from the papers [46,47,345,359,360].
Let L be an elementary Abelian p-group of order q = pt , i.e. a finite linear space over

GF(p). If t > 1 then there exist linear codes over L which are better than linear codes over
GF(q). Let BL(n, 3) (respectively Bq(n, 3)) be the maximum of the cardinalities of linear
n-codes over (L,+) (respectively over GF(q)) with the distance 3.

PROPOSITION 14.4. (See [304].) If pδ−1(q −1)−1(qr −1) < n � pδ(q −1)−1(qr −1)−
(pδ − 1) for some k � 2 and δ ∈ {1, . . . , t − 1}, then BL(n, 3) = pt−δBq(n, 3).

This is a generalization of an earlier result from [177] for some cases when p = 2.
Attempts to construct linear codes over modules which are better than linear codes over
linear spaces unexpectedly failed.

We say that a n-code K over M is majored by a n-code L over some alphabet L if
|L| = |M|, |L| � |K| and d(L) � d(K).

THEOREM 14.5. (See [300].) Let RM be a module over a commutative local f.r. R, and let

RL be a linear space of cardinality |L| = |M| over the residue field R = R/N. Then any
linear code K < RM

n is majored by some linear code L < RL
n. If M is a finite Abelian

group and L is a direct sum of elementary Abelian groups of cardinality |L| = |M|, then
any linear n-code over M is majored by some linear n-code over L.

14.3. Linear presentation of codes

The investigation of linear codes over modules is not so important for the construction of
codes which are better than codes over fields as for the description of new linear represen-
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tations of these codes. The representation of codes over fields by linear codes over modules
is closely related with the following notions.

14.3.1. Homogeneous and egalitarian weights [163,169,180,232] Let RM be a faithful
finite module over a f.r. R. A function w :M → R is called a weight if:

(W1) ∀x ∈ M: w(x) � 0, w(x) = 0 ⇔ x = 0;
(W2) ∀x ∈ M: w(x) = w(−x);
(W3) ∀x, y ∈ M: w(x + y) � w(x) + w(y).

For any weight w :M → R the function ρw(x, y) = w(x − y) defines a translation-
invariant metric on M , i.e. a metric with the property ρw(x + z, y + z) = ρw(x, y). Every
translation-invariant metric ρ on M arises in this way from the weight wρ(x) = ρ(x, 0).

We call a function w :M → R egalitarian, if:
(H1) there exists ζ ∈ R such that

∑
x∈U w(x) = ζ · |U | for any nonzero submodule

U � M . This function is called homogeneous if in addition
(H2) ∀x ∈ M,∀u ∈ R∗: w(x) = w(ux).
A module RM is called weighted if it admits an egalitarian weight w. In this case it ad-

mits also a homogeneous weight: w∗(x) = |R∗|−1 ·∑u∈R∗ w(ux). Note that the Hamming
weight w = wHam on RM is homogeneous if and only if the module RM is simple.

In [77] the following motivation for introducing the egalitarity axiom (H1) was given.
For an arbitrary weight w on RM and n ∈ N the weight wn : RMn → R defined by
wn(x) = w(x1) + · · · + w(xn) for x = (x1, . . . , xn) ∈ Mn turns Mn into a translation-
invariant metric space. Let now K be a linear code over RM , i.e. a submodule of RM

n. Then
the projection Ki of K onto the i-th coordinate is a submodule of RM . For information-
theoretic purposes it is natural to require that Ki �= 0 for every i (i.e., K is a full-length
code) and that the numbers Wi =∑x∈K w(xi) satisfy the condition W1 = W2 = · · · = Wn

The second condition holds for full-length linear codes over fields. It is satisfied by every
full-length linear code over RM if and only if w satisfies (H1).

THEOREM 14.6. Under conditions (14.3), (14.4) a module RM is weighted if and only if
S(M) is a cyclic R-module (i.e. nj � mj for j ∈ {1, . . . , t}) and the decomposition (14.4)
does not contain GF(2) ⊕ GF(2) or GF(2) ⊕ GF(3) as a direct summand.

COROLLARY 14.2.
(a) A finite Abelian group of order m is weighted if and only if it is cyclic and m �≡

0 (mod 6).
(b) A faithful module RM over a finite commutative local ring is weighted if and only if

it is a QF-module.

Corollary 14.2(a) implies that the Constantinescu—Heise criterion [77] is true not only
for cyclic groups but for all finite Abelian groups.

THEOREM 14.7. For a finite ring R both modules RR and RR are weighted if and only
if R is a Frobenius ring (Section 6.3) and the decomposition (14.3) does not contain
GF(2) ⊕ GF(2) or GF(2) ⊕ GF(3). In this case the left and right homogeneous weights
on R coincide.



Finite Rings with Applications 303

We denote by FR the class of all finite left R-modules and define the Euler function
ER :FR → N as ER(M) = |{x ∈ M: M = Rx}| and the Möbius function μ :FR → Z
by the recursion formulae: μ(0) = 1, and if M ∈ FR \ 0 then

∑
U�RM μ(U) = 0. In

particularly if RM is an irreducible module then μ(M) = −1, ER(M) = |M| − 1.

THEOREM 14.8. For a weighted module RM there exists the unique homogeneous
weight wh(x) such that

∑
x∈U wh(x) = |U | for any nonzero submodule U � RM . This

weight is given by

(14.11)wh(x) = 1 − μR(Rx)

ER(Rx)
for all x ∈ M.

14.3.2. Scaled isometries and presentation of codes We describe here a rather general
technique, based on the concept of a scaled isometry, which yields constructions of pre-
sentations of linear codes over weighted modules. We also give some examples of efficient
applications of this technique.

For a weighted module RM ∈ FR fix some egalitarian weight wR . It is extended to
wn

R :Mn → R by setting wn
R(x) = ∑n

i=1 wR(xi), and generates a metric ρn
R(x, y) =

wn
h(x − y) on Mn.
Let now SN be another weighted module over some ring S with an egalitarian

weight wS . Suppose that for some d ∈ N and ζ ∈ R there exists a mapping σ :M → Nd

such that

∀a, b ∈ M: ρd
S

(
σ(a), σ (b)

) = ζρR(a, b).

Then σ is called scaled isometry (with scale factor ζ ). It induces for every n ∈ N a
scaled isometry σn : (Mn, ρn

R) → (Ndn, ρnd
S ) with the same scale factor. With every code

C ⊆ Mn we associate the code C′ = σn(C) ⊆ Nnd and call C′ a σ -representation of
the code C. Note that if C is distance invariant (relative to the metric ρn

R) then so is C′
(relative to the metric ρnd

S ). If C is a linear code over RM , we call C′ a σ -linear code
(and sometimes briefly an RM-linear code). An RM-linear code C′ is distance invariant
but may be nonlinear. This approach allows to construct some new good codes and to find
new compact representations of some well-known codes.

In [166] an isometry between (Z4, ρZ4) and (F2
2, ρHam) was rediscovered (the so-called

Gray mapping Φ : Z4 → F2
2, 0 �→ 00, 1 �→ 01, 2 �→ 11, 3 �→ 10), and the term Z4-linear

code was introduced for what we call a Φ-linear code. This approach allows one to repeat
the proof of the Z4-linearity of the binary Kerdock code [293,294] and to prove the Z4-
linearity of the Preparata, Delsarte–Goethals and some other codes. A more general form
of this mapping for Galois rings is given in [231,302].

See also [237].

14.3.3. A generalized Kerdock code over GF(2l) Let R = GR(q2, 4) be the Galois ring
of characteristic 4 and cardinality q2, q = 2l , l � 1, with coordinate field Γ (R) = GF(q)

(see Sections 4.1, 4.2). A generalized Kerdock code Kq(m + 1) over Γ (R) (m is odd) is a
Reed–Solomon presentation of the so called base linear code KR(m) over R.

Let S = GR(q2m, 4) be the extension of degree m of the ring R and ϑ be a primitive
element of the coordinate field Γ (S). The base code KR(m) is defined as the linear code
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of length h = qm over R consisting of all words 8v = (v(0) · · · v(h−1)) such that for some
ξ ∈ S, c ∈ R

(14.12)v(i) = TrSR
(
ξϑi
)+ c, i = {0, . . . , h − 2}, v(h − 1) = c,

where TrSR(x) is the trace-function from S onto R (Section 4.4).
Let now Γ (R) = {ω0 = 0, ω1 = e, . . . , ωq−1}. Define γ∗ :R → Γ (R)q for an element

r ∈ R of the form r = r0 + 2r1, rs ∈ Γ (R), as γ∗(r) = (r1, r1 ⊕ ω1r0, . . . , r1 ⊕
ωq−1r0). Then γ∗(R) is a Reed–Solomon [q, 2, q − 1]q -code over Γ (R) and therefore the
mapping γ∗ is called the RS-mapping [240,302]. It is easy to see that γ∗(R) is a scaled
isometry of the space R with homogeneous weight into the Hamming space Γ (R)q . The
code Kq(m + 1) is a concatenation of the code KR(m) (linear over R) and the code γ∗(R)

(linear over Γ (R)). It is the code of length n = qm+1 consisting of all words γ h∗ (8u) =
(γ∗(u(0)), . . . , γ∗(u(h−1)), 8u ∈ KR(m). If q = 2, i.e. R = Z4, this code is the original
binary Kerdock code [267].

THEOREM 14.9. (See [231,240,241].) Let m = 2λ + 1 � 3. Then the code Kq(m + 1) is

an R-linear (n, n2,
q−1
q

(n − √
n ))q -code with complete weight enumerator

WKq(m+1)(x0, . . . , xq−1)

=
q−1∑
j=0

xn
j + (qm+2 − q

) q−1∏
j=0

x
n/q
j

+ 1

2
q
(
qm − 1

)(
qm + qλ+1) q−1∏

j=0

x
n
q
−qλ

j

q−1∑
j=0

x
qλ+1

j

+ 1

2
q
(
qm − 1

)(
qm − qλ+1) q−1∏

j=0

x
n
q
+qλ

j

q−1∑
j=0

x
−qλ+1

j .

The paper [241] contains also a description of the c.w.e. WKR(m) of the base linear code.
In particular for R = Z4 and m = 2λ + 1 � 3 we have

WKZ4 (m)(x0, . . . , x3)

=
3∑

r=0

x2m

r + 2 · (2m − 1
)(
(x0x2)

2m−1 + (x1x3)
2m−1)

(14.13)+ 2m
(
2m − 1

)
(x0x1x2x3)

2m−2
3∑

r=0

(
x−1
r x−1

r+1xr+2xr+3
)2λ−1

.

14.3.4. Presentations of the extended binary Golay code [169,180] The binary Golay
code can be presented as a linear code over the ring R = F2 ⊕ F4. Note that smaller rings
of such form (F2 ⊕ F2,F2 ⊕ F3) are not weighted.
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PROPOSITION 14.10. Let e = e1 + e2 be the corresponding decomposition of the identity
of R, and F4 = F2(α). Let σ :R → F3

2 be the F2-linear map defined by e1 �→ 111,
e2 �→ 110, α �→ 011 and let K � RM

8 be the R-linear code with parity-check matrix

(14.14)

⎡⎢⎣
e1 e2 e e e 0 0 0
e e1 e2 e 0 e 0 0
e e e1 e2 0 0 e 0
e2 e e e1 0 0 0 e

⎤⎥⎦ .

Then the mapping σ is a scaled isometry from (R, ρhom) onto (F3
2, ρ

3
Ham) with scale fac-

tor 3
2 , and the code σ 8(K) is the linear binary (Golay) [24, 12, 8]-code.

Another isometric representation of the same code is based on some egalitarian, but not
homogeneous, weight. Let R = F2[x]/(x4) = F2[z], where z = x + (x4) is the image of
x in F2[x]/(x4). Every a ∈ R has the unique representation a = a0 + a1z + a2z

2 + a3z
3

with aj ∈ F2. Define τ :R → F4
2 and wR :R → R by setting τ(a) = (a0 + a1 + a2 +

a3, a1 +a3, a2 +a3, a3) and wR(a) = wH(τ (a)). The function wR is an egalitarian weight
on RR and σ is a scaled isometry (R,wR) → (F4

2, wH).

PROPOSITION 14.11. Let K � RR
6 be the linear code with parity-check matrix

(14.15)

[ 1 0 0 v z z

0 1 0 z v z

0 0 1 z z v

]
,

where v = 1 + z3. The code τ 6(K) is the linear (Golay) [24, 12, 8]-code over F2.

14.3.5. Presentation of the ternary Golay code [169] Let R = F3[x]/(x3) = F3[z] with
z = x + (x3). Then any a ∈ R has a unique representation a = a0 + a1z + a2z

2 with
aj ∈ F3. Let now σ :R → F3

3 be defined by σ(a) = (a0 − a1 + a2, a1 + a2, a2). Then
wR :R → R, defined by wR(a) = w3

H(σ (a)), is an egalitarian weight on RR. So σ gives a
scaled isometry (R,wR) → (F3

3, wH).

PROPOSITION 14.12. Let K � RR
4 be the linear code with parity-check matrix

(14.16)

[
1 0 v v2

0 1 v2 −v

]
,

where v = 1 + z2. The code σ 4(K) is a linear (Golay) [12, 6, 6]-code over F3.

14.3.6. Scaled isometry over a commutative QF-ring [169,180] Let now R be a finite
commutative local QF-ring with socle S(R) = S (Section 6.4). We construct a scaled
isometry from the weighted R-module RR into a suitable Hamming space Fn

q . There exists
a system of elements π0, . . . , πl ∈ R such that πl is a generator of S and every x ∈ R has
a unique representation

(14.17)x = a0π0 + · · · + alπl with ai ∈ Γ (R) for i ∈ {0, . . . , l}.
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Consider the ((l + 1) × ql)-matrix G over Γ (R) whose columns are all the vectors
(g0, . . . , gl−1, 1), (g0, . . . , gl−1) ∈ Γ (R)l , in some fixed order. The q-ary linear over
Γ (R) code C with generator matrix G is a generalized Reed–Muller [ql, l + 1, ql −ql−1]-
code, cf. [168, Ch. 9.5]. It is a two-weight code with nonzero weights ql − ql−1 and ql .

PROPOSITION 14.13. The mapping σ :R → Γ (R)q
l
, defined by

σ(x) = (a0, a1, . . . , al) · G,

is a scaled isometry with scale factor ql − ql−1 from (R, ρh) onto (C, dH).

Some particular cases of this result can be found in [77,226,302]. For a generalization
to arbitrary finite commutative local rings (using the notion of a quasi-Frobenius module)
we refer to [180]. For linearly representable codes over chain rings see also [178].

14.4. Loop codes [87]

Let R be a f.r., let G = {g1, . . . , gn} be a finite loop and let I � AA be a left ideal of the
loop ring A = RG. Then the set K(I ) of all words (r1, . . . , rn) ∈ Rn such that

∑
rigi ∈ I

is a linear n-code over the ring R (a submodule of the module RR
n). We shall call any code

K of the above form a loop-code or a G-code.
There exist a large number of results about codes of such type for the case when R = Fq

is a finite field and G is an Abelian, par excellence cyclic, group, see e.g. [168,266]. For
non-Abelian groups there are results of [334–336] where mainly the ideals of the semisim-
ple Fq -algebras FqG, ((q, |G|) = 1) were considered.

The paper [87] contains the computational results for parameters of codes K(I ) where
I spans the left ideals of loop-algebras FG for the fields F ∈ {F2,F3,F4,F5} and for all
loops G of orders {4, . . . , 7}. Separately, parameters of the group-codes for the dihedral
groups Dm, m = 4, 5, 6; the group of quaternions Q8; the group A4 of even permutations
and all Abelian groups of the same orders are presented.

Any loop-algebra A = FqG contains two trivial MDS-codes: the [n, 1, n]-code K(I0)

corresponding to the ideal I0 = A(
∑

g∈G g) = Fq(
∑

g∈G g), and the [n, n − 1, 2]-code
K(Δ) corresponding to the fundamental ideal Δ * A which is the left and right annihilator
of the ideal I0. However some of the investigated algebras contain nontrivial MDS-codes.
For example the algebra F5S3 contains a [6, 3, 4]-code (see below).

Following [168] we shall call a (generally nonlinear) [n, k, d]-code C ⊆ Fn
q optimal if

|C| = qk is the maximum of all possible cardinalities of n-codes with the distance d . In
accord with to this definition we shall call a linear [n, k, d]q -code a linearly optimal if k is
the maximum of the dimensions of the linear over the field Fq n-codes with distance d . It
is evident that any MDS-code is optimal.

Let us denote by n(k, q) (respectively m(k, q)) the maximum of the lengths of MDS-
codes C of combinatorial dimension k = logq |C| over an alphabet of q elements (respec-
tively for a primary q, of linear MDS codes over the field Fq ). Of course m(k, q) � n(k, q).
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PROPOSITION 14.14. Let n, k be natural numbers such that n > m(k + 1, q) for a given
primary q. Then any [n, k, n − k]q -code that is linear over Fq is linearly optimal.

Group codes satisfying the conditions of the last proposition really exist. For example,
each of algebras FqD4,FqQ8, q ∈ {2, . . . , 5} contains an [8, 4, 4]q -code. All these codes
are linearly optimal. We announce the following result about first series of such codes
(E. Couselo, S. Gonzáles, V. Markov, C. Martínez, A. Nechaev, 2007, unpublished).

THEOREM 14.15. Let G be a group of order 2q, containing an elementary Abelian p-
group of order q = pl > 2. Then there exists a [2q, 2q − 3, 3]q linearly optimal G-code.

THEOREM 14.16. Let q = pl > 2 be a primary number such that 3 | q − 1. Then for
some groups G of order 3q, containing an elementary Abelian p-group of order q there
exists a [3q, 3q − 3, 3]q linearly optimal G-code. In particular this holds if either G is
commutative or 3 � p − 1.

Examples for the preceding theorems are [6, 3, 3]3-codes in F3Z6 and in F3S3, [8, 5, 3]4-
codes in F4G for G ∈ {Z3

2,Z4 ⊕Z2,D4}; [12, 9, 3]4-codes in F4G for G ∈ {Z2
2 ⊕Z3, A4}.

Non-associative loop algebras A = FqG of small cardinality (q � 5, |G| � 7) have,
with rare exceptions, a trivial lattice of left ideals: 0 < I0 < Δ < A. So they do not
contain any interesting loop-codes. The exceptional cases yield linearly optimal [6, 4, 2]q -
and [6, 2, 4]q -codes for q ∈ {2, 3, 4}, and also a [6, 3, 3]3-code. Moreover, the [6, 2, 4]q -
code found is an absolutely optimal [266, Ch. 17]. Below we give the Cayley tables of the
non-associative loops that generate the [6, 2, 4]q -code and the [6, 3, 3]3-code, respectively:

0 1 2 3 4 5
1 0 3 2 5 4
2 3 4 5 0 1
3 2 5 4 1 0
4 5 0 1 3 2
5 4 1 0 2 3

0 1 2 3 4 5
1 0 3 2 5 4
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 2 1 4 3 0

The study of non-associative loop-codes of greater orders can give more interesting re-
sults.

The group algebras considered contain in particular the following well-known absolutely
optimal linear codes: the simplex [7, 3, 4]2-code in F2Z7; the [7, 4, 3]2-Hamming-code in
F2Z7; the [8, 4, 4]2-Bauer-codes [168] in F2(Z3

2), F2(Z2 × Z4), F2Q8, F2D4.
It is also interesting that using non-commutative groups one can construct linearly opti-

mal codes that can not be realized using Abelian groups. Examples of such codes are: an
[8, 3, 5]-code in F4Q4; [10, 4, 6]-codes in F4D5 and in F5D5; [12, 8, 4]- and [12, 6, 6]-
codes in F4A4; a [12, 6, 6]-code in F4D6.

Many of the “champion codes” found in [87] are based on non-semisimple and non-
commutative algebras. This makes the systematic investigation of codes contained in these
algebras of substantial interest.
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Preface

This text aims to be a short introduction to some of the basic notions in theory of quantales.
We will try to give an up-to-date account of certain aspects on algebraic and categorical
properties of quantales and quantale modules. We also add some recent developments in-
volving representations and projectivity in quantales. Due to infinitesimal joins quantales
do not form a variety but many of the methods of universal algebra can be still used.

The term quantale was suggested by C.J. Mulvey at the Oberwolfach Category Meeting
(see [39]) as “a quantization” of the term locale. Locales (or frames, see [22,65,83] as
primary sources of reference), form an order-theoretic counterpart of topological spaces
and are therefore able to describe commutative C∗-algebras. As is noted in [65], we can
think of a locale as of a kind of space, more general than the classical one, allowing us to
see topological phenomena in a new perspective. In the C∗-algebra case, a commutative
C∗-algebra A is completely determined by its locale Idl(A) of closed ideals which is order
isomorphic to the lattice of open sets of its spectrum.

The main aim of C.J. Mulvey has been to find a substitute of locales which could play
the same rôle for general C∗-algebras to establish a generalized Gelfand–Naimark duality
for all C∗-algebras and study non-commutative topology.

Despite that, quantales can be considered as special instances of various concepts of
algebra and category theory, namely
• complete multiplicative lattices,
• complete residuated lattices,
• semirings with infinitary sums,
• thin closed monoidal categories,
• monoids in complete semilattices, i.e. monoidal functors {∗} → Sup,
etc. Quantales are also applied in linear and other substructural logics and automaton the-
ory. An important moment in the development of the theory of quantales was the realization
that quantales give a semantics for propositional linear logic in the same way as Boolean
algebras give a semantics for classical propositional logic (see [18]).

Quantales arise naturally as lattices of ideals, subgroups, or other suitable substructures
of algebras, and then are called spectra. Since a quantale can be considered as a semiring,
we can built a module theory and study representations of quantales. At least in the case of
C∗-algebras the construction of spectra yields a functor to quantales and a representation
of a C∗-algebra defines a representation of its spectrum. This is a good reason to consider
representations of quantales as “points” of non-commutative spaces and consider spatiality
of quantales. In contrast to locale theory, there is a proper class of endomorphism quantales
which appear as targets of representations. All the endomorphism quantales are simple and
spatiality of quantales can be equivalently studied by morphisms to simple quantales. In
many applications, it may be useful to have a good notion of negation or pseudocomple-
ment. Even that this is generally a non-trivial problem, we submit some positive solution
for the case of endomorphism quantales.

The existing literature contains two monographs of K. Rosenthal [75,76] devoted to
quantales and quantaloids and three survey papers on quantales [44,56,67].



326 D. Kruml and J. Paseka

1. Basic notions and examples

1.1. Preliminaries

DEFINITION 1.1.1. By a sup-lattice is meant a complete lattice, a sup-lattice morphism is
a mapping preserving arbitrary joins (also called sup’s).

If f : S → T is a sup-lattice morphism, the assignment

f (s) � t ⇔ s � f 9(t),

explicitly

f 9(t) =
∨{

s | f (s) � t
}
,

defines a mapping f 9 : T → S preserving all meets. This mapping f 9 is called the adjoint
of f . If we denote by Sop the dual sup-lattice to S then f 9 : T op → Sop is a sup-lattice
morphism.

The top element of a sup-lattice is denoted by 1, the bottom element by 0.

DEFINITION 1.1.2. By a quantale is meant a sup-lattice Q equipped with an associative
multiplication which distributes over joins

a
(∨

ai

)
=
∨

(aai),
(∨

ai

)
a =

∨
(aia)

for all a, ai ∈ Q.

DEFINITION 1.1.3. Let Q be a quantale. An element a ∈ Q is called:
• idempotent iff aa = a. We write a ∈ I(Q).
• right-sided (left-sided) iff a1 � a (1a � a). We write a ∈ R(Q), respectively a ∈

L(Q).
• strictly right-sided (strictly left-sided) iff a1 = a (1a = a).
• two-sided if it is both right-sided and left-sided. We write a ∈ T (Q).
• a right (left) unit iff ba = b (ab = b) for any b ∈ Q.
• a unit if it is both a right and left unit.

DEFINITION 1.1.4. A quantale Q is called:
• commutative iff for every a, b ∈ Q: ab = ba.
• idempotent iff every a ∈ Q is idempotent.
• (strictly) right-sided/left-sided iff every a ∈ Q is (strictly) right-sided/left-sided.
• right-idempotent/left-idempotent iff every a ∈ Q that is right-sided/left-sided is idem-

potent.
• two-sided iff every a ∈ Q is two-sided.
• (right/left) unital iff Q has a (right/left) unit.

For a unital quantale Q, we shall denote eQ the unit of Q.
A subset T ⊆ Q is called a subquantale of Q if it is closed under all joins and multipli-

cation in Q. It may be remarked that R(Q), L(Q) and T (Q) are subquantales of Q closed
under arbitrary meets, and that QR(Q) ⊆ R(Q) and L(Q)Q ⊆ L(Q).
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DEFINITION 1.1.5. Let Q,K be a quantales. A quantale morphism is a sup-lattice mor-
phism f : Q → K preserving multiplication. If Q and K are unital then a quantale
morphism f :Q → K is said to be unital if it preserves the unit, i.e. f (eQ) = eK , where
eQ and eK are the respective units of Q and K .

(Unital) quantales and (unital) quantale morphisms form a concrete category of sets with
structure denoted by Quant (UnQuant).

An equivalence relation ∼ on Q is said to be a congruence if

a ∼ b ⇒ ca ∼ cb, ac ∼ bc, ai ∼ bi ⇒
∨

ai ∼
∨

bi

for all a, b, c, ai, bi ∈ Q. One can easily check that congruences are exactly coset equiva-
lences given by quantale morphisms.

LEMMA 1.1.6. If f :Q → K is a surjective semigroup morphism and Q is a monoid with
a unit eQ, K is also a monoid with eK = f (eQ) as a unit.

PROOF. Let b ∈ K . Since f is a surjection, there exists a ∈ Q such that f (a) = b. Then
b = f (a) = f (eQa) = f (eQ)f (a) = f (eQ)b and similarly for the unit on the right. �

DEFINITION 1.1.7. The actions a , a for fixed a ∈ Q determine sup-lattice endomor-
phisms on Q.1 Their adjoints are denoted by ← a, a → , respectively. That is,

a � b → c ⇔ ab � c ⇔ b � c ← a.

The operations →,← are called residuations.
For any a ∈ Q, we have a ← 0 ∈ R(Q) and a → 0 ∈ L(Q). A quantale Q is called

von Neumann if

0 ← (r → 0) = r for any r ∈ R(Q)

and

(0 ← l) → 0 = l for any l ∈ L(Q).

In any von Neumann quantale Q we have L(Q) � R(Q)op.
A quantale Q is said to be a factor if T (Q) = {0, 1}.
A set P ⊆ Q is said to be residually closed if a → p ∈ P , p ← a ∈ P for every

a ∈ Q, p ∈ P .
A set P ⊆ Q is said to be separating if for every a, b ∈ Q, a 
 b there is an element

p ∈ P such that a � p, b � p. Note that then every element of Q is a meet of elements
from P .

A nonempty set P, 1 /∈ P is called cyclic if {a → p ← b: a, b ∈ Q} = P ∪ {1} for
every p ∈ P . In fact, any quantale having a cyclic set is non-trivial.

The next lemma can be proved by elementary calculations.

1 Here a is multiplication of the left x �→ ax, x ∈ Q and similarly a is multiplication on the right.
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LEMMA 1.1.8. (See [75].) Let Q be a quantale, a, b, c, ai ∈ Q. Then

(b → c) ← a = b → (c ← a),

a → (b → c) = (ab) → c, (c ← a) ← b = c ← (ab),(∨
ai

)
→ c =

∧
(ai → c), c ←

(∨
ai

)
=
∧

(c ← ai).

DEFINITION 1.1.9. By an involutive quantale (shortly *-quantale) is meant a quantale Q

with a unary operation of involution such that

a∗∗ = a, (ab)∗ = b∗a∗,
(∨

ai

)∗ =
∨

a∗
i

for all a, b, ai ∈ Q.
An element a ∈ Q is called Hermitean if a∗ = a, the set of Hermitean elements is

denoted by H(Q).
A *-quantale Q is said to be an *-factor if T (Q)∩H(Q) = {0, 1}, i.e. if 0 and 1 are the

only Hermitean two-sided elements of Q.
By an involutive quantale morphism (shortly *-morphism) is meant a quantale morphism

of *-quantales which also preserves the involution.
(Unital) *-quantales and (unital) *-morphisms form a concrete category of sets with

structure denoted by InQuant (InUnQuant).
A quantale congruence ∼ on a *-quantale Q is said to be an involutive congruence if

a ∼ b ⇒ a∗ ∼ b∗

for all a, b ∈ Q.
Note that (a → b)∗ = b∗ ← a∗.
A set P ⊆ Q is said to be *-separating if P ∪ P ∗ is separating (where P ∗ = {p∗: p ∈

P }).

DEFINITION 1.1.10. Let Q be a quantale. By a left (right) Q-module is meant a sup-
lattice M with an action Q × M → M (M × Q → M) such that

a
(∨

mi

)
=
∨

(ami),(∨
ai

)
m =

∨
(aim),

a(bm) = (ab)m

⎛⎜⎝
(∨

mi

)
a =

∨
(mia),

m
(∨

ai

)
=
∨

(mai),

(mb)a = m(ba)

⎞⎟⎠
for all a, b, ai ∈ Q, m,mi ∈ M .

A module M over a unital quantale Q is said to be unital if eQm = m for all m ∈ M .
The adjoint of the module action is called a residuation as well and denoted by ← (→).

One can easily verify similar properties of the residuation as in 1.1.8, from whose it follows
that Mop with the residuation is a right (left) Q-module. Mop is called the dual module
of M .

A mapping f :M → N of two left (right) Q-modules M,N is said to be a Q-module
morphism if f is a sup-lattice morphism and f (am) = af (m) (f (ma) = f (m)a) for
every a ∈ Q,m ∈ M . Let us recall that the adjoint f 9 :Nop → Mop of a Q-module
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morphism f :M → N is a Q-module morphism of dual modules (cf. [1]). Two special
cases of the module morphism are a submodule inclusion and a quotient mapping. The
adjoint of inclusion is a quotient mapping and vice versa.

(Unital) Q-modules and Q-module morphisms form a concrete category of sets with
structure denoted by Q-Mod (Q-UnMod).

Throughout the paper we do not distinguish between left and right modules if it is not
important or if the meaning is clear. We write 1Q and 1M for the quantale and module top,
respectively, whenever a confusion is imminent.

We will close this section with an easy, but important lemma (see [54]).

LEMMA 1.1.11. Let Q be a (non-unital) quantale, Q[e] = {a ∨ ε: a ∈ Q, ε ∈ {0, e}},
e arbitrary such that e /∈ Q. Then Q[e] is both an unital quantale with unit e and a Q-
module and we have a quantale embedding ie :Q → Q[e]. Moreover, if Q is an involutive
quantale we have that Q[e] is involutive as well.

PROOF. Note that we shall identify the formal join a ∨ 0 with a for any a ∈ Q, 0 ∨ e

with e. We may then define the supremum∨
i

(ai ∨ εi) =
{
(
∨

i ai) ∨ e, if ∃i εi = e,∨
i ai , otherwise.

Note that Q[e] is isomorphic as a complete lattice with the Cartesian product of Q and a
2-element lattice.

Similarly, we may define the multiplication on Q[e] as follows:

(a ∨ ε′) · (b ∨ ε′′) =

⎧⎪⎪⎨⎪⎪⎩
a ·Q b, if ε′ = ε′′ = 0,

a ·Q b ∨Q b, if ε′ = e, ε′′ = 0,

a ·Q b ∨Q a, if ε′ = 0, ε′′ = e,

(a ·Q b ∨Q a ∨Q b) ∨ e, if ε′ = ε′′ = e.

It is an easy task to check that Q[e] is a unital quantale with the unit e. The embedding
ie :Q → Q[e] is defined as follows:

ie(a) = a ∨ 0 = a

for all a ∈ Q. Now assume that Q is involutive. Then we shall define the involution ∗ on
Q[e] as follows:

(a ∨ ε)∗ := a∗Q ∨ ε

for all a ∈ Q and ε ∈ {0, e}. Again, it is evident that ∗ satisfies x∗∗ = x, x∗·y∗ = (y·x)∗ for
all x, y ∈ Q[e] and preserves arbitrary suprema. Moreover, the embedding ie :Q → Q[e]
preserves the involution. �

Note that the above construction corresponds to the extension of a non-unital C∗-algebra
to a unital C∗-algebra (see [61]).
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1.2. Examples of quantales and quantale modules

EXAMPLE 1.2.1 (The power set of a semigroup). Let (S, ·) be a semigroup and P(S) the
set of all its subsets. Then P(S) is a complete lattice and a multiplication can be defined
on P(S) by UV = {u · v: u ∈ U, v ∈ V } for all U,V ∈ P(S). Evidently, the quantale
P(S) is commutative (unital) iff S is commutative (a monoid).

In fact, this is the most general example giving rise to any quantale as will be shown
below.

EXAMPLE 1.2.2 (Formal languages). Consider a (finite) set A and the free semigroup
over A denoted by A+. The elements of A are usually called letters (in this context) and
the elements of A+, called words, are usually written as finite sequences of letters using
no parentheses and operation symbols. Admitting the empty sequence – the empty word
ε, A+ becomes a monoid denoted by A∗. Subsets of A∗ are then called languages over an
alphabet A. The set P(A∗) of all languages over A is a quantale again with the top element
A∗ and the unit e = {ε}.

EXAMPLE 1.2.3 (Frames). Any frame L is a unital, involutive, commutative and idem-
potent quantale with the multiplication given by the meet ∧, with unit given by the top
element 1 and ∗ = idL.

EXAMPLE 1.2.4 (Relations). The set Rel(X) of relations on a set X, ordered by inclusion,
is a unital *-quantale with multiplication given by the composition of relations

T1 · T2 = {(x, z) ∈ X × X: ∃y ∈ X(x, y) ∈ T1 and (y, z) ∈ T2
}
,

with the equality relation providing the unit and the involution defined as the inverse rela-
tion

T ∗ = {(x, y) ∈ X × X: (y, x) ∈ T
}
.

The right-sided elements of Rel(X) are those relations RA, for A ⊆ X, given by

RA = (X − A) × X.

Similarly, the left-sided elements of Rel(X) are relations LB , for B ⊆ X, given by

LB = X × B.

Note that R∗
A = LX−A. Moreover, there is a well-known bijective correspondence between

relations on X and sup-preserving maps from the power set P(X) to itself. Namely, for all
T ∈ Rel(X) and all φ :P(X) → P(X), T �→ φT , φ �→ Rφ where

φT (A) = {x ∈ X: ∃y ∈ A such that (x, y) ∈ T
}
,

Rφ = {(x, y) ∈ X × X: x ∈ φ
({y})}.
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EXAMPLE 1.2.5 (The lattice of all sup-lattice endomorphisms). For any sup-lattice S, we
will denote by Q(S) the sup-lattice of all sup-lattice endomorphisms f : S → S (with the
pointwise ordering f � g iff f (x) � g(x) for all x ∈ S). Then Q(S) is a unital quantale;
multiplication is composition and the unit is idS . Moreover, Q(S) is a *-quantale provided
that S is a sup-lattice with duality, i.e. with a unary operation ′ such that

s′′ = s,(∨
i∈I

si

)′
=
∧
i∈I

s′
i

for all s, si ∈ S, i ∈ I . The involution ∗ on Q(S) is then given by

φ∗(s) =
( ∨

φ(t)�s′
t

)′

(see [62]). Following Example 1.2.4, Rel(X) ∼= Q(P(X)) for any set X.
The right-sided elements of Q(S) are precisely mappings

ρs(t) =
{

0, t = 0,

s, otherwise,

where s ∈ S. Similarly, the left-sided elements are precisely mappings

λs(t) =
{

0, t � s,

1, otherwise.

Thus S ∼= R(Q(S)) ∼= L(Q(S))op. If S is equipped with a duality then R(Q(S)) ∼=
L(Q(S)). Moreover, ρ∗

s = λs′ and λ∗
s = ρs′ . Since

(λu ◦ ρv)(t) =
{

0, if t = 0 or v � u

1, otherwise,

we have that ρ′
s = 0 ← ρ∗

s , ρs′ = 0 ← λs′ , i.e. the sup-lattice isomorphism between S and
R(Q(S)) preserves the duality.

It may be remarked that ρs ◦ ρs = ρs and λs ◦ λs = λs , i.e. Q(S) is right-idempotent
and left-idempotent.

The sup-lattice Q(S) can be described by means of a tensor product of sup-lattices

Q(S) ∼= (S ⊗ Sop)op

(see [23]). This isomorphism is given by

f �→
∨

f (t)�s

t ⊗ s.

The elements ρs∨λt correspond to t⊗s. If S is a sup-lattice with duality then the involution
in Q(S) is induced by

(t ⊗ s)∗ = s′ ⊗ t ′.



332 D. Kruml and J. Paseka

EXAMPLE 1.2.6 (The lattice of left ideals of a ring). Let R be a ring. A subset A ⊆ R is
a left ideal of R, if it is a subgroup of (R,+) and for every r ∈ R, a ∈ A: ra ∈ A. Then
the set of left ideals of a ring R denoted by LIdl(R) forms a quantale with joins as ideals
generated by the union of ideals and multiplication realized as the product of two ideals
given by: A · B = 〈{ab: a ∈ A, b ∈ B}〉 = {a1b1 + · · · + anbn | ai ∈ A, bi ∈ B, 1 �
i � n}. Similarly, the sets RIdl(R) and Idl(R) of right ideals or two-sided ideals of R are
quantales as well. Obviously, all these three notions coincide when R is commutative.

Since a left ideal is closed under left multiplication by elements of R, LIdl(R) is left-
sided. It is left unital with el = R with R also serving as the top element.

By the definition of residuation, C ← A = {b: A · {b} ⊆ C} and similarly B → C =⋃{a: {a} · B ⊆ C}.

EXAMPLE 1.2.7 (Function modules). Let X be a set and Q be a quantale. The set QX =
{m :X → Q} equipped with the pointwise ordering and multiplication given as (am)(x) =
am(x) is evidently a Q-module. Its elements are sometimes called vectors.

It can be easily seen that QX is a unital Q-module if Q is a unital quantale. In that case,
for every x ∈ X we can define a map {x} :X → Q such that

{x}(y) =
{ e, x = y,

0, otherwise.

These vectors are then called unit vectors. Since any h:X → Q can be uniquely expressed
as
∨

(ax{x}) where ax = h(x), we can say that unit vectors {x} form a basis of QX. Note
that any constant map x �→ a can be thus expressed as

∨
x∈X(a{x}) = a

∨
x∈X{x}.

1.3. Notes on Section 1

As indicated in the Preface, the study of ring-theoretical properties by means of complete
lattices equipped with an associative multiplication was initiated by W. Krull [28] and de-
veloped by M. Ward and R.P. Dilworth [14,84–86]. Later on, S. Niefield and K.I. Rosenthal
studied the ideal theory of rings along these lines, first in the commutative case and they
began also the systematic study of the non-commutative case.

The theory of strictly right-sided idempotent quantales as a tool for studying non-
commutative C∗-algebras as proposed by Mulvey [38,39], was started by him and his stu-
dent M. Nawaz [41], and F. Borceux, G. van den Bossche and J. Rosický [11]. The ideas
of J. Rosický [77] on the topological and logical consequences of quantales influenced the
consideration of involutive quantales. The need to introduce functoriality on the category
of C∗-algebras culminated in the description of the spectrum Max(A) of a C∗-algebra A as
the quantale of closed linear subspaces of A.

Investigations by C.J. Mulvey and J.W. Pelletier [42,43] elucidated the noncommuta-
tive topological structure of the spectrum Max A, which was shown to have quantal points
that indeed correspond to the equivalence classes of irreducible representations of the C∗-
algebra A on a Hilbert space. Moreover, the spectrum Max(A) was shown to be a quantal
space in an appropriate sense [43]. Independently, work by D. Kruml, J. Paseka, J.W. Pel-
letier, P. Resende, J. Rosický and others [29,32,51,56,62,63,70] in a number of combina-
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tions investigated other approaches to these concepts, examining in particular the properties
of the spectral functor on the category of C∗-algebras.

On the other hand, quantales have arisen in analysing the semantics of linear and other
substructural logics [18,26,27,34,47,87].

The categorical approach to quantales starts with the work of A. Joyal and M. Tierney
[23] (here commutative quantales are viewed as commutative monoids in the category of
sup-lattices) and continues in the papers of R.P. Gylys [19,20] and in the monograph of
K.I. Rosenthal [76].

Since quantales are mostly viewed as both a sup-lattice and a semigroup such that the
multiplication distributes over joins one immediately obtains the notion of idempotency,
unitality or commutativity. The notions of (strict) right(left)-sidedness are translated from
the ideal theory of rings. The notion of a subquantale corresponds to the notion of a subal-
gebra or more general to a subobject. Morphisms in the category of (unital) quantales are
both sup-lattice and (monoid) semigroup morphisms. Therefore congruences on quantales
are both sup-lattice and semigroup congruences. Since a surjective semigroup morphism
from a monoid to a semigroup (Lemma 1.1.6) preserves (and creates) congruences, the
congruences on unital quantales coincide with the usual quantale congruences. A smooth
passage from non-unital quantales to unital ones is provided by Lemma 1.1.11.

One of the remarkable properties of quantales is that the multiplication creates two op-
erations of residuation → and ←. They give rise to a kind of pseudocomplementation on
right-sided and left-sided elements. In the case of von Neumann quantales this pseudocom-
plementation induces a duality between right-sided and left-sided elements. The notions of
factor, residually closed set, separating set and cyclic set play an important role in the
characterization of simple objects in the category of quantales.

Involutive quantales (*-quantales) are quantales equipped with a semigroup operation of
involution the distributes over joins. The morphisms in the category of (unital) involutive
quantales are both sup-lattice and (unital) quantale morphisms that preserve the involution.
Similarly, a *-congruence on an involutive quantale is a quantale congruence that preserves
the involution.

A prominent role in the theory of quantales and their representations is played by quan-
tale modules. They are sup-lattices equipped with an associative and join-distributive (in
each variable separately) action of a quantale.

All the examples in Section 2 except Example 1.2.5 are taken from [75,76]. In the special
case when S is an orthocomplemented sup-lattice and s′ = s⊥ for s ∈ S (i.e. duality is
given by orthocomplements), the calculations were done in C.M. Mulvey and J.W. Pelletier
[40], the completely analogous general case is contained in [62,51].

2. Basic algebraic and categorical properties of quantales and quantale modules

2.1. Free quantales and free quantale modules

THEOREM 2.1.1. The categories Quant, UnQuant, InQuant, InUnQuant have free ob-
jects over Set.
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PROOF. Let X be a set. Then P(X+) is the free quantale over X and P(X∗) is the free uni-
tal quantale over X. Similarly, the free (unital) involutive quantale over X is the powerset
of a free involutive semigroup (monoid) over X. We will now show that P(X+) is a free
quantale over X. The other cases go through the same way. By Example 1.2.1, we know
that the powerset of a semigroup is a quantale. Now, let Q be a quantale and f :X → Q

be a map. Define a map iX :X → P(X+) as iX(x) = {x} and a map f :P(X+) → Q as
f (A) =∨a∈A(f (a1) · f (a2) · · · · · f (an)) where a1a2 . . . an = a ∈ A.

We have to verify that f is a quantale morphism:
• ∨i f (Ai)=∨i (

∨
a∈Ai

(f (a1)· · · · ·f (an)))=∨a∈∨i Ai
(f (a1)· · · · ·f (an))= f (

∨
i Ai),

• f (A)·f (B) =∨a∈A(f (a1)· · · · ·f (an))·∨b∈B(f (b1)· · · · ·f (bm)) =∨a∈A, b∈B(f (a1)·
· · · ·f (an) · f (b1)· · · · ·f (bm)) =∨c∈A·B(f (c1)· · · · ·f (ck)) = f (A · B)

Since (f ◦ iX)(x) = f ({x}) = f (x), it is indeed the case that f ◦ iX = f .
Let h :P(X+) → Q be another morphism that satisfies h ◦ iX = f . Then

h(A) = h(
∨

a∈A{a}) = h(
∨

a∈A{a1 . . . an}) = ∨
a∈A(h({a1 . . . an}) = ∨

a∈A(h({a1}) ·
· · · · h({an})) =∨a∈A(f (a1) · · · · · f (an)) = f (A) and f is hence unique. �

THEOREM 2.1.2. The categories Q-Mod, Q-UnMod have free objects over Set.

PROOF. Let Q be a quantale. For a set X, let Q[e]X be the set of maps h :X → Q[e]
equipped with the pointwise structure (see also Example 1.2.7). Evidently, Q[e]X is both
a Q-module and a quantale. Define a map ηX :X → Q[e]X as ηX(x) = {x}.

Then every map f :X → UM has a unique factorization f = Uf ◦ ηX where f (h) =∨
x∈X h(x)f (x). Evidently, f is a Q-module morphism. Conversely, for any Q-module

morphism g :Q[e]X → M we have a unique map ĝ :X → UM such that ĝ = g ◦ ηX.
Let Q be a unital quantale. Replacing Q[e] by Q, we can show by the same arguments

as above that QX is a free unital Q-module. �

2.2. Algebraicity of quantales and quantale modules

Recall that a category is called algebraic if it is monadic over Set, and equationally pre-
sentable if its objects can be prescribed by (a proper class of) operations and equations.

The following propositions lists some important properties of algebraic and equationally
presentable categories.

PROPOSITION 2.2.1. Let K be an equationally presentable category. Then
1. K has all small limits, and they are constructed exactly as in Set (i.e. they are pre-

served by the forgetful functor U from K into Set).
2. If the forgetful functor U has a left adjoint, then K is algebraic, and has all small

colimits.
3. The monomorphisms in K are exactly the injective morphisms.
4. Epimorphisms in K need not be surjective; but the regular epis in K are exactly the

surjective morphisms.
5. Every morphism in K can be factored (uniquely up to isomorphism) as a regular

epimorphism followed by a monomorphism.
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PROOF. See [37, Chapter 1]. �

THEOREM 2.2.2. All the categories Quant, UnQuant, InQuant, InUnQuant, Q-Mod
and Q-UnMod are algebraic.

PROOF. All above categories are clearly equationally presentable. From the preceding sec-
tion we have corresponding free functors from Set. By Proposition 2.2.1 we are done. �

2.3. Congruences and nuclei in quantales and quantale modules

DEFINITION 2.3.1. Let S be a sup-lattice, j : S → S an operator on S satisfying s � j (s),
and s � t implies j (s) � j (t) for all s, t ∈ S. We say that j is an order prenucleus on S.
We put Sj = {s ∈ S: j (s) = s}. Evidently, Sj is a closure system in S, that is, closed
under arbitrary meets in S. Write

∨
j = j ◦ ∨. We let ν(j) be the associated closure

operator, so that ν(j)(s) = ∧{t ∈ Sj : t � s} is the smallest order nucleus (idempotent
order prenucleus) greater than j . Sj is then a sup-lattice with the join

∨
j .

Now let f : S → T be a sup-lattice morphism. The composite j = f 9 ◦ f : S → S is
an order preserving map and it has a monad structure on it, i.e. it is an order nucleus.

The subsequent lemma explains the usefulness of prenuclei.

LEMMA 2.3.2. Let j be an order prenucleus on a sup-lattice S, and let f : S → T a
sup-lattice morphism such that f ◦ j = f . Then f ◦ ν(j) = f .

PROOF. Let a ∈ S and let us set W = {x ∈ S: f (x) = f (a), x � a}. Evidently a ∈ W

because f (a) = f (a) and W is a downset in ↑a since f is order-preserving. Further, for
x ∈ W , we have that f (a) = f (x) = f (j (x)), showing that W is j -stable. Finally, if
V ⊆ W , we have that f (a) = f (v) for all v ∈ V , hence

∨
V ∈ W . It follows now that

a � s = ∨
W � j (

∨
W) ∈ W . Consequently, a � ν(j)(a) � j (s) = s ∈ Sj . Hence

f (ν(j)(a)) = f (a). �

DEFINITION 2.3.3. Let Q be a quantale, j :Q → Q an order prenucleus on Q. We say
that j is a quantale prenucleus on Q if j (a)j (b) � j (ab) for all a, b ∈ Q. An idempotent
quantale prenucleus is called (quantale) nucleus on Q. Similarly, let M be a Q-module,
k :M → M an order prenucleus on M . We say that k is a module prenucleus on M if
ak(m) � k(am) for all a ∈ Q, m ∈ M . An idempotent module prenucleus is called
module nucleus on Q.

PROPOSITION 2.3.4. Let Q be a quantale, let M be a Q-module, let j :Q → Q a quan-
tale prenucleus, and let k :M → M a module prenucleus. Then ν(j) is a nucleus and ν(k)

is a module nucleus.
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PROOF. Let a, b ∈ Q,m ∈ M . The maps f, g :Q → Qj defined by f (x) = ν(j)(ax)

and g(y) = ν(j)(yb) are sup-preserving, f (j (x)) = ν(j)(aj (x)) � ν(j)(j (a)j (x)) �
ν(j)(j (ax)) = f (x) � f (j (x)) and similarly g(j (y)) = g(y). By Lemma 2.3.2 we
have that f (ν(j)(x)) = f (x) and g(ν(j)(y)) = g(y). Hence aν(j)(x) � ν(j)(aν(x)) =
ν(j)(ax) and ν(j)(y)b � ν(j)(ν(j)(y)b) = ν(j)(yb). Consequently, ν(j)(a)ν(j)(b) �
ν(j)(ν(j)(a)b) � ν(j)(ν(j)(ab)) = ν(j)(ab).

The module case follows by the analogous considerations applied to the map h :M →
Mk , h being defined by h(m) = ν(k)(am). �

DEFINITION 2.3.5. Let Q be a *-quantale, j :Q → Q a quantale prenucleus on Q. We
say that j is an involutive quantale prenucleus on Q if j (a)∗ � j (a∗) for all a ∈ Q. An
idempotent involutive quantale prenucleus is called (quantale) involutive nucleus on Q.

PROPOSITION 2.3.6. Let Q be an involutive quantale, j :Q → Q an involutive quantale
prenucleus. Then ν(j) is an involutive nucleus.

PROOF. By 2.3.4, ν(j) is a quantale nucleus. Let a ∈ Q. The map f :Q → Qj defined
by f (x) = ν(j)(x∗) is sup-preserving, f (j (x)) = ν(j)(j (x)∗) � ν(j)(j (x∗)) = f (x) �
f (j (x)). Consequently, (ν(j)(x))∗ � ν(j)((ν(j)(x))∗) = ν(j)(x∗). �

PROPOSITION 2.3.7. Let j :Q → Q be a nucleus. Then for every a, b ∈ Q we have
j (a · b) = j (j (a) · b) = j (a · j (b)) = j (j (a) · j (b)).

PROOF. Since j is a closure operator, j (a · b) � j (j (a) · b) � j (j (a) · j (b)) � j (j (a ·
b)) = j (a · b) and similarly j (a · b) � j (a · j (b)) � j (j (a) · j (b)) = j (a · b). �

PROPOSITION 2.3.8. If j :Q → Q is a nucleus, the set Qj = {x ∈ Q: j (x) = x} is
a quantale with the multiplication given by a ·j b := j (ab) and j :Q → Qj is then a
quantale morphism.

PROOF. We know that Qj is a sup-lattice and ·j is clearly associative. It remains to prove
the distributivity. Take a ∈ Qj and bi ∈ Qj , i ∈ I . Then a ·j ∨j bi = a ·j j (

∨
bi) =

j (a
∨

bi) = j (
∨

(abi)) � j (
∨

j (abi)) = j (
∨

j (a ·j bi)) =∨j (a ·j bi).
Since we have, for every i ∈ I , the inequality a ·j bi � a ·j ∨j bi we get

∨
j (a ·j bi) �

a ·j ∨j bi and therefore we obtain the equality. �

Now, we shall establish a one-to-one correspondence between (order, module) nuclei
and (sup-lattices, module) congruences.

DEFINITION 2.3.9. Let S, T be sup-lattices, f : S → T a sup-lattice morphism. Then the
kernel of f , written ker(f ), is defined by

ker(f ) = {(a, b) ∈ S × S: f (a) = f (b)
}
.

PROPOSITION 2.3.10. Let S, T be sup-lattices, f : S → T a sup-lattice morphism. Then
ker(f ) is a congruence of sup-lattices. Moreover, we have
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1. If f is a morphism of quantales then ker(f ) is a congruence of quantales.
2. If f is a morphism of quantale modules then ker(f ) is a congruence of quantale

modules.

PROOF. Let (ai, bi) ∈ ker(f ) for i ∈ I . Then f (
∨

i∈I ai) =∨i∈I f (ai) =∨i∈I f (bi) =
f (
∨

i∈I bi); hence (
∨

i∈I ai,
∨

i∈I bi) ∈ ker(f ). Clearly ker(f ) is an equivalence relation,
so it follows that ker(f ) is actually a congruence of sup-lattices.

Now, let f be a quantale morphism. Then ker(f ) is both a congruence of semigroups
and sup-lattices, i.e. a congruence of quantales.

Similarly, let f be a morphism of Q-modules for some quantale Q. Let a ∈ Q, s, t ∈ S,
(s, t) ∈ ker(f ). Then f (as) = af (s) = af (t) = f (at). Therefore (as, at) ∈ ker(f ), i.e.
ker(f ) is a congruence of quantale modules. �

PROPOSITION 2.3.11. If S is a sup-lattice and ∼ a sup-lattice congruence on S, the factor
set S/∼ is a sup-lattice again and the projection π :Q → Q/∼ is therefore a sup-lattice
morphism. Moreover, we have

1. If S is a quantale and ∼ a quantale congruence on S, then S/∼ is a quantale and the
projection π : S → S/∼ is therefore a quantale morphism. The quantale S/∼ is then
called a quotient quantale of S by the quantale congruence ∼.

2. If S is a quantale module and ∼ a module congruence on S, then S/∼ is a quantale
module and the projection π : S → S/∼ is therefore a quantale module morphism.
The quantale module S/∼ is then called a quotient module of S by the module con-
gruence ∼.

PROOF. We have to verify that joins defined on S/∼ as
∨

i∈I [s]i = [∨
i∈I si

]
do not

depend on the choice of representatives.
Let ti ∈ S, ti ∼ si , i ∈ I . Then

∨
i∈I si ∼∨i∈I ti and therefore [∨i∈I si] = [∨i∈I ti].

Similarly, for ∼ being a quantale congruence we have also to check that the multipli-
cation defined by [a] · [b] = [ab] does not depend on the choice of representatives. Let
c, d ∈ S, a ∼ c, b ∼ d . Then ab ∼ cd . Hence [a] · [b] = [ab] = [cd] = [c] · [d]. In the
same way we can prove the quantale module case. �

PROPOSITION 2.3.12. Let S and T be sup-lattices, let f : S → T be a sup-lattice mor-
phism, let ∼ be a sup-lattice congruence on S such that ∼ ⊆ ker f , and let π denote the
projection S → S/∼. Then there exists a unique sup-lattice morphism g : S/∼ → T which
satisfies g ◦ π = f . Moreover, we have

1. If f is a quantale morphism and ∼ a quantale congruence on S, then g is a quantale
morphism.

2. If f is a Q-module morphism, Q a quantale and ∼ a Q-module congruence on S,
then g is a Q-module morphism.

PROOF. First note that if g ◦ π = f then we must have g([s]) = f (s). Since ∼ ⊆ ker f ,
g does not depend on the choice of representatives and thus it is a correctly defined map.
Let si ∈ S, i ∈ I . Then g(

∨
i∈I [si]) = g([∨i∈I si]) = f (

∨
i∈I si) = ∨

i∈I f (si) =∨
i∈I g([si]). Hence g is a sup-lattice morphism. If there is another morphism h :Q/∼ →
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R satisfying h ◦ π = f , we easily see that h([a]) = (h ◦ π)(a) = f (a) = g([a]). The
remaining parts can be proved by the same procedure. �

PROPOSITION 2.3.13. Let f :Q → R be a surjective quantale (Q-module) morphism.
Then there exists a (Q-module) nucleus j :Q → Q such that R ∼= Qj .

PROOF. Define j = f 9◦f . We know that j is an order nucleus and f ◦j = f ◦f 9◦f = f .
Define a map g :R → Qj by g(r) = f 9(r) for all r ∈ R. Evidently, f ◦ f 9 = idR . We
will show that g preserves joins: g(

∨
ri) = g(

∨
f (qi)) = (g ◦ f )(

∨
qi) = j (

∨
qi) =∨

j (qi) = ∨
(g ◦ f )(qi) = ∨

g(ri). Further, g is a surjective map because g ◦ f =
f 9 ◦ f = j :Q → Qj is a surjection that which implies g is a surjection. Let g(r1) =
g(r2). Then r1 = f (g(r1)) = f (g(r2)) = r2, i.e. g is injective and hence a sup-lattice
isomorphism.

Let f be a quantale morphism. We have

f
(
j (a)j (b)

) = f
(
j (a)

)
f
(
j (b)

) = (f ◦ f 9 ◦ f
)
(a)
(
f ◦ f 9 ◦ f

)
(b)

= f (a)f (b) = f (ab).

Then f (j (a)j (b)) � f (ab) implies j (a)j (b) � (f 9 ◦ f )(ab) = j (ab).
Now, let f be a Q-module morphism. Then, for all a ∈ Q, s ∈ S, we have

f
(
aj (s)

) = af
(
j (s)

) = a
(
f ◦ f 9 ◦ f

)
(s) = af (s) = f (as).

Hence f (aj (s)) � f (as) implies aj (s) � (f 9 ◦ f )(as) = j (as). �

THEOREM 2.3.14. (Quantale representation theorem [75].) Let Q be a quantale. Then
there is a semigroup S and a nucleus j :P(S) → P(S) such that Q ∼= P(S)j .

PROOF. We can take S = Q. Then the map j :P(Q) → P(Q) where j (A) = ↓(∨A)

is certainly an order nucleus on Q and we will show that it is a nucleus too. For any
A,B ⊆ Q, c �

∨
A, d �

∨
B it follows that cd � (

∨
A)(
∨

B) = ∨
(AB). Thus

j (A)j (B) ⊆ j (AB). Evidently, A ∈ P(Q)j ⇐⇒ A = ↓a for some a ∈ Q.
This allows us to define a map f :Q → P(Q)j as f (a) = ↓a. It is clear that f is

both injective and surjective. For a, b ∈ Q,
∨

(↓a↓b) equals ab. Then f (a) ·j f (b) =
↓a ·j ↓b = j (↓a↓b) = ↓(ab) = f (ab). Clearly, f preserves arbitrary joins because∨

f (ai) is the smallest principal ideal containing all ↓ai which is, in fact, the principal
ideal generated by their supremum: f (

∨
ai). We have proved that f is a bijective quantale

morphism and thus an isomorphism. �

Note that the sum
⊔

i∈I Qi of quantales Qi , i ∈ I can be constructed as the free quantale

over the semigroup sum
S⊔

i∈I Qi of Qi with semigroup injections εi :Qi →
S⊔

j∈I Qj

factored via the quantale congruence generated by the relation {(εi(∨α xα), {εi(xα):
xα, α ∈ Λ}): i ∈ I, {xα}α∈Λ ⊆ Qi}. Similarly, a coequalizer k of quantale morphisms
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g, h :A → B can be constructed as the quotient map k :B → BRg,h
, where Rg,h =

{(g(a), h(a)): a ∈ A}.

PROPOSITION 2.3.15. Let Mi , i ∈ I , be Q-modules. Then
∏

i∈I Mi
∼=∑i∈I Mi .

PROOF. We will show that the product of Q-modules has the universal property of their
sum.

Let N be a Q-module and let fi :Mi → N be Q-module morphisms. Define f =∨
(fi ◦ πi) :

∏
i∈I Mi → N which is again a Q-module morphism. For every x ∈ Mi ,

i ∈ I , define mi,x : I →⋃
Mi as

mi,x(j) :=
{
x, i = j,

0Mj
, otherwise.

Evidently, mi,x ∈ ∏Mi . Let us further define εi :Mi → ∏
Mi as εi(x) = mi,x . For

any i ∈ I , εi is a Q-module morphism because εi(
∨

j xj ) = mi,
∨

j xj = ∨
j mi,xj =∨

j εi(xj ) and εi(a · x) = mi,a·x = a · mi,x = a · εi(x).
Clearly, f ◦ εi = fi and

∨
j (εj ◦ πj ) = id∏Mi

.
Let us check that

∏
Mi together with the set of εi have the universal property of the

sum. Suppose there exists g :
∏

Mi → N such that g ◦ εi = fi for any i ∈ I . We have
f =∨(fi ◦ πi) =∨(g ◦ εi ◦ πi) = g ◦∨(εi ◦ πi) = g ◦ id∏Mi

= g. �

Note that the coequalizer k of Q-module morphisms g, h :M → N can be constructed
as the quotient map k :N → NRg,h

, where Rg,h = {(g(m), h(m)): m ∈ M}.

2.4. Special morphisms of quantales and modules

In this section we will consider special morphisms in the categories Quant, and Q-Mod
and their subcategories.

PROPOSITION 2.4.1. There are epimorphisms in the category Quant (UnQuant, InQuant
and InUnQuant) that are not surjective.

PROOF. Let A be a frame that is not a Boolean algebra. From Proposition 2.7 in [22] we
know that there is an epimorphism of frames c :A → N(A) that is not surjective. Note that
any frame morphism is an involutive unital quantale morphism. It is enough to show that c
is also an epimorphism of (involutive, unital) quantales. Recall that N(A) is generated by
the elements of the form c(a) ∧ u(b) where u(b) and c(b) are complementary in N(A).

Now, let f1, f2 :N(A) → B are (involutive, unital) quantale morphisms such that f1 ◦
c = f2 ◦ c. Since both f1(N(A)) and f2(N(A)) are frames it is enough to show that they
coincide. To prove this we have to show that f1(u(a)) = f2(u(a)) for all a ∈ A. We have
that f1(u(a)∨c(a)) = f1(1N(A)) = f1(c(1)) = f2(c(1)) = f2(1N(A)) = f2(u(a)∨c(a)).
Hence
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f1
(
u(a)

) = f1
(
u(a)

)(
f2
(
u(a) ∨ c(a)

))
= f1

(
u(a)

)
f2
(
u(a)

) ∨ f1
(
u(a)

)
f2
(
c(a)

)
= f1

(
u(a)

)
f2
(
u(a)

) ∨ f1
(
u(a)

)
f1
(
c(a)

)
= f1

(
u(a)

)
f2
(
u(a)

) ∨ f1
(
u(a)c(a)

)
= f1

(
u(a)

)
f2
(
u(a)

) ∨ f1(0N(A)) = f1
(
u(a)

)
f2
(
u(a)

)
� f1(1N(A))f2

(
u(a)

) = f2(1N(A))f2
(
u(a)

) = f2
(
u(a)

)
.

Similarly, f2(u(a)) � f1(u(a)). Altogether, f1 = f2. �

The case of epimorphisms in quantale modules is surprisingly nicer. Let us start with the
following definition.

DEFINITION 2.4.2. A category K is said to satisfy the amalgamation property provided
that for every monomorphism m :A → B, whenever the square

A

m

m
B

p

B q C

is a pushout, then it is also a pullback and p, q are monomorphisms.

LEMMA 2.4.3. Let K be an algebraic category such that the regular monomorphisms in
K are precisely the monomorphisms. Then the regular epimorphisms in K are precisely the
epimorphisms.

PROOF. Let f :A → B be a K-epimorphism. Let us consider the regular epi-mono fac-
torization f = m ◦ p; m :C → B is a monomorphism and p :A → C is a regular epi-
morphism. Since f is an epimorphism so is m. Moreover, m is a regular monomorphism,
i.e. it is an equalizer of morphisms u, v :B → D. Since m is an epimorphism we have that
u = v. But then the equalizer of u and v is the identity map idB . Consequently, m is iso-
morphic to the identity on B and therefore it is an isomorphism. Finally, f is isomorphic
to the regular epimorphism p and so is an regular epimorphism. �

PROPOSITION 2.4.4. Let K be an algebraic category satisfying the amalgamation prop-
erty. Then

1. The regular monomorphisms in the category K are precisely the monomorphisms.
2. The surjective morphisms in the category K are precisely the epimorphisms.

PROOF. 1. Let m :A → B be a K-monomorphism. Since K is algebraic it is cocomplete
and therefore there exists a pushout

A

m

m
B

p

B q C
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which is also a pullback by the amalgamation property. Hence m :A → B is an equalizer
of (p, q), i.e. m is a regular monomorphism. The other implication is evident.

2. From 2.2.1 we know that regular epis in K are exactly surjective morphisms and by
2.4.3 we know that the regular epimorphisms in K are precisely the epimorphisms. �

The next theorem was first proved in [46] and later on, by more simple arguments in [81].
We shall here give a shorter proof based on module prenuclei to demonstrate their strength.

THEOREM 2.4.5. The category Q-Mod satisfies the amalgamation property.

PROOF. Let m :A → B be a Q-Mod-monomorphism. By the Theorems 2.2.2 and 2.2.1
one can assume that A is a Q-submodule of B and m is the inclusion map. Assume that
the square

A

m

m
B

p

B q C

is a pushout. Let B×B be the coproduct in Q-Mod with the injections i1, i2 :B → B×B

defined by i1(b) = (b, 0) and i2(b) = (0, b). Let d :B ×B → D be a coequalizer of i1 ◦m

and i2 ◦m. By the construction of coequalizers d is a module nucleus corresponding to the
module congruence R generated by the relation S = {((m(a), 0), (0,m(a))): a ∈ A}.
Evidently, d is induced by the module prenucleus j :B × B → B × B defined by
j (x, y) = (x, y) ∨ (m9(y),m9(x)) (indeed, ((x, y), (x, y) ∨ (m9(y),m9(x))) ∈ R

because (m9(x), 0) ∨ (0,m9(y)) � (x, y) implies ((x, y) ∨ (m9(x),m9(y)), (x, y) ∨
(m9(y),m9(x)) ∈ R and j (m(a), 0) = j (m(a),m(a)) = j ((0,m(a)) for all a ∈ A).
Evidently, (x, y) � j (x, y), (x, y) � (u, v) implies j (x, y) � j (u, v) and qj (x, y) =
q((x, y) ∨ (m9(y),m9(x))) = (qx, qy) ∨ (qm9(y), qm9(x)). Since m(qm9(x)) =
qm(m9(x)) � qx we have qm9(x) � m9(qx). Hence qj (x, y) � j (q(x, y)) =
(qx, qy) ∨ (m9(qy), qm9(qx)). Moreover, j ◦ i1(b), j ◦ i2(b) ∈ (B × B)j for all
b ∈ B. This follows from the following computation: j (j (i1(b)) = j (j (b, 0)) =
j ((b,m9(b)) = (b ∨ m9(m9(b)),m9(b) ∨ m9(b)) = (b,m9(b)) = j (i1(b)) and sim-
ilarly j (j (i2(b)) = (m9(b)∨m9(b), b∨m9(m9(b))) = (m9(b), b) = j (i2(b)). Then the
diagram

A

m

m
B

d◦i1
B

d◦i2 D

is a pushout and hence C � D. Consequently, it is enough to check that the last diagram
is a pullback. Recall that a pullback of the diagram

B

d◦i1
B

d◦i2 D
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can be constructed as a submodule E of B × B;

E = {(b1, b2) ∈ B × B: d ◦ i1 ◦ π1(b1, b2) = d ◦ i2 ◦ π2(b1, b2)
}

= {(b1, b2) ∈ B × B: d ◦ i1(b1) = d ◦ i2(b2)
}

= {(b1, b2) ∈ B × B: j ◦ i1(b1) = j ◦ i2(b2)
}

= {(b1, b2) ∈ B × B:
(
b1,m

9(b1)
) = (m9(b2), b2

)}
.

Since b1 = m9(b2) ∈ A we have that b1 ∈ A, therefore b1 = m9(b1) = b2 ∈ A. Then
E = {(b, b) ∈ B × B: b ∈ A} � A.

Let us show that d ◦ i1 and d ◦ i2 are monomorphisms. Let d ◦ i1(b1) = d ◦ i1(b2). Then
j ◦ i1(b1) = j ◦ i1(b2) and hence (b1,m

9(b1)) = (b2,m
9(b2)), i.e. b1 = b2. The proof for

d ◦ i2 is similar. �

THEOREM 2.4.6.
1. The regular monomorphisms (regular epimorphisms) in the category Q-Mod

(Q-UnMod) are precisely the monomorphisms (epimorphisms).
2. The categories Quant, UnQuant, InQuant and InUnQuant do not have the amal-

gamation property.
3. There are monomorphisms in the category

Quant (UnQuant, InQuant and InUnQuant)

that are not regular monomorphisms.

PROOF.
1. This follows from Theorems 2.4.4 and 2.4.5.
2. This follows from Theorem 2.4.4 and Proposition 2.4.1.
3. This follows from Lemma 2.4.3 and Proposition 2.4.1. �

2.5. Notes on Section 2

The construction of both free (unital, involutive) quantales and free unital modules is an
immediate translation of the analogous constructions in universal algebra. The only non-
standard case is the construction of free quantale modules due to M. Ordelt [48].

The algebraicity of the above categories of quantales and quantale modules is an useful
property that enables us immediately to construct limits, colimits and regular epi-mono
factorizations.

The general theory of nuclei is contained in [75]. We added the part on prenuclei as we
think they are a suitable technical tool for studying quotients of quantales and quantale
modules. The standard proof of the Proposition 2.3.15 is based on the idea for modules
over rings.

The study of epimorphisms in quantales and quantale modules is quite recent. In the
category of (unital, involutive) quantales there are non-surjective epimorphism. The more
pleasant case for quantale modules was established by C. Nkuimi-Jugnia [46] and later
on by S.A. Solovyov [81]. This was done by proving the so-called amalgamation prop-
erty.
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3. Simple quantales and representations

3.1. Simple quantales

DEFINITION 3.1.1. A non-trivial (involutive) quantale Q is said to be (*-simple) simple
if any surjective (*-)morphism of (involutive) quantales is either an (*-)isomorphism or a
constant morphism. Evidently, any simple involutive quantale is *-simple.

A quantale Q will be called faithful (strongly faithful) if, whenever

xr = yr and lx = ly (lxr = lyr)

for all r ∈ R(Q) and l ∈ L(Q), then

x = y

for all x, y ∈ Q. Note that any strongly faithful quantale is faithful and a Cartesian product
of faithful (strongly faithful) quantales is again faithful (strongly faithful).

We say that the multiplication of a quantale Q is trivial if x · y = 0 for each x, y ∈ Q;
it is equivalent to 1 · 1 = 0. It is evident that the only simple quantale with a trivial
multiplication is the quantale 02 = {0, 1} (any surjective morphism of sup-lattices is in this
case a surjective morphism of quantales). Analogously, the only *-simple quantale with a
trivial multiplication is the quantale 02 with the identity involution.

THEOREM 3.1.2. (See [62,51,30].) Let Q be an (involutive) quantale with a non-trivial
multiplication. Then the following conditions are equivalent:

1. Q is simple (*-simple).
2. Q is a faithful von Neumann (*-)factor.
3. Q is a strongly faithful (*-)factor.
4. Q has a separating (*-separating) cyclic set.

PROOF. (1) ⇒ (2). Let t ∈ T (Q) (t ∈ T (Q)∩H(Q)). The assignment a �→ a ∨ t defines
a surjective (involutive) morphism Q → ↑t . Since Q is simple, we have either t = 0 or
t = 1, i.e. Q is a (*-)factor. From the additional condition 1 · 1 �= 0 we conclude 1 · 1 = 1,
because 1 · 1 is always two-sided (and Hermitean). Let us now define

a ∼ b ⇔ (∀l ∈ L(Q),∀r ∈ R(Q)
)
(lar = lbr).

The relation ∼ is evidently an (involutive) quantale congruence. If 0 ∼ 1, then 0 = 1·0·1 =
1 · 1 · 1 = 1. Thus ∼ is necessarily the diagonal a ∼ b ⇔ a = b, and so Q is strongly
faithful.

Now we shall prove that Q is von Neumann, i.e. for all r ∈ R(Q) and l ∈ L(Q),
0 ← (r → 0) = r and (0 ← l) → 0 = l.

We shall define, for x, y ∈ Q, x1y if lx = ly for all l ∈ L(Q). Then 1 is a non-trivial
quantale congruence on Q. Hence 1 = idQ.

It is enough to show that 0 ← (r → 0)1r . Let l ∈ L(Q). Then lr = 0 or lr = 1 �
l(0 ← (r → 0)). If lr = 0 then l � (r → 0), (r → 0)(0 ← (r → 0)) = 0, i.e.
l(0 ← (r → 0)) = 0. Similarly for left-sided elements.
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The involutive case proceeds analogously.
(2) ⇒ (3). Let lar = lbr for all l ∈ L(Q) and r ∈ R(Q). Recall that lar = 0 iff

r � 0 ← (la). Hence 0 ← (la) = 0 ← (lb). Then lb = (0 ← (lb)) → 0 = (0 ←
(la)) → 0 = la. Similarly, ar = br . Consequently, a = b, i.e. Q is strongly faithful.

(3) ⇒ (4). Put P = {r → 0 ← l : r ∈ R(Q), l ∈ L(Q)} − {1}. P ∪ {1} is residually
closed, because b → (r → 0 ← l) ← a = (br) → 0 ← (la). From the faithfulness
we have that 1 · 1 · 1 �= 1 · 0 · 1. For p ∈ P we have 1 → p ← 1 ∈ T (Q) = {0, 1}. If
1 → p ← 1 = 1, then 1 = 1 · 1 · 1 � p, thus 1 → p ← 1 = 0 and hence P is cyclic. Let
a �� b, then there exist r ∈ R(Q), l ∈ L(Q) such that lar 
 lbr . Since Q is a factor and
lar, lbr are two-sided, lar = 0 and lbr = 1 � 0. But it means that a � r → 0 ← l and
b � r → 0 ← l, i.e. P is separating.

In the involutive case we put either P = {r → 0 ← l: r ∈ R(Q), l ∈ L(Q)} − {1}
if T (Q) = {0, 1} or P = {r → t ← l: r ∈ R(Q), l ∈ L(Q)} − {1} for some t ∈
T (Q) −H(Q) otherwise. The remaining part of the proof can be done in a similar way as
above.

(4) ⇒ (1). Let P be separating and cyclic. Then 0 = ∧
P = 1 → p ← 1 for every

p ∈ P and there are a, b ∈ Q such that p = b → 0 ← a. Let a ∈ Q and suppose
1a1 � p for some p ∈ P . Then a � 1 → p ← 1 = 0, that is a �= 0 ⇒ 1a1 = 1. Further
0 �= 1 = 1 · 1 · 1 � 1 · 1. Consider a 
 b and the congruence ∼ generated by a ∼ b.
There exists a p ∈ P , p = d → 0 ← c such that a � p, b � p. Then cad = 0, cbd �= 0,
cad ∼ cbd and thus 0 = 1cad1 ∼ 1cbd1 = 1, i.e. there are only two congruences on Q,
so that Q is simple.

In the involutive case we put t =∧P = 1 → p ← 1 for every p ∈ P and as above we
show that any non-trivial principal involutive quantale congruence ∼ is Q × Q (t ∼ 1 and
t∗ ∼ 1 would imply that 0 = t ∧ t∗ � t t∗ ∼ 11 = 1). �

COROLLARY 3.1.3. Let S be a sup-lattice. Then
1. Q(S) is simple.
2. Q(S) × Q(Sop) is *-simple.

PROOF. If S is a trivial quantale, i.e. S = {0} then Q(S) � {0} � Q(S) × Q(Sop) is
evidently simple and therefore *-simple. Now, let S be non-trivial. Then:

1. Evidently, ρ0 = λ1 = 0Q(S) and ρ1 = λ0 = 1Q(S) are the only two-sided elements.
Let us check that Q(S) is strongly faithful. Recall that, for any f ∈ Q(S),

(λu ◦ f ◦ ρv)(t) =
{

0, t = 0 or f (v) � u,

1, otherwise.

Assume that α 
 β in Q(S), i.e. there is x ∈ S for which α(x) 
 β(x). For y = α(x) we
get α(x) � y and β(x) � y and hence 0 = λy ◦ α ◦ ρx �= λy ◦ β ◦ ρx = 1.

2. Note first, that the involution on Q(S) × Q(Sop) is defined as (f, g)∗ = (g9, f 9).
From properties of adjoints it follows that Q = Q(S) × Q(Sop) is a *-quantale. We will
show that it is *-simple. Indeed, T (Q) = {(0, 0), (0, 1), (1, 0), (1, 1)} and (1, 0)∗ = (0, 1),
hence Q is a *-factor. Since Q(S) and Q(Sop) are strongly faithful we have that Q is
strongly faithful. �
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3.2. Representations of quantales

As in ring theory, quantale modules are related to representations of quantales, i.e. mor-
phisms to a Q(S). Concretely, a representation μ :Q → Q(M) is determined by the action
of elements of Q on a left Q-module M: μ(a)(m) = am, and vice versa.

An important example arise from theory of C∗-algebras. Given a C∗-algebra A and a
representation π :A → B(H) to the algebra B(H) of the bounded operators on a Hilbert
space H , there is a corresponding *-quantale morphism μ : MaxA → Q(L(H)) where
L(H) is the a sup-lattice of closed subspaces of H . The morphism μ is strong, or unital, if
and only if π is irreducible, or unital, respectively. Hence the strong and unital representa-
tions are of a special interest.

THEOREM 3.2.1. (See [54].) Every quantale has a faithful representation, i.e. an embed-
ding μ :Q → Q(S).

PROOF. By 1.1.11 every quantale Q can be embedded into a unital quantale, thus we can
assume that Q is unital. Then μ(a)(b) = ab defines a representation μ :Q → Q(Q) which
is faithful because μ(a) = μ(b) implies a = μ(a)(e) = μ(b)(e) = b. �

Let Q be a quantale, I, J sets and M a matrix over Q of type I × J . Let as write Mi for
the i-th row, Mj for the j -th column, and Mi

j for the (i, j)-th entry of M . For a matrix N

of type J × K we define a product P = MN of type I × K by

P i
k =

∨
j∈J

Mi
jN

j
k .

Matrices of the same type form a sup-lattice with pointwise joins. Thus matrices over Q

form a quantaloid (a sup-enriched category) with the index sets as objects. The residuations
can be computed pointwise as well, for example M = N → P (with types as before) is
given by

Mi
j =

∧
k∈K

N
j
k → P i

k .

DEFINITION 3.2.2. Let P be a matrix of type I×J over a quantale Q. We define QJ → P

to be the sup-lattice of all column vectors u of type I obtained as u = v → P for some
row vector v of type J . From a → u = a → (v → P) = (av) → P and (

∨
v(k)) →

P =∧ v(k) → P it follows that the dual sup-lattice (QJ → P)op is a left Q-module. In a
similar way we obtain a right Q-module (P ← QI)op. Modules obtained in this way (or
isomorphic to those) are called matrical modules.

THEOREM 3.2.3. (See [29].) Every unital module is matrical.

PROOF. Let M be a left Q-module. We set P to be the M ×M matrix over Q with entries

Pm
n = n → m =

∨
{a ∈ Q | an � m}.
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From the definition of P it follows that a → Pn = Pan and
∧

Pni
= P∨ ni

. Let En be the
n-th row of the unit matrix of type M × M . Then En → P = Pn, hence columns of P

form a submodule of (QM → P)op. On the other hand, for every row vector u of type M

we have

u → P =
∧
m∈M

{um → Pm} = P∨
m∈M um,

hence every element of the matrix module is a column vector of P . Finally, for m � n we
have e � n → n, e � m → n, thus Pm �= Pn, hence m �→ Pm is an isomorphism. �

THEOREM 3.2.4. (See [29].) Let P be a matrix of type I × J . Then the left Q-module
(QJ → P)op is dual to the right Q-module (P ← QI)op.

PROOF. The assignments v �→ v → P, u �→ P ← u define a Galois connection
between row vectors of type J and column vectors of type I . The fix-points are pre-
cisely the elements of modules. For a ∈ Q,u, u′ ∈ QJ → P, v, v′ ∈ P ← QI

such that u = v → P, v = P ← u, u′ = v′ → P, v′ = P ← u′ we have
u′ � a → u ⇔ u′a � u = v → P ⇔ u′av � P ⇔ av � P ← u′ = v′ ⇔ v � v′ ← a

which establishes the module duality. �

DEFINITION 3.2.5. A quantale Q is called spatial if it has enough strong representations
to separate elements.

An element p ∈ Q,p �= 1 is called prime if

rl � p ⇒ r � p or l � p

for all r ∈ R(Q), l ∈ L(Q).

THEOREM 3.2.6. (See [29].) A quantale Q is spatial if, and only if, everyone of its element
is a meet of primes.

PROOF. 1. Assume that Q is a spatial quantale. Then there is a strong embedding μ :Q →∏
Q(Si). It is enough to show that each Q(S) has enough primes, products of quantales

with enough primes have enough primes as well, and the adjoint of a strong morphism
preserves primes.

1i. The right- and left-sided elements of Q(S) are of the form

ρx(z) =
{
x, z �= 0,

0, z = 0,
λy(z) =

{
1, z � y,

0, z � y,

respectively. Let x �= 1, y �= 0. We have ρu ◦ λv � ρx ∨ λy if, and only if, u � x or y � v,
i.e. ρu � ρu or λv � λy . This means that all elements of the form ρx ∨ λy are primes.
From α � ρx ∨ λy ⇔ α(y) � x it follows that the primes ρx ∨ λy separate the elements
of Q(S).

1ii. Let Qi be a family of quantales, Q =∏Qi . Since multiplication in Q is given point-
wise, the right- or left-sided elements have all components right- or left-sided, respectively.
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It follows that when p is a prime in Qi then p′ ∈ Q given by

p′
j =

{
p, i = j,

1, i �= j

is also a prime. These primes of Q clearly separate elements whenever the primes of each
Qi do so.

1iii. Finally, let f :Q → K be a strong morphism and p a prime of K . Then f 9(p) �= 1
and since f preserves right- and left-sided elements, we obtain rl � f 9(p) ⇒ f (r)f (l) =
f (rl) � p ⇒ f (r) � p or f (l) � p ⇒ r � f 9(p) or l � f 9(p) for every r ∈
R(Q), l ∈ L(Q). Hence f 9(p) is a prime.

2. Assume that every element of Q is a meet of primes. We will strongly embed Q

into a unital quantale which still has enough primes. Then we will show that a module
(Q → p)op with p prime induces a strong representation and that the representations
separate elements.

2i. Let Q be a quantale with enough primes and Q[e] its unitalization from 1.1.11.
Consider the quotient of Q[e] obtained by identifying 1 with 1 ∨ e. We will show that
no other elements needs to be identified and hence Q → Q[e]/{1 ∼ 1 ∨ e} is a strong
embedding. Let a ∈ Q. Then (a1 ∨ a) is clearly right-sided in Q and for every prime p

of Q we have a1 = (a1 ∨ a)1 � p ⇒ a1 ∨ a � p, hence a1 = a1 ∨ a because primes
separate elements. It means that the induced relation a1 ∼ a(1 ∨ e) = a1 ∨ e is already
satisfied in Q. Similarly we prove 1a = 1a ∨ a. Further, 1 and 1 ∨ e live on the top of
Q[e], thus we do not obtain anything new by joins, and multiplying the new elements of
Q[e] is also trivial: (a ∨ e)1 = 1, (a ∨ e)(1 ∨ e) = 1 ∨ e. This also explains that the
right- and left-sided elements of Q → Q[e]/{1 ∼ 1 ∨ e} are only the old ones from Q

and from rl � p ⇔ rl � p ∨ e for every r, l, p ∈ Q we obtain that p ∨ e is a prime in
Q[e]/{1 ∼ 1∨e} whenever p is a prime in Q. It follows that Q[e]/{1 ∼ 1∨e} has enough
primes.

2ii. Let Q be a unital quantale with enough primes, p a prime, and a, b arbitrary ele-
ments. If a1b � p then a = ae � a1 � p or b = eb � 1b � p. In the later case we have
b → p = (1b) → p = 1. If b � p then 1b → p � p because (1b) → p is right-sided and
p is prime. For every right-sided r � p we have r � 1 → p, hence (1b) → p = 1 → p.
Consequently,

1 → (b → p) = (1b) → p =
{

1, b → p = 1,

1 → p, otherwise.

But 1 → p or 1 is the top or the bottom element, respectively, of the module (Q →
p)op and the top element of Q((Q → p)op) acts in the same way, hence the induced
representation μp :Q → Q((Q → p)op) is strong. Finally, for every a 
 b we have a
prime p such that a � p, b � p and μp(a)(e → p) = a → p � e while μp(b)(e →
p) = b → p 
 e, i.e. μp separates a, b. �

PROPOSITION 3.2.7. (See [62].) Let Q be a simple quantale with a non-trivial multipli-
cation. Then the action on right-sided elements provides a strong embedding μ :Q →
QR(Q).
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PROOF. Let a �= b. From 3.1.2 it follows that lar �= lbr for a suitable r ∈ R(Q), l ∈
L(Q) and hence ar �= br . Thus μ is an embedding. Let r ∈ R(Q). If 1r = 0 then lrs = 0
for every l ∈ L(Q), s ∈ R(Q) and thus r = 0. Otherwise from the two-sidedness of 1r it
follows that 1r = 1. Hence

μ(1)(r) = 1r =
{

0, r = 0,

1, otherwise,

i.e. μ is strong. �

COROLLARY 3.2.8. A quantale is spatial if, and only if, it has enough strong morphisms
to simple quantales with a non-trivial multiplication to separate elements.

Now we will study spatiality of involutive quantales. Since the proofs of the following
statements would be similar, we will point out only the extra difficulties of the involutive
case.

DEFINITION 3.2.9. A *-morphism Q → Q(S) × Q(Sop) is called a *-representation,
a *-morphism Q → Q(S) (with S self-dual) a D-representation.

A *-quantale is said to be *-spatial (D-spatial) if it has enough *-representations (D-
representations) to separate elements.

A matrix P of type I × J is called prime if at least one entry is different from 1 and

rl � P ⇒ r � Pj or l � P i

for all i ∈ I, j ∈ J , column vectors r formed by right-sided elements, and row vectors l

formed by left-sided elements.
A matrix P is called Hermitean if I = J and (P i

j )
∗ = P

j
i for every i, j .

THEOREM 3.2.10. (See [29].) A *-quantale Q is *-spatial if, and only if, every its element
is a meet of primes.

PROOF. Recall that for every left Q-module M there is a dual right Q-module Mop. If
Q is involutive, Mop can be regarded as a left Q-module with action a • m = m ← a∗.
Thus for the representation μ :Q → Q(M) we obtain a representation μ′ :Q → Q(Mop).
Since μ′(a) = μ(a∗)9, (μ,μ′) induces a *-representation Q → Q(M) × Q(Mop). The
rest follows from Theorem 3.2.6. �

THEOREM 3.2.11. (See [29].) A *-quantale Q is D-spatial if, and only if, every element
of it is a meet of primes contained in some Hermitean prime matrix.

PROOF. 1. Let P be a prime matrix of type I, J . Replacing elements by vectors and ma-
trices of a suitable type in the proof of 3.2.6 we obtain that (QJ → P)op is strong as
well.

Assume that P is Hermitean. From uv � P ⇔ v∗u∗ � P it follows that u �→ u∗
defines an isomorphism between the dual modules (QI → P)op and (P ← QI)op and
hence (QI → P)op is self-dual with duality m �→ m∗ → P . Moreover, any element a of
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Q acts on (QI → P)op in the same way as a∗ on the dual (P ← QI)op, hence the induced
representation Q → Q(QI → P)op is a D-representation.

2. On the other hand, if S is self-dual with duality ⊥, then any element ρx ∨ λy �= 1 is
contained in the Hermitean matrix

P =
(

ρx ∨ λx⊥ ρx ∨ λy

ρy⊥ ∨ λx⊥ ρy⊥ ∨ λy

)
.

P is prime because(
ρu

ρv

)
(λw λz) � P

implies that at least three of the following inequalities are true: u � x, v � y⊥, w � x⊥,
z � y.

By a straightforward calculation we observe that if f :Q → K is a *-morphism (or
strong morphism) then f 9 preserves Hermitean (or prime) matrices. �

Involutive modifications of 3.2.7 and 3.2.8 are also possible. When Q is *-simple recall
that there are two possibilities: either T (Q) = {0, 1} and then μ :Q → QR(Q) is a strong
D-representation, or T (Q) = {0, t, t∗, 1} and then μ :Q → Q(↓t ∩ R(Q)) × Q(↓t∗ ∩
R(Q)) is a *-representation.

3.3. Girard quantales

Girard quantales can be considered as generalized Boolean algebras or discrete spaces and
thus it is reasonable to find such a structure on endomorphism quantales Q(S). K.I. Rosen-
thal [75] used the Chu construction [7] and embedded a general quantale Q into a Girard
quantale Q × Qop. However, the embedding is not strong and does not respect the exist-
ing duality between right- and left-sided elements. We present another construction which
provides a Girard structure between Q(S) and its dual and preserves von Neumann duality.

DEFINITION 3.3.1. An element d ∈ Q is called cyclic if ab � d ⇔ ba � d for all
a, b ∈ Q.

d is called dualizing if d ← (a → d) = (d ← a) → d = d for every a ∈ Q.
Quantale Q is said to be Girard if it admits a cyclic dualizing element. We write a⊥ =

a → d = d ← a.

EXAMPLE 3.3.2.
1. (See [76].) RelX is a Girard quantale with d = X × X − ΔX.
2. Let Mn(C) be the C∗-algebra of n × n complex matrices (that is B(Cn)). Then

MaxMn(C) is a Girard quantale with d = {A | TrA = 0}.
3. The interval [0, 1] of reals with the usual order and with multiplication ab =

max{0, a + b − 1} form a so called Łukasiewicz quantale. It is two-sided, com-
mutative and Girard with d = 0.
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PROPOSITION 3.3.3. Every Girard quantale Q is von Neumann, r → 0 = r⊥ for every
right-sided r , and 0 ← l = l⊥ for every left-sided l. That is, ⊥ extends the duality between
R(Q) and L(Q).

PROOF. Let r be right-sided and r � d . Then r1 � d ⇒ r⊥ = 1 ⇒ r = 0. Since ar is
right-sided for every a ∈ Q, we get ar � d ⇔ ar = 0. Hence r⊥ = r → d = r → 0.
The second equality is analogous. �

DEFINITION 3.3.4. Let M be a left Q-module and a right K-module. Then M is called
(Q,K)-bimodule if (am)b = a(mb) for all a ∈ Q,m ∈ M,b ∈ K . When Q = K we will
simply call M a Q-bimodule.

THEOREM 3.3.5. Let S be a sup-lattice. On S ⊗ Sop put

(*)(x ⊗ y)(u ⊗ v) =
{

0, u � y,

x ⊗ v, otherwise.

Then
• S ⊗ Sop is a Q(S)-bimodule,
• (*) provides a quantale structure on S ⊗ Sop,
• the so called mix map φ(x⊗y) = ρx◦λy provides a strong quantale and Q(S)-bimodule

morphism φ : S ⊗ Sop → Q(S),
• φ restricted to right- or left-sided elements is an isomorphism,
• φ preserves the involution when S is self-dual,
• d = ∨

x x ⊗ x ∈ S ⊗ Sop is a cyclic dualizing element with respect to the bimodule
actions, i.e. αc � d ⇔ cα � d, α = d ← (α → d) = (d ← α) → d , and
c = d ← (c → d) = (d ← c) → d for every α ∈ Q(S), c ∈ S ⊗ Sop where →,← are
computed respectively to the actions,

• φ is self-dual, i.e. φ(α⊥)⊥ = φ9(α).

PROOF. S is clearly a left Q(S)-module and Sop is its dual right Q(S)-module. Thus S ⊗
Sop is a Q(S)-bimodule. The actions are given by α(x ⊗ y)β = α(x) ⊗ β9(y). Notice
that the product (*) is “bilinear” and behaves in the same way like the product (ρx ◦ λy) ◦
(ρu ◦ λv) in Q(S). Moreover, the elements

∨
i ρxi ◦ λyi form a subbimodule of Q(S) and

α ◦ ρx = ρα(x), λy ◦ β = λβ9(y) which agrees with the actions on S ⊗ Sop. Further
φ(1 ⊗ 0) = ρ1 ∨ λ0 = 1, i.e. φ is strong. We have (x ⊗ y) � (x ⊗ y)(1 ⊗ 0) iff x ⊗ y = 0
or y = 0, hence right-sided elements of S ⊗ Sop are of the form x ⊗ 0 and x ⊗ 0 �→ ρx is
an isomorphism. Similarly, L(S ⊗ Sop) ∼= LQ(S). Finally, φ((x ⊗ y)∗) = φ(y′ ⊗ x′) =
ρy′ ◦ λx′ = (ρx ◦ λy)

∗ = φ(x ⊗ y)∗. This finishes the first five points of the statement.
From α(x ⊗ y) � d ⇔ α(x) � y ⇔ α � ρy ∨ λx ⇔ x � α9(y) ⇔ (x ⊗ y)α � d we

have that (x ⊗ y) → d = ρy ∨ λx = d ← (x ⊗ y). Similarly, (ρy ∨ λx) → d = (ρy →
d) ∧ (λx → d) = (1 ⊗ y) ∧ (x ⊗ 0) = (1 ∧ x) ⊗ (y ∨ 0) = x ⊗ y, etc. Extending this to
the joins of x ⊗ y and meets of ρy ∨ λx we obtain the assertion.

Finally, φ((λx ∨ ρy)
⊥)⊥ = φ(x ⊗ y)⊥ = (ρx ◦ λy)

⊥ = (ρx ∧ λy)
⊥ = ρ⊥

x ∨ λ⊥
y =

(0 ⊗ x) ∨ (y ⊗ 1) = φ9(λx ∨ ρy) and this extends to all elements of Q(S). �
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Using a classical result of G.N. Raney [66] (see also [21]) we characterize sup-lattices
for which Q(S) is a Girard quantale.

THEOREM 3.3.6. Q(S) is Girard if, and only if, S is completely distributive.

PROOF. In our notation, idS being tight means that it can be expressed as
∨

i ρxi ◦ λyi and
by [66] this holds whenever S is completely distributive. But then the right- and left-sided
elements generate the whole quantale Q(S) and hence φ : S ⊗ Sop → Q(S) is surjective.
From self-duality it follows that φ is bijective and thus a quantale isomorphism. Hence
Q(S) is a Girard quantale.

On the other hand, assume that Q(S) is Girard. Since every element is a meet of some
ρx ∨ λy and (ρx ∨ λy)

⊥ = ρy ∧ λx = ρy ◦ λx by 3.3.3, every element is also a join of
ρy ◦ λx , in particular idS is. �

3.4. Notes on Section 3

In the beginning, quantale points were studied in context of right-sided elements and ap-
peared in works of F. Borceux, G. van den Bossche, C.J. Mulvey, M. Nawaz, and J. Rosický
[11,41,77].

The idea of the endomorphism quantale Q(S) was introduced by C.J. Mulvey and
J.W. Pelletier [40]. J.W. Pelletier and J. Rosický [62] characterized *-simple quantales and
showed that Q(S) for self-dual S are *-simple. Then J. Paseka [51] adopted the results to
the non-involutive case. The characterization by means of cyclic separating sets was added
in [30].

Meanwhile C.J. Mulvey and J.W. Pelletier [42,43,63] continued their work on spec-
tra of C∗-algebras and introduced an alternative notion of quantale representation where
the endomorphism quantales Q(S) are replaced by weak spectra of operator algebras
Maxw B(H) and the corresponding notion of spatiality is then different from our one. We
refer the reader to the lucid summary [44].

J. Rosický [78] characterized right-sided spatial quantales and D. Kruml [29] general-
ized the result for arbitrary quantales and *-quantales.

The focus of applications of Girard quantales lies more in linear logic [18,87] and their
affinity to von Neumann (and afterwards simple) quantales was not yet been studied, except
for example of relational quantales due to K.I. Rosenthal [76]. It was mentioned in [56]
that MaxMn(C) is not spatial and d is one of the maximal subspaces which is not prime.
This is quite interesting because then spatialization of MaxMn(C) (i.e. taking the quotient
determined by a strong representations) destroys its Girard structure.

4. Injectivity and projectivity in quantales

4.1. Injective and projective quantales

DEFINITION 4.1.1. A quantale E is called injective if for any two quantales Q,R, an
injective morphism f :Q → R and any morphism g :Q → E there exists a morphism
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h :R → E such that h ◦ f = g.

Q

g

f
R

h

E

LEMMA 4.1.2. Every injective quantale is unital.

PROOF. Suppose Q is an injective quantale. By Lemma 1.1.11 there exists a unital quan-
tale R with an embedding ι :Q → R. Since Q is injective and idQ is a quantale morphism,
there exists a quantale morphism f :R → Q such that f ◦ ι = idQ and f is thus a surjec-
tion. That means, by Lemma 1.1.6, that Q is unital. �

THEOREM 4.1.3. There are no non-trivial injective quantales.

PROOF. Let Q be an injective quantale; by Lemma 4.1.2 Q is unital. Note that the map
f :Q → Q(Q) defined as f (a)(b) = a · b is a quantale embedding. Since Q is injective
there exists a quantale morphism g :Q(Q) → Q satisfying g ◦ f = idQ. Evidently, g is a
surjective morphism from the simple quantale Q(Q) onto Q. Therefore Q is either a trivial
quantale or isomorphic to Q(Q). But the latter is impossible because if Q has more than
one element, f is not a surjection. �

Now, let us turn to the case of projective quantales. Recall that the following definition
is equivalent with the usual one (see [12]).

DEFINITION 4.1.4. Let K be an algebraic category. An object P from K is said to be
projective if for any objects Q,R from K, a surjective morphism f :Q → R and any
morphism g :P → R there exists a morphism h :P → Q that satisfies f ◦ h = g.

Q
f

R

P

h g

An object Q from K is called a retract of an object R from K if there exist morphisms
u :Q → R and v :R → Q such that v ◦ u = idQ.

Clearly, u is an injection and v is a surjection.

The following is a well-known stuff from category theory (see e.g. [12]).

THEOREM 4.1.5. Let K be an algebraic category. Then

1. Every free object is projective.
2. A retract of a projective object is also projective.
3. A projective object is a retract of a free object.
4. Let Pi , i ∈ I , be projective. Then

∑
i∈I Pi is projective, too.

Therefore, projective quantales are exactly the retracts of free objects.
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To establish a description of projective quantales we need the following definition.

DEFINITION 4.1.6. A sup-lattice L is said to be completely distributive (shortly CDL) if
any a ∈ L can be expressed as a = ∨{x: x ≪ a} where x ≪ a iff a �

∨
B ⇒ ∃b ∈

B : x � b for any subset B ⊆ L. In that case we say that x is completely below a.

DEFINITION 4.1.7. A quantale Q is called a 2-stable CDL if it has the following proper-
ties:

1. Q is a CDL.
2. a ≪ b, c ≪ d ⇒ ac ≪ bd .
3. a ≪ bc ⇒ ∃b′, c′ ∈ Q, b′ ≪ b, c′ ≪ c such that a = b′c′.

Q is called a weakly 2-stable CDL if conditions 1 and 2 hold and the condition 3 is weak-
ened to:

4. a ≪ bc ⇒ ∃b′, c′ ∈ Q, b′ ≪ b, c′ ≪ c such that a � b′c′.
Note that the condition 4 in the definition of a weakly 2-stable CDL is superfluous – it

clearly follows from the condition 1 (a ≪ bc =∨{b′c′: b′ ≪ b, c′ ≪ c}).

Li Yong-ming, Zhou Meng and Li Zhi-hui in 2002 in [35] asked the following question:
is there a weakly 2-stable CDL which is not a 2-stable CDL? The answer is surprisingly
easy.

EXAMPLE 4.1.8. Let P3 be the chain {0 < a < 1}. Define a multiplication on P3 as
follows:

· 0 a 1
0 0 0 0
a 0 0 0
1 0 0 1

P3 is a weakly 2-stable CDL, P3 is not 2-stable since a ≪ 1 · 1 but a cannot be a product
of two elements.

In fact, one has the following proposition that disproves the second part of the Theorem 1
in [35].

PROPOSITION 4.1.9. There is a finite 2-stable CDL that is not projective.

PROOF. Let us take the two-point Boolean algebra 2 and the free quantale P({a}+) over a
one element set. Clearly, there is a surjective quantale morphism f :P({a}+) → 2 defined
by 0 �→ 0, {a} �→ 1.

Let us assume that 2 is projective. Then there is a quantale morphism h : 2 → P({a}+)

such that the following diagram commutes:

P
({a}+) f

2

2

h id2
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Consequently, h(1) = h(1·1) = h(1)h(1), i.e. h(1) is an idempotent from P({a}+). But the
only idempotent from P({a}+) is the bottom element. Therefore 1 = f ◦h(1) = f (0) = 0,
a contradiction. �

Now consider a quantale Q and the free quantale P(Q+) over Q together with the
inclusion map ϕ :Q → P(Q+). Take a map idQ: by the definition of a free quantale there
exists a unique morphism σ :P(Q+) → Q such that σ ◦ ϕ = idQ. The map defined as
σ(A) = ∨

Q{a1 · · · · · an: a1 . . . an = a ∈ A} is a quantale morphism and satisfies this
condition.

PROPOSITION 4.1.10. A quantale Q is projective iff there exists a morphism h :Q →
P(Q+) such that σ ◦ h = idQ.

PROOF. Since σ ◦ ϕ = idQ, σ is a surjection. Then, by the projectivity of Q, such a
morphism h :Q → P(Q) satisfying the proposition exists.

P
(
Q+) σ

Q

Q

h idQ

The converse implication follows from 4.1.5. Namely P(Q+) is a free quantale and Q

is a retract of P(Q+). �

Note that a retract of a weakly 2-stable CDL is again a weakly 2-stable CDL (this can
be easily verified or it follows directly from Example 4.2.7).

LEMMA 4.1.11. The free quantale P(X+) is a 2-stable CDL.

PROOF. Since P(X+) is a power set (hence every A ∈ P(X+) can be expressed as a union
of singletons that are certainly completely below A), it is a CDL.

From ∅ �= A ≪ B it follows that A = {b} for some b ∈ B, so A ≪ B, C ≪ D,
A,C �= ∅ ⇒ AC = {b}{d} = {bd} ≪ BD. The cases A = ∅ or C = ∅ obviously hold.

If ∅ �= A ≪ BC ⇐⇒ A = {bc} ⊆ BC ⇐⇒ A = B ′C′ where B ′ ≪ B and
C′ ≪ C. Again, when A = ∅, A = ∅ · ∅ and satisfies the condition. �

4.2. Projective quantales: a general view

Specifically, the setting here is the category OSgr of partially ordered semigroups in which
we consider subcategories K containing the category Quant of quantales reflectively, sub-
ject to a very simple natural condition. The projectivity in question is then taken relative
to the surjective quantale morphisms h :L → M for which the right adjoint h9 :M → L

belongs to K, referred to as K-flat projectivity introduced by Banaschewski [6] for frames.
The analog of the condition postulated by Banaschewski for frames, for the subcategory

K of OSgr, besides the assumption that Quant is reflective in K, is as follows:
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(C) For any ϕ :A → L in K where L is a quantale and A arbitrary, the corestriction of
ϕ to any subquantale of L containing the image of ϕ also belongs to K.

DEFINITION 4.2.1. We refer to this by saying that K is corestrictive over Quant.

Since K contains the category Quant reflectively we have, for any object A from K, the
universal map in K to quantales ηA :A → FA and, correspondingly, for any quantale L,
the quantale morphism εL :FL → L such that εL ◦ ηL = idL. Further, � stands for the
usual argumentwise partial order of maps between partially ordered sets, which is evidently
preserved by the composition of maps in K.

LEMMA 4.2.2.
1. Each FA is generated by the image of ηA.
2. idFL � ηL ◦ εL for any quantale L.
3. ηA reflects order that is f ◦ ηA � g ◦ ηA implies f � g for any quantale morphisms

f, g :FA → L.
4. For any quantale L, if h :L → FL is a right inverse to εL :FL → L then h ◦ εL �

idFL.

PROOF. 1. Let L ⊆ FA be the subquantale generated by Im(ηA), let ϕ :A → L be the
corresponding corestriction of ηA :A → FA, and i :L → FA be the identical subquantale
embedding. Then by (C) we have a quantale morphism h :FA → L such that h ◦ ηA = ϕ,
hence i ◦ h ◦ ηA = ηA, and let therefore i ◦ h = idFA by the universality property of ηA. It
follows that i is onto, showing L = FA.

2. Recall that by 1 each b ∈ FL is the join of all ηL(a) � b because ηL is a semigroup
morphism. Now, for any such a ∈ L,

ηL(a) = ηL ◦ (εL ◦ ηL)(a) = (ηL ◦ εL) ◦ ηL(a) � (ηL ◦ εL)(b)

since εL ◦ ηL = idL. Hence b � (ηL ◦ εL)(b).
3. Let f ◦ ηA � g ◦ ηA. Then, for all a ∈ A, we have f (ηA(a)) � g(ηA(a)) hence

f (b) � g(b) for any b ∈ FA.
4. If εL ◦ h = idL then we have that h = idFL ◦ h � (ηL ◦ εL) ◦ h = ηL ◦ (εL ◦ h) = ηL

by 2 and consequently

(h ◦ εL) ◦ ηL = h ◦ idL = h � ηL = idFL ◦ ηL

which implies the desired result by 3 since both h◦εL and idFL are quantale morphisms. �

REMARK 4.2.3. As in [6], we have that εL ◦ ηL = idL and 2 from Lemma 4.2.2 imply
that ηL is right adjoint to εL. Similarly, if εL ◦ h = idL for some h :L → FL then h is left
adjoint to εL by 4 from Lemma 4.2.2 and consequently unique.
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LEMMA 4.2.4. Let A,B be in K, let g :A → B be a K-morphism, let K,L be quantales,
and let f :K → L be a quantale morphism. Then the following diagrams

A

g

ηA
FA

Fg

B
ηB

FB

and

FK

Ff

εK
K

f

FL
εL

L

commute in their respective categories. Moreover, F preserves the partial order of maps
and FηA is left adjoint to εFA in Quant.

PROOF. The commutativity of the first diagram follows from the fact that quantales are
contained in K reflectively. For the second diagram, it is enough to check that εL ◦ Ff ◦
ηK = f ◦εK ◦ηK . By the naturality of the left side and the fact that εK ◦ηK = idK we have
that f = idL ◦f = εL ◦ηL ◦f = εL ◦Ff ◦ηK and similarly f ◦ εK ◦ηK = f ◦ idK = f .
Hence εL ◦ Ff = f ◦ εK .

For the last assertion, if ϕ,ψ :A → B are morphisms in K such that ϕ � ψ then by
naturality the following diagrams commute:

A

ϕ

ηA
FA

Fϕ

B
ηB

FB

A

ψ

ηA
FA

Fψ

B
ηB

FB

Hence (Fϕ)◦ηA = ηB◦ϕ � ηB◦ψ = (Fψ)◦ηA. Therefore Fϕ � Fψ by Lemma 4.2.2,3.
To check that FηA is left adjoint to εFA let us consider the following commutative

diagram:

A

ηA

ηA
FA

FηA

FA
ηFA

FFA
εFA

FA

Then idFA ◦ ηA = εFA ◦ ηFA ◦ ηA = εFA ◦ FηA ◦ ηA. Hence idFA = εFA ◦ FηA. The
assertion then follows from Remark 4.2.3. �

The reflectiveness of Quant in K determines a binary relation on each quantale L as
follows:

x * a iff a � εL(b) implies ηL(x) � b, for all b ∈ FL.

LEMMA 4.2.5. Let K,L be quantales. Then, for all x, y, u, v ∈ K and for any quantale
morphism f :K → L, we have:

1. x � y * u � v implies x * v.
2. If f is an isomorphism of quantales then x * u if and only if f (x) * f (u).

PROOF. 1. Let x � y * u � v. Assume that, for some b ∈ FK , v � εK(b). Hence
u � εK(b), i.e. ηK(x) � ηK(y) � b.
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2. We have the following commutative diagram:

FK

Ff

εK
K

f

ηK
FK

Ff

FL
εL

L
ηL

FL

Let f (u) � εL(b) for some b ∈ FL. Evidently, F(f ) and F(f−1) are mutually inverse
isomorphisms of quantales. Hence εL(b) = f ◦ εK ◦F(f )−1(b), i.e. u � εK ◦F(f )−1(b).
This implies that ηK(x) � F(f )−1(b), i.e. ηL ◦ f (x) = F(f ) ◦ ηK(x) � b. �

Now we may go on our result concerning K-flat projectivity (for frames see again [6]).

THEOREM 4.2.6. The following are equivalent for any quantale L.
1. L is K-flat projective.
2. εL has a right inverse.
3. L is a retract of some FA, A ∈ K.
4. For each a ∈ L, a =∨{x ∈ L | x * a}; further x · y * a · b whenever x * a and y * b.

PROOF. 1 ⇒ 2. By Remark 4.2.3, (εL)9 = ηL which is in K by its definition, and (εL) is
onto since εL ◦ ηL = idL. Hence, if L is K-flat projective we can find h :L → FL such
that εL ◦ h = idL.

2 ⇒ 3. Evident.
3 ⇒ 1. Since a retract of a K-flat projective object is K-flat projective it is enough to

show that each FA is K-flat projective. Let us consider the diagram

A

k9◦f ◦ηA

ηA
FA

g
f

L
k

M

with quantale morphisms k and f , k onto and K-flat and f arbitrary.
Then k9 ◦ f ◦ ηA ∈ K and hence we have a quantale morphism g :FA → L such that

g ◦ ηA = k9 ◦ f ◦ ηA. Hence we have that k ◦ g ◦ ηA = k ◦ k9 ◦ f ◦ ηA = f ◦ ηA (k is onto
and therefore k ◦ k9 = idM ). This yields k ◦ g = f by Lemma 4.2.2(3).

2 ⇒ 4. Let us show that x * a iff ηL(x) � hL(a) for the given hL :L → FL such that
εL◦hL = idL. The direction (⇒) is immediate since a = εL(hL(a)) and putting b = hL(a)

we have that ηL(x) � hL(a). The other direction (⇐) follows from Lemma 4.2.2(4): if
a � εL(b) then we have that hL(a) � (hL ◦ εL)(b) � b, and hence ηL(x) � hL(a) then
implies ηL(x) � b.

Now, by Lemma 4.2.2(1), hL(a) = ∨{ηL(x): ηL(x) � hL(a)} and therefore, we have
that

a = εL
(
h(a)

) = εL

(∨{
ηL(x): ηL(x) � hL(a)

})
=
∨{

εL
(
ηL(x)

)
: x * a

} =
∨

{x ∈ L: x * a}.
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Further, if x * a and y * b then ηL(x · y) = ηL(x) · ηL(y) � hL(a) · hL(b) = hL(a · b)
so that x · y * a · b.

4 ⇒ 2. Let hL :L → FL be the set map defined by hL(a) = ∨{ηL(x): x * a}. Then
we have that εL ◦ hL = idL by the first part of 4 while

(hL ◦ εL)(b) =
∨{

ηL(x): x * εL(b)
}

� b

since x * εL(b) implies ηL(x) � b, and hence hL ◦ εL � idFL.
Therefore, we have that hL is a left adjoint to εL, and as such it preserves arbitrary joins.

Further, for any a, b ∈ L,

hL(a) · hL(b) =
∨{

ηL(x): x * a
} ·
∨{

ηL(y): y * b
}

=
∨{

ηL(x) · ηL(y): x * a, y * b
}

�
∨{

ηL(x · y): x · y * a · b} �
∨{

ηL(z): z * a · b}
= hL(a · b).

To check the converse inequality, we have

hL(a · b) = h
(
εL
(
hL(a)

) · εL
(
hL(b)

)) = hL

(
εL
(
hL(a) · hL(b)

))
= (hL ◦ εL)

(
hL(a) · hL(b)

)
� idFL

(
hL(a) · hL(b)

) = hL(a) · hL(b).

All in all, this shows that hL is a quantale morphism, right inverse to εL. �

EXAMPLE 4.2.7. Let K = OSgr. Then the reflection into quantales goes the following
way. For any partially ordered semigroup A, let D(A) denote the down-set lattice of A.
D(A) is a sup-lattice with respect to arbitrary unions. Multiplication on D(A) is defined as
follows:

X · Y = ↓{xy: x ∈ X, y ∈ Y } = {z ∈ A: ∃x ∈ X, ∃y ∈ Y such that z � xy}.
Then D(A) becomes a quantale. Moreover, for any morphism f :A → B of partially

ordered semigroups we have an induced quantale morphism D(f ) :D(A) → D(B) defined
by the prescription f (U) = ↓{f (x): x ∈ U}. From Lemma 4 in [35] we know that D is
the reflection from OSgr into Quant. Moreover, the adjunction map εL :D(L) → L, for
any quantale L, is the join map and for any partially ordered semigroup A, x ∈ A, and any
downset U , ηA(x) = ↓ x � U iff x ∈ U , and hence the relation * now has the following
concrete form: x * a iff a �

∨
U implies x ∈ U , for all U ∈ D(L). Therefore * =≪ and

OSgr-flat projective quantales are exactly weakly 2-stable CDLs, a result from [35].

COROLLARY 4.2.8. If Q is a projective quantale, it is a weakly 2-stable CDL.

PROOF. From Example 4.2.7 we know that any OSgr-flat projective quantale is weakly
2-stable CDL and clearly any projective quantale is OSgr-flat projective. �
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4.3. Notes on Section 4

The study of injectivity and projectivity in quantales was initiated by Li Yongming, Zhou
Meng and Li Zhihui [35]. They proved Lemma 4.1.2 that every injective quantale is unital
and derived from it that there are no non-trivial injective quantales (Theorem 4.1.3).

They also attempted to characterize projective quantales. They introduced the notions
of a (weakly) 2-stable CDL and proved that any free quantale is a 2-stable CDL (Theo-
rem 4.1.11) and that any projective quantale is a weakly 2-stable CDL (Corollary 4.2.8).
Unfortunately, there is an unreparable error in their proof that any 2-stable CDL is projec-
tive (see our counterexample 4.1.9).

The idea of describing general forms of projectivity in topological spaces and locales
comes from the work of M.H. Escardó on properly injective spaces and injective locales
over perfect embeddings [15,16]. This idea was developed by B. Banaschewski to the no-
tion of K-flat projectivity in frames.

The second author generalized Banaschewski’s work in the manuscript [60]. The results
in [35] concerning weakly 2-stable CDLs are then immediate corollaries of this general-
ization.

In the text we have cited only a few papers. Therefore it may be useful to specify suitable
references for various relevant topics as in done below.
- Categorical and algebraic questions: [2,3,7,12,36,37].
- General lattice theory: [8,10,21,66,80].
- Logic of quantum mechanics: [9,25,64].
- Frames (basic references): [22,65,83].
- Quantales (basic references): [23,44,56,67,75,76].
- C∗-algebras (basic references): [4,17,24,61].
- Frames (other references): [6,15,16].
- Quantales (initial sources): [14,28,38,39,84–86].
- Quantales (simple quantales and spatiality): [29–31,51,54,58,62,78].
- Quantale modules and quantaloids: [1,19,20,48,53,55,57,59,79,81].
- Quantales and C∗-algebras: [11,32,33,40,42,43,63,77].
- Quantales (categorical questions): [35,46,60].
- Quantales (linear and other substructural logics, computer science): [18,26,27,34,47,68,

69,82,87].
- Quantales (quantum logic): [5,13,71–74].
- Quantales (separation axioms): [49,50].
- Quantales (other references): [41,45,52,70].
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1. Renormalisation in physics

Systems in interaction are most common in physics. When parameters (such as mass, elec-
tric charge, acceleration, etc.) characterising the system are considered, it is crucial to dis-
tinguish between the bare parameters, which are the values they would take if the inter-
action were switched off, and the actually observed parameters. Renormalisation can be
defined as any procedure able to transform the bare parameters into the actually observed
ones (i.e. with interaction taken into account), which will therefore be called renormalised.
Consider (from [CK1]) the following example: the initial acceleration of a spherical bal-
loon is given by

(1)g = m0 − M

m0 + M
2

g0

where g0 � 9.81 m s−2 is the gravity acceleration at the surface of the Earth, m0 is the
mass of the balloon, and M is the mass of the volume of the air occupied by it. Note that
this acceleration decreases from g0 to −2g0 when the interaction (represented here by the
air mass M) increases from 0 to +∞. The total force F = mg acting on the balloon is the
sum of the gravity force F0 = m0g0 and Archimedes’ force −Mg0. The bare parameters
(i.e. in the absence of air) are thus m0, F0, g0 (mass, force and acceleration, respectively),
whereas the renormalised parameters are:

(2)m = m0 + M

2
, F =

(
1 − M

m0

)
F0, g = m0 − M

m0 + M
2

g0.

In perturbative quantum field theory an extra difficulty arises: the bare parameters are
usually infinite, reflecting the fact that the idealised “isolated system” definitely cannot ex-
ist, and in particular cannot be observed. Typically bare parameters are given by divergent
integrals1 such as

(3)
∫

R4

1

1 + ‖p‖2
dp.

One must then subtract another infinite quantity to the bare parameter to recover the
renormalised parameter, which is finite, as this one can be actually measured! Such a
process takes place in two steps:

(1) a regularisation procedure, which replaces the bare infinite parameter by a function
of one variable z which tends to infinity when z tends to some z0.

(2) the renormalisation procedure itself, of combinatorial nature, which extracts an ap-
propriate finite part from the function above when z tends to z0. When this procedure
can be carried out, the theory is called renormalisable.

There is usually considerable freedom in the choice of a regularisation procedure. Let
us mention, among many others, the cut-off regularisation, which amounts to consider in-
tegrals like (3) over a ball of radius z (with z0 = +∞), and dimensional regularisation
which consists, roughly speaking, in “integrating over a space of complex dimension z”,

1 To be precise, the physical parameters of interest are given by a series each term of which is a divergent
integral. We do not approach here the question of convergence of this series once each term has been renormalised.
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with z0 = d , the actual space dimension of the physical situation (for example d = 4 for
Minkowski space–time). In this case the function which appears is meromorphic in z with a
pole at z0 [C,HV,Sp]. The “complex-dimensional space” involved has been recently given a
rigorous meaning in terms of type II spectral triples by A. Connes and M. Marcolli [CM2].

The renormalisation procedure is an algorithm of combinatorial nature, the BPHZ al-
gorithm (after N. Bogoliubov, O. Parasiuk, K. Hepp and W. Zimmermann [BP,H,Z]). The
combinatorial objects involved are Feynman graphs: to each graph2 corresponds (by Feyn-
man rules) a quantity to be renormalised, and an integer (the loop number) is associated
to the graph. The initial data for this algorithm are determined by the choice of a renor-
malisation scheme, which consists in choosing the finite part for the “simplest” quantities,
corresponding to graphs with loop number L = 1. For example we can simply remove
the pole part at z0 of a meromorphic function and then consider the value at z0. This is the
minimal subtraction scheme. The renormalisation of the “more complicated” quantities are
then given recursively with respect to the loop number.

D. Kreimer discovered in the late nineties [K1,CK,CK1,CK2], that the BPHZ recursion
procedure involved is based on a Hopf algebra structure on Feynman graphs. This major
breakthrough has been followed by important developments both in physics and in mathe-
matics: on the one hand Hopf algebras reveal themselves as a prominent tool in renormal-
isation as well as in other aspects of quantum field theory [Br,BS], and on the other hand
renormalisation techniques used for a long time by physicists can now be given a meaning
in the abstract context of connected filtered or graded Hopf algebras, with also purely math-
ematical applications, e.g. in combinatorics [ABS,EG1,EG2,EGK1,EGK2,EGGV,EGK3,
EGM,EM1,FG,JR] or in number theory [GZ,MP2].

2. Background material on algebras and coalgebras

We recall some well-known definitions and facts about algebras, modules, coalgebras and
comodules (see e.g. [J,Sw]), leading to the coradical filtration of a coalgebra.

2.1. Algebras and modules

This paragraph, devoted to the Jacobson radical of an algebra, is largely borrowed from [J].
The main result is Corollary 3 which states that the Jacobson radical of a finite-dimensional
algebra is the intersection of its maximal two-sided ideals.

2.1.1. Basic definitions A k-algebra is by definition a k-vector space A together with a
bilinear map m :A ⊗ A → A which is associative. The associativity is expressed by the
commutativity of the following diagram:

A ⊗ A ⊗ A

I⊗m

m⊗I
A ⊗ A

m

A ⊗ A
m

A

2 Together with external momenta, cf. Section 7.5 below.
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The algebra A is unital if moreover there is a unit 1 in it. This is expressed by the commu-
tativity of the following diagram:

k ⊗ A
u⊗I

∼
A ⊗ A

m

A ⊗ k
I⊗u

∼

A

where u is the map from k to A defined by u(λ) = λ1. The algebra A is commutative
if m ◦ τ = m, where τ :A ⊗ A → A ⊗ A is the flip, defined by τ(a ⊗ b) = b ⊗ a.
A subspace J ⊂ A is called a subalgebra (resp. a left ideal, right ideal, two-sided ideal) of
A if m(J ⊗ J ) (resp. m(J ⊗ A), m(A ⊗ J ), m(J ⊗ A + A ⊗ J ) is included in J .

2.1.2. Algebras and tensor product To any vector space V we can associate its tensor
algebra T (V ). As a vector space it is defined by

T (V ) =
⊕
k�0

V ⊗k,

with V ⊗0 = k and V ⊗k+1 := V ⊗ V ⊗k . The product is given by the concatenation:

m(v1 ⊗ · · · ⊗ vp, vp+1 ⊗ · · · ⊗ vp+q) = v1 ⊗ · · · ⊗ vp+q .

The embedding of k = V ⊗0 into T (V ) gives the unit map u. The tensor algebra T (V ) is
also called the free (unital) algebra generated by V . This algebra is characterised by the
following universal property: for any linear map ϕ from V to an algebra A there is a unique
algebra morphism ϕ̃ from T (V ) to A extending ϕ.

Let A and B be unital k-algebras. We put a unital algebra structure on A ⊗ B in the
following way:

(a1 ⊗ b1).(a2 ⊗ b2) = a1a2 ⊗ b1b2.

The unit element 1A⊗B is given by 1A ⊗ 1B , and the associativity is clear. This multiplica-
tion is given by

mA⊗B = (mA ⊗ mB) ◦ τ23,

where τ23 : A ⊗ B ⊗ A ⊗ B → A ⊗ A ⊗ B ⊗ B is defined by the flip of the two middle
factors:

τ23(a1 ⊗ b1 ⊗ a2 ⊗ b2) = a1 ⊗ a2 ⊗ b1 ⊗ b2.

2.1.3. Modules Let A be any unital algebra. A left A-module is a k-vector space M to-
gether with a map α : A ⊗ M → M such that the following diagrams commute:

A ⊗ A ⊗ M

I⊗α

m⊗I
A ⊗ M

α

A ⊗ M
α

M

k ⊗ M
u⊗I

∼
A ⊗ M

α

A
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The map α is called the action of the algebra A on M . For any a ∈ A and m ∈ M we
usually denote by a.m the action α(a ⊗m) of a on m. The two diagrams above express the
identities:

(a.b).m = a.(b.m), 1.m = m

for any a, b ∈ A and m ∈ M . The right A-module are defined similarly, replacing A ⊗ M

with M ⊗ A (details are left to the reader). A linear subspace N of a left A-module M

is called a submodule if α(A ⊗ N) ⊂ N . The intersection of all left submodules of M

containing a subset P is called the left submodule generated by P . A left module M is
simple if it does not contain any submodule different from {0} or M itself. If a left module
M can be written as a direct sum of simple modules, M is said to be semi-simple.

PROPOSITION 1. For any left maximal ideal J of an algebra A the quotient A/J is a
simple left A-module, and conversely any simple left A-module is isomorphic to a simple
left A-module of this form.

PROOF. The first assertion is immediate. Conversely, let M a simple left module and let
m ∈ M − {0}. Let Jm be the annihilator of m. This is a left ideal of A, and by simplicity of
M the map:

φm : A → M

a �→ a.m

gives rise to an morphism of left A-modules from A/Jm onto M . It is injective by def-
inition of Jm, and surjectivity comes from the simplicity of the module M . So φm is an
isomorphism. The left ideal Jm is maximal, which proves the proposition. �

Now let M be an A-module. We denote by A′
M the algebra of endomorphisms of M as an

A-module, and we denote by A′′
M the algebra of endomorphisms of M as an A′

M -module.
Clearly any a ∈ A gives rise to an element of A′′

M . Following N. Jacobson [J, Chapter 4.3]
we shall give a proof of an important density theorem:

THEOREM 1. Let M be a semi-simple A-module, and let x1, . . . , xn be a finite collection of
elements of M . Then for any a′′ ∈ A′′

M there exists an element a ∈ A such that axi = a′′xi
for any i = 1, . . . , n.

PROOF. First notice that any A-submodule N of M is an A′′
M -submodule. To see this

write (thanks to semi-simplicity) M = N ⊕ T where T is another A-submodule of M .
The projection e on N with respect to this decomposition is an element of A′

M . For any
a′′ ∈ A′′

M we have then:

a′′(N) = a′′ ◦ e(M) = e ◦ a′′(M) ⊂ N.

Consider then for any fixed positive integer n the semi-simple module Mn, the direct sum
of n copies of M . The algebra A′

Mn coincides with the algebra of n × n matrices over
A′

M , and the diagonal matrices over A′′
M form a subalgebra of A′′

Mn , and thus realise an
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embedding of A′′
M into A′′

Mn . Now let x = (x1, . . . , xn) ∈ Mn. Then N = A.x is an A-
submodule of Mn. So it is an A′′

Mn-submodule, hence an A′′
M -submodule via the diagonal

embedding above. Then for any a′′ ∈ A′′
M there exists a ∈ A such that a′′x = ax, which

proves the theorem. �

COROLLARY 1. On a semi-simple finite-dimensional module M the natural map from A

into A′′
M is surjective.

2.1.4. The Jacobson radical Let A be a k-algebra. The radical radM of a left module
is by definition the intersection of all maximal submodules of M . When the module M

is the algebra A itself, the radical radA is the intersection of all maximal left ideals, and
is called the Jacobson radical of the algebra A. An alternative definition of the Jacobson
radical is the following: a primitive ideal is the annihilator of a simple module. In view of
Proposition 1, any primitive ideal is the annihilator of A/J where J is a maximal left ideal.
Of course a primitive ideal is two-sided.

LEMMA 1. Any primitive ideal is an intersection of maximal left ideals.

PROOF. Any primitive ideal J is by definition the annihilator of a simple module M . The
annihilator Jm of any m ∈ M −{0} is then a maximal left ideal containing J , and it is clear
that we have:

J =
⋂

m∈M−{0}
Jm.

�

PROPOSITION 2. The Jacobson radical of A is the intersection of its primitive ideals.

PROOF. Let us call P the intersection of all primitive ideals of A. By Lemma 1 and Propo-
sition 1, P is indeed the intersection of all maximal left ideals. �

LEMMA 2 (Nakayama’s lemma). Let M a finitely generated A-module, and let N,L two
submodules of M such that M = L + N and N ⊂ radM . Then L = M .

PROOF. Suppose that L is strictly contained in M . As M is finitely generated there exists
a maximal nontrivial submodule L̃ containing L. It contains N as well by definition of
radM . Then L̃ contains L + N , so L + N cannot be equal to M . �

COROLLARY 2. The Jacobson radical of a finite-dimensional algebra is nilpotent.

PROOF. Let A a finite-dimensional algebra with radical R. Observe first that for any A-
module M we have the inclusion:

R.M ⊂ radM.
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Indeed any maximal submodule N of M contains J.M where J is a primitive ideal, namely
the annihilator of M/N . Hence any maximal submodule of M contains R.M . Suppose
now that A is finite-dimensional and that J is an ideal of A such that R.J = J . A fortiori
rad J = J . Applying Nakayama’s Lemma 2 to M = J and L = {0} we get J = {0}.
We immediately deduce from this fact that for any positive integer n, Rn either contains
strictly Rn+1 or is equal to {0}. As A is finite-dimensional Rn is indeed equal to {0} for
some n. �

REMARK 1. Although the definition of the Jacobson ideal is not symmetric (because we
used left ideals and left modules), the Jacobson ideal itself is a symmetric notion: in other
words the Jacobson radicals of algebras A and Aopp coincide. In order to see this one can
show that RadA is the biggest two-sided ideal J such that 1 −x is invertible for any x ∈ J

[B, §6.3]. This definition is indeed symmetric.

2.1.5. Maximal two-sided ideals It is easily seen that any maximal two-sided ideal in
an algebra A is primitive. The converse is false in general: for example, in the enveloping
algebra of the non-trivial two-dimensional Lie algebra, the ideal {0} is primitive but not
maximal [Di]. However we have the following result.

PROPOSITION 3. Any finite-codimensional primitive ideal is maximal.

Before giving a proof of this result, we need the following definitions: an algebra A is
simple if it does not contain any proper two-sided ideal. A division algebra is an algebra
such that any nonzero element is inversible.

LEMMA 3. Let D be a division algebra. Then the algebra Mn(D) of square n×n matrices
over D is simple.

PROOF. Let us consider for any i, j ∈ {1, . . . , n} the elementary matrix eij with vanishing
entries except the one on the i-th row and j -th column which is equal to the unit of D.
Denote by Ii the left ideal of Mn(D) consisting of matrices such that all columns vanish
except the i-th column. These left ideals are all simple and isomorphic as Mn(D)-modules.
Now let I a nonzero two-sided ideal of Mn(D). Let X a nonzero element of I , and xkl a
nonzero entry of the matrix X. Then for any i ∈ {0, . . . , n} the product eikX belongs to
Ii ∩ I and is different from 0. Then Ii ∩ I �= {0}. As Ii is simple as a left module for each
i that means that I contains all the left ideals Ii , and hence I = Mn(D). �

There is a converse to this result, namely any simple Artinian algebra (a fortiori any sim-
ple finite-dimensional algebra) is isomorphic to Mn(D) where D is a division algebra. This
is a particular case of the Wedderburn–Artin theorem, which gives a complete description
of semi-simple algebras [DF, Chapter 1], [DK, Chapter 2].

PROOF OF PROPOSITION 3. A finite-dimensional primitive ideal I is the annihilator of a
simple finite-dimensional module M . By simplicity of M the algebra D = A′

M is a divi-
sion algebra (Schur’s lemma). The action of A on M yields (thanks to Corollary 1) a sur-
jective algebra morphism from A onto A′′

M , and hence an algebra isomorphism from A/J
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onto A′′
M . But A′′

M is a matrix algebra over D, and then is simple (according to Lemma 3).
So A/J is a simple algebra, which amounts to say that J is maximal as a two-sided ideal. �

COROLLARY 3. In a finite-dimensional algebra, primitive ideals and maximal two-sided
ideals coincide. In particular the Jacobson radical is the intersection of all maximal two-
sided ideals in this case.

2.2. Coalgebras and comodules; the coradical filtration

This section is mostly borrowed from M.E. Sweedler’s book [Sw], particularly Chapters 1,
2, 8 and 9. Another good reference is [Ab].

2.2.1. Coalgebras Coalgebras are objects which are somehow dual to algebras: the ax-
ioms for coalgebras are derived from axioms for algebras by reversing the arrows of the
corresponding diagrams: a k-coalgebra is by definition a k-vector space C together with a
bilinear map Δ :C → C ⊗C which is co-associative. The co-associativity is expressed by
the commutativity of the following diagram:

C ⊗ C ⊗ C C ⊗ C
Δ⊗I

C ⊗ C

I⊗Δ

C
Δ

Δ

A coalgebra C is co-unital if moreover there is a co-unit ε such that the following diagram
commutes:

k ⊗ C C ⊗ C
ε⊗I I⊗ε

C ⊗ k

C

Δ
∼ ∼

A subspace J ⊂ C is called a subcoalgebra (resp. a left coideal, right coideal, two-sided
coideal) of C if Δ(J ) is contained in J ⊗ J (resp. C ⊗ J , J ⊗ C, J ⊗ C + C ⊗ J ). The
duality alluded to above can be made more precise:

PROPOSITION 4.
(i) The linear dual C∗ of a co-unital coalgebra C is a unital algebra, with product

(resp. unit map) the transpose of the coproduct (resp. of the co-unity).
(ii) Let J a linear subspace of C. Denote by J⊥ the orthogonal of J in C∗. Then:

• J is a two-sided coideal if and only if J⊥ is a subalgebra of C∗.
• J is a left coideal if and only if J⊥ is a left ideal of C∗.
• J is a right coideal if and only if J⊥ is a right ideal of C∗.
• J is a subcoalgebra if and only if J⊥ is a two-sided ideal of C∗.

PROOF. For any subspace K of C∗ we shall denote by K⊥ the subspace of those elements
of C on which any element of K vanishes. It coincides with the intersection of the orthog-
onal of K with C, via the canonical embedding C ↪→ C∗∗. So we have for any linear
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subspaces J ⊂ C and K ⊂ C∗:

J⊥⊥ = J, K⊥⊥ ⊃ K.

Suppose that J is a two-sided coideal. Take any ξ, η in J⊥. For any x ∈ J we have:

〈ξη, x〉 = 〈ξ ⊗ η,Δx〉 = 0,

as Δx ⊂ J ⊗ C + C ⊗ J . So J⊥ is a subalgebra of C∗. Conversely if J⊥ is a subalgebra
then:

ΔJ ⊂ (J⊥ ⊗ J⊥)⊥ = J ⊗ C + C ⊗ J,

which proves the first assertion. We leave it to the reader as an exercise to prove the three
other assertions along the same lines. �

Dually we have the following:

PROPOSITION 5. Let K a linear subspace of C∗. Then:
• K⊥ is a two-sided coideal if and only if K is a subalgebra of C∗.
• K⊥ is a left coideal if and only if K is a left ideal of C∗.
• K⊥ is a right coideal if and only if K is a right ideal of C∗.
• K⊥ is a subcoalgebra if and only if K is a two-sided ideal of C∗.

PROOF. The linear dual (C ⊗ C)∗ naturally contains the tensor product C∗ ⊗ C∗. Take as
a multiplication the restriction of tΔ to C∗ ⊗ C∗:

m = tΔ :C∗ ⊗ C∗ → C∗,
and put u = tε : k → C∗. It is easily seen, by just reverting the arrows of the corresponding
diagrams, that coassociativity of Δ implies associativity of m, and that the co-unit property
for ε implies that u is a unit. �

The coalgebra C is cocommutative if τ ◦ Δ = Δ, where τ :C ⊗ C → C ⊗ C is the flip.
It will be convenient to use Sweedler’s notation:

Δx =
∑
(x)

x1 ⊗ x2.

Cocommutativity expresses itself then as∑
(x)

x1 ⊗ x2 =
∑
(x)

x2 ⊗ x1.

Coassociativity reads in Sweedler’s notation:

(Δ ⊗ I ) ◦ Δ(x) =
∑
(x)

x1:1 ⊗ x1:2 ⊗ x2

∑
(x)

x1 ⊗ x2:1 ⊗ x2:2 = (I ⊗ Δ) ◦ Δ(x).

We shall sometimes write the iterated coproduct as∑
(x)

x1 ⊗ x2 ⊗ x3.
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Sometimes we shall even mix the two ways of using Sweedler’s notation for the iterated
coproduct, in case we want to keep partially track of how we have constructed it [DNR].
For example,

Δ3(x) = (I ⊗ Δ ⊗ I ) ◦ (Δ ⊗ I ) ◦ Δ(x)

= (I ⊗ Δ ⊗ I )

(∑
(x)

x1 ⊗ x2 ⊗ x3

)
=
∑
(x)

x1 ⊗ x2:1 ⊗ x2:2 ⊗ x3.

To any vector space V we can associate its tensor coalgebra T c(V ). It is isomorphic to
T (V ) as a vector space. The coproduct is given by the deconcatenation or cuts:

Δ(v1 ⊗ · · · ⊗ vn) =
n∑

p=0

(v1 ⊗ · · · ⊗ vp) ⊗ (vp+1 ⊗ · · · ⊗ vn).

The co-unit is given by the natural projection of T c(V ) onto k.
Let C and D be unital k-coalgebras. We put a co-unital coalgebra structure on C ⊗D in

the following way: the comultiplication is given by

ΔC⊗D = τ23 ◦ (ΔC ⊗ ΔD),

where τ23 is again the flip of the two middle factors, and the co-unity is given by εC⊗D =
εC ⊗ εD .

2.2.2. Comodules Let C be any co-unital coalgebra. A left C-comodule is a k-vector
space M together with a map Φ :M → C⊗M such that the following diagrams commute:

C ⊗ C ⊗ M C ⊗ M
Δ⊗I

C ⊗ M

I⊗Φ

M
Φ

Φ

k ⊗ M C ⊗ M
ε⊗I

C

Φ
∼

The notion of right C-comodule is defined similarly. A linear subspace N of a left C-
comodule M is called a subcomodule if Φ(C) ⊂ C ⊗N . The intersection of all left subco-
modules of M containing a subset P is again a subcomodule, called the left subcomodule
generated by P . It will be convenient to use again Sweedler’s notation:

Φ(m) =
∑
(m)

m1 ⊗ m0,

with m0 ∈ M and m1 ∈ C. The comodule property reads in Sweedler’s notation:

(Φ ⊗ I ) ◦ Φ(m) =
∑
(x)

m1:1 ⊗ m1:2 ⊗ m0

∑
(m)

m1 ⊗ m0:1 ⊗ m0:0

= (I ⊗ Δ) ◦ Φ(m).
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We shall sometimes write the iterated coproduct as:∑
(m)

m1 ⊗ m2 ⊗ m0.

For a right comodule we have a similar behaviour with m0 on the left. The notion of
comodule is dual to the notion of module in the sense that any left (resp. right) C-comodule
M admits a right (resp. left) C∗-module structure. To be precise suppose for the moment
that Φ is any linear map from M to M⊗C, and define αΦ : C∗⊗M → M as the following
composition:

C∗ ⊗ M
I⊗Φ

C∗ ⊗ M ⊗ C
τ⊗I

M ⊗ C∗ ⊗ C
I⊗<-,->

M ⊗ k
∼

M.

Then:

PROPOSITION 6. (M,Φ) is a right (resp. left) C-comodule if and only is (M, αΦ) is a left
(resp. right) C∗-module.

For a proof, see, e.g. Sweedler [Sw, Section 2.1]. Note that the duality property is not
perfect: while the linear dual of a coalgebra is always an algebra, the linear dual of an
algebra is not in general a coalgebra. However the restricted dual A° of an algebra A

is a coalgebra. It is defined as the space of linear forms on A vanishing on some finite-
codimensional ideal. Along the same lines, for a coalgebra C the only left C∗-modules
related to a right C-comodule structure via Proposition 6 are the rational left C∗-modules,
i.e. those left modules such that the linear map:

ρ : M → L(C∗,M)

m �→ (x �→ x.m)

has image included in M ⊗ C via the embedding:

j : M ⊗ C → L(C∗,M)

m ⊗ c �→ (
x �→ 〈x, c〉m),

see [Sw] for details. We come now to the fundamental theorem of comodule structure
theory.

THEOREM 2. Let M be a left comodule over a coalgebra C. For any element m ∈ M the
subcomodule generated by m is finite-dimensional.

PROOF. There is a finite collection (ci)i=1,...,s of linearly independent elements of C and
a collection (mi)i=1,...,s of elements of M such that

Φ(m) =
s∑

i=1

mi ⊗ ci .
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Let N be the linear subspace of M generated by m1, . . . , ms . Let us show that N is a left
subcomodule of M . First note that thanks to the co-unit axiom we have:

m = (I ⊗ ε) ◦ Φ(m) =
s∑

j=1

ε(cj )mj ,

hence m ∈ N . On the other hand, considering the linear forms (fi)i=1,...,s on C such that
fi(cj ) = δ

j
i we have:

Φ(mi) = (I ⊗ I ⊗ fi)
(
Φ(mi) ⊗ ci

)
= (I ⊗ I ⊗ fi)

(
s∑

j=1

Φ(mj ) ⊗ cj

)
= (I ⊗ I ⊗ fi) ◦ (Φ ⊗ I ) ◦ Φ(m)

= (I ⊗ I ⊗ fi) ◦ (I ⊗ Δ) ◦ Φ(m)

=
s∑

j=1

mj ⊗ (I ⊗ fi)(Δcj ),

whence Φ(mi) ∈ N ⊗ C, which proves the theorem. �

COROLLARY 4. Let M be a left comodule over a coalgebra C. Then any left subcomodule
of M generated by a finite set is finite-dimensional.

PROOF. Remark that if P = {m1, . . . , mn}, the left subcomodule generated by P is the
sum of the left comodules generated by the mj ’s, and then apply Theorem 2. �

2.2.3. Structure of coalgebras Let C be a coalgebra. Any intersection of subcoalgebras
is a subcoalgebra. To see this consider any family (Dα)α∈Λ of subcoalgebras of C. Then
I := ∑

α D⊥
α is a two-sided ideal of C∗, as a sum of two-sided ideals. Hence I⊥ is a

subcoalgebra according to Proposition 5. But I⊥ is indeed the intersection of the subcoal-
gebras Dα . In particular, the intersection of all subcoalgebras containing a given subset P
of C will be called the subcoalgebra generated by P . We can now state the fundamental
theorem of coalgebra theory.

THEOREM 3. Let C be a coalgebra. Then the subcoalgebra generated by one single ele-
ment x is finite-dimensional.

PROOF. The coalgebra C is a left comodule over itself. Let N be the left subcomodule
generated by x. According to Theorem 2, N is finite-dimensional. Then N⊥ has finite
codimension, equal to dimN . It is a left ideal thanks to Proposition 4. The quotient space
E = C∗/N⊥ is a finite-dimensional left module over C⊥. Let K be the annihilator of this
left module. As kernel of the associated representation ρ :C∗ → EndE it has clearly finite
codimension, and it is a two-sided ideal.

Now K⊥ is a subcoalgebra according to Proposition 5. Moreover it is finite-dimensional,
as dimK⊥ = codimK⊥⊥ � codimK . Finally K ⊂ N⊥ implies that N⊥⊥ ⊂ K⊥.
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A fortiori N ⊂ K⊥, so x belongs to K⊥. The subcoalgebra generated by x is then included
in the finite-dimensional subcoalgebra K⊥, which proves the theorem. �

A coalgebra C is said to be irreducible if two nonzero subcoalgebras of C have always
nonzero intersection. A simple coalgebra is a coalgebra which does not contain any proper
subcoalgebra. A coalgebra C will be called pointed if any simple subcoalgebra of C is
one-dimensional.

LEMMA 4. Any coalgebra C contains a simple subcoalgebra.

PROOF. According to Theorem 3 we may suppose that C is finite-dimensional, and the
lemma is immediate in this case. �

PROPOSITION 7. A coalgebra C is irreducible if and only if it contains a unique simple
subcoalgebra.

PROOF. Suppose C irreducible, and suppose that D1 and D2 are two simple subcoalge-
bras. The intersection D1 ∩D2 is nonzero, and hence, by simplicity, D1 = D2. Conversely
suppose that E is the only simple subcoalgebra of C, and let D any subcoalgebra. Accord-
ing to Lemma 4 we have E ⊂ D, hence E is included in any intersection of subcoalgebras,
which proves that C is irreducible. �

LEMMA 5. Let (Cα)α∈Λ a family of subcoalgebras of a coalgebra C such that C is the
direct sum of the Cα’s. Then for any subcoalgebra D we have:

D =
⊕
α∈Λ

D ∩ Cα.

PROOF. The sum is indeed direct and included in D. To prove the reverse inclusion, pick
any y in D and decompose it inside C:

y =
∑
α∈Λ

yα

with yα ∈ Cα (finite sum). Consider for any γ ∈ Λ the linear form fγ defined by

fγ|Cα
= ε|Cα if α = γ

= 0 if α �= γ.

Then fγ (y) = ε(yγ ). Now we have:

(I ⊗ fγ ) ◦ Δ(y) =
∑
α

(I ⊗ fγ ) ◦ Δ(yα)

=
∑
α

∑
(yα)

(yα)1fγ

(
(yα)2

)
=
∑
(yγ )

(yγ )1ε
(
(yγ )2

)
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= (I ⊗ ε) ◦ Δ(yγ )

= yγ .

This shows that yγ is in D, which proves the lemma. �

Let us define the coradical of a coalgebra C as the sum R of its simple subcoalgebras.
As indicated by the terminology this notion is dual to the notion of Jacobson radical of an
algebra: cf. Proposition 9 below.

PROPOSITION 8. Let R be the coradical of a coalgebra C. Then for any subcoalgebra D

the coradical RD of D is equal to R ∩ D.

PROOF. Any simple subcoalgebra of D is a simple subcoalgebra of C, so RD ⊂ R ∩ D.
Conversely by Lemma 5, R ∩ D is a direct sum of simple subcoalgebras of D, hence
R ∩ D ⊂ RD . �

PROPOSITION 9. If C is a finite-dimensional coalgebra with coradical R, then R⊥ is the
Jacobson radical of the algebra C∗.

PROOF. If S is a simple subcoalgebra of C it is clear from dimension considerations that
S⊥ is a maximal two-sided ideal of C∗. Conversely any maximal two-sided ideal of C∗ is
the orthogonal of a simple subcoalgebra, so R⊥ is indeed the intersection of all maximal
two-sided ideals of C∗. Finally (Corollary 3), maximal two-sided and primitive ideals of a
finite-dimensional algebra coincide. �

2.2.4. The wedge Let C be a coalgebra and X, Y two linear subspaces of C. We define:

X ∧ Y = {x ∈ C, Δx ∈ X ⊗ C + C ⊗ Y }.
We define as well inductively:∧0

X = {0}, ∧n
X = (∧n−1

X
) ∧ X.

The alternative definition in terms of the algebra structure on C∗ is often more manageable,
and its verification is straightforward:

X ∧ Y = (X⊥Y⊥)⊥.

Here is a first application of this definition:

PROPOSITION 10.
(i) The wedge is associative: (X ∧ Y) ∧ Z = X ∧ (Y ∧ Z).

(ii) If X is a left coideal then {0} ∧ X = X.
(iii) If X is a left coideal and Y is a right coideal, then X ∧ Y is a subcoalgebra of C.
(iv) The wedge of two subcoalgebras is a subcoalgebra.
(v) If X ⊂ X′ and Y ⊂ Y ′, then X ∧ Y ⊂ X′ ∧ Y ′.
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PROOF. According to the definition we have:

(X ∧ Y) ∧ Z = X ∧ (Y ∧ Z) = (X⊥Y⊥Z⊥)⊥.

Let X (resp. Y ) be a left (resp. right) coideal. According to Proposition 4, X⊥ is a left ideal
of C∗ and Y⊥ is a right ideal. The product (X⊥Y⊥) is then a two-sided ideal. Second and
third assertions follow by applying Proposition 4 again, and by noticing that:

{0} ∧ X = (C∗.X⊥)⊥ = X⊥⊥ = X.

Assertion (iv) is an immediate consequence of (iii), and (v) is clear. �

The wedge admits the following comodule version: let M be a right C-comodule with
coaction Φ :M → M ⊗ C. Let N be a subspace of M and X be a subspace of C. We
define:

N ∧ X = {x ∈ M, Φx ∈ N ⊗ C + M ⊗ X}.
One can check that if X is a right coideal the N ∧ X is a subcomodule, and if N is a
subcomodule then N ⊂ N ∧ X.

PROPOSITION 11. Let R be the coradical of a coalgebra C, and let M be a right C-
comodule. Then for {0} ⊂ M we have:⋃

n

{0} ∧ (∧n
R
) = M.

PROOF. Let x ∈ M , and let N be a finite-dimensional subcomodule containing x (which
exists thanks to Theorem 2). If Φ denotes the coaction, then Φ(N) ⊂ N ⊗X where X is a
finite-dimensional subspace of C. Let D be a finite-dimensional subcoalgebra containing
X (which exists thanks to Theorem 3). It is clear that N is a right D-comodule.

Applying Proposition 8, the coradical of D is R0 = R ∩ D. Proposition 9 says that R⊥
0

is the Jacobson radical of D∗, which is nilpotent by Corollary 2: there exists a positive
integer n such that (R⊥

0 )n = {0}. Dualizing we get that
∧n

D R0 = D, where the subscript
D serves to indicate with respect to which coalgebra the wedge operation is performed.
Clearly we have:∧n

DR0 ⊂∧n
CR0 ⊂∧n

CR,

the second inclusion coming from assertion 5) of Proposition 10. We have then:

D ⊂∧n
R

(we have dropped the subscript “C” here), hence the inclusions:

N ⊂ {0} ∧ D ⊂ {0} ∧ (∧n
R
)
.

The initial element x belongs then to {0} ∧ (
∧n

R) for some n, which proves the asser-
tion. �
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2.2.5. The coradical filtration Let C be a coalgebra with coradical R. We consider for
any integer i � 0:

Ci =∧i+1
R.

The following proposition is an immediate consequence of Propositions 10 and 11:

PROPOSITION 12. (Ci)i�0 is an increasing sequence of subcoalgebras of C, and we have:

C =
⋃
i�0

Ci.

The coalgebra C is then endowed with an increasing filtration by subcoalgebras: its
coradical filtration.

PROPOSITION 13. The coproduct is compatible with the coradical filtration, in the sense
that the following inclusion holds:

Δ(Cn) ⊂
n∑

i=0

Ci ⊗ Cn−i .

PROOF. For any i ∈ {0, . . . , n + 1} we have:∧n+1
R = (∧i

R
) ∧ (∧n−i+1

R
)
.

This is immediate for i = 1, . . . , n, and comes from Proposition 10, assertion 2) for i = 0
and i = n + 1. We have then (setting C−1 = {0}):

ΔCn ⊂
n+1⋂
i=0

(C ⊗ Cn−i + Ci−1 ⊗ C).

The right-hand side (RHS) is contained in Cn ⊗ Cn. Choose any supplementary subspace
Di of Ci−1 inside Ci : so C0 = D0, and Ci = D0 ⊕ · · · ⊕ Di . We have:

(RHS) =
n+1⋂
i=0

⊕
r�i−1 or s�n−i

Dr ⊗ Ds

=
⊕

r+s�n

Dr ⊗ Ds

=
n∑

i=0

Ci ⊗ Cn−i ,

which proves the result. �
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2.2.6. Convolution product Let A be an algebra and C be a coalgebra (over the same
field k). Then there is an associative product on the space L(C,A) of linear maps from C

to A called the convolution product. It is given by

ϕ ∗ ψ = mA ◦ (ϕ ⊗ ψ) ◦ ΔC.

In Sweedler’s notation it reads:

ϕ ∗ ψ(x) =
∑
(x)

ϕ(x1)ψ(x2).

The associativity is a direct consequence involving both associativity of A and coassocia-
tivity of C.

3. Bialgebras and Hopf algebras

3.1. Basic definitions

A (unital and co-unital) bialgebra is a vector space H endowed with a structure of unital
algebra (m, u) and a structure of co-unital coalgebra (Δ, ε) which are compatible. The
compatibility requirement is that Δ is an algebra morphism (or equivalently that m is a
coalgebra morphism), ε is an algebra morphism and u is a coalgebra morphism. It is ex-
pressed by the commutativity of the three following diagrams:

H ⊗ H ⊗ H ⊗ H τ23 H ⊗ H ⊗ H ⊗ H
m⊗m

H ⊗ H

Δ⊗Δ

m H
Δ

H ⊗ H

H ⊗ H
m

ε⊗ε
k ⊗ k

∼

H ε
k

H ⊗ H k ⊗ k
u⊗u

H

Δ

k
u

∼

A Hopf algebra is a bialgebra H together with a linear map S :H → H called the antipode,
such that the following diagram commutes:

H ⊗ H S⊗I H ⊗ H
m

H ε

Δ

Δ

k
u H

H ⊗ H I⊗S H ⊗ H

m

In Sweedler’s notation it reads:∑
(x)

S(x1)x2 =
∑
(x)

x1S(x2) = (u ◦ ε)(x).
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In other words the antipode is an inverse of the identity I for the convolution product on
L(H,H). The unit for the convolution is the map u ◦ ε.

A primitive element in a bialgebra H is an element x such that Δx = x ⊗ 1 + 1 ⊗ x.
A grouplike element is a nonzero element x such that Δx = x ⊗ x. Note that grouplike
elements make sense in any coalgebra.

A bi-ideal in a bialgebra H is a two-sided ideal which is also a two-sided co-ideal.
A Hopf ideal in a Hopf algebra H is a bi-ideal J such that S(J ) ⊂ J .

3.2. Some simple examples

3.2.1. The Hopf algebra of a group Let G be a group, and let kG be the group algebra
(over the field k). It is by definition the vector space freely generated by the elements of
G: the product of G extends uniquely to a bilinear map from kG × kG into kG, hence a
multiplication m : kG ⊗ kG → kG, which is associative. The neutral element of G gives
the unit for m. The space kG is also endowed with a co-unital coalgebra structure, given
by

Δ
(∑

λigi

)
=
∑

λi.gi ⊗ gi and ε
(∑

λigi

)
=
∑

λi.

This defines the coalgebra of the set G: it does not take into account the extra group struc-
ture on G, as the algebra structure does.

PROPOSITION 14. The vector space kG endowed with the algebra and coalgebra struc-
tures defined above is a Hopf algebra. The antipode is given by

S(g) = g−1, g ∈ G.

PROOF. The compatibility of the product and the coproduct is an immediate consequence
of the following computation: for any g, h ∈ G we have

Δ(gh) = gh ⊗ gh = (g ⊗ g)(h ⊗ h) = Δg.Δh.

Now m(S ⊗ I )Δ(g) = g−1g = e and similarly for m(I ⊗ S)Δ(g). But e = u ◦ ε(g) for
any g ∈ G, so the map S is indeed the antipode. �

REMARK 2. If G were only a semigroup, the same construction would lead to a bialgebra
structure on kG: the Hopf algebra structure (i.e. the existence of an antipode) reflects the
group structure (the existence of the inverse). We have S2 = I in this case, but involutivity
of the antipode is not true for general Hopf algebras.

3.2.2. Tensor algebras There is a natural structure of cocommutative Hopf algebra on
the tensor algebra T (V ) of any vector space V . Namely we define the coproduct Δ as the
unique algebra morphism3 from T (V ) into T (V ) ⊗ T (V ) such that:

Δ(1) = 1 ⊗ 1, Δ(x) = x ⊗ 1 + 1 ⊗ x, x ∈ V.

3 For the existence of this unique algebra morphism, see 2.1.2 above.
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We define the co-unit as the algebra morphism such that ε(1) = 1 and ε|V = 0. This
endows T (V ) with a cocommutative bialgebra structure. We claim that the principal anti-
automorphism

S(x1 ⊗ · · · ⊗ xn) = (−1)nxn ⊗ · · · ⊗ x1

verifies the axioms of an antipode, so that T (V ) is indeed a Hopf algebra. For x ∈ V we
have S(x) = −x, hence S ∗ I (x) = I ∗ S(x) = 0. As V generates T (V ) as an algebra this
is easy to check.

3.2.3. Enveloping algebras Let g a Lie algebra. The universal enveloping algebra is the
quotient of the tensor algebra T (g) by the ideal J generated by x ⊗ y − y ⊗ x − [x, y],
x, y ∈ g.

LEMMA 6. J is a Hopf ideal, i.e. Δ(J ) ⊂ H ⊗ J + J ⊗ H and S(J ) ⊂ J .

PROOF. The ideal J is generated by primitive elements (according to Proposition 16 be-
low), and any ideal generated by primitive elements is a Hopf ideal (very easy and left to
the reader). �

The quotient of a Hopf algebra by a Hopf ideal is a Hopf algebra. Hence the universal
enveloping algebra U(g) is a cocommutative Hopf algebra.

3.3. Some properties of Hopf algebras

We summarise in the proposition below the main properties of the antipode in a Hopf
algebra.

PROPOSITION 15 (cf. [Sw, Proposition 4.0.1]). Let H be a Hopf algebra with multiplica-
tion m, comultiplication Δ, unit u : 1 �→ 1, co-unit ε and antipode S. Then:

(i) S ◦ u = u and ε ◦ S = ε.
(ii) S is an algebra antimorphism and a coalgebra antimorphism, i.e. if τ denotes the

flip we have:

m ◦ (S ⊗ S) ◦ τ = S ◦ m, τ ◦ (S ⊗ S) ◦ Δ = Δ ◦ S.

(iii) If H is commutative or cocommutative, then S2 = I .

For a detailed proof, see [K], or [M2, Section I.7].

PROPOSITION 16.
(i) If x is a primitive element then S(x) = −x.

(ii) The linear subspace PrimH of primitive elements in H is a Lie algebra.
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PROOF. If x is primitive, then (ε⊗ε)◦Δ(x) = 2ε(x). On the other hand, (ε⊗ε)◦Δ(x) =
ε(x), so ε(x) = 0. Then:

0 = (u ◦ ε)(x) = m(S ⊗ I )Δ(x) = S(x) − x.

Now let x and y be primitive elements of H. Then we can easily compute:

Δ(xy − yx)

= (x ⊗ 1 + 1 ⊗ x)(y ⊗ 1 + 1 ⊗ y) − (y ⊗ 1 + 1 ⊗ y)(x ⊗ 1 + 1 ⊗ x)

= (xy − yx) ⊗ 1 + 1 ⊗ (xy + yx) + x ⊗ y + y ⊗ x − y ⊗ x − x ⊗ y

= (xy − yx) ⊗ 1 + 1 ⊗ (xy − yx).

�

4. Connected Hopf algebras

We introduce the crucial property of connectedness for bialgebras. The main interest re-
sides in the possibility to implement recursive procedures in connected bialgebras, the
induction taking place with respect to a filtration (e.g. the coradical filtration) or a grading.
An important example of these techniques is the recursive construction of the antipode,
which then “comes for free”, showing that any connected bialgebra is in fact a connected
Hopf algebra.

4.1. Connected graded bialgebras

Let k be a field with characteristic zero. We shall denote by k�t� the ring of formal series
on k, and by k[t−1, t� the field of Laurent series on k. A graded Hopf algebra on k is a
graded k-vector space:

H =
⊕
n�0

Hn

endowed with a product m :H⊗H → H, a coproduct Δ :H → H⊗H, a unit u : k → H,
a co-unit ε :H → k and an antipode S : H → H fulfilling the usual axioms of a Hopf
algebra, and such that:

(4)Hp.Hq ⊂ Hp+q,

(5)Δ(Hn) ⊂
⊕

p+q=n

Hp ⊗ Hq,

(6)S(Hn) ⊂ Hn.

If we do not ask for the existence of an antipode H we get the definition of a graded
bialgebra. In a graded bialgebra H we shall consider the increasing filtration:

Hn =
n⊕

p=0

Hp.
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Suppose moreover that H is connected, i.e. H0 is one-dimensional. Then we have:

Ker ε =
⊕
n�1

Hn.

PROPOSITION 17. For any x ∈ Hn, n � 1, we can write:

Δx = x ⊗ 1 + 1 ⊗ x + Δ̃x, Δ̃x ∈
⊕

p+q=n,p �=0,q �=0

Hp ⊗ Hq .

The map Δ̃ is coassociative on Ker ε and Δ̃k = (I⊗k−1 ⊗ Δ̃)(I⊗k−2 ⊗ Δ̃)...Δ̃ sends Hn

into (Hn−k)⊗k+1.

PROOF. Thanks to connectedness we clearly can write:

Δx = a(x ⊗ 1) + b(1 ⊗ x) + Δ̃x

with a, b ∈ k and Δ̃x ∈ Ker ε ⊗ Ker ε. The co-unit property then tells us that, with k ⊗ H
and H ⊗ k canonically identified with H:

(7)x = (ε ⊗ I )(Δx) = bx, x = (I ⊗ ε)(Δx) = ax,

hence a = b = 1. We shall use the following two variants of Sweedler’s notation:

(8)Δx =
∑
(x)

x1 ⊗ x2,

(9)Δ̃x =
∑
(x)

x′ ⊗ x′′,

the second being relevant only for x ∈ Ker ε. if x is homogeneous of degree n we can
suppose that the components x1, x2, x

′, x′′ in the expressions above are homogeneous as
well, and we have then |x1| + |x2| = n and |x′| + |x′′| = n. We easily compute:

(Δ ⊗ I )Δ(x) = x ⊗ 1 ⊗ 1 + 1 ⊗ x ⊗ 1 + 1 ⊗ 1 ⊗ x

+
∑
(x)

x′ ⊗ x′′ ⊗ 1 + x′ ⊗ 1 ⊗ x′′ + 1 ⊗ x′ ⊗ x′′

+ (Δ̃ ⊗ I )Δ̃(x)

and

(I ⊗ Δ)Δ(x) = x ⊗ 1 ⊗ 1 + 1 ⊗ x ⊗ 1 + 1 ⊗ 1 ⊗ x

+
∑
(x)

x′ ⊗ x′′ ⊗ 1 + x′ ⊗ 1 ⊗ x′′ + 1 ⊗ x′ ⊗ x′′

+ (I ⊗ Δ̃)Δ̃(x),

hence the co-associativity of Δ̃ comes from the one of Δ. Finally it is easily seen by
induction on k that for any x ∈ Hn we can write:

(10)Δ̃k(x) =
∑
x

x(1) ⊗ · · · ⊗ x(k+1),



Hopf Algebras in Renormalisation 387

with |x(j)| � 1. The grading imposes:

k+1∑
j=1

∣∣x(j)
∣∣ = n,

so the maximum possible for any degree |x(j)| is n − k. �

4.2. Connected filtered bialgebras

A filtered Hopf algebra over k is a k-vector space together with an increasing Z+-indexed
filtration:

H0 ⊂ H1 ⊂ · · · ⊂ Hn ⊂ · · · ,
⋃
n

Hn = H

endowed with a product m :H⊗H → H, a coproduct Δ : H → H⊗H, a unit (morphism)
u : k → H, a co-unit ε : H → k and an antipode S : H → H fulfilling the usual axioms
of a Hopf algebra, and such that:

(11)Hp.Hq ⊂ Hp+q,

(12)Δ(Hn) ⊂
∑

p+q=n

Hp ⊗ Hq,

(13)S(Hn) ⊂ Hn.

If we do not ask for the existence of an antipode H we get the definition of a filtered
bialgebra. For any x ∈ H we set:

(14)|x| := min{n ∈ N, x ∈ Hn}.
Any graded bialgebra or Hopf algebra is obviously filtered by the canonical filtration asso-
ciated to the grading:

(15)Hn :=
n⊕

i=0

Hi ,

and in that case, if x is an homogeneous element, x is of degree n if and only if |x| = n.
We say that the filtered bialgebra H is connected if H0 is one-dimensional. There is an
analogue of Proposition 17 in the connected filtered case, the proof of which is very similar:

PROPOSITION 18. For any x ∈ Hn, n � 1, we can write:

(16)Δx = x ⊗ 1 + 1 ⊗ x + Δ̃x, Δ̃x ∈
∑

p+q=n,p �=0,q �=0

Hp ⊗ Hq .

The map Δ̃ is coassociative on Ker ε and Δ̃k = (I⊗k−1 ⊗ Δ̃)(I⊗k−2 ⊗ Δ̃)...Δ̃ sends Hn

into (Hn−k)⊗k+1.
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The following theorem is due to S. Montgomery [Mo, Lemma 1.1].

THEOREM 4. Let H be any pointed Hopf algebra. Then the coradical filtration endows H
with a structure of a filtered Hopf algebra.

PROOF. It only remains to show that for any n ∈ N the inclusion S(Hn) ⊂ Hn holds, and
that for any p, q ∈ N:

HpHq ⊂ Hp+q,

which, together with Proposition 13, will prove the result. Recall that a pointed coalgebra is
a coalgebra in which any simple subcoalgebra is one-dimensional. In this case any simple
subcoalgebra is linearly generated by a unique grouplike element. Any grouplike element
g in a Hopf algebra admits an inverse Sg, where S is the antipode. It follows that the
coradical H0 of a pointed Hopf algebra H is a Hopf subalgebra of H, precisely the Hopf
algebra of the group of the grouplike elements of H (cf. Example 3.2.1).

The proof proceeds by induction: the inclusion SH0 ⊂ H0 obviously holds. Suppose
that SHk ⊂ Hk for all k � n − 1. Using the definition of Hn:

Hn = H0 ∧ Hn−1 = Hn−1 ∧ H 0

and the formula

Sx =
∑
(x)

Sx2 ⊗ Sx1,

(cf. Proposition 15) we deduce the inclusion SHn ⊂ Hn. Now, suppose that the inclusion
HkH0 ⊂ Hk holds for k � n − 1 (this is obviously the case for k = 0). Then we have:

Δ
(
HnH0) ⊂ (H0 ⊗ H + H ⊗ Hn−1)(H0 ⊗ H0)

⊂ H0 ⊗ H + H ⊗ Hn−1H0

⊂ H0 ⊗ H + H ⊗ Hn−1.

So HnH0 ⊂ Δ−1(H0 ⊗ H + H ⊗ Hn−1) = Hn. Similarly on the other side we have
H0Hn ⊂ Hn for any n. Suppose now that the inclusion:

HpHq ⊂ Hp+q

holds for any p, q such that p + q � n − 1. Choose p, q with p + q = n and compute:

Δ(HpHq) ⊂ (H0 ⊗ Hp + Hp ⊗ Hp−1)(H0 ⊗ Hq + Hq ⊗ Hq−1)
⊂ H0H0 ⊗ HpHq + HpH0 ⊗ Hp−1Hq + H0Hq ⊗ HpHq−1

+ HpHq ⊗ Hp−1Hq−1

⊂ H0 ⊗ H + H ⊗ Hp+q−1

thanks to the induction hypothesis and the property already proved when one of the indices
is equal to zero. Thus HpHq ⊂ Hp+q , which finishes the proof of the theorem. �
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REMARK 3. The proof used only the property that the coradical is a Hopf subalgebra of H.
The pointedness of H [TW] implies this property but is not strictly necessary.

REMARK 4. The image of k under the unit map u is a one-dimensional simple subcoagebra
of H. If H is an irreducible coalgebra, by Proposition 7 it is the unique one, and then the
coradical is H0 = k.1. Any irreducible Hopf algebra is then pointed, and connected with
respect to the coradical filtration.

4.3. The convolution product

An important result is that any connected filtered bialgebra is indeed a filtered Hopf alge-
bra, in the sense that the antipode comes for free. We give a proof of this fact as well as
a recursive formula for the antipode with the help of the convolution product: let H be a
(connected filtered) bialgebra, and let A be any k-algebra (which will be called the target
algebra): the convolution product on L(H,A) is given by

ϕ ∗ ψ(x) = mA(ϕ ⊗ ψ)Δ(x)

=
∑
(x)

ϕ(x1)ψ(x2).

PROPOSITION 19. The map e = uA ◦ ε, given by e(1) = 1A and e(x) = 0 for any
x ∈ Ker ε, is a unit for the convolution product. Moreover the set

G(A) := {ϕ ∈ L(H,A), ϕ(1) = 1A
}

endowed with the convolution product is a group.

PROOF. The first statement is straightforward. To prove the second let us consider the
formal series:

ϕ∗−1(x) = (e − (e − ϕ)
)∗−1

(x)

=
∑
k�0

(e − ϕ)∗k(x).

Using (e − ϕ)(1) = 0 we have immediately (e − ϕ)∗k(1) = 0, and for any x ∈ Ker ε:

(17)(e − ϕ)∗k(x) = mA,k−1(ϕ ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
k times

)Δ̃k−1(x).

When x ∈ Hn this expression vanishes for k � n + 1. The formal series thus consists of
only finite number of terms for any x, which proves the result. �

COROLLARY 5. Any connected filtered bialgebra H is a filtered Hopf algebra. The an-
tipode is defined by

(18)S(x) =
∑
k�0

(uε − I )∗k(x).
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It is given by S(1) = 1 and recursively by any of the two formulas for x ∈ Ker ε:

(19)S(x) = −x −
∑
(x)

S(x′)x′′,

(20)S(x) = −x −
∑
(x)

x′S(x′′).

PROOF. The antipode, when it exists, is the inverse of the identity for the convolution
product on L(H,H). One just needs then to apply Proposition 19 with A = H. The two
recursive formulas come directly from the two equalities:

m(S ⊗ I )Δ(x) = m(I ⊗ S)Δ(x) = 0

fulfilled by any x ∈ Ker ε. �

Let g(A) be the subspace of L(H,A) formed by the elements α such that α(1) = 0. It
is clearly a subalgebra of L(H,A) for the convolution product. We have:

G(A) = e + g(A).

From now on we shall suppose that the ground field k is of characteristic zero. For any
x ∈ Hn the exponential

(21)e∗α(x) =
∑
k�0

α∗k(x)
k!

is a finite sum (ending at k = n). It is a bijection from g(A) onto G(A). Its inverse is given
by

(22)Log(1 + α)(x) =
∑
k�1

(−1)k−1

k
α∗k(x).

This sum again ends at k = n for any x ∈ Hn. Let us introduce a decreasing filtration on
L = L(H,A):

(23)Ln := {α ∈ L, α|Hn−1 = 0}.
Clearly L0 = L and L1 = g(A). We define the valuation valϕ of an element ϕ of L as
the biggest integer k such that ϕ is in Lk . We shall consider in the sequel the ultrametric
distance on L induced by the filtration (and associated valuation):

(24)d(ϕ,ψ) = 2−val(ϕ−ψ).

For any α, β ∈ g(A) let [α, β] = α ∗ β − β ∗ α.

PROPOSITION 20. We have the inclusion

(25)Lp ∗ Lq ⊂ Lp+q,

and moreover the metric space L endowed with the distance defined by (24) is complete.
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PROOF. Take any x ∈ Hp+q−1, and any α ∈ Lp and β ∈ Lq . We have:

(α ∗ β)(x) =
∑
(x)

α(x1)β(x2).

Recall that we denote by |x| the minimal n such that x ∈ Hn. Since |x1| + |x2| = |x| �
p + q − 1, either |x1| � p − 1 or |x2| � q − 1, so the expression vanishes. Now if (ψn)

is a Cauchy sequence in L it is immediate to see that this sequence is locally stationary,
i.e. for any x ∈ H there exists N(x) ∈ N such that ψn(x) = ψN(x)(x) for any n � N(x).
Then the limit of (ψn) exists and is clearly defined by

ψ(x) = ψN(x)(x).
�

As a corollary the Lie algebra L1 = g(A) is pro-nilpotent, in the sense that it is the
projective limit of the Lie algebras g(A)/Ln, which are nilpotent.

4.4. Algebra morphisms and cocycles

Let H be a connected filtered Hopf algebra over k, and let A be a k-algebra. A cocycle from
H to A is a linear morphism τ : H → A such that τ(xy) = τ(yx) for any x, y ∈ H. It is
indeed a 1-cocycle in the cohomology of the Lie algebra H with values in A considered as
a trivial H-module. In the case where A is the ground field k cocycles are just traces.

We shall also consider unital algebra morphisms from H to the target algebra A. When
the algebra A is commutative we shall call them, by slight abuse of language, characters.
It is clear that any character in our sense is a cocycle. We recover of course the usual notion
of character when the algebra A is the ground field k.

The notions of character and cocycle involve only the algebra structure of H. On the
other hand the convolution product on L(H,A) involves only the coalgebra structure on H.
Let us consider now the full Hopf algebra structure on H and see what happens to algebra
morphisms and cocycles under the convolution product:

PROPOSITION 21. Let H be a connected filtered Hopf algebra over k, and let A be a
k-algebra. Then,

(i) The convolution of two cocycles in L(H,A) is a cocycle.
(ii) If τ is a cocycle such that τ(1) = 1A, then the inverse τ ∗−1 is a cocycle as well.

(iii) In the case of a commutative algebra A the characters from H to A form a group
G1(A) under the convolution product, and for any ϕ ∈ G1(A) the inverse is given
by:

(26)ϕ∗−1 = ϕ ◦ S.

PROOF. Using the fact that Δ is an algebra morphism we have for any x, y ∈ H:

f ∗ g(xy) =
∑
(x)(y)

f (x1y1)g(x2y2).
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If f and g are cocycles we get:

f ∗ g(xy) =
∑
(x)(y)

f (y1x1)g(y2x2)

= f ∗ g(yx).

If A is commutative and if f and g are characters we get:

f ∗ g(xy) =
∑
(x)(y)

f (x1)f (y1)g(x2)g(y2)

=
∑
(x)(y)

f (x1)g(x2)f (y1)g(y2)

= (f ∗ g)(x)(f ∗ g)(y).

The unit e = uA◦ε is both a cocycle and an algebra morphism. The formula for the inverse
of a character comes easily from the commutativity of the following diagram:

H ⊗ H S⊗I H ⊗ H
m

f⊗f ⊗A
mA

H ε

Δ

Δ

f ∗(f ◦S)

(f ◦S)∗f

e

k u H
f

A

H ⊗ H I⊗S H ⊗ H

m

f⊗f A ⊗ A

mA

Finally the fact that the inverse of a cocycle τ such that τ(1) = 1A is a cocycle comes from
(i) and from the formula:

τ−1(x) =
∑
k�0

(e − τ)∗k(x). �

We call infinitesimal characters with values in the algebra A those elements α of
L(H,A) such that:

α(xy) = e(x)α(y) + α(x)e(y).

PROPOSITION 22.
(i) Suppose that A is a commutative algebra. Let G1(A) (resp. g1(A)) be the set of

characters of H with values in A (resp. the set of infinitesimal characters of H
with values in A). Then G1(A) is a subgroup of G, the exponential restricts to a
bijection from g1(A) onto G1(A), and g1(A) is a Lie subalgebra of g(A).

(ii) Suppose that A is an algebra (not necessarily commutative). Let G2(A) (resp.
g2(A)) be the set of cocycles ϕ from H to A such that ϕ(1) = 1A (resp. ϕ(1) = 0).
Then G2(A) is a subgroup of G(A), the exponential restricts to a bijection from
g2(A) onto G2(A), and g2(A) is a Lie subalgebra of g(A).
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PROOF. Part of these results are a reformulation of Proposition 21 and some points are
straightforward. The only non-trivial point concerns g1(A) and G1(A). Take two infinites-
imal characters α and β with values in A and compute:

(α ∗ β)(xy) =
∑
(x)(y)

α(x1x2)β(y1y2)

=
∑
(x)(y)

(
α(x1)e(y1) + e(x1)α(y1)

)
.
(
β(x2)e(y2) + e(x2)α(y2)

)
= (α ∗ β)(x)e(y) + α(x)β(y) + β(x)α(y) + e(x)(α ∗ β)(y).

Using the commutativity of A we immediately get:

[α, β](xy) = [α, β](x)e(y) + e(x)[α, β](y),
which shows that g1(A) is a Lie algebra. Now for α ∈ g1(A) we have:

α∗n(xy) =
n∑

k=0

(
n

k

)
α∗k(x)α∗(n−k)(y),

as is easily seen by induction on n. A straightforward computation then yields:

e∗α(xy) = e∗α(x)e∗α(y). �

REMARK 5. The groups G(A), G1(A) and G2(A) depend functorially on the target alge-
bra A. In particular, when the Hopf algebra H itself is commutative, the correspondence
A �→ G1(A) is a group scheme. In this case it is possible to reconstruct the Hopf algebra
H from the group scheme by means of the Cartier–Milnor–Moore theorem: in the case
when the components of the filtration are finite-dimensional, we have

(27)H = (U(g1(k)
))

°,

where g1(k) is the Lie algebra of infinitesimal characters with values in the base field k,
where U(g1(k)) stands for its enveloping algebra, and where (−)° stands for the restricted
dual [Sw].

In the case when the Hopf algebra H is not commutative this is no longer possible to
reconstruct it from G1(k), and moreover the inclusion G2(k) ⊂ G(k) may be strict.

4.5. Hochschild cohomology

Let H be any coalgebra, and let M be a bicomodule over H, i.e. a vector space endowed
with a left comodule structure Φ :M → H ⊗ M and a right comodule structure Ψ :M →
M ⊗ H which are compatible, in the sense that the following diagram commutes:

H ⊗ M ⊗ H H ⊗ M
I⊗Ψ

M ⊗ H

Φ⊗I

M
Ψ

Φ



394 D. Manchon

The space Cn of n-cochains on M consists of the linear maps L :M → H⊗n. The cobound-
ary operator δ :Cn → Cn+1 is defined by

(28)δL := (I ⊗ L) ◦ Φ +
n∑

i=1

(−1)iΔi ◦ L + (−1)n+1(L ⊗ I ) ◦ Ψ.

Here Δi :H⊗n → H⊗n+1 stands for I i−1 ⊗Δ⊗ In−i , i.e. the coproduct applied to the i-th
factor in H⊗n. The reader is invited to check that δ2 vanishes, thus yielding a cohomology
HH •(A,M).

Now suppose that H is a connected filtered bialgebra with unit and co-unit. We consider
(as in [BK] from which we borrow this paragraph) the particular case where M = H,
Φ = Δ and Ψ = (I ⊗u◦ε)◦Δ (in other words, Ψ (x) = x ⊗1). The coboundary operator
then looks like:

(29)δL := (I ⊗ L) ◦ Δ +
n∑

i=1

(−1)iΔi ◦ L + (−1)n+1(L ⊗ 1),

with (L ⊗ 1)(x) := L(x) ⊗ 1. The Hochschild cohomology in this case is denoted by
HH •

ε (H). A 1-cochain L :H → H is a cocycle (i.e. verifies δL = 0) if and only if:

(30)Δ ◦ L = (I ⊗ L) ◦ Δ + L ⊗ 1.

A 1-coboundary is given (using Sweedler’s notation) by x �→∑
(x) L(x2)x1 −L(x)1 with

L ∈ M∗ = C0. The Hochschild cohomology described here revealed in [BK] to be a
crucial tool to prove the locality of the regularised Feynman rules (see Sections 7.5 and 8),
as well as in the understanding of the Dyson–Schwinger equations [BK,K4,KY].

5. Renormalisation in connected filtered Hopf algebras

We describe in this section renormalisation à la Connes–Kreimer [K1,CK,CK1] in the
abstract context of connected filtered Hopf algebras: the objects to be renormalised are
characters with values in a commutative unital target algebra A endowed with a renormal-
isation scheme, i.e. a splitting A = A− ⊕A+ into two subalgebras. An important example
is given by the minimal subtraction scheme of the algebra A of meromorphic functions of
one variable z, where A+ is the algebra of meromorphic functions which are holomorphic
at z = 0, and where A− = z−1C[z−1] stands for the “polar parts”. Any A-valued character
ϕ admits a unique Birkhoff decomposition

ϕ = ϕ∗−1− ∗ ϕ+,

where ϕ+ is an A+-valued character, and where ϕ(Ker ε) ⊂ A−. In the MS scheme case
described just above, the renormalised character is the scalar-valued character given by the
evaluation of ϕ+ at z = 0 (whereas the evaluation of ϕ at z = 0 does not necessarily make
sense).

Keeping the MS scheme and supposing that the Hopf algebra H is graded, we can
introduce the notion of locality in this purely algebraic framework, and then define the
renormalisation group and the beta function of a local character, along the lines of [CK2,
CM2].
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5.1. The Birkhoff decomposition

We consider here the situation where the algebra A admits a renormalisation scheme, i.e.
a splitting into two subalgebras:

A = A− ⊕ A+
with 1 ∈ A+. Let π be the projection from A onto A− parallel to A+.

THEOREM 5.
(i) Let H be a connected filtered Hopf algebra. Let G(A) be the group of those ϕ ∈

L(H,A) such that ϕ(1) = 1A endowed with the convolution product. Any ϕ ∈
G(A) admits a unique Birkhoff decomposition:

(31)ϕ = ϕ∗−1− ∗ ϕ+,

where ϕ− sends 1 to 1A and Ker ε into A−, and where ϕ+ sends H into A+. The
maps ϕ− and ϕ+ are given on Ker ε by the following recursive formulas:

(32)ϕ−(x) = −π

(
ϕ(x) +

∑
(x)

ϕ−(x′)ϕ(x′′)
)
,

(33)ϕ+(x) = (I − π)

(
ϕ(x) +

∑
(x)

ϕ−(x′)ϕ(x′′)
)
.

(ii) If τ ∈ G(A) is a cocycle, the components τ− and τ+ occurring in the Birkhoff
decomposition of τ are cocycles as well.

(iii) If the algebra A is commutative and if ϕ is a character, the components ϕ− and ϕ+
occurring in the Birkhoff decomposition of ϕ are characters as well.

PROOF. The proof goes along the same lines as the proof of [CK1, Theorem 4]: for the
first assertion it is immediate from the definition of π that ϕ− sends Ker ε into A−, and
that ϕ+ sends Ker ε into A+. It only remains to check equality ϕ+ = ϕ− ∗ ϕ, which is an
easy computation:

ϕ+(x) = (I − π)

(
ϕ(x) +

∑
(x)

ϕ−(x′)ϕ(x′′)
)

= ϕ(x) + ϕ−(x) +
∑
(x)

ϕ−(x′)ϕ(x′′)

= (ϕ− ∗ ϕ)(x).

To prove the second assertion it is sufficient to prove that τ− is a cocycle whenever τ is a
cocycle. The same property for τ+ comes then from Proposition 19. We prove the formula
τ−(xy) = τ−(yx) by induction on the integer d = |x| + |y|: it is true for d � 1. Suppose
the formula is true up to d − 1 and take any x, y ∈ H with |x| + |y| = d . Decompose
Δ(xy) with the second version of Sweedler’s notation:

Δ(xy) = xy ⊗ 1 + 1 ⊗ xy + x ⊗ y + y ⊗ x
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+
∑
(x)

(x′y ⊗ x′′ + x′ ⊗ x′′y) +
∑
(y)

(xy′ ⊗ y′′ + y′ ⊗ xy′′)

+
∑
(x)(y)

x′y′ ⊗ x′′y′′.

We have then:

τ−(xy) = −π

(
τ(xy) + τ−(x)τ (y) + τ−(y)τ (x)

+
∑
(x)

(
τ−(x′y)τ(x′′) + τ−(x′)τ (x′′y)

)
+
∑
(y)

(
τ−(xy′)τ (y′′) + τ−(y′)τ (xy′′)

)
+
∑
(x)(y)

τ−(x′y′)τ (x′′y′′)
)
,

whereas:

τ−(yx) = −π

(
τ(yx) + τ−(y)τ (x) + τ−(x)τ (y)

+
∑
(y)

(
τ−(y′x)τ(y′′) + τ−(y′)τ (y′′x)

)
+
∑
(x)

(
τ−(yx′)τ (x′′) + τ−(x′)τ (yx′′)

)+
∑
(x)(y)

τ−(y′x′)τ (y′′x′′)
)
.

Using the cocycle property for τ and the induction hypothesis we see that the two expres-
sions are the same.

The proof of assertion (iii) goes exactly as in [CK1] and relies on the following Rota–
Baxter relation in A:

(34)π(a)π(b) = π
(
π(a)b + aπ(b)

)− π(ab),

which is easily verified by decomposing a and b into their A±-parts. Let ϕ be a character
of H with values in A. Suppose that we have ϕ−(xy) = ϕ−(x)ϕ−(y) for any x, y ∈ H
such that |x| + |y| � d − 1, and compute for x, y such that |x| + |y| = d:

ϕ−(x)ϕ−(y) = π(X)π(Y ),

with X = ϕ(x)−∑(x) ϕ−(x′)ϕ(x′′) and Y = ϕ(y)−∑(y) ϕ−(y′)ϕ(y′′). Using the formula

π(X) = −ϕ−(x),

we get

ϕ−(x)ϕ−(y) = −π
(
XY + ϕ−(x)Y + Xϕ−(y)

)
,
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hence:

ϕ−(x)ϕ−(y) = −π

(
ϕ(x)ϕ(y) + ϕ−(x)ϕ(y) + ϕ(x)ϕ−(y)

+
∑
(x)

ϕ−(x′)ϕ(x′′)
(
ϕ(y) + ϕ−(y)

)
+
∑
(y)

(
ϕ(x) + ϕ−(x)

)
ϕ−(y′)ϕ(y′′)

+
∑
(x)(y)

ϕ−(x′)ϕ(x′′)ϕ−(y′)ϕ(y′′)
)
.

We have to compare this expression with

ϕ−(xy) = −π

(
ϕ(xy) + ϕ−(x)ϕ(y) + ϕ−(y)ϕ(x)

+
∑
(x)

(
ϕ−(x′y)ϕ(x′′) + ϕ−(x′)ϕ(x′′y)

)
+
∑
(y)

(
ϕ−(xy′)ϕ(y′′) + ϕ−(y′)ϕ(xy′′)

)
+
∑
(x)(y)

ϕ−(x′y′)ϕ(x′′y′′)
)
.

These two expressions are easily seen to be equal using the commutativity of the algebra A,
the character property for ϕ and the induction hypothesis. �

REMARK 6. Define the Bogoliubov preparation map as the map b :G(A) → L(H,A)

recursively given by

(35)b(ϕ)(x) = ϕ(x) +
∑
(x)

ϕ−(x′)ϕ(x′′).

Then the components of ϕ in the Birkhoff decomposition read:

(36)ϕ− = e − π ◦ b(ϕ), ϕ+ = e + (I − π) ◦ b(ϕ).

The Bogoliubov preparation map can also be written in a more concise form:

(37)b(ϕ) = ϕ− ∗ (ϕ − e).

Plugging Eq. (37) into (36) and setting α := ϕ − e we get the following expression for ϕ−:

(38)ϕ− = e − P(ϕ− ∗ α)

= e − P(α) + P
(
P(α) ∗ α

)+ · · ·
(39)+ (−1)n P

(
P
(
. . . P (︸ ︷︷ ︸

n times

α) ∗ α
) · · · ∗ α

)+ · · · ,

where P :L(H,A) → L(H,A) is the projection defined by P(α) = π ◦ α.
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5.2. The BCH approach to Birkhoff decomposition

Let L be any complete filtered Lie algebra. Thus L has a decreasing filtration (Ln) of Lie
subalgebras such that [Lm, Ln] ⊆ Lm+n and L ∼= lim← L/Ln (i.e., L is complete with
respect to the topology induced by the filtration). Let A be the completion of the enveloping
algebra U(L) for the decreasing filtration naturally coming from that of L. The functions

(40)exp :A1 → 1 + A1, exp(a) =
∞∑
n=0

an

n! ,

(41)log : 1 + A1 → A1, log(1 + a) = −
∞∑
n=1

(−a)n

n

are well defined and are the inverse of each other. The Baker–Campbell–Hausdorff formula
says that for any x, y ∈ L1 [R,V]:

(42)exp(x) exp(y) = exp
(
C(x, y)

) = exp
(
x + y + BCH(x, y)

)
,

where BCH(x, y) is an element of L2 given by a Lie series of which the first few terms are

BCH(x, y) = 1

2
[x, y] + 1

12

[
x, [x, y]]+ 1

12

[
y, [y, x]]

(43)− 1

24

[
x,
[
y, [x, y]]]+ · · · .

Now let P :L → L be any linear map preserving the filtration of L. We define P̃ to be
IdL −P . For a ∈ L1, define χ(a) = limn→∞ χ(n)(a) where χ(n)(a) is given by the BCH-
recursion

χ(0)(a) := a,

(44)χ(n+1)(a) = a − BCH
(
P
(
χ(n)(a)

)
, P̃
(
χ(n)(a)

))
,

and where the limit is taken with respect to the topology given by the filtration. Then the
map χ : L1 → L1 satisfies

(45)χ(a) = a − BCH
(
P
(
χ(a)

)
, P̃
(
χ(a)

))
.

This map appeared in [EGK2,EGK3], where also more details can be found. The following
proposition [EGM,M2] gives further properties of the map χ .

PROPOSITION 23. For any linear map P : L → L preserving the filtration of L there
exists a (usually non-linear) unique map χ :L1 → L1 such that (χ − IdL)(Li ) ⊂ L2i for
any i � 1, and such that, with P̃ := IdL −P we have

(46)∀a ∈ L1, a = C
(
P
(
χ(a)

)
, P̃
(
χ(a)

))
.

This map is bijective, and its inverse is given by

(47)χ−1(a) = C
(
P(a), P̃ (a)

) = a + BCH
(
P(a), P̃ (a)

)
.
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PROOF. Equation (46) can be rewritten as

χ(a) = Fa

(
χ(a)

)
,

with Fa :L1 → L1 defined by

Fa(b) = a − BCH
(
P(b), P̃ (b)

)
.

This map Fa is a contraction with respect to the metric associated with the filtration: indeed
if b, ε ∈ L1 with ε ∈ Ln, we have

Fa(b + ε) − Fa(b) = BCH
(
P(b), P̃ (b)

)− BCH
(
P(b + ε), P̃ (b + ε)

)
.

The right-hand side is a sum of iterated commutators in each of which ε does appear at
least once. So it belongs to Ln+1. So the sequence Fn

a (b) converges in L1 to a unique fixed
point χ(a) for Fa .

Let us remark that for any a ∈ Li , then, by a straightforward induction argument,
χ(n)(a) ∈ Li for any n, so χ(a) ∈ Li by taking the limit. Then χ(a) − a =
BCH(P (χ(a)), P̃ (χ(a))) clearly belongs to L2i . Now consider the map ψ : L1 → L1
defined by ψ(a) = C(P (a), P̃ (a)). It is clear from the definition of χ that ψ ◦ χ = IdL1 .
Then χ is injective and ψ is surjective. The injectivity of ψ will be an immediate conse-
quence of the following lemma:

LEMMA 7. The map ψ increases the ultrametric distance given by the filtration.

PROOF. For any x, y ∈ L1 the distance d(x, y) is given by 2−n where n = sup{k ∈ N,

x − y ∈ Lk}. We have then to prove that ψ(x) − ψ(y) /∈ Ln+1. But

ψ(x) − ψ(y) = x − y + BCH
(
P(x), P̃ (x)

)− BCH
(
P(y), P̃ (y)

)
= x − y + (BCH

(
P(x), P̃ (x)

)
− BCH

(
P(x) − P(x − y), P̃ (x) − P̃ (x − y)

))
.

The rightmost term inside the large brackets clearly belongs to Ln+1. As x − y /∈ Ln+1 by
hypothesis, this proves the claim. �

The map ψ is then a bijection, so χ is also bijective, which proves Proposition 23. �

COROLLARY 6. For any a ∈ L1 we have the following equality taking place in
1 + A1 ⊂ A:

(48)exp(a) = exp
(
P
(
χ(a)

))
exp
(
P̃
(
χ(a)

))
.

Suppose now that L = L(H,A) (with the setup and notations of Section 5.1), and that
the operator P is now the projection defined by P(a) = π ◦ a. It is then clear that the
first factor in the right-hand side of (48) is an element of G which sends Ker ε into A−,
and that the second factor is an element of G which sends H into A+. By uniqueness of
the Birkhoff decomposition we see then that (48) is the Birkhoff decomposition of exp(a).
Starting with a ∈ g1(A) (resp. a ∈ g2(A)) gives the Birkhoff decomposition of exp(a)
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in the group G1(A) of A-valued characters of H (resp. in the group G2(A) of A-valued
inversible cocycles of H).

Putting (39) and (48) together we get for any α ∈ L1 the following non-commutative
Spitzer identity:

e − P(α) + P
(
P(α) ∗ α

)+ · · · + (−1)n P
(
P
(
. . . P (︸ ︷︷ ︸

n times

α) ∗ α
) · · · ∗ α

)+ · · ·

(49)= exp
[−P

(
χ
(
log(e + α)

))]
.

This identity is valid for any filtration-preserving Rota–Baxter operator P in a complete
filtered Lie algebra. For a detailed treatment of these aspects, see [EGK2,EGK3,EGM,
EMP1].

5.3. An application to number theory: renormalised multiple zeta values

Multiple zeta values [ENR,Ho2]:

(50)ζ(s1, . . . , sk) =
∑

n1>···>nk�1

n
−s1
1 · · · n−sk

k

are well defined for s1 > 1 and sj � 1, j � 2. They satisfy three families of relations
[ENR], among them quasi-shuffle relations, a typical example of which is given by

(51)ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2) = ζ(s1)ζ(s2).

The functions σs : t �→ t−s are classical symbols, for which regularising iterated sums
makes sense; more precisely the expression

(52)ζ(s1 − z, . . . , sk − z)

can be extended to be a meromorphic function of z ∈ C. Now let V be the commutative
algebra generated by the functions σs : t �→ t−s , s ∈ C on [1,+∞[. It gives rise to the
Hoffman quasi-shuffle Hopf algebra [Ho1], defined by H = C ⊕ V ⊕ V ⊗2 ⊕ · · ·. The
coproduct is given by the deconcatenation:

(53)Δ(x1 ⊗ · · · ⊗ xn) =
n∑

k=0

(x1 ⊗ · · · ⊗ xk) ⊗ (xk+1 ⊗ · · · ⊗ xn).

The product ∗ is recursively defined by

(x ⊗ u) ∗ (y ⊗ v) = x ⊗ (u ∗ (y ⊗ v)
)+ y ⊗ ((x ⊗ u) ∗ v

)
(54)+ (xy) ⊗ (u ∗ v).

for x, y ∈ V and u, v ∈ H. This defines a connected filtered Hopf algebra structure on H,
with Hn = C ⊕ V ⊕ · · · ⊕ V ⊗n. One can show with some care that the multiple zeta
functions give rise to a character Φ of H with values into meromorphic functions such that
we have:

(55)Φ(σs1 ⊗ · · · ⊗ σsk )(z)|z=0 = ζ(s1, . . . , sk)
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whenever Re s1 > 1 and Re sj � 1, j � 2. We can then define the renormalised zeta value
at any sj ∈ Z by

(56)ζR(s1, . . . , sk) := Φ+(σs1 ⊗ · · · ⊗ σsk )(z)|z=0.

It can be moreover shown that these values are rational at negative arguments. See [MP1,
MP2], and also [GZ] for a somewhat different approach.

6. Connected graded Hopf algebras

6.1. The grading biderivation

Let H =⊕n�0 Hn be a connected graded Hopf algebra, and let A be a commutative unital
algebra. The grading induces a biderivation Y defined on homogeneous elements by

Y :Hn → Hn

x �→ nx.

Exponentiating we get a one-parameter group θt of automorphisms of the Hopf algebra H,
defined on Hn by

θt (x) = entx.

The following result is immediate.

LEMMA 8. ϕ �→ ϕ◦Y is a derivation of (L(H,A), ∗), and ϕ �→ ϕ◦θt is an automorphism
of (L(H,A), ∗) for any complex t .

Using the fact that e ◦ Y = 0 we easily compute for any A-valued infinitesimal charac-
ter α:

(α ◦ Y)(xy) = α
(
Y(x).y + x.Y (y)

)
= (α ◦ Y)(x)e(y) + (e ◦ Y)(x)α(y)

+ α(x)(e ◦ Y)(y) + e(x)(α ◦ Y)(y)

= (α ◦ Y)(x)e(y) + e(x)(α ◦ Y)(y).

So we have proved:

LEMMA 9. The map α �→ α ◦ Y is a linear automorphism of the space of infinitesimal
characters of H with values in A. Its inverse is given by α �→ α ◦ Y−1, where Y−1(x) =
|x|−1x for x homogeneous of positive degree, and Y−1(1) = 0.

REMARK 7. The notation Y−1 is of course slightly incorrect, as the inverse of Y does not
make sense on H0. The convention Y−1(1) = 0 is arbitrary: any other value of Y−1(1)
would give the same result, as infinitesimal characters vanish at 1.
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6.2. The Dynkin operator

Let H be a commutative connected graded Hopf algebra. The Dynkin operator is the linear
endomorphism D of H defined by

(57)D = S ∗ Y.

The grading Y is a derivation and, due to commutativity, the antipode S is an algebra
morphism. The Dynkin operator D is then an infinitesimal character with values in H
itself [EGP]. The following theorem is due to K. Ebrahimi-Fard, J. Gracia-Bondìa and F.
Patras (see [EGP] for a proof).

THEOREM 6. Let A be any commutative unital algebra. Right composition with D is a
bijective map from the group G1(A) of A-valued characters onto the Lie algebra g1(A) of
A-valued infinitesimal characters. The inverse map Γ is given by

(58)Γ (α) =
∑
n

∑
k1,...,kn∈N∗

αk1 ∗ · · · ∗ αkn

k1(k1 + k2) · · · (k1 + · · · + kn)
,

where αk is defined by αk(x) = α(x) if |x| = k and αk(x) = 0 if |x| �= k.

The Dynkin operator is quasi-idempotent, namely:

(59)D ◦ D = D ◦ Y.

The terminology comes from the fact that on the tensor Hopf algebra T (V ) (which is
cocommutative) the operator S ∗ Y coincides with the classical Dynkin operator:

(60)D(x1 ⊗ · · · ⊗ xk) = [. . . [x1, x2], . . . , xk]
(see [PR] for an account of the Dynkin operator in the cocommutative context).

6.3. Examples of connected graded Hopf algebras

6.3.1. The Hopf algebra of positive integers This example is a simplified version of the
one given by D. Kreimer in [K2, §2.1]. Consider the algebra N of the multiplicative semi-
group N∗ = {1, 2, 3, . . .} of positive integers. As a vector space it admits a basis (en)n∈N∗
with product given by en.em = enm and extended by linearity. We endowN with a structure
of commutative cocommutative connected graded Hopf algebra thanks to the decomposi-
tion of any integer into a product of prime factors; namely we set Δ(e1) = e1 ⊗ e1, and for
any prime p:

Δ(ep) = ep ⊗ e1 + e1 ⊗ ep,

and we extend Δ to an algebra isomorphism. Hence,

Δ(ep1···pk
) =

∑
I>J={1,...,k}

epI
⊗ epJ

,
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Fig. 1. The planar rooted trees with four vertices.

where pI denotes the product of the primes pj , j ∈ I . The grading is clearly given by the
number of prime factors (including multiplicities). The antipode is given by

S(en) = (−1)|n|en.

Suppose that the ground field is k = C. The map n �→ nz defines a character ϕ of N with
values into the holomorphic functions. Then the Riemann Zeta function is nothing but the
evaluation of ϕ on the element

ω = e1 + e2 + e3 + · · · =
∏

p prime

1

1 − ep
.

Here 1/(1 − ep) stands for the infinite sum e1 + ep + ep2 + · · · . Of course ω is not
an element of N : it makes sense (as well as the abstract Euler product expansion on the
right-hand side) only in the completion of N with respect to the fine decreasing filtration
defined by the vector space grading d(n) = n − 1 (it is indeed an algebra filtration, as
mn − 1 � m − 1 + n − 1). But evaluating the character ϕ on both sides of this equality
gives the well-known Euler product expression of the zeta function.

6.3.2. Tensor and symmetric algebras The tensor Hopf algebra T (V ) of any vector space
V is obviously graded. The symmetric Hopf algebra is a particular case of an envelop-
ing Hopf algebra, with V viewed as an Abelian Lie algebra. The Hopf algebra S(V ) is
a cocommutative commutative connected graded Hopf algebra. Note that an enveloping
algebra is not graded in general, since the quotienting ideal which is generated by the
x ⊗ y − y ⊗ x − [x, y] is not homogeneous.

6.3.3. Planar decorated rooted trees We borrow in this section some material from [F].
A planar rooted tree is an oriented connected contractible graph, with a finite number of
vertices, together with an embedding of it into the plane, such that only one vertex has only
outgoing edges (the root). We have drawn the planar rooted trees with four vertices (see
Fig. 1).

Let T be the set of planar rooted trees. Let V be a vector space on some field k, and let t
be a planar rooted tree. The space of decorations of t by V is the vector space V ⊗|t |, where
|t | is the number of vertices of t . A planar rooted tree t together with an indecomposable
element of V ⊗|t | is called a planar decorated rooted tree. Choosing a total order on the
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Fig. 2. An example of bi-admissible couple of cuts. From thickest to thinnest: trunk, middle and crown.

vertices amounts then to “decorate” the vertex number i with vi . Let us consider the vector
space:

TV =
⊕
t∈T

V ⊗|t |,

let HV be the (noncommutative) free algebra generated by TV . Products of decorated trees
(decorated forests) generate HV as a graded vector space, the degree of a decorated forest
being given by the total number of vertices. The connected graded Hopf algebra structure
on HV is given by the co-unit ε sending 1 to 1 and any nonempty decorated forest to 0,
and by a coproduct which we describe shortly as follows (see Fig. 2).

An elementary cut on a tree is a cut on some edge of the given tree. An admissible cut
is a cut such that any path starting from the root contains at most one elementary cut. The
empty cut is considered as elementary, as well as the total cut, i.e. a cut below the root.
A cut on a forest is said to be admissible if its restriction to any tree factor is admissible.
Any elementary cut c sends a forest F to a couple (P c(F ), Rc(F )), the crown (or pruning)
and the trunk, respectively. The trunk of a tree is a tree, but the crown of a tree is a forest.
Let Adm(F ) be the set of admissible cuts of the forest F , and let Adm∗(F ) be the set of
elementary cuts discarding the empty cut and the total cut. The coproduct:

Δ(F) =
∑

c∈AdmF

P c(F ) ⊗ Rc(F )

is graded, co-associative and compatible with the product [F]. The compatibility with the
product is clear (due to the definition of an admissible cut for a forest). There is a beautiful
proof of the co-associativity in [F] using induction on the degree and grafting of any forest
on a decorated root. We propose here a more intuitive proof: say that a couple (c1, c2) of
cuts is bi-admissible if both cuts c1, c2 are admissible and if c1 never bypasses c2, i.e. if c2
never cuts the trunk of c1. Any bi-admissible couple c = (c1, c2) of cuts c defines a crown
P c(F ) = P c2(F ), a trunk Rc(F ) = Rc1(F ), and a middle Mc(F): Let Adm2 F the set
of bi-admissible couples of cuts of the forest F . It is quite straightforward to set down the
formula for the iterated coproduct:

(Δ ⊗ I ) ◦ Δ(F) = (I ⊗ Δ) ◦ Δ(F) =
∑

c∈Adm2F

P c(F ) ⊗ Mc(F) ⊗ Rc(F ).

Of course the n-fold iterated coproduct admits a similar expression, involving n-admissible
n-uples of admissible cuts and n + 1 “level segments” of the forest, from the crown down
to the trunk.
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By Corollary 5 the connected graded bialgebra HV thus obtained admits an antipode
given on Ker ε by any of the two recursive formulas:

(61)S(F ) = −F −
∑

c∈Adm∗(F )

S
(
P c(F )

)
.Rc(F )

(62)= −F −
∑

c∈Adm∗(F )

P c(F ).S
(
Rc(F )

)
.

The square of the antipode does not in general coincide with the identity. The Hopf algebra
HV is self-dual when the vector space V is finite-dimensional. This crucial property is
used in [F] for giving a complete description of the Lie algebra of the primitive elements
of HV .

6.3.4. Decorated rooted trees The construction is the same except that we consider
rooted trees independently from any embedding into the plane, and we consider the free
commutative algebra generated by decorated rooted trees. We thus obtain a commutative
Hopf algebra H′

V which is clearly a quotient of HV . This Hopf algebra is thoroughly in-
vestigated in [F,K1,K2].

6.3.5. Planar binary trees [LR,F] A planar rooted tree is binary if any inner vertex (i.e.
any vertex different from the root and the leaves) has one ingoing edge and two outgoing
edges. A decorated binary tree is a binary tree t together with an indecomposable element
v = v1 ⊗ · · · ⊗ v|t | of V ⊗|t |, where V is some vector space and |t | is the grading given by
the number of inner vertices of t . Choosing a total order of the inner vertices amounts then
to “decorate” the inner vertex number i with vi . Any decorated binary tree different from
the vertical stick | is made of two subtrees grafted on a common root. More precisely one
writes:

(63)t = t l ∨dt t
r ,

where dt ∈ V is the decoration of the inner vertex closest to the root of t , and where t l and
t r are the left-hand side of t and the right-hand side of t , respectively. Recursively with
respect to the grading, we define the products ≺, 5 and ∗ on the space HP

V of decorated
planar binary trees by:

x ≺ | = | 5 x = x,

x 5 | = | ≺ x = 0,

x ≺ y = xl ∨dx (xr ∗ y) if x �= |,
x 5 y = (x ∗ yl) ∨dy yr if x �= |,
x ∗ y = x ≺ y + x 5 y.

Note that | ≺ | and | 5 | are not defined. This endows HP
V with a dendriform algebra

structure augmented with a unit ([LR,F], see also [EMP2] and [EM2]). In particular the
product ∗ =≺ + 5 (extended to | ∗ | = |) is associative with unit |. The coproduct is
defined (also recursively) by
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Δ(|) = | ⊗ |,
Δ(x) =

∑
(xl ),(xr )

((
xl
)′ ∗ (xr

)′)⊗ ((xl
)′′ ∨dx

(
xr
)′′)+ x ⊗ |.

Then (HP
V , ∗,Δ) is a connected graded bialgebra. The co-unit is given by ε(|) = 1 and

ε(t) = 0 if |t | � 1. Moreover the augmentation ideal Ker ε is a Hopf dendriform algebra,
in the sense that Δ is compatible with both products ≺ and 5. This fact can be used to
prove that (HP

V , ∗,Δ) is in fact isomorphic with the Hopf algebra HV of Section 6.3.3,
see [F].

6.3.6. Some other related examples Other combinatorial Hopf algebras which can be
found in the literature [BF1,BF2,BF3,GL,M1,MR] are closely related to the Hopf algebras
HV of planar decorated rooted trees or to its “non-planar” quotient H′

V : let us mention the
Grossman–Larson Hopf algebra decorated by V [GL] which is isomorphic to the graded
dual of H′

V , the Brouder–Frabetti Hopf algebra [BF3] which is isomorphic to the Hopf al-
gebra of (non-decorated) planar rooted forests of Section 6.3.3, and finally the Malvenuto–
Reutenauer Hopf algebra MR [MR] which is isomorphic to a Hopf algebra HV for a
certain decoration space V . This last result, which uses the bi-dendriform structure in an
essential way, implies that the Lie subalgebra of primitive elements of MR is free in char-
acteristic zero. For a detailed account, see [F] and [F2].

6.3.7. Formal diffeomorphisms and the Connes–Moscovici Hopf algebra Let A be a
commutative unital algebra. Let DA be the group (more precisely the group scheme) of
“formal diffeomorphisms tangent to identity”, i.e. A-valued formal series:

(64)f (x) = x + a2x
2 + a3x

3 + · · ·
endowed with the composition. This group scheme is given by a commutative Hopf algebra
HCM, i.e. DA is the group of A-valued characters of the Hopf algebra HCM, which is built
as follows [CMo,CK2]: let H be the algebra with generators X, Y, δn, n � 1 and relations:

(65)[Y,X] = X, [Y, δn] = nδn, [δn, δm] = 0, [X, δn] = δn+1,

endowed with the coproduct:

Δ(Y) = Y ⊗ 1 + 1 ⊗ Y,

Δ(X) = X ⊗ 1 + 1 ⊗ X + δ1 ⊗ Y,

Δ(δ1) = δ1 ⊗ 1 + 1 ⊗ δ1.

Then HCM is the (Hopf) subalgebra of H generated by the δn’s. This Hopf algebra is
connected, graded by |δn| = n. The slightly different bialgebra obtained as the coordinate
ring of the semigroup of formal series:

(66)f (x) = a1x + a2x
2 + a3x

3 + · · ·
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(with a1 not necessarily equal to 1A) is known as the Faà di Bruno bialgebra [FdB,BFK].
In the Hopf algebra of (undecorated) planar forests, the elements

vn :=
∑

t planar rooted tree
with n vertices

t

freely generate (as an algebra) a Hopf subalgebra which is a noncommutative version of
HCM. See [BFK] and [F]. There is Hopf algebra morphism from HCM into the Hopf algebra
of ϕ3 theory described in [CK2, Section 7.6.1].

7. Hopf algebras of Feynman graphs

We treat this example (more exactly this family of examples) in a separate section for two
main reasons: firstly the Hopf algebras appearing here are pointed but not connected, and
secondly this is the very example where a link is established with quantum field theory.
The non-connectedness is not a very serious problem: as we shall see there is a natural
connected quotient. The formula for the coproduct will differ slightly from that of Connes–
Kreimer in order to deal with this non-connectedness problem, but both will agree on the
connected quotient. We follow [K1] quite closely, with some modifications in order to
allow self-loops.

7.1. Discarding exterior structures

Feynman graphs are made of internal and external edges of different types, and an external
edge comes with a vector attached to it (an exterior momentum). The sum of all exterior
momenta of a given graph must be equal to zero, reflecting the global conservation of
momenta in an interaction. The Feynman rules attach to a graph together with such an
external structure an integral which can be divergent. This integral can be regularised by
various procedures, among them dimensional regularisation: the idea is to “let the dimen-
sion of the space of momenta vary in the complex numbers”, a procedure which has been
recently given a precise geometrical contents by A. Connes and M. Marcolli [CM2, §15].
The divergent integral is now replaced by a meromorphic function with poles at least at the
entire dimensions where the original integral diverges [C, Chapter 4], [E].

The approach of renormalisation by A. Connes and D. Kreimer can be summarised as
follows: organise Feynman graphs with their exterior structures into a graded Hopf algebra,
understand the (regularised, e.g. by means of dimensional regularisation) Feynman rules
as a character of this Hopf algebra with values into some algebra A (e.g. the meromorphic
functions), choose a renormalisation scheme, i.e. a splitting A = A+ ⊕ A− into two
subalgebras, apply the method of Section 5 to extract a renormalised value, and finally
recognise that this method agrees with algorithms already developed by physicists, such as
the Bogoliubov–Parasiuk–Hepp–Zimmerman (BPHZ) algorithm. Our first step will consist
in constructing a Hopf algebra from Feynman diagrams without exterior structure (i.e. with
exterior momenta nullified).
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Fig. 3. A QED interaction graph and its residue.

7.2. Operations on Feynman graphs

A Feynman graph is a (non-oriented, non-planar) graph with a finite number of vertices
and edges. An internal edge is an edge connected at both ends to a vertex (which can be
the same in case of a self-loop), an external edge is an edge with one open end, the other
end being connected to a vertex. A Feynman graph is called by physicists vacuum graph,
tadpole graph, self-energy graph, resp. interaction graph if its number of external edges is
0, 1, 2, resp. > 2.

The edges (internal or external) will be of different types labelled by a positive integer
(1, 2, 3, . . .), each type being represented by the way the corresponding edge is drawn (full,
dashed, wavy, various colours, etc.). Let τ(e) ∈ N∗ be the type of the edge e. For any vertex
v let st(v) be the star of v, i.e. the set of all edges attached to v, with self-loops counted
twice. Hence the valence of the vertex is given by the cardinal of st(v). Finally to each
vertex we associate its type, the sequence (n1, . . . , nr ) of positive integers where nj stands
for the number of edges of type j in st(v). Let T (v) be the type of the vertex v.

For example, in ϕn theory there is only one type of edge, and two types of vertices: the bi-
valent vertices and the n-valent vertices. In quantum electrodynamics there are two types of
edges: the fermion edges (usually drawn full), and the boson edges (usually drawn wavy),
and three types of vertices: bivalent boson–boson vertices, bivalent fermion–fermion ver-
tices, and trivalent vertices with two fermion edges and one boson edge. Most of the pic-
tures will be drawn in ϕ3 or ϕ4 theory, or in quantum electrodynamics.

A one-particle irreducible graph (in short, 1PI graph) is a connected graph which re-
mains connected when we cut any internal edge. A disconnected graph is said to be locally
1PI if any of its connected components is 1PI. The residue of a connected 1PI graph is the
graph with only one vertex obtained by shrinking all internal edges to a point. Of course
any connected 1PI graph has the same type as its residue (see Fig. 3).

A subgraph of a Feynman graph is either the empty graph, or a nonempty (connected or
disconnected) set of internal edges together with the vertices they encounter and the stars
of those vertices, these data forming altogether a locally 1PI graph. A proper subgraph
of Γ is a subgraph different from the empty graph or the whole graph Γ itself. If γ is a
subgraph inside a graph Γ , the contracted graph Γ/γ is the graph obtained by replacing
all connected components of γ by their residues inside Γ . As an example the residue of a
graph Γ is equal to Γ/Γ (see Fig. 4).
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Fig. 4. A subgraph γ inside a graph Γ in ϕ3 theory. The contracted graph Γ/γ does not belong to ϕ3.

7.3. The graded Hopf algebra structure

Fix a set T = {T1, . . . , Tk} of finite sequences of positive integers, which will be the
possible vertex types we want to deal with. Let VT be the vector space generated by
all connected 1PI Feynman graphs with vertex types in T , and all residues of those. Let
BT = S(VT ) be the free commutative algebra generated by V . We shall identify the unit
1 with the empty graph and any element of BT with a linear combination of disconnected
locally 1PI graphs. The algebra structure is obvious, the co-unit is given by ε(1) = 1 and
ε(Γ ) = 0 for any nonempty graph Γ . The grading (at least, one possible grading) is given
on connected graphs by the loop number

L := I − V + 1,

where I is the number of internal edges and V is the number of vertices of a given graph.
This grading is extended to non-connected graphs in such a way that it is compatible with
the algebra structure. It is important to notice that any nonempty subgraph has a non-
vanishing loop number. The coproduct is given on connected 1PI graphs by the following
formula:

Δ(Γ ) =
∑

γ subgraph of Γ
Γ/γ∈VT

γ ⊗ Γ/γ

= Γ ⊗ resΓ + 1 ⊗ Γ +
∑

γ proper subgraph of Γ
Γ/γ∈VT

γ ⊗ Γ/γ if L(Γ ) � 1,

Δ(Γ ) = Γ ⊗ Γ if L(Γ ) = 0,

and extended to non-connected graphs by multiplicativity. We leave it to the reader as
an easy exercise to show that the coproduct respects the loop number as well. Figure 5
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Fig. 5. An example of coproduct in ϕ3 theory.

Fig. 6. Another example of coproduct in ϕ3 theory.

illustrates a coproduct computation in ϕ3 theory. Two terms of the sum have been removed
because the corresponding contracted graphs have a vertex the type of which is outside
T (here a pentavalent and an hexavalent vertex, respectively), and then does not belong
to VT . On the other hand residues with any number of external edges are allowed.

Figure 6 illustrates another coproduct computation in ϕ3 theory, with a bivalent vertex
arising in the contracted graph.

PROPOSITION 24. BT is a pointed graded bialgebra.

PROOF. All axioms of a pointed graded bialgebra have been already given by the construc-
tion, except coassociativity of the coproduct. But we have for any 1PI graph of positive
degree:

(Δ ⊗ I )Δ(Γ ) =
∑

δ⊂γ⊂Γ
γ/δ∈BT , Γ /γ∈BT

δ ⊗ γ /δ ⊗ Γ/γ,

whereas

(I ⊗ Δ)Δ(Γ ) =
∑

δ⊂Γ,γ̃⊂Γ/δ
Γ/δ∈BT , (Γ /δ)/γ̃∈BT

δ ⊗ γ̃ ⊗ (Γ/δ)/γ̃ .
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There is an obvious bijection γ �→ γ̃ = γ /δ from subgraphs of Γ containing δ onto
subgraphs of Γ/δ, given by shrinking δ. As we have the obvious “transitive shrinking
property”

Γ/γ = (Γ/δ)/γ̃ ,

the two expressions coincide. �

In order to build up a graded Hopf algebra from BT , two choices are possible: first we
can add formally the inverses of the grouplike elements, i.e. the degree zero graphs: let Σ
be the set of degree zero connected 1PI graphs, let Σ−1 be another copy of the same set,
with elements labelled γ−1, γ ∈ Σ . Let ṼT be the vector space generated by VT and Σ−1,
and consider

(67)H̃T = S(ṼT )/J,

where J is the ideal generated by γ γ−1 − 1, γ ∈ Σ . The coproduct on S(VT ) is extended
to S(ṼT ) by saying that the elements of Σ−1 are grouplike. The ideal J is a bi-ideal, and so
H̃T is a pointed graded bialgebra. An antipode is easily given inductively with respect to
the degree, as any degree zero element has an antipode given by S(γ ) = γ−1, S(γ−1) = γ

for any γ ∈ Σ . The second option consists in killing the degree zero graphs (except the
empty graph). We set:

HT = BT /K,

where K is the ideal generated by γ − 1, γ ∈ Σ . It is easily seen to be a bi-ideal. The
quotient is then a connected graded bialgebra, hence a Hopf algebra thanks to Corollary 5.
We can identify the quotient with S(V ′

T ), where V ′
T stands for the vector space generated

by connected 1PI graphs with loop number � 1. The coproduct is then given by Kreimer’s
formula

Δ(Γ ) = Γ ⊗ 1 + 1 ⊗ Γ +
∑

γ proper subgraph of Γ
Γ/γ∈VT

γ ⊗ Γ/γ.

7.4. External structures

We shall be very sketchy here. Let W be a finite-dimensional vector space (the momentum
space). Keeping the notations of the preceding subsection and following [CK2] and [K1],
a specified graph will be a couple (Γ, σ ) where Γ is a connected graph in VT with E

external lines, and σ is a distribution on the vector subspace MΓ = ME ⊂ WE defined by

ME =
{
(p1, . . . , pE)

E∑
k=1

pk = 0

}
.

In order to get a Hopf algebra structure for specified graphs we must further discriminate
the type of a vertex: once the number of edges of each type is fixed for a vertex, we add
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an extra nonzero natural number, so that there are “several kinds of vertices of the same
type”. This comes from the Lagrangian of the given quantum field theory we are dealing
with: each monomial of degree ni with respect to the field φi (i ∈ {1, . . . , k}) gives rise
to vertices of type T = (n1, . . . , nk), and there are as many kinds of vertices of type T

as monomials of “field degree” T inside the Lagrangian. For example, in ϕ3 theory with
mass, the terms (m2/2)ϕ2 and (∂ϕ)2/2 give rise to two different kinds of bivalent vertices.
When taking residues we must specify the kind for the unique remaining vertex: then when
considering a contracted graph Γ/γ we must consider the kind of every contracted vertex
(corresponding to a connected component of the subgraph γ ). This gives rise to contracted
graphs Γ/γ (i) where i is a multi-index.

To any vertex of kind (T , i) corresponds a specific distribution σT,i on MΓ , where Γ is
any graph whose residue gives a vertex of type T . This extends to non-connected graphs
by considering multi-indices i. Now T stands for the set of all kinds (T , i) of vertices we
can encounter, VT stands for the space generated by all connected 1PI graphs with vertex
kinds in T , and all residues of those. Let V ′

T be the space generated by all connected
1PI Feynman graphs with vertex kinds in T and nonzero loop number, let (V ′

T )E be the
subspace of V ′

T of graphs with E external edges, and finally let W ′
T be the corresponding

space of specified graphs:

W ′
T =

∞∑
E=0

(V ′
T )E ⊗ D′(ME).

We directly give the connected version of the Hopf algebra: it is given by HT = S(W ′
T ),

and the coproduct is given on connected specified graphs by

Δ(Γ, σ ) = (Γ, σ ) ⊗ 1 + 1 ⊗ (Γ, σ )

+
∑

γ proper subgraph of Γ

∑
i,Γ /γ (i)∈VT

(γ, σT,i) ⊗ (Γ/γ (i), σ ).

7.5. Feynman rules

Let T be a set of “kinds of vertices” defining the set of Feynman graphs of a given quantum
field theory, as explained in Section 7.4 above. Each (internal or external) edge of a graph
comes with its propagator Δe, which is a distribution on the coordinate space, i.e. on
some given finite-dimensional vector space V of dimension D, which will be endowed
with a Euclidean metric here. The propagator Δe is determined by the type τ(e) of the
edge e. We consider the Fourier transform σe = F(Δe), which is a function on the dual
W = V ∗, the momentum space. The Feynman rules associate to each 1PI graph Γ (with
E external edges, I internal edges and loop number L) together with external momenta
(p1, . . . , pE) ∈ WE the following integral:

JΓ (p1, . . . , pE) = (2π)−LD 1

S(Γ )

∫
WΓ

IΓ (p1, . . . , pE; k1, . . . , kI )

(68)× δWΓ dk1 . . . dkI .
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Here WΓ is the affine subspace of WI (of dimension LD) defined by the vanishing of the
sum of momenta at each vertex of the graph, δWΓ dk1 . . . dkI is the canonical volume form
on WΓ coming from the Lebesgue measure dk1 . . . dkI on WI , S(Γ ) is the symmetry
factor (i.e. the order of the automorphism group of Γ ), and finally the integrand IΓ is
defined by

IΓ (p1, . . . , pE; k1, . . . , kI )

(69)=
∏

v vertex

λv

∏
e external edge

σe(pe)
∏

e internal edge

σe(ke).

Here λv is an interaction term which is determined by the kind of the vertex v (see Sec-
tion 7.4 above) and the momenta flowing into it. The λv’s contain the coupling constants
of the theory.

The integral (68) is usually divergent. It can be regularised by various techniques: let
us mention dimensional regularisation, which replaces the ill-defined JΓ (p1, . . . , pE) by
a meromorphic function JΓ (p1, . . . , pE)(z) of one variable z, with a possible pole at
z = D = dimW . See [C,HV,E], and see [CM2] for a conceptual approach to “spaces
of complex dimension z”. The regularised integral extends naturally by multiplicativity to
a character J of the Hopf algebra HT with values into meromorphic functions. The renor-
malised Feynman rule in the minimal subtraction scheme is then defined by the scalar-
valued character J+(z)|z=D , where J+ is the second component in the Birkhoff decompo-
sition (see Section 5.1).

7.6. Two examples

7.6.1. ϕ3 theory ϕ3 theory in D dimensions is given by a classical action functional:

(70)S(ϕ) =
∫
V

L(ϕ) dDϕ,

where ϕ is a classical field (i.e. some function on the space V ), and the Lagrangian L is
given by

(71)L(ϕ) = −m2ϕ2

2
+ (∂ϕ)2

2
+ λ

ϕ3

3! ,
where λ is the coupling constant of the theory. There is only one type of edge with corre-
sponding propagator, which in momentum space4 is written:

(72)σ(k) = 1

‖k‖2 + m2
.

The three terms in the Lagrangian give rise to three kinds of vertices, respectively two
kinds of bivalent vertices −−×

0
−−, −−×

1
−− and a trivalent vertex −<. The interaction terms are

4 We write the propagator in the Euclidean setting after “Wick rotation”. In Minkowski space it would be

written σ(k) = 1
‖k‖2−m2+iε

where ‖k‖2 now stands for the Minkowski scalar product −k2
1 + k2

2 +· · ·+ k2
D

. For

ε → 0 there is a pole on the “mass shell” ‖k‖2 = m2.
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given by

λ(−−×
0
−−) = m,

λ(−−×
1
−−) = ‖p‖2,

λ(−<) = μ3−D/2λ,

where p is the momentum flowing into the corresponding vertex of kind −−×
1
−−. Here μ

stands for an arbitrary mass (the ’t Hooft mass) so that the coupling constant λ remains
dimensionless for any D [CK1]. This gives concretely the integral JΓ defined in (68). The
theory is super-renormalisable for D < 6 (i.e. the integrals JΓ are convergent except for
a finite number of graphs), renormalisable for D = 6 and non-renormalisable for D > 6
[C,CK1].

7.6.2. Quantum electrodynamics We sketchily follow [VS], to which we refer for the
details (see also [BF1,BF2,BF3]). The dimension D is equal to 4, the coordinates of k ∈ W

are denoted by kν, ν = 1, 2, 3, 4. The integrand IΓ takes values into the space M4(C) of
4×4 matrices. The 4×4 Dirac matrices are denoted by γ ν, ν = 1, 2, 3, 4 [Hu, Chapter 6].
There are two types of lines: the electron lines −− and the photon lines ∼∼, coming with
their propagators σelectron and σphoton. There are two kinds of vertices: a bivalent electron–
electron vertex −−×−− and a trivalent vertex ∼∼<. The symmetry factor S(Γ ) of a graph is
always equal to 1 except for vacuum graphs. The interaction terms are given by

λ(−−×−−) = m,

λ(∼∼<) = eγ ν,

where m and e are the (non-renormalised) mass and electric charge of the electron, re-
spectively. The ν-dependence interaction term eγ ν of any trivalent vertex is removed by
summing over ν = 1, 2, 3, 4 in combination with the attached photon edge, as the expres-
sion of the photon propagator contains an index ν as well [VS, §3].

The Hopf algebra HT is constructed as in Section 7.4, except that the external structure
σ of a specified graph (Γ, σ ) is now an element of D′(MΓ ) ⊗ M4(C)∗. The regularised
Feynman rules then yield a character of HT with values into the meromorphic functions
(and not into the noncommutative algebra of 4 × 4-matrices of meromorphic functions).
W. Van Suijlekom proved in [VS] that the Ward–Takahashi identities generate a Hopf ideal
of HT on which the regularised Feynman rule character vanishes. This seems to be a
general pattern for gauge theories [K3,VS2].

8. The renormalisation group and the beta function

Let H be a connected graded Hopf algebra over the complex numbers. Let A be the algebra
of germs of meromorphic functions at some z0 ∈ C. The algebra A admits a splitting into
two subalgebras:

A = A+ ⊕ A−,
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where A+ is the algebra of germs of holomorphic functions at z = 0, and A− is equal to
z−1C[z−1]. We denote by Y (resp. θt ) the biderivation (resp. the one-parameter group of
automorphisms) of the Hopf algebra H induced by the graduation. We denote as before by
G(A) the group of the elements ϕ ∈ L(H,A) such that ϕ(1) = 1A (with the convolution
products), and by g(A) the subalgebra of L(H,A) of the elements ϕ ∈ L(H,A) such
that ϕ(1) = 0. We will sometimes write G for G(A) and g for g(A), dropping the target
algebra A when no confusion is possible.

Recall that G = exp g. Dropping the mention of the target algebra we shall consider
as before the subgroups G1 (resp. G2) of G formed by the characters of H with values
in A (resp. by the elements of G which enjoy the cocycle property), as well as the Lie
subalgebras g1 (resp. g2) of derivations of H with values in A (resp. of g which enjoy the
cocycle property). Recall that G1 = exp g1 and G2 = exp g2.

8.1. The renormalisation map

We construct here a bijection R : g → g thanks to the biderivation Y :

PROPOSITION 25. The equation

(73)ϕ ◦ Y = ϕ ∗ γ

defines a bijective correspondence

R̃ : G → g

ϕ �→ γ.

Equivalently, the equation

(74)e∗α ◦ Y = e∗α ∗ γ

defines a (non-linear) bijective correspondence

R : g → g

α �→ γ,

and R = R̃ ◦ exp.

PROOF. Equation (73) yields for any homogeneous x ∈ H:

|x|ϕ(x) = γ (x) +
∑
(x)

ϕ(x′)γ (x′′),

which determines γ (recursively with respect to |x|) from ϕ and vice-versa, starting from
ϕ(1) = 1A and γ (1) = 0. In other words Eq. (73) determines a bijection R̃ from G to g

such that γ = R̃(ϕ). The rest of the proposition follows then immediately. �

Equation (74) yields the following explicit expression for R:

(75)R(α) = e∗−α ∗ (e∗α ◦ Y
)
.
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PROPOSITION 26. If moreover the Hopf algebra H is commutative, the correspondence
R̃ reduces to right composition with the Dynkin operator:

(76)R̃(ϕ) = ϕ ◦ D.

PROOF. We have:

(77)ϕ ◦ D = ϕ ◦ (S ∗ Y) = (ϕ ◦ S) ∗ (ϕ ◦ Y) = ϕ∗−1 ∗ (ϕ ◦ Y),

hence:

(78)ϕ ◦ Y = ϕ ∗ (ϕ ◦ D).

So ϕ ◦ D = R̃(ϕ) according to Proposition 25 (see [EGP]). �

There is another explicit formula:

PROPOSITION 27.

(79)R(α) =
∫ 1

0
e∗−sα ∗ (α ◦ Y) ∗ e∗sα ds = 1 − e−adα

adα
.(α ◦ Y).

PROOF. For any u ∈ C we have

e∗uα ◦ Y = e∗uα ∗ R(uα).

Setting u = t + s and using the group property e∗(t+s)α = e∗tα ∗ e∗sα as well as the
derivation property

(e∗tα ∗ e∗sα) ◦ Y = (e∗tα ◦ Y) ∗ e∗sα + e∗tα ∗ (e∗sα ◦ Y),

we get:

(80)e∗(t+s)α ◦ Y = e∗(t+s)α ∗ (R(sα) + e∗−sα ∗ R(tα) ∗ e∗sα).
Setting γ (t) = R(tα) the above equation reads:

(81)γ (t + s) = γ (s) + e∗−sα ∗ γ (t) ∗ e∗sα.
We have γ (0) = 0, and differentiating this equation with respect to s at s = 0 yields:

(82)γ̇ (t) = γ̇ (0) + [γ (t), α
]
.

Differentiating once again with respect to t gives then

(83)γ̈ (t) = [γ̇ (t), α
]
.

The solution of this first order differential equation is given by

(84)γ̇ (t) = e∗−tα ∗ γ̇ (0) ∗ e∗tα.
Expanding the equation e∗tα ◦ Y = e∗tα ∗ γ (t) up to order 1 in t = 0 yields immediately

(85)γ̇ (0) = α ◦ Y.

Integrating and setting t = 1 then proves the proposition. �



Hopf Algebras in Renormalisation 417

COROLLARY 7. The correspondence R sends infinitesimal characters to infinitesimal
characters and cocycles to cocycles.

PROOF. The first assertion follows immediately from Propositions 27, 22 and Lemma 9.
The second assertion follows directly from Proposition 27. �

REMARK 8. If the Hopf algebra H is cocommutative, then, thanks to the commutativity
of A, the convolution product is commutative. The correspondence R becomes then linear
and we simply have

(86)R(α) = α ◦ Y.

8.2. Inverting R̃: the scattering-type formula

We shall give an explicit expression of the map R̃−1 : g → G. It takes the form

R̃−1(γ ) = lim
t→+∞ exp(−tA) exp tB,

(cf. Theorem 7 below), where A and B live in a semi-direct product Lie algebra g̃ = g�C.
We have to describe this semi-direct product and the corresponding semi-direct product
group G̃ = G � C, and then we must endow G̃ with a topology so that the above limit
makes sense. We adapt here the proof of Theorem 2 in [CK2]. To be precise, we define the
Lie algebra

(87)g̃ := g � C.Z0,

where the action of Z0 on g is given by the derivation

(88)Z0(γ ) = γ ◦ Y.

The corresponding group is G̃ = G � C, where the right action of C on G is given by

(89)ϕ.t = ϕ ◦ θt ,

so that the product is given by (ϕ, t)(ψ, s) = (ϕ ∗ (ψ ◦ θt ), t + s). We shall not delve out
the Lie group structure for G̃ here, but we shall define the exponential map exp : g̃ → G̃.
It should of course coincide with the exponential already defined on G, and should verify

exp tZ0 = (e, t),

so that exp tZ0 indeed acts on G by composition with θt = exp tY on the right. We should
be able in principle to define exp(tZ0 + γ ) by means of the Baker–Campbell–Hausdorff
formula as long as convergence problems can be handled here. We prefer, like in [CK2],
cf. also [CM1], to give an alternative definition based on Araki’s expansion formula [Ar]:

exp(tZ0 + γ ) =
∞∑
n=0

∫
∑n

j=0 uj=1, uj�0
exp(u0tZ0)γ exp(u1tZ0)γ · · · γ

(90)× exp(untZ0) du1 . . . dun.
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Let us check that the sum above makes sense in our particular context: setting vj = uj +
uj+1 + · · · + un we get

exp(−tZ0) exp(tZ0 + γ ) = exp(−tZ0).

exp(tZ0).

∞∑
n=0

∫
0�vn�···�v1�1

exp(−tv1Z0)γ exp(tv1Z0) · · ·

× exp(−tvnZ0)γ exp(tvnZ0) dv1 . . . dvn

=
∞∑
n=0

∫
0�vn�···�v1�1

(γ ◦ θ−tv1) ∗ · · · ∗ (γ ◦ θ−tvn) dv1 . . . dvn.

The sum here is well defined as a locally finite sum, as it ends at n = n0 when evaluated
at any x = Hn0 . It remains to check that the exponential thus defined enjoys the one-
parameter group property. Indeed, for any s, t real we have:

exp t (Z0 + γ ) exp s(Z0 + γ )

= etZ0

( ∞∑
p=0

tp
∫

0�vp�···�v1�1
(γ ◦ θ−tv1) ∗ · · · ∗ (γ ◦ θ−tvp ) dv1 . . . dvp

)

× esZ0

( ∞∑
p=0

sq
∫

0�wq�···�w1�1
(γ ◦ θ−sw1) ∗ · · ·

∗ (γ ◦ θ−swq ) dw1 . . . dwq

)

= e(t+s)Z0

∞∑
p,q=0

tpsq
∫ ∫

0�vp�···�v1�1, 0�wq�···�w1�1
(γ ◦ θ−s−tv1) ∗ · · ·

∗ (γ ◦ θ−s−tvp ) ∗ (γ ◦ θ−sw1) ∗ · · ·
∗ (γ ◦ θ−swq ) dv1 . . . dvp dw1 . . . dwq

= e(t+s)Z0

∞∑
p,q=0

∫ ∫
0�vp�···�v1�t, 0�wq�···�w1�s

(γ ◦ θ−s−v1) ∗ · · ·

∗ (γ ◦ θ−s−vp ) ∗ (γ ◦ θ−w1) ∗ · · ·
∗ (γ ◦ θ−wq ) dv1 . . . dvp dw1 . . . dwq

= e(t+s)Z0

∞∑
n=0

∑
p+q=n

∫ ∫
s�vp�···�v1�t+s, 0�wq�···�w1�s

(γ ◦ θ−v1) ∗ · · ·

∗ (γ ◦ θ−vp ) ∗ (γ ◦ θ−w1) ∗ · · ·
∗ (γ ◦ θ−wq ) dv1 . . . dvp dw1 . . . dwq

= e(t+s)Z0

∞∑
n=0

∫
s�up�···�u1�t+s

(γ ◦ θ−u1) ∗ · · · ∗ (γ ◦ θ−un) du1 . . . dun

= exp(t + s)(Z0 + γ ).
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We can now state the main theorem of this section.

THEOREM 7. Let γ ∈ g. Then:
(i) For any real t the product exp −tZ0 exp t (Z0 + γ ) belongs to G.

(ii) The product above admits a limit when t → +∞ for the topology on G induced by
the simple convergence topology on L(H,A).

(iii) The inverse of the renormalisation map is given by

(91)R̃−1(γ ) = lim
t→+∞ exp −tZ0 exp t (Z0 + γ ).

(iv) R̃−1 sends g1 into G1 and g2 into G2.

PROOF. The first assertion comes directly from the expression:

exp(−tZ0) exp(tZ0 + tγ )

=
∞∑
n=0

∫
0�vn�···�v1�1

(tγ ◦ θ−tv1) ∗ · · · ∗ (tγ ◦ θ−tvn) dv1 . . . dvn.

The right-hand side belongs manifestly to G. The change of variables vj → tvj yields:

exp(−tZ0) exp(tZ0 + tγ ) =
∞∑
n=0

∫
0�vn�···�v1�t

(γ ◦ θ−v1) ∗ · · ·

∗ (γ ◦ θ−vn) dv1 . . . dvn.

To prove the second assertion it suffices to prove that the integrals

(92)In :=
∫

0�vn�···�v1�+∞
(γ ◦ θ−v1) ∗ · · · ∗ (γ ◦ θ−vn) dv1 . . . dvn

converge, as the sum I0 + I1 + I2 + · · · is locally finite. The convergence is easily seen by
induction on n: indeed we have I0 = e and the crucial equality valid for any x ∈ Ker ε:

(93)Y−1(x) =
∫ ∞

0
θ−t (x) dt.

It follows that we have for any a ∈ g

(94)
∫ ∞

0
a ◦ θ−t dt = a ◦ Y−1.

A simple computation then gives

In =
∫ ∞

0
(In−1 ∗ γ ) ◦ θ−vn dvn = (In−1 ∗ γ ) ◦ Y−1,

which inductively shows the convergence of the integrals In. Now equation (E) can be
rewritten as

ϕ(x) = (ϕ ∗ γ ) ◦ Y−1(x) ∀x ∈ Ker ε,

ϕ(1) = 1A.
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As γ = R̃(ϕ) this means that

(95)R̃−1(γ ) = e + T
(
R̃−1(γ )

)
,

where T is the transformation of L = L(H,A) defined by

T (ψ) = (ψ ∗ γ ) ◦ Y−1 =
∫ ∞

0
(ψ ∗ γ ) ◦ θ−t dt.

The transformation T is a contraction on L for the distance associated with the filtration.
R̃−1(γ ) is then the limit of the sequence (ϕn) defined by ϕ0 = e and ϕn+1 = e + T (ϕn).
A straightforward computation yields

(96)ϕn =
n∑

k=0

Ik.

Hence we have

(97)R̃−1(γ ) =
∞∑
k=0

Ik,

which proves assertion (iii). Finally assertion (iv) comes from the fact that the derivation
Z0 acts on g1 and g2. We can then consider semi-direct products:

g̃1 = g1 � C.Z0, G̃1 = G1 � C,

g̃2 = g2 � C.Z0, G̃2 = G2 � C,

and thus replace the group G by any of the two groups G1,G2 in assertions (i)–(iii), which
proves assertion (iv) and ends the proof of the theorem. �

COROLLARY 8. The inverse of R : g → g is given by

(98)R−1(γ ) = lim
t→+∞ Log

(
exp −tZ0 exp t (Z0 + γ )

)
,

and R−1 sends g1 (resp. g2) into g1 (resp. g2).

8.3. The beta-function

Exponentiating the grading derivation Y we get a one-parameter group θt of automor-
phisms of the Hopf algebra H, defined on Hn by

(99)θt (x) = entx.

The map ϕ �→ ϕ ◦ Y is a derivation of (L(H,A), ∗), and ϕ �→ ϕ ◦ θt is an automorphism
of (L(H,A), ∗) for any complex t . We will rather consider the one-parameter group ϕ �→
ϕ ◦ θtz of automorphisms of the algebra (L(H,A), ∗), i.e.:

(100)ϕt (x)(z) := etz|x|ϕ(x)(z).
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Differentiating at t = 0 we get:

(101)
d

dt |t=0
ϕt = z(ϕ ◦ Y).

Let GA be any of the three groups G(A), G1(A) and G2(A). We denote by Gloc
A the set

of local elements of GA, i.e. those ϕ ∈ GA such that the negative part of the Birkhoff
decomposition of ϕt does not depend on t , namely:

(102)Gloc
A =

{
ϕ ∈ GA

∣∣∣ d

dt
(ϕt )− = 0

}
.

In particular the dimensional-regularised Feynman rules verify this property: in physical
terms, the counter terms do not depend on the choice of the arbitrary mass-parameter μ

(’t Hooft’s mass) and one must introduce in dimensional regularisation in order to get
dimensionless expressions, which is indeed a manifestation of locality (see [CK2]). We
also denote by Gloc

A− the elements ϕ of Gloc
A such that ϕ = ϕ∗−1− . Since composition on the

right with Y is a derivation for the convolution product, the map R̃ of Section 8.1 verifies
a cocycle property:

(103)R̃(ϕ ∗ ψ) = R̃(ψ) + ψ∗−1 ∗ R̃(ϕ) ∗ ψ.

We summarise some key results of [CK3] in the following proposition.

PROPOSITION 28.
(i) For any ϕ ∈ GA there is a one-parameter family ht in GA such that ϕt = ϕ ∗ ht ,

and we have

(104)ḣt := d

dt
ht = ht ∗ zR̃(ht ) + zR̃(ϕ) ∗ ht .

(ii) zR̃ restricts to a bijection from Gloc
A onto gA∩L(H,A+). Moreover it is a bijection

from Gloc
A − onto those elements of gA with values in the constants, i.e.:

gc
A = gA ∩ L(H,C).

(iii) For ϕ ∈ Gloc
A , the constant term of ht , defined by

(105)Ft(x) = lim
z→0

ht (x)(z)

is a one-parameter subgroup of GA ∩L(H,C), the scalar-valued characters of H.

PROOF. For any ϕ ∈ GA one can write

(106)ϕt = ϕ ∗ ht

with ht ∈ GA. From (106), (101) and (73) we immediately get:

ϕ ∗ ḣt = ϕ ∗ ht ∗ zR̃(ϕ ∗ ht ).

Equation (104) then follows from the cocycle property (103). This proves the first assertion.
Now take any character ϕ ∈ Gloc

A with Birkhoff decomposition ϕ = ϕ∗−1− ∗ ϕ+ and write
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the Birkhoff decomposition of ϕt :

ϕt = (ϕt
)∗−1
− ∗ (ϕt

)
+

= (ϕ−)∗−1 ∗ (ϕt
)
+

= (ϕ ∗ ϕ∗−1+
) ∗ (ϕt

)
+

= ϕ ∗ ht ,

with ht taking values in A+. Then zR̃(ϕ) also takes values in A+, as a consequence of
Eq. (104) at t = 0. Conversely, suppose that zR̃(ϕ) takes values in A+. We show that ht

also takes values in A+ for any t , which immediately implies that ϕ belongs to Gloc
A .

For any γ ∈ gA, let us introduce the linear transformation Uγ of gA defined by

Uγ (δ) := γ ∗ δ + zδ ◦ Y.

If γ belongs to gA ∩ L(H,A+) then Uγ restricts to a linear transformation of gA ∩
L(H,A+).

LEMMA 10. For any ϕ ∈ GA, n ∈ N we have

znϕ ◦ Yn = ϕ ∗ Un

zR̃(ϕ)
(e).

PROOF. Case n = 0 is obvious, n = 1 is just the definition of R̃. We check thus by in-
duction, using again the fact that composition on the right with Y is a derivation for the
convolution product:

zn+1ϕ ◦ Yn+1 = z
(
znϕ ◦ Yn

) ◦ Y

= z
(
ϕ ∗ Un

zR̃(ϕ)
(e)
) ◦ Y

= z(ϕ ◦ Y) ∗ Un

zR̃(ϕ)
(e) + zϕ ∗ (Un

zR̃(ϕ)
(e) ◦ Y

)
= ϕ ∗ (zR̃(ϕ) ∗ Un

zR̃(ϕ)
(e) + zUn

zR̃(ϕ)
(e) ◦ Y

)
= ϕ ∗ Un+1

zR̃(ϕ)
(e). �

Let us go back to the proof of Proposition 28. According to Lemma 10 we have for any t ,
at least formally:

(107)ϕt = ϕ ∗ exp
(
tUzR̃(ϕ)

)
(e).

We still have to fix up the convergence of the exponential just above in the case when zR̃(ϕ)

belongs to L(H,A+). Let us consider the following decreasing bifiltration of L(H,A+):

Lp,q
+ = (zqL(H,A+)

) ∩ Lp,

where Lp is the set of those α ∈ L(H,A) such that α(x) = 0 for any x ∈ H of degree
� p − 1. In particular L1 = g0. Considering the associated filtration

Ln+ =
∑

p+q=n

Lp,q
+ ,
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we see that for any γ ∈ g0 ∩L(H,A+) the transformation Uγ increases the filtration by 1,
i.e.:

Uγ

(
Ln+
) ⊂ Ln+1+ .

The algebra L(H,A+) is not complete with respect to the topology induced by this fil-
tration, but the completion is L(H, Â+), where Â+ = C�z� stands for algebra of formal
series. Hence the right-hand side of (107) is convergent in L(H, Â+) with respect to this
topology. Hence for any γ ∈ L(H,A+) and for ϕ such that zR̃(ϕ) = γ we have ϕt = ϕ∗ht

with ht ∈ L(H, Â+) for any t . On the other hand we already know that ht takes values in
meromorphic functions for each t . So ht belongs to L(H,A+), which proves the first part
of the second assertion. Equation (104) at t = 0 reads:

(108)zR̃(ϕ) = ḣ(0) = d

dt |t=0

(
ϕt
)
+.

For ϕ ∈ Gloc
A− we have, thanks to the property ϕ(Ker ε) ⊂ A−:

ht (x) = (ϕt )+(x) = (I − π)

(
ϕt (x) +

∑
(x)

ϕ∗−1(x′)ϕt (x′′)
)

= t (I − π)

(
z|x|ϕ(x) + z

∑
(x)

ϕ∗−1(x′)ϕ(x′′)|x′′|
)

+ O
(
t2)

= t Res(ϕ ◦ Y) + O
(
t2),

hence

(109)ḣ(0) = Res(ϕ ◦ Y).

From Eqs. (101), (73) and (109) we get

(110)zR̃(ϕ) = Res(ϕ ◦ Y)

for any ϕ ∈ Gloc
A− , hence zR̃(ϕ) ∈ gc. Conversely let β in gc. Consider ψ = R̃−1(z−1β).

This element of GA verifies by definition, thanks to Eq. (73):

zψ ◦ Y = ψ ∗ β.

Hence for any x ∈ Ker ε we have

zψ(x) = 1

|x|

(
β(x) +

∑
(x)

ψ(x′)β(x′′)
)
.

As β(x) is a constant (as a function of the complex variable z) it is easily seen by induc-
tion on |x| that the right-hand side evaluated at z has a limit when z tends to zero. Thus
ψ(x) ∈ A−, and then

ψ = R̃−1
(

1

z
β

)
∈ Gloc

A− ,

which proves assertion (ii).
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Let us prove assertion (iii). Equation ϕt = ϕ ∗ ht together with (ϕt )s = ϕt+s yields:

(111)hs+t = hs ∗ (ht )
s .

Taking values at z = 0 immediately yields the one-parameter group property

(112)Fs+t = Fs ∗ Ft

thanks to the fact that evaluation at z = 0 is an algebra morphism. �

We can now give a definition of the beta-function [CK2,EM1,S]: for any ϕ ∈ Gloc
A , the

beta-function of ϕ is the generator of the one-parameter group Ft defined by Eq. (105) in
Proposition 28. It is the element of the dual H∗ defined by

(113)β(ϕ) := d

dt

∣∣∣∣
t=0

Ft(x)

for any x ∈ H.

PROPOSITION 29. For any ϕ ∈ Gloc
A the beta-function of ϕ coincides with the one of the

negative part ϕ∗−1− in the Birkhoff decomposition. It is given by any of the three expressions:

β(ϕ) = Res R̃(ϕ)

= Res
(
ϕ∗−1− ◦ Y

)
= − Res(ϕ− ◦ Y).

PROOF. The third equality will be derived from the second by taking residues on both
sides of the equation:

0 = R̃(e) = R̃(ϕ−) + ϕ∗−1− ∗ R̃
(
ϕ∗−1−

) ∗ ϕ−,

which is a special instance of the cocycle formula (103). Suppose first ϕ ∈ Gloc
A− , hence

ϕ∗−1− = ϕ. Then zR̃(ϕ) is a constant according to assertion (ii) of Proposition 28. The
proposition then follows from Eq. (109) evaluated at z = 0, and Eq. (110). Suppose now
ϕ ∈ Gloc

A , and consider its Birkhoff decomposition. As both components belong to Gloc
A we

can apply Proposition 28 to them. In particular we have:

ϕt = ϕ ∗ ht ,

(ϕ∗−1− )t = ϕ∗−1− ∗vt ,
(ϕ+)t = ϕ+ ∗ wt,

and equality ϕt = (ϕ∗−1− )t ∗ (ϕ+)t yields:

(114)ht = (ϕ+)∗−1 ∗ vt ∗ ϕ+ ∗ wt .

We denote by Ft , Vt ,Wt the one-parameter groups obtained from ht , vt , wt , respectively,
by letting the complex variable z go to zero. It is clear that ϕ+

|z=0 = e, and similarly that
Wt is the constant one-parameter group reduced to the co-unit ε. Hence Eq. (114) at z = 0
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reduces to

(115)Ft = Vt ,

hence the first assertion. The cocycle equation (103) applied to the Birkhoff decomposition
reads:

R̃(ϕ) = R̃(ϕ+) + (ϕ+)∗−1 ∗ R̃(ϕ∗−1− ) ∗ ϕ+.

Taking residues of both sides yields:

Res R̃(ϕ) = Res R̃(ϕ∗−1− ),

which ends the proof. �

The one-parameter group Ft = Vt above is the renormalisation group of ϕ [CK3].

REMARK 9. As it is possible to reconstruct ϕ− from β(ϕ) using the scattering-type for-
mula of Theorem 7, the term ϕ− (i.e. the divergence structure of ϕ) is uniquely determined
by its residue.
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Introduction

The coordinate ring of an algebraic group is a commutative Hopf algebra. G. Hochschild
was the first to study in detail commutative Hopf algebras for applications to algebraic
groups. As a successor of Hochschild, M. Sweedler founded in the end of the 1960s the
study of (possibly non-commutative) Hopf algebras; he apparently regarded Hopf algebras
as a non-commutative analogue of algebraic groups. Almost at the same time, G. Kac, an
operator-algebraist, reached the notion of a ring group, nowadays called a Kac algebra, as
a non-commutative analogue of locally compact groups; a Kac algebra, in particular one
of finite dimension is a C∗-algebra, hence especially a semisimple algebra over C, which
is at the same time a Hopf algebra (Definition 7.2).

In 1975, I. Kaplansky published his lecture notes “Bialgebras” [Kap], proposing 10 con-
jectures in the appendix. More than half of the conjectures ask whether finite-dimensional
Hopf algebras, especially semisimple ones, have the same properties as finite groups. Un-
fortunately, Kac’s pioneering work, though referred to in [Kap], did not draw attention for a
long time until Y. Zhu [Z] refined some of the results by Kac [K2] in an Hopf-algebra con-
text, in order to answer Kaplansky’s conjecture 8 which states that a Hopf algebra of prime
dimension is commutative and cocommutative. This work by Zhu served to draw atten-
tion to Kac’s work, and motivated many people including the author, Natale and Kashina
to prove classification results for semisimple (and later, even arbitrary) Hopf algebras of
various special finite dimensions. On the other hand, A. Ocneanu formulated around 1986
(without proof) a correspondence between finite-dimensional Kac algebras and depth 2
subfactors of type II1 (see [Oc]), which was proved by Szymański [Sz], David [Da], Popa
[P1,P2] and others. Then a close relation of this result with Kac’s work was pointed out by
Izumi and Kosaki [IK], and the author [M8].

In the middle of the 1980s, the notion of a quantum group was discovered indepen-
dently by V. Drinfeld, M. Jimbo and S.L. Woronowicz. Since then quantum group theory
has had a strong impact on Hopf algebra theory, and especially convinced the mathemat-
ical community of the importance of braidings on tensor categories. An important aspect
of a Hopf algebra, say H , is that the H -modules form a tensor category. The braidings
(respectively, symmetries, i.e., involutory braidings) on such a tensor category are in 1–1
correspondence with the quasitriangular (respectively, triangular) structures on the Hopf
algebra H ; see [D1]. P. Etingof and S. Gelaki have produced a plethora of remarkable re-
sults especially on quasitriangular Hopf algebras, including the complete classification of
finite-dimensional triangular Hopf algebras in characteristic zero [EG7].

This paper surveys recent achievements on finite-dimensional semisimple (mainly) Hopf
algebras, giving explanatory examples. We will start in Section 1 by surveying the present
status of some of the Kaplansky conjectures; especially, pioneering work by Larson and
Radford (see [L,LR,R1,R2]) should be respectfully mentioned. Section 2 contains the clas-
sification results in dimension pq, where p, q are primes, and the lifting theorem due to
Etingof and Gelaki [EG3], which makes it possible to derive results in positive characteris-
tic from those in characteristic zero. In Section 3 we discuss semisolvability as formulated
by Montgomery and Witherspoon [MW], and also describe classification results in dimen-
sions p3, pq2. Section 4 contains the above-cited classification result, due to Etingof and
Gelaki [EG5], of finite-dimensional triangular Hopf algebras, but restricted to semisimple
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(and cosemisimple) ones. Sections 5 and 6 are devoted to those results on Hopf-algebra
extensions associated to a matched pair of finite groups, which includes an exact cohomol-
ogy sequence due to Kac [K1] and its consequences. Sections 7 and 8 are devoted to topics
on finite-dimensional Kac algebras. In Section 7, we describe the famous example of an
8-dimensional Kac algebra due to Kac and Paljutkin [KP], and its generalizations. Finally
in Section 8, we review the correspondence mentioned above between finite-dimensional
Kac algebras and depth 2 subfactors of type II1, and its relation with Kac’s work [K1] on
cohomology.

Because of my restricted knowledge, some important relevant topics are not discussed,
including those on the Frobenius–Schur indicators [LM], and on the exponent [Ks1],
[EG4], as well as various generalized results for weak Hopf algebras [ENO].

As survey articles which treat of relevant topics, let me recommend [A], [Mo2,Mo3]
and [SS].

We work over a fixed ground field k. We will state explicitly when there are assumptions
on k, especially on its characteristic ch k. In Sections 7, 8 we suppose k = C, the complex
number field. We let H denote a Hopf algebra (over k) with coalgebra structure

Δ : H → H ⊗ H, Δ(a) =
∑

a1 ⊗ a2, ε : H → k

and antipode S. Let H+ = Ker ε denote the augmentation ideal. In most sections below,
H will be supposed to be finite-dimensional, in which case H ∗ denotes the dual Hopf
algebra of H .

1. Kaplansky’s conjectures

Let us survey the present status of some of Kaplansky’s conjectures; see the introduction.
First of all Kaplansky stated the following one, as an analogue of the Lagrange theorem on
groups.

CONJECTURE 1. A Hopf algebra H is free, as a left or right module, over every Hopf
subalgebra K .

Immediately, Oberst and Schneider [OS] gave a counter-example with dimH = ∞.

THEOREM 1.1. (See [NZ,S1].) Suppose dimH < ∞. Then Conjecture 1 is true. More-
over, H has a normal K-basis in the sense that there is a left K-linear and right H/K+H -
colinear isomorphism H � K ⊗ H/K+H .

Note here that H/K+H is a quotient (right H -module) coalgebra of H . Recently,
Skryabin [Sk] proved the same result in the generalized situation that H is weakly finite,
and K is a finite-dimensional left (or right) coideal subalgebra.

Next, let us pick on:

CONJECTURE 10. Suppose that k is algebraically closed, and let d > 0 be an integer
such that ch k � d . Then the number of isomorphism classes of Hopf algebras of dimension
d is finite.
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THEOREM 1.2.
(1) (See [St].) Let k be as above. Then the number of isomorphism classes of semisimple

and cosemisimple Hopf algebras of a given dimension is finite.
(2) (See [AS,BDG,G,Mu].) Conjecture 10 is not true in general.

Each of [AS,BDG,G,Mu] constructed a family of Hopf algebras of a fixed dimension
that consists of infinitely many isomorphism classes. In [M6], it was proved that for all
Hopf algebras in each family, their comodule categories are tensor-equivalent to each other,
or in other words, the duals of those Hopf algebras are twists (Definition 4.2) of each other.
Etingof and Gelaki [EG6] showed that there exist infinitely many Hopf algebras of a fixed
dimension that are non-isomorphic even up to a twist.

Stefan’s idea to prove part (1) above was elaborated by Etingof and Gelaki to a gener-
alized cohomology-vanishing theorem [EG3, Theorem 1.2], which has the following as a
corollary; see also [R2].

THEOREM 1.3. (See [EG3].) The set HomHopf(H1,H2) of all Hopf algebra maps from a
finite-dimensional semisimple Hopf algebra H1 to a finite-dimensional cosemisimple Hopf
algebra H2 is finite.

Suppose that H is a finite-dimensional Hopf algebra. By Radford [R1], the antipode S

of H has finite order; more precisely the composite S ◦ · · · ◦ S = S4d with d = dimH

equals the identity idH . Let us consider the conditions:
(a) H is semisimple as an algebra,
(b) H is cosemisimple as a coalgebra,
(c) ch k � dimH ,
(d) S is involutory, i.e., S ◦ S = idH .
Conjectures 5, 7 are expressed by:

CONJECTURE 5. (a) or (b) ⇒ (d).

CONJECTURE 7. (a) and (b) ⇒ (c).

By summarizing results by Larson [L], Larson and Radford [LR], and Etingof and
Gelaki [EG3], we have:

THEOREM 1.4.
(1) (a) and (b) ⇔ (c) and (d).
(2) If ch k = 0 or > dϕ(d)/2, where d = dimH , then (a) ⇔ (b) ⇔ (d). Here ϕ denotes

the Euler function.

Thus, Conjecture 7 is proved to be true. Conjecture 5 is true if ch k = 0 or > dϕ(d)/2.
Suppose that k is algebraically closed. Let H be a finite-dimensional Hopf algebra which

is semisimple. Then H is, as an algebra, of the form

(1.5)H � Mn1(k) × Mn2(k) × · · · × Mnr (k),
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where Mn(k) denotes the algebra of all n × n matrices. We may suppose that H+ =
Mn2(k) × · · · × Mnr (k), and so n1 = 1. In this situation Kaplansky posed:

CONJECTURE 6. ni | dimH for each 1 � i � r .

If H = kG, a finite group algebra, then this is a well-known result by Frobenius, which
is generalized by part (1) of the next theorem due to Etingof and Gelaki.

THEOREM 1.6. Let the notation be as above. We suppose in addition that H is cosemisim-
ple, if ch k > 0.

(1) (See [EG1]; see also [S2,T2].) Conjecture 6 is true if H is quasitriangular [D1] (or
see [Mo1, p. 180]).

(2) (See [KSZ1,KSZ2].) Suppose that dimH is odd.
(i) Every ni (1 � i � r) must be odd.

(ii) Any simple component Mni
(k) (2 � i � r) included in H+ cannot be stable

under the antipode S.

Keep the notation be as above. The traces tri of the simple components Mni
(k) given in

(1.5) span a subalgebra in H ∗, which we denote by Rk(H) =∑r
i=1 k tri . This is precisely

the base extension ⊗Zk of the character ring of H . By [LR, Proposition 1], the character
Λ :=∑r

i=1 ni tri of the regular representation is an integral. Note that if ch k � dimH , then
eΛ := (dimH)−1Λ is a (central) primitive idempotent in Rk(H) such that dim eΛH ∗ = 1.

THEOREM 1.7. (See [K2,Z].) Suppose ch k = 0, and that k is algebraically closed. Then
Rk(H) is a semisimple algebra, and for each primitive idempotent e in Rk(H),

dim eH ∗ | dimH.

Finally, let us pick:

CONJECTURE 8. A finite-dimensional Hopf algebra H of a prime dimension p is commu-
tative and cocommutative.

THEOREM 1.8. Suppose ch k = 0 or > p. Then Conjecture 8 is true. Therefore, if k is
algebraically closed, such an H as above is isomorphic to the group algebra kCp of the
cyclic group Cp of order p.

This theorem was first proved by Kac [K2] for Kac algebras (Definition 7.2), then by
Zhu [Z] in characteristic zero (as a direct consequence of his Theorem 1.7), and finally by
Etingof and Gelaki [EG3] in positive characteristic; see Remark 2.5.

2. Some classification results

ASSUMPTION 2.1. Throughout this section, k is supposed to be algebraically closed, and
H denotes a finite-dimensional Hopf algebra over k.
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PROPOSITION 2.2. Suppose ch k � dimH (i.e., condition (c) in Section 1). Then, H is
cocommutative if and only if it is isomorphic to some group algebra kG.

PROOF. This follows since the assumption implies that if H is cocommutative, the irre-
ducible component of H containing 1 is trivial. �

In a finite group algebra kG, the group elements g (∈ G) are regarded as grouplikes, so
that Δ(g) = g ⊗ g, ε(g) = 1, S(g) = g−1. This defines the Hopf algebra structure on kG.
We let kG = (kG)∗ denote the dual Hopf algebra of kG. Let (eg)g∈G denote the basis of
kG which is dual to the canonical basis (g)g∈G of kG. Thus,

Δ(eg) =
∑
h∈G

eh ⊗ eh−1g, ε(eg) = δ1,g, S(eg) = eg−1 .

The proposition above can be dualized so that under the same assumption, H is commuta-
tive if and only if it is isomorphic to some kG.

DEFINITION 2.3. H is said to be trivial, if it is isomorphic to some kG or kG.

THEOREM 2.4. Suppose dimH = pq, where p and q are primes with p � q.
(1) (See [EG2,M1,M3].) If H is semisimple and cosemisimple (then necessarily, ch k �=

p, q), it is trivial.
(2) (See [Ng2,EG8].) Suppose ch k = 0. If either p = 2 < q or 2 < p < q � 2p + 1,

then H is necessarily trivial.
(3) (See [Ng1].) Suppose ch k = 0. If p = q, then H is either trivial or isomorphic to

one of the pointed Hopf algebras defined by Taft [Tf].

It seems to be widely believed that if p �= q, the conclusion of (2) should be true without
any additional restriction on p, q; see [BD] for a positive result in dimension 65 which is
not covered by (2).

First, in characteristic zero, part (1) was proved by the author [M1,M2,M3] in the case
when p = 2 or p = q, and by Etingof and Gelaki [EG2] (see also Natale [N1]) in the
remaining cases. The results were then applied to prove things in positive characteristic,
by using the following lifting theorem due to Etingof and Gelaki.

REMARK 2.5. The situation is the same for the proofs of Theorems 1.6(1), 1.8, 3.10
and 3.12(2).

Suppose ch k > 0. Let O = W(k) denote the ring of Witt vectors over k; it is a complete
discrete variation ring of characteristic zero, with residue field k. Let K denote the quotient
field of O; it is not algebraically closed, in general.

THEOREM 2.6. (See [EG3].)
(1) Given a semisimple and cosemisimple Hopf algebra H over k, there is a unique (up

to isomorphism) Hopf algebra H̄ over O which is free as an O-module, and such
that H̄ /mH̄ � H , where m is the maximal ideal of O.
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(2) The Hopf algebra H0 := H̄⊗OK over K is split semisimple and split cosemisimple.
Moreover, if H (respectively, H ∗) � Mn1(k) × · · · × Mnr (k), then H0 (respectively,
H ∗

0 ) � Mn1(K) × · · · × Mnr (K).
(3) H �→ H0 gives rise to a functor from the category of [(quasi)triangular] semisim-

ple and cosemisimple Hopf algebras over k to the category of [(quasi)triangular]
semisimple Hopf algebras over K .

3. Semisolvable Hopf algebras

Let H be a Hopf algebra, and let R be an algebra. Suppose that

⇀ :H ⊗ R → R, σ :H ⊗ H → R

are linear maps that satisfy:

(3.1a)(a) σ is convolution-invertible,

(3.1b)(b) a ⇀ xy =
∑

(a1 ⇀ x)(a2 ⇀ y), a ⇀ 1 = ε(a)1,

(3.1c)(c)
∑(

a1 ⇀ σ(b1, c1)
)
σ(a2, b2c2) =

∑
σ(a1, b1)σ (a2b2, c),

(3.1d)(d) σ(a, 1) = ε(a)1 = σ(1, a),

where a, b, c ∈ H , x, y ∈ R. Then the vector space R ⊗H is made into an algebra, which
we denote by R �σ H , with unit 1 ⊗ 1 and product

(x ⊗ a)(y ⊗ b) =
∑

x(a1 ⇀ y)σ(a2, b1) ⊗ a3b2.

DEFINITION 3.2. (See [DT,BCM].) R �σ H is called the crossed product of H with R.
It is a right H -comodule algebra with respect to the obvious H -comodule structure idR ⊗
Δ :R �σ H → (R �σ H) ⊗ H .

In what follows we impose:

ASSUMPTION 3.3. k is algebraically closed.

Recall from Section 1, Kaplansky’s Conjecture 6. We say that a finite-dimensional semi-
simple algebra A is of Frobenius type if it posseses the property described by the conjec-
ture, namely if ni | dimA for each 1 � i � r , where A � Mn1(k) × · · · × Mnr (k).
Conjecture 6 is generalized to:

CONJECTURE 6′. If R is a finite-dimensional semisimple algebra of Frobenius type, then
any crossed product R �σ H with a semisimple Hopf algebra H , that is necessarily semi-
simple, is of Frobenius type.

This is open, as is Conjecture 6. Montgomery and Witherspoon proved:
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PROPOSITION 3.4. (See [MW].) Conjecture 6′ holds true, if H is trivial (Definition 2.3)
and if ch k � dimH (or equivalently if H is cosemisimple as well).

DEFINITION 3.5. (See [MW,A].) A finite-dimensional Hopf algebra H is said to be lower-
semisolvable, if there is a sequence

H = Hs ⊃ Hs−1 ⊃ · · · ⊃ H1 ⊃ H0 = k

of Hopf subalgebras such that each Hi is normal1 in Hi+1 (0 � i < s), and the fac-
tor Hi+1/H

+
i Hi+1 is trivial. H is said to be upper-semisolvable if the dual H ∗ is lower-

semisolvable. In other words, H is lower-semisolvable (respectively, upper-semisolvable),
if it is obtained as a result Hs of successive extensions (see Section 4)

(3.6a)Hi  Hi+1 � Ji

(3.6b)(respectively, Ji  Hi+1 � Hi)

(0 � i < s) starting from H0 = k, where the Ji are trivial Hopf algebras. We say that H
is semisolvable if it satisfies the relaxed condition that the i-th extension is of one of the
forms (3.6a) or (3.6b).

Using Proposition 3.4, Montgomery and Witherspoon (essentially) proved:

THEOREM 3.7. (See [MW].) Conjecture 6′ is true if H is semisolvable and if ch k � n.
In particular, a semisolvable, semisimple and cosemisimple Hopf algebra is of Frobenius
type.

A Hopf algebra H (�= k) is said to be simple if it includes no normal Hopf subalgebra
other than k, H .

THEOREM 3.8. (See [N4].) Suppose ch k = 0. Among all semisimple Hopf algebras of
dimension < 60, there is only one (up to isomorphism) that is neither upper- nor lower-
semisolvable. This unique Hopf algebra is a selfdual, simple Hopf algebra of dimension 36
which is a twist (Definition 4.4) of the group algebra k(D6 × D6), where D6 denotes the
dihedral group of order 6; see [GN].

REMARK 3.9. According to Hoffman [H], for every finite simple group G, there is a
non-trivial simple Hopf algebra as a twist of kG. But, apart from twists or pseudo-twists
(Remark 4.6) of group algebras and their duals, there seems to be no example of a simple,
semisimple and cosemisimple Hopf algebra (over an algebraically closed field), or even of
a semisimple and cosemisimple Hopf algebra which is not semisolvable.

Let us consider semisimple and cosemisimple Hopf algebras of dimension pe, where p

is a prime. These have a similar property as p-groups, as shown below.

1 A Hopf subalgebra K of a Hopf algebra H is normal if K+H = HK+.
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THEOREM 3.10. (See [M3,EG2].) Every semisimple and cosemisimple Hopf algebra H

of dimension pe, where p is a prime and e > 0, contains a non-trivial central grouplike
element.

By applying the result to H ∗, we have a sequence of Hopf subalgebras H = He ⊃
He−1 ⊃ · · · ⊃ H0 = k which gives rise to extensions

(3.11)Hi  Hi+1 � kCp (0 � i < e)

that are cocentral (i.e., kCp ⊂ H ∗
i+1 is central). In particular, H is lower- and upper-

semisolvable. Here Cn denotes the cyclic group of order n.
Classifying all those H of dimension pe would be possible, in principle, by classify-

ing the extensions (3.11) inductively. For e = 2, this was done in [M2]; see also The-
orem 2.4(1). For e = 3, we need to classify the extensions kG  H � kCp, where
G = Cp2 or Cp × Cp. If G = Cp2 , H is necessarily a group algebra. If G = Cp × Cp,
there do exist non-trivial extensions, which can be classified up to equivalence by com-
puting the Opext group explained in Section 5. By classifying the obtained H further into
isomorphism classes, we obtain the following.

THEOREM 3.12.
(1) (See [K1].) There exist only one (up to isomorphism) semisimple and cosemisimple

Hopf algebra of dimension 8; it is now famous as the Kac and Paljutkin Hopf algebra
[KP] (see Section 7).

(2) (See [M2].) Let p be an odd prime. There exist exactly p + 8 non-trivial semisimple
and cosemisimple Hopf algebras of dimension p3.

The Hopf algebras obtained above are all selfdual. Those in (2) are not quasitriangular,
although almost cocommutative [D2] in the sense that their character rings are commuta-
tive; see [M9].

As for the case e = 4, Kashina [Ks2] classified the semisimple Hopf algebras of dimen-
sion 16 in characteristic zero.

Let us summarize Natale’s results in dimension pq2.

THEOREM 3.13. (See [N1,N2,N3].) Suppose ch k = 0. Let p, q be distinct primes. Let H
be a semisimple Hopf algebra of dimension pq2.

(1) The following are equivalent:
(i) H is not simple,

(ii) H or H ∗ contains a non-trivial central grouplike.
(2) H necessarily satisfies these equivalent conditions in the following cases:

(a) p = 2 or 3,
(b) p2 < q,
(c) p > q4 and p �≡ 1 mod q,
(d) H and H ∗ are both of Frobenius type,
(e) H or H ∗ is of Frobenius type, and p < q.

(3) If dimH < 100, (d) holds.
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Moreover, Natale [N1] classified those semisimple Hopf algebras H of dimension pq2

which satisfy the equivalent conditions (i), (ii) above, and especially those of dimension
pq2 < 100. It was recently shown by Galindo and Natale [GN] that a direct analogue of
the Burnside paqb theorem for finite groups does not hold for semisimple Hopf algebras.

4. Triangular semisimple Hopf algebras

Recall from Section 3 the construction of a crossed product R �σ H of a Hopf algebra H

with an algebra R, but in the special case when R = k. Then ⇀ must equal ε : H → k,
and (3.1c) turns into

(4.1)
∑

σ(b1, c1)σ (a, b2c2) =
∑

σ(a1, b1)σ (a2b2, c).

DEFINITION 4.2. A linear map σ :H ⊗ H → k which satisfies (3.1a), (3.1d) and (4.1) is
called a cocycle on H ⊗ H .

An equivalence relation ∼ among cocycles on H ⊗ H is defined so that σ ∼ σ ′, if and
only if ∑

σ(a1, b1)γ (a2b2) =
∑

γ (a1)γ (b1)σ
′(a2, b2) (a, b ∈ H)

for some invertible γ :H → k; see [Doi]. We will write simply σH for k �σ H .
A (right) H -Galois object is a right H -comodule algebra A �= 0 such that A ⊗ A →

A ⊗ H , a ⊗ b �→ aρ(b) is bijective, where ρ :A → A ⊗ H denotes the H -comodule
structure. Such an σH as above is an H -Galois object. Moreover, σ �→ σH induces an
injection

{cocycles on H ⊗ H }/∼  {H -Galois objects}/ � .

This is bijective if dimH < ∞; see [DT] (or [Mo1, p. 129]).
Suppose dimH < ∞, and let J := H ∗.

DEFINITION 4.3. An element σ in J ⊗J is called a dual cocycle in J ⊗J , if it is, regarded
as a linear map H ⊗ H → k, a cocycle on H ⊗ H .

For such a σ as above, let J σ denote the algebra J which is endowed with the twisted
coalgebra structure Δσ , εσ defined by

Δσ (x) = σΔ(x)σ−1, εσ (x) = ε(x) (x ∈ J ),

where Δ, ε on the right-hand side denote the coalgebra structure of J . Then, J σ is indeed
a Hopf algebra.

DEFINITION 4.4. J σ is called the twist of J by σ .
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Regard a (left) J -module V as a J σ -module in the obvious way, and denote it by V̄ .
Then, V �→ V̄ gives a tensor-equivalence from the category J -Mod of J -modules to the
category J σ -Mod of J σ -modules, with respect to the tensor-structure

(4.5)V̄ ⊗ W̄
�−→ V ⊗ W, v ⊗ w �→ σ−1(v ⊗ w).

Every Hopf algebra K such that K-Mod is tensor-equivalent to J -Mod is isomorphic to
some twist J σ , and every tensor-equivalence is given as above. See [D1,Sb1].

REMARK 4.6. (See [Nk].) To make J σ = (J σ ,Δσ , εσ ) into a bialgebra, we have only to
require that the linear map σ :H ⊗ H → k satisfies the following, instead of (4.1): there
exists an invertible φ : H ⊗ H ⊗ H → k such that∑

σ(b1, c1)σ (a, b2c2) =
∑

σ(a1, b1)σ (a2b2, c)φ(a3, b3, c3),∑
φ(a1, b1, c1)a2b2c2 =

∑
a1b1c1φ(a2, b2, c2),

for all a, b, c ∈ H . We call such a σ (∈ J ⊗ J ) a pseudo-dual cocycle, and Jσ the pseudo-
twist of J by σ . Two finite-dimensional semisimple bialgebras J, J ′ over an algebraically
closed field are pseudo-twists of each other if and only if there exists an algebra isomor-

phism J
�−→ J ′ that induces an isomorphism of character rings.

To survey deeper results in the special case when H = kG, we impose:

ASSUMPTION 4.7. k is algebraically closed, and G denotes a finite group such that

ch k � |G|.

We will reformulate things concerning kG-comodule algebras (respectively, kG-Galois
objects) in terms of G-algebras (respectively, Galois G-algebras). A G-algebra is an al-
gebra A on which G acts via algebra automorphisms. Then there arises the semi-direct
product algebra A � G. A finite-dimensional G-algebra A �= 0 is said to be Galois, if the
canonical algebra map A � G → EndA is bijective, or equivalently, under the assump-
tion above, if A is semisimple, |G| = dimA and the subalgebra AG of G-invariants in A

equals k.
Let A be a Galois G-algebra. Since G acts transitively on the simple components of A,

their stabilizers are mutually conjugate subgroups. Fix a simple component B, say, in A,
and let Γ denote its stabilizer subgroup. Let B = Mn(k).

PROPOSITION 4.8. (See [Mv].)
(1) B is a Galois Γ -algebra, whence |Γ | = n2. The Γ -action ⇀ on B = Mn(k) arises

uniquely from an irreducible projective representation π :Γ → PGLn(k) so that

x ⇀ b = uxbu
−1
x (x ∈ Γ, b ∈ B),

where ux is such an element in GLn(k) that is mapped to π(x) in PGLn(k).
(2) A is isomorphic to the Γ -algebra MapΓ (G,B) consisting of all left Γ -maps

G → B, where the Γ -action is induced from the right Γ multiplication G.
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Note that the map Γ → GLn(k), x �→ ux induces an algebra isomorphism kαΓ
�−→

Mn(k) = B, where kαΓ denotes the twisted product group algebra given by an appropriate
2-cocycle α :Γ × Γ → k×. The induced Γ -action on kαΓ is the Miyashita action [Mi].

PROPOSITION 4.9. (See [Mv].) Conversely, a pair (Γ, π) of a subgroup Γ ⊂ G and an
irreducible projective representation π :Γ → PGLn(k) of degree n = |Γ |1/2 gives rise
to a Galois G-algebra MapΓ (G,Mn(k)). Every Galois G-algebra comes from such a pair
(Γ, π) as above; the pair (Γ, π) is unique up to conjugacy of subgroups and equivalence
of projective representations.

EXAMPLE 4.10.
(1) If |G| is square-free, there exists no Galois G-algebra other than the trivial one kG =

Map(G, k).
(2) [M5] Suppose

(4.11)G = D2n = 〈a, x | a2 = 1 = xn, ax = x−1a
〉
,

the dihedral group of order 2n (� 4). Non-trivial G-Galois algebras possibly arise only
from the following Abelian subgroups of type (2, 2), which are not conjugate to each other:

Γ1 = 〈a, xn/2〉 in case 2 | n,
Γ2 = 〈ax, xn/4〉 in case 4 | n,

Note that the Abelian group of type (2, 2) has a unique (up to equivalence) irreducible
projective representation of degree 2, say 4 . Therefore there exist no (respectively, only
one; respectively, exactly two) non-trivial D2n-Galois algebras, if n is odd (respectively,
n is even, but 4 � n; respectively, 4 | n).

Let A be a Galois G-algebra, and suppose that it arises from a pair (Γ, π). The Galois
Γ -algebra (or the kΓ -Galois object) associated to the pair gives rise to a unique (up to
equivalence) dual cocycle σ in kΓ ⊗ kΓ , whence in kG ⊗ kG. Suppose J = kG in (4.5).
Let z be a central element in G of order � 2. Define

Rz := 1

2
(1 ⊗ 1 + 1 ⊗ z + z ⊗ 1 − z ⊗ z) (∈ kG ⊗ kG),

where we understand Rz to be 1 ⊗ 1 if z = 1. Then, v ⊗ w �→ Rz(w ⊗ v) gives a
symmetry (i.e., an involutory braiding) in kG-Mod, which coincides with the symmetry of
super-vector spaces if z �= 1. It transforms through (4.5) to v ⊗ w �→ Rzσσ−1

21 (w ⊗ v) in
(kG)σ -Mod, where σ21 denotes the image of σ under the flip a ⊗ b �→ b ⊗ a. This means
that Rzσ21σ

−1 is a triangular structure on (kG)σ .

THEOREM 4.12. (See [EG5].) The triangular Hopf algebra ((kG)σ , Rzσ21σ
−1) is semi-

simple and cosemisimple. Conversely, every triangular, semisimple and cosemisimple Hopf
algebra (H,R) of finite dimension arises from a quadruple (G, Γ, π, z) as above; the
quadruple is unique up to isomorphism. (An isomorphism between such quadruples is de-
fined in the obvious way.)
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We leave it as an exercise to describe the triangular Hopf algebras which arise from the
quadruples (D2n, Γi,4, 1) given in Example 4.10(2); see Example 5.7.

For the further extensive theory of (co)triangular Hopf algebras due to Etingof and
Gelaki, see first of all [EG7].

5. Hopf algebra extensions of kF by kG

Let F,G denote groups, which will be supposed to be finite in most parts below.

DEFINITION 5.1. (See [T1].) A pair of groups (F,G) together with two maps

G
�←− G × F

�−→ F

is called a matched pair, if
(a) 1 � a = a, xy � a = x � (y � a),
(b) x � 1 = x, x � ab = (x � a) � b,
(c) x � ab = (x � a)((x � a) � b), and
(d) xy � a = (x � (y � a))(y � a),

where a, b ∈ F , x, y ∈ G.2

PROPOSITION 5.2. (See [T1].) If (F,G,�,�) is matched pair, the Cartesian product
F × G endowed with the binary operation

(a, x)(b, y) = (a(x � b), (x � b)y
)

forms a group with unit (1, 1).

This group is denoted by F )* G. If �= triv, the trivial action (i.e., x � a = x for all
x ∈ G, a ∈ F ), then � must be an action by group automorphisms, and the associated
semi-direct product F � G coincides with F )* G.

PROPOSITION 5.3. If F and G are embedded in a group Σ so that Σ factorizes in F and
G in the sense that the canonical map μ :F × G → Σ , (a, x) �→ ax is bijective. Then the
pair (F,G) together with the actions �, � determined by

xa = (x � a)(x � a) in Σ,

where a ∈ F , x ∈ G, forms a matched pair, and μ : F )* G
�−→ Σ turns into a group

isomorphism.

Thus every matched-pair structure on (F,G) arises uniquely (up to isomorphism) from
a factorization F × G � Σ of some group Σ .

2 Here x � a is the image in G of (x, a) ∈ G × F under � and y � b is the image in F of (y, b) ∈ G × F

under �.
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EXAMPLE 5.4. Let n � 3 be an integer. The symmetric group Sn on n letters 1, 2, . . . , n
factorizes into

Cn = {ci | 0 � i < n
}
, Sn−1 = {x ∈ Sn | x(n) = n

}
,

where c = (1 2 . . . n), a cyclic permutation, so that we have a matched pair (Cn, Sn−1,�,

�). Since c−x(i)xci fixes n, we see

x � ci = cx(i) (0 � i < n),

while the other �, non-trivial if n > 3, is difficult to describe explicitly.

PROPOSITION 5.5. (See [T1].) Given a matched pair (F,G,�,�) of finite groups, the
vector space kG ⊗ kF is made into a Hopf algebra, denoted kG	�kF , which is defined by
the obvious unit and counit and the additional structures

(exa)(eyb) = δx�a,yexab,

Δ(exa) =
∑
y∈G

exy−1(y � a) ⊗ eya,

S(exa) = e(x�a)−1(x � a)−1,

where a ∈ F , x ∈ G, and exa stands for ex ⊗ a.

This is the bismash product, i.e., the smash-product algebra kG � kF and cosmash-
product coalgebra kG	<kF , which is constructed from the action ⇀ and the coaction ρ

given by the formulae (5.9) below.
Here is an interesting results on twists (Definition 4.4) of kG	�kF .

PROPOSITION 5.6. (See [LYZ].) Suppose that a finite group Σ factorizes into subgroups
in two ways as F × G1 � Σ , F × G2 � Σ , so that there are two matched pairs, (F,G1),
(F,G2). Then the associated Hopf algebras kG1 	�kF , kG2 	�kF are twists of each other.

PROOF. This follows from the following fact: the category kG	�kF -Mod of kG	�kF -
modules is canonically tensor-equivalent to the tensor category ( Σ

F MF ,⊗kF , kF ), where
Σ
F MF denotes the category of those Σ = F )* G-graded vector spaces M = ⊕

s∈Σ Ms

which are at the same time two-sided kF -modules so that aMsb ⊂ Masb (a, b ∈ F ,
s ∈ Σ). See [T3, pp. 329–330] for more details, and [Sb2,Sb3] as well. �

A natural dual cocycle σ in (kG1 	�kF )⊗2 such that (kG1 	�kF )σ = kG2 	�kF is explic-
itly given in [T3, (6.23)].

EXAMPLE 5.7. (See [M5].) Suppose that n = 2m (� 4) is an even integer. The dihedral
group D2n as presented by (4.11) factorizes in two ways into

(1) F = 〈a〉 � C2, G1 = 〈x〉 � Cn,
(2) F = 〈a〉 � C2, G2 = 〈ax, xm〉 � D2m,
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so that kG1 	�kF and kG2 	�kF are twists of each other. We remark that the dual of kG2 	�kF
coincides with the Hopf algebra A4m defined by Definition 7.3(1). If k contains a primitive
n-th root of 1, then one sees that kG1 	�kF � kD2n. In this case the natural dual cocycle σ

as given in [T3, (6.23)] corresponds to the Galois D2n-algebra which arises from the pair
(Γ1,4) given in Example 4.10(2).

Let us review quickly some basic facts on Hopf algebra extensions. Let J,K be finite-
dimensional Hopf algebras. By an extension of J by K , we mean a short exact sequence

(H) = K
i

 H
p
� J of finite-dimensional Hopf algebras. This means that

(a) i is injective and p induces an isomorphism H/i(K+)H � J , or equivalently
(b) p is surjective and i induces an isomorphism from K onto H coJ := {a ∈ H |

(id ⊗ p) ◦ Δ(a) = a ⊗ 1}.
We remark that H is then semisimple if J and K are. An equivalence between extensions

(H), (H ′) is an isomorphism H
�−→ H ′ that induces the identity maps on J,K . By

Theorem 1.1, there exists a (possibly unit and counit-preserving) left K-linear and right
J -colinear isomorphism

(5.8)H � K ⊗ J.

The Hopf algebra structure transferred via (5.8) onto K ⊗ J is the bicrossed product
Kτ 	�σ J constructed from certain data

⇀ : J ⊗ K → K, σ : J ⊗ J → K;
ρ : J → J ⊗ K, r : J → K ⊗ K.

As an algebra, it the crossed-product algebra K �σ J constructed from ⇀,σ (Defini-
tion 3.2), and as a coalgebra, it is the co-crossed-product coalgebra Kτ 	<J constructed
from ρ, τ ; see [AD, Theorem 2.20] for the compatibility conditions among the data. Thus,
the exact sequence (H) is equivalent to

(Kτ 	�σ J ) = K
⊗1
 Kτ 	�σ J

ε⊗id
� J.

Suppose in particular that J = kF , K = kG, where F,G are finite groups. Then for
each extension (H), the data ⇀,ρ are independent of the choice of the isomorphism (5.8),

and arise uniquely from a matched-pair structure G
�←− G × F

�−→ F on (F,G) so that

(5.9)a ⇀ ex = ex� a−1 , ρ(a) =
∑
y∈G

(y � a) ⊗ ey,

where a ∈ F , x ∈ G. Hence we can say that (H) is associated to the matched pair
(F,G,�,�) thus obtained. Let

Opext
(
kF, kG,⇀, ρ

)
or Opext

(
kF, kG

)
denote the set of equivalence classes of those extensions which are associated to a fixed
matched pair (F,G,�,�), where ⇀,ρ are understood to be what arises from �,�
by (5.9). In fact, this set forms an Abelian group with respect to some product that gener-
alizes the Baer product; the unit is the extension (kG	�kF ) given by the bismash product.
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REMARK 5.10. Let (F,G,�,�) be a matched pair of finite groups, and suppose that it
arises from a factorization F ×G � Σ of a group Σ . By applying inverses we have another
factorization G × F � Σ , which gives rise to another matched pair (G, F,�′,�′); this
matched pair will be said to be opposite to the first one. One sees that (H) �→ (H ∗) gives
an isomorphism

Opext
(
kF, kG,⇀, ρ

) � Opext
(
kG, kF ,⇀′, ρ′)

between the associated Opext groups.

6. The Kac exact sequence

Fix a matched pair (F,G,�,�) of finite groups (Definition 5.1), and recall that it gives
rise to a group, F )* G, which encompasses F,G. We will reproduce from [M8] a dou-
ble complex E·· for computing the Opext group associated to the fixed matched pair; the
original construction, slightly different from ours, is due to Kac [K1]. For a group Γ ,
a Γ -module means a left module over the integral group ring ZΓ . First of all, let us have a
double complex of F )* G-modules,

C·· =

...
...

C01

∂ ′

C11
∂

∂ ′

· · ·

C00 C10
∂ · · ·

in which Cpq is the free F )* G-module on the set Gq × Fp, and ∂, ∂ ′ are defined by

(−1)q∂(x1, . . . , xq; a1, . . . , ap)

= (x1 · · · xq � a1)
(
x1 � (x2 · · · xq � a1), . . . ,

xq−1 � (xq � a1), xq � a1; a2, . . . , ap
)

+
p−1∑
i=1

(−1)i(x1, . . . , xq; a1, . . . , aiai+1, . . . , ap)

+ (−1)p(x1, . . . , xq; a1, . . . , ap−1),

∂ ′(x1, . . . , xq; a1, . . . , ap)

= x1(x2, . . . , xq; a1, . . . , ap)

+
q−1∑
i=1

(−1)i(x1, . . . , xixi+1, . . . , xq; a1, . . . , ap)

+ (−1)q
(
x1, . . . , xq−1; xq � a1, (xq � a1) � a2, . . . ,

(xq � a1 · · · ap−1) � ap
)
,
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where ai ∈ F , xi ∈ G. The lowest horizontal complex C·0, and the leftmost vertical
complex C·0 are the standard resolutions of Z over F and G, respectively. Each row
or column in C·· is exact, whence the total complex TotC·· gives a non-standard free
F )* G-resolution of Z. Regard k× = k \ 0 as a trivial F )* G-module, and apply
HomF)*G( , k×) to C··. We then obtain a double cochain complex, HomF)*G(C··, k×).
Normalize this just for convenience, and let D·· denote the thus obtained, normalized
complex; see below. Thus, Dpq equals, under a natural identification, the multiplicative
group Map+(Gq × Fp, k×) consisting of the maps f : Gq × Fp → k× such that
f (x1 . . . , xq; a1, . . . , ap) = 1 whenever any ai or xi = 1. The lowest horizontal (respec-
tively, leftmost vertical) complex in D·· is the standard complex for computing the group
cohomology H ·(F, k×) (respectively, H ·(G, k×)). Remove these two complexes from D··,
and let E·· denote the obtained one; see below. But, we count the total dimensions in E·· so
that Totn E·· equals the direct product of those Map+(Gq×Fp, k×) in which p+q = n+1,
p > 0, q > 0.

D·· =

PROPOSITION 6.1.
(1) Given a total 2-cocycle (σ, τ ) in E··, where σ ∈ Map+(G × F 2, k×), τ ∈

Map+(G2 ×F, k×), the vector space kG⊗kF is made into a Hopf algebra, denoted

by kGτ 	�σ kF , which is defined by the obvious unit and counit, and the additional
structures

(exa)(eyb) = δx� a,yσ (x; a, b)exab,
Δ(exa) =

∑
y∈G

τ
(
xy−1, y; a)exy−1(y � a) ⊗ eya,

S(exa) = τ
(
x−1, x; a)−1

e(x�a)−1(x � a)−1,

where a, b ∈ F , x, y ∈ G. This forms in the obvious way an extension (kGτ 	�σ kF )

of kF by kG which is associated to the fixed matched pair.

(2) (σ, τ ) �→ (kGτ 	�σ kF ) induces an isomorphism H 2(TotE··) �−→ Opext(kF, kG,

⇀,ρ).
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Note that if σ, τ take the value 1 constantly, kGτ 	�σ kF coincides with kG	�kF as given
by Proposition 5.5.

Let Aut(kG	�kF ) denote the group of auto-equivalences of the neutral extension
(kG	�kF ).

PROPOSITION 6.2.
(1) Given a total 1-cocycle ν in E··, we have an auto-equivalence fν : exa �→ ν(x; a)ea

of (kG	�kF ).

(2) ν �→ fν gives an isomorphism H 1(TotE··) �−→ Aut(kG	�kF ).

THEOREM 6.3 (Kac exact sequence). We have an exact sequence,

0 → H 1(F )* G, k×) → H 1(F, k×) ⊕ H 1(G, k×) → Aut
(
kG	�kF

)
→ H 2(F )* G, k×) → H 2(F, k×) ⊕ H 2(G, k×) → Opext(kF, kG)

→ H 3(F )* G, k×) → H 3(F, k×) ⊕ H 3(G, k×).

PROOF. E·· is regarded as a double subcomplex of D··. Their total complexes make a short
exact sequence of complexes. The associated long exact cohomology sequence, combined
with the isomorphisms from Propositions 6.1, 6.2, gives the Kac exact sequence. �

REMARK 6.4.
(1) In E··, we can replace the coefficients k× with any trivial (or even non-trivial) F )*

G-module M . The resulting double complex will be denoted by E··(M). As above,
there is a long exact cohomology sequence,

· · · → Hn(F )* G,M) → Hn(F,M) ⊕ Hn(G,M) → Hn
(
TotE··(M)

)
(6.5)→ Hn+1(F )* G,M) → · · · .

(2) Suppose that α :G × G → k× is a 2-cocycle, and (H) represents an equivalence
class in Opext(kF, kG). Let δ :H 2(G, k×) → Opext(kF, kG) denote the homomor-
phism which is induced from the horizontal differential in D··; it appears in the Kac
exact sequence. Then, (H) ·δα−1 is equivalent to the extension (Hα) which is given
by the twist Hα of H by the dual cocycle α in kG ⊗ kG; see [M7, Proposition 3.1].

(3) Schauenburg [Sb2,Sb3] gives a categorical interpretation of the Kac exact sequence
in a quite generalized context.

COROLLARY 6.6. Suppose that k is algebraically closed.
(1) (See [M4].) The extensions of kF by kG are finitely many up to equivalence.
(2) Every extension of kF by kG is equivalent to some extension that is defined over the

ring Z[ζ ] (⊂ C), where ζ is some root of 1 whose order does not divide ch k.

PROOF. (1) It suffices to prove that every Opext group Opext(kF, kG) is finite. The as-
sumption implies that k× is a divisible Z-module. By the universal coefficient theorem, we
see

Hn(Γ, k×) � HomZ

(
Hn(Γ,Z), k×) (n � 0)
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for any finite group Γ , whence Hn(Γ, k×) is finite if n > 0. The Kac exact sequence now
proves the desired result.

(2) Argue as above, but replacing k× with the group μ(k) of all roots of 1 in k. Then
one sees Hn(Γ,μ(k)) � Hn(Γ, k×) (n � 0). It follows from the exact sequences (6.5)
with M = μ(k) and k× that H 2(TotE··(μ(k))) � Opext(kF, kG). This implies the claim
above. �

REMARK 6.7. (See [M4].) For arbitrary k, the group Aut(kG	�kF ) is finite. Moreover, if
Aut(CG	�CF) � Z/(n1) ⊕ · · · ⊕ Z/(nr) (ni > 0), then

Aut(kG	�kF ) � μn1(k) × · · · × μnr (k),

where μn(k) denotes the group of nth root of 1 in k. On the other hand, if Aut(CG	�CF)

is non-trivial, the group Opext(QF,QG) is necessarily infinite.

EXAMPLE 6.8. (See [M4].) For the matched pair (Cn, Sn−1,�,�) given by Example 5.4,

Opext
(
kCn, k

Sn−1 ,⇀, ρ
) �

{
k×/(k×)n (n > 4),
k×/(k×)8 (n = 4),

Aut
(
kSn−1 	�kCn

) �
{
μn(k) (n > 4),
μ8(k) (n = 4).

COROLLARY 6.9. (See [M4].) Suppose k = C. Every extension of CF by CG is equiva-
lent to some extension (H) that is given by a Kac algebra H (Definition 7.2).

PROOF. A Hopf algebra CGτ 	�σCF of the bicrossed product is a Kac algebra if and only
if σ, τ take their values in T := {x ∈ C | |x| = 1}. This implies the corollary since, as in
the last proof, that H 2(TotE··(T)) � Opext(CF,CG). �

7. Kac and Paljutkin’s example and more

In what follows we will discuss Kac algebras, assuming

ASSUMPTION 7.1. k = C.

A finite-dimensional C∗-algebra is a ∗-algebra over C that is isomorphic to a finite-
dimensional semisimple algebra Mn1(C) × · · · × Mnr (C); this last one has the obvious
∗-structure. Among Kac algebras we restrict our attention only to the finite-dimensional
ones.

DEFINITION 7.2. (See [KP].) By a Kac algebra we mean a finite-dimensional C∗-algebra
H with ∗-algebra maps Δ :H → H ⊗H , ε :H → C such that (H,Δ, ε) is a Hopf algebra.
The antipode S necessarily commutes with ∗.
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A finite group algebra CG (respectively, its dual CG) turns into a Kac algebra in the
unique way when one takes g∗ = g−1 (respectively, (eg)∗ = eg), where g ∈ G.

To give examples of non-trivial Kac algebras, let K = CC2 denote the group algebra
of the cyclic group C2 = 〈a | a2 = 1〉. It is spanned by the primitive idempotents e0 =
1
2 (1 + a), e1 = 1

2 (1 − a).

DEFINITION 7.3. (See [M5].) Let m � 2 be an integer.
(1) A4m is the Hopf algebra including K as a central Hopf subalgebra which is gener-

ated by two elements s+, s− over K , and is defined by the relations

(7.4)s2± = 1, (s+s−)m = 1

and the structures

Δ(s±) = s± ⊗ e0s± + s∓ ⊗ e1s±, ε(s±) = 1,

S(s±) = e0s± + e1s∓.

(2) B4m is the Hopf algebra defined in the same way as above except that the relation
(s+s−)m = 1 is replaced by

(s+s−)m = a.

Notice that these Hopf algebras are defined over any field of characteristic �= 2, and
their dimensions equal 4m. Over C, they are indeed Kac algebras with respect to the
unique ∗-structure determined by s∗± = s±. Let (D2m,C2, triv,�) be the matched pair
opposite (Remark 5.10) to the one given by Example 5.7(2); thus, D2m = 〈s+, s− | (7.4)〉,
a � s± = s∓. One sees that A4m is the bismash product CC2 	�CD2m associated to the
matched pair above, while B4m is a bicrossed product CC2 τ 	�σCD2m with τ trivial. It is
proved in [M5, Proposition 3.11] that the Opext group Opext(CD2m,CC2, triv, ρ) associ-
ated to the matched pair consists of the two extensions (A4m), (B4m). When m = 2, B8 co-
incides with what the famous example given by Kac and Paljutkin [KP]. B4m coincides
with a quasitriangular Hopf algebra that was previously constructed by Suzuki [Su]. Aside
from the examples by Sekine [Se], the B4m (m � 2) are another series of Kac algebras
containing Kac and Paljutkin’s. They posses the following interesting properties.

PROPOSITION 7.5.
(1) (See [CDMM].) B4m is selfdual.
(2) (See [Su].) B4m has exactly 2m quasitriangular structure, none of which is triangu-

lar.
(3) (See [M5].) There exists no B4m-Galois object (see Section 4) other than the trivial

B4m; this implies by [Sb1] that there exist no Hopf algebras other than B4m itself
whose (co)module category is tensor-equivalent to that of B4m.

8. Kac algebras and depth 2 subfactors

We keep Assumption 7.1. We will use the basic terminology concerning subfactors, such
as used in [IK, Chapter 1]. One needs to know at least that a factor is a sort of central
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∗-algebras over C. The notation in this section might feel slightly different from what
was used in the preceding sections, because we will follow to some extent the customs of
operator-algebraists.

The correspondence between depth 2 subfactors and Kac algebras, shown in Theo-
rem 8.2 below, was first formulated without proof by Ocneanu [Oc], and then proved by
Popa [P1,P2]; see also [Sz,Da]. From several, though equivalent, descriptions of the corre-
spondence cited above, we choose the following one due to Kadison and Nikshych [KN].

PROPOSITION 8.1. Let P ⊃ Q be an irreducible depth 2 inclusion of II1 factors with
finite index. Let H := (P ⊗Q P)Q denote the Q-centralizers in P ⊗Q P; it is obviously
closed under ∗.

(1) The product map μ :P ⊗ H → P ⊗Q P , μ(x ⊗ a) = xa is bijective.
(2) H is a finite-dimensional C∗-algebra with respect to the product(∑

i

xi ⊗ yi

)(∑
j

zj ⊗ wj

)
=
∑
i,j

zj xi ⊗ yiwj .

(3) H has a unique Kac-algebra structure Δ, ε which makes the following diagram
commute:

P ⊗ H ⊗ H
μ(2)

� P ⊗Q P ⊗Q P

P ⊗ H

id⊗ε

id⊗Δ

μ

� P ⊗Q P
ε

Δ

P
Here, Δ(x ⊗ y) = x ⊗ 1 ⊗ y, ε(x ⊗ y) = xy, and μ(2) denotes the composite

P ⊗ H ⊗ H −→
μ⊗id

P ⊗Q P ⊗ H −→
id⊗μ

P ⊗Q P ⊗Q P .

THEOREM 8.2. (See [P1,P2].) The correspondence (P ⊃ Q) �→ H obtained above
gives a bijection from the conjugacy classes of all irreducible depth 2 inclusions P ⊃ Q of
hyperfinite II1 factors with finite index onto the isomorphism classes of all Kac algebras H .

PROPOSITION 8.3. Let P ⊃ Q be an irreducible inclusion of hyperfinite II1 factors, and
let H be a Kac algebra. Then the following are equivalent.

(a) P ⊃ Q is the depth 2 inclusion with finite index which corresponds to H .
(b) P/Q is an H -Galois extension [KT]; this means that there exists a ∗-algebra map

ρ :P → P ⊗ H for which P is a right H -comodule, Q = {x ∈ P | ρ(x) = x ⊗ 1}
and P ⊗Q P → P ⊗ H , x ⊗ y �→ xρ(y) is bijective.

PROOF. (a) ⇒ (b). Define ρ :P → P⊗H so that its composite μ◦ρ with the isomorphism
μ given in part (1) of Proposition 8.1 equals x �→ 1 ⊗ x, P → P ⊗Q P . We then see from
part (3) that P/Q is H -Galois with respect to ρ.
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(b) ⇒ (a). This follows by [KN, Theorem 3.14]. �

Given P ⊃ Q or H as above, it is quite difficult in general to describe explicitly the
corresponding object. Following [IK,M8], we will see that such an explicit description is
possible in some restricted situation.

Let R denote a hyperfinite II1 factor, and let U = {u ∈ R | uu∗ = 1} denote
the multiplicative group of unitaries. The latter includes T = {x ∈ C | |x| = 1}
as its center. The group Aut(R) of ∗-automorphisms of R includes a normal subgroup,
Inn(R), consisting of all inner automorphisms inn(u) : x �→ uxu−1 (u ∈ U). Define
Out(R) = Aut(R)/ Inn(R).

Fix a matched pair (F,G) = (F,G,�,�) of finite groups (Definition 5.1). An element
(a, x) in the associated group F )* G will be simply denoted ax. Given α :F → Aut(R),
we will write αa for α(a).

DEFINITION 8.4. (See [IK,M8].) An outer action of the matched pair (F,G) on R is a
pair (α, β) of group homomorphisms α :F → Aut(R), β :G → Aut(R) such that the
map αβ :F )* G → Aut(R) defined by

(αβ)ax = αaβx (a ∈ F, x ∈ G)

gives rise to a group monomorphism F )* G  Out(R), composed with the projection
Aut(R) → Out(R). Let Out((F,G),R) denote the set of all those outer actions.

Let (α, β) ∈ Out((F,G),R). Since αβ :F )* G → Aut(R) is a group homomorphism
modulo Inn(R), we have a map ν : G × F → U such that

ν(x; 1) = 1 = ν(1; a), βxαa = inn
(
ν(x; a))αx�aβx�a,

where x ∈ G, a ∈ F . We regard U as if it were an F )* G-module, and compute the
coboundary (σ, τ ) = (δν, δ′ν) of ν in the double complex E··(U); see Remark 6.4(1).
More explicitly we define σ :G × F 2 → U, τ :G2 × F → U by

σ(x; a, b) = ν(x; a)∗ν(x; ab)αx�a

(
ν(x � a; b))∗,

τ (x, y; a) = ν(x; y � a)ν(xy; a)∗βx

(
ν(y; a)).

Then these have values in T. Moreover, (σ, τ ) is a total 2-cocycle in E··(T), and its coho-
mology class [σ, τ ] in H 2(TotE··(T)) is independent of choice of ν. Following [M8], we
denote [α, β] by ik(α, β), calling it the Izumi–Kosaki invariant of (α, β).

The set Out((F,G),R) has an equivalence relation ∼c, called cocycle conjugacy, de-
fined as follows: (α, β) ∼c (α′, β ′) if there exist θ ∈ Aut(R) and systems {ua}a∈F ,
{vx}x∈G of unitaries with u1 = v1 = 1, such that

uab = uaαa(ub), vxy = vxβx(vy),

θα′
aθ

−1 = inn(ua)αa, θβ ′
xθ

−1 = inn(vx)βx,

where a, b ∈ F , x, y ∈ G.

THEOREM 8.5. (See [IK,M8].) Let R, (F,G,�,�) be as above.
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(1) ik induces a bijection

Out
(
(F,G),R

)/ ∼c
�−→ H 2(Tot

(
E··(T)

))
.

(2) Suppose (α, β) ∈ Out((F,G),R), and ik(α, β) = [σ, τ ]; as is seen in the proof of
Corollary 6.9, there is a Kac algebra CGτ 	�σCF of bicrossed product type. Then

R �α F ⊃ R(β,G),

where R �α F denotes the semi-direct product associated to α, and R(β,G) de-
notes the G-invariants with respect to β, is the irreducible depth 2 inclusion of
hyperfinite II1 factors with finite index that corresponds, via the bijection given by
Theorem 8.2, to the Kac algebra CGτ 	�σCF .

PROOF. (1) See the proof of [M8, Theorem 3.6].
(2) This is proved by using Proposition 8.3, (b) ⇒ (a); see the proof of [M8, Theo-

rem 4.1]. �

REMARK 8.6. Part (1) above is a variant of the famous result by Jones [J] which classifies
all outer actions of a given finite group Γ on R, up to conjugacy, by means of H 3(Γ,T).
In fact there is a close relation, as shown in [M8, p. 618], between Jones’ result and ours.

EXAMPLE 8.7.
(1) For every finite group Γ , there is a unique (up to conjugacy) group homomorphism

Γ → Aut(R) that is outer, i.e., is monic, even composed with Aut(R) → Out(R). There-
fore, given a matched pair (F,G,�,�), there is a unique (up to cocycle conjugacy) outer
action (α, β) on R such that αβ is a group homomorphism. For such an (α, β), the inclu-
sion R �α F ⊃ R(β,G) corresponds to the bismash product CG	�CF .

(2) Let us describe explicitly the inclusion which corresponds to the Kac algebra B4m
(m � 2) defined by Definition 7.3(2). We can choose those χ, θ ∈ Aut(R) of order 2
and u ∈ U, for which χ(u) = u∗, θ(u) = −u∗, (χθ)2m = inn(u), and (χθ)i /∈ Inn(R)

whenever 0 < i < 2m. Set ϕ = (χθ)2. Let P denote the R-ring (i.e., the algebra given by
an algebra map from R) which is generated by two elements B, Y , and is defined by the
relations

Bm = u, Y 2 = 1, YB = B−1Y,

Bx = ϕ(x)B, Yx = χ(x)Y (x ∈ R).

Then, P is a hyperfinite II1 factor including R, with B, Y unitaries. Moreover one can
prove that

P ⊃ Rθ
(= {x ∈ R | θ(x) = x

})
is the irreducible depth 2 inclusion corresponding to B4m; see [M8, Proposition 5.6].
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[CDMM] C. Călinescu, S. Dăscălescu, A. Masuoka, C. Menini, Quantum lines over non-cocommutative

cosemisimple Hopf algebras, J. Algebra 273 (2004) 753–779.
[Da] M.-C. David, Paragroupe d’Adrian Ocneanu et algèbre de Kac, Pacific J. Math. 172 (1996) 331–363.
[Doi] Y. Doi, Equivalent crossed products for a Hopf algebra, Comm. Algebra 17 (1989) 3053–3085.
[DT] Y. Doi, M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986) 801–818.
[D1] V. Drinfeld, Quantum groups, in: Proc. Internat. Congress Math., vol. 1, Berkeley, 1986, Amer. Math.

Soc., Providence, RI, 1988, pp. 789–820.
[D2] V. Drinfeld, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990) 321–342.
[EG1] P. Etingof, S. Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Math. Res.

Lett. 5 (1–2) (1998) 191–197.
[EG2] P. Etingof, S. Gelaki, Semisimple Hopf algebras of dimension pq are trivial, J. Algebra 210 (1998)

664–669.
[EG3] P. Etingof, S. Gelaki, On finite-dimensional semisimple and cosemisimple Hopf algebras in positive

characteristic, Internat. Math. Res. Notices 16 (1998) 851–864.
[EG4] P. Etingof, S. Gelaki, On the exponent of finite-dimensional Hopf algebras, Math. Res. Lett. 6 (1999)

131–140.
[EG5] P. Etingof, S. Gelaki, The classification of triangular semisimple and cosemisimple Hopf algebras over

an algebraically closed field, Internat. Math. Res. Notices 5 (2000) 223–234.
[EG6] P. Etingof, S. Gelaki, On families of triangular Hopf algebras, Internat. Math. Res. Notices 14 (2002)

757–768.
[EG7] P. Etingof, S. Gelaki, The classification of triangular Hopf algebras over an algebraically closed field

of characteristic zero, Mosc. Math. J. 3 (2003) 37–43, 258.
[EG8] P. Etingof, S. Gelaki, On Hopf algebras of dimension pq, J. Algebra 277 (2004) 668–674.
[ENO] P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005) 581–642.
[GN] C. Galindo, N. Sonia, Simple Hopf algebras and deformations of finite groups, Math. Res. Lett., in

press; electronic preprint, math.QA 0608734.
[G] S. Gelaki, Pointed Hopf algebras and Kaplansky’s 10th conjecture, J. Algebra 209 (1998) 635–657.
[H] C. Hoffman, On some examples of simple quantum groups, Comm. Algebra 28 (2000) 1867–1873.
[IK] M. Izumi, H. Kosaki, Kac algebras arising from composition of subfactors: General theory and classi-

fication, Mem. Amer. Math. Soc. 750 (2002).
[J] V. Jones, Actions of finite groups on the hyperfinite II1 factor, Mem. Amer. Math. Soc. 237 (1980).
[K1] G. Kac, Extensions of groups to ring groups, Math. USSR Sb. 5 (1968) 451–474.
[K2] G. Kac, Certain arithmetic properties of ring groups, Funct. Anal. Appl. 6 (1972) 158–160.
[KP] G. Kac, V. Paljutkin, Finite ring groups, Trans. Moscow Math. Soc. 5 (1966) 251–294.
[KN] L. Kadison, D. Nikshych, Hopf algebra actions on strongly separable extensions of depth two, Adv.

Math. 163 (2001) 258–286.
[Kap] I. Kaplansky, Bialgebras, Lecture Notes in Mathematics Department of Mathematics, Univ. of Chicago,

1975.
[Ks1] Y. Kashina, On the antipode of Hopf algebras in H

H
YD, Comm. Algebra 27 (1999) 1261–1273.

[Ks2] Y. Kashina, Classification of semisimple Hopf algebras of dimension 16, J. Algebra 232 (2000) 617–
663.



454 A. Masuoka

[KSZ1] Y. Kashina, Y. Sommerhäuser, Y. Zhu, Self-dual modules of semisimple Hopf algebras, J. Algebra 257
(2002) 88–96.

[KSZ2] Y. Kashina, Y. Sommerhäuser, Y. Zhu, On higher Frobenius–Schur indicators, Mem. Amer. Math.
Soc. 181 (2005) 855.

[KT] H.F. Kreimer, M. Takeuchi, Hopf algebras and Galois extensions of an algebra, Indiana Univ. Math.
J. 30 (1981) 675–692.

[L] R.G. Larson, Characters of Hopf algebras, J. Algebra 17 (1971) 352–368.
[LR] R.G. Larson, D.E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 109 (1987) 187–

195.
[LM] V. Linchenko, S. Montgomery, A Frobenius–Schur theorem for Hopf algebras, Algebr. Represent.

Theory 3 (2000) 347–355.
[LYZ] J.-H. Lu, M. Yan, Y. Zhu, Quasi-triangular structures on Hopf algebras with positive bases, in: Con-

temp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 339–356.
[M1] A. Masuoka, Semisimple Hopf algebras of dimension 2p, Comm. Algebra 23 (1995) 1931–1940.
[M2] A. Masuoka, Selfdual Hopf algebras of dimension p3 obtained by extension, J. Algebra 178 (1995)

791–806.
[M3] A. Masuoka, The pn theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc. 124 (1996) 735–

737.
[M4] A. Masuoka, Faithfully flat forms and cohomology of Hopf algebra extensions, Comm. Algebra 25

(1997) 1169–1197.
[M5] A. Masuoka, Cocycle deformations and Galois objects for some cosemisimple Hopf algebras of finite

dimension, in: Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 195–214.
[M6] A. Masuoka, Defending the negated Kaplansky conjecture, Proc. Amer. Math. Soc. 129 (2001) 3185–

3192.
[M7] A. Masuoka, Hopf algebra extensions and cohomology, in: S. Montgomery, H.-J. Schneider (Eds.),

New Directions in Hopf Algebras, in: Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press,
2002, pp. 167–209.

[M8] A. Masuoka, More homological approach to composition of subfactors, J. Math. Sci. Univ. Tokyo 10
(2003) 599–630.

[M9] A. Masuoka, Example of almost commutative Hopf algebras which are not coquasitriangular Hopf
algebras, in: Lecture Notes Pure Appl. Math., vol. 237, Dekker, New York, 2004, pp. 185–191.

[Mi] Y. Miyashita, On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. Ser. I 21 (1970)
97–121.

[Mo1] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Reg. Conf. Ser. Math., vol. 82,
Amer. Math. Soc., Providence, RI, 1993.

[Mo2] S. Montgomery, Classifying finite-dimensional semisimple Hopf algebras, in: Contemp. Math.,
vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 265–279.

[Mo3] S. Montgomery, Representation theory of semisimple Hopf algebras, in: NATO Sci. Ser. II Math. Phys.
Chem., vol. 28, Kluwer Acad. Publ., Dordrecht, 2001, pp. 189–218.

[MW] S. Montgomery, S. Witherspoon, Irreducible representations of crossed products, J. Pure Appl. Alge-
bra 129 (1998) 315–326.

[Mv] M. Movshev, Twisting in group algebras of finite groups, Funct. Anal. Appl. 27 (1994) 240–244.
[Mu] E. Müller, Finite subgroups of the quantum general linear group, Proc. London Math. Soc. 81 (1)

(2000) 190–210.
[N1] S. Natale, On semisimple Hopf algebras of dimension pq2, J. Algebra 221 (1999) 242–278.
[N2] S. Natale, On semisimple Hopf algebras of dimension pq2, II, Algebr. Represent. Theory 4 (2001)

277–291.
[N3] S. Natale, On semisimple Hopf algebras of dimension pqr , Algebr. Represent. Theory 7 (2004) 173–

188.
[N4] S. Natale, Semisolvability of semisimple Hopf algebras of low dimension, Mem. Amer. Math. Soc. 186

(2007).
[Ng1] S.-H. Ng, Non-semisimple Hopf algebras of dimension p2, J. Algebra 255 (2002) 182–197.
[Ng2] S.-H. Ng, Hopf algebras of dimension 2p, Proc. Amer. Math. Soc. 133 (2005) 2237–2242.
[NZ] W. Nichols, M.B. Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989) 381–385.



Classification of Semisimple Hopf Algebras 455

[Nk] D. Nikshych, K0-rings and twisting of finite-dimensional semisimple Hopf algebras, Comm. Alge-
bra 26 (1998) 321–342.

[OS] U. Oberst, H.-J. Schneider, Untergruppen formeller Gruppen von endlichen Index, J. Algebra 31 (1974)
10–44.

[Oc] A. Ocneanu, Quantized group, string algebras and Galois theory for algebras, in: Operator Algebras
and Applications, vol. 2, in: London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press,
Cambridge, 1988, pp. 119–172.

[P1] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent. Math. 101 (1990)
19–43.

[P2] S. Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994) 163–255.
[R1] D.E. Radford, The order of the antipode of a finite-dimensional Hopf algebra is finite, Amer. J. Math 98

(1976) 333–355.
[R2] D.E. Radford, The group of automorphisms of a semisimple Hopf algebra over a field of characteristic

zero is finite, Amer. J. Math. 112 (1990) 331–357.
[Sb1] P. Schauenburg, Hopf bi-Galois extensions, Comm. Algebra 24 (1996) 3797–3825.
[Sb2] P. Schauenburg, Hopf bimodules, coquasibialgebras, and an exact sequence of Kac, Adv. Math. 163

(2002) 194–263.
[Sb3] P. Schauenburg, Hopf algebra extensions and monoidal categories, in: S. Montgomery, H.-J. Schneider

(Eds.), New Directions in Hopf algebras, in: Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ.
Press, 2002, pp. 321–381.

[SS] P. Schauenburg, H.-J. Schneider, Galois type extensions and Hopf algebras, Banach Center Publ., in
press.

[S1] H.-J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 151
(1992) 289–312.

[S2] H.-J. Schneider, Some properties of factorizable Hopf algebras, Proc. Amer. Math. Soc. 129 (2001)
1891–1898.

[Se] Y. Sekine, An example of finite dimensional Kac algebras of Kac–Paljutkin type, Proc. Amer. Math.
Soc. 124 (1996) 1139–1147.

[Sk] S. Skryabin, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc. 359 (2007)
2597–2623.
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Abstract
The problem of computation and estimation of finite and infinite sums (generating func-

tions) often arises in combinatorics and graph theory, theory of algorithms and computer al-
gebra, group theory and function theory, probability theory and asymptotical analysis as well
as in physics, statistical mechanics, and other areas of knowledge.

This article is intended for a wide audience including graduate students and researchers
in the various applied fields. Here we present the history, main results, model examples, var-
ious applications and perspectives of investigation in two connected general approaches to
summation: the integral representation and computation of combinatorial sums (“the method
of coefficients”) and the modern algorithmic approach. Each of the approaches is based on
classic results of mathematical analysis, function theory and computer algebra.
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1. Introduction

The sources for the application of integrals for the computation of combinatorial sums go
back to L. Euler, C. Gauss, A. Cauchy, G. Pólya and other classical masters of mathemat-
ical analysis and algebra. The concept of integral representation of sums has undergone
profound development from estimates of sums in analytic number theory: the cyclotomic
method (Ja. Uspensky, G. Hardy, J. Littlewood, S. Ramanujan, and others), the method of
complex integration and the method of trigonometric sums (I. Vinogradov). Since C. Gauss
the integral representation and formulae for the summation of hypergeometric series are
widely used for the computation of sums with ordinary and q-binomial coefficients. Jointly
with finite differences this apparatus is effectively used for computing binomial sums with
the help of a computer [166]. Of particular interest are Pólya’s investigations which are
on the boundary of discrete and continuous mathematics and use contour integrals [170].
This approach was systematically developed by modern authors (see [22,23,48,59,76,81,
152,141]; see also [32–34,51,172,173] and others).

Here we present a general scheme and numerous applications for the method of integral
representation and evaluation of combinatorial sums. This approach originates from clas-
sical results of mathematical analysis and the well-known method of generating functions
in combinatorics. The development of this method known as “the method of coefficients”
was carried out ever since the first publication of the first author of this article for more
than 40 years (see [52–75,14,92], and also [99,147,121,159,203] and others). The method
has been extended to computations with Laurent formal power series over C. The main
results and verification of the method of coefficients with the help of the theory of multidi-
mensional residues were given in [59]. We have done the direct, short and uniform analytic
computation of several thousand sums, have found asymptotics, multidimensional analogs
and recurrence relations for several of them, have corrected a series of incorrect identities
obtained by other investigators earlier, etc. The material of the following known books on
combinatorial identities, generating functions and its applications was completely or partly
reworked during these years: P.A. MacMahon (1915–1916), I. Schwatt (1924), V. Ku-
drjavtzev (1936), W. Feller (1957), “The Otto Dunkel Memorial Problem Book”, Amer.
Math. Soc., New York (1957), J. Riordan (1958, 1968), E. Netto (1958), D. Knuth (1968),
J. Percus (1971), E.B. McBride (1971), V. Vilenkin (1971), G. Gould (1972), K. Rybnikov
(1972), J. Kaucký (1975), M. Lucas (1979), M. Platonov (1979), D. Green and D. Knuth
(1982), I. Goulden and D. Jackson (1983), R. Stanley (1997), A. Prudnikov, Yu. Brychkov
and O. Marichev (1988), R. Graham, D. Knuth and O. Patashnik (1994), H. Wilf (1994),
M. Petkovšek, H. Wilf and D. Zeilberger (1996) (see [94,98,99,115,118,125,133,143,155,
157,169,171,174,176,181,188,197,207,210]).

For example we considered more than 200 of the first identities in Gould’s book (1972).
An analysis of the singularities of the integrals has enabled us to explain why they can be
computed in closed form, to write out new identities of the same type, and to obtain some
asymptotic estimates for them [59]. In the same way one can obtain practically unlimited
amounts of new identities with combinatorial numbers (see, for example, Section 3.3.3
below).
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Here we will also solve several original summation problems, that were not solved by
traditional methods and which arose in combinatorial analysis and graph theory, function
theory and group theory, and other fields. In particular:
- the Riordan problem (proposed in 1968) about the classification of known invertible

combinatorial relations;
- computing the closed form of Szegő and Bergman kernels for an extended class of n-

circular domains in Cn;
- the Kargapolov problem (proposed in 1972) on the enumeration of the ranks of factors

in the lower central series of free k-step solvable groups;
- series of enumerative problems for groups and algebras of Lie type and new formulae

involving summation by partitions;
- description of a characteristic function of the stopping height in the well-known Collatz

conjecture;
- a multidimensional sum with polynomial coefficients arising in the well known Jacobian

conjecture (two-dimensional case);
- the first polynomial identities for permanents.
We provide a justification of the method of coefficients with the help of the theory of one-
dimensional and multidimensional residues. Solutions of problems above mentioned have
lead to a better understanding of the algebraic, topological and combinatorial structures of
the investigated objects: this allowed in many cases to obtain essential generalizations of
those results. In this sense our approach is a part of the general approaches of this kind (see
also [158]).

We will also give a brief overview of well-known summation algorithms used in com-
puter algebra systems such as Maple [153], apply the integral representation approach to
indefinite summation for the first time, and establish links between modern algorithms
and methods of integral representation. This leads to some improvements of existing algo-
rithms, obtained as the result of comparison of two approaches. Co-operative investigation
of the particular summation problem gives new representation for the complementary Bell
numbers.

At the end of this chapter an extensive list of open problems is presented.

2. Idea and method of integral representation of combinatorial sums

2.1. History of the problem

Combinatorial sums (numbers, expressions) express the characteristics of some combina-
torial schemes in terms of its parameters. Some of them allow analytical representations
which can be simplified. The result of computations generates a combinatorial identity.
In computing combinatorial sums an extensive collection of methods and stages is used
– from mathematical induction, inclusion–exclusion principle, properties of binomial co-
efficients and other combinatorial numbers, various operators, symbolic methods such as
Blissard’s calculus, summation formulae for hypergeometric terms and special functions
of various types, difference–integral–differential equations – to combinatorial interpreta-
tions of sums in the framework of various combinatorial schemes: permutations, combina-
tions, arrangements of particles in cells, counting the number of paths on various lattices
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and many others, – and more general methods: partially group-theoretic method of Pólya,
incidence algebras and Möbius functions on partially ordered sets and others. However,
the procedure of computation in each particular case usually was individual. Although
the origin of application of the integrals for the computation of combinatorial sums goes
back to L. Euler, C. Gauss, A. Cauchy, G. Pólya, algebras of analytic functions and mul-
tiple integrals were used only occasionally. For example, in well-known work by I. Good
and F. Dyson (early 70s of the past century) generating functions adapted to a search of
change of variables and the computation of some multiple contour integrals correspond-
ing to combinatorial sums is carried out. Nevertheless the procedure for going through the
most important step of the computation – the passage from a combinatorial sum to its inte-
gral representation – was still almost undeveloped. Often various integral representations
arise during the initial steps of the calculation of combinatorial sums of various type. At
the same time we have concluded that the general computational scheme remains practi-
cally without variations. It is important also that the concept of an integral representation
of sums has undergone profound development from the computation of sums in analytic
number theory and asymptotic analysis (see, for example, [48,156]).

Modern algorithmic treatments of such summations, that lead to immediate implemen-
tations on a computer, has started with work of S.A. Abramov (1971), G. Gosper (1977),
D. Zeilberger (1991). Many improvements of the summation and theoretical foundations of
these algorithmic approaches were proposed and implemented by M. Bronstein, F. Chyzak,
J. Gerhard, M. van Hoeij, P. Paule, M. Petkovšek, B. Salvy, V. Strehl, H. Wilf, E. Zima and
others.

2.2. Algebra of analytic functions

2.2.1. Computational scheme The general scheme of the method of integral representa-
tion of sums can be broken up into the following steps.

1. Assignment of a table of integral representation of certain combinatorial numbers. For
example,1

• The binomial coefficients:

(1)

(
m

k

)
= resw(1 + w)mw−k−1

= 1

2πi

∫
|w|=1

(1 + w)mw−k−1 dw, 0 < 1 < 1;

(2)

(
m

k

)
= resw(1 + w)mw−k−1

= 1

2πi

∫
|w|=1

(1 + w)mw−k−1 dw, 1 > 0;

1 The res operator will be defined in Section 3.1.
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(3)

(
m + k − 1

k

)
=
(−m

k

)
= resw(1 − w)−mw−k−1

= 1

2πi

∫
|w|=1

(1 − w)−mw−k−1 dw, 0 < 1 < 1.

• The Kronecker symbol δ(n, k):

(4)δ(n, k) = resww−n+k−1.

• The Stirling numbers of the second kind:{
m

k

}
= m!

k! resw(−1 + expw)kw−m−1

(5)= m!
k!

1

2πi

∫
|w|=1

(−1 + expw)kw−m−1 dw, 1 > 0;

• The exponential coefficients:

(6)

αk/k! = resw exp(αw)w−k−1

= 1

2πi

∫
|w|=1

exp(αw)w−k−1 dw, 1 > 0;

(7)1/αj = 1

(j − 1)!
∫ ∞

0
u−j+1 exp(−αu) du, Aα > −1.

• The multinomial (polynomial) coefficients, α ∈ R:(
α

k1, k2, . . . , kn

)
= resw(1 +

r∑
s=1

ws)
αw

−k1−1
1 w

−k2−1
2 · · ·w−kr−1

r

(8)= 1

(2πi)r

∫
Γr (ε)

(
1 +

r∑
s=1

ws

)α

w
−k1−1
1 w

−k2−1
2 · · ·w−kr−1

r dw.

Here w = (w1, w2, . . . , wr), dw = dw1 ∧ dw2 ∧ . . . ∧ dwr, ε = (ε1, ε2, . . . , εr ),
Γ = Γr(ε) = {w = (w1, w2, . . . , wr) ∈ Cr : |w1| = ε1, |w2| = ε2, . . . , |wr | = εr}
is the skeleton of a polycylinder U = Ur(ε) = {w = (w1, w2, . . . , wr): |w1| � ε1,

|w2| � ε2, . . . , |wr | � εr}.
The table can be supplemented in the course of the computations.

2. Representation of the summand ak of the original sum
∑

k ak by a sum of products of
combinatorial numbers.

3. Replacement of the combinatorial numbers by their integrals.

4. Reduction of products of integrals to multiple integrals.
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5. Interchange the order of summation and integration. This gives an integral representation
of the original sum with the kernel represented by a series. The use of this transformation
requires us to deform the domain of integration in such a way as to obtain a series under
the integral which converges uniformly on this domain saving the value of the integral.

6. Summation of the series under the integral sign. As the rule, this series turns out to be
a geometric progression [102]. This gives the integral representation of the original sum
with the kernel in closed form.

7. The computation of the resulting integral by means of tables of integrals, iterated in-
tegration, the theory of single and multiple residues, or new methods (for example, the
splitting lemma).

2.2.2. Examples The first two examples are illustrative.
1. Compute the Hardy sum

Sm =
Bm/2/∑
k=0

(−1)k
1

m − k

(
m − k

k

)
, m = 1, 2, . . . .

According to formula (1) for the summand (steps 1 and 2):

(−1)k
1

m − k

(
m − k

k

)
= 1

m

((
m − k

k

)
+
(
m − k − 1

k − 1

))
= 1

m

((
m − k

m − 2k

)
+
(
m − k − 1

m − 2k

))
= 1

m

(∮
(1 + w)m−kw−m+2k−1 dw +

∮
(1 + w)m−k−1w−m+2k−1 dw

)
= 1

m

∮
(1 + w)m−k−1(2 + w)w−m+2k−1 dw.

Then

Sm =
Bm/2/∑
k=0

(−1)k
1

m

∮
(1 + w)m−k−1(2 + w)w−m+2k−1 dw

=
∞∑
k=0

(−1)k
1

m

∮
(1 + w)m−k−1(2 + w)w−m+2k−1 dw

(as for each k > Bm/2/ the added terms are equal to zero). Choose 1, 0 < 1 < ∞,
small enough, say 1 = 1/2, so that the geometric series

∑∞
k=0(−w2/(1+w)2)k converges

uniformly on the contour of integration |w| = 1/2:

Sm = 1

2πim

∫
|w|=1/2

(1 + w)m−1(2 + w)w−m−1

{ ∞∑
k=0

(−w2/(1 + w)2)k} dw.
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By the formula for geometric summation (6th step)

Sm = 1

m

∮
(1 + w)m(2 + w)

(
1 + w + w2)−1

w−m−1 dw.

The last step (by the residue theorem)

Sm = − 1

m

[
(1 + w)m(2 + w)(1 + 2w)−1w−m−1]

w=−1/2±i
√

3/2

= 2(−1)m

m
cos(2πm/3),

and, finally, we get Hardy’s identity

Bm/2/∑
k=0

(−1)k
1

m − k

(
m − k

k

)
= 2(−1)m

m
cos(2πm/3), m = 1, 2, . . . .

2. Rational function summation. Compute the sum

Sm =
m∑

k=1

{
14k + 14

(2k − 1)(2k + 1)(2k + 3)
+ 2k + 1

k2(k + 1)2

}

=
m∑

k=1

{
2

(2k − 1)
− 3

(2k + 1)
+ 1

(2k + 3)
+ 1

k2
− 1

(k + 1)2

}
.

SOLUTION. According to the formula (7) for applied to each term of the sum

Sm =
m∑

k=1

{
2

(2k − 1)
− 3

(2k + 1)
+ 1

(2k + 3)
+ 1

k2
− 1

(k + 1)2

}

=
m∑

k=1

{
2
∫ ∞

0
e−(2k+1)u du − 3

∫ ∞

0
e−(2k−1)udu +

∫ ∞

0
e−(2k+3)u du

+
∫ ∞

0
ue−ku du −

∫ ∞

0
ue−(k+1)u du

}

=
m∑

k=1

∫ ∞

0

{
e−(2k+1)u(2 − 3e−2u + e−4u)+ ue−ku

(
1 − e−u

)}
du

=
∫ ∞

0

(
2 − 3e−2u + e−4u){ m∑

k=1

e−(2k+1)u

}
du

+
∫ ∞

0
u
(
1 − e−u

){ m∑
k=1

e−ku

}
du

(by the formula for geometric progressions, used twice)

=
∫ ∞

0
e−uP1

(
e−2u)(1 − e−2um)(1 − e−2u)−1

du
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+
∫ ∞

0
ue−uP2

(
e−u
)(

1 − e−mu
)(

1 − e−u
)−1

du,

where P1(t) = 2−3t+ t2 and P2(t) = 1− t . Using that P1(1) = P2(1) = 0, P1(e
−2u)(1−

e−2u)−1 = (2 − e−2u) and P2(e
−u)(1 − e−u)−1 = 1, we have

Sm =
∫ ∞

0
e−u
(
2 − e−2u)(1 − e−2um) du +

∫ ∞

0
ue−u

(
1 − e−mu

)
du

=
∫ ∞

0

{
2e−u − e−3u − 2e−u(2m+1) − 2e−u(m+2) + ue−u − e−u(m+1)} du

(calculating each integral by formula (7))

= 4

3
− 2

2m + 1
− 2

m + 2
− 1

(m + 1)2
,

and so, finally, we get an identity

m∑
k=1

{
14k + 14

(2k − 1)(2k + 1)(2k + 3)
+ 2k + 1

k2(k + 1)2

}
= 4

3
− 2

2m + 1
− 2

m + 2
− 1

(m + 1)2
, m = 1, 2, . . . .

REMARK 1. It is interesting that the integral representations (another type) have been used
already for summation of elementary fractions of the first degree [103].

3. Revision of the Strazdin combinatorial formula. In [201] the following combina-
torial formula from graph theory is given: if n � k, then

Sn,k =
∞∑
r=0

k∑
j=0

Bj/2/∑
i=0

(−1)j
(

2k − j − 2i

j − 2i

)(
2n − 2i

r − i

)
= 22(n−k)−1(k + 1)(k + 2).

We would like to verify it by computing the left-hand side using the integral representation
approach.

SOLUTION. As
∑∞

r=0

(2n−2i
r−i

) = 22n−2i ,

Sn,k =
k∑

j=0

Bj/2/∑
i=0

(−1)j22n−2i
(

2k − j − 2i

j − 2i

)
(change of summation index j = k − j)

=
k∑

j=0

Bj/2/∑
i=0

(−1)k−j22n−2i
(
k + j − 2i

k − j − 2i

)

=
k∑

j=0

Bj/2/∑
i=0

(−1)k−j22n−2i
∫

|w|=1

(1 + w)k+j−2iw−k+j+2i−1 dw
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=
∞∑
j=0

∞∑
i=0

1

2πi
· · ·

= (−1)k4n

2πi

∫
|w|=1/3

{ ∞∑
i=0

(
w2/4(1 + w)2)i}

×
{ ∞∑

j=0

(−w(1 + w))j

}
(1 + w)kw−k−1 dw

= (−1)k4n

2πi

∫
|w|=1/3

(1 + w)k+2

× {(w + 2)(3w + 2)(w2 + w + 1)
}−1

w−k−1 dw

(by the theorem on full sums of residues)

= (−1)k+14n+1

2πi

[
(1 + w)k+2(3w + 2)−1(w2 + w + 1

)−1
w−k−1]

w=−2

+ 1

3

[
(1 + w)k+2(w + 2)−1(w2 + w + 1)−1w−k−1]

w=−2/3

+ [(1 + w)k+2(w + 2)−1(3w + 2)−1

× w−k−1(w − ((−1 ∓ i
√

3
)
/2
)−1)]

w=(−1±i
√

3)/2

= 22n+1
{
(−1/2)k+2

3
+ 3

7
2−k−2 + 10

21
cos(2kπ/3) + 2

√
3

21
sin(2kπ/3)

}
,

and, finally, we get a new identity

∞∑
r=0

k∑
j=0

Bj/2/∑
i=0

(−1)j
(

2k − j − 2i

j − 2i

)(
2n − 2i

r − i

)

= 22n+1
{
(−1/2)k+2

3
+ 3

7
2−k−2 + 10

21
cos(2kπ/3) + 2

√
3

21
sin(2kπ/3)

}
,

n � k.

It is easy to see that in order to get right-hand side of the Strazdin formula, it is sufficient
to replace

(2n−2i
r−i

)
by
(2n−2j

r−j

)
and repeat the same computational scheme. Thus we will get

for n � k

∞∑
r=0

k∑
j=0

Bj/2/∑
i=0

(−1)j
(

2k − j − 2i

j − 2i

)(
2n − 2j

r − j

)
= 22(n−k)−1(k + 1)(k + 2).

4. Computation of the Bergman kernel for a 3-circular domain
Consider the following domain

(9)D = {(z1, z2, z3) ∈ C3
z :
(|z1|2 + |z2|2

)1/q + |z3|2 < 1
}
.
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THEOREM 1. (See [57], [59, Chapter 6].) Let K(x) = K(x1, x2, x3) be the Bergman ker-
nel for 3-circular domain (9) with integration over the volume. Then K(x) can be presented
in some neighborhood of the origin by the following formulae:

(10)

K(x) = π−3
∞∑

k1=0

∞∑
k2=0

∞∑
k3=0

(q(k1 + k2 + 2) + k3 + 1)!(k1 + k2 + 2)

k1!k2!k3!(q(k1 + k2 + 2))! x
k1
1 x

k2
2 x

k3
3 ,

(11)

K(x) = 2

π3(2πi)4

∫
Γ (1)

(1 + u3 + u4)
2q+1(1 + u1 + u2)

2

u2
4(u1 − x1(1 + u1 + u2)(1 + u3 + u4)q)

× du1 ∧ du2 ∧ du3 ∧ du4

(u2 − x2(1 + u1 + u2)(1 + u3 + u4)q)((u3 − x3(1 + u3 + u4))
,

where Γ (1) = {u = (u1, u2, u3, u4): |uj | = 1, j = 1, 2, 3, 4} is the skeleton of a
sufficiently small polycylinder V (1);

K(x) = 2π−3(1 − x1)
q−2((1 − x3)

q − (x1 + x2)
)−4

(12)× ((2q + 1)(1 − x3)
q − (q − 1)(x1 + x2)

)
.

PROOF. We consider only the proof of (11) and (12) using (10), which follows immedi-
ately from results of [57]. To obtain (10) we first represent the general term of the sum (10)
in terms of polynomial coefficients:

(13)2π−3
∑
|k|�0

(
k1 + k2 + 2

k1, k2

)(
q(k1 + k2 + 2) + k3 + 1

k3, 1

)
x
k1
1 x

k2
2 x

k3
3 .

Replacing the polynomial coefficients in (13) according to formula (6)(
k1 + k2 + 2

k1, k2

)
= 1

(2πi)2

∫
Γ1(1)

(1 + u1 + u2)
k1+k2+2u

−k1−1
1 u

−k2−1
2 du1 ∧ du2,(

q(k1 + k2 + 2) + k3 + 1

k3, 1

)
= 1

(2πi)2

∫
Γ2(1)

(1 + u3 + u4)
q(k1+k2+2)+k3+1u

−k3−1
3 u−2

4 du3 ∧ du4,

we get, after reducing the product of integrals to a multiple integral and interchanging
summation and integration, that for all |xj | � ε

K(x) = 2π−3

(2πi)4

∫
Γ (1)

(1 + u3 + u4)
2q+1(1 + u1 + u2)

2

u1u2u3u
2
4

×
{ ∑

|k|�0

(
x1(1 + u1 + u2)(1 + u3 + u4)

q/u1
)k1

(14)

× (x2(1 + u1 + u2)(1 + u3 + u4)
q/u2

)k2
(
x3(1 + u3 + u4)/u3

)k3

}
du.
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Here ε > 0 is small enough that the ratio of the progression under the integral sign is less
than 1 on the cycle Γ (1). By the formula for the sum of a geometric progression, (14) gives
us the integral representation (11) for the kernel K(x).

To obtain (12) from (11) we make the following change of variables under the integral
sign in (12) (Theorem 15):

v1 = u1 − x1(1 + u1 + u2)(1 + u3 + u4)
q,

v2 = u2 − x2(1 + u1 + u2)(1 + u3 + u4)
q,

(15)v3 = u3 − x3(1 + u3 + u4).

Taking into account, that the first terms on the right-hand sides in (15) for v1, v2, v3 are
greater in modulus on Γ (1) than the corresponding second term when |xj | � ε, j =
1, 2, 3. Easy computation gives us

K(x) = 2π−3(1 − x3)
q−2

×
∫

|u4|=1

(1 + u4)
2q+1((1 − x3)

q − (x1 + x2)(1 + u4)
q
)−2

u−2
4 du4

= 2π−3(1 − x3)
q−2

×
[

∂

∂u4
(1 + u4)

2q+1((1 − x3)
q − (x1 + x2)(1 + u4)

q
)−2
]
u4=0

,

which yields (12). �

3. Laurent formal power series over CCC

Using the res concept and its properties the idea of the integral representation can be ex-
tended to sums that allow computation with the help of Laurent formal power series of one
and several variables over C. The res concept is directly connected with the classic concept
of residue in the theory of analytic functions and which may be used with series of various
types. This connection has enabled us to express properties of res operator analogous to
properties of residue in the theory of analytic functions. This in turn allows us to unify
the scheme of the method of integral representation of sums independently of what kind
of series – convergent or formal – is being used (separately, or jointly) in the process of
computation of a particular sum.

In this section we shall restrict ourself explaining only one-dimensional case, although in
further computations the res concept will also be used for multiple series. Besides, the one-
dimensional case is of interest both in itself and in the computation of multiple integrals
(res) in terms of repeated integrals.

3.1. Definition and properties of the res operator (method of coefficients)

Let L be the set of a Laurent formal power series over C; hence each element of L contains
only a finite number of terms of negative degree. The order of the monomial ckwk is k.
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The order of the series C(w) = ∑
k ckw

k from L is minimal order of monomials with a
nonzero coefficient. Let Lk denotes a set of series of order k, L =⋃∞

k=−∞ Lk . Two series
A(w) =∑k akw

k and B(w) =∑k bkw
k from L are equal if and only if ak = bk for all k.

We can introduce in L operations of addition, multiplication, substitution, inversion and
differentiation2 (see, [31,76,103,119,182]). Let f (w), ψ(w) ∈ L0. Further on we will use
the following notations:
· h(w) = wf (w) ∈ L1;
· l(w) = w/ψ(w) ∈ L1;
· z′(w) = d

dw
z(w);

· h = h(z) ∈ L1 – inverse series of the series z = h(w) ∈ L1.
For C(w) ∈ L define the formal residue as reswC(w) = c−1. Let A(w) = ∑k akw

k be
a generating function for a sequence {ak}. Then

(16)ak = reswA(w)w−k−1, k = 0, 1, 2, . . . .

For example, one of the possible representations of the binomial coefficients is(
n

k

)
= resw(1 + w)nw−k−1, k = 0, 1, . . . , n.

There are several properties (rewriting rules) of the res operator which immediately fol-
low from its definition and properties of operations in Laurent formal power series over C.
We list only a few of them which will be used in this article. Let A(w) = ∑

k akw
k and

B(w) =∑k bkw
k be generating functions from L.

RULE 1 (res removal).

reswA(w)w−k−1 = reswB(w)w−k−1 for all k

(17)if and only if A(w) = B(w).

RULE 2 (Linearity). For any α, β from C

(18)
αreswA(w)w−k−1 + βreswB(w)w−k−1 = resw

((
αA(w) + βB(w)

)
w−k−1).

RULE 3 (Substitution).
(a) For f (w) ∈ Lk (k � 1) and A(w) any element of L, or
(b) for A(w) a polynomial and f (w) any element of L including a constant

(19)
∑
k

f (w)kresz
(
A(z)z−k−1) = A

(
f (w)

)
.

RULE 4 (Inversion). For f (w) from L0

(20)
∑
k

zkresw
(
A(w)f (w)kw−k−1) = [A(w)/f (w)h′(w)

]
w=h(z)

,

where z = h(w) = wf (w) ∈ L1.

2 In the combinatorial literature the phrase “Cauchy algebra of formal power series” is often used for the same
purpose [176].
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RULE 5 (Change of variables). If f (w) ∈ L0, then

(21)resw
(
A(w)f (w)kw−k−1) = resz

([
A(w)/f (w)h′(w)

]
w=h(z)

z−k−1),
where z = h(w) = wf (w) ∈ L1.

RULE 6 (Differentiation).

(22)kreswA(w)w−k−1 = reswA′(w)w−k.

3.2. Connection between the theory of analytic functions and the lemma of completeness

If a formal power series A(w) ∈ L converges in a punctured neighborhood of zero, then
the definition of reswA(w) coincides with the usual definition of resw=0A(w), used in the
theory of analytic functions. The formula (16) is an analog of the Cauchy integral formula
ak = 1

2πi

∮
|w|=1

A(w)w−k−1 dw for the coefficients of the Taylor series in a punctured
neighborhood of zero. The substitution rule of the res operator is direct analog of the
famous Cauchy theorem. Similarly, it is possible to introduce the definition of a formal
residue at the point of infinity, the logarithmic residue and the residue theorem (all nec-
essary concepts and results in the residue theory of one and several complex variables,
see [204,15,152,59,189]). Moreover, it is easy to see that rules of the res operator can be
simply proved by reduction to known formulae in the theory of residues for corresponding
polynomials [59].

In solving analytic problems with the help of generating functions the investigator usu-
ally encounters one of two interconnected problems.

PROBLEM A. Suppose that the series S(w) = ∑
k skw

k from L is expressed in terms of
the series A(w) = ∑

k akw
k , B(w) = ∑

k bkw
k , . . . , D(w) = ∑

k dkw
k from L with the

help of operations on Laurent formal power series over C, i.e. a formula

(23)S(w) = f
(
A(w), B(w), . . . ,D(w)

)
is given. For each k find a formula

(24)sk = f
({ak}, {bk}, . . . , {dk})

for the terms of sequence {sk} in terms of the terms of the sequences {ak}, {bk}, . . . , {dk}.

DEFINITION 1. A sequence {sk} is called of A-type, if it is determined by a formula (24).

Consider, for example, the following substitution. Let A(w) =∑k akw
k ∈ L0, B(w) =∑

k bkw
k ∈ L1, and

(25)A
(
B(w)

) = D(w), D(w) =
∑
k

dkw
k ∈ L.
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Then

dn = resw
{
A
(
B(w)

)
w−n−1} = resw

{ ∞∑
k=0

ak

( ∞∑
i=1

biw
i

)
w−n−1

}

= resw

{
n∑

k=0

ak

(
n∑

i=1

biw
i

)
w−n−1

}

=
n∑

k=0

akb
k
1resw

{(
1 +

n∑
i=2

bib
−1
1 wi−1

)k

w−n+k−1

}
(by polynomial expansion)

=
n∑

k=0

akb
k
1

∑
k2+···+(n−1)kn=n−k,

k2,...,kn=0,1,...

(
k

k2, . . . , kn

) n∏
i=2

(bi/b1)
ki ,

i.e.

dn = resw
{
A
(
B(w)

)
w−n−1}

=
n∑

k=0

akb
k
1

∑
k2+···+(n−1)kn=n−k,

k2,...,kn=0,1,...

(
k

k2, . . . , kn

) n∏
i=2

(bi/b1)
ki ,

(26)n = 0, 1, 2, . . . .

PROBLEM B. For each k a formula sk = f ({ak}, {bk}, . . . , {dk}) for the terms of the
sequence {sk} of A-type is given. Find a formula S(w) = f (A(w), B(w), . . . ,D(w)) for
generating functions of the sequences {sk}, {ak}, {bk}, . . . , {dk}.

DEFINITION 2. A set of rules for res operator is called complete, if it allows one to solve
Problem B.

LEMMA 1 (On completeness [64]). The set of Rules 1–6 for the res operator is complete.

PROOF. We will use induction on the number of sequence operations in formula (24) gen-
erating the given sequence {sk}. At the first step of induction the series S(w) is obtained
with the help of series A(w) and B(w) from L by one operation over Laurent formal power
series (addition, multiplication, etc.). We should give the solution to recursive relations that
corresponds to each of the operations. These calculations were made in [59, pp. 31–35],
and we present here only one of them. For example, by formula (26) for substitution oper-
ation we have:

dn =
n∑

k=0

akb
k
1

∑
k2+···+(n−1)kn=n−k,

k2,...,kn=0,1,...

(
k

k2, . . . , kn

) n∏
i=2

(bi/b1)
ki , n = 0, 1, 2, . . . .
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As (
k

k2, . . . , kn

)
= resz2,...,zn(1 + z2 + · · · + zn)

k
n∏

i=2

z−ki−1,

it follows that

dn =
n∑

k=0

akb
k
1

{ ∑
k2,...,kn=0,1,...

resw,z2,...,zn(
(1 + z2 + · · · + zn)

kw−n+k+k2+···+kn−1
n∏

i=2

(bi/b1)
ki z−ki−1

)}
,

where the operator resww−n+k+k2+···+kn−1 is added to take care of the linear restriction

k2 + · · · + (n − 1)kn = n − k

on the summation indexes k2, . . . , kn. By the substitution rule for the res operator and the
following change of variables z2 = wb2/b1, . . . , zn = wbn/b1 we get

dn =
n∑

k=0

akresw(b1w
1 + b2w

2 + · · · + bnw
n)kw−n−1

=
∞∑
k=0

akresw

(( ∞∑
j=1

bjw
j

)k

w−n−1

)
= resw

{( ∞∑
k=0

akB
k(w)

)
w−n−1

}
= resw

{
A
(
B(w)

)
w−n−1}, n = 0, 1, 2, . . . ,

i.e.,

D(w) = A
(
B(w)

)
.

If the statement of the lemma is valid for n − 1 operations, then the next inductive step is
similar to the initial step. �

REMARK 2. This lemma supports the thesis according to which it should be possible to
find with the help of the method of coefficients an operational (integral) representation for
those sums, which can be calculated via Laurent formal power series.

3.3. Examples

The first example is illustrative.

3.3.1. Computation of the Halmos sum

S = Sn,m =
m∑

k=0

(−1)k
(
n

k

)
, m � n.
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SOLUTION. As
(
n
k

) = resw(1+w)nw−k−1, according to the general scheme of the method
of coefficients we have

S =
m∑

k=0

(−1)kresw(1 + w)nw−k−1

(by the linearity rule)

= resw

{
(1 + w)n

[
m∑

k=0

(−1)kw−k−1

]}
(by the formula of geometric progression)

= resw
{
(1 + w)nw−1(1 − (−w)−m−1)(1 − (−w)−1)−1}

(after division by (1 + w))

= resw
{
(1 + w)n−1(1 + (−1)mw−m−1)}

(by the linearity rule)

= resw(1 + w)n−1 + (−1)mresw
{
(1 + w)n−1w−m−1}

(by the definition of the res operator)

= 0 + (−1)m
(
n − 1

m

)
= (−1)m

(
n − 1

m

)
.

Thus we have a new proof of the well-known Halmos identity [101]

m∑
k=0

(−1)k
(
n

k

)
= (−1)m

(
n − 1

m

)
, m � n.

3.3.2. Calculation of the Lyamin–Selivanov sum from graph theory Compute the follow-
ing multiple sum [134] of Stirling numbers

S =
n−k∑
a=0

a∑
d=0

a∑
p=0

p+d∑
c=d

(−1)p+a−c

(
k − d

a − d

)(
d

p + d − c

)

× n!nn−k−a−1

(k − d)!(n − k − p)!c!
{
c

d

}{
n − k − p

n − k − a

}
.

SOLUTION. Since(
a

d

)
= resw(1 + w)aw−d−1,

(
d

p + d − c

)
= resu(1 + u)dw−p−d+c−1,{

c

d

}
= c!

d!resx
(
ex − 1

)d
x−c−1,{

n − k − p

n − k − a

}
= (n − k − p)!

(n − k − a)! resy
(
ey − 1

)n−k−a
y−n+k+p−1,
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applying three times the substitution rule we have successively

S =
∑

a,d,p,c

(−1)a
n!nn−k−a−1

(n − k − a)!k!
(
k

a

){
(−1)p−c

(
a

d

)(
d

p + d − c

)

× resx
(
ex − 1

)d
x−c−1 × resy

(
ey − 1

)n−k−a
y−n+k+p−1

}
=
∑

a,d,p,c

(−1)a
n!nn−k−a−1

(n − k − a)!k!
(
k

a

)
(−1)p−c

× resxywu

(
ex − 1

)d
x−c−1(ey − 1

)n−k−a
y−n+k+p−1

× (1 + u)du−p−d+c−1(1 + w)aw−d−1

=
∑
a,d,p

{
. . .

{ ∞∑
c=0

(−u)cresx
(
ex − 1

)d
x−c−1

}}
(change of variables x = −u ∈ L1)

=
∑
a,d

{
. . .

{ ∞∑
p=0

(−y)presu(1 + u)d
(
e−u − 1

)d
u−p−d−1

}}
(change of variables u = −y ∈ L1)

=
∑
a

{
. . .

{ ∞∑
d=0

(
(1 − y)

(
1 − ey

)
/y
)dresw(1 + w)aw−d−1

}}
(change of variables w = (1 − y)(1 − ey)/y)

=
∑
a

(−1)a
n!nn−k−a−1

(n − k − a)!k!
(
k

a

)
× resy

{(
ey − 1

)n−k−a(
y − (1 − y)

(
ey − 1

))a
y−n+k−a−1}.

It is easy to see that the res with respect to y is equal to (1/2)a . Thus we get a new identity

a∑
d=0

a∑
p=0

p+d∑
c=d

(−1)p+c

(
a

d

)(
d

p + d − c

)
d!(n − k − a)!
c!(n − k − p)!

{
c

d

}{
n − k − p

n − k − a

}
= (1/2)a, a = 0, 1, . . . , n − k.

3.3.3. Sums with linear constraints on the summation indices It is not uncommon to meet
multidimensional sums with constraints on the summation indices when solving enumer-
ation problems, especially in graph theory. In order to take into account linear constraints
on the summation indices the well-known trick of introducing extra weighting variables or
δ-functions can be used (see also Section 6.1). This enables us, by increasing the dimen-
sion of the integrals used, to pass to the solution of a summation problem with independent
summation indices. The following result, obtained with the help of this approach, is given
in [58].
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THEOREM 2. Let

(27)Sm = −
∑

J∈Hnm(A)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

(−βr)
jr ,

where m = (m1, . . . , mk), A = (arl) is an n × k matrix, m1, . . . , mk and arl are posi-
tive integers, Hnm(A) = {J = (j1, . . . , jn): j1, . . . , jn = 0, 1, . . . and JA � m}, and
β1, . . . , βn are complex numbers. Then the series

∑∞
m1,...,mk=1 Sm1,...,mk

t
m1
1 . . . t

mk

k in the
variables (t1, . . . , tk) = t , which is the generating function for the numbers Sm1,...,mk

,
m1, . . . , mk = 1, 2, . . ., converges in some neighborhood of the origin, and its sum is

(28)F(t) = F(t1, . . . , tk) = ln f (t1, . . . , tk)

k∏
l=1

(1 − tl)
−1,

where f (t1, . . . , tk) = 1 +∑n
r=1 βr

∏k
l=1 t

arl
l , and ln x is understood to be the principal

branch of the logarithm.

From (27), (28) with k = 1 we get the following:

COROLLARY 1. Suppose that m and α1, . . . , αn are positive integers, with α1 � α2 �
· · · � αn,

Knm(α1, . . . , αn) = {J = (j1, . . . , jn): j1, . . . , jn = 0, 1, . . . ; j1, . . . , jn:

α1j1 + · · · + αnjn = m
}
,

q and β1, . . . , βn are complex numbers, p is a positive real number, Bm (m = 0, 1, . . .) are
the Bernoulli numbers, and (β)j is taken equal to 1 when β = j = 0. Then the following
identities hold:∑

J∈Knm(α1,...,αn)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

(−βr)
jr = 1

m

αn∑
r=1

x−m
r ,

where xr , r = 1, . . . , αn, are the roots of the equation 1 +∑n
1 βrx

αr = 0;

∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

{
−qr

(
p + r − 1

r

)}jr

= − p

m
qm,

m = 1, . . . , n;∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

{
−qr

(
n

r

)}jr

= n

m
(−q)m,

m = 1, . . . , n;∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

{−qr/r!}jr =
{−q, m = 1,

0, m = 2, . . . , n.
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For m = 1, . . . , n, βr = (−1)r/2/r! for r = 2, 4, . . ., and βr = 0 for r = 1, 3, . . . the
identity

∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

(−βr)
jr

=
{

0, for odd m,

(−1)m/2+12m(2m−1)Bm

m·m! , for even m.

is valid.
For m = 1, . . . , n, β1 = q, β2k+1 = q(q2 − 12)(q2 − 32) · · · (q2 − (2k − 1)2)/(2k + 1)!

and

β2k+2 = q2(q2 − 22) · · · (q2 − (2k)2)/(2k + 2)!, k = 1, 2, . . . ,

the identity

∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

(−βr)
jr

=
{

0, for even m,

(−1)Bm/2/+1q(m−1)!
m2m−1(Bm/2/!)2 , for odd m,

is valid.
For m = 1, . . . , n, βr = 0 for r = 1, 3, . . . , and βr = |Er |/r! for r = 2, 4, . . . the

identity

∑
J∈Knm(1,...,n)

(j1 + · · · + jn − 1)!
j1! . . . jn!

n∏
r=1

(−βr)
jr

=
{

0, for odd m,

(−1)m/22m(2m−1)Bm

m·m! , for even m,

is valid for the Euler numbers Em, m = 0, 1, . . . .
The Sheehan identity [191]

∑
J∈Knn(1,...,n)

(−1)j1+···+jn−1 (j1 + · · · + jn − 1)!
j1! . . . jn! = 1/n

follows from (27), (28) with k = 1, m = n, and βr = 1 and αr = r for r = 1, . . . , n.
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4. Some applications in combinatorial analysis and group theory

4.1. Solution of the Riordan problem (1968) on the characterization of known pairs of
inverse combinatorial relations and their algebraic characterization

In 1968 J. Riordan posed the problem of characterizing of known pairs of inverse combi-
natorial relations of the form

(29)am =
∞∑
k=0

cmkbk, bm =
∞∑
k=0

dmkak, m = 0, 1, 2, . . . ,

where C = (cij ) is an invertible infinite lower triangular matrix whose general term is a
linear combination of known combinatorial numbers, and D = (dij ) is its inverse ([176,
Introduction], [175]). Each pair of relations of this form generates a combinatorial identity

(30)
∑
k

cmkdkn = δ(m, n), m, n = 0, 1, 2, . . . ,

where δ(m, n) is the Kronecker symbol.
A large part of Riordan monograph [176] on combinatorial identities is concerned with

pairs of inverse relations with binomial coefficients in the one-dimensional case. The first
complete solution to the Riordan problem was given in 1973–1974 [53,54,59] by studying
properties of a special type of matrices, defined by a certain integral construction and a
certain 5-tuple F = ({αm}, {βk}, ϕ(x), f (x), ψ(x)), where {αm}m=0,1,2,..., {βk}k=0,1,2,...
are sequences of non-zero numbers and ϕ(x), f (x), ψ(x) are Laurent formal power series
over C. In [70] we presented a new solution to Riordan’s problem, gave a series of the new
algebraic results, and demonstrated how the integral representation can be used in a unified
approach for generating new types of combinatorial identities. In conclusion we compared
these results with other known classification approaches.

Let A(w) =∑k akw
k be a generating function for the sequence {ak}.

DEFINITION 3. We say that a matrix C = (cmk)m,k=0,1,2,... as in (29) is of type E or
Eq({αm}, {βk};ϕ, f,ψ) if its general term is defined by the formula

cmk = βk

αm

resz
(
ϕ(z)f k(z)ψm(z)z−m+qk−1),

where q is a positive integer, αm, βk �= 0; ϕ(z), f (z), ψ(z) ∈ L0.
In particular, for q = 1, the matrix (cmk) is infinite lower triangular with general term

(31)cmk = βk

αm

resz
(
ϕ(z)f k(z)ψm(z)z−m+k−1).

The relations (29) are completely defined by the matrix C = (cmk)m,k=0,1,2,.... For this
reason, we attach the type of this matrix to the relation, and use terms as “a relation of
type E” when necessary. Occasionally,we will omit the superscript in the type (for exam-
ple, when q = 1 or when it is not important in the context).

For example, the binomial coefficients
(
n
k

)
, n, k = 0, 1, 2, . . . , admit integral represen-

tations of the following types:
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(a) type E({1}, {1}; (1 + w), 1, 1):(
n

k

)
= resw(1 + w)nw−n+k−1;(

n

k

)
= resw(1 + w)nw−k−1,

(
n

k

)
= resw(1 − w)−n+k−1w−k−1;

(b) type of E({1}, {1}; 1, (1 − w)−1, (1 − w)−1):(
n

k

)
= resw(1 − w)−k−1w−n+k−1;

(c) ordinary: (
n

k

)
= resw(1 + w)nw−k−1,

(
n

k

)
= resw(1 − w)−n+k−1w−k−1.

4.1.1. Main results

LEMMA 2. A matrix (cmk) of the type E({αm}, {βk};ϕ(z), f (z), ψ(z)) can be uniquely
represented as a matrix of type E({αm}, {βk}; zh′(z)ϕ(h(z))/h(z), 1, ψ(h(z))h(z)/z), or
as a matrix of the type E({αm}, {βk}; zl′(z)ϕ(l(z))/l(z), f (l(z))l(z)/z, 1), where h(z) =
zf (z), l(z) = z/ψ(z).

THEOREM 3 (On inverses [59]). Relations of the type E1 are equivalent to functional
relations between the series Ã(w) = ∑

m�0 αmamwm and B̃(w) = ∑
m�0 βmbmwm as

follows:

Ã
(
l(w)

)
l′(w)ψ(w) = ϕ(w)B̃

(
h(w)

)
.

The matrix (dmk), the inverse of the matrix (cmk) of type E1 exists, is unique, is of the
type E1, and has the following general term

(32)dmk = αk

βm

resw
(
ϕ−1(w)l′(w)h′(w)f−m−1(w)ψ−k−1(w)w−m+k−1).

THEOREM 4 (On classification [53,54,59]). The pairs of inverse relations of simplest type,
of Gould type, of Tchebycheff type, of Legendre type, of Legendre–Tchebycheff type, of Abel
type, of ordinary and exponential types [176, Tables 2.1–2.5, 3.1–3.3] and of Lagrange type
[176, Chapter 4] all belong to the type Eq({αm}, {βk};ϕ, f,ψ).

THEOREM 5 (On combinatorial examples). Matrices of binomial coefficients, Stirling
numbers (usual and generalized) of the first and second kind, the Lax numbers and many
others numbers [193] belong to the type Eq({αm}, {βk};ϕ, f,ψ).

THEOREM 6 (On probabilistic examples [59]). A number of well known one and
multidimensional discrete probability distributions, viz.: Poisson and negative bino-
mial distributions (usual and generalized), Borel–Tanner distribution, Haight distrib-
ution, general Consul–Shenton discrete distribution [79,40–43] all belong to the type
Eq({αm}, {βk};ϕ, f,ψ).
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THEOREM 7 (On products [59]). Let the sequence {αm}, αm �= 0, be fixed. Then the
product of two matrices A = (amk) and B = (bmk) of type E({αm}, {αk};ϕ, f,ψ) is a
matrix the same type.

THEOREM 8 (On decomposition [59]). A matrix (dmk) of the type E({αm}, {βk};ϕ, f,ψ)

splits into the product of three matrices (amk), (bmk) and (cmk) of the following types:
E({αm}, {γk};ϕ1, 1, ψ), E({γm}, {ζk};ϕ2, 1, 1) and E({ζm}, {βk};ϕ3, f, 1), where ϕ =
ϕ1ϕ2ϕ3, ϕ1(0)ϕ2(0)ϕ3(0) �= 0 and the sequences of non-zero numbers {γm}, {ζk} are arbi-
trary.

PROOF. We have

dmk =
m∑

r=0

r∑
s=0

amrbrscsk

=
m∑

r=0

r∑
s=0

γr

αm

reswϕ1(w)ψm(w)w−m+r−1 × ζs

γr
resvϕ2(v)v

−r+s−1

× βk

ζs
resuϕ3(u)f

k(u)u−s+k−1

=
∞∑
r=0

∞∑
s=0

. . .

(for r > m, or s > r each added term of the sum is equal 0 according

to definition of the res operator)

= βk

αm

resw

{
ϕ1(w)ψ(w)mw−m−1

[ ∞∑
r=0

wrresvϕ2(v)v
−r−1

×
( ∞∑

s=0

vsresuϕ3(u)f
k(u)u−s+k−1

)]}
.

To complete the proof it suffices to sum over s and r by the substitution rule for the res
operator in the variables u and v with variable changes u = v and v = w, respectively. �

REMARK 3. In [59] this theorem was proved for γm = ζk = 1 and ϕ1 = ϕ, ϕ2 =
ϕ3 = 1. Although the statement of Theorem 5 is stronger, the scheme of the proof remains
almost the same. The presence of new weighting coefficients γm and ζk , m, k = 0, 1, 2, . . . ,
and the representation ϕ = ϕ1ϕ2ϕ3 gives algebraic completeness to the formulation of
the theorem on decomposition. It also allows us to formulate new results on algebraic
and probabilistic characterizations of pairs of inverse relations and introduces new objects
(methods), such as e.g. the Lagrange summation matrix below.

THEOREM 9 (On algebraic characterization [70]). Let a sequence of nonzero numbers
{αm} be fixed. Then:
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(a) The set of all matrices of the type E({αm}, {αk};ϕ, f,ψ) forms a subgroup of the
group TN(C) of all lower triangular matrices. If ϕ(0) = f (0) = ψ(0) = 1 then the
group E({αm}, {αk};ϕ, f,ψ) is unitriangular.

(b) The groups E({αm}, {αk};ϕ, 1, ψ) and E({αm}, {αk};ϕ, f, 1) are isomorphic.
(c) Every set of all matrices of type E({αm}, {αk};ϕ, 1, 1), E({αm}, {αk}; 1, f, 1) or

E({αm}, {αk}; 1, 1, ψ) forms a subgroup of the group E({αm}, {αk};ϕ, f,ψ).
(d) The subgroups E({αm}, {αk};ϕ, 1, 1), E({αm}, {αk}; 1, f, 1) and E({αm}, {αk};

1, 1, ψ) pairwise have only the element I = (δ(m, k))m,k=0,1,2,... in common.
(e) The group E({αm}, {αk};ϕ, f,ψ) is a product of its subgroups

E
({αm}, {αk};ϕ, 1, 1

)
, E

({αm}, {αk}; 1, f, 1
)

and

E
({αm}, {αk}; 1, 1, ψ

)
.

DEFINITION 4. We say that the matrix (31) is a matrix summation method of type
E({am}, {bk};ϕ, f,ψ), if all cmk are nonnegative and limm→∞ cmk = 0 for any k. We
call the matrix summation methods of types E({am}, {ck}; 1, 1, ψ), E({cm}, {dk};ϕ, 1, 1)
and E({dm}, {bk}; 1, f, 1) the summation methods of Lagrange, of Voronoy and analytic,
respectively.

THEOREM 10. Let A(w), B(w), C(w) and D(w) be generating functions for the se-
quences {ak}, {bk}, {ck} and {dk}, respectively. For a matrix summation method of type E to
be regular [102], it is necessary and sufficient that A(l(w))l′(w)ψ(w) = ϕ(w)B(h(w)).
Similarly, the summation methods of Lagrange, Voronoy and analytic will be regular, if
and only if respectively ψ(w)l′(w)A(l(w)) = C(w),C(w) = ϕ(w)D(w) and D(w) =
B(h(w)).

THEOREM 11 (On functional-theoretical characterization [59]). The well-known matrix
summation methods for divergent series of de la Vallée-Poussin, Obreshkov, Cesàro, Euler,
P(q, r, s), and the general methods of Lagrange, Voronoy, analytic, Gronwall, etc. are all
particular cases of regular methods of type E. A regular summation method of type E splits
into the product of regular summation methods of Lagrange, Voronoy and analytic.

REMARK 4. The Lagrange summation method is introduced here for the first time.
The classic Gronwall, Voronoy and analytic summation methods of divergent series are
methods of the following types: E({bm}, {1}; g(w)(1 − wf (w)), f (w), 1), E({bm}, {1};
g(w)(1 − w), 1, 1) and E({1}, {1}; 1 − wf (w), f (w), 1), where g(w), f (w) ∈ L0 and
g(w) = 1 +∑∞

m=1 bmwm. The last statement of Theorem 11 is an extension of a known
result in divergent summation theory that the Gronwall matrix splits into the product of
matrices of summing divergent series of Voronoy and analytic types.

4.1.2. Riordan arrays and Riordan group A particular case of matrices of type E (see
Theorem 12) and some results of the previous section appear also in the concept of the
Riordan group and Riordan array of regular and exponential type. These concepts were
introduced in 1991 by Shapiro et al. [190]. The group is quite easily described but unifies
many themes in enumeration, including a generalized concept of a renewal array defined
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by Rogers in 1978 [195,20,147]. Their basic idea was to define a class of infinite lower
triangular arrays with properties analogous to those of the Pascal triangle.

A Riordan array is an infinite lower triangular array D = {dnk}n,k∈N, defined by a pair
of formal power series d(t), h(t) ∈ L0, such that the generic element is the nth coefficient
in the series d(t)(th(t))k:

(33)dnk = [tn]d(t)(th(t))k, n, k = 0, 1, 2, . . . , dnk = 0 for k > n.

Here it is always assumed that d(0) �= 0; if we also have h(0) �= 0 then the Riordan array
is said to be proper; in the proper-case the diagonal elements dnn are different from zero
for all n ∈ N. Proper Riordan arrays are characterized by the following basic property
[195], that immediately follows from Lemma 2: a matrix {dnk}n,k∈N is a proper Riordan
array iff there exists a sequence A = {ai}i∈N with a0 �= 0 s.t. every element dn+1,k+1 can
be expressed as a linear combination with coefficients in A of elements in the preceding
row, starting from the preceding column, i.e.

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · .
The Riordan group is the set of infinite lower triangular matrices of type (33).

Shapiro [190] and others often denote a Riordan matrix D by D = (g(x), f (x)),
g(x) ∈ L0, f (x) ∈ L1. We denote by R∗ the set of Riordan matrices. R∗ is a group un-
der matrix multiplication with the following properties: (g(x), f (x)) ∗ (u(x), v(x)) =
(g(x)u(f (x)), v(f (x))), I = (1, x) is the identity element. The inverse of D is given by
D(−1) = (1/g(f (x)), f (x)).

It was shown in 2000 [161] that the elements of the Riordan group of the form
(xf ′(x)/f (x), f (x)) form a subgroup denoted by PW , as proved by the following:

(i) The identity (1, x) = x(x)′/x, x) ∈ PW .
(ii) The product(

xf ′(x)/f (x), f (x)
) ∗ (xh′(x)/h(x), h(x)

)
=
(
xf ′(x)
f (x)

f (x)h′(f (x))

h(f (x))
, h
(
f (x)

))
=
(
x(h(f (x)))′

h(f (x))
, h
(
f (x)

)) ∈ PW.

(iii) The inverse of (xf ′(x)/f (x), f (x)) is(
f (x), f (x)

f ′(f (x))

f (f (x))

)−1

=
(
x
(f )′(x)
f (x)

, f (x)

)
∈ PW.

Other similar early examples involving the Bell subgroup (g(x), xg(x)) are by Jabotin-
sky ([111], [190, p. 238]). Let f (x), g(x) ∈ L0 as usual. An operation called Lagrange
product is defined in [196]: f (x) ⊗ g(x) = f (x)g(xf (x)). This product is associative,
distributive and has an identity: f (x) ⊗ 1 = f (x) = 1 ⊗ f (x). Let y = xf (x) ∈ L1.
The inverse element of the series f (x) ∈ L0 is denoted by f (y) = 1/f (l(y)), where
x = l(y) = yf (y). The group (L0,⊗) is called the Lagrange group.

The following theorem gives a unified classification of known results about the Riordan
groups from the point of view of groups of type E. It also provides new information about
the structure of groups of type E and R∗.
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THEOREM 12 (On classification and structure [70]). Let ϕ(0) = f (0) = ψ(0) = 1.
Then

(a) The matrix Riordan group of exponential type [47] coincides with the group
E({n!}, {k!};ϕ, f, 1).

(b) The Riordan group coincides with the group E({1}, {1};ϕ, f, 1); the Bell group co-
incides with the group E({1}, {1}; f, f, 1); the PW group coincides with the group
E({1}, {1}; (wf (w))′/f (w), f, 1).

(c) The PW group is isomorphic to the group E({1}, {1}; 1, 1, ψ) (see Lemma 2); the
Bell group is isomorphic to the Lagrange group.

(d) The group E({1}, {1};ϕ, f,ψ) decomposes into a product of three its subgroups,
the PW, Voronoy and Bell subgroups.

(e) The Riordan group decomposes into a product of two its subgroups, the Voronoy and
PW subgroups, or into a product of its two Voronoy and Bell subgroups.

4.1.3. Inverse identities of Legendre–Tshebyshev type As in [176, Table 2.6, Relation 5]
let p > 0, r > 0, and

C = (cmk) =
((

rm + p

m − k

)
− (r − 1)

(
rm + p

m − k − 1

))
,

(34)m, k = 0, 1, 2, . . . .

Then:
(a) the matrix (34) is of type E(1)({1}, {1}; (1 + z)p(1 − (r − 1)z), 1, (1 + z)r );
(b) the inverse identities defined by matrix (34) are equivalent to the following func-

tional relations:

A
(
z(1 + z)−r

) = (1 + z)p+1B(z),

B(z) = (1 + z)−p−1A
(
z(1 + z)−r

);
(c) the matrix D = (dmk) (inverse of the matrix (34)) is given by

D = (dmk) =
(
(−1)m−k

(
m + p + rk − k

m − k

))
;

(d) the matrices C and D can be represented as C = ABI , D = IB−1A−1, where I is
the identity matrix,

A = (amk) =
((

mr

m − k

))
,

B = (bmk) =
((

p

m − k

)
− (r − 1)

(
p

m − k − 1

))
,

A−1 = (a(−1)
mk

) =
(
(−1)m−k

(
m + rk − k − 1

m − k

))
,

B−1 = (b(−1)
mk

) =
(
(−1)m−k

(
p + m − k

m − k

))
;
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(e) the matrix relations

CD = I, C = ABI, D = IB−1A−1,

ABB−1A−1 = I, BB−1A−1 = A−1, ABB−1 = A

generate the following combinatorial identities:

m∑
s=k

(−1)s−k

{(
rm + p

m − s

)
− (r − 1)

(
rm + p

m − s − 1

)}(
s + p + rk − k

s − k

)
= δ(m, k), m, k = 0, 1, . . . ,

m∑
s=k

(
mr

m − s

){(
p

s − k

)
− (r − 1)

(
p

s − k − 1

)}
=
((

rm + p

m − k

)
− (r − 1)

(
rm + p

m − k − 1

))
, m, k = 0, 1, . . . ,

m∑
s=k

(
p + m − s

m − s

)(
s + rk − k − 1

s − k

)
=
(
m + p + rk − k

m − k

)
, m, k = 0, 1, 2, . . . ,

m∑
n=k

m∑
t=n

m∑
s=t

(−1)t−k

(
mr

m − s

)((
p

s − t

)
− (r − 1)

(
p

s − t − 1

))(
p + t − n

t − n

)(
n + rk − k − 1

n − k

)
= δ(m, k), m, k = 0, 1, . . . ,

m∑
t=k

m∑
s=t

((
p

m − s

)
− (r − 1)

(
p

m − s − 1

))
× (−1)s−k

(
p + s − t

s − t

)(
t + rk − k − 1

t − k

)
= (−1)m−k

(
m + rk − k − 1

m − k

)
, m, k = 0, 1, . . . ,

m∑
t=k

m∑
s=t

(
mr

m − s

)((
p

s − t

)
− (r − 1)

(
p

s − t − 1

))
(−1)t−k

(
p + t − k

t − k

)
=
(

mr

m − k

)
, m, k = 0, 1, . . . .

PROOF. From the integral representation of the binomial coefficients and from (34), it
follows that

cmk = resz(1 + z)rm+pz−m+k−1 − (r − 1)resz(1 + z)rm+pz−m+k

= resz
(
(1 + z)rm+p

(
1 − (r − 1)z

)
z−m+k−1).
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Comparison of this expression for cmk with (31) proves claim a) of this example, if we let

αm = βk = 1, ϕ(z) = (1 + z)p
(
1 − (r − 1)z

)
,

f (z) = 1, ψ(z) = (1 + z)r .

The other claims follow from properties of the operator res and of the relations of
type E1. �

4.1.4. Conclusions To our knowledge the results of Theorems 8, 9 and 12 are new in the
theory of Riordan arrays and Riordan groups, and it is easy to find many various combina-
torial interpretations and applications for them (see, [20,145,146,161] and etc.).

The results of Theorems 4–6, 10 and 11 are natural and not surprising for several rea-
sons. First of all, the representation of combinatorial numbers an, n = 0, 1, 2, . . . , as well
as their generating functions A(w) = ∑∞

n=0 anw
n by a infinite triangular (semicirculant)

matrices is a routine procedure in combinatorial analysis (see, for example, [103,116] and
a remark of S. Roman [180, p. 43]). Second, an integral representation of type E typically
appears in the evaluation of many concrete combinatorial sums of different kinds (see [59],
main theorem). This allows one to give a combinatorial interpretation to summation for-
mulae, related to matrices of the type E. Weighting coefficients like αm and βk could be
interpreted for example as the number of terms or the value of the sum under investiga-
tion. Finally, operations of multiplication, substitution and inversion with Laurent formal
power series, hidden in the construction of matrices of E type, also have a combinator-
ial interpretation (see [96,103,177–179,37,114,19,89,44,97] and many others), including
combinatorial interpretations and various proofs of one and multidimensional inversion
Lagrange formulae ([86,90,107,127,154,208,205,91], etc.). It allows to explain in every
particular case the algebraic structure of the enumeration object under investigation. The
result of Theorem 8 plays a similar role (compared to the results of Theorems 11 and 12).
The example from the previous section can be viewed as an extension of the approach in
[176].

Note that the construction (31) and the results of Theorems 4–12 can be easily extended
in several variants in the multidimensional case with the help of the main theorem in [59]
including the case of fractional powers of the variables. Also the results of this section can
be extended to a wide class of difference and q-difference relations using nice results of
Ch. Krattenchaler, G. Andrews, I. Gessel and many others (see [121–124,17,86–88,95,28],
etc.). Further generalization of the idea of pairs of inverse relations in the algebra of mul-
tivariate formal power series can be made based on an interesting work of V. Stepanenko
[200]. These results and their various applications are the direction of our future investiga-
tions. In particular we are interested in their applications to asymptotic results and inverse
combinatorial relations of different kinds (see [24–26,50,78,80,83,144,213,162,156] and
[108,148,149,151,139,163], etc.).

4.2. Solution of the Kargapolov problem on the enumeration of the ranks of factors in the
lower central series of free k-step solvable groups with q generators

The ranks of the factors for the lower central series of a free group Φ with q generators
were computed in [100, Theorem 11.2.2]:
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Mq(n) = 1

n

∑
d/n

μ(d)qn/d .

In [120, Question 2.18] M.I. Kargapolov posed the problem of computing the ranks
of the factors for the lower central series of a free solvable group. Since the bases of a
free solvable group and a free solvable Lie algebra coincide [192], the desired formula
can be obtained by counting the basic commutators (regular words) in a basis for the free
solvable Lie algebra. In [194] the formulae (4.21)–(4.24) were obtained for computing the
ranks R

(3)
q (n) of the factors of the free class three solvable group with q generators. These

formulae were used in combination with the method of coefficients to find a considerably
simpler formula for R(3)

q (n), and this enables us to solve the Kargapolov problem for a free
solvable group in a combinatorial way [52].

The following formulae for the case k = 3 were obtained by V. Sokolov [194]:

(35)R(3)
q (n) =

{
θ
(1)
q (n), n = 1, 2, 3,

θ
(1)
q (n) + θ

(2)
q (n), n � 4;

(36)θ(1)
q (n) =

⎧⎨⎩
0, n = 0,

q, n = 1,

(n − 1)
(
n+q+2
q−2

)
, n > 1;

(37)

θ(2)
q (n) =

n−2∑
j=3

θ(1)
q (j)

[
ψ(n − j, 2) − ψ(n − j, j)

]

+
Bn/2/∑
l=2

Bn/2/∑
i=2

(l − 1)

(
θ
(1)
q (i) + l − 2

l

)
ψ(n − li, i + 1),

where

(38)ψ(m, i) =
⎧⎨⎩
∑

∀m∈Ψ (m,i) θ
(1)
q (m), m � i,

1, i > m = 0,

0, i > m > 0 or m < 0,

θ (1)
q (m) =

s∏
j=1

(
θ
(1)
q (ij ) + kj − 1

kj

)
.

The function θ
(1)
q (m) is defined on the set Ψ (m, i) of i-partitions of the positive integer m.

Any partition of m in Ψ (m, i) has the form

m =
k1 times︷ ︸︸ ︷

i1 + i1 + · · · + i1 +
k2 times︷ ︸︸ ︷

i2 + i2 + · · · + i2 + · · · +
ks times︷ ︸︸ ︷

is + is + · · · + is ,

where all the terms are not less than i, and ij �= il for j �= l.
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THEOREM 13. (See [52].)

(39)R(3)
q (n) =

⎧⎪⎨⎪⎩
θ
(1)
q (n), n = 1, 2, 3,

θ
(1)
q (n) + resz

{
(qz − 1)

(∏n
j=1(1 − zj )−θ

(1)
q (j)

)
z−n−1

}
,

n � 4;
R2(w) =

∞∑
n=0

(3)
q θ(1)

q (n)wn = (1 + wq) + (1 − w)−q(wq − 1),

(40)

R3(w) =
∞∑
n=0

R(3)
q (n)wn

= R2(w) −
3∑

n=0

wnresz

{
(qz − 1) exp

(
−

3∑
j=1

R2
(
zj
)/

j

)
z−n−1

}

+ (qw − 1) exp

(
−

∞∑
j=1

R2
(
wj
)/

j

)
, 0 � w < 1.

The proof of this theorem follows from results in Lemmas 3–5 below, where integral
representations are found successively for some of the above defined quantities R

(3)
q (n),

θ
(1)
q (n), θ(2)

q (n) and ψ(m, i). It is interesting to observe how the “superfluous” summation
signs “disappear” either after summation operations or in the process of collecting similar
terms.

LEMMA 3.

(41)θ(1)
q (n) = resw

(
1 + wq + (1 − w)−q(wq − 1)

)
w−n−1, n = 0, 1, 2, . . . .

LEMMA 4.

(42)ψ(m, j) = resz

{(
n∏

i=j

(
1 − zj

)−θ
(1)
q (i)

)
z−m−1

}
.

A proof this formulae is immediately obtained by comparing the expressions for the
values of θ(1)

q (n) and ψ(m, j) as given in their definitions and Lemmas 3, 4.

LEMMA 5.

(43)S1 =
n∑

j=0

θ(1)
q (j)ψ(n − j, 2) = ψ(n, 2) + ψ(n, 2) + ψ(n, 2) + ψ(n, 2).

PROOF. According to the formulae of Lemmas 3, 4 and the substitution rule

S1 =
n∑

j=0

resw
(
1 + wq + (1 − w)−q(wq − 1)

)
w−j−1



Integral Representation and Algorithms for Closed Form Summation 489

× resz

( ∞∏
k=2

(
1 − zk

)−θ
(1)
q (k)

)
z−n+j−1

= resz

{( ∞∏
k=2

(
1 − zk

)−θ
(1)
q (k)

)

× z−n−1

(
n∑

j=0

z−j resw
(
1 + wq + (1 − w)−q(wq − 1)

)
w−j−1

)}

= resz

{(
1 + zq + (1 − z)−q(zq − 1)

)( ∞∏
k=2

(
1 − zk

)−θ
(1)
q (k)

)
z−n−1

}
.

By (42) and relation q = θ
(1)
q (1) this gives us (43). �

LEMMA 6. If i � 2, then

S2 =
Bn/2/∑
i=0

(l − 1)

(
θ
(1)
q (i) + l − 2

l

)
ψ(n − li, i + 1)

= θ(1)
q (i)ψ(n − i, i) − ψ(n, i).

PROOF. Since (l − 1)
(
α+l−2

l

) = resw(1 − w)−a(wα − 1)w−l−1, the result of Lemma 4
and the substitution rule imply that

S2(i) =
∑
l

resz

( ∞∏
j=i+1

(1 − zj )−θ
(1)
q (j)

)
z−n+li−1

× resw(1 − w)−θ
(1)
q (i)

(
wθ(1)

q (i) − 1
)
w−l−1

= resz

{( ∞∏
j=i+1

(
1 − zj

)−θ
(1)
q (j)

)

× z−n−1

( ∞∑
l=0

zliresw(1 − w)−θ
(1)
q (i)

(
wθ(1)

q (i) − 1
)
w−l−1

)}

= resz

{( ∞∏
j=i+1

(
1 − zj

)−θ
(1)
q (j)

)(
1 − zi

)−θ
(1)
q (i)(

ziθ(1)
q (i) − 1

)
z−n−1

}

= θ(1)
q (i)ψ(n − i, i) − ψ(n, i).

�
LEMMA 7.

θ(2)
q (n) = qψ(n − 1, 1) − ψ(n, 1).
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PROOF. From (36)–(38) we get, after elementary transformations,

θ(2)
q (n) = S1 −

Bn/2/∑
j=0

θ(1)
q (j)ψ(n − j, j) +

Bn/2/∑
i=2

S2(i)

(44)− q
(
ψ(n − 1, 2) − ψ(n − 1, 1)

)+
Bn/2/∑
i=2

ψ(n, i + 1).

The required result is a consequence of the substitution of the expressions S1 and S2(i)

into (44) and of the condition ψ(n, Bn/2/ + 1) = 0. �

From last lemma and from (35) and (42) we get formula (39) in Theorem 13. Formula
(40) follows from the relations

∞∏
j=1

(
1 − wj

)−θ
(1)
q (j) = exp

(
−

∞∑
j=1

θ(1)
q (j) ln

(
1 − wj

))

= exp

(
−

∞∑
n=1

∞∑
j=1

wnj/n

)
=

∞∑
n=1

R2
(
wn
)
/n, 0 � w < 1.

THEOREM 14. (See [52].) The rank of the factor γn(F )/γn+1(F ) (n = 1, 2, . . .) of a free
class (k + 1) solvable group F with q generators (q � 2) can be computed according to
the following recursion formula:

R(0)
q (n) =

{
0, n �= 1,

q, n = 1;

R(1)
q (n) =

⎧⎨⎩
0, n = 0,

q, n = 1,

(n − 1)
(
n+q−2
q−2

)
, n > 1

and for k � 1,

R(k+1)
q (n) =

⎧⎪⎨⎪⎩
R

(k)
q (n), n < n(k),

R
(k)
q (n) + resz{(qz − 1)(

∏∞
j=1(1 − zj )−R

(k)
q (j))z−n−1},

n � n(k),

where n(k) is the minimal possible weight of an arbitrary Rk-word:

n(k) =

⎧⎪⎪⎨⎪⎪⎩
(2k+2 − 1)/3, q = 2 and k = 0, 2, 4,

(2k+2 − 2)/3, q = 2 and k = 1, 3,

21 × 2k−4, q = 2 and k � 5,

2k, q � 3.

REMARK 5. The simplicity of formulae (39), (40) for R
(3)
q (n) allows to understand the

structure of the set of objects being enumerated (regular words). This, in turn, enables us
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to solve the Kargapolov problem for a free solvable group [52], and then also for a free
polynilpotent group [92] and for free groups in varieties [59, pp. 215–221]. Independently,
an asymptotic solution of the same problem was given later in [167].

4.3. Enumeration of ideals for some matrix rings

In [62,63,65,71,75] with the help of the method of coefficients several enumerative prob-
lems for groups and algebras of Lie type including enumeration of ideals of some matrix
rings were solved. In general, these investigations may be considered as part of the program
that is formulated in [206].

In [126] a constructive description of various classes of ideals of some matrix rings has
been given. This description was done by considering certain sets of matrix positions which
allow enumeration with the help of a combinatorial scheme of paths with diagonal steps on
a rectangular lattice [71]. In particular, we proved, that the number of some ideals of the
ring Rn(K, J ) is equal to

n∑
i,j=1

(
n − i + j − 1

n − i

)(
i − 1 + n − j

n − j

)
.

PROPOSITION 1. Let n ∈ N. Then the following identity is valid:
n∑

i,j=1

(
n − i + j − 1

n − i

)(
i − 1 + n − j

n − j

)
= (2n − 1)

(
2n − 2

n − 1

)
.

PROOF. According to the properties on res operator we have
n∑

i,j=1

(
n − i + j − 1

n − i

)(
i − 1 + n − j

n − j

)

=
n∑

i,j=1

resx
(
(1 − x)−j x−n+i−1)resy

(
(1 − y)−ix−n+j−1)

=
∞∑

i,j=1

. . .

= resxy

{
(1 − x)−1(1 − y)−1(xy)−n−1

[ ∞∑
i,j=1

(
x/(1 − y)

)i(
y/(1 − x)

)j]}
= resxy

{
(1 − x)−1(1 − y)−1(xy)−n−1

× [(1 − (x/(1 − y)
))−1(1 − (y/(1 − x)

))−1]}
= resxy

{
(1 − x − y)−2(xy)−n−1}

= resxy

{[
1 +

∞∑
k=1

(
k + 1

k

)
(x + y)k

]
(xy)−n−1

}
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=
∞∑
k=1

(k + 1)resxy
{
(x + y)k(xy)−n−1}

= (k + 1)resxy
{
(x + y)k(xy)−n−1}∣∣

k=2(n−1) = (2n − 1)

(
2n − 2

n − 1

)
.

The last sum has all terms with k �= n equal to zero. �

The following example of a triple summation involving summation by partitions and the
integer part operator appeared recently in an enumerative algebra application: namely in
enumerative formulae for projectively congruent quadrics and symmetric forms of moduli
over local rings [132,198]. Let N(n, s) denote the number of classes of projective space
RPn−1 (n > 2) over a local ring R with principal maximal ideal of nilpotency step s, where
2 ∈ R∗ and |R∗ : R∗2| = 2. Then

N(n, s) =
n∑

m=1

min(m,s)∑
q=1

(
s

q

)
2q−1

{(−1 + m/2

q − 1

)′
+
(
m − 1

q − 1

)}
,

(45)if R∗ ∩ (1 + R2)  R∗2;

(46)

N(n, s) =
n∑

m=1

min(m,s)∑
q=1

(
s

q

){(−1 + m/2

q − 1

)′

+
∑

(n1,...,nq )∈Ωq(m)

⌊
1/2

q∏
j=1

(nj + 1)

⌋}
, if 1 + R∗2 ⊂ R∗2.

Here
(
p
q

)′ is equal to
(
p
q

)
for nonnegative integers p and q, and 0, otherwise; Ωq(m) denotes

the set of all ordered partitions of the number m in q parts: n1 + · · · + nq = m. These
formulae can be simplified using the integral representation technique.

PROPOSITION 2. Let

S(n, s) = −1/2 +
s∑

q=0

2q−1
(
s

q

)(
n

q

)
= −1/2 + 1/2 resz(1 + z)s(1 − z)−s−1z−n−1.

If R∗ ∩ (1 + R2)  R∗2 then

(47)N(n, s) = S(n, s) + S
(Bn/2/, s),

and for fixed s and n → ∞
N(n, s) C −1 + 2−1(2s + 1

)
ns/s!.

PROPOSITION 3. Let

T (n, p) = −1/2 + 1/2

(
n + p

p

)
.
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If 1 + R∗2 ⊂ R∗2 then

(48)N(n, s) = T (n, 2s) + T
(Bn/2/, s).

REMARK 6. A simplification of formulae usually brings new information on the structure
of the objects of enumeration. For example, the simplification of the known formulae for
R

(3)
q (n) from [194] led to a better understanding of the structure of the enumerable regular

words (commutators) known Shirshov bases of a free Lie algebra. This led to a solution of
the Kargapolov problem of computing the ranks R

(k)
q (n) of the factors for the lower central

series of a free solvable group of step k with q generators for arbitrary k [52]. This, in turn,
made is possible to solve an analogous problem for a free polynilpotent group [92] and for
free groups in varieties [59, p. 215–221]. Another answer to the problem of Kargapolov
was suggested in [167].

The simplicity found in formulae (47), (48) poses the following problem: give an inde-
pendent algebraic proof and interpretation of these formulae for the number of quadrics
the in projective space RPn−1, n > 2, over a local ring R with its maximal ideal nilpotent
of class s.

5. Multidimensional case and applications in the theory of holomorphic functions of
several complex variables

5.1. General construction and its particular cases (MacMahon’s master theorem and
Good’s theorem)

In this section we consider integrals of meromorphic forms over cycles (over chains, in the
general case). Such integrals are usually difficult to compute directly except for the case
of separating cycles [214, p. 145]. A separating cycle is a composite co-boundary for an
isolated point of intersection of the singular surfaces determined by the different factors in
the denominator of the integrand form.

The following general construction frequently arises in computing one-dimensional and
multidimensional combinatorial sums by means of integral representations, and it can be
regarded as a generalization of the MacMahon master theorem and a known theorem of
Good [135,90,91].

THEOREM 15. (See [59, pp. 175–176], [55,56].) Suppose that ψ(z), f (z), ϕj (z) and
fj (z), j = 1, . . . , n, are holomorphic functions in a domain D ⊂ Cn, where

f (z) =
n∏

j=1

fj (z), ϕ(z) =
n∏

j=1

ϕj (z),

and the system of functions ϕ1(z), . . . , ϕn(z) has a finite set Ω of simple (of multiplicity 1)
zeros in D, the Jacobian ∂ϕ/∂z is not identically zero, G is one or several of the connected
components of the set{

z ∈ D:
∣∣ϕj (z)

∣∣ < εj , j = 1, . . . , n
}
, G ⊂ D,
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and γ = Γn = {z ∈ G: |ϕj (z)| = εj , j = 1, . . . , n} is the skeleton of G. Then

S(k) = 1

(2πi)n

∫
Γn

ψ(z)f k(z)ϕ−k−1(z) dz

= 1

(2πi)2n

∫
Γn×γ

ψ(z)

(
n∏

j=1

(
ϕ
mj

j (z) − tj f
mj (z)

)−1
t−k−1
j

)
dz ∧ dt

(49)= 1

(2πi)2n

∫
Γn×γ2

ψ(z)

×
(

n∏
j=1

ϕ
k−mj

j (z)
(
ϕk
j (z) − tj f

k(z)
)−1

t
−mj−1
j

)
dz ∧ dt,

where the skeleton γ = {t = (t1, . . . , tn): |tj | = εj , j = 1, . . . , n} and εj are chosen
small enough so that for t ∈ γ and z ∈ Γ the following conditions are satisfied: |ϕj (z)| <
|tj f (z)|, j = 1, . . . , n. In particular:

(a) If m1 = · · · = mn = 1, then [90,56]

S(k) = 1

(2πi)n

∫
γ

(∑
z∈A

[
ψ(z)

/∂w

∂z

]
z=z(t)

)( n∏
j=1

t−k−1
j

)
dz ∧ dt,

where A is the set of zeros z(t) of the system

(50)wj = ϕj (z) − tj f (z), j = 1, . . . , n,

in G when t ∈ γ , and ∂w/∂z is the Jacobian of the transformation (50).
(b) If fj (z0) �= 0, j = 1, . . . , n, then [56]

S(k) = 1

(2πi)n

∫
γ

(∑
z∈B

[
ψ(z)

/∂w

∂z

]
z=z(t)

)( n∏
j=1

t−k−1
j

)
dz ∧ dt,

where B is the set of zeros z(t) of the system

(51)wj = ϕ
mj

j (z) − tj f
mj

j (z), j = 1, . . . , n,

in G when t ∈ γ , and ∂w/∂z is the Jacobian of the transformation (51).

(c) If g(z) = ψ(z)(
∏n

j=1 ϕ
k−mj

j (z)) is a holomorphic function in D and fj (z0) �= 0,
j = 1, . . . , n, z0 ∈ Ω , then

S(k) = 1

(2πi)n

∫
γ

(∑
z∈C

[
ψ(z)

/∂w

∂z

]
z=z(t)

)( n∏
j=1

t
−mj−1
j

)
dz ∧ dt,

where C is the set of zeros z(t) of the system

(52)wj = ϕk
j (z) − tj f

k
j (z), j = 1, . . . , n,

in G when t ∈ γ , and ∂w/∂z is the Jacobian of the transformation (52).
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COROLLARY 2. MacMacon’s master theorem [135] follows from part (c) of the previous
theorem with k = 1, ψ(z) = ϕ(z), ϕj (z) = zj , and fj (z) =∑n

i=1 aij zj , j = 1, . . . , n.

Although the denominator of the function g(z)/(∂w/∂z) can vanish in G, the indicated
residue theorem is applicable because for t ∈ γ the integrand

g(z)

(
n∏

j=1

(
ϕk
j (z) − tj f

k
j (z)

)−1

)
= g(z)

w(z, t)
dz = g(z)

∂w/∂z

dw(z, t)

w(z, t)

is holomorphic in D \ {z: w(z, t) = 0}, and w(z, t) �= 0 at the points z(t) ∈ A.
The formulae in (a)–(c) of the theorem express the integral (49) in terms of multidimen-

sional residues. It is not possible to find residue formulae in the general case. However, in
concrete cases the computation of the integral (49) does not cause any fundamental dif-
ficulties. In particular, it can be computed by iterated integration or with the help of the
splitting lemma (see, for example, [59, §5.4]). The procedure of this lemma enables us to
find the necessary change of variables and in the case for separating cycles to reduce the
integral to the computation of local res’s (Grothendieck residues) at these points, where the
special surfaces intersect. If the case will be successful then using this construction gen-
erates a combinatorial formula of summation having greater multiplicity than the original
sum. It is not difficult to see that this is of analogous type as the Wilf transformation “snake
oil method” [209]. There a scalar (diagonal) product of two number sequences is replaced
by a Cauchy product for sequences of larger dimension.

5.2. Computation of Szegő and Bergman kernels for functions holomorphic in certain
bounded and unbounded n-circular domains in Cn

The computation of the Szegő and Bergman kernels for various domains in Cn in closed
form is a hard and interesting problem in function theory ([189,15] and many others).
Surprisingly, it has been solved for a long time by many authors including specialists in
function theory for the separate cases with the help of different ad hoc methods (see, for
example, [216,27,36]).

Here the method of integral representation of sums is applied to the solution of this
important problem for a wide class of bounded and unbounded n-circular domains. In
Section 2.2.2 we obtained a closed form formula for the Bergman kernel of a certain do-
main in C3

z . In [57] we found in closed form the Szegő and Bergman kernels of certain
bounded n-circular domains in Cn which depend on a family of real parameters. Our for-
mulae enabled us (by a passage to the limit) to formulate a conjecture for those Szegő
kernels with concrete unbounded domains, that has been justified in [14]. There we ob-
tained integral representations with Szegő kernels for functions that are holomorphic in
certain unbounded complete domains in Cn, and found in closed form the Szegő kernels
for a class of the concrete unbounded n-circular domains in Cn (see [14, Theorem 2]).
The conditions of applicability for those integral representations do not have analogues for
holomorphic functions of single complex variable. Here is the notation needed to formulate
these results.
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Let p = (p1, . . . , pn), γ = (γ1, . . . , γn), and α = (α1, α2), with pj , γi and αl positive
integers, and consider the n-circular domain

Dp,γ,α = {z = (z1, . . . , zn)
} ∈ Cn :(

s∑
i=1

(
νi∑

j=1+νi−1

|zj |2/pj

)1/γi)1/α1

< exp

(
−
(

m∑
i=1+s

(
νi∑

j=1+νi−1

|zj |2/pj

)1/γi)1/α2
)
,

where s and νi are certain fixed numbers determining the number of terms in the paren-
theses, with 0 < s < m and 0 = γ0 < γ1 < γ2 < · · · < γm = n. Furthermore, let
ζ = (ζ1, . . . , ζn) ∈ Cn

ζ , xj = zj ζj , j = 1, . . . , n, and consider the differential form

1

(2πi)n
d|ζ |2[n] ∧ dζ

ζ
= 1

(2πi)n
d|ζ1|2 ∧ . . . ∧ d|ζn−1|2 ∧ dζ1

ζ1
∧ . . . ∧ dζn

ζn

and the Szegő kernel h(x) = h(x1, . . . , xn) for the domain (. . .) when the integration
measure corresponds to this differential form. Moreover, let Γ (1)

(ρ) = {z = (z1, . . . , zn) ∈
Cn

z : |zj | = ρ, j = 1, . . . , n}, Γ (2)
(ρ)

= {v = (v1, . . . , vm) ∈ Cm
v : |vj | = ρ, j = 1, . . . , m},

and Γ
(3)
(ρ) = {w ∈ Cw: |w| = ρ}, with ρ be sufficiently small. We set Γ(ρ) = Γ

(1)
(ρ) ×Γ

(2)
(ρ) ×

Γ
(3)
(ρ) and define the numbers δ(β, p) = exp(2πiβ/p), β = 1, . . . , p.

THEOREM 16. (See [57].) The following relations hold:

h(x) =
∑
|k|�0

(α1Q1)
α2Q2

(α2Q2)! (Q1)!(Q2)!

×
(

m∏
i=1

(Ti)!
(γiTi)!

)
x
kn
n

(pnkn)!

(
n−1∏
j=1

x
kj
j

(pj (kj + 1) − 1)!

)
,

where

Ti =
νi∑

j=1+νi−1

pj (kj + 1), i = 1, . . . , m − 1,

Tm = pnkn +
n−1∑

j=1+νm−1

pj (kj + 1),

Q1 =
s∑

i=1

γiTi, Q2 =
m∑

i=1+s

γiTi;
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h(x) = ∂n−1

∂x1 . . . ∂xn−1

{
1

(2πi)n+m+1

∫
Γ(ρ)

w−1

(
m∏
i=1

vi

)−1( n∏
j=1

zj

)−1

×
(

s∏
j=1

νi∏
j=1+νi−1

z
pj

j v
γipj

i

(
z
pj

j v
γipj

i − xjV
−γipj

1 Z
pj

i ewα1γipj
)−1

)

×
(

m∏
j=1+s

νi∏
j=1+νi−1

z
pj

j v
γipj

i wα2γipj

× (zpj

j v
γipj

i wα2γipj − xjV
−γipj

2 Z
pj

i ewα1γipj
)−1

)
dz ∧ dv ∧ dw

}
,

where |x| is sufficiently small, and

Zi = 1 +
νi∑

j=1+νi−1

zj , i = 1, . . . , m,

V1 = 1 +
s∑

i=1

vi, V2 =
m∑

i=1+s

vi;

h(x) = α−1
2

(
n∏

j=1

p−1
j

)(
m∏
i=1

γ−1
i

)

×
{

p1∑
t1=1

. . .

pn∑
tn=1

γ1∑
r1=1

. . .

γm∑
rm=1

α2∑
l=1

{
1 −

(
s∑

i=1

δ(ri, γi)F
1/γi
i (x)

)

× exp

(
α1δ(l, α2)

(
m∑

i=1+s

δ(ri , γi)F
1/γi
i (x)

)1/α2
)}−1}

where

Fi(x) =
νi∑

j=1+νi−1

δ(tj , pj )x
1/pj

j , j = 1, . . . , m.

The following special cases of the kernel h(x) are of particular interest.

(a) Let α1 = α2 = γ1 = · · · = γm = p1 = · · · = pm = 1. Then

D =
{
z = (z1, . . . , zn) ∈ Cn;

ν∑
j=1

|zj |2 < exp

(
−

n∑
j=1+ν

|zj |2
)}

,

h(x) = ∂n−1

∂x1 . . . ∂xn−1

{
1 −

(
ν∑

j=1

xj

)
< exp

(
−

n∑
j=1+ν

xj

)}−1

.
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(b) Let α2 = γ1+s = · · · = γm = p1+ν = · · · = pm = 1. Then

D =
{
z = (z1, . . . , zn) ∈ Cn;

(
s∑

i=1

(
νi∑

j=1+νi−1

|zj |2/pj

)1/γi)1/α1

< exp

(
−

n∑
j=1+ν

|zj |2
)}

,

h(x) =
(

s∏
j=1

γ−1
i

(
νi∏

j=1+νi−1

p−1
j

))

× ∂n−1

∂x1 . . . ∂xn−1

{
p1∑

t1=1

. . .

ps∑
ts=1

γ1∑
r1=1

. . .

γm∑
rm=1

{
1 −

(
s∑

i=1

δ(ri, γi)F
1/γi
i (x)

)

× exp

(
α1

n∑
j=1+ν

xj

)}−1}
.

For fixed x1+ν, . . . , xn the fact that h(x) is a single-valued algebraic function of each vari-
able x1, . . . , xν ([109, p. 293], and [189, Problem 16b, p. 302]) implies that h(x) is rational
in these variables. Moreover, it is rational with respect to exp

(
α1
∑n

j=1+ν xj
)
. In particular,

if D = {z = (z1, z2); |z1|2/p < exp(−|z2|2)}, with p a natural number, then

h(x) = ∂

∂x2

{
1/
(
1 − x1 exp(px2)

)}−1
.

(c) Suppose that at least one pj , j = 1 + ν, . . . , n, is greater than 1.
For example, if D = {z = (z1, z2); |z1|2 < exp(−|z2|)}, then

h(x) = ∂

∂x2

{
1 − x1 cosh x

1/2
2

1 − 2x1 cosh x
1/2
2 + x2

1

}
.

The above kernel only appears not to be holomorphic; however, since the function cosh x2

is even, and consequently cosh(x1/2
2 ) is holomorphic.

REMARK 7. An even more general statement of the last theorem is formulated in [59,
Chapter 6]. However due to inconvenience of the calculations we completely omit the
general case here and the important stage of computations, connected with finding the
coefficients of monomials of multiple degree series that are Szegő and Bergman kernels
of the type studied. These coefficients are expressed as multiple definite integrals from a
certain family with integer parameters, that are connected by complex recurrence relations,
and can be computed effectively using integral representation techniques [59]. Previously,
the analogous integrals were computed by other authors in closed form for some special
cases by means of different ad hoc methods. Solving this problem [57,14] we successfully
used the method of coefficients and integral representation for the β-function.
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5.3. Integral representation and polynomial identities for the computation of permanents

The concept of integral representation applies to obtaining new computation formulae for
special combinatorial sums such as permanents. The permanent of an n × n matrix A =
(aij ) over the field of complex numbers is defined by the expression

(53)per(A) =
∑
σ∈Sn

a1σ(1)a2σ(2) . . . anσ(n),

where Sn is a symmetric group of order n.
The permanent has the following known integral representation:

(54)per(A) = resz1,...,zn

(
n∏

i=1

(
n∑

j=1

aij zj

)
z2
i

)
.

According to the main MacMahon theorem we have

per(A) = rest1...tn{1/Δ}t−2
1 . . . t−2

n ,

where

Δ = det(δij − aij tj ).

This formula is sometimes used in combinatorial computations and in the computation of
the permanent [164]. Moreover we can obtain from the integral formula (54) another useful
formula for computing the permanent, if we note that

(55)per(A) = resz1,...,zn

(
n∏

i=1

fi(z)z
2
i

)
,

where

(56)fi(z) =
n∑

j=1

aij zj + · · ·

are series whose coefficients of monomials with degrees >1 are arbitrary.

THEOREM 17 (Polynomial identities for the permanent [60,61]). If λ1, . . . , λn and
γ1, . . . , γn are independent variables then

(57)per(A) =
n∑

k=0

(−1)k
∑

1�j1<···<jk�n

(
n∏

i=1

(λjaij − aij1 − · · · − aijk )

)

and

(58)per(A) =
n∑

k=0

(−1)k
∑

1�j1<···<jk�n

(
n∏

i=1

(γi − aij1 − · · · − aijk )

)
.
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PROOF. If we substitute in (56)

fi(z) = exp

(
λi

(
n∑

j=1

aij zj

))
− exp

(
(1 − λi)

(
n∑

j=1

aij zj

))
=

n∑
j=1

aij zj + · · ·

then after removing the parentheses in the product
∏n

i=1 fi(z) we have

n∏
i=1

fi(z) =
n∏

i=1

(
exp

(
λi

(
n∑

j=1

aij zj

))
− exp

(
(1 − λi)

(
n∑

j=1

aij zj

)))

=
n∑

k=0

(−1)k
∑

1�j1<···<jk�n

n∏
i=1

exp

(
zi

(
n∑

j=1

λjaij − aij1 − · · · − aijk

))
.

According to the last formula and formula (55) it is easy to obtain formula (57), if we note
that

reszi exp

(
zi

(
n∑

j=1

λjaij − aij1 − · · · − aijk

))
z−2
i

=
n∑

j=1

λjaij − aij1 − · · · − aijk , i = 1, . . . , n.

Formula (58) is equivalent to formula (57). Let us show that (58) follows from (57).
Let the vector components γ̃ = (γ1, . . . , γn) be small, and the matrix A be close to a unit
matrix. Due to the continuity of the function det(A) with respect to the entries of the matrix
A this implies that det(A) �= 0. By λ̃ = (λ1, . . . , λn) = A(−1)γ̃ the validity of formula
(58) follows from formula (57): for γ̃ near the origin and A close to the unit matrix. Since
the expression in right part of (57) is a polynomial in its variables then by virtue of the
uniqueness theorem the identity (58) holds for arbitrary values of the variables. Further,
since γi =∑j λj aij , (57) follows from (58), and so these formulae are equivalent. �

REMARK 8. The polynomial identity (58) for the computation of the permanent for par-
ticular values of the free parameters γi = 0 and γi = (

∑n
j=1 aij )/2, i = 1, . . . , n, implies

the well-known formulae of Ryser and Nijenhuis–Wilf [150] of inclusion–exclusion type.
These formulae are the most effective ones at the present time for the calculation of per-
manents.

6. Combinatorial relations in the Collatz and Jacobian conjectures

6.1. Characteristic function of the stopping height in the Collatz conjecture

The 3x + 1 problem is known under different names. It is often called Collatz’s problem,
Ulam’s problem, the Syracuse problem, Kakutani’s problem, and Hasse’s algorithm [129].
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Consider the Collatz sequence of iterations (n, f (n), f (f (n)), . . .) where

(59)f (n) =
{
(3n + 1)/2, for odd n,

n/2, for even n.

The 3x + 1 conjecture states that for any natural number n this sequence will contain the
number 1. For example, n = 7 will generate the sequence (7, 11, 17, 26, 13, 20, 10, 5, 8, 4,
2, 1, 2, 1, . . .) The index of the first element equal to 1 in this sequence is called the stop-
ping height of the instance of Collatz problem. The following arithmetic reformulation of
the Collatz problem is given in [140]:

THEOREM 18. The 3x+1 conjecture is true if and only if for every positive integer a there
are natural numbers w and v such that a � w and(

2w + 1

w

)(
4(w + 1)v + 1)

v

) ∞∑
r=0

∞∑
s=0

∞∑
t=0

(
v

r

)(
w(v − r)

s

)(
wr

t

)
×
(

2s + 2t + r + (4w + 3)v + 1

3((4w + 4)t + a) + 2(4w + 4)r + (4w + 4)s

)
(60)×

(
3((4w + 4)t + a) + 2(4w + 4)r + (4w + 4)s

2s + 2t + r + (4w + 3)v + 1

)
≡ 1 (modulo 2).

REMARK 9. Careful investigation of this result along with computer experiments shows
that this formula and analogous statements [140, Theorem 1, Corollaries 1–3] are not valid.
The following correction is required: the term a has to be replaced by a/3 in order to make
it work. We will use the corrected version of (60) below.

Here we give the characteristic function of the stopping height of Collatz problem and
some of its properties. Let H , H ⊂ L, be the set of formal Laurent power series with
integer coefficients.

DEFINITION 5. Two series A(w) =∑k akw
k and B(w) =∑k bkw

k from H are congru-
ent, i.e. A(w) ≡ B(w), if and only if ak ≡ bk (modulo 2) for all k.

For example, if α = 2x , x ∈ N, the following congruences hold:

(61)(1 + u)α ≡ 1 + uα, (1 + u)α−1 ≡
α−1∑
s=0

us,

(62)
(
1 − (α − 1)2u

)−1/(α−1) ≡
∞∏
s=0

(
1 + uαs )

.

The following proposition gives a characterization of the free parameters in (60) with
the help of a well-known theorem of Kummer (1852).

PROPOSITION 4. (See [140,68].)
(1)

(2w+1
w

) ≡ 1 (modulo 2) ⇔ w = 2x − 1, x ∈ N.
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(2) If x, v ∈ N and w = 2x − 1, then(
4(w + 1)v + 1)

v

)
≡ 1 (modulo 2)

⇔ v = (2r(x+2) − 1
)
/
(
2(x+2) − 1

) =
r−1∑
i=0

(
2i(x+2)).

The following theorem from [68] contains an integral representation of (60) using the
last proposition:

THEOREM 19. Let a, v,w ∈ N and write

S =
∞∑
r=0

∞∑
s=0

∞∑
t=0

(
v

r

)(
w(v − r)

s

)(
wr

t

)
×
(

2s + 2t + r + (4w + 3)v + 1

3(4w + 4)t + 2(4w + 4)r + (4w + 4)s + a

)
(63)×

(
3(4w + 4)t + 2(4w + 4)r + (4w + 4)s + a

2s + 2t + r + (4w + 3)v + 1

)
.

Then

(64)S = resu
{
g(u)u−(4w+3)v+a−2}

where

(65)g(u) = ((1 + u−2+(4w+4))w + u−1+2(4w+4)(1 + u−2+3(4w+4))w)v.
PROOF. The product of the last two binomial coefficients in (63) is equal to

δ
(
3(4w + 4)t + 2(4w + 4)r + (4w + 4)s + a, 2s + 2t + r + (4w + 3)v + 1

)
,

where δ(n, k) is the Kronecker symbol. Using the integral representation (1) for each of
the first three binomial coefficients in (63), and δ(n, k) = resww−n+k−1 for the product of
the last two of them we get

S =
∞∑
r=0

∞∑
s=0

∞∑
t=0

resx
(1 + x)v

xr+1
resy

(1 + y)w(v−r)

ys+1
resz

(1 + z)wr

zt+1

× resuu(−2+(4w+4))s+(−2+3(4w+4))t+(−1+2(4w+4))r−(4w+3)v+a−2.

Further, using the method of coefficients, we sum the last expression with respect to r , s
and t . For this, using the linearity and substitution rules and successive changes of variables
x = (1+y)−w(1+z)wu(−1+2(4w+4)), y = u(−2+(4w+4)) and z = u(−2+3(4w+4)) we obtain

S =
∞∑
s=0

∞∑
t=0

resy,z,u
((1 + y)w + (1 + z)wu(−1+2(4w+4)))v

ys+1zt+1

× u(−2+(4w+4))s+(−2+3(4w+4))t−(4w+3)v+a−2
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= · · · = resu
{((

1 + u−2+(4w+4))w
+ u−1+2(4w+4)(1 + u−2+3(4w+4))w)vu−(4w+3)v+a−2}. �

From Theorems 18, 19, Proposition 4 and the congruences (61), (62) we have

THEOREM 20. The 3x+1 conjecture is true if and only if for every positive integer a there
are natural numbers r and α = 2x+2, where x ∈ N, such that a � −1 + α/4, and one of
the equivalent congruences is true:

resuu−αr+a−1((1 + u−2+α
)−1+α/4

+ u−1+2α(1 + u−2+3α)−1+α/4)(αr−1)/(α−1) ≡ 1 (modulo 2),

resuu−αr+a−1
∞∏
t=0

((
1 + u(−2+α)αt )−1+α/4

+ u(−1+2α)αt (
1 + u(−2+3α)αt )−1+α/4) ≡ 1 (modulo 2),

resuu−αr+a−1
∞∏
t=0

(−1+α/4∑
s=0

(
us(−2+α)αt + u(−1+2α+s(−2+3α))αt ))

≡ 1 (modulo 2),

resuu−αr+a−1[(1 − (α − 1)2u−2+α
)−1+α/4

− (α − 1)2u−1+2α(1 − (α − 1)2u−2+3α)−1+α/4]−1/(α−1)

(66)≡ 1 (modulo 2).

We call the function

Q(u) =
∞∏
t=0

(−1+α/4∑
s=0

(
us(−2+α)αt + u(−1+2α+s(−2+3α))αt ))

a characteristic function of the stopping height in the Collatz conjecture. It is shown in
[68] that the coefficients of the function Q(u) = ∑

k qku
k from H are equal to either 0

or 1. Therefore, the congruence (66) is a theoretical functional reformulation of the Collatz
conjecture. It was also proven there, that (66) is equivalent to a known number theoretical
reformulation of the problem [212].

It is well known that knowledge of the generating functions means a lot in combinatorial
analysis. Therefore, the study of the properties of Q(u) is important. Some useful proper-
ties and a recurrence relation for the coefficients of Q(u) are to be found in [68,73] and a
functional equation for Q(u) is found in [69].

6.2. Combinatorial identities in the Jacobian problem

In 1939 O. Keller has stated the following conjecture [117]: a the polynomial mapping
f : Cm → Cm is polynomially invertible, if its Jacobian is a non-zero constant.
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A complete review of the current status of this problem including a description of various
generalizations and attempts for its solution was given in 2000 by Arno van den Essen [77].

Using the classical [35,202,183] Cayley–Sylvester–Sack formula for two bivariate poly-
nomials V. Stepanenko [199] has conjectured that the proof of the Jacobian conjecture can
be reduced to the verification of a series of identities of the following type:

(2n)!
(n + 1)!n! − 1

(n + 1)!
B n+1

2 /∑
k=1

(2n − 2k + 1)!(2k − 2)!
k∑

m=1

(
S
(1)
1 + S

(1)
2

)

+ 1

(n + 1)!
B n+1

2 /∑
k=1

(2n − 2k + 2)!(2k − 3)!
k∑

m=1

(
S
(2)
1 + S

(2)
2

) ≡ 0,

(67)∀n � 2,

where

S
(1)
1 = ∗

2k−1∑
j=2m−1

(2k−j−1)/2∑
i=0

22k−2i−2m+1

× (2k−j)
(n−4k+i+j+1)!(2k−2i−j)!i!(2k+m−j−1)!(j−2m+1)!(m−1)! ,

S
(1)
2 = ∗

2k−3∑
j=2m−1

(2k−j−3)/2∑
i=0

22k−2i−2m+1

× (2k−j−1)
(n−4k+i+j+2)!(2k−2i−j−1)!i!(2k+m−j−2)!(j−2m+2)!(m−1)! ,

S
(2)
1 = ∗

2k−1∑
j=2m−1

(2k−j−1)/2∑
i=0

22k−2i−2m

× (2k−j)
(n−4k+i+j+2)!(2k−2i−j)!i!(2k+m−j−1)!(j−2m)!(m−1)! ,

S
(2)
2 = ∗

2k−3∑
j=2m−1

(2k−j−3)/2∑
i=0

22k−2i−2m

× (2k−j−1)
(n−4k+i+j+3)!(2k−2i−j−1)!i!(2k+m−j−2)!(j−2m+1)!(m−1)! .

Here we define ∗∑2k−1
j=2m−1 . . . = ∑2k−1

j=2m−1,2m−3,.... If factorials with a negative argu-
ments arise under the summation sign

∑
then we suppose these summands equal to 0.

In [72] Egorychev has stated the validity of (67) by means of the method of integral
representation and computation of combinatorial sums.

THEOREM 21. The identity (67) is valid.

The proof consists, as usual, of the series of assertions and finds the integral representa-
tion for the intermediate combinatorial quantities.



Integral Representation and Algorithms for Closed Form Summation 505

PROPOSITION 5. The sum S
(1)
1 admits the following integral representation:

1

(2πi)3(n − 1)!
∫
Γ3(ε)

{
22k−2mw−2k+2m−1

1 w−2k+m−1
3 w−m

5

×
(

1 + w2
1

4
+ w1w3 +

∑
s=1,3,4,5

ws

)n−1

×
(

1 + w1

2

)
+ 22k−2mw−2k+2m−1

1 w−2k+m−1
3 w−m

5

×
(

1 + w2
1

4
− w1w3 +

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)}
dw,

where the skeleton Γ3(ε) = {w = (w1, w3, w5): |w1| = ε1, |w3| = ε2, |w5| = ε5}.

PROPOSITION 6. The sum S
(1)
2 admits the following integral representation:

1

(2πi)3(n − 1)!
∫
Γ3(ε)

{
22k−2mw−2k+2m−1

1 w−2k+m−1
3 w−m

5

×
(

1 + w2
1

4
+ w1w3

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)
− 22k−2mw−2k+2m−1

1 w−2k+m−1
3 w−m

×
(

1 + w2
1

4
− w1w3 +

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)}
dw.

PROPOSITION 7. The sum S
(2)
1 admits the following integral representation:

1

(2πi)3(n − 1)!
∫
Γ3(ε)

{
22k−2m−1w−2k+2m

1 w−2k+m
3 w−m

5

×
(

1 + w2
1

4
+ w1w3 +

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)
+ 22k−2m−1w−2k+2m

1 w−2k+m
3 w−m

5

×
(

1 + w2
1

4
− w1w3 +

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)}
dw.

PROPOSITION 8. The sum S
(2)
2 admits the following integral representation:

1

(2πi)3(n − 1)!
∫
Γ3(ε)

{
22k−2m−1w−2k+2m

1 w−2k+m
3 w−m

5

×
(

1 + w2
1

4
+ w1w3 +

∑
s=1,3,4,5

ws

)n−1(
1 + w1

2

)



506 G.P. Egorychev, E.V. Zima

− 22k−2m−1w−2k+2m
1 w−2k+m

3 w−m
5

×
(

1 + w1 + w2
1

4
+ w3 − w1w3 + w5

)n−1(
1 + w1

2

)}
dw.

PROPOSITION 9. For n � 2 the following formula is valid:

k∑
m=1

(
S
(1)
1 + S

(1)
2

) = 2

(n − 1)!
(

2n − 1

2k − 2

)(
n − 1

2k − 1

)
.

PROPOSITION 10. For n � 2 the following formula is valid:

k∑
m=1

(
S
(2)
1 + S

(2)
2

) = 2

(n − 1)!
(

2n − 1

2k − 3

)(
n − 1

2k − 2

)
.

PROPOSITION 11. For n � 2 the following identity is valid:

B n+1
2 /∑

k=1

{
−
(

n − 1

2k − 1

)
+
(

n − 1

2k − 2

)}
= 0.

The standard completion of the proof is left to the reader [72].

7. Computer algebra algorithms for indefinite and definite summation

In this section we give a brief overview of some well-known summation algorithms used
in computer algebra systems such as Maple [153], and establish links between them and
methods of integral representation.

7.1. Preliminaries

Let K be a field of characteristic 0, and the Ek denote the shift operator with respect to k:
EkF(k) = F(k + 1). A closed form function F(k) is said to have a closed form sum G(k)

(usually written as G(k) =∑k F (k)) if

(68)(Ek − 1)G(k) = F(k).

REMARK 10. The term “closed form” can have different meanings depending on con-
text. For example, it can mean that the function F(k) is written in terms of elementary
or special functions not using the summation sign. However this definition is too broad
and weak. In computer algebra texts [84] it is sometimes narrowed to something like the
following: F(k) is in closed form if EkF(k)/F (k) is a rational function over K . In this
case we are dealing with so called “hypergeometric terms” and this definition might be to
narrow. However, often “closed form” summability means an ability to express the sum in
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the same elementary terms as the summand [59,128], and this obviously depends on the
type of summand. We will used closed form in this broader context, making additional
assumptions when necessary.

Note, that the res operator defined in Section 3.1, commutes not only with the def-
inite summation operator, but also with the shift operator Ek , the difference operator
'k = Ek − 1 and the indefinite summation operator

∑
k . This immediately allows one

to apply the ideas of integral representation techniques to indefinite summation problems.
If a summation problem under the res sign becomes a geometric summation problem, then
the usual indefinite summability condition has a straightforward analog in the integral rep-
resentation.

Let F(k) have an integral representation reswf (k,w) with a geometric kernel f (k,w)

with respect to k, i.e.

Ekf (k,w) = q(w)f (k,w).

Then

(Ek − 1)f (k,w) = (q(w) − 1
)
f (k,w),

and

(69)
∑
k

f (k,w) = 1

q(w) − 1
f (k,w).

In other words, in an integral representation with a kernel that is geometric in k the appli-
cation of the operator Ek −1 corresponds to the multiplication of the kernel by (q(w)−1),
and the application of the operator

∑
k corresponds to the multiplication of the kernel by

1
q(w)−1 . This last value is sometimes referred to as a “summation unit” in the integral rep-
resentation literature. An operator form of the summability equality

(Ek − 1)
∑
k

=
∑
k

(Ek − 1) = 1

corresponds to the trivial “summation unit” cancelation equality(
q(w) − 1

) 1

q(w) − 1
= 1.

If F(k) = reswf (k,w) and G(k) = reswg(k,w), then the summability condition
(Ek − 1)G(k) = F(k) translates into divisibility of f (k,w) by (q(w) − 1). Observe, that
F(k), G(k) do not need to be geometric or hypergeometric in order for f (k,w), g(k,w) to
be geometric. The reasonable question here is, how often is the kernel of an integral repre-
sentation of a given closed form function F(k) is geometric? In our opinion often enough
in order to try to apply integral representations in an algorithmic fashion.

Computer algebra traditionally considers several problems related to summation. If an
indefinite sum G(k) (solution of the first order recurrence (68)) cannot be found, one can
try to solve the additive decomposition problem: construct two functions R(k) and H(k),
such that

(70)F(k) = (Ek − 1)R(k) + H(k),
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where H(k) is simpler than F(k) is some sense. Or equivalently construct two functions
R(k) and H(k), such that

(71)
∑
k

F (k) = R(k) +
∑
k

H(k),

where H(k) is simpler than F(k). The measure of simplicity can be different for different
classes of functions. For example if F(k) is a rational function we can require both R(k)

and H(k) to be rational with H(k) having a denominator of lowest possible degree.
The definite summation problem is: find a closed form expression for

n∑
k=m

F(k), m � n,

in the case when the summand does not depend on the summation bounds m and n is
usually solved by first computing an indefinite sum G(k) in (68), and then using a discrete
analog of the Newton–Leibnitz formula

(72)
n∑

k=m

F(k) = G(n + 1) − G(m).

The conditions under which (72) can be used are obvious in the case of rational summand
F(k). Recently [11–13], necessary and sufficient conditions for the applicability of (72)
were obtained for the case of a hypergeometric (and, more generally, a P -recursive) sum-
mand F(k).

7.2. Summability criterion for rational functions

The algorithmic treatment of rational summation and decomposition problems started with
the work of S.A. Abramov [1,2]. There were a number of algorithms and improvements de-
veloped over the following years, see e.g. [5,136,160,168,104] (in particular [168] gives a
complete overview of these algorithms and improvements to them). Most of the description
of these algorithms explicitly avoid polynomial factorization in K[k]. Before discussing
these approaches we recall a criterion of rational summability as found in [3,5] (we essen-
tially quote the definitions and the criterion from [5] here).

Consider (71), assuming without loss of generality that F(k) is a proper rational func-
tion. Temporarily replace the coefficient field K by its algebraic closure K . The partial
fraction decomposition of F(k) has the form

(73)F(k) =
m∑
i=1

ti∑
j=1

βij

(k − αi)j
.

Write αi ∼ αj if αi − αj is an integer. Obviously, ∼ is an equivalence relation on the set
{α1, . . . , αm}. Each of the corresponding equivalence classes has a largest element in the
sense that all the other elements of the class are obtained by subtracting positive integers
from it. Let α1, . . . , αv be the largest elements of all the classes (v � m). Then (73) can be



Integral Representation and Algorithms for Closed Form Summation 509

rewritten as

(74)F(k) =
v∑

i=1

li∑
j=1

Mij (Ek)
1

(k − αi)j
.

Here Mij (Ek) is a linear difference operator with constant coefficients (a polynomial in Ek

over K). Let F(k) have the form (74) and suppose that (68) possesses a solution R(k) ∈
K(k). The rational function R(k) can be written in a form analogous to (74):

(75)
v∑

i=1

li∑
j=1

Lij (Ek)
1

(k − αi)j
.

This presentation is unique and therefore

(76)(Ek − 1)Lij (Ek) = Mij (Ek).

From here we read of the

RATIONAL SUMMABILITY CRITERION. A necessary and sufficient condition for existence
of a rational solution of (68) is that for all i = 1, . . . , v; j = 1, . . . , li there is an operator
Lij (Ek) such that (76) holds.

Then (68) has the solution (75) and all other rational solutions of (68) can be obtained
by adding arbitrary constants. If at least one operator Mij (Ek) is not divisible by Ek − 1
then (68) has no rational solution. We want then to construct (71). Consider one term from
(74) writing it for simplicity in the form

M(Ek)
1

(k − α)j
, j � 1,

compute the left quotient L(Ek) and left remainder w:

(77)M(Ek) = (Ek − 1)L(Ek) + w, w ∈ K,

and write the right-hand side of (71) in the form

(78)L(Ek)
1

(k − α)j
+
∑
k

w

(k − α)j
.

This gives a solution to the decomposition problem for this single term, since the denomi-
nator of the rational function under the sign of the indefinite sum has obviously the lowest
possible degree.

Note that instead of (77) one can consider a reduction modulo Ek − 1 of the form

(79)M(Ek) = (Ek − 1)V (Ek) + vEc
k, v ∈ K,

where c is some convenient nonnegative integer. Different choices of reductions of the
form (79) will leave the degree of the denominator of nonrational part intact, but can vary
the degree of the denominator in the rational part of the decomposition (71).
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7.3. Analog of the criterion in integral representation terms

Now we will describe an analog of this criterion in the integral representation framework.
For this we will use the following representation:

1

(k − α)j
= 1

(j − 1)!
∫ ∞

0
e−(k−α)uuj−1 du

(80)= 1

(j − 1)!
∫ ∞

0
e−ku

(
eαuuj−1) du.

Consider again just one term M(Ek)
1

(k−α)j
(j � 1), from (74). For clarity, let

M(Ek) = βtE
t
k + · · · + β1Ek + β0,

L(Ek) = γt−1E
t−1
k + · · · + γ1Ek + γ0.

Consider the two commutating polynomials with the same coefficients as M and L

P(X) = βtX
t + · · · + β1X + β0, Q(x) = γt−1X

t−1 + · · · + γ1X + γ0.

Noting that

βlE
l
k

1

(k − α)j
= 1

(j − 1)!
∫ ∞

0
βle

−lue−ku
(
eαuuj−1) du, 0 � l � t,

write

M(Ek)
1

(k − α)j
= 1

(j − 1)!
∫ ∞

0
P
(
e−u
)
e−ku

(
eαuuj−1) du,

i.e. the kernel of the integral representation of the summand is geometric in k with the base
e−u. Now (as in (69))∑

k

M(Ek)
1

(k − α)j
= 1

(j − 1)!
∫ ∞

0

P(e−u)e−ku

e−u − 1

(
eαuuj−1) du.

If M(Ek) = L(Ek)(Ek − 1) then P(e−u) = (e−u − 1)Q(e−u),∑
k

M(Ek)
1

(k − α)j
= 1

(j − 1)!
∫ ∞

0
Q
(
e−u
)
e−ku

(
eαuuj−1) du,

and we can use (80) backwards to get a closed form expression for the result of the rational
summation. In other words, the condition of divisibility of M(Ek) by Ek − 1 is equivalent
to the divisibility of P(e−u) by (e−u − 1) (or P(X) by (X − 1)). The last in turn means
that P(1) = 0 or

∑t
l=0 βl = 0 and this condition has to hold for all terms (for all i, j ) in

(74) in order for F(k) to be rationally summable.
Note that the property of coefficients of the full partial fraction decomposition proven in

[142] is an immediate corollary of this summability criterion (divisibility of Mij (Ek) by
Ek − 1 in (74)).
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If P(1) = w �= 0, then P(X)−w is divisible by X − 1. In this case (77) corresponds to
P(X) = Q(X)(X − 1) + w, and

1

(j − 1)!
∫ ∞

0
Q
(
e−u
)
e−ku

(
eαuuj−1) du,

provides the rational part of the decomposition (78) while

1

(j − 1)!
∫ ∞

0

we−ku

e−u − 1

(
eαuuj−1) du

provides the nonrational part of the decomposition (78).
It is easy to see, that P(X) − wXc for 1 � c � t will be also divisible by X − 1, which

leaves us with the same amount of flexibility in expressing the rational decomposition
result as equation (79) does. Needles to say that very similar observations hold in the case
of the definite rational summation.

7.4. Rational summation algorithms

Let F(k) = f (k)
g(k)

. Define the dispersion of F(k) (disF(k)) [1] to be the maximal integer
distance between roots of the denominator g(k). It can be computed e.g. as the largest
nonnegative integer root of the resultant of polynomials g(k) and g(k + h). Write ρ =
disF(k). If ρ = 0 than we can take in (71) R(k) = 0 and H(k) = F(k) (see [1,5,168]).

Now, let ρ > 0. All algorithms mentioned above do not directly use the summability
criterion carefully avoiding factorization in K[k], and fall into one of two categories.
• Iterative (Hermite reduction like) algorithms will start with R(k) = 0 and H(k) = F(k)

and decrease the dispersion of H(k) by 1 at each iteration, reducing the nonrational part
H(k) and letting grow the rational part R(k). The number of iterations is equal to ρ.

• Non-iterative (analogous to the Ostrogradsky algorithm) algorithms first build universal
denominators u(k) and v(k) such that denominator of R(k) will divide u(k), denom-
inator of H(k) will divide v(k), and then reduce the problem to linear algebra, solv-
ing a system of linear equations of size ∼ degu(k) (see [160,5,168]). In turn, usually
degu(k) = Θ(ρ). The choice of u(k) of the lowest possible degree is obviously cru-
cial here. In [104] an algorithm which gives sharp bound u(k) in the case when F(k) is
rational summable (H(k) = 0) is presented.
In both these classes of algorithms if ρ = disF(k) D deg g(k) the complexity of the

rational function decomposition is defined by the value of ρ. Consider the following ex-
amples: ∑

k

−2k + 999

(k + 1)(k − 999)k(k − 1000)
= 1

k(k − 1000)
,

∑
k

k3 − 1998k2 + 996999k + 999999

(k + 1)(k − 999)k(k − 1000)
= 1

k(k − 1000)
+
∑
k

1

k
.

The dispersion of the summand in both of these examples is 1001. On the one hand, itera-
tive algorithms will require about 1001 steps of polynomial gcd computations. On the other
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hand, the universal denominator constructed by linear algebra based algorithms will have
degree about 1001. In general, ρ can be as large as the magnitude of the trailing coefficient
of the denominator of the summand. Thus, the cost of the iterative and linear algebra based
algorithms for computing a decomposition as in (71) may be exponential in the size of the
input.

It was already observed that while solving the rational decomposition problem (71) fac-
torization in K[k] should not be avoided. It is shown in [137] how the use of a factorization
g(k) = g1(k)g2(k) . . . gt (k) improves the time of computing disF(k). In [67] it was shown
how after computing disF(k) factorization (which is already performed and which is ef-
fective [105]) can be used to easily split F(k) into shift equivalence classes and directly
build (71) using several simple observations:

(a) if deg gi(k) �= deg gj (k) then linear factors over K of the denominators gi(k) and
gj (k) fall into different shift equivalence classes in (74);

(b) finding among given polynomials of equal degree those which are shift equivalent
is an easy task [137];

(c) full partial fraction decomposition over K is effective [29] at least when K = Q;
(d) computing a quotient and remainder in (77) is trivial (e.g., the remainder is obtained

by substitution of 1 instead of Ek into M(Ek) in (77));
(e) treating different shift equivalence classes separately will allow one to minimize the

degree of the denominator of the rational part in each class as in [168].
The complexity of partial fraction decomposition does not depend on the dispersion of

the given rational function, which means that at least in the case disF(k) D deg g(k)

this leads to practical and efficient algorithms as shown in [67]. The efficiency of this
straightforward solution was confirmed by a prototype implementation in Maple.

Later in [85] a new polynomial time algorithm was proposed that does not use factoriza-
tion in K[k] but instead applies shiftless factorization in order to directly build (71).

There are even more reasons not to avoid partial fraction decomposition in the case
of the definite rational summation. We refer here to summation problems of the form∑n

k=0 f (k, n), where partial fraction decomposition of f (k, n) with respect to k has pairs
of terms as, e.g.

1

nk + 1
− 1

n(n − k) + 1
or

1

k2 + 1
− 1

(n − k)2 + 1
.

These kinds of problems are not directly treatable by known summation algorithms, which
avoid factorization. For example, the “W–Z” method is not applicable here, because such
terms are not proper hypergeometric. The usual answer from computer algebra systems
for this type of summation involves a linear combination of values of the Ψ function,
which is equivalent to 0 but is not recognized as such. After performing full partial fraction
decomposition it takes little effort to find such cases. The use of an integral representation
is even more advisable here, because after performing geometric definite summation under
integral sign the terms in the kernel of the integral representation corresponding to the
terms above of the input expression will cancel each other. Note, that problem of this kind
was recently solved in [106] but the validity of the algorithm is still to be proven.
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7.5. Gosper summation of hypergeometric terms

A function F(k) is called a hypergeometric term if the ratio EkF(k)/F (k) is a rational
function. This rational function is called a certificate of F(k). The Gosper algorithm [93]
for the indefinite summation problem (68) is based on the observation that, given a hy-
pergeometric term F(k), if the hypergeometric term G(k) in (68) exists, it is a rational
multiple of F(k), i.e. G(k) = V (k)F (k), where V (k) ∈ K(k). An outline of the Gosper
algorithm is as follows:

1. Compute the certificate r(k) = EkF(k)/F (k).
2. Write r(k) in Gosper–Petkovšek form [166]

(81)r(k) = EP(k)

P (k)

Q(k)

R(k)
,

where P , Q, R are polynomials and gcd(Q,EjR) = 1 for j ∈ N.
3. Find a polynomial solution y(k) of the recurrence

(82)QEky(k) − Ry(k) = P.

4. If that solution exists, write

(83)G(k) = y(k)R(k)

P (k)
F (k).

For example, let F(k) = k!, than the Gosper algorithm proceeds as follows:
1. r(k) = (k + 1)!/k! = (k + 1).
2. r(k) = 1

1
k+1

1 . Thus, P = 1, Q = (k + 1), R = 1.
3. Find a polynomial solution of the recurrence equation

(84)(k + 1)Ey(k) − y(k) = 1.

4. No solution:
∑

k k! has no closed form.
If instead we take F(k) = k · k! then

1. r(k) = (k + 1)!(k + 1)/(k!k) = (k + 1)2/k.
2. r(k) = (k+1)

k
k+1

1 , so that P = k, Q = (k + 1), R = 1.
3. Find a polynomial solution of the recurrence equation

(85)(k + 1)Ey(k) − y(k) = k

4. By inspection y(k) = 1 solves (85). Write∑
k

k · k! = y(k)R(k)

P (k)
f (k) = 1 · 1

k
k · k! = k!.

7.6. Two approaches to a summation of a particular hypergeometric term

Consider the following type of the indefinite summation problem:

(86)
∑
k

kαk!,
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where α is nonnegative integer. For which values of α the sum (86) has closed form? As
we have seen in the previous section, for α = 0 there is no closed form sum, and for α = 1
there is a closed form sum.

GOSPER APPROACH. Applying the Gosper algorithm to F(k) = kαk! we get: r(k) =
(k+1)α

kα
k+1

1 . Hence, P = kα , Q = (k + 1), R = 1, and we need to find a polynomial
solution of the recurrence equation

(87)(k + 1)Eky(k) − y(k) = kα

with degree n at most equal to α−1. Substituting y(k) = ank
n+an−1k

n−1 +· · ·+a1k+a0

into (87), we obtain the following (n + 2) × (n + 1) system of linear equations

(88)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 0 1
0 . . . 0 0 1

(
n+1
n

)
0 . . . 0 1

(
n

n−1

) (
n+1
n−1

)
0 . . . 1

(
n−1
n−2

) (
n

n−2

) (
n+1
n−2

)
. . . . . . . . . . . . . . . . . .

1
(2

1

)
. . .

(
n−1

1

) (
n
1

) (
n+1

1

)
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
a0
a1
a2
...

an

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
an

an−1
...

a0

⎞⎟⎟⎟⎟⎠ .

Observe, that the truncated system

(89)

⎛⎜⎜⎜⎜⎜⎜⎝

0 . . . 0 0 0 1
0 . . . 0 0 1

(
n+1
n

)
0 . . . 0 1

(
n

n−1

) (
n+1
n−1

)
0 . . . 1

(
n−1
n−2

) (
n

n−2

) (
n+1
n−2

)
. . . . . . . . . . . . . . . . . .

1
(2

1

)
. . .

(
n−1

1

) (
n
1

) (
n+1

1

)

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
a0
a1
a2
...

an

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1
an

an−1
...

a1

⎞⎟⎟⎟⎟⎠
always has a solution, and that last equation of (88): a0 + a1 + · · · + an = a0 is equivalent
to

(90)
n∑

i=1

ai = 0.

REGULAR AND COMPLEMENTARY BELL NUMBERS. The Bell numbers (the number of
all partitions of a set of n objects) are defined by

Bn =
n∑

k=0

{
n

k

}
,

where the
{
n
k

}
are the Stirling numbers of the second kind (Stirling subset numbers){

n

k

}
= k

{
n − 1

k

}
+
{
n − 1

k − 1

}
,

{
n

0

}
= δ0n.
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An alternative definition is

Bn = 1

e

∞∑
k=0

kn

k! ,

and the exponential generating function is

b(x) = ee
x−1 =

∞∑
n=0

Bn

n! x
n.

The complementary Bell numbers (the difference between the number of partitions of a
set of n objects into an even and odd number of subsets) are defined by

(91)B̃n =
n∑

k=0

(−1)k
{
n

k

}
,

where, again, the
{
n
k

}
are the Stirling numbers of the second kind. An alternative definition

is

B̃n = e

∞∑
k=0

(−1)kkn

k! ,

with the exponential generating function

b̃(x) = e1−ex =
∞∑
n=0

B̃n

n! x
n.

Note that these numbers are also called Uppuluri–Carpenter numbers. However, the term
complimentary Bell numbers better reflects the relation between the generating functions:
b(x)b̃(x) = 1.

INTEGRAL REPRESENTATION APPROACH. Let α be a natural number. Write

kα =
α∑

l=0

(−1)α+l

{
α + 1

l + 1

}
(k + 1)l .

From here using the integral representation of the 5 function, that is, 5(k + 1) = k! =∫∞
0 e−t t k dt , write

(−1)αkαk! =
α∑

l=0

(−1)l(k + l)!
{
α + 1

l + 1

}
=
∫ ∞

0
e−t t kL(t) dt,

where

L(t) =
α∑

l=0

(−1)l
{
α + 1

l + 1

}
t l .
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Now

(−1)α
∑
k

kαk! =
∑
k

∫ ∞

0
e−t t kL(t) dt =

∫ ∞

0
e−tL(t)

(∑
k

tk
)
dt

=
∫ ∞

0
e−tL(t)

tk

t − 1
dt =

α∑
l=0

rl
(
(n + l)!)+ L(1)

∑
k

k!,

where rl =∑α
i=l+1(−1)i

{
α+1
i

}
, l = 0, 1, . . . , α − 1. Note that

L(1) =
α∑

l=0

(−1)l
{
α + 1

l + 1

}
= −B̃α+1.

Therefore,

PROPOSITION 12. The following equality holds:

(92)
∑
k

kαk! = (−1)α
α∑

l=0

rl
(
(n + l)!)+ (−1)α+1B̃α+1

∑
k

k!,

and the existence of a closed form expression for
∑

k k
αk! is equivalent to B̃α+1 = 0, where

B̃α+1 is a complementary Bell number.

The number B̃2 = 0, which means that k1k! is summable.

REMARK 11. It is not known whether all complementary Bell numbers but the second one
are nonzero [130].

REMARK 12. Let ai, i = 0, . . . , n, be solutions of (88). It comes as no surprise that

n∑
i=1

ai = (−1)n+1B̃n+2 = (−1)αB̃α+1

Consider (89) again and solve it for different values of α. The left-hand side of (90) gives a
new representation of a complementary Bell number different from the representation (91).
This representation (which comes from the Gosper algorithm) might have some interesting
properties and deserves additional study.

Note that the algorithm from [9] will produce the same decomposition as (92) for every
particular value α. Still, formula (92) is very attractive, since it has explicit appearance of
the complementary Bell number, is defined for all nonnegative integer α, and can be easily
generalized to a summand of the form Pα(k)k! where Pα(k) is an arbitrary polynomial of
degree α. Direct use of the Gosper algorithm for large values of α will lead to the large
linear systems to be solved.
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7.7. Zeilberger algorithm of creative telescoping

Consider now a summand of the form F(n, k) in the definite summation problem

(93)G(n, k) =
b(n)∑

k=a(n)

F (n, k).

Let F(n, k) be hypergeometric in both variables n and k, i.e. both EnF(n,k)
F (n,k)

and EkF(n,k)
F (n,k)

are rational functions. If the Gosper algorithm fails to find G(n, k) such that G(n, k+ 1)−
G(n, k) = F(n, k) then one can try to solve (93) using Zeilberger’s [215] algorithm of
creative telescoping. This algorithm will try to construct a linear difference operator in En

with coefficients that are polynomials in n and G(n, k) such that

(94)LF(n, k) = G(n, k + 1) − G(n, k).

Applying
∑b(n)

k=a(n) to both sides of (94) and using commutation properties of linear opera-
tors we will get

(95)L

{
b(n)∑

k=a(n)

F (n, k)

}
= G

(
n, b(n) + 1

)− G
(
n, a(n)

)
,

and the summation problem is reduced to the problem of solving inhomogeneous linear
difference equation with polynomial coefficients and generally a d’Alembertian right-hand
side. For the last problem one can use an algorithm from [6] or [166]. For example, let

F(n, k) = (−1)kk2(nk)
k−a

, then in (94)

L = (a − 1 − n)En + n + 1

and G(n, k) is equal to

(n + 1)k(−1)k(−n − 1 + kn)(k − 1)
(
n
k

)
(−k + a)n(n − 1)

+ (a − 1 − n)k(−1)k(−n − 1 + kn)(k − 1)
(
n+1
k

)
(−k + a)n(n − 1)

.

Solving (95) with right-hand side G(n, n + 1) − G(n, 0) gives

(96)
n∑

k=0

(−1)kk2
(
n
k

)
k − a

= − 5(3 − a)a5(n + 1)

(2 − 3a + a2)5(n + 1 − a)
,

which can be further simplified to −a/
(
n−a
n

)
.

Zeilberger’s algorithm, originally developed for hypergeometric terms F(n, k), was later
generalized to holonomic functions [38,39]. Sufficient conditions for the applicability of
this algorithm to a hypergeometric term can be found in [166], and necessary conditions
in [10]. Note, that although this algorithm is general and can be applied to a wide variety of
problems of the form (93), the construction of L and G(n, k) in (94) can be very expensive
even for the hypergeometric case. The order of L can be arbitrary high and algorithm starts
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trying to construct L of the lowest possible order r , r+1, etc. When L is finally constructed
it can also be the case that solving of a high-order equation (95) is very time-consuming.

The existence of a general algorithm does not exclude the existence of more efficient
methods for particular cases of the problem, each of which can have some level of gener-
ality. For example, definite summation problem in (96) is a particular case of the following
problem:

(97)
n∑

k=0

(−1)k
P (k)

Q(k)

(
n

k

)
,

where P(k) and Q(k) are polynomials. Using the method of integral representations one
can obtain the following formula:

(98)
n∑

k=0

(−1)k
P (k)

Q(k)

(
n

k

)
=

∑
{α: Q(α)=0}

u(α)P (α)

α

(
n + α

n

)−1

,

where u(α) is the appropriate coefficient in the full partial fraction decomposition of
1/Q(k) and (as usual) Q(k) has no integer zeros on the summation interval. This par-
ticular method was implemented [67] in Maple using pattern matching and the direct use
of (98). It returns the following answer in a fraction of a second

n∑
k=0

(−1)kk7
(
n
k

)
(k + a)(k + b)(k + c)(k + d)

= a6
(
n+a
n

)−1

(−b + a)(−c + a)(−d + a)
− b6

(
n+b
n

)−1

(−b + a)(−c + b)(−d + b)

− d6
(
n+d
n

)−1

(−d + a)(−d + b)(−d + c)
+ c6

(
n+c
n

)−1

(−c + a)(−c + b)(−d + c)
.

At the same time applying the general Zeilberger algorithm to this summand leads to the
construction of a 4th order operator L and G(n, k) containing polynomials up to degree
10, and solving the difference equation (95) does not produce an answer.

7.8. Accurate summation

The algorithm for accurate summation [8] generalizes the Gosper algorithm. Given F(k)

let the minimal annihilating difference operator L of order v with coefficients from K(k)

be known, i.e. LF(k) = 0. If
∑

k F (k) has a minimal annihilating operator L̃ of the same
order v, then it is easy to construct a difference operator V of order v − 1, such that∑

k F (k) = VF(k). Given L and F(k) the accurate summation algorithm checks for the
existence of an L̃ of the same order as L and returns the expression for the sum VF(k) in
case of success.

For example, F(k) = 5(k + 1) − 5(k) − Ψ (k) has a minimal annihilating operator

L = E3
k − k5 + 8k4 + 22k3 + 34k2 + 27k + 5

(k3 + 3k2 + 5k + 6)k
E2

k
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+ 12k4 + 31k3 + 42k2 + 26k + 5 + 2k5

(k3 + 3k2 + 5k + 6)k
Ek

− 5k3 + 12k2 + 13k + 5 + k4

k3 + 3k2 + 5k + 6
.

The accurate summation algorithm computes

L̃ = − (k + 1)(k3 − 5k2 + 4k − 2)

(k2 + k + 3)k
E3

k

+ k5 − 14k3 − 10k2 − 4 + 2k

(k2 + k + 3)k
E2

k

− 2k5 − 2k4 − 16k3 − 15k2 − 5k − 2

(k2 + k + 3)k
Ek

+ k4 − k3 − 5k2 − 5k − 2

k2 + k + 3
of the same order and

V = (k + 1)(k3 − 5k2 + 4k − 2)

(k2 + k + 3)k
E2

k

− k5 − k4 − 10k3 − 9k2 − 2

(k2 + k + 3)k
Ek

+ k4 − k3 − 6k2 − 6k − 5

k2 + k + 3
, such that∑

k

F (k) = VF(k)

= (k4 − k3 − 6k2 − 6k − 5)(5(k + 1) − 5(k) − Ψ (k))

k2 + k + 3

− (k5 − k4 − 10k3 − 9k2 − 2)(5(k + 2) − 5(k + 1) − Ψ (k + 1))

(k2 + k + 3)k

+ (k + 1)(k3 − 5k2 + 4k − 2)(5(k + 3) − 5(k + 2) − Ψ (k + 2))

(k2 + k + 3)k
.

In order to apply the accurate summation algorithm, knowledge of the minimal anni-
hilating operator is crucial. If F(k) is d’Alembertian expression, i.e., it has a completely
factored annihilating operator(

E − r1(k)
)(
E − r2(k)

)
. . .
(
E − rv(k)

)
than the algorithm from [7] can be used to construct a minimal annihilator for F(k). Ob-
serve, that the algorithm from [7] iteratively constructs a minimal completely factorable
annihilating operator term by term and uses accurate summation on each iteration. Note,
that the expression from the example above is d’Alembertian.

In the case when F(k) is a hypergeometric term it has a first order minimal annihilating
operator, and Gosper summability of the term F(k) means that G(k) in (83) also has a first
order minimal annihilating operator.



520 G.P. Egorychev, E.V. Zima

REMARK 13. The main tools used by the algorithms mentioned above are methods of
solving linear difference equations with rational function coefficients. A search for ratio-
nal [4] solutions of such equations is used in Gosper and accurate summation, and a search
for hypergeometric [165] solutions is used in Zeilberger’s algorithm and accurate summa-
tion.

7.9. Conclusion

It is worth to note that computer algebra systems such as Maple contain implementations
of many useful tools that can help one to solve summation problems. They also contain
more general tools, such as the Maple package GFUN [185], allowing one to work with
generating functions. All those tools are rapidly developing and new fast algorithms are
being implemented.

We tried to establish links between those algorithms and the integral representation
approach. There is another kind of link between discrete and continuous cases. It is es-
tablished by abstraction of those two cases (and many more, e.g. q-difference case) in
terms of Ore algebras. Ore polynomials are used to describe linear differential, difference,
q-difference, etc. equations with rational function coefficients and allow one to develop
universal algorithms of solving such equations. The idea of using Ore polynomials in com-
puter algebra was proposed by M. Bronstein and M. Petkovšek in [30] and underwent
intensive development by many specialists in computer algebra.

Generally, the discrete case is more difficult than the continuous case (compare for ex-
ample the Ostrogradsky algorithm for the integration of rational functions to Abramov’s
algorithms of summation) and many algorithms for difference equations are hinted at by
older well-known algorithms for differential equations. However there are examples of an
opposite development, for example, Zeilberger’s algorithm of creative telescoping was ex-
tended to the continuous case and is used for integration [203]. As usual in mathematics
discrete and continuous approaches supplement each other and research is in this direction
is useful and interesting.

8. Future developments

As academician A.I. Maltsev pointed out the representation of combinatorial relations in
the algebra of analytic functions is unique. Such an approach is implemented in Sections 2
and 5 of this review, while Section 3 uses the algebra of polynomials (entire functions), or
in the case of convergence [76] the algebra of analytic functions in a neighborhood of zero.
At the same time, the original problem (combinatorial, enumerative, graph theoretical, etc.)
is usually formulated in terms of sequences. The type and the algebra of the sequences is
generally speaking arbitrary. This leads to the necessity of the development of a method of
coefficients for the wide class of cases presented below.

Develop a method of coefficients in algebras of generating functions of the following
types including generating functions of type A(z) =∑∞

n=o anϕn(z). In particular,
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1. Euler power series [16,17]: ϕn(z) = zn

(1−q)(1−q2)...(1−qn)
, n = 0, 1, 2, . . . .

2. Interpolation series especially series in generalized powers [110]: ϕn(z) =
z(z−1)...(z−n+1)

n! , n = 0, 1, 2, . . . .
3. Dirichlet series [138,82,131].
4. Quasi-exponential series [18]: ϕn(z) = zn

(z−1)(z−2)...(z−n)
, n = 0, 1, 2, . . . .

5. Fourier series with {ϕn(z)}∞0 a sequence of orthogonal polynomials of different
types, and trigonometric series.

6. Power series over algebraic systems, especially over finite fields.
7. Asymptotics of coefficients of formal power series and pairs of invertible combina-

torial relations [45,48,82,211].
8. Formal power series with noncommuting variables in formal languages of automata

theory and combinatorics [184,46,186,187].
9. Möbius functions in incidence algebras of partially ordered set theory [49,21,168,

180,113].
10. Boolean functions and functions of multivalued logic.
11. Series with nonstandard ϕ-operations over number fields: if a, b ∈ R, a E b =

ϕ(ϕ(−1)(a) + ϕ(−1)(a)), a � b = ϕ(ϕ(−1)(a) × ϕ(−1)(a)), where R = R ∪ (∞),
D1,D2 ⊂ R and ϕ :D1 −→ D2 be an arbitrary one-to-one mapping.

12. Continued fractions [112].
13. Generating functions of two and more variables as listed in Problems 1–12 above.
14. Generating functions of two and more variables of “mixed” type.
15. Use of the ideas and techniques of the integral representations establishing connec-

tions between generating functions of different types. Effective example of such
type is use of direct and inverse integral Mellin transforms in establishing relation
between power series and Dirichlet series (see [82]).

In each case it is necessary to solve the following problems:
• to give algorithmic and, if possible, integral definition (representation) for the operator

L of coefficients of the generating function; write out the system rules for the operator
L and to prove a completeness lemma;

• to obtain corresponding analogues of the Bürmann–Lagrange series for inverting an im-
plicit function, if this operation is admissible in the algebra of series under consideration.
To construct an analog of the matrix of type R and to give their algebraic, combinato-
rial and asymptotic characterizations, including classification, inversion, product and
decomposition theorems.

In cases when Problems 1–15 have been solved positively, extend the uniform approach of
the integral representation of sums for finding integral representation and computing com-
binatorial sums of these different types, including sums with q-combinatorial numbers,
sums over partitions, sums over divisors, infinite sums generated by Fourier series, sums
with linear constraints on the summation indices and others. These problems are of special
interest and arise from applications such as, simplification of expressions in solutions of
enumerative combinatorial problems, asymptotic expansion, etc. Besides calculation it is
interesting to study other properties of combinatorial sums, including recurrence relations,
asymptotic, upper and lower bounds, unimodality, estimates of the complexity of calcula-
tion etc. Therefore there arise a lot of new such problems for integrals and operators. The
complex approach also requires the creation of computer implementations of algorithms
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for the investigation of combinatorial sums. Some of these problems can be solved without
difficulties as they are based on classic and known results. However, many of them require
further investigations.
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enveloping algebra, 398
epi-mono factorization, 340
equationally presentable, 334
equivariance condition for a May operad, 93
Etingof, P., 130, 431
Euler, L., 461
Euler
– function, 303, 433
– matrix summation method, 482
– numbers, 478
– power series, 521
– product expansion, 403
evaluation
– element, 163
– map, 34, 65
exact
– cohomology sequence, 432
– k-sequence, 288
– sequence associated to a matched pair, 444
– sequence of Hopf algebras, 444
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– tree, 109
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exponent, 24, 432
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– type, 480
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– with Γ -Galois correspondence, 5
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F
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factor, 449
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faithful module, 246
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Feller, W., 461
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Ferrer diagram, 260
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– graph, 368, 407
– rule, 368
– rules, 394, 407
field
– extension, 13
– of p-adic numbers, 233
– theory, 5
filtered
– bialgebra, 387
– Hopf algebra, 387
– Lie algebra, 398
filtration, 133, 398
– of a coalgebra, 381
fine decreasing filtration, 403
finite chain ring, 226
first
– cohomology group, 31, 65
– continuous cohomology group, 31
Fitting invariant, 276
fixed field, 14
flag, 121
flat projectivity, 354
flip, 369
forgetful functor, 107

formal
– diffeomorphism, 406
– differential geometry, 89
– power series with noncommuting variables, 521
– residue, 471
– shift, 177
formality, 90
Fourier series, 521
Fourier–Mukai transform, 145
fractional ideal, 53
frame, 325, 330
free
– algebra, 369
– class (k + 1) solvable group, 490
– class three solvable group, 487
– group, 486
– group in a variety of groups, 491
– groups in varieties, 493
– involutive quantale, 334
– involutive semigroup, 334
– k-step solvable group, 462
– Lie algebra, 493
– loop space, 90
– non-unital operad functor, 107, 111
– operad, 92, 107
– operad functor, 107
– polynilpotent group, 491, 493
– PROP, 129
– quantale, 334
– solvable Lie algebra, 487
– T -coalgebra, 165
– unital algebra, 369
– unital quantale, 334
Frobenius
– algebra, 120
– automorphism, 228
– bimodule, 244
– manifold, 90
– module, 246
– ring, 241
– type, 436
Frobenius–Schur indicator, 432
Fröhlich, A., 31, 32
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full divisor, 223
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– sequence, 287
full-length code, 302
functorial isomorphism, 107
fundamental theorem
– of finite Galois theory, 5
– of infinite Galois theory, 6
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Gaal, L., 7
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– connection, 21, 346
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– extension, 200, 227
– field, 226
– G-algebra, 440
– group, 5, 14, 200
– H -coobject, 64
– H -object, 61
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– object over a Hopf algebra, 439
– polynomial, 226, 234
– ring, 226
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Galois–Eisenstein
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– ring, 233
Galois–Eisenstein–Ore ring, 240
Gan, W.L., 131
gauge theory, 414
Gauss, C., 461
Gauss quadratic reciprocity law, 12
Gay, D., 7, 9, 19
Gay–Vélez criterion, 19
GE-ring, 233
Gelaki, S., 431
Gelfand–Naimark duality, 325
general purity criterion, 25, 81
generalized
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– Jacobi identity, 107
– Kummer extension, 41
– Kummer group, 75
– n-Kummer extension, 41
– n-Kummer group, 75
– neat presentation, 42
– power, 521
generating
– character, 243
– function, 461, 471
– matrix of a code, 298
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GEO-ring, 239
geometric
– kernel, 507
– realization, 122
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Gosper
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Gosper–Petkovšek form, 513
Gould, G., 461
Gould type, 480
Goulden, I., 461
gown of a semigroup, 193
GP, 226
GR, 226
graded
– bialgebra, 385
– Hopf algebra, 385
– module, 57
– quiver, 146
– version of the Kneser criterion, 60
grading biderivation, 401
Graham, R., 461
Gramm matrix, 232
graph complex, 91
Gray mapping, 303
Green, D., 461
Greither, C., 8, 9, 11, 12, 17–20, 29, 42
Greither–Harrison criterion, 18
Grobe, R., 17
Gröbner basis, 257
Gröbner basis over a field, 258
Gronwall matrix summation method, 482
Grothendieck, A., 100, 145
Grothendieck residue, 495
Grothendieck–Knudsen configuration operad, 123
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group
– of bounded order, 24
– of Lie type, 462
– of periods, 285
– of periods of an ideal, 272
– of quasi-regular elements, 249
– of rational characters, 242
– ring of the symmetric group, 92
group-like element, 60, 383, 438
group-theoretic method of Pólya, 463
guaranteed rank, 298
Gugenheim, V.K.A.M., 152
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H
H -extension, 63
H -Galois extension, 63
H -Galois object, 439
H -module, 431
H-representation, 259
H -space, 145
Haight distribution, 480
Haile, D.E., 200
half-bialgebra, 133
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Halmos sum, 474
Halter-Koch, F., 7
Hamming
– bound, 296
– distance, 296
– metric, 299
– weight, 295
– weight enumerator, 299
Hardy, G., 461
Hardy identity, 466
Harrison, D.K., 8, 9, 11, 12, 17–20, 42
Harrison cohomology, 90
Hasse, H., 7, 11, 12, 50, 55
Hasse algorithm, 500
Hecke, E., 12, 53
Hecke
– field, 53
– system of ideal numbers, 53
Hensel lemma, 223
Hepp, K., 368
hereditary grupoid, 136
Hermite reduction, 511
Hermitean, 328
Hilbert
– class field, 53, 54
– theorem 90, 31
Hochschild, G., 431
Hochschild
– cochain, 90

– cohomology, 90, 394
Hoffman quasi-shuffle Hopf algebra, 400
holonomic function, 517
homogeneous
– component, 57
– element, 57
– – of degree γ , 57
– representation, 259
– – of a polynomial, 259
– weight, 302
homological perturbation theory, 133
homologous A∞-transformations, 171
homology operad, 106
homomorphism of operads, 95
homotopy
– associativity, 89
– coherent structure, 90
– invariant structure, 89
– – in algebra, 91
– invertible, 150
– Lie algebra, 91
– theory, 89
Hopf
– algebra, 61, 382, 431
– – of positive integers, 402
– ideal, 383
horizontal composition, 171
hyper-commutative algebra, 106
hyperfinite II1 factor, 451
hypergeometric, 507
– term, 506, 513

I
ideal, 369
– class group, 53
– in a PROP, 128
– in an operad, 95
– of maximal period, 288
idealizer, 244
idempotent, 218, 326
– factor set, 199
– order prenucleus, 335
– quantale, 326
II1 factors, 450
incidence
– algebra, 463
– algebras, 208
inclusion–exclusion
– principle, 462
– type formula, 500
increasing filtration, 381
indecomposable
– element, 403
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indefinite summation operator, 507
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– co-Galois theory, 8
– Hilbert theorem 90, 31
– parameter, 367
infinitesimal
– bialgebra, 132
– character, 392
injective
– module, 241
– quantale, 351
inner
– automorphism, 245
– homomorphism object, 164
integral, 434
– homotopy type, 91
interaction graph, 408
intermediate field, 14
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– direct sum, 27, 57
– edge, 408
– endomorphism operad, 104
– hom-functor, 94
interpolation series, 521
invariant
– bilinear form, 120
– symmetric bilinear form, 120
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– Galois theory problem for co-Galois extensions,

20
– semigroup, 199
invertible element, 218
inverting an implicit function, 521
involution, 328
involutive
– congruence, 328
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– quantale, 328
– – morphism, 328
– – prenucleus, 336
involutory braiding, 431
irreducible
– coalgebra, 378
– component, 435
– depth 2 inclusion, 450
isometric imbedding, 300
isometry, 299
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iterated
– cone, 177
– coproduct, 376
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J
Jabotinsky, E., 483
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k-algebra, 368
k-coalgebra, 373
K-flat projectivity, 354
k-fold loop space, 106
K-Hopf algebra, 61
k-linear recurring sequence, 283
k-LRS, 283
k-max-LRS of rank m, 288
k-maximal
– ideal, 288
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k-sequence over a module, 282
Kac, G., 431
Kac
– algebra, 431, 448
– exact sequence, 445, 447
Kadeishvili, T.V., 145
Kadison, L., 450
Kajiura, H., 145
Kakutani problem, 500
Kaplansky, I., 7, 10, 12, 431
Kaplansky
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Kapranov, M.M., 92, 117, 145
Kargapolov, M.I., 487
Kargapolov problem, 462
Karpilovsky, G., 8, 14, 31, 38, 40
Kashina, Y., 431
Kaucký, J., 461
Keller, B., 145
Keller, O., 503
Kerdock code, 304
kernel of a sup-lattice morphism, 336
Kneser, M., 7, 9
Kneser
– criterion, 16, 80
– extension, 9, 15
– group, 28, 67
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– – of cocycles, 67
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Knudsen, F.F., 100, 124
Knuth, D., 461
Kontsevich, M., 92, 134, 145
Kosaki, H., 431
Koszul
– operad, 90
– quadratic operad, 113
– rule, 147
Koszul–Sullivan algebra, 133
Krattenchaler, Ch., 486
Kronecker–Capelli criterion, 235
Krull, W., 220, 332
Krull
– theorem, 222
– topology, 6, 31
Kruml, D., 332, 351
Kudrjavtzev, V., 461
Kummer, E.E., 6
Kummer
– extensions with few roots of unity, 42
– group, 6
– – with few cocycles, 75
– groups of cocycles, 75
– theory, 6, 38
Kurakin invariants, 279
Kuznetsov, A.V., 253

L
L-isomorphism, 36
labeled
– graph, 122
– tree, 110, 117
Lagrange
– formula, 486
– group, 483
– inversion, 521
– matrix summation method, 482
– product, 483
– theorem on groups, 432
– type, 480
Lam-Estrada, P., 8, 10, 29, 30
Lambek, J., 159
Lang, S., 8, 14, 38, 40
language, 330
Larson, R.G., 200, 431
Latin square, 232
lattice
– anti-isomorphism, 5
– isomorphism, 5, 36
– morphism, 36
– of closed subgroups, 37
– of left ideals of a ring, 332

lattice-isomorphic, 35, 36
– groups, 35, 36
Laurent formal power series, 461, 470
lax Monoidal
– category, 154
– comonad, 158
– functor, 156
– transformation, 157
Lax numbers, 480
lax symmetric
– Monoidal category, 154
– Monoidal functor, 156
leading
– π -monomial, 259
– coefficient, 258
– monomial, 258
– term, 258
leaf of a rooted tree, 109
leaf-labeled tree, 110
Lefèvre-Hasegawa, K., 145
left
– ⇒ right theorems, 243
– A-module, 369
– adjoint, 107
– admissible character, 243
– annihilator, 240, 283
– C-comodule, 375
– chain ring, 225
– coideal, 373
– distinguished character, 243
– generating character, 243
– ideal, 332, 369
– idempotent quantale, 326
– identity, 218
– maximal ideal, 370
– monic, 283
– PIR, 225
– principal ideal ring, 225
– quotient, 509
– regular element, 218
– remainder, 509
– sided quantale, 326
– subcomodule, 375
– unit, 326
– unital quantale, 326
left-sided, 326
leg, 109
– of a tree, 109
leg-labeled tree, 117
Legendre type, 480
Legendre–Tchebycheff type, 480
Leibniz algebra, 119
Leinster, T., 92, 132
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lex, 257
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Li, Yong-ming, 353
Li, Zhi-hui, 353
Lie
– 1

2 bialgebra, 135
– bialgebra, 131
– series, 398
lifting, 223
linear
– complexity, 292
– equations over a GE-ring, 235
– Latin square, 232
– logic, 325, 351
– n-code, 296
– order, 257
– recurrence, 282
– recurring sequence, 283
– representation, 200
linearized ring, 253
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– equivalent codes, 300
– isometric codes, 300
– optimal code, 306
little k-discs operad, 95, 106
Littlewood, J., 461
local, 218
– finite ring, 218
– nilpotency, 147
local–global principle
– for co-Galois groups, 74
– for Kneser groups, 69
locale, 325
locally
– 1PI, 408
– compact group, 431
– finite variety, 250
logarithmic residue, 472
long exact cohomology sequence, 447
longest permutation, 172
loop, 232
– code, 306
– number, 409
– space, 90, 106
lower
– central series, 486
– semisolvable Hopf algebra, 437
– subset, 67
– semisolvable, 437
LRS family with characteristic ideal I , 283
LRS of maximal period, 291
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Łukasiewicz quantale, 349
Lyamin–Selivanov sum, 475
Lyndon–Hochschild spectral sequence, 11, 42
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MacMahon master theorem, 493
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MacWilliams identity, 298
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Markov, A.A., Jr, 299
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– pair, 442
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matrical module, 345
matrix
– elements, 149
– summation method, 482
Maurer–Cartan
– Au∞-2-monad, 177
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– equation, 91, 177, 178
– monad, 178
max-LRS, 288
maximal classical n-Kummer extension, 40
maximal recurrence, 288
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May, W., 7
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– non-Σ operad, 96
– operad, 92, 93
– tree, 116
mc-closed, 180
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Mellin transform, 521
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middle of an admissible couple of cuts, 404
Milnor–Moore theorem, 393
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– A∞-category, 152
– model for an operad, 90
– non-co-Galois group of cocycles, 74
– operad, 90
– subtraction scheme, 368, 394, 413
Mitchell, B., 192
Mitchell conjecture, 192
mix map, 350
Miyashita action, 441
Möbius function, 303, 463
Möbius functions, 521
mock bialgebra, 132
model
– category, 90
– of a theory, 89
modular
– operad, 90, 107, 123
– radical, 218, 219
module
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– prenucleus, 335
modules, 369
moduli
– space, 89
– – of stable curves, 123
– – of stable genus zero curves, 100
Molin–Wedderburn–Artin theorem, 218
momentum space, 412
monad, 107, 113, 177
– of pretriangulated A∞-categories, 177
– of pretriangulated A∞-categories, 181
– of rooted trees, 92
– of shifts, 177
monadic category, 334
monic, 283
– ideal, 255, 265, 283
Monoidal comonad, 158
monoidal
– category, 94, 148, 154, 325
– functor, 325
– model category, 90
– product, 107
Monoidal transformation, 158
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– isometry, 300
– linear transformation, 300
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– of 0-modules, 193
– of biunital quivers, 155
– of operads, 95
– of PROPs, 127
– of triangles, 185
mosaic non-unital operad, 107
MP-polynomial, 270, 291
MP-recurrence, 291
multicategory, 91, 154, 159
– of free coalgebras, 165
multicomonad, 165
multidimensional residue, 461
multifunctor, 159, 177
multimorphism, 159
multinatural
– transformation, 161, 177
– V-transformation, 163
multiple zeta values, 400
multiplicative
– lattice, 325
– linear order, 257
multiquiver, 164
multivalued logic, 521
Mulvey, C.J., 325, 332, 351
Mumford, D., 124

N
(n + 1)-pointed curve of genus 0, 100
n-bounded, 24
– extension, 24
n-circular domain, 462
n-Kummer
– extensions with few roots of unity, 41
– group with few cocycles, 75
n-pure
– extension, 24
– in group theory, 71
n-purity criterion, 25
n-quasi-Kummer group, 75
n-th radical, 8, 13, 15
Nakayama lemma, 371
Năstăsescu, C., 61
Natale, S., 431, 439
natural
– system, 205
– transformation, 158
– – of multifunctors, 161
Nawaz, M., 332, 351
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nerve in a semigroup, 206
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neutral extension, 447
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Nikshych, D., 450
nil-ideal, 217
nil-radical, 217
nilpotency index, 220
nilpotent ideal, 217
Nkuimi-Jugnia, C., 342
nodal singularity, 100
non-Σ operad, 96
non-commutative
– Spitzer identity, 400
– topology, 325
non-renormalisable, 414
non-renormalised mass, 414
non-stable GE-ring, 236
non-unital
– cyclic May operad, 118
– cyclic operad, 118
– Markl operad, 101
– May operad, 92, 101
– operad, 92
nonsingular, 124
norm, 254
normal
– curve, 124
– form, 258
– form modulo χ , 258
– Hopf subalgebra, 437
– lattice-isomorphism, 36
– matrix, 274, 277
– modulo χ , 258
normalization of a singular curve, 124
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Oberst, U., 432
Obreshkov matrix summation method, 482
obstruction theory for operad algebras, 90
Ocneanu, A., 431, 450
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one-particle irreducible graph, 408
operad, 89, 93, 159
– algebra, 103
– of Riemann spheres with labeled punctures, 119
operadic
– cohomology, 90
– composition, 93

– unit, 91
operator ring, 285
– of an ideal, 271
Opext group, 438, 445
opposite
– A∞-category, 172
– matched pair, 445
– quiver, 172
optimal code, 306
orbital semigroup of an ideal, 271
Ordelt, M., 342
order, 257
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– prenucleus, 335
Ore
– algebra, 520
– polynomial, 520
orthocomplement, 333
orthocomplemented sup-lattice, 333
orthogonal polynomial, 521
Ostrogradsky algorithm, 511, 520
overfield, 13
Oyonarte, L., 9
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p-adic
– coordinate function, 227
– decomposition, 227
– homotopy type, 91
– number, 233
PACT, 89
Paljutkin, V., 432
parametrized hole, 98
Parasiuk, O., 368
Pareigis, B., 29
parity-check matrix, 305
partial
– cohomology, 208
– homomorphism, 201
– linear representation, 201
– projective representation, 202
partially
– free monoid, 192
– ordered semigroup, 354
– ordered set, 14
Pascal triangle, 483
Paseka, J., 332, 351
pasting scheme for PROPs, 128
Patashnik, O., 461
Paule, P., 463
Pelletier, J.W., 332, 351
Percus, J., 461
period
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– of a periodic ideal, 265
– – in several variables, 272
– of a sequence, 285
periodic
– ideal in several variables, 271
– sequence, 285
permanent, 499
permits us, 174
Petkovšek, M., 461, 463, 520
PI-ring, 249
Pierce decomposition, 219
PIR, 225
plain multicategory, 163
planar
– decorated rooted tree, 403
– rooted tree, 109, 403
Platonov, M., 461
Plotkin bound, 296
PLR, 202
pointed
– coalgebra, 378, 388
– Hopf algebra, 388
Poisson algebra, 119
Polishchuk, A., 145
poly-linear recurrence, 282
Pólya, G., 461
polycategory, 132
polynomial
– factorization, 508
– functor, 135
– identity, 249
– – ring, 249
– of maximal period, 270, 291
– presentation, 237
– transformation, 237
polynomially
– complete, 253
– defined matrix, 278
Pontryagin duality, 37
Popa, S., 431
poset, 14
– isomorphism, 36
– morphism, 36
power series over algebraic systems, 521
powerset of a semigroup, 330, 334
PPR, 202
P(q, r, s) matrix summation method, 482
pre-Lie algebra, 119
Preparata code, 303
preserves an equivalence relation, 252
pretriangulated, 182
– differential graded category, 145
primary, 218

– components, 256
– polynomial, 223
prime element, 346
primitive
– element, 383
– element of an extension, 28
– ideal, 371
– idempotent, 434
– n-th root of unity, 14
– semifield, 231
principal fractional ideal, 53
principal ideal ring, 225
pro-nilpotent Lie algebra, 391
product and permutation category, 127
profinite group, 5, 6
projection, 252
projective
– representation of semigroups, 191
– variety, 124
projectivity, 36
PROP, 89, 107, 127
propagator, 412
proper Riordan array, 483
properad, 131
properadic ideal, 131
PROPic ideal, 128
Prudnikov, A., 461
pruning of a cut, 404
pseudo G-co-Galois extension, 29
pseudo-dual cocycle, 440
pseudo-tensor category, 159
pseudo-twist, 440
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pseudorandom sequence, 291
pseudounital, 175
puncture, 98
pure
– extension, 18, 24
– subgroup, 18
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Q
Q-bimodule, 350
q-binomial coefficient, 461
q-combinatorial numbers, 521
q-difference relation, 486
Q-pure extension, 24
QED, 408
QED interaction graph, 408
QF-bimodule, 240
QF-module, 242
QF-ring, 241
quadratic
– dual operad, 113
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– module, 328
– – morphism, 328
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– prenucleus, 335
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quantaloid, 325, 345
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– cohomology, 90
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– field theory, 368
– group, 431
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– form, 276
– matrix, 276
quasi-exponential series, 521
quasi-Frobenius bimodule, 240
quasi-Frobenius ring, 241
quasi-idempotent, 402
quasi-identity, 218
quasi-Kummer extension, 42
quasi-Kummer group, 75
quasi-M-pure, 71
quasi-n-pure, 71
quasi-purity criterion, 71
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quasitriangular structure, 431
quotient
– extension, 14
– module, 337
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– identity, 278
– of a module, 371
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Raney, G.N., 351
rank, 292
rational
– comodule, 376
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recurring sequence, 283
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– CSB, 260
– polynomial system, 259
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Reed–Muller code, 306
Reed–Solomon code, 296, 304
Reed–Solomon presentation, 303
regular
– Bell numbers, 514
– bimodule, 241
– epimorphism, 334
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– operad, 96
– pair of numbers, 292
– words, 487
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– scheme, 368, 394, 395
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– Feynman rule, 413
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residuation, 327, 328
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– at infinity, 472
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– ideal in several variables, 271
– LRS-family, 286
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Riemann zeta function, 403
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– C-comodule, 375
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– coideal, 373
– cyclic semifield, 231
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– ideal, 369
– idempotent quantale, 326
– PIR, 225
– polynomial, 254
– principal ideal ring, 225
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– sided quantale, 326
– unit, 326
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– group, 431
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– array, 482
– group, 482
– problem, 462, 479
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root, 109
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